1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/vtrace.h> 49 #include <sys/kmem.h> 50 #include <sys/ethernet.h> 51 #include <sys/cpuvar.h> 52 #include <sys/dlpi.h> 53 #include <sys/multidata.h> 54 #include <sys/multidata_impl.h> 55 #include <sys/pattr.h> 56 #include <sys/policy.h> 57 #include <sys/zone.h> 58 59 #include <sys/errno.h> 60 #include <sys/signal.h> 61 #include <sys/socket.h> 62 #include <sys/sockio.h> 63 #include <sys/isa_defs.h> 64 #include <sys/md5.h> 65 #include <sys/random.h> 66 #include <netinet/in.h> 67 #include <netinet/tcp.h> 68 #include <netinet/ip6.h> 69 #include <netinet/icmp6.h> 70 #include <net/if.h> 71 #include <net/route.h> 72 #include <inet/ipsec_impl.h> 73 74 #include <inet/common.h> 75 #include <inet/ip.h> 76 #include <inet/ip6.h> 77 #include <inet/ip_ndp.h> 78 #include <inet/mi.h> 79 #include <inet/mib2.h> 80 #include <inet/nd.h> 81 #include <inet/optcom.h> 82 #include <inet/snmpcom.h> 83 #include <inet/kstatcom.h> 84 #include <inet/tcp.h> 85 #include <net/pfkeyv2.h> 86 #include <inet/ipsec_info.h> 87 #include <inet/ipdrop.h> 88 #include <inet/tcp_trace.h> 89 90 #include <inet/ipclassifier.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_if.h> 93 #include <inet/ipp_common.h> 94 #include <sys/squeue.h> 95 96 /* 97 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 98 * 99 * (Read the detailed design doc in PSARC case directory) 100 * 101 * The entire tcp state is contained in tcp_t and conn_t structure 102 * which are allocated in tandem using ipcl_conn_create() and passing 103 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 104 * the references on the tcp_t. The tcp_t structure is never compressed 105 * and packets always land on the correct TCP perimeter from the time 106 * eager is created till the time tcp_t dies (as such the old mentat 107 * TCP global queue is not used for detached state and no IPSEC checking 108 * is required). The global queue is still allocated to send out resets 109 * for connection which have no listeners and IP directly calls 110 * tcp_xmit_listeners_reset() which does any policy check. 111 * 112 * Protection and Synchronisation mechanism: 113 * 114 * The tcp data structure does not use any kind of lock for protecting 115 * its state but instead uses 'squeues' for mutual exclusion from various 116 * read and write side threads. To access a tcp member, the thread should 117 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 118 * squeue_fill). Since the squeues allow a direct function call, caller 119 * can pass any tcp function having prototype of edesc_t as argument 120 * (different from traditional STREAMs model where packets come in only 121 * designated entry points). The list of functions that can be directly 122 * called via squeue are listed before the usual function prototype. 123 * 124 * Referencing: 125 * 126 * TCP is MT-Hot and we use a reference based scheme to make sure that the 127 * tcp structure doesn't disappear when its needed. When the application 128 * creates an outgoing connection or accepts an incoming connection, we 129 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 130 * The IP reference is just a symbolic reference since ip_tcpclose() 131 * looks at tcp structure after tcp_close_output() returns which could 132 * have dropped the last TCP reference. So as long as the connection is 133 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 134 * conn_t. The classifier puts its own reference when the connection is 135 * inserted in listen or connected hash. Anytime a thread needs to enter 136 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 137 * on write side or by doing a classify on read side and then puts a 138 * reference on the conn before doing squeue_enter/tryenter/fill. For 139 * read side, the classifier itself puts the reference under fanout lock 140 * to make sure that tcp can't disappear before it gets processed. The 141 * squeue will drop this reference automatically so the called function 142 * doesn't have to do a DEC_REF. 143 * 144 * Opening a new connection: 145 * 146 * The outgoing connection open is pretty simple. ip_tcpopen() does the 147 * work in creating the conn/tcp structure and initializing it. The 148 * squeue assignment is done based on the CPU the application 149 * is running on. So for outbound connections, processing is always done 150 * on application CPU which might be different from the incoming CPU 151 * being interrupted by the NIC. An optimal way would be to figure out 152 * the NIC <-> CPU binding at listen time, and assign the outgoing 153 * connection to the squeue attached to the CPU that will be interrupted 154 * for incoming packets (we know the NIC based on the bind IP address). 155 * This might seem like a problem if more data is going out but the 156 * fact is that in most cases the transmit is ACK driven transmit where 157 * the outgoing data normally sits on TCP's xmit queue waiting to be 158 * transmitted. 159 * 160 * Accepting a connection: 161 * 162 * This is a more interesting case because of various races involved in 163 * establishing a eager in its own perimeter. Read the meta comment on 164 * top of tcp_conn_request(). But briefly, the squeue is picked by 165 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 166 * 167 * Closing a connection: 168 * 169 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 170 * via squeue to do the close and mark the tcp as detached if the connection 171 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 172 * reference but tcp_close() drop IP's reference always. So if tcp was 173 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 174 * and 1 because it is in classifier's connected hash. This is the condition 175 * we use to determine that its OK to clean up the tcp outside of squeue 176 * when time wait expires (check the ref under fanout and conn_lock and 177 * if it is 2, remove it from fanout hash and kill it). 178 * 179 * Although close just drops the necessary references and marks the 180 * tcp_detached state, tcp_close needs to know the tcp_detached has been 181 * set (under squeue) before letting the STREAM go away (because a 182 * inbound packet might attempt to go up the STREAM while the close 183 * has happened and tcp_detached is not set). So a special lock and 184 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 185 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 186 * tcp_detached. 187 * 188 * Special provisions and fast paths: 189 * 190 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 191 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 192 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 193 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 194 * check to send packets directly to tcp_rput_data via squeue. Everyone 195 * else comes through tcp_input() on the read side. 196 * 197 * We also make special provisions for sockfs by marking tcp_issocket 198 * whenever we have only sockfs on top of TCP. This allows us to skip 199 * putting the tcp in acceptor hash since a sockfs listener can never 200 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 201 * since eager has already been allocated and the accept now happens 202 * on acceptor STREAM. There is a big blob of comment on top of 203 * tcp_conn_request explaining the new accept. When socket is POP'd, 204 * sockfs sends us an ioctl to mark the fact and we go back to old 205 * behaviour. Once tcp_issocket is unset, its never set for the 206 * life of that connection. 207 * 208 * IPsec notes : 209 * 210 * Since a packet is always executed on the correct TCP perimeter 211 * all IPsec processing is defered to IP including checking new 212 * connections and setting IPSEC policies for new connection. The 213 * only exception is tcp_xmit_listeners_reset() which is called 214 * directly from IP and needs to policy check to see if TH_RST 215 * can be sent out. 216 */ 217 218 219 extern major_t TCP6_MAJ; 220 221 /* 222 * Values for squeue switch: 223 * 1: squeue_enter_nodrain 224 * 2: squeue_enter 225 * 3: squeue_fill 226 */ 227 int tcp_squeue_close = 2; 228 int tcp_squeue_wput = 2; 229 230 squeue_func_t tcp_squeue_close_proc; 231 squeue_func_t tcp_squeue_wput_proc; 232 233 extern vmem_t *ip_minor_arena; 234 235 /* 236 * This controls how tiny a write must be before we try to copy it 237 * into the the mblk on the tail of the transmit queue. Not much 238 * speedup is observed for values larger than sixteen. Zero will 239 * disable the optimisation. 240 */ 241 int tcp_tx_pull_len = 16; 242 243 /* 244 * TCP Statistics. 245 * 246 * How TCP statistics work. 247 * 248 * There are two types of statistics invoked by two macros. 249 * 250 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 251 * supposed to be used in non MT-hot paths of the code. 252 * 253 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 254 * supposed to be used for DEBUG purposes and may be used on a hot path. 255 * 256 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 257 * (use "kstat tcp" to get them). 258 * 259 * There is also additional debugging facility that marks tcp_clean_death() 260 * instances and saves them in tcp_t structure. It is triggered by 261 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 262 * tcp_clean_death() calls that counts the number of times each tag was hit. It 263 * is triggered by TCP_CLD_COUNTERS define. 264 * 265 * How to add new counters. 266 * 267 * 1) Add a field in the tcp_stat structure describing your counter. 268 * 2) Add a line in tcp_statistics with the name of the counter. 269 * 270 * IMPORTANT!! - make sure that both are in sync !! 271 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 272 * 273 * Please avoid using private counters which are not kstat-exported. 274 * 275 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 276 * in tcp_t structure. 277 * 278 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 279 */ 280 281 #define TCP_COUNTERS 1 282 #define TCP_CLD_COUNTERS 0 283 284 #ifndef TCP_DEBUG_COUNTER 285 #ifdef DEBUG 286 #define TCP_DEBUG_COUNTER 1 287 #else 288 #define TCP_DEBUG_COUNTER 0 289 #endif 290 #endif 291 292 293 #define TCP_TAG_CLEAN_DEATH 1 294 #define TCP_MAX_CLEAN_DEATH_TAG 32 295 296 #ifdef lint 297 static int _lint_dummy_; 298 #endif 299 300 #if TCP_COUNTERS 301 #define TCP_STAT(x) (tcp_statistics.x.value.ui64++) 302 #define TCP_STAT_UPDATE(x, n) (tcp_statistics.x.value.ui64 += (n)) 303 #define TCP_STAT_SET(x, n) (tcp_statistics.x.value.ui64 = (n)) 304 #elif defined(lint) 305 #define TCP_STAT(x) ASSERT(_lint_dummy_ == 0); 306 #define TCP_STAT_UPDATE(x, n) ASSERT(_lint_dummy_ == 0); 307 #define TCP_STAT_SET(x, n) ASSERT(_lint_dummy_ == 0); 308 #else 309 #define TCP_STAT(x) 310 #define TCP_STAT_UPDATE(x, n) 311 #define TCP_STAT_SET(x, n) 312 #endif 313 314 #if TCP_CLD_COUNTERS 315 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 316 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 317 #elif defined(lint) 318 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 319 #else 320 #define TCP_CLD_STAT(x) 321 #endif 322 323 #if TCP_DEBUG_COUNTER 324 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 325 #elif defined(lint) 326 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 327 #else 328 #define TCP_DBGSTAT(x) 329 #endif 330 331 typedef struct tcp_stat { 332 kstat_named_t tcp_time_wait; 333 kstat_named_t tcp_time_wait_syn; 334 kstat_named_t tcp_time_wait_syn_success; 335 kstat_named_t tcp_time_wait_syn_fail; 336 kstat_named_t tcp_reinput_syn; 337 kstat_named_t tcp_ip_output; 338 kstat_named_t tcp_detach_non_time_wait; 339 kstat_named_t tcp_detach_time_wait; 340 kstat_named_t tcp_time_wait_reap; 341 kstat_named_t tcp_clean_death_nondetached; 342 kstat_named_t tcp_reinit_calls; 343 kstat_named_t tcp_eager_err1; 344 kstat_named_t tcp_eager_err2; 345 kstat_named_t tcp_eager_blowoff_calls; 346 kstat_named_t tcp_eager_blowoff_q; 347 kstat_named_t tcp_eager_blowoff_q0; 348 kstat_named_t tcp_not_hard_bound; 349 kstat_named_t tcp_no_listener; 350 kstat_named_t tcp_found_eager; 351 kstat_named_t tcp_wrong_queue; 352 kstat_named_t tcp_found_eager_binding1; 353 kstat_named_t tcp_found_eager_bound1; 354 kstat_named_t tcp_eager_has_listener1; 355 kstat_named_t tcp_open_alloc; 356 kstat_named_t tcp_open_detached_alloc; 357 kstat_named_t tcp_rput_time_wait; 358 kstat_named_t tcp_listendrop; 359 kstat_named_t tcp_listendropq0; 360 kstat_named_t tcp_wrong_rq; 361 kstat_named_t tcp_rsrv_calls; 362 kstat_named_t tcp_eagerfree2; 363 kstat_named_t tcp_eagerfree3; 364 kstat_named_t tcp_eagerfree4; 365 kstat_named_t tcp_eagerfree5; 366 kstat_named_t tcp_timewait_syn_fail; 367 kstat_named_t tcp_listen_badflags; 368 kstat_named_t tcp_timeout_calls; 369 kstat_named_t tcp_timeout_cached_alloc; 370 kstat_named_t tcp_timeout_cancel_reqs; 371 kstat_named_t tcp_timeout_canceled; 372 kstat_named_t tcp_timermp_alloced; 373 kstat_named_t tcp_timermp_freed; 374 kstat_named_t tcp_timermp_allocfail; 375 kstat_named_t tcp_timermp_allocdblfail; 376 kstat_named_t tcp_push_timer_cnt; 377 kstat_named_t tcp_ack_timer_cnt; 378 kstat_named_t tcp_ire_null1; 379 kstat_named_t tcp_ire_null; 380 kstat_named_t tcp_ip_send; 381 kstat_named_t tcp_ip_ire_send; 382 kstat_named_t tcp_wsrv_called; 383 kstat_named_t tcp_flwctl_on; 384 kstat_named_t tcp_timer_fire_early; 385 kstat_named_t tcp_timer_fire_miss; 386 kstat_named_t tcp_freelist_cleanup; 387 kstat_named_t tcp_rput_v6_error; 388 kstat_named_t tcp_out_sw_cksum; 389 kstat_named_t tcp_zcopy_on; 390 kstat_named_t tcp_zcopy_off; 391 kstat_named_t tcp_zcopy_backoff; 392 kstat_named_t tcp_zcopy_disable; 393 kstat_named_t tcp_mdt_pkt_out; 394 kstat_named_t tcp_mdt_pkt_out_v4; 395 kstat_named_t tcp_mdt_pkt_out_v6; 396 kstat_named_t tcp_mdt_discarded; 397 kstat_named_t tcp_mdt_conn_halted1; 398 kstat_named_t tcp_mdt_conn_halted2; 399 kstat_named_t tcp_mdt_conn_halted3; 400 kstat_named_t tcp_mdt_conn_resumed1; 401 kstat_named_t tcp_mdt_conn_resumed2; 402 kstat_named_t tcp_mdt_legacy_small; 403 kstat_named_t tcp_mdt_legacy_all; 404 kstat_named_t tcp_mdt_legacy_ret; 405 kstat_named_t tcp_mdt_allocfail; 406 kstat_named_t tcp_mdt_addpdescfail; 407 kstat_named_t tcp_mdt_allocd; 408 kstat_named_t tcp_mdt_linked; 409 kstat_named_t tcp_fusion_flowctl; 410 kstat_named_t tcp_fusion_backenabled; 411 kstat_named_t tcp_fusion_urg; 412 kstat_named_t tcp_fusion_putnext; 413 kstat_named_t tcp_fusion_unfusable; 414 kstat_named_t tcp_fusion_aborted; 415 kstat_named_t tcp_fusion_unqualified; 416 kstat_named_t tcp_in_ack_unsent_drop; 417 } tcp_stat_t; 418 419 #if (TCP_COUNTERS || TCP_DEBUG_COUNTER) 420 static tcp_stat_t tcp_statistics = { 421 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 422 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 423 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 424 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 425 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 426 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 427 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 428 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 429 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 430 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 431 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 432 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 433 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 434 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 435 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 436 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 437 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 438 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 439 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 440 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 441 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 442 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 443 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 444 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 445 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 446 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 447 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 448 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 449 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 450 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 451 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 452 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 453 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 454 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 455 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 456 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 457 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 458 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 459 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 460 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 461 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 462 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 463 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 464 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 465 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 466 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 467 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 468 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 469 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 470 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 471 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 472 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 473 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 474 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 475 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 476 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 477 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 478 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 479 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 480 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 481 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 482 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 483 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 484 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 485 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 486 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 487 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 488 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 489 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 490 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 491 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 492 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 493 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 494 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 495 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 496 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 497 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 498 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 499 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 500 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 501 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 502 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 503 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 504 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 505 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 506 }; 507 508 static kstat_t *tcp_kstat; 509 510 #endif 511 512 /* 513 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 514 * tcp write side. 515 */ 516 #define CALL_IP_WPUT(connp, q, mp) { \ 517 ASSERT(((q)->q_flag & QREADR) == 0); \ 518 TCP_DBGSTAT(tcp_ip_output); \ 519 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 520 } 521 522 /* 523 * Was this tcp created via socket() interface? 524 */ 525 #define TCP_IS_SOCKET(tcp) ((tcp)->tcp_issocket) 526 527 528 /* Macros for timestamp comparisons */ 529 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 530 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 531 532 /* 533 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 534 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 535 * by adding three components: a time component which grows by 1 every 4096 536 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 537 * a per-connection component which grows by 125000 for every new connection; 538 * and an "extra" component that grows by a random amount centered 539 * approximately on 64000. This causes the the ISS generator to cycle every 540 * 4.89 hours if no TCP connections are made, and faster if connections are 541 * made. 542 * 543 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 544 * components: a time component which grows by 250000 every second; and 545 * a per-connection component which grows by 125000 for every new connections. 546 * 547 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 548 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 549 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 550 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 551 * password. 552 */ 553 #define ISS_INCR 250000 554 #define ISS_NSEC_SHT 12 555 556 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 557 static kmutex_t tcp_iss_key_lock; 558 static MD5_CTX tcp_iss_key; 559 static sin_t sin_null; /* Zero address for quick clears */ 560 static sin6_t sin6_null; /* Zero address for quick clears */ 561 562 /* Packet dropper for TCP IPsec policy drops. */ 563 static ipdropper_t tcp_dropper; 564 565 /* 566 * This implementation follows the 4.3BSD interpretation of the urgent 567 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 568 * incompatible changes in protocols like telnet and rlogin. 569 */ 570 #define TCP_OLD_URP_INTERPRETATION 1 571 572 #define TCP_IS_DETACHED(tcp) ((tcp)->tcp_detached) 573 574 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 575 (TCP_IS_DETACHED(tcp) && \ 576 (!(tcp)->tcp_hard_binding)) 577 578 /* 579 * TCP reassembly macros. We hide starting and ending sequence numbers in 580 * b_next and b_prev of messages on the reassembly queue. The messages are 581 * chained using b_cont. These macros are used in tcp_reass() so we don't 582 * have to see the ugly casts and assignments. 583 */ 584 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 585 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 586 (mblk_t *)(uintptr_t)(u)) 587 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 588 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 589 (mblk_t *)(uintptr_t)(u)) 590 591 /* 592 * Implementation of TCP Timers. 593 * ============================= 594 * 595 * INTERFACE: 596 * 597 * There are two basic functions dealing with tcp timers: 598 * 599 * timeout_id_t tcp_timeout(connp, func, time) 600 * clock_t tcp_timeout_cancel(connp, timeout_id) 601 * TCP_TIMER_RESTART(tcp, intvl) 602 * 603 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 604 * after 'time' ticks passed. The function called by timeout() must adhere to 605 * the same restrictions as a driver soft interrupt handler - it must not sleep 606 * or call other functions that might sleep. The value returned is the opaque 607 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 608 * cancel the request. The call to tcp_timeout() may fail in which case it 609 * returns zero. This is different from the timeout(9F) function which never 610 * fails. 611 * 612 * The call-back function 'func' always receives 'connp' as its single 613 * argument. It is always executed in the squeue corresponding to the tcp 614 * structure. The tcp structure is guaranteed to be present at the time the 615 * call-back is called. 616 * 617 * NOTE: The call-back function 'func' is never called if tcp is in 618 * the TCPS_CLOSED state. 619 * 620 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 621 * request. locks acquired by the call-back routine should not be held across 622 * the call to tcp_timeout_cancel() or a deadlock may result. 623 * 624 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 625 * Otherwise, it returns an integer value greater than or equal to 0. In 626 * particular, if the call-back function is already placed on the squeue, it can 627 * not be canceled. 628 * 629 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 630 * within squeue context corresponding to the tcp instance. Since the 631 * call-back is also called via the same squeue, there are no race 632 * conditions described in untimeout(9F) manual page since all calls are 633 * strictly serialized. 634 * 635 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 636 * stored in tcp_timer_tid and starts a new one using 637 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 638 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 639 * field. 640 * 641 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 642 * call-back may still be called, so it is possible tcp_timer() will be 643 * called several times. This should not be a problem since tcp_timer() 644 * should always check the tcp instance state. 645 * 646 * 647 * IMPLEMENTATION: 648 * 649 * TCP timers are implemented using three-stage process. The call to 650 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 651 * when the timer expires. The tcp_timer_callback() arranges the call of the 652 * tcp_timer_handler() function via squeue corresponding to the tcp 653 * instance. The tcp_timer_handler() calls actual requested timeout call-back 654 * and passes tcp instance as an argument to it. Information is passed between 655 * stages using the tcp_timer_t structure which contains the connp pointer, the 656 * tcp call-back to call and the timeout id returned by the timeout(9F). 657 * 658 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 659 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 660 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 661 * returns the pointer to this mblk. 662 * 663 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 664 * looks like a normal mblk without actual dblk attached to it. 665 * 666 * To optimize performance each tcp instance holds a small cache of timer 667 * mblocks. In the current implementation it caches up to two timer mblocks per 668 * tcp instance. The cache is preserved over tcp frees and is only freed when 669 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 670 * timer processing happens on a corresponding squeue, the cache manipulation 671 * does not require any locks. Experiments show that majority of timer mblocks 672 * allocations are satisfied from the tcp cache and do not involve kmem calls. 673 * 674 * The tcp_timeout() places a refhold on the connp instance which guarantees 675 * that it will be present at the time the call-back function fires. The 676 * tcp_timer_handler() drops the reference after calling the call-back, so the 677 * call-back function does not need to manipulate the references explicitly. 678 */ 679 680 typedef struct tcp_timer_s { 681 conn_t *connp; 682 void (*tcpt_proc)(void *); 683 timeout_id_t tcpt_tid; 684 } tcp_timer_t; 685 686 static kmem_cache_t *tcp_timercache; 687 kmem_cache_t *tcp_sack_info_cache; 688 kmem_cache_t *tcp_iphc_cache; 689 690 #define TCP_TIMER(tcp, f, tim) tcp_timeout(tcp->tcp_connp, f, tim) 691 #define TCP_TIMER_CANCEL(tcp, id) tcp_timeout_cancel(tcp->tcp_connp, id) 692 693 /* 694 * To restart the TCP retransmission timer. 695 */ 696 #define TCP_TIMER_RESTART(tcp, intvl) \ 697 { \ 698 if ((tcp)->tcp_timer_tid != 0) { \ 699 (void) TCP_TIMER_CANCEL((tcp), \ 700 (tcp)->tcp_timer_tid); \ 701 } \ 702 (tcp)->tcp_timer_tid = TCP_TIMER((tcp), tcp_timer, \ 703 MSEC_TO_TICK(intvl)); \ 704 } 705 706 /* 707 * For scalability, we must not run a timer for every TCP connection 708 * in TIME_WAIT state. To see why, consider (for time wait interval of 709 * 4 minutes): 710 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 711 * 712 * This list is ordered by time, so you need only delete from the head 713 * until you get to entries which aren't old enough to delete yet. 714 * The list consists of only the detached TIME_WAIT connections. 715 * 716 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 717 * becomes detached TIME_WAIT (either by changing the state and already 718 * being detached or the other way around). This means that the TIME_WAIT 719 * state can be extended (up to doubled) if the connection doesn't become 720 * detached for a long time. 721 * 722 * The list manipulations (including tcp_time_wait_next/prev) 723 * are protected by the tcp_time_wait_lock. The content of the 724 * detached TIME_WAIT connections is protected by the normal perimeters. 725 */ 726 727 typedef struct tcp_squeue_priv_s { 728 kmutex_t tcp_time_wait_lock; 729 /* Protects the next 3 globals */ 730 timeout_id_t tcp_time_wait_tid; 731 tcp_t *tcp_time_wait_head; 732 tcp_t *tcp_time_wait_tail; 733 tcp_t *tcp_free_list; 734 } tcp_squeue_priv_t; 735 736 /* 737 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 738 * Running it every 5 seconds seems to give the best results. 739 */ 740 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 741 742 743 #define TCP_XMIT_LOWATER 4096 744 #define TCP_XMIT_HIWATER 49152 745 #define TCP_RECV_LOWATER 2048 746 #define TCP_RECV_HIWATER 49152 747 748 /* 749 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 750 */ 751 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 752 753 #define TIDUSZ 4096 /* transport interface data unit size */ 754 755 /* 756 * Bind hash list size and has function. It has to be a power of 2 for 757 * hashing. 758 */ 759 #define TCP_BIND_FANOUT_SIZE 512 760 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 761 /* 762 * Size of listen and acceptor hash list. It has to be a power of 2 for 763 * hashing. 764 */ 765 #define TCP_FANOUT_SIZE 256 766 767 #ifdef _ILP32 768 #define TCP_ACCEPTOR_HASH(accid) \ 769 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 770 #else 771 #define TCP_ACCEPTOR_HASH(accid) \ 772 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 773 #endif /* _ILP32 */ 774 775 #define IP_ADDR_CACHE_SIZE 2048 776 #define IP_ADDR_CACHE_HASH(faddr) \ 777 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 778 779 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 780 #define TCP_HSP_HASH_SIZE 256 781 782 #define TCP_HSP_HASH(addr) \ 783 (((addr>>24) ^ (addr >>16) ^ \ 784 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 785 786 /* 787 * TCP options struct returned from tcp_parse_options. 788 */ 789 typedef struct tcp_opt_s { 790 uint32_t tcp_opt_mss; 791 uint32_t tcp_opt_wscale; 792 uint32_t tcp_opt_ts_val; 793 uint32_t tcp_opt_ts_ecr; 794 tcp_t *tcp; 795 } tcp_opt_t; 796 797 /* 798 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 799 */ 800 801 #ifdef _BIG_ENDIAN 802 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 803 (TCPOPT_TSTAMP << 8) | 10) 804 #else 805 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 806 (TCPOPT_NOP << 8) | TCPOPT_NOP) 807 #endif 808 809 /* 810 * Flags returned from tcp_parse_options. 811 */ 812 #define TCP_OPT_MSS_PRESENT 1 813 #define TCP_OPT_WSCALE_PRESENT 2 814 #define TCP_OPT_TSTAMP_PRESENT 4 815 #define TCP_OPT_SACK_OK_PRESENT 8 816 #define TCP_OPT_SACK_PRESENT 16 817 818 /* TCP option length */ 819 #define TCPOPT_NOP_LEN 1 820 #define TCPOPT_MAXSEG_LEN 4 821 #define TCPOPT_WS_LEN 3 822 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 823 #define TCPOPT_TSTAMP_LEN 10 824 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 825 #define TCPOPT_SACK_OK_LEN 2 826 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 827 #define TCPOPT_REAL_SACK_LEN 4 828 #define TCPOPT_MAX_SACK_LEN 36 829 #define TCPOPT_HEADER_LEN 2 830 831 /* TCP cwnd burst factor. */ 832 #define TCP_CWND_INFINITE 65535 833 #define TCP_CWND_SS 3 834 #define TCP_CWND_NORMAL 5 835 836 /* Maximum TCP initial cwin (start/restart). */ 837 #define TCP_MAX_INIT_CWND 8 838 839 /* 840 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 841 * either tcp_slow_start_initial or tcp_slow_start_after idle 842 * depending on the caller. If the upper layer has not used the 843 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 844 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 845 * If the upper layer has changed set the tcp_init_cwnd, just use 846 * it to calculate the tcp_cwnd. 847 */ 848 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 849 { \ 850 if ((tcp)->tcp_init_cwnd == 0) { \ 851 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 852 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 853 } else { \ 854 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 855 } \ 856 tcp->tcp_cwnd_cnt = 0; \ 857 } 858 859 /* TCP Timer control structure */ 860 typedef struct tcpt_s { 861 pfv_t tcpt_pfv; /* The routine we are to call */ 862 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 863 } tcpt_t; 864 865 /* Host Specific Parameter structure */ 866 typedef struct tcp_hsp { 867 struct tcp_hsp *tcp_hsp_next; 868 in6_addr_t tcp_hsp_addr_v6; 869 in6_addr_t tcp_hsp_subnet_v6; 870 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 871 int32_t tcp_hsp_sendspace; 872 int32_t tcp_hsp_recvspace; 873 int32_t tcp_hsp_tstamp; 874 } tcp_hsp_t; 875 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 876 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 877 878 /* 879 * Functions called directly via squeue having a prototype of edesc_t. 880 */ 881 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 882 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 883 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 884 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 885 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 886 void tcp_input(void *arg, mblk_t *mp, void *arg2); 887 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 888 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 889 static void tcp_output(void *arg, mblk_t *mp, void *arg2); 890 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 891 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 892 893 894 /* Prototype for TCP functions */ 895 static void tcp_random_init(void); 896 int tcp_random(void); 897 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 898 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 899 tcp_t *eager); 900 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 901 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 902 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 903 boolean_t user_specified); 904 static void tcp_closei_local(tcp_t *tcp); 905 static void tcp_close_detached(tcp_t *tcp); 906 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 907 mblk_t *idmp, mblk_t **defermp); 908 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 909 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 910 in_port_t dstport, uint_t srcid); 911 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 912 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 913 uint32_t scope_id); 914 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 915 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 916 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 917 static char *tcp_display(tcp_t *tcp, char *, char); 918 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 919 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 920 static void tcp_eager_unlink(tcp_t *tcp); 921 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 922 int unixerr); 923 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 924 int tlierr, int unixerr); 925 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 926 cred_t *cr); 927 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 928 char *value, caddr_t cp, cred_t *cr); 929 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 930 char *value, caddr_t cp, cred_t *cr); 931 static int tcp_tpistate(tcp_t *tcp); 932 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 933 int caller_holds_lock); 934 static void tcp_bind_hash_remove(tcp_t *tcp); 935 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 936 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 937 static void tcp_acceptor_hash_remove(tcp_t *tcp); 938 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 939 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 940 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 941 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 942 static int tcp_header_init_ipv4(tcp_t *tcp); 943 static int tcp_header_init_ipv6(tcp_t *tcp); 944 int tcp_init(tcp_t *tcp, queue_t *q); 945 static int tcp_init_values(tcp_t *tcp); 946 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 947 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 948 t_scalar_t addr_length); 949 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 950 static void tcp_ip_notify(tcp_t *tcp); 951 static mblk_t *tcp_ire_mp(mblk_t *mp); 952 static void tcp_iss_init(tcp_t *tcp); 953 static void tcp_keepalive_killer(void *arg); 954 static int tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk); 955 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 956 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 957 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 958 int *do_disconnectp, int *t_errorp, int *sys_errorp); 959 static boolean_t tcp_allow_connopt_set(int level, int name); 960 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 961 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 962 static int tcp_opt_get_user(ipha_t *ipha, uchar_t *ptr); 963 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 964 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 965 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 966 mblk_t *mblk); 967 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 968 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 969 uchar_t *ptr, uint_t len); 970 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 971 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 972 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 973 caddr_t cp, cred_t *cr); 974 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 975 caddr_t cp, cred_t *cr); 976 static void tcp_iss_key_init(uint8_t *phrase, int len); 977 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 978 caddr_t cp, cred_t *cr); 979 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 980 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 981 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 982 static void tcp_reinit(tcp_t *tcp); 983 static void tcp_reinit_values(tcp_t *tcp); 984 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 985 tcp_t *thisstream, cred_t *cr); 986 987 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 988 static void tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len); 989 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 990 static boolean_t tcp_send_rst_chk(void); 991 static void tcp_ss_rexmit(tcp_t *tcp); 992 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 993 static void tcp_process_options(tcp_t *, tcph_t *); 994 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 995 static void tcp_rsrv(queue_t *q); 996 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 997 static int tcp_snmp_get(queue_t *q, mblk_t *mpctl); 998 static int tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, 999 int len); 1000 static int tcp_snmp_state(tcp_t *tcp); 1001 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 1002 cred_t *cr); 1003 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 1004 cred_t *cr); 1005 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 1006 cred_t *cr); 1007 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 1008 cred_t *cr); 1009 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 1010 cred_t *cr); 1011 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 1012 caddr_t cp, cred_t *cr); 1013 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 1014 caddr_t cp, cred_t *cr); 1015 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 1016 cred_t *cr); 1017 static void tcp_timer(void *arg); 1018 static void tcp_timer_callback(void *); 1019 static in_port_t tcp_update_next_port(in_port_t port, boolean_t random); 1020 static in_port_t tcp_get_next_priv_port(void); 1021 static void tcp_wput(queue_t *q, mblk_t *mp); 1022 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 1023 void tcp_wput_accept(queue_t *q, mblk_t *mp); 1024 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 1025 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 1026 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 1027 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 1028 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 1029 const int num_sack_blk, int *usable, uint_t *snxt, 1030 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 1031 const int mdt_thres); 1032 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 1033 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 1034 const int num_sack_blk, int *usable, uint_t *snxt, 1035 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 1036 const int mdt_thres); 1037 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 1038 int num_sack_blk); 1039 static void tcp_wsrv(queue_t *q); 1040 static int tcp_xmit_end(tcp_t *tcp); 1041 void tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len); 1042 static mblk_t *tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, 1043 int32_t *offset, mblk_t **end_mp, uint32_t seq, 1044 boolean_t sendall, uint32_t *seg_len, boolean_t rexmit); 1045 static void tcp_ack_timer(void *arg); 1046 static mblk_t *tcp_ack_mp(tcp_t *tcp); 1047 static void tcp_push_timer(void *arg); 1048 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 1049 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len); 1050 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 1051 uint32_t ack, int ctl); 1052 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 1053 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 1054 static int setmaxps(queue_t *q, int maxpsz); 1055 static void tcp_set_rto(tcp_t *, time_t); 1056 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 1057 boolean_t, boolean_t); 1058 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 1059 boolean_t ipsec_mctl); 1060 static boolean_t tcp_cmpbuf(void *a, uint_t alen, 1061 boolean_t b_valid, void *b, uint_t blen); 1062 static boolean_t tcp_allocbuf(void **dstp, uint_t *dstlenp, 1063 boolean_t src_valid, void *src, uint_t srclen); 1064 static void tcp_savebuf(void **dstp, uint_t *dstlenp, 1065 boolean_t src_valid, void *src, uint_t srclen); 1066 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 1067 char *opt, int optlen); 1068 static int tcp_pkt_set(uchar_t *, uint_t, uchar_t **, uint_t *); 1069 static int tcp_build_hdrs(queue_t *, tcp_t *); 1070 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 1071 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 1072 tcph_t *tcph); 1073 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 1074 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 1075 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 1076 boolean_t tcp_reserved_port_check(in_port_t); 1077 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 1078 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 1079 static void tcp_timers_stop(tcp_t *); 1080 static timeout_id_t tcp_timeout(conn_t *, void (*)(void *), clock_t); 1081 static clock_t tcp_timeout_cancel(conn_t *, timeout_id_t); 1082 static mblk_t *tcp_mdt_info_mp(mblk_t *); 1083 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 1084 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 1085 const boolean_t, const uint32_t, const uint32_t, 1086 const uint32_t, const uint32_t); 1087 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 1088 const uint_t, const uint_t, boolean_t *); 1089 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 1090 extern mblk_t *tcp_timermp_alloc(int); 1091 extern void tcp_timermp_free(tcp_t *); 1092 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 1093 static void tcp_stop_lingering(tcp_t *tcp); 1094 static void tcp_close_linger_timeout(void *arg); 1095 void tcp_ddi_init(void); 1096 void tcp_ddi_destroy(void); 1097 static void tcp_kstat_init(void); 1098 static void tcp_kstat_fini(void); 1099 static int tcp_kstat_update(kstat_t *kp, int rw); 1100 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 1101 conn_t *tcp_get_next_conn(connf_t *, conn_t *); 1102 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 1103 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 1104 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 1105 tcph_t *tcph, mblk_t *idmp); 1106 static squeue_func_t tcp_squeue_switch(int); 1107 1108 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 1109 static int tcp_close(queue_t *, int); 1110 static int tcpclose_accept(queue_t *); 1111 static int tcp_modclose(queue_t *); 1112 static void tcp_wput_mod(queue_t *, mblk_t *); 1113 1114 static void tcp_squeue_add(squeue_t *); 1115 static boolean_t tcp_zcopy_check(tcp_t *); 1116 static void tcp_zcopy_notify(tcp_t *); 1117 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 1118 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 1119 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 1120 1121 static void tcp_fuse(tcp_t *, uchar_t *, tcph_t *); 1122 static void tcp_unfuse(tcp_t *); 1123 static boolean_t tcp_fuse_output(tcp_t *, mblk_t *); 1124 static void tcp_fuse_output_urg(tcp_t *, mblk_t *); 1125 static boolean_t tcp_fuse_rcv_drain(queue_t *, tcp_t *, mblk_t **); 1126 1127 extern mblk_t *allocb_tryhard(size_t); 1128 1129 /* 1130 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 1131 * 1132 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 1133 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 1134 * (defined in tcp.h) needs to be filled in and passed into the kernel 1135 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 1136 * structure contains the four-tuple of a TCP connection and a range of TCP 1137 * states (specified by ac_start and ac_end). The use of wildcard addresses 1138 * and ports is allowed. Connections with a matching four tuple and a state 1139 * within the specified range will be aborted. The valid states for the 1140 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 1141 * inclusive. 1142 * 1143 * An application which has its connection aborted by this ioctl will receive 1144 * an error that is dependent on the connection state at the time of the abort. 1145 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1146 * though a RST packet has been received. If the connection state is equal to 1147 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1148 * and all resources associated with the connection will be freed. 1149 */ 1150 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1151 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1152 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1153 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1154 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1155 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1156 boolean_t); 1157 1158 /* 1159 * Write-side flow-control is implemented via the per instance STREAMS 1160 * write-side Q by explicitly setting QFULL to stop the flow of mblk_t(s) 1161 * and clearing QFULL and calling qbackenable() to restart the flow based 1162 * on the number of TCP unsent bytes (i.e. those not on the wire waiting 1163 * for a remote ACK). 1164 * 1165 * This is different than a standard STREAMS kmod which when using the 1166 * STREAMS Q the framework would automatictly flow-control based on the 1167 * defined hiwat/lowat values as mblk_t's are enqueued/dequeued. 1168 * 1169 * As of FireEngine TCP write-side flow-control needs to take into account 1170 * both the unsent tcp_xmit list bytes but also any squeue_t enqueued bytes 1171 * (i.e. from tcp_wput() -> tcp_output()). 1172 * 1173 * This is accomplished by adding a new tcp_t fields, tcp_squeue_bytes, to 1174 * count the number of bytes enqueued by tcp_wput() and the number of bytes 1175 * dequeued and processed by tcp_output(). 1176 * 1177 * So, the total number of bytes unsent is (squeue_bytes + unsent) with all 1178 * flow-control uses of unsent replaced with the macro TCP_UNSENT_BYTES. 1179 */ 1180 1181 static void tcp_clrqfull(tcp_t *); 1182 static void tcp_setqfull(tcp_t *); 1183 1184 #define TCP_UNSENT_BYTES(tcp) \ 1185 ((tcp)->tcp_squeue_bytes + (tcp)->tcp_unsent) 1186 1187 /* 1188 * STREAMS kmod stuff ... 1189 */ 1190 1191 static struct module_info tcp_rinfo = { 1192 #define TCP_MODULE_ID 5105 1193 TCP_MODULE_ID, "tcp", 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1194 }; 1195 1196 static struct module_info tcp_winfo = { 1197 TCP_MODULE_ID, "tcp", 0, INFPSZ, 127, 16 1198 }; 1199 1200 /* 1201 * Entry points for TCP as a module. It only allows SNMP requests 1202 * to pass through. 1203 */ 1204 struct qinit tcp_mod_rinit = { 1205 (pfi_t)putnext, NULL, tcp_open, tcp_modclose, NULL, &tcp_rinfo 1206 }; 1207 1208 struct qinit tcp_mod_winit = { 1209 (pfi_t)tcp_wput_mod, NULL, tcp_open, tcp_modclose, NULL, &tcp_rinfo 1210 }; 1211 1212 /* 1213 * Entry points for TCP as a device. The normal case which supports 1214 * the TCP functionality. 1215 */ 1216 struct qinit tcp_rinit = { 1217 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1218 }; 1219 1220 struct qinit tcp_winit = { 1221 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1222 }; 1223 1224 /* Initial entry point for TCP in socket mode. */ 1225 struct qinit tcp_sock_winit = { 1226 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1227 }; 1228 1229 /* 1230 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1231 * an accept. Avoid allocating data structures since eager has already 1232 * been created. 1233 */ 1234 struct qinit tcp_acceptor_rinit = { 1235 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1236 }; 1237 1238 struct qinit tcp_acceptor_winit = { 1239 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1240 }; 1241 1242 struct streamtab tcpinfo = { 1243 &tcp_rinit, &tcp_winit 1244 }; 1245 1246 1247 extern squeue_func_t tcp_squeue_wput_proc; 1248 extern squeue_func_t tcp_squeue_timer_proc; 1249 1250 /* Protected by tcp_g_q_lock */ 1251 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1252 kmutex_t tcp_g_q_lock; 1253 1254 /* Protected by tcp_hsp_lock */ 1255 /* 1256 * XXX The host param mechanism should go away and instead we should use 1257 * the metrics associated with the routes to determine the default sndspace 1258 * and rcvspace. 1259 */ 1260 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1261 krwlock_t tcp_hsp_lock; 1262 1263 /* 1264 * Extra privileged ports. In host byte order. 1265 * Protected by tcp_epriv_port_lock. 1266 */ 1267 #define TCP_NUM_EPRIV_PORTS 64 1268 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1269 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1270 kmutex_t tcp_epriv_port_lock; 1271 1272 /* 1273 * The smallest anonymous port in the priviledged port range which TCP 1274 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1275 */ 1276 static in_port_t tcp_min_anonpriv_port = 512; 1277 1278 /* Only modified during _init and _fini thus no locking is needed. */ 1279 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1280 1281 /* Hint not protected by any lock */ 1282 static uint_t tcp_next_port_to_try; 1283 1284 1285 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1286 static tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1287 1288 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1289 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1290 1291 /* 1292 * TCP has a private interface for other kernel modules to reserve a 1293 * port range for them to use. Once reserved, TCP will not use any ports 1294 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1295 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1296 * has to be verified. 1297 * 1298 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1299 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1300 * range is [port a, port b] inclusive. And each port range is between 1301 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1302 * 1303 * Note that the default anonymous port range starts from 32768. There is 1304 * no port "collision" between that and the reserved port range. If there 1305 * is port collision (because the default smallest anonymous port is lowered 1306 * or some apps specifically bind to ports in the reserved port range), the 1307 * system may not be able to reserve a port range even there are enough 1308 * unbound ports as a reserved port range contains consecutive ports . 1309 */ 1310 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1311 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1312 #define TCP_SMALLEST_RESERVED_PORT 10240 1313 #define TCP_LARGEST_RESERVED_PORT 20480 1314 1315 /* Structure to represent those reserved port ranges. */ 1316 typedef struct tcp_rport_s { 1317 in_port_t lo_port; 1318 in_port_t hi_port; 1319 tcp_t **temp_tcp_array; 1320 } tcp_rport_t; 1321 1322 /* The reserved port array. */ 1323 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1324 1325 /* Locks to protect the tcp_reserved_ports array. */ 1326 static krwlock_t tcp_reserved_port_lock; 1327 1328 /* The number of ranges in the array. */ 1329 uint32_t tcp_reserved_port_array_size = 0; 1330 1331 /* 1332 * MIB-2 stuff for SNMP 1333 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1334 */ 1335 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1336 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1337 1338 /* 1339 * Object to represent database of options to search passed to 1340 * {sock,tpi}optcom_req() interface routine to take care of option 1341 * management and associated methods. 1342 * XXX These and other externs should ideally move to a TCP header 1343 */ 1344 extern optdb_obj_t tcp_opt_obj; 1345 extern uint_t tcp_max_optsize; 1346 1347 boolean_t tcp_icmp_source_quench = B_FALSE; 1348 /* 1349 * Following assumes TPI alignment requirements stay along 32 bit 1350 * boundaries 1351 */ 1352 #define ROUNDUP32(x) \ 1353 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1354 1355 /* Template for response to info request. */ 1356 static struct T_info_ack tcp_g_t_info_ack = { 1357 T_INFO_ACK, /* PRIM_type */ 1358 0, /* TSDU_size */ 1359 T_INFINITE, /* ETSDU_size */ 1360 T_INVALID, /* CDATA_size */ 1361 T_INVALID, /* DDATA_size */ 1362 sizeof (sin_t), /* ADDR_size */ 1363 0, /* OPT_size - not initialized here */ 1364 TIDUSZ, /* TIDU_size */ 1365 T_COTS_ORD, /* SERV_type */ 1366 TCPS_IDLE, /* CURRENT_state */ 1367 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1368 }; 1369 1370 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1371 T_INFO_ACK, /* PRIM_type */ 1372 0, /* TSDU_size */ 1373 T_INFINITE, /* ETSDU_size */ 1374 T_INVALID, /* CDATA_size */ 1375 T_INVALID, /* DDATA_size */ 1376 sizeof (sin6_t), /* ADDR_size */ 1377 0, /* OPT_size - not initialized here */ 1378 TIDUSZ, /* TIDU_size */ 1379 T_COTS_ORD, /* SERV_type */ 1380 TCPS_IDLE, /* CURRENT_state */ 1381 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1382 }; 1383 1384 #define MS 1L 1385 #define SECONDS (1000 * MS) 1386 #define MINUTES (60 * SECONDS) 1387 #define HOURS (60 * MINUTES) 1388 #define DAYS (24 * HOURS) 1389 1390 #define PARAM_MAX (~(uint32_t)0) 1391 1392 /* Max size IP datagram is 64k - 1 */ 1393 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1394 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1395 /* Max of the above */ 1396 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1397 1398 /* Largest TCP port number */ 1399 #define TCP_MAX_PORT (64 * 1024 - 1) 1400 1401 /* 1402 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1403 * layer header. It has to be a multiple of 4. 1404 */ 1405 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1406 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1407 1408 /* 1409 * All of these are alterable, within the min/max values given, at run time. 1410 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1411 * per the TCP spec. 1412 */ 1413 /* BEGIN CSTYLED */ 1414 tcpparam_t tcp_param_arr[] = { 1415 /*min max value name */ 1416 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1417 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1418 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1419 { 1, 1024, 1, "tcp_conn_req_min" }, 1420 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1421 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1422 { 0, 10, 0, "tcp_debug" }, 1423 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1424 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1425 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1426 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1427 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1428 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1429 { 1, 255, 64, "tcp_ipv4_ttl"}, 1430 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1431 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1432 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1433 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1434 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1435 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1436 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1437 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1438 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1439 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1440 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1441 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1442 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1443 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1444 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1445 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1446 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1447 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1448 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1449 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1450 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1451 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1452 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1453 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1454 /* 1455 * Question: What default value should I set for tcp_strong_iss? 1456 */ 1457 { 0, 2, 1, "tcp_strong_iss"}, 1458 { 0, 65536, 20, "tcp_rtt_updates"}, 1459 { 0, 1, 1, "tcp_wscale_always"}, 1460 { 0, 1, 0, "tcp_tstamp_always"}, 1461 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1462 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1463 { 0, 16, 2, "tcp_deferred_acks_max"}, 1464 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1465 { 1, 4, 4, "tcp_slow_start_initial"}, 1466 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1467 { 0, 2, 2, "tcp_sack_permitted"}, 1468 { 0, 1, 0, "tcp_trace"}, 1469 { 0, 1, 1, "tcp_compression_enabled"}, 1470 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1471 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1472 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1473 { 0, 1, 0, "tcp_rev_src_routes"}, 1474 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1475 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1476 { 0, 16, 8, "tcp_local_dacks_max"}, 1477 { 0, 2, 1, "tcp_ecn_permitted"}, 1478 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1479 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1480 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1481 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1482 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1483 }; 1484 /* END CSTYLED */ 1485 1486 1487 #define tcp_time_wait_interval tcp_param_arr[0].tcp_param_val 1488 #define tcp_conn_req_max_q tcp_param_arr[1].tcp_param_val 1489 #define tcp_conn_req_max_q0 tcp_param_arr[2].tcp_param_val 1490 #define tcp_conn_req_min tcp_param_arr[3].tcp_param_val 1491 #define tcp_conn_grace_period tcp_param_arr[4].tcp_param_val 1492 #define tcp_cwnd_max_ tcp_param_arr[5].tcp_param_val 1493 #define tcp_dbg tcp_param_arr[6].tcp_param_val 1494 #define tcp_smallest_nonpriv_port tcp_param_arr[7].tcp_param_val 1495 #define tcp_ip_abort_cinterval tcp_param_arr[8].tcp_param_val 1496 #define tcp_ip_abort_linterval tcp_param_arr[9].tcp_param_val 1497 #define tcp_ip_abort_interval tcp_param_arr[10].tcp_param_val 1498 #define tcp_ip_notify_cinterval tcp_param_arr[11].tcp_param_val 1499 #define tcp_ip_notify_interval tcp_param_arr[12].tcp_param_val 1500 #define tcp_ipv4_ttl tcp_param_arr[13].tcp_param_val 1501 #define tcp_keepalive_interval_high tcp_param_arr[14].tcp_param_max 1502 #define tcp_keepalive_interval tcp_param_arr[14].tcp_param_val 1503 #define tcp_keepalive_interval_low tcp_param_arr[14].tcp_param_min 1504 #define tcp_maxpsz_multiplier tcp_param_arr[15].tcp_param_val 1505 #define tcp_mss_def_ipv4 tcp_param_arr[16].tcp_param_val 1506 #define tcp_mss_max_ipv4 tcp_param_arr[17].tcp_param_val 1507 #define tcp_mss_min tcp_param_arr[18].tcp_param_val 1508 #define tcp_naglim_def tcp_param_arr[19].tcp_param_val 1509 #define tcp_rexmit_interval_initial tcp_param_arr[20].tcp_param_val 1510 #define tcp_rexmit_interval_max tcp_param_arr[21].tcp_param_val 1511 #define tcp_rexmit_interval_min tcp_param_arr[22].tcp_param_val 1512 #define tcp_deferred_ack_interval tcp_param_arr[23].tcp_param_val 1513 #define tcp_snd_lowat_fraction tcp_param_arr[24].tcp_param_val 1514 #define tcp_sth_rcv_hiwat tcp_param_arr[25].tcp_param_val 1515 #define tcp_sth_rcv_lowat tcp_param_arr[26].tcp_param_val 1516 #define tcp_dupack_fast_retransmit tcp_param_arr[27].tcp_param_val 1517 #define tcp_ignore_path_mtu tcp_param_arr[28].tcp_param_val 1518 #define tcp_smallest_anon_port tcp_param_arr[29].tcp_param_val 1519 #define tcp_largest_anon_port tcp_param_arr[30].tcp_param_val 1520 #define tcp_xmit_hiwat tcp_param_arr[31].tcp_param_val 1521 #define tcp_xmit_lowat tcp_param_arr[32].tcp_param_val 1522 #define tcp_recv_hiwat tcp_param_arr[33].tcp_param_val 1523 #define tcp_recv_hiwat_minmss tcp_param_arr[34].tcp_param_val 1524 #define tcp_fin_wait_2_flush_interval tcp_param_arr[35].tcp_param_val 1525 #define tcp_co_min tcp_param_arr[36].tcp_param_val 1526 #define tcp_max_buf tcp_param_arr[37].tcp_param_val 1527 #define tcp_strong_iss tcp_param_arr[38].tcp_param_val 1528 #define tcp_rtt_updates tcp_param_arr[39].tcp_param_val 1529 #define tcp_wscale_always tcp_param_arr[40].tcp_param_val 1530 #define tcp_tstamp_always tcp_param_arr[41].tcp_param_val 1531 #define tcp_tstamp_if_wscale tcp_param_arr[42].tcp_param_val 1532 #define tcp_rexmit_interval_extra tcp_param_arr[43].tcp_param_val 1533 #define tcp_deferred_acks_max tcp_param_arr[44].tcp_param_val 1534 #define tcp_slow_start_after_idle tcp_param_arr[45].tcp_param_val 1535 #define tcp_slow_start_initial tcp_param_arr[46].tcp_param_val 1536 #define tcp_co_timer_interval tcp_param_arr[47].tcp_param_val 1537 #define tcp_sack_permitted tcp_param_arr[48].tcp_param_val 1538 #define tcp_trace tcp_param_arr[49].tcp_param_val 1539 #define tcp_compression_enabled tcp_param_arr[50].tcp_param_val 1540 #define tcp_ipv6_hoplimit tcp_param_arr[51].tcp_param_val 1541 #define tcp_mss_def_ipv6 tcp_param_arr[52].tcp_param_val 1542 #define tcp_mss_max_ipv6 tcp_param_arr[53].tcp_param_val 1543 #define tcp_rev_src_routes tcp_param_arr[54].tcp_param_val 1544 #define tcp_local_dack_interval tcp_param_arr[55].tcp_param_val 1545 #define tcp_ndd_get_info_interval tcp_param_arr[56].tcp_param_val 1546 #define tcp_local_dacks_max tcp_param_arr[57].tcp_param_val 1547 #define tcp_ecn_permitted tcp_param_arr[58].tcp_param_val 1548 #define tcp_rst_sent_rate_enabled tcp_param_arr[59].tcp_param_val 1549 #define tcp_rst_sent_rate tcp_param_arr[60].tcp_param_val 1550 #define tcp_push_timer_interval tcp_param_arr[61].tcp_param_val 1551 #define tcp_use_smss_as_mss_opt tcp_param_arr[62].tcp_param_val 1552 #define tcp_keepalive_abort_interval_high tcp_param_arr[63].tcp_param_max 1553 #define tcp_keepalive_abort_interval tcp_param_arr[63].tcp_param_val 1554 #define tcp_keepalive_abort_interval_low tcp_param_arr[63].tcp_param_min 1555 1556 /* 1557 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1558 * each header fragment in the header buffer. Each parameter value has 1559 * to be a multiple of 4 (32-bit aligned). 1560 */ 1561 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1562 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1563 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1564 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1565 1566 /* 1567 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1568 * the maximum number of payload buffers associated per Multidata. 1569 */ 1570 static tcpparam_t tcp_mdt_max_pbufs_param = 1571 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1572 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1573 1574 /* Round up the value to the nearest mss. */ 1575 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1576 1577 /* 1578 * Set ECN capable transport (ECT) code point in IP header. 1579 * 1580 * Note that there are 2 ECT code points '01' and '10', which are called 1581 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1582 * point ECT(0) for TCP as described in RFC 2481. 1583 */ 1584 #define SET_ECT(tcp, iph) \ 1585 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1586 /* We need to clear the code point first. */ \ 1587 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1588 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1589 } else { \ 1590 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1591 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1592 } 1593 1594 /* 1595 * The format argument to pass to tcp_display(). 1596 * DISP_PORT_ONLY means that the returned string has only port info. 1597 * DISP_ADDR_AND_PORT means that the returned string also contains the 1598 * remote and local IP address. 1599 */ 1600 #define DISP_PORT_ONLY 1 1601 #define DISP_ADDR_AND_PORT 2 1602 1603 /* 1604 * This controls the rate some ndd info report functions can be used 1605 * by non-priviledged users. It stores the last time such info is 1606 * requested. When those report functions are called again, this 1607 * is checked with the current time and compare with the ndd param 1608 * tcp_ndd_get_info_interval. 1609 */ 1610 static clock_t tcp_last_ndd_get_info_time = 0; 1611 #define NDD_TOO_QUICK_MSG \ 1612 "ndd get info rate too high for non-priviledged users, try again " \ 1613 "later.\n" 1614 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1615 1616 #define IS_VMLOANED_MBLK(mp) \ 1617 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1618 1619 /* 1620 * These two variables control the rate for TCP to generate RSTs in 1621 * response to segments not belonging to any connections. We limit 1622 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1623 * each 1 second interval. This is to protect TCP against DoS attack. 1624 */ 1625 static clock_t tcp_last_rst_intrvl; 1626 static uint32_t tcp_rst_cnt; 1627 1628 /* The number of RST not sent because of the rate limit. */ 1629 static uint32_t tcp_rst_unsent; 1630 1631 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1632 boolean_t tcp_mdt_chain = B_TRUE; 1633 1634 /* 1635 * MDT threshold in the form of effective send MSS multiplier; we take 1636 * the MDT path if the amount of unsent data exceeds the threshold value 1637 * (default threshold is 1*SMSS). 1638 */ 1639 uint_t tcp_mdt_smss_threshold = 1; 1640 1641 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1642 1643 /* 1644 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1645 * tunable settable via NDD. Otherwise, the per-connection behavior is 1646 * determined dynamically during tcp_adapt_ire(), which is the default. 1647 */ 1648 boolean_t tcp_static_maxpsz = B_FALSE; 1649 1650 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1651 uint32_t tcp_random_anon_port = 1; 1652 1653 /* 1654 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1655 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1656 * data, TCP will not respond with an ACK. RFC 793 requires that 1657 * TCP responds with an ACK for such a bogus ACK. By not following 1658 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1659 * an attacker successfully spoofs an acceptable segment to our 1660 * peer; or when our peer is "confused." 1661 */ 1662 uint32_t tcp_drop_ack_unsent_cnt = 10; 1663 1664 /* 1665 * Hook functions to enable cluster networking 1666 * On non-clustered systems these vectors must always be NULL. 1667 */ 1668 1669 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1670 uint8_t *laddrp, in_port_t lport) = NULL; 1671 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1672 uint8_t *laddrp, in_port_t lport) = NULL; 1673 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1674 uint8_t *laddrp, in_port_t lport, 1675 uint8_t *faddrp, in_port_t fport) = NULL; 1676 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1677 uint8_t *laddrp, in_port_t lport, 1678 uint8_t *faddrp, in_port_t fport) = NULL; 1679 1680 /* 1681 * The following are defined in ip.c 1682 */ 1683 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1684 uint8_t *laddrp); 1685 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1686 uint8_t *laddrp, uint8_t *faddrp); 1687 1688 #define CL_INET_CONNECT(tcp) { \ 1689 if (cl_inet_connect != NULL) { \ 1690 /* \ 1691 * Running in cluster mode - register active connection \ 1692 * information \ 1693 */ \ 1694 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1695 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1696 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1697 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1698 (in_port_t)(tcp)->tcp_lport, \ 1699 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1700 (in_port_t)(tcp)->tcp_fport); \ 1701 } \ 1702 } else { \ 1703 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1704 &(tcp)->tcp_ip6h->ip6_src)) {\ 1705 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1706 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1707 (in_port_t)(tcp)->tcp_lport, \ 1708 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1709 (in_port_t)(tcp)->tcp_fport); \ 1710 } \ 1711 } \ 1712 } \ 1713 } 1714 1715 #define CL_INET_DISCONNECT(tcp) { \ 1716 if (cl_inet_disconnect != NULL) { \ 1717 /* \ 1718 * Running in cluster mode - deregister active \ 1719 * connection information \ 1720 */ \ 1721 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1722 if ((tcp)->tcp_ip_src != 0) { \ 1723 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1724 AF_INET, \ 1725 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1726 (in_port_t)(tcp)->tcp_lport, \ 1727 (uint8_t *) \ 1728 (&((tcp)->tcp_ipha->ipha_dst)),\ 1729 (in_port_t)(tcp)->tcp_fport); \ 1730 } \ 1731 } else { \ 1732 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1733 &(tcp)->tcp_ip_src_v6)) { \ 1734 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1735 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1736 (in_port_t)(tcp)->tcp_lport, \ 1737 (uint8_t *) \ 1738 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1739 (in_port_t)(tcp)->tcp_fport); \ 1740 } \ 1741 } \ 1742 } \ 1743 } 1744 1745 /* 1746 * Cluster networking hook for traversing current connection list. 1747 * This routine is used to extract the current list of live connections 1748 * which must continue to to be dispatched to this node. 1749 */ 1750 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1751 1752 #define IPH_TCPH_CHECKSUMP(ipha, hlen) \ 1753 ((uint16_t *)(((uchar_t *)(ipha)) + ((hlen) + 16))) 1754 1755 #ifdef _BIG_ENDIAN 1756 #define IP_TCP_CSUM_COMP IPPROTO_TCP 1757 #else 1758 #define IP_TCP_CSUM_COMP (IPPROTO_TCP << 8) 1759 #endif 1760 1761 #define IP_HDR_CKSUM(ipha, sum, v_hlen_tos_len, ttl_protocol) { \ 1762 (sum) += (ttl_protocol) + (ipha)->ipha_ident + \ 1763 ((v_hlen_tos_len) >> 16) + \ 1764 ((v_hlen_tos_len) & 0xFFFF) + \ 1765 (ipha)->ipha_fragment_offset_and_flags; \ 1766 (sum) = (((sum) & 0xFFFF) + ((sum) >> 16)); \ 1767 (sum) = ~((sum) + ((sum) >> 16)); \ 1768 (ipha)->ipha_hdr_checksum = (uint16_t)(sum); \ 1769 } 1770 1771 /* 1772 * Macros that determine whether or not IP processing is needed for TCP. 1773 */ 1774 #define TCP_IPOPT_POLICY_V4(tcp) \ 1775 ((tcp)->tcp_ipversion == IPV4_VERSION && \ 1776 ((tcp)->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH || \ 1777 CONN_OUTBOUND_POLICY_PRESENT((tcp)->tcp_connp) || \ 1778 CONN_INBOUND_POLICY_PRESENT((tcp)->tcp_connp))) 1779 1780 #define TCP_IPOPT_POLICY_V6(tcp) \ 1781 ((tcp)->tcp_ipversion == IPV6_VERSION && \ 1782 ((tcp)->tcp_ip_hdr_len != IPV6_HDR_LEN || \ 1783 CONN_OUTBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp) || \ 1784 CONN_INBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp))) 1785 1786 #define TCP_LOOPBACK_IP(tcp) \ 1787 (TCP_IPOPT_POLICY_V4(tcp) || TCP_IPOPT_POLICY_V6(tcp) || \ 1788 !CONN_IS_MD_FASTPATH((tcp)->tcp_connp)) 1789 1790 boolean_t do_tcp_fusion = B_TRUE; 1791 1792 /* 1793 * This routine gets called by the eager tcp upon changing state from 1794 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 1795 * and the active connect tcp such that the regular tcp processings 1796 * may be bypassed under allowable circumstances. Because the fusion 1797 * requires both endpoints to be in the same squeue, it does not work 1798 * for simultaneous active connects because there is no easy way to 1799 * switch from one squeue to another once the connection is created. 1800 * This is different from the eager tcp case where we assign it the 1801 * same squeue as the one given to the active connect tcp during open. 1802 */ 1803 static void 1804 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph) 1805 { 1806 conn_t *peer_connp, *connp = tcp->tcp_connp; 1807 tcp_t *peer_tcp; 1808 1809 ASSERT(!tcp->tcp_fused); 1810 ASSERT(tcp->tcp_loopback); 1811 ASSERT(tcp->tcp_loopback_peer == NULL); 1812 /* 1813 * We need to check the listener tcp to make sure it's a socket 1814 * endpoint, but we can't really use tcp_listener since we get 1815 * here after sending up T_CONN_IND and tcp_wput_accept() may be 1816 * called independently, at which point tcp_listener is cleared; 1817 * this is why we use tcp_saved_listener. The listener itself 1818 * is guaranteed to be around until tcp_accept_finish() is called 1819 * on this eager -- this won't happen until we're done since 1820 * we're inside the eager's perimeter now. 1821 */ 1822 ASSERT(tcp->tcp_saved_listener != NULL); 1823 1824 /* 1825 * Lookup peer endpoint; search for the remote endpoint having 1826 * the reversed address-port quadruplet in ESTABLISHED state, 1827 * which is guaranteed to be unique in the system. Zone check 1828 * is applied accordingly for loopback address, but not for 1829 * local address since we want fusion to happen across Zones. 1830 */ 1831 if (tcp->tcp_ipversion == IPV4_VERSION) { 1832 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 1833 (ipha_t *)iphdr, tcph); 1834 } else { 1835 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 1836 (ip6_t *)iphdr, tcph); 1837 } 1838 1839 /* 1840 * We can only proceed if peer exists, resides in the same squeue 1841 * as our conn and is not raw-socket. The squeue assignment of 1842 * this eager tcp was done earlier at the time of SYN processing 1843 * in ip_fanout_tcp{_v6}. Note that similar squeues by itself 1844 * doesn't guarantee a safe condition to fuse, hence we perform 1845 * additional tests below. 1846 */ 1847 ASSERT(peer_connp == NULL || peer_connp != connp); 1848 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 1849 !IPCL_IS_TCP(peer_connp)) { 1850 if (peer_connp != NULL) { 1851 TCP_STAT(tcp_fusion_unqualified); 1852 CONN_DEC_REF(peer_connp); 1853 } 1854 return; 1855 } 1856 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 1857 1858 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 1859 ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL); 1860 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 1861 1862 /* 1863 * Fuse the endpoints; we perform further checks against both 1864 * tcp endpoints to ensure that a fusion is allowed to happen. 1865 * In particular we bail out for TPI, non-simple TCP/IP or if 1866 * IPsec/IPQoS policy exists. We could actually do it for the 1867 * XTI/TLI/TPI case but this requires more testing, so for now 1868 * we handle only the socket case. 1869 */ 1870 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 1871 TCP_IS_SOCKET(tcp->tcp_saved_listener) && TCP_IS_SOCKET(peer_tcp) && 1872 !TCP_LOOPBACK_IP(tcp) && !TCP_LOOPBACK_IP(peer_tcp) && 1873 !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) { 1874 mblk_t *mp; 1875 struct stroptions *stropt; 1876 queue_t *peer_rq = peer_tcp->tcp_rq; 1877 size_t sth_hiwat; 1878 1879 ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL); 1880 1881 /* 1882 * We need to drain data on both endpoints during unfuse. 1883 * If we need to send up SIGURG at the time of draining, 1884 * we want to be sure that an mblk is readily available. 1885 * This is why we pre-allocate the M_PCSIG mblks for both 1886 * endpoints which will only be used during/after unfuse. 1887 */ 1888 if ((mp = allocb(1, BPRI_HI)) == NULL) { 1889 CONN_DEC_REF(peer_connp); 1890 return; 1891 } 1892 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 1893 tcp->tcp_fused_sigurg_mp = mp; 1894 1895 if ((mp = allocb(1, BPRI_HI)) == NULL) { 1896 freeb(tcp->tcp_fused_sigurg_mp); 1897 tcp->tcp_fused_sigurg_mp = NULL; 1898 CONN_DEC_REF(peer_connp); 1899 return; 1900 } 1901 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 1902 peer_tcp->tcp_fused_sigurg_mp = mp; 1903 1904 /* Allocate M_SETOPTS mblk */ 1905 mp = allocb(sizeof (*stropt), BPRI_HI); 1906 if (mp == NULL) { 1907 freeb(tcp->tcp_fused_sigurg_mp); 1908 tcp->tcp_fused_sigurg_mp = NULL; 1909 freeb(peer_tcp->tcp_fused_sigurg_mp); 1910 peer_tcp->tcp_fused_sigurg_mp = NULL; 1911 CONN_DEC_REF(peer_connp); 1912 return; 1913 } 1914 1915 /* Fuse both endpoints */ 1916 peer_tcp->tcp_loopback_peer = tcp; 1917 tcp->tcp_loopback_peer = peer_tcp; 1918 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 1919 1920 /* 1921 * We never use regular tcp paths in fusion and should 1922 * therefore clear tcp_unsent on both endpoints. Having 1923 * them set to non-zero values means asking for trouble 1924 * especially after unfuse, where we may end up sending 1925 * through regular tcp paths which expect xmit_list and 1926 * friends to be correctly setup. 1927 */ 1928 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 1929 1930 tcp_timers_stop(tcp); 1931 tcp_timers_stop(peer_tcp); 1932 1933 /* 1934 * Set the stream head's write offset value to zero, since we 1935 * won't be needing any room for TCP/IP headers, and tell it 1936 * to not break up the writes. This would reduce the amount 1937 * of work done by kmem. In addition, we set the receive 1938 * buffer to twice that of q_hiwat in order to simulate the 1939 * non-fusion case. Note that we can only do this for the 1940 * active connect tcp since our eager is still detached; 1941 * it will be dealt with later in tcp_accept_finish(). 1942 */ 1943 DB_TYPE(mp) = M_SETOPTS; 1944 mp->b_wptr += sizeof (*stropt); 1945 1946 sth_hiwat = peer_rq->q_hiwat << 1; 1947 if (sth_hiwat > tcp_max_buf) 1948 sth_hiwat = tcp_max_buf; 1949 1950 stropt = (struct stroptions *)mp->b_rptr; 1951 stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT; 1952 stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE); 1953 stropt->so_wroff = 0; 1954 stropt->so_hiwat = MAX(sth_hiwat, tcp_sth_rcv_hiwat); 1955 1956 /* Send the options up */ 1957 putnext(peer_rq, mp); 1958 } else { 1959 TCP_STAT(tcp_fusion_unqualified); 1960 } 1961 CONN_DEC_REF(peer_connp); 1962 } 1963 1964 /* 1965 * Unfuse a previously-fused pair of tcp loopback endpoints. 1966 */ 1967 static void 1968 tcp_unfuse(tcp_t *tcp) 1969 { 1970 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1971 1972 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 1973 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 1974 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 1975 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 1976 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 1977 ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL); 1978 1979 /* 1980 * Drain any pending data; the detached check is needed because 1981 * we may be called from tcp_fuse_output(). Note that in case of 1982 * a detached tcp, the draining will happen later after the tcp 1983 * is unfused. For non-urgent data, this can be handled by the 1984 * regular tcp_rcv_drain(). If we have urgent data sitting in 1985 * the receive list, we will need to send up a SIGURG signal first 1986 * before draining the data. All of these will be handled by the 1987 * code in tcp_fuse_rcv_drain() when called from tcp_rcv_drain(). 1988 */ 1989 if (!TCP_IS_DETACHED(tcp)) { 1990 (void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, 1991 &tcp->tcp_fused_sigurg_mp); 1992 } 1993 if (!TCP_IS_DETACHED(peer_tcp)) { 1994 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 1995 &peer_tcp->tcp_fused_sigurg_mp); 1996 } 1997 /* Lift up any flow-control conditions */ 1998 if (tcp->tcp_flow_stopped) { 1999 tcp_clrqfull(tcp); 2000 TCP_STAT(tcp_fusion_backenabled); 2001 } 2002 if (peer_tcp->tcp_flow_stopped) { 2003 tcp_clrqfull(peer_tcp); 2004 TCP_STAT(tcp_fusion_backenabled); 2005 } 2006 2007 /* Free up M_PCSIG mblk(s) if not needed */ 2008 if (!tcp->tcp_fused_sigurg && tcp->tcp_fused_sigurg_mp != NULL) { 2009 freeb(tcp->tcp_fused_sigurg_mp); 2010 tcp->tcp_fused_sigurg_mp = NULL; 2011 } 2012 if (!peer_tcp->tcp_fused_sigurg && 2013 peer_tcp->tcp_fused_sigurg_mp != NULL) { 2014 freeb(peer_tcp->tcp_fused_sigurg_mp); 2015 peer_tcp->tcp_fused_sigurg_mp = NULL; 2016 } 2017 2018 /* 2019 * Update th_seq and th_ack in the header template 2020 */ 2021 U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq); 2022 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 2023 U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq); 2024 U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack); 2025 2026 /* Unfuse the endpoints */ 2027 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 2028 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 2029 } 2030 2031 /* 2032 * Fusion output routine for urgent data. This routine is called by 2033 * tcp_fuse_output() for handling non-M_DATA mblks. 2034 */ 2035 static void 2036 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 2037 { 2038 mblk_t *mp1; 2039 struct T_exdata_ind *tei; 2040 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2041 mblk_t *head, *prev_head = NULL; 2042 2043 ASSERT(tcp->tcp_fused); 2044 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 2045 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 2046 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 2047 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 2048 2049 /* 2050 * Urgent data arrives in the form of T_EXDATA_REQ from above. 2051 * Each occurence denotes a new urgent pointer. For each new 2052 * urgent pointer we signal (SIGURG) the receiving app to indicate 2053 * that it needs to go into urgent mode. This is similar to the 2054 * urgent data handling in the regular tcp. We don't need to keep 2055 * track of where the urgent pointer is, because each T_EXDATA_REQ 2056 * "advances" the urgent pointer for us. 2057 * 2058 * The actual urgent data carried by T_EXDATA_REQ is then prepended 2059 * by a T_EXDATA_IND before being enqueued behind any existing data 2060 * destined for the receiving app. There is only a single urgent 2061 * pointer (out-of-band mark) for a given tcp. If the new urgent 2062 * data arrives before the receiving app reads some existing urgent 2063 * data, the previous marker is lost. This behavior is emulated 2064 * accordingly below, by removing any existing T_EXDATA_IND messages 2065 * and essentially converting old urgent data into non-urgent. 2066 */ 2067 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 2068 /* Let sender get out of urgent mode */ 2069 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 2070 2071 /* 2072 * Send up SIGURG to the receiving peer; if the peer is detached 2073 * or if we can't allocate the M_PCSIG, indicate that we need to 2074 * signal upon draining to the peer by marking tcp_fused_sigurg. 2075 * This flag will only get cleared once SIGURG is delivered and 2076 * is not affected by the tcp_fused flag -- delivery will still 2077 * happen even after an endpoint is unfused, to handle the case 2078 * where the sending endpoint immediately closes/unfuses after 2079 * sending urgent data and the accept is not yet finished. 2080 */ 2081 if (!TCP_IS_DETACHED(peer_tcp) && 2082 ((mp1 = allocb(1, BPRI_HI)) != NULL || 2083 (mp1 = allocb_tryhard(1)) != NULL)) { 2084 peer_tcp->tcp_fused_sigurg = B_FALSE; 2085 /* Send up the signal */ 2086 DB_TYPE(mp1) = M_PCSIG; 2087 *mp1->b_wptr++ = (uchar_t)SIGURG; 2088 putnext(peer_tcp->tcp_rq, mp1); 2089 } else { 2090 peer_tcp->tcp_fused_sigurg = B_TRUE; 2091 } 2092 2093 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 2094 DB_TYPE(mp) = M_PROTO; 2095 tei = (struct T_exdata_ind *)mp->b_rptr; 2096 tei->PRIM_type = T_EXDATA_IND; 2097 tei->MORE_flag = 0; 2098 mp->b_wptr = (uchar_t *)&tei[1]; 2099 2100 TCP_STAT(tcp_fusion_urg); 2101 BUMP_MIB(&tcp_mib, tcpOutUrg); 2102 2103 head = peer_tcp->tcp_rcv_list; 2104 while (head != NULL) { 2105 /* 2106 * Remove existing T_EXDATA_IND, keep the data which follows 2107 * it and relink our list. Note that we don't modify the 2108 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 2109 */ 2110 if (DB_TYPE(head) != M_DATA) { 2111 mp1 = head; 2112 2113 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 2114 head = mp1->b_cont; 2115 mp1->b_cont = NULL; 2116 head->b_next = mp1->b_next; 2117 mp1->b_next = NULL; 2118 if (prev_head != NULL) 2119 prev_head->b_next = head; 2120 if (peer_tcp->tcp_rcv_list == mp1) 2121 peer_tcp->tcp_rcv_list = head; 2122 if (peer_tcp->tcp_rcv_last_head == mp1) 2123 peer_tcp->tcp_rcv_last_head = head; 2124 freeb(mp1); 2125 } 2126 prev_head = head; 2127 head = head->b_next; 2128 } 2129 } 2130 2131 /* 2132 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 2133 */ 2134 static boolean_t 2135 tcp_fuse_output(tcp_t *tcp, mblk_t *mp) 2136 { 2137 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2138 queue_t *peer_rq; 2139 mblk_t *mp_tail = mp; 2140 uint32_t send_size = 0; 2141 2142 ASSERT(tcp->tcp_fused); 2143 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 2144 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 2145 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 2146 DB_TYPE(mp) == M_PCPROTO); 2147 2148 peer_rq = peer_tcp->tcp_rq; 2149 2150 /* If this connection requires IP, unfuse and use regular path */ 2151 if (TCP_LOOPBACK_IP(tcp) || TCP_LOOPBACK_IP(peer_tcp) || 2152 IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) { 2153 TCP_STAT(tcp_fusion_aborted); 2154 tcp_unfuse(tcp); 2155 return (B_FALSE); 2156 } 2157 2158 for (;;) { 2159 if (DB_TYPE(mp_tail) == M_DATA) 2160 send_size += MBLKL(mp_tail); 2161 if (mp_tail->b_cont == NULL) 2162 break; 2163 mp_tail = mp_tail->b_cont; 2164 } 2165 2166 if (send_size == 0) { 2167 freemsg(mp); 2168 return (B_TRUE); 2169 } 2170 2171 /* 2172 * Handle urgent data; we either send up SIGURG to the peer now 2173 * or do it later when we drain, in case the peer is detached 2174 * or if we're short of memory for M_PCSIG mblk. 2175 */ 2176 if (DB_TYPE(mp) != M_DATA) 2177 tcp_fuse_output_urg(tcp, mp); 2178 2179 /* 2180 * Enqueue data into the peer's receive list; we may or may not 2181 * drain the contents depending on the conditions below. 2182 */ 2183 tcp_rcv_enqueue(peer_tcp, mp, send_size); 2184 2185 /* In case it wrapped around and also to keep it constant */ 2186 peer_tcp->tcp_rwnd += send_size; 2187 2188 /* 2189 * If peer is detached, exercise flow-control when needed; we will 2190 * get back-enabled either in tcp_accept_finish() or tcp_unfuse(). 2191 */ 2192 if (TCP_IS_DETACHED(peer_tcp) && 2193 peer_tcp->tcp_rcv_cnt > peer_rq->q_hiwat) { 2194 tcp_setqfull(tcp); 2195 TCP_STAT(tcp_fusion_flowctl); 2196 } 2197 2198 loopback_packets++; 2199 tcp->tcp_last_sent_len = send_size; 2200 2201 /* Need to adjust the following SNMP MIB-related variables */ 2202 tcp->tcp_snxt += send_size; 2203 tcp->tcp_suna = tcp->tcp_snxt; 2204 peer_tcp->tcp_rnxt += send_size; 2205 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 2206 2207 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 2208 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, send_size); 2209 2210 BUMP_MIB(&tcp_mib, tcpInSegs); 2211 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 2212 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, send_size); 2213 2214 BUMP_LOCAL(tcp->tcp_obsegs); 2215 BUMP_LOCAL(peer_tcp->tcp_ibsegs); 2216 2217 if (!TCP_IS_DETACHED(peer_tcp)) { 2218 /* 2219 * If we can't send SIGURG above due to lack of memory, 2220 * schedule push timer and try again. Otherwise drain 2221 * the data if we're not flow-controlled. 2222 */ 2223 if (peer_tcp->tcp_fused_sigurg) { 2224 if (peer_tcp->tcp_push_tid == 0) { 2225 peer_tcp->tcp_push_tid = 2226 TCP_TIMER(peer_tcp, tcp_push_timer, 2227 MSEC_TO_TICK(tcp_push_timer_interval)); 2228 } 2229 } else if (!tcp->tcp_flow_stopped) { 2230 if (!canputnext(peer_rq)) { 2231 tcp_setqfull(tcp); 2232 TCP_STAT(tcp_fusion_flowctl); 2233 } else { 2234 ASSERT(peer_tcp->tcp_rcv_list != NULL); 2235 (void) tcp_fuse_rcv_drain(peer_rq, 2236 peer_tcp, NULL); 2237 TCP_STAT(tcp_fusion_putnext); 2238 } 2239 } else if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 2240 tcp_clrqfull(tcp); 2241 } 2242 } 2243 return (B_TRUE); 2244 } 2245 2246 /* 2247 * This routine gets called to deliver data upstream on a fused or 2248 * previously fused tcp loopback endpoint; the latter happens only 2249 * when there is a pending SIGURG signal plus urgent data that can't 2250 * be sent upstream in the past. 2251 */ 2252 static boolean_t 2253 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 2254 { 2255 mblk_t *mp; 2256 #ifdef DEBUG 2257 uint_t cnt = 0; 2258 #endif 2259 2260 ASSERT(tcp->tcp_loopback); 2261 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 2262 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 2263 ASSERT(sigurg_mpp != NULL || tcp->tcp_fused); 2264 2265 /* No need for the push timer now, in case it was scheduled */ 2266 if (tcp->tcp_push_tid != 0) { 2267 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 2268 tcp->tcp_push_tid = 0; 2269 } 2270 /* 2271 * If there's urgent data sitting in receive list and we didn't 2272 * get a chance to send up a SIGURG signal, make sure we send 2273 * it first before draining in order to ensure that SIOCATMARK 2274 * works properly. 2275 */ 2276 if (tcp->tcp_fused_sigurg) { 2277 /* 2278 * sigurg_mpp is normally NULL, i.e. when we're still 2279 * fused and didn't get here because of tcp_unfuse(). 2280 * In this case try hard to allocate the M_PCSIG mblk. 2281 */ 2282 if (sigurg_mpp == NULL && 2283 (mp = allocb(1, BPRI_HI)) == NULL && 2284 (mp = allocb_tryhard(1)) == NULL) { 2285 /* Alloc failed; try again next time */ 2286 tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer, 2287 MSEC_TO_TICK(tcp_push_timer_interval)); 2288 return (B_TRUE); 2289 } else if (sigurg_mpp != NULL) { 2290 /* 2291 * Use the supplied M_PCSIG mblk; it means we're 2292 * either unfused or in the process of unfusing, 2293 * and the drain must happen now. 2294 */ 2295 mp = *sigurg_mpp; 2296 *sigurg_mpp = NULL; 2297 } 2298 ASSERT(mp != NULL); 2299 2300 tcp->tcp_fused_sigurg = B_FALSE; 2301 /* Send up the signal */ 2302 DB_TYPE(mp) = M_PCSIG; 2303 *mp->b_wptr++ = (uchar_t)SIGURG; 2304 putnext(q, mp); 2305 /* 2306 * Let the regular tcp_rcv_drain() path handle 2307 * draining the data if we're no longer fused. 2308 */ 2309 if (!tcp->tcp_fused) 2310 return (B_FALSE); 2311 } 2312 2313 /* Drain the data */ 2314 while ((mp = tcp->tcp_rcv_list) != NULL) { 2315 tcp->tcp_rcv_list = mp->b_next; 2316 mp->b_next = NULL; 2317 #ifdef DEBUG 2318 cnt += msgdsize(mp); 2319 #endif 2320 putnext(q, mp); 2321 } 2322 2323 ASSERT(cnt == tcp->tcp_rcv_cnt); 2324 tcp->tcp_rcv_last_head = NULL; 2325 tcp->tcp_rcv_last_tail = NULL; 2326 tcp->tcp_rcv_cnt = 0; 2327 tcp->tcp_rwnd = q->q_hiwat; 2328 2329 return (B_TRUE); 2330 } 2331 2332 /* 2333 * This is the walker function, which is TCP specific. 2334 * It walks through the conn_hash bucket searching for the 2335 * next valid connp/tcp in the list, selecting connp/tcp 2336 * which haven't closed or condemned. It also REFHOLDS the 2337 * reference for the tcp, ensuring that the tcp exists 2338 * when the caller uses the tcp. 2339 * 2340 * tcp_get_next_conn 2341 * get the next entry in the conn global list 2342 * and put a reference on the next_conn. 2343 * decrement the reference on the current conn. 2344 */ 2345 conn_t * 2346 tcp_get_next_conn(connf_t *connfp, conn_t *connp) 2347 { 2348 conn_t *next_connp; 2349 2350 if (connfp == NULL) 2351 return (NULL); 2352 2353 mutex_enter(&connfp->connf_lock); 2354 2355 next_connp = (connp == NULL) ? 2356 connfp->connf_head : connp->conn_g_next; 2357 2358 while (next_connp != NULL) { 2359 mutex_enter(&next_connp->conn_lock); 2360 if ((next_connp->conn_state_flags & 2361 (CONN_CONDEMNED | CONN_INCIPIENT)) || 2362 !IPCL_IS_TCP(next_connp)) { 2363 /* 2364 * This conn has been condemned or 2365 * is closing. 2366 */ 2367 mutex_exit(&next_connp->conn_lock); 2368 next_connp = next_connp->conn_g_next; 2369 continue; 2370 } 2371 ASSERT(next_connp->conn_tcp != NULL); 2372 CONN_INC_REF_LOCKED(next_connp); 2373 mutex_exit(&next_connp->conn_lock); 2374 break; 2375 } 2376 2377 mutex_exit(&connfp->connf_lock); 2378 2379 if (connp != NULL) { 2380 CONN_DEC_REF(connp); 2381 } 2382 2383 return (next_connp); 2384 } 2385 2386 /* 2387 * Figure out the value of window scale opton. Note that the rwnd is 2388 * ASSUMED to be rounded up to the nearest MSS before the calculation. 2389 * We cannot find the scale value and then do a round up of tcp_rwnd 2390 * because the scale value may not be correct after that. 2391 * 2392 * Set the compiler flag to make this function inline. 2393 */ 2394 static void 2395 tcp_set_ws_value(tcp_t *tcp) 2396 { 2397 int i; 2398 uint32_t rwnd = tcp->tcp_rwnd; 2399 2400 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 2401 i++, rwnd >>= 1) 2402 ; 2403 tcp->tcp_rcv_ws = i; 2404 } 2405 2406 /* 2407 * Remove a connection from the list of detached TIME_WAIT connections. 2408 */ 2409 static void 2410 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 2411 { 2412 boolean_t locked = B_FALSE; 2413 2414 if (tcp_time_wait == NULL) { 2415 tcp_time_wait = *((tcp_squeue_priv_t **) 2416 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 2417 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 2418 locked = B_TRUE; 2419 } 2420 2421 if (tcp->tcp_time_wait_expire == 0) { 2422 ASSERT(tcp->tcp_time_wait_next == NULL); 2423 ASSERT(tcp->tcp_time_wait_prev == NULL); 2424 if (locked) 2425 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 2426 return; 2427 } 2428 ASSERT(TCP_IS_DETACHED(tcp)); 2429 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 2430 2431 if (tcp == tcp_time_wait->tcp_time_wait_head) { 2432 ASSERT(tcp->tcp_time_wait_prev == NULL); 2433 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 2434 if (tcp_time_wait->tcp_time_wait_head != NULL) { 2435 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 2436 NULL; 2437 } else { 2438 tcp_time_wait->tcp_time_wait_tail = NULL; 2439 } 2440 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 2441 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 2442 ASSERT(tcp->tcp_time_wait_next == NULL); 2443 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 2444 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 2445 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 2446 } else { 2447 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 2448 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 2449 tcp->tcp_time_wait_prev->tcp_time_wait_next = 2450 tcp->tcp_time_wait_next; 2451 tcp->tcp_time_wait_next->tcp_time_wait_prev = 2452 tcp->tcp_time_wait_prev; 2453 } 2454 tcp->tcp_time_wait_next = NULL; 2455 tcp->tcp_time_wait_prev = NULL; 2456 tcp->tcp_time_wait_expire = 0; 2457 2458 if (locked) 2459 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 2460 } 2461 2462 /* 2463 * Add a connection to the list of detached TIME_WAIT connections 2464 * and set its time to expire. 2465 */ 2466 static void 2467 tcp_time_wait_append(tcp_t *tcp) 2468 { 2469 tcp_squeue_priv_t *tcp_time_wait = 2470 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 2471 SQPRIVATE_TCP)); 2472 2473 tcp_timers_stop(tcp); 2474 2475 /* Freed above */ 2476 ASSERT(tcp->tcp_timer_tid == 0); 2477 ASSERT(tcp->tcp_ack_tid == 0); 2478 2479 /* must have happened at the time of detaching the tcp */ 2480 ASSERT(tcp->tcp_ptpahn == NULL); 2481 ASSERT(tcp->tcp_flow_stopped == 0); 2482 ASSERT(tcp->tcp_time_wait_next == NULL); 2483 ASSERT(tcp->tcp_time_wait_prev == NULL); 2484 ASSERT(tcp->tcp_time_wait_expire == NULL); 2485 ASSERT(tcp->tcp_listener == NULL); 2486 2487 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 2488 /* 2489 * The value computed below in tcp->tcp_time_wait_expire may 2490 * appear negative or wrap around. That is ok since our 2491 * interest is only in the difference between the current lbolt 2492 * value and tcp->tcp_time_wait_expire. But the value should not 2493 * be zero, since it means the tcp is not in the TIME_WAIT list. 2494 * The corresponding comparison in tcp_time_wait_collector() uses 2495 * modular arithmetic. 2496 */ 2497 tcp->tcp_time_wait_expire += 2498 drv_usectohz(tcp_time_wait_interval * 1000); 2499 if (tcp->tcp_time_wait_expire == 0) 2500 tcp->tcp_time_wait_expire = 1; 2501 2502 ASSERT(TCP_IS_DETACHED(tcp)); 2503 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 2504 ASSERT(tcp->tcp_time_wait_next == NULL); 2505 ASSERT(tcp->tcp_time_wait_prev == NULL); 2506 TCP_DBGSTAT(tcp_time_wait); 2507 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 2508 if (tcp_time_wait->tcp_time_wait_head == NULL) { 2509 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 2510 tcp_time_wait->tcp_time_wait_head = tcp; 2511 } else { 2512 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 2513 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 2514 TCPS_TIME_WAIT); 2515 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 2516 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 2517 } 2518 tcp_time_wait->tcp_time_wait_tail = tcp; 2519 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 2520 } 2521 2522 /* ARGSUSED */ 2523 void 2524 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 2525 { 2526 conn_t *connp = (conn_t *)arg; 2527 tcp_t *tcp = connp->conn_tcp; 2528 2529 ASSERT(tcp != NULL); 2530 if (tcp->tcp_state == TCPS_CLOSED) { 2531 return; 2532 } 2533 2534 ASSERT((tcp->tcp_family == AF_INET && 2535 tcp->tcp_ipversion == IPV4_VERSION) || 2536 (tcp->tcp_family == AF_INET6 && 2537 (tcp->tcp_ipversion == IPV4_VERSION || 2538 tcp->tcp_ipversion == IPV6_VERSION))); 2539 ASSERT(!tcp->tcp_listener); 2540 2541 TCP_STAT(tcp_time_wait_reap); 2542 ASSERT(TCP_IS_DETACHED(tcp)); 2543 2544 /* 2545 * Because they have no upstream client to rebind or tcp_close() 2546 * them later, we axe the connection here and now. 2547 */ 2548 tcp_close_detached(tcp); 2549 } 2550 2551 void 2552 tcp_cleanup(tcp_t *tcp) 2553 { 2554 mblk_t *mp; 2555 char *tcp_iphc; 2556 int tcp_iphc_len; 2557 int tcp_hdr_grown; 2558 tcp_sack_info_t *tcp_sack_info; 2559 conn_t *connp = tcp->tcp_connp; 2560 2561 tcp_bind_hash_remove(tcp); 2562 tcp_free(tcp); 2563 2564 conn_delete_ire(connp, NULL); 2565 if (connp->conn_flags & IPCL_TCPCONN) { 2566 if (connp->conn_latch != NULL) 2567 IPLATCH_REFRELE(connp->conn_latch); 2568 if (connp->conn_policy != NULL) 2569 IPPH_REFRELE(connp->conn_policy); 2570 } 2571 2572 /* 2573 * Since we will bzero the entire structure, we need to 2574 * remove it and reinsert it in global hash list. We 2575 * know the walkers can't get to this conn because we 2576 * had set CONDEMNED flag earlier and checked reference 2577 * under conn_lock so walker won't pick it and when we 2578 * go the ipcl_globalhash_remove() below, no walker 2579 * can get to it. 2580 */ 2581 ipcl_globalhash_remove(connp); 2582 2583 /* Save some state */ 2584 mp = tcp->tcp_timercache; 2585 2586 tcp_sack_info = tcp->tcp_sack_info; 2587 tcp_iphc = tcp->tcp_iphc; 2588 tcp_iphc_len = tcp->tcp_iphc_len; 2589 tcp_hdr_grown = tcp->tcp_hdr_grown; 2590 2591 bzero(connp, sizeof (conn_t)); 2592 bzero(tcp, sizeof (tcp_t)); 2593 2594 /* restore the state */ 2595 tcp->tcp_timercache = mp; 2596 2597 tcp->tcp_sack_info = tcp_sack_info; 2598 tcp->tcp_iphc = tcp_iphc; 2599 tcp->tcp_iphc_len = tcp_iphc_len; 2600 tcp->tcp_hdr_grown = tcp_hdr_grown; 2601 2602 2603 tcp->tcp_connp = connp; 2604 2605 connp->conn_tcp = tcp; 2606 connp->conn_flags = IPCL_TCPCONN; 2607 connp->conn_state_flags = CONN_INCIPIENT; 2608 connp->conn_ulp = IPPROTO_TCP; 2609 connp->conn_ref = 1; 2610 2611 ipcl_globalhash_insert(connp); 2612 } 2613 2614 /* 2615 * Blows away all tcps whose TIME_WAIT has expired. List traversal 2616 * is done forwards from the head. 2617 */ 2618 /* ARGSUSED */ 2619 void 2620 tcp_time_wait_collector(void *arg) 2621 { 2622 tcp_t *tcp; 2623 clock_t now; 2624 mblk_t *mp; 2625 conn_t *connp; 2626 kmutex_t *lock; 2627 2628 squeue_t *sqp = (squeue_t *)arg; 2629 tcp_squeue_priv_t *tcp_time_wait = 2630 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 2631 2632 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 2633 tcp_time_wait->tcp_time_wait_tid = 0; 2634 2635 if (tcp_time_wait->tcp_free_list != NULL && 2636 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 2637 TCP_STAT(tcp_freelist_cleanup); 2638 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 2639 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 2640 CONN_DEC_REF(tcp->tcp_connp); 2641 } 2642 } 2643 2644 /* 2645 * In order to reap time waits reliably, we should use a 2646 * source of time that is not adjustable by the user -- hence 2647 * the call to ddi_get_lbolt(). 2648 */ 2649 now = ddi_get_lbolt(); 2650 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 2651 /* 2652 * Compare times using modular arithmetic, since 2653 * lbolt can wrapover. 