1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #include <sys/types.h> 28 #include <sys/stream.h> 29 #include <sys/strsun.h> 30 #include <sys/strsubr.h> 31 #include <sys/stropts.h> 32 #include <sys/strlog.h> 33 #define _SUN_TPI_VERSION 2 34 #include <sys/tihdr.h> 35 #include <sys/timod.h> 36 #include <sys/ddi.h> 37 #include <sys/sunddi.h> 38 #include <sys/suntpi.h> 39 #include <sys/xti_inet.h> 40 #include <sys/cmn_err.h> 41 #include <sys/debug.h> 42 #include <sys/sdt.h> 43 #include <sys/vtrace.h> 44 #include <sys/kmem.h> 45 #include <sys/ethernet.h> 46 #include <sys/cpuvar.h> 47 #include <sys/dlpi.h> 48 #include <sys/pattr.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 #include <sys/zone.h> 52 #include <sys/sunldi.h> 53 54 #include <sys/errno.h> 55 #include <sys/signal.h> 56 #include <sys/socket.h> 57 #include <sys/socketvar.h> 58 #include <sys/sockio.h> 59 #include <sys/isa_defs.h> 60 #include <sys/md5.h> 61 #include <sys/random.h> 62 #include <sys/uio.h> 63 #include <sys/systm.h> 64 #include <netinet/in.h> 65 #include <netinet/tcp.h> 66 #include <netinet/ip6.h> 67 #include <netinet/icmp6.h> 68 #include <net/if.h> 69 #include <net/route.h> 70 #include <inet/ipsec_impl.h> 71 72 #include <inet/common.h> 73 #include <inet/ip.h> 74 #include <inet/ip_impl.h> 75 #include <inet/ip6.h> 76 #include <inet/ip_ndp.h> 77 #include <inet/proto_set.h> 78 #include <inet/mib2.h> 79 #include <inet/optcom.h> 80 #include <inet/snmpcom.h> 81 #include <inet/kstatcom.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/tcp_cluster.h> 85 #include <inet/udp_impl.h> 86 #include <net/pfkeyv2.h> 87 #include <inet/ipdrop.h> 88 89 #include <inet/ipclassifier.h> 90 #include <inet/ip_ire.h> 91 #include <inet/ip_ftable.h> 92 #include <inet/ip_if.h> 93 #include <inet/ipp_common.h> 94 #include <inet/ip_rts.h> 95 #include <inet/ip_netinfo.h> 96 #include <sys/squeue_impl.h> 97 #include <sys/squeue.h> 98 #include <inet/kssl/ksslapi.h> 99 #include <sys/tsol/label.h> 100 #include <sys/tsol/tnet.h> 101 #include <rpc/pmap_prot.h> 102 #include <sys/callo.h> 103 104 /* 105 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 106 * 107 * (Read the detailed design doc in PSARC case directory) 108 * 109 * The entire tcp state is contained in tcp_t and conn_t structure 110 * which are allocated in tandem using ipcl_conn_create() and passing 111 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 112 * the references on the tcp_t. The tcp_t structure is never compressed 113 * and packets always land on the correct TCP perimeter from the time 114 * eager is created till the time tcp_t dies (as such the old mentat 115 * TCP global queue is not used for detached state and no IPSEC checking 116 * is required). The global queue is still allocated to send out resets 117 * for connection which have no listeners and IP directly calls 118 * tcp_xmit_listeners_reset() which does any policy check. 119 * 120 * Protection and Synchronisation mechanism: 121 * 122 * The tcp data structure does not use any kind of lock for protecting 123 * its state but instead uses 'squeues' for mutual exclusion from various 124 * read and write side threads. To access a tcp member, the thread should 125 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 126 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 127 * can pass any tcp function having prototype of edesc_t as argument 128 * (different from traditional STREAMs model where packets come in only 129 * designated entry points). The list of functions that can be directly 130 * called via squeue are listed before the usual function prototype. 131 * 132 * Referencing: 133 * 134 * TCP is MT-Hot and we use a reference based scheme to make sure that the 135 * tcp structure doesn't disappear when its needed. When the application 136 * creates an outgoing connection or accepts an incoming connection, we 137 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 138 * The IP reference is just a symbolic reference since ip_tcpclose() 139 * looks at tcp structure after tcp_close_output() returns which could 140 * have dropped the last TCP reference. So as long as the connection is 141 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 142 * conn_t. The classifier puts its own reference when the connection is 143 * inserted in listen or connected hash. Anytime a thread needs to enter 144 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 145 * on write side or by doing a classify on read side and then puts a 146 * reference on the conn before doing squeue_enter/tryenter/fill. For 147 * read side, the classifier itself puts the reference under fanout lock 148 * to make sure that tcp can't disappear before it gets processed. The 149 * squeue will drop this reference automatically so the called function 150 * doesn't have to do a DEC_REF. 151 * 152 * Opening a new connection: 153 * 154 * The outgoing connection open is pretty simple. tcp_open() does the 155 * work in creating the conn/tcp structure and initializing it. The 156 * squeue assignment is done based on the CPU the application 157 * is running on. So for outbound connections, processing is always done 158 * on application CPU which might be different from the incoming CPU 159 * being interrupted by the NIC. An optimal way would be to figure out 160 * the NIC <-> CPU binding at listen time, and assign the outgoing 161 * connection to the squeue attached to the CPU that will be interrupted 162 * for incoming packets (we know the NIC based on the bind IP address). 163 * This might seem like a problem if more data is going out but the 164 * fact is that in most cases the transmit is ACK driven transmit where 165 * the outgoing data normally sits on TCP's xmit queue waiting to be 166 * transmitted. 167 * 168 * Accepting a connection: 169 * 170 * This is a more interesting case because of various races involved in 171 * establishing a eager in its own perimeter. Read the meta comment on 172 * top of tcp_input_listener(). But briefly, the squeue is picked by 173 * ip_fanout based on the ring or the sender (if loopback). 174 * 175 * Closing a connection: 176 * 177 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 178 * via squeue to do the close and mark the tcp as detached if the connection 179 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 180 * reference but tcp_close() drop IP's reference always. So if tcp was 181 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 182 * and 1 because it is in classifier's connected hash. This is the condition 183 * we use to determine that its OK to clean up the tcp outside of squeue 184 * when time wait expires (check the ref under fanout and conn_lock and 185 * if it is 2, remove it from fanout hash and kill it). 186 * 187 * Although close just drops the necessary references and marks the 188 * tcp_detached state, tcp_close needs to know the tcp_detached has been 189 * set (under squeue) before letting the STREAM go away (because a 190 * inbound packet might attempt to go up the STREAM while the close 191 * has happened and tcp_detached is not set). So a special lock and 192 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 193 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 194 * tcp_detached. 195 * 196 * Special provisions and fast paths: 197 * 198 * We make special provisions for sockfs by marking tcp_issocket 199 * whenever we have only sockfs on top of TCP. This allows us to skip 200 * putting the tcp in acceptor hash since a sockfs listener can never 201 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 202 * since eager has already been allocated and the accept now happens 203 * on acceptor STREAM. There is a big blob of comment on top of 204 * tcp_input_listener explaining the new accept. When socket is POP'd, 205 * sockfs sends us an ioctl to mark the fact and we go back to old 206 * behaviour. Once tcp_issocket is unset, its never set for the 207 * life of that connection. 208 * 209 * IPsec notes : 210 * 211 * Since a packet is always executed on the correct TCP perimeter 212 * all IPsec processing is defered to IP including checking new 213 * connections and setting IPSEC policies for new connection. The 214 * only exception is tcp_xmit_listeners_reset() which is called 215 * directly from IP and needs to policy check to see if TH_RST 216 * can be sent out. 217 */ 218 219 /* 220 * Values for squeue switch: 221 * 1: SQ_NODRAIN 222 * 2: SQ_PROCESS 223 * 3: SQ_FILL 224 */ 225 int tcp_squeue_wput = 2; /* /etc/systems */ 226 int tcp_squeue_flag; 227 228 /* 229 * To prevent memory hog, limit the number of entries in tcp_free_list 230 * to 1% of available memory / number of cpus 231 */ 232 uint_t tcp_free_list_max_cnt = 0; 233 234 #define TCP_XMIT_LOWATER 4096 235 #define TCP_XMIT_HIWATER 49152 236 #define TCP_RECV_LOWATER 2048 237 #define TCP_RECV_HIWATER 128000 238 239 #define TIDUSZ 4096 /* transport interface data unit size */ 240 241 /* 242 * Size of acceptor hash list. It has to be a power of 2 for hashing. 243 */ 244 #define TCP_ACCEPTOR_FANOUT_SIZE 256 245 246 #ifdef _ILP32 247 #define TCP_ACCEPTOR_HASH(accid) \ 248 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 249 #else 250 #define TCP_ACCEPTOR_HASH(accid) \ 251 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 252 #endif /* _ILP32 */ 253 254 /* Minimum number of connections per listener. */ 255 static uint32_t tcp_min_conn_listener = 2; 256 257 uint32_t tcp_early_abort = 30; 258 259 /* TCP Timer control structure */ 260 typedef struct tcpt_s { 261 pfv_t tcpt_pfv; /* The routine we are to call */ 262 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 263 } tcpt_t; 264 265 /* 266 * Functions called directly via squeue having a prototype of edesc_t. 267 */ 268 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 269 ip_recv_attr_t *ira); 270 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 271 ip_recv_attr_t *ira); 272 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 273 ip_recv_attr_t *dummy); 274 275 276 /* Prototype for TCP functions */ 277 static void tcp_random_init(void); 278 int tcp_random(void); 279 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 280 in_port_t dstport, uint_t srcid); 281 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 282 in_port_t dstport, uint32_t flowinfo, 283 uint_t srcid, uint32_t scope_id); 284 static void tcp_iss_init(tcp_t *tcp); 285 static void tcp_reinit(tcp_t *tcp); 286 static void tcp_reinit_values(tcp_t *tcp); 287 288 static void tcp_wsrv(queue_t *q); 289 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 290 static void tcp_update_zcopy(tcp_t *tcp); 291 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 292 ixa_notify_arg_t); 293 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 294 static void tcp_stack_fini(netstackid_t stackid, void *arg); 295 296 static int tcp_squeue_switch(int); 297 298 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 299 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 300 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 301 302 static void tcp_squeue_add(squeue_t *); 303 304 struct module_info tcp_rinfo = { 305 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 306 }; 307 308 static struct module_info tcp_winfo = { 309 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 310 }; 311 312 /* 313 * Entry points for TCP as a device. The normal case which supports 314 * the TCP functionality. 315 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 316 */ 317 struct qinit tcp_rinitv4 = { 318 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 319 }; 320 321 struct qinit tcp_rinitv6 = { 322 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 323 }; 324 325 struct qinit tcp_winit = { 326 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 327 }; 328 329 /* Initial entry point for TCP in socket mode. */ 330 struct qinit tcp_sock_winit = { 331 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 332 }; 333 334 /* TCP entry point during fallback */ 335 struct qinit tcp_fallback_sock_winit = { 336 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 337 }; 338 339 /* 340 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 341 * an accept. Avoid allocating data structures since eager has already 342 * been created. 343 */ 344 struct qinit tcp_acceptor_rinit = { 345 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 346 }; 347 348 struct qinit tcp_acceptor_winit = { 349 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 350 }; 351 352 /* For AF_INET aka /dev/tcp */ 353 struct streamtab tcpinfov4 = { 354 &tcp_rinitv4, &tcp_winit 355 }; 356 357 /* For AF_INET6 aka /dev/tcp6 */ 358 struct streamtab tcpinfov6 = { 359 &tcp_rinitv6, &tcp_winit 360 }; 361 362 /* 363 * Following assumes TPI alignment requirements stay along 32 bit 364 * boundaries 365 */ 366 #define ROUNDUP32(x) \ 367 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 368 369 /* Template for response to info request. */ 370 struct T_info_ack tcp_g_t_info_ack = { 371 T_INFO_ACK, /* PRIM_type */ 372 0, /* TSDU_size */ 373 T_INFINITE, /* ETSDU_size */ 374 T_INVALID, /* CDATA_size */ 375 T_INVALID, /* DDATA_size */ 376 sizeof (sin_t), /* ADDR_size */ 377 0, /* OPT_size - not initialized here */ 378 TIDUSZ, /* TIDU_size */ 379 T_COTS_ORD, /* SERV_type */ 380 TCPS_IDLE, /* CURRENT_state */ 381 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 382 }; 383 384 struct T_info_ack tcp_g_t_info_ack_v6 = { 385 T_INFO_ACK, /* PRIM_type */ 386 0, /* TSDU_size */ 387 T_INFINITE, /* ETSDU_size */ 388 T_INVALID, /* CDATA_size */ 389 T_INVALID, /* DDATA_size */ 390 sizeof (sin6_t), /* ADDR_size */ 391 0, /* OPT_size - not initialized here */ 392 TIDUSZ, /* TIDU_size */ 393 T_COTS_ORD, /* SERV_type */ 394 TCPS_IDLE, /* CURRENT_state */ 395 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 396 }; 397 398 /* 399 * TCP tunables related declarations. Definitions are in tcp_tunables.c 400 */ 401 extern mod_prop_info_t tcp_propinfo_tbl[]; 402 extern int tcp_propinfo_count; 403 404 #define MB (1024 * 1024) 405 406 #define IS_VMLOANED_MBLK(mp) \ 407 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 408 409 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 410 411 /* 412 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 413 * tunable settable via NDD. Otherwise, the per-connection behavior is 414 * determined dynamically during tcp_set_destination(), which is the default. 415 */ 416 boolean_t tcp_static_maxpsz = B_FALSE; 417 418 /* 419 * If the receive buffer size is changed, this function is called to update 420 * the upper socket layer on the new delayed receive wake up threshold. 421 */ 422 static void 423 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 424 { 425 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 426 427 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 428 conn_t *connp = tcp->tcp_connp; 429 struct sock_proto_props sopp; 430 431 /* 432 * only increase rcvthresh upto default_threshold 433 */ 434 if (new_rcvthresh > default_threshold) 435 new_rcvthresh = default_threshold; 436 437 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 438 sopp.sopp_rcvthresh = new_rcvthresh; 439 440 (*connp->conn_upcalls->su_set_proto_props) 441 (connp->conn_upper_handle, &sopp); 442 } 443 } 444 445 /* 446 * Figure out the value of window scale opton. Note that the rwnd is 447 * ASSUMED to be rounded up to the nearest MSS before the calculation. 448 * We cannot find the scale value and then do a round up of tcp_rwnd 449 * because the scale value may not be correct after that. 450 * 451 * Set the compiler flag to make this function inline. 452 */ 453 void 454 tcp_set_ws_value(tcp_t *tcp) 455 { 456 int i; 457 uint32_t rwnd = tcp->tcp_rwnd; 458 459 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 460 i++, rwnd >>= 1) 461 ; 462 tcp->tcp_rcv_ws = i; 463 } 464 465 /* 466 * Remove cached/latched IPsec references. 467 */ 468 void 469 tcp_ipsec_cleanup(tcp_t *tcp) 470 { 471 conn_t *connp = tcp->tcp_connp; 472 473 ASSERT(connp->conn_flags & IPCL_TCPCONN); 474 475 if (connp->conn_latch != NULL) { 476 IPLATCH_REFRELE(connp->conn_latch); 477 connp->conn_latch = NULL; 478 } 479 if (connp->conn_latch_in_policy != NULL) { 480 IPPOL_REFRELE(connp->conn_latch_in_policy); 481 connp->conn_latch_in_policy = NULL; 482 } 483 if (connp->conn_latch_in_action != NULL) { 484 IPACT_REFRELE(connp->conn_latch_in_action); 485 connp->conn_latch_in_action = NULL; 486 } 487 if (connp->conn_policy != NULL) { 488 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 489 connp->conn_policy = NULL; 490 } 491 } 492 493 /* 494 * Cleaup before placing on free list. 495 * Disassociate from the netstack/tcp_stack_t since the freelist 496 * is per squeue and not per netstack. 497 */ 498 void 499 tcp_cleanup(tcp_t *tcp) 500 { 501 mblk_t *mp; 502 conn_t *connp = tcp->tcp_connp; 503 tcp_stack_t *tcps = tcp->tcp_tcps; 504 netstack_t *ns = tcps->tcps_netstack; 505 mblk_t *tcp_rsrv_mp; 506 507 tcp_bind_hash_remove(tcp); 508 509 /* Cleanup that which needs the netstack first */ 510 tcp_ipsec_cleanup(tcp); 511 ixa_cleanup(connp->conn_ixa); 512 513 if (connp->conn_ht_iphc != NULL) { 514 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 515 connp->conn_ht_iphc = NULL; 516 connp->conn_ht_iphc_allocated = 0; 517 connp->conn_ht_iphc_len = 0; 518 connp->conn_ht_ulp = NULL; 519 connp->conn_ht_ulp_len = 0; 520 tcp->tcp_ipha = NULL; 521 tcp->tcp_ip6h = NULL; 522 tcp->tcp_tcpha = NULL; 523 } 524 525 /* We clear any IP_OPTIONS and extension headers */ 526 ip_pkt_free(&connp->conn_xmit_ipp); 527 528 tcp_free(tcp); 529 530 /* Release any SSL context */ 531 if (tcp->tcp_kssl_ent != NULL) { 532 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 533 tcp->tcp_kssl_ent = NULL; 534 } 535 536 if (tcp->tcp_kssl_ctx != NULL) { 537 kssl_release_ctx(tcp->tcp_kssl_ctx); 538 tcp->tcp_kssl_ctx = NULL; 539 } 540 tcp->tcp_kssl_pending = B_FALSE; 541 542 /* 543 * Since we will bzero the entire structure, we need to 544 * remove it and reinsert it in global hash list. We 545 * know the walkers can't get to this conn because we 546 * had set CONDEMNED flag earlier and checked reference 547 * under conn_lock so walker won't pick it and when we 548 * go the ipcl_globalhash_remove() below, no walker 549 * can get to it. 550 */ 551 ipcl_globalhash_remove(connp); 552 553 /* Save some state */ 554 mp = tcp->tcp_timercache; 555 556 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 557 558 if (connp->conn_cred != NULL) { 559 crfree(connp->conn_cred); 560 connp->conn_cred = NULL; 561 } 562 ipcl_conn_cleanup(connp); 563 connp->conn_flags = IPCL_TCPCONN; 564 565 /* 566 * Now it is safe to decrement the reference counts. 567 * This might be the last reference on the netstack 568 * in which case it will cause the freeing of the IP Instance. 569 */ 570 connp->conn_netstack = NULL; 571 connp->conn_ixa->ixa_ipst = NULL; 572 netstack_rele(ns); 573 ASSERT(tcps != NULL); 574 tcp->tcp_tcps = NULL; 575 576 bzero(tcp, sizeof (tcp_t)); 577 578 /* restore the state */ 579 tcp->tcp_timercache = mp; 580 581 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 582 583 tcp->tcp_connp = connp; 584 585 ASSERT(connp->conn_tcp == tcp); 586 ASSERT(connp->conn_flags & IPCL_TCPCONN); 587 connp->conn_state_flags = CONN_INCIPIENT; 588 ASSERT(connp->conn_proto == IPPROTO_TCP); 589 ASSERT(connp->conn_ref == 1); 590 } 591 592 /* 593 * Adapt to the information, such as rtt and rtt_sd, provided from the 594 * DCE and IRE maintained by IP. 595 * 596 * Checks for multicast and broadcast destination address. 