1 /* 2 * Copyright (C) 1993-2003 by Darren Reed. 3 * 4 * See the IPFILTER.LICENCE file for details on licencing. 5 * 6 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 7 * Use is subject to license terms. 8 */ 9 10 #if defined(KERNEL) || defined(_KERNEL) 11 # undef KERNEL 12 # undef _KERNEL 13 # define KERNEL 1 14 # define _KERNEL 1 15 #endif 16 #include <sys/errno.h> 17 #include <sys/types.h> 18 #include <sys/param.h> 19 #include <sys/time.h> 20 #if defined(__NetBSD__) 21 # if (NetBSD >= 199905) && !defined(IPFILTER_LKM) && defined(_KERNEL) 22 # include "opt_ipfilter_log.h" 23 # endif 24 #endif 25 #if defined(_KERNEL) && defined(__FreeBSD_version) && \ 26 (__FreeBSD_version >= 220000) 27 # if (__FreeBSD_version >= 400000) 28 # if !defined(IPFILTER_LKM) 29 # include "opt_inet6.h" 30 # endif 31 # if (__FreeBSD_version == 400019) 32 # define CSUM_DELAY_DATA 33 # endif 34 # endif 35 # include <sys/filio.h> 36 #else 37 # include <sys/ioctl.h> 38 #endif 39 #if !defined(_AIX51) 40 # include <sys/fcntl.h> 41 #endif 42 #if defined(_KERNEL) 43 # include <sys/systm.h> 44 # include <sys/file.h> 45 #else 46 # include <stdio.h> 47 # include <string.h> 48 # include <stdlib.h> 49 # include <stddef.h> 50 # include <sys/file.h> 51 # define _KERNEL 52 # ifdef __OpenBSD__ 53 struct file; 54 # endif 55 # include <sys/uio.h> 56 # undef _KERNEL 57 #endif 58 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \ 59 !defined(linux) 60 # include <sys/mbuf.h> 61 #else 62 # if !defined(linux) 63 # include <sys/byteorder.h> 64 # endif 65 # if (SOLARIS2 < 5) && defined(sun) 66 # include <sys/dditypes.h> 67 # endif 68 #endif 69 #ifdef __hpux 70 # define _NET_ROUTE_INCLUDED 71 #endif 72 #if !defined(linux) 73 # include <sys/protosw.h> 74 #endif 75 #include <sys/socket.h> 76 #include <net/if.h> 77 #ifdef sun 78 # include <net/af.h> 79 #endif 80 #if !defined(_KERNEL) && defined(__FreeBSD__) 81 # include "radix_ipf.h" 82 #endif 83 #include <net/route.h> 84 #include <netinet/in.h> 85 #include <netinet/in_systm.h> 86 #include <netinet/ip.h> 87 #if !defined(linux) 88 # include <netinet/ip_var.h> 89 #endif 90 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */ 91 # include <sys/hashing.h> 92 # include <netinet/in_var.h> 93 #endif 94 #include <netinet/tcp.h> 95 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL) 96 # include <netinet/udp.h> 97 # include <netinet/ip_icmp.h> 98 #endif 99 #ifdef __hpux 100 # undef _NET_ROUTE_INCLUDED 101 #endif 102 #include "netinet/ip_compat.h" 103 #ifdef USE_INET6 104 # include <netinet/icmp6.h> 105 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux) 106 # include <netinet6/in6_var.h> 107 # endif 108 #endif 109 #include <netinet/tcpip.h> 110 #include "netinet/ip_fil.h" 111 #include "netinet/ip_nat.h" 112 #include "netinet/ip_frag.h" 113 #include "netinet/ip_state.h" 114 #include "netinet/ip_proxy.h" 115 #include "netinet/ip_auth.h" 116 #include "netinet/ipf_stack.h" 117 #ifdef IPFILTER_SCAN 118 # include "netinet/ip_scan.h" 119 #endif 120 #ifdef IPFILTER_SYNC 121 # include "netinet/ip_sync.h" 122 #endif 123 #include "netinet/ip_pool.h" 124 #include "netinet/ip_htable.h" 125 #ifdef IPFILTER_COMPILED 126 # include "netinet/ip_rules.h" 127 #endif 128 #if defined(IPFILTER_BPF) && defined(_KERNEL) 129 # include <net/bpf.h> 130 #endif 131 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000) 132 # include <sys/malloc.h> 133 # if defined(_KERNEL) && !defined(IPFILTER_LKM) 134 # include "opt_ipfilter.h" 135 # endif 136 #endif 137 #include "netinet/ipl.h" 138 /* END OF INCLUDES */ 139 140 #if !defined(lint) 141 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed"; 142 static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $"; 143 #endif 144 145 #ifndef _KERNEL 146 # include "ipf.h" 147 # include "ipt.h" 148 # include "bpf-ipf.h" 149 extern int opts; 150 151 # define FR_VERBOSE(verb_pr) verbose verb_pr 152 # define FR_DEBUG(verb_pr) debug verb_pr 153 #else /* #ifndef _KERNEL */ 154 # define FR_VERBOSE(verb_pr) 155 # define FR_DEBUG(verb_pr) 156 #endif /* _KERNEL */ 157 158 159 char ipfilter_version[] = IPL_VERSION; 160 int fr_features = 0 161 #ifdef IPFILTER_LKM 162 | IPF_FEAT_LKM 163 #endif 164 #ifdef IPFILTER_LOG 165 | IPF_FEAT_LOG 166 #endif 167 #ifdef IPFILTER_LOOKUP 168 | IPF_FEAT_LOOKUP 169 #endif 170 #ifdef IPFILTER_BPF 171 | IPF_FEAT_BPF 172 #endif 173 #ifdef IPFILTER_COMPILED 174 | IPF_FEAT_COMPILED 175 #endif 176 #ifdef IPFILTER_CKSUM 177 | IPF_FEAT_CKSUM 178 #endif 179 #ifdef IPFILTER_SYNC 180 | IPF_FEAT_SYNC 181 #endif 182 #ifdef IPFILTER_SCAN 183 | IPF_FEAT_SCAN 184 #endif 185 #ifdef USE_INET6 186 | IPF_FEAT_IPV6 187 #endif 188 ; 189 190 #define IPF_BUMP(x) (x)++ 191 192 static INLINE int fr_ipfcheck __P((fr_info_t *, frentry_t *, int)); 193 static INLINE int fr_ipfcheck __P((fr_info_t *, frentry_t *, int)); 194 static int fr_portcheck __P((frpcmp_t *, u_short *)); 195 static int frflushlist __P((int, minor_t, int *, frentry_t **, 196 ipf_stack_t *)); 197 static ipfunc_t fr_findfunc __P((ipfunc_t)); 198 static frentry_t *fr_firewall __P((fr_info_t *, u_32_t *)); 199 static int fr_funcinit __P((frentry_t *fr, ipf_stack_t *)); 200 static INLINE void frpr_ah __P((fr_info_t *)); 201 static INLINE void frpr_esp __P((fr_info_t *)); 202 static INLINE void frpr_gre __P((fr_info_t *)); 203 static INLINE void frpr_udp __P((fr_info_t *)); 204 static INLINE void frpr_tcp __P((fr_info_t *)); 205 static INLINE void frpr_icmp __P((fr_info_t *)); 206 static INLINE void frpr_ipv4hdr __P((fr_info_t *)); 207 static INLINE int frpr_pullup __P((fr_info_t *, int)); 208 static INLINE void frpr_short __P((fr_info_t *, int)); 209 static INLINE void frpr_tcpcommon __P((fr_info_t *)); 210 static INLINE void frpr_udpcommon __P((fr_info_t *)); 211 static INLINE int fr_updateipid __P((fr_info_t *)); 212 #ifdef IPFILTER_LOOKUP 213 static int fr_grpmapinit __P((frentry_t *fr, ipf_stack_t *)); 214 static INLINE void *fr_resolvelookup __P((u_int, u_int, lookupfunc_t *, 215 ipf_stack_t *)); 216 #endif 217 static void frsynclist __P((int, int, void *, char *, frentry_t *, 218 ipf_stack_t *)); 219 static void *fr_ifsync __P((int, int, char *, char *, 220 void *, void *, ipf_stack_t *)); 221 static ipftuneable_t *fr_findtunebyname __P((const char *, ipf_stack_t *)); 222 static ipftuneable_t *fr_findtunebycookie __P((void *, void **, ipf_stack_t *)); 223 224 /* 225 * bit values for identifying presence of individual IP options 226 * All of these tables should be ordered by increasing key value on the left 227 * hand side to allow for binary searching of the array and include a trailer 228 * with a 0 for the bitmask for linear searches to easily find the end with. 229 */ 230 const struct optlist ipopts[20] = { 231 { IPOPT_NOP, 0x000001 }, 232 { IPOPT_RR, 0x000002 }, 233 { IPOPT_ZSU, 0x000004 }, 234 { IPOPT_MTUP, 0x000008 }, 235 { IPOPT_MTUR, 0x000010 }, 236 { IPOPT_ENCODE, 0x000020 }, 237 { IPOPT_TS, 0x000040 }, 238 { IPOPT_TR, 0x000080 }, 239 { IPOPT_SECURITY, 0x000100 }, 240 { IPOPT_LSRR, 0x000200 }, 241 { IPOPT_E_SEC, 0x000400 }, 242 { IPOPT_CIPSO, 0x000800 }, 243 { IPOPT_SATID, 0x001000 }, 244 { IPOPT_SSRR, 0x002000 }, 245 { IPOPT_ADDEXT, 0x004000 }, 246 { IPOPT_VISA, 0x008000 }, 247 { IPOPT_IMITD, 0x010000 }, 248 { IPOPT_EIP, 0x020000 }, 249 { IPOPT_FINN, 0x040000 }, 250 { 0, 0x000000 } 251 }; 252 253 #ifdef USE_INET6 254 struct optlist ip6exthdr[] = { 255 { IPPROTO_HOPOPTS, 0x000001 }, 256 { IPPROTO_IPV6, 0x000002 }, 257 { IPPROTO_ROUTING, 0x000004 }, 258 { IPPROTO_FRAGMENT, 0x000008 }, 259 { IPPROTO_ESP, 0x000010 }, 260 { IPPROTO_AH, 0x000020 }, 261 { IPPROTO_NONE, 0x000040 }, 262 { IPPROTO_DSTOPTS, 0x000080 }, 263 { 0, 0 } 264 }; 265 #endif 266 267 struct optlist tcpopts[] = { 268 { TCPOPT_NOP, 0x000001 }, 269 { TCPOPT_MAXSEG, 0x000002 }, 270 { TCPOPT_WINDOW, 0x000004 }, 271 { TCPOPT_SACK_PERMITTED, 0x000008 }, 272 { TCPOPT_SACK, 0x000010 }, 273 { TCPOPT_TIMESTAMP, 0x000020 }, 274 { 0, 0x000000 } 275 }; 276 277 /* 278 * bit values for identifying presence of individual IP security options 279 */ 280 const struct optlist secopt[8] = { 281 { IPSO_CLASS_RES4, 0x01 }, 282 { IPSO_CLASS_TOPS, 0x02 }, 283 { IPSO_CLASS_SECR, 0x04 }, 284 { IPSO_CLASS_RES3, 0x08 }, 285 { IPSO_CLASS_CONF, 0x10 }, 286 { IPSO_CLASS_UNCL, 0x20 }, 287 { IPSO_CLASS_RES2, 0x40 }, 288 { IPSO_CLASS_RES1, 0x80 } 289 }; 290 291 292 /* 293 * Table of functions available for use with call rules. 294 */ 295 static ipfunc_resolve_t fr_availfuncs[] = { 296 #ifdef IPFILTER_LOOKUP 297 { "fr_srcgrpmap", fr_srcgrpmap, fr_grpmapinit }, 298 { "fr_dstgrpmap", fr_dstgrpmap, fr_grpmapinit }, 299 #endif 300 { "", NULL } 301 }; 302 303 304 /* 305 * Below we declare a list of constants used only by the ipf_extraflush() 306 * routine. We are placing it here, instead of in ipf_extraflush() itself, 307 * because we want to make it visible to tools such as mdb, nm etc., so the 308 * values can easily be altered during debugging. 309 */ 310 static const int idletime_tab[] = { 311 IPF_TTLVAL(30), /* 30 seconds */ 312 IPF_TTLVAL(1800), /* 30 minutes */ 313 IPF_TTLVAL(43200), /* 12 hours */ 314 IPF_TTLVAL(345600), /* 4 days */ 315 }; 316 317 318 /* 319 * The next section of code is a a collection of small routines that set 320 * fields in the fr_info_t structure passed based on properties of the 321 * current packet. There are different routines for the same protocol 322 * for each of IPv4 and IPv6. Adding a new protocol, for which there 323 * will "special" inspection for setup, is now more easily done by adding 324 * a new routine and expanding the frpr_ipinit*() function rather than by 325 * adding more code to a growing switch statement. 326 */ 327 #ifdef USE_INET6 328 static INLINE int frpr_ah6 __P((fr_info_t *)); 329 static INLINE void frpr_esp6 __P((fr_info_t *)); 330 static INLINE void frpr_gre6 __P((fr_info_t *)); 331 static INLINE void frpr_udp6 __P((fr_info_t *)); 332 static INLINE void frpr_tcp6 __P((fr_info_t *)); 333 static INLINE void frpr_icmp6 __P((fr_info_t *)); 334 static INLINE void frpr_ipv6hdr __P((fr_info_t *)); 335 static INLINE void frpr_short6 __P((fr_info_t *, int)); 336 static INLINE int frpr_hopopts6 __P((fr_info_t *)); 337 static INLINE int frpr_routing6 __P((fr_info_t *)); 338 static INLINE int frpr_dstopts6 __P((fr_info_t *)); 339 static INLINE int frpr_fragment6 __P((fr_info_t *)); 340 static INLINE int frpr_ipv6exthdr __P((fr_info_t *, int, int)); 341 342 343 /* ------------------------------------------------------------------------ */ 344 /* Function: frpr_short6 */ 345 /* Returns: void */ 346 /* Parameters: fin(I) - pointer to packet information */ 347 /* */ 348 /* IPv6 Only */ 349 /* This is function enforces the 'is a packet too short to be legit' rule */ 350 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */ 351 /* for frpr_short() for more details. */ 352 /* ------------------------------------------------------------------------ */ 353 static INLINE void frpr_short6(fin, xmin) 354 fr_info_t *fin; 355 int xmin; 356 { 357 358 if (fin->fin_dlen < xmin) 359 fin->fin_flx |= FI_SHORT; 360 } 361 362 363 /* ------------------------------------------------------------------------ */ 364 /* Function: frpr_ipv6hdr */ 365 /* Returns: Nil */ 366 /* Parameters: fin(I) - pointer to packet information */ 367 /* */ 368 /* IPv6 Only */ 369 /* Copy values from the IPv6 header into the fr_info_t struct and call the */ 370 /* per-protocol analyzer if it exists. */ 371 /* ------------------------------------------------------------------------ */ 372 static INLINE void frpr_ipv6hdr(fin) 373 fr_info_t *fin; 374 { 375 ip6_t *ip6 = (ip6_t *)fin->fin_ip; 376 int p, go = 1, i, hdrcount; 377 fr_ip_t *fi = &fin->fin_fi; 378 379 fin->fin_off = 0; 380 381 fi->fi_tos = 0; 382 fi->fi_optmsk = 0; 383 fi->fi_secmsk = 0; 384 fi->fi_auth = 0; 385 386 p = ip6->ip6_nxt; 387 fi->fi_ttl = ip6->ip6_hlim; 388 fi->fi_src.in6 = ip6->ip6_src; 389 fi->fi_dst.in6 = ip6->ip6_dst; 390 fin->fin_id = 0; 391 392 hdrcount = 0; 393 while (go && !(fin->fin_flx & (FI_BAD|FI_SHORT))) { 394 switch (p) 395 { 396 case IPPROTO_UDP : 397 frpr_udp6(fin); 398 go = 0; 399 break; 400 401 case IPPROTO_TCP : 402 frpr_tcp6(fin); 403 go = 0; 404 break; 405 406 case IPPROTO_ICMPV6 : 407 frpr_icmp6(fin); 408 go = 0; 409 break; 410 411 case IPPROTO_GRE : 412 frpr_gre6(fin); 413 go = 0; 414 break; 415 416 case IPPROTO_HOPOPTS : 417 /* 418 * hop by hop ext header is only allowed 419 * right after IPv6 header. 420 */ 421 if (hdrcount != 0) { 422 fin->fin_flx |= FI_BAD; 423 p = IPPROTO_NONE; 424 } else { 425 p = frpr_hopopts6(fin); 426 } 427 break; 428 429 case IPPROTO_DSTOPTS : 430 p = frpr_dstopts6(fin); 431 break; 432 433 case IPPROTO_ROUTING : 434 p = frpr_routing6(fin); 435 break; 436 437 case IPPROTO_AH : 438 p = frpr_ah6(fin); 439 break; 440 441 case IPPROTO_ESP : 442 frpr_esp6(fin); 443 go = 0; 444 break; 445 446 case IPPROTO_IPV6 : 447 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 448 if (ip6exthdr[i].ol_val == p) { 449 fin->fin_flx |= ip6exthdr[i].ol_bit; 450 break; 451 } 452 go = 0; 453 break; 454 455 case IPPROTO_NONE : 456 go = 0; 457 break; 458 459 case IPPROTO_FRAGMENT : 460 p = frpr_fragment6(fin); 461 if (fin->fin_off != 0) /* Not the first frag */ 462 go = 0; 463 break; 464 465 default : 466 go = 0; 467 break; 468 } 469 hdrcount++; 470 471 /* 472 * It is important to note that at this point, for the 473 * extension headers (go != 0), the entire header may not have 474 * been pulled up when the code gets to this point. This is 475 * only done for "go != 0" because the other header handlers 476 * will all pullup their complete header. The other indicator 477 * of an incomplete packet is that this was just an extension 478 * header. 479 */ 480 if ((go != 0) && (p != IPPROTO_NONE) && 481 (frpr_pullup(fin, 0) == -1)) { 482 p = IPPROTO_NONE; 483 go = 0; 484 } 485 } 486 fi->fi_p = p; 487 } 488 489 490 /* ------------------------------------------------------------------------ */ 491 /* Function: frpr_ipv6exthdr */ 492 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 493 /* Parameters: fin(I) - pointer to packet information */ 494 /* multiple(I) - flag indicating yes/no if multiple occurances */ 495 /* of this extension header are allowed. */ 496 /* proto(I) - protocol number for this extension header */ 497 /* */ 498 /* IPv6 Only */ 499 /* ------------------------------------------------------------------------ */ 500 static INLINE int frpr_ipv6exthdr(fin, multiple, proto) 501 fr_info_t *fin; 502 int multiple, proto; 503 { 504 struct ip6_ext *hdr; 505 u_short shift; 506 int i; 507 508 fin->fin_flx |= FI_V6EXTHDR; 509 510 /* 8 is default length of extension hdr */ 511 if ((fin->fin_dlen - 8) < 0) { 512 fin->fin_flx |= FI_SHORT; 513 return IPPROTO_NONE; 514 } 515 516 if (frpr_pullup(fin, 8) == -1) 517 return IPPROTO_NONE; 518 519 hdr = fin->fin_dp; 520 shift = 8 + (hdr->ip6e_len << 3); 521 if (shift > fin->fin_dlen) { /* Nasty extension header length? */ 522 fin->fin_flx |= FI_BAD; 523 return IPPROTO_NONE; 524 } 525 526 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 527 if (ip6exthdr[i].ol_val == proto) { 528 /* 529 * Most IPv6 extension headers are only allowed once. 530 */ 531 if ((multiple == 0) && 532 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) 533 fin->fin_flx |= FI_BAD; 534 else 535 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 536 break; 537 } 538 539 fin->fin_dp = (char *)fin->fin_dp + shift; 540 fin->fin_dlen -= shift; 541 542 return hdr->ip6e_nxt; 543 } 544 545 546 /* ------------------------------------------------------------------------ */ 547 /* Function: frpr_hopopts6 */ 548 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 549 /* Parameters: fin(I) - pointer to packet information */ 550 /* */ 551 /* IPv6 Only */ 552 /* This is function checks pending hop by hop options extension header */ 553 /* ------------------------------------------------------------------------ */ 554 static INLINE int frpr_hopopts6(fin) 555 fr_info_t *fin; 556 { 557 return frpr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); 558 } 559 560 561 /* ------------------------------------------------------------------------ */ 562 /* Function: frpr_routing6 */ 563 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 564 /* Parameters: fin(I) - pointer to packet information */ 565 /* */ 566 /* IPv6 Only */ 567 /* This is function checks pending routing extension header */ 568 /* ------------------------------------------------------------------------ */ 569 static INLINE int frpr_routing6(fin) 570 fr_info_t *fin; 571 { 572 struct ip6_ext *hdr; 573 int shift; 574 575 hdr = fin->fin_dp; 576 if (frpr_ipv6exthdr(fin, 0, IPPROTO_ROUTING) == IPPROTO_NONE) 577 return IPPROTO_NONE; 578 579 shift = 8 + (hdr->ip6e_len << 3); 580 /* 581 * Nasty extension header length? 582 */ 583 if ((hdr->ip6e_len << 3) & 15) { 584 fin->fin_flx |= FI_BAD; 585 /* 586 * Compensate for the changes made in frpr_ipv6exthdr() 587 */ 588 fin->fin_dlen += shift; 589 fin->fin_dp = (char *)fin->fin_dp - shift; 590 return IPPROTO_NONE; 591 } 592 593 return hdr->ip6e_nxt; 594 } 595 596 597 /* ------------------------------------------------------------------------ */ 598 /* Function: frpr_fragment6 */ 599 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 600 /* Parameters: fin(I) - pointer to packet information */ 601 /* */ 602 /* IPv6 Only */ 603 /* Examine the IPv6 fragment header and extract fragment offset information.*/ 604 /* */ 605 /* We don't know where the transport layer header (or whatever is next is), */ 606 /* as it could be behind destination options (amongst others). Because */ 607 /* there is no fragment cache, there is no knowledge about whether or not an*/ 608 /* upper layer header has been seen (or where it ends) and thus we are not */ 609 /* able to continue processing beyond this header with any confidence. */ 610 /* ------------------------------------------------------------------------ */ 611 static INLINE int frpr_fragment6(fin) 612 fr_info_t *fin; 613 { 614 struct ip6_frag *frag; 615 int dlen; 616 617 fin->fin_flx |= FI_FRAG; 618 619 dlen = fin->fin_dlen; 620 if (frpr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT) == IPPROTO_NONE) 621 return IPPROTO_NONE; 622 623 if (frpr_pullup(fin, sizeof(*frag)) == -1) 624 return IPPROTO_NONE; 625 626 frpr_short6(fin, sizeof(*frag)); 627 628 if ((fin->fin_flx & FI_SHORT) != 0) 629 return IPPROTO_NONE; 630 631 frag = (struct ip6_frag *)((char *)fin->fin_dp - sizeof(*frag)); 632 /* 633 * Fragment but no fragmentation info set? Bad packet... 634 */ 635 if (frag->ip6f_offlg == 0) { 636 fin->fin_flx |= FI_BAD; 637 return IPPROTO_NONE; 638 } 639 640 fin->fin_id = frag->ip6f_ident; 641 fin->fin_off = frag->ip6f_offlg & IP6F_OFF_MASK; 642 fin->fin_off = ntohs(fin->fin_off); 643 if (fin->fin_off != 0) 644 fin->fin_flx |= FI_FRAGBODY; 645 646 fin->fin_dp = (char *)frag + sizeof(*frag); 647 fin->fin_dlen = dlen - sizeof(*frag); 648 649 /* length of hdrs(after frag hdr) + data */ 650 fin->fin_flen = fin->fin_dlen; 651 652 /* 653 * If the frag is not the last one and the payload length 654 * is not multiple of 8, it must be dropped. 655 */ 656 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) && (dlen % 8)) { 657 fin->fin_flx |= FI_BAD; 658 return IPPROTO_NONE; 659 } 660 661 return frag->ip6f_nxt; 662 } 663 664 665 /* ------------------------------------------------------------------------ */ 666 /* Function: frpr_dstopts6 */ 667 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 668 /* Parameters: fin(I) - pointer to packet information */ 669 /* nextheader(I) - stores next header value */ 670 /* */ 671 /* IPv6 Only */ 672 /* This is function checks pending destination options extension header */ 673 /* ------------------------------------------------------------------------ */ 674 static INLINE int frpr_dstopts6(fin) 675 fr_info_t *fin; 676 { 677 return frpr_ipv6exthdr(fin, 1, IPPROTO_DSTOPTS); 678 } 679 680 681 /* ------------------------------------------------------------------------ */ 682 /* Function: frpr_icmp6 */ 683 /* Returns: void */ 684 /* Parameters: fin(I) - pointer to packet information */ 685 /* */ 686 /* IPv6 Only */ 687 /* This routine is mainly concerned with determining the minimum valid size */ 688 /* for an ICMPv6 packet. */ 689 /* ------------------------------------------------------------------------ */ 690 static INLINE void frpr_icmp6(fin) 691 fr_info_t *fin; 692 { 693 int minicmpsz = sizeof(struct icmp6_hdr); 694 struct icmp6_hdr *icmp6; 695 696 if (frpr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) 697 return; 698 699 if (fin->fin_dlen > 1) { 700 icmp6 = fin->fin_dp; 701 702 fin->fin_data[0] = *(u_short *)icmp6; 703 704 if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0) 705 fin->fin_flx |= FI_ICMPQUERY; 706 707 switch (icmp6->icmp6_type) 708 { 709 case ICMP6_ECHO_REPLY : 710 case ICMP6_ECHO_REQUEST : 711 if (fin->fin_dlen >= 6) 712 fin->fin_data[1] = icmp6->icmp6_id; 713 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t); 714 break; 715 case ICMP6_DST_UNREACH : 716 case ICMP6_PACKET_TOO_BIG : 717 case ICMP6_TIME_EXCEEDED : 718 case ICMP6_PARAM_PROB : 719 if ((fin->fin_m != NULL) && 720 (M_LEN(fin->fin_m) < fin->fin_plen)) { 721 if (fr_coalesce(fin) != 1) 722 return; 723 } 724 fin->fin_flx |= FI_ICMPERR; 725 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t); 726 break; 727 default : 728 break; 729 } 730 } 731 732 frpr_short6(fin, minicmpsz); 733 fin->fin_flen -= fin->fin_dlen - minicmpsz; 734 } 735 736 737 /* ------------------------------------------------------------------------ */ 738 /* Function: frpr_udp6 */ 739 /* Returns: void */ 740 /* Parameters: fin(I) - pointer to packet information */ 741 /* */ 742 /* IPv6 Only */ 743 /* Analyse the packet for IPv6/UDP properties. */ 744 /* Is not expected to be called for fragmented packets. */ 745 /* ------------------------------------------------------------------------ */ 746 static INLINE void frpr_udp6(fin) 747 fr_info_t *fin; 748 { 749 750 fr_checkv6sum(fin); 751 752 frpr_short6(fin, sizeof(struct udphdr)); 753 if (frpr_pullup(fin, sizeof(struct udphdr)) == -1) 754 return; 755 756 fin->fin_flen -= fin->fin_dlen - sizeof(struct udphdr); 757 758 frpr_udpcommon(fin); 759 } 760 761 762 /* ------------------------------------------------------------------------ */ 763 /* Function: frpr_tcp6 */ 764 /* Returns: void */ 765 /* Parameters: fin(I) - pointer to packet information */ 766 /* */ 767 /* IPv6 Only */ 768 /* Analyse the packet for IPv6/TCP properties. */ 769 /* Is not expected to be called for fragmented packets. */ 770 /* ------------------------------------------------------------------------ */ 771 static INLINE void frpr_tcp6(fin) 772 fr_info_t *fin; 773 { 774 775 fr_checkv6sum(fin); 776 777 frpr_short6(fin, sizeof(struct tcphdr)); 778 if (frpr_pullup(fin, sizeof(struct tcphdr)) == -1) 779 return; 780 781 fin->fin_flen -= fin->fin_dlen - sizeof(struct tcphdr); 782 783 frpr_tcpcommon(fin); 784 } 785 786 787 /* ------------------------------------------------------------------------ */ 788 /* Function: frpr_esp6 */ 789 /* Returns: void */ 790 /* Parameters: fin(I) - pointer to packet information */ 791 /* */ 792 /* IPv6 Only */ 793 /* Analyse the packet for ESP properties. */ 794 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 795 /* even though the newer ESP packets must also have a sequence number that */ 796 /* is 32bits as well, it is not possible(?) to determine the version from a */ 797 /* simple packet header. */ 798 /* ------------------------------------------------------------------------ */ 799 static INLINE void frpr_esp6(fin) 800 fr_info_t *fin; 801 { 802 int i; 803 frpr_short6(fin, sizeof(grehdr_t)); 804 805 (void) frpr_pullup(fin, 8); 806 807 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 808 if (ip6exthdr[i].ol_val == IPPROTO_ESP) { 809 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 810 break; 811 } 812 } 813 814 815 /* ------------------------------------------------------------------------ */ 816 /* Function: frpr_ah6 */ 817 /* Returns: void */ 818 /* Parameters: fin(I) - pointer to packet information */ 819 /* */ 820 /* IPv6 Only */ 821 /* Analyse the packet for AH properties. */ 822 /* The minimum length is taken to be the combination of all fields in the */ 823 /* header being present and no authentication data (null algorithm used.) */ 824 /* ------------------------------------------------------------------------ */ 825 static INLINE int frpr_ah6(fin) 826 fr_info_t *fin; 827 { 828 authhdr_t *ah; 829 int i, shift; 830 831 frpr_short6(fin, 12); 832 833 if (frpr_pullup(fin, sizeof(*ah)) == -1) 834 return IPPROTO_NONE; 835 836 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 837 if (ip6exthdr[i].ol_val == IPPROTO_AH) { 838 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 839 break; 840 } 841 842 ah = (authhdr_t *)fin->fin_dp; 843 844 shift = (ah->ah_plen + 2) * 4; 845 fin->fin_dlen -= shift; 846 fin->fin_dp = (char*)fin->fin_dp + shift; 847 848 return ah->ah_next; 849 } 850 851 852 /* ------------------------------------------------------------------------ */ 853 /* Function: frpr_gre6 */ 854 /* Returns: void */ 855 /* Parameters: fin(I) - pointer to packet information */ 856 /* */ 857 /* Analyse the packet for GRE properties. */ 858 /* ------------------------------------------------------------------------ */ 859 static INLINE void frpr_gre6(fin) 860 fr_info_t *fin; 861 { 862 grehdr_t *gre; 863 864 frpr_short6(fin, sizeof(grehdr_t)); 865 866 if (frpr_pullup(fin, sizeof(grehdr_t)) == -1) 867 return; 868 869 gre = fin->fin_dp; 870 if (GRE_REV(gre->gr_flags) == 1) 871 fin->fin_data[0] = gre->gr_call; 872 } 873 #endif /* USE_INET6 */ 874 875 876 /* ------------------------------------------------------------------------ */ 877 /* Function: frpr_pullup */ 878 /* Returns: int - 0 == pullup succeeded, -1 == failure */ 879 /* Parameters: fin(I) - pointer to packet information */ 880 /* plen(I) - length (excluding L3 header) to pullup */ 881 /* */ 882 /* Short inline function to cut down on code duplication to perform a call */ 883 /* to fr_pullup to ensure there is the required amount of data, */ 884 /* consecutively in the packet buffer. */ 885 /* ------------------------------------------------------------------------ */ 886 static INLINE int frpr_pullup(fin, plen) 887 fr_info_t *fin; 888 int plen; 889 { 890 #if defined(_KERNEL) 891 if (fin->fin_m != NULL) { 892 int ipoff; 893 894 ipoff = (char *)fin->fin_ip - MTOD(fin->fin_m, char *); 895 896 if (fin->fin_dp != NULL) 897 plen += (char *)fin->fin_dp - 898 ((char *)fin->fin_ip + fin->fin_hlen); 899 plen += fin->fin_hlen; 900 /* 901 * We don't do 'plen += ipoff;' here. The fr_pullup() will 902 * do it for us. 903 */ 904 if (M_LEN(fin->fin_m) < plen + ipoff) { 905 if (fr_pullup(fin->fin_m, fin, plen) == NULL) 906 return -1; 907 } 908 } 909 #endif 910 return 0; 911 } 912 913 914 /* ------------------------------------------------------------------------ */ 915 /* Function: frpr_short */ 916 /* Returns: void */ 917 /* Parameters: fin(I) - pointer to packet information */ 918 /* xmin(I) - minimum header size */ 919 /* */ 920 /* Check if a packet is "short" as defined by xmin. The rule we are */ 921 /* applying here is that the packet must not be fragmented within the layer */ 922 /* 4 header. That is, it must not be a fragment that has its offset set to */ 923 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */ 924 /* entire layer 4 header must be present (min). */ 925 /* ------------------------------------------------------------------------ */ 926 static INLINE void frpr_short(fin, xmin) 927 fr_info_t *fin; 928 int xmin; 929 { 930 931 if (fin->fin_off == 0) { 932 if (fin->fin_dlen < xmin) 933 fin->fin_flx |= FI_SHORT; 934 } else if (fin->fin_off < xmin) { 935 fin->fin_flx |= FI_SHORT; 936 } 937 } 938 939 940 /* ------------------------------------------------------------------------ */ 941 /* Function: frpr_icmp */ 942 /* Returns: void */ 943 /* Parameters: fin(I) - pointer to packet information */ 944 /* */ 945 /* IPv4 Only */ 946 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */ 947 /* except extrememly bad packets, both type and code will be present. */ 948 /* The expected minimum size of an ICMP packet is very much dependent on */ 949 /* the type of it. */ 950 /* */ 951 /* XXX - other ICMP sanity checks? */ 952 /* ------------------------------------------------------------------------ */ 953 static INLINE void frpr_icmp(fin) 954 fr_info_t *fin; 955 { 956 int minicmpsz = sizeof(struct icmp); 957 icmphdr_t *icmp; 958 ip_t *oip; 959 ipf_stack_t *ifs = fin->fin_ifs; 960 961 if (fin->fin_off != 0) { 962 frpr_short(fin, ICMPERR_ICMPHLEN); 963 return; 964 } 965 966 if (frpr_pullup(fin, ICMPERR_ICMPHLEN) == -1) 967 return; 968 969 fr_checkv4sum(fin); 970 971 /* 972 * This is a right place to set icmp pointer, since the memory 973 * referenced by fin_dp could get reallocated. The code down below can 974 * rely on fact icmp variable always points to ICMP header. 