2654 */ 2655 if ((now - tcp->tcp_time_wait_expire) < 0) { 2656 break; 2657 } 2658 2659 tcp_time_wait_remove(tcp, tcp_time_wait); 2660 2661 connp = tcp->tcp_connp; 2662 ASSERT(connp->conn_fanout != NULL); 2663 lock = &connp->conn_fanout->connf_lock; 2664 /* 2665 * This is essentially a TW reclaim fast path optimization for 2666 * performance where the timewait collector checks under the 2667 * fanout lock (so that no one else can get access to the 2668 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 2669 * the classifier hash list. If ref count is indeed 2, we can 2670 * just remove the conn under the fanout lock and avoid 2671 * cleaning up the conn under the squeue, provided that 2672 * clustering callbacks are not enabled. If clustering is 2673 * enabled, we need to make the clustering callback before 2674 * setting the CONDEMNED flag and after dropping all locks and 2675 * so we forego this optimization and fall back to the slow 2676 * path. Also please see the comments in tcp_closei_local 2677 * regarding the refcnt logic. 2678 * 2679 * Since we are holding the tcp_time_wait_lock, its better 2680 * not to block on the fanout_lock because other connections 2681 * can't add themselves to time_wait list. So we do a 2682 * tryenter instead of mutex_enter. 2683 */ 2684 if (mutex_tryenter(lock)) { 2685 mutex_enter(&connp->conn_lock); 2686 if ((connp->conn_ref == 2) && 2687 (cl_inet_disconnect == NULL)) { 2688 ipcl_hash_remove_locked(connp, 2689 connp->conn_fanout); 2690 /* 2691 * Set the CONDEMNED flag now itself so that 2692 * the refcnt cannot increase due to any 2693 * walker. But we have still not cleaned up 2694 * conn_ire_cache. This is still ok since 2695 * we are going to clean it up in tcp_cleanup 2696 * immediately and any interface unplumb 2697 * thread will wait till the ire is blown away 2698 */ 2699 connp->conn_state_flags |= CONN_CONDEMNED; 2700 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 2701 mutex_exit(lock); 2702 mutex_exit(&connp->conn_lock); 2703 tcp_cleanup(tcp); 2704 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 2705 tcp->tcp_time_wait_next = 2706 tcp_time_wait->tcp_free_list; 2707 tcp_time_wait->tcp_free_list = tcp; 2708 continue; 2709 } else { 2710 CONN_INC_REF_LOCKED(connp); 2711 mutex_exit(lock); 2712 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 2713 mutex_exit(&connp->conn_lock); 2714 /* 2715 * We can reuse the closemp here since conn has 2716 * detached (otherwise we wouldn't even be in 2717 * time_wait list). 2718 */ 2719 mp = &tcp->tcp_closemp; 2720 squeue_fill(connp->conn_sqp, mp, 2721 tcp_timewait_output, connp, 2722 SQTAG_TCP_TIMEWAIT); 2723 } 2724 } else { 2725 mutex_enter(&connp->conn_lock); 2726 CONN_INC_REF_LOCKED(connp); 2727 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 2728 mutex_exit(&connp->conn_lock); 2729 /* 2730 * We can reuse the closemp here since conn has 2731 * detached (otherwise we wouldn't even be in 2732 * time_wait list). 2733 */ 2734 mp = &tcp->tcp_closemp; 2735 squeue_fill(connp->conn_sqp, mp, 2736 tcp_timewait_output, connp, 0); 2737 } 2738 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 2739 } 2740 2741 if (tcp_time_wait->tcp_free_list != NULL) 2742 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 2743 2744 tcp_time_wait->tcp_time_wait_tid = 2745 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 2746 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 2747 } 2748 2749 /* 2750 * Reply to a clients T_CONN_RES TPI message. This function 2751 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 2752 * on the acceptor STREAM and processed in tcp_wput_accept(). 2753 * Read the block comment on top of tcp_conn_request(). 2754 */ 2755 static void 2756 tcp_accept(tcp_t *listener, mblk_t *mp) 2757 { 2758 tcp_t *acceptor; 2759 tcp_t *eager; 2760 tcp_t *tcp; 2761 struct T_conn_res *tcr; 2762 t_uscalar_t acceptor_id; 2763 t_scalar_t seqnum; 2764 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 2765 mblk_t *ok_mp; 2766 mblk_t *mp1; 2767 2768 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 2769 tcp_err_ack(listener, mp, TPROTO, 0); 2770 return; 2771 } 2772 tcr = (struct T_conn_res *)mp->b_rptr; 2773 2774 /* 2775 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 2776 * read side queue of the streams device underneath us i.e. the 2777 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 2778 * look it up in the queue_hash. Under LP64 it sends down the 2779 * minor_t of the accepting endpoint. 2780 * 2781 * Once the acceptor/eager are modified (in tcp_accept_swap) the 2782 * fanout hash lock is held. 2783 * This prevents any thread from entering the acceptor queue from 2784 * below (since it has not been hard bound yet i.e. any inbound 2785 * packets will arrive on the listener or default tcp queue and 2786 * go through tcp_lookup). 2787 * The CONN_INC_REF will prevent the acceptor from closing. 2788 * 2789 * XXX It is still possible for a tli application to send down data 2790 * on the accepting stream while another thread calls t_accept. 2791 * This should not be a problem for well-behaved applications since 2792 * the T_OK_ACK is sent after the queue swapping is completed. 2793 * 2794 * If the accepting fd is the same as the listening fd, avoid 2795 * queue hash lookup since that will return an eager listener in a 2796 * already established state. 2797 */ 2798 acceptor_id = tcr->ACCEPTOR_id; 2799 mutex_enter(&listener->tcp_eager_lock); 2800 if (listener->tcp_acceptor_id == acceptor_id) { 2801 eager = listener->tcp_eager_next_q; 2802 /* only count how many T_CONN_INDs so don't count q0 */ 2803 if ((listener->tcp_conn_req_cnt_q != 1) || 2804 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 2805 mutex_exit(&listener->tcp_eager_lock); 2806 tcp_err_ack(listener, mp, TBADF, 0); 2807 return; 2808 } 2809 if (listener->tcp_conn_req_cnt_q0 != 0) { 2810 /* Throw away all the eagers on q0. */ 2811 tcp_eager_cleanup(listener, 1); 2812 } 2813 if (listener->tcp_syn_defense) { 2814 listener->tcp_syn_defense = B_FALSE; 2815 if (listener->tcp_ip_addr_cache != NULL) { 2816 kmem_free(listener->tcp_ip_addr_cache, 2817 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 2818 listener->tcp_ip_addr_cache = NULL; 2819 } 2820 } 2821 /* 2822 * Transfer tcp_conn_req_max to the eager so that when 2823 * a disconnect occurs we can revert the endpoint to the 2824 * listen state. 2825 */ 2826 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2827 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2828 /* 2829 * Get a reference on the acceptor just like the 2830 * tcp_acceptor_hash_lookup below. 2831 */ 2832 acceptor = listener; 2833 CONN_INC_REF(acceptor->tcp_connp); 2834 } else { 2835 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 2836 if (acceptor == NULL) { 2837 if (listener->tcp_debug) { 2838 (void) strlog(TCP_MODULE_ID, 0, 1, 2839 SL_ERROR|SL_TRACE, 2840 "tcp_accept: did not find acceptor 0x%x\n", 2841 acceptor_id); 2842 } 2843 mutex_exit(&listener->tcp_eager_lock); 2844 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2845 return; 2846 } 2847 /* 2848 * Verify acceptor state. The acceptable states for an acceptor 2849 * include TCPS_IDLE and TCPS_BOUND. 2850 */ 2851 switch (acceptor->tcp_state) { 2852 case TCPS_IDLE: 2853 /* FALLTHRU */ 2854 case TCPS_BOUND: 2855 break; 2856 default: 2857 CONN_DEC_REF(acceptor->tcp_connp); 2858 mutex_exit(&listener->tcp_eager_lock); 2859 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2860 return; 2861 } 2862 } 2863 2864 /* The listener must be in TCPS_LISTEN */ 2865 if (listener->tcp_state != TCPS_LISTEN) { 2866 CONN_DEC_REF(acceptor->tcp_connp); 2867 mutex_exit(&listener->tcp_eager_lock); 2868 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2869 return; 2870 } 2871 2872 /* 2873 * Rendezvous with an eager connection request packet hanging off 2874 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2875 * tcp structure when the connection packet arrived in 2876 * tcp_conn_request(). 2877 */ 2878 seqnum = tcr->SEQ_number; 2879 eager = listener; 2880 do { 2881 eager = eager->tcp_eager_next_q; 2882 if (eager == NULL) { 2883 CONN_DEC_REF(acceptor->tcp_connp); 2884 mutex_exit(&listener->tcp_eager_lock); 2885 tcp_err_ack(listener, mp, TBADSEQ, 0); 2886 return; 2887 } 2888 } while (eager->tcp_conn_req_seqnum != seqnum); 2889 mutex_exit(&listener->tcp_eager_lock); 2890 2891 /* 2892 * At this point, both acceptor and listener have 2 ref 2893 * that they begin with. Acceptor has one additional ref 2894 * we placed in lookup while listener has 3 additional 2895 * ref for being behind the squeue (tcp_accept() is 2896 * done on listener's squeue); being in classifier hash; 2897 * and eager's ref on listener. 2898 */ 2899 ASSERT(listener->tcp_connp->conn_ref >= 5); 2900 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2901 2902 /* 2903 * The eager at this point is set in its own squeue and 2904 * could easily have been killed (tcp_accept_finish will 2905 * deal with that) because of a TH_RST so we can only 2906 * ASSERT for a single ref. 2907 */ 2908 ASSERT(eager->tcp_connp->conn_ref >= 1); 2909 2910 /* Pre allocate the stroptions mblk also */ 2911 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2912 if (opt_mp == NULL) { 2913 CONN_DEC_REF(acceptor->tcp_connp); 2914 CONN_DEC_REF(eager->tcp_connp); 2915 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2916 return; 2917 } 2918 DB_TYPE(opt_mp) = M_SETOPTS; 2919 opt_mp->b_wptr += sizeof (struct stroptions); 2920 2921 /* 2922 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2923 * from listener to acceptor. The message is chained on opt_mp 2924 * which will be sent onto eager's squeue. 2925 */ 2926 if (listener->tcp_bound_if != 0) { 2927 /* allocate optmgmt req */ 2928 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2929 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2930 sizeof (int)); 2931 if (mp1 != NULL) 2932 linkb(opt_mp, mp1); 2933 } 2934 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2935 uint_t on = 1; 2936 2937 /* allocate optmgmt req */ 2938 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2939 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2940 if (mp1 != NULL) 2941 linkb(opt_mp, mp1); 2942 } 2943 2944 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2945 if ((mp1 = copymsg(mp)) == NULL) { 2946 CONN_DEC_REF(acceptor->tcp_connp); 2947 CONN_DEC_REF(eager->tcp_connp); 2948 freemsg(opt_mp); 2949 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2950 return; 2951 } 2952 2953 tcr = (struct T_conn_res *)mp1->b_rptr; 2954 2955 /* 2956 * This is an expanded version of mi_tpi_ok_ack_alloc() 2957 * which allocates a larger mblk and appends the new 2958 * local address to the ok_ack. The address is copied by 2959 * soaccept() for getsockname(). 2960 */ 2961 { 2962 int extra; 2963 2964 extra = (eager->tcp_family == AF_INET) ? 2965 sizeof (sin_t) : sizeof (sin6_t); 2966 2967 /* 2968 * Try to re-use mp, if possible. Otherwise, allocate 2969 * an mblk and return it as ok_mp. In any case, mp 2970 * is no longer usable upon return. 2971 */ 2972 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2973 CONN_DEC_REF(acceptor->tcp_connp); 2974 CONN_DEC_REF(eager->tcp_connp); 2975 freemsg(opt_mp); 2976 /* Original mp has been freed by now, so use mp1 */ 2977 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2978 return; 2979 } 2980 2981 mp = NULL; /* We should never use mp after this point */ 2982 2983 switch (extra) { 2984 case sizeof (sin_t): { 2985 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2986 2987 ok_mp->b_wptr += extra; 2988 sin->sin_family = AF_INET; 2989 sin->sin_port = eager->tcp_lport; 2990 sin->sin_addr.s_addr = 2991 eager->tcp_ipha->ipha_src; 2992 break; 2993 } 2994 case sizeof (sin6_t): { 2995 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2996 2997 ok_mp->b_wptr += extra; 2998 sin6->sin6_family = AF_INET6; 2999 sin6->sin6_port = eager->tcp_lport; 3000 if (eager->tcp_ipversion == IPV4_VERSION) { 3001 sin6->sin6_flowinfo = 0; 3002 IN6_IPADDR_TO_V4MAPPED( 3003 eager->tcp_ipha->ipha_src, 3004 &sin6->sin6_addr); 3005 } else { 3006 ASSERT(eager->tcp_ip6h != NULL); 3007 sin6->sin6_flowinfo = 3008 eager->tcp_ip6h->ip6_vcf & 3009 ~IPV6_VERS_AND_FLOW_MASK; 3010 sin6->sin6_addr = 3011 eager->tcp_ip6h->ip6_src; 3012 } 3013 break; 3014 } 3015 default: 3016 break; 3017 } 3018 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 3019 } 3020 3021 /* 3022 * If there are no options we know that the T_CONN_RES will 3023 * succeed. However, we can't send the T_OK_ACK upstream until 3024 * the tcp_accept_swap is done since it would be dangerous to 3025 * let the application start using the new fd prior to the swap. 3026 */ 3027 tcp_accept_swap(listener, acceptor, eager); 3028 3029 /* 3030 * tcp_accept_swap unlinks eager from listener but does not drop 3031 * the eager's reference on the listener. 3032 */ 3033 ASSERT(eager->tcp_listener == NULL); 3034 ASSERT(listener->tcp_connp->conn_ref >= 5); 3035 3036 /* 3037 * The eager is now associated with its own queue. Insert in 3038 * the hash so that the connection can be reused for a future 3039 * T_CONN_RES. 3040 */ 3041 tcp_acceptor_hash_insert(acceptor_id, eager); 3042 3043 /* 3044 * We now do the processing of options with T_CONN_RES. 3045 * We delay till now since we wanted to have queue to pass to 3046 * option processing routines that points back to the right 3047 * instance structure which does not happen until after 3048 * tcp_accept_swap(). 3049 * 3050 * Note: 3051 * The sanity of the logic here assumes that whatever options 3052 * are appropriate to inherit from listner=>eager are done 3053 * before this point, and whatever were to be overridden (or not) 3054 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 3055 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 3056 * before its ACCEPTOR_id comes down in T_CONN_RES ] 3057 * This may not be true at this point in time but can be fixed 3058 * independently. This option processing code starts with 3059 * the instantiated acceptor instance and the final queue at 3060 * this point. 3061 */ 3062 3063 if (tcr->OPT_length != 0) { 3064 /* Options to process */ 3065 int t_error = 0; 3066 int sys_error = 0; 3067 int do_disconnect = 0; 3068 3069 if (tcp_conprim_opt_process(eager, mp1, 3070 &do_disconnect, &t_error, &sys_error) < 0) { 3071 eager->tcp_accept_error = 1; 3072 if (do_disconnect) { 3073 /* 3074 * An option failed which does not allow 3075 * connection to be accepted. 3076 * 3077 * We allow T_CONN_RES to succeed and 3078 * put a T_DISCON_IND on the eager queue. 3079 */ 3080 ASSERT(t_error == 0 && sys_error == 0); 3081 eager->tcp_send_discon_ind = 1; 3082 } else { 3083 ASSERT(t_error != 0); 3084 freemsg(ok_mp); 3085 /* 3086 * Original mp was either freed or set 3087 * to ok_mp above, so use mp1 instead. 3088 */ 3089 tcp_err_ack(listener, mp1, t_error, sys_error); 3090 goto finish; 3091 } 3092 } 3093 /* 3094 * Most likely success in setting options (except if 3095 * eager->tcp_send_discon_ind set). 3096 * mp1 option buffer represented by OPT_length/offset 3097 * potentially modified and contains results of setting 3098 * options at this point 3099 */ 3100 } 3101 3102 /* We no longer need mp1, since all options processing has passed */ 3103 freemsg(mp1); 3104 3105 putnext(listener->tcp_rq, ok_mp); 3106 3107 mutex_enter(&listener->tcp_eager_lock); 3108 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 3109 tcp_t *tail; 3110 mblk_t *conn_ind; 3111 3112 /* 3113 * This path should not be executed if listener and 3114 * acceptor streams are the same. 3115 */ 3116 ASSERT(listener != acceptor); 3117 3118 tcp = listener->tcp_eager_prev_q0; 3119 /* 3120 * listener->tcp_eager_prev_q0 points to the TAIL of the 3121 * deferred T_conn_ind queue. We need to get to the head of 3122 * the queue in order to send up T_conn_ind the same order as 3123 * how the 3WHS is completed. 3124 */ 3125 while (tcp != listener) { 3126 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 3127 break; 3128 else 3129 tcp = tcp->tcp_eager_prev_q0; 3130 } 3131 ASSERT(tcp != listener); 3132 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 3133 ASSERT(conn_ind != NULL); 3134 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3135 3136 /* Move from q0 to q */ 3137 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 3138 listener->tcp_conn_req_cnt_q0--; 3139 listener->tcp_conn_req_cnt_q++; 3140 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 3141 tcp->tcp_eager_prev_q0; 3142 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 3143 tcp->tcp_eager_next_q0; 3144 tcp->tcp_eager_prev_q0 = NULL; 3145 tcp->tcp_eager_next_q0 = NULL; 3146 tcp->tcp_conn_def_q0 = B_FALSE; 3147 3148 /* 3149 * Insert at end of the queue because sockfs sends 3150 * down T_CONN_RES in chronological order. Leaving 3151 * the older conn indications at front of the queue 3152 * helps reducing search time. 3153 */ 3154 tail = listener->tcp_eager_last_q; 3155 if (tail != NULL) 3156 tail->tcp_eager_next_q = tcp; 3157 else 3158 listener->tcp_eager_next_q = tcp; 3159 listener->tcp_eager_last_q = tcp; 3160 tcp->tcp_eager_next_q = NULL; 3161 mutex_exit(&listener->tcp_eager_lock); 3162 putnext(tcp->tcp_rq, conn_ind); 3163 } else { 3164 mutex_exit(&listener->tcp_eager_lock); 3165 } 3166 3167 /* 3168 * Done with the acceptor - free it 3169 * 3170 * Note: from this point on, no access to listener should be made 3171 * as listener can be equal to acceptor. 3172 */ 3173 finish: 3174 ASSERT(acceptor->tcp_detached); 3175 acceptor->tcp_rq = tcp_g_q; 3176 acceptor->tcp_wq = WR(tcp_g_q); 3177 (void) tcp_clean_death(acceptor, 0, 2); 3178 CONN_DEC_REF(acceptor->tcp_connp); 3179 3180 /* 3181 * In case we already received a FIN we have to make tcp_rput send 3182 * the ordrel_ind. This will also send up a window update if the window 3183 * has opened up. 3184 * 3185 * In the normal case of a successful connection acceptance 3186 * we give the O_T_BIND_REQ to the read side put procedure as an 3187 * indication that this was just accepted. This tells tcp_rput to 3188 * pass up any data queued in tcp_rcv_list. 3189 * 3190 * In the fringe case where options sent with T_CONN_RES failed and 3191 * we required, we would be indicating a T_DISCON_IND to blow 3192 * away this connection. 3193 */ 3194 3195 /* 3196 * XXX: we currently have a problem if XTI application closes the 3197 * acceptor stream in between. This problem exists in on10-gate also 3198 * and is well know but nothing can be done short of major rewrite 3199 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 3200 * eager same squeue as listener (we can distinguish non socket 3201 * listeners at the time of handling a SYN in tcp_conn_request) 3202 * and do most of the work that tcp_accept_finish does here itself 3203 * and then get behind the acceptor squeue to access the acceptor 3204 * queue. 3205 */ 3206 /* 3207 * We already have a ref on tcp so no need to do one before squeue_fill 3208 */ 3209 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 3210 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 3211 } 3212 3213 /* 3214 * Swap information between the eager and acceptor for a TLI/XTI client. 3215 * The sockfs accept is done on the acceptor stream and control goes 3216 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 3217 * called. In either case, both the eager and listener are in their own 3218 * perimeter (squeue) and the code has to deal with potential race. 3219 * 3220 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 3221 */ 3222 static void 3223 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 3224 { 3225 conn_t *econnp, *aconnp; 3226 3227 ASSERT(eager->tcp_rq == listener->tcp_rq); 3228 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 3229 ASSERT(!eager->tcp_hard_bound); 3230 ASSERT(!TCP_IS_SOCKET(acceptor)); 3231 ASSERT(!TCP_IS_SOCKET(eager)); 3232 ASSERT(!TCP_IS_SOCKET(listener)); 3233 3234 acceptor->tcp_detached = B_TRUE; 3235 /* 3236 * To permit stream re-use by TLI/XTI, the eager needs a copy of 3237 * the acceptor id. 3238 */ 3239 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 3240 3241 /* remove eager from listen list... */ 3242 mutex_enter(&listener->tcp_eager_lock); 3243 tcp_eager_unlink(eager); 3244 ASSERT(eager->tcp_eager_next_q == NULL && 3245 eager->tcp_eager_last_q == NULL); 3246 ASSERT(eager->tcp_eager_next_q0 == NULL && 3247 eager->tcp_eager_prev_q0 == NULL); 3248 mutex_exit(&listener->tcp_eager_lock); 3249 eager->tcp_rq = acceptor->tcp_rq; 3250 eager->tcp_wq = acceptor->tcp_wq; 3251 3252 econnp = eager->tcp_connp; 3253 aconnp = acceptor->tcp_connp; 3254 3255 eager->tcp_rq->q_ptr = econnp; 3256 eager->tcp_wq->q_ptr = econnp; 3257 eager->tcp_detached = B_FALSE; 3258 3259 ASSERT(eager->tcp_ack_tid == 0); 3260 3261 econnp->conn_dev = aconnp->conn_dev; 3262 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 3263 econnp->conn_zoneid = aconnp->conn_zoneid; 3264 aconnp->conn_cred = NULL; 3265 3266 /* Do the IPC initialization */ 3267 CONN_INC_REF(econnp); 3268 3269 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 3270 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 3271 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 3272 econnp->conn_ulp = aconnp->conn_ulp; 3273 3274 /* Done with old IPC. Drop its ref on its connp */ 3275 CONN_DEC_REF(aconnp); 3276 } 3277 3278 3279 /* 3280 * Adapt to the information, such as rtt and rtt_sd, provided from the 3281 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 3282 * 3283 * Checks for multicast and broadcast destination address. 3284 * Returns zero on failure; non-zero if ok. 3285 * 3286 * Note that the MSS calculation here is based on the info given in 3287 * the IRE. We do not do any calculation based on TCP options. They 3288 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 3289 * knows which options to use. 3290 * 3291 * Note on how TCP gets its parameters for a connection. 3292 * 3293 * When a tcp_t structure is allocated, it gets all the default parameters. 3294 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 3295 * spipe, rpipe, ... from the route metrics. Route metric overrides the 3296 * default. But if there is an associated tcp_host_param, it will override 3297 * the metrics. 3298 * 3299 * An incoming SYN with a multicast or broadcast destination address, is dropped 3300 * in 1 of 2 places. 3301 * 3302 * 1. If the packet was received over the wire it is dropped in 3303 * ip_rput_process_broadcast() 3304 * 3305 * 2. If the packet was received through internal IP loopback, i.e. the packet 3306 * was generated and received on the same machine, it is dropped in 3307 * ip_wput_local() 3308 * 3309 * An incoming SYN with a multicast or broadcast source address is always 3310 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 3311 * reject an attempt to connect to a broadcast or multicast (destination) 3312 * address. 3313 */ 3314 static int 3315 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 3316 { 3317 tcp_hsp_t *hsp; 3318 ire_t *ire; 3319 ire_t *sire = NULL; 3320 iulp_t *ire_uinfo; 3321 uint32_t mss_max; 3322 uint32_t mss; 3323 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 3324 conn_t *connp = tcp->tcp_connp; 3325 boolean_t ire_cacheable = B_FALSE; 3326 zoneid_t zoneid = connp->conn_zoneid; 3327 ill_t *ill = NULL; 3328 boolean_t incoming = (ire_mp == NULL); 3329 3330 ASSERT(connp->conn_ire_cache == NULL); 3331 3332 if (tcp->tcp_ipversion == IPV4_VERSION) { 3333 3334 if (CLASSD(tcp->tcp_connp->conn_rem)) { 3335 BUMP_MIB(&ip_mib, ipInDiscards); 3336 return (0); 3337 } 3338 3339 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, zoneid); 3340 if (ire != NULL) { 3341 ire_cacheable = B_TRUE; 3342 ire_uinfo = (ire_mp != NULL) ? 3343 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 3344 &ire->ire_uinfo; 3345 3346 } else { 3347 if (ire_mp == NULL) { 3348 ire = ire_ftable_lookup( 3349 tcp->tcp_connp->conn_rem, 3350 0, 0, 0, NULL, &sire, zoneid, 0, 3351 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 3352 if (ire == NULL) 3353 return (0); 3354 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 3355 &ire->ire_uinfo; 3356 } else { 3357 ire = (ire_t *)ire_mp->b_rptr; 3358 ire_uinfo = 3359 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 3360 } 3361 } 3362 ASSERT(ire != NULL); 3363 ASSERT(ire_uinfo != NULL); 3364 3365 if ((ire->ire_src_addr == INADDR_ANY) || 3366 (ire->ire_type & IRE_BROADCAST)) { 3367 /* 3368 * ire->ire_mp is non null when ire_mp passed in is used 3369 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 3370 */ 3371 if (ire->ire_mp == NULL) 3372 ire_refrele(ire); 3373 if (sire != NULL) 3374 ire_refrele(sire); 3375 return (0); 3376 } 3377 3378 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 3379 ipaddr_t src_addr; 3380 3381 /* 3382 * ip_bind_connected() has stored the correct source 3383 * address in conn_src. 3384 */ 3385 src_addr = tcp->tcp_connp->conn_src; 3386 tcp->tcp_ipha->ipha_src = src_addr; 3387 /* 3388 * Copy of the src addr. in tcp_t is needed 3389 * for the lookup funcs. 3390 */ 3391 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 3392 } 3393 /* 3394 * Set the fragment bit so that IP will tell us if the MTU 3395 * should change. IP tells us the latest setting of 3396 * ip_path_mtu_discovery through ire_frag_flag. 3397 */ 3398 if (ip_path_mtu_discovery) { 3399 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 3400 htons(IPH_DF); 3401 } 3402 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 3403 } else { 3404 /* 3405 * For incoming connection ire_mp = NULL 3406 * For outgoing connection ire_mp != NULL 3407 * Technically we should check conn_incoming_ill 3408 * when ire_mp is NULL and conn_outgoing_ill when 3409 * ire_mp is non-NULL. But this is performance 3410 * critical path and for IPV*_BOUND_IF, outgoing 3411 * and incoming ill are always set to the same value. 3412 */ 3413 ill_t *dst_ill = NULL; 3414 ipif_t *dst_ipif = NULL; 3415 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT; 3416 3417 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 3418 3419 if (connp->conn_outgoing_ill != NULL) { 3420 /* Outgoing or incoming path */ 3421 int err; 3422 3423 dst_ill = conn_get_held_ill(connp, 3424 &connp->conn_outgoing_ill, &err); 3425 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 3426 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 3427 return (0); 3428 } 3429 match_flags |= MATCH_IRE_ILL; 3430 dst_ipif = dst_ill->ill_ipif; 3431 } 3432 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 3433 0, 0, dst_ipif, zoneid, match_flags); 3434 3435 if (ire != NULL) { 3436 ire_cacheable = B_TRUE; 3437 ire_uinfo = (ire_mp != NULL) ? 3438 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 3439 &ire->ire_uinfo; 3440 } else { 3441 if (ire_mp == NULL) { 3442 ire = ire_ftable_lookup_v6( 3443 &tcp->tcp_connp->conn_remv6, 3444 0, 0, 0, dst_ipif, &sire, zoneid, 3445 0, match_flags); 3446 if (ire == NULL) { 3447 if (dst_ill != NULL) 3448 ill_refrele(dst_ill); 3449 return (0); 3450 } 3451 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 3452 &ire->ire_uinfo; 3453 } else { 3454 ire = (ire_t *)ire_mp->b_rptr; 3455 ire_uinfo = 3456 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 3457 } 3458 } 3459 if (dst_ill != NULL) 3460 ill_refrele(dst_ill); 3461 3462 ASSERT(ire != NULL); 3463 ASSERT(ire_uinfo != NULL); 3464 3465 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 3466 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 3467 /* 3468 * ire->ire_mp is non null when ire_mp passed in is used 3469 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 3470 */ 3471 if (ire->ire_mp == NULL) 3472 ire_refrele(ire); 3473 if (sire != NULL) 3474 ire_refrele(sire); 3475 return (0); 3476 } 3477 3478 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 3479 in6_addr_t src_addr; 3480 3481 /* 3482 * ip_bind_connected_v6() has stored the correct source 3483 * address per IPv6 addr. selection policy in 3484 * conn_src_v6. 3485 */ 3486 src_addr = tcp->tcp_connp->conn_srcv6; 3487 3488 tcp->tcp_ip6h->ip6_src = src_addr; 3489 /* 3490 * Copy of the src addr. in tcp_t is needed 3491 * for the lookup funcs. 3492 */ 3493 tcp->tcp_ip_src_v6 = src_addr; 3494 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 3495 &connp->conn_srcv6)); 3496 } 3497 tcp->tcp_localnet = 3498 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 3499 } 3500 3501 /* 3502 * This allows applications to fail quickly when connections are made 3503 * to dead hosts. Hosts can be labeled dead by adding a reject route 3504 * with both the RTF_REJECT and RTF_PRIVATE flags set. 3505 */ 3506 if ((ire->ire_flags & RTF_REJECT) && 3507 (ire->ire_flags & RTF_PRIVATE)) 3508 goto error; 3509 3510 /* 3511 * Make use of the cached rtt and rtt_sd values to calculate the 3512 * initial RTO. Note that they are already initialized in 3513 * tcp_init_values(). 3514 */ 3515 if (ire_uinfo->iulp_rtt != 0) { 3516 clock_t rto; 3517 3518 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 3519 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 3520 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 3521 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 3522 3523 if (rto > tcp_rexmit_interval_max) { 3524 tcp->tcp_rto = tcp_rexmit_interval_max; 3525 } else if (rto < tcp_rexmit_interval_min) { 3526 tcp->tcp_rto = tcp_rexmit_interval_min; 3527 } else { 3528 tcp->tcp_rto = rto; 3529 } 3530 } 3531 if (ire_uinfo->iulp_ssthresh != 0) 3532 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 3533 else 3534 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 3535 if (ire_uinfo->iulp_spipe > 0) { 3536 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 3537 tcp_max_buf); 3538 if (tcp_snd_lowat_fraction != 0) 3539 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 3540 tcp_snd_lowat_fraction; 3541 (void) tcp_maxpsz_set(tcp, B_TRUE); 3542 } 3543 /* 3544 * Note that up till now, acceptor always inherits receive 3545 * window from the listener. But if there is a metrics associated 3546 * with a host, we should use that instead of inheriting it from 3547 * listener. Thus we need to pass this info back to the caller. 3548 */ 3549 if (ire_uinfo->iulp_rpipe > 0) { 3550 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 3551 } else { 3552 /* 3553 * For passive open, set tcp_rwnd to 0 so that the caller 3554 * knows that there is no rpipe metric for this connection. 3555 */ 3556 if (tcp_detached) 3557 tcp->tcp_rwnd = 0; 3558 } 3559 if (ire_uinfo->iulp_rtomax > 0) { 3560 tcp->tcp_second_timer_threshold = ire_uinfo->iulp_rtomax; 3561 } 3562 3563 /* 3564 * Use the metric option settings, iulp_tstamp_ok and iulp_wscale_ok, 3565 * only for active open. What this means is that if the other side 3566 * uses timestamp or window scale option, TCP will also use those 3567 * options. That is for passive open. If the application sets a 3568 * large window, window scale is enabled regardless of the value in 3569 * iulp_wscale_ok. This is the behavior since 2.6. So we keep it. 3570 * The only case left in passive open processing is the check for SACK. 3571 * 3572 * For ECN, it should probably be like SACK. But the current 3573 * value is binary, so we treat it like the other cases. The 3574 * metric only controls active open. For passive open, the ndd 3575 * param, tcp_ecn_permitted, controls the behavior. 3576 */ 3577 if (!tcp_detached) { 3578 /* 3579 * The if check means that the following can only be turned 3580 * on by the metrics only IRE, but not off. 3581 */ 3582 if (ire_uinfo->iulp_tstamp_ok) 3583 tcp->tcp_snd_ts_ok = B_TRUE; 3584 if (ire_uinfo->iulp_wscale_ok) 3585 tcp->tcp_snd_ws_ok = B_TRUE; 3586 if (ire_uinfo->iulp_sack == 2) 3587 tcp->tcp_snd_sack_ok = B_TRUE; 3588 if (ire_uinfo->iulp_ecn_ok) 3589 tcp->tcp_ecn_ok = B_TRUE; 3590 } else { 3591 /* 3592 * Passive open. 3593 * 3594 * As above, the if check means that SACK can only be 3595 * turned on by the metric only IRE. 3596 */ 3597 if (ire_uinfo->iulp_sack > 0) { 3598 tcp->tcp_snd_sack_ok = B_TRUE; 3599 } 3600 } 3601 3602 /* 3603 * XXX: Note that currently, ire_max_frag can be as small as 68 3604 * because of PMTUd. So tcp_mss may go to negative if combined 3605 * length of all those options exceeds 28 bytes. But because 3606 * of the tcp_mss_min check below, we may not have a problem if 3607 * tcp_mss_min is of a reasonable value. The default is 1 so 3608 * the negative problem still exists. And the check defeats PMTUd. 3609 * In fact, if PMTUd finds that the MSS should be smaller than 3610 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 3611 * value. 3612 * 3613 * We do not deal with that now. All those problems related to 3614 * PMTUd will be fixed later. 3615 */ 3616 ASSERT(ire->ire_max_frag != 0); 3617 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 3618 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 3619 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 3620 mss = MIN(mss, IPV6_MIN_MTU); 3621 } 3622 } 3623 3624 /* Sanity check for MSS value. */ 3625 if (tcp->tcp_ipversion == IPV4_VERSION) 3626 mss_max = tcp_mss_max_ipv4; 3627 else 3628 mss_max = tcp_mss_max_ipv6; 3629 3630 if (tcp->tcp_ipversion == IPV6_VERSION && 3631 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 3632 /* 3633 * After receiving an ICMPv6 "packet too big" message with a 3634 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3635 * will insert a 8-byte fragment header in every packet; we 3636 * reduce the MSS by that amount here. 3637 */ 3638 mss -= sizeof (ip6_frag_t); 3639 } 3640 3641 if (tcp->tcp_ipsec_overhead == 0) 3642 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 3643 3644 mss -= tcp->tcp_ipsec_overhead; 3645 3646 if (mss < tcp_mss_min) 3647 mss = tcp_mss_min; 3648 if (mss > mss_max) 3649 mss = mss_max; 3650 3651 /* Note that this is the maximum MSS, excluding all options. */ 3652 tcp->tcp_mss = mss; 3653 3654 /* 3655 * Initialize the ISS here now that we have the full connection ID. 3656 * The RFC 1948 method of initial sequence number generation requires 3657 * knowledge of the full connection ID before setting the ISS. 3658 */ 3659 3660 tcp_iss_init(tcp); 3661 3662 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 3663 tcp->tcp_loopback = B_TRUE; 3664 3665 if (tcp->tcp_ipversion == IPV4_VERSION) { 3666 hsp = tcp_hsp_lookup(tcp->tcp_remote); 3667 } else { 3668 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 3669 } 3670 3671 if (hsp != NULL) { 3672 /* Only modify if we're going to make them bigger */ 3673 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 3674 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 3675 if (tcp_snd_lowat_fraction != 0) 3676 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 3677 tcp_snd_lowat_fraction; 3678 } 3679 3680 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 3681 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 3682 } 3683 3684 /* Copy timestamp flag only for active open */ 3685 if (!tcp_detached) 3686 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 3687 } 3688 3689 if (sire != NULL) 3690 IRE_REFRELE(sire); 3691 3692 /* 3693 * If we got an IRE_CACHE and an ILL, go through their properties; 3694 * otherwise, this is deferred until later when we have an IRE_CACHE. 3695 */ 3696 if (tcp->tcp_loopback || 3697 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 3698 /* 3699 * For incoming, see if this tcp may be MDT-capable. For 3700 * outgoing, this process has been taken care of through 3701 * tcp_rput_other. 3702 */ 3703 tcp_ire_ill_check(tcp, ire, ill, incoming); 3704 tcp->tcp_ire_ill_check_done = B_TRUE; 3705 } 3706 3707 mutex_enter(&connp->conn_lock); 3708 /* 3709 * Make sure that conn is not marked incipient 3710 * for incoming connections. A blind 3711 * removal of incipient flag is cheaper than 3712 * check and removal. 3713 */ 3714 connp->conn_state_flags &= ~CONN_INCIPIENT; 3715 3716 /* Must not cache forwarding table routes. */ 3717 if (ire_cacheable) { 3718 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 3719 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3720 connp->conn_ire_cache = ire; 3721 IRE_UNTRACE_REF(ire); 3722 rw_exit(&ire->ire_bucket->irb_lock); 3723 mutex_exit(&connp->conn_lock); 3724 return (1); 3725 } 3726 rw_exit(&ire->ire_bucket->irb_lock); 3727 } 3728 mutex_exit(&connp->conn_lock); 3729 3730 if (ire->ire_mp == NULL) 3731 ire_refrele(ire); 3732 return (1); 3733 3734 error: 3735 if (ire->ire_mp == NULL) 3736 ire_refrele(ire); 3737 if (sire != NULL) 3738 ire_refrele(sire); 3739 return (0); 3740 } 3741 3742 /* 3743 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 3744 * O_T_BIND_REQ/T_BIND_REQ message. 3745 */ 3746 static void 3747 tcp_bind(tcp_t *tcp, mblk_t *mp) 3748 { 3749 sin_t *sin; 3750 sin6_t *sin6; 3751 mblk_t *mp1; 3752 in_port_t requested_port; 3753 in_port_t allocated_port; 3754 struct T_bind_req *tbr; 3755 boolean_t bind_to_req_port_only; 3756 boolean_t backlog_update = B_FALSE; 3757 boolean_t user_specified; 3758 in6_addr_t v6addr; 3759 ipaddr_t v4addr; 3760 uint_t origipversion; 3761 int err; 3762 queue_t *q = tcp->tcp_wq; 3763 3764 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3765 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3766 if (tcp->tcp_debug) { 3767 (void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE, 3768 "tcp_bind: bad req, len %u", 3769 (uint_t)(mp->b_wptr - mp->b_rptr)); 3770 } 3771 tcp_err_ack(tcp, mp, TPROTO, 0); 3772 return; 3773 } 3774 /* Make sure the largest address fits */ 3775 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3776 if (mp1 == NULL) { 3777 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3778 return; 3779 } 3780 mp = mp1; 3781 tbr = (struct T_bind_req *)mp->b_rptr; 3782 if (tcp->tcp_state >= TCPS_BOUND) { 3783 if ((tcp->tcp_state == TCPS_BOUND || 3784 tcp->tcp_state == TCPS_LISTEN) && 3785 tcp->tcp_conn_req_max != tbr->CONIND_number && 3786 tbr->CONIND_number > 0) { 3787 /* 3788 * Handle listen() increasing CONIND_number. 3789 * This is more "liberal" then what the TPI spec 3790 * requires but is needed to avoid a t_unbind 3791 * when handling listen() since the port number 3792 * might be "stolen" between the unbind and bind. 3793 */ 3794 backlog_update = B_TRUE; 3795 goto do_bind; 3796 } 3797 if (tcp->tcp_debug) { 3798 (void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE, 3799 "tcp_bind: bad state, %d", tcp->tcp_state); 3800 } 3801 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3802 return; 3803 } 3804 origipversion = tcp->tcp_ipversion; 3805 3806 switch (tbr->ADDR_length) { 3807 case 0: /* request for a generic port */ 3808 tbr->ADDR_offset = sizeof (struct T_bind_req); 3809 if (tcp->tcp_family == AF_INET) { 3810 tbr->ADDR_length = sizeof (sin_t); 3811 sin = (sin_t *)&tbr[1]; 3812 *sin = sin_null; 3813 sin->sin_family = AF_INET; 3814 mp->b_wptr = (uchar_t *)&sin[1]; 3815 tcp->tcp_ipversion = IPV4_VERSION; 3816 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3817 } else { 3818 ASSERT(tcp->tcp_family == AF_INET6); 3819 tbr->ADDR_length = sizeof (sin6_t); 3820 sin6 = (sin6_t *)&tbr[1]; 3821 *sin6 = sin6_null; 3822 sin6->sin6_family = AF_INET6; 3823 mp->b_wptr = (uchar_t *)&sin6[1]; 3824 tcp->tcp_ipversion = IPV6_VERSION; 3825 V6_SET_ZERO(v6addr); 3826 } 3827 requested_port = 0; 3828 break; 3829 3830 case sizeof (sin_t): /* Complete IPv4 address */ 3831 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3832 sizeof (sin_t)); 3833 if (sin == NULL || !OK_32PTR((char *)sin)) { 3834 if (tcp->tcp_debug) { 3835 (void) strlog(TCP_MODULE_ID, 0, 1, 3836 SL_ERROR|SL_TRACE, 3837 "tcp_bind: bad address parameter, " 3838 "offset %d, len %d", 3839 tbr->ADDR_offset, tbr->ADDR_length); 3840 } 3841 tcp_err_ack(tcp, mp, TPROTO, 0); 3842 return; 3843 } 3844 /* 3845 * With sockets sockfs will accept bogus sin_family in 3846 * bind() and replace it with the family used in the socket 3847 * call. 3848 */ 3849 if (sin->sin_family != AF_INET || 3850 tcp->tcp_family != AF_INET) { 3851 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3852 return; 3853 } 3854 requested_port = ntohs(sin->sin_port); 3855 tcp->tcp_ipversion = IPV4_VERSION; 3856 v4addr = sin->sin_addr.s_addr; 3857 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3858 break; 3859 3860 case sizeof (sin6_t): /* Complete IPv6 address */ 3861 sin6 = (sin6_t *)mi_offset_param(mp, 3862 tbr->ADDR_offset, sizeof (sin6_t)); 3863 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3864 if (tcp->tcp_debug) { 3865 (void) strlog(TCP_MODULE_ID, 0, 1, 3866 SL_ERROR|SL_TRACE, 3867 "tcp_bind: bad IPv6 address parameter, " 3868 "offset %d, len %d", tbr->ADDR_offset, 3869 tbr->ADDR_length); 3870 } 3871 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3872 return; 3873 } 3874 if (sin6->sin6_family != AF_INET6 || 3875 tcp->tcp_family != AF_INET6) { 3876 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3877 return; 3878 } 3879 requested_port = ntohs(sin6->sin6_port); 3880 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3881 IPV4_VERSION : IPV6_VERSION; 3882 v6addr = sin6->sin6_addr; 3883 break; 3884 3885 default: 3886 if (tcp->tcp_debug) { 3887 (void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE, 3888 "tcp_bind: bad address length, %d", 3889 tbr->ADDR_length); 3890 } 3891 tcp_err_ack(tcp, mp, TBADADDR, 0); 3892 return; 3893 } 3894 tcp->tcp_bound_source_v6 = v6addr; 3895 3896 /* Check for change in ipversion */ 3897 if (origipversion != tcp->tcp_ipversion) { 3898 ASSERT(tcp->tcp_family == AF_INET6); 3899 err = tcp->tcp_ipversion == IPV6_VERSION ? 3900 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3901 if (err) { 3902 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3903 return; 3904 } 3905 } 3906 3907 /* 3908 * Initialize family specific fields. Copy of the src addr. 3909 * in tcp_t is needed for the lookup funcs. 3910 */ 3911 if (tcp->tcp_ipversion == IPV6_VERSION) { 3912 tcp->tcp_ip6h->ip6_src = v6addr; 3913 } else { 3914 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3915 } 3916 tcp->tcp_ip_src_v6 = v6addr; 3917 3918 /* 3919 * For O_T_BIND_REQ: 3920 * Verify that the target port/addr is available, or choose 3921 * another. 3922 * For T_BIND_REQ: 3923 * Verify that the target port/addr is available or fail. 3924 * In both cases when it succeeds the tcp is inserted in the 3925 * bind hash table. This ensures that the operation is atomic 3926 * under the lock on the hash bucket. 3927 */ 3928 bind_to_req_port_only = requested_port != 0 && 3929 tbr->PRIM_type != O_T_BIND_REQ; 3930 /* 3931 * Get a valid port (within the anonymous range and should not 3932 * be a privileged one) to use if the user has not given a port. 3933 * If multiple threads are here, they may all start with 3934 * with the same initial port. But, it should be fine as long as 3935 * tcp_bindi will ensure that no two threads will be assigned 3936 * the same port. 3937 * 3938 * NOTE: XXX If a privileged process asks for an anonymous port, we 3939 * still check for ports only in the range > tcp_smallest_non_priv_port, 3940 * unless TCP_ANONPRIVBIND option is set. 3941 */ 3942 if (requested_port == 0) { 3943 requested_port = tcp->tcp_anon_priv_bind ? 3944 tcp_get_next_priv_port() : 3945 tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 3946 user_specified = B_FALSE; 3947 } else { 3948 int i; 3949 boolean_t priv = B_FALSE; 3950 /* 3951 * If the requested_port is in the well-known privileged range, 3952 * verify that the stream was opened by a privileged user. 3953 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3954 * but instead the code relies on: 3955 * - the fact that the address of the array and its size never 3956 * changes 3957 * - the atomic assignment of the elements of the array 3958 */ 3959 if (requested_port < tcp_smallest_nonpriv_port) { 3960 priv = B_TRUE; 3961 } else { 3962 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3963 if (requested_port == 3964 tcp_g_epriv_ports[i]) { 3965 priv = B_TRUE; 3966 break; 3967 } 3968 } 3969 } 3970 if (priv) { 3971 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 3972 3973 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3974 if (tcp->tcp_debug) { 3975 (void) strlog(TCP_MODULE_ID, 0, 1, 3976 SL_ERROR|SL_TRACE, 3977 "tcp_bind: no priv for port %d", 3978 requested_port); 3979 } 3980 tcp_err_ack(tcp, mp, TACCES, 0); 3981 return; 3982 } 3983 } 3984 user_specified = B_TRUE; 3985 } 3986 3987 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3988 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3989 3990 if (allocated_port == 0) { 3991 if (bind_to_req_port_only) { 3992 if (tcp->tcp_debug) { 3993 (void) strlog(TCP_MODULE_ID, 0, 1, 3994 SL_ERROR|SL_TRACE, 3995 "tcp_bind: requested addr busy"); 3996 } 3997 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3998 } else { 3999 /* If we are out of ports, fail the bind. */ 4000 if (tcp->tcp_debug) { 4001 (void) strlog(TCP_MODULE_ID, 0, 1, 4002 SL_ERROR|SL_TRACE, 4003 "tcp_bind: out of ports?"); 4004 } 4005 tcp_err_ack(tcp, mp, TNOADDR, 0); 4006 } 4007 return; 4008 } 4009 ASSERT(tcp->tcp_state == TCPS_BOUND); 4010 do_bind: 4011 if (!backlog_update) { 4012 if (tcp->tcp_family == AF_INET) 4013 sin->sin_port = htons(allocated_port); 4014 else 4015 sin6->sin6_port = htons(allocated_port); 4016 } 4017 if (tcp->tcp_family == AF_INET) { 4018 if (tbr->CONIND_number != 0) { 4019 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 4020 sizeof (sin_t)); 4021 } else { 4022 /* Just verify the local IP address */ 4023 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 4024 } 4025 } else { 4026 if (tbr->CONIND_number != 0) { 4027 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 4028 sizeof (sin6_t)); 4029 } else { 4030 /* Just verify the local IP address */ 4031 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 4032 IPV6_ADDR_LEN); 4033 } 4034 } 4035 if (!mp1) { 4036 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 4037 return; 4038 } 4039 4040 tbr->PRIM_type = T_BIND_ACK; 4041 mp->b_datap->db_type = M_PCPROTO; 4042 4043 /* Chain in the reply mp for tcp_rput() */ 4044 mp1->b_cont = mp; 4045 mp = mp1; 4046 4047 tcp->tcp_conn_req_max = tbr->CONIND_number; 4048 if (tcp->tcp_conn_req_max) { 4049 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 4050 tcp->tcp_conn_req_max = tcp_conn_req_min; 4051 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 4052 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 4053 /* 4054 * If this is a listener, do not reset the eager list 4055 * and other stuffs. Note that we don't check if the 4056 * existing eager list meets the new tcp_conn_req_max 4057 * requirement. 4058 */ 4059 if (tcp->tcp_state != TCPS_LISTEN) { 4060 tcp->tcp_state = TCPS_LISTEN; 4061 /* Initialize the chain. Don't need the eager_lock */ 4062 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4063 tcp->tcp_second_ctimer_threshold = 4064 tcp_ip_abort_linterval; 4065 } 4066 } 4067 4068 /* 4069 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 4070 * processing continues in tcp_rput_other(). 4071 */ 4072 if (tcp->tcp_family == AF_INET6) { 4073 ASSERT(tcp->tcp_connp->conn_af_isv6); 4074 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 4075 } else { 4076 ASSERT(!tcp->tcp_connp->conn_af_isv6); 4077 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 4078 } 4079 /* 4080 * If the bind cannot complete immediately 4081 * IP will arrange to call tcp_rput_other 4082 * when the bind completes. 4083 */ 4084 if (mp != NULL) { 4085 tcp_rput_other(tcp, mp); 4086 } else { 4087 /* 4088 * Bind will be resumed later. Need to ensure 4089 * that conn doesn't disappear when that happens. 4090 * This will be decremented in ip_resume_tcp_bind(). 4091 */ 4092 CONN_INC_REF(tcp->tcp_connp); 4093 } 4094 } 4095 4096 4097 /* 4098 * If the "bind_to_req_port_only" parameter is set, if the requested port 4099 * number is available, return it, If not return 0 4100 * 4101 * If "bind_to_req_port_only" parameter is not set and 4102 * If the requested port number is available, return it. If not, return 4103 * the first anonymous port we happen across. If no anonymous ports are 4104 * available, return 0. addr is the requested local address, if any. 4105 * 4106 * In either case, when succeeding update the tcp_t to record the port number 4107 * and insert it in the bind hash table. 4108 * 4109 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 4110 * without setting SO_REUSEADDR. This is needed so that they 4111 * can be viewed as two independent transport protocols. 4112 */ 4113 static in_port_t 4114 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 4115 int reuseaddr, boolean_t quick_connect, 4116 boolean_t bind_to_req_port_only, boolean_t user_specified) 4117 { 4118 /* number of times we have run around the loop */ 4119 int count = 0; 4120 /* maximum number of times to run around the loop */ 4121 int loopmax; 4122 zoneid_t zoneid = tcp->tcp_connp->conn_zoneid; 4123 4124 /* 4125 * Lookup for free addresses is done in a loop and "loopmax" 4126 * influences how long we spin in the loop 4127 */ 4128 if (bind_to_req_port_only) { 4129 /* 4130 * If the requested port is busy, don't bother to look 4131 * for a new one. Setting loop maximum count to 1 has 4132 * that effect. 4133 */ 4134 loopmax = 1; 4135 } else { 4136 /* 4137 * If the requested port is busy, look for a free one 4138 * in the anonymous port range. 4139 * Set loopmax appropriately so that one does not look 4140 * forever in the case all of the anonymous ports are in use. 4141 */ 4142 if (tcp->tcp_anon_priv_bind) { 4143 /* 4144 * loopmax = 4145 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 4146 */ 4147 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 4148 } else { 4149 loopmax = (tcp_largest_anon_port - 4150 tcp_smallest_anon_port + 1); 4151 } 4152 } 4153 do { 4154 uint16_t lport; 4155 tf_t *tbf; 4156 tcp_t *ltcp; 4157 4158 lport = htons(port); 4159 4160 /* 4161 * Ensure that the tcp_t is not currently in the bind hash. 4162 * Hold the lock on the hash bucket to ensure that 4163 * the duplicate check plus the insertion is an atomic 4164 * operation. 4165 * 4166 * This function does an inline lookup on the bind hash list 4167 * Make sure that we access only members of tcp_t 4168 * and that we don't look at tcp_tcp, since we are not 4169 * doing a CONN_INC_REF. 4170 */ 4171 tcp_bind_hash_remove(tcp); 4172 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 4173 mutex_enter(&tbf->tf_lock); 4174 for (ltcp = tbf->tf_tcp; ltcp != NULL; 4175 ltcp = ltcp->tcp_bind_hash) { 4176 if (lport != ltcp->tcp_lport || 4177 ltcp->tcp_connp->conn_zoneid != zoneid) { 4178 continue; 4179 } 4180 4181 /* 4182 * If TCP_EXCLBIND is set for either the bound or 4183 * binding endpoint, the semantics of bind 4184 * is changed according to the following. 4185 * 4186 * spec = specified address (v4 or v6) 4187 * unspec = unspecified address (v4 or v6) 4188 * A = specified addresses are different for endpoints 4189 * 4190 * bound bind to allowed 4191 * ------------------------------------- 4192 * unspec unspec no 4193 * unspec spec no 4194 * spec unspec no 4195 * spec spec yes if A 4196 * 4197 * Note: 4198 * 4199 * 1. Because of TLI semantics, an endpoint can go 4200 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 4201 * TCPS_BOUND, depending on whether it is originally 4202 * a listener or not. That is why we need to check 4203 * for states greater than or equal to TCPS_BOUND 4204 * here. 4205 * 4206 * 2. Ideally, we should only check for state equals 4207 * to TCPS_LISTEN. And the following check should be 4208 * added. 4209 * 4210 * if (ltcp->tcp_state == TCPS_LISTEN || 4211 * !reuseaddr || !ltcp->tcp_reuseaddr) { 4212 * ... 4213 * } 4214 * 4215 * The semantics will be changed to this. If the 4216 * endpoint on the list is in state not equal to 4217 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 4218 * set, let the bind succeed. 4219 * 4220 * But because of (1), we cannot do that now. If 4221 * in future, we can change this going back semantics, 4222 * we can add the above check. 4223 */ 4224 if (ltcp->tcp_exclbind || tcp->tcp_exclbind) { 4225 if (V6_OR_V4_INADDR_ANY( 4226 ltcp->tcp_bound_source_v6) || 4227 V6_OR_V4_INADDR_ANY(*laddr) || 4228 IN6_ARE_ADDR_EQUAL(laddr, 4229 <cp->tcp_bound_source_v6)) { 4230 break; 4231 } 4232 continue; 4233 } 4234 4235 /* 4236 * Check ipversion to allow IPv4 and IPv6 sockets to 4237 * have disjoint port number spaces, if *_EXCLBIND 4238 * is not set and only if the application binds to a 4239 * specific port. We use the same autoassigned port 4240 * number space for IPv4 and IPv6 sockets. 4241 */ 4242 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 4243 bind_to_req_port_only) 4244 continue; 4245 4246 /* 4247 * Ideally, we should make sure that the source 4248 * address, remote address, and remote port in the 4249 * four tuple for this tcp-connection is unique. 4250 * However, trying to find out the local source 4251 * address would require too much code duplication 4252 * with IP, since IP needs needs to have that code 4253 * to support userland TCP implementations. 4254 */ 4255 if (quick_connect && 4256 (ltcp->tcp_state > TCPS_LISTEN) && 4257 ((tcp->tcp_fport != ltcp->tcp_fport) || 4258 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 4259 <cp->tcp_remote_v6))) 4260 continue; 4261 4262 if (!reuseaddr) { 4263 /* 4264 * No socket option SO_REUSEADDR. 4265 * If existing port is bound to 4266 * a non-wildcard IP address 4267 * and the requesting stream is 4268 * bound to a distinct 4269 * different IP addresses 4270 * (non-wildcard, also), keep 4271 * going. 4272 */ 4273 if (!V6_OR_V4_INADDR_ANY(*laddr) && 4274 !V6_OR_V4_INADDR_ANY( 4275 ltcp->tcp_bound_source_v6) && 4276 !IN6_ARE_ADDR_EQUAL(laddr, 4277 <cp->tcp_bound_source_v6)) 4278 continue; 4279 if (ltcp->tcp_state >= TCPS_BOUND) { 4280 /* 4281 * This port is being used and 4282 * its state is >= TCPS_BOUND, 4283 * so we can't bind to it. 4284 */ 4285 break; 4286 } 4287 } else { 4288 /* 4289 * socket option SO_REUSEADDR is set on the 4290 * binding tcp_t. 4291 * 4292 * If two streams are bound to 4293 * same IP address or both addr 4294 * and bound source are wildcards 4295 * (INADDR_ANY), we want to stop 4296 * searching. 4297 * We have found a match of IP source 4298 * address and source port, which is 4299 * refused regardless of the 4300 * SO_REUSEADDR setting, so we break. 4301 */ 4302 if (IN6_ARE_ADDR_EQUAL(laddr, 4303 <cp->tcp_bound_source_v6) && 4304 (ltcp->tcp_state == TCPS_LISTEN || 4305 ltcp->tcp_state == TCPS_BOUND)) 4306 break; 4307 } 4308 } 4309 if (ltcp != NULL) { 4310 /* The port number is busy */ 4311 mutex_exit(&tbf->tf_lock); 4312 } else { 4313 /* 4314 * This port is ours. Insert in fanout and mark as 4315 * bound to prevent others from getting the port 4316 * number. 4317 */ 4318 tcp->tcp_state = TCPS_BOUND; 4319 tcp->tcp_lport = htons(port); 4320 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 4321 4322 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 4323 tcp->tcp_lport)] == tbf); 4324 tcp_bind_hash_insert(tbf, tcp, 1); 4325 4326 mutex_exit(&tbf->tf_lock); 4327 4328 /* 4329 * We don't want tcp_next_port_to_try to "inherit" 4330 * a port number supplied by the user in a bind. 4331 */ 4332 if (user_specified) 4333 return (port); 4334 4335 /* 4336 * This is the only place where tcp_next_port_to_try 4337 * is updated. After the update, it may or may not 4338 * be in the valid range. 4339 */ 4340 if (!tcp->tcp_anon_priv_bind) 4341 tcp_next_port_to_try = port + 1; 4342 return (port); 4343 } 4344 4345 if (tcp->tcp_anon_priv_bind) { 4346 port = tcp_get_next_priv_port(); 4347 } else { 4348 if (count == 0 && user_specified) { 4349 /* 4350 * We may have to return an anonymous port. So 4351 * get one to start with. 4352 */ 4353 port = 4354 tcp_update_next_port(tcp_next_port_to_try, 4355 B_TRUE); 4356 user_specified = B_FALSE; 4357 } else { 4358 port = tcp_update_next_port(port + 1, B_FALSE); 4359 } 4360 } 4361 4362 /* 4363 * Don't let this loop run forever in the case where 4364 * all of the anonymous ports are in use. 4365 */ 4366 } while (++count < loopmax); 4367 return (0); 4368 } 4369 4370 /* 4371 * We are dying for some reason. Try to do it gracefully. (May be called 4372 * as writer.) 4373 * 4374 * Return -1 if the structure was not cleaned up (if the cleanup had to be 4375 * done by a service procedure). 4376 * TBD - Should the return value distinguish between the tcp_t being 4377 * freed and it being reinitialized? 4378 */ 4379 static int 4380 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 4381 { 4382 mblk_t *mp; 4383 queue_t *q; 4384 4385 TCP_CLD_STAT(tag); 4386 4387 #if TCP_TAG_CLEAN_DEATH 4388 tcp->tcp_cleandeathtag = tag; 4389 #endif 4390 4391 if (tcp->tcp_linger_tid != 0 && 4392 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4393 tcp_stop_lingering(tcp); 4394 } 4395 4396 ASSERT(tcp != NULL); 4397 ASSERT((tcp->tcp_family == AF_INET && 4398 tcp->tcp_ipversion == IPV4_VERSION) || 4399 (tcp->tcp_family == AF_INET6 && 4400 (tcp->tcp_ipversion == IPV4_VERSION || 4401 tcp->tcp_ipversion == IPV6_VERSION))); 4402 4403 if (TCP_IS_DETACHED(tcp)) { 4404 if (tcp->tcp_hard_binding) { 4405 /* 4406 * Its an eager that we are dealing with. We close the 4407 * eager but in case a conn_ind has already gone to the 4408 * listener, let tcp_accept_finish() send a discon_ind 4409 * to the listener and drop the last reference. If the 4410 * listener doesn't even know about the eager i.e. the 4411 * conn_ind hasn't gone up, blow away the eager and drop 4412 * the last reference as well. If the conn_ind has gone 4413 * up, state should be BOUND. tcp_accept_finish 4414 * will figure out that the connection has received a 4415 * RST and will send a DISCON_IND to the application. 4416 */ 4417 tcp_closei_local(tcp); 4418 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 4419 CONN_DEC_REF(tcp->tcp_connp); 4420 } else { 4421 tcp->tcp_state = TCPS_BOUND; 4422 } 4423 } else { 4424 tcp_close_detached(tcp); 4425 } 4426 return (0); 4427 } 4428 4429 TCP_STAT(tcp_clean_death_nondetached); 4430 4431 /* 4432 * If T_ORDREL_IND has not been sent yet (done when service routine 4433 * is run) postpone cleaning up the endpoint until service routine 4434 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 4435 * client_errno since tcp_close uses the client_errno field. 4436 */ 4437 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 4438 if (err != 0) 4439 tcp->tcp_client_errno = err; 4440 4441 tcp->tcp_deferred_clean_death = B_TRUE; 4442 return (-1); 4443 } 4444 4445 q = tcp->tcp_rq; 4446 4447 /* Trash all inbound data */ 4448 flushq(q, FLUSHALL); 4449 4450 /* 4451 * If we are at least part way open and there is error 4452 * (err==0 implies no error) 4453 * notify our client by a T_DISCON_IND. 4454 */ 4455 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 4456 if (tcp->tcp_state >= TCPS_ESTABLISHED && 4457 !TCP_IS_SOCKET(tcp)) { 4458 /* 4459 * Send M_FLUSH according to TPI. Because sockets will 4460 * (and must) ignore FLUSHR we do that only for TPI 4461 * endpoints and sockets in STREAMS mode. 4462 */ 4463 (void) putnextctl1(q, M_FLUSH, FLUSHR); 4464 } 4465 if (tcp->tcp_debug) { 4466 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE|SL_ERROR, 4467 "tcp_clean_death: discon err %d", err); 4468 } 4469 mp = mi_tpi_discon_ind(NULL, err, 0); 4470 if (mp != NULL) { 4471 putnext(q, mp); 4472 } else { 4473 if (tcp->tcp_debug) { 4474 (void) strlog(TCP_MODULE_ID, 0, 1, 4475 SL_ERROR|SL_TRACE, 4476 "tcp_clean_death, sending M_ERROR"); 4477 } 4478 (void) putnextctl1(q, M_ERROR, EPROTO); 4479 } 4480 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 4481 /* SYN_SENT or SYN_RCVD */ 4482 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4483 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 4484 /* ESTABLISHED or CLOSE_WAIT */ 4485 BUMP_MIB(&tcp_mib, tcpEstabResets); 4486 } 4487 } 4488 4489 tcp_reinit(tcp); 4490 return (-1); 4491 } 4492 4493 /* 4494 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 4495 * to expire, stop the wait and finish the close. 4496 */ 4497 static void 4498 tcp_stop_lingering(tcp_t *tcp) 4499 { 4500 clock_t delta = 0; 4501 4502 tcp->tcp_linger_tid = 0; 4503 if (tcp->tcp_state > TCPS_LISTEN) { 4504 tcp_acceptor_hash_remove(tcp); 4505 if (tcp->tcp_flow_stopped) { 4506 tcp_clrqfull(tcp); 4507 } 4508 4509 if (tcp->tcp_timer_tid != 0) { 4510 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4511 tcp->tcp_timer_tid = 0; 4512 } 4513 /* 4514 * Need to cancel those timers which will not be used when 4515 * TCP is detached. This has to be done before the tcp_wq 4516 * is set to the global queue. 4517 */ 4518 tcp_timers_stop(tcp); 4519 4520 4521 tcp->tcp_detached = B_TRUE; 4522 tcp->tcp_rq = tcp_g_q; 4523 tcp->tcp_wq = WR(tcp_g_q); 4524 4525 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4526 tcp_time_wait_append(tcp); 4527 TCP_DBGSTAT(tcp_detach_time_wait); 4528 goto finish; 4529 } 4530 4531 /* 4532 * If delta is zero the timer event wasn't executed and was 4533 * successfully canceled. In this case we need to restart it 4534 * with the minimal delta possible. 4535 */ 4536 if (delta >= 0) { 4537 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4538 delta ? delta : 1); 4539 } 4540 } else { 4541 tcp_closei_local(tcp); 4542 CONN_DEC_REF(tcp->tcp_connp); 4543 } 4544 finish: 4545 /* Signal closing thread that it can complete close */ 4546 mutex_enter(&tcp->tcp_closelock); 4547 tcp->tcp_detached = B_TRUE; 4548 tcp->tcp_rq = tcp_g_q; 4549 tcp->tcp_wq = WR(tcp_g_q); 4550 tcp->tcp_closed = 1; 4551 cv_signal(&tcp->tcp_closecv); 4552 mutex_exit(&tcp->tcp_closelock); 4553 } 4554 4555 /* 4556 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 4557 * expires. 4558 */ 4559 static void 4560 tcp_close_linger_timeout(void *arg) 4561 { 4562 conn_t *connp = (conn_t *)arg; 4563 tcp_t *tcp = connp->conn_tcp; 4564 4565 tcp->tcp_client_errno = ETIMEDOUT; 4566 tcp_stop_lingering(tcp); 4567 } 4568 4569 static int 4570 tcp_close(queue_t *q, int flags) 4571 { 4572 conn_t *connp = Q_TO_CONN(q); 4573 tcp_t *tcp = connp->conn_tcp; 4574 mblk_t *mp = &tcp->tcp_closemp; 4575 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4576 4577 ASSERT(WR(q)->q_next == NULL); 4578 ASSERT(connp->conn_ref >= 2); 4579 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 4580 4581 /* 4582 * We are being closed as /dev/tcp or /dev/tcp6. 4583 * 4584 * Mark the conn as closing. ill_pending_mp_add will not 4585 * add any mp to the pending mp list, after this conn has 4586 * started closing. Same for sq_pending_mp_add 4587 */ 4588 mutex_enter(&connp->conn_lock); 4589 connp->conn_state_flags |= CONN_CLOSING; 4590 if (connp->conn_oper_pending_ill != NULL) 4591 conn_ioctl_cleanup_reqd = B_TRUE; 4592 CONN_INC_REF_LOCKED(connp); 4593 mutex_exit(&connp->conn_lock); 4594 tcp->tcp_closeflags = (uint8_t)flags; 4595 ASSERT(connp->conn_ref >= 3); 4596 4597 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4598 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4599 4600 mutex_enter(&tcp->tcp_closelock); 4601 while (!tcp->tcp_closed) 4602 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 4603 mutex_exit(&tcp->tcp_closelock); 4604 /* 4605 * In the case of listener streams that have eagers in the q or q0 4606 * we wait for the eagers to drop their reference to us. tcp_rq and 4607 * tcp_wq of the eagers point to our queues. By waiting for the 4608 * refcnt to drop to 1, we are sure that the eagers have cleaned 4609 * up their queue pointers and also dropped their references to us. 4610 */ 4611 if (tcp->tcp_wait_for_eagers) { 4612 mutex_enter(&connp->conn_lock); 4613 while (connp->conn_ref != 1) { 4614 cv_wait(&connp->conn_cv, &connp->conn_lock); 4615 } 4616 mutex_exit(&connp->conn_lock); 4617 } 4618 /* 4619 * ioctl cleanup. The mp is queued in the 4620 * ill_pending_mp or in the sq_pending_mp. 4621 */ 4622 if (conn_ioctl_cleanup_reqd) 4623 conn_ioctl_cleanup(connp); 4624 4625 qprocsoff(q); 4626 inet_minor_free(ip_minor_arena, connp->conn_dev); 4627 4628 ASSERT(connp->conn_cred != NULL); 4629 crfree(connp->conn_cred); 4630 tcp->tcp_cred = connp->conn_cred = NULL; 4631 tcp->tcp_cpid = -1; 4632 4633 /* 4634 * Drop IP's reference on the conn. This is the last reference 4635 * on the connp if the state was less than established. If the 4636 * connection has gone into timewait state, then we will have 4637 * one ref for the TCP and one more ref (total of two) for the 4638 * classifier connected hash list (a timewait connections stays 4639 * in connected hash till closed). 4640 * 4641 * We can't assert the references because there might be other 4642 * transient reference places because of some walkers or queued 4643 * packets in squeue for the timewait state. 4644 */ 4645 CONN_DEC_REF(connp); 4646 q->q_ptr = WR(q)->q_ptr = NULL; 4647 return (0); 4648 } 4649 4650 int 4651 tcp_modclose(queue_t *q) 4652 { 4653 conn_t *connp = Q_TO_CONN(q); 4654 ASSERT((connp->conn_flags & IPCL_TCPMOD) != 0); 4655 4656 qprocsoff(q); 4657 4658 if (connp->conn_cred != NULL) { 4659 crfree(connp->conn_cred); 4660 connp->conn_cred = NULL; 4661 } 4662 CONN_DEC_REF(connp); 4663 q->q_ptr = WR(q)->q_ptr = NULL; 4664 return (0); 4665 } 4666 4667 static int 4668 tcpclose_accept(queue_t *q) 4669 { 4670 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4671 4672 /* 4673 * We had opened an acceptor STREAM for sockfs which is 4674 * now being closed due to some error. 4675 */ 4676 qprocsoff(q); 4677 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 4678 q->q_ptr = WR(q)->q_ptr = NULL; 4679 return (0); 4680 } 4681 4682 4683 /* 4684 * Called by streams close routine via squeues when our client blows off her 4685 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4686 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4687 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4688 * acked. 4689 * 4690 * NOTE: tcp_close potentially returns error when lingering. 4691 * However, the stream head currently does not pass these errors 4692 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4693 * errors to the application (from tsleep()) and not errors 4694 * like ECONNRESET caused by receiving a reset packet. 4695 */ 4696 4697 /* ARGSUSED */ 4698 static void 4699 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4700 { 4701 char *msg; 4702 conn_t *connp = (conn_t *)arg; 4703 tcp_t *tcp = connp->conn_tcp; 4704 clock_t delta = 0; 4705 4706 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4707 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4708 4709 /* Cancel any pending timeout */ 4710 if (tcp->tcp_ordrelid != 0) { 4711 if (tcp->tcp_timeout) { 4712 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4713 } 4714 tcp->tcp_ordrelid = 0; 4715 tcp->tcp_timeout = B_FALSE; 4716 } 4717 4718 mutex_enter(&tcp->tcp_eager_lock); 4719 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4720 /* Cleanup for listener */ 4721 tcp_eager_cleanup(tcp, 0); 4722 tcp->tcp_wait_for_eagers = 1; 4723 } 4724 mutex_exit(&tcp->tcp_eager_lock); 4725 4726 connp->conn_mdt_ok = B_FALSE; 4727 tcp->tcp_mdt = B_FALSE; 4728 4729 msg = NULL; 4730 switch (tcp->tcp_state) { 4731 case TCPS_CLOSED: 4732 case TCPS_IDLE: 4733 case TCPS_BOUND: 4734 case TCPS_LISTEN: 4735 break; 4736 case TCPS_SYN_SENT: 4737 msg = "tcp_close, during connect"; 4738 break; 4739 case TCPS_SYN_RCVD: 4740 /* 4741 * Close during the connect 3-way handshake 4742 * but here there may or may not be pending data 4743 * already on queue. Process almost same as in 4744 * the ESTABLISHED state. 4745 */ 4746 /* FALLTHRU */ 4747 default: 4748 if (tcp->tcp_fused) 4749 tcp_unfuse(tcp); 4750 4751 /* 4752 * If SO_LINGER has set a zero linger time, abort the 4753 * connection with a reset. 4754 */ 4755 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4756 msg = "tcp_close, zero lingertime"; 4757 break; 4758 } 4759 4760 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4761 /* 4762 * Abort connection if there is unread data queued. 4763 */ 4764 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4765 msg = "tcp_close, unread data"; 4766 break; 4767 } 4768 /* 4769 * tcp_hard_bound is now cleared thus all packets go through 4770 * tcp_lookup. This fact is used by tcp_detach below. 4771 * 4772 * We have done a qwait() above which could have possibly 4773 * drained more messages in turn causing transition to a 4774 * different state. Check whether we have to do the rest 4775 * of the processing or not. 4776 */ 4777 if (tcp->tcp_state <= TCPS_LISTEN) 4778 break; 4779 4780 /* 4781 * Transmit the FIN before detaching the tcp_t. 4782 * After tcp_detach returns this queue/perimeter 4783 * no longer owns the tcp_t thus others can modify it. 4784 */ 4785 (void) tcp_xmit_end(tcp); 4786 4787 /* 4788 * If lingering on close then wait until the fin is acked, 4789 * the SO_LINGER time passes, or a reset is sent/received. 4790 */ 4791 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4792 !(tcp->tcp_fin_acked) && 4793 tcp->tcp_state >= TCPS_ESTABLISHED) { 4794 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4795 tcp->tcp_client_errno = EWOULDBLOCK; 4796 } else if (tcp->tcp_client_errno == 0) { 4797 4798 ASSERT(tcp->tcp_linger_tid == 0); 4799 4800 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4801 tcp_close_linger_timeout, 4802 tcp->tcp_lingertime * hz); 4803 4804 /* tcp_close_linger_timeout will finish close */ 4805 if (tcp->tcp_linger_tid == 0) 4806 tcp->tcp_client_errno = ENOSR; 4807 else 4808 return; 4809 } 4810 4811 /* 4812 * Check if we need to detach or just close 4813 * the instance. 4814 */ 4815 if (tcp->tcp_state <= TCPS_LISTEN) 4816 break; 4817 } 4818 4819 /* 4820 * Make sure that no other thread will access the tcp_rq of 4821 * this instance (through lookups etc.) as tcp_rq will go 4822 * away shortly. 4823 */ 4824 tcp_acceptor_hash_remove(tcp); 4825 4826 if (tcp->tcp_flow_stopped) { 4827 tcp_clrqfull(tcp); 4828 } 4829 4830 if (tcp->tcp_timer_tid != 0) { 4831 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4832 tcp->tcp_timer_tid = 0; 4833 } 4834 /* 4835 * Need to cancel those timers which will not be used when 4836 * TCP is detached. This has to be done before the tcp_wq 4837 * is set to the global queue. 4838 */ 4839 tcp_timers_stop(tcp); 4840 4841 tcp->tcp_detached = B_TRUE; 4842 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4843 tcp_time_wait_append(tcp); 4844 TCP_DBGSTAT(tcp_detach_time_wait); 4845 ASSERT(connp->conn_ref >= 3); 4846 goto finish; 4847 } 4848 4849 /* 4850 * If delta is zero the timer event wasn't executed and was 4851 * successfully canceled. In this case we need to restart it 4852 * with the minimal delta possible. 4853 */ 4854 if (delta >= 0) 4855 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4856 delta ? delta : 1); 4857 4858 ASSERT(connp->conn_ref >= 3); 4859 goto finish; 4860 } 4861 4862 /* Detach did not complete. Still need to remove q from stream. */ 4863 if (msg) { 4864 if (tcp->tcp_state == TCPS_ESTABLISHED || 4865 tcp->tcp_state == TCPS_CLOSE_WAIT) 4866 BUMP_MIB(&tcp_mib, tcpEstabResets); 4867 if (tcp->tcp_state == TCPS_SYN_SENT || 4868 tcp->tcp_state == TCPS_SYN_RCVD) 4869 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4870 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4871 } 4872 4873 tcp_closei_local(tcp); 4874 CONN_DEC_REF(connp); 4875 ASSERT(connp->conn_ref >= 2); 4876 4877 finish: 4878 /* 4879 * Although packets are always processed on the correct 4880 * tcp's perimeter and access is serialized via squeue's, 4881 * IP still needs a queue when sending packets in time_wait 4882 * state so use WR(tcp_g_q) till ip_output() can be 4883 * changed to deal with just connp. For read side, we 4884 * could have set tcp_rq to NULL but there are some cases 4885 * in tcp_rput_data() from early days of this code which 4886 * do a putnext without checking if tcp is closed. Those 4887 * need to be identified before both tcp_rq and tcp_wq 4888 * can be set to NULL and tcp_q_q can disappear forever. 4889 */ 4890 mutex_enter(&tcp->tcp_closelock); 4891 /* 4892 * Don't change the queues in the case of a listener that has 4893 * eagers in its q or q0. It could surprise the eagers. 4894 * Instead wait for the eagers outside the squeue. 4895 */ 4896 if (!tcp->tcp_wait_for_eagers) { 4897 tcp->tcp_detached = B_TRUE; 4898 tcp->tcp_rq = tcp_g_q; 4899 tcp->tcp_wq = WR(tcp_g_q); 4900 } 4901 /* Signal tcp_close() to finish closing. */ 4902 tcp->tcp_closed = 1; 4903 cv_signal(&tcp->tcp_closecv); 4904 mutex_exit(&tcp->tcp_closelock); 4905 } 4906 4907 4908 /* 4909 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4910 * Some stream heads get upset if they see these later on as anything but NULL. 4911 */ 4912 static void 4913 tcp_close_mpp(mblk_t **mpp) 4914 { 4915 mblk_t *mp; 4916 4917 if ((mp = *mpp) != NULL) { 4918 do { 4919 mp->b_next = NULL; 4920 mp->b_prev = NULL; 4921 } while ((mp = mp->b_cont) != NULL); 4922 4923 mp = *mpp; 4924 *mpp = NULL; 4925 freemsg(mp); 4926 } 4927 } 4928 4929 /* Do detached close. */ 4930 static void 4931 tcp_close_detached(tcp_t *tcp) 4932 { 4933 if (tcp->tcp_fused) 4934 tcp_unfuse(tcp); 4935 4936 /* 4937 * Clustering code serializes TCP disconnect callbacks and 4938 * cluster tcp list walks by blocking a TCP disconnect callback 4939 * if a cluster tcp list walk is in progress. This ensures 4940 * accurate accounting of TCPs in the cluster code even though 4941 * the TCP list walk itself is not atomic. 4942 */ 4943 tcp_closei_local(tcp); 4944 CONN_DEC_REF(tcp->tcp_connp); 4945 } 4946 4947 /* 4948 * Stop all TCP timers, and free the timer mblks if requested. 4949 */ 4950 static void 4951 tcp_timers_stop(tcp_t *tcp) 4952 { 4953 if (tcp->tcp_timer_tid != 0) { 4954 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4955 tcp->tcp_timer_tid = 0; 4956 } 4957 if (tcp->tcp_ka_tid != 0) { 4958 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4959 tcp->tcp_ka_tid = 0; 4960 } 4961 if (tcp->tcp_ack_tid != 0) { 4962 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4963 tcp->tcp_ack_tid = 0; 4964 } 4965 if (tcp->tcp_push_tid != 0) { 4966 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4967 tcp->tcp_push_tid = 0; 4968 } 4969 } 4970 4971 /* 4972 * The tcp_t is going away. Remove it from all lists and set it 4973 * to TCPS_CLOSED. The freeing up of memory is deferred until 4974 * tcp_inactive. This is needed since a thread in tcp_rput might have 4975 * done a CONN_INC_REF on this structure before it was removed from the 4976 * hashes. 4977 */ 4978 static void 4979 tcp_closei_local(tcp_t *tcp) 4980 { 4981 ire_t *ire; 4982 conn_t *connp = tcp->tcp_connp; 4983 4984 if (!TCP_IS_SOCKET(tcp)) 4985 tcp_acceptor_hash_remove(tcp); 4986 4987 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 4988 tcp->tcp_ibsegs = 0; 4989 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 4990 tcp->tcp_obsegs = 0; 4991 /* 4992 * If we are an eager connection hanging off a listener that 4993 * hasn't formally accepted the connection yet, get off his 4994 * list and blow off any data that we have accumulated. 4995 */ 4996 if (tcp->tcp_listener != NULL) { 4997 tcp_t *listener = tcp->tcp_listener; 4998 mutex_enter(&listener->tcp_eager_lock); 4999 /* 5000 * tcp_eager_conn_ind == NULL means that the 5001 * conn_ind has already gone to listener. At 5002 * this point, eager will be closed but we 5003 * leave it in listeners eager list so that 5004 * if listener decides to close without doing 5005 * accept, we can clean this up. In tcp_wput_accept 5006 * we take case of the case of accept on closed 5007 * eager. 5008 */ 5009 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 5010 tcp_eager_unlink(tcp); 5011 mutex_exit(&listener->tcp_eager_lock); 5012 /* 5013 * We don't want to have any pointers to the 5014 * listener queue, after we have released our 5015 * reference on the listener 5016 */ 5017 tcp->tcp_rq = tcp_g_q; 5018 tcp->tcp_wq = WR(tcp_g_q); 5019 CONN_DEC_REF(listener->tcp_connp); 5020 } else { 5021 mutex_exit(&listener->tcp_eager_lock); 5022 } 5023 } 5024 5025 /* Stop all the timers */ 5026 tcp_timers_stop(tcp); 5027 5028 if (tcp->tcp_state == TCPS_LISTEN) { 5029 if (tcp->tcp_ip_addr_cache) { 5030 kmem_free((void *)tcp->tcp_ip_addr_cache, 5031 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 5032 tcp->tcp_ip_addr_cache = NULL; 5033 } 5034 } 5035 if (tcp->tcp_flow_stopped) 5036 tcp_clrqfull(tcp); 5037 5038 tcp_bind_hash_remove(tcp); 5039 /* 5040 * If the tcp_time_wait_collector (which runs outside the squeue) 5041 * is trying to remove this tcp from the time wait list, we will 5042 * block in tcp_time_wait_remove while trying to acquire the 5043 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 5044 * requires the ipcl_hash_remove to be ordered after the 5045 * tcp_time_wait_remove for the refcnt checks to work correctly. 5046 */ 5047 if (tcp->tcp_state == TCPS_TIME_WAIT) 5048 tcp_time_wait_remove(tcp, NULL); 5049 CL_INET_DISCONNECT(tcp); 5050 ipcl_hash_remove(connp); 5051 5052 /* 5053 * Delete the cached ire in conn_ire_cache and also mark 5054 * the conn as CONDEMNED 5055 */ 5056 mutex_enter(&connp->conn_lock); 5057 connp->conn_state_flags |= CONN_CONDEMNED; 5058 ire = connp->conn_ire_cache; 5059 connp->conn_ire_cache = NULL; 5060 mutex_exit(&connp->conn_lock); 5061 if (ire != NULL) 5062 IRE_REFRELE_NOTR(ire); 5063 5064 /* Need to cleanup any pending ioctls */ 5065 ASSERT(tcp->tcp_time_wait_next == NULL); 5066 ASSERT(tcp->tcp_time_wait_prev == NULL); 5067 ASSERT(tcp->tcp_time_wait_expire == 0); 5068 tcp->tcp_state = TCPS_CLOSED; 5069 } 5070 5071 /* 5072 * tcp is dying (called from ipcl_conn_destroy and error cases). 5073 * Free the tcp_t in either case. 5074 */ 5075 void 5076 tcp_free(tcp_t *tcp) 5077 { 5078 mblk_t *mp; 5079 ip6_pkt_t *ipp; 5080 5081 ASSERT(tcp != NULL); 5082 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 5083 5084 tcp->tcp_rq = NULL; 5085 tcp->tcp_wq = NULL; 5086 5087 tcp_close_mpp(&tcp->tcp_xmit_head); 5088 tcp_close_mpp(&tcp->tcp_reass_head); 5089 if (tcp->tcp_rcv_list != NULL) { 5090 /* Free b_next chain */ 5091 tcp_close_mpp(&tcp->tcp_rcv_list); 5092 } 5093 if ((mp = tcp->tcp_urp_mp) != NULL) { 5094 freemsg(mp); 5095 } 5096 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 5097 freemsg(mp); 5098 } 5099 5100 if (tcp->tcp_fused_sigurg_mp != NULL) { 5101 freeb(tcp->tcp_fused_sigurg_mp); 5102 tcp->tcp_fused_sigurg_mp = NULL; 5103 } 5104 5105 if (tcp->tcp_sack_info != NULL) { 5106 if (tcp->tcp_notsack_list != NULL) { 5107 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 5108 } 5109 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 5110 } 5111 5112 if (tcp->tcp_hopopts != NULL) { 5113 mi_free(tcp->tcp_hopopts); 5114 tcp->tcp_hopopts = NULL; 5115 tcp->tcp_hopoptslen = 0; 5116 } 5117 ASSERT(tcp->tcp_hopoptslen == 0); 5118 if (tcp->tcp_dstopts != NULL) { 5119 mi_free(tcp->tcp_dstopts); 5120 tcp->tcp_dstopts = NULL; 5121 tcp->tcp_dstoptslen = 0; 5122 } 5123 ASSERT(tcp->tcp_dstoptslen == 0); 5124 if (tcp->tcp_rtdstopts != NULL) { 5125 mi_free(tcp->tcp_rtdstopts); 5126 tcp->tcp_rtdstopts = NULL; 5127 tcp->tcp_rtdstoptslen = 0; 5128 } 5129 ASSERT(tcp->tcp_rtdstoptslen == 0); 5130 if (tcp->tcp_rthdr != NULL) { 5131 mi_free(tcp->tcp_rthdr); 5132 tcp->tcp_rthdr = NULL; 5133 tcp->tcp_rthdrlen = 0; 5134 } 5135 ASSERT(tcp->tcp_rthdrlen == 0); 5136 5137 ipp = &tcp->tcp_sticky_ipp; 5138 if ((ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | 5139 IPPF_DSTOPTS | IPPF_RTHDR)) != 0) { 5140 if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { 5141 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 5142 ipp->ipp_hopopts = NULL; 5143 ipp->ipp_hopoptslen = 0; 5144 } 5145 if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 5146 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 5147 ipp->ipp_rtdstopts = NULL; 5148 ipp->ipp_rtdstoptslen = 0; 5149 } 5150 if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 5151 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 5152 ipp->ipp_dstopts = NULL; 5153 ipp->ipp_dstoptslen = 0; 5154 } 5155 if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { 5156 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 5157 ipp->ipp_rthdr = NULL; 5158 ipp->ipp_rthdrlen = 0; 5159 } 5160 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | 5161 IPPF_DSTOPTS | IPPF_RTHDR); 5162 } 5163 5164 /* 5165 * Free memory associated with the tcp/ip header template. 5166 */ 5167 5168 if (tcp->tcp_iphc != NULL) 5169 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 5170 5171 /* 5172 * Following is really a blowing away a union. 5173 * It happens to have exactly two members of identical size 5174 * the following code is enough. 5175 */ 5176 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 5177 5178 if (tcp->tcp_tracebuf != NULL) { 5179 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 5180 tcp->tcp_tracebuf = NULL; 5181 } 5182 } 5183 5184 5185 /* 5186 * Put a connection confirmation message upstream built from the 5187 * address information within 'iph' and 'tcph'. Report our success or failure. 5188 */ 5189 static boolean_t 5190 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 5191 mblk_t **defermp) 5192 { 5193 sin_t sin; 5194 sin6_t sin6; 5195 mblk_t *mp; 5196 char *optp = NULL; 5197 int optlen = 0; 5198 cred_t *cr; 5199 5200 if (defermp != NULL) 5201 *defermp = NULL; 5202 5203 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 5204 /* 5205 * Return in T_CONN_CON results of option negotiation through 5206 * the T_CONN_REQ. Note: If there is an real end-to-end option 5207 * negotiation, then what is received from remote end needs 5208 * to be taken into account but there is no such thing (yet?) 5209 * in our TCP/IP. 5210 * Note: We do not use mi_offset_param() here as 5211 * tcp_opts_conn_req contents do not directly come from 5212 * an application and are either generated in kernel or 5213 * from user input that was already verified. 5214 */ 5215 mp = tcp->tcp_conn.tcp_opts_conn_req; 5216 optp = (char *)(mp->b_rptr + 5217 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 5218 optlen = (int) 5219 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 5220 } 5221 5222 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 5223 ipha_t *ipha = (ipha_t *)iphdr; 5224 5225 /* packet is IPv4 */ 5226 if (tcp->tcp_family == AF_INET) { 5227 sin = sin_null; 5228 sin.sin_addr.s_addr = ipha->ipha_src; 5229 sin.sin_port = *(uint16_t *)tcph->th_lport; 5230 sin.sin_family = AF_INET; 5231 mp = mi_tpi_conn_con(NULL, (char *)&sin, 5232 (int)sizeof (sin_t), optp, optlen); 5233 } else { 5234 sin6 = sin6_null; 5235 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 5236 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 5237 sin6.sin6_family = AF_INET6; 5238 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 5239 (int)sizeof (sin6_t), optp, optlen); 5240 5241 } 5242 } else { 5243 ip6_t *ip6h = (ip6_t *)iphdr; 5244 5245 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 5246 ASSERT(tcp->tcp_family == AF_INET6); 5247 sin6 = sin6_null; 5248 sin6.sin6_addr = ip6h->ip6_src; 5249 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 5250 sin6.sin6_family = AF_INET6; 5251 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 5252 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 5253 (int)sizeof (sin6_t), optp, optlen); 5254 } 5255 5256 if (!mp) 5257 return (B_FALSE); 5258 5259 if ((cr = DB_CRED(idmp)) != NULL) { 5260 mblk_setcred(mp, cr); 5261 DB_CPID(mp) = DB_CPID(idmp); 5262 } 5263 5264 if (defermp == NULL) 5265 putnext(tcp->tcp_rq, mp); 5266 else 5267 *defermp = mp; 5268 5269 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 5270 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 5271 return (B_TRUE); 5272 } 5273 5274 /* 5275 * Defense for the SYN attack - 5276 * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest 5277 * one that doesn't have the dontdrop bit set. 5278 * 2. Don't drop a SYN request before its first timeout. This gives every 5279 * request at least til the first timeout to complete its 3-way handshake. 5280 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 5281 * requests currently on the queue that has timed out. This will be used 5282 * as an indicator of whether an attack is under way, so that appropriate 5283 * actions can be taken. (It's incremented in tcp_timer() and decremented 5284 * either when eager goes into ESTABLISHED, or gets freed up.) 5285 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 5286 * # of timeout drops back to <= q0len/32 => SYN alert off 5287 */ 5288 static boolean_t 5289 tcp_drop_q0(tcp_t *tcp) 5290 { 5291 tcp_t *eager; 5292 5293 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 5294 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 5295 /* 5296 * New one is added after next_q0 so prev_q0 points to the oldest 5297 * Also do not drop any established connections that are deferred on 5298 * q0 due to q being full 5299 */ 5300 5301 eager = tcp->tcp_eager_prev_q0; 5302 while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) { 5303 eager = eager->tcp_eager_prev_q0; 5304 if (eager == tcp) { 5305 eager = tcp->tcp_eager_prev_q0; 5306 break; 5307 } 5308 } 5309 if (eager->tcp_syn_rcvd_timeout == 0) 5310 return (B_FALSE); 5311 5312 if (tcp->tcp_debug) { 5313 (void) strlog(TCP_MODULE_ID, 0, 3, SL_TRACE, 5314 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 5315 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 5316 tcp->tcp_conn_req_cnt_q0, 5317 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5318 } 5319 5320 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 5321 5322 /* 5323 * need to do refhold here because the selected eager could 5324 * be removed by someone else if we release the eager lock. 5325 */ 5326 CONN_INC_REF(eager->tcp_connp); 5327 mutex_exit(&tcp->tcp_eager_lock); 5328 5329 /* Mark the IRE created for this SYN request temporary */ 5330 tcp_ip_ire_mark_advice(eager); 5331 (void) tcp_clean_death(eager, ETIMEDOUT, 5); 5332 CONN_DEC_REF(eager->tcp_connp); 5333 5334 mutex_enter(&tcp->tcp_eager_lock); 5335 return (B_TRUE); 5336 } 5337 5338 int 5339 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 5340 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 5341 { 5342 tcp_t *ltcp = lconnp->conn_tcp; 5343 tcp_t *tcp = connp->conn_tcp; 5344 mblk_t *tpi_mp; 5345 ipha_t *ipha; 5346 ip6_t *ip6h; 5347 sin6_t sin6; 5348 in6_addr_t v6dst; 5349 int err; 5350 int ifindex = 0; 5351 cred_t *cr; 5352 5353 if (ipvers == IPV4_VERSION) { 5354 ipha = (ipha_t *)mp->b_rptr; 5355 5356 connp->conn_send = ip_output; 5357 connp->conn_recv = tcp_input; 5358 5359 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5360 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5361 5362 sin6 = sin6_null; 5363 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 5364 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 5365 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 5366 sin6.sin6_family = AF_INET6; 5367 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 5368 lconnp->conn_zoneid); 5369 if (tcp->tcp_recvdstaddr) { 5370 sin6_t sin6d; 5371 5372 sin6d = sin6_null; 5373 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 5374 &sin6d.sin6_addr); 5375 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 5376 sin6d.sin6_family = AF_INET; 5377 tpi_mp = mi_tpi_extconn_ind(NULL, 5378 (char *)&sin6d, sizeof (sin6_t), 5379 (char *)&tcp, 5380 (t_scalar_t)sizeof (intptr_t), 5381 (char *)&sin6d, sizeof (sin6_t), 5382 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5383 } else { 5384 tpi_mp = mi_tpi_conn_ind(NULL, 5385 (char *)&sin6, sizeof (sin6_t), 5386 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5387 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5388 } 5389 } else { 5390 ip6h = (ip6_t *)mp->b_rptr; 5391 5392 connp->conn_send = ip_output_v6; 5393 connp->conn_recv = tcp_input; 5394 5395 connp->conn_srcv6 = ip6h->ip6_dst; 5396 connp->conn_remv6 = ip6h->ip6_src; 5397 5398 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 5399 ifindex = (int)mp->b_datap->db_cksumstuff; 5400 mp->b_datap->db_cksumstuff = 0; 5401 5402 sin6 = sin6_null; 5403 sin6.sin6_addr = ip6h->ip6_src; 5404 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 5405 sin6.sin6_family = AF_INET6; 5406 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 5407 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 5408 lconnp->conn_zoneid); 5409 5410 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 5411 /* Pass up the scope_id of remote addr */ 5412 sin6.sin6_scope_id = ifindex; 5413 } else { 5414 sin6.sin6_scope_id = 0; 5415 } 5416 if (tcp->tcp_recvdstaddr) { 5417 sin6_t sin6d; 5418 5419 sin6d = sin6_null; 5420 sin6.sin6_addr = ip6h->ip6_dst; 5421 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 5422 sin6d.sin6_family = AF_INET; 5423 tpi_mp = mi_tpi_extconn_ind(NULL, 5424 (char *)&sin6d, sizeof (sin6_t), 5425 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5426 (char *)&sin6d, sizeof (sin6_t), 5427 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5428 } else { 5429 tpi_mp = mi_tpi_conn_ind(NULL, 5430 (char *)&sin6, sizeof (sin6_t), 5431 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5432 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5433 } 5434 } 5435 5436 if (tpi_mp == NULL) 5437 return (ENOMEM); 5438 5439 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5440 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5441 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 5442 connp->conn_fully_bound = B_FALSE; 5443 5444 if (tcp_trace) 5445 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5446 5447 /* Inherit information from the "parent" */ 5448 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5449 tcp->tcp_family = ltcp->tcp_family; 5450 tcp->tcp_wq = ltcp->tcp_wq; 5451 tcp->tcp_rq = ltcp->tcp_rq; 5452 tcp->tcp_mss = tcp_mss_def_ipv6; 5453 tcp->tcp_detached = B_TRUE; 5454 if ((err = tcp_init_values(tcp)) != 0) { 5455 freemsg(tpi_mp); 5456 return (err); 5457 } 5458 5459 if (ipvers == IPV4_VERSION) { 5460 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 5461 freemsg(tpi_mp); 5462 return (err); 5463 } 5464 ASSERT(tcp->tcp_ipha != NULL); 5465 } else { 5466 /* ifindex must be already set */ 5467 ASSERT(ifindex != 0); 5468 5469 if (ltcp->tcp_bound_if != 0) { 5470 /* 5471 * Set newtcp's bound_if equal to 5472 * listener's value. If ifindex is 5473 * not the same as ltcp->tcp_bound_if, 5474 * it must be a packet for the ipmp group 5475 * of interfaces 5476 */ 5477 tcp->tcp_bound_if = ltcp->tcp_bound_if; 5478 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 5479 tcp->tcp_bound_if = ifindex; 5480 } 5481 5482 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 5483 tcp->tcp_recvifindex = 0; 5484 tcp->tcp_recvhops = 0xffffffffU; 5485 ASSERT(tcp->tcp_ip6h != NULL); 5486 } 5487 5488 tcp->tcp_lport = ltcp->tcp_lport; 5489 5490 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 5491 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 5492 /* 5493 * Listener had options of some sort; eager inherits. 5494 * Free up the eager template and allocate one 5495 * of the right size. 5496 */ 5497 if (tcp->tcp_hdr_grown) { 5498 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 5499 } else { 5500 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 5501 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 5502 } 5503 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 5504 KM_NOSLEEP); 5505 if (tcp->tcp_iphc == NULL) { 5506 tcp->tcp_iphc_len = 0; 5507 freemsg(tpi_mp); 5508 return (ENOMEM); 5509 } 5510 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 5511 tcp->tcp_hdr_grown = B_TRUE; 5512 } 5513 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5514 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5515 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5516 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 5517 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 5518 5519 /* 5520 * Copy the IP+TCP header template from listener to eager 5521 */ 5522 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5523 if (tcp->tcp_ipversion == IPV6_VERSION) { 5524 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5525 IPPROTO_RAW) { 5526 tcp->tcp_ip6h = 5527 (ip6_t *)(tcp->tcp_iphc + 5528 sizeof (ip6i_t)); 5529 } else { 5530 tcp->tcp_ip6h = 5531 (ip6_t *)(tcp->tcp_iphc); 5532 } 5533 tcp->tcp_ipha = NULL; 5534 } else { 5535 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5536 tcp->tcp_ip6h = NULL; 5537 } 5538 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5539 tcp->tcp_ip_hdr_len); 5540 } else { 5541 /* 5542 * only valid case when ipversion of listener and 5543 * eager differ is when listener is IPv6 and 5544 * eager is IPv4. 5545 * Eager header template has been initialized to the 5546 * maximum v4 header sizes, which includes space for 5547 * TCP and IP options. 5548 */ 5549 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5550 (tcp->tcp_ipversion == IPV4_VERSION)); 5551 ASSERT(tcp->tcp_iphc_len >= 5552 TCP_MAX_COMBINED_HEADER_LENGTH); 5553 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5554 /* copy IP header fields individually */ 5555 tcp->tcp_ipha->ipha_ttl = 5556 ltcp->tcp_ip6h->ip6_hops; 5557 bcopy(ltcp->tcp_tcph->th_lport, 5558 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5559 } 5560 5561 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5562 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5563 sizeof (in_port_t)); 5564 5565 if (ltcp->tcp_lport == 0) { 5566 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5567 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5568 sizeof (in_port_t)); 5569 } 5570 5571 if (tcp->tcp_ipversion == IPV4_VERSION) { 5572 ASSERT(ipha != NULL); 5573 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5574 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5575 5576 /* Source routing option copyover (reverse it) */ 5577 if (tcp_rev_src_routes) 5578 tcp_opt_reverse(tcp, ipha); 5579 } else { 5580 ASSERT(ip6h != NULL); 5581 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5582 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5583 } 5584 5585 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5586 /* 5587 * If the SYN contains a credential, it's a loopback packet; attach 5588 * the credential to the TPI message. 5589 */ 5590 if ((cr = DB_CRED(idmp)) != NULL) { 5591 mblk_setcred(tpi_mp, cr); 5592 DB_CPID(tpi_mp) = DB_CPID(idmp); 5593 } 5594 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5595 5596 return (0); 5597 } 5598 5599 5600 int 5601 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5602 tcph_t *tcph, mblk_t *idmp) 5603 { 5604 tcp_t *ltcp = lconnp->conn_tcp; 5605 tcp_t *tcp = connp->conn_tcp; 5606 sin_t sin; 5607 mblk_t *tpi_mp = NULL; 5608 int err; 5609 cred_t *cr; 5610 5611 sin = sin_null; 5612 sin.sin_addr.s_addr = ipha->ipha_src; 5613 sin.sin_port = *(uint16_t *)tcph->th_lport; 5614 sin.sin_family = AF_INET; 5615 if (ltcp->tcp_recvdstaddr) { 5616 sin_t sind; 5617 5618 sind = sin_null; 5619 sind.sin_addr.s_addr = ipha->ipha_dst; 5620 sind.sin_port = *(uint16_t *)tcph->th_fport; 5621 sind.sin_family = AF_INET; 5622 tpi_mp = mi_tpi_extconn_ind(NULL, 5623 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5624 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5625 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5626 } else { 5627 tpi_mp = mi_tpi_conn_ind(NULL, 5628 (char *)&sin, sizeof (sin_t), 5629 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5630 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5631 } 5632 5633 if (tpi_mp == NULL) { 5634 return (ENOMEM); 5635 } 5636 5637 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5638 connp->conn_send = ip_output; 5639 connp->conn_recv = tcp_input; 5640 connp->conn_fully_bound = B_FALSE; 5641 5642 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5643 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5644 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5645 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5646 5647 if (tcp_trace) { 5648 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5649 } 5650 5651 /* Inherit information from the "parent" */ 5652 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5653 tcp->tcp_family = ltcp->tcp_family; 5654 tcp->tcp_wq = ltcp->tcp_wq; 5655 tcp->tcp_rq = ltcp->tcp_rq; 5656 tcp->tcp_mss = tcp_mss_def_ipv4; 5657 tcp->tcp_detached = B_TRUE; 5658 if ((err = tcp_init_values(tcp)) != 0) { 5659 freemsg(tpi_mp); 5660 return (err); 5661 } 5662 5663 /* 5664 * Let's make sure that eager tcp template has enough space to 5665 * copy IPv4 listener's tcp template. Since the conn_t structure is 5666 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5667 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5668 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5669 * extension headers or with ip6i_t struct). Note that bcopy() below 5670 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5671 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5672 */ 5673 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5674 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5675 5676 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5677 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5678 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5679 tcp->tcp_ttl = ltcp->tcp_ttl; 5680 tcp->tcp_tos = ltcp->tcp_tos; 5681 5682 /* Copy the IP+TCP header template from listener to eager */ 5683 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5684 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5685 tcp->tcp_ip6h = NULL; 5686 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5687 tcp->tcp_ip_hdr_len); 5688 5689 /* Initialize the IP addresses and Ports */ 5690 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5691 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5692 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5693 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5694 5695 /* Source routing option copyover (reverse it) */ 5696 if (tcp_rev_src_routes) 5697 tcp_opt_reverse(tcp, ipha); 5698 5699 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5700 5701 /* 5702 * If the SYN contains a credential, it's a loopback packet; attach 5703 * the credential to the TPI message. 5704 */ 5705 if ((cr = DB_CRED(idmp)) != NULL) { 5706 mblk_setcred(tpi_mp, cr); 5707 DB_CPID(tpi_mp) = DB_CPID(idmp); 5708 } 5709 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5710 5711 return (0); 5712 } 5713 5714 /* 5715 * sets up conn for ipsec. 5716 * if the first mblk is M_CTL it is consumed and mpp is updated. 5717 * in case of error mpp is freed. 5718 */ 5719 conn_t * 5720 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5721 { 5722 conn_t *connp = tcp->tcp_connp; 5723 conn_t *econnp; 5724 squeue_t *new_sqp; 5725 mblk_t *first_mp = *mpp; 5726 mblk_t *mp = *mpp; 5727 boolean_t mctl_present = B_FALSE; 5728 uint_t ipvers; 5729 5730 econnp = tcp_get_conn(sqp); 5731 if (econnp == NULL) { 5732 freemsg(first_mp); 5733 return (NULL); 5734 } 5735 if (DB_TYPE(mp) == M_CTL) { 5736 if (mp->b_cont == NULL || 5737 mp->b_cont->b_datap->db_type != M_DATA) { 5738 freemsg(first_mp); 5739 return (NULL); 5740 } 5741 mp = mp->b_cont; 5742 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5743 freemsg(first_mp); 5744 return (NULL); 5745 } 5746 5747 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5748 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5749 mctl_present = B_TRUE; 5750 } else { 5751 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5752 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5753 } 5754 5755 new_sqp = (squeue_t *)mp->b_datap->db_cksumstart; 5756 mp->b_datap->db_cksumstart = 0; 5757 5758 ASSERT(OK_32PTR(mp->b_rptr)); 5759 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5760 if (ipvers == IPV4_VERSION) { 5761 uint16_t *up; 5762 uint32_t ports; 5763 ipha_t *ipha; 5764 5765 ipha = (ipha_t *)mp->b_rptr; 5766 up = (uint16_t *)((uchar_t *)ipha + 5767 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5768 ports = *(uint32_t *)up; 5769 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5770 ipha->ipha_dst, ipha->ipha_src, ports); 5771 } else { 5772 uint16_t *up; 5773 uint32_t ports; 5774 uint16_t ip_hdr_len; 5775 uint8_t *nexthdrp; 5776 ip6_t *ip6h; 5777 tcph_t *tcph; 5778 5779 ip6h = (ip6_t *)mp->b_rptr; 5780 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5781 ip_hdr_len = IPV6_HDR_LEN; 5782 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5783 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5784 CONN_DEC_REF(econnp); 5785 freemsg(first_mp); 5786 return (NULL); 5787 } 5788 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5789 up = (uint16_t *)tcph->th_lport; 5790 ports = *(uint32_t *)up; 5791 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5792 ip6h->ip6_dst, ip6h->ip6_src, ports); 5793 } 5794 5795 /* 5796 * The caller already ensured that there is a sqp present. 5797 */ 5798 econnp->conn_sqp = new_sqp; 5799 5800 if (connp->conn_policy != NULL) { 5801 ipsec_in_t *ii; 5802 ii = (ipsec_in_t *)(first_mp->b_rptr); 5803 ASSERT(ii->ipsec_in_policy == NULL); 5804 IPPH_REFHOLD(connp->conn_policy); 5805 ii->ipsec_in_policy = connp->conn_policy; 5806 5807 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5808 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5809 CONN_DEC_REF(econnp); 5810 freemsg(first_mp); 5811 return (NULL); 5812 } 5813 } 5814 5815 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5816 CONN_DEC_REF(econnp); 5817 freemsg(first_mp); 5818 return (NULL); 5819 } 5820 5821 /* 5822 * If we know we have some policy, pass the "IPSEC" 5823 * options size TCP uses this adjust the MSS. 5824 */ 5825 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5826 if (mctl_present) { 5827 freeb(first_mp); 5828 *mpp = mp; 5829 } 5830 5831 return (econnp); 5832 } 5833 5834 /* 5835 * tcp_get_conn/tcp_free_conn 5836 * 5837 * tcp_get_conn is used to get a clean tcp connection structure. 5838 * It tries to reuse the connections put on the freelist by the 5839 * time_wait_collector failing which it goes to kmem_cache. This 5840 * way has two benefits compared to just allocating from and 5841 * freeing to kmem_cache. 5842 * 1) The time_wait_collector can free (which includes the cleanup) 5843 * outside the squeue. So when the interrupt comes, we have a clean 5844 * connection sitting in the freelist. Obviously, this buys us 5845 * performance. 5846 * 5847 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5848 * has multiple disadvantages - tying up the squeue during alloc, and the 5849 * fact that IPSec policy initialization has to happen here which 5850 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5851 * But allocating the conn/tcp in IP land is also not the best since 5852 * we can't check the 'q' and 'q0' which are protected by squeue and 5853 * blindly allocate memory which might have to be freed here if we are 5854 * not allowed to accept the connection. By using the freelist and 5855 * putting the conn/tcp back in freelist, we don't pay a penalty for 5856 * allocating memory without checking 'q/q0' and freeing it if we can't 5857 * accept the connection. 