1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #ifndef _INET_SADB_H 27 #define _INET_SADB_H 28 29 #ifdef __cplusplus 30 extern "C" { 31 #endif 32 33 #include <inet/ipsec_info.h> 34 #include <sys/crypto/common.h> 35 #include <sys/crypto/api.h> 36 #include <sys/note.h> 37 38 #define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */ 39 40 /* 41 * Return codes of IPsec processing functions. 42 */ 43 typedef enum { 44 IPSEC_STATUS_SUCCESS = 1, 45 IPSEC_STATUS_FAILED = 2, 46 IPSEC_STATUS_PENDING = 3 47 } ipsec_status_t; 48 49 /* 50 * IP security association. Synchronization assumes 32-bit loads, so 51 * the 64-bit quantities can't even be be read w/o locking it down! 52 */ 53 54 /* keying info */ 55 typedef struct ipsa_key_s { 56 void *sak_key; /* Algorithm key. */ 57 uint_t sak_keylen; /* Algorithm key length (in bytes). */ 58 uint_t sak_keybits; /* Algorithm key length (in bits) */ 59 uint_t sak_algid; /* Algorithm ID number. */ 60 } ipsa_key_t; 61 62 /* the security association */ 63 typedef struct ipsa_s { 64 struct ipsa_s *ipsa_next; /* Next in hash bucket */ 65 struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */ 66 kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */ 67 void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */ 68 /* 69 * NOTE: I may need more pointers, depending on future SA 70 * requirements. 71 */ 72 ipsa_key_t ipsa_authkeydata; 73 #define ipsa_authkey ipsa_authkeydata.sak_key 74 #define ipsa_authkeylen ipsa_authkeydata.sak_keylen 75 #define ipsa_authkeybits ipsa_authkeydata.sak_keybits 76 #define ipsa_auth_alg ipsa_authkeydata.sak_algid 77 ipsa_key_t ipsa_encrkeydata; 78 #define ipsa_encrkey ipsa_encrkeydata.sak_key 79 #define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen 80 #define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits 81 #define ipsa_encr_alg ipsa_encrkeydata.sak_algid 82 83 struct ipsid_s *ipsa_src_cid; /* Source certificate identity */ 84 struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */ 85 uint64_t *ipsa_integ; /* Integrity bitmap */ 86 uint64_t *ipsa_sens; /* Sensitivity bitmap */ 87 mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */ 88 mblk_t *ipsa_bpkt_head; /* Packets received while idle */ 89 mblk_t *ipsa_bpkt_tail; 90 #define SADB_MAX_IDLEPKTS 100 91 uint8_t ipsa_mblkcnt; /* Number of packets received while idle */ 92 93 /* 94 * PF_KEYv2 supports a replay window size of 255. Hence there is a 95 * need a bit vector to support a replay window of 255. 256 is a nice 96 * round number, so I support that. 97 * 98 * Use an array of uint64_t for best performance on 64-bit 99 * processors. (And hope that 32-bit compilers can handle things 100 * okay.) The " >> 6 " is to get the appropriate number of 64-bit 101 * ints. 102 */ 103 #define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */ 104 uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6]; 105 106 uint64_t ipsa_unique_id; /* Non-zero for unique SAs */ 107 uint64_t ipsa_unique_mask; /* mask value for unique_id */ 108 109 /* 110 * Reference count semantics: 111 * 112 * An SA has a reference count of 1 if something's pointing 113 * to it. This includes being in a hash table. So if an 114 * SA is in a hash table, it has a reference count of at least 1. 