xref: /titanic_41/usr/src/uts/common/inet/ip/spd.c (revision c84711f464cd92ef542fb5985f1cc9cd919fe008)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * IPsec Security Policy Database.
30  *
31  * This module maintains the SPD and provides routines used by ip and ip6
32  * to apply IPsec policy to inbound and outbound datagrams.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/stream.h>
37 #include <sys/stropts.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strsubr.h>
40 #include <sys/strlog.h>
41 #include <sys/cmn_err.h>
42 #include <sys/zone.h>
43 
44 #include <sys/systm.h>
45 #include <sys/param.h>
46 #include <sys/kmem.h>
47 #include <sys/ddi.h>
48 
49 #include <sys/crypto/api.h>
50 
51 #include <inet/common.h>
52 #include <inet/mi.h>
53 
54 #include <netinet/ip6.h>
55 #include <netinet/icmp6.h>
56 #include <netinet/udp.h>
57 
58 #include <inet/ip.h>
59 #include <inet/ip6.h>
60 
61 #include <net/pfkeyv2.h>
62 #include <net/pfpolicy.h>
63 #include <inet/ipsec_info.h>
64 #include <inet/sadb.h>
65 #include <inet/ipsec_impl.h>
66 
67 #include <inet/ip_impl.h>	/* For IP_MOD_ID */
68 
69 #include <inet/ipsecah.h>
70 #include <inet/ipsecesp.h>
71 #include <inet/ipdrop.h>
72 #include <inet/ipclassifier.h>
73 #include <inet/tun.h>
74 
75 static void ipsec_update_present_flags(ipsec_stack_t *);
76 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *,
77     netstack_t *);
78 static void ipsec_out_free(void *);
79 static void ipsec_in_free(void *);
80 static mblk_t *ipsec_attach_global_policy(mblk_t **, conn_t *,
81     ipsec_selector_t *, netstack_t *);
82 static mblk_t *ipsec_apply_global_policy(mblk_t *, conn_t *,
83     ipsec_selector_t *, netstack_t *);
84 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *,
85     ipha_t *, ip6_t *, uint64_t, netstack_t *);
86 static void ipsec_in_release_refs(ipsec_in_t *);
87 static void ipsec_out_release_refs(ipsec_out_t *);
88 static void ipsec_action_free_table(ipsec_action_t *);
89 static void ipsec_action_reclaim(void *);
90 static void ipsec_action_reclaim_stack(netstack_t *);
91 static void ipsid_init(netstack_t *);
92 static void ipsid_fini(netstack_t *);
93 
94 /* sel_flags values for ipsec_init_inbound_sel(). */
95 #define	SEL_NONE	0x0000
96 #define	SEL_PORT_POLICY	0x0001
97 #define	SEL_IS_ICMP	0x0002
98 #define	SEL_TUNNEL_MODE	0x0004
99 
100 /* Return values for ipsec_init_inbound_sel(). */
101 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG}
102     selret_t;
103 
104 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
105     ipha_t *, ip6_t *, uint8_t);
106 
107 static boolean_t ipsec_check_ipsecin_action(struct ipsec_in_s *, mblk_t *,
108     struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
109     kstat_named_t **);
110 static void ipsec_unregister_prov_update(void);
111 static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *);
112 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *);
113 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *);
114 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
115 static void ipsec_kstat_destroy(ipsec_stack_t *);
116 static int ipsec_free_tables(ipsec_stack_t *);
117 static int tunnel_compare(const void *, const void *);
118 static void ipsec_freemsg_chain(mblk_t *);
119 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, ire_t *,
120     struct kstat_named *, ipdropper_t *);
121 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
122 static void ipsec_kstat_destroy(ipsec_stack_t *);
123 static int ipsec_free_tables(ipsec_stack_t *);
124 static int tunnel_compare(const void *, const void *);
125 static void ipsec_freemsg_chain(mblk_t *);
126 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, ire_t *,
127     struct kstat_named *, ipdropper_t *);
128 
129 /*
130  * Selector hash table is statically sized at module load time.
131  * we default to 251 buckets, which is the largest prime number under 255
132  */
133 
134 #define	IPSEC_SPDHASH_DEFAULT 251
135 
136 /* SPD hash-size tunable per tunnel. */
137 #define	TUN_SPDHASH_DEFAULT 5
138 
139 
140 #define	IPSEC_SEL_NOHASH ((uint32_t)(~0))
141 
142 /*
143  * Handle global across all stack instances
144  */
145 static crypto_notify_handle_t prov_update_handle = NULL;
146 
147 static kmem_cache_t *ipsec_action_cache;
148 static kmem_cache_t *ipsec_sel_cache;
149 static kmem_cache_t *ipsec_pol_cache;
150 static kmem_cache_t *ipsec_info_cache;
151 
152 /* Frag cache prototypes */
153 static void ipsec_fragcache_clean(ipsec_fragcache_t *);
154 static ipsec_fragcache_entry_t *fragcache_delentry(int,
155     ipsec_fragcache_entry_t *, ipsec_fragcache_t *);
156 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *);
157 void ipsec_fragcache_uninit(ipsec_fragcache_t *);
158 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *, int,
159     ipsec_stack_t *);
160 
161 int ipsec_hdr_pullup_needed = 0;
162 int ipsec_weird_null_inbound_policy = 0;
163 
164 #define	ALGBITS_ROUND_DOWN(x, align)	(((x)/(align))*(align))
165 #define	ALGBITS_ROUND_UP(x, align)	ALGBITS_ROUND_DOWN((x)+(align)-1, align)
166 
167 /*
168  * Inbound traffic should have matching identities for both SA's.
169  */
170 
171 #define	SA_IDS_MATCH(sa1, sa2) 						\
172 	(((sa1) == NULL) || ((sa2) == NULL) ||				\
173 	(((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) &&		\
174 	    (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
175 
176 /*
177  * IPv4 Fragments
178  */
179 #define	IS_V4_FRAGMENT(ipha_fragment_offset_and_flags)			\
180 	(((ntohs(ipha_fragment_offset_and_flags) & IPH_OFFSET) != 0) ||	\
181 	((ntohs(ipha_fragment_offset_and_flags) & IPH_MF) != 0))
182 
183 /*
184  * IPv6 Fragments
185  */
186 #define	IS_V6_FRAGMENT(ipp)	(ipp.ipp_fields & IPPF_FRAGHDR)
187 
188 /*
189  * Policy failure messages.
190  */
191 static char *ipsec_policy_failure_msgs[] = {
192 
193 	/* IPSEC_POLICY_NOT_NEEDED */
194 	"%s: Dropping the datagram because the incoming packet "
195 	"is %s, but the recipient expects clear; Source %s, "
196 	"Destination %s.\n",
197 
198 	/* IPSEC_POLICY_MISMATCH */
199 	"%s: Policy Failure for the incoming packet (%s); Source %s, "
200 	"Destination %s.\n",
201 
202 	/* IPSEC_POLICY_AUTH_NOT_NEEDED	*/
203 	"%s: Authentication present while not expected in the "
204 	"incoming %s packet; Source %s, Destination %s.\n",
205 
206 	/* IPSEC_POLICY_ENCR_NOT_NEEDED */
207 	"%s: Encryption present while not expected in the "
208 	"incoming %s packet; Source %s, Destination %s.\n",
209 
210 	/* IPSEC_POLICY_SE_NOT_NEEDED */
211 	"%s: Self-Encapsulation present while not expected in the "
212 	"incoming %s packet; Source %s, Destination %s.\n",
213 };
214 
215 /*
216  * General overviews:
217  *
218  * Locking:
219  *
220  *	All of the system policy structures are protected by a single
221  *	rwlock.  These structures are threaded in a
222  *	fairly complex fashion and are not expected to change on a
223  *	regular basis, so this should not cause scaling/contention
224  *	problems.  As a result, policy checks should (hopefully) be MT-hot.
225  *
226  * Allocation policy:
227  *
228  *	We use custom kmem cache types for the various
229  *	bits & pieces of the policy data structures.  All allocations
230  *	use KM_NOSLEEP instead of KM_SLEEP for policy allocation.  The
231  *	policy table is of potentially unbounded size, so we don't
232  *	want to provide a way to hog all system memory with policy
233  *	entries..
234  */
235 
236 /* Convenient functions for freeing or dropping a b_next linked mblk chain */
237 
238 /* Free all messages in an mblk chain */
239 static void
240 ipsec_freemsg_chain(mblk_t *mp)
241 {
242 	mblk_t *mpnext;
243 	while (mp != NULL) {
244 		ASSERT(mp->b_prev == NULL);
245 		mpnext = mp->b_next;
246 		mp->b_next = NULL;
247 		freemsg(mp);	/* Always works, even if NULL */
248 		mp = mpnext;
249 	}
250 }
251 
252 /* ip_drop all messages in an mblk chain */
253 static void
254 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *arriving,
255     ire_t *outbound_ire, struct kstat_named *counter, ipdropper_t *who_called)
256 {
257 	mblk_t *mpnext;
258 	while (mp != NULL) {
259 		ASSERT(mp->b_prev == NULL);
260 		mpnext = mp->b_next;
261 		mp->b_next = NULL;
262 		ip_drop_packet(mp, inbound, arriving, outbound_ire, counter,
263 		    who_called);
264 		mp = mpnext;
265 	}
266 }
267 
268 /*
269  * AVL tree comparison function.
270  * the in-kernel avl assumes unique keys for all objects.
271  * Since sometimes policy will duplicate rules, we may insert
272  * multiple rules with the same rule id, so we need a tie-breaker.
273  */
274 static int
275 ipsec_policy_cmpbyid(const void *a, const void *b)
276 {
277 	const ipsec_policy_t *ipa, *ipb;
278 	uint64_t idxa, idxb;
279 
280 	ipa = (const ipsec_policy_t *)a;
281 	ipb = (const ipsec_policy_t *)b;
282 	idxa = ipa->ipsp_index;
283 	idxb = ipb->ipsp_index;
284 
285 	if (idxa < idxb)
286 		return (-1);
287 	if (idxa > idxb)
288 		return (1);
289 	/*
290 	 * Tie-breaker #1: All installed policy rules have a non-NULL
291 	 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not
292 	 * actually in-tree but rather a template node being used in
293 	 * an avl_find query; see ipsec_policy_delete().  This gives us
294 	 * a placeholder in the ordering just before the the first entry with
295 	 * a key >= the one we're looking for, so we can walk forward from
296 	 * that point to get the remaining entries with the same id.
297 	 */
298 	if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL))
299 		return (-1);
300 	if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL))
301 		return (1);
302 	/*
303 	 * At most one of the arguments to the comparison should have a
304 	 * NULL selector pointer; if not, the tree is broken.
305 	 */
306 	ASSERT(ipa->ipsp_sel != NULL);
307 	ASSERT(ipb->ipsp_sel != NULL);
308 	/*
309 	 * Tie-breaker #2: use the virtual address of the policy node
310 	 * to arbitrarily break ties.  Since we use the new tree node in
311 	 * the avl_find() in ipsec_insert_always, the new node will be
312 	 * inserted into the tree in the right place in the sequence.
313 	 */
314 	if (ipa < ipb)
315 		return (-1);
316 	if (ipa > ipb)
317 		return (1);
318 	return (0);
319 }
320 
321 /*
322  * Free what ipsec_alloc_table allocated.
323  */
324 void
325 ipsec_polhead_free_table(ipsec_policy_head_t *iph)
326 {
327 	int dir;
328 	int i;
329 
330 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
331 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
332 
333 		if (ipr->ipr_hash == NULL)
334 			continue;
335 
336 		for (i = 0; i < ipr->ipr_nchains; i++) {
337 			ASSERT(ipr->ipr_hash[i].hash_head == NULL);
338 		}
339 		kmem_free(ipr->ipr_hash, ipr->ipr_nchains *
340 		    sizeof (ipsec_policy_hash_t));
341 		ipr->ipr_hash = NULL;
342 	}
343 }
344 
345 void
346 ipsec_polhead_destroy(ipsec_policy_head_t *iph)
347 {
348 	int dir;
349 
350 	avl_destroy(&iph->iph_rulebyid);
351 	rw_destroy(&iph->iph_lock);
352 
353 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
354 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
355 		int chain;
356 
357 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
358 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
359 
360 	}
361 	ipsec_polhead_free_table(iph);
362 }
363 
364 /*
365  * Free the IPsec stack instance.
366  */
367 /* ARGSUSED */
368 static void
369 ipsec_stack_fini(netstackid_t stackid, void *arg)
370 {
371 	ipsec_stack_t	*ipss = (ipsec_stack_t *)arg;
372 	void *cookie;
373 	ipsec_tun_pol_t *node;
374 	netstack_t	*ns = ipss->ipsec_netstack;
375 	int		i;
376 	ipsec_algtype_t	algtype;
377 
378 	ipsec_loader_destroy(ipss);
379 
380 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
381 	/*
382 	 * It's possible we can just ASSERT() the tree is empty.  After all,
383 	 * we aren't called until IP is ready to unload (and presumably all
384 	 * tunnels have been unplumbed).  But we'll play it safe for now, the
385 	 * loop will just exit immediately if it's empty.
386 	 */
387 	cookie = NULL;
388 	while ((node = (ipsec_tun_pol_t *)
389 	    avl_destroy_nodes(&ipss->ipsec_tunnel_policies,
390 	    &cookie)) != NULL) {
391 		ITP_REFRELE(node, ns);
392 	}
393 	avl_destroy(&ipss->ipsec_tunnel_policies);
394 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
395 	rw_destroy(&ipss->ipsec_tunnel_policy_lock);
396 
397 	ipsec_config_flush(ns);
398 
399 	ipsec_kstat_destroy(ipss);
400 
401 	ip_drop_unregister(&ipss->ipsec_dropper);
402 
403 	ip_drop_unregister(&ipss->ipsec_spd_dropper);
404 	ip_drop_destroy(ipss);
405 	/*
406 	 * Globals start with ref == 1 to prevent IPPH_REFRELE() from
407 	 * attempting to free them, hence they should have 1 now.
408 	 */
409 	ipsec_polhead_destroy(&ipss->ipsec_system_policy);
410 	ASSERT(ipss->ipsec_system_policy.iph_refs == 1);
411 	ipsec_polhead_destroy(&ipss->ipsec_inactive_policy);
412 	ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1);
413 
414 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
415 		ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head);
416 		ipss->ipsec_action_hash[i].hash_head = NULL;
417 		mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock));
418 	}
419 
420 	for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
421 		ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
422 		mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock));
423 	}
424 
425 	mutex_enter(&ipss->ipsec_alg_lock);
426 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) {
427 		int nalgs = ipss->ipsec_nalgs[algtype];
428 
429 		for (i = 0; i < nalgs; i++) {
430 			if (ipss->ipsec_alglists[algtype][i] != NULL)
431 				ipsec_alg_unreg(algtype, i, ns);
432 		}
433 	}
434 	mutex_exit(&ipss->ipsec_alg_lock);
435 	mutex_destroy(&ipss->ipsec_alg_lock);
436 
437 	ipsid_gc(ns);
438 	ipsid_fini(ns);
439 
440 	(void) ipsec_free_tables(ipss);
441 	kmem_free(ipss, sizeof (*ipss));
442 }
443 
444 void
445 ipsec_policy_g_destroy(void)
446 {
447 	kmem_cache_destroy(ipsec_action_cache);
448 	kmem_cache_destroy(ipsec_sel_cache);
449 	kmem_cache_destroy(ipsec_pol_cache);
450 	kmem_cache_destroy(ipsec_info_cache);
451 
452 	ipsec_unregister_prov_update();
453 
454 	netstack_unregister(NS_IPSEC);
455 }
456 
457 
458 /*
459  * Free what ipsec_alloc_tables allocated.
460  * Called when table allocation fails to free the table.
461  */
462 static int
463 ipsec_free_tables(ipsec_stack_t *ipss)
464 {
465 	int i;
466 
467 	if (ipss->ipsec_sel_hash != NULL) {
468 		for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
469 			ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
470 		}
471 		kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize *
472 		    sizeof (*ipss->ipsec_sel_hash));
473 		ipss->ipsec_sel_hash = NULL;
474 		ipss->ipsec_spd_hashsize = 0;
475 	}
476 	ipsec_polhead_free_table(&ipss->ipsec_system_policy);
477 	ipsec_polhead_free_table(&ipss->ipsec_inactive_policy);
478 
479 	return (ENOMEM);
480 }
481 
482 /*
483  * Attempt to allocate the tables in a single policy head.
484  * Return nonzero on failure after cleaning up any work in progress.
485  */
486 int
487 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag,
488     boolean_t global_cleanup, netstack_t *ns)
489 {
490 	int dir;
491 
492 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
493 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
494 
495 		ipr->ipr_nchains = nchains;
496 		ipr->ipr_hash = kmem_zalloc(nchains *
497 		    sizeof (ipsec_policy_hash_t), kmflag);
498 		if (ipr->ipr_hash == NULL)
499 			return (global_cleanup ?
500 			    ipsec_free_tables(ns->netstack_ipsec) :
501 			    ENOMEM);
502 	}
503 	return (0);
504 }
505 
506 /*
507  * Attempt to allocate the various tables.  Return nonzero on failure
508  * after cleaning up any work in progress.
509  */
510 static int
511 ipsec_alloc_tables(int kmflag, netstack_t *ns)
512 {
513 	int error;
514 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
515 
516 	error = ipsec_alloc_table(&ipss->ipsec_system_policy,
517 	    ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
518 	if (error != 0)
519 		return (error);
520 
521 	error = ipsec_alloc_table(&ipss->ipsec_inactive_policy,
522 	    ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
523 	if (error != 0)
524 		return (error);
525 
526 	ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize *
527 	    sizeof (*ipss->ipsec_sel_hash), kmflag);
528 
529 	if (ipss->ipsec_sel_hash == NULL)
530 		return (ipsec_free_tables(ipss));
531 
532 	return (0);
533 }
534 
535 /*
536  * After table allocation, initialize a policy head.
537  */
538 void
539 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains)
540 {
541 	int dir, chain;
542 
543 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
544 	avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid,
545 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
546 
547 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
548 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
549 		ipr->ipr_nchains = nchains;
550 
551 		for (chain = 0; chain < nchains; chain++) {
552 			mutex_init(&(ipr->ipr_hash[chain].hash_lock),
553 			    NULL, MUTEX_DEFAULT, NULL);
554 		}
555 	}
556 }
557 
558 static boolean_t
559 ipsec_kstat_init(ipsec_stack_t *ipss)
560 {
561 	ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net",
562 	    KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t),
563 	    KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid);
564 
565 	if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL)
566 		return (B_FALSE);
567 
568 	ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data;
569 
570 #define	KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64)
571 	KI(esp_stat_in_requests);
572 	KI(esp_stat_in_discards);
573 	KI(esp_stat_lookup_failure);
574 	KI(ah_stat_in_requests);
575 	KI(ah_stat_in_discards);
576 	KI(ah_stat_lookup_failure);
577 	KI(sadb_acquire_maxpackets);
578 	KI(sadb_acquire_qhiwater);
579 #undef KI
580 
581 	kstat_install(ipss->ipsec_ksp);
582 	return (B_TRUE);
583 }
584 
585 static void
586 ipsec_kstat_destroy(ipsec_stack_t *ipss)
587 {
588 	kstat_delete_netstack(ipss->ipsec_ksp,
589 	    ipss->ipsec_netstack->netstack_stackid);
590 	ipss->ipsec_kstats = NULL;
591 
592 }
593 
594 /*
595  * Initialize the IPsec stack instance.
596  */
597 /* ARGSUSED */
598 static void *
599 ipsec_stack_init(netstackid_t stackid, netstack_t *ns)
600 {
601 	ipsec_stack_t	*ipss;
602 	int i;
603 
604 	ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP);
605 	ipss->ipsec_netstack = ns;
606 
607 	/*
608 	 * FIXME: netstack_ipsec is used by some of the routines we call
609 	 * below, but it isn't set until this routine returns.
610 	 * Either we introduce optional xxx_stack_alloc() functions
611 	 * that will be called by the netstack framework before xxx_stack_init,
612 	 * or we switch spd.c and sadb.c to operate on ipsec_stack_t
613 	 * (latter has some include file order issues for sadb.h, but makes
614 	 * sense if we merge some of the ipsec related stack_t's together.
615 	 */
616 	ns->netstack_ipsec = ipss;
617 
618 	/*
619 	 * Make two attempts to allocate policy hash tables; try it at
620 	 * the "preferred" size (may be set in /etc/system) first,
621 	 * then fall back to the default size.
622 	 */
623 	if (ipss->ipsec_spd_hashsize == 0)
624 		ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
625 
626 	if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) {
627 		cmn_err(CE_WARN,
628 		    "Unable to allocate %d entry IPsec policy hash table",
629 		    ipss->ipsec_spd_hashsize);
630 		ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
631 		cmn_err(CE_WARN, "Falling back to %d entries",
632 		    ipss->ipsec_spd_hashsize);
633 		(void) ipsec_alloc_tables(KM_SLEEP, ns);
634 	}
635 
636 	/* Just set a default for tunnels. */
637 	if (ipss->ipsec_tun_spd_hashsize == 0)
638 		ipss->ipsec_tun_spd_hashsize = TUN_SPDHASH_DEFAULT;
639 
640 	ipsid_init(ns);
641 	/*
642 	 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting
643 	 * to free them.
644 	 */
645 	ipss->ipsec_system_policy.iph_refs = 1;
646 	ipss->ipsec_inactive_policy.iph_refs = 1;
647 	ipsec_polhead_init(&ipss->ipsec_system_policy,
648 	    ipss->ipsec_spd_hashsize);
649 	ipsec_polhead_init(&ipss->ipsec_inactive_policy,
650 	    ipss->ipsec_spd_hashsize);
651 	rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL);
652 	avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare,
653 	    sizeof (ipsec_tun_pol_t), 0);
654 
655 	ipss->ipsec_next_policy_index = 1;
656 
657 	rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL);
658 	rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL);
659 
660 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
661 		mutex_init(&(ipss->ipsec_action_hash[i].hash_lock),
662 		    NULL, MUTEX_DEFAULT, NULL);
663 
664 	for (i = 0; i < ipss->ipsec_spd_hashsize; i++)
665 		mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock),
666 		    NULL, MUTEX_DEFAULT, NULL);
667 
668 	mutex_init(&ipss->ipsec_alg_lock, NULL, MUTEX_DEFAULT, NULL);
669 	for (i = 0; i < IPSEC_NALGTYPES; i++) {
670 		ipss->ipsec_nalgs[i] = 0;
671 	}
672 
673 	ip_drop_init(ipss);
674 	ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD");
675 
676 	/* Set function to dummy until tun is loaded */
677 	rw_init(&ipss->ipsec_itp_get_byaddr_rw_lock, NULL, RW_DEFAULT, NULL);
678 	rw_enter(&ipss->ipsec_itp_get_byaddr_rw_lock, RW_WRITER);
679 	ipss->ipsec_itp_get_byaddr = itp_get_byaddr_dummy;
680 	rw_exit(&ipss->ipsec_itp_get_byaddr_rw_lock);
681 
682 	/* IP's IPsec code calls the packet dropper */
683 	ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing");
684 
685 	(void) ipsec_kstat_init(ipss);
686 
687 	ipsec_loader_init(ipss);
688 	ipsec_loader_start(ipss);
689 
690 	return (ipss);
691 }
692 
693 /* Global across all stack instances */
694 void
695 ipsec_policy_g_init(void)
696 {
697 	ipsec_action_cache = kmem_cache_create("ipsec_actions",
698 	    sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
699 	    ipsec_action_reclaim, NULL, NULL, 0);
700 	ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
701 	    sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
702 	    NULL, NULL, NULL, 0);
703 	ipsec_pol_cache = kmem_cache_create("ipsec_policy",
704 	    sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
705 	    NULL, NULL, NULL, 0);
706 	ipsec_info_cache = kmem_cache_create("ipsec_info",
707 	    sizeof (ipsec_info_t), _POINTER_ALIGNMENT, NULL, NULL,
708 	    NULL, NULL, NULL, 0);
709 
710 	/*
711 	 * We want to be informed each time a stack is created or
712 	 * destroyed in the kernel, so we can maintain the
713 	 * set of ipsec_stack_t's.
714 	 */
715 	netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini);
716 }
717 
718 /*
719  * Sort algorithm lists.
720  *
721  * I may need to split this based on
722  * authentication/encryption, and I may wish to have an administrator
723  * configure this list.  Hold on to some NDD variables...
724  *
725  * XXX For now, sort on minimum key size (GAG!).  While minimum key size is
726  * not the ideal metric, it's the only quantifiable measure available.
727  * We need a better metric for sorting algorithms by preference.
728  */
729 static void
730 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
731 {
732 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
733 	ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid];
734 	uint8_t holder, swap;
735 	uint_t i;
736 	uint_t count = ipss->ipsec_nalgs[at];
737 	ASSERT(ai != NULL);
738 	ASSERT(algid == ai->alg_id);
739 
740 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
741 
742 	holder = algid;
743 
744 	for (i = 0; i < count - 1; i++) {
745 		ipsec_alginfo_t *alt;
746 
747 		alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]];
748 		/*
749 		 * If you want to give precedence to newly added algs,
750 		 * add the = in the > comparison.
751 		 */
752 		if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
753 			/* Swap sortlist[i] and holder. */
754 			swap = ipss->ipsec_sortlist[at][i];
755 			ipss->ipsec_sortlist[at][i] = holder;
756 			holder = swap;
757 			ai = alt;
758 		} /* Else just continue. */
759 	}
760 
761 	/* Store holder in last slot. */
762 	ipss->ipsec_sortlist[at][i] = holder;
763 }
764 
765 /*
766  * Remove an algorithm from a sorted algorithm list.
767  * This should be considerably easier, even with complex sorting.
768  */
769 static void
770 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
771 {
772 	boolean_t copyback = B_FALSE;
773 	int i;
774 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
775 	int newcount = ipss->ipsec_nalgs[at];
776 
777 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
778 
779 	for (i = 0; i <= newcount; i++) {
780 		if (copyback) {
781 			ipss->ipsec_sortlist[at][i-1] =
782 			    ipss->ipsec_sortlist[at][i];
783 		} else if (ipss->ipsec_sortlist[at][i] == algid) {
784 			copyback = B_TRUE;
785 		}
786 	}
787 }
788 
789 /*
790  * Add the specified algorithm to the algorithm tables.
791  * Must be called while holding the algorithm table writer lock.
792  */
793 void
794 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns)
795 {
796 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
797 
798 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
799 
800 	ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL);
801 	ipsec_alg_fix_min_max(alg, algtype, ns);
802 	ipss->ipsec_alglists[algtype][alg->alg_id] = alg;
803 
804 	ipss->ipsec_nalgs[algtype]++;
805 	alg_insert_sortlist(algtype, alg->alg_id, ns);
806 }
807 
808 /*
809  * Remove the specified algorithm from the algorithm tables.
810  * Must be called while holding the algorithm table writer lock.
811  */
812 void
813 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns)
814 {
815 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
816 
817 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
818 
819 	ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL);
820 	ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]);
821 	ipss->ipsec_alglists[algtype][algid] = NULL;
822 
823 	ipss->ipsec_nalgs[algtype]--;
824 	alg_remove_sortlist(algtype, algid, ns);
825 }
826 
827 /*
828  * Hooks for spdsock to get a grip on system policy.
829  */
830 
831 ipsec_policy_head_t *
832 ipsec_system_policy(netstack_t *ns)
833 {
834 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
835 	ipsec_policy_head_t *h = &ipss->ipsec_system_policy;
836 
837 	IPPH_REFHOLD(h);
838 	return (h);
839 }
840 
841 ipsec_policy_head_t *
842 ipsec_inactive_policy(netstack_t *ns)
843 {
844 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
845 	ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy;
846 
847 	IPPH_REFHOLD(h);
848 	return (h);
849 }
850 
851 /*
852  * Lock inactive policy, then active policy, then exchange policy root
853  * pointers.
854  */
855 void
856 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive,
857     netstack_t *ns)
858 {
859 	int af, dir;
860 	avl_tree_t r1, r2;
861 
862 	rw_enter(&inactive->iph_lock, RW_WRITER);
863 	rw_enter(&active->iph_lock, RW_WRITER);
864 
865 	r1 = active->iph_rulebyid;
866 	r2 = inactive->iph_rulebyid;
867 	active->iph_rulebyid = r2;
868 	inactive->iph_rulebyid = r1;
869 
870 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
871 		ipsec_policy_hash_t *h1, *h2;
872 
873 		h1 = active->iph_root[dir].ipr_hash;
874 		h2 = inactive->iph_root[dir].ipr_hash;
875 		active->iph_root[dir].ipr_hash = h2;
876 		inactive->iph_root[dir].ipr_hash = h1;
877 
878 		for (af = 0; af < IPSEC_NAF; af++) {
879 			ipsec_policy_t *t1, *t2;
880 
881 			t1 = active->iph_root[dir].ipr_nonhash[af];
882 			t2 = inactive->iph_root[dir].ipr_nonhash[af];
883 			active->iph_root[dir].ipr_nonhash[af] = t2;
884 			inactive->iph_root[dir].ipr_nonhash[af] = t1;
885 			if (t1 != NULL) {
886 				t1->ipsp_hash.hash_pp =
887 				    &(inactive->iph_root[dir].ipr_nonhash[af]);
888 			}
889 			if (t2 != NULL) {
890 				t2->ipsp_hash.hash_pp =
891 				    &(active->iph_root[dir].ipr_nonhash[af]);
892 			}
893 
894 		}
895 	}
896 	active->iph_gen++;
897 	inactive->iph_gen++;
898 	ipsec_update_present_flags(ns->netstack_ipsec);
899 	rw_exit(&active->iph_lock);
900 	rw_exit(&inactive->iph_lock);
901 }
902 
903 /*
904  * Swap global policy primary/secondary.
905  */
906 void
907 ipsec_swap_global_policy(netstack_t *ns)
908 {
909 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
910 
911 	ipsec_swap_policy(&ipss->ipsec_system_policy,
912 	    &ipss->ipsec_inactive_policy, ns);
913 }
914 
915 /*
916  * Clone one policy rule..
917  */
918 static ipsec_policy_t *
919 ipsec_copy_policy(const ipsec_policy_t *src)
920 {
921 	ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
922 
923 	if (dst == NULL)
924 		return (NULL);
925 
926 	/*
927 	 * Adjust refcounts of cloned state.
928 	 */
929 	IPACT_REFHOLD(src->ipsp_act);
930 	src->ipsp_sel->ipsl_refs++;
931 
932 	HASH_NULL(dst, ipsp_hash);
933 	dst->ipsp_refs = 1;
934 	dst->ipsp_sel = src->ipsp_sel;
935 	dst->ipsp_act = src->ipsp_act;
936 	dst->ipsp_prio = src->ipsp_prio;
937 	dst->ipsp_index = src->ipsp_index;
938 
939 	return (dst);
940 }
941 
942 void
943 ipsec_insert_always(avl_tree_t *tree, void *new_node)
944 {
945 	void *node;
946 	avl_index_t where;
947 
948 	node = avl_find(tree, new_node, &where);
949 	ASSERT(node == NULL);
950 	avl_insert(tree, new_node, where);
951 }
952 
953 
954 static int
955 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src,
956     ipsec_policy_t **dstp)
957 {
958 	for (; src != NULL; src = src->ipsp_hash.hash_next) {
959 		ipsec_policy_t *dst = ipsec_copy_policy(src);
960 		if (dst == NULL)
961 			return (ENOMEM);
962 
963 		HASHLIST_INSERT(dst, ipsp_hash, *dstp);
964 		ipsec_insert_always(&dph->iph_rulebyid, dst);
965 	}
966 	return (0);
967 }
968 
969 
970 
971 /*
972  * Make one policy head look exactly like another.
973  *
974  * As with ipsec_swap_policy, we lock the destination policy head first, then
975  * the source policy head. Note that we only need to read-lock the source
976  * policy head as we are not changing it.