5858 * 5859 * Care should be taken to put the conn back in the same squeue's freelist 5860 * from which it was allocated. Best results are obtained if conn is 5861 * allocated from listener's squeue and freed to the same. Time wait 5862 * collector will free up the freelist is the connection ends up sitting 5863 * there for too long. 5864 */ 5865 void * 5866 tcp_get_conn(void *arg) 5867 { 5868 tcp_t *tcp = NULL; 5869 conn_t *connp = NULL; 5870 squeue_t *sqp = (squeue_t *)arg; 5871 tcp_squeue_priv_t *tcp_time_wait; 5872 5873 tcp_time_wait = 5874 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5875 5876 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5877 tcp = tcp_time_wait->tcp_free_list; 5878 if (tcp != NULL) { 5879 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5880 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5881 tcp->tcp_time_wait_next = NULL; 5882 connp = tcp->tcp_connp; 5883 connp->conn_flags |= IPCL_REUSED; 5884 return ((void *)connp); 5885 } 5886 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5887 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 5888 return (NULL); 5889 return ((void *)connp); 5890 } 5891 5892 /* BEGIN CSTYLED */ 5893 /* 5894 * 5895 * The sockfs ACCEPT path: 5896 * ======================= 5897 * 5898 * The eager is now established in its own perimeter as soon as SYN is 5899 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5900 * completes the accept processing on the acceptor STREAM. The sending 5901 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5902 * listener but a TLI/XTI listener completes the accept processing 5903 * on the listener perimeter. 5904 * 5905 * Common control flow for 3 way handshake: 5906 * ---------------------------------------- 5907 * 5908 * incoming SYN (listener perimeter) -> tcp_rput_data() 5909 * -> tcp_conn_request() 5910 * 5911 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5912 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5913 * 5914 * Sockfs ACCEPT Path: 5915 * ------------------- 5916 * 5917 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5918 * as STREAM entry point) 5919 * 5920 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5921 * 5922 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5923 * association (we are not behind eager's squeue but sockfs is protecting us 5924 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5925 * is changed to point at tcp_wput(). 5926 * 5927 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5928 * listener (done on listener's perimeter). 5929 * 5930 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5931 * accept. 5932 * 5933 * TLI/XTI client ACCEPT path: 5934 * --------------------------- 5935 * 5936 * soaccept() sends T_CONN_RES on the listener STREAM. 5937 * 5938 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5939 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5940 * 5941 * Locks: 5942 * ====== 5943 * 5944 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5945 * and listeners->tcp_eager_next_q. 5946 * 5947 * Referencing: 5948 * ============ 5949 * 5950 * 1) We start out in tcp_conn_request by eager placing a ref on 5951 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5952 * 5953 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5954 * doing so we place a ref on the eager. This ref is finally dropped at the 5955 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5956 * reference is dropped by the squeue framework. 5957 * 5958 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5959 * 5960 * The reference must be released by the same entity that added the reference 5961 * In the above scheme, the eager is the entity that adds and releases the 5962 * references. Note that tcp_accept_finish executes in the squeue of the eager 5963 * (albeit after it is attached to the acceptor stream). Though 1. executes 5964 * in the listener's squeue, the eager is nascent at this point and the 5965 * reference can be considered to have been added on behalf of the eager. 5966 * 5967 * Eager getting a Reset or listener closing: 5968 * ========================================== 5969 * 5970 * Once the listener and eager are linked, the listener never does the unlink. 5971 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5972 * a message on all eager perimeter. The eager then does the unlink, clears 5973 * any pointers to the listener's queue and drops the reference to the 5974 * listener. The listener waits in tcp_close outside the squeue until its 5975 * refcount has dropped to 1. This ensures that the listener has waited for 5976 * all eagers to clear their association with the listener. 5977 * 5978 * Similarly, if eager decides to go away, it can unlink itself and close. 5979 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5980 * the reference to eager is still valid because of the extra ref we put 5981 * in tcp_send_conn_ind. 5982 * 5983 * Listener can always locate the eager under the protection 5984 * of the listener->tcp_eager_lock, and then do a refhold 5985 * on the eager during the accept processing. 5986 * 5987 * The acceptor stream accesses the eager in the accept processing 5988 * based on the ref placed on eager before sending T_conn_ind. 5989 * The only entity that can negate this refhold is a listener close 5990 * which is mutually exclusive with an active acceptor stream. 5991 * 5992 * Eager's reference on the listener 5993 * =================================== 5994 * 5995 * If the accept happens (even on a closed eager) the eager drops its 5996 * reference on the listener at the start of tcp_accept_finish. If the 5997 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5998 * the reference is dropped in tcp_closei_local. If the listener closes, 5999 * the reference is dropped in tcp_eager_kill. In all cases the reference 6000 * is dropped while executing in the eager's context (squeue). 6001 */ 6002 /* END CSTYLED */ 6003 6004 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 6005 6006 /* 6007 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 6008 * tcp_rput_data will not see any SYN packets. 6009 */ 6010 /* ARGSUSED */ 6011 void 6012 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 6013 { 6014 tcph_t *tcph; 6015 uint32_t seg_seq; 6016 tcp_t *eager; 6017 uint_t ipvers; 6018 ipha_t *ipha; 6019 ip6_t *ip6h; 6020 int err; 6021 conn_t *econnp = NULL; 6022 squeue_t *new_sqp; 6023 mblk_t *mp1; 6024 uint_t ip_hdr_len; 6025 conn_t *connp = (conn_t *)arg; 6026 tcp_t *tcp = connp->conn_tcp; 6027 ire_t *ire; 6028 6029 if (tcp->tcp_state != TCPS_LISTEN) 6030 goto error2; 6031 6032 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 6033 6034 mutex_enter(&tcp->tcp_eager_lock); 6035 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 6036 mutex_exit(&tcp->tcp_eager_lock); 6037 TCP_STAT(tcp_listendrop); 6038 BUMP_MIB(&tcp_mib, tcpListenDrop); 6039 if (tcp->tcp_debug) { 6040 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE|SL_ERROR, 6041 "tcp_conn_request: listen backlog (max=%d) " 6042 "overflow (%d pending) on %s", 6043 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 6044 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 6045 } 6046 goto error2; 6047 } 6048 6049 if (tcp->tcp_conn_req_cnt_q0 >= 6050 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 6051 /* 6052 * Q0 is full. Drop a pending half-open req from the queue 6053 * to make room for the new SYN req. Also mark the time we 6054 * drop a SYN. 6055 * 6056 * A more aggressive defense against SYN attack will 6057 * be to set the "tcp_syn_defense" flag now. 6058 */ 6059 TCP_STAT(tcp_listendropq0); 6060 tcp->tcp_last_rcv_lbolt = lbolt64; 6061 if (!tcp_drop_q0(tcp)) { 6062 mutex_exit(&tcp->tcp_eager_lock); 6063 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 6064 if (tcp->tcp_debug) { 6065 (void) strlog(TCP_MODULE_ID, 0, 3, SL_TRACE, 6066 "tcp_conn_request: listen half-open queue " 6067 "(max=%d) full (%d pending) on %s", 6068 tcp_conn_req_max_q0, 6069 tcp->tcp_conn_req_cnt_q0, 6070 tcp_display(tcp, NULL, 6071 DISP_PORT_ONLY)); 6072 } 6073 goto error2; 6074 } 6075 } 6076 mutex_exit(&tcp->tcp_eager_lock); 6077 6078 /* 6079 * IP adds STRUIO_EAGER and ensures that the received packet is 6080 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 6081 * link local address. If IPSec is enabled, db_struioflag has 6082 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 6083 * otherwise an error case if neither of them is set. 6084 */ 6085 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6086 new_sqp = (squeue_t *)mp->b_datap->db_cksumstart; 6087 mp->b_datap->db_cksumstart = 0; 6088 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 6089 econnp = (conn_t *)tcp_get_conn(arg2); 6090 if (econnp == NULL) 6091 goto error2; 6092 econnp->conn_sqp = new_sqp; 6093 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 6094 /* 6095 * mp is updated in tcp_get_ipsec_conn(). 6096 */ 6097 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 6098 if (econnp == NULL) { 6099 /* 6100 * mp freed by tcp_get_ipsec_conn. 6101 */ 6102 return; 6103 } 6104 } else { 6105 goto error2; 6106 } 6107 6108 ASSERT(DB_TYPE(mp) == M_DATA); 6109 6110 ipvers = IPH_HDR_VERSION(mp->b_rptr); 6111 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 6112 ASSERT(OK_32PTR(mp->b_rptr)); 6113 if (ipvers == IPV4_VERSION) { 6114 ipha = (ipha_t *)mp->b_rptr; 6115 ip_hdr_len = IPH_HDR_LENGTH(ipha); 6116 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6117 } else { 6118 ip6h = (ip6_t *)mp->b_rptr; 6119 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 6120 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6121 } 6122 6123 if (tcp->tcp_family == AF_INET) { 6124 ASSERT(ipvers == IPV4_VERSION); 6125 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 6126 } else { 6127 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 6128 } 6129 6130 if (err) 6131 goto error3; 6132 6133 eager = econnp->conn_tcp; 6134 6135 /* Inherit various TCP parameters from the listener */ 6136 eager->tcp_naglim = tcp->tcp_naglim; 6137 eager->tcp_first_timer_threshold = 6138 tcp->tcp_first_timer_threshold; 6139 eager->tcp_second_timer_threshold = 6140 tcp->tcp_second_timer_threshold; 6141 6142 eager->tcp_first_ctimer_threshold = 6143 tcp->tcp_first_ctimer_threshold; 6144 eager->tcp_second_ctimer_threshold = 6145 tcp->tcp_second_ctimer_threshold; 6146 6147 /* 6148 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 6149 * zone id before the accept is completed in tcp_wput_accept(). 6150 */ 6151 econnp->conn_zoneid = connp->conn_zoneid; 6152 6153 eager->tcp_hard_binding = B_TRUE; 6154 6155 tcp_bind_hash_insert(&tcp_bind_fanout[ 6156 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 6157 6158 CL_INET_CONNECT(eager); 6159 6160 /* 6161 * No need to check for multicast destination since ip will only pass 6162 * up multicasts to those that have expressed interest 6163 * TODO: what about rejecting broadcasts? 6164 * Also check that source is not a multicast or broadcast address. 6165 */ 6166 eager->tcp_state = TCPS_SYN_RCVD; 6167 6168 6169 /* 6170 * There should be no ire in the mp as we are being called after 6171 * receiving the SYN. 6172 */ 6173 ASSERT(tcp_ire_mp(mp) == NULL); 6174 6175 /* 6176 * Adapt our mss, ttl, ... according to information provided in IRE. 6177 */ 6178 6179 if (tcp_adapt_ire(eager, NULL) == 0) { 6180 /* Undo the bind_hash_insert */ 6181 tcp_bind_hash_remove(eager); 6182 goto error3; 6183 } 6184 6185 /* Process all TCP options. */ 6186 tcp_process_options(eager, tcph); 6187 6188 /* Is the other end ECN capable? */ 6189 if (tcp_ecn_permitted >= 1 && 6190 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 6191 eager->tcp_ecn_ok = B_TRUE; 6192 } 6193 6194 /* 6195 * listener->tcp_rq->q_hiwat should be the default window size or a 6196 * window size changed via SO_RCVBUF option. First round up the 6197 * eager's tcp_rwnd to the nearest MSS. Then find out the window 6198 * scale option value if needed. Call tcp_rwnd_set() to finish the 6199 * setting. 6200 * 6201 * Note if there is a rpipe metric associated with the remote host, 6202 * we should not inherit receive window size from listener. 6203 */ 6204 eager->tcp_rwnd = MSS_ROUNDUP( 6205 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 6206 eager->tcp_rwnd), eager->tcp_mss); 6207 if (eager->tcp_snd_ws_ok) 6208 tcp_set_ws_value(eager); 6209 /* 6210 * Note that this is the only place tcp_rwnd_set() is called for 6211 * accepting a connection. We need to call it here instead of 6212 * after the 3-way handshake because we need to tell the other 6213 * side our rwnd in the SYN-ACK segment. 6214 */ 6215 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 6216 6217 /* 6218 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 6219 * via soaccept()->soinheritoptions() which essentially applies 6220 * all the listener options to the new STREAM. The options that we 6221 * need to take care of are: 6222 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 6223 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 6224 * SO_SNDBUF, SO_RCVBUF. 6225 * 6226 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 6227 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 6228 * tcp_maxpsz_set() gets called later from 6229 * tcp_accept_finish(), the option takes effect. 6230 * 6231 */ 6232 /* Set the TCP options */ 6233 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 6234 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 6235 eager->tcp_oobinline = tcp->tcp_oobinline; 6236 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 6237 eager->tcp_broadcast = tcp->tcp_broadcast; 6238 eager->tcp_useloopback = tcp->tcp_useloopback; 6239 eager->tcp_dontroute = tcp->tcp_dontroute; 6240 eager->tcp_linger = tcp->tcp_linger; 6241 eager->tcp_lingertime = tcp->tcp_lingertime; 6242 if (tcp->tcp_ka_enabled) 6243 eager->tcp_ka_enabled = 1; 6244 6245 /* Set the IP options */ 6246 econnp->conn_broadcast = connp->conn_broadcast; 6247 econnp->conn_loopback = connp->conn_loopback; 6248 econnp->conn_dontroute = connp->conn_dontroute; 6249 econnp->conn_reuseaddr = connp->conn_reuseaddr; 6250 6251 /* Put a ref on the listener for the eager. */ 6252 CONN_INC_REF(connp); 6253 mutex_enter(&tcp->tcp_eager_lock); 6254 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 6255 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 6256 tcp->tcp_eager_next_q0 = eager; 6257 eager->tcp_eager_prev_q0 = tcp; 6258 6259 /* Set tcp_listener before adding it to tcp_conn_fanout */ 6260 eager->tcp_listener = tcp; 6261 eager->tcp_saved_listener = tcp; 6262 6263 /* 6264 * Tag this detached tcp vector for later retrieval 6265 * by our listener client in tcp_accept(). 6266 */ 6267 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 6268 tcp->tcp_conn_req_cnt_q0++; 6269 if (++tcp->tcp_conn_req_seqnum == -1) { 6270 /* 6271 * -1 is "special" and defined in TPI as something 6272 * that should never be used in T_CONN_IND 6273 */ 6274 ++tcp->tcp_conn_req_seqnum; 6275 } 6276 mutex_exit(&tcp->tcp_eager_lock); 6277 6278 if (tcp->tcp_syn_defense) { 6279 /* Don't drop the SYN that comes from a good IP source */ 6280 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 6281 if (addr_cache != NULL && eager->tcp_remote == 6282 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 6283 eager->tcp_dontdrop = B_TRUE; 6284 } 6285 } 6286 6287 /* 6288 * We need to insert the eager in its own perimeter but as soon 6289 * as we do that, we expose the eager to the classifier and 6290 * should not touch any field outside the eager's perimeter. 6291 * So do all the work necessary before inserting the eager 6292 * in its own perimeter. Be optimistic that ipcl_conn_insert() 6293 * will succeed but undo everything if it fails. 6294 */ 6295 seg_seq = ABE32_TO_U32(tcph->th_seq); 6296 eager->tcp_irs = seg_seq; 6297 eager->tcp_rack = seg_seq; 6298 eager->tcp_rnxt = seg_seq + 1; 6299 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 6300 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 6301 eager->tcp_state = TCPS_SYN_RCVD; 6302 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 6303 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 6304 if (mp1 == NULL) 6305 goto error1; 6306 mblk_setcred(mp1, tcp->tcp_cred); 6307 DB_CPID(mp1) = tcp->tcp_cpid; 6308 6309 /* 6310 * We need to start the rto timer. In normal case, we start 6311 * the timer after sending the packet on the wire (or at 6312 * least believing that packet was sent by waiting for 6313 * CALL_IP_WPUT() to return). Since this is the first packet 6314 * being sent on the wire for the eager, our initial tcp_rto 6315 * is at least tcp_rexmit_interval_min which is a fairly 6316 * large value to allow the algorithm to adjust slowly to large 6317 * fluctuations of RTT during first few transmissions. 6318 * 6319 * Starting the timer first and then sending the packet in this 6320 * case shouldn't make much difference since tcp_rexmit_interval_min 6321 * is of the order of several 100ms and starting the timer 6322 * first and then sending the packet will result in difference 6323 * of few micro seconds. 6324 * 6325 * Without this optimization, we are forced to hold the fanout 6326 * lock across the ipcl_bind_insert() and sending the packet 6327 * so that we don't race against an incoming packet (maybe RST) 6328 * for this eager. 6329 */ 6330 6331 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 6332 TCP_TIMER_RESTART(eager, eager->tcp_rto); 6333 6334 6335 /* 6336 * Insert the eager in its own perimeter now. We are ready to deal 6337 * with any packets on eager. 6338 */ 6339 if (eager->tcp_ipversion == IPV4_VERSION) { 6340 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 6341 goto error; 6342 } 6343 } else { 6344 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 6345 goto error; 6346 } 6347 } 6348 6349 /* mark conn as fully-bound */ 6350 econnp->conn_fully_bound = B_TRUE; 6351 6352 /* Send the SYN-ACK */ 6353 tcp_send_data(eager, eager->tcp_wq, mp1); 6354 freemsg(mp); 6355 6356 return; 6357 error: 6358 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 6359 freemsg(mp1); 6360 error1: 6361 /* Undo what we did above */ 6362 mutex_enter(&tcp->tcp_eager_lock); 6363 tcp_eager_unlink(eager); 6364 mutex_exit(&tcp->tcp_eager_lock); 6365 /* Drop eager's reference on the listener */ 6366 CONN_DEC_REF(connp); 6367 6368 /* 6369 * Delete the cached ire in conn_ire_cache and also mark 6370 * the conn as CONDEMNED 6371 */ 6372 mutex_enter(&econnp->conn_lock); 6373 econnp->conn_state_flags |= CONN_CONDEMNED; 6374 ire = econnp->conn_ire_cache; 6375 econnp->conn_ire_cache = NULL; 6376 mutex_exit(&econnp->conn_lock); 6377 if (ire != NULL) 6378 IRE_REFRELE_NOTR(ire); 6379 6380 /* 6381 * tcp_accept_comm inserts the eager to the bind_hash 6382 * we need to remove it from the hash if ipcl_conn_insert 6383 * fails. 6384 */ 6385 tcp_bind_hash_remove(eager); 6386 /* Drop the eager ref placed in tcp_open_detached */ 6387 CONN_DEC_REF(econnp); 6388 6389 /* 6390 * If a connection already exists, send the mp to that connections so 6391 * that it can be appropriately dealt with. 6392 */ 6393 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 6394 if (!IPCL_IS_CONNECTED(econnp)) { 6395 /* 6396 * Something bad happened. ipcl_conn_insert() 6397 * failed because a connection already existed 6398 * in connected hash but we can't find it 6399 * anymore (someone blew it away). Just 6400 * free this message and hopefully remote 6401 * will retransmit at which time the SYN can be 6402 * treated as a new connection or dealth with 6403 * a TH_RST if a connection already exists. 6404 */ 6405 freemsg(mp); 6406 } else { 6407 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6408 econnp, SQTAG_TCP_CONN_REQ); 6409 } 6410 } else { 6411 /* Nobody wants this packet */ 6412 freemsg(mp); 6413 } 6414 return; 6415 error2: 6416 freemsg(mp); 6417 return; 6418 error3: 6419 CONN_DEC_REF(econnp); 6420 freemsg(mp); 6421 } 6422 6423 /* 6424 * In an ideal case of vertical partition in NUMA architecture, its 6425 * beneficial to have the listener and all the incoming connections 6426 * tied to the same squeue. The other constraint is that incoming 6427 * connections should be tied to the squeue attached to interrupted 6428 * CPU for obvious locality reason so this leaves the listener to 6429 * be tied to the same squeue. Our only problem is that when listener 6430 * is binding, the CPU that will get interrupted by the NIC whose 6431 * IP address the listener is binding to is not even known. So 6432 * the code below allows us to change that binding at the time the 6433 * CPU is interrupted by virtue of incoming connection's squeue. 6434 * 6435 * This is usefull only in case of a listener bound to a specific IP 6436 * address. For other kind of listeners, they get bound the 6437 * very first time and there is no attempt to rebind them. 6438 */ 6439 void 6440 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6441 { 6442 conn_t *connp = (conn_t *)arg; 6443 squeue_t *sqp = (squeue_t *)arg2; 6444 squeue_t *new_sqp; 6445 uint32_t conn_flags; 6446 6447 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6448 new_sqp = (squeue_t *)mp->b_datap->db_cksumstart; 6449 } else { 6450 goto done; 6451 } 6452 6453 if (connp->conn_fanout == NULL) 6454 goto done; 6455 6456 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6457 mutex_enter(&connp->conn_fanout->connf_lock); 6458 mutex_enter(&connp->conn_lock); 6459 /* 6460 * No one from read or write side can access us now 6461 * except for already queued packets on this squeue. 6462 * But since we haven't changed the squeue yet, they 6463 * can't execute. If they are processed after we have 6464 * changed the squeue, they are sent back to the 6465 * correct squeue down below. 6466 */ 6467 if (connp->conn_sqp != new_sqp) { 6468 while (connp->conn_sqp != new_sqp) 6469 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6470 } 6471 6472 do { 6473 conn_flags = connp->conn_flags; 6474 conn_flags |= IPCL_FULLY_BOUND; 6475 (void) cas32(&connp->conn_flags, connp->conn_flags, 6476 conn_flags); 6477 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6478 6479 mutex_exit(&connp->conn_fanout->connf_lock); 6480 mutex_exit(&connp->conn_lock); 6481 } 6482 6483 done: 6484 if (connp->conn_sqp != sqp) { 6485 CONN_INC_REF(connp); 6486 squeue_fill(connp->conn_sqp, mp, 6487 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6488 } else { 6489 tcp_conn_request(connp, mp, sqp); 6490 } 6491 } 6492 6493 /* 6494 * Successful connect request processing begins when our client passes 6495 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6496 * our T_OK_ACK reply message upstream. The control flow looks like this: 6497 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6498 * upstream <- tcp_rput() <- IP 6499 * After various error checks are completed, tcp_connect() lays 6500 * the target address and port into the composite header template, 6501 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6502 * request followed by an IRE request, and passes the three mblk message 6503 * down to IP looking like this: 6504 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6505 * Processing continues in tcp_rput() when we receive the following message: 6506 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6507 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6508 * to fire off the connection request, and then passes the T_OK_ACK mblk 6509 * upstream that we filled in below. There are, of course, numerous 6510 * error conditions along the way which truncate the processing described 6511 * above. 6512 */ 6513 static void 6514 tcp_connect(tcp_t *tcp, mblk_t *mp) 6515 { 6516 sin_t *sin; 6517 sin6_t *sin6; 6518 queue_t *q = tcp->tcp_wq; 6519 struct T_conn_req *tcr; 6520 ipaddr_t *dstaddrp; 6521 in_port_t dstport; 6522 uint_t srcid; 6523 6524 tcr = (struct T_conn_req *)mp->b_rptr; 6525 6526 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6527 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6528 tcp_err_ack(tcp, mp, TPROTO, 0); 6529 return; 6530 } 6531 6532 /* 6533 * Determine packet type based on type of address passed in 6534 * the request should contain an IPv4 or IPv6 address. 6535 * Make sure that address family matches the type of 6536 * family of the the address passed down 6537 */ 6538 switch (tcr->DEST_length) { 6539 default: 6540 tcp_err_ack(tcp, mp, TBADADDR, 0); 6541 return; 6542 6543 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6544 /* 6545 * XXX: The check for valid DEST_length was not there 6546 * in earlier releases and some buggy 6547 * TLI apps (e.g Sybase) got away with not feeding 6548 * in sin_zero part of address. 6549 * We allow that bug to keep those buggy apps humming. 6550 * Test suites require the check on DEST_length. 6551 * We construct a new mblk with valid DEST_length 6552 * free the original so the rest of the code does 6553 * not have to keep track of this special shorter 6554 * length address case. 6555 */ 6556 mblk_t *nmp; 6557 struct T_conn_req *ntcr; 6558 sin_t *nsin; 6559 6560 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6561 tcr->OPT_length, BPRI_HI); 6562 if (nmp == NULL) { 6563 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6564 return; 6565 } 6566 ntcr = (struct T_conn_req *)nmp->b_rptr; 6567 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6568 ntcr->PRIM_type = T_CONN_REQ; 6569 ntcr->DEST_length = sizeof (sin_t); 6570 ntcr->DEST_offset = sizeof (struct T_conn_req); 6571 6572 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6573 *nsin = sin_null; 6574 /* Get pointer to shorter address to copy from original mp */ 6575 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6576 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6577 if (sin == NULL || !OK_32PTR((char *)sin)) { 6578 freemsg(nmp); 6579 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6580 return; 6581 } 6582 nsin->sin_family = sin->sin_family; 6583 nsin->sin_port = sin->sin_port; 6584 nsin->sin_addr = sin->sin_addr; 6585 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6586 nmp->b_wptr = (uchar_t *)&nsin[1]; 6587 if (tcr->OPT_length != 0) { 6588 ntcr->OPT_length = tcr->OPT_length; 6589 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6590 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6591 (uchar_t *)ntcr + ntcr->OPT_offset, 6592 tcr->OPT_length); 6593 nmp->b_wptr += tcr->OPT_length; 6594 } 6595 freemsg(mp); /* original mp freed */ 6596 mp = nmp; /* re-initialize original variables */ 6597 tcr = ntcr; 6598 } 6599 /* FALLTHRU */ 6600 6601 case sizeof (sin_t): 6602 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6603 sizeof (sin_t)); 6604 if (sin == NULL || !OK_32PTR((char *)sin)) { 6605 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6606 return; 6607 } 6608 if (tcp->tcp_family != AF_INET || 6609 sin->sin_family != AF_INET) { 6610 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6611 return; 6612 } 6613 if (sin->sin_port == 0) { 6614 tcp_err_ack(tcp, mp, TBADADDR, 0); 6615 return; 6616 } 6617 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6618 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6619 return; 6620 } 6621 6622 break; 6623 6624 case sizeof (sin6_t): 6625 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6626 sizeof (sin6_t)); 6627 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6628 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6629 return; 6630 } 6631 if (tcp->tcp_family != AF_INET6 || 6632 sin6->sin6_family != AF_INET6) { 6633 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6634 return; 6635 } 6636 if (sin6->sin6_port == 0) { 6637 tcp_err_ack(tcp, mp, TBADADDR, 0); 6638 return; 6639 } 6640 break; 6641 } 6642 /* 6643 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6644 * should key on their sequence number and cut them loose. 6645 */ 6646 6647 /* 6648 * If options passed in, feed it for verification and handling 6649 */ 6650 if (tcr->OPT_length != 0) { 6651 mblk_t *ok_mp; 6652 mblk_t *discon_mp; 6653 mblk_t *conn_opts_mp; 6654 int t_error, sys_error, do_disconnect; 6655 6656 conn_opts_mp = NULL; 6657 6658 if (tcp_conprim_opt_process(tcp, mp, 6659 &do_disconnect, &t_error, &sys_error) < 0) { 6660 if (do_disconnect) { 6661 ASSERT(t_error == 0 && sys_error == 0); 6662 discon_mp = mi_tpi_discon_ind(NULL, 6663 ECONNREFUSED, 0); 6664 if (!discon_mp) { 6665 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6666 TSYSERR, ENOMEM); 6667 return; 6668 } 6669 ok_mp = mi_tpi_ok_ack_alloc(mp); 6670 if (!ok_mp) { 6671 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6672 TSYSERR, ENOMEM); 6673 return; 6674 } 6675 qreply(q, ok_mp); 6676 qreply(q, discon_mp); /* no flush! */ 6677 } else { 6678 ASSERT(t_error != 0); 6679 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6680 sys_error); 6681 } 6682 return; 6683 } 6684 /* 6685 * Success in setting options, the mp option buffer represented 6686 * by OPT_length/offset has been potentially modified and 6687 * contains results of option processing. We copy it in 6688 * another mp to save it for potentially influencing returning 6689 * it in T_CONN_CONN. 6690 */ 6691 if (tcr->OPT_length != 0) { /* there are resulting options */ 6692 conn_opts_mp = copyb(mp); 6693 if (!conn_opts_mp) { 6694 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6695 TSYSERR, ENOMEM); 6696 return; 6697 } 6698 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6699 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6700 /* 6701 * Note: 6702 * These resulting option negotiation can include any 6703 * end-to-end negotiation options but there no such 6704 * thing (yet?) in our TCP/IP. 6705 */ 6706 } 6707 } 6708 6709 /* 6710 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6711 * make sure that the template IP header in the tcp structure is an 6712 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6713 * need to this before we call tcp_bindi() so that the port lookup 6714 * code will look for ports in the correct port space (IPv4 and 6715 * IPv6 have separate port spaces). 6716 */ 6717 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6718 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6719 int err = 0; 6720 6721 err = tcp_header_init_ipv4(tcp); 6722 if (err != 0) { 6723 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6724 goto connect_failed; 6725 } 6726 if (tcp->tcp_lport != 0) 6727 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6728 } 6729 6730 switch (tcp->tcp_state) { 6731 case TCPS_IDLE: 6732 /* 6733 * We support quick connect, refer to comments in 6734 * tcp_connect_*() 6735 */ 6736 /* FALLTHRU */ 6737 case TCPS_BOUND: 6738 case TCPS_LISTEN: 6739 if (tcp->tcp_family == AF_INET6) { 6740 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6741 tcp_connect_ipv6(tcp, mp, 6742 &sin6->sin6_addr, 6743 sin6->sin6_port, sin6->sin6_flowinfo, 6744 sin6->__sin6_src_id, sin6->sin6_scope_id); 6745 return; 6746 } 6747 /* 6748 * Destination adress is mapped IPv6 address. 6749 * Source bound address should be unspecified or 6750 * IPv6 mapped address as well. 6751 */ 6752 if (!IN6_IS_ADDR_UNSPECIFIED( 6753 &tcp->tcp_bound_source_v6) && 6754 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6755 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6756 EADDRNOTAVAIL); 6757 break; 6758 } 6759 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6760 dstport = sin6->sin6_port; 6761 srcid = sin6->__sin6_src_id; 6762 } else { 6763 dstaddrp = &sin->sin_addr.s_addr; 6764 dstport = sin->sin_port; 6765 srcid = 0; 6766 } 6767 6768 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6769 return; 6770 default: 6771 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6772 break; 6773 } 6774 /* 6775 * Note: Code below is the "failure" case 6776 */ 6777 /* return error ack and blow away saved option results if any */ 6778 connect_failed: 6779 if (mp != NULL) 6780 putnext(tcp->tcp_rq, mp); 6781 else { 6782 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6783 TSYSERR, ENOMEM); 6784 } 6785 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6786 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6787 } 6788 6789 /* 6790 * Handle connect to IPv4 destinations, including connections for AF_INET6 6791 * sockets connecting to IPv4 mapped IPv6 destinations. 6792 */ 6793 static void 6794 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6795 uint_t srcid) 6796 { 6797 tcph_t *tcph; 6798 mblk_t *mp1; 6799 ipaddr_t dstaddr = *dstaddrp; 6800 int32_t oldstate; 6801 uint16_t lport; 6802 6803 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6804 6805 /* Check for attempt to connect to INADDR_ANY */ 6806 if (dstaddr == INADDR_ANY) { 6807 /* 6808 * SunOS 4.x and 4.3 BSD allow an application 6809 * to connect a TCP socket to INADDR_ANY. 6810 * When they do this, the kernel picks the 6811 * address of one interface and uses it 6812 * instead. The kernel usually ends up 6813 * picking the address of the loopback 6814 * interface. This is an undocumented feature. 6815 * However, we provide the same thing here 6816 * in order to have source and binary 6817 * compatibility with SunOS 4.x. 6818 * Update the T_CONN_REQ (sin/sin6) since it is used to 6819 * generate the T_CONN_CON. 6820 */ 6821 dstaddr = htonl(INADDR_LOOPBACK); 6822 *dstaddrp = dstaddr; 6823 } 6824 6825 /* Handle __sin6_src_id if socket not bound to an IP address */ 6826 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6827 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6828 tcp->tcp_connp->conn_zoneid); 6829 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6830 tcp->tcp_ipha->ipha_src); 6831 } 6832 6833 /* 6834 * Don't let an endpoint connect to itself. Note that 6835 * the test here does not catch the case where the 6836 * source IP addr was left unspecified by the user. In 6837 * this case, the source addr is set in tcp_adapt_ire() 6838 * using the reply to the T_BIND message that we send 6839 * down to IP here and the check is repeated in tcp_rput_other. 6840 */ 6841 if (dstaddr == tcp->tcp_ipha->ipha_src && 6842 dstport == tcp->tcp_lport) { 6843 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6844 goto failed; 6845 } 6846 6847 tcp->tcp_ipha->ipha_dst = dstaddr; 6848 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6849 6850 /* 6851 * Massage a source route if any putting the first hop 6852 * in iph_dst. Compute a starting value for the checksum which 6853 * takes into account that the original iph_dst should be 6854 * included in the checksum but that ip will include the 6855 * first hop in the source route in the tcp checksum. 6856 */ 6857 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 6858 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6859 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6860 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6861 if ((int)tcp->tcp_sum < 0) 6862 tcp->tcp_sum--; 6863 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6864 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6865 (tcp->tcp_sum >> 16)); 6866 tcph = tcp->tcp_tcph; 6867 *(uint16_t *)tcph->th_fport = dstport; 6868 tcp->tcp_fport = dstport; 6869 6870 oldstate = tcp->tcp_state; 6871 /* 6872 * At this point the remote destination address and remote port fields 6873 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6874 * have to see which state tcp was in so we can take apropriate action. 6875 */ 6876 if (oldstate == TCPS_IDLE) { 6877 /* 6878 * We support a quick connect capability here, allowing 6879 * clients to transition directly from IDLE to SYN_SENT 6880 * tcp_bindi will pick an unused port, insert the connection 6881 * in the bind hash and transition to BOUND state. 6882 */ 6883 lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 6884 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6885 B_FALSE, B_FALSE); 6886 if (lport == 0) { 6887 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6888 goto failed; 6889 } 6890 } 6891 tcp->tcp_state = TCPS_SYN_SENT; 6892 6893 /* 6894 * TODO: allow data with connect requests 6895 * by unlinking M_DATA trailers here and 6896 * linking them in behind the T_OK_ACK mblk. 6897 * The tcp_rput() bind ack handler would then 6898 * feed them to tcp_wput_data() rather than call 6899 * tcp_timer(). 6900 */ 6901 mp = mi_tpi_ok_ack_alloc(mp); 6902 if (!mp) { 6903 tcp->tcp_state = oldstate; 6904 goto failed; 6905 } 6906 if (tcp->tcp_family == AF_INET) { 6907 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6908 sizeof (ipa_conn_t)); 6909 } else { 6910 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6911 sizeof (ipa6_conn_t)); 6912 } 6913 if (mp1) { 6914 /* Hang onto the T_OK_ACK for later. */ 6915 linkb(mp1, mp); 6916 if (tcp->tcp_family == AF_INET) 6917 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6918 else { 6919 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6920 &tcp->tcp_sticky_ipp); 6921 } 6922 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6923 tcp->tcp_active_open = 1; 6924 /* 6925 * If the bind cannot complete immediately 6926 * IP will arrange to call tcp_rput_other 6927 * when the bind completes. 6928 */ 6929 if (mp1 != NULL) 6930 tcp_rput_other(tcp, mp1); 6931 return; 6932 } 6933 /* Error case */ 6934 tcp->tcp_state = oldstate; 6935 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6936 6937 failed: 6938 /* return error ack and blow away saved option results if any */ 6939 if (mp != NULL) 6940 putnext(tcp->tcp_rq, mp); 6941 else { 6942 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6943 TSYSERR, ENOMEM); 6944 } 6945 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6946 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6947 6948 } 6949 6950 /* 6951 * Handle connect to IPv6 destinations. 6952 */ 6953 static void 6954 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6955 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6956 { 6957 tcph_t *tcph; 6958 mblk_t *mp1; 6959 ip6_rthdr_t *rth; 6960 int32_t oldstate; 6961 uint16_t lport; 6962 6963 ASSERT(tcp->tcp_family == AF_INET6); 6964 6965 /* 6966 * If we're here, it means that the destination address is a native 6967 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6968 * reason why it might not be IPv6 is if the socket was bound to an 6969 * IPv4-mapped IPv6 address. 6970 */ 6971 if (tcp->tcp_ipversion != IPV6_VERSION) { 6972 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6973 goto failed; 6974 } 6975 6976 /* 6977 * Interpret a zero destination to mean loopback. 6978 * Update the T_CONN_REQ (sin/sin6) since it is used to 6979 * generate the T_CONN_CON. 6980 */ 6981 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6982 *dstaddrp = ipv6_loopback; 6983 } 6984 6985 /* Handle __sin6_src_id if socket not bound to an IP address */ 6986 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6987 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6988 tcp->tcp_connp->conn_zoneid); 6989 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6990 } 6991 6992 /* 6993 * Take care of the scope_id now and add ip6i_t 6994 * if ip6i_t is not already allocated through TCP 6995 * sticky options. At this point tcp_ip6h does not 6996 * have dst info, thus use dstaddrp. 6997 */ 6998 if (scope_id != 0 && 6999 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 7000 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 7001 ip6i_t *ip6i; 7002 7003 ipp->ipp_ifindex = scope_id; 7004 ip6i = (ip6i_t *)tcp->tcp_iphc; 7005 7006 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 7007 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 7008 /* Already allocated */ 7009 ip6i->ip6i_flags |= IP6I_IFINDEX; 7010 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 7011 ipp->ipp_fields |= IPPF_SCOPE_ID; 7012 } else { 7013 int reterr; 7014 7015 ipp->ipp_fields |= IPPF_SCOPE_ID; 7016 if (ipp->ipp_fields & IPPF_HAS_IP6I) 7017 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 7018 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 7019 if (reterr != 0) 7020 goto failed; 7021 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 7022 } 7023 } 7024 7025 /* 7026 * Don't let an endpoint connect to itself. Note that 7027 * the test here does not catch the case where the 7028 * source IP addr was left unspecified by the user. In 7029 * this case, the source addr is set in tcp_adapt_ire() 7030 * using the reply to the T_BIND message that we send 7031 * down to IP here and the check is repeated in tcp_rput_other. 7032 */ 7033 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 7034 (dstport == tcp->tcp_lport)) { 7035 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 7036 goto failed; 7037 } 7038 7039 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 7040 tcp->tcp_remote_v6 = *dstaddrp; 7041 tcp->tcp_ip6h->ip6_vcf = 7042 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 7043 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 7044 7045 7046 /* 7047 * Massage a routing header (if present) putting the first hop 7048 * in ip6_dst. Compute a starting value for the checksum which 7049 * takes into account that the original ip6_dst should be 7050 * included in the checksum but that ip will include the 7051 * first hop in the source route in the tcp checksum. 7052 */ 7053 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 7054 if (rth != NULL) { 7055 7056 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 7057 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 7058 (tcp->tcp_sum >> 16)); 7059 } else { 7060 tcp->tcp_sum = 0; 7061 } 7062 7063 tcph = tcp->tcp_tcph; 7064 *(uint16_t *)tcph->th_fport = dstport; 7065 tcp->tcp_fport = dstport; 7066 7067 oldstate = tcp->tcp_state; 7068 /* 7069 * At this point the remote destination address and remote port fields 7070 * in the tcp-four-tuple have been filled in the tcp structure. Now we 7071 * have to see which state tcp was in so we can take apropriate action. 7072 */ 7073 if (oldstate == TCPS_IDLE) { 7074 /* 7075 * We support a quick connect capability here, allowing 7076 * clients to transition directly from IDLE to SYN_SENT 7077 * tcp_bindi will pick an unused port, insert the connection 7078 * in the bind hash and transition to BOUND state. 7079 */ 7080 lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 7081 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 7082 B_FALSE, B_FALSE); 7083 if (lport == 0) { 7084 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 7085 goto failed; 7086 } 7087 } 7088 tcp->tcp_state = TCPS_SYN_SENT; 7089 /* 7090 * TODO: allow data with connect requests 7091 * by unlinking M_DATA trailers here and 7092 * linking them in behind the T_OK_ACK mblk. 7093 * The tcp_rput() bind ack handler would then 7094 * feed them to tcp_wput_data() rather than call 7095 * tcp_timer(). 7096 */ 7097 mp = mi_tpi_ok_ack_alloc(mp); 7098 if (!mp) { 7099 tcp->tcp_state = oldstate; 7100 goto failed; 7101 } 7102 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 7103 if (mp1) { 7104 /* Hang onto the T_OK_ACK for later. */ 7105 linkb(mp1, mp); 7106 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 7107 &tcp->tcp_sticky_ipp); 7108 BUMP_MIB(&tcp_mib, tcpActiveOpens); 7109 tcp->tcp_active_open = 1; 7110 /* ip_bind_v6() may return ACK or ERROR */ 7111 if (mp1 != NULL) 7112 tcp_rput_other(tcp, mp1); 7113 return; 7114 } 7115 /* Error case */ 7116 tcp->tcp_state = oldstate; 7117 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 7118 7119 failed: 7120 /* return error ack and blow away saved option results if any */ 7121 if (mp != NULL) 7122 putnext(tcp->tcp_rq, mp); 7123 else { 7124 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 7125 TSYSERR, ENOMEM); 7126 } 7127 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 7128 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 7129 } 7130 7131 /* 7132 * We need a stream q for detached closing tcp connections 7133 * to use. Our client hereby indicates that this q is the 7134 * one to use. 7135 */ 7136 static void 7137 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 7138 { 7139 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7140 queue_t *q = tcp->tcp_wq; 7141 7142 mp->b_datap->db_type = M_IOCACK; 7143 iocp->ioc_count = 0; 7144 mutex_enter(&tcp_g_q_lock); 7145 if (tcp_g_q != NULL) { 7146 mutex_exit(&tcp_g_q_lock); 7147 iocp->ioc_error = EALREADY; 7148 } else { 7149 mblk_t *mp1; 7150 7151 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 7152 if (mp1 == NULL) { 7153 mutex_exit(&tcp_g_q_lock); 7154 iocp->ioc_error = ENOMEM; 7155 } else { 7156 tcp_g_q = tcp->tcp_rq; 7157 mutex_exit(&tcp_g_q_lock); 7158 iocp->ioc_error = 0; 7159 iocp->ioc_rval = 0; 7160 /* 7161 * We are passing tcp_sticky_ipp as NULL 7162 * as it is not useful for tcp_default queue 7163 */ 7164 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 7165 if (mp1 != NULL) 7166 tcp_rput_other(tcp, mp1); 7167 } 7168 } 7169 qreply(q, mp); 7170 } 7171 7172 /* 7173 * Our client hereby directs us to reject the connection request 7174 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 7175 * of sending the appropriate RST, not an ICMP error. 7176 */ 7177 static void 7178 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 7179 { 7180 tcp_t *ltcp = NULL; 7181 t_scalar_t seqnum; 7182 conn_t *connp; 7183 7184 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 7185 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 7186 tcp_err_ack(tcp, mp, TPROTO, 0); 7187 return; 7188 } 7189 7190 /* 7191 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 7192 * when the stream is in BOUND state. Do not send a reset, 7193 * since the destination IP address is not valid, and it can 7194 * be the initialized value of all zeros (broadcast address). 7195 * 7196 * If TCP has sent down a bind request to IP and has not 7197 * received the reply, reject the request. Otherwise, TCP 7198 * will be confused. 7199 */ 7200 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 7201 if (tcp->tcp_debug) { 7202 (void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE, 7203 "tcp_disconnect: bad state, %d", tcp->tcp_state); 7204 } 7205 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 7206 return; 7207 } 7208 7209 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 7210 7211 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 7212 7213 /* 7214 * According to TPI, for non-listeners, ignore seqnum 7215 * and disconnect. 7216 * Following interpretation of -1 seqnum is historical 7217 * and implied TPI ? (TPI only states that for T_CONN_IND, 7218 * a valid seqnum should not be -1). 7219 * 7220 * -1 means disconnect everything 7221 * regardless even on a listener. 7222 */ 7223 7224 int old_state = tcp->tcp_state; 7225 7226 /* 7227 * The connection can't be on the tcp_time_wait_head list 7228 * since it is not detached. 7229 */ 7230 ASSERT(tcp->tcp_time_wait_next == NULL); 7231 ASSERT(tcp->tcp_time_wait_prev == NULL); 7232 ASSERT(tcp->tcp_time_wait_expire == 0); 7233 ltcp = NULL; 7234 /* 7235 * If it used to be a listener, check to make sure no one else 7236 * has taken the port before switching back to LISTEN state. 7237 */ 7238 if (tcp->tcp_ipversion == IPV4_VERSION) { 7239 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 7240 tcp->tcp_ipha->ipha_src, 7241 tcp->tcp_connp->conn_zoneid); 7242 if (connp != NULL) 7243 ltcp = connp->conn_tcp; 7244 } else { 7245 /* Allow tcp_bound_if listeners? */ 7246 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 7247 &tcp->tcp_ip6h->ip6_src, 0, 7248 tcp->tcp_connp->conn_zoneid); 7249 if (connp != NULL) 7250 ltcp = connp->conn_tcp; 7251 } 7252 if (tcp->tcp_conn_req_max && ltcp == NULL) { 7253 tcp->tcp_state = TCPS_LISTEN; 7254 } else if (old_state > TCPS_BOUND) { 7255 tcp->tcp_conn_req_max = 0; 7256 tcp->tcp_state = TCPS_BOUND; 7257 } 7258 if (ltcp != NULL) 7259 CONN_DEC_REF(ltcp->tcp_connp); 7260 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 7261 BUMP_MIB(&tcp_mib, tcpAttemptFails); 7262 } else if (old_state == TCPS_ESTABLISHED || 7263 old_state == TCPS_CLOSE_WAIT) { 7264 BUMP_MIB(&tcp_mib, tcpEstabResets); 7265 } 7266 7267 if (tcp->tcp_fused) 7268 tcp_unfuse(tcp); 7269 7270 mutex_enter(&tcp->tcp_eager_lock); 7271 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 7272 (tcp->tcp_conn_req_cnt_q != 0)) { 7273 tcp_eager_cleanup(tcp, 0); 7274 } 7275 mutex_exit(&tcp->tcp_eager_lock); 7276 7277 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 7278 tcp->tcp_rnxt, TH_RST | TH_ACK); 7279 7280 tcp_reinit(tcp); 7281 7282 if (old_state >= TCPS_ESTABLISHED) { 7283 /* Send M_FLUSH according to TPI */ 7284 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 7285 } 7286 mp = mi_tpi_ok_ack_alloc(mp); 7287 if (mp) 7288 putnext(tcp->tcp_rq, mp); 7289 return; 7290 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 7291 tcp_err_ack(tcp, mp, TBADSEQ, 0); 7292 return; 7293 } 7294 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 7295 /* Send M_FLUSH according to TPI */ 7296 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 7297 } 7298 mp = mi_tpi_ok_ack_alloc(mp); 7299 if (mp) 7300 putnext(tcp->tcp_rq, mp); 7301 } 7302 7303 /* 7304 * Diagnostic routine used to return a string associated with the tcp state. 7305 * Note that if the caller does not supply a buffer, it will use an internal 7306 * static string. This means that if multiple threads call this function at 7307 * the same time, output can be corrupted... Note also that this function 7308 * does not check the size of the supplied buffer. The caller has to make 7309 * sure that it is big enough. 7310 */ 7311 static char * 7312 tcp_display(tcp_t *tcp, char *sup_buf, char format) 7313 { 7314 char buf1[30]; 7315 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 7316 char *buf; 7317 char *cp; 7318 in6_addr_t local, remote; 7319 char local_addrbuf[INET6_ADDRSTRLEN]; 7320 char remote_addrbuf[INET6_ADDRSTRLEN]; 7321 7322 if (sup_buf != NULL) 7323 buf = sup_buf; 7324 else 7325 buf = priv_buf; 7326 7327 if (tcp == NULL) 7328 return ("NULL_TCP"); 7329 switch (tcp->tcp_state) { 7330 case TCPS_CLOSED: 7331 cp = "TCP_CLOSED"; 7332 break; 7333 case TCPS_IDLE: 7334 cp = "TCP_IDLE"; 7335 break; 7336 case TCPS_BOUND: 7337 cp = "TCP_BOUND"; 7338 break; 7339 case TCPS_LISTEN: 7340 cp = "TCP_LISTEN"; 7341 break; 7342 case TCPS_SYN_SENT: 7343 cp = "TCP_SYN_SENT"; 7344 break; 7345 case TCPS_SYN_RCVD: 7346 cp = "TCP_SYN_RCVD"; 7347 break; 7348 case TCPS_ESTABLISHED: 7349 cp = "TCP_ESTABLISHED"; 7350 break; 7351 case TCPS_CLOSE_WAIT: 7352 cp = "TCP_CLOSE_WAIT"; 7353 break; 7354 case TCPS_FIN_WAIT_1: 7355 cp = "TCP_FIN_WAIT_1"; 7356 break; 7357 case TCPS_CLOSING: 7358 cp = "TCP_CLOSING"; 7359 break; 7360 case TCPS_LAST_ACK: 7361 cp = "TCP_LAST_ACK"; 7362 break; 7363 case TCPS_FIN_WAIT_2: 7364 cp = "TCP_FIN_WAIT_2"; 7365 break; 7366 case TCPS_TIME_WAIT: 7367 cp = "TCP_TIME_WAIT"; 7368 break; 7369 default: 7370 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7371 cp = buf1; 7372 break; 7373 } 7374 switch (format) { 7375 case DISP_ADDR_AND_PORT: 7376 if (tcp->tcp_ipversion == IPV4_VERSION) { 7377 /* 7378 * Note that we use the remote address in the tcp_b 7379 * structure. This means that it will print out 7380 * the real destination address, not the next hop's 7381 * address if source routing is used. 7382 */ 7383 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7384 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7385 7386 } else { 7387 local = tcp->tcp_ip_src_v6; 7388 remote = tcp->tcp_remote_v6; 7389 } 7390 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7391 sizeof (local_addrbuf)); 7392 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7393 sizeof (remote_addrbuf)); 7394 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7395 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7396 ntohs(tcp->tcp_fport), cp); 7397 break; 7398 case DISP_PORT_ONLY: 7399 default: 7400 (void) mi_sprintf(buf, "[%u, %u] %s", 7401 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7402 break; 7403 } 7404 7405 return (buf); 7406 } 7407 7408 /* 7409 * Called via squeue to get on to eager's perimeter to send a 7410 * TH_RST. The listener wants the eager to disappear either 7411 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 7412 * being called. 7413 */ 7414 /* ARGSUSED */ 7415 void 7416 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7417 { 7418 conn_t *econnp = (conn_t *)arg; 7419 tcp_t *eager = econnp->conn_tcp; 7420 tcp_t *listener = eager->tcp_listener; 7421 7422 /* 7423 * We could be called because listener is closing. Since 7424 * the eager is using listener's queue's, its not safe. 7425 * Better use the default queue just to send the TH_RST 7426 * out. 7427 */ 7428 eager->tcp_rq = tcp_g_q; 7429 eager->tcp_wq = WR(tcp_g_q); 7430 7431 if (eager->tcp_state > TCPS_LISTEN) { 7432 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7433 eager, eager->tcp_snxt, 0, TH_RST); 7434 } 7435 7436 /* We are here because listener wants this eager gone */ 7437 if (listener != NULL) { 7438 mutex_enter(&listener->tcp_eager_lock); 7439 tcp_eager_unlink(eager); 7440 if (eager->tcp_conn.tcp_eager_conn_ind == NULL) { 7441 /* 7442 * The eager has sent a conn_ind up to the 7443 * listener but listener decides to close 7444 * instead. We need to drop the extra ref 7445 * placed on eager in tcp_rput_data() before 7446 * sending the conn_ind to listener. 7447 */ 7448 CONN_DEC_REF(econnp); 7449 } 7450 mutex_exit(&listener->tcp_eager_lock); 7451 CONN_DEC_REF(listener->tcp_connp); 7452 } 7453 7454 if (eager->tcp_state > TCPS_BOUND) 7455 tcp_close_detached(eager); 7456 } 7457 7458 /* 7459 * Reset any eager connection hanging off this listener marked 7460 * with 'seqnum' and then reclaim it's resources. 7461 */ 7462 static boolean_t 7463 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7464 { 7465 tcp_t *eager; 7466 mblk_t *mp; 7467 7468 TCP_STAT(tcp_eager_blowoff_calls); 7469 eager = listener; 7470 mutex_enter(&listener->tcp_eager_lock); 7471 do { 7472 eager = eager->tcp_eager_next_q; 7473 if (eager == NULL) { 7474 mutex_exit(&listener->tcp_eager_lock); 7475 return (B_FALSE); 7476 } 7477 } while (eager->tcp_conn_req_seqnum != seqnum); 7478 CONN_INC_REF(eager->tcp_connp); 7479 mutex_exit(&listener->tcp_eager_lock); 7480 mp = &eager->tcp_closemp; 7481 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7482 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7483 return (B_TRUE); 7484 } 7485 7486 /* 7487 * Reset any eager connection hanging off this listener 7488 * and then reclaim it's resources. 7489 */ 7490 static void 7491 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7492 { 7493 tcp_t *eager; 7494 mblk_t *mp; 7495 7496 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7497 7498 if (!q0_only) { 7499 /* First cleanup q */ 7500 TCP_STAT(tcp_eager_blowoff_q); 7501 eager = listener->tcp_eager_next_q; 7502 while (eager != NULL) { 7503 CONN_INC_REF(eager->tcp_connp); 7504 mp = &eager->tcp_closemp; 7505 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7506 tcp_eager_kill, eager->tcp_connp, 7507 SQTAG_TCP_EAGER_CLEANUP); 7508 eager = eager->tcp_eager_next_q; 7509 } 7510 } 7511 /* Then cleanup q0 */ 7512 TCP_STAT(tcp_eager_blowoff_q0); 7513 eager = listener->tcp_eager_next_q0; 7514 while (eager != listener) { 7515 CONN_INC_REF(eager->tcp_connp); 7516 mp = &eager->tcp_closemp; 7517 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7518 tcp_eager_kill, eager->tcp_connp, 7519 SQTAG_TCP_EAGER_CLEANUP_Q0); 7520 eager = eager->tcp_eager_next_q0; 7521 } 7522 } 7523 7524 /* 7525 * If we are an eager connection hanging off a listener that hasn't 7526 * formally accepted the connection yet, get off his list and blow off 7527 * any data that we have accumulated. 7528 */ 7529 static void 7530 tcp_eager_unlink(tcp_t *tcp) 7531 { 7532 tcp_t *listener = tcp->tcp_listener; 7533 7534 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7535 ASSERT(listener != NULL); 7536 if (tcp->tcp_eager_next_q0 != NULL) { 7537 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7538 7539 /* Remove the eager tcp from q0 */ 7540 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7541 tcp->tcp_eager_prev_q0; 7542 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7543 tcp->tcp_eager_next_q0; 7544 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7545 listener->tcp_conn_req_cnt_q0--; 7546 7547 tcp->tcp_eager_next_q0 = NULL; 7548 tcp->tcp_eager_prev_q0 = NULL; 7549 7550 if (tcp->tcp_syn_rcvd_timeout != 0) { 7551 /* we have timed out before */ 7552 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7553 listener->tcp_syn_rcvd_timeout--; 7554 } 7555 } else { 7556 tcp_t **tcpp = &listener->tcp_eager_next_q; 7557 tcp_t *prev = NULL; 7558 7559 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7560 if (tcpp[0] == tcp) { 7561 if (listener->tcp_eager_last_q == tcp) { 7562 /* 7563 * If we are unlinking the last 7564 * element on the list, adjust 7565 * tail pointer. Set tail pointer 7566 * to nil when list is empty. 7567 */ 7568 ASSERT(tcp->tcp_eager_next_q == NULL); 7569 if (listener->tcp_eager_last_q == 7570 listener->tcp_eager_next_q) { 7571 listener->tcp_eager_last_q = 7572 NULL; 7573 } else { 7574 /* 7575 * We won't get here if there 7576 * is only one eager in the 7577 * list. 7578 */ 7579 ASSERT(prev != NULL); 7580 listener->tcp_eager_last_q = 7581 prev; 7582 } 7583 } 7584 tcpp[0] = tcp->tcp_eager_next_q; 7585 tcp->tcp_eager_next_q = NULL; 7586 tcp->tcp_eager_last_q = NULL; 7587 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7588 listener->tcp_conn_req_cnt_q--; 7589 break; 7590 } 7591 prev = tcpp[0]; 7592 } 7593 } 7594 tcp->tcp_listener = NULL; 7595 } 7596 7597 /* Shorthand to generate and send TPI error acks to our client */ 7598 static void 7599 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7600 { 7601 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7602 putnext(tcp->tcp_rq, mp); 7603 } 7604 7605 /* Shorthand to generate and send TPI error acks to our client */ 7606 static void 7607 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7608 int t_error, int sys_error) 7609 { 7610 struct T_error_ack *teackp; 7611 7612 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7613 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7614 teackp = (struct T_error_ack *)mp->b_rptr; 7615 teackp->ERROR_prim = primitive; 7616 teackp->TLI_error = t_error; 7617 teackp->UNIX_error = sys_error; 7618 putnext(tcp->tcp_rq, mp); 7619 } 7620 } 7621 7622 /* 7623 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7624 * but instead the code relies on: 7625 * - the fact that the address of the array and its size never changes 7626 * - the atomic assignment of the elements of the array 7627 */ 7628 /* ARGSUSED */ 7629 static int 7630 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7631 { 7632 int i; 7633 7634 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7635 if (tcp_g_epriv_ports[i] != 0) 7636 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 7637 } 7638 return (0); 7639 } 7640 7641 /* 7642 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7643 * threads from changing it at the same time. 7644 */ 7645 /* ARGSUSED */ 7646 static int 7647 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7648 cred_t *cr) 7649 { 7650 long new_value; 7651 int i; 7652 7653 /* 7654 * Fail the request if the new value does not lie within the 7655 * port number limits. 7656 */ 7657 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7658 new_value <= 0 || new_value >= 65536) { 7659 return (EINVAL); 7660 } 7661 7662 mutex_enter(&tcp_epriv_port_lock); 7663 /* Check if the value is already in the list */ 7664 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7665 if (new_value == tcp_g_epriv_ports[i]) { 7666 mutex_exit(&tcp_epriv_port_lock); 7667 return (EEXIST); 7668 } 7669 } 7670 /* Find an empty slot */ 7671 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7672 if (tcp_g_epriv_ports[i] == 0) 7673 break; 7674 } 7675 if (i == tcp_g_num_epriv_ports) { 7676 mutex_exit(&tcp_epriv_port_lock); 7677 return (EOVERFLOW); 7678 } 7679 /* Set the new value */ 7680 tcp_g_epriv_ports[i] = (uint16_t)new_value; 7681 mutex_exit(&tcp_epriv_port_lock); 7682 return (0); 7683 } 7684 7685 /* 7686 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7687 * threads from changing it at the same time. 7688 */ 7689 /* ARGSUSED */ 7690 static int 7691 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7692 cred_t *cr) 7693 { 7694 long new_value; 7695 int i; 7696 7697 /* 7698 * Fail the request if the new value does not lie within the 7699 * port number limits. 7700 */ 7701 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7702 new_value >= 65536) { 7703 return (EINVAL); 7704 } 7705 7706 mutex_enter(&tcp_epriv_port_lock); 7707 /* Check that the value is already in the list */ 7708 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7709 if (tcp_g_epriv_ports[i] == new_value) 7710 break; 7711 } 7712 if (i == tcp_g_num_epriv_ports) { 7713 mutex_exit(&tcp_epriv_port_lock); 7714 return (ESRCH); 7715 } 7716 /* Clear the value */ 7717 tcp_g_epriv_ports[i] = 0; 7718 mutex_exit(&tcp_epriv_port_lock); 7719 return (0); 7720 } 7721 7722 /* Return the TPI/TLI equivalent of our current tcp_state */ 7723 static int 7724 tcp_tpistate(tcp_t *tcp) 7725 { 7726 switch (tcp->tcp_state) { 7727 case TCPS_IDLE: 7728 return (TS_UNBND); 7729 case TCPS_LISTEN: 7730 /* 7731 * Return whether there are outstanding T_CONN_IND waiting 7732 * for the matching T_CONN_RES. Therefore don't count q0. 7733 */ 7734 if (tcp->tcp_conn_req_cnt_q > 0) 7735 return (TS_WRES_CIND); 7736 else 7737 return (TS_IDLE); 7738 case TCPS_BOUND: 7739 return (TS_IDLE); 7740 case TCPS_SYN_SENT: 7741 return (TS_WCON_CREQ); 7742 case TCPS_SYN_RCVD: 7743 /* 7744 * Note: assumption: this has to the active open SYN_RCVD. 7745 * The passive instance is detached in SYN_RCVD stage of 7746 * incoming connection processing so we cannot get request 7747 * for T_info_ack on it. 7748 */ 7749 return (TS_WACK_CRES); 7750 case TCPS_ESTABLISHED: 7751 return (TS_DATA_XFER); 7752 case TCPS_CLOSE_WAIT: 7753 return (TS_WREQ_ORDREL); 7754 case TCPS_FIN_WAIT_1: 7755 return (TS_WIND_ORDREL); 7756 case TCPS_FIN_WAIT_2: 7757 return (TS_WIND_ORDREL); 7758 7759 case TCPS_CLOSING: 7760 case TCPS_LAST_ACK: 7761 case TCPS_TIME_WAIT: 7762 case TCPS_CLOSED: 7763 /* 7764 * Following TS_WACK_DREQ7 is a rendition of "not 7765 * yet TS_IDLE" TPI state. There is no best match to any 7766 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7767 * choose a value chosen that will map to TLI/XTI level 7768 * state of TSTATECHNG (state is process of changing) which 7769 * captures what this dummy state represents. 7770 */ 7771 return (TS_WACK_DREQ7); 7772 default: 7773 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7774 tcp->tcp_state, tcp_display(tcp, NULL, 7775 DISP_PORT_ONLY)); 7776 return (TS_UNBND); 7777 } 7778 } 7779 7780 static void 7781 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7782 { 7783 if (tcp->tcp_family == AF_INET6) 7784 *tia = tcp_g_t_info_ack_v6; 7785 else 7786 *tia = tcp_g_t_info_ack; 7787 tia->CURRENT_state = tcp_tpistate(tcp); 7788 tia->OPT_size = tcp_max_optsize; 7789 if (tcp->tcp_mss == 0) { 7790 /* Not yet set - tcp_open does not set mss */ 7791 if (tcp->tcp_ipversion == IPV4_VERSION) 7792 tia->TIDU_size = tcp_mss_def_ipv4; 7793 else 7794 tia->TIDU_size = tcp_mss_def_ipv6; 7795 } else { 7796 tia->TIDU_size = tcp->tcp_mss; 7797 } 7798 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7799 } 7800 7801 /* 7802 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7803 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7804 * tcp_g_t_info_ack. The current state of the stream is copied from 7805 * tcp_state. 7806 */ 7807 static void 7808 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7809 { 7810 t_uscalar_t cap_bits1; 7811 struct T_capability_ack *tcap; 7812 7813 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7814 freemsg(mp); 7815 return; 7816 } 7817 7818 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7819 7820 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7821 mp->b_datap->db_type, T_CAPABILITY_ACK); 7822 if (mp == NULL) 7823 return; 7824 7825 tcap = (struct T_capability_ack *)mp->b_rptr; 7826 tcap->CAP_bits1 = 0; 7827 7828 if (cap_bits1 & TC1_INFO) { 7829 tcp_copy_info(&tcap->INFO_ack, tcp); 7830 tcap->CAP_bits1 |= TC1_INFO; 7831 } 7832 7833 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7834 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7835 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7836 } 7837 7838 putnext(tcp->tcp_rq, mp); 7839 } 7840 7841 /* 7842 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7843 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7844 * The current state of the stream is copied from tcp_state. 7845 */ 7846 static void 7847 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7848 { 7849 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7850 T_INFO_ACK); 7851 if (!mp) { 7852 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7853 return; 7854 } 7855 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7856 putnext(tcp->tcp_rq, mp); 7857 } 7858 7859 /* Respond to the TPI addr request */ 7860 static void 7861 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7862 { 7863 sin_t *sin; 7864 mblk_t *ackmp; 7865 struct T_addr_ack *taa; 7866 7867 /* Make it large enough for worst case */ 7868 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7869 2 * sizeof (sin6_t), 1); 7870 if (ackmp == NULL) { 7871 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7872 return; 7873 } 7874 7875 if (tcp->tcp_ipversion == IPV6_VERSION) { 7876 tcp_addr_req_ipv6(tcp, ackmp); 7877 return; 7878 } 7879 taa = (struct T_addr_ack *)ackmp->b_rptr; 7880 7881 bzero(taa, sizeof (struct T_addr_ack)); 7882 ackmp->b_wptr = (uchar_t *)&taa[1]; 7883 7884 taa->PRIM_type = T_ADDR_ACK; 7885 ackmp->b_datap->db_type = M_PCPROTO; 7886 7887 /* 7888 * Note: Following code assumes 32 bit alignment of basic 7889 * data structures like sin_t and struct T_addr_ack. 7890 */ 7891 if (tcp->tcp_state >= TCPS_BOUND) { 7892 /* 7893 * Fill in local address 7894 */ 7895 taa->LOCADDR_length = sizeof (sin_t); 7896 taa->LOCADDR_offset = sizeof (*taa); 7897 7898 sin = (sin_t *)&taa[1]; 7899 7900 /* Fill zeroes and then intialize non-zero fields */ 7901 *sin = sin_null; 7902 7903 sin->sin_family = AF_INET; 7904 7905 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7906 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7907 7908 ackmp->b_wptr = (uchar_t *)&sin[1]; 7909 7910 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7911 /* 7912 * Fill in Remote address 7913 */ 7914 taa->REMADDR_length = sizeof (sin_t); 7915 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7916 taa->LOCADDR_length); 7917 7918 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7919 *sin = sin_null; 7920 sin->sin_family = AF_INET; 7921 sin->sin_addr.s_addr = tcp->tcp_remote; 7922 sin->sin_port = tcp->tcp_fport; 7923 7924 ackmp->b_wptr = (uchar_t *)&sin[1]; 7925 } 7926 } 7927 putnext(tcp->tcp_rq, ackmp); 7928 } 7929 7930 /* Assumes that tcp_addr_req gets enough space and alignment */ 7931 static void 7932 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7933 { 7934 sin6_t *sin6; 7935 struct T_addr_ack *taa; 7936 7937 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7938 ASSERT(OK_32PTR(ackmp->b_rptr)); 7939 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7940 2 * sizeof (sin6_t)); 7941 7942 taa = (struct T_addr_ack *)ackmp->b_rptr; 7943 7944 bzero(taa, sizeof (struct T_addr_ack)); 7945 ackmp->b_wptr = (uchar_t *)&taa[1]; 7946 7947 taa->PRIM_type = T_ADDR_ACK; 7948 ackmp->b_datap->db_type = M_PCPROTO; 7949 7950 /* 7951 * Note: Following code assumes 32 bit alignment of basic 7952 * data structures like sin6_t and struct T_addr_ack. 7953 */ 7954 if (tcp->tcp_state >= TCPS_BOUND) { 7955 /* 7956 * Fill in local address 7957 */ 7958 taa->LOCADDR_length = sizeof (sin6_t); 7959 taa->LOCADDR_offset = sizeof (*taa); 7960 7961 sin6 = (sin6_t *)&taa[1]; 7962 *sin6 = sin6_null; 7963 7964 sin6->sin6_family = AF_INET6; 7965 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7966 sin6->sin6_port = tcp->tcp_lport; 7967 7968 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7969 7970 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7971 /* 7972 * Fill in Remote address 7973 */ 7974 taa->REMADDR_length = sizeof (sin6_t); 7975 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7976 taa->LOCADDR_length); 7977 7978 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7979 *sin6 = sin6_null; 7980 sin6->sin6_family = AF_INET6; 7981 sin6->sin6_flowinfo = 7982 tcp->tcp_ip6h->ip6_vcf & 7983 ~IPV6_VERS_AND_FLOW_MASK; 7984 sin6->sin6_addr = tcp->tcp_remote_v6; 7985 sin6->sin6_port = tcp->tcp_fport; 7986 7987 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7988 } 7989 } 7990 putnext(tcp->tcp_rq, ackmp); 7991 } 7992 7993 /* 7994 * Handle reinitialization of a tcp structure. 7995 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7996 */ 7997 static void 7998 tcp_reinit(tcp_t *tcp) 7999 { 8000 mblk_t *mp; 8001 int err; 8002 8003 TCP_STAT(tcp_reinit_calls); 8004 8005 /* tcp_reinit should never be called for detached tcp_t's */ 8006 ASSERT(tcp->tcp_listener == NULL); 8007 ASSERT((tcp->tcp_family == AF_INET && 8008 tcp->tcp_ipversion == IPV4_VERSION) || 8009 (tcp->tcp_family == AF_INET6 && 8010 (tcp->tcp_ipversion == IPV4_VERSION || 8011 tcp->tcp_ipversion == IPV6_VERSION))); 8012 8013 /* Cancel outstanding timers */ 8014 tcp_timers_stop(tcp); 8015 8016 if (tcp->tcp_flow_stopped) { 8017 tcp_clrqfull(tcp); 8018 } 8019 /* 8020 * Reset everything in the state vector, after updating global 8021 * MIB data from instance counters. 8022 */ 8023 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 8024 tcp->tcp_ibsegs = 0; 8025 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 8026 tcp->tcp_obsegs = 0; 8027 8028 tcp_close_mpp(&tcp->tcp_xmit_head); 8029 if (tcp->tcp_snd_zcopy_aware) 8030 tcp_zcopy_notify(tcp); 8031 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 8032 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 8033 tcp_close_mpp(&tcp->tcp_reass_head); 8034 tcp->tcp_reass_tail = NULL; 8035 if (tcp->tcp_rcv_list != NULL) { 8036 /* Free b_next chain */ 8037 tcp_close_mpp(&tcp->tcp_rcv_list); 8038 tcp->tcp_rcv_last_head = NULL; 8039 tcp->tcp_rcv_last_tail = NULL; 8040 tcp->tcp_rcv_cnt = 0; 8041 } 8042 tcp->tcp_rcv_last_tail = NULL; 8043 8044 if ((mp = tcp->tcp_urp_mp) != NULL) { 8045 freemsg(mp); 8046 tcp->tcp_urp_mp = NULL; 8047 } 8048 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 8049 freemsg(mp); 8050 tcp->tcp_urp_mark_mp = NULL; 8051 } 8052 if (tcp->tcp_fused_sigurg_mp != NULL) { 8053 freeb(tcp->tcp_fused_sigurg_mp); 8054 tcp->tcp_fused_sigurg_mp = NULL; 8055 } 8056 8057 /* 8058 * Following is a union with two members which are 8059 * identical types and size so the following cleanup 8060 * is enough. 8061 */ 8062 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 8063 8064 CL_INET_DISCONNECT(tcp); 8065 8066 /* 8067 * The connection can't be on the tcp_time_wait_head list 8068 * since it is not detached. 8069 */ 8070 ASSERT(tcp->tcp_time_wait_next == NULL); 8071 ASSERT(tcp->tcp_time_wait_prev == NULL); 8072 ASSERT(tcp->tcp_time_wait_expire == 0); 8073 8074 /* 8075 * Reset/preserve other values 8076 */ 8077 tcp_reinit_values(tcp); 8078 ipcl_hash_remove(tcp->tcp_connp); 8079 conn_delete_ire(tcp->tcp_connp, NULL); 8080 8081 if (tcp->tcp_conn_req_max != 0) { 8082 /* 8083 * This is the case when a TLI program uses the same 8084 * transport end point to accept a connection. This 8085 * makes the TCP both a listener and acceptor. When 8086 * this connection is closed, we need to set the state 8087 * back to TCPS_LISTEN. Make sure that the eager list 8088 * is reinitialized. 8089 * 8090 * Note that this stream is still bound to the four 8091 * tuples of the previous connection in IP. If a new 8092 * SYN with different foreign address comes in, IP will 8093 * not find it and will send it to the global queue. In 8094 * the global queue, TCP will do a tcp_lookup_listener() 8095 * to find this stream. This works because this stream 8096 * is only removed from connected hash. 8097 * 8098 */ 8099 tcp->tcp_state = TCPS_LISTEN; 8100 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 8101 tcp->tcp_connp->conn_recv = tcp_conn_request; 8102 if (tcp->tcp_family == AF_INET6) { 8103 ASSERT(tcp->tcp_connp->conn_af_isv6); 8104 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 8105 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 8106 } else { 8107 ASSERT(!tcp->tcp_connp->conn_af_isv6); 8108 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 8109 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 8110 } 8111 } else { 8112 tcp->tcp_state = TCPS_BOUND; 8113 } 8114 8115 /* 8116 * Initialize to default values 8117 * Can't fail since enough header template space already allocated 8118 * at open(). 8119 */ 8120 err = tcp_init_values(tcp); 8121 ASSERT(err == 0); 8122 /* Restore state in tcp_tcph */ 8123 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 8124 if (tcp->tcp_ipversion == IPV4_VERSION) 8125 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 8126 else 8127 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 8128 /* 8129 * Copy of the src addr. in tcp_t is needed in tcp_t 8130 * since the lookup funcs can only lookup on tcp_t 8131 */ 8132 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 8133 8134 ASSERT(tcp->tcp_ptpbhn != NULL); 8135 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 8136 tcp->tcp_rwnd = tcp_recv_hiwat; 8137 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 8138 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 8139 } 8140 8141 /* 8142 * Force values to zero that need be zero. 8143 * Do not touch values asociated with the BOUND or LISTEN state 8144 * since the connection will end up in that state after the reinit. 8145 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 8146 * structure! 8147 */ 8148 static void 8149 tcp_reinit_values(tcp) 8150 tcp_t *tcp; 8151 { 8152 #ifndef lint 8153 #define DONTCARE(x) 8154 #define PRESERVE(x) 8155 #else 8156 #define DONTCARE(x) ((x) = (x)) 8157 #define PRESERVE(x) ((x) = (x)) 8158 #endif /* lint */ 8159 8160 PRESERVE(tcp->tcp_bind_hash); 8161 PRESERVE(tcp->tcp_ptpbhn); 8162 PRESERVE(tcp->tcp_acceptor_hash); 8163 PRESERVE(tcp->tcp_ptpahn); 8164 8165 /* Should be ASSERT NULL on these with new code! */ 8166 ASSERT(tcp->tcp_time_wait_next == NULL); 8167 ASSERT(tcp->tcp_time_wait_prev == NULL); 8168 ASSERT(tcp->tcp_time_wait_expire == 0); 8169 PRESERVE(tcp->tcp_state); 8170 PRESERVE(tcp->tcp_rq); 8171 PRESERVE(tcp->tcp_wq); 8172 8173 ASSERT(tcp->tcp_xmit_head == NULL); 8174 ASSERT(tcp->tcp_xmit_last == NULL); 8175 ASSERT(tcp->tcp_unsent == 0); 8176 ASSERT(tcp->tcp_xmit_tail == NULL); 8177 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 8178 8179 tcp->tcp_snxt = 0; /* Displayed in mib */ 8180 tcp->tcp_suna = 0; /* Displayed in mib */ 8181 tcp->tcp_swnd = 0; 8182 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 8183 8184 ASSERT(tcp->tcp_ibsegs == 0); 8185 ASSERT(tcp->tcp_obsegs == 0); 8186 8187 if (tcp->tcp_iphc != NULL) { 8188 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8189 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 8190 } 8191 8192 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 8193 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 8194 DONTCARE(tcp->tcp_ipha); 8195 DONTCARE(tcp->tcp_ip6h); 8196 DONTCARE(tcp->tcp_ip_hdr_len); 8197 DONTCARE(tcp->tcp_tcph); 8198 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 8199 tcp->tcp_valid_bits = 0; 8200 8201 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 8202 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 8203 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 8204 tcp->tcp_last_rcv_lbolt = 0; 8205 8206 tcp->tcp_init_cwnd = 0; 8207 8208 tcp->tcp_urp_last_valid = 0; 8209 tcp->tcp_hard_binding = 0; 8210 tcp->tcp_hard_bound = 0; 8211 PRESERVE(tcp->tcp_cred); 8212 PRESERVE(tcp->tcp_cpid); 8213 PRESERVE(tcp->tcp_exclbind); 8214 8215 tcp->tcp_fin_acked = 0; 8216 tcp->tcp_fin_rcvd = 0; 8217 tcp->tcp_fin_sent = 0; 8218 tcp->tcp_ordrel_done = 0; 8219 8220 ASSERT(tcp->tcp_flow_stopped == 0); 8221 tcp->tcp_debug = 0; 8222 tcp->tcp_dontroute = 0; 8223 tcp->tcp_broadcast = 0; 8224 8225 tcp->tcp_useloopback = 0; 8226 tcp->tcp_reuseaddr = 0; 8227 tcp->tcp_oobinline = 0; 8228 tcp->tcp_dgram_errind = 0; 8229 8230 tcp->tcp_detached = 0; 8231 tcp->tcp_bind_pending = 0; 8232 tcp->tcp_unbind_pending = 0; 8233 tcp->tcp_deferred_clean_death = 0; 8234 8235 tcp->tcp_snd_ws_ok = B_FALSE; 8236 tcp->tcp_snd_ts_ok = B_FALSE; 8237 tcp->tcp_linger = 0; 8238 tcp->tcp_ka_enabled = 0; 8239 tcp->tcp_zero_win_probe = 0; 8240 8241 tcp->tcp_loopback = 0; 8242 tcp->tcp_localnet = 0; 8243 tcp->tcp_syn_defense = 0; 8244 tcp->tcp_set_timer = 0; 8245 8246 tcp->tcp_active_open = 0; 8247 ASSERT(tcp->tcp_timeout == B_FALSE); 8248 tcp->tcp_rexmit = B_FALSE; 8249 tcp->tcp_xmit_zc_clean = B_FALSE; 8250 8251 tcp->tcp_snd_sack_ok = B_FALSE; 8252 PRESERVE(tcp->tcp_recvdstaddr); 8253 tcp->tcp_hwcksum = B_FALSE; 8254 8255 tcp->tcp_ire_ill_check_done = B_FALSE; 8256 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 8257 8258 tcp->tcp_mdt = B_FALSE; 8259 tcp->tcp_mdt_hdr_head = 0; 8260 tcp->tcp_mdt_hdr_tail = 0; 8261 8262 tcp->tcp_conn_def_q0 = 0; 8263 tcp->tcp_ip_forward_progress = B_FALSE; 8264 tcp->tcp_anon_priv_bind = 0; 8265 tcp->tcp_ecn_ok = B_FALSE; 8266 8267 tcp->tcp_cwr = B_FALSE; 8268 tcp->tcp_ecn_echo_on = B_FALSE; 8269 8270 if (tcp->tcp_sack_info != NULL) { 8271 if (tcp->tcp_notsack_list != NULL) { 8272 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 8273 } 8274 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 8275 tcp->tcp_sack_info = NULL; 8276 } 8277 8278 tcp->tcp_rcv_ws = 0; 8279 tcp->tcp_snd_ws = 0; 8280 tcp->tcp_ts_recent = 0; 8281 tcp->tcp_rnxt = 0; /* Displayed in mib */ 8282 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 8283 tcp->tcp_if_mtu = 0; 8284 8285 ASSERT(tcp->tcp_reass_head == NULL); 8286 ASSERT(tcp->tcp_reass_tail == NULL); 8287 8288 tcp->tcp_cwnd_cnt = 0; 8289 8290 ASSERT(tcp->tcp_rcv_list == NULL); 8291 ASSERT(tcp->tcp_rcv_last_head == NULL); 8292 ASSERT(tcp->tcp_rcv_last_tail == NULL); 8293 ASSERT(tcp->tcp_rcv_cnt == 0); 8294 8295 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 8296 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 8297 tcp->tcp_csuna = 0; 8298 8299 tcp->tcp_rto = 0; /* Displayed in MIB */ 8300 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8301 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8302 tcp->tcp_rtt_update = 0; 8303 8304 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8305 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8306 8307 tcp->tcp_rack = 0; /* Displayed in mib */ 8308 tcp->tcp_rack_cnt = 0; 8309 tcp->tcp_rack_cur_max = 0; 8310 tcp->tcp_rack_abs_max = 0; 8311 8312 tcp->tcp_max_swnd = 0; 8313 8314 ASSERT(tcp->tcp_listener == NULL); 8315 8316 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8317 8318 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8319 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8320 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8321 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8322 8323 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8324 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8325 PRESERVE(tcp->tcp_conn_req_max); 8326 PRESERVE(tcp->tcp_conn_req_seqnum); 8327 8328 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8329 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8330 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8331 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8332 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8333 8334 tcp->tcp_lingertime = 0; 8335 8336 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8337 ASSERT(tcp->tcp_urp_mp == NULL); 8338 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8339 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8340 8341 ASSERT(tcp->tcp_eager_next_q == NULL); 8342 ASSERT(tcp->tcp_eager_last_q == NULL); 8343 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8344 tcp->tcp_eager_prev_q0 == NULL) || 8345 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8346 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8347 8348 tcp->tcp_client_errno = 0; 8349 8350 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8351 8352 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8353 8354 PRESERVE(tcp->tcp_bound_source_v6); 8355 tcp->tcp_last_sent_len = 0; 8356 tcp->tcp_dupack_cnt = 0; 8357 8358 tcp->tcp_fport = 0; /* Displayed in MIB */ 8359 PRESERVE(tcp->tcp_lport); 8360 8361 PRESERVE(tcp->tcp_acceptor_lockp); 8362 8363 ASSERT(tcp->tcp_ordrelid == 0); 8364 PRESERVE(tcp->tcp_acceptor_id); 8365 DONTCARE(tcp->tcp_ipsec_overhead); 8366 8367 /* 8368 * If tcp_tracing flag is ON (i.e. We have a trace buffer 8369 * in tcp structure and now tracing), Re-initialize all 8370 * members of tcp_traceinfo. 8371 */ 8372 if (tcp->tcp_tracebuf != NULL) { 8373 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 8374 } 8375 8376 PRESERVE(tcp->tcp_family); 8377 if (tcp->tcp_family == AF_INET6) { 8378 tcp->tcp_ipversion = IPV6_VERSION; 8379 tcp->tcp_mss = tcp_mss_def_ipv6; 8380 } else { 8381 tcp->tcp_ipversion = IPV4_VERSION; 8382 tcp->tcp_mss = tcp_mss_def_ipv4; 8383 } 8384 8385 tcp->tcp_bound_if = 0; 8386 tcp->tcp_ipv6_recvancillary = 0; 8387 tcp->tcp_recvifindex = 0; 8388 tcp->tcp_recvhops = 0; 8389 tcp->tcp_closed = 0; 8390 tcp->tcp_cleandeathtag = 0; 8391 if (tcp->tcp_hopopts != NULL) { 8392 mi_free(tcp->tcp_hopopts); 8393 tcp->tcp_hopopts = NULL; 8394 tcp->tcp_hopoptslen = 0; 8395 } 8396 ASSERT(tcp->tcp_hopoptslen == 0); 8397 if (tcp->tcp_dstopts != NULL) { 8398 mi_free(tcp->tcp_dstopts); 8399 tcp->tcp_dstopts = NULL; 8400 tcp->tcp_dstoptslen = 0; 8401 } 8402 ASSERT(tcp->tcp_dstoptslen == 0); 8403 if (tcp->tcp_rtdstopts != NULL) { 8404 mi_free(tcp->tcp_rtdstopts); 8405 tcp->tcp_rtdstopts = NULL; 8406 tcp->tcp_rtdstoptslen = 0; 8407 } 8408 ASSERT(tcp->tcp_rtdstoptslen == 0); 8409 if (tcp->tcp_rthdr != NULL) { 8410 mi_free(tcp->tcp_rthdr); 8411 tcp->tcp_rthdr = NULL; 8412 tcp->tcp_rthdrlen = 0; 8413 } 8414 ASSERT(tcp->tcp_rthdrlen == 0); 8415 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8416 8417 tcp->tcp_fused = B_FALSE; 8418 tcp->tcp_unfusable = B_FALSE; 8419 tcp->tcp_fused_sigurg = B_FALSE; 8420 tcp->tcp_loopback_peer = NULL; 8421 8422 tcp->tcp_in_ack_unsent = 0; 8423 tcp->tcp_cork = B_FALSE; 8424 8425 tcp->tcp_squeue_bytes = 0; 8426 8427 #undef DONTCARE 8428 #undef PRESERVE 8429 } 8430 8431 /* 8432 * Allocate necessary resources and initialize state vector. 8433 * Guaranteed not to fail so that when an error is returned, 8434 * the caller doesn't need to do any additional cleanup. 8435 */ 8436 int 8437 tcp_init(tcp_t *tcp, queue_t *q) 8438 { 8439 int err; 8440 8441 tcp->tcp_rq = q; 8442 tcp->tcp_wq = WR(q); 8443 tcp->tcp_state = TCPS_IDLE; 8444 if ((err = tcp_init_values(tcp)) != 0) 8445 tcp_timers_stop(tcp); 8446 return (err); 8447 } 8448 8449 static int 8450 tcp_init_values(tcp_t *tcp) 8451 { 8452 int err; 8453 8454 ASSERT((tcp->tcp_family == AF_INET && 8455 tcp->tcp_ipversion == IPV4_VERSION) || 8456 (tcp->tcp_family == AF_INET6 && 8457 (tcp->tcp_ipversion == IPV4_VERSION || 8458 tcp->tcp_ipversion == IPV6_VERSION))); 8459 8460 /* 8461 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8462 * will be close to tcp_rexmit_interval_initial. By doing this, we 8463 * allow the algorithm to adjust slowly to large fluctuations of RTT 8464 * during first few transmissions of a connection as seen in slow 8465 * links. 8466 */ 8467 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 8468 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 8469 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8470 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8471 tcp_conn_grace_period; 8472 if (tcp->tcp_rto < tcp_rexmit_interval_min) 8473 tcp->tcp_rto = tcp_rexmit_interval_min; 8474 tcp->tcp_timer_backoff = 0; 8475 tcp->tcp_ms_we_have_waited = 0; 8476 tcp->tcp_last_recv_time = lbolt; 8477 tcp->tcp_cwnd_max = tcp_cwnd_max_; 8478 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8479 8480 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 8481 8482 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 8483 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 8484 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 8485 /* 8486 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8487 * passive open. 8488 */ 8489 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 8490 8491 tcp->tcp_naglim = tcp_naglim_def; 8492 8493 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8494 8495 tcp->tcp_mdt_hdr_head = 0; 8496 tcp->tcp_mdt_hdr_tail = 0; 8497 8498 tcp->tcp_fused = B_FALSE; 8499 tcp->tcp_unfusable = B_FALSE; 8500 tcp->tcp_fused_sigurg = B_FALSE; 8501 tcp->tcp_loopback_peer = NULL; 8502 8503 /* Initialize the header template */ 8504 if (tcp->tcp_ipversion == IPV4_VERSION) { 8505 err = tcp_header_init_ipv4(tcp); 8506 } else { 8507 err = tcp_header_init_ipv6(tcp); 8508 } 8509 if (err) 8510 return (err); 8511 8512 /* 8513 * Init the window scale to the max so tcp_rwnd_set() won't pare 8514 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8515 */ 8516 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8517 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 8518 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 8519 8520 tcp->tcp_cork = B_FALSE; 8521 /* 8522 * Init the tcp_debug option. This value determines whether TCP 8523 * calls strlog() to print out debug messages. Doing this 8524 * initialization here means that this value is not inherited thru 8525 * tcp_reinit(). 8526 */ 8527 tcp->tcp_debug = tcp_dbg; 8528 8529 tcp->tcp_ka_interval = tcp_keepalive_interval; 8530 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 8531 8532 return (0); 8533 } 8534 8535 /* 8536 * Initialize the IPv4 header. Loses any record of any IP options. 8537 */ 8538 static int 8539 tcp_header_init_ipv4(tcp_t *tcp) 8540 { 8541 tcph_t *tcph; 8542 uint32_t sum; 8543 8544 /* 8545 * This is a simple initialization. If there's 8546 * already a template, it should never be too small, 8547 * so reuse it. Otherwise, allocate space for the new one. 8548 */ 8549 if (tcp->tcp_iphc == NULL) { 8550 ASSERT(tcp->tcp_iphc_len == 0); 8551 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8552 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8553 if (tcp->tcp_iphc == NULL) { 8554 tcp->tcp_iphc_len = 0; 8555 return (ENOMEM); 8556 } 8557 } 8558 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8559 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8560 tcp->tcp_ip6h = NULL; 8561 tcp->tcp_ipversion = IPV4_VERSION; 8562 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8563 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8564 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8565 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8566 tcp->tcp_ipha->ipha_version_and_hdr_length 8567 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8568 tcp->tcp_ipha->ipha_ident = 0; 8569 8570 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 8571 tcp->tcp_tos = 0; 8572 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8573 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 8574 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8575 8576 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8577 tcp->tcp_tcph = tcph; 8578 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8579 /* 8580 * IP wants our header length in the checksum field to 8581 * allow it to perform a single pseudo-header+checksum 8582 * calculation on behalf of TCP. 8583 * Include the adjustment for a source route once IP_OPTIONS is set. 8584 */ 8585 sum = sizeof (tcph_t) + tcp->tcp_sum; 8586 sum = (sum >> 16) + (sum & 0xFFFF); 8587 U16_TO_ABE16(sum, tcph->th_sum); 8588 return (0); 8589 } 8590 8591 /* 8592 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8593 */ 8594 static int 8595 tcp_header_init_ipv6(tcp_t *tcp) 8596 { 8597 tcph_t *tcph; 8598 uint32_t sum; 8599 8600 /* 8601 * This is a simple initialization. If there's 8602 * already a template, it should never be too small, 8603 * so reuse it. Otherwise, allocate space for the new one. 8604 * Ensure that there is enough space to "downgrade" the tcp_t 8605 * to an IPv4 tcp_t. This requires having space for a full load 8606 * of IPv4 options, as well as a full load of TCP options 8607 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8608 * than a v6 header and a TCP header with a full load of TCP options 8609 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8610 * We want to avoid reallocation in the "downgraded" case when 8611 * processing outbound IPv4 options. 8612 */ 8613 if (tcp->tcp_iphc == NULL) { 8614 ASSERT(tcp->tcp_iphc_len == 0); 8615 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8616 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8617 if (tcp->tcp_iphc == NULL) { 8618 tcp->tcp_iphc_len = 0; 8619 return (ENOMEM); 8620 } 8621 } 8622 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8623 tcp->tcp_ipversion = IPV6_VERSION; 8624 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8625 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8626 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8627 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8628 tcp->tcp_ipha = NULL; 8629 8630 /* Initialize the header template */ 8631 8632 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8633 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8634 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8635 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 8636 8637 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8638 tcp->tcp_tcph = tcph; 8639 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8640 /* 8641 * IP wants our header length in the checksum field to 8642 * allow it to perform a single psuedo-header+checksum 8643 * calculation on behalf of TCP. 8644 * Include the adjustment for a source route when IPV6_RTHDR is set. 8645 */ 8646 sum = sizeof (tcph_t) + tcp->tcp_sum; 8647 sum = (sum >> 16) + (sum & 0xFFFF); 8648 U16_TO_ABE16(sum, tcph->th_sum); 8649 return (0); 8650 } 8651 8652 /* At minimum we need 4 bytes in the TCP header for the lookup */ 8653 #define ICMP_MIN_TCP_HDR 4 8654 8655 /* 8656 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8657 * passed up by IP. The message is always received on the correct tcp_t. 8658 * Assumes that IP has pulled up everything up to and including the ICMP header. 8659 */ 8660 void 8661 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8662 { 8663 icmph_t *icmph; 8664 ipha_t *ipha; 8665 int iph_hdr_length; 8666 tcph_t *tcph; 8667 boolean_t ipsec_mctl = B_FALSE; 8668 boolean_t secure; 8669 mblk_t *first_mp = mp; 8670 uint32_t new_mss; 8671 uint32_t ratio; 8672 size_t mp_size = MBLKL(mp); 8673 uint32_t seg_ack; 8674 uint32_t seg_seq; 8675 8676 /* Assume IP provides aligned packets - otherwise toss */ 8677 if (!OK_32PTR(mp->b_rptr)) { 8678 freemsg(mp); 8679 return; 8680 } 8681 8682 /* 8683 * Since ICMP errors are normal data marked with M_CTL when sent 8684 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8685 * packets starting with an ipsec_info_t, see ipsec_info.h. 8686 */ 8687 if ((mp_size == sizeof (ipsec_info_t)) && 8688 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8689 ASSERT(mp->b_cont != NULL); 8690 mp = mp->b_cont; 8691 /* IP should have done this */ 8692 ASSERT(OK_32PTR(mp->b_rptr)); 8693 mp_size = MBLKL(mp); 8694 ipsec_mctl = B_TRUE; 8695 } 8696 8697 /* 8698 * Verify that we have a complete outer IP header. If not, drop it. 8699 */ 8700 if (mp_size < sizeof (ipha_t)) { 8701 noticmpv4: 8702 freemsg(first_mp); 8703 return; 8704 } 8705 8706 ipha = (ipha_t *)mp->b_rptr; 8707 /* 8708 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8709 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8710 */ 8711 switch (IPH_HDR_VERSION(ipha)) { 8712 case IPV6_VERSION: 8713 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8714 return; 8715 case IPV4_VERSION: 8716 break; 8717 default: 8718 goto noticmpv4; 8719 } 8720 8721 /* Skip past the outer IP and ICMP headers */ 8722 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8723 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8724 /* 8725 * If we don't have the correct outer IP header length or if the ULP 8726 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8727 * send it upstream. 8728 */ 8729 if (iph_hdr_length < sizeof (ipha_t) || 8730 ipha->ipha_protocol != IPPROTO_ICMP || 8731 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8732 goto noticmpv4; 8733 } 8734 ipha = (ipha_t *)&icmph[1]; 8735 8736 /* Skip past the inner IP and find the ULP header */ 8737 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8738 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8739 /* 8740 * If we don't have the correct inner IP header length or if the ULP 8741 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8742 * bytes of TCP header, drop it. 8743 */ 8744 if (iph_hdr_length < sizeof (ipha_t) || 8745 ipha->ipha_protocol != IPPROTO_TCP || 8746 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8747 goto noticmpv4; 8748 } 8749 8750 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8751 if (ipsec_mctl) { 8752 secure = ipsec_in_is_secure(first_mp); 8753 } else { 8754 secure = B_FALSE; 8755 } 8756 if (secure) { 8757 /* 8758 * If we are willing to accept this in clear 8759 * we don't have to verify policy. 8760 */ 8761 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8762 if (!tcp_check_policy(tcp, first_mp, 8763 ipha, NULL, secure, ipsec_mctl)) { 8764 /* 8765 * tcp_check_policy called 8766 * ip_drop_packet() on failure. 8767 */ 8768 return; 8769 } 8770 } 8771 } 8772 } else if (ipsec_mctl) { 8773 /* 8774 * This is a hard_bound connection. IP has already 8775 * verified policy. We don't have to do it again. 8776 */ 8777 freeb(first_mp); 8778 first_mp = mp; 8779 ipsec_mctl = B_FALSE; 8780 } 8781 8782 seg_ack = ABE32_TO_U32(tcph->th_ack); 8783 seg_seq = ABE32_TO_U32(tcph->th_seq); 8784 /* 8785 * TCP SHOULD check that the TCP sequence number contained in 8786 * payload of the ICMP error message is within the range 8787 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8788 */ 8789 if (SEQ_LT(seg_seq, tcp->tcp_suna) || 8790 SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8791 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8792 /* 8793 * If the ICMP message is bogus, should we kill the 8794 * connection, or should we just drop the bogus ICMP 8795 * message? It would probably make more sense to just 8796 * drop the message so that if this one managed to get 8797 * in, the real connection should not suffer. 8798 */ 8799 goto noticmpv4; 8800 } 8801 8802 switch (icmph->icmph_type) { 8803 case ICMP_DEST_UNREACHABLE: 8804 switch (icmph->icmph_code) { 8805 case ICMP_FRAGMENTATION_NEEDED: 8806 /* 8807 * Reduce the MSS based on the new MTU. This will 8808 * eliminate any fragmentation locally. 8809 * N.B. There may well be some funny side-effects on 8810 * the local send policy and the remote receive policy. 8811 * Pending further research, we provide 8812 * tcp_ignore_path_mtu just in case this proves 8813 * disastrous somewhere. 8814 * 8815 * After updating the MSS, retransmit part of the 8816 * dropped segment using the new mss by calling 8817 * tcp_wput_data(). Need to adjust all those 8818 * params to make sure tcp_wput_data() work properly. 8819 */ 8820 if (tcp_ignore_path_mtu) 8821 break; 8822 8823 /* 8824 * Decrease the MSS by time stamp options 8825 * IP options and IPSEC options. tcp_hdr_len 8826 * includes time stamp option and IP option 8827 * length. 8828 */ 8829 8830 new_mss = ntohs(icmph->icmph_du_mtu) - 8831 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8832 8833 /* 8834 * Only update the MSS if the new one is 8835 * smaller than the previous one. This is 8836 * to avoid problems when getting multiple 8837 * ICMP errors for the same MTU. 8838 */ 8839 if (new_mss >= tcp->tcp_mss) 8840 break; 8841 8842 /* 8843 * Stop doing PMTU if new_mss is less than 68 8844 * or less than tcp_mss_min. 8845 * The value 68 comes from rfc 1191. 8846 */ 8847 if (new_mss < MAX(68, tcp_mss_min)) 8848 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8849 0; 8850 8851 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8852 ASSERT(ratio >= 1); 8853 tcp_mss_set(tcp, new_mss); 8854 8855 /* 8856 * Make sure we have something to 8857 * send. 8858 */ 8859 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8860 (tcp->tcp_xmit_head != NULL)) { 8861 /* 8862 * Shrink tcp_cwnd in 8863 * proportion to the old MSS/new MSS. 8864 */ 8865 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8866 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8867 (tcp->tcp_unsent == 0)) { 8868 tcp->tcp_rexmit_max = tcp->tcp_fss; 8869 } else { 8870 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8871 } 8872 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8873 tcp->tcp_rexmit = B_TRUE; 8874 tcp->tcp_dupack_cnt = 0; 8875 tcp->tcp_snd_burst = TCP_CWND_SS; 8876 tcp_ss_rexmit(tcp); 8877 } 8878 break; 8879 case ICMP_PORT_UNREACHABLE: 8880 case ICMP_PROTOCOL_UNREACHABLE: 8881 switch (tcp->tcp_state) { 8882 case TCPS_SYN_SENT: 8883 case TCPS_SYN_RCVD: 8884 /* 8885 * ICMP can snipe away incipient 8886 * TCP connections as long as 8887 * seq number is same as initial 8888 * send seq number. 8889 */ 8890 if (seg_seq == tcp->tcp_iss) { 8891 (void) tcp_clean_death(tcp, 8892 ECONNREFUSED, 6); 8893 } 8894 break; 8895 } 8896 break; 8897 case ICMP_HOST_UNREACHABLE: 8898 case ICMP_NET_UNREACHABLE: 8899 /* Record the error in case we finally time out. */ 8900 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8901 tcp->tcp_client_errno = EHOSTUNREACH; 8902 else 8903 tcp->tcp_client_errno = ENETUNREACH; 8904 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8905 if (tcp->tcp_listener != NULL && 8906 tcp->tcp_listener->tcp_syn_defense) { 8907 /* 8908 * Ditch the half-open connection if we 8909 * suspect a SYN attack is under way. 8910 */ 8911 tcp_ip_ire_mark_advice(tcp); 8912 (void) tcp_clean_death(tcp, 8913 tcp->tcp_client_errno, 7); 8914 } 8915 } 8916 break; 8917 default: 8918 break; 8919 } 8920 break; 8921 case ICMP_SOURCE_QUENCH: { 8922 /* 8923 * use a global boolean to control 8924 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8925 * The default is false. 8926 */ 8927 if (tcp_icmp_source_quench) { 8928 /* 8929 * Reduce the sending rate as if we got a 8930 * retransmit timeout 8931 */ 8932 uint32_t npkt; 8933 8934 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8935 tcp->tcp_mss; 8936 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8937 tcp->tcp_cwnd = tcp->tcp_mss; 8938 tcp->tcp_cwnd_cnt = 0; 8939 } 8940 break; 8941 } 8942 } 8943 freemsg(first_mp); 8944 } 8945 8946 /* 8947 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8948 * error messages passed up by IP. 8949 * Assumes that IP has pulled up all the extension headers as well 8950 * as the ICMPv6 header. 8951 */ 8952 static void 8953 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8954 { 8955 icmp6_t *icmp6; 8956 ip6_t *ip6h; 8957 uint16_t iph_hdr_length; 8958 tcpha_t *tcpha; 8959 uint8_t *nexthdrp; 8960 uint32_t new_mss; 8961 uint32_t ratio; 8962 boolean_t secure; 8963 mblk_t *first_mp = mp; 8964 size_t mp_size; 8965 uint32_t seg_ack; 8966 uint32_t seg_seq; 8967 8968 /* 8969 * The caller has determined if this is an IPSEC_IN packet and 8970 * set ipsec_mctl appropriately (see tcp_icmp_error). 8971 */ 8972 if (ipsec_mctl) 8973 mp = mp->b_cont; 8974 8975 mp_size = MBLKL(mp); 8976 8977 /* 8978 * Verify that we have a complete IP header. If not, send it upstream. 8979 */ 8980 if (mp_size < sizeof (ip6_t)) { 8981 noticmpv6: 8982 freemsg(first_mp); 8983 return; 8984 } 8985 8986 /* 8987 * Verify this is an ICMPV6 packet, else send it upstream. 8988 */ 8989 ip6h = (ip6_t *)mp->b_rptr; 8990 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8991 iph_hdr_length = IPV6_HDR_LEN; 8992 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8993 &nexthdrp) || 8994 *nexthdrp != IPPROTO_ICMPV6) { 8995 goto noticmpv6; 8996 } 8997 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8998 ip6h = (ip6_t *)&icmp6[1]; 8999 /* 9000 * Verify if we have a complete ICMP and inner IP header. 9001 */ 9002 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 9003 goto noticmpv6; 9004 9005 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 9006 goto noticmpv6; 9007 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 9008 /* 9009 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 9010 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 9011 * packet. 9012 */ 9013 if ((*nexthdrp != IPPROTO_TCP) || 9014 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 9015 goto noticmpv6; 9016 } 9017 9018 /* 9019 * ICMP errors come on the right queue or come on 9020 * listener/global queue for detached connections and 9021 * get switched to the right queue. If it comes on the 9022 * right queue, policy check has already been done by IP 9023 * and thus free the first_mp without verifying the policy. 9024 * If it has come for a non-hard bound connection, we need 9025 * to verify policy as IP may not have done it. 9026 */ 9027 if (!tcp->tcp_hard_bound) { 9028 if (ipsec_mctl) { 9029 secure = ipsec_in_is_secure(first_mp); 9030 } else { 9031 secure = B_FALSE; 9032 } 9033 if (secure) { 9034 /* 9035 * If we are willing to accept this in clear 9036 * we don't have to verify policy. 9037 */ 9038 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 9039 if (!tcp_check_policy(tcp, first_mp, 9040 NULL, ip6h, secure, ipsec_mctl)) { 9041 /* 9042 * tcp_check_policy called 9043 * ip_drop_packet() on failure. 9044 */ 9045 return; 9046 } 9047 } 9048 } 9049 } else if (ipsec_mctl) { 9050 /* 9051 * This is a hard_bound connection. IP has already 9052 * verified policy. We don't have to do it again. 9053 */ 9054 freeb(first_mp); 9055 first_mp = mp; 9056 ipsec_mctl = B_FALSE; 9057 } 9058 9059 seg_ack = ntohl(tcpha->tha_ack); 9060 seg_seq = ntohl(tcpha->tha_seq); 9061 /* 9062 * TCP SHOULD check that the TCP sequence number contained in 9063 * payload of the ICMP error message is within the range 9064 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 9065 */ 9066 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 9067 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 9068 /* 9069 * If the ICMP message is bogus, should we kill the 9070 * connection, or should we just drop the bogus ICMP 9071 * message? It would probably make more sense to just 9072 * drop the message so that if this one managed to get 9073 * in, the real connection should not suffer. 