975 */ 976 icmp = fin->fin_dp; 977 fin->fin_data[0] = *(u_short *)icmp; 978 fin->fin_data[1] = icmp->icmp_id; 979 980 switch (icmp->icmp_type) 981 { 982 case ICMP_ECHOREPLY : 983 case ICMP_ECHO : 984 /* Router discovery messaes - RFC 1256 */ 985 case ICMP_ROUTERADVERT : 986 case ICMP_ROUTERSOLICIT : 987 minicmpsz = ICMP_MINLEN; 988 break; 989 /* 990 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 991 * 3 * timestamp(3 * 4) 992 */ 993 case ICMP_TSTAMP : 994 case ICMP_TSTAMPREPLY : 995 minicmpsz = 20; 996 break; 997 /* 998 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 999 * mask(4) 1000 */ 1001 case ICMP_MASKREQ : 1002 case ICMP_MASKREPLY : 1003 minicmpsz = 12; 1004 break; 1005 /* 1006 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+) 1007 */ 1008 case ICMP_UNREACH : 1009 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) { 1010 if (icmp->icmp_nextmtu < ifs->ifs_fr_icmpminfragmtu) 1011 fin->fin_flx |= FI_BAD; 1012 } 1013 /* FALLTHRU */ 1014 case ICMP_SOURCEQUENCH : 1015 case ICMP_REDIRECT : 1016 case ICMP_TIMXCEED : 1017 case ICMP_PARAMPROB : 1018 fin->fin_flx |= FI_ICMPERR; 1019 if (fr_coalesce(fin) != 1) 1020 return; 1021 /* 1022 * ICMP error packets should not be generated for IP 1023 * packets that are a fragment that isn't the first 1024 * fragment. 1025 */ 1026 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN); 1027 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) 1028 fin->fin_flx |= FI_BAD; 1029 break; 1030 default : 1031 break; 1032 } 1033 1034 frpr_short(fin, minicmpsz); 1035 } 1036 1037 1038 /* ------------------------------------------------------------------------ */ 1039 /* Function: frpr_tcpcommon */ 1040 /* Returns: void */ 1041 /* Parameters: fin(I) - pointer to packet information */ 1042 /* */ 1043 /* TCP header sanity checking. Look for bad combinations of TCP flags, */ 1044 /* and make some checks with how they interact with other fields. */ 1045 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */ 1046 /* valid and mark the packet as bad if not. */ 1047 /* ------------------------------------------------------------------------ */ 1048 static INLINE void frpr_tcpcommon(fin) 1049 fr_info_t *fin; 1050 { 1051 int flags, tlen; 1052 tcphdr_t *tcp; 1053 1054 fin->fin_flx |= FI_TCPUDP; 1055 if (fin->fin_off != 0) 1056 return; 1057 1058 if (frpr_pullup(fin, sizeof(*tcp)) == -1) 1059 return; 1060 tcp = fin->fin_dp; 1061 1062 if (fin->fin_dlen > 3) { 1063 fin->fin_sport = ntohs(tcp->th_sport); 1064 fin->fin_dport = ntohs(tcp->th_dport); 1065 } 1066 1067 if ((fin->fin_flx & FI_SHORT) != 0) 1068 return; 1069 1070 /* 1071 * Use of the TCP data offset *must* result in a value that is at 1072 * least the same size as the TCP header. 1073 */ 1074 tlen = TCP_OFF(tcp) << 2; 1075 if (tlen < sizeof(tcphdr_t)) { 1076 fin->fin_flx |= FI_BAD; 1077 return; 1078 } 1079 1080 flags = tcp->th_flags; 1081 fin->fin_tcpf = tcp->th_flags; 1082 1083 /* 1084 * If the urgent flag is set, then the urgent pointer must 1085 * also be set and vice versa. Good TCP packets do not have 1086 * just one of these set. 1087 */ 1088 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) { 1089 fin->fin_flx |= FI_BAD; 1090 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) { 1091 /* Ignore this case, it shows up in "real" traffic with */ 1092 /* bogus values in the urgent pointer field. */ 1093 flags = flags; /* LINT */ 1094 } else if (((flags & (TH_SYN|TH_FIN)) != 0) && 1095 ((flags & (TH_RST|TH_ACK)) == TH_RST)) { 1096 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */ 1097 fin->fin_flx |= FI_BAD; 1098 } else if (!(flags & TH_ACK)) { 1099 /* 1100 * If the ack bit isn't set, then either the SYN or 1101 * RST bit must be set. If the SYN bit is set, then 1102 * we expect the ACK field to be 0. If the ACK is 1103 * not set and if URG, PSH or FIN are set, consdier 1104 * that to indicate a bad TCP packet. 1105 */ 1106 if ((flags == TH_SYN) && (tcp->th_ack != 0)) { 1107 /* 1108 * Cisco PIX sets the ACK field to a random value. 1109 * In light of this, do not set FI_BAD until a patch 1110 * is available from Cisco to ensure that 1111 * interoperability between existing systems is 1112 * achieved. 1113 */ 1114 /*fin->fin_flx |= FI_BAD*/; 1115 flags = flags; /* LINT */ 1116 } else if (!(flags & (TH_RST|TH_SYN))) { 1117 fin->fin_flx |= FI_BAD; 1118 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) { 1119 fin->fin_flx |= FI_BAD; 1120 } 1121 } 1122 1123 /* 1124 * At this point, it's not exactly clear what is to be gained by 1125 * marking up which TCP options are and are not present. The one we 1126 * are most interested in is the TCP window scale. This is only in 1127 * a SYN packet [RFC1323] so we don't need this here...? 1128 * Now if we were to analyse the header for passive fingerprinting, 1129 * then that might add some weight to adding this... 1130 */ 1131 if (tlen == sizeof(tcphdr_t)) 1132 return; 1133 1134 if (frpr_pullup(fin, tlen) == -1) 1135 return; 1136 1137 #if 0 1138 ip = fin->fin_ip; 1139 s = (u_char *)(tcp + 1); 1140 off = IP_HL(ip) << 2; 1141 # ifdef _KERNEL 1142 if (fin->fin_mp != NULL) { 1143 mb_t *m = *fin->fin_mp; 1144 1145 if (off + tlen > M_LEN(m)) 1146 return; 1147 } 1148 # endif 1149 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) { 1150 opt = *s; 1151 if (opt == '\0') 1152 break; 1153 else if (opt == TCPOPT_NOP) 1154 ol = 1; 1155 else { 1156 if (tlen < 2) 1157 break; 1158 ol = (int)*(s + 1); 1159 if (ol < 2 || ol > tlen) 1160 break; 1161 } 1162 1163 for (i = 9, mv = 4; mv >= 0; ) { 1164 op = ipopts + i; 1165 if (opt == (u_char)op->ol_val) { 1166 optmsk |= op->ol_bit; 1167 break; 1168 } 1169 } 1170 tlen -= ol; 1171 s += ol; 1172 } 1173 #endif /* 0 */ 1174 } 1175 1176 1177 1178 /* ------------------------------------------------------------------------ */ 1179 /* Function: frpr_udpcommon */ 1180 /* Returns: void */ 1181 /* Parameters: fin(I) - pointer to packet information */ 1182 /* */ 1183 /* Extract the UDP source and destination ports, if present. If compiled */ 1184 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */ 1185 /* ------------------------------------------------------------------------ */ 1186 static INLINE void frpr_udpcommon(fin) 1187 fr_info_t *fin; 1188 { 1189 udphdr_t *udp; 1190 1191 fin->fin_flx |= FI_TCPUDP; 1192 1193 if (!fin->fin_off && (fin->fin_dlen > 3)) { 1194 if (frpr_pullup(fin, sizeof(*udp)) == -1) { 1195 fin->fin_flx |= FI_SHORT; 1196 return; 1197 } 1198 1199 udp = fin->fin_dp; 1200 1201 fin->fin_sport = ntohs(udp->uh_sport); 1202 fin->fin_dport = ntohs(udp->uh_dport); 1203 } 1204 } 1205 1206 1207 /* ------------------------------------------------------------------------ */ 1208 /* Function: frpr_tcp */ 1209 /* Returns: void */ 1210 /* Parameters: fin(I) - pointer to packet information */ 1211 /* */ 1212 /* IPv4 Only */ 1213 /* Analyse the packet for IPv4/TCP properties. */ 1214 /* ------------------------------------------------------------------------ */ 1215 static INLINE void frpr_tcp(fin) 1216 fr_info_t *fin; 1217 { 1218 1219 fr_checkv4sum(fin); 1220 1221 frpr_short(fin, sizeof(tcphdr_t)); 1222 1223 frpr_tcpcommon(fin); 1224 } 1225 1226 1227 /* ------------------------------------------------------------------------ */ 1228 /* Function: frpr_udp */ 1229 /* Returns: void */ 1230 /* Parameters: fin(I) - pointer to packet information */ 1231 /* */ 1232 /* IPv4 Only */ 1233 /* Analyse the packet for IPv4/UDP properties. */ 1234 /* ------------------------------------------------------------------------ */ 1235 static INLINE void frpr_udp(fin) 1236 fr_info_t *fin; 1237 { 1238 1239 fr_checkv4sum(fin); 1240 1241 frpr_short(fin, sizeof(udphdr_t)); 1242 1243 frpr_udpcommon(fin); 1244 } 1245 1246 1247 /* ------------------------------------------------------------------------ */ 1248 /* Function: frpr_esp */ 1249 /* Returns: void */ 1250 /* Parameters: fin(I) - pointer to packet information */ 1251 /* */ 1252 /* Analyse the packet for ESP properties. */ 1253 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 1254 /* even though the newer ESP packets must also have a sequence number that */ 1255 /* is 32bits as well, it is not possible(?) to determine the version from a */ 1256 /* simple packet header. */ 1257 /* ------------------------------------------------------------------------ */ 1258 static INLINE void frpr_esp(fin) 1259 fr_info_t *fin; 1260 { 1261 if ((fin->fin_off == 0) && (frpr_pullup(fin, 8) == -1)) 1262 return; 1263 1264 frpr_short(fin, 8); 1265 } 1266 1267 1268 /* ------------------------------------------------------------------------ */ 1269 /* Function: frpr_ah */ 1270 /* Returns: void */ 1271 /* Parameters: fin(I) - pointer to packet information */ 1272 /* */ 1273 /* Analyse the packet for AH properties. */ 1274 /* The minimum length is taken to be the combination of all fields in the */ 1275 /* header being present and no authentication data (null algorithm used.) */ 1276 /* ------------------------------------------------------------------------ */ 1277 static INLINE void frpr_ah(fin) 1278 fr_info_t *fin; 1279 { 1280 authhdr_t *ah; 1281 int len; 1282 1283 if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(*ah)) == -1)) 1284 return; 1285 1286 ah = (authhdr_t *)fin->fin_dp; 1287 1288 len = (ah->ah_plen + 2) << 2; 1289 frpr_short(fin, len); 1290 } 1291 1292 1293 /* ------------------------------------------------------------------------ */ 1294 /* Function: frpr_gre */ 1295 /* Returns: void */ 1296 /* Parameters: fin(I) - pointer to packet information */ 1297 /* */ 1298 /* Analyse the packet for GRE properties. */ 1299 /* ------------------------------------------------------------------------ */ 1300 static INLINE void frpr_gre(fin) 1301 fr_info_t *fin; 1302 { 1303 grehdr_t *gre; 1304 1305 if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(grehdr_t)) == -1)) 1306 return; 1307 1308 frpr_short(fin, sizeof(grehdr_t)); 1309 1310 if (fin->fin_off == 0) { 1311 gre = fin->fin_dp; 1312 if (GRE_REV(gre->gr_flags) == 1) 1313 fin->fin_data[0] = gre->gr_call; 1314 } 1315 } 1316 1317 1318 /* ------------------------------------------------------------------------ */ 1319 /* Function: frpr_ipv4hdr */ 1320 /* Returns: void */ 1321 /* Parameters: fin(I) - pointer to packet information */ 1322 /* */ 1323 /* IPv4 Only */ 1324 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */ 1325 /* Check all options present and flag their presence if any exist. */ 1326 /* ------------------------------------------------------------------------ */ 1327 static INLINE void frpr_ipv4hdr(fin) 1328 fr_info_t *fin; 1329 { 1330 u_short optmsk = 0, secmsk = 0, auth = 0; 1331 int hlen, ol, mv, p, i; 1332 const struct optlist *op; 1333 u_char *s, opt; 1334 u_short off; 1335 fr_ip_t *fi; 1336 ip_t *ip; 1337 1338 fi = &fin->fin_fi; 1339 hlen = fin->fin_hlen; 1340 1341 ip = fin->fin_ip; 1342 p = ip->ip_p; 1343 fi->fi_p = p; 1344 fi->fi_tos = ip->ip_tos; 1345 fin->fin_id = ip->ip_id; 1346 off = ip->ip_off; 1347 1348 /* Get both TTL and protocol */ 1349 fi->fi_p = ip->ip_p; 1350 fi->fi_ttl = ip->ip_ttl; 1351 #if 0 1352 (*(((u_short *)fi) + 1)) = (*(((u_short *)ip) + 4)); 1353 #endif 1354 1355 /* Zero out bits not used in IPv6 address */ 1356 fi->fi_src.i6[1] = 0; 1357 fi->fi_src.i6[2] = 0; 1358 fi->fi_src.i6[3] = 0; 1359 fi->fi_dst.i6[1] = 0; 1360 fi->fi_dst.i6[2] = 0; 1361 fi->fi_dst.i6[3] = 0; 1362 1363 fi->fi_saddr = ip->ip_src.s_addr; 1364 fi->fi_daddr = ip->ip_dst.s_addr; 1365 1366 /* 1367 * set packet attribute flags based on the offset and 1368 * calculate the byte offset that it represents. 1369 */ 1370 off &= IP_MF|IP_OFFMASK; 1371 if (off != 0) { 1372 fi->fi_flx |= FI_FRAG; 1373 off &= IP_OFFMASK; 1374 if (off != 0) { 1375 fin->fin_flx |= FI_FRAGBODY; 1376 off <<= 3; 1377 if ((off + fin->fin_dlen > 65535) || 1378 (fin->fin_dlen == 0) || 1379 ((ip->ip_off & IP_MF) && (fin->fin_dlen & 7))) { 1380 /* 1381 * The length of the packet, starting at its 1382 * offset cannot exceed 65535 (0xffff) as the 1383 * length of an IP packet is only 16 bits. 1384 * 1385 * Any fragment that isn't the last fragment 1386 * must have a length greater than 0 and it 1387 * must be an even multiple of 8. 1388 */ 1389 fi->fi_flx |= FI_BAD; 1390 } 1391 } 1392 } 1393 fin->fin_off = off; 1394 1395 /* 1396 * Call per-protocol setup and checking 1397 */ 1398 switch (p) 1399 { 1400 case IPPROTO_UDP : 1401 frpr_udp(fin); 1402 break; 1403 case IPPROTO_TCP : 1404 frpr_tcp(fin); 1405 break; 1406 case IPPROTO_ICMP : 1407 frpr_icmp(fin); 1408 break; 1409 case IPPROTO_AH : 1410 frpr_ah(fin); 1411 break; 1412 case IPPROTO_ESP : 1413 frpr_esp(fin); 1414 break; 1415 case IPPROTO_GRE : 1416 frpr_gre(fin); 1417 break; 1418 } 1419 1420 ip = fin->fin_ip; 1421 if (ip == NULL) 1422 return; 1423 1424 /* 1425 * If it is a standard IP header (no options), set the flag fields 1426 * which relate to options to 0. 1427 */ 1428 if (hlen == sizeof(*ip)) { 1429 fi->fi_optmsk = 0; 1430 fi->fi_secmsk = 0; 1431 fi->fi_auth = 0; 1432 return; 1433 } 1434 1435 /* 1436 * So the IP header has some IP options attached. Walk the entire 1437 * list of options present with this packet and set flags to indicate 1438 * which ones are here and which ones are not. For the somewhat out 1439 * of date and obscure security classification options, set a flag to 1440 * represent which classification is present. 1441 */ 1442 fi->fi_flx |= FI_OPTIONS; 1443 1444 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) { 1445 opt = *s; 1446 if (opt == '\0') 1447 break; 1448 else if (opt == IPOPT_NOP) 1449 ol = 1; 1450 else { 1451 if (hlen < 2) 1452 break; 1453 ol = (int)*(s + 1); 1454 if (ol < 2 || ol > hlen) 1455 break; 1456 } 1457 for (i = 9, mv = 4; mv >= 0; ) { 1458 op = ipopts + i; 1459 if ((opt == (u_char)op->ol_val) && (ol > 4)) { 1460 optmsk |= op->ol_bit; 1461 if (opt == IPOPT_SECURITY) { 1462 const struct optlist *sp; 1463 u_char sec; 1464 int j, m; 1465 1466 sec = *(s + 2); /* classification */ 1467 for (j = 3, m = 2; m >= 0; ) { 1468 sp = secopt + j; 1469 if (sec == sp->ol_val) { 1470 secmsk |= sp->ol_bit; 1471 auth = *(s + 3); 1472 auth *= 256; 1473 auth += *(s + 4); 1474 break; 1475 } 1476 if (sec < sp->ol_val) 1477 j -= m; 1478 else 1479 j += m; 1480 m--; 1481 } 1482 } 1483 break; 1484 } 1485 if (opt < op->ol_val) 1486 i -= mv; 1487 else 1488 i += mv; 1489 mv--; 1490 } 1491 hlen -= ol; 1492 s += ol; 1493 } 1494 1495 /* 1496 * 1497 */ 1498 if (auth && !(auth & 0x0100)) 1499 auth &= 0xff00; 1500 fi->fi_optmsk = optmsk; 1501 fi->fi_secmsk = secmsk; 1502 fi->fi_auth = auth; 1503 } 1504 1505 1506 /* ------------------------------------------------------------------------ */ 1507 /* Function: fr_makefrip */ 1508 /* Returns: int - 1 == hdr checking error, 0 == OK */ 1509 /* Parameters: hlen(I) - length of IP packet header */ 1510 /* ip(I) - pointer to the IP header */ 1511 /* fin(IO) - pointer to packet information */ 1512 /* */ 1513 /* Compact the IP header into a structure which contains just the info. */ 1514 /* which is useful for comparing IP headers with and store this information */ 1515 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */ 1516 /* this function will be called with either an IPv4 or IPv6 packet. */ 1517 /* ------------------------------------------------------------------------ */ 1518 int fr_makefrip(hlen, ip, fin) 1519 int hlen; 1520 ip_t *ip; 1521 fr_info_t *fin; 1522 { 1523 int v; 1524 1525 fin->fin_depth = 0; 1526 fin->fin_hlen = (u_short)hlen; 1527 fin->fin_ip = ip; 1528 fin->fin_rule = 0xffffffff; 1529 fin->fin_group[0] = -1; 1530 fin->fin_group[1] = '\0'; 1531 fin->fin_dlen = fin->fin_plen - hlen; 1532 fin->fin_dp = (char *)ip + hlen; 1533 1534 v = fin->fin_v; 1535 if (v == 4) 1536 frpr_ipv4hdr(fin); 1537 #ifdef USE_INET6 1538 else if (v == 6) 1539 frpr_ipv6hdr(fin); 1540 #endif 1541 if (fin->fin_ip == NULL) 1542 return -1; 1543 return 0; 1544 } 1545 1546 1547 /* ------------------------------------------------------------------------ */ 1548 /* Function: fr_portcheck */ 1549 /* Returns: int - 1 == port matched, 0 == port match failed */ 1550 /* Parameters: frp(I) - pointer to port check `expression' */ 1551 /* pop(I) - pointer to port number to evaluate */ 1552 /* */ 1553 /* Perform a comparison of a port number against some other(s), using a */ 1554 /* structure with compare information stored in it. */ 1555 /* ------------------------------------------------------------------------ */ 1556 static INLINE int fr_portcheck(frp, pop) 1557 frpcmp_t *frp; 1558 u_short *pop; 1559 { 1560 u_short tup, po; 1561 int err = 1; 1562 1563 tup = *pop; 1564 po = frp->frp_port; 1565 1566 /* 1567 * Do opposite test to that required and continue if that succeeds. 1568 */ 1569 switch (frp->frp_cmp) 1570 { 1571 case FR_EQUAL : 1572 if (tup != po) /* EQUAL */ 1573 err = 0; 1574 break; 1575 case FR_NEQUAL : 1576 if (tup == po) /* NOTEQUAL */ 1577 err = 0; 1578 break; 1579 case FR_LESST : 1580 if (tup >= po) /* LESSTHAN */ 1581 err = 0; 1582 break; 1583 case FR_GREATERT : 1584 if (tup <= po) /* GREATERTHAN */ 1585 err = 0; 1586 break; 1587 case FR_LESSTE : 1588 if (tup > po) /* LT or EQ */ 1589 err = 0; 1590 break; 1591 case FR_GREATERTE : 1592 if (tup < po) /* GT or EQ */ 1593 err = 0; 1594 break; 1595 case FR_OUTRANGE : 1596 if (tup >= po && tup <= frp->frp_top) /* Out of range */ 1597 err = 0; 1598 break; 1599 case FR_INRANGE : 1600 if (tup <= po || tup >= frp->frp_top) /* In range */ 1601 err = 0; 1602 break; 1603 case FR_INCRANGE : 1604 if (tup < po || tup > frp->frp_top) /* Inclusive range */ 1605 err = 0; 1606 break; 1607 default : 1608 break; 1609 } 1610 return err; 1611 } 1612 1613 1614 /* ------------------------------------------------------------------------ */ 1615 /* Function: fr_tcpudpchk */ 1616 /* Returns: int - 1 == protocol matched, 0 == check failed */ 1617 /* Parameters: fin(I) - pointer to packet information */ 1618 /* ft(I) - pointer to structure with comparison data */ 1619 /* */ 1620 /* Compares the current pcket (assuming it is TCP/UDP) information with a */ 1621 /* structure containing information that we want to match against. */ 1622 /* ------------------------------------------------------------------------ */ 1623 int fr_tcpudpchk(fin, ft) 1624 fr_info_t *fin; 1625 frtuc_t *ft; 1626 { 1627 int err = 1; 1628 1629 /* 1630 * Both ports should *always* be in the first fragment. 1631 * So far, I cannot find any cases where they can not be. 1632 * 1633 * compare destination ports 1634 */ 1635 if (ft->ftu_dcmp) 1636 err = fr_portcheck(&ft->ftu_dst, &fin->fin_dport); 1637 1638 /* 1639 * compare source ports 1640 */ 1641 if (err && ft->ftu_scmp) 1642 err = fr_portcheck(&ft->ftu_src, &fin->fin_sport); 1643 1644 /* 1645 * If we don't have all the TCP/UDP header, then how can we 1646 * expect to do any sort of match on it ? If we were looking for 1647 * TCP flags, then NO match. If not, then match (which should 1648 * satisfy the "short" class too). 1649 */ 1650 if (err && (fin->fin_p == IPPROTO_TCP)) { 1651 if (fin->fin_flx & FI_SHORT) 1652 return !(ft->ftu_tcpf | ft->ftu_tcpfm); 1653 /* 1654 * Match the flags ? If not, abort this match. 1655 */ 1656 if (ft->ftu_tcpfm && 1657 ft->ftu_tcpf != (fin->fin_tcpf & ft->ftu_tcpfm)) { 1658 FR_DEBUG(("f. %#x & %#x != %#x\n", fin->fin_tcpf, 1659 ft->ftu_tcpfm, ft->ftu_tcpf)); 1660 err = 0; 1661 } 1662 } 1663 return err; 1664 } 1665 1666 1667 /* ------------------------------------------------------------------------ */ 1668 /* Function: fr_ipfcheck */ 1669 /* Returns: int - 0 == match, 1 == no match */ 1670 /* Parameters: fin(I) - pointer to packet information */ 1671 /* fr(I) - pointer to filter rule */ 1672 /* portcmp(I) - flag indicating whether to attempt matching on */ 1673 /* TCP/UDP port data. */ 1674 /* */ 1675 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */ 1676 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */ 1677 /* this function. */ 1678 /* ------------------------------------------------------------------------ */ 1679 static INLINE int fr_ipfcheck(fin, fr, portcmp) 1680 fr_info_t *fin; 1681 frentry_t *fr; 1682 int portcmp; 1683 { 1684 u_32_t *ld, *lm, *lip; 1685 fripf_t *fri; 1686 fr_ip_t *fi; 1687 int i; 1688 ipf_stack_t *ifs = fin->fin_ifs; 1689 1690 fi = &fin->fin_fi; 1691 fri = fr->fr_ipf; 1692 lip = (u_32_t *)fi; 1693 lm = (u_32_t *)&fri->fri_mip; 1694 ld = (u_32_t *)&fri->fri_ip; 1695 1696 /* 1697 * first 32 bits to check coversion: 1698 * IP version, TOS, TTL, protocol 1699 */ 1700 i = ((*lip & *lm) != *ld); 1701 FR_DEBUG(("0. %#08x & %#08x != %#08x\n", 1702 *lip, *lm, *ld)); 1703 if (i) 1704 return 1; 1705 1706 /* 1707 * Next 32 bits is a constructed bitmask indicating which IP options 1708 * are present (if any) in this packet. 1709 */ 1710 lip++, lm++, ld++; 1711 i |= ((*lip & *lm) != *ld); 1712 FR_DEBUG(("1. %#08x & %#08x != %#08x\n", 1713 *lip, *lm, *ld)); 1714 if (i) 1715 return 1; 1716 1717 lip++, lm++, ld++; 1718 /* 1719 * Unrolled loops (4 each, for 32 bits) for address checks. 1720 */ 1721 /* 1722 * Check the source address. 1723 */ 1724 #ifdef IPFILTER_LOOKUP 1725 if (fr->fr_satype == FRI_LOOKUP) { 1726 i = (*fr->fr_srcfunc)(fr->fr_srcptr, fi->fi_v, lip, ifs); 1727 if (i == -1) 1728 return 1; 1729 lip += 3; 1730 lm += 3; 1731 ld += 3; 1732 } else { 1733 #endif 1734 i = ((*lip & *lm) != *ld); 1735 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n", 1736 *lip, *lm, *ld)); 1737 if (fi->fi_v == 6) { 1738 lip++, lm++, ld++; 1739 i |= ((*lip & *lm) != *ld); 1740 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n", 1741 *lip, *lm, *ld)); 1742 lip++, lm++, ld++; 1743 i |= ((*lip & *lm) != *ld); 1744 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n", 1745 *lip, *lm, *ld)); 1746 lip++, lm++, ld++; 1747 i |= ((*lip & *lm) != *ld); 1748 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n", 1749 *lip, *lm, *ld)); 1750 } else { 1751 lip += 3; 1752 lm += 3; 1753 ld += 3; 1754 } 1755 #ifdef IPFILTER_LOOKUP 1756 } 1757 #endif 1758 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6; 1759 if (i) 1760 return 1; 1761 1762 /* 1763 * Check the destination address. 1764 */ 1765 lip++, lm++, ld++; 1766 #ifdef IPFILTER_LOOKUP 1767 if (fr->fr_datype == FRI_LOOKUP) { 1768 i = (*fr->fr_dstfunc)(fr->fr_dstptr, fi->fi_v, lip, ifs); 1769 if (i == -1) 1770 return 1; 1771 lip += 3; 1772 lm += 3; 1773 ld += 3; 1774 } else { 1775 #endif 1776 i = ((*lip & *lm) != *ld); 1777 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n", 1778 *lip, *lm, *ld)); 1779 if (fi->fi_v == 6) { 1780 lip++, lm++, ld++; 1781 i |= ((*lip & *lm) != *ld); 1782 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n", 1783 *lip, *lm, *ld)); 1784 lip++, lm++, ld++; 1785 i |= ((*lip & *lm) != *ld); 1786 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n", 1787 *lip, *lm, *ld)); 1788 lip++, lm++, ld++; 1789 i |= ((*lip & *lm) != *ld); 1790 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n", 1791 *lip, *lm, *ld)); 1792 } else { 1793 lip += 3; 1794 lm += 3; 1795 ld += 3; 1796 } 1797 #ifdef IPFILTER_LOOKUP 1798 } 1799 #endif 1800 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7; 1801 if (i) 1802 return 1; 1803 /* 1804 * IP addresses matched. The next 32bits contains: 1805 * mast of old IP header security & authentication bits. 1806 */ 1807 lip++, lm++, ld++; 1808 i |= ((*lip & *lm) != *ld); 1809 FR_DEBUG(("4. %#08x & %#08x != %#08x\n", 1810 *lip, *lm, *ld)); 1811 1812 /* 1813 * Next we have 32 bits of packet flags. 1814 */ 1815 lip++, lm++, ld++; 1816 i |= ((*lip & *lm) != *ld); 1817 FR_DEBUG(("5. %#08x & %#08x != %#08x\n", 1818 *lip, *lm, *ld)); 1819 1820 if (i == 0) { 1821 /* 1822 * If a fragment, then only the first has what we're 1823 * looking for here... 1824 */ 1825 if (portcmp) { 1826 if (!fr_tcpudpchk(fin, &fr->fr_tuc)) 1827 i = 1; 1828 } else { 1829 if (fr->fr_dcmp || fr->fr_scmp || 1830 fr->fr_tcpf || fr->fr_tcpfm) 1831 i = 1; 1832 if (fr->fr_icmpm || fr->fr_icmp) { 1833 if (((fi->fi_p != IPPROTO_ICMP) && 1834 (fi->fi_p != IPPROTO_ICMPV6)) || 1835 fin->fin_off || (fin->fin_dlen < 2)) 1836 i = 1; 1837 else if ((fin->fin_data[0] & fr->fr_icmpm) != 1838 fr->fr_icmp) { 1839 FR_DEBUG(("i. %#x & %#x != %#x\n", 1840 fin->fin_data[0], 1841 fr->fr_icmpm, fr->fr_icmp)); 1842 i = 1; 1843 } 1844 } 1845 } 1846 } 1847 return i; 1848 } 1849 1850 1851 /* ------------------------------------------------------------------------ */ 1852 /* Function: fr_scanlist */ 1853 /* Returns: int - result flags of scanning filter list */ 1854 /* Parameters: fin(I) - pointer to packet information */ 1855 /* pass(I) - default result to return for filtering */ 1856 /* */ 1857 /* Check the input/output list of rules for a match to the current packet. */ 1858 /* If a match is found, the value of fr_flags from the rule becomes the */ 1859 /* return value and fin->fin_fr points to the matched rule. */ 1860 /* */ 1861 /* This function may be called recusively upto 16 times (limit inbuilt.) */ 1862 /* When unwinding, it should finish up with fin_depth as 0. */ 1863 /* */ 1864 /* Could be per interface, but this gets real nasty when you don't have, */ 1865 /* or can't easily change, the kernel source code to . */ 1866 /* ------------------------------------------------------------------------ */ 1867 int fr_scanlist(fin, pass) 1868 fr_info_t *fin; 1869 u_32_t pass; 1870 { 1871 int rulen, portcmp, off, logged, skip; 1872 struct frentry *fr, *fnext; 1873 u_32_t passt, passo; 1874 ipf_stack_t *ifs = fin->fin_ifs; 1875 1876 /* 1877 * Do not allow nesting deeper than 16 levels. 1878 */ 1879 if (fin->fin_depth >= 16) 1880 return pass; 1881 1882 fr = fin->fin_fr; 1883 1884 /* 1885 * If there are no rules in this list, return now. 1886 */ 1887 if (fr == NULL) 1888 return pass; 1889 1890 skip = 0; 1891 logged = 0; 1892 portcmp = 0; 1893 fin->fin_depth++; 1894 fin->fin_fr = NULL; 1895 off = fin->fin_off; 1896 1897 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off) 1898 portcmp = 1; 1899 1900 for (rulen = 0; fr; fr = fnext, rulen++) { 1901 fnext = fr->fr_next; 1902 if (skip != 0) { 1903 FR_VERBOSE(("%d (%#x)\n", skip, fr->fr_flags)); 1904 skip--; 1905 continue; 1906 } 1907 1908 /* 1909 * In all checks below, a null (zero) value in the 1910 * filter struture is taken to mean a wildcard. 1911 * 1912 * check that we are working for the right interface 1913 */ 1914 #ifdef _KERNEL 1915 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 1916 continue; 1917 #else 1918 if (opts & (OPT_VERBOSE|OPT_DEBUG)) 1919 printf("\n"); 1920 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' : 1921 FR_ISPASS(pass) ? 'p' : 1922 FR_ISACCOUNT(pass) ? 'A' : 1923 FR_ISAUTH(pass) ? 'a' : 1924 (pass & FR_NOMATCH) ? 'n' :'b')); 1925 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 1926 continue; 1927 FR_VERBOSE((":i")); 1928 #endif 1929 1930 switch (fr->fr_type) 1931 { 1932 case FR_T_IPF : 1933 case FR_T_IPF|FR_T_BUILTIN : 1934 if (fr_ipfcheck(fin, fr, portcmp)) 1935 continue; 1936 break; 1937 #if defined(IPFILTER_BPF) 1938 case FR_T_BPFOPC : 1939 case FR_T_BPFOPC|FR_T_BUILTIN : 1940 { 1941 u_char *mc; 1942 1943 if (*fin->fin_mp == NULL) 1944 continue; 1945 if (fin->fin_v != fr->fr_v) 1946 continue; 1947 mc = (u_char *)fin->fin_m; 1948 if (!bpf_filter(fr->fr_data, mc, fin->fin_plen, 0)) 1949 continue; 1950 break; 1951 } 1952 #endif 1953 case FR_T_CALLFUNC|FR_T_BUILTIN : 1954 { 1955 frentry_t *f; 1956 1957 f = (*fr->fr_func)(fin, &pass); 1958 if (f != NULL) 1959 fr = f; 1960 else 1961 continue; 1962 break; 1963 } 1964 default : 1965 break; 1966 } 1967 1968 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) { 1969 if (fin->fin_nattag == NULL) 1970 continue; 1971 if (fr_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0) 1972 continue; 1973 } 1974 FR_VERBOSE(("=%s.%d *", fr->fr_group, rulen)); 1975 1976 passt = fr->fr_flags; 1977 1978 /* 1979 * Allowing a rule with the "keep state" flag set to match 1980 * packets that have been tagged "out of window" by the TCP 1981 * state tracking is foolish as the attempt to add a new 1982 * state entry to the table will fail. 1983 */ 1984 if ((passt & FR_KEEPSTATE) && (fin->fin_flx & FI_OOW)) 1985 continue; 1986 1987 /* 1988 * If the rule is a "call now" rule, then call the function 1989 * in the rule, if it exists and use the results from that. 1990 * If the function pointer is bad, just make like we ignore 1991 * it, except for increasing the hit counter. 