115 * 116 * When a ptr. to an IPSA is assigned, you MUST REFHOLD after 117 * said assignment. When a ptr. to an IPSA is released 118 * you MUST REFRELE. When the refcount hits 0, REFRELE 119 * will free the IPSA. 120 */ 121 kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */ 122 /* Q: Since I may be doing refcnts differently, will I need cv? */ 123 uint_t ipsa_refcnt; /* Reference count. */ 124 125 /* 126 * The following four time fields are the ones monitored by ah_ager() 127 * and esp_ager() respectively. They are all absolute wall-clock 128 * times. The times of creation (i.e. add time) and first use are 129 * pretty straightforward. The soft and hard expire times are 130 * derived from the times of first use and creation, plus the minimum 131 * expiration times in the fields that follow this. 132 * 133 * For example, if I had a hard add time of 30 seconds, and a hard 134 * use time of 15, the ipsa_hardexpiretime would be time of add, plus 135 * 30 seconds. If I USE the SA such that time of first use plus 15 136 * seconds would be earlier than the add time plus 30 seconds, then 137 * ipsa_hardexpiretime would become this earlier time. 138 */ 139 time_t ipsa_addtime; /* Time I was added. */ 140 time_t ipsa_usetime; /* Time of my first use. */ 141 time_t ipsa_lastuse; /* Time of my last use. */ 142 time_t ipsa_idletime; /* Seconds of idle time */ 143 time_t ipsa_last_nat_t_ka; /* Time of my last NAT-T keepalive. */ 144 time_t ipsa_softexpiretime; /* Time of my first soft expire. */ 145 time_t ipsa_hardexpiretime; /* Time of my first hard expire. */ 146 time_t ipsa_idleexpiretime; /* Time of my next idle expire time */ 147 148 /* 149 * The following fields are directly reflected in PF_KEYv2 LIFETIME 150 * extensions. The time_ts are in number-of-seconds, and the bytes 151 * are in... bytes. 152 */ 153 time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */ 154 time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */ 155 time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */ 156 time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */ 157 time_t ipsa_idleaddlt; /* Seconds of idle time after add */ 158 time_t ipsa_idleuselt; /* Seconds of idle time after first use */ 159 uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */ 160 uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */ 161 uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */ 162 163 /* 164 * "Allocations" are a concept mentioned in PF_KEYv2. We do not 165 * support them, except to record them per the PF_KEYv2 spec. 166 */ 167 uint_t ipsa_softalloc; /* Allocations allowed (soft). */ 168 uint_t ipsa_hardalloc; /* Allocations allowed (hard). */ 169 uint_t ipsa_alloc; /* Allocations made. */ 170 171 uint_t ipsa_integlen; /* Length of the integrity bitmap (bytes). */ 172 uint_t ipsa_senslen; /* Length of the sensitivity bitmap (bytes). */ 173 174 uint_t ipsa_type; /* Type of security association. (AH/etc.) */ 175 uint_t ipsa_dpd; /* Domain for sensitivity bit vectors. */ 176 uint_t ipsa_senslevel; /* Sensitivity level. */ 177 uint_t ipsa_integlevel; /* Integrity level. */ 178 uint_t ipsa_state; /* State of my association. */ 179 uint_t ipsa_replay_wsize; /* Size of replay window */ 180 uint32_t ipsa_flags; /* Flags for security association. */ 181 uint32_t ipsa_spi; /* Security parameters index. */ 182 uint32_t ipsa_replay; /* Highest seen replay value for this SA. */ 183 uint32_t ipsa_kmp; /* key management proto */ 184 uint32_t ipsa_kmc; /* key management cookie */ 185 186 boolean_t ipsa_haspeer; /* Has peer in another table. */ 187 188 /* 189 * Address storage. 190 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc. 191 * 192 * Address families (per sys/socket.h) guide us. We could have just 193 * used sockaddr_storage 194 */ 195 sa_family_t ipsa_addrfam; 196 sa_family_t ipsa_innerfam; /* Inner AF can be != src/dst AF. */ 197 198 uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN]; 199 uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN]; 200 uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN]; 201 uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN]; 202 203 uint8_t ipsa_innersrcpfx; 204 uint8_t ipsa_innerdstpfx; 205 206 uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */ 207 uint16_t ipsa_local_nat_port; /* Local NAT-T port. (0 --> 4500) */ 208 uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */ 209 210 /* these can only be v4 */ 211 uint32_t ipsa_natt_addr_loc; 212 uint32_t ipsa_natt_addr_rem; 213 214 /* 215 * icmp type and code. *_end are to specify ranges. if only 216 * a single value, * and *_end are the same value. 