977  */
978 int
979 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph,
980     netstack_t *ns)
981 {
982 	int af, dir, chain, nchains;
983 
984 	rw_enter(&dph->iph_lock, RW_WRITER);
985 
986 	ipsec_polhead_flush(dph, ns);
987 
988 	rw_enter(&sph->iph_lock, RW_READER);
989 
990 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
991 		ipsec_policy_root_t *dpr = &dph->iph_root[dir];
992 		ipsec_policy_root_t *spr = &sph->iph_root[dir];
993 		nchains = dpr->ipr_nchains;
994 
995 		ASSERT(dpr->ipr_nchains == spr->ipr_nchains);
996 
997 		for (af = 0; af < IPSEC_NAF; af++) {
998 			if (ipsec_copy_chain(dph, spr->ipr_nonhash[af],
999 			    &dpr->ipr_nonhash[af]))
1000 				goto abort_copy;
1001 		}
1002 
1003 		for (chain = 0; chain < nchains; chain++) {
1004 			if (ipsec_copy_chain(dph,
1005 			    spr->ipr_hash[chain].hash_head,
1006 			    &dpr->ipr_hash[chain].hash_head))
1007 				goto abort_copy;
1008 		}
1009 	}
1010 
1011 	dph->iph_gen++;
1012 
1013 	rw_exit(&sph->iph_lock);
1014 	rw_exit(&dph->iph_lock);
1015 	return (0);
1016 
1017 abort_copy:
1018 	ipsec_polhead_flush(dph, ns);
1019 	rw_exit(&sph->iph_lock);
1020 	rw_exit(&dph->iph_lock);
1021 	return (ENOMEM);
1022 }
1023 
1024 /*
1025  * Clone currently active policy to the inactive policy list.
1026  */
1027 int
1028 ipsec_clone_system_policy(netstack_t *ns)
1029 {
1030 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1031 
1032 	return (ipsec_copy_polhead(&ipss->ipsec_system_policy,
1033 		    &ipss->ipsec_inactive_policy, ns));
1034 }
1035 
1036 /*
1037  * Generic "do we have IPvN policy" answer.
1038  */
1039 boolean_t
1040 iph_ipvN(ipsec_policy_head_t *iph, boolean_t v6)
1041 {
1042 	int i, hval;
1043 	uint32_t valbit;
1044 	ipsec_policy_root_t *ipr;
1045 	ipsec_policy_t *ipp;
1046 
1047 	if (v6) {
1048 		valbit = IPSL_IPV6;
1049 		hval = IPSEC_AF_V6;
1050 	} else {
1051 		valbit = IPSL_IPV4;
1052 		hval = IPSEC_AF_V4;
1053 	}
1054 
1055 	ASSERT(RW_LOCK_HELD(&iph->iph_lock));
1056 	for (ipr = iph->iph_root; ipr < &(iph->iph_root[IPSEC_NTYPES]); ipr++) {
1057 		if (ipr->ipr_nonhash[hval] != NULL)
1058 			return (B_TRUE);
1059 		for (i = 0; i < ipr->ipr_nchains; i++) {
1060 			for (ipp = ipr->ipr_hash[i].hash_head; ipp != NULL;
1061 			    ipp = ipp->ipsp_hash.hash_next) {
1062 				if (ipp->ipsp_sel->ipsl_key.ipsl_valid & valbit)
1063 					return (B_TRUE);
1064 			}
1065 		}
1066 	}
1067 
1068 	return (B_FALSE);
1069 }
1070 
1071 /*
1072  * Extract the string from ipsec_policy_failure_msgs[type] and
1073  * log it.
1074  *
1075  */
1076 void
1077 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h,
1078     boolean_t secure, netstack_t *ns)
1079 {
1080 	char	sbuf[INET6_ADDRSTRLEN];
1081 	char	dbuf[INET6_ADDRSTRLEN];
1082 	char	*s;
1083 	char	*d;
1084 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1085 
1086 	ASSERT((ipha == NULL && ip6h != NULL) ||
1087 	    (ip6h == NULL && ipha != NULL));
1088 
1089 	if (ipha != NULL) {
1090 		s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
1091 		d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
1092 	} else {
1093 		s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
1094 		d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
1095 
1096 	}
1097 
1098 	/* Always bump the policy failure counter. */
1099 	ipss->ipsec_policy_failure_count[type]++;
1100 
1101 	ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1102 	    ipsec_policy_failure_msgs[type], func_name,
1103 	    (secure ? "secure" : "not secure"), s, d);
1104 }
1105 
1106 /*
1107  * Rate-limiting front-end to strlog() for AH and ESP.	Uses the ndd variables
1108  * in /dev/ip and the same rate-limiting clock so that there's a single
1109  * knob to turn to throttle the rate of messages.
1110  */
1111 void
1112 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl,
1113     char *fmt, ...)
1114 {
1115 	va_list adx;
1116 	hrtime_t current = gethrtime();
1117 	ip_stack_t	*ipst = ns->netstack_ip;
1118 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1119 
1120 	sl |= SL_CONSOLE;
1121 	/*
1122 	 * Throttle logging to stop syslog from being swamped. If variable
1123 	 * 'ipsec_policy_log_interval' is zero, don't log any messages at
1124 	 * all, otherwise log only one message every 'ipsec_policy_log_interval'
1125 	 * msec. Convert interval (in msec) to hrtime (in nsec).
1126 	 */
1127 
1128 	if (ipst->ips_ipsec_policy_log_interval) {
1129 		if (ipss->ipsec_policy_failure_last +
1130 		    ((hrtime_t)ipst->ips_ipsec_policy_log_interval *
1131 		    (hrtime_t)1000000) <= current) {
1132 			va_start(adx, fmt);
1133 			(void) vstrlog(mid, sid, level, sl, fmt, adx);
1134 			va_end(adx);
1135 			ipss->ipsec_policy_failure_last = current;
1136 		}
1137 	}
1138 }
1139 
1140 void
1141 ipsec_config_flush(netstack_t *ns)
1142 {
1143 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1144 
1145 	rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER);
1146 	ipsec_polhead_flush(&ipss->ipsec_system_policy, ns);
1147 	ipss->ipsec_next_policy_index = 1;
1148 	rw_exit(&ipss->ipsec_system_policy.iph_lock);
1149 	ipsec_action_reclaim_stack(ns);
1150 }
1151 
1152 /*
1153  * Clip a policy's min/max keybits vs. the capabilities of the
1154  * algorithm.
1155  */
1156 static void
1157 act_alg_adjust(uint_t algtype, uint_t algid,
1158     uint16_t *minbits, uint16_t *maxbits, netstack_t *ns)
1159 {
1160 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1161 	ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid];
1162 
1163 	if (algp != NULL) {
1164 		/*
1165 		 * If passed-in minbits is zero, we assume the caller trusts
1166 		 * us with setting the minimum key size.  We pick the
1167 		 * algorithms DEFAULT key size for the minimum in this case.
1168 		 */
1169 		if (*minbits == 0) {
1170 			*minbits = algp->alg_default_bits;
1171 			ASSERT(*minbits >= algp->alg_minbits);
1172 		} else {
1173 			*minbits = MAX(MIN(*minbits, algp->alg_maxbits),
1174 			    algp->alg_minbits);
1175 		}
1176 		if (*maxbits == 0)
1177 			*maxbits = algp->alg_maxbits;
1178 		else
1179 			*maxbits = MIN(MAX(*maxbits, algp->alg_minbits),
1180 			    algp->alg_maxbits);
1181 		ASSERT(*minbits <= *maxbits);
1182 	} else {
1183 		*minbits = 0;
1184 		*maxbits = 0;
1185 	}
1186 }
1187 
1188 /*
1189  * Check an action's requested algorithms against the algorithms currently
1190  * loaded in the system.
1191  */
1192 boolean_t
1193 ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns)
1194 {
1195 	ipsec_prot_t *ipp;
1196 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1197 
1198 	ipp = &act->ipa_apply;
1199 
1200 	if (ipp->ipp_use_ah &&
1201 	    ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
1202 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
1203 		return (B_FALSE);
1204 	}
1205 	if (ipp->ipp_use_espa &&
1206 	    ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] ==
1207 	    NULL) {
1208 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
1209 		return (B_FALSE);
1210 	}
1211 	if (ipp->ipp_use_esp &&
1212 	    ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
1213 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
1214 		return (B_FALSE);
1215 	}
1216 
1217 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
1218 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1219 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
1220 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1221 	act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
1222 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1223 
1224 	if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
1225 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
1226 		return (B_FALSE);
1227 	}
1228 	if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
1229 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
1230 		return (B_FALSE);
1231 	}
1232 	if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
1233 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
1234 		return (B_FALSE);
1235 	}
1236 	/* TODO: sanity check lifetimes */
1237 	return (B_TRUE);
1238 }
1239 
1240 /*
1241  * Set up a single action during wildcard expansion..
1242  */
1243 static void
1244 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
1245     uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns)
1246 {
1247 	ipsec_prot_t *ipp;
1248 
1249 	*outact = *act;
1250 	ipp = &outact->ipa_apply;
1251 	ipp->ipp_auth_alg = (uint8_t)auth_alg;
1252 	ipp->ipp_encr_alg = (uint8_t)encr_alg;
1253 	ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
1254 
1255 	act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
1256 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1257 	act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
1258 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1259 	act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
1260 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1261 }
1262 
1263 /*
1264  * combinatoric expansion time: expand a wildcarded action into an
1265  * array of wildcarded actions; we return the exploded action list,
1266  * and return a count in *nact (output only).
1267  */
1268 static ipsec_act_t *
1269 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns)
1270 {
1271 	boolean_t use_ah, use_esp, use_espa;
1272 	boolean_t wild_auth, wild_encr, wild_eauth;
1273 	uint_t	auth_alg, auth_idx, auth_min, auth_max;
1274 	uint_t	eauth_alg, eauth_idx, eauth_min, eauth_max;
1275 	uint_t  encr_alg, encr_idx, encr_min, encr_max;
1276 	uint_t	action_count, ai;
1277 	ipsec_act_t *outact;
1278 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1279 
1280 	if (act->ipa_type != IPSEC_ACT_APPLY) {
1281 		outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
1282 		*nact = 1;
1283 		if (outact != NULL)
1284 			bcopy(act, outact, sizeof (*act));
1285 		return (outact);
1286 	}
1287 	/*
1288 	 * compute the combinatoric explosion..
1289 	 *
1290 	 * we assume a request for encr if esp_req is PREF_REQUIRED
1291 	 * we assume a request for ah auth if ah_req is PREF_REQUIRED.
1292 	 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
1293 	 */
1294 
1295 	use_ah = act->ipa_apply.ipp_use_ah;
1296 	use_esp = act->ipa_apply.ipp_use_esp;
1297 	use_espa = act->ipa_apply.ipp_use_espa;
1298 	auth_alg = act->ipa_apply.ipp_auth_alg;
1299 	eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
1300 	encr_alg = act->ipa_apply.ipp_encr_alg;
1301 
1302 	wild_auth = use_ah && (auth_alg == 0);
1303 	wild_eauth = use_espa && (eauth_alg == 0);
1304 	wild_encr = use_esp && (encr_alg == 0);
1305 
1306 	action_count = 1;
1307 	auth_min = auth_max = auth_alg;
1308 	eauth_min = eauth_max = eauth_alg;
1309 	encr_min = encr_max = encr_alg;
1310 
1311 	/*
1312 	 * set up for explosion.. for each dimension, expand output
1313 	 * size by the explosion factor.
1314 	 *
1315 	 * Don't include the "any" algorithms, if defined, as no
1316 	 * kernel policies should be set for these algorithms.
1317 	 */
1318 
1319 #define	SET_EXP_MINMAX(type, wild, alg, min, max, ipss)		\
1320 	if (wild) {						\
1321 		int nalgs = ipss->ipsec_nalgs[type];		\
1322 		if (ipss->ipsec_alglists[type][alg] != NULL)	\
1323 			nalgs--;				\
1324 		action_count *= nalgs;				\
1325 		min = 0;					\
1326 		max = ipss->ipsec_nalgs[type] - 1;		\
1327 	}
1328 
1329 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
1330 	    auth_min, auth_max, ipss);
1331 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
1332 	    eauth_min, eauth_max, ipss);
1333 	SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
1334 	    encr_min, encr_max, ipss);
1335 
1336 #undef	SET_EXP_MINMAX
1337 
1338 	/*
1339 	 * ok, allocate the whole mess..
1340 	 */
1341 
1342 	outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
1343 	if (outact == NULL)
1344 		return (NULL);
1345 
1346 	/*
1347 	 * Now compute all combinations.  Note that non-wildcarded
1348 	 * dimensions just get a single value from auth_min, while
1349 	 * wildcarded dimensions indirect through the sortlist.
1350 	 *
1351 	 * We do encryption outermost since, at this time, there's
1352 	 * greater difference in security and performance between
1353 	 * encryption algorithms vs. authentication algorithms.
1354 	 */
1355 
1356 	ai = 0;
1357 
1358 #define	WHICH_ALG(type, wild, idx, ipss) \
1359 	((wild)?(ipss->ipsec_sortlist[type][idx]):(idx))
1360 
1361 	for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
1362 		encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss);
1363 		if (wild_encr && encr_alg == SADB_EALG_NONE)
1364 			continue;
1365 		for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
1366 			auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
1367 			    auth_idx, ipss);
1368 			if (wild_auth && auth_alg == SADB_AALG_NONE)
1369 				continue;
1370 			for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
1371 			    eauth_idx++) {
1372 				eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
1373 				    wild_eauth, eauth_idx, ipss);
1374 				if (wild_eauth && eauth_alg == SADB_AALG_NONE)
1375 					continue;
1376 
1377 				ipsec_setup_act(&outact[ai], act,
1378 				    auth_alg, encr_alg, eauth_alg, ns);
1379 				ai++;
1380 			}
1381 		}
1382 	}
1383 
1384 #undef WHICH_ALG
1385 
1386 	ASSERT(ai == action_count);
1387 	*nact = action_count;
1388 	return (outact);
1389 }
1390 
1391 /*
1392  * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
1393  */
1394 static void
1395 ipsec_prot_from_req(ipsec_req_t *req, ipsec_prot_t *ipp)
1396 {
1397 	bzero(ipp, sizeof (*ipp));
1398 	/*
1399 	 * ipp_use_* are bitfields.  Look at "!!" in the following as a
1400 	 * "boolean canonicalization" operator.
1401 	 */
1402 	ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
1403 	ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
1404 	ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg) || !ipp->ipp_use_ah;
1405 	ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
1406 	ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
1407 	    IPSEC_PREF_UNIQUE);
1408 	ipp->ipp_encr_alg = req->ipsr_esp_alg;
1409 	ipp->ipp_auth_alg = req->ipsr_auth_alg;
1410 	ipp->ipp_esp_auth_alg = req->ipsr_esp_auth_alg;
1411 }
1412 
1413 /*
1414  * Extract a new-style action from a request.
1415  */
1416 void
1417 ipsec_actvec_from_req(ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp,
1418     netstack_t *ns)
1419 {
1420 	struct ipsec_act act;
1421 
1422 	bzero(&act, sizeof (act));
1423 	if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
1424 	    (req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
1425 		act.ipa_type = IPSEC_ACT_BYPASS;
1426 	} else {
1427 		act.ipa_type = IPSEC_ACT_APPLY;
1428 		ipsec_prot_from_req(req, &act.ipa_apply);
1429 	}
1430 	*actp = ipsec_act_wildcard_expand(&act, nactp, ns);
1431 }
1432 
1433 /*
1434  * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
1435  * We assume caller has already zero'ed *req for us.
1436  */
1437 static int
1438 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
1439 {
1440 	req->ipsr_esp_alg = ipp->ipp_encr_alg;
1441 	req->ipsr_auth_alg = ipp->ipp_auth_alg;
1442 	req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
1443 
1444 	if (ipp->ipp_use_unique) {
1445 		req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
1446 		req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
1447 	}
1448 	if (ipp->ipp_use_se)
1449 		req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
1450 	if (ipp->ipp_use_ah)
1451 		req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
1452 	if (ipp->ipp_use_esp)
1453 		req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
1454 	return (sizeof (*req));
1455 }
1456 
1457 /*
1458  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1459  * We assume caller has already zero'ed *req for us.
1460  */
1461 static int
1462 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
1463 {
1464 	switch (ap->ipa_act.ipa_type) {
1465 	case IPSEC_ACT_BYPASS:
1466 		req->ipsr_ah_req = IPSEC_PREF_NEVER;
1467 		req->ipsr_esp_req = IPSEC_PREF_NEVER;
1468 		return (sizeof (*req));
1469 	case IPSEC_ACT_APPLY:
1470 		return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
1471 	}
1472 	return (sizeof (*req));
1473 }
1474 
1475 /*
1476  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1477  * We assume caller has already zero'ed *req for us.
1478  */
1479 int
1480 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
1481 {
1482 	ipsec_policy_t *p;
1483 
1484 	/*
1485 	 * FULL-PERSOCK: consult hash table, too?
1486 	 */
1487 	for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af];
1488 	    p != NULL;
1489 	    p = p->ipsp_hash.hash_next) {
1490 		if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0)
1491 			return (ipsec_req_from_act(p->ipsp_act, req));
1492 	}
1493 	return (sizeof (*req));
1494 }
1495 
1496 /*
1497  * Based on per-socket or latched policy, convert to an appropriate
1498  * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
1499  * be tail-called from ip.
1500  */
1501 int
1502 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
1503 {
1504 	ipsec_latch_t *ipl;
1505 	int rv = sizeof (ipsec_req_t);
1506 
1507 	bzero(req, sizeof (*req));
1508 
1509 	mutex_enter(&connp->conn_lock);
1510 	ipl = connp->conn_latch;
1511 
1512 	/*
1513 	 * Find appropriate policy.  First choice is latched action;
1514 	 * failing that, see latched policy; failing that,
1515 	 * look at configured policy.
1516 	 */
1517 	if (ipl != NULL) {
1518 		if (ipl->ipl_in_action != NULL) {
1519 			rv = ipsec_req_from_act(ipl->ipl_in_action, req);
1520 			goto done;
1521 		}
1522 		if (ipl->ipl_in_policy != NULL) {
1523 			rv = ipsec_req_from_act(ipl->ipl_in_policy->ipsp_act,
1524 			    req);
1525 			goto done;
1526 		}
1527 	}
1528 	if (connp->conn_policy != NULL)
1529 		rv = ipsec_req_from_head(connp->conn_policy, req, af);
1530 done:
1531 	mutex_exit(&connp->conn_lock);
1532 	return (rv);
1533 }
1534 
1535 void
1536 ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
1537 {
1538 	kmem_free(act, nact * sizeof (*act));
1539 }
1540 
1541 /*
1542  * When outbound policy is not cached, look it up the hard way and attach
1543  * an ipsec_out_t to the packet..
1544  */
1545 static mblk_t *
1546 ipsec_attach_global_policy(mblk_t **mp, conn_t *connp, ipsec_selector_t *sel,
1547     netstack_t *ns)
1548 {
1549 	ipsec_policy_t *p;
1550 
1551 	p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel, ns);
1552 
1553 	if (p == NULL)
1554 		return (NULL);
1555 	return (ipsec_attach_ipsec_out(mp, connp, p, sel->ips_protocol, ns));
1556 }
1557 
1558 /*
1559  * We have an ipsec_out already, but don't have cached policy; fill it in
1560  * with the right actions.
1561  */
1562 static mblk_t *
1563 ipsec_apply_global_policy(mblk_t *ipsec_mp, conn_t *connp,
1564     ipsec_selector_t *sel, netstack_t *ns)
1565 {
1566 	ipsec_out_t *io;
1567 	ipsec_policy_t *p;
1568 
1569 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
1570 	ASSERT(ipsec_mp->b_cont->b_datap->db_type == M_DATA);
1571 
1572 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
1573 
1574 	if (io->ipsec_out_policy == NULL) {
1575 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, io, sel, ns);
1576 		io->ipsec_out_policy = p;
1577 	}
1578 	return (ipsec_mp);
1579 }
1580 
1581 
1582 /*
1583  * Consumes a reference to ipsp.
1584  */
1585 static mblk_t *
1586 ipsec_check_loopback_policy(mblk_t *first_mp, boolean_t mctl_present,
1587     ipsec_policy_t *ipsp)
1588 {
1589 	mblk_t *ipsec_mp;
1590 	ipsec_in_t *ii;
1591 	netstack_t	*ns;
1592 
1593 	if (!mctl_present)
1594 		return (first_mp);
1595 
1596 	ipsec_mp = first_mp;
1597 
1598 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1599 	ns = ii->ipsec_in_ns;
1600 	ASSERT(ii->ipsec_in_loopback);
1601 	IPPOL_REFRELE(ipsp, ns);
1602 
1603 	/*
1604 	 * We should do an actual policy check here.  Revisit this
1605 	 * when we revisit the IPsec API.  (And pass a conn_t in when we
1606 	 * get there.)
1607 	 */
1608 
1609 	return (first_mp);
1610 }
1611 
1612 /*
1613  * Check that packet's inbound ports & proto match the selectors
1614  * expected by the SAs it traversed on the way in.
1615  */
1616 static boolean_t
1617 ipsec_check_ipsecin_unique(ipsec_in_t *ii, const char **reason,
1618     kstat_named_t **counter, uint64_t pkt_unique)
1619 {
1620 	uint64_t ah_mask, esp_mask;
1621 	ipsa_t *ah_assoc;
1622 	ipsa_t *esp_assoc;
1623 	netstack_t	*ns = ii->ipsec_in_ns;
1624 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1625 
1626 	ASSERT(ii->ipsec_in_secure);
1627 	ASSERT(!ii->ipsec_in_loopback);
1628 
1629 	ah_assoc = ii->ipsec_in_ah_sa;
1630 	esp_assoc = ii->ipsec_in_esp_sa;
1631 	ASSERT((ah_assoc != NULL) || (esp_assoc != NULL));
1632 
1633 	ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0;
1634 	esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0;
1635 
1636 	if ((ah_mask == 0) && (esp_mask == 0))
1637 		return (B_TRUE);
1638 
1639 	/*
1640 	 * The pkt_unique check will also check for tunnel mode on the SA
1641 	 * vs. the tunneled_packet boolean.  "Be liberal in what you receive"
1642 	 * should not apply in this case.  ;)
1643 	 */
1644 
1645 	if (ah_mask != 0 &&
1646 	    ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) {
1647 		*reason = "AH inner header mismatch";
1648 		*counter = DROPPER(ipss, ipds_spd_ah_innermismatch);
1649 		return (B_FALSE);
1650 	}
1651 	if (esp_mask != 0 &&
1652 	    esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) {
1653 		*reason = "ESP inner header mismatch";
1654 		*counter = DROPPER(ipss, ipds_spd_esp_innermismatch);
1655 		return (B_FALSE);
1656 	}
1657 	return (B_TRUE);
1658 }
1659 
1660 static boolean_t
1661 ipsec_check_ipsecin_action(ipsec_in_t *ii, mblk_t *mp, ipsec_action_t *ap,
1662     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter)
1663 {
1664 	boolean_t ret = B_TRUE;
1665 	ipsec_prot_t *ipp;
1666 	ipsa_t *ah_assoc;
1667 	ipsa_t *esp_assoc;
1668 	boolean_t decaps;
1669 	netstack_t	*ns = ii->ipsec_in_ns;
1670 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1671 
1672 	ASSERT((ipha == NULL && ip6h != NULL) ||
1673 	    (ip6h == NULL && ipha != NULL));
1674 
1675 	if (ii->ipsec_in_loopback) {
1676 		/*
1677 		 * Besides accepting pointer-equivalent actions, we also
1678 		 * accept any ICMP errors we generated for ourselves,
1679 		 * regardless of policy.  If we do not wish to make this
1680 		 * assumption in the future, check here, and where
1681 		 * icmp_loopback is initialized in ip.c and ip6.c.  (Look for
1682 		 * ipsec_out_icmp_loopback.)
1683 		 */
1684 		if (ap == ii->ipsec_in_action || ii->ipsec_in_icmp_loopback)
1685 			return (B_TRUE);
1686 
1687 		/* Deep compare necessary here?? */
1688 		*counter = DROPPER(ipss, ipds_spd_loopback_mismatch);
1689 		*reason = "loopback policy mismatch";
1690 		return (B_FALSE);
1691 	}
1692 	ASSERT(!ii->ipsec_in_icmp_loopback);
1693 
1694 	ah_assoc = ii->ipsec_in_ah_sa;
1695 	esp_assoc = ii->ipsec_in_esp_sa;
1696 
1697 	decaps = ii->ipsec_in_decaps;
1698 
1699 	switch (ap->ipa_act.ipa_type) {
1700 	case IPSEC_ACT_DISCARD:
1701 	case IPSEC_ACT_REJECT:
1702 		/* Should "fail hard" */
1703 		*counter = DROPPER(ipss, ipds_spd_explicit);
1704 		*reason = "blocked by policy";
1705 		return (B_FALSE);
1706 
1707 	case IPSEC_ACT_BYPASS:
1708 	case IPSEC_ACT_CLEAR:
1709 		*counter = DROPPER(ipss, ipds_spd_got_secure);
1710 		*reason = "expected clear, got protected";
1711 		return (B_FALSE);
1712 
1713 	case IPSEC_ACT_APPLY:
1714 		ipp = &ap->ipa_act.ipa_apply;
1715 		/*
1716 		 * As of now we do the simple checks of whether
1717 		 * the datagram has gone through the required IPSEC
1718 		 * protocol constraints or not. We might have more
1719 		 * in the future like sensitive levels, key bits, etc.
1720 		 * If it fails the constraints, check whether we would
1721 		 * have accepted this if it had come in clear.
1722 		 */
1723 		if (ipp->ipp_use_ah) {
1724 			if (ah_assoc == NULL) {
1725 				ret = ipsec_inbound_accept_clear(mp, ipha,
1726 				    ip6h);
1727 				*counter = DROPPER(ipss, ipds_spd_got_clear);
1728 				*reason = "unprotected not accepted";
1729 				break;
1730 			}
1731 			ASSERT(ah_assoc != NULL);
1732 			ASSERT(ipp->ipp_auth_alg != 0);
1733 
1734 			if (ah_assoc->ipsa_auth_alg !=
1735 			    ipp->ipp_auth_alg) {
1736 				*counter = DROPPER(ipss, ipds_spd_bad_ahalg);
1737 				*reason = "unacceptable ah alg";
1738 				ret = B_FALSE;
1739 				break;
1740 			}
1741 		} else if (ah_assoc != NULL) {
1742 			/*
1743 			 * Don't allow this. Check IPSEC NOTE above
1744 			 * ip_fanout_proto().
1745 			 */
1746 			*counter = DROPPER(ipss, ipds_spd_got_ah);
1747 			*reason = "unexpected AH";
1748 			ret = B_FALSE;
1749 			break;
1750 		}
1751 		if (ipp->ipp_use_esp) {
1752 			if (esp_assoc == NULL) {
1753 				ret = ipsec_inbound_accept_clear(mp, ipha,
1754 				    ip6h);
1755 				*counter = DROPPER(ipss, ipds_spd_got_clear);
1756 				*reason = "unprotected not accepted";
1757 				break;
1758 			}
1759 			ASSERT(esp_assoc != NULL);
1760 			ASSERT(ipp->ipp_encr_alg != 0);
1761 
1762 			if (esp_assoc->ipsa_encr_alg !=
1763 			    ipp->ipp_encr_alg) {
1764 				*counter = DROPPER(ipss, ipds_spd_bad_espealg);
1765 				*reason = "unacceptable esp alg";
1766 				ret = B_FALSE;
1767 				break;
1768 			}
1769 			/*
1770 			 * If the client does not need authentication,
1771 			 * we don't verify the alogrithm.
1772 			 */
1773 			if (ipp->ipp_use_espa) {
1774 				if (esp_assoc->ipsa_auth_alg !=
1775 				    ipp->ipp_esp_auth_alg) {
1776 					*counter = DROPPER(ipss,
1777 					    ipds_spd_bad_espaalg);
1778 					*reason = "unacceptable esp auth alg";
1779 					ret = B_FALSE;
1780 					break;
1781 				}
1782 			}
1783 		} else if (esp_assoc != NULL) {
1784 				/*
1785 				 * Don't allow this. Check IPSEC NOTE above
1786 				 * ip_fanout_proto().
1787 				 */
1788 			*counter = DROPPER(ipss, ipds_spd_got_esp);
1789 			*reason = "unexpected ESP";
1790 			ret = B_FALSE;
1791 			break;
1792 		}
1793 		if (ipp->ipp_use_se) {
1794 			if (!decaps) {
1795 				ret = ipsec_inbound_accept_clear(mp, ipha,
1796 				    ip6h);
1797 				if (!ret) {
1798 					/* XXX mutant? */
1799 					*counter = DROPPER(ipss,
1800 					    ipds_spd_bad_selfencap);
1801 					*reason = "self encap not found";
1802 					break;
1803 				}
1804 			}
1805 		} else if (decaps) {
1806 			/*
1807 			 * XXX If the packet comes in tunneled and the
1808 			 * recipient does not expect it to be tunneled, it
1809 			 * is okay. But we drop to be consistent with the
1810 			 * other cases.
1811 			 */
1812 			*counter = DROPPER(ipss, ipds_spd_got_selfencap);
1813 			*reason = "unexpected self encap";
1814 			ret = B_FALSE;
1815 			break;
1816 		}
1817 		if (ii->ipsec_in_action != NULL) {
1818 			/*
1819 			 * This can happen if we do a double policy-check on
1820 			 * a packet
1821 			 * XXX XXX should fix this case!
1822 			 */
1823 			IPACT_REFRELE(ii->ipsec_in_action);
1824 		}
1825 		ASSERT(ii->ipsec_in_action == NULL);
1826 		IPACT_REFHOLD(ap);
1827 		ii->ipsec_in_action = ap;
1828 		break;	/* from switch */
1829 	}
1830 	return (ret);
1831 }
1832 
1833 static boolean_t
1834 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
1835 {
1836 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1837 	return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
1838 	    ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
1839 }
1840 
1841 /*
1842  * Takes a latched conn and an inbound packet and returns a unique_id suitable
1843  * for SA comparisons.  Most of the time we will copy from the conn_t, but
1844  * there are cases when the conn_t is latched but it has wildcard selectors,
1845  * and then we need to fallback to scooping them out of the packet.
1846  *
1847  * Assume we'll never have 0 with a conn_t present, so use 0 as a failure.  We
1848  * can get away with this because we only have non-zero ports/proto for
1849  * latched conn_ts.
1850  *
1851  * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough
1852  * to not be a nice macro.
1853  */
1854 static uint64_t
1855 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h)
1856 {
1857 	ipsec_selector_t sel;
1858 	uint8_t ulp = connp->conn_ulp;
1859 
1860 	ASSERT(connp->conn_latch->ipl_in_policy != NULL);
1861 
1862 	if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) &&
1863 	    (connp->conn_fport == 0 || connp->conn_lport == 0)) {
1864 		/* Slow path - we gotta grab from the packet. */
1865 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
1866 			SEL_NONE) != SELRET_SUCCESS) {
1867 			/* Failure -> have caller free packet with ENOMEM. */
1868 			return (0);
1869 		}
1870 		return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port,
1871 			    sel.ips_protocol, 0));
1872 	}
1873 
1874 #ifdef DEBUG_NOT_UNTIL_6478464
1875 	if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) ==
1876 	    SELRET_SUCCESS) {
1877 		ASSERT(sel.ips_local_port == connp->conn_lport);
1878 		ASSERT(sel.ips_remote_port == connp->conn_fport);
1879 		ASSERT(sel.ips_protocol == connp->conn_ulp);
1880 	}
1881 	ASSERT(connp->conn_ulp != 0);
1882 #endif
1883 
1884 	return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0));
1885 }
1886 
1887 /*
1888  * Called to check policy on a latched connection, both from this file
1889  * and from tcp.c
1890  */
1891 boolean_t
1892 ipsec_check_ipsecin_latch(ipsec_in_t *ii, mblk_t *mp, ipsec_latch_t *ipl,
1893     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter,
1894     conn_t *connp)
1895 {
1896 	netstack_t	*ns = ii->ipsec_in_ns;
1897 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1898 
1899 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1900 
1901 	if (!ii->ipsec_in_loopback) {
1902 		/*
1903 		 * Over loopback, there aren't real security associations,
1904 		 * so there are neither identities nor "unique" values
1905 		 * for us to check the packet against.
1906 		 */
1907 		if ((ii->ipsec_in_ah_sa != NULL) &&
1908 		    (!spd_match_inbound_ids(ipl, ii->ipsec_in_ah_sa))) {
1909 			*counter = DROPPER(ipss, ipds_spd_ah_badid);
1910 			*reason = "AH identity mismatch";
1911 			return (B_FALSE);
1912 		}
1913 
1914 		if ((ii->ipsec_in_esp_sa != NULL) &&
1915 		    (!spd_match_inbound_ids(ipl, ii->ipsec_in_esp_sa))) {
1916 			*counter = DROPPER(ipss, ipds_spd_esp_badid);
1917 			*reason = "ESP identity mismatch";
1918 			return (B_FALSE);
1919 		}
1920 
1921 		/*
1922 		 * Can fudge pkt_unique from connp because we're latched.