1992 */ 1993 if ((passt & FR_CALLNOW) != 0) { 1994 IPF_BUMP(fr->fr_hits); 1995 if ((fr->fr_func != NULL) && 1996 (fr->fr_func != (ipfunc_t)-1)) { 1997 frentry_t *frs; 1998 1999 frs = fin->fin_fr; 2000 fin->fin_fr = fr; 2001 fr = (*fr->fr_func)(fin, &passt); 2002 if (fr == NULL) { 2003 fin->fin_fr = frs; 2004 continue; 2005 } 2006 passt = fr->fr_flags; 2007 fin->fin_fr = fr; 2008 } 2009 } else { 2010 fin->fin_fr = fr; 2011 } 2012 2013 #ifdef IPFILTER_LOG 2014 /* 2015 * Just log this packet... 2016 */ 2017 if ((passt & FR_LOGMASK) == FR_LOG) { 2018 if (ipflog(fin, passt) == -1) { 2019 if (passt & FR_LOGORBLOCK) { 2020 passt &= ~FR_CMDMASK; 2021 passt |= FR_BLOCK|FR_QUICK; 2022 } 2023 IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_skip); 2024 } 2025 IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_pkl); 2026 logged = 1; 2027 } 2028 #endif /* IPFILTER_LOG */ 2029 fr->fr_bytes += (U_QUAD_T)fin->fin_plen; 2030 passo = pass; 2031 if (FR_ISSKIP(passt)) 2032 skip = fr->fr_arg; 2033 else if ((passt & FR_LOGMASK) != FR_LOG) 2034 pass = passt; 2035 if (passt & (FR_RETICMP|FR_FAKEICMP)) 2036 fin->fin_icode = fr->fr_icode; 2037 FR_DEBUG(("pass %#x\n", pass)); 2038 IPF_BUMP(fr->fr_hits); 2039 fin->fin_rule = rulen; 2040 (void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN); 2041 if (fr->fr_grp != NULL) { 2042 fin->fin_fr = *fr->fr_grp; 2043 pass = fr_scanlist(fin, pass); 2044 if (fin->fin_fr == NULL) { 2045 fin->fin_rule = rulen; 2046 (void) strncpy(fin->fin_group, fr->fr_group, 2047 FR_GROUPLEN); 2048 fin->fin_fr = fr; 2049 } 2050 if (fin->fin_flx & FI_DONTCACHE) 2051 logged = 1; 2052 } 2053 2054 if (pass & FR_QUICK) { 2055 /* 2056 * Finally, if we've asked to track state for this 2057 * packet, set it up. Add state for "quick" rules 2058 * here so that if the action fails we can consider 2059 * the rule to "not match" and keep on processing 2060 * filter rules. 2061 */ 2062 if ((pass & FR_KEEPSTATE) && 2063 !(fin->fin_flx & FI_STATE)) { 2064 int out = fin->fin_out; 2065 2066 if (fr_addstate(fin, NULL, 0) != NULL) { 2067 IPF_BUMP(ifs->ifs_frstats[out].fr_ads); 2068 } else { 2069 IPF_BUMP(ifs->ifs_frstats[out].fr_bads); 2070 pass = passo; 2071 continue; 2072 } 2073 } 2074 break; 2075 } 2076 } 2077 if (logged) 2078 fin->fin_flx |= FI_DONTCACHE; 2079 fin->fin_depth--; 2080 return pass; 2081 } 2082 2083 2084 /* ------------------------------------------------------------------------ */ 2085 /* Function: fr_acctpkt */ 2086 /* Returns: frentry_t* - always returns NULL */ 2087 /* Parameters: fin(I) - pointer to packet information */ 2088 /* passp(IO) - pointer to current/new filter decision (unused) */ 2089 /* */ 2090 /* Checks a packet against accounting rules, if there are any for the given */ 2091 /* IP protocol version. */ 2092 /* */ 2093 /* N.B.: this function returns NULL to match the prototype used by other */ 2094 /* functions called from the IPFilter "mainline" in fr_check(). */ 2095 /* ------------------------------------------------------------------------ */ 2096 frentry_t *fr_acctpkt(fin, passp) 2097 fr_info_t *fin; 2098 u_32_t *passp; 2099 { 2100 char group[FR_GROUPLEN]; 2101 frentry_t *fr, *frsave; 2102 u_32_t pass, rulen; 2103 ipf_stack_t *ifs = fin->fin_ifs; 2104 2105 passp = passp; 2106 #ifdef USE_INET6 2107 if (fin->fin_v == 6) 2108 fr = ifs->ifs_ipacct6[fin->fin_out][ifs->ifs_fr_active]; 2109 else 2110 #endif 2111 fr = ifs->ifs_ipacct[fin->fin_out][ifs->ifs_fr_active]; 2112 2113 if (fr != NULL) { 2114 frsave = fin->fin_fr; 2115 bcopy(fin->fin_group, group, FR_GROUPLEN); 2116 rulen = fin->fin_rule; 2117 fin->fin_fr = fr; 2118 pass = fr_scanlist(fin, FR_NOMATCH); 2119 if (FR_ISACCOUNT(pass)) { 2120 IPF_BUMP(ifs->ifs_frstats[0].fr_acct); 2121 } 2122 fin->fin_fr = frsave; 2123 bcopy(group, fin->fin_group, FR_GROUPLEN); 2124 fin->fin_rule = rulen; 2125 } 2126 return NULL; 2127 } 2128 2129 2130 /* ------------------------------------------------------------------------ */ 2131 /* Function: fr_firewall */ 2132 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */ 2133 /* were found, returns NULL. */ 2134 /* Parameters: fin(I) - pointer to packet information */ 2135 /* passp(IO) - pointer to current/new filter decision (unused) */ 2136 /* */ 2137 /* Applies an appropriate set of firewall rules to the packet, to see if */ 2138 /* there are any matches. The first check is to see if a match can be seen */ 2139 /* in the cache. If not, then search an appropriate list of rules. Once a */ 2140 /* matching rule is found, take any appropriate actions as defined by the */ 2141 /* rule - except logging. */ 2142 /* ------------------------------------------------------------------------ */ 2143 static frentry_t *fr_firewall(fin, passp) 2144 fr_info_t *fin; 2145 u_32_t *passp; 2146 { 2147 frentry_t *fr; 2148 u_32_t pass; 2149 int out; 2150 ipf_stack_t *ifs = fin->fin_ifs; 2151 2152 out = fin->fin_out; 2153 pass = *passp; 2154 2155 #ifdef USE_INET6 2156 if (fin->fin_v == 6) 2157 fin->fin_fr = ifs->ifs_ipfilter6[out][ifs->ifs_fr_active]; 2158 else 2159 #endif 2160 fin->fin_fr = ifs->ifs_ipfilter[out][ifs->ifs_fr_active]; 2161 if (fin->fin_fr != NULL) 2162 pass = fr_scanlist(fin, ifs->ifs_fr_pass); 2163 2164 if ((pass & FR_NOMATCH)) { 2165 IPF_BUMP(ifs->ifs_frstats[out].fr_nom); 2166 } 2167 fr = fin->fin_fr; 2168 2169 /* 2170 * Apply packets per second rate-limiting to a rule as required. 2171 */ 2172 if ((fr != NULL) && (fr->fr_pps != 0) && 2173 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) { 2174 pass &= ~(FR_CMDMASK|FR_DUP|FR_RETICMP|FR_RETRST); 2175 pass |= FR_BLOCK; 2176 IPF_BUMP(ifs->ifs_frstats[out].fr_ppshit); 2177 } 2178 2179 /* 2180 * If we fail to add a packet to the authorization queue, then we 2181 * drop the packet later. However, if it was added then pretend 2182 * we've dropped it already. 2183 */ 2184 if (FR_ISAUTH(pass)) { 2185 if (fr_newauth(fin->fin_m, fin) != 0) { 2186 #ifdef _KERNEL 2187 fin->fin_m = *fin->fin_mp = NULL; 2188 #else 2189 ; 2190 #endif 2191 fin->fin_error = 0; 2192 } else 2193 fin->fin_error = ENOSPC; 2194 } 2195 2196 if ((fr != NULL) && (fr->fr_func != NULL) && 2197 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW)) 2198 (void) (*fr->fr_func)(fin, &pass); 2199 2200 /* 2201 * If a rule is a pre-auth rule, check again in the list of rules 2202 * loaded for authenticated use. It does not particulary matter 2203 * if this search fails because a "preauth" result, from a rule, 2204 * is treated as "not a pass", hence the packet is blocked. 2205 */ 2206 if (FR_ISPREAUTH(pass)) { 2207 if ((fin->fin_fr = ifs->ifs_ipauth) != NULL) 2208 pass = fr_scanlist(fin, ifs->ifs_fr_pass); 2209 } 2210 2211 /* 2212 * If the rule has "keep frag" and the packet is actually a fragment, 2213 * then create a fragment state entry. 2214 */ 2215 if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) { 2216 if (fin->fin_flx & FI_FRAG) { 2217 if (fr_newfrag(fin, pass) == -1) { 2218 IPF_BUMP(ifs->ifs_frstats[out].fr_bnfr); 2219 } else { 2220 IPF_BUMP(ifs->ifs_frstats[out].fr_nfr); 2221 } 2222 } else { 2223 IPF_BUMP(ifs->ifs_frstats[out].fr_cfr); 2224 } 2225 } 2226 2227 /* 2228 * Finally, if we've asked to track state for this packet, set it up. 2229 */ 2230 if ((pass & FR_KEEPSTATE) && !(fin->fin_flx & FI_STATE)) { 2231 if (fr_addstate(fin, NULL, 0) != NULL) { 2232 IPF_BUMP(ifs->ifs_frstats[out].fr_ads); 2233 } else { 2234 IPF_BUMP(ifs->ifs_frstats[out].fr_bads); 2235 if (FR_ISPASS(pass)) { 2236 pass &= ~FR_CMDMASK; 2237 pass |= FR_BLOCK; 2238 } 2239 } 2240 } 2241 2242 fr = fin->fin_fr; 2243 2244 if (passp != NULL) 2245 *passp = pass; 2246 2247 return fr; 2248 } 2249 2250 2251 /* ------------------------------------------------------------------------ */ 2252 /* Function: fr_check */ 2253 /* Returns: int - 0 == packet allowed through, */ 2254 /* User space: */ 2255 /* -1 == packet blocked */ 2256 /* 1 == packet not matched */ 2257 /* -2 == requires authentication */ 2258 /* Kernel: */ 2259 /* > 0 == filter error # for packet */ 2260 /* Parameters: ip(I) - pointer to start of IPv4/6 packet */ 2261 /* hlen(I) - length of header */ 2262 /* ifp(I) - pointer to interface this packet is on */ 2263 /* out(I) - 0 == packet going in, 1 == packet going out */ 2264 /* mp(IO) - pointer to caller's buffer pointer that holds this */ 2265 /* IP packet. */ 2266 /* Solaris & HP-UX ONLY : */ 2267 /* qpi(I) - pointer to STREAMS queue information for this */ 2268 /* interface & direction. */ 2269 /* */ 2270 /* fr_check() is the master function for all IPFilter packet processing. */ 2271 /* It orchestrates: Network Address Translation (NAT), checking for packet */ 2272 /* authorisation (or pre-authorisation), presence of related state info., */ 2273 /* generating log entries, IP packet accounting, routing of packets as */ 2274 /* directed by firewall rules and of course whether or not to allow the */ 2275 /* packet to be further processed by the kernel. */ 2276 /* */ 2277 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */ 2278 /* freed. Packets passed may be returned with the pointer pointed to by */ 2279 /* by "mp" changed to a new buffer. */ 2280 /* ------------------------------------------------------------------------ */ 2281 int fr_check(ip, hlen, ifp, out 2282 #if defined(_KERNEL) && defined(MENTAT) 2283 , qif, mp, ifs) 2284 void *qif; 2285 #else 2286 , mp, ifs) 2287 #endif 2288 mb_t **mp; 2289 ip_t *ip; 2290 int hlen; 2291 void *ifp; 2292 int out; 2293 ipf_stack_t *ifs; 2294 { 2295 /* 2296 * The above really sucks, but short of writing a diff 2297 */ 2298 fr_info_t frinfo; 2299 fr_info_t *fin = &frinfo; 2300 u_32_t pass; 2301 frentry_t *fr = NULL; 2302 int v = IP_V(ip); 2303 mb_t *mc = NULL; 2304 mb_t *m; 2305 #ifdef USE_INET6 2306 ip6_t *ip6; 2307 #endif 2308 #ifdef _KERNEL 2309 # ifdef MENTAT 2310 qpktinfo_t *qpi = qif; 2311 #endif 2312 #endif 2313 2314 SPL_INT(s); 2315 pass = ifs->ifs_fr_pass; 2316 2317 /* 2318 * The first part of fr_check() deals with making sure that what goes 2319 * into the filtering engine makes some sense. Information about the 2320 * the packet is distilled, collected into a fr_info_t structure and 2321 * the an attempt to ensure the buffer the packet is in is big enough 2322 * to hold all the required packet headers. 2323 */ 2324 #ifdef _KERNEL 2325 # ifdef MENTAT 2326 if (!OK_32PTR(ip)) 2327 return 2; 2328 # endif 2329 2330 2331 if (ifs->ifs_fr_running <= 0) { 2332 return 0; 2333 } 2334 2335 bzero((char *)fin, sizeof(*fin)); 2336 2337 # ifdef MENTAT 2338 fin->fin_flx = qpi->qpi_flags & (FI_NOCKSUM|FI_MBCAST|FI_MULTICAST| 2339 FI_BROADCAST); 2340 m = qpi->qpi_m; 2341 fin->fin_qfm = m; 2342 fin->fin_qpi = qpi; 2343 # else /* MENTAT */ 2344 2345 m = *mp; 2346 2347 # if defined(M_MCAST) 2348 if ((m->m_flags & M_MCAST) != 0) 2349 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2350 # endif 2351 # if defined(M_MLOOP) 2352 if ((m->m_flags & M_MLOOP) != 0) 2353 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2354 # endif 2355 # if defined(M_BCAST) 2356 if ((m->m_flags & M_BCAST) != 0) 2357 fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2358 # endif 2359 # ifdef M_CANFASTFWD 2360 /* 2361 * XXX For now, IP Filter and fast-forwarding of cached flows 2362 * XXX are mutually exclusive. Eventually, IP Filter should 2363 * XXX get a "can-fast-forward" filter rule. 2364 */ 2365 m->m_flags &= ~M_CANFASTFWD; 2366 # endif /* M_CANFASTFWD */ 2367 # ifdef CSUM_DELAY_DATA 2368 /* 2369 * disable delayed checksums. 2370 */ 2371 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2372 in_delayed_cksum(m); 2373 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2374 } 2375 # endif /* CSUM_DELAY_DATA */ 2376 # endif /* MENTAT */ 2377 #else 2378 2379 bzero((char *)fin, sizeof(*fin)); 2380 m = *mp; 2381 #endif /* _KERNEL */ 2382 2383 fin->fin_v = v; 2384 fin->fin_m = m; 2385 fin->fin_ip = ip; 2386 fin->fin_mp = mp; 2387 fin->fin_out = out; 2388 fin->fin_ifp = ifp; 2389 fin->fin_error = ENETUNREACH; 2390 fin->fin_hlen = (u_short)hlen; 2391 fin->fin_dp = (char *)ip + hlen; 2392 fin->fin_ipoff = (char *)ip - MTOD(m, char *); 2393 fin->fin_ifs = ifs; 2394 2395 SPL_NET(s); 2396 2397 #ifdef USE_INET6 2398 if (v == 6) { 2399 IPF_BUMP(ifs->ifs_frstats[out].fr_ipv6); 2400 /* 2401 * Jumbo grams are quite likely too big for internal buffer 2402 * structures to handle comfortably, for now, so just drop 2403 * them. 2404 */ 2405 ip6 = (ip6_t *)ip; 2406 fin->fin_plen = ntohs(ip6->ip6_plen); 2407 if (fin->fin_plen == 0) { 2408 READ_ENTER(&ifs->ifs_ipf_mutex); 2409 pass = FR_BLOCK|FR_NOMATCH; 2410 goto filtered; 2411 } 2412 fin->fin_plen += sizeof(ip6_t); 2413 } else 2414 #endif 2415 { 2416 #if (OpenBSD >= 200311) && defined(_KERNEL) 2417 ip->ip_len = ntohs(ip->ip_len); 2418 ip->ip_off = ntohs(ip->ip_off); 2419 #endif 2420 fin->fin_plen = ip->ip_len; 2421 } 2422 2423 if (fr_makefrip(hlen, ip, fin) == -1) { 2424 READ_ENTER(&ifs->ifs_ipf_mutex); 2425 pass = FR_BLOCK; 2426 goto filtered; 2427 } 2428 2429 /* 2430 * For at least IPv6 packets, if a m_pullup() fails then this pointer 2431 * becomes NULL and so we have no packet to free. 2432 */ 2433 if (*fin->fin_mp == NULL) 2434 goto finished; 2435 2436 if (!out) { 2437 if (v == 4) { 2438 #ifdef _KERNEL 2439 if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) { 2440 IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc); 2441 fin->fin_flx |= FI_BADSRC; 2442 } 2443 #endif 2444 if (fin->fin_ip->ip_ttl < ifs->ifs_fr_minttl) { 2445 IPF_BUMP(ifs->ifs_frstats[0].fr_badttl); 2446 fin->fin_flx |= FI_LOWTTL; 2447 } 2448 } 2449 #ifdef USE_INET6 2450 else if (v == 6) { 2451 ip6 = (ip6_t *)ip; 2452 #ifdef _KERNEL 2453 if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) { 2454 IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc); 2455 fin->fin_flx |= FI_BADSRC; 2456 } 2457 #endif 2458 if (ip6->ip6_hlim < ifs->ifs_fr_minttl) { 2459 IPF_BUMP(ifs->ifs_frstats[0].fr_badttl); 2460 fin->fin_flx |= FI_LOWTTL; 2461 } 2462 } 2463 #endif 2464 } 2465 2466 if (fin->fin_flx & FI_SHORT) { 2467 IPF_BUMP(ifs->ifs_frstats[out].fr_short); 2468 } 2469 2470 READ_ENTER(&ifs->ifs_ipf_mutex); 2471 2472 /* 2473 * Check auth now. This, combined with the check below to see if apass 2474 * is 0 is to ensure that we don't count the packet twice, which can 2475 * otherwise occur when we reprocess it. As it is, we only count it 2476 * after it has no auth. table matchup. This also stops NAT from 2477 * occuring until after the packet has been auth'd. 2478 */ 2479 fr = fr_checkauth(fin, &pass); 2480 if (!out) { 2481 switch (fin->fin_v) 2482 { 2483 case 4 : 2484 if (fr_checknatin(fin, &pass) == -1) { 2485 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2486 goto finished; 2487 } 2488 break; 2489 #ifdef USE_INET6 2490 case 6 : 2491 if (fr_checknat6in(fin, &pass) == -1) { 2492 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2493 goto finished; 2494 } 2495 break; 2496 #endif 2497 default : 2498 break; 2499 } 2500 } 2501 if (!out) 2502 (void) fr_acctpkt(fin, NULL); 2503 2504 if (fr == NULL) 2505 if ((fin->fin_flx & (FI_FRAG|FI_BAD)) == FI_FRAG) 2506 fr = fr_knownfrag(fin, &pass); 2507 if (fr == NULL) 2508 fr = fr_checkstate(fin, &pass); 2509 2510 if ((pass & FR_NOMATCH) || (fr == NULL)) 2511 fr = fr_firewall(fin, &pass); 2512 2513 fin->fin_fr = fr; 2514 2515 /* 2516 * Only count/translate packets which will be passed on, out the 2517 * interface. 2518 */ 2519 if (out && FR_ISPASS(pass)) { 2520 (void) fr_acctpkt(fin, NULL); 2521 2522 switch (fin->fin_v) 2523 { 2524 case 4 : 2525 if (fr_checknatout(fin, &pass) == -1) { 2526 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2527 goto finished; 2528 } 2529 break; 2530 #ifdef USE_INET6 2531 case 6 : 2532 if (fr_checknat6out(fin, &pass) == -1) { 2533 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2534 goto finished; 2535 } 2536 break; 2537 #endif 2538 default : 2539 break; 2540 } 2541 2542 if ((ifs->ifs_fr_update_ipid != 0) && (v == 4)) { 2543 if (fr_updateipid(fin) == -1) { 2544 IPF_BUMP(ifs->ifs_frstats[1].fr_ipud); 2545 pass &= ~FR_CMDMASK; 2546 pass |= FR_BLOCK; 2547 } else { 2548 IPF_BUMP(ifs->ifs_frstats[0].fr_ipud); 2549 } 2550 } 2551 } 2552 2553 #ifdef IPFILTER_LOG 2554 if ((ifs->ifs_fr_flags & FF_LOGGING) || (pass & FR_LOGMASK)) { 2555 (void) fr_dolog(fin, &pass); 2556 } 2557 #endif 2558 2559 /* 2560 * The FI_STATE flag is cleared here so that calling fr_checkstate 2561 * will work when called from inside of fr_fastroute. Although 2562 * there is a similar flag, FI_NATED, for NAT, it does have the same 2563 * impact on code execution. 2564 */ 2565 fin->fin_flx &= ~FI_STATE; 2566 2567 /* 2568 * Only allow FR_DUP to work if a rule matched - it makes no sense to 2569 * set FR_DUP as a "default" as there are no instructions about where 2570 * to send the packet. Use fin_m here because it may have changed 2571 * (without an update of 'm') in prior processing. 2572 */ 2573 if ((fr != NULL) && (pass & FR_DUP)) { 2574 mc = M_DUPLICATE(fin->fin_m); 2575 } 2576 2577 if (pass & (FR_RETRST|FR_RETICMP)) { 2578 /* 2579 * Should we return an ICMP packet to indicate error 2580 * status passing through the packet filter ? 2581 * WARNING: ICMP error packets AND TCP RST packets should 2582 * ONLY be sent in repsonse to incoming packets. Sending them 2583 * in response to outbound packets can result in a panic on 2584 * some operating systems. 2585 */ 2586 if (!out) { 2587 if (pass & FR_RETICMP) { 2588 int dst; 2589 2590 if ((pass & FR_RETMASK) == FR_FAKEICMP) 2591 dst = 1; 2592 else 2593 dst = 0; 2594 (void) fr_send_icmp_err(ICMP_UNREACH, fin, dst); 2595 IPF_BUMP(ifs->ifs_frstats[0].fr_ret); 2596 } else if (((pass & FR_RETMASK) == FR_RETRST) && 2597 !(fin->fin_flx & FI_SHORT)) { 2598 if (fr_send_reset(fin) == 0) { 2599 IPF_BUMP(ifs->ifs_frstats[1].fr_ret); 2600 } 2601 } 2602 } else { 2603 if (pass & FR_RETRST) 2604 fin->fin_error = ECONNRESET; 2605 } 2606 } 2607 2608 /* 2609 * If we didn't drop off the bottom of the list of rules (and thus 2610 * the 'current' rule fr is not NULL), then we may have some extra 2611 * instructions about what to do with a packet. 2612 * Once we're finished return to our caller, freeing the packet if 2613 * we are dropping it (* BSD ONLY *). 2614 * Reassign m from fin_m as we may have a new buffer, now. 2615 */ 2616 filtered: 2617 m = fin->fin_m; 2618 2619 if (fr != NULL) { 2620 frdest_t *fdp; 2621 2622 fdp = &fr->fr_tifs[fin->fin_rev]; 2623 2624 if (!out && (pass & FR_FASTROUTE)) { 2625 /* 2626 * For fastroute rule, no destioation interface defined 2627 * so pass NULL as the frdest_t parameter 2628 */ 2629 (void) fr_fastroute(m, mp, fin, NULL); 2630 m = *mp = NULL; 2631 } else if ((fdp->fd_ifp != NULL) && 2632 (fdp->fd_ifp != (struct ifnet *)-1)) { 2633 /* this is for to rules: */ 2634 (void) fr_fastroute(m, mp, fin, fdp); 2635 m = *mp = NULL; 2636 } 2637 2638 /* 2639 * Generate a duplicated packet. 2640 */ 2641 if (mc != NULL) 2642 (void) fr_fastroute(mc, &mc, fin, &fr->fr_dif); 2643 } 2644 2645 if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT)) 2646 nat_uncreate(fin); 2647 2648 /* 2649 * This late because the likes of fr_fastroute() use fin_fr. 2650 */ 2651 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2652 2653 finished: 2654 if (!FR_ISPASS(pass)) { 2655 IPF_BUMP(ifs->ifs_frstats[out].fr_block); 2656 if (*mp != NULL) { 2657 FREE_MB_T(*mp); 2658 m = *mp = NULL; 2659 } 2660 } else { 2661 IPF_BUMP(ifs->ifs_frstats[out].fr_pass); 2662 #if defined(_KERNEL) && defined(__sgi) 2663 if ((fin->fin_hbuf != NULL) && 2664 (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) { 2665 COPYBACK(m, 0, fin->fin_plen, fin->fin_hbuf); 2666 } 2667 #endif 2668 } 2669 2670 SPL_X(s); 2671 2672 #ifdef _KERNEL 2673 # if OpenBSD >= 200311 2674 if (FR_ISPASS(pass) && (v == 4)) { 2675 ip = fin->fin_ip; 2676 ip->ip_len = ntohs(ip->ip_len); 2677 ip->ip_off = ntohs(ip->ip_off); 2678 } 2679 # endif 2680 return (FR_ISPASS(pass)) ? 0 : fin->fin_error; 2681 #else /* _KERNEL */ 2682 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass)); 2683 if ((pass & FR_NOMATCH) != 0) 2684 return 1; 2685 2686 if ((pass & FR_RETMASK) != 0) 2687 switch (pass & FR_RETMASK) 2688 { 2689 case FR_RETRST : 2690 return 3; 2691 case FR_RETICMP : 2692 return 4; 2693 case FR_FAKEICMP : 2694 return 5; 2695 } 2696 2697 switch (pass & FR_CMDMASK) 2698 { 2699 case FR_PASS : 2700 return 0; 2701 case FR_BLOCK : 2702 return -1; 2703 case FR_AUTH : 2704 return -2; 2705 case FR_ACCOUNT : 2706 return -3; 2707 case FR_PREAUTH : 2708 return -4; 2709 } 2710 return 2; 2711 #endif /* _KERNEL */ 2712 } 2713 2714 2715 #ifdef IPFILTER_LOG 2716 /* ------------------------------------------------------------------------ */ 2717 /* Function: fr_dolog */ 2718 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */ 2719 /* Parameters: fin(I) - pointer to packet information */ 2720 /* passp(IO) - pointer to current/new filter decision (unused) */ 2721 /* */ 2722 /* Checks flags set to see how a packet should be logged, if it is to be */ 2723 /* logged. Adjust statistics based on its success or not. */ 2724 /* ------------------------------------------------------------------------ */ 2725 frentry_t *fr_dolog(fin, passp) 2726 fr_info_t *fin; 2727 u_32_t *passp; 2728 { 2729 u_32_t pass; 2730 int out; 2731 ipf_stack_t *ifs = fin->fin_ifs; 2732 2733 out = fin->fin_out; 2734 pass = *passp; 2735 2736 if ((ifs->ifs_fr_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) { 2737 pass |= FF_LOGNOMATCH; 2738 IPF_BUMP(ifs->ifs_frstats[out].fr_npkl); 2739 goto logit; 2740 } else if (((pass & FR_LOGMASK) == FR_LOGP) || 2741 (FR_ISPASS(pass) && (ifs->ifs_fr_flags & FF_LOGPASS))) { 2742 if ((pass & FR_LOGMASK) != FR_LOGP) 2743 pass |= FF_LOGPASS; 2744 IPF_BUMP(ifs->ifs_frstats[out].fr_ppkl); 2745 goto logit; 2746 } else if (((pass & FR_LOGMASK) == FR_LOGB) || 2747 (FR_ISBLOCK(pass) && (ifs->ifs_fr_flags & FF_LOGBLOCK))) { 2748 if ((pass & FR_LOGMASK) != FR_LOGB) 2749 pass |= FF_LOGBLOCK; 2750 IPF_BUMP(ifs->ifs_frstats[out].fr_bpkl); 2751 logit: 2752 if (ipflog(fin, pass) == -1) { 2753 IPF_BUMP(ifs->ifs_frstats[out].fr_skip); 2754 2755 /* 2756 * If the "or-block" option has been used then 2757 * block the packet if we failed to log it. 2758 */ 2759 if ((pass & FR_LOGORBLOCK) && 2760 FR_ISPASS(pass)) { 2761 pass &= ~FR_CMDMASK; 2762 pass |= FR_BLOCK; 2763 } 2764 } 2765 *passp = pass; 2766 } 2767 2768 return fin->fin_fr; 2769 } 2770 #endif /* IPFILTER_LOG */ 2771 2772 2773 /* ------------------------------------------------------------------------ */ 2774 /* Function: ipf_cksum */ 2775 /* Returns: u_short - IP header checksum */ 2776 /* Parameters: addr(I) - pointer to start of buffer to checksum */ 2777 /* len(I) - length of buffer in bytes */ 2778 /* */ 2779 /* Calculate the two's complement 16 bit checksum of the buffer passed. */ 2780 /* */ 2781 /* N.B.: addr should be 16bit aligned. */ 2782 /* ------------------------------------------------------------------------ */ 2783 u_short ipf_cksum(addr, len) 2784 u_short *addr; 2785 int len; 2786 { 2787 u_32_t sum = 0; 2788 2789 for (sum = 0; len > 1; len -= 2) 2790 sum += *addr++; 2791 2792 /* mop up an odd byte, if necessary */ 2793 if (len == 1) 2794 sum += *(u_char *)addr; 2795 2796 /* 2797 * add back carry outs from top 16 bits to low 16 bits 2798 */ 2799 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */ 2800 sum += (sum >> 16); /* add carry */ 2801 return (u_short)(~sum); 2802 } 2803 2804 2805 /* ------------------------------------------------------------------------ */ 2806 /* Function: fr_cksum */ 2807 /* Returns: u_short - layer 4 checksum */ 2808 /* Parameters: m(I ) - pointer to buffer holding packet */ 2809 /* ip(I) - pointer to IP header */ 2810 /* l4proto(I) - protocol to caclulate checksum for */ 2811 /* l4hdr(I) - pointer to layer 4 header */ 2812 /* */ 2813 /* Calculates the TCP checksum for the packet held in "m", using the data */ 2814 /* in the IP header "ip" to seed it. */ 2815 /* */ 2816 /* NB: This function assumes we've pullup'd enough for all of the IP header */ 2817 /* and the TCP header. We also assume that data blocks aren't allocated in */ 2818 /* odd sizes. */ 2819 /* */ 2820 /* Expects ip_len to be in host byte order when called. */ 2821 /* ------------------------------------------------------------------------ */ 2822 u_short fr_cksum(m, ip, l4proto, l4hdr) 2823 mb_t *m; 2824 ip_t *ip; 2825 int l4proto; 2826 void *l4hdr; 2827 { 2828 u_short *sp, slen, sumsave, l4hlen, *csump; 2829 u_int sum, sum2; 2830 int hlen; 2831 #ifdef USE_INET6 2832 ip6_t *ip6; 2833 #endif 2834 2835 csump = NULL; 2836 sumsave = 0; 2837 l4hlen = 0; 2838 sp = NULL; 2839 slen = 0; 2840 hlen = 0; 2841 sum = 0; 2842 2843 /* 2844 * Add up IP Header portion 2845 */ 2846 #ifdef USE_INET6 2847 if (IP_V(ip) == 4) { 2848 #endif 2849 hlen = IP_HL(ip) << 2; 2850 slen = ip->ip_len - hlen; 2851 sum = htons((u_short)l4proto); 2852 sum += htons(slen); 2853 sp = (u_short *)&ip->ip_src; 2854 sum += *sp++; /* ip_src */ 2855 sum += *sp++; 2856 sum += *sp++; /* ip_dst */ 2857 sum += *sp++; 2858 #ifdef USE_INET6 2859 } else if (IP_V(ip) == 6) { 2860 ip6 = (ip6_t *)ip; 2861 hlen = sizeof(*ip6); 2862 slen = ntohs(ip6->ip6_plen); 2863 sum = htons((u_short)l4proto); 2864 sum += htons(slen); 2865 sp = (u_short *)&ip6->ip6_src; 2866 sum += *sp++; /* ip6_src */ 2867 sum += *sp++; 2868 sum += *sp++; 2869 sum += *sp++; 2870 sum += *sp++; 2871 sum += *sp++; 2872 sum += *sp++; 2873 sum += *sp++; 2874 sum += *sp++; /* ip6_dst */ 2875 sum += *sp++; 2876 sum += *sp++; 2877 sum += *sp++; 2878 sum += *sp++; 2879 sum += *sp++; 2880 sum += *sp++; 2881 sum += *sp++; 2882 } 2883 #endif 2884 2885 switch (l4proto) 2886 { 2887 case IPPROTO_UDP : 2888 csump = &((udphdr_t *)l4hdr)->uh_sum; 2889 l4hlen = sizeof(udphdr_t); 2890 break; 2891 2892 case IPPROTO_TCP : 2893 csump = &((tcphdr_t *)l4hdr)->th_sum; 2894 l4hlen = sizeof(tcphdr_t); 2895 break; 2896 case IPPROTO_ICMP : 2897 csump = &((icmphdr_t *)l4hdr)->icmp_cksum; 2898 l4hlen = 4; 2899 sum = 0; 2900 break; 2901 default : 2902 break; 2903 } 2904 2905 if (csump != NULL) { 2906 sumsave = *csump; 2907 *csump = 0; 2908 } 2909 2910 l4hlen = l4hlen; /* LINT */ 2911 2912 #ifdef _KERNEL 2913 # ifdef MENTAT 2914 { 2915 void *rp = m->b_rptr; 2916 2917 if ((unsigned char *)ip > m->b_rptr && (unsigned char *)ip < m->b_wptr) 2918 m->b_rptr = (u_char *)ip; 2919 sum2 = ip_cksum(m, hlen, sum); /* hlen == offset */ 2920 m->b_rptr = rp; 2921 sum2 = (sum2 & 0xffff) + (sum2 >> 16); 2922 sum2 = ~sum2 & 0xffff; 2923 } 2924 # else /* MENTAT */ 2925 # if defined(BSD) || defined(sun) 2926 # if BSD >= 199103 2927 m->m_data += hlen; 2928 # else 2929 m->m_off += hlen; 2930 # endif 2931 m->m_len -= hlen; 2932 sum2 = in_cksum(m, slen); 2933 m->m_len += hlen; 2934 # if BSD >= 199103 2935 m->m_data -= hlen; 2936 # else 2937 m->m_off -= hlen; 2938 # endif 2939 /* 2940 * Both sum and sum2 are partial sums, so combine them together. 2941 */ 2942 sum += ~sum2 & 0xffff; 2943 while (sum > 0xffff) 2944 sum = (sum & 0xffff) + (sum >> 16); 2945 sum2 = ~sum & 0xffff; 2946 # else /* defined(BSD) || defined(sun) */ 2947 { 2948 union { 2949 u_char c[2]; 2950 u_short s; 2951 } bytes; 2952 u_short len = ip->ip_len; 2953 # if defined(__sgi) 2954 int add; 2955 # endif 2956 2957 /* 2958 * Add up IP Header portion 2959 */ 2960 if (sp != (u_short *)l4hdr) 2961 sp = (u_short *)l4hdr; 2962 2963 switch (l4proto) 2964 { 2965 case IPPROTO_UDP : 2966 sum += *sp++; /* sport */ 2967 sum += *sp++; /* dport */ 2968 sum += *sp++; /* udp length */ 2969 sum += *sp++; /* checksum */ 2970 break; 2971 2972 case IPPROTO_TCP : 2973 sum += *sp++; /* sport */ 2974 sum += *sp++; /* dport */ 2975 sum += *sp++; /* seq */ 2976 sum += *sp++; 2977 sum += *sp++; /* ack */ 2978 sum += *sp++; 2979 sum += *sp++; /* off */ 2980 sum += *sp++; /* win */ 2981 sum += *sp++; /* checksum */ 2982 sum += *sp++; /* urp */ 2983 break; 2984 case IPPROTO_ICMP : 2985 sum = *sp++; /* type/code */ 2986 sum += *sp++; /* checksum */ 2987 break; 2988 } 2989 2990 # ifdef __sgi 2991 /* 2992 * In case we had to copy the IP & TCP header out of mbufs, 2993 * skip over the mbuf bits which are the header 2994 */ 2995 if ((caddr_t)ip != mtod(m, caddr_t)) { 2996 hlen = (caddr_t)sp - (caddr_t)ip; 2997 while (hlen) { 2998 add = MIN(hlen, m->m_len); 2999 sp = (u_short *)(mtod(m, caddr_t) + add); 3000 hlen -= add; 3001 if (add == m->m_len) { 3002 m = m->m_next; 3003 if (!hlen) { 3004 if (!m) 3005 break; 3006 sp = mtod(m, u_short *); 3007 } 3008 PANIC((!m),("fr_cksum(1): not enough data")); 3009 } 3010 } 3011 } 3012 # endif 3013 3014 len -= (l4hlen + hlen); 3015 if (len <= 0) 3016 goto nodata; 3017 3018 while (len > 1) { 3019 if (((caddr_t)sp - mtod(m, caddr_t)) >= m->m_len) { 3020 m = m->m_next; 3021 PANIC((!m),("fr_cksum(2): not enough data")); 3022 sp = mtod(m, u_short *); 3023 } 3024 if (((caddr_t)(sp + 1) - mtod(m, caddr_t)) > m->m_len) { 3025 bytes.c[0] = *(u_char *)sp; 3026 m = m->m_next; 3027 PANIC((!m),("fr_cksum(3): not enough data")); 3028 sp = mtod(m, u_short *); 3029 bytes.c[1] = *(u_char *)sp; 3030 sum += bytes.s; 3031 sp = (u_short *)((u_char *)sp + 1); 3032 } 3033 if ((u_long)sp & 1) { 3034 bcopy((char *)sp++, (char *)&bytes.s, sizeof(bytes.s)); 3035 sum += bytes.s; 3036 } else 3037 sum += *sp++; 3038 len -= 2; 3039 } 3040 3041 if (len != 0) 3042 sum += ntohs(*(u_char *)sp << 8); 3043 nodata: 3044 while (sum > 0xffff) 3045 sum = (sum & 0xffff) + (sum >> 16); 3046 sum2 = (u_short)(~sum & 0xffff); 3047 } 3048 # endif /* defined(BSD) || defined(sun) */ 3049 # endif /* MENTAT */ 3050 #else /* _KERNEL */ 3051 for (; slen > 1; slen -= 2) 3052 sum += *sp++; 3053 if (slen) 3054 sum += ntohs(*(u_char *)sp << 8); 3055 while (sum > 0xffff) 3056 sum = (sum & 0xffff) + (sum >> 16); 3057 sum2 = (u_short)(~sum & 0xffff); 3058 #endif /* _KERNEL */ 3059 if (csump != NULL) 3060 *csump = sumsave; 3061 return sum2; 3062 } 3063 3064 3065 #if defined(_KERNEL) && ( ((BSD < 199103) && !defined(MENTAT)) || \ 3066 defined(__sgi) ) && !defined(linux) && !defined(_AIX51) 3067 /* 3068 * Copyright (c) 1982, 1986, 1988, 1991, 1993 3069 * The Regents of the University of California. All rights reserved. 