xref: /titanic_41/usr/src/uts/common/inet/ip/spd.c (revision ba2be53024c0b999e74ba9adcd7d80fec5df8c57)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * IPsec Security Policy Database.
30  *
31  * This module maintains the SPD and provides routines used by ip and ip6
32  * to apply IPsec policy to inbound and outbound datagrams.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/stream.h>
37 #include <sys/stropts.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strsubr.h>
40 #include <sys/strlog.h>
41 #include <sys/cmn_err.h>
42 #include <sys/zone.h>
43 
44 #include <sys/systm.h>
45 #include <sys/param.h>
46 #include <sys/kmem.h>
47 #include <sys/ddi.h>
48 
49 #include <sys/crypto/api.h>
50 
51 #include <inet/common.h>
52 #include <inet/mi.h>
53 
54 #include <netinet/ip6.h>
55 #include <netinet/icmp6.h>
56 #include <netinet/udp.h>
57 
58 #include <inet/ip.h>
59 #include <inet/ip6.h>
60 
61 #include <net/pfkeyv2.h>
62 #include <net/pfpolicy.h>
63 #include <inet/ipsec_info.h>
64 #include <inet/sadb.h>
65 #include <inet/ipsec_impl.h>
66 
67 #include <inet/ip_impl.h>	/* For IP_MOD_ID */
68 
69 #include <inet/ipsecah.h>
70 #include <inet/ipsecesp.h>
71 #include <inet/ipdrop.h>
72 #include <inet/ipclassifier.h>
73 #include <inet/tun.h>
74 
75 static void ipsec_update_present_flags(ipsec_stack_t *);
76 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *,
77     netstack_t *);
78 static void ipsec_out_free(void *);
79 static void ipsec_in_free(void *);
80 static mblk_t *ipsec_attach_global_policy(mblk_t **, conn_t *,
81     ipsec_selector_t *, netstack_t *);
82 static mblk_t *ipsec_apply_global_policy(mblk_t *, conn_t *,
83     ipsec_selector_t *, netstack_t *);
84 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *,
85     ipha_t *, ip6_t *, uint64_t, netstack_t *);
86 static void ipsec_in_release_refs(ipsec_in_t *);
87 static void ipsec_out_release_refs(ipsec_out_t *);
88 static void ipsec_action_free_table(ipsec_action_t *);
89 static void ipsec_action_reclaim(void *);
90 static void ipsec_action_reclaim_stack(netstack_t *);
91 static void ipsid_init(netstack_t *);
92 static void ipsid_fini(netstack_t *);
93 
94 /* sel_flags values for ipsec_init_inbound_sel(). */
95 #define	SEL_NONE	0x0000
96 #define	SEL_PORT_POLICY	0x0001
97 #define	SEL_IS_ICMP	0x0002
98 #define	SEL_TUNNEL_MODE	0x0004
99 
100 /* Return values for ipsec_init_inbound_sel(). */
101 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG}
102     selret_t;
103 
104 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
105     ipha_t *, ip6_t *, uint8_t);
106 
107 static boolean_t ipsec_check_ipsecin_action(struct ipsec_in_s *, mblk_t *,
108     struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
109     kstat_named_t **);
110 static void ipsec_unregister_prov_update(void);
111 static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *);
112 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *);
113 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *);
114 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
115 static void ipsec_kstat_destroy(ipsec_stack_t *);
116 static int ipsec_free_tables(ipsec_stack_t *);
117 static int tunnel_compare(const void *, const void *);
118 static void ipsec_freemsg_chain(mblk_t *);
119 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, ire_t *,
120     struct kstat_named *, ipdropper_t *);
121 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
122 static void ipsec_kstat_destroy(ipsec_stack_t *);
123 static int ipsec_free_tables(ipsec_stack_t *);
124 static int tunnel_compare(const void *, const void *);
125 static void ipsec_freemsg_chain(mblk_t *);
126 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, ire_t *,
127     struct kstat_named *, ipdropper_t *);
128 
129 /*
130  * Selector hash table is statically sized at module load time.
131  * we default to 251 buckets, which is the largest prime number under 255
132  */
133 
134 #define	IPSEC_SPDHASH_DEFAULT 251
135 
136 /* SPD hash-size tunable per tunnel. */
137 #define	TUN_SPDHASH_DEFAULT 5
138 
139 uint32_t ipsec_spd_hashsize;
140 uint32_t tun_spd_hashsize;
141 
142 #define	IPSEC_SEL_NOHASH ((uint32_t)(~0))
143 
144 /*
145  * Handle global across all stack instances
146  */
147 static crypto_notify_handle_t prov_update_handle = NULL;
148 
149 static kmem_cache_t *ipsec_action_cache;
150 static kmem_cache_t *ipsec_sel_cache;
151 static kmem_cache_t *ipsec_pol_cache;
152 static kmem_cache_t *ipsec_info_cache;
153 
154 /* Frag cache prototypes */
155 static void ipsec_fragcache_clean(ipsec_fragcache_t *);
156 static ipsec_fragcache_entry_t *fragcache_delentry(int,
157     ipsec_fragcache_entry_t *, ipsec_fragcache_t *);
158 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *);
159 void ipsec_fragcache_uninit(ipsec_fragcache_t *);
160 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *, int,
161     ipsec_stack_t *);
162 
163 int ipsec_hdr_pullup_needed = 0;
164 int ipsec_weird_null_inbound_policy = 0;
165 
166 #define	ALGBITS_ROUND_DOWN(x, align)	(((x)/(align))*(align))
167 #define	ALGBITS_ROUND_UP(x, align)	ALGBITS_ROUND_DOWN((x)+(align)-1, align)
168 
169 /*
170  * Inbound traffic should have matching identities for both SA's.
171  */
172 
173 #define	SA_IDS_MATCH(sa1, sa2) 						\
174 	(((sa1) == NULL) || ((sa2) == NULL) ||				\
175 	(((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) &&		\
176 	    (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
177 
178 /*
179  * IPv4 Fragments
180  */
181 #define	IS_V4_FRAGMENT(ipha_fragment_offset_and_flags)			\
182 	(((ntohs(ipha_fragment_offset_and_flags) & IPH_OFFSET) != 0) ||	\
183 	((ntohs(ipha_fragment_offset_and_flags) & IPH_MF) != 0))
184 
185 /*
186  * IPv6 Fragments
187  */
188 #define	IS_V6_FRAGMENT(ipp)	(ipp.ipp_fields & IPPF_FRAGHDR)
189 
190 /*
191  * Policy failure messages.
192  */
193 static char *ipsec_policy_failure_msgs[] = {
194 
195 	/* IPSEC_POLICY_NOT_NEEDED */
196 	"%s: Dropping the datagram because the incoming packet "
197 	"is %s, but the recipient expects clear; Source %s, "
198 	"Destination %s.\n",
199 
200 	/* IPSEC_POLICY_MISMATCH */
201 	"%s: Policy Failure for the incoming packet (%s); Source %s, "
202 	"Destination %s.\n",
203 
204 	/* IPSEC_POLICY_AUTH_NOT_NEEDED	*/
205 	"%s: Authentication present while not expected in the "
206 	"incoming %s packet; Source %s, Destination %s.\n",
207 
208 	/* IPSEC_POLICY_ENCR_NOT_NEEDED */
209 	"%s: Encryption present while not expected in the "
210 	"incoming %s packet; Source %s, Destination %s.\n",
211 
212 	/* IPSEC_POLICY_SE_NOT_NEEDED */
213 	"%s: Self-Encapsulation present while not expected in the "
214 	"incoming %s packet; Source %s, Destination %s.\n",
215 };
216 
217 /*
218  * General overviews:
219  *
220  * Locking:
221  *
222  *	All of the system policy structures are protected by a single
223  *	rwlock.  These structures are threaded in a
224  *	fairly complex fashion and are not expected to change on a
225  *	regular basis, so this should not cause scaling/contention
226  *	problems.  As a result, policy checks should (hopefully) be MT-hot.
227  *
228  * Allocation policy:
229  *
230  *	We use custom kmem cache types for the various
231  *	bits & pieces of the policy data structures.  All allocations
232  *	use KM_NOSLEEP instead of KM_SLEEP for policy allocation.  The
233  *	policy table is of potentially unbounded size, so we don't
234  *	want to provide a way to hog all system memory with policy
235  *	entries..
236  */
237 
238 /* Convenient functions for freeing or dropping a b_next linked mblk chain */
239 
240 /* Free all messages in an mblk chain */
241 static void
242 ipsec_freemsg_chain(mblk_t *mp)
243 {
244 	mblk_t *mpnext;
245 	while (mp != NULL) {
246 		ASSERT(mp->b_prev == NULL);
247 		mpnext = mp->b_next;
248 		mp->b_next = NULL;
249 		freemsg(mp);	/* Always works, even if NULL */
250 		mp = mpnext;
251 	}
252 }
253 
254 /* ip_drop all messages in an mblk chain */
255 static void
256 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *arriving,
257     ire_t *outbound_ire, struct kstat_named *counter, ipdropper_t *who_called)
258 {
259 	mblk_t *mpnext;
260 	while (mp != NULL) {
261 		ASSERT(mp->b_prev == NULL);
262 		mpnext = mp->b_next;
263 		mp->b_next = NULL;
264 		ip_drop_packet(mp, inbound, arriving, outbound_ire, counter,
265 		    who_called);
266 		mp = mpnext;
267 	}
268 }
269 
270 /*
271  * AVL tree comparison function.
272  * the in-kernel avl assumes unique keys for all objects.
273  * Since sometimes policy will duplicate rules, we may insert
274  * multiple rules with the same rule id, so we need a tie-breaker.
275  */
276 static int
277 ipsec_policy_cmpbyid(const void *a, const void *b)
278 {
279 	const ipsec_policy_t *ipa, *ipb;
280 	uint64_t idxa, idxb;
281 
282 	ipa = (const ipsec_policy_t *)a;
283 	ipb = (const ipsec_policy_t *)b;
284 	idxa = ipa->ipsp_index;
285 	idxb = ipb->ipsp_index;
286 
287 	if (idxa < idxb)
288 		return (-1);
289 	if (idxa > idxb)
290 		return (1);
291 	/*
292 	 * Tie-breaker #1: All installed policy rules have a non-NULL
293 	 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not
294 	 * actually in-tree but rather a template node being used in
295 	 * an avl_find query; see ipsec_policy_delete().  This gives us
296 	 * a placeholder in the ordering just before the the first entry with
297 	 * a key >= the one we're looking for, so we can walk forward from
298 	 * that point to get the remaining entries with the same id.
299 	 */
300 	if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL))
301 		return (-1);
302 	if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL))
303 		return (1);
304 	/*
305 	 * At most one of the arguments to the comparison should have a
306 	 * NULL selector pointer; if not, the tree is broken.
307 	 */
308 	ASSERT(ipa->ipsp_sel != NULL);
309 	ASSERT(ipb->ipsp_sel != NULL);
310 	/*
311 	 * Tie-breaker #2: use the virtual address of the policy node
312 	 * to arbitrarily break ties.  Since we use the new tree node in
313 	 * the avl_find() in ipsec_insert_always, the new node will be
314 	 * inserted into the tree in the right place in the sequence.
315 	 */
316 	if (ipa < ipb)
317 		return (-1);
318 	if (ipa > ipb)
319 		return (1);
320 	return (0);
321 }
322 
323 /*
324  * Free what ipsec_alloc_table allocated.
325  */
326 void
327 ipsec_polhead_free_table(ipsec_policy_head_t *iph)
328 {
329 	int dir;
330 	int i;
331 
332 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
333 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
334 
335 		if (ipr->ipr_hash == NULL)
336 			continue;
337 
338 		for (i = 0; i < ipr->ipr_nchains; i++) {
339 			ASSERT(ipr->ipr_hash[i].hash_head == NULL);
340 		}
341 		kmem_free(ipr->ipr_hash, ipr->ipr_nchains *
342 		    sizeof (ipsec_policy_hash_t));
343 		ipr->ipr_hash = NULL;
344 	}
345 }
346 
347 void
348 ipsec_polhead_destroy(ipsec_policy_head_t *iph)
349 {
350 	int dir;
351 
352 	avl_destroy(&iph->iph_rulebyid);
353 	rw_destroy(&iph->iph_lock);
354 
355 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
356 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
357 		int chain;
358 
359 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
360 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
361 
362 	}
363 	ipsec_polhead_free_table(iph);
364 }
365 
366 /*
367  * Free the IPsec stack instance.
368  */
369 /* ARGSUSED */
370 static void
371 ipsec_stack_fini(netstackid_t stackid, void *arg)
372 {
373 	ipsec_stack_t	*ipss = (ipsec_stack_t *)arg;
374 	void *cookie;
375 	ipsec_tun_pol_t *node;
376 	netstack_t	*ns = ipss->ipsec_netstack;
377 	int		i;
378 	ipsec_algtype_t	algtype;
379 
380 	ipsec_loader_destroy(ipss);
381 
382 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
383 	/*
384 	 * It's possible we can just ASSERT() the tree is empty.  After all,
385 	 * we aren't called until IP is ready to unload (and presumably all
386 	 * tunnels have been unplumbed).  But we'll play it safe for now, the
387 	 * loop will just exit immediately if it's empty.
388 	 */
389 	cookie = NULL;
390 	while ((node = (ipsec_tun_pol_t *)
391 	    avl_destroy_nodes(&ipss->ipsec_tunnel_policies,
392 	    &cookie)) != NULL) {
393 		ITP_REFRELE(node, ns);
394 	}
395 	avl_destroy(&ipss->ipsec_tunnel_policies);
396 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
397 	rw_destroy(&ipss->ipsec_tunnel_policy_lock);
398 
399 	ipsec_config_flush(ns);
400 
401 	ipsec_kstat_destroy(ipss);
402 
403 	ip_drop_unregister(&ipss->ipsec_dropper);
404 
405 	ip_drop_unregister(&ipss->ipsec_spd_dropper);
406 	ip_drop_destroy(ipss);
407 	/*
408 	 * Globals start with ref == 1 to prevent IPPH_REFRELE() from
409 	 * attempting to free them, hence they should have 1 now.
410 	 */
411 	ipsec_polhead_destroy(&ipss->ipsec_system_policy);
412 	ASSERT(ipss->ipsec_system_policy.iph_refs == 1);
413 	ipsec_polhead_destroy(&ipss->ipsec_inactive_policy);
414 	ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1);
415 
416 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
417 		ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head);
418 		ipss->ipsec_action_hash[i].hash_head = NULL;
419 		mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock));
420 	}
421 
422 	for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
423 		ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
424 		mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock));
425 	}
426 
427 	mutex_enter(&ipss->ipsec_alg_lock);
428 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) {
429 		int nalgs = ipss->ipsec_nalgs[algtype];
430 
431 		for (i = 0; i < nalgs; i++) {
432 			if (ipss->ipsec_alglists[algtype][i] != NULL)
433 				ipsec_alg_unreg(algtype, i, ns);
434 		}
435 	}
436 	mutex_exit(&ipss->ipsec_alg_lock);
437 	mutex_destroy(&ipss->ipsec_alg_lock);
438 
439 	ipsid_gc(ns);
440 	ipsid_fini(ns);
441 
442 	(void) ipsec_free_tables(ipss);
443 	kmem_free(ipss, sizeof (*ipss));
444 }
445 
446 void
447 ipsec_policy_g_destroy(void)
448 {
449 	kmem_cache_destroy(ipsec_action_cache);
450 	kmem_cache_destroy(ipsec_sel_cache);
451 	kmem_cache_destroy(ipsec_pol_cache);
452 	kmem_cache_destroy(ipsec_info_cache);
453 
454 	ipsec_unregister_prov_update();
455 
456 	netstack_unregister(NS_IPSEC);
457 }
458 
459 
460 /*
461  * Free what ipsec_alloc_tables allocated.
462  * Called when table allocation fails to free the table.
463  */
464 static int
465 ipsec_free_tables(ipsec_stack_t *ipss)
466 {
467 	int i;
468 
469 	if (ipss->ipsec_sel_hash != NULL) {
470 		for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
471 			ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
472 		}
473 		kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize *
474 		    sizeof (*ipss->ipsec_sel_hash));
475 		ipss->ipsec_sel_hash = NULL;
476 		ipss->ipsec_spd_hashsize = 0;
477 	}
478 	ipsec_polhead_free_table(&ipss->ipsec_system_policy);
479 	ipsec_polhead_free_table(&ipss->ipsec_inactive_policy);
480 
481 	return (ENOMEM);
482 }
483 
484 /*
485  * Attempt to allocate the tables in a single policy head.
486  * Return nonzero on failure after cleaning up any work in progress.
487  */
488 int
489 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag,
490     boolean_t global_cleanup, netstack_t *ns)
491 {
492 	int dir;
493 
494 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
495 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
496 
497 		ipr->ipr_nchains = nchains;
498 		ipr->ipr_hash = kmem_zalloc(nchains *
499 		    sizeof (ipsec_policy_hash_t), kmflag);
500 		if (ipr->ipr_hash == NULL)
501 			return (global_cleanup ?
502 			    ipsec_free_tables(ns->netstack_ipsec) :
503 			    ENOMEM);
504 	}
505 	return (0);
506 }
507 
508 /*
509  * Attempt to allocate the various tables.  Return nonzero on failure
510  * after cleaning up any work in progress.
511  */
512 static int
513 ipsec_alloc_tables(int kmflag, netstack_t *ns)
514 {
515 	int error;
516 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
517 
518 	error = ipsec_alloc_table(&ipss->ipsec_system_policy,
519 	    ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
520 	if (error != 0)
521 		return (error);
522 
523 	error = ipsec_alloc_table(&ipss->ipsec_inactive_policy,
524 	    ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
525 	if (error != 0)
526 		return (error);
527 
528 	ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize *
529 	    sizeof (*ipss->ipsec_sel_hash), kmflag);
530 
531 	if (ipss->ipsec_sel_hash == NULL)
532 		return (ipsec_free_tables(ipss));
533 
534 	return (0);
535 }
536 
537 /*
538  * After table allocation, initialize a policy head.
539  */
540 void
541 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains)
542 {
543 	int dir, chain;
544 
545 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
546 	avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid,
547 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
548 
549 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
550 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
551 		ipr->ipr_nchains = nchains;
552 
553 		for (chain = 0; chain < nchains; chain++) {
554 			mutex_init(&(ipr->ipr_hash[chain].hash_lock),
555 			    NULL, MUTEX_DEFAULT, NULL);
556 		}
557 	}
558 }
559 
560 static boolean_t
561 ipsec_kstat_init(ipsec_stack_t *ipss)
562 {
563 	ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net",
564 	    KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t),
565 	    KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid);
566 
567 	if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL)
568 		return (B_FALSE);
569 
570 	ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data;
571 
572 #define	KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64)
573 	KI(esp_stat_in_requests);
574 	KI(esp_stat_in_discards);
575 	KI(esp_stat_lookup_failure);
576 	KI(ah_stat_in_requests);
577 	KI(ah_stat_in_discards);
578 	KI(ah_stat_lookup_failure);
579 	KI(sadb_acquire_maxpackets);
580 	KI(sadb_acquire_qhiwater);
581 #undef KI
582 
583 	kstat_install(ipss->ipsec_ksp);
584 	return (B_TRUE);
585 }
586 
587 static void
588 ipsec_kstat_destroy(ipsec_stack_t *ipss)
589 {
590 	kstat_delete_netstack(ipss->ipsec_ksp,
591 	    ipss->ipsec_netstack->netstack_stackid);
592 	ipss->ipsec_kstats = NULL;
593 
594 }
595 
596 /*
597  * Initialize the IPsec stack instance.
598  */
599 /* ARGSUSED */
600 static void *
601 ipsec_stack_init(netstackid_t stackid, netstack_t *ns)
602 {
603 	ipsec_stack_t	*ipss;
604 	int i;
605 
606 	ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP);
607 	ipss->ipsec_netstack = ns;
608 
609 	/*
610 	 * FIXME: netstack_ipsec is used by some of the routines we call
611 	 * below, but it isn't set until this routine returns.
612 	 * Either we introduce optional xxx_stack_alloc() functions
613 	 * that will be called by the netstack framework before xxx_stack_init,
614 	 * or we switch spd.c and sadb.c to operate on ipsec_stack_t
615 	 * (latter has some include file order issues for sadb.h, but makes
616 	 * sense if we merge some of the ipsec related stack_t's together.
617 	 */
618 	ns->netstack_ipsec = ipss;
619 
620 	/*
621 	 * Make two attempts to allocate policy hash tables; try it at
622 	 * the "preferred" size (may be set in /etc/system) first,
623 	 * then fall back to the default size.
624 	 */
625 	ipss->ipsec_spd_hashsize = (ipsec_spd_hashsize == 0) ?
626 	    IPSEC_SPDHASH_DEFAULT : ipsec_spd_hashsize;
627 
628 	if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) {
629 		cmn_err(CE_WARN,
630 		    "Unable to allocate %d entry IPsec policy hash table",
631 		    ipss->ipsec_spd_hashsize);
632 		ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
633 		cmn_err(CE_WARN, "Falling back to %d entries",
634 		    ipss->ipsec_spd_hashsize);
635 		(void) ipsec_alloc_tables(KM_SLEEP, ns);
636 	}
637 
638 	/* Just set a default for tunnels. */
639 	ipss->ipsec_tun_spd_hashsize = (tun_spd_hashsize == 0) ?
640 	    TUN_SPDHASH_DEFAULT : tun_spd_hashsize;
641 
642 	ipsid_init(ns);
643 	/*
644 	 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting
645 	 * to free them.
646 	 */
647 	ipss->ipsec_system_policy.iph_refs = 1;
648 	ipss->ipsec_inactive_policy.iph_refs = 1;
649 	ipsec_polhead_init(&ipss->ipsec_system_policy,
650 	    ipss->ipsec_spd_hashsize);
651 	ipsec_polhead_init(&ipss->ipsec_inactive_policy,
652 	    ipss->ipsec_spd_hashsize);
653 	rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL);
654 	avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare,
655 	    sizeof (ipsec_tun_pol_t), 0);
656 
657 	ipss->ipsec_next_policy_index = 1;
658 
659 	rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL);
660 	rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL);
661 
662 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
663 		mutex_init(&(ipss->ipsec_action_hash[i].hash_lock),
664 		    NULL, MUTEX_DEFAULT, NULL);
665 
666 	for (i = 0; i < ipss->ipsec_spd_hashsize; i++)
667 		mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock),
668 		    NULL, MUTEX_DEFAULT, NULL);
669 
670 	mutex_init(&ipss->ipsec_alg_lock, NULL, MUTEX_DEFAULT, NULL);
671 	for (i = 0; i < IPSEC_NALGTYPES; i++) {
672 		ipss->ipsec_nalgs[i] = 0;
673 	}
674 
675 	ip_drop_init(ipss);
676 	ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD");
677 
678 	/* Set function to dummy until tun is loaded */
679 	rw_init(&ipss->ipsec_itp_get_byaddr_rw_lock, NULL, RW_DEFAULT, NULL);
680 	rw_enter(&ipss->ipsec_itp_get_byaddr_rw_lock, RW_WRITER);
681 	ipss->ipsec_itp_get_byaddr = itp_get_byaddr_dummy;
682 	rw_exit(&ipss->ipsec_itp_get_byaddr_rw_lock);
683 
684 	/* IP's IPsec code calls the packet dropper */
685 	ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing");
686 
687 	(void) ipsec_kstat_init(ipss);
688 
689 	ipsec_loader_init(ipss);
690 	ipsec_loader_start(ipss);
691 
692 	return (ipss);
693 }
694 
695 /* Global across all stack instances */
696 void
697 ipsec_policy_g_init(void)
698 {
699 	ipsec_action_cache = kmem_cache_create("ipsec_actions",
700 	    sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
701 	    ipsec_action_reclaim, NULL, NULL, 0);
702 	ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
703 	    sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
704 	    NULL, NULL, NULL, 0);
705 	ipsec_pol_cache = kmem_cache_create("ipsec_policy",
706 	    sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
707 	    NULL, NULL, NULL, 0);
708 	ipsec_info_cache = kmem_cache_create("ipsec_info",
709 	    sizeof (ipsec_info_t), _POINTER_ALIGNMENT, NULL, NULL,
710 	    NULL, NULL, NULL, 0);
711 
712 	/*
713 	 * We want to be informed each time a stack is created or
714 	 * destroyed in the kernel, so we can maintain the
715 	 * set of ipsec_stack_t's.
716 	 */
717 	netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini);
718 }
719 
720 /*
721  * Sort algorithm lists.
722  *
723  * I may need to split this based on
724  * authentication/encryption, and I may wish to have an administrator
725  * configure this list.  Hold on to some NDD variables...
726  *
727  * XXX For now, sort on minimum key size (GAG!).  While minimum key size is
728  * not the ideal metric, it's the only quantifiable measure available.
729  * We need a better metric for sorting algorithms by preference.
730  */
731 static void
732 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
733 {
734 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
735 	ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid];
736 	uint8_t holder, swap;
737 	uint_t i;
738 	uint_t count = ipss->ipsec_nalgs[at];
739 	ASSERT(ai != NULL);
740 	ASSERT(algid == ai->alg_id);
741 
742 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
743 
744 	holder = algid;
745 
746 	for (i = 0; i < count - 1; i++) {
747 		ipsec_alginfo_t *alt;
748 
749 		alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]];
750 		/*
751 		 * If you want to give precedence to newly added algs,
752 		 * add the = in the > comparison.
753 		 */
754 		if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
755 			/* Swap sortlist[i] and holder. */
756 			swap = ipss->ipsec_sortlist[at][i];
757 			ipss->ipsec_sortlist[at][i] = holder;
758 			holder = swap;
759 			ai = alt;
760 		} /* Else just continue. */
761 	}
762 
763 	/* Store holder in last slot. */
764 	ipss->ipsec_sortlist[at][i] = holder;
765 }
766 
767 /*
768  * Remove an algorithm from a sorted algorithm list.
769  * This should be considerably easier, even with complex sorting.
770  */
771 static void
772 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
773 {
774 	boolean_t copyback = B_FALSE;
775 	int i;
776 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
777 	int newcount = ipss->ipsec_nalgs[at];
778 
779 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
780 
781 	for (i = 0; i <= newcount; i++) {
782 		if (copyback) {
783 			ipss->ipsec_sortlist[at][i-1] =
784 			    ipss->ipsec_sortlist[at][i];
785 		} else if (ipss->ipsec_sortlist[at][i] == algid) {
786 			copyback = B_TRUE;
787 		}
788 	}
789 }
790 
791 /*
792  * Add the specified algorithm to the algorithm tables.
793  * Must be called while holding the algorithm table writer lock.
794  */
795 void
796 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns)
797 {
798 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
799 
800 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
801 
802 	ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL);
803 	ipsec_alg_fix_min_max(alg, algtype, ns);
804 	ipss->ipsec_alglists[algtype][alg->alg_id] = alg;
805 
806 	ipss->ipsec_nalgs[algtype]++;
807 	alg_insert_sortlist(algtype, alg->alg_id, ns);
808 }
809 
810 /*
811  * Remove the specified algorithm from the algorithm tables.
812  * Must be called while holding the algorithm table writer lock.
813  */
814 void
815 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns)
816 {
817 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
818 
819 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
820 
821 	ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL);
822 	ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]);
823 	ipss->ipsec_alglists[algtype][algid] = NULL;
824 
825 	ipss->ipsec_nalgs[algtype]--;
826 	alg_remove_sortlist(algtype, algid, ns);
827 }
828 
829 /*
830  * Hooks for spdsock to get a grip on system policy.
831  */
832 
833 ipsec_policy_head_t *
834 ipsec_system_policy(netstack_t *ns)
835 {
836 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
837 	ipsec_policy_head_t *h = &ipss->ipsec_system_policy;
838 
839 	IPPH_REFHOLD(h);
840 	return (h);
841 }
842 
843 ipsec_policy_head_t *
844 ipsec_inactive_policy(netstack_t *ns)
845 {
846 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
847 	ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy;
848 
849 	IPPH_REFHOLD(h);
850 	return (h);
851 }
852 
853 /*
854  * Lock inactive policy, then active policy, then exchange policy root
855  * pointers.
856  */
857 void
858 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive,
859     netstack_t *ns)
860 {
861 	int af, dir;
862 	avl_tree_t r1, r2;
863 
864 	rw_enter(&inactive->iph_lock, RW_WRITER);
865 	rw_enter(&active->iph_lock, RW_WRITER);
866 
867 	r1 = active->iph_rulebyid;
868 	r2 = inactive->iph_rulebyid;
869 	active->iph_rulebyid = r2;
870 	inactive->iph_rulebyid = r1;
871 
872 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
873 		ipsec_policy_hash_t *h1, *h2;
874 
875 		h1 = active->iph_root[dir].ipr_hash;
876 		h2 = inactive->iph_root[dir].ipr_hash;
877 		active->iph_root[dir].ipr_hash = h2;
878 		inactive->iph_root[dir].ipr_hash = h1;
879 
880 		for (af = 0; af < IPSEC_NAF; af++) {
881 			ipsec_policy_t *t1, *t2;
882 
883 			t1 = active->iph_root[dir].ipr_nonhash[af];
884 			t2 = inactive->iph_root[dir].ipr_nonhash[af];
885 			active->iph_root[dir].ipr_nonhash[af] = t2;
886 			inactive->iph_root[dir].ipr_nonhash[af] = t1;
887 			if (t1 != NULL) {
888 				t1->ipsp_hash.hash_pp =
889 				    &(inactive->iph_root[dir].ipr_nonhash[af]);
890 			}
891 			if (t2 != NULL) {
892 				t2->ipsp_hash.hash_pp =
893 				    &(active->iph_root[dir].ipr_nonhash[af]);
894 			}
895 
896 		}
897 	}
898 	active->iph_gen++;
899 	inactive->iph_gen++;
900 	ipsec_update_present_flags(ns->netstack_ipsec);
901 	rw_exit(&active->iph_lock);
902 	rw_exit(&inactive->iph_lock);
903 }
904 
905 /*
906  * Swap global policy primary/secondary.
907  */
908 void
909 ipsec_swap_global_policy(netstack_t *ns)
910 {
911 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
912 
913 	ipsec_swap_policy(&ipss->ipsec_system_policy,
914 	    &ipss->ipsec_inactive_policy, ns);
915 }
916 
917 /*
918  * Clone one policy rule..
919  */
920 static ipsec_policy_t *
921 ipsec_copy_policy(const ipsec_policy_t *src)
922 {
923 	ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
924 
925 	if (dst == NULL)
926 		return (NULL);
927 
928 	/*
929 	 * Adjust refcounts of cloned state.
930 	 */
931 	IPACT_REFHOLD(src->ipsp_act);
932 	src->ipsp_sel->ipsl_refs++;
933 
934 	HASH_NULL(dst, ipsp_hash);
935 	dst->ipsp_refs = 1;
936 	dst->ipsp_sel = src->ipsp_sel;
937 	dst->ipsp_act = src->ipsp_act;
938 	dst->ipsp_prio = src->ipsp_prio;
939 	dst->ipsp_index = src->ipsp_index;
940 
941 	return (dst);
942 }
943 
944 void
945 ipsec_insert_always(avl_tree_t *tree, void *new_node)
946 {
947 	void *node;
948 	avl_index_t where;
949 
950 	node = avl_find(tree, new_node, &where);
951 	ASSERT(node == NULL);
952 	avl_insert(tree, new_node, where);
953 }
954 
955 
956 static int
957 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src,
958     ipsec_policy_t **dstp)
959 {
960 	for (; src != NULL; src = src->ipsp_hash.hash_next) {
961 		ipsec_policy_t *dst = ipsec_copy_policy(src);
962 		if (dst == NULL)
963 			return (ENOMEM);
964 
965 		HASHLIST_INSERT(dst, ipsp_hash, *dstp);
966 		ipsec_insert_always(&dph->iph_rulebyid, dst);
967 	}
968 	return (0);
969 }
970 
971 
972 
973 /*
974  * Make one policy head look exactly like another.
975  *
976  * As with ipsec_swap_policy, we lock the destination policy head first, then
977  * the source policy head. Note that we only need to read-lock the source
978  * policy head as we are not changing it.