1923 		 * In DEBUG kernels (see conn_to_unique()'s implementation),
1924 		 * verify this even if it REALLY slows things down.
1925 		 */
1926 		if (!ipsec_check_ipsecin_unique(ii, reason, counter,
1927 			conn_to_unique(connp, mp, ipha, ip6h))) {
1928 			return (B_FALSE);
1929 		}
1930 	}
1931 
1932 	return (ipsec_check_ipsecin_action(ii, mp, ipl->ipl_in_action,
1933 	    ipha, ip6h, reason, counter));
1934 }
1935 
1936 /*
1937  * Check to see whether this secured datagram meets the policy
1938  * constraints specified in ipsp.
1939  *
1940  * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
1941  *
1942  * Consumes a reference to ipsp.
1943  */
1944 static mblk_t *
1945 ipsec_check_ipsecin_policy(mblk_t *first_mp, ipsec_policy_t *ipsp,
1946     ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, netstack_t *ns)
1947 {
1948 	ipsec_in_t *ii;
1949 	ipsec_action_t *ap;
1950 	const char *reason = "no policy actions found";
1951 	mblk_t *data_mp, *ipsec_mp;
1952 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1953 	ip_stack_t	*ipst = ns->netstack_ip;
1954 	kstat_named_t *counter;
1955 
1956 	counter = DROPPER(ipss, ipds_spd_got_secure);
1957 
1958 	data_mp = first_mp->b_cont;
1959 	ipsec_mp = first_mp;
1960 
1961 	ASSERT(ipsp != NULL);
1962 
1963 	ASSERT((ipha == NULL && ip6h != NULL) ||
1964 	    (ip6h == NULL && ipha != NULL));
1965 
1966 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1967 
1968 	if (ii->ipsec_in_loopback)
1969 		return (ipsec_check_loopback_policy(first_mp, B_TRUE, ipsp));
1970 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
1971 	ASSERT(ii->ipsec_in_secure);
1972 
1973 	if (ii->ipsec_in_action != NULL) {
1974 		/*
1975 		 * this can happen if we do a double policy-check on a packet
1976 		 * Would be nice to be able to delete this test..
1977 		 */
1978 		IPACT_REFRELE(ii->ipsec_in_action);
1979 	}
1980 	ASSERT(ii->ipsec_in_action == NULL);
1981 
1982 	if (!SA_IDS_MATCH(ii->ipsec_in_ah_sa, ii->ipsec_in_esp_sa)) {
1983 		reason = "inbound AH and ESP identities differ";
1984 		counter = DROPPER(ipss, ipds_spd_ahesp_diffid);
1985 		goto drop;
1986 	}
1987 
1988 	if (!ipsec_check_ipsecin_unique(ii, &reason, &counter, pkt_unique))
1989 		goto drop;
1990 
1991 	/*
1992 	 * Ok, now loop through the possible actions and see if any
1993 	 * of them work for us.
1994 	 */
1995 
1996 	for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
1997 		if (ipsec_check_ipsecin_action(ii, data_mp, ap,
1998 		    ipha, ip6h, &reason, &counter)) {
1999 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2000 			IPPOL_REFRELE(ipsp, ns);
2001 			return (first_mp);
2002 		}
2003 	}
2004 drop:
2005 	ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
2006 	    "ipsec inbound policy mismatch: %s, packet dropped\n",
2007 	    reason);
2008 	IPPOL_REFRELE(ipsp, ns);
2009 	ASSERT(ii->ipsec_in_action == NULL);
2010 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2011 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2012 	    &ipss->ipsec_spd_dropper);
2013 	return (NULL);
2014 }
2015 
2016 /*
2017  * sleazy prefix-length-based compare.
2018  * another inlining candidate..
2019  */
2020 boolean_t
2021 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
2022 {
2023 	int offset = pfxlen>>3;
2024 	int bitsleft = pfxlen & 7;
2025 	uint8_t *addr2 = (uint8_t *)addr2p;
2026 
2027 	/*
2028 	 * and there was much evil..
2029 	 * XXX should inline-expand the bcmp here and do this 32 bits
2030 	 * or 64 bits at a time..
2031 	 */
2032 	return ((bcmp(addr1, addr2, offset) == 0) &&
2033 	    ((bitsleft == 0) ||
2034 		(((addr1[offset] ^ addr2[offset]) &
2035 		    (0xff<<(8-bitsleft))) == 0)));
2036 }
2037 
2038 static ipsec_policy_t *
2039 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain,
2040     ipsec_selector_t *sel, boolean_t is_icmp_inv_acq)
2041 {
2042 	ipsec_selkey_t *isel;
2043 	ipsec_policy_t *p;
2044 	int bpri = best ? best->ipsp_prio : 0;
2045 
2046 	for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) {
2047 		uint32_t valid;
2048 
2049 		if (p->ipsp_prio <= bpri)
2050 			continue;
2051 		isel = &p->ipsp_sel->ipsl_key;
2052 		valid = isel->ipsl_valid;
2053 
2054 		if ((valid & IPSL_PROTOCOL) &&
2055 		    (isel->ipsl_proto != sel->ips_protocol))
2056 			continue;
2057 
2058 		if ((valid & IPSL_REMOTE_ADDR) &&
2059 		    !ip_addr_match((uint8_t *)&isel->ipsl_remote,
2060 			isel->ipsl_remote_pfxlen,
2061 			&sel->ips_remote_addr_v6))
2062 			continue;
2063 
2064 		if ((valid & IPSL_LOCAL_ADDR) &&
2065 		    !ip_addr_match((uint8_t *)&isel->ipsl_local,
2066 			isel->ipsl_local_pfxlen,
2067 			&sel->ips_local_addr_v6))
2068 			continue;
2069 
2070 		if ((valid & IPSL_REMOTE_PORT) &&
2071 		    isel->ipsl_rport != sel->ips_remote_port)
2072 			continue;
2073 
2074 		if ((valid & IPSL_LOCAL_PORT) &&
2075 		    isel->ipsl_lport != sel->ips_local_port)
2076 			continue;
2077 
2078 		if (!is_icmp_inv_acq) {
2079 			if ((valid & IPSL_ICMP_TYPE) &&
2080 			    (isel->ipsl_icmp_type > sel->ips_icmp_type ||
2081 			    isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
2082 				continue;
2083 			}
2084 
2085 			if ((valid & IPSL_ICMP_CODE) &&
2086 			    (isel->ipsl_icmp_code > sel->ips_icmp_code ||
2087 			    isel->ipsl_icmp_code_end <
2088 			    sel->ips_icmp_code)) {
2089 				continue;
2090 			}
2091 		} else {
2092 			/*
2093 			 * special case for icmp inverse acquire
2094 			 * we only want policies that aren't drop/pass
2095 			 */
2096 			if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
2097 				continue;
2098 		}
2099 
2100 		/* we matched all the packet-port-field selectors! */
2101 		best = p;
2102 		bpri = p->ipsp_prio;
2103 	}
2104 
2105 	return (best);
2106 }
2107 
2108 /*
2109  * Try to find and return the best policy entry under a given policy
2110  * root for a given set of selectors; the first parameter "best" is
2111  * the current best policy so far.  If "best" is non-null, we have a
2112  * reference to it.  We return a reference to a policy; if that policy
2113  * is not the original "best", we need to release that reference
2114  * before returning.
2115  */
2116 ipsec_policy_t *
2117 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head,
2118     int direction, ipsec_selector_t *sel, netstack_t *ns)
2119 {
2120 	ipsec_policy_t *curbest;
2121 	ipsec_policy_root_t *root;
2122 	uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
2123 	int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
2124 
2125 	curbest = best;
2126 	root = &head->iph_root[direction];
2127 
2128 #ifdef DEBUG
2129 	if (is_icmp_inv_acq) {
2130 		if (sel->ips_isv4) {
2131 			if (sel->ips_protocol != IPPROTO_ICMP) {
2132 			    cmn_err(CE_WARN, "ipsec_find_policy_head:"
2133 			    " expecting icmp, got %d", sel->ips_protocol);
2134 			}
2135 		} else {
2136 			if (sel->ips_protocol != IPPROTO_ICMPV6) {
2137 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
2138 				" expecting icmpv6, got %d", sel->ips_protocol);
2139 			}
2140 		}
2141 	}
2142 #endif
2143 
2144 	rw_enter(&head->iph_lock, RW_READER);
2145 
2146 	if (root->ipr_nchains > 0) {
2147 		curbest = ipsec_find_policy_chain(curbest,
2148 		    root->ipr_hash[selector_hash(sel, root)].hash_head, sel,
2149 		    is_icmp_inv_acq);
2150 	}
2151 	curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel,
2152 	    is_icmp_inv_acq);
2153 
2154 	/*
2155 	 * Adjust reference counts if we found anything new.
2156 	 */
2157 	if (curbest != best) {
2158 		ASSERT(curbest != NULL);
2159 		IPPOL_REFHOLD(curbest);
2160 
2161 		if (best != NULL) {
2162 			IPPOL_REFRELE(best, ns);
2163 		}
2164 	}
2165 
2166 	rw_exit(&head->iph_lock);
2167 
2168 	return (curbest);
2169 }
2170 
2171 /*
2172  * Find the best system policy (either global or per-interface) which
2173  * applies to the given selector; look in all the relevant policy roots
2174  * to figure out which policy wins.
2175  *
2176  * Returns a reference to a policy; caller must release this
2177  * reference when done.
2178  */
2179 ipsec_policy_t *
2180 ipsec_find_policy(int direction, conn_t *connp, ipsec_out_t *io,
2181     ipsec_selector_t *sel, netstack_t *ns)
2182 {
2183 	ipsec_policy_t *p;
2184 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2185 
2186 	p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy,
2187 	    direction, sel, ns);
2188 	if ((connp != NULL) && (connp->conn_policy != NULL)) {
2189 		p = ipsec_find_policy_head(p, connp->conn_policy,
2190 		    direction, sel, ns);
2191 	} else if ((io != NULL) && (io->ipsec_out_polhead != NULL)) {
2192 		p = ipsec_find_policy_head(p, io->ipsec_out_polhead,
2193 		    direction, sel, ns);
2194 	}
2195 
2196 	return (p);
2197 }
2198 
2199 /*
2200  * Check with global policy and see whether this inbound
2201  * packet meets the policy constraints.
2202  *
2203  * Locate appropriate policy from global policy, supplemented by the
2204  * conn's configured and/or cached policy if the conn is supplied.
2205  *
2206  * Dispatch to ipsec_check_ipsecin_policy if we have policy and an
2207  * encrypted packet to see if they match.
2208  *
2209  * Otherwise, see if the policy allows cleartext; if not, drop it on the
2210  * floor.
2211  */
2212 mblk_t *
2213 ipsec_check_global_policy(mblk_t *first_mp, conn_t *connp,
2214     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present, netstack_t *ns)
2215 {
2216 	ipsec_policy_t *p;
2217 	ipsec_selector_t sel;
2218 	mblk_t *data_mp, *ipsec_mp;
2219 	boolean_t policy_present;
2220 	kstat_named_t *counter;
2221 	ipsec_in_t *ii = NULL;
2222 	uint64_t pkt_unique;
2223 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2224 	ip_stack_t	*ipst = ns->netstack_ip;
2225 
2226 	data_mp = mctl_present ? first_mp->b_cont : first_mp;
2227 	ipsec_mp = mctl_present ? first_mp : NULL;
2228 
2229 	sel.ips_is_icmp_inv_acq = 0;
2230 
2231 	ASSERT((ipha == NULL && ip6h != NULL) ||
2232 	    (ip6h == NULL && ipha != NULL));
2233 
2234 	if (ipha != NULL)
2235 		policy_present = ipss->ipsec_inbound_v4_policy_present;
2236 	else
2237 		policy_present = ipss->ipsec_inbound_v6_policy_present;
2238 
2239 	if (!policy_present && connp == NULL) {
2240 		/*
2241 		 * No global policy and no per-socket policy;
2242 		 * just pass it back (but we shouldn't get here in that case)
2243 		 */
2244 		return (first_mp);
2245 	}
2246 
2247 	if (ipsec_mp != NULL) {
2248 		ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
2249 		ii = (ipsec_in_t *)(ipsec_mp->b_rptr);
2250 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
2251 	}
2252 
2253 	/*
2254 	 * If we have cached policy, use it.
2255 	 * Otherwise consult system policy.
2256 	 */
2257 	if ((connp != NULL) && (connp->conn_latch != NULL)) {
2258 		p = connp->conn_latch->ipl_in_policy;
2259 		if (p != NULL) {
2260 			IPPOL_REFHOLD(p);
2261 		}
2262 		/*
2263 		 * Fudge sel for UNIQUE_ID setting below.
2264 		 */
2265 		pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h);
2266 	} else {
2267 		/* Initialize the ports in the selector */
2268 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
2269 			SEL_NONE) == SELRET_NOMEM) {
2270 			/*
2271 			 * Technically not a policy mismatch, but it is
2272 			 * an internal failure.
2273 			 */
2274 			ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2275 			    "ipsec_init_inbound_sel", ipha, ip6h, B_FALSE, ns);
2276 			counter = DROPPER(ipss, ipds_spd_nomem);
2277 			goto fail;
2278 		}
2279 
2280 		/*
2281 		 * Find the policy which best applies.
2282 		 *
2283 		 * If we find global policy, we should look at both
2284 		 * local policy and global policy and see which is
2285 		 * stronger and match accordingly.
2286 		 *
2287 		 * If we don't find a global policy, check with
2288 		 * local policy alone.
2289 		 */
2290 
2291 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel,
2292 		    ns);
2293 		pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
2294 		    sel.ips_local_port, sel.ips_protocol, 0);
2295 	}
2296 
2297 	if (p == NULL) {
2298 		if (ipsec_mp == NULL) {
2299 			/*
2300 			 * We have no policy; default to succeeding.
2301 			 * XXX paranoid system design doesn't do this.
2302 			 */
2303 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2304 			return (first_mp);
2305 		} else {
2306 			counter = DROPPER(ipss, ipds_spd_got_secure);
2307 			ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
2308 			    "ipsec_check_global_policy", ipha, ip6h, B_TRUE,
2309 			    ns);
2310 			goto fail;
2311 		}
2312 	}
2313 	if ((ii != NULL) && (ii->ipsec_in_secure)) {
2314 		return (ipsec_check_ipsecin_policy(ipsec_mp, p, ipha, ip6h,
2315 		    pkt_unique, ns));
2316 	}
2317 	if (p->ipsp_act->ipa_allow_clear) {
2318 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2319 		IPPOL_REFRELE(p, ns);
2320 		return (first_mp);
2321 	}
2322 	IPPOL_REFRELE(p, ns);
2323 	/*
2324 	 * If we reach here, we will drop the packet because it failed the
2325 	 * global policy check because the packet was cleartext, and it
2326 	 * should not have been.
2327 	 */
2328 	ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2329 	    "ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns);
2330 	counter = DROPPER(ipss, ipds_spd_got_clear);
2331 
2332 fail:
2333 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2334 	    &ipss->ipsec_spd_dropper);
2335 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2336 	return (NULL);
2337 }
2338 
2339 /*
2340  * We check whether an inbound datagram is a valid one
2341  * to accept in clear. If it is secure, it is the job
2342  * of IPSEC to log information appropriately if it
2343  * suspects that it may not be the real one.
2344  *
2345  * It is called only while fanning out to the ULP
2346  * where ULP accepts only secure data and the incoming
2347  * is clear. Usually we never accept clear datagrams in
2348  * such cases. ICMP is the only exception.
2349  *
2350  * NOTE : We don't call this function if the client (ULP)
2351  * is willing to accept things in clear.
2352  */
2353 boolean_t
2354 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
2355 {
2356 	ushort_t iph_hdr_length;
2357 	icmph_t *icmph;
2358 	icmp6_t *icmp6;
2359 	uint8_t *nexthdrp;
2360 
2361 	ASSERT((ipha != NULL && ip6h == NULL) ||
2362 	    (ipha == NULL && ip6h != NULL));
2363 
2364 	if (ip6h != NULL) {
2365 		iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
2366 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
2367 		    &nexthdrp)) {
2368 			return (B_FALSE);
2369 		}
2370 		if (*nexthdrp != IPPROTO_ICMPV6)
2371 			return (B_FALSE);
2372 		icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
2373 		/* Match IPv6 ICMP policy as closely as IPv4 as possible. */
2374 		switch (icmp6->icmp6_type) {
2375 		case ICMP6_PARAM_PROB:
2376 			/* Corresponds to port/proto unreach in IPv4. */
2377 		case ICMP6_ECHO_REQUEST:
2378 			/* Just like IPv4. */
2379 			return (B_FALSE);
2380 
2381 		case MLD_LISTENER_QUERY:
2382 		case MLD_LISTENER_REPORT:
2383 		case MLD_LISTENER_REDUCTION:
2384 			/*
2385 			 * XXX Seperate NDD in IPv4 what about here?
2386 			 * Plus, mcast is important to ND.
2387 			 */
2388 		case ICMP6_DST_UNREACH:
2389 			/* Corresponds to HOST/NET unreachable in IPv4. */
2390 		case ICMP6_PACKET_TOO_BIG:
2391 		case ICMP6_ECHO_REPLY:
2392 			/* These are trusted in IPv4. */
2393 		case ND_ROUTER_SOLICIT:
2394 		case ND_ROUTER_ADVERT:
2395 		case ND_NEIGHBOR_SOLICIT:
2396 		case ND_NEIGHBOR_ADVERT:
2397 		case ND_REDIRECT:
2398 			/* Trust ND messages for now. */
2399 		case ICMP6_TIME_EXCEEDED:
2400 		default:
2401 			return (B_TRUE);
2402 		}
2403 	} else {
2404 		/*
2405 		 * If it is not ICMP, fail this request.
2406 		 */
2407 		if (ipha->ipha_protocol != IPPROTO_ICMP) {
2408 #ifdef FRAGCACHE_DEBUG
2409 			cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n",
2410 			    ipha->ipha_protocol);
2411 #endif
2412 			return (B_FALSE);
2413 		}
2414 		iph_hdr_length = IPH_HDR_LENGTH(ipha);
2415 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2416 		/*
2417 		 * It is an insecure icmp message. Check to see whether we are
2418 		 * willing to accept this one.
2419 		 */
2420 
2421 		switch (icmph->icmph_type) {
2422 		case ICMP_ECHO_REPLY:
2423 		case ICMP_TIME_STAMP_REPLY:
2424 		case ICMP_INFO_REPLY:
2425 		case ICMP_ROUTER_ADVERTISEMENT:
2426 			/*
2427 			 * We should not encourage clear replies if this
2428 			 * client expects secure. If somebody is replying
2429 			 * in clear some mailicious user watching both the
2430 			 * request and reply, can do chosen-plain-text attacks.
2431 			 * With global policy we might be just expecting secure
2432 			 * but sending out clear. We don't know what the right
2433 			 * thing is. We can't do much here as we can't control
2434 			 * the sender here. Till we are sure of what to do,
2435 			 * accept them.
2436 			 */
2437 			return (B_TRUE);
2438 		case ICMP_ECHO_REQUEST:
2439 		case ICMP_TIME_STAMP_REQUEST:
2440 		case ICMP_INFO_REQUEST:
2441 		case ICMP_ADDRESS_MASK_REQUEST:
2442 		case ICMP_ROUTER_SOLICITATION:
2443 		case ICMP_ADDRESS_MASK_REPLY:
2444 			/*
2445 			 * Don't accept this as somebody could be sending
2446 			 * us plain text to get encrypted data. If we reply,
2447 			 * it will lead to chosen plain text attack.
2448 			 */
2449 			return (B_FALSE);
2450 		case ICMP_DEST_UNREACHABLE:
2451 			switch (icmph->icmph_code) {
2452 			case ICMP_FRAGMENTATION_NEEDED:
2453 				/*
2454 				 * Be in sync with icmp_inbound, where we have
2455 				 * already set ire_max_frag.
2456 				 */
2457 #ifdef FRAGCACHE_DEBUG
2458 			cmn_err(CE_WARN, "ICMP frag needed\n");
2459 #endif
2460 				return (B_TRUE);
2461 			case ICMP_HOST_UNREACHABLE:
2462 			case ICMP_NET_UNREACHABLE:
2463 				/*
2464 				 * By accepting, we could reset a connection.
2465 				 * How do we solve the problem of some
2466 				 * intermediate router sending in-secure ICMP
2467 				 * messages ?
2468 				 */
2469 				return (B_TRUE);
2470 			case ICMP_PORT_UNREACHABLE:
2471 			case ICMP_PROTOCOL_UNREACHABLE:
2472 			default :
2473 				return (B_FALSE);
2474 			}
2475 		case ICMP_SOURCE_QUENCH:
2476 			/*
2477 			 * If this is an attack, TCP will slow start
2478 			 * because of this. Is it very harmful ?
2479 			 */
2480 			return (B_TRUE);
2481 		case ICMP_PARAM_PROBLEM:
2482 			return (B_FALSE);
2483 		case ICMP_TIME_EXCEEDED:
2484 			return (B_TRUE);
2485 		case ICMP_REDIRECT:
2486 			return (B_FALSE);
2487 		default :
2488 			return (B_FALSE);
2489 		}
2490 	}
2491 }
2492 
2493 void
2494 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
2495 {
2496 	mutex_enter(&ipl->ipl_lock);
2497 
2498 	if (ipl->ipl_ids_latched) {
2499 		/* I lost, someone else got here before me */
2500 		mutex_exit(&ipl->ipl_lock);
2501 		return;
2502 	}
2503 
2504 	if (local != NULL)
2505 		IPSID_REFHOLD(local);
2506 	if (remote != NULL)
2507 		IPSID_REFHOLD(remote);
2508 
2509 	ipl->ipl_local_cid = local;
2510 	ipl->ipl_remote_cid = remote;
2511 	ipl->ipl_ids_latched = B_TRUE;
2512 	mutex_exit(&ipl->ipl_lock);
2513 }
2514 
2515 void
2516 ipsec_latch_inbound(ipsec_latch_t *ipl, ipsec_in_t *ii)
2517 {
2518 	ipsa_t *sa;
2519 
2520 	if (!ipl->ipl_ids_latched) {
2521 		ipsid_t *local = NULL;
2522 		ipsid_t *remote = NULL;
2523 
2524 		if (!ii->ipsec_in_loopback) {
2525 			if (ii->ipsec_in_esp_sa != NULL)
2526 				sa = ii->ipsec_in_esp_sa;
2527 			else
2528 				sa = ii->ipsec_in_ah_sa;
2529 			ASSERT(sa != NULL);
2530 			local = sa->ipsa_dst_cid;
2531 			remote = sa->ipsa_src_cid;
2532 		}
2533 		ipsec_latch_ids(ipl, local, remote);
2534 	}
2535 	ipl->ipl_in_action = ii->ipsec_in_action;
2536 	IPACT_REFHOLD(ipl->ipl_in_action);
2537 }
2538 
2539 /*
2540  * Check whether the policy constraints are met either for an
2541  * inbound datagram; called from IP in numerous places.
2542  *
2543  * Note that this is not a chokepoint for inbound policy checks;
2544  * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy()
2545  */
2546 mblk_t *
2547 ipsec_check_inbound_policy(mblk_t *first_mp, conn_t *connp,
2548     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present)
2549 {
2550 	ipsec_in_t *ii;
2551 	boolean_t ret;
2552 	mblk_t *mp = mctl_present ? first_mp->b_cont : first_mp;
2553 	mblk_t *ipsec_mp = mctl_present ? first_mp : NULL;
2554 	ipsec_latch_t *ipl;
2555 	uint64_t unique_id;
2556 	ipsec_stack_t	*ipss;
2557 	ip_stack_t	*ipst;
2558 	netstack_t	*ns;
2559 
2560 	ASSERT(connp != NULL);
2561 	ipl = connp->conn_latch;
2562 	ns = connp->conn_netstack;
2563 	ipss = ns->netstack_ipsec;
2564 	ipst = ns->netstack_ip;
2565 
2566 	if (ipsec_mp == NULL) {
2567 clear:
2568 		/*
2569 		 * This is the case where the incoming datagram is
2570 		 * cleartext and we need to see whether this client
2571 		 * would like to receive such untrustworthy things from
2572 		 * the wire.
2573 		 */
2574 		ASSERT(mp != NULL);
2575 
2576 		if (ipl != NULL) {
2577 			/*
2578 			 * Policy is cached in the conn.
2579 			 */
2580 			if ((ipl->ipl_in_policy != NULL) &&
2581 			    (!ipl->ipl_in_policy->ipsp_act->ipa_allow_clear)) {
2582 				ret = ipsec_inbound_accept_clear(mp,
2583 				    ipha, ip6h);
2584 				if (ret) {
2585 					BUMP_MIB(&ipst->ips_ip_mib,
2586 					    ipsecInSucceeded);
2587 					return (first_mp);
2588 				} else {
2589 					ipsec_log_policy_failure(
2590 					    IPSEC_POLICY_MISMATCH,
2591 					    "ipsec_check_inbound_policy", ipha,
2592 					    ip6h, B_FALSE, ns);
2593 					ip_drop_packet(first_mp, B_TRUE, NULL,
2594 					    NULL,
2595 					    DROPPER(ipss, ipds_spd_got_clear),
2596 					    &ipss->ipsec_spd_dropper);
2597 					BUMP_MIB(&ipst->ips_ip_mib,
2598 					    ipsecInFailed);
2599 					return (NULL);
2600 				}
2601 			} else {
2602 				BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2603 				return (first_mp);
2604 			}
2605 		} else {
2606 			/*
2607 			 * As this is a non-hardbound connection we need
2608 			 * to look at both per-socket policy and global
2609 			 * policy. As this is cleartext, mark the mp as
2610 			 * M_DATA in case if it is an ICMP error being
2611 			 * reported before calling ipsec_check_global_policy
2612 			 * so that it does not mistake it for IPSEC_IN.
2613 			 */
2614 			uchar_t db_type = mp->b_datap->db_type;
2615 			mp->b_datap->db_type = M_DATA;
2616 			first_mp = ipsec_check_global_policy(first_mp, connp,
2617 			    ipha, ip6h, mctl_present, ns);
2618 			if (first_mp != NULL)
2619 				mp->b_datap->db_type = db_type;
2620 			return (first_mp);
2621 		}
2622 	}
2623 	/*
2624 	 * If it is inbound check whether the attached message
2625 	 * is secure or not. We have a special case for ICMP,
2626 	 * where we have a IPSEC_IN message and the attached
2627 	 * message is not secure. See icmp_inbound_error_fanout
2628 	 * for details.
2629 	 */
2630 	ASSERT(ipsec_mp != NULL);
2631 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
2632 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
2633 
2634 	if (!ii->ipsec_in_secure)
2635 		goto clear;
2636 
2637 	/*
2638 	 * mp->b_cont could be either a M_CTL message
2639 	 * for icmp errors being sent up or a M_DATA message.
2640 	 */
2641 	ASSERT(mp->b_datap->db_type == M_CTL || mp->b_datap->db_type == M_DATA);
2642 
2643 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
2644 
2645 	if (ipl == NULL) {
2646 		/*
2647 		 * We don't have policies cached in the conn
2648 		 * for this stream. So, look at the global
2649 		 * policy. It will check against conn or global
2650 		 * depending on whichever is stronger.
2651 		 */
2652 		return (ipsec_check_global_policy(first_mp, connp,
2653 		    ipha, ip6h, mctl_present, ns));
2654 	}
2655 
2656 	if (ipl->ipl_in_action != NULL) {
2657 		/* Policy is cached & latched; fast(er) path */
2658 		const char *reason;
2659 		kstat_named_t *counter;
2660 
2661 		if (ipsec_check_ipsecin_latch(ii, mp, ipl,
2662 		    ipha, ip6h, &reason, &counter, connp)) {
2663 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2664 			return (first_mp);
2665 		}
2666 		ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0,
2667 		    SL_ERROR|SL_WARN|SL_CONSOLE,
2668 		    "ipsec inbound policy mismatch: %s, packet dropped\n",
2669 		    reason);
2670 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2671 		    &ipss->ipsec_spd_dropper);
2672 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2673 		return (NULL);
2674 	} else if (ipl->ipl_in_policy == NULL) {
2675 		ipsec_weird_null_inbound_policy++;
2676 		return (first_mp);
2677 	}
2678 
2679 	unique_id = conn_to_unique(connp, mp, ipha, ip6h);
2680 	IPPOL_REFHOLD(ipl->ipl_in_policy);
2681 	first_mp = ipsec_check_ipsecin_policy(first_mp, ipl->ipl_in_policy,
2682 	    ipha, ip6h, unique_id, ns);
2683 	/*
2684 	 * NOTE: ipsecIn{Failed,Succeeeded} bumped by
2685 	 * ipsec_check_ipsecin_policy().
2686 	 */
2687 	if (first_mp != NULL)
2688 		ipsec_latch_inbound(ipl, ii);
2689 	return (first_mp);
2690 }
2691 
2692 /*
2693  * Returns:
2694  *
2695  * SELRET_NOMEM --> msgpullup() needed to gather things failed.
2696  * SELRET_BADPKT --> If we're being called after tunnel-mode fragment
2697  *		     gathering, the initial fragment is too short for
2698  *		     useful data.  Only returned if SEL_TUNNEL_FIRSTFRAG is
2699  *		     set.
2700  * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data.
2701  * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet.  Caller
2702  *		      should put this packet in a fragment-gathering queue.
2703  *		      Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY
2704  *		      is set.
2705  */
2706 static selret_t
2707 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2708     ip6_t *ip6h, uint8_t sel_flags)
2709 {
2710 	uint16_t *ports;
2711 	ushort_t hdr_len;
2712 	int outer_hdr_len = 0;	/* For ICMP tunnel-mode cases... */
2713 	mblk_t *spare_mp = NULL;
2714 	uint8_t *nexthdrp;
2715 	uint8_t nexthdr;
2716 	uint8_t *typecode;
2717 	uint8_t check_proto;
2718 	ip6_pkt_t ipp;
2719 	boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY);
2720 	boolean_t is_icmp = (sel_flags & SEL_IS_ICMP);
2721 	boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE);
2722 
2723 	ASSERT((ipha == NULL && ip6h != NULL) ||
2724 	    (ipha != NULL && ip6h == NULL));
2725 
2726 	if (ip6h != NULL) {
2727 		if (is_icmp)
2728 			outer_hdr_len = ((uint8_t *)ip6h) - mp->b_rptr;
2729 
2730 		check_proto = IPPROTO_ICMPV6;
2731 		sel->ips_isv4 = B_FALSE;
2732 		sel->ips_local_addr_v6 = ip6h->ip6_dst;
2733 		sel->ips_remote_addr_v6 = ip6h->ip6_src;
2734 
2735 		bzero(&ipp, sizeof (ipp));
2736 		(void) ip_find_hdr_v6(mp, ip6h, &ipp, NULL);
2737 
2738 		nexthdr = ip6h->ip6_nxt;
2739 		switch (nexthdr) {
2740 		case IPPROTO_HOPOPTS:
2741 		case IPPROTO_ROUTING:
2742 		case IPPROTO_DSTOPTS:
2743 		case IPPROTO_FRAGMENT:
2744 			/*
2745 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2746 			 * mblk that's contiguous to feed it
2747 			 */
2748 			if ((spare_mp = msgpullup(mp, -1)) == NULL)
2749 				return (SELRET_NOMEM);
2750 			if (!ip_hdr_length_nexthdr_v6(spare_mp,
2751 			    (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2752 				&hdr_len, &nexthdrp)) {
2753 				/* Malformed packet - caller frees. */
2754 				ipsec_freemsg_chain(spare_mp);
2755 				return (SELRET_BADPKT);
2756 			}
2757 			nexthdr = *nexthdrp;
2758 			/* We can just extract based on hdr_len now. */
2759 			break;
2760 		default:
2761 			hdr_len = IPV6_HDR_LEN;
2762 			break;
2763 		}
2764 
2765 		if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) {
2766 			/* IPv6 Fragment */
2767 			ipsec_freemsg_chain(spare_mp);
2768 			return (SELRET_TUNFRAG);
2769 		}
2770 	} else {
2771 		if (is_icmp)
2772 			outer_hdr_len = ((uint8_t *)ipha) - mp->b_rptr;
2773 		check_proto = IPPROTO_ICMP;
2774 		sel->ips_isv4 = B_TRUE;
2775 		sel->ips_local_addr_v4 = ipha->ipha_dst;
2776 		sel->ips_remote_addr_v4 = ipha->ipha_src;
2777 		nexthdr = ipha->ipha_protocol;
2778 		hdr_len = IPH_HDR_LENGTH(ipha);
2779 
2780 		if (port_policy_present &&
2781 		    IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) &&
2782 		    !is_icmp) {
2783 			/* IPv4 Fragment */
2784 			ipsec_freemsg_chain(spare_mp);
2785 			return (SELRET_TUNFRAG);
2786 		}
2787 
2788 	}
2789 	sel->ips_protocol = nexthdr;
2790 
2791 	if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2792 		nexthdr != IPPROTO_SCTP && nexthdr != check_proto) ||
2793 	    (!port_policy_present && tunnel_mode)) {
2794 		sel->ips_remote_port = sel->ips_local_port = 0;
2795 		ipsec_freemsg_chain(spare_mp);
2796 		return (SELRET_SUCCESS);
2797 	}
2798 
2799 	if (&mp->b_rptr[hdr_len] + 4 > mp->b_wptr) {
2800 		/* If we didn't pullup a copy already, do so now. */
2801 		/*
2802 		 * XXX performance, will upper-layers frequently split TCP/UDP
2803 		 * apart from IP or options?  If so, perhaps we should revisit
2804 		 * the spare_mp strategy.
