xref: /titanic_41/usr/src/uts/common/inet/ip/spd.c (revision 1dd08564e4a3aafe66b00aee6f222b0885346fe8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * IPsec Security Policy Database.
30  *
31  * This module maintains the SPD and provides routines used by ip and ip6
32  * to apply IPsec policy to inbound and outbound datagrams.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/stream.h>
37 #include <sys/stropts.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strsubr.h>
40 #include <sys/strlog.h>
41 #include <sys/cmn_err.h>
42 #include <sys/zone.h>
43 
44 #include <sys/systm.h>
45 #include <sys/param.h>
46 #include <sys/kmem.h>
47 #include <sys/ddi.h>
48 
49 #include <sys/crypto/api.h>
50 
51 #include <inet/common.h>
52 #include <inet/mi.h>
53 
54 #include <netinet/ip6.h>
55 #include <netinet/icmp6.h>
56 #include <netinet/udp.h>
57 
58 #include <inet/ip.h>
59 #include <inet/ip6.h>
60 
61 #include <net/pfkeyv2.h>
62 #include <net/pfpolicy.h>
63 #include <inet/ipsec_info.h>
64 #include <inet/sadb.h>
65 #include <inet/ipsec_impl.h>
66 
67 #include <inet/ip_impl.h>	/* For IP_MOD_ID */
68 
69 #include <inet/ipsecah.h>
70 #include <inet/ipsecesp.h>
71 #include <inet/ipdrop.h>
72 #include <inet/ipclassifier.h>
73 #include <inet/tun.h>
74 
75 static void ipsec_update_present_flags(ipsec_stack_t *);
76 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *,
77     netstack_t *);
78 static void ipsec_out_free(void *);
79 static void ipsec_in_free(void *);
80 static mblk_t *ipsec_attach_global_policy(mblk_t **, conn_t *,
81     ipsec_selector_t *, netstack_t *);
82 static mblk_t *ipsec_apply_global_policy(mblk_t *, conn_t *,
83     ipsec_selector_t *, netstack_t *);
84 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *,
85     ipha_t *, ip6_t *, uint64_t, netstack_t *);
86 static void ipsec_in_release_refs(ipsec_in_t *);
87 static void ipsec_out_release_refs(ipsec_out_t *);
88 static void ipsec_action_free_table(ipsec_action_t *);
89 static void ipsec_action_reclaim(void *);
90 static void ipsec_action_reclaim_stack(netstack_t *);
91 static void ipsid_init(netstack_t *);
92 static void ipsid_fini(netstack_t *);
93 
94 /* sel_flags values for ipsec_init_inbound_sel(). */
95 #define	SEL_NONE	0x0000
96 #define	SEL_PORT_POLICY	0x0001
97 #define	SEL_IS_ICMP	0x0002
98 #define	SEL_TUNNEL_MODE	0x0004
99 
100 /* Return values for ipsec_init_inbound_sel(). */
101 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG}
102     selret_t;
103 
104 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
105     ipha_t *, ip6_t *, uint8_t);
106 
107 static boolean_t ipsec_check_ipsecin_action(struct ipsec_in_s *, mblk_t *,
108     struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
109     kstat_named_t **);
110 static void ipsec_unregister_prov_update(void);
111 static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *);
112 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *);
113 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *);
114 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
115 static void ipsec_kstat_destroy(ipsec_stack_t *);
116 static int ipsec_free_tables(ipsec_stack_t *);
117 static int tunnel_compare(const void *, const void *);
118 static void ipsec_freemsg_chain(mblk_t *);
119 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, ire_t *,
120     struct kstat_named *, ipdropper_t *);
121 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
122 static void ipsec_kstat_destroy(ipsec_stack_t *);
123 static int ipsec_free_tables(ipsec_stack_t *);
124 static int tunnel_compare(const void *, const void *);
125 static void ipsec_freemsg_chain(mblk_t *);
126 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, ire_t *,
127     struct kstat_named *, ipdropper_t *);
128 
129 /*
130  * Selector hash table is statically sized at module load time.
131  * we default to 251 buckets, which is the largest prime number under 255
132  */
133 
134 #define	IPSEC_SPDHASH_DEFAULT 251
135 
136 /* SPD hash-size tunable per tunnel. */
137 #define	TUN_SPDHASH_DEFAULT 5
138 
139 uint32_t ipsec_spd_hashsize;
140 uint32_t tun_spd_hashsize;
141 
142 #define	IPSEC_SEL_NOHASH ((uint32_t)(~0))
143 
144 /*
145  * Handle global across all stack instances
146  */
147 static crypto_notify_handle_t prov_update_handle = NULL;
148 
149 static kmem_cache_t *ipsec_action_cache;
150 static kmem_cache_t *ipsec_sel_cache;
151 static kmem_cache_t *ipsec_pol_cache;
152 static kmem_cache_t *ipsec_info_cache;
153 
154 /* Frag cache prototypes */
155 static void ipsec_fragcache_clean(ipsec_fragcache_t *);
156 static ipsec_fragcache_entry_t *fragcache_delentry(int,
157     ipsec_fragcache_entry_t *, ipsec_fragcache_t *);
158 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *);
159 void ipsec_fragcache_uninit(ipsec_fragcache_t *);
160 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *, int,
161     ipsec_stack_t *);
162 
163 int ipsec_hdr_pullup_needed = 0;
164 int ipsec_weird_null_inbound_policy = 0;
165 
166 #define	ALGBITS_ROUND_DOWN(x, align)	(((x)/(align))*(align))
167 #define	ALGBITS_ROUND_UP(x, align)	ALGBITS_ROUND_DOWN((x)+(align)-1, align)
168 
169 /*
170  * Inbound traffic should have matching identities for both SA's.
171  */
172 
173 #define	SA_IDS_MATCH(sa1, sa2) 						\
174 	(((sa1) == NULL) || ((sa2) == NULL) ||				\
175 	(((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) &&		\
176 	    (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
177 
178 /*
179  * IPv4 Fragments
180  */
181 #define	IS_V4_FRAGMENT(ipha_fragment_offset_and_flags)			\
182 	(((ntohs(ipha_fragment_offset_and_flags) & IPH_OFFSET) != 0) ||	\
183 	((ntohs(ipha_fragment_offset_and_flags) & IPH_MF) != 0))
184 
185 /*
186  * IPv6 Fragments
187  */
188 #define	IS_V6_FRAGMENT(ipp)	(ipp.ipp_fields & IPPF_FRAGHDR)
189 
190 /*
191  * Policy failure messages.
192  */
193 static char *ipsec_policy_failure_msgs[] = {
194 
195 	/* IPSEC_POLICY_NOT_NEEDED */
196 	"%s: Dropping the datagram because the incoming packet "
197 	"is %s, but the recipient expects clear; Source %s, "
198 	"Destination %s.\n",
199 
200 	/* IPSEC_POLICY_MISMATCH */
201 	"%s: Policy Failure for the incoming packet (%s); Source %s, "
202 	"Destination %s.\n",
203 
204 	/* IPSEC_POLICY_AUTH_NOT_NEEDED	*/
205 	"%s: Authentication present while not expected in the "
206 	"incoming %s packet; Source %s, Destination %s.\n",
207 
208 	/* IPSEC_POLICY_ENCR_NOT_NEEDED */
209 	"%s: Encryption present while not expected in the "
210 	"incoming %s packet; Source %s, Destination %s.\n",
211 
212 	/* IPSEC_POLICY_SE_NOT_NEEDED */
213 	"%s: Self-Encapsulation present while not expected in the "
214 	"incoming %s packet; Source %s, Destination %s.\n",
215 };
216 
217 /*
218  * General overviews:
219  *
220  * Locking:
221  *
222  *	All of the system policy structures are protected by a single
223  *	rwlock.  These structures are threaded in a
224  *	fairly complex fashion and are not expected to change on a
225  *	regular basis, so this should not cause scaling/contention
226  *	problems.  As a result, policy checks should (hopefully) be MT-hot.
227  *
228  * Allocation policy:
229  *
230  *	We use custom kmem cache types for the various
231  *	bits & pieces of the policy data structures.  All allocations
232  *	use KM_NOSLEEP instead of KM_SLEEP for policy allocation.  The
233  *	policy table is of potentially unbounded size, so we don't
234  *	want to provide a way to hog all system memory with policy
235  *	entries..
236  */
237 
238 /* Convenient functions for freeing or dropping a b_next linked mblk chain */
239 
240 /* Free all messages in an mblk chain */
241 static void
242 ipsec_freemsg_chain(mblk_t *mp)
243 {
244 	mblk_t *mpnext;
245 	while (mp != NULL) {
246 		ASSERT(mp->b_prev == NULL);
247 		mpnext = mp->b_next;
248 		mp->b_next = NULL;
249 		freemsg(mp);	/* Always works, even if NULL */
250 		mp = mpnext;
251 	}
252 }
253 
254 /* ip_drop all messages in an mblk chain */
255 static void
256 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *arriving,
257     ire_t *outbound_ire, struct kstat_named *counter, ipdropper_t *who_called)
258 {
259 	mblk_t *mpnext;
260 	while (mp != NULL) {
261 		ASSERT(mp->b_prev == NULL);
262 		mpnext = mp->b_next;
263 		mp->b_next = NULL;
264 		ip_drop_packet(mp, inbound, arriving, outbound_ire, counter,
265 		    who_called);
266 		mp = mpnext;
267 	}
268 }
269 
270 /*
271  * AVL tree comparison function.
272  * the in-kernel avl assumes unique keys for all objects.
273  * Since sometimes policy will duplicate rules, we may insert
274  * multiple rules with the same rule id, so we need a tie-breaker.
275  */
276 static int
277 ipsec_policy_cmpbyid(const void *a, const void *b)
278 {
279 	const ipsec_policy_t *ipa, *ipb;
280 	uint64_t idxa, idxb;
281 
282 	ipa = (const ipsec_policy_t *)a;
283 	ipb = (const ipsec_policy_t *)b;
284 	idxa = ipa->ipsp_index;
285 	idxb = ipb->ipsp_index;
286 
287 	if (idxa < idxb)
288 		return (-1);
289 	if (idxa > idxb)
290 		return (1);
291 	/*
292 	 * Tie-breaker #1: All installed policy rules have a non-NULL
293 	 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not
294 	 * actually in-tree but rather a template node being used in
295 	 * an avl_find query; see ipsec_policy_delete().  This gives us
296 	 * a placeholder in the ordering just before the the first entry with
297 	 * a key >= the one we're looking for, so we can walk forward from
298 	 * that point to get the remaining entries with the same id.
299 	 */
300 	if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL))
301 		return (-1);
302 	if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL))
303 		return (1);
304 	/*
305 	 * At most one of the arguments to the comparison should have a
306 	 * NULL selector pointer; if not, the tree is broken.
307 	 */
308 	ASSERT(ipa->ipsp_sel != NULL);
309 	ASSERT(ipb->ipsp_sel != NULL);
310 	/*
311 	 * Tie-breaker #2: use the virtual address of the policy node
312 	 * to arbitrarily break ties.  Since we use the new tree node in
313 	 * the avl_find() in ipsec_insert_always, the new node will be
314 	 * inserted into the tree in the right place in the sequence.
315 	 */
316 	if (ipa < ipb)
317 		return (-1);
318 	if (ipa > ipb)
319 		return (1);
320 	return (0);
321 }
322 
323 /*
324  * Free what ipsec_alloc_table allocated.
325  */
326 void
327 ipsec_polhead_free_table(ipsec_policy_head_t *iph)
328 {
329 	int dir;
330 	int i;
331 
332 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
333 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
334 
335 		if (ipr->ipr_hash == NULL)
336 			continue;
337 
338 		for (i = 0; i < ipr->ipr_nchains; i++) {
339 			ASSERT(ipr->ipr_hash[i].hash_head == NULL);
340 		}
341 		kmem_free(ipr->ipr_hash, ipr->ipr_nchains *
342 		    sizeof (ipsec_policy_hash_t));
343 		ipr->ipr_hash = NULL;
344 	}
345 }
346 
347 void
348 ipsec_polhead_destroy(ipsec_policy_head_t *iph)
349 {
350 	int dir;
351 
352 	avl_destroy(&iph->iph_rulebyid);
353 	rw_destroy(&iph->iph_lock);
354 
355 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
356 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
357 		int chain;
358 
359 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
360 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
361 
362 	}
363 	ipsec_polhead_free_table(iph);
364 }
365 
366 /*
367  * Free the IPsec stack instance.
368  */
369 /* ARGSUSED */
370 static void
371 ipsec_stack_fini(netstackid_t stackid, void *arg)
372 {
373 	ipsec_stack_t	*ipss = (ipsec_stack_t *)arg;
374 	void *cookie;
375 	ipsec_tun_pol_t *node;
376 	netstack_t	*ns = ipss->ipsec_netstack;
377 	int		i;
378 	ipsec_algtype_t	algtype;
379 
380 	ipsec_loader_destroy(ipss);
381 
382 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
383 	/*
384 	 * It's possible we can just ASSERT() the tree is empty.  After all,
385 	 * we aren't called until IP is ready to unload (and presumably all
386 	 * tunnels have been unplumbed).  But we'll play it safe for now, the
387 	 * loop will just exit immediately if it's empty.
388 	 */
389 	cookie = NULL;
390 	while ((node = (ipsec_tun_pol_t *)
391 	    avl_destroy_nodes(&ipss->ipsec_tunnel_policies,
392 	    &cookie)) != NULL) {
393 		ITP_REFRELE(node, ns);
394 	}
395 	avl_destroy(&ipss->ipsec_tunnel_policies);
396 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
397 	rw_destroy(&ipss->ipsec_tunnel_policy_lock);
398 
399 	ipsec_config_flush(ns);
400 
401 	ipsec_kstat_destroy(ipss);
402 
403 	ip_drop_unregister(&ipss->ipsec_dropper);
404 
405 	ip_drop_unregister(&ipss->ipsec_spd_dropper);
406 	ip_drop_destroy(ipss);
407 	/*
408 	 * Globals start with ref == 1 to prevent IPPH_REFRELE() from
409 	 * attempting to free them, hence they should have 1 now.
410 	 */
411 	ipsec_polhead_destroy(&ipss->ipsec_system_policy);
412 	ASSERT(ipss->ipsec_system_policy.iph_refs == 1);
413 	ipsec_polhead_destroy(&ipss->ipsec_inactive_policy);
414 	ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1);
415 
416 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
417 		ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head);
418 		ipss->ipsec_action_hash[i].hash_head = NULL;
419 		mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock));
420 	}
421 
422 	for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
423 		ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
424 		mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock));
425 	}
426 
427 	mutex_enter(&ipss->ipsec_alg_lock);
428 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) {
429 		int nalgs = ipss->ipsec_nalgs[algtype];
430 
431 		for (i = 0; i < nalgs; i++) {
432 			if (ipss->ipsec_alglists[algtype][i] != NULL)
433 				ipsec_alg_unreg(algtype, i, ns);
434 		}
435 	}
436 	mutex_exit(&ipss->ipsec_alg_lock);
437 	mutex_destroy(&ipss->ipsec_alg_lock);
438 
439 	ipsid_gc(ns);
440 	ipsid_fini(ns);
441 
442 	(void) ipsec_free_tables(ipss);
443 	kmem_free(ipss, sizeof (*ipss));
444 }
445 
446 void
447 ipsec_policy_g_destroy(void)
448 {
449 	kmem_cache_destroy(ipsec_action_cache);
450 	kmem_cache_destroy(ipsec_sel_cache);
451 	kmem_cache_destroy(ipsec_pol_cache);
452 	kmem_cache_destroy(ipsec_info_cache);
453 
454 	ipsec_unregister_prov_update();
455 
456 	netstack_unregister(NS_IPSEC);
457 }
458 
459 
460 /*
461  * Free what ipsec_alloc_tables allocated.
462  * Called when table allocation fails to free the table.
463  */
464 static int
465 ipsec_free_tables(ipsec_stack_t *ipss)
466 {
467 	int i;
468 
469 	if (ipss->ipsec_sel_hash != NULL) {
470 		for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
471 			ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
472 		}
473 		kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize *
474 		    sizeof (*ipss->ipsec_sel_hash));
475 		ipss->ipsec_sel_hash = NULL;
476 		ipss->ipsec_spd_hashsize = 0;
477 	}
478 	ipsec_polhead_free_table(&ipss->ipsec_system_policy);
479 	ipsec_polhead_free_table(&ipss->ipsec_inactive_policy);
480 
481 	return (ENOMEM);
482 }
483 
484 /*
485  * Attempt to allocate the tables in a single policy head.
486  * Return nonzero on failure after cleaning up any work in progress.
487  */
488 int
489 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag,
490     boolean_t global_cleanup, netstack_t *ns)
491 {
492 	int dir;
493 
494 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
495 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
496 
497 		ipr->ipr_nchains = nchains;
498 		ipr->ipr_hash = kmem_zalloc(nchains *
499 		    sizeof (ipsec_policy_hash_t), kmflag);
500 		if (ipr->ipr_hash == NULL)
501 			return (global_cleanup ?
502 			    ipsec_free_tables(ns->netstack_ipsec) :
503 			    ENOMEM);
504 	}
505 	return (0);
506 }
507 
508 /*
509  * Attempt to allocate the various tables.  Return nonzero on failure
510  * after cleaning up any work in progress.
511  */
512 static int
513 ipsec_alloc_tables(int kmflag, netstack_t *ns)
514 {
515 	int error;
516 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
517 
518 	error = ipsec_alloc_table(&ipss->ipsec_system_policy,
519 	    ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
520 	if (error != 0)
521 		return (error);
522 
523 	error = ipsec_alloc_table(&ipss->ipsec_inactive_policy,
524 	    ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
525 	if (error != 0)
526 		return (error);
527 
528 	ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize *
529 	    sizeof (*ipss->ipsec_sel_hash), kmflag);
530 
531 	if (ipss->ipsec_sel_hash == NULL)
532 		return (ipsec_free_tables(ipss));
533 
534 	return (0);
535 }
536 
537 /*
538  * After table allocation, initialize a policy head.
539  */
540 void
541 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains)
542 {
543 	int dir, chain;
544 
545 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
546 	avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid,
547 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
548 
549 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
550 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
551 		ipr->ipr_nchains = nchains;
552 
553 		for (chain = 0; chain < nchains; chain++) {
554 			mutex_init(&(ipr->ipr_hash[chain].hash_lock),
555 			    NULL, MUTEX_DEFAULT, NULL);
556 		}
557 	}
558 }
559 
560 static boolean_t
561 ipsec_kstat_init(ipsec_stack_t *ipss)
562 {
563 	ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net",
564 	    KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t),
565 	    KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid);
566 
567 	if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL)
568 		return (B_FALSE);
569 
570 	ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data;
571 
572 #define	KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64)
573 	KI(esp_stat_in_requests);
574 	KI(esp_stat_in_discards);
575 	KI(esp_stat_lookup_failure);
576 	KI(ah_stat_in_requests);
577 	KI(ah_stat_in_discards);
578 	KI(ah_stat_lookup_failure);
579 	KI(sadb_acquire_maxpackets);
580 	KI(sadb_acquire_qhiwater);
581 #undef KI
582 
583 	kstat_install(ipss->ipsec_ksp);
584 	return (B_TRUE);
585 }
586 
587 static void
588 ipsec_kstat_destroy(ipsec_stack_t *ipss)
589 {
590 	kstat_delete_netstack(ipss->ipsec_ksp,
591 	    ipss->ipsec_netstack->netstack_stackid);
592 	ipss->ipsec_kstats = NULL;
593 
594 }
595 
596 /*
597  * Initialize the IPsec stack instance.
598  */
599 /* ARGSUSED */
600 static void *
601 ipsec_stack_init(netstackid_t stackid, netstack_t *ns)
602 {
603 	ipsec_stack_t	*ipss;
604 	int i;
605 
606 	ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP);
607 	ipss->ipsec_netstack = ns;
608 
609 	/*
610 	 * FIXME: netstack_ipsec is used by some of the routines we call
611 	 * below, but it isn't set until this routine returns.
612 	 * Either we introduce optional xxx_stack_alloc() functions
613 	 * that will be called by the netstack framework before xxx_stack_init,
614 	 * or we switch spd.c and sadb.c to operate on ipsec_stack_t
615 	 * (latter has some include file order issues for sadb.h, but makes
616 	 * sense if we merge some of the ipsec related stack_t's together.
617 	 */
618 	ns->netstack_ipsec = ipss;
619 
620 	/*
621 	 * Make two attempts to allocate policy hash tables; try it at
622 	 * the "preferred" size (may be set in /etc/system) first,
623 	 * then fall back to the default size.
624 	 */
625 	ipss->ipsec_spd_hashsize = (ipsec_spd_hashsize == 0) ?
626 	    IPSEC_SPDHASH_DEFAULT : ipsec_spd_hashsize;
627 
628 	if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) {
629 		cmn_err(CE_WARN,
630 		    "Unable to allocate %d entry IPsec policy hash table",
631 		    ipss->ipsec_spd_hashsize);
632 		ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
633 		cmn_err(CE_WARN, "Falling back to %d entries",
634 		    ipss->ipsec_spd_hashsize);
635 		(void) ipsec_alloc_tables(KM_SLEEP, ns);
636 	}
637 
638 	/* Just set a default for tunnels. */
639 	ipss->ipsec_tun_spd_hashsize = (tun_spd_hashsize == 0) ?
640 	    TUN_SPDHASH_DEFAULT : tun_spd_hashsize;
641 
642 	ipsid_init(ns);
643 	/*
644 	 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting
645 	 * to free them.
