1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #ifndef _INET_SADB_H 27 #define _INET_SADB_H 28 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 #ifdef __cplusplus 32 extern "C" { 33 #endif 34 35 #include <inet/ipsec_info.h> 36 #include <sys/crypto/common.h> 37 #include <sys/crypto/api.h> 38 39 #define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */ 40 41 /* 42 * Return codes of IPsec processing functions. 43 */ 44 typedef enum { 45 IPSEC_STATUS_SUCCESS = 1, 46 IPSEC_STATUS_FAILED = 2, 47 IPSEC_STATUS_PENDING = 3 48 } ipsec_status_t; 49 50 /* 51 * IP security association. Synchronization assumes 32-bit loads, so 52 * the 64-bit quantities can't even be be read w/o locking it down! 53 */ 54 55 /* keying info */ 56 typedef struct ipsa_key_s { 57 void *sak_key; /* Algorithm key. */ 58 uint_t sak_keylen; /* Algorithm key length (in bytes). */ 59 uint_t sak_keybits; /* Algorithm key length (in bits) */ 60 uint_t sak_algid; /* Algorithm ID number. */ 61 } ipsa_key_t; 62 63 /* the security association */ 64 typedef struct ipsa_s { 65 struct ipsa_s *ipsa_next; /* Next in hash bucket */ 66 struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */ 67 kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */ 68 void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */ 69 /* 70 * NOTE: I may need more pointers, depending on future SA 71 * requirements. 72 */ 73 ipsa_key_t ipsa_authkeydata; 74 #define ipsa_authkey ipsa_authkeydata.sak_key 75 #define ipsa_authkeylen ipsa_authkeydata.sak_keylen 76 #define ipsa_authkeybits ipsa_authkeydata.sak_keybits 77 #define ipsa_auth_alg ipsa_authkeydata.sak_algid 78 ipsa_key_t ipsa_encrkeydata; 79 #define ipsa_encrkey ipsa_encrkeydata.sak_key 80 #define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen 81 #define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits 82 #define ipsa_encr_alg ipsa_encrkeydata.sak_algid 83 84 struct ipsid_s *ipsa_src_cid; /* Source certificate identity */ 85 struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */ 86 uint64_t *ipsa_integ; /* Integrity bitmap */ 87 uint64_t *ipsa_sens; /* Sensitivity bitmap */ 88 mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */ 89 90 /* 91 * PF_KEYv2 supports a replay window size of 255. Hence there is a 92 * need a bit vector to support a replay window of 255. 256 is a nice 93 * round number, so I support that. 94 * 95 * Use an array of uint64_t for best performance on 64-bit 96 * processors. (And hope that 32-bit compilers can handle things 97 * okay.) The " >> 6 " is to get the appropriate number of 64-bit 98 * ints. 99 */ 100 #define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */ 101 uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6]; 102 103 uint64_t ipsa_unique_id; /* Non-zero for unique SAs */ 104 uint64_t ipsa_unique_mask; /* mask value for unique_id */ 105 106 /* 107 * Reference count semantics: 108 * 109 * An SA has a reference count of 1 if something's pointing 110 * to it. This includes being in a hash table. So if an 111 * SA is in a hash table, it has a reference count of at least 1. 112 * 113 * When a ptr. to an IPSA is assigned, you MUST REFHOLD after 114 * said assignment. When a ptr. to an IPSA is released 115 * you MUST REFRELE. When the refcount hits 0, REFRELE 116 * will free the IPSA. 117 */ 118 kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */ 119 /* Q: Since I may be doing refcnts differently, will I need cv? */ 120 uint_t ipsa_refcnt; /* Reference count. */ 121 122 /* 123 * The following four time fields are the ones monitored by ah_ager() 124 * and esp_ager() respectively. They are all absolute wall-clock 125 * times. The times of creation (i.e. add time) and first use are 126 * pretty straightforward. The soft and hard expire times are 127 * derived from the times of first use and creation, plus the minimum 128 * expiration times in the fields that follow this. 129 * 130 * For example, if I had a hard add time of 30 seconds, and a hard 131 * use time of 15, the ipsa_hardexpiretime would be time of add, plus 132 * 30 seconds. If I USE the SA such that time of first use plus 15 133 * seconds would be earlier than the add time plus 30 seconds, then 134 * ipsa_hardexpiretime would become this earlier time. 135 */ 136 time_t ipsa_addtime; /* Time I was added. */ 137 time_t ipsa_usetime; /* Time of my first use. */ 138 time_t ipsa_softexpiretime; /* Time of my first soft expire. */ 139 time_t ipsa_hardexpiretime; /* Time of my first hard expire. */ 140 141 /* 142 * The following fields are directly reflected in PF_KEYv2 LIFETIME 143 * extensions. The time_ts are in number-of-seconds, and the bytes 144 * are in... bytes. 145 */ 146 time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */ 147 time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */ 148 time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */ 149 time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */ 150 uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */ 151 uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */ 152 uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */ 153 154 /* 155 * "Allocations" are a concept mentioned in PF_KEYv2. We do not 156 * support them, except to record them per the PF_KEYv2 spec. 157 */ 158 uint_t ipsa_softalloc; /* Allocations allowed (soft). */ 159 uint_t ipsa_hardalloc; /* Allocations allowed (hard). */ 160 uint_t ipsa_alloc; /* Allocations made. */ 161 162 uint_t ipsa_integlen; /* Length of the integrity bitmap (bytes). */ 163 uint_t ipsa_senslen; /* Length of the sensitivity bitmap (bytes). */ 164 165 uint_t ipsa_type; /* Type of security association. (AH/etc.) */ 166 uint_t ipsa_dpd; /* Domain for sensitivity bit vectors. */ 167 uint_t ipsa_senslevel; /* Sensitivity level. */ 168 uint_t ipsa_integlevel; /* Integrity level. */ 169 uint_t ipsa_state; /* State of my association. */ 170 uint_t ipsa_replay_wsize; /* Size of replay window */ 171 uint32_t ipsa_flags; /* Flags for security association. */ 172 uint32_t ipsa_spi; /* Security parameters index. */ 173 uint32_t ipsa_replay; /* Highest seen replay value for this SA. */ 174 uint32_t ipsa_kmp; /* key management proto */ 175 uint32_t ipsa_kmc; /* key management cookie */ 176 177 boolean_t ipsa_haspeer; /* Has peer in another table. */ 178 179 /* 180 * Address storage. 181 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc. 182 * 183 * Address families (per sys/socket.h) guide us. We could have just 184 * used sockaddr_storage 185 */ 186 sa_family_t ipsa_addrfam; 187 sa_family_t ipsa_innerfam; /* Inner AF can be != src/dst AF. */ 188 189 uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN]; 190 uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN]; 191 uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN]; 192 uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN]; 193 194 uint8_t ipsa_innersrcpfx; 195 uint8_t ipsa_innerdstpfx; 196 197 /* these can only be v4 */ 198 uint32_t ipsa_natt_addr_loc[IPSA_MAX_ADDRLEN]; 199 uint32_t ipsa_natt_addr_rem[IPSA_MAX_ADDRLEN]; 200 201 uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */ 202 uint16_t ipsa_remote_port; /* the other port that isn't 4500 */ 203 204 timeout_id_t ipsa_natt_ka_timer; 205 queue_t *ipsa_natt_q; 206 /* 207 * icmp type and code. *_end are to specify ranges. if only 208 * a single value, * and *_end are the same value. 209 */ 210 uint8_t ipsa_icmp_type; 211 uint8_t ipsa_icmp_type_end; 212 uint8_t ipsa_icmp_code; 213 uint8_t ipsa_icmp_code_end; 214 215 /* 216 * For the kernel crypto framework. 