3070 * 3071 * Redistribution and use in source and binary forms, with or without 3072 * modification, are permitted provided that the following conditions 3073 * are met: 3074 * 1. Redistributions of source code must retain the above copyright 3075 * notice, this list of conditions and the following disclaimer. 3076 * 2. Redistributions in binary form must reproduce the above copyright 3077 * notice, this list of conditions and the following disclaimer in the 3078 * documentation and/or other materials provided with the distribution. 3079 * 3. Neither the name of the University nor the names of its contributors 3080 * may be used to endorse or promote products derived from this software 3081 * without specific prior written permission. 3082 * 3083 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3084 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3085 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3086 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3087 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3088 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3089 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3090 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3091 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3092 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3093 * SUCH DAMAGE. 3094 * 3095 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 3096 * $Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $ 3097 */ 3098 /* 3099 * Copy data from an mbuf chain starting "off" bytes from the beginning, 3100 * continuing for "len" bytes, into the indicated buffer. 3101 */ 3102 void 3103 m_copydata(m, off, len, cp) 3104 mb_t *m; 3105 int off; 3106 int len; 3107 caddr_t cp; 3108 { 3109 unsigned count; 3110 3111 if (off < 0 || len < 0) 3112 panic("m_copydata"); 3113 while (off > 0) { 3114 if (m == 0) 3115 panic("m_copydata"); 3116 if (off < m->m_len) 3117 break; 3118 off -= m->m_len; 3119 m = m->m_next; 3120 } 3121 while (len > 0) { 3122 if (m == 0) 3123 panic("m_copydata"); 3124 count = MIN(m->m_len - off, len); 3125 bcopy(mtod(m, caddr_t) + off, cp, count); 3126 len -= count; 3127 cp += count; 3128 off = 0; 3129 m = m->m_next; 3130 } 3131 } 3132 3133 3134 /* 3135 * Copy data from a buffer back into the indicated mbuf chain, 3136 * starting "off" bytes from the beginning, extending the mbuf 3137 * chain if necessary. 3138 */ 3139 void 3140 m_copyback(m0, off, len, cp) 3141 struct mbuf *m0; 3142 int off; 3143 int len; 3144 caddr_t cp; 3145 { 3146 int mlen; 3147 struct mbuf *m = m0, *n; 3148 int totlen = 0; 3149 3150 if (m0 == 0) 3151 return; 3152 while (off > (mlen = m->m_len)) { 3153 off -= mlen; 3154 totlen += mlen; 3155 if (m->m_next == 0) { 3156 n = m_getclr(M_DONTWAIT, m->m_type); 3157 if (n == 0) 3158 goto out; 3159 n->m_len = min(MLEN, len + off); 3160 m->m_next = n; 3161 } 3162 m = m->m_next; 3163 } 3164 while (len > 0) { 3165 mlen = min(m->m_len - off, len); 3166 bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen); 3167 cp += mlen; 3168 len -= mlen; 3169 mlen += off; 3170 off = 0; 3171 totlen += mlen; 3172 if (len == 0) 3173 break; 3174 if (m->m_next == 0) { 3175 n = m_get(M_DONTWAIT, m->m_type); 3176 if (n == 0) 3177 break; 3178 n->m_len = min(MLEN, len); 3179 m->m_next = n; 3180 } 3181 m = m->m_next; 3182 } 3183 out: 3184 #if 0 3185 if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 3186 m->m_pkthdr.len = totlen; 3187 #endif 3188 return; 3189 } 3190 #endif /* (_KERNEL) && ( ((BSD < 199103) && !MENTAT) || __sgi) */ 3191 3192 3193 /* ------------------------------------------------------------------------ */ 3194 /* Function: fr_findgroup */ 3195 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */ 3196 /* Parameters: group(I) - group name to search for */ 3197 /* unit(I) - device to which this group belongs */ 3198 /* set(I) - which set of rules (inactive/inactive) this is */ 3199 /* fgpp(O) - pointer to place to store pointer to the pointer */ 3200 /* to where to add the next (last) group or where */ 3201 /* to delete group from. */ 3202 /* */ 3203 /* Search amongst the defined groups for a particular group number. */ 3204 /* ------------------------------------------------------------------------ */ 3205 frgroup_t *fr_findgroup(group, unit, set, fgpp, ifs) 3206 char *group; 3207 minor_t unit; 3208 int set; 3209 frgroup_t ***fgpp; 3210 ipf_stack_t *ifs; 3211 { 3212 frgroup_t *fg, **fgp; 3213 3214 /* 3215 * Which list of groups to search in is dependent on which list of 3216 * rules are being operated on. 3217 */ 3218 fgp = &ifs->ifs_ipfgroups[unit][set]; 3219 3220 while ((fg = *fgp) != NULL) { 3221 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0) 3222 break; 3223 else 3224 fgp = &fg->fg_next; 3225 } 3226 if (fgpp != NULL) 3227 *fgpp = fgp; 3228 return fg; 3229 } 3230 3231 3232 /* ------------------------------------------------------------------------ */ 3233 /* Function: fr_addgroup */ 3234 /* Returns: frgroup_t * - NULL == did not create group, */ 3235 /* != NULL == pointer to the group */ 3236 /* Parameters: num(I) - group number to add */ 3237 /* head(I) - rule pointer that is using this as the head */ 3238 /* flags(I) - rule flags which describe the type of rule it is */ 3239 /* unit(I) - device to which this group will belong to */ 3240 /* set(I) - which set of rules (inactive/inactive) this is */ 3241 /* Write Locks: ipf_mutex */ 3242 /* */ 3243 /* Add a new group head, or if it already exists, increase the reference */ 3244 /* count to it. */ 3245 /* ------------------------------------------------------------------------ */ 3246 frgroup_t *fr_addgroup(group, head, flags, unit, set, ifs) 3247 char *group; 3248 void *head; 3249 u_32_t flags; 3250 minor_t unit; 3251 int set; 3252 ipf_stack_t *ifs; 3253 { 3254 frgroup_t *fg, **fgp; 3255 u_32_t gflags; 3256 3257 if (group == NULL) 3258 return NULL; 3259 3260 if (unit == IPL_LOGIPF && *group == '\0') 3261 return NULL; 3262 3263 fgp = NULL; 3264 gflags = flags & FR_INOUT; 3265 3266 fg = fr_findgroup(group, unit, set, &fgp, ifs); 3267 if (fg != NULL) { 3268 if (fg->fg_flags == 0) 3269 fg->fg_flags = gflags; 3270 else if (gflags != fg->fg_flags) 3271 return NULL; 3272 fg->fg_ref++; 3273 return fg; 3274 } 3275 KMALLOC(fg, frgroup_t *); 3276 if (fg != NULL) { 3277 fg->fg_head = head; 3278 fg->fg_start = NULL; 3279 fg->fg_next = *fgp; 3280 bcopy(group, fg->fg_name, FR_GROUPLEN); 3281 fg->fg_flags = gflags; 3282 fg->fg_ref = 1; 3283 *fgp = fg; 3284 } 3285 return fg; 3286 } 3287 3288 3289 /* ------------------------------------------------------------------------ */ 3290 /* Function: fr_delgroup */ 3291 /* Returns: Nil */ 3292 /* Parameters: group(I) - group name to delete */ 3293 /* unit(I) - device to which this group belongs */ 3294 /* set(I) - which set of rules (inactive/inactive) this is */ 3295 /* Write Locks: ipf_mutex */ 3296 /* */ 3297 /* Attempt to delete a group head. */ 3298 /* Only do this when its reference count reaches 0. */ 3299 /* ------------------------------------------------------------------------ */ 3300 void fr_delgroup(group, unit, set, ifs) 3301 char *group; 3302 minor_t unit; 3303 int set; 3304 ipf_stack_t *ifs; 3305 { 3306 frgroup_t *fg, **fgp; 3307 3308 fg = fr_findgroup(group, unit, set, &fgp, ifs); 3309 if (fg == NULL) 3310 return; 3311 3312 fg->fg_ref--; 3313 if (fg->fg_ref == 0) { 3314 *fgp = fg->fg_next; 3315 KFREE(fg); 3316 } 3317 } 3318 3319 3320 /* ------------------------------------------------------------------------ */ 3321 /* Function: fr_getrulen */ 3322 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */ 3323 /* Parameters: unit(I) - device for which to count the rule's number */ 3324 /* flags(I) - which set of rules to find the rule in */ 3325 /* group(I) - group name */ 3326 /* n(I) - rule number to find */ 3327 /* */ 3328 /* Find rule # n in group # g and return a pointer to it. Return NULl if */ 3329 /* group # g doesn't exist or there are less than n rules in the group. */ 3330 /* ------------------------------------------------------------------------ */ 3331 frentry_t *fr_getrulen(unit, group, n, ifs) 3332 int unit; 3333 char *group; 3334 u_32_t n; 3335 ipf_stack_t *ifs; 3336 { 3337 frentry_t *fr; 3338 frgroup_t *fg; 3339 3340 fg = fr_findgroup(group, unit, ifs->ifs_fr_active, NULL, ifs); 3341 if (fg == NULL) 3342 return NULL; 3343 for (fr = fg->fg_head; fr && n; fr = fr->fr_next, n--) 3344 ; 3345 if (n != 0) 3346 return NULL; 3347 return fr; 3348 } 3349 3350 3351 /* ------------------------------------------------------------------------ */ 3352 /* Function: fr_rulen */ 3353 /* Returns: int - >= 0 - rule number, -1 == search failed */ 3354 /* Parameters: unit(I) - device for which to count the rule's number */ 3355 /* fr(I) - pointer to rule to match */ 3356 /* */ 3357 /* Return the number for a rule on a specific filtering device. */ 3358 /* ------------------------------------------------------------------------ */ 3359 int fr_rulen(unit, fr, ifs) 3360 int unit; 3361 frentry_t *fr; 3362 ipf_stack_t *ifs; 3363 { 3364 frentry_t *fh; 3365 frgroup_t *fg; 3366 u_32_t n = 0; 3367 3368 if (fr == NULL) 3369 return -1; 3370 fg = fr_findgroup(fr->fr_group, unit, ifs->ifs_fr_active, NULL, ifs); 3371 if (fg == NULL) 3372 return -1; 3373 for (fh = fg->fg_head; fh; n++, fh = fh->fr_next) 3374 if (fh == fr) 3375 break; 3376 if (fh == NULL) 3377 return -1; 3378 return n; 3379 } 3380 3381 3382 /* ------------------------------------------------------------------------ */ 3383 /* Function: frflushlist */ 3384 /* Returns: int - >= 0 - number of flushed rules */ 3385 /* Parameters: set(I) - which set of rules (inactive/inactive) this is */ 3386 /* unit(I) - device for which to flush rules */ 3387 /* flags(I) - which set of rules to flush */ 3388 /* nfreedp(O) - pointer to int where flush count is stored */ 3389 /* listp(I) - pointer to list to flush pointer */ 3390 /* Write Locks: ipf_mutex */ 3391 /* */ 3392 /* Recursively flush rules from the list, descending groups as they are */ 3393 /* encountered. if a rule is the head of a group and it has lost all its */ 3394 /* group members, then also delete the group reference. nfreedp is needed */ 3395 /* to store the accumulating count of rules removed, whereas the returned */ 3396 /* value is just the number removed from the current list. The latter is */ 3397 /* needed to correctly adjust reference counts on rules that define groups. */ 3398 /* */ 3399 /* NOTE: Rules not loaded from user space cannot be flushed. */ 3400 /* ------------------------------------------------------------------------ */ 3401 static int frflushlist(set, unit, nfreedp, listp, ifs) 3402 int set; 3403 minor_t unit; 3404 int *nfreedp; 3405 frentry_t **listp; 3406 ipf_stack_t *ifs; 3407 { 3408 int freed = 0; 3409 frentry_t *fp; 3410 3411 while ((fp = *listp) != NULL) { 3412 if ((fp->fr_type & FR_T_BUILTIN) || 3413 !(fp->fr_flags & FR_COPIED)) { 3414 listp = &fp->fr_next; 3415 continue; 3416 } 3417 *listp = fp->fr_next; 3418 if (fp->fr_grp != NULL) { 3419 (void) frflushlist(set, unit, nfreedp, fp->fr_grp, ifs); 3420 } 3421 3422 if (fp->fr_grhead != NULL) { 3423 fr_delgroup(fp->fr_grhead, unit, set, ifs); 3424 *fp->fr_grhead = '\0'; 3425 } 3426 3427 ASSERT(fp->fr_ref > 0); 3428 fp->fr_next = NULL; 3429 if (fr_derefrule(&fp, ifs) == 0) 3430 freed++; 3431 } 3432 *nfreedp += freed; 3433 return freed; 3434 } 3435 3436 3437 /* ------------------------------------------------------------------------ */ 3438 /* Function: frflush */ 3439 /* Returns: int - >= 0 - number of flushed rules */ 3440 /* Parameters: unit(I) - device for which to flush rules */ 3441 /* flags(I) - which set of rules to flush */ 3442 /* */ 3443 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */ 3444 /* and IPv6) as defined by the value of flags. */ 3445 /* ------------------------------------------------------------------------ */ 3446 int frflush(unit, proto, flags, ifs) 3447 minor_t unit; 3448 int proto, flags; 3449 ipf_stack_t *ifs; 3450 { 3451 int flushed = 0, set; 3452 3453 WRITE_ENTER(&ifs->ifs_ipf_mutex); 3454 3455 set = ifs->ifs_fr_active; 3456 if ((flags & FR_INACTIVE) == FR_INACTIVE) 3457 set = 1 - set; 3458 3459 if (flags & FR_OUTQUE) { 3460 if (proto == 0 || proto == 6) { 3461 (void) frflushlist(set, unit, 3462 &flushed, &ifs->ifs_ipfilter6[1][set], ifs); 3463 (void) frflushlist(set, unit, 3464 &flushed, &ifs->ifs_ipacct6[1][set], ifs); 3465 } 3466 if (proto == 0 || proto == 4) { 3467 (void) frflushlist(set, unit, 3468 &flushed, &ifs->ifs_ipfilter[1][set], ifs); 3469 (void) frflushlist(set, unit, 3470 &flushed, &ifs->ifs_ipacct[1][set], ifs); 3471 } 3472 } 3473 if (flags & FR_INQUE) { 3474 if (proto == 0 || proto == 6) { 3475 (void) frflushlist(set, unit, 3476 &flushed, &ifs->ifs_ipfilter6[0][set], ifs); 3477 (void) frflushlist(set, unit, 3478 &flushed, &ifs->ifs_ipacct6[0][set], ifs); 3479 } 3480 if (proto == 0 || proto == 4) { 3481 (void) frflushlist(set, unit, 3482 &flushed, &ifs->ifs_ipfilter[0][set], ifs); 3483 (void) frflushlist(set, unit, 3484 &flushed, &ifs->ifs_ipacct[0][set], ifs); 3485 } 3486 } 3487 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 3488 3489 if (unit == IPL_LOGIPF) { 3490 int tmp; 3491 3492 tmp = frflush(IPL_LOGCOUNT, proto, flags, ifs); 3493 if (tmp >= 0) 3494 flushed += tmp; 3495 } 3496 return flushed; 3497 } 3498 3499 3500 /* ------------------------------------------------------------------------ */ 3501 /* Function: memstr */ 3502 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */ 3503 /* Parameters: src(I) - pointer to byte sequence to match */ 3504 /* dst(I) - pointer to byte sequence to search */ 3505 /* slen(I) - match length */ 3506 /* dlen(I) - length available to search in */ 3507 /* */ 3508 /* Search dst for a sequence of bytes matching those at src and extend for */ 3509 /* slen bytes. */ 3510 /* ------------------------------------------------------------------------ */ 3511 char *memstr(src, dst, slen, dlen) 3512 char *src, *dst; 3513 int slen, dlen; 3514 { 3515 char *s = NULL; 3516 3517 while (dlen >= slen) { 3518 if (bcmp(src, dst, slen) == 0) { 3519 s = dst; 3520 break; 3521 } 3522 dst++; 3523 dlen--; 3524 } 3525 return s; 3526 } 3527 /* ------------------------------------------------------------------------ */ 3528 /* Function: fr_fixskip */ 3529 /* Returns: Nil */ 3530 /* Parameters: listp(IO) - pointer to start of list with skip rule */ 3531 /* rp(I) - rule added/removed with skip in it. */ 3532 /* addremove(I) - adjustment (-1/+1) to make to skip count, */ 3533 /* depending on whether a rule was just added */ 3534 /* or removed. */ 3535 /* */ 3536 /* Adjust all the rules in a list which would have skip'd past the position */ 3537 /* where we are inserting to skip to the right place given the change. */ 3538 /* ------------------------------------------------------------------------ */ 3539 void fr_fixskip(listp, rp, addremove) 3540 frentry_t **listp, *rp; 3541 int addremove; 3542 { 3543 int rules, rn; 3544 frentry_t *fp; 3545 3546 rules = 0; 3547 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next) 3548 rules++; 3549 3550 if (!fp) 3551 return; 3552 3553 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++) 3554 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules)) 3555 fp->fr_arg += addremove; 3556 } 3557 3558 3559 #ifdef _KERNEL 3560 /* ------------------------------------------------------------------------ */ 3561 /* Function: count4bits */ 3562 /* Returns: int - >= 0 - number of consecutive bits in input */ 3563 /* Parameters: ip(I) - 32bit IP address */ 3564 /* */ 3565 /* IPv4 ONLY */ 3566 /* count consecutive 1's in bit mask. If the mask generated by counting */ 3567 /* consecutive 1's is different to that passed, return -1, else return # */ 3568 /* of bits. */ 3569 /* ------------------------------------------------------------------------ */ 3570 int count4bits(ip) 3571 u_32_t ip; 3572 { 3573 u_32_t ipn; 3574 int cnt = 0, i, j; 3575 3576 ip = ipn = ntohl(ip); 3577 for (i = 32; i; i--, ipn *= 2) 3578 if (ipn & 0x80000000) 3579 cnt++; 3580 else 3581 break; 3582 ipn = 0; 3583 for (i = 32, j = cnt; i; i--, j--) { 3584 ipn *= 2; 3585 if (j > 0) 3586 ipn++; 3587 } 3588 if (ipn == ip) 3589 return cnt; 3590 return -1; 3591 } 3592 3593 3594 #ifdef USE_INET6 3595 /* ------------------------------------------------------------------------ */ 3596 /* Function: count6bits */ 3597 /* Returns: int - >= 0 - number of consecutive bits in input */ 3598 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */ 3599 /* */ 3600 /* IPv6 ONLY */ 3601 /* count consecutive 1's in bit mask. */ 3602 /* ------------------------------------------------------------------------ */ 3603 int count6bits(msk) 3604 u_32_t *msk; 3605 { 3606 int i = 0, k; 3607 u_32_t j; 3608 3609 for (k = 3; k >= 0; k--) 3610 if (msk[k] == 0xffffffff) 3611 i += 32; 3612 else { 3613 for (j = msk[k]; j; j <<= 1) 3614 if (j & 0x80000000) 3615 i++; 3616 } 3617 return i; 3618 } 3619 # endif 3620 #endif /* _KERNEL */ 3621 3622 3623 /* ------------------------------------------------------------------------ */ 3624 /* Function: fr_ifsync */ 3625 /* Returns: void * - new interface identifier */ 3626 /* Parameters: action(I) - type of synchronisation to do */ 3627 /* v(I) - IP version being sync'd (v4 or v6) */ 3628 /* newifp(I) - interface identifier being introduced/removed */ 3629 /* oldifp(I) - interface identifier in a filter rule */ 3630 /* newname(I) - name associated with newifp interface */ 3631 /* oldname(I) - name associated with oldifp interface */ 3632 /* ifs - pointer to IPF stack instance */ 3633 /* */ 3634 /* This function returns what the new value for "oldifp" should be for its */ 3635 /* caller. In some cases it will not change, in some it will. */ 3636 /* action == IPFSYNC_RESYNC */ 3637 /* a new value for oldifp will always be looked up, according to oldname, */ 3638 /* the values of newname and newifp are ignored. */ 3639 /* action == IPFSYNC_NEWIFP */ 3640 /* if oldname matches newname then we are doing a sync for the matching */ 3641 /* interface, so we return newifp to be used in place of oldifp. If the */ 3642 /* the names don't match, just return oldifp. */ 3643 /* action == IPFSYNC_OLDIFP */ 3644 /* if oldifp matches newifp then we are are doing a sync to remove any */ 3645 /* references to oldifp, so we return "-1". */ 3646 /* ----- */ 3647 /* NOTE: */ 3648 /* This function processes NIC event from PF_HOOKS. The action parameter */ 3649 /* is set in ipf_nic_event_v4()/ipf_nic_event_v6() function. There is */ 3650 /* one single switch statement() in ipf_nic_event_vx() function, which */ 3651 /* translates the HOOK event type to action parameter passed to fr_ifsync. */ 3652 /* The translation table looks as follows: */ 3653 /* event | action */ 3654 /* ----------------+------------- */ 3655 /* NE_PLUMB | IPFSYNC_NEWIFP */ 3656 /* NE_UNPLUMB | IPFSYNC_OLDIFP */ 3657 /* NE_ADDRESS_CHANGE | IPFSYNC_RESYNC */ 3658 /* */ 3659 /* The oldname and oldifp parameters are taken from IPF entry (rule, state */ 3660 /* table entry, NAT table entry, fragment ...). The newname and newifp */ 3661 /* parameters come from hook event data, parameters are taken from event */ 3662 /* in ipf_nic_event_vx() functions. Any time NIC changes, the IPF is */ 3663 /* notified by hook function. */ 3664 /* */ 3665 /* We get NE_UNPLUMB event from PF_HOOKS even if someone coincidently tries */ 3666 /* to plumb the interface, which is already plumbed. In such case we always */ 3667 /* get the event from PF_HOOKS as follows: */ 3668 /* event: NE_PLUMB */ 3669 /* NIC: 0x0 */ 3670 /* ------------------------------------------------------------------------ */ 3671 static void *fr_ifsync(action, v, newname, oldname, newifp, oldifp, ifs) 3672 int action, v; 3673 char *newname, *oldname; 3674 void *newifp, *oldifp; 3675 ipf_stack_t *ifs; 3676 { 3677 void *rval = oldifp; 3678 3679 switch (action) 3680 { 3681 case IPFSYNC_RESYNC : 3682 if (oldname[0] != '\0') { 3683 rval = fr_resolvenic(oldname, v, ifs); 3684 } 3685 break; 3686 case IPFSYNC_NEWIFP : 3687 if (!strncmp(newname, oldname, LIFNAMSIZ)) 3688 rval = newifp; 3689 break; 3690 case IPFSYNC_OLDIFP : 3691 /* 3692 * If interface gets unplumbed it must be invalidated, which 3693 * means set all existing references to the interface to -1. 3694 * We don't want to invalidate references for wildcard 3695 * (unbound) rules (entries). 3696 */ 3697 if (newifp == oldifp) 3698 rval = (oldifp) ? (void *)-1 : NULL; 3699 break; 3700 } 3701 3702 return rval; 3703 } 3704 3705 3706 /* ------------------------------------------------------------------------ */ 3707 /* Function: frsynclist */ 3708 /* Returns: void */ 3709 /* Parameters: action(I) - type of synchronisation to do */ 3710 /* v(I) - IP version being sync'd (v4 or v6) */ 3711 /* ifp(I) - interface identifier associated with action */ 3712 /* ifname(I) - name associated with ifp parameter */ 3713 /* fr(I) - pointer to filter rule */ 3714 /* ifs - pointer to IPF stack instance */ 3715 /* Write Locks: ipf_mutex */ 3716 /* */ 3717 /* Walk through a list of filter rules and resolve any interface names into */ 3718 /* pointers. Where dynamic addresses are used, also update the IP address */ 3719 /* used in the rule. The interface pointer is used to limit the lookups to */ 3720 /* a specific set of matching names if it is non-NULL. */ 3721 /* ------------------------------------------------------------------------ */ 3722 static void frsynclist(action, v, ifp, ifname, fr, ifs) 3723 int action, v; 3724 void *ifp; 3725 char *ifname; 3726 frentry_t *fr; 3727 ipf_stack_t *ifs; 3728 { 3729 frdest_t *fdp; 3730 int rv, i; 3731 3732 for (; fr; fr = fr->fr_next) { 3733 rv = fr->fr_v; 3734 if (v != 0 && v != rv) 3735 continue; 3736 3737 /* 3738 * Lookup all the interface names that are part of the rule. 3739 */ 3740 for (i = 0; i < 4; i++) { 3741 fr->fr_ifas[i] = fr_ifsync(action, rv, ifname, 3742 fr->fr_ifnames[i], 3743 ifp, fr->fr_ifas[i], 3744 ifs); 3745 } 3746 3747 fdp = &fr->fr_tifs[0]; 3748 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3749 ifp, fdp->fd_ifp, ifs); 3750 3751 fdp = &fr->fr_tifs[1]; 3752 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3753 ifp, fdp->fd_ifp, ifs); 3754 3755 fdp = &fr->fr_dif; 3756 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3757 ifp, fdp->fd_ifp, ifs); 3758 3759 if (action != IPFSYNC_RESYNC) 3760 continue; 3761 3762 if (fr->fr_type == FR_T_IPF) { 3763 if (fr->fr_satype != FRI_NORMAL && 3764 fr->fr_satype != FRI_LOOKUP) { 3765 (void)fr_ifpaddr(rv, fr->fr_satype, 3766 fr->fr_ifas[fr->fr_sifpidx], 3767 &fr->fr_src, &fr->fr_smsk, 3768 ifs); 3769 } 3770 if (fr->fr_datype != FRI_NORMAL && 3771 fr->fr_datype != FRI_LOOKUP) { 3772 (void)fr_ifpaddr(rv, fr->fr_datype, 3773 fr->fr_ifas[fr->fr_difpidx], 3774 &fr->fr_dst, &fr->fr_dmsk, 3775 ifs); 3776 } 3777 } 3778 3779 #ifdef IPFILTER_LOOKUP 3780 if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP && 3781 fr->fr_srcptr == NULL) { 3782 fr->fr_srcptr = fr_resolvelookup(fr->fr_srctype, 3783 fr->fr_srcnum, 3784 &fr->fr_srcfunc, ifs); 3785 } 3786 if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP && 3787 fr->fr_dstptr == NULL) { 3788 fr->fr_dstptr = fr_resolvelookup(fr->fr_dsttype, 3789 fr->fr_dstnum, 3790 &fr->fr_dstfunc, ifs); 3791 } 3792 #endif 3793 } 3794 } 3795 3796 3797 #ifdef _KERNEL 3798 /* ------------------------------------------------------------------------ */ 3799 /* Function: frsync */ 3800 /* Returns: void */ 3801 /* Parameters: action(I) - type of synchronisation to do */ 3802 /* v(I) - IP version being sync'd (v4 or v6) */ 3803 /* ifp(I) - interface identifier associated with action */ 3804 /* name(I) - name associated with ifp parameter */ 3805 /* */ 3806 /* frsync() is called when we suspect that the interface list or */ 3807 /* information about interfaces (like IP#) has changed. Go through all */ 3808 /* filter rules, NAT entries and the state table and check if anything */ 3809 /* needs to be changed/updated. */ 3810 /* With the filtering hooks added to Solaris, we needed to change the manner*/ 3811 /* in which this was done to support three different types of sync: */ 3812 /* - complete resync of all interface name/identifiers */ 3813 /* - new interface being announced with its name and identifier */ 3814 /* - interface removal being announced by only its identifier */ 3815 /* ------------------------------------------------------------------------ */ 3816 void frsync(action, v, ifp, name, ifs) 3817 int action, v; 3818 void *ifp; 3819 char *name; 3820 ipf_stack_t *ifs; 3821 { 3822 int i; 3823 3824 WRITE_ENTER(&ifs->ifs_ipf_mutex); 3825 frsynclist(action, v, ifp, name, ifs->ifs_ipacct[0][ifs->ifs_fr_active], ifs); 3826 frsynclist(action, v, ifp, name, ifs->ifs_ipacct[1][ifs->ifs_fr_active], ifs); 3827 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[0][ifs->ifs_fr_active], ifs); 3828 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[1][ifs->ifs_fr_active], ifs); 3829 frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[0][ifs->ifs_fr_active], ifs); 3830 frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[1][ifs->ifs_fr_active], ifs); 3831 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[0][ifs->ifs_fr_active], ifs); 3832 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[1][ifs->ifs_fr_active], ifs); 3833 3834 for (i = 0; i < IPL_LOGSIZE; i++) { 3835 frgroup_t *g; 3836 3837 for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next) 3838 frsynclist(action, v, ifp, name, g->fg_start, ifs); 3839 for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next) 3840 frsynclist(action, v, ifp, name, g->fg_start, ifs); 3841 } 3842 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 3843 } 3844 3845 3846 /* 3847 * In the functions below, bcopy() is called because the pointer being 3848 * copied _from_ in this instance is a pointer to a char buf (which could 3849 * end up being unaligned) and on the kernel's local stack. 