646 	 */
647 	ipss->ipsec_system_policy.iph_refs = 1;
648 	ipss->ipsec_inactive_policy.iph_refs = 1;
649 	ipsec_polhead_init(&ipss->ipsec_system_policy,
650 	    ipss->ipsec_spd_hashsize);
651 	ipsec_polhead_init(&ipss->ipsec_inactive_policy,
652 	    ipss->ipsec_spd_hashsize);
653 	rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL);
654 	avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare,
655 	    sizeof (ipsec_tun_pol_t), 0);
656 
657 	ipss->ipsec_next_policy_index = 1;
658 
659 	rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL);
660 	rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL);
661 
662 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
663 		mutex_init(&(ipss->ipsec_action_hash[i].hash_lock),
664 		    NULL, MUTEX_DEFAULT, NULL);
665 
666 	for (i = 0; i < ipss->ipsec_spd_hashsize; i++)
667 		mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock),
668 		    NULL, MUTEX_DEFAULT, NULL);
669 
670 	mutex_init(&ipss->ipsec_alg_lock, NULL, MUTEX_DEFAULT, NULL);
671 	for (i = 0; i < IPSEC_NALGTYPES; i++) {
672 		ipss->ipsec_nalgs[i] = 0;
673 	}
674 
675 	ip_drop_init(ipss);
676 	ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD");
677 
678 	/* Set function to dummy until tun is loaded */
679 	rw_init(&ipss->ipsec_itp_get_byaddr_rw_lock, NULL, RW_DEFAULT, NULL);
680 	rw_enter(&ipss->ipsec_itp_get_byaddr_rw_lock, RW_WRITER);
681 	ipss->ipsec_itp_get_byaddr = itp_get_byaddr_dummy;
682 	rw_exit(&ipss->ipsec_itp_get_byaddr_rw_lock);
683 
684 	/* IP's IPsec code calls the packet dropper */
685 	ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing");
686 
687 	(void) ipsec_kstat_init(ipss);
688 
689 	ipsec_loader_init(ipss);
690 	ipsec_loader_start(ipss);
691 
692 	return (ipss);
693 }
694 
695 /* Global across all stack instances */
696 void
697 ipsec_policy_g_init(void)
698 {
699 	ipsec_action_cache = kmem_cache_create("ipsec_actions",
700 	    sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
701 	    ipsec_action_reclaim, NULL, NULL, 0);
702 	ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
703 	    sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
704 	    NULL, NULL, NULL, 0);
705 	ipsec_pol_cache = kmem_cache_create("ipsec_policy",
706 	    sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
707 	    NULL, NULL, NULL, 0);
708 	ipsec_info_cache = kmem_cache_create("ipsec_info",
709 	    sizeof (ipsec_info_t), _POINTER_ALIGNMENT, NULL, NULL,
710 	    NULL, NULL, NULL, 0);
711 
712 	/*
713 	 * We want to be informed each time a stack is created or
714 	 * destroyed in the kernel, so we can maintain the
715 	 * set of ipsec_stack_t's.
716 	 */
717 	netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini);
718 }
719 
720 /*
721  * Sort algorithm lists.
722  *
723  * I may need to split this based on
724  * authentication/encryption, and I may wish to have an administrator
725  * configure this list.  Hold on to some NDD variables...
726  *
727  * XXX For now, sort on minimum key size (GAG!).  While minimum key size is
728  * not the ideal metric, it's the only quantifiable measure available.
729  * We need a better metric for sorting algorithms by preference.
730  */
731 static void
732 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
733 {
734 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
735 	ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid];
736 	uint8_t holder, swap;
737 	uint_t i;
738 	uint_t count = ipss->ipsec_nalgs[at];
739 	ASSERT(ai != NULL);
740 	ASSERT(algid == ai->alg_id);
741 
742 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
743 
744 	holder = algid;
745 
746 	for (i = 0; i < count - 1; i++) {
747 		ipsec_alginfo_t *alt;
748 
749 		alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]];
750 		/*
751 		 * If you want to give precedence to newly added algs,
752 		 * add the = in the > comparison.
753 		 */
754 		if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
755 			/* Swap sortlist[i] and holder. */
756 			swap = ipss->ipsec_sortlist[at][i];
757 			ipss->ipsec_sortlist[at][i] = holder;
758 			holder = swap;
759 			ai = alt;
760 		} /* Else just continue. */
761 	}
762 
763 	/* Store holder in last slot. */
764 	ipss->ipsec_sortlist[at][i] = holder;
765 }
766 
767 /*
768  * Remove an algorithm from a sorted algorithm list.
769  * This should be considerably easier, even with complex sorting.
770  */
771 static void
772 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
773 {
774 	boolean_t copyback = B_FALSE;
775 	int i;
776 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
777 	int newcount = ipss->ipsec_nalgs[at];
778 
779 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
780 
781 	for (i = 0; i <= newcount; i++) {
782 		if (copyback) {
783 			ipss->ipsec_sortlist[at][i-1] =
784 			    ipss->ipsec_sortlist[at][i];
785 		} else if (ipss->ipsec_sortlist[at][i] == algid) {
786 			copyback = B_TRUE;
787 		}
788 	}
789 }
790 
791 /*
792  * Add the specified algorithm to the algorithm tables.
793  * Must be called while holding the algorithm table writer lock.
794  */
795 void
796 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns)
797 {
798 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
799 
800 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
801 
802 	ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL);
803 	ipsec_alg_fix_min_max(alg, algtype, ns);
804 	ipss->ipsec_alglists[algtype][alg->alg_id] = alg;
805 
806 	ipss->ipsec_nalgs[algtype]++;
807 	alg_insert_sortlist(algtype, alg->alg_id, ns);
808 }
809 
810 /*
811  * Remove the specified algorithm from the algorithm tables.
812  * Must be called while holding the algorithm table writer lock.
813  */
814 void
815 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns)
816 {
817 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
818 
819 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
820 
821 	ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL);
822 	ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]);
823 	ipss->ipsec_alglists[algtype][algid] = NULL;
824 
825 	ipss->ipsec_nalgs[algtype]--;
826 	alg_remove_sortlist(algtype, algid, ns);
827 }
828 
829 /*
830  * Hooks for spdsock to get a grip on system policy.
831  */
832 
833 ipsec_policy_head_t *
834 ipsec_system_policy(netstack_t *ns)
835 {
836 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
837 	ipsec_policy_head_t *h = &ipss->ipsec_system_policy;
838 
839 	IPPH_REFHOLD(h);
840 	return (h);
841 }
842 
843 ipsec_policy_head_t *
844 ipsec_inactive_policy(netstack_t *ns)
845 {
846 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
847 	ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy;
848 
849 	IPPH_REFHOLD(h);
850 	return (h);
851 }
852 
853 /*
854  * Lock inactive policy, then active policy, then exchange policy root
855  * pointers.
856  */
857 void
858 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive,
859     netstack_t *ns)
860 {
861 	int af, dir;
862 	avl_tree_t r1, r2;
863 
864 	rw_enter(&inactive->iph_lock, RW_WRITER);
865 	rw_enter(&active->iph_lock, RW_WRITER);
866 
867 	r1 = active->iph_rulebyid;
868 	r2 = inactive->iph_rulebyid;
869 	active->iph_rulebyid = r2;
870 	inactive->iph_rulebyid = r1;
871 
872 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
873 		ipsec_policy_hash_t *h1, *h2;
874 
875 		h1 = active->iph_root[dir].ipr_hash;
876 		h2 = inactive->iph_root[dir].ipr_hash;
877 		active->iph_root[dir].ipr_hash = h2;
878 		inactive->iph_root[dir].ipr_hash = h1;
879 
880 		for (af = 0; af < IPSEC_NAF; af++) {
881 			ipsec_policy_t *t1, *t2;
882 
883 			t1 = active->iph_root[dir].ipr_nonhash[af];
884 			t2 = inactive->iph_root[dir].ipr_nonhash[af];
885 			active->iph_root[dir].ipr_nonhash[af] = t2;
886 			inactive->iph_root[dir].ipr_nonhash[af] = t1;
887 			if (t1 != NULL) {
888 				t1->ipsp_hash.hash_pp =
889 				    &(inactive->iph_root[dir].ipr_nonhash[af]);
890 			}
891 			if (t2 != NULL) {
892 				t2->ipsp_hash.hash_pp =
893 				    &(active->iph_root[dir].ipr_nonhash[af]);
894 			}
895 
896 		}
897 	}
898 	active->iph_gen++;
899 	inactive->iph_gen++;
900 	ipsec_update_present_flags(ns->netstack_ipsec);
901 	rw_exit(&active->iph_lock);
902 	rw_exit(&inactive->iph_lock);
903 }
904 
905 /*
906  * Swap global policy primary/secondary.
907  */
908 void
909 ipsec_swap_global_policy(netstack_t *ns)
910 {
911 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
912 
913 	ipsec_swap_policy(&ipss->ipsec_system_policy,
914 	    &ipss->ipsec_inactive_policy, ns);
915 }
916 
917 /*
918  * Clone one policy rule..
919  */
920 static ipsec_policy_t *
921 ipsec_copy_policy(const ipsec_policy_t *src)
922 {
923 	ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
924 
925 	if (dst == NULL)
926 		return (NULL);
927 
928 	/*
929 	 * Adjust refcounts of cloned state.
930 	 */
931 	IPACT_REFHOLD(src->ipsp_act);
932 	src->ipsp_sel->ipsl_refs++;
933 
934 	HASH_NULL(dst, ipsp_hash);
935 	dst->ipsp_refs = 1;
936 	dst->ipsp_sel = src->ipsp_sel;
937 	dst->ipsp_act = src->ipsp_act;
938 	dst->ipsp_prio = src->ipsp_prio;
939 	dst->ipsp_index = src->ipsp_index;
940 
941 	return (dst);
942 }
943 
944 void
945 ipsec_insert_always(avl_tree_t *tree, void *new_node)
946 {
947 	void *node;
948 	avl_index_t where;
949 
950 	node = avl_find(tree, new_node, &where);
951 	ASSERT(node == NULL);
952 	avl_insert(tree, new_node, where);
953 }
954 
955 
956 static int
957 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src,
958     ipsec_policy_t **dstp)
959 {
960 	for (; src != NULL; src = src->ipsp_hash.hash_next) {
961 		ipsec_policy_t *dst = ipsec_copy_policy(src);
962 		if (dst == NULL)
963 			return (ENOMEM);
964 
965 		HASHLIST_INSERT(dst, ipsp_hash, *dstp);
966 		ipsec_insert_always(&dph->iph_rulebyid, dst);
967 	}
968 	return (0);
969 }
970 
971 
972 
973 /*
974  * Make one policy head look exactly like another.
975  *
976  * As with ipsec_swap_policy, we lock the destination policy head first, then
977  * the source policy head. Note that we only need to read-lock the source
978  * policy head as we are not changing it.
979  */
980 int
981 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph,
982     netstack_t *ns)
983 {
984 	int af, dir, chain, nchains;
985 
986 	rw_enter(&dph->iph_lock, RW_WRITER);
987 
988 	ipsec_polhead_flush(dph, ns);
989 
990 	rw_enter(&sph->iph_lock, RW_READER);
991 
992 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
993 		ipsec_policy_root_t *dpr = &dph->iph_root[dir];
994 		ipsec_policy_root_t *spr = &sph->iph_root[dir];
995 		nchains = dpr->ipr_nchains;
996 
997 		ASSERT(dpr->ipr_nchains == spr->ipr_nchains);
998 
999 		for (af = 0; af < IPSEC_NAF; af++) {
1000 			if (ipsec_copy_chain(dph, spr->ipr_nonhash[af],
1001 			    &dpr->ipr_nonhash[af]))
1002 				goto abort_copy;
1003 		}
1004 
1005 		for (chain = 0; chain < nchains; chain++) {
1006 			if (ipsec_copy_chain(dph,
1007 			    spr->ipr_hash[chain].hash_head,
1008 			    &dpr->ipr_hash[chain].hash_head))
1009 				goto abort_copy;
1010 		}
1011 	}
1012 
1013 	dph->iph_gen++;
1014 
1015 	rw_exit(&sph->iph_lock);
1016 	rw_exit(&dph->iph_lock);
1017 	return (0);
1018 
1019 abort_copy:
1020 	ipsec_polhead_flush(dph, ns);
1021 	rw_exit(&sph->iph_lock);
1022 	rw_exit(&dph->iph_lock);
1023 	return (ENOMEM);
1024 }
1025 
1026 /*
1027  * Clone currently active policy to the inactive policy list.
1028  */
1029 int
1030 ipsec_clone_system_policy(netstack_t *ns)
1031 {
1032 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1033 
1034 	return (ipsec_copy_polhead(&ipss->ipsec_system_policy,
1035 	    &ipss->ipsec_inactive_policy, ns));
1036 }
1037 
1038 /*
1039  * Generic "do we have IPvN policy" answer.
1040  */
1041 boolean_t
1042 iph_ipvN(ipsec_policy_head_t *iph, boolean_t v6)
1043 {
1044 	int i, hval;
1045 	uint32_t valbit;
1046 	ipsec_policy_root_t *ipr;
1047 	ipsec_policy_t *ipp;
1048 
1049 	if (v6) {
1050 		valbit = IPSL_IPV6;
1051 		hval = IPSEC_AF_V6;
1052 	} else {
1053 		valbit = IPSL_IPV4;
1054 		hval = IPSEC_AF_V4;
1055 	}
1056 
1057 	ASSERT(RW_LOCK_HELD(&iph->iph_lock));
1058 	for (ipr = iph->iph_root; ipr < &(iph->iph_root[IPSEC_NTYPES]); ipr++) {
1059 		if (ipr->ipr_nonhash[hval] != NULL)
1060 			return (B_TRUE);
1061 		for (i = 0; i < ipr->ipr_nchains; i++) {
1062 			for (ipp = ipr->ipr_hash[i].hash_head; ipp != NULL;
1063 			    ipp = ipp->ipsp_hash.hash_next) {
1064 				if (ipp->ipsp_sel->ipsl_key.ipsl_valid & valbit)
1065 					return (B_TRUE);
1066 			}
1067 		}
1068 	}
1069 
1070 	return (B_FALSE);
1071 }
1072 
1073 /*
1074  * Extract the string from ipsec_policy_failure_msgs[type] and
1075  * log it.
1076  *
1077  */
1078 void
1079 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h,
1080     boolean_t secure, netstack_t *ns)
1081 {
1082 	char	sbuf[INET6_ADDRSTRLEN];
1083 	char	dbuf[INET6_ADDRSTRLEN];
1084 	char	*s;
1085 	char	*d;
1086 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1087 
1088 	ASSERT((ipha == NULL && ip6h != NULL) ||
1089 	    (ip6h == NULL && ipha != NULL));
1090 
1091 	if (ipha != NULL) {
1092 		s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
1093 		d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
1094 	} else {
1095 		s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
1096 		d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
1097 
1098 	}
1099 
1100 	/* Always bump the policy failure counter. */
1101 	ipss->ipsec_policy_failure_count[type]++;
1102 
1103 	ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1104 	    ipsec_policy_failure_msgs[type], func_name,
1105 	    (secure ? "secure" : "not secure"), s, d);
1106 }
1107 
1108 /*
1109  * Rate-limiting front-end to strlog() for AH and ESP.	Uses the ndd variables
1110  * in /dev/ip and the same rate-limiting clock so that there's a single
1111  * knob to turn to throttle the rate of messages.
1112  */
1113 void
1114 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl,
1115     char *fmt, ...)
1116 {
1117 	va_list adx;
1118 	hrtime_t current = gethrtime();
1119 	ip_stack_t	*ipst = ns->netstack_ip;
1120 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1121 
1122 	sl |= SL_CONSOLE;
1123 	/*
1124 	 * Throttle logging to stop syslog from being swamped. If variable
1125 	 * 'ipsec_policy_log_interval' is zero, don't log any messages at
1126 	 * all, otherwise log only one message every 'ipsec_policy_log_interval'
1127 	 * msec. Convert interval (in msec) to hrtime (in nsec).
1128 	 */
1129 
1130 	if (ipst->ips_ipsec_policy_log_interval) {
1131 		if (ipss->ipsec_policy_failure_last +
1132 		    ((hrtime_t)ipst->ips_ipsec_policy_log_interval *
1133 		    (hrtime_t)1000000) <= current) {
1134 			va_start(adx, fmt);
1135 			(void) vstrlog(mid, sid, level, sl, fmt, adx);
1136 			va_end(adx);
1137 			ipss->ipsec_policy_failure_last = current;
1138 		}
1139 	}
1140 }
1141 
1142 void
1143 ipsec_config_flush(netstack_t *ns)
1144 {
1145 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1146 
1147 	rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER);
1148 	ipsec_polhead_flush(&ipss->ipsec_system_policy, ns);
1149 	ipss->ipsec_next_policy_index = 1;
1150 	rw_exit(&ipss->ipsec_system_policy.iph_lock);
1151 	ipsec_action_reclaim_stack(ns);
1152 }
1153 
1154 /*
1155  * Clip a policy's min/max keybits vs. the capabilities of the
1156  * algorithm.
1157  */
1158 static void
1159 act_alg_adjust(uint_t algtype, uint_t algid,
1160     uint16_t *minbits, uint16_t *maxbits, netstack_t *ns)
1161 {
1162 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1163 	ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid];
1164 
1165 	if (algp != NULL) {
1166 		/*
1167 		 * If passed-in minbits is zero, we assume the caller trusts
1168 		 * us with setting the minimum key size.  We pick the
1169 		 * algorithms DEFAULT key size for the minimum in this case.
1170 		 */
1171 		if (*minbits == 0) {
1172 			*minbits = algp->alg_default_bits;
1173 			ASSERT(*minbits >= algp->alg_minbits);
1174 		} else {
1175 			*minbits = MAX(MIN(*minbits, algp->alg_maxbits),
1176 			    algp->alg_minbits);
1177 		}
1178 		if (*maxbits == 0)
1179 			*maxbits = algp->alg_maxbits;
1180 		else
1181 			*maxbits = MIN(MAX(*maxbits, algp->alg_minbits),
1182 			    algp->alg_maxbits);
1183 		ASSERT(*minbits <= *maxbits);
1184 	} else {
1185 		*minbits = 0;
1186 		*maxbits = 0;
1187 	}
1188 }
1189 
1190 /*
1191  * Check an action's requested algorithms against the algorithms currently
1192  * loaded in the system.
1193  */
1194 boolean_t
1195 ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns)
1196 {
1197 	ipsec_prot_t *ipp;
1198 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1199 
1200 	ipp = &act->ipa_apply;
1201 
1202 	if (ipp->ipp_use_ah &&
1203 	    ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
1204 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
1205 		return (B_FALSE);
1206 	}
1207 	if (ipp->ipp_use_espa &&
1208 	    ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] ==
1209 	    NULL) {
1210 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
1211 		return (B_FALSE);
1212 	}
1213 	if (ipp->ipp_use_esp &&
1214 	    ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
1215 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
1216 		return (B_FALSE);
1217 	}
1218 
1219 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
1220 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1221 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
1222 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1223 	act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
1224 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1225 
1226 	if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
1227 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
1228 		return (B_FALSE);
1229 	}
1230 	if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
1231 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
1232 		return (B_FALSE);
1233 	}
1234 	if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
1235 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
1236 		return (B_FALSE);
1237 	}
1238 	/* TODO: sanity check lifetimes */
1239 	return (B_TRUE);
1240 }
1241 
1242 /*
1243  * Set up a single action during wildcard expansion..
1244  */
1245 static void
1246 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
1247     uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns)
1248 {
1249 	ipsec_prot_t *ipp;
1250 
1251 	*outact = *act;
1252 	ipp = &outact->ipa_apply;
1253 	ipp->ipp_auth_alg = (uint8_t)auth_alg;
1254 	ipp->ipp_encr_alg = (uint8_t)encr_alg;
1255 	ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
1256 
1257 	act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
1258 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1259 	act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
1260 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1261 	act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
1262 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1263 }
1264 
1265 /*
1266  * combinatoric expansion time: expand a wildcarded action into an
1267  * array of wildcarded actions; we return the exploded action list,
1268  * and return a count in *nact (output only).
1269  */
1270 static ipsec_act_t *
1271 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns)
1272 {
1273 	boolean_t use_ah, use_esp, use_espa;
1274 	boolean_t wild_auth, wild_encr, wild_eauth;
1275 	uint_t	auth_alg, auth_idx, auth_min, auth_max;
1276 	uint_t	eauth_alg, eauth_idx, eauth_min, eauth_max;
1277 	uint_t  encr_alg, encr_idx, encr_min, encr_max;
1278 	uint_t	action_count, ai;
1279 	ipsec_act_t *outact;
1280 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1281 
1282 	if (act->ipa_type != IPSEC_ACT_APPLY) {
1283 		outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
1284 		*nact = 1;
1285 		if (outact != NULL)
1286 			bcopy(act, outact, sizeof (*act));
1287 		return (outact);
1288 	}
1289 	/*
1290 	 * compute the combinatoric explosion..
1291 	 *
1292 	 * we assume a request for encr if esp_req is PREF_REQUIRED
1293 	 * we assume a request for ah auth if ah_req is PREF_REQUIRED.
1294 	 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
1295 	 */
1296 
1297 	use_ah = act->ipa_apply.ipp_use_ah;
1298 	use_esp = act->ipa_apply.ipp_use_esp;
1299 	use_espa = act->ipa_apply.ipp_use_espa;
1300 	auth_alg = act->ipa_apply.ipp_auth_alg;
1301 	eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
1302 	encr_alg = act->ipa_apply.ipp_encr_alg;
1303 
1304 	wild_auth = use_ah && (auth_alg == 0);
1305 	wild_eauth = use_espa && (eauth_alg == 0);
1306 	wild_encr = use_esp && (encr_alg == 0);
1307 
1308 	action_count = 1;
1309 	auth_min = auth_max = auth_alg;
1310 	eauth_min = eauth_max = eauth_alg;
1311 	encr_min = encr_max = encr_alg;
1312 
1313 	/*
1314 	 * set up for explosion.. for each dimension, expand output
1315 	 * size by the explosion factor.
1316 	 *
1317 	 * Don't include the "any" algorithms, if defined, as no
1318 	 * kernel policies should be set for these algorithms.