217 */ 218 crypto_key_t ipsa_kcfauthkey; /* authentication key */ 219 crypto_key_t ipsa_kcfencrkey; /* encryption key */ 220 crypto_ctx_template_t ipsa_authtmpl; /* auth context template */ 221 crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */ 222 crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */ 223 crypto_mechanism_t ipsa_emech; /* encr mech type */ 224 size_t ipsa_mac_len; /* auth MAC length */ 225 size_t ipsa_iv_len; /* encr IV length */ 226 227 /* 228 * Input and output processing functions called from IP. 229 */ 230 ipsec_status_t (*ipsa_output_func)(mblk_t *); 231 ipsec_status_t (*ipsa_input_func)(mblk_t *, void *); 232 233 /* MLS boxen will probably need more fields in here. */ 234 235 } ipsa_t; 236 237 /* 238 * ipsa_t address handling macros. We want these to be inlined, and deal 239 * with 32-bit words to avoid bcmp/bcopy calls. 240 * 241 * Assume we only have AF_INET and AF_INET6 addresses for now. Also assume 242 * that we have 32-bit alignment on everything. 243 */ 244 #define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \ 245 (((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \ 246 ((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0))) 247 #define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \ 248 ((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \ 249 (((fam) == AF_INET) || \ 250 (((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \ 251 ((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \ 252 ((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1]))) 253 #define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \ 254 ((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \ 255 if ((fam) == AF_INET6) {\ 256 ((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \ 257 ((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \ 258 ((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } } 259 260 /* 261 * ipsa_t reference hold/release macros. 262 * 263 * If you have a pointer, you REFHOLD. If you are releasing a pointer, you 264 * REFRELE. An ipsa_t that is newly inserted into the table should have 265 * a reference count of 1 (for the table's pointer), plus 1 more for every 266 * pointer that is referencing the ipsa_t. 267 */ 268 269 #define IPSA_REFHOLD(ipsa) { \ 270 atomic_add_32(&(ipsa)->ipsa_refcnt, 1); \ 271 ASSERT((ipsa)->ipsa_refcnt != 0); \ 272 } 273 274 /* 275 * Decrement the reference count on the SA. 276 * In architectures e.g sun4u, where atomic_add_32_nv is just 277 * a cas, we need to maintain the right memory barrier semantics 278 * as that of mutex_exit i.e all the loads and stores should complete 279 * before the cas is executed. membar_exit() does that here. 280 */ 281 282 #define IPSA_REFRELE(ipsa) { \ 283 ASSERT((ipsa)->ipsa_refcnt != 0); \ 284 membar_exit(); \ 285 if (atomic_add_32_nv(&(ipsa)->ipsa_refcnt, -1) == 0) \ 286 ((ipsa)->ipsa_freefunc)(ipsa); \ 287 } 288 289 /* 290 * Security association hash macros and definitions. For now, assume the 291 * IPsec model, and hash outbounds on destination address, and inbounds on 292 * SPI. 293 */ 294 295 #define IPSEC_DEFAULT_HASH_SIZE 256 296 297 #define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize)) 298 #define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize)) 299 #define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \ 300 (*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \ 301 (*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3))) 302 303 /* 304 * Syntactic sugar to find the appropriate hash bucket directly. 