1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #ifndef _INET_SADB_H 27 #define _INET_SADB_H 28 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 #ifdef __cplusplus 32 extern "C" { 33 #endif 34 35 #include <inet/ipsec_info.h> 36 #include <sys/crypto/common.h> 37 #include <sys/crypto/api.h> 38 39 #define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */ 40 41 /* 42 * Return codes of IPsec processing functions. 43 */ 44 typedef enum { 45 IPSEC_STATUS_SUCCESS = 1, 46 IPSEC_STATUS_FAILED = 2, 47 IPSEC_STATUS_PENDING = 3 48 } ipsec_status_t; 49 50 /* 51 * IP security association. Synchronization assumes 32-bit loads, so 52 * the 64-bit quantities can't even be be read w/o locking it down! 53 */ 54 55 /* keying info */ 56 typedef struct ipsa_key_s { 57 void *sak_key; /* Algorithm key. */ 58 uint_t sak_keylen; /* Algorithm key length (in bytes). */ 59 uint_t sak_keybits; /* Algorithm key length (in bits) */ 60 uint_t sak_algid; /* Algorithm ID number. */ 61 } ipsa_key_t; 62 63 /* the security association */ 64 typedef struct ipsa_s { 65 struct ipsa_s *ipsa_next; /* Next in hash bucket */ 66 struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */ 67 kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */ 68 void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */ 69 /* 70 * NOTE: I may need more pointers, depending on future SA 71 * requirements. 72 */ 73 ipsa_key_t ipsa_authkeydata; 74 #define ipsa_authkey ipsa_authkeydata.sak_key 75 #define ipsa_authkeylen ipsa_authkeydata.sak_keylen 76 #define ipsa_authkeybits ipsa_authkeydata.sak_keybits 77 #define ipsa_auth_alg ipsa_authkeydata.sak_algid 78 ipsa_key_t ipsa_encrkeydata; 79 #define ipsa_encrkey ipsa_encrkeydata.sak_key 80 #define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen 81 #define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits 82 #define ipsa_encr_alg ipsa_encrkeydata.sak_algid 83 84 struct ipsid_s *ipsa_src_cid; /* Source certificate identity */ 85 struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */ 86 struct ipsid_s *ipsa_proxy_cid; /* (src) Proxy agent's cert. id. */ 87 uint64_t *ipsa_integ; /* Integrity bitmap */ 88 uint64_t *ipsa_sens; /* Sensitivity bitmap */ 89 mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */ 90 91 /* 92 * PF_KEYv2 supports a replay window size of 255. Hence there is a 93 * need a bit vector to support a replay window of 255. 256 is a nice 94 * round number, so I support that. 95 * 96 * Use an array of uint64_t for best performance on 64-bit 97 * processors. (And hope that 32-bit compilers can handle things 98 * okay.) The " >> 6 " is to get the appropriate number of 64-bit 99 * ints. 100 */ 101 #define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */ 102 uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6]; 103 104 uint64_t ipsa_unique_id; /* Non-zero for unique SAs */ 105 uint64_t ipsa_unique_mask; /* mask value for unique_id */ 106 107 /* 108 * Reference count semantics: 109 * 110 * An SA has a reference count of 1 if something's pointing 111 * to it. This includes being in a hash table. So if an 112 * SA is in a hash table, it has a reference count of at least 1. 113 * 114 * When a ptr. to an IPSA is assigned, you MUST REFHOLD after 115 * said assignment. When a ptr. to an IPSA is released 116 * you MUST REFRELE. When the refcount hits 0, REFRELE 117 * will free the IPSA. 118 */ 119 kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */ 120 /* Q: Since I may be doing refcnts differently, will I need cv? */ 121 uint_t ipsa_refcnt; /* Reference count. */ 122 123 /* 124 * The following four time fields are the ones monitored by ah_ager() 125 * and esp_ager() respectively. They are all absolute wall-clock 126 * times. The times of creation (i.e. add time) and first use are 127 * pretty straightforward. The soft and hard expire times are 128 * derived from the times of first use and creation, plus the minimum 129 * expiration times in the fields that follow this. 130 * 131 * For example, if I had a hard add time of 30 seconds, and a hard 132 * use time of 15, the ipsa_hardexpiretime would be time of add, plus 133 * 30 seconds. If I USE the SA such that time of first use plus 15 134 * seconds would be earlier than the add time plus 30 seconds, then 135 * ipsa_hardexpiretime would become this earlier time. 136 */ 137 time_t ipsa_addtime; /* Time I was added. */ 138 time_t ipsa_usetime; /* Time of my first use. */ 139 time_t ipsa_softexpiretime; /* Time of my first soft expire. */ 140 time_t ipsa_hardexpiretime; /* Time of my first hard expire. */ 141 142 /* 143 * The following fields are directly reflected in PF_KEYv2 LIFETIME 144 * extensions. The time_ts are in number-of-seconds, and the bytes 145 * are in... bytes. 