979  */
980 int
981 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph,
982     netstack_t *ns)
983 {
984 	int af, dir, chain, nchains;
985 
986 	rw_enter(&dph->iph_lock, RW_WRITER);
987 
988 	ipsec_polhead_flush(dph, ns);
989 
990 	rw_enter(&sph->iph_lock, RW_READER);
991 
992 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
993 		ipsec_policy_root_t *dpr = &dph->iph_root[dir];
994 		ipsec_policy_root_t *spr = &sph->iph_root[dir];
995 		nchains = dpr->ipr_nchains;
996 
997 		ASSERT(dpr->ipr_nchains == spr->ipr_nchains);
998 
999 		for (af = 0; af < IPSEC_NAF; af++) {
1000 			if (ipsec_copy_chain(dph, spr->ipr_nonhash[af],
1001 			    &dpr->ipr_nonhash[af]))
1002 				goto abort_copy;
1003 		}
1004 
1005 		for (chain = 0; chain < nchains; chain++) {
1006 			if (ipsec_copy_chain(dph,
1007 			    spr->ipr_hash[chain].hash_head,
1008 			    &dpr->ipr_hash[chain].hash_head))
1009 				goto abort_copy;
1010 		}
1011 	}
1012 
1013 	dph->iph_gen++;
1014 
1015 	rw_exit(&sph->iph_lock);
1016 	rw_exit(&dph->iph_lock);
1017 	return (0);
1018 
1019 abort_copy:
1020 	ipsec_polhead_flush(dph, ns);
1021 	rw_exit(&sph->iph_lock);
1022 	rw_exit(&dph->iph_lock);
1023 	return (ENOMEM);
1024 }
1025 
1026 /*
1027  * Clone currently active policy to the inactive policy list.
1028  */
1029 int
1030 ipsec_clone_system_policy(netstack_t *ns)
1031 {
1032 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1033 
1034 	return (ipsec_copy_polhead(&ipss->ipsec_system_policy,
1035 	    &ipss->ipsec_inactive_policy, ns));
1036 }
1037 
1038 /*
1039  * Generic "do we have IPvN policy" answer.
1040  */
1041 boolean_t
1042 iph_ipvN(ipsec_policy_head_t *iph, boolean_t v6)
1043 {
1044 	int i, hval;
1045 	uint32_t valbit;
1046 	ipsec_policy_root_t *ipr;
1047 	ipsec_policy_t *ipp;
1048 
1049 	if (v6) {
1050 		valbit = IPSL_IPV6;
1051 		hval = IPSEC_AF_V6;
1052 	} else {
1053 		valbit = IPSL_IPV4;
1054 		hval = IPSEC_AF_V4;
1055 	}
1056 
1057 	ASSERT(RW_LOCK_HELD(&iph->iph_lock));
1058 	for (ipr = iph->iph_root; ipr < &(iph->iph_root[IPSEC_NTYPES]); ipr++) {
1059 		if (ipr->ipr_nonhash[hval] != NULL)
1060 			return (B_TRUE);
1061 		for (i = 0; i < ipr->ipr_nchains; i++) {
1062 			for (ipp = ipr->ipr_hash[i].hash_head; ipp != NULL;
1063 			    ipp = ipp->ipsp_hash.hash_next) {
1064 				if (ipp->ipsp_sel->ipsl_key.ipsl_valid & valbit)
1065 					return (B_TRUE);
1066 			}
1067 		}
1068 	}
1069 
1070 	return (B_FALSE);
1071 }
1072 
1073 /*
1074  * Extract the string from ipsec_policy_failure_msgs[type] and
1075  * log it.
1076  *
1077  */
1078 void
1079 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h,
1080     boolean_t secure, netstack_t *ns)
1081 {
1082 	char	sbuf[INET6_ADDRSTRLEN];
1083 	char	dbuf[INET6_ADDRSTRLEN];
1084 	char	*s;
1085 	char	*d;
1086 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1087 
1088 	ASSERT((ipha == NULL && ip6h != NULL) ||
1089 	    (ip6h == NULL && ipha != NULL));
1090 
1091 	if (ipha != NULL) {
1092 		s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
1093 		d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
1094 	} else {
1095 		s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
1096 		d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
1097 
1098 	}
1099 
1100 	/* Always bump the policy failure counter. */
1101 	ipss->ipsec_policy_failure_count[type]++;
1102 
1103 	ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1104 	    ipsec_policy_failure_msgs[type], func_name,
1105 	    (secure ? "secure" : "not secure"), s, d);
1106 }
1107 
1108 /*
1109  * Rate-limiting front-end to strlog() for AH and ESP.	Uses the ndd variables
1110  * in /dev/ip and the same rate-limiting clock so that there's a single
1111  * knob to turn to throttle the rate of messages.
1112  */
1113 void
1114 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl,
1115     char *fmt, ...)
1116 {
1117 	va_list adx;
1118 	hrtime_t current = gethrtime();
1119 	ip_stack_t	*ipst = ns->netstack_ip;
1120 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1121 
1122 	sl |= SL_CONSOLE;
1123 	/*
1124 	 * Throttle logging to stop syslog from being swamped. If variable
1125 	 * 'ipsec_policy_log_interval' is zero, don't log any messages at
1126 	 * all, otherwise log only one message every 'ipsec_policy_log_interval'
1127 	 * msec. Convert interval (in msec) to hrtime (in nsec).
1128 	 */
1129 
1130 	if (ipst->ips_ipsec_policy_log_interval) {
1131 		if (ipss->ipsec_policy_failure_last +
1132 		    ((hrtime_t)ipst->ips_ipsec_policy_log_interval *
1133 		    (hrtime_t)1000000) <= current) {
1134 			va_start(adx, fmt);
1135 			(void) vstrlog(mid, sid, level, sl, fmt, adx);
1136 			va_end(adx);
1137 			ipss->ipsec_policy_failure_last = current;
1138 		}
1139 	}
1140 }
1141 
1142 void
1143 ipsec_config_flush(netstack_t *ns)
1144 {
1145 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1146 
1147 	rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER);
1148 	ipsec_polhead_flush(&ipss->ipsec_system_policy, ns);
1149 	ipss->ipsec_next_policy_index = 1;
1150 	rw_exit(&ipss->ipsec_system_policy.iph_lock);
1151 	ipsec_action_reclaim_stack(ns);
1152 }
1153 
1154 /*
1155  * Clip a policy's min/max keybits vs. the capabilities of the
1156  * algorithm.
1157  */
1158 static void
1159 act_alg_adjust(uint_t algtype, uint_t algid,
1160     uint16_t *minbits, uint16_t *maxbits, netstack_t *ns)
1161 {
1162 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1163 	ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid];
1164 
1165 	if (algp != NULL) {
1166 		/*
1167 		 * If passed-in minbits is zero, we assume the caller trusts
1168 		 * us with setting the minimum key size.  We pick the
1169 		 * algorithms DEFAULT key size for the minimum in this case.
1170 		 */
1171 		if (*minbits == 0) {
1172 			*minbits = algp->alg_default_bits;
1173 			ASSERT(*minbits >= algp->alg_minbits);
1174 		} else {
1175 			*minbits = MAX(MIN(*minbits, algp->alg_maxbits),
1176 			    algp->alg_minbits);
1177 		}
1178 		if (*maxbits == 0)
1179 			*maxbits = algp->alg_maxbits;
1180 		else
1181 			*maxbits = MIN(MAX(*maxbits, algp->alg_minbits),
1182 			    algp->alg_maxbits);
1183 		ASSERT(*minbits <= *maxbits);
1184 	} else {
1185 		*minbits = 0;
1186 		*maxbits = 0;
1187 	}
1188 }
1189 
1190 /*
1191  * Check an action's requested algorithms against the algorithms currently
1192  * loaded in the system.
1193  */
1194 boolean_t
1195 ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns)
1196 {
1197 	ipsec_prot_t *ipp;
1198 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1199 
1200 	ipp = &act->ipa_apply;
1201 
1202 	if (ipp->ipp_use_ah &&
1203 	    ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
1204 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
1205 		return (B_FALSE);
1206 	}
1207 	if (ipp->ipp_use_espa &&
1208 	    ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] ==
1209 	    NULL) {
1210 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
1211 		return (B_FALSE);
1212 	}
1213 	if (ipp->ipp_use_esp &&
1214 	    ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
1215 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
1216 		return (B_FALSE);
1217 	}
1218 
1219 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
1220 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1221 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
1222 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1223 	act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
1224 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1225 
1226 	if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
1227 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
1228 		return (B_FALSE);
1229 	}
1230 	if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
1231 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
1232 		return (B_FALSE);
1233 	}
1234 	if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
1235 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
1236 		return (B_FALSE);
1237 	}
1238 	/* TODO: sanity check lifetimes */
1239 	return (B_TRUE);
1240 }
1241 
1242 /*
1243  * Set up a single action during wildcard expansion..
1244  */
1245 static void
1246 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
1247     uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns)
1248 {
1249 	ipsec_prot_t *ipp;
1250 
1251 	*outact = *act;
1252 	ipp = &outact->ipa_apply;
1253 	ipp->ipp_auth_alg = (uint8_t)auth_alg;
1254 	ipp->ipp_encr_alg = (uint8_t)encr_alg;
1255 	ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
1256 
1257 	act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
1258 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1259 	act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
1260 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1261 	act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
1262 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1263 }
1264 
1265 /*
1266  * combinatoric expansion time: expand a wildcarded action into an
1267  * array of wildcarded actions; we return the exploded action list,
1268  * and return a count in *nact (output only).
1269  */
1270 static ipsec_act_t *
1271 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns)
1272 {
1273 	boolean_t use_ah, use_esp, use_espa;
1274 	boolean_t wild_auth, wild_encr, wild_eauth;
1275 	uint_t	auth_alg, auth_idx, auth_min, auth_max;
1276 	uint_t	eauth_alg, eauth_idx, eauth_min, eauth_max;
1277 	uint_t  encr_alg, encr_idx, encr_min, encr_max;
1278 	uint_t	action_count, ai;
1279 	ipsec_act_t *outact;
1280 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1281 
1282 	if (act->ipa_type != IPSEC_ACT_APPLY) {
1283 		outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
1284 		*nact = 1;
1285 		if (outact != NULL)
1286 			bcopy(act, outact, sizeof (*act));
1287 		return (outact);
1288 	}
1289 	/*
1290 	 * compute the combinatoric explosion..
1291 	 *
1292 	 * we assume a request for encr if esp_req is PREF_REQUIRED
1293 	 * we assume a request for ah auth if ah_req is PREF_REQUIRED.
1294 	 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
1295 	 */
1296 
1297 	use_ah = act->ipa_apply.ipp_use_ah;
1298 	use_esp = act->ipa_apply.ipp_use_esp;
1299 	use_espa = act->ipa_apply.ipp_use_espa;
1300 	auth_alg = act->ipa_apply.ipp_auth_alg;
1301 	eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
1302 	encr_alg = act->ipa_apply.ipp_encr_alg;
1303 
1304 	wild_auth = use_ah && (auth_alg == 0);
1305 	wild_eauth = use_espa && (eauth_alg == 0);
1306 	wild_encr = use_esp && (encr_alg == 0);
1307 
1308 	action_count = 1;
1309 	auth_min = auth_max = auth_alg;
1310 	eauth_min = eauth_max = eauth_alg;
1311 	encr_min = encr_max = encr_alg;
1312 
1313 	/*
1314 	 * set up for explosion.. for each dimension, expand output
1315 	 * size by the explosion factor.
1316 	 *
1317 	 * Don't include the "any" algorithms, if defined, as no
1318 	 * kernel policies should be set for these algorithms.
1319 	 */
1320 
1321 #define	SET_EXP_MINMAX(type, wild, alg, min, max, ipss)		\
1322 	if (wild) {						\
1323 		int nalgs = ipss->ipsec_nalgs[type];		\
1324 		if (ipss->ipsec_alglists[type][alg] != NULL)	\
1325 			nalgs--;				\
1326 		action_count *= nalgs;				\
1327 		min = 0;					\
1328 		max = ipss->ipsec_nalgs[type] - 1;		\
1329 	}
1330 
1331 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
1332 	    auth_min, auth_max, ipss);
1333 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
1334 	    eauth_min, eauth_max, ipss);
1335 	SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
1336 	    encr_min, encr_max, ipss);
1337 
1338 #undef	SET_EXP_MINMAX
1339 
1340 	/*
1341 	 * ok, allocate the whole mess..
1342 	 */
1343 
1344 	outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
1345 	if (outact == NULL)
1346 		return (NULL);
1347 
1348 	/*
1349 	 * Now compute all combinations.  Note that non-wildcarded
1350 	 * dimensions just get a single value from auth_min, while
1351 	 * wildcarded dimensions indirect through the sortlist.
1352 	 *
1353 	 * We do encryption outermost since, at this time, there's
1354 	 * greater difference in security and performance between
1355 	 * encryption algorithms vs. authentication algorithms.
1356 	 */
1357 
1358 	ai = 0;
1359 
1360 #define	WHICH_ALG(type, wild, idx, ipss) \
1361 	((wild)?(ipss->ipsec_sortlist[type][idx]):(idx))
1362 
1363 	for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
1364 		encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss);
1365 		if (wild_encr && encr_alg == SADB_EALG_NONE)
1366 			continue;
1367 		for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
1368 			auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
1369 			    auth_idx, ipss);
1370 			if (wild_auth && auth_alg == SADB_AALG_NONE)
1371 				continue;
1372 			for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
1373 			    eauth_idx++) {
1374 				eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
1375 				    wild_eauth, eauth_idx, ipss);
1376 				if (wild_eauth && eauth_alg == SADB_AALG_NONE)
1377 					continue;
1378 
1379 				ipsec_setup_act(&outact[ai], act,
1380 				    auth_alg, encr_alg, eauth_alg, ns);
1381 				ai++;
1382 			}
1383 		}
1384 	}
1385 
1386 #undef WHICH_ALG
1387 
1388 	ASSERT(ai == action_count);
1389 	*nact = action_count;
1390 	return (outact);
1391 }
1392 
1393 /*
1394  * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
1395  */
1396 static void
1397 ipsec_prot_from_req(ipsec_req_t *req, ipsec_prot_t *ipp)
1398 {
1399 	bzero(ipp, sizeof (*ipp));
1400 	/*
1401 	 * ipp_use_* are bitfields.  Look at "!!" in the following as a
1402 	 * "boolean canonicalization" operator.
1403 	 */
1404 	ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
1405 	ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
1406 	ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg) || !ipp->ipp_use_ah;
1407 	ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
1408 	ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
1409 	    IPSEC_PREF_UNIQUE);
1410 	ipp->ipp_encr_alg = req->ipsr_esp_alg;
1411 	ipp->ipp_auth_alg = req->ipsr_auth_alg;
1412 	ipp->ipp_esp_auth_alg = req->ipsr_esp_auth_alg;
1413 }
1414 
1415 /*
1416  * Extract a new-style action from a request.
1417  */
1418 void
1419 ipsec_actvec_from_req(ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp,
1420     netstack_t *ns)
1421 {
1422 	struct ipsec_act act;
1423 
1424 	bzero(&act, sizeof (act));
1425 	if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
1426 	    (req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
1427 		act.ipa_type = IPSEC_ACT_BYPASS;
1428 	} else {
1429 		act.ipa_type = IPSEC_ACT_APPLY;
1430 		ipsec_prot_from_req(req, &act.ipa_apply);
1431 	}
1432 	*actp = ipsec_act_wildcard_expand(&act, nactp, ns);
1433 }
1434 
1435 /*
1436  * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
1437  * We assume caller has already zero'ed *req for us.
1438  */
1439 static int
1440 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
1441 {
1442 	req->ipsr_esp_alg = ipp->ipp_encr_alg;
1443 	req->ipsr_auth_alg = ipp->ipp_auth_alg;
1444 	req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
1445 
1446 	if (ipp->ipp_use_unique) {
1447 		req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
1448 		req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
1449 	}
1450 	if (ipp->ipp_use_se)
1451 		req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
1452 	if (ipp->ipp_use_ah)
1453 		req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
1454 	if (ipp->ipp_use_esp)
1455 		req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
1456 	return (sizeof (*req));
1457 }
1458 
1459 /*
1460  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1461  * We assume caller has already zero'ed *req for us.
1462  */
1463 static int
1464 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
1465 {
1466 	switch (ap->ipa_act.ipa_type) {
1467 	case IPSEC_ACT_BYPASS:
1468 		req->ipsr_ah_req = IPSEC_PREF_NEVER;
1469 		req->ipsr_esp_req = IPSEC_PREF_NEVER;
1470 		return (sizeof (*req));
1471 	case IPSEC_ACT_APPLY:
1472 		return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
1473 	}
1474 	return (sizeof (*req));
1475 }
1476 
1477 /*
1478  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1479  * We assume caller has already zero'ed *req for us.
1480  */
1481 int
1482 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
1483 {
1484 	ipsec_policy_t *p;
1485 
1486 	/*
1487 	 * FULL-PERSOCK: consult hash table, too?
1488 	 */
1489 	for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af];
1490 	    p != NULL;
1491 	    p = p->ipsp_hash.hash_next) {
1492 		if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0)
1493 			return (ipsec_req_from_act(p->ipsp_act, req));
1494 	}
1495 	return (sizeof (*req));
1496 }
1497 
1498 /*
1499  * Based on per-socket or latched policy, convert to an appropriate
1500  * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
1501  * be tail-called from ip.
1502  */
1503 int
1504 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
1505 {
1506 	ipsec_latch_t *ipl;
1507 	int rv = sizeof (ipsec_req_t);
1508 
1509 	bzero(req, sizeof (*req));
1510 
1511 	mutex_enter(&connp->conn_lock);
1512 	ipl = connp->conn_latch;
1513 
1514 	/*
1515 	 * Find appropriate policy.  First choice is latched action;
1516 	 * failing that, see latched policy; failing that,
1517 	 * look at configured policy.
1518 	 */
1519 	if (ipl != NULL) {
1520 		if (ipl->ipl_in_action != NULL) {
1521 			rv = ipsec_req_from_act(ipl->ipl_in_action, req);
1522 			goto done;
1523 		}
1524 		if (ipl->ipl_in_policy != NULL) {
1525 			rv = ipsec_req_from_act(ipl->ipl_in_policy->ipsp_act,
1526 			    req);
1527 			goto done;
1528 		}
1529 	}
1530 	if (connp->conn_policy != NULL)
1531 		rv = ipsec_req_from_head(connp->conn_policy, req, af);
1532 done:
1533 	mutex_exit(&connp->conn_lock);
1534 	return (rv);
1535 }
1536 
1537 void
1538 ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
1539 {
1540 	kmem_free(act, nact * sizeof (*act));
1541 }
1542 
1543 /*
1544  * When outbound policy is not cached, look it up the hard way and attach
1545  * an ipsec_out_t to the packet..
1546  */
1547 static mblk_t *
1548 ipsec_attach_global_policy(mblk_t **mp, conn_t *connp, ipsec_selector_t *sel,
1549     netstack_t *ns)
1550 {
1551 	ipsec_policy_t *p;
1552 
1553 	p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel, ns);
1554 
1555 	if (p == NULL)
1556 		return (NULL);
1557 	return (ipsec_attach_ipsec_out(mp, connp, p, sel->ips_protocol, ns));
1558 }
1559 
1560 /*
1561  * We have an ipsec_out already, but don't have cached policy; fill it in
1562  * with the right actions.
1563  */
1564 static mblk_t *
1565 ipsec_apply_global_policy(mblk_t *ipsec_mp, conn_t *connp,
1566     ipsec_selector_t *sel, netstack_t *ns)
1567 {
1568 	ipsec_out_t *io;
1569 	ipsec_policy_t *p;
1570 
1571 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
1572 	ASSERT(ipsec_mp->b_cont->b_datap->db_type == M_DATA);
1573 
1574 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
1575 
1576 	if (io->ipsec_out_policy == NULL) {
1577 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, io, sel, ns);
1578 		io->ipsec_out_policy = p;
1579 	}
1580 	return (ipsec_mp);
1581 }
1582 
1583 
1584 /*
1585  * Consumes a reference to ipsp.
1586  */
1587 static mblk_t *
1588 ipsec_check_loopback_policy(mblk_t *first_mp, boolean_t mctl_present,
1589     ipsec_policy_t *ipsp)
1590 {
1591 	mblk_t *ipsec_mp;
1592 	ipsec_in_t *ii;
1593 	netstack_t	*ns;
1594 
1595 	if (!mctl_present)
1596 		return (first_mp);
1597 
1598 	ipsec_mp = first_mp;
1599 
1600 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1601 	ns = ii->ipsec_in_ns;
1602 	ASSERT(ii->ipsec_in_loopback);
1603 	IPPOL_REFRELE(ipsp, ns);
1604 
1605 	/*
1606 	 * We should do an actual policy check here.  Revisit this
1607 	 * when we revisit the IPsec API.  (And pass a conn_t in when we
1608 	 * get there.)
1609 	 */
1610 
1611 	return (first_mp);
1612 }
1613 
1614 /*
1615  * Check that packet's inbound ports & proto match the selectors
1616  * expected by the SAs it traversed on the way in.
1617  */
1618 static boolean_t
1619 ipsec_check_ipsecin_unique(ipsec_in_t *ii, const char **reason,
1620     kstat_named_t **counter, uint64_t pkt_unique)
1621 {
1622 	uint64_t ah_mask, esp_mask;
1623 	ipsa_t *ah_assoc;
1624 	ipsa_t *esp_assoc;
1625 	netstack_t	*ns = ii->ipsec_in_ns;
1626 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1627 
1628 	ASSERT(ii->ipsec_in_secure);
1629 	ASSERT(!ii->ipsec_in_loopback);
1630 
1631 	ah_assoc = ii->ipsec_in_ah_sa;
1632 	esp_assoc = ii->ipsec_in_esp_sa;
1633 	ASSERT((ah_assoc != NULL) || (esp_assoc != NULL));
1634 
1635 	ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0;
1636 	esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0;
1637 
1638 	if ((ah_mask == 0) && (esp_mask == 0))
1639 		return (B_TRUE);
1640 
1641 	/*
1642 	 * The pkt_unique check will also check for tunnel mode on the SA
1643 	 * vs. the tunneled_packet boolean.  "Be liberal in what you receive"
1644 	 * should not apply in this case.  ;)
1645 	 */
1646 
1647 	if (ah_mask != 0 &&
1648 	    ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) {
1649 		*reason = "AH inner header mismatch";
1650 		*counter = DROPPER(ipss, ipds_spd_ah_innermismatch);
1651 		return (B_FALSE);
1652 	}
1653 	if (esp_mask != 0 &&
1654 	    esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) {
1655 		*reason = "ESP inner header mismatch";
1656 		*counter = DROPPER(ipss, ipds_spd_esp_innermismatch);
1657 		return (B_FALSE);
1658 	}
1659 	return (B_TRUE);
1660 }
1661 
1662 static boolean_t
1663 ipsec_check_ipsecin_action(ipsec_in_t *ii, mblk_t *mp, ipsec_action_t *ap,
1664     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter)
1665 {
1666 	boolean_t ret = B_TRUE;
1667 	ipsec_prot_t *ipp;
1668 	ipsa_t *ah_assoc;
1669 	ipsa_t *esp_assoc;
1670 	boolean_t decaps;
1671 	netstack_t	*ns = ii->ipsec_in_ns;
1672 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1673 
1674 	ASSERT((ipha == NULL && ip6h != NULL) ||
1675 	    (ip6h == NULL && ipha != NULL));
1676 
1677 	if (ii->ipsec_in_loopback) {
1678 		/*
1679 		 * Besides accepting pointer-equivalent actions, we also
1680 		 * accept any ICMP errors we generated for ourselves,
1681 		 * regardless of policy.  If we do not wish to make this
1682 		 * assumption in the future, check here, and where
1683 		 * icmp_loopback is initialized in ip.c and ip6.c.  (Look for
1684 		 * ipsec_out_icmp_loopback.)
1685 		 */
1686 		if (ap == ii->ipsec_in_action || ii->ipsec_in_icmp_loopback)
1687 			return (B_TRUE);
1688 
1689 		/* Deep compare necessary here?? */
1690 		*counter = DROPPER(ipss, ipds_spd_loopback_mismatch);
1691 		*reason = "loopback policy mismatch";
1692 		return (B_FALSE);
1693 	}
1694 	ASSERT(!ii->ipsec_in_icmp_loopback);
1695 
1696 	ah_assoc = ii->ipsec_in_ah_sa;
1697 	esp_assoc = ii->ipsec_in_esp_sa;
1698 
1699 	decaps = ii->ipsec_in_decaps;
1700 
1701 	switch (ap->ipa_act.ipa_type) {
1702 	case IPSEC_ACT_DISCARD:
1703 	case IPSEC_ACT_REJECT:
1704 		/* Should "fail hard" */
1705 		*counter = DROPPER(ipss, ipds_spd_explicit);
1706 		*reason = "blocked by policy";
1707 		return (B_FALSE);
1708 
1709 	case IPSEC_ACT_BYPASS:
1710 	case IPSEC_ACT_CLEAR:
1711 		*counter = DROPPER(ipss, ipds_spd_got_secure);
1712 		*reason = "expected clear, got protected";
1713 		return (B_FALSE);
1714 
1715 	case IPSEC_ACT_APPLY:
1716 		ipp = &ap->ipa_act.ipa_apply;
1717 		/*
1718 		 * As of now we do the simple checks of whether
1719 		 * the datagram has gone through the required IPSEC
1720 		 * protocol constraints or not. We might have more
1721 		 * in the future like sensitive levels, key bits, etc.
1722 		 * If it fails the constraints, check whether we would
1723 		 * have accepted this if it had come in clear.
1724 		 */
1725 		if (ipp->ipp_use_ah) {
1726 			if (ah_assoc == NULL) {
1727 				ret = ipsec_inbound_accept_clear(mp, ipha,
1728 				    ip6h);
1729 				*counter = DROPPER(ipss, ipds_spd_got_clear);
1730 				*reason = "unprotected not accepted";
1731 				break;
1732 			}
1733 			ASSERT(ah_assoc != NULL);
1734 			ASSERT(ipp->ipp_auth_alg != 0);
1735 
1736 			if (ah_assoc->ipsa_auth_alg !=
1737 			    ipp->ipp_auth_alg) {
1738 				*counter = DROPPER(ipss, ipds_spd_bad_ahalg);
1739 				*reason = "unacceptable ah alg";
1740 				ret = B_FALSE;
1741 				break;
1742 			}
1743 		} else if (ah_assoc != NULL) {
1744 			/*
1745 			 * Don't allow this. Check IPSEC NOTE above
1746 			 * ip_fanout_proto().
1747 			 */
1748 			*counter = DROPPER(ipss, ipds_spd_got_ah);
1749 			*reason = "unexpected AH";
1750 			ret = B_FALSE;
1751 			break;
1752 		}
1753 		if (ipp->ipp_use_esp) {
1754 			if (esp_assoc == NULL) {
1755 				ret = ipsec_inbound_accept_clear(mp, ipha,
1756 				    ip6h);
1757 				*counter = DROPPER(ipss, ipds_spd_got_clear);
1758 				*reason = "unprotected not accepted";
1759 				break;
1760 			}
1761 			ASSERT(esp_assoc != NULL);
1762 			ASSERT(ipp->ipp_encr_alg != 0);
1763 
1764 			if (esp_assoc->ipsa_encr_alg !=
1765 			    ipp->ipp_encr_alg) {
1766 				*counter = DROPPER(ipss, ipds_spd_bad_espealg);
1767 				*reason = "unacceptable esp alg";
1768 				ret = B_FALSE;
1769 				break;
1770 			}
1771 			/*
1772 			 * If the client does not need authentication,
1773 			 * we don't verify the alogrithm.
1774 			 */
1775 			if (ipp->ipp_use_espa) {
1776 				if (esp_assoc->ipsa_auth_alg !=
1777 				    ipp->ipp_esp_auth_alg) {
1778 					*counter = DROPPER(ipss,
1779 					    ipds_spd_bad_espaalg);
1780 					*reason = "unacceptable esp auth alg";
1781 					ret = B_FALSE;
1782 					break;
1783 				}
1784 			}
1785 		} else if (esp_assoc != NULL) {
1786 				/*
1787 				 * Don't allow this. Check IPSEC NOTE above
1788 				 * ip_fanout_proto().
1789 				 */
1790 			*counter = DROPPER(ipss, ipds_spd_got_esp);
1791 			*reason = "unexpected ESP";
1792 			ret = B_FALSE;
1793 			break;
1794 		}
1795 		if (ipp->ipp_use_se) {
1796 			if (!decaps) {
1797 				ret = ipsec_inbound_accept_clear(mp, ipha,
1798 				    ip6h);
1799 				if (!ret) {
1800 					/* XXX mutant? */
1801 					*counter = DROPPER(ipss,
1802 					    ipds_spd_bad_selfencap);
1803 					*reason = "self encap not found";
1804 					break;
1805 				}
1806 			}
1807 		} else if (decaps) {
1808 			/*
1809 			 * XXX If the packet comes in tunneled and the
1810 			 * recipient does not expect it to be tunneled, it
1811 			 * is okay. But we drop to be consistent with the
1812 			 * other cases.
1813 			 */
1814 			*counter = DROPPER(ipss, ipds_spd_got_selfencap);
1815 			*reason = "unexpected self encap";
1816 			ret = B_FALSE;
1817 			break;
1818 		}
1819 		if (ii->ipsec_in_action != NULL) {
1820 			/*
1821 			 * This can happen if we do a double policy-check on
1822 			 * a packet
1823 			 * XXX XXX should fix this case!
1824 			 */
1825 			IPACT_REFRELE(ii->ipsec_in_action);
1826 		}
1827 		ASSERT(ii->ipsec_in_action == NULL);
1828 		IPACT_REFHOLD(ap);
1829 		ii->ipsec_in_action = ap;
1830 		break;	/* from switch */
1831 	}
1832 	return (ret);
1833 }
1834 
1835 static boolean_t
1836 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
1837 {
1838 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1839 	return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
1840 	    ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
1841 }
1842 
1843 /*
1844  * Takes a latched conn and an inbound packet and returns a unique_id suitable
1845  * for SA comparisons.  Most of the time we will copy from the conn_t, but
1846  * there are cases when the conn_t is latched but it has wildcard selectors,
1847  * and then we need to fallback to scooping them out of the packet.
1848  *
1849  * Assume we'll never have 0 with a conn_t present, so use 0 as a failure.  We
1850  * can get away with this because we only have non-zero ports/proto for
1851  * latched conn_ts.
1852  *
1853  * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough
1854  * to not be a nice macro.
1855  */
1856 static uint64_t
1857 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h)
1858 {
1859 	ipsec_selector_t sel;
1860 	uint8_t ulp = connp->conn_ulp;
1861 
1862 	ASSERT(connp->conn_latch->ipl_in_policy != NULL);
1863 
1864 	if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) &&
1865 	    (connp->conn_fport == 0 || connp->conn_lport == 0)) {
1866 		/* Slow path - we gotta grab from the packet. */
1867 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
1868 		    SEL_NONE) != SELRET_SUCCESS) {
1869 			/* Failure -> have caller free packet with ENOMEM. */
1870 			return (0);
1871 		}
1872 		return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port,
1873 		    sel.ips_protocol, 0));
1874 	}
1875 
1876 #ifdef DEBUG_NOT_UNTIL_6478464
1877 	if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) ==
1878 	    SELRET_SUCCESS) {
1879 		ASSERT(sel.ips_local_port == connp->conn_lport);
1880 		ASSERT(sel.ips_remote_port == connp->conn_fport);
1881 		ASSERT(sel.ips_protocol == connp->conn_ulp);
1882 	}
1883 	ASSERT(connp->conn_ulp != 0);
1884 #endif
1885 
1886 	return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0));
1887 }
1888 
1889 /*
1890  * Called to check policy on a latched connection, both from this file
1891  * and from tcp.c
1892  */
1893 boolean_t
1894 ipsec_check_ipsecin_latch(ipsec_in_t *ii, mblk_t *mp, ipsec_latch_t *ipl,
1895     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter,
1896     conn_t *connp)
1897 {
1898 	netstack_t	*ns = ii->ipsec_in_ns;
1899 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1900 
1901 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1902 
1903 	if (!ii->ipsec_in_loopback) {
1904 		/*
1905 		 * Over loopback, there aren't real security associations,
1906 		 * so there are neither identities nor "unique" values
1907 		 * for us to check the packet against.