9074 */ 9075 goto noticmpv6; 9076 } 9077 9078 switch (icmp6->icmp6_type) { 9079 case ICMP6_PACKET_TOO_BIG: 9080 /* 9081 * Reduce the MSS based on the new MTU. This will 9082 * eliminate any fragmentation locally. 9083 * N.B. There may well be some funny side-effects on 9084 * the local send policy and the remote receive policy. 9085 * Pending further research, we provide 9086 * tcp_ignore_path_mtu just in case this proves 9087 * disastrous somewhere. 9088 * 9089 * After updating the MSS, retransmit part of the 9090 * dropped segment using the new mss by calling 9091 * tcp_wput_data(). Need to adjust all those 9092 * params to make sure tcp_wput_data() work properly. 9093 */ 9094 if (tcp_ignore_path_mtu) 9095 break; 9096 9097 /* 9098 * Decrease the MSS by time stamp options 9099 * IP options and IPSEC options. tcp_hdr_len 9100 * includes time stamp option and IP option 9101 * length. 9102 */ 9103 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 9104 tcp->tcp_ipsec_overhead; 9105 9106 /* 9107 * Only update the MSS if the new one is 9108 * smaller than the previous one. This is 9109 * to avoid problems when getting multiple 9110 * ICMP errors for the same MTU. 9111 */ 9112 if (new_mss >= tcp->tcp_mss) 9113 break; 9114 9115 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 9116 ASSERT(ratio >= 1); 9117 tcp_mss_set(tcp, new_mss); 9118 9119 /* 9120 * Make sure we have something to 9121 * send. 9122 */ 9123 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 9124 (tcp->tcp_xmit_head != NULL)) { 9125 /* 9126 * Shrink tcp_cwnd in 9127 * proportion to the old MSS/new MSS. 9128 */ 9129 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 9130 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 9131 (tcp->tcp_unsent == 0)) { 9132 tcp->tcp_rexmit_max = tcp->tcp_fss; 9133 } else { 9134 tcp->tcp_rexmit_max = tcp->tcp_snxt; 9135 } 9136 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 9137 tcp->tcp_rexmit = B_TRUE; 9138 tcp->tcp_dupack_cnt = 0; 9139 tcp->tcp_snd_burst = TCP_CWND_SS; 9140 tcp_ss_rexmit(tcp); 9141 } 9142 break; 9143 9144 case ICMP6_DST_UNREACH: 9145 switch (icmp6->icmp6_code) { 9146 case ICMP6_DST_UNREACH_NOPORT: 9147 if (((tcp->tcp_state == TCPS_SYN_SENT) || 9148 (tcp->tcp_state == TCPS_SYN_RCVD)) && 9149 (tcpha->tha_seq == tcp->tcp_iss)) { 9150 (void) tcp_clean_death(tcp, 9151 ECONNREFUSED, 8); 9152 } 9153 break; 9154 9155 case ICMP6_DST_UNREACH_ADMIN: 9156 case ICMP6_DST_UNREACH_NOROUTE: 9157 case ICMP6_DST_UNREACH_BEYONDSCOPE: 9158 case ICMP6_DST_UNREACH_ADDR: 9159 /* Record the error in case we finally time out. */ 9160 tcp->tcp_client_errno = EHOSTUNREACH; 9161 if (((tcp->tcp_state == TCPS_SYN_SENT) || 9162 (tcp->tcp_state == TCPS_SYN_RCVD)) && 9163 (tcpha->tha_seq == tcp->tcp_iss)) { 9164 if (tcp->tcp_listener != NULL && 9165 tcp->tcp_listener->tcp_syn_defense) { 9166 /* 9167 * Ditch the half-open connection if we 9168 * suspect a SYN attack is under way. 9169 */ 9170 tcp_ip_ire_mark_advice(tcp); 9171 (void) tcp_clean_death(tcp, 9172 tcp->tcp_client_errno, 9); 9173 } 9174 } 9175 9176 9177 break; 9178 default: 9179 break; 9180 } 9181 break; 9182 9183 case ICMP6_PARAM_PROB: 9184 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 9185 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 9186 (uchar_t *)ip6h + icmp6->icmp6_pptr == 9187 (uchar_t *)nexthdrp) { 9188 if (tcp->tcp_state == TCPS_SYN_SENT || 9189 tcp->tcp_state == TCPS_SYN_RCVD) { 9190 (void) tcp_clean_death(tcp, 9191 ECONNREFUSED, 10); 9192 } 9193 break; 9194 } 9195 break; 9196 9197 case ICMP6_TIME_EXCEEDED: 9198 default: 9199 break; 9200 } 9201 freemsg(first_mp); 9202 } 9203 9204 /* 9205 * IP recognizes seven kinds of bind requests: 9206 * 9207 * - A zero-length address binds only to the protocol number. 9208 * 9209 * - A 4-byte address is treated as a request to 9210 * validate that the address is a valid local IPv4 9211 * address, appropriate for an application to bind to. 9212 * IP does the verification, but does not make any note 9213 * of the address at this time. 9214 * 9215 * - A 16-byte address contains is treated as a request 9216 * to validate a local IPv6 address, as the 4-byte 9217 * address case above. 9218 * 9219 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 9220 * use it for the inbound fanout of packets. 9221 * 9222 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 9223 * use it for the inbound fanout of packets. 9224 * 9225 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 9226 * information consisting of local and remote addresses 9227 * and ports. In this case, the addresses are both 9228 * validated as appropriate for this operation, and, if 9229 * so, the information is retained for use in the 9230 * inbound fanout. 9231 * 9232 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 9233 * fanout information, like the 12-byte case above. 9234 * 9235 * IP will also fill in the IRE request mblk with information 9236 * regarding our peer. In all cases, we notify IP of our protocol 9237 * type by appending a single protocol byte to the bind request. 9238 */ 9239 static mblk_t * 9240 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 9241 { 9242 char *cp; 9243 mblk_t *mp; 9244 struct T_bind_req *tbr; 9245 ipa_conn_t *ac; 9246 ipa6_conn_t *ac6; 9247 sin_t *sin; 9248 sin6_t *sin6; 9249 9250 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 9251 ASSERT((tcp->tcp_family == AF_INET && 9252 tcp->tcp_ipversion == IPV4_VERSION) || 9253 (tcp->tcp_family == AF_INET6 && 9254 (tcp->tcp_ipversion == IPV4_VERSION || 9255 tcp->tcp_ipversion == IPV6_VERSION))); 9256 9257 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9258 if (!mp) 9259 return (mp); 9260 mp->b_datap->db_type = M_PROTO; 9261 tbr = (struct T_bind_req *)mp->b_rptr; 9262 tbr->PRIM_type = bind_prim; 9263 tbr->ADDR_offset = sizeof (*tbr); 9264 tbr->CONIND_number = 0; 9265 tbr->ADDR_length = addr_length; 9266 cp = (char *)&tbr[1]; 9267 switch (addr_length) { 9268 case sizeof (ipa_conn_t): 9269 ASSERT(tcp->tcp_family == AF_INET); 9270 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9271 9272 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9273 if (mp->b_cont == NULL) { 9274 freemsg(mp); 9275 return (NULL); 9276 } 9277 mp->b_cont->b_wptr += sizeof (ire_t); 9278 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9279 9280 /* cp known to be 32 bit aligned */ 9281 ac = (ipa_conn_t *)cp; 9282 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9283 ac->ac_faddr = tcp->tcp_remote; 9284 ac->ac_fport = tcp->tcp_fport; 9285 ac->ac_lport = tcp->tcp_lport; 9286 tcp->tcp_hard_binding = 1; 9287 break; 9288 9289 case sizeof (ipa6_conn_t): 9290 ASSERT(tcp->tcp_family == AF_INET6); 9291 9292 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9293 if (mp->b_cont == NULL) { 9294 freemsg(mp); 9295 return (NULL); 9296 } 9297 mp->b_cont->b_wptr += sizeof (ire_t); 9298 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9299 9300 /* cp known to be 32 bit aligned */ 9301 ac6 = (ipa6_conn_t *)cp; 9302 if (tcp->tcp_ipversion == IPV4_VERSION) { 9303 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9304 &ac6->ac6_laddr); 9305 } else { 9306 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9307 } 9308 ac6->ac6_faddr = tcp->tcp_remote_v6; 9309 ac6->ac6_fport = tcp->tcp_fport; 9310 ac6->ac6_lport = tcp->tcp_lport; 9311 tcp->tcp_hard_binding = 1; 9312 break; 9313 9314 case sizeof (sin_t): 9315 /* 9316 * NOTE: IPV6_ADDR_LEN also has same size. 9317 * Use family to discriminate. 9318 */ 9319 if (tcp->tcp_family == AF_INET) { 9320 sin = (sin_t *)cp; 9321 9322 *sin = sin_null; 9323 sin->sin_family = AF_INET; 9324 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9325 sin->sin_port = tcp->tcp_lport; 9326 break; 9327 } else { 9328 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9329 } 9330 break; 9331 9332 case sizeof (sin6_t): 9333 ASSERT(tcp->tcp_family == AF_INET6); 9334 sin6 = (sin6_t *)cp; 9335 9336 *sin6 = sin6_null; 9337 sin6->sin6_family = AF_INET6; 9338 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9339 sin6->sin6_port = tcp->tcp_lport; 9340 break; 9341 9342 case IP_ADDR_LEN: 9343 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9344 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9345 break; 9346 9347 } 9348 /* Add protocol number to end */ 9349 cp[addr_length] = (char)IPPROTO_TCP; 9350 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9351 return (mp); 9352 } 9353 9354 /* 9355 * Notify IP that we are having trouble with this connection. IP should 9356 * blow the IRE away and start over. 9357 */ 9358 static void 9359 tcp_ip_notify(tcp_t *tcp) 9360 { 9361 struct iocblk *iocp; 9362 ipid_t *ipid; 9363 mblk_t *mp; 9364 9365 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9366 if (tcp->tcp_ipversion == IPV6_VERSION) 9367 return; 9368 9369 mp = mkiocb(IP_IOCTL); 9370 if (mp == NULL) 9371 return; 9372 9373 iocp = (struct iocblk *)mp->b_rptr; 9374 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9375 9376 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9377 if (!mp->b_cont) { 9378 freeb(mp); 9379 return; 9380 } 9381 9382 ipid = (ipid_t *)mp->b_cont->b_rptr; 9383 mp->b_cont->b_wptr += iocp->ioc_count; 9384 bzero(ipid, sizeof (*ipid)); 9385 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9386 ipid->ipid_ire_type = IRE_CACHE; 9387 ipid->ipid_addr_offset = sizeof (ipid_t); 9388 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9389 /* 9390 * Note: in the case of source routing we want to blow away the 9391 * route to the first source route hop. 9392 */ 9393 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9394 sizeof (tcp->tcp_ipha->ipha_dst)); 9395 9396 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9397 } 9398 9399 /* Unlink and return any mblk that looks like it contains an ire */ 9400 static mblk_t * 9401 tcp_ire_mp(mblk_t *mp) 9402 { 9403 mblk_t *prev_mp; 9404 9405 for (;;) { 9406 prev_mp = mp; 9407 mp = mp->b_cont; 9408 if (mp == NULL) 9409 break; 9410 switch (DB_TYPE(mp)) { 9411 case IRE_DB_TYPE: 9412 case IRE_DB_REQ_TYPE: 9413 if (prev_mp != NULL) 9414 prev_mp->b_cont = mp->b_cont; 9415 mp->b_cont = NULL; 9416 return (mp); 9417 default: 9418 break; 9419 } 9420 } 9421 return (mp); 9422 } 9423 9424 /* 9425 * Timer callback routine for keepalive probe. We do a fake resend of 9426 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9427 * check to see if we have heard anything from the other end for the last 9428 * RTO period. If we have, set the timer to expire for another 9429 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9430 * RTO << 1 and check again when it expires. Keep exponentially increasing 9431 * the timeout if we have not heard from the other side. If for more than 9432 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9433 * kill the connection unless the keepalive abort threshold is 0. In 9434 * that case, we will probe "forever." 9435 */ 9436 static void 9437 tcp_keepalive_killer(void *arg) 9438 { 9439 mblk_t *mp; 9440 conn_t *connp = (conn_t *)arg; 9441 tcp_t *tcp = connp->conn_tcp; 9442 int32_t firetime; 9443 int32_t idletime; 9444 int32_t ka_intrvl; 9445 9446 tcp->tcp_ka_tid = 0; 9447 9448 if (tcp->tcp_fused) 9449 return; 9450 9451 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 9452 ka_intrvl = tcp->tcp_ka_interval; 9453 9454 /* 9455 * Keepalive probe should only be sent if the application has not 9456 * done a close on the connection. 9457 */ 9458 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9459 return; 9460 } 9461 /* Timer fired too early, restart it. */ 9462 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9463 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9464 MSEC_TO_TICK(ka_intrvl)); 9465 return; 9466 } 9467 9468 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9469 /* 9470 * If we have not heard from the other side for a long 9471 * time, kill the connection unless the keepalive abort 9472 * threshold is 0. In that case, we will probe "forever." 9473 */ 9474 if (tcp->tcp_ka_abort_thres != 0 && 9475 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9476 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 9477 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9478 tcp->tcp_client_errno : ETIMEDOUT, 11); 9479 return; 9480 } 9481 9482 if (tcp->tcp_snxt == tcp->tcp_suna && 9483 idletime >= ka_intrvl) { 9484 /* Fake resend of last ACKed byte. */ 9485 mblk_t *mp1 = allocb(1, BPRI_LO); 9486 9487 if (mp1 != NULL) { 9488 *mp1->b_wptr++ = '\0'; 9489 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9490 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9491 freeb(mp1); 9492 /* 9493 * if allocation failed, fall through to start the 9494 * timer back. 9495 */ 9496 if (mp != NULL) { 9497 TCP_RECORD_TRACE(tcp, mp, 9498 TCP_TRACE_SEND_PKT); 9499 tcp_send_data(tcp, tcp->tcp_wq, mp); 9500 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 9501 if (tcp->tcp_ka_last_intrvl != 0) { 9502 /* 9503 * We should probe again at least 9504 * in ka_intrvl, but not more than 9505 * tcp_rexmit_interval_max. 9506 */ 9507 firetime = MIN(ka_intrvl - 1, 9508 tcp->tcp_ka_last_intrvl << 1); 9509 if (firetime > tcp_rexmit_interval_max) 9510 firetime = 9511 tcp_rexmit_interval_max; 9512 } else { 9513 firetime = tcp->tcp_rto; 9514 } 9515 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9516 tcp_keepalive_killer, 9517 MSEC_TO_TICK(firetime)); 9518 tcp->tcp_ka_last_intrvl = firetime; 9519 return; 9520 } 9521 } 9522 } else { 9523 tcp->tcp_ka_last_intrvl = 0; 9524 } 9525 9526 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9527 if ((firetime = ka_intrvl - idletime) < 0) { 9528 firetime = ka_intrvl; 9529 } 9530 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9531 MSEC_TO_TICK(firetime)); 9532 } 9533 9534 static int 9535 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9536 { 9537 queue_t *q = tcp->tcp_rq; 9538 int32_t mss = tcp->tcp_mss; 9539 int maxpsz; 9540 9541 if (TCP_IS_DETACHED(tcp)) 9542 return (mss); 9543 9544 if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) { 9545 /* 9546 * Set the sd_qn_maxpsz according to the socket send buffer 9547 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9548 * instruct the stream head to copyin user data into contiguous 9549 * kernel-allocated buffers without breaking it up into smaller 9550 * chunks. We round up the buffer size to the nearest SMSS. 9551 */ 9552 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9553 mss = INFPSZ; 9554 } else { 9555 /* 9556 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9557 * (and a multiple of the mss). This instructs the stream 9558 * head to break down larger than SMSS writes into SMSS- 9559 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9560 */ 9561 maxpsz = tcp->tcp_maxpsz * mss; 9562 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9563 maxpsz = tcp->tcp_xmit_hiwater/2; 9564 /* Round up to nearest mss */ 9565 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9566 } 9567 } 9568 (void) setmaxps(q, maxpsz); 9569 tcp->tcp_wq->q_maxpsz = maxpsz; 9570 9571 if (set_maxblk) 9572 (void) mi_set_sth_maxblk(q, mss); 9573 9574 if (tcp->tcp_loopback) 9575 (void) mi_set_sth_copyopt(tcp->tcp_rq, COPYCACHED); 9576 9577 return (mss); 9578 } 9579 9580 /* 9581 * Extract option values from a tcp header. We put any found values into the 9582 * tcpopt struct and return a bitmask saying which options were found. 9583 */ 9584 static int 9585 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9586 { 9587 uchar_t *endp; 9588 int len; 9589 uint32_t mss; 9590 uchar_t *up = (uchar_t *)tcph; 9591 int found = 0; 9592 int32_t sack_len; 9593 tcp_seq sack_begin, sack_end; 9594 tcp_t *tcp; 9595 9596 endp = up + TCP_HDR_LENGTH(tcph); 9597 up += TCP_MIN_HEADER_LENGTH; 9598 while (up < endp) { 9599 len = endp - up; 9600 switch (*up) { 9601 case TCPOPT_EOL: 9602 break; 9603 9604 case TCPOPT_NOP: 9605 up++; 9606 continue; 9607 9608 case TCPOPT_MAXSEG: 9609 if (len < TCPOPT_MAXSEG_LEN || 9610 up[1] != TCPOPT_MAXSEG_LEN) 9611 break; 9612 9613 mss = BE16_TO_U16(up+2); 9614 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9615 tcpopt->tcp_opt_mss = mss; 9616 found |= TCP_OPT_MSS_PRESENT; 9617 9618 up += TCPOPT_MAXSEG_LEN; 9619 continue; 9620 9621 case TCPOPT_WSCALE: 9622 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9623 break; 9624 9625 if (up[2] > TCP_MAX_WINSHIFT) 9626 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9627 else 9628 tcpopt->tcp_opt_wscale = up[2]; 9629 found |= TCP_OPT_WSCALE_PRESENT; 9630 9631 up += TCPOPT_WS_LEN; 9632 continue; 9633 9634 case TCPOPT_SACK_PERMITTED: 9635 if (len < TCPOPT_SACK_OK_LEN || 9636 up[1] != TCPOPT_SACK_OK_LEN) 9637 break; 9638 found |= TCP_OPT_SACK_OK_PRESENT; 9639 up += TCPOPT_SACK_OK_LEN; 9640 continue; 9641 9642 case TCPOPT_SACK: 9643 if (len <= 2 || up[1] <= 2 || len < up[1]) 9644 break; 9645 9646 /* If TCP is not interested in SACK blks... */ 9647 if ((tcp = tcpopt->tcp) == NULL) { 9648 up += up[1]; 9649 continue; 9650 } 9651 sack_len = up[1] - TCPOPT_HEADER_LEN; 9652 up += TCPOPT_HEADER_LEN; 9653 9654 /* 9655 * If the list is empty, allocate one and assume 9656 * nothing is sack'ed. 9657 */ 9658 ASSERT(tcp->tcp_sack_info != NULL); 9659 if (tcp->tcp_notsack_list == NULL) { 9660 tcp_notsack_update(&(tcp->tcp_notsack_list), 9661 tcp->tcp_suna, tcp->tcp_snxt, 9662 &(tcp->tcp_num_notsack_blk), 9663 &(tcp->tcp_cnt_notsack_list)); 9664 9665 /* 9666 * Make sure tcp_notsack_list is not NULL. 9667 * This happens when kmem_alloc(KM_NOSLEEP) 9668 * returns NULL. 9669 */ 9670 if (tcp->tcp_notsack_list == NULL) { 9671 up += sack_len; 9672 continue; 9673 } 9674 tcp->tcp_fack = tcp->tcp_suna; 9675 } 9676 9677 while (sack_len > 0) { 9678 if (up + 8 > endp) { 9679 up = endp; 9680 break; 9681 } 9682 sack_begin = BE32_TO_U32(up); 9683 up += 4; 9684 sack_end = BE32_TO_U32(up); 9685 up += 4; 9686 sack_len -= 8; 9687 /* 9688 * Bounds checking. Make sure the SACK 9689 * info is within tcp_suna and tcp_snxt. 9690 * If this SACK blk is out of bound, ignore 9691 * it but continue to parse the following 9692 * blks. 9693 */ 9694 if (SEQ_LEQ(sack_end, sack_begin) || 9695 SEQ_LT(sack_begin, tcp->tcp_suna) || 9696 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9697 continue; 9698 } 9699 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9700 sack_begin, sack_end, 9701 &(tcp->tcp_num_notsack_blk), 9702 &(tcp->tcp_cnt_notsack_list)); 9703 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9704 tcp->tcp_fack = sack_end; 9705 } 9706 } 9707 found |= TCP_OPT_SACK_PRESENT; 9708 continue; 9709 9710 case TCPOPT_TSTAMP: 9711 if (len < TCPOPT_TSTAMP_LEN || 9712 up[1] != TCPOPT_TSTAMP_LEN) 9713 break; 9714 9715 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9716 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9717 9718 found |= TCP_OPT_TSTAMP_PRESENT; 9719 9720 up += TCPOPT_TSTAMP_LEN; 9721 continue; 9722 9723 default: 9724 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9725 break; 9726 up += up[1]; 9727 continue; 9728 } 9729 break; 9730 } 9731 return (found); 9732 } 9733 9734 /* 9735 * Set the mss associated with a particular tcp based on its current value, 9736 * and a new one passed in. Observe minimums and maximums, and reset 9737 * other state variables that we want to view as multiples of mss. 9738 * 9739 * This function is called in various places mainly because 9740 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9741 * other side's SYN/SYN-ACK packet arrives. 9742 * 2) PMTUd may get us a new MSS. 9743 * 3) If the other side stops sending us timestamp option, we need to 9744 * increase the MSS size to use the extra bytes available. 9745 */ 9746 static void 9747 tcp_mss_set(tcp_t *tcp, uint32_t mss) 9748 { 9749 uint32_t mss_max; 9750 9751 if (tcp->tcp_ipversion == IPV4_VERSION) 9752 mss_max = tcp_mss_max_ipv4; 9753 else 9754 mss_max = tcp_mss_max_ipv6; 9755 9756 if (mss < tcp_mss_min) 9757 mss = tcp_mss_min; 9758 if (mss > mss_max) 9759 mss = mss_max; 9760 /* 9761 * Unless naglim has been set by our client to 9762 * a non-mss value, force naglim to track mss. 9763 * This can help to aggregate small writes. 9764 */ 9765 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9766 tcp->tcp_naglim = mss; 9767 /* 9768 * TCP should be able to buffer at least 4 MSS data for obvious 9769 * performance reason. 9770 */ 9771 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9772 tcp->tcp_xmit_hiwater = mss << 2; 9773 9774 /* 9775 * Check if we need to apply the tcp_init_cwnd here. If 9776 * it is set and the MSS gets bigger (should not happen 9777 * normally), we need to adjust the resulting tcp_cwnd properly. 9778 * The new tcp_cwnd should not get bigger. 9779 */ 9780 if (tcp->tcp_init_cwnd == 0) { 9781 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 9782 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9783 } else { 9784 if (tcp->tcp_mss < mss) { 9785 tcp->tcp_cwnd = MAX(1, 9786 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 9787 } else { 9788 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9789 } 9790 } 9791 tcp->tcp_mss = mss; 9792 tcp->tcp_cwnd_cnt = 0; 9793 (void) tcp_maxpsz_set(tcp, B_TRUE); 9794 } 9795 9796 static int 9797 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9798 { 9799 tcp_t *tcp = NULL; 9800 conn_t *connp; 9801 int err; 9802 dev_t conn_dev; 9803 zoneid_t zoneid = getzoneid(); 9804 9805 if (q->q_ptr != NULL) 9806 return (0); 9807 9808 if (sflag == MODOPEN) { 9809 /* 9810 * This is a special case. The purpose of a modopen 9811 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9812 * through for MIB browsers. Everything else is failed. 9813 */ 9814 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9815 9816 if (connp == NULL) 9817 return (ENOMEM); 9818 9819 connp->conn_flags |= IPCL_TCPMOD; 9820 connp->conn_cred = credp; 9821 connp->conn_zoneid = zoneid; 9822 q->q_ptr = WR(q)->q_ptr = connp; 9823 crhold(credp); 9824 q->q_qinfo = &tcp_mod_rinit; 9825 WR(q)->q_qinfo = &tcp_mod_winit; 9826 qprocson(q); 9827 return (0); 9828 } 9829 9830 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 9831 return (EBUSY); 9832 9833 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9834 9835 if (flag & SO_ACCEPTOR) { 9836 q->q_qinfo = &tcp_acceptor_rinit; 9837 q->q_ptr = (void *)conn_dev; 9838 WR(q)->q_qinfo = &tcp_acceptor_winit; 9839 WR(q)->q_ptr = (void *)conn_dev; 9840 qprocson(q); 9841 return (0); 9842 } 9843 9844 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9845 if (connp == NULL) { 9846 inet_minor_free(ip_minor_arena, conn_dev); 9847 q->q_ptr = NULL; 9848 return (ENOSR); 9849 } 9850 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9851 tcp = connp->conn_tcp; 9852 9853 q->q_ptr = WR(q)->q_ptr = connp; 9854 if (getmajor(*devp) == TCP6_MAJ) { 9855 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9856 connp->conn_send = ip_output_v6; 9857 connp->conn_af_isv6 = B_TRUE; 9858 connp->conn_pkt_isv6 = B_TRUE; 9859 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9860 tcp->tcp_ipversion = IPV6_VERSION; 9861 tcp->tcp_family = AF_INET6; 9862 tcp->tcp_mss = tcp_mss_def_ipv6; 9863 } else { 9864 connp->conn_flags |= IPCL_TCP4; 9865 connp->conn_send = ip_output; 9866 connp->conn_af_isv6 = B_FALSE; 9867 connp->conn_pkt_isv6 = B_FALSE; 9868 tcp->tcp_ipversion = IPV4_VERSION; 9869 tcp->tcp_family = AF_INET; 9870 tcp->tcp_mss = tcp_mss_def_ipv4; 9871 } 9872 9873 /* 9874 * TCP keeps a copy of cred for cache locality reasons but 9875 * we put a reference only once. If connp->conn_cred 9876 * becomes invalid, tcp_cred should also be set to NULL. 9877 */ 9878 tcp->tcp_cred = connp->conn_cred = credp; 9879 crhold(connp->conn_cred); 9880 tcp->tcp_cpid = curproc->p_pid; 9881 connp->conn_zoneid = zoneid; 9882 9883 connp->conn_dev = conn_dev; 9884 9885 ASSERT(q->q_qinfo == &tcp_rinit); 9886 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9887 9888 if (flag & SO_SOCKSTR) { 9889 /* 9890 * No need to insert a socket in tcp acceptor hash. 9891 * If it was a socket acceptor stream, we dealt with 9892 * it above. A socket listener can never accept a 9893 * connection and doesn't need acceptor_id. 9894 */ 9895 connp->conn_flags |= IPCL_SOCKET; 9896 tcp->tcp_issocket = 1; 9897 9898 WR(q)->q_qinfo = &tcp_sock_winit; 9899 } else { 9900 #ifdef _ILP32 9901 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9902 #else 9903 tcp->tcp_acceptor_id = conn_dev; 9904 #endif /* _ILP32 */ 9905 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9906 } 9907 9908 if (tcp_trace) 9909 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9910 9911 err = tcp_init(tcp, q); 9912 if (err != 0) { 9913 inet_minor_free(ip_minor_arena, connp->conn_dev); 9914 tcp_acceptor_hash_remove(tcp); 9915 CONN_DEC_REF(connp); 9916 q->q_ptr = WR(q)->q_ptr = NULL; 9917 return (err); 9918 } 9919 9920 RD(q)->q_hiwat = tcp_recv_hiwat; 9921 tcp->tcp_rwnd = tcp_recv_hiwat; 9922 9923 /* Non-zero default values */ 9924 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9925 /* 9926 * Put the ref for TCP. Ref for IP was already put 9927 * by ipcl_conn_create. Also Make the conn_t globally 9928 * visible to walkers 9929 */ 9930 mutex_enter(&connp->conn_lock); 9931 CONN_INC_REF_LOCKED(connp); 9932 ASSERT(connp->conn_ref == 2); 9933 connp->conn_state_flags &= ~CONN_INCIPIENT; 9934 mutex_exit(&connp->conn_lock); 9935 9936 qprocson(q); 9937 return (0); 9938 } 9939 9940 /* 9941 * Some TCP options can be "set" by requesting them in the option 9942 * buffer. This is needed for XTI feature test though we do not 9943 * allow it in general. We interpret that this mechanism is more 9944 * applicable to OSI protocols and need not be allowed in general. 9945 * This routine filters out options for which it is not allowed (most) 9946 * and lets through those (few) for which it is. [ The XTI interface 9947 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9948 * ever implemented will have to be allowed here ]. 9949 */ 9950 static boolean_t 9951 tcp_allow_connopt_set(int level, int name) 9952 { 9953 9954 switch (level) { 9955 case IPPROTO_TCP: 9956 switch (name) { 9957 case TCP_NODELAY: 9958 return (B_TRUE); 9959 default: 9960 return (B_FALSE); 9961 } 9962 /*NOTREACHED*/ 9963 default: 9964 return (B_FALSE); 9965 } 9966 /*NOTREACHED*/ 9967 } 9968 9969 /* 9970 * This routine gets default values of certain options whose default 9971 * values are maintained by protocol specific code 9972 */ 9973 /* ARGSUSED */ 9974 int 9975 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9976 { 9977 int32_t *i1 = (int32_t *)ptr; 9978 9979 switch (level) { 9980 case IPPROTO_TCP: 9981 switch (name) { 9982 case TCP_NOTIFY_THRESHOLD: 9983 *i1 = tcp_ip_notify_interval; 9984 break; 9985 case TCP_ABORT_THRESHOLD: 9986 *i1 = tcp_ip_abort_interval; 9987 break; 9988 case TCP_CONN_NOTIFY_THRESHOLD: 9989 *i1 = tcp_ip_notify_cinterval; 9990 break; 9991 case TCP_CONN_ABORT_THRESHOLD: 9992 *i1 = tcp_ip_abort_cinterval; 9993 break; 9994 default: 9995 return (-1); 9996 } 9997 break; 9998 case IPPROTO_IP: 9999 switch (name) { 10000 case IP_TTL: 10001 *i1 = tcp_ipv4_ttl; 10002 break; 10003 default: 10004 return (-1); 10005 } 10006 break; 10007 case IPPROTO_IPV6: 10008 switch (name) { 10009 case IPV6_UNICAST_HOPS: 10010 *i1 = tcp_ipv6_hoplimit; 10011 break; 10012 default: 10013 return (-1); 10014 } 10015 break; 10016 default: 10017 return (-1); 10018 } 10019 return (sizeof (int)); 10020 } 10021 10022 10023 /* 10024 * TCP routine to get the values of options. 10025 */ 10026 int 10027 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10028 { 10029 int *i1 = (int *)ptr; 10030 conn_t *connp = Q_TO_CONN(q); 10031 tcp_t *tcp = connp->conn_tcp; 10032 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10033 10034 switch (level) { 10035 case SOL_SOCKET: 10036 switch (name) { 10037 case SO_LINGER: { 10038 struct linger *lgr = (struct linger *)ptr; 10039 10040 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 10041 lgr->l_linger = tcp->tcp_lingertime; 10042 } 10043 return (sizeof (struct linger)); 10044 case SO_DEBUG: 10045 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 10046 break; 10047 case SO_KEEPALIVE: 10048 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 10049 break; 10050 case SO_DONTROUTE: 10051 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 10052 break; 10053 case SO_USELOOPBACK: 10054 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 10055 break; 10056 case SO_BROADCAST: 10057 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 10058 break; 10059 case SO_REUSEADDR: 10060 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 10061 break; 10062 case SO_OOBINLINE: 10063 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 10064 break; 10065 case SO_DGRAM_ERRIND: 10066 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 10067 break; 10068 case SO_TYPE: 10069 *i1 = SOCK_STREAM; 10070 break; 10071 case SO_SNDBUF: 10072 *i1 = tcp->tcp_xmit_hiwater; 10073 break; 10074 case SO_RCVBUF: 10075 *i1 = RD(q)->q_hiwat; 10076 break; 10077 case SO_SND_COPYAVOID: 10078 *i1 = tcp->tcp_snd_zcopy_on ? 10079 SO_SND_COPYAVOID : 0; 10080 break; 10081 default: 10082 return (-1); 10083 } 10084 break; 10085 case IPPROTO_TCP: 10086 switch (name) { 10087 case TCP_NODELAY: 10088 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 10089 break; 10090 case TCP_MAXSEG: 10091 *i1 = tcp->tcp_mss; 10092 break; 10093 case TCP_NOTIFY_THRESHOLD: 10094 *i1 = (int)tcp->tcp_first_timer_threshold; 10095 break; 10096 case TCP_ABORT_THRESHOLD: 10097 *i1 = tcp->tcp_second_timer_threshold; 10098 break; 10099 case TCP_CONN_NOTIFY_THRESHOLD: 10100 *i1 = tcp->tcp_first_ctimer_threshold; 10101 break; 10102 case TCP_CONN_ABORT_THRESHOLD: 10103 *i1 = tcp->tcp_second_ctimer_threshold; 10104 break; 10105 case TCP_RECVDSTADDR: 10106 *i1 = tcp->tcp_recvdstaddr; 10107 break; 10108 case TCP_ANONPRIVBIND: 10109 *i1 = tcp->tcp_anon_priv_bind; 10110 break; 10111 case TCP_EXCLBIND: 10112 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 10113 break; 10114 case TCP_INIT_CWND: 10115 *i1 = tcp->tcp_init_cwnd; 10116 break; 10117 case TCP_KEEPALIVE_THRESHOLD: 10118 *i1 = tcp->tcp_ka_interval; 10119 break; 10120 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10121 *i1 = tcp->tcp_ka_abort_thres; 10122 break; 10123 case TCP_CORK: 10124 *i1 = tcp->tcp_cork; 10125 break; 10126 default: 10127 return (-1); 10128 } 10129 break; 10130 case IPPROTO_IP: 10131 if (tcp->tcp_family != AF_INET) 10132 return (-1); 10133 switch (name) { 10134 case IP_OPTIONS: 10135 case T_IP_OPTIONS: { 10136 /* 10137 * This is compatible with BSD in that in only return 10138 * the reverse source route with the final destination 10139 * as the last entry. The first 4 bytes of the option 10140 * will contain the final destination. 10141 */ 10142 char *opt_ptr; 10143 int opt_len; 10144 opt_ptr = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 10145 opt_len = (char *)tcp->tcp_tcph - opt_ptr; 10146 /* Caller ensures enough space */ 10147 if (opt_len > 0) { 10148 /* 10149 * TODO: Do we have to handle getsockopt on an 10150 * initiator as well? 10151 */ 10152 return (tcp_opt_get_user(tcp->tcp_ipha, ptr)); 10153 } 10154 return (0); 10155 } 10156 case IP_TOS: 10157 case T_IP_TOS: 10158 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 10159 break; 10160 case IP_TTL: 10161 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 10162 break; 10163 default: 10164 return (-1); 10165 } 10166 break; 10167 case IPPROTO_IPV6: 10168 /* 10169 * IPPROTO_IPV6 options are only supported for sockets 10170 * that are using IPv6 on the wire. 10171 */ 10172 if (tcp->tcp_ipversion != IPV6_VERSION) { 10173 return (-1); 10174 } 10175 switch (name) { 10176 case IPV6_UNICAST_HOPS: 10177 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 10178 break; /* goto sizeof (int) option return */ 10179 case IPV6_BOUND_IF: 10180 /* Zero if not set */ 10181 *i1 = tcp->tcp_bound_if; 10182 break; /* goto sizeof (int) option return */ 10183 case IPV6_RECVPKTINFO: 10184 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 10185 *i1 = 1; 10186 else 10187 *i1 = 0; 10188 break; /* goto sizeof (int) option return */ 10189 case IPV6_RECVTCLASS: 10190 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 10191 *i1 = 1; 10192 else 10193 *i1 = 0; 10194 break; /* goto sizeof (int) option return */ 10195 case IPV6_RECVHOPLIMIT: 10196 if (tcp->tcp_ipv6_recvancillary & 10197 TCP_IPV6_RECVHOPLIMIT) 10198 *i1 = 1; 10199 else 10200 *i1 = 0; 10201 break; /* goto sizeof (int) option return */ 10202 case IPV6_RECVHOPOPTS: 10203 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 10204 *i1 = 1; 10205 else 10206 *i1 = 0; 10207 break; /* goto sizeof (int) option return */ 10208 case IPV6_RECVDSTOPTS: 10209 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 10210 *i1 = 1; 10211 else 10212 *i1 = 0; 10213 break; /* goto sizeof (int) option return */ 10214 case _OLD_IPV6_RECVDSTOPTS: 10215 if (tcp->tcp_ipv6_recvancillary & 10216 TCP_OLD_IPV6_RECVDSTOPTS) 10217 *i1 = 1; 10218 else 10219 *i1 = 0; 10220 break; /* goto sizeof (int) option return */ 10221 case IPV6_RECVRTHDR: 10222 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10223 *i1 = 1; 10224 else 10225 *i1 = 0; 10226 break; /* goto sizeof (int) option return */ 10227 case IPV6_RECVRTHDRDSTOPTS: 10228 if (tcp->tcp_ipv6_recvancillary & 10229 TCP_IPV6_RECVRTDSTOPTS) 10230 *i1 = 1; 10231 else 10232 *i1 = 0; 10233 break; /* goto sizeof (int) option return */ 10234 case IPV6_PKTINFO: { 10235 /* XXX assumes that caller has room for max size! */ 10236 struct in6_pktinfo *pkti; 10237 10238 pkti = (struct in6_pktinfo *)ptr; 10239 if (ipp->ipp_fields & IPPF_IFINDEX) 10240 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10241 else 10242 pkti->ipi6_ifindex = 0; 10243 if (ipp->ipp_fields & IPPF_ADDR) 10244 pkti->ipi6_addr = ipp->ipp_addr; 10245 else 10246 pkti->ipi6_addr = ipv6_all_zeros; 10247 return (sizeof (struct in6_pktinfo)); 10248 } 10249 case IPV6_TCLASS: 10250 if (ipp->ipp_fields & IPPF_TCLASS) 10251 *i1 = ipp->ipp_tclass; 10252 else 10253 *i1 = IPV6_FLOW_TCLASS( 10254 IPV6_DEFAULT_VERS_AND_FLOW); 10255 break; /* goto sizeof (int) option return */ 10256 case IPV6_NEXTHOP: { 10257 sin6_t *sin6 = (sin6_t *)ptr; 10258 10259 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10260 return (0); 10261 *sin6 = sin6_null; 10262 sin6->sin6_family = AF_INET6; 10263 sin6->sin6_addr = ipp->ipp_nexthop; 10264 return (sizeof (sin6_t)); 10265 } 10266 case IPV6_HOPOPTS: 10267 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10268 return (0); 10269 bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen); 10270 return (ipp->ipp_hopoptslen); 10271 case IPV6_RTHDRDSTOPTS: 10272 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10273 return (0); 10274 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10275 return (ipp->ipp_rtdstoptslen); 10276 case IPV6_RTHDR: 10277 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10278 return (0); 10279 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10280 return (ipp->ipp_rthdrlen); 10281 case IPV6_DSTOPTS: 10282 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10283 return (0); 10284 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10285 return (ipp->ipp_dstoptslen); 10286 case IPV6_SRC_PREFERENCES: 10287 return (ip6_get_src_preferences(connp, 10288 (uint32_t *)ptr)); 10289 case IPV6_PATHMTU: { 10290 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10291 10292 if (tcp->tcp_state < TCPS_ESTABLISHED) 10293 return (-1); 10294 10295 return (ip_fill_mtuinfo(&connp->conn_remv6, 10296 connp->conn_fport, mtuinfo)); 10297 } 10298 default: 10299 return (-1); 10300 } 10301 break; 10302 default: 10303 return (-1); 10304 } 10305 return (sizeof (int)); 10306 } 10307 10308 /* 10309 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10310 * Parameters are assumed to be verified by the caller. 10311 */ 10312 /* ARGSUSED */ 10313 int 10314 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10315 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10316 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10317 { 10318 tcp_t *tcp = Q_TO_TCP(q); 10319 int *i1 = (int *)invalp; 10320 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10321 boolean_t checkonly; 10322 int reterr; 10323 10324 switch (optset_context) { 10325 case SETFN_OPTCOM_CHECKONLY: 10326 checkonly = B_TRUE; 10327 /* 10328 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10329 * inlen != 0 implies value supplied and 10330 * we have to "pretend" to set it. 10331 * inlen == 0 implies that there is no 10332 * value part in T_CHECK request and just validation 10333 * done elsewhere should be enough, we just return here. 10334 */ 10335 if (inlen == 0) { 10336 *outlenp = 0; 10337 return (0); 10338 } 10339 break; 10340 case SETFN_OPTCOM_NEGOTIATE: 10341 checkonly = B_FALSE; 10342 break; 10343 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10344 case SETFN_CONN_NEGOTIATE: 10345 checkonly = B_FALSE; 10346 /* 10347 * Negotiating local and "association-related" options 10348 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10349 * primitives is allowed by XTI, but we choose 10350 * to not implement this style negotiation for Internet 10351 * protocols (We interpret it is a must for OSI world but 10352 * optional for Internet protocols) for all options. 10353 * [ Will do only for the few options that enable test 10354 * suites that our XTI implementation of this feature 10355 * works for transports that do allow it ] 10356 */ 10357 if (!tcp_allow_connopt_set(level, name)) { 10358 *outlenp = 0; 10359 return (EINVAL); 10360 } 10361 break; 10362 default: 10363 /* 10364 * We should never get here 10365 */ 10366 *outlenp = 0; 10367 return (EINVAL); 10368 } 10369 10370 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10371 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10372 10373 /* 10374 * For TCP, we should have no ancillary data sent down 10375 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10376 * has to be zero. 10377 */ 10378 ASSERT(thisdg_attrs == NULL); 10379 10380 /* 10381 * For fixed length options, no sanity check 10382 * of passed in length is done. It is assumed *_optcom_req() 10383 * routines do the right thing. 10384 */ 10385 10386 switch (level) { 10387 case SOL_SOCKET: 10388 switch (name) { 10389 case SO_LINGER: { 10390 struct linger *lgr = (struct linger *)invalp; 10391 10392 if (!checkonly) { 10393 if (lgr->l_onoff) { 10394 tcp->tcp_linger = 1; 10395 tcp->tcp_lingertime = lgr->l_linger; 10396 } else { 10397 tcp->tcp_linger = 0; 10398 tcp->tcp_lingertime = 0; 10399 } 10400 /* struct copy */ 10401 *(struct linger *)outvalp = *lgr; 10402 } else { 10403 if (!lgr->l_onoff) { 10404 ((struct linger *)outvalp)->l_onoff = 0; 10405 ((struct linger *)outvalp)->l_linger = 0; 10406 } else { 10407 /* struct copy */ 10408 *(struct linger *)outvalp = *lgr; 10409 } 10410 } 10411 *outlenp = sizeof (struct linger); 10412 return (0); 10413 } 10414 case SO_DEBUG: 10415 if (!checkonly) 10416 tcp->tcp_debug = onoff; 10417 break; 10418 case SO_KEEPALIVE: 10419 if (checkonly) { 10420 /* T_CHECK case */ 10421 break; 10422 } 10423 10424 if (!onoff) { 10425 if (tcp->tcp_ka_enabled) { 10426 if (tcp->tcp_ka_tid != 0) { 10427 (void) TCP_TIMER_CANCEL(tcp, 10428 tcp->tcp_ka_tid); 10429 tcp->tcp_ka_tid = 0; 10430 } 10431 tcp->tcp_ka_enabled = 0; 10432 } 10433 break; 10434 } 10435 if (!tcp->tcp_ka_enabled) { 10436 /* Crank up the keepalive timer */ 10437 tcp->tcp_ka_last_intrvl = 0; 10438 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10439 tcp_keepalive_killer, 10440 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10441 tcp->tcp_ka_enabled = 1; 10442 } 10443 break; 10444 case SO_DONTROUTE: 10445 /* 10446 * SO_DONTROUTE, SO_USELOOPBACK and SO_BROADCAST are 10447 * only of interest to IP. We track them here only so 10448 * that we can report their current value. 10449 */ 10450 if (!checkonly) { 10451 tcp->tcp_dontroute = onoff; 10452 tcp->tcp_connp->conn_dontroute = onoff; 10453 } 10454 break; 10455 case SO_USELOOPBACK: 10456 if (!checkonly) { 10457 tcp->tcp_useloopback = onoff; 10458 tcp->tcp_connp->conn_loopback = onoff; 10459 } 10460 break; 10461 case SO_BROADCAST: 10462 if (!checkonly) { 10463 tcp->tcp_broadcast = onoff; 10464 tcp->tcp_connp->conn_broadcast = onoff; 10465 } 10466 break; 10467 case SO_REUSEADDR: 10468 if (!checkonly) { 10469 tcp->tcp_reuseaddr = onoff; 10470 tcp->tcp_connp->conn_reuseaddr = onoff; 10471 } 10472 break; 10473 case SO_OOBINLINE: 10474 if (!checkonly) 10475 tcp->tcp_oobinline = onoff; 10476 break; 10477 case SO_DGRAM_ERRIND: 10478 if (!checkonly) 10479 tcp->tcp_dgram_errind = onoff; 10480 break; 10481 case SO_SNDBUF: 10482 if (*i1 > tcp_max_buf) { 10483 *outlenp = 0; 10484 return (ENOBUFS); 10485 } 10486 if (!checkonly) { 10487 tcp->tcp_xmit_hiwater = *i1; 10488 if (tcp_snd_lowat_fraction != 0) 10489 tcp->tcp_xmit_lowater = 10490 tcp->tcp_xmit_hiwater / 10491 tcp_snd_lowat_fraction; 10492 (void) tcp_maxpsz_set(tcp, B_TRUE); 10493 /* 10494 * If we are flow-controlled, recheck the 10495 * condition. There are apps that increase 10496 * SO_SNDBUF size when flow-controlled 10497 * (EWOULDBLOCK), and expect the flow control 10498 * condition to be lifted right away. 10499 */ 10500 if (tcp->tcp_flow_stopped && 10501 TCP_UNSENT_BYTES(tcp) 10502 < tcp->tcp_xmit_hiwater) { 10503 tcp_clrqfull(tcp); 10504 } 10505 } 10506 break; 10507 case SO_RCVBUF: 10508 if (*i1 > tcp_max_buf) { 10509 *outlenp = 0; 10510 return (ENOBUFS); 10511 } 10512 /* Silently ignore zero */ 10513 if (!checkonly && *i1 != 0) { 10514 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10515 (void) tcp_rwnd_set(tcp, *i1); 10516 } 10517 /* 10518 * XXX should we return the rwnd here 10519 * and tcp_opt_get ? 10520 */ 10521 break; 10522 case SO_SND_COPYAVOID: 10523 if (!checkonly) { 10524 /* we only allow enable at most once for now */ 10525 if (tcp->tcp_loopback || 10526 (!tcp->tcp_snd_zcopy_aware && 10527 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10528 *outlenp = 0; 10529 return (EOPNOTSUPP); 10530 } 10531 tcp->tcp_snd_zcopy_aware = 1; 10532 } 10533 break; 10534 default: 10535 *outlenp = 0; 10536 return (EINVAL); 10537 } 10538 break; 10539 case IPPROTO_TCP: 10540 switch (name) { 10541 case TCP_NODELAY: 10542 if (!checkonly) 10543 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10544 break; 10545 case TCP_NOTIFY_THRESHOLD: 10546 if (!checkonly) 10547 tcp->tcp_first_timer_threshold = *i1; 10548 break; 10549 case TCP_ABORT_THRESHOLD: 10550 if (!checkonly) 10551 tcp->tcp_second_timer_threshold = *i1; 10552 break; 10553 case TCP_CONN_NOTIFY_THRESHOLD: 10554 if (!checkonly) 10555 tcp->tcp_first_ctimer_threshold = *i1; 10556 break; 10557 case TCP_CONN_ABORT_THRESHOLD: 10558 if (!checkonly) 10559 tcp->tcp_second_ctimer_threshold = *i1; 10560 break; 10561 case TCP_RECVDSTADDR: 10562 if (tcp->tcp_state > TCPS_LISTEN) 10563 return (EOPNOTSUPP); 10564 if (!checkonly) 10565 tcp->tcp_recvdstaddr = onoff; 10566 break; 10567 case TCP_ANONPRIVBIND: 10568 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10569 *outlenp = 0; 10570 return (reterr); 10571 } 10572 if (!checkonly) { 10573 tcp->tcp_anon_priv_bind = onoff; 10574 } 10575 break; 10576 case TCP_EXCLBIND: 10577 if (!checkonly) 10578 tcp->tcp_exclbind = onoff; 10579 break; /* goto sizeof (int) option return */ 10580 case TCP_INIT_CWND: { 10581 uint32_t init_cwnd = *((uint32_t *)invalp); 10582 10583 if (checkonly) 10584 break; 10585 10586 /* 10587 * Only allow socket with network configuration 10588 * privilege to set the initial cwnd to be larger 10589 * than allowed by RFC 3390. 10590 */ 10591 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10592 tcp->tcp_init_cwnd = init_cwnd; 10593 break; 10594 } 10595 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 10596 *outlenp = 0; 10597 return (reterr); 10598 } 10599 if (init_cwnd > TCP_MAX_INIT_CWND) { 10600 *outlenp = 0; 10601 return (EINVAL); 10602 } 10603 tcp->tcp_init_cwnd = init_cwnd; 10604 break; 10605 } 10606 case TCP_KEEPALIVE_THRESHOLD: 10607 if (checkonly) 10608 break; 10609 10610 if (*i1 < tcp_keepalive_interval_low || 10611 *i1 > tcp_keepalive_interval_high) { 10612 *outlenp = 0; 10613 return (EINVAL); 10614 } 10615 if (*i1 != tcp->tcp_ka_interval) { 10616 tcp->tcp_ka_interval = *i1; 10617 /* 10618 * Check if we need to restart the 10619 * keepalive timer. 10620 */ 10621 if (tcp->tcp_ka_tid != 0) { 10622 ASSERT(tcp->tcp_ka_enabled); 10623 (void) TCP_TIMER_CANCEL(tcp, 10624 tcp->tcp_ka_tid); 10625 tcp->tcp_ka_last_intrvl = 0; 10626 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10627 tcp_keepalive_killer, 10628 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10629 } 10630 } 10631 break; 10632 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10633 if (!checkonly) { 10634 if (*i1 < tcp_keepalive_abort_interval_low || 10635 *i1 > tcp_keepalive_abort_interval_high) { 10636 *outlenp = 0; 10637 return (EINVAL); 10638 } 10639 tcp->tcp_ka_abort_thres = *i1; 10640 } 10641 break; 10642 case TCP_CORK: 10643 if (!checkonly) { 10644 /* 10645 * if tcp->tcp_cork was set and is now 10646 * being unset, we have to make sure that 10647 * the remaining data gets sent out. Also 10648 * unset tcp->tcp_cork so that tcp_wput_data() 10649 * can send data even if it is less than mss 10650 */ 10651 if (tcp->tcp_cork && onoff == 0 && 10652 tcp->tcp_unsent > 0) { 10653 tcp->tcp_cork = B_FALSE; 10654 tcp_wput_data(tcp, NULL, B_FALSE); 10655 } 10656 tcp->tcp_cork = onoff; 10657 } 10658 break; 10659 default: 10660 *outlenp = 0; 10661 return (EINVAL); 10662 } 10663 break; 10664 case IPPROTO_IP: 10665 if (tcp->tcp_family != AF_INET) { 10666 *outlenp = 0; 10667 return (ENOPROTOOPT); 10668 } 10669 switch (name) { 10670 case IP_OPTIONS: 10671 case T_IP_OPTIONS: 10672 reterr = tcp_opt_set_header(tcp, checkonly, 10673 invalp, inlen); 10674 if (reterr) { 10675 *outlenp = 0; 10676 return (reterr); 10677 } 10678 /* OK return - copy input buffer into output buffer */ 10679 if (invalp != outvalp) { 10680 /* don't trust bcopy for identical src/dst */ 10681 bcopy(invalp, outvalp, inlen); 10682 } 10683 *outlenp = inlen; 10684 return (0); 10685 case IP_TOS: 10686 case T_IP_TOS: 10687 if (!checkonly) { 10688 tcp->tcp_ipha->ipha_type_of_service = 10689 (uchar_t)*i1; 10690 tcp->tcp_tos = (uchar_t)*i1; 10691 } 10692 break; 10693 case IP_TTL: 10694 if (!checkonly) { 10695 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10696 tcp->tcp_ttl = (uchar_t)*i1; 10697 } 10698 break; 10699 case IP_BOUND_IF: 10700 /* Handled at the IP level */ 10701 return (-EINVAL); 10702 case IP_SEC_OPT: 10703 /* 10704 * We should not allow policy setting after 10705 * we start listening for connections. 10706 */ 10707 if (tcp->tcp_state == TCPS_LISTEN) { 10708 return (EINVAL); 10709 } else { 10710 /* Handled at the IP level */ 10711 return (-EINVAL); 10712 } 10713 default: 10714 *outlenp = 0; 10715 return (EINVAL); 10716 } 10717 break; 10718 case IPPROTO_IPV6: { 10719 ip6_pkt_t *ipp; 10720 10721 /* 10722 * IPPROTO_IPV6 options are only supported for sockets 10723 * that are using IPv6 on the wire. 10724 */ 10725 if (tcp->tcp_ipversion != IPV6_VERSION) { 10726 *outlenp = 0; 10727 return (ENOPROTOOPT); 10728 } 10729 /* 10730 * Only sticky options; no ancillary data 10731 */ 10732 ASSERT(thisdg_attrs == NULL); 10733 ipp = &tcp->tcp_sticky_ipp; 10734 10735 switch (name) { 10736 case IPV6_UNICAST_HOPS: 10737 /* -1 means use default */ 10738 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10739 *outlenp = 0; 10740 return (EINVAL); 10741 } 10742 if (!checkonly) { 10743 if (*i1 == -1) { 10744 tcp->tcp_ip6h->ip6_hops = 10745 ipp->ipp_unicast_hops = 10746 (uint8_t)tcp_ipv6_hoplimit; 10747 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10748 /* Pass modified value to IP. */ 10749 *i1 = tcp->tcp_ip6h->ip6_hops; 10750 } else { 10751 tcp->tcp_ip6h->ip6_hops = 10752 ipp->ipp_unicast_hops = 10753 (uint8_t)*i1; 10754 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10755 } 10756 reterr = tcp_build_hdrs(q, tcp); 10757 if (reterr != 0) 10758 return (reterr); 10759 } 10760 break; 10761 case IPV6_BOUND_IF: 10762 if (!checkonly) { 10763 int error = 0; 10764 10765 tcp->tcp_bound_if = *i1; 10766 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10767 B_TRUE, checkonly, level, name, mblk); 10768 if (error != 0) { 10769 *outlenp = 0; 10770 return (error); 10771 } 10772 } 10773 break; 10774 /* 10775 * Set boolean switches for ancillary data delivery 10776 */ 10777 case IPV6_RECVPKTINFO: 10778 if (!checkonly) { 10779 if (onoff) 10780 tcp->tcp_ipv6_recvancillary |= 10781 TCP_IPV6_RECVPKTINFO; 10782 else 10783 tcp->tcp_ipv6_recvancillary &= 10784 ~TCP_IPV6_RECVPKTINFO; 10785 /* Force it to be sent up with the next msg */ 10786 tcp->tcp_recvifindex = 0; 10787 } 10788 break; 10789 case IPV6_RECVTCLASS: 10790 if (!checkonly) { 10791 if (onoff) 10792 tcp->tcp_ipv6_recvancillary |= 10793 TCP_IPV6_RECVTCLASS; 10794 else 10795 tcp->tcp_ipv6_recvancillary &= 10796 ~TCP_IPV6_RECVTCLASS; 10797 } 10798 break; 10799 case IPV6_RECVHOPLIMIT: 10800 if (!checkonly) { 10801 if (onoff) 10802 tcp->tcp_ipv6_recvancillary |= 10803 TCP_IPV6_RECVHOPLIMIT; 10804 else 10805 tcp->tcp_ipv6_recvancillary &= 10806 ~TCP_IPV6_RECVHOPLIMIT; 10807 /* Force it to be sent up with the next msg */ 10808 tcp->tcp_recvhops = 0xffffffffU; 10809 } 10810 break; 10811 case IPV6_RECVHOPOPTS: 10812 if (!checkonly) { 10813 if (onoff) 10814 tcp->tcp_ipv6_recvancillary |= 10815 TCP_IPV6_RECVHOPOPTS; 10816 else 10817 tcp->tcp_ipv6_recvancillary &= 10818 ~TCP_IPV6_RECVHOPOPTS; 10819 } 10820 break; 10821 case IPV6_RECVDSTOPTS: 10822 if (!checkonly) { 10823 if (onoff) 10824 tcp->tcp_ipv6_recvancillary |= 10825 TCP_IPV6_RECVDSTOPTS; 10826 else 10827 tcp->tcp_ipv6_recvancillary &= 10828 ~TCP_IPV6_RECVDSTOPTS; 10829 } 10830 break; 10831 case _OLD_IPV6_RECVDSTOPTS: 10832 if (!checkonly) { 10833 if (onoff) 10834 tcp->tcp_ipv6_recvancillary |= 10835 TCP_OLD_IPV6_RECVDSTOPTS; 10836 else 10837 tcp->tcp_ipv6_recvancillary &= 10838 ~TCP_OLD_IPV6_RECVDSTOPTS; 10839 } 10840 break; 10841 case IPV6_RECVRTHDR: 10842 if (!checkonly) { 10843 if (onoff) 10844 tcp->tcp_ipv6_recvancillary |= 10845 TCP_IPV6_RECVRTHDR; 10846 else 10847 tcp->tcp_ipv6_recvancillary &= 10848 ~TCP_IPV6_RECVRTHDR; 10849 } 10850 break; 10851 case IPV6_RECVRTHDRDSTOPTS: 10852 if (!checkonly) { 10853 if (onoff) 10854 tcp->tcp_ipv6_recvancillary |= 10855 TCP_IPV6_RECVRTDSTOPTS; 10856 else 10857 tcp->tcp_ipv6_recvancillary &= 10858 ~TCP_IPV6_RECVRTDSTOPTS; 10859 } 10860 break; 10861 case IPV6_PKTINFO: 10862 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10863 return (EINVAL); 10864 if (checkonly) 10865 break; 10866 10867 if (inlen == 0) { 10868 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10869 } else { 10870 struct in6_pktinfo *pkti; 10871 10872 pkti = (struct in6_pktinfo *)invalp; 10873 /* 10874 * RFC 3542 states that ipi6_addr must be 10875 * the unspecified address when setting the 10876 * IPV6_PKTINFO sticky socket option on a 10877 * TCP socket. 10878 */ 10879 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10880 return (EINVAL); 10881 /* 10882 * ip6_set_pktinfo() validates the source 10883 * address and interface index. 10884 */ 10885 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10886 pkti, mblk); 10887 if (reterr != 0) 10888 return (reterr); 10889 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10890 ipp->ipp_addr = pkti->ipi6_addr; 10891 if (ipp->ipp_ifindex != 0) 10892 ipp->ipp_fields |= IPPF_IFINDEX; 10893 else 10894 ipp->ipp_fields &= ~IPPF_IFINDEX; 10895 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10896 ipp->ipp_fields |= IPPF_ADDR; 10897 else 10898 ipp->ipp_fields &= ~IPPF_ADDR; 10899 } 10900 reterr = tcp_build_hdrs(q, tcp); 10901 if (reterr != 0) 10902 return (reterr); 10903 break; 10904 case IPV6_TCLASS: 10905 if (inlen != 0 && inlen != sizeof (int)) 10906 return (EINVAL); 10907 if (checkonly) 10908 break; 10909 10910 if (inlen == 0) { 10911 ipp->ipp_fields &= ~IPPF_TCLASS; 10912 } else { 10913 if (*i1 > 255 || *i1 < -1) 10914 return (EINVAL); 10915 if (*i1 == -1) { 10916 ipp->ipp_tclass = 0; 10917 *i1 = 0; 10918 } else { 10919 ipp->ipp_tclass = *i1; 10920 } 10921 ipp->ipp_fields |= IPPF_TCLASS; 10922 } 10923 reterr = tcp_build_hdrs(q, tcp); 10924 if (reterr != 0) 10925 return (reterr); 10926 break; 10927 case IPV6_NEXTHOP: 10928 /* 10929 * IP will verify that the nexthop is reachable 10930 * and fail for sticky options. 10931 */ 10932 if (inlen != 0 && inlen != sizeof (sin6_t)) 10933 return (EINVAL); 10934 if (checkonly) 10935 break; 10936 10937 if (inlen == 0) { 10938 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10939 } else { 10940 sin6_t *sin6 = (sin6_t *)invalp; 10941 10942 if (sin6->sin6_family != AF_INET6) 10943 return (EAFNOSUPPORT); 10944 if (IN6_IS_ADDR_V4MAPPED( 10945 &sin6->sin6_addr)) 10946 return (EADDRNOTAVAIL); 10947 ipp->ipp_nexthop = sin6->sin6_addr; 10948 if (!IN6_IS_ADDR_UNSPECIFIED( 10949 &ipp->ipp_nexthop)) 10950 ipp->ipp_fields |= IPPF_NEXTHOP; 10951 else 10952 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10953 } 10954 reterr = tcp_build_hdrs(q, tcp); 10955 if (reterr != 0) 10956 return (reterr); 10957 break; 10958 case IPV6_HOPOPTS: { 10959 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10960 /* 10961 * Sanity checks - minimum size, size a multiple of 10962 * eight bytes, and matching size passed in. 10963 */ 10964 if (inlen != 0 && 10965 inlen != (8 * (hopts->ip6h_len + 1))) 10966 return (EINVAL); 10967 10968 if (checkonly) 10969 break; 10970 10971 if (inlen == 0) { 10972 if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { 10973 kmem_free(ipp->ipp_hopopts, 10974 ipp->ipp_hopoptslen); 10975 ipp->ipp_hopopts = NULL; 10976 ipp->ipp_hopoptslen = 0; 10977 } 10978 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10979 } else { 10980 reterr = tcp_pkt_set(invalp, inlen, 10981 (uchar_t **)&ipp->ipp_hopopts, 10982 &ipp->ipp_hopoptslen); 10983 if (reterr != 0) 10984 return (reterr); 10985 ipp->ipp_fields |= IPPF_HOPOPTS; 10986 } 10987 reterr = tcp_build_hdrs(q, tcp); 10988 if (reterr != 0) 10989 return (reterr); 10990 break; 10991 } 10992 case IPV6_RTHDRDSTOPTS: { 10993 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10994 10995 /* 10996 * Sanity checks - minimum size, size a multiple of 10997 * eight bytes, and matching size passed in. 10998 */ 10999 if (inlen != 0 && 11000 inlen != (8 * (dopts->ip6d_len + 1))) 11001 return (EINVAL); 11002 11003 if (checkonly) 11004 break; 11005 11006 if (inlen == 0) { 11007 if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 11008 kmem_free(ipp->ipp_rtdstopts, 11009 ipp->ipp_rtdstoptslen); 11010 ipp->ipp_rtdstopts = NULL; 11011 ipp->ipp_rtdstoptslen = 0; 11012 } 11013 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 11014 } else { 11015 reterr = tcp_pkt_set(invalp, inlen, 11016 (uchar_t **)&ipp->ipp_rtdstopts, 11017 &ipp->ipp_rtdstoptslen); 11018 if (reterr != 0) 11019 return (reterr); 11020 ipp->ipp_fields |= IPPF_RTDSTOPTS; 11021 } 11022 reterr = tcp_build_hdrs(q, tcp); 11023 if (reterr != 0) 11024 return (reterr); 11025 break; 11026 } 11027 case IPV6_DSTOPTS: { 11028 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 11029 11030 /* 11031 * Sanity checks - minimum size, size a multiple of 11032 * eight bytes, and matching size passed in. 11033 */ 11034 if (inlen != 0 && 11035 inlen != (8 * (dopts->ip6d_len + 1))) 11036 return (EINVAL); 11037 11038 if (checkonly) 11039 break; 11040 11041 if (inlen == 0) { 11042 if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 11043 kmem_free(ipp->ipp_dstopts, 11044 ipp->ipp_dstoptslen); 11045 ipp->ipp_dstopts = NULL; 11046 ipp->ipp_dstoptslen = 0; 11047 } 11048 ipp->ipp_fields &= ~IPPF_DSTOPTS; 11049 } else { 11050 reterr = tcp_pkt_set(invalp, inlen, 11051 (uchar_t **)&ipp->ipp_dstopts, 11052 &ipp->ipp_dstoptslen); 11053 if (reterr != 0) 11054 return (reterr); 11055 ipp->ipp_fields |= IPPF_DSTOPTS; 11056 } 11057 reterr = tcp_build_hdrs(q, tcp); 11058 if (reterr != 0) 11059 return (reterr); 11060 break; 11061 } 11062 case IPV6_RTHDR: { 11063 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 11064 11065 /* 11066 * Sanity checks - minimum size, size a multiple of 11067 * eight bytes, and matching size passed in. 11068 */ 11069 if (inlen != 0 && 11070 inlen != (8 * (rt->ip6r_len + 1))) 11071 return (EINVAL); 11072 11073 if (checkonly) 11074 break; 11075 11076 if (inlen == 0) { 11077 if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { 11078 kmem_free(ipp->ipp_rthdr, 11079 ipp->ipp_rthdrlen); 11080 ipp->ipp_rthdr = NULL; 11081 ipp->ipp_rthdrlen = 0; 11082 } 11083 ipp->ipp_fields &= ~IPPF_RTHDR; 11084 } else { 11085 reterr = tcp_pkt_set(invalp, inlen, 11086 (uchar_t **)&ipp->ipp_rthdr, 11087 &ipp->ipp_rthdrlen); 11088 if (reterr != 0) 11089 return (reterr); 11090 ipp->ipp_fields |= IPPF_RTHDR; 11091 } 11092 reterr = tcp_build_hdrs(q, tcp); 11093 if (reterr != 0) 11094 return (reterr); 11095 break; 11096 } 11097 case IPV6_V6ONLY: 11098 if (!checkonly) 11099 tcp->tcp_connp->conn_ipv6_v6only = onoff; 11100 break; 11101 case IPV6_USE_MIN_MTU: 11102 if (inlen != sizeof (int)) 11103 return (EINVAL); 11104 11105 if (*i1 < -1 || *i1 > 1) 11106 return (EINVAL); 11107 11108 if (checkonly) 11109 break; 11110 11111 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 11112 ipp->ipp_use_min_mtu = *i1; 11113 break; 11114 case IPV6_BOUND_PIF: 11115 /* Handled at the IP level */ 11116 return (-EINVAL); 11117 case IPV6_SEC_OPT: 11118 /* 11119 * We should not allow policy setting after 11120 * we start listening for connections. 11121 */ 11122 if (tcp->tcp_state == TCPS_LISTEN) { 11123 return (EINVAL); 11124 } else { 11125 /* Handled at the IP level */ 11126 return (-EINVAL); 11127 } 11128 case IPV6_SRC_PREFERENCES: 11129 if (inlen != sizeof (uint32_t)) 11130 return (EINVAL); 11131 reterr = ip6_set_src_preferences(tcp->tcp_connp, 11132 *(uint32_t *)invalp); 11133 if (reterr != 0) { 11134 *outlenp = 0; 11135 return (reterr); 11136 } 11137 break; 11138 default: 11139 *outlenp = 0; 11140 return (EINVAL); 11141 } 11142 break; 11143 } /* end IPPROTO_IPV6 */ 11144 default: 11145 *outlenp = 0; 11146 return (EINVAL); 11147 } 11148 /* 11149 * Common case of OK return with outval same as inval 11150 */ 11151 if (invalp != outvalp) { 11152 /* don't trust bcopy for identical src/dst */ 11153 (void) bcopy(invalp, outvalp, inlen); 11154 } 11155 *outlenp = inlen; 11156 return (0); 11157 } 11158 11159 /* 11160 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 11161 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 11162 * headers, and the maximum size tcp header (to avoid reallocation 11163 * on the fly for additional tcp options). 11164 * Returns failure if can't allocate memory. 11165 */ 11166 static int 11167 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 11168 { 11169 char *hdrs; 11170 uint_t hdrs_len; 11171 ip6i_t *ip6i; 11172 char buf[TCP_MAX_HDR_LENGTH]; 11173 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 11174 in6_addr_t src, dst; 11175 11176 /* 11177 * save the existing tcp header and source/dest IP addresses 11178 */ 11179 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 11180 src = tcp->tcp_ip6h->ip6_src; 11181 dst = tcp->tcp_ip6h->ip6_dst; 11182 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 11183 ASSERT(hdrs_len != 0); 11184 if (hdrs_len > tcp->tcp_iphc_len) { 11185 /* Need to reallocate */ 11186 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 11187 if (hdrs == NULL) 11188 return (ENOMEM); 11189 if (tcp->tcp_iphc != NULL) { 11190 if (tcp->tcp_hdr_grown) { 11191 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 11192 } else { 11193 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 11194 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 11195 } 11196 tcp->tcp_iphc_len = 0; 11197 } 11198 ASSERT(tcp->tcp_iphc_len == 0); 11199 tcp->tcp_iphc = hdrs; 11200 tcp->tcp_iphc_len = hdrs_len; 11201 tcp->tcp_hdr_grown = B_TRUE; 11202 } 11203 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11204 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11205 11206 /* Set header fields not in ipp */ 11207 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11208 ip6i = (ip6i_t *)tcp->tcp_iphc; 11209 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11210 } else { 11211 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11212 } 11213 /* 11214 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11215 * 11216 * tcp->tcp_tcp_hdr_len doesn't change here. 11217 */ 11218 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11219 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11220 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11221 11222 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11223 11224 tcp->tcp_ip6h->ip6_src = src; 11225 tcp->tcp_ip6h->ip6_dst = dst; 11226 11227 /* 11228 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11229 * the default value for TCP. 11230 */ 11231 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11232 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 11233 11234 /* 11235 * If we're setting extension headers after a connection 11236 * has been established, and if we have a routing header 11237 * among the extension headers, call ip_massage_options_v6 to 11238 * manipulate the routing header/ip6_dst set the checksum 11239 * difference in the tcp header template. 11240 * (This happens in tcp_connect_ipv6 if the routing header 11241 * is set prior to the connect.) 11242 * Set the tcp_sum to zero first in case we've cleared a 11243 * routing header or don't have one at all. 11244 */ 11245 tcp->tcp_sum = 0; 11246 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11247 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11248 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11249 (uint8_t *)tcp->tcp_tcph); 11250 if (rth != NULL) { 11251 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11252 rth); 11253 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11254 (tcp->tcp_sum >> 16)); 11255 } 11256 } 11257 11258 /* Try to get everything in a single mblk */ 11259 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 11260 return (0); 11261 } 11262 11263 /* 11264 * Set optbuf and optlen for the option. 11265 * Allocate memory (if not already present). 11266 * Otherwise just point optbuf and optlen at invalp and inlen. 11267 * Returns failure if memory can not be allocated. 11268 */ 11269 static int 11270 tcp_pkt_set(uchar_t *invalp, uint_t inlen, uchar_t **optbufp, uint_t *optlenp) 11271 { 11272 uchar_t *optbuf; 11273 11274 if (inlen == *optlenp) { 11275 /* Unchanged length - no need to realocate */ 11276 bcopy(invalp, *optbufp, inlen); 11277 return (0); 11278 } 11279 if (inlen != 0) { 11280 /* Allocate new buffer before free */ 11281 optbuf = kmem_alloc(inlen, KM_NOSLEEP); 11282 if (optbuf == NULL) 11283 return (ENOMEM); 11284 } else { 11285 optbuf = NULL; 11286 } 11287 /* Free old buffer */ 11288 if (*optlenp != 0) 11289 kmem_free(*optbufp, *optlenp); 11290 11291 bcopy(invalp, optbuf, inlen); 11292 *optbufp = optbuf; 11293 *optlenp = inlen; 11294 return (0); 11295 } 11296 11297 11298 /* 11299 * Use the outgoing IP header to create an IP_OPTIONS option the way 11300 * it was passed down from the application. 11301 */ 11302 static int 11303 tcp_opt_get_user(ipha_t *ipha, uchar_t *buf) 11304 { 11305 ipoptp_t opts; 11306 uchar_t *opt; 11307 uint8_t optval; 11308 uint8_t optlen; 11309 uint32_t len = 0; 11310 uchar_t *buf1 = buf; 11311 11312 buf += IP_ADDR_LEN; /* Leave room for final destination */ 11313 len += IP_ADDR_LEN; 11314 bzero(buf1, IP_ADDR_LEN); 11315 11316 for (optval = ipoptp_first(&opts, ipha); 11317 optval != IPOPT_EOL; 11318 optval = ipoptp_next(&opts)) { 11319 opt = opts.ipoptp_cur; 11320 optlen = opts.ipoptp_len; 11321 switch (optval) { 11322 int off; 11323 case IPOPT_SSRR: 11324 case IPOPT_LSRR: 11325 11326 /* 11327 * Insert ipha_dst as the first entry in the source 11328 * route and move down the entries on step. 11329 * The last entry gets placed at buf1. 11330 */ 11331 buf[IPOPT_OPTVAL] = optval; 11332 buf[IPOPT_OLEN] = optlen; 11333 buf[IPOPT_OFFSET] = optlen; 11334 11335 off = optlen - IP_ADDR_LEN; 11336 if (off < 0) { 11337 /* No entries in source route */ 11338 break; 11339 } 11340 /* Last entry in source route */ 11341 bcopy(opt + off, buf1, IP_ADDR_LEN); 11342 off -= IP_ADDR_LEN; 11343 11344 while (off > 0) { 11345 bcopy(opt + off, 11346 buf + off + IP_ADDR_LEN, 11347 IP_ADDR_LEN); 11348 off -= IP_ADDR_LEN; 11349 } 11350 /* ipha_dst into first slot */ 11351 bcopy(&ipha->ipha_dst, 11352 buf + off + IP_ADDR_LEN, 11353 IP_ADDR_LEN); 11354 buf += optlen; 11355 len += optlen; 11356 break; 11357 default: 11358 bcopy(opt, buf, optlen); 11359 buf += optlen; 11360 len += optlen; 11361 break; 11362 } 11363 } 11364 done: 11365 /* Pad the resulting options */ 11366 while (len & 0x3) { 11367 *buf++ = IPOPT_EOL; 11368 len++; 11369 } 11370 return (len); 11371 } 11372 11373 /* 11374 * Transfer any source route option from ipha to buf/dst in reversed form. 11375 */ 11376 static int 11377 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11378 { 11379 ipoptp_t opts; 11380 uchar_t *opt; 11381 uint8_t optval; 11382 uint8_t optlen; 11383 uint32_t len = 0; 11384 11385 for (optval = ipoptp_first(&opts, ipha); 11386 optval != IPOPT_EOL; 11387 optval = ipoptp_next(&opts)) { 11388 opt = opts.ipoptp_cur; 11389 optlen = opts.ipoptp_len; 11390 switch (optval) { 11391 int off1, off2; 11392 case IPOPT_SSRR: 11393 case IPOPT_LSRR: 11394 11395 /* Reverse source route */ 11396 /* 11397 * First entry should be the next to last one in the 11398 * current source route (the last entry is our 11399 * address.) 11400 * The last entry should be the final destination. 11401 */ 11402 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11403 buf[IPOPT_OLEN] = (uint8_t)optlen; 11404 off1 = IPOPT_MINOFF_SR - 1; 11405 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11406 if (off2 < 0) { 11407 /* No entries in source route */ 11408 break; 11409 } 11410 bcopy(opt + off2, dst, IP_ADDR_LEN); 11411 /* 11412 * Note: use src since ipha has not had its src 11413 * and dst reversed (it is in the state it was 11414 * received. 11415 */ 11416 bcopy(&ipha->ipha_src, buf + off2, 11417 IP_ADDR_LEN); 11418 off2 -= IP_ADDR_LEN; 11419 11420 while (off2 > 0) { 11421 bcopy(opt + off2, buf + off1, 11422 IP_ADDR_LEN); 11423 off1 += IP_ADDR_LEN; 11424 off2 -= IP_ADDR_LEN; 11425 } 11426 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11427 buf += optlen; 11428 len += optlen; 11429 break; 11430 } 11431 } 11432 done: 11433 /* Pad the resulting options */ 11434 while (len & 0x3) { 11435 *buf++ = IPOPT_EOL; 11436 len++; 11437 } 11438 return (len); 11439 } 11440 11441 11442 /* 11443 * Extract and revert a source route from ipha (if any) 11444 * and then update the relevant fields in both tcp_t and the standard header. 11445 */ 11446 static void 11447 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11448 { 11449 char buf[TCP_MAX_HDR_LENGTH]; 11450 uint_t tcph_len; 11451 int len; 11452 11453 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11454 len = IPH_HDR_LENGTH(ipha); 11455 if (len == IP_SIMPLE_HDR_LENGTH) 11456 /* Nothing to do */ 11457 return; 11458 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11459 (len & 0x3)) 11460 return; 11461 11462 tcph_len = tcp->tcp_tcp_hdr_len; 11463 bcopy(tcp->tcp_tcph, buf, tcph_len); 11464 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11465 (tcp->tcp_ipha->ipha_dst & 0xffff); 11466 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11467 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11468 len += IP_SIMPLE_HDR_LENGTH; 11469 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11470 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11471 if ((int)tcp->tcp_sum < 0) 11472 tcp->tcp_sum--; 11473 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11474 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11475 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11476 bcopy(buf, tcp->tcp_tcph, tcph_len); 11477 tcp->tcp_ip_hdr_len = len; 11478 tcp->tcp_ipha->ipha_version_and_hdr_length = 11479 (IP_VERSION << 4) | (len >> 2); 11480 len += tcph_len; 11481 tcp->tcp_hdr_len = len; 11482 } 11483 11484 /* 11485 * Copy the standard header into its new location, 11486 * lay in the new options and then update the relevant 11487 * fields in both tcp_t and the standard header. 11488 */ 11489 static int 11490 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11491 { 11492 uint_t tcph_len; 11493 char *ip_optp; 11494 tcph_t *new_tcph; 11495 11496 if (checkonly) { 11497 /* 11498 * do not really set, just pretend to - T_CHECK 11499 */ 11500 if (len != 0) { 11501 /* 11502 * there is value supplied, validate it as if 11503 * for a real set operation. 11504 */ 11505 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11506 return (EINVAL); 11507 } 11508 return (0); 11509 } 11510 11511 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11512 return (EINVAL); 11513 11514 ip_optp = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11515 tcph_len = tcp->tcp_tcp_hdr_len; 11516 new_tcph = (tcph_t *)(ip_optp + len); 11517 ovbcopy((char *)tcp->tcp_tcph, (char *)new_tcph, tcph_len); 11518 tcp->tcp_tcph = new_tcph; 11519 bcopy(ptr, ip_optp, len); 11520 11521 len += IP_SIMPLE_HDR_LENGTH; 11522 11523 tcp->tcp_ip_hdr_len = len; 11524 tcp->tcp_ipha->ipha_version_and_hdr_length = 11525 (IP_VERSION << 4) | (len >> 2); 11526 len += tcph_len; 11527 tcp->tcp_hdr_len = len; 11528 if (!TCP_IS_DETACHED(tcp)) { 11529 /* Always allocate room for all options. */ 11530 (void) mi_set_sth_wroff(tcp->tcp_rq, 11531 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 11532 } 11533 return (0); 11534 } 11535 11536 /* Get callback routine passed to nd_load by tcp_param_register */ 11537 /* ARGSUSED */ 11538 static int 11539 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11540 { 11541 tcpparam_t *tcppa = (tcpparam_t *)cp; 11542 11543 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11544 return (0); 11545 } 11546 11547 /* 11548 * Walk through the param array specified registering each element with the 11549 * named dispatch handler. 11550 */ 11551 static boolean_t 11552 tcp_param_register(tcpparam_t *tcppa, int cnt) 11553 { 11554 for (; cnt-- > 0; tcppa++) { 11555 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11556 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 11557 tcp_param_get, tcp_param_set, 11558 (caddr_t)tcppa)) { 11559 nd_free(&tcp_g_nd); 11560 return (B_FALSE); 11561 } 11562 } 11563 } 11564 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 11565 tcp_param_get, tcp_param_set_aligned, 11566 (caddr_t)&tcp_wroff_xtra_param)) { 11567 nd_free(&tcp_g_nd); 11568 return (B_FALSE); 11569 } 11570 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 11571 tcp_param_get, tcp_param_set_aligned, 11572 (caddr_t)&tcp_mdt_head_param)) { 11573 nd_free(&tcp_g_nd); 11574 return (B_FALSE); 11575 } 11576 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 11577 tcp_param_get, tcp_param_set_aligned, 11578 (caddr_t)&tcp_mdt_tail_param)) { 11579 nd_free(&tcp_g_nd); 11580 return (B_FALSE); 11581 } 11582 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 11583 tcp_param_get, tcp_param_set, 11584 (caddr_t)&tcp_mdt_max_pbufs_param)) { 11585 nd_free(&tcp_g_nd); 11586 return (B_FALSE); 11587 } 11588 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 11589 tcp_extra_priv_ports_get, NULL, NULL)) { 11590 nd_free(&tcp_g_nd); 11591 return (B_FALSE); 11592 } 11593 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 11594 NULL, tcp_extra_priv_ports_add, NULL)) { 11595 nd_free(&tcp_g_nd); 11596 return (B_FALSE); 11597 } 11598 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 11599 NULL, tcp_extra_priv_ports_del, NULL)) { 11600 nd_free(&tcp_g_nd); 11601 return (B_FALSE); 11602 } 11603 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 11604 NULL)) { 11605 nd_free(&tcp_g_nd); 11606 return (B_FALSE); 11607 } 11608 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 11609 NULL, NULL)) { 11610 nd_free(&tcp_g_nd); 11611 return (B_FALSE); 11612 } 11613 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 11614 NULL, NULL)) { 11615 nd_free(&tcp_g_nd); 11616 return (B_FALSE); 11617 } 11618 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 11619 NULL, NULL)) { 11620 nd_free(&tcp_g_nd); 11621 return (B_FALSE); 11622 } 11623 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 11624 NULL, NULL)) { 11625 nd_free(&tcp_g_nd); 11626 return (B_FALSE); 11627 } 11628 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 11629 tcp_host_param_set, NULL)) { 11630 nd_free(&tcp_g_nd); 11631 return (B_FALSE); 11632 } 11633 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 11634 tcp_host_param_set_ipv6, NULL)) { 11635 nd_free(&tcp_g_nd); 11636 return (B_FALSE); 11637 } 11638 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 11639 NULL)) { 11640 nd_free(&tcp_g_nd); 11641 return (B_FALSE); 11642 } 11643 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 11644 tcp_reserved_port_list, NULL, NULL)) { 11645 nd_free(&tcp_g_nd); 11646 return (B_FALSE); 11647 } 11648 /* 11649 * Dummy ndd variables - only to convey obsolescence information 11650 * through printing of their name (no get or set routines) 11651 * XXX Remove in future releases ? 11652 */ 11653 if (!nd_load(&tcp_g_nd, 11654 "tcp_close_wait_interval(obsoleted - " 11655 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11656 nd_free(&tcp_g_nd); 11657 return (B_FALSE); 11658 } 11659 return (B_TRUE); 11660 } 11661 11662 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11663 /* ARGSUSED */ 11664 static int 11665 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11666 cred_t *cr) 11667 { 11668 long new_value; 11669 tcpparam_t *tcppa = (tcpparam_t *)cp; 11670 11671 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11672 new_value < tcppa->tcp_param_min || 11673 new_value > tcppa->tcp_param_max) { 11674 return (EINVAL); 11675 } 11676 /* 11677 * Need to make sure new_value is a multiple of 4. If it is not, 11678 * round it up. For future 64 bit requirement, we actually make it 11679 * a multiple of 8. 11680 */ 11681 if (new_value & 0x7) { 11682 new_value = (new_value & ~0x7) + 0x8; 11683 } 11684 tcppa->tcp_param_val = new_value; 11685 return (0); 11686 } 11687 11688 /* Set callback routine passed to nd_load by tcp_param_register */ 11689 /* ARGSUSED */ 11690 static int 11691 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11692 { 11693 long new_value; 11694 tcpparam_t *tcppa = (tcpparam_t *)cp; 11695 11696 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11697 new_value < tcppa->tcp_param_min || 11698 new_value > tcppa->tcp_param_max) { 11699 return (EINVAL); 11700 } 11701 tcppa->tcp_param_val = new_value; 11702 return (0); 11703 } 11704 11705 /* 11706 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11707 * is filled, return as much as we can. The message passed in may be 11708 * multi-part, chained using b_cont. "start" is the starting sequence 11709 * number for this piece. 11710 */ 11711 static mblk_t * 11712 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11713 { 11714 uint32_t end; 11715 mblk_t *mp1; 11716 mblk_t *mp2; 11717 mblk_t *next_mp; 11718 uint32_t u1; 11719 11720 /* Walk through all the new pieces. */ 11721 do { 11722 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11723 (uintptr_t)INT_MAX); 11724 end = start + (int)(mp->b_wptr - mp->b_rptr); 11725 next_mp = mp->b_cont; 11726 if (start == end) { 11727 /* Empty. Blast it. */ 11728 freeb(mp); 11729 continue; 11730 } 11731 mp->b_cont = NULL; 11732 TCP_REASS_SET_SEQ(mp, start); 11733 TCP_REASS_SET_END(mp, end); 11734 mp1 = tcp->tcp_reass_tail; 11735 if (!mp1) { 11736 tcp->tcp_reass_tail = mp; 11737 tcp->tcp_reass_head = mp; 11738 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11739 UPDATE_MIB(&tcp_mib, 11740 tcpInDataUnorderBytes, end - start); 11741 continue; 11742 } 11743 /* New stuff completely beyond tail? */ 11744 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11745 /* Link it on end. */ 11746 mp1->b_cont = mp; 11747 tcp->tcp_reass_tail = mp; 11748 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11749 UPDATE_MIB(&tcp_mib, 11750 tcpInDataUnorderBytes, end - start); 11751 continue; 11752 } 11753 mp1 = tcp->tcp_reass_head; 11754 u1 = TCP_REASS_SEQ(mp1); 11755 /* New stuff at the front? */ 11756 if (SEQ_LT(start, u1)) { 11757 /* Yes... Check for overlap. */ 11758 mp->b_cont = mp1; 11759 tcp->tcp_reass_head = mp; 11760 tcp_reass_elim_overlap(tcp, mp); 11761 continue; 11762 } 11763 /* 11764 * The new piece fits somewhere between the head and tail. 11765 * We find our slot, where mp1 precedes us and mp2 trails. 11766 */ 11767 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11768 u1 = TCP_REASS_SEQ(mp2); 11769 if (SEQ_LEQ(start, u1)) 11770 break; 11771 } 11772 /* Link ourselves in */ 11773 mp->b_cont = mp2; 11774 mp1->b_cont = mp; 11775 11776 /* Trim overlap with following mblk(s) first */ 11777 tcp_reass_elim_overlap(tcp, mp); 11778 11779 /* Trim overlap with preceding mblk */ 11780 tcp_reass_elim_overlap(tcp, mp1); 11781 11782 } while (start = end, mp = next_mp); 11783 mp1 = tcp->tcp_reass_head; 11784 /* Anything ready to go? */ 11785 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11786 return (NULL); 11787 /* Eat what we can off the queue */ 11788 for (;;) { 11789 mp = mp1->b_cont; 11790 end = TCP_REASS_END(mp1); 11791 TCP_REASS_SET_SEQ(mp1, 0); 11792 TCP_REASS_SET_END(mp1, 0); 11793 if (!mp) { 11794 tcp->tcp_reass_tail = NULL; 11795 break; 11796 } 11797 if (end != TCP_REASS_SEQ(mp)) { 11798 mp1->b_cont = NULL; 11799 break; 11800 } 11801 mp1 = mp; 11802 } 11803 mp1 = tcp->tcp_reass_head; 11804 tcp->tcp_reass_head = mp; 11805 return (mp1); 11806 } 11807 11808 /* Eliminate any overlap that mp may have over later mblks */ 11809 static void 11810 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11811 { 11812 uint32_t end; 11813 mblk_t *mp1; 11814 uint32_t u1; 11815 11816 end = TCP_REASS_END(mp); 11817 while ((mp1 = mp->b_cont) != NULL) { 11818 u1 = TCP_REASS_SEQ(mp1); 11819 if (!SEQ_GT(end, u1)) 11820 break; 11821 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11822 mp->b_wptr -= end - u1; 11823 TCP_REASS_SET_END(mp, u1); 11824 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 11825 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 11826 break; 11827 } 11828 mp->b_cont = mp1->b_cont; 11829 TCP_REASS_SET_SEQ(mp1, 0); 11830 TCP_REASS_SET_END(mp1, 0); 11831 freeb(mp1); 11832 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 11833 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 11834 } 11835 if (!mp1) 11836 tcp->tcp_reass_tail = mp; 11837 } 11838 11839 /* 11840 * Send up all messages queued on tcp_rcv_list. 11841 */ 11842 static uint_t 11843 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11844 { 11845 mblk_t *mp; 11846 uint_t ret = 0; 11847 uint_t thwin; 11848 #ifdef DEBUG 11849 uint_t cnt = 0; 11850 #endif 11851 /* Can't drain on an eager connection */ 11852 if (tcp->tcp_listener != NULL) 11853 return (ret); 11854 11855 /* 11856 * Handle two cases here: we are currently fused or we were 11857 * previously fused and have some urgent data to be delivered 11858 * upstream. The latter happens because we either ran out of 11859 * memory or were detached and therefore sending the SIGURG was 11860 * deferred until this point. In either case we pass control 11861 * over to tcp_fuse_rcv_drain() since it may need to complete 11862 * some work. 11863 */ 11864 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11865 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11866 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11867 &tcp->tcp_fused_sigurg_mp)) 11868 return (ret); 11869 } 11870 11871 while ((mp = tcp->tcp_rcv_list) != NULL) { 11872 tcp->tcp_rcv_list = mp->b_next; 11873 mp->b_next = NULL; 11874 #ifdef DEBUG 11875 cnt += msgdsize(mp); 11876 #endif 11877 putnext(q, mp); 11878 } 11879 ASSERT(cnt == tcp->tcp_rcv_cnt); 11880 tcp->tcp_rcv_last_head = NULL; 11881 tcp->tcp_rcv_last_tail = NULL; 11882 tcp->tcp_rcv_cnt = 0; 11883 11884 /* Learn the latest rwnd information that we sent to the other side. */ 11885 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11886 << tcp->tcp_rcv_ws; 11887 /* This is peer's calculated send window (our receive window). */ 11888 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11889 /* 11890 * Increase the receive window to max. But we need to do receiver 11891 * SWS avoidance. This means that we need to check the increase of 11892 * of receive window is at least 1 MSS. 11893 */ 11894 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11895 /* 11896 * If the window that the other side knows is less than max 11897 * deferred acks segments, send an update immediately. 11898 */ 11899 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11900 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11901 ret = TH_ACK_NEEDED; 11902 } 11903 tcp->tcp_rwnd = q->q_hiwat; 11904 } 11905 /* No need for the push timer now. */ 11906 if (tcp->tcp_push_tid != 0) { 11907 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11908 tcp->tcp_push_tid = 0; 11909 } 11910 return (ret); 11911 } 11912 11913 /* 11914 * Queue data on tcp_rcv_list which is a b_next chain. 11915 * tcp_rcv_last_head/tail is the last element of this chain. 11916 * Each element of the chain is a b_cont chain. 11917 * 11918 * M_DATA messages are added to the current element. 11919 * Other messages are added as new (b_next) elements. 11920 */ 11921 static void 11922 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11923 { 11924 ASSERT(seg_len == msgdsize(mp)); 11925 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11926 11927 if (tcp->tcp_rcv_list == NULL) { 11928 ASSERT(tcp->tcp_rcv_last_head == NULL); 11929 tcp->tcp_rcv_list = mp; 11930 tcp->tcp_rcv_last_head = mp; 11931 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11932 tcp->tcp_rcv_last_tail->b_cont = mp; 11933 } else { 11934 tcp->tcp_rcv_last_head->b_next = mp; 11935 tcp->tcp_rcv_last_head = mp; 11936 } 11937 11938 while (mp->b_cont) 11939 mp = mp->b_cont; 11940 11941 tcp->tcp_rcv_last_tail = mp; 11942 tcp->tcp_rcv_cnt += seg_len; 11943 tcp->tcp_rwnd -= seg_len; 11944 } 11945 11946 /* 11947 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11948 * 11949 * This is the default entry function into TCP on the read side. TCP is 11950 * always entered via squeue i.e. using squeue's for mutual exclusion. 11951 * When classifier does a lookup to find the tcp, it also puts a reference 11952 * on the conn structure associated so the tcp is guaranteed to exist 11953 * when we come here. We still need to check the state because it might 11954 * as well has been closed. The squeue processing function i.e. squeue_enter, 11955 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11956 * CONN_DEC_REF. 11957 * 11958 * Apart from the default entry point, IP also sends packets directly to 11959 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11960 * connections. 11961 */ 11962 void 11963 tcp_input(void *arg, mblk_t *mp, void *arg2) 11964 { 11965 conn_t *connp = (conn_t *)arg; 11966 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11967 11968 /* arg2 is the sqp */ 11969 ASSERT(arg2 != NULL); 11970 ASSERT(mp != NULL); 11971 11972 /* 11973 * Don't accept any input on a closed tcp as this TCP logically does 11974 * not exist on the system. Don't proceed further with this TCP. 11975 * For eg. this packet could trigger another close of this tcp 11976 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11977 * tcp_clean_death / tcp_closei_local must be called at most once 11978 * on a TCP. In this case we need to refeed the packet into the 11979 * classifier and figure out where the packet should go. Need to 11980 * preserve the recv_ill somehow. Until we figure that out, for 11981 * now just drop the packet if we can't classify the packet. 11982 */ 11983 if (tcp->tcp_state == TCPS_CLOSED || 11984 tcp->tcp_state == TCPS_BOUND) { 11985 conn_t *new_connp; 11986 11987 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11988 if (new_connp != NULL) { 11989 tcp_reinput(new_connp, mp, arg2); 11990 return; 11991 } 11992 /* We failed to classify. For now just drop the packet */ 11993 freemsg(mp); 11994 return; 11995 } 11996 11997 if (DB_TYPE(mp) == M_DATA) 11998 tcp_rput_data(connp, mp, arg2); 11999 else 12000 tcp_rput_common(tcp, mp); 12001 } 12002 12003 /* 12004 * The read side put procedure. 12005 * The packets passed up by ip are assume to be aligned according to 12006 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 12007 */ 12008 static void 12009 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 12010 { 12011 /* 12012 * tcp_rput_data() does not expect M_CTL except for the case 12013 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 12014 * type. Need to make sure that any other M_CTLs don't make 12015 * it to tcp_rput_data since it is not expecting any and doesn't 12016 * check for it. 12017 */ 12018 if (DB_TYPE(mp) == M_CTL) { 12019 switch (*(uint32_t *)(mp->b_rptr)) { 12020 case TCP_IOC_ABORT_CONN: 12021 /* 12022 * Handle connection abort request. 12023 */ 12024 tcp_ioctl_abort_handler(tcp, mp); 12025 return; 12026 case IPSEC_IN: 12027 /* 12028 * Only secure icmp arrive in TCP and they 12029 * don't go through data path. 12030 */ 12031 tcp_icmp_error(tcp, mp); 12032 return; 12033 case IN_PKTINFO: 12034 /* 12035 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 12036 * sockets that are receiving IPv4 traffic. tcp 12037 */ 12038 ASSERT(tcp->tcp_family == AF_INET6); 12039 ASSERT(tcp->tcp_ipv6_recvancillary & 12040 TCP_IPV6_RECVPKTINFO); 12041 tcp_rput_data(tcp->tcp_connp, mp, 12042 tcp->tcp_connp->conn_sqp); 12043 return; 12044 case MDT_IOC_INFO_UPDATE: 12045 /* 12046 * Handle Multidata information update; the 12047 * following routine will free the message. 12048 */ 12049 if (tcp->tcp_connp->conn_mdt_ok) { 12050 tcp_mdt_update(tcp, 12051 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 12052 B_FALSE); 12053 } 12054 freemsg(mp); 12055 return; 12056 default: 12057 break; 12058 } 12059 } 12060 12061 /* No point processing the message if tcp is already closed */ 12062 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 12063 freemsg(mp); 12064 return; 12065 } 12066 12067 tcp_rput_other(tcp, mp); 12068 } 12069 12070 12071 /* The minimum of smoothed mean deviation in RTO calculation. */ 12072 #define TCP_SD_MIN 400 12073 12074 /* 12075 * Set RTO for this connection. The formula is from Jacobson and Karels' 12076 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 12077 * are the same as those in Appendix A.2 of that paper. 12078 * 12079 * m = new measurement 12080 * sa = smoothed RTT average (8 * average estimates). 12081 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 12082 */ 12083 static void 12084 tcp_set_rto(tcp_t *tcp, clock_t rtt) 12085 { 12086 long m = TICK_TO_MSEC(rtt); 12087 clock_t sa = tcp->tcp_rtt_sa; 12088 clock_t sv = tcp->tcp_rtt_sd; 12089 clock_t rto; 12090 12091 BUMP_MIB(&tcp_mib, tcpRttUpdate); 12092 tcp->tcp_rtt_update++; 12093 12094 /* tcp_rtt_sa is not 0 means this is a new sample. */ 12095 if (sa != 0) { 12096 /* 12097 * Update average estimator: 12098 * new rtt = 7/8 old rtt + 1/8 Error 12099 */ 12100 12101 /* m is now Error in estimate. */ 12102 m -= sa >> 3; 12103 if ((sa += m) <= 0) { 12104 /* 12105 * Don't allow the smoothed average to be negative. 12106 * We use 0 to denote reinitialization of the 12107 * variables. 12108 */ 12109 sa = 1; 12110 } 12111 12112 /* 12113 * Update deviation estimator: 12114 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 12115 */ 12116 if (m < 0) 12117 m = -m; 12118 m -= sv >> 2; 12119 sv += m; 12120 } else { 12121 /* 12122 * This follows BSD's implementation. So the reinitialized 12123 * RTO is 3 * m. We cannot go less than 2 because if the 12124 * link is bandwidth dominated, doubling the window size 12125 * during slow start means doubling the RTT. We want to be 12126 * more conservative when we reinitialize our estimates. 3 12127 * is just a convenient number. 12128 */ 12129 sa = m << 3; 12130 sv = m << 1; 12131 } 12132 if (sv < TCP_SD_MIN) { 12133 /* 12134 * We do not know that if sa captures the delay ACK 12135 * effect as in a long train of segments, a receiver 12136 * does not delay its ACKs. So set the minimum of sv 12137 * to be TCP_SD_MIN, which is default to 400 ms, twice 12138 * of BSD DATO. That means the minimum of mean 12139 * deviation is 100 ms. 12140 * 12141 */ 12142 sv = TCP_SD_MIN; 12143 } 12144 tcp->tcp_rtt_sa = sa; 12145 tcp->tcp_rtt_sd = sv; 12146 /* 12147 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 12148 * 12149 * Add tcp_rexmit_interval extra in case of extreme environment 12150 * where the algorithm fails to work. The default value of 12151 * tcp_rexmit_interval_extra should be 0. 12152 * 12153 * As we use a finer grained clock than BSD and update 12154 * RTO for every ACKs, add in another .25 of RTT to the 12155 * deviation of RTO to accomodate burstiness of 1/4 of 12156 * window size. 12157 */ 12158 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 12159 12160 if (rto > tcp_rexmit_interval_max) { 12161 tcp->tcp_rto = tcp_rexmit_interval_max; 12162 } else if (rto < tcp_rexmit_interval_min) { 12163 tcp->tcp_rto = tcp_rexmit_interval_min; 12164 } else { 12165 tcp->tcp_rto = rto; 12166 } 12167 12168 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12169 tcp->tcp_timer_backoff = 0; 12170 } 12171 12172 /* 12173 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12174 * send queue which starts at the given seq. no. 12175 * 12176 * Parameters: 12177 * tcp_t *tcp: the tcp instance pointer. 12178 * uint32_t seq: the starting seq. no of the requested segment. 12179 * int32_t *off: after the execution, *off will be the offset to 12180 * the returned mblk which points to the requested seq no. 12181 * It is the caller's responsibility to send in a non-null off. 12182 * 12183 * Return: 12184 * A mblk_t pointer pointing to the requested segment in send queue. 12185 */ 12186 static mblk_t * 12187 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12188 { 12189 int32_t cnt; 12190 mblk_t *mp; 12191 12192 /* Defensive coding. Make sure we don't send incorrect data. */ 12193 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12194 return (NULL); 12195 12196 cnt = seq - tcp->tcp_suna; 12197 mp = tcp->tcp_xmit_head; 12198 while (cnt > 0 && mp != NULL) { 12199 cnt -= mp->b_wptr - mp->b_rptr; 12200 if (cnt < 0) { 12201 cnt += mp->b_wptr - mp->b_rptr; 12202 break; 12203 } 12204 mp = mp->b_cont; 12205 } 12206 ASSERT(mp != NULL); 12207 *off = cnt; 12208 return (mp); 12209 } 12210 12211 /* 12212 * This function handles all retransmissions if SACK is enabled for this 12213 * connection. First it calculates how many segments can be retransmitted 12214 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12215 * segments. A segment is eligible if sack_cnt for that segment is greater 12216 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12217 * all eligible segments, it checks to see if TCP can send some new segments 12218 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12219 * 12220 * Parameters: 12221 * tcp_t *tcp: the tcp structure of the connection. 12222 * uint_t *flags: in return, appropriate value will be set for 12223 * tcp_rput_data(). 12224 */ 12225 static void 12226 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12227 { 12228 notsack_blk_t *notsack_blk; 12229 int32_t usable_swnd; 12230 int32_t mss; 12231 uint32_t seg_len; 12232 mblk_t *xmit_mp; 12233 12234 ASSERT(tcp->tcp_sack_info != NULL); 12235 ASSERT(tcp->tcp_notsack_list != NULL); 12236 ASSERT(tcp->tcp_rexmit == B_FALSE); 12237 12238 /* Defensive coding in case there is a bug... */ 12239 if (tcp->tcp_notsack_list == NULL) { 12240 return; 12241 } 12242 notsack_blk = tcp->tcp_notsack_list; 12243 mss = tcp->tcp_mss; 12244 12245 /* 12246 * Limit the num of outstanding data in the network to be 12247 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12248 */ 12249 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12250 12251 /* At least retransmit 1 MSS of data. */ 12252 if (usable_swnd <= 0) { 12253 usable_swnd = mss; 12254 } 12255 12256 /* Make sure no new RTT samples will be taken. */ 12257 tcp->tcp_csuna = tcp->tcp_snxt; 12258 12259 notsack_blk = tcp->tcp_notsack_list; 12260 while (usable_swnd > 0) { 12261 mblk_t *snxt_mp, *tmp_mp; 12262 tcp_seq begin = tcp->tcp_sack_snxt; 12263 tcp_seq end; 12264 int32_t off; 12265 12266 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12267 if (SEQ_GT(notsack_blk->end, begin) && 12268 (notsack_blk->sack_cnt >= 12269 tcp_dupack_fast_retransmit)) { 12270 end = notsack_blk->end; 12271 if (SEQ_LT(begin, notsack_blk->begin)) { 12272 begin = notsack_blk->begin; 12273 } 12274 break; 12275 } 12276 } 12277 /* 12278 * All holes are filled. Manipulate tcp_cwnd to send more 12279 * if we can. Note that after the SACK recovery, tcp_cwnd is 12280 * set to tcp_cwnd_ssthresh. 12281 */ 12282 if (notsack_blk == NULL) { 12283 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12284 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12285 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12286 ASSERT(tcp->tcp_cwnd > 0); 12287 return; 12288 } else { 12289 usable_swnd = usable_swnd / mss; 12290 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12291 MAX(usable_swnd * mss, mss); 12292 *flags |= TH_XMIT_NEEDED; 12293 return; 12294 } 12295 } 12296 12297 /* 12298 * Note that we may send more than usable_swnd allows here 12299 * because of round off, but no more than 1 MSS of data. 12300 */ 12301 seg_len = end - begin; 12302 if (seg_len > mss) 12303 seg_len = mss; 12304 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12305 ASSERT(snxt_mp != NULL); 12306 /* This should not happen. Defensive coding again... */ 12307 if (snxt_mp == NULL) { 12308 return; 12309 } 12310 12311 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12312 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12313 if (xmit_mp == NULL) 12314 return; 12315 12316 usable_swnd -= seg_len; 12317 tcp->tcp_pipe += seg_len; 12318 tcp->tcp_sack_snxt = begin + seg_len; 12319 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 12320 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12321 12322 /* 12323 * Update the send timestamp to avoid false retransmission. 12324 */ 12325 snxt_mp->b_prev = (mblk_t *)lbolt; 12326 12327 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12328 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 12329 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 12330 /* 12331 * Update tcp_rexmit_max to extend this SACK recovery phase. 12332 * This happens when new data sent during fast recovery is 12333 * also lost. If TCP retransmits those new data, it needs 12334 * to extend SACK recover phase to avoid starting another 12335 * fast retransmit/recovery unnecessarily. 12336 */ 12337 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12338 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12339 } 12340 } 12341 } 12342 12343 /* 12344 * This function handles policy checking at TCP level for non-hard_bound/ 12345 * detached connections. 12346 */ 12347 static boolean_t 12348 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12349 boolean_t secure, boolean_t mctl_present) 12350 { 12351 ipsec_latch_t *ipl = NULL; 12352 ipsec_action_t *act = NULL; 12353 mblk_t *data_mp; 12354 ipsec_in_t *ii; 12355 const char *reason; 12356 kstat_named_t *counter; 12357 12358 ASSERT(mctl_present || !secure); 12359 12360 ASSERT((ipha == NULL && ip6h != NULL) || 12361 (ip6h == NULL && ipha != NULL)); 12362 12363 /* 12364 * We don't necessarily have an ipsec_in_act action to verify 12365 * policy because of assymetrical policy where we have only 12366 * outbound policy and no inbound policy (possible with global 12367 * policy). 12368 */ 12369 if (!secure) { 12370 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12371 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12372 return (B_TRUE); 12373 ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH, 12374 "tcp_check_policy", ipha, ip6h, secure); 12375 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12376 &ipdrops_tcp_clear, &tcp_dropper); 12377 return (B_FALSE); 12378 } 12379 12380 /* 12381 * We have a secure packet. 12382 */ 12383 if (act == NULL) { 12384 ipsec_log_policy_failure(tcp->tcp_wq, 12385 IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h, 12386 secure); 12387 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12388 &ipdrops_tcp_secure, &tcp_dropper); 12389 return (B_FALSE); 12390 } 12391 12392 /* 12393 * XXX This whole routine is currently incorrect. ipl should 12394 * be set to the latch pointer, but is currently not set, so 12395 * we initialize it to NULL to avoid picking up random garbage. 12396 */ 12397 if (ipl == NULL) 12398 return (B_TRUE); 12399 12400 data_mp = first_mp->b_cont; 12401 12402 ii = (ipsec_in_t *)first_mp->b_rptr; 12403 12404 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12405 &counter)) { 12406 BUMP_MIB(&ip_mib, ipsecInSucceeded); 12407 return (B_TRUE); 12408 } 12409 (void) strlog(TCP_MODULE_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12410 "tcp inbound policy mismatch: %s, packet dropped\n", 12411 reason); 12412 BUMP_MIB(&ip_mib, ipsecInFailed); 12413 12414 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 12415 return (B_FALSE); 12416 } 12417 12418 /* 12419 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12420 * retransmission after a timeout. 12421 * 12422 * To limit the number of duplicate segments, we limit the number of segment 12423 * to be sent in one time to tcp_snd_burst, the burst variable. 12424 */ 12425 static void 12426 tcp_ss_rexmit(tcp_t *tcp) 12427 { 12428 uint32_t snxt; 12429 uint32_t smax; 12430 int32_t win; 12431 int32_t mss; 12432 int32_t off; 12433 int32_t burst = tcp->tcp_snd_burst; 12434 mblk_t *snxt_mp; 12435 12436 /* 12437 * Note that tcp_rexmit can be set even though TCP has retransmitted 12438 * all unack'ed segments. 12439 */ 12440 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12441 smax = tcp->tcp_rexmit_max; 12442 snxt = tcp->tcp_rexmit_nxt; 12443 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12444 snxt = tcp->tcp_suna; 12445 } 12446 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12447 win -= snxt - tcp->tcp_suna; 12448 mss = tcp->tcp_mss; 12449 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12450 12451 while (SEQ_LT(snxt, smax) && (win > 0) && 12452 (burst > 0) && (snxt_mp != NULL)) { 12453 mblk_t *xmit_mp; 12454 mblk_t *old_snxt_mp = snxt_mp; 12455 uint32_t cnt = mss; 12456 12457 if (win < cnt) { 12458 cnt = win; 12459 } 12460 if (SEQ_GT(snxt + cnt, smax)) { 12461 cnt = smax - snxt; 12462 } 12463 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12464 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12465 if (xmit_mp == NULL) 12466 return; 12467 12468 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12469 12470 snxt += cnt; 12471 win -= cnt; 12472 /* 12473 * Update the send timestamp to avoid false 12474 * retransmission. 12475 */ 12476 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12477 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12478 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 12479 12480 tcp->tcp_rexmit_nxt = snxt; 12481 burst--; 12482 } 12483 /* 12484 * If we have transmitted all we have at the time 12485 * we started the retranmission, we can leave 12486 * the rest of the job to tcp_wput_data(). But we 12487 * need to check the send window first. If the 12488 * win is not 0, go on with tcp_wput_data(). 12489 */ 12490 if (SEQ_LT(snxt, smax) || win == 0) { 12491 return; 12492 } 12493 } 12494 /* Only call tcp_wput_data() if there is data to be sent. */ 12495 if (tcp->tcp_unsent) { 12496 tcp_wput_data(tcp, NULL, B_FALSE); 12497 } 12498 } 12499 12500 /* 12501 * Process all TCP option in SYN segment. Note that this function should 12502 * be called after tcp_adapt_ire() is called so that the necessary info 12503 * from IRE is already set in the tcp structure. 12504 * 12505 * This function sets up the correct tcp_mss value according to the 12506 * MSS option value and our header size. It also sets up the window scale 12507 * and timestamp values, and initialize SACK info blocks. But it does not 12508 * change receive window size after setting the tcp_mss value. The caller 12509 * should do the appropriate change. 12510 */ 12511 void 12512 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12513 { 12514 int options; 12515 tcp_opt_t tcpopt; 12516 uint32_t mss_max; 12517 char *tmp_tcph; 12518 12519 tcpopt.tcp = NULL; 12520 options = tcp_parse_options(tcph, &tcpopt); 12521 12522 /* 12523 * Process MSS option. Note that MSS option value does not account 12524 * for IP or TCP options. This means that it is equal to MTU - minimum 12525 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12526 * IPv6. 12527 */ 12528 if (!(options & TCP_OPT_MSS_PRESENT)) { 12529 if (tcp->tcp_ipversion == IPV4_VERSION) 12530 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 12531 else 12532 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 12533 } else { 12534 if (tcp->tcp_ipversion == IPV4_VERSION) 12535 mss_max = tcp_mss_max_ipv4; 12536 else 12537 mss_max = tcp_mss_max_ipv6; 12538 if (tcpopt.tcp_opt_mss < tcp_mss_min) 12539 tcpopt.tcp_opt_mss = tcp_mss_min; 12540 else if (tcpopt.tcp_opt_mss > mss_max) 12541 tcpopt.tcp_opt_mss = mss_max; 12542 } 12543 12544 /* Process Window Scale option. */ 12545 if (options & TCP_OPT_WSCALE_PRESENT) { 12546 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12547 tcp->tcp_snd_ws_ok = B_TRUE; 12548 } else { 12549 tcp->tcp_snd_ws = B_FALSE; 12550 tcp->tcp_snd_ws_ok = B_FALSE; 12551 tcp->tcp_rcv_ws = B_FALSE; 12552 } 12553 12554 /* Process Timestamp option. */ 12555 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12556 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12557 tmp_tcph = (char *)tcp->tcp_tcph; 12558 12559 tcp->tcp_snd_ts_ok = B_TRUE; 12560 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12561 tcp->tcp_last_rcv_lbolt = lbolt64; 12562 ASSERT(OK_32PTR(tmp_tcph)); 12563 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12564 12565 /* Fill in our template header with basic timestamp option. */ 12566 tmp_tcph += tcp->tcp_tcp_hdr_len; 12567 tmp_tcph[0] = TCPOPT_NOP; 12568 tmp_tcph[1] = TCPOPT_NOP; 12569 tmp_tcph[2] = TCPOPT_TSTAMP; 12570 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12571 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12572 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12573 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12574 } else { 12575 tcp->tcp_snd_ts_ok = B_FALSE; 12576 } 12577 12578 /* 12579 * Process SACK options. If SACK is enabled for this connection, 12580 * then allocate the SACK info structure. Note the following ways 12581 * when tcp_snd_sack_ok is set to true. 12582 * 12583 * For active connection: in tcp_adapt_ire() called in 12584 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12585 * is checked. 