1319 	 */
1320 
1321 #define	SET_EXP_MINMAX(type, wild, alg, min, max, ipss)		\
1322 	if (wild) {						\
1323 		int nalgs = ipss->ipsec_nalgs[type];		\
1324 		if (ipss->ipsec_alglists[type][alg] != NULL)	\
1325 			nalgs--;				\
1326 		action_count *= nalgs;				\
1327 		min = 0;					\
1328 		max = ipss->ipsec_nalgs[type] - 1;		\
1329 	}
1330 
1331 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
1332 	    auth_min, auth_max, ipss);
1333 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
1334 	    eauth_min, eauth_max, ipss);
1335 	SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
1336 	    encr_min, encr_max, ipss);
1337 
1338 #undef	SET_EXP_MINMAX
1339 
1340 	/*
1341 	 * ok, allocate the whole mess..
1342 	 */
1343 
1344 	outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
1345 	if (outact == NULL)
1346 		return (NULL);
1347 
1348 	/*
1349 	 * Now compute all combinations.  Note that non-wildcarded
1350 	 * dimensions just get a single value from auth_min, while
1351 	 * wildcarded dimensions indirect through the sortlist.
1352 	 *
1353 	 * We do encryption outermost since, at this time, there's
1354 	 * greater difference in security and performance between
1355 	 * encryption algorithms vs. authentication algorithms.
1356 	 */
1357 
1358 	ai = 0;
1359 
1360 #define	WHICH_ALG(type, wild, idx, ipss) \
1361 	((wild)?(ipss->ipsec_sortlist[type][idx]):(idx))
1362 
1363 	for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
1364 		encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss);
1365 		if (wild_encr && encr_alg == SADB_EALG_NONE)
1366 			continue;
1367 		for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
1368 			auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
1369 			    auth_idx, ipss);
1370 			if (wild_auth && auth_alg == SADB_AALG_NONE)
1371 				continue;
1372 			for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
1373 			    eauth_idx++) {
1374 				eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
1375 				    wild_eauth, eauth_idx, ipss);
1376 				if (wild_eauth && eauth_alg == SADB_AALG_NONE)
1377 					continue;
1378 
1379 				ipsec_setup_act(&outact[ai], act,
1380 				    auth_alg, encr_alg, eauth_alg, ns);
1381 				ai++;
1382 			}
1383 		}
1384 	}
1385 
1386 #undef WHICH_ALG
1387 
1388 	ASSERT(ai == action_count);
1389 	*nact = action_count;
1390 	return (outact);
1391 }
1392 
1393 /*
1394  * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
1395  */
1396 static void
1397 ipsec_prot_from_req(ipsec_req_t *req, ipsec_prot_t *ipp)
1398 {
1399 	bzero(ipp, sizeof (*ipp));
1400 	/*
1401 	 * ipp_use_* are bitfields.  Look at "!!" in the following as a
1402 	 * "boolean canonicalization" operator.
1403 	 */
1404 	ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
1405 	ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
1406 	ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg);
1407 	ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
1408 	ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
1409 	    IPSEC_PREF_UNIQUE);
1410 	ipp->ipp_encr_alg = req->ipsr_esp_alg;
1411 	/*
1412 	 * SADB_AALG_ANY is a placeholder to distinguish "any" from
1413 	 * "none" above.  If auth is required, as determined above,
1414 	 * SADB_AALG_ANY becomes 0, which is the representation
1415 	 * of "any" and "none" in PF_KEY v2.
1416 	 */
1417 	ipp->ipp_auth_alg = (req->ipsr_auth_alg != SADB_AALG_ANY) ?
1418 	    req->ipsr_auth_alg : 0;
1419 	ipp->ipp_esp_auth_alg = (req->ipsr_esp_auth_alg != SADB_AALG_ANY) ?
1420 	    req->ipsr_esp_auth_alg : 0;
1421 }
1422 
1423 /*
1424  * Extract a new-style action from a request.
1425  */
1426 void
1427 ipsec_actvec_from_req(ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp,
1428     netstack_t *ns)
1429 {
1430 	struct ipsec_act act;
1431 
1432 	bzero(&act, sizeof (act));
1433 	if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
1434 	    (req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
1435 		act.ipa_type = IPSEC_ACT_BYPASS;
1436 	} else {
1437 		act.ipa_type = IPSEC_ACT_APPLY;
1438 		ipsec_prot_from_req(req, &act.ipa_apply);
1439 	}
1440 	*actp = ipsec_act_wildcard_expand(&act, nactp, ns);
1441 }
1442 
1443 /*
1444  * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
1445  * We assume caller has already zero'ed *req for us.
1446  */
1447 static int
1448 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
1449 {
1450 	req->ipsr_esp_alg = ipp->ipp_encr_alg;
1451 	req->ipsr_auth_alg = ipp->ipp_auth_alg;
1452 	req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
1453 
1454 	if (ipp->ipp_use_unique) {
1455 		req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
1456 		req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
1457 	}
1458 	if (ipp->ipp_use_se)
1459 		req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
1460 	if (ipp->ipp_use_ah)
1461 		req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
1462 	if (ipp->ipp_use_esp)
1463 		req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
1464 	return (sizeof (*req));
1465 }
1466 
1467 /*
1468  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1469  * We assume caller has already zero'ed *req for us.
1470  */
1471 static int
1472 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
1473 {
1474 	switch (ap->ipa_act.ipa_type) {
1475 	case IPSEC_ACT_BYPASS:
1476 		req->ipsr_ah_req = IPSEC_PREF_NEVER;
1477 		req->ipsr_esp_req = IPSEC_PREF_NEVER;
1478 		return (sizeof (*req));
1479 	case IPSEC_ACT_APPLY:
1480 		return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
1481 	}
1482 	return (sizeof (*req));
1483 }
1484 
1485 /*
1486  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1487  * We assume caller has already zero'ed *req for us.
1488  */
1489 int
1490 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
1491 {
1492 	ipsec_policy_t *p;
1493 
1494 	/*
1495 	 * FULL-PERSOCK: consult hash table, too?
1496 	 */
1497 	for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af];
1498 	    p != NULL;
1499 	    p = p->ipsp_hash.hash_next) {
1500 		if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0)
1501 			return (ipsec_req_from_act(p->ipsp_act, req));
1502 	}
1503 	return (sizeof (*req));
1504 }
1505 
1506 /*
1507  * Based on per-socket or latched policy, convert to an appropriate
1508  * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
1509  * be tail-called from ip.
1510  */
1511 int
1512 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
1513 {
1514 	ipsec_latch_t *ipl;
1515 	int rv = sizeof (ipsec_req_t);
1516 
1517 	bzero(req, sizeof (*req));
1518 
1519 	mutex_enter(&connp->conn_lock);
1520 	ipl = connp->conn_latch;
1521 
1522 	/*
1523 	 * Find appropriate policy.  First choice is latched action;
1524 	 * failing that, see latched policy; failing that,
1525 	 * look at configured policy.
1526 	 */
1527 	if (ipl != NULL) {
1528 		if (ipl->ipl_in_action != NULL) {
1529 			rv = ipsec_req_from_act(ipl->ipl_in_action, req);
1530 			goto done;
1531 		}
1532 		if (ipl->ipl_in_policy != NULL) {
1533 			rv = ipsec_req_from_act(ipl->ipl_in_policy->ipsp_act,
1534 			    req);
1535 			goto done;
1536 		}
1537 	}
1538 	if (connp->conn_policy != NULL)
1539 		rv = ipsec_req_from_head(connp->conn_policy, req, af);
1540 done:
1541 	mutex_exit(&connp->conn_lock);
1542 	return (rv);
1543 }
1544 
1545 void
1546 ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
1547 {
1548 	kmem_free(act, nact * sizeof (*act));
1549 }
1550 
1551 /*
1552  * When outbound policy is not cached, look it up the hard way and attach
1553  * an ipsec_out_t to the packet..
1554  */
1555 static mblk_t *
1556 ipsec_attach_global_policy(mblk_t **mp, conn_t *connp, ipsec_selector_t *sel,
1557     netstack_t *ns)
1558 {
1559 	ipsec_policy_t *p;
1560 
1561 	p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel, ns);
1562 
1563 	if (p == NULL)
1564 		return (NULL);
1565 	return (ipsec_attach_ipsec_out(mp, connp, p, sel->ips_protocol, ns));
1566 }
1567 
1568 /*
1569  * We have an ipsec_out already, but don't have cached policy; fill it in
1570  * with the right actions.
1571  */
1572 static mblk_t *
1573 ipsec_apply_global_policy(mblk_t *ipsec_mp, conn_t *connp,
1574     ipsec_selector_t *sel, netstack_t *ns)
1575 {
1576 	ipsec_out_t *io;
1577 	ipsec_policy_t *p;
1578 
1579 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
1580 	ASSERT(ipsec_mp->b_cont->b_datap->db_type == M_DATA);
1581 
1582 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
1583 
1584 	if (io->ipsec_out_policy == NULL) {
1585 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, io, sel, ns);
1586 		io->ipsec_out_policy = p;
1587 	}
1588 	return (ipsec_mp);
1589 }
1590 
1591 
1592 /*
1593  * Consumes a reference to ipsp.
1594  */
1595 static mblk_t *
1596 ipsec_check_loopback_policy(mblk_t *first_mp, boolean_t mctl_present,
1597     ipsec_policy_t *ipsp)
1598 {
1599 	mblk_t *ipsec_mp;
1600 	ipsec_in_t *ii;
1601 	netstack_t	*ns;
1602 
1603 	if (!mctl_present)
1604 		return (first_mp);
1605 
1606 	ipsec_mp = first_mp;
1607 
1608 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1609 	ns = ii->ipsec_in_ns;
1610 	ASSERT(ii->ipsec_in_loopback);
1611 	IPPOL_REFRELE(ipsp, ns);
1612 
1613 	/*
1614 	 * We should do an actual policy check here.  Revisit this
1615 	 * when we revisit the IPsec API.  (And pass a conn_t in when we
1616 	 * get there.)
1617 	 */
1618 
1619 	return (first_mp);
1620 }
1621 
1622 /*
1623  * Check that packet's inbound ports & proto match the selectors
1624  * expected by the SAs it traversed on the way in.
1625  */
1626 static boolean_t
1627 ipsec_check_ipsecin_unique(ipsec_in_t *ii, const char **reason,
1628     kstat_named_t **counter, uint64_t pkt_unique)
1629 {
1630 	uint64_t ah_mask, esp_mask;
1631 	ipsa_t *ah_assoc;
1632 	ipsa_t *esp_assoc;
1633 	netstack_t	*ns = ii->ipsec_in_ns;
1634 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1635 
1636 	ASSERT(ii->ipsec_in_secure);
1637 	ASSERT(!ii->ipsec_in_loopback);
1638 
1639 	ah_assoc = ii->ipsec_in_ah_sa;
1640 	esp_assoc = ii->ipsec_in_esp_sa;
1641 	ASSERT((ah_assoc != NULL) || (esp_assoc != NULL));
1642 
1643 	ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0;
1644 	esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0;
1645 
1646 	if ((ah_mask == 0) && (esp_mask == 0))
1647 		return (B_TRUE);
1648 
1649 	/*
1650 	 * The pkt_unique check will also check for tunnel mode on the SA
1651 	 * vs. the tunneled_packet boolean.  "Be liberal in what you receive"
1652 	 * should not apply in this case.  ;)
1653 	 */
1654 
1655 	if (ah_mask != 0 &&
1656 	    ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) {
1657 		*reason = "AH inner header mismatch";
1658 		*counter = DROPPER(ipss, ipds_spd_ah_innermismatch);
1659 		return (B_FALSE);
1660 	}
1661 	if (esp_mask != 0 &&
1662 	    esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) {
1663 		*reason = "ESP inner header mismatch";
1664 		*counter = DROPPER(ipss, ipds_spd_esp_innermismatch);
1665 		return (B_FALSE);
1666 	}
1667 	return (B_TRUE);
1668 }
1669 
1670 static boolean_t
1671 ipsec_check_ipsecin_action(ipsec_in_t *ii, mblk_t *mp, ipsec_action_t *ap,
1672     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter)
1673 {
1674 	boolean_t ret = B_TRUE;
1675 	ipsec_prot_t *ipp;
1676 	ipsa_t *ah_assoc;
1677 	ipsa_t *esp_assoc;
1678 	boolean_t decaps;
1679 	netstack_t	*ns = ii->ipsec_in_ns;
1680 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1681 
1682 	ASSERT((ipha == NULL && ip6h != NULL) ||
1683 	    (ip6h == NULL && ipha != NULL));
1684 
1685 	if (ii->ipsec_in_loopback) {
1686 		/*
1687 		 * Besides accepting pointer-equivalent actions, we also
1688 		 * accept any ICMP errors we generated for ourselves,
1689 		 * regardless of policy.  If we do not wish to make this
1690 		 * assumption in the future, check here, and where
1691 		 * icmp_loopback is initialized in ip.c and ip6.c.  (Look for
1692 		 * ipsec_out_icmp_loopback.)
1693 		 */
1694 		if (ap == ii->ipsec_in_action || ii->ipsec_in_icmp_loopback)
1695 			return (B_TRUE);
1696 
1697 		/* Deep compare necessary here?? */
1698 		*counter = DROPPER(ipss, ipds_spd_loopback_mismatch);
1699 		*reason = "loopback policy mismatch";
1700 		return (B_FALSE);
1701 	}
1702 	ASSERT(!ii->ipsec_in_icmp_loopback);
1703 
1704 	ah_assoc = ii->ipsec_in_ah_sa;
1705 	esp_assoc = ii->ipsec_in_esp_sa;
1706 
1707 	decaps = ii->ipsec_in_decaps;
1708 
1709 	switch (ap->ipa_act.ipa_type) {
1710 	case IPSEC_ACT_DISCARD:
1711 	case IPSEC_ACT_REJECT:
1712 		/* Should "fail hard" */
1713 		*counter = DROPPER(ipss, ipds_spd_explicit);
1714 		*reason = "blocked by policy";
1715 		return (B_FALSE);
1716 
1717 	case IPSEC_ACT_BYPASS:
1718 	case IPSEC_ACT_CLEAR:
1719 		*counter = DROPPER(ipss, ipds_spd_got_secure);
1720 		*reason = "expected clear, got protected";
1721 		return (B_FALSE);
1722 
1723 	case IPSEC_ACT_APPLY:
1724 		ipp = &ap->ipa_act.ipa_apply;
1725 		/*
1726 		 * As of now we do the simple checks of whether
1727 		 * the datagram has gone through the required IPSEC
1728 		 * protocol constraints or not. We might have more
1729 		 * in the future like sensitive levels, key bits, etc.
1730 		 * If it fails the constraints, check whether we would
1731 		 * have accepted this if it had come in clear.
1732 		 */
1733 		if (ipp->ipp_use_ah) {
1734 			if (ah_assoc == NULL) {
1735 				ret = ipsec_inbound_accept_clear(mp, ipha,
1736 				    ip6h);
1737 				*counter = DROPPER(ipss, ipds_spd_got_clear);
1738 				*reason = "unprotected not accepted";
1739 				break;
1740 			}
1741 			ASSERT(ah_assoc != NULL);
1742 			ASSERT(ipp->ipp_auth_alg != 0);
1743 
1744 			if (ah_assoc->ipsa_auth_alg !=
1745 			    ipp->ipp_auth_alg) {
1746 				*counter = DROPPER(ipss, ipds_spd_bad_ahalg);
1747 				*reason = "unacceptable ah alg";
1748 				ret = B_FALSE;
1749 				break;
1750 			}
1751 		} else if (ah_assoc != NULL) {
1752 			/*
1753 			 * Don't allow this. Check IPSEC NOTE above
1754 			 * ip_fanout_proto().
1755 			 */
1756 			*counter = DROPPER(ipss, ipds_spd_got_ah);
1757 			*reason = "unexpected AH";
1758 			ret = B_FALSE;
1759 			break;
1760 		}
1761 		if (ipp->ipp_use_esp) {
1762 			if (esp_assoc == NULL) {
1763 				ret = ipsec_inbound_accept_clear(mp, ipha,
1764 				    ip6h);
1765 				*counter = DROPPER(ipss, ipds_spd_got_clear);
1766 				*reason = "unprotected not accepted";
1767 				break;
1768 			}
1769 			ASSERT(esp_assoc != NULL);
1770 			ASSERT(ipp->ipp_encr_alg != 0);
1771 
1772 			if (esp_assoc->ipsa_encr_alg !=
1773 			    ipp->ipp_encr_alg) {
1774 				*counter = DROPPER(ipss, ipds_spd_bad_espealg);
1775 				*reason = "unacceptable esp alg";
1776 				ret = B_FALSE;
1777 				break;
1778 			}
1779 			/*
1780 			 * If the client does not need authentication,
1781 			 * we don't verify the alogrithm.
1782 			 */
1783 			if (ipp->ipp_use_espa) {
1784 				if (esp_assoc->ipsa_auth_alg !=
1785 				    ipp->ipp_esp_auth_alg) {
1786 					*counter = DROPPER(ipss,
1787 					    ipds_spd_bad_espaalg);
1788 					*reason = "unacceptable esp auth alg";
1789 					ret = B_FALSE;
1790 					break;
1791 				}
1792 			}
1793 		} else if (esp_assoc != NULL) {
1794 				/*
1795 				 * Don't allow this. Check IPSEC NOTE above
1796 				 * ip_fanout_proto().
1797 				 */
1798 			*counter = DROPPER(ipss, ipds_spd_got_esp);
1799 			*reason = "unexpected ESP";
1800 			ret = B_FALSE;
1801 			break;
1802 		}
1803 		if (ipp->ipp_use_se) {
1804 			if (!decaps) {
1805 				ret = ipsec_inbound_accept_clear(mp, ipha,
1806 				    ip6h);
1807 				if (!ret) {
1808 					/* XXX mutant? */
1809 					*counter = DROPPER(ipss,
1810 					    ipds_spd_bad_selfencap);
1811 					*reason = "self encap not found";
1812 					break;
1813 				}
1814 			}
1815 		} else if (decaps) {
1816 			/*
1817 			 * XXX If the packet comes in tunneled and the
1818 			 * recipient does not expect it to be tunneled, it
1819 			 * is okay. But we drop to be consistent with the
1820 			 * other cases.
1821 			 */
1822 			*counter = DROPPER(ipss, ipds_spd_got_selfencap);
1823 			*reason = "unexpected self encap";
1824 			ret = B_FALSE;
1825 			break;
1826 		}
1827 		if (ii->ipsec_in_action != NULL) {
1828 			/*
1829 			 * This can happen if we do a double policy-check on
1830 			 * a packet
1831 			 * XXX XXX should fix this case!
1832 			 */
1833 			IPACT_REFRELE(ii->ipsec_in_action);
1834 		}
1835 		ASSERT(ii->ipsec_in_action == NULL);
1836 		IPACT_REFHOLD(ap);
1837 		ii->ipsec_in_action = ap;
1838 		break;	/* from switch */
1839 	}
1840 	return (ret);
1841 }
1842 
1843 static boolean_t
1844 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
1845 {
1846 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1847 	return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
1848 	    ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
1849 }
1850 
1851 /*
1852  * Takes a latched conn and an inbound packet and returns a unique_id suitable
1853  * for SA comparisons.  Most of the time we will copy from the conn_t, but
1854  * there are cases when the conn_t is latched but it has wildcard selectors,
1855  * and then we need to fallback to scooping them out of the packet.
1856  *
1857  * Assume we'll never have 0 with a conn_t present, so use 0 as a failure.  We
1858  * can get away with this because we only have non-zero ports/proto for
1859  * latched conn_ts.
1860  *
1861  * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough
1862  * to not be a nice macro.
1863  */
1864 static uint64_t
1865 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h)
1866 {
1867 	ipsec_selector_t sel;
1868 	uint8_t ulp = connp->conn_ulp;
1869 
1870 	ASSERT(connp->conn_latch->ipl_in_policy != NULL);
1871 
1872 	if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) &&
1873 	    (connp->conn_fport == 0 || connp->conn_lport == 0)) {
1874 		/* Slow path - we gotta grab from the packet. */
1875 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
1876 		    SEL_NONE) != SELRET_SUCCESS) {
1877 			/* Failure -> have caller free packet with ENOMEM. */
1878 			return (0);
1879 		}
1880 		return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port,
1881 		    sel.ips_protocol, 0));
1882 	}
1883 
1884 #ifdef DEBUG_NOT_UNTIL_6478464
1885 	if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) ==
1886 	    SELRET_SUCCESS) {
1887 		ASSERT(sel.ips_local_port == connp->conn_lport);
1888 		ASSERT(sel.ips_remote_port == connp->conn_fport);
1889 		ASSERT(sel.ips_protocol == connp->conn_ulp);
1890 	}
1891 	ASSERT(connp->conn_ulp != 0);
1892 #endif
1893 
1894 	return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0));
1895 }
1896 
1897 /*
1898  * Called to check policy on a latched connection, both from this file
1899  * and from tcp.c
1900  */
1901 boolean_t
1902 ipsec_check_ipsecin_latch(ipsec_in_t *ii, mblk_t *mp, ipsec_latch_t *ipl,
1903     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter,
1904     conn_t *connp)
1905 {
1906 	netstack_t	*ns = ii->ipsec_in_ns;
1907 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1908 
1909 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1910 
1911 	if (!ii->ipsec_in_loopback) {
1912 		/*
1913 		 * Over loopback, there aren't real security associations,
1914 		 * so there are neither identities nor "unique" values
1915 		 * for us to check the packet against.
1916 		 */
1917 		if ((ii->ipsec_in_ah_sa != NULL) &&
1918 		    (!spd_match_inbound_ids(ipl, ii->ipsec_in_ah_sa))) {
1919 			*counter = DROPPER(ipss, ipds_spd_ah_badid);
1920 			*reason = "AH identity mismatch";
1921 			return (B_FALSE);
1922 		}
1923 
1924 		if ((ii->ipsec_in_esp_sa != NULL) &&
1925 		    (!spd_match_inbound_ids(ipl, ii->ipsec_in_esp_sa))) {
1926 			*counter = DROPPER(ipss, ipds_spd_esp_badid);
1927 			*reason = "ESP identity mismatch";
1928 			return (B_FALSE);
1929 		}
1930 
1931 		/*
1932 		 * Can fudge pkt_unique from connp because we're latched.