305 */ 306 307 #define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)]) 308 #define OUTBOUND_BUCKET_V4(sadb, v4addr) \ 309 &(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)]) 310 #define OUTBOUND_BUCKET_V6(sadb, v6addr) \ 311 &(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)]) 312 313 #define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */ 314 #define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */ 315 /* backward compat. */ 316 #define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */ 317 #define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */ 318 #define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */ 319 #define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */ 320 #define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */ 321 #define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */ 322 323 #define IPSA_F_HW 0x200000 /* hwaccel capable SA */ 324 #define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC 325 #define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM 326 #define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM) 327 #define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */ 328 #define IPSA_F_TUNNEL SADB_X_SAFLAGS_TUNNEL 329 330 /* SA states are important for handling UPDATE PF_KEY messages. */ 331 #define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL 332 #define IPSA_STATE_MATURE SADB_SASTATE_MATURE 333 #define IPSA_STATE_DYING SADB_SASTATE_DYING 334 #define IPSA_STATE_DEAD SADB_SASTATE_DEAD 335 336 /* 337 * NOTE: If the document authors do things right in defining algorithms, we'll 338 * probably have flags for what all is here w.r.t. replay, ESP w/HMAC, 339 * etc. 340 */ 341 342 #define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */ 343 #define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */ 344 #define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */ 345 346 #define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */ 347 #define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */ 348 #define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */ 349 350 #define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */ 351 #define IPSA_EALG_DES_CBC SADB_EALG_DESCBC 352 #define IPSA_EALG_3DES SADB_EALG_3DESCBC 353 354 /* 355 * Protect each ipsa_t bucket (and linkage) with a lock. 356 */ 357 358 typedef struct isaf_s { 359 ipsa_t *isaf_ipsa; 360 kmutex_t isaf_lock; 361 uint64_t isaf_gen; 362 } isaf_t; 363 364 /* 365 * ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound 366 * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record. 367 */ 368 369 #define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */ 370 /* waiting for an ACQUIRE to finish. */ 371 372 typedef struct ipsacq_s { 373 struct ipsacq_s *ipsacq_next; 374 struct ipsacq_s **ipsacq_ptpn; 375 kmutex_t *ipsacq_linklock; 376 struct ipsec_policy_s *ipsacq_policy; 377 struct ipsec_action_s *ipsacq_act; 378 379 sa_family_t ipsacq_addrfam; /* Address family. */ 380 sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */ 381 int ipsacq_numpackets; /* How many packets queued up so far. */ 382 uint32_t ipsacq_seq; /* PF_KEY sequence number. */ 383 uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */ 384 385 kmutex_t ipsacq_lock; /* Protects non-linkage fields. */ 386 time_t ipsacq_expire; /* Wall-clock time when this record expires. */ 387 mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */ 388 389 /* These two point inside the last mblk inserted. */ 390 uint32_t *ipsacq_srcaddr; 391 uint32_t *ipsacq_dstaddr; 392 393 /* Cache these instead of point so we can mask off accordingly */ 394 uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN]; 395 uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN]; 396 397 /* These may change per-acquire. */ 398 uint16_t ipsacq_srcport; 399 uint16_t ipsacq_dstport; 400 uint8_t ipsacq_proto; 401 uint8_t ipsacq_inner_proto; 402 uint8_t ipsacq_innersrcpfx; 403 uint8_t ipsacq_innerdstpfx; 404 405 /* icmp type and code of triggering packet (if applicable) */ 406 uint8_t ipsacq_icmp_type; 407 uint8_t ipsacq_icmp_code; 408 } ipsacq_t; 409 410 /* 411 * Kernel-generated sequence numbers will be no less than 0x80000000 to 412 * forestall any cretinous problems with manual keying accidentally updating 413 * an ACQUIRE entry. 