1908 		 */
1909 		if ((ii->ipsec_in_ah_sa != NULL) &&
1910 		    (!spd_match_inbound_ids(ipl, ii->ipsec_in_ah_sa))) {
1911 			*counter = DROPPER(ipss, ipds_spd_ah_badid);
1912 			*reason = "AH identity mismatch";
1913 			return (B_FALSE);
1914 		}
1915 
1916 		if ((ii->ipsec_in_esp_sa != NULL) &&
1917 		    (!spd_match_inbound_ids(ipl, ii->ipsec_in_esp_sa))) {
1918 			*counter = DROPPER(ipss, ipds_spd_esp_badid);
1919 			*reason = "ESP identity mismatch";
1920 			return (B_FALSE);
1921 		}
1922 
1923 		/*
1924 		 * Can fudge pkt_unique from connp because we're latched.
1925 		 * In DEBUG kernels (see conn_to_unique()'s implementation),
1926 		 * verify this even if it REALLY slows things down.
1927 		 */
1928 		if (!ipsec_check_ipsecin_unique(ii, reason, counter,
1929 		    conn_to_unique(connp, mp, ipha, ip6h))) {
1930 			return (B_FALSE);
1931 		}
1932 	}
1933 
1934 	return (ipsec_check_ipsecin_action(ii, mp, ipl->ipl_in_action,
1935 	    ipha, ip6h, reason, counter));
1936 }
1937 
1938 /*
1939  * Check to see whether this secured datagram meets the policy
1940  * constraints specified in ipsp.
1941  *
1942  * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
1943  *
1944  * Consumes a reference to ipsp.
1945  */
1946 static mblk_t *
1947 ipsec_check_ipsecin_policy(mblk_t *first_mp, ipsec_policy_t *ipsp,
1948     ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, netstack_t *ns)
1949 {
1950 	ipsec_in_t *ii;
1951 	ipsec_action_t *ap;
1952 	const char *reason = "no policy actions found";
1953 	mblk_t *data_mp, *ipsec_mp;
1954 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1955 	ip_stack_t	*ipst = ns->netstack_ip;
1956 	kstat_named_t *counter;
1957 
1958 	counter = DROPPER(ipss, ipds_spd_got_secure);
1959 
1960 	data_mp = first_mp->b_cont;
1961 	ipsec_mp = first_mp;
1962 
1963 	ASSERT(ipsp != NULL);
1964 
1965 	ASSERT((ipha == NULL && ip6h != NULL) ||
1966 	    (ip6h == NULL && ipha != NULL));
1967 
1968 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1969 
1970 	if (ii->ipsec_in_loopback)
1971 		return (ipsec_check_loopback_policy(first_mp, B_TRUE, ipsp));
1972 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
1973 	ASSERT(ii->ipsec_in_secure);
1974 
1975 	if (ii->ipsec_in_action != NULL) {
1976 		/*
1977 		 * this can happen if we do a double policy-check on a packet
1978 		 * Would be nice to be able to delete this test..
1979 		 */
1980 		IPACT_REFRELE(ii->ipsec_in_action);
1981 	}
1982 	ASSERT(ii->ipsec_in_action == NULL);
1983 
1984 	if (!SA_IDS_MATCH(ii->ipsec_in_ah_sa, ii->ipsec_in_esp_sa)) {
1985 		reason = "inbound AH and ESP identities differ";
1986 		counter = DROPPER(ipss, ipds_spd_ahesp_diffid);
1987 		goto drop;
1988 	}
1989 
1990 	if (!ipsec_check_ipsecin_unique(ii, &reason, &counter, pkt_unique))
1991 		goto drop;
1992 
1993 	/*
1994 	 * Ok, now loop through the possible actions and see if any
1995 	 * of them work for us.
1996 	 */
1997 
1998 	for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
1999 		if (ipsec_check_ipsecin_action(ii, data_mp, ap,
2000 		    ipha, ip6h, &reason, &counter)) {
2001 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2002 			IPPOL_REFRELE(ipsp, ns);
2003 			return (first_mp);
2004 		}
2005 	}
2006 drop:
2007 	ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
2008 	    "ipsec inbound policy mismatch: %s, packet dropped\n",
2009 	    reason);
2010 	IPPOL_REFRELE(ipsp, ns);
2011 	ASSERT(ii->ipsec_in_action == NULL);
2012 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2013 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2014 	    &ipss->ipsec_spd_dropper);
2015 	return (NULL);
2016 }
2017 
2018 /*
2019  * sleazy prefix-length-based compare.
2020  * another inlining candidate..
2021  */
2022 boolean_t
2023 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
2024 {
2025 	int offset = pfxlen>>3;
2026 	int bitsleft = pfxlen & 7;
2027 	uint8_t *addr2 = (uint8_t *)addr2p;
2028 
2029 	/*
2030 	 * and there was much evil..
2031 	 * XXX should inline-expand the bcmp here and do this 32 bits
2032 	 * or 64 bits at a time..
2033 	 */
2034 	return ((bcmp(addr1, addr2, offset) == 0) &&
2035 	    ((bitsleft == 0) ||
2036 	    (((addr1[offset] ^ addr2[offset]) & (0xff<<(8-bitsleft))) == 0)));
2037 }
2038 
2039 static ipsec_policy_t *
2040 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain,
2041     ipsec_selector_t *sel, boolean_t is_icmp_inv_acq)
2042 {
2043 	ipsec_selkey_t *isel;
2044 	ipsec_policy_t *p;
2045 	int bpri = best ? best->ipsp_prio : 0;
2046 
2047 	for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) {
2048 		uint32_t valid;
2049 
2050 		if (p->ipsp_prio <= bpri)
2051 			continue;
2052 		isel = &p->ipsp_sel->ipsl_key;
2053 		valid = isel->ipsl_valid;
2054 
2055 		if ((valid & IPSL_PROTOCOL) &&
2056 		    (isel->ipsl_proto != sel->ips_protocol))
2057 			continue;
2058 
2059 		if ((valid & IPSL_REMOTE_ADDR) &&
2060 		    !ip_addr_match((uint8_t *)&isel->ipsl_remote,
2061 		    isel->ipsl_remote_pfxlen, &sel->ips_remote_addr_v6))
2062 			continue;
2063 
2064 		if ((valid & IPSL_LOCAL_ADDR) &&
2065 		    !ip_addr_match((uint8_t *)&isel->ipsl_local,
2066 		    isel->ipsl_local_pfxlen, &sel->ips_local_addr_v6))
2067 			continue;
2068 
2069 		if ((valid & IPSL_REMOTE_PORT) &&
2070 		    isel->ipsl_rport != sel->ips_remote_port)
2071 			continue;
2072 
2073 		if ((valid & IPSL_LOCAL_PORT) &&
2074 		    isel->ipsl_lport != sel->ips_local_port)
2075 			continue;
2076 
2077 		if (!is_icmp_inv_acq) {
2078 			if ((valid & IPSL_ICMP_TYPE) &&
2079 			    (isel->ipsl_icmp_type > sel->ips_icmp_type ||
2080 			    isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
2081 				continue;
2082 			}
2083 
2084 			if ((valid & IPSL_ICMP_CODE) &&
2085 			    (isel->ipsl_icmp_code > sel->ips_icmp_code ||
2086 			    isel->ipsl_icmp_code_end <
2087 			    sel->ips_icmp_code)) {
2088 				continue;
2089 			}
2090 		} else {
2091 			/*
2092 			 * special case for icmp inverse acquire
2093 			 * we only want policies that aren't drop/pass
2094 			 */
2095 			if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
2096 				continue;
2097 		}
2098 
2099 		/* we matched all the packet-port-field selectors! */
2100 		best = p;
2101 		bpri = p->ipsp_prio;
2102 	}
2103 
2104 	return (best);
2105 }
2106 
2107 /*
2108  * Try to find and return the best policy entry under a given policy
2109  * root for a given set of selectors; the first parameter "best" is
2110  * the current best policy so far.  If "best" is non-null, we have a
2111  * reference to it.  We return a reference to a policy; if that policy
2112  * is not the original "best", we need to release that reference
2113  * before returning.
2114  */
2115 ipsec_policy_t *
2116 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head,
2117     int direction, ipsec_selector_t *sel, netstack_t *ns)
2118 {
2119 	ipsec_policy_t *curbest;
2120 	ipsec_policy_root_t *root;
2121 	uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
2122 	int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
2123 
2124 	curbest = best;
2125 	root = &head->iph_root[direction];
2126 
2127 #ifdef DEBUG
2128 	if (is_icmp_inv_acq) {
2129 		if (sel->ips_isv4) {
2130 			if (sel->ips_protocol != IPPROTO_ICMP) {
2131 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
2132 				    " expecting icmp, got %d",
2133 				    sel->ips_protocol);
2134 			}
2135 		} else {
2136 			if (sel->ips_protocol != IPPROTO_ICMPV6) {
2137 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
2138 				    " expecting icmpv6, got %d",
2139 				    sel->ips_protocol);
2140 			}
2141 		}
2142 	}
2143 #endif
2144 
2145 	rw_enter(&head->iph_lock, RW_READER);
2146 
2147 	if (root->ipr_nchains > 0) {
2148 		curbest = ipsec_find_policy_chain(curbest,
2149 		    root->ipr_hash[selector_hash(sel, root)].hash_head, sel,
2150 		    is_icmp_inv_acq);
2151 	}
2152 	curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel,
2153 	    is_icmp_inv_acq);
2154 
2155 	/*
2156 	 * Adjust reference counts if we found anything new.
2157 	 */
2158 	if (curbest != best) {
2159 		ASSERT(curbest != NULL);
2160 		IPPOL_REFHOLD(curbest);
2161 
2162 		if (best != NULL) {
2163 			IPPOL_REFRELE(best, ns);
2164 		}
2165 	}
2166 
2167 	rw_exit(&head->iph_lock);
2168 
2169 	return (curbest);
2170 }
2171 
2172 /*
2173  * Find the best system policy (either global or per-interface) which
2174  * applies to the given selector; look in all the relevant policy roots
2175  * to figure out which policy wins.
2176  *
2177  * Returns a reference to a policy; caller must release this
2178  * reference when done.
2179  */
2180 ipsec_policy_t *
2181 ipsec_find_policy(int direction, conn_t *connp, ipsec_out_t *io,
2182     ipsec_selector_t *sel, netstack_t *ns)
2183 {
2184 	ipsec_policy_t *p;
2185 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2186 
2187 	p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy,
2188 	    direction, sel, ns);
2189 	if ((connp != NULL) && (connp->conn_policy != NULL)) {
2190 		p = ipsec_find_policy_head(p, connp->conn_policy,
2191 		    direction, sel, ns);
2192 	} else if ((io != NULL) && (io->ipsec_out_polhead != NULL)) {
2193 		p = ipsec_find_policy_head(p, io->ipsec_out_polhead,
2194 		    direction, sel, ns);
2195 	}
2196 
2197 	return (p);
2198 }
2199 
2200 /*
2201  * Check with global policy and see whether this inbound
2202  * packet meets the policy constraints.
2203  *
2204  * Locate appropriate policy from global policy, supplemented by the
2205  * conn's configured and/or cached policy if the conn is supplied.
2206  *
2207  * Dispatch to ipsec_check_ipsecin_policy if we have policy and an
2208  * encrypted packet to see if they match.
2209  *
2210  * Otherwise, see if the policy allows cleartext; if not, drop it on the
2211  * floor.
2212  */
2213 mblk_t *
2214 ipsec_check_global_policy(mblk_t *first_mp, conn_t *connp,
2215     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present, netstack_t *ns)
2216 {
2217 	ipsec_policy_t *p;
2218 	ipsec_selector_t sel;
2219 	mblk_t *data_mp, *ipsec_mp;
2220 	boolean_t policy_present;
2221 	kstat_named_t *counter;
2222 	ipsec_in_t *ii = NULL;
2223 	uint64_t pkt_unique;
2224 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2225 	ip_stack_t	*ipst = ns->netstack_ip;
2226 
2227 	data_mp = mctl_present ? first_mp->b_cont : first_mp;
2228 	ipsec_mp = mctl_present ? first_mp : NULL;
2229 
2230 	sel.ips_is_icmp_inv_acq = 0;
2231 
2232 	ASSERT((ipha == NULL && ip6h != NULL) ||
2233 	    (ip6h == NULL && ipha != NULL));
2234 
2235 	if (ipha != NULL)
2236 		policy_present = ipss->ipsec_inbound_v4_policy_present;
2237 	else
2238 		policy_present = ipss->ipsec_inbound_v6_policy_present;
2239 
2240 	if (!policy_present && connp == NULL) {
2241 		/*
2242 		 * No global policy and no per-socket policy;
2243 		 * just pass it back (but we shouldn't get here in that case)
2244 		 */
2245 		return (first_mp);
2246 	}
2247 
2248 	if (ipsec_mp != NULL) {
2249 		ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
2250 		ii = (ipsec_in_t *)(ipsec_mp->b_rptr);
2251 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
2252 	}
2253 
2254 	/*
2255 	 * If we have cached policy, use it.
2256 	 * Otherwise consult system policy.
2257 	 */
2258 	if ((connp != NULL) && (connp->conn_latch != NULL)) {
2259 		p = connp->conn_latch->ipl_in_policy;
2260 		if (p != NULL) {
2261 			IPPOL_REFHOLD(p);
2262 		}
2263 		/*
2264 		 * Fudge sel for UNIQUE_ID setting below.
2265 		 */
2266 		pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h);
2267 	} else {
2268 		/* Initialize the ports in the selector */
2269 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
2270 		    SEL_NONE) == SELRET_NOMEM) {
2271 			/*
2272 			 * Technically not a policy mismatch, but it is
2273 			 * an internal failure.
2274 			 */
2275 			ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2276 			    "ipsec_init_inbound_sel", ipha, ip6h, B_FALSE, ns);
2277 			counter = DROPPER(ipss, ipds_spd_nomem);
2278 			goto fail;
2279 		}
2280 
2281 		/*
2282 		 * Find the policy which best applies.
2283 		 *
2284 		 * If we find global policy, we should look at both
2285 		 * local policy and global policy and see which is
2286 		 * stronger and match accordingly.
2287 		 *
2288 		 * If we don't find a global policy, check with
2289 		 * local policy alone.
2290 		 */
2291 
2292 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel,
2293 		    ns);
2294 		pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
2295 		    sel.ips_local_port, sel.ips_protocol, 0);
2296 	}
2297 
2298 	if (p == NULL) {
2299 		if (ipsec_mp == NULL) {
2300 			/*
2301 			 * We have no policy; default to succeeding.
2302 			 * XXX paranoid system design doesn't do this.
2303 			 */
2304 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2305 			return (first_mp);
2306 		} else {
2307 			counter = DROPPER(ipss, ipds_spd_got_secure);
2308 			ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
2309 			    "ipsec_check_global_policy", ipha, ip6h, B_TRUE,
2310 			    ns);
2311 			goto fail;
2312 		}
2313 	}
2314 	if ((ii != NULL) && (ii->ipsec_in_secure)) {
2315 		return (ipsec_check_ipsecin_policy(ipsec_mp, p, ipha, ip6h,
2316 		    pkt_unique, ns));
2317 	}
2318 	if (p->ipsp_act->ipa_allow_clear) {
2319 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2320 		IPPOL_REFRELE(p, ns);
2321 		return (first_mp);
2322 	}
2323 	IPPOL_REFRELE(p, ns);
2324 	/*
2325 	 * If we reach here, we will drop the packet because it failed the
2326 	 * global policy check because the packet was cleartext, and it
2327 	 * should not have been.
2328 	 */
2329 	ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2330 	    "ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns);
2331 	counter = DROPPER(ipss, ipds_spd_got_clear);
2332 
2333 fail:
2334 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2335 	    &ipss->ipsec_spd_dropper);
2336 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2337 	return (NULL);
2338 }
2339 
2340 /*
2341  * We check whether an inbound datagram is a valid one
2342  * to accept in clear. If it is secure, it is the job
2343  * of IPSEC to log information appropriately if it
2344  * suspects that it may not be the real one.
2345  *
2346  * It is called only while fanning out to the ULP
2347  * where ULP accepts only secure data and the incoming
2348  * is clear. Usually we never accept clear datagrams in
2349  * such cases. ICMP is the only exception.
2350  *
2351  * NOTE : We don't call this function if the client (ULP)
2352  * is willing to accept things in clear.
2353  */
2354 boolean_t
2355 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
2356 {
2357 	ushort_t iph_hdr_length;
2358 	icmph_t *icmph;
2359 	icmp6_t *icmp6;
2360 	uint8_t *nexthdrp;
2361 
2362 	ASSERT((ipha != NULL && ip6h == NULL) ||
2363 	    (ipha == NULL && ip6h != NULL));
2364 
2365 	if (ip6h != NULL) {
2366 		iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
2367 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
2368 		    &nexthdrp)) {
2369 			return (B_FALSE);
2370 		}
2371 		if (*nexthdrp != IPPROTO_ICMPV6)
2372 			return (B_FALSE);
2373 		icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
2374 		/* Match IPv6 ICMP policy as closely as IPv4 as possible. */
2375 		switch (icmp6->icmp6_type) {
2376 		case ICMP6_PARAM_PROB:
2377 			/* Corresponds to port/proto unreach in IPv4. */
2378 		case ICMP6_ECHO_REQUEST:
2379 			/* Just like IPv4. */
2380 			return (B_FALSE);
2381 
2382 		case MLD_LISTENER_QUERY:
2383 		case MLD_LISTENER_REPORT:
2384 		case MLD_LISTENER_REDUCTION:
2385 			/*
2386 			 * XXX Seperate NDD in IPv4 what about here?
2387 			 * Plus, mcast is important to ND.
2388 			 */
2389 		case ICMP6_DST_UNREACH:
2390 			/* Corresponds to HOST/NET unreachable in IPv4. */
2391 		case ICMP6_PACKET_TOO_BIG:
2392 		case ICMP6_ECHO_REPLY:
2393 			/* These are trusted in IPv4. */
2394 		case ND_ROUTER_SOLICIT:
2395 		case ND_ROUTER_ADVERT:
2396 		case ND_NEIGHBOR_SOLICIT:
2397 		case ND_NEIGHBOR_ADVERT:
2398 		case ND_REDIRECT:
2399 			/* Trust ND messages for now. */
2400 		case ICMP6_TIME_EXCEEDED:
2401 		default:
2402 			return (B_TRUE);
2403 		}
2404 	} else {
2405 		/*
2406 		 * If it is not ICMP, fail this request.
2407 		 */
2408 		if (ipha->ipha_protocol != IPPROTO_ICMP) {
2409 #ifdef FRAGCACHE_DEBUG
2410 			cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n",
2411 			    ipha->ipha_protocol);
2412 #endif
2413 			return (B_FALSE);
2414 		}
2415 		iph_hdr_length = IPH_HDR_LENGTH(ipha);
2416 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2417 		/*
2418 		 * It is an insecure icmp message. Check to see whether we are
2419 		 * willing to accept this one.
2420 		 */
2421 
2422 		switch (icmph->icmph_type) {
2423 		case ICMP_ECHO_REPLY:
2424 		case ICMP_TIME_STAMP_REPLY:
2425 		case ICMP_INFO_REPLY:
2426 		case ICMP_ROUTER_ADVERTISEMENT:
2427 			/*
2428 			 * We should not encourage clear replies if this
2429 			 * client expects secure. If somebody is replying
2430 			 * in clear some mailicious user watching both the
2431 			 * request and reply, can do chosen-plain-text attacks.
2432 			 * With global policy we might be just expecting secure
2433 			 * but sending out clear. We don't know what the right
2434 			 * thing is. We can't do much here as we can't control
2435 			 * the sender here. Till we are sure of what to do,
2436 			 * accept them.
2437 			 */
2438 			return (B_TRUE);
2439 		case ICMP_ECHO_REQUEST:
2440 		case ICMP_TIME_STAMP_REQUEST:
2441 		case ICMP_INFO_REQUEST:
2442 		case ICMP_ADDRESS_MASK_REQUEST:
2443 		case ICMP_ROUTER_SOLICITATION:
2444 		case ICMP_ADDRESS_MASK_REPLY:
2445 			/*
2446 			 * Don't accept this as somebody could be sending
2447 			 * us plain text to get encrypted data. If we reply,
2448 			 * it will lead to chosen plain text attack.
2449 			 */
2450 			return (B_FALSE);
2451 		case ICMP_DEST_UNREACHABLE:
2452 			switch (icmph->icmph_code) {
2453 			case ICMP_FRAGMENTATION_NEEDED:
2454 				/*
2455 				 * Be in sync with icmp_inbound, where we have
2456 				 * already set ire_max_frag.
2457 				 */
2458 #ifdef FRAGCACHE_DEBUG
2459 			cmn_err(CE_WARN, "ICMP frag needed\n");
2460 #endif
2461 				return (B_TRUE);
2462 			case ICMP_HOST_UNREACHABLE:
2463 			case ICMP_NET_UNREACHABLE:
2464 				/*
2465 				 * By accepting, we could reset a connection.
2466 				 * How do we solve the problem of some
2467 				 * intermediate router sending in-secure ICMP
2468 				 * messages ?
2469 				 */
2470 				return (B_TRUE);
2471 			case ICMP_PORT_UNREACHABLE:
2472 			case ICMP_PROTOCOL_UNREACHABLE:
2473 			default :
2474 				return (B_FALSE);
2475 			}
2476 		case ICMP_SOURCE_QUENCH:
2477 			/*
2478 			 * If this is an attack, TCP will slow start
2479 			 * because of this. Is it very harmful ?
2480 			 */
2481 			return (B_TRUE);
2482 		case ICMP_PARAM_PROBLEM:
2483 			return (B_FALSE);
2484 		case ICMP_TIME_EXCEEDED:
2485 			return (B_TRUE);
2486 		case ICMP_REDIRECT:
2487 			return (B_FALSE);
2488 		default :
2489 			return (B_FALSE);
2490 		}
2491 	}
2492 }
2493 
2494 void
2495 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
2496 {
2497 	mutex_enter(&ipl->ipl_lock);
2498 
2499 	if (ipl->ipl_ids_latched) {
2500 		/* I lost, someone else got here before me */
2501 		mutex_exit(&ipl->ipl_lock);
2502 		return;
2503 	}
2504 
2505 	if (local != NULL)
2506 		IPSID_REFHOLD(local);
2507 	if (remote != NULL)
2508 		IPSID_REFHOLD(remote);
2509 
2510 	ipl->ipl_local_cid = local;
2511 	ipl->ipl_remote_cid = remote;
2512 	ipl->ipl_ids_latched = B_TRUE;
2513 	mutex_exit(&ipl->ipl_lock);
2514 }
2515 
2516 void
2517 ipsec_latch_inbound(ipsec_latch_t *ipl, ipsec_in_t *ii)
2518 {
2519 	ipsa_t *sa;
2520 
2521 	if (!ipl->ipl_ids_latched) {
2522 		ipsid_t *local = NULL;
2523 		ipsid_t *remote = NULL;
2524 
2525 		if (!ii->ipsec_in_loopback) {
2526 			if (ii->ipsec_in_esp_sa != NULL)
2527 				sa = ii->ipsec_in_esp_sa;
2528 			else
2529 				sa = ii->ipsec_in_ah_sa;
2530 			ASSERT(sa != NULL);
2531 			local = sa->ipsa_dst_cid;
2532 			remote = sa->ipsa_src_cid;
2533 		}
2534 		ipsec_latch_ids(ipl, local, remote);
2535 	}
2536 	ipl->ipl_in_action = ii->ipsec_in_action;
2537 	IPACT_REFHOLD(ipl->ipl_in_action);
2538 }
2539 
2540 /*
2541  * Check whether the policy constraints are met either for an
2542  * inbound datagram; called from IP in numerous places.
2543  *
2544  * Note that this is not a chokepoint for inbound policy checks;
2545  * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy()
2546  */
2547 mblk_t *
2548 ipsec_check_inbound_policy(mblk_t *first_mp, conn_t *connp,
2549     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present)
2550 {
2551 	ipsec_in_t *ii;
2552 	boolean_t ret;
2553 	mblk_t *mp = mctl_present ? first_mp->b_cont : first_mp;
2554 	mblk_t *ipsec_mp = mctl_present ? first_mp : NULL;
2555 	ipsec_latch_t *ipl;
2556 	uint64_t unique_id;
2557 	ipsec_stack_t	*ipss;
2558 	ip_stack_t	*ipst;
2559 	netstack_t	*ns;
2560 
2561 	ASSERT(connp != NULL);
2562 	ipl = connp->conn_latch;
2563 	ns = connp->conn_netstack;
2564 	ipss = ns->netstack_ipsec;
2565 	ipst = ns->netstack_ip;
2566 
2567 	if (ipsec_mp == NULL) {
2568 clear:
2569 		/*
2570 		 * This is the case where the incoming datagram is
2571 		 * cleartext and we need to see whether this client
2572 		 * would like to receive such untrustworthy things from
2573 		 * the wire.
2574 		 */
2575 		ASSERT(mp != NULL);
2576 
2577 		if (ipl != NULL) {
2578 			/*
2579 			 * Policy is cached in the conn.
2580 			 */
2581 			if ((ipl->ipl_in_policy != NULL) &&
2582 			    (!ipl->ipl_in_policy->ipsp_act->ipa_allow_clear)) {
2583 				ret = ipsec_inbound_accept_clear(mp,
2584 				    ipha, ip6h);
2585 				if (ret) {
2586 					BUMP_MIB(&ipst->ips_ip_mib,
2587 					    ipsecInSucceeded);
2588 					return (first_mp);
2589 				} else {
2590 					ipsec_log_policy_failure(
2591 					    IPSEC_POLICY_MISMATCH,
2592 					    "ipsec_check_inbound_policy", ipha,
2593 					    ip6h, B_FALSE, ns);
2594 					ip_drop_packet(first_mp, B_TRUE, NULL,
2595 					    NULL,
2596 					    DROPPER(ipss, ipds_spd_got_clear),
2597 					    &ipss->ipsec_spd_dropper);
2598 					BUMP_MIB(&ipst->ips_ip_mib,
2599 					    ipsecInFailed);
2600 					return (NULL);
2601 				}
2602 			} else {
2603 				BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2604 				return (first_mp);
2605 			}
2606 		} else {
2607 			/*
2608 			 * As this is a non-hardbound connection we need
2609 			 * to look at both per-socket policy and global
2610 			 * policy. As this is cleartext, mark the mp as
2611 			 * M_DATA in case if it is an ICMP error being
2612 			 * reported before calling ipsec_check_global_policy
2613 			 * so that it does not mistake it for IPSEC_IN.
2614 			 */
2615 			uchar_t db_type = mp->b_datap->db_type;
2616 			mp->b_datap->db_type = M_DATA;
2617 			first_mp = ipsec_check_global_policy(first_mp, connp,
2618 			    ipha, ip6h, mctl_present, ns);
2619 			if (first_mp != NULL)
2620 				mp->b_datap->db_type = db_type;
2621 			return (first_mp);
2622 		}
2623 	}
2624 	/*
2625 	 * If it is inbound check whether the attached message
2626 	 * is secure or not. We have a special case for ICMP,
2627 	 * where we have a IPSEC_IN message and the attached
2628 	 * message is not secure. See icmp_inbound_error_fanout
2629 	 * for details.
2630 	 */
2631 	ASSERT(ipsec_mp != NULL);
2632 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
2633 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
2634 
2635 	if (!ii->ipsec_in_secure)
2636 		goto clear;
2637 
2638 	/*
2639 	 * mp->b_cont could be either a M_CTL message
2640 	 * for icmp errors being sent up or a M_DATA message.
2641 	 */
2642 	ASSERT(mp->b_datap->db_type == M_CTL || mp->b_datap->db_type == M_DATA);
2643 
2644 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
2645 
2646 	if (ipl == NULL) {
2647 		/*
2648 		 * We don't have policies cached in the conn
2649 		 * for this stream. So, look at the global
2650 		 * policy. It will check against conn or global
2651 		 * depending on whichever is stronger.
2652 		 */
2653 		return (ipsec_check_global_policy(first_mp, connp,
2654 		    ipha, ip6h, mctl_present, ns));
2655 	}
2656 
2657 	if (ipl->ipl_in_action != NULL) {
2658 		/* Policy is cached & latched; fast(er) path */
2659 		const char *reason;
2660 		kstat_named_t *counter;
2661 
2662 		if (ipsec_check_ipsecin_latch(ii, mp, ipl,
2663 		    ipha, ip6h, &reason, &counter, connp)) {
2664 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2665 			return (first_mp);
2666 		}
2667 		ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0,
2668 		    SL_ERROR|SL_WARN|SL_CONSOLE,
2669 		    "ipsec inbound policy mismatch: %s, packet dropped\n",
2670 		    reason);
2671 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2672 		    &ipss->ipsec_spd_dropper);
2673 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2674 		return (NULL);
2675 	} else if (ipl->ipl_in_policy == NULL) {
2676 		ipsec_weird_null_inbound_policy++;
2677 		return (first_mp);
2678 	}
2679 
2680 	unique_id = conn_to_unique(connp, mp, ipha, ip6h);
2681 	IPPOL_REFHOLD(ipl->ipl_in_policy);
2682 	first_mp = ipsec_check_ipsecin_policy(first_mp, ipl->ipl_in_policy,
2683 	    ipha, ip6h, unique_id, ns);
2684 	/*
2685 	 * NOTE: ipsecIn{Failed,Succeeeded} bumped by
2686 	 * ipsec_check_ipsecin_policy().
2687 	 */
2688 	if (first_mp != NULL)
2689 		ipsec_latch_inbound(ipl, ii);
2690 	return (first_mp);
2691 }
2692 
2693 /*
2694  * Returns:
2695  *
2696  * SELRET_NOMEM --> msgpullup() needed to gather things failed.
2697  * SELRET_BADPKT --> If we're being called after tunnel-mode fragment
2698  *		     gathering, the initial fragment is too short for
2699  *		     useful data.  Only returned if SEL_TUNNEL_FIRSTFRAG is
2700  *		     set.
2701  * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data.
2702  * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet.  Caller
2703  *		      should put this packet in a fragment-gathering queue.
2704  *		      Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY
2705  *		      is set.
2706  */
2707 static selret_t
2708 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2709     ip6_t *ip6h, uint8_t sel_flags)
2710 {
2711 	uint16_t *ports;
2712 	ushort_t hdr_len;
2713 	int outer_hdr_len = 0;	/* For ICMP tunnel-mode cases... */
2714 	mblk_t *spare_mp = NULL;
2715 	uint8_t *nexthdrp;
2716 	uint8_t nexthdr;
2717 	uint8_t *typecode;
2718 	uint8_t check_proto;
2719 	ip6_pkt_t ipp;
2720 	boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY);
2721 	boolean_t is_icmp = (sel_flags & SEL_IS_ICMP);
2722 	boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE);
2723 
2724 	ASSERT((ipha == NULL && ip6h != NULL) ||
2725 	    (ipha != NULL && ip6h == NULL));
2726 
2727 	if (ip6h != NULL) {
2728 		if (is_icmp)
2729 			outer_hdr_len = ((uint8_t *)ip6h) - mp->b_rptr;
2730 
2731 		check_proto = IPPROTO_ICMPV6;
2732 		sel->ips_isv4 = B_FALSE;
2733 		sel->ips_local_addr_v6 = ip6h->ip6_dst;
2734 		sel->ips_remote_addr_v6 = ip6h->ip6_src;
2735 
2736 		bzero(&ipp, sizeof (ipp));
2737 		(void) ip_find_hdr_v6(mp, ip6h, &ipp, NULL);
2738 
2739 		nexthdr = ip6h->ip6_nxt;
2740 		switch (nexthdr) {
2741 		case IPPROTO_HOPOPTS:
2742 		case IPPROTO_ROUTING:
2743 		case IPPROTO_DSTOPTS:
2744 		case IPPROTO_FRAGMENT:
2745 			/*
2746 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2747 			 * mblk that's contiguous to feed it
2748 			 */
2749 			if ((spare_mp = msgpullup(mp, -1)) == NULL)
2750 				return (SELRET_NOMEM);
2751 			if (!ip_hdr_length_nexthdr_v6(spare_mp,
2752 			    (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2753 			    &hdr_len, &nexthdrp)) {
2754 				/* Malformed packet - caller frees. */
2755 				ipsec_freemsg_chain(spare_mp);
2756 				return (SELRET_BADPKT);
2757 			}
2758 			nexthdr = *nexthdrp;
2759 			/* We can just extract based on hdr_len now. */
2760 			break;
2761 		default:
2762 			hdr_len = IPV6_HDR_LEN;
2763 			break;
2764 		}
2765 
2766 		if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) {
2767 			/* IPv6 Fragment */
2768 			ipsec_freemsg_chain(spare_mp);
2769 			return (SELRET_TUNFRAG);
2770 		}
2771 	} else {
2772 		if (is_icmp)
2773 			outer_hdr_len = ((uint8_t *)ipha) - mp->b_rptr;
2774 		check_proto = IPPROTO_ICMP;
2775 		sel->ips_isv4 = B_TRUE;
2776 		sel->ips_local_addr_v4 = ipha->ipha_dst;
2777 		sel->ips_remote_addr_v4 = ipha->ipha_src;
2778 		nexthdr = ipha->ipha_protocol;
2779 		hdr_len = IPH_HDR_LENGTH(ipha);
2780 
2781 		if (port_policy_present &&
2782 		    IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) &&
2783 		    !is_icmp) {
2784 			/* IPv4 Fragment */
2785 			ipsec_freemsg_chain(spare_mp);
2786 			return (SELRET_TUNFRAG);
2787 		}
2788 
2789 	}
2790 	sel->ips_protocol = nexthdr;
2791 
2792 	if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2793 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) ||
2794 	    (!port_policy_present && tunnel_mode)) {
2795 		sel->ips_remote_port = sel->ips_local_port = 0;
2796 		ipsec_freemsg_chain(spare_mp);
2797 		return (SELRET_SUCCESS);
2798 	}
2799 
2800 	if (&mp->b_rptr[hdr_len] + 4 > mp->b_wptr) {
2801 		/* If we didn't pullup a copy already, do so now. */
2802 		/*
2803 		 * XXX performance, will upper-layers frequently split TCP/UDP
2804 		 * apart from IP or options?  If so, perhaps we should revisit
2805 		 * the spare_mp strategy.