597 * Returns zero if ok; an errno on failure. 598 * 599 * Note that the MSS calculation here is based on the info given in 600 * the DCE and IRE. We do not do any calculation based on TCP options. They 601 * will be handled in tcp_input_data() when TCP knows which options to use. 602 * 603 * Note on how TCP gets its parameters for a connection. 604 * 605 * When a tcp_t structure is allocated, it gets all the default parameters. 606 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 607 * spipe, rpipe, ... from the route metrics. Route metric overrides the 608 * default. 609 * 610 * An incoming SYN with a multicast or broadcast destination address is dropped 611 * in ip_fanout_v4/v6. 612 * 613 * An incoming SYN with a multicast or broadcast source address is always 614 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 615 * conn_connect. 616 * The same logic in tcp_set_destination also serves to 617 * reject an attempt to connect to a broadcast or multicast (destination) 618 * address. 619 */ 620 int 621 tcp_set_destination(tcp_t *tcp) 622 { 623 uint32_t mss_max; 624 uint32_t mss; 625 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 626 conn_t *connp = tcp->tcp_connp; 627 tcp_stack_t *tcps = tcp->tcp_tcps; 628 iulp_t uinfo; 629 int error; 630 uint32_t flags; 631 632 flags = IPDF_LSO | IPDF_ZCOPY; 633 /* 634 * Make sure we have a dce for the destination to avoid dce_ident 635 * contention for connected sockets. 636 */ 637 flags |= IPDF_UNIQUE_DCE; 638 639 if (!tcps->tcps_ignore_path_mtu) 640 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 641 642 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 643 mutex_enter(&connp->conn_lock); 644 error = conn_connect(connp, &uinfo, flags); 645 mutex_exit(&connp->conn_lock); 646 if (error != 0) 647 return (error); 648 649 error = tcp_build_hdrs(tcp); 650 if (error != 0) 651 return (error); 652 653 tcp->tcp_localnet = uinfo.iulp_localnet; 654 655 if (uinfo.iulp_rtt != 0) { 656 clock_t rto; 657 658 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 659 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 660 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 661 tcps->tcps_rexmit_interval_extra + 662 (tcp->tcp_rtt_sa >> 5); 663 664 TCP_SET_RTO(tcp, rto); 665 } 666 if (uinfo.iulp_ssthresh != 0) 667 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 668 else 669 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 670 if (uinfo.iulp_spipe > 0) { 671 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 672 tcps->tcps_max_buf); 673 if (tcps->tcps_snd_lowat_fraction != 0) { 674 connp->conn_sndlowat = connp->conn_sndbuf / 675 tcps->tcps_snd_lowat_fraction; 676 } 677 (void) tcp_maxpsz_set(tcp, B_TRUE); 678 } 679 /* 680 * Note that up till now, acceptor always inherits receive 681 * window from the listener. But if there is a metrics 682 * associated with a host, we should use that instead of 683 * inheriting it from listener. Thus we need to pass this 684 * info back to the caller. 685 */ 686 if (uinfo.iulp_rpipe > 0) { 687 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 688 tcps->tcps_max_buf); 689 } 690 691 if (uinfo.iulp_rtomax > 0) { 692 tcp->tcp_second_timer_threshold = 693 uinfo.iulp_rtomax; 694 } 695 696 /* 697 * Use the metric option settings, iulp_tstamp_ok and 698 * iulp_wscale_ok, only for active open. What this means 699 * is that if the other side uses timestamp or window 700 * scale option, TCP will also use those options. That 701 * is for passive open. If the application sets a 702 * large window, window scale is enabled regardless of 703 * the value in iulp_wscale_ok. This is the behavior 704 * since 2.6. So we keep it. 705 * The only case left in passive open processing is the 706 * check for SACK. 707 * For ECN, it should probably be like SACK. But the 708 * current value is binary, so we treat it like the other 709 * cases. The metric only controls active open.For passive 710 * open, the ndd param, tcp_ecn_permitted, controls the 711 * behavior. 712 */ 713 if (!tcp_detached) { 714 /* 715 * The if check means that the following can only 716 * be turned on by the metrics only IRE, but not off. 717 */ 718 if (uinfo.iulp_tstamp_ok) 719 tcp->tcp_snd_ts_ok = B_TRUE; 720 if (uinfo.iulp_wscale_ok) 721 tcp->tcp_snd_ws_ok = B_TRUE; 722 if (uinfo.iulp_sack == 2) 723 tcp->tcp_snd_sack_ok = B_TRUE; 724 if (uinfo.iulp_ecn_ok) 725 tcp->tcp_ecn_ok = B_TRUE; 726 } else { 727 /* 728 * Passive open. 729 * 730 * As above, the if check means that SACK can only be 731 * turned on by the metric only IRE. 732 */ 733 if (uinfo.iulp_sack > 0) { 734 tcp->tcp_snd_sack_ok = B_TRUE; 735 } 736 } 737 738 /* 739 * XXX Note that currently, iulp_mtu can be as small as 68 740 * because of PMTUd. So tcp_mss may go to negative if combined 741 * length of all those options exceeds 28 bytes. But because 742 * of the tcp_mss_min check below, we may not have a problem if 743 * tcp_mss_min is of a reasonable value. The default is 1 so 744 * the negative problem still exists. And the check defeats PMTUd. 745 * In fact, if PMTUd finds that the MSS should be smaller than 746 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 747 * value. 748 * 749 * We do not deal with that now. All those problems related to 750 * PMTUd will be fixed later. 751 */ 752 ASSERT(uinfo.iulp_mtu != 0); 753 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 754 755 /* Sanity check for MSS value. */ 756 if (connp->conn_ipversion == IPV4_VERSION) 757 mss_max = tcps->tcps_mss_max_ipv4; 758 else 759 mss_max = tcps->tcps_mss_max_ipv6; 760 761 if (tcp->tcp_ipsec_overhead == 0) 762 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 763 764 mss -= tcp->tcp_ipsec_overhead; 765 766 if (mss < tcps->tcps_mss_min) 767 mss = tcps->tcps_mss_min; 768 if (mss > mss_max) 769 mss = mss_max; 770 771 /* Note that this is the maximum MSS, excluding all options. */ 772 tcp->tcp_mss = mss; 773 774 /* 775 * Update the tcp connection with LSO capability. 776 */ 777 tcp_update_lso(tcp, connp->conn_ixa); 778 779 /* 780 * Initialize the ISS here now that we have the full connection ID. 781 * The RFC 1948 method of initial sequence number generation requires 782 * knowledge of the full connection ID before setting the ISS. 783 */ 784 tcp_iss_init(tcp); 785 786 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 787 788 /* 789 * Make sure that conn is not marked incipient 790 * for incoming connections. A blind 791 * removal of incipient flag is cheaper than 792 * check and removal. 793 */ 794 mutex_enter(&connp->conn_lock); 795 connp->conn_state_flags &= ~CONN_INCIPIENT; 796 mutex_exit(&connp->conn_lock); 797 return (0); 798 } 799 800 /* 801 * tcp_clean_death / tcp_close_detached must not be called more than once 802 * on a tcp. Thus every function that potentially calls tcp_clean_death 803 * must check for the tcp state before calling tcp_clean_death. 804 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 805 * tcp_timer_handler, all check for the tcp state. 806 */ 807 /* ARGSUSED */ 808 void 809 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 810 ip_recv_attr_t *dummy) 811 { 812 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 813 814 freemsg(mp); 815 if (tcp->tcp_state > TCPS_BOUND) 816 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT); 817 } 818 819 /* 820 * We are dying for some reason. Try to do it gracefully. (May be called 821 * as writer.) 822 * 823 * Return -1 if the structure was not cleaned up (if the cleanup had to be 824 * done by a service procedure). 825 * TBD - Should the return value distinguish between the tcp_t being 826 * freed and it being reinitialized? 827 */ 828 int 829 tcp_clean_death(tcp_t *tcp, int err) 830 { 831 mblk_t *mp; 832 queue_t *q; 833 conn_t *connp = tcp->tcp_connp; 834 tcp_stack_t *tcps = tcp->tcp_tcps; 835 836 if (tcp->tcp_fused) 837 tcp_unfuse(tcp); 838 839 if (tcp->tcp_linger_tid != 0 && 840 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 841 tcp_stop_lingering(tcp); 842 } 843 844 ASSERT(tcp != NULL); 845 ASSERT((connp->conn_family == AF_INET && 846 connp->conn_ipversion == IPV4_VERSION) || 847 (connp->conn_family == AF_INET6 && 848 (connp->conn_ipversion == IPV4_VERSION || 849 connp->conn_ipversion == IPV6_VERSION))); 850 851 if (TCP_IS_DETACHED(tcp)) { 852 if (tcp->tcp_hard_binding) { 853 /* 854 * Its an eager that we are dealing with. We close the 855 * eager but in case a conn_ind has already gone to the 856 * listener, let tcp_accept_finish() send a discon_ind 857 * to the listener and drop the last reference. If the 858 * listener doesn't even know about the eager i.e. the 859 * conn_ind hasn't gone up, blow away the eager and drop 860 * the last reference as well. If the conn_ind has gone 861 * up, state should be BOUND. tcp_accept_finish 862 * will figure out that the connection has received a 863 * RST and will send a DISCON_IND to the application. 864 */ 865 tcp_closei_local(tcp); 866 if (!tcp->tcp_tconnind_started) { 867 CONN_DEC_REF(connp); 868 } else { 869 int32_t oldstate = tcp->tcp_state; 870 871 tcp->tcp_state = TCPS_BOUND; 872 DTRACE_TCP6(state__change, void, NULL, 873 ip_xmit_attr_t *, connp->conn_ixa, 874 void, NULL, tcp_t *, tcp, void, NULL, 875 int32_t, oldstate); 876 } 877 } else { 878 tcp_close_detached(tcp); 879 } 880 return (0); 881 } 882 883 TCP_STAT(tcps, tcp_clean_death_nondetached); 884 885 /* 886 * The connection is dead. Decrement listener connection counter if 887 * necessary. 888 */ 889 if (tcp->tcp_listen_cnt != NULL) 890 TCP_DECR_LISTEN_CNT(tcp); 891 892 /* 893 * When a connection is moved to TIME_WAIT state, the connection 894 * counter is already decremented. So no need to decrement here 895 * again. See SET_TIME_WAIT() macro. 896 */ 897 if (tcp->tcp_state >= TCPS_ESTABLISHED && 898 tcp->tcp_state < TCPS_TIME_WAIT) { 899 TCPS_CONN_DEC(tcps); 900 } 901 902 q = connp->conn_rq; 903 904 /* Trash all inbound data */ 905 if (!IPCL_IS_NONSTR(connp)) { 906 ASSERT(q != NULL); 907 flushq(q, FLUSHALL); 908 } 909 910 /* 911 * If we are at least part way open and there is error 912 * (err==0 implies no error) 913 * notify our client by a T_DISCON_IND. 914 */ 915 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 916 if (tcp->tcp_state >= TCPS_ESTABLISHED && 917 !TCP_IS_SOCKET(tcp)) { 918 /* 919 * Send M_FLUSH according to TPI. Because sockets will 920 * (and must) ignore FLUSHR we do that only for TPI 921 * endpoints and sockets in STREAMS mode. 922 */ 923 (void) putnextctl1(q, M_FLUSH, FLUSHR); 924 } 925 if (connp->conn_debug) { 926 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 927 "tcp_clean_death: discon err %d", err); 928 } 929 if (IPCL_IS_NONSTR(connp)) { 930 /* Direct socket, use upcall */ 931 (*connp->conn_upcalls->su_disconnected)( 932 connp->conn_upper_handle, tcp->tcp_connid, err); 933 } else { 934 mp = mi_tpi_discon_ind(NULL, err, 0); 935 if (mp != NULL) { 936 putnext(q, mp); 937 } else { 938 if (connp->conn_debug) { 939 (void) strlog(TCP_MOD_ID, 0, 1, 940 SL_ERROR|SL_TRACE, 941 "tcp_clean_death, sending M_ERROR"); 942 } 943 (void) putnextctl1(q, M_ERROR, EPROTO); 944 } 945 } 946 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 947 /* SYN_SENT or SYN_RCVD */ 948 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 949 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 950 /* ESTABLISHED or CLOSE_WAIT */ 951 TCPS_BUMP_MIB(tcps, tcpEstabResets); 952 } 953 } 954 955 tcp_reinit(tcp); 956 if (IPCL_IS_NONSTR(connp)) 957 (void) tcp_do_unbind(connp); 958 959 return (-1); 960 } 961 962 /* 963 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 964 * to expire, stop the wait and finish the close. 965 */ 966 void 967 tcp_stop_lingering(tcp_t *tcp) 968 { 969 clock_t delta = 0; 970 tcp_stack_t *tcps = tcp->tcp_tcps; 971 conn_t *connp = tcp->tcp_connp; 972 973 tcp->tcp_linger_tid = 0; 974 if (tcp->tcp_state > TCPS_LISTEN) { 975 tcp_acceptor_hash_remove(tcp); 976 mutex_enter(&tcp->tcp_non_sq_lock); 977 if (tcp->tcp_flow_stopped) { 978 tcp_clrqfull(tcp); 979 } 980 mutex_exit(&tcp->tcp_non_sq_lock); 981 982 if (tcp->tcp_timer_tid != 0) { 983 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 984 tcp->tcp_timer_tid = 0; 985 } 986 /* 987 * Need to cancel those timers which will not be used when 988 * TCP is detached. This has to be done before the conn_wq 989 * is cleared. 990 */ 991 tcp_timers_stop(tcp); 992 993 tcp->tcp_detached = B_TRUE; 994 connp->conn_rq = NULL; 995 connp->conn_wq = NULL; 996 997 if (tcp->tcp_state == TCPS_TIME_WAIT) { 998 tcp_time_wait_append(tcp); 999 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 1000 goto finish; 1001 } 1002 1003 /* 1004 * If delta is zero the timer event wasn't executed and was 1005 * successfully canceled. In this case we need to restart it 1006 * with the minimal delta possible. 1007 */ 1008 if (delta >= 0) { 1009 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 1010 delta ? delta : 1); 1011 } 1012 } else { 1013 tcp_closei_local(tcp); 1014 CONN_DEC_REF(connp); 1015 } 1016 finish: 1017 /* Signal closing thread that it can complete close */ 1018 mutex_enter(&tcp->tcp_closelock); 1019 tcp->tcp_detached = B_TRUE; 1020 connp->conn_rq = NULL; 1021 connp->conn_wq = NULL; 1022 1023 tcp->tcp_closed = 1; 1024 cv_signal(&tcp->tcp_closecv); 1025 mutex_exit(&tcp->tcp_closelock); 1026 } 1027 1028 void 1029 tcp_close_common(conn_t *connp, int flags) 1030 { 1031 tcp_t *tcp = connp->conn_tcp; 1032 mblk_t *mp = &tcp->tcp_closemp; 1033 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 1034 mblk_t *bp; 1035 1036 ASSERT(connp->conn_ref >= 2); 1037 1038 /* 1039 * Mark the conn as closing. ipsq_pending_mp_add will not 1040 * add any mp to the pending mp list, after this conn has 1041 * started closing. 1042 */ 1043 mutex_enter(&connp->conn_lock); 1044 connp->conn_state_flags |= CONN_CLOSING; 1045 if (connp->conn_oper_pending_ill != NULL) 1046 conn_ioctl_cleanup_reqd = B_TRUE; 1047 CONN_INC_REF_LOCKED(connp); 1048 mutex_exit(&connp->conn_lock); 1049 tcp->tcp_closeflags = (uint8_t)flags; 1050 ASSERT(connp->conn_ref >= 3); 1051 1052 /* 1053 * tcp_closemp_used is used below without any protection of a lock 1054 * as we don't expect any one else to use it concurrently at this 1055 * point otherwise it would be a major defect. 1056 */ 1057 1058 if (mp->b_prev == NULL) 1059 tcp->tcp_closemp_used = B_TRUE; 1060 else 1061 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 1062 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 1063 1064 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1065 1066 /* 1067 * Cleanup any queued ioctls here. This must be done before the wq/rq 1068 * are re-written by tcp_close_output(). 1069 */ 1070 if (conn_ioctl_cleanup_reqd) 1071 conn_ioctl_cleanup(connp); 1072 1073 /* 1074 * As CONN_CLOSING is set, no further ioctls should be passed down to 1075 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 1076 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 1077 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 1078 * was still in flight at the time, we wait for it here. See comments 1079 * for CONN_INC_IOCTLREF in ip.h for details. 1080 */ 1081 mutex_enter(&connp->conn_lock); 1082 while (connp->conn_ioctlref > 0) 1083 cv_wait(&connp->conn_cv, &connp->conn_lock); 1084 ASSERT(connp->conn_ioctlref == 0); 1085 ASSERT(connp->conn_oper_pending_ill == NULL); 1086 mutex_exit(&connp->conn_lock); 1087 1088 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 1089 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1090 1091 mutex_enter(&tcp->tcp_closelock); 1092 while (!tcp->tcp_closed) { 1093 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 1094 /* 1095 * The cv_wait_sig() was interrupted. We now do the 1096 * following: 1097 * 1098 * 1) If the endpoint was lingering, we allow this 1099 * to be interrupted by cancelling the linger timeout 1100 * and closing normally. 1101 * 1102 * 2) Revert to calling cv_wait() 1103 * 1104 * We revert to using cv_wait() to avoid an 1105 * infinite loop which can occur if the calling 1106 * thread is higher priority than the squeue worker 1107 * thread and is bound to the same cpu. 1108 */ 1109 if (connp->conn_linger && connp->conn_lingertime > 0) { 1110 mutex_exit(&tcp->tcp_closelock); 1111 /* Entering squeue, bump ref count. */ 1112 CONN_INC_REF(connp); 1113 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 1114 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 1115 tcp_linger_interrupted, connp, NULL, 1116 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1117 mutex_enter(&tcp->tcp_closelock); 1118 } 1119 break; 1120 } 1121 } 1122 while (!tcp->tcp_closed) 1123 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 1124 mutex_exit(&tcp->tcp_closelock); 1125 1126 /* 1127 * In the case of listener streams that have eagers in the q or q0 1128 * we wait for the eagers to drop their reference to us. conn_rq and 1129 * conn_wq of the eagers point to our queues. By waiting for the 1130 * refcnt to drop to 1, we are sure that the eagers have cleaned 1131 * up their queue pointers and also dropped their references to us. 1132 */ 1133 if (tcp->tcp_wait_for_eagers) { 1134 mutex_enter(&connp->conn_lock); 1135 while (connp->conn_ref != 1) { 1136 cv_wait(&connp->conn_cv, &connp->conn_lock); 1137 } 1138 mutex_exit(&connp->conn_lock); 1139 } 1140 1141 connp->conn_cpid = NOPID; 1142 } 1143 1144 /* 1145 * Called by tcp_close() routine via squeue when lingering is 1146 * interrupted by a signal. 1147 */ 1148 1149 /* ARGSUSED */ 1150 static void 1151 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1152 { 1153 conn_t *connp = (conn_t *)arg; 1154 tcp_t *tcp = connp->conn_tcp; 1155 1156 freeb(mp); 1157 if (tcp->tcp_linger_tid != 0 && 1158 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 1159 tcp_stop_lingering(tcp); 1160 tcp->tcp_client_errno = EINTR; 1161 } 1162 } 1163 1164 /* 1165 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 1166 * Some stream heads get upset if they see these later on as anything but NULL. 1167 */ 1168 void 1169 tcp_close_mpp(mblk_t **mpp) 1170 { 1171 mblk_t *mp; 1172 1173 if ((mp = *mpp) != NULL) { 1174 do { 1175 mp->b_next = NULL; 1176 mp->b_prev = NULL; 1177 } while ((mp = mp->b_cont) != NULL); 1178 1179 mp = *mpp; 1180 *mpp = NULL; 1181 freemsg(mp); 1182 } 1183 } 1184 1185 /* Do detached close. */ 1186 void 1187 tcp_close_detached(tcp_t *tcp) 1188 { 1189 if (tcp->tcp_fused) 1190 tcp_unfuse(tcp); 1191 1192 /* 1193 * Clustering code serializes TCP disconnect callbacks and 1194 * cluster tcp list walks by blocking a TCP disconnect callback 1195 * if a cluster tcp list walk is in progress. This ensures 1196 * accurate accounting of TCPs in the cluster code even though 1197 * the TCP list walk itself is not atomic. 