2805 		 */
2806 		ipsec_hdr_pullup_needed++;
2807 		if (spare_mp == NULL &&
2808 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2809 			return (SELRET_NOMEM);
2810 		}
2811 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2812 	} else {
2813 		ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2814 	}
2815 
2816 	if (nexthdr == check_proto) {
2817 		typecode = (uint8_t *)ports;
2818 		sel->ips_icmp_type = *typecode++;
2819 		sel->ips_icmp_code = *typecode;
2820 		sel->ips_remote_port = sel->ips_local_port = 0;
2821 	} else {
2822 		sel->ips_remote_port = *ports++;
2823 		sel->ips_local_port = *ports;
2824 	}
2825 	ipsec_freemsg_chain(spare_mp);
2826 	return (SELRET_SUCCESS);
2827 }
2828 
2829 static boolean_t
2830 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2831     ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss)
2832 {
2833 	/*
2834 	 * XXX cut&paste shared with ipsec_init_inbound_sel
2835 	 */
2836 	uint16_t *ports;
2837 	ushort_t hdr_len;
2838 	mblk_t *spare_mp = NULL;
2839 	uint8_t *nexthdrp;
2840 	uint8_t nexthdr;
2841 	uint8_t *typecode;
2842 	uint8_t check_proto;
2843 
2844 	ASSERT((ipha == NULL && ip6h != NULL) ||
2845 	    (ipha != NULL && ip6h == NULL));
2846 
2847 	if (ip6h != NULL) {
2848 		check_proto = IPPROTO_ICMPV6;
2849 		nexthdr = ip6h->ip6_nxt;
2850 		switch (nexthdr) {
2851 		case IPPROTO_HOPOPTS:
2852 		case IPPROTO_ROUTING:
2853 		case IPPROTO_DSTOPTS:
2854 		case IPPROTO_FRAGMENT:
2855 			/*
2856 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2857 			 * mblk that's contiguous to feed it
2858 			 */
2859 			spare_mp = msgpullup(mp, -1);
2860 			if (spare_mp == NULL ||
2861 			    !ip_hdr_length_nexthdr_v6(spare_mp,
2862 				(ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2863 				&hdr_len, &nexthdrp)) {
2864 				/* Always works, even if NULL. */
2865 				ipsec_freemsg_chain(spare_mp);
2866 				ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
2867 				    DROPPER(ipss, ipds_spd_nomem),
2868 				    &ipss->ipsec_spd_dropper);
2869 				return (B_FALSE);
2870 			} else {
2871 				nexthdr = *nexthdrp;
2872 				/* We can just extract based on hdr_len now. */
2873 			}
2874 			break;
2875 		default:
2876 			hdr_len = IPV6_HDR_LEN;
2877 			break;
2878 		}
2879 	} else {
2880 		check_proto = IPPROTO_ICMP;
2881 		hdr_len = IPH_HDR_LENGTH(ipha);
2882 		nexthdr = ipha->ipha_protocol;
2883 	}
2884 
2885 	sel->ips_protocol = nexthdr;
2886 	if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2887 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2888 		sel->ips_local_port = sel->ips_remote_port = 0;
2889 		ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2890 		return (B_TRUE);
2891 	}
2892 
2893 	if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) {
2894 		/* If we didn't pullup a copy already, do so now. */
2895 		/*
2896 		 * XXX performance, will upper-layers frequently split TCP/UDP
2897 		 * apart from IP or options?  If so, perhaps we should revisit
2898 		 * the spare_mp strategy.
2899 		 *
2900 		 * XXX should this be msgpullup(mp, hdr_len+4) ???
2901 		 */
2902 		if (spare_mp == NULL &&
2903 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2904 			ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
2905 			    DROPPER(ipss, ipds_spd_nomem),
2906 			    &ipss->ipsec_spd_dropper);
2907 			return (B_FALSE);
2908 		}
2909 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2910 	} else {
2911 		ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2912 	}
2913 
2914 	if (nexthdr == check_proto) {
2915 		typecode = (uint8_t *)ports;
2916 		sel->ips_icmp_type = *typecode++;
2917 		sel->ips_icmp_code = *typecode;
2918 		sel->ips_remote_port = sel->ips_local_port = 0;
2919 	} else {
2920 		sel->ips_local_port = *ports++;
2921 		sel->ips_remote_port = *ports;
2922 	}
2923 	ipsec_freemsg_chain(spare_mp);	/* Always works, even if NULL */
2924 	return (B_TRUE);
2925 }
2926 
2927 /*
2928  * Create an ipsec_action_t based on the way an inbound packet was protected.
2929  * Used to reflect traffic back to a sender.
2930  *
2931  * We don't bother interning the action into the hash table.
2932  */
2933 ipsec_action_t *
2934 ipsec_in_to_out_action(ipsec_in_t *ii)
2935 {
2936 	ipsa_t *ah_assoc, *esp_assoc;
2937 	uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
2938 	ipsec_action_t *ap;
2939 	boolean_t unique;
2940 
2941 	ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2942 
2943 	if (ap == NULL)
2944 		return (NULL);
2945 
2946 	bzero(ap, sizeof (*ap));
2947 	HASH_NULL(ap, ipa_hash);
2948 	ap->ipa_next = NULL;
2949 	ap->ipa_refs = 1;
2950 
2951 	/*
2952 	 * Get the algorithms that were used for this packet.
2953 	 */
2954 	ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
2955 	ap->ipa_act.ipa_log = 0;
2956 	ah_assoc = ii->ipsec_in_ah_sa;
2957 	ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
2958 
2959 	esp_assoc = ii->ipsec_in_esp_sa;
2960 	ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
2961 
2962 	if (esp_assoc != NULL) {
2963 		encr_alg = esp_assoc->ipsa_encr_alg;
2964 		espa_alg = esp_assoc->ipsa_auth_alg;
2965 		ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
2966 	}
2967 	if (ah_assoc != NULL)
2968 		auth_alg = ah_assoc->ipsa_auth_alg;
2969 
2970 	ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
2971 	ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
2972 	ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
2973 	ap->ipa_act.ipa_apply.ipp_use_se = ii->ipsec_in_decaps;
2974 	unique = B_FALSE;
2975 
2976 	if (esp_assoc != NULL) {
2977 		ap->ipa_act.ipa_apply.ipp_espa_minbits =
2978 		    esp_assoc->ipsa_authkeybits;
2979 		ap->ipa_act.ipa_apply.ipp_espa_maxbits =
2980 		    esp_assoc->ipsa_authkeybits;
2981 		ap->ipa_act.ipa_apply.ipp_espe_minbits =
2982 		    esp_assoc->ipsa_encrkeybits;
2983 		ap->ipa_act.ipa_apply.ipp_espe_maxbits =
2984 		    esp_assoc->ipsa_encrkeybits;
2985 		ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
2986 		ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
2987 		if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
2988 			unique = B_TRUE;
2989 	}
2990 	if (ah_assoc != NULL) {
2991 		ap->ipa_act.ipa_apply.ipp_ah_minbits =
2992 		    ah_assoc->ipsa_authkeybits;
2993 		ap->ipa_act.ipa_apply.ipp_ah_maxbits =
2994 		    ah_assoc->ipsa_authkeybits;
2995 		ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
2996 		ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
2997 		if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
2998 			unique = B_TRUE;
2999 	}
3000 	ap->ipa_act.ipa_apply.ipp_use_unique = unique;
3001 	ap->ipa_want_unique = unique;
3002 	ap->ipa_allow_clear = B_FALSE;
3003 	ap->ipa_want_se = ii->ipsec_in_decaps;
3004 	ap->ipa_want_ah = (ah_assoc != NULL);
3005 	ap->ipa_want_esp = (esp_assoc != NULL);
3006 
3007 	ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
3008 
3009 	ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
3010 
3011 	return (ap);
3012 }
3013 
3014 
3015 /*
3016  * Compute the worst-case amount of extra space required by an action.
3017  * Note that, because of the ESP considerations listed below, this is
3018  * actually not the same as the best-case reduction in the MTU; in the
3019  * future, we should pass additional information to this function to
3020  * allow the actual MTU impact to be computed.
3021  *
3022  * AH: Revisit this if we implement algorithms with
3023  * a verifier size of more than 12 bytes.
3024  *
3025  * ESP: A more exact but more messy computation would take into
3026  * account the interaction between the cipher block size and the
3027  * effective MTU, yielding the inner payload size which reflects a
3028  * packet with *minimum* ESP padding..
3029  */
3030 int32_t
3031 ipsec_act_ovhd(const ipsec_act_t *act)
3032 {
3033 	int32_t overhead = 0;
3034 
3035 	if (act->ipa_type == IPSEC_ACT_APPLY) {
3036 		const ipsec_prot_t *ipp = &act->ipa_apply;
3037 
3038 		if (ipp->ipp_use_ah)
3039 			overhead += IPSEC_MAX_AH_HDR_SIZE;
3040 		if (ipp->ipp_use_esp) {
3041 			overhead += IPSEC_MAX_ESP_HDR_SIZE;
3042 			overhead += sizeof (struct udphdr);
3043 		}
3044 		if (ipp->ipp_use_se)
3045 			overhead += IP_SIMPLE_HDR_LENGTH;
3046 	}
3047 	return (overhead);
3048 }
3049 
3050 /*
3051  * This hash function is used only when creating policies and thus is not
3052  * performance-critical for packet flows.
3053  *
3054  * Future work: canonicalize the structures hashed with this (i.e.,
3055  * zeroize padding) so the hash works correctly.
3056  */
3057 /* ARGSUSED */
3058 static uint32_t
3059 policy_hash(int size, const void *start, const void *end)
3060 {
3061 	return (0);
3062 }
3063 
3064 
3065 /*
3066  * Hash function macros for each address type.
3067  *
3068  * The IPV6 hash function assumes that the low order 32-bits of the
3069  * address (typically containing the low order 24 bits of the mac
3070  * address) are reasonably well-distributed.  Revisit this if we run
3071  * into trouble from lots of collisions on ::1 addresses and the like
3072  * (seems unlikely).
3073  */
3074 #define	IPSEC_IPV4_HASH(a, n) ((a) % (n))
3075 #define	IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n))
3076 
3077 /*
3078  * These two hash functions should produce coordinated values
3079  * but have slightly different roles.
3080  */
3081 static uint32_t
3082 selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns)
3083 {
3084 	uint32_t valid = selkey->ipsl_valid;
3085 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3086 
3087 	if (!(valid & IPSL_REMOTE_ADDR))
3088 		return (IPSEC_SEL_NOHASH);
3089 
3090 	if (valid & IPSL_IPV4) {
3091 		if (selkey->ipsl_remote_pfxlen == 32) {
3092 			return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3093 				    ipss->ipsec_spd_hashsize));
3094 		}
3095 	}
3096 	if (valid & IPSL_IPV6) {
3097 		if (selkey->ipsl_remote_pfxlen == 128) {
3098 			return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3099 				    ipss->ipsec_spd_hashsize));
3100 		}
3101 	}
3102 	return (IPSEC_SEL_NOHASH);
3103 }
3104 
3105 static uint32_t
3106 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root)
3107 {
3108 	if (sel->ips_isv4) {
3109 		return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4,
3110 			    root->ipr_nchains));
3111 	}
3112 	return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains));
3113 }
3114 
3115 /*
3116  * Intern actions into the action hash table.
3117  */
3118 ipsec_action_t *
3119 ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns)
3120 {
3121 	int i;
3122 	uint32_t hval;
3123 	ipsec_action_t *ap;
3124 	ipsec_action_t *prev = NULL;
3125 	int32_t overhead, maxovhd = 0;
3126 	boolean_t allow_clear = B_FALSE;
3127 	boolean_t want_ah = B_FALSE;
3128 	boolean_t want_esp = B_FALSE;
3129 	boolean_t want_se = B_FALSE;
3130 	boolean_t want_unique = B_FALSE;
3131 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3132 
3133 	/*
3134 	 * TODO: should canonicalize a[] (i.e., zeroize any padding)
3135 	 * so we can use a non-trivial policy_hash function.
3136 	 */
3137 	for (i = n-1; i >= 0; i--) {
3138 		hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
3139 
3140 		HASH_LOCK(ipss->ipsec_action_hash, hval);
3141 
3142 		for (HASH_ITERATE(ap, ipa_hash,
3143 		    ipss->ipsec_action_hash, hval)) {
3144 			if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
3145 				continue;
3146 			if (ap->ipa_next != prev)
3147 				continue;
3148 			break;
3149 		}
3150 		if (ap != NULL) {
3151 			HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3152 			prev = ap;
3153 			continue;
3154 		}
3155 		/*
3156 		 * need to allocate a new one..
3157 		 */
3158 		ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
3159 		if (ap == NULL) {
3160 			HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3161 			if (prev != NULL)
3162 				ipsec_action_free(prev);
3163 			return (NULL);
3164 		}
3165 		HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval);
3166 
3167 		ap->ipa_next = prev;
3168 		ap->ipa_act = a[i];
3169 
3170 		overhead = ipsec_act_ovhd(&a[i]);
3171 		if (maxovhd < overhead)
3172 			maxovhd = overhead;
3173 
3174 		if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
3175 		    (a[i].ipa_type == IPSEC_ACT_CLEAR))
3176 			allow_clear = B_TRUE;
3177 		if (a[i].ipa_type == IPSEC_ACT_APPLY) {
3178 			const ipsec_prot_t *ipp = &a[i].ipa_apply;
3179 
3180 			ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
3181 			want_ah |= ipp->ipp_use_ah;
3182 			want_esp |= ipp->ipp_use_esp;
3183 			want_se |= ipp->ipp_use_se;
3184 			want_unique |= ipp->ipp_use_unique;
3185 		}
3186 		ap->ipa_allow_clear = allow_clear;
3187 		ap->ipa_want_ah = want_ah;
3188 		ap->ipa_want_esp = want_esp;
3189 		ap->ipa_want_se = want_se;
3190 		ap->ipa_want_unique = want_unique;
3191 		ap->ipa_refs = 1; /* from the hash table */
3192 		ap->ipa_ovhd = maxovhd;
3193 		if (prev)
3194 			prev->ipa_refs++;
3195 		prev = ap;
3196 		HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3197 	}
3198 
3199 	ap->ipa_refs++;		/* caller's reference */
3200 
3201 	return (ap);
3202 }
3203 
3204 /*
3205  * Called when refcount goes to 0, indicating that all references to this
3206  * node are gone.
3207  *
3208  * This does not unchain the action from the hash table.
3209  */
3210 void
3211 ipsec_action_free(ipsec_action_t *ap)
3212 {
3213 	for (;;) {
3214 		ipsec_action_t *np = ap->ipa_next;
3215 		ASSERT(ap->ipa_refs == 0);
3216 		ASSERT(ap->ipa_hash.hash_pp == NULL);
3217 		kmem_cache_free(ipsec_action_cache, ap);
3218 		ap = np;
3219 		/* Inlined IPACT_REFRELE -- avoid recursion */
3220 		if (ap == NULL)
3221 			break;
3222 		membar_exit();
3223 		if (atomic_add_32_nv(&(ap)->ipa_refs, -1) != 0)
3224 			break;
3225 		/* End inlined IPACT_REFRELE */
3226 	}
3227 }
3228 
3229 /*
3230  * Called when the action hash table goes away.
3231  *
3232  * The actions can be queued on an mblk with ipsec_in or
3233  * ipsec_out, hence the actions might still be around.
3234  * But we decrement ipa_refs here since we no longer have
3235  * a reference to the action from the hash table.
3236  */
3237 static void
3238 ipsec_action_free_table(ipsec_action_t *ap)
3239 {
3240 	while (ap != NULL) {
3241 		ipsec_action_t *np = ap->ipa_next;
3242 
3243 		/* FIXME: remove? */
3244 		(void) printf("ipsec_action_free_table(%p) ref %d\n",
3245 		    (void *)ap, ap->ipa_refs);
3246 		ASSERT(ap->ipa_refs > 0);
3247 		IPACT_REFRELE(ap);
3248 		ap = np;
3249 	}
3250 }
3251 
3252 /*
3253  * Need to walk all stack instances since the reclaim function
3254  * is global for all instances
3255  */
3256 /* ARGSUSED */
3257 static void
3258 ipsec_action_reclaim(void *arg)
3259 {
3260 	netstack_handle_t nh;
3261 	netstack_t *ns;
3262 
3263 	netstack_next_init(&nh);
3264 	while ((ns = netstack_next(&nh)) != NULL) {
3265 		ipsec_action_reclaim_stack(ns);
3266 		netstack_rele(ns);
3267 	}
3268 	netstack_next_fini(&nh);
3269 }
3270 
3271 /*
3272  * Periodically sweep action hash table for actions with refcount==1, and
3273  * nuke them.  We cannot do this "on demand" (i.e., from IPACT_REFRELE)
3274  * because we can't close the race between another thread finding the action
3275  * in the hash table without holding the bucket lock during IPACT_REFRELE.
3276  * Instead, we run this function sporadically to clean up after ourselves;
3277  * we also set it as the "reclaim" function for the action kmem_cache.
3278  *
3279  * Note that it may take several passes of ipsec_action_gc() to free all
3280  * "stale" actions.
3281  */
3282 static void
3283 ipsec_action_reclaim_stack(netstack_t *ns)
3284 {
3285 	int i;
3286 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3287 
3288 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
3289 		ipsec_action_t *ap, *np;
3290 
3291 		/* skip the lock if nobody home */
3292 		if (ipss->ipsec_action_hash[i].hash_head == NULL)
3293 			continue;
3294 
3295 		HASH_LOCK(ipss->ipsec_action_hash, i);
3296 		for (ap = ipss->ipsec_action_hash[i].hash_head;
3297 		    ap != NULL; ap = np) {
3298 			ASSERT(ap->ipa_refs > 0);
3299 			np = ap->ipa_hash.hash_next;
3300 			if (ap->ipa_refs > 1)
3301 				continue;
3302 			HASH_UNCHAIN(ap, ipa_hash,
3303 			    ipss->ipsec_action_hash, i);
3304 			IPACT_REFRELE(ap);
3305 		}
3306 		HASH_UNLOCK(ipss->ipsec_action_hash, i);
3307 	}
3308 }
3309 
3310 /*
3311  * Intern a selector set into the selector set hash table.
3312  * This is simpler than the actions case..
3313  */
3314 static ipsec_sel_t *
3315 ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns)
3316 {
3317 	ipsec_sel_t *sp;
3318 	uint32_t hval, bucket;
3319 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3320 
3321 	/*
3322 	 * Exactly one AF bit should be set in selkey.
3323 	 */
3324 	ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
3325 	    !(selkey->ipsl_valid & IPSL_IPV6));
3326 
3327 	hval = selkey_hash(selkey, ns);
3328 	/* Set pol_hval to uninitialized until we put it in a polhead. */
3329 	selkey->ipsl_sel_hval = hval;
3330 
3331 	bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval;
3332 
3333 	ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket));
3334 	HASH_LOCK(ipss->ipsec_sel_hash, bucket);
3335 
3336 	for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) {
3337 		if (bcmp(&sp->ipsl_key, selkey,
3338 		    offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0)
3339 			break;
3340 	}
3341 	if (sp != NULL) {
3342 		sp->ipsl_refs++;
3343 
3344 		HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3345 		return (sp);
3346 	}
3347 
3348 	sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
3349 	if (sp == NULL) {
3350 		HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3351 		return (NULL);
3352 	}
3353 
3354 	HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket);
3355 	sp->ipsl_refs = 2;	/* one for hash table, one for caller */
3356 	sp->ipsl_key = *selkey;
3357 	/* Set to uninitalized and have insertion into polhead fix things. */
3358 	if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH)
3359 		sp->ipsl_key.ipsl_pol_hval = 0;
3360 	else
3361 		sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH;
3362 
3363 	HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3364 
3365 	return (sp);
3366 }
3367 
3368 static void
3369 ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns)
3370 {
3371 	ipsec_sel_t *sp = *spp;
3372 	int hval = sp->ipsl_key.ipsl_sel_hval;
3373 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3374 
3375 	*spp = NULL;
3376 
3377 	if (hval == IPSEC_SEL_NOHASH)
3378 		hval = 0;
3379 
3380 	ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval));
3381 	HASH_LOCK(ipss->ipsec_sel_hash, hval);
3382 	if (--sp->ipsl_refs == 1) {
3383 		HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval);
3384 		sp->ipsl_refs--;
3385 		HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3386 		ASSERT(sp->ipsl_refs == 0);
3387 		kmem_cache_free(ipsec_sel_cache, sp);
3388 		/* Caller unlocks */
3389 		return;
3390 	}
3391 
3392 	HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3393 }
3394 
3395 /*
3396  * Free a policy rule which we know is no longer being referenced.
3397  */
3398 void
3399 ipsec_policy_free(ipsec_policy_t *ipp, netstack_t *ns)
3400 {
3401 	ASSERT(ipp->ipsp_refs == 0);
3402 	ASSERT(ipp->ipsp_sel != NULL);
3403 	ASSERT(ipp->ipsp_act != NULL);
3404 
3405 	ipsec_sel_rel(&ipp->ipsp_sel, ns);
3406 	IPACT_REFRELE(ipp->ipsp_act);
3407 	kmem_cache_free(ipsec_pol_cache, ipp);
3408 }
3409 
3410 /*
3411  * Construction of new policy rules; construct a policy, and add it to
3412  * the appropriate tables.
3413  */
3414 ipsec_policy_t *
3415 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a,
3416     int nacts, int prio, uint64_t *index_ptr, netstack_t *ns)
3417 {
3418 	ipsec_action_t *ap;
3419 	ipsec_sel_t *sp;
3420 	ipsec_policy_t *ipp;
3421 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3422 
3423 	if (index_ptr == NULL)
3424 		index_ptr = &ipss->ipsec_next_policy_index;
3425 
3426 	ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
3427 	ap = ipsec_act_find(a, nacts, ns);
3428 	sp = ipsec_find_sel(keys, ns);
3429 
3430 	if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
3431 		if (ap != NULL) {
3432 			IPACT_REFRELE(ap);
3433 		}
3434 		if (sp != NULL)
3435 			ipsec_sel_rel(&sp, ns);
3436 		if (ipp != NULL)
3437 			kmem_cache_free(ipsec_pol_cache, ipp);
3438 		return (NULL);
3439 	}
3440 
3441 	HASH_NULL(ipp, ipsp_hash);
3442 
3443 	ipp->ipsp_refs = 1;	/* caller's reference */
3444 	ipp->ipsp_sel = sp;
3445 	ipp->ipsp_act = ap;
3446 	ipp->ipsp_prio = prio;	/* rule priority */
3447 	ipp->ipsp_index = *index_ptr;
3448 	(*index_ptr)++;
3449 
3450 	return (ipp);
3451 }
3452 
3453 static void
3454 ipsec_update_present_flags(ipsec_stack_t *ipss)
3455 {
3456 	boolean_t hashpol;
3457 
3458 	hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0);
3459 
3460 	if (hashpol) {
3461 		ipss->ipsec_outbound_v4_policy_present = B_TRUE;
3462 		ipss->ipsec_outbound_v6_policy_present = B_TRUE;
3463 		ipss->ipsec_inbound_v4_policy_present = B_TRUE;
3464 		ipss->ipsec_inbound_v6_policy_present = B_TRUE;
3465 		return;
3466 	}
3467 
3468 	ipss->ipsec_outbound_v4_policy_present = (NULL !=
3469 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3470 	    ipr_nonhash[IPSEC_AF_V4]);
3471 	ipss->ipsec_outbound_v6_policy_present = (NULL !=
3472 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3473 	    ipr_nonhash[IPSEC_AF_V6]);
3474 	ipss->ipsec_inbound_v4_policy_present = (NULL !=
3475 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3476 	    ipr_nonhash[IPSEC_AF_V4]);
3477 	ipss->ipsec_inbound_v6_policy_present = (NULL !=
3478 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3479 	    ipr_nonhash[IPSEC_AF_V6]);
3480 }
3481 
3482 boolean_t
3483 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir,
3484 	netstack_t *ns)
3485 {
3486 	ipsec_sel_t *sp;
3487 	ipsec_policy_t *ip, *nip, *head;
3488 	int af;
3489 	ipsec_policy_root_t *pr = &php->iph_root[dir];
3490 
3491 	sp = ipsec_find_sel(keys, ns);
3492 
3493 	if (sp == NULL)
3494 		return (B_FALSE);
3495 
3496 	af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
3497 
3498 	rw_enter(&php->iph_lock, RW_WRITER);
3499 
3500 	if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) {
3501 		head = pr->ipr_nonhash[af];
3502 	} else {
3503 		head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head;
3504 	}
3505 
3506 	for (ip = head; ip != NULL; ip = nip) {
3507 		nip = ip->ipsp_hash.hash_next;
3508 		if (ip->ipsp_sel != sp) {
3509 			continue;
3510 		}
3511 
3512 		IPPOL_UNCHAIN(php, ip, ns);
3513 
3514 		php->iph_gen++;
3515 		ipsec_update_present_flags(ns->netstack_ipsec);
3516 
3517 		rw_exit(&php->iph_lock);
3518 
3519 		ipsec_sel_rel(&sp, ns);
3520 
3521 		return (B_TRUE);
3522 	}
3523 
3524 	rw_exit(&php->iph_lock);
3525 	ipsec_sel_rel(&sp, ns);
3526 	return (B_FALSE);
3527 }
3528 
3529 int
3530 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index,
3531     netstack_t *ns)
3532 {
3533 	boolean_t found = B_FALSE;
3534 	ipsec_policy_t ipkey;
3535 	ipsec_policy_t *ip;
3536 	avl_index_t where;
3537 
3538 	(void) memset(&ipkey, 0, sizeof (ipkey));
3539 	ipkey.ipsp_index = policy_index;
3540 
3541 	rw_enter(&php->iph_lock, RW_WRITER);
3542 
3543 	/*
3544 	 * We could be cleverer here about the walk.
3545 	 * but well, (k+1)*log(N) will do for now (k==number of matches,
3546 	 * N==number of table entries
3547 	 */
3548 	for (;;) {
3549 		ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid,
3550 		    (void *)&ipkey, &where);
3551 		ASSERT(ip == NULL);
3552 
3553 		ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER);
3554 
3555 		if (ip == NULL)
3556 			break;
3557 
3558 		if (ip->ipsp_index != policy_index) {
3559 			ASSERT(ip->ipsp_index > policy_index);
3560 			break;
3561 		}
3562 
3563 		IPPOL_UNCHAIN(php, ip, ns);
3564 		found = B_TRUE;
3565 	}
3566 
3567 	if (found) {
3568 		php->iph_gen++;
3569 		ipsec_update_present_flags(ns->netstack_ipsec);
3570 	}
3571 
3572 	rw_exit(&php->iph_lock);
3573 
3574 	return (found ? 0 : ENOENT);
3575 }
3576 
3577 /*
3578  * Given a constructed ipsec_policy_t policy rule, see if it can be entered
3579  * into the correct policy ruleset.  As a side-effect, it sets the hash
3580  * entries on "ipp"'s ipsp_pol_hval.
3581  *
3582  * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
3583  * duplicate policy exists with exactly the same selectors), or an icmp
3584  * rule exists with a different encryption/authentication action.
3585  */
3586 boolean_t
3587 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3588 {
3589 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3590 	int af = -1;
3591 	ipsec_policy_t *p2, *head;
3592 	uint8_t check_proto;
3593 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3594 	uint32_t	valid = selkey->ipsl_valid;
3595 
3596 	if (valid & IPSL_IPV6) {
3597 		ASSERT(!(valid & IPSL_IPV4));
3598 		af = IPSEC_AF_V6;
3599 		check_proto = IPPROTO_ICMPV6;
3600 	} else {
3601 		ASSERT(valid & IPSL_IPV4);
3602 		af = IPSEC_AF_V4;
3603 		check_proto = IPPROTO_ICMP;
3604 	}
3605 
3606 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3607 
3608 	/*
3609 	 * Double-check that we don't have any duplicate selectors here.
3610 	 * Because selectors are interned below, we need only compare pointers
3611 	 * for equality.
3612 	 */
3613 	if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) {
3614 		head = pr->ipr_nonhash[af];
3615 	} else {
3616 		selkey->ipsl_pol_hval =
3617 		    (selkey->ipsl_valid & IPSL_IPV4) ?
3618 		    IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3619 			pr->ipr_nchains) :
3620 		    IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3621 			pr->ipr_nchains);
3622 
3623 		head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head;
3624 	}
3625 
3626 	for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3627 		if (p2->ipsp_sel == ipp->ipsp_sel)
3628 			return (B_FALSE);
3629 	}
3630 
3631 	/*
3632 	 * If it's ICMP and not a drop or pass rule, run through the ICMP
3633 	 * rules and make sure the action is either new or the same as any
3634 	 * other actions.  We don't have to check the full chain because
3635 	 * discard and bypass will override all other actions
3636 	 */
3637 
3638 	if (valid & IPSL_PROTOCOL &&
3639 	    selkey->ipsl_proto == check_proto &&
3640 	    (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
3641 
3642 		for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3643 
3644 			if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
3645 			    p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
3646 			    (p2->ipsp_act->ipa_act.ipa_type ==
3647 				IPSEC_ACT_APPLY)) {
3648 				return (ipsec_compare_action(p2, ipp));
3649 			}
3650 		}
3651 	}
3652 
3653 	return (B_TRUE);
3654 }
3655 
3656 /*
3657  * compare the action chains of two policies for equality
3658  * B_TRUE -> effective equality
3659  */
3660 
3661 static boolean_t
3662 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
3663 {
3664 
3665 	ipsec_action_t *act1, *act2;
3666 
3667 	/* We have a valid rule. Let's compare the actions */
3668 	if (p1->ipsp_act == p2->ipsp_act) {
3669 		/* same action. We are good */
3670 		return (B_TRUE);
3671 	}
3672 
3673 	/* we have to walk the chain */
3674 
3675 	act1 = p1->ipsp_act;
3676 	act2 = p2->ipsp_act;
3677 
3678 	while (act1 != NULL && act2 != NULL) {
3679 
3680 		/* otherwise, Are we close enough? */
3681 		if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
3682 		    act1->ipa_want_ah != act2->ipa_want_ah ||
3683 		    act1->ipa_want_esp != act2->ipa_want_esp ||
3684 		    act1->ipa_want_se != act2->ipa_want_se) {
3685 			/* Nope, we aren't */
3686 			return (B_FALSE);
3687 		}
3688 
3689 		if (act1->ipa_want_ah) {
3690 			if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
3691 			    act2->ipa_act.ipa_apply.ipp_auth_alg) {
3692 				return (B_FALSE);
3693 			}
3694 
3695 			if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
3696 			    act2->ipa_act.ipa_apply.ipp_ah_minbits ||
3697 			    act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
3698 			    act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
3699 				return (B_FALSE);
3700 			}
3701 		}
3702 
3703 		if (act1->ipa_want_esp) {
3704 			if (act1->ipa_act.ipa_apply.ipp_use_esp !=
3705 			    act2->ipa_act.ipa_apply.ipp_use_esp ||
3706 			    act1->ipa_act.ipa_apply.ipp_use_espa !=
3707 			    act2->ipa_act.ipa_apply.ipp_use_espa) {
3708 				return (B_FALSE);
3709 			}
3710 
3711 			if (act1->ipa_act.ipa_apply.ipp_use_esp) {
3712 				if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
3713 				    act2->ipa_act.ipa_apply.ipp_encr_alg) {
3714 					return (B_FALSE);
3715 				}
3716 
3717 				if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
3718 				    act2->ipa_act.ipa_apply.ipp_espe_minbits ||
3719 				    act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
3720 				    act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
3721 					return (B_FALSE);
3722 				}
3723 			}
3724 
3725 			if (act1->ipa_act.ipa_apply.ipp_use_espa) {
3726 				if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
3727 				    act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
3728 					return (B_FALSE);
3729 				}
3730 
3731 				if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
3732 				    act2->ipa_act.ipa_apply.ipp_espa_minbits ||
3733 				    act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
3734 				    act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
3735 					return (B_FALSE);
3736 				}
3737 			}
3738 
3739 		}
3740 
3741 		act1 = act1->ipa_next;
3742 		act2 = act2->ipa_next;
3743 	}
3744 
3745 	if (act1 != NULL || act2 != NULL) {
3746 		return (B_FALSE);
3747 	}
3748 
3749 	return (B_TRUE);
3750 }
3751 
3752 
3753 /*
3754  * Given a constructed ipsec_policy_t policy rule, enter it into
3755  * the correct policy ruleset.