2806 		 */
2807 		ipsec_hdr_pullup_needed++;
2808 		if (spare_mp == NULL &&
2809 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2810 			return (SELRET_NOMEM);
2811 		}
2812 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2813 	} else {
2814 		ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2815 	}
2816 
2817 	if (nexthdr == check_proto) {
2818 		typecode = (uint8_t *)ports;
2819 		sel->ips_icmp_type = *typecode++;
2820 		sel->ips_icmp_code = *typecode;
2821 		sel->ips_remote_port = sel->ips_local_port = 0;
2822 	} else {
2823 		sel->ips_remote_port = *ports++;
2824 		sel->ips_local_port = *ports;
2825 	}
2826 	ipsec_freemsg_chain(spare_mp);
2827 	return (SELRET_SUCCESS);
2828 }
2829 
2830 static boolean_t
2831 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2832     ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss)
2833 {
2834 	/*
2835 	 * XXX cut&paste shared with ipsec_init_inbound_sel
2836 	 */
2837 	uint16_t *ports;
2838 	ushort_t hdr_len;
2839 	mblk_t *spare_mp = NULL;
2840 	uint8_t *nexthdrp;
2841 	uint8_t nexthdr;
2842 	uint8_t *typecode;
2843 	uint8_t check_proto;
2844 
2845 	ASSERT((ipha == NULL && ip6h != NULL) ||
2846 	    (ipha != NULL && ip6h == NULL));
2847 
2848 	if (ip6h != NULL) {
2849 		check_proto = IPPROTO_ICMPV6;
2850 		nexthdr = ip6h->ip6_nxt;
2851 		switch (nexthdr) {
2852 		case IPPROTO_HOPOPTS:
2853 		case IPPROTO_ROUTING:
2854 		case IPPROTO_DSTOPTS:
2855 		case IPPROTO_FRAGMENT:
2856 			/*
2857 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2858 			 * mblk that's contiguous to feed it
2859 			 */
2860 			spare_mp = msgpullup(mp, -1);
2861 			if (spare_mp == NULL ||
2862 			    !ip_hdr_length_nexthdr_v6(spare_mp,
2863 			    (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2864 			    &hdr_len, &nexthdrp)) {
2865 				/* Always works, even if NULL. */
2866 				ipsec_freemsg_chain(spare_mp);
2867 				ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
2868 				    DROPPER(ipss, ipds_spd_nomem),
2869 				    &ipss->ipsec_spd_dropper);
2870 				return (B_FALSE);
2871 			} else {
2872 				nexthdr = *nexthdrp;
2873 				/* We can just extract based on hdr_len now. */
2874 			}
2875 			break;
2876 		default:
2877 			hdr_len = IPV6_HDR_LEN;
2878 			break;
2879 		}
2880 	} else {
2881 		check_proto = IPPROTO_ICMP;
2882 		hdr_len = IPH_HDR_LENGTH(ipha);
2883 		nexthdr = ipha->ipha_protocol;
2884 	}
2885 
2886 	sel->ips_protocol = nexthdr;
2887 	if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2888 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2889 		sel->ips_local_port = sel->ips_remote_port = 0;
2890 		ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2891 		return (B_TRUE);
2892 	}
2893 
2894 	if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) {
2895 		/* If we didn't pullup a copy already, do so now. */
2896 		/*
2897 		 * XXX performance, will upper-layers frequently split TCP/UDP
2898 		 * apart from IP or options?  If so, perhaps we should revisit
2899 		 * the spare_mp strategy.
2900 		 *
2901 		 * XXX should this be msgpullup(mp, hdr_len+4) ???
2902 		 */
2903 		if (spare_mp == NULL &&
2904 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2905 			ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
2906 			    DROPPER(ipss, ipds_spd_nomem),
2907 			    &ipss->ipsec_spd_dropper);
2908 			return (B_FALSE);
2909 		}
2910 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2911 	} else {
2912 		ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2913 	}
2914 
2915 	if (nexthdr == check_proto) {
2916 		typecode = (uint8_t *)ports;
2917 		sel->ips_icmp_type = *typecode++;
2918 		sel->ips_icmp_code = *typecode;
2919 		sel->ips_remote_port = sel->ips_local_port = 0;
2920 	} else {
2921 		sel->ips_local_port = *ports++;
2922 		sel->ips_remote_port = *ports;
2923 	}
2924 	ipsec_freemsg_chain(spare_mp);	/* Always works, even if NULL */
2925 	return (B_TRUE);
2926 }
2927 
2928 /*
2929  * Create an ipsec_action_t based on the way an inbound packet was protected.
2930  * Used to reflect traffic back to a sender.
2931  *
2932  * We don't bother interning the action into the hash table.
2933  */
2934 ipsec_action_t *
2935 ipsec_in_to_out_action(ipsec_in_t *ii)
2936 {
2937 	ipsa_t *ah_assoc, *esp_assoc;
2938 	uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
2939 	ipsec_action_t *ap;
2940 	boolean_t unique;
2941 
2942 	ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2943 
2944 	if (ap == NULL)
2945 		return (NULL);
2946 
2947 	bzero(ap, sizeof (*ap));
2948 	HASH_NULL(ap, ipa_hash);
2949 	ap->ipa_next = NULL;
2950 	ap->ipa_refs = 1;
2951 
2952 	/*
2953 	 * Get the algorithms that were used for this packet.
2954 	 */
2955 	ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
2956 	ap->ipa_act.ipa_log = 0;
2957 	ah_assoc = ii->ipsec_in_ah_sa;
2958 	ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
2959 
2960 	esp_assoc = ii->ipsec_in_esp_sa;
2961 	ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
2962 
2963 	if (esp_assoc != NULL) {
2964 		encr_alg = esp_assoc->ipsa_encr_alg;
2965 		espa_alg = esp_assoc->ipsa_auth_alg;
2966 		ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
2967 	}
2968 	if (ah_assoc != NULL)
2969 		auth_alg = ah_assoc->ipsa_auth_alg;
2970 
2971 	ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
2972 	ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
2973 	ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
2974 	ap->ipa_act.ipa_apply.ipp_use_se = ii->ipsec_in_decaps;
2975 	unique = B_FALSE;
2976 
2977 	if (esp_assoc != NULL) {
2978 		ap->ipa_act.ipa_apply.ipp_espa_minbits =
2979 		    esp_assoc->ipsa_authkeybits;
2980 		ap->ipa_act.ipa_apply.ipp_espa_maxbits =
2981 		    esp_assoc->ipsa_authkeybits;
2982 		ap->ipa_act.ipa_apply.ipp_espe_minbits =
2983 		    esp_assoc->ipsa_encrkeybits;
2984 		ap->ipa_act.ipa_apply.ipp_espe_maxbits =
2985 		    esp_assoc->ipsa_encrkeybits;
2986 		ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
2987 		ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
2988 		if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
2989 			unique = B_TRUE;
2990 	}
2991 	if (ah_assoc != NULL) {
2992 		ap->ipa_act.ipa_apply.ipp_ah_minbits =
2993 		    ah_assoc->ipsa_authkeybits;
2994 		ap->ipa_act.ipa_apply.ipp_ah_maxbits =
2995 		    ah_assoc->ipsa_authkeybits;
2996 		ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
2997 		ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
2998 		if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
2999 			unique = B_TRUE;
3000 	}
3001 	ap->ipa_act.ipa_apply.ipp_use_unique = unique;
3002 	ap->ipa_want_unique = unique;
3003 	ap->ipa_allow_clear = B_FALSE;
3004 	ap->ipa_want_se = ii->ipsec_in_decaps;
3005 	ap->ipa_want_ah = (ah_assoc != NULL);
3006 	ap->ipa_want_esp = (esp_assoc != NULL);
3007 
3008 	ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
3009 
3010 	ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
3011 
3012 	return (ap);
3013 }
3014 
3015 
3016 /*
3017  * Compute the worst-case amount of extra space required by an action.
3018  * Note that, because of the ESP considerations listed below, this is
3019  * actually not the same as the best-case reduction in the MTU; in the
3020  * future, we should pass additional information to this function to
3021  * allow the actual MTU impact to be computed.
3022  *
3023  * AH: Revisit this if we implement algorithms with
3024  * a verifier size of more than 12 bytes.
3025  *
3026  * ESP: A more exact but more messy computation would take into
3027  * account the interaction between the cipher block size and the
3028  * effective MTU, yielding the inner payload size which reflects a
3029  * packet with *minimum* ESP padding..
3030  */
3031 int32_t
3032 ipsec_act_ovhd(const ipsec_act_t *act)
3033 {
3034 	int32_t overhead = 0;
3035 
3036 	if (act->ipa_type == IPSEC_ACT_APPLY) {
3037 		const ipsec_prot_t *ipp = &act->ipa_apply;
3038 
3039 		if (ipp->ipp_use_ah)
3040 			overhead += IPSEC_MAX_AH_HDR_SIZE;
3041 		if (ipp->ipp_use_esp) {
3042 			overhead += IPSEC_MAX_ESP_HDR_SIZE;
3043 			overhead += sizeof (struct udphdr);
3044 		}
3045 		if (ipp->ipp_use_se)
3046 			overhead += IP_SIMPLE_HDR_LENGTH;
3047 	}
3048 	return (overhead);
3049 }
3050 
3051 /*
3052  * This hash function is used only when creating policies and thus is not
3053  * performance-critical for packet flows.
3054  *
3055  * Future work: canonicalize the structures hashed with this (i.e.,
3056  * zeroize padding) so the hash works correctly.
3057  */
3058 /* ARGSUSED */
3059 static uint32_t
3060 policy_hash(int size, const void *start, const void *end)
3061 {
3062 	return (0);
3063 }
3064 
3065 
3066 /*
3067  * Hash function macros for each address type.
3068  *
3069  * The IPV6 hash function assumes that the low order 32-bits of the
3070  * address (typically containing the low order 24 bits of the mac
3071  * address) are reasonably well-distributed.  Revisit this if we run
3072  * into trouble from lots of collisions on ::1 addresses and the like
3073  * (seems unlikely).
3074  */
3075 #define	IPSEC_IPV4_HASH(a, n) ((a) % (n))
3076 #define	IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n))
3077 
3078 /*
3079  * These two hash functions should produce coordinated values
3080  * but have slightly different roles.
3081  */
3082 static uint32_t
3083 selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns)
3084 {
3085 	uint32_t valid = selkey->ipsl_valid;
3086 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3087 
3088 	if (!(valid & IPSL_REMOTE_ADDR))
3089 		return (IPSEC_SEL_NOHASH);
3090 
3091 	if (valid & IPSL_IPV4) {
3092 		if (selkey->ipsl_remote_pfxlen == 32) {
3093 			return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3094 			    ipss->ipsec_spd_hashsize));
3095 		}
3096 	}
3097 	if (valid & IPSL_IPV6) {
3098 		if (selkey->ipsl_remote_pfxlen == 128) {
3099 			return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3100 			    ipss->ipsec_spd_hashsize));
3101 		}
3102 	}
3103 	return (IPSEC_SEL_NOHASH);
3104 }
3105 
3106 static uint32_t
3107 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root)
3108 {
3109 	if (sel->ips_isv4) {
3110 		return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4,
3111 		    root->ipr_nchains));
3112 	}
3113 	return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains));
3114 }
3115 
3116 /*
3117  * Intern actions into the action hash table.
3118  */
3119 ipsec_action_t *
3120 ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns)
3121 {
3122 	int i;
3123 	uint32_t hval;
3124 	ipsec_action_t *ap;
3125 	ipsec_action_t *prev = NULL;
3126 	int32_t overhead, maxovhd = 0;
3127 	boolean_t allow_clear = B_FALSE;
3128 	boolean_t want_ah = B_FALSE;
3129 	boolean_t want_esp = B_FALSE;
3130 	boolean_t want_se = B_FALSE;
3131 	boolean_t want_unique = B_FALSE;
3132 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3133 
3134 	/*
3135 	 * TODO: should canonicalize a[] (i.e., zeroize any padding)
3136 	 * so we can use a non-trivial policy_hash function.
3137 	 */
3138 	for (i = n-1; i >= 0; i--) {
3139 		hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
3140 
3141 		HASH_LOCK(ipss->ipsec_action_hash, hval);
3142 
3143 		for (HASH_ITERATE(ap, ipa_hash,
3144 		    ipss->ipsec_action_hash, hval)) {
3145 			if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
3146 				continue;
3147 			if (ap->ipa_next != prev)
3148 				continue;
3149 			break;
3150 		}
3151 		if (ap != NULL) {
3152 			HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3153 			prev = ap;
3154 			continue;
3155 		}
3156 		/*
3157 		 * need to allocate a new one..
3158 		 */
3159 		ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
3160 		if (ap == NULL) {
3161 			HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3162 			if (prev != NULL)
3163 				ipsec_action_free(prev);
3164 			return (NULL);
3165 		}
3166 		HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval);
3167 
3168 		ap->ipa_next = prev;
3169 		ap->ipa_act = a[i];
3170 
3171 		overhead = ipsec_act_ovhd(&a[i]);
3172 		if (maxovhd < overhead)
3173 			maxovhd = overhead;
3174 
3175 		if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
3176 		    (a[i].ipa_type == IPSEC_ACT_CLEAR))
3177 			allow_clear = B_TRUE;
3178 		if (a[i].ipa_type == IPSEC_ACT_APPLY) {
3179 			const ipsec_prot_t *ipp = &a[i].ipa_apply;
3180 
3181 			ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
3182 			want_ah |= ipp->ipp_use_ah;
3183 			want_esp |= ipp->ipp_use_esp;
3184 			want_se |= ipp->ipp_use_se;
3185 			want_unique |= ipp->ipp_use_unique;
3186 		}
3187 		ap->ipa_allow_clear = allow_clear;
3188 		ap->ipa_want_ah = want_ah;
3189 		ap->ipa_want_esp = want_esp;
3190 		ap->ipa_want_se = want_se;
3191 		ap->ipa_want_unique = want_unique;
3192 		ap->ipa_refs = 1; /* from the hash table */
3193 		ap->ipa_ovhd = maxovhd;
3194 		if (prev)
3195 			prev->ipa_refs++;
3196 		prev = ap;
3197 		HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3198 	}
3199 
3200 	ap->ipa_refs++;		/* caller's reference */
3201 
3202 	return (ap);
3203 }
3204 
3205 /*
3206  * Called when refcount goes to 0, indicating that all references to this
3207  * node are gone.
3208  *
3209  * This does not unchain the action from the hash table.
3210  */
3211 void
3212 ipsec_action_free(ipsec_action_t *ap)
3213 {
3214 	for (;;) {
3215 		ipsec_action_t *np = ap->ipa_next;
3216 		ASSERT(ap->ipa_refs == 0);
3217 		ASSERT(ap->ipa_hash.hash_pp == NULL);
3218 		kmem_cache_free(ipsec_action_cache, ap);
3219 		ap = np;
3220 		/* Inlined IPACT_REFRELE -- avoid recursion */
3221 		if (ap == NULL)
3222 			break;
3223 		membar_exit();
3224 		if (atomic_add_32_nv(&(ap)->ipa_refs, -1) != 0)
3225 			break;
3226 		/* End inlined IPACT_REFRELE */
3227 	}
3228 }
3229 
3230 /*
3231  * Called when the action hash table goes away.
3232  *
3233  * The actions can be queued on an mblk with ipsec_in or
3234  * ipsec_out, hence the actions might still be around.
3235  * But we decrement ipa_refs here since we no longer have
3236  * a reference to the action from the hash table.
3237  */
3238 static void
3239 ipsec_action_free_table(ipsec_action_t *ap)
3240 {
3241 	while (ap != NULL) {
3242 		ipsec_action_t *np = ap->ipa_next;
3243 
3244 		/* FIXME: remove? */
3245 		(void) printf("ipsec_action_free_table(%p) ref %d\n",
3246 		    (void *)ap, ap->ipa_refs);
3247 		ASSERT(ap->ipa_refs > 0);
3248 		IPACT_REFRELE(ap);
3249 		ap = np;
3250 	}
3251 }
3252 
3253 /*
3254  * Need to walk all stack instances since the reclaim function
3255  * is global for all instances
3256  */
3257 /* ARGSUSED */
3258 static void
3259 ipsec_action_reclaim(void *arg)
3260 {
3261 	netstack_handle_t nh;
3262 	netstack_t *ns;
3263 
3264 	netstack_next_init(&nh);
3265 	while ((ns = netstack_next(&nh)) != NULL) {
3266 		ipsec_action_reclaim_stack(ns);
3267 		netstack_rele(ns);
3268 	}
3269 	netstack_next_fini(&nh);
3270 }
3271 
3272 /*
3273  * Periodically sweep action hash table for actions with refcount==1, and
3274  * nuke them.  We cannot do this "on demand" (i.e., from IPACT_REFRELE)
3275  * because we can't close the race between another thread finding the action
3276  * in the hash table without holding the bucket lock during IPACT_REFRELE.
3277  * Instead, we run this function sporadically to clean up after ourselves;
3278  * we also set it as the "reclaim" function for the action kmem_cache.
3279  *
3280  * Note that it may take several passes of ipsec_action_gc() to free all
3281  * "stale" actions.
3282  */
3283 static void
3284 ipsec_action_reclaim_stack(netstack_t *ns)
3285 {
3286 	int i;
3287 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3288 
3289 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
3290 		ipsec_action_t *ap, *np;
3291 
3292 		/* skip the lock if nobody home */
3293 		if (ipss->ipsec_action_hash[i].hash_head == NULL)
3294 			continue;
3295 
3296 		HASH_LOCK(ipss->ipsec_action_hash, i);
3297 		for (ap = ipss->ipsec_action_hash[i].hash_head;
3298 		    ap != NULL; ap = np) {
3299 			ASSERT(ap->ipa_refs > 0);
3300 			np = ap->ipa_hash.hash_next;
3301 			if (ap->ipa_refs > 1)
3302 				continue;
3303 			HASH_UNCHAIN(ap, ipa_hash,
3304 			    ipss->ipsec_action_hash, i);
3305 			IPACT_REFRELE(ap);
3306 		}
3307 		HASH_UNLOCK(ipss->ipsec_action_hash, i);
3308 	}
3309 }
3310 
3311 /*
3312  * Intern a selector set into the selector set hash table.
3313  * This is simpler than the actions case..
3314  */
3315 static ipsec_sel_t *
3316 ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns)
3317 {
3318 	ipsec_sel_t *sp;
3319 	uint32_t hval, bucket;
3320 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3321 
3322 	/*
3323 	 * Exactly one AF bit should be set in selkey.
3324 	 */
3325 	ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
3326 	    !(selkey->ipsl_valid & IPSL_IPV6));
3327 
3328 	hval = selkey_hash(selkey, ns);
3329 	/* Set pol_hval to uninitialized until we put it in a polhead. */
3330 	selkey->ipsl_sel_hval = hval;
3331 
3332 	bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval;
3333 
3334 	ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket));
3335 	HASH_LOCK(ipss->ipsec_sel_hash, bucket);
3336 
3337 	for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) {
3338 		if (bcmp(&sp->ipsl_key, selkey,
3339 		    offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0)
3340 			break;
3341 	}
3342 	if (sp != NULL) {
3343 		sp->ipsl_refs++;
3344 
3345 		HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3346 		return (sp);
3347 	}
3348 
3349 	sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
3350 	if (sp == NULL) {
3351 		HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3352 		return (NULL);
3353 	}
3354 
3355 	HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket);
3356 	sp->ipsl_refs = 2;	/* one for hash table, one for caller */
3357 	sp->ipsl_key = *selkey;
3358 	/* Set to uninitalized and have insertion into polhead fix things. */
3359 	if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH)
3360 		sp->ipsl_key.ipsl_pol_hval = 0;
3361 	else
3362 		sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH;
3363 
3364 	HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3365 
3366 	return (sp);
3367 }
3368 
3369 static void
3370 ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns)
3371 {
3372 	ipsec_sel_t *sp = *spp;
3373 	int hval = sp->ipsl_key.ipsl_sel_hval;
3374 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3375 
3376 	*spp = NULL;
3377 
3378 	if (hval == IPSEC_SEL_NOHASH)
3379 		hval = 0;
3380 
3381 	ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval));
3382 	HASH_LOCK(ipss->ipsec_sel_hash, hval);
3383 	if (--sp->ipsl_refs == 1) {
3384 		HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval);
3385 		sp->ipsl_refs--;
3386 		HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3387 		ASSERT(sp->ipsl_refs == 0);
3388 		kmem_cache_free(ipsec_sel_cache, sp);
3389 		/* Caller unlocks */
3390 		return;
3391 	}
3392 
3393 	HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3394 }
3395 
3396 /*
3397  * Free a policy rule which we know is no longer being referenced.
3398  */
3399 void
3400 ipsec_policy_free(ipsec_policy_t *ipp, netstack_t *ns)
3401 {
3402 	ASSERT(ipp->ipsp_refs == 0);
3403 	ASSERT(ipp->ipsp_sel != NULL);
3404 	ASSERT(ipp->ipsp_act != NULL);
3405 
3406 	ipsec_sel_rel(&ipp->ipsp_sel, ns);
3407 	IPACT_REFRELE(ipp->ipsp_act);
3408 	kmem_cache_free(ipsec_pol_cache, ipp);
3409 }
3410 
3411 /*
3412  * Construction of new policy rules; construct a policy, and add it to
3413  * the appropriate tables.
3414  */
3415 ipsec_policy_t *
3416 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a,
3417     int nacts, int prio, uint64_t *index_ptr, netstack_t *ns)
3418 {
3419 	ipsec_action_t *ap;
3420 	ipsec_sel_t *sp;
3421 	ipsec_policy_t *ipp;
3422 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3423 
3424 	if (index_ptr == NULL)
3425 		index_ptr = &ipss->ipsec_next_policy_index;
3426 
3427 	ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
3428 	ap = ipsec_act_find(a, nacts, ns);
3429 	sp = ipsec_find_sel(keys, ns);
3430 
3431 	if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
3432 		if (ap != NULL) {
3433 			IPACT_REFRELE(ap);
3434 		}
3435 		if (sp != NULL)
3436 			ipsec_sel_rel(&sp, ns);
3437 		if (ipp != NULL)
3438 			kmem_cache_free(ipsec_pol_cache, ipp);
3439 		return (NULL);
3440 	}
3441 
3442 	HASH_NULL(ipp, ipsp_hash);
3443 
3444 	ipp->ipsp_refs = 1;	/* caller's reference */
3445 	ipp->ipsp_sel = sp;
3446 	ipp->ipsp_act = ap;
3447 	ipp->ipsp_prio = prio;	/* rule priority */
3448 	ipp->ipsp_index = *index_ptr;
3449 	(*index_ptr)++;
3450 
3451 	return (ipp);
3452 }
3453 
3454 static void
3455 ipsec_update_present_flags(ipsec_stack_t *ipss)
3456 {
3457 	boolean_t hashpol;
3458 
3459 	hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0);
3460 
3461 	if (hashpol) {
3462 		ipss->ipsec_outbound_v4_policy_present = B_TRUE;
3463 		ipss->ipsec_outbound_v6_policy_present = B_TRUE;
3464 		ipss->ipsec_inbound_v4_policy_present = B_TRUE;
3465 		ipss->ipsec_inbound_v6_policy_present = B_TRUE;
3466 		return;
3467 	}
3468 
3469 	ipss->ipsec_outbound_v4_policy_present = (NULL !=
3470 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3471 	    ipr_nonhash[IPSEC_AF_V4]);
3472 	ipss->ipsec_outbound_v6_policy_present = (NULL !=
3473 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3474 	    ipr_nonhash[IPSEC_AF_V6]);
3475 	ipss->ipsec_inbound_v4_policy_present = (NULL !=
3476 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3477 	    ipr_nonhash[IPSEC_AF_V4]);
3478 	ipss->ipsec_inbound_v6_policy_present = (NULL !=
3479 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3480 	    ipr_nonhash[IPSEC_AF_V6]);
3481 }
3482 
3483 boolean_t
3484 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir,
3485 	netstack_t *ns)
3486 {
3487 	ipsec_sel_t *sp;
3488 	ipsec_policy_t *ip, *nip, *head;
3489 	int af;
3490 	ipsec_policy_root_t *pr = &php->iph_root[dir];
3491 
3492 	sp = ipsec_find_sel(keys, ns);
3493 
3494 	if (sp == NULL)
3495 		return (B_FALSE);
3496 
3497 	af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
3498 
3499 	rw_enter(&php->iph_lock, RW_WRITER);
3500 
3501 	if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) {
3502 		head = pr->ipr_nonhash[af];
3503 	} else {
3504 		head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head;
3505 	}
3506 
3507 	for (ip = head; ip != NULL; ip = nip) {
3508 		nip = ip->ipsp_hash.hash_next;
3509 		if (ip->ipsp_sel != sp) {
3510 			continue;
3511 		}
3512 
3513 		IPPOL_UNCHAIN(php, ip, ns);
3514 
3515 		php->iph_gen++;
3516 		ipsec_update_present_flags(ns->netstack_ipsec);
3517 
3518 		rw_exit(&php->iph_lock);
3519 
3520 		ipsec_sel_rel(&sp, ns);
3521 
3522 		return (B_TRUE);
3523 	}
3524 
3525 	rw_exit(&php->iph_lock);
3526 	ipsec_sel_rel(&sp, ns);
3527 	return (B_FALSE);
3528 }
3529 
3530 int
3531 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index,
3532     netstack_t *ns)
3533 {
3534 	boolean_t found = B_FALSE;
3535 	ipsec_policy_t ipkey;
3536 	ipsec_policy_t *ip;
3537 	avl_index_t where;
3538 
3539 	(void) memset(&ipkey, 0, sizeof (ipkey));
3540 	ipkey.ipsp_index = policy_index;
3541 
3542 	rw_enter(&php->iph_lock, RW_WRITER);
3543 
3544 	/*
3545 	 * We could be cleverer here about the walk.
3546 	 * but well, (k+1)*log(N) will do for now (k==number of matches,
3547 	 * N==number of table entries
3548 	 */
3549 	for (;;) {
3550 		ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid,
3551 		    (void *)&ipkey, &where);
3552 		ASSERT(ip == NULL);
3553 
3554 		ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER);
3555 
3556 		if (ip == NULL)
3557 			break;
3558 
3559 		if (ip->ipsp_index != policy_index) {
3560 			ASSERT(ip->ipsp_index > policy_index);
3561 			break;
3562 		}
3563 
3564 		IPPOL_UNCHAIN(php, ip, ns);
3565 		found = B_TRUE;
3566 	}
3567 
3568 	if (found) {
3569 		php->iph_gen++;
3570 		ipsec_update_present_flags(ns->netstack_ipsec);
3571 	}
3572 
3573 	rw_exit(&php->iph_lock);
3574 
3575 	return (found ? 0 : ENOENT);
3576 }
3577 
3578 /*
3579  * Given a constructed ipsec_policy_t policy rule, see if it can be entered
3580  * into the correct policy ruleset.  As a side-effect, it sets the hash
3581  * entries on "ipp"'s ipsp_pol_hval.
3582  *
3583  * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
3584  * duplicate policy exists with exactly the same selectors), or an icmp
3585  * rule exists with a different encryption/authentication action.
3586  */
3587 boolean_t
3588 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3589 {
3590 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3591 	int af = -1;
3592 	ipsec_policy_t *p2, *head;
3593 	uint8_t check_proto;
3594 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3595 	uint32_t	valid = selkey->ipsl_valid;
3596 
3597 	if (valid & IPSL_IPV6) {
3598 		ASSERT(!(valid & IPSL_IPV4));
3599 		af = IPSEC_AF_V6;
3600 		check_proto = IPPROTO_ICMPV6;
3601 	} else {
3602 		ASSERT(valid & IPSL_IPV4);
3603 		af = IPSEC_AF_V4;
3604 		check_proto = IPPROTO_ICMP;
3605 	}
3606 
3607 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3608 
3609 	/*
3610 	 * Double-check that we don't have any duplicate selectors here.
3611 	 * Because selectors are interned below, we need only compare pointers
3612 	 * for equality.
3613 	 */
3614 	if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) {
3615 		head = pr->ipr_nonhash[af];
3616 	} else {
3617 		selkey->ipsl_pol_hval =
3618 		    (selkey->ipsl_valid & IPSL_IPV4) ?
3619 		    IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3620 		    pr->ipr_nchains) :
3621 		    IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3622 		    pr->ipr_nchains);
3623 
3624 		head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head;
3625 	}
3626 
3627 	for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3628 		if (p2->ipsp_sel == ipp->ipsp_sel)
3629 			return (B_FALSE);
3630 	}
3631 
3632 	/*
3633 	 * If it's ICMP and not a drop or pass rule, run through the ICMP
3634 	 * rules and make sure the action is either new or the same as any
3635 	 * other actions.  We don't have to check the full chain because
3636 	 * discard and bypass will override all other actions
3637 	 */
3638 
3639 	if (valid & IPSL_PROTOCOL &&
3640 	    selkey->ipsl_proto == check_proto &&
3641 	    (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
3642 
3643 		for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3644 
3645 			if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
3646 			    p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
3647 			    (p2->ipsp_act->ipa_act.ipa_type ==
3648 			    IPSEC_ACT_APPLY)) {
3649 				return (ipsec_compare_action(p2, ipp));
3650 			}
3651 		}
3652 	}
3653 
3654 	return (B_TRUE);
3655 }
3656 
3657 /*
3658  * compare the action chains of two policies for equality
3659  * B_TRUE -> effective equality
3660  */
3661 
3662 static boolean_t
3663 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
3664 {
3665 
3666 	ipsec_action_t *act1, *act2;
3667 
3668 	/* We have a valid rule. Let's compare the actions */
3669 	if (p1->ipsp_act == p2->ipsp_act) {
3670 		/* same action. We are good */
3671 		return (B_TRUE);
3672 	}
3673 
3674 	/* we have to walk the chain */
3675 
3676 	act1 = p1->ipsp_act;
3677 	act2 = p2->ipsp_act;
3678 
3679 	while (act1 != NULL && act2 != NULL) {
3680 
3681 		/* otherwise, Are we close enough? */
3682 		if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
3683 		    act1->ipa_want_ah != act2->ipa_want_ah ||
3684 		    act1->ipa_want_esp != act2->ipa_want_esp ||
3685 		    act1->ipa_want_se != act2->ipa_want_se) {
3686 			/* Nope, we aren't */
3687 			return (B_FALSE);
3688 		}
3689 
3690 		if (act1->ipa_want_ah) {
3691 			if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
3692 			    act2->ipa_act.ipa_apply.ipp_auth_alg) {
3693 				return (B_FALSE);
3694 			}
3695 
3696 			if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
3697 			    act2->ipa_act.ipa_apply.ipp_ah_minbits ||
3698 			    act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
3699 			    act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
3700 				return (B_FALSE);
3701 			}
3702 		}
3703 
3704 		if (act1->ipa_want_esp) {
3705 			if (act1->ipa_act.ipa_apply.ipp_use_esp !=
3706 			    act2->ipa_act.ipa_apply.ipp_use_esp ||
3707 			    act1->ipa_act.ipa_apply.ipp_use_espa !=
3708 			    act2->ipa_act.ipa_apply.ipp_use_espa) {
3709 				return (B_FALSE);
3710 			}
3711 
3712 			if (act1->ipa_act.ipa_apply.ipp_use_esp) {
3713 				if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
3714 				    act2->ipa_act.ipa_apply.ipp_encr_alg) {
3715 					return (B_FALSE);
3716 				}
3717 
3718 				if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
3719 				    act2->ipa_act.ipa_apply.ipp_espe_minbits ||
3720 				    act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
3721 				    act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
3722 					return (B_FALSE);
3723 				}
3724 			}
3725 
3726 			if (act1->ipa_act.ipa_apply.ipp_use_espa) {
3727 				if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
3728 				    act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
3729 					return (B_FALSE);
3730 				}
3731 
3732 				if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
3733 				    act2->ipa_act.ipa_apply.ipp_espa_minbits ||
3734 				    act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
3735 				    act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
3736 					return (B_FALSE);
3737 				}
3738 			}
3739 
3740 		}
3741 
3742 		act1 = act1->ipa_next;
3743 		act2 = act2->ipa_next;
3744 	}
3745 
3746 	if (act1 != NULL || act2 != NULL) {
3747 		return (B_FALSE);
3748 	}
3749 
3750 	return (B_TRUE);
3751 }
3752 
3753 
3754 /*
3755  * Given a constructed ipsec_policy_t policy rule, enter it into
3756  * the correct policy ruleset.