1198 */ 1199 tcp_closei_local(tcp); 1200 CONN_DEC_REF(tcp->tcp_connp); 1201 } 1202 1203 /* 1204 * The tcp_t is going away. Remove it from all lists and set it 1205 * to TCPS_CLOSED. The freeing up of memory is deferred until 1206 * tcp_inactive. This is needed since a thread in tcp_rput might have 1207 * done a CONN_INC_REF on this structure before it was removed from the 1208 * hashes. 1209 */ 1210 void 1211 tcp_closei_local(tcp_t *tcp) 1212 { 1213 conn_t *connp = tcp->tcp_connp; 1214 tcp_stack_t *tcps = tcp->tcp_tcps; 1215 int32_t oldstate; 1216 1217 if (!TCP_IS_SOCKET(tcp)) 1218 tcp_acceptor_hash_remove(tcp); 1219 1220 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1221 tcp->tcp_ibsegs = 0; 1222 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1223 tcp->tcp_obsegs = 0; 1224 1225 /* 1226 * This can be called via tcp_time_wait_processing() if TCP gets a 1227 * SYN with sequence number outside the TIME-WAIT connection's 1228 * window. So we need to check for TIME-WAIT state here as the 1229 * connection counter is already decremented. See SET_TIME_WAIT() 1230 * macro 1231 */ 1232 if (tcp->tcp_state >= TCPS_ESTABLISHED && 1233 tcp->tcp_state < TCPS_TIME_WAIT) { 1234 TCPS_CONN_DEC(tcps); 1235 } 1236 1237 /* 1238 * If we are an eager connection hanging off a listener that 1239 * hasn't formally accepted the connection yet, get off his 1240 * list and blow off any data that we have accumulated. 1241 */ 1242 if (tcp->tcp_listener != NULL) { 1243 tcp_t *listener = tcp->tcp_listener; 1244 mutex_enter(&listener->tcp_eager_lock); 1245 /* 1246 * tcp_tconnind_started == B_TRUE means that the 1247 * conn_ind has already gone to listener. At 1248 * this point, eager will be closed but we 1249 * leave it in listeners eager list so that 1250 * if listener decides to close without doing 1251 * accept, we can clean this up. In tcp_tli_accept 1252 * we take care of the case of accept on closed 1253 * eager. 1254 */ 1255 if (!tcp->tcp_tconnind_started) { 1256 tcp_eager_unlink(tcp); 1257 mutex_exit(&listener->tcp_eager_lock); 1258 /* 1259 * We don't want to have any pointers to the 1260 * listener queue, after we have released our 1261 * reference on the listener 1262 */ 1263 ASSERT(tcp->tcp_detached); 1264 connp->conn_rq = NULL; 1265 connp->conn_wq = NULL; 1266 CONN_DEC_REF(listener->tcp_connp); 1267 } else { 1268 mutex_exit(&listener->tcp_eager_lock); 1269 } 1270 } 1271 1272 /* Stop all the timers */ 1273 tcp_timers_stop(tcp); 1274 1275 if (tcp->tcp_state == TCPS_LISTEN) { 1276 if (tcp->tcp_ip_addr_cache) { 1277 kmem_free((void *)tcp->tcp_ip_addr_cache, 1278 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1279 tcp->tcp_ip_addr_cache = NULL; 1280 } 1281 } 1282 1283 /* Decrement listerner connection counter if necessary. */ 1284 if (tcp->tcp_listen_cnt != NULL) 1285 TCP_DECR_LISTEN_CNT(tcp); 1286 1287 mutex_enter(&tcp->tcp_non_sq_lock); 1288 if (tcp->tcp_flow_stopped) 1289 tcp_clrqfull(tcp); 1290 mutex_exit(&tcp->tcp_non_sq_lock); 1291 1292 tcp_bind_hash_remove(tcp); 1293 /* 1294 * If the tcp_time_wait_collector (which runs outside the squeue) 1295 * is trying to remove this tcp from the time wait list, we will 1296 * block in tcp_time_wait_remove while trying to acquire the 1297 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 1298 * requires the ipcl_hash_remove to be ordered after the 1299 * tcp_time_wait_remove for the refcnt checks to work correctly. 1300 */ 1301 if (tcp->tcp_state == TCPS_TIME_WAIT) 1302 (void) tcp_time_wait_remove(tcp, NULL); 1303 CL_INET_DISCONNECT(connp); 1304 ipcl_hash_remove(connp); 1305 oldstate = tcp->tcp_state; 1306 tcp->tcp_state = TCPS_CLOSED; 1307 /* Need to probe before ixa_cleanup() is called */ 1308 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1309 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 1310 int32_t, oldstate); 1311 ixa_cleanup(connp->conn_ixa); 1312 1313 /* 1314 * Mark the conn as CONDEMNED 1315 */ 1316 mutex_enter(&connp->conn_lock); 1317 connp->conn_state_flags |= CONN_CONDEMNED; 1318 mutex_exit(&connp->conn_lock); 1319 1320 ASSERT(tcp->tcp_time_wait_next == NULL); 1321 ASSERT(tcp->tcp_time_wait_prev == NULL); 1322 ASSERT(tcp->tcp_time_wait_expire == 0); 1323 1324 /* Release any SSL context */ 1325 if (tcp->tcp_kssl_ent != NULL) { 1326 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1327 tcp->tcp_kssl_ent = NULL; 1328 } 1329 if (tcp->tcp_kssl_ctx != NULL) { 1330 kssl_release_ctx(tcp->tcp_kssl_ctx); 1331 tcp->tcp_kssl_ctx = NULL; 1332 } 1333 tcp->tcp_kssl_pending = B_FALSE; 1334 1335 tcp_ipsec_cleanup(tcp); 1336 } 1337 1338 /* 1339 * tcp is dying (called from ipcl_conn_destroy and error cases). 1340 * Free the tcp_t in either case. 1341 */ 1342 void 1343 tcp_free(tcp_t *tcp) 1344 { 1345 mblk_t *mp; 1346 conn_t *connp = tcp->tcp_connp; 1347 1348 ASSERT(tcp != NULL); 1349 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 1350 1351 connp->conn_rq = NULL; 1352 connp->conn_wq = NULL; 1353 1354 tcp_close_mpp(&tcp->tcp_xmit_head); 1355 tcp_close_mpp(&tcp->tcp_reass_head); 1356 if (tcp->tcp_rcv_list != NULL) { 1357 /* Free b_next chain */ 1358 tcp_close_mpp(&tcp->tcp_rcv_list); 1359 } 1360 if ((mp = tcp->tcp_urp_mp) != NULL) { 1361 freemsg(mp); 1362 } 1363 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1364 freemsg(mp); 1365 } 1366 1367 if (tcp->tcp_fused_sigurg_mp != NULL) { 1368 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1369 freeb(tcp->tcp_fused_sigurg_mp); 1370 tcp->tcp_fused_sigurg_mp = NULL; 1371 } 1372 1373 if (tcp->tcp_ordrel_mp != NULL) { 1374 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1375 freeb(tcp->tcp_ordrel_mp); 1376 tcp->tcp_ordrel_mp = NULL; 1377 } 1378 1379 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 1380 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 1381 1382 if (tcp->tcp_hopopts != NULL) { 1383 mi_free(tcp->tcp_hopopts); 1384 tcp->tcp_hopopts = NULL; 1385 tcp->tcp_hopoptslen = 0; 1386 } 1387 ASSERT(tcp->tcp_hopoptslen == 0); 1388 if (tcp->tcp_dstopts != NULL) { 1389 mi_free(tcp->tcp_dstopts); 1390 tcp->tcp_dstopts = NULL; 1391 tcp->tcp_dstoptslen = 0; 1392 } 1393 ASSERT(tcp->tcp_dstoptslen == 0); 1394 if (tcp->tcp_rthdrdstopts != NULL) { 1395 mi_free(tcp->tcp_rthdrdstopts); 1396 tcp->tcp_rthdrdstopts = NULL; 1397 tcp->tcp_rthdrdstoptslen = 0; 1398 } 1399 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 1400 if (tcp->tcp_rthdr != NULL) { 1401 mi_free(tcp->tcp_rthdr); 1402 tcp->tcp_rthdr = NULL; 1403 tcp->tcp_rthdrlen = 0; 1404 } 1405 ASSERT(tcp->tcp_rthdrlen == 0); 1406 1407 /* 1408 * Following is really a blowing away a union. 1409 * It happens to have exactly two members of identical size 1410 * the following code is enough. 1411 */ 1412 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1413 } 1414 1415 /* 1416 * tcp_get_conn/tcp_free_conn 1417 * 1418 * tcp_get_conn is used to get a clean tcp connection structure. 1419 * It tries to reuse the connections put on the freelist by the 1420 * time_wait_collector failing which it goes to kmem_cache. This 1421 * way has two benefits compared to just allocating from and 1422 * freeing to kmem_cache. 1423 * 1) The time_wait_collector can free (which includes the cleanup) 1424 * outside the squeue. So when the interrupt comes, we have a clean 1425 * connection sitting in the freelist. Obviously, this buys us 1426 * performance. 1427 * 1428 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 1429 * has multiple disadvantages - tying up the squeue during alloc. 1430 * But allocating the conn/tcp in IP land is also not the best since 1431 * we can't check the 'q' and 'q0' which are protected by squeue and 1432 * blindly allocate memory which might have to be freed here if we are 1433 * not allowed to accept the connection. By using the freelist and 1434 * putting the conn/tcp back in freelist, we don't pay a penalty for 1435 * allocating memory without checking 'q/q0' and freeing it if we can't 1436 * accept the connection. 1437 * 1438 * Care should be taken to put the conn back in the same squeue's freelist 1439 * from which it was allocated. Best results are obtained if conn is 1440 * allocated from listener's squeue and freed to the same. Time wait 1441 * collector will free up the freelist is the connection ends up sitting 1442 * there for too long. 1443 */ 1444 void * 1445 tcp_get_conn(void *arg, tcp_stack_t *tcps) 1446 { 1447 tcp_t *tcp = NULL; 1448 conn_t *connp = NULL; 1449 squeue_t *sqp = (squeue_t *)arg; 1450 tcp_squeue_priv_t *tcp_time_wait; 1451 netstack_t *ns; 1452 mblk_t *tcp_rsrv_mp = NULL; 1453 1454 tcp_time_wait = 1455 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1456 1457 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1458 tcp = tcp_time_wait->tcp_free_list; 1459 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 1460 if (tcp != NULL) { 1461 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1462 tcp_time_wait->tcp_free_list_cnt--; 1463 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1464 tcp->tcp_time_wait_next = NULL; 1465 connp = tcp->tcp_connp; 1466 connp->conn_flags |= IPCL_REUSED; 1467 1468 ASSERT(tcp->tcp_tcps == NULL); 1469 ASSERT(connp->conn_netstack == NULL); 1470 ASSERT(tcp->tcp_rsrv_mp != NULL); 1471 ns = tcps->tcps_netstack; 1472 netstack_hold(ns); 1473 connp->conn_netstack = ns; 1474 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 1475 tcp->tcp_tcps = tcps; 1476 ipcl_globalhash_insert(connp); 1477 1478 connp->conn_ixa->ixa_notify_cookie = tcp; 1479 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 1480 connp->conn_recv = tcp_input_data; 1481 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 1482 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 1483 return ((void *)connp); 1484 } 1485 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1486 /* 1487 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 1488 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 1489 */ 1490 tcp_rsrv_mp = allocb(0, BPRI_HI); 1491 if (tcp_rsrv_mp == NULL) 1492 return (NULL); 1493 1494 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 1495 tcps->tcps_netstack)) == NULL) { 1496 freeb(tcp_rsrv_mp); 1497 return (NULL); 1498 } 1499 1500 tcp = connp->conn_tcp; 1501 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1502 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 1503 1504 tcp->tcp_tcps = tcps; 1505 1506 connp->conn_recv = tcp_input_data; 1507 connp->conn_recvicmp = tcp_icmp_input; 1508 connp->conn_verifyicmp = tcp_verifyicmp; 1509 1510 /* 1511 * Register tcp_notify to listen to capability changes detected by IP. 1512 * This upcall is made in the context of the call to conn_ip_output 1513 * thus it is inside the squeue. 1514 */ 1515 connp->conn_ixa->ixa_notify = tcp_notify; 1516 connp->conn_ixa->ixa_notify_cookie = tcp; 1517 1518 return ((void *)connp); 1519 } 1520 1521 /* 1522 * Handle connect to IPv4 destinations, including connections for AF_INET6 1523 * sockets connecting to IPv4 mapped IPv6 destinations. 1524 * Returns zero if OK, a positive errno, or a negative TLI error. 1525 */ 1526 static int 1527 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 1528 uint_t srcid) 1529 { 1530 ipaddr_t dstaddr = *dstaddrp; 1531 uint16_t lport; 1532 conn_t *connp = tcp->tcp_connp; 1533 tcp_stack_t *tcps = tcp->tcp_tcps; 1534 int error; 1535 1536 ASSERT(connp->conn_ipversion == IPV4_VERSION); 1537 1538 /* Check for attempt to connect to INADDR_ANY */ 1539 if (dstaddr == INADDR_ANY) { 1540 /* 1541 * SunOS 4.x and 4.3 BSD allow an application 1542 * to connect a TCP socket to INADDR_ANY. 1543 * When they do this, the kernel picks the 1544 * address of one interface and uses it 1545 * instead. The kernel usually ends up 1546 * picking the address of the loopback 1547 * interface. This is an undocumented feature. 1548 * However, we provide the same thing here 1549 * in order to have source and binary 1550 * compatibility with SunOS 4.x. 1551 * Update the T_CONN_REQ (sin/sin6) since it is used to 1552 * generate the T_CONN_CON. 1553 */ 1554 dstaddr = htonl(INADDR_LOOPBACK); 1555 *dstaddrp = dstaddr; 1556 } 1557 1558 /* Handle __sin6_src_id if socket not bound to an IP address */ 1559 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 1560 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1561 IPCL_ZONEID(connp), tcps->tcps_netstack); 1562 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1563 } 1564 1565 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 1566 connp->conn_fport = dstport; 1567 1568 /* 1569 * At this point the remote destination address and remote port fields 1570 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1571 * have to see which state tcp was in so we can take appropriate action. 1572 */ 1573 if (tcp->tcp_state == TCPS_IDLE) { 1574 /* 1575 * We support a quick connect capability here, allowing 1576 * clients to transition directly from IDLE to SYN_SENT 1577 * tcp_bindi will pick an unused port, insert the connection 1578 * in the bind hash and transition to BOUND state. 1579 */ 1580 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1581 tcp, B_TRUE); 1582 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1583 B_FALSE, B_FALSE); 1584 if (lport == 0) 1585 return (-TNOADDR); 1586 } 1587 1588 /* 1589 * Lookup the route to determine a source address and the uinfo. 1590 * Setup TCP parameters based on the metrics/DCE. 1591 */ 1592 error = tcp_set_destination(tcp); 1593 if (error != 0) 1594 return (error); 1595 1596 /* 1597 * Don't let an endpoint connect to itself. 1598 */ 1599 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 1600 connp->conn_fport == connp->conn_lport) 1601 return (-TBADADDR); 1602 1603 tcp->tcp_state = TCPS_SYN_SENT; 1604 1605 return (ipcl_conn_insert_v4(connp)); 1606 } 1607 1608 /* 1609 * Handle connect to IPv6 destinations. 1610 * Returns zero if OK, a positive errno, or a negative TLI error. 1611 */ 1612 static int 1613 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 1614 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 1615 { 1616 uint16_t lport; 1617 conn_t *connp = tcp->tcp_connp; 1618 tcp_stack_t *tcps = tcp->tcp_tcps; 1619 int error; 1620 1621 ASSERT(connp->conn_family == AF_INET6); 1622 1623 /* 1624 * If we're here, it means that the destination address is a native 1625 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 1626 * reason why it might not be IPv6 is if the socket was bound to an 1627 * IPv4-mapped IPv6 address. 1628 */ 1629 if (connp->conn_ipversion != IPV6_VERSION) 1630 return (-TBADADDR); 1631 1632 /* 1633 * Interpret a zero destination to mean loopback. 1634 * Update the T_CONN_REQ (sin/sin6) since it is used to 1635 * generate the T_CONN_CON. 1636 */ 1637 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 1638 *dstaddrp = ipv6_loopback; 1639 1640 /* Handle __sin6_src_id if socket not bound to an IP address */ 1641 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 1642 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1643 IPCL_ZONEID(connp), tcps->tcps_netstack); 1644 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1645 } 1646 1647 /* 1648 * Take care of the scope_id now. 1649 */ 1650 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 1651 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1652 connp->conn_ixa->ixa_scopeid = scope_id; 1653 } else { 1654 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 1655 } 1656 1657 connp->conn_flowinfo = flowinfo; 1658 connp->conn_faddr_v6 = *dstaddrp; 1659 connp->conn_fport = dstport; 1660 1661 /* 1662 * At this point the remote destination address and remote port fields 1663 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1664 * have to see which state tcp was in so we can take appropriate action. 1665 */ 1666 if (tcp->tcp_state == TCPS_IDLE) { 1667 /* 1668 * We support a quick connect capability here, allowing 1669 * clients to transition directly from IDLE to SYN_SENT 1670 * tcp_bindi will pick an unused port, insert the connection 1671 * in the bind hash and transition to BOUND state. 1672 */ 1673 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1674 tcp, B_TRUE); 1675 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1676 B_FALSE, B_FALSE); 1677 if (lport == 0) 1678 return (-TNOADDR); 1679 } 1680 1681 /* 1682 * Lookup the route to determine a source address and the uinfo. 1683 * Setup TCP parameters based on the metrics/DCE. 1684 */ 1685 error = tcp_set_destination(tcp); 1686 if (error != 0) 1687 return (error); 1688 1689 /* 1690 * Don't let an endpoint connect to itself. 1691 */ 1692 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 1693 connp->conn_fport == connp->conn_lport) 1694 return (-TBADADDR); 1695 1696 tcp->tcp_state = TCPS_SYN_SENT; 1697 1698 return (ipcl_conn_insert_v6(connp)); 1699 } 1700 1701 /* 1702 * Disconnect 1703 * Note that unlike other functions this returns a positive tli error 1704 * when it fails; it never returns an errno. 1705 */ 1706 static int 1707 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 1708 { 1709 conn_t *lconnp; 1710 tcp_stack_t *tcps = tcp->tcp_tcps; 1711 conn_t *connp = tcp->tcp_connp; 1712 1713 /* 1714 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 1715 * when the stream is in BOUND state. Do not send a reset, 1716 * since the destination IP address is not valid, and it can 1717 * be the initialized value of all zeros (broadcast address). 1718 */ 1719 if (tcp->tcp_state <= TCPS_BOUND) { 1720 if (connp->conn_debug) { 1721 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 1722 "tcp_disconnect: bad state, %d", tcp->tcp_state); 1723 } 1724 return (TOUTSTATE); 1725 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1726 TCPS_CONN_DEC(tcps); 1727 } 1728 1729 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 1730 1731 /* 1732 * According to TPI, for non-listeners, ignore seqnum 1733 * and disconnect. 1734 * Following interpretation of -1 seqnum is historical 1735 * and implied TPI ? (TPI only states that for T_CONN_IND, 1736 * a valid seqnum should not be -1). 1737 * 1738 * -1 means disconnect everything 1739 * regardless even on a listener. 1740 */ 1741 1742 int old_state = tcp->tcp_state; 1743 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1744 1745 /* 1746 * The connection can't be on the tcp_time_wait_head list 1747 * since it is not detached. 1748 */ 1749 ASSERT(tcp->tcp_time_wait_next == NULL); 1750 ASSERT(tcp->tcp_time_wait_prev == NULL); 1751 ASSERT(tcp->tcp_time_wait_expire == 0); 1752 /* 1753 * If it used to be a listener, check to make sure no one else 1754 * has taken the port before switching back to LISTEN state. 1755 */ 1756 if (connp->conn_ipversion == IPV4_VERSION) { 1757 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 1758 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 1759 } else { 1760 uint_t ifindex = 0; 1761 1762 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 1763 ifindex = connp->conn_ixa->ixa_scopeid; 1764 1765 /* Allow conn_bound_if listeners? */ 1766 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 1767 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 1768 ipst); 1769 } 1770 if (tcp->tcp_conn_req_max && lconnp == NULL) { 1771 tcp->tcp_state = TCPS_LISTEN; 1772 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1773 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1774 NULL, int32_t, old_state); 1775 } else if (old_state > TCPS_BOUND) { 1776 tcp->tcp_conn_req_max = 0; 1777 tcp->tcp_state = TCPS_BOUND; 1778 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1779 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1780 NULL, int32_t, old_state); 1781 1782 /* 1783 * If this end point is not going to become a listener, 1784 * decrement the listener connection count if 1785 * necessary. Note that we do not do this if it is 1786 * going to be a listner (the above if case) since 1787 * then it may remove the counter struct. 