3756  *
3757  * ipsec_check_policy() is assumed to have succeeded first (to check for
3758  * duplicates).
3759  */
3760 void
3761 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction,
3762     netstack_t *ns)
3763 {
3764 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3765 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3766 	uint32_t valid = selkey->ipsl_valid;
3767 	uint32_t hval = selkey->ipsl_pol_hval;
3768 	int af = -1;
3769 
3770 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3771 
3772 	if (valid & IPSL_IPV6) {
3773 		ASSERT(!(valid & IPSL_IPV4));
3774 		af = IPSEC_AF_V6;
3775 	} else {
3776 		ASSERT(valid & IPSL_IPV4);
3777 		af = IPSEC_AF_V4;
3778 	}
3779 
3780 	php->iph_gen++;
3781 
3782 	if (hval == IPSEC_SEL_NOHASH) {
3783 		HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]);
3784 	} else {
3785 		HASH_LOCK(pr->ipr_hash, hval);
3786 		HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval);
3787 		HASH_UNLOCK(pr->ipr_hash, hval);
3788 	}
3789 
3790 	ipsec_insert_always(&php->iph_rulebyid, ipp);
3791 
3792 	ipsec_update_present_flags(ns->netstack_ipsec);
3793 }
3794 
3795 static void
3796 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr,
3797     netstack_t *ns)
3798 {
3799 	ipsec_policy_t *ip, *nip;
3800 	int af, chain, nchain;
3801 
3802 	for (af = 0; af < IPSEC_NAF; af++) {
3803 		for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) {
3804 			nip = ip->ipsp_hash.hash_next;
3805 			IPPOL_UNCHAIN(php, ip, ns);
3806 		}
3807 		ipr->ipr_nonhash[af] = NULL;
3808 	}
3809 	nchain = ipr->ipr_nchains;
3810 
3811 	for (chain = 0; chain < nchain; chain++) {
3812 		for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL;
3813 		    ip = nip) {
3814 			nip = ip->ipsp_hash.hash_next;
3815 			IPPOL_UNCHAIN(php, ip, ns);
3816 		}
3817 		ipr->ipr_hash[chain].hash_head = NULL;
3818 	}
3819 }
3820 
3821 void
3822 ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns)
3823 {
3824 	int dir;
3825 
3826 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3827 
3828 	for (dir = 0; dir < IPSEC_NTYPES; dir++)
3829 		ipsec_ipr_flush(php, &php->iph_root[dir], ns);
3830 
3831 	ipsec_update_present_flags(ns->netstack_ipsec);
3832 }
3833 
3834 void
3835 ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns)
3836 {
3837 	int dir;
3838 
3839 	ASSERT(php->iph_refs == 0);
3840 
3841 	rw_enter(&php->iph_lock, RW_WRITER);
3842 	ipsec_polhead_flush(php, ns);
3843 	rw_exit(&php->iph_lock);
3844 	rw_destroy(&php->iph_lock);
3845 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
3846 		ipsec_policy_root_t *ipr = &php->iph_root[dir];
3847 		int chain;
3848 
3849 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
3850 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
3851 
3852 	}
3853 	ipsec_polhead_free_table(php);
3854 	kmem_free(php, sizeof (*php));
3855 }
3856 
3857 static void
3858 ipsec_ipr_init(ipsec_policy_root_t *ipr)
3859 {
3860 	int af;
3861 
3862 	ipr->ipr_nchains = 0;
3863 	ipr->ipr_hash = NULL;
3864 
3865 	for (af = 0; af < IPSEC_NAF; af++) {
3866 		ipr->ipr_nonhash[af] = NULL;
3867 	}
3868 }
3869 
3870 ipsec_policy_head_t *
3871 ipsec_polhead_create(void)
3872 {
3873 	ipsec_policy_head_t *php;
3874 
3875 	php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
3876 	if (php == NULL)
3877 		return (php);
3878 
3879 	rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
3880 	php->iph_refs = 1;
3881 	php->iph_gen = 0;
3882 
3883 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]);
3884 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]);
3885 
3886 	avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid,
3887 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
3888 
3889 	return (php);
3890 }
3891 
3892 /*
3893  * Clone the policy head into a new polhead; release one reference to the
3894  * old one and return the only reference to the new one.
3895  * If the old one had a refcount of 1, just return it.
3896  */
3897 ipsec_policy_head_t *
3898 ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns)
3899 {
3900 	ipsec_policy_head_t *nphp;
3901 
3902 	if (php == NULL)
3903 		return (ipsec_polhead_create());
3904 	else if (php->iph_refs == 1)
3905 		return (php);
3906 
3907 	nphp = ipsec_polhead_create();
3908 	if (nphp == NULL)
3909 		return (NULL);
3910 
3911 	if (ipsec_copy_polhead(php, nphp, ns) != 0) {
3912 		ipsec_polhead_free(nphp, ns);
3913 		return (NULL);
3914 	}
3915 	IPPH_REFRELE(php, ns);
3916 	return (nphp);
3917 }
3918 
3919 /*
3920  * When sending a response to a ICMP request or generating a RST
3921  * in the TCP case, the outbound packets need to go at the same level
3922  * of protection as the incoming ones i.e we associate our outbound
3923  * policy with how the packet came in. We call this after we have
3924  * accepted the incoming packet which may or may not have been in
3925  * clear and hence we are sending the reply back with the policy
3926  * matching the incoming datagram's policy.
3927  *
3928  * NOTE : This technology serves two purposes :
3929  *
3930  * 1) If we have multiple outbound policies, we send out a reply
3931  *    matching with how it came in rather than matching the outbound
3932  *    policy.
3933  *
3934  * 2) For assymetric policies, we want to make sure that incoming
3935  *    and outgoing has the same level of protection. Assymetric
3936  *    policies exist only with global policy where we may not have
3937  *    both outbound and inbound at the same time.
3938  *
3939  * NOTE2:	This function is called by cleartext cases, so it needs to be
3940  *		in IP proper.
3941  */
3942 boolean_t
3943 ipsec_in_to_out(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h)
3944 {
3945 	ipsec_in_t  *ii;
3946 	ipsec_out_t  *io;
3947 	boolean_t v4;
3948 	mblk_t *mp;
3949 	boolean_t secure, attach_if;
3950 	uint_t ifindex;
3951 	ipsec_selector_t sel;
3952 	ipsec_action_t *reflect_action = NULL;
3953 	zoneid_t zoneid;
3954 	netstack_t	*ns;
3955 
3956 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
3957 
3958 	bzero((void*)&sel, sizeof (sel));
3959 
3960 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
3961 
3962 	mp = ipsec_mp->b_cont;
3963 	ASSERT(mp != NULL);
3964 
3965 	if (ii->ipsec_in_action != NULL) {
3966 		/* transfer reference.. */
3967 		reflect_action = ii->ipsec_in_action;
3968 		ii->ipsec_in_action = NULL;
3969 	} else if (!ii->ipsec_in_loopback)
3970 		reflect_action = ipsec_in_to_out_action(ii);
3971 	secure = ii->ipsec_in_secure;
3972 	attach_if = ii->ipsec_in_attach_if;
3973 	ifindex = ii->ipsec_in_ill_index;
3974 	zoneid = ii->ipsec_in_zoneid;
3975 	ASSERT(zoneid != ALL_ZONES);
3976 	ns = ii->ipsec_in_ns;
3977 	v4 = ii->ipsec_in_v4;
3978 
3979 	ipsec_in_release_refs(ii);	/* No netstack_rele/hold needed */
3980 
3981 	/*
3982 	 * The caller is going to send the datagram out which might
3983 	 * go on the wire or delivered locally through ip_wput_local.
3984 	 *
3985 	 * 1) If it goes out on the wire, new associations will be
3986 	 *    obtained.
3987 	 * 2) If it is delivered locally, ip_wput_local will convert
3988 	 *    this IPSEC_OUT to a IPSEC_IN looking at the requests.
3989 	 */
3990 
3991 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
3992 	bzero(io, sizeof (ipsec_out_t));
3993 	io->ipsec_out_type = IPSEC_OUT;
3994 	io->ipsec_out_len = sizeof (ipsec_out_t);
3995 	io->ipsec_out_frtn.free_func = ipsec_out_free;
3996 	io->ipsec_out_frtn.free_arg = (char *)io;
3997 	io->ipsec_out_act = reflect_action;
3998 
3999 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0,
4000 	    ns->netstack_ipsec))
4001 		return (B_FALSE);
4002 
4003 	io->ipsec_out_src_port = sel.ips_local_port;
4004 	io->ipsec_out_dst_port = sel.ips_remote_port;
4005 	io->ipsec_out_proto = sel.ips_protocol;
4006 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
4007 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
4008 
4009 	/*
4010 	 * Don't use global policy for this, as we want
4011 	 * to use the same protection that was applied to the inbound packet.
4012 	 */
4013 	io->ipsec_out_use_global_policy = B_FALSE;
4014 	io->ipsec_out_proc_begin = B_FALSE;
4015 	io->ipsec_out_secure = secure;
4016 	io->ipsec_out_v4 = v4;
4017 	io->ipsec_out_attach_if = attach_if;
4018 	io->ipsec_out_ill_index = ifindex;
4019 	io->ipsec_out_zoneid = zoneid;
4020 	io->ipsec_out_ns = ns;		/* No netstack_hold */
4021 
4022 	return (B_TRUE);
4023 }
4024 
4025 mblk_t *
4026 ipsec_in_tag(mblk_t *mp, mblk_t *cont, netstack_t *ns)
4027 {
4028 	ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr;
4029 	ipsec_in_t *nii;
4030 	mblk_t *nmp;
4031 	frtn_t nfrtn;
4032 	ipsec_stack_t *ipss = ns->netstack_ipsec;
4033 
4034 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
4035 	ASSERT(ii->ipsec_in_len == sizeof (ipsec_in_t));
4036 
4037 	nmp = ipsec_in_alloc(ii->ipsec_in_v4, ns);
4038 	if (nmp == NULL) {
4039 		ip_drop_packet_chain(cont, B_FALSE, NULL, NULL,
4040 		    DROPPER(ipss, ipds_spd_nomem),
4041 		    &ipss->ipsec_spd_dropper);
4042 		return (NULL);
4043 	}
4044 
4045 	ASSERT(nmp->b_datap->db_type == M_CTL);
4046 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
4047 
4048 	/*
4049 	 * Bump refcounts.
4050 	 */
4051 	if (ii->ipsec_in_ah_sa != NULL)
4052 		IPSA_REFHOLD(ii->ipsec_in_ah_sa);
4053 	if (ii->ipsec_in_esp_sa != NULL)
4054 		IPSA_REFHOLD(ii->ipsec_in_esp_sa);
4055 	if (ii->ipsec_in_policy != NULL)
4056 		IPPH_REFHOLD(ii->ipsec_in_policy);
4057 
4058 	/*
4059 	 * Copy everything, but preserve the free routine provided by
4060 	 * ipsec_in_alloc().
4061 	 */
4062 	nii = (ipsec_in_t *)nmp->b_rptr;
4063 	nfrtn = nii->ipsec_in_frtn;
4064 	bcopy(ii, nii, sizeof (*ii));
4065 	nii->ipsec_in_frtn = nfrtn;
4066 
4067 	nmp->b_cont = cont;
4068 
4069 	return (nmp);
4070 }
4071 
4072 mblk_t *
4073 ipsec_out_tag(mblk_t *mp, mblk_t *cont, netstack_t *ns)
4074 {
4075 	ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr;
4076 	ipsec_out_t *nio;
4077 	mblk_t *nmp;
4078 	frtn_t nfrtn;
4079 	ipsec_stack_t *ipss = ns->netstack_ipsec;
4080 
4081 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
4082 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
4083 
4084 	nmp = ipsec_alloc_ipsec_out(ns);
4085 	if (nmp == NULL) {
4086 		ip_drop_packet_chain(cont, B_FALSE, NULL, NULL,
4087 		    DROPPER(ipss, ipds_spd_nomem),
4088 		    &ipss->ipsec_spd_dropper);
4089 		return (NULL);
4090 	}
4091 	ASSERT(nmp->b_datap->db_type == M_CTL);
4092 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
4093 
4094 	/*
4095 	 * Bump refcounts.
4096 	 */
4097 	if (io->ipsec_out_ah_sa != NULL)
4098 		IPSA_REFHOLD(io->ipsec_out_ah_sa);
4099 	if (io->ipsec_out_esp_sa != NULL)
4100 		IPSA_REFHOLD(io->ipsec_out_esp_sa);
4101 	if (io->ipsec_out_polhead != NULL)
4102 		IPPH_REFHOLD(io->ipsec_out_polhead);
4103 	if (io->ipsec_out_policy != NULL)
4104 		IPPOL_REFHOLD(io->ipsec_out_policy);
4105 	if (io->ipsec_out_act != NULL)
4106 		IPACT_REFHOLD(io->ipsec_out_act);
4107 	if (io->ipsec_out_latch != NULL)
4108 		IPLATCH_REFHOLD(io->ipsec_out_latch);
4109 	if (io->ipsec_out_cred != NULL)
4110 		crhold(io->ipsec_out_cred);
4111 
4112 	/*
4113 	 * Copy everything, but preserve the free routine provided by
4114 	 * ipsec_alloc_ipsec_out().
4115 	 */
4116 	nio = (ipsec_out_t *)nmp->b_rptr;
4117 	nfrtn = nio->ipsec_out_frtn;
4118 	bcopy(io, nio, sizeof (*io));
4119 	nio->ipsec_out_frtn = nfrtn;
4120 
4121 	nmp->b_cont = cont;
4122 
4123 	return (nmp);
4124 }
4125 
4126 static void
4127 ipsec_out_release_refs(ipsec_out_t *io)
4128 {
4129 	netstack_t	*ns = io->ipsec_out_ns;
4130 
4131 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
4132 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
4133 	ASSERT(io->ipsec_out_ns != NULL);
4134 
4135 	/* Note: IPSA_REFRELE is multi-line macro */
4136 	if (io->ipsec_out_ah_sa != NULL)
4137 		IPSA_REFRELE(io->ipsec_out_ah_sa);
4138 	if (io->ipsec_out_esp_sa != NULL)
4139 		IPSA_REFRELE(io->ipsec_out_esp_sa);
4140 	if (io->ipsec_out_polhead != NULL)
4141 		IPPH_REFRELE(io->ipsec_out_polhead, ns);
4142 	if (io->ipsec_out_policy != NULL)
4143 		IPPOL_REFRELE(io->ipsec_out_policy, ns);
4144 	if (io->ipsec_out_act != NULL)
4145 		IPACT_REFRELE(io->ipsec_out_act);
4146 	if (io->ipsec_out_cred != NULL) {
4147 		crfree(io->ipsec_out_cred);
4148 		io->ipsec_out_cred = NULL;
4149 	}
4150 	if (io->ipsec_out_latch) {
4151 		IPLATCH_REFRELE(io->ipsec_out_latch, ns);
4152 		io->ipsec_out_latch = NULL;
4153 	}
4154 }
4155 
4156 static void
4157 ipsec_out_free(void *arg)
4158 {
4159 	ipsec_out_t *io = (ipsec_out_t *)arg;
4160 	ipsec_out_release_refs(io);
4161 	kmem_cache_free(ipsec_info_cache, arg);
4162 }
4163 
4164 static void
4165 ipsec_in_release_refs(ipsec_in_t *ii)
4166 {
4167 	netstack_t	*ns = ii->ipsec_in_ns;
4168 
4169 	ASSERT(ii->ipsec_in_ns != NULL);
4170 
4171 	/* Note: IPSA_REFRELE is multi-line macro */
4172 	if (ii->ipsec_in_ah_sa != NULL)
4173 		IPSA_REFRELE(ii->ipsec_in_ah_sa);
4174 	if (ii->ipsec_in_esp_sa != NULL)
4175 		IPSA_REFRELE(ii->ipsec_in_esp_sa);
4176 	if (ii->ipsec_in_policy != NULL)
4177 		IPPH_REFRELE(ii->ipsec_in_policy, ns);
4178 	if (ii->ipsec_in_da != NULL) {
4179 		freeb(ii->ipsec_in_da);
4180 		ii->ipsec_in_da = NULL;
4181 	}
4182 }
4183 
4184 static void
4185 ipsec_in_free(void *arg)
4186 {
4187 	ipsec_in_t *ii = (ipsec_in_t *)arg;
4188 	ipsec_in_release_refs(ii);
4189 	kmem_cache_free(ipsec_info_cache, arg);
4190 }
4191 
4192 /*
4193  * This is called only for outbound datagrams if the datagram needs to
4194  * go out secure.  A NULL mp can be passed to get an ipsec_out. This
4195  * facility is used by ip_unbind.
4196  *
4197  * NOTE : o As the data part could be modified by ipsec_out_process etc.
4198  *	    we can't make it fast by calling a dup.
4199  */
4200 mblk_t *
4201 ipsec_alloc_ipsec_out(netstack_t *ns)
4202 {
4203 	mblk_t *ipsec_mp;
4204 	ipsec_out_t *io = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
4205 
4206 	if (io == NULL)
4207 		return (NULL);
4208 
4209 	bzero(io, sizeof (ipsec_out_t));
4210 
4211 	io->ipsec_out_type = IPSEC_OUT;
4212 	io->ipsec_out_len = sizeof (ipsec_out_t);
4213 	io->ipsec_out_frtn.free_func = ipsec_out_free;
4214 	io->ipsec_out_frtn.free_arg = (char *)io;
4215 
4216 	/*
4217 	 * Set the zoneid to ALL_ZONES which is used as an invalid value. Code
4218 	 * using ipsec_out_zoneid should assert that the zoneid has been set to
4219 	 * a sane value.
4220 	 */
4221 	io->ipsec_out_zoneid = ALL_ZONES;
4222 	io->ipsec_out_ns = ns;		/* No netstack_hold */
4223 
4224 	ipsec_mp = desballoc((uint8_t *)io, sizeof (ipsec_info_t), BPRI_HI,
4225 	    &io->ipsec_out_frtn);
4226 	if (ipsec_mp == NULL) {
4227 		ipsec_out_free(io);
4228 
4229 		return (NULL);
4230 	}
4231 	ipsec_mp->b_datap->db_type = M_CTL;
4232 	ipsec_mp->b_wptr = ipsec_mp->b_rptr + sizeof (ipsec_info_t);
4233 
4234 	return (ipsec_mp);
4235 }
4236 
4237 /*
4238  * Attach an IPSEC_OUT; use pol for policy if it is non-null.
4239  * Otherwise initialize using conn.
4240  *
4241  * If pol is non-null, we consume a reference to it.
4242  */
4243 mblk_t *
4244 ipsec_attach_ipsec_out(mblk_t **mp, conn_t *connp, ipsec_policy_t *pol,
4245     uint8_t proto, netstack_t *ns)
4246 {
4247 	mblk_t *ipsec_mp;
4248 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4249 
4250 	ASSERT((pol != NULL) || (connp != NULL));
4251 
4252 	ipsec_mp = ipsec_alloc_ipsec_out(ns);
4253 	if (ipsec_mp == NULL) {
4254 		ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_NOTE,
4255 		    "ipsec_attach_ipsec_out: Allocation failure\n");
4256 		ip_drop_packet(*mp, B_FALSE, NULL, NULL,
4257 		    DROPPER(ipss, ipds_spd_nomem),
4258 		    &ipss->ipsec_spd_dropper);
4259 		*mp = NULL;
4260 		return (NULL);
4261 	}
4262 	ipsec_mp->b_cont = *mp;
4263 	/*
4264 	 * If *mp is NULL, ipsec_init_ipsec_out() won't/should not be using it.
4265 	 */
4266 	return (ipsec_init_ipsec_out(ipsec_mp, mp, connp, pol, proto, ns));
4267 }
4268 
4269 /*
4270  * Initialize the IPSEC_OUT (ipsec_mp) using pol if it is non-null.
4271  * Otherwise initialize using conn.
4272  *
4273  * If pol is non-null, we consume a reference to it.
4274  */
4275 mblk_t *
4276 ipsec_init_ipsec_out(mblk_t *ipsec_mp, mblk_t **mp, conn_t *connp,
4277     ipsec_policy_t *pol, uint8_t proto, netstack_t *ns)
4278 {
4279 	ipsec_out_t *io;
4280 	ipsec_policy_t *p;
4281 	ipha_t *ipha;
4282 	ip6_t *ip6h;
4283 	ipsec_stack_t *ipss = ns->netstack_ipsec;
4284 
4285 	ASSERT(ipsec_mp->b_cont == *mp);
4286 
4287 	ASSERT((pol != NULL) || (connp != NULL));
4288 
4289 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4290 	ASSERT(ipsec_mp->b_wptr == (ipsec_mp->b_rptr + sizeof (ipsec_info_t)));
4291 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4292 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
4293 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
4294 	io->ipsec_out_latch = NULL;
4295 	/*
4296 	 * Set the zoneid when we have the connp.
4297 	 * Otherwise, we're called from ip_wput_attach_policy() who will take
4298 	 * care of setting the zoneid.
4299 	 */
4300 	if (connp != NULL)
4301 		io->ipsec_out_zoneid = connp->conn_zoneid;
4302 
4303 	io->ipsec_out_ns = ns;		/* No netstack_hold */
4304 
4305 	if (*mp != NULL) {
4306 		ipha = (ipha_t *)(*mp)->b_rptr;
4307 		if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
4308 			io->ipsec_out_v4 = B_TRUE;
4309 			ip6h = NULL;
4310 		} else {
4311 			io->ipsec_out_v4 = B_FALSE;
4312 			ip6h = (ip6_t *)ipha;
4313 			ipha = NULL;
4314 		}
4315 	} else {
4316 		ASSERT(connp != NULL && connp->conn_policy_cached);
4317 		ip6h = NULL;
4318 		ipha = NULL;
4319 		io->ipsec_out_v4 = !connp->conn_pkt_isv6;
4320 	}
4321 
4322 	p = NULL;
4323 
4324 	/*
4325 	 * Take latched policies over global policy.  Check here again for
4326 	 * this, in case we had conn_latch set while the packet was flying
4327 	 * around in IP.
4328 	 */
4329 	if (connp != NULL && connp->conn_latch != NULL) {
4330 		ASSERT(ns == connp->conn_netstack);
4331 		p = connp->conn_latch->ipl_out_policy;
4332 		io->ipsec_out_latch = connp->conn_latch;
4333 		IPLATCH_REFHOLD(connp->conn_latch);
4334 		if (p != NULL) {
4335 			IPPOL_REFHOLD(p);
4336 		}
4337 		io->ipsec_out_src_port = connp->conn_lport;
4338 		io->ipsec_out_dst_port = connp->conn_fport;
4339 		io->ipsec_out_icmp_type = io->ipsec_out_icmp_code = 0;
4340 		if (pol != NULL)
4341 			IPPOL_REFRELE(pol, ns);
4342 	} else if (pol != NULL) {
4343 		ipsec_selector_t sel;
4344 
4345 		bzero((void*)&sel, sizeof (sel));
4346 
4347 		p = pol;
4348 		/*
4349 		 * conn does not have the port information. Get
4350 		 * it from the packet.
4351 		 */
4352 
4353 		if (!ipsec_init_outbound_ports(&sel, *mp, ipha, ip6h, 0,
4354 		    ns->netstack_ipsec)) {
4355 			/* Callee did ip_drop_packet() on *mp. */
4356 			*mp = NULL;
4357 			freeb(ipsec_mp);
4358 			return (NULL);
4359 		}
4360 		io->ipsec_out_src_port = sel.ips_local_port;
4361 		io->ipsec_out_dst_port = sel.ips_remote_port;
4362 		io->ipsec_out_icmp_type = sel.ips_icmp_type;
4363 		io->ipsec_out_icmp_code = sel.ips_icmp_code;
4364 	}
4365 
4366 	io->ipsec_out_proto = proto;
4367 	io->ipsec_out_use_global_policy = B_TRUE;
4368 	io->ipsec_out_secure = (p != NULL);
4369 	io->ipsec_out_policy = p;
4370 
4371 	if (p == NULL) {
4372 		if (connp->conn_policy != NULL) {
4373 			io->ipsec_out_secure = B_TRUE;
4374 			ASSERT(io->ipsec_out_latch == NULL);
4375 			ASSERT(io->ipsec_out_use_global_policy == B_TRUE);
4376 			io->ipsec_out_need_policy = B_TRUE;
4377 			ASSERT(io->ipsec_out_polhead == NULL);
4378 			IPPH_REFHOLD(connp->conn_policy);
4379 			io->ipsec_out_polhead = connp->conn_policy;
4380 		}
4381 	} else {
4382 		/* Handle explicit drop action. */
4383 		if (p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_DISCARD ||
4384 		    p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_REJECT) {
4385 			ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
4386 			    DROPPER(ipss, ipds_spd_explicit),
4387 			    &ipss->ipsec_spd_dropper);
4388 			*mp = NULL;
4389 			ipsec_mp = NULL;
4390 		}
4391 	}
4392 
4393 	return (ipsec_mp);
4394 }
4395 
4396 /*
4397  * Allocate an IPSEC_IN mblk.  This will be prepended to an inbound datagram
4398  * and keep track of what-if-any IPsec processing will be applied to the
4399  * datagram.
4400  */
4401 mblk_t *
4402 ipsec_in_alloc(boolean_t isv4, netstack_t *ns)
4403 {
4404 	mblk_t *ipsec_in;
4405 	ipsec_in_t *ii = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
4406 
4407 	if (ii == NULL)
4408 		return (NULL);
4409 
4410 	bzero(ii, sizeof (ipsec_info_t));
4411 	ii->ipsec_in_type = IPSEC_IN;
4412 	ii->ipsec_in_len = sizeof (ipsec_in_t);
4413 
4414 	ii->ipsec_in_v4 = isv4;
4415 	ii->ipsec_in_secure = B_TRUE;
4416 	ii->ipsec_in_ns = ns;		/* No netstack_hold */
4417 
4418 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
4419 	ii->ipsec_in_frtn.free_arg = (char *)ii;
4420 
4421 	ipsec_in = desballoc((uint8_t *)ii, sizeof (ipsec_info_t), BPRI_HI,
4422 	    &ii->ipsec_in_frtn);
4423 	if (ipsec_in == NULL) {
4424 		ip1dbg(("ipsec_in_alloc: IPSEC_IN allocation failure.\n"));
4425 		ipsec_in_free(ii);
4426 		return (NULL);
4427 	}
4428 
4429 	ipsec_in->b_datap->db_type = M_CTL;
4430 	ipsec_in->b_wptr += sizeof (ipsec_info_t);
4431 
4432 	return (ipsec_in);
4433 }
4434 
4435 /*
4436  * This is called from ip_wput_local when a packet which needs
4437  * security is looped back, to convert the IPSEC_OUT to a IPSEC_IN
4438  * before fanout, where the policy check happens.  In most of the
4439  * cases, IPSEC processing has *never* been done.  There is one case
4440  * (ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed) where
4441  * the packet is destined for localhost, IPSEC processing has already
4442  * been done.
4443  *
4444  * Future: This could happen after SA selection has occurred for
4445  * outbound.. which will tell us who the src and dst identities are..
4446  * Then it's just a matter of splicing the ah/esp SA pointers from the
4447  * ipsec_out_t to the ipsec_in_t.
4448  */
4449 void
4450 ipsec_out_to_in(mblk_t *ipsec_mp)
4451 {
4452 	ipsec_in_t  *ii;
4453 	ipsec_out_t *io;
4454 	ipsec_policy_t *pol;
4455 	ipsec_action_t *act;
4456 	boolean_t v4, icmp_loopback;
4457 	zoneid_t zoneid;
4458 	netstack_t *ns;
4459 
4460 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4461 
4462 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4463 
4464 	v4 = io->ipsec_out_v4;
4465 	zoneid = io->ipsec_out_zoneid;
4466 	icmp_loopback = io->ipsec_out_icmp_loopback;
4467 	ns = io->ipsec_out_ns;
4468 
4469 	act = io->ipsec_out_act;
4470 	if (act == NULL) {
4471 		pol = io->ipsec_out_policy;
4472 		if (pol != NULL) {
4473 			act = pol->ipsp_act;
4474 			IPACT_REFHOLD(act);
4475 		}
4476 	}
4477 	io->ipsec_out_act = NULL;
4478 
4479 	ipsec_out_release_refs(io);	/* No netstack_rele/hold needed */
4480 
4481 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
4482 	bzero(ii, sizeof (ipsec_in_t));
4483 	ii->ipsec_in_type = IPSEC_IN;
4484 	ii->ipsec_in_len = sizeof (ipsec_in_t);
4485 	ii->ipsec_in_loopback = B_TRUE;
4486 	ii->ipsec_in_ns = ns;		/* No netstack_hold */
4487 
4488 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
4489 	ii->ipsec_in_frtn.free_arg = (char *)ii;
4490 	ii->ipsec_in_action = act;
4491 	ii->ipsec_in_zoneid = zoneid;
4492 
4493 	/*
4494 	 * In most of the cases, we can't look at the ipsec_out_XXX_sa
4495 	 * because this never went through IPSEC processing. So, look at
4496 	 * the requests and infer whether it would have gone through
4497 	 * IPSEC processing or not. Initialize the "done" fields with
4498 	 * the requests. The possible values for "done" fields are :
4499 	 *
4500 	 * 1) zero, indicates that a particular preference was never
4501 	 *    requested.
4502 	 * 2) non-zero, indicates that it could be IPSEC_PREF_REQUIRED/
4503 	 *    IPSEC_PREF_NEVER. If IPSEC_REQ_DONE is set, it means that
4504 	 *    IPSEC processing has been completed.
4505 	 */
4506 	ii->ipsec_in_secure = B_TRUE;
4507 	ii->ipsec_in_v4 = v4;
4508 	ii->ipsec_in_icmp_loopback = icmp_loopback;
4509 	ii->ipsec_in_attach_if = B_FALSE;
4510 }
4511 
4512 /*
4513  * Consults global policy to see whether this datagram should
4514  * go out secure. If so it attaches a ipsec_mp in front and
4515  * returns.
4516  */
4517 mblk_t *
4518 ip_wput_attach_policy(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire,
4519     conn_t *connp, boolean_t unspec_src, zoneid_t zoneid)
4520 {
4521 	mblk_t *mp;
4522 	ipsec_out_t *io = NULL;
4523 	ipsec_selector_t sel;
4524 	uint_t	ill_index;
4525 	boolean_t conn_dontroutex;
4526 	boolean_t conn_multicast_loopx;
4527 	boolean_t policy_present;
4528 	ip_stack_t	*ipst = ire->ire_ipst;
4529 	netstack_t	*ns = ipst->ips_netstack;
4530 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4531 
4532 	ASSERT((ipha != NULL && ip6h == NULL) ||
4533 	    (ip6h != NULL && ipha == NULL));
4534 
4535 	bzero((void*)&sel, sizeof (sel));
4536 
4537 	if (ipha != NULL)
4538 		policy_present = ipss->ipsec_outbound_v4_policy_present;
4539 	else
4540 		policy_present = ipss->ipsec_outbound_v6_policy_present;
4541 	/*
4542 	 * Fast Path to see if there is any policy.