1933 		 * In DEBUG kernels (see conn_to_unique()'s implementation),
1934 		 * verify this even if it REALLY slows things down.
1935 		 */
1936 		if (!ipsec_check_ipsecin_unique(ii, reason, counter,
1937 		    conn_to_unique(connp, mp, ipha, ip6h))) {
1938 			return (B_FALSE);
1939 		}
1940 	}
1941 
1942 	return (ipsec_check_ipsecin_action(ii, mp, ipl->ipl_in_action,
1943 	    ipha, ip6h, reason, counter));
1944 }
1945 
1946 /*
1947  * Check to see whether this secured datagram meets the policy
1948  * constraints specified in ipsp.
1949  *
1950  * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
1951  *
1952  * Consumes a reference to ipsp.
1953  */
1954 static mblk_t *
1955 ipsec_check_ipsecin_policy(mblk_t *first_mp, ipsec_policy_t *ipsp,
1956     ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, netstack_t *ns)
1957 {
1958 	ipsec_in_t *ii;
1959 	ipsec_action_t *ap;
1960 	const char *reason = "no policy actions found";
1961 	mblk_t *data_mp, *ipsec_mp;
1962 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1963 	ip_stack_t	*ipst = ns->netstack_ip;
1964 	kstat_named_t *counter;
1965 
1966 	counter = DROPPER(ipss, ipds_spd_got_secure);
1967 
1968 	data_mp = first_mp->b_cont;
1969 	ipsec_mp = first_mp;
1970 
1971 	ASSERT(ipsp != NULL);
1972 
1973 	ASSERT((ipha == NULL && ip6h != NULL) ||
1974 	    (ip6h == NULL && ipha != NULL));
1975 
1976 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1977 
1978 	if (ii->ipsec_in_loopback)
1979 		return (ipsec_check_loopback_policy(first_mp, B_TRUE, ipsp));
1980 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
1981 	ASSERT(ii->ipsec_in_secure);
1982 
1983 	if (ii->ipsec_in_action != NULL) {
1984 		/*
1985 		 * this can happen if we do a double policy-check on a packet
1986 		 * Would be nice to be able to delete this test..
1987 		 */
1988 		IPACT_REFRELE(ii->ipsec_in_action);
1989 	}
1990 	ASSERT(ii->ipsec_in_action == NULL);
1991 
1992 	if (!SA_IDS_MATCH(ii->ipsec_in_ah_sa, ii->ipsec_in_esp_sa)) {
1993 		reason = "inbound AH and ESP identities differ";
1994 		counter = DROPPER(ipss, ipds_spd_ahesp_diffid);
1995 		goto drop;
1996 	}
1997 
1998 	if (!ipsec_check_ipsecin_unique(ii, &reason, &counter, pkt_unique))
1999 		goto drop;
2000 
2001 	/*
2002 	 * Ok, now loop through the possible actions and see if any
2003 	 * of them work for us.
2004 	 */
2005 
2006 	for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
2007 		if (ipsec_check_ipsecin_action(ii, data_mp, ap,
2008 		    ipha, ip6h, &reason, &counter)) {
2009 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2010 			IPPOL_REFRELE(ipsp, ns);
2011 			return (first_mp);
2012 		}
2013 	}
2014 drop:
2015 	ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
2016 	    "ipsec inbound policy mismatch: %s, packet dropped\n",
2017 	    reason);
2018 	IPPOL_REFRELE(ipsp, ns);
2019 	ASSERT(ii->ipsec_in_action == NULL);
2020 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2021 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2022 	    &ipss->ipsec_spd_dropper);
2023 	return (NULL);
2024 }
2025 
2026 /*
2027  * sleazy prefix-length-based compare.
2028  * another inlining candidate..
2029  */
2030 boolean_t
2031 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
2032 {
2033 	int offset = pfxlen>>3;
2034 	int bitsleft = pfxlen & 7;
2035 	uint8_t *addr2 = (uint8_t *)addr2p;
2036 
2037 	/*
2038 	 * and there was much evil..
2039 	 * XXX should inline-expand the bcmp here and do this 32 bits
2040 	 * or 64 bits at a time..
2041 	 */
2042 	return ((bcmp(addr1, addr2, offset) == 0) &&
2043 	    ((bitsleft == 0) ||
2044 	    (((addr1[offset] ^ addr2[offset]) & (0xff<<(8-bitsleft))) == 0)));
2045 }
2046 
2047 static ipsec_policy_t *
2048 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain,
2049     ipsec_selector_t *sel, boolean_t is_icmp_inv_acq)
2050 {
2051 	ipsec_selkey_t *isel;
2052 	ipsec_policy_t *p;
2053 	int bpri = best ? best->ipsp_prio : 0;
2054 
2055 	for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) {
2056 		uint32_t valid;
2057 
2058 		if (p->ipsp_prio <= bpri)
2059 			continue;
2060 		isel = &p->ipsp_sel->ipsl_key;
2061 		valid = isel->ipsl_valid;
2062 
2063 		if ((valid & IPSL_PROTOCOL) &&
2064 		    (isel->ipsl_proto != sel->ips_protocol))
2065 			continue;
2066 
2067 		if ((valid & IPSL_REMOTE_ADDR) &&
2068 		    !ip_addr_match((uint8_t *)&isel->ipsl_remote,
2069 		    isel->ipsl_remote_pfxlen, &sel->ips_remote_addr_v6))
2070 			continue;
2071 
2072 		if ((valid & IPSL_LOCAL_ADDR) &&
2073 		    !ip_addr_match((uint8_t *)&isel->ipsl_local,
2074 		    isel->ipsl_local_pfxlen, &sel->ips_local_addr_v6))
2075 			continue;
2076 
2077 		if ((valid & IPSL_REMOTE_PORT) &&
2078 		    isel->ipsl_rport != sel->ips_remote_port)
2079 			continue;
2080 
2081 		if ((valid & IPSL_LOCAL_PORT) &&
2082 		    isel->ipsl_lport != sel->ips_local_port)
2083 			continue;
2084 
2085 		if (!is_icmp_inv_acq) {
2086 			if ((valid & IPSL_ICMP_TYPE) &&
2087 			    (isel->ipsl_icmp_type > sel->ips_icmp_type ||
2088 			    isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
2089 				continue;
2090 			}
2091 
2092 			if ((valid & IPSL_ICMP_CODE) &&
2093 			    (isel->ipsl_icmp_code > sel->ips_icmp_code ||
2094 			    isel->ipsl_icmp_code_end <
2095 			    sel->ips_icmp_code)) {
2096 				continue;
2097 			}
2098 		} else {
2099 			/*
2100 			 * special case for icmp inverse acquire
2101 			 * we only want policies that aren't drop/pass
2102 			 */
2103 			if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
2104 				continue;
2105 		}
2106 
2107 		/* we matched all the packet-port-field selectors! */
2108 		best = p;
2109 		bpri = p->ipsp_prio;
2110 	}
2111 
2112 	return (best);
2113 }
2114 
2115 /*
2116  * Try to find and return the best policy entry under a given policy
2117  * root for a given set of selectors; the first parameter "best" is
2118  * the current best policy so far.  If "best" is non-null, we have a
2119  * reference to it.  We return a reference to a policy; if that policy
2120  * is not the original "best", we need to release that reference
2121  * before returning.
2122  */
2123 ipsec_policy_t *
2124 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head,
2125     int direction, ipsec_selector_t *sel, netstack_t *ns)
2126 {
2127 	ipsec_policy_t *curbest;
2128 	ipsec_policy_root_t *root;
2129 	uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
2130 	int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
2131 
2132 	curbest = best;
2133 	root = &head->iph_root[direction];
2134 
2135 #ifdef DEBUG
2136 	if (is_icmp_inv_acq) {
2137 		if (sel->ips_isv4) {
2138 			if (sel->ips_protocol != IPPROTO_ICMP) {
2139 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
2140 				    " expecting icmp, got %d",
2141 				    sel->ips_protocol);
2142 			}
2143 		} else {
2144 			if (sel->ips_protocol != IPPROTO_ICMPV6) {
2145 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
2146 				    " expecting icmpv6, got %d",
2147 				    sel->ips_protocol);
2148 			}
2149 		}
2150 	}
2151 #endif
2152 
2153 	rw_enter(&head->iph_lock, RW_READER);
2154 
2155 	if (root->ipr_nchains > 0) {
2156 		curbest = ipsec_find_policy_chain(curbest,
2157 		    root->ipr_hash[selector_hash(sel, root)].hash_head, sel,
2158 		    is_icmp_inv_acq);
2159 	}
2160 	curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel,
2161 	    is_icmp_inv_acq);
2162 
2163 	/*
2164 	 * Adjust reference counts if we found anything new.
2165 	 */
2166 	if (curbest != best) {
2167 		ASSERT(curbest != NULL);
2168 		IPPOL_REFHOLD(curbest);
2169 
2170 		if (best != NULL) {
2171 			IPPOL_REFRELE(best, ns);
2172 		}
2173 	}
2174 
2175 	rw_exit(&head->iph_lock);
2176 
2177 	return (curbest);
2178 }
2179 
2180 /*
2181  * Find the best system policy (either global or per-interface) which
2182  * applies to the given selector; look in all the relevant policy roots
2183  * to figure out which policy wins.
2184  *
2185  * Returns a reference to a policy; caller must release this
2186  * reference when done.
2187  */
2188 ipsec_policy_t *
2189 ipsec_find_policy(int direction, conn_t *connp, ipsec_out_t *io,
2190     ipsec_selector_t *sel, netstack_t *ns)
2191 {
2192 	ipsec_policy_t *p;
2193 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2194 
2195 	p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy,
2196 	    direction, sel, ns);
2197 	if ((connp != NULL) && (connp->conn_policy != NULL)) {
2198 		p = ipsec_find_policy_head(p, connp->conn_policy,
2199 		    direction, sel, ns);
2200 	} else if ((io != NULL) && (io->ipsec_out_polhead != NULL)) {
2201 		p = ipsec_find_policy_head(p, io->ipsec_out_polhead,
2202 		    direction, sel, ns);
2203 	}
2204 
2205 	return (p);
2206 }
2207 
2208 /*
2209  * Check with global policy and see whether this inbound
2210  * packet meets the policy constraints.
2211  *
2212  * Locate appropriate policy from global policy, supplemented by the
2213  * conn's configured and/or cached policy if the conn is supplied.
2214  *
2215  * Dispatch to ipsec_check_ipsecin_policy if we have policy and an
2216  * encrypted packet to see if they match.
2217  *
2218  * Otherwise, see if the policy allows cleartext; if not, drop it on the
2219  * floor.
2220  */
2221 mblk_t *
2222 ipsec_check_global_policy(mblk_t *first_mp, conn_t *connp,
2223     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present, netstack_t *ns)
2224 {
2225 	ipsec_policy_t *p;
2226 	ipsec_selector_t sel;
2227 	mblk_t *data_mp, *ipsec_mp;
2228 	boolean_t policy_present;
2229 	kstat_named_t *counter;
2230 	ipsec_in_t *ii = NULL;
2231 	uint64_t pkt_unique;
2232 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2233 	ip_stack_t	*ipst = ns->netstack_ip;
2234 
2235 	data_mp = mctl_present ? first_mp->b_cont : first_mp;
2236 	ipsec_mp = mctl_present ? first_mp : NULL;
2237 
2238 	sel.ips_is_icmp_inv_acq = 0;
2239 
2240 	ASSERT((ipha == NULL && ip6h != NULL) ||
2241 	    (ip6h == NULL && ipha != NULL));
2242 
2243 	if (ipha != NULL)
2244 		policy_present = ipss->ipsec_inbound_v4_policy_present;
2245 	else
2246 		policy_present = ipss->ipsec_inbound_v6_policy_present;
2247 
2248 	if (!policy_present && connp == NULL) {
2249 		/*
2250 		 * No global policy and no per-socket policy;
2251 		 * just pass it back (but we shouldn't get here in that case)
2252 		 */
2253 		return (first_mp);
2254 	}
2255 
2256 	if (ipsec_mp != NULL) {
2257 		ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
2258 		ii = (ipsec_in_t *)(ipsec_mp->b_rptr);
2259 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
2260 	}
2261 
2262 	/*
2263 	 * If we have cached policy, use it.
2264 	 * Otherwise consult system policy.
2265 	 */
2266 	if ((connp != NULL) && (connp->conn_latch != NULL)) {
2267 		p = connp->conn_latch->ipl_in_policy;
2268 		if (p != NULL) {
2269 			IPPOL_REFHOLD(p);
2270 		}
2271 		/*
2272 		 * Fudge sel for UNIQUE_ID setting below.
2273 		 */
2274 		pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h);
2275 	} else {
2276 		/* Initialize the ports in the selector */
2277 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
2278 		    SEL_NONE) == SELRET_NOMEM) {
2279 			/*
2280 			 * Technically not a policy mismatch, but it is
2281 			 * an internal failure.
2282 			 */
2283 			ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2284 			    "ipsec_init_inbound_sel", ipha, ip6h, B_FALSE, ns);
2285 			counter = DROPPER(ipss, ipds_spd_nomem);
2286 			goto fail;
2287 		}
2288 
2289 		/*
2290 		 * Find the policy which best applies.
2291 		 *
2292 		 * If we find global policy, we should look at both
2293 		 * local policy and global policy and see which is
2294 		 * stronger and match accordingly.
2295 		 *
2296 		 * If we don't find a global policy, check with
2297 		 * local policy alone.
2298 		 */
2299 
2300 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel,
2301 		    ns);
2302 		pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
2303 		    sel.ips_local_port, sel.ips_protocol, 0);
2304 	}
2305 
2306 	if (p == NULL) {
2307 		if (ipsec_mp == NULL) {
2308 			/*
2309 			 * We have no policy; default to succeeding.
2310 			 * XXX paranoid system design doesn't do this.
2311 			 */
2312 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2313 			return (first_mp);
2314 		} else {
2315 			counter = DROPPER(ipss, ipds_spd_got_secure);
2316 			ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
2317 			    "ipsec_check_global_policy", ipha, ip6h, B_TRUE,
2318 			    ns);
2319 			goto fail;
2320 		}
2321 	}
2322 	if ((ii != NULL) && (ii->ipsec_in_secure)) {
2323 		return (ipsec_check_ipsecin_policy(ipsec_mp, p, ipha, ip6h,
2324 		    pkt_unique, ns));
2325 	}
2326 	if (p->ipsp_act->ipa_allow_clear) {
2327 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2328 		IPPOL_REFRELE(p, ns);
2329 		return (first_mp);
2330 	}
2331 	IPPOL_REFRELE(p, ns);
2332 	/*
2333 	 * If we reach here, we will drop the packet because it failed the
2334 	 * global policy check because the packet was cleartext, and it
2335 	 * should not have been.
2336 	 */
2337 	ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2338 	    "ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns);
2339 	counter = DROPPER(ipss, ipds_spd_got_clear);
2340 
2341 fail:
2342 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2343 	    &ipss->ipsec_spd_dropper);
2344 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2345 	return (NULL);
2346 }
2347 
2348 /*
2349  * We check whether an inbound datagram is a valid one
2350  * to accept in clear. If it is secure, it is the job
2351  * of IPSEC to log information appropriately if it
2352  * suspects that it may not be the real one.
2353  *
2354  * It is called only while fanning out to the ULP
2355  * where ULP accepts only secure data and the incoming
2356  * is clear. Usually we never accept clear datagrams in
2357  * such cases. ICMP is the only exception.
2358  *
2359  * NOTE : We don't call this function if the client (ULP)
2360  * is willing to accept things in clear.
2361  */
2362 boolean_t
2363 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
2364 {
2365 	ushort_t iph_hdr_length;
2366 	icmph_t *icmph;
2367 	icmp6_t *icmp6;
2368 	uint8_t *nexthdrp;
2369 
2370 	ASSERT((ipha != NULL && ip6h == NULL) ||
2371 	    (ipha == NULL && ip6h != NULL));
2372 
2373 	if (ip6h != NULL) {
2374 		iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
2375 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
2376 		    &nexthdrp)) {
2377 			return (B_FALSE);
2378 		}
2379 		if (*nexthdrp != IPPROTO_ICMPV6)
2380 			return (B_FALSE);
2381 		icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
2382 		/* Match IPv6 ICMP policy as closely as IPv4 as possible. */
2383 		switch (icmp6->icmp6_type) {
2384 		case ICMP6_PARAM_PROB:
2385 			/* Corresponds to port/proto unreach in IPv4. */
2386 		case ICMP6_ECHO_REQUEST:
2387 			/* Just like IPv4. */
2388 			return (B_FALSE);
2389 
2390 		case MLD_LISTENER_QUERY:
2391 		case MLD_LISTENER_REPORT:
2392 		case MLD_LISTENER_REDUCTION:
2393 			/*
2394 			 * XXX Seperate NDD in IPv4 what about here?
2395 			 * Plus, mcast is important to ND.
2396 			 */
2397 		case ICMP6_DST_UNREACH:
2398 			/* Corresponds to HOST/NET unreachable in IPv4. */
2399 		case ICMP6_PACKET_TOO_BIG:
2400 		case ICMP6_ECHO_REPLY:
2401 			/* These are trusted in IPv4. */
2402 		case ND_ROUTER_SOLICIT:
2403 		case ND_ROUTER_ADVERT:
2404 		case ND_NEIGHBOR_SOLICIT:
2405 		case ND_NEIGHBOR_ADVERT:
2406 		case ND_REDIRECT:
2407 			/* Trust ND messages for now. */
2408 		case ICMP6_TIME_EXCEEDED:
2409 		default:
2410 			return (B_TRUE);
2411 		}
2412 	} else {
2413 		/*
2414 		 * If it is not ICMP, fail this request.
2415 		 */
2416 		if (ipha->ipha_protocol != IPPROTO_ICMP) {
2417 #ifdef FRAGCACHE_DEBUG
2418 			cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n",
2419 			    ipha->ipha_protocol);
2420 #endif
2421 			return (B_FALSE);
2422 		}
2423 		iph_hdr_length = IPH_HDR_LENGTH(ipha);
2424 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2425 		/*
2426 		 * It is an insecure icmp message. Check to see whether we are
2427 		 * willing to accept this one.
2428 		 */
2429 
2430 		switch (icmph->icmph_type) {
2431 		case ICMP_ECHO_REPLY:
2432 		case ICMP_TIME_STAMP_REPLY:
2433 		case ICMP_INFO_REPLY:
2434 		case ICMP_ROUTER_ADVERTISEMENT:
2435 			/*
2436 			 * We should not encourage clear replies if this
2437 			 * client expects secure. If somebody is replying
2438 			 * in clear some mailicious user watching both the
2439 			 * request and reply, can do chosen-plain-text attacks.
2440 			 * With global policy we might be just expecting secure
2441 			 * but sending out clear. We don't know what the right
2442 			 * thing is. We can't do much here as we can't control
2443 			 * the sender here. Till we are sure of what to do,
2444 			 * accept them.
2445 			 */
2446 			return (B_TRUE);
2447 		case ICMP_ECHO_REQUEST:
2448 		case ICMP_TIME_STAMP_REQUEST:
2449 		case ICMP_INFO_REQUEST:
2450 		case ICMP_ADDRESS_MASK_REQUEST:
2451 		case ICMP_ROUTER_SOLICITATION:
2452 		case ICMP_ADDRESS_MASK_REPLY:
2453 			/*
2454 			 * Don't accept this as somebody could be sending
2455 			 * us plain text to get encrypted data. If we reply,
2456 			 * it will lead to chosen plain text attack.
2457 			 */
2458 			return (B_FALSE);
2459 		case ICMP_DEST_UNREACHABLE:
2460 			switch (icmph->icmph_code) {
2461 			case ICMP_FRAGMENTATION_NEEDED:
2462 				/*
2463 				 * Be in sync with icmp_inbound, where we have
2464 				 * already set ire_max_frag.
2465 				 */
2466 #ifdef FRAGCACHE_DEBUG
2467 			cmn_err(CE_WARN, "ICMP frag needed\n");
2468 #endif
2469 				return (B_TRUE);
2470 			case ICMP_HOST_UNREACHABLE:
2471 			case ICMP_NET_UNREACHABLE:
2472 				/*
2473 				 * By accepting, we could reset a connection.
2474 				 * How do we solve the problem of some
2475 				 * intermediate router sending in-secure ICMP
2476 				 * messages ?
2477 				 */
2478 				return (B_TRUE);
2479 			case ICMP_PORT_UNREACHABLE:
2480 			case ICMP_PROTOCOL_UNREACHABLE:
2481 			default :
2482 				return (B_FALSE);
2483 			}
2484 		case ICMP_SOURCE_QUENCH:
2485 			/*
2486 			 * If this is an attack, TCP will slow start
2487 			 * because of this. Is it very harmful ?