3757  *
3758  * ipsec_check_policy() is assumed to have succeeded first (to check for
3759  * duplicates).
3760  */
3761 void
3762 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction,
3763     netstack_t *ns)
3764 {
3765 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3766 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3767 	uint32_t valid = selkey->ipsl_valid;
3768 	uint32_t hval = selkey->ipsl_pol_hval;
3769 	int af = -1;
3770 
3771 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3772 
3773 	if (valid & IPSL_IPV6) {
3774 		ASSERT(!(valid & IPSL_IPV4));
3775 		af = IPSEC_AF_V6;
3776 	} else {
3777 		ASSERT(valid & IPSL_IPV4);
3778 		af = IPSEC_AF_V4;
3779 	}
3780 
3781 	php->iph_gen++;
3782 
3783 	if (hval == IPSEC_SEL_NOHASH) {
3784 		HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]);
3785 	} else {
3786 		HASH_LOCK(pr->ipr_hash, hval);
3787 		HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval);
3788 		HASH_UNLOCK(pr->ipr_hash, hval);
3789 	}
3790 
3791 	ipsec_insert_always(&php->iph_rulebyid, ipp);
3792 
3793 	ipsec_update_present_flags(ns->netstack_ipsec);
3794 }
3795 
3796 static void
3797 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr,
3798     netstack_t *ns)
3799 {
3800 	ipsec_policy_t *ip, *nip;
3801 	int af, chain, nchain;
3802 
3803 	for (af = 0; af < IPSEC_NAF; af++) {
3804 		for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) {
3805 			nip = ip->ipsp_hash.hash_next;
3806 			IPPOL_UNCHAIN(php, ip, ns);
3807 		}
3808 		ipr->ipr_nonhash[af] = NULL;
3809 	}
3810 	nchain = ipr->ipr_nchains;
3811 
3812 	for (chain = 0; chain < nchain; chain++) {
3813 		for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL;
3814 		    ip = nip) {
3815 			nip = ip->ipsp_hash.hash_next;
3816 			IPPOL_UNCHAIN(php, ip, ns);
3817 		}
3818 		ipr->ipr_hash[chain].hash_head = NULL;
3819 	}
3820 }
3821 
3822 void
3823 ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns)
3824 {
3825 	int dir;
3826 
3827 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3828 
3829 	for (dir = 0; dir < IPSEC_NTYPES; dir++)
3830 		ipsec_ipr_flush(php, &php->iph_root[dir], ns);
3831 
3832 	ipsec_update_present_flags(ns->netstack_ipsec);
3833 }
3834 
3835 void
3836 ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns)
3837 {
3838 	int dir;
3839 
3840 	ASSERT(php->iph_refs == 0);
3841 
3842 	rw_enter(&php->iph_lock, RW_WRITER);
3843 	ipsec_polhead_flush(php, ns);
3844 	rw_exit(&php->iph_lock);
3845 	rw_destroy(&php->iph_lock);
3846 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
3847 		ipsec_policy_root_t *ipr = &php->iph_root[dir];
3848 		int chain;
3849 
3850 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
3851 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
3852 
3853 	}
3854 	ipsec_polhead_free_table(php);
3855 	kmem_free(php, sizeof (*php));
3856 }
3857 
3858 static void
3859 ipsec_ipr_init(ipsec_policy_root_t *ipr)
3860 {
3861 	int af;
3862 
3863 	ipr->ipr_nchains = 0;
3864 	ipr->ipr_hash = NULL;
3865 
3866 	for (af = 0; af < IPSEC_NAF; af++) {
3867 		ipr->ipr_nonhash[af] = NULL;
3868 	}
3869 }
3870 
3871 ipsec_policy_head_t *
3872 ipsec_polhead_create(void)
3873 {
3874 	ipsec_policy_head_t *php;
3875 
3876 	php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
3877 	if (php == NULL)
3878 		return (php);
3879 
3880 	rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
3881 	php->iph_refs = 1;
3882 	php->iph_gen = 0;
3883 
3884 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]);
3885 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]);
3886 
3887 	avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid,
3888 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
3889 
3890 	return (php);
3891 }
3892 
3893 /*
3894  * Clone the policy head into a new polhead; release one reference to the
3895  * old one and return the only reference to the new one.
3896  * If the old one had a refcount of 1, just return it.
3897  */
3898 ipsec_policy_head_t *
3899 ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns)
3900 {
3901 	ipsec_policy_head_t *nphp;
3902 
3903 	if (php == NULL)
3904 		return (ipsec_polhead_create());
3905 	else if (php->iph_refs == 1)
3906 		return (php);
3907 
3908 	nphp = ipsec_polhead_create();
3909 	if (nphp == NULL)
3910 		return (NULL);
3911 
3912 	if (ipsec_copy_polhead(php, nphp, ns) != 0) {
3913 		ipsec_polhead_free(nphp, ns);
3914 		return (NULL);
3915 	}
3916 	IPPH_REFRELE(php, ns);
3917 	return (nphp);
3918 }
3919 
3920 /*
3921  * When sending a response to a ICMP request or generating a RST
3922  * in the TCP case, the outbound packets need to go at the same level
3923  * of protection as the incoming ones i.e we associate our outbound
3924  * policy with how the packet came in. We call this after we have
3925  * accepted the incoming packet which may or may not have been in
3926  * clear and hence we are sending the reply back with the policy
3927  * matching the incoming datagram's policy.
3928  *
3929  * NOTE : This technology serves two purposes :
3930  *
3931  * 1) If we have multiple outbound policies, we send out a reply
3932  *    matching with how it came in rather than matching the outbound
3933  *    policy.
3934  *
3935  * 2) For assymetric policies, we want to make sure that incoming
3936  *    and outgoing has the same level of protection. Assymetric
3937  *    policies exist only with global policy where we may not have
3938  *    both outbound and inbound at the same time.
3939  *
3940  * NOTE2:	This function is called by cleartext cases, so it needs to be
3941  *		in IP proper.
3942  */
3943 boolean_t
3944 ipsec_in_to_out(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h)
3945 {
3946 	ipsec_in_t  *ii;
3947 	ipsec_out_t  *io;
3948 	boolean_t v4;
3949 	mblk_t *mp;
3950 	boolean_t secure, attach_if;
3951 	uint_t ifindex;
3952 	ipsec_selector_t sel;
3953 	ipsec_action_t *reflect_action = NULL;
3954 	zoneid_t zoneid;
3955 	netstack_t	*ns;
3956 
3957 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
3958 
3959 	bzero((void*)&sel, sizeof (sel));
3960 
3961 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
3962 
3963 	mp = ipsec_mp->b_cont;
3964 	ASSERT(mp != NULL);
3965 
3966 	if (ii->ipsec_in_action != NULL) {
3967 		/* transfer reference.. */
3968 		reflect_action = ii->ipsec_in_action;
3969 		ii->ipsec_in_action = NULL;
3970 	} else if (!ii->ipsec_in_loopback)
3971 		reflect_action = ipsec_in_to_out_action(ii);
3972 	secure = ii->ipsec_in_secure;
3973 	attach_if = ii->ipsec_in_attach_if;
3974 	ifindex = ii->ipsec_in_ill_index;
3975 	zoneid = ii->ipsec_in_zoneid;
3976 	ASSERT(zoneid != ALL_ZONES);
3977 	ns = ii->ipsec_in_ns;
3978 	v4 = ii->ipsec_in_v4;
3979 
3980 	ipsec_in_release_refs(ii);	/* No netstack_rele/hold needed */
3981 
3982 	/*
3983 	 * The caller is going to send the datagram out which might
3984 	 * go on the wire or delivered locally through ip_wput_local.
3985 	 *
3986 	 * 1) If it goes out on the wire, new associations will be
3987 	 *    obtained.
3988 	 * 2) If it is delivered locally, ip_wput_local will convert
3989 	 *    this IPSEC_OUT to a IPSEC_IN looking at the requests.
3990 	 */
3991 
3992 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
3993 	bzero(io, sizeof (ipsec_out_t));
3994 	io->ipsec_out_type = IPSEC_OUT;
3995 	io->ipsec_out_len = sizeof (ipsec_out_t);
3996 	io->ipsec_out_frtn.free_func = ipsec_out_free;
3997 	io->ipsec_out_frtn.free_arg = (char *)io;
3998 	io->ipsec_out_act = reflect_action;
3999 
4000 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0,
4001 	    ns->netstack_ipsec))
4002 		return (B_FALSE);
4003 
4004 	io->ipsec_out_src_port = sel.ips_local_port;
4005 	io->ipsec_out_dst_port = sel.ips_remote_port;
4006 	io->ipsec_out_proto = sel.ips_protocol;
4007 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
4008 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
4009 
4010 	/*
4011 	 * Don't use global policy for this, as we want
4012 	 * to use the same protection that was applied to the inbound packet.
4013 	 */
4014 	io->ipsec_out_use_global_policy = B_FALSE;
4015 	io->ipsec_out_proc_begin = B_FALSE;
4016 	io->ipsec_out_secure = secure;
4017 	io->ipsec_out_v4 = v4;
4018 	io->ipsec_out_attach_if = attach_if;
4019 	io->ipsec_out_ill_index = ifindex;
4020 	io->ipsec_out_zoneid = zoneid;
4021 	io->ipsec_out_ns = ns;		/* No netstack_hold */
4022 
4023 	return (B_TRUE);
4024 }
4025 
4026 mblk_t *
4027 ipsec_in_tag(mblk_t *mp, mblk_t *cont, netstack_t *ns)
4028 {
4029 	ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr;
4030 	ipsec_in_t *nii;
4031 	mblk_t *nmp;
4032 	frtn_t nfrtn;
4033 	ipsec_stack_t *ipss = ns->netstack_ipsec;
4034 
4035 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
4036 	ASSERT(ii->ipsec_in_len == sizeof (ipsec_in_t));
4037 
4038 	nmp = ipsec_in_alloc(ii->ipsec_in_v4, ns);
4039 	if (nmp == NULL) {
4040 		ip_drop_packet_chain(cont, B_FALSE, NULL, NULL,
4041 		    DROPPER(ipss, ipds_spd_nomem),
4042 		    &ipss->ipsec_spd_dropper);
4043 		return (NULL);
4044 	}
4045 
4046 	ASSERT(nmp->b_datap->db_type == M_CTL);
4047 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
4048 
4049 	/*
4050 	 * Bump refcounts.
4051 	 */
4052 	if (ii->ipsec_in_ah_sa != NULL)
4053 		IPSA_REFHOLD(ii->ipsec_in_ah_sa);
4054 	if (ii->ipsec_in_esp_sa != NULL)
4055 		IPSA_REFHOLD(ii->ipsec_in_esp_sa);
4056 	if (ii->ipsec_in_policy != NULL)
4057 		IPPH_REFHOLD(ii->ipsec_in_policy);
4058 
4059 	/*
4060 	 * Copy everything, but preserve the free routine provided by
4061 	 * ipsec_in_alloc().
4062 	 */
4063 	nii = (ipsec_in_t *)nmp->b_rptr;
4064 	nfrtn = nii->ipsec_in_frtn;
4065 	bcopy(ii, nii, sizeof (*ii));
4066 	nii->ipsec_in_frtn = nfrtn;
4067 
4068 	nmp->b_cont = cont;
4069 
4070 	return (nmp);
4071 }
4072 
4073 mblk_t *
4074 ipsec_out_tag(mblk_t *mp, mblk_t *cont, netstack_t *ns)
4075 {
4076 	ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr;
4077 	ipsec_out_t *nio;
4078 	mblk_t *nmp;
4079 	frtn_t nfrtn;
4080 	ipsec_stack_t *ipss = ns->netstack_ipsec;
4081 
4082 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
4083 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
4084 
4085 	nmp = ipsec_alloc_ipsec_out(ns);
4086 	if (nmp == NULL) {
4087 		ip_drop_packet_chain(cont, B_FALSE, NULL, NULL,
4088 		    DROPPER(ipss, ipds_spd_nomem),
4089 		    &ipss->ipsec_spd_dropper);
4090 		return (NULL);
4091 	}
4092 	ASSERT(nmp->b_datap->db_type == M_CTL);
4093 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
4094 
4095 	/*
4096 	 * Bump refcounts.
4097 	 */
4098 	if (io->ipsec_out_ah_sa != NULL)
4099 		IPSA_REFHOLD(io->ipsec_out_ah_sa);
4100 	if (io->ipsec_out_esp_sa != NULL)
4101 		IPSA_REFHOLD(io->ipsec_out_esp_sa);
4102 	if (io->ipsec_out_polhead != NULL)
4103 		IPPH_REFHOLD(io->ipsec_out_polhead);
4104 	if (io->ipsec_out_policy != NULL)
4105 		IPPOL_REFHOLD(io->ipsec_out_policy);
4106 	if (io->ipsec_out_act != NULL)
4107 		IPACT_REFHOLD(io->ipsec_out_act);
4108 	if (io->ipsec_out_latch != NULL)
4109 		IPLATCH_REFHOLD(io->ipsec_out_latch);
4110 	if (io->ipsec_out_cred != NULL)
4111 		crhold(io->ipsec_out_cred);
4112 
4113 	/*
4114 	 * Copy everything, but preserve the free routine provided by
4115 	 * ipsec_alloc_ipsec_out().
4116 	 */
4117 	nio = (ipsec_out_t *)nmp->b_rptr;
4118 	nfrtn = nio->ipsec_out_frtn;
4119 	bcopy(io, nio, sizeof (*io));
4120 	nio->ipsec_out_frtn = nfrtn;
4121 
4122 	nmp->b_cont = cont;
4123 
4124 	return (nmp);
4125 }
4126 
4127 static void
4128 ipsec_out_release_refs(ipsec_out_t *io)
4129 {
4130 	netstack_t	*ns = io->ipsec_out_ns;
4131 
4132 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
4133 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
4134 	ASSERT(io->ipsec_out_ns != NULL);
4135 
4136 	/* Note: IPSA_REFRELE is multi-line macro */
4137 	if (io->ipsec_out_ah_sa != NULL)
4138 		IPSA_REFRELE(io->ipsec_out_ah_sa);
4139 	if (io->ipsec_out_esp_sa != NULL)
4140 		IPSA_REFRELE(io->ipsec_out_esp_sa);
4141 	if (io->ipsec_out_polhead != NULL)
4142 		IPPH_REFRELE(io->ipsec_out_polhead, ns);
4143 	if (io->ipsec_out_policy != NULL)
4144 		IPPOL_REFRELE(io->ipsec_out_policy, ns);
4145 	if (io->ipsec_out_act != NULL)
4146 		IPACT_REFRELE(io->ipsec_out_act);
4147 	if (io->ipsec_out_cred != NULL) {
4148 		crfree(io->ipsec_out_cred);
4149 		io->ipsec_out_cred = NULL;
4150 	}
4151 	if (io->ipsec_out_latch) {
4152 		IPLATCH_REFRELE(io->ipsec_out_latch, ns);
4153 		io->ipsec_out_latch = NULL;
4154 	}
4155 }
4156 
4157 static void
4158 ipsec_out_free(void *arg)
4159 {
4160 	ipsec_out_t *io = (ipsec_out_t *)arg;
4161 	ipsec_out_release_refs(io);
4162 	kmem_cache_free(ipsec_info_cache, arg);
4163 }
4164 
4165 static void
4166 ipsec_in_release_refs(ipsec_in_t *ii)
4167 {
4168 	netstack_t	*ns = ii->ipsec_in_ns;
4169 
4170 	ASSERT(ii->ipsec_in_ns != NULL);
4171 
4172 	/* Note: IPSA_REFRELE is multi-line macro */
4173 	if (ii->ipsec_in_ah_sa != NULL)
4174 		IPSA_REFRELE(ii->ipsec_in_ah_sa);
4175 	if (ii->ipsec_in_esp_sa != NULL)
4176 		IPSA_REFRELE(ii->ipsec_in_esp_sa);
4177 	if (ii->ipsec_in_policy != NULL)
4178 		IPPH_REFRELE(ii->ipsec_in_policy, ns);
4179 	if (ii->ipsec_in_da != NULL) {
4180 		freeb(ii->ipsec_in_da);
4181 		ii->ipsec_in_da = NULL;
4182 	}
4183 }
4184 
4185 static void
4186 ipsec_in_free(void *arg)
4187 {
4188 	ipsec_in_t *ii = (ipsec_in_t *)arg;
4189 	ipsec_in_release_refs(ii);
4190 	kmem_cache_free(ipsec_info_cache, arg);
4191 }
4192 
4193 /*
4194  * This is called only for outbound datagrams if the datagram needs to
4195  * go out secure.  A NULL mp can be passed to get an ipsec_out. This
4196  * facility is used by ip_unbind.
4197  *
4198  * NOTE : o As the data part could be modified by ipsec_out_process etc.
4199  *	    we can't make it fast by calling a dup.
4200  */
4201 mblk_t *
4202 ipsec_alloc_ipsec_out(netstack_t *ns)
4203 {
4204 	mblk_t *ipsec_mp;
4205 	ipsec_out_t *io = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
4206 
4207 	if (io == NULL)
4208 		return (NULL);
4209 
4210 	bzero(io, sizeof (ipsec_out_t));
4211 
4212 	io->ipsec_out_type = IPSEC_OUT;
4213 	io->ipsec_out_len = sizeof (ipsec_out_t);
4214 	io->ipsec_out_frtn.free_func = ipsec_out_free;
4215 	io->ipsec_out_frtn.free_arg = (char *)io;
4216 
4217 	/*
4218 	 * Set the zoneid to ALL_ZONES which is used as an invalid value. Code
4219 	 * using ipsec_out_zoneid should assert that the zoneid has been set to
4220 	 * a sane value.
4221 	 */
4222 	io->ipsec_out_zoneid = ALL_ZONES;
4223 	io->ipsec_out_ns = ns;		/* No netstack_hold */
4224 
4225 	ipsec_mp = desballoc((uint8_t *)io, sizeof (ipsec_info_t), BPRI_HI,
4226 	    &io->ipsec_out_frtn);
4227 	if (ipsec_mp == NULL) {
4228 		ipsec_out_free(io);
4229 
4230 		return (NULL);
4231 	}
4232 	ipsec_mp->b_datap->db_type = M_CTL;
4233 	ipsec_mp->b_wptr = ipsec_mp->b_rptr + sizeof (ipsec_info_t);
4234 
4235 	return (ipsec_mp);
4236 }
4237 
4238 /*
4239  * Attach an IPSEC_OUT; use pol for policy if it is non-null.
4240  * Otherwise initialize using conn.
4241  *
4242  * If pol is non-null, we consume a reference to it.
4243  */
4244 mblk_t *
4245 ipsec_attach_ipsec_out(mblk_t **mp, conn_t *connp, ipsec_policy_t *pol,
4246     uint8_t proto, netstack_t *ns)
4247 {
4248 	mblk_t *ipsec_mp;
4249 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4250 
4251 	ASSERT((pol != NULL) || (connp != NULL));
4252 
4253 	ipsec_mp = ipsec_alloc_ipsec_out(ns);
4254 	if (ipsec_mp == NULL) {
4255 		ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_NOTE,
4256 		    "ipsec_attach_ipsec_out: Allocation failure\n");
4257 		ip_drop_packet(*mp, B_FALSE, NULL, NULL,
4258 		    DROPPER(ipss, ipds_spd_nomem),
4259 		    &ipss->ipsec_spd_dropper);
4260 		*mp = NULL;
4261 		return (NULL);
4262 	}
4263 	ipsec_mp->b_cont = *mp;
4264 	/*
4265 	 * If *mp is NULL, ipsec_init_ipsec_out() won't/should not be using it.
4266 	 */
4267 	return (ipsec_init_ipsec_out(ipsec_mp, mp, connp, pol, proto, ns));
4268 }
4269 
4270 /*
4271  * Initialize the IPSEC_OUT (ipsec_mp) using pol if it is non-null.
4272  * Otherwise initialize using conn.
4273  *
4274  * If pol is non-null, we consume a reference to it.
4275  */
4276 mblk_t *
4277 ipsec_init_ipsec_out(mblk_t *ipsec_mp, mblk_t **mp, conn_t *connp,
4278     ipsec_policy_t *pol, uint8_t proto, netstack_t *ns)
4279 {
4280 	ipsec_out_t *io;
4281 	ipsec_policy_t *p;
4282 	ipha_t *ipha;
4283 	ip6_t *ip6h;
4284 	ipsec_stack_t *ipss = ns->netstack_ipsec;
4285 
4286 	ASSERT(ipsec_mp->b_cont == *mp);
4287 
4288 	ASSERT((pol != NULL) || (connp != NULL));
4289 
4290 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4291 	ASSERT(ipsec_mp->b_wptr == (ipsec_mp->b_rptr + sizeof (ipsec_info_t)));
4292 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4293 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
4294 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
4295 	io->ipsec_out_latch = NULL;
4296 	/*
4297 	 * Set the zoneid when we have the connp.
4298 	 * Otherwise, we're called from ip_wput_attach_policy() who will take
4299 	 * care of setting the zoneid.
4300 	 */
4301 	if (connp != NULL)
4302 		io->ipsec_out_zoneid = connp->conn_zoneid;
4303 
4304 	io->ipsec_out_ns = ns;		/* No netstack_hold */
4305 
4306 	if (*mp != NULL) {
4307 		ipha = (ipha_t *)(*mp)->b_rptr;
4308 		if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
4309 			io->ipsec_out_v4 = B_TRUE;
4310 			ip6h = NULL;
4311 		} else {
4312 			io->ipsec_out_v4 = B_FALSE;
4313 			ip6h = (ip6_t *)ipha;
4314 			ipha = NULL;
4315 		}
4316 	} else {
4317 		ASSERT(connp != NULL && connp->conn_policy_cached);
4318 		ip6h = NULL;
4319 		ipha = NULL;
4320 		io->ipsec_out_v4 = !connp->conn_pkt_isv6;
4321 	}
4322 
4323 	p = NULL;
4324 
4325 	/*
4326 	 * Take latched policies over global policy.  Check here again for
4327 	 * this, in case we had conn_latch set while the packet was flying
4328 	 * around in IP.
4329 	 */
4330 	if (connp != NULL && connp->conn_latch != NULL) {
4331 		ASSERT(ns == connp->conn_netstack);
4332 		p = connp->conn_latch->ipl_out_policy;
4333 		io->ipsec_out_latch = connp->conn_latch;
4334 		IPLATCH_REFHOLD(connp->conn_latch);
4335 		if (p != NULL) {
4336 			IPPOL_REFHOLD(p);
4337 		}
4338 		io->ipsec_out_src_port = connp->conn_lport;
4339 		io->ipsec_out_dst_port = connp->conn_fport;
4340 		io->ipsec_out_icmp_type = io->ipsec_out_icmp_code = 0;
4341 		if (pol != NULL)
4342 			IPPOL_REFRELE(pol, ns);
4343 	} else if (pol != NULL) {
4344 		ipsec_selector_t sel;
4345 
4346 		bzero((void*)&sel, sizeof (sel));
4347 
4348 		p = pol;
4349 		/*
4350 		 * conn does not have the port information. Get
4351 		 * it from the packet.
4352 		 */
4353 
4354 		if (!ipsec_init_outbound_ports(&sel, *mp, ipha, ip6h, 0,
4355 		    ns->netstack_ipsec)) {
4356 			/* Callee did ip_drop_packet() on *mp. */
4357 			*mp = NULL;
4358 			freeb(ipsec_mp);
4359 			return (NULL);
4360 		}
4361 		io->ipsec_out_src_port = sel.ips_local_port;
4362 		io->ipsec_out_dst_port = sel.ips_remote_port;
4363 		io->ipsec_out_icmp_type = sel.ips_icmp_type;
4364 		io->ipsec_out_icmp_code = sel.ips_icmp_code;
4365 	}
4366 
4367 	io->ipsec_out_proto = proto;
4368 	io->ipsec_out_use_global_policy = B_TRUE;
4369 	io->ipsec_out_secure = (p != NULL);
4370 	io->ipsec_out_policy = p;
4371 
4372 	if (p == NULL) {
4373 		if (connp->conn_policy != NULL) {
4374 			io->ipsec_out_secure = B_TRUE;
4375 			ASSERT(io->ipsec_out_latch == NULL);
4376 			ASSERT(io->ipsec_out_use_global_policy == B_TRUE);
4377 			io->ipsec_out_need_policy = B_TRUE;
4378 			ASSERT(io->ipsec_out_polhead == NULL);
4379 			IPPH_REFHOLD(connp->conn_policy);
4380 			io->ipsec_out_polhead = connp->conn_policy;
4381 		}
4382 	} else {
4383 		/* Handle explicit drop action. */
4384 		if (p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_DISCARD ||
4385 		    p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_REJECT) {
4386 			ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
4387 			    DROPPER(ipss, ipds_spd_explicit),
4388 			    &ipss->ipsec_spd_dropper);
4389 			*mp = NULL;
4390 			ipsec_mp = NULL;
4391 		}
4392 	}
4393 
4394 	return (ipsec_mp);
4395 }
4396 
4397 /*
4398  * Allocate an IPSEC_IN mblk.  This will be prepended to an inbound datagram
4399  * and keep track of what-if-any IPsec processing will be applied to the
4400  * datagram.
4401  */
4402 mblk_t *
4403 ipsec_in_alloc(boolean_t isv4, netstack_t *ns)
4404 {
4405 	mblk_t *ipsec_in;
4406 	ipsec_in_t *ii = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
4407 
4408 	if (ii == NULL)
4409 		return (NULL);
4410 
4411 	bzero(ii, sizeof (ipsec_info_t));
4412 	ii->ipsec_in_type = IPSEC_IN;
4413 	ii->ipsec_in_len = sizeof (ipsec_in_t);
4414 
4415 	ii->ipsec_in_v4 = isv4;
4416 	ii->ipsec_in_secure = B_TRUE;
4417 	ii->ipsec_in_ns = ns;		/* No netstack_hold */
4418 
4419 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
4420 	ii->ipsec_in_frtn.free_arg = (char *)ii;
4421 
4422 	ipsec_in = desballoc((uint8_t *)ii, sizeof (ipsec_info_t), BPRI_HI,
4423 	    &ii->ipsec_in_frtn);
4424 	if (ipsec_in == NULL) {
4425 		ip1dbg(("ipsec_in_alloc: IPSEC_IN allocation failure.\n"));
4426 		ipsec_in_free(ii);
4427 		return (NULL);
4428 	}
4429 
4430 	ipsec_in->b_datap->db_type = M_CTL;
4431 	ipsec_in->b_wptr += sizeof (ipsec_info_t);
4432 
4433 	return (ipsec_in);
4434 }
4435 
4436 /*
4437  * This is called from ip_wput_local when a packet which needs
4438  * security is looped back, to convert the IPSEC_OUT to a IPSEC_IN
4439  * before fanout, where the policy check happens.  In most of the
4440  * cases, IPSEC processing has *never* been done.  There is one case
4441  * (ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed) where
4442  * the packet is destined for localhost, IPSEC processing has already
4443  * been done.
4444  *
4445  * Future: This could happen after SA selection has occurred for
4446  * outbound.. which will tell us who the src and dst identities are..
4447  * Then it's just a matter of splicing the ah/esp SA pointers from the
4448  * ipsec_out_t to the ipsec_in_t.
4449  */
4450 void
4451 ipsec_out_to_in(mblk_t *ipsec_mp)
4452 {
4453 	ipsec_in_t  *ii;
4454 	ipsec_out_t *io;
4455 	ipsec_policy_t *pol;
4456 	ipsec_action_t *act;
4457 	boolean_t v4, icmp_loopback;
4458 	zoneid_t zoneid;
4459 	netstack_t *ns;
4460 
4461 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4462 
4463 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4464 
4465 	v4 = io->ipsec_out_v4;
4466 	zoneid = io->ipsec_out_zoneid;
4467 	icmp_loopback = io->ipsec_out_icmp_loopback;
4468 	ns = io->ipsec_out_ns;
4469 
4470 	act = io->ipsec_out_act;
4471 	if (act == NULL) {
4472 		pol = io->ipsec_out_policy;
4473 		if (pol != NULL) {
4474 			act = pol->ipsp_act;
4475 			IPACT_REFHOLD(act);
4476 		}
4477 	}
4478 	io->ipsec_out_act = NULL;
4479 
4480 	ipsec_out_release_refs(io);	/* No netstack_rele/hold needed */
4481 
4482 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
4483 	bzero(ii, sizeof (ipsec_in_t));
4484 	ii->ipsec_in_type = IPSEC_IN;
4485 	ii->ipsec_in_len = sizeof (ipsec_in_t);
4486 	ii->ipsec_in_loopback = B_TRUE;
4487 	ii->ipsec_in_ns = ns;		/* No netstack_hold */
4488 
4489 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
4490 	ii->ipsec_in_frtn.free_arg = (char *)ii;
4491 	ii->ipsec_in_action = act;
4492 	ii->ipsec_in_zoneid = zoneid;
4493 
4494 	/*
4495 	 * In most of the cases, we can't look at the ipsec_out_XXX_sa
4496 	 * because this never went through IPSEC processing. So, look at
4497 	 * the requests and infer whether it would have gone through
4498 	 * IPSEC processing or not. Initialize the "done" fields with
4499 	 * the requests. The possible values for "done" fields are :
4500 	 *
4501 	 * 1) zero, indicates that a particular preference was never
4502 	 *    requested.
4503 	 * 2) non-zero, indicates that it could be IPSEC_PREF_REQUIRED/
4504 	 *    IPSEC_PREF_NEVER. If IPSEC_REQ_DONE is set, it means that
4505 	 *    IPSEC processing has been completed.
4506 	 */
4507 	ii->ipsec_in_secure = B_TRUE;
4508 	ii->ipsec_in_v4 = v4;
4509 	ii->ipsec_in_icmp_loopback = icmp_loopback;
4510 	ii->ipsec_in_attach_if = B_FALSE;
4511 }
4512 
4513 /*
4514  * Consults global policy to see whether this datagram should
4515  * go out secure. If so it attaches a ipsec_mp in front and
4516  * returns.
4517  */
4518 mblk_t *
4519 ip_wput_attach_policy(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire,
4520     conn_t *connp, boolean_t unspec_src, zoneid_t zoneid)
4521 {
4522 	mblk_t *mp;
4523 	ipsec_out_t *io = NULL;
4524 	ipsec_selector_t sel;
4525 	uint_t	ill_index;
4526 	boolean_t conn_dontroutex;
4527 	boolean_t conn_multicast_loopx;
4528 	boolean_t policy_present;
4529 	ip_stack_t	*ipst = ire->ire_ipst;
4530 	netstack_t	*ns = ipst->ips_netstack;
4531 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4532 
4533 	ASSERT((ipha != NULL && ip6h == NULL) ||
4534 	    (ip6h != NULL && ipha == NULL));
4535 
4536 	bzero((void*)&sel, sizeof (sel));
4537 
4538 	if (ipha != NULL)
4539 		policy_present = ipss->ipsec_outbound_v4_policy_present;
4540 	else
4541 		policy_present = ipss->ipsec_outbound_v6_policy_present;
4542 	/*
4543 	 * Fast Path to see if there is any policy.