414 */ 415 #define IACQF_LOWEST_SEQ 0x80000000 416 417 #define SADB_AGE_INTERVAL_DEFAULT 1000 418 419 /* 420 * ACQUIRE fanout. Protect each linkage with a lock. 421 */ 422 423 typedef struct iacqf_s { 424 ipsacq_t *iacqf_ipsacq; 425 kmutex_t iacqf_lock; 426 } iacqf_t; 427 428 /* 429 * A (network protocol, ipsec protocol) specific SADB. 430 * (i.e., one each for {ah, esp} and {v4, v6}. 431 * 432 * Keep outbound assocs about the same as ire_cache entries for now. 433 * One danger point, multiple SAs for a single dest will clog a bucket. 434 * For the future, consider two-level hashing (2nd hash on IPC?), then probe. 435 */ 436 437 typedef struct sadb_s 438 { 439 isaf_t *sdb_of; 440 isaf_t *sdb_if; 441 iacqf_t *sdb_acq; 442 int sdb_hashsize; 443 } sadb_t; 444 445 /* 446 * A pair of SADB's (one for v4, one for v6), and related state (including 447 * acquire callbacks). 448 */ 449 450 typedef struct sadbp_s 451 { 452 uint32_t s_satype; 453 queue_t *s_ip_q; 454 uint32_t *s_acquire_timeout; 455 void (*s_acqfn)(ipsacq_t *, mblk_t *); 456 sadb_t s_v4; 457 sadb_t s_v6; 458 } sadbp_t; 459 460 /* 461 * Global IPsec security association databases (and all that go with them). 462 */ 463 extern sadbp_t ah_sadb, esp_sadb; 464 465 /* Pointer to an all-zeroes IPv6 address. */ 466 #define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros) 467 468 /* 469 * Form unique id from ipsec_out_t 470 */ 471 472 #define SA_FORM_UNIQUE_ID(io) \ 473 SA_UNIQUE_ID((io)->ipsec_out_src_port, (io)->ipsec_out_dst_port, \ 474 ((io)->ipsec_out_tunnel ? ((io)->ipsec_out_inaf == AF_INET6 ? \ 475 IPPROTO_IPV6 : IPPROTO_ENCAP) : (io)->ipsec_out_proto), \ 476 ((io)->ipsec_out_tunnel ? (io)->ipsec_out_proto : 0)) 477 478 /* 479 * This macro is used to generate unique ids (along with the addresses, both 480 * inner and outer) for outbound datagrams that require unique SAs. 481 * 482 * N.B. casts and unsigned shift amounts discourage unwarranted 483 * sign extension of dstport, proto, and iproto. 484 * 485 * Unique ID is 64-bits allocated as follows (pardon my big-endian bias): 486 * 487 * 6 4 43 33 11 488 * 3 7 09 21 65 0 489 * +---------------*-------+-------+--------------+---------------+ 490 * | MUST-BE-ZERO |<iprot>|<proto>| <src port> | <dest port> | 491 * +---------------*-------+-------+--------------+---------------+ 492 * 493 * If there are inner addresses (tunnel mode) the ports come from the 494 * inner addresses. If there are no inner addresses, the ports come from 495 * the outer addresses (transport mode). Tunnel mode MUST have <proto> 496 * set to either IPPROTO_ENCAP or IPPPROTO_IPV6. 497 */ 498 #define SA_UNIQUE_ID(srcport, dstport, proto, iproto) \ 499 ((srcport) | ((uint64_t)(dstport) << 16U) | \ 500 ((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U)) 501 502 /* 503 * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value 504 * from a packet to an SA. 505 */ 506 507 #define SA_UNIQUE_MASK(srcport, dstport, proto, iproto) \ 508 SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0, \ 509 (dstport != 0) ? 0xffff : 0, \ 510 (proto != 0) ? 0xff : 0, \ 511 (iproto != 0) ? 0xff : 0) 512 513 /* 514 * Decompose unique id back into its original fields. 515 */ 516 #define SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff 517 #define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff 518 #define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff) 519 #define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff) 520 521 /* 522 * All functions that return an ipsa_t will return it with IPSA_REFHOLD() 523 * already called. 