2488 			 */
2489 			return (B_TRUE);
2490 		case ICMP_PARAM_PROBLEM:
2491 			return (B_FALSE);
2492 		case ICMP_TIME_EXCEEDED:
2493 			return (B_TRUE);
2494 		case ICMP_REDIRECT:
2495 			return (B_FALSE);
2496 		default :
2497 			return (B_FALSE);
2498 		}
2499 	}
2500 }
2501 
2502 void
2503 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
2504 {
2505 	mutex_enter(&ipl->ipl_lock);
2506 
2507 	if (ipl->ipl_ids_latched) {
2508 		/* I lost, someone else got here before me */
2509 		mutex_exit(&ipl->ipl_lock);
2510 		return;
2511 	}
2512 
2513 	if (local != NULL)
2514 		IPSID_REFHOLD(local);
2515 	if (remote != NULL)
2516 		IPSID_REFHOLD(remote);
2517 
2518 	ipl->ipl_local_cid = local;
2519 	ipl->ipl_remote_cid = remote;
2520 	ipl->ipl_ids_latched = B_TRUE;
2521 	mutex_exit(&ipl->ipl_lock);
2522 }
2523 
2524 void
2525 ipsec_latch_inbound(ipsec_latch_t *ipl, ipsec_in_t *ii)
2526 {
2527 	ipsa_t *sa;
2528 
2529 	if (!ipl->ipl_ids_latched) {
2530 		ipsid_t *local = NULL;
2531 		ipsid_t *remote = NULL;
2532 
2533 		if (!ii->ipsec_in_loopback) {
2534 			if (ii->ipsec_in_esp_sa != NULL)
2535 				sa = ii->ipsec_in_esp_sa;
2536 			else
2537 				sa = ii->ipsec_in_ah_sa;
2538 			ASSERT(sa != NULL);
2539 			local = sa->ipsa_dst_cid;
2540 			remote = sa->ipsa_src_cid;
2541 		}
2542 		ipsec_latch_ids(ipl, local, remote);
2543 	}
2544 	ipl->ipl_in_action = ii->ipsec_in_action;
2545 	IPACT_REFHOLD(ipl->ipl_in_action);
2546 }
2547 
2548 /*
2549  * Check whether the policy constraints are met either for an
2550  * inbound datagram; called from IP in numerous places.
2551  *
2552  * Note that this is not a chokepoint for inbound policy checks;
2553  * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy()
2554  */
2555 mblk_t *
2556 ipsec_check_inbound_policy(mblk_t *first_mp, conn_t *connp,
2557     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present)
2558 {
2559 	ipsec_in_t *ii;
2560 	boolean_t ret;
2561 	mblk_t *mp = mctl_present ? first_mp->b_cont : first_mp;
2562 	mblk_t *ipsec_mp = mctl_present ? first_mp : NULL;
2563 	ipsec_latch_t *ipl;
2564 	uint64_t unique_id;
2565 	ipsec_stack_t	*ipss;
2566 	ip_stack_t	*ipst;
2567 	netstack_t	*ns;
2568 
2569 	ASSERT(connp != NULL);
2570 	ipl = connp->conn_latch;
2571 	ns = connp->conn_netstack;
2572 	ipss = ns->netstack_ipsec;
2573 	ipst = ns->netstack_ip;
2574 
2575 	if (ipsec_mp == NULL) {
2576 clear:
2577 		/*
2578 		 * This is the case where the incoming datagram is
2579 		 * cleartext and we need to see whether this client
2580 		 * would like to receive such untrustworthy things from
2581 		 * the wire.
2582 		 */
2583 		ASSERT(mp != NULL);
2584 
2585 		if (ipl != NULL) {
2586 			/*
2587 			 * Policy is cached in the conn.
2588 			 */
2589 			if ((ipl->ipl_in_policy != NULL) &&
2590 			    (!ipl->ipl_in_policy->ipsp_act->ipa_allow_clear)) {
2591 				ret = ipsec_inbound_accept_clear(mp,
2592 				    ipha, ip6h);
2593 				if (ret) {
2594 					BUMP_MIB(&ipst->ips_ip_mib,
2595 					    ipsecInSucceeded);
2596 					return (first_mp);
2597 				} else {
2598 					ipsec_log_policy_failure(
2599 					    IPSEC_POLICY_MISMATCH,
2600 					    "ipsec_check_inbound_policy", ipha,
2601 					    ip6h, B_FALSE, ns);
2602 					ip_drop_packet(first_mp, B_TRUE, NULL,
2603 					    NULL,
2604 					    DROPPER(ipss, ipds_spd_got_clear),
2605 					    &ipss->ipsec_spd_dropper);
2606 					BUMP_MIB(&ipst->ips_ip_mib,
2607 					    ipsecInFailed);
2608 					return (NULL);
2609 				}
2610 			} else {
2611 				BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2612 				return (first_mp);
2613 			}
2614 		} else {
2615 			/*
2616 			 * As this is a non-hardbound connection we need
2617 			 * to look at both per-socket policy and global
2618 			 * policy. As this is cleartext, mark the mp as
2619 			 * M_DATA in case if it is an ICMP error being
2620 			 * reported before calling ipsec_check_global_policy
2621 			 * so that it does not mistake it for IPSEC_IN.
2622 			 */
2623 			uchar_t db_type = mp->b_datap->db_type;
2624 			mp->b_datap->db_type = M_DATA;
2625 			first_mp = ipsec_check_global_policy(first_mp, connp,
2626 			    ipha, ip6h, mctl_present, ns);
2627 			if (first_mp != NULL)
2628 				mp->b_datap->db_type = db_type;
2629 			return (first_mp);
2630 		}
2631 	}
2632 	/*
2633 	 * If it is inbound check whether the attached message
2634 	 * is secure or not. We have a special case for ICMP,
2635 	 * where we have a IPSEC_IN message and the attached
2636 	 * message is not secure. See icmp_inbound_error_fanout
2637 	 * for details.
2638 	 */
2639 	ASSERT(ipsec_mp != NULL);
2640 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
2641 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
2642 
2643 	if (!ii->ipsec_in_secure)
2644 		goto clear;
2645 
2646 	/*
2647 	 * mp->b_cont could be either a M_CTL message
2648 	 * for icmp errors being sent up or a M_DATA message.
2649 	 */
2650 	ASSERT(mp->b_datap->db_type == M_CTL || mp->b_datap->db_type == M_DATA);
2651 
2652 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
2653 
2654 	if (ipl == NULL) {
2655 		/*
2656 		 * We don't have policies cached in the conn
2657 		 * for this stream. So, look at the global
2658 		 * policy. It will check against conn or global
2659 		 * depending on whichever is stronger.
2660 		 */
2661 		return (ipsec_check_global_policy(first_mp, connp,
2662 		    ipha, ip6h, mctl_present, ns));
2663 	}
2664 
2665 	if (ipl->ipl_in_action != NULL) {
2666 		/* Policy is cached & latched; fast(er) path */
2667 		const char *reason;
2668 		kstat_named_t *counter;
2669 
2670 		if (ipsec_check_ipsecin_latch(ii, mp, ipl,
2671 		    ipha, ip6h, &reason, &counter, connp)) {
2672 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2673 			return (first_mp);
2674 		}
2675 		ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0,
2676 		    SL_ERROR|SL_WARN|SL_CONSOLE,
2677 		    "ipsec inbound policy mismatch: %s, packet dropped\n",
2678 		    reason);
2679 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2680 		    &ipss->ipsec_spd_dropper);
2681 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2682 		return (NULL);
2683 	} else if (ipl->ipl_in_policy == NULL) {
2684 		ipsec_weird_null_inbound_policy++;
2685 		return (first_mp);
2686 	}
2687 
2688 	unique_id = conn_to_unique(connp, mp, ipha, ip6h);
2689 	IPPOL_REFHOLD(ipl->ipl_in_policy);
2690 	first_mp = ipsec_check_ipsecin_policy(first_mp, ipl->ipl_in_policy,
2691 	    ipha, ip6h, unique_id, ns);
2692 	/*
2693 	 * NOTE: ipsecIn{Failed,Succeeeded} bumped by
2694 	 * ipsec_check_ipsecin_policy().
2695 	 */
2696 	if (first_mp != NULL)
2697 		ipsec_latch_inbound(ipl, ii);
2698 	return (first_mp);
2699 }
2700 
2701 /*
2702  * Returns:
2703  *
2704  * SELRET_NOMEM --> msgpullup() needed to gather things failed.
2705  * SELRET_BADPKT --> If we're being called after tunnel-mode fragment
2706  *		     gathering, the initial fragment is too short for
2707  *		     useful data.  Only returned if SEL_TUNNEL_FIRSTFRAG is
2708  *		     set.
2709  * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data.
2710  * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet.  Caller
2711  *		      should put this packet in a fragment-gathering queue.
2712  *		      Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY
2713  *		      is set.
2714  */
2715 static selret_t
2716 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2717     ip6_t *ip6h, uint8_t sel_flags)
2718 {
2719 	uint16_t *ports;
2720 	ushort_t hdr_len;
2721 	int outer_hdr_len = 0;	/* For ICMP tunnel-mode cases... */
2722 	mblk_t *spare_mp = NULL;
2723 	uint8_t *nexthdrp;
2724 	uint8_t nexthdr;
2725 	uint8_t *typecode;
2726 	uint8_t check_proto;
2727 	ip6_pkt_t ipp;
2728 	boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY);
2729 	boolean_t is_icmp = (sel_flags & SEL_IS_ICMP);
2730 	boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE);
2731 
2732 	ASSERT((ipha == NULL && ip6h != NULL) ||
2733 	    (ipha != NULL && ip6h == NULL));
2734 
2735 	if (ip6h != NULL) {
2736 		if (is_icmp)
2737 			outer_hdr_len = ((uint8_t *)ip6h) - mp->b_rptr;
2738 
2739 		check_proto = IPPROTO_ICMPV6;
2740 		sel->ips_isv4 = B_FALSE;
2741 		sel->ips_local_addr_v6 = ip6h->ip6_dst;
2742 		sel->ips_remote_addr_v6 = ip6h->ip6_src;
2743 
2744 		bzero(&ipp, sizeof (ipp));
2745 		(void) ip_find_hdr_v6(mp, ip6h, &ipp, NULL);
2746 
2747 		nexthdr = ip6h->ip6_nxt;
2748 		switch (nexthdr) {
2749 		case IPPROTO_HOPOPTS:
2750 		case IPPROTO_ROUTING:
2751 		case IPPROTO_DSTOPTS:
2752 		case IPPROTO_FRAGMENT:
2753 			/*
2754 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2755 			 * mblk that's contiguous to feed it
2756 			 */
2757 			if ((spare_mp = msgpullup(mp, -1)) == NULL)
2758 				return (SELRET_NOMEM);
2759 			if (!ip_hdr_length_nexthdr_v6(spare_mp,
2760 			    (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2761 			    &hdr_len, &nexthdrp)) {
2762 				/* Malformed packet - caller frees. */
2763 				ipsec_freemsg_chain(spare_mp);
2764 				return (SELRET_BADPKT);
2765 			}
2766 			nexthdr = *nexthdrp;
2767 			/* We can just extract based on hdr_len now. */
2768 			break;
2769 		default:
2770 			hdr_len = IPV6_HDR_LEN;
2771 			break;
2772 		}
2773 
2774 		if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) {
2775 			/* IPv6 Fragment */
2776 			ipsec_freemsg_chain(spare_mp);
2777 			return (SELRET_TUNFRAG);
2778 		}
2779 	} else {
2780 		if (is_icmp)
2781 			outer_hdr_len = ((uint8_t *)ipha) - mp->b_rptr;
2782 		check_proto = IPPROTO_ICMP;
2783 		sel->ips_isv4 = B_TRUE;
2784 		sel->ips_local_addr_v4 = ipha->ipha_dst;
2785 		sel->ips_remote_addr_v4 = ipha->ipha_src;
2786 		nexthdr = ipha->ipha_protocol;
2787 		hdr_len = IPH_HDR_LENGTH(ipha);
2788 
2789 		if (port_policy_present &&
2790 		    IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) &&
2791 		    !is_icmp) {
2792 			/* IPv4 Fragment */
2793 			ipsec_freemsg_chain(spare_mp);
2794 			return (SELRET_TUNFRAG);
2795 		}
2796 
2797 	}
2798 	sel->ips_protocol = nexthdr;
2799 
2800 	if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2801 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) ||
2802 	    (!port_policy_present && tunnel_mode)) {
2803 		sel->ips_remote_port = sel->ips_local_port = 0;
2804 		ipsec_freemsg_chain(spare_mp);
2805 		return (SELRET_SUCCESS);
2806 	}
2807 
2808 	if (&mp->b_rptr[hdr_len] + 4 > mp->b_wptr) {
2809 		/* If we didn't pullup a copy already, do so now. */
2810 		/*
2811 		 * XXX performance, will upper-layers frequently split TCP/UDP
2812 		 * apart from IP or options?  If so, perhaps we should revisit
2813 		 * the spare_mp strategy.
2814 		 */
2815 		ipsec_hdr_pullup_needed++;
2816 		if (spare_mp == NULL &&
2817 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2818 			return (SELRET_NOMEM);
2819 		}
2820 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2821 	} else {
2822 		ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2823 	}
2824 
2825 	if (nexthdr == check_proto) {
2826 		typecode = (uint8_t *)ports;
2827 		sel->ips_icmp_type = *typecode++;
2828 		sel->ips_icmp_code = *typecode;
2829 		sel->ips_remote_port = sel->ips_local_port = 0;
2830 	} else {
2831 		sel->ips_remote_port = *ports++;
2832 		sel->ips_local_port = *ports;
2833 	}
2834 	ipsec_freemsg_chain(spare_mp);
2835 	return (SELRET_SUCCESS);
2836 }
2837 
2838 static boolean_t
2839 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2840     ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss)
2841 {
2842 	/*
2843 	 * XXX cut&paste shared with ipsec_init_inbound_sel
2844 	 */
2845 	uint16_t *ports;
2846 	ushort_t hdr_len;
2847 	mblk_t *spare_mp = NULL;
2848 	uint8_t *nexthdrp;
2849 	uint8_t nexthdr;
2850 	uint8_t *typecode;
2851 	uint8_t check_proto;
2852 
2853 	ASSERT((ipha == NULL && ip6h != NULL) ||
2854 	    (ipha != NULL && ip6h == NULL));
2855 
2856 	if (ip6h != NULL) {
2857 		check_proto = IPPROTO_ICMPV6;
2858 		nexthdr = ip6h->ip6_nxt;
2859 		switch (nexthdr) {
2860 		case IPPROTO_HOPOPTS:
2861 		case IPPROTO_ROUTING:
2862 		case IPPROTO_DSTOPTS:
2863 		case IPPROTO_FRAGMENT:
2864 			/*
2865 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2866 			 * mblk that's contiguous to feed it
2867 			 */
2868 			spare_mp = msgpullup(mp, -1);
2869 			if (spare_mp == NULL ||
2870 			    !ip_hdr_length_nexthdr_v6(spare_mp,
2871 			    (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2872 			    &hdr_len, &nexthdrp)) {
2873 				/* Always works, even if NULL. */
2874 				ipsec_freemsg_chain(spare_mp);
2875 				ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
2876 				    DROPPER(ipss, ipds_spd_nomem),
2877 				    &ipss->ipsec_spd_dropper);
2878 				return (B_FALSE);
2879 			} else {
2880 				nexthdr = *nexthdrp;
2881 				/* We can just extract based on hdr_len now. */
2882 			}
2883 			break;
2884 		default:
2885 			hdr_len = IPV6_HDR_LEN;
2886 			break;
2887 		}
2888 	} else {
2889 		check_proto = IPPROTO_ICMP;
2890 		hdr_len = IPH_HDR_LENGTH(ipha);
2891 		nexthdr = ipha->ipha_protocol;
2892 	}
2893 
2894 	sel->ips_protocol = nexthdr;
2895 	if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2896 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2897 		sel->ips_local_port = sel->ips_remote_port = 0;
2898 		ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2899 		return (B_TRUE);
2900 	}
2901 
2902 	if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) {
2903 		/* If we didn't pullup a copy already, do so now. */
2904 		/*
2905 		 * XXX performance, will upper-layers frequently split TCP/UDP
2906 		 * apart from IP or options?  If so, perhaps we should revisit
2907 		 * the spare_mp strategy.
2908 		 *
2909 		 * XXX should this be msgpullup(mp, hdr_len+4) ???
2910 		 */
2911 		if (spare_mp == NULL &&
2912 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2913 			ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
2914 			    DROPPER(ipss, ipds_spd_nomem),
2915 			    &ipss->ipsec_spd_dropper);
2916 			return (B_FALSE);
2917 		}
2918 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2919 	} else {
2920 		ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2921 	}
2922 
2923 	if (nexthdr == check_proto) {
2924 		typecode = (uint8_t *)ports;
2925 		sel->ips_icmp_type = *typecode++;
2926 		sel->ips_icmp_code = *typecode;
2927 		sel->ips_remote_port = sel->ips_local_port = 0;
2928 	} else {
2929 		sel->ips_local_port = *ports++;
2930 		sel->ips_remote_port = *ports;
2931 	}
2932 	ipsec_freemsg_chain(spare_mp);	/* Always works, even if NULL */
2933 	return (B_TRUE);
2934 }
2935 
2936 /*
2937  * Create an ipsec_action_t based on the way an inbound packet was protected.
2938  * Used to reflect traffic back to a sender.
2939  *
2940  * We don't bother interning the action into the hash table.
2941  */
2942 ipsec_action_t *
2943 ipsec_in_to_out_action(ipsec_in_t *ii)
2944 {
2945 	ipsa_t *ah_assoc, *esp_assoc;
2946 	uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
2947 	ipsec_action_t *ap;
2948 	boolean_t unique;
2949 
2950 	ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2951 
2952 	if (ap == NULL)
2953 		return (NULL);
2954 
2955 	bzero(ap, sizeof (*ap));
2956 	HASH_NULL(ap, ipa_hash);
2957 	ap->ipa_next = NULL;
2958 	ap->ipa_refs = 1;
2959 
2960 	/*
2961 	 * Get the algorithms that were used for this packet.
2962 	 */
2963 	ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
2964 	ap->ipa_act.ipa_log = 0;
2965 	ah_assoc = ii->ipsec_in_ah_sa;
2966 	ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
2967 
2968 	esp_assoc = ii->ipsec_in_esp_sa;
2969 	ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
2970 
2971 	if (esp_assoc != NULL) {
2972 		encr_alg = esp_assoc->ipsa_encr_alg;
2973 		espa_alg = esp_assoc->ipsa_auth_alg;
2974 		ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
2975 	}
2976 	if (ah_assoc != NULL)
2977 		auth_alg = ah_assoc->ipsa_auth_alg;
2978 
2979 	ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
2980 	ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
2981 	ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
2982 	ap->ipa_act.ipa_apply.ipp_use_se = ii->ipsec_in_decaps;
2983 	unique = B_FALSE;
2984 
2985 	if (esp_assoc != NULL) {
2986 		ap->ipa_act.ipa_apply.ipp_espa_minbits =
2987 		    esp_assoc->ipsa_authkeybits;
2988 		ap->ipa_act.ipa_apply.ipp_espa_maxbits =
2989 		    esp_assoc->ipsa_authkeybits;
2990 		ap->ipa_act.ipa_apply.ipp_espe_minbits =
2991 		    esp_assoc->ipsa_encrkeybits;
2992 		ap->ipa_act.ipa_apply.ipp_espe_maxbits =
2993 		    esp_assoc->ipsa_encrkeybits;
2994 		ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
2995 		ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
2996 		if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
2997 			unique = B_TRUE;
2998 	}
2999 	if (ah_assoc != NULL) {
3000 		ap->ipa_act.ipa_apply.ipp_ah_minbits =
3001 		    ah_assoc->ipsa_authkeybits;
3002 		ap->ipa_act.ipa_apply.ipp_ah_maxbits =
3003 		    ah_assoc->ipsa_authkeybits;
3004 		ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
3005 		ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
3006 		if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
3007 			unique = B_TRUE;
3008 	}
3009 	ap->ipa_act.ipa_apply.ipp_use_unique = unique;
3010 	ap->ipa_want_unique = unique;
3011 	ap->ipa_allow_clear = B_FALSE;
3012 	ap->ipa_want_se = ii->ipsec_in_decaps;
3013 	ap->ipa_want_ah = (ah_assoc != NULL);
3014 	ap->ipa_want_esp = (esp_assoc != NULL);
3015 
3016 	ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
3017 
3018 	ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
3019 
3020 	return (ap);
3021 }
3022 
3023 
3024 /*
3025  * Compute the worst-case amount of extra space required by an action.
3026  * Note that, because of the ESP considerations listed below, this is
3027  * actually not the same as the best-case reduction in the MTU; in the
3028  * future, we should pass additional information to this function to
3029  * allow the actual MTU impact to be computed.
3030  *
3031  * AH: Revisit this if we implement algorithms with
3032  * a verifier size of more than 12 bytes.
3033  *
3034  * ESP: A more exact but more messy computation would take into
3035  * account the interaction between the cipher block size and the
3036  * effective MTU, yielding the inner payload size which reflects a
3037  * packet with *minimum* ESP padding..
3038  */
3039 int32_t
3040 ipsec_act_ovhd(const ipsec_act_t *act)
3041 {
3042 	int32_t overhead = 0;
3043 
3044 	if (act->ipa_type == IPSEC_ACT_APPLY) {
3045 		const ipsec_prot_t *ipp = &act->ipa_apply;
3046 
3047 		if (ipp->ipp_use_ah)
3048 			overhead += IPSEC_MAX_AH_HDR_SIZE;
3049 		if (ipp->ipp_use_esp) {
3050 			overhead += IPSEC_MAX_ESP_HDR_SIZE;
3051 			overhead += sizeof (struct udphdr);
3052 		}
3053 		if (ipp->ipp_use_se)
3054 			overhead += IP_SIMPLE_HDR_LENGTH;
3055 	}
3056 	return (overhead);
3057 }
3058 
3059 /*
3060  * This hash function is used only when creating policies and thus is not
3061  * performance-critical for packet flows.
3062  *
3063  * Future work: canonicalize the structures hashed with this (i.e.,
3064  * zeroize padding) so the hash works correctly.
3065  */
3066 /* ARGSUSED */
3067 static uint32_t
3068 policy_hash(int size, const void *start, const void *end)
3069 {
3070 	return (0);
3071 }
3072 
3073 
3074 /*
3075  * Hash function macros for each address type.
3076  *
3077  * The IPV6 hash function assumes that the low order 32-bits of the
3078  * address (typically containing the low order 24 bits of the mac
3079  * address) are reasonably well-distributed.  Revisit this if we run
3080  * into trouble from lots of collisions on ::1 addresses and the like
3081  * (seems unlikely).