4544 	 */
4545 	if (!policy_present) {
4546 		if (ipsec_mp->b_datap->db_type == M_CTL) {
4547 			io = (ipsec_out_t *)ipsec_mp->b_rptr;
4548 			if (!io->ipsec_out_secure) {
4549 				/*
4550 				 * If there is no global policy and ip_wput
4551 				 * or ip_wput_multicast has attached this mp
4552 				 * for multicast case, free the ipsec_mp and
4553 				 * return the original mp.
4554 				 */
4555 				mp = ipsec_mp->b_cont;
4556 				freeb(ipsec_mp);
4557 				ipsec_mp = mp;
4558 				io = NULL;
4559 			}
4560 			ASSERT(io == NULL || !io->ipsec_out_tunnel);
4561 		}
4562 		if (((io == NULL) || (io->ipsec_out_polhead == NULL)) &&
4563 		    ((connp == NULL) || (connp->conn_policy == NULL)))
4564 			return (ipsec_mp);
4565 	}
4566 
4567 	ill_index = 0;
4568 	conn_multicast_loopx = conn_dontroutex = B_FALSE;
4569 	mp = ipsec_mp;
4570 	if (ipsec_mp->b_datap->db_type == M_CTL) {
4571 		mp = ipsec_mp->b_cont;
4572 		/*
4573 		 * This is a connection where we have some per-socket
4574 		 * policy or ip_wput has attached an ipsec_mp for
4575 		 * the multicast datagram.
4576 		 */
4577 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
4578 		if (!io->ipsec_out_secure) {
4579 			/*
4580 			 * This ipsec_mp was allocated in ip_wput or
4581 			 * ip_wput_multicast so that we will know the
4582 			 * value of ill_index, conn_dontroute,
4583 			 * conn_multicast_loop in the multicast case if
4584 			 * we inherit global policy here.
4585 			 */
4586 			ill_index = io->ipsec_out_ill_index;
4587 			conn_dontroutex = io->ipsec_out_dontroute;
4588 			conn_multicast_loopx = io->ipsec_out_multicast_loop;
4589 			freeb(ipsec_mp);
4590 			ipsec_mp = mp;
4591 			io = NULL;
4592 		}
4593 		ASSERT(io == NULL || !io->ipsec_out_tunnel);
4594 	}
4595 
4596 	if (ipha != NULL) {
4597 		sel.ips_local_addr_v4 = (ipha->ipha_src != 0 ?
4598 		    ipha->ipha_src : ire->ire_src_addr);
4599 		sel.ips_remote_addr_v4 = ip_get_dst(ipha);
4600 		sel.ips_protocol = (uint8_t)ipha->ipha_protocol;
4601 		sel.ips_isv4 = B_TRUE;
4602 	} else {
4603 		ushort_t hdr_len;
4604 		uint8_t	*nexthdrp;
4605 		boolean_t is_fragment;
4606 
4607 		sel.ips_isv4 = B_FALSE;
4608 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
4609 			if (!unspec_src)
4610 				sel.ips_local_addr_v6 = ire->ire_src_addr_v6;
4611 		} else {
4612 			sel.ips_local_addr_v6 = ip6h->ip6_src;
4613 		}
4614 
4615 		sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, &is_fragment);
4616 		if (is_fragment) {
4617 			/*
4618 			 * It's a packet fragment for a packet that
4619 			 * we have already processed (since IPsec processing
4620 			 * is done before fragmentation), so we don't
4621 			 * have to do policy checks again. Fragments can
4622 			 * come back to us for processing if they have
4623 			 * been queued up due to flow control.
4624 			 */
4625 			if (ipsec_mp->b_datap->db_type == M_CTL) {
4626 				mp = ipsec_mp->b_cont;
4627 				freeb(ipsec_mp);
4628 				ipsec_mp = mp;
4629 			}
4630 			return (ipsec_mp);
4631 		}
4632 
4633 		/* IPv6 common-case. */
4634 		sel.ips_protocol = ip6h->ip6_nxt;
4635 		switch (ip6h->ip6_nxt) {
4636 		case IPPROTO_TCP:
4637 		case IPPROTO_UDP:
4638 		case IPPROTO_SCTP:
4639 		case IPPROTO_ICMPV6:
4640 			break;
4641 		default:
4642 			if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
4643 			    &hdr_len, &nexthdrp)) {
4644 				BUMP_MIB(&ipst->ips_ip6_mib,
4645 				    ipIfStatsOutDiscards);
4646 				freemsg(ipsec_mp); /* Not IPsec-related drop. */
4647 				return (NULL);
4648 			}
4649 			sel.ips_protocol = *nexthdrp;
4650 			break;
4651 		}
4652 	}
4653 
4654 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) {
4655 		if (ipha != NULL) {
4656 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
4657 		} else {
4658 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
4659 		}
4660 
4661 		/* Callee dropped the packet. */
4662 		return (NULL);
4663 	}
4664 
4665 	if (io != NULL) {
4666 		/*
4667 		 * We seem to have some local policy (we already have
4668 		 * an ipsec_out).  Look at global policy and see
4669 		 * whether we have to inherit or not.
4670 		 */
4671 		io->ipsec_out_need_policy = B_FALSE;
4672 		ipsec_mp = ipsec_apply_global_policy(ipsec_mp, connp,
4673 		    &sel, ns);
4674 		ASSERT((io->ipsec_out_policy != NULL) ||
4675 		    (io->ipsec_out_act != NULL));
4676 		ASSERT(io->ipsec_out_need_policy == B_FALSE);
4677 		return (ipsec_mp);
4678 	}
4679 	/*
4680 	 * We pass in a pointer to a pointer because mp can become
4681 	 * NULL due to allocation failures or explicit drops.  Callers
4682 	 * of this function should assume a NULL mp means the packet
4683 	 * was dropped.
4684 	 */
4685 	ipsec_mp = ipsec_attach_global_policy(&mp, connp, &sel, ns);
4686 	if (ipsec_mp == NULL)
4687 		return (mp);
4688 
4689 	/*
4690 	 * Copy the right port information.
4691 	 */
4692 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4693 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4694 
4695 	ASSERT(io->ipsec_out_need_policy == B_FALSE);
4696 	ASSERT((io->ipsec_out_policy != NULL) ||
4697 	    (io->ipsec_out_act != NULL));
4698 	io->ipsec_out_src_port = sel.ips_local_port;
4699 	io->ipsec_out_dst_port = sel.ips_remote_port;
4700 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
4701 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
4702 	/*
4703 	 * Set ill_index, conn_dontroute and conn_multicast_loop
4704 	 * for multicast datagrams.
4705 	 */
4706 	io->ipsec_out_ill_index = ill_index;
4707 	io->ipsec_out_dontroute = conn_dontroutex;
4708 	io->ipsec_out_multicast_loop = conn_multicast_loopx;
4709 
4710 	if (zoneid == ALL_ZONES)
4711 		zoneid = GLOBAL_ZONEID;
4712 	io->ipsec_out_zoneid = zoneid;
4713 	return (ipsec_mp);
4714 }
4715 
4716 /*
4717  * When appropriate, this function caches inbound and outbound policy
4718  * for this connection.
4719  *
4720  * XXX need to work out more details about per-interface policy and
4721  * caching here!
4722  *
4723  * XXX may want to split inbound and outbound caching for ill..
4724  */
4725 int
4726 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
4727 {
4728 	boolean_t global_policy_present;
4729 	netstack_t	*ns = connp->conn_netstack;
4730 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4731 
4732 	/*
4733 	 * There is no policy latching for ICMP sockets because we can't
4734 	 * decide on which policy to use until we see the packet and get
4735 	 * type/code selectors.
4736 	 */
4737 	if (connp->conn_ulp == IPPROTO_ICMP ||
4738 	    connp->conn_ulp == IPPROTO_ICMPV6) {
4739 		connp->conn_in_enforce_policy =
4740 		    connp->conn_out_enforce_policy = B_TRUE;
4741 		if (connp->conn_latch != NULL) {
4742 			IPLATCH_REFRELE(connp->conn_latch, ns);
4743 			connp->conn_latch = NULL;
4744 		}
4745 		connp->conn_flags |= IPCL_CHECK_POLICY;
4746 		return (0);
4747 	}
4748 
4749 	global_policy_present = isv4 ?
4750 	    (ipss->ipsec_outbound_v4_policy_present ||
4751 	    ipss->ipsec_inbound_v4_policy_present) :
4752 	    (ipss->ipsec_outbound_v6_policy_present ||
4753 	    ipss->ipsec_inbound_v6_policy_present);
4754 
4755 	if ((connp->conn_policy != NULL) || global_policy_present) {
4756 		ipsec_selector_t sel;
4757 		ipsec_policy_t	*p;
4758 
4759 		if (connp->conn_latch == NULL &&
4760 		    (connp->conn_latch = iplatch_create()) == NULL) {
4761 			return (ENOMEM);
4762 		}
4763 
4764 		sel.ips_protocol = connp->conn_ulp;
4765 		sel.ips_local_port = connp->conn_lport;
4766 		sel.ips_remote_port = connp->conn_fport;
4767 		sel.ips_is_icmp_inv_acq = 0;
4768 		sel.ips_isv4 = isv4;
4769 		if (isv4) {
4770 			sel.ips_local_addr_v4 = connp->conn_src;
4771 			sel.ips_remote_addr_v4 = connp->conn_rem;
4772 		} else {
4773 			sel.ips_local_addr_v6 = connp->conn_srcv6;
4774 			sel.ips_remote_addr_v6 = connp->conn_remv6;
4775 		}
4776 
4777 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel,
4778 		    ns);
4779 		if (connp->conn_latch->ipl_in_policy != NULL)
4780 			IPPOL_REFRELE(connp->conn_latch->ipl_in_policy, ns);
4781 		connp->conn_latch->ipl_in_policy = p;
4782 		connp->conn_in_enforce_policy = (p != NULL);
4783 
4784 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, &sel,
4785 		    ns);
4786 		if (connp->conn_latch->ipl_out_policy != NULL)
4787 			IPPOL_REFRELE(connp->conn_latch->ipl_out_policy, ns);
4788 		connp->conn_latch->ipl_out_policy = p;
4789 		connp->conn_out_enforce_policy = (p != NULL);
4790 
4791 		/* Clear the latched actions too, in case we're recaching. */
4792 		if (connp->conn_latch->ipl_out_action != NULL)
4793 			IPACT_REFRELE(connp->conn_latch->ipl_out_action);
4794 		if (connp->conn_latch->ipl_in_action != NULL)
4795 			IPACT_REFRELE(connp->conn_latch->ipl_in_action);
4796 	}
4797 
4798 	/*
4799 	 * We may or may not have policy for this endpoint.  We still set
4800 	 * conn_policy_cached so that inbound datagrams don't have to look
4801 	 * at global policy as policy is considered latched for these
4802 	 * endpoints.  We should not set conn_policy_cached until the conn
4803 	 * reflects the actual policy. If we *set* this before inheriting
4804 	 * the policy there is a window where the check
4805 	 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
4806 	 * on the conn (because we have not yet copied the policy on to
4807 	 * conn and hence not set conn_in_enforce_policy) nor with the
4808 	 * global policy (because conn_policy_cached is already set).
4809 	 */
4810 	connp->conn_policy_cached = B_TRUE;
4811 	if (connp->conn_in_enforce_policy)
4812 		connp->conn_flags |= IPCL_CHECK_POLICY;
4813 	return (0);
4814 }
4815 
4816 void
4817 iplatch_free(ipsec_latch_t *ipl, netstack_t *ns)
4818 {
4819 	if (ipl->ipl_out_policy != NULL)
4820 		IPPOL_REFRELE(ipl->ipl_out_policy, ns);
4821 	if (ipl->ipl_in_policy != NULL)
4822 		IPPOL_REFRELE(ipl->ipl_in_policy, ns);
4823 	if (ipl->ipl_in_action != NULL)
4824 		IPACT_REFRELE(ipl->ipl_in_action);
4825 	if (ipl->ipl_out_action != NULL)
4826 		IPACT_REFRELE(ipl->ipl_out_action);
4827 	if (ipl->ipl_local_cid != NULL)
4828 		IPSID_REFRELE(ipl->ipl_local_cid);
4829 	if (ipl->ipl_remote_cid != NULL)
4830 		IPSID_REFRELE(ipl->ipl_remote_cid);
4831 	if (ipl->ipl_local_id != NULL)
4832 		crfree(ipl->ipl_local_id);
4833 	mutex_destroy(&ipl->ipl_lock);
4834 	kmem_free(ipl, sizeof (*ipl));
4835 }
4836 
4837 ipsec_latch_t *
4838 iplatch_create()
4839 {
4840 	ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP);
4841 	if (ipl == NULL)
4842 		return (ipl);
4843 	bzero(ipl, sizeof (*ipl));
4844 	mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
4845 	ipl->ipl_refcnt = 1;
4846 	return (ipl);
4847 }
4848 
4849 /*
4850  * Hash function for ID hash table.
4851  */
4852 static uint32_t
4853 ipsid_hash(int idtype, char *idstring)
4854 {
4855 	uint32_t hval = idtype;
4856 	unsigned char c;
4857 
4858 	while ((c = *idstring++) != 0) {
4859 		hval = (hval << 4) | (hval >> 28);
4860 		hval ^= c;
4861 	}
4862 	hval = hval ^ (hval >> 16);
4863 	return (hval & (IPSID_HASHSIZE-1));
4864 }
4865 
4866 /*
4867  * Look up identity string in hash table.  Return identity object
4868  * corresponding to the name -- either preexisting, or newly allocated.
4869  *
4870  * Return NULL if we need to allocate a new one and can't get memory.
4871  */
4872 ipsid_t *
4873 ipsid_lookup(int idtype, char *idstring, netstack_t *ns)
4874 {
4875 	ipsid_t *retval;
4876 	char *nstr;
4877 	int idlen = strlen(idstring) + 1;
4878 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4879 	ipsif_t *bucket;
4880 
4881 	bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)];
4882 
4883 	mutex_enter(&bucket->ipsif_lock);
4884 
4885 	for (retval = bucket->ipsif_head; retval != NULL;
4886 	    retval = retval->ipsid_next) {
4887 		if (idtype != retval->ipsid_type)
4888 			continue;
4889 		if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
4890 			continue;
4891 
4892 		IPSID_REFHOLD(retval);
4893 		mutex_exit(&bucket->ipsif_lock);
4894 		return (retval);
4895 	}
4896 
4897 	retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
4898 	if (!retval) {
4899 		mutex_exit(&bucket->ipsif_lock);
4900 		return (NULL);
4901 	}
4902 
4903 	nstr = kmem_alloc(idlen, KM_NOSLEEP);
4904 	if (!nstr) {
4905 		mutex_exit(&bucket->ipsif_lock);
4906 		kmem_free(retval, sizeof (*retval));
4907 		return (NULL);
4908 	}
4909 
4910 	retval->ipsid_refcnt = 1;
4911 	retval->ipsid_next = bucket->ipsif_head;
4912 	if (retval->ipsid_next != NULL)
4913 		retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
4914 	retval->ipsid_ptpn = &bucket->ipsif_head;
4915 	retval->ipsid_type = idtype;
4916 	retval->ipsid_cid = nstr;
4917 	bucket->ipsif_head = retval;
4918 	bcopy(idstring, nstr, idlen);
4919 	mutex_exit(&bucket->ipsif_lock);
4920 
4921 	return (retval);
4922 }
4923 
4924 /*
4925  * Garbage collect the identity hash table.
4926  */
4927 void
4928 ipsid_gc(netstack_t *ns)
4929 {
4930 	int i, len;
4931 	ipsid_t *id, *nid;
4932 	ipsif_t *bucket;
4933 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4934 
4935 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4936 		bucket = &ipss->ipsec_ipsid_buckets[i];
4937 		mutex_enter(&bucket->ipsif_lock);
4938 		for (id = bucket->ipsif_head; id != NULL; id = nid) {
4939 			nid = id->ipsid_next;
4940 			if (id->ipsid_refcnt == 0) {
4941 				*id->ipsid_ptpn = nid;
4942 				if (nid != NULL)
4943 					nid->ipsid_ptpn = id->ipsid_ptpn;
4944 				len = strlen(id->ipsid_cid) + 1;
4945 				kmem_free(id->ipsid_cid, len);
4946 				kmem_free(id, sizeof (*id));
4947 			}
4948 		}
4949 		mutex_exit(&bucket->ipsif_lock);
4950 	}
4951 }
4952 
4953 /*
4954  * Return true if two identities are the same.
4955  */
4956 boolean_t
4957 ipsid_equal(ipsid_t *id1, ipsid_t *id2)
4958 {
4959 	if (id1 == id2)
4960 		return (B_TRUE);
4961 #ifdef DEBUG
4962 	if ((id1 == NULL) || (id2 == NULL))
4963 		return (B_FALSE);
4964 	/*
4965 	 * test that we're interning id's correctly..
4966 	 */
4967 	ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
4968 	    (id1->ipsid_type != id2->ipsid_type));
4969 #endif
4970 	return (B_FALSE);
4971 }
4972 
4973 /*
4974  * Initialize identity table; called during module initialization.
4975  */
4976 static void
4977 ipsid_init(netstack_t *ns)
4978 {
4979 	ipsif_t *bucket;
4980 	int i;
4981 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4982 
4983 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4984 		bucket = &ipss->ipsec_ipsid_buckets[i];
4985 		mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
4986 	}
4987 }
4988 
4989 /*
4990  * Free identity table (preparatory to module unload)
4991  */
4992 static void
4993 ipsid_fini(netstack_t *ns)
4994 {
4995 	ipsif_t *bucket;
4996 	int i;
4997 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4998 
4999 	for (i = 0; i < IPSID_HASHSIZE; i++) {
5000 		bucket = &ipss->ipsec_ipsid_buckets[i];
5001 		ASSERT(bucket->ipsif_head == NULL);
5002 		mutex_destroy(&bucket->ipsif_lock);
5003 	}
5004 }
5005 
5006 /*
5007  * Update the minimum and maximum supported key sizes for the
5008  * specified algorithm. Must be called while holding the algorithms lock.
5009  */
5010 void
5011 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type,
5012     netstack_t *ns)
5013 {
5014 	size_t crypto_min = (size_t)-1, crypto_max = 0;
5015 	size_t cur_crypto_min, cur_crypto_max;
5016 	boolean_t is_valid;
5017 	crypto_mechanism_info_t *mech_infos;
5018 	uint_t nmech_infos;
5019 	int crypto_rc, i;
5020 	crypto_mech_usage_t mask;
5021 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
5022 
5023 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
5024 
5025 	/*
5026 	 * Compute the min, max, and default key sizes (in number of
5027 	 * increments to the default key size in bits) as defined
5028 	 * by the algorithm mappings. This range of key sizes is used
5029 	 * for policy related operations. The effective key sizes
5030 	 * supported by the framework could be more limited than
5031 	 * those defined for an algorithm.
5032 	 */
5033 	alg->alg_default_bits = alg->alg_key_sizes[0];
5034 	if (alg->alg_increment != 0) {
5035 		/* key sizes are defined by range & increment */
5036 		alg->alg_minbits = alg->alg_key_sizes[1];
5037 		alg->alg_maxbits = alg->alg_key_sizes[2];
5038 
5039 		alg->alg_default = SADB_ALG_DEFAULT_INCR(alg->alg_minbits,
5040 		    alg->alg_increment, alg->alg_default_bits);
5041 	} else if (alg->alg_nkey_sizes == 0) {
5042 		/* no specified key size for algorithm */
5043 		alg->alg_minbits = alg->alg_maxbits = 0;
5044 	} else {
5045 		/* key sizes are defined by enumeration */
5046 		alg->alg_minbits = (uint16_t)-1;
5047 		alg->alg_maxbits = 0;
5048 
5049 		for (i = 0; i < alg->alg_nkey_sizes; i++) {
5050 			if (alg->alg_key_sizes[i] < alg->alg_minbits)
5051 				alg->alg_minbits = alg->alg_key_sizes[i];
5052 			if (alg->alg_key_sizes[i] > alg->alg_maxbits)
5053 				alg->alg_maxbits = alg->alg_key_sizes[i];
5054 		}
5055 		alg->alg_default = 0;
5056 	}
5057 
5058 	if (!(alg->alg_flags & ALG_FLAG_VALID))
5059 		return;
5060 
5061 	/*
5062 	 * Mechanisms do not apply to the NULL encryption
5063 	 * algorithm, so simply return for this case.
5064 	 */
5065 	if (alg->alg_id == SADB_EALG_NULL)
5066 		return;
5067 
5068 	/*
5069 	 * Find the min and max key sizes supported by the cryptographic
5070 	 * framework providers.
5071 	 */
5072 
5073 	/* get the key sizes supported by the framework */
5074 	crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
5075 	    &mech_infos, &nmech_infos, KM_SLEEP);
5076 	if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
5077 		alg->alg_flags &= ~ALG_FLAG_VALID;
5078 		return;
5079 	}
5080 
5081 	/* min and max key sizes supported by framework */
5082 	for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
5083 		int unit_bits;
5084 
5085 		/*
5086 		 * Ignore entries that do not support the operations
5087 		 * needed for the algorithm type.
5088 		 */
5089 		if (alg_type == IPSEC_ALG_AUTH) {
5090 			mask = CRYPTO_MECH_USAGE_MAC;
5091 		} else {
5092 			mask = CRYPTO_MECH_USAGE_ENCRYPT |
5093 			    CRYPTO_MECH_USAGE_DECRYPT;
5094 		}
5095 		if ((mech_infos[i].mi_usage & mask) != mask)
5096 			continue;
5097 
5098 		unit_bits = (mech_infos[i].mi_keysize_unit ==
5099 		    CRYPTO_KEYSIZE_UNIT_IN_BYTES)  ? 8 : 1;
5100 		/* adjust min/max supported by framework */
5101 		cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
5102 		cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
5103 
5104 		if (cur_crypto_min < crypto_min)
5105 			crypto_min = cur_crypto_min;
5106 
5107 		/*
5108 		 * CRYPTO_EFFECTIVELY_INFINITE is a special value of
5109 		 * the crypto framework which means "no upper limit".
5110 		 */
5111 		if (mech_infos[i].mi_max_key_size ==
5112 		    CRYPTO_EFFECTIVELY_INFINITE) {
5113 			crypto_max = (size_t)-1;
5114 		} else if (cur_crypto_max > crypto_max) {
5115 			crypto_max = cur_crypto_max;
5116 		}
5117 
5118 		is_valid = B_TRUE;
5119 	}
5120 
5121 	kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
5122 	    nmech_infos);
5123 
5124 	if (!is_valid) {
5125 		/* no key sizes supported by framework */
5126 		alg->alg_flags &= ~ALG_FLAG_VALID;
5127 		return;
5128 	}
5129 
5130 	/*
5131 	 * Determine min and max key sizes from alg_key_sizes[].
5132 	 * defined for the algorithm entry. Adjust key sizes based on
5133 	 * those supported by the framework.
5134 	 */
5135 	alg->alg_ef_default_bits = alg->alg_key_sizes[0];
5136 	if (alg->alg_increment != 0) {
5137 		/* supported key sizes are defined by range  & increment */
5138 		crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
5139 		crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
5140 
5141 		alg->alg_ef_minbits = MAX(alg->alg_minbits,
5142 		    (uint16_t)crypto_min);
5143 		alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
5144 		    (uint16_t)crypto_max);
5145 
5146 		/*
5147 		 * If the sizes supported by the framework are outside
5148 		 * the range of sizes defined by the algorithm mappings,
5149 		 * the algorithm cannot be used. Check for this
5150 		 * condition here.
5151 		 */
5152 		if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
5153 			alg->alg_flags &= ~ALG_FLAG_VALID;
5154 			return;
5155 		}
5156 
5157 		if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
5158 			alg->alg_ef_default_bits = alg->alg_ef_minbits;
5159 		if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
5160 			alg->alg_ef_default_bits = alg->alg_ef_maxbits;
5161 
5162 		alg->alg_ef_default = SADB_ALG_DEFAULT_INCR(alg->alg_ef_minbits,
5163 		    alg->alg_increment, alg->alg_ef_default_bits);
5164 	} else if (alg->alg_nkey_sizes == 0) {
5165 		/* no specified key size for algorithm */
5166 		alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
5167 	} else {
5168 		/* supported key sizes are defined by enumeration */
5169 		alg->alg_ef_minbits = (uint16_t)-1;
5170 		alg->alg_ef_maxbits = 0;
5171 
5172 		for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
5173 			/*
5174 			 * Ignore the current key size if it is not in the
5175 			 * range of sizes supported by the framework.
5176 			 */
5177 			if (alg->alg_key_sizes[i] < crypto_min ||
5178 			    alg->alg_key_sizes[i] > crypto_max)
5179 				continue;
5180 			if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
5181 				alg->alg_ef_minbits = alg->alg_key_sizes[i];
5182 			if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
5183 				alg->alg_ef_maxbits = alg->alg_key_sizes[i];
5184 			is_valid = B_TRUE;
5185 		}
5186 
5187 		if (!is_valid) {
5188 			alg->alg_flags &= ~ALG_FLAG_VALID;
5189 			return;
5190 		}
5191 		alg->alg_ef_default = 0;
5192 	}
5193 }
5194 
5195 /*
5196  * Free the memory used by the specified algorithm.
5197  */
5198 void
5199 ipsec_alg_free(ipsec_alginfo_t *alg)
5200 {
5201 	if (alg == NULL)
5202 		return;
5203 
5204 	if (alg->alg_key_sizes != NULL) {
5205 		kmem_free(alg->alg_key_sizes,
5206 		    (alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
5207 		alg->alg_key_sizes = NULL;
5208 	}
5209 	if (alg->alg_block_sizes != NULL) {
5210 		kmem_free(alg->alg_block_sizes,
5211 		    (alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
5212 		alg->alg_block_sizes = NULL;
5213 	}
5214 	kmem_free(alg, sizeof (*alg));
5215 }
5216 
5217 /*
5218  * Check the validity of the specified key size for an algorithm.
5219  * Returns B_TRUE if key size is valid, B_FALSE otherwise.
5220  */
5221 boolean_t
5222 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
5223 {
5224 	if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
5225 		return (B_FALSE);
5226 
5227 	if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
5228 		/*
5229 		 * If the key sizes are defined by enumeration, the new
5230 		 * key size must be equal to one of the supported values.
5231 		 */
5232 		int i;
5233 
5234 		for (i = 0; i < alg->alg_nkey_sizes; i++)
5235 			if (key_size == alg->alg_key_sizes[i])
5236 				break;
5237 		if (i == alg->alg_nkey_sizes)
5238 			return (B_FALSE);
5239 	}
5240 
5241 	return (B_TRUE);
5242 }
5243 
5244 /*
5245  * Callback function invoked by the crypto framework when a provider
5246  * registers or unregisters. This callback updates the algorithms
5247  * tables when a crypto algorithm is no longer available or becomes
5248  * available, and triggers the freeing/creation of context templates
5249  * associated with existing SAs, if needed.
5250  *
5251  * Need to walk all stack instances since the callback is global
5252  * for all instances
5253  */
5254 void
5255 ipsec_prov_update_callback(uint32_t event, void *event_arg)
5256 {
5257 	netstack_handle_t nh;
5258 	netstack_t *ns;
5259 
5260 	netstack_next_init(&nh);
5261 	while ((ns = netstack_next(&nh)) != NULL) {
5262 		ipsec_prov_update_callback_stack(event, event_arg, ns);
5263 		netstack_rele(ns);
5264 	}
5265 	netstack_next_fini(&nh);
5266 }
5267 
5268 static void
5269 ipsec_prov_update_callback_stack(uint32_t event, void *event_arg,
5270     netstack_t *ns)
5271 {
5272 	crypto_notify_event_change_t *prov_change =
5273 	    (crypto_notify_event_change_t *)event_arg;
5274 	uint_t algidx, algid, algtype, mech_count, mech_idx;
5275 	ipsec_alginfo_t *alg;
5276 	ipsec_alginfo_t oalg;
5277 	crypto_mech_name_t *mechs;
5278 	boolean_t alg_changed = B_FALSE;
5279 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
5280 
5281 	/* ignore events for which we didn't register */
5282 	if (event != CRYPTO_EVENT_MECHS_CHANGED) {
5283 		ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
5284 		    " received from crypto framework\n", event));
5285 		return;
5286 	}
5287 
5288 	mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
5289 	if (mechs == NULL)
5290 		return;
5291 
5292 	/*
5293 	 * Walk the list of currently defined IPsec algorithm. Update
5294 	 * the algorithm valid flag and trigger an update of the
5295 	 * SAs that depend on that algorithm.
5296 	 */
5297 	mutex_enter(&ipss->ipsec_alg_lock);
5298 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
5299 		for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype];
5300 		    algidx++) {
5301 
5302 			algid = ipss->ipsec_sortlist[algtype][algidx];
5303 			alg = ipss->ipsec_alglists[algtype][algid];
5304 			ASSERT(alg != NULL);
5305 
5306 			/*
5307 			 * Skip the algorithms which do not map to the
5308 			 * crypto framework provider being added or removed.
5309 			 */
5310 			if (strncmp(alg->alg_mech_name,
5311 			    prov_change->ec_mech_name,
5312 			    CRYPTO_MAX_MECH_NAME) != 0)
5313 				continue;
5314 
5315 			/*
5316 			 * Determine if the mechanism is valid. If it
5317 			 * is not, mark the algorithm as being invalid. If
5318 			 * it is, mark the algorithm as being valid.
5319 			 */
5320 			for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
5321 				if (strncmp(alg->alg_mech_name,
5322 				    mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
5323 					break;
5324 			if (mech_idx == mech_count &&
5325 			    alg->alg_flags & ALG_FLAG_VALID) {
5326 				alg->alg_flags &= ~ALG_FLAG_VALID;
5327 				alg_changed = B_TRUE;
5328 			} else if (mech_idx < mech_count &&
5329 			    !(alg->alg_flags & ALG_FLAG_VALID)) {
5330 				alg->alg_flags |= ALG_FLAG_VALID;
5331 				alg_changed = B_TRUE;
5332 			}
5333 
5334 			/*
5335 			 * Update the supported key sizes, regardless
5336 			 * of whether a crypto provider was added or
5337 			 * removed.
5338 			 */
5339 			oalg = *alg;
5340 			ipsec_alg_fix_min_max(alg, algtype, ns);
5341 			if (!alg_changed &&
5342 			    alg->alg_ef_minbits != oalg.alg_ef_minbits ||
5343 			    alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
5344 			    alg->alg_ef_default != oalg.alg_ef_default ||
5345 			    alg->alg_ef_default_bits !=
5346 			    oalg.alg_ef_default_bits)
5347 				alg_changed = B_TRUE;
5348 
5349 			/*
5350 			 * Update the affected SAs if a software provider is
5351 			 * being added or removed.
5352 			 */
5353 			if (prov_change->ec_provider_type ==
5354 			    CRYPTO_SW_PROVIDER)
5355 				sadb_alg_update(algtype, alg->alg_id,
5356 				    prov_change->ec_change ==
5357 				    CRYPTO_MECH_ADDED, ns);
5358 		}
5359 	}
5360 	mutex_exit(&ipss->ipsec_alg_lock);
5361 	crypto_free_mech_list(mechs, mech_count);
5362 
5363 	if (alg_changed) {
5364 		/*
5365 		 * An algorithm has changed, i.e. it became valid or
5366 		 * invalid, or its support key sizes have changed.
5367 		 * Notify ipsecah and ipsecesp of this change so
5368 		 * that they can send a SADB_REGISTER to their consumers.
5369 		 */
5370 		ipsecah_algs_changed(ns);
5371 		ipsecesp_algs_changed(ns);
5372 	}
5373 }
5374 
5375 /*
5376  * Registers with the crypto framework to be notified of crypto
5377  * providers changes. Used to update the algorithm tables and
5378  * to free or create context templates if needed. Invoked after IPsec
5379  * is loaded successfully.
5380  *
5381  * This is called separately for each IP instance, so we ensure we only
5382  * register once.