3850 */ 3851 /* ------------------------------------------------------------------------ */ 3852 /* Function: copyinptr */ 3853 /* Returns: int - 0 = success, else failure */ 3854 /* Parameters: src(I) - pointer to the source address */ 3855 /* dst(I) - destination address */ 3856 /* size(I) - number of bytes to copy */ 3857 /* */ 3858 /* Copy a block of data in from user space, given a pointer to the pointer */ 3859 /* to start copying from (src) and a pointer to where to store it (dst). */ 3860 /* NB: src - pointer to user space pointer, dst - kernel space pointer */ 3861 /* ------------------------------------------------------------------------ */ 3862 int copyinptr(src, dst, size) 3863 void *src, *dst; 3864 size_t size; 3865 { 3866 caddr_t ca; 3867 int err; 3868 3869 # if SOLARIS 3870 err = COPYIN(src, (caddr_t)&ca, sizeof(ca)); 3871 if (err != 0) 3872 return err; 3873 # else 3874 bcopy(src, (caddr_t)&ca, sizeof(ca)); 3875 # endif 3876 err = COPYIN(ca, dst, size); 3877 return err; 3878 } 3879 3880 3881 /* ------------------------------------------------------------------------ */ 3882 /* Function: copyoutptr */ 3883 /* Returns: int - 0 = success, else failure */ 3884 /* Parameters: src(I) - pointer to the source address */ 3885 /* dst(I) - destination address */ 3886 /* size(I) - number of bytes to copy */ 3887 /* */ 3888 /* Copy a block of data out to user space, given a pointer to the pointer */ 3889 /* to start copying from (src) and a pointer to where to store it (dst). */ 3890 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */ 3891 /* ------------------------------------------------------------------------ */ 3892 int copyoutptr(src, dst, size) 3893 void *src, *dst; 3894 size_t size; 3895 { 3896 caddr_t ca; 3897 int err; 3898 3899 # if SOLARIS 3900 err = COPYIN(dst, (caddr_t)&ca, sizeof(ca)); 3901 if (err != 0) 3902 return err; 3903 # else 3904 bcopy(dst, (caddr_t)&ca, sizeof(ca)); 3905 # endif 3906 err = COPYOUT(src, ca, size); 3907 return err; 3908 } 3909 #endif 3910 3911 3912 /* ------------------------------------------------------------------------ */ 3913 /* Function: fr_lock */ 3914 /* Returns: int - 0 = success, else error */ 3915 /* Parameters: data(I) - pointer to lock value to set */ 3916 /* lockp(O) - pointer to location to store old lock value */ 3917 /* */ 3918 /* Get the new value for the lock integer, set it and return the old value */ 3919 /* in *lockp. */ 3920 /* ------------------------------------------------------------------------ */ 3921 int fr_lock(data, lockp) 3922 caddr_t data; 3923 int *lockp; 3924 { 3925 int arg, err; 3926 3927 err = BCOPYIN(data, (caddr_t)&arg, sizeof(arg)); 3928 if (err != 0) 3929 return (EFAULT); 3930 err = BCOPYOUT((caddr_t)lockp, data, sizeof(*lockp)); 3931 if (err != 0) 3932 return (EFAULT); 3933 *lockp = arg; 3934 return (0); 3935 } 3936 3937 3938 /* ------------------------------------------------------------------------ */ 3939 /* Function: fr_getstat */ 3940 /* Returns: Nil */ 3941 /* Parameters: fiop(I) - pointer to ipfilter stats structure */ 3942 /* */ 3943 /* Stores a copy of current pointers, counters, etc, in the friostat */ 3944 /* structure. */ 3945 /* ------------------------------------------------------------------------ */ 3946 void fr_getstat(fiop, ifs) 3947 friostat_t *fiop; 3948 ipf_stack_t *ifs; 3949 { 3950 int i, j; 3951 3952 bcopy((char *)&ifs->ifs_frstats, (char *)fiop->f_st, 3953 sizeof(filterstats_t) * 2); 3954 fiop->f_locks[IPL_LOGSTATE] = ifs->ifs_fr_state_lock; 3955 fiop->f_locks[IPL_LOGNAT] = ifs->ifs_fr_nat_lock; 3956 fiop->f_locks[IPL_LOGIPF] = ifs->ifs_fr_frag_lock; 3957 fiop->f_locks[IPL_LOGAUTH] = ifs->ifs_fr_auth_lock; 3958 3959 for (i = 0; i < 2; i++) 3960 for (j = 0; j < 2; j++) { 3961 fiop->f_ipf[i][j] = ifs->ifs_ipfilter[i][j]; 3962 fiop->f_acct[i][j] = ifs->ifs_ipacct[i][j]; 3963 fiop->f_ipf6[i][j] = ifs->ifs_ipfilter6[i][j]; 3964 fiop->f_acct6[i][j] = ifs->ifs_ipacct6[i][j]; 3965 } 3966 3967 fiop->f_ticks = ifs->ifs_fr_ticks; 3968 fiop->f_active = ifs->ifs_fr_active; 3969 fiop->f_froute[0] = ifs->ifs_fr_frouteok[0]; 3970 fiop->f_froute[1] = ifs->ifs_fr_frouteok[1]; 3971 3972 fiop->f_running = ifs->ifs_fr_running; 3973 for (i = 0; i < IPL_LOGSIZE; i++) { 3974 fiop->f_groups[i][0] = ifs->ifs_ipfgroups[i][0]; 3975 fiop->f_groups[i][1] = ifs->ifs_ipfgroups[i][1]; 3976 } 3977 #ifdef IPFILTER_LOG 3978 fiop->f_logging = 1; 3979 #else 3980 fiop->f_logging = 0; 3981 #endif 3982 fiop->f_defpass = ifs->ifs_fr_pass; 3983 fiop->f_features = fr_features; 3984 (void) strncpy(fiop->f_version, ipfilter_version, 3985 sizeof(fiop->f_version)); 3986 } 3987 3988 3989 #ifdef USE_INET6 3990 int icmptoicmp6types[ICMP_MAXTYPE+1] = { 3991 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */ 3992 -1, /* 1: UNUSED */ 3993 -1, /* 2: UNUSED */ 3994 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */ 3995 -1, /* 4: ICMP_SOURCEQUENCH */ 3996 ND_REDIRECT, /* 5: ICMP_REDIRECT */ 3997 -1, /* 6: UNUSED */ 3998 -1, /* 7: UNUSED */ 3999 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */ 4000 -1, /* 9: UNUSED */ 4001 -1, /* 10: UNUSED */ 4002 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */ 4003 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */ 4004 -1, /* 13: ICMP_TSTAMP */ 4005 -1, /* 14: ICMP_TSTAMPREPLY */ 4006 -1, /* 15: ICMP_IREQ */ 4007 -1, /* 16: ICMP_IREQREPLY */ 4008 -1, /* 17: ICMP_MASKREQ */ 4009 -1, /* 18: ICMP_MASKREPLY */ 4010 }; 4011 4012 4013 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = { 4014 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */ 4015 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */ 4016 -1, /* 2: ICMP_UNREACH_PROTOCOL */ 4017 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */ 4018 -1, /* 4: ICMP_UNREACH_NEEDFRAG */ 4019 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */ 4020 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */ 4021 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */ 4022 -1, /* 8: ICMP_UNREACH_ISOLATED */ 4023 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */ 4024 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */ 4025 -1, /* 11: ICMP_UNREACH_TOSNET */ 4026 -1, /* 12: ICMP_UNREACH_TOSHOST */ 4027 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */ 4028 }; 4029 int icmpreplytype6[ICMP6_MAXTYPE + 1]; 4030 #endif 4031 4032 int icmpreplytype4[ICMP_MAXTYPE + 1]; 4033 4034 4035 /* ------------------------------------------------------------------------ */ 4036 /* Function: fr_matchicmpqueryreply */ 4037 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */ 4038 /* Parameters: v(I) - IP protocol version (4 or 6) */ 4039 /* ic(I) - ICMP information */ 4040 /* icmp(I) - ICMP packet header */ 4041 /* rev(I) - direction (0 = forward/1 = reverse) of packet */ 4042 /* */ 4043 /* Check if the ICMP packet defined by the header pointed to by icmp is a */ 4044 /* reply to one as described by what's in ic. If it is a match, return 1, */ 4045 /* else return 0 for no match. */ 4046 /* ------------------------------------------------------------------------ */ 4047 int fr_matchicmpqueryreply(v, ic, icmp, rev) 4048 int v; 4049 icmpinfo_t *ic; 4050 icmphdr_t *icmp; 4051 int rev; 4052 { 4053 int ictype; 4054 4055 ictype = ic->ici_type; 4056 4057 if (v == 4) { 4058 /* 4059 * If we matched its type on the way in, then when going out 4060 * it will still be the same type. 4061 */ 4062 if ((!rev && (icmp->icmp_type == ictype)) || 4063 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) { 4064 if (icmp->icmp_type != ICMP_ECHOREPLY) 4065 return 1; 4066 if (icmp->icmp_id == ic->ici_id) 4067 return 1; 4068 } 4069 } 4070 #ifdef USE_INET6 4071 else if (v == 6) { 4072 if ((!rev && (icmp->icmp_type == ictype)) || 4073 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) { 4074 if (icmp->icmp_type != ICMP6_ECHO_REPLY) 4075 return 1; 4076 if (icmp->icmp_id == ic->ici_id) 4077 return 1; 4078 } 4079 } 4080 #endif 4081 return 0; 4082 } 4083 4084 4085 #ifdef IPFILTER_LOOKUP 4086 /* ------------------------------------------------------------------------ */ 4087 /* Function: fr_resolvelookup */ 4088 /* Returns: void * - NULL = failure, else success. */ 4089 /* Parameters: type(I) - type of lookup these parameters are for. */ 4090 /* number(I) - table number to use when searching */ 4091 /* funcptr(IO) - pointer to pointer for storing IP address */ 4092 /* searching function. */ 4093 /* */ 4094 /* Search for the "table" number passed in amongst those configured for */ 4095 /* that particular type. If the type is recognised then the function to */ 4096 /* call to do the IP address search will be change, regardless of whether */ 4097 /* or not the "table" number exists. */ 4098 /* ------------------------------------------------------------------------ */ 4099 static void *fr_resolvelookup(type, number, funcptr, ifs) 4100 u_int type, number; 4101 lookupfunc_t *funcptr; 4102 ipf_stack_t *ifs; 4103 { 4104 char name[FR_GROUPLEN]; 4105 iphtable_t *iph; 4106 ip_pool_t *ipo; 4107 void *ptr; 4108 4109 #if defined(SNPRINTF) && defined(_KERNEL) 4110 (void) SNPRINTF(name, sizeof(name), "%u", number); 4111 #else 4112 (void) sprintf(name, "%u", number); 4113 #endif 4114 4115 READ_ENTER(&ifs->ifs_ip_poolrw); 4116 4117 switch (type) 4118 { 4119 case IPLT_POOL : 4120 # if (defined(__osf__) && defined(_KERNEL)) 4121 ptr = NULL; 4122 *funcptr = NULL; 4123 # else 4124 ipo = ip_pool_find(IPL_LOGIPF, name, ifs); 4125 ptr = ipo; 4126 if (ipo != NULL) { 4127 ATOMIC_INC32(ipo->ipo_ref); 4128 } 4129 *funcptr = ip_pool_search; 4130 # endif 4131 break; 4132 case IPLT_HASH : 4133 iph = fr_findhtable(IPL_LOGIPF, name, ifs); 4134 ptr = iph; 4135 if (iph != NULL) { 4136 ATOMIC_INC32(iph->iph_ref); 4137 } 4138 *funcptr = fr_iphmfindip; 4139 break; 4140 default: 4141 ptr = NULL; 4142 *funcptr = NULL; 4143 break; 4144 } 4145 RWLOCK_EXIT(&ifs->ifs_ip_poolrw); 4146 4147 return ptr; 4148 } 4149 #endif 4150 4151 4152 /* ------------------------------------------------------------------------ */ 4153 /* Function: frrequest */ 4154 /* Returns: int - 0 == success, > 0 == errno value */ 4155 /* Parameters: unit(I) - device for which this is for */ 4156 /* req(I) - ioctl command (SIOC*) */ 4157 /* data(I) - pointr to ioctl data */ 4158 /* set(I) - 1 or 0 (filter set) */ 4159 /* makecopy(I) - flag indicating whether data points to a rule */ 4160 /* in kernel space & hence doesn't need copying. */ 4161 /* */ 4162 /* This function handles all the requests which operate on the list of */ 4163 /* filter rules. This includes adding, deleting, insertion. It is also */ 4164 /* responsible for creating groups when a "head" rule is loaded. Interface */ 4165 /* names are resolved here and other sanity checks are made on the content */ 4166 /* of the rule structure being loaded. If a rule has user defined timeouts */ 4167 /* then make sure they are created and initialised before exiting. */ 4168 /* ------------------------------------------------------------------------ */ 4169 int frrequest(unit, req, data, set, makecopy, ifs) 4170 int unit; 4171 ioctlcmd_t req; 4172 int set, makecopy; 4173 caddr_t data; 4174 ipf_stack_t *ifs; 4175 { 4176 frentry_t frd, *fp, *f, **fprev, **ftail; 4177 int error = 0, in, v; 4178 void *ptr, *uptr; 4179 u_int *p, *pp; 4180 frgroup_t *fg; 4181 char *group; 4182 4183 fg = NULL; 4184 fp = &frd; 4185 if (makecopy != 0) { 4186 error = fr_inobj(data, fp, IPFOBJ_FRENTRY); 4187 if (error) 4188 return EFAULT; 4189 if ((fp->fr_flags & FR_T_BUILTIN) != 0) 4190 return EINVAL; 4191 fp->fr_ref = 0; 4192 fp->fr_flags |= FR_COPIED; 4193 } else { 4194 fp = (frentry_t *)data; 4195 if ((fp->fr_type & FR_T_BUILTIN) == 0) 4196 return EINVAL; 4197 fp->fr_flags &= ~FR_COPIED; 4198 } 4199 4200 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) || 4201 ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) 4202 return EINVAL; 4203 4204 v = fp->fr_v; 4205 uptr = fp->fr_data; 4206 4207 /* 4208 * Only filter rules for IPv4 or IPv6 are accepted. 4209 */ 4210 if (v == 4) 4211 /*EMPTY*/; 4212 #ifdef USE_INET6 4213 else if (v == 6) 4214 /*EMPTY*/; 4215 #endif 4216 else { 4217 return EINVAL; 4218 } 4219 4220 /* 4221 * If the rule is being loaded from user space, i.e. we had to copy it 4222 * into kernel space, then do not trust the function pointer in the 4223 * rule. 4224 */ 4225 if ((makecopy == 1) && (fp->fr_func != NULL)) { 4226 if (fr_findfunc(fp->fr_func) == NULL) 4227 return ESRCH; 4228 error = fr_funcinit(fp, ifs); 4229 if (error != 0) 4230 return error; 4231 } 4232 4233 ptr = NULL; 4234 /* 4235 * Check that the group number does exist and that its use (in/out) 4236 * matches what the rule is. 4237 */ 4238 if (!strncmp(fp->fr_grhead, "0", FR_GROUPLEN)) 4239 *fp->fr_grhead = '\0'; 4240 group = fp->fr_group; 4241 if (!strncmp(group, "0", FR_GROUPLEN)) 4242 *group = '\0'; 4243 4244 if (FR_ISACCOUNT(fp->fr_flags)) 4245 unit = IPL_LOGCOUNT; 4246 4247 if ((req != (int)SIOCZRLST) && (*group != '\0')) { 4248 fg = fr_findgroup(group, unit, set, NULL, ifs); 4249 if (fg == NULL) 4250 return ESRCH; 4251 if (fg->fg_flags == 0) 4252 fg->fg_flags = fp->fr_flags & FR_INOUT; 4253 else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) 4254 return ESRCH; 4255 } 4256 4257 in = (fp->fr_flags & FR_INQUE) ? 0 : 1; 4258 4259 /* 4260 * Work out which rule list this change is being applied to. 4261 */ 4262 ftail = NULL; 4263 fprev = NULL; 4264 if (unit == IPL_LOGAUTH) 4265 fprev = &ifs->ifs_ipauth; 4266 else if (v == 4) { 4267 if (FR_ISACCOUNT(fp->fr_flags)) 4268 fprev = &ifs->ifs_ipacct[in][set]; 4269 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4270 fprev = &ifs->ifs_ipfilter[in][set]; 4271 } else if (v == 6) { 4272 if (FR_ISACCOUNT(fp->fr_flags)) 4273 fprev = &ifs->ifs_ipacct6[in][set]; 4274 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4275 fprev = &ifs->ifs_ipfilter6[in][set]; 4276 } 4277 if (fprev == NULL) 4278 return ESRCH; 4279 4280 if (*group != '\0') { 4281 if (!fg && !(fg = fr_findgroup(group, unit, set, NULL, ifs))) 4282 return ESRCH; 4283 fprev = &fg->fg_start; 4284 } 4285 4286 ftail = fprev; 4287 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) { 4288 if (fp->fr_collect <= f->fr_collect) { 4289 ftail = fprev; 4290 f = NULL; 4291 break; 4292 } 4293 fprev = ftail; 4294 } 4295 4296 /* 4297 * Copy in extra data for the rule. 4298 */ 4299 if (fp->fr_dsize != 0) { 4300 if (makecopy != 0) { 4301 KMALLOCS(ptr, void *, fp->fr_dsize); 4302 if (!ptr) 4303 return ENOMEM; 4304 error = COPYIN(uptr, ptr, fp->fr_dsize); 4305 } else { 4306 ptr = uptr; 4307 error = 0; 4308 } 4309 if (error != 0) { 4310 KFREES(ptr, fp->fr_dsize); 4311 return ENOMEM; 4312 } 4313 fp->fr_data = ptr; 4314 } else 4315 fp->fr_data = NULL; 4316 4317 /* 4318 * Perform per-rule type sanity checks of their members. 4319 */ 4320 switch (fp->fr_type & ~FR_T_BUILTIN) 4321 { 4322 #if defined(IPFILTER_BPF) 4323 case FR_T_BPFOPC : 4324 if (fp->fr_dsize == 0) 4325 return EINVAL; 4326 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) { 4327 if (makecopy && fp->fr_data != NULL) { 4328 KFREES(fp->fr_data, fp->fr_dsize); 4329 } 4330 return EINVAL; 4331 } 4332 break; 4333 #endif 4334 case FR_T_IPF : 4335 if (fp->fr_dsize != sizeof(fripf_t)) 4336 return EINVAL; 4337 4338 /* 4339 * Allowing a rule with both "keep state" and "with oow" is 4340 * pointless because adding a state entry to the table will 4341 * fail with the out of window (oow) flag set. 4342 */ 4343 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) 4344 return EINVAL; 4345 4346 switch (fp->fr_satype) 4347 { 4348 case FRI_BROADCAST : 4349 case FRI_DYNAMIC : 4350 case FRI_NETWORK : 4351 case FRI_NETMASKED : 4352 case FRI_PEERADDR : 4353 if (fp->fr_sifpidx < 0 || fp->fr_sifpidx > 3) { 4354 if (makecopy && fp->fr_data != NULL) { 4355 KFREES(fp->fr_data, fp->fr_dsize); 4356 } 4357 return EINVAL; 4358 } 4359 break; 4360 #ifdef IPFILTER_LOOKUP 4361 case FRI_LOOKUP : 4362 fp->fr_srcptr = fr_resolvelookup(fp->fr_srctype, 4363 fp->fr_srcnum, 4364 &fp->fr_srcfunc, ifs); 4365 break; 4366 #endif 4367 default : 4368 break; 4369 } 4370 4371 switch (fp->fr_datype) 4372 { 4373 case FRI_BROADCAST : 4374 case FRI_DYNAMIC : 4375 case FRI_NETWORK : 4376 case FRI_NETMASKED : 4377 case FRI_PEERADDR : 4378 if (fp->fr_difpidx < 0 || fp->fr_difpidx > 3) { 4379 if (makecopy && fp->fr_data != NULL) { 4380 KFREES(fp->fr_data, fp->fr_dsize); 4381 } 4382 return EINVAL; 4383 } 4384 break; 4385 #ifdef IPFILTER_LOOKUP 4386 case FRI_LOOKUP : 4387 fp->fr_dstptr = fr_resolvelookup(fp->fr_dsttype, 4388 fp->fr_dstnum, 4389 &fp->fr_dstfunc, ifs); 4390 break; 4391 #endif 4392 default : 4393 break; 4394 } 4395 break; 4396 case FR_T_NONE : 4397 break; 4398 case FR_T_CALLFUNC : 4399 break; 4400 case FR_T_COMPIPF : 4401 break; 4402 default : 4403 if (makecopy && fp->fr_data != NULL) { 4404 KFREES(fp->fr_data, fp->fr_dsize); 4405 } 4406 return EINVAL; 4407 } 4408 4409 /* 4410 * Lookup all the interface names that are part of the rule. 4411 */ 4412 frsynclist(0, 0, NULL, NULL, fp, ifs); 4413 fp->fr_statecnt = 0; 4414 4415 /* 4416 * Look for an existing matching filter rule, but don't include the 4417 * next or interface pointer in the comparison (fr_next, fr_ifa). 4418 * This elminates rules which are indentical being loaded. Checksum 4419 * the constant part of the filter rule to make comparisons quicker 4420 * (this meaning no pointers are included). 4421 */ 4422 for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum; 4423 p < pp; p++) 4424 fp->fr_cksum += *p; 4425 pp = (u_int *)(fp->fr_caddr + fp->fr_dsize); 4426 for (p = (u_int *)fp->fr_data; p < pp; p++) 4427 fp->fr_cksum += *p; 4428 4429 WRITE_ENTER(&ifs->ifs_ipf_mutex); 4430 4431 for (; (f = *ftail) != NULL; ftail = &f->fr_next) { 4432 if ((fp->fr_cksum != f->fr_cksum) || 4433 (f->fr_dsize != fp->fr_dsize)) 4434 continue; 4435 if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func, FR_CMPSIZ)) 4436 continue; 4437 if ((!ptr && !f->fr_data) || 4438 (ptr && f->fr_data && 4439 !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize))) 4440 break; 4441 } 4442 4443 /* 4444 * If zero'ing statistics, copy current to caller and zero. 4445 */ 4446 if (req == (ioctlcmd_t)SIOCZRLST) { 4447 if (f == NULL) 4448 error = ESRCH; 4449 else { 4450 /* 4451 * Copy and reduce lock because of impending copyout. 4452 * Well we should, but if we do then the atomicity of 4453 * this call and the correctness of fr_hits and 4454 * fr_bytes cannot be guaranteed. As it is, this code 4455 * only resets them to 0 if they are successfully 4456 * copied out into user space. 4457 */ 4458 bcopy((char *)f, (char *)fp, sizeof(*f)); 4459 4460 /* 4461 * When we copy this rule back out, set the data 4462 * pointer to be what it was in user space. 4463 */ 4464 fp->fr_data = uptr; 4465 error = fr_outobj(data, fp, IPFOBJ_FRENTRY); 4466 4467 if (error == 0) { 4468 if ((f->fr_dsize != 0) && (uptr != NULL)) 4469 error = COPYOUT(f->fr_data, uptr, 4470 f->fr_dsize); 4471 if (error == 0) { 4472 f->fr_hits = 0; 4473 f->fr_bytes = 0; 4474 } 4475 } 4476 } 4477 4478 if ((ptr != NULL) && (makecopy != 0)) { 4479 KFREES(ptr, fp->fr_dsize); 4480 } 4481 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 4482 return error; 4483 } 4484 4485 if (!f) { 4486 /* 4487 * At the end of this, ftail must point to the place where the 4488 * new rule is to be saved/inserted/added. 4489 * For SIOCAD*FR, this should be the last rule in the group of 4490 * rules that have equal fr_collect fields. 4491 * For SIOCIN*FR, ... 4492 */ 4493 if (req == (ioctlcmd_t)SIOCADAFR || 4494 req == (ioctlcmd_t)SIOCADIFR) { 4495 4496 for (ftail = fprev; (f = *ftail) != NULL; ) { 4497 if (f->fr_collect > fp->fr_collect) 4498 break; 4499 ftail = &f->fr_next; 4500 } 4501 f = NULL; 4502 ptr = NULL; 4503 error = 0; 4504 } else if (req == (ioctlcmd_t)SIOCINAFR || 4505 req == (ioctlcmd_t)SIOCINIFR) { 4506 while ((f = *fprev) != NULL) { 4507 if (f->fr_collect >= fp->fr_collect) 4508 break; 4509 fprev = &f->fr_next; 4510 } 4511 ftail = fprev; 4512 if (fp->fr_hits != 0) { 4513 while (fp->fr_hits && (f = *ftail)) { 4514 if (f->fr_collect != fp->fr_collect) 4515 break; 4516 fprev = ftail; 4517 ftail = &f->fr_next; 4518 fp->fr_hits--; 4519 } 4520 } 4521 f = NULL; 4522 ptr = NULL; 4523 error = 0; 4524 } 4525 } 4526 4527 /* 4528 * Request to remove a rule. 4529 */ 4530 if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) { 4531 if (!f) 4532 error = ESRCH; 4533 else { 4534 /* 4535 * Do not allow activity from user space to interfere 4536 * with rules not loaded that way. 4537 */ 4538 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) { 4539 error = EPERM; 4540 goto done; 4541 } 4542 4543 /* 4544 * Return EBUSY if the rule is being reference by 4545 * something else (eg state information. 4546 */ 4547 if (f->fr_ref > 1) { 4548 error = EBUSY; 4549 goto done; 4550 } 4551 #ifdef IPFILTER_SCAN 4552 if (f->fr_isctag[0] != '\0' && 4553 (f->fr_isc != (struct ipscan *)-1)) 4554 ipsc_detachfr(f); 4555 #endif 4556 if (unit == IPL_LOGAUTH) { 4557 error = fr_preauthcmd(req, f, ftail, ifs); 4558 goto done; 4559 } 4560 if (*f->fr_grhead != '\0') 4561 fr_delgroup(f->fr_grhead, unit, set, ifs); 4562 fr_fixskip(ftail, f, -1); 4563 *ftail = f->fr_next; 4564 f->fr_next = NULL; 4565 (void)fr_derefrule(&f, ifs); 4566 } 4567 } else { 4568 /* 4569 * Not removing, so we must be adding/inserting a rule. 4570 */ 4571 if (f) 4572 error = EEXIST; 4573 else { 4574 if (unit == IPL_LOGAUTH) { 4575 error = fr_preauthcmd(req, fp, ftail, ifs); 4576 goto done; 4577 } 4578 if (makecopy) { 4579 KMALLOC(f, frentry_t *); 4580 } else 4581 f = fp; 4582 if (f != NULL) { 4583 if (fp != f) 4584 bcopy((char *)fp, (char *)f, 4585 sizeof(*f)); 4586 MUTEX_NUKE(&f->fr_lock); 4587 MUTEX_INIT(&f->fr_lock, "filter rule lock"); 4588 #ifdef IPFILTER_SCAN 4589 if (f->fr_isctag[0] != '\0' && 4590 ipsc_attachfr(f)) 4591 f->fr_isc = (struct ipscan *)-1; 4592 #endif 4593 f->fr_hits = 0; 4594 if (makecopy != 0) 4595 f->fr_ref = 1; 4596 f->fr_next = *ftail; 4597 *ftail = f; 4598 if (req == (ioctlcmd_t)SIOCINIFR || 4599 req == (ioctlcmd_t)SIOCINAFR) 4600 fr_fixskip(ftail, f, 1); 4601 f->fr_grp = NULL; 4602 group = f->fr_grhead; 4603 if (*group != '\0') { 4604 fg = fr_addgroup(group, f, f->fr_flags, 4605 unit, set, ifs); 4606 if (fg != NULL) 4607 f->fr_grp = &fg->fg_start; 4608 } 4609 } else 4610 error = ENOMEM; 4611 } 4612 } 4613 done: 4614 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 4615 if ((ptr != NULL) && (error != 0) && (makecopy != 0)) { 4616 KFREES(ptr, fp->fr_dsize); 4617 } 4618 return (error); 4619 } 4620 4621 4622 /* ------------------------------------------------------------------------ */ 4623 /* Function: fr_funcinit */ 4624 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */ 4625 /* Parameters: fr(I) - pointer to filter rule */ 4626 /* */ 4627 /* If a rule is a call rule, then check if the function it points to needs */ 4628 /* an init function to be called now the rule has been loaded. */ 4629 /* ------------------------------------------------------------------------ */ 4630 static int fr_funcinit(fr, ifs) 4631 frentry_t *fr; 4632 ipf_stack_t *ifs; 4633 { 4634 ipfunc_resolve_t *ft; 4635 int err; 4636 4637 err = ESRCH; 4638 4639 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4640 if (ft->ipfu_addr == fr->fr_func) { 4641 err = 0; 4642 if (ft->ipfu_init != NULL) 4643 err = (*ft->ipfu_init)(fr, ifs); 4644 break; 4645 } 4646 return err; 4647 } 4648 4649 4650 /* ------------------------------------------------------------------------ */ 4651 /* Function: fr_findfunc */ 4652 /* Returns: ipfunc_t - pointer to function if found, else NULL */ 4653 /* Parameters: funcptr(I) - function pointer to lookup */ 4654 /* */ 4655 /* Look for a function in the table of known functions. */ 4656 /* ------------------------------------------------------------------------ */ 4657 static ipfunc_t fr_findfunc(funcptr) 4658 ipfunc_t funcptr; 4659 { 4660 ipfunc_resolve_t *ft; 4661 4662 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4663 if (ft->ipfu_addr == funcptr) 4664 return funcptr; 4665 return NULL; 4666 } 4667 4668 4669 /* ------------------------------------------------------------------------ */ 4670 /* Function: fr_resolvefunc */ 4671 /* Returns: int - 0 == success, else error */ 4672 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */ 4673 /* */ 4674 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */ 4675 /* This will either be the function name (if the pointer is set) or the */ 4676 /* function pointer if the name is set. When found, fill in the other one */ 4677 /* so that the entire, complete, structure can be copied back to user space.*/ 4678 /* ------------------------------------------------------------------------ */ 4679 int fr_resolvefunc(data) 4680 void *data; 4681 { 4682 ipfunc_resolve_t res, *ft; 4683 int err; 4684 4685 err = BCOPYIN(data, &res, sizeof(res)); 4686 if (err != 0) 4687 return EFAULT; 4688 4689 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') { 4690 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4691 if (strncmp(res.ipfu_name, ft->ipfu_name, 4692 sizeof(res.ipfu_name)) == 0) { 4693 res.ipfu_addr = ft->ipfu_addr; 4694 res.ipfu_init = ft->ipfu_init; 4695 if (COPYOUT(&res, data, sizeof(res)) != 0) 4696 return EFAULT; 4697 return 0; 4698 } 4699 } 4700 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') { 4701 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4702 if (ft->ipfu_addr == res.ipfu_addr) { 4703 (void) strncpy(res.ipfu_name, ft->ipfu_name, 4704 sizeof(res.ipfu_name)); 4705 res.ipfu_init = ft->ipfu_init; 4706 if (COPYOUT(&res, data, sizeof(res)) != 0) 4707 return EFAULT; 4708 return 0; 4709 } 4710 } 4711 return ESRCH; 4712 } 4713 4714 4715 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && !defined(__FreeBSD__)) || \ 4716 (defined(__FreeBSD__) && (__FreeBSD_version < 490000)) || \ 4717 (defined(__NetBSD__) && (__NetBSD_Version__ < 105000000)) || \ 4718 (defined(__OpenBSD__) && (OpenBSD < 200006)) 4719 /* 4720 * From: NetBSD 4721 * ppsratecheck(): packets (or events) per second limitation. 4722 */ 4723 int 4724 ppsratecheck(lasttime, curpps, maxpps) 4725 struct timeval *lasttime; 4726 int *curpps; 4727 int maxpps; /* maximum pps allowed */ 4728 { 4729 struct timeval tv, delta; 4730 int rv; 4731 4732 GETKTIME(&tv); 4733 4734 delta.tv_sec = tv.tv_sec - lasttime->tv_sec; 4735 delta.tv_usec = tv.tv_usec - lasttime->tv_usec; 4736 if (delta.tv_usec < 0) { 4737 delta.tv_sec--; 4738 delta.tv_usec += 1000000; 4739 } 4740 4741 /* 4742 * check for 0,0 is so that the message will be seen at least once. 4743 * if more than one second have passed since the last update of 4744 * lasttime, reset the counter. 4745 * 4746 * we do increment *curpps even in *curpps < maxpps case, as some may 4747 * try to use *curpps for stat purposes as well. 4748 */ 4749 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || 4750 delta.tv_sec >= 1) { 4751 *lasttime = tv; 4752 *curpps = 0; 4753 rv = 1; 4754 } else if (maxpps < 0) 4755 rv = 1; 4756 else if (*curpps < maxpps) 4757 rv = 1; 4758 else 4759 rv = 0; 4760 *curpps = *curpps + 1; 4761 4762 return (rv); 4763 } 4764 #endif 4765 4766 4767 /* ------------------------------------------------------------------------ */ 4768 /* Function: fr_derefrule */ 4769 /* Returns: int - 0 == rule freed up, else rule not freed */ 4770 /* Parameters: fr(I) - pointer to filter rule */ 4771 /* */ 4772 /* Decrement the reference counter to a rule by one. If it reaches zero, */ 4773 /* free it and any associated storage space being used by it. */ 4774 /* ------------------------------------------------------------------------ */ 4775 int fr_derefrule(frp, ifs) 4776 frentry_t **frp; 4777 ipf_stack_t *ifs; 4778 { 4779 frentry_t *fr; 4780 4781 fr = *frp; 4782 4783 MUTEX_ENTER(&fr->fr_lock); 4784 fr->fr_ref--; 4785 if (fr->fr_ref == 0) { 4786 MUTEX_EXIT(&fr->fr_lock); 4787 MUTEX_DESTROY(&fr->fr_lock); 4788 4789 #ifdef IPFILTER_LOOKUP 4790 if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP) 4791 ip_lookup_deref(fr->fr_srctype, fr->fr_srcptr, ifs); 4792 if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP) 4793 ip_lookup_deref(fr->fr_dsttype, fr->fr_dstptr, ifs); 4794 #endif 4795 4796 if (fr->fr_dsize) { 4797 KFREES(fr->fr_data, fr->fr_dsize); 4798 } 4799 if ((fr->fr_flags & FR_COPIED) != 0) { 4800 KFREE(fr); 4801 return 0; 4802 } 4803 return 1; 4804 } else { 4805 MUTEX_EXIT(&fr->fr_lock); 4806 } 4807 *frp = NULL; 4808 return -1; 4809 } 4810 4811 4812 #ifdef IPFILTER_LOOKUP 4813 /* ------------------------------------------------------------------------ */ 4814 /* Function: fr_grpmapinit */ 4815 /* Returns: int - 0 == success, else ESRCH because table entry not found*/ 4816 /* Parameters: fr(I) - pointer to rule to find hash table for */ 4817 /* */ 4818 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */ 4819 /* fr_ptr is later used by fr_srcgrpmap and fr_dstgrpmap. */ 4820 /* ------------------------------------------------------------------------ */ 4821 static int fr_grpmapinit(fr, ifs) 4822 frentry_t *fr; 4823 ipf_stack_t *ifs; 4824 { 4825 char name[FR_GROUPLEN]; 4826 iphtable_t *iph; 4827 4828 #if defined(SNPRINTF) && defined(_KERNEL) 4829 (void) SNPRINTF(name, sizeof(name), "%d", fr->fr_arg); 4830 #else 4831 (void) sprintf(name, "%d", fr->fr_arg); 4832 #endif 4833 iph = fr_findhtable(IPL_LOGIPF, name, ifs); 4834 if (iph == NULL) 4835 return ESRCH; 4836 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) 4837 return ESRCH; 4838 fr->fr_ptr = iph; 4839 return 0; 4840 } 4841 4842 4843 /* ------------------------------------------------------------------------ */ 4844 /* Function: fr_srcgrpmap */ 4845 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 4846 /* Parameters: fin(I) - pointer to packet information */ 4847 /* passp(IO) - pointer to current/new filter decision (unused) */ 4848 /* */ 4849 /* Look for a rule group head in a hash table, using the source address as */ 4850 /* the key, and descend into that group and continue matching rules against */ 4851 /* the packet. */ 4852 /* ------------------------------------------------------------------------ */ 4853 frentry_t *fr_srcgrpmap(fin, passp) 4854 fr_info_t *fin; 4855 u_32_t *passp; 4856 { 4857 frgroup_t *fg; 4858 void *rval; 4859 ipf_stack_t *ifs = fin->fin_ifs; 4860 4861 rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_src, ifs); 4862 if (rval == NULL) 4863 return NULL; 4864 4865 fg = rval; 4866 fin->fin_fr = fg->fg_start; 4867 (void) fr_scanlist(fin, *passp); 4868 return fin->fin_fr; 4869 } 4870 4871 4872 /* ------------------------------------------------------------------------ */ 4873 /* Function: fr_dstgrpmap */ 4874 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 4875 /* Parameters: fin(I) - pointer to packet information */ 4876 /* passp(IO) - pointer to current/new filter decision (unused) */ 4877 /* */ 4878 /* Look for a rule group head in a hash table, using the destination */ 4879 /* address as the key, and descend into that group and continue matching */ 4880 /* rules against the packet. */ 4881 /* ------------------------------------------------------------------------ */ 4882 frentry_t *fr_dstgrpmap(fin, passp) 4883 fr_info_t *fin; 4884 u_32_t *passp; 4885 { 4886 frgroup_t *fg; 4887 void *rval; 4888 ipf_stack_t *ifs = fin->fin_ifs; 4889 4890 rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_dst, ifs); 4891 if (rval == NULL) 4892 return NULL; 4893 4894 fg = rval; 4895 fin->fin_fr = fg->fg_start; 4896 (void) fr_scanlist(fin, *passp); 4897 return fin->fin_fr; 4898 } 4899 #endif /* IPFILTER_LOOKUP */ 4900 4901 /* 4902 * Queue functions 4903 * =============== 4904 * These functions manage objects on queues for efficient timeouts. There are 4905 * a number of system defined queues as well as user defined timeouts. It is 4906 * expected that a lock is held in the domain in which the queue belongs 4907 * (i.e. either state or NAT) when calling any of these functions that prevents 4908 * fr_freetimeoutqueue() from being called at the same time as any other. 