146 */ 147 time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */ 148 time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */ 149 time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */ 150 time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */ 151 uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */ 152 uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */ 153 uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */ 154 155 /* 156 * "Allocations" are a concept mentioned in PF_KEYv2. We do not 157 * support them, except to record them per the PF_KEYv2 spec. 158 */ 159 uint_t ipsa_softalloc; /* Allocations allowed (soft). */ 160 uint_t ipsa_hardalloc; /* Allocations allowed (hard). */ 161 uint_t ipsa_alloc; /* Allocations made. */ 162 163 uint_t ipsa_integlen; /* Length of the integrity bitmap (bytes). */ 164 uint_t ipsa_senslen; /* Length of the sensitivity bitmap (bytes). */ 165 166 uint_t ipsa_type; /* Type of security association. (AH/etc.) */ 167 uint_t ipsa_dpd; /* Domain for sensitivity bit vectors. */ 168 uint_t ipsa_senslevel; /* Sensitivity level. */ 169 uint_t ipsa_integlevel; /* Integrity level. */ 170 uint_t ipsa_state; /* State of my association. */ 171 uint_t ipsa_replay_wsize; /* Size of replay window */ 172 uint32_t ipsa_flags; /* Flags for security association. */ 173 uint32_t ipsa_spi; /* Security parameters index. */ 174 uint32_t ipsa_replay; /* Highest seen replay value for this SA. */ 175 uint32_t ipsa_kmp; /* key management proto */ 176 uint32_t ipsa_kmc; /* key management cookie */ 177 178 boolean_t ipsa_haspeer; /* Has peer in another table. */ 179 180 /* 181 * Address storage. 182 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc. 183 * 184 * Address families (per sys/socket.h) guide us. We could have just 185 * used sockaddr_storage 186 */ 187 sa_family_t ipsa_addrfam; 188 sa_family_t ipsa_proxyfam; /* Proxy AF can be != src/dst AF. */ 189 190 uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN]; 191 uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN]; 192 uint32_t ipsa_proxysrc[IPSA_MAX_ADDRLEN]; 193 uint32_t ipsa_proxydst[IPSA_MAX_ADDRLEN]; 194 195 /* these can only be v4 */ 196 uint32_t ipsa_natt_addr_loc[IPSA_MAX_ADDRLEN]; 197 uint32_t ipsa_natt_addr_rem[IPSA_MAX_ADDRLEN]; 198 199 uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */ 200 uint16_t ipsa_remote_port; /* the other port that isn't 4500 */ 201 202 timeout_id_t ipsa_natt_ka_timer; 203 queue_t *ipsa_natt_q; 204 /* 205 * icmp type and code. *_end are to specify ranges. if only 206 * a single value, * and *_end are the same value. 207 */ 208 uint8_t ipsa_icmp_type; 209 uint8_t ipsa_icmp_type_end; 210 uint8_t ipsa_icmp_code; 211 uint8_t ipsa_icmp_code_end; 212 213 /* 214 * For the kernel crypto framework. 215 */ 216 crypto_key_t ipsa_kcfauthkey; /* authentication key */ 217 crypto_key_t ipsa_kcfencrkey; /* encryption key */ 218 crypto_ctx_template_t ipsa_authtmpl; /* auth context template */ 219 crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */ 220 crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */ 221 crypto_mechanism_t ipsa_emech; /* encr mech type */ 222 size_t ipsa_mac_len; /* auth MAC length */ 223 size_t ipsa_iv_len; /* encr IV length */ 224 225 /* 226 * Input and output processing functions called from IP. 227 */ 228 ipsec_status_t (*ipsa_output_func)(mblk_t *); 229 ipsec_status_t (*ipsa_input_func)(mblk_t *, void *); 230 231 /* MLS boxen will probably need more fields in here. */ 232 233 } ipsa_t; 234 235 /* 236 * ipsa_t address handling macros. We want these to be inlined, and deal 237 * with 32-bit words to avoid bcmp/bcopy calls. 