4543 	 */
4544 	if (!policy_present) {
4545 		if (ipsec_mp->b_datap->db_type == M_CTL) {
4546 			io = (ipsec_out_t *)ipsec_mp->b_rptr;
4547 			if (!io->ipsec_out_secure) {
4548 				/*
4549 				 * If there is no global policy and ip_wput
4550 				 * or ip_wput_multicast has attached this mp
4551 				 * for multicast case, free the ipsec_mp and
4552 				 * return the original mp.
4553 				 */
4554 				mp = ipsec_mp->b_cont;
4555 				freeb(ipsec_mp);
4556 				ipsec_mp = mp;
4557 				io = NULL;
4558 			}
4559 			ASSERT(io == NULL || !io->ipsec_out_tunnel);
4560 		}
4561 		if (((io == NULL) || (io->ipsec_out_polhead == NULL)) &&
4562 		    ((connp == NULL) || (connp->conn_policy == NULL)))
4563 			return (ipsec_mp);
4564 	}
4565 
4566 	ill_index = 0;
4567 	conn_multicast_loopx = conn_dontroutex = B_FALSE;
4568 	mp = ipsec_mp;
4569 	if (ipsec_mp->b_datap->db_type == M_CTL) {
4570 		mp = ipsec_mp->b_cont;
4571 		/*
4572 		 * This is a connection where we have some per-socket
4573 		 * policy or ip_wput has attached an ipsec_mp for
4574 		 * the multicast datagram.
4575 		 */
4576 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
4577 		if (!io->ipsec_out_secure) {
4578 			/*
4579 			 * This ipsec_mp was allocated in ip_wput or
4580 			 * ip_wput_multicast so that we will know the
4581 			 * value of ill_index, conn_dontroute,
4582 			 * conn_multicast_loop in the multicast case if
4583 			 * we inherit global policy here.
4584 			 */
4585 			ill_index = io->ipsec_out_ill_index;
4586 			conn_dontroutex = io->ipsec_out_dontroute;
4587 			conn_multicast_loopx = io->ipsec_out_multicast_loop;
4588 			freeb(ipsec_mp);
4589 			ipsec_mp = mp;
4590 			io = NULL;
4591 		}
4592 		ASSERT(io == NULL || !io->ipsec_out_tunnel);
4593 	}
4594 
4595 	if (ipha != NULL) {
4596 		sel.ips_local_addr_v4 = (ipha->ipha_src != 0 ?
4597 		    ipha->ipha_src : ire->ire_src_addr);
4598 		sel.ips_remote_addr_v4 = ip_get_dst(ipha);
4599 		sel.ips_protocol = (uint8_t)ipha->ipha_protocol;
4600 		sel.ips_isv4 = B_TRUE;
4601 	} else {
4602 		ushort_t hdr_len;
4603 		uint8_t	*nexthdrp;
4604 		boolean_t is_fragment;
4605 
4606 		sel.ips_isv4 = B_FALSE;
4607 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
4608 			if (!unspec_src)
4609 				sel.ips_local_addr_v6 = ire->ire_src_addr_v6;
4610 		} else {
4611 			sel.ips_local_addr_v6 = ip6h->ip6_src;
4612 		}
4613 
4614 		sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, &is_fragment);
4615 		if (is_fragment) {
4616 			/*
4617 			 * It's a packet fragment for a packet that
4618 			 * we have already processed (since IPsec processing
4619 			 * is done before fragmentation), so we don't
4620 			 * have to do policy checks again. Fragments can
4621 			 * come back to us for processing if they have
4622 			 * been queued up due to flow control.
4623 			 */
4624 			if (ipsec_mp->b_datap->db_type == M_CTL) {
4625 				mp = ipsec_mp->b_cont;
4626 				freeb(ipsec_mp);
4627 				ipsec_mp = mp;
4628 			}
4629 			return (ipsec_mp);
4630 		}
4631 
4632 		/* IPv6 common-case. */
4633 		sel.ips_protocol = ip6h->ip6_nxt;
4634 		switch (ip6h->ip6_nxt) {
4635 		case IPPROTO_TCP:
4636 		case IPPROTO_UDP:
4637 		case IPPROTO_SCTP:
4638 		case IPPROTO_ICMPV6:
4639 			break;
4640 		default:
4641 			if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
4642 			    &hdr_len, &nexthdrp)) {
4643 				BUMP_MIB(&ipst->ips_ip6_mib,
4644 				    ipIfStatsOutDiscards);
4645 				freemsg(ipsec_mp); /* Not IPsec-related drop. */
4646 				return (NULL);
4647 			}
4648 			sel.ips_protocol = *nexthdrp;
4649 			break;
4650 		}
4651 	}
4652 
4653 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) {
4654 		if (ipha != NULL) {
4655 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
4656 		} else {
4657 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
4658 		}
4659 
4660 		/* Callee dropped the packet. */
4661 		return (NULL);
4662 	}
4663 
4664 	if (io != NULL) {
4665 		/*
4666 		 * We seem to have some local policy (we already have
4667 		 * an ipsec_out).  Look at global policy and see
4668 		 * whether we have to inherit or not.
4669 		 */
4670 		io->ipsec_out_need_policy = B_FALSE;
4671 		ipsec_mp = ipsec_apply_global_policy(ipsec_mp, connp,
4672 		    &sel, ns);
4673 		ASSERT((io->ipsec_out_policy != NULL) ||
4674 		    (io->ipsec_out_act != NULL));
4675 		ASSERT(io->ipsec_out_need_policy == B_FALSE);
4676 		return (ipsec_mp);
4677 	}
4678 	/*
4679 	 * We pass in a pointer to a pointer because mp can become
4680 	 * NULL due to allocation failures or explicit drops.  Callers
4681 	 * of this function should assume a NULL mp means the packet
4682 	 * was dropped.
4683 	 */
4684 	ipsec_mp = ipsec_attach_global_policy(&mp, connp, &sel, ns);
4685 	if (ipsec_mp == NULL)
4686 		return (mp);
4687 
4688 	/*
4689 	 * Copy the right port information.
4690 	 */
4691 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4692 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4693 
4694 	ASSERT(io->ipsec_out_need_policy == B_FALSE);
4695 	ASSERT((io->ipsec_out_policy != NULL) ||
4696 	    (io->ipsec_out_act != NULL));
4697 	io->ipsec_out_src_port = sel.ips_local_port;
4698 	io->ipsec_out_dst_port = sel.ips_remote_port;
4699 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
4700 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
4701 	/*
4702 	 * Set ill_index, conn_dontroute and conn_multicast_loop
4703 	 * for multicast datagrams.
4704 	 */
4705 	io->ipsec_out_ill_index = ill_index;
4706 	io->ipsec_out_dontroute = conn_dontroutex;
4707 	io->ipsec_out_multicast_loop = conn_multicast_loopx;
4708 
4709 	if (zoneid == ALL_ZONES)
4710 		zoneid = GLOBAL_ZONEID;
4711 	io->ipsec_out_zoneid = zoneid;
4712 	return (ipsec_mp);
4713 }
4714 
4715 /*
4716  * When appropriate, this function caches inbound and outbound policy
4717  * for this connection.
4718  *
4719  * XXX need to work out more details about per-interface policy and
4720  * caching here!
4721  *
4722  * XXX may want to split inbound and outbound caching for ill..
4723  */
4724 int
4725 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
4726 {
4727 	boolean_t global_policy_present;
4728 	netstack_t	*ns = connp->conn_netstack;
4729 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4730 
4731 	/*
4732 	 * There is no policy latching for ICMP sockets because we can't
4733 	 * decide on which policy to use until we see the packet and get
4734 	 * type/code selectors.
4735 	 */
4736 	if (connp->conn_ulp == IPPROTO_ICMP ||
4737 	    connp->conn_ulp == IPPROTO_ICMPV6) {
4738 		connp->conn_in_enforce_policy =
4739 		    connp->conn_out_enforce_policy = B_TRUE;
4740 		if (connp->conn_latch != NULL) {
4741 			IPLATCH_REFRELE(connp->conn_latch, ns);
4742 			connp->conn_latch = NULL;
4743 		}
4744 		connp->conn_flags |= IPCL_CHECK_POLICY;
4745 		return (0);
4746 	}
4747 
4748 	global_policy_present = isv4 ?
4749 	    (ipss->ipsec_outbound_v4_policy_present ||
4750 		ipss->ipsec_inbound_v4_policy_present) :
4751 	    (ipss->ipsec_outbound_v6_policy_present ||
4752 		ipss->ipsec_inbound_v6_policy_present);
4753 
4754 	if ((connp->conn_policy != NULL) || global_policy_present) {
4755 		ipsec_selector_t sel;
4756 		ipsec_policy_t	*p;
4757 
4758 		if (connp->conn_latch == NULL &&
4759 		    (connp->conn_latch = iplatch_create()) == NULL) {
4760 			return (ENOMEM);
4761 		}
4762 
4763 		sel.ips_protocol = connp->conn_ulp;
4764 		sel.ips_local_port = connp->conn_lport;
4765 		sel.ips_remote_port = connp->conn_fport;
4766 		sel.ips_is_icmp_inv_acq = 0;
4767 		sel.ips_isv4 = isv4;
4768 		if (isv4) {
4769 			sel.ips_local_addr_v4 = connp->conn_src;
4770 			sel.ips_remote_addr_v4 = connp->conn_rem;
4771 		} else {
4772 			sel.ips_local_addr_v6 = connp->conn_srcv6;
4773 			sel.ips_remote_addr_v6 = connp->conn_remv6;
4774 		}
4775 
4776 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel,
4777 		    ns);
4778 		if (connp->conn_latch->ipl_in_policy != NULL)
4779 			IPPOL_REFRELE(connp->conn_latch->ipl_in_policy, ns);
4780 		connp->conn_latch->ipl_in_policy = p;
4781 		connp->conn_in_enforce_policy = (p != NULL);
4782 
4783 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, &sel,
4784 		    ns);
4785 		if (connp->conn_latch->ipl_out_policy != NULL)
4786 			IPPOL_REFRELE(connp->conn_latch->ipl_out_policy, ns);
4787 		connp->conn_latch->ipl_out_policy = p;
4788 		connp->conn_out_enforce_policy = (p != NULL);
4789 
4790 		/* Clear the latched actions too, in case we're recaching. */
4791 		if (connp->conn_latch->ipl_out_action != NULL)
4792 			IPACT_REFRELE(connp->conn_latch->ipl_out_action);
4793 		if (connp->conn_latch->ipl_in_action != NULL)
4794 			IPACT_REFRELE(connp->conn_latch->ipl_in_action);
4795 	}
4796 
4797 	/*
4798 	 * We may or may not have policy for this endpoint.  We still set
4799 	 * conn_policy_cached so that inbound datagrams don't have to look
4800 	 * at global policy as policy is considered latched for these
4801 	 * endpoints.  We should not set conn_policy_cached until the conn
4802 	 * reflects the actual policy. If we *set* this before inheriting
4803 	 * the policy there is a window where the check
4804 	 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
4805 	 * on the conn (because we have not yet copied the policy on to
4806 	 * conn and hence not set conn_in_enforce_policy) nor with the
4807 	 * global policy (because conn_policy_cached is already set).
4808 	 */
4809 	connp->conn_policy_cached = B_TRUE;
4810 	if (connp->conn_in_enforce_policy)
4811 		connp->conn_flags |= IPCL_CHECK_POLICY;
4812 	return (0);
4813 }
4814 
4815 void
4816 iplatch_free(ipsec_latch_t *ipl, netstack_t *ns)
4817 {
4818 	if (ipl->ipl_out_policy != NULL)
4819 		IPPOL_REFRELE(ipl->ipl_out_policy, ns);
4820 	if (ipl->ipl_in_policy != NULL)
4821 		IPPOL_REFRELE(ipl->ipl_in_policy, ns);
4822 	if (ipl->ipl_in_action != NULL)
4823 		IPACT_REFRELE(ipl->ipl_in_action);
4824 	if (ipl->ipl_out_action != NULL)
4825 		IPACT_REFRELE(ipl->ipl_out_action);
4826 	if (ipl->ipl_local_cid != NULL)
4827 		IPSID_REFRELE(ipl->ipl_local_cid);
4828 	if (ipl->ipl_remote_cid != NULL)
4829 		IPSID_REFRELE(ipl->ipl_remote_cid);
4830 	if (ipl->ipl_local_id != NULL)
4831 		crfree(ipl->ipl_local_id);
4832 	mutex_destroy(&ipl->ipl_lock);
4833 	kmem_free(ipl, sizeof (*ipl));
4834 }
4835 
4836 ipsec_latch_t *
4837 iplatch_create()
4838 {
4839 	ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP);
4840 	if (ipl == NULL)
4841 		return (ipl);
4842 	bzero(ipl, sizeof (*ipl));
4843 	mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
4844 	ipl->ipl_refcnt = 1;
4845 	return (ipl);
4846 }
4847 
4848 /*
4849  * Hash function for ID hash table.
4850  */
4851 static uint32_t
4852 ipsid_hash(int idtype, char *idstring)
4853 {
4854 	uint32_t hval = idtype;
4855 	unsigned char c;
4856 
4857 	while ((c = *idstring++) != 0) {
4858 		hval = (hval << 4) | (hval >> 28);
4859 		hval ^= c;
4860 	}
4861 	hval = hval ^ (hval >> 16);
4862 	return (hval & (IPSID_HASHSIZE-1));
4863 }
4864 
4865 /*
4866  * Look up identity string in hash table.  Return identity object
4867  * corresponding to the name -- either preexisting, or newly allocated.
4868  *
4869  * Return NULL if we need to allocate a new one and can't get memory.
4870  */
4871 ipsid_t *
4872 ipsid_lookup(int idtype, char *idstring, netstack_t *ns)
4873 {
4874 	ipsid_t *retval;
4875 	char *nstr;
4876 	int idlen = strlen(idstring) + 1;
4877 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4878 	ipsif_t *bucket;
4879 
4880 	bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)];
4881 
4882 	mutex_enter(&bucket->ipsif_lock);
4883 
4884 	for (retval = bucket->ipsif_head; retval != NULL;
4885 	    retval = retval->ipsid_next) {
4886 		if (idtype != retval->ipsid_type)
4887 			continue;
4888 		if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
4889 			continue;
4890 
4891 		IPSID_REFHOLD(retval);
4892 		mutex_exit(&bucket->ipsif_lock);
4893 		return (retval);
4894 	}
4895 
4896 	retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
4897 	if (!retval) {
4898 		mutex_exit(&bucket->ipsif_lock);
4899 		return (NULL);
4900 	}
4901 
4902 	nstr = kmem_alloc(idlen, KM_NOSLEEP);
4903 	if (!nstr) {
4904 		mutex_exit(&bucket->ipsif_lock);
4905 		kmem_free(retval, sizeof (*retval));
4906 		return (NULL);
4907 	}
4908 
4909 	retval->ipsid_refcnt = 1;
4910 	retval->ipsid_next = bucket->ipsif_head;
4911 	if (retval->ipsid_next != NULL)
4912 		retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
4913 	retval->ipsid_ptpn = &bucket->ipsif_head;
4914 	retval->ipsid_type = idtype;
4915 	retval->ipsid_cid = nstr;
4916 	bucket->ipsif_head = retval;
4917 	bcopy(idstring, nstr, idlen);
4918 	mutex_exit(&bucket->ipsif_lock);
4919 
4920 	return (retval);
4921 }
4922 
4923 /*
4924  * Garbage collect the identity hash table.
4925  */
4926 void
4927 ipsid_gc(netstack_t *ns)
4928 {
4929 	int i, len;
4930 	ipsid_t *id, *nid;
4931 	ipsif_t *bucket;
4932 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4933 
4934 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4935 		bucket = &ipss->ipsec_ipsid_buckets[i];
4936 		mutex_enter(&bucket->ipsif_lock);
4937 		for (id = bucket->ipsif_head; id != NULL; id = nid) {
4938 			nid = id->ipsid_next;
4939 			if (id->ipsid_refcnt == 0) {
4940 				*id->ipsid_ptpn = nid;
4941 				if (nid != NULL)
4942 					nid->ipsid_ptpn = id->ipsid_ptpn;
4943 				len = strlen(id->ipsid_cid) + 1;
4944 				kmem_free(id->ipsid_cid, len);
4945 				kmem_free(id, sizeof (*id));
4946 			}
4947 		}
4948 		mutex_exit(&bucket->ipsif_lock);
4949 	}
4950 }
4951 
4952 /*
4953  * Return true if two identities are the same.
4954  */
4955 boolean_t
4956 ipsid_equal(ipsid_t *id1, ipsid_t *id2)
4957 {
4958 	if (id1 == id2)
4959 		return (B_TRUE);
4960 #ifdef DEBUG
4961 	if ((id1 == NULL) || (id2 == NULL))
4962 		return (B_FALSE);
4963 	/*
4964 	 * test that we're interning id's correctly..
4965 	 */
4966 	ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
4967 	    (id1->ipsid_type != id2->ipsid_type));
4968 #endif
4969 	return (B_FALSE);
4970 }
4971 
4972 /*
4973  * Initialize identity table; called during module initialization.
4974  */
4975 static void
4976 ipsid_init(netstack_t *ns)
4977 {
4978 	ipsif_t *bucket;
4979 	int i;
4980 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4981 
4982 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4983 		bucket = &ipss->ipsec_ipsid_buckets[i];
4984 		mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
4985 	}
4986 }
4987 
4988 /*
4989  * Free identity table (preparatory to module unload)
4990  */
4991 static void
4992 ipsid_fini(netstack_t *ns)
4993 {
4994 	ipsif_t *bucket;
4995 	int i;
4996 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4997 
4998 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4999 		bucket = &ipss->ipsec_ipsid_buckets[i];
5000 		ASSERT(bucket->ipsif_head == NULL);
5001 		mutex_destroy(&bucket->ipsif_lock);
5002 	}
5003 }
5004 
5005 /*
5006  * Update the minimum and maximum supported key sizes for the
5007  * specified algorithm. Must be called while holding the algorithms lock.
5008  */
5009 void
5010 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type,
5011     netstack_t *ns)
5012 {
5013 	size_t crypto_min = (size_t)-1, crypto_max = 0;
5014 	size_t cur_crypto_min, cur_crypto_max;
5015 	boolean_t is_valid;
5016 	crypto_mechanism_info_t *mech_infos;
5017 	uint_t nmech_infos;
5018 	int crypto_rc, i;
5019 	crypto_mech_usage_t mask;
5020 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
5021 
5022 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
5023 
5024 	/*
5025 	 * Compute the min, max, and default key sizes (in number of
5026 	 * increments to the default key size in bits) as defined
5027 	 * by the algorithm mappings. This range of key sizes is used
5028 	 * for policy related operations. The effective key sizes
5029 	 * supported by the framework could be more limited than
5030 	 * those defined for an algorithm.
5031 	 */
5032 	alg->alg_default_bits = alg->alg_key_sizes[0];
5033 	if (alg->alg_increment != 0) {
5034 		/* key sizes are defined by range & increment */
5035 		alg->alg_minbits = alg->alg_key_sizes[1];
5036 		alg->alg_maxbits = alg->alg_key_sizes[2];
5037 
5038 		alg->alg_default = SADB_ALG_DEFAULT_INCR(alg->alg_minbits,
5039 		    alg->alg_increment, alg->alg_default_bits);
5040 	} else if (alg->alg_nkey_sizes == 0) {
5041 		/* no specified key size for algorithm */
5042 		alg->alg_minbits = alg->alg_maxbits = 0;
5043 	} else {
5044 		/* key sizes are defined by enumeration */
5045 		alg->alg_minbits = (uint16_t)-1;
5046 		alg->alg_maxbits = 0;
5047 
5048 		for (i = 0; i < alg->alg_nkey_sizes; i++) {
5049 			if (alg->alg_key_sizes[i] < alg->alg_minbits)
5050 				alg->alg_minbits = alg->alg_key_sizes[i];
5051 			if (alg->alg_key_sizes[i] > alg->alg_maxbits)
5052 				alg->alg_maxbits = alg->alg_key_sizes[i];
5053 		}
5054 		alg->alg_default = 0;
5055 	}
5056 
5057 	if (!(alg->alg_flags & ALG_FLAG_VALID))
5058 		return;
5059 
5060 	/*
5061 	 * Mechanisms do not apply to the NULL encryption
5062 	 * algorithm, so simply return for this case.
5063 	 */
5064 	if (alg->alg_id == SADB_EALG_NULL)
5065 		return;
5066 
5067 	/*
5068 	 * Find the min and max key sizes supported by the cryptographic
5069 	 * framework providers.
5070 	 */
5071 
5072 	/* get the key sizes supported by the framework */
5073 	crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
5074 	    &mech_infos, &nmech_infos, KM_SLEEP);
5075 	if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
5076 		alg->alg_flags &= ~ALG_FLAG_VALID;
5077 		return;
5078 	}
5079 
5080 	/* min and max key sizes supported by framework */
5081 	for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
5082 		int unit_bits;
5083 
5084 		/*
5085 		 * Ignore entries that do not support the operations
5086 		 * needed for the algorithm type.
5087 		 */
5088 		if (alg_type == IPSEC_ALG_AUTH)
5089 			mask = CRYPTO_MECH_USAGE_MAC;
5090 		else
5091 			mask = CRYPTO_MECH_USAGE_ENCRYPT |
5092 				CRYPTO_MECH_USAGE_DECRYPT;
5093 		if ((mech_infos[i].mi_usage & mask) != mask)
5094 			continue;
5095 
5096 		unit_bits = (mech_infos[i].mi_keysize_unit ==
5097 		    CRYPTO_KEYSIZE_UNIT_IN_BYTES)  ? 8 : 1;
5098 		/* adjust min/max supported by framework */
5099 		cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
5100 		cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
5101 
5102 		if (cur_crypto_min < crypto_min)
5103 			crypto_min = cur_crypto_min;
5104 
5105 		/*
5106 		 * CRYPTO_EFFECTIVELY_INFINITE is a special value of
5107 		 * the crypto framework which means "no upper limit".
5108 		 */
5109 		if (mech_infos[i].mi_max_key_size ==
5110 		    CRYPTO_EFFECTIVELY_INFINITE)
5111 			crypto_max = (size_t)-1;
5112 		else if (cur_crypto_max > crypto_max)
5113 			crypto_max = cur_crypto_max;
5114 
5115 		is_valid = B_TRUE;
5116 	}
5117 
5118 	kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
5119 	    nmech_infos);
5120 
5121 	if (!is_valid) {
5122 		/* no key sizes supported by framework */
5123 		alg->alg_flags &= ~ALG_FLAG_VALID;
5124 		return;
5125 	}
5126 
5127 	/*
5128 	 * Determine min and max key sizes from alg_key_sizes[].
5129 	 * defined for the algorithm entry. Adjust key sizes based on
5130 	 * those supported by the framework.
5131 	 */
5132 	alg->alg_ef_default_bits = alg->alg_key_sizes[0];
5133 	if (alg->alg_increment != 0) {
5134 		/* supported key sizes are defined by range  & increment */
5135 		crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
5136 		crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
5137 
5138 		alg->alg_ef_minbits = MAX(alg->alg_minbits,
5139 		    (uint16_t)crypto_min);
5140 		alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
5141 		    (uint16_t)crypto_max);
5142 
5143 		/*
5144 		 * If the sizes supported by the framework are outside
5145 		 * the range of sizes defined by the algorithm mappings,
5146 		 * the algorithm cannot be used. Check for this
5147 		 * condition here.
5148 		 */
5149 		if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
5150 			alg->alg_flags &= ~ALG_FLAG_VALID;
5151 			return;
5152 		}
5153 
5154 		if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
5155 		    alg->alg_ef_default_bits = alg->alg_ef_minbits;
5156 		if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
5157 		    alg->alg_ef_default_bits = alg->alg_ef_maxbits;
5158 
5159 		alg->alg_ef_default = SADB_ALG_DEFAULT_INCR(alg->alg_ef_minbits,
5160 		    alg->alg_increment, alg->alg_ef_default_bits);
5161 	} else if (alg->alg_nkey_sizes == 0) {
5162 		/* no specified key size for algorithm */
5163 		alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
5164 	} else {
5165 		/* supported key sizes are defined by enumeration */
5166 		alg->alg_ef_minbits = (uint16_t)-1;
5167 		alg->alg_ef_maxbits = 0;
5168 
5169 		for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
5170 			/*
5171 			 * Ignore the current key size if it is not in the
5172 			 * range of sizes supported by the framework.
5173 			 */
5174 			if (alg->alg_key_sizes[i] < crypto_min ||
5175 			    alg->alg_key_sizes[i] > crypto_max)
5176 				continue;
5177 			if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
5178 				alg->alg_ef_minbits = alg->alg_key_sizes[i];
5179 			if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
5180 				alg->alg_ef_maxbits = alg->alg_key_sizes[i];
5181 			is_valid = B_TRUE;
5182 		}
5183 
5184 		if (!is_valid) {
5185 			alg->alg_flags &= ~ALG_FLAG_VALID;
5186 			return;
5187 		}
5188 		alg->alg_ef_default = 0;
5189 	}
5190 }
5191 
5192 /*
5193  * Free the memory used by the specified algorithm.
5194  */
5195 void
5196 ipsec_alg_free(ipsec_alginfo_t *alg)
5197 {
5198 	if (alg == NULL)
5199 		return;
5200 
5201 	if (alg->alg_key_sizes != NULL) {
5202 		kmem_free(alg->alg_key_sizes,
5203 		    (alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
5204 		alg->alg_key_sizes = NULL;
5205 	}
5206 	if (alg->alg_block_sizes != NULL) {
5207 		kmem_free(alg->alg_block_sizes,
5208 		    (alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
5209 		alg->alg_block_sizes = NULL;
5210 	}
5211 	kmem_free(alg, sizeof (*alg));
5212 }
5213 
5214 /*
5215  * Check the validity of the specified key size for an algorithm.
5216  * Returns B_TRUE if key size is valid, B_FALSE otherwise.
5217  */
5218 boolean_t
5219 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
5220 {
5221 	if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
5222 		return (B_FALSE);
5223 
5224 	if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
5225 		/*
5226 		 * If the key sizes are defined by enumeration, the new
5227 		 * key size must be equal to one of the supported values.
5228 		 */
5229 		int i;
5230 
5231 		for (i = 0; i < alg->alg_nkey_sizes; i++)
5232 			if (key_size == alg->alg_key_sizes[i])
5233 				break;
5234 		if (i == alg->alg_nkey_sizes)
5235 			return (B_FALSE);
5236 	}
5237 
5238 	return (B_TRUE);
5239 }
5240 
5241 /*
5242  * Callback function invoked by the crypto framework when a provider
5243  * registers or unregisters. This callback updates the algorithms
5244  * tables when a crypto algorithm is no longer available or becomes
5245  * available, and triggers the freeing/creation of context templates
5246  * associated with existing SAs, if needed.
5247  *
5248  * Need to walk all stack instances since the callback is global
5249  * for all instances
5250  */
5251 void
5252 ipsec_prov_update_callback(uint32_t event, void *event_arg)
5253 {
5254 	netstack_handle_t nh;
5255 	netstack_t *ns;
5256 
5257 	netstack_next_init(&nh);
5258 	while ((ns = netstack_next(&nh)) != NULL) {
5259 		ipsec_prov_update_callback_stack(event, event_arg, ns);
5260 		netstack_rele(ns);
5261 	}
5262 	netstack_next_fini(&nh);
5263 }
5264 
5265 static void
5266 ipsec_prov_update_callback_stack(uint32_t event, void *event_arg,
5267     netstack_t *ns)
5268 {
5269 	crypto_notify_event_change_t *prov_change =
5270 	    (crypto_notify_event_change_t *)event_arg;
5271 	uint_t algidx, algid, algtype, mech_count, mech_idx;
5272 	ipsec_alginfo_t *alg;
5273 	ipsec_alginfo_t oalg;
5274 	crypto_mech_name_t *mechs;
5275 	boolean_t alg_changed = B_FALSE;
5276 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
5277 
5278 	/* ignore events for which we didn't register */
5279 	if (event != CRYPTO_EVENT_MECHS_CHANGED) {
5280 		ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
5281 			" received from crypto framework\n", event));
5282 		return;
5283 	}
5284 
5285 	mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
5286 	if (mechs == NULL)
5287 		return;
5288 
5289 	/*
5290 	 * Walk the list of currently defined IPsec algorithm. Update
5291 	 * the algorithm valid flag and trigger an update of the
5292 	 * SAs that depend on that algorithm.
5293 	 */
5294 	mutex_enter(&ipss->ipsec_alg_lock);
5295 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
5296 		for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype];
5297 		    algidx++) {
5298 
5299 			algid = ipss->ipsec_sortlist[algtype][algidx];
5300 			alg = ipss->ipsec_alglists[algtype][algid];
5301 			ASSERT(alg != NULL);
5302 
5303 			/*
5304 			 * Skip the algorithms which do not map to the
5305 			 * crypto framework provider being added or removed.
5306 			 */
5307 			if (strncmp(alg->alg_mech_name,
5308 			    prov_change->ec_mech_name,
5309 			    CRYPTO_MAX_MECH_NAME) != 0)
5310 				continue;
5311 
5312 			/*
5313 			 * Determine if the mechanism is valid. If it
5314 			 * is not, mark the algorithm as being invalid. If
5315 			 * it is, mark the algorithm as being valid.
5316 			 */
5317 			for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
5318 				if (strncmp(alg->alg_mech_name,
5319 				    mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
5320 					break;
5321 			if (mech_idx == mech_count &&
5322 			    alg->alg_flags & ALG_FLAG_VALID) {
5323 				alg->alg_flags &= ~ALG_FLAG_VALID;
5324 				alg_changed = B_TRUE;
5325 			} else if (mech_idx < mech_count &&
5326 			    !(alg->alg_flags & ALG_FLAG_VALID)) {
5327 				alg->alg_flags |= ALG_FLAG_VALID;
5328 				alg_changed = B_TRUE;
5329 			}
5330 
5331 			/*
5332 			 * Update the supported key sizes, regardless
5333 			 * of whether a crypto provider was added or
5334 			 * removed.
5335 			 */
5336 			oalg = *alg;
5337 			ipsec_alg_fix_min_max(alg, algtype, ns);
5338 			if (!alg_changed &&
5339 			    alg->alg_ef_minbits != oalg.alg_ef_minbits ||
5340 			    alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
5341 			    alg->alg_ef_default != oalg.alg_ef_default ||
5342 			    alg->alg_ef_default_bits !=
5343 			    oalg.alg_ef_default_bits)
5344 				alg_changed = B_TRUE;
5345 
5346 			/*
5347 			 * Update the affected SAs if a software provider is
5348 			 * being added or removed.
5349 			 */
5350 			if (prov_change->ec_provider_type ==
5351 			    CRYPTO_SW_PROVIDER)
5352 				sadb_alg_update(algtype, alg->alg_id,
5353 				    prov_change->ec_change ==
5354 				    CRYPTO_MECH_ADDED, ns);
5355 		}
5356 	}
5357 	mutex_exit(&ipss->ipsec_alg_lock);
5358 	crypto_free_mech_list(mechs, mech_count);
5359 
5360 	if (alg_changed) {
5361 		/*
5362 		 * An algorithm has changed, i.e. it became valid or
5363 		 * invalid, or its support key sizes have changed.
5364 		 * Notify ipsecah and ipsecesp of this change so
5365 		 * that they can send a SADB_REGISTER to their consumers.
5366 		 */
5367 		ipsecah_algs_changed(ns);
5368 		ipsecesp_algs_changed(ns);
5369 	}
5370 }
5371 
5372 /*
5373  * Registers with the crypto framework to be notified of crypto
5374  * providers changes. Used to update the algorithm tables and
5375  * to free or create context templates if needed. Invoked after IPsec
5376  * is loaded successfully.
5377  *
5378  * This is called separately for each IP instance, so we ensure we only
5379  * register once.
5380  */
5381 void
5382 ipsec_register_prov_update(void)
5383 {
5384 	if (prov_update_handle != NULL)
5385 		return;
5386 
5387 	prov_update_handle = crypto_notify_events(
5388 	    ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED);
5389 }
5390 
5391 /*
5392  * Unregisters from the framework to be notified of crypto providers
5393  * changes. Called from ipsec_policy_g_destroy().