4909 */ 4910 4911 4912 /* ------------------------------------------------------------------------ */ 4913 /* Function: fr_addtimeoutqueue */ 4914 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */ 4915 /* timeout queue with given interval. */ 4916 /* Parameters: parent(I) - pointer to pointer to parent node of this list */ 4917 /* of interface queues. */ 4918 /* seconds(I) - timeout value in seconds for this queue. */ 4919 /* */ 4920 /* This routine first looks for a timeout queue that matches the interval */ 4921 /* being requested. If it finds one, increments the reference counter and */ 4922 /* returns a pointer to it. If none are found, it allocates a new one and */ 4923 /* inserts it at the top of the list. */ 4924 /* */ 4925 /* Locking. */ 4926 /* It is assumed that the caller of this function has an appropriate lock */ 4927 /* held (exclusively) in the domain that encompases 'parent'. */ 4928 /* ------------------------------------------------------------------------ */ 4929 ipftq_t *fr_addtimeoutqueue(parent, seconds, ifs) 4930 ipftq_t **parent; 4931 u_int seconds; 4932 ipf_stack_t *ifs; 4933 { 4934 ipftq_t *ifq; 4935 u_int period; 4936 4937 period = seconds * IPF_HZ_DIVIDE; 4938 4939 MUTEX_ENTER(&ifs->ifs_ipf_timeoutlock); 4940 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) { 4941 if (ifq->ifq_ttl == period) { 4942 /* 4943 * Reset the delete flag, if set, so the structure 4944 * gets reused rather than freed and reallocated. 4945 */ 4946 MUTEX_ENTER(&ifq->ifq_lock); 4947 ifq->ifq_flags &= ~IFQF_DELETE; 4948 ifq->ifq_ref++; 4949 MUTEX_EXIT(&ifq->ifq_lock); 4950 MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock); 4951 4952 return ifq; 4953 } 4954 } 4955 4956 KMALLOC(ifq, ipftq_t *); 4957 if (ifq != NULL) { 4958 ifq->ifq_ttl = period; 4959 ifq->ifq_head = NULL; 4960 ifq->ifq_tail = &ifq->ifq_head; 4961 ifq->ifq_next = *parent; 4962 ifq->ifq_pnext = parent; 4963 ifq->ifq_ref = 1; 4964 ifq->ifq_flags = IFQF_USER; 4965 *parent = ifq; 4966 ifs->ifs_fr_userifqs++; 4967 MUTEX_NUKE(&ifq->ifq_lock); 4968 MUTEX_INIT(&ifq->ifq_lock, "ipftq mutex"); 4969 } 4970 MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock); 4971 return ifq; 4972 } 4973 4974 4975 /* ------------------------------------------------------------------------ */ 4976 /* Function: fr_deletetimeoutqueue */ 4977 /* Returns: int - new reference count value of the timeout queue */ 4978 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 4979 /* Locks: ifq->ifq_lock */ 4980 /* */ 4981 /* This routine must be called when we're discarding a pointer to a timeout */ 4982 /* queue object, taking care of the reference counter. */ 4983 /* */ 4984 /* Now that this just sets a DELETE flag, it requires the expire code to */ 4985 /* check the list of user defined timeout queues and call the free function */ 4986 /* below (currently commented out) to stop memory leaking. It is done this */ 4987 /* way because the locking may not be sufficient to safely do a free when */ 4988 /* this function is called. */ 4989 /* ------------------------------------------------------------------------ */ 4990 int fr_deletetimeoutqueue(ifq) 4991 ipftq_t *ifq; 4992 { 4993 4994 ifq->ifq_ref--; 4995 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) { 4996 ifq->ifq_flags |= IFQF_DELETE; 4997 } 4998 4999 return ifq->ifq_ref; 5000 } 5001 5002 5003 /* ------------------------------------------------------------------------ */ 5004 /* Function: fr_freetimeoutqueue */ 5005 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 5006 /* Returns: Nil */ 5007 /* */ 5008 /* Locking: */ 5009 /* It is assumed that the caller of this function has an appropriate lock */ 5010 /* held (exclusively) in the domain that encompases the callers "domain". */ 5011 /* The ifq_lock for this structure should not be held. */ 5012 /* */ 5013 /* Remove a user definde timeout queue from the list of queues it is in and */ 5014 /* tidy up after this is done. */ 5015 /* ------------------------------------------------------------------------ */ 5016 void fr_freetimeoutqueue(ifq, ifs) 5017 ipftq_t *ifq; 5018 ipf_stack_t *ifs; 5019 { 5020 5021 5022 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) || 5023 ((ifq->ifq_flags & IFQF_USER) == 0)) { 5024 printf("fr_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n", 5025 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl, 5026 ifq->ifq_ref); 5027 return; 5028 } 5029 5030 /* 5031 * Remove from its position in the list. 5032 */ 5033 *ifq->ifq_pnext = ifq->ifq_next; 5034 if (ifq->ifq_next != NULL) 5035 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext; 5036 5037 MUTEX_DESTROY(&ifq->ifq_lock); 5038 ifs->ifs_fr_userifqs--; 5039 KFREE(ifq); 5040 } 5041 5042 5043 /* ------------------------------------------------------------------------ */ 5044 /* Function: fr_deletequeueentry */ 5045 /* Returns: Nil */ 5046 /* Parameters: tqe(I) - timeout queue entry to delete */ 5047 /* ifq(I) - timeout queue to remove entry from */ 5048 /* */ 5049 /* Remove a tail queue entry from its queue and make it an orphan. */ 5050 /* fr_deletetimeoutqueue is called to make sure the reference count on the */ 5051 /* queue is correct. We can't, however, call fr_freetimeoutqueue because */ 5052 /* the correct lock(s) may not be held that would make it safe to do so. */ 5053 /* ------------------------------------------------------------------------ */ 5054 void fr_deletequeueentry(tqe) 5055 ipftqent_t *tqe; 5056 { 5057 ipftq_t *ifq; 5058 5059 ifq = tqe->tqe_ifq; 5060 if (ifq == NULL) 5061 return; 5062 5063 MUTEX_ENTER(&ifq->ifq_lock); 5064 5065 if (tqe->tqe_pnext != NULL) { 5066 *tqe->tqe_pnext = tqe->tqe_next; 5067 if (tqe->tqe_next != NULL) 5068 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5069 else /* we must be the tail anyway */ 5070 ifq->ifq_tail = tqe->tqe_pnext; 5071 5072 tqe->tqe_pnext = NULL; 5073 tqe->tqe_ifq = NULL; 5074 } 5075 5076 (void) fr_deletetimeoutqueue(ifq); 5077 5078 MUTEX_EXIT(&ifq->ifq_lock); 5079 } 5080 5081 5082 /* ------------------------------------------------------------------------ */ 5083 /* Function: fr_queuefront */ 5084 /* Returns: Nil */ 5085 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5086 /* */ 5087 /* Move a queue entry to the front of the queue, if it isn't already there. */ 5088 /* ------------------------------------------------------------------------ */ 5089 void fr_queuefront(tqe) 5090 ipftqent_t *tqe; 5091 { 5092 ipftq_t *ifq; 5093 5094 ifq = tqe->tqe_ifq; 5095 if (ifq == NULL) 5096 return; 5097 5098 MUTEX_ENTER(&ifq->ifq_lock); 5099 if (ifq->ifq_head != tqe) { 5100 *tqe->tqe_pnext = tqe->tqe_next; 5101 if (tqe->tqe_next) 5102 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5103 else 5104 ifq->ifq_tail = tqe->tqe_pnext; 5105 5106 tqe->tqe_next = ifq->ifq_head; 5107 ifq->ifq_head->tqe_pnext = &tqe->tqe_next; 5108 ifq->ifq_head = tqe; 5109 tqe->tqe_pnext = &ifq->ifq_head; 5110 } 5111 MUTEX_EXIT(&ifq->ifq_lock); 5112 } 5113 5114 5115 /* ------------------------------------------------------------------------ */ 5116 /* Function: fr_queueback */ 5117 /* Returns: Nil */ 5118 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5119 /* */ 5120 /* Move a queue entry to the back of the queue, if it isn't already there. */ 5121 /* ------------------------------------------------------------------------ */ 5122 void fr_queueback(tqe, ifs) 5123 ipftqent_t *tqe; 5124 ipf_stack_t *ifs; 5125 { 5126 ipftq_t *ifq; 5127 5128 ifq = tqe->tqe_ifq; 5129 if (ifq == NULL) 5130 return; 5131 tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl; 5132 5133 MUTEX_ENTER(&ifq->ifq_lock); 5134 if (tqe->tqe_next == NULL) { /* at the end already ? */ 5135 MUTEX_EXIT(&ifq->ifq_lock); 5136 return; 5137 } 5138 5139 /* 5140 * Remove from list 5141 */ 5142 *tqe->tqe_pnext = tqe->tqe_next; 5143 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5144 5145 /* 5146 * Make it the last entry. 5147 */ 5148 tqe->tqe_next = NULL; 5149 tqe->tqe_pnext = ifq->ifq_tail; 5150 *ifq->ifq_tail = tqe; 5151 ifq->ifq_tail = &tqe->tqe_next; 5152 MUTEX_EXIT(&ifq->ifq_lock); 5153 } 5154 5155 5156 /* ------------------------------------------------------------------------ */ 5157 /* Function: fr_queueappend */ 5158 /* Returns: Nil */ 5159 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5160 /* ifq(I) - pointer to timeout queue */ 5161 /* parent(I) - owing object pointer */ 5162 /* */ 5163 /* Add a new item to this queue and put it on the very end. */ 5164 /* ------------------------------------------------------------------------ */ 5165 void fr_queueappend(tqe, ifq, parent, ifs) 5166 ipftqent_t *tqe; 5167 ipftq_t *ifq; 5168 void *parent; 5169 ipf_stack_t *ifs; 5170 { 5171 5172 MUTEX_ENTER(&ifq->ifq_lock); 5173 tqe->tqe_parent = parent; 5174 tqe->tqe_pnext = ifq->ifq_tail; 5175 *ifq->ifq_tail = tqe; 5176 ifq->ifq_tail = &tqe->tqe_next; 5177 tqe->tqe_next = NULL; 5178 tqe->tqe_ifq = ifq; 5179 tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl; 5180 ifq->ifq_ref++; 5181 MUTEX_EXIT(&ifq->ifq_lock); 5182 } 5183 5184 5185 /* ------------------------------------------------------------------------ */ 5186 /* Function: fr_movequeue */ 5187 /* Returns: Nil */ 5188 /* Parameters: tq(I) - pointer to timeout queue information */ 5189 /* oifp(I) - old timeout queue entry was on */ 5190 /* nifp(I) - new timeout queue to put entry on */ 5191 /* ifs - ipf stack instance */ 5192 /* */ 5193 /* Move a queue entry from one timeout queue to another timeout queue. */ 5194 /* If it notices that the current entry is already last and does not need */ 5195 /* to move queue, the return. */ 5196 /* ------------------------------------------------------------------------ */ 5197 void fr_movequeue(tqe, oifq, nifq, ifs) 5198 ipftqent_t *tqe; 5199 ipftq_t *oifq, *nifq; 5200 ipf_stack_t *ifs; 5201 { 5202 /* 5203 * If the queue isn't changing, and the clock hasn't ticked 5204 * since the last update, the operation will be a no-op. 5205 */ 5206 if (oifq == nifq && tqe->tqe_touched == ifs->ifs_fr_ticks) 5207 return; 5208 5209 /* 5210 * Grab the lock and update the timers. 5211 */ 5212 MUTEX_ENTER(&oifq->ifq_lock); 5213 tqe->tqe_touched = ifs->ifs_fr_ticks; 5214 tqe->tqe_die = ifs->ifs_fr_ticks + nifq->ifq_ttl; 5215 5216 /* 5217 * The remainder of the operation can still be a no-op. 5218 * 5219 * If the queue isn't changing, check to see if 5220 * an update would be meaningless. 5221 */ 5222 if (oifq == nifq) { 5223 if ((tqe->tqe_next == NULL) || 5224 (tqe->tqe_next->tqe_die == tqe->tqe_die)) { 5225 MUTEX_EXIT(&oifq->ifq_lock); 5226 return; 5227 } 5228 } 5229 5230 /* 5231 * Remove from the old queue 5232 */ 5233 *tqe->tqe_pnext = tqe->tqe_next; 5234 if (tqe->tqe_next) 5235 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5236 else 5237 oifq->ifq_tail = tqe->tqe_pnext; 5238 tqe->tqe_next = NULL; 5239 5240 /* 5241 * If we're moving from one queue to another, release the lock on the 5242 * old queue and get a lock on the new queue. For user defined queues, 5243 * if we're moving off it, call delete in case it can now be freed. 5244 */ 5245 if (oifq != nifq) { 5246 tqe->tqe_ifq = NULL; 5247 5248 (void) fr_deletetimeoutqueue(oifq); 5249 5250 MUTEX_EXIT(&oifq->ifq_lock); 5251 5252 MUTEX_ENTER(&nifq->ifq_lock); 5253 5254 tqe->tqe_ifq = nifq; 5255 nifq->ifq_ref++; 5256 } 5257 5258 /* 5259 * Add to the bottom of the new queue 5260 */ 5261 tqe->tqe_pnext = nifq->ifq_tail; 5262 *nifq->ifq_tail = tqe; 5263 nifq->ifq_tail = &tqe->tqe_next; 5264 MUTEX_EXIT(&nifq->ifq_lock); 5265 } 5266 5267 5268 /* ------------------------------------------------------------------------ */ 5269 /* Function: fr_updateipid */ 5270 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */ 5271 /* Parameters: fin(I) - pointer to packet information */ 5272 /* */ 5273 /* When we are doing NAT, change the IP of every packet to represent a */ 5274 /* single sequence of packets coming from the host, hiding any host */ 5275 /* specific sequencing that might otherwise be revealed. If the packet is */ 5276 /* a fragment, then store the 'new' IPid in the fragment cache and look up */ 5277 /* the fragment cache for non-leading fragments. If a non-leading fragment */ 5278 /* has no match in the cache, return an error. */ 5279 /* ------------------------------------------------------------------------ */ 5280 static INLINE int fr_updateipid(fin) 5281 fr_info_t *fin; 5282 { 5283 u_short id, ido, sums; 5284 u_32_t sumd, sum; 5285 ip_t *ip; 5286 5287 if (fin->fin_off != 0) { 5288 sum = fr_ipid_knownfrag(fin); 5289 if (sum == 0xffffffff) 5290 return -1; 5291 sum &= 0xffff; 5292 id = (u_short)sum; 5293 } else { 5294 id = fr_nextipid(fin); 5295 if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0) 5296 (void) fr_ipid_newfrag(fin, (u_32_t)id); 5297 } 5298 5299 ip = fin->fin_ip; 5300 ido = ntohs(ip->ip_id); 5301 if (id == ido) 5302 return 0; 5303 ip->ip_id = htons(id); 5304 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */ 5305 sum = (~ntohs(ip->ip_sum)) & 0xffff; 5306 sum += sumd; 5307 sum = (sum >> 16) + (sum & 0xffff); 5308 sum = (sum >> 16) + (sum & 0xffff); 5309 sums = ~(u_short)sum; 5310 ip->ip_sum = htons(sums); 5311 return 0; 5312 } 5313 5314 5315 #ifdef NEED_FRGETIFNAME 5316 /* ------------------------------------------------------------------------ */ 5317 /* Function: fr_getifname */ 5318 /* Returns: char * - pointer to interface name */ 5319 /* Parameters: ifp(I) - pointer to network interface */ 5320 /* buffer(O) - pointer to where to store interface name */ 5321 /* */ 5322 /* Constructs an interface name in the buffer passed. The buffer passed is */ 5323 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */ 5324 /* as a NULL pointer then return a pointer to a static array. */ 5325 /* ------------------------------------------------------------------------ */ 5326 char *fr_getifname(ifp, buffer) 5327 struct ifnet *ifp; 5328 char *buffer; 5329 { 5330 static char namebuf[LIFNAMSIZ]; 5331 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5332 defined(__sgi) || defined(linux) || defined(_AIX51) || \ 5333 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5334 int unit, space; 5335 char temp[20]; 5336 char *s; 5337 # endif 5338 5339 ASSERT(buffer != NULL); 5340 #ifdef notdef 5341 if (buffer == NULL) 5342 buffer = namebuf; 5343 #endif 5344 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ); 5345 buffer[LIFNAMSIZ - 1] = '\0'; 5346 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5347 defined(__sgi) || defined(_AIX51) || \ 5348 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5349 for (s = buffer; *s; s++) 5350 ; 5351 unit = ifp->if_unit; 5352 space = LIFNAMSIZ - (s - buffer); 5353 if (space > 0) { 5354 # if defined(SNPRINTF) && defined(_KERNEL) 5355 (void) SNPRINTF(temp, sizeof(temp), "%d", unit); 5356 # else 5357 (void) sprintf(temp, "%d", unit); 5358 # endif 5359 (void) strncpy(s, temp, space); 5360 } 5361 # endif 5362 return buffer; 5363 } 5364 #endif 5365 5366 5367 /* ------------------------------------------------------------------------ */ 5368 /* Function: fr_ioctlswitch */ 5369 /* Returns: int - -1 continue processing, else ioctl return value */ 5370 /* Parameters: unit(I) - device unit opened */ 5371 /* data(I) - pointer to ioctl data */ 5372 /* cmd(I) - ioctl command */ 5373 /* mode(I) - mode value */ 5374 /* */ 5375 /* Based on the value of unit, call the appropriate ioctl handler or return */ 5376 /* EIO if ipfilter is not running. Also checks if write perms are req'd */ 5377 /* for the device in order to execute the ioctl. */ 5378 /* ------------------------------------------------------------------------ */ 5379 INLINE int fr_ioctlswitch(unit, data, cmd, mode, uid, ctx, ifs) 5380 int unit, mode, uid; 5381 ioctlcmd_t cmd; 5382 void *data, *ctx; 5383 ipf_stack_t *ifs; 5384 { 5385 int error = 0; 5386 5387 switch (unit) 5388 { 5389 case IPL_LOGIPF : 5390 error = -1; 5391 break; 5392 case IPL_LOGNAT : 5393 if (ifs->ifs_fr_running > 0) 5394 error = fr_nat_ioctl(data, cmd, mode, uid, ctx, ifs); 5395 else 5396 error = EIO; 5397 break; 5398 case IPL_LOGSTATE : 5399 if (ifs->ifs_fr_running > 0) 5400 error = fr_state_ioctl(data, cmd, mode, uid, ctx, ifs); 5401 else 5402 error = EIO; 5403 break; 5404 case IPL_LOGAUTH : 5405 if (ifs->ifs_fr_running > 0) { 5406 if ((cmd == (ioctlcmd_t)SIOCADAFR) || 5407 (cmd == (ioctlcmd_t)SIOCRMAFR)) { 5408 if (!(mode & FWRITE)) { 5409 error = EPERM; 5410 } else { 5411 error = frrequest(unit, cmd, data, 5412 ifs->ifs_fr_active, 1, ifs); 5413 } 5414 } else { 5415 error = fr_auth_ioctl(data, cmd, mode, uid, ctx, ifs); 5416 } 5417 } else 5418 error = EIO; 5419 break; 5420 case IPL_LOGSYNC : 5421 #ifdef IPFILTER_SYNC 5422 if (ifs->ifs_fr_running > 0) 5423 error = fr_sync_ioctl(data, cmd, mode, ifs); 5424 else 5425 #endif 5426 error = EIO; 5427 break; 5428 case IPL_LOGSCAN : 5429 #ifdef IPFILTER_SCAN 5430 if (ifs->ifs_fr_running > 0) 5431 error = fr_scan_ioctl(data, cmd, mode, ifs); 5432 else 5433 #endif 5434 error = EIO; 5435 break; 5436 case IPL_LOGLOOKUP : 5437 #ifdef IPFILTER_LOOKUP 5438 if (ifs->ifs_fr_running > 0) 5439 error = ip_lookup_ioctl(data, cmd, mode, uid, ctx, ifs); 5440 else 5441 #endif 5442 error = EIO; 5443 break; 5444 default : 5445 error = EIO; 5446 break; 5447 } 5448 5449 return error; 5450 } 5451 5452 5453 /* 5454 * This array defines the expected size of objects coming into the kernel 5455 * for the various recognised object types. 5456 */ 5457 #define NUM_OBJ_TYPES 19 5458 5459 static int fr_objbytes[NUM_OBJ_TYPES][2] = { 5460 { 1, sizeof(struct frentry) }, /* frentry */ 5461 { 0, sizeof(struct friostat) }, 5462 { 0, sizeof(struct fr_info) }, 5463 { 0, sizeof(struct fr_authstat) }, 5464 { 0, sizeof(struct ipfrstat) }, 5465 { 0, sizeof(struct ipnat) }, 5466 { 0, sizeof(struct natstat) }, 5467 { 0, sizeof(struct ipstate_save) }, 5468 { 1, sizeof(struct nat_save) }, /* nat_save */ 5469 { 0, sizeof(struct natlookup) }, 5470 { 1, sizeof(struct ipstate) }, /* ipstate */ 5471 { 0, sizeof(struct ips_stat) }, 5472 { 0, sizeof(struct frauth) }, 5473 { 0, sizeof(struct ipftune) }, 5474 { 0, sizeof(struct nat) }, /* nat_t */ 5475 { 0, sizeof(struct ipfruleiter) }, 5476 { 0, sizeof(struct ipfgeniter) }, 5477 { 0, sizeof(struct ipftable) }, 5478 { 0, sizeof(struct ipflookupiter) } 5479 }; 5480 5481 5482 /* ------------------------------------------------------------------------ */ 5483 /* Function: fr_inobj */ 5484 /* Returns: int - 0 = success, else failure */ 5485 /* Parameters: data(I) - pointer to ioctl data */ 5486 /* ptr(I) - pointer to store real data in */ 5487 /* type(I) - type of structure being moved */ 5488 /* */ 5489 /* Copy in the contents of what the ipfobj_t points to. In future, we */ 5490 /* add things to check for version numbers, sizes, etc, to make it backward */ 5491 /* compatible at the ABI for user land. */ 5492 /* ------------------------------------------------------------------------ */ 5493 int fr_inobj(data, ptr, type) 5494 void *data; 5495 void *ptr; 5496 int type; 5497 { 5498 ipfobj_t obj; 5499 int error = 0; 5500 5501 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5502 return EINVAL; 5503 5504 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5505 if (error != 0) 5506 return EFAULT; 5507 5508 if (obj.ipfo_type != type) 5509 return EINVAL; 5510 5511 #ifndef IPFILTER_COMPAT 5512 if ((fr_objbytes[type][0] & 1) != 0) { 5513 if (obj.ipfo_size < fr_objbytes[type][1]) 5514 return EINVAL; 5515 } else if (obj.ipfo_size != fr_objbytes[type][1]) 5516 return EINVAL; 5517 #else 5518 if (obj.ipfo_rev != IPFILTER_VERSION) { 5519 error = fr_incomptrans(&obj, ptr); 5520 return error; 5521 } 5522 5523 if ((fr_objbytes[type][0] & 1) != 0 && 5524 obj.ipfo_size < fr_objbytes[type][1] || 5525 obj.ipfo_size != fr_objbytes[type][1]) 5526 return EINVAL; 5527 #endif 5528 5529 if ((fr_objbytes[type][0] & 1) != 0) { 5530 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, 5531 fr_objbytes[type][1]); 5532 } else { 5533 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, 5534 obj.ipfo_size); 5535 } 5536 return error; 5537 } 5538 5539 5540 /* ------------------------------------------------------------------------ */ 5541 /* Function: fr_inobjsz */ 5542 /* Returns: int - 0 = success, else failure */ 5543 /* Parameters: data(I) - pointer to ioctl data */ 5544 /* ptr(I) - pointer to store real data in */ 5545 /* type(I) - type of structure being moved */ 5546 /* sz(I) - size of data to copy */ 5547 /* */ 5548 /* As per fr_inobj, except the size of the object to copy in is passed in */ 5549 /* but it must not be smaller than the size defined for the type and the */ 5550 /* type must allow for varied sized objects. The extra requirement here is */ 5551 /* that sz must match the size of the object being passed in - this is not */ 5552 /* not possible nor required in fr_inobj(). */ 5553 /* ------------------------------------------------------------------------ */ 5554 int fr_inobjsz(data, ptr, type, sz) 5555 void *data; 5556 void *ptr; 5557 int type, sz; 5558 { 5559 ipfobj_t obj; 5560 int error; 5561 5562 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5563 return EINVAL; 5564 if (((fr_objbytes[type][0] & 1) == 0) || (sz < fr_objbytes[type][1])) 5565 return EINVAL; 5566 5567 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5568 if (error != 0) 5569 return EFAULT; 5570 5571 if (obj.ipfo_type != type) 5572 return EINVAL; 5573 5574 #ifndef IPFILTER_COMPAT 5575 if (obj.ipfo_size != sz) 5576 return EINVAL; 5577 #else 5578 if (obj.ipfo_rev != IPFILTER_VERSION) 5579 /*XXX compatibility hook here */ 5580 /*EMPTY*/; 5581 if (obj.ipfo_size != sz) 5582 /* XXX compatibility hook here */ 5583 return EINVAL; 5584 #endif 5585 5586 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, sz); 5587 return error; 5588 } 5589 5590 5591 /* ------------------------------------------------------------------------ */ 5592 /* Function: fr_outobjsz */ 5593 /* Returns: int - 0 = success, else failure */ 5594 /* Parameters: data(I) - pointer to ioctl data */ 5595 /* ptr(I) - pointer to store real data in */ 5596 /* type(I) - type of structure being moved */ 5597 /* sz(I) - size of data to copy */ 5598 /* */ 5599 /* As per fr_outobj, except the size of the object to copy out is passed in */ 5600 /* but it must not be smaller than the size defined for the type and the */ 5601 /* type must allow for varied sized objects. The extra requirement here is */ 5602 /* that sz must match the size of the object being passed in - this is not */ 5603 /* not possible nor required in fr_outobj(). */ 5604 /* ------------------------------------------------------------------------ */ 5605 int fr_outobjsz(data, ptr, type, sz) 5606 void *data; 5607 void *ptr; 5608 int type, sz; 5609 { 5610 ipfobj_t obj; 5611 int error; 5612 5613 if ((type < 0) || (type > NUM_OBJ_TYPES-1) || 5614 ((fr_objbytes[type][0] & 1) == 0) || 5615 (sz < fr_objbytes[type][1])) 5616 return EINVAL; 5617 5618 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5619 if (error != 0) 5620 return EFAULT; 5621 5622 if (obj.ipfo_type != type) 5623 return EINVAL; 5624 5625 #ifndef IPFILTER_COMPAT 5626 if (obj.ipfo_size != sz) 5627 return EINVAL; 5628 #else 5629 if (obj.ipfo_rev != IPFILTER_VERSION) 5630 /* XXX compatibility hook here */ 5631 /*EMPTY*/; 5632 if (obj.ipfo_size != sz) 5633 /* XXX compatibility hook here */ 5634 return EINVAL; 5635 #endif 5636 5637 error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, sz); 5638 return error; 5639 } 5640 5641 5642 /* ------------------------------------------------------------------------ */ 5643 /* Function: fr_outobj */ 5644 /* Returns: int - 0 = success, else failure */ 5645 /* Parameters: data(I) - pointer to ioctl data */ 5646 /* ptr(I) - pointer to store real data in */ 5647 /* type(I) - type of structure being moved */ 5648 /* */ 5649 /* Copy out the contents of what ptr is to where ipfobj points to. In */ 5650 /* future, we add things to check for version numbers, sizes, etc, to make */ 5651 /* it backward compatible at the ABI for user land. */ 5652 /* ------------------------------------------------------------------------ */ 5653 int fr_outobj(data, ptr, type) 5654 void *data; 5655 void *ptr; 5656 int type; 5657 { 5658 ipfobj_t obj; 5659 int error; 5660 5661 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5662 return EINVAL; 5663 5664 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5665 if (error != 0) 5666 return EFAULT; 5667 5668 if (obj.ipfo_type != type) 5669 return EINVAL; 5670 5671 #ifndef IPFILTER_COMPAT 5672 if ((fr_objbytes[type][0] & 1) != 0) { 5673 if (obj.ipfo_size < fr_objbytes[type][1]) 5674 return EINVAL; 5675 } else if (obj.ipfo_size != fr_objbytes[type][1]) 5676 return EINVAL; 5677 #else 5678 if (obj.ipfo_rev != IPFILTER_VERSION) { 5679 error = fr_outcomptrans(&obj, ptr); 5680 return error; 5681 } 5682 5683 if ((fr_objbytes[type][0] & 1) != 0 && 5684 obj.ipfo_size < fr_objbytes[type][1] || 5685 obj.ipfo_size != fr_objbytes[type][1]) 5686 return EINVAL; 5687 #endif 5688 5689 error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, obj.ipfo_size); 5690 return error; 5691 } 5692 5693 5694 /* ------------------------------------------------------------------------ */ 5695 /* Function: fr_checkl4sum */ 5696 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */ 5697 /* Parameters: fin(I) - pointer to packet information */ 5698 /* */ 5699 /* If possible, calculate the layer 4 checksum for the packet. If this is */ 5700 /* not possible, return without indicating a failure or success but in a */ 5701 /* way that is ditinguishable. */ 5702 /* ------------------------------------------------------------------------ */ 5703 int fr_checkl4sum(fin) 5704 fr_info_t *fin; 5705 { 5706 u_short sum, hdrsum, *csump; 5707 udphdr_t *udp; 5708 int dosum; 5709 ipf_stack_t *ifs = fin->fin_ifs; 5710 5711 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) 5712 net_handle_t net_data_p; 5713 if (fin->fin_v == 4) 5714 net_data_p = ifs->ifs_ipf_ipv4; 5715 else 5716 net_data_p = ifs->ifs_ipf_ipv6; 5717 #endif 5718 5719 if ((fin->fin_flx & FI_NOCKSUM) != 0) 5720 return 0; 5721 5722 /* 5723 * If the TCP packet isn't a fragment, isn't too short and otherwise 5724 * isn't already considered "bad", then validate the checksum. If 5725 * this check fails then considered the packet to be "bad". 