217 */ 218 uint8_t ipsa_icmp_type; 219 uint8_t ipsa_icmp_type_end; 220 uint8_t ipsa_icmp_code; 221 uint8_t ipsa_icmp_code_end; 222 223 /* 224 * For the kernel crypto framework. 225 */ 226 crypto_key_t ipsa_kcfauthkey; /* authentication key */ 227 crypto_key_t ipsa_kcfencrkey; /* encryption key */ 228 crypto_ctx_template_t ipsa_authtmpl; /* auth context template */ 229 crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */ 230 crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */ 231 crypto_mechanism_t ipsa_emech; /* encr mech type */ 232 size_t ipsa_mac_len; /* auth MAC length */ 233 size_t ipsa_iv_len; /* encr IV length */ 234 235 /* 236 * Input and output processing functions called from IP. 237 */ 238 ipsec_status_t (*ipsa_output_func)(mblk_t *); 239 ipsec_status_t (*ipsa_input_func)(mblk_t *, void *); 240 241 /* 242 * Soft reference to paired SA 243 */ 244 uint32_t ipsa_otherspi; 245 246 /* MLS boxen will probably need more fields in here. */ 247 248 netstack_t *ipsa_netstack; /* Does not have a netstack_hold */ 249 } ipsa_t; 250 251 /* 252 * ipsa_t address handling macros. We want these to be inlined, and deal 253 * with 32-bit words to avoid bcmp/bcopy calls. 254 * 255 * Assume we only have AF_INET and AF_INET6 addresses for now. Also assume 256 * that we have 32-bit alignment on everything. 257 */ 258 #define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \ 259 (((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \ 260 ((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0))) 261 #define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \ 262 ((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \ 263 (((fam) == AF_INET) || \ 264 (((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \ 265 ((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \ 266 ((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1]))) 267 #define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \ 268 ((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \ 269 if ((fam) == AF_INET6) {\ 270 ((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \ 271 ((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \ 272 ((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } } 273 274 /* 275 * ipsa_t reference hold/release macros. 276 * 277 * If you have a pointer, you REFHOLD. If you are releasing a pointer, you 278 * REFRELE. An ipsa_t that is newly inserted into the table should have 279 * a reference count of 1 (for the table's pointer), plus 1 more for every 280 * pointer that is referencing the ipsa_t. 281 */ 282 283 #define IPSA_REFHOLD(ipsa) { \ 284 atomic_add_32(&(ipsa)->ipsa_refcnt, 1); \ 285 ASSERT((ipsa)->ipsa_refcnt != 0); \ 286 } 287 288 /* 289 * Decrement the reference count on the SA. 290 * In architectures e.g sun4u, where atomic_add_32_nv is just 291 * a cas, we need to maintain the right memory barrier semantics 292 * as that of mutex_exit i.e all the loads and stores should complete 293 * before the cas is executed. membar_exit() does that here. 294 */ 295 296 #define IPSA_REFRELE(ipsa) { \ 297 ASSERT((ipsa)->ipsa_refcnt != 0); \ 298 membar_exit(); \ 299 if (atomic_add_32_nv(&(ipsa)->ipsa_refcnt, -1) == 0) \ 300 ((ipsa)->ipsa_freefunc)(ipsa); \ 301 } 302 303 /* 304 * Security association hash macros and definitions. For now, assume the 305 * IPsec model, and hash outbounds on destination address, and inbounds on 306 * SPI. 307 */ 308 309 #define IPSEC_DEFAULT_HASH_SIZE 256 310 311 #define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize)) 312 #define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize)) 313 #define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \ 314 (*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \ 315 (*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3))) 316 317 /* 318 * Syntactic sugar to find the appropriate hash bucket directly. 