5394  */
5395 static void
5396 ipsec_unregister_prov_update(void)
5397 {
5398 	if (prov_update_handle != NULL)
5399 		crypto_unnotify_events(prov_update_handle);
5400 }
5401 
5402 /*
5403  * Tunnel-mode support routines.
5404  */
5405 
5406 /*
5407  * Returns an mblk chain suitable for putnext() if policies match and IPsec
5408  * SAs are available.  If there's no per-tunnel policy, or a match comes back
5409  * with no match, then still return the packet and have global policy take
5410  * a crack at it in IP.
5411  *
5412  * Remember -> we can be forwarding packets.  Keep that in mind w.r.t.
5413  * inner-packet contents.
5414  */
5415 mblk_t *
5416 ipsec_tun_outbound(mblk_t *mp, tun_t *atp, ipha_t *inner_ipv4,
5417     ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len,
5418     netstack_t *ns)
5419 {
5420 	ipsec_tun_pol_t *itp = atp->tun_itp;
5421 	ipsec_policy_head_t *polhead;
5422 	ipsec_selector_t sel;
5423 	mblk_t *ipsec_mp, *ipsec_mp_head, *nmp;
5424 	mblk_t *spare_mp = NULL;
5425 	ipsec_out_t *io;
5426 	boolean_t is_fragment;
5427 	ipsec_policy_t *pol;
5428 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5429 
5430 	ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL ||
5431 	    outer_ipv4 != NULL && outer_ipv6 == NULL);
5432 	/* We take care of inners in a bit. */
5433 
5434 	/* No policy on this tunnel - let global policy have at it. */
5435 	if (itp == NULL || !(itp->itp_flags & ITPF_P_ACTIVE))
5436 		return (mp);
5437 	polhead = itp->itp_policy;
5438 
5439 	bzero(&sel, sizeof (sel));
5440 	if (inner_ipv4 != NULL) {
5441 		ASSERT(inner_ipv6 == NULL);
5442 		sel.ips_isv4 = B_TRUE;
5443 		sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5444 		sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5445 		sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol;
5446 		is_fragment =
5447 		    IS_V4_FRAGMENT(inner_ipv4->ipha_fragment_offset_and_flags);
5448 	} else {
5449 		ASSERT(inner_ipv6 != NULL);
5450 		sel.ips_isv4 = B_FALSE;
5451 		sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5452 		/* Use ip_get_dst_v6() just for the fragment bit. */
5453 		sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6,
5454 		    &is_fragment);
5455 		/*
5456 		 * Reset, because we don't care about routing-header dests
5457 		 * in the forwarding/tunnel path.
5458 		 */
5459 		sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5460 	}
5461 
5462 	if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) {
5463 		if (is_fragment) {
5464 			ipha_t *oiph;
5465 			ipha_t *iph = NULL;
5466 			ip6_t *ip6h = NULL;
5467 			int hdr_len;
5468 			uint16_t ip6_hdr_length;
5469 			uint8_t v6_proto;
5470 			uint8_t *v6_proto_p;
5471 
5472 			/*
5473 			 * We have a fragment we need to track!
5474 			 */
5475 			mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp,
5476 			    outer_hdr_len, ipss);
5477 			if (mp == NULL)
5478 				return (NULL);
5479 
5480 			/*
5481 			 * If we get here, we have a full
5482 			 * fragment chain
5483 			 */
5484 
5485 			oiph = (ipha_t *)mp->b_rptr;
5486 			if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
5487 				hdr_len = ((outer_hdr_len != 0) ?
5488 				    IPH_HDR_LENGTH(oiph) : 0);
5489 				iph = (ipha_t *)(mp->b_rptr + hdr_len);
5490 			} else {
5491 				ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
5492 				if ((spare_mp = msgpullup(mp, -1)) == NULL) {
5493 					ip_drop_packet_chain(mp, B_FALSE,
5494 					    NULL, NULL,
5495 					    DROPPER(ipss, ipds_spd_nomem),
5496 					    &ipss->ipsec_spd_dropper);
5497 				}
5498 				ip6h = (ip6_t *)spare_mp->b_rptr;
5499 				(void) ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
5500 				    &ip6_hdr_length, &v6_proto_p);
5501 				hdr_len = ip6_hdr_length;
5502 			}
5503 			outer_hdr_len = hdr_len;
5504 
5505 			if (sel.ips_isv4) {
5506 				if (iph == NULL) {
5507 					/* Was v6 outer */
5508 					iph = (ipha_t *)(mp->b_rptr + hdr_len);
5509 				}
5510 				inner_ipv4 = iph;
5511 				sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5512 				sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5513 				sel.ips_protocol =
5514 				    (uint8_t)inner_ipv4->ipha_protocol;
5515 			} else {
5516 				if ((spare_mp == NULL) &&
5517 				    ((spare_mp = msgpullup(mp, -1)) == NULL)) {
5518 					ip_drop_packet_chain(mp, B_FALSE,
5519 					    NULL, NULL,
5520 					    DROPPER(ipss, ipds_spd_nomem),
5521 					    &ipss->ipsec_spd_dropper);
5522 				}
5523 				inner_ipv6 = (ip6_t *)(spare_mp->b_rptr +
5524 				    hdr_len);
5525 				sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5526 				sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5527 				(void) ip_hdr_length_nexthdr_v6(spare_mp,
5528 				    inner_ipv6, &ip6_hdr_length,
5529 				    &v6_proto_p);
5530 				v6_proto = *v6_proto_p;
5531 				sel.ips_protocol = v6_proto;
5532 #ifdef FRAGCACHE_DEBUG
5533 				cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n",
5534 				    sel.ips_protocol);
5535 #endif
5536 			}
5537 			/* Ports are extracted below */
5538 		}
5539 
5540 		/* Get ports... */
5541 		if (spare_mp != NULL) {
5542 			if (!ipsec_init_outbound_ports(&sel, spare_mp,
5543 			    inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
5544 				/*
5545 				 * callee did ip_drop_packet_chain() on
5546 				 * spare_mp
5547 				 */
5548 				ipsec_freemsg_chain(mp);
5549 				return (NULL);
5550 			}
5551 		} else {
5552 			if (!ipsec_init_outbound_ports(&sel, mp,
5553 			    inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
5554 				/* callee did ip_drop_packet_chain() on mp. */
5555 				return (NULL);
5556 			}
5557 		}
5558 #ifdef FRAGCACHE_DEBUG
5559 		if (inner_ipv4 != NULL)
5560 			cmn_err(CE_WARN,
5561 			    "(v4) sel.ips_protocol = %d, "
5562 			    "sel.ips_local_port = %d, "
5563 			    "sel.ips_remote_port = %d\n",
5564 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5565 			    ntohs(sel.ips_remote_port));
5566 		if (inner_ipv6 != NULL)
5567 			cmn_err(CE_WARN,
5568 			    "(v6) sel.ips_protocol = %d, "
5569 			    "sel.ips_local_port = %d, "
5570 			    "sel.ips_remote_port = %d\n",
5571 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5572 			    ntohs(sel.ips_remote_port));
5573 #endif
5574 		/* Success so far - done with spare_mp */
5575 		ipsec_freemsg_chain(spare_mp);
5576 	}
5577 	rw_enter(&polhead->iph_lock, RW_READER);
5578 	pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND,
5579 	    &sel, ns);
5580 	rw_exit(&polhead->iph_lock);
5581 	if (pol == NULL) {
5582 		/*
5583 		 * No matching policy on this tunnel, drop the packet.
5584 		 *
5585 		 * NOTE:  Tunnel-mode tunnels are different from the
5586 		 * IP global transport mode policy head.  For a tunnel-mode
5587 		 * tunnel, we drop the packet in lieu of passing it
5588 		 * along accepted the way a global-policy miss would.
5589 		 *
5590 		 * NOTE2:  "negotiate transport" tunnels should match ALL
5591 		 * inbound packets, but we do not uncomment the ASSERT()
5592 		 * below because if/when we open PF_POLICY, a user can
5593 		 * shoot him/her-self in the foot with a 0 priority.
5594 		 */
5595 
5596 		/* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */
5597 #ifdef FRAGCACHE_DEBUG
5598 		cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel "
5599 		    "per-port policy\n");
5600 #endif
5601 		ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
5602 		    DROPPER(ipss, ipds_spd_explicit),
5603 		    &ipss->ipsec_spd_dropper);
5604 		return (NULL);
5605 	}
5606 
5607 #ifdef FRAGCACHE_DEBUG
5608 	cmn_err(CE_WARN, "Having matching tunnel per-port policy\n");
5609 #endif
5610 
5611 	/* Construct an IPSEC_OUT message. */
5612 	ipsec_mp = ipsec_mp_head = ipsec_alloc_ipsec_out(ns);
5613 	if (ipsec_mp == NULL) {
5614 		IPPOL_REFRELE(pol, ns);
5615 		ip_drop_packet(mp, B_FALSE, NULL, NULL,
5616 		    DROPPER(ipss, ipds_spd_nomem),
5617 		    &ipss->ipsec_spd_dropper);
5618 		return (NULL);
5619 	}
5620 	ipsec_mp->b_cont = mp;
5621 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
5622 	IPPH_REFHOLD(polhead);
5623 	/*
5624 	 * NOTE: free() function of ipsec_out mblk will release polhead and
5625 	 * pol references.
5626 	 */
5627 	io->ipsec_out_polhead = polhead;
5628 	io->ipsec_out_policy = pol;
5629 	io->ipsec_out_zoneid = atp->tun_zoneid;
5630 	io->ipsec_out_v4 = (outer_ipv4 != NULL);
5631 	io->ipsec_out_secure = B_TRUE;
5632 
5633 	if (!(itp->itp_flags & ITPF_P_TUNNEL)) {
5634 		/* Set up transport mode for tunnelled packets. */
5635 		io->ipsec_out_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP :
5636 		    IPPROTO_IPV6;
5637 		return (ipsec_mp);
5638 	}
5639 
5640 	/* Fill in tunnel-mode goodies here. */
5641 	io->ipsec_out_tunnel = B_TRUE;
5642 	/* XXX Do I need to fill in all of the goodies here? */
5643 	if (inner_ipv4) {
5644 		io->ipsec_out_inaf = AF_INET;
5645 		io->ipsec_out_insrc[0] =
5646 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4;
5647 		io->ipsec_out_indst[0] =
5648 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4;
5649 	} else {
5650 		io->ipsec_out_inaf = AF_INET6;
5651 		io->ipsec_out_insrc[0] =
5652 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0];
5653 		io->ipsec_out_insrc[1] =
5654 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1];
5655 		io->ipsec_out_insrc[2] =
5656 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2];
5657 		io->ipsec_out_insrc[3] =
5658 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3];
5659 		io->ipsec_out_indst[0] =
5660 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0];
5661 		io->ipsec_out_indst[1] =
5662 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1];
5663 		io->ipsec_out_indst[2] =
5664 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2];
5665 		io->ipsec_out_indst[3] =
5666 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3];
5667 	}
5668 	io->ipsec_out_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen;
5669 	io->ipsec_out_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen;
5670 	/* NOTE:  These are used for transport mode too. */
5671 	io->ipsec_out_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport;
5672 	io->ipsec_out_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport;
5673 	io->ipsec_out_proto = pol->ipsp_sel->ipsl_key.ipsl_proto;
5674 
5675 	/*
5676 	 * The mp pointer still valid
5677 	 * Add ipsec_out to each fragment.
5678 	 * The fragment head already has one
5679 	 */
5680 	nmp = mp->b_next;
5681 	mp->b_next = NULL;
5682 	mp = nmp;
5683 	ASSERT(ipsec_mp != NULL);
5684 	while (mp != NULL) {
5685 		nmp = mp->b_next;
5686 		ipsec_mp->b_next = ipsec_out_tag(ipsec_mp_head, mp, ns);
5687 		if (ipsec_mp->b_next == NULL) {
5688 			ip_drop_packet_chain(ipsec_mp_head, B_FALSE, NULL, NULL,
5689 			    DROPPER(ipss, ipds_spd_nomem),
5690 			    &ipss->ipsec_spd_dropper);
5691 			ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
5692 			    DROPPER(ipss, ipds_spd_nomem),
5693 			    &ipss->ipsec_spd_dropper);
5694 			return (NULL);
5695 		}
5696 		ipsec_mp = ipsec_mp->b_next;
5697 		mp->b_next = NULL;
5698 		mp = nmp;
5699 	}
5700 	return (ipsec_mp_head);
5701 }
5702 
5703 /*
5704  * NOTE: The following releases pol's reference and
5705  * calls ip_drop_packet() for me on NULL returns.
5706  */
5707 mblk_t *
5708 ipsec_check_ipsecin_policy_reasm(mblk_t *ipsec_mp, ipsec_policy_t *pol,
5709     ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns)
5710 {
5711 	/* Assume ipsec_mp is a chain of b_next-linked IPSEC_IN M_CTLs. */
5712 	mblk_t *data_chain = NULL, *data_tail = NULL;
5713 	mblk_t *ii_next;
5714 
5715 	while (ipsec_mp != NULL) {
5716 		ii_next = ipsec_mp->b_next;
5717 		ipsec_mp->b_next = NULL;  /* No tripping asserts. */
5718 
5719 		/*
5720 		 * Need IPPOL_REFHOLD(pol) for extras because
5721 		 * ipsecin_policy does the refrele.
5722 		 */
5723 		IPPOL_REFHOLD(pol);
5724 
5725 		if (ipsec_check_ipsecin_policy(ipsec_mp, pol, inner_ipv4,
5726 		    inner_ipv6, pkt_unique, ns) != NULL) {
5727 			if (data_tail == NULL) {
5728 				/* First one */
5729 				data_chain = data_tail = ipsec_mp->b_cont;
5730 			} else {
5731 				data_tail->b_next = ipsec_mp->b_cont;
5732 				data_tail = data_tail->b_next;
5733 			}
5734 			freeb(ipsec_mp);
5735 		} else {
5736 			/*
5737 			 * ipsec_check_ipsecin_policy() freed ipsec_mp
5738 			 * already.   Need to get rid of any extra pol
5739 			 * references, and any remaining bits as well.
5740 			 */
5741 			IPPOL_REFRELE(pol, ns);
5742 			ipsec_freemsg_chain(data_chain);
5743 			ipsec_freemsg_chain(ii_next);	/* ipdrop stats? */
5744 			return (NULL);
5745 		}
5746 		ipsec_mp = ii_next;
5747 	}
5748 	/*
5749 	 * One last release because either the loop bumped it up, or we never
5750 	 * called ipsec_check_ipsecin_policy().
5751 	 */
5752 	IPPOL_REFRELE(pol, ns);
5753 
5754 	/* data_chain is ready for return to tun module. */
5755 	return (data_chain);
5756 }
5757 
5758 
5759 /*
5760  * Returns B_TRUE if the inbound packet passed an IPsec policy check.  Returns
5761  * B_FALSE if it failed or if it is a fragment needing its friends before a
5762  * policy check can be performed.
5763  *
5764  * Expects a non-NULL *data_mp, an optional ipsec_mp, and a non-NULL polhead.
5765  * data_mp may be reassigned with a b_next chain of packets if fragments
5766  * neeeded to be collected for a proper policy check.
5767  *
5768  * Always frees ipsec_mp, but only frees data_mp if returns B_FALSE.  This
5769  * function calls ip_drop_packet() on data_mp if need be.
5770  *
5771  * NOTE:  outer_hdr_len is signed.  If it's a negative value, the caller
5772  * is inspecting an ICMP packet.
5773  */
5774 boolean_t
5775 ipsec_tun_inbound(mblk_t *ipsec_mp, mblk_t **data_mp, ipsec_tun_pol_t *itp,
5776     ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4,
5777     ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns)
5778 {
5779 	ipsec_policy_head_t *polhead;
5780 	ipsec_selector_t sel;
5781 	mblk_t *message = (ipsec_mp == NULL) ? *data_mp : ipsec_mp;
5782 	ipsec_policy_t *pol;
5783 	uint16_t tmpport;
5784 	selret_t rc;
5785 	boolean_t retval, port_policy_present, is_icmp, global_present;
5786 	in6_addr_t tmpaddr;
5787 	ipaddr_t tmp4;
5788 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5789 	uint8_t flags, *holder, *outer_hdr;
5790 
5791 	sel.ips_is_icmp_inv_acq = 0;
5792 
5793 	if (outer_ipv4 != NULL) {
5794 		ASSERT(outer_ipv6 == NULL);
5795 		outer_hdr = (uint8_t *)outer_ipv4;
5796 		global_present = ipss->ipsec_inbound_v4_policy_present;
5797 	} else {
5798 		outer_hdr = (uint8_t *)outer_ipv6;
5799 		global_present = ipss->ipsec_inbound_v6_policy_present;
5800 	}
5801 	ASSERT(outer_hdr != NULL);
5802 
5803 	ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL ||
5804 	    inner_ipv4 == NULL && inner_ipv6 != NULL);
5805 	ASSERT(message == *data_mp || message->b_cont == *data_mp);
5806 
5807 	if (outer_hdr_len < 0) {
5808 		outer_hdr_len = (-outer_hdr_len);
5809 		is_icmp = B_TRUE;
5810 	} else {
5811 		is_icmp = B_FALSE;
5812 	}
5813 
5814 	if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) {
5815 		polhead = itp->itp_policy;
5816 		/*
5817 		 * We need to perform full Tunnel-Mode enforcement,
5818 		 * and we need to have inner-header data for such enforcement.
5819 		 *
5820 		 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound
5821 		 * and on return.
5822 		 */
5823 
5824 		port_policy_present = ((itp->itp_flags &
5825 		    ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE);
5826 		flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) |
5827 		    (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE);
5828 
5829 		rc = ipsec_init_inbound_sel(&sel, *data_mp, inner_ipv4,
5830 		    inner_ipv6, flags);
5831 
5832 		switch (rc) {
5833 		case SELRET_NOMEM:
5834 			ip_drop_packet(message, B_TRUE, NULL, NULL,
5835 			    DROPPER(ipss, ipds_spd_nomem),
5836 			    &ipss->ipsec_spd_dropper);
5837 			return (B_FALSE);
5838 		case SELRET_TUNFRAG:
5839 			/*
5840 			 * At this point, if we're cleartext, we don't want
5841 			 * to go there.
5842 			 */
5843 			if (ipsec_mp == NULL) {
5844 				ip_drop_packet(*data_mp, B_TRUE, NULL, NULL,
5845 				    DROPPER(ipss, ipds_spd_got_clear),
5846 				    &ipss->ipsec_spd_dropper);
5847 				*data_mp = NULL;
5848 				return (B_FALSE);
5849 			}
5850 			ASSERT(((ipsec_in_t *)ipsec_mp->b_rptr)->
5851 			    ipsec_in_secure);
5852 			message = ipsec_fragcache_add(&itp->itp_fragcache,
5853 			    ipsec_mp, *data_mp, outer_hdr_len, ipss);
5854 
5855 			if (message == NULL) {
5856 				/*
5857 				 * Data is cached, fragment chain is not
5858 				 * complete.  I consume ipsec_mp and data_mp
5859 				 */
5860 				return (B_FALSE);
5861 			}
5862 
5863 			/*
5864 			 * If we get here, we have a full fragment chain.
5865 			 * Reacquire headers and selectors from first fragment.
5866 			 */
5867 			if (inner_ipv4 != NULL) {
5868 				inner_ipv4 = (ipha_t *)message->b_cont->b_rptr;
5869 				ASSERT(message->b_cont->b_wptr -
5870 				    message->b_cont->b_rptr > sizeof (ipha_t));
5871 			} else {
5872 				inner_ipv6 = (ip6_t *)message->b_cont->b_rptr;
5873 				ASSERT(message->b_cont->b_wptr -
5874 				    message->b_cont->b_rptr > sizeof (ip6_t));
5875 			}
5876 			/* Use SEL_NONE so we always get ports! */
5877 			rc = ipsec_init_inbound_sel(&sel, message->b_cont,
5878 			    inner_ipv4, inner_ipv6, SEL_NONE);
5879 			switch (rc) {
5880 			case SELRET_SUCCESS:
5881 				/*
5882 				 * Get to same place as first caller's
5883 				 * SELRET_SUCCESS case.
5884 				 */
5885 				break;
5886 			case SELRET_NOMEM:
5887 				ip_drop_packet_chain(message, B_TRUE,
5888 				    NULL, NULL,
5889 				    DROPPER(ipss, ipds_spd_nomem),
5890 				    &ipss->ipsec_spd_dropper);
5891 				return (B_FALSE);
5892 			case SELRET_BADPKT:
5893 				ip_drop_packet_chain(message, B_TRUE,
5894 				    NULL, NULL,
5895 				    DROPPER(ipss, ipds_spd_malformed_frag),
5896 				    &ipss->ipsec_spd_dropper);
5897 				return (B_FALSE);
5898 			case SELRET_TUNFRAG:
5899 				cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)");
5900 				/* FALLTHRU */
5901 			default:
5902 				cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)"
5903 				    " returns bizarro 0x%x", rc);
5904 				/* Guaranteed panic! */
5905 				ASSERT(rc == SELRET_NOMEM);
5906 				return (B_FALSE);
5907 			}
5908 			/* FALLTHRU */
5909 		case SELRET_SUCCESS:
5910 			/*
5911 			 * Common case:
5912 			 * No per-port policy or a non-fragment.  Keep going.
5913 			 */
5914 			break;
5915 		case SELRET_BADPKT:
5916 			/*
5917 			 * We may receive ICMP (with IPv6 inner) packets that
5918 			 * trigger this return value.  Send 'em in for
5919 			 * enforcement checking.
5920 			 */
5921 			cmn_err(CE_NOTE, "ipsec_tun_inbound(): "
5922 			    "sending 'bad packet' in for enforcement");
5923 			break;
5924 		default:
5925 			cmn_err(CE_WARN,
5926 			    "ipsec_init_inbound_sel() returns bizarro 0x%x",
5927 			    rc);
5928 			ASSERT(rc == SELRET_NOMEM);	/* Guaranteed panic! */
5929 			return (B_FALSE);
5930 		}
5931 
5932 		if (is_icmp) {
5933 			/*
5934 			 * Swap local/remote because this is an ICMP packet.
5935 			 */
5936 			tmpaddr = sel.ips_local_addr_v6;
5937 			sel.ips_local_addr_v6 = sel.ips_remote_addr_v6;
5938 			sel.ips_remote_addr_v6 = tmpaddr;
5939 			tmpport = sel.ips_local_port;
5940 			sel.ips_local_port = sel.ips_remote_port;
5941 			sel.ips_remote_port = tmpport;
5942 		}
5943 
5944 		/* find_policy_head() */
5945 		rw_enter(&polhead->iph_lock, RW_READER);
5946 		pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND,
5947 		    &sel, ns);
5948 		rw_exit(&polhead->iph_lock);
5949 		if (pol != NULL) {
5950 			if (ipsec_mp == NULL ||
5951 			    !((ipsec_in_t *)ipsec_mp->b_rptr)->
5952 				ipsec_in_secure) {
5953 				retval = pol->ipsp_act->ipa_allow_clear;
5954 				if (!retval) {
5955 					/*
5956 					 * XXX should never get here with
5957 					 * tunnel reassembled fragments?
5958 					 */
5959 					ASSERT(message->b_next == NULL);
5960 					ip_drop_packet(message, B_TRUE, NULL,
5961 					    NULL,
5962 					    DROPPER(ipss, ipds_spd_got_clear),
5963 					    &ipss->ipsec_spd_dropper);
5964 				} else if (ipsec_mp != NULL) {
5965 					freeb(ipsec_mp);
5966 				}
5967 
5968 				IPPOL_REFRELE(pol, ns);
5969 				return (retval);
5970 			}
5971 			/*
5972 			 * NOTE: The following releases pol's reference and
5973 			 * calls ip_drop_packet() for me on NULL returns.
5974 			 *
5975 			 * "sel" is still good here, so let's use it!
5976 			 */
5977 			*data_mp = ipsec_check_ipsecin_policy_reasm(message,
5978 			    pol, inner_ipv4, inner_ipv6, SA_UNIQUE_ID(
5979 				sel.ips_remote_port, sel.ips_local_port,
5980 				(inner_ipv4 == NULL) ? IPPROTO_IPV6 :
5981 				IPPROTO_ENCAP, sel.ips_protocol), ns);
5982 			return (*data_mp != NULL);
5983 		}
5984 
5985 		/*
5986 		 * Else fallthru and check the global policy on the outer
5987 		 * header(s) if this tunnel is an old-style transport-mode
5988 		 * one.  Drop the packet explicitly (no policy entry) for
5989 		 * a new-style tunnel-mode tunnel.
5990 		 */
5991 		if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) {
5992 			ip_drop_packet_chain(message, B_TRUE, NULL,
5993 			    NULL,
5994 			    DROPPER(ipss, ipds_spd_explicit),
5995 			    &ipss->ipsec_spd_dropper);
5996 			return (B_FALSE);
5997 		}
5998 	}
5999 
6000 	/*
6001 	 * NOTE:  If we reach here, we will not have packet chains from
6002 	 * fragcache_add(), because the only way I get chains is on a
6003 	 * tunnel-mode tunnel, which either returns with a pass, or gets
6004 	 * hit by the ip_drop_packet_chain() call right above here.
6005 	 */
6006 
6007 	/* If no per-tunnel security, check global policy now. */
6008 	if (ipsec_mp != NULL && !global_present) {
6009 		if (((ipsec_in_t *)(ipsec_mp->b_rptr))->
6010 		    ipsec_in_icmp_loopback) {
6011 			/*
6012 			 * This is an ICMP message with an ipsec_mp
6013 			 * attached.  We should accept it.
6014 			 */
6015 			if (ipsec_mp != NULL)
6016 				freeb(ipsec_mp);
6017 			return (B_TRUE);
6018 		}
6019 
6020 		ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
6021 		    DROPPER(ipss, ipds_spd_got_secure),
6022 		    &ipss->ipsec_spd_dropper);
6023 		return (B_FALSE);
6024 	}
6025 
6026 	/*
6027 	 * The following assertion is valid because only the tun module alters
6028 	 * the mblk chain - stripping the outer header by advancing mp->b_rptr.
6029 	 */
6030 	ASSERT(is_icmp ||
6031 	    ((*data_mp)->b_datap->db_base <= outer_hdr &&
6032 		outer_hdr < (*data_mp)->b_rptr));
6033 	holder = (*data_mp)->b_rptr;
6034 	(*data_mp)->b_rptr = outer_hdr;
6035 
6036 	if (is_icmp) {
6037 		/*
6038 		 * For ICMP packets, "outer_ipvN" is set to the outer header
6039 		 * that is *INSIDE* the ICMP payload.  For global policy
6040 		 * checking, we need to reverse src/dst on the payload in
6041 		 * order to construct selectors appropriately.  See "ripha"
6042 		 * constructions in ip.c.  To avoid a bug like 6478464 (see
6043 		 * earlier in this file), we will actually exchange src/dst
6044 		 * in the packet, and reverse if after the call to
6045 		 * ipsec_check_global_policy().
6046 		 */
6047 		if (outer_ipv4 != NULL) {
6048 			tmp4 = outer_ipv4->ipha_src;
6049 			outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
6050 			outer_ipv4->ipha_dst = tmp4;
6051 		} else {
6052 			ASSERT(outer_ipv6 != NULL);
6053 			tmpaddr = outer_ipv6->ip6_src;
6054 			outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
6055 			outer_ipv6->ip6_dst = tmpaddr;
6056 		}
6057 	}
6058 
6059 	/* NOTE:  Frees message if it returns NULL. */
6060 	if (ipsec_check_global_policy(message, NULL, outer_ipv4, outer_ipv6,
6061 		(ipsec_mp != NULL), ns) == NULL) {
6062 		return (B_FALSE);
6063 	}
6064 
6065 	if (is_icmp) {
6066 		/* Set things back to normal. */
6067 		if (outer_ipv4 != NULL) {
6068 			tmp4 = outer_ipv4->ipha_src;
6069 			outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
6070 			outer_ipv4->ipha_dst = tmp4;
6071 		} else {
6072 			/* No need for ASSERT()s now. */
6073 			tmpaddr = outer_ipv6->ip6_src;
6074 			outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
6075 			outer_ipv6->ip6_dst = tmpaddr;
6076 		}
6077 	}
6078 
6079 	(*data_mp)->b_rptr = holder;
6080 
6081 	if (ipsec_mp != NULL)
6082 		freeb(ipsec_mp);
6083 
6084 	/*
6085 	 * At this point, we pretend it's a cleartext accepted
6086 	 * packet.
6087 	 */
6088 	return (B_TRUE);
6089 }
6090 
6091 /*
6092  * AVL comparison routine for our list of tunnel polheads.
6093  */
6094 static int
6095 tunnel_compare(const void *arg1, const void *arg2)
6096 {
6097 	ipsec_tun_pol_t *left, *right;
6098 	int rc;
6099 
6100 	left = (ipsec_tun_pol_t *)arg1;
6101 	right = (ipsec_tun_pol_t *)arg2;
6102 
6103 	rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ);
6104 	return (rc == 0 ? rc : (rc > 0 ? 1 : -1));
6105 }
6106 
6107 /*
6108  * Free a tunnel policy node.
6109  */
6110 void
6111 itp_free(ipsec_tun_pol_t *node, netstack_t *ns)
6112 {
6113 	IPPH_REFRELE(node->itp_policy, ns);
6114 	IPPH_REFRELE(node->itp_inactive, ns);
6115 	mutex_destroy(&node->itp_lock);
6116 	kmem_free(node, sizeof (*node));
6117 }
6118 
6119 void
6120 itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns)
6121 {
6122 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6123 
6124 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
6125 	ipss->ipsec_tunnel_policy_gen++;
6126 	ipsec_fragcache_uninit(&node->itp_fragcache);
6127 	avl_remove(&ipss->ipsec_tunnel_policies, node);
6128 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6129 	ITP_REFRELE(node, ns);
6130 }
6131 
6132 /*
6133  * Public interface to look up a tunnel security policy by name.  Used by
6134  * spdsock mostly.  Returns "node" with a bumped refcnt.
6135  */
6136 ipsec_tun_pol_t *
6137 get_tunnel_policy(char *name, netstack_t *ns)
6138 {
6139 	ipsec_tun_pol_t *node, lookup;
6140 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6141 
6142 	(void) strncpy(lookup.itp_name, name, LIFNAMSIZ);
6143 
6144 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
6145 	node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
6146 	    &lookup, NULL);
6147 	if (node != NULL) {
6148 		ITP_REFHOLD(node);
6149 	}
6150 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6151 
6152 	return (node);
6153 }
6154 
6155 /*
6156  * Public interface to walk all tunnel security polcies.  Useful for spdsock
6157  * DUMP operations.  iterator() will not consume a reference.
6158  */
6159 void
6160 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *),
6161     void *arg, netstack_t *ns)
6162 {
6163 	ipsec_tun_pol_t *node;
6164 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6165 
6166 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
6167 	for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL;
6168 	    node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) {
6169 		iterator(node, arg, ns);
6170 	}
6171 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6172 }
6173 
6174 /*
6175  * Initialize policy head.  This can only fail if there's a memory problem.
6176  */
6177 static boolean_t
6178 tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns)
6179 {
6180 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6181 
6182 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
6183 	iph->iph_refs = 1;
6184 	iph->iph_gen = 0;
6185 	if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize,
6186 	    KM_SLEEP, B_FALSE, ns) != 0) {
6187 		ipsec_polhead_free_table(iph);
6188 		return (B_FALSE);
6189 	}
6190 	ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize);
6191 	return (B_TRUE);
6192 }
6193 
6194 /*
6195  * Create a tunnel policy node with "name".  Set errno with
6196  * ENOMEM if there's a memory problem, and EEXIST if there's an existing
6197  * node.