5726 */ 5727 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0) 5728 return 1; 5729 5730 csump = NULL; 5731 hdrsum = 0; 5732 dosum = 0; 5733 sum = 0; 5734 5735 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) 5736 ASSERT(fin->fin_m != NULL); 5737 if (NET_IS_HCK_L4_FULL(net_data_p, fin->fin_m) || 5738 NET_IS_HCK_L4_PART(net_data_p, fin->fin_m)) { 5739 hdrsum = 0; 5740 sum = 0; 5741 } else { 5742 #endif 5743 switch (fin->fin_p) 5744 { 5745 case IPPROTO_TCP : 5746 csump = &((tcphdr_t *)fin->fin_dp)->th_sum; 5747 dosum = 1; 5748 break; 5749 5750 case IPPROTO_UDP : 5751 udp = fin->fin_dp; 5752 if (udp->uh_sum != 0) { 5753 csump = &udp->uh_sum; 5754 dosum = 1; 5755 } 5756 break; 5757 5758 case IPPROTO_ICMP : 5759 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum; 5760 dosum = 1; 5761 break; 5762 5763 default : 5764 return 1; 5765 /*NOTREACHED*/ 5766 } 5767 5768 if (csump != NULL) 5769 hdrsum = *csump; 5770 5771 if (dosum) 5772 sum = fr_cksum(fin->fin_m, fin->fin_ip, 5773 fin->fin_p, fin->fin_dp); 5774 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) 5775 } 5776 #endif 5777 #if !defined(_KERNEL) 5778 if (sum == hdrsum) { 5779 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum)); 5780 } else { 5781 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum)); 5782 } 5783 #endif 5784 if (hdrsum == sum) 5785 return 0; 5786 return -1; 5787 } 5788 5789 5790 /* ------------------------------------------------------------------------ */ 5791 /* Function: fr_ifpfillv4addr */ 5792 /* Returns: int - 0 = address update, -1 = address not updated */ 5793 /* Parameters: atype(I) - type of network address update to perform */ 5794 /* sin(I) - pointer to source of address information */ 5795 /* mask(I) - pointer to source of netmask information */ 5796 /* inp(I) - pointer to destination address store */ 5797 /* inpmask(I) - pointer to destination netmask store */ 5798 /* */ 5799 /* Given a type of network address update (atype) to perform, copy */ 5800 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 5801 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 5802 /* which case the operation fails. For all values of atype other than */ 5803 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 5804 /* value. */ 5805 /* ------------------------------------------------------------------------ */ 5806 int fr_ifpfillv4addr(atype, sin, mask, inp, inpmask) 5807 int atype; 5808 struct sockaddr_in *sin, *mask; 5809 struct in_addr *inp, *inpmask; 5810 { 5811 if (inpmask != NULL && atype != FRI_NETMASKED) 5812 inpmask->s_addr = 0xffffffff; 5813 5814 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 5815 if (atype == FRI_NETMASKED) { 5816 if (inpmask == NULL) 5817 return -1; 5818 inpmask->s_addr = mask->sin_addr.s_addr; 5819 } 5820 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr; 5821 } else { 5822 inp->s_addr = sin->sin_addr.s_addr; 5823 } 5824 return 0; 5825 } 5826 5827 5828 #ifdef USE_INET6 5829 /* ------------------------------------------------------------------------ */ 5830 /* Function: fr_ifpfillv6addr */ 5831 /* Returns: int - 0 = address update, -1 = address not updated */ 5832 /* Parameters: atype(I) - type of network address update to perform */ 5833 /* sin(I) - pointer to source of address information */ 5834 /* mask(I) - pointer to source of netmask information */ 5835 /* inp(I) - pointer to destination address store */ 5836 /* inpmask(I) - pointer to destination netmask store */ 5837 /* */ 5838 /* Given a type of network address update (atype) to perform, copy */ 5839 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 5840 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 5841 /* which case the operation fails. For all values of atype other than */ 5842 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 5843 /* value. */ 5844 /* ------------------------------------------------------------------------ */ 5845 int fr_ifpfillv6addr(atype, sin, mask, inp, inpmask) 5846 int atype; 5847 struct sockaddr_in6 *sin, *mask; 5848 struct in_addr *inp, *inpmask; 5849 { 5850 i6addr_t *src, *dst, *and, *dmask; 5851 5852 src = (i6addr_t *)&sin->sin6_addr; 5853 and = (i6addr_t *)&mask->sin6_addr; 5854 dst = (i6addr_t *)inp; 5855 dmask = (i6addr_t *)inpmask; 5856 5857 if (inpmask != NULL && atype != FRI_NETMASKED) { 5858 dmask->i6[0] = 0xffffffff; 5859 dmask->i6[1] = 0xffffffff; 5860 dmask->i6[2] = 0xffffffff; 5861 dmask->i6[3] = 0xffffffff; 5862 } 5863 5864 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 5865 if (atype == FRI_NETMASKED) { 5866 if (inpmask == NULL) 5867 return -1; 5868 dmask->i6[0] = and->i6[0]; 5869 dmask->i6[1] = and->i6[1]; 5870 dmask->i6[2] = and->i6[2]; 5871 dmask->i6[3] = and->i6[3]; 5872 } 5873 5874 dst->i6[0] = src->i6[0] & and->i6[0]; 5875 dst->i6[1] = src->i6[1] & and->i6[1]; 5876 dst->i6[2] = src->i6[2] & and->i6[2]; 5877 dst->i6[3] = src->i6[3] & and->i6[3]; 5878 } else { 5879 dst->i6[0] = src->i6[0]; 5880 dst->i6[1] = src->i6[1]; 5881 dst->i6[2] = src->i6[2]; 5882 dst->i6[3] = src->i6[3]; 5883 } 5884 return 0; 5885 } 5886 #endif 5887 5888 5889 /* ------------------------------------------------------------------------ */ 5890 /* Function: fr_matchtag */ 5891 /* Returns: 0 == mismatch, 1 == match. */ 5892 /* Parameters: tag1(I) - pointer to first tag to compare */ 5893 /* tag2(I) - pointer to second tag to compare */ 5894 /* */ 5895 /* Returns true (non-zero) or false(0) if the two tag structures can be */ 5896 /* considered to be a match or not match, respectively. The tag is 16 */ 5897 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */ 5898 /* compare the ints instead, for speed. tag1 is the master of the */ 5899 /* comparison. This function should only be called with both tag1 and tag2 */ 5900 /* as non-NULL pointers. */ 5901 /* ------------------------------------------------------------------------ */ 5902 int fr_matchtag(tag1, tag2) 5903 ipftag_t *tag1, *tag2; 5904 { 5905 if (tag1 == tag2) 5906 return 1; 5907 5908 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0)) 5909 return 1; 5910 5911 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) && 5912 (tag1->ipt_num[1] == tag2->ipt_num[1]) && 5913 (tag1->ipt_num[2] == tag2->ipt_num[2]) && 5914 (tag1->ipt_num[3] == tag2->ipt_num[3])) 5915 return 1; 5916 return 0; 5917 } 5918 5919 5920 /* ------------------------------------------------------------------------ */ 5921 /* Function: fr_coalesce */ 5922 /* Returns: 1 == success, -1 == failure, 0 == no change */ 5923 /* Parameters: fin(I) - pointer to packet information */ 5924 /* */ 5925 /* Attempt to get all of the packet data into a single, contiguous buffer. */ 5926 /* If this call returns a failure then the buffers have also been freed. */ 5927 /* ------------------------------------------------------------------------ */ 5928 int fr_coalesce(fin) 5929 fr_info_t *fin; 5930 { 5931 ipf_stack_t *ifs = fin->fin_ifs; 5932 if ((fin->fin_flx & FI_COALESCE) != 0) 5933 return 1; 5934 5935 /* 5936 * If the mbuf pointers indicate that there is no mbuf to work with, 5937 * return but do not indicate success or failure. 5938 */ 5939 if (fin->fin_m == NULL || fin->fin_mp == NULL) 5940 return 0; 5941 5942 #if defined(_KERNEL) 5943 if (fr_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) { 5944 IPF_BUMP(ifs->ifs_fr_badcoalesces[fin->fin_out]); 5945 # ifdef MENTAT 5946 FREE_MB_T(*fin->fin_mp); 5947 # endif 5948 *fin->fin_mp = NULL; 5949 fin->fin_m = NULL; 5950 return -1; 5951 } 5952 #else 5953 fin = fin; /* LINT */ 5954 #endif 5955 return 1; 5956 } 5957 5958 5959 /* 5960 * The following table lists all of the tunable variables that can be 5961 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXT. The format of each row 5962 * in the table below is as follows: 5963 * 5964 * pointer to value, name of value, minimum, maximum, size of the value's 5965 * container, value attribute flags 5966 * 5967 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED 5968 * means the value can only be written to when IPFilter is loaded but disabled. 5969 * The obvious implication is if neither of these are set then the value can be 5970 * changed at any time without harm. 5971 */ 5972 ipftuneable_t lcl_ipf_tuneables[] = { 5973 /* filtering */ 5974 { { NULL }, "fr_flags", 0, 0xffffffff, 5975 0, 0 }, 5976 { { NULL }, "fr_active", 0, 0, 5977 0, IPFT_RDONLY }, 5978 { { NULL }, "fr_control_forwarding", 0, 1, 5979 0, 0 }, 5980 { { NULL }, "fr_update_ipid", 0, 1, 5981 0, 0 }, 5982 { { NULL }, "fr_chksrc", 0, 1, 5983 0, 0 }, 5984 { { NULL }, "fr_minttl", 0, 1, 5985 0, 0 }, 5986 { { NULL }, "fr_icmpminfragmtu", 0, 1, 5987 0, 0 }, 5988 { { NULL }, "fr_pass", 0, 0xffffffff, 5989 0, 0 }, 5990 #if SOLARIS2 >= 10 5991 { { NULL }, "ipf_loopback", 0, 1, 5992 0, IPFT_WRDISABLED }, 5993 #endif 5994 /* state */ 5995 { { NULL }, "fr_tcpidletimeout", 1, 0x7fffffff, 5996 0, IPFT_WRDISABLED }, 5997 { { NULL }, "fr_tcpclosewait", 1, 0x7fffffff, 5998 0, IPFT_WRDISABLED }, 5999 { { NULL }, "fr_tcplastack", 1, 0x7fffffff, 6000 0, IPFT_WRDISABLED }, 6001 { { NULL }, "fr_tcptimeout", 1, 0x7fffffff, 6002 0, IPFT_WRDISABLED }, 6003 { { NULL }, "fr_tcpclosed", 1, 0x7fffffff, 6004 0, IPFT_WRDISABLED }, 6005 { { NULL }, "fr_tcphalfclosed", 1, 0x7fffffff, 6006 0, IPFT_WRDISABLED }, 6007 { { NULL }, "fr_udptimeout", 1, 0x7fffffff, 6008 0, IPFT_WRDISABLED }, 6009 { { NULL }, "fr_udpacktimeout", 1, 0x7fffffff, 6010 0, IPFT_WRDISABLED }, 6011 { { NULL }, "fr_icmptimeout", 1, 0x7fffffff, 6012 0, IPFT_WRDISABLED }, 6013 { { NULL }, "fr_icmpacktimeout", 1, 0x7fffffff, 6014 0, IPFT_WRDISABLED }, 6015 { { NULL }, "fr_iptimeout", 1, 0x7fffffff, 6016 0, IPFT_WRDISABLED }, 6017 { { NULL }, "fr_statemax", 1, 0x7fffffff, 6018 0, 0 }, 6019 { { NULL }, "fr_statesize", 1, 0x7fffffff, 6020 0, IPFT_WRDISABLED }, 6021 { { NULL }, "fr_state_lock", 0, 1, 6022 0, IPFT_RDONLY }, 6023 { { NULL }, "fr_state_maxbucket", 1, 0x7fffffff, 6024 0, IPFT_WRDISABLED }, 6025 { { NULL }, "fr_state_maxbucket_reset", 0, 1, 6026 0, IPFT_WRDISABLED }, 6027 { { NULL }, "ipstate_logging", 0, 1, 6028 0, 0 }, 6029 { { NULL }, "state_flush_level_hi", 1, 100, 6030 0, 0 }, 6031 { { NULL }, "state_flush_level_lo", 1, 100, 6032 0, 0 }, 6033 /* nat */ 6034 { { NULL }, "fr_nat_lock", 0, 1, 6035 0, IPFT_RDONLY }, 6036 { { NULL }, "ipf_nattable_sz", 1, 0x7fffffff, 6037 0, IPFT_WRDISABLED }, 6038 { { NULL }, "ipf_nattable_max", 1, 0x7fffffff, 6039 0, 0 }, 6040 { { NULL }, "ipf_natrules_sz", 1, 0x7fffffff, 6041 0, IPFT_WRDISABLED }, 6042 { { NULL }, "ipf_rdrrules_sz", 1, 0x7fffffff, 6043 0, IPFT_WRDISABLED }, 6044 { { NULL }, "ipf_hostmap_sz", 1, 0x7fffffff, 6045 0, IPFT_WRDISABLED }, 6046 { { NULL }, "fr_nat_maxbucket", 1, 0x7fffffff, 6047 0, IPFT_WRDISABLED }, 6048 { { NULL }, "fr_nat_maxbucket_reset", 0, 1, 6049 0, IPFT_WRDISABLED }, 6050 { { NULL }, "nat_logging", 0, 1, 6051 0, 0 }, 6052 { { NULL }, "fr_defnatage", 1, 0x7fffffff, 6053 0, IPFT_WRDISABLED }, 6054 { { NULL }, "fr_defnatipage", 1, 0x7fffffff, 6055 0, IPFT_WRDISABLED }, 6056 { { NULL }, "fr_defnaticmpage", 1, 0x7fffffff, 6057 0, IPFT_WRDISABLED }, 6058 { { NULL }, "nat_flush_level_hi", 1, 100, 6059 0, 0 }, 6060 { { NULL }, "nat_flush_level_lo", 1, 100, 6061 0, 0 }, 6062 /* frag */ 6063 { { NULL }, "ipfr_size", 1, 0x7fffffff, 6064 0, IPFT_WRDISABLED }, 6065 { { NULL }, "fr_ipfrttl", 1, 0x7fffffff, 6066 0, IPFT_WRDISABLED }, 6067 #ifdef IPFILTER_LOG 6068 /* log */ 6069 { { NULL }, "ipl_suppress", 0, 1, 6070 0, 0 }, 6071 { { NULL }, "ipl_buffer_sz", 0, 0, 6072 0, IPFT_RDONLY }, 6073 { { NULL }, "ipl_logmax", 0, 0x7fffffff, 6074 0, IPFT_WRDISABLED }, 6075 { { NULL }, "ipl_logall", 0, 1, 6076 0, 0 }, 6077 { { NULL }, "ipl_logsize", 0, 0x80000, 6078 0, 0 }, 6079 #endif 6080 { { NULL }, NULL, 0, 0 } 6081 }; 6082 6083 static ipftuneable_t * 6084 tune_lookup(ipf_stack_t *ifs, char *name) 6085 { 6086 int i; 6087 6088 for (i = 0; ifs->ifs_ipf_tuneables[i].ipft_name != NULL; i++) { 6089 if (strcmp(ifs->ifs_ipf_tuneables[i].ipft_name, name) == 0) 6090 return (&ifs->ifs_ipf_tuneables[i]); 6091 } 6092 return (NULL); 6093 } 6094 6095 #ifdef _KERNEL 6096 extern dev_info_t *ipf_dev_info; 6097 extern int ipf_property_update __P((dev_info_t *, ipf_stack_t *)); 6098 #endif 6099 6100 /* -------------------------------------------------------------------- */ 6101 /* Function: ipftuneable_setdefs() */ 6102 /* Returns: void */ 6103 /* Parameters: ifs - pointer to newly allocated IPF instance */ 6104 /* assigned to IP instance */ 6105 /* */ 6106 /* Function initializes IPF instance variables. Function is invoked */ 6107 /* from ipftuneable_alloc(). ipftuneable_alloc() is called only one */ 6108 /* time during IP instance lifetime - at the time of IP instance */ 6109 /* creation. Anytime IP instance is being created new private IPF */ 6110 /* instance is allocated and assigned to it. The moment of IP */ 6111 /* instance creation is the right time to initialize those IPF */ 6112 /* variables. */ 6113 /* */ 6114 /* -------------------------------------------------------------------- */ 6115 static void ipftuneable_setdefs(ipf_stack_t *ifs) 6116 { 6117 ifs->ifs_ipfr_size = IPFT_SIZE; 6118 ifs->ifs_fr_ipfrttl = 120; /* 60 seconds */ 6119 6120 /* it comes from fr_authinit() in IPF auth */ 6121 ifs->ifs_fr_authsize = FR_NUMAUTH; 6122 ifs->ifs_fr_defaultauthage = 600; 6123 6124 /* it comes from fr_stateinit() in IPF state */ 6125 ifs->ifs_fr_tcpidletimeout = IPF_TTLVAL(3600 * 24 * 5); /* five days */ 6126 ifs->ifs_fr_tcpclosewait = IPF_TTLVAL(TCP_MSL); 6127 ifs->ifs_fr_tcplastack = IPF_TTLVAL(TCP_MSL); 6128 ifs->ifs_fr_tcptimeout = IPF_TTLVAL(TCP_MSL); 6129 ifs->ifs_fr_tcpclosed = IPF_TTLVAL(60); 6130 ifs->ifs_fr_tcphalfclosed = IPF_TTLVAL(2 * 3600); /* 2 hours */ 6131 ifs->ifs_fr_udptimeout = IPF_TTLVAL(120); 6132 ifs->ifs_fr_udpacktimeout = IPF_TTLVAL(12); 6133 ifs->ifs_fr_icmptimeout = IPF_TTLVAL(60); 6134 ifs->ifs_fr_icmpacktimeout = IPF_TTLVAL(6); 6135 ifs->ifs_fr_iptimeout = IPF_TTLVAL(60); 6136 ifs->ifs_fr_statemax = IPSTATE_MAX; 6137 ifs->ifs_fr_statesize = IPSTATE_SIZE; 6138 ifs->ifs_fr_state_maxbucket_reset = 1; 6139 ifs->ifs_state_flush_level_hi = ST_FLUSH_HI; 6140 ifs->ifs_state_flush_level_lo = ST_FLUSH_LO; 6141 6142 /* it comes from fr_natinit() in ipnat */ 6143 ifs->ifs_ipf_nattable_sz = NAT_TABLE_SZ; 6144 ifs->ifs_ipf_nattable_max = NAT_TABLE_MAX; 6145 ifs->ifs_ipf_natrules_sz = NAT_SIZE; 6146 ifs->ifs_ipf_rdrrules_sz = RDR_SIZE; 6147 ifs->ifs_ipf_hostmap_sz = HOSTMAP_SIZE; 6148 ifs->ifs_fr_nat_maxbucket_reset = 1; 6149 ifs->ifs_fr_defnatage = DEF_NAT_AGE; 6150 ifs->ifs_fr_defnatipage = 120; /* 60 seconds */ 6151 ifs->ifs_fr_defnaticmpage = 6; /* 3 seconds */ 6152 ifs->ifs_nat_flush_level_hi = NAT_FLUSH_HI; 6153 ifs->ifs_nat_flush_level_lo = NAT_FLUSH_LO; 6154 6155 #ifdef IPFILTER_LOG 6156 /* it comes from fr_loginit() in IPF log */ 6157 ifs->ifs_ipl_suppress = 1; 6158 ifs->ifs_ipl_logmax = IPL_LOGMAX; 6159 ifs->ifs_ipl_logsize = IPFILTER_LOGSIZE; 6160 6161 /* from fr_natinit() */ 6162 ifs->ifs_nat_logging = 1; 6163 6164 /* from fr_stateinit() */ 6165 ifs->ifs_ipstate_logging = 1; 6166 #else 6167 /* from fr_natinit() */ 6168 ifs->ifs_nat_logging = 0; 6169 6170 /* from fr_stateinit() */ 6171 ifs->ifs_ipstate_logging = 0; 6172 #endif 6173 ifs->ifs_ipf_loopback = 0; 6174 6175 } 6176 /* 6177 * Allocate a per-stack tuneable and copy in the names. Then 6178 * set it to point to each of the per-stack tunables. 6179 */ 6180 void 6181 ipftuneable_alloc(ipf_stack_t *ifs) 6182 { 6183 ipftuneable_t *item; 6184 6185 KMALLOCS(ifs->ifs_ipf_tuneables, ipftuneable_t *, 6186 sizeof (lcl_ipf_tuneables)); 6187 bcopy(lcl_ipf_tuneables, ifs->ifs_ipf_tuneables, 6188 sizeof (lcl_ipf_tuneables)); 6189 6190 #define TUNE_SET(_ifs, _name, _field) \ 6191 item = tune_lookup((_ifs), (_name)); \ 6192 if (item != NULL) { \ 6193 item->ipft_una.ipftp_int = (unsigned int *)&((_ifs)->_field); \ 6194 item->ipft_sz = sizeof ((_ifs)->_field); \ 6195 } 6196 6197 TUNE_SET(ifs, "fr_flags", ifs_fr_flags); 6198 TUNE_SET(ifs, "fr_active", ifs_fr_active); 6199 TUNE_SET(ifs, "fr_control_forwarding", ifs_fr_control_forwarding); 6200 TUNE_SET(ifs, "fr_update_ipid", ifs_fr_update_ipid); 6201 TUNE_SET(ifs, "fr_chksrc", ifs_fr_chksrc); 6202 TUNE_SET(ifs, "fr_minttl", ifs_fr_minttl); 6203 TUNE_SET(ifs, "fr_icmpminfragmtu", ifs_fr_icmpminfragmtu); 6204 TUNE_SET(ifs, "fr_pass", ifs_fr_pass); 6205 TUNE_SET(ifs, "fr_tcpidletimeout", ifs_fr_tcpidletimeout); 6206 TUNE_SET(ifs, "fr_tcpclosewait", ifs_fr_tcpclosewait); 6207 TUNE_SET(ifs, "fr_tcplastack", ifs_fr_tcplastack); 6208 TUNE_SET(ifs, "fr_tcptimeout", ifs_fr_tcptimeout); 6209 TUNE_SET(ifs, "fr_tcpclosed", ifs_fr_tcpclosed); 6210 TUNE_SET(ifs, "fr_tcphalfclosed", ifs_fr_tcphalfclosed); 6211 TUNE_SET(ifs, "fr_udptimeout", ifs_fr_udptimeout); 6212 TUNE_SET(ifs, "fr_udpacktimeout", ifs_fr_udpacktimeout); 6213 TUNE_SET(ifs, "fr_icmptimeout", ifs_fr_icmptimeout); 6214 TUNE_SET(ifs, "fr_icmpacktimeout", ifs_fr_icmpacktimeout); 6215 TUNE_SET(ifs, "fr_iptimeout", ifs_fr_iptimeout); 6216 TUNE_SET(ifs, "fr_statemax", ifs_fr_statemax); 6217 TUNE_SET(ifs, "fr_statesize", ifs_fr_statesize); 6218 TUNE_SET(ifs, "fr_state_lock", ifs_fr_state_lock); 6219 TUNE_SET(ifs, "fr_state_maxbucket", ifs_fr_state_maxbucket); 6220 TUNE_SET(ifs, "fr_state_maxbucket_reset", ifs_fr_state_maxbucket_reset); 6221 TUNE_SET(ifs, "ipstate_logging", ifs_ipstate_logging); 6222 TUNE_SET(ifs, "fr_nat_lock", ifs_fr_nat_lock); 6223 TUNE_SET(ifs, "ipf_nattable_sz", ifs_ipf_nattable_sz); 6224 TUNE_SET(ifs, "ipf_nattable_max", ifs_ipf_nattable_max); 6225 TUNE_SET(ifs, "ipf_natrules_sz", ifs_ipf_natrules_sz); 6226 TUNE_SET(ifs, "ipf_rdrrules_sz", ifs_ipf_rdrrules_sz); 6227 TUNE_SET(ifs, "ipf_hostmap_sz", ifs_ipf_hostmap_sz); 6228 TUNE_SET(ifs, "fr_nat_maxbucket", ifs_fr_nat_maxbucket); 6229 TUNE_SET(ifs, "fr_nat_maxbucket_reset", ifs_fr_nat_maxbucket_reset); 6230 TUNE_SET(ifs, "nat_logging", ifs_nat_logging); 6231 TUNE_SET(ifs, "fr_defnatage", ifs_fr_defnatage); 6232 TUNE_SET(ifs, "fr_defnatipage", ifs_fr_defnatipage); 6233 TUNE_SET(ifs, "fr_defnaticmpage", ifs_fr_defnaticmpage); 6234 TUNE_SET(ifs, "nat_flush_level_hi", ifs_nat_flush_level_hi); 6235 TUNE_SET(ifs, "nat_flush_level_lo", ifs_nat_flush_level_lo); 6236 TUNE_SET(ifs, "state_flush_level_hi", ifs_state_flush_level_hi); 6237 TUNE_SET(ifs, "state_flush_level_lo", ifs_state_flush_level_lo); 6238 TUNE_SET(ifs, "ipfr_size", ifs_ipfr_size); 6239 TUNE_SET(ifs, "fr_ipfrttl", ifs_fr_ipfrttl); 6240 TUNE_SET(ifs, "ipf_loopback", ifs_ipf_loopback); 6241 #ifdef IPFILTER_LOG 6242 TUNE_SET(ifs, "ipl_suppress", ifs_ipl_suppress); 6243 TUNE_SET(ifs, "ipl_buffer_sz", ifs_ipl_buffer_sz); 6244 TUNE_SET(ifs, "ipl_logmax", ifs_ipl_logmax); 6245 TUNE_SET(ifs, "ipl_logall", ifs_ipl_logall); 6246 TUNE_SET(ifs, "ipl_logsize", ifs_ipl_logsize); 6247 #endif 6248 #undef TUNE_SET 6249 6250 ipftuneable_setdefs(ifs); 6251 6252 #ifdef _KERNEL 6253 (void) ipf_property_update(ipf_dev_info, ifs); 6254 #endif 6255 } 6256 6257 void 6258 ipftuneable_free(ipf_stack_t *ifs) 6259 { 6260 KFREES(ifs->ifs_ipf_tuneables, sizeof (lcl_ipf_tuneables)); 6261 ifs->ifs_ipf_tuneables = NULL; 6262 } 6263 6264 /* ------------------------------------------------------------------------ */ 6265 /* Function: fr_findtunebycookie */ 6266 /* Returns: NULL = search failed, else pointer to tune struct */ 6267 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */ 6268 /* next(O) - pointer to place to store the cookie for the */ 6269 /* "next" tuneable, if it is desired. */ 6270 /* */ 6271 /* This function is used to walk through all of the existing tunables with */ 6272 /* successive calls. It searches the known tunables for the one which has */ 6273 /* a matching value for "cookie" - ie its address. When returning a match, */ 6274 /* the next one to be found may be returned inside next. */ 6275 /* ------------------------------------------------------------------------ */ 6276 static ipftuneable_t *fr_findtunebycookie(cookie, next, ifs) 6277 void *cookie, **next; 6278 ipf_stack_t * ifs; 6279 { 6280 ipftuneable_t *ta, **tap; 6281 6282 for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++) 6283 if (ta == cookie) { 6284 if (next != NULL) { 6285 /* 6286 * If the next entry in the array has a name 6287 * present, then return a pointer to it for 6288 * where to go next, else return a pointer to 6289 * the dynaminc list as a key to search there 6290 * next. This facilitates a weak linking of 6291 * the two "lists" together. 6292 */ 6293 if ((ta + 1)->ipft_name != NULL) 6294 *next = ta + 1; 6295 else 6296 *next = &ifs->ifs_ipf_tunelist; 6297 } 6298 return ta; 6299 } 6300 6301 for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next) 6302 if (tap == cookie) { 6303 if (next != NULL) 6304 *next = &ta->ipft_next; 6305 return ta; 6306 } 6307 6308 if (next != NULL) 6309 *next = NULL; 6310 return NULL; 6311 } 6312 6313 6314 /* ------------------------------------------------------------------------ */ 6315 /* Function: fr_findtunebyname */ 6316 /* Returns: NULL = search failed, else pointer to tune struct */ 6317 /* Parameters: name(I) - name of the tuneable entry to find. */ 6318 /* */ 6319 /* Search the static array of tuneables and the list of dynamic tuneables */ 6320 /* for an entry with a matching name. If we can find one, return a pointer */ 6321 /* to the matching structure. */ 6322 /* ------------------------------------------------------------------------ */ 6323 static ipftuneable_t *fr_findtunebyname(name, ifs) 6324 const char *name; 6325 ipf_stack_t *ifs; 6326 { 6327 ipftuneable_t *ta; 6328 6329 for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++) 6330 if (!strcmp(ta->ipft_name, name)) { 6331 return ta; 6332 } 6333 6334 for (ta = ifs->ifs_ipf_tunelist; ta != NULL; ta = ta->ipft_next) 6335 if (!strcmp(ta->ipft_name, name)) { 6336 return ta; 6337 } 6338 6339 return NULL; 6340 } 6341 6342 6343 /* ------------------------------------------------------------------------ */ 6344 /* Function: fr_addipftune */ 6345 /* Returns: int - 0 == success, else failure */ 6346 /* Parameters: newtune - pointer to new tune struct to add to tuneables */ 6347 /* */ 6348 /* Appends the tune structure pointer to by "newtune" to the end of the */ 6349 /* current list of "dynamic" tuneable parameters. Once added, the owner */ 6350 /* of the object is not expected to ever change "ipft_next". */ 6351 /* ------------------------------------------------------------------------ */ 6352 int fr_addipftune(newtune, ifs) 6353 ipftuneable_t *newtune; 6354 ipf_stack_t *ifs; 6355 { 6356 ipftuneable_t *ta, **tap; 6357 6358 ta = fr_findtunebyname(newtune->ipft_name, ifs); 6359 if (ta != NULL) 6360 return EEXIST; 6361 6362 for (tap = &ifs->ifs_ipf_tunelist; *tap != NULL; tap = &(*tap)->ipft_next) 6363 ; 6364 6365 newtune->ipft_next = NULL; 6366 *tap = newtune; 6367 return 0; 6368 } 6369 6370 6371 /* ------------------------------------------------------------------------ */ 6372 /* Function: fr_delipftune */ 6373 /* Returns: int - 0 == success, else failure */ 6374 /* Parameters: oldtune - pointer to tune struct to remove from the list of */ 6375 /* current dynamic tuneables */ 6376 /* */ 6377 /* Search for the tune structure, by pointer, in the list of those that are */ 6378 /* dynamically added at run time. If found, adjust the list so that this */ 6379 /* structure is no longer part of it. */ 6380 /* ------------------------------------------------------------------------ */ 6381 int fr_delipftune(oldtune, ifs) 6382 ipftuneable_t *oldtune; 6383 ipf_stack_t *ifs; 6384 { 6385 ipftuneable_t *ta, **tap; 6386 6387 for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next) 6388 if (ta == oldtune) { 6389 *tap = oldtune->ipft_next; 6390 oldtune->ipft_next = NULL; 6391 return 0; 6392 } 6393 6394 return ESRCH; 6395 } 6396 6397 6398 /* ------------------------------------------------------------------------ */ 6399 /* Function: fr_ipftune */ 6400 /* Returns: int - 0 == success, else failure */ 6401 /* Parameters: cmd(I) - ioctl command number */ 6402 /* data(I) - pointer to ioctl data structure */ 6403 /* */ 6404 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */ 6405 /* three ioctls provide the means to access and control global variables */ 6406 /* within IPFilter, allowing (for example) timeouts and table sizes to be */ 6407 /* changed without rebooting, reloading or recompiling. The initialisation */ 6408 /* and 'destruction' routines of the various components of ipfilter are all */ 6409 /* each responsible for handling their own values being too big. */ 6410 /* ------------------------------------------------------------------------ */ 6411 int fr_ipftune(cmd, data, ifs) 6412 ioctlcmd_t cmd; 6413 void *data; 6414 ipf_stack_t *ifs; 6415 { 6416 ipftuneable_t *ta; 6417 ipftune_t tu; 6418 void *cookie; 6419 int error; 6420 6421 error = fr_inobj(data, &tu, IPFOBJ_TUNEABLE); 6422 if (error != 0) 6423 return error; 6424 6425 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0'; 6426 cookie = tu.ipft_cookie; 6427 ta = NULL; 6428 6429 switch (cmd) 6430 { 6431 case SIOCIPFGETNEXT : 6432 /* 6433 * If cookie is non-NULL, assume it to be a pointer to the last 6434 * entry we looked at, so find it (if possible) and return a 6435 * pointer to the next one after it. The last entry in the 6436 * the table is a NULL entry, so when we get to it, set cookie 6437 * to NULL and return that, indicating end of list, erstwhile 6438 * if we come in with cookie set to NULL, we are starting anew 6439 * at the front of the list. 6440 */ 6441 if (cookie != NULL) { 6442 ta = fr_findtunebycookie(cookie, &tu.ipft_cookie, ifs); 6443 } else { 6444 ta = ifs->ifs_ipf_tuneables; 6445 tu.ipft_cookie = ta + 1; 6446 } 6447 if (ta != NULL) { 6448 /* 6449 * Entry found, but does the data pointed to by that 6450 * row fit in what we can return? 6451 */ 6452 if (ta->ipft_sz > sizeof(tu.ipft_un)) 6453 return EINVAL; 6454 6455 tu.ipft_vlong = 0; 6456 if (ta->ipft_sz == sizeof(u_long)) 6457 tu.ipft_vlong = *ta->ipft_plong; 6458 else if (ta->ipft_sz == sizeof(u_int)) 6459 tu.ipft_vint = *ta->ipft_pint; 6460 else if (ta->ipft_sz == sizeof(u_short)) 6461 tu.ipft_vshort = *ta->ipft_pshort; 6462 else if (ta->ipft_sz == sizeof(u_char)) 6463 tu.ipft_vchar = *ta->ipft_pchar; 6464 6465 tu.ipft_sz = ta->ipft_sz; 6466 tu.ipft_min = ta->ipft_min; 6467 tu.ipft_max = ta->ipft_max; 6468 tu.ipft_flags = ta->ipft_flags; 6469 bcopy(ta->ipft_name, tu.ipft_name, 6470 MIN(sizeof(tu.ipft_name), 6471 strlen(ta->ipft_name) + 1)); 6472 } 6473 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6474 break; 6475 6476 case SIOCIPFGET : 6477 case SIOCIPFSET : 6478 /* 6479 * Search by name or by cookie value for a particular entry 6480 * in the tuning paramter table. 