3082  */
3083 #define	IPSEC_IPV4_HASH(a, n) ((a) % (n))
3084 #define	IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n))
3085 
3086 /*
3087  * These two hash functions should produce coordinated values
3088  * but have slightly different roles.
3089  */
3090 static uint32_t
3091 selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns)
3092 {
3093 	uint32_t valid = selkey->ipsl_valid;
3094 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3095 
3096 	if (!(valid & IPSL_REMOTE_ADDR))
3097 		return (IPSEC_SEL_NOHASH);
3098 
3099 	if (valid & IPSL_IPV4) {
3100 		if (selkey->ipsl_remote_pfxlen == 32) {
3101 			return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3102 			    ipss->ipsec_spd_hashsize));
3103 		}
3104 	}
3105 	if (valid & IPSL_IPV6) {
3106 		if (selkey->ipsl_remote_pfxlen == 128) {
3107 			return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3108 			    ipss->ipsec_spd_hashsize));
3109 		}
3110 	}
3111 	return (IPSEC_SEL_NOHASH);
3112 }
3113 
3114 static uint32_t
3115 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root)
3116 {
3117 	if (sel->ips_isv4) {
3118 		return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4,
3119 		    root->ipr_nchains));
3120 	}
3121 	return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains));
3122 }
3123 
3124 /*
3125  * Intern actions into the action hash table.
3126  */
3127 ipsec_action_t *
3128 ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns)
3129 {
3130 	int i;
3131 	uint32_t hval;
3132 	ipsec_action_t *ap;
3133 	ipsec_action_t *prev = NULL;
3134 	int32_t overhead, maxovhd = 0;
3135 	boolean_t allow_clear = B_FALSE;
3136 	boolean_t want_ah = B_FALSE;
3137 	boolean_t want_esp = B_FALSE;
3138 	boolean_t want_se = B_FALSE;
3139 	boolean_t want_unique = B_FALSE;
3140 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3141 
3142 	/*
3143 	 * TODO: should canonicalize a[] (i.e., zeroize any padding)
3144 	 * so we can use a non-trivial policy_hash function.
3145 	 */
3146 	for (i = n-1; i >= 0; i--) {
3147 		hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
3148 
3149 		HASH_LOCK(ipss->ipsec_action_hash, hval);
3150 
3151 		for (HASH_ITERATE(ap, ipa_hash,
3152 		    ipss->ipsec_action_hash, hval)) {
3153 			if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
3154 				continue;
3155 			if (ap->ipa_next != prev)
3156 				continue;
3157 			break;
3158 		}
3159 		if (ap != NULL) {
3160 			HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3161 			prev = ap;
3162 			continue;
3163 		}
3164 		/*
3165 		 * need to allocate a new one..
3166 		 */
3167 		ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
3168 		if (ap == NULL) {
3169 			HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3170 			if (prev != NULL)
3171 				ipsec_action_free(prev);
3172 			return (NULL);
3173 		}
3174 		HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval);
3175 
3176 		ap->ipa_next = prev;
3177 		ap->ipa_act = a[i];
3178 
3179 		overhead = ipsec_act_ovhd(&a[i]);
3180 		if (maxovhd < overhead)
3181 			maxovhd = overhead;
3182 
3183 		if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
3184 		    (a[i].ipa_type == IPSEC_ACT_CLEAR))
3185 			allow_clear = B_TRUE;
3186 		if (a[i].ipa_type == IPSEC_ACT_APPLY) {
3187 			const ipsec_prot_t *ipp = &a[i].ipa_apply;
3188 
3189 			ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
3190 			want_ah |= ipp->ipp_use_ah;
3191 			want_esp |= ipp->ipp_use_esp;
3192 			want_se |= ipp->ipp_use_se;
3193 			want_unique |= ipp->ipp_use_unique;
3194 		}
3195 		ap->ipa_allow_clear = allow_clear;
3196 		ap->ipa_want_ah = want_ah;
3197 		ap->ipa_want_esp = want_esp;
3198 		ap->ipa_want_se = want_se;
3199 		ap->ipa_want_unique = want_unique;
3200 		ap->ipa_refs = 1; /* from the hash table */
3201 		ap->ipa_ovhd = maxovhd;
3202 		if (prev)
3203 			prev->ipa_refs++;
3204 		prev = ap;
3205 		HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3206 	}
3207 
3208 	ap->ipa_refs++;		/* caller's reference */
3209 
3210 	return (ap);
3211 }
3212 
3213 /*
3214  * Called when refcount goes to 0, indicating that all references to this
3215  * node are gone.
3216  *
3217  * This does not unchain the action from the hash table.
3218  */
3219 void
3220 ipsec_action_free(ipsec_action_t *ap)
3221 {
3222 	for (;;) {
3223 		ipsec_action_t *np = ap->ipa_next;
3224 		ASSERT(ap->ipa_refs == 0);
3225 		ASSERT(ap->ipa_hash.hash_pp == NULL);
3226 		kmem_cache_free(ipsec_action_cache, ap);
3227 		ap = np;
3228 		/* Inlined IPACT_REFRELE -- avoid recursion */
3229 		if (ap == NULL)
3230 			break;
3231 		membar_exit();
3232 		if (atomic_add_32_nv(&(ap)->ipa_refs, -1) != 0)
3233 			break;
3234 		/* End inlined IPACT_REFRELE */
3235 	}
3236 }
3237 
3238 /*
3239  * Called when the action hash table goes away.
3240  *
3241  * The actions can be queued on an mblk with ipsec_in or
3242  * ipsec_out, hence the actions might still be around.
3243  * But we decrement ipa_refs here since we no longer have
3244  * a reference to the action from the hash table.
3245  */
3246 static void
3247 ipsec_action_free_table(ipsec_action_t *ap)
3248 {
3249 	while (ap != NULL) {
3250 		ipsec_action_t *np = ap->ipa_next;
3251 
3252 		/* FIXME: remove? */
3253 		(void) printf("ipsec_action_free_table(%p) ref %d\n",
3254 		    (void *)ap, ap->ipa_refs);
3255 		ASSERT(ap->ipa_refs > 0);
3256 		IPACT_REFRELE(ap);
3257 		ap = np;
3258 	}
3259 }
3260 
3261 /*
3262  * Need to walk all stack instances since the reclaim function
3263  * is global for all instances
3264  */
3265 /* ARGSUSED */
3266 static void
3267 ipsec_action_reclaim(void *arg)
3268 {
3269 	netstack_handle_t nh;
3270 	netstack_t *ns;
3271 
3272 	netstack_next_init(&nh);
3273 	while ((ns = netstack_next(&nh)) != NULL) {
3274 		ipsec_action_reclaim_stack(ns);
3275 		netstack_rele(ns);
3276 	}
3277 	netstack_next_fini(&nh);
3278 }
3279 
3280 /*
3281  * Periodically sweep action hash table for actions with refcount==1, and
3282  * nuke them.  We cannot do this "on demand" (i.e., from IPACT_REFRELE)
3283  * because we can't close the race between another thread finding the action
3284  * in the hash table without holding the bucket lock during IPACT_REFRELE.
3285  * Instead, we run this function sporadically to clean up after ourselves;
3286  * we also set it as the "reclaim" function for the action kmem_cache.
3287  *
3288  * Note that it may take several passes of ipsec_action_gc() to free all
3289  * "stale" actions.
3290  */
3291 static void
3292 ipsec_action_reclaim_stack(netstack_t *ns)
3293 {
3294 	int i;
3295 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3296 
3297 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
3298 		ipsec_action_t *ap, *np;
3299 
3300 		/* skip the lock if nobody home */
3301 		if (ipss->ipsec_action_hash[i].hash_head == NULL)
3302 			continue;
3303 
3304 		HASH_LOCK(ipss->ipsec_action_hash, i);
3305 		for (ap = ipss->ipsec_action_hash[i].hash_head;
3306 		    ap != NULL; ap = np) {
3307 			ASSERT(ap->ipa_refs > 0);
3308 			np = ap->ipa_hash.hash_next;
3309 			if (ap->ipa_refs > 1)
3310 				continue;
3311 			HASH_UNCHAIN(ap, ipa_hash,
3312 			    ipss->ipsec_action_hash, i);
3313 			IPACT_REFRELE(ap);
3314 		}
3315 		HASH_UNLOCK(ipss->ipsec_action_hash, i);
3316 	}
3317 }
3318 
3319 /*
3320  * Intern a selector set into the selector set hash table.
3321  * This is simpler than the actions case..
3322  */
3323 static ipsec_sel_t *
3324 ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns)
3325 {
3326 	ipsec_sel_t *sp;
3327 	uint32_t hval, bucket;
3328 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3329 
3330 	/*
3331 	 * Exactly one AF bit should be set in selkey.
3332 	 */
3333 	ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
3334 	    !(selkey->ipsl_valid & IPSL_IPV6));
3335 
3336 	hval = selkey_hash(selkey, ns);
3337 	/* Set pol_hval to uninitialized until we put it in a polhead. */
3338 	selkey->ipsl_sel_hval = hval;
3339 
3340 	bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval;
3341 
3342 	ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket));
3343 	HASH_LOCK(ipss->ipsec_sel_hash, bucket);
3344 
3345 	for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) {
3346 		if (bcmp(&sp->ipsl_key, selkey,
3347 		    offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0)
3348 			break;
3349 	}
3350 	if (sp != NULL) {
3351 		sp->ipsl_refs++;
3352 
3353 		HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3354 		return (sp);
3355 	}
3356 
3357 	sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
3358 	if (sp == NULL) {
3359 		HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3360 		return (NULL);
3361 	}
3362 
3363 	HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket);
3364 	sp->ipsl_refs = 2;	/* one for hash table, one for caller */
3365 	sp->ipsl_key = *selkey;
3366 	/* Set to uninitalized and have insertion into polhead fix things. */
3367 	if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH)
3368 		sp->ipsl_key.ipsl_pol_hval = 0;
3369 	else
3370 		sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH;
3371 
3372 	HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3373 
3374 	return (sp);
3375 }
3376 
3377 static void
3378 ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns)
3379 {
3380 	ipsec_sel_t *sp = *spp;
3381 	int hval = sp->ipsl_key.ipsl_sel_hval;
3382 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3383 
3384 	*spp = NULL;
3385 
3386 	if (hval == IPSEC_SEL_NOHASH)
3387 		hval = 0;
3388 
3389 	ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval));
3390 	HASH_LOCK(ipss->ipsec_sel_hash, hval);
3391 	if (--sp->ipsl_refs == 1) {
3392 		HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval);
3393 		sp->ipsl_refs--;
3394 		HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3395 		ASSERT(sp->ipsl_refs == 0);
3396 		kmem_cache_free(ipsec_sel_cache, sp);
3397 		/* Caller unlocks */
3398 		return;
3399 	}
3400 
3401 	HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3402 }
3403 
3404 /*
3405  * Free a policy rule which we know is no longer being referenced.
3406  */
3407 void
3408 ipsec_policy_free(ipsec_policy_t *ipp, netstack_t *ns)
3409 {
3410 	ASSERT(ipp->ipsp_refs == 0);
3411 	ASSERT(ipp->ipsp_sel != NULL);
3412 	ASSERT(ipp->ipsp_act != NULL);
3413 
3414 	ipsec_sel_rel(&ipp->ipsp_sel, ns);
3415 	IPACT_REFRELE(ipp->ipsp_act);
3416 	kmem_cache_free(ipsec_pol_cache, ipp);
3417 }
3418 
3419 /*
3420  * Construction of new policy rules; construct a policy, and add it to
3421  * the appropriate tables.
3422  */
3423 ipsec_policy_t *
3424 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a,
3425     int nacts, int prio, uint64_t *index_ptr, netstack_t *ns)
3426 {
3427 	ipsec_action_t *ap;
3428 	ipsec_sel_t *sp;
3429 	ipsec_policy_t *ipp;
3430 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3431 
3432 	if (index_ptr == NULL)
3433 		index_ptr = &ipss->ipsec_next_policy_index;
3434 
3435 	ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
3436 	ap = ipsec_act_find(a, nacts, ns);
3437 	sp = ipsec_find_sel(keys, ns);
3438 
3439 	if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
3440 		if (ap != NULL) {
3441 			IPACT_REFRELE(ap);
3442 		}
3443 		if (sp != NULL)
3444 			ipsec_sel_rel(&sp, ns);
3445 		if (ipp != NULL)
3446 			kmem_cache_free(ipsec_pol_cache, ipp);
3447 		return (NULL);
3448 	}
3449 
3450 	HASH_NULL(ipp, ipsp_hash);
3451 
3452 	ipp->ipsp_refs = 1;	/* caller's reference */
3453 	ipp->ipsp_sel = sp;
3454 	ipp->ipsp_act = ap;
3455 	ipp->ipsp_prio = prio;	/* rule priority */
3456 	ipp->ipsp_index = *index_ptr;
3457 	(*index_ptr)++;
3458 
3459 	return (ipp);
3460 }
3461 
3462 static void
3463 ipsec_update_present_flags(ipsec_stack_t *ipss)
3464 {
3465 	boolean_t hashpol;
3466 
3467 	hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0);
3468 
3469 	if (hashpol) {
3470 		ipss->ipsec_outbound_v4_policy_present = B_TRUE;
3471 		ipss->ipsec_outbound_v6_policy_present = B_TRUE;
3472 		ipss->ipsec_inbound_v4_policy_present = B_TRUE;
3473 		ipss->ipsec_inbound_v6_policy_present = B_TRUE;
3474 		return;
3475 	}
3476 
3477 	ipss->ipsec_outbound_v4_policy_present = (NULL !=
3478 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3479 	    ipr_nonhash[IPSEC_AF_V4]);
3480 	ipss->ipsec_outbound_v6_policy_present = (NULL !=
3481 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3482 	    ipr_nonhash[IPSEC_AF_V6]);
3483 	ipss->ipsec_inbound_v4_policy_present = (NULL !=
3484 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3485 	    ipr_nonhash[IPSEC_AF_V4]);
3486 	ipss->ipsec_inbound_v6_policy_present = (NULL !=
3487 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3488 	    ipr_nonhash[IPSEC_AF_V6]);
3489 }
3490 
3491 boolean_t
3492 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir,
3493 	netstack_t *ns)
3494 {
3495 	ipsec_sel_t *sp;
3496 	ipsec_policy_t *ip, *nip, *head;
3497 	int af;
3498 	ipsec_policy_root_t *pr = &php->iph_root[dir];
3499 
3500 	sp = ipsec_find_sel(keys, ns);
3501 
3502 	if (sp == NULL)
3503 		return (B_FALSE);
3504 
3505 	af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
3506 
3507 	rw_enter(&php->iph_lock, RW_WRITER);
3508 
3509 	if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) {
3510 		head = pr->ipr_nonhash[af];
3511 	} else {
3512 		head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head;
3513 	}
3514 
3515 	for (ip = head; ip != NULL; ip = nip) {
3516 		nip = ip->ipsp_hash.hash_next;
3517 		if (ip->ipsp_sel != sp) {
3518 			continue;
3519 		}
3520 
3521 		IPPOL_UNCHAIN(php, ip, ns);
3522 
3523 		php->iph_gen++;
3524 		ipsec_update_present_flags(ns->netstack_ipsec);
3525 
3526 		rw_exit(&php->iph_lock);
3527 
3528 		ipsec_sel_rel(&sp, ns);
3529 
3530 		return (B_TRUE);
3531 	}
3532 
3533 	rw_exit(&php->iph_lock);
3534 	ipsec_sel_rel(&sp, ns);
3535 	return (B_FALSE);
3536 }
3537 
3538 int
3539 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index,
3540     netstack_t *ns)
3541 {
3542 	boolean_t found = B_FALSE;
3543 	ipsec_policy_t ipkey;
3544 	ipsec_policy_t *ip;
3545 	avl_index_t where;
3546 
3547 	(void) memset(&ipkey, 0, sizeof (ipkey));
3548 	ipkey.ipsp_index = policy_index;
3549 
3550 	rw_enter(&php->iph_lock, RW_WRITER);
3551 
3552 	/*
3553 	 * We could be cleverer here about the walk.
3554 	 * but well, (k+1)*log(N) will do for now (k==number of matches,
3555 	 * N==number of table entries
3556 	 */
3557 	for (;;) {
3558 		ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid,
3559 		    (void *)&ipkey, &where);
3560 		ASSERT(ip == NULL);
3561 
3562 		ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER);
3563 
3564 		if (ip == NULL)
3565 			break;
3566 
3567 		if (ip->ipsp_index != policy_index) {
3568 			ASSERT(ip->ipsp_index > policy_index);
3569 			break;
3570 		}
3571 
3572 		IPPOL_UNCHAIN(php, ip, ns);
3573 		found = B_TRUE;
3574 	}
3575 
3576 	if (found) {
3577 		php->iph_gen++;
3578 		ipsec_update_present_flags(ns->netstack_ipsec);
3579 	}
3580 
3581 	rw_exit(&php->iph_lock);
3582 
3583 	return (found ? 0 : ENOENT);
3584 }
3585 
3586 /*
3587  * Given a constructed ipsec_policy_t policy rule, see if it can be entered
3588  * into the correct policy ruleset.  As a side-effect, it sets the hash
3589  * entries on "ipp"'s ipsp_pol_hval.
3590  *
3591  * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
3592  * duplicate policy exists with exactly the same selectors), or an icmp
3593  * rule exists with a different encryption/authentication action.
3594  */
3595 boolean_t
3596 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3597 {
3598 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3599 	int af = -1;
3600 	ipsec_policy_t *p2, *head;
3601 	uint8_t check_proto;
3602 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3603 	uint32_t	valid = selkey->ipsl_valid;
3604 
3605 	if (valid & IPSL_IPV6) {
3606 		ASSERT(!(valid & IPSL_IPV4));
3607 		af = IPSEC_AF_V6;
3608 		check_proto = IPPROTO_ICMPV6;
3609 	} else {
3610 		ASSERT(valid & IPSL_IPV4);
3611 		af = IPSEC_AF_V4;
3612 		check_proto = IPPROTO_ICMP;
3613 	}
3614 
3615 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3616 
3617 	/*
3618 	 * Double-check that we don't have any duplicate selectors here.
3619 	 * Because selectors are interned below, we need only compare pointers
3620 	 * for equality.
3621 	 */
3622 	if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) {
3623 		head = pr->ipr_nonhash[af];
3624 	} else {
3625 		selkey->ipsl_pol_hval =
3626 		    (selkey->ipsl_valid & IPSL_IPV4) ?
3627 		    IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3628 		    pr->ipr_nchains) :
3629 		    IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3630 		    pr->ipr_nchains);
3631 
3632 		head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head;
3633 	}
3634 
3635 	for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3636 		if (p2->ipsp_sel == ipp->ipsp_sel)
3637 			return (B_FALSE);
3638 	}
3639 
3640 	/*
3641 	 * If it's ICMP and not a drop or pass rule, run through the ICMP
3642 	 * rules and make sure the action is either new or the same as any
3643 	 * other actions.  We don't have to check the full chain because
3644 	 * discard and bypass will override all other actions
3645 	 */
3646 
3647 	if (valid & IPSL_PROTOCOL &&
3648 	    selkey->ipsl_proto == check_proto &&
3649 	    (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
3650 
3651 		for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3652 
3653 			if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
3654 			    p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
3655 			    (p2->ipsp_act->ipa_act.ipa_type ==
3656 			    IPSEC_ACT_APPLY)) {
3657 				return (ipsec_compare_action(p2, ipp));
3658 			}
3659 		}
3660 	}
3661 
3662 	return (B_TRUE);
3663 }
3664 
3665 /*
3666  * compare the action chains of two policies for equality
3667  * B_TRUE -> effective equality
3668  */
3669 
3670 static boolean_t
3671 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
3672 {
3673 
3674 	ipsec_action_t *act1, *act2;
3675 
3676 	/* We have a valid rule. Let's compare the actions */
3677 	if (p1->ipsp_act == p2->ipsp_act) {
3678 		/* same action. We are good */
3679 		return (B_TRUE);
3680 	}
3681 
3682 	/* we have to walk the chain */
3683 
3684 	act1 = p1->ipsp_act;
3685 	act2 = p2->ipsp_act;
3686 
3687 	while (act1 != NULL && act2 != NULL) {
3688 
3689 		/* otherwise, Are we close enough? */
3690 		if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
3691 		    act1->ipa_want_ah != act2->ipa_want_ah ||
3692 		    act1->ipa_want_esp != act2->ipa_want_esp ||
3693 		    act1->ipa_want_se != act2->ipa_want_se) {
3694 			/* Nope, we aren't */
3695 			return (B_FALSE);
3696 		}
3697 
3698 		if (act1->ipa_want_ah) {
3699 			if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
3700 			    act2->ipa_act.ipa_apply.ipp_auth_alg) {
3701 				return (B_FALSE);
3702 			}
3703 
3704 			if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
3705 			    act2->ipa_act.ipa_apply.ipp_ah_minbits ||
3706 			    act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
3707 			    act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
3708 				return (B_FALSE);
3709 			}
3710 		}
3711 
3712 		if (act1->ipa_want_esp) {
3713 			if (act1->ipa_act.ipa_apply.ipp_use_esp !=
3714 			    act2->ipa_act.ipa_apply.ipp_use_esp ||
3715 			    act1->ipa_act.ipa_apply.ipp_use_espa !=
3716 			    act2->ipa_act.ipa_apply.ipp_use_espa) {
3717 				return (B_FALSE);
3718 			}
3719 
3720 			if (act1->ipa_act.ipa_apply.ipp_use_esp) {
3721 				if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
3722 				    act2->ipa_act.ipa_apply.ipp_encr_alg) {
3723 					return (B_FALSE);
3724 				}
3725 
3726 				if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
3727 				    act2->ipa_act.ipa_apply.ipp_espe_minbits ||
3728 				    act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
3729 				    act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
3730 					return (B_FALSE);
3731 				}
3732 			}
3733 
3734 			if (act1->ipa_act.ipa_apply.ipp_use_espa) {
3735 				if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
3736 				    act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
3737 					return (B_FALSE);
3738 				}
3739 
3740 				if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
3741 				    act2->ipa_act.ipa_apply.ipp_espa_minbits ||
3742 				    act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
3743 				    act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
3744 					return (B_FALSE);
3745 				}
3746 			}
3747 
3748 		}
3749 
3750 		act1 = act1->ipa_next;
3751 		act2 = act2->ipa_next;
3752 	}
3753 
3754 	if (act1 != NULL || act2 != NULL) {
3755 		return (B_FALSE);
3756 	}
3757 
3758 	return (B_TRUE);
3759 }
3760 
3761 
3762 /*
3763  * Given a constructed ipsec_policy_t policy rule, enter it into
3764  * the correct policy ruleset.