12586 * 12587 * For passive connection: in tcp_adapt_ire() called in 12588 * tcp_accept_comm(). 12589 * 12590 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12591 * That check makes sure that if we did not send a SACK OK option, 12592 * we will not enable SACK for this connection even though the other 12593 * side sends us SACK OK option. For active connection, the SACK 12594 * info structure has already been allocated. So we need to free 12595 * it if SACK is disabled. 12596 */ 12597 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12598 (tcp->tcp_snd_sack_ok || 12599 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12600 /* This should be true only in the passive case. */ 12601 if (tcp->tcp_sack_info == NULL) { 12602 ASSERT(TCP_IS_DETACHED(tcp)); 12603 tcp->tcp_sack_info = 12604 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12605 } 12606 if (tcp->tcp_sack_info == NULL) { 12607 tcp->tcp_snd_sack_ok = B_FALSE; 12608 } else { 12609 tcp->tcp_snd_sack_ok = B_TRUE; 12610 if (tcp->tcp_snd_ts_ok) { 12611 tcp->tcp_max_sack_blk = 3; 12612 } else { 12613 tcp->tcp_max_sack_blk = 4; 12614 } 12615 } 12616 } else { 12617 /* 12618 * Resetting tcp_snd_sack_ok to B_FALSE so that 12619 * no SACK info will be used for this 12620 * connection. This assumes that SACK usage 12621 * permission is negotiated. This may need 12622 * to be changed once this is clarified. 12623 */ 12624 if (tcp->tcp_sack_info != NULL) { 12625 ASSERT(tcp->tcp_notsack_list == NULL); 12626 kmem_cache_free(tcp_sack_info_cache, 12627 tcp->tcp_sack_info); 12628 tcp->tcp_sack_info = NULL; 12629 } 12630 tcp->tcp_snd_sack_ok = B_FALSE; 12631 } 12632 12633 /* 12634 * Now we know the exact TCP/IP header length, subtract 12635 * that from tcp_mss to get our side's MSS. 12636 */ 12637 tcp->tcp_mss -= tcp->tcp_hdr_len; 12638 /* 12639 * Here we assume that the other side's header size will be equal to 12640 * our header size. We calculate the real MSS accordingly. Need to 12641 * take into additional stuffs IPsec puts in. 12642 * 12643 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12644 */ 12645 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12646 ((tcp->tcp_ipversion == IPV4_VERSION ? 12647 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12648 12649 /* 12650 * Set MSS to the smaller one of both ends of the connection. 12651 * We should not have called tcp_mss_set() before, but our 12652 * side of the MSS should have been set to a proper value 12653 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12654 * STREAM head parameters properly. 12655 * 12656 * If we have a larger-than-16-bit window but the other side 12657 * didn't want to do window scale, tcp_rwnd_set() will take 12658 * care of that. 12659 */ 12660 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 12661 } 12662 12663 /* 12664 * Sends the T_CONN_IND to the listener. The caller calls this 12665 * functions via squeue to get inside the listener's perimeter 12666 * once the 3 way hand shake is done a T_CONN_IND needs to be 12667 * sent. As an optimization, the caller can call this directly 12668 * if listener's perimeter is same as eager's. 12669 */ 12670 /* ARGSUSED */ 12671 void 12672 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12673 { 12674 conn_t *lconnp = (conn_t *)arg; 12675 tcp_t *listener = lconnp->conn_tcp; 12676 tcp_t *tcp; 12677 struct T_conn_ind *conn_ind; 12678 ipaddr_t *addr_cache; 12679 boolean_t need_send_conn_ind = B_FALSE; 12680 12681 /* retrieve the eager */ 12682 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12683 ASSERT(conn_ind->OPT_offset != 0 && 12684 conn_ind->OPT_length == sizeof (intptr_t)); 12685 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12686 conn_ind->OPT_length); 12687 12688 /* 12689 * TLI/XTI applications will get confused by 12690 * sending eager as an option since it violates 12691 * the option semantics. So remove the eager as 12692 * option since TLI/XTI app doesn't need it anyway. 12693 */ 12694 if (!TCP_IS_SOCKET(listener)) { 12695 conn_ind->OPT_length = 0; 12696 conn_ind->OPT_offset = 0; 12697 } 12698 if (listener->tcp_state == TCPS_CLOSED || 12699 TCP_IS_DETACHED(listener)) { 12700 /* 12701 * If listener has closed, it would have caused a 12702 * a cleanup/blowoff to happen for the eager. We 12703 * just need to return. 12704 */ 12705 freemsg(mp); 12706 return; 12707 } 12708 12709 12710 /* 12711 * if the conn_req_q is full defer passing up the 12712 * T_CONN_IND until space is availabe after t_accept() 12713 * processing 12714 */ 12715 mutex_enter(&listener->tcp_eager_lock); 12716 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12717 tcp_t *tail; 12718 12719 /* 12720 * The eager already has an extra ref put in tcp_rput_data 12721 * so that it stays till accept comes back even though it 12722 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12723 */ 12724 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12725 listener->tcp_conn_req_cnt_q0--; 12726 listener->tcp_conn_req_cnt_q++; 12727 12728 /* Move from SYN_RCVD to ESTABLISHED list */ 12729 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12730 tcp->tcp_eager_prev_q0; 12731 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12732 tcp->tcp_eager_next_q0; 12733 tcp->tcp_eager_prev_q0 = NULL; 12734 tcp->tcp_eager_next_q0 = NULL; 12735 12736 /* 12737 * Insert at end of the queue because sockfs 12738 * sends down T_CONN_RES in chronological 12739 * order. Leaving the older conn indications 12740 * at front of the queue helps reducing search 12741 * time. 12742 */ 12743 tail = listener->tcp_eager_last_q; 12744 if (tail != NULL) 12745 tail->tcp_eager_next_q = tcp; 12746 else 12747 listener->tcp_eager_next_q = tcp; 12748 listener->tcp_eager_last_q = tcp; 12749 tcp->tcp_eager_next_q = NULL; 12750 /* 12751 * Delay sending up the T_conn_ind until we are 12752 * done with the eager. Once we have have sent up 12753 * the T_conn_ind, the accept can potentially complete 12754 * any time and release the refhold we have on the eager. 12755 */ 12756 need_send_conn_ind = B_TRUE; 12757 } else { 12758 /* 12759 * Defer connection on q0 and set deferred 12760 * connection bit true 12761 */ 12762 tcp->tcp_conn_def_q0 = B_TRUE; 12763 12764 /* take tcp out of q0 ... */ 12765 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12766 tcp->tcp_eager_next_q0; 12767 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12768 tcp->tcp_eager_prev_q0; 12769 12770 /* ... and place it at the end of q0 */ 12771 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12772 tcp->tcp_eager_next_q0 = listener; 12773 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12774 listener->tcp_eager_prev_q0 = tcp; 12775 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12776 } 12777 12778 /* we have timed out before */ 12779 if (tcp->tcp_syn_rcvd_timeout != 0) { 12780 tcp->tcp_syn_rcvd_timeout = 0; 12781 listener->tcp_syn_rcvd_timeout--; 12782 if (listener->tcp_syn_defense && 12783 listener->tcp_syn_rcvd_timeout <= 12784 (tcp_conn_req_max_q0 >> 5) && 12785 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12786 listener->tcp_last_rcv_lbolt)) { 12787 /* 12788 * Turn off the defense mode if we 12789 * believe the SYN attack is over. 12790 */ 12791 listener->tcp_syn_defense = B_FALSE; 12792 if (listener->tcp_ip_addr_cache) { 12793 kmem_free((void *)listener->tcp_ip_addr_cache, 12794 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12795 listener->tcp_ip_addr_cache = NULL; 12796 } 12797 } 12798 } 12799 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12800 if (addr_cache != NULL) { 12801 /* 12802 * We have finished a 3-way handshake with this 12803 * remote host. This proves the IP addr is good. 12804 * Cache it! 12805 */ 12806 addr_cache[IP_ADDR_CACHE_HASH( 12807 tcp->tcp_remote)] = tcp->tcp_remote; 12808 } 12809 mutex_exit(&listener->tcp_eager_lock); 12810 if (need_send_conn_ind) 12811 putnext(listener->tcp_rq, mp); 12812 } 12813 12814 mblk_t * 12815 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12816 uint_t *ifindexp, ip6_pkt_t *ippp) 12817 { 12818 in_pktinfo_t *pinfo; 12819 ip6_t *ip6h; 12820 uchar_t *rptr; 12821 mblk_t *first_mp = mp; 12822 boolean_t mctl_present = B_FALSE; 12823 uint_t ifindex = 0; 12824 ip6_pkt_t ipp; 12825 uint_t ipvers; 12826 uint_t ip_hdr_len; 12827 12828 rptr = mp->b_rptr; 12829 ASSERT(OK_32PTR(rptr)); 12830 ASSERT(tcp != NULL); 12831 ipp.ipp_fields = 0; 12832 12833 switch DB_TYPE(mp) { 12834 case M_CTL: 12835 mp = mp->b_cont; 12836 if (mp == NULL) { 12837 freemsg(first_mp); 12838 return (NULL); 12839 } 12840 if (DB_TYPE(mp) != M_DATA) { 12841 freemsg(first_mp); 12842 return (NULL); 12843 } 12844 mctl_present = B_TRUE; 12845 break; 12846 case M_DATA: 12847 break; 12848 default: 12849 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12850 freemsg(mp); 12851 return (NULL); 12852 } 12853 ipvers = IPH_HDR_VERSION(rptr); 12854 if (ipvers == IPV4_VERSION) { 12855 if (tcp == NULL) { 12856 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12857 goto done; 12858 } 12859 12860 ipp.ipp_fields |= IPPF_HOPLIMIT; 12861 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12862 12863 /* 12864 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12865 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12866 */ 12867 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12868 mctl_present) { 12869 pinfo = (in_pktinfo_t *)first_mp->b_rptr; 12870 if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && 12871 (pinfo->in_pkt_ulp_type == IN_PKTINFO) && 12872 (pinfo->in_pkt_flags & IPF_RECVIF)) { 12873 ipp.ipp_fields |= IPPF_IFINDEX; 12874 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 12875 ifindex = pinfo->in_pkt_ifindex; 12876 } 12877 freeb(first_mp); 12878 mctl_present = B_FALSE; 12879 } 12880 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12881 } else { 12882 ip6h = (ip6_t *)rptr; 12883 12884 ASSERT(ipvers == IPV6_VERSION); 12885 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12886 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12887 ipp.ipp_hoplimit = ip6h->ip6_hops; 12888 12889 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12890 uint8_t nexthdrp; 12891 12892 /* Look for ifindex information */ 12893 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12894 ip6i_t *ip6i = (ip6i_t *)ip6h; 12895 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12896 BUMP_MIB(&ip_mib, tcpInErrs); 12897 freemsg(first_mp); 12898 return (NULL); 12899 } 12900 12901 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12902 ASSERT(ip6i->ip6i_ifindex != 0); 12903 ipp.ipp_fields |= IPPF_IFINDEX; 12904 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12905 ifindex = ip6i->ip6i_ifindex; 12906 } 12907 rptr = (uchar_t *)&ip6i[1]; 12908 mp->b_rptr = rptr; 12909 if (rptr == mp->b_wptr) { 12910 mblk_t *mp1; 12911 mp1 = mp->b_cont; 12912 freeb(mp); 12913 mp = mp1; 12914 rptr = mp->b_rptr; 12915 } 12916 if (MBLKL(mp) < IPV6_HDR_LEN + 12917 sizeof (tcph_t)) { 12918 BUMP_MIB(&ip_mib, tcpInErrs); 12919 freemsg(first_mp); 12920 return (NULL); 12921 } 12922 ip6h = (ip6_t *)rptr; 12923 } 12924 12925 /* 12926 * Find any potentially interesting extension headers 12927 * as well as the length of the IPv6 + extension 12928 * headers. 12929 */ 12930 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12931 /* Verify if this is a TCP packet */ 12932 if (nexthdrp != IPPROTO_TCP) { 12933 BUMP_MIB(&ip_mib, tcpInErrs); 12934 freemsg(first_mp); 12935 return (NULL); 12936 } 12937 } else { 12938 ip_hdr_len = IPV6_HDR_LEN; 12939 } 12940 } 12941 12942 done: 12943 if (ipversp != NULL) 12944 *ipversp = ipvers; 12945 if (ip_hdr_lenp != NULL) 12946 *ip_hdr_lenp = ip_hdr_len; 12947 if (ippp != NULL) 12948 *ippp = ipp; 12949 if (ifindexp != NULL) 12950 *ifindexp = ifindex; 12951 if (mctl_present) { 12952 freeb(first_mp); 12953 } 12954 return (mp); 12955 } 12956 12957 /* 12958 * Handle M_DATA messages from IP. Its called directly from IP via 12959 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12960 * in this path. 12961 * 12962 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12963 * v4 and v6), we are called through tcp_input() and a M_CTL can 12964 * be present for options but tcp_find_pktinfo() deals with it. We 12965 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12966 * 12967 * The first argument is always the connp/tcp to which the mp belongs. 12968 * There are no exceptions to this rule. The caller has already put 12969 * a reference on this connp/tcp and once tcp_rput_data() returns, 12970 * the squeue will do the refrele. 12971 * 12972 * The TH_SYN for the listener directly go to tcp_conn_request via 12973 * squeue. 12974 * 12975 * sqp: NULL = recursive, sqp != NULL means called from squeue 12976 */ 12977 void 12978 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12979 { 12980 int32_t bytes_acked; 12981 int32_t gap; 12982 mblk_t *mp1; 12983 uint_t flags; 12984 uint32_t new_swnd = 0; 12985 uchar_t *iphdr; 12986 uchar_t *rptr; 12987 int32_t rgap; 12988 uint32_t seg_ack; 12989 int seg_len; 12990 uint_t ip_hdr_len; 12991 uint32_t seg_seq; 12992 tcph_t *tcph; 12993 int urp; 12994 tcp_opt_t tcpopt; 12995 uint_t ipvers; 12996 ip6_pkt_t ipp; 12997 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12998 uint32_t cwnd; 12999 uint32_t add; 13000 int npkt; 13001 int mss; 13002 conn_t *connp = (conn_t *)arg; 13003 squeue_t *sqp = (squeue_t *)arg2; 13004 tcp_t *tcp = connp->conn_tcp; 13005 13006 /* 13007 * RST from fused tcp loopback peer should trigger an unfuse. 13008 */ 13009 if (tcp->tcp_fused) { 13010 TCP_STAT(tcp_fusion_aborted); 13011 tcp_unfuse(tcp); 13012 } 13013 13014 iphdr = mp->b_rptr; 13015 rptr = mp->b_rptr; 13016 ASSERT(OK_32PTR(rptr)); 13017 13018 /* 13019 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 13020 * processing here. For rest call tcp_find_pktinfo to fill up the 13021 * necessary information. 13022 */ 13023 if (IPCL_IS_TCP4(connp)) { 13024 ipvers = IPV4_VERSION; 13025 ip_hdr_len = IPH_HDR_LENGTH(rptr); 13026 } else { 13027 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 13028 NULL, &ipp); 13029 if (mp == NULL) { 13030 TCP_STAT(tcp_rput_v6_error); 13031 return; 13032 } 13033 iphdr = mp->b_rptr; 13034 rptr = mp->b_rptr; 13035 } 13036 ASSERT(DB_TYPE(mp) == M_DATA); 13037 13038 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13039 seg_seq = ABE32_TO_U32(tcph->th_seq); 13040 seg_ack = ABE32_TO_U32(tcph->th_ack); 13041 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 13042 seg_len = (int)(mp->b_wptr - rptr) - 13043 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 13044 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 13045 do { 13046 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 13047 (uintptr_t)INT_MAX); 13048 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 13049 } while ((mp1 = mp1->b_cont) != NULL && 13050 mp1->b_datap->db_type == M_DATA); 13051 } 13052 13053 if (tcp->tcp_state == TCPS_TIME_WAIT) { 13054 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 13055 seg_len, tcph); 13056 return; 13057 } 13058 13059 if (sqp != NULL) { 13060 /* 13061 * This is the correct place to update tcp_last_recv_time. Note 13062 * that it is also updated for tcp structure that belongs to 13063 * global and listener queues which do not really need updating. 13064 * But that should not cause any harm. And it is updated for 13065 * all kinds of incoming segments, not only for data segments. 13066 */ 13067 tcp->tcp_last_recv_time = lbolt; 13068 } 13069 13070 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13071 13072 BUMP_LOCAL(tcp->tcp_ibsegs); 13073 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 13074 13075 if ((flags & TH_URG) && sqp != NULL) { 13076 /* 13077 * TCP can't handle urgent pointers that arrive before 13078 * the connection has been accept()ed since it can't 13079 * buffer OOB data. Discard segment if this happens. 13080 * 13081 * Nor can it reassemble urgent pointers, so discard 13082 * if it's not the next segment expected. 13083 * 13084 * Otherwise, collapse chain into one mblk (discard if 13085 * that fails). This makes sure the headers, retransmitted 13086 * data, and new data all are in the same mblk. 13087 */ 13088 ASSERT(mp != NULL); 13089 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 13090 freemsg(mp); 13091 return; 13092 } 13093 /* Update pointers into message */ 13094 iphdr = rptr = mp->b_rptr; 13095 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13096 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 13097 /* 13098 * Since we can't handle any data with this urgent 13099 * pointer that is out of sequence, we expunge 13100 * the data. This allows us to still register 13101 * the urgent mark and generate the M_PCSIG, 13102 * which we can do. 13103 */ 13104 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13105 seg_len = 0; 13106 } 13107 } 13108 13109 switch (tcp->tcp_state) { 13110 case TCPS_SYN_SENT: 13111 if (flags & TH_ACK) { 13112 /* 13113 * Note that our stack cannot send data before a 13114 * connection is established, therefore the 13115 * following check is valid. Otherwise, it has 13116 * to be changed. 13117 */ 13118 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13119 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13120 freemsg(mp); 13121 if (flags & TH_RST) 13122 return; 13123 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13124 tcp, seg_ack, 0, TH_RST); 13125 return; 13126 } 13127 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13128 } 13129 if (flags & TH_RST) { 13130 freemsg(mp); 13131 if (flags & TH_ACK) 13132 (void) tcp_clean_death(tcp, 13133 ECONNREFUSED, 13); 13134 return; 13135 } 13136 if (!(flags & TH_SYN)) { 13137 freemsg(mp); 13138 return; 13139 } 13140 13141 /* Process all TCP options. */ 13142 tcp_process_options(tcp, tcph); 13143 /* 13144 * The following changes our rwnd to be a multiple of the 13145 * MIN(peer MSS, our MSS) for performance reason. 13146 */ 13147 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 13148 tcp->tcp_mss)); 13149 13150 /* Is the other end ECN capable? */ 13151 if (tcp->tcp_ecn_ok) { 13152 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13153 tcp->tcp_ecn_ok = B_FALSE; 13154 } 13155 } 13156 /* 13157 * Clear ECN flags because it may interfere with later 13158 * processing. 13159 */ 13160 flags &= ~(TH_ECE|TH_CWR); 13161 13162 tcp->tcp_irs = seg_seq; 13163 tcp->tcp_rack = seg_seq; 13164 tcp->tcp_rnxt = seg_seq + 1; 13165 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13166 if (!TCP_IS_DETACHED(tcp)) { 13167 /* Allocate room for SACK options if needed. */ 13168 if (tcp->tcp_snd_sack_ok) { 13169 (void) mi_set_sth_wroff(tcp->tcp_rq, 13170 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 13171 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 13172 } else { 13173 (void) mi_set_sth_wroff(tcp->tcp_rq, 13174 tcp->tcp_hdr_len + 13175 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 13176 } 13177 } 13178 if (flags & TH_ACK) { 13179 /* 13180 * If we can't get the confirmation upstream, pretend 13181 * we didn't even see this one. 13182 * 13183 * XXX: how can we pretend we didn't see it if we 13184 * have updated rnxt et. al. 13185 * 13186 * For loopback we defer sending up the T_CONN_CON 13187 * until after some checks below. 13188 */ 13189 mp1 = NULL; 13190 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13191 tcp->tcp_loopback ? &mp1 : NULL)) { 13192 freemsg(mp); 13193 return; 13194 } 13195 /* SYN was acked - making progress */ 13196 if (tcp->tcp_ipversion == IPV6_VERSION) 13197 tcp->tcp_ip_forward_progress = B_TRUE; 13198 13199 /* One for the SYN */ 13200 tcp->tcp_suna = tcp->tcp_iss + 1; 13201 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13202 tcp->tcp_state = TCPS_ESTABLISHED; 13203 13204 /* 13205 * If SYN was retransmitted, need to reset all 13206 * retransmission info. This is because this 13207 * segment will be treated as a dup ACK. 13208 */ 13209 if (tcp->tcp_rexmit) { 13210 tcp->tcp_rexmit = B_FALSE; 13211 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13212 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13213 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13214 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13215 tcp->tcp_ms_we_have_waited = 0; 13216 13217 /* 13218 * Set tcp_cwnd back to 1 MSS, per 13219 * recommendation from 13220 * draft-floyd-incr-init-win-01.txt, 13221 * Increasing TCP's Initial Window. 13222 */ 13223 tcp->tcp_cwnd = tcp->tcp_mss; 13224 } 13225 13226 tcp->tcp_swl1 = seg_seq; 13227 tcp->tcp_swl2 = seg_ack; 13228 13229 new_swnd = BE16_TO_U16(tcph->th_win); 13230 tcp->tcp_swnd = new_swnd; 13231 if (new_swnd > tcp->tcp_max_swnd) 13232 tcp->tcp_max_swnd = new_swnd; 13233 13234 /* 13235 * Always send the three-way handshake ack immediately 13236 * in order to make the connection complete as soon as 13237 * possible on the accepting host. 13238 */ 13239 flags |= TH_ACK_NEEDED; 13240 13241 /* 13242 * Special case for loopback. At this point we have 13243 * received SYN-ACK from the remote endpoint. In 13244 * order to ensure that both endpoints reach the 13245 * fused state prior to any data exchange, the final 13246 * ACK needs to be sent before we indicate T_CONN_CON 13247 * to the module upstream. 13248 */ 13249 if (tcp->tcp_loopback) { 13250 mblk_t *ack_mp; 13251 13252 ASSERT(!tcp->tcp_unfusable); 13253 ASSERT(mp1 != NULL); 13254 /* 13255 * For loopback, we always get a pure SYN-ACK 13256 * and only need to send back the final ACK 13257 * with no data (this is because the other 13258 * tcp is ours and we don't do T/TCP). This 13259 * final ACK triggers the passive side to 13260 * perform fusion in ESTABLISHED state. 13261 */ 13262 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13263 if (tcp->tcp_ack_tid != 0) { 13264 (void) TCP_TIMER_CANCEL(tcp, 13265 tcp->tcp_ack_tid); 13266 tcp->tcp_ack_tid = 0; 13267 } 13268 TCP_RECORD_TRACE(tcp, ack_mp, 13269 TCP_TRACE_SEND_PKT); 13270 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13271 BUMP_LOCAL(tcp->tcp_obsegs); 13272 BUMP_MIB(&tcp_mib, tcpOutAck); 13273 13274 /* Send up T_CONN_CON */ 13275 putnext(tcp->tcp_rq, mp1); 13276 13277 freemsg(mp); 13278 return; 13279 } 13280 /* 13281 * Forget fusion; we need to handle more 13282 * complex cases below. Send the deferred 13283 * T_CONN_CON message upstream and proceed 13284 * as usual. Mark this tcp as not capable 13285 * of fusion. 13286 */ 13287 TCP_STAT(tcp_fusion_unfusable); 13288 tcp->tcp_unfusable = B_TRUE; 13289 putnext(tcp->tcp_rq, mp1); 13290 } 13291 13292 /* 13293 * Check to see if there is data to be sent. If 13294 * yes, set the transmit flag. Then check to see 13295 * if received data processing needs to be done. 13296 * If not, go straight to xmit_check. This short 13297 * cut is OK as we don't support T/TCP. 13298 */ 13299 if (tcp->tcp_unsent) 13300 flags |= TH_XMIT_NEEDED; 13301 13302 if (seg_len == 0 && !(flags & TH_URG)) { 13303 freemsg(mp); 13304 goto xmit_check; 13305 } 13306 13307 flags &= ~TH_SYN; 13308 seg_seq++; 13309 break; 13310 } 13311 tcp->tcp_state = TCPS_SYN_RCVD; 13312 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13313 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13314 if (mp1) { 13315 mblk_setcred(mp1, tcp->tcp_cred); 13316 DB_CPID(mp1) = tcp->tcp_cpid; 13317 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 13318 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13319 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13320 } 13321 freemsg(mp); 13322 return; 13323 case TCPS_SYN_RCVD: 13324 if (flags & TH_ACK) { 13325 /* 13326 * In this state, a SYN|ACK packet is either bogus 13327 * because the other side must be ACKing our SYN which 13328 * indicates it has seen the ACK for their SYN and 13329 * shouldn't retransmit it or we're crossing SYNs 13330 * on active open. 13331 */ 13332 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13333 freemsg(mp); 13334 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13335 tcp, seg_ack, 0, TH_RST); 13336 return; 13337 } 13338 /* 13339 * NOTE: RFC 793 pg. 72 says this should be 13340 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13341 * but that would mean we have an ack that ignored 13342 * our SYN. 13343 */ 13344 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13345 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13346 freemsg(mp); 13347 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13348 tcp, seg_ack, 0, TH_RST); 13349 return; 13350 } 13351 } 13352 break; 13353 case TCPS_LISTEN: 13354 /* 13355 * Only a TLI listener can come through this path when a 13356 * acceptor is going back to be a listener and a packet 13357 * for the acceptor hits the classifier. For a socket 13358 * listener, this can never happen because a listener 13359 * can never accept connection on itself and hence a 13360 * socket acceptor can not go back to being a listener. 13361 */ 13362 ASSERT(!TCP_IS_SOCKET(tcp)); 13363 /*FALLTHRU*/ 13364 case TCPS_CLOSED: 13365 case TCPS_BOUND: { 13366 conn_t *new_connp; 13367 13368 new_connp = ipcl_classify(mp, connp->conn_zoneid); 13369 if (new_connp != NULL) { 13370 tcp_reinput(new_connp, mp, connp->conn_sqp); 13371 return; 13372 } 13373 /* We failed to classify. For now just drop the packet */ 13374 freemsg(mp); 13375 return; 13376 } 13377 case TCPS_IDLE: 13378 /* 13379 * Handle the case where the tcp_clean_death() has happened 13380 * on a connection (application hasn't closed yet) but a packet 13381 * was already queued on squeue before tcp_clean_death() 13382 * was processed. Calling tcp_clean_death() twice on same 13383 * connection can result in weird behaviour. 13384 */ 13385 freemsg(mp); 13386 return; 13387 default: 13388 break; 13389 } 13390 13391 /* 13392 * Already on the correct queue/perimeter. 13393 * If this is a detached connection and not an eager 13394 * connection hanging off a listener then new data 13395 * (past the FIN) will cause a reset. 13396 * We do a special check here where it 13397 * is out of the main line, rather than check 13398 * if we are detached every time we see new 13399 * data down below. 13400 */ 13401 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13402 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13403 BUMP_MIB(&tcp_mib, tcpInClosed); 13404 TCP_RECORD_TRACE(tcp, 13405 mp, TCP_TRACE_RECV_PKT); 13406 freemsg(mp); 13407 tcp_xmit_ctl("new data when detached", tcp, 13408 tcp->tcp_snxt, 0, TH_RST); 13409 (void) tcp_clean_death(tcp, EPROTO, 12); 13410 return; 13411 } 13412 13413 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13414 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13415 new_swnd = BE16_TO_U16(tcph->th_win) << 13416 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13417 mss = tcp->tcp_mss; 13418 13419 if (tcp->tcp_snd_ts_ok) { 13420 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13421 /* 13422 * This segment is not acceptable. 13423 * Drop it and send back an ACK. 13424 */ 13425 freemsg(mp); 13426 flags |= TH_ACK_NEEDED; 13427 goto ack_check; 13428 } 13429 } else if (tcp->tcp_snd_sack_ok) { 13430 ASSERT(tcp->tcp_sack_info != NULL); 13431 tcpopt.tcp = tcp; 13432 /* 13433 * SACK info in already updated in tcp_parse_options. Ignore 13434 * all other TCP options... 13435 */ 13436 (void) tcp_parse_options(tcph, &tcpopt); 13437 } 13438 try_again:; 13439 gap = seg_seq - tcp->tcp_rnxt; 13440 rgap = tcp->tcp_rwnd - (gap + seg_len); 13441 /* 13442 * gap is the amount of sequence space between what we expect to see 13443 * and what we got for seg_seq. A positive value for gap means 13444 * something got lost. A negative value means we got some old stuff. 13445 */ 13446 if (gap < 0) { 13447 /* Old stuff present. Is the SYN in there? */ 13448 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13449 (seg_len != 0)) { 13450 flags &= ~TH_SYN; 13451 seg_seq++; 13452 urp--; 13453 /* Recompute the gaps after noting the SYN. */ 13454 goto try_again; 13455 } 13456 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 13457 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 13458 (seg_len > -gap ? -gap : seg_len)); 13459 /* Remove the old stuff from seg_len. */ 13460 seg_len += gap; 13461 /* 13462 * Anything left? 13463 * Make sure to check for unack'd FIN when rest of data 13464 * has been previously ack'd. 13465 */ 13466 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13467 /* 13468 * Resets are only valid if they lie within our offered 13469 * window. If the RST bit is set, we just ignore this 13470 * segment. 13471 */ 13472 if (flags & TH_RST) { 13473 freemsg(mp); 13474 return; 13475 } 13476 13477 /* 13478 * The arriving of dup data packets indicate that we 13479 * may have postponed an ack for too long, or the other 13480 * side's RTT estimate is out of shape. Start acking 13481 * more often. 13482 */ 13483 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13484 tcp->tcp_rack_cnt >= 1 && 13485 tcp->tcp_rack_abs_max > 2) { 13486 tcp->tcp_rack_abs_max--; 13487 } 13488 tcp->tcp_rack_cur_max = 1; 13489 13490 /* 13491 * This segment is "unacceptable". None of its 13492 * sequence space lies within our advertized window. 13493 * 13494 * Adjust seg_len to the original value for tracing. 13495 */ 13496 seg_len -= gap; 13497 if (tcp->tcp_debug) { 13498 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 13499 "tcp_rput: unacceptable, gap %d, rgap %d, " 13500 "flags 0x%x, seg_seq %u, seg_ack %u, " 13501 "seg_len %d, rnxt %u, snxt %u, %s", 13502 gap, rgap, flags, seg_seq, seg_ack, 13503 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13504 tcp_display(tcp, NULL, 13505 DISP_ADDR_AND_PORT)); 13506 } 13507 13508 /* 13509 * Arrange to send an ACK in response to the 13510 * unacceptable segment per RFC 793 page 69. There 13511 * is only one small difference between ours and the 13512 * acceptability test in the RFC - we accept ACK-only 13513 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13514 * will be generated. 13515 * 13516 * Note that we have to ACK an ACK-only packet at least 13517 * for stacks that send 0-length keep-alives with 13518 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13519 * section 4.2.3.6. As long as we don't ever generate 13520 * an unacceptable packet in response to an incoming 13521 * packet that is unacceptable, it should not cause 13522 * "ACK wars". 13523 */ 13524 flags |= TH_ACK_NEEDED; 13525 13526 /* 13527 * Continue processing this segment in order to use the 13528 * ACK information it contains, but skip all other 13529 * sequence-number processing. Processing the ACK 13530 * information is necessary in order to 13531 * re-synchronize connections that may have lost 13532 * synchronization. 13533 * 13534 * We clear seg_len and flag fields related to 13535 * sequence number processing as they are not 13536 * to be trusted for an unacceptable segment. 13537 */ 13538 seg_len = 0; 13539 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13540 goto process_ack; 13541 } 13542 13543 /* Fix seg_seq, and chew the gap off the front. */ 13544 seg_seq = tcp->tcp_rnxt; 13545 urp += gap; 13546 do { 13547 mblk_t *mp2; 13548 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13549 (uintptr_t)UINT_MAX); 13550 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13551 if (gap > 0) { 13552 mp->b_rptr = mp->b_wptr - gap; 13553 break; 13554 } 13555 mp2 = mp; 13556 mp = mp->b_cont; 13557 freeb(mp2); 13558 } while (gap < 0); 13559 /* 13560 * If the urgent data has already been acknowledged, we 13561 * should ignore TH_URG below 13562 */ 13563 if (urp < 0) 13564 flags &= ~TH_URG; 13565 } 13566 /* 13567 * rgap is the amount of stuff received out of window. A negative 13568 * value is the amount out of window. 13569 */ 13570 if (rgap < 0) { 13571 mblk_t *mp2; 13572 13573 if (tcp->tcp_rwnd == 0) { 13574 BUMP_MIB(&tcp_mib, tcpInWinProbe); 13575 } else { 13576 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 13577 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 13578 } 13579 13580 /* 13581 * seg_len does not include the FIN, so if more than 13582 * just the FIN is out of window, we act like we don't 13583 * see it. (If just the FIN is out of window, rgap 13584 * will be zero and we will go ahead and acknowledge 13585 * the FIN.) 13586 */ 13587 flags &= ~TH_FIN; 13588 13589 /* Fix seg_len and make sure there is something left. */ 13590 seg_len += rgap; 13591 if (seg_len <= 0) { 13592 /* 13593 * Resets are only valid if they lie within our offered 13594 * window. If the RST bit is set, we just ignore this 13595 * segment. 13596 */ 13597 if (flags & TH_RST) { 13598 freemsg(mp); 13599 return; 13600 } 13601 13602 /* Per RFC 793, we need to send back an ACK. */ 13603 flags |= TH_ACK_NEEDED; 13604 13605 /* 13606 * Send SIGURG as soon as possible i.e. even 13607 * if the TH_URG was delivered in a window probe 13608 * packet (which will be unacceptable). 13609 * 13610 * We generate a signal if none has been generated 13611 * for this connection or if this is a new urgent 13612 * byte. Also send a zero-length "unmarked" message 13613 * to inform SIOCATMARK that this is not the mark. 13614 * 13615 * tcp_urp_last_valid is cleared when the T_exdata_ind 13616 * is sent up. This plus the check for old data 13617 * (gap >= 0) handles the wraparound of the sequence 13618 * number space without having to always track the 13619 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13620 * this max in its rcv_up variable). 13621 * 13622 * This prevents duplicate SIGURGS due to a "late" 13623 * zero-window probe when the T_EXDATA_IND has already 13624 * been sent up. 13625 */ 13626 if ((flags & TH_URG) && 13627 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13628 tcp->tcp_urp_last))) { 13629 mp1 = allocb(0, BPRI_MED); 13630 if (mp1 == NULL) { 13631 freemsg(mp); 13632 return; 13633 } 13634 if (!TCP_IS_DETACHED(tcp) && 13635 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13636 SIGURG)) { 13637 /* Try again on the rexmit. */ 13638 freemsg(mp1); 13639 freemsg(mp); 13640 return; 13641 } 13642 /* 13643 * If the next byte would be the mark 13644 * then mark with MARKNEXT else mark 13645 * with NOTMARKNEXT. 13646 */ 13647 if (gap == 0 && urp == 0) 13648 mp1->b_flag |= MSGMARKNEXT; 13649 else 13650 mp1->b_flag |= MSGNOTMARKNEXT; 13651 freemsg(tcp->tcp_urp_mark_mp); 13652 tcp->tcp_urp_mark_mp = mp1; 13653 flags |= TH_SEND_URP_MARK; 13654 tcp->tcp_urp_last_valid = B_TRUE; 13655 tcp->tcp_urp_last = urp + seg_seq; 13656 } 13657 /* 13658 * If this is a zero window probe, continue to 13659 * process the ACK part. But we need to set seg_len 13660 * to 0 to avoid data processing. Otherwise just 13661 * drop the segment and send back an ACK. 13662 */ 13663 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13664 flags &= ~(TH_SYN | TH_URG); 13665 seg_len = 0; 13666 goto process_ack; 13667 } else { 13668 freemsg(mp); 13669 goto ack_check; 13670 } 13671 } 13672 /* Pitch out of window stuff off the end. */ 13673 rgap = seg_len; 13674 mp2 = mp; 13675 do { 13676 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13677 (uintptr_t)INT_MAX); 13678 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13679 if (rgap < 0) { 13680 mp2->b_wptr += rgap; 13681 if ((mp1 = mp2->b_cont) != NULL) { 13682 mp2->b_cont = NULL; 13683 freemsg(mp1); 13684 } 13685 break; 13686 } 13687 } while ((mp2 = mp2->b_cont) != NULL); 13688 } 13689 ok:; 13690 /* 13691 * TCP should check ECN info for segments inside the window only. 13692 * Therefore the check should be done here. 13693 */ 13694 if (tcp->tcp_ecn_ok) { 13695 if (flags & TH_CWR) { 13696 tcp->tcp_ecn_echo_on = B_FALSE; 13697 } 13698 /* 13699 * Note that both ECN_CE and CWR can be set in the 13700 * same segment. In this case, we once again turn 13701 * on ECN_ECHO. 13702 */ 13703 if (tcp->tcp_ipversion == IPV4_VERSION) { 13704 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13705 13706 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13707 tcp->tcp_ecn_echo_on = B_TRUE; 13708 } 13709 } else { 13710 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13711 13712 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13713 htonl(IPH_ECN_CE << 20)) { 13714 tcp->tcp_ecn_echo_on = B_TRUE; 13715 } 13716 } 13717 } 13718 13719 /* 13720 * Check whether we can update tcp_ts_recent. This test is 13721 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13722 * Extensions for High Performance: An Update", Internet Draft. 13723 */ 13724 if (tcp->tcp_snd_ts_ok && 13725 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13726 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13727 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13728 tcp->tcp_last_rcv_lbolt = lbolt64; 13729 } 13730 13731 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13732 /* 13733 * FIN in an out of order segment. We record this in 13734 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13735 * Clear the FIN so that any check on FIN flag will fail. 13736 * Remember that FIN also counts in the sequence number 13737 * space. So we need to ack out of order FIN only segments. 13738 */ 13739 if (flags & TH_FIN) { 13740 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13741 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13742 flags &= ~TH_FIN; 13743 flags |= TH_ACK_NEEDED; 13744 } 13745 if (seg_len > 0) { 13746 /* Fill in the SACK blk list. */ 13747 if (tcp->tcp_snd_sack_ok) { 13748 ASSERT(tcp->tcp_sack_info != NULL); 13749 tcp_sack_insert(tcp->tcp_sack_list, 13750 seg_seq, seg_seq + seg_len, 13751 &(tcp->tcp_num_sack_blk)); 13752 } 13753 13754 /* 13755 * Attempt reassembly and see if we have something 13756 * ready to go. 13757 */ 13758 mp = tcp_reass(tcp, mp, seg_seq); 13759 /* Always ack out of order packets */ 13760 flags |= TH_ACK_NEEDED | TH_PUSH; 13761 if (mp) { 13762 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13763 (uintptr_t)INT_MAX); 13764 seg_len = mp->b_cont ? msgdsize(mp) : 13765 (int)(mp->b_wptr - mp->b_rptr); 13766 seg_seq = tcp->tcp_rnxt; 13767 /* 13768 * A gap is filled and the seq num and len 13769 * of the gap match that of a previously 13770 * received FIN, put the FIN flag back in. 13771 */ 13772 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13773 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13774 flags |= TH_FIN; 13775 tcp->tcp_valid_bits &= 13776 ~TCP_OFO_FIN_VALID; 13777 } 13778 } else { 13779 /* 13780 * Keep going even with NULL mp. 13781 * There may be a useful ACK or something else 13782 * we don't want to miss. 13783 * 13784 * But TCP should not perform fast retransmit 13785 * because of the ack number. TCP uses 13786 * seg_len == 0 to determine if it is a pure 13787 * ACK. And this is not a pure ACK. 13788 */ 13789 seg_len = 0; 13790 ofo_seg = B_TRUE; 13791 } 13792 } 13793 } else if (seg_len > 0) { 13794 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 13795 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 13796 /* 13797 * If an out of order FIN was received before, and the seq 13798 * num and len of the new segment match that of the FIN, 13799 * put the FIN flag back in. 13800 */ 13801 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13802 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13803 flags |= TH_FIN; 13804 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13805 } 13806 } 13807 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13808 if (flags & TH_RST) { 13809 freemsg(mp); 13810 switch (tcp->tcp_state) { 13811 case TCPS_SYN_RCVD: 13812 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13813 break; 13814 case TCPS_ESTABLISHED: 13815 case TCPS_FIN_WAIT_1: 13816 case TCPS_FIN_WAIT_2: 13817 case TCPS_CLOSE_WAIT: 13818 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13819 break; 13820 case TCPS_CLOSING: 13821 case TCPS_LAST_ACK: 13822 (void) tcp_clean_death(tcp, 0, 16); 13823 break; 13824 default: 13825 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13826 (void) tcp_clean_death(tcp, ENXIO, 17); 13827 break; 13828 } 13829 return; 13830 } 13831 if (flags & TH_SYN) { 13832 /* 13833 * See RFC 793, Page 71 13834 * 13835 * The seq number must be in the window as it should 13836 * be "fixed" above. If it is outside window, it should 13837 * be already rejected. Note that we allow seg_seq to be 13838 * rnxt + rwnd because we want to accept 0 window probe. 13839 */ 13840 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13841 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13842 freemsg(mp); 13843 /* 13844 * If the ACK flag is not set, just use our snxt as the 13845 * seq number of the RST segment. 13846 */ 13847 if (!(flags & TH_ACK)) { 13848 seg_ack = tcp->tcp_snxt; 13849 } 13850 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13851 TH_RST|TH_ACK); 13852 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13853 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13854 return; 13855 } 13856 /* 13857 * urp could be -1 when the urp field in the packet is 0 13858 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13859 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13860 */ 13861 if (flags & TH_URG && urp >= 0) { 13862 if (!tcp->tcp_urp_last_valid || 13863 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13864 /* 13865 * If we haven't generated the signal yet for this 13866 * urgent pointer value, do it now. Also, send up a 13867 * zero-length M_DATA indicating whether or not this is 13868 * the mark. The latter is not needed when a 13869 * T_EXDATA_IND is sent up. However, if there are 13870 * allocation failures this code relies on the sender 13871 * retransmitting and the socket code for determining 13872 * the mark should not block waiting for the peer to 13873 * transmit. Thus, for simplicity we always send up the 13874 * mark indication. 13875 */ 13876 mp1 = allocb(0, BPRI_MED); 13877 if (mp1 == NULL) { 13878 freemsg(mp); 13879 return; 13880 } 13881 if (!TCP_IS_DETACHED(tcp) && 13882 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13883 /* Try again on the rexmit. */ 13884 freemsg(mp1); 13885 freemsg(mp); 13886 return; 13887 } 13888 /* 13889 * Mark with NOTMARKNEXT for now. 13890 * The code below will change this to MARKNEXT 13891 * if we are at the mark. 13892 * 13893 * If there are allocation failures (e.g. in dupmsg 13894 * below) the next time tcp_rput_data sees the urgent 13895 * segment it will send up the MSG*MARKNEXT message. 13896 */ 13897 mp1->b_flag |= MSGNOTMARKNEXT; 13898 freemsg(tcp->tcp_urp_mark_mp); 13899 tcp->tcp_urp_mark_mp = mp1; 13900 flags |= TH_SEND_URP_MARK; 13901 #ifdef DEBUG 13902 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 13903 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13904 "last %x, %s", 13905 seg_seq, urp, tcp->tcp_urp_last, 13906 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13907 #endif /* DEBUG */ 13908 tcp->tcp_urp_last_valid = B_TRUE; 13909 tcp->tcp_urp_last = urp + seg_seq; 13910 } else if (tcp->tcp_urp_mark_mp != NULL) { 13911 /* 13912 * An allocation failure prevented the previous 13913 * tcp_rput_data from sending up the allocated 13914 * MSG*MARKNEXT message - send it up this time 13915 * around. 13916 */ 13917 flags |= TH_SEND_URP_MARK; 13918 } 13919 13920 /* 13921 * If the urgent byte is in this segment, make sure that it is 13922 * all by itself. This makes it much easier to deal with the 13923 * possibility of an allocation failure on the T_exdata_ind. 13924 * Note that seg_len is the number of bytes in the segment, and 13925 * urp is the offset into the segment of the urgent byte. 13926 * urp < seg_len means that the urgent byte is in this segment. 13927 */ 13928 if (urp < seg_len) { 13929 if (seg_len != 1) { 13930 uint32_t tmp_rnxt; 13931 /* 13932 * Break it up and feed it back in. 13933 * Re-attach the IP header. 13934 */ 13935 mp->b_rptr = iphdr; 13936 if (urp > 0) { 13937 /* 13938 * There is stuff before the urgent 13939 * byte. 13940 */ 13941 mp1 = dupmsg(mp); 13942 if (!mp1) { 13943 /* 13944 * Trim from urgent byte on. 13945 * The rest will come back. 13946 */ 13947 (void) adjmsg(mp, 13948 urp - seg_len); 13949 tcp_rput_data(connp, 13950 mp, NULL); 13951 return; 13952 } 13953 (void) adjmsg(mp1, urp - seg_len); 13954 /* Feed this piece back in. */ 13955 tmp_rnxt = tcp->tcp_rnxt; 13956 tcp_rput_data(connp, mp1, NULL); 13957 /* 13958 * If the data passed back in was not 13959 * processed (ie: bad ACK) sending 13960 * the remainder back in will cause a 13961 * loop. In this case, drop the 13962 * packet and let the sender try 13963 * sending a good packet. 13964 */ 13965 if (tmp_rnxt == tcp->tcp_rnxt) { 13966 freemsg(mp); 13967 return; 13968 } 13969 } 13970 if (urp != seg_len - 1) { 13971 uint32_t tmp_rnxt; 13972 /* 13973 * There is stuff after the urgent 13974 * byte. 13975 */ 13976 mp1 = dupmsg(mp); 13977 if (!mp1) { 13978 /* 13979 * Trim everything beyond the 13980 * urgent byte. The rest will 13981 * come back. 13982 */ 13983 (void) adjmsg(mp, 13984 urp + 1 - seg_len); 13985 tcp_rput_data(connp, 13986 mp, NULL); 13987 return; 13988 } 13989 (void) adjmsg(mp1, urp + 1 - seg_len); 13990 tmp_rnxt = tcp->tcp_rnxt; 13991 tcp_rput_data(connp, mp1, NULL); 13992 /* 13993 * If the data passed back in was not 13994 * processed (ie: bad ACK) sending 13995 * the remainder back in will cause a 13996 * loop. In this case, drop the 13997 * packet and let the sender try 13998 * sending a good packet. 13999 */ 14000 if (tmp_rnxt == tcp->tcp_rnxt) { 14001 freemsg(mp); 14002 return; 14003 } 14004 } 14005 tcp_rput_data(connp, mp, NULL); 14006 return; 14007 } 14008 /* 14009 * This segment contains only the urgent byte. We 14010 * have to allocate the T_exdata_ind, if we can. 14011 */ 14012 if (!tcp->tcp_urp_mp) { 14013 struct T_exdata_ind *tei; 14014 mp1 = allocb(sizeof (struct T_exdata_ind), 14015 BPRI_MED); 14016 if (!mp1) { 14017 /* 14018 * Sigh... It'll be back. 14019 * Generate any MSG*MARK message now. 14020 */ 14021 freemsg(mp); 14022 seg_len = 0; 14023 if (flags & TH_SEND_URP_MARK) { 14024 14025 14026 ASSERT(tcp->tcp_urp_mark_mp); 14027 tcp->tcp_urp_mark_mp->b_flag &= 14028 ~MSGNOTMARKNEXT; 14029 tcp->tcp_urp_mark_mp->b_flag |= 14030 MSGMARKNEXT; 14031 } 14032 goto ack_check; 14033 } 14034 mp1->b_datap->db_type = M_PROTO; 14035 tei = (struct T_exdata_ind *)mp1->b_rptr; 14036 tei->PRIM_type = T_EXDATA_IND; 14037 tei->MORE_flag = 0; 14038 mp1->b_wptr = (uchar_t *)&tei[1]; 14039 tcp->tcp_urp_mp = mp1; 14040 #ifdef DEBUG 14041 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 14042 "tcp_rput: allocated exdata_ind %s", 14043 tcp_display(tcp, NULL, 14044 DISP_PORT_ONLY)); 14045 #endif /* DEBUG */ 14046 /* 14047 * There is no need to send a separate MSG*MARK 14048 * message since the T_EXDATA_IND will be sent 14049 * now. 14050 */ 14051 flags &= ~TH_SEND_URP_MARK; 14052 freemsg(tcp->tcp_urp_mark_mp); 14053 tcp->tcp_urp_mark_mp = NULL; 14054 } 14055 /* 14056 * Now we are all set. On the next putnext upstream, 14057 * tcp_urp_mp will be non-NULL and will get prepended 14058 * to what has to be this piece containing the urgent 14059 * byte. If for any reason we abort this segment below, 14060 * if it comes back, we will have this ready, or it 14061 * will get blown off in close. 14062 */ 14063 } else if (urp == seg_len) { 14064 /* 14065 * The urgent byte is the next byte after this sequence 14066 * number. If there is data it is marked with 14067 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 14068 * since it is not needed. Otherwise, if the code 14069 * above just allocated a zero-length tcp_urp_mark_mp 14070 * message, that message is tagged with MSGMARKNEXT. 14071 * Sending up these MSGMARKNEXT messages makes 14072 * SIOCATMARK work correctly even though 14073 * the T_EXDATA_IND will not be sent up until the 14074 * urgent byte arrives. 14075 */ 14076 if (seg_len != 0) { 14077 flags |= TH_MARKNEXT_NEEDED; 14078 freemsg(tcp->tcp_urp_mark_mp); 14079 tcp->tcp_urp_mark_mp = NULL; 14080 flags &= ~TH_SEND_URP_MARK; 14081 } else if (tcp->tcp_urp_mark_mp != NULL) { 14082 flags |= TH_SEND_URP_MARK; 14083 tcp->tcp_urp_mark_mp->b_flag &= 14084 ~MSGNOTMARKNEXT; 14085 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14086 } 14087 #ifdef DEBUG 14088 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 14089 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14090 seg_len, flags, 14091 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14092 #endif /* DEBUG */ 14093 } else { 14094 /* Data left until we hit mark */ 14095 #ifdef DEBUG 14096 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 14097 "tcp_rput: URP %d bytes left, %s", 14098 urp - seg_len, tcp_display(tcp, NULL, 14099 DISP_PORT_ONLY)); 14100 #endif /* DEBUG */ 14101 } 14102 } 14103 14104 process_ack: 14105 if (!(flags & TH_ACK)) { 14106 freemsg(mp); 14107 goto xmit_check; 14108 } 14109 } 14110 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14111 14112 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14113 tcp->tcp_ip_forward_progress = B_TRUE; 14114 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14115 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 14116 /* 3-way handshake complete - pass up the T_CONN_IND */ 14117 tcp_t *listener = tcp->tcp_listener; 14118 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14119 14120 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14121 /* 14122 * We are here means eager is fine but it can 14123 * get a TH_RST at any point between now and till 14124 * accept completes and disappear. We need to 14125 * ensure that reference to eager is valid after 14126 * we get out of eager's perimeter. So we do 14127 * an extra refhold. 14128 */ 14129 CONN_INC_REF(connp); 14130 14131 /* 14132 * The listener also exists because of the refhold 14133 * done in tcp_conn_request. Its possible that it 14134 * might have closed. We will check that once we 14135 * get inside listeners context. 14136 */ 14137 CONN_INC_REF(listener->tcp_connp); 14138 if (listener->tcp_connp->conn_sqp == 14139 connp->conn_sqp) { 14140 tcp_send_conn_ind(listener->tcp_connp, mp, 14141 listener->tcp_connp->conn_sqp); 14142 CONN_DEC_REF(listener->tcp_connp); 14143 } else if (!tcp->tcp_loopback) { 14144 squeue_fill(listener->tcp_connp->conn_sqp, mp, 14145 tcp_send_conn_ind, 14146 listener->tcp_connp, SQTAG_TCP_CONN_IND); 14147 } else { 14148 squeue_enter(listener->tcp_connp->conn_sqp, mp, 14149 tcp_send_conn_ind, listener->tcp_connp, 14150 SQTAG_TCP_CONN_IND); 14151 } 14152 } 14153 14154 if (tcp->tcp_active_open) { 14155 /* 14156 * We are seeing the final ack in the three way 14157 * hand shake of a active open'ed connection 14158 * so we must send up a T_CONN_CON 14159 */ 14160 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14161 freemsg(mp); 14162 return; 14163 } 14164 /* 14165 * Don't fuse the loopback endpoints for 14166 * simultaneous active opens. 14167 */ 14168 if (tcp->tcp_loopback) { 14169 TCP_STAT(tcp_fusion_unfusable); 14170 tcp->tcp_unfusable = B_TRUE; 14171 } 14172 } 14173 14174 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14175 bytes_acked--; 14176 /* SYN was acked - making progress */ 14177 if (tcp->tcp_ipversion == IPV6_VERSION) 14178 tcp->tcp_ip_forward_progress = B_TRUE; 14179 14180 /* 14181 * If SYN was retransmitted, need to reset all 14182 * retransmission info as this segment will be 14183 * treated as a dup ACK. 14184 */ 14185 if (tcp->tcp_rexmit) { 14186 tcp->tcp_rexmit = B_FALSE; 14187 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14188 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14189 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14190 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14191 tcp->tcp_ms_we_have_waited = 0; 14192 tcp->tcp_cwnd = mss; 14193 } 14194 14195 /* 14196 * We set the send window to zero here. 14197 * This is needed if there is data to be 14198 * processed already on the queue. 14199 * Later (at swnd_update label), the 14200 * "new_swnd > tcp_swnd" condition is satisfied 14201 * the XMIT_NEEDED flag is set in the current 14202 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14203 * called if there is already data on queue in 14204 * this state. 14205 */ 14206 tcp->tcp_swnd = 0; 14207 14208 if (new_swnd > tcp->tcp_max_swnd) 14209 tcp->tcp_max_swnd = new_swnd; 14210 tcp->tcp_swl1 = seg_seq; 14211 tcp->tcp_swl2 = seg_ack; 14212 tcp->tcp_state = TCPS_ESTABLISHED; 14213 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14214 14215 /* Fuse when both sides are in ESTABLISHED state */ 14216 if (tcp->tcp_loopback && do_tcp_fusion) 14217 tcp_fuse(tcp, iphdr, tcph); 14218 14219 } 14220 /* This code follows 4.4BSD-Lite2 mostly. */ 14221 if (bytes_acked < 0) 14222 goto est; 14223 14224 /* 14225 * If TCP is ECN capable and the congestion experience bit is 14226 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14227 * done once per window (or more loosely, per RTT). 14228 */ 14229 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14230 tcp->tcp_cwr = B_FALSE; 14231 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14232 if (!tcp->tcp_cwr) { 14233 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14234 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14235 tcp->tcp_cwnd = npkt * mss; 14236 /* 14237 * If the cwnd is 0, use the timer to clock out 14238 * new segments. This is required by the ECN spec. 14239 */ 14240 if (npkt == 0) { 14241 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14242 /* 14243 * This makes sure that when the ACK comes 14244 * back, we will increase tcp_cwnd by 1 MSS. 14245 */ 14246 tcp->tcp_cwnd_cnt = 0; 14247 } 14248 tcp->tcp_cwr = B_TRUE; 14249 /* 14250 * This marks the end of the current window of in 14251 * flight data. That is why we don't use 14252 * tcp_suna + tcp_swnd. Only data in flight can 14253 * provide ECN info. 14254 */ 14255 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14256 tcp->tcp_ecn_cwr_sent = B_FALSE; 14257 } 14258 } 14259 14260 mp1 = tcp->tcp_xmit_head; 14261 if (bytes_acked == 0) { 14262 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14263 int dupack_cnt; 14264 14265 BUMP_MIB(&tcp_mib, tcpInDupAck); 14266 /* 14267 * Fast retransmit. When we have seen exactly three 14268 * identical ACKs while we have unacked data 14269 * outstanding we take it as a hint that our peer 14270 * dropped something. 14271 * 14272 * If TCP is retransmitting, don't do fast retransmit. 14273 */ 14274 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14275 ! tcp->tcp_rexmit) { 14276 /* Do Limited Transmit */ 14277 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14278 tcp_dupack_fast_retransmit) { 14279 /* 14280 * RFC 3042 14281 * 14282 * What we need to do is temporarily 14283 * increase tcp_cwnd so that new 14284 * data can be sent if it is allowed 14285 * by the receive window (tcp_rwnd). 14286 * tcp_wput_data() will take care of 14287 * the rest. 14288 * 14289 * If the connection is SACK capable, 14290 * only do limited xmit when there 14291 * is SACK info. 14292 * 14293 * Note how tcp_cwnd is incremented. 14294 * The first dup ACK will increase 14295 * it by 1 MSS. The second dup ACK 14296 * will increase it by 2 MSS. This 14297 * means that only 1 new segment will 14298 * be sent for each dup ACK. 14299 */ 14300 if (tcp->tcp_unsent > 0 && 14301 (!tcp->tcp_snd_sack_ok || 14302 (tcp->tcp_snd_sack_ok && 14303 tcp->tcp_notsack_list != NULL))) { 14304 tcp->tcp_cwnd += mss << 14305 (tcp->tcp_dupack_cnt - 1); 14306 flags |= TH_LIMIT_XMIT; 14307 } 14308 } else if (dupack_cnt == 14309 tcp_dupack_fast_retransmit) { 14310 14311 /* 14312 * If we have reduced tcp_ssthresh 14313 * because of ECN, do not reduce it again 14314 * unless it is already one window of data 14315 * away. After one window of data, tcp_cwr 14316 * should then be cleared. Note that 14317 * for non ECN capable connection, tcp_cwr 14318 * should always be false. 14319 * 14320 * Adjust cwnd since the duplicate 14321 * ack indicates that a packet was 14322 * dropped (due to congestion.) 14323 */ 14324 if (!tcp->tcp_cwr) { 14325 npkt = ((tcp->tcp_snxt - 14326 tcp->tcp_suna) >> 1) / mss; 14327 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14328 mss; 14329 tcp->tcp_cwnd = (npkt + 14330 tcp->tcp_dupack_cnt) * mss; 14331 } 14332 if (tcp->tcp_ecn_ok) { 14333 tcp->tcp_cwr = B_TRUE; 14334 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14335 tcp->tcp_ecn_cwr_sent = B_FALSE; 14336 } 14337 14338 /* 14339 * We do Hoe's algorithm. Refer to her 14340 * paper "Improving the Start-up Behavior 14341 * of a Congestion Control Scheme for TCP," 14342 * appeared in SIGCOMM'96. 14343 * 14344 * Save highest seq no we have sent so far. 14345 * Be careful about the invisible FIN byte. 14346 */ 14347 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14348 (tcp->tcp_unsent == 0)) { 14349 tcp->tcp_rexmit_max = tcp->tcp_fss; 14350 } else { 14351 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14352 } 14353 14354 /* 14355 * Do not allow bursty traffic during. 14356 * fast recovery. Refer to Fall and Floyd's 14357 * paper "Simulation-based Comparisons of 14358 * Tahoe, Reno and SACK TCP" (in CCR?) 14359 * This is a best current practise. 14360 */ 14361 tcp->tcp_snd_burst = TCP_CWND_SS; 14362 14363 /* 14364 * For SACK: 14365 * Calculate tcp_pipe, which is the 14366 * estimated number of bytes in 14367 * network. 14368 * 14369 * tcp_fack is the highest sack'ed seq num 14370 * TCP has received. 14371 * 14372 * tcp_pipe is explained in the above quoted 14373 * Fall and Floyd's paper. tcp_fack is 14374 * explained in Mathis and Mahdavi's 14375 * "Forward Acknowledgment: Refining TCP 14376 * Congestion Control" in SIGCOMM '96. 14377 */ 14378 if (tcp->tcp_snd_sack_ok) { 14379 ASSERT(tcp->tcp_sack_info != NULL); 14380 if (tcp->tcp_notsack_list != NULL) { 14381 tcp->tcp_pipe = tcp->tcp_snxt - 14382 tcp->tcp_fack; 14383 tcp->tcp_sack_snxt = seg_ack; 14384 flags |= TH_NEED_SACK_REXMIT; 14385 } else { 14386 /* 14387 * Always initialize tcp_pipe 14388 * even though we don't have 14389 * any SACK info. If later 14390 * we get SACK info and 14391 * tcp_pipe is not initialized, 14392 * funny things will happen. 14393 */ 14394 tcp->tcp_pipe = 14395 tcp->tcp_cwnd_ssthresh; 14396 } 14397 } else { 14398 flags |= TH_REXMIT_NEEDED; 14399 } /* tcp_snd_sack_ok */ 14400 14401 } else { 14402 /* 14403 * Here we perform congestion 14404 * avoidance, but NOT slow start. 14405 * This is known as the Fast 14406 * Recovery Algorithm. 14407 */ 14408 if (tcp->tcp_snd_sack_ok && 14409 tcp->tcp_notsack_list != NULL) { 14410 flags |= TH_NEED_SACK_REXMIT; 14411 tcp->tcp_pipe -= mss; 14412 if (tcp->tcp_pipe < 0) 14413 tcp->tcp_pipe = 0; 14414 } else { 14415 /* 14416 * We know that one more packet has 14417 * left the pipe thus we can update 14418 * cwnd. 14419 */ 14420 cwnd = tcp->tcp_cwnd + mss; 14421 if (cwnd > tcp->tcp_cwnd_max) 14422 cwnd = tcp->tcp_cwnd_max; 14423 tcp->tcp_cwnd = cwnd; 14424 if (tcp->tcp_unsent > 0) 14425 flags |= TH_XMIT_NEEDED; 14426 } 14427 } 14428 } 14429 } else if (tcp->tcp_zero_win_probe) { 14430 /* 14431 * If the window has opened, need to arrange 14432 * to send additional data. 14433 */ 14434 if (new_swnd != 0) { 14435 /* tcp_suna != tcp_snxt */ 14436 /* Packet contains a window update */ 14437 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 14438 tcp->tcp_zero_win_probe = 0; 14439 tcp->tcp_timer_backoff = 0; 14440 tcp->tcp_ms_we_have_waited = 0; 14441 14442 /* 14443 * Transmit starting with tcp_suna since 14444 * the one byte probe is not ack'ed. 14445 * If TCP has sent more than one identical 14446 * probe, tcp_rexmit will be set. That means 14447 * tcp_ss_rexmit() will send out the one 14448 * byte along with new data. Otherwise, 14449 * fake the retransmission. 14450 */ 14451 flags |= TH_XMIT_NEEDED; 14452 if (!tcp->tcp_rexmit) { 14453 tcp->tcp_rexmit = B_TRUE; 14454 tcp->tcp_dupack_cnt = 0; 14455 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14456 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14457 } 14458 } 14459 } 14460 goto swnd_update; 14461 } 14462 14463 /* 14464 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14465 * If the ACK value acks something that we have not yet sent, it might 14466 * be an old duplicate segment. Send an ACK to re-synchronize the 14467 * other side. 14468 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14469 * state is handled above, so we can always just drop the segment and 14470 * send an ACK here. 14471 * 14472 * Should we send ACKs in response to ACK only segments? 14473 */ 14474 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14475 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 14476 /* drop the received segment */ 14477 freemsg(mp); 14478 14479 /* 14480 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14481 * greater than 0, check if the number of such 14482 * bogus ACks is greater than that count. If yes, 14483 * don't send back any ACK. This prevents TCP from 14484 * getting into an ACK storm if somehow an attacker 14485 * successfully spoofs an acceptable segment to our 14486 * peer. 14487 */ 14488 if (tcp_drop_ack_unsent_cnt > 0 && 14489 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14490 TCP_STAT(tcp_in_ack_unsent_drop); 14491 return; 14492 } 14493 mp = tcp_ack_mp(tcp); 14494 if (mp != NULL) { 14495 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14496 BUMP_LOCAL(tcp->tcp_obsegs); 14497 BUMP_MIB(&tcp_mib, tcpOutAck); 14498 tcp_send_data(tcp, tcp->tcp_wq, mp); 14499 } 14500 return; 14501 } 14502 14503 /* 14504 * TCP gets a new ACK, update the notsack'ed list to delete those 14505 * blocks that are covered by this ACK. 14506 */ 14507 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14508 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14509 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14510 } 14511 14512 /* 14513 * If we got an ACK after fast retransmit, check to see 14514 * if it is a partial ACK. If it is not and the congestion 14515 * window was inflated to account for the other side's 14516 * cached packets, retract it. If it is, do Hoe's algorithm. 14517 */ 14518 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 14519 ASSERT(tcp->tcp_rexmit == B_FALSE); 14520 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14521 tcp->tcp_dupack_cnt = 0; 14522 /* 14523 * Restore the orig tcp_cwnd_ssthresh after 14524 * fast retransmit phase. 14525 */ 14526 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14527 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14528 } 14529 tcp->tcp_rexmit_max = seg_ack; 14530 tcp->tcp_cwnd_cnt = 0; 14531 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14532 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14533 14534 /* 14535 * Remove all notsack info to avoid confusion with 14536 * the next fast retrasnmit/recovery phase. 14537 */ 14538 if (tcp->tcp_snd_sack_ok && 14539 tcp->tcp_notsack_list != NULL) { 14540 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14541 } 14542 } else { 14543 if (tcp->tcp_snd_sack_ok && 14544 tcp->tcp_notsack_list != NULL) { 14545 flags |= TH_NEED_SACK_REXMIT; 14546 tcp->tcp_pipe -= mss; 14547 if (tcp->tcp_pipe < 0) 14548 tcp->tcp_pipe = 0; 14549 } else { 14550 /* 14551 * Hoe's algorithm: 14552 * 14553 * Retransmit the unack'ed segment and 14554 * restart fast recovery. Note that we 14555 * need to scale back tcp_cwnd to the 14556 * original value when we started fast 14557 * recovery. This is to prevent overly 14558 * aggressive behaviour in sending new 14559 * segments. 14560 */ 14561 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14562 tcp_dupack_fast_retransmit * mss; 14563 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14564 flags |= TH_REXMIT_NEEDED; 14565 } 14566 } 14567 } else { 14568 tcp->tcp_dupack_cnt = 0; 14569 if (tcp->tcp_rexmit) { 14570 /* 14571 * TCP is retranmitting. If the ACK ack's all 14572 * outstanding data, update tcp_rexmit_max and 14573 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14574 * to the correct value. 14575 * 14576 * Note that SEQ_LEQ() is used. This is to avoid 14577 * unnecessary fast retransmit caused by dup ACKs 14578 * received when TCP does slow start retransmission 14579 * after a time out. During this phase, TCP may 14580 * send out segments which are already received. 14581 * This causes dup ACKs to be sent back. 14582 */ 14583 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14584 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14585 tcp->tcp_rexmit_nxt = seg_ack; 14586 } 14587 if (seg_ack != tcp->tcp_rexmit_max) { 14588 flags |= TH_XMIT_NEEDED; 14589 } 14590 } else { 14591 tcp->tcp_rexmit = B_FALSE; 14592 tcp->tcp_xmit_zc_clean = B_FALSE; 14593 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14594 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14595 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14596 } 14597 tcp->tcp_ms_we_have_waited = 0; 14598 } 14599 } 14600 14601 BUMP_MIB(&tcp_mib, tcpInAckSegs); 14602 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 14603 tcp->tcp_suna = seg_ack; 14604 if (tcp->tcp_zero_win_probe != 0) { 14605 tcp->tcp_zero_win_probe = 0; 14606 tcp->tcp_timer_backoff = 0; 14607 } 14608 14609 /* 14610 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14611 * Note that it cannot be the SYN being ack'ed. The code flow 14612 * will not reach here. 14613 */ 14614 if (mp1 == NULL) { 14615 goto fin_acked; 14616 } 14617 14618 /* 14619 * Update the congestion window. 14620 * 14621 * If TCP is not ECN capable or TCP is ECN capable but the 14622 * congestion experience bit is not set, increase the tcp_cwnd as 14623 * usual. 14624 */ 14625 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14626 cwnd = tcp->tcp_cwnd; 14627 add = mss; 14628 14629 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14630 /* 14631 * This is to prevent an increase of less than 1 MSS of 14632 * tcp_cwnd. With partial increase, tcp_wput_data() 14633 * may send out tinygrams in order to preserve mblk 14634 * boundaries. 14635 * 14636 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14637 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14638 * increased by 1 MSS for every RTTs. 14639 */ 14640 if (tcp->tcp_cwnd_cnt <= 0) { 14641 tcp->tcp_cwnd_cnt = cwnd + add; 14642 } else { 14643 tcp->tcp_cwnd_cnt -= add; 14644 add = 0; 14645 } 14646 } 14647 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14648 } 14649 14650 /* See if the latest urgent data has been acknowledged */ 14651 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14652 SEQ_GT(seg_ack, tcp->tcp_urg)) 14653 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14654 14655 /* Can we update the RTT estimates? */ 14656 if (tcp->tcp_snd_ts_ok) { 14657 /* Ignore zero timestamp echo-reply. */ 14658 if (tcpopt.tcp_opt_ts_ecr != 0) { 14659 tcp_set_rto(tcp, (int32_t)lbolt - 14660 (int32_t)tcpopt.tcp_opt_ts_ecr); 14661 } 14662 14663 /* If needed, restart the timer. */ 14664 if (tcp->tcp_set_timer == 1) { 14665 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14666 tcp->tcp_set_timer = 0; 14667 } 14668 /* 14669 * Update tcp_csuna in case the other side stops sending 14670 * us timestamps. 14671 */ 14672 tcp->tcp_csuna = tcp->tcp_snxt; 14673 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14674 /* 14675 * An ACK sequence we haven't seen before, so get the RTT 14676 * and update the RTO. But first check if the timestamp is 14677 * valid to use. 14678 */ 14679 if ((mp1->b_next != NULL) && 14680 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14681 tcp_set_rto(tcp, (int32_t)lbolt - 14682 (int32_t)(intptr_t)mp1->b_prev); 14683 else 14684 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14685 14686 /* Remeber the last sequence to be ACKed */ 14687 tcp->tcp_csuna = seg_ack; 14688 if (tcp->tcp_set_timer == 1) { 14689 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14690 tcp->tcp_set_timer = 0; 14691 } 14692 } else { 14693 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14694 } 14695 14696 /* Eat acknowledged bytes off the xmit queue. */ 14697 for (;;) { 14698 mblk_t *mp2; 14699 uchar_t *wptr; 14700 14701 wptr = mp1->b_wptr; 14702 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14703 bytes_acked -= (int)(wptr - mp1->b_rptr); 14704 if (bytes_acked < 0) { 14705 mp1->b_rptr = wptr + bytes_acked; 14706 /* 14707 * Set a new timestamp if all the bytes timed by the 14708 * old timestamp have been ack'ed. 14709 */ 14710 if (SEQ_GT(seg_ack, 14711 (uint32_t)(uintptr_t)(mp1->b_next))) { 14712 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14713 mp1->b_next = NULL; 14714 } 14715 break; 14716 } 14717 mp1->b_next = NULL; 14718 mp1->b_prev = NULL; 14719 mp2 = mp1; 14720 mp1 = mp1->b_cont; 14721 14722 /* 14723 * This notification is required for some zero-copy 14724 * clients to maintain a copy semantic. After the data 14725 * is ack'ed, client is safe to modify or reuse the buffer. 14726 */ 14727 if (tcp->tcp_snd_zcopy_aware && 14728 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14729 tcp_zcopy_notify(tcp); 14730 freeb(mp2); 14731 if (bytes_acked == 0) { 14732 if (mp1 == NULL) { 14733 /* Everything is ack'ed, clear the tail. */ 14734 tcp->tcp_xmit_tail = NULL; 14735 /* 14736 * Cancel the timer unless we are still 14737 * waiting for an ACK for the FIN packet. 14738 */ 14739 if (tcp->tcp_timer_tid != 0 && 14740 tcp->tcp_snxt == tcp->tcp_suna) { 14741 (void) TCP_TIMER_CANCEL(tcp, 14742 tcp->tcp_timer_tid); 14743 tcp->tcp_timer_tid = 0; 14744 } 14745 goto pre_swnd_update; 14746 } 14747 if (mp2 != tcp->tcp_xmit_tail) 14748 break; 14749 tcp->tcp_xmit_tail = mp1; 14750 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14751 (uintptr_t)INT_MAX); 14752 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14753 mp1->b_rptr); 14754 break; 14755 } 14756 if (mp1 == NULL) { 14757 /* 14758 * More was acked but there is nothing more 14759 * outstanding. This means that the FIN was 14760 * just acked or that we're talking to a clown. 14761 */ 14762 fin_acked: 14763 ASSERT(tcp->tcp_fin_sent); 14764 tcp->tcp_xmit_tail = NULL; 14765 if (tcp->tcp_fin_sent) { 14766 /* FIN was acked - making progress */ 14767 if (tcp->tcp_ipversion == IPV6_VERSION && 14768 !tcp->tcp_fin_acked) 14769 tcp->tcp_ip_forward_progress = B_TRUE; 14770 tcp->tcp_fin_acked = B_TRUE; 14771 if (tcp->tcp_linger_tid != 0 && 14772 TCP_TIMER_CANCEL(tcp, 14773 tcp->tcp_linger_tid) >= 0) { 14774 tcp_stop_lingering(tcp); 14775 } 14776 } else { 14777 /* 14778 * We should never get here because 14779 * we have already checked that the 14780 * number of bytes ack'ed should be 14781 * smaller than or equal to what we 14782 * have sent so far (it is the 14783 * acceptability check of the ACK). 14784 * We can only get here if the send 14785 * queue is corrupted. 14786 * 14787 * Terminate the connection and 14788 * panic the system. It is better 14789 * for us to panic instead of 14790 * continuing to avoid other disaster. 14791 */ 14792 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14793 tcp->tcp_rnxt, TH_RST|TH_ACK); 14794 panic("Memory corruption " 14795 "detected for connection %s.", 14796 tcp_display(tcp, NULL, 14797 DISP_ADDR_AND_PORT)); 14798 /*NOTREACHED*/ 14799 } 14800 goto pre_swnd_update; 14801 } 14802 ASSERT(mp2 != tcp->tcp_xmit_tail); 14803 } 14804 if (tcp->tcp_unsent) { 14805 flags |= TH_XMIT_NEEDED; 14806 } 14807 pre_swnd_update: 14808 tcp->tcp_xmit_head = mp1; 14809 swnd_update: 14810 /* 14811 * The following check is different from most other implementations. 14812 * For bi-directional transfer, when segments are dropped, the 14813 * "normal" check will not accept a window update in those 14814 * retransmitted segemnts. Failing to do that, TCP may send out 14815 * segments which are outside receiver's window. As TCP accepts 14816 * the ack in those retransmitted segments, if the window update in 14817 * the same segment is not accepted, TCP will incorrectly calculates 14818 * that it can send more segments. This can create a deadlock 14819 * with the receiver if its window becomes zero. 14820 */ 14821 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14822 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14823 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14824 /* 14825 * The criteria for update is: 14826 * 14827 * 1. the segment acknowledges some data. Or 14828 * 2. the segment is new, i.e. it has a higher seq num. Or 14829 * 3. the segment is not old and the advertised window is 14830 * larger than the previous advertised window. 14831 */ 14832 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14833 flags |= TH_XMIT_NEEDED; 14834 tcp->tcp_swnd = new_swnd; 14835 if (new_swnd > tcp->tcp_max_swnd) 14836 tcp->tcp_max_swnd = new_swnd; 14837 tcp->tcp_swl1 = seg_seq; 14838 tcp->tcp_swl2 = seg_ack; 14839 } 14840 est: 14841 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14842 switch (tcp->tcp_state) { 14843 case TCPS_FIN_WAIT_1: 14844 if (tcp->tcp_fin_acked) { 14845 tcp->tcp_state = TCPS_FIN_WAIT_2; 14846 /* 14847 * We implement the non-standard BSD/SunOS 14848 * FIN_WAIT_2 flushing algorithm. 14849 * If there is no user attached to this 14850 * TCP endpoint, then this TCP struct 14851 * could hang around forever in FIN_WAIT_2 14852 * state if the peer forgets to send us 14853 * a FIN. To prevent this, we wait only 14854 * 2*MSL (a convenient time value) for 14855 * the FIN to arrive. If it doesn't show up, 14856 * we flush the TCP endpoint. This algorithm, 14857 * though a violation of RFC-793, has worked 14858 * for over 10 years in BSD systems. 14859 * Note: SunOS 4.x waits 675 seconds before 14860 * flushing the FIN_WAIT_2 connection. 14861 */ 14862 TCP_TIMER_RESTART(tcp, 14863 tcp_fin_wait_2_flush_interval); 14864 } 14865 break; 14866 case TCPS_FIN_WAIT_2: 14867 break; /* Shutdown hook? */ 14868 case TCPS_LAST_ACK: 14869 freemsg(mp); 14870 if (tcp->tcp_fin_acked) { 14871 (void) tcp_clean_death(tcp, 0, 19); 14872 return; 14873 } 14874 goto xmit_check; 14875 case TCPS_CLOSING: 14876 if (tcp->tcp_fin_acked) { 14877 tcp->tcp_state = TCPS_TIME_WAIT; 14878 if (!TCP_IS_DETACHED(tcp)) { 14879 TCP_TIMER_RESTART(tcp, 14880 tcp_time_wait_interval); 14881 } else { 14882 tcp_time_wait_append(tcp); 14883 TCP_DBGSTAT(tcp_rput_time_wait); 14884 } 14885 } 14886 /*FALLTHRU*/ 14887 case TCPS_CLOSE_WAIT: 14888 freemsg(mp); 14889 goto xmit_check; 14890 default: 14891 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14892 break; 14893 } 14894 } 14895 if (flags & TH_FIN) { 14896 /* Make sure we ack the fin */ 14897 flags |= TH_ACK_NEEDED; 14898 if (!tcp->tcp_fin_rcvd) { 14899 tcp->tcp_fin_rcvd = B_TRUE; 14900 tcp->tcp_rnxt++; 14901 tcph = tcp->tcp_tcph; 14902 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14903 14904 /* 14905 * Generate the ordrel_ind at the end unless we 14906 * are an eager guy. 14907 * In the eager case tcp_rsrv will do this when run 14908 * after tcp_accept is done. 14909 */ 14910 if (tcp->tcp_listener == NULL && 14911 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14912 flags |= TH_ORDREL_NEEDED; 14913 switch (tcp->tcp_state) { 14914 case TCPS_SYN_RCVD: 14915 case TCPS_ESTABLISHED: 14916 tcp->tcp_state = TCPS_CLOSE_WAIT; 14917 /* Keepalive? */ 14918 break; 14919 case TCPS_FIN_WAIT_1: 14920 if (!tcp->tcp_fin_acked) { 14921 tcp->tcp_state = TCPS_CLOSING; 14922 break; 14923 } 14924 /* FALLTHRU */ 14925 case TCPS_FIN_WAIT_2: 14926 tcp->tcp_state = TCPS_TIME_WAIT; 14927 if (!TCP_IS_DETACHED(tcp)) { 14928 TCP_TIMER_RESTART(tcp, 14929 tcp_time_wait_interval); 14930 } else { 14931 tcp_time_wait_append(tcp); 14932 TCP_DBGSTAT(tcp_rput_time_wait); 14933 } 14934 if (seg_len) { 14935 /* 14936 * implies data piggybacked on FIN. 14937 * break to handle data. 14938 */ 14939 break; 14940 } 14941 freemsg(mp); 14942 goto ack_check; 14943 } 14944 } 14945 } 14946 if (mp == NULL) 14947 goto xmit_check; 14948 if (seg_len == 0) { 14949 freemsg(mp); 14950 goto xmit_check; 14951 } 14952 if (mp->b_rptr == mp->b_wptr) { 14953 /* 14954 * The header has been consumed, so we remove the 14955 * zero-length mblk here. 14956 */ 14957 mp1 = mp; 14958 mp = mp->b_cont; 14959 freeb(mp1); 14960 } 14961 tcph = tcp->tcp_tcph; 14962 tcp->tcp_rack_cnt++; 14963 { 14964 uint32_t cur_max; 14965 14966 cur_max = tcp->tcp_rack_cur_max; 14967 if (tcp->tcp_rack_cnt >= cur_max) { 14968 /* 14969 * We have more unacked data than we should - send 14970 * an ACK now. 14971 */ 14972 flags |= TH_ACK_NEEDED; 14973 cur_max++; 14974 if (cur_max > tcp->tcp_rack_abs_max) 14975 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14976 else 14977 tcp->tcp_rack_cur_max = cur_max; 14978 } else if (TCP_IS_DETACHED(tcp)) { 14979 /* We don't have an ACK timer for detached TCP. */ 14980 flags |= TH_ACK_NEEDED; 14981 } else if (seg_len < mss) { 14982 /* 14983 * If we get a segment that is less than an mss, and we 14984 * already have unacknowledged data, and the amount 14985 * unacknowledged is not a multiple of mss, then we 14986 * better generate an ACK now. Otherwise, this may be 14987 * the tail piece of a transaction, and we would rather 14988 * wait for the response. 14989 */ 14990 uint32_t udif; 14991 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14992 (uintptr_t)INT_MAX); 14993 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14994 if (udif && (udif % mss)) 14995 flags |= TH_ACK_NEEDED; 14996 else 14997 flags |= TH_ACK_TIMER_NEEDED; 14998 } else { 14999 /* Start delayed ack timer */ 15000 flags |= TH_ACK_TIMER_NEEDED; 15001 } 15002 } 15003 tcp->tcp_rnxt += seg_len; 15004 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15005 15006 /* Update SACK list */ 15007 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15008 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 15009 &(tcp->tcp_num_sack_blk)); 15010 } 15011 15012 if (tcp->tcp_urp_mp) { 15013 tcp->tcp_urp_mp->b_cont = mp; 15014 mp = tcp->tcp_urp_mp; 15015 tcp->tcp_urp_mp = NULL; 15016 /* Ready for a new signal. */ 15017 tcp->tcp_urp_last_valid = B_FALSE; 15018 #ifdef DEBUG 15019 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 15020 "tcp_rput: sending exdata_ind %s", 15021 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15022 #endif /* DEBUG */ 15023 } 15024 15025 /* 15026 * Check for ancillary data changes compared to last segment. 15027 */ 15028 if (tcp->tcp_ipv6_recvancillary != 0) { 15029 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 15030 if (mp == NULL) 15031 return; 15032 } 15033 15034 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 15035 /* 15036 * Side queue inbound data until the accept happens. 15037 * tcp_accept/tcp_rput drains this when the accept happens. 15038 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 15039 * T_EXDATA_IND) it is queued on b_next. 15040 * XXX Make urgent data use this. Requires: 15041 * Removing tcp_listener check for TH_URG 15042 * Making M_PCPROTO and MARK messages skip the eager case 15043 */ 15044 tcp_rcv_enqueue(tcp, mp, seg_len); 15045 } else { 15046 if (mp->b_datap->db_type != M_DATA || 15047 (flags & TH_MARKNEXT_NEEDED)) { 15048 if (tcp->tcp_rcv_list != NULL) { 15049 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15050 } 15051 ASSERT(tcp->tcp_rcv_list == NULL || 15052 tcp->tcp_fused_sigurg); 15053 if (flags & TH_MARKNEXT_NEEDED) { 15054 #ifdef DEBUG 15055 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 15056 "tcp_rput: sending MSGMARKNEXT %s", 15057 tcp_display(tcp, NULL, 15058 DISP_PORT_ONLY)); 15059 #endif /* DEBUG */ 15060 mp->b_flag |= MSGMARKNEXT; 15061 flags &= ~TH_MARKNEXT_NEEDED; 15062 } 15063 putnext(tcp->tcp_rq, mp); 15064 if (!canputnext(tcp->tcp_rq)) 15065 tcp->tcp_rwnd -= seg_len; 15066 } else if (((flags & (TH_PUSH|TH_FIN)) || 15067 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) && 15068 (sqp != NULL)) { 15069 if (tcp->tcp_rcv_list != NULL) { 15070 /* 15071 * Enqueue the new segment first and then 15072 * call tcp_rcv_drain() to send all data 15073 * up. The other way to do this is to 15074 * send all queued data up and then call 15075 * putnext() to send the new segment up. 15076 * This way can remove the else part later 15077 * on. 15078 * 15079 * We don't this to avoid one more call to 15080 * canputnext() as tcp_rcv_drain() needs to 15081 * call canputnext(). 15082 */ 15083 tcp_rcv_enqueue(tcp, mp, seg_len); 15084 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15085 } else { 15086 putnext(tcp->tcp_rq, mp); 15087 if (!canputnext(tcp->tcp_rq)) 15088 tcp->tcp_rwnd -= seg_len; 15089 } 15090 } else { 15091 /* 15092 * Enqueue all packets when processing an mblk 15093 * from the co queue and also enqueue normal packets. 15094 */ 15095 tcp_rcv_enqueue(tcp, mp, seg_len); 15096 } 15097 /* 15098 * Make sure the timer is running if we have data waiting 15099 * for a push bit. This provides resiliency against 15100 * implementations that do not correctly generate push bits. 15101 */ 15102 if ((sqp != NULL) && tcp->tcp_rcv_list != NULL && 15103 tcp->tcp_push_tid == 0) { 15104 /* 15105 * The connection may be closed at this point, so don't 15106 * do anything for a detached tcp. 15107 */ 15108 if (!TCP_IS_DETACHED(tcp)) 15109 tcp->tcp_push_tid = TCP_TIMER(tcp, 15110 tcp_push_timer, 15111 MSEC_TO_TICK(tcp_push_timer_interval)); 15112 } 15113 } 15114 xmit_check: 15115 /* Is there anything left to do? */ 15116 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15117 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15118 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15119 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15120 goto done; 15121 15122 /* Any transmit work to do and a non-zero window? */ 15123 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15124 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15125 if (flags & TH_REXMIT_NEEDED) { 15126 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15127 15128 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 15129 if (snd_size > mss) 15130 snd_size = mss; 15131 if (snd_size > tcp->tcp_swnd) 15132 snd_size = tcp->tcp_swnd; 15133 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15134 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15135 B_TRUE); 15136 15137 if (mp1 != NULL) { 15138 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15139 tcp->tcp_csuna = tcp->tcp_snxt; 15140 BUMP_MIB(&tcp_mib, tcpRetransSegs); 15141 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 15142 TCP_RECORD_TRACE(tcp, mp1, 15143 TCP_TRACE_SEND_PKT); 15144 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15145 } 15146 } 15147 if (flags & TH_NEED_SACK_REXMIT) { 15148 tcp_sack_rxmit(tcp, &flags); 15149 } 15150 /* 15151 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15152 * out new segment. Note that tcp_rexmit should not be 15153 * set, otherwise TH_LIMIT_XMIT should not be set. 15154 */ 15155 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15156 if (!tcp->tcp_rexmit) { 15157 tcp_wput_data(tcp, NULL, B_FALSE); 15158 } else { 15159 tcp_ss_rexmit(tcp); 15160 } 15161 } 15162 /* 15163 * Adjust tcp_cwnd back to normal value after sending 15164 * new data segments. 15165 */ 15166 if (flags & TH_LIMIT_XMIT) { 15167 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15168 /* 15169 * This will restart the timer. Restarting the 15170 * timer is used to avoid a timeout before the 15171 * limited transmitted segment's ACK gets back. 15172 */ 15173 if (tcp->tcp_xmit_head != NULL) 15174 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15175 } 15176 15177 /* Anything more to do? */ 15178 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15179 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15180 goto done; 15181 } 15182 ack_check: 15183 if (flags & TH_SEND_URP_MARK) { 15184 ASSERT(tcp->tcp_urp_mark_mp); 15185 /* 15186 * Send up any queued data and then send the mark message 15187 */ 15188 if (tcp->tcp_rcv_list != NULL) { 15189 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15190 } 15191 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15192 15193 mp1 = tcp->tcp_urp_mark_mp; 15194 tcp->tcp_urp_mark_mp = NULL; 15195 #ifdef DEBUG 15196 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 15197 "tcp_rput: sending zero-length %s %s", 15198 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15199 "MSGNOTMARKNEXT"), 15200 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15201 #endif /* DEBUG */ 15202 putnext(tcp->tcp_rq, mp1); 15203 flags &= ~TH_SEND_URP_MARK; 15204 } 15205 if (flags & TH_ACK_NEEDED) { 15206 /* 15207 * Time to send an ack for some reason. 15208 */ 15209 mp1 = tcp_ack_mp(tcp); 15210 15211 if (mp1 != NULL) { 15212 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 15213 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15214 BUMP_LOCAL(tcp->tcp_obsegs); 15215 BUMP_MIB(&tcp_mib, tcpOutAck); 15216 } 15217 if (tcp->tcp_ack_tid != 0) { 15218 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15219 tcp->tcp_ack_tid = 0; 15220 } 15221 } 15222 if (flags & TH_ACK_TIMER_NEEDED) { 15223 /* 15224 * Arrange for deferred ACK or push wait timeout. 15225 * Start timer if it is not already running. 15226 */ 15227 if (tcp->tcp_ack_tid == 0) { 15228 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15229 MSEC_TO_TICK(tcp->tcp_localnet ? 15230 (clock_t)tcp_local_dack_interval : 15231 (clock_t)tcp_deferred_ack_interval)); 15232 } 15233 } 15234 if (flags & TH_ORDREL_NEEDED) { 15235 /* 15236 * Send up the ordrel_ind unless we are an eager guy. 15237 * In the eager case tcp_rsrv will do this when run 15238 * after tcp_accept is done. 15239 */ 15240 ASSERT(tcp->tcp_listener == NULL); 15241 if (tcp->tcp_rcv_list != NULL) { 15242 /* 15243 * Push any mblk(s) enqueued from co processing. 15244 */ 15245 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15246 } 15247 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15248 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 15249 tcp->tcp_ordrel_done = B_TRUE; 15250 putnext(tcp->tcp_rq, mp1); 15251 if (tcp->tcp_deferred_clean_death) { 15252 /* 15253 * tcp_clean_death was deferred 15254 * for T_ORDREL_IND - do it now 15255 */ 15256 (void) tcp_clean_death(tcp, 15257 tcp->tcp_client_errno, 20); 15258 tcp->tcp_deferred_clean_death = B_FALSE; 15259 } 15260 } else { 15261 /* 15262 * Run the orderly release in the 15263 * service routine. 15264 */ 15265 qenable(tcp->tcp_rq); 15266 /* 15267 * Caveat(XXX): The machine may be so 15268 * overloaded that tcp_rsrv() is not scheduled 15269 * until after the endpoint has transitioned 15270 * to TCPS_TIME_WAIT 15271 * and tcp_time_wait_interval expires. Then 15272 * tcp_timer() will blow away state in tcp_t 15273 * and T_ORDREL_IND will never be delivered 15274 * upstream. Unlikely but potentially 15275 * a problem. 15276 */ 15277 } 15278 } 15279 done: 15280 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15281 } 15282 15283 /* 15284 * This function does PAWS protection check. Returns B_TRUE if the 15285 * segment passes the PAWS test, else returns B_FALSE. 15286 */ 15287 boolean_t 15288 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15289 { 15290 uint8_t flags; 15291 int options; 15292 uint8_t *up; 15293 15294 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15295 /* 15296 * If timestamp option is aligned nicely, get values inline, 15297 * otherwise call general routine to parse. Only do that 15298 * if timestamp is the only option. 15299 */ 15300 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15301 TCPOPT_REAL_TS_LEN && 15302 OK_32PTR((up = ((uint8_t *)tcph) + 15303 TCP_MIN_HEADER_LENGTH)) && 15304 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15305 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15306 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15307 15308 options = TCP_OPT_TSTAMP_PRESENT; 15309 } else { 15310 if (tcp->tcp_snd_sack_ok) { 15311 tcpoptp->tcp = tcp; 15312 } else { 15313 tcpoptp->tcp = NULL; 15314 } 15315 options = tcp_parse_options(tcph, tcpoptp); 15316 } 15317 15318 if (options & TCP_OPT_TSTAMP_PRESENT) { 15319 /* 15320 * Do PAWS per RFC 1323 section 4.2. Accept RST 15321 * regardless of the timestamp, page 18 RFC 1323.bis. 15322 */ 15323 if ((flags & TH_RST) == 0 && 15324 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15325 tcp->tcp_ts_recent)) { 15326 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15327 PAWS_TIMEOUT)) { 15328 /* This segment is not acceptable. */ 15329 return (B_FALSE); 15330 } else { 15331 /* 15332 * Connection has been idle for 15333 * too long. Reset the timestamp 15334 * and assume the segment is valid. 15335 */ 15336 tcp->tcp_ts_recent = 15337 tcpoptp->tcp_opt_ts_val; 15338 } 15339 } 15340 } else { 15341 /* 15342 * If we don't get a timestamp on every packet, we 15343 * figure we can't really trust 'em, so we stop sending 15344 * and parsing them. 15345 */ 15346 tcp->tcp_snd_ts_ok = B_FALSE; 15347 15348 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15349 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15350 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15351 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 15352 if (tcp->tcp_snd_sack_ok) { 15353 ASSERT(tcp->tcp_sack_info != NULL); 15354 tcp->tcp_max_sack_blk = 4; 15355 } 15356 } 15357 return (B_TRUE); 15358 } 15359 15360 /* 15361 * Attach ancillary data to a received TCP segments for the 15362 * ancillary pieces requested by the application that are 15363 * different than they were in the previous data segment. 15364 * 15365 * Save the "current" values once memory allocation is ok so that 15366 * when memory allocation fails we can just wait for the next data segment. 15367 */ 15368 static mblk_t * 15369 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15370 { 15371 struct T_optdata_ind *todi; 15372 int optlen; 15373 uchar_t *optptr; 15374 struct T_opthdr *toh; 15375 uint_t addflag; /* Which pieces to add */ 15376 mblk_t *mp1; 15377 15378 optlen = 0; 15379 addflag = 0; 15380 /* If app asked for pktinfo and the index has changed ... */ 15381 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15382 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15383 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15384 optlen += sizeof (struct T_opthdr) + 15385 sizeof (struct in6_pktinfo); 15386 addflag |= TCP_IPV6_RECVPKTINFO; 15387 } 15388 /* If app asked for hoplimit and it has changed ... */ 15389 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15390 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15391 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15392 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15393 addflag |= TCP_IPV6_RECVHOPLIMIT; 15394 } 15395 /* If app asked for tclass and it has changed ... */ 15396 if ((ipp->ipp_fields & IPPF_TCLASS) && 15397 ipp->ipp_tclass != tcp->tcp_recvtclass && 15398 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15399 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15400 addflag |= TCP_IPV6_RECVTCLASS; 15401 } 15402 /* If app asked for hopbyhop headers and it has changed ... */ 15403 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15404 tcp_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15405 (ipp->ipp_fields & IPPF_HOPOPTS), 15406 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15407 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 15408 addflag |= TCP_IPV6_RECVHOPOPTS; 15409 if (!tcp_allocbuf((void **)&tcp->tcp_hopopts, 15410 &tcp->tcp_hopoptslen, 15411 (ipp->ipp_fields & IPPF_HOPOPTS), 15412 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15413 return (mp); 15414 } 15415 /* If app asked for dst headers before routing headers ... */ 15416 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15417 tcp_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15418 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15419 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15420 optlen += sizeof (struct T_opthdr) + 15421 ipp->ipp_rtdstoptslen; 15422 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15423 if (!tcp_allocbuf((void **)&tcp->tcp_rtdstopts, 15424 &tcp->tcp_rtdstoptslen, 15425 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15426 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15427 return (mp); 15428 } 15429 /* If app asked for routing headers and it has changed ... */ 15430 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15431 tcp_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15432 (ipp->ipp_fields & IPPF_RTHDR), 15433 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15434 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15435 addflag |= TCP_IPV6_RECVRTHDR; 15436 if (!tcp_allocbuf((void **)&tcp->tcp_rthdr, 15437 &tcp->tcp_rthdrlen, 15438 (ipp->ipp_fields & IPPF_RTHDR), 15439 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15440 return (mp); 15441 } 15442 /* If app asked for dest headers and it has changed ... */ 15443 if ((tcp->tcp_ipv6_recvancillary & 15444 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15445 tcp_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15446 (ipp->ipp_fields & IPPF_DSTOPTS), 15447 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15448 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15449 addflag |= TCP_IPV6_RECVDSTOPTS; 15450 if (!tcp_allocbuf((void **)&tcp->tcp_dstopts, 15451 &tcp->tcp_dstoptslen, 15452 (ipp->ipp_fields & IPPF_DSTOPTS), 15453 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15454 return (mp); 15455 } 15456 15457 if (optlen == 0) { 15458 /* Nothing to add */ 15459 return (mp); 15460 } 15461 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15462 if (mp1 == NULL) { 15463 /* 15464 * Defer sending ancillary data until the next TCP segment 15465 * arrives. 15466 */ 15467 return (mp); 15468 } 15469 mp1->b_cont = mp; 15470 mp = mp1; 15471 mp->b_wptr += sizeof (*todi) + optlen; 15472 mp->b_datap->db_type = M_PROTO; 15473 todi = (struct T_optdata_ind *)mp->b_rptr; 15474 todi->PRIM_type = T_OPTDATA_IND; 15475 todi->DATA_flag = 1; /* MORE data */ 15476 todi->OPT_length = optlen; 15477 todi->OPT_offset = sizeof (*todi); 15478 optptr = (uchar_t *)&todi[1]; 15479 /* 15480 * If app asked for pktinfo and the index has changed ... 15481 * Note that the local address never changes for the connection. 15482 */ 15483 if (addflag & TCP_IPV6_RECVPKTINFO) { 15484 struct in6_pktinfo *pkti; 15485 15486 toh = (struct T_opthdr *)optptr; 15487 toh->level = IPPROTO_IPV6; 15488 toh->name = IPV6_PKTINFO; 15489 toh->len = sizeof (*toh) + sizeof (*pkti); 15490 toh->status = 0; 15491 optptr += sizeof (*toh); 15492 pkti = (struct in6_pktinfo *)optptr; 15493 if (tcp->tcp_ipversion == IPV6_VERSION) 15494 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15495 else 15496 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15497 &pkti->ipi6_addr); 15498 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15499 optptr += sizeof (*pkti); 15500 ASSERT(OK_32PTR(optptr)); 15501 /* Save as "last" value */ 15502 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15503 } 15504 /* If app asked for hoplimit and it has changed ... */ 15505 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15506 toh = (struct T_opthdr *)optptr; 15507 toh->level = IPPROTO_IPV6; 15508 toh->name = IPV6_HOPLIMIT; 15509 toh->len = sizeof (*toh) + sizeof (uint_t); 15510 toh->status = 0; 15511 optptr += sizeof (*toh); 15512 *(uint_t *)optptr = ipp->ipp_hoplimit; 15513 optptr += sizeof (uint_t); 15514 ASSERT(OK_32PTR(optptr)); 15515 /* Save as "last" value */ 15516 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15517 } 15518 /* If app asked for tclass and it has changed ... */ 15519 if (addflag & TCP_IPV6_RECVTCLASS) { 15520 toh = (struct T_opthdr *)optptr; 15521 toh->level = IPPROTO_IPV6; 15522 toh->name = IPV6_TCLASS; 15523 toh->len = sizeof (*toh) + sizeof (uint_t); 15524 toh->status = 0; 15525 optptr += sizeof (*toh); 15526 *(uint_t *)optptr = ipp->ipp_tclass; 15527 optptr += sizeof (uint_t); 15528 ASSERT(OK_32PTR(optptr)); 15529 /* Save as "last" value */ 15530 tcp->tcp_recvtclass = ipp->ipp_tclass; 15531 } 15532 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15533 toh = (struct T_opthdr *)optptr; 15534 toh->level = IPPROTO_IPV6; 15535 toh->name = IPV6_HOPOPTS; 15536 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 15537 toh->status = 0; 15538 optptr += sizeof (*toh); 15539 bcopy(ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 15540 optptr += ipp->ipp_hopoptslen; 15541 ASSERT(OK_32PTR(optptr)); 15542 /* Save as last value */ 15543 tcp_savebuf((void **)&tcp->tcp_hopopts, 15544 &tcp->tcp_hopoptslen, 15545 (ipp->ipp_fields & IPPF_HOPOPTS), 15546 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15547 } 15548 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15549 toh = (struct T_opthdr *)optptr; 15550 toh->level = IPPROTO_IPV6; 15551 toh->name = IPV6_RTHDRDSTOPTS; 15552 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15553 toh->status = 0; 15554 optptr += sizeof (*toh); 15555 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15556 optptr += ipp->ipp_rtdstoptslen; 15557 ASSERT(OK_32PTR(optptr)); 15558 /* Save as last value */ 15559 tcp_savebuf((void **)&tcp->tcp_rtdstopts, 15560 &tcp->tcp_rtdstoptslen, 15561 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15562 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15563 } 15564 if (addflag & TCP_IPV6_RECVRTHDR) { 15565 toh = (struct T_opthdr *)optptr; 15566 toh->level = IPPROTO_IPV6; 15567 toh->name = IPV6_RTHDR; 15568 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15569 toh->status = 0; 15570 optptr += sizeof (*toh); 15571 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15572 optptr += ipp->ipp_rthdrlen; 15573 ASSERT(OK_32PTR(optptr)); 15574 /* Save as last value */ 15575 tcp_savebuf((void **)&tcp->tcp_rthdr, 15576 &tcp->tcp_rthdrlen, 15577 (ipp->ipp_fields & IPPF_RTHDR), 15578 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15579 } 15580 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15581 toh = (struct T_opthdr *)optptr; 15582 toh->level = IPPROTO_IPV6; 15583 toh->name = IPV6_DSTOPTS; 15584 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15585 toh->status = 0; 15586 optptr += sizeof (*toh); 15587 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15588 optptr += ipp->ipp_dstoptslen; 15589 ASSERT(OK_32PTR(optptr)); 15590 /* Save as last value */ 15591 tcp_savebuf((void **)&tcp->tcp_dstopts, 15592 &tcp->tcp_dstoptslen, 15593 (ipp->ipp_fields & IPPF_DSTOPTS), 15594 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15595 } 15596 ASSERT(optptr == mp->b_wptr); 15597 return (mp); 15598 } 15599 15600 15601 /* 15602 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15603 * or a "bad" IRE detected by tcp_adapt_ire. 15604 * We can't tell if the failure was due to the laddr or the faddr 15605 * thus we clear out all addresses and ports. 15606 */ 15607 static void 15608 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15609 { 15610 queue_t *q = tcp->tcp_rq; 15611 tcph_t *tcph; 15612 struct T_error_ack *tea; 15613 conn_t *connp = tcp->tcp_connp; 15614 15615 15616 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15617 15618 if (mp->b_cont) { 15619 freemsg(mp->b_cont); 15620 mp->b_cont = NULL; 15621 } 15622 tea = (struct T_error_ack *)mp->b_rptr; 15623 switch (tea->PRIM_type) { 15624 case T_BIND_ACK: 15625 /* 15626 * Need to unbind with classifier since we were just told that 15627 * our bind succeeded. 15628 */ 15629 tcp->tcp_hard_bound = B_FALSE; 15630 tcp->tcp_hard_binding = B_FALSE; 15631 15632 ipcl_hash_remove(connp); 15633 /* Reuse the mblk if possible */ 15634 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15635 sizeof (*tea)); 15636 mp->b_rptr = mp->b_datap->db_base; 15637 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15638 tea = (struct T_error_ack *)mp->b_rptr; 15639 tea->PRIM_type = T_ERROR_ACK; 15640 tea->TLI_error = TSYSERR; 15641 tea->UNIX_error = error; 15642 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15643 tea->ERROR_prim = T_CONN_REQ; 15644 } else { 15645 tea->ERROR_prim = O_T_BIND_REQ; 15646 } 15647 break; 15648 15649 case T_ERROR_ACK: 15650 if (tcp->tcp_state >= TCPS_SYN_SENT) 15651 tea->ERROR_prim = T_CONN_REQ; 15652 break; 15653 default: 15654 panic("tcp_bind_failed: unexpected TPI type"); 15655 /*NOTREACHED*/ 15656 } 15657 15658 tcp->tcp_state = TCPS_IDLE; 15659 if (tcp->tcp_ipversion == IPV4_VERSION) 15660 tcp->tcp_ipha->ipha_src = 0; 15661 else 15662 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15663 /* 15664 * Copy of the src addr. in tcp_t is needed since 15665 * the lookup funcs. can only look at tcp_t 15666 */ 15667 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15668 15669 tcph = tcp->tcp_tcph; 15670 tcph->th_lport[0] = 0; 15671 tcph->th_lport[1] = 0; 15672 tcp_bind_hash_remove(tcp); 15673 bzero(&connp->u_port, sizeof (connp->u_port)); 15674 /* blow away saved option results if any */ 15675 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15676 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15677 15678 conn_delete_ire(tcp->tcp_connp, NULL); 15679 putnext(q, mp); 15680 } 15681 15682 /* 15683 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15684 * messages. 15685 */ 15686 void 15687 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15688 { 15689 mblk_t *mp1; 15690 uchar_t *rptr = mp->b_rptr; 15691 queue_t *q = tcp->tcp_rq; 15692 struct T_error_ack *tea; 15693 uint32_t mss; 15694 mblk_t *syn_mp; 15695 mblk_t *mdti; 15696 int retval; 15697 mblk_t *ire_mp; 15698 15699 switch (mp->b_datap->db_type) { 15700 case M_PROTO: 15701 case M_PCPROTO: 15702 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15703 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15704 break; 15705 tea = (struct T_error_ack *)rptr; 15706 switch (tea->PRIM_type) { 15707 case T_BIND_ACK: 15708 /* 15709 * Adapt Multidata information, if any. The 15710 * following tcp_mdt_update routine will free 15711 * the message. 15712 */ 15713 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15714 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15715 b_rptr)->mdt_capab, B_TRUE); 15716 freemsg(mdti); 15717 } 15718 15719 /* Get the IRE, if we had requested for it */ 15720 ire_mp = tcp_ire_mp(mp); 15721 15722 if (tcp->tcp_hard_binding) { 15723 tcp->tcp_hard_binding = B_FALSE; 15724 tcp->tcp_hard_bound = B_TRUE; 15725 CL_INET_CONNECT(tcp); 15726 } else { 15727 if (ire_mp != NULL) 15728 freeb(ire_mp); 15729 goto after_syn_sent; 15730 } 15731 15732 retval = tcp_adapt_ire(tcp, ire_mp); 15733 if (ire_mp != NULL) 15734 freeb(ire_mp); 15735 if (retval == 0) { 15736 tcp_bind_failed(tcp, mp, 15737 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15738 ENETUNREACH : EADDRNOTAVAIL)); 15739 return; 15740 } 15741 /* 15742 * Don't let an endpoint connect to itself. 