1788 */ 1789 if (tcp->tcp_listen_cnt != NULL) 1790 TCP_DECR_LISTEN_CNT(tcp); 1791 } 1792 if (lconnp != NULL) 1793 CONN_DEC_REF(lconnp); 1794 switch (old_state) { 1795 case TCPS_SYN_SENT: 1796 case TCPS_SYN_RCVD: 1797 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1798 break; 1799 case TCPS_ESTABLISHED: 1800 case TCPS_CLOSE_WAIT: 1801 TCPS_BUMP_MIB(tcps, tcpEstabResets); 1802 break; 1803 } 1804 1805 if (tcp->tcp_fused) 1806 tcp_unfuse(tcp); 1807 1808 mutex_enter(&tcp->tcp_eager_lock); 1809 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 1810 (tcp->tcp_conn_req_cnt_q != 0)) { 1811 tcp_eager_cleanup(tcp, 0); 1812 } 1813 mutex_exit(&tcp->tcp_eager_lock); 1814 1815 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 1816 tcp->tcp_rnxt, TH_RST | TH_ACK); 1817 1818 tcp_reinit(tcp); 1819 1820 return (0); 1821 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 1822 return (TBADSEQ); 1823 } 1824 return (0); 1825 } 1826 1827 /* 1828 * Our client hereby directs us to reject the connection request 1829 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 1830 * of sending the appropriate RST, not an ICMP error. 1831 */ 1832 void 1833 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 1834 { 1835 t_scalar_t seqnum; 1836 int error; 1837 conn_t *connp = tcp->tcp_connp; 1838 1839 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 1840 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 1841 tcp_err_ack(tcp, mp, TPROTO, 0); 1842 return; 1843 } 1844 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 1845 error = tcp_disconnect_common(tcp, seqnum); 1846 if (error != 0) 1847 tcp_err_ack(tcp, mp, error, 0); 1848 else { 1849 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1850 /* Send M_FLUSH according to TPI */ 1851 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 1852 } 1853 mp = mi_tpi_ok_ack_alloc(mp); 1854 if (mp != NULL) 1855 putnext(connp->conn_rq, mp); 1856 } 1857 } 1858 1859 /* 1860 * Handle reinitialization of a tcp structure. 1861 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 1862 */ 1863 static void 1864 tcp_reinit(tcp_t *tcp) 1865 { 1866 mblk_t *mp; 1867 tcp_stack_t *tcps = tcp->tcp_tcps; 1868 conn_t *connp = tcp->tcp_connp; 1869 int32_t oldstate; 1870 1871 /* tcp_reinit should never be called for detached tcp_t's */ 1872 ASSERT(tcp->tcp_listener == NULL); 1873 ASSERT((connp->conn_family == AF_INET && 1874 connp->conn_ipversion == IPV4_VERSION) || 1875 (connp->conn_family == AF_INET6 && 1876 (connp->conn_ipversion == IPV4_VERSION || 1877 connp->conn_ipversion == IPV6_VERSION))); 1878 1879 /* Cancel outstanding timers */ 1880 tcp_timers_stop(tcp); 1881 1882 /* 1883 * Reset everything in the state vector, after updating global 1884 * MIB data from instance counters. 1885 */ 1886 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1887 tcp->tcp_ibsegs = 0; 1888 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1889 tcp->tcp_obsegs = 0; 1890 1891 tcp_close_mpp(&tcp->tcp_xmit_head); 1892 if (tcp->tcp_snd_zcopy_aware) 1893 tcp_zcopy_notify(tcp); 1894 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 1895 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 1896 mutex_enter(&tcp->tcp_non_sq_lock); 1897 if (tcp->tcp_flow_stopped && 1898 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 1899 tcp_clrqfull(tcp); 1900 } 1901 mutex_exit(&tcp->tcp_non_sq_lock); 1902 tcp_close_mpp(&tcp->tcp_reass_head); 1903 tcp->tcp_reass_tail = NULL; 1904 if (tcp->tcp_rcv_list != NULL) { 1905 /* Free b_next chain */ 1906 tcp_close_mpp(&tcp->tcp_rcv_list); 1907 tcp->tcp_rcv_last_head = NULL; 1908 tcp->tcp_rcv_last_tail = NULL; 1909 tcp->tcp_rcv_cnt = 0; 1910 } 1911 tcp->tcp_rcv_last_tail = NULL; 1912 1913 if ((mp = tcp->tcp_urp_mp) != NULL) { 1914 freemsg(mp); 1915 tcp->tcp_urp_mp = NULL; 1916 } 1917 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1918 freemsg(mp); 1919 tcp->tcp_urp_mark_mp = NULL; 1920 } 1921 if (tcp->tcp_fused_sigurg_mp != NULL) { 1922 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1923 freeb(tcp->tcp_fused_sigurg_mp); 1924 tcp->tcp_fused_sigurg_mp = NULL; 1925 } 1926 if (tcp->tcp_ordrel_mp != NULL) { 1927 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1928 freeb(tcp->tcp_ordrel_mp); 1929 tcp->tcp_ordrel_mp = NULL; 1930 } 1931 1932 /* 1933 * Following is a union with two members which are 1934 * identical types and size so the following cleanup 1935 * is enough. 1936 */ 1937 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1938 1939 CL_INET_DISCONNECT(connp); 1940 1941 /* 1942 * The connection can't be on the tcp_time_wait_head list 1943 * since it is not detached. 1944 */ 1945 ASSERT(tcp->tcp_time_wait_next == NULL); 1946 ASSERT(tcp->tcp_time_wait_prev == NULL); 1947 ASSERT(tcp->tcp_time_wait_expire == 0); 1948 1949 if (tcp->tcp_kssl_pending) { 1950 tcp->tcp_kssl_pending = B_FALSE; 1951 1952 /* Don't reset if the initialized by bind. */ 1953 if (tcp->tcp_kssl_ent != NULL) { 1954 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 1955 KSSL_NO_PROXY); 1956 } 1957 } 1958 if (tcp->tcp_kssl_ctx != NULL) { 1959 kssl_release_ctx(tcp->tcp_kssl_ctx); 1960 tcp->tcp_kssl_ctx = NULL; 1961 } 1962 1963 /* 1964 * Reset/preserve other values 1965 */ 1966 tcp_reinit_values(tcp); 1967 ipcl_hash_remove(connp); 1968 /* Note that ixa_cred gets cleared in ixa_cleanup */ 1969 ixa_cleanup(connp->conn_ixa); 1970 tcp_ipsec_cleanup(tcp); 1971 1972 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 1973 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 1974 oldstate = tcp->tcp_state; 1975 1976 if (tcp->tcp_conn_req_max != 0) { 1977 /* 1978 * This is the case when a TLI program uses the same 1979 * transport end point to accept a connection. This 1980 * makes the TCP both a listener and acceptor. When 1981 * this connection is closed, we need to set the state 1982 * back to TCPS_LISTEN. Make sure that the eager list 1983 * is reinitialized. 1984 * 1985 * Note that this stream is still bound to the four 1986 * tuples of the previous connection in IP. If a new 1987 * SYN with different foreign address comes in, IP will 1988 * not find it and will send it to the global queue. In 1989 * the global queue, TCP will do a tcp_lookup_listener() 1990 * to find this stream. This works because this stream 1991 * is only removed from connected hash. 1992 * 1993 */ 1994 tcp->tcp_state = TCPS_LISTEN; 1995 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 1996 tcp->tcp_eager_next_drop_q0 = tcp; 1997 tcp->tcp_eager_prev_drop_q0 = tcp; 1998 /* 1999 * Initially set conn_recv to tcp_input_listener_unbound to try 2000 * to pick a good squeue for the listener when the first SYN 2001 * arrives. tcp_input_listener_unbound sets it to 2002 * tcp_input_listener on that first SYN. 2003 */ 2004 connp->conn_recv = tcp_input_listener_unbound; 2005 2006 connp->conn_proto = IPPROTO_TCP; 2007 connp->conn_faddr_v6 = ipv6_all_zeros; 2008 connp->conn_fport = 0; 2009 2010 (void) ipcl_bind_insert(connp); 2011 } else { 2012 tcp->tcp_state = TCPS_BOUND; 2013 } 2014 2015 /* 2016 * Initialize to default values 2017 */ 2018 tcp_init_values(tcp, NULL); 2019 2020 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2021 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 2022 int32_t, oldstate); 2023 2024 ASSERT(tcp->tcp_ptpbhn != NULL); 2025 tcp->tcp_rwnd = connp->conn_rcvbuf; 2026 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 2027 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 2028 } 2029 2030 /* 2031 * Force values to zero that need be zero. 2032 * Do not touch values asociated with the BOUND or LISTEN state 2033 * since the connection will end up in that state after the reinit. 2034 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 2035 * structure! 2036 */ 2037 static void 2038 tcp_reinit_values(tcp) 2039 tcp_t *tcp; 2040 { 2041 tcp_stack_t *tcps = tcp->tcp_tcps; 2042 conn_t *connp = tcp->tcp_connp; 2043 2044 #ifndef lint 2045 #define DONTCARE(x) 2046 #define PRESERVE(x) 2047 #else 2048 #define DONTCARE(x) ((x) = (x)) 2049 #define PRESERVE(x) ((x) = (x)) 2050 #endif /* lint */ 2051 2052 PRESERVE(tcp->tcp_bind_hash_port); 2053 PRESERVE(tcp->tcp_bind_hash); 2054 PRESERVE(tcp->tcp_ptpbhn); 2055 PRESERVE(tcp->tcp_acceptor_hash); 2056 PRESERVE(tcp->tcp_ptpahn); 2057 2058 /* Should be ASSERT NULL on these with new code! */ 2059 ASSERT(tcp->tcp_time_wait_next == NULL); 2060 ASSERT(tcp->tcp_time_wait_prev == NULL); 2061 ASSERT(tcp->tcp_time_wait_expire == 0); 2062 PRESERVE(tcp->tcp_state); 2063 PRESERVE(connp->conn_rq); 2064 PRESERVE(connp->conn_wq); 2065 2066 ASSERT(tcp->tcp_xmit_head == NULL); 2067 ASSERT(tcp->tcp_xmit_last == NULL); 2068 ASSERT(tcp->tcp_unsent == 0); 2069 ASSERT(tcp->tcp_xmit_tail == NULL); 2070 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 2071 2072 tcp->tcp_snxt = 0; /* Displayed in mib */ 2073 tcp->tcp_suna = 0; /* Displayed in mib */ 2074 tcp->tcp_swnd = 0; 2075 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 2076 2077 ASSERT(tcp->tcp_ibsegs == 0); 2078 ASSERT(tcp->tcp_obsegs == 0); 2079 2080 if (connp->conn_ht_iphc != NULL) { 2081 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 2082 connp->conn_ht_iphc = NULL; 2083 connp->conn_ht_iphc_allocated = 0; 2084 connp->conn_ht_iphc_len = 0; 2085 connp->conn_ht_ulp = NULL; 2086 connp->conn_ht_ulp_len = 0; 2087 tcp->tcp_ipha = NULL; 2088 tcp->tcp_ip6h = NULL; 2089 tcp->tcp_tcpha = NULL; 2090 } 2091 2092 /* We clear any IP_OPTIONS and extension headers */ 2093 ip_pkt_free(&connp->conn_xmit_ipp); 2094 2095 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 2096 DONTCARE(tcp->tcp_ipha); 2097 DONTCARE(tcp->tcp_ip6h); 2098 DONTCARE(tcp->tcp_tcpha); 2099 tcp->tcp_valid_bits = 0; 2100 2101 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 2102 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 2103 tcp->tcp_last_rcv_lbolt = 0; 2104 2105 tcp->tcp_init_cwnd = 0; 2106 2107 tcp->tcp_urp_last_valid = 0; 2108 tcp->tcp_hard_binding = 0; 2109 2110 tcp->tcp_fin_acked = 0; 2111 tcp->tcp_fin_rcvd = 0; 2112 tcp->tcp_fin_sent = 0; 2113 tcp->tcp_ordrel_done = 0; 2114 2115 tcp->tcp_detached = 0; 2116 2117 tcp->tcp_snd_ws_ok = B_FALSE; 2118 tcp->tcp_snd_ts_ok = B_FALSE; 2119 tcp->tcp_zero_win_probe = 0; 2120 2121 tcp->tcp_loopback = 0; 2122 tcp->tcp_localnet = 0; 2123 tcp->tcp_syn_defense = 0; 2124 tcp->tcp_set_timer = 0; 2125 2126 tcp->tcp_active_open = 0; 2127 tcp->tcp_rexmit = B_FALSE; 2128 tcp->tcp_xmit_zc_clean = B_FALSE; 2129 2130 tcp->tcp_snd_sack_ok = B_FALSE; 2131 tcp->tcp_hwcksum = B_FALSE; 2132 2133 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 2134 2135 tcp->tcp_conn_def_q0 = 0; 2136 tcp->tcp_ip_forward_progress = B_FALSE; 2137 tcp->tcp_ecn_ok = B_FALSE; 2138 2139 tcp->tcp_cwr = B_FALSE; 2140 tcp->tcp_ecn_echo_on = B_FALSE; 2141 tcp->tcp_is_wnd_shrnk = B_FALSE; 2142 2143 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 2144 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 2145 2146 tcp->tcp_rcv_ws = 0; 2147 tcp->tcp_snd_ws = 0; 2148 tcp->tcp_ts_recent = 0; 2149 tcp->tcp_rnxt = 0; /* Displayed in mib */ 2150 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 2151 tcp->tcp_initial_pmtu = 0; 2152 2153 ASSERT(tcp->tcp_reass_head == NULL); 2154 ASSERT(tcp->tcp_reass_tail == NULL); 2155 2156 tcp->tcp_cwnd_cnt = 0; 2157 2158 ASSERT(tcp->tcp_rcv_list == NULL); 2159 ASSERT(tcp->tcp_rcv_last_head == NULL); 2160 ASSERT(tcp->tcp_rcv_last_tail == NULL); 2161 ASSERT(tcp->tcp_rcv_cnt == 0); 2162 2163 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 2164 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 2165 tcp->tcp_csuna = 0; 2166 2167 tcp->tcp_rto = 0; /* Displayed in MIB */ 2168 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 2169 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 2170 tcp->tcp_rtt_update = 0; 2171 2172 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2173 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2174 2175 tcp->tcp_rack = 0; /* Displayed in mib */ 2176 tcp->tcp_rack_cnt = 0; 2177 tcp->tcp_rack_cur_max = 0; 2178 tcp->tcp_rack_abs_max = 0; 2179 2180 tcp->tcp_max_swnd = 0; 2181 2182 ASSERT(tcp->tcp_listener == NULL); 2183 2184 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 2185 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 2186 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 2187 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 2188 2189 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 2190 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 2191 PRESERVE(tcp->tcp_conn_req_max); 2192 PRESERVE(tcp->tcp_conn_req_seqnum); 2193 2194 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 2195 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 2196 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 2197 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 2198 2199 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 2200 ASSERT(tcp->tcp_urp_mp == NULL); 2201 ASSERT(tcp->tcp_urp_mark_mp == NULL); 2202 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 2203 2204 ASSERT(tcp->tcp_eager_next_q == NULL); 2205 ASSERT(tcp->tcp_eager_last_q == NULL); 2206 ASSERT((tcp->tcp_eager_next_q0 == NULL && 2207 tcp->tcp_eager_prev_q0 == NULL) || 2208 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 2209 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 2210 2211 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 2212 tcp->tcp_eager_prev_drop_q0 == NULL) || 2213 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 2214 2215 tcp->tcp_client_errno = 0; 2216 2217 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 2218 2219 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 2220 2221 PRESERVE(connp->conn_bound_addr_v6); 2222 tcp->tcp_last_sent_len = 0; 2223 tcp->tcp_dupack_cnt = 0; 2224 2225 connp->conn_fport = 0; /* Displayed in MIB */ 2226 PRESERVE(connp->conn_lport); 2227 2228 PRESERVE(tcp->tcp_acceptor_lockp); 2229 2230 ASSERT(tcp->tcp_ordrel_mp == NULL); 2231 PRESERVE(tcp->tcp_acceptor_id); 2232 DONTCARE(tcp->tcp_ipsec_overhead); 2233 2234 PRESERVE(connp->conn_family); 2235 /* Remove any remnants of mapped address binding */ 2236 if (connp->conn_family == AF_INET6) { 2237 connp->conn_ipversion = IPV6_VERSION; 2238 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2239 } else { 2240 connp->conn_ipversion = IPV4_VERSION; 2241 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2242 } 2243 2244 connp->conn_bound_if = 0; 2245 connp->conn_recv_ancillary.crb_all = 0; 2246 tcp->tcp_recvifindex = 0; 2247 tcp->tcp_recvhops = 0; 2248 tcp->tcp_closed = 0; 2249 if (tcp->tcp_hopopts != NULL) { 2250 mi_free(tcp->tcp_hopopts); 2251 tcp->tcp_hopopts = NULL; 2252 tcp->tcp_hopoptslen = 0; 2253 } 2254 ASSERT(tcp->tcp_hopoptslen == 0); 2255 if (tcp->tcp_dstopts != NULL) { 2256 mi_free(tcp->tcp_dstopts); 2257 tcp->tcp_dstopts = NULL; 2258 tcp->tcp_dstoptslen = 0; 2259 } 2260 ASSERT(tcp->tcp_dstoptslen == 0); 2261 if (tcp->tcp_rthdrdstopts != NULL) { 2262 mi_free(tcp->tcp_rthdrdstopts); 2263 tcp->tcp_rthdrdstopts = NULL; 2264 tcp->tcp_rthdrdstoptslen = 0; 2265 } 2266 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 2267 if (tcp->tcp_rthdr != NULL) { 2268 mi_free(tcp->tcp_rthdr); 2269 tcp->tcp_rthdr = NULL; 2270 tcp->tcp_rthdrlen = 0; 2271 } 2272 ASSERT(tcp->tcp_rthdrlen == 0); 2273 2274 /* Reset fusion-related fields */ 2275 tcp->tcp_fused = B_FALSE; 2276 tcp->tcp_unfusable = B_FALSE; 2277 tcp->tcp_fused_sigurg = B_FALSE; 2278 tcp->tcp_loopback_peer = NULL; 2279 2280 tcp->tcp_lso = B_FALSE; 2281 2282 tcp->tcp_in_ack_unsent = 0; 2283 tcp->tcp_cork = B_FALSE; 2284 tcp->tcp_tconnind_started = B_FALSE; 2285 2286 PRESERVE(tcp->tcp_squeue_bytes); 2287 2288 ASSERT(tcp->tcp_kssl_ctx == NULL); 2289 ASSERT(!tcp->tcp_kssl_pending); 2290 PRESERVE(tcp->tcp_kssl_ent); 2291 2292 tcp->tcp_closemp_used = B_FALSE; 2293 2294 PRESERVE(tcp->tcp_rsrv_mp); 2295 PRESERVE(tcp->tcp_rsrv_mp_lock); 2296 2297 #ifdef DEBUG 2298 DONTCARE(tcp->tcmp_stk[0]); 2299 #endif 2300 2301 PRESERVE(tcp->tcp_connid); 2302 2303 ASSERT(tcp->tcp_listen_cnt == NULL); 2304 ASSERT(tcp->tcp_reass_tid == 0); 2305 2306 #undef DONTCARE 2307 #undef PRESERVE 2308 } 2309 2310 /* 2311 * Initialize the various fields in tcp_t. If parent (the listener) is non 2312 * NULL, certain values will be inheritted from it. 2313 */ 2314 void 2315 tcp_init_values(tcp_t *tcp, tcp_t *parent) 2316 { 2317 tcp_stack_t *tcps = tcp->tcp_tcps; 2318 conn_t *connp = tcp->tcp_connp; 2319 clock_t rto; 2320 2321 ASSERT((connp->conn_family == AF_INET && 2322 connp->conn_ipversion == IPV4_VERSION) || 2323 (connp->conn_family == AF_INET6 && 2324 (connp->conn_ipversion == IPV4_VERSION || 2325 connp->conn_ipversion == IPV6_VERSION))); 2326 2327 if (parent == NULL) { 2328 tcp->tcp_naglim = tcps->tcps_naglim_def; 2329 2330 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial; 2331 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min; 2332 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max; 2333 2334 tcp->tcp_first_ctimer_threshold = 2335 tcps->tcps_ip_notify_cinterval; 2336 tcp->tcp_second_ctimer_threshold = 2337 tcps->tcps_ip_abort_cinterval; 2338 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 2339 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 2340 2341 tcp->tcp_fin_wait_2_flush_interval = 2342 tcps->tcps_fin_wait_2_flush_interval; 2343 2344 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 2345 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 2346 2347 /* 2348 * Default value of tcp_init_cwnd is 0, so no need to set here 2349 * if parent is NULL. But we need to inherit it from parent. 2350 */ 2351 } else { 2352 /* Inherit various TCP parameters from the parent. */ 2353 tcp->tcp_naglim = parent->tcp_naglim; 2354 2355 tcp->tcp_rto_initial = parent->tcp_rto_initial; 2356 tcp->tcp_rto_min = parent->tcp_rto_min; 2357 tcp->tcp_rto_max = parent->tcp_rto_max; 2358 2359 tcp->tcp_first_ctimer_threshold = 2360 parent->tcp_first_ctimer_threshold; 2361 tcp->tcp_second_ctimer_threshold = 2362 parent->tcp_second_ctimer_threshold; 2363 tcp->tcp_first_timer_threshold = 2364 parent->tcp_first_timer_threshold; 2365 tcp->tcp_second_timer_threshold = 2366 parent->tcp_second_timer_threshold; 2367 2368 tcp->tcp_fin_wait_2_flush_interval = 2369 parent->tcp_fin_wait_2_flush_interval; 2370 2371 tcp->tcp_ka_interval = parent->tcp_ka_interval; 2372 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres; 2373 2374 tcp->tcp_init_cwnd = parent->tcp_init_cwnd; 2375 } 2376 2377 /* 2378 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 2379 * will be close to tcp_rexmit_interval_initial. By doing this, we 2380 * allow the algorithm to adjust slowly to large fluctuations of RTT 2381 * during first few transmissions of a connection as seen in slow 2382 * links. 