319 */ 320 321 #define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)]) 322 #define OUTBOUND_BUCKET_V4(sadb, v4addr) \ 323 &(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)]) 324 #define OUTBOUND_BUCKET_V6(sadb, v6addr) \ 325 &(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)]) 326 327 #define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */ 328 #define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */ 329 /* backward compat. */ 330 #define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */ 331 #define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */ 332 #define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */ 333 #define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */ 334 #define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */ 335 #define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */ 336 337 #define IPSA_F_HW 0x200000 /* hwaccel capable SA */ 338 #define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC 339 #define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM 340 #define IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED 341 #define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \ 342 SADB_X_SAFLAGS_NATTED) 343 #define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */ 344 #define IPSA_F_PAIRED SADB_X_SAFLAGS_PAIRED /* SA is one of a pair */ 345 #define IPSA_F_OUTBOUND SADB_X_SAFLAGS_OUTBOUND /* SA direction bit */ 346 #define IPSA_F_INBOUND SADB_X_SAFLAGS_INBOUND /* SA direction bit */ 347 #define IPSA_F_TUNNEL SADB_X_SAFLAGS_TUNNEL 348 349 /* 350 * Sets of flags that are allowed to by set or modified by PF_KEY apps. 351 */ 352 #define AH_UPDATE_SETTABLE_FLAGS \ 353 (SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \ 354 SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \ 355 SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \ 356 SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4) 357 358 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */ 359 #define ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT) 360 361 #define AH_ADD_SETTABLE_FLAGS \ 362 (AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \ 363 SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \ 364 SADB_SAFLAGS_NOREPLAY) 365 366 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */ 367 #define ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \ 368 SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2) 369 370 371 372 /* SA states are important for handling UPDATE PF_KEY messages. */ 373 #define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL 374 #define IPSA_STATE_MATURE SADB_SASTATE_MATURE 375 #define IPSA_STATE_DYING SADB_SASTATE_DYING 376 #define IPSA_STATE_DEAD SADB_SASTATE_DEAD 377 #define IPSA_STATE_IDLE SADB_X_SASTATE_IDLE 378 #define IPSA_STATE_ACTIVE_ELSEWHERE SADB_X_SASTATE_ACTIVE_ELSEWHERE 379 380 /* 381 * NOTE: If the document authors do things right in defining algorithms, we'll 382 * probably have flags for what all is here w.r.t. replay, ESP w/HMAC, 383 * etc. 384 */ 385 386 #define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */ 387 #define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */ 388 #define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */ 389 390 #define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */ 391 #define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */ 392 #define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */ 393 394 #define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */ 395 #define IPSA_EALG_DES_CBC SADB_EALG_DESCBC 396 #define IPSA_EALG_3DES SADB_EALG_3DESCBC 397 398 /* 399 * Protect each ipsa_t bucket (and linkage) with a lock. 400 */ 401 402 typedef struct isaf_s { 403 ipsa_t *isaf_ipsa; 404 kmutex_t isaf_lock; 405 uint64_t isaf_gen; 406 } isaf_t; 407 408 /* 409 * ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound 410 * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record. 411 */ 412 413 #define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */ 414 /* waiting for an ACQUIRE to finish. */ 415 416 typedef struct ipsacq_s { 417 struct ipsacq_s *ipsacq_next; 418 struct ipsacq_s **ipsacq_ptpn; 419 kmutex_t *ipsacq_linklock; 420 struct ipsec_policy_s *ipsacq_policy; 421 struct ipsec_action_s *ipsacq_act; 422 423 sa_family_t ipsacq_addrfam; /* Address family. */ 424 sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */ 425 int ipsacq_numpackets; /* How many packets queued up so far. */ 426 uint32_t ipsacq_seq; /* PF_KEY sequence number. */ 427 uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */ 428 429 kmutex_t ipsacq_lock; /* Protects non-linkage fields. */ 430 time_t ipsacq_expire; /* Wall-clock time when this record expires. */ 431 mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */ 432 433 /* These two point inside the last mblk inserted. */ 434 uint32_t *ipsacq_srcaddr; 435 uint32_t *ipsacq_dstaddr; 436 437 /* Cache these instead of point so we can mask off accordingly */ 438 uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN]; 439 uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN]; 440 441 /* These may change per-acquire. */ 442 uint16_t ipsacq_srcport; 443 uint16_t ipsacq_dstport; 444 uint8_t ipsacq_proto; 445 uint8_t ipsacq_inner_proto; 446 uint8_t ipsacq_innersrcpfx; 447 uint8_t ipsacq_innerdstpfx; 448 449 /* icmp type and code of triggering packet (if applicable) */ 450 uint8_t ipsacq_icmp_type; 451 uint8_t ipsacq_icmp_code; 452 } ipsacq_t; 453 454 /* 455 * Kernel-generated sequence numbers will be no less than 0x80000000 to 456 * forestall any cretinous problems with manual keying accidentally updating 457 * an ACQUIRE entry. 458 */ 459 #define IACQF_LOWEST_SEQ 0x80000000 460 461 #define SADB_AGE_INTERVAL_DEFAULT 8000 462 463 /* 464 * ACQUIRE fanout. Protect each linkage with a lock. 465 */ 466 467 typedef struct iacqf_s { 468 ipsacq_t *iacqf_ipsacq; 469 kmutex_t iacqf_lock; 470 } iacqf_t; 471 472 /* 473 * A (network protocol, ipsec protocol) specific SADB. 474 * (i.e., one each for {ah, esp} and {v4, v6}. 475 * 476 * Keep outbound assocs about the same as ire_cache entries for now. 477 * One danger point, multiple SAs for a single dest will clog a bucket. 478 * For the future, consider two-level hashing (2nd hash on IPC?), then probe. 479 */ 480 481 typedef struct sadb_s 482 { 483 isaf_t *sdb_of; 484 isaf_t *sdb_if; 485 iacqf_t *sdb_acq; 486 int sdb_hashsize; 487 } sadb_t; 488 489 /* 490 * A pair of SADB's (one for v4, one for v6), and related state (including 491 * acquire callbacks). 492 */ 493 494 typedef struct sadbp_s 495 { 496 uint32_t s_satype; 497 queue_t *s_ip_q; 498 uint32_t *s_acquire_timeout; 499 void (*s_acqfn)(ipsacq_t *, mblk_t *, netstack_t *); 500 sadb_t s_v4; 501 sadb_t s_v6; 502 uint32_t s_addflags; 503 uint32_t s_updateflags; 504 } sadbp_t; 505 506 /* 507 * A pair of SA's for a single connection, the structure contains a 508 * pointer to a SA and the SA its paired with (opposite direction) as well 509 * as the SA's respective hash buckets. 