3765  *
3766  * ipsec_check_policy() is assumed to have succeeded first (to check for
3767  * duplicates).
3768  */
3769 void
3770 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction,
3771     netstack_t *ns)
3772 {
3773 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3774 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3775 	uint32_t valid = selkey->ipsl_valid;
3776 	uint32_t hval = selkey->ipsl_pol_hval;
3777 	int af = -1;
3778 
3779 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3780 
3781 	if (valid & IPSL_IPV6) {
3782 		ASSERT(!(valid & IPSL_IPV4));
3783 		af = IPSEC_AF_V6;
3784 	} else {
3785 		ASSERT(valid & IPSL_IPV4);
3786 		af = IPSEC_AF_V4;
3787 	}
3788 
3789 	php->iph_gen++;
3790 
3791 	if (hval == IPSEC_SEL_NOHASH) {
3792 		HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]);
3793 	} else {
3794 		HASH_LOCK(pr->ipr_hash, hval);
3795 		HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval);
3796 		HASH_UNLOCK(pr->ipr_hash, hval);
3797 	}
3798 
3799 	ipsec_insert_always(&php->iph_rulebyid, ipp);
3800 
3801 	ipsec_update_present_flags(ns->netstack_ipsec);
3802 }
3803 
3804 static void
3805 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr,
3806     netstack_t *ns)
3807 {
3808 	ipsec_policy_t *ip, *nip;
3809 	int af, chain, nchain;
3810 
3811 	for (af = 0; af < IPSEC_NAF; af++) {
3812 		for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) {
3813 			nip = ip->ipsp_hash.hash_next;
3814 			IPPOL_UNCHAIN(php, ip, ns);
3815 		}
3816 		ipr->ipr_nonhash[af] = NULL;
3817 	}
3818 	nchain = ipr->ipr_nchains;
3819 
3820 	for (chain = 0; chain < nchain; chain++) {
3821 		for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL;
3822 		    ip = nip) {
3823 			nip = ip->ipsp_hash.hash_next;
3824 			IPPOL_UNCHAIN(php, ip, ns);
3825 		}
3826 		ipr->ipr_hash[chain].hash_head = NULL;
3827 	}
3828 }
3829 
3830 void
3831 ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns)
3832 {
3833 	int dir;
3834 
3835 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3836 
3837 	for (dir = 0; dir < IPSEC_NTYPES; dir++)
3838 		ipsec_ipr_flush(php, &php->iph_root[dir], ns);
3839 
3840 	ipsec_update_present_flags(ns->netstack_ipsec);
3841 }
3842 
3843 void
3844 ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns)
3845 {
3846 	int dir;
3847 
3848 	ASSERT(php->iph_refs == 0);
3849 
3850 	rw_enter(&php->iph_lock, RW_WRITER);
3851 	ipsec_polhead_flush(php, ns);
3852 	rw_exit(&php->iph_lock);
3853 	rw_destroy(&php->iph_lock);
3854 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
3855 		ipsec_policy_root_t *ipr = &php->iph_root[dir];
3856 		int chain;
3857 
3858 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
3859 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
3860 
3861 	}
3862 	ipsec_polhead_free_table(php);
3863 	kmem_free(php, sizeof (*php));
3864 }
3865 
3866 static void
3867 ipsec_ipr_init(ipsec_policy_root_t *ipr)
3868 {
3869 	int af;
3870 
3871 	ipr->ipr_nchains = 0;
3872 	ipr->ipr_hash = NULL;
3873 
3874 	for (af = 0; af < IPSEC_NAF; af++) {
3875 		ipr->ipr_nonhash[af] = NULL;
3876 	}
3877 }
3878 
3879 ipsec_policy_head_t *
3880 ipsec_polhead_create(void)
3881 {
3882 	ipsec_policy_head_t *php;
3883 
3884 	php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
3885 	if (php == NULL)
3886 		return (php);
3887 
3888 	rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
3889 	php->iph_refs = 1;
3890 	php->iph_gen = 0;
3891 
3892 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]);
3893 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]);
3894 
3895 	avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid,
3896 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
3897 
3898 	return (php);
3899 }
3900 
3901 /*
3902  * Clone the policy head into a new polhead; release one reference to the
3903  * old one and return the only reference to the new one.
3904  * If the old one had a refcount of 1, just return it.
3905  */
3906 ipsec_policy_head_t *
3907 ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns)
3908 {
3909 	ipsec_policy_head_t *nphp;
3910 
3911 	if (php == NULL)
3912 		return (ipsec_polhead_create());
3913 	else if (php->iph_refs == 1)
3914 		return (php);
3915 
3916 	nphp = ipsec_polhead_create();
3917 	if (nphp == NULL)
3918 		return (NULL);
3919 
3920 	if (ipsec_copy_polhead(php, nphp, ns) != 0) {
3921 		ipsec_polhead_free(nphp, ns);
3922 		return (NULL);
3923 	}
3924 	IPPH_REFRELE(php, ns);
3925 	return (nphp);
3926 }
3927 
3928 /*
3929  * When sending a response to a ICMP request or generating a RST
3930  * in the TCP case, the outbound packets need to go at the same level
3931  * of protection as the incoming ones i.e we associate our outbound
3932  * policy with how the packet came in. We call this after we have
3933  * accepted the incoming packet which may or may not have been in
3934  * clear and hence we are sending the reply back with the policy
3935  * matching the incoming datagram's policy.
3936  *
3937  * NOTE : This technology serves two purposes :
3938  *
3939  * 1) If we have multiple outbound policies, we send out a reply
3940  *    matching with how it came in rather than matching the outbound
3941  *    policy.
3942  *
3943  * 2) For assymetric policies, we want to make sure that incoming
3944  *    and outgoing has the same level of protection. Assymetric
3945  *    policies exist only with global policy where we may not have
3946  *    both outbound and inbound at the same time.
3947  *
3948  * NOTE2:	This function is called by cleartext cases, so it needs to be
3949  *		in IP proper.
3950  */
3951 boolean_t
3952 ipsec_in_to_out(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h)
3953 {
3954 	ipsec_in_t  *ii;
3955 	ipsec_out_t  *io;
3956 	boolean_t v4;
3957 	mblk_t *mp;
3958 	boolean_t secure, attach_if;
3959 	uint_t ifindex;
3960 	ipsec_selector_t sel;
3961 	ipsec_action_t *reflect_action = NULL;
3962 	zoneid_t zoneid;
3963 	netstack_t	*ns;
3964 
3965 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
3966 
3967 	bzero((void*)&sel, sizeof (sel));
3968 
3969 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
3970 
3971 	mp = ipsec_mp->b_cont;
3972 	ASSERT(mp != NULL);
3973 
3974 	if (ii->ipsec_in_action != NULL) {
3975 		/* transfer reference.. */
3976 		reflect_action = ii->ipsec_in_action;
3977 		ii->ipsec_in_action = NULL;
3978 	} else if (!ii->ipsec_in_loopback)
3979 		reflect_action = ipsec_in_to_out_action(ii);
3980 	secure = ii->ipsec_in_secure;
3981 	attach_if = ii->ipsec_in_attach_if;
3982 	ifindex = ii->ipsec_in_ill_index;
3983 	zoneid = ii->ipsec_in_zoneid;
3984 	ASSERT(zoneid != ALL_ZONES);
3985 	ns = ii->ipsec_in_ns;
3986 	v4 = ii->ipsec_in_v4;
3987 
3988 	ipsec_in_release_refs(ii);	/* No netstack_rele/hold needed */
3989 
3990 	/*
3991 	 * The caller is going to send the datagram out which might
3992 	 * go on the wire or delivered locally through ip_wput_local.
3993 	 *
3994 	 * 1) If it goes out on the wire, new associations will be
3995 	 *    obtained.
3996 	 * 2) If it is delivered locally, ip_wput_local will convert
3997 	 *    this IPSEC_OUT to a IPSEC_IN looking at the requests.
3998 	 */
3999 
4000 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4001 	bzero(io, sizeof (ipsec_out_t));
4002 	io->ipsec_out_type = IPSEC_OUT;
4003 	io->ipsec_out_len = sizeof (ipsec_out_t);
4004 	io->ipsec_out_frtn.free_func = ipsec_out_free;
4005 	io->ipsec_out_frtn.free_arg = (char *)io;
4006 	io->ipsec_out_act = reflect_action;
4007 
4008 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0,
4009 	    ns->netstack_ipsec))
4010 		return (B_FALSE);
4011 
4012 	io->ipsec_out_src_port = sel.ips_local_port;
4013 	io->ipsec_out_dst_port = sel.ips_remote_port;
4014 	io->ipsec_out_proto = sel.ips_protocol;
4015 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
4016 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
4017 
4018 	/*
4019 	 * Don't use global policy for this, as we want
4020 	 * to use the same protection that was applied to the inbound packet.
4021 	 */
4022 	io->ipsec_out_use_global_policy = B_FALSE;
4023 	io->ipsec_out_proc_begin = B_FALSE;
4024 	io->ipsec_out_secure = secure;
4025 	io->ipsec_out_v4 = v4;
4026 	io->ipsec_out_attach_if = attach_if;
4027 	io->ipsec_out_ill_index = ifindex;
4028 	io->ipsec_out_zoneid = zoneid;
4029 	io->ipsec_out_ns = ns;		/* No netstack_hold */
4030 
4031 	return (B_TRUE);
4032 }
4033 
4034 mblk_t *
4035 ipsec_in_tag(mblk_t *mp, mblk_t *cont, netstack_t *ns)
4036 {
4037 	ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr;
4038 	ipsec_in_t *nii;
4039 	mblk_t *nmp;
4040 	frtn_t nfrtn;
4041 	ipsec_stack_t *ipss = ns->netstack_ipsec;
4042 
4043 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
4044 	ASSERT(ii->ipsec_in_len == sizeof (ipsec_in_t));
4045 
4046 	nmp = ipsec_in_alloc(ii->ipsec_in_v4, ns);
4047 	if (nmp == NULL) {
4048 		ip_drop_packet_chain(cont, B_FALSE, NULL, NULL,
4049 		    DROPPER(ipss, ipds_spd_nomem),
4050 		    &ipss->ipsec_spd_dropper);
4051 		return (NULL);
4052 	}
4053 
4054 	ASSERT(nmp->b_datap->db_type == M_CTL);
4055 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
4056 
4057 	/*
4058 	 * Bump refcounts.
4059 	 */
4060 	if (ii->ipsec_in_ah_sa != NULL)
4061 		IPSA_REFHOLD(ii->ipsec_in_ah_sa);
4062 	if (ii->ipsec_in_esp_sa != NULL)
4063 		IPSA_REFHOLD(ii->ipsec_in_esp_sa);
4064 	if (ii->ipsec_in_policy != NULL)
4065 		IPPH_REFHOLD(ii->ipsec_in_policy);
4066 
4067 	/*
4068 	 * Copy everything, but preserve the free routine provided by
4069 	 * ipsec_in_alloc().
4070 	 */
4071 	nii = (ipsec_in_t *)nmp->b_rptr;
4072 	nfrtn = nii->ipsec_in_frtn;
4073 	bcopy(ii, nii, sizeof (*ii));
4074 	nii->ipsec_in_frtn = nfrtn;
4075 
4076 	nmp->b_cont = cont;
4077 
4078 	return (nmp);
4079 }
4080 
4081 mblk_t *
4082 ipsec_out_tag(mblk_t *mp, mblk_t *cont, netstack_t *ns)
4083 {
4084 	ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr;
4085 	ipsec_out_t *nio;
4086 	mblk_t *nmp;
4087 	frtn_t nfrtn;
4088 	ipsec_stack_t *ipss = ns->netstack_ipsec;
4089 
4090 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
4091 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
4092 
4093 	nmp = ipsec_alloc_ipsec_out(ns);
4094 	if (nmp == NULL) {
4095 		ip_drop_packet_chain(cont, B_FALSE, NULL, NULL,
4096 		    DROPPER(ipss, ipds_spd_nomem),
4097 		    &ipss->ipsec_spd_dropper);
4098 		return (NULL);
4099 	}
4100 	ASSERT(nmp->b_datap->db_type == M_CTL);
4101 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
4102 
4103 	/*
4104 	 * Bump refcounts.
4105 	 */
4106 	if (io->ipsec_out_ah_sa != NULL)
4107 		IPSA_REFHOLD(io->ipsec_out_ah_sa);
4108 	if (io->ipsec_out_esp_sa != NULL)
4109 		IPSA_REFHOLD(io->ipsec_out_esp_sa);
4110 	if (io->ipsec_out_polhead != NULL)
4111 		IPPH_REFHOLD(io->ipsec_out_polhead);
4112 	if (io->ipsec_out_policy != NULL)
4113 		IPPOL_REFHOLD(io->ipsec_out_policy);
4114 	if (io->ipsec_out_act != NULL)
4115 		IPACT_REFHOLD(io->ipsec_out_act);
4116 	if (io->ipsec_out_latch != NULL)
4117 		IPLATCH_REFHOLD(io->ipsec_out_latch);
4118 	if (io->ipsec_out_cred != NULL)
4119 		crhold(io->ipsec_out_cred);
4120 
4121 	/*
4122 	 * Copy everything, but preserve the free routine provided by
4123 	 * ipsec_alloc_ipsec_out().
4124 	 */
4125 	nio = (ipsec_out_t *)nmp->b_rptr;
4126 	nfrtn = nio->ipsec_out_frtn;
4127 	bcopy(io, nio, sizeof (*io));
4128 	nio->ipsec_out_frtn = nfrtn;
4129 
4130 	nmp->b_cont = cont;
4131 
4132 	return (nmp);
4133 }
4134 
4135 static void
4136 ipsec_out_release_refs(ipsec_out_t *io)
4137 {
4138 	netstack_t	*ns = io->ipsec_out_ns;
4139 
4140 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
4141 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
4142 	ASSERT(io->ipsec_out_ns != NULL);
4143 
4144 	/* Note: IPSA_REFRELE is multi-line macro */
4145 	if (io->ipsec_out_ah_sa != NULL)
4146 		IPSA_REFRELE(io->ipsec_out_ah_sa);
4147 	if (io->ipsec_out_esp_sa != NULL)
4148 		IPSA_REFRELE(io->ipsec_out_esp_sa);
4149 	if (io->ipsec_out_polhead != NULL)
4150 		IPPH_REFRELE(io->ipsec_out_polhead, ns);
4151 	if (io->ipsec_out_policy != NULL)
4152 		IPPOL_REFRELE(io->ipsec_out_policy, ns);
4153 	if (io->ipsec_out_act != NULL)
4154 		IPACT_REFRELE(io->ipsec_out_act);
4155 	if (io->ipsec_out_cred != NULL) {
4156 		crfree(io->ipsec_out_cred);
4157 		io->ipsec_out_cred = NULL;
4158 	}
4159 	if (io->ipsec_out_latch) {
4160 		IPLATCH_REFRELE(io->ipsec_out_latch, ns);
4161 		io->ipsec_out_latch = NULL;
4162 	}
4163 }
4164 
4165 static void
4166 ipsec_out_free(void *arg)
4167 {
4168 	ipsec_out_t *io = (ipsec_out_t *)arg;
4169 	ipsec_out_release_refs(io);
4170 	kmem_cache_free(ipsec_info_cache, arg);
4171 }
4172 
4173 static void
4174 ipsec_in_release_refs(ipsec_in_t *ii)
4175 {
4176 	netstack_t	*ns = ii->ipsec_in_ns;
4177 
4178 	ASSERT(ii->ipsec_in_ns != NULL);
4179 
4180 	/* Note: IPSA_REFRELE is multi-line macro */
4181 	if (ii->ipsec_in_ah_sa != NULL)
4182 		IPSA_REFRELE(ii->ipsec_in_ah_sa);
4183 	if (ii->ipsec_in_esp_sa != NULL)
4184 		IPSA_REFRELE(ii->ipsec_in_esp_sa);
4185 	if (ii->ipsec_in_policy != NULL)
4186 		IPPH_REFRELE(ii->ipsec_in_policy, ns);
4187 	if (ii->ipsec_in_da != NULL) {
4188 		freeb(ii->ipsec_in_da);
4189 		ii->ipsec_in_da = NULL;
4190 	}
4191 }
4192 
4193 static void
4194 ipsec_in_free(void *arg)
4195 {
4196 	ipsec_in_t *ii = (ipsec_in_t *)arg;
4197 	ipsec_in_release_refs(ii);
4198 	kmem_cache_free(ipsec_info_cache, arg);
4199 }
4200 
4201 /*
4202  * This is called only for outbound datagrams if the datagram needs to
4203  * go out secure.  A NULL mp can be passed to get an ipsec_out. This
4204  * facility is used by ip_unbind.
4205  *
4206  * NOTE : o As the data part could be modified by ipsec_out_process etc.
4207  *	    we can't make it fast by calling a dup.
4208  */
4209 mblk_t *
4210 ipsec_alloc_ipsec_out(netstack_t *ns)
4211 {
4212 	mblk_t *ipsec_mp;
4213 	ipsec_out_t *io = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
4214 
4215 	if (io == NULL)
4216 		return (NULL);
4217 
4218 	bzero(io, sizeof (ipsec_out_t));
4219 
4220 	io->ipsec_out_type = IPSEC_OUT;
4221 	io->ipsec_out_len = sizeof (ipsec_out_t);
4222 	io->ipsec_out_frtn.free_func = ipsec_out_free;
4223 	io->ipsec_out_frtn.free_arg = (char *)io;
4224 
4225 	/*
4226 	 * Set the zoneid to ALL_ZONES which is used as an invalid value. Code
4227 	 * using ipsec_out_zoneid should assert that the zoneid has been set to
4228 	 * a sane value.
4229 	 */
4230 	io->ipsec_out_zoneid = ALL_ZONES;
4231 	io->ipsec_out_ns = ns;		/* No netstack_hold */
4232 
4233 	ipsec_mp = desballoc((uint8_t *)io, sizeof (ipsec_info_t), BPRI_HI,
4234 	    &io->ipsec_out_frtn);
4235 	if (ipsec_mp == NULL) {
4236 		ipsec_out_free(io);
4237 
4238 		return (NULL);
4239 	}
4240 	ipsec_mp->b_datap->db_type = M_CTL;
4241 	ipsec_mp->b_wptr = ipsec_mp->b_rptr + sizeof (ipsec_info_t);
4242 
4243 	return (ipsec_mp);
4244 }
4245 
4246 /*
4247  * Attach an IPSEC_OUT; use pol for policy if it is non-null.
4248  * Otherwise initialize using conn.
4249  *
4250  * If pol is non-null, we consume a reference to it.
4251  */
4252 mblk_t *
4253 ipsec_attach_ipsec_out(mblk_t **mp, conn_t *connp, ipsec_policy_t *pol,
4254     uint8_t proto, netstack_t *ns)
4255 {
4256 	mblk_t *ipsec_mp;
4257 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4258 
4259 	ASSERT((pol != NULL) || (connp != NULL));
4260 
4261 	ipsec_mp = ipsec_alloc_ipsec_out(ns);
4262 	if (ipsec_mp == NULL) {
4263 		ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_NOTE,
4264 		    "ipsec_attach_ipsec_out: Allocation failure\n");
4265 		ip_drop_packet(*mp, B_FALSE, NULL, NULL,
4266 		    DROPPER(ipss, ipds_spd_nomem),
4267 		    &ipss->ipsec_spd_dropper);
4268 		*mp = NULL;
4269 		return (NULL);
4270 	}
4271 	ipsec_mp->b_cont = *mp;
4272 	/*
4273 	 * If *mp is NULL, ipsec_init_ipsec_out() won't/should not be using it.
4274 	 */
4275 	return (ipsec_init_ipsec_out(ipsec_mp, mp, connp, pol, proto, ns));
4276 }
4277 
4278 /*
4279  * Initialize the IPSEC_OUT (ipsec_mp) using pol if it is non-null.
4280  * Otherwise initialize using conn.
4281  *
4282  * If pol is non-null, we consume a reference to it.
4283  */
4284 mblk_t *
4285 ipsec_init_ipsec_out(mblk_t *ipsec_mp, mblk_t **mp, conn_t *connp,
4286     ipsec_policy_t *pol, uint8_t proto, netstack_t *ns)
4287 {
4288 	ipsec_out_t *io;
4289 	ipsec_policy_t *p;
4290 	ipha_t *ipha;
4291 	ip6_t *ip6h;
4292 	ipsec_stack_t *ipss = ns->netstack_ipsec;
4293 
4294 	ASSERT(ipsec_mp->b_cont == *mp);
4295 
4296 	ASSERT((pol != NULL) || (connp != NULL));
4297 
4298 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4299 	ASSERT(ipsec_mp->b_wptr == (ipsec_mp->b_rptr + sizeof (ipsec_info_t)));
4300 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4301 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
4302 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
4303 	io->ipsec_out_latch = NULL;
4304 	/*
4305 	 * Set the zoneid when we have the connp.
4306 	 * Otherwise, we're called from ip_wput_attach_policy() who will take
4307 	 * care of setting the zoneid.