524 */ 525 526 /* SA retrieval (inbound and outbound) */ 527 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *, 528 sa_family_t); 529 ipsa_t *ipsec_getassocbyconn(isaf_t *, ipsec_out_t *, uint32_t *, uint32_t *, 530 sa_family_t, uint8_t); 531 532 /* SA insertion. */ 533 int sadb_insertassoc(ipsa_t *, isaf_t *); 534 535 /* SA table construction and destruction. */ 536 void sadbp_init(const char *name, sadbp_t *, int, int); 537 void sadbp_flush(sadbp_t *); 538 void sadbp_destroy(sadbp_t *); 539 540 /* SA insertion and deletion. */ 541 int sadb_insertassoc(ipsa_t *, isaf_t *); 542 void sadb_unlinkassoc(ipsa_t *); 543 544 /* Support routines to interface a keysock consumer to PF_KEY. */ 545 mblk_t *sadb_keysock_out(minor_t); 546 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *); 547 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *, 548 ipsa_t *); 549 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t); 550 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *), 551 timeout_id_t *, int); 552 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t); 553 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *); 554 int sadb_addrset(ire_t *); 555 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *, 556 boolean_t); 557 #define sadb_get_sa(m, k, s, i, q) sadb_delget_sa(m, k, s, i, q, B_FALSE) 558 #define sadb_del_sa(m, k, s, i, q) sadb_delget_sa(m, k, s, i, q, B_TRUE) 559 560 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, queue_t *, queue_t *); 561 int sadb_common_add(queue_t *, queue_t *, mblk_t *, sadb_msg_t *, 562 keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *); 563 void sadb_set_usetime(ipsa_t *); 564 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t); 565 int sadb_update_sa(mblk_t *, keysock_in_t *, sadb_t *, 566 int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *)); 567 void sadb_acquire(mblk_t *, ipsec_out_t *, boolean_t, boolean_t); 568 569 void sadb_destroy_acquire(ipsacq_t *); 570 mblk_t *sadb_setup_acquire(ipsacq_t *, uint8_t); 571 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *); 572 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *); 573 boolean_t sadb_replay_check(ipsa_t *, uint32_t); 574 boolean_t sadb_replay_peek(ipsa_t *, uint32_t); 575 int sadb_dump(queue_t *, mblk_t *, minor_t, sadb_t *); 576 void sadb_replay_delete(ipsa_t *); 577 void sadb_ager(sadb_t *, queue_t *, queue_t *, int); 578 579 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), 580 uint_t *, uint_t, short); 581 void sadb_sa_refrele(void *target); 582 void sadb_set_lpkt(ipsa_t *, mblk_t *); 583 mblk_t *sadb_clear_lpkt(ipsa_t *); 584 585 /* 586 * Hw accel-related calls (downloading sadb to driver) 587 */ 588 void sadb_ill_download(ill_t *, uint_t); 589 mblk_t *sadb_fmt_sa_req(uint_t, uint_t, ipsa_t *, boolean_t); 590 /* 591 * Sub-set of the IPsec hardware acceleration capabilities functions 592 * implemented by ip_if.c 593 */ 594 extern boolean_t ipsec_capab_match(ill_t *, uint_t, boolean_t, ipsa_t *); 595 extern void ill_ipsec_capab_send_all(uint_t, mblk_t *, ipsa_t *); 596 597 598 /* 599 * One IPsec -> IP linking routine, and two IPsec rate-limiting routines. 600 */ 601 extern boolean_t sadb_t_bind_req(queue_t *, int); 602 /*PRINTFLIKE5*/ 603 extern void ipsec_rl_strlog(short, short, char, ushort_t, char *, ...) 604 __KPRINTFLIKE(5); 605 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t, 606 void *, int); 607 608 /* 609 * Algorithm types. 