510 */ 511 typedef struct ipsap_s 512 { 513 boolean_t in_inbound_table; 514 isaf_t *ipsap_bucket; 515 ipsa_t *ipsap_sa_ptr; 516 isaf_t *ipsap_pbucket; 517 ipsa_t *ipsap_psa_ptr; 518 } ipsap_t; 519 520 typedef struct templist_s 521 { 522 ipsa_t *ipsa; 523 struct templist_s *next; 524 } templist_t; 525 526 /* Pointer to an all-zeroes IPv6 address. */ 527 #define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros) 528 529 /* 530 * Form unique id from ipsec_out_t 531 */ 532 533 #define SA_FORM_UNIQUE_ID(io) \ 534 SA_UNIQUE_ID((io)->ipsec_out_src_port, (io)->ipsec_out_dst_port, \ 535 ((io)->ipsec_out_tunnel ? ((io)->ipsec_out_inaf == AF_INET6 ? \ 536 IPPROTO_IPV6 : IPPROTO_ENCAP) : (io)->ipsec_out_proto), \ 537 ((io)->ipsec_out_tunnel ? (io)->ipsec_out_proto : 0)) 538 539 /* 540 * This macro is used to generate unique ids (along with the addresses, both 541 * inner and outer) for outbound datagrams that require unique SAs. 542 * 543 * N.B. casts and unsigned shift amounts discourage unwarranted 544 * sign extension of dstport, proto, and iproto. 545 * 546 * Unique ID is 64-bits allocated as follows (pardon my big-endian bias): 547 * 548 * 6 4 43 33 11 549 * 3 7 09 21 65 0 550 * +---------------*-------+-------+--------------+---------------+ 551 * | MUST-BE-ZERO |<iprot>|<proto>| <src port> | <dest port> | 552 * +---------------*-------+-------+--------------+---------------+ 553 * 554 * If there are inner addresses (tunnel mode) the ports come from the 555 * inner addresses. If there are no inner addresses, the ports come from 556 * the outer addresses (transport mode). Tunnel mode MUST have <proto> 557 * set to either IPPROTO_ENCAP or IPPPROTO_IPV6. 558 */ 559 #define SA_UNIQUE_ID(srcport, dstport, proto, iproto) \ 560 ((srcport) | ((uint64_t)(dstport) << 16U) | \ 561 ((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U)) 562 563 /* 564 * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value 565 * from a packet to an SA. 566 */ 567 568 #define SA_UNIQUE_MASK(srcport, dstport, proto, iproto) \ 569 SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0, \ 570 (dstport != 0) ? 0xffff : 0, \ 571 (proto != 0) ? 0xff : 0, \ 572 (iproto != 0) ? 0xff : 0) 573 574 /* 575 * Decompose unique id back into its original fields. 576 */ 577 #define SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff 578 #define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff 579 #define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff) 580 #define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff) 581 582 /* 583 * All functions that return an ipsa_t will return it with IPSA_REFHOLD() 584 * already called. 585 */ 586 587 /* SA retrieval (inbound and outbound) */ 588 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *, 589 sa_family_t); 590 ipsa_t *ipsec_getassocbyconn(isaf_t *, ipsec_out_t *, uint32_t *, uint32_t *, 591 sa_family_t, uint8_t); 592 ipsap_t *get_ipsa_pair(sadb_sa_t *, sadb_address_t *, sadb_address_t *, 593 sadbp_t *); 594 void destroy_ipsa_pair(ipsap_t *); 595 int update_pairing(ipsap_t *, keysock_in_t *, int *, sadbp_t *); 596 597 /* SA insertion. */ 598 int sadb_insertassoc(ipsa_t *, isaf_t *); 599 600 /* SA table construction and destruction. */ 601 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *); 602 void sadbp_flush(sadbp_t *, netstack_t *); 603 void sadbp_destroy(sadbp_t *, netstack_t *); 604 605 /* SA insertion and deletion. */ 606 int sadb_insertassoc(ipsa_t *, isaf_t *); 607 void sadb_unlinkassoc(ipsa_t *); 608 609 /* Support routines to interface a keysock consumer to PF_KEY. */ 610 mblk_t *sadb_keysock_out(minor_t); 611 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *); 612 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *, 613 ipsa_t *); 614 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t); 615 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *), 