2383 */ 2384 tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2; 2385 tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1; 2386 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2387 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 2388 tcps->tcps_conn_grace_period; 2389 TCP_SET_RTO(tcp, rto); 2390 2391 tcp->tcp_timer_backoff = 0; 2392 tcp->tcp_ms_we_have_waited = 0; 2393 tcp->tcp_last_recv_time = ddi_get_lbolt(); 2394 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 2395 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2396 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 2397 2398 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 2399 2400 /* NOTE: ISS is now set in tcp_set_destination(). */ 2401 2402 /* Reset fusion-related fields */ 2403 tcp->tcp_fused = B_FALSE; 2404 tcp->tcp_unfusable = B_FALSE; 2405 tcp->tcp_fused_sigurg = B_FALSE; 2406 tcp->tcp_loopback_peer = NULL; 2407 2408 /* We rebuild the header template on the next connect/conn_request */ 2409 2410 connp->conn_mlp_type = mlptSingle; 2411 2412 /* 2413 * Init the window scale to the max so tcp_rwnd_set() won't pare 2414 * down tcp_rwnd. tcp_set_destination() will set the right value later. 2415 */ 2416 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 2417 tcp->tcp_rwnd = connp->conn_rcvbuf; 2418 2419 tcp->tcp_cork = B_FALSE; 2420 /* 2421 * Init the tcp_debug option if it wasn't already set. This value 2422 * determines whether TCP 2423 * calls strlog() to print out debug messages. Doing this 2424 * initialization here means that this value is not inherited thru 2425 * tcp_reinit(). 2426 */ 2427 if (!connp->conn_debug) 2428 connp->conn_debug = tcps->tcps_dbg; 2429 } 2430 2431 /* 2432 * Update the TCP connection according to change of PMTU. 2433 * 2434 * Path MTU might have changed by either increase or decrease, so need to 2435 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 2436 * or negative MSS, since tcp_mss_set() will do it. 2437 */ 2438 void 2439 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 2440 { 2441 uint32_t pmtu; 2442 int32_t mss; 2443 conn_t *connp = tcp->tcp_connp; 2444 ip_xmit_attr_t *ixa = connp->conn_ixa; 2445 iaflags_t ixaflags; 2446 2447 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 2448 return; 2449 2450 if (tcp->tcp_state < TCPS_ESTABLISHED) 2451 return; 2452 2453 /* 2454 * Always call ip_get_pmtu() to make sure that IP has updated 2455 * ixa_flags properly. 2456 */ 2457 pmtu = ip_get_pmtu(ixa); 2458 ixaflags = ixa->ixa_flags; 2459 2460 /* 2461 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 2462 * IPsec overhead if applied. Make sure to use the most recent 2463 * IPsec information. 2464 */ 2465 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 2466 2467 /* 2468 * Nothing to change, so just return. 2469 */ 2470 if (mss == tcp->tcp_mss) 2471 return; 2472 2473 /* 2474 * Currently, for ICMP errors, only PMTU decrease is handled. 2475 */ 2476 if (mss > tcp->tcp_mss && decrease_only) 2477 return; 2478 2479 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 2480 2481 /* 2482 * Update ixa_fragsize and ixa_pmtu. 2483 */ 2484 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 2485 2486 /* 2487 * Adjust MSS and all relevant variables. 2488 */ 2489 tcp_mss_set(tcp, mss); 2490 2491 /* 2492 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 2493 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 2494 * has a (potentially different) min size we do the same. Make sure to 2495 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 2496 * fragment the packet. 2497 * 2498 * LSO over IPv6 can not be fragmented. So need to disable LSO 2499 * when IPv6 fragmentation is needed. 2500 */ 2501 if (mss < tcp->tcp_tcps->tcps_mss_min) 2502 ixaflags |= IXAF_PMTU_TOO_SMALL; 2503 2504 if (ixaflags & IXAF_PMTU_TOO_SMALL) 2505 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 2506 2507 if ((connp->conn_ipversion == IPV4_VERSION) && 2508 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 2509 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 2510 } 2511 ixa->ixa_flags = ixaflags; 2512 } 2513 2514 int 2515 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 2516 { 2517 conn_t *connp = tcp->tcp_connp; 2518 queue_t *q = connp->conn_rq; 2519 int32_t mss = tcp->tcp_mss; 2520 int maxpsz; 2521 2522 if (TCP_IS_DETACHED(tcp)) 2523 return (mss); 2524 if (tcp->tcp_fused) { 2525 maxpsz = tcp_fuse_maxpsz(tcp); 2526 mss = INFPSZ; 2527 } else if (tcp->tcp_maxpsz_multiplier == 0) { 2528 /* 2529 * Set the sd_qn_maxpsz according to the socket send buffer 2530 * size, and sd_maxblk to INFPSZ (-1). This will essentially 2531 * instruct the stream head to copyin user data into contiguous 2532 * kernel-allocated buffers without breaking it up into smaller 2533 * chunks. We round up the buffer size to the nearest SMSS. 2534 */ 2535 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 2536 if (tcp->tcp_kssl_ctx == NULL) 2537 mss = INFPSZ; 2538 else 2539 mss = SSL3_MAX_RECORD_LEN; 2540 } else { 2541 /* 2542 * Set sd_qn_maxpsz to approx half the (receivers) buffer 2543 * (and a multiple of the mss). This instructs the stream 2544 * head to break down larger than SMSS writes into SMSS- 2545 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 2546 */ 2547 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 2548 if (maxpsz > connp->conn_sndbuf / 2) { 2549 maxpsz = connp->conn_sndbuf / 2; 2550 /* Round up to nearest mss */ 2551 maxpsz = MSS_ROUNDUP(maxpsz, mss); 2552 } 2553 } 2554 2555 (void) proto_set_maxpsz(q, connp, maxpsz); 2556 if (!(IPCL_IS_NONSTR(connp))) 2557 connp->conn_wq->q_maxpsz = maxpsz; 2558 if (set_maxblk) 2559 (void) proto_set_tx_maxblk(q, connp, mss); 2560 return (mss); 2561 } 2562 2563 /* For /dev/tcp aka AF_INET open */ 2564 static int 2565 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2566 { 2567 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 2568 } 2569 2570 /* For /dev/tcp6 aka AF_INET6 open */ 2571 static int 2572 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2573 { 2574 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 2575 } 2576 2577 conn_t * 2578 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 2579 int *errorp) 2580 { 2581 tcp_t *tcp = NULL; 2582 conn_t *connp; 2583 zoneid_t zoneid; 2584 tcp_stack_t *tcps; 2585 squeue_t *sqp; 2586 2587 ASSERT(errorp != NULL); 2588 /* 2589 * Find the proper zoneid and netstack. 2590 */ 2591 /* 2592 * Special case for install: miniroot needs to be able to 2593 * access files via NFS as though it were always in the 2594 * global zone. 2595 */ 2596 if (credp == kcred && nfs_global_client_only != 0) { 2597 zoneid = GLOBAL_ZONEID; 2598 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 2599 netstack_tcp; 2600 ASSERT(tcps != NULL); 2601 } else { 2602 netstack_t *ns; 2603 int err; 2604 2605 if ((err = secpolicy_basic_net_access(credp)) != 0) { 2606 *errorp = err; 2607 return (NULL); 2608 } 2609 2610 ns = netstack_find_by_cred(credp); 2611 ASSERT(ns != NULL); 2612 tcps = ns->netstack_tcp; 2613 ASSERT(tcps != NULL); 2614 2615 /* 2616 * For exclusive stacks we set the zoneid to zero 2617 * to make TCP operate as if in the global zone. 2618 */ 2619 if (tcps->tcps_netstack->netstack_stackid != 2620 GLOBAL_NETSTACKID) 2621 zoneid = GLOBAL_ZONEID; 2622 else 2623 zoneid = crgetzoneid(credp); 2624 } 2625 2626 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 2627 connp = (conn_t *)tcp_get_conn(sqp, tcps); 2628 /* 2629 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 2630 * so we drop it by one. 2631 */ 2632 netstack_rele(tcps->tcps_netstack); 2633 if (connp == NULL) { 2634 *errorp = ENOSR; 2635 return (NULL); 2636 } 2637 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 2638 2639 connp->conn_sqp = sqp; 2640 connp->conn_initial_sqp = connp->conn_sqp; 2641 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 2642 tcp = connp->conn_tcp; 2643 2644 /* 2645 * Besides asking IP to set the checksum for us, have conn_ip_output 2646 * to do the following checks when necessary: 2647 * 2648 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 2649 * IXAF_VERIFY_PMTU: verify PMTU changes 2650 * IXAF_VERIFY_LSO: verify LSO capability changes 2651 */ 2652 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 2653 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 2654 2655 if (!tcps->tcps_dev_flow_ctl) 2656 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 2657 2658 if (isv6) { 2659 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 2660 connp->conn_ipversion = IPV6_VERSION; 2661 connp->conn_family = AF_INET6; 2662 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2663 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 2664 } else { 2665 connp->conn_ipversion = IPV4_VERSION; 2666 connp->conn_family = AF_INET; 2667 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2668 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 2669 } 2670 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 2671 2672 crhold(credp); 2673 connp->conn_cred = credp; 2674 connp->conn_cpid = curproc->p_pid; 2675 connp->conn_open_time = ddi_get_lbolt64(); 2676 2677 /* Cache things in the ixa without any refhold */ 2678 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 2679 connp->conn_ixa->ixa_cred = credp; 2680 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 2681 2682 connp->conn_zoneid = zoneid; 2683 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 2684 connp->conn_ixa->ixa_zoneid = zoneid; 2685 connp->conn_mlp_type = mlptSingle; 2686 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 2687 ASSERT(tcp->tcp_tcps == tcps); 2688 2689 /* 2690 * If the caller has the process-wide flag set, then default to MAC 2691 * exempt mode. This allows read-down to unlabeled hosts. 2692 */ 2693 if (getpflags(NET_MAC_AWARE, credp) != 0) 2694 connp->conn_mac_mode = CONN_MAC_AWARE; 2695 2696 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 2697 2698 if (issocket) { 2699 tcp->tcp_issocket = 1; 2700 } 2701 2702 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 2703 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 2704 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 2705 connp->conn_so_type = SOCK_STREAM; 2706 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2707 tcps->tcps_wroff_xtra; 2708 2709 SOCK_CONNID_INIT(tcp->tcp_connid); 2710 /* DTrace ignores this - it isn't a tcp:::state-change */ 2711 tcp->tcp_state = TCPS_IDLE; 2712 tcp_init_values(tcp, NULL); 2713 return (connp); 2714 } 2715 2716 static int 2717 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2718 boolean_t isv6) 2719 { 2720 tcp_t *tcp = NULL; 2721 conn_t *connp = NULL; 2722 int err; 2723 vmem_t *minor_arena = NULL; 2724 dev_t conn_dev; 2725 boolean_t issocket; 2726 2727 if (q->q_ptr != NULL) 2728 return (0); 2729 2730 if (sflag == MODOPEN) 2731 return (EINVAL); 2732 2733 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 2734 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 2735 minor_arena = ip_minor_arena_la; 2736 } else { 2737 /* 2738 * Either minor numbers in the large arena were exhausted 2739 * or a non socket application is doing the open. 2740 * Try to allocate from the small arena. 2741 */ 2742 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 2743 return (EBUSY); 2744 } 2745 minor_arena = ip_minor_arena_sa; 2746 } 2747 2748 ASSERT(minor_arena != NULL); 2749 2750 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 2751 2752 if (flag & SO_FALLBACK) { 2753 /* 2754 * Non streams socket needs a stream to fallback to 2755 */ 2756 RD(q)->q_ptr = (void *)conn_dev; 2757 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 2758 WR(q)->q_ptr = (void *)minor_arena; 2759 qprocson(q); 2760 return (0); 2761 } else if (flag & SO_ACCEPTOR) { 2762 q->q_qinfo = &tcp_acceptor_rinit; 2763 /* 2764 * the conn_dev and minor_arena will be subsequently used by 2765 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 2766 * the minor device number for this connection from the q_ptr. 2767 */ 2768 RD(q)->q_ptr = (void *)conn_dev; 2769 WR(q)->q_qinfo = &tcp_acceptor_winit; 2770 WR(q)->q_ptr = (void *)minor_arena; 2771 qprocson(q); 2772 return (0); 2773 } 2774 2775 issocket = flag & SO_SOCKSTR; 2776 connp = tcp_create_common(credp, isv6, issocket, &err); 2777 2778 if (connp == NULL) { 2779 inet_minor_free(minor_arena, conn_dev); 2780 q->q_ptr = WR(q)->q_ptr = NULL; 2781 return (err); 2782 } 2783 2784 connp->conn_rq = q; 2785 connp->conn_wq = WR(q); 2786 q->q_ptr = WR(q)->q_ptr = connp; 2787 2788 connp->conn_dev = conn_dev; 2789 connp->conn_minor_arena = minor_arena; 2790 2791 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 2792 ASSERT(WR(q)->q_qinfo == &tcp_winit); 2793 2794 tcp = connp->conn_tcp; 2795 2796 if (issocket) { 2797 WR(q)->q_qinfo = &tcp_sock_winit; 2798 } else { 2799 #ifdef _ILP32 2800 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 2801 #else 2802 tcp->tcp_acceptor_id = conn_dev; 2803 #endif /* _ILP32 */ 2804 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 2805 } 2806 2807 /* 2808 * Put the ref for TCP. Ref for IP was already put 2809 * by ipcl_conn_create. Also Make the conn_t globally 2810 * visible to walkers 2811 */ 2812 mutex_enter(&connp->conn_lock); 2813 CONN_INC_REF_LOCKED(connp); 2814 ASSERT(connp->conn_ref == 2); 2815 connp->conn_state_flags &= ~CONN_INCIPIENT; 2816 mutex_exit(&connp->conn_lock); 2817 2818 qprocson(q); 2819 return (0); 2820 } 2821 2822 /* 2823 * Build/update the tcp header template (in conn_ht_iphc) based on 2824 * conn_xmit_ipp. The headers include ip6_t, any extension 2825 * headers, and the maximum size tcp header (to avoid reallocation 2826 * on the fly for additional tcp options). 2827 * 2828 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 2829 * Returns failure if can't allocate memory. 2830 */ 2831 int 2832 tcp_build_hdrs(tcp_t *tcp) 2833 { 2834 tcp_stack_t *tcps = tcp->tcp_tcps; 2835 conn_t *connp = tcp->tcp_connp; 2836 char buf[TCP_MAX_HDR_LENGTH]; 2837 uint_t buflen; 2838 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 2839 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 2840 tcpha_t *tcpha; 2841 uint32_t cksum; 2842 int error; 2843 2844 /* 2845 * We might be called after the connection is set up, and we might 2846 * have TS options already in the TCP header. Thus we save any 2847 * existing tcp header. 2848 */ 2849 buflen = connp->conn_ht_ulp_len; 2850 if (buflen != 0) { 2851 bcopy(connp->conn_ht_ulp, buf, buflen); 2852 extralen -= buflen - ulplen; 2853 ulplen = buflen; 2854 } 2855 2856 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 2857 mutex_enter(&connp->conn_lock); 2858 error = conn_build_hdr_template(connp, ulplen, extralen, 2859 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 2860 mutex_exit(&connp->conn_lock); 2861 if (error != 0) 2862 return (error); 2863 2864 /* 2865 * Any routing header/option has been massaged. The checksum difference 2866 * is stored in conn_sum for later use. 2867 */ 2868 tcpha = (tcpha_t *)connp->conn_ht_ulp; 2869 tcp->tcp_tcpha = tcpha; 2870 2871 /* restore any old tcp header */ 2872 if (buflen != 0) { 2873 bcopy(buf, connp->conn_ht_ulp, buflen); 2874 } else { 2875 tcpha->tha_sum = 0; 2876 tcpha->tha_urp = 0; 2877 tcpha->tha_ack = 0; 2878 tcpha->tha_offset_and_reserved = (5 << 4); 2879 tcpha->tha_lport = connp->conn_lport; 2880 tcpha->tha_fport = connp->conn_fport; 2881 } 2882 2883 /* 2884 * IP wants our header length in the checksum field to 2885 * allow it to perform a single pseudo-header+checksum 2886 * calculation on behalf of TCP. 2887 * Include the adjustment for a source route once IP_OPTIONS is set. 2888 */ 2889 cksum = sizeof (tcpha_t) + connp->conn_sum; 2890 cksum = (cksum >> 16) + (cksum & 0xFFFF); 2891 ASSERT(cksum < 0x10000); 2892 tcpha->tha_sum = htons(cksum); 2893 2894 if (connp->conn_ipversion == IPV4_VERSION) 2895 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 2896 else 2897 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 2898 2899 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 2900 connp->conn_wroff) { 2901 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2902 tcps->tcps_wroff_xtra; 2903 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2904 connp->conn_wroff); 2905 } 2906 return (0); 2907 } 2908 2909 /* 2910 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 2911 * We do not allow the receive window to shrink. After setting rwnd, 2912 * set the flow control hiwat of the stream. 2913 * 2914 * This function is called in 2 cases: 2915 * 2916 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 2917 * connection (passive open) and in tcp_input_data() for active connect. 2918 * This is called after tcp_mss_set() when the desired MSS value is known. 2919 * This makes sure that our window size is a mutiple of the other side's 2920 * MSS. 2921 * 2) Handling SO_RCVBUF option. 2922 * 2923 * It is ASSUMED that the requested size is a multiple of the current MSS. 2924 * 2925 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 2926 * user requests so. 2927 */ 2928 int 2929 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 2930 { 2931 uint32_t mss = tcp->tcp_mss; 2932 uint32_t old_max_rwnd; 2933 uint32_t max_transmittable_rwnd; 2934 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2935 tcp_stack_t *tcps = tcp->tcp_tcps; 2936 conn_t *connp = tcp->tcp_connp; 2937 2938 /* 2939 * Insist on a receive window that is at least 2940 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 2941 * funny TCP interactions of Nagle algorithm, SWS avoidance 2942 * and delayed acknowledgement. 2943 */ 2944 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 2945 2946 if (tcp->tcp_fused) { 2947 size_t sth_hiwat; 2948 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2949 2950 ASSERT(peer_tcp != NULL); 2951 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 2952 if (!tcp_detached) { 2953 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 2954 sth_hiwat); 2955 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 2956 } 2957 2958 /* Caller could have changed tcp_rwnd; update tha_win */ 2959 if (tcp->tcp_tcpha != NULL) { 2960 tcp->tcp_tcpha->tha_win = 2961 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2962 } 2963 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 2964 tcp->tcp_cwnd_max = rwnd; 2965 2966 /* 2967 * In the fusion case, the maxpsz stream head value of 2968 * our peer is set according to its send buffer size 2969 * and our receive buffer size; since the latter may 2970 * have changed we need to update the peer's maxpsz. 2971 */ 2972 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 2973 return (sth_hiwat); 2974 } 2975 2976 if (tcp_detached) 2977 old_max_rwnd = tcp->tcp_rwnd; 2978 else 2979 old_max_rwnd = connp->conn_rcvbuf; 2980 2981 2982 /* 2983 * If window size info has already been exchanged, TCP should not 2984 * shrink the window. Shrinking window is doable if done carefully. 