5383  */
5384 void
5385 ipsec_register_prov_update(void)
5386 {
5387 	if (prov_update_handle != NULL)
5388 		return;
5389 
5390 	prov_update_handle = crypto_notify_events(
5391 	    ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED);
5392 }
5393 
5394 /*
5395  * Unregisters from the framework to be notified of crypto providers
5396  * changes. Called from ipsec_policy_g_destroy().
5397  */
5398 static void
5399 ipsec_unregister_prov_update(void)
5400 {
5401 	if (prov_update_handle != NULL)
5402 		crypto_unnotify_events(prov_update_handle);
5403 }
5404 
5405 /*
5406  * Tunnel-mode support routines.
5407  */
5408 
5409 /*
5410  * Returns an mblk chain suitable for putnext() if policies match and IPsec
5411  * SAs are available.  If there's no per-tunnel policy, or a match comes back
5412  * with no match, then still return the packet and have global policy take
5413  * a crack at it in IP.
5414  *
5415  * Remember -> we can be forwarding packets.  Keep that in mind w.r.t.
5416  * inner-packet contents.
5417  */
5418 mblk_t *
5419 ipsec_tun_outbound(mblk_t *mp, tun_t *atp, ipha_t *inner_ipv4,
5420     ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len,
5421     netstack_t *ns)
5422 {
5423 	ipsec_tun_pol_t *itp = atp->tun_itp;
5424 	ipsec_policy_head_t *polhead;
5425 	ipsec_selector_t sel;
5426 	mblk_t *ipsec_mp, *ipsec_mp_head, *nmp;
5427 	mblk_t *spare_mp = NULL;
5428 	ipsec_out_t *io;
5429 	boolean_t is_fragment;
5430 	ipsec_policy_t *pol;
5431 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5432 
5433 	ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL ||
5434 	    outer_ipv4 != NULL && outer_ipv6 == NULL);
5435 	/* We take care of inners in a bit. */
5436 
5437 	/* No policy on this tunnel - let global policy have at it. */
5438 	if (itp == NULL || !(itp->itp_flags & ITPF_P_ACTIVE))
5439 		return (mp);
5440 	polhead = itp->itp_policy;
5441 
5442 	bzero(&sel, sizeof (sel));
5443 	if (inner_ipv4 != NULL) {
5444 		ASSERT(inner_ipv6 == NULL);
5445 		sel.ips_isv4 = B_TRUE;
5446 		sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5447 		sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5448 		sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol;
5449 		is_fragment =
5450 		    IS_V4_FRAGMENT(inner_ipv4->ipha_fragment_offset_and_flags);
5451 	} else {
5452 		ASSERT(inner_ipv6 != NULL);
5453 		sel.ips_isv4 = B_FALSE;
5454 		sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5455 		/* Use ip_get_dst_v6() just for the fragment bit. */
5456 		sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6,
5457 		    &is_fragment);
5458 		/*
5459 		 * Reset, because we don't care about routing-header dests
5460 		 * in the forwarding/tunnel path.
5461 		 */
5462 		sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5463 	}
5464 
5465 	if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) {
5466 		if (is_fragment) {
5467 			ipha_t *oiph;
5468 			ipha_t *iph = NULL;
5469 			ip6_t *ip6h = NULL;
5470 			int hdr_len;
5471 			uint16_t ip6_hdr_length;
5472 			uint8_t v6_proto;
5473 			uint8_t *v6_proto_p;
5474 
5475 			/*
5476 			 * We have a fragment we need to track!
5477 			 */
5478 			mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp,
5479 			    outer_hdr_len, ipss);
5480 			if (mp == NULL)
5481 				return (NULL);
5482 
5483 			/*
5484 			 * If we get here, we have a full
5485 			 * fragment chain
5486 			 */
5487 
5488 			oiph = (ipha_t *)mp->b_rptr;
5489 			if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
5490 				hdr_len = ((outer_hdr_len != 0) ?
5491 				    IPH_HDR_LENGTH(oiph) : 0);
5492 				iph = (ipha_t *)(mp->b_rptr + hdr_len);
5493 			} else {
5494 				ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
5495 				if ((spare_mp = msgpullup(mp, -1)) == NULL) {
5496 					ip_drop_packet_chain(mp, B_FALSE,
5497 					    NULL, NULL,
5498 					    DROPPER(ipss, ipds_spd_nomem),
5499 					    &ipss->ipsec_spd_dropper);
5500 				}
5501 				ip6h = (ip6_t *)spare_mp->b_rptr;
5502 				(void) ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
5503 				    &ip6_hdr_length, &v6_proto_p);
5504 				hdr_len = ip6_hdr_length;
5505 			}
5506 			outer_hdr_len = hdr_len;
5507 
5508 			if (sel.ips_isv4) {
5509 				if (iph == NULL) {
5510 					/* Was v6 outer */
5511 					iph = (ipha_t *)(mp->b_rptr + hdr_len);
5512 				}
5513 				inner_ipv4 = iph;
5514 				sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5515 				sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5516 				sel.ips_protocol =
5517 				    (uint8_t)inner_ipv4->ipha_protocol;
5518 			} else {
5519 				if ((spare_mp == NULL) &&
5520 				    ((spare_mp = msgpullup(mp, -1)) == NULL)) {
5521 					ip_drop_packet_chain(mp, B_FALSE,
5522 					    NULL, NULL,
5523 					    DROPPER(ipss, ipds_spd_nomem),
5524 					    &ipss->ipsec_spd_dropper);
5525 				}
5526 				inner_ipv6 = (ip6_t *)(spare_mp->b_rptr +
5527 				    hdr_len);
5528 				sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5529 				sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5530 				(void) ip_hdr_length_nexthdr_v6(spare_mp,
5531 				    inner_ipv6, &ip6_hdr_length,
5532 				    &v6_proto_p);
5533 				v6_proto = *v6_proto_p;
5534 				sel.ips_protocol = v6_proto;
5535 #ifdef FRAGCACHE_DEBUG
5536 				cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n",
5537 				    sel.ips_protocol);
5538 #endif
5539 			}
5540 			/* Ports are extracted below */
5541 		}
5542 
5543 		/* Get ports... */
5544 		if (spare_mp != NULL) {
5545 			if (!ipsec_init_outbound_ports(&sel, spare_mp,
5546 			    inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
5547 				/*
5548 				 * callee did ip_drop_packet_chain() on
5549 				 * spare_mp
5550 				 */
5551 				ipsec_freemsg_chain(mp);
5552 				return (NULL);
5553 			}
5554 		} else {
5555 			if (!ipsec_init_outbound_ports(&sel, mp,
5556 			    inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
5557 				/* callee did ip_drop_packet_chain() on mp. */
5558 				return (NULL);
5559 			}
5560 		}
5561 #ifdef FRAGCACHE_DEBUG
5562 		if (inner_ipv4 != NULL)
5563 			cmn_err(CE_WARN,
5564 			    "(v4) sel.ips_protocol = %d, "
5565 			    "sel.ips_local_port = %d, "
5566 			    "sel.ips_remote_port = %d\n",
5567 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5568 			    ntohs(sel.ips_remote_port));
5569 		if (inner_ipv6 != NULL)
5570 			cmn_err(CE_WARN,
5571 			    "(v6) sel.ips_protocol = %d, "
5572 			    "sel.ips_local_port = %d, "
5573 			    "sel.ips_remote_port = %d\n",
5574 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5575 			    ntohs(sel.ips_remote_port));
5576 #endif
5577 		/* Success so far - done with spare_mp */
5578 		ipsec_freemsg_chain(spare_mp);
5579 	}
5580 	rw_enter(&polhead->iph_lock, RW_READER);
5581 	pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND,
5582 	    &sel, ns);
5583 	rw_exit(&polhead->iph_lock);
5584 	if (pol == NULL) {
5585 		/*
5586 		 * No matching policy on this tunnel, drop the packet.
5587 		 *
5588 		 * NOTE:  Tunnel-mode tunnels are different from the
5589 		 * IP global transport mode policy head.  For a tunnel-mode
5590 		 * tunnel, we drop the packet in lieu of passing it
5591 		 * along accepted the way a global-policy miss would.
5592 		 *
5593 		 * NOTE2:  "negotiate transport" tunnels should match ALL
5594 		 * inbound packets, but we do not uncomment the ASSERT()
5595 		 * below because if/when we open PF_POLICY, a user can
5596 		 * shoot him/her-self in the foot with a 0 priority.
5597 		 */
5598 
5599 		/* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */
5600 #ifdef FRAGCACHE_DEBUG
5601 		cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel "
5602 		    "per-port policy\n");
5603 #endif
5604 		ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
5605 		    DROPPER(ipss, ipds_spd_explicit),
5606 		    &ipss->ipsec_spd_dropper);
5607 		return (NULL);
5608 	}
5609 
5610 #ifdef FRAGCACHE_DEBUG
5611 	cmn_err(CE_WARN, "Having matching tunnel per-port policy\n");
5612 #endif
5613 
5614 	/* Construct an IPSEC_OUT message. */
5615 	ipsec_mp = ipsec_mp_head = ipsec_alloc_ipsec_out(ns);
5616 	if (ipsec_mp == NULL) {
5617 		IPPOL_REFRELE(pol, ns);
5618 		ip_drop_packet(mp, B_FALSE, NULL, NULL,
5619 		    DROPPER(ipss, ipds_spd_nomem),
5620 		    &ipss->ipsec_spd_dropper);
5621 		return (NULL);
5622 	}
5623 	ipsec_mp->b_cont = mp;
5624 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
5625 	IPPH_REFHOLD(polhead);
5626 	/*
5627 	 * NOTE: free() function of ipsec_out mblk will release polhead and
5628 	 * pol references.
5629 	 */
5630 	io->ipsec_out_polhead = polhead;
5631 	io->ipsec_out_policy = pol;
5632 	io->ipsec_out_zoneid = atp->tun_zoneid;
5633 	io->ipsec_out_v4 = (outer_ipv4 != NULL);
5634 	io->ipsec_out_secure = B_TRUE;
5635 
5636 	if (!(itp->itp_flags & ITPF_P_TUNNEL)) {
5637 		/* Set up transport mode for tunnelled packets. */
5638 		io->ipsec_out_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP :
5639 		    IPPROTO_IPV6;
5640 		return (ipsec_mp);
5641 	}
5642 
5643 	/* Fill in tunnel-mode goodies here. */
5644 	io->ipsec_out_tunnel = B_TRUE;
5645 	/* XXX Do I need to fill in all of the goodies here? */
5646 	if (inner_ipv4) {
5647 		io->ipsec_out_inaf = AF_INET;
5648 		io->ipsec_out_insrc[0] =
5649 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4;
5650 		io->ipsec_out_indst[0] =
5651 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4;
5652 	} else {
5653 		io->ipsec_out_inaf = AF_INET6;
5654 		io->ipsec_out_insrc[0] =
5655 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0];
5656 		io->ipsec_out_insrc[1] =
5657 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1];
5658 		io->ipsec_out_insrc[2] =
5659 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2];
5660 		io->ipsec_out_insrc[3] =
5661 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3];
5662 		io->ipsec_out_indst[0] =
5663 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0];
5664 		io->ipsec_out_indst[1] =
5665 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1];
5666 		io->ipsec_out_indst[2] =
5667 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2];
5668 		io->ipsec_out_indst[3] =
5669 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3];
5670 	}
5671 	io->ipsec_out_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen;
5672 	io->ipsec_out_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen;
5673 	/* NOTE:  These are used for transport mode too. */
5674 	io->ipsec_out_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport;
5675 	io->ipsec_out_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport;
5676 	io->ipsec_out_proto = pol->ipsp_sel->ipsl_key.ipsl_proto;
5677 
5678 	/*
5679 	 * The mp pointer still valid
5680 	 * Add ipsec_out to each fragment.
5681 	 * The fragment head already has one
5682 	 */
5683 	nmp = mp->b_next;
5684 	mp->b_next = NULL;
5685 	mp = nmp;
5686 	ASSERT(ipsec_mp != NULL);
5687 	while (mp != NULL) {
5688 		nmp = mp->b_next;
5689 		ipsec_mp->b_next = ipsec_out_tag(ipsec_mp_head, mp, ns);
5690 		if (ipsec_mp->b_next == NULL) {
5691 			ip_drop_packet_chain(ipsec_mp_head, B_FALSE, NULL, NULL,
5692 			    DROPPER(ipss, ipds_spd_nomem),
5693 			    &ipss->ipsec_spd_dropper);
5694 			ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
5695 			    DROPPER(ipss, ipds_spd_nomem),
5696 			    &ipss->ipsec_spd_dropper);
5697 			return (NULL);
5698 		}
5699 		ipsec_mp = ipsec_mp->b_next;
5700 		mp->b_next = NULL;
5701 		mp = nmp;
5702 	}
5703 	return (ipsec_mp_head);
5704 }
5705 
5706 /*
5707  * NOTE: The following releases pol's reference and
5708  * calls ip_drop_packet() for me on NULL returns.
5709  */
5710 mblk_t *
5711 ipsec_check_ipsecin_policy_reasm(mblk_t *ipsec_mp, ipsec_policy_t *pol,
5712     ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns)
5713 {
5714 	/* Assume ipsec_mp is a chain of b_next-linked IPSEC_IN M_CTLs. */
5715 	mblk_t *data_chain = NULL, *data_tail = NULL;
5716 	mblk_t *ii_next;
5717 
5718 	while (ipsec_mp != NULL) {
5719 		ii_next = ipsec_mp->b_next;
5720 		ipsec_mp->b_next = NULL;  /* No tripping asserts. */
5721 
5722 		/*
5723 		 * Need IPPOL_REFHOLD(pol) for extras because
5724 		 * ipsecin_policy does the refrele.
5725 		 */
5726 		IPPOL_REFHOLD(pol);
5727 
5728 		if (ipsec_check_ipsecin_policy(ipsec_mp, pol, inner_ipv4,
5729 		    inner_ipv6, pkt_unique, ns) != NULL) {
5730 			if (data_tail == NULL) {
5731 				/* First one */
5732 				data_chain = data_tail = ipsec_mp->b_cont;
5733 			} else {
5734 				data_tail->b_next = ipsec_mp->b_cont;
5735 				data_tail = data_tail->b_next;
5736 			}
5737 			freeb(ipsec_mp);
5738 		} else {
5739 			/*
5740 			 * ipsec_check_ipsecin_policy() freed ipsec_mp
5741 			 * already.   Need to get rid of any extra pol
5742 			 * references, and any remaining bits as well.
5743 			 */
5744 			IPPOL_REFRELE(pol, ns);
5745 			ipsec_freemsg_chain(data_chain);
5746 			ipsec_freemsg_chain(ii_next);	/* ipdrop stats? */
5747 			return (NULL);
5748 		}
5749 		ipsec_mp = ii_next;
5750 	}
5751 	/*
5752 	 * One last release because either the loop bumped it up, or we never
5753 	 * called ipsec_check_ipsecin_policy().
5754 	 */
5755 	IPPOL_REFRELE(pol, ns);
5756 
5757 	/* data_chain is ready for return to tun module. */
5758 	return (data_chain);
5759 }
5760 
5761 
5762 /*
5763  * Returns B_TRUE if the inbound packet passed an IPsec policy check.  Returns
5764  * B_FALSE if it failed or if it is a fragment needing its friends before a
5765  * policy check can be performed.
5766  *
5767  * Expects a non-NULL *data_mp, an optional ipsec_mp, and a non-NULL polhead.
5768  * data_mp may be reassigned with a b_next chain of packets if fragments
5769  * neeeded to be collected for a proper policy check.
5770  *
5771  * Always frees ipsec_mp, but only frees data_mp if returns B_FALSE.  This
5772  * function calls ip_drop_packet() on data_mp if need be.
5773  *
5774  * NOTE:  outer_hdr_len is signed.  If it's a negative value, the caller
5775  * is inspecting an ICMP packet.
5776  */
5777 boolean_t
5778 ipsec_tun_inbound(mblk_t *ipsec_mp, mblk_t **data_mp, ipsec_tun_pol_t *itp,
5779     ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4,
5780     ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns)
5781 {
5782 	ipsec_policy_head_t *polhead;
5783 	ipsec_selector_t sel;
5784 	mblk_t *message = (ipsec_mp == NULL) ? *data_mp : ipsec_mp;
5785 	ipsec_policy_t *pol;
5786 	uint16_t tmpport;
5787 	selret_t rc;
5788 	boolean_t retval, port_policy_present, is_icmp, global_present;
5789 	in6_addr_t tmpaddr;
5790 	ipaddr_t tmp4;
5791 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5792 	uint8_t flags, *holder, *outer_hdr;
5793 
5794 	sel.ips_is_icmp_inv_acq = 0;
5795 
5796 	if (outer_ipv4 != NULL) {
5797 		ASSERT(outer_ipv6 == NULL);
5798 		outer_hdr = (uint8_t *)outer_ipv4;
5799 		global_present = ipss->ipsec_inbound_v4_policy_present;
5800 	} else {
5801 		outer_hdr = (uint8_t *)outer_ipv6;
5802 		global_present = ipss->ipsec_inbound_v6_policy_present;
5803 	}
5804 	ASSERT(outer_hdr != NULL);
5805 
5806 	ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL ||
5807 	    inner_ipv4 == NULL && inner_ipv6 != NULL);
5808 	ASSERT(message == *data_mp || message->b_cont == *data_mp);
5809 
5810 	if (outer_hdr_len < 0) {
5811 		outer_hdr_len = (-outer_hdr_len);
5812 		is_icmp = B_TRUE;
5813 	} else {
5814 		is_icmp = B_FALSE;
5815 	}
5816 
5817 	if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) {
5818 		polhead = itp->itp_policy;
5819 		/*
5820 		 * We need to perform full Tunnel-Mode enforcement,
5821 		 * and we need to have inner-header data for such enforcement.
5822 		 *
5823 		 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound
5824 		 * and on return.
5825 		 */
5826 
5827 		port_policy_present = ((itp->itp_flags &
5828 		    ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE);
5829 		flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) |
5830 		    (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE);
5831 
5832 		rc = ipsec_init_inbound_sel(&sel, *data_mp, inner_ipv4,
5833 		    inner_ipv6, flags);
5834 
5835 		switch (rc) {
5836 		case SELRET_NOMEM:
5837 			ip_drop_packet(message, B_TRUE, NULL, NULL,
5838 			    DROPPER(ipss, ipds_spd_nomem),
5839 			    &ipss->ipsec_spd_dropper);
5840 			return (B_FALSE);
5841 		case SELRET_TUNFRAG:
5842 			/*
5843 			 * At this point, if we're cleartext, we don't want
5844 			 * to go there.
5845 			 */
5846 			if (ipsec_mp == NULL) {
5847 				ip_drop_packet(*data_mp, B_TRUE, NULL, NULL,
5848 				    DROPPER(ipss, ipds_spd_got_clear),
5849 				    &ipss->ipsec_spd_dropper);
5850 				*data_mp = NULL;
5851 				return (B_FALSE);
5852 			}
5853 			ASSERT(((ipsec_in_t *)ipsec_mp->b_rptr)->
5854 			    ipsec_in_secure);
5855 			message = ipsec_fragcache_add(&itp->itp_fragcache,
5856 			    ipsec_mp, *data_mp, outer_hdr_len, ipss);
5857 
5858 			if (message == NULL) {
5859 				/*
5860 				 * Data is cached, fragment chain is not
5861 				 * complete.  I consume ipsec_mp and data_mp
5862 				 */
5863 				return (B_FALSE);
5864 			}
5865 
5866 			/*
5867 			 * If we get here, we have a full fragment chain.
5868 			 * Reacquire headers and selectors from first fragment.
5869 			 */
5870 			if (inner_ipv4 != NULL) {
5871 				inner_ipv4 = (ipha_t *)message->b_cont->b_rptr;
5872 				ASSERT(message->b_cont->b_wptr -
5873 				    message->b_cont->b_rptr > sizeof (ipha_t));
5874 			} else {
5875 				inner_ipv6 = (ip6_t *)message->b_cont->b_rptr;
5876 				ASSERT(message->b_cont->b_wptr -
5877 				    message->b_cont->b_rptr > sizeof (ip6_t));
5878 			}
5879 			/* Use SEL_NONE so we always get ports! */
5880 			rc = ipsec_init_inbound_sel(&sel, message->b_cont,
5881 			    inner_ipv4, inner_ipv6, SEL_NONE);
5882 			switch (rc) {
5883 			case SELRET_SUCCESS:
5884 				/*
5885 				 * Get to same place as first caller's
5886 				 * SELRET_SUCCESS case.
5887 				 */
5888 				break;
5889 			case SELRET_NOMEM:
5890 				ip_drop_packet_chain(message, B_TRUE,
5891 				    NULL, NULL,
5892 				    DROPPER(ipss, ipds_spd_nomem),
5893 				    &ipss->ipsec_spd_dropper);
5894 				return (B_FALSE);
5895 			case SELRET_BADPKT:
5896 				ip_drop_packet_chain(message, B_TRUE,
5897 				    NULL, NULL,
5898 				    DROPPER(ipss, ipds_spd_malformed_frag),
5899 				    &ipss->ipsec_spd_dropper);
5900 				return (B_FALSE);
5901 			case SELRET_TUNFRAG:
5902 				cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)");
5903 				/* FALLTHRU */
5904 			default:
5905 				cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)"
5906 				    " returns bizarro 0x%x", rc);
5907 				/* Guaranteed panic! */
5908 				ASSERT(rc == SELRET_NOMEM);
5909 				return (B_FALSE);
5910 			}
5911 			/* FALLTHRU */
5912 		case SELRET_SUCCESS:
5913 			/*
5914 			 * Common case:
5915 			 * No per-port policy or a non-fragment.  Keep going.
5916 			 */
5917 			break;
5918 		case SELRET_BADPKT:
5919 			/*
5920 			 * We may receive ICMP (with IPv6 inner) packets that
5921 			 * trigger this return value.  Send 'em in for
5922 			 * enforcement checking.
5923 			 */
5924 			cmn_err(CE_NOTE, "ipsec_tun_inbound(): "
5925 			    "sending 'bad packet' in for enforcement");
5926 			break;
5927 		default:
5928 			cmn_err(CE_WARN,
5929 			    "ipsec_init_inbound_sel() returns bizarro 0x%x",
5930 			    rc);
5931 			ASSERT(rc == SELRET_NOMEM);	/* Guaranteed panic! */
5932 			return (B_FALSE);
5933 		}
5934 
5935 		if (is_icmp) {
5936 			/*
5937 			 * Swap local/remote because this is an ICMP packet.
5938 			 */
5939 			tmpaddr = sel.ips_local_addr_v6;
5940 			sel.ips_local_addr_v6 = sel.ips_remote_addr_v6;
5941 			sel.ips_remote_addr_v6 = tmpaddr;
5942 			tmpport = sel.ips_local_port;
5943 			sel.ips_local_port = sel.ips_remote_port;
5944 			sel.ips_remote_port = tmpport;
5945 		}
5946 
5947 		/* find_policy_head() */
5948 		rw_enter(&polhead->iph_lock, RW_READER);
5949 		pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND,
5950 		    &sel, ns);
5951 		rw_exit(&polhead->iph_lock);
5952 		if (pol != NULL) {
5953 			if (ipsec_mp == NULL ||
5954 			    !((ipsec_in_t *)ipsec_mp->b_rptr)->
5955 			    ipsec_in_secure) {
5956 				retval = pol->ipsp_act->ipa_allow_clear;
5957 				if (!retval) {
5958 					/*
5959 					 * XXX should never get here with
5960 					 * tunnel reassembled fragments?
5961 					 */
5962 					ASSERT(message->b_next == NULL);
5963 					ip_drop_packet(message, B_TRUE, NULL,
5964 					    NULL,
5965 					    DROPPER(ipss, ipds_spd_got_clear),
5966 					    &ipss->ipsec_spd_dropper);
5967 				} else if (ipsec_mp != NULL) {
5968 					freeb(ipsec_mp);
5969 				}
5970 
5971 				IPPOL_REFRELE(pol, ns);
5972 				return (retval);
5973 			}
5974 			/*
5975 			 * NOTE: The following releases pol's reference and
5976 			 * calls ip_drop_packet() for me on NULL returns.
5977 			 *
5978 			 * "sel" is still good here, so let's use it!
5979 			 */
5980 			*data_mp = ipsec_check_ipsecin_policy_reasm(message,
5981 			    pol, inner_ipv4, inner_ipv6, SA_UNIQUE_ID(
5982 			    sel.ips_remote_port, sel.ips_local_port,
5983 			    (inner_ipv4 == NULL) ? IPPROTO_IPV6 :
5984 			    IPPROTO_ENCAP, sel.ips_protocol), ns);
5985 			return (*data_mp != NULL);
5986 		}
5987 
5988 		/*
5989 		 * Else fallthru and check the global policy on the outer
5990 		 * header(s) if this tunnel is an old-style transport-mode
5991 		 * one.  Drop the packet explicitly (no policy entry) for
5992 		 * a new-style tunnel-mode tunnel.
5993 		 */
5994 		if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) {
5995 			ip_drop_packet_chain(message, B_TRUE, NULL,
5996 			    NULL,
5997 			    DROPPER(ipss, ipds_spd_explicit),
5998 			    &ipss->ipsec_spd_dropper);
5999 			return (B_FALSE);
6000 		}
6001 	}
6002 
6003 	/*
6004 	 * NOTE:  If we reach here, we will not have packet chains from
6005 	 * fragcache_add(), because the only way I get chains is on a
6006 	 * tunnel-mode tunnel, which either returns with a pass, or gets
6007 	 * hit by the ip_drop_packet_chain() call right above here.
6008 	 */
6009 
6010 	/* If no per-tunnel security, check global policy now. */
6011 	if (ipsec_mp != NULL && !global_present) {
6012 		if (((ipsec_in_t *)(ipsec_mp->b_rptr))->
6013 		    ipsec_in_icmp_loopback) {
6014 			/*
6015 			 * This is an ICMP message with an ipsec_mp
6016 			 * attached.  We should accept it.
6017 			 */
6018 			if (ipsec_mp != NULL)
6019 				freeb(ipsec_mp);
6020 			return (B_TRUE);
6021 		}
6022 
6023 		ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
6024 		    DROPPER(ipss, ipds_spd_got_secure),
6025 		    &ipss->ipsec_spd_dropper);
6026 		return (B_FALSE);
6027 	}
6028 
6029 	/*
6030 	 * The following assertion is valid because only the tun module alters
6031 	 * the mblk chain - stripping the outer header by advancing mp->b_rptr.
6032 	 */
6033 	ASSERT(is_icmp || ((*data_mp)->b_datap->db_base <= outer_hdr &&
6034 	    outer_hdr < (*data_mp)->b_rptr));
6035 	holder = (*data_mp)->b_rptr;
6036 	(*data_mp)->b_rptr = outer_hdr;
6037 
6038 	if (is_icmp) {
6039 		/*
6040 		 * For ICMP packets, "outer_ipvN" is set to the outer header
6041 		 * that is *INSIDE* the ICMP payload.  For global policy
6042 		 * checking, we need to reverse src/dst on the payload in
6043 		 * order to construct selectors appropriately.  See "ripha"
6044 		 * constructions in ip.c.  To avoid a bug like 6478464 (see
6045 		 * earlier in this file), we will actually exchange src/dst
6046 		 * in the packet, and reverse if after the call to
6047 		 * ipsec_check_global_policy().
6048 		 */
6049 		if (outer_ipv4 != NULL) {
6050 			tmp4 = outer_ipv4->ipha_src;
6051 			outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
6052 			outer_ipv4->ipha_dst = tmp4;
6053 		} else {
6054 			ASSERT(outer_ipv6 != NULL);
6055 			tmpaddr = outer_ipv6->ip6_src;
6056 			outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
6057 			outer_ipv6->ip6_dst = tmpaddr;
6058 		}
6059 	}
6060 
6061 	/* NOTE:  Frees message if it returns NULL. */
6062 	if (ipsec_check_global_policy(message, NULL, outer_ipv4, outer_ipv6,
6063 	    (ipsec_mp != NULL), ns) == NULL) {
6064 		return (B_FALSE);
6065 	}
6066 
6067 	if (is_icmp) {
6068 		/* Set things back to normal. */
6069 		if (outer_ipv4 != NULL) {
6070 			tmp4 = outer_ipv4->ipha_src;
6071 			outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
6072 			outer_ipv4->ipha_dst = tmp4;
6073 		} else {
6074 			/* No need for ASSERT()s now. */
6075 			tmpaddr = outer_ipv6->ip6_src;
6076 			outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
6077 			outer_ipv6->ip6_dst = tmpaddr;
6078 		}
6079 	}
6080 
6081 	(*data_mp)->b_rptr = holder;
6082 
6083 	if (ipsec_mp != NULL)
6084 		freeb(ipsec_mp);
6085 
6086 	/*
6087 	 * At this point, we pretend it's a cleartext accepted
6088 	 * packet.
6089 	 */
6090 	return (B_TRUE);
6091 }
6092 
6093 /*
6094  * AVL comparison routine for our list of tunnel polheads.
6095  */
6096 static int
6097 tunnel_compare(const void *arg1, const void *arg2)
6098 {
6099 	ipsec_tun_pol_t *left, *right;
6100 	int rc;
6101 
6102 	left = (ipsec_tun_pol_t *)arg1;
6103 	right = (ipsec_tun_pol_t *)arg2;
6104 
6105 	rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ);
6106 	return (rc == 0 ? rc : (rc > 0 ? 1 : -1));
6107 }
6108 
6109 /*
6110  * Free a tunnel policy node.
6111  */
6112 void
6113 itp_free(ipsec_tun_pol_t *node, netstack_t *ns)
6114 {
6115 	IPPH_REFRELE(node->itp_policy, ns);
6116 	IPPH_REFRELE(node->itp_inactive, ns);
6117 	mutex_destroy(&node->itp_lock);
6118 	kmem_free(node, sizeof (*node));
6119 }
6120 
6121 void
6122 itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns)
6123 {
6124 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6125 
6126 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
6127 	ipss->ipsec_tunnel_policy_gen++;
6128 	ipsec_fragcache_uninit(&node->itp_fragcache);
6129 	avl_remove(&ipss->ipsec_tunnel_policies, node);
6130 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6131 	ITP_REFRELE(node, ns);
6132 }
6133 
6134 /*
6135  * Public interface to look up a tunnel security policy by name.  Used by
6136  * spdsock mostly.  Returns "node" with a bumped refcnt.
6137  */
6138 ipsec_tun_pol_t *
6139 get_tunnel_policy(char *name, netstack_t *ns)
6140 {
6141 	ipsec_tun_pol_t *node, lookup;
6142 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6143 
6144 	(void) strncpy(lookup.itp_name, name, LIFNAMSIZ);
6145 
6146 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
6147 	node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
6148 	    &lookup, NULL);
6149 	if (node != NULL) {
6150 		ITP_REFHOLD(node);
6151 	}
6152 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6153 
6154 	return (node);
6155 }
6156 
6157 /*
6158  * Public interface to walk all tunnel security polcies.  Useful for spdsock
6159  * DUMP operations.  iterator() will not consume a reference.
6160  */
6161 void
6162 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *),
6163     void *arg, netstack_t *ns)
6164 {
6165 	ipsec_tun_pol_t *node;
6166 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6167 
6168 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
6169 	for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL;
6170 	    node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) {
6171 		iterator(node, arg, ns);
6172 	}
6173 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6174 }
6175 
6176 /*
6177  * Initialize policy head.  This can only fail if there's a memory problem.
6178  */
6179 static boolean_t
6180 tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns)
6181 {
6182 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6183 
6184 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
6185 	iph->iph_refs = 1;
6186 	iph->iph_gen = 0;
6187 	if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize,
6188 	    KM_SLEEP, B_FALSE, ns) != 0) {
6189 		ipsec_polhead_free_table(iph);
6190 		return (B_FALSE);
6191 	}
6192 	ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize);
6193 	return (B_TRUE);
6194 }
6195 
6196 /*
6197  * Create a tunnel policy node with "name".  Set errno with
6198  * ENOMEM if there's a memory problem, and EEXIST if there's an existing
6199  * node.