616 void *, timeout_id_t *, int); 617 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *); 618 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *); 619 int sadb_addrset(ire_t *); 620 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *, 621 uint8_t); 622 623 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, queue_t *, queue_t *); 624 int sadb_common_add(queue_t *, queue_t *, mblk_t *, sadb_msg_t *, 625 keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *, 626 netstack_t *, sadbp_t *); 627 void sadb_set_usetime(ipsa_t *); 628 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t); 629 int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *, 630 int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *), 631 netstack_t *, uint8_t); 632 void sadb_acquire(mblk_t *, ipsec_out_t *, boolean_t, boolean_t); 633 634 void sadb_destroy_acquire(ipsacq_t *, netstack_t *); 635 struct ipsec_stack; 636 mblk_t *sadb_setup_acquire(ipsacq_t *, uint8_t, struct ipsec_stack *); 637 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *, uint_t); 638 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *); 639 boolean_t sadb_replay_check(ipsa_t *, uint32_t); 640 boolean_t sadb_replay_peek(ipsa_t *, uint32_t); 641 int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *); 642 void sadb_replay_delete(ipsa_t *); 643 void sadb_ager(sadb_t *, queue_t *, queue_t *, int, netstack_t *); 644 645 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *, 646 uint_t *, uint_t, short); 647 void sadb_sa_refrele(void *target); 648 boolean_t sadb_set_lpkt(ipsa_t *, mblk_t *, netstack_t *); 649 mblk_t *sadb_clear_lpkt(ipsa_t *); 650 void sadb_buf_pkt(ipsa_t *, mblk_t *, netstack_t *); 651 void sadb_clear_buf_pkt(void *ipkt); 652 653 #define HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt) \ 654 { \ 655 if (buf_pkt != NULL) { \ 656 if (taskq_dispatch(taskq, sadb_clear_buf_pkt, \ 657 (void *) buf_pkt, TQ_NOSLEEP) == 0) { \ 658 /* Dispatch was unsuccessful drop the packets. */ \ 659 mblk_t *tmp; \ 660 while (buf_pkt != NULL) { \ 661 tmp = buf_pkt->b_next; \ 662 buf_pkt->b_next = NULL; \ 663 ip_drop_packet(buf_pkt, B_TRUE, NULL, \ 664 NULL, DROPPER(stack, \ 665 ipds_sadb_inidle_timeout), \ 666 &dropper); \ 667 buf_pkt = tmp; \ 668 } \ 669 } \ 670 } \ 671 } \ 672 673 /* 674 * Hw accel-related calls (downloading sadb to driver) 675 */ 676 void sadb_ill_download(ill_t *, uint_t); 677 mblk_t *sadb_fmt_sa_req(uint_t, uint_t, ipsa_t *, boolean_t); 678 /* 679 * Sub-set of the IPsec hardware acceleration capabilities functions 680 * implemented by ip_if.c 681 */ 682 extern boolean_t ipsec_capab_match(ill_t *, uint_t, boolean_t, ipsa_t *, 683 netstack_t *); 684 extern void ill_ipsec_capab_send_all(uint_t, mblk_t *, ipsa_t *, 685 netstack_t *); 686 687 688 /* 689 * One IPsec -> IP linking routine, and two IPsec rate-limiting routines. 690 */ 691 extern boolean_t sadb_t_bind_req(queue_t *, int); 692 /*PRINTFLIKE6*/ 693 extern void ipsec_rl_strlog(netstack_t *, short, short, char, 694 ushort_t, char *, ...) 695 __KPRINTFLIKE(6); 696 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t, 697 void *, int, netstack_t *); 698 699 /* 700 * Algorithm types. 701 */ 702 703 #define IPSEC_NALGTYPES 2 704 705 typedef enum ipsec_algtype { 706 IPSEC_ALG_AUTH = 0, 707 IPSEC_ALG_ENCR = 1 708 } ipsec_algtype_t; 709 710 /* 711 * Definitions as per IPsec/ISAKMP DOI. 712 */ 713 714 #define IPSEC_MAX_ALGS 256 715 #define PROTO_IPSEC_AH 2 716 #define PROTO_IPSEC_ESP 3 717 718 /* 719 * Common algorithm info. 720 */ 721 typedef struct ipsec_alginfo 722 { 723 uint8_t alg_id; 724 uint8_t alg_flags; 725 uint16_t *alg_key_sizes; 726 uint16_t *alg_block_sizes; 727 uint16_t alg_nkey_sizes; 728 uint16_t alg_nblock_sizes; 729 uint16_t alg_minbits; 730 uint16_t alg_maxbits; 731 uint16_t alg_datalen; 732 /* 733 * increment: number of bits from keysize to keysize 734 * default: # of increments from min to default key len 735 */ 736 uint16_t alg_increment; 737 uint16_t alg_default; 738 uint16_t alg_default_bits; 739 /* 740 * Min, max, and default key sizes effectively supported 741 * by the encryption framework. 