4308 	 */
4309 	if (connp != NULL)
4310 		io->ipsec_out_zoneid = connp->conn_zoneid;
4311 
4312 	io->ipsec_out_ns = ns;		/* No netstack_hold */
4313 
4314 	if (*mp != NULL) {
4315 		ipha = (ipha_t *)(*mp)->b_rptr;
4316 		if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
4317 			io->ipsec_out_v4 = B_TRUE;
4318 			ip6h = NULL;
4319 		} else {
4320 			io->ipsec_out_v4 = B_FALSE;
4321 			ip6h = (ip6_t *)ipha;
4322 			ipha = NULL;
4323 		}
4324 	} else {
4325 		ASSERT(connp != NULL && connp->conn_policy_cached);
4326 		ip6h = NULL;
4327 		ipha = NULL;
4328 		io->ipsec_out_v4 = !connp->conn_pkt_isv6;
4329 	}
4330 
4331 	p = NULL;
4332 
4333 	/*
4334 	 * Take latched policies over global policy.  Check here again for
4335 	 * this, in case we had conn_latch set while the packet was flying
4336 	 * around in IP.
4337 	 */
4338 	if (connp != NULL && connp->conn_latch != NULL) {
4339 		ASSERT(ns == connp->conn_netstack);
4340 		p = connp->conn_latch->ipl_out_policy;
4341 		io->ipsec_out_latch = connp->conn_latch;
4342 		IPLATCH_REFHOLD(connp->conn_latch);
4343 		if (p != NULL) {
4344 			IPPOL_REFHOLD(p);
4345 		}
4346 		io->ipsec_out_src_port = connp->conn_lport;
4347 		io->ipsec_out_dst_port = connp->conn_fport;
4348 		io->ipsec_out_icmp_type = io->ipsec_out_icmp_code = 0;
4349 		if (pol != NULL)
4350 			IPPOL_REFRELE(pol, ns);
4351 	} else if (pol != NULL) {
4352 		ipsec_selector_t sel;
4353 
4354 		bzero((void*)&sel, sizeof (sel));
4355 
4356 		p = pol;
4357 		/*
4358 		 * conn does not have the port information. Get
4359 		 * it from the packet.
4360 		 */
4361 
4362 		if (!ipsec_init_outbound_ports(&sel, *mp, ipha, ip6h, 0,
4363 		    ns->netstack_ipsec)) {
4364 			/* Callee did ip_drop_packet() on *mp. */
4365 			*mp = NULL;
4366 			freeb(ipsec_mp);
4367 			return (NULL);
4368 		}
4369 		io->ipsec_out_src_port = sel.ips_local_port;
4370 		io->ipsec_out_dst_port = sel.ips_remote_port;
4371 		io->ipsec_out_icmp_type = sel.ips_icmp_type;
4372 		io->ipsec_out_icmp_code = sel.ips_icmp_code;
4373 	}
4374 
4375 	io->ipsec_out_proto = proto;
4376 	io->ipsec_out_use_global_policy = B_TRUE;
4377 	io->ipsec_out_secure = (p != NULL);
4378 	io->ipsec_out_policy = p;
4379 
4380 	if (p == NULL) {
4381 		if (connp->conn_policy != NULL) {
4382 			io->ipsec_out_secure = B_TRUE;
4383 			ASSERT(io->ipsec_out_latch == NULL);
4384 			ASSERT(io->ipsec_out_use_global_policy == B_TRUE);
4385 			io->ipsec_out_need_policy = B_TRUE;
4386 			ASSERT(io->ipsec_out_polhead == NULL);
4387 			IPPH_REFHOLD(connp->conn_policy);
4388 			io->ipsec_out_polhead = connp->conn_policy;
4389 		}
4390 	} else {
4391 		/* Handle explicit drop action. */
4392 		if (p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_DISCARD ||
4393 		    p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_REJECT) {
4394 			ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
4395 			    DROPPER(ipss, ipds_spd_explicit),
4396 			    &ipss->ipsec_spd_dropper);
4397 			*mp = NULL;
4398 			ipsec_mp = NULL;
4399 		}
4400 	}
4401 
4402 	return (ipsec_mp);
4403 }
4404 
4405 /*
4406  * Allocate an IPSEC_IN mblk.  This will be prepended to an inbound datagram
4407  * and keep track of what-if-any IPsec processing will be applied to the
4408  * datagram.
4409  */
4410 mblk_t *
4411 ipsec_in_alloc(boolean_t isv4, netstack_t *ns)
4412 {
4413 	mblk_t *ipsec_in;
4414 	ipsec_in_t *ii = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
4415 
4416 	if (ii == NULL)
4417 		return (NULL);
4418 
4419 	bzero(ii, sizeof (ipsec_info_t));
4420 	ii->ipsec_in_type = IPSEC_IN;
4421 	ii->ipsec_in_len = sizeof (ipsec_in_t);
4422 
4423 	ii->ipsec_in_v4 = isv4;
4424 	ii->ipsec_in_secure = B_TRUE;
4425 	ii->ipsec_in_ns = ns;		/* No netstack_hold */
4426 
4427 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
4428 	ii->ipsec_in_frtn.free_arg = (char *)ii;
4429 
4430 	ipsec_in = desballoc((uint8_t *)ii, sizeof (ipsec_info_t), BPRI_HI,
4431 	    &ii->ipsec_in_frtn);
4432 	if (ipsec_in == NULL) {
4433 		ip1dbg(("ipsec_in_alloc: IPSEC_IN allocation failure.\n"));
4434 		ipsec_in_free(ii);
4435 		return (NULL);
4436 	}
4437 
4438 	ipsec_in->b_datap->db_type = M_CTL;
4439 	ipsec_in->b_wptr += sizeof (ipsec_info_t);
4440 
4441 	return (ipsec_in);
4442 }
4443 
4444 /*
4445  * This is called from ip_wput_local when a packet which needs
4446  * security is looped back, to convert the IPSEC_OUT to a IPSEC_IN
4447  * before fanout, where the policy check happens.  In most of the
4448  * cases, IPSEC processing has *never* been done.  There is one case
4449  * (ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed) where
4450  * the packet is destined for localhost, IPSEC processing has already
4451  * been done.
4452  *
4453  * Future: This could happen after SA selection has occurred for
4454  * outbound.. which will tell us who the src and dst identities are..
4455  * Then it's just a matter of splicing the ah/esp SA pointers from the
4456  * ipsec_out_t to the ipsec_in_t.
4457  */
4458 void
4459 ipsec_out_to_in(mblk_t *ipsec_mp)
4460 {
4461 	ipsec_in_t  *ii;
4462 	ipsec_out_t *io;
4463 	ipsec_policy_t *pol;
4464 	ipsec_action_t *act;
4465 	boolean_t v4, icmp_loopback;
4466 	zoneid_t zoneid;
4467 	netstack_t *ns;
4468 
4469 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4470 
4471 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4472 
4473 	v4 = io->ipsec_out_v4;
4474 	zoneid = io->ipsec_out_zoneid;
4475 	icmp_loopback = io->ipsec_out_icmp_loopback;
4476 	ns = io->ipsec_out_ns;
4477 
4478 	act = io->ipsec_out_act;
4479 	if (act == NULL) {
4480 		pol = io->ipsec_out_policy;
4481 		if (pol != NULL) {
4482 			act = pol->ipsp_act;
4483 			IPACT_REFHOLD(act);
4484 		}
4485 	}
4486 	io->ipsec_out_act = NULL;
4487 
4488 	ipsec_out_release_refs(io);	/* No netstack_rele/hold needed */
4489 
4490 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
4491 	bzero(ii, sizeof (ipsec_in_t));
4492 	ii->ipsec_in_type = IPSEC_IN;
4493 	ii->ipsec_in_len = sizeof (ipsec_in_t);
4494 	ii->ipsec_in_loopback = B_TRUE;
4495 	ii->ipsec_in_ns = ns;		/* No netstack_hold */
4496 
4497 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
4498 	ii->ipsec_in_frtn.free_arg = (char *)ii;
4499 	ii->ipsec_in_action = act;
4500 	ii->ipsec_in_zoneid = zoneid;
4501 
4502 	/*
4503 	 * In most of the cases, we can't look at the ipsec_out_XXX_sa
4504 	 * because this never went through IPSEC processing. So, look at
4505 	 * the requests and infer whether it would have gone through
4506 	 * IPSEC processing or not. Initialize the "done" fields with
4507 	 * the requests. The possible values for "done" fields are :
4508 	 *
4509 	 * 1) zero, indicates that a particular preference was never
4510 	 *    requested.
4511 	 * 2) non-zero, indicates that it could be IPSEC_PREF_REQUIRED/
4512 	 *    IPSEC_PREF_NEVER. If IPSEC_REQ_DONE is set, it means that
4513 	 *    IPSEC processing has been completed.
4514 	 */
4515 	ii->ipsec_in_secure = B_TRUE;
4516 	ii->ipsec_in_v4 = v4;
4517 	ii->ipsec_in_icmp_loopback = icmp_loopback;
4518 	ii->ipsec_in_attach_if = B_FALSE;
4519 }
4520 
4521 /*
4522  * Consults global policy to see whether this datagram should
4523  * go out secure. If so it attaches a ipsec_mp in front and
4524  * returns.
4525  */
4526 mblk_t *
4527 ip_wput_attach_policy(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire,
4528     conn_t *connp, boolean_t unspec_src, zoneid_t zoneid)
4529 {
4530 	mblk_t *mp;
4531 	ipsec_out_t *io = NULL;
4532 	ipsec_selector_t sel;
4533 	uint_t	ill_index;
4534 	boolean_t conn_dontroutex;
4535 	boolean_t conn_multicast_loopx;
4536 	boolean_t policy_present;
4537 	ip_stack_t	*ipst = ire->ire_ipst;
4538 	netstack_t	*ns = ipst->ips_netstack;
4539 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4540 
4541 	ASSERT((ipha != NULL && ip6h == NULL) ||
4542 	    (ip6h != NULL && ipha == NULL));
4543 
4544 	bzero((void*)&sel, sizeof (sel));
4545 
4546 	if (ipha != NULL)
4547 		policy_present = ipss->ipsec_outbound_v4_policy_present;
4548 	else
4549 		policy_present = ipss->ipsec_outbound_v6_policy_present;
4550 	/*
4551 	 * Fast Path to see if there is any policy.
4552 	 */
4553 	if (!policy_present) {
4554 		if (ipsec_mp->b_datap->db_type == M_CTL) {
4555 			io = (ipsec_out_t *)ipsec_mp->b_rptr;
4556 			if (!io->ipsec_out_secure) {
4557 				/*
4558 				 * If there is no global policy and ip_wput
4559 				 * or ip_wput_multicast has attached this mp
4560 				 * for multicast case, free the ipsec_mp and
4561 				 * return the original mp.
4562 				 */
4563 				mp = ipsec_mp->b_cont;
4564 				freeb(ipsec_mp);
4565 				ipsec_mp = mp;
4566 				io = NULL;
4567 			}
4568 			ASSERT(io == NULL || !io->ipsec_out_tunnel);
4569 		}
4570 		if (((io == NULL) || (io->ipsec_out_polhead == NULL)) &&
4571 		    ((connp == NULL) || (connp->conn_policy == NULL)))
4572 			return (ipsec_mp);
4573 	}
4574 
4575 	ill_index = 0;
4576 	conn_multicast_loopx = conn_dontroutex = B_FALSE;
4577 	mp = ipsec_mp;
4578 	if (ipsec_mp->b_datap->db_type == M_CTL) {
4579 		mp = ipsec_mp->b_cont;
4580 		/*
4581 		 * This is a connection where we have some per-socket
4582 		 * policy or ip_wput has attached an ipsec_mp for
4583 		 * the multicast datagram.
4584 		 */
4585 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
4586 		if (!io->ipsec_out_secure) {
4587 			/*
4588 			 * This ipsec_mp was allocated in ip_wput or
4589 			 * ip_wput_multicast so that we will know the
4590 			 * value of ill_index, conn_dontroute,
4591 			 * conn_multicast_loop in the multicast case if
4592 			 * we inherit global policy here.
4593 			 */
4594 			ill_index = io->ipsec_out_ill_index;
4595 			conn_dontroutex = io->ipsec_out_dontroute;
4596 			conn_multicast_loopx = io->ipsec_out_multicast_loop;
4597 			freeb(ipsec_mp);
4598 			ipsec_mp = mp;
4599 			io = NULL;
4600 		}
4601 		ASSERT(io == NULL || !io->ipsec_out_tunnel);
4602 	}
4603 
4604 	if (ipha != NULL) {
4605 		sel.ips_local_addr_v4 = (ipha->ipha_src != 0 ?
4606 		    ipha->ipha_src : ire->ire_src_addr);
4607 		sel.ips_remote_addr_v4 = ip_get_dst(ipha);
4608 		sel.ips_protocol = (uint8_t)ipha->ipha_protocol;
4609 		sel.ips_isv4 = B_TRUE;
4610 	} else {
4611 		ushort_t hdr_len;
4612 		uint8_t	*nexthdrp;
4613 		boolean_t is_fragment;
4614 
4615 		sel.ips_isv4 = B_FALSE;
4616 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
4617 			if (!unspec_src)
4618 				sel.ips_local_addr_v6 = ire->ire_src_addr_v6;
4619 		} else {
4620 			sel.ips_local_addr_v6 = ip6h->ip6_src;
4621 		}
4622 
4623 		sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, &is_fragment);
4624 		if (is_fragment) {
4625 			/*
4626 			 * It's a packet fragment for a packet that
4627 			 * we have already processed (since IPsec processing
4628 			 * is done before fragmentation), so we don't
4629 			 * have to do policy checks again. Fragments can
4630 			 * come back to us for processing if they have
4631 			 * been queued up due to flow control.
4632 			 */
4633 			if (ipsec_mp->b_datap->db_type == M_CTL) {
4634 				mp = ipsec_mp->b_cont;
4635 				freeb(ipsec_mp);
4636 				ipsec_mp = mp;
4637 			}
4638 			return (ipsec_mp);
4639 		}
4640 
4641 		/* IPv6 common-case. */
4642 		sel.ips_protocol = ip6h->ip6_nxt;
4643 		switch (ip6h->ip6_nxt) {
4644 		case IPPROTO_TCP:
4645 		case IPPROTO_UDP:
4646 		case IPPROTO_SCTP:
4647 		case IPPROTO_ICMPV6:
4648 			break;
4649 		default:
4650 			if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
4651 			    &hdr_len, &nexthdrp)) {
4652 				BUMP_MIB(&ipst->ips_ip6_mib,
4653 				    ipIfStatsOutDiscards);
4654 				freemsg(ipsec_mp); /* Not IPsec-related drop. */
4655 				return (NULL);
4656 			}
4657 			sel.ips_protocol = *nexthdrp;
4658 			break;
4659 		}
4660 	}
4661 
4662 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) {
4663 		if (ipha != NULL) {
4664 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
4665 		} else {
4666 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
4667 		}
4668 
4669 		/* Callee dropped the packet. */
4670 		return (NULL);
4671 	}
4672 
4673 	if (io != NULL) {
4674 		/*
4675 		 * We seem to have some local policy (we already have
4676 		 * an ipsec_out).  Look at global policy and see
4677 		 * whether we have to inherit or not.
4678 		 */
4679 		io->ipsec_out_need_policy = B_FALSE;
4680 		ipsec_mp = ipsec_apply_global_policy(ipsec_mp, connp,
4681 		    &sel, ns);
4682 		ASSERT((io->ipsec_out_policy != NULL) ||
4683 		    (io->ipsec_out_act != NULL));
4684 		ASSERT(io->ipsec_out_need_policy == B_FALSE);
4685 		return (ipsec_mp);
4686 	}
4687 	/*
4688 	 * We pass in a pointer to a pointer because mp can become
4689 	 * NULL due to allocation failures or explicit drops.  Callers
4690 	 * of this function should assume a NULL mp means the packet
4691 	 * was dropped.
4692 	 */
4693 	ipsec_mp = ipsec_attach_global_policy(&mp, connp, &sel, ns);
4694 	if (ipsec_mp == NULL)
4695 		return (mp);
4696 
4697 	/*
4698 	 * Copy the right port information.
4699 	 */
4700 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4701 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4702 
4703 	ASSERT(io->ipsec_out_need_policy == B_FALSE);
4704 	ASSERT((io->ipsec_out_policy != NULL) ||
4705 	    (io->ipsec_out_act != NULL));
4706 	io->ipsec_out_src_port = sel.ips_local_port;
4707 	io->ipsec_out_dst_port = sel.ips_remote_port;
4708 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
4709 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
4710 	/*
4711 	 * Set ill_index, conn_dontroute and conn_multicast_loop
4712 	 * for multicast datagrams.
4713 	 */
4714 	io->ipsec_out_ill_index = ill_index;
4715 	io->ipsec_out_dontroute = conn_dontroutex;
4716 	io->ipsec_out_multicast_loop = conn_multicast_loopx;
4717 
4718 	if (zoneid == ALL_ZONES)
4719 		zoneid = GLOBAL_ZONEID;
4720 	io->ipsec_out_zoneid = zoneid;
4721 	return (ipsec_mp);
4722 }
4723 
4724 /*
4725  * When appropriate, this function caches inbound and outbound policy
4726  * for this connection.
4727  *
4728  * XXX need to work out more details about per-interface policy and
4729  * caching here!
4730  *
4731  * XXX may want to split inbound and outbound caching for ill..
4732  */
4733 int
4734 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
4735 {
4736 	boolean_t global_policy_present;
4737 	netstack_t	*ns = connp->conn_netstack;
4738 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4739 
4740 	/*
4741 	 * There is no policy latching for ICMP sockets because we can't
4742 	 * decide on which policy to use until we see the packet and get
4743 	 * type/code selectors.
4744 	 */
4745 	if (connp->conn_ulp == IPPROTO_ICMP ||
4746 	    connp->conn_ulp == IPPROTO_ICMPV6) {
4747 		connp->conn_in_enforce_policy =
4748 		    connp->conn_out_enforce_policy = B_TRUE;
4749 		if (connp->conn_latch != NULL) {
4750 			IPLATCH_REFRELE(connp->conn_latch, ns);
4751 			connp->conn_latch = NULL;
4752 		}
4753 		connp->conn_flags |= IPCL_CHECK_POLICY;
4754 		return (0);
4755 	}
4756 
4757 	global_policy_present = isv4 ?
4758 	    (ipss->ipsec_outbound_v4_policy_present ||
4759 	    ipss->ipsec_inbound_v4_policy_present) :
4760 	    (ipss->ipsec_outbound_v6_policy_present ||
4761 	    ipss->ipsec_inbound_v6_policy_present);
4762 
4763 	if ((connp->conn_policy != NULL) || global_policy_present) {
4764 		ipsec_selector_t sel;
4765 		ipsec_policy_t	*p;
4766 
4767 		if (connp->conn_latch == NULL &&
4768 		    (connp->conn_latch = iplatch_create()) == NULL) {
4769 			return (ENOMEM);
4770 		}
4771 
4772 		sel.ips_protocol = connp->conn_ulp;
4773 		sel.ips_local_port = connp->conn_lport;
4774 		sel.ips_remote_port = connp->conn_fport;
4775 		sel.ips_is_icmp_inv_acq = 0;
4776 		sel.ips_isv4 = isv4;
4777 		if (isv4) {
4778 			sel.ips_local_addr_v4 = connp->conn_src;
4779 			sel.ips_remote_addr_v4 = connp->conn_rem;
4780 		} else {
4781 			sel.ips_local_addr_v6 = connp->conn_srcv6;
4782 			sel.ips_remote_addr_v6 = connp->conn_remv6;
4783 		}
4784 
4785 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel,
4786 		    ns);
4787 		if (connp->conn_latch->ipl_in_policy != NULL)
4788 			IPPOL_REFRELE(connp->conn_latch->ipl_in_policy, ns);
4789 		connp->conn_latch->ipl_in_policy = p;
4790 		connp->conn_in_enforce_policy = (p != NULL);
4791 
4792 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, &sel,
4793 		    ns);
4794 		if (connp->conn_latch->ipl_out_policy != NULL)
4795 			IPPOL_REFRELE(connp->conn_latch->ipl_out_policy, ns);
4796 		connp->conn_latch->ipl_out_policy = p;
4797 		connp->conn_out_enforce_policy = (p != NULL);
4798 
4799 		/* Clear the latched actions too, in case we're recaching. */
4800 		if (connp->conn_latch->ipl_out_action != NULL)
4801 			IPACT_REFRELE(connp->conn_latch->ipl_out_action);
4802 		if (connp->conn_latch->ipl_in_action != NULL)
4803 			IPACT_REFRELE(connp->conn_latch->ipl_in_action);
4804 	}
4805 
4806 	/*
4807 	 * We may or may not have policy for this endpoint.  We still set
4808 	 * conn_policy_cached so that inbound datagrams don't have to look
4809 	 * at global policy as policy is considered latched for these
4810 	 * endpoints.  We should not set conn_policy_cached until the conn
4811 	 * reflects the actual policy. If we *set* this before inheriting
4812 	 * the policy there is a window where the check
4813 	 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
4814 	 * on the conn (because we have not yet copied the policy on to
4815 	 * conn and hence not set conn_in_enforce_policy) nor with the
4816 	 * global policy (because conn_policy_cached is already set).
4817 	 */
4818 	connp->conn_policy_cached = B_TRUE;
4819 	if (connp->conn_in_enforce_policy)
4820 		connp->conn_flags |= IPCL_CHECK_POLICY;
4821 	return (0);
4822 }
4823 
4824 void
4825 iplatch_free(ipsec_latch_t *ipl, netstack_t *ns)
4826 {
4827 	if (ipl->ipl_out_policy != NULL)
4828 		IPPOL_REFRELE(ipl->ipl_out_policy, ns);
4829 	if (ipl->ipl_in_policy != NULL)
4830 		IPPOL_REFRELE(ipl->ipl_in_policy, ns);
4831 	if (ipl->ipl_in_action != NULL)
4832 		IPACT_REFRELE(ipl->ipl_in_action);
4833 	if (ipl->ipl_out_action != NULL)
4834 		IPACT_REFRELE(ipl->ipl_out_action);
4835 	if (