2985 * We may add that support later. But so far there is not a real 2986 * need to do that. 2987 */ 2988 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 2989 /* MSS may have changed, do a round up again. */ 2990 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 2991 } 2992 2993 /* 2994 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 2995 * can be applied even before the window scale option is decided. 2996 */ 2997 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 2998 if (rwnd > max_transmittable_rwnd) { 2999 rwnd = max_transmittable_rwnd - 3000 (max_transmittable_rwnd % mss); 3001 if (rwnd < mss) 3002 rwnd = max_transmittable_rwnd; 3003 /* 3004 * If we're over the limit we may have to back down tcp_rwnd. 3005 * The increment below won't work for us. So we set all three 3006 * here and the increment below will have no effect. 3007 */ 3008 tcp->tcp_rwnd = old_max_rwnd = rwnd; 3009 } 3010 if (tcp->tcp_localnet) { 3011 tcp->tcp_rack_abs_max = 3012 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 3013 } else { 3014 /* 3015 * For a remote host on a different subnet (through a router), 3016 * we ack every other packet to be conforming to RFC1122. 3017 * tcp_deferred_acks_max is default to 2. 3018 */ 3019 tcp->tcp_rack_abs_max = 3020 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 3021 } 3022 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 3023 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 3024 else 3025 tcp->tcp_rack_cur_max = 0; 3026 /* 3027 * Increment the current rwnd by the amount the maximum grew (we 3028 * can not overwrite it since we might be in the middle of a 3029 * connection.) 3030 */ 3031 tcp->tcp_rwnd += rwnd - old_max_rwnd; 3032 connp->conn_rcvbuf = rwnd; 3033 3034 /* Are we already connected? */ 3035 if (tcp->tcp_tcpha != NULL) { 3036 tcp->tcp_tcpha->tha_win = 3037 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 3038 } 3039 3040 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 3041 tcp->tcp_cwnd_max = rwnd; 3042 3043 if (tcp_detached) 3044 return (rwnd); 3045 3046 tcp_set_recv_threshold(tcp, rwnd >> 3); 3047 3048 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 3049 return (rwnd); 3050 } 3051 3052 int 3053 tcp_do_unbind(conn_t *connp) 3054 { 3055 tcp_t *tcp = connp->conn_tcp; 3056 int32_t oldstate; 3057 3058 switch (tcp->tcp_state) { 3059 case TCPS_BOUND: 3060 case TCPS_LISTEN: 3061 break; 3062 default: 3063 return (-TOUTSTATE); 3064 } 3065 3066 /* 3067 * Need to clean up all the eagers since after the unbind, segments 3068 * will no longer be delivered to this listener stream. 3069 */ 3070 mutex_enter(&tcp->tcp_eager_lock); 3071 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3072 tcp_eager_cleanup(tcp, 0); 3073 } 3074 mutex_exit(&tcp->tcp_eager_lock); 3075 3076 /* Clean up the listener connection counter if necessary. */ 3077 if (tcp->tcp_listen_cnt != NULL) 3078 TCP_DECR_LISTEN_CNT(tcp); 3079 connp->conn_laddr_v6 = ipv6_all_zeros; 3080 connp->conn_saddr_v6 = ipv6_all_zeros; 3081 tcp_bind_hash_remove(tcp); 3082 oldstate = tcp->tcp_state; 3083 tcp->tcp_state = TCPS_IDLE; 3084 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3085 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3086 int32_t, oldstate); 3087 3088 ip_unbind(connp); 3089 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 3090 3091 return (0); 3092 } 3093 3094 /* 3095 * This runs at the tail end of accept processing on the squeue of the 3096 * new connection. 3097 */ 3098 /* ARGSUSED */ 3099 void 3100 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3101 { 3102 conn_t *connp = (conn_t *)arg; 3103 tcp_t *tcp = connp->conn_tcp; 3104 queue_t *q = connp->conn_rq; 3105 tcp_stack_t *tcps = tcp->tcp_tcps; 3106 /* socket options */ 3107 struct sock_proto_props sopp; 3108 3109 /* We should just receive a single mblk that fits a T_discon_ind */ 3110 ASSERT(mp->b_cont == NULL); 3111 3112 /* 3113 * Drop the eager's ref on the listener, that was placed when 3114 * this eager began life in tcp_input_listener. 3115 */ 3116 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 3117 if (IPCL_IS_NONSTR(connp)) { 3118 /* Safe to free conn_ind message */ 3119 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 3120 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3121 } 3122 3123 tcp->tcp_detached = B_FALSE; 3124 3125 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 3126 /* 3127 * Someone blewoff the eager before we could finish 3128 * the accept. 3129 * 3130 * The only reason eager exists it because we put in 3131 * a ref on it when conn ind went up. We need to send 3132 * a disconnect indication up while the last reference 3133 * on the eager will be dropped by the squeue when we 3134 * return. 3135 */ 3136 ASSERT(tcp->tcp_listener == NULL); 3137 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 3138 if (IPCL_IS_NONSTR(connp)) { 3139 ASSERT(tcp->tcp_issocket); 3140 (*connp->conn_upcalls->su_disconnected)( 3141 connp->conn_upper_handle, tcp->tcp_connid, 3142 ECONNREFUSED); 3143 freemsg(mp); 3144 } else { 3145 struct T_discon_ind *tdi; 3146 3147 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 3148 /* 3149 * Let us reuse the incoming mblk to avoid 3150 * memory allocation failure problems. We know 3151 * that the size of the incoming mblk i.e. 3152 * stroptions is greater than sizeof 3153 * T_discon_ind. 3154 */ 3155 ASSERT(DB_REF(mp) == 1); 3156 ASSERT(MBLKSIZE(mp) >= 3157 sizeof (struct T_discon_ind)); 3158 3159 DB_TYPE(mp) = M_PROTO; 3160 ((union T_primitives *)mp->b_rptr)->type = 3161 T_DISCON_IND; 3162 tdi = (struct T_discon_ind *)mp->b_rptr; 3163 if (tcp->tcp_issocket) { 3164 tdi->DISCON_reason = ECONNREFUSED; 3165 tdi->SEQ_number = 0; 3166 } else { 3167 tdi->DISCON_reason = ENOPROTOOPT; 3168 tdi->SEQ_number = 3169 tcp->tcp_conn_req_seqnum; 3170 } 3171 mp->b_wptr = mp->b_rptr + 3172 sizeof (struct T_discon_ind); 3173 putnext(q, mp); 3174 } 3175 } 3176 tcp->tcp_hard_binding = B_FALSE; 3177 return; 3178 } 3179 3180 /* 3181 * This is the first time we run on the correct 3182 * queue after tcp_accept. So fix all the q parameters 3183 * here. 3184 */ 3185 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 3186 sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 3187 3188 sopp.sopp_rxhiwat = tcp->tcp_fused ? 3189 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 3190 connp->conn_rcvbuf; 3191 3192 /* 3193 * Determine what write offset value to use depending on SACK and 3194 * whether the endpoint is fused or not. 3195 */ 3196 if (tcp->tcp_fused) { 3197 ASSERT(tcp->tcp_loopback); 3198 ASSERT(tcp->tcp_loopback_peer != NULL); 3199 /* 3200 * For fused tcp loopback, set the stream head's write 3201 * offset value to zero since we won't be needing any room 3202 * for TCP/IP headers. This would also improve performance 3203 * since it would reduce the amount of work done by kmem. 3204 * Non-fused tcp loopback case is handled separately below. 3205 */ 3206 sopp.sopp_wroff = 0; 3207 /* 3208 * Update the peer's transmit parameters according to 3209 * our recently calculated high water mark value. 3210 */ 3211 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 3212 } else if (tcp->tcp_snd_sack_ok) { 3213 sopp.sopp_wroff = connp->conn_ht_iphc_allocated + 3214 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 3215 } else { 3216 sopp.sopp_wroff = connp->conn_ht_iphc_len + 3217 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 3218 } 3219 3220 /* 3221 * If this is endpoint is handling SSL, then reserve extra 3222 * offset and space at the end. 3223 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 3224 * overriding the previous setting. The extra cost of signing and 3225 * encrypting multiple MSS-size records (12 of them with Ethernet), 3226 * instead of a single contiguous one by the stream head 3227 * largely outweighs the statistical reduction of ACKs, when 3228 * applicable. The peer will also save on decryption and verification 3229 * costs. 3230 */ 3231 if (tcp->tcp_kssl_ctx != NULL) { 3232 sopp.sopp_wroff += SSL3_WROFFSET; 3233 3234 sopp.sopp_flags |= SOCKOPT_TAIL; 3235 sopp.sopp_tail = SSL3_MAX_TAIL_LEN; 3236 3237 sopp.sopp_flags |= SOCKOPT_ZCOPY; 3238 sopp.sopp_zcopyflag = ZCVMUNSAFE; 3239 3240 sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN; 3241 } 3242 3243 /* Send the options up */ 3244 if (IPCL_IS_NONSTR(connp)) { 3245 if (sopp.sopp_flags & SOCKOPT_TAIL) { 3246 ASSERT(tcp->tcp_kssl_ctx != NULL); 3247 ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY); 3248 } 3249 if (tcp->tcp_loopback) { 3250 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 3251 sopp.sopp_loopback = B_TRUE; 3252 } 3253 (*connp->conn_upcalls->su_set_proto_props) 3254 (connp->conn_upper_handle, &sopp); 3255 freemsg(mp); 3256 } else { 3257 /* 3258 * Let us reuse the incoming mblk to avoid 3259 * memory allocation failure problems. We know 3260 * that the size of the incoming mblk is at least 3261 * stroptions 3262 */ 3263 struct stroptions *stropt; 3264 3265 ASSERT(DB_REF(mp) == 1); 3266 ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions)); 3267 3268 DB_TYPE(mp) = M_SETOPTS; 3269 stropt = (struct stroptions *)mp->b_rptr; 3270 mp->b_wptr = mp->b_rptr + sizeof (struct stroptions); 3271 stropt = (struct stroptions *)mp->b_rptr; 3272 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 3273 stropt->so_hiwat = sopp.sopp_rxhiwat; 3274 stropt->so_wroff = sopp.sopp_wroff; 3275 stropt->so_maxblk = sopp.sopp_maxblk; 3276 3277 if (sopp.sopp_flags & SOCKOPT_TAIL) { 3278 ASSERT(tcp->tcp_kssl_ctx != NULL); 3279 3280 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 3281 stropt->so_tail = sopp.sopp_tail; 3282 stropt->so_copyopt = sopp.sopp_zcopyflag; 3283 } 3284 3285 /* Send the options up */ 3286 putnext(q, mp); 3287 } 3288 3289 /* 3290 * Pass up any data and/or a fin that has been received. 3291 * 3292 * Adjust receive window in case it had decreased 3293 * (because there is data <=> tcp_rcv_list != NULL) 3294 * while the connection was detached. Note that 3295 * in case the eager was flow-controlled, w/o this 3296 * code, the rwnd may never open up again! 3297 */ 3298 if (tcp->tcp_rcv_list != NULL) { 3299 if (IPCL_IS_NONSTR(connp)) { 3300 mblk_t *mp; 3301 int space_left; 3302 int error; 3303 boolean_t push = B_TRUE; 3304 3305 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 3306 (connp->conn_upper_handle, NULL, 0, 0, &error, 3307 &push) >= 0) { 3308 tcp->tcp_rwnd = connp->conn_rcvbuf; 3309 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3310 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 3311 tcp_xmit_ctl(NULL, 3312 tcp, (tcp->tcp_swnd == 0) ? 3313 tcp->tcp_suna : tcp->tcp_snxt, 3314 tcp->tcp_rnxt, TH_ACK); 3315 } 3316 } 3317 while ((mp = tcp->tcp_rcv_list) != NULL) { 3318 push = B_TRUE; 3319 tcp->tcp_rcv_list = mp->b_next; 3320 mp->b_next = NULL; 3321 space_left = (*connp->conn_upcalls->su_recv) 3322 (connp->conn_upper_handle, mp, msgdsize(mp), 3323 0, &error, &push); 3324 if (space_left < 0) { 3325 /* 3326 * We should never be in middle of a 3327 * fallback, the squeue guarantees that. 3328 */ 3329 ASSERT(error != EOPNOTSUPP); 3330 } 3331 } 3332 tcp->tcp_rcv_last_head = NULL; 3333 tcp->tcp_rcv_last_tail = NULL; 3334 tcp->tcp_rcv_cnt = 0; 3335 } else { 3336 /* We drain directly in case of fused tcp loopback */ 3337 3338 if (!tcp->tcp_fused && canputnext(q)) { 3339 tcp->tcp_rwnd = connp->conn_rcvbuf; 3340 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3341 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 3342 tcp_xmit_ctl(NULL, 3343 tcp, (tcp->tcp_swnd == 0) ? 3344 tcp->tcp_suna : tcp->tcp_snxt, 3345 tcp->tcp_rnxt, TH_ACK); 3346 } 3347 } 3348 3349 (void) tcp_rcv_drain(tcp); 3350 } 3351 3352 /* 3353 * For fused tcp loopback, back-enable peer endpoint 3354 * if it's currently flow-controlled. 3355 */ 3356 if (tcp->tcp_fused) { 3357 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 3358 3359 ASSERT(peer_tcp != NULL); 3360 ASSERT(peer_tcp->tcp_fused); 3361 3362 mutex_enter(&peer_tcp->tcp_non_sq_lock); 3363 if (peer_tcp->tcp_flow_stopped) { 3364 tcp_clrqfull(peer_tcp); 3365 TCP_STAT(tcps, tcp_fusion_backenabled); 3366 } 3367 mutex_exit(&peer_tcp->tcp_non_sq_lock); 3368 } 3369 } 3370 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 3371 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3372 tcp->tcp_ordrel_done = B_TRUE; 3373 if (IPCL_IS_NONSTR(connp)) { 3374 ASSERT(tcp->tcp_ordrel_mp == NULL); 3375 (*connp->conn_upcalls->su_opctl)( 3376 connp->conn_upper_handle, 3377 SOCK_OPCTL_SHUT_RECV, 0); 3378 } else { 3379 mp = tcp->tcp_ordrel_mp; 3380 tcp->tcp_ordrel_mp = NULL; 3381 putnext(q, mp); 3382 } 3383 } 3384 tcp->tcp_hard_binding = B_FALSE; 3385 3386 if (connp->conn_keepalive) { 3387 tcp->tcp_ka_last_intrvl = 0; 3388 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_timer, 3389 tcp->tcp_ka_interval); 3390 } 3391 3392 /* 3393 * At this point, eager is fully established and will 3394 * have the following references - 3395 * 3396 * 2 references for connection to exist (1 for TCP and 1 for IP). 3397 * 1 reference for the squeue which will be dropped by the squeue as 3398 * soon as this function returns. 3399 * There will be 1 additonal reference for being in classifier 3400 * hash list provided something bad hasn't happened. 3401 */ 3402 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3403 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3404 } 3405 3406 /* 3407 * Common to TPI and sockfs accept code. 3408 */ 3409 /* ARGSUSED2 */ 3410 int 3411 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 3412 { 3413 tcp_t *listener, *eager; 3414 mblk_t *discon_mp; 3415 3416 listener = lconnp->conn_tcp; 3417 ASSERT(listener->tcp_state == TCPS_LISTEN); 3418 eager = econnp->conn_tcp; 3419 ASSERT(eager->tcp_listener != NULL); 3420 3421 /* 3422 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 3423 * use it if something failed. 3424 */ 3425 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 3426 sizeof (struct stroptions)), BPRI_HI); 3427 3428 if (discon_mp == NULL) { 3429 return (-TPROTO); 3430 } 3431 eager->tcp_issocket = B_TRUE; 3432 3433 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 3434 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 3435 ASSERT(econnp->conn_netstack == 3436 listener->tcp_connp->conn_netstack); 3437 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 3438 3439 /* Put the ref for IP */ 3440 CONN_INC_REF(econnp); 3441 3442 /* 3443 * We should have minimum of 3 references on the conn 3444 * at this point. One each for TCP and IP and one for 3445 * the T_conn_ind that was sent up when the 3-way handshake 3446 * completed. In the normal case we would also have another 3447 * reference (making a total of 4) for the conn being in the 3448 * classifier hash list. However the eager could have received 3449 * an RST subsequently and tcp_closei_local could have removed 3450 * the eager from the classifier hash list, hence we can't 3451 * assert that reference. 3452 */ 3453 ASSERT(econnp->conn_ref >= 3); 3454 3455 mutex_enter(&listener->tcp_eager_lock); 3456 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 3457 3458 tcp_t *tail; 3459 tcp_t *tcp; 3460 mblk_t *mp1; 3461 3462 tcp = listener->tcp_eager_prev_q0; 3463 /* 3464 * listener->tcp_eager_prev_q0 points to the TAIL of the 3465 * deferred T_conn_ind queue. We need to get to the head 3466 * of the queue in order to send up T_conn_ind the same 3467 * order as how the 3WHS is completed. 3468 */ 3469 while (tcp != listener) { 3470 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 3471 !tcp->tcp_kssl_pending) 3472 break; 3473 else 3474 tcp = tcp->tcp_eager_prev_q0; 3475 } 3476 /* None of the pending eagers can be sent up now */ 3477 if (tcp == listener) 3478 goto no_more_eagers; 3479 3480 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 3481 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3482 /* Move from q0 to q */ 3483 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 3484 listener->tcp_conn_req_cnt_q0--; 3485 listener->tcp_conn_req_cnt_q++; 3486 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 3487 tcp->tcp_eager_prev_q0; 3488 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 3489 tcp->tcp_eager_next_q0; 3490 tcp->tcp_eager_prev_q0 = NULL; 3491 tcp->tcp_eager_next_q0 = NULL; 3492 tcp->tcp_conn_def_q0 = B_FALSE; 3493 3494 /* Make sure the tcp isn't in the list of droppables */ 3495 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 3496 tcp->tcp_eager_prev_drop_q0 == NULL); 3497 3498 /* 3499 * Insert at end of the queue because sockfs sends 3500 * down T_CONN_RES in chronological order. Leaving 3501 * the older conn indications at front of the queue 3502 * helps reducing search time. 3503 */ 3504 tail = listener->tcp_eager_last_q; 3505 if (tail != NULL) { 3506 tail->tcp_eager_next_q = tcp; 3507 } else { 3508 listener->tcp_eager_next_q = tcp; 3509 } 3510 listener->tcp_eager_last_q = tcp; 3511 tcp->tcp_eager_next_q = NULL; 3512 3513 /* Need to get inside the listener perimeter */ 3514 CONN_INC_REF(listener->tcp_connp); 3515 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 3516 tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL, 3517 SQTAG_TCP_SEND_PENDING); 3518 } 3519 no_more_eagers: 3520 tcp_eager_unlink(eager); 3521 mutex_exit(&listener->tcp_eager_lock); 3522 3523 /* 3524 * At this point, the eager is detached from the listener 3525 * but we still have an extra refs on eager (apart from the 3526 * usual tcp references). The ref was placed in tcp_input_data 3527 * before sending the conn_ind in tcp_send_conn_ind. 3528 * The ref will be dropped in tcp_accept_finish(). 3529 */ 3530 SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish, 3531 econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 3532 return (0); 3533 } 3534 3535 /* 3536 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 3537 */ 3538 boolean_t 3539 tcp_zcopy_check(tcp_t *tcp) 3540 { 3541 conn_t *connp = tcp->tcp_connp; 3542 ip_xmit_attr_t *ixa = connp->conn_ixa; 3543 boolean_t zc_enabled = B_FALSE; 3544 tcp_stack_t *tcps = tcp->tcp_tcps; 3545 3546 if (do_tcpzcopy == 2) 3547 zc_enabled = B_TRUE; 3548 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 3549 zc_enabled = B_TRUE; 3550 3551 tcp->tcp_snd_zcopy_on = zc_enabled; 3552 if (!TCP_IS_DETACHED(tcp)) { 3553 if (zc_enabled) { 3554 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 3555 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3556 ZCVMSAFE); 3557 TCP_STAT(tcps, tcp_zcopy_on); 3558 } else { 3559 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 3560 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3561 ZCVMUNSAFE); 3562 TCP_STAT(tcps, tcp_zcopy_off); 3563 } 3564 } 3565 return (zc_enabled); 3566 } 3567 3568 /* 3569 * Backoff from a zero-copy message by copying data to a new allocated 3570 * message and freeing the original desballoca'ed segmapped message. 3571 * 3572 * This function is called by following two callers: 3573 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 3574 * the origial desballoca'ed message and notify sockfs. This is in re- 3575 * transmit state. 3576 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 3577 * to be copied to new message. 