610 */ 611 612 #define IPSEC_NALGTYPES 2 613 614 typedef enum ipsec_algtype { 615 IPSEC_ALG_AUTH = 0, 616 IPSEC_ALG_ENCR = 1 617 } ipsec_algtype_t; 618 619 /* 620 * Definitions as per IPsec/ISAKMP DOI. 621 */ 622 623 #define IPSEC_MAX_ALGS 256 624 #define PROTO_IPSEC_AH 2 625 #define PROTO_IPSEC_ESP 3 626 627 /* 628 * Common algorithm info. 629 */ 630 typedef struct ipsec_alginfo 631 { 632 uint8_t alg_id; 633 uint8_t alg_flags; 634 uint16_t *alg_key_sizes; 635 uint16_t *alg_block_sizes; 636 uint16_t alg_nkey_sizes; 637 uint16_t alg_nblock_sizes; 638 uint16_t alg_minbits; 639 uint16_t alg_maxbits; 640 uint16_t alg_datalen; 641 /* 642 * increment: number of bits from keysize to keysize 643 * default: # of increments from min to default key len 644 */ 645 uint16_t alg_increment; 646 uint16_t alg_default; 647 uint16_t alg_default_bits; 648 /* 649 * Min, max, and default key sizes effectively supported 650 * by the encryption framework. 651 */ 652 uint16_t alg_ef_minbits; 653 uint16_t alg_ef_maxbits; 654 uint16_t alg_ef_default; 655 uint16_t alg_ef_default_bits; 656 657 crypto_mech_type_t alg_mech_type; /* KCF mechanism type */ 658 crypto_mech_name_t alg_mech_name; /* KCF mechanism name */ 659 } ipsec_alginfo_t; 660 661 #define alg_datalen alg_block_sizes[0] 662 663 #define ALG_FLAG_VALID 0x01 664 #define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID) 665 666 /* 667 * Software crypto execution mode. 668 */ 669 typedef enum { 670 IPSEC_ALGS_EXEC_SYNC = 0, 671 IPSEC_ALGS_EXEC_ASYNC = 1 672 } ipsec_algs_exec_mode_t; 673 674 extern uint8_t ipsec_nalgs[IPSEC_NALGTYPES]; 675 extern ipsec_alginfo_t *ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS]; 676 extern uint8_t ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS]; 677 extern ipsec_algs_exec_mode_t ipsec_algs_exec_mode[IPSEC_NALGTYPES]; 678 679 extern kmutex_t alg_lock; 680 681 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *); 682 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t); 683 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t); 684 extern void ipsec_alg_free(ipsec_alginfo_t *); 685 extern void ipsec_register_prov_update(void); 686 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t); 687 688 /* 689 * Context templates management. 690 */ 691 692 #define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1) 693 #define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \ 694 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \ 695 mutex_enter(&assoc->ipsa_lock); \ 696 if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \ 697 mutex_enter(&alg_lock); \ 698 (void) ipsec_create_ctx_tmpl(_sa, _type); \ 699 mutex_exit(&alg_lock); \ 700 } \ 701 mutex_exit(&assoc->ipsa_lock); \ 702 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \ 703 _tmpl = NULL; \ 704 } \ 705 } 706 707 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t); 708 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t); 709 710 /* key checking */ 711 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *); 712 713 /* natt cleanup */ 714 extern void sadb_clear_timeouts(queue_t *); 715 716 typedef struct { 717 kstat_named_t esp_stat_in_requests; 718 kstat_named_t esp_stat_in_discards; 719 kstat_named_t esp_stat_lookup_failure; 720 kstat_named_t ah_stat_in_requests; 721 kstat_named_t ah_stat_in_discards; 722 kstat_named_t ah_stat_lookup_failure; 723 kstat_named_t sadb_acquire_maxpackets; 724 kstat_named_t sadb_acquire_qhiwater; 725 } ipsec_kstats_t; 726 727 extern ipsec_kstats_t *ipsec_kstats; 728 extern void ipsec_kstat_init(void); 729 extern void ipsec_kstat_destroy(void); 730 731 #define IP_ESP_BUMP_STAT(x) (ipsec_kstats->esp_stat_ ## x).value.ui64++ 732 #define IP_AH_BUMP_STAT(x) (ipsec_kstats->ah_stat_ ## x).value.ui64++ 733 #define IP_ACQUIRE_STAT(val, new) \ 734 if (((uint64_t)(new)) > (ipsec_kstats->sadb_acquire_ ## val).value.ui64) \ 735 (ipsec_kstats->sadb_acquire_ ## val).value.ui64 = ((uint64_t)(new)) 736 737 #ifdef __cplusplus 738 } 739 #endif 740 741 #endif /* _INET_SADB_H */ 742