15743 * Also checked in tcp_connect() but that 15744 * check can't handle the case when the 15745 * local IP address is INADDR_ANY. 15746 */ 15747 if (tcp->tcp_ipversion == IPV4_VERSION) { 15748 if ((tcp->tcp_ipha->ipha_dst == 15749 tcp->tcp_ipha->ipha_src) && 15750 (BE16_EQL(tcp->tcp_tcph->th_lport, 15751 tcp->tcp_tcph->th_fport))) { 15752 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15753 return; 15754 } 15755 } else { 15756 if (IN6_ARE_ADDR_EQUAL( 15757 &tcp->tcp_ip6h->ip6_dst, 15758 &tcp->tcp_ip6h->ip6_src) && 15759 (BE16_EQL(tcp->tcp_tcph->th_lport, 15760 tcp->tcp_tcph->th_fport))) { 15761 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15762 return; 15763 } 15764 } 15765 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15766 /* 15767 * This should not be possible! Just for 15768 * defensive coding... 15769 */ 15770 if (tcp->tcp_state != TCPS_SYN_SENT) 15771 goto after_syn_sent; 15772 15773 ASSERT(q == tcp->tcp_rq); 15774 /* 15775 * tcp_adapt_ire() does not adjust 15776 * for TCP/IP header length. 15777 */ 15778 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15779 15780 /* 15781 * Just make sure our rwnd is at 15782 * least tcp_recv_hiwat_mss * MSS 15783 * large, and round up to the nearest 15784 * MSS. 15785 * 15786 * We do the round up here because 15787 * we need to get the interface 15788 * MTU first before we can do the 15789 * round up. 15790 */ 15791 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15792 tcp_recv_hiwat_minmss * mss); 15793 q->q_hiwat = tcp->tcp_rwnd; 15794 tcp_set_ws_value(tcp); 15795 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15796 tcp->tcp_tcph->th_win); 15797 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 15798 tcp->tcp_snd_ws_ok = B_TRUE; 15799 15800 /* 15801 * Set tcp_snd_ts_ok to true 15802 * so that tcp_xmit_mp will 15803 * include the timestamp 15804 * option in the SYN segment. 15805 */ 15806 if (tcp_tstamp_always || 15807 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 15808 tcp->tcp_snd_ts_ok = B_TRUE; 15809 } 15810 15811 /* 15812 * tcp_snd_sack_ok can be set in 15813 * tcp_adapt_ire() if the sack metric 15814 * is set. So check it here also. 15815 */ 15816 if (tcp_sack_permitted == 2 || 15817 tcp->tcp_snd_sack_ok) { 15818 if (tcp->tcp_sack_info == NULL) { 15819 tcp->tcp_sack_info = 15820 kmem_cache_alloc(tcp_sack_info_cache, 15821 KM_SLEEP); 15822 } 15823 tcp->tcp_snd_sack_ok = B_TRUE; 15824 } 15825 15826 /* 15827 * Should we use ECN? Note that the current 15828 * default value (SunOS 5.9) of tcp_ecn_permitted 15829 * is 1. The reason for doing this is that there 15830 * are equipments out there that will drop ECN 15831 * enabled IP packets. Setting it to 1 avoids 15832 * compatibility problems. 15833 */ 15834 if (tcp_ecn_permitted == 2) 15835 tcp->tcp_ecn_ok = B_TRUE; 15836 15837 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15838 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15839 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15840 if (syn_mp) { 15841 cred_t *cr; 15842 pid_t pid; 15843 15844 /* 15845 * Obtain the credential from the 15846 * thread calling connect(); the credential 15847 * lives on in the second mblk which 15848 * originated from T_CONN_REQ and is echoed 15849 * with the T_BIND_ACK from ip. If none 15850 * can be found, default to the creator 15851 * of the socket. 15852 */ 15853 if (mp->b_cont == NULL || 15854 (cr = DB_CRED(mp->b_cont)) == NULL) { 15855 cr = tcp->tcp_cred; 15856 pid = tcp->tcp_cpid; 15857 } else { 15858 pid = DB_CPID(mp->b_cont); 15859 } 15860 15861 TCP_RECORD_TRACE(tcp, syn_mp, 15862 TCP_TRACE_SEND_PKT); 15863 mblk_setcred(syn_mp, cr); 15864 DB_CPID(syn_mp) = pid; 15865 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15866 } 15867 after_syn_sent: 15868 /* 15869 * A trailer mblk indicates a waiting client upstream. 15870 * We complete here the processing begun in 15871 * either tcp_bind() or tcp_connect() by passing 15872 * upstream the reply message they supplied. 15873 */ 15874 mp1 = mp; 15875 mp = mp->b_cont; 15876 freeb(mp1); 15877 if (mp) 15878 break; 15879 return; 15880 case T_ERROR_ACK: 15881 if (tcp->tcp_debug) { 15882 (void) strlog(TCP_MODULE_ID, 0, 1, 15883 SL_TRACE|SL_ERROR, 15884 "tcp_rput_other: case T_ERROR_ACK, " 15885 "ERROR_prim == %d", 15886 tea->ERROR_prim); 15887 } 15888 switch (tea->ERROR_prim) { 15889 case O_T_BIND_REQ: 15890 case T_BIND_REQ: 15891 tcp_bind_failed(tcp, mp, 15892 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15893 ENETUNREACH : EADDRNOTAVAIL)); 15894 return; 15895 case T_UNBIND_REQ: 15896 tcp->tcp_hard_binding = B_FALSE; 15897 tcp->tcp_hard_bound = B_FALSE; 15898 if (mp->b_cont) { 15899 freemsg(mp->b_cont); 15900 mp->b_cont = NULL; 15901 } 15902 if (tcp->tcp_unbind_pending) 15903 tcp->tcp_unbind_pending = 0; 15904 else { 15905 /* From tcp_ip_unbind() - free */ 15906 freemsg(mp); 15907 return; 15908 } 15909 break; 15910 case T_SVR4_OPTMGMT_REQ: 15911 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15912 /* T_OPTMGMT_REQ generated by TCP */ 15913 printf("T_SVR4_OPTMGMT_REQ failed " 15914 "%d/%d - dropped (cnt %d)\n", 15915 tea->TLI_error, tea->UNIX_error, 15916 tcp->tcp_drop_opt_ack_cnt); 15917 freemsg(mp); 15918 tcp->tcp_drop_opt_ack_cnt--; 15919 return; 15920 } 15921 break; 15922 } 15923 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15924 tcp->tcp_drop_opt_ack_cnt > 0) { 15925 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15926 "- dropped (cnt %d)\n", 15927 tea->TLI_error, tea->UNIX_error, 15928 tcp->tcp_drop_opt_ack_cnt); 15929 freemsg(mp); 15930 tcp->tcp_drop_opt_ack_cnt--; 15931 return; 15932 } 15933 break; 15934 case T_OPTMGMT_ACK: 15935 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15936 /* T_OPTMGMT_REQ generated by TCP */ 15937 freemsg(mp); 15938 tcp->tcp_drop_opt_ack_cnt--; 15939 return; 15940 } 15941 break; 15942 default: 15943 break; 15944 } 15945 break; 15946 case M_CTL: 15947 /* 15948 * ICMP messages. 15949 */ 15950 tcp_icmp_error(tcp, mp); 15951 return; 15952 case M_FLUSH: 15953 if (*rptr & FLUSHR) 15954 flushq(q, FLUSHDATA); 15955 break; 15956 default: 15957 break; 15958 } 15959 /* 15960 * Make sure we set this bit before sending the ACK for 15961 * bind. Otherwise accept could possibly run and free 15962 * this tcp struct. 15963 */ 15964 putnext(q, mp); 15965 } 15966 15967 /* 15968 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15969 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15970 * tcp_rsrv() try again. 15971 */ 15972 static void 15973 tcp_ordrel_kick(void *arg) 15974 { 15975 conn_t *connp = (conn_t *)arg; 15976 tcp_t *tcp = connp->conn_tcp; 15977 15978 tcp->tcp_ordrelid = 0; 15979 tcp->tcp_timeout = B_FALSE; 15980 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15981 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15982 qenable(tcp->tcp_rq); 15983 } 15984 } 15985 15986 /* ARGSUSED */ 15987 static void 15988 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15989 { 15990 conn_t *connp = (conn_t *)arg; 15991 tcp_t *tcp = connp->conn_tcp; 15992 queue_t *q = tcp->tcp_rq; 15993 uint_t thwin; 15994 15995 freeb(mp); 15996 15997 TCP_STAT(tcp_rsrv_calls); 15998 15999 if (TCP_IS_DETACHED(tcp) || q == NULL) { 16000 return; 16001 } 16002 16003 if (tcp->tcp_fused) { 16004 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16005 16006 ASSERT(tcp->tcp_fused); 16007 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 16008 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 16009 ASSERT(!TCP_IS_DETACHED(tcp)); 16010 ASSERT(tcp->tcp_connp->conn_sqp == 16011 peer_tcp->tcp_connp->conn_sqp); 16012 16013 if (tcp->tcp_rcv_list != NULL) 16014 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 16015 16016 tcp_clrqfull(peer_tcp); 16017 TCP_STAT(tcp_fusion_backenabled); 16018 return; 16019 } 16020 16021 if (canputnext(q)) { 16022 tcp->tcp_rwnd = q->q_hiwat; 16023 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 16024 << tcp->tcp_rcv_ws; 16025 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 16026 /* 16027 * Send back a window update immediately if TCP is above 16028 * ESTABLISHED state and the increase of the rcv window 16029 * that the other side knows is at least 1 MSS after flow 16030 * control is lifted. 16031 */ 16032 if (tcp->tcp_state >= TCPS_ESTABLISHED && 16033 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 16034 tcp_xmit_ctl(NULL, tcp, 16035 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 16036 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 16037 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 16038 } 16039 } 16040 /* Handle a failure to allocate a T_ORDREL_IND here */ 16041 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 16042 ASSERT(tcp->tcp_listener == NULL); 16043 if (tcp->tcp_rcv_list != NULL) { 16044 (void) tcp_rcv_drain(q, tcp); 16045 } 16046 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 16047 mp = mi_tpi_ordrel_ind(); 16048 if (mp) { 16049 tcp->tcp_ordrel_done = B_TRUE; 16050 putnext(q, mp); 16051 if (tcp->tcp_deferred_clean_death) { 16052 /* 16053 * tcp_clean_death was deferred for 16054 * T_ORDREL_IND - do it now 16055 */ 16056 tcp->tcp_deferred_clean_death = B_FALSE; 16057 (void) tcp_clean_death(tcp, 16058 tcp->tcp_client_errno, 22); 16059 } 16060 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16061 /* 16062 * If there isn't already a timer running 16063 * start one. Use a 4 second 16064 * timer as a fallback since it can't fail. 16065 */ 16066 tcp->tcp_timeout = B_TRUE; 16067 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16068 MSEC_TO_TICK(4000)); 16069 } 16070 } 16071 } 16072 16073 /* 16074 * The read side service routine is called mostly when we get back-enabled as a 16075 * result of flow control relief. Since we don't actually queue anything in 16076 * TCP, we have no data to send out of here. What we do is clear the receive 16077 * window, and send out a window update. 16078 * This routine is also called to drive an orderly release message upstream 16079 * if the attempt in tcp_rput failed. 16080 */ 16081 static void 16082 tcp_rsrv(queue_t *q) 16083 { 16084 conn_t *connp = Q_TO_CONN(q); 16085 tcp_t *tcp = connp->conn_tcp; 16086 mblk_t *mp; 16087 16088 /* No code does a putq on the read side */ 16089 ASSERT(q->q_first == NULL); 16090 16091 /* Nothing to do for the default queue */ 16092 if (q == tcp_g_q) { 16093 return; 16094 } 16095 16096 mp = allocb(0, BPRI_HI); 16097 if (mp == NULL) { 16098 /* 16099 * We are under memory pressure. Return for now and we 16100 * we will be called again later. 16101 */ 16102 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16103 /* 16104 * If there isn't already a timer running 16105 * start one. Use a 4 second 16106 * timer as a fallback since it can't fail. 16107 */ 16108 tcp->tcp_timeout = B_TRUE; 16109 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16110 MSEC_TO_TICK(4000)); 16111 } 16112 return; 16113 } 16114 CONN_INC_REF(connp); 16115 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16116 SQTAG_TCP_RSRV); 16117 } 16118 16119 /* 16120 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16121 * We do not allow the receive window to shrink. After setting rwnd, 16122 * set the flow control hiwat of the stream. 16123 * 16124 * This function is called in 2 cases: 16125 * 16126 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16127 * connection (passive open) and in tcp_rput_data() for active connect. 16128 * This is called after tcp_mss_set() when the desired MSS value is known. 16129 * This makes sure that our window size is a mutiple of the other side's 16130 * MSS. 16131 * 2) Handling SO_RCVBUF option. 16132 * 16133 * It is ASSUMED that the requested size is a multiple of the current MSS. 16134 * 16135 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16136 * user requests so. 16137 */ 16138 static int 16139 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16140 { 16141 uint32_t mss = tcp->tcp_mss; 16142 uint32_t old_max_rwnd; 16143 uint32_t max_transmittable_rwnd; 16144 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16145 16146 if (tcp_detached) 16147 old_max_rwnd = tcp->tcp_rwnd; 16148 else 16149 old_max_rwnd = tcp->tcp_rq->q_hiwat; 16150 16151 /* 16152 * Insist on a receive window that is at least 16153 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16154 * funny TCP interactions of Nagle algorithm, SWS avoidance 16155 * and delayed acknowledgement. 16156 */ 16157 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 16158 16159 /* 16160 * If window size info has already been exchanged, TCP should not 16161 * shrink the window. Shrinking window is doable if done carefully. 16162 * We may add that support later. But so far there is not a real 16163 * need to do that. 16164 */ 16165 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16166 /* MSS may have changed, do a round up again. */ 16167 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16168 } 16169 16170 /* 16171 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16172 * can be applied even before the window scale option is decided. 16173 */ 16174 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16175 if (rwnd > max_transmittable_rwnd) { 16176 rwnd = max_transmittable_rwnd - 16177 (max_transmittable_rwnd % mss); 16178 if (rwnd < mss) 16179 rwnd = max_transmittable_rwnd; 16180 /* 16181 * If we're over the limit we may have to back down tcp_rwnd. 16182 * The increment below won't work for us. So we set all three 16183 * here and the increment below will have no effect. 16184 */ 16185 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16186 } 16187 if (tcp->tcp_localnet) { 16188 tcp->tcp_rack_abs_max = 16189 MIN(tcp_local_dacks_max, rwnd / mss / 2); 16190 } else { 16191 /* 16192 * For a remote host on a different subnet (through a router), 16193 * we ack every other packet to be conforming to RFC1122. 16194 * tcp_deferred_acks_max is default to 2. 16195 */ 16196 tcp->tcp_rack_abs_max = 16197 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 16198 } 16199 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16200 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16201 else 16202 tcp->tcp_rack_cur_max = 0; 16203 /* 16204 * Increment the current rwnd by the amount the maximum grew (we 16205 * can not overwrite it since we might be in the middle of a 16206 * connection.) 16207 */ 16208 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16209 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16210 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16211 tcp->tcp_cwnd_max = rwnd; 16212 16213 if (tcp_detached) 16214 return (rwnd); 16215 /* 16216 * We set the maximum receive window into rq->q_hiwat. 16217 * This is not actually used for flow control. 16218 */ 16219 tcp->tcp_rq->q_hiwat = rwnd; 16220 /* 16221 * Set the Stream head high water mark. This doesn't have to be 16222 * here, since we are simply using default values, but we would 16223 * prefer to choose these values algorithmically, with a likely 16224 * relationship to rwnd. For fused loopback tcp, we double the 16225 * amount of buffer in order to simulate the normal tcp case. 16226 */ 16227 if (tcp->tcp_fused) { 16228 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd << 1, 16229 tcp_sth_rcv_hiwat)); 16230 } else { 16231 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, 16232 tcp_sth_rcv_hiwat)); 16233 } 16234 return (rwnd); 16235 } 16236 16237 /* 16238 * Return SNMP stuff in buffer in mpdata. 16239 */ 16240 static int 16241 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16242 { 16243 mblk_t *mpdata; 16244 mblk_t *mp_conn_ctl = NULL; 16245 mblk_t *mp_conn_data; 16246 mblk_t *mp6_conn_ctl = NULL; 16247 mblk_t *mp6_conn_data; 16248 mblk_t *mp_conn_tail = NULL; 16249 mblk_t *mp6_conn_tail = NULL; 16250 struct opthdr *optp; 16251 mib2_tcpConnEntry_t tce; 16252 mib2_tcp6ConnEntry_t tce6; 16253 connf_t *connfp; 16254 conn_t *connp; 16255 int i; 16256 boolean_t ispriv; 16257 zoneid_t zoneid; 16258 16259 if (mpctl == NULL || 16260 (mpdata = mpctl->b_cont) == NULL || 16261 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16262 (mp6_conn_ctl = copymsg(mpctl)) == NULL) { 16263 if (mp_conn_ctl != NULL) 16264 freemsg(mp_conn_ctl); 16265 if (mp6_conn_ctl != NULL) 16266 freemsg(mp6_conn_ctl); 16267 return (0); 16268 } 16269 16270 /* build table of connections -- need count in fixed part */ 16271 mp_conn_data = mp_conn_ctl->b_cont; 16272 mp6_conn_data = mp6_conn_ctl->b_cont; 16273 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 16274 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 16275 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 16276 SET_MIB(tcp_mib.tcpMaxConn, -1); 16277 SET_MIB(tcp_mib.tcpCurrEstab, 0); 16278 16279 ispriv = 16280 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16281 zoneid = Q_TO_CONN(q)->conn_zoneid; 16282 16283 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16284 16285 connfp = &ipcl_globalhash_fanout[i]; 16286 16287 connp = NULL; 16288 16289 while ((connp = tcp_get_next_conn(connfp, connp))) { 16290 tcp_t *tcp; 16291 16292 if (connp->conn_zoneid != zoneid) 16293 continue; /* not in this zone */ 16294 16295 tcp = connp->conn_tcp; 16296 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 16297 tcp->tcp_ibsegs = 0; 16298 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 16299 tcp->tcp_obsegs = 0; 16300 16301 tce6.tcp6ConnState = tce.tcpConnState = 16302 tcp_snmp_state(tcp); 16303 if (tce.tcpConnState == MIB2_TCP_established || 16304 tce.tcpConnState == MIB2_TCP_closeWait) 16305 BUMP_MIB(&tcp_mib, tcpCurrEstab); 16306 16307 /* Create a message to report on IPv6 entries */ 16308 if (tcp->tcp_ipversion == IPV6_VERSION) { 16309 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16310 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16311 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16312 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16313 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16314 /* Don't want just anybody seeing these... */ 16315 if (ispriv) { 16316 tce6.tcp6ConnEntryInfo.ce_snxt = 16317 tcp->tcp_snxt; 16318 tce6.tcp6ConnEntryInfo.ce_suna = 16319 tcp->tcp_suna; 16320 tce6.tcp6ConnEntryInfo.ce_rnxt = 16321 tcp->tcp_rnxt; 16322 tce6.tcp6ConnEntryInfo.ce_rack = 16323 tcp->tcp_rack; 16324 } else { 16325 /* 16326 * Netstat, unfortunately, uses this to 16327 * get send/receive queue sizes. How to fix? 16328 * Why not compute the difference only? 16329 */ 16330 tce6.tcp6ConnEntryInfo.ce_snxt = 16331 tcp->tcp_snxt - tcp->tcp_suna; 16332 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16333 tce6.tcp6ConnEntryInfo.ce_rnxt = 16334 tcp->tcp_rnxt - tcp->tcp_rack; 16335 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16336 } 16337 16338 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16339 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16340 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16341 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16342 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16343 (void) snmp_append_data2(mp6_conn_data, &mp6_conn_tail, 16344 (char *)&tce6, sizeof (tce6)); 16345 } 16346 /* 16347 * Create an IPv4 table entry for IPv4 entries and also 16348 * for IPv6 entries which are bound to in6addr_any 16349 * but don't have IPV6_V6ONLY set. 16350 * (i.e. anything an IPv4 peer could connect to) 16351 */ 16352 if (tcp->tcp_ipversion == IPV4_VERSION || 16353 (tcp->tcp_state <= TCPS_LISTEN && 16354 !tcp->tcp_connp->conn_ipv6_v6only && 16355 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16356 if (tcp->tcp_ipversion == IPV6_VERSION) { 16357 tce.tcpConnRemAddress = INADDR_ANY; 16358 tce.tcpConnLocalAddress = INADDR_ANY; 16359 } else { 16360 tce.tcpConnRemAddress = 16361 tcp->tcp_remote; 16362 tce.tcpConnLocalAddress = 16363 tcp->tcp_ip_src; 16364 } 16365 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16366 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16367 /* Don't want just anybody seeing these... */ 16368 if (ispriv) { 16369 tce.tcpConnEntryInfo.ce_snxt = 16370 tcp->tcp_snxt; 16371 tce.tcpConnEntryInfo.ce_suna = 16372 tcp->tcp_suna; 16373 tce.tcpConnEntryInfo.ce_rnxt = 16374 tcp->tcp_rnxt; 16375 tce.tcpConnEntryInfo.ce_rack = 16376 tcp->tcp_rack; 16377 } else { 16378 /* 16379 * Netstat, unfortunately, uses this to 16380 * get send/receive queue sizes. How 16381 * to fix? 16382 * Why not compute the difference only? 16383 */ 16384 tce.tcpConnEntryInfo.ce_snxt = 16385 tcp->tcp_snxt - tcp->tcp_suna; 16386 tce.tcpConnEntryInfo.ce_suna = 0; 16387 tce.tcpConnEntryInfo.ce_rnxt = 16388 tcp->tcp_rnxt - tcp->tcp_rack; 16389 tce.tcpConnEntryInfo.ce_rack = 0; 16390 } 16391 16392 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16393 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16394 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16395 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16396 tce.tcpConnEntryInfo.ce_state = 16397 tcp->tcp_state; 16398 (void) snmp_append_data2(mp_conn_data, 16399 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16400 } 16401 } 16402 } 16403 16404 /* fixed length structure for IPv4 and IPv6 counters */ 16405 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16406 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 16407 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16408 optp->level = MIB2_TCP; 16409 optp->name = 0; 16410 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 16411 optp->len = msgdsize(mpdata); 16412 qreply(q, mpctl); 16413 16414 /* table of connections... */ 16415 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16416 sizeof (struct T_optmgmt_ack)]; 16417 optp->level = MIB2_TCP; 16418 optp->name = MIB2_TCP_CONN; 16419 optp->len = msgdsize(mp_conn_data); 16420 qreply(q, mp_conn_ctl); 16421 16422 /* table of IPv6 connections... */ 16423 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16424 sizeof (struct T_optmgmt_ack)]; 16425 optp->level = MIB2_TCP6; 16426 optp->name = MIB2_TCP6_CONN; 16427 optp->len = msgdsize(mp6_conn_data); 16428 qreply(q, mp6_conn_ctl); 16429 return (1); 16430 } 16431 16432 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16433 /* ARGSUSED */ 16434 static int 16435 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16436 { 16437 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16438 16439 switch (level) { 16440 case MIB2_TCP: 16441 switch (name) { 16442 case 13: 16443 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16444 return (0); 16445 /* TODO: delete entry defined by tce */ 16446 return (1); 16447 default: 16448 return (0); 16449 } 16450 default: 16451 return (1); 16452 } 16453 } 16454 16455 /* Translate TCP state to MIB2 TCP state. */ 16456 static int 16457 tcp_snmp_state(tcp_t *tcp) 16458 { 16459 if (tcp == NULL) 16460 return (0); 16461 16462 switch (tcp->tcp_state) { 16463 case TCPS_CLOSED: 16464 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16465 case TCPS_BOUND: 16466 return (MIB2_TCP_closed); 16467 case TCPS_LISTEN: 16468 return (MIB2_TCP_listen); 16469 case TCPS_SYN_SENT: 16470 return (MIB2_TCP_synSent); 16471 case TCPS_SYN_RCVD: 16472 return (MIB2_TCP_synReceived); 16473 case TCPS_ESTABLISHED: 16474 return (MIB2_TCP_established); 16475 case TCPS_CLOSE_WAIT: 16476 return (MIB2_TCP_closeWait); 16477 case TCPS_FIN_WAIT_1: 16478 return (MIB2_TCP_finWait1); 16479 case TCPS_CLOSING: 16480 return (MIB2_TCP_closing); 16481 case TCPS_LAST_ACK: 16482 return (MIB2_TCP_lastAck); 16483 case TCPS_FIN_WAIT_2: 16484 return (MIB2_TCP_finWait2); 16485 case TCPS_TIME_WAIT: 16486 return (MIB2_TCP_timeWait); 16487 default: 16488 return (0); 16489 } 16490 } 16491 16492 static char tcp_report_header[] = 16493 "TCP " MI_COL_HDRPAD_STR 16494 "zone dest snxt suna " 16495 "swnd rnxt rack rwnd rto mss w sw rw t " 16496 "recent [lport,fport] state"; 16497 16498 /* 16499 * TCP status report triggered via the Named Dispatch mechanism. 16500 */ 16501 /* ARGSUSED */ 16502 static void 16503 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16504 cred_t *cr) 16505 { 16506 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16507 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 16508 char cflag; 16509 in6_addr_t v6dst; 16510 char buf[80]; 16511 uint_t print_len, buf_len; 16512 16513 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16514 if (buf_len <= 0) 16515 return; 16516 16517 if (hashval >= 0) 16518 (void) sprintf(hash, "%03d ", hashval); 16519 else 16520 hash[0] = '\0'; 16521 16522 /* 16523 * Note that we use the remote address in the tcp_b structure. 16524 * This means that it will print out the real destination address, 16525 * not the next hop's address if source routing is used. This 16526 * avoid the confusion on the output because user may not 16527 * know that source routing is used for a connection. 16528 */ 16529 if (tcp->tcp_ipversion == IPV4_VERSION) { 16530 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16531 } else { 16532 v6dst = tcp->tcp_remote_v6; 16533 } 16534 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16535 /* 16536 * the ispriv checks are so that normal users cannot determine 16537 * sequence number information using NDD. 16538 */ 16539 16540 if (TCP_IS_DETACHED(tcp)) 16541 cflag = '*'; 16542 else 16543 cflag = ' '; 16544 print_len = snprintf((char *)mp->b_wptr, buf_len, 16545 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16546 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16547 hash, 16548 (void *)tcp, 16549 tcp->tcp_connp->conn_zoneid, 16550 addrbuf, 16551 (ispriv) ? tcp->tcp_snxt : 0, 16552 (ispriv) ? tcp->tcp_suna : 0, 16553 tcp->tcp_swnd, 16554 (ispriv) ? tcp->tcp_rnxt : 0, 16555 (ispriv) ? tcp->tcp_rack : 0, 16556 tcp->tcp_rwnd, 16557 tcp->tcp_rto, 16558 tcp->tcp_mss, 16559 tcp->tcp_snd_ws_ok, 16560 tcp->tcp_snd_ws, 16561 tcp->tcp_rcv_ws, 16562 tcp->tcp_snd_ts_ok, 16563 tcp->tcp_ts_recent, 16564 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16565 if (print_len < buf_len) { 16566 ((mblk_t *)mp)->b_wptr += print_len; 16567 } else { 16568 ((mblk_t *)mp)->b_wptr += buf_len; 16569 } 16570 } 16571 16572 /* 16573 * TCP status report (for listeners only) triggered via the Named Dispatch 16574 * mechanism. 16575 */ 16576 /* ARGSUSED */ 16577 static void 16578 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16579 { 16580 char addrbuf[INET6_ADDRSTRLEN]; 16581 in6_addr_t v6dst; 16582 uint_t print_len, buf_len; 16583 16584 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16585 if (buf_len <= 0) 16586 return; 16587 16588 if (tcp->tcp_ipversion == IPV4_VERSION) { 16589 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16590 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16591 } else { 16592 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16593 addrbuf, sizeof (addrbuf)); 16594 } 16595 print_len = snprintf((char *)mp->b_wptr, buf_len, 16596 "%03d " 16597 MI_COL_PTRFMT_STR 16598 "%d %s %05u %08u %d/%d/%d%c\n", 16599 hashval, (void *)tcp, 16600 tcp->tcp_connp->conn_zoneid, 16601 addrbuf, 16602 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16603 tcp->tcp_conn_req_seqnum, 16604 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16605 tcp->tcp_conn_req_max, 16606 tcp->tcp_syn_defense ? '*' : ' '); 16607 if (print_len < buf_len) { 16608 ((mblk_t *)mp)->b_wptr += print_len; 16609 } else { 16610 ((mblk_t *)mp)->b_wptr += buf_len; 16611 } 16612 } 16613 16614 /* TCP status report triggered via the Named Dispatch mechanism. */ 16615 /* ARGSUSED */ 16616 static int 16617 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16618 { 16619 tcp_t *tcp; 16620 int i; 16621 conn_t *connp; 16622 connf_t *connfp; 16623 zoneid_t zoneid; 16624 16625 /* 16626 * Because of the ndd constraint, at most we can have 64K buffer 16627 * to put in all TCP info. So to be more efficient, just 16628 * allocate a 64K buffer here, assuming we need that large buffer. 16629 * This may be a problem as any user can read tcp_status. Therefore 16630 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16631 * This should be OK as normal users should not do this too often. 16632 */ 16633 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16634 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16635 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16636 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16637 return (0); 16638 } 16639 } 16640 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16641 /* The following may work even if we cannot get a large buf. */ 16642 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16643 return (0); 16644 } 16645 16646 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16647 16648 zoneid = Q_TO_CONN(q)->conn_zoneid; 16649 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16650 16651 connfp = &ipcl_globalhash_fanout[i]; 16652 16653 connp = NULL; 16654 16655 while ((connp = tcp_get_next_conn(connfp, connp))) { 16656 tcp = connp->conn_tcp; 16657 if (zoneid != GLOBAL_ZONEID && 16658 zoneid != connp->conn_zoneid) 16659 continue; 16660 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16661 cr); 16662 } 16663 16664 } 16665 16666 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16667 return (0); 16668 } 16669 16670 /* TCP status report triggered via the Named Dispatch mechanism. */ 16671 /* ARGSUSED */ 16672 static int 16673 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16674 { 16675 tf_t *tbf; 16676 tcp_t *tcp; 16677 int i; 16678 zoneid_t zoneid; 16679 16680 /* Refer to comments in tcp_status_report(). */ 16681 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16682 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16683 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16684 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16685 return (0); 16686 } 16687 } 16688 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16689 /* The following may work even if we cannot get a large buf. */ 16690 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16691 return (0); 16692 } 16693 16694 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16695 16696 zoneid = Q_TO_CONN(q)->conn_zoneid; 16697 16698 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 16699 tbf = &tcp_bind_fanout[i]; 16700 mutex_enter(&tbf->tf_lock); 16701 for (tcp = tbf->tf_tcp; tcp != NULL; 16702 tcp = tcp->tcp_bind_hash) { 16703 if (zoneid != GLOBAL_ZONEID && 16704 zoneid != tcp->tcp_connp->conn_zoneid) 16705 continue; 16706 CONN_INC_REF(tcp->tcp_connp); 16707 tcp_report_item(mp->b_cont, tcp, i, 16708 Q_TO_TCP(q), cr); 16709 CONN_DEC_REF(tcp->tcp_connp); 16710 } 16711 mutex_exit(&tbf->tf_lock); 16712 } 16713 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16714 return (0); 16715 } 16716 16717 /* TCP status report triggered via the Named Dispatch mechanism. */ 16718 /* ARGSUSED */ 16719 static int 16720 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16721 { 16722 connf_t *connfp; 16723 conn_t *connp; 16724 tcp_t *tcp; 16725 int i; 16726 zoneid_t zoneid; 16727 16728 /* Refer to comments in tcp_status_report(). */ 16729 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16730 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16731 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16732 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16733 return (0); 16734 } 16735 } 16736 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16737 /* The following may work even if we cannot get a large buf. */ 16738 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16739 return (0); 16740 } 16741 16742 (void) mi_mpprintf(mp, 16743 " TCP " MI_COL_HDRPAD_STR 16744 "zone IP addr port seqnum backlog (q0/q/max)"); 16745 16746 zoneid = Q_TO_CONN(q)->conn_zoneid; 16747 16748 for (i = 0; i < ipcl_bind_fanout_size; i++) { 16749 connfp = &ipcl_bind_fanout[i]; 16750 connp = NULL; 16751 while ((connp = tcp_get_next_conn(connfp, connp))) { 16752 tcp = connp->conn_tcp; 16753 if (zoneid != GLOBAL_ZONEID && 16754 zoneid != connp->conn_zoneid) 16755 continue; 16756 tcp_report_listener(mp->b_cont, tcp, i); 16757 } 16758 } 16759 16760 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16761 return (0); 16762 } 16763 16764 /* TCP status report triggered via the Named Dispatch mechanism. */ 16765 /* ARGSUSED */ 16766 static int 16767 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16768 { 16769 connf_t *connfp; 16770 conn_t *connp; 16771 tcp_t *tcp; 16772 int i; 16773 zoneid_t zoneid; 16774 16775 /* Refer to comments in tcp_status_report(). */ 16776 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16777 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16778 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16779 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16780 return (0); 16781 } 16782 } 16783 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16784 /* The following may work even if we cannot get a large buf. */ 16785 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16786 return (0); 16787 } 16788 16789 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16790 ipcl_conn_fanout_size); 16791 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16792 16793 zoneid = Q_TO_CONN(q)->conn_zoneid; 16794 16795 for (i = 0; i < ipcl_conn_fanout_size; i++) { 16796 connfp = &ipcl_conn_fanout[i]; 16797 connp = NULL; 16798 while ((connp = tcp_get_next_conn(connfp, connp))) { 16799 tcp = connp->conn_tcp; 16800 if (zoneid != GLOBAL_ZONEID && 16801 zoneid != connp->conn_zoneid) 16802 continue; 16803 tcp_report_item(mp->b_cont, tcp, i, 16804 Q_TO_TCP(q), cr); 16805 } 16806 } 16807 16808 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16809 return (0); 16810 } 16811 16812 /* TCP status report triggered via the Named Dispatch mechanism. */ 16813 /* ARGSUSED */ 16814 static int 16815 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16816 { 16817 tf_t *tf; 16818 tcp_t *tcp; 16819 int i; 16820 zoneid_t zoneid; 16821 16822 /* Refer to comments in tcp_status_report(). */ 16823 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16824 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16825 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16826 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16827 return (0); 16828 } 16829 } 16830 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16831 /* The following may work even if we cannot get a large buf. */ 16832 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16833 return (0); 16834 } 16835 16836 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16837 16838 zoneid = Q_TO_CONN(q)->conn_zoneid; 16839 16840 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16841 tf = &tcp_acceptor_fanout[i]; 16842 mutex_enter(&tf->tf_lock); 16843 for (tcp = tf->tf_tcp; tcp != NULL; 16844 tcp = tcp->tcp_acceptor_hash) { 16845 if (zoneid != GLOBAL_ZONEID && 16846 zoneid != tcp->tcp_connp->conn_zoneid) 16847 continue; 16848 tcp_report_item(mp->b_cont, tcp, i, 16849 Q_TO_TCP(q), cr); 16850 } 16851 mutex_exit(&tf->tf_lock); 16852 } 16853 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16854 return (0); 16855 } 16856 16857 /* 16858 * tcp_timer is the timer service routine. It handles the retransmission, 16859 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16860 * from the state of the tcp instance what kind of action needs to be done 16861 * at the time it is called. 16862 */ 16863 static void 16864 tcp_timer(void *arg) 16865 { 16866 mblk_t *mp; 16867 clock_t first_threshold; 16868 clock_t second_threshold; 16869 clock_t ms; 16870 uint32_t mss; 16871 conn_t *connp = (conn_t *)arg; 16872 tcp_t *tcp = connp->conn_tcp; 16873 16874 tcp->tcp_timer_tid = 0; 16875 16876 if (tcp->tcp_fused) 16877 return; 16878 16879 first_threshold = tcp->tcp_first_timer_threshold; 16880 second_threshold = tcp->tcp_second_timer_threshold; 16881 switch (tcp->tcp_state) { 16882 case TCPS_IDLE: 16883 case TCPS_BOUND: 16884 case TCPS_LISTEN: 16885 return; 16886 case TCPS_SYN_RCVD: { 16887 tcp_t *listener = tcp->tcp_listener; 16888 16889 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16890 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16891 /* it's our first timeout */ 16892 tcp->tcp_syn_rcvd_timeout = 1; 16893 mutex_enter(&listener->tcp_eager_lock); 16894 listener->tcp_syn_rcvd_timeout++; 16895 if (!listener->tcp_syn_defense && 16896 (listener->tcp_syn_rcvd_timeout > 16897 (tcp_conn_req_max_q0 >> 2)) && 16898 (tcp_conn_req_max_q0 > 200)) { 16899 /* We may be under attack. Put on a defense. */ 16900 listener->tcp_syn_defense = B_TRUE; 16901 cmn_err(CE_WARN, "High TCP connect timeout " 16902 "rate! System (port %d) may be under a " 16903 "SYN flood attack!", 16904 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16905 16906 listener->tcp_ip_addr_cache = kmem_zalloc( 16907 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16908 KM_NOSLEEP); 16909 } 16910 mutex_exit(&listener->tcp_eager_lock); 16911 } 16912 } 16913 /* FALLTHRU */ 16914 case TCPS_SYN_SENT: 16915 first_threshold = tcp->tcp_first_ctimer_threshold; 16916 second_threshold = tcp->tcp_second_ctimer_threshold; 16917 break; 16918 case TCPS_ESTABLISHED: 16919 case TCPS_FIN_WAIT_1: 16920 case TCPS_CLOSING: 16921 case TCPS_CLOSE_WAIT: 16922 case TCPS_LAST_ACK: 16923 /* If we have data to rexmit */ 16924 if (tcp->tcp_suna != tcp->tcp_snxt) { 16925 clock_t time_to_wait; 16926 16927 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16928 if (!tcp->tcp_xmit_head) 16929 break; 16930 time_to_wait = lbolt - 16931 (clock_t)tcp->tcp_xmit_head->b_prev; 16932 time_to_wait = tcp->tcp_rto - 16933 TICK_TO_MSEC(time_to_wait); 16934 /* 16935 * If the timer fires too early, 1 clock tick earlier, 16936 * restart the timer. 16937 */ 16938 if (time_to_wait > msec_per_tick) { 16939 TCP_STAT(tcp_timer_fire_early); 16940 TCP_TIMER_RESTART(tcp, time_to_wait); 16941 return; 16942 } 16943 /* 16944 * When we probe zero windows, we force the swnd open. 16945 * If our peer acks with a closed window swnd will be 16946 * set to zero by tcp_rput(). As long as we are 16947 * receiving acks tcp_rput will 16948 * reset 'tcp_ms_we_have_waited' so as not to trip the 16949 * first and second interval actions. NOTE: the timer 16950 * interval is allowed to continue its exponential 16951 * backoff. 16952 */ 16953 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16954 if (tcp->tcp_debug) { 16955 (void) strlog(TCP_MODULE_ID, 0, 1, 16956 SL_TRACE, "tcp_timer: zero win"); 16957 } 16958 } else { 16959 /* 16960 * After retransmission, we need to do 16961 * slow start. Set the ssthresh to one 16962 * half of current effective window and 16963 * cwnd to one MSS. Also reset 16964 * tcp_cwnd_cnt. 16965 * 16966 * Note that if tcp_ssthresh is reduced because 16967 * of ECN, do not reduce it again unless it is 16968 * already one window of data away (tcp_cwr 16969 * should then be cleared) or this is a 16970 * timeout for a retransmitted segment. 16971 */ 16972 uint32_t npkt; 16973 16974 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16975 npkt = ((tcp->tcp_timer_backoff ? 16976 tcp->tcp_cwnd_ssthresh : 16977 tcp->tcp_snxt - 16978 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16979 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16980 tcp->tcp_mss; 16981 } 16982 tcp->tcp_cwnd = tcp->tcp_mss; 16983 tcp->tcp_cwnd_cnt = 0; 16984 if (tcp->tcp_ecn_ok) { 16985 tcp->tcp_cwr = B_TRUE; 16986 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16987 tcp->tcp_ecn_cwr_sent = B_FALSE; 16988 } 16989 } 16990 break; 16991 } 16992 /* 16993 * We have something to send yet we cannot send. The 16994 * reason can be: 16995 * 16996 * 1. Zero send window: we need to do zero window probe. 16997 * 2. Zero cwnd: because of ECN, we need to "clock out 16998 * segments. 16999 * 3. SWS avoidance: receiver may have shrunk window, 17000 * reset our knowledge. 17001 * 17002 * Note that condition 2 can happen with either 1 or 17003 * 3. But 1 and 3 are exclusive. 17004 */ 17005 if (tcp->tcp_unsent != 0) { 17006 if (tcp->tcp_cwnd == 0) { 17007 /* 17008 * Set tcp_cwnd to 1 MSS so that a 17009 * new segment can be sent out. We 17010 * are "clocking out" new data when 17011 * the network is really congested. 17012 */ 17013 ASSERT(tcp->tcp_ecn_ok); 17014 tcp->tcp_cwnd = tcp->tcp_mss; 17015 } 17016 if (tcp->tcp_swnd == 0) { 17017 /* Extend window for zero window probe */ 17018 tcp->tcp_swnd++; 17019 tcp->tcp_zero_win_probe = B_TRUE; 17020 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 17021 } else { 17022 /* 17023 * Handle timeout from sender SWS avoidance. 17024 * Reset our knowledge of the max send window 17025 * since the receiver might have reduced its 17026 * receive buffer. Avoid setting tcp_max_swnd 17027 * to one since that will essentially disable 17028 * the SWS checks. 17029 * 17030 * Note that since we don't have a SWS 17031 * state variable, if the timeout is set 17032 * for ECN but not for SWS, this 17033 * code will also be executed. This is 17034 * fine as tcp_max_swnd is updated 17035 * constantly and it will not affect 17036 * anything. 17037 */ 17038 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17039 } 17040 tcp_wput_data(tcp, NULL, B_FALSE); 17041 return; 17042 } 17043 /* Is there a FIN that needs to be to re retransmitted? */ 17044 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17045 !tcp->tcp_fin_acked) 17046 break; 17047 /* Nothing to do, return without restarting timer. */ 17048 TCP_STAT(tcp_timer_fire_miss); 17049 return; 17050 case TCPS_FIN_WAIT_2: 17051 /* 17052 * User closed the TCP endpoint and peer ACK'ed our FIN. 17053 * We waited some time for for peer's FIN, but it hasn't 17054 * arrived. We flush the connection now to avoid 17055 * case where the peer has rebooted. 17056 */ 17057 if (TCP_IS_DETACHED(tcp)) { 17058 (void) tcp_clean_death(tcp, 0, 23); 17059 } else { 17060 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 17061 } 17062 return; 17063 case TCPS_TIME_WAIT: 17064 (void) tcp_clean_death(tcp, 0, 24); 17065 return; 17066 default: 17067 if (tcp->tcp_debug) { 17068 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE|SL_ERROR, 17069 "tcp_timer: strange state (%d) %s", 17070 tcp->tcp_state, tcp_display(tcp, NULL, 17071 DISP_PORT_ONLY)); 17072 } 17073 return; 17074 } 17075 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17076 /* 17077 * For zero window probe, we need to send indefinitely, 17078 * unless we have not heard from the other side for some 17079 * time... 17080 */ 17081 if ((tcp->tcp_zero_win_probe == 0) || 17082 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17083 second_threshold)) { 17084 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 17085 /* 17086 * If TCP is in SYN_RCVD state, send back a 17087 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17088 * should be zero in TCPS_SYN_RCVD state. 17089 */ 17090 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17091 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17092 "in SYN_RCVD", 17093 tcp, tcp->tcp_snxt, 17094 tcp->tcp_rnxt, TH_RST | TH_ACK); 17095 } 17096 (void) tcp_clean_death(tcp, 17097 tcp->tcp_client_errno ? 17098 tcp->tcp_client_errno : ETIMEDOUT, 25); 17099 return; 17100 } else { 17101 /* 17102 * Set tcp_ms_we_have_waited to second_threshold 17103 * so that in next timeout, we will do the above 17104 * check (lbolt - tcp_last_recv_time). This is 17105 * also to avoid overflow. 17106 * 17107 * We don't need to decrement tcp_timer_backoff 17108 * to avoid overflow because it will be decremented 17109 * later if new timeout value is greater than 17110 * tcp_rexmit_interval_max. In the case when 17111 * tcp_rexmit_interval_max is greater than 17112 * second_threshold, it means that we will wait 17113 * longer than second_threshold to send the next 17114 * window probe. 17115 */ 17116 tcp->tcp_ms_we_have_waited = second_threshold; 17117 } 17118 } else if (ms > first_threshold) { 17119 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17120 tcp->tcp_xmit_head != NULL) { 17121 tcp->tcp_xmit_head = 17122 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17123 } 17124 /* 17125 * We have been retransmitting for too long... The RTT 17126 * we calculated is probably incorrect. Reinitialize it. 17127 * Need to compensate for 0 tcp_rtt_sa. Reset 17128 * tcp_rtt_update so that we won't accidentally cache a 17129 * bad value. But only do this if this is not a zero 17130 * window probe. 17131 */ 17132 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17133 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17134 (tcp->tcp_rtt_sa >> 5); 17135 tcp->tcp_rtt_sa = 0; 17136 tcp_ip_notify(tcp); 17137 tcp->tcp_rtt_update = 0; 17138 } 17139 } 17140 tcp->tcp_timer_backoff++; 17141 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17142 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17143 tcp_rexmit_interval_min) { 17144 /* 17145 * This means the original RTO is tcp_rexmit_interval_min. 17146 * So we will use tcp_rexmit_interval_min as the RTO value 17147 * and do the backoff. 17148 */ 17149 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 17150 } else { 17151 ms <<= tcp->tcp_timer_backoff; 17152 } 17153 if (ms > tcp_rexmit_interval_max) { 17154 ms = tcp_rexmit_interval_max; 17155 /* 17156 * ms is at max, decrement tcp_timer_backoff to avoid 17157 * overflow. 17158 */ 17159 tcp->tcp_timer_backoff--; 17160 } 17161 tcp->tcp_ms_we_have_waited += ms; 17162 if (tcp->tcp_zero_win_probe == 0) { 17163 tcp->tcp_rto = ms; 17164 } 17165 TCP_TIMER_RESTART(tcp, ms); 17166 /* 17167 * This is after a timeout and tcp_rto is backed off. Set 17168 * tcp_set_timer to 1 so that next time RTO is updated, we will 17169 * restart the timer with a correct value. 17170 */ 17171 tcp->tcp_set_timer = 1; 17172 mss = tcp->tcp_snxt - tcp->tcp_suna; 17173 if (mss > tcp->tcp_mss) 17174 mss = tcp->tcp_mss; 17175 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17176 mss = tcp->tcp_swnd; 17177 17178 if ((mp = tcp->tcp_xmit_head) != NULL) 17179 mp->b_prev = (mblk_t *)lbolt; 17180 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17181 B_TRUE); 17182 17183 /* 17184 * When slow start after retransmission begins, start with 17185 * this seq no. tcp_rexmit_max marks the end of special slow 17186 * start phase. tcp_snd_burst controls how many segments 17187 * can be sent because of an ack. 17188 */ 17189 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17190 tcp->tcp_snd_burst = TCP_CWND_SS; 17191 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17192 (tcp->tcp_unsent == 0)) { 17193 tcp->tcp_rexmit_max = tcp->tcp_fss; 17194 } else { 17195 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17196 } 17197 tcp->tcp_rexmit = B_TRUE; 17198 tcp->tcp_dupack_cnt = 0; 17199 17200 /* 17201 * Remove all rexmit SACK blk to start from fresh. 17202 */ 17203 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17204 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17205 tcp->tcp_num_notsack_blk = 0; 17206 tcp->tcp_cnt_notsack_list = 0; 17207 } 17208 if (mp == NULL) { 17209 return; 17210 } 17211 /* Attach credentials to retransmitted initial SYNs. */ 17212 if (tcp->tcp_state == TCPS_SYN_SENT) { 17213 mblk_setcred(mp, tcp->tcp_cred); 17214 DB_CPID(mp) = tcp->tcp_cpid; 17215 } 17216 17217 tcp->tcp_csuna = tcp->tcp_snxt; 17218 BUMP_MIB(&tcp_mib, tcpRetransSegs); 17219 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 17220 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 17221 tcp_send_data(tcp, tcp->tcp_wq, mp); 17222 17223 } 17224 17225 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17226 static void 17227 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17228 { 17229 conn_t *connp; 17230 17231 switch (tcp->tcp_state) { 17232 case TCPS_BOUND: 17233 case TCPS_LISTEN: 17234 break; 17235 default: 17236 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17237 return; 17238 } 17239 17240 /* 17241 * Need to clean up all the eagers since after the unbind, segments 17242 * will no longer be delivered to this listener stream. 17243 */ 17244 mutex_enter(&tcp->tcp_eager_lock); 17245 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17246 tcp_eager_cleanup(tcp, 0); 17247 } 17248 mutex_exit(&tcp->tcp_eager_lock); 17249 17250 if (tcp->tcp_ipversion == IPV4_VERSION) { 17251 tcp->tcp_ipha->ipha_src = 0; 17252 } else { 17253 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17254 } 17255 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17256 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17257 tcp_bind_hash_remove(tcp); 17258 tcp->tcp_state = TCPS_IDLE; 17259 tcp->tcp_mdt = B_FALSE; 17260 /* Send M_FLUSH according to TPI */ 17261 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17262 connp = tcp->tcp_connp; 17263 connp->conn_mdt_ok = B_FALSE; 17264 ipcl_hash_remove(connp); 17265 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17266 mp = mi_tpi_ok_ack_alloc(mp); 17267 putnext(tcp->tcp_rq, mp); 17268 } 17269 17270 /* 17271 * Don't let port fall into the privileged range. 17272 * Since the extra privileged ports can be arbitrary we also 17273 * ensure that we exclude those from consideration. 17274 * tcp_g_epriv_ports is not sorted thus we loop over it until 17275 * there are no changes. 17276 * 17277 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17278 * but instead the code relies on: 17279 * - the fact that the address of the array and its size never changes 17280 * - the atomic assignment of the elements of the array 17281 */ 17282 static in_port_t 17283 tcp_update_next_port(in_port_t port, boolean_t random) 17284 { 17285 int i; 17286 17287 if (random && tcp_random_anon_port != 0) { 17288 (void) random_get_pseudo_bytes((uint8_t *)&port, 17289 sizeof (in_port_t)); 17290 /* 17291 * Unless changed by a sys admin, the smallest anon port 17292 * is 32768 and the largest anon port is 65535. It is 17293 * very likely (50%) for the random port to be smaller 17294 * than the smallest anon port. When that happens, 17295 * add port % (anon port range) to the smallest anon 17296 * port to get the random port. It should fall into the 17297 * valid anon port range. 17298 */ 17299 if (port < tcp_smallest_anon_port) { 17300 port = tcp_smallest_anon_port + 17301 port % (tcp_largest_anon_port - 17302 tcp_smallest_anon_port); 17303 } 17304 } 17305 17306 retry: 17307 if (port < tcp_smallest_anon_port || port > tcp_largest_anon_port) 17308 port = (in_port_t)tcp_smallest_anon_port; 17309 17310 if (port < tcp_smallest_nonpriv_port) 17311 port = (in_port_t)tcp_smallest_nonpriv_port; 17312 17313 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 17314 if (port == tcp_g_epriv_ports[i]) { 17315 port++; 17316 /* 17317 * Make sure whether the port is in the 17318 * valid range. 17319 * 17320 * XXX Note that if tcp_g_epriv_ports contains 17321 * all the anonymous ports this will be an 17322 * infinite loop. 17323 */ 17324 goto retry; 17325 } 17326 } 17327 return (port); 17328 } 17329 17330 /* 17331 * Return the next anonymous port in the priviledged port range for 17332 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17333 * downwards. This is the same behavior as documented in the userland 17334 * library call rresvport(3N). 17335 */ 17336 static in_port_t 17337 tcp_get_next_priv_port(void) 17338 { 17339 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17340 17341 if (next_priv_port < tcp_min_anonpriv_port) { 17342 next_priv_port = IPPORT_RESERVED - 1; 17343 } 17344 return (next_priv_port--); 17345 } 17346 17347 /* The write side r/w procedure. */ 17348 17349 #if CCS_STATS 17350 struct { 17351 struct { 17352 int64_t count, bytes; 17353 } tot, hit; 17354 } wrw_stats; 17355 #endif 17356 17357 /* 17358 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17359 * messages. 17360 */ 17361 /* ARGSUSED */ 17362 static void 17363 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17364 { 17365 conn_t *connp = (conn_t *)arg; 17366 tcp_t *tcp = connp->conn_tcp; 17367 queue_t *q = tcp->tcp_wq; 17368 17369 ASSERT(DB_TYPE(mp) != M_IOCTL); 17370 /* 17371 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17372 * Once the close starts, streamhead and sockfs will not let any data 17373 * packets come down (close ensures that there are no threads using the 17374 * queue and no new threads will come down) but since qprocsoff() 17375 * hasn't happened yet, a M_FLUSH or some non data message might 17376 * get reflected back (in response to our own FLUSHRW) and get 17377 * processed after tcp_close() is done. The conn would still be valid 17378 * because a ref would have added but we need to check the state 17379 * before actually processing the packet. 17380 */ 17381 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17382 freemsg(mp); 17383 return; 17384 } 17385 17386 switch (DB_TYPE(mp)) { 17387 case M_IOCDATA: 17388 tcp_wput_iocdata(tcp, mp); 17389 break; 17390 case M_FLUSH: 17391 tcp_wput_flush(tcp, mp); 17392 break; 17393 default: 17394 CALL_IP_WPUT(connp, q, mp); 17395 break; 17396 } 17397 } 17398 17399 /* 17400 * Write side put procedure for TCP module instance. 17401 * TCP as a module is only used for MIB browsers that push TCP over IP or 17402 * ARP. The only supported primitives are T_SVR4_OPTMGMT_REQ and 17403 * T_OPTMGMT_REQ. M_FLUSH messages are only passed downstream; we don't flush 17404 * our queues as we never enqueue messages there. All ioctls are NAKed and 17405 * everything else is freed. 17406 */ 17407 static void 17408 tcp_wput_mod(queue_t *q, mblk_t *mp) 17409 { 17410 switch (DB_TYPE(mp)) { 17411 case M_PROTO: 17412 case M_PCPROTO: 17413 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 17414 ((((union T_primitives *)mp->b_rptr)->type == 17415 T_SVR4_OPTMGMT_REQ) || 17416 (((union T_primitives *)mp->b_rptr)->type == 17417 T_OPTMGMT_REQ))) { 17418 /* 17419 * This is the only TPI primitive supported. Its 17420 * handling does not require tcp_t, but it does require 17421 * conn_t to check permissions. 17422 */ 17423 cred_t *cr = DB_CREDDEF(mp, Q_TO_CONN(q)->conn_cred); 17424 if (!snmpcom_req(q, mp, tcp_snmp_set, 17425 tcp_snmp_get, cr)) { 17426 freemsg(mp); 17427 return; 17428 } 17429 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 17430 != NULL) 17431 qreply(q, mp); 17432 break; 17433 case M_FLUSH: 17434 putnext(q, mp); 17435 break; 17436 case M_IOCTL: 17437 miocnak(q, mp, 0, ENOTSUP); 17438 break; 17439 default: 17440 freemsg(mp); 17441 break; 17442 } 17443 } 17444 17445 /* 17446 * The TCP fast path write put procedure. 17447 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17448 */ 17449 /* ARGSUSED */ 17450 static void 17451 tcp_output(void *arg, mblk_t *mp, void *arg2) 17452 { 17453 int len; 17454 int hdrlen; 17455 int plen; 17456 mblk_t *mp1; 17457 uchar_t *rptr; 17458 uint32_t snxt; 17459 tcph_t *tcph; 17460 struct datab *db; 17461 uint32_t suna; 17462 uint32_t mss; 17463 ipaddr_t *dst; 17464 ipaddr_t *src; 17465 uint32_t sum; 17466 int usable; 17467 conn_t *connp = (conn_t *)arg; 17468 tcp_t *tcp = connp->conn_tcp; 17469 uint32_t msize; 17470 17471 /* 17472 * Try and ASSERT the minimum possible references on the 17473 * conn early enough. Since we are executing on write side, 17474 * the connection is obviously not detached and that means 17475 * there is a ref each for TCP and IP. Since we are behind 17476 * the squeue, the minimum references needed are 3. If the 17477 * conn is in classifier hash list, there should be an 17478 * extra ref for that (we check both the possibilities). 17479 */ 17480 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17481 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17482 17483 /* Bypass tcp protocol for fused tcp loopback */ 17484 if (tcp->tcp_fused) { 17485 msize = msgdsize(mp); 17486 mutex_enter(&connp->conn_lock); 17487 tcp->tcp_squeue_bytes -= msize; 17488 mutex_exit(&connp->conn_lock); 17489 17490 if (tcp_fuse_output(tcp, mp)) 17491 return; 17492 } 17493 17494 mss = tcp->tcp_mss; 17495 if (tcp->tcp_xmit_zc_clean) 17496 mp = tcp_zcopy_backoff(tcp, mp, 0); 17497 17498 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17499 len = (int)(mp->b_wptr - mp->b_rptr); 17500 17501 /* 17502 * Criteria for fast path: 17503 * 17504 * 1. no unsent data 17505 * 2. single mblk in request 17506 * 3. connection established 17507 * 4. data in mblk 17508 * 5. len <= mss 17509 * 6. no tcp_valid bits 17510 */ 17511 if ((tcp->tcp_unsent != 0) || 17512 (tcp->tcp_cork) || 17513 (mp->b_cont != NULL) || 17514 (tcp->tcp_state != TCPS_ESTABLISHED) || 17515 (len == 0) || 17516 (len > mss) || 17517 (tcp->tcp_valid_bits != 0)) { 17518 msize = msgdsize(mp); 17519 mutex_enter(&connp->conn_lock); 17520 tcp->tcp_squeue_bytes -= msize; 17521 mutex_exit(&connp->conn_lock); 17522 17523 tcp_wput_data(tcp, mp, B_FALSE); 17524 return; 17525 } 17526 17527 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17528 ASSERT(tcp->tcp_fin_sent == 0); 17529 17530 mutex_enter(&connp->conn_lock); 17531 tcp->tcp_squeue_bytes -= len; 17532 mutex_exit(&connp->conn_lock); 17533 17534 /* queue new packet onto retransmission queue */ 17535 if (tcp->tcp_xmit_head == NULL) { 17536 tcp->tcp_xmit_head = mp; 17537 } else { 17538 tcp->tcp_xmit_last->b_cont = mp; 17539 } 17540 tcp->tcp_xmit_last = mp; 17541 tcp->tcp_xmit_tail = mp; 17542 17543 /* find out how much we can send */ 17544 /* BEGIN CSTYLED */ 17545 /* 17546 * un-acked usable 17547 * |--------------|-----------------| 17548 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17549 */ 17550 /* END CSTYLED */ 17551 17552 /* start sending from tcp_snxt */ 17553 snxt = tcp->tcp_snxt; 17554 17555 /* 17556 * Check to see if this connection has been idled for some 17557 * time and no ACK is expected. If it is, we need to slow 17558 * start again to get back the connection's "self-clock" as 17559 * described in VJ's paper. 17560 * 17561 * Refer to the comment in tcp_mss_set() for the calculation 17562 * of tcp_cwnd after idle. 17563 */ 17564 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17565 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17566 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 17567 } 17568 17569 usable = tcp->tcp_swnd; /* tcp window size */ 17570 if (usable > tcp->tcp_cwnd) 17571 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17572 usable -= snxt; /* subtract stuff already sent */ 17573 suna = tcp->tcp_suna; 17574 usable += suna; 17575 /* usable can be < 0 if the congestion window is smaller */ 17576 if (len > usable) { 17577 /* Can't send complete M_DATA in one shot */ 17578 goto slow; 17579 } 17580 17581 if (tcp->tcp_flow_stopped && 17582 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17583 tcp_clrqfull(tcp); 17584 } 17585 17586 /* 17587 * determine if anything to send (Nagle). 17588 * 17589 * 1. len < tcp_mss (i.e. small) 17590 * 2. unacknowledged data present 17591 * 3. len < nagle limit 17592 * 4. last packet sent < nagle limit (previous packet sent) 17593 */ 17594 if ((len < mss) && (snxt != suna) && 17595 (len < (int)tcp->tcp_naglim) && 17596 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17597 /* 17598 * This was the first unsent packet and normally 17599 * mss < xmit_hiwater so there is no need to worry 17600 * about flow control. The next packet will go 17601 * through the flow control check in tcp_wput_data(). 17602 */ 17603 /* leftover work from above */ 17604 tcp->tcp_unsent = len; 17605 tcp->tcp_xmit_tail_unsent = len; 17606 17607 return; 17608 } 17609 17610 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17611 17612 if (snxt == suna) { 17613 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17614 } 17615 17616 /* we have always sent something */ 17617 tcp->tcp_rack_cnt = 0; 17618 17619 tcp->tcp_snxt = snxt + len; 17620 tcp->tcp_rack = tcp->tcp_rnxt; 17621 17622 if ((mp1 = dupb(mp)) == 0) 17623 goto no_memory; 17624 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17625 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17626 17627 /* adjust tcp header information */ 17628 tcph = tcp->tcp_tcph; 17629 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17630 17631 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17632 sum = (sum >> 16) + (sum & 0xFFFF); 17633 U16_TO_ABE16(sum, tcph->th_sum); 17634 17635 U32_TO_ABE32(snxt, tcph->th_seq); 17636 17637 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 17638 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 17639 BUMP_LOCAL(tcp->tcp_obsegs); 17640 17641 /* Update the latest receive window size in TCP header. */ 17642 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17643 tcph->th_win); 17644 17645 tcp->tcp_last_sent_len = (ushort_t)len; 17646 17647 plen = len + tcp->tcp_hdr_len; 17648 17649 if (tcp->tcp_ipversion == IPV4_VERSION) { 17650 tcp->tcp_ipha->ipha_length = htons(plen); 17651 } else { 17652 tcp->tcp_ip6h->ip6_plen = htons(plen - 17653 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17654 } 17655 17656 /* see if we need to allocate a mblk for the headers */ 17657 hdrlen = tcp->tcp_hdr_len; 17658 rptr = mp1->b_rptr - hdrlen; 17659 db = mp1->b_datap; 17660 if ((db->db_ref != 2) || rptr < db->db_base || 17661 (!OK_32PTR(rptr))) { 17662 /* NOTE: we assume allocb returns an OK_32PTR */ 17663 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17664 tcp_wroff_xtra, BPRI_MED); 17665 if (!mp) { 17666 freemsg(mp1); 17667 goto no_memory; 17668 } 17669 mp->b_cont = mp1; 17670 mp1 = mp; 17671 /* Leave room for Link Level header */ 17672 /* hdrlen = tcp->tcp_hdr_len; */ 17673 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 17674 mp1->b_wptr = &rptr[hdrlen]; 17675 } 17676 mp1->b_rptr = rptr; 17677 17678 /* Fill in the timestamp option. */ 17679 if (tcp->tcp_snd_ts_ok) { 17680 U32_TO_BE32((uint32_t)lbolt, 17681 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17682 U32_TO_BE32(tcp->tcp_ts_recent, 17683 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17684 } else { 17685 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17686 } 17687 17688 /* copy header into outgoing packet */ 17689 dst = (ipaddr_t *)rptr; 17690 src = (ipaddr_t *)tcp->tcp_iphc; 17691 dst[0] = src[0]; 17692 dst[1] = src[1]; 17693 dst[2] = src[2]; 17694 dst[3] = src[3]; 17695 dst[4] = src[4]; 17696 dst[5] = src[5]; 17697 dst[6] = src[6]; 17698 dst[7] = src[7]; 17699 dst[8] = src[8]; 17700 dst[9] = src[9]; 17701 if (hdrlen -= 40) { 17702 hdrlen >>= 2; 17703 dst += 10; 17704 src += 10; 17705 do { 17706 *dst++ = *src++; 17707 } while (--hdrlen); 17708 } 17709 17710 /* 17711 * Set the ECN info in the TCP header. Note that this 17712 * is not the template header. 17713 */ 17714 if (tcp->tcp_ecn_ok) { 17715 SET_ECT(tcp, rptr); 17716 17717 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17718 if (tcp->tcp_ecn_echo_on) 17719 tcph->th_flags[0] |= TH_ECE; 17720 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17721 tcph->th_flags[0] |= TH_CWR; 17722 tcp->tcp_ecn_cwr_sent = B_TRUE; 17723 } 17724 } 17725 17726 if (tcp->tcp_ip_forward_progress) { 17727 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17728 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17729 tcp->tcp_ip_forward_progress = B_FALSE; 17730 } 17731 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17732 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17733 return; 17734 17735 /* 17736 * If we ran out of memory, we pretend to have sent the packet 17737 * and that it was lost on the wire. 17738 */ 17739 no_memory: 17740 return; 17741 17742 slow: 17743 /* leftover work from above */ 17744 tcp->tcp_unsent = len; 17745 tcp->tcp_xmit_tail_unsent = len; 17746 tcp_wput_data(tcp, NULL, B_FALSE); 17747 } 17748 17749 /* 17750 * The function called through squeue to get behind eager's perimeter to 17751 * finish the accept processing. 17752 */ 17753 /* ARGSUSED */ 17754 void 17755 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17756 { 17757 conn_t *connp = (conn_t *)arg; 17758 tcp_t *tcp = connp->conn_tcp; 17759 queue_t *q = tcp->tcp_rq; 17760 mblk_t *mp1; 17761 mblk_t *stropt_mp = mp; 17762 struct stroptions *stropt; 17763 uint_t thwin; 17764 17765 /* 17766 * Drop the eager's ref on the listener, that was placed when 17767 * this eager began life in tcp_conn_request. 17768 */ 17769 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17770 17771 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17772 /* 17773 * Someone blewoff the eager before we could finish 17774 * the accept. 17775 * 17776 * The only reason eager exists it because we put in 17777 * a ref on it when conn ind went up. We need to send 17778 * a disconnect indication up while the last reference 17779 * on the eager will be dropped by the squeue when we 17780 * return. 17781 */ 17782 ASSERT(tcp->tcp_listener == NULL); 17783 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17784 struct T_discon_ind *tdi; 17785 17786 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17787 /* 17788 * Let us reuse the incoming mblk to avoid memory 17789 * allocation failure problems. We know that the 17790 * size of the incoming mblk i.e. stroptions is greater 17791 * than sizeof T_discon_ind. So the reallocb below 17792 * can't fail. 17793 */ 17794 freemsg(mp->b_cont); 17795 mp->b_cont = NULL; 17796 ASSERT(DB_REF(mp) == 1); 17797 mp = reallocb(mp, sizeof (struct T_discon_ind), 17798 B_FALSE); 17799 ASSERT(mp != NULL); 17800 DB_TYPE(mp) = M_PROTO; 17801 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17802 tdi = (struct T_discon_ind *)mp->b_rptr; 17803 if (tcp->tcp_issocket) { 17804 tdi->DISCON_reason = ECONNREFUSED; 17805 tdi->SEQ_number = 0; 17806 } else { 17807 tdi->DISCON_reason = ENOPROTOOPT; 17808 tdi->SEQ_number = 17809 tcp->tcp_conn_req_seqnum; 17810 } 17811 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17812 putnext(q, mp); 17813 } else { 17814 freemsg(mp); 17815 } 17816 if (tcp->tcp_hard_binding) { 17817 tcp->tcp_hard_binding = B_FALSE; 17818 tcp->tcp_hard_bound = B_TRUE; 17819 } 17820 tcp->tcp_detached = B_FALSE; 17821 return; 17822 } 17823 17824 mp1 = stropt_mp->b_cont; 17825 stropt_mp->b_cont = NULL; 17826 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17827 stropt = (struct stroptions *)stropt_mp->b_rptr; 17828 17829 while (mp1 != NULL) { 17830 mp = mp1; 17831 mp1 = mp1->b_cont; 17832 mp->b_cont = NULL; 17833 tcp->tcp_drop_opt_ack_cnt++; 17834 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17835 } 17836 mp = NULL; 17837 17838 /* 17839 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17840 * properly. This is the first time we know of the acceptor' 17841 * queue. So we do it here. 17842 */ 17843 if (tcp->tcp_rcv_list == NULL) { 17844 /* 17845 * Recv queue is empty, tcp_rwnd should not have changed. 17846 * That means it should be equal to the listener's tcp_rwnd. 17847 */ 17848 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17849 } else { 17850 #ifdef DEBUG 17851 uint_t cnt = 0; 17852 17853 mp1 = tcp->tcp_rcv_list; 17854 while ((mp = mp1) != NULL) { 17855 mp1 = mp->b_next; 17856 cnt += msgdsize(mp); 17857 } 17858 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17859 #endif 17860 /* There is some data, add them back to get the max. */ 17861 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17862 } 17863 17864 stropt->so_flags = SO_HIWAT; 17865 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 17866 17867 stropt->so_flags |= SO_MAXBLK; 17868 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17869 17870 /* 17871 * This is the first time we run on the correct 17872 * queue after tcp_accept. So fix all the q parameters 17873 * here. 17874 */ 17875 /* Allocate room for SACK options if needed. */ 17876 stropt->so_flags |= SO_WROFF; 17877 if (tcp->tcp_fused) { 17878 size_t sth_hiwat; 17879 17880 ASSERT(tcp->tcp_loopback); 17881 /* 17882 * For fused tcp loopback, set the stream head's write 17883 * offset value to zero since we won't be needing any room 17884 * for TCP/IP headers. This would also improve performance 17885 * since it would reduce the amount of work done by kmem. 17886 * Non-fused tcp loopback case is handled separately below. 17887 */ 17888 stropt->so_wroff = 0; 17889 17890 /* 17891 * Override q_hiwat and set it to be twice that of the 17892 * previous value; this is to simulate non-fusion case. 17893 */ 17894 sth_hiwat = q->q_hiwat << 1; 17895 if (sth_hiwat > tcp_max_buf) 17896 sth_hiwat = tcp_max_buf; 17897 17898 stropt->so_hiwat = MAX(sth_hiwat, tcp_sth_rcv_hiwat); 17899 } else if (tcp->tcp_snd_sack_ok) { 17900 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17901 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17902 } else { 17903 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17904 tcp_wroff_xtra); 17905 } 17906 17907 /* 17908 * If loopback, set COPYCACHED option to make sure NOT to use 17909 * non-temporal access. 17910 */ 17911 if (tcp->tcp_loopback) { 17912 stropt->so_flags |= SO_COPYOPT; 17913 stropt->so_copyopt = COPYCACHED; 17914 } 17915 17916 /* Send the options up */ 17917 putnext(q, stropt_mp); 17918 17919 /* 17920 * Pass up any data and/or a fin that has been received. 17921 * 17922 * Adjust receive window in case it had decreased 17923 * (because there is data <=> tcp_rcv_list != NULL) 17924 * while the connection was detached. Note that 17925 * in case the eager was flow-controlled, w/o this 17926 * code, the rwnd may never open up again! 17927 */ 17928 if (tcp->tcp_rcv_list != NULL) { 17929 /* We drain directly in case of fused tcp loopback */ 17930 if (!tcp->tcp_fused && canputnext(q)) { 17931 tcp->tcp_rwnd = q->q_hiwat; 17932 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17933 << tcp->tcp_rcv_ws; 17934 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17935 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17936 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17937 tcp_xmit_ctl(NULL, 17938 tcp, (tcp->tcp_swnd == 0) ? 17939 tcp->tcp_suna : tcp->tcp_snxt, 17940 tcp->tcp_rnxt, TH_ACK); 17941 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17942 } 17943 17944 } 17945 (void) tcp_rcv_drain(q, tcp); 17946 17947 /* 17948 * For fused tcp loopback, back-enable peer endpoint 17949 * if it's currently flow-controlled. 17950 */ 17951 if (tcp->tcp_fused && 17952 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17953 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17954 17955 ASSERT(peer_tcp != NULL); 17956 ASSERT(peer_tcp->tcp_fused); 17957 17958 tcp_clrqfull(peer_tcp); 17959 TCP_STAT(tcp_fusion_backenabled); 17960 } 17961 } 17962 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17963 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17964 mp = mi_tpi_ordrel_ind(); 17965 if (mp) { 17966 tcp->tcp_ordrel_done = B_TRUE; 17967 putnext(q, mp); 17968 if (tcp->tcp_deferred_clean_death) { 17969 /* 17970 * tcp_clean_death was deferred 17971 * for T_ORDREL_IND - do it now 17972 */ 17973 (void) tcp_clean_death( 17974 tcp, 17975 tcp->tcp_client_errno, 21); 17976 tcp->tcp_deferred_clean_death = 17977 B_FALSE; 17978 } 17979 } else { 17980 /* 17981 * Run the orderly release in the 17982 * service routine. 17983 */ 17984 qenable(q); 17985 } 17986 } 17987 if (tcp->tcp_hard_binding) { 17988 tcp->tcp_hard_binding = B_FALSE; 17989 tcp->tcp_hard_bound = B_TRUE; 17990 } 17991 tcp->tcp_detached = B_FALSE; 17992 17993 if (tcp->tcp_ka_enabled) { 17994 tcp->tcp_ka_last_intrvl = 0; 17995 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17996 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17997 } 17998 17999 /* 18000 * At this point, eager is fully established and will 18001 * have the following references - 18002 * 18003 * 2 references for connection to exist (1 for TCP and 1 for IP). 18004 * 1 reference for the squeue which will be dropped by the squeue as 18005 * soon as this function returns. 18006 * There will be 1 additonal reference for being in classifier 18007 * hash list provided something bad hasn't happened. 18008 */ 18009 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18010 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18011 } 18012 18013 /* 18014 * The function called through squeue to get behind listener's perimeter to 18015 * send a deffered conn_ind. 18016 */ 18017 /* ARGSUSED */ 18018 void 18019 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18020 { 18021 conn_t *connp = (conn_t *)arg; 18022 tcp_t *listener = connp->conn_tcp; 18023 18024 if (listener->tcp_state == TCPS_CLOSED || 18025 TCP_IS_DETACHED(listener)) { 18026 /* 18027 * If listener has closed, it would have caused a 18028 * a cleanup/blowoff to happen for the eager. 18029 */ 18030 tcp_t *tcp; 18031 struct T_conn_ind *conn_ind; 18032 18033 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18034 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18035 conn_ind->OPT_length); 18036 /* 18037 * We need to drop the ref on eager that was put 18038 * tcp_rput_data() before trying to send the conn_ind 18039 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18040 * and tcp_wput_accept() is sending this deferred conn_ind but 18041 * listener is closed so we drop the ref. 18042 */ 18043 CONN_DEC_REF(tcp->tcp_connp); 18044 freemsg(mp); 18045 return; 18046 } 18047 putnext(listener->tcp_rq, mp); 18048 } 18049 18050 18051 /* 18052 * This is the STREAMS entry point for T_CONN_RES coming down on 18053 * Acceptor STREAM when sockfs listener does accept processing. 18054 * Read the block comment on top pf tcp_conn_request(). 18055 */ 18056 void 18057 tcp_wput_accept(queue_t *q, mblk_t *mp) 18058 { 18059 queue_t *rq = RD(q); 18060 struct T_conn_res *conn_res; 18061 tcp_t *eager; 18062 tcp_t *listener; 18063 struct T_ok_ack *ok; 18064 t_scalar_t PRIM_type; 18065 mblk_t *opt_mp; 18066 conn_t *econnp; 18067 18068 ASSERT(DB_TYPE(mp) == M_PROTO); 18069 18070 conn_res = (struct T_conn_res *)mp->b_rptr; 18071 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18072 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18073 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18074 if (mp != NULL) 18075 putnext(rq, mp); 18076 return; 18077 } 18078 switch (conn_res->PRIM_type) { 18079 case O_T_CONN_RES: 18080 case T_CONN_RES: 18081 /* 18082 * We pass up an err ack if allocb fails. This will 18083 * cause sockfs to issue a T_DISCON_REQ which will cause 18084 * tcp_eager_blowoff to be called. sockfs will then call 18085 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18086 * we need to do the allocb up here because we have to 18087 * make sure rq->q_qinfo->qi_qclose still points to the 18088 * correct function (tcpclose_accept) in case allocb 18089 * fails. 18090 */ 18091 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18092 if (opt_mp == NULL) { 18093 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18094 if (mp != NULL) 18095 putnext(rq, mp); 18096 return; 18097 } 18098 18099 bcopy(mp->b_rptr + conn_res->OPT_offset, 18100 &eager, conn_res->OPT_length); 18101 PRIM_type = conn_res->PRIM_type; 18102 mp->b_datap->db_type = M_PCPROTO; 18103 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18104 ok = (struct T_ok_ack *)mp->b_rptr; 18105 ok->PRIM_type = T_OK_ACK; 18106 ok->CORRECT_prim = PRIM_type; 18107 econnp = eager->tcp_connp; 18108 econnp->conn_dev = (dev_t)q->q_ptr; 18109 eager->tcp_rq = rq; 18110 eager->tcp_wq = q; 18111 rq->q_ptr = econnp; 18112 rq->q_qinfo = &tcp_rinit; 18113 q->q_ptr = econnp; 18114 q->q_qinfo = &tcp_winit; 18115 listener = eager->tcp_listener; 18116 eager->tcp_issocket = B_TRUE; 18117 eager->tcp_cred = econnp->conn_cred = 18118 listener->tcp_connp->conn_cred; 18119 crhold(econnp->conn_cred); 18120 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18121 18122 /* Put the ref for IP */ 18123 CONN_INC_REF(econnp); 18124 18125 /* 18126 * We should have minimum of 3 references on the conn 18127 * at this point. One each for TCP and IP and one for 18128 * the T_conn_ind that was sent up when the 3-way handshake 18129 * completed. In the normal case we would also have another 18130 * reference (making a total of 4) for the conn being in the 18131 * classifier hash list. However the eager could have received 18132 * an RST subsequently and tcp_closei_local could have removed 18133 * the eager from the classifier hash list, hence we can't 18134 * assert that reference. 18135 */ 18136 ASSERT(econnp->conn_ref >= 3); 18137 18138 /* 18139 * Send the new local address also up to sockfs. There 18140 * should already be enough space in the mp that came 18141 * down from soaccept(). 18142 */ 18143 if (eager->tcp_family == AF_INET) { 18144 sin_t *sin; 18145 18146 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18147 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18148 sin = (sin_t *)mp->b_wptr; 18149 mp->b_wptr += sizeof (sin_t); 18150 sin->sin_family = AF_INET; 18151 sin->sin_port = eager->tcp_lport; 18152 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18153 } else { 18154 sin6_t *sin6; 18155 18156 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18157 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18158 sin6 = (sin6_t *)mp->b_wptr; 18159 mp->b_wptr += sizeof (sin6_t); 18160 sin6->sin6_family = AF_INET6; 18161 sin6->sin6_port = eager->tcp_lport; 18162 if (eager->tcp_ipversion == IPV4_VERSION) { 18163 sin6->sin6_flowinfo = 0; 18164 IN6_IPADDR_TO_V4MAPPED( 18165 eager->tcp_ipha->ipha_src, 18166 &sin6->sin6_addr); 18167 } else { 18168 ASSERT(eager->tcp_ip6h != NULL); 18169 sin6->sin6_flowinfo = 18170 eager->tcp_ip6h->ip6_vcf & 18171 ~IPV6_VERS_AND_FLOW_MASK; 18172 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18173 } 18174 sin6->sin6_scope_id = 0; 18175 sin6->__sin6_src_id = 0; 18176 } 18177 18178 putnext(rq, mp); 18179 18180 opt_mp->b_datap->db_type = M_SETOPTS; 18181 opt_mp->b_wptr += sizeof (struct stroptions); 18182 18183 /* 18184 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18185 * from listener to acceptor. The message is chained on the 18186 * bind_mp which tcp_rput_other will send down to IP. 18187 */ 18188 if (listener->tcp_bound_if != 0) { 18189 /* allocate optmgmt req */ 18190 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18191 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18192 sizeof (int)); 18193 if (mp != NULL) 18194 linkb(opt_mp, mp); 18195 } 18196 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18197 uint_t on = 1; 18198 18199 /* allocate optmgmt req */ 18200 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18201 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18202 if (mp != NULL) 18203 linkb(opt_mp, mp); 18204 } 18205 18206 18207 mutex_enter(&listener->tcp_eager_lock); 18208 18209 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18210 18211 tcp_t *tail; 18212 tcp_t *tcp; 18213 mblk_t *mp1; 18214 18215 tcp = listener->tcp_eager_prev_q0; 18216 /* 18217 * listener->tcp_eager_prev_q0 points to the TAIL of the 18218 * deferred T_conn_ind queue. We need to get to the head 18219 * of the queue in order to send up T_conn_ind the same 18220 * order as how the 3WHS is completed. 18221 */ 18222 while (tcp != listener) { 18223 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 18224 break; 18225 else 18226 tcp = tcp->tcp_eager_prev_q0; 18227 } 18228 ASSERT(tcp != listener); 18229 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18230 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18231 /* Move from q0 to q */ 18232 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18233 listener->tcp_conn_req_cnt_q0--; 18234 listener->tcp_conn_req_cnt_q++; 18235 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18236 tcp->tcp_eager_prev_q0; 18237 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18238 tcp->tcp_eager_next_q0; 18239 tcp->tcp_eager_prev_q0 = NULL; 18240 tcp->tcp_eager_next_q0 = NULL; 18241 tcp->tcp_conn_def_q0 = B_FALSE; 18242 18243 /* 18244 * Insert at end of the queue because sockfs sends 18245 * down T_CONN_RES in chronological order. Leaving 18246 * the older conn indications at front of the queue 18247 * helps reducing search time. 18248 */ 18249 tail = listener->tcp_eager_last_q; 18250 if (tail != NULL) { 18251 tail->tcp_eager_next_q = tcp; 18252 } else { 18253 listener->tcp_eager_next_q = tcp; 18254 } 18255 listener->tcp_eager_last_q = tcp; 18256 tcp->tcp_eager_next_q = NULL; 18257 18258 /* Need to get inside the listener perimeter */ 18259 CONN_INC_REF(listener->tcp_connp); 18260 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18261 tcp_send_pending, listener->tcp_connp, 18262 SQTAG_TCP_SEND_PENDING); 18263 } 18264 tcp_eager_unlink(eager); 18265 mutex_exit(&listener->tcp_eager_lock); 18266 18267 /* 18268 * At this point, the eager is detached from the listener 18269 * but we still have an extra refs on eager (apart from the 18270 * usual tcp references). The ref was placed in tcp_rput_data 18271 * before sending the conn_ind in tcp_send_conn_ind. 18272 * The ref will be dropped in tcp_accept_finish(). 18273 */ 18274 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18275 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18276 return; 18277 default: 18278 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18279 if (mp != NULL) 18280 putnext(rq, mp); 18281 return; 18282 } 18283 } 18284 18285 static void 18286 tcp_wput(queue_t *q, mblk_t *mp) 18287 { 18288 conn_t *connp = Q_TO_CONN(q); 18289 tcp_t *tcp; 18290 void (*output_proc)(); 18291 t_scalar_t type; 18292 uchar_t *rptr; 18293 struct iocblk *iocp; 18294 uint32_t msize; 18295 18296 ASSERT(connp->conn_ref >= 2); 18297 18298 switch (DB_TYPE(mp)) { 18299 case M_DATA: 18300 tcp = connp->conn_tcp; 18301 ASSERT(tcp != NULL); 18302 18303 msize = msgdsize(mp); 18304 18305 mutex_enter(&connp->conn_lock); 18306 CONN_INC_REF_LOCKED(connp); 18307 18308 tcp->tcp_squeue_bytes += msize; 18309 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18310 mutex_exit(&connp->conn_lock); 18311 tcp_setqfull(tcp); 18312 } else 18313 mutex_exit(&connp->conn_lock); 18314 18315 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18316 tcp_output, connp, SQTAG_TCP_OUTPUT); 18317 return; 18318 case M_PROTO: 18319 case M_PCPROTO: 18320 /* 18321 * if it is a snmp message, don't get behind the squeue 18322 */ 18323 tcp = connp->conn_tcp; 18324 rptr = mp->b_rptr; 18325 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18326 type = ((union T_primitives *)rptr)->type; 18327 } else { 18328 if (tcp->tcp_debug) { 18329 (void) strlog(TCP_MODULE_ID, 0, 1, 18330 SL_ERROR|SL_TRACE, 18331 "tcp_wput_proto, dropping one..."); 18332 } 18333 freemsg(mp); 18334 return; 18335 } 18336 if (type == T_SVR4_OPTMGMT_REQ) { 18337 cred_t *cr = DB_CREDDEF(mp, 18338 tcp->tcp_cred); 18339 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 18340 cr)) { 18341 /* 18342 * This was a SNMP request 18343 */ 18344 return; 18345 } else { 18346 output_proc = tcp_wput_proto; 18347 } 18348 } else { 18349 output_proc = tcp_wput_proto; 18350 } 18351 break; 18352 case M_IOCTL: 18353 /* 18354 * Most ioctls can be processed right away without going via 18355 * squeues - process them right here. Those that do require 18356 * squeue (currently TCP_IOC_DEFAULT_Q and SIOCPOPSOCKFS) 18357 * are processed by tcp_wput_ioctl(). 18358 */ 18359 iocp = (struct iocblk *)mp->b_rptr; 18360 tcp = connp->conn_tcp; 18361 18362 switch (iocp->ioc_cmd) { 18363 case TCP_IOC_ABORT_CONN: 18364 tcp_ioctl_abort_conn(q, mp); 18365 return; 18366 case TI_GETPEERNAME: 18367 if (tcp->tcp_state < TCPS_SYN_RCVD) { 18368 iocp->ioc_error = ENOTCONN; 18369 iocp->ioc_count = 0; 18370 mp->b_datap->db_type = M_IOCACK; 18371 qreply(q, mp); 18372 return; 18373 } 18374 /* FALLTHRU */ 18375 case TI_GETMYNAME: 18376 mi_copyin(q, mp, NULL, 18377 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18378 return; 18379 case ND_SET: 18380 /* nd_getset does the necessary checks */ 18381 case ND_GET: 18382 if (!nd_getset(q, tcp_g_nd, mp)) { 18383 CALL_IP_WPUT(connp, q, mp); 18384 return; 18385 } 18386 qreply(q, mp); 18387 return; 18388 case TCP_IOC_DEFAULT_Q: 18389 /* 18390 * Wants to be the default wq. Check the credentials 18391 * first, the rest is executed via squeue. 18392 */ 18393 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 18394 iocp->ioc_error = EPERM; 18395 iocp->ioc_count = 0; 18396 mp->b_datap->db_type = M_IOCACK; 18397 qreply(q, mp); 18398 return; 18399 } 18400 output_proc = tcp_wput_ioctl; 18401 break; 18402 default: 18403 output_proc = tcp_wput_ioctl; 18404 break; 18405 } 18406 break; 18407 default: 18408 output_proc = tcp_wput_nondata; 18409 break; 18410 } 18411 18412 CONN_INC_REF(connp); 18413 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18414 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18415 } 18416 18417 /* 18418 * Initial STREAMS write side put() procedure for sockets. It tries to 18419 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18420 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18421 * are handled by tcp_wput() as usual. 18422 * 18423 * All further messages will also be handled by tcp_wput() because we cannot 18424 * be sure that the above short cut is safe later. 18425 */ 18426 static void 18427 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18428 { 18429 conn_t *connp = Q_TO_CONN(wq); 18430 tcp_t *tcp = connp->conn_tcp; 18431 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18432 18433 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18434 wq->q_qinfo = &tcp_winit; 18435 18436 ASSERT(IS_TCP_CONN(connp)); 18437 ASSERT(TCP_IS_SOCKET(tcp)); 18438 18439 if (DB_TYPE(mp) == M_PCPROTO && 18440 MBLKL(mp) == sizeof (struct T_capability_req) && 18441 car->PRIM_type == T_CAPABILITY_REQ) { 18442 tcp_capability_req(tcp, mp); 18443 return; 18444 } 18445 18446 tcp_wput(wq, mp); 18447 } 18448 18449 static boolean_t 18450 tcp_zcopy_check(tcp_t *tcp) 18451 { 18452 conn_t *connp = tcp->tcp_connp; 18453 ire_t *ire; 18454 boolean_t zc_enabled = B_FALSE; 18455 18456 if (do_tcpzcopy == 2) 18457 zc_enabled = B_TRUE; 18458 else if (tcp->tcp_ipversion == IPV4_VERSION && 18459 IPCL_IS_CONNECTED(connp) && 18460 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18461 connp->conn_dontroute == 0 && 18462 connp->conn_xmit_if_ill == NULL && 18463 connp->conn_nofailover_ill == NULL && 18464 do_tcpzcopy == 1) { 18465 /* 18466 * the checks above closely resemble the fast path checks 18467 * in tcp_send_data(). 18468 */ 18469 mutex_enter(&connp->conn_lock); 18470 ire = connp->conn_ire_cache; 18471 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18472 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18473 IRE_REFHOLD(ire); 18474 if (ire->ire_stq != NULL) { 18475 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18476 18477 zc_enabled = ill && (ill->ill_capabilities & 18478 ILL_CAPAB_ZEROCOPY) && 18479 (ill->ill_zerocopy_capab-> 18480 ill_zerocopy_flags != 0); 18481 } 18482 IRE_REFRELE(ire); 18483 } 18484 mutex_exit(&connp->conn_lock); 18485 } 18486 tcp->tcp_snd_zcopy_on = zc_enabled; 18487 if (!TCP_IS_DETACHED(tcp)) { 18488 if (zc_enabled) { 18489 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18490 TCP_STAT(tcp_zcopy_on); 18491 } else { 18492 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18493 TCP_STAT(tcp_zcopy_off); 18494 } 18495 } 18496 return (zc_enabled); 18497 } 18498 18499 static mblk_t * 18500 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18501 { 18502 if (do_tcpzcopy == 2) 18503 return (bp); 18504 else if (tcp->tcp_snd_zcopy_on) { 18505 tcp->tcp_snd_zcopy_on = B_FALSE; 18506 if (!TCP_IS_DETACHED(tcp)) { 18507 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18508 TCP_STAT(tcp_zcopy_disable); 18509 } 18510 } 18511 return (tcp_zcopy_backoff(tcp, bp, 0)); 18512 } 18513 18514 /* 18515 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18516 * the original desballoca'ed segmapped mblk. 18517 */ 18518 static mblk_t * 18519 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18520 { 18521 mblk_t *head, *tail, *nbp; 18522 if (IS_VMLOANED_MBLK(bp)) { 18523 TCP_STAT(tcp_zcopy_backoff); 18524 if ((head = copyb(bp)) == NULL) { 18525 /* fail to backoff; leave it for the next backoff */ 18526 tcp->tcp_xmit_zc_clean = B_FALSE; 18527 return (bp); 18528 } 18529 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18530 if (fix_xmitlist) 18531 tcp_zcopy_notify(tcp); 18532 else 18533 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18534 } 18535 nbp = bp->b_cont; 18536 if (fix_xmitlist) { 18537 head->b_prev = bp->b_prev; 18538 head->b_next = bp->b_next; 18539 if (tcp->tcp_xmit_tail == bp) 18540 tcp->tcp_xmit_tail = head; 18541 } 18542 bp->b_next = NULL; 18543 bp->b_prev = NULL; 18544 freeb(bp); 18545 } else { 18546 head = bp; 18547 nbp = bp->b_cont; 18548 } 18549 tail = head; 18550 while (nbp) { 18551 if (IS_VMLOANED_MBLK(nbp)) { 18552 TCP_STAT(tcp_zcopy_backoff); 18553 if ((tail->b_cont = copyb(nbp)) == NULL) { 18554 tcp->tcp_xmit_zc_clean = B_FALSE; 18555 tail->b_cont = nbp; 18556 return (head); 18557 } 18558 tail = tail->b_cont; 18559 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18560 if (fix_xmitlist) 18561 tcp_zcopy_notify(tcp); 18562 else 18563 tail->b_datap->db_struioflag |= 18564 STRUIO_ZCNOTIFY; 18565 } 18566 bp = nbp; 18567 nbp = nbp->b_cont; 18568 if (fix_xmitlist) { 18569 tail->b_prev = bp->b_prev; 18570 tail->b_next = bp->b_next; 18571 if (tcp->tcp_xmit_tail == bp) 18572 tcp->tcp_xmit_tail = tail; 18573 } 18574 bp->b_next = NULL; 18575 bp->b_prev = NULL; 18576 freeb(bp); 18577 } else { 18578 tail->b_cont = nbp; 18579 tail = nbp; 18580 nbp = nbp->b_cont; 18581 } 18582 } 18583 if (fix_xmitlist) { 18584 tcp->tcp_xmit_last = tail; 18585 tcp->tcp_xmit_zc_clean = B_TRUE; 18586 } 18587 return (head); 18588 } 18589 18590 static void 18591 tcp_zcopy_notify(tcp_t *tcp) 18592 { 18593 struct stdata *stp; 18594 18595 if (tcp->tcp_detached) 18596 return; 18597 stp = STREAM(tcp->tcp_rq); 18598 mutex_enter(&stp->sd_lock); 18599 stp->sd_flag |= STZCNOTIFY; 18600 cv_broadcast(&stp->sd_zcopy_wait); 18601 mutex_exit(&stp->sd_lock); 18602 } 18603 18604 18605 static void 18606 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18607 { 18608 ipha_t *ipha; 18609 ipaddr_t src; 18610 ipaddr_t dst; 18611 uint32_t cksum; 18612 ire_t *ire; 18613 uint16_t *up; 18614 ill_t *ill; 18615 conn_t *connp = tcp->tcp_connp; 18616 uint32_t hcksum_txflags = 0; 18617 mblk_t *ire_fp_mp; 18618 uint_t ire_fp_mp_len; 18619 ill_poll_capab_t *ill_poll; 18620 18621 ASSERT(DB_TYPE(mp) == M_DATA); 18622 18623 ipha = (ipha_t *)mp->b_rptr; 18624 src = ipha->ipha_src; 18625 dst = ipha->ipha_dst; 18626 18627 /* 18628 * Drop off slow path for IPv6 and also if options are present. 18629 */ 18630 if (tcp->tcp_ipversion != IPV4_VERSION || 18631 !IPCL_IS_CONNECTED(connp) || 18632 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18633 connp->conn_dontroute || 18634 connp->conn_xmit_if_ill != NULL || 18635 connp->conn_nofailover_ill != NULL || 18636 ipha->ipha_ident == IP_HDR_INCLUDED || 18637 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18638 IPP_ENABLED(IPP_LOCAL_OUT)) { 18639 if (tcp->tcp_snd_zcopy_aware) 18640 mp = tcp_zcopy_disable(tcp, mp); 18641 TCP_STAT(tcp_ip_send); 18642 CALL_IP_WPUT(connp, q, mp); 18643 return; 18644 } 18645 18646 mutex_enter(&connp->conn_lock); 18647 ire = connp->conn_ire_cache; 18648 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18649 if (ire != NULL && ire->ire_addr == dst && 18650 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18651 IRE_REFHOLD(ire); 18652 mutex_exit(&connp->conn_lock); 18653 } else { 18654 boolean_t cached = B_FALSE; 18655 18656 /* force a recheck later on */ 18657 tcp->tcp_ire_ill_check_done = B_FALSE; 18658 18659 TCP_DBGSTAT(tcp_ire_null1); 18660 connp->conn_ire_cache = NULL; 18661 mutex_exit(&connp->conn_lock); 18662 if (ire != NULL) 18663 IRE_REFRELE_NOTR(ire); 18664 ire = ire_cache_lookup(dst, connp->conn_zoneid); 18665 if (ire == NULL) { 18666 if (tcp->tcp_snd_zcopy_aware) 18667 mp = tcp_zcopy_backoff(tcp, mp, 0); 18668 TCP_STAT(tcp_ire_null); 18669 CALL_IP_WPUT(connp, q, mp); 18670 return; 18671 } 18672 IRE_REFHOLD_NOTR(ire); 18673 /* 18674 * Since we are inside the squeue, there cannot be another 18675 * thread in TCP trying to set the conn_ire_cache now. The 18676 * check for IRE_MARK_CONDEMNED ensures that an interface 18677 * unplumb thread has not yet started cleaning up the conns. 18678 * Hence we don't need to grab the conn lock. 18679 */ 18680 if (!(connp->conn_state_flags & CONN_CLOSING)) { 18681 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18682 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18683 connp->conn_ire_cache = ire; 18684 cached = B_TRUE; 18685 } 18686 rw_exit(&ire->ire_bucket->irb_lock); 18687 } 18688 18689 /* 18690 * We can continue to use the ire but since it was 18691 * not cached, we should drop the extra reference. 18692 */ 18693 if (!cached) 18694 IRE_REFRELE_NOTR(ire); 18695 } 18696 18697 if (ire->ire_flags & RTF_MULTIRT || 18698 ire->ire_stq == NULL || 18699 ire->ire_max_frag < ntohs(ipha->ipha_length) || 18700 (ire_fp_mp = ire->ire_fp_mp) == NULL || 18701 (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) { 18702 if (tcp->tcp_snd_zcopy_aware) 18703 mp = tcp_zcopy_disable(tcp, mp); 18704 TCP_STAT(tcp_ip_ire_send); 18705 IRE_REFRELE(ire); 18706 CALL_IP_WPUT(connp, q, mp); 18707 return; 18708 } 18709 18710 ill = ire_to_ill(ire); 18711 if (connp->conn_outgoing_ill != NULL) { 18712 ill_t *conn_outgoing_ill = NULL; 18713 /* 18714 * Choose a good ill in the group to send the packets on. 18715 */ 18716 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18717 ill = ire_to_ill(ire); 18718 } 18719 ASSERT(ill != NULL); 18720 18721 if (!tcp->tcp_ire_ill_check_done) { 18722 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18723 tcp->tcp_ire_ill_check_done = B_TRUE; 18724 } 18725 18726 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18727 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18728 #ifndef _BIG_ENDIAN 18729 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18730 #endif 18731 18732 /* 18733 * Check to see if we need to re-enable MDT for this connection 18734 * because it was previously disabled due to changes in the ill; 18735 * note that by doing it here, this re-enabling only applies when 18736 * the packet is not dispatched through CALL_IP_WPUT(). 18737 * 18738 * That means for IPv4, it is worth re-enabling MDT for the fastpath 18739 * case, since that's how we ended up here. For IPv6, we do the 18740 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18741 */ 18742 if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18743 /* 18744 * Restore MDT for this connection, so that next time around 18745 * it is eligible to go through tcp_multisend() path again. 18746 */ 18747 TCP_STAT(tcp_mdt_conn_resumed1); 18748 tcp->tcp_mdt = B_TRUE; 18749 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18750 "interface %s\n", (void *)connp, ill->ill_name)); 18751 } 18752 18753 if (tcp->tcp_snd_zcopy_aware) { 18754 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18755 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18756 mp = tcp_zcopy_disable(tcp, mp); 18757 /* 18758 * we shouldn't need to reset ipha as the mp containing 18759 * ipha should never be a zero-copy mp. 18760 */ 18761 } 18762 18763 if ((ill->ill_capabilities & ILL_CAPAB_HCKSUM) && dohwcksum) { 18764 ASSERT(ill->ill_hcksum_capab != NULL); 18765 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18766 } 18767 18768 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18769 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18770 18771 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18772 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18773 18774 /* 18775 * Underlying interface supports hardware checksum offload for 18776 * the tcp payload, along with M_DATA fast path; leave the payload 18777 * checksum for the hardware to calculate. 18778 * 18779 * N.B: We only need to set up checksum info on the first mblk. 18780 */ 18781 if (hcksum_txflags & HCKSUM_INET_FULL_V4) { 18782 /* 18783 * Hardware calculates pseudo-header, header and payload 18784 * checksums, so clear checksum field in TCP header. 18785 */ 18786 *up = 0; 18787 mp->b_datap->db_struioun.cksum.flags |= HCK_FULLCKSUM; 18788 } else if (hcksum_txflags & HCKSUM_INET_PARTIAL) { 18789 uint32_t sum; 18790 /* 18791 * Partial checksum offload has been enabled. Fill the 18792 * checksum field in the TCP header with the pseudo-header 18793 * checksum value. 18794 */ 18795 sum = *up + cksum + IP_TCP_CSUM_COMP; 18796 sum = (sum & 0xFFFF) + (sum >> 16); 18797 *up = (sum & 0xFFFF) + (sum >> 16); 18798 mp->b_datap->db_cksumstart = IP_SIMPLE_HDR_LENGTH; 18799 mp->b_datap->db_cksumstuff = IP_SIMPLE_HDR_LENGTH + 16; 18800 mp->b_datap->db_cksumend = ntohs(ipha->ipha_length); 18801 mp->b_datap->db_struioun.cksum.flags |= HCK_PARTIALCKSUM; 18802 } else { 18803 /* software checksumming */ 18804 TCP_STAT(tcp_out_sw_cksum); 18805 *up = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, 18806 cksum + IP_TCP_CSUM_COMP); 18807 mp->b_datap->db_struioun.cksum.flags = 0; 18808 } 18809 18810 ipha->ipha_fragment_offset_and_flags |= 18811 (uint32_t)htons(ire->ire_frag_flag); 18812 18813 /* 18814 * Hardware supports IP header checksum offload; clear contents 18815 * of IP header checksum field. Otherwise we calculate it. 18816 */ 18817 if (hcksum_txflags & HCKSUM_IPHDRCKSUM) { 18818 ipha->ipha_hdr_checksum = 0; 18819 mp->b_datap->db_struioun.cksum.flags |= HCK_IPV4_HDRCKSUM; 18820 } else { 18821 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18822 ((uint16_t *)ipha)[4]); 18823 } 18824 18825 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18826 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18827 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18828 18829 UPDATE_OB_PKT_COUNT(ire); 18830 ire->ire_last_used_time = lbolt; 18831 BUMP_MIB(&ip_mib, ipOutRequests); 18832 18833 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 18834 ill_poll = ill->ill_poll_capab; 18835 ASSERT(ill_poll != NULL); 18836 ASSERT(ill_poll->ill_tx != NULL); 18837 ASSERT(ill_poll->ill_tx_handle != NULL); 18838 18839 ill_poll->ill_tx(ill_poll->ill_tx_handle, mp); 18840 } else { 18841 putnext(ire->ire_stq, mp); 18842 } 18843 IRE_REFRELE(ire); 18844 } 18845 18846 /* 18847 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18848 * if the receiver shrinks the window, i.e. moves the right window to the 18849 * left, the we should not send new data, but should retransmit normally the 18850 * old unacked data between suna and suna + swnd. We might has sent data 18851 * that is now outside the new window, pretend that we didn't send it. 18852 */ 18853 static void 18854 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18855 { 18856 uint32_t snxt = tcp->tcp_snxt; 18857 mblk_t *xmit_tail; 18858 int32_t offset; 18859 18860 ASSERT(shrunk_count > 0); 18861 18862 /* Pretend we didn't send the data outside the window */ 18863 snxt -= shrunk_count; 18864 18865 /* Get the mblk and the offset in it per the shrunk window */ 18866 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18867 18868 ASSERT(xmit_tail != NULL); 18869 18870 /* Reset all the values per the now shrunk window */ 18871 tcp->tcp_snxt = snxt; 18872 tcp->tcp_xmit_tail = xmit_tail; 18873 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18874 offset; 18875 tcp->tcp_unsent += shrunk_count; 18876 18877 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18878 /* 18879 * Make sure the timer is running so that we will probe a zero 18880 * window. 18881 */ 18882 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18883 } 18884 18885 18886 /* 18887 * The TCP normal data output path. 18888 * NOTE: the logic of the fast path is duplicated from this function. 18889 */ 18890 static void 18891 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18892 { 18893 int len; 18894 mblk_t *local_time; 18895 mblk_t *mp1; 18896 uint32_t snxt; 18897 int tail_unsent; 18898 int tcpstate; 18899 int usable = 0; 18900 mblk_t *xmit_tail; 18901 queue_t *q = tcp->tcp_wq; 18902 int32_t mss; 18903 int32_t num_sack_blk = 0; 18904 int32_t tcp_hdr_len; 18905 int32_t tcp_tcp_hdr_len; 18906 int mdt_thres; 18907 int rc; 18908 18909 tcpstate = tcp->tcp_state; 18910 if (mp == NULL) { 18911 /* 18912 * tcp_wput_data() with NULL mp should only be called when 18913 * there is unsent data. 18914 */ 18915 ASSERT(tcp->tcp_unsent > 0); 18916 /* Really tacky... but we need this for detached closes. */ 18917 len = tcp->tcp_unsent; 18918 goto data_null; 18919 } 18920 18921 #if CCS_STATS 18922 wrw_stats.tot.count++; 18923 wrw_stats.tot.bytes += msgdsize(mp); 18924 #endif 18925 ASSERT(mp->b_datap->db_type == M_DATA); 18926 /* 18927 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18928 * or before a connection attempt has begun. 18929 */ 18930 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18931 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18932 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18933 #ifdef DEBUG 18934 cmn_err(CE_WARN, 18935 "tcp_wput_data: data after ordrel, %s", 18936 tcp_display(tcp, NULL, 18937 DISP_ADDR_AND_PORT)); 18938 #else 18939 if (tcp->tcp_debug) { 18940 (void) strlog(TCP_MODULE_ID, 0, 1, 18941 SL_TRACE|SL_ERROR, 18942 "tcp_wput_data: data after ordrel, %s\n", 18943 tcp_display(tcp, NULL, 18944 DISP_ADDR_AND_PORT)); 18945 } 18946 #endif /* DEBUG */ 18947 } 18948 if (tcp->tcp_snd_zcopy_aware && 18949 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18950 tcp_zcopy_notify(tcp); 18951 freemsg(mp); 18952 return; 18953 } 18954 18955 /* Strip empties */ 18956 for (;;) { 18957 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18958 (uintptr_t)INT_MAX); 18959 len = (int)(mp->b_wptr - mp->b_rptr); 18960 if (len > 0) 18961 break; 18962 mp1 = mp; 18963 mp = mp->b_cont; 18964 freeb(mp1); 18965 if (!mp) { 18966 return; 18967 } 18968 } 18969 18970 /* If we are the first on the list ... */ 18971 if (tcp->tcp_xmit_head == NULL) { 18972 tcp->tcp_xmit_head = mp; 18973 tcp->tcp_xmit_tail = mp; 18974 tcp->tcp_xmit_tail_unsent = len; 18975 } else { 18976 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18977 struct datab *dp; 18978 18979 mp1 = tcp->tcp_xmit_last; 18980 if (len < tcp_tx_pull_len && 18981 (dp = mp1->b_datap)->db_ref == 1 && 18982 dp->db_lim - mp1->b_wptr >= len) { 18983 ASSERT(len > 0); 18984 ASSERT(!mp1->b_cont); 18985 if (len == 1) { 18986 *mp1->b_wptr++ = *mp->b_rptr; 18987 } else { 18988 bcopy(mp->b_rptr, mp1->b_wptr, len); 18989 mp1->b_wptr += len; 18990 } 18991 if (mp1 == tcp->tcp_xmit_tail) 18992 tcp->tcp_xmit_tail_unsent += len; 18993 mp1->b_cont = mp->b_cont; 18994 if (tcp->tcp_snd_zcopy_aware && 18995 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18996 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18997 freeb(mp); 18998 mp = mp1; 18999 } else { 19000 tcp->tcp_xmit_last->b_cont = mp; 19001 } 19002 len += tcp->tcp_unsent; 19003 } 19004 19005 /* Tack on however many more positive length mblks we have */ 19006 if ((mp1 = mp->b_cont) != NULL) { 19007 do { 19008 int tlen; 19009 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19010 (uintptr_t)INT_MAX); 19011 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19012 if (tlen <= 0) { 19013 mp->b_cont = mp1->b_cont; 19014 freeb(mp1); 19015 } else { 19016 len += tlen; 19017 mp = mp1; 19018 } 19019 } while ((mp1 = mp->b_cont) != NULL); 19020 } 19021 tcp->tcp_xmit_last = mp; 19022 tcp->tcp_unsent = len; 19023 19024 if (urgent) 19025 usable = 1; 19026 19027 data_null: 19028 snxt = tcp->tcp_snxt; 19029 xmit_tail = tcp->tcp_xmit_tail; 19030 tail_unsent = tcp->tcp_xmit_tail_unsent; 19031 19032 /* 19033 * Note that tcp_mss has been adjusted to take into account the 19034 * timestamp option if applicable. Because SACK options do not 19035 * appear in every TCP segments and they are of variable lengths, 19036 * they cannot be included in tcp_mss. Thus we need to calculate 19037 * the actual segment length when we need to send a segment which 19038 * includes SACK options. 