3578 */ 3579 mblk_t * 3580 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 3581 { 3582 mblk_t *nbp; 3583 mblk_t *head = NULL; 3584 mblk_t *tail = NULL; 3585 tcp_stack_t *tcps = tcp->tcp_tcps; 3586 3587 ASSERT(bp != NULL); 3588 while (bp != NULL) { 3589 if (IS_VMLOANED_MBLK(bp)) { 3590 TCP_STAT(tcps, tcp_zcopy_backoff); 3591 if ((nbp = copyb(bp)) == NULL) { 3592 tcp->tcp_xmit_zc_clean = B_FALSE; 3593 if (tail != NULL) 3594 tail->b_cont = bp; 3595 return ((head == NULL) ? bp : head); 3596 } 3597 3598 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 3599 if (fix_xmitlist) 3600 tcp_zcopy_notify(tcp); 3601 else 3602 nbp->b_datap->db_struioflag |= 3603 STRUIO_ZCNOTIFY; 3604 } 3605 nbp->b_cont = bp->b_cont; 3606 3607 /* 3608 * Copy saved information and adjust tcp_xmit_tail 3609 * if needed. 3610 */ 3611 if (fix_xmitlist) { 3612 nbp->b_prev = bp->b_prev; 3613 nbp->b_next = bp->b_next; 3614 3615 if (tcp->tcp_xmit_tail == bp) 3616 tcp->tcp_xmit_tail = nbp; 3617 } 3618 3619 /* Free the original message. */ 3620 bp->b_prev = NULL; 3621 bp->b_next = NULL; 3622 freeb(bp); 3623 3624 bp = nbp; 3625 } 3626 3627 if (head == NULL) { 3628 head = bp; 3629 } 3630 if (tail == NULL) { 3631 tail = bp; 3632 } else { 3633 tail->b_cont = bp; 3634 tail = bp; 3635 } 3636 3637 /* Move forward. */ 3638 bp = bp->b_cont; 3639 } 3640 3641 if (fix_xmitlist) { 3642 tcp->tcp_xmit_last = tail; 3643 tcp->tcp_xmit_zc_clean = B_TRUE; 3644 } 3645 3646 return (head); 3647 } 3648 3649 void 3650 tcp_zcopy_notify(tcp_t *tcp) 3651 { 3652 struct stdata *stp; 3653 conn_t *connp; 3654 3655 if (tcp->tcp_detached) 3656 return; 3657 connp = tcp->tcp_connp; 3658 if (IPCL_IS_NONSTR(connp)) { 3659 (*connp->conn_upcalls->su_zcopy_notify) 3660 (connp->conn_upper_handle); 3661 return; 3662 } 3663 stp = STREAM(connp->conn_rq); 3664 mutex_enter(&stp->sd_lock); 3665 stp->sd_flag |= STZCNOTIFY; 3666 cv_broadcast(&stp->sd_zcopy_wait); 3667 mutex_exit(&stp->sd_lock); 3668 } 3669 3670 /* 3671 * Update the TCP connection according to change of LSO capability. 3672 */ 3673 static void 3674 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 3675 { 3676 /* 3677 * We check against IPv4 header length to preserve the old behavior 3678 * of only enabling LSO when there are no IP options. 3679 * But this restriction might not be necessary at all. Before removing 3680 * it, need to verify how LSO is handled for source routing case, with 3681 * which IP does software checksum. 3682 * 3683 * For IPv6, whenever any extension header is needed, LSO is supressed. 3684 */ 3685 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 3686 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 3687 return; 3688 3689 /* 3690 * Either the LSO capability newly became usable, or it has changed. 3691 */ 3692 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 3693 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 3694 3695 ASSERT(lsoc->ill_lso_max > 0); 3696 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 3697 3698 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3699 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 3700 3701 /* 3702 * If LSO to be enabled, notify the STREAM header with larger 3703 * data block. 3704 */ 3705 if (!tcp->tcp_lso) 3706 tcp->tcp_maxpsz_multiplier = 0; 3707 3708 tcp->tcp_lso = B_TRUE; 3709 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 3710 } else { /* LSO capability is not usable any more. */ 3711 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3712 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 3713 3714 /* 3715 * If LSO to be disabled, notify the STREAM header with smaller 3716 * data block. And need to restore fragsize to PMTU. 3717 */ 3718 if (tcp->tcp_lso) { 3719 tcp->tcp_maxpsz_multiplier = 3720 tcp->tcp_tcps->tcps_maxpsz_multiplier; 3721 ixa->ixa_fragsize = ixa->ixa_pmtu; 3722 tcp->tcp_lso = B_FALSE; 3723 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 3724 } 3725 } 3726 3727 (void) tcp_maxpsz_set(tcp, B_TRUE); 3728 } 3729 3730 /* 3731 * Update the TCP connection according to change of ZEROCOPY capability. 3732 */ 3733 static void 3734 tcp_update_zcopy(tcp_t *tcp) 3735 { 3736 conn_t *connp = tcp->tcp_connp; 3737 tcp_stack_t *tcps = tcp->tcp_tcps; 3738 3739 if (tcp->tcp_snd_zcopy_on) { 3740 tcp->tcp_snd_zcopy_on = B_FALSE; 3741 if (!TCP_IS_DETACHED(tcp)) { 3742 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3743 ZCVMUNSAFE); 3744 TCP_STAT(tcps, tcp_zcopy_off); 3745 } 3746 } else { 3747 tcp->tcp_snd_zcopy_on = B_TRUE; 3748 if (!TCP_IS_DETACHED(tcp)) { 3749 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3750 ZCVMSAFE); 3751 TCP_STAT(tcps, tcp_zcopy_on); 3752 } 3753 } 3754 } 3755 3756 /* 3757 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 3758 * so it's safe to update the TCP connection. 3759 */ 3760 /* ARGSUSED1 */ 3761 static void 3762 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 3763 ixa_notify_arg_t narg) 3764 { 3765 tcp_t *tcp = (tcp_t *)arg; 3766 conn_t *connp = tcp->tcp_connp; 3767 3768 switch (ntype) { 3769 case IXAN_LSO: 3770 tcp_update_lso(tcp, connp->conn_ixa); 3771 break; 3772 case IXAN_PMTU: 3773 tcp_update_pmtu(tcp, B_FALSE); 3774 break; 3775 case IXAN_ZCOPY: 3776 tcp_update_zcopy(tcp); 3777 break; 3778 default: 3779 break; 3780 } 3781 } 3782 3783 /* 3784 * The TCP write service routine should never be called... 3785 */ 3786 /* ARGSUSED */ 3787 static void 3788 tcp_wsrv(queue_t *q) 3789 { 3790 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 3791 3792 TCP_STAT(tcps, tcp_wsrv_called); 3793 } 3794 3795 /* 3796 * Hash list lookup routine for tcp_t structures. 3797 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 3798 */ 3799 tcp_t * 3800 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 3801 { 3802 tf_t *tf; 3803 tcp_t *tcp; 3804 3805 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3806 mutex_enter(&tf->tf_lock); 3807 for (tcp = tf->tf_tcp; tcp != NULL; 3808 tcp = tcp->tcp_acceptor_hash) { 3809 if (tcp->tcp_acceptor_id == id) { 3810 CONN_INC_REF(tcp->tcp_connp); 3811 mutex_exit(&tf->tf_lock); 3812 return (tcp); 3813 } 3814 } 3815 mutex_exit(&tf->tf_lock); 3816 return (NULL); 3817 } 3818 3819 /* 3820 * Hash list insertion routine for tcp_t structures. 3821 */ 3822 void 3823 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 3824 { 3825 tf_t *tf; 3826 tcp_t **tcpp; 3827 tcp_t *tcpnext; 3828 tcp_stack_t *tcps = tcp->tcp_tcps; 3829 3830 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3831 3832 if (tcp->tcp_ptpahn != NULL) 3833 tcp_acceptor_hash_remove(tcp); 3834 tcpp = &tf->tf_tcp; 3835 mutex_enter(&tf->tf_lock); 3836 tcpnext = tcpp[0]; 3837 if (tcpnext) 3838 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 3839 tcp->tcp_acceptor_hash = tcpnext; 3840 tcp->tcp_ptpahn = tcpp; 3841 tcpp[0] = tcp; 3842 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 3843 mutex_exit(&tf->tf_lock); 3844 } 3845 3846 /* 3847 * Hash list removal routine for tcp_t structures. 3848 */ 3849 void 3850 tcp_acceptor_hash_remove(tcp_t *tcp) 3851 { 3852 tcp_t *tcpnext; 3853 kmutex_t *lockp; 3854 3855 /* 3856 * Extract the lock pointer in case there are concurrent 3857 * hash_remove's for this instance. 3858 */ 3859 lockp = tcp->tcp_acceptor_lockp; 3860 3861 if (tcp->tcp_ptpahn == NULL) 3862 return; 3863 3864 ASSERT(lockp != NULL); 3865 mutex_enter(lockp); 3866 if (tcp->tcp_ptpahn) { 3867 tcpnext = tcp->tcp_acceptor_hash; 3868 if (tcpnext) { 3869 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 3870 tcp->tcp_acceptor_hash = NULL; 3871 } 3872 *tcp->tcp_ptpahn = tcpnext; 3873 tcp->tcp_ptpahn = NULL; 3874 } 3875 mutex_exit(lockp); 3876 tcp->tcp_acceptor_lockp = NULL; 3877 } 3878 3879 /* 3880 * Type three generator adapted from the random() function in 4.4 BSD: 3881 */ 3882 3883 /* 3884 * Copyright (c) 1983, 1993 3885 * The Regents of the University of California. All rights reserved. 3886 * 3887 * Redistribution and use in source and binary forms, with or without 3888 * modification, are permitted provided that the following conditions 3889 * are met: 3890 * 1. Redistributions of source code must retain the above copyright 3891 * notice, this list of conditions and the following disclaimer. 3892 * 2. Redistributions in binary form must reproduce the above copyright 3893 * notice, this list of conditions and the following disclaimer in the 3894 * documentation and/or other materials provided with the distribution. 3895 * 3. All advertising materials mentioning features or use of this software 3896 * must display the following acknowledgement: 3897 * This product includes software developed by the University of 3898 * California, Berkeley and its contributors. 3899 * 4. Neither the name of the University nor the names of its contributors 3900 * may be used to endorse or promote products derived from this software 3901 * without specific prior written permission. 3902 * 3903 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3904 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3905 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3906 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3907 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3908 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3909 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3910 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3911 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3912 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3913 * SUCH DAMAGE. 3914 */ 3915 3916 /* Type 3 -- x**31 + x**3 + 1 */ 3917 #define DEG_3 31 3918 #define SEP_3 3 3919 3920 3921 /* Protected by tcp_random_lock */ 3922 static int tcp_randtbl[DEG_3 + 1]; 3923 3924 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 3925 static int *tcp_random_rptr = &tcp_randtbl[1]; 3926 3927 static int *tcp_random_state = &tcp_randtbl[1]; 3928 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 3929 3930 kmutex_t tcp_random_lock; 3931 3932 void 3933 tcp_random_init(void) 3934 { 3935 int i; 3936 hrtime_t hrt; 3937 time_t wallclock; 3938 uint64_t result; 3939 3940 /* 3941 * Use high-res timer and current time for seed. Gethrtime() returns 3942 * a longlong, which may contain resolution down to nanoseconds. 3943 * The current time will either be a 32-bit or a 64-bit quantity. 3944 * XOR the two together in a 64-bit result variable. 3945 * Convert the result to a 32-bit value by multiplying the high-order 3946 * 32-bits by the low-order 32-bits. 3947 */ 3948 3949 hrt = gethrtime(); 3950 (void) drv_getparm(TIME, &wallclock); 3951 result = (uint64_t)wallclock ^ (uint64_t)hrt; 3952 mutex_enter(&tcp_random_lock); 3953 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 3954 (result & 0xffffffff); 3955 3956 for (i = 1; i < DEG_3; i++) 3957 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 3958 + 12345; 3959 tcp_random_fptr = &tcp_random_state[SEP_3]; 3960 tcp_random_rptr = &tcp_random_state[0]; 3961 mutex_exit(&tcp_random_lock); 3962 for (i = 0; i < 10 * DEG_3; i++) 3963 (void) tcp_random(); 3964 } 3965 3966 /* 3967 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 3968 * This range is selected to be approximately centered on TCP_ISS / 2, 3969 * and easy to compute. We get this value by generating a 32-bit random 3970 * number, selecting out the high-order 17 bits, and then adding one so 3971 * that we never return zero. 3972 */ 3973 int 3974 tcp_random(void) 3975 { 3976 int i; 3977 3978 mutex_enter(&tcp_random_lock); 3979 *tcp_random_fptr += *tcp_random_rptr; 3980 3981 /* 3982 * The high-order bits are more random than the low-order bits, 3983 * so we select out the high-order 17 bits and add one so that 3984 * we never return zero. 3985 */ 3986 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 3987 if (++tcp_random_fptr >= tcp_random_end_ptr) { 3988 tcp_random_fptr = tcp_random_state; 3989 ++tcp_random_rptr; 3990 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 3991 tcp_random_rptr = tcp_random_state; 3992 3993 mutex_exit(&tcp_random_lock); 3994 return (i); 3995 } 3996 3997 /* 3998 * Split this function out so that if the secret changes, I'm okay. 3999 * 4000 * Initialize the tcp_iss_cookie and tcp_iss_key. 4001 */ 4002 4003 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 4004 4005 void 4006 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 4007 { 4008 struct { 4009 int32_t current_time; 4010 uint32_t randnum; 4011 uint16_t pad; 4012 uint8_t ether[6]; 4013 uint8_t passwd[PASSWD_SIZE]; 4014 } tcp_iss_cookie; 4015 time_t t; 4016 4017 /* 4018 * Start with the current absolute time. 4019 */ 4020 (void) drv_getparm(TIME, &t); 4021 tcp_iss_cookie.current_time = t; 4022 4023 /* 4024 * XXX - Need a more random number per RFC 1750, not this crap. 4025 * OTOH, if what follows is pretty random, then I'm in better shape. 4026 */ 4027 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 4028 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 4029 4030 /* 4031 * The cpu_type_info is pretty non-random. Ugggh. It does serve 4032 * as a good template. 4033 */ 4034 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 4035 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 4036 4037 /* 4038 * The pass-phrase. Normally this is supplied by user-called NDD. 4039 */ 4040 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 4041 4042 /* 4043 * See 4010593 if this section becomes a problem again, 4044 * but the local ethernet address is useful here. 4045 */ 4046 (void) localetheraddr(NULL, 4047 (struct ether_addr *)&tcp_iss_cookie.ether); 4048 4049 /* 4050 * Hash 'em all together. The MD5Final is called per-connection. 4051 */ 4052 mutex_enter(&tcps->tcps_iss_key_lock); 4053 MD5Init(&tcps->tcps_iss_key); 4054 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 4055 sizeof (tcp_iss_cookie)); 4056 mutex_exit(&tcps->tcps_iss_key_lock); 4057 } 4058 4059 /* 4060 * Called by IP when IP is loaded into the kernel 4061 */ 4062 void 4063 tcp_ddi_g_init(void) 4064 { 4065 tcp_timercache = kmem_cache_create("tcp_timercache", 4066 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 4067 NULL, NULL, NULL, NULL, NULL, 0); 4068 4069 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache", 4070 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 4071 4072 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 4073 4074 /* Initialize the random number generator */ 4075 tcp_random_init(); 4076 4077 /* A single callback independently of how many netstacks we have */ 4078 ip_squeue_init(tcp_squeue_add); 4079 4080 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 4081 4082 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 4083 4084 /* 4085 * We want to be informed each time a stack is created or 4086 * destroyed in the kernel, so we can maintain the 4087 * set of tcp_stack_t's. 4088 */ 4089 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 4090 4091 mutex_enter(&cpu_lock); 4092 register_cpu_setup_func(tcp_cpu_update, NULL); 4093 mutex_exit(&cpu_lock); 4094 } 4095 4096 4097 #define INET_NAME "ip" 4098 4099 /* 4100 * Initialize the TCP stack instance. 4101 */ 4102 static void * 4103 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 4104 { 4105 tcp_stack_t *tcps; 4106 int i; 4107 int error = 0; 4108 major_t major; 4109 size_t arrsz; 4110 4111 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 4112 tcps->tcps_netstack = ns; 4113 4114 /* Initialize locks */ 4115 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 4116 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 4117 4118 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 4119 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1; 4120 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2; 4121 tcps->tcps_min_anonpriv_port = 512; 4122 4123 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 4124 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 4125 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 4126 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 4127 4128 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 4129 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 4130 MUTEX_DEFAULT, NULL); 4131 } 4132 4133 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 4134 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 4135 MUTEX_DEFAULT, NULL); 4136 } 4137 4138 /* TCP's IPsec code calls the packet dropper. */ 4139 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 4140 4141 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t); 4142 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, 4143 KM_SLEEP); 4144 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz); 4145 4146 /* 4147 * Note: To really walk the device tree you need the devinfo 4148 * pointer to your device which is only available after probe/attach. 4149 * The following is safe only because it uses ddi_root_node() 4150 */ 4151 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 4152 tcp_opt_obj.odb_opt_arr_cnt); 4153 4154 /* 4155 * Initialize RFC 1948 secret values. This will probably be reset once 4156 * by the boot scripts. 4157 * 4158 * Use NULL name, as the name is caught by the new lockstats. 4159 * 4160 * Initialize with some random, non-guessable string, like the global 4161 * T_INFO_ACK. 4162 */ 4163 4164 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 4165 sizeof (tcp_g_t_info_ack), tcps); 4166 4167 tcps->tcps_kstat = tcp_kstat2_init(stackid); 4168 tcps->tcps_mibkp = tcp_kstat_init(stackid); 4169 4170 major = mod_name_to_major(INET_NAME); 4171 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 4172 ASSERT(error == 0); 4173 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 4174 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 4175 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 4176 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 4177 4178 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 4179 tcps->tcps_reclaim = B_FALSE; 4180 tcps->tcps_reclaim_tid = 0; 4181 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max; 4182 4183 /* 4184 * ncpus is the current number of CPUs, which can be bigger than 4185 * boot_ncpus. But we don't want to use ncpus to allocate all the 4186 * tcp_stats_cpu_t at system boot up time since it will be 1. While 4187 * we handle adding CPU in tcp_cpu_update(), it will be slow if 4188 * there are many CPUs as we will be adding them 1 by 1. 4189 * 4190 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers 4191 * are not freed until the stack is going away. So there is no need 4192 * to grab a lock to access the per CPU tcps_sc[x] pointer. 4193 */ 4194 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus); 4195 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *), 4196 KM_SLEEP); 4197 for (i = 0; i < tcps->tcps_sc_cnt; i++) { 4198 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t), 4199 KM_SLEEP); 4200 } 4201 4202 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 4203 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 4204 offsetof(tcp_listener_t, tl_link)); 4205 4206 return (tcps); 4207 } 4208 4209 /* 4210 * Called when the IP module is about to be unloaded. 4211 */ 4212 void 4213 tcp_ddi_g_destroy(void) 4214 { 4215 mutex_enter(&cpu_lock); 4216 unregister_cpu_setup_func(tcp_cpu_update, NULL); 4217 mutex_exit(&cpu_lock); 4218 4219 tcp_g_kstat_fini(tcp_g_kstat); 4220 tcp_g_kstat = NULL; 4221 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 4222 4223 mutex_destroy(&tcp_random_lock); 4224 4225 kmem_cache_destroy(tcp_timercache); 4226 kmem_cache_destroy(tcp_notsack_blk_cache); 4227 4228 netstack_unregister(NS_TCP); 4229 } 4230 4231 /* 4232 * Free the TCP stack instance. 