238 * 239 * Assume we only have AF_INET and AF_INET6 addresses for now. Also assume 240 * that we have 32-bit alignment on everything. 241 */ 242 #define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \ 243 (((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \ 244 ((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0))) 245 #define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \ 246 ((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \ 247 (((fam) == AF_INET) || \ 248 (((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \ 249 ((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \ 250 ((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1]))) 251 #define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \ 252 ((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \ 253 if ((fam) == AF_INET6) {\ 254 ((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \ 255 ((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \ 256 ((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } } 257 258 /* 259 * ipsa_t reference hold/release macros. 260 * 261 * If you have a pointer, you REFHOLD. If you are releasing a pointer, you 262 * REFRELE. An ipsa_t that is newly inserted into the table should have 263 * a reference count of 1 (for the table's pointer), plus 1 more for every 264 * pointer that is referencing the ipsa_t. 265 */ 266 267 #define IPSA_REFHOLD(ipsa) { \ 268 atomic_add_32(&(ipsa)->ipsa_refcnt, 1); \ 269 ASSERT((ipsa)->ipsa_refcnt != 0); \ 270 } 271 272 /* 273 * Decrement the reference count on the SA. 274 * In architectures e.g sun4u, where atomic_add_32_nv is just 275 * a cas, we need to maintain the right memory barrier semantics 276 * as that of mutex_exit i.e all the loads and stores should complete 277 * before the cas is executed. membar_exit() does that here. 278 */ 279 280 #define IPSA_REFRELE(ipsa) { \ 281 ASSERT((ipsa)->ipsa_refcnt != 0); \ 282 membar_exit(); \ 283 if (atomic_add_32_nv(&(ipsa)->ipsa_refcnt, -1) == 0) \ 284 ((ipsa)->ipsa_freefunc)(ipsa); \ 285 } 286 287 /* 288 * Security association hash macros and definitions. For now, assume the 289 * IPsec model, and hash outbounds on destination address, and inbounds on 290 * SPI. 291 */ 292 293 #define IPSEC_DEFAULT_HASH_SIZE 256 294 295 #define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize)) 296 #define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize)) 297 #define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \ 298 (*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \ 299 (*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3))) 300 301 /* 302 * Syntactic sugar to find the appropriate hash bucket directly. 303 */ 304 305 #define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)]) 306 #define OUTBOUND_BUCKET_V4(sadb, v4addr) \ 307 &(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)]) 308 #define OUTBOUND_BUCKET_V6(sadb, v6addr) \ 309 &(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)]) 310 311 #define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */ 312 #define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */ 313 /* backward compat. */ 314 #define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */ 315 #define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */ 316 #define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */ 317 #define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */ 318 #define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */ 319 #define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */ 320 321 #define IPSA_F_HW 0x200000 /* hwaccel capable SA */ 322 #define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC 323 #define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM 324 #define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM) 325 #define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */ 326 327 /* SA states are important for handling UPDATE PF_KEY messages. */ 328 #define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL 329 #define IPSA_STATE_MATURE SADB_SASTATE_MATURE 330 #define IPSA_STATE_DYING SADB_SASTATE_DYING 331 #define IPSA_STATE_DEAD SADB_SASTATE_DEAD 332 333 /* 334 * NOTE: If the document authors do things right in defining algorithms, we'll 