19039 */ 19040 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19041 int32_t opt_len; 19042 19043 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19044 tcp->tcp_num_sack_blk); 19045 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19046 2 + TCPOPT_HEADER_LEN; 19047 mss = tcp->tcp_mss - opt_len; 19048 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19049 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19050 } else { 19051 mss = tcp->tcp_mss; 19052 tcp_hdr_len = tcp->tcp_hdr_len; 19053 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19054 } 19055 19056 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19057 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19058 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 19059 } 19060 if (tcpstate == TCPS_SYN_RCVD) { 19061 /* 19062 * The three-way connection establishment handshake is not 19063 * complete yet. We want to queue the data for transmission 19064 * after entering ESTABLISHED state (RFC793). A jump to 19065 * "done" label effectively leaves data on the queue. 19066 */ 19067 goto done; 19068 } else { 19069 int usable_r = tcp->tcp_swnd; 19070 19071 /* 19072 * In the special case when cwnd is zero, which can only 19073 * happen if the connection is ECN capable, return now. 19074 * New segments is sent using tcp_timer(). The timer 19075 * is set in tcp_rput_data(). 19076 */ 19077 if (tcp->tcp_cwnd == 0) { 19078 /* 19079 * Note that tcp_cwnd is 0 before 3-way handshake is 19080 * finished. 19081 */ 19082 ASSERT(tcp->tcp_ecn_ok || 19083 tcp->tcp_state < TCPS_ESTABLISHED); 19084 return; 19085 } 19086 19087 /* NOTE: trouble if xmitting while SYN not acked? */ 19088 usable_r -= snxt; 19089 usable_r += tcp->tcp_suna; 19090 19091 /* 19092 * Check if the receiver has shrunk the window. If 19093 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19094 * cannot be set as there is unsent data, so FIN cannot 19095 * be sent out. Otherwise, we need to take into account 19096 * of FIN as it consumes an "invisible" sequence number. 19097 */ 19098 ASSERT(tcp->tcp_fin_sent == 0); 19099 if (usable_r < 0) { 19100 /* 19101 * The receiver has shrunk the window and we have sent 19102 * -usable_r date beyond the window, re-adjust. 19103 * 19104 * If TCP window scaling is enabled, there can be 19105 * round down error as the advertised receive window 19106 * is actually right shifted n bits. This means that 19107 * the lower n bits info is wiped out. It will look 19108 * like the window is shrunk. Do a check here to 19109 * see if the shrunk amount is actually within the 19110 * error in window calculation. If it is, just 19111 * return. Note that this check is inside the 19112 * shrunk window check. This makes sure that even 19113 * though tcp_process_shrunk_swnd() is not called, 19114 * we will stop further processing. 19115 */ 19116 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19117 tcp_process_shrunk_swnd(tcp, -usable_r); 19118 } 19119 return; 19120 } 19121 19122 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19123 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19124 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19125 19126 /* usable = MIN(usable, unsent) */ 19127 if (usable_r > len) 19128 usable_r = len; 19129 19130 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19131 if (usable_r > 0) { 19132 usable = usable_r; 19133 } else { 19134 /* Bypass all other unnecessary processing. */ 19135 goto done; 19136 } 19137 } 19138 19139 local_time = (mblk_t *)lbolt; 19140 19141 /* 19142 * "Our" Nagle Algorithm. This is not the same as in the old 19143 * BSD. This is more in line with the true intent of Nagle. 19144 * 19145 * The conditions are: 19146 * 1. The amount of unsent data (or amount of data which can be 19147 * sent, whichever is smaller) is less than Nagle limit. 19148 * 2. The last sent size is also less than Nagle limit. 19149 * 3. There is unack'ed data. 19150 * 4. Urgent pointer is not set. Send urgent data ignoring the 19151 * Nagle algorithm. This reduces the probability that urgent 19152 * bytes get "merged" together. 19153 * 5. The app has not closed the connection. This eliminates the 19154 * wait time of the receiving side waiting for the last piece of 19155 * (small) data. 19156 * 19157 * If all are satisified, exit without sending anything. Note 19158 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19159 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19160 * 4095). 19161 */ 19162 if (usable < (int)tcp->tcp_naglim && 19163 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19164 snxt != tcp->tcp_suna && 19165 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19166 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19167 goto done; 19168 } 19169 19170 if (tcp->tcp_cork) { 19171 /* 19172 * if the tcp->tcp_cork option is set, then we have to force 19173 * TCP not to send partial segment (smaller than MSS bytes). 19174 * We are calculating the usable now based on full mss and 19175 * will save the rest of remaining data for later. 19176 */ 19177 if (usable < mss) 19178 goto done; 19179 usable = (usable / mss) * mss; 19180 } 19181 19182 /* Update the latest receive window size in TCP header. */ 19183 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19184 tcp->tcp_tcph->th_win); 19185 19186 /* 19187 * Determine if it's worthwhile to attempt MDT, based on: 19188 * 19189 * 1. Simple TCP/IP{v4,v6} (no options). 19190 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19191 * 3. If the TCP connection is in ESTABLISHED state. 19192 * 4. The TCP is not detached. 19193 * 19194 * If any of the above conditions have changed during the 19195 * connection, stop using MDT and restore the stream head 19196 * parameters accordingly. 19197 */ 19198 if (tcp->tcp_mdt && 19199 ((tcp->tcp_ipversion == IPV4_VERSION && 19200 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19201 (tcp->tcp_ipversion == IPV6_VERSION && 19202 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19203 tcp->tcp_state != TCPS_ESTABLISHED || 19204 TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) || 19205 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19206 IPP_ENABLED(IPP_LOCAL_OUT))) { 19207 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19208 tcp->tcp_mdt = B_FALSE; 19209 19210 /* Anything other than detached is considered pathological */ 19211 if (!TCP_IS_DETACHED(tcp)) { 19212 TCP_STAT(tcp_mdt_conn_halted1); 19213 (void) tcp_maxpsz_set(tcp, B_TRUE); 19214 } 19215 } 19216 19217 /* Use MDT if sendable amount is greater than the threshold */ 19218 if (tcp->tcp_mdt && 19219 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19220 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19221 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19222 (tcp->tcp_valid_bits == 0 || 19223 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19224 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19225 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19226 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19227 local_time, mdt_thres); 19228 } else { 19229 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19230 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19231 local_time, INT_MAX); 19232 } 19233 19234 /* Pretend that all we were trying to send really got sent */ 19235 if (rc < 0 && tail_unsent < 0) { 19236 do { 19237 xmit_tail = xmit_tail->b_cont; 19238 xmit_tail->b_prev = local_time; 19239 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19240 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19241 tail_unsent += (int)(xmit_tail->b_wptr - 19242 xmit_tail->b_rptr); 19243 } while (tail_unsent < 0); 19244 } 19245 done:; 19246 tcp->tcp_xmit_tail = xmit_tail; 19247 tcp->tcp_xmit_tail_unsent = tail_unsent; 19248 len = tcp->tcp_snxt - snxt; 19249 if (len) { 19250 /* 19251 * If new data was sent, need to update the notsack 19252 * list, which is, afterall, data blocks that have 19253 * not been sack'ed by the receiver. New data is 19254 * not sack'ed. 19255 */ 19256 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19257 /* len is a negative value. */ 19258 tcp->tcp_pipe -= len; 19259 tcp_notsack_update(&(tcp->tcp_notsack_list), 19260 tcp->tcp_snxt, snxt, 19261 &(tcp->tcp_num_notsack_blk), 19262 &(tcp->tcp_cnt_notsack_list)); 19263 } 19264 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19265 tcp->tcp_rack = tcp->tcp_rnxt; 19266 tcp->tcp_rack_cnt = 0; 19267 if ((snxt + len) == tcp->tcp_suna) { 19268 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19269 } 19270 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19271 /* 19272 * Didn't send anything. Make sure the timer is running 19273 * so that we will probe a zero window. 19274 */ 19275 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19276 } 19277 /* Note that len is the amount we just sent but with a negative sign */ 19278 tcp->tcp_unsent += len; 19279 if (tcp->tcp_flow_stopped) { 19280 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19281 tcp_clrqfull(tcp); 19282 } 19283 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19284 tcp_setqfull(tcp); 19285 } 19286 } 19287 19288 /* 19289 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19290 * outgoing TCP header with the template header, as well as other 19291 * options such as time-stamp, ECN and/or SACK. 19292 */ 19293 static void 19294 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19295 { 19296 tcph_t *tcp_tmpl, *tcp_h; 19297 uint32_t *dst, *src; 19298 int hdrlen; 19299 19300 ASSERT(OK_32PTR(rptr)); 19301 19302 /* Template header */ 19303 tcp_tmpl = tcp->tcp_tcph; 19304 19305 /* Header of outgoing packet */ 19306 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19307 19308 /* dst and src are opaque 32-bit fields, used for copying */ 19309 dst = (uint32_t *)rptr; 19310 src = (uint32_t *)tcp->tcp_iphc; 19311 hdrlen = tcp->tcp_hdr_len; 19312 19313 /* Fill time-stamp option if needed */ 19314 if (tcp->tcp_snd_ts_ok) { 19315 U32_TO_BE32((uint32_t)now, 19316 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19317 U32_TO_BE32(tcp->tcp_ts_recent, 19318 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19319 } else { 19320 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19321 } 19322 19323 /* 19324 * Copy the template header; is this really more efficient than 19325 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19326 * but perhaps not for other scenarios. 19327 */ 19328 dst[0] = src[0]; 19329 dst[1] = src[1]; 19330 dst[2] = src[2]; 19331 dst[3] = src[3]; 19332 dst[4] = src[4]; 19333 dst[5] = src[5]; 19334 dst[6] = src[6]; 19335 dst[7] = src[7]; 19336 dst[8] = src[8]; 19337 dst[9] = src[9]; 19338 if (hdrlen -= 40) { 19339 hdrlen >>= 2; 19340 dst += 10; 19341 src += 10; 19342 do { 19343 *dst++ = *src++; 19344 } while (--hdrlen); 19345 } 19346 19347 /* 19348 * Set the ECN info in the TCP header if it is not a zero 19349 * window probe. Zero window probe is only sent in 19350 * tcp_wput_data() and tcp_timer(). 19351 */ 19352 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19353 SET_ECT(tcp, rptr); 19354 19355 if (tcp->tcp_ecn_echo_on) 19356 tcp_h->th_flags[0] |= TH_ECE; 19357 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19358 tcp_h->th_flags[0] |= TH_CWR; 19359 tcp->tcp_ecn_cwr_sent = B_TRUE; 19360 } 19361 } 19362 19363 /* Fill in SACK options */ 19364 if (num_sack_blk > 0) { 19365 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19366 sack_blk_t *tmp; 19367 int32_t i; 19368 19369 wptr[0] = TCPOPT_NOP; 19370 wptr[1] = TCPOPT_NOP; 19371 wptr[2] = TCPOPT_SACK; 19372 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19373 sizeof (sack_blk_t); 19374 wptr += TCPOPT_REAL_SACK_LEN; 19375 19376 tmp = tcp->tcp_sack_list; 19377 for (i = 0; i < num_sack_blk; i++) { 19378 U32_TO_BE32(tmp[i].begin, wptr); 19379 wptr += sizeof (tcp_seq); 19380 U32_TO_BE32(tmp[i].end, wptr); 19381 wptr += sizeof (tcp_seq); 19382 } 19383 tcp_h->th_offset_and_rsrvd[0] += 19384 ((num_sack_blk * 2 + 1) << 4); 19385 } 19386 } 19387 19388 /* 19389 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19390 * the destination address and SAP attribute, and if necessary, the 19391 * hardware checksum offload attribute to a Multidata message. 19392 */ 19393 static int 19394 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19395 const uint32_t start, const uint32_t stuff, const uint32_t end, 19396 const uint32_t flags) 19397 { 19398 /* Add global destination address & SAP attribute */ 19399 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19400 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19401 "destination address+SAP\n")); 19402 19403 if (dlmp != NULL) 19404 TCP_STAT(tcp_mdt_allocfail); 19405 return (-1); 19406 } 19407 19408 /* Add global hwcksum attribute */ 19409 if (hwcksum && 19410 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19411 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19412 "checksum attribute\n")); 19413 19414 TCP_STAT(tcp_mdt_allocfail); 19415 return (-1); 19416 } 19417 19418 return (0); 19419 } 19420 19421 /* 19422 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19423 * scheme, and returns one the following: 19424 * 19425 * -1 = failed allocation. 19426 * 0 = success; burst count reached, or usable send window is too small, 19427 * and that we'd rather wait until later before sending again. 19428 */ 19429 static int 19430 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19431 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19432 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19433 const int mdt_thres) 19434 { 19435 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19436 multidata_t *mmd; 19437 uint_t obsegs, obbytes, hdr_frag_sz; 19438 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19439 int num_burst_seg, max_pld; 19440 pdesc_t *pkt; 19441 tcp_pdescinfo_t tcp_pkt_info; 19442 pdescinfo_t *pkt_info; 19443 int pbuf_idx, pbuf_idx_nxt; 19444 int seg_len, len, spill, af; 19445 boolean_t add_buffer, zcopy, clusterwide; 19446 boolean_t rconfirm = B_FALSE; 19447 boolean_t done = B_FALSE; 19448 uint32_t cksum; 19449 uint32_t hwcksum_flags; 19450 ire_t *ire; 19451 ill_t *ill; 19452 ipha_t *ipha; 19453 ip6_t *ip6h; 19454 ipaddr_t src, dst; 19455 ill_zerocopy_capab_t *zc_cap = NULL; 19456 uint16_t *up; 19457 int err; 19458 19459 #ifdef _BIG_ENDIAN 19460 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19461 #else 19462 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19463 #endif 19464 19465 #define TCP_CSUM_OFFSET 16 19466 #define TCP_CSUM_SIZE 2 19467 19468 #define PREP_NEW_MULTIDATA() { \ 19469 mmd = NULL; \ 19470 md_mp = md_hbuf = NULL; \ 19471 cur_hdr_off = 0; \ 19472 max_pld = tcp->tcp_mdt_max_pld; \ 19473 pbuf_idx = pbuf_idx_nxt = -1; \ 19474 add_buffer = B_TRUE; \ 19475 zcopy = B_FALSE; \ 19476 } 19477 19478 #define PREP_NEW_PBUF() { \ 19479 md_pbuf = md_pbuf_nxt = NULL; \ 19480 pbuf_idx = pbuf_idx_nxt = -1; \ 19481 cur_pld_off = 0; \ 19482 first_snxt = *snxt; \ 19483 ASSERT(*tail_unsent > 0); \ 19484 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19485 } 19486 19487 ASSERT(mdt_thres >= mss); 19488 ASSERT(*usable > 0 && *usable > mdt_thres); 19489 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19490 ASSERT(!TCP_IS_DETACHED(tcp)); 19491 ASSERT(tcp->tcp_valid_bits == 0 || 19492 tcp->tcp_valid_bits == TCP_FSS_VALID); 19493 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19494 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19495 (tcp->tcp_ipversion == IPV6_VERSION && 19496 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19497 ASSERT(tcp->tcp_connp != NULL); 19498 ASSERT(CONN_IS_MD_FASTPATH(tcp->tcp_connp)); 19499 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp)); 19500 19501 /* 19502 * Note that tcp will only declare at most 2 payload spans per 19503 * packet, which is much lower than the maximum allowable number 19504 * of packet spans per Multidata. For this reason, we use the 19505 * privately declared and smaller descriptor info structure, in 19506 * order to save some stack space. 19507 */ 19508 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19509 19510 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19511 if (af == AF_INET) { 19512 dst = tcp->tcp_ipha->ipha_dst; 19513 src = tcp->tcp_ipha->ipha_src; 19514 ASSERT(!CLASSD(dst)); 19515 } 19516 ASSERT(af == AF_INET || 19517 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19518 19519 obsegs = obbytes = 0; 19520 num_burst_seg = tcp->tcp_snd_burst; 19521 md_mp_head = NULL; 19522 PREP_NEW_MULTIDATA(); 19523 19524 /* 19525 * Before we go on further, make sure there is an IRE that we can 19526 * use, and that the ILL supports MDT. Otherwise, there's no point 19527 * in proceeding any further, and we should just hand everything 19528 * off to the legacy path. 19529 */ 19530 mutex_enter(&tcp->tcp_connp->conn_lock); 19531 ire = tcp->tcp_connp->conn_ire_cache; 19532 ASSERT(!(tcp->tcp_connp->conn_state_flags & CONN_INCIPIENT)); 19533 if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) || 19534 (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, 19535 &tcp->tcp_ip6h->ip6_dst))) && 19536 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19537 IRE_REFHOLD(ire); 19538 mutex_exit(&tcp->tcp_connp->conn_lock); 19539 } else { 19540 boolean_t cached = B_FALSE; 19541 19542 /* force a recheck later on */ 19543 tcp->tcp_ire_ill_check_done = B_FALSE; 19544 19545 TCP_DBGSTAT(tcp_ire_null1); 19546 tcp->tcp_connp->conn_ire_cache = NULL; 19547 mutex_exit(&tcp->tcp_connp->conn_lock); 19548 19549 /* Release the old ire */ 19550 if (ire != NULL) 19551 IRE_REFRELE_NOTR(ire); 19552 19553 ire = (af == AF_INET) ? 19554 ire_cache_lookup(dst, tcp->tcp_connp->conn_zoneid) : 19555 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19556 tcp->tcp_connp->conn_zoneid); 19557 19558 if (ire == NULL) { 19559 TCP_STAT(tcp_ire_null); 19560 goto legacy_send_no_md; 19561 } 19562 19563 IRE_REFHOLD_NOTR(ire); 19564 /* 19565 * Since we are inside the squeue, there cannot be another 19566 * thread in TCP trying to set the conn_ire_cache now. The 19567 * check for IRE_MARK_CONDEMNED ensures that an interface 19568 * unplumb thread has not yet started cleaning up the conns. 19569 * Hence we don't need to grab the conn lock. 19570 */ 19571 if (!(tcp->tcp_connp->conn_state_flags & CONN_CLOSING)) { 19572 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19573 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19574 tcp->tcp_connp->conn_ire_cache = ire; 19575 cached = B_TRUE; 19576 } 19577 rw_exit(&ire->ire_bucket->irb_lock); 19578 } 19579 19580 /* 19581 * We can continue to use the ire but since it was not 19582 * cached, we should drop the extra reference. 19583 */ 19584 if (!cached) 19585 IRE_REFRELE_NOTR(ire); 19586 } 19587 19588 ASSERT(ire != NULL); 19589 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19590 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19591 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19592 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19593 /* 19594 * If we do support loopback for MDT (which requires modifications 19595 * to the receiving paths), the following assertions should go away, 19596 * and we would be sending the Multidata to loopback conn later on. 19597 */ 19598 ASSERT(!IRE_IS_LOCAL(ire)); 19599 ASSERT(ire->ire_stq != NULL); 19600 19601 ill = ire_to_ill(ire); 19602 ASSERT(ill != NULL); 19603 ASSERT((ill->ill_capabilities & ILL_CAPAB_MDT) == 0 || 19604 ill->ill_mdt_capab != NULL); 19605 19606 if (!tcp->tcp_ire_ill_check_done) { 19607 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19608 tcp->tcp_ire_ill_check_done = B_TRUE; 19609 } 19610 19611 /* 19612 * If the underlying interface conditions have changed, or if the 19613 * new interface does not support MDT, go back to legacy path. 19614 */ 19615 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19616 /* don't go through this path anymore for this connection */ 19617 TCP_STAT(tcp_mdt_conn_halted2); 19618 tcp->tcp_mdt = B_FALSE; 19619 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19620 "interface %s\n", (void *)tcp->tcp_connp, ill->ill_name)); 19621 /* IRE will be released prior to returning */ 19622 goto legacy_send_no_md; 19623 } 19624 19625 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19626 zc_cap = ill->ill_zerocopy_capab; 19627 19628 /* go to legacy path if interface doesn't support zerocopy */ 19629 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19630 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19631 /* IRE will be released prior to returning */ 19632 goto legacy_send_no_md; 19633 } 19634 19635 /* does the interface support hardware checksum offload? */ 19636 hwcksum_flags = 0; 19637 if ((ill->ill_capabilities & ILL_CAPAB_HCKSUM) && 19638 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19639 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM)) && 19640 dohwcksum) { 19641 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19642 HCKSUM_IPHDRCKSUM) 19643 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19644 19645 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19646 HCKSUM_INET_FULL_V4) 19647 hwcksum_flags |= HCK_FULLCKSUM; 19648 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19649 HCKSUM_INET_PARTIAL) 19650 hwcksum_flags |= HCK_PARTIALCKSUM; 19651 } 19652 19653 /* 19654 * Each header fragment consists of the leading extra space, 19655 * followed by the TCP/IP header, and the trailing extra space. 19656 * We make sure that each header fragment begins on a 32-bit 19657 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19658 * aligned in tcp_mdt_update). 19659 */ 19660 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19661 tcp->tcp_mdt_hdr_tail), 4); 19662 19663 /* are we starting from the beginning of data block? */ 19664 if (*tail_unsent == 0) { 19665 *xmit_tail = (*xmit_tail)->b_cont; 19666 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19667 *tail_unsent = (int)MBLKL(*xmit_tail); 19668 } 19669 19670 /* 19671 * Here we create one or more Multidata messages, each made up of 19672 * one header buffer and up to N payload buffers. This entire 19673 * operation is done within two loops: 19674 * 19675 * The outer loop mostly deals with creating the Multidata message, 19676 * as well as the header buffer that gets added to it. It also 19677 * links the Multidata messages together such that all of them can 19678 * be sent down to the lower layer in a single putnext call; this 19679 * linking behavior depends on the tcp_mdt_chain tunable. 19680 * 19681 * The inner loop takes an existing Multidata message, and adds 19682 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19683 * packetizes those buffers by filling up the corresponding header 19684 * buffer fragments with the proper IP and TCP headers, and by 19685 * describing the layout of each packet in the packet descriptors 19686 * that get added to the Multidata. 19687 */ 19688 do { 19689 /* 19690 * If usable send window is too small, or data blocks in 19691 * transmit list are smaller than our threshold (i.e. app 19692 * performs large writes followed by small ones), we hand 19693 * off the control over to the legacy path. Note that we'll 19694 * get back the control once it encounters a large block. 19695 */ 19696 if (*usable < mss || (*tail_unsent <= mdt_thres && 19697 (*xmit_tail)->b_cont != NULL && 19698 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19699 /* send down what we've got so far */ 19700 if (md_mp_head != NULL) { 19701 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19702 obsegs, obbytes, &rconfirm); 19703 } 19704 /* 19705 * Pass control over to tcp_send(), but tell it to 19706 * return to us once a large-size transmission is 19707 * possible. 19708 */ 19709 TCP_STAT(tcp_mdt_legacy_small); 19710 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19711 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19712 tail_unsent, xmit_tail, local_time, 19713 mdt_thres)) <= 0) { 19714 /* burst count reached, or alloc failed */ 19715 IRE_REFRELE(ire); 19716 return (err); 19717 } 19718 19719 /* tcp_send() may have sent everything, so check */ 19720 if (*usable <= 0) { 19721 IRE_REFRELE(ire); 19722 return (0); 19723 } 19724 19725 TCP_STAT(tcp_mdt_legacy_ret); 19726 /* 19727 * We may have delivered the Multidata, so make sure 19728 * to re-initialize before the next round. 19729 */ 19730 md_mp_head = NULL; 19731 obsegs = obbytes = 0; 19732 num_burst_seg = tcp->tcp_snd_burst; 19733 PREP_NEW_MULTIDATA(); 19734 19735 /* are we starting from the beginning of data block? */ 19736 if (*tail_unsent == 0) { 19737 *xmit_tail = (*xmit_tail)->b_cont; 19738 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19739 (uintptr_t)INT_MAX); 19740 *tail_unsent = (int)MBLKL(*xmit_tail); 19741 } 19742 } 19743 19744 /* 19745 * max_pld limits the number of mblks in tcp's transmit 19746 * queue that can be added to a Multidata message. Once 19747 * this counter reaches zero, no more additional mblks 19748 * can be added to it. What happens afterwards depends 19749 * on whether or not we are set to chain the Multidata 19750 * messages. If we are to link them together, reset 19751 * max_pld to its original value (tcp_mdt_max_pld) and 19752 * prepare to create a new Multidata message which will 19753 * get linked to md_mp_head. Else, leave it alone and 19754 * let the inner loop break on its own. 19755 */ 19756 if (tcp_mdt_chain && max_pld == 0) 19757 PREP_NEW_MULTIDATA(); 19758 19759 /* adding a payload buffer; re-initialize values */ 19760 if (add_buffer) 19761 PREP_NEW_PBUF(); 19762 19763 /* 19764 * If we don't have a Multidata, either because we just 19765 * (re)entered this outer loop, or after we branched off 19766 * to tcp_send above, setup the Multidata and header 19767 * buffer to be used. 19768 */ 19769 if (md_mp == NULL) { 19770 int md_hbuflen; 19771 uint32_t start, stuff; 19772 19773 /* 19774 * Calculate Multidata header buffer size large enough 19775 * to hold all of the headers that can possibly be 19776 * sent at this moment. We'd rather over-estimate 19777 * the size than running out of space; this is okay 19778 * since this buffer is small anyway. 19779 */ 19780 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19781 19782 /* 19783 * Start and stuff offset for partial hardware 19784 * checksum offload; these are currently for IPv4. 19785 * For full checksum offload, they are set to zero. 19786 */ 19787 if (af == AF_INET && 19788 (hwcksum_flags & HCK_PARTIALCKSUM)) { 19789 start = IP_SIMPLE_HDR_LENGTH; 19790 stuff = IP_SIMPLE_HDR_LENGTH + TCP_CSUM_OFFSET; 19791 } else { 19792 start = stuff = 0; 19793 } 19794 19795 /* 19796 * Create the header buffer, Multidata, as well as 19797 * any necessary attributes (destination address, 19798 * SAP and hardware checksum offload) that should 19799 * be associated with the Multidata message. 19800 */ 19801 ASSERT(cur_hdr_off == 0); 19802 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19803 ((md_hbuf->b_wptr += md_hbuflen), 19804 (mmd = mmd_alloc(md_hbuf, &md_mp, 19805 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19806 /* fastpath mblk */ 19807 (af == AF_INET) ? ire->ire_dlureq_mp : 19808 ire->ire_nce->nce_res_mp, 19809 /* hardware checksum enabled (IPv4 only) */ 19810 (af == AF_INET && hwcksum_flags != 0), 19811 /* hardware checksum offsets */ 19812 start, stuff, 0, 19813 /* hardware checksum flag */ 19814 hwcksum_flags) != 0)) { 19815 legacy_send: 19816 if (md_mp != NULL) { 19817 /* Unlink message from the chain */ 19818 if (md_mp_head != NULL) { 19819 err = (intptr_t)rmvb(md_mp_head, 19820 md_mp); 19821 /* 19822 * We can't assert that rmvb 19823 * did not return -1, since we 19824 * may get here before linkb 19825 * happens. We do, however, 19826 * check if we just removed the 19827 * only element in the list. 19828 */ 19829 if (err == 0) 19830 md_mp_head = NULL; 19831 } 19832 /* md_hbuf gets freed automatically */ 19833 TCP_STAT(tcp_mdt_discarded); 19834 freeb(md_mp); 19835 } else { 19836 /* Either allocb or mmd_alloc failed */ 19837 TCP_STAT(tcp_mdt_allocfail); 19838 if (md_hbuf != NULL) 19839 freeb(md_hbuf); 19840 } 19841 19842 /* send down what we've got so far */ 19843 if (md_mp_head != NULL) { 19844 tcp_multisend_data(tcp, ire, ill, 19845 md_mp_head, obsegs, obbytes, 19846 &rconfirm); 19847 } 19848 legacy_send_no_md: 19849 if (ire != NULL) 19850 IRE_REFRELE(ire); 19851 /* 19852 * Too bad; let the legacy path handle this. 19853 * We specify INT_MAX for the threshold, since 19854 * we gave up with the Multidata processings 19855 * and let the old path have it all. 19856 */ 19857 TCP_STAT(tcp_mdt_legacy_all); 19858 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19859 tcp_tcp_hdr_len, num_sack_blk, usable, 19860 snxt, tail_unsent, xmit_tail, local_time, 19861 INT_MAX)); 19862 } 19863 19864 /* link to any existing ones, if applicable */ 19865 TCP_STAT(tcp_mdt_allocd); 19866 if (md_mp_head == NULL) { 19867 md_mp_head = md_mp; 19868 } else if (tcp_mdt_chain) { 19869 TCP_STAT(tcp_mdt_linked); 19870 linkb(md_mp_head, md_mp); 19871 } 19872 } 19873 19874 ASSERT(md_mp_head != NULL); 19875 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19876 ASSERT(md_mp != NULL && mmd != NULL); 19877 ASSERT(md_hbuf != NULL); 19878 19879 /* 19880 * Packetize the transmittable portion of the data block; 19881 * each data block is essentially added to the Multidata 19882 * as a payload buffer. We also deal with adding more 19883 * than one payload buffers, which happens when the remaining 19884 * packetized portion of the current payload buffer is less 19885 * than MSS, while the next data block in transmit queue 19886 * has enough data to make up for one. This "spillover" 19887 * case essentially creates a split-packet, where portions 19888 * of the packet's payload fragments may span across two 19889 * virtually discontiguous address blocks. 19890 */ 19891 seg_len = mss; 19892 do { 19893 len = seg_len; 19894 19895 ASSERT(len > 0); 19896 ASSERT(max_pld >= 0); 19897 ASSERT(!add_buffer || cur_pld_off == 0); 19898 19899 /* 19900 * First time around for this payload buffer; note 19901 * in the case of a spillover, the following has 19902 * been done prior to adding the split-packet 19903 * descriptor to Multidata, and we don't want to 19904 * repeat the process. 19905 */ 19906 if (add_buffer) { 19907 ASSERT(mmd != NULL); 19908 ASSERT(md_pbuf == NULL); 19909 ASSERT(md_pbuf_nxt == NULL); 19910 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19911 19912 /* 19913 * Have we reached the limit? We'd get to 19914 * this case when we're not chaining the 19915 * Multidata messages together, and since 19916 * we're done, terminate this loop. 19917 */ 19918 if (max_pld == 0) 19919 break; /* done */ 19920 19921 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19922 TCP_STAT(tcp_mdt_allocfail); 19923 goto legacy_send; /* out_of_mem */ 19924 } 19925 19926 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19927 zc_cap != NULL) { 19928 if (!ip_md_zcopy_attr(mmd, NULL, 19929 zc_cap->ill_zerocopy_flags)) { 19930 freeb(md_pbuf); 19931 TCP_STAT(tcp_mdt_allocfail); 19932 /* out_of_mem */ 19933 goto legacy_send; 19934 } 19935 zcopy = B_TRUE; 19936 } 19937 19938 md_pbuf->b_rptr += base_pld_off; 19939 19940 /* 19941 * Add a payload buffer to the Multidata; this 19942 * operation must not fail, or otherwise our 19943 * logic in this routine is broken. There 19944 * is no memory allocation done by the 19945 * routine, so any returned failure simply 19946 * tells us that we've done something wrong. 19947 * 19948 * A failure tells us that either we're adding 19949 * the same payload buffer more than once, or 19950 * we're trying to add more buffers than 19951 * allowed (max_pld calculation is wrong). 19952 * None of the above cases should happen, and 19953 * we panic because either there's horrible 19954 * heap corruption, and/or programming mistake. 19955 */ 19956 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19957 if (pbuf_idx < 0) { 19958 cmn_err(CE_PANIC, "tcp_multisend: " 19959 "payload buffer logic error " 19960 "detected for tcp %p mmd %p " 19961 "pbuf %p (%d)\n", 19962 (void *)tcp, (void *)mmd, 19963 (void *)md_pbuf, pbuf_idx); 19964 } 19965 19966 ASSERT(max_pld > 0); 19967 --max_pld; 19968 add_buffer = B_FALSE; 19969 } 19970 19971 ASSERT(md_mp_head != NULL); 19972 ASSERT(md_pbuf != NULL); 19973 ASSERT(md_pbuf_nxt == NULL); 19974 ASSERT(pbuf_idx != -1); 19975 ASSERT(pbuf_idx_nxt == -1); 19976 ASSERT(*usable > 0); 19977 19978 /* 19979 * We spillover to the next payload buffer only 19980 * if all of the following is true: 19981 * 19982 * 1. There is not enough data on the current 19983 * payload buffer to make up `len', 19984 * 2. We are allowed to send `len', 19985 * 3. The next payload buffer length is large 19986 * enough to accomodate `spill'. 19987 */ 19988 if ((spill = len - *tail_unsent) > 0 && 19989 *usable >= len && 19990 MBLKL((*xmit_tail)->b_cont) >= spill && 19991 max_pld > 0) { 19992 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19993 if (md_pbuf_nxt == NULL) { 19994 TCP_STAT(tcp_mdt_allocfail); 19995 goto legacy_send; /* out_of_mem */ 19996 } 19997 19998 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19999 zc_cap != NULL) { 20000 if (!ip_md_zcopy_attr(mmd, NULL, 20001 zc_cap->ill_zerocopy_flags)) { 20002 freeb(md_pbuf_nxt); 20003 TCP_STAT(tcp_mdt_allocfail); 20004 /* out_of_mem */ 20005 goto legacy_send; 20006 } 20007 zcopy = B_TRUE; 20008 } 20009 20010 /* 20011 * See comments above on the first call to 20012 * mmd_addpldbuf for explanation on the panic. 20013 */ 20014 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20015 if (pbuf_idx_nxt < 0) { 20016 panic("tcp_multisend: " 20017 "next payload buffer logic error " 20018 "detected for tcp %p mmd %p " 20019 "pbuf %p (%d)\n", 20020 (void *)tcp, (void *)mmd, 20021 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20022 } 20023 20024 ASSERT(max_pld > 0); 20025 --max_pld; 20026 } else if (spill > 0) { 20027 /* 20028 * If there's a spillover, but the following 20029 * xmit_tail couldn't give us enough octets 20030 * to reach "len", then stop the current 20031 * Multidata creation and let the legacy 20032 * tcp_send() path take over. We don't want 20033 * to send the tiny segment as part of this 20034 * Multidata for performance reasons; instead, 20035 * we let the legacy path deal with grouping 20036 * it with the subsequent small mblks. 20037 */ 20038 if (*usable >= len && 20039 MBLKL((*xmit_tail)->b_cont) < spill) { 20040 max_pld = 0; 20041 break; /* done */ 20042 } 20043 20044 /* 20045 * We can't spillover, and we are near 20046 * the end of the current payload buffer, 20047 * so send what's left. 20048 */ 20049 ASSERT(*tail_unsent > 0); 20050 len = *tail_unsent; 20051 } 20052 20053 /* tail_unsent is negated if there is a spillover */ 20054 *tail_unsent -= len; 20055 *usable -= len; 20056 ASSERT(*usable >= 0); 20057 20058 if (*usable < mss) 20059 seg_len = *usable; 20060 /* 20061 * Sender SWS avoidance; see comments in tcp_send(); 20062 * everything else is the same, except that we only 20063 * do this here if there is no more data to be sent 20064 * following the current xmit_tail. We don't check 20065 * for 1-byte urgent data because we shouldn't get 20066 * here if TCP_URG_VALID is set. 20067 */ 20068 if (*usable > 0 && *usable < mss && 20069 ((md_pbuf_nxt == NULL && 20070 (*xmit_tail)->b_cont == NULL) || 20071 (md_pbuf_nxt != NULL && 20072 (*xmit_tail)->b_cont->b_cont == NULL)) && 20073 seg_len < (tcp->tcp_max_swnd >> 1) && 20074 (tcp->tcp_unsent - 20075 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20076 !tcp->tcp_zero_win_probe) { 20077 if ((*snxt + len) == tcp->tcp_snxt && 20078 (*snxt + len) == tcp->tcp_suna) { 20079 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20080 } 20081 done = B_TRUE; 20082 } 20083 20084 /* 20085 * Prime pump for IP's checksumming on our behalf; 20086 * include the adjustment for a source route if any. 20087 * Do this only for software/partial hardware checksum 20088 * offload, as this field gets zeroed out later for 20089 * the full hardware checksum offload case. 20090 */ 20091 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20092 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20093 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20094 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20095 } 20096 20097 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20098 *snxt += len; 20099 20100 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20101 /* 20102 * We set the PUSH bit only if TCP has no more buffered 20103 * data to be transmitted (or if sender SWS avoidance 20104 * takes place), as opposed to setting it for every 20105 * last packet in the burst. 20106 */ 20107 if (done || 20108 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20109 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20110 20111 /* 20112 * Set FIN bit if this is our last segment; snxt 20113 * already includes its length, and it will not 20114 * be adjusted after this point. 20115 */ 20116 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20117 *snxt == tcp->tcp_fss) { 20118 if (!tcp->tcp_fin_acked) { 20119 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20120 BUMP_MIB(&tcp_mib, tcpOutControl); 20121 } 20122 if (!tcp->tcp_fin_sent) { 20123 tcp->tcp_fin_sent = B_TRUE; 20124 /* 20125 * tcp state must be ESTABLISHED 20126 * in order for us to get here in 20127 * the first place. 20128 */ 20129 tcp->tcp_state = TCPS_FIN_WAIT_1; 20130 20131 /* 20132 * Upon returning from this routine, 20133 * tcp_wput_data() will set tcp_snxt 20134 * to be equal to snxt + tcp_fin_sent. 20135 * This is essentially the same as 20136 * setting it to tcp_fss + 1. 20137 */ 20138 } 20139 } 20140 20141 tcp->tcp_last_sent_len = (ushort_t)len; 20142 20143 len += tcp_hdr_len; 20144 if (tcp->tcp_ipversion == IPV4_VERSION) 20145 tcp->tcp_ipha->ipha_length = htons(len); 20146 else 20147 tcp->tcp_ip6h->ip6_plen = htons(len - 20148 ((char *)&tcp->tcp_ip6h[1] - 20149 tcp->tcp_iphc)); 20150 20151 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20152 20153 /* setup header fragment */ 20154 PDESC_HDR_ADD(pkt_info, 20155 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20156 tcp->tcp_mdt_hdr_head, /* head room */ 20157 tcp_hdr_len, /* len */ 20158 tcp->tcp_mdt_hdr_tail); /* tail room */ 20159 20160 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20161 hdr_frag_sz); 20162 ASSERT(MBLKIN(md_hbuf, 20163 (pkt_info->hdr_base - md_hbuf->b_rptr), 20164 PDESC_HDRSIZE(pkt_info))); 20165 20166 /* setup first payload fragment */ 20167 PDESC_PLD_INIT(pkt_info); 20168 PDESC_PLD_SPAN_ADD(pkt_info, 20169 pbuf_idx, /* index */ 20170 md_pbuf->b_rptr + cur_pld_off, /* start */ 20171 tcp->tcp_last_sent_len); /* len */ 20172 20173 /* create a split-packet in case of a spillover */ 20174 if (md_pbuf_nxt != NULL) { 20175 ASSERT(spill > 0); 20176 ASSERT(pbuf_idx_nxt > pbuf_idx); 20177 ASSERT(!add_buffer); 20178 20179 md_pbuf = md_pbuf_nxt; 20180 md_pbuf_nxt = NULL; 20181 pbuf_idx = pbuf_idx_nxt; 20182 pbuf_idx_nxt = -1; 20183 cur_pld_off = spill; 20184 20185 /* trim out first payload fragment */ 20186 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20187 20188 /* setup second payload fragment */ 20189 PDESC_PLD_SPAN_ADD(pkt_info, 20190 pbuf_idx, /* index */ 20191 md_pbuf->b_rptr, /* start */ 20192 spill); /* len */ 20193 20194 if ((*xmit_tail)->b_next == NULL) { 20195 /* 20196 * Store the lbolt used for RTT 20197 * estimation. We can only record one 20198 * timestamp per mblk so we do it when 20199 * we reach the end of the payload 20200 * buffer. Also we only take a new 20201 * timestamp sample when the previous 20202 * timed data from the same mblk has 20203 * been ack'ed. 20204 */ 20205 (*xmit_tail)->b_prev = local_time; 20206 (*xmit_tail)->b_next = 20207 (mblk_t *)(uintptr_t)first_snxt; 20208 } 20209 20210 first_snxt = *snxt - spill; 20211 20212 /* 20213 * Advance xmit_tail; usable could be 0 by 20214 * the time we got here, but we made sure 20215 * above that we would only spillover to 20216 * the next data block if usable includes 20217 * the spilled-over amount prior to the 20218 * subtraction. Therefore, we are sure 20219 * that xmit_tail->b_cont can't be NULL. 20220 */ 20221 ASSERT((*xmit_tail)->b_cont != NULL); 20222 *xmit_tail = (*xmit_tail)->b_cont; 20223 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20224 (uintptr_t)INT_MAX); 20225 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20226 } else { 20227 cur_pld_off += tcp->tcp_last_sent_len; 20228 } 20229 20230 /* 20231 * Fill in the header using the template header, and 20232 * add options such as time-stamp, ECN and/or SACK, 20233 * as needed. 20234 */ 20235 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20236 (clock_t)local_time, num_sack_blk); 20237 20238 /* take care of some IP header businesses */ 20239 if (af == AF_INET) { 20240 ipha = (ipha_t *)pkt_info->hdr_rptr; 20241 20242 ASSERT(OK_32PTR((uchar_t *)ipha)); 20243 ASSERT(PDESC_HDRL(pkt_info) >= 20244 IP_SIMPLE_HDR_LENGTH); 20245 ASSERT(ipha->ipha_version_and_hdr_length == 20246 IP_SIMPLE_HDR_VERSION); 20247 20248 /* 20249 * Assign ident value for current packet; see 20250 * related comments in ip_wput_ire() about the 20251 * contract private interface with clustering 20252 * group. 20253 */ 20254 clusterwide = B_FALSE; 20255 if (cl_inet_ipident != NULL) { 20256 ASSERT(cl_inet_isclusterwide != NULL); 20257 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20258 AF_INET, 20259 (uint8_t *)(uintptr_t)src)) { 20260 ipha->ipha_ident = 20261 (*cl_inet_ipident) 20262 (IPPROTO_IP, AF_INET, 20263 (uint8_t *)(uintptr_t)src, 20264 (uint8_t *)(uintptr_t)dst); 20265 clusterwide = B_TRUE; 20266 } 20267 } 20268 20269 if (!clusterwide) { 20270 ipha->ipha_ident = (uint16_t) 20271 atomic_add_32_nv( 20272 &ire->ire_ident, 1); 20273 } 20274 #ifndef _BIG_ENDIAN 20275 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20276 (ipha->ipha_ident >> 8); 20277 #endif 20278 } else { 20279 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20280 20281 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20282 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20283 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20284 ASSERT(PDESC_HDRL(pkt_info) >= 20285 (IPV6_HDR_LEN + TCP_CSUM_OFFSET + 20286 TCP_CSUM_SIZE)); 20287 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20288 20289 if (tcp->tcp_ip_forward_progress) { 20290 rconfirm = B_TRUE; 20291 tcp->tcp_ip_forward_progress = B_FALSE; 20292 } 20293 } 20294 20295 /* at least one payload span, and at most two */ 20296 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20297 20298 /* add the packet descriptor to Multidata */ 20299 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20300 KM_NOSLEEP)) == NULL) { 20301 /* 20302 * Any failure other than ENOMEM indicates 20303 * that we have passed in invalid pkt_info 20304 * or parameters to mmd_addpdesc, which must 20305 * not happen. 20306 * 20307 * EINVAL is a result of failure on boundary 20308 * checks against the pkt_info contents. It 20309 * should not happen, and we panic because 20310 * either there's horrible heap corruption, 20311 * and/or programming mistake. 20312 */ 20313 if (err != ENOMEM) { 20314 cmn_err(CE_PANIC, "tcp_multisend: " 20315 "pdesc logic error detected for " 20316 "tcp %p mmd %p pinfo %p (%d)\n", 20317 (void *)tcp, (void *)mmd, 20318 (void *)pkt_info, err); 20319 } 20320 TCP_STAT(tcp_mdt_addpdescfail); 20321 goto legacy_send; /* out_of_mem */ 20322 } 20323 ASSERT(pkt != NULL); 20324 20325 /* calculate IP header and TCP checksums */ 20326 if (af == AF_INET) { 20327 /* calculate pseudo-header checksum */ 20328 cksum = (dst >> 16) + (dst & 0xFFFF) + 20329 (src >> 16) + (src & 0xFFFF); 20330 20331 /* offset for TCP header checksum */ 20332 up = IPH_TCPH_CHECKSUMP(ipha, 20333 IP_SIMPLE_HDR_LENGTH); 20334 20335 if (hwcksum_flags & HCK_FULLCKSUM) { 20336 /* 20337 * Hardware calculates pseudo-header, 20338 * header and payload checksums, so 20339 * zero out this field. 20340 */ 20341 *up = 0; 20342 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20343 uint32_t sum; 20344 20345 /* pseudo-header checksumming */ 20346 sum = *up + cksum + IP_TCP_CSUM_COMP; 20347 sum = (sum & 0xFFFF) + (sum >> 16); 20348 *up = (sum & 0xFFFF) + (sum >> 16); 20349 } else { 20350 /* software checksumming */ 20351 TCP_STAT(tcp_out_sw_cksum); 20352 *up = IP_MD_CSUM(pkt, 20353 IP_SIMPLE_HDR_LENGTH, 20354 cksum + IP_TCP_CSUM_COMP); 20355 } 20356 20357 ipha->ipha_fragment_offset_and_flags |= 20358 (uint32_t)htons(ire->ire_frag_flag); 20359 20360 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20361 ipha->ipha_hdr_checksum = 0; 20362 } else { 20363 IP_HDR_CKSUM(ipha, cksum, 20364 ((uint32_t *)ipha)[0], 20365 ((uint16_t *)ipha)[4]); 20366 } 20367 } else { 20368 up = (uint16_t *)(((uchar_t *)ip6h) + 20369 IPV6_HDR_LEN + TCP_CSUM_OFFSET); 20370 20371 /* 20372 * Software checksumming (hardware checksum 20373 * offload for IPv6 will hopefully be 20374 * implemented one day). 20375 */ 20376 TCP_STAT(tcp_out_sw_cksum); 20377 *up = IP_MD_CSUM(pkt, 20378 IPV6_HDR_LEN - 2 * sizeof (in6_addr_t), 20379 htons(IPPROTO_TCP)); 20380 } 20381 20382 /* advance header offset */ 20383 cur_hdr_off += hdr_frag_sz; 20384 20385 obbytes += tcp->tcp_last_sent_len; 20386 ++obsegs; 20387 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20388 *tail_unsent > 0); 20389 20390 if ((*xmit_tail)->b_next == NULL) { 20391 /* 20392 * Store the lbolt used for RTT estimation. We can only 20393 * record one timestamp per mblk so we do it when we 20394 * reach the end of the payload buffer. Also we only 20395 * take a new timestamp sample when the previous timed 20396 * data from the same mblk has been ack'ed. 20397 */ 20398 (*xmit_tail)->b_prev = local_time; 20399 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20400 } 20401 20402 ASSERT(*tail_unsent >= 0); 20403 if (*tail_unsent > 0) { 20404 /* 20405 * We got here because we broke out of the above 20406 * loop due to of one of the following cases: 20407 * 20408 * 1. len < adjusted MSS (i.e. small), 20409 * 2. Sender SWS avoidance, 20410 * 3. max_pld is zero. 20411 * 20412 * We are done for this Multidata, so trim our 20413 * last payload buffer (if any) accordingly. 20414 */ 20415 if (md_pbuf != NULL) 20416 md_pbuf->b_wptr -= *tail_unsent; 20417 } else if (*usable > 0) { 20418 *xmit_tail = (*xmit_tail)->b_cont; 20419 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20420 (uintptr_t)INT_MAX); 20421 *tail_unsent = (int)MBLKL(*xmit_tail); 20422 add_buffer = B_TRUE; 20423 } 20424 } while (!done && *usable > 0 && num_burst_seg > 0 && 20425 (tcp_mdt_chain || max_pld > 0)); 20426 20427 /* send everything down */ 20428 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20429 &rconfirm); 20430 20431 #undef PREP_NEW_MULTIDATA 20432 #undef PREP_NEW_PBUF 20433 #undef IPVER 20434 #undef TCP_CSUM_OFFSET 20435 #undef TCP_CSUM_SIZE 20436 20437 IRE_REFRELE(ire); 20438 return (0); 20439 } 20440 20441 /* 20442 * A wrapper function for sending one or more Multidata messages down to 20443 * the module below ip; this routine does not release the reference of the 20444 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20445 */ 20446 static void 20447 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20448 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20449 { 20450 uint64_t delta; 20451 nce_t *nce; 20452 20453 ASSERT(ire != NULL && ill != NULL); 20454 ASSERT(ire->ire_stq != NULL); 20455 ASSERT(md_mp_head != NULL); 20456 ASSERT(rconfirm != NULL); 20457 20458 /* adjust MIBs and IRE timestamp */ 20459 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20460 tcp->tcp_obsegs += obsegs; 20461 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 20462 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 20463 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 20464 20465 if (tcp->tcp_ipversion == IPV4_VERSION) { 20466 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 20467 UPDATE_MIB(&ip_mib, ipOutRequests, obsegs); 20468 } else { 20469 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 20470 UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs); 20471 } 20472 20473 ire->ire_ob_pkt_count += obsegs; 20474 if (ire->ire_ipif != NULL) 20475 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20476 ire->ire_last_used_time = lbolt; 20477 20478 /* send it down */ 20479 putnext(ire->ire_stq, md_mp_head); 20480 20481 /* we're done for TCP/IPv4 */ 20482 if (tcp->tcp_ipversion == IPV4_VERSION) 20483 return; 20484 20485 nce = ire->ire_nce; 20486 20487 ASSERT(nce != NULL); 20488 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20489 ASSERT(nce->nce_state != ND_INCOMPLETE); 20490 20491 /* reachability confirmation? */ 20492 if (*rconfirm) { 20493 nce->nce_last = TICK_TO_MSEC(lbolt64); 20494 if (nce->nce_state != ND_REACHABLE) { 20495 mutex_enter(&nce->nce_lock); 20496 nce->nce_state = ND_REACHABLE; 20497 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20498 mutex_exit(&nce->nce_lock); 20499 (void) untimeout(nce->nce_timeout_id); 20500 if (ip_debug > 2) { 20501 /* ip1dbg */ 20502 pr_addr_dbg("tcp_multisend_data: state " 20503 "for %s changed to REACHABLE\n", 20504 AF_INET6, &ire->ire_addr_v6); 20505 } 20506 } 20507 /* reset transport reachability confirmation */ 20508 *rconfirm = B_FALSE; 20509 } 20510 20511 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20512 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20513 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20514 20515 if (delta > (uint64_t)ill->ill_reachable_time) { 20516 mutex_enter(&nce->nce_lock); 20517 switch (nce->nce_state) { 20518 case ND_REACHABLE: 20519 case ND_STALE: 20520 /* 20521 * ND_REACHABLE is identical to ND_STALE in this 20522 * specific case. If reachable time has expired for 20523 * this neighbor (delta is greater than reachable 20524 * time), conceptually, the neighbor cache is no 20525 * longer in REACHABLE state, but already in STALE 20526 * state. So the correct transition here is to 20527 * ND_DELAY. 20528 */ 20529 nce->nce_state = ND_DELAY; 20530 mutex_exit(&nce->nce_lock); 20531 NDP_RESTART_TIMER(nce, delay_first_probe_time); 20532 if (ip_debug > 3) { 20533 /* ip2dbg */ 20534 pr_addr_dbg("tcp_multisend_data: state " 20535 "for %s changed to DELAY\n", 20536 AF_INET6, &ire->ire_addr_v6); 20537 } 20538 break; 20539 case ND_DELAY: 20540 case ND_PROBE: 20541 mutex_exit(&nce->nce_lock); 20542 /* Timers have already started */ 20543 break; 20544 case ND_UNREACHABLE: 20545 /* 20546 * ndp timer has detected that this nce is 20547 * unreachable and initiated deleting this nce 20548 * and all its associated IREs. This is a race 20549 * where we found the ire before it was deleted 20550 * and have just sent out a packet using this 20551 * unreachable nce. 20552 */ 20553 mutex_exit(&nce->nce_lock); 20554 break; 20555 default: 20556 ASSERT(0); 20557 } 20558 } 20559 } 20560 20561 /* 20562 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20563 * scheme, and returns one of the following: 20564 * 20565 * -1 = failed allocation. 20566 * 0 = success; burst count reached, or usable send window is too small, 20567 * and that we'd rather wait until later before sending again. 20568 * 1 = success; we are called from tcp_multisend(), and both usable send 20569 * window and tail_unsent are greater than the MDT threshold, and thus 20570 * Multidata Transmit should be used instead. 20571 */ 20572 static int 20573 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20574 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20575 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20576 const int mdt_thres) 20577 { 20578 int num_burst_seg = tcp->tcp_snd_burst; 20579 20580 for (;;) { 20581 struct datab *db; 20582 tcph_t *tcph; 20583 uint32_t sum; 20584 mblk_t *mp, *mp1; 20585 uchar_t *rptr; 20586 int len; 20587 20588 /* 20589 * If we're called by tcp_multisend(), and the amount of 20590 * sendable data as well as the size of current xmit_tail 20591 * is beyond the MDT threshold, return to the caller and 20592 * let the large data transmit be done using MDT. 20593 */ 20594 if (*usable > 0 && *usable > mdt_thres && 20595 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20596 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20597 ASSERT(tcp->tcp_mdt); 20598 return (1); /* success; do large send */ 20599 } 20600 20601 if (num_burst_seg-- == 0) 20602 break; /* success; burst count reached */ 20603 20604 len = mss; 20605 if (len > *usable) { 20606 len = *usable; 20607 if (len <= 0) { 20608 /* Terminate the loop */ 20609 break; /* success; too small */ 20610 } 20611 /* 20612 * Sender silly-window avoidance. 20613 * Ignore this if we are going to send a 20614 * zero window probe out. 20615 * 20616 * TODO: force data into microscopic window? 20617 * ==> (!pushed || (unsent > usable)) 20618 */ 20619 if (len < (tcp->tcp_max_swnd >> 1) && 20620 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20621 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20622 len == 1) && (! tcp->tcp_zero_win_probe)) { 20623 /* 20624 * If the retransmit timer is not running 20625 * we start it so that we will retransmit 20626 * in the case when the the receiver has 20627 * decremented the window. 20628 */ 20629 if (*snxt == tcp->tcp_snxt && 20630 *snxt == tcp->tcp_suna) { 20631 /* 20632 * We are not supposed to send 20633 * anything. So let's wait a little 20634 * bit longer before breaking SWS 20635 * avoidance. 20636 * 20637 * What should the value be? 20638 * Suggestion: MAX(init rexmit time, 20639 * tcp->tcp_rto) 20640 */ 20641 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20642 } 20643 break; /* success; too small */ 20644 } 20645 } 20646 20647 tcph = tcp->tcp_tcph; 20648 20649 *usable -= len; /* Approximate - can be adjusted later */ 20650 if (*usable > 0) 20651 tcph->th_flags[0] = TH_ACK; 20652 else 20653 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20654 20655 /* 20656 * Prime pump for IP's checksumming on our behalf 20657 * Include the adjustment for a source route if any. 20658 */ 20659 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20660 sum = (sum >> 16) + (sum & 0xFFFF); 20661 U16_TO_ABE16(sum, tcph->th_sum); 20662 20663 U32_TO_ABE32(*snxt, tcph->th_seq); 20664 20665 /* 20666 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20667 * set. For the case when TCP_FSS_VALID is the only valid 20668 * bit (normal active close), branch off only when we think 20669 * that the FIN flag needs to be set. Note for this case, 20670 * that (snxt + len) may not reflect the actual seg_len, 20671 * as len may be further reduced in tcp_xmit_mp(). If len 20672 * gets modified, we will end up here again. 20673 */ 20674 if (tcp->tcp_valid_bits != 0 && 20675 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20676 ((*snxt + len) == tcp->tcp_fss))) { 20677 uchar_t *prev_rptr; 20678 uint32_t prev_snxt = tcp->tcp_snxt; 20679 20680 if (*tail_unsent == 0) { 20681 ASSERT((*xmit_tail)->b_cont != NULL); 20682 *xmit_tail = (*xmit_tail)->b_cont; 20683 prev_rptr = (*xmit_tail)->b_rptr; 20684 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20685 (*xmit_tail)->b_rptr); 20686 } else { 20687 prev_rptr = (*xmit_tail)->b_rptr; 20688 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20689 *tail_unsent; 20690 } 20691 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20692 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20693 /* Restore tcp_snxt so we get amount sent right. */ 20694 tcp->tcp_snxt = prev_snxt; 20695 if (prev_rptr == (*xmit_tail)->b_rptr) { 20696 /* 20697 * If the previous timestamp is still in use, 20698 * don't stomp on it. 20699 */ 20700 if ((*xmit_tail)->b_next == NULL) { 20701 (*xmit_tail)->b_prev = local_time; 20702 (*xmit_tail)->b_next = 20703 (mblk_t *)(uintptr_t)(*snxt); 20704 } 20705 } else 20706 (*xmit_tail)->b_rptr = prev_rptr; 20707 20708 if (mp == NULL) 20709 return (-1); 20710 mp1 = mp->b_cont; 20711 20712 tcp->tcp_last_sent_len = (ushort_t)len; 20713 while (mp1->b_cont) { 20714 *xmit_tail = (*xmit_tail)->b_cont; 20715 (*xmit_tail)->b_prev = local_time; 20716 (*xmit_tail)->b_next = 20717 (mblk_t *)(uintptr_t)(*snxt); 20718 mp1 = mp1->b_cont; 20719 } 20720 *snxt += len; 20721 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20722 BUMP_LOCAL(tcp->tcp_obsegs); 20723 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20724 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20725 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20726 tcp_send_data(tcp, q, mp); 20727 continue; 20728 } 20729 20730 *snxt += len; /* Adjust later if we don't send all of len */ 20731 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20732 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20733 20734 if (*tail_unsent) { 20735 /* Are the bytes above us in flight? */ 20736 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20737 if (rptr != (*xmit_tail)->b_rptr) { 20738 *tail_unsent -= len; 20739 tcp->tcp_last_sent_len = (ushort_t)len; 20740 len += tcp_hdr_len; 20741 if (tcp->tcp_ipversion == IPV4_VERSION) 20742 tcp->tcp_ipha->ipha_length = htons(len); 20743 else 20744 tcp->tcp_ip6h->ip6_plen = 20745 htons(len - 20746 ((char *)&tcp->tcp_ip6h[1] - 20747 tcp->tcp_iphc)); 20748 mp = dupb(*xmit_tail); 20749 if (!mp) 20750 return (-1); /* out_of_mem */ 20751 mp->b_rptr = rptr; 20752 /* 20753 * If the old timestamp is no longer in use, 20754 * sample a new timestamp now. 20755 */ 20756 if ((*xmit_tail)->b_next == NULL) { 20757 (*xmit_tail)->b_prev = local_time; 20758 (*xmit_tail)->b_next = 20759 (mblk_t *)(uintptr_t)(*snxt-len); 20760 } 20761 goto must_alloc; 20762 } 20763 } else { 20764 *xmit_tail = (*xmit_tail)->b_cont; 20765 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20766 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20767 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20768 (*xmit_tail)->b_rptr); 20769 } 20770 20771 (*xmit_tail)->b_prev = local_time; 20772 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20773 20774 *tail_unsent -= len; 20775 tcp->tcp_last_sent_len = (ushort_t)len; 20776 20777 len += tcp_hdr_len; 20778 if (tcp->tcp_ipversion == IPV4_VERSION) 20779 tcp->tcp_ipha->ipha_length = htons(len); 20780 else 20781 tcp->tcp_ip6h->ip6_plen = htons(len - 20782 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20783 20784 mp = dupb(*xmit_tail); 20785 if (!mp) 20786 return (-1); /* out_of_mem */ 20787 20788 len = tcp_hdr_len; 20789 /* 20790 * There are four reasons to allocate a new hdr mblk: 20791 * 1) The bytes above us are in use by another packet 20792 * 2) We don't have good alignment 20793 * 3) The mblk is being shared 20794 * 4) We don't have enough room for a header 20795 */ 20796 rptr = mp->b_rptr - len; 20797 if (!OK_32PTR(rptr) || 20798 ((db = mp->b_datap), db->db_ref != 2) || 20799 rptr < db->db_base) { 20800 /* NOTE: we assume allocb returns an OK_32PTR */ 20801 20802 must_alloc:; 20803 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 20804 tcp_wroff_xtra, BPRI_MED); 20805 if (!mp1) { 20806 freemsg(mp); 20807 return (-1); /* out_of_mem */ 20808 } 20809 mp1->b_cont = mp; 20810 mp = mp1; 20811 /* Leave room for Link Level header */ 20812 len = tcp_hdr_len; 20813 rptr = &mp->b_rptr[tcp_wroff_xtra]; 20814 mp->b_wptr = &rptr[len]; 20815 } 20816 20817 /* 20818 * Fill in the header using the template header, and add 20819 * options such as time-stamp, ECN and/or SACK, as needed. 20820 */ 20821 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 20822 20823 mp->b_rptr = rptr; 20824 20825 if (*tail_unsent) { 20826 int spill = *tail_unsent; 20827 20828 mp1 = mp->b_cont; 20829 if (!mp1) 20830 mp1 = mp; 20831 20832 /* 20833 * If we're a little short, tack on more mblks until 20834 * there is no more spillover. 20835 */ 20836 while (spill < 0) { 20837 mblk_t *nmp; 20838 int nmpsz; 20839 20840 nmp = (*xmit_tail)->b_cont; 20841 nmpsz = MBLKL(nmp); 20842 20843 /* 20844 * Excess data in mblk; can we split it? 20845 * If MDT is enabled for the connection, 20846 * keep on splitting as this is a transient 20847 * send path. 20848 */ 20849 if (!tcp->tcp_mdt && (spill + nmpsz > 0)) { 20850 /* 20851 * Don't split if stream head was 20852 * told to break up larger writes 20853 * into smaller ones. 20854 */ 20855 if (tcp->tcp_maxpsz > 0) 20856 break; 20857 20858 /* 20859 * Next mblk is less than SMSS/2 20860 * rounded up to nearest 64-byte; 20861 * let it get sent as part of the 20862 * next segment. 20863 */ 20864 if (tcp->tcp_localnet && 20865 !tcp->tcp_cork && 20866 (nmpsz < roundup((mss >> 1), 64))) 20867 break; 20868 } 20869 20870 *xmit_tail = nmp; 20871 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 20872 /* Stash for rtt use later */ 20873 (*xmit_tail)->b_prev = local_time; 20874 (*xmit_tail)->b_next = 20875 (mblk_t *)(uintptr_t)(*snxt - len); 20876 mp1->b_cont = dupb(*xmit_tail); 20877 mp1 = mp1->b_cont; 20878 20879 spill += nmpsz; 20880 if (mp1 == NULL) { 20881 *tail_unsent = spill; 20882 freemsg(mp); 20883 return (-1); /* out_of_mem */ 20884 } 20885 } 20886 20887 /* Trim back any surplus on the last mblk */ 20888 if (spill >= 0) { 20889 mp1->b_wptr -= spill; 20890 *tail_unsent = spill; 20891 } else { 20892 /* 20893 * We did not send everything we could in 20894 * order to remain within the b_cont limit. 20895 */ 20896 *usable -= spill; 20897 *snxt += spill; 20898 tcp->tcp_last_sent_len += spill; 20899 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 20900 /* 20901 * Adjust the checksum 20902 */ 20903 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 20904 sum += spill; 20905 sum = (sum >> 16) + (sum & 0xFFFF); 20906 U16_TO_ABE16(sum, tcph->th_sum); 20907 if (tcp->tcp_ipversion == IPV4_VERSION) { 20908 sum = ntohs( 20909 ((ipha_t *)rptr)->ipha_length) + 20910 spill; 20911 ((ipha_t *)rptr)->ipha_length = 20912 htons(sum); 20913 } else { 20914 sum = ntohs( 20915 ((ip6_t *)rptr)->ip6_plen) + 20916 spill; 20917 ((ip6_t *)rptr)->ip6_plen = 20918 htons(sum); 20919 } 20920 *tail_unsent = 0; 20921 } 20922 } 20923 if (tcp->tcp_ip_forward_progress) { 20924 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20925 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 20926 tcp->tcp_ip_forward_progress = B_FALSE; 20927 } 20928 20929 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20930 tcp_send_data(tcp, q, mp); 20931 BUMP_LOCAL(tcp->tcp_obsegs); 20932 } 20933 20934 return (0); 20935 } 20936 20937 /* Unlink and return any mblk that looks like it contains a MDT info */ 20938 static mblk_t * 20939 tcp_mdt_info_mp(mblk_t *mp) 20940 { 20941 mblk_t *prev_mp; 20942 20943 for (;;) { 20944 prev_mp = mp; 20945 /* no more to process? */ 20946 if ((mp = mp->b_cont) == NULL) 20947 break; 20948 20949 switch (DB_TYPE(mp)) { 20950 case M_CTL: 20951 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 20952 continue; 20953 ASSERT(prev_mp != NULL); 20954 prev_mp->b_cont = mp->b_cont; 20955 mp->b_cont = NULL; 20956 return (mp); 20957 default: 20958 break; 20959 } 20960 } 20961 return (mp); 20962 } 20963 20964 /* MDT info update routine, called when IP notifies us about MDT */ 20965 static void 20966 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 20967 { 20968 boolean_t prev_state; 20969 20970 /* 20971 * IP is telling us to abort MDT on this connection? We know 20972 * this because the capability is only turned off when IP 20973 * encounters some pathological cases, e.g. link-layer change 20974 * where the new driver doesn't support MDT, or in situation 20975 * where MDT usage on the link-layer has been switched off. 20976 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 20977 * if the link-layer doesn't support MDT, and if it does, it 20978 * will indicate that the feature is to be turned on. 20979 */ 20980 prev_state = tcp->tcp_mdt; 20981 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 20982 if (!tcp->tcp_mdt && !first) { 20983 TCP_STAT(tcp_mdt_conn_halted3); 20984 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 20985 (void *)tcp->tcp_connp)); 20986 } 20987 20988 /* 20989 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 20990 * so disable MDT otherwise. The checks are done here 20991 * and in tcp_wput_data(). 20992 */ 20993 if (tcp->tcp_mdt && 20994 (tcp->tcp_ipversion == IPV4_VERSION && 20995 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 20996 (tcp->tcp_ipversion == IPV6_VERSION && 20997 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 20998 tcp->tcp_mdt = B_FALSE; 20999 21000 if (tcp->tcp_mdt) { 21001 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21002 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21003 "version (%d), expected version is %d", 21004 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21005 tcp->tcp_mdt = B_FALSE; 21006 return; 21007 } 21008 21009 /* 21010 * We need the driver to be able to handle at least three 21011 * spans per packet in order for tcp MDT to be utilized. 21012 * The first is for the header portion, while the rest are 21013 * needed to handle a packet that straddles across two 21014 * virtually non-contiguous buffers; a typical tcp packet 21015 * therefore consists of only two spans. Note that we take 21016 * a zero as "don't care". 21017 */ 21018 if (mdt_capab->ill_mdt_span_limit > 0 && 21019 mdt_capab->ill_mdt_span_limit < 3) { 21020 tcp->tcp_mdt = B_FALSE; 21021 return; 21022 } 21023 21024 /* a zero means driver wants default value */ 21025 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21026 tcp_mdt_max_pbufs); 21027 if (tcp->tcp_mdt_max_pld == 0) 21028 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 21029 21030 /* ensure 32-bit alignment */ 21031 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 21032 mdt_capab->ill_mdt_hdr_head), 4); 21033 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 21034 mdt_capab->ill_mdt_hdr_tail), 4); 21035 21036 if (!first && !prev_state) { 21037 TCP_STAT(tcp_mdt_conn_resumed2); 21038 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21039 (void *)tcp->tcp_connp)); 21040 } 21041 } 21042 } 21043 21044 static void 21045 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt) 21046 { 21047 conn_t *connp = tcp->tcp_connp; 21048 21049 ASSERT(ire != NULL); 21050 21051 /* 21052 * We may be in the fastpath here, and although we essentially do 21053 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return, 21054 * we try to keep things as brief as possible. After all, these 21055 * are only best-effort checks, and we do more thorough ones prior 21056 * to calling tcp_multisend(). 21057 */ 21058 if (ip_multidata_outbound && check_mdt && 21059 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21060 ill != NULL && (ill->ill_capabilities & ILL_CAPAB_MDT) && 21061 !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21062 !(ire->ire_flags & RTF_MULTIRT) && 21063 !IPP_ENABLED(IPP_LOCAL_OUT) && 21064 CONN_IS_MD_FASTPATH(connp)) { 21065 /* Remember the result */ 21066 connp->conn_mdt_ok = B_TRUE; 21067 21068 ASSERT(ill->ill_mdt_capab != NULL); 21069 if (!ill->ill_mdt_capab->ill_mdt_on) { 21070 /* 21071 * If MDT has been previously turned off in the past, 21072 * and we currently can do MDT (due to IPQoS policy 21073 * removal, etc.) then enable it for this interface. 21074 */ 21075 ill->ill_mdt_capab->ill_mdt_on = 1; 21076 ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for " 21077 "interface %s\n", (void *)connp, ill->ill_name)); 21078 } 21079 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21080 } 21081 21082 /* 21083 * The goal is to reduce the number of generated tcp segments by 21084 * setting the maxpsz multiplier to 0; this will have an affect on 21085 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21086 * into each packet, up to SMSS bytes. Doing this reduces the number 21087 * of outbound segments and incoming ACKs, thus allowing for better 21088 * network and system performance. In contrast the legacy behavior 21089 * may result in sending less than SMSS size, because the last mblk 21090 * for some packets may have more data than needed to make up SMSS, 21091 * and the legacy code refused to "split" it. 21092 * 21093 * We apply the new behavior on following situations: 21094 * 21095 * 1) Loopback connections, 21096 * 2) Connections in which the remote peer is not on local subnet, 21097 * 3) Local subnet connections over the bge interface (see below). 21098 * 21099 * Ideally, we would like this behavior to apply for interfaces other 21100 * than bge. However, doing so would negatively impact drivers which 21101 * perform dynamic mapping and unmapping of DMA resources, which are 21102 * increased by setting the maxpsz multiplier to 0 (more mblks per 21103 * packet will be generated by tcp). The bge driver does not suffer 21104 * from this, as it copies the mblks into pre-mapped buffers, and 21105 * therefore does not require more I/O resources than before. 21106 * 21107 * Otherwise, this behavior is present on all network interfaces when 21108 * the destination endpoint is non-local, since reducing the number 21109 * of packets in general is good for the network. 21110 * 21111 * TODO We need to remove this hard-coded conditional for bge once 21112 * a better "self-tuning" mechanism, or a way to comprehend 21113 * the driver transmit strategy is devised. Until the solution 21114 * is found and well understood, we live with this hack. 21115 */ 21116 if (!tcp_static_maxpsz && 21117 (tcp->tcp_loopback || !tcp->tcp_localnet || 21118 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21119 /* override the default value */ 21120 tcp->tcp_maxpsz = 0; 21121 21122 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21123 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21124 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21125 } 21126 21127 /* set the stream head parameters accordingly */ 21128 (void) tcp_maxpsz_set(tcp, B_TRUE); 21129 } 21130 21131 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21132 static void 21133 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21134 { 21135 uchar_t fval = *mp->b_rptr; 21136 mblk_t *tail; 21137 queue_t *q = tcp->tcp_wq; 21138 21139 /* TODO: How should flush interact with urgent data? */ 21140 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21141 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21142 /* 21143 * Flush only data that has not yet been put on the wire. If 21144 * we flush data that we have already transmitted, life, as we 21145 * know it, may come to an end. 21146 */ 21147 tail = tcp->tcp_xmit_tail; 21148 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21149 tcp->tcp_xmit_tail_unsent = 0; 21150 tcp->tcp_unsent = 0; 21151 if (tail->b_wptr != tail->b_rptr) 21152 tail = tail->b_cont; 21153 if (tail) { 21154 mblk_t **excess = &tcp->tcp_xmit_head; 21155 for (;;) { 21156 mblk_t *mp1 = *excess; 21157 if (mp1 == tail) 21158 break; 21159 tcp->tcp_xmit_tail = mp1; 21160 tcp->tcp_xmit_last = mp1; 21161 excess = &mp1->b_cont; 21162 } 21163 *excess = NULL; 21164 tcp_close_mpp(&tail); 21165 if (tcp->tcp_snd_zcopy_aware) 21166 tcp_zcopy_notify(tcp); 21167 } 21168 /* 21169 * We have no unsent data, so unsent must be less than 21170 * tcp_xmit_lowater, so re-enable flow. 21171 */ 21172 if (tcp->tcp_flow_stopped) { 21173 tcp_clrqfull(tcp); 21174 } 21175 } 21176 /* 21177 * TODO: you can't just flush these, you have to increase rwnd for one 21178 * thing. For another, how should urgent data interact? 21179 */ 21180 if (fval & FLUSHR) { 21181 *mp->b_rptr = fval & ~FLUSHW; 21182 /* XXX */ 21183 qreply(q, mp); 21184 return; 21185 } 21186 freemsg(mp); 21187 } 21188 21189 /* 21190 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21191 * messages. 21192 */ 21193 static void 21194 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21195 { 21196 mblk_t *mp1; 21197 STRUCT_HANDLE(strbuf, sb); 21198 uint16_t port; 21199 queue_t *q = tcp->tcp_wq; 21200 in6_addr_t v6addr; 21201 ipaddr_t v4addr; 21202 uint32_t flowinfo = 0; 21203 int addrlen; 21204 21205 /* Make sure it is one of ours. */ 21206 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21207 case TI_GETMYNAME: 21208 case TI_GETPEERNAME: 21209 break; 21210 default: 21211 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21212 return; 21213 } 21214 switch (mi_copy_state(q, mp, &mp1)) { 21215 case -1: 21216 return; 21217 case MI_COPY_CASE(MI_COPY_IN, 1): 21218 break; 21219 case MI_COPY_CASE(MI_COPY_OUT, 1): 21220 /* Copy out the strbuf. */ 21221 mi_copyout(q, mp); 21222 return; 21223 case MI_COPY_CASE(MI_COPY_OUT, 2): 21224 /* All done. */ 21225 mi_copy_done(q, mp, 0); 21226 return; 21227 default: 21228 mi_copy_done(q, mp, EPROTO); 21229 return; 21230 } 21231 /* Check alignment of the strbuf */ 21232 if (!OK_32PTR(mp1->b_rptr)) { 21233 mi_copy_done(q, mp, EINVAL); 21234 return; 21235 } 21236 21237 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 21238 (void *)mp1->b_rptr); 21239 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21240 21241 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21242 mi_copy_done(q, mp, EINVAL); 21243 return; 21244 } 21245 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21246 case TI_GETMYNAME: 21247 if (tcp->tcp_family == AF_INET) { 21248 if (tcp->tcp_ipversion == IPV4_VERSION) { 21249 v4addr = tcp->tcp_ipha->ipha_src; 21250 } else { 21251 /* can't return an address in this case */ 21252 v4addr = 0; 21253 } 21254 } else { 21255 /* tcp->tcp_family == AF_INET6 */ 21256 if (tcp->tcp_ipversion == IPV4_VERSION) { 21257 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 21258 &v6addr); 21259 } else { 21260 v6addr = tcp->tcp_ip6h->ip6_src; 21261 } 21262 } 21263 port = tcp->tcp_lport; 21264 break; 21265 case TI_GETPEERNAME: 21266 if (tcp->tcp_family == AF_INET) { 21267 if (tcp->tcp_ipversion == IPV4_VERSION) { 21268 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 21269 v4addr); 21270 } else { 21271 /* can't return an address in this case */ 21272 v4addr = 0; 21273 } 21274 } else { 21275 /* tcp->tcp_family == AF_INET6) */ 21276 v6addr = tcp->tcp_remote_v6; 21277 if (tcp->tcp_ipversion == IPV6_VERSION) { 21278 /* 21279 * No flowinfo if tcp->tcp_ipversion is v4. 21280 * 21281 * flowinfo was already initialized to zero 21282 * where it was declared above, so only 21283 * set it if ipversion is v6. 21284 */ 21285 flowinfo = tcp->tcp_ip6h->ip6_vcf & 21286 ~IPV6_VERS_AND_FLOW_MASK; 21287 } 21288 } 21289 port = tcp->tcp_fport; 21290 break; 21291 default: 21292 mi_copy_done(q, mp, EPROTO); 21293 return; 21294 } 21295 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21296 if (!mp1) 21297 return; 21298 21299 if (tcp->tcp_family == AF_INET) { 21300 sin_t *sin; 21301 21302 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 21303 sin = (sin_t *)mp1->b_rptr; 21304 mp1->b_wptr = (uchar_t *)&sin[1]; 21305 *sin = sin_null; 21306 sin->sin_family = AF_INET; 21307 sin->sin_addr.s_addr = v4addr; 21308 sin->sin_port = port; 21309 } else { 21310 /* tcp->tcp_family == AF_INET6 */ 21311 sin6_t *sin6; 21312 21313 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 21314 sin6 = (sin6_t *)mp1->b_rptr; 21315 mp1->b_wptr = (uchar_t *)&sin6[1]; 21316 *sin6 = sin6_null; 21317 sin6->sin6_family = AF_INET6; 21318 sin6->sin6_flowinfo = flowinfo; 21319 sin6->sin6_addr = v6addr; 21320 sin6->sin6_port = port; 21321 } 21322 /* Copy out the address */ 21323 mi_copyout(q, mp); 21324 } 21325 21326 /* 21327 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21328 * messages. 21329 */ 21330 /* ARGSUSED */ 21331 static void 21332 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21333 { 21334 conn_t *connp = (conn_t *)arg; 21335 tcp_t *tcp = connp->conn_tcp; 21336 queue_t *q = tcp->tcp_wq; 21337 struct iocblk *iocp; 21338 21339 ASSERT(DB_TYPE(mp) == M_IOCTL); 21340 /* 21341 * Try and ASSERT the minimum possible references on the 21342 * conn early enough. Since we are executing on write side, 21343 * the connection is obviously not detached and that means 21344 * there is a ref each for TCP and IP. Since we are behind 21345 * the squeue, the minimum references needed are 3. If the 21346 * conn is in classifier hash list, there should be an 21347 * extra ref for that (we check both the possibilities). 21348 */ 21349 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21350 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21351 21352 iocp = (struct iocblk *)mp->b_rptr; 21353 switch (iocp->ioc_cmd) { 21354 case TCP_IOC_DEFAULT_Q: 21355 /* Wants to be the default wq. */ 21356 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 21357 iocp->ioc_error = EPERM; 21358 iocp->ioc_count = 0; 21359 mp->b_datap->db_type = M_IOCACK; 21360 qreply(q, mp); 21361 return; 21362 } 21363 tcp_def_q_set(tcp, mp); 21364 return; 21365 case SIOCPOPSOCKFS: 21366 /* 21367 * sockfs is being I_POP'ed, reset the flag 21368 * indicating this 21369 */ 21370 tcp->tcp_issocket = B_FALSE; 21371 21372 /* 21373 * Insert this socket into the acceptor hash. 21374 * We might need it for T_CONN_RES message 21375 */ 21376 #ifdef _ILP32 21377 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 21378 #else 21379 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21380 #endif 21381 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21382 mp->b_datap->db_type = M_IOCACK; 21383 iocp->ioc_count = 0; 21384 iocp->ioc_error = 0; 21385 iocp->ioc_rval = 0; 21386 qreply(q, mp); 21387 return; 21388 } 21389 CALL_IP_WPUT(connp, q, mp); 21390 } 21391 21392 /* 21393 * This routine is called by tcp_wput() to handle all TPI requests. 21394 */ 21395 /* ARGSUSED */ 21396 static void 21397 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21398 { 21399 conn_t *connp = (conn_t *)arg; 21400 tcp_t *tcp = connp->conn_tcp; 21401 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21402 uchar_t *rptr; 21403 t_scalar_t type; 21404 int len; 21405 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 21406 21407 /* 21408 * Try and ASSERT the minimum possible references on the 21409 * conn early enough. Since we are executing on write side, 21410 * the connection is obviously not detached and that means 21411 * there is a ref each for TCP and IP. Since we are behind 21412 * the squeue, the minimum references needed are 3. If the 21413 * conn is in classifier hash list, there should be an 21414 * extra ref for that (we check both the possibilities). 21415 */ 21416 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21417 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21418 21419 rptr = mp->b_rptr; 21420 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21421 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21422 type = ((union T_primitives *)rptr)->type; 21423 if (type == T_EXDATA_REQ) { 21424 len = msgdsize(mp->b_cont) - 1; 21425 if (len < 0) { 21426 freemsg(mp); 21427 return; 21428 } 21429 /* 21430 * Try to force urgent data out on the wire. 21431 * Even if we have unsent data this will 21432 * at least send the urgent flag. 21433 * XXX does not handle more flag correctly. 21434 */ 21435 len += tcp->tcp_unsent; 21436 len += tcp->tcp_snxt; 21437 tcp->tcp_urg = len; 21438 tcp->tcp_valid_bits |= TCP_URG_VALID; 21439 21440 /* Bypass tcp protocol for fused tcp loopback */ 21441 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp)) 21442 return; 21443 } else if (type != T_DATA_REQ) { 21444 goto non_urgent_data; 21445 } 21446 /* TODO: options, flags, ... from user */ 21447 /* Set length to zero for reclamation below */ 21448 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21449 freeb(mp); 21450 return; 21451 } else { 21452 if (tcp->tcp_debug) { 21453 (void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE, 21454 "tcp_wput_proto, dropping one..."); 21455 } 21456 freemsg(mp); 21457 return; 21458 } 21459 21460 non_urgent_data: 21461 21462 switch ((int)tprim->type) { 21463 case O_T_BIND_REQ: /* bind request */ 21464 case T_BIND_REQ: /* new semantics bind request */ 21465 tcp_bind(tcp, mp); 21466 break; 21467 case T_UNBIND_REQ: /* unbind request */ 21468 tcp_unbind(tcp, mp); 21469 break; 21470 case O_T_CONN_RES: /* old connection response XXX */ 21471 case T_CONN_RES: /* connection response */ 21472 tcp_accept(tcp, mp); 21473 break; 21474 case T_CONN_REQ: /* connection request */ 21475 tcp_connect(tcp, mp); 21476 break; 21477 case T_DISCON_REQ: /* disconnect request */ 21478 tcp_disconnect(tcp, mp); 21479 break; 21480 case T_CAPABILITY_REQ: 21481 tcp_capability_req(tcp, mp); /* capability request */ 21482 break; 21483 case T_INFO_REQ: /* information request */ 21484 tcp_info_req(tcp, mp); 21485 break; 21486 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21487 /* Only IP is allowed to return meaningful value */ 21488 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21489 break; 21490 case T_OPTMGMT_REQ: 21491 /* 21492 * Note: no support for snmpcom_req() through new 21493 * T_OPTMGMT_REQ. See comments in ip.c 21494 */ 21495 /* Only IP is allowed to return meaningful value */ 21496 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21497 break; 21498 21499 case T_UNITDATA_REQ: /* unitdata request */ 21500 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21501 break; 21502 case T_ORDREL_REQ: /* orderly release req */ 21503 freemsg(mp); 21504 21505 if (tcp->tcp_fused) 21506 tcp_unfuse(tcp); 21507 21508 if (tcp_xmit_end(tcp) != 0) { 21509 /* 21510 * We were crossing FINs and got a reset from 21511 * the other side. Just ignore it. 21512 */ 21513 if (tcp->tcp_debug) { 21514 (void) strlog(TCP_MODULE_ID, 0, 1, 21515 SL_ERROR|SL_TRACE, 21516 "tcp_wput_proto, T_ORDREL_REQ out of " 21517 "state %s", 21518 tcp_display(tcp, NULL, 21519 DISP_ADDR_AND_PORT)); 21520 } 21521 } 21522 break; 21523 case T_ADDR_REQ: 21524 tcp_addr_req(tcp, mp); 21525 break; 21526 default: 21527 if (tcp->tcp_debug) { 21528 (void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE, 21529 "tcp_wput_proto, bogus TPI msg, type %d", 21530 tprim->type); 21531 } 21532 /* 21533 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21534 * to recover. 21535 */ 21536 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21537 break; 21538 } 21539 } 21540 21541 /* 21542 * The TCP write service routine should never be called... 21543 */ 21544 /* ARGSUSED */ 21545 static void 21546 tcp_wsrv(queue_t *q) 21547 { 21548 TCP_STAT(tcp_wsrv_called); 21549 } 21550 21551 /* Non overlapping byte exchanger */ 21552 static void 21553 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21554 { 21555 uchar_t uch; 21556 21557 while (len-- > 0) { 21558 uch = a[len]; 21559 a[len] = b[len]; 21560 b[len] = uch; 21561 } 21562 } 21563 21564 /* 21565 * Send out a control packet on the tcp connection specified. This routine 21566 * is typically called where we need a simple ACK or RST generated. 21567 */ 21568 static void 21569 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21570 { 21571 uchar_t *rptr; 21572 tcph_t *tcph; 21573 ipha_t *ipha = NULL; 21574 ip6_t *ip6h = NULL; 21575 uint32_t sum; 21576 int tcp_hdr_len; 21577 int tcp_ip_hdr_len; 21578 mblk_t *mp; 21579 21580 /* 21581 * Save sum for use in source route later. 21582 */ 21583 ASSERT(tcp != NULL); 21584 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21585 tcp_hdr_len = tcp->tcp_hdr_len; 21586 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21587 21588 /* If a text string is passed in with the request, pass it to strlog. */ 21589 if (str != NULL && tcp->tcp_debug) { 21590 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 21591 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21592 str, seq, ack, ctl); 21593 } 21594 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21595 BPRI_MED); 21596 if (mp == NULL) { 21597 return; 21598 } 21599 rptr = &mp->b_rptr[tcp_wroff_xtra]; 21600 mp->b_rptr = rptr; 21601 mp->b_wptr = &rptr[tcp_hdr_len]; 21602 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21603 21604 if (tcp->tcp_ipversion == IPV4_VERSION) { 21605 ipha = (ipha_t *)rptr; 21606 ipha->ipha_length = htons(tcp_hdr_len); 21607 } else { 21608 ip6h = (ip6_t *)rptr; 21609 ASSERT(tcp != NULL); 21610 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21611 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21612 } 21613 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21614 tcph->th_flags[0] = (uint8_t)ctl; 21615 if (ctl & TH_RST) { 21616 BUMP_MIB(&tcp_mib, tcpOutRsts); 21617 BUMP_MIB(&tcp_mib, tcpOutControl); 21618 /* 21619 * Don't send TSopt w/ TH_RST packets per RFC 1323. 21620 */ 21621 if (tcp->tcp_snd_ts_ok && 21622 tcp->tcp_state > TCPS_SYN_SENT) { 21623 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 21624 *(mp->b_wptr) = TCPOPT_EOL; 21625 if (tcp->tcp_ipversion == IPV4_VERSION) { 21626 ipha->ipha_length = htons(tcp_hdr_len - 21627 TCPOPT_REAL_TS_LEN); 21628 } else { 21629 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 21630 TCPOPT_REAL_TS_LEN); 21631 } 21632 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 21633 sum -= TCPOPT_REAL_TS_LEN; 21634 } 21635 } 21636 if (ctl & TH_ACK) { 21637 if (tcp->tcp_snd_ts_ok) { 21638 U32_TO_BE32(lbolt, 21639 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21640 U32_TO_BE32(tcp->tcp_ts_recent, 21641 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21642 } 21643 21644 /* Update the latest receive window size in TCP header. */ 21645 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21646 tcph->th_win); 21647 tcp->tcp_rack = ack; 21648 tcp->tcp_rack_cnt = 0; 21649 BUMP_MIB(&tcp_mib, tcpOutAck); 21650 } 21651 BUMP_LOCAL(tcp->tcp_obsegs); 21652 U32_TO_BE32(seq, tcph->th_seq); 21653 U32_TO_BE32(ack, tcph->th_ack); 21654 /* 21655 * Include the adjustment for a source route if any. 21656 */ 21657 sum = (sum >> 16) + (sum & 0xFFFF); 21658 U16_TO_BE16(sum, tcph->th_sum); 21659 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21660 tcp_send_data(tcp, tcp->tcp_wq, mp); 21661 } 21662 21663 /* 21664 * If this routine returns B_TRUE, TCP can generate a RST in response 21665 * to a segment. If it returns B_FALSE, TCP should not respond. 21666 */ 21667 static boolean_t 21668 tcp_send_rst_chk(void) 21669 { 21670 clock_t now; 21671 21672 /* 21673 * TCP needs to protect itself from generating too many RSTs. 21674 * This can be a DoS attack by sending us random segments 21675 * soliciting RSTs. 21676 * 21677 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 21678 * in each 1 second interval. In this way, TCP still generate 21679 * RSTs in normal cases but when under attack, the impact is 21680 * limited. 21681 */ 21682 if (tcp_rst_sent_rate_enabled != 0) { 21683 now = lbolt; 21684 /* lbolt can wrap around. */ 21685 if ((tcp_last_rst_intrvl > now) || 21686 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 21687 tcp_last_rst_intrvl = now; 21688 tcp_rst_cnt = 1; 21689 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 21690 return (B_FALSE); 21691 } 21692 } 21693 return (B_TRUE); 21694 } 21695 21696 /* 21697 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 21698 */ 21699 static void 21700 tcp_ip_ire_mark_advice(tcp_t *tcp) 21701 { 21702 mblk_t *mp; 21703 ipic_t *ipic; 21704 21705 if (tcp->tcp_ipversion == IPV4_VERSION) { 21706 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21707 &ipic); 21708 } else { 21709 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21710 &ipic); 21711 } 21712 if (mp == NULL) 21713 return; 21714 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21715 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21716 } 21717 21718 /* 21719 * Return an IP advice ioctl mblk and set ipic to be the pointer 21720 * to the advice structure. 21721 */ 21722 static mblk_t * 21723 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 21724 { 21725 struct iocblk *ioc; 21726 mblk_t *mp, *mp1; 21727 21728 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 21729 if (mp == NULL) 21730 return (NULL); 21731 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 21732 *ipic = (ipic_t *)mp->b_rptr; 21733 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 21734 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 21735 21736 bcopy(addr, *ipic + 1, addr_len); 21737 21738 (*ipic)->ipic_addr_length = addr_len; 21739 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 21740 21741 mp1 = mkiocb(IP_IOCTL); 21742 if (mp1 == NULL) { 21743 freemsg(mp); 21744 return (NULL); 21745 } 21746 mp1->b_cont = mp; 21747 ioc = (struct iocblk *)mp1->b_rptr; 21748 ioc->ioc_count = sizeof (ipic_t) + addr_len; 21749 21750 return (mp1); 21751 } 21752 21753 /* 21754 * Generate a reset based on an inbound packet for which there is no active 21755 * tcp state that we can find. 21756 * 21757 * IPSEC NOTE : Try to send the reply with the same protection as it came 21758 * in. We still have the ipsec_mp that the packet was attached to. Thus 21759 * the packet will go out at the same level of protection as it came in by 21760 * converting the IPSEC_IN to IPSEC_OUT. 21761 */ 21762 static void 21763 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 21764 uint32_t ack, int ctl, uint_t ip_hdr_len) 21765 { 21766 ipha_t *ipha = NULL; 21767 ip6_t *ip6h = NULL; 21768 ushort_t len; 21769 tcph_t *tcph; 21770 int i; 21771 mblk_t *ipsec_mp; 21772 boolean_t mctl_present; 21773 ipic_t *ipic; 21774 ipaddr_t v4addr; 21775 in6_addr_t v6addr; 21776 int addr_len; 21777 void *addr; 21778 queue_t *q = tcp_g_q; 21779 tcp_t *tcp = Q_TO_TCP(q); 21780 21781 if (!tcp_send_rst_chk()) { 21782 tcp_rst_unsent++; 21783 freemsg(mp); 21784 return; 21785 } 21786 21787 if (mp->b_datap->db_type == M_CTL) { 21788 ipsec_mp = mp; 21789 mp = mp->b_cont; 21790 mctl_present = B_TRUE; 21791 } else { 21792 ipsec_mp = mp; 21793 mctl_present = B_FALSE; 21794 } 21795 21796 if (str && q && tcp_dbg) { 21797 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 21798 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 21799 "flags 0x%x", 21800 str, seq, ack, ctl); 21801 } 21802 if (mp->b_datap->db_ref != 1) { 21803 mblk_t *mp1 = copyb(mp); 21804 freemsg(mp); 21805 mp = mp1; 21806 if (!mp) { 21807 if (mctl_present) 21808 freeb(ipsec_mp); 21809 return; 21810 } else { 21811 if (mctl_present) { 21812 ipsec_mp->b_cont = mp; 21813 } else { 21814 ipsec_mp = mp; 21815 } 21816 } 21817 } else if (mp->b_cont) { 21818 freemsg(mp->b_cont); 21819 mp->b_cont = NULL; 21820 } 21821 /* 21822 * We skip reversing source route here. 21823 * (for now we replace all IP options with EOL) 21824 */ 21825 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21826 ipha = (ipha_t *)mp->b_rptr; 21827 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 21828 mp->b_rptr[i] = IPOPT_EOL; 21829 /* 21830 * Make sure that src address isn't flagrantly invalid. 21831 * Not all broadcast address checking for the src address 21832 * is possible, since we don't know the netmask of the src 21833 * addr. No check for destination address is done, since 21834 * IP will not pass up a packet with a broadcast dest 21835 * address to TCP. Similar checks are done below for IPv6. 21836 */ 21837 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 21838 CLASSD(ipha->ipha_src)) { 21839 freemsg(ipsec_mp); 21840 BUMP_MIB(&ip_mib, ipInDiscards); 21841 return; 21842 } 21843 } else { 21844 ip6h = (ip6_t *)mp->b_rptr; 21845 21846 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 21847 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 21848 freemsg(ipsec_mp); 21849 BUMP_MIB(&ip6_mib, ipv6InDiscards); 21850 return; 21851 } 21852 21853 /* Remove any extension headers assuming partial overlay */ 21854 if (ip_hdr_len > IPV6_HDR_LEN) { 21855 uint8_t *to; 21856 21857 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 21858 ovbcopy(ip6h, to, IPV6_HDR_LEN); 21859 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 21860 ip_hdr_len = IPV6_HDR_LEN; 21861 ip6h = (ip6_t *)mp->b_rptr; 21862 ip6h->ip6_nxt = IPPROTO_TCP; 21863 } 21864 } 21865 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 21866 if (tcph->th_flags[0] & TH_RST) { 21867 freemsg(ipsec_mp); 21868 return; 21869 } 21870 tcph->th_offset_and_rsrvd[0] = (5 << 4); 21871 len = ip_hdr_len + sizeof (tcph_t); 21872 mp->b_wptr = &mp->b_rptr[len]; 21873 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21874 ipha->ipha_length = htons(len); 21875 /* Swap addresses */ 21876 v4addr = ipha->ipha_src; 21877 ipha->ipha_src = ipha->ipha_dst; 21878 ipha->ipha_dst = v4addr; 21879 ipha->ipha_ident = 0; 21880 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 21881 addr_len = IP_ADDR_LEN; 21882 addr = &v4addr; 21883 } else { 21884 /* No ip6i_t in this case */ 21885 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 21886 /* Swap addresses */ 21887 v6addr = ip6h->ip6_src; 21888 ip6h->ip6_src = ip6h->ip6_dst; 21889 ip6h->ip6_dst = v6addr; 21890 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 21891 addr_len = IPV6_ADDR_LEN; 21892 addr = &v6addr; 21893 } 21894 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 21895 U32_TO_BE32(ack, tcph->th_ack); 21896 U32_TO_BE32(seq, tcph->th_seq); 21897 U16_TO_BE16(0, tcph->th_win); 21898 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 21899 tcph->th_flags[0] = (uint8_t)ctl; 21900 if (ctl & TH_RST) { 21901 BUMP_MIB(&tcp_mib, tcpOutRsts); 21902 BUMP_MIB(&tcp_mib, tcpOutControl); 21903 } 21904 if (mctl_present) { 21905 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21906 21907 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21908 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 21909 return; 21910 } 21911 } 21912 /* 21913 * NOTE: one might consider tracing a TCP packet here, but 21914 * this function has no active TCP state nd no tcp structure 21915 * which has trace buffer. If we traced here, we would have 21916 * to keep a local trace buffer in tcp_record_trace(). 21917 */ 21918 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 21919 21920 /* 21921 * Tell IP to mark the IRE used for this destination temporary. 21922 * This way, we can limit our exposure to DoS attack because IP 21923 * creates an IRE for each destination. If there are too many, 21924 * the time to do any routing lookup will be extremely long. And 21925 * the lookup can be in interrupt context. 21926 * 21927 * Note that in normal circumstances, this marking should not 21928 * affect anything. It would be nice if only 1 message is 21929 * needed to inform IP that the IRE created for this RST should 21930 * not be added to the cache table. But there is currently 21931 * not such communication mechanism between TCP and IP. So 21932 * the best we can do now is to send the advice ioctl to IP 21933 * to mark the IRE temporary. 21934 */ 21935 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 21936 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21937 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21938 } 21939 } 21940 21941 /* 21942 * Initiate closedown sequence on an active connection. (May be called as 21943 * writer.) Return value zero for OK return, non-zero for error return. 21944 */ 21945 static int 21946 tcp_xmit_end(tcp_t *tcp) 21947 { 21948 ipic_t *ipic; 21949 mblk_t *mp; 21950 21951 if (tcp->tcp_state < TCPS_SYN_RCVD || 21952 tcp->tcp_state > TCPS_CLOSE_WAIT) { 21953 /* 21954 * Invalid state, only states TCPS_SYN_RCVD, 21955 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 21956 */ 21957 return (-1); 21958 } 21959 21960 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 21961 tcp->tcp_valid_bits |= TCP_FSS_VALID; 21962 /* 21963 * If there is nothing more unsent, send the FIN now. 21964 * Otherwise, it will go out with the last segment. 21965 */ 21966 if (tcp->tcp_unsent == 0) { 21967 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21968 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 21969 21970 if (mp) { 21971 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21972 tcp_send_data(tcp, tcp->tcp_wq, mp); 21973 } else { 21974 /* 21975 * Couldn't allocate msg. Pretend we got it out. 21976 * Wait for rexmit timeout. 21977 */ 21978 tcp->tcp_snxt = tcp->tcp_fss + 1; 21979 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21980 } 21981 21982 /* 21983 * If needed, update tcp_rexmit_snxt as tcp_snxt is 21984 * changed. 21985 */ 21986 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 21987 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 21988 } 21989 } else { 21990 /* 21991 * If tcp->tcp_cork is set, then the data will not get sent, 21992 * so we have to check that and unset it first. 21993 */ 21994 if (tcp->tcp_cork) 21995 tcp->tcp_cork = B_FALSE; 21996 tcp_wput_data(tcp, NULL, B_FALSE); 21997 } 21998 21999 /* 22000 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22001 * is 0, don't update the cache. 22002 */ 22003 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 22004 return (0); 22005 22006 /* 22007 * NOTE: should not update if source routes i.e. if tcp_remote if 22008 * different from the destination. 22009 */ 22010 if (tcp->tcp_ipversion == IPV4_VERSION) { 22011 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22012 return (0); 22013 } 22014 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22015 &ipic); 22016 } else { 22017 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22018 &tcp->tcp_ip6h->ip6_dst))) { 22019 return (0); 22020 } 22021 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22022 &ipic); 22023 } 22024 22025 /* Record route attributes in the IRE for use by future connections. */ 22026 if (mp == NULL) 22027 return (0); 22028 22029 /* 22030 * We do not have a good algorithm to update ssthresh at this time. 22031 * So don't do any update. 22032 */ 22033 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22034 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22035 22036 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22037 return (0); 22038 } 22039 22040 /* 22041 * Generate a "no listener here" RST in response to an "unknown" segment. 22042 * Note that we are reusing the incoming mp to construct the outgoing 22043 * RST. 22044 */ 22045 void 22046 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len) 22047 { 22048 uchar_t *rptr; 22049 uint32_t seg_len; 22050 tcph_t *tcph; 22051 uint32_t seg_seq; 22052 uint32_t seg_ack; 22053 uint_t flags; 22054 mblk_t *ipsec_mp; 22055 ipha_t *ipha; 22056 ip6_t *ip6h; 22057 boolean_t mctl_present = B_FALSE; 22058 boolean_t check = B_TRUE; 22059 boolean_t policy_present; 22060 22061 TCP_STAT(tcp_no_listener); 22062 22063 ipsec_mp = mp; 22064 22065 if (mp->b_datap->db_type == M_CTL) { 22066 ipsec_in_t *ii; 22067 22068 mctl_present = B_TRUE; 22069 mp = mp->b_cont; 22070 22071 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22072 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22073 if (ii->ipsec_in_dont_check) { 22074 check = B_FALSE; 22075 if (!ii->ipsec_in_secure) { 22076 freeb(ipsec_mp); 22077 mctl_present = B_FALSE; 22078 ipsec_mp = mp; 22079 } 22080 } 22081 } 22082 22083 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22084 policy_present = ipsec_inbound_v4_policy_present; 22085 ipha = (ipha_t *)mp->b_rptr; 22086 ip6h = NULL; 22087 } else { 22088 policy_present = ipsec_inbound_v6_policy_present; 22089 ipha = NULL; 22090 ip6h = (ip6_t *)mp->b_rptr; 22091 } 22092 22093 if (check && policy_present) { 22094 /* 22095 * The conn_t parameter is NULL because we already know 22096 * nobody's home. 22097 */ 22098 ipsec_mp = ipsec_check_global_policy( 22099 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 22100 if (ipsec_mp == NULL) 22101 return; 22102 } 22103 22104 22105 rptr = mp->b_rptr; 22106 22107 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22108 seg_seq = BE32_TO_U32(tcph->th_seq); 22109 seg_ack = BE32_TO_U32(tcph->th_ack); 22110 flags = tcph->th_flags[0]; 22111 22112 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22113 if (flags & TH_RST) { 22114 freemsg(ipsec_mp); 22115 } else if (flags & TH_ACK) { 22116 tcp_xmit_early_reset("no tcp, reset", 22117 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len); 22118 } else { 22119 if (flags & TH_SYN) { 22120 seg_len++; 22121 } else { 22122 /* 22123 * Here we violate the RFC. Note that a normal 22124 * TCP will never send a segment without the ACK 22125 * flag, except for RST or SYN segment. This 22126 * segment is neither. Just drop it on the 22127 * floor. 22128 */ 22129 freemsg(ipsec_mp); 22130 tcp_rst_unsent++; 22131 return; 22132 } 22133 22134 tcp_xmit_early_reset("no tcp, reset/ack", 22135 ipsec_mp, 0, seg_seq + seg_len, 22136 TH_RST | TH_ACK, ip_hdr_len); 22137 } 22138 } 22139 22140 /* 22141 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22142 * ip and tcp header ready to pass down to IP. If the mp passed in is 22143 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22144 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22145 * otherwise it will dup partial mblks.) 22146 * Otherwise, an appropriate ACK packet will be generated. This 22147 * routine is not usually called to send new data for the first time. It 22148 * is mostly called out of the timer for retransmits, and to generate ACKs. 22149 * 22150 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22151 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22152 * of the original mblk chain will be returned in *offset and *end_mp. 22153 */ 22154 static mblk_t * 22155 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22156 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22157 boolean_t rexmit) 22158 { 22159 int data_length; 22160 int32_t off = 0; 22161 uint_t flags; 22162 mblk_t *mp1; 22163 mblk_t *mp2; 22164 uchar_t *rptr; 22165 tcph_t *tcph; 22166 int32_t num_sack_blk = 0; 22167 int32_t sack_opt_len = 0; 22168 22169 /* Allocate for our maximum TCP header + link-level */ 22170 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 22171 BPRI_MED); 22172 if (!mp1) 22173 return (NULL); 22174 data_length = 0; 22175 22176 /* 22177 * Note that tcp_mss has been adjusted to take into account the 22178 * timestamp option if applicable. Because SACK options do not 22179 * appear in every TCP segments and they are of variable lengths, 22180 * they cannot be included in tcp_mss. Thus we need to calculate 22181 * the actual segment length when we need to send a segment which 22182 * includes SACK options. 