4233 */ 4234 static void 4235 tcp_stack_fini(netstackid_t stackid, void *arg) 4236 { 4237 tcp_stack_t *tcps = (tcp_stack_t *)arg; 4238 int i; 4239 4240 freeb(tcps->tcps_ixa_cleanup_mp); 4241 tcps->tcps_ixa_cleanup_mp = NULL; 4242 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 4243 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 4244 4245 /* 4246 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart 4247 * the timer. 4248 */ 4249 mutex_enter(&tcps->tcps_reclaim_lock); 4250 tcps->tcps_reclaim = B_FALSE; 4251 mutex_exit(&tcps->tcps_reclaim_lock); 4252 if (tcps->tcps_reclaim_tid != 0) 4253 (void) untimeout(tcps->tcps_reclaim_tid); 4254 mutex_destroy(&tcps->tcps_reclaim_lock); 4255 4256 tcp_listener_conf_cleanup(tcps); 4257 4258 for (i = 0; i < tcps->tcps_sc_cnt; i++) 4259 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t)); 4260 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *)); 4261 4262 kmem_free(tcps->tcps_propinfo_tbl, 4263 tcp_propinfo_count * sizeof (mod_prop_info_t)); 4264 tcps->tcps_propinfo_tbl = NULL; 4265 4266 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 4267 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 4268 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 4269 } 4270 4271 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 4272 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 4273 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 4274 } 4275 4276 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 4277 tcps->tcps_bind_fanout = NULL; 4278 4279 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 4280 TCP_ACCEPTOR_FANOUT_SIZE); 4281 tcps->tcps_acceptor_fanout = NULL; 4282 4283 mutex_destroy(&tcps->tcps_iss_key_lock); 4284 mutex_destroy(&tcps->tcps_epriv_port_lock); 4285 4286 ip_drop_unregister(&tcps->tcps_dropper); 4287 4288 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 4289 tcps->tcps_kstat = NULL; 4290 4291 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 4292 tcps->tcps_mibkp = NULL; 4293 4294 ldi_ident_release(tcps->tcps_ldi_ident); 4295 kmem_free(tcps, sizeof (*tcps)); 4296 } 4297 4298 /* 4299 * Generate ISS, taking into account NDD changes may happen halfway through. 4300 * (If the iss is not zero, set it.) 4301 */ 4302 4303 static void 4304 tcp_iss_init(tcp_t *tcp) 4305 { 4306 MD5_CTX context; 4307 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 4308 uint32_t answer[4]; 4309 tcp_stack_t *tcps = tcp->tcp_tcps; 4310 conn_t *connp = tcp->tcp_connp; 4311 4312 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 4313 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 4314 switch (tcps->tcps_strong_iss) { 4315 case 2: 4316 mutex_enter(&tcps->tcps_iss_key_lock); 4317 context = tcps->tcps_iss_key; 4318 mutex_exit(&tcps->tcps_iss_key_lock); 4319 arg.ports = connp->conn_ports; 4320 arg.src = connp->conn_laddr_v6; 4321 arg.dst = connp->conn_faddr_v6; 4322 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 4323 MD5Final((uchar_t *)answer, &context); 4324 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 4325 /* 4326 * Now that we've hashed into a unique per-connection sequence 4327 * space, add a random increment per strong_iss == 1. So I 4328 * guess we'll have to... 4329 */ 4330 /* FALLTHRU */ 4331 case 1: 4332 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 4333 break; 4334 default: 4335 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 4336 break; 4337 } 4338 tcp->tcp_valid_bits = TCP_ISS_VALID; 4339 tcp->tcp_fss = tcp->tcp_iss - 1; 4340 tcp->tcp_suna = tcp->tcp_iss; 4341 tcp->tcp_snxt = tcp->tcp_iss + 1; 4342 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 4343 tcp->tcp_csuna = tcp->tcp_snxt; 4344 } 4345 4346 /* 4347 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 4348 * on the specified backing STREAMS q. Note, the caller may make the 4349 * decision to call based on the tcp_t.tcp_flow_stopped value which 4350 * when check outside the q's lock is only an advisory check ... 4351 */ 4352 void 4353 tcp_setqfull(tcp_t *tcp) 4354 { 4355 tcp_stack_t *tcps = tcp->tcp_tcps; 4356 conn_t *connp = tcp->tcp_connp; 4357 4358 if (tcp->tcp_closed) 4359 return; 4360 4361 conn_setqfull(connp, &tcp->tcp_flow_stopped); 4362 if (tcp->tcp_flow_stopped) 4363 TCP_STAT(tcps, tcp_flwctl_on); 4364 } 4365 4366 void 4367 tcp_clrqfull(tcp_t *tcp) 4368 { 4369 conn_t *connp = tcp->tcp_connp; 4370 4371 if (tcp->tcp_closed) 4372 return; 4373 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 4374 } 4375 4376 static int 4377 tcp_squeue_switch(int val) 4378 { 4379 int rval = SQ_FILL; 4380 4381 switch (val) { 4382 case 1: 4383 rval = SQ_NODRAIN; 4384 break; 4385 case 2: 4386 rval = SQ_PROCESS; 4387 break; 4388 default: 4389 break; 4390 } 4391 return (rval); 4392 } 4393 4394 /* 4395 * This is called once for each squeue - globally for all stack 4396 * instances. 4397 */ 4398 static void 4399 tcp_squeue_add(squeue_t *sqp) 4400 { 4401 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 4402 sizeof (tcp_squeue_priv_t), KM_SLEEP); 4403 4404 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 4405 if (tcp_free_list_max_cnt == 0) { 4406 int tcp_ncpus = ((boot_max_ncpus == -1) ? 4407 max_ncpus : boot_max_ncpus); 4408 4409 /* 4410 * Limit number of entries to 1% of availble memory / tcp_ncpus 4411 */ 4412 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 4413 (tcp_ncpus * sizeof (tcp_t) * 100); 4414 } 4415 tcp_time_wait->tcp_free_list_cnt = 0; 4416 } 4417 /* 4418 * Return unix error is tli error is TSYSERR, otherwise return a negative 4419 * tli error. 4420 */ 4421 int 4422 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 4423 boolean_t bind_to_req_port_only) 4424 { 4425 int error; 4426 tcp_t *tcp = connp->conn_tcp; 4427 4428 if (tcp->tcp_state >= TCPS_BOUND) { 4429 if (connp->conn_debug) { 4430 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4431 "tcp_bind: bad state, %d", tcp->tcp_state); 4432 } 4433 return (-TOUTSTATE); 4434 } 4435 4436 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 4437 if (error != 0) 4438 return (error); 4439 4440 ASSERT(tcp->tcp_state == TCPS_BOUND); 4441 tcp->tcp_conn_req_max = 0; 4442 return (0); 4443 } 4444 4445 /* 4446 * If the return value from this function is positive, it's a UNIX error. 4447 * Otherwise, if it's negative, then the absolute value is a TLI error. 4448 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 4449 */ 4450 int 4451 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 4452 cred_t *cr, pid_t pid) 4453 { 4454 tcp_t *tcp = connp->conn_tcp; 4455 sin_t *sin = (sin_t *)sa; 4456 sin6_t *sin6 = (sin6_t *)sa; 4457 ipaddr_t *dstaddrp; 4458 in_port_t dstport; 4459 uint_t srcid; 4460 int error; 4461 uint32_t mss; 4462 mblk_t *syn_mp; 4463 tcp_stack_t *tcps = tcp->tcp_tcps; 4464 int32_t oldstate; 4465 ip_xmit_attr_t *ixa = connp->conn_ixa; 4466 4467 oldstate = tcp->tcp_state; 4468 4469 switch (len) { 4470 default: 4471 /* 4472 * Should never happen 4473 */ 4474 return (EINVAL); 4475 4476 case sizeof (sin_t): 4477 sin = (sin_t *)sa; 4478 if (sin->sin_port == 0) { 4479 return (-TBADADDR); 4480 } 4481 if (connp->conn_ipv6_v6only) { 4482 return (EAFNOSUPPORT); 4483 } 4484 break; 4485 4486 case sizeof (sin6_t): 4487 sin6 = (sin6_t *)sa; 4488 if (sin6->sin6_port == 0) { 4489 return (-TBADADDR); 4490 } 4491 break; 4492 } 4493 /* 4494 * If we're connecting to an IPv4-mapped IPv6 address, we need to 4495 * make sure that the conn_ipversion is IPV4_VERSION. We 4496 * need to this before we call tcp_bindi() so that the port lookup 4497 * code will look for ports in the correct port space (IPv4 and 4498 * IPv6 have separate port spaces). 4499 */ 4500 if (connp->conn_family == AF_INET6 && 4501 connp->conn_ipversion == IPV6_VERSION && 4502 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4503 if (connp->conn_ipv6_v6only) 4504 return (EADDRNOTAVAIL); 4505 4506 connp->conn_ipversion = IPV4_VERSION; 4507 } 4508 4509 switch (tcp->tcp_state) { 4510 case TCPS_LISTEN: 4511 /* 4512 * Listening sockets are not allowed to issue connect(). 4513 */ 4514 if (IPCL_IS_NONSTR(connp)) 4515 return (EOPNOTSUPP); 4516 /* FALLTHRU */ 4517 case TCPS_IDLE: 4518 /* 4519 * We support quick connect, refer to comments in 4520 * tcp_connect_*() 4521 */ 4522 /* FALLTHRU */ 4523 case TCPS_BOUND: 4524 break; 4525 default: 4526 return (-TOUTSTATE); 4527 } 4528 4529 /* 4530 * We update our cred/cpid based on the caller of connect 4531 */ 4532 if (connp->conn_cred != cr) { 4533 crhold(cr); 4534 crfree(connp->conn_cred); 4535 connp->conn_cred = cr; 4536 } 4537 connp->conn_cpid = pid; 4538 4539 /* Cache things in the ixa without any refhold */ 4540 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); 4541 ixa->ixa_cred = cr; 4542 ixa->ixa_cpid = pid; 4543 if (is_system_labeled()) { 4544 /* We need to restart with a label based on the cred */ 4545 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 4546 } 4547 4548 if (connp->conn_family == AF_INET6) { 4549 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4550 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 4551 sin6->sin6_port, sin6->sin6_flowinfo, 4552 sin6->__sin6_src_id, sin6->sin6_scope_id); 4553 } else { 4554 /* 4555 * Destination adress is mapped IPv6 address. 4556 * Source bound address should be unspecified or 4557 * IPv6 mapped address as well. 4558 */ 4559 if (!IN6_IS_ADDR_UNSPECIFIED( 4560 &connp->conn_bound_addr_v6) && 4561 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 4562 return (EADDRNOTAVAIL); 4563 } 4564 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 4565 dstport = sin6->sin6_port; 4566 srcid = sin6->__sin6_src_id; 4567 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 4568 srcid); 4569 } 4570 } else { 4571 dstaddrp = &sin->sin_addr.s_addr; 4572 dstport = sin->sin_port; 4573 srcid = 0; 4574 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 4575 } 4576 4577 if (error != 0) 4578 goto connect_failed; 4579 4580 CL_INET_CONNECT(connp, B_TRUE, error); 4581 if (error != 0) 4582 goto connect_failed; 4583 4584 /* connect succeeded */ 4585 TCPS_BUMP_MIB(tcps, tcpActiveOpens); 4586 tcp->tcp_active_open = 1; 4587 4588 /* 4589 * tcp_set_destination() does not adjust for TCP/IP header length. 4590 */ 4591 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 4592 4593 /* 4594 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 4595 * to the nearest MSS. 4596 * 4597 * We do the round up here because we need to get the interface MTU 4598 * first before we can do the round up. 4599 */ 4600 tcp->tcp_rwnd = connp->conn_rcvbuf; 4601 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 4602 tcps->tcps_recv_hiwat_minmss * mss); 4603 connp->conn_rcvbuf = tcp->tcp_rwnd; 4604 tcp_set_ws_value(tcp); 4605 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 4606 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 4607 tcp->tcp_snd_ws_ok = B_TRUE; 4608 4609 /* 4610 * Set tcp_snd_ts_ok to true 4611 * so that tcp_xmit_mp will 4612 * include the timestamp 4613 * option in the SYN segment. 4614 */ 4615 if (tcps->tcps_tstamp_always || 4616 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 4617 tcp->tcp_snd_ts_ok = B_TRUE; 4618 } 4619 4620 /* 4621 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if 4622 * the SACK metric is set. So here we just check the per stack SACK 4623 * permitted param. 4624 */ 4625 if (tcps->tcps_sack_permitted == 2) { 4626 ASSERT(tcp->tcp_num_sack_blk == 0); 4627 ASSERT(tcp->tcp_notsack_list == NULL); 4628 tcp->tcp_snd_sack_ok = B_TRUE; 4629 } 4630 4631 /* 4632 * Should we use ECN? Note that the current 4633 * default value (SunOS 5.9) of tcp_ecn_permitted 4634 * is 1. The reason for doing this is that there 4635 * are equipments out there that will drop ECN 4636 * enabled IP packets. Setting it to 1 avoids 4637 * compatibility problems. 4638 */ 4639 if (tcps->tcps_ecn_permitted == 2) 4640 tcp->tcp_ecn_ok = B_TRUE; 4641 4642 /* Trace change from BOUND -> SYN_SENT here */ 4643 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4644 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4645 int32_t, TCPS_BOUND); 4646 4647 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4648 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 4649 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 4650 if (syn_mp != NULL) { 4651 /* 4652 * We must bump the generation before sending the syn 4653 * to ensure that we use the right generation in case 4654 * this thread issues a "connected" up call. 4655 */ 4656 SOCK_CONNID_BUMP(tcp->tcp_connid); 4657 /* 4658 * DTrace sending the first SYN as a 4659 * tcp:::connect-request event. 4660 */ 4661 DTRACE_TCP5(connect__request, mblk_t *, NULL, 4662 ip_xmit_attr_t *, connp->conn_ixa, 4663 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp, 4664 tcph_t *, 4665 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]); 4666 tcp_send_data(tcp, syn_mp); 4667 } 4668 4669 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4670 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4671 return (0); 4672 4673 connect_failed: 4674 connp->conn_faddr_v6 = ipv6_all_zeros; 4675 connp->conn_fport = 0; 4676 tcp->tcp_state = oldstate; 4677 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4678 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4679 return (error); 4680 } 4681 4682 int 4683 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 4684 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 4685 { 4686 tcp_t *tcp = connp->conn_tcp; 4687 int error = 0; 4688 tcp_stack_t *tcps = tcp->tcp_tcps; 4689 int32_t oldstate; 4690 4691 /* All Solaris components should pass a cred for this operation. */ 4692 ASSERT(cr != NULL); 4693 4694 if (tcp->tcp_state >= TCPS_BOUND) { 4695 if ((tcp->tcp_state == TCPS_BOUND || 4696 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 4697 /* 4698 * Handle listen() increasing backlog. 4699 * This is more "liberal" then what the TPI spec 4700 * requires but is needed to avoid a t_unbind 4701 * when handling listen() since the port number 4702 * might be "stolen" between the unbind and bind. 4703 */ 4704 goto do_listen; 4705 } 4706 if (connp->conn_debug) { 4707 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4708 "tcp_listen: bad state, %d", tcp->tcp_state); 4709 } 4710 return (-TOUTSTATE); 4711 } else { 4712 if (sa == NULL) { 4713 sin6_t addr; 4714 sin_t *sin; 4715 sin6_t *sin6; 4716 4717 ASSERT(IPCL_IS_NONSTR(connp)); 4718 /* Do an implicit bind: Request for a generic port. */ 4719 if (connp->conn_family == AF_INET) { 4720 len = sizeof (sin_t); 4721 sin = (sin_t *)&addr; 4722 *sin = sin_null; 4723 sin->sin_family = AF_INET; 4724 } else { 4725 ASSERT(connp->conn_family == AF_INET6); 4726 len = sizeof (sin6_t); 4727 sin6 = (sin6_t *)&addr; 4728 *sin6 = sin6_null; 4729 sin6->sin6_family = AF_INET6; 4730 } 4731 sa = (struct sockaddr *)&addr; 4732 } 4733 4734 error = tcp_bind_check(connp, sa, len, cr, 4735 bind_to_req_port_only); 4736 if (error) 4737 return (error); 4738 /* Fall through and do the fanout insertion */ 4739 } 4740 4741 do_listen: 4742 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 4743 tcp->tcp_conn_req_max = backlog; 4744 if (tcp->tcp_conn_req_max) { 4745 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 4746 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 4747 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 4748 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 4749 /* 4750 * If this is a listener, do not reset the eager list 4751 * and other stuffs. Note that we don't check if the 4752 * existing eager list meets the new tcp_conn_req_max 4753 * requirement. 4754 */ 4755 if (tcp->tcp_state != TCPS_LISTEN) { 4756 tcp->tcp_state = TCPS_LISTEN; 4757 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4758 connp->conn_ixa, void, NULL, tcp_t *, tcp, 4759 void, NULL, int32_t, TCPS_BOUND); 4760 /* Initialize the chain. Don't need the eager_lock */ 4761 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4762 tcp->tcp_eager_next_drop_q0 = tcp; 4763 tcp->tcp_eager_prev_drop_q0 = tcp; 4764 tcp->tcp_second_ctimer_threshold = 4765 tcps->tcps_ip_abort_linterval; 4766 } 4767 } 4768 4769 /* 4770 * We need to make sure that the conn_recv is set to a non-null 4771 * value before we insert the conn into the classifier table. 4772 * This is to avoid a race with an incoming packet which does an 4773 * ipcl_classify(). 4774 * We initially set it to tcp_input_listener_unbound to try to 4775 * pick a good squeue for the listener when the first SYN arrives. 4776 * tcp_input_listener_unbound sets it to tcp_input_listener on that 4777 * first SYN. 4778 */ 4779 connp->conn_recv = tcp_input_listener_unbound; 4780 4781 /* Insert the listener in the classifier table */ 4782 error = ip_laddr_fanout_insert(connp); 4783 if (error != 0) { 4784 /* Undo the bind - release the port number */ 4785 oldstate = tcp->tcp_state; 4786 tcp->tcp_state = TCPS_IDLE; 4787 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4788 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4789 int32_t, oldstate); 4790 connp->conn_bound_addr_v6 = ipv6_all_zeros; 4791 4792 connp->conn_laddr_v6 = ipv6_all_zeros; 4793 connp->conn_saddr_v6 = ipv6_all_zeros; 4794 connp->conn_ports = 0; 4795 4796 if (connp->conn_anon_port) { 4797 zone_t *zone; 4798 4799 zone = crgetzone(cr); 4800 connp->conn_anon_port = B_FALSE; 4801 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 4802 connp->conn_proto, connp->conn_lport, B_FALSE); 4803 } 4804 connp->conn_mlp_type = mlptSingle; 4805 4806 tcp_bind_hash_remove(tcp); 4807 return (error); 4808 } else { 4809 /* 4810 * If there is a connection limit, allocate and initialize 4811 * the counter struct. Note that since listen can be called 4812 * multiple times, the struct may have been allready allocated. 4813 */ 4814 if (!list_is_empty(&tcps->tcps_listener_conf) && 4815 tcp->tcp_listen_cnt == NULL) { 4816 tcp_listen_cnt_t *tlc; 4817 uint32_t ratio; 4818 4819 ratio = tcp_find_listener_conf(tcps, 4820 ntohs(connp->conn_lport)); 4821 if (ratio != 0) { 4822 uint32_t mem_ratio, tot_buf; 4823 4824 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 4825 KM_SLEEP); 4826 /* 4827 * Calculate the connection limit based on 4828 * the configured ratio and maxusers. Maxusers 4829 * are calculated based on memory size, 4830 * ~ 1 user per MB. Note that the conn_rcvbuf 4831 * and conn_sndbuf may change after a 4832 * connection is accepted. So what we have 4833 * is only an approximation. 4834 */ 4835 if ((tot_buf = connp->conn_rcvbuf + 4836 connp->conn_sndbuf) < MB) { 4837 mem_ratio = MB / tot_buf; 4838 tlc->tlc_max = maxusers / ratio * 4839 mem_ratio; 4840 } else { 4841 mem_ratio = tot_buf / MB; 4842 tlc->tlc_max = maxusers / ratio / 4843 mem_ratio; 4844 } 4845 /* At least we should allow two connections! */ 4846 if (tlc->tlc_max <= tcp_min_conn_listener) 4847 tlc->tlc_max = tcp_min_conn_listener; 4848 tlc->tlc_cnt = 1; 4849 tlc->tlc_drop = 0; 4850 tcp->tcp_listen_cnt = tlc; 4851 } 4852 } 4853 } 4854 return (error); 4855 } 4856