335 * probably have flags for what all is here w.r.t. replay, ESP w/HMAC, 336 * etc. 337 */ 338 339 #define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */ 340 #define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */ 341 #define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */ 342 343 #define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */ 344 #define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */ 345 #define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */ 346 347 #define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */ 348 #define IPSA_EALG_DES_CBC SADB_EALG_DESCBC 349 #define IPSA_EALG_3DES SADB_EALG_3DESCBC 350 351 /* 352 * Protect each ipsa_t bucket (and linkage) with a lock. 353 */ 354 355 typedef struct isaf_s { 356 ipsa_t *isaf_ipsa; 357 kmutex_t isaf_lock; 358 uint64_t isaf_gen; 359 } isaf_t; 360 361 /* 362 * ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound 363 * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record. 364 */ 365 366 #define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */ 367 /* waiting for an ACQUIRE to finish. */ 368 369 typedef struct ipsacq_s { 370 struct ipsacq_s *ipsacq_next; 371 struct ipsacq_s **ipsacq_ptpn; 372 kmutex_t *ipsacq_linklock; 373 struct ipsec_policy_s *ipsacq_policy; 374 struct ipsec_action_s *ipsacq_act; 375 376 sa_family_t ipsacq_addrfam; /* Address family. */ 377 int ipsacq_numpackets; /* How many packets queued up so far. */ 378 uint32_t ipsacq_seq; /* PF_KEY sequence number. */ 379 uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */ 380 381 kmutex_t ipsacq_lock; /* Protects non-linkage fields. */ 382 time_t ipsacq_expire; /* Wall-clock time when this record expires. */ 383 mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */ 384 385 /* These two point inside the last mblk inserted. */ 386 uint32_t *ipsacq_srcaddr; 387 uint32_t *ipsacq_dstaddr; 388 389 /* uint32_t ipsacq_proxysrc[IPSA_MAX_ADDRLEN]; */ /* For later */ 390 /* uint32_t ipsacq_proxydst[IPSA_MAX_ADDRLEN]; */ /* For later */ 391 392 /* These may change per-acquire. */ 393 uint16_t ipsacq_srcport; 394 uint16_t ipsacq_dstport; 395 uint8_t ipsacq_proto; 396 /* icmp type and code of triggering packet (if applicable) */ 397 uint8_t ipsacq_icmp_type; 398 uint8_t ipsacq_icmp_code; 399 } ipsacq_t; 400 401 /* 402 * Kernel-generated sequence numbers will be no less than 0x80000000 to 403 * forestall any cretinous problems with manual keying accidentally updating 404 * an ACQUIRE entry. 405 */ 406 #define IACQF_LOWEST_SEQ 0x80000000 407 408 #define SADB_AGE_INTERVAL_DEFAULT 1000 409 410 /* 411 * ACQUIRE fanout. Protect each linkage with a lock. 412 */ 413 414 typedef struct iacqf_s { 415 ipsacq_t *iacqf_ipsacq; 416 kmutex_t iacqf_lock; 417 } iacqf_t; 418 419 /* 420 * A (network protocol, ipsec protocol) specific SADB. 421 * (i.e., one each for {ah, esp} and {v4, v6}. 422 * 423 * Keep outbound assocs about the same as ire_cache entries for now. 424 * One danger point, multiple SAs for a single dest will clog a bucket. 425 * For the future, consider two-level hashing (2nd hash on IPC?), then probe. 426 */ 427 428 typedef struct sadb_s 429 { 430 isaf_t *sdb_of; 431 isaf_t *sdb_if; 432 iacqf_t *sdb_acq; 433 int sdb_hashsize; 434 } sadb_t; 435 436 /* 437 * A pair of SADB's (one for v4, one for v6), and related state (including 438 * acquire callbacks). 439 */ 440 441 typedef struct sadbp_s 442 { 443 uint32_t s_satype; 444 queue_t *s_ip_q; 445 uint32_t *s_acquire_timeout; 446 void (*s_acqfn)(ipsacq_t *, mblk_t *); 447 sadb_t s_v4; 448 sadb_t s_v6; 449 } sadbp_t; 450 451 /* 452 * Global IPsec security association databases (and all that go with them). 453 */ 454 extern sadbp_t ah_sadb, esp_sadb; 455 456 /* Pointer to an all-zeroes IPv6 address. */ 457 #define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros) 458 459 /* 460 * Form unique id from ipsec_out_t 461 */ 462 463 #define SA_FORM_UNIQUE_ID(io) \ 464 SA_UNIQUE_ID((io)->ipsec_out_src_port, (io)->ipsec_out_dst_port, \ 465 (io)->ipsec_out_proto) 466 467 /* 468 * This macro is used to generate unique ids (along with the addresses) for 469 * outbound datagrams that require unique SAs. 470 * 471 * N.B. casts and unsigned shift amounts discourage unwarranted 472 * sign extension of dstport and proto. 