6481 */ 6482 error = ESRCH; 6483 if (cookie != NULL) { 6484 ta = fr_findtunebycookie(cookie, NULL, ifs); 6485 if (ta != NULL) 6486 error = 0; 6487 } else if (tu.ipft_name[0] != '\0') { 6488 ta = fr_findtunebyname(tu.ipft_name, ifs); 6489 if (ta != NULL) 6490 error = 0; 6491 } 6492 if (error != 0) 6493 break; 6494 6495 if (cmd == (ioctlcmd_t)SIOCIPFGET) { 6496 /* 6497 * Fetch the tuning parameters for a particular value 6498 */ 6499 tu.ipft_vlong = 0; 6500 if (ta->ipft_sz == sizeof(u_long)) 6501 tu.ipft_vlong = *ta->ipft_plong; 6502 else if (ta->ipft_sz == sizeof(u_int)) 6503 tu.ipft_vint = *ta->ipft_pint; 6504 else if (ta->ipft_sz == sizeof(u_short)) 6505 tu.ipft_vshort = *ta->ipft_pshort; 6506 else if (ta->ipft_sz == sizeof(u_char)) 6507 tu.ipft_vchar = *ta->ipft_pchar; 6508 tu.ipft_cookie = ta; 6509 tu.ipft_sz = ta->ipft_sz; 6510 tu.ipft_min = ta->ipft_min; 6511 tu.ipft_max = ta->ipft_max; 6512 tu.ipft_flags = ta->ipft_flags; 6513 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6514 6515 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) { 6516 /* 6517 * Set an internal parameter. The hard part here is 6518 * getting the new value safely and correctly out of 6519 * the kernel (given we only know its size, not type.) 6520 */ 6521 u_long in; 6522 6523 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) && 6524 (ifs->ifs_fr_running > 0)) { 6525 error = EBUSY; 6526 break; 6527 } 6528 6529 in = tu.ipft_vlong; 6530 if (in < ta->ipft_min || in > ta->ipft_max) { 6531 error = EINVAL; 6532 break; 6533 } 6534 6535 if (ta->ipft_sz == sizeof(u_long)) { 6536 tu.ipft_vlong = *ta->ipft_plong; 6537 *ta->ipft_plong = in; 6538 } else if (ta->ipft_sz == sizeof(u_int)) { 6539 tu.ipft_vint = *ta->ipft_pint; 6540 *ta->ipft_pint = (u_int)(in & 0xffffffff); 6541 } else if (ta->ipft_sz == sizeof(u_short)) { 6542 tu.ipft_vshort = *ta->ipft_pshort; 6543 *ta->ipft_pshort = (u_short)(in & 0xffff); 6544 } else if (ta->ipft_sz == sizeof(u_char)) { 6545 tu.ipft_vchar = *ta->ipft_pchar; 6546 *ta->ipft_pchar = (u_char)(in & 0xff); 6547 } 6548 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6549 } 6550 break; 6551 6552 default : 6553 error = EINVAL; 6554 break; 6555 } 6556 6557 return error; 6558 } 6559 6560 6561 /* ------------------------------------------------------------------------ */ 6562 /* Function: fr_initialise */ 6563 /* Returns: int - 0 == success, < 0 == failure */ 6564 /* Parameters: None. */ 6565 /* */ 6566 /* Call of the initialise functions for all the various subsystems inside */ 6567 /* of IPFilter. If any of them should fail, return immeadiately a failure */ 6568 /* BUT do not try to recover from the error here. */ 6569 /* ------------------------------------------------------------------------ */ 6570 int fr_initialise(ifs) 6571 ipf_stack_t *ifs; 6572 { 6573 int i; 6574 6575 #ifdef IPFILTER_LOG 6576 i = fr_loginit(ifs); 6577 if (i < 0) 6578 return -10 + i; 6579 #endif 6580 i = fr_natinit(ifs); 6581 if (i < 0) 6582 return -20 + i; 6583 6584 i = fr_stateinit(ifs); 6585 if (i < 0) 6586 return -30 + i; 6587 6588 i = fr_authinit(ifs); 6589 if (i < 0) 6590 return -40 + i; 6591 6592 i = fr_fraginit(ifs); 6593 if (i < 0) 6594 return -50 + i; 6595 6596 i = appr_init(ifs); 6597 if (i < 0) 6598 return -60 + i; 6599 6600 #ifdef IPFILTER_SYNC 6601 i = ipfsync_init(ifs); 6602 if (i < 0) 6603 return -70 + i; 6604 #endif 6605 #ifdef IPFILTER_SCAN 6606 i = ipsc_init(ifs); 6607 if (i < 0) 6608 return -80 + i; 6609 #endif 6610 #ifdef IPFILTER_LOOKUP 6611 i = ip_lookup_init(ifs); 6612 if (i < 0) 6613 return -90 + i; 6614 #endif 6615 #ifdef IPFILTER_COMPILED 6616 ipfrule_add(ifs); 6617 #endif 6618 return 0; 6619 } 6620 6621 6622 /* ------------------------------------------------------------------------ */ 6623 /* Function: fr_deinitialise */ 6624 /* Returns: None. */ 6625 /* Parameters: None. */ 6626 /* */ 6627 /* Call all the various subsystem cleanup routines to deallocate memory or */ 6628 /* destroy locks or whatever they've done that they need to now undo. */ 6629 /* The order here IS important as there are some cross references of */ 6630 /* internal data structures. */ 6631 /* ------------------------------------------------------------------------ */ 6632 void fr_deinitialise(ifs) 6633 ipf_stack_t *ifs; 6634 { 6635 fr_fragunload(ifs); 6636 fr_authunload(ifs); 6637 fr_natunload(ifs); 6638 fr_stateunload(ifs); 6639 #ifdef IPFILTER_SCAN 6640 fr_scanunload(ifs); 6641 #endif 6642 appr_unload(ifs); 6643 6644 #ifdef IPFILTER_COMPILED 6645 ipfrule_remove(ifs); 6646 #endif 6647 6648 (void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs); 6649 (void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE, ifs); 6650 (void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs); 6651 (void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE, ifs); 6652 6653 #ifdef IPFILTER_LOOKUP 6654 ip_lookup_unload(ifs); 6655 #endif 6656 6657 #ifdef IPFILTER_LOG 6658 fr_logunload(ifs); 6659 #endif 6660 } 6661 6662 6663 /* ------------------------------------------------------------------------ */ 6664 /* Function: fr_zerostats */ 6665 /* Returns: int - 0 = success, else failure */ 6666 /* Parameters: data(O) - pointer to pointer for copying data back to */ 6667 /* */ 6668 /* Copies the current statistics out to userspace and then zero's the */ 6669 /* current ones in the kernel. The lock is only held across the bzero() as */ 6670 /* the copyout may result in paging (ie network activity.) */ 6671 /* ------------------------------------------------------------------------ */ 6672 int fr_zerostats(data, ifs) 6673 caddr_t data; 6674 ipf_stack_t *ifs; 6675 { 6676 friostat_t fio; 6677 int error; 6678 6679 fr_getstat(&fio, ifs); 6680 error = copyoutptr(&fio, data, sizeof(fio)); 6681 if (error) 6682 return EFAULT; 6683 6684 WRITE_ENTER(&ifs->ifs_ipf_mutex); 6685 bzero((char *)ifs->ifs_frstats, sizeof(*ifs->ifs_frstats) * 2); 6686 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 6687 6688 return 0; 6689 } 6690 6691 6692 #ifdef _KERNEL 6693 /* ------------------------------------------------------------------------ */ 6694 /* Function: fr_resolvedest */ 6695 /* Returns: Nil */ 6696 /* Parameters: fdp(IO) - pointer to destination information to resolve */ 6697 /* v(I) - IP protocol version to match */ 6698 /* */ 6699 /* Looks up an interface name in the frdest structure pointed to by fdp and */ 6700 /* if a matching name can be found for the particular IP protocol version */ 6701 /* then store the interface pointer in the frdest struct. If no match is */ 6702 /* found, then set the interface pointer to be -1 as NULL is considered to */ 6703 /* indicate there is no information at all in the structure. */ 6704 /* ------------------------------------------------------------------------ */ 6705 void fr_resolvedest(fdp, v, ifs) 6706 frdest_t *fdp; 6707 int v; 6708 ipf_stack_t *ifs; 6709 { 6710 fdp->fd_ifp = NULL; 6711 6712 if (*fdp->fd_ifname != '\0') { 6713 fdp->fd_ifp = GETIFP(fdp->fd_ifname, v, ifs); 6714 if (fdp->fd_ifp == NULL) 6715 fdp->fd_ifp = (void *)-1; 6716 } 6717 } 6718 #endif /* _KERNEL */ 6719 6720 6721 /* ------------------------------------------------------------------------ */ 6722 /* Function: fr_resolvenic */ 6723 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */ 6724 /* pointer to interface structure for NIC */ 6725 /* Parameters: name(I) - complete interface name */ 6726 /* v(I) - IP protocol version */ 6727 /* */ 6728 /* Look for a network interface structure that firstly has a matching name */ 6729 /* to that passed in and that is also being used for that IP protocol */ 6730 /* version (necessary on some platforms where there are separate listings */ 6731 /* for both IPv4 and IPv6 on the same physical NIC. */ 6732 /* */ 6733 /* One might wonder why name gets terminated with a \0 byte in here. The */ 6734 /* reason is an interface name could get into the kernel structures of ipf */ 6735 /* in any number of ways and so long as they all use the same sized array */ 6736 /* to put the name in, it makes sense to ensure it gets null terminated */ 6737 /* before it is used for its intended purpose - finding its match in the */ 6738 /* kernel's list of configured interfaces. */ 6739 /* */ 6740 /* NOTE: This SHOULD ONLY be used with IPFilter structures that have an */ 6741 /* array for the name that is LIFNAMSIZ bytes (at least) in length. */ 6742 /* ------------------------------------------------------------------------ */ 6743 void *fr_resolvenic(name, v, ifs) 6744 char *name; 6745 int v; 6746 ipf_stack_t *ifs; 6747 { 6748 void *nic; 6749 6750 if (name[0] == '\0') 6751 return NULL; 6752 6753 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) { 6754 return NULL; 6755 } 6756 6757 name[LIFNAMSIZ - 1] = '\0'; 6758 6759 nic = GETIFP(name, v, ifs); 6760 if (nic == NULL) 6761 nic = (void *)-1; 6762 return nic; 6763 } 6764 6765 6766 /* ------------------------------------------------------------------------ */ 6767 /* Function: ipf_expiretokens */ 6768 /* Returns: None. */ 6769 /* Parameters: ifs - ipf stack instance */ 6770 /* */ 6771 /* This function is run every ipf tick to see if there are any tokens that */ 6772 /* have been held for too long and need to be freed up. */ 6773 /* ------------------------------------------------------------------------ */ 6774 void ipf_expiretokens(ifs) 6775 ipf_stack_t *ifs; 6776 { 6777 ipftoken_t *it; 6778 6779 WRITE_ENTER(&ifs->ifs_ipf_tokens); 6780 while ((it = ifs->ifs_ipftokenhead) != NULL) { 6781 if (it->ipt_die > ifs->ifs_fr_ticks) 6782 break; 6783 6784 ipf_freetoken(it, ifs); 6785 } 6786 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 6787 } 6788 6789 6790 /* ------------------------------------------------------------------------ */ 6791 /* Function: ipf_deltoken */ 6792 /* Returns: int - 0 = success, else error */ 6793 /* Parameters: type(I) - the token type to match */ 6794 /* uid(I) - uid owning the token */ 6795 /* ptr(I) - context pointer for the token */ 6796 /* ifs - ipf stack instance */ 6797 /* */ 6798 /* This function looks for a a token in the current list that matches up */ 6799 /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */ 6800 /* call ipf_freetoken() to remove it from the list. */ 6801 /* ------------------------------------------------------------------------ */ 6802 int ipf_deltoken(type, uid, ptr, ifs) 6803 int type, uid; 6804 void *ptr; 6805 ipf_stack_t *ifs; 6806 { 6807 ipftoken_t *it; 6808 int error = ESRCH; 6809 6810 WRITE_ENTER(&ifs->ifs_ipf_tokens); 6811 for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) 6812 if (ptr == it->ipt_ctx && type == it->ipt_type && 6813 uid == it->ipt_uid) { 6814 ipf_freetoken(it, ifs); 6815 error = 0; 6816 break; 6817 } 6818 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 6819 6820 return error; 6821 } 6822 6823 6824 /* ------------------------------------------------------------------------ */ 6825 /* Function: ipf_unlinktoken */ 6826 /* Returns: None. */ 6827 /* Parameters: token(I) - pointer to token structure */ 6828 /* ifs - ipf stack instance */ 6829 /* */ 6830 /* This function unlinks a token structure from the linked list of tokens */ 6831 /* that it belongs to. The head pointer never needs to be explicitly */ 6832 /* adjusted, but the tail does due to the linked list implementation. */ 6833 /* ------------------------------------------------------------------------ */ 6834 static void ipf_unlinktoken(token, ifs) 6835 ipftoken_t *token; 6836 ipf_stack_t *ifs; 6837 { 6838 6839 if (ifs->ifs_ipftokentail == &token->ipt_next) 6840 ifs->ifs_ipftokentail = token->ipt_pnext; 6841 6842 *token->ipt_pnext = token->ipt_next; 6843 if (token->ipt_next != NULL) 6844 token->ipt_next->ipt_pnext = token->ipt_pnext; 6845 } 6846 6847 6848 /* ------------------------------------------------------------------------ */ 6849 /* Function: ipf_findtoken */ 6850 /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */ 6851 /* Parameters: type(I) - the token type to match */ 6852 /* uid(I) - uid owning the token */ 6853 /* ptr(I) - context pointer for the token */ 6854 /* ifs - ipf stack instance */ 6855 /* */ 6856 /* This function looks for a live token in the list of current tokens that */ 6857 /* matches the tuple (type, uid, ptr). If one cannot be found then one is */ 6858 /* allocated. If one is found then it is moved to the top of the list of */ 6859 /* currently active tokens. */ 6860 /* */ 6861 /* NOTE: It is by design that this function returns holding a read lock on */ 6862 /* ipf_tokens. Callers must make sure they release it! */ 6863 /* ------------------------------------------------------------------------ */ 6864 ipftoken_t *ipf_findtoken(type, uid, ptr, ifs) 6865 int type, uid; 6866 void *ptr; 6867 ipf_stack_t *ifs; 6868 { 6869 ipftoken_t *it, *new; 6870 6871 KMALLOC(new, ipftoken_t *); 6872 6873 WRITE_ENTER(&ifs->ifs_ipf_tokens); 6874 for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) { 6875 if (it->ipt_alive == 0) 6876 continue; 6877 if (ptr == it->ipt_ctx && type == it->ipt_type && 6878 uid == it->ipt_uid) 6879 break; 6880 } 6881 6882 if (it == NULL) { 6883 it = new; 6884 new = NULL; 6885 if (it == NULL) 6886 return NULL; 6887 it->ipt_data = NULL; 6888 it->ipt_ctx = ptr; 6889 it->ipt_uid = uid; 6890 it->ipt_type = type; 6891 it->ipt_next = NULL; 6892 it->ipt_alive = 1; 6893 } else { 6894 if (new != NULL) { 6895 KFREE(new); 6896 new = NULL; 6897 } 6898 6899 ipf_unlinktoken(it, ifs); 6900 } 6901 it->ipt_pnext = ifs->ifs_ipftokentail; 6902 *ifs->ifs_ipftokentail = it; 6903 ifs->ifs_ipftokentail = &it->ipt_next; 6904 it->ipt_next = NULL; 6905 6906 it->ipt_die = ifs->ifs_fr_ticks + 2; 6907 6908 MUTEX_DOWNGRADE(&ifs->ifs_ipf_tokens); 6909 6910 return it; 6911 } 6912 6913 6914 /* ------------------------------------------------------------------------ */ 6915 /* Function: ipf_freetoken */ 6916 /* Returns: None. */ 6917 /* Parameters: token(I) - pointer to token structure */ 6918 /* ifs - ipf stack instance */ 6919 /* */ 6920 /* This function unlinks a token from the linked list and on the path to */ 6921 /* free'ing the data, it calls the dereference function that is associated */ 6922 /* with the type of data pointed to by the token as it is considered to */ 6923 /* hold a reference to it. */ 6924 /* ------------------------------------------------------------------------ */ 6925 void ipf_freetoken(token, ifs) 6926 ipftoken_t *token; 6927 ipf_stack_t *ifs; 6928 { 6929 void *data, **datap; 6930 6931 ipf_unlinktoken(token, ifs); 6932 6933 data = token->ipt_data; 6934 datap = &data; 6935 6936 if ((data != NULL) && (data != (void *)-1)) { 6937 switch (token->ipt_type) 6938 { 6939 case IPFGENITER_IPF : 6940 (void)fr_derefrule((frentry_t **)datap, ifs); 6941 break; 6942 case IPFGENITER_IPNAT : 6943 WRITE_ENTER(&ifs->ifs_ipf_nat); 6944 fr_ipnatderef((ipnat_t **)datap, ifs); 6945 RWLOCK_EXIT(&ifs->ifs_ipf_nat); 6946 break; 6947 case IPFGENITER_NAT : 6948 fr_natderef((nat_t **)datap, ifs); 6949 break; 6950 case IPFGENITER_STATE : 6951 fr_statederef((ipstate_t **)datap, ifs); 6952 break; 6953 case IPFGENITER_FRAG : 6954 fr_fragderef((ipfr_t **)datap, &ifs->ifs_ipf_frag, ifs); 6955 break; 6956 case IPFGENITER_NATFRAG : 6957 fr_fragderef((ipfr_t **)datap, 6958 &ifs->ifs_ipf_natfrag, ifs); 6959 break; 6960 case IPFGENITER_HOSTMAP : 6961 WRITE_ENTER(&ifs->ifs_ipf_nat); 6962 fr_hostmapdel((hostmap_t **)datap); 6963 RWLOCK_EXIT(&ifs->ifs_ipf_nat); 6964 break; 6965 default : 6966 (void) ip_lookup_iterderef(token->ipt_type, data, ifs); 6967 break; 6968 } 6969 } 6970 6971 KFREE(token); 6972 } 6973 6974 6975 /* ------------------------------------------------------------------------ */ 6976 /* Function: ipf_getnextrule */ 6977 /* Returns: int - 0 = success, else error */ 6978 /* Parameters: t(I) - pointer to destination information to resolve */ 6979 /* ptr(I) - pointer to ipfobj_t to copyin from user space */ 6980 /* ifs - ipf stack instance */ 6981 /* */ 6982 /* This function's first job is to bring in the ipfruleiter_t structure via */ 6983 /* the ipfobj_t structure to determine what should be the next rule to */ 6984 /* return. Once the ipfruleiter_t has been brought in, it then tries to */ 6985 /* find the 'next rule'. This may include searching rule group lists or */ 6986 /* just be as simple as looking at the 'next' field in the rule structure. */ 6987 /* When we have found the rule to return, increase its reference count and */ 6988 /* if we used an existing rule to get here, decrease its reference count. */ 6989 /* ------------------------------------------------------------------------ */ 6990 int ipf_getnextrule(t, ptr, ifs) 6991 ipftoken_t *t; 6992 void *ptr; 6993 ipf_stack_t *ifs; 6994 { 6995 frentry_t *fr, *next, zero; 6996 int error, out, count; 6997 ipfruleiter_t it; 6998 frgroup_t *fg; 6999 char *dst; 7000 7001 if (t == NULL || ptr == NULL) 7002 return EFAULT; 7003 error = fr_inobj(ptr, &it, IPFOBJ_IPFITER); 7004 if (error != 0) 7005 return error; 7006 if ((it.iri_ver != AF_INET) && (it.iri_ver != AF_INET6)) 7007 return EINVAL; 7008 if ((it.iri_inout < 0) || (it.iri_inout > 3)) 7009 return EINVAL; 7010 if (it.iri_nrules == 0) 7011 return EINVAL; 7012 if ((it.iri_active != 0) && (it.iri_active != 1)) 7013 return EINVAL; 7014 if (it.iri_rule == NULL) 7015 return EFAULT; 7016 7017 /* 7018 * Use bitmask on it.iri_inout to determine direction. 7019 * F_OUT (1) and F_ACOUT (3) mask to out = 1, while 7020 * F_IN (0) and F_ACIN (2) mask to out = 0. 7021 */ 7022 out = it.iri_inout & F_OUT; 7023 READ_ENTER(&ifs->ifs_ipf_mutex); 7024 7025 /* 7026 * Retrieve "previous" entry from token and find the next entry. 7027 */ 7028 fr = t->ipt_data; 7029 if (fr == NULL) { 7030 if (*it.iri_group == '\0') { 7031 /* 7032 * Use bitmask again to determine accounting or not. 7033 * F_ACIN will mask to accounting cases F_ACIN (2) 7034 * or F_ACOUT (3), but not F_IN or F_OUT. 7035 */ 7036 if ((it.iri_inout & F_ACIN) != 0) { 7037 if (it.iri_ver == AF_INET) 7038 next = ifs->ifs_ipacct 7039 [out][it.iri_active]; 7040 else 7041 next = ifs->ifs_ipacct6 7042 [out][it.iri_active]; 7043 } else { 7044 if (it.iri_ver == AF_INET) 7045 next = ifs->ifs_ipfilter 7046 [out][it.iri_active]; 7047 else 7048 next = ifs->ifs_ipfilter6 7049 [out][it.iri_active]; 7050 } 7051 } else { 7052 fg = fr_findgroup(it.iri_group, IPL_LOGIPF, 7053 it.iri_active, NULL, ifs); 7054 if (fg != NULL) 7055 next = fg->fg_start; 7056 else 7057 next = NULL; 7058 } 7059 } else { 7060 next = fr->fr_next; 7061 } 7062 7063 dst = (char *)it.iri_rule; 7064 /* 7065 * The ipfruleiter may ask for more than 1 rule at a time to be 7066 * copied out, so long as that many exist in the list to start with! 7067 */ 7068 for (count = it.iri_nrules; count > 0; count--) { 7069 /* 7070 * If we found an entry, add reference to it and update token. 7071 * Otherwise, zero out data to be returned and NULL out token. 7072 */ 7073 if (next != NULL) { 7074 MUTEX_ENTER(&next->fr_lock); 7075 next->fr_ref++; 7076 MUTEX_EXIT(&next->fr_lock); 7077 t->ipt_data = next; 7078 } else { 7079 bzero(&zero, sizeof(zero)); 7080 next = &zero; 7081 t->ipt_data = NULL; 7082 } 7083 7084 /* 7085 * Now that we have ref, it's save to give up lock. 7086 */ 7087 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 7088 7089 /* 7090 * Copy out data and clean up references and token as needed. 7091 */ 7092 error = COPYOUT(next, dst, sizeof(*next)); 7093 if (error != 0) 7094 error = EFAULT; 7095 if (t->ipt_data == NULL) { 7096 ipf_freetoken(t, ifs); 7097 break; 7098 } else { 7099 if (fr != NULL) 7100 (void) fr_derefrule(&fr, ifs); 7101 if (next->fr_data != NULL) { 7102 dst += sizeof(*next); 7103 error = COPYOUT(next->fr_data, dst, 7104 next->fr_dsize); 7105 if (error != 0) 7106 error = EFAULT; 7107 else 7108 dst += next->fr_dsize; 7109 } 7110 if (next->fr_next == NULL) { 7111 ipf_freetoken(t, ifs); 7112 break; 7113 } 7114 } 7115 7116 if ((count == 1) || (error != 0)) 7117 break; 7118 7119 READ_ENTER(&ifs->ifs_ipf_mutex); 7120 fr = next; 7121 next = fr->fr_next; 7122 } 7123 7124 return error; 7125 } 7126 7127 7128 /* ------------------------------------------------------------------------ */ 7129 /* Function: fr_frruleiter */ 7130 /* Returns: int - 0 = success, else error */ 7131 /* Parameters: data(I) - the token type to match */ 7132 /* uid(I) - uid owning the token */ 7133 /* ptr(I) - context pointer for the token */ 7134 /* ifs - ipf stack instance */ 7135 /* */ 7136 /* This function serves as a stepping stone between fr_ipf_ioctl and */ 7137 /* ipf_getnextrule. It's role is to find the right token in the kernel for */ 7138 /* the process doing the ioctl and use that to ask for the next rule. */ 7139 /* ------------------------------------------------------------------------ */ 7140 int ipf_frruleiter(data, uid, ctx, ifs) 7141 void *data, *ctx; 7142 int uid; 7143 ipf_stack_t *ifs; 7144 { 7145 ipftoken_t *token; 7146 int error; 7147 7148 token = ipf_findtoken(IPFGENITER_IPF, uid, ctx, ifs); 7149 if (token != NULL) 7150 error = ipf_getnextrule(token, data, ifs); 7151 else 7152 error = EFAULT; 7153 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 7154 7155 return error; 7156 } 7157 7158 7159 /* ------------------------------------------------------------------------ */ 7160 /* Function: ipf_geniter */ 7161 /* Returns: int - 0 = success, else error */ 7162 /* Parameters: token(I) - pointer to ipftoken structure */ 7163 /* itp(I) - pointer to ipfgeniter structure */ 7164 /* ifs - ipf stack instance */ 7165 /* */ 7166 /* Generic iterator called from ipf_genericiter. Currently only used for */ 7167 /* walking through list of fragments. */ 7168 /* ------------------------------------------------------------------------ */ 7169 int ipf_geniter(token, itp, ifs) 7170 ipftoken_t *token; 7171 ipfgeniter_t *itp; 7172 ipf_stack_t *ifs; 7173 { 7174 int error; 7175 7176 switch (itp->igi_type) 7177 { 7178 case IPFGENITER_FRAG : 7179 error = fr_nextfrag(token, itp, &ifs->ifs_ipfr_list, 7180 &ifs->ifs_ipfr_tail, &ifs->ifs_ipf_frag, 7181 ifs); 7182 break; 7183 default : 7184 error = EINVAL; 7185 break; 7186 } 7187 7188 return error; 7189 } 7190 7191 7192 /* ------------------------------------------------------------------------ */ 7193 /* Function: ipf_genericiter */ 7194 /* Returns: int - 0 = success, else error */ 7195 /* Parameters: data(I) - the token type to match */ 7196 /* uid(I) - uid owning the token */ 7197 /* ptr(I) - context pointer for the token */ 7198 /* ifs - ipf stack instance */ 7199 /* */ 7200 /* This function serves as a stepping stone between fr_ipf_ioctl and */ 7201 /* ipf_geniter when handling SIOCGENITER. It's role is to find the right */ 7202 /* token in the kernel for the process using the ioctl, and to use that */ 7203 /* token when calling ipf_geniter. */ 7204 /* ------------------------------------------------------------------------ */ 7205 int ipf_genericiter(data, uid, ctx, ifs) 7206 void *data, *ctx; 7207 int uid; 7208 ipf_stack_t *ifs; 7209 { 7210 ipftoken_t *token; 7211 ipfgeniter_t iter; 7212 int error; 7213 7214 error = fr_inobj(data, &iter, IPFOBJ_GENITER); 7215 if (error != 0) 7216 return error; 7217 7218 token = ipf_findtoken(iter.igi_type, uid, ctx, ifs); 7219 if (token != NULL) { 7220 token->ipt_subtype = iter.igi_type; 7221 error = ipf_geniter(token, &iter, ifs); 7222 } else 7223 error = EFAULT; 7224 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 7225 7226 return error; 7227 } 7228 7229 7230 /* --------------------------------------------------------------------- */ 7231 /* Function: ipf_earlydrop */ 7232 /* Returns: number of dropped/removed entries from the queue */ 7233 /* Parameters: flushtype - which table we're cleaning (NAT or State) */ 7234 /* ifq - pointer to queue with entries to be deleted */ 7235 /* idletime - entry must be idle this long to be deleted */ 7236 /* ifs - ipf stack instance */ 7237 /* */ 7238 /* Function is invoked from state/NAT flush routines to remove entries */ 7239 /* from specified timeout queue, based on how long they've sat idle, */ 7240 /* without waiting for it to happen on its own. */ 7241 /* --------------------------------------------------------------------- */ 7242 int ipf_earlydrop(flushtype, ifq, idletime, ifs) 7243 int flushtype; 7244 ipftq_t *ifq; 7245 int idletime; 7246 ipf_stack_t *ifs; 7247 { 7248 ipftqent_t *tqe, *tqn; 7249 unsigned int dropped; 7250 int droptick; 7251 void *ent; 7252 7253 if (ifq == NULL) 7254 return (0); 7255 7256 dropped = 0; 7257 7258 /* 7259 * Determine the tick representing the idle time we're interested 7260 * in. If an entry exists in the queue, and it was touched before 7261 * that tick, then it's been idle longer than idletime, so it should 7262 * be deleted. 7263 */ 7264 droptick = ifs->ifs_fr_ticks - idletime; 7265 tqn = ifq->ifq_head; 7266 while ((tqe = tqn) != NULL && tqe->tqe_touched < droptick) { 7267 tqn = tqe->tqe_next; 7268 ent = tqe->tqe_parent; 7269 switch (flushtype) 7270 { 7271 case NAT_FLUSH: 7272 if (nat_delete((nat_t *)ent, NL_FLUSH, ifs) == 0) 7273 dropped++; 7274 break; 7275 case STATE_FLUSH: 7276 if (fr_delstate((ipstate_t *)ent, ISL_FLUSH, ifs) == 0) 7277 dropped++; 7278 break; 7279 default: 7280 return (0); 7281 } 7282 } 7283 return (dropped); 7284 } 7285 7286 7287 /* --------------------------------------------------------------------- */ 7288 /* Function: ipf_flushclosing */ 7289 /* Returns: int - number of entries deleted */ 7290 /* Parameters: flushtype - which table we're cleaning (NAT or State) */ 7291 /* stateval - TCP state at which to start removing entries */ 7292 /* ipfqs - pointer to timeout queues */ 7293 /* userqs - pointer to user defined queues */ 7294 /* ifs - ipf stack instance */ 7295 /* */ 7296 /* Remove state/NAT table entries for TCP connections which are in the */ 7297 /* process of closing, and have at least reached the state specified by */ 7298 /* the 'stateval' parameter. */ 7299 /* --------------------------------------------------------------------- */ 7300 int ipf_flushclosing(flushtype, stateval, ipfqs, userqs, ifs) 7301 int flushtype, stateval; 7302 ipftq_t *ipfqs, *userqs; 7303 ipf_stack_t *ifs; 7304 { 7305 ipftq_t *ifq, *ifqn; 7306 ipftqent_t *tqe, *tqn; 7307 int dropped; 7308 void *ent; 7309 nat_t *nat; 7310 ipstate_t *is; 7311 7312 dropped = 0; 7313 7314 /* 7315 * Start by deleting any entries in specific timeout queues. 7316 */ 7317 ifqn = &ipfqs[stateval]; 7318 while ((ifq = ifqn) != NULL) { 7319 ifqn = ifq->ifq_next; 7320 dropped += ipf_earlydrop(flushtype, ifq, (int)0, ifs); 7321 } 7322 7323 /* 7324 * Next, look through user defined queues for closing entries. 7325 */ 7326 ifqn = userqs; 7327 while ((ifq = ifqn) != NULL) { 7328 ifqn = ifq->ifq_next; 7329 tqn = ifq->ifq_head; 7330 while ((tqe = tqn) != NULL) { 7331 tqn = tqe->tqe_next; 7332 ent = tqe->tqe_parent; 7333 switch (flushtype) 7334 { 7335 case NAT_FLUSH: 7336 nat = (nat_t *)ent; 7337 if ((nat->nat_p == IPPROTO_TCP) && 7338 (nat->nat_tcpstate[0] >= stateval) && 7339 (nat->nat_tcpstate[1] >= stateval) && 7340 (nat_delete(nat, NL_EXPIRE, ifs) == 0)) 7341 dropped++; 7342 break; 7343 case STATE_FLUSH: 7344 is = (ipstate_t *)ent; 7345 if ((is->is_p == IPPROTO_TCP) && 7346 (is->is_state[0] >= stateval) && 7347 (is->is_state[1] >= stateval) && 7348 (fr_delstate(is, ISL_EXPIRE, ifs) == 0)) 7349 dropped++; 7350 break; 7351 default: 7352 return (0); 7353 } 7354 } 7355 } 7356 return (dropped); 7357 } 7358 7359 7360 /* --------------------------------------------------------------------- */ 7361 /* Function: ipf_extraflush */ 7362 /* Returns: int - number of entries flushed (0 = none) */ 7363 /* Parameters: flushtype - which table we're cleaning (NAT or State) */ 7364 /* ipfqs - pointer to 'established' timeout queue */ 7365 /* userqs - pointer to user defined queues */ 7366 /* ifs - ipf stack instance */ 7367 /* */ 7368 /* This function gets called when either NAT or state tables fill up. */ 7369 /* We need to try a bit harder to free up some space. The function will */ 7370 /* flush entries for TCP connections which have been idle a long time. */ 7371 /* */ 7372 /* Currently, the idle time is checked using values from ideltime_tab[] */ 7373 /* --------------------------------------------------------------------- */ 7374 int ipf_extraflush(flushtype, ipfqs, userqs, ifs) 7375 int flushtype; 7376 ipftq_t *ipfqs, *userqs; 7377 ipf_stack_t *ifs; 7378 { 7379 ipftq_t *ifq, *ifqn; 7380 int idletime, removed, idle_idx; 7381 7382 removed = 0; 7383 7384 /* 7385 * Determine initial threshold for minimum idle time based on 7386 * how long ipfilter has been running. Ipfilter needs to have 7387 * been up as long as the smallest interval to continue on. 7388 * 7389 * Minimum idle times stored in idletime_tab and indexed by 7390 * idle_idx. Start at upper end of array and work backwards. 7391 * 7392 * Once the index is found, set the initial idle time to the 7393 * first interval before the current ipfilter run time. 7394 */ 7395 if (ifs->ifs_fr_ticks < idletime_tab[0]) 7396 return (0); 7397 idle_idx = (sizeof (idletime_tab) / sizeof (int)) - 1; 7398 if (ifs->ifs_fr_ticks > idletime_tab[idle_idx]) { 7399 idletime = idletime_tab[idle_idx]; 7400 } else { 7401 while ((idle_idx > 0) && 7402 (ifs->ifs_fr_ticks < idletime_tab[idle_idx])) 7403 idle_idx--; 7404 7405 idletime = (ifs->ifs_fr_ticks / 7406 idletime_tab[idle_idx]) * 7407 idletime_tab[idle_idx]; 7408 } 7409 7410 while (idle_idx >= 0) { 7411 /* 7412 * Check to see if we need to delete more entries. 7413 * If we do, start with appropriate timeout queue. 7414 */ 7415 if (flushtype == NAT_FLUSH) { 7416 if (NAT_TAB_WATER_LEVEL(ifs) <= 7417 ifs->ifs_nat_flush_level_lo) 7418 break; 7419 } else if (flushtype == STATE_FLUSH) { 7420 if (ST_TAB_WATER_LEVEL(ifs) <= 7421 ifs->ifs_state_flush_level_lo) 7422 break; 7423 } else { 7424 break; 7425 } 7426 7427 removed += ipf_earlydrop(flushtype, ipfqs, idletime, ifs); 7428 7429 /* 7430 * Next, check the user defined queues. But first, make 7431 * certain that timeout queue deletions didn't do enough. 7432 */ 7433 if (flushtype == NAT_FLUSH) { 7434 if (NAT_TAB_WATER_LEVEL(ifs) <= 7435 ifs->ifs_nat_flush_level_lo) 7436 break; 7437 } else { 7438 if (ST_TAB_WATER_LEVEL(ifs) <= 7439 ifs->ifs_state_flush_level_lo) 7440 break; 7441 } 7442 ifqn = userqs; 7443 while ((ifq = ifqn) != NULL) { 7444 ifqn = ifq->ifq_next; 7445 removed += ipf_earlydrop(flushtype, ifq, idletime, ifs); 7446 } 7447 7448 /* 7449 * Adjust the granularity of idle time. 7450 * 7451 * If we reach an interval boundary, we need to 7452 * either adjust the idle time accordingly or exit 7453 * the loop altogether (if this is very last check). 7454 */ 7455 idletime -= idletime_tab[idle_idx]; 7456 if (idletime < idletime_tab[idle_idx]) { 7457 if (idle_idx != 0) { 7458 idletime = idletime_tab[idle_idx] - 7459 idletime_tab[idle_idx - 1]; 7460 idle_idx--; 7461 } else { 7462 break; 7463 } 7464 } 7465 } 7466 7467 return (removed); 7468 } 7469