6200  */
6201 ipsec_tun_pol_t *
6202 create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns)
6203 {
6204 	ipsec_tun_pol_t *newbie, *existing;
6205 	avl_index_t where;
6206 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6207 
6208 	newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
6209 	if (newbie == NULL) {
6210 		*errno = ENOMEM;
6211 		return (NULL);
6212 	}
6213 	if (!ipsec_fragcache_init(&newbie->itp_fragcache)) {
6214 		kmem_free(newbie, sizeof (*newbie));
6215 		*errno = ENOMEM;
6216 		return (NULL);
6217 	}
6218 
6219 	(void) strncpy(newbie->itp_name, name, LIFNAMSIZ);
6220 
6221 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
6222 	existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
6223 	    newbie, &where);
6224 	if (existing != NULL) {
6225 		itp_free(newbie, ns);
6226 		*errno = EEXIST;
6227 		rw_exit(&ipss->ipsec_tunnel_policy_lock);
6228 		return (NULL);
6229 	}
6230 	ipss->ipsec_tunnel_policy_gen++;
6231 	*gen = ipss->ipsec_tunnel_policy_gen;
6232 	newbie->itp_refcnt = 2;	/* One for the caller, one for the tree. */
6233 	newbie->itp_next_policy_index = 1;
6234 	avl_insert(&ipss->ipsec_tunnel_policies, newbie, where);
6235 	mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL);
6236 	newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t),
6237 	    KM_NOSLEEP);
6238 	if (newbie->itp_policy == NULL)
6239 		goto nomem;
6240 	newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t),
6241 	    KM_NOSLEEP);
6242 	if (newbie->itp_inactive == NULL) {
6243 		kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6244 		goto nomem;
6245 	}
6246 
6247 	if (!tunnel_polhead_init(newbie->itp_policy, ns)) {
6248 		kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6249 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6250 		goto nomem;
6251 	} else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) {
6252 		IPPH_REFRELE(newbie->itp_policy, ns);
6253 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6254 		goto nomem;
6255 	}
6256 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6257 
6258 	return (newbie);
6259 nomem:
6260 	*errno = ENOMEM;
6261 	kmem_free(newbie, sizeof (*newbie));
6262 	return (NULL);
6263 }
6264 
6265 /*
6266  * We can't call the tun_t lookup function until tun is
6267  * loaded, so create a dummy function to avoid symbol
6268  * lookup errors on boot.
6269  */
6270 /* ARGSUSED */
6271 ipsec_tun_pol_t *
6272 itp_get_byaddr_dummy(uint32_t *laddr, uint32_t *faddr, int af, netstack_t *ns)
6273 {
6274 	return (NULL);  /* Always return NULL. */
6275 }
6276 
6277 /*
6278  * Frag cache code, based on SunScreen 3.2 source
6279  *	screen/kernel/common/screen_fragcache.c
6280  */
6281 
6282 #define	IPSEC_FRAG_TTL_MAX	5
6283 /*
6284  * Note that the following parameters create 256 hash buckets
6285  * with 1024 free entries to be distributed.  Things are cleaned
6286  * periodically and are attempted to be cleaned when there is no
6287  * free space, but this system errs on the side of dropping packets
6288  * over creating memory exhaustion.  We may decide to make hash
6289  * factor a tunable if this proves to be a bad decision.
6290  */
6291 #define	IPSEC_FRAG_HASH_SLOTS	(1<<8)
6292 #define	IPSEC_FRAG_HASH_FACTOR	4
6293 #define	IPSEC_FRAG_HASH_SIZE	(IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR)
6294 
6295 #define	IPSEC_FRAG_HASH_MASK		(IPSEC_FRAG_HASH_SLOTS - 1)
6296 #define	IPSEC_FRAG_HASH_FUNC(id)	(((id) & IPSEC_FRAG_HASH_MASK) ^ \
6297 					    (((id) / \
6298 					    (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \
6299 					    IPSEC_FRAG_HASH_MASK))
6300 
6301 /* Maximum fragments per packet.  48 bytes payload x 1366 packets > 64KB */
6302 #define	IPSEC_MAX_FRAGS		1366
6303 
6304 #define	V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \
6305 				    IPH_OFFSET) << 3)
6306 #define	V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \
6307 		IPH_MF)
6308 
6309 /*
6310  * Initialize an ipsec fragcache instance.
6311  * Returns B_FALSE if memory allocation fails.
6312  */
6313 boolean_t
6314 ipsec_fragcache_init(ipsec_fragcache_t *frag)
6315 {
6316 	ipsec_fragcache_entry_t *ftemp;
6317 	int i;
6318 
6319 	mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL);
6320 	frag->itpf_ptr = (ipsec_fragcache_entry_t **)
6321 	    kmem_zalloc(sizeof (ipsec_fragcache_entry_t *) *
6322 	    IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP);
6323 	if (frag->itpf_ptr == NULL)
6324 		return (B_FALSE);
6325 
6326 	ftemp = (ipsec_fragcache_entry_t *)
6327 	    kmem_zalloc(sizeof (ipsec_fragcache_entry_t) *
6328 	    IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP);
6329 	if (ftemp == NULL) {
6330 		kmem_free(frag->itpf_ptr, sizeof (ipsec_fragcache_entry_t *) *
6331 		    IPSEC_FRAG_HASH_SLOTS);
6332 		return (B_FALSE);
6333 	}
6334 
6335 	frag->itpf_freelist = NULL;
6336 
6337 	for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) {
6338 		ftemp->itpfe_next = frag->itpf_freelist;
6339 		frag->itpf_freelist = ftemp;
6340 		ftemp++;
6341 	}
6342 
6343 	frag->itpf_expire_hint = 0;
6344 
6345 	return (B_TRUE);
6346 }
6347 
6348 void
6349 ipsec_fragcache_uninit(ipsec_fragcache_t *frag)
6350 {
6351 	ipsec_fragcache_entry_t *fep;
6352 	int i;
6353 
6354 	mutex_enter(&frag->itpf_lock);
6355 	if (frag->itpf_ptr) {
6356 		/* Delete any existing fragcache entry chains */
6357 		for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6358 			fep = (frag->itpf_ptr)[i];
6359 			while (fep != NULL) {
6360 				/* Returned fep is next in chain or NULL */
6361 				fep = fragcache_delentry(i, fep, frag);
6362 			}
6363 		}
6364 		/*
6365 		 * Chase the pointers back to the beginning
6366 		 * of the memory allocation and then
6367 		 * get rid of the allocated freelist
6368 		 */
6369 		while (frag->itpf_freelist->itpfe_next != NULL)
6370 			frag->itpf_freelist = frag->itpf_freelist->itpfe_next;
6371 		/*
6372 		 * XXX - If we ever dynamically grow the freelist
6373 		 * then we'll have to free entries individually
6374 		 * or determine how many entries or chunks we have
6375 		 * grown since the initial allocation.
6376 		 */
6377 		kmem_free(frag->itpf_freelist,
6378 		    sizeof (ipsec_fragcache_entry_t) *
6379 		    IPSEC_FRAG_HASH_SIZE);
6380 		/* Free the fragcache structure */
6381 		kmem_free(frag->itpf_ptr,
6382 		    sizeof (ipsec_fragcache_entry_t *) *
6383 		    IPSEC_FRAG_HASH_SLOTS);
6384 	}
6385 	mutex_exit(&frag->itpf_lock);
6386 	mutex_destroy(&frag->itpf_lock);
6387 }
6388 
6389 /*
6390  * Add a fragment to the fragment cache.   Consumes mp if NULL is returned.
6391  * Returns mp if a whole fragment has been assembled, NULL otherwise
6392  */
6393 
6394 mblk_t *
6395 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *ipsec_mp, mblk_t *mp,
6396     int outer_hdr_len, ipsec_stack_t *ipss)
6397 {
6398 	boolean_t is_v4;
6399 	time_t itpf_time;
6400 	ipha_t *iph;
6401 	ipha_t *oiph;
6402 	ip6_t *ip6h = NULL;
6403 	uint8_t v6_proto;
6404 	uint8_t *v6_proto_p;
6405 	uint16_t ip6_hdr_length;
6406 	ip6_pkt_t ipp;
6407 	ip6_frag_t *fraghdr;
6408 	ipsec_fragcache_entry_t *fep;
6409 	int i;
6410 	mblk_t *nmp, *prevmp, *spare_mp = NULL;
6411 	int firstbyte, lastbyte;
6412 	int offset;
6413 	int last;
6414 	boolean_t inbound = (ipsec_mp != NULL);
6415 	mblk_t *first_mp = inbound ? ipsec_mp : mp;
6416 
6417 	mutex_enter(&frag->itpf_lock);
6418 
6419 	oiph  = (ipha_t *)mp->b_rptr;
6420 	iph  = (ipha_t *)(mp->b_rptr + outer_hdr_len);
6421 	if (IPH_HDR_VERSION(iph) == IPV4_VERSION) {
6422 		is_v4 = B_TRUE;
6423 	} else {
6424 		ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION);
6425 		if ((spare_mp = msgpullup(mp, -1)) == NULL) {
6426 			mutex_exit(&frag->itpf_lock);
6427 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6428 			    DROPPER(ipss, ipds_spd_nomem),
6429 			    &ipss->ipsec_spd_dropper);
6430 			return (NULL);
6431 		}
6432 		ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len);
6433 
6434 		if (!ip_hdr_length_nexthdr_v6(spare_mp, ip6h, &ip6_hdr_length,
6435 		    &v6_proto_p)) {
6436 			/*
6437 			 * Find upper layer protocol.
6438 			 * If it fails we have a malformed packet
6439 			 */
6440 			mutex_exit(&frag->itpf_lock);
6441 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6442 			    DROPPER(ipss, ipds_spd_malformed_packet),
6443 			    &ipss->ipsec_spd_dropper);
6444 			freemsg(spare_mp);
6445 			return (NULL);
6446 		} else {
6447 			v6_proto = *v6_proto_p;
6448 		}
6449 
6450 
6451 		bzero(&ipp, sizeof (ipp));
6452 		(void) ip_find_hdr_v6(spare_mp, ip6h, &ipp, NULL);
6453 		if (!(ipp.ipp_fields & IPPF_FRAGHDR)) {
6454 			/*
6455 			 * We think this is a fragment, but didn't find
6456 			 * a fragment header.  Something is wrong.
6457 			 */
6458 			mutex_exit(&frag->itpf_lock);
6459 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6460 			    DROPPER(ipss, ipds_spd_malformed_frag),
6461 			    &ipss->ipsec_spd_dropper);
6462 			freemsg(spare_mp);
6463 			return (NULL);
6464 		}
6465 		fraghdr = ipp.ipp_fraghdr;
6466 		is_v4 = B_FALSE;
6467 	}
6468 
6469 	/* Anything to cleanup? */
6470 
6471 	/*
6472 	 * This cleanup call could be put in a timer loop
6473 	 * but it may actually be just as reasonable a decision to
6474 	 * leave it here.  The disadvantage is this only gets called when
6475 	 * frags are added.  The advantage is that it is not
6476 	 * susceptible to race conditions like a time-based cleanup
6477 	 * may be.
6478 	 */
6479 	itpf_time = gethrestime_sec();
6480 	if (itpf_time >= frag->itpf_expire_hint)
6481 		ipsec_fragcache_clean(frag);
6482 
6483 	/* Lookup to see if there is an existing entry */
6484 
6485 	if (is_v4)
6486 		i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident);
6487 	else
6488 		i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident);
6489 
6490 	for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) {
6491 		if (is_v4) {
6492 			ASSERT(iph != NULL);
6493 			if ((fep->itpfe_id == iph->ipha_ident) &&
6494 			    (fep->itpfe_src == iph->ipha_src) &&
6495 			    (fep->itpfe_dst == iph->ipha_dst) &&
6496 			    (fep->itpfe_proto == iph->ipha_protocol))
6497 				break;
6498 		} else {
6499 			ASSERT(fraghdr != NULL);
6500 			ASSERT(fep != NULL);
6501 			if ((fep->itpfe_id == fraghdr->ip6f_ident) &&
6502 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6,
6503 			    &ip6h->ip6_src) &&
6504 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6,
6505 			    &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto))
6506 				break;
6507 		}
6508 	}
6509 
6510 	if (is_v4) {
6511 		firstbyte = V4_FRAG_OFFSET(iph);
6512 		lastbyte  = firstbyte + ntohs(iph->ipha_length) -
6513 		    IPH_HDR_LENGTH(iph);
6514 		last = (V4_MORE_FRAGS(iph) == 0);
6515 #ifdef FRAGCACHE_DEBUG
6516 		cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, "
6517 		    "last = %d, id = %d\n", firstbyte, lastbyte, last,
6518 		    iph->ipha_ident);
6519 #endif
6520 	} else {
6521 		firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
6522 		lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6523 		    sizeof (ip6_t) - ip6_hdr_length;
6524 		last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0;
6525 #ifdef FRAGCACHE_DEBUG
6526 		cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, "
6527 		    "last = %d, id = %d, fraghdr = %p, spare_mp = %p\n",
6528 		    firstbyte, lastbyte, last, fraghdr->ip6f_ident,
6529 		    fraghdr, spare_mp);
6530 #endif
6531 	}
6532 
6533 	/* check for bogus fragments and delete the entry */
6534 	if (firstbyte > 0 && firstbyte <= 8) {
6535 		if (fep != NULL)
6536 			(void) fragcache_delentry(i, fep, frag);
6537 		mutex_exit(&frag->itpf_lock);
6538 		ip_drop_packet(first_mp, inbound, NULL, NULL,
6539 		    DROPPER(ipss, ipds_spd_malformed_frag),
6540 		    &ipss->ipsec_spd_dropper);
6541 		freemsg(spare_mp);
6542 		return (NULL);
6543 	}
6544 
6545 	/* Not found, allocate a new entry */
6546 	if (fep == NULL) {
6547 		if (frag->itpf_freelist == NULL) {
6548 			/* see if there is some space */
6549 			ipsec_fragcache_clean(frag);
6550 			if (frag->itpf_freelist == NULL) {
6551 				mutex_exit(&frag->itpf_lock);
6552 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6553 				    DROPPER(ipss, ipds_spd_nomem),
6554 				    &ipss->ipsec_spd_dropper);
6555 				freemsg(spare_mp);
6556 				return (NULL);
6557 			}
6558 		}
6559 
6560 		fep = frag->itpf_freelist;
6561 		frag->itpf_freelist = fep->itpfe_next;
6562 
6563 		if (is_v4) {
6564 			bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src,
6565 			    sizeof (struct in_addr));
6566 			bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst,
6567 			    sizeof (struct in_addr));
6568 			fep->itpfe_id = iph->ipha_ident;
6569 			fep->itpfe_proto = iph->ipha_protocol;
6570 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6571 		} else {
6572 			bcopy((in6_addr_t *)&ip6h->ip6_src,
6573 			    (in6_addr_t *)&fep->itpfe_src6,
6574 			    sizeof (struct in6_addr));
6575 			bcopy((in6_addr_t *)&ip6h->ip6_dst,
6576 			    (in6_addr_t *)&fep->itpfe_dst6,
6577 			    sizeof (struct in6_addr));
6578 			fep->itpfe_id = fraghdr->ip6f_ident;
6579 			fep->itpfe_proto = v6_proto;
6580 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6581 		}
6582 		itpf_time = gethrestime_sec();
6583 		fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1;
6584 		fep->itpfe_last = 0;
6585 		fep->itpfe_fraglist = NULL;
6586 		fep->itpfe_depth = 0;
6587 		fep->itpfe_next = (frag->itpf_ptr)[i];
6588 		(frag->itpf_ptr)[i] = fep;
6589 
6590 		if (frag->itpf_expire_hint > fep->itpfe_exp)
6591 			frag->itpf_expire_hint = fep->itpfe_exp;
6592 
6593 	}
6594 	freemsg(spare_mp);
6595 
6596 	/* Insert it in the frag list */
6597 	/* List is in order by starting offset of fragments */
6598 
6599 	prevmp = NULL;
6600 	for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) {
6601 		ipha_t *niph;
6602 		ipha_t *oniph;
6603 		ip6_t *nip6h;
6604 		ip6_pkt_t nipp;
6605 		ip6_frag_t *nfraghdr;
6606 		uint16_t nip6_hdr_length;
6607 		uint8_t *nv6_proto_p;
6608 		int nfirstbyte, nlastbyte;
6609 		char *data, *ndata;
6610 		mblk_t *nspare_mp = NULL;
6611 		mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp);
6612 		int hdr_len;
6613 
6614 		oniph  = (ipha_t *)mp->b_rptr;
6615 		nip6h = NULL;
6616 		niph = NULL;
6617 
6618 		/*
6619 		 * Determine outer header type and length and set
6620 		 * pointers appropriately
6621 		 */
6622 
6623 		if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) {
6624 			hdr_len = ((outer_hdr_len != 0) ?
6625 			    IPH_HDR_LENGTH(oiph) : 0);
6626 			niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6627 		} else {
6628 			ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION);
6629 			if ((nspare_mp = msgpullup(ndata_mp, -1)) == NULL) {
6630 				mutex_exit(&frag->itpf_lock);
6631 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6632 				    DROPPER(ipss, ipds_spd_nomem),
6633 				    &ipss->ipsec_spd_dropper);
6634 				return (NULL);
6635 			}
6636 			nip6h = (ip6_t *)nspare_mp->b_rptr;
6637 			(void) ip_hdr_length_nexthdr_v6(nspare_mp, nip6h,
6638 			    &nip6_hdr_length, &v6_proto_p);
6639 			hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0);
6640 		}
6641 
6642 		/*
6643 		 * Determine inner header type and length and set
6644 		 * pointers appropriately
6645 		 */
6646 
6647 		if (is_v4) {
6648 			if (niph == NULL) {
6649 				/* Was v6 outer */
6650 				niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6651 			}
6652 			nfirstbyte = V4_FRAG_OFFSET(niph);
6653 			nlastbyte = nfirstbyte + ntohs(niph->ipha_length) -
6654 			    IPH_HDR_LENGTH(niph);
6655 		} else {
6656 			if ((nspare_mp == NULL) &&
6657 			    ((nspare_mp = msgpullup(ndata_mp, -1)) == NULL)) {
6658 				mutex_exit(&frag->itpf_lock);
6659 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6660 				    DROPPER(ipss, ipds_spd_nomem),
6661 				    &ipss->ipsec_spd_dropper);
6662 				return (NULL);
6663 			}
6664 			nip6h = (ip6_t *)(nspare_mp->b_rptr + hdr_len);
6665 			if (!ip_hdr_length_nexthdr_v6(nspare_mp, nip6h,
6666 			    &nip6_hdr_length, &nv6_proto_p)) {
6667 				mutex_exit(&frag->itpf_lock);
6668 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6669 				    DROPPER(ipss, ipds_spd_malformed_frag),
6670 				    &ipss->ipsec_spd_dropper);
6671 				ipsec_freemsg_chain(nspare_mp);
6672 				return (NULL);
6673 			}
6674 			bzero(&nipp, sizeof (nipp));
6675 			(void) ip_find_hdr_v6(nspare_mp, nip6h, &nipp, NULL);
6676 			nfraghdr = nipp.ipp_fraghdr;
6677 			nfirstbyte = ntohs(nfraghdr->ip6f_offlg &
6678 			    IP6F_OFF_MASK);
6679 			nlastbyte  = nfirstbyte + ntohs(nip6h->ip6_plen) +
6680 			    sizeof (ip6_t) - nip6_hdr_length;
6681 		}
6682 		ipsec_freemsg_chain(nspare_mp);
6683 
6684 		/* Check for overlapping fragments */
6685 		if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) {
6686 			/*
6687 			 * Overlap Check:
6688 			 *  ~~~~---------		# Check if the newly
6689 			 * ~	ndata_mp|		# received fragment
6690 			 *  ~~~~---------		# overlaps with the
6691 			 *	 ---------~~~~~~	# current fragment.
6692 			 *	|    mp		~
6693 			 *	 ---------~~~~~~
6694 			 */
6695 			if (is_v4) {
6696 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6697 				    firstbyte - nfirstbyte;
6698 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6699 			} else {
6700 				data  = (char *)ip6h  +
6701 				    nip6_hdr_length + firstbyte -
6702 				    nfirstbyte;
6703 				ndata = (char *)nip6h + nip6_hdr_length;
6704 			}
6705 			if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) -
6706 			    firstbyte)) {
6707 				/* Overlapping data does not match */
6708 				(void) fragcache_delentry(i, fep, frag);
6709 				mutex_exit(&frag->itpf_lock);
6710 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6711 				    DROPPER(ipss, ipds_spd_overlap_frag),
6712 				    &ipss->ipsec_spd_dropper);
6713 				return (NULL);
6714 			}
6715 			/* Part of defense for jolt2.c fragmentation attack */
6716 			if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) {
6717 				/*
6718 				 * Check for identical or subset fragments:
6719 				 *  ----------	    ~~~~--------~~~~~
6720 				 * |    nmp   | or  ~	   nmp	    ~
6721 				 *  ----------	    ~~~~--------~~~~~
6722 				 *  ----------		  ------
6723 				 * |	mp    |		 |  mp  |
6724 				 *  ----------		  ------
6725 				 */
6726 				mutex_exit(&frag->itpf_lock);
6727 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6728 				    DROPPER(ipss, ipds_spd_evil_frag),
6729 				    &ipss->ipsec_spd_dropper);
6730 				return (NULL);
6731 			}
6732 
6733 		}
6734 
6735 		/* Correct location for this fragment? */
6736 		if (firstbyte <= nfirstbyte) {
6737 			/*
6738 			 * Check if the tail end of the new fragment overlaps
6739 			 * with the head of the current fragment.
6740 			 *	  --------~~~~~~~
6741 			 *	 |    nmp	~
6742 			 *	  --------~~~~~~~
6743 			 *  ~~~~~--------
6744 			 *  ~	mp	 |
6745 			 *  ~~~~~--------
6746 			 */
6747 			if (lastbyte > nfirstbyte) {
6748 				/* Fragments overlap */
6749 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6750 				    firstbyte - nfirstbyte;
6751 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6752 				if (is_v4) {
6753 					data  = (char *)iph +
6754 					    IPH_HDR_LENGTH(iph) + firstbyte -
6755 					    nfirstbyte;
6756 					ndata = (char *)niph +
6757 					    IPH_HDR_LENGTH(niph);
6758 				} else {
6759 					data  = (char *)ip6h  +
6760 					    nip6_hdr_length + firstbyte -
6761 					    nfirstbyte;
6762 					ndata = (char *)nip6h + nip6_hdr_length;
6763 				}
6764 				if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6765 				    - nfirstbyte)) {
6766 					/* Overlap mismatch */
6767 					(void) fragcache_delentry(i, fep, frag);
6768 					mutex_exit(&frag->itpf_lock);
6769 					ip_drop_packet(first_mp, inbound, NULL,
6770 					    NULL, DROPPER(ipss,
6771 					    ipds_spd_overlap_frag),
6772 					    &ipss->ipsec_spd_dropper);
6773 					return (NULL);
6774 				}
6775 			}
6776 
6777 			/*
6778 			 * Fragment does not illegally overlap and can now
6779 			 * be inserted into the chain
6780 			 */
6781 			break;
6782 		}
6783 
6784 		prevmp = nmp;
6785 	}
6786 	first_mp->b_next = nmp;
6787 
6788 	if (prevmp == NULL) {
6789 		fep->itpfe_fraglist = first_mp;
6790 	} else {
6791 		prevmp->b_next = first_mp;
6792 	}
6793 	if (last)
6794 		fep->itpfe_last = 1;
6795 
6796 	/* Part of defense for jolt2.c fragmentation attack */
6797 	if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) {
6798 		(void) fragcache_delentry(i, fep, frag);
6799 		mutex_exit(&frag->itpf_lock);
6800 		ip_drop_packet(first_mp, inbound, NULL, NULL,
6801 		    DROPPER(ipss, ipds_spd_max_frags),
6802 		    &ipss->ipsec_spd_dropper);
6803 		return (NULL);
6804 	}
6805 
6806 	/* Check for complete packet */
6807 
6808 	if (!fep->itpfe_last) {
6809 		mutex_exit(&frag->itpf_lock);
6810 #ifdef FRAGCACHE_DEBUG
6811 		cmn_err(CE_WARN, "Fragment cached, not last.\n");
6812 #endif
6813 		return (NULL);
6814 	}
6815 
6816 #ifdef FRAGCACHE_DEBUG
6817 	cmn_err(CE_WARN, "Last fragment cached.\n");
6818 	cmn_err(CE_WARN, "mp = %p, first_mp = %p.\n", mp, first_mp);
6819 #endif
6820 
6821 	offset = 0;
6822 	for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) {
6823 		mblk_t *data_mp = (inbound ? mp->b_cont : mp);
6824 		int hdr_len;
6825 
6826 		oiph  = (ipha_t *)data_mp->b_rptr;
6827 		ip6h = NULL;
6828 		iph = NULL;
6829 
6830 		spare_mp = NULL;
6831 		if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
6832 			hdr_len = ((outer_hdr_len != 0) ?
6833 			    IPH_HDR_LENGTH(oiph) : 0);
6834 			iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6835 		} else {
6836 			ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
6837 			if ((spare_mp = msgpullup(data_mp, -1)) == NULL) {
6838 				mutex_exit(&frag->itpf_lock);
6839 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6840 				    DROPPER(ipss, ipds_spd_nomem),
6841 				    &ipss->ipsec_spd_dropper);
6842 				return (NULL);
6843 			}
6844 			ip6h = (ip6_t *)spare_mp->b_rptr;
6845 			(void) ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
6846 			    &ip6_hdr_length, &v6_proto_p);
6847 			hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0);
6848 		}
6849 
6850 		/* Calculate current fragment start/end */
6851 		if (is_v4) {
6852 			if (iph == NULL) {
6853 				/* Was v6 outer */
6854 				iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6855 			}
6856 			firstbyte = V4_FRAG_OFFSET(iph);
6857 			lastbyte = firstbyte + ntohs(iph->ipha_length) -
6858 			    IPH_HDR_LENGTH(iph);
6859 		} else {
6860 			if ((spare_mp == NULL) &&
6861 			    ((spare_mp = msgpullup(data_mp, -1)) == NULL)) {
6862 				mutex_exit(&frag->itpf_lock);
6863 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6864 				    DROPPER(ipss, ipds_spd_nomem),
6865 				    &ipss->ipsec_spd_dropper);
6866 				return (NULL);
6867 			}
6868 			ip6h = (ip6_t *)(spare_mp->b_rptr + hdr_len);
6869 			if (!ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
6870 			    &ip6_hdr_length, &v6_proto_p)) {
6871 				mutex_exit(&frag->itpf_lock);
6872 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6873 				    DROPPER(ipss, ipds_spd_malformed_frag),
6874 				    &ipss->ipsec_spd_dropper);
6875 				ipsec_freemsg_chain(spare_mp);
6876 				return (NULL);
6877 			}
6878 			v6_proto = *v6_proto_p;
6879 			bzero(&ipp, sizeof (ipp));
6880 			(void) ip_find_hdr_v6(spare_mp, ip6h, &ipp, NULL);
6881 			fraghdr = ipp.ipp_fraghdr;
6882 			firstbyte = ntohs(fraghdr->ip6f_offlg &
6883 			    IP6F_OFF_MASK);
6884 			lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6885 			    sizeof (ip6_t) - ip6_hdr_length;
6886 		}
6887 
6888 		/*
6889 		 * If this fragment is greater than current offset,
6890 		 * we have a missing fragment so return NULL
6891 		 */
6892 		if (firstbyte > offset) {
6893 			mutex_exit(&frag->itpf_lock);
6894 #ifdef FRAGCACHE_DEBUG
6895 			/*
6896 			 * Note, this can happen when the last frag
6897 			 * gets sent through because it is smaller
6898 			 * than the MTU.  It is not necessarily an
6899 			 * error condition.
6900 			 */
6901 			cmn_err(CE_WARN, "Frag greater than offset! : "
6902 			    "missing fragment: firstbyte = %d, offset = %d, "
6903 			    "mp = %p\n", firstbyte, offset, mp);
6904 #endif
6905 			ipsec_freemsg_chain(spare_mp);
6906 			return (NULL);
6907 		}
6908 
6909 		/*
6910 		 * If we are at the last fragment, we have the complete
6911 		 * packet, so rechain things and return it to caller
6912 		 * for processing
6913 		 */
6914 
6915 		if ((is_v4 && !V4_MORE_FRAGS(iph)) ||
6916 		    (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) {
6917 			mp = fep->itpfe_fraglist;
6918 			fep->itpfe_fraglist = NULL;
6919 			(void) fragcache_delentry(i, fep, frag);
6920 			mutex_exit(&frag->itpf_lock);
6921 
6922 			if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) >
6923 			    65535)) || (!is_v4 && (firstbyte +
6924 			    ntohs(ip6h->ip6_plen) > 65535))) {
6925 				/* It is an invalid "ping-o-death" packet */
6926 				/* Discard it */
6927 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6928 				    DROPPER(ipss, ipds_spd_evil_frag),
6929 				    &ipss->ipsec_spd_dropper);
6930 				ipsec_freemsg_chain(spare_mp);
6931 				return (NULL);
6932 			}
6933 #ifdef FRAGCACHE_DEBUG
6934 			cmn_err(CE_WARN, "Fragcache returning mp = %p, "
6935 			    "mp->b_next = %p", mp, mp->b_next);
6936 #endif
6937 			ipsec_freemsg_chain(spare_mp);
6938 			/*
6939 			 * For inbound case, mp has ipsec_in b_next'd chain
6940 			 * For outbound case, it is just data mp chain
6941 			 */
6942 			return (mp);
6943 		}
6944 		ipsec_freemsg_chain(spare_mp);
6945 
6946 		/*
6947 		 * Update new ending offset if this
6948 		 * fragment extends the packet
6949 		 */
6950 		if (offset < lastbyte)
6951 			offset = lastbyte;
6952 	}
6953 
6954 	mutex_exit(&frag->itpf_lock);
6955 
6956 	/* Didn't find last fragment, so return NULL */
6957 	return (NULL);
6958 }
6959 
6960 static void
6961 ipsec_fragcache_clean(ipsec_fragcache_t *frag)
6962 {
6963 	ipsec_fragcache_entry_t *fep;
6964 	int i;
6965 	ipsec_fragcache_entry_t *earlyfep = NULL;
6966 	time_t itpf_time;
6967 	int earlyexp;
6968 	int earlyi = 0;
6969 
6970 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
6971 
6972 	itpf_time = gethrestime_sec();
6973 	earlyexp = itpf_time + 10000;
6974 
6975 	for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6976 		fep = (frag->itpf_ptr)[i];
6977 		while (fep) {
6978 			if (fep->itpfe_exp < itpf_time) {
6979 				/* found */
6980 				fep = fragcache_delentry(i, fep, frag);
6981 			} else {
6982 				if (fep->itpfe_exp < earlyexp) {
6983 					earlyfep = fep;
6984 					earlyexp = fep->itpfe_exp;
6985 					earlyi = i;
6986 				}
6987 				fep = fep->itpfe_next;
6988 			}
6989 		}
6990 	}
6991 
6992 	frag->itpf_expire_hint = earlyexp;
6993 
6994 	/* if (!found) */
6995 	if (frag->itpf_freelist == NULL)
6996 		(void) fragcache_delentry(earlyi, earlyfep, frag);
6997 }
6998 
6999 static ipsec_fragcache_entry_t *
7000 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep,
7001     ipsec_fragcache_t *frag)
7002 {
7003 	ipsec_fragcache_entry_t *targp;
7004 	ipsec_fragcache_entry_t *nextp = fep->itpfe_next;
7005 
7006 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
7007 
7008 	/* Free up any fragment list still in cache entry */
7009 	ipsec_freemsg_chain(fep->itpfe_fraglist);
7010 
7011 	targp = (frag->itpf_ptr)[slot];
7012 	ASSERT(targp != 0);
7013 
7014 	if (targp == fep) {
7015 		/* unlink from head of hash chain */
7016 		(frag->itpf_ptr)[slot] = nextp;
7017 		/* link into free list */
7018 		fep->itpfe_next = frag->itpf_freelist;
7019 		frag->itpf_freelist = fep;
7020 		return (nextp);
7021 	}
7022 
7023 	/* maybe should use double linked list to make update faster */
7024 	/* must be past front of chain */
7025 	while (targp) {
7026 		if (targp->itpfe_next == fep) {
7027 			/* unlink from hash chain */
7028 			targp->itpfe_next = nextp;
7029 			/* link into free list */
7030 			fep->itpfe_next = frag->itpf_freelist;
7031 			frag->itpf_freelist = fep;
7032 			return (nextp);
7033 		}
7034 		targp = targp->itpfe_next;
7035 		ASSERT(targp != 0);
7036 	}
7037 	/* NOTREACHED */
7038 	return (NULL);
7039 }
7040