6198  */
6199 ipsec_tun_pol_t *
6200 create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns)
6201 {
6202 	ipsec_tun_pol_t *newbie, *existing;
6203 	avl_index_t where;
6204 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6205 
6206 	newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
6207 	if (newbie == NULL) {
6208 		*errno = ENOMEM;
6209 		return (NULL);
6210 	}
6211 	if (!ipsec_fragcache_init(&newbie->itp_fragcache)) {
6212 		kmem_free(newbie, sizeof (*newbie));
6213 		*errno = ENOMEM;
6214 		return (NULL);
6215 	}
6216 
6217 	(void) strncpy(newbie->itp_name, name, LIFNAMSIZ);
6218 
6219 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
6220 	existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
6221 	    newbie, &where);
6222 	if (existing != NULL) {
6223 		itp_free(newbie, ns);
6224 		*errno = EEXIST;
6225 		rw_exit(&ipss->ipsec_tunnel_policy_lock);
6226 		return (NULL);
6227 	}
6228 	ipss->ipsec_tunnel_policy_gen++;
6229 	*gen = ipss->ipsec_tunnel_policy_gen;
6230 	newbie->itp_refcnt = 2;	/* One for the caller, one for the tree. */
6231 	newbie->itp_next_policy_index = 1;
6232 	avl_insert(&ipss->ipsec_tunnel_policies, newbie, where);
6233 	mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL);
6234 	newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t),
6235 	    KM_NOSLEEP);
6236 	if (newbie->itp_policy == NULL)
6237 		goto nomem;
6238 	newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t),
6239 	    KM_NOSLEEP);
6240 	if (newbie->itp_inactive == NULL) {
6241 		kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6242 		goto nomem;
6243 	}
6244 
6245 	if (!tunnel_polhead_init(newbie->itp_policy, ns)) {
6246 		kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6247 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6248 		goto nomem;
6249 	} else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) {
6250 		IPPH_REFRELE(newbie->itp_policy, ns);
6251 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6252 		goto nomem;
6253 	}
6254 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6255 
6256 	return (newbie);
6257 nomem:
6258 	*errno = ENOMEM;
6259 	kmem_free(newbie, sizeof (*newbie));
6260 	return (NULL);
6261 }
6262 
6263 /*
6264  * We can't call the tun_t lookup function until tun is
6265  * loaded, so create a dummy function to avoid symbol
6266  * lookup errors on boot.
6267  */
6268 /* ARGSUSED */
6269 ipsec_tun_pol_t *
6270 itp_get_byaddr_dummy(uint32_t *laddr, uint32_t *faddr, int af, netstack_t *ns)
6271 {
6272 	return (NULL);  /* Always return NULL. */
6273 }
6274 
6275 /*
6276  * Frag cache code, based on SunScreen 3.2 source
6277  *	screen/kernel/common/screen_fragcache.c
6278  */
6279 
6280 #define	IPSEC_FRAG_TTL_MAX	5
6281 /*
6282  * Note that the following parameters create 256 hash buckets
6283  * with 1024 free entries to be distributed.  Things are cleaned
6284  * periodically and are attempted to be cleaned when there is no
6285  * free space, but this system errs on the side of dropping packets
6286  * over creating memory exhaustion.  We may decide to make hash
6287  * factor a tunable if this proves to be a bad decision.
6288  */
6289 #define	IPSEC_FRAG_HASH_SLOTS	(1<<8)
6290 #define	IPSEC_FRAG_HASH_FACTOR	4
6291 #define	IPSEC_FRAG_HASH_SIZE	(IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR)
6292 
6293 #define	IPSEC_FRAG_HASH_MASK		(IPSEC_FRAG_HASH_SLOTS - 1)
6294 #define	IPSEC_FRAG_HASH_FUNC(id)	(((id) & IPSEC_FRAG_HASH_MASK) ^ \
6295 					    (((id) / \
6296 					    (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \
6297 					    IPSEC_FRAG_HASH_MASK))
6298 
6299 /* Maximum fragments per packet.  48 bytes payload x 1366 packets > 64KB */
6300 #define	IPSEC_MAX_FRAGS		1366
6301 
6302 #define	V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \
6303 				    IPH_OFFSET) << 3)
6304 #define	V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \
6305 		IPH_MF)
6306 
6307 /*
6308  * Initialize an ipsec fragcache instance.
6309  * Returns B_FALSE if memory allocation fails.
6310  */
6311 boolean_t
6312 ipsec_fragcache_init(ipsec_fragcache_t *frag)
6313 {
6314 	ipsec_fragcache_entry_t *ftemp;
6315 	int i;
6316 
6317 	mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL);
6318 	frag->itpf_ptr = (ipsec_fragcache_entry_t **)
6319 		kmem_zalloc(
6320 		    sizeof (ipsec_fragcache_entry_t *) *
6321 		    IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP);
6322 	if (frag->itpf_ptr == NULL)
6323 		return (B_FALSE);
6324 
6325 	ftemp = (ipsec_fragcache_entry_t *)
6326 		kmem_zalloc(sizeof (ipsec_fragcache_entry_t) *
6327 		    IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP);
6328 	if (ftemp == NULL) {
6329 		kmem_free(frag->itpf_ptr,
6330 		    sizeof (ipsec_fragcache_entry_t *) *
6331 		    IPSEC_FRAG_HASH_SLOTS);
6332 		return (B_FALSE);
6333 	}
6334 
6335 	frag->itpf_freelist = NULL;
6336 
6337 	for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) {
6338 	    ftemp->itpfe_next = frag->itpf_freelist;
6339 	    frag->itpf_freelist = ftemp;
6340 	    ftemp++;
6341 	}
6342 
6343 	frag->itpf_expire_hint = 0;
6344 
6345 	return (B_TRUE);
6346 }
6347 
6348 void
6349 ipsec_fragcache_uninit(ipsec_fragcache_t *frag)
6350 {
6351 	ipsec_fragcache_entry_t *fep;
6352 	int i;
6353 
6354 	mutex_enter(&frag->itpf_lock);
6355 	if (frag->itpf_ptr) {
6356 		/* Delete any existing fragcache entry chains */
6357 		for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6358 			fep = (frag->itpf_ptr)[i];
6359 			while (fep != NULL) {
6360 				/* Returned fep is next in chain or NULL */
6361 				fep = fragcache_delentry(i, fep, frag);
6362 			}
6363 		}
6364 		/*
6365 		 * Chase the pointers back to the beginning
6366 		 * of the memory allocation and then
6367 		 * get rid of the allocated freelist
6368 		 */
6369 		while (frag->itpf_freelist->itpfe_next != NULL)
6370 			frag->itpf_freelist = frag->itpf_freelist->itpfe_next;
6371 		/*
6372 		 * XXX - If we ever dynamically grow the freelist
6373 		 * then we'll have to free entries individually
6374 		 * or determine how many entries or chunks we have
6375 		 * grown since the initial allocation.
6376 		 */
6377 		kmem_free(frag->itpf_freelist,
6378 		    sizeof (ipsec_fragcache_entry_t) *
6379 		    IPSEC_FRAG_HASH_SIZE);
6380 		/* Free the fragcache structure */
6381 		kmem_free(frag->itpf_ptr,
6382 		    sizeof (ipsec_fragcache_entry_t *) *
6383 		    IPSEC_FRAG_HASH_SLOTS);
6384 	}
6385 	mutex_exit(&frag->itpf_lock);
6386 	mutex_destroy(&frag->itpf_lock);
6387 }
6388 
6389 /*
6390  * Add a fragment to the fragment cache.   Consumes mp if NULL is returned.
6391  * Returns mp if a whole fragment has been assembled, NULL otherwise
6392  */
6393 
6394 mblk_t *
6395 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *ipsec_mp, mblk_t *mp,
6396     int outer_hdr_len, ipsec_stack_t *ipss)
6397 {
6398 	boolean_t is_v4;
6399 	time_t itpf_time;
6400 	ipha_t *iph;
6401 	ipha_t *oiph;
6402 	ip6_t *ip6h = NULL;
6403 	uint8_t v6_proto;
6404 	uint8_t *v6_proto_p;
6405 	uint16_t ip6_hdr_length;
6406 	ip6_pkt_t ipp;
6407 	ip6_frag_t *fraghdr;
6408 	ipsec_fragcache_entry_t *fep;
6409 	int i;
6410 	mblk_t *nmp, *prevmp, *spare_mp = NULL;
6411 	int firstbyte, lastbyte;
6412 	int offset;
6413 	int last;
6414 	boolean_t inbound = (ipsec_mp != NULL);
6415 	mblk_t *first_mp = inbound ? ipsec_mp : mp;
6416 
6417 	mutex_enter(&frag->itpf_lock);
6418 
6419 	oiph  = (ipha_t *)mp->b_rptr;
6420 	iph  = (ipha_t *)(mp->b_rptr + outer_hdr_len);
6421 	if (IPH_HDR_VERSION(iph) == IPV4_VERSION) {
6422 		is_v4 = B_TRUE;
6423 	} else {
6424 		ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION);
6425 		if ((spare_mp = msgpullup(mp, -1)) == NULL) {
6426 			mutex_exit(&frag->itpf_lock);
6427 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6428 			    DROPPER(ipss, ipds_spd_nomem),
6429 			    &ipss->ipsec_spd_dropper);
6430 			return (NULL);
6431 		}
6432 		ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len);
6433 
6434 		if (!ip_hdr_length_nexthdr_v6(spare_mp, ip6h, &ip6_hdr_length,
6435 		    &v6_proto_p)) {
6436 			/*
6437 			 * Find upper layer protocol.
6438 			 * If it fails we have a malformed packet
6439 			 */
6440 			mutex_exit(&frag->itpf_lock);
6441 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6442 			    DROPPER(ipss, ipds_spd_malformed_packet),
6443 			    &ipss->ipsec_spd_dropper);
6444 			freemsg(spare_mp);
6445 			return (NULL);
6446 		} else {
6447 			v6_proto = *v6_proto_p;
6448 		}
6449 
6450 
6451 		bzero(&ipp, sizeof (ipp));
6452 		(void) ip_find_hdr_v6(spare_mp, ip6h, &ipp, NULL);
6453 		if (!(ipp.ipp_fields & IPPF_FRAGHDR)) {
6454 			/*
6455 			 * We think this is a fragment, but didn't find
6456 			 * a fragment header.  Something is wrong.
6457 			 */
6458 			mutex_exit(&frag->itpf_lock);
6459 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6460 			    DROPPER(ipss, ipds_spd_malformed_frag),
6461 			    &ipss->ipsec_spd_dropper);
6462 			freemsg(spare_mp);
6463 			return (NULL);
6464 		}
6465 		fraghdr = ipp.ipp_fraghdr;
6466 		is_v4 = B_FALSE;
6467 	}
6468 
6469 	/* Anything to cleanup? */
6470 
6471 	/*
6472 	 * This cleanup call could be put in a timer loop
6473 	 * but it may actually be just as reasonable a decision to
6474 	 * leave it here.  The disadvantage is this only gets called when
6475 	 * frags are added.  The advantage is that it is not
6476 	 * susceptible to race conditions like a time-based cleanup
6477 	 * may be.
6478 	 */
6479 	itpf_time = gethrestime_sec();
6480 	if (itpf_time >= frag->itpf_expire_hint)
6481 		ipsec_fragcache_clean(frag);
6482 
6483 	/* Lookup to see if there is an existing entry */
6484 
6485 	if (is_v4)
6486 		i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident);
6487 	else
6488 		i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident);
6489 
6490 	for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) {
6491 		if (is_v4) {
6492 			ASSERT(iph != NULL);
6493 			if ((fep->itpfe_id == iph->ipha_ident) &&
6494 			    (fep->itpfe_src == iph->ipha_src) &&
6495 			    (fep->itpfe_dst == iph->ipha_dst) &&
6496 			    (fep->itpfe_proto == iph->ipha_protocol))
6497 				break;
6498 		} else {
6499 			ASSERT(fraghdr != NULL);
6500 			ASSERT(fep != NULL);
6501 			if ((fep->itpfe_id == fraghdr->ip6f_ident) &&
6502 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6,
6503 			    &ip6h->ip6_src) &&
6504 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6,
6505 			    &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto))
6506 				break;
6507 		}
6508 	}
6509 
6510 	if (is_v4) {
6511 		firstbyte = V4_FRAG_OFFSET(iph);
6512 		lastbyte  = firstbyte + ntohs(iph->ipha_length) -
6513 		    IPH_HDR_LENGTH(iph);
6514 		last = (V4_MORE_FRAGS(iph) == 0);
6515 #ifdef FRAGCACHE_DEBUG
6516 		cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, "
6517 		    "last = %d, id = %d\n", firstbyte, lastbyte, last,
6518 		    iph->ipha_ident);
6519 #endif
6520 	} else {
6521 		firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
6522 		lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6523 		    sizeof (ip6_t) - ip6_hdr_length;
6524 		last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0;
6525 #ifdef FRAGCACHE_DEBUG
6526 		cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, "
6527 		    "last = %d, id = %d, fraghdr = %p, spare_mp = %p\n",
6528 		    firstbyte, lastbyte, last, fraghdr->ip6f_ident,
6529 		    fraghdr, spare_mp);
6530 #endif
6531 	}
6532 
6533 	/* check for bogus fragments and delete the entry */
6534 	if (firstbyte > 0 && firstbyte <= 8) {
6535 		if (fep != NULL)
6536 			(void) fragcache_delentry(i, fep, frag);
6537 		mutex_exit(&frag->itpf_lock);
6538 		ip_drop_packet(first_mp, inbound, NULL, NULL,
6539 		    DROPPER(ipss, ipds_spd_malformed_frag),
6540 		    &ipss->ipsec_spd_dropper);
6541 		freemsg(spare_mp);
6542 		return (NULL);
6543 	}
6544 
6545 	/* Not found, allocate a new entry */
6546 	if (fep == NULL) {
6547 		if (frag->itpf_freelist == NULL) {
6548 			/* see if there is some space */
6549 			ipsec_fragcache_clean(frag);
6550 			if (frag->itpf_freelist == NULL) {
6551 				mutex_exit(&frag->itpf_lock);
6552 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6553 				    DROPPER(ipss, ipds_spd_nomem),
6554 				    &ipss->ipsec_spd_dropper);
6555 				freemsg(spare_mp);
6556 				return (NULL);
6557 			}
6558 		}
6559 
6560 		fep = frag->itpf_freelist;
6561 		frag->itpf_freelist = fep->itpfe_next;
6562 
6563 		if (is_v4) {
6564 			bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src,
6565 			    sizeof (struct in_addr));
6566 			bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst,
6567 			    sizeof (struct in_addr));
6568 			fep->itpfe_id = iph->ipha_ident;
6569 			fep->itpfe_proto = iph->ipha_protocol;
6570 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6571 		} else {
6572 			bcopy((in6_addr_t *)&ip6h->ip6_src,
6573 			    (in6_addr_t *)&fep->itpfe_src6,
6574 			    sizeof (struct in6_addr));
6575 			bcopy((in6_addr_t *)&ip6h->ip6_dst,
6576 			    (in6_addr_t *)&fep->itpfe_dst6,
6577 			    sizeof (struct in6_addr));
6578 			fep->itpfe_id = fraghdr->ip6f_ident;
6579 			fep->itpfe_proto = v6_proto;
6580 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6581 		}
6582 		itpf_time = gethrestime_sec();
6583 		fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1;
6584 		fep->itpfe_last = 0;
6585 		fep->itpfe_fraglist = NULL;
6586 		fep->itpfe_depth = 0;
6587 		fep->itpfe_next = (frag->itpf_ptr)[i];
6588 		(frag->itpf_ptr)[i] = fep;
6589 
6590 		if (frag->itpf_expire_hint > fep->itpfe_exp)
6591 			frag->itpf_expire_hint = fep->itpfe_exp;
6592 
6593 	}
6594 	freemsg(spare_mp);
6595 
6596 	/* Insert it in the frag list */
6597 	/* List is in order by starting offset of fragments */
6598 
6599 	prevmp = NULL;
6600 	for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) {
6601 		ipha_t *niph;
6602 		ipha_t *oniph;
6603 		ip6_t *nip6h;
6604 		ip6_pkt_t nipp;
6605 		ip6_frag_t *nfraghdr;
6606 		uint16_t nip6_hdr_length;
6607 		uint8_t *nv6_proto_p;
6608 		int nfirstbyte, nlastbyte;
6609 		char *data, *ndata;
6610 		mblk_t *nspare_mp = NULL;
6611 		mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp);
6612 		int hdr_len;
6613 
6614 		oniph  = (ipha_t *)mp->b_rptr;
6615 		nip6h = NULL;
6616 		niph = NULL;
6617 
6618 		/*
6619 		 * Determine outer header type and length and set
6620 		 * pointers appropriately
6621 		 */
6622 
6623 		if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) {
6624 			hdr_len = ((outer_hdr_len != 0) ?
6625 			    IPH_HDR_LENGTH(oiph) : 0);
6626 			niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6627 		} else {
6628 			ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION);
6629 			if ((nspare_mp = msgpullup(ndata_mp, -1)) == NULL) {
6630 				mutex_exit(&frag->itpf_lock);
6631 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6632 				    DROPPER(ipss, ipds_spd_nomem),
6633 				    &ipss->ipsec_spd_dropper);
6634 				return (NULL);
6635 			}
6636 			nip6h = (ip6_t *)nspare_mp->b_rptr;
6637 			(void) ip_hdr_length_nexthdr_v6(nspare_mp, nip6h,
6638 			    &nip6_hdr_length, &v6_proto_p);
6639 			hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0);
6640 		}
6641 
6642 		/*
6643 		 * Determine inner header type and length and set
6644 		 * pointers appropriately
6645 		 */
6646 
6647 		if (is_v4) {
6648 			if (niph == NULL) {
6649 				/* Was v6 outer */
6650 				niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6651 			}
6652 			nfirstbyte = V4_FRAG_OFFSET(niph);
6653 			nlastbyte = nfirstbyte + ntohs(niph->ipha_length) -
6654 			    IPH_HDR_LENGTH(niph);
6655 		} else {
6656 			if ((nspare_mp == NULL) &&
6657 			    ((nspare_mp = msgpullup(ndata_mp, -1)) == NULL)) {
6658 				mutex_exit(&frag->itpf_lock);
6659 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6660 				    DROPPER(ipss, ipds_spd_nomem),
6661 				    &ipss->ipsec_spd_dropper);
6662 				return (NULL);
6663 			}
6664 			nip6h = (ip6_t *)(nspare_mp->b_rptr + hdr_len);
6665 			if (!ip_hdr_length_nexthdr_v6(nspare_mp, nip6h,
6666 			    &nip6_hdr_length, &nv6_proto_p)) {
6667 				mutex_exit(&frag->itpf_lock);
6668 			    ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6669 				DROPPER(ipss, ipds_spd_malformed_frag),
6670 				&ipss->ipsec_spd_dropper);
6671 			    ipsec_freemsg_chain(nspare_mp);
6672 			    return (NULL);
6673 			}
6674 			bzero(&nipp, sizeof (nipp));
6675 			(void) ip_find_hdr_v6(nspare_mp, nip6h, &nipp, NULL);
6676 			nfraghdr = nipp.ipp_fraghdr;
6677 			nfirstbyte = ntohs(nfraghdr->ip6f_offlg &
6678 			    IP6F_OFF_MASK);
6679 			nlastbyte  = nfirstbyte + ntohs(nip6h->ip6_plen) +
6680 			    sizeof (ip6_t) - nip6_hdr_length;
6681 		}
6682 		ipsec_freemsg_chain(nspare_mp);
6683 
6684 		/* Check for overlapping fragments */
6685 		if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) {
6686 			/*
6687 			 * Overlap Check:
6688 			 *  ~~~~---------		# Check if the newly
6689 			 * ~	ndata_mp|		# received fragment
6690 			 *  ~~~~---------		# overlaps with the
6691 			 *	 ---------~~~~~~	# current fragment.
6692 			 *	|    mp		~
6693 			 *	 ---------~~~~~~
6694 			 */
6695 			if (is_v4) {
6696 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6697 				    firstbyte - nfirstbyte;
6698 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6699 			} else {
6700 				data  = (char *)ip6h  +
6701 				    nip6_hdr_length + firstbyte -
6702 				    nfirstbyte;
6703 				ndata = (char *)nip6h + nip6_hdr_length;
6704 			}
6705 			if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6706 			    - firstbyte)) {
6707 				/* Overlapping data does not match */
6708 				(void) fragcache_delentry(i, fep, frag);
6709 				mutex_exit(&frag->itpf_lock);
6710 			    ip_drop_packet(first_mp, inbound, NULL, NULL,
6711 				DROPPER(ipss, ipds_spd_overlap_frag),
6712 				&ipss->ipsec_spd_dropper);
6713 				return (NULL);
6714 			}
6715 			/* Part of defense for jolt2.c fragmentation attack */
6716 			if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) {
6717 				/*
6718 				 * Check for identical or subset fragments:
6719 				 *  ----------	    ~~~~--------~~~~~
6720 				 * |    nmp   | or  ~	   nmp	    ~
6721 				 *  ----------	    ~~~~--------~~~~~
6722 				 *  ----------		  ------
6723 				 * |	mp    |		 |  mp  |
6724 				 *  ----------		  ------
6725 				 */
6726 				mutex_exit(&frag->itpf_lock);
6727 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6728 				    DROPPER(ipss, ipds_spd_evil_frag),
6729 				    &ipss->ipsec_spd_dropper);
6730 				return (NULL);
6731 			}
6732 
6733 		}
6734 
6735 		/* Correct location for this fragment? */
6736 		if (firstbyte <= nfirstbyte) {
6737 			/*
6738 			 * Check if the tail end of the new fragment overlaps
6739 			 * with the head of the current fragment.
6740 			 *	  --------~~~~~~~
6741 			 *	 |    nmp	~
6742 			 *	  --------~~~~~~~
6743 			 *  ~~~~~--------
6744 			 *  ~	mp	 |
6745 			 *  ~~~~~--------
6746 			 */
6747 			if (lastbyte > nfirstbyte) {
6748 				/* Fragments overlap */
6749 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6750 				    firstbyte - nfirstbyte;
6751 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6752 				if (is_v4) {
6753 					data  = (char *)iph +
6754 					    IPH_HDR_LENGTH(iph) + firstbyte -
6755 					    nfirstbyte;
6756 					ndata = (char *)niph +
6757 					    IPH_HDR_LENGTH(niph);
6758 				} else {
6759 					data  = (char *)ip6h  +
6760 					    nip6_hdr_length + firstbyte -
6761 					    nfirstbyte;
6762 					ndata = (char *)nip6h + nip6_hdr_length;
6763 				}
6764 				if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6765 				    - nfirstbyte)) {
6766 					/* Overlap mismatch */
6767 					(void) fragcache_delentry(i, fep, frag);
6768 					mutex_exit(&frag->itpf_lock);
6769 				    ip_drop_packet(first_mp, inbound, NULL,
6770 					NULL,
6771 					DROPPER(ipss, ipds_spd_overlap_frag),
6772 					&ipss->ipsec_spd_dropper);
6773 					return (NULL);
6774 				}
6775 			}
6776 
6777 			/*
6778 			 * Fragment does not illegally overlap and can now
6779 			 * be inserted into the chain
6780 			 */
6781 			break;
6782 		}
6783 
6784 		prevmp = nmp;
6785 	}
6786 	first_mp->b_next = nmp;
6787 
6788 	if (prevmp == NULL) {
6789 		fep->itpfe_fraglist = first_mp;
6790 	} else {
6791 		prevmp->b_next = first_mp;
6792 	}
6793 	if (last)
6794 		fep->itpfe_last = 1;
6795 
6796 	/* Part of defense for jolt2.c fragmentation attack */
6797 	if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) {
6798 		(void) fragcache_delentry(i, fep, frag);
6799 		mutex_exit(&frag->itpf_lock);
6800 		ip_drop_packet(first_mp, inbound, NULL, NULL,
6801 		    DROPPER(ipss, ipds_spd_max_frags),
6802 		    &ipss->ipsec_spd_dropper);
6803 		return (NULL);
6804 	}
6805 
6806 	/* Check for complete packet */
6807 
6808 	if (!fep->itpfe_last) {
6809 		mutex_exit(&frag->itpf_lock);
6810 #ifdef FRAGCACHE_DEBUG
6811 		cmn_err(CE_WARN, "Fragment cached, not last.\n");
6812 #endif
6813 		return (NULL);
6814 	}
6815 
6816 #ifdef FRAGCACHE_DEBUG
6817 	cmn_err(CE_WARN, "Last fragment cached.\n");
6818 	cmn_err(CE_WARN, "mp = %p, first_mp = %p.\n", mp, first_mp);
6819 #endif
6820 
6821 	offset = 0;
6822 	for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) {
6823 		mblk_t *data_mp = (inbound ? mp->b_cont : mp);
6824 		int hdr_len;
6825 
6826 		oiph  = (ipha_t *)data_mp->b_rptr;
6827 		ip6h = NULL;
6828 		iph = NULL;
6829 
6830 		spare_mp = NULL;
6831 		if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
6832 			hdr_len = ((outer_hdr_len != 0) ?
6833 			    IPH_HDR_LENGTH(oiph) : 0);
6834 			iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6835 		} else {
6836 			ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
6837 			if ((spare_mp = msgpullup(data_mp, -1)) == NULL) {
6838 				mutex_exit(&frag->itpf_lock);
6839 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6840 				    DROPPER(ipss, ipds_spd_nomem),
6841 				    &ipss->ipsec_spd_dropper);
6842 				return (NULL);
6843 			}
6844 			ip6h = (ip6_t *)spare_mp->b_rptr;
6845 			(void) ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
6846 			    &ip6_hdr_length, &v6_proto_p);
6847 			hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0);
6848 		}
6849 
6850 		/* Calculate current fragment start/end */
6851 		if (is_v4) {
6852 			if (iph == NULL) {
6853 				/* Was v6 outer */
6854 				iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6855 			}
6856 			firstbyte = V4_FRAG_OFFSET(iph);
6857 			lastbyte = firstbyte + ntohs(iph->ipha_length) -
6858 			    IPH_HDR_LENGTH(iph);
6859 		} else {
6860 			if ((spare_mp == NULL) &&
6861 				((spare_mp = msgpullup(data_mp, -1)) == NULL)) {
6862 				mutex_exit(&frag->itpf_lock);
6863 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6864 				    DROPPER(ipss, ipds_spd_nomem),
6865 				    &ipss->ipsec_spd_dropper);
6866 				return (NULL);
6867 			}
6868 			ip6h = (ip6_t *)(spare_mp->b_rptr + hdr_len);
6869 			if (!ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
6870 			    &ip6_hdr_length, &v6_proto_p)) {
6871 				mutex_exit(&frag->itpf_lock);
6872 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6873 				    DROPPER(ipss, ipds_spd_malformed_frag),
6874 				    &ipss->ipsec_spd_dropper);
6875 				ipsec_freemsg_chain(spare_mp);
6876 				return (NULL);
6877 			}
6878 			v6_proto = *v6_proto_p;
6879 			bzero(&ipp, sizeof (ipp));
6880 			(void) ip_find_hdr_v6(spare_mp, ip6h, &ipp, NULL);
6881 			fraghdr = ipp.ipp_fraghdr;
6882 			firstbyte = ntohs(fraghdr->ip6f_offlg &
6883 			    IP6F_OFF_MASK);
6884 			lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6885 			    sizeof (ip6_t) - ip6_hdr_length;
6886 		}
6887 
6888 		/*
6889 		 * If this fragment is greater than current offset,
6890 		 * we have a missing fragment so return NULL
6891 		 */
6892 		if (firstbyte > offset) {
6893 			mutex_exit(&frag->itpf_lock);
6894 #ifdef FRAGCACHE_DEBUG
6895 			/*
6896 			 * Note, this can happen when the last frag
6897 			 * gets sent through because it is smaller
6898 			 * than the MTU.  It is not necessarily an
6899 			 * error condition.
6900 			 */
6901 			cmn_err(CE_WARN, "Frag greater than offset! : "
6902 			    "missing fragment: firstbyte = %d, offset = %d, "
6903 			    "mp = %p\n", firstbyte, offset, mp);
6904 #endif
6905 			ipsec_freemsg_chain(spare_mp);
6906 			return (NULL);
6907 		}
6908 
6909 		/*
6910 		 * If we are at the last fragment, we have the complete
6911 		 * packet, so rechain things and return it to caller
6912 		 * for processing
6913 		 */
6914 
6915 		if ((is_v4 && !V4_MORE_FRAGS(iph)) ||
6916 		    (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) {
6917 			mp = fep->itpfe_fraglist;
6918 			fep->itpfe_fraglist = NULL;
6919 			(void) fragcache_delentry(i, fep, frag);
6920 			mutex_exit(&frag->itpf_lock);
6921 
6922 			if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) >
6923 			    65535)) || (!is_v4 && (firstbyte +
6924 			    ntohs(ip6h->ip6_plen) > 65535))) {
6925 				/* It is an invalid "ping-o-death" packet */
6926 				/* Discard it */
6927 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6928 				    DROPPER(ipss, ipds_spd_evil_frag),
6929 				    &ipss->ipsec_spd_dropper);
6930 				ipsec_freemsg_chain(spare_mp);
6931 				return (NULL);
6932 			}
6933 #ifdef FRAGCACHE_DEBUG
6934 			cmn_err(CE_WARN, "Fragcache returning mp = %p, "
6935 				"mp->b_next = %p", mp, mp->b_next);
6936 #endif
6937 			ipsec_freemsg_chain(spare_mp);
6938 			/*
6939 			 * For inbound case, mp has ipsec_in b_next'd chain
6940 			 * For outbound case, it is just data mp chain
6941 			 */
6942 			return (mp);
6943 		}
6944 		ipsec_freemsg_chain(spare_mp);
6945 
6946 		/*
6947 		 * Update new ending offset if this
6948 		 * fragment extends the packet
6949 		 */
6950 		if (offset < lastbyte)
6951 			offset = lastbyte;
6952 	}
6953 
6954 	mutex_exit(&frag->itpf_lock);
6955 
6956 	/* Didn't find last fragment, so return NULL */
6957 	return (NULL);
6958 }
6959 
6960 static void
6961 ipsec_fragcache_clean(ipsec_fragcache_t *frag)
6962 {
6963 	ipsec_fragcache_entry_t *fep;
6964 	int i;
6965 	ipsec_fragcache_entry_t *earlyfep = NULL;
6966 	time_t itpf_time;
6967 	int earlyexp;
6968 	int earlyi = 0;
6969 
6970 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
6971 
6972 	itpf_time = gethrestime_sec();
6973 	earlyexp = itpf_time + 10000;
6974 
6975 	for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6976 	    fep = (frag->itpf_ptr)[i];
6977 	    while (fep) {
6978 		if (fep->itpfe_exp < itpf_time) {
6979 			/* found */
6980 			fep = fragcache_delentry(i, fep, frag);
6981 		} else {
6982 			if (fep->itpfe_exp < earlyexp) {
6983 				earlyfep = fep;
6984 				earlyexp = fep->itpfe_exp;
6985 				earlyi = i;
6986 			}
6987 			fep = fep->itpfe_next;
6988 		}
6989 	    }
6990 	}
6991 
6992 	frag->itpf_expire_hint = earlyexp;
6993 
6994 	/* if (!found) */
6995 	if (frag->itpf_freelist == NULL)
6996 		(void) fragcache_delentry(earlyi, earlyfep, frag);
6997 }
6998 
6999 static ipsec_fragcache_entry_t *
7000 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep,
7001     ipsec_fragcache_t *frag)
7002 {
7003 	ipsec_fragcache_entry_t *targp;
7004 	ipsec_fragcache_entry_t *nextp = fep->itpfe_next;
7005 
7006 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
7007 
7008 	/* Free up any fragment list still in cache entry */
7009 	ipsec_freemsg_chain(fep->itpfe_fraglist);
7010 
7011 	targp = (frag->itpf_ptr)[slot];
7012 	ASSERT(targp != 0);
7013 
7014 	if (targp == fep) {
7015 		/* unlink from head of hash chain */
7016 		(frag->itpf_ptr)[slot] = nextp;
7017 		/* link into free list */
7018 		fep->itpfe_next = frag->itpf_freelist;
7019 		frag->itpf_freelist = fep;
7020 		return (nextp);
7021 	}
7022 
7023 	/* maybe should use double linked list to make update faster */
7024 	/* must be past front of chain */
7025 	while (targp) {
7026 	    if (targp->itpfe_next == fep) {
7027 		    /* unlink from hash chain */
7028 		    targp->itpfe_next = nextp;
7029 		    /* link into free list */
7030 		    fep->itpfe_next = frag->itpf_freelist;
7031 		    frag->itpf_freelist = fep;
7032 		    return (nextp);
7033 	    }
7034 	    targp = targp->itpfe_next;
7035 	    ASSERT(targp != 0);
7036 	}
7037 	/* NOTREACHED */
7038 	return (NULL);
7039 }
7040