473 */ 474 #define SA_UNIQUE_ID(srcport, dstport, proto) \ 475 ((srcport) | ((uint64_t)(dstport) << 16U) | ((uint64_t)(proto) << 32U)) 476 477 /* 478 * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value 479 * from a packet to an SA. 480 */ 481 482 #define SA_UNIQUE_MASK(srcport, dstport, proto) \ 483 SA_UNIQUE_ID((srcport != 0)? 0xffff : 0, \ 484 (dstport != 0)? 0xffff : 0, \ 485 (proto != 0)? 0xff : 0) 486 487 /* 488 * Decompose unique id back into its original fields. 489 */ 490 #define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff 491 #define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff) 492 #define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff) 493 494 /* 495 * All functions that return an ipsa_t will return it with IPSA_REFHOLD() 496 * already called. 497 */ 498 499 /* SA retrieval (inbound and outbound) */ 500 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *, 501 sa_family_t); 502 ipsa_t *ipsec_getassocbyconn(isaf_t *, ipsec_out_t *, uint32_t *, uint32_t *, 503 sa_family_t, uint8_t); 504 505 /* SA insertion. */ 506 int sadb_insertassoc(ipsa_t *, isaf_t *); 507 508 /* SA table construction and destruction. */ 509 void sadbp_init(const char *name, sadbp_t *, int, int); 510 void sadbp_flush(sadbp_t *); 511 void sadbp_destroy(sadbp_t *); 512 513 /* SA insertion and deletion. */ 514 int sadb_insertassoc(ipsa_t *, isaf_t *); 515 void sadb_unlinkassoc(ipsa_t *); 516 517 /* Support routines to interface a keysock consumer to PF_KEY. */ 518 mblk_t *sadb_keysock_out(minor_t); 519 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *); 520 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *, 521 ipsa_t *); 522 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t); 523 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *), 524 timeout_id_t *, int); 525 int sadb_addrcheck(queue_t *, queue_t *, mblk_t *, sadb_ext_t *, uint_t); 526 void sadb_srcaddrfix(keysock_in_t *); 527 int sadb_addrset(ire_t *); 528 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *, 529 boolean_t); 530 #define sadb_get_sa(m, k, s, i, q) sadb_delget_sa(m, k, s, i, q, B_FALSE) 531 #define sadb_del_sa(m, k, s, i, q) sadb_delget_sa(m, k, s, i, q, B_TRUE) 532 533 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *, 534 queue_t *, queue_t *); 535 int sadb_common_add(queue_t *, queue_t *, mblk_t *, sadb_msg_t *, 536 keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t); 537 void sadb_set_usetime(ipsa_t *); 538 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t); 539 int sadb_update_sa(mblk_t *, keysock_in_t *, sadb_t *, 540 int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *)); 541 void sadb_acquire(mblk_t *, ipsec_out_t *, boolean_t, boolean_t); 542 543 void sadb_destroy_acquire(ipsacq_t *); 544 uint8_t *sadb_setup_acquire(uint8_t *, uint8_t *, ipsacq_t *); 545 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *); 546 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *); 547 boolean_t sadb_replay_check(ipsa_t *, uint32_t); 548 boolean_t sadb_replay_peek(ipsa_t *, uint32_t); 549 mblk_t *sadb_sa2msg(ipsa_t *, sadb_msg_t *); 550 int sadb_dump(queue_t *, mblk_t *, minor_t, sadb_t *); 551 void sadb_replay_delete(ipsa_t *); 552 void sadb_ager(sadb_t *, queue_t *, queue_t *, int); 553 554 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), 555 uint_t *, uint_t, short); 556 void sadb_sa_refrele(void *target); 557 void sadb_set_lpkt(ipsa_t *, mblk_t *); 558 mblk_t *sadb_clear_lpkt(ipsa_t *); 559 560 /* 561 * Hw accel-related calls (downloading sadb to driver) 562 */ 563 void sadb_ill_download(ill_t *, uint_t); 564 mblk_t *sadb_fmt_sa_req(uint_t, uint_t, ipsa_t *, boolean_t); 565 /* 566 * Sub-set of the IPsec hardware acceleration capabilities functions 567 * implemented by ip_if.c 568 */ 569 extern boolean_t ipsec_capab_match(ill_t *, uint_t, boolean_t, ipsa_t *); 570 extern void ill_ipsec_capab_send_all(uint_t, mblk_t *, ipsa_t *); 571 572 573 /* 574 * One IPsec -> IP linking routine, and two IPsec rate-limiting routines. 575 */ 576 extern boolean_t sadb_t_bind_req(queue_t *, int); 577 /*PRINTFLIKE5*/ 578 extern void ipsec_rl_strlog(short, short, char, ushort_t, char *, ...) 