742 */ 743 uint16_t alg_ef_minbits; 744 uint16_t alg_ef_maxbits; 745 uint16_t alg_ef_default; 746 uint16_t alg_ef_default_bits; 747 748 crypto_mech_type_t alg_mech_type; /* KCF mechanism type */ 749 crypto_mech_name_t alg_mech_name; /* KCF mechanism name */ 750 } ipsec_alginfo_t; 751 752 #define alg_datalen alg_block_sizes[0] 753 754 #define ALG_FLAG_VALID 0x01 755 #define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID) 756 757 /* 758 * Software crypto execution mode. 759 */ 760 typedef enum { 761 IPSEC_ALGS_EXEC_SYNC = 0, 762 IPSEC_ALGS_EXEC_ASYNC = 1 763 } ipsec_algs_exec_mode_t; 764 765 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *); 766 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *); 767 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t, 768 netstack_t *ns); 769 extern void ipsec_alg_free(ipsec_alginfo_t *); 770 extern void ipsec_register_prov_update(void); 771 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t, 772 netstack_t *); 773 774 /* 775 * Context templates management. 776 */ 777 778 #define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1) 779 #define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \ 780 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \ 781 mutex_enter(&assoc->ipsa_lock); \ 782 if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \ 783 ipsec_stack_t *ipss; \ 784 \ 785 ipss = assoc->ipsa_netstack->netstack_ipsec; \ 786 mutex_enter(&ipss->ipsec_alg_lock); \ 787 (void) ipsec_create_ctx_tmpl(_sa, _type); \ 788 mutex_exit(&ipss->ipsec_alg_lock); \ 789 } \ 790 mutex_exit(&assoc->ipsa_lock); \ 791 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \ 792 _tmpl = NULL; \ 793 } \ 794 } 795 796 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t); 797 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t); 798 799 /* key checking */ 800 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *); 801 802 typedef struct ipsec_kstats_s { 803 kstat_named_t esp_stat_in_requests; 804 kstat_named_t esp_stat_in_discards; 805 kstat_named_t esp_stat_lookup_failure; 806 kstat_named_t ah_stat_in_requests; 807 kstat_named_t ah_stat_in_discards; 808 kstat_named_t ah_stat_lookup_failure; 809 kstat_named_t sadb_acquire_maxpackets; 810 kstat_named_t sadb_acquire_qhiwater; 811 } ipsec_kstats_t; 812 813 /* 814 * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if 815 * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it 816 * fails, it will be NULL. Note this is done for all stack instances, 817 * so it *could* fail. hence a non-NULL checking is done for 818 * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT 819 */ 820 #define IP_ESP_BUMP_STAT(ipss, x) \ 821 do { \ 822 if ((ipss)->ipsec_kstats != NULL) \ 823 ((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++; \ 824 _NOTE(CONSTCOND) \ 825 } while (0) 826 827 #define IP_AH_BUMP_STAT(ipss, x) \ 828 do { \ 829 if ((ipss)->ipsec_kstats != NULL) \ 830 ((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++; \ 831 _NOTE(CONSTCOND) \ 832 } while (0) 833 834 #define IP_ACQUIRE_STAT(ipss, val, new) \ 835 do { \ 836 if ((ipss)->ipsec_kstats != NULL && \ 837 ((uint64_t)(new)) > \ 838 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64) \ 839 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \ 840 ((uint64_t)(new)); \ 841 _NOTE(CONSTCOND) \ 842 } while (0) 843 844 845 #ifdef __cplusplus 846 } 847 #endif 848 849 #endif /* _INET_SADB_H */ 850