22183 */ 22184 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22185 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22186 tcp->tcp_num_sack_blk); 22187 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22188 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22189 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22190 max_to_send -= sack_opt_len; 22191 } 22192 22193 if (offset != NULL) { 22194 off = *offset; 22195 /* We use offset as an indicator that end_mp is not NULL. */ 22196 *end_mp = NULL; 22197 } 22198 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22199 /* This could be faster with cooperation from downstream */ 22200 if (mp2 != mp1 && !sendall && 22201 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22202 max_to_send) 22203 /* 22204 * Don't send the next mblk since the whole mblk 22205 * does not fit. 22206 */ 22207 break; 22208 mp2->b_cont = dupb(mp); 22209 mp2 = mp2->b_cont; 22210 if (!mp2) { 22211 freemsg(mp1); 22212 return (NULL); 22213 } 22214 mp2->b_rptr += off; 22215 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22216 (uintptr_t)INT_MAX); 22217 22218 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22219 if (data_length > max_to_send) { 22220 mp2->b_wptr -= data_length - max_to_send; 22221 data_length = max_to_send; 22222 off = mp2->b_wptr - mp->b_rptr; 22223 break; 22224 } else { 22225 off = 0; 22226 } 22227 } 22228 if (offset != NULL) { 22229 *offset = off; 22230 *end_mp = mp; 22231 } 22232 if (seg_len != NULL) { 22233 *seg_len = data_length; 22234 } 22235 22236 /* Update the latest receive window size in TCP header. */ 22237 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22238 tcp->tcp_tcph->th_win); 22239 22240 rptr = mp1->b_rptr + tcp_wroff_xtra; 22241 mp1->b_rptr = rptr; 22242 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22243 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22244 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22245 U32_TO_ABE32(seq, tcph->th_seq); 22246 22247 /* 22248 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22249 * that this function was called from tcp_wput_data. Thus, when called 22250 * to retransmit data the setting of the PUSH bit may appear some 22251 * what random in that it might get set when it should not. This 22252 * should not pose any performance issues. 22253 */ 22254 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22255 tcp->tcp_unsent == data_length)) { 22256 flags = TH_ACK | TH_PUSH; 22257 } else { 22258 flags = TH_ACK; 22259 } 22260 22261 if (tcp->tcp_ecn_ok) { 22262 if (tcp->tcp_ecn_echo_on) 22263 flags |= TH_ECE; 22264 22265 /* 22266 * Only set ECT bit and ECN_CWR if a segment contains new data. 22267 * There is no TCP flow control for non-data segments, and 22268 * only data segment is transmitted reliably. 22269 */ 22270 if (data_length > 0 && !rexmit) { 22271 SET_ECT(tcp, rptr); 22272 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22273 flags |= TH_CWR; 22274 tcp->tcp_ecn_cwr_sent = B_TRUE; 22275 } 22276 } 22277 } 22278 22279 if (tcp->tcp_valid_bits) { 22280 uint32_t u1; 22281 22282 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22283 seq == tcp->tcp_iss) { 22284 uchar_t *wptr; 22285 22286 /* 22287 * If TCP_ISS_VALID and the seq number is tcp_iss, 22288 * TCP can only be in SYN-SENT, SYN-RCVD or 22289 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22290 * our SYN is not ack'ed but the app closes this 22291 * TCP connection. 22292 */ 22293 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22294 tcp->tcp_state == TCPS_SYN_RCVD || 22295 tcp->tcp_state == TCPS_FIN_WAIT_1); 22296 22297 /* 22298 * Tack on the MSS option. It is always needed 22299 * for both active and passive open. 22300 * 22301 * MSS option value should be interface MTU - MIN 22302 * TCP/IP header according to RFC 793 as it means 22303 * the maximum segment size TCP can receive. But 22304 * to get around some broken middle boxes/end hosts 22305 * out there, we allow the option value to be the 22306 * same as the MSS option size on the peer side. 22307 * In this way, the other side will not send 22308 * anything larger than they can receive. 22309 * 22310 * Note that for SYN_SENT state, the ndd param 22311 * tcp_use_smss_as_mss_opt has no effect as we 22312 * don't know the peer's MSS option value. So 22313 * the only case we need to take care of is in 22314 * SYN_RCVD state, which is done later. 22315 */ 22316 wptr = mp1->b_wptr; 22317 wptr[0] = TCPOPT_MAXSEG; 22318 wptr[1] = TCPOPT_MAXSEG_LEN; 22319 wptr += 2; 22320 u1 = tcp->tcp_if_mtu - 22321 (tcp->tcp_ipversion == IPV4_VERSION ? 22322 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22323 TCP_MIN_HEADER_LENGTH; 22324 U16_TO_BE16(u1, wptr); 22325 mp1->b_wptr = wptr + 2; 22326 /* Update the offset to cover the additional word */ 22327 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22328 22329 /* 22330 * Note that the following way of filling in 22331 * TCP options are not optimal. Some NOPs can 22332 * be saved. But there is no need at this time 22333 * to optimize it. When it is needed, we will 22334 * do it. 22335 */ 22336 switch (tcp->tcp_state) { 22337 case TCPS_SYN_SENT: 22338 flags = TH_SYN; 22339 22340 if (tcp->tcp_snd_ts_ok) { 22341 uint32_t llbolt = (uint32_t)lbolt; 22342 22343 wptr = mp1->b_wptr; 22344 wptr[0] = TCPOPT_NOP; 22345 wptr[1] = TCPOPT_NOP; 22346 wptr[2] = TCPOPT_TSTAMP; 22347 wptr[3] = TCPOPT_TSTAMP_LEN; 22348 wptr += 4; 22349 U32_TO_BE32(llbolt, wptr); 22350 wptr += 4; 22351 ASSERT(tcp->tcp_ts_recent == 0); 22352 U32_TO_BE32(0L, wptr); 22353 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22354 tcph->th_offset_and_rsrvd[0] += 22355 (3 << 4); 22356 } 22357 22358 /* 22359 * Set up all the bits to tell other side 22360 * we are ECN capable. 22361 */ 22362 if (tcp->tcp_ecn_ok) { 22363 flags |= (TH_ECE | TH_CWR); 22364 } 22365 break; 22366 case TCPS_SYN_RCVD: 22367 flags |= TH_SYN; 22368 22369 /* 22370 * Reset the MSS option value to be SMSS 22371 * We should probably add back the bytes 22372 * for timestamp option and IPsec. We 22373 * don't do that as this is a workaround 22374 * for broken middle boxes/end hosts, it 22375 * is better for us to be more cautious. 22376 * They may not take these things into 22377 * account in their SMSS calculation. Thus 22378 * the peer's calculated SMSS may be smaller 22379 * than what it can be. This should be OK. 22380 */ 22381 if (tcp_use_smss_as_mss_opt) { 22382 u1 = tcp->tcp_mss; 22383 U16_TO_BE16(u1, wptr); 22384 } 22385 22386 /* 22387 * If the other side is ECN capable, reply 22388 * that we are also ECN capable. 22389 */ 22390 if (tcp->tcp_ecn_ok) 22391 flags |= TH_ECE; 22392 break; 22393 default: 22394 /* 22395 * The above ASSERT() makes sure that this 22396 * must be FIN-WAIT-1 state. Our SYN has 22397 * not been ack'ed so retransmit it. 22398 */ 22399 flags |= TH_SYN; 22400 break; 22401 } 22402 22403 if (tcp->tcp_snd_ws_ok) { 22404 wptr = mp1->b_wptr; 22405 wptr[0] = TCPOPT_NOP; 22406 wptr[1] = TCPOPT_WSCALE; 22407 wptr[2] = TCPOPT_WS_LEN; 22408 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22409 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22410 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22411 } 22412 22413 if (tcp->tcp_snd_sack_ok) { 22414 wptr = mp1->b_wptr; 22415 wptr[0] = TCPOPT_NOP; 22416 wptr[1] = TCPOPT_NOP; 22417 wptr[2] = TCPOPT_SACK_PERMITTED; 22418 wptr[3] = TCPOPT_SACK_OK_LEN; 22419 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22420 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22421 } 22422 22423 /* allocb() of adequate mblk assures space */ 22424 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22425 (uintptr_t)INT_MAX); 22426 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22427 /* 22428 * Get IP set to checksum on our behalf 22429 * Include the adjustment for a source route if any. 22430 */ 22431 u1 += tcp->tcp_sum; 22432 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22433 U16_TO_BE16(u1, tcph->th_sum); 22434 BUMP_MIB(&tcp_mib, tcpOutControl); 22435 } 22436 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22437 (seq + data_length) == tcp->tcp_fss) { 22438 if (!tcp->tcp_fin_acked) { 22439 flags |= TH_FIN; 22440 BUMP_MIB(&tcp_mib, tcpOutControl); 22441 } 22442 if (!tcp->tcp_fin_sent) { 22443 tcp->tcp_fin_sent = B_TRUE; 22444 switch (tcp->tcp_state) { 22445 case TCPS_SYN_RCVD: 22446 case TCPS_ESTABLISHED: 22447 tcp->tcp_state = TCPS_FIN_WAIT_1; 22448 break; 22449 case TCPS_CLOSE_WAIT: 22450 tcp->tcp_state = TCPS_LAST_ACK; 22451 break; 22452 } 22453 if (tcp->tcp_suna == tcp->tcp_snxt) 22454 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22455 tcp->tcp_snxt = tcp->tcp_fss + 1; 22456 } 22457 } 22458 /* 22459 * Note the trick here. u1 is unsigned. When tcp_urg 22460 * is smaller than seq, u1 will become a very huge value. 22461 * So the comparison will fail. Also note that tcp_urp 22462 * should be positive, see RFC 793 page 17. 22463 */ 22464 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22465 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22466 u1 < (uint32_t)(64 * 1024)) { 22467 flags |= TH_URG; 22468 BUMP_MIB(&tcp_mib, tcpOutUrg); 22469 U32_TO_ABE16(u1, tcph->th_urp); 22470 } 22471 } 22472 tcph->th_flags[0] = (uchar_t)flags; 22473 tcp->tcp_rack = tcp->tcp_rnxt; 22474 tcp->tcp_rack_cnt = 0; 22475 22476 if (tcp->tcp_snd_ts_ok) { 22477 if (tcp->tcp_state != TCPS_SYN_SENT) { 22478 uint32_t llbolt = (uint32_t)lbolt; 22479 22480 U32_TO_BE32(llbolt, 22481 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22482 U32_TO_BE32(tcp->tcp_ts_recent, 22483 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22484 } 22485 } 22486 22487 if (num_sack_blk > 0) { 22488 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22489 sack_blk_t *tmp; 22490 int32_t i; 22491 22492 wptr[0] = TCPOPT_NOP; 22493 wptr[1] = TCPOPT_NOP; 22494 wptr[2] = TCPOPT_SACK; 22495 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22496 sizeof (sack_blk_t); 22497 wptr += TCPOPT_REAL_SACK_LEN; 22498 22499 tmp = tcp->tcp_sack_list; 22500 for (i = 0; i < num_sack_blk; i++) { 22501 U32_TO_BE32(tmp[i].begin, wptr); 22502 wptr += sizeof (tcp_seq); 22503 U32_TO_BE32(tmp[i].end, wptr); 22504 wptr += sizeof (tcp_seq); 22505 } 22506 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22507 } 22508 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22509 data_length += (int)(mp1->b_wptr - rptr); 22510 if (tcp->tcp_ipversion == IPV4_VERSION) { 22511 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22512 } else { 22513 ip6_t *ip6 = (ip6_t *)(rptr + 22514 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22515 sizeof (ip6i_t) : 0)); 22516 22517 ip6->ip6_plen = htons(data_length - 22518 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22519 } 22520 22521 /* 22522 * Prime pump for IP 22523 * Include the adjustment for a source route if any. 22524 */ 22525 data_length -= tcp->tcp_ip_hdr_len; 22526 data_length += tcp->tcp_sum; 22527 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22528 U16_TO_ABE16(data_length, tcph->th_sum); 22529 if (tcp->tcp_ip_forward_progress) { 22530 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22531 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22532 tcp->tcp_ip_forward_progress = B_FALSE; 22533 } 22534 return (mp1); 22535 } 22536 22537 /* This function handles the push timeout. */ 22538 static void 22539 tcp_push_timer(void *arg) 22540 { 22541 conn_t *connp = (conn_t *)arg; 22542 tcp_t *tcp = connp->conn_tcp; 22543 22544 TCP_DBGSTAT(tcp_push_timer_cnt); 22545 22546 ASSERT(tcp->tcp_listener == NULL); 22547 22548 tcp->tcp_push_tid = 0; 22549 if ((tcp->tcp_rcv_list != NULL) && 22550 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 22551 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22552 } 22553 22554 /* 22555 * This function handles delayed ACK timeout. 22556 */ 22557 static void 22558 tcp_ack_timer(void *arg) 22559 { 22560 conn_t *connp = (conn_t *)arg; 22561 tcp_t *tcp = connp->conn_tcp; 22562 mblk_t *mp; 22563 22564 TCP_DBGSTAT(tcp_ack_timer_cnt); 22565 22566 tcp->tcp_ack_tid = 0; 22567 22568 if (tcp->tcp_fused) 22569 return; 22570 22571 /* 22572 * Do not send ACK if there is no outstanding unack'ed data. 22573 */ 22574 if (tcp->tcp_rnxt == tcp->tcp_rack) { 22575 return; 22576 } 22577 22578 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 22579 /* 22580 * Make sure we don't allow deferred ACKs to result in 22581 * timer-based ACKing. If we have held off an ACK 22582 * when there was more than an mss here, and the timer 22583 * goes off, we have to worry about the possibility 22584 * that the sender isn't doing slow-start, or is out 22585 * of step with us for some other reason. We fall 22586 * permanently back in the direction of 22587 * ACK-every-other-packet as suggested in RFC 1122. 22588 */ 22589 if (tcp->tcp_rack_abs_max > 2) 22590 tcp->tcp_rack_abs_max--; 22591 tcp->tcp_rack_cur_max = 2; 22592 } 22593 mp = tcp_ack_mp(tcp); 22594 22595 if (mp != NULL) { 22596 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22597 BUMP_LOCAL(tcp->tcp_obsegs); 22598 BUMP_MIB(&tcp_mib, tcpOutAck); 22599 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 22600 tcp_send_data(tcp, tcp->tcp_wq, mp); 22601 } 22602 } 22603 22604 22605 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 22606 static mblk_t * 22607 tcp_ack_mp(tcp_t *tcp) 22608 { 22609 uint32_t seq_no; 22610 22611 /* 22612 * There are a few cases to be considered while setting the sequence no. 22613 * Essentially, we can come here while processing an unacceptable pkt 22614 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 22615 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 22616 * If we are here for a zero window probe, stick with suna. In all 22617 * other cases, we check if suna + swnd encompasses snxt and set 22618 * the sequence number to snxt, if so. If snxt falls outside the 22619 * window (the receiver probably shrunk its window), we will go with 22620 * suna + swnd, otherwise the sequence no will be unacceptable to the 22621 * receiver. 22622 */ 22623 if (tcp->tcp_zero_win_probe) { 22624 seq_no = tcp->tcp_suna; 22625 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 22626 ASSERT(tcp->tcp_swnd == 0); 22627 seq_no = tcp->tcp_snxt; 22628 } else { 22629 seq_no = SEQ_GT(tcp->tcp_snxt, 22630 (tcp->tcp_suna + tcp->tcp_swnd)) ? 22631 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 22632 } 22633 22634 if (tcp->tcp_valid_bits) { 22635 /* 22636 * For the complex case where we have to send some 22637 * controls (FIN or SYN), let tcp_xmit_mp do it. 22638 */ 22639 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 22640 NULL, B_FALSE)); 22641 } else { 22642 /* Generate a simple ACK */ 22643 int data_length; 22644 uchar_t *rptr; 22645 tcph_t *tcph; 22646 mblk_t *mp1; 22647 int32_t tcp_hdr_len; 22648 int32_t tcp_tcp_hdr_len; 22649 int32_t num_sack_blk = 0; 22650 int32_t sack_opt_len; 22651 22652 /* 22653 * Allocate space for TCP + IP headers 22654 * and link-level header 22655 */ 22656 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22657 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22658 tcp->tcp_num_sack_blk); 22659 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22660 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22661 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 22662 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 22663 } else { 22664 tcp_hdr_len = tcp->tcp_hdr_len; 22665 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 22666 } 22667 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 22668 if (!mp1) 22669 return (NULL); 22670 22671 /* Update the latest receive window size in TCP header. */ 22672 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22673 tcp->tcp_tcph->th_win); 22674 /* copy in prototype TCP + IP header */ 22675 rptr = mp1->b_rptr + tcp_wroff_xtra; 22676 mp1->b_rptr = rptr; 22677 mp1->b_wptr = rptr + tcp_hdr_len; 22678 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22679 22680 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22681 22682 /* Set the TCP sequence number. */ 22683 U32_TO_ABE32(seq_no, tcph->th_seq); 22684 22685 /* Set up the TCP flag field. */ 22686 tcph->th_flags[0] = (uchar_t)TH_ACK; 22687 if (tcp->tcp_ecn_echo_on) 22688 tcph->th_flags[0] |= TH_ECE; 22689 22690 tcp->tcp_rack = tcp->tcp_rnxt; 22691 tcp->tcp_rack_cnt = 0; 22692 22693 /* fill in timestamp option if in use */ 22694 if (tcp->tcp_snd_ts_ok) { 22695 uint32_t llbolt = (uint32_t)lbolt; 22696 22697 U32_TO_BE32(llbolt, 22698 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22699 U32_TO_BE32(tcp->tcp_ts_recent, 22700 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22701 } 22702 22703 /* Fill in SACK options */ 22704 if (num_sack_blk > 0) { 22705 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22706 sack_blk_t *tmp; 22707 int32_t i; 22708 22709 wptr[0] = TCPOPT_NOP; 22710 wptr[1] = TCPOPT_NOP; 22711 wptr[2] = TCPOPT_SACK; 22712 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22713 sizeof (sack_blk_t); 22714 wptr += TCPOPT_REAL_SACK_LEN; 22715 22716 tmp = tcp->tcp_sack_list; 22717 for (i = 0; i < num_sack_blk; i++) { 22718 U32_TO_BE32(tmp[i].begin, wptr); 22719 wptr += sizeof (tcp_seq); 22720 U32_TO_BE32(tmp[i].end, wptr); 22721 wptr += sizeof (tcp_seq); 22722 } 22723 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 22724 << 4); 22725 } 22726 22727 if (tcp->tcp_ipversion == IPV4_VERSION) { 22728 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 22729 } else { 22730 /* Check for ip6i_t header in sticky hdrs */ 22731 ip6_t *ip6 = (ip6_t *)(rptr + 22732 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22733 sizeof (ip6i_t) : 0)); 22734 22735 ip6->ip6_plen = htons(tcp_hdr_len - 22736 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22737 } 22738 22739 /* 22740 * Prime pump for checksum calculation in IP. Include the 22741 * adjustment for a source route if any. 22742 */ 22743 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 22744 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22745 U16_TO_ABE16(data_length, tcph->th_sum); 22746 22747 if (tcp->tcp_ip_forward_progress) { 22748 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22749 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22750 tcp->tcp_ip_forward_progress = B_FALSE; 22751 } 22752 return (mp1); 22753 } 22754 } 22755 22756 /* 22757 * To create a temporary tcp structure for inserting into bind hash list. 22758 * The parameter is assumed to be in network byte order, ready for use. 22759 */ 22760 /* ARGSUSED */ 22761 static tcp_t * 22762 tcp_alloc_temp_tcp(in_port_t port) 22763 { 22764 conn_t *connp; 22765 tcp_t *tcp; 22766 22767 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 22768 if (connp == NULL) 22769 return (NULL); 22770 22771 tcp = connp->conn_tcp; 22772 22773 /* 22774 * Only initialize the necessary info in those structures. Note 22775 * that since INADDR_ANY is all 0, we do not need to set 22776 * tcp_bound_source to INADDR_ANY here. 22777 */ 22778 tcp->tcp_state = TCPS_BOUND; 22779 tcp->tcp_lport = port; 22780 tcp->tcp_exclbind = 1; 22781 tcp->tcp_reserved_port = 1; 22782 22783 /* Just for place holding... */ 22784 tcp->tcp_ipversion = IPV4_VERSION; 22785 22786 return (tcp); 22787 } 22788 22789 /* 22790 * To remove a port range specified by lo_port and hi_port from the 22791 * reserved port ranges. This is one of the three public functions of 22792 * the reserved port interface. Note that a port range has to be removed 22793 * as a whole. Ports in a range cannot be removed individually. 22794 * 22795 * Params: 22796 * in_port_t lo_port: the beginning port of the reserved port range to 22797 * be deleted. 22798 * in_port_t hi_port: the ending port of the reserved port range to 22799 * be deleted. 22800 * 22801 * Return: 22802 * B_TRUE if the deletion is successful, B_FALSE otherwise. 22803 */ 22804 boolean_t 22805 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 22806 { 22807 int i, j; 22808 int size; 22809 tcp_t **temp_tcp_array; 22810 tcp_t *tcp; 22811 22812 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22813 22814 /* First make sure that the port ranage is indeed reserved. */ 22815 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22816 if (tcp_reserved_port[i].lo_port == lo_port) { 22817 hi_port = tcp_reserved_port[i].hi_port; 22818 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 22819 break; 22820 } 22821 } 22822 if (i == tcp_reserved_port_array_size) { 22823 rw_exit(&tcp_reserved_port_lock); 22824 return (B_FALSE); 22825 } 22826 22827 /* 22828 * Remove the range from the array. This simple loop is possible 22829 * because port ranges are inserted in ascending order. 22830 */ 22831 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 22832 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 22833 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 22834 tcp_reserved_port[j].temp_tcp_array = 22835 tcp_reserved_port[j+1].temp_tcp_array; 22836 } 22837 22838 /* Remove all the temporary tcp structures. */ 22839 size = hi_port - lo_port + 1; 22840 while (size > 0) { 22841 tcp = temp_tcp_array[size - 1]; 22842 ASSERT(tcp != NULL); 22843 tcp_bind_hash_remove(tcp); 22844 CONN_DEC_REF(tcp->tcp_connp); 22845 size--; 22846 } 22847 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 22848 tcp_reserved_port_array_size--; 22849 rw_exit(&tcp_reserved_port_lock); 22850 return (B_TRUE); 22851 } 22852 22853 /* 22854 * Macro to remove temporary tcp structure from the bind hash list. The 22855 * first parameter is the list of tcp to be removed. The second parameter 22856 * is the number of tcps in the array. 22857 */ 22858 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 22859 { \ 22860 while ((num) > 0) { \ 22861 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 22862 tf_t *tbf; \ 22863 tcp_t *tcpnext; \ 22864 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 22865 mutex_enter(&tbf->tf_lock); \ 22866 tcpnext = tcp->tcp_bind_hash; \ 22867 if (tcpnext) { \ 22868 tcpnext->tcp_ptpbhn = \ 22869 tcp->tcp_ptpbhn; \ 22870 } \ 22871 *tcp->tcp_ptpbhn = tcpnext; \ 22872 mutex_exit(&tbf->tf_lock); \ 22873 kmem_free(tcp, sizeof (tcp_t)); \ 22874 (tcp_array)[(num) - 1] = NULL; \ 22875 (num)--; \ 22876 } \ 22877 } 22878 22879 /* 22880 * The public interface for other modules to call to reserve a port range 22881 * in TCP. The caller passes in how large a port range it wants. TCP 22882 * will try to find a range and return it via lo_port and hi_port. This is 22883 * used by NCA's nca_conn_init. 22884 * NCA can only be used in the global zone so this only affects the global 22885 * zone's ports. 22886 * 22887 * Params: 22888 * int size: the size of the port range to be reserved. 22889 * in_port_t *lo_port (referenced): returns the beginning port of the 22890 * reserved port range added. 22891 * in_port_t *hi_port (referenced): returns the ending port of the 22892 * reserved port range added. 22893 * 22894 * Return: 22895 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 22896 */ 22897 boolean_t 22898 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 22899 { 22900 tcp_t *tcp; 22901 tcp_t *tmp_tcp; 22902 tcp_t **temp_tcp_array; 22903 tf_t *tbf; 22904 in_port_t net_port; 22905 in_port_t port; 22906 int32_t cur_size; 22907 int i, j; 22908 boolean_t used; 22909 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 22910 zoneid_t zoneid = GLOBAL_ZONEID; 22911 22912 /* Sanity check. */ 22913 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 22914 return (B_FALSE); 22915 } 22916 22917 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22918 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 22919 rw_exit(&tcp_reserved_port_lock); 22920 return (B_FALSE); 22921 } 22922 22923 /* 22924 * Find the starting port to try. Since the port ranges are ordered 22925 * in the reserved port array, we can do a simple search here. 22926 */ 22927 *lo_port = TCP_SMALLEST_RESERVED_PORT; 22928 *hi_port = TCP_LARGEST_RESERVED_PORT; 22929 for (i = 0; i < tcp_reserved_port_array_size; 22930 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 22931 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 22932 *hi_port = tcp_reserved_port[i].lo_port - 1; 22933 break; 22934 } 22935 } 22936 /* No available port range. */ 22937 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 22938 rw_exit(&tcp_reserved_port_lock); 22939 return (B_FALSE); 22940 } 22941 22942 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 22943 if (temp_tcp_array == NULL) { 22944 rw_exit(&tcp_reserved_port_lock); 22945 return (B_FALSE); 22946 } 22947 22948 /* Go thru the port range to see if some ports are already bound. */ 22949 for (port = *lo_port, cur_size = 0; 22950 cur_size < size && port <= *hi_port; 22951 cur_size++, port++) { 22952 used = B_FALSE; 22953 net_port = htons(port); 22954 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 22955 mutex_enter(&tbf->tf_lock); 22956 for (tcp = tbf->tf_tcp; tcp != NULL; 22957 tcp = tcp->tcp_bind_hash) { 22958 if (zoneid == tcp->tcp_connp->conn_zoneid && 22959 net_port == tcp->tcp_lport) { 22960 /* 22961 * A port is already bound. Search again 22962 * starting from port + 1. Release all 22963 * temporary tcps. 22964 */ 22965 mutex_exit(&tbf->tf_lock); 22966 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22967 *lo_port = port + 1; 22968 cur_size = -1; 22969 used = B_TRUE; 22970 break; 22971 } 22972 } 22973 if (!used) { 22974 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 22975 /* 22976 * Allocation failure. Just fail the request. 22977 * Need to remove all those temporary tcp 22978 * structures. 22979 */ 22980 mutex_exit(&tbf->tf_lock); 22981 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22982 rw_exit(&tcp_reserved_port_lock); 22983 kmem_free(temp_tcp_array, 22984 (hi_port - lo_port + 1) * 22985 sizeof (tcp_t *)); 22986 return (B_FALSE); 22987 } 22988 temp_tcp_array[cur_size] = tmp_tcp; 22989 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 22990 mutex_exit(&tbf->tf_lock); 22991 } 22992 } 22993 22994 /* 22995 * The current range is not large enough. We can actually do another 22996 * search if this search is done between 2 reserved port ranges. But 22997 * for first release, we just stop here and return saying that no port 22998 * range is available. 22999 */ 23000 if (cur_size < size) { 23001 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23002 rw_exit(&tcp_reserved_port_lock); 23003 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 23004 return (B_FALSE); 23005 } 23006 *hi_port = port - 1; 23007 23008 /* 23009 * Insert range into array in ascending order. Since this function 23010 * must not be called often, we choose to use the simplest method. 23011 * The above array should not consume excessive stack space as 23012 * the size must be very small. If in future releases, we find 23013 * that we should provide more reserved port ranges, this function 23014 * has to be modified to be more efficient. 23015 */ 23016 if (tcp_reserved_port_array_size == 0) { 23017 tcp_reserved_port[0].lo_port = *lo_port; 23018 tcp_reserved_port[0].hi_port = *hi_port; 23019 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 23020 } else { 23021 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 23022 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 23023 tmp_ports[j].lo_port = *lo_port; 23024 tmp_ports[j].hi_port = *hi_port; 23025 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23026 j++; 23027 } 23028 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 23029 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 23030 tmp_ports[j].temp_tcp_array = 23031 tcp_reserved_port[i].temp_tcp_array; 23032 } 23033 if (j == i) { 23034 tmp_ports[j].lo_port = *lo_port; 23035 tmp_ports[j].hi_port = *hi_port; 23036 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23037 } 23038 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 23039 } 23040 tcp_reserved_port_array_size++; 23041 rw_exit(&tcp_reserved_port_lock); 23042 return (B_TRUE); 23043 } 23044 23045 /* 23046 * Check to see if a port is in any reserved port range. 23047 * 23048 * Params: 23049 * in_port_t port: the port to be verified. 23050 * 23051 * Return: 23052 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 23053 */ 23054 boolean_t 23055 tcp_reserved_port_check(in_port_t port) 23056 { 23057 int i; 23058 23059 rw_enter(&tcp_reserved_port_lock, RW_READER); 23060 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23061 if (port >= tcp_reserved_port[i].lo_port || 23062 port <= tcp_reserved_port[i].hi_port) { 23063 rw_exit(&tcp_reserved_port_lock); 23064 return (B_TRUE); 23065 } 23066 } 23067 rw_exit(&tcp_reserved_port_lock); 23068 return (B_FALSE); 23069 } 23070 23071 /* 23072 * To list all reserved port ranges. This is the function to handle 23073 * ndd tcp_reserved_port_list. 23074 */ 23075 /* ARGSUSED */ 23076 static int 23077 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23078 { 23079 int i; 23080 23081 rw_enter(&tcp_reserved_port_lock, RW_READER); 23082 if (tcp_reserved_port_array_size > 0) 23083 (void) mi_mpprintf(mp, "The following ports are reserved:"); 23084 else 23085 (void) mi_mpprintf(mp, "No port is reserved."); 23086 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23087 (void) mi_mpprintf(mp, "%d-%d", 23088 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 23089 } 23090 rw_exit(&tcp_reserved_port_lock); 23091 return (0); 23092 } 23093 23094 /* 23095 * Hash list insertion routine for tcp_t structures. 23096 * Inserts entries with the ones bound to a specific IP address first 23097 * followed by those bound to INADDR_ANY. 23098 */ 23099 static void 23100 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23101 { 23102 tcp_t **tcpp; 23103 tcp_t *tcpnext; 23104 23105 if (tcp->tcp_ptpbhn != NULL) { 23106 ASSERT(!caller_holds_lock); 23107 tcp_bind_hash_remove(tcp); 23108 } 23109 tcpp = &tbf->tf_tcp; 23110 if (!caller_holds_lock) { 23111 mutex_enter(&tbf->tf_lock); 23112 } else { 23113 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23114 } 23115 tcpnext = tcpp[0]; 23116 if (tcpnext) { 23117 /* 23118 * If the new tcp bound to the INADDR_ANY address 23119 * and the first one in the list is not bound to 23120 * INADDR_ANY we skip all entries until we find the 23121 * first one bound to INADDR_ANY. 23122 * This makes sure that applications binding to a 23123 * specific address get preference over those binding to 23124 * INADDR_ANY. 23125 */ 23126 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23127 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23128 while ((tcpnext = tcpp[0]) != NULL && 23129 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23130 tcpp = &(tcpnext->tcp_bind_hash); 23131 if (tcpnext) 23132 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23133 } else 23134 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23135 } 23136 tcp->tcp_bind_hash = tcpnext; 23137 tcp->tcp_ptpbhn = tcpp; 23138 tcpp[0] = tcp; 23139 if (!caller_holds_lock) 23140 mutex_exit(&tbf->tf_lock); 23141 } 23142 23143 /* 23144 * Hash list removal routine for tcp_t structures. 23145 */ 23146 static void 23147 tcp_bind_hash_remove(tcp_t *tcp) 23148 { 23149 tcp_t *tcpnext; 23150 kmutex_t *lockp; 23151 23152 if (tcp->tcp_ptpbhn == NULL) 23153 return; 23154 23155 /* 23156 * Extract the lock pointer in case there are concurrent 23157 * hash_remove's for this instance. 23158 */ 23159 ASSERT(tcp->tcp_lport != 0); 23160 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23161 23162 ASSERT(lockp != NULL); 23163 mutex_enter(lockp); 23164 if (tcp->tcp_ptpbhn) { 23165 tcpnext = tcp->tcp_bind_hash; 23166 if (tcpnext) { 23167 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23168 tcp->tcp_bind_hash = NULL; 23169 } 23170 *tcp->tcp_ptpbhn = tcpnext; 23171 tcp->tcp_ptpbhn = NULL; 23172 } 23173 mutex_exit(lockp); 23174 } 23175 23176 23177 /* 23178 * Hash list lookup routine for tcp_t structures. 23179 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23180 */ 23181 static tcp_t * 23182 tcp_acceptor_hash_lookup(t_uscalar_t id) 23183 { 23184 tf_t *tf; 23185 tcp_t *tcp; 23186 23187 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23188 mutex_enter(&tf->tf_lock); 23189 for (tcp = tf->tf_tcp; tcp != NULL; 23190 tcp = tcp->tcp_acceptor_hash) { 23191 if (tcp->tcp_acceptor_id == id) { 23192 CONN_INC_REF(tcp->tcp_connp); 23193 mutex_exit(&tf->tf_lock); 23194 return (tcp); 23195 } 23196 } 23197 mutex_exit(&tf->tf_lock); 23198 return (NULL); 23199 } 23200 23201 23202 /* 23203 * Hash list insertion routine for tcp_t structures. 23204 */ 23205 void 23206 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23207 { 23208 tf_t *tf; 23209 tcp_t **tcpp; 23210 tcp_t *tcpnext; 23211 23212 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23213 23214 if (tcp->tcp_ptpahn != NULL) 23215 tcp_acceptor_hash_remove(tcp); 23216 tcpp = &tf->tf_tcp; 23217 mutex_enter(&tf->tf_lock); 23218 tcpnext = tcpp[0]; 23219 if (tcpnext) 23220 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23221 tcp->tcp_acceptor_hash = tcpnext; 23222 tcp->tcp_ptpahn = tcpp; 23223 tcpp[0] = tcp; 23224 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23225 mutex_exit(&tf->tf_lock); 23226 } 23227 23228 /* 23229 * Hash list removal routine for tcp_t structures. 23230 */ 23231 static void 23232 tcp_acceptor_hash_remove(tcp_t *tcp) 23233 { 23234 tcp_t *tcpnext; 23235 kmutex_t *lockp; 23236 23237 /* 23238 * Extract the lock pointer in case there are concurrent 23239 * hash_remove's for this instance. 23240 */ 23241 lockp = tcp->tcp_acceptor_lockp; 23242 23243 if (tcp->tcp_ptpahn == NULL) 23244 return; 23245 23246 ASSERT(lockp != NULL); 23247 mutex_enter(lockp); 23248 if (tcp->tcp_ptpahn) { 23249 tcpnext = tcp->tcp_acceptor_hash; 23250 if (tcpnext) { 23251 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23252 tcp->tcp_acceptor_hash = NULL; 23253 } 23254 *tcp->tcp_ptpahn = tcpnext; 23255 tcp->tcp_ptpahn = NULL; 23256 } 23257 mutex_exit(lockp); 23258 tcp->tcp_acceptor_lockp = NULL; 23259 } 23260 23261 /* ARGSUSED */ 23262 static int 23263 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 23264 { 23265 int error = 0; 23266 int retval; 23267 char *end; 23268 23269 tcp_hsp_t *hsp; 23270 tcp_hsp_t *hspprev; 23271 23272 ipaddr_t addr = 0; /* Address we're looking for */ 23273 in6_addr_t v6addr; /* Address we're looking for */ 23274 uint32_t hash; /* Hash of that address */ 23275 23276 /* 23277 * If the following variables are still zero after parsing the input 23278 * string, the user didn't specify them and we don't change them in 23279 * the HSP. 23280 */ 23281 23282 ipaddr_t mask = 0; /* Subnet mask */ 23283 in6_addr_t v6mask; 23284 long sendspace = 0; /* Send buffer size */ 23285 long recvspace = 0; /* Receive buffer size */ 23286 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 23287 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 23288 23289 rw_enter(&tcp_hsp_lock, RW_WRITER); 23290 23291 /* Parse and validate address */ 23292 if (af == AF_INET) { 23293 retval = inet_pton(af, value, &addr); 23294 if (retval == 1) 23295 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 23296 } else if (af == AF_INET6) { 23297 retval = inet_pton(af, value, &v6addr); 23298 } else { 23299 error = EINVAL; 23300 goto done; 23301 } 23302 if (retval == 0) { 23303 error = EINVAL; 23304 goto done; 23305 } 23306 23307 while ((*value) && *value != ' ') 23308 value++; 23309 23310 /* Parse individual keywords, set variables if found */ 23311 while (*value) { 23312 /* Skip leading blanks */ 23313 23314 while (*value == ' ' || *value == '\t') 23315 value++; 23316 23317 /* If at end of string, we're done */ 23318 23319 if (!*value) 23320 break; 23321 23322 /* We have a word, figure out what it is */ 23323 23324 if (strncmp("mask", value, 4) == 0) { 23325 value += 4; 23326 while (*value == ' ' || *value == '\t') 23327 value++; 23328 /* Parse subnet mask */ 23329 if (af == AF_INET) { 23330 retval = inet_pton(af, value, &mask); 23331 if (retval == 1) { 23332 V4MASK_TO_V6(mask, v6mask); 23333 } 23334 } else if (af == AF_INET6) { 23335 retval = inet_pton(af, value, &v6mask); 23336 } 23337 if (retval != 1) { 23338 error = EINVAL; 23339 goto done; 23340 } 23341 while ((*value) && *value != ' ') 23342 value++; 23343 } else if (strncmp("sendspace", value, 9) == 0) { 23344 value += 9; 23345 23346 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 23347 sendspace < TCP_XMIT_HIWATER || 23348 sendspace >= (1L<<30)) { 23349 error = EINVAL; 23350 goto done; 23351 } 23352 value = end; 23353 } else if (strncmp("recvspace", value, 9) == 0) { 23354 value += 9; 23355 23356 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 23357 recvspace < TCP_RECV_HIWATER || 23358 recvspace >= (1L<<30)) { 23359 error = EINVAL; 23360 goto done; 23361 } 23362 value = end; 23363 } else if (strncmp("timestamp", value, 9) == 0) { 23364 value += 9; 23365 23366 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 23367 timestamp < 0 || timestamp > 1) { 23368 error = EINVAL; 23369 goto done; 23370 } 23371 23372 /* 23373 * We increment timestamp so we know it's been set; 23374 * this is undone when we put it in the HSP 23375 */ 23376 timestamp++; 23377 value = end; 23378 } else if (strncmp("delete", value, 6) == 0) { 23379 value += 6; 23380 delete = B_TRUE; 23381 } else { 23382 error = EINVAL; 23383 goto done; 23384 } 23385 } 23386 23387 /* Hash address for lookup */ 23388 23389 hash = TCP_HSP_HASH(addr); 23390 23391 if (delete) { 23392 /* 23393 * Note that deletes don't return an error if the thing 23394 * we're trying to delete isn't there. 23395 */ 23396 if (tcp_hsp_hash == NULL) 23397 goto done; 23398 hsp = tcp_hsp_hash[hash]; 23399 23400 if (hsp) { 23401 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23402 &v6addr)) { 23403 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 23404 mi_free((char *)hsp); 23405 } else { 23406 hspprev = hsp; 23407 while ((hsp = hsp->tcp_hsp_next) != NULL) { 23408 if (IN6_ARE_ADDR_EQUAL( 23409 &hsp->tcp_hsp_addr_v6, &v6addr)) { 23410 hspprev->tcp_hsp_next = 23411 hsp->tcp_hsp_next; 23412 mi_free((char *)hsp); 23413 break; 23414 } 23415 hspprev = hsp; 23416 } 23417 } 23418 } 23419 } else { 23420 /* 23421 * We're adding/modifying an HSP. If we haven't already done 23422 * so, allocate the hash table. 23423 */ 23424 23425 if (!tcp_hsp_hash) { 23426 tcp_hsp_hash = (tcp_hsp_t **) 23427 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 23428 if (!tcp_hsp_hash) { 23429 error = EINVAL; 23430 goto done; 23431 } 23432 } 23433 23434 /* Get head of hash chain */ 23435 23436 hsp = tcp_hsp_hash[hash]; 23437 23438 /* Try to find pre-existing hsp on hash chain */ 23439 /* Doesn't handle CIDR prefixes. */ 23440 while (hsp) { 23441 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 23442 break; 23443 hsp = hsp->tcp_hsp_next; 23444 } 23445 23446 /* 23447 * If we didn't, create one with default values and put it 23448 * at head of hash chain 23449 */ 23450 23451 if (!hsp) { 23452 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 23453 if (!hsp) { 23454 error = EINVAL; 23455 goto done; 23456 } 23457 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 23458 tcp_hsp_hash[hash] = hsp; 23459 } 23460 23461 /* Set values that the user asked us to change */ 23462 23463 hsp->tcp_hsp_addr_v6 = v6addr; 23464 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 23465 hsp->tcp_hsp_vers = IPV4_VERSION; 23466 else 23467 hsp->tcp_hsp_vers = IPV6_VERSION; 23468 hsp->tcp_hsp_subnet_v6 = v6mask; 23469 if (sendspace > 0) 23470 hsp->tcp_hsp_sendspace = sendspace; 23471 if (recvspace > 0) 23472 hsp->tcp_hsp_recvspace = recvspace; 23473 if (timestamp > 0) 23474 hsp->tcp_hsp_tstamp = timestamp - 1; 23475 } 23476 23477 done: 23478 rw_exit(&tcp_hsp_lock); 23479 return (error); 23480 } 23481 23482 /* Set callback routine passed to nd_load by tcp_param_register. */ 23483 /* ARGSUSED */ 23484 static int 23485 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 23486 { 23487 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 23488 } 23489 /* ARGSUSED */ 23490 static int 23491 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23492 cred_t *cr) 23493 { 23494 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 23495 } 23496 23497 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 23498 /* ARGSUSED */ 23499 static int 23500 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23501 { 23502 tcp_hsp_t *hsp; 23503 int i; 23504 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 23505 23506 rw_enter(&tcp_hsp_lock, RW_READER); 23507 (void) mi_mpprintf(mp, 23508 "Hash HSP " MI_COL_HDRPAD_STR 23509 "Address Subnet Mask Send Receive TStamp"); 23510 if (tcp_hsp_hash) { 23511 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 23512 hsp = tcp_hsp_hash[i]; 23513 while (hsp) { 23514 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 23515 (void) inet_ntop(AF_INET, 23516 &hsp->tcp_hsp_addr, 23517 addrbuf, sizeof (addrbuf)); 23518 (void) inet_ntop(AF_INET, 23519 &hsp->tcp_hsp_subnet, 23520 subnetbuf, sizeof (subnetbuf)); 23521 } else { 23522 (void) inet_ntop(AF_INET6, 23523 &hsp->tcp_hsp_addr_v6, 23524 addrbuf, sizeof (addrbuf)); 23525 (void) inet_ntop(AF_INET6, 23526 &hsp->tcp_hsp_subnet_v6, 23527 subnetbuf, sizeof (subnetbuf)); 23528 } 23529 (void) mi_mpprintf(mp, 23530 " %03d " MI_COL_PTRFMT_STR 23531 "%s %s %010d %010d %d", 23532 i, 23533 (void *)hsp, 23534 addrbuf, 23535 subnetbuf, 23536 hsp->tcp_hsp_sendspace, 23537 hsp->tcp_hsp_recvspace, 23538 hsp->tcp_hsp_tstamp); 23539 23540 hsp = hsp->tcp_hsp_next; 23541 } 23542 } 23543 } 23544 rw_exit(&tcp_hsp_lock); 23545 return (0); 23546 } 23547 23548 23549 /* Data for fast netmask macro used by tcp_hsp_lookup */ 23550 23551 static ipaddr_t netmasks[] = { 23552 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 23553 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 23554 }; 23555 23556 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 23557 23558 /* 23559 * XXX This routine should go away and instead we should use the metrics 23560 * associated with the routes to determine the default sndspace and rcvspace. 23561 */ 23562 static tcp_hsp_t * 23563 tcp_hsp_lookup(ipaddr_t addr) 23564 { 23565 tcp_hsp_t *hsp = NULL; 23566 23567 /* Quick check without acquiring the lock. */ 23568 if (tcp_hsp_hash == NULL) 23569 return (NULL); 23570 23571 rw_enter(&tcp_hsp_lock, RW_READER); 23572 23573 /* This routine finds the best-matching HSP for address addr. */ 23574 23575 if (tcp_hsp_hash) { 23576 int i; 23577 ipaddr_t srchaddr; 23578 tcp_hsp_t *hsp_net; 23579 23580 /* We do three passes: host, network, and subnet. */ 23581 23582 srchaddr = addr; 23583 23584 for (i = 1; i <= 3; i++) { 23585 /* Look for exact match on srchaddr */ 23586 23587 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 23588 while (hsp) { 23589 if (hsp->tcp_hsp_vers == IPV4_VERSION && 23590 hsp->tcp_hsp_addr == srchaddr) 23591 break; 23592 hsp = hsp->tcp_hsp_next; 23593 } 23594 ASSERT(hsp == NULL || 23595 hsp->tcp_hsp_vers == IPV4_VERSION); 23596 23597 /* 23598 * If this is the first pass: 23599 * If we found a match, great, return it. 23600 * If not, search for the network on the second pass. 23601 */ 23602 23603 if (i == 1) 23604 if (hsp) 23605 break; 23606 else 23607 { 23608 srchaddr = addr & netmask(addr); 23609 continue; 23610 } 23611 23612 /* 23613 * If this is the second pass: 23614 * If we found a match, but there's a subnet mask, 23615 * save the match but try again using the subnet 23616 * mask on the third pass. 23617 * Otherwise, return whatever we found. 23618 */ 23619 23620 if (i == 2) { 23621 if (hsp && hsp->tcp_hsp_subnet) { 23622 hsp_net = hsp; 23623 srchaddr = addr & hsp->tcp_hsp_subnet; 23624 continue; 23625 } else { 23626 break; 23627 } 23628 } 23629 23630 /* 23631 * This must be the third pass. If we didn't find 23632 * anything, return the saved network HSP instead. 23633 */ 23634 23635 if (!hsp) 23636 hsp = hsp_net; 23637 } 23638 } 23639 23640 rw_exit(&tcp_hsp_lock); 23641 return (hsp); 23642 } 23643 23644 /* 23645 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 23646 * match lookup. 23647 */ 23648 static tcp_hsp_t * 23649 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 23650 { 23651 tcp_hsp_t *hsp = NULL; 23652 23653 /* Quick check without acquiring the lock. */ 23654 if (tcp_hsp_hash == NULL) 23655 return (NULL); 23656 23657 rw_enter(&tcp_hsp_lock, RW_READER); 23658 23659 /* This routine finds the best-matching HSP for address addr. */ 23660 23661 if (tcp_hsp_hash) { 23662 int i; 23663 in6_addr_t v6srchaddr; 23664 tcp_hsp_t *hsp_net; 23665 23666 /* We do three passes: host, network, and subnet. */ 23667 23668 v6srchaddr = *v6addr; 23669 23670 for (i = 1; i <= 3; i++) { 23671 /* Look for exact match on srchaddr */ 23672 23673 hsp = tcp_hsp_hash[TCP_HSP_HASH( 23674 V4_PART_OF_V6(v6srchaddr))]; 23675 while (hsp) { 23676 if (hsp->tcp_hsp_vers == IPV6_VERSION && 23677 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23678 &v6srchaddr)) 23679 break; 23680 hsp = hsp->tcp_hsp_next; 23681 } 23682 23683 /* 23684 * If this is the first pass: 23685 * If we found a match, great, return it. 23686 * If not, search for the network on the second pass. 23687 */ 23688 23689 if (i == 1) 23690 if (hsp) 23691 break; 23692 else { 23693 /* Assume a 64 bit mask */ 23694 v6srchaddr.s6_addr32[0] = 23695 v6addr->s6_addr32[0]; 23696 v6srchaddr.s6_addr32[1] = 23697 v6addr->s6_addr32[1]; 23698 v6srchaddr.s6_addr32[2] = 0; 23699 v6srchaddr.s6_addr32[3] = 0; 23700 continue; 23701 } 23702 23703 /* 23704 * If this is the second pass: 23705 * If we found a match, but there's a subnet mask, 23706 * save the match but try again using the subnet 23707 * mask on the third pass. 23708 * Otherwise, return whatever we found. 23709 */ 23710 23711 if (i == 2) { 23712 ASSERT(hsp == NULL || 23713 hsp->tcp_hsp_vers == IPV6_VERSION); 23714 if (hsp && 23715 !IN6_IS_ADDR_UNSPECIFIED( 23716 &hsp->tcp_hsp_subnet_v6)) { 23717 hsp_net = hsp; 23718 V6_MASK_COPY(*v6addr, 23719 hsp->tcp_hsp_subnet_v6, v6srchaddr); 23720 continue; 23721 } else { 23722 break; 23723 } 23724 } 23725 23726 /* 23727 * This must be the third pass. If we didn't find 23728 * anything, return the saved network HSP instead. 23729 */ 23730 23731 if (!hsp) 23732 hsp = hsp_net; 23733 } 23734 } 23735 23736 rw_exit(&tcp_hsp_lock); 23737 return (hsp); 23738 } 23739 23740 /* 23741 * Type three generator adapted from the random() function in 4.4 BSD: 23742 */ 23743 23744 /* 23745 * Copyright (c) 1983, 1993 23746 * The Regents of the University of California. All rights reserved. 23747 * 23748 * Redistribution and use in source and binary forms, with or without 23749 * modification, are permitted provided that the following conditions 23750 * are met: 23751 * 1. Redistributions of source code must retain the above copyright 23752 * notice, this list of conditions and the following disclaimer. 23753 * 2. Redistributions in binary form must reproduce the above copyright 23754 * notice, this list of conditions and the following disclaimer in the 23755 * documentation and/or other materials provided with the distribution. 23756 * 3. All advertising materials mentioning features or use of this software 23757 * must display the following acknowledgement: 23758 * This product includes software developed by the University of 23759 * California, Berkeley and its contributors. 23760 * 4. Neither the name of the University nor the names of its contributors 23761 * may be used to endorse or promote products derived from this software 23762 * without specific prior written permission. 23763 * 23764 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23765 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23766 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23767 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23768 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23769 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23770 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23771 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23772 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23773 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23774 * SUCH DAMAGE. 23775 */ 23776 23777 /* Type 3 -- x**31 + x**3 + 1 */ 23778 #define DEG_3 31 23779 #define SEP_3 3 23780 23781 23782 /* Protected by tcp_random_lock */ 23783 static int tcp_randtbl[DEG_3 + 1]; 23784 23785 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23786 static int *tcp_random_rptr = &tcp_randtbl[1]; 23787 23788 static int *tcp_random_state = &tcp_randtbl[1]; 23789 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23790 23791 kmutex_t tcp_random_lock; 23792 23793 void 23794 tcp_random_init(void) 23795 { 23796 int i; 23797 hrtime_t hrt; 23798 time_t wallclock; 23799 uint64_t result; 23800 23801 /* 23802 * Use high-res timer and current time for seed. Gethrtime() returns 23803 * a longlong, which may contain resolution down to nanoseconds. 23804 * The current time will either be a 32-bit or a 64-bit quantity. 23805 * XOR the two together in a 64-bit result variable. 23806 * Convert the result to a 32-bit value by multiplying the high-order 23807 * 32-bits by the low-order 32-bits. 23808 */ 23809 23810 hrt = gethrtime(); 23811 (void) drv_getparm(TIME, &wallclock); 23812 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23813 mutex_enter(&tcp_random_lock); 23814 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23815 (result & 0xffffffff); 23816 23817 for (i = 1; i < DEG_3; i++) 23818 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23819 + 12345; 23820 tcp_random_fptr = &tcp_random_state[SEP_3]; 23821 tcp_random_rptr = &tcp_random_state[0]; 23822 mutex_exit(&tcp_random_lock); 23823 for (i = 0; i < 10 * DEG_3; i++) 23824 (void) tcp_random(); 23825 } 23826 23827 /* 23828 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23829 * This range is selected to be approximately centered on TCP_ISS / 2, 23830 * and easy to compute. We get this value by generating a 32-bit random 23831 * number, selecting out the high-order 17 bits, and then adding one so 23832 * that we never return zero. 23833 */ 23834 int 23835 tcp_random(void) 23836 { 23837 int i; 23838 23839 mutex_enter(&tcp_random_lock); 23840 *tcp_random_fptr += *tcp_random_rptr; 23841 23842 /* 23843 * The high-order bits are more random than the low-order bits, 23844 * so we select out the high-order 17 bits and add one so that 23845 * we never return zero. 23846 */ 23847 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23848 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23849 tcp_random_fptr = tcp_random_state; 23850 ++tcp_random_rptr; 23851 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23852 tcp_random_rptr = tcp_random_state; 23853 23854 mutex_exit(&tcp_random_lock); 23855 return (i); 23856 } 23857 23858 /* 23859 * XXX This will go away when TPI is extended to send 23860 * info reqs to sockfs/timod ..... 23861 * Given a queue, set the max packet size for the write 23862 * side of the queue below stream head. This value is 23863 * cached on the stream head. 23864 * Returns 1 on success, 0 otherwise. 23865 */ 23866 static int 23867 setmaxps(queue_t *q, int maxpsz) 23868 { 23869 struct stdata *stp; 23870 queue_t *wq; 23871 stp = STREAM(q); 23872 23873 /* 23874 * At this point change of a queue parameter is not allowed 23875 * when a multiplexor is sitting on top. 23876 */ 23877 if (stp->sd_flag & STPLEX) 23878 return (0); 23879 23880 claimstr(stp->sd_wrq); 23881 wq = stp->sd_wrq->q_next; 23882 ASSERT(wq != NULL); 23883 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 23884 releasestr(stp->sd_wrq); 23885 return (1); 23886 } 23887 23888 static int 23889 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23890 int *t_errorp, int *sys_errorp) 23891 { 23892 int error; 23893 int is_absreq_failure; 23894 t_scalar_t *opt_lenp; 23895 t_scalar_t opt_offset; 23896 int prim_type; 23897 struct T_conn_req *tcreqp; 23898 struct T_conn_res *tcresp; 23899 cred_t *cr; 23900 23901 cr = DB_CREDDEF(mp, tcp->tcp_cred); 23902 23903 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23904 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23905 prim_type == T_CONN_RES); 23906 23907 switch (prim_type) { 23908 case T_CONN_REQ: 23909 tcreqp = (struct T_conn_req *)mp->b_rptr; 23910 opt_offset = tcreqp->OPT_offset; 23911 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23912 break; 23913 case O_T_CONN_RES: 23914 case T_CONN_RES: 23915 tcresp = (struct T_conn_res *)mp->b_rptr; 23916 opt_offset = tcresp->OPT_offset; 23917 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23918 break; 23919 } 23920 23921 *t_errorp = 0; 23922 *sys_errorp = 0; 23923 *do_disconnectp = 0; 23924 23925 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23926 opt_offset, cr, &tcp_opt_obj, 23927 NULL, &is_absreq_failure); 23928 23929 switch (error) { 23930 case 0: /* no error */ 23931 ASSERT(is_absreq_failure == 0); 23932 return (0); 23933 case ENOPROTOOPT: 23934 *t_errorp = TBADOPT; 23935 break; 23936 case EACCES: 23937 *t_errorp = TACCES; 23938 break; 23939 default: 23940 *t_errorp = TSYSERR; *sys_errorp = error; 23941 break; 23942 } 23943 if (is_absreq_failure != 0) { 23944 /* 23945 * The connection request should get the local ack 23946 * T_OK_ACK and then a T_DISCON_IND. 23947 */ 23948 *do_disconnectp = 1; 23949 } 23950 return (-1); 23951 } 23952 23953 /* 23954 * Split this function out so that if the secret changes, I'm okay. 23955 * 23956 * Initialize the tcp_iss_cookie and tcp_iss_key. 23957 */ 23958 23959 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23960 23961 static void 23962 tcp_iss_key_init(uint8_t *phrase, int len) 23963 { 23964 struct { 23965 int32_t current_time; 23966 uint32_t randnum; 23967 uint16_t pad; 23968 uint8_t ether[6]; 23969 uint8_t passwd[PASSWD_SIZE]; 23970 } tcp_iss_cookie; 23971 time_t t; 23972 23973 /* 23974 * Start with the current absolute time. 23975 */ 23976 (void) drv_getparm(TIME, &t); 23977 tcp_iss_cookie.current_time = t; 23978 23979 /* 23980 * XXX - Need a more random number per RFC 1750, not this crap. 23981 * OTOH, if what follows is pretty random, then I'm in better shape. 23982 */ 23983 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23984 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23985 23986 /* 23987 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23988 * as a good template. 23989 */ 23990 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23991 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23992 23993 /* 23994 * The pass-phrase. Normally this is supplied by user-called NDD. 23995 */ 23996 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23997 23998 /* 23999 * See 4010593 if this section becomes a problem again, 24000 * but the local ethernet address is useful here. 24001 */ 24002 (void) localetheraddr(NULL, 24003 (struct ether_addr *)&tcp_iss_cookie.ether); 24004 24005 /* 24006 * Hash 'em all together. The MD5Final is called per-connection. 24007 */ 24008 mutex_enter(&tcp_iss_key_lock); 24009 MD5Init(&tcp_iss_key); 24010 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 24011 sizeof (tcp_iss_cookie)); 24012 mutex_exit(&tcp_iss_key_lock); 24013 } 24014 24015 /* 24016 * Set the RFC 1948 pass phrase 24017 */ 24018 /* ARGSUSED */ 24019 static int 24020 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24021 cred_t *cr) 24022 { 24023 /* 24024 * Basically, value contains a new pass phrase. Pass it along! 24025 */ 24026 tcp_iss_key_init((uint8_t *)value, strlen(value)); 24027 return (0); 24028 } 24029 24030 /* ARGSUSED */ 24031 static int 24032 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24033 { 24034 bzero(buf, sizeof (tcp_sack_info_t)); 24035 return (0); 24036 } 24037 24038 /* ARGSUSED */ 24039 static int 24040 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24041 { 24042 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24043 return (0); 24044 } 24045 24046 void 24047 tcp_ddi_init(void) 24048 { 24049 int i; 24050 24051 /* Initialize locks */ 24052 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 24053 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24054 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24055 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24056 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24057 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 24058 24059 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24060 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 24061 MUTEX_DEFAULT, NULL); 24062 } 24063 24064 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24065 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 24066 MUTEX_DEFAULT, NULL); 24067 } 24068 24069 /* TCP's IPsec code calls the packet dropper. */ 24070 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 24071 24072 if (!tcp_g_nd) { 24073 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 24074 nd_free(&tcp_g_nd); 24075 } 24076 } 24077 24078 /* 24079 * Note: To really walk the device tree you need the devinfo 24080 * pointer to your device which is only available after probe/attach. 24081 * The following is safe only because it uses ddi_root_node() 24082 */ 24083 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24084 tcp_opt_obj.odb_opt_arr_cnt); 24085 24086 tcp_timercache = kmem_cache_create("tcp_timercache", 24087 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24088 NULL, NULL, NULL, NULL, NULL, 0); 24089 24090 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24091 sizeof (tcp_sack_info_t), 0, 24092 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24093 24094 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24095 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24096 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24097 24098 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 24099 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 24100 24101 ip_squeue_init(tcp_squeue_add); 24102 24103 /* Initialize the random number generator */ 24104 tcp_random_init(); 24105 24106 /* 24107 * Initialize RFC 1948 secret values. This will probably be reset once 24108 * by the boot scripts. 24109 * 24110 * Use NULL name, as the name is caught by the new lockstats. 24111 * 24112 * Initialize with some random, non-guessable string, like the global 24113 * T_INFO_ACK. 24114 */ 24115 24116 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24117 sizeof (tcp_g_t_info_ack)); 24118 24119 #if TCP_COUNTERS || TCP_DEBUG_COUNTER 24120 if ((tcp_kstat = kstat_create("tcp", 0, "tcpstat", 24121 "net", KSTAT_TYPE_NAMED, 24122 sizeof (tcp_statistics) / sizeof (kstat_named_t), 24123 KSTAT_FLAG_VIRTUAL)) != NULL) { 24124 tcp_kstat->ks_data = &tcp_statistics; 24125 kstat_install(tcp_kstat); 24126 } 24127 #endif 24128 tcp_kstat_init(); 24129 } 24130 24131 void 24132 tcp_ddi_destroy(void) 24133 { 24134 int i; 24135 24136 nd_free(&tcp_g_nd); 24137 24138 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24139 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 24140 } 24141 24142 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24143 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 24144 } 24145 24146 mutex_destroy(&tcp_iss_key_lock); 24147 rw_destroy(&tcp_hsp_lock); 24148 mutex_destroy(&tcp_g_q_lock); 24149 mutex_destroy(&tcp_random_lock); 24150 mutex_destroy(&tcp_epriv_port_lock); 24151 rw_destroy(&tcp_reserved_port_lock); 24152 24153 ip_drop_unregister(&tcp_dropper); 24154 24155 kmem_cache_destroy(tcp_timercache); 24156 kmem_cache_destroy(tcp_sack_info_cache); 24157 kmem_cache_destroy(tcp_iphc_cache); 24158 24159 tcp_kstat_fini(); 24160 } 24161 24162 /* 24163 * Generate ISS, taking into account NDD changes may happen halfway through. 24164 * (If the iss is not zero, set it.) 24165 */ 24166 24167 static void 24168 tcp_iss_init(tcp_t *tcp) 24169 { 24170 MD5_CTX context; 24171 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24172 uint32_t answer[4]; 24173 24174 tcp_iss_incr_extra += (ISS_INCR >> 1); 24175 tcp->tcp_iss = tcp_iss_incr_extra; 24176 switch (tcp_strong_iss) { 24177 case 2: 24178 mutex_enter(&tcp_iss_key_lock); 24179 context = tcp_iss_key; 24180 mutex_exit(&tcp_iss_key_lock); 24181 arg.ports = tcp->tcp_ports; 24182 if (tcp->tcp_ipversion == IPV4_VERSION) { 24183 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24184 &arg.src); 24185 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24186 &arg.dst); 24187 } else { 24188 arg.src = tcp->tcp_ip6h->ip6_src; 24189 arg.dst = tcp->tcp_ip6h->ip6_dst; 24190 } 24191 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24192 MD5Final((uchar_t *)answer, &context); 24193 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24194 /* 24195 * Now that we've hashed into a unique per-connection sequence 24196 * space, add a random increment per strong_iss == 1. So I 24197 * guess we'll have to... 24198 */ 24199 /* FALLTHRU */ 24200 case 1: 24201 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24202 break; 24203 default: 24204 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24205 break; 24206 } 24207 tcp->tcp_valid_bits = TCP_ISS_VALID; 24208 tcp->tcp_fss = tcp->tcp_iss - 1; 24209 tcp->tcp_suna = tcp->tcp_iss; 24210 tcp->tcp_snxt = tcp->tcp_iss + 1; 24211 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24212 tcp->tcp_csuna = tcp->tcp_snxt; 24213 } 24214 24215 /* 24216 * Exported routine for extracting active tcp connection status. 24217 * 24218 * This is used by the Solaris Cluster Networking software to 24219 * gather a list of connections that need to be forwarded to 24220 * specific nodes in the cluster when configuration changes occur. 24221 * 24222 * The callback is invoked for each tcp_t structure. Returning 24223 * non-zero from the callback routine terminates the search. 24224 */ 24225 int 24226 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 24227 { 24228 tcp_t *tcp; 24229 cl_tcp_info_t cl_tcpi; 24230 connf_t *connfp; 24231 conn_t *connp; 24232 int i; 24233 24234 ASSERT(callback != NULL); 24235 24236 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24237 24238 connfp = &ipcl_globalhash_fanout[i]; 24239 connp = NULL; 24240 24241 while ((connp = tcp_get_next_conn(connfp, connp))) { 24242 24243 tcp = connp->conn_tcp; 24244 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24245 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24246 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24247 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24248 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24249 /* 24250 * The macros tcp_laddr and tcp_faddr give the IPv4 24251 * addresses. They are copied implicitly below as 24252 * mapped addresses. 24253 */ 24254 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24255 if (tcp->tcp_ipversion == IPV4_VERSION) { 24256 cl_tcpi.cl_tcpi_faddr = 24257 tcp->tcp_ipha->ipha_dst; 24258 } else { 24259 cl_tcpi.cl_tcpi_faddr_v6 = 24260 tcp->tcp_ip6h->ip6_dst; 24261 } 24262 24263 /* 24264 * If the callback returns non-zero 24265 * we terminate the traversal. 24266 */ 24267 if ((*callback)(&cl_tcpi, arg) != 0) { 24268 CONN_DEC_REF(tcp->tcp_connp); 24269 return (1); 24270 } 24271 } 24272 } 24273 24274 return (0); 24275 } 24276 24277 /* 24278 * Macros used for accessing the different types of sockaddr 24279 * structures inside a tcp_ioc_abort_conn_t. 24280 */ 24281 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24282 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24283 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24284 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24285 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24286 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24287 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24288 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24289 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24290 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24291 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24292 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24293 24294 /* 24295 * Return the correct error code to mimic the behavior 24296 * of a connection reset. 24297 */ 24298 #define TCP_AC_GET_ERRCODE(state, err) { \ 24299 switch ((state)) { \ 24300 case TCPS_SYN_SENT: \ 24301 case TCPS_SYN_RCVD: \ 24302 (err) = ECONNREFUSED; \ 24303 break; \ 24304 case TCPS_ESTABLISHED: \ 24305 case TCPS_FIN_WAIT_1: \ 24306 case TCPS_FIN_WAIT_2: \ 24307 case TCPS_CLOSE_WAIT: \ 24308 (err) = ECONNRESET; \ 24309 break; \ 24310 case TCPS_CLOSING: \ 24311 case TCPS_LAST_ACK: \ 24312 case TCPS_TIME_WAIT: \ 24313 (err) = 0; \ 24314 break; \ 24315 default: \ 24316 (err) = ENXIO; \ 24317 } \ 24318 } 24319 24320 /* 24321 * Check if a tcp structure matches the info in acp. 24322 */ 24323 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24324 (((acp)->ac_local.ss_family == AF_INET) ? \ 24325 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24326 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24327 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24328 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24329 (TCP_AC_V4LPORT((acp)) == 0 || \ 24330 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24331 (TCP_AC_V4RPORT((acp)) == 0 || \ 24332 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24333 (acp)->ac_start <= (tcp)->tcp_state && \ 24334 (acp)->ac_end >= (tcp)->tcp_state) : \ 24335 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24336 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24337 &(tcp)->tcp_ip_src_v6)) && \ 24338 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24339 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24340 &(tcp)->tcp_remote_v6)) && \ 24341 (TCP_AC_V6LPORT((acp)) == 0 || \ 24342 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24343 (TCP_AC_V6RPORT((acp)) == 0 || \ 24344 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24345 (acp)->ac_start <= (tcp)->tcp_state && \ 24346 (acp)->ac_end >= (tcp)->tcp_state)) 24347 24348 #define TCP_AC_MATCH(acp, tcp) \ 24349 (((acp)->ac_zoneid == ALL_ZONES || \ 24350 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24351 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24352 24353 /* 24354 * Build a message containing a tcp_ioc_abort_conn_t structure 24355 * which is filled in with information from acp and tp. 24356 */ 24357 static mblk_t * 24358 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24359 { 24360 mblk_t *mp; 24361 tcp_ioc_abort_conn_t *tacp; 24362 24363 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24364 if (mp == NULL) 24365 return (NULL); 24366 24367 mp->b_datap->db_type = M_CTL; 24368 24369 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24370 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24371 sizeof (uint32_t)); 24372 24373 tacp->ac_start = acp->ac_start; 24374 tacp->ac_end = acp->ac_end; 24375 tacp->ac_zoneid = acp->ac_zoneid; 24376 24377 if (acp->ac_local.ss_family == AF_INET) { 24378 tacp->ac_local.ss_family = AF_INET; 24379 tacp->ac_remote.ss_family = AF_INET; 24380 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24381 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24382 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24383 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24384 } else { 24385 tacp->ac_local.ss_family = AF_INET6; 24386 tacp->ac_remote.ss_family = AF_INET6; 24387 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24388 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24389 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24390 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24391 } 24392 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24393 return (mp); 24394 } 24395 24396 /* 24397 * Print a tcp_ioc_abort_conn_t structure. 24398 */ 24399 static void 24400 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24401 { 24402 char lbuf[128]; 24403 char rbuf[128]; 24404 sa_family_t af; 24405 in_port_t lport, rport; 24406 ushort_t logflags; 24407 24408 af = acp->ac_local.ss_family; 24409 24410 if (af == AF_INET) { 24411 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24412 lbuf, 128); 24413 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24414 rbuf, 128); 24415 lport = ntohs(TCP_AC_V4LPORT(acp)); 24416 rport = ntohs(TCP_AC_V4RPORT(acp)); 24417 } else { 24418 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24419 lbuf, 128); 24420 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24421 rbuf, 128); 24422 lport = ntohs(TCP_AC_V6LPORT(acp)); 24423 rport = ntohs(TCP_AC_V6RPORT(acp)); 24424 } 24425 24426 logflags = SL_TRACE | SL_NOTE; 24427 /* 24428 * Don't print this message to the console if the operation was done 24429 * to a non-global zone. 24430 */ 24431 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24432 logflags |= SL_CONSOLE; 24433 (void) strlog(TCP_MODULE_ID, 0, 1, logflags, 24434 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24435 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24436 acp->ac_start, acp->ac_end); 24437 } 24438 24439 /* 24440 * Called inside tcp_rput when a message built using 24441 * tcp_ioctl_abort_build_msg is put into a queue. 24442 * Note that when we get here there is no wildcard in acp any more. 24443 */ 24444 static void 24445 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24446 { 24447 tcp_ioc_abort_conn_t *acp; 24448 24449 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24450 if (tcp->tcp_state <= acp->ac_end) { 24451 /* 24452 * If we get here, we are already on the correct 24453 * squeue. This ioctl follows the following path 24454 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24455 * ->tcp_ioctl_abort->squeue_fill (if on a 24456 * different squeue) 24457 */ 24458 int errcode; 24459 24460 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24461 (void) tcp_clean_death(tcp, errcode, 26); 24462 } 24463 freemsg(mp); 24464 } 24465 24466 /* 24467 * Abort all matching connections on a hash chain. 24468 */ 24469 static int 24470 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24471 boolean_t exact) 24472 { 24473 int nmatch, err = 0; 24474 tcp_t *tcp; 24475 MBLKP mp, last, listhead = NULL; 24476 conn_t *tconnp; 24477 connf_t *connfp = &ipcl_conn_fanout[index]; 24478 24479 startover: 24480 nmatch = 0; 24481 24482 mutex_enter(&connfp->connf_lock); 24483 for (tconnp = connfp->connf_head; tconnp != NULL; 24484 tconnp = tconnp->conn_next) { 24485 tcp = tconnp->conn_tcp; 24486 if (TCP_AC_MATCH(acp, tcp)) { 24487 CONN_INC_REF(tcp->tcp_connp); 24488 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24489 if (mp == NULL) { 24490 err = ENOMEM; 24491 CONN_DEC_REF(tcp->tcp_connp); 24492 break; 24493 } 24494 mp->b_prev = (mblk_t *)tcp; 24495 24496 if (listhead == NULL) { 24497 listhead = mp; 24498 last = mp; 24499 } else { 24500 last->b_next = mp; 24501 last = mp; 24502 } 24503 nmatch++; 24504 if (exact) 24505 break; 24506 } 24507 24508 /* Avoid holding lock for too long. */ 24509 if (nmatch >= 500) 24510 break; 24511 } 24512 mutex_exit(&connfp->connf_lock); 24513 24514 /* Pass mp into the correct tcp */ 24515 while ((mp = listhead) != NULL) { 24516 listhead = listhead->b_next; 24517 tcp = (tcp_t *)mp->b_prev; 24518 mp->b_next = mp->b_prev = NULL; 24519 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 24520 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 24521 } 24522 24523 *count += nmatch; 24524 if (nmatch >= 500 && err == 0) 24525 goto startover; 24526 return (err); 24527 } 24528 24529 /* 24530 * Abort all connections that matches the attributes specified in acp. 24531 */ 24532 static int 24533 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 24534 { 24535 sa_family_t af; 24536 uint32_t ports; 24537 uint16_t *pports; 24538 int err = 0, count = 0; 24539 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24540 int index = -1; 24541 ushort_t logflags; 24542 24543 af = acp->ac_local.ss_family; 24544 24545 if (af == AF_INET) { 24546 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24547 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24548 pports = (uint16_t *)&ports; 24549 pports[1] = TCP_AC_V4LPORT(acp); 24550 pports[0] = TCP_AC_V4RPORT(acp); 24551 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24552 } 24553 } else { 24554 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24555 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24556 pports = (uint16_t *)&ports; 24557 pports[1] = TCP_AC_V6LPORT(acp); 24558 pports[0] = TCP_AC_V6RPORT(acp); 24559 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24560 } 24561 } 24562 24563 /* 24564 * For cases where remote addr, local port, and remote port are non- 24565 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24566 */ 24567 if (index != -1) { 24568 err = tcp_ioctl_abort_bucket(acp, index, 24569 &count, exact); 24570 } else { 24571 /* 24572 * loop through all entries for wildcard case 24573 */ 24574 for (index = 0; index < ipcl_conn_fanout_size; index++) { 24575 err = tcp_ioctl_abort_bucket(acp, index, 24576 &count, exact); 24577 if (err != 0) 24578 break; 24579 } 24580 } 24581 24582 logflags = SL_TRACE | SL_NOTE; 24583 /* 24584 * Don't print this message to the console if the operation was done 24585 * to a non-global zone. 24586 */ 24587 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24588 logflags |= SL_CONSOLE; 24589 (void) strlog(TCP_MODULE_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24590 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24591 if (err == 0 && count == 0) 24592 err = ENOENT; 24593 return (err); 24594 } 24595 24596 /* 24597 * Process the TCP_IOC_ABORT_CONN ioctl request. 24598 */ 24599 static void 24600 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24601 { 24602 int err; 24603 IOCP iocp; 24604 MBLKP mp1; 24605 sa_family_t laf, raf; 24606 tcp_ioc_abort_conn_t *acp; 24607 zone_t *zptr; 24608 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 24609 24610 iocp = (IOCP)mp->b_rptr; 24611 24612 if ((mp1 = mp->b_cont) == NULL || 24613 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24614 err = EINVAL; 24615 goto out; 24616 } 24617 24618 /* check permissions */ 24619 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 24620 err = EPERM; 24621 goto out; 24622 } 24623 24624 if (mp1->b_cont != NULL) { 24625 freemsg(mp1->b_cont); 24626 mp1->b_cont = NULL; 24627 } 24628 24629 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24630 laf = acp->ac_local.ss_family; 24631 raf = acp->ac_remote.ss_family; 24632 24633 /* check that a zone with the supplied zoneid exists */ 24634 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24635 zptr = zone_find_by_id(zoneid); 24636 if (zptr != NULL) { 24637 zone_rele(zptr); 24638 } else { 24639 err = EINVAL; 24640 goto out; 24641 } 24642 } 24643 24644 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24645 acp->ac_start > acp->ac_end || laf != raf || 24646 (laf != AF_INET && laf != AF_INET6)) { 24647 err = EINVAL; 24648 goto out; 24649 } 24650 24651 tcp_ioctl_abort_dump(acp); 24652 err = tcp_ioctl_abort(acp); 24653 24654 out: 24655 if (mp1 != NULL) { 24656 freemsg(mp1); 24657 mp->b_cont = NULL; 24658 } 24659 24660 if (err != 0) 24661 miocnak(q, mp, 0, err); 24662 else 24663 miocack(q, mp, 0, 0); 24664 } 24665 24666 /* 24667 * tcp_time_wait_processing() handles processing of incoming packets when 24668 * the tcp is in the TIME_WAIT state. 24669 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24670 * on the time wait list. 24671 */ 24672 void 24673 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24674 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24675 { 24676 int32_t bytes_acked; 24677 int32_t gap; 24678 int32_t rgap; 24679 tcp_opt_t tcpopt; 24680 uint_t flags; 24681 uint32_t new_swnd = 0; 24682 conn_t *connp; 24683 24684 BUMP_LOCAL(tcp->tcp_ibsegs); 24685 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 24686 24687 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24688 new_swnd = BE16_TO_U16(tcph->th_win) << 24689 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24690 if (tcp->tcp_snd_ts_ok) { 24691 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 24692 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24693 tcp->tcp_rnxt, TH_ACK); 24694 goto done; 24695 } 24696 } 24697 gap = seg_seq - tcp->tcp_rnxt; 24698 rgap = tcp->tcp_rwnd - (gap + seg_len); 24699 if (gap < 0) { 24700 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 24701 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 24702 (seg_len > -gap ? -gap : seg_len)); 24703 seg_len += gap; 24704 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24705 if (flags & TH_RST) { 24706 goto done; 24707 } 24708 if ((flags & TH_FIN) && seg_len == -1) { 24709 /* 24710 * When TCP receives a duplicate FIN in 24711 * TIME_WAIT state, restart the 2 MSL timer. 24712 * See page 73 in RFC 793. Make sure this TCP 24713 * is already on the TIME_WAIT list. If not, 24714 * just restart the timer. 24715 */ 24716 if (TCP_IS_DETACHED(tcp)) { 24717 tcp_time_wait_remove(tcp, NULL); 24718 tcp_time_wait_append(tcp); 24719 TCP_DBGSTAT(tcp_rput_time_wait); 24720 } else { 24721 ASSERT(tcp != NULL); 24722 TCP_TIMER_RESTART(tcp, 24723 tcp_time_wait_interval); 24724 } 24725 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24726 tcp->tcp_rnxt, TH_ACK); 24727 goto done; 24728 } 24729 flags |= TH_ACK_NEEDED; 24730 seg_len = 0; 24731 goto process_ack; 24732 } 24733 24734 /* Fix seg_seq, and chew the gap off the front. */ 24735 seg_seq = tcp->tcp_rnxt; 24736 } 24737 24738 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24739 /* 24740 * Make sure that when we accept the connection, pick 24741 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24742 * old connection. 24743 * 24744 * The next ISS generated is equal to tcp_iss_incr_extra 24745 * + ISS_INCR/2 + other components depending on the 24746 * value of tcp_strong_iss. We pre-calculate the new 24747 * ISS here and compare with tcp_snxt to determine if 24748 * we need to make adjustment to tcp_iss_incr_extra. 24749 * 24750 * The above calculation is ugly and is a 24751 * waste of CPU cycles... 24752 */ 24753 uint32_t new_iss = tcp_iss_incr_extra; 24754 int32_t adj; 24755 24756 switch (tcp_strong_iss) { 24757 case 2: { 24758 /* Add time and MD5 components. */ 24759 uint32_t answer[4]; 24760 struct { 24761 uint32_t ports; 24762 in6_addr_t src; 24763 in6_addr_t dst; 24764 } arg; 24765 MD5_CTX context; 24766 24767 mutex_enter(&tcp_iss_key_lock); 24768 context = tcp_iss_key; 24769 mutex_exit(&tcp_iss_key_lock); 24770 arg.ports = tcp->tcp_ports; 24771 /* We use MAPPED addresses in tcp_iss_init */ 24772 arg.src = tcp->tcp_ip_src_v6; 24773 if (tcp->tcp_ipversion == IPV4_VERSION) { 24774 IN6_IPADDR_TO_V4MAPPED( 24775 tcp->tcp_ipha->ipha_dst, 24776 &arg.dst); 24777 } else { 24778 arg.dst = 24779 tcp->tcp_ip6h->ip6_dst; 24780 } 24781 MD5Update(&context, (uchar_t *)&arg, 24782 sizeof (arg)); 24783 MD5Final((uchar_t *)answer, &context); 24784 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24785 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24786 break; 24787 } 24788 case 1: 24789 /* Add time component and min random (i.e. 1). */ 24790 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24791 break; 24792 default: 24793 /* Add only time component. */ 24794 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24795 break; 24796 } 24797 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24798 /* 24799 * New ISS not guaranteed to be ISS_INCR/2 24800 * ahead of the current tcp_snxt, so add the 24801 * difference to tcp_iss_incr_extra. 24802 */ 24803 tcp_iss_incr_extra += adj; 24804 } 24805 /* 24806 * If tcp_clean_death() can not perform the task now, 24807 * drop the SYN packet and let the other side re-xmit. 24808 * Otherwise pass the SYN packet back in, since the 24809 * old tcp state has been cleaned up or freed. 24810 */ 24811 if (tcp_clean_death(tcp, 0, 27) == -1) 24812 goto done; 24813 /* 24814 * We will come back to tcp_rput_data 24815 * on the global queue. Packets destined 24816 * for the global queue will be checked 24817 * with global policy. But the policy for 24818 * this packet has already been checked as 24819 * this was destined for the detached 24820 * connection. We need to bypass policy 24821 * check this time by attaching a dummy 24822 * ipsec_in with ipsec_in_dont_check set. 24823 */ 24824 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 24825 NULL) { 24826 TCP_STAT(tcp_time_wait_syn_success); 24827 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24828 return; 24829 } 24830 goto done; 24831 } 24832 24833 /* 24834 * rgap is the amount of stuff received out of window. A negative 24835 * value is the amount out of window. 24836 */ 24837 if (rgap < 0) { 24838 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 24839 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 24840 /* Fix seg_len and make sure there is something left. */ 24841 seg_len += rgap; 24842 if (seg_len <= 0) { 24843 if (flags & TH_RST) { 24844 goto done; 24845 } 24846 flags |= TH_ACK_NEEDED; 24847 seg_len = 0; 24848 goto process_ack; 24849 } 24850 } 24851 /* 24852 * Check whether we can update tcp_ts_recent. This test is 24853 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24854 * Extensions for High Performance: An Update", Internet Draft. 24855 */ 24856 if (tcp->tcp_snd_ts_ok && 24857 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24858 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24859 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24860 tcp->tcp_last_rcv_lbolt = lbolt64; 24861 } 24862 24863 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24864 /* Always ack out of order packets */ 24865 flags |= TH_ACK_NEEDED; 24866 seg_len = 0; 24867 } else if (seg_len > 0) { 24868 BUMP_MIB(&tcp_mib, tcpInClosed); 24869 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 24870 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 24871 } 24872 if (flags & TH_RST) { 24873 (void) tcp_clean_death(tcp, 0, 28); 24874 goto done; 24875 } 24876 if (flags & TH_SYN) { 24877 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24878 TH_RST|TH_ACK); 24879 /* 24880 * Do not delete the TCP structure if it is in 24881 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24882 */ 24883 goto done; 24884 } 24885 process_ack: 24886 if (flags & TH_ACK) { 24887 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24888 if (bytes_acked <= 0) { 24889 if (bytes_acked == 0 && seg_len == 0 && 24890 new_swnd == tcp->tcp_swnd) 24891 BUMP_MIB(&tcp_mib, tcpInDupAck); 24892 } else { 24893 /* Acks something not sent */ 24894 flags |= TH_ACK_NEEDED; 24895 } 24896 } 24897 if (flags & TH_ACK_NEEDED) { 24898 /* 24899 * Time to send an ack for some reason. 24900 */ 24901 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24902 tcp->tcp_rnxt, TH_ACK); 24903 } 24904 done: 24905 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24906 mp->b_datap->db_cksumstart = 0; 24907 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24908 TCP_STAT(tcp_time_wait_syn_fail); 24909 } 24910 freemsg(mp); 24911 } 24912 24913 /* 24914 * Return zero if the buffers are identical in length and content. 24915 * This is used for comparing extension header buffers. 24916 * Note that an extension header would be declared different 24917 * even if all that changed was the next header value in that header i.e. 24918 * what really changed is the next extension header. 24919 */ 24920 static boolean_t 24921 tcp_cmpbuf(void *a, uint_t alen, boolean_t b_valid, void *b, uint_t blen) 24922 { 24923 if (!b_valid) 24924 blen = 0; 24925 24926 if (alen != blen) 24927 return (B_TRUE); 24928 if (alen == 0) 24929 return (B_FALSE); /* Both zero length */ 24930 return (bcmp(a, b, alen)); 24931 } 24932 24933 /* 24934 * Preallocate memory for tcp_savebuf(). Returns B_TRUE if ok. 24935 * Return B_FALSE if memory allocation fails - don't change any state! 24936 */ 24937 static boolean_t 24938 tcp_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 24939 void *src, uint_t srclen) 24940 { 24941 void *dst; 24942 24943 if (!src_valid) 24944 srclen = 0; 24945 24946 ASSERT(*dstlenp == 0); 24947 if (src != NULL && srclen != 0) { 24948 dst = mi_alloc(srclen, BPRI_MED); 24949 if (dst == NULL) 24950 return (B_FALSE); 24951 } else { 24952 dst = NULL; 24953 } 24954 if (*dstp != NULL) { 24955 mi_free(*dstp); 24956 *dstp = NULL; 24957 *dstlenp = 0; 24958 } 24959 *dstp = dst; 24960 if (dst != NULL) 24961 *dstlenp = srclen; 24962 else 24963 *dstlenp = 0; 24964 return (B_TRUE); 24965 } 24966 24967 /* 24968 * Replace what is in *dst, *dstlen with the source. 24969 * Assumes tcp_allocbuf has already been called. 24970 */ 24971 static void 24972 tcp_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 24973 void *src, uint_t srclen) 24974 { 24975 if (!src_valid) 24976 srclen = 0; 24977 24978 ASSERT(*dstlenp == srclen); 24979 if (src != NULL && srclen != 0) { 24980 bcopy(src, *dstp, srclen); 24981 } 24982 } 24983 24984 /* 24985 * Allocate a T_SVR4_OPTMGMT_REQ. 24986 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 24987 * that tcp_rput_other can drop the acks. 24988 */ 24989 static mblk_t * 24990 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 24991 { 24992 mblk_t *mp; 24993 struct T_optmgmt_req *tor; 24994 struct opthdr *oh; 24995 uint_t size; 24996 char *optptr; 24997 24998 size = sizeof (*tor) + sizeof (*oh) + optlen; 24999 mp = allocb(size, BPRI_MED); 25000 if (mp == NULL) 25001 return (NULL); 25002 25003 mp->b_wptr += size; 25004 mp->b_datap->db_type = M_PROTO; 25005 tor = (struct T_optmgmt_req *)mp->b_rptr; 25006 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 25007 tor->MGMT_flags = T_NEGOTIATE; 25008 tor->OPT_length = sizeof (*oh) + optlen; 25009 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 25010 25011 oh = (struct opthdr *)&tor[1]; 25012 oh->level = level; 25013 oh->name = cmd; 25014 oh->len = optlen; 25015 if (optlen != 0) { 25016 optptr = (char *)&oh[1]; 25017 bcopy(opt, optptr, optlen); 25018 } 25019 return (mp); 25020 } 25021 25022 /* 25023 * TCP Timers Implementation. 25024 */ 25025 static timeout_id_t 25026 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25027 { 25028 mblk_t *mp; 25029 tcp_timer_t *tcpt; 25030 tcp_t *tcp = connp->conn_tcp; 25031 25032 ASSERT(connp->conn_sqp != NULL); 25033 25034 TCP_DBGSTAT(tcp_timeout_calls); 25035 25036 if (tcp->tcp_timercache == NULL) { 25037 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25038 } else { 25039 TCP_DBGSTAT(tcp_timeout_cached_alloc); 25040 mp = tcp->tcp_timercache; 25041 tcp->tcp_timercache = mp->b_next; 25042 mp->b_next = NULL; 25043 ASSERT(mp->b_wptr == NULL); 25044 } 25045 25046 CONN_INC_REF(connp); 25047 tcpt = (tcp_timer_t *)mp->b_rptr; 25048 tcpt->connp = connp; 25049 tcpt->tcpt_proc = f; 25050 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 25051 return ((timeout_id_t)mp); 25052 } 25053 25054 static void 25055 tcp_timer_callback(void *arg) 25056 { 25057 mblk_t *mp = (mblk_t *)arg; 25058 tcp_timer_t *tcpt; 25059 conn_t *connp; 25060 25061 tcpt = (tcp_timer_t *)mp->b_rptr; 25062 connp = tcpt->connp; 25063 squeue_fill(connp->conn_sqp, mp, 25064 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 25065 } 25066 25067 static void 25068 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25069 { 25070 tcp_timer_t *tcpt; 25071 conn_t *connp = (conn_t *)arg; 25072 tcp_t *tcp = connp->conn_tcp; 25073 25074 tcpt = (tcp_timer_t *)mp->b_rptr; 25075 ASSERT(connp == tcpt->connp); 25076 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25077 25078 /* 25079 * If the TCP has reached the closed state, don't proceed any 25080 * further. This TCP logically does not exist on the system. 25081 * tcpt_proc could for example access queues, that have already 25082 * been qprocoff'ed off. Also see comments at the start of tcp_input 25083 */ 25084 if (tcp->tcp_state != TCPS_CLOSED) { 25085 (*tcpt->tcpt_proc)(connp); 25086 } else { 25087 tcp->tcp_timer_tid = 0; 25088 } 25089 tcp_timer_free(connp->conn_tcp, mp); 25090 } 25091 25092 /* 25093 * There is potential race with untimeout and the handler firing at the same 25094 * time. The mblock may be freed by the handler while we are trying to use 25095 * it. But since both should execute on the same squeue, this race should not 25096 * occur. 25097 */ 25098 static clock_t 25099 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25100 { 25101 mblk_t *mp = (mblk_t *)id; 25102 tcp_timer_t *tcpt; 25103 clock_t delta; 25104 25105 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 25106 25107 if (mp == NULL) 25108 return (-1); 25109 25110 tcpt = (tcp_timer_t *)mp->b_rptr; 25111 ASSERT(tcpt->connp == connp); 25112 25113 delta = untimeout(tcpt->tcpt_tid); 25114 25115 if (delta >= 0) { 25116 TCP_DBGSTAT(tcp_timeout_canceled); 25117 tcp_timer_free(connp->conn_tcp, mp); 25118 CONN_DEC_REF(connp); 25119 } 25120 25121 return (delta); 25122 } 25123 25124 /* 25125 * Allocate space for the timer event. The allocation looks like mblk, but it is 25126 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25127 * 25128 * Dealing with failures: If we can't allocate from the timer cache we try 25129 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25130 * points to b_rptr. 25131 * If we can't allocate anything using allocb_tryhard(), we perform a last 25132 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25133 * save the actual allocation size in b_datap. 25134 */ 25135 mblk_t * 25136 tcp_timermp_alloc(int kmflags) 25137 { 25138 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25139 kmflags & ~KM_PANIC); 25140 25141 if (mp != NULL) { 25142 mp->b_next = mp->b_prev = NULL; 25143 mp->b_rptr = (uchar_t *)(&mp[1]); 25144 mp->b_wptr = NULL; 25145 mp->b_datap = NULL; 25146 mp->b_queue = NULL; 25147 } else if (kmflags & KM_PANIC) { 25148 /* 25149 * Failed to allocate memory for the timer. Try allocating from 25150 * dblock caches. 25151 */ 25152 TCP_STAT(tcp_timermp_allocfail); 25153 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25154 if (mp == NULL) { 25155 size_t size = 0; 25156 /* 25157 * Memory is really low. Try tryhard allocation. 25158 */ 25159 TCP_STAT(tcp_timermp_allocdblfail); 25160 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25161 sizeof (tcp_timer_t), &size, kmflags); 25162 mp->b_rptr = (uchar_t *)(&mp[1]); 25163 mp->b_next = mp->b_prev = NULL; 25164 mp->b_wptr = (uchar_t *)-1; 25165 mp->b_datap = (dblk_t *)size; 25166 mp->b_queue = NULL; 25167 } 25168 ASSERT(mp->b_wptr != NULL); 25169 } 25170 TCP_DBGSTAT(tcp_timermp_alloced); 25171 25172 return (mp); 25173 } 25174 25175 /* 25176 * Free per-tcp timer cache. 25177 * It can only contain entries from tcp_timercache. 25178 */ 25179 void 25180 tcp_timermp_free(tcp_t *tcp) 25181 { 25182 mblk_t *mp; 25183 25184 while ((mp = tcp->tcp_timercache) != NULL) { 25185 ASSERT(mp->b_wptr == NULL); 25186 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25187 kmem_cache_free(tcp_timercache, mp); 25188 } 25189 } 25190 25191 /* 25192 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25193 * events there already (currently at most two events are cached). 25194 * If the event is not allocated from the timer cache, free it right away. 25195 */ 25196 static void 25197 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25198 { 25199 mblk_t *mp1 = tcp->tcp_timercache; 25200 25201 if (mp->b_wptr != NULL) { 25202 /* 25203 * This allocation is not from a timer cache, free it right 25204 * away. 25205 */ 25206 if (mp->b_wptr != (uchar_t *)-1) 25207 freeb(mp); 25208 else 25209 kmem_free(mp, (size_t)mp->b_datap); 25210 } else if (mp1 == NULL || mp1->b_next == NULL) { 25211 /* Cache this timer block for future allocations */ 25212 mp->b_rptr = (uchar_t *)(&mp[1]); 25213 mp->b_next = mp1; 25214 tcp->tcp_timercache = mp; 25215 } else { 25216 kmem_cache_free(tcp_timercache, mp); 25217 TCP_DBGSTAT(tcp_timermp_freed); 25218 } 25219 } 25220 25221 /* 25222 * End of TCP Timers implementation. 25223 */ 25224 25225 /* 25226 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25227 * on the specified backing STREAMS q. Note, the caller may make the 25228 * decision to call based on the tcp_t.tcp_flow_stopped value which 25229 * when check outside the q's lock is only an advisory check ... 25230 */ 25231 25232 static void 25233 tcp_setqfull(tcp_t *tcp) 25234 { 25235 queue_t *q = tcp->tcp_wq; 25236 25237 if (!(q->q_flag & QFULL)) { 25238 mutex_enter(QLOCK(q)); 25239 if (!(q->q_flag & QFULL)) { 25240 /* still need to set QFULL */ 25241 q->q_flag |= QFULL; 25242 tcp->tcp_flow_stopped = B_TRUE; 25243 mutex_exit(QLOCK(q)); 25244 TCP_STAT(tcp_flwctl_on); 25245 } else { 25246 mutex_exit(QLOCK(q)); 25247 } 25248 } 25249 } 25250 25251 static void 25252 tcp_clrqfull(tcp_t *tcp) 25253 { 25254 queue_t *q = tcp->tcp_wq; 25255 25256 if (q->q_flag & QFULL) { 25257 mutex_enter(QLOCK(q)); 25258 if (q->q_flag & QFULL) { 25259 q->q_flag &= ~QFULL; 25260 tcp->tcp_flow_stopped = B_FALSE; 25261 mutex_exit(QLOCK(q)); 25262 if (q->q_flag & QWANTW) 25263 qbackenable(q, 0); 25264 } else 25265 mutex_exit(QLOCK(q)); 25266 } 25267 } 25268 25269 /* 25270 * TCP Kstats implementation 25271 */ 25272 static void 25273 tcp_kstat_init(void) 25274 { 25275 tcp_named_kstat_t template = { 25276 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25277 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25278 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25279 { "maxConn", KSTAT_DATA_INT32, 0 }, 25280 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25281 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25282 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25283 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25284 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25285 { "inSegs", KSTAT_DATA_UINT32, 0 }, 25286 { "outSegs", KSTAT_DATA_UINT32, 0 }, 25287 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25288 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25289 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25290 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25291 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25292 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25293 { "outAck", KSTAT_DATA_UINT32, 0 }, 25294 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25295 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25296 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25297 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25298 { "outControl", KSTAT_DATA_UINT32, 0 }, 25299 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25300 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25301 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25302 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25303 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25304 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25305 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25306 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25307 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25308 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25309 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25310 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25311 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25312 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25313 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25314 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25315 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25316 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25317 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25318 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25319 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25320 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25321 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25322 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25323 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25324 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25325 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25326 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25327 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25328 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25329 }; 25330 25331 tcp_mibkp = kstat_create("tcp", 0, "tcp", "mib2", KSTAT_TYPE_NAMED, 25332 NUM_OF_FIELDS(tcp_named_kstat_t), 0); 25333 25334 if (tcp_mibkp == NULL) 25335 return; 25336 25337 template.rtoAlgorithm.value.ui32 = 4; 25338 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 25339 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 25340 template.maxConn.value.i32 = -1; 25341 25342 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 25343 25344 tcp_mibkp->ks_update = tcp_kstat_update; 25345 25346 kstat_install(tcp_mibkp); 25347 } 25348 25349 static void 25350 tcp_kstat_fini(void) 25351 { 25352 25353 if (tcp_mibkp != NULL) { 25354 kstat_delete(tcp_mibkp); 25355 tcp_mibkp = NULL; 25356 } 25357 } 25358 25359 static int 25360 tcp_kstat_update(kstat_t *kp, int rw) 25361 { 25362 tcp_named_kstat_t *tcpkp; 25363 tcp_t *tcp; 25364 connf_t *connfp; 25365 conn_t *connp; 25366 int i; 25367 25368 if (!kp || !kp->ks_data) 25369 return (EIO); 25370 25371 if (rw == KSTAT_WRITE) 25372 return (EACCES); 25373 25374 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25375 25376 tcpkp->currEstab.value.ui32 = 0; 25377 25378 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25379 connfp = &ipcl_globalhash_fanout[i]; 25380 connp = NULL; 25381 while ((connp = tcp_get_next_conn(connfp, connp))) { 25382 tcp = connp->conn_tcp; 25383 switch (tcp_snmp_state(tcp)) { 25384 case MIB2_TCP_established: 25385 case MIB2_TCP_closeWait: 25386 tcpkp->currEstab.value.ui32++; 25387 break; 25388 } 25389 } 25390 } 25391 25392 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 25393 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 25394 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 25395 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 25396 tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs; 25397 tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs; 25398 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 25399 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 25400 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 25401 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 25402 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 25403 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 25404 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 25405 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 25406 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 25407 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 25408 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 25409 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 25410 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 25411 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 25412 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 25413 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 25414 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 25415 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 25416 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 25417 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 25418 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 25419 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 25420 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 25421 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 25422 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 25423 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 25424 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 25425 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 25426 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 25427 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 25428 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 25429 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 25430 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 25431 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 25432 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 25433 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 25434 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 25435 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 25436 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 25437 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 25438 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 25439 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 25440 25441 return (0); 25442 } 25443 25444 void 25445 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25446 { 25447 uint16_t hdr_len; 25448 ipha_t *ipha; 25449 uint8_t *nexthdrp; 25450 tcph_t *tcph; 25451 25452 /* Already has an eager */ 25453 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25454 TCP_STAT(tcp_reinput_syn); 25455 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 25456 connp, SQTAG_TCP_REINPUT_EAGER); 25457 return; 25458 } 25459 25460 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25461 case IPV4_VERSION: 25462 ipha = (ipha_t *)mp->b_rptr; 25463 hdr_len = IPH_HDR_LENGTH(ipha); 25464 break; 25465 case IPV6_VERSION: 25466 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25467 &hdr_len, &nexthdrp)) { 25468 CONN_DEC_REF(connp); 25469 freemsg(mp); 25470 return; 25471 } 25472 break; 25473 } 25474 25475 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25476 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25477 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25478 mp->b_datap->db_cksumstart = (intptr_t)sqp; 25479 } 25480 25481 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 25482 SQTAG_TCP_REINPUT); 25483 } 25484 25485 static squeue_func_t 25486 tcp_squeue_switch(int val) 25487 { 25488 squeue_func_t rval = squeue_fill; 25489 25490 switch (val) { 25491 case 1: 25492 rval = squeue_enter_nodrain; 25493 break; 25494 case 2: 25495 rval = squeue_enter; 25496 break; 25497 default: 25498 break; 25499 } 25500 return (rval); 25501 } 25502 25503 static void 25504 tcp_squeue_add(squeue_t *sqp) 25505 { 25506 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25507 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25508 25509 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25510 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 25511 sqp, TCP_TIME_WAIT_DELAY); 25512 } 25513