579 __KPRINTFLIKE(5); 580 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t, 581 void *, int); 582 583 /* 584 * Algorithm types. 585 */ 586 587 #define IPSEC_NALGTYPES 2 588 589 typedef enum ipsec_algtype { 590 IPSEC_ALG_AUTH = 0, 591 IPSEC_ALG_ENCR = 1 592 } ipsec_algtype_t; 593 594 /* 595 * Definitions as per IPsec/ISAKMP DOI. 596 */ 597 598 #define IPSEC_MAX_ALGS 256 599 #define PROTO_IPSEC_AH 2 600 #define PROTO_IPSEC_ESP 3 601 602 /* 603 * Common algorithm info. 604 */ 605 typedef struct ipsec_alginfo 606 { 607 uint8_t alg_id; 608 uint8_t alg_flags; 609 uint16_t *alg_key_sizes; 610 uint16_t *alg_block_sizes; 611 uint16_t alg_nkey_sizes; 612 uint16_t alg_nblock_sizes; 613 uint16_t alg_minbits; 614 uint16_t alg_maxbits; 615 uint16_t alg_datalen; 616 /* 617 * increment: number of bits from keysize to keysize 618 * default: # of increments from min to default key len 619 */ 620 uint16_t alg_increment; 621 uint16_t alg_default; 622 uint16_t alg_default_bits; 623 /* 624 * Min, max, and default key sizes effectively supported 625 * by the encryption framework. 626 */ 627 uint16_t alg_ef_minbits; 628 uint16_t alg_ef_maxbits; 629 uint16_t alg_ef_default; 630 uint16_t alg_ef_default_bits; 631 632 crypto_mech_type_t alg_mech_type; /* KCF mechanism type */ 633 crypto_mech_name_t alg_mech_name; /* KCF mechanism name */ 634 } ipsec_alginfo_t; 635 636 #define alg_datalen alg_block_sizes[0] 637 638 #define ALG_FLAG_VALID 0x01 639 #define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID) 640 641 /* 642 * Software crypto execution mode. 643 */ 644 typedef enum { 645 IPSEC_ALGS_EXEC_SYNC = 0, 646 IPSEC_ALGS_EXEC_ASYNC = 1 647 } ipsec_algs_exec_mode_t; 648 649 extern uint8_t ipsec_nalgs[IPSEC_NALGTYPES]; 650 extern ipsec_alginfo_t *ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS]; 651 extern uint8_t ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS]; 652 extern ipsec_algs_exec_mode_t ipsec_algs_exec_mode[IPSEC_NALGTYPES]; 653 654 extern kmutex_t alg_lock; 655 656 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *); 657 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t); 658 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t); 659 extern void ipsec_alg_free(ipsec_alginfo_t *); 660 extern void ipsec_register_prov_update(void); 661 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t); 662 663 /* 664 * Context templates management. 665 */ 666 667 #define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1) 668 #define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \ 669 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \ 670 mutex_enter(&assoc->ipsa_lock); \ 671 if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \ 672 mutex_enter(&alg_lock); \ 673 (void) ipsec_create_ctx_tmpl(_sa, _type); \ 674 mutex_exit(&alg_lock); \ 675 } \ 676 mutex_exit(&assoc->ipsa_lock); \ 677 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \ 678 _tmpl = NULL; \ 679 } \ 680 } 681 682 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t); 683 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t); 684 685 /* key checking */ 686 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *); 687 688 /* natt cleanup */ 689 extern void sadb_clear_timeouts(queue_t *); 690 691 typedef struct { 692 kstat_named_t esp_stat_in_requests; 693 kstat_named_t esp_stat_in_discards; 694 kstat_named_t esp_stat_lookup_failure; 695 kstat_named_t ah_stat_in_requests; 696 kstat_named_t ah_stat_in_discards; 697 kstat_named_t ah_stat_lookup_failure; 698 kstat_named_t sadb_acquire_maxpackets; 699 kstat_named_t sadb_acquire_qhiwater; 700 } ipsec_kstats_t; 701 702 extern ipsec_kstats_t *ipsec_kstats; 703 extern void ipsec_kstat_init(void); 704 extern void ipsec_kstat_destroy(void); 705 706 #define IP_ESP_BUMP_STAT(x) (ipsec_kstats->esp_stat_ ## x).value.ui64++ 707 #define IP_AH_BUMP_STAT(x) (ipsec_kstats->ah_stat_ ## x).value.ui64++ 708 #define IP_ACQUIRE_STAT(val, new) \ 709 if (((uint64_t)(new)) > (ipsec_kstats->sadb_acquire_ ## val).value.ui64) \ 710 (ipsec_kstats->sadb_acquire_ ## val).value.ui64 = ((uint64_t)(new)) 711 712 #ifdef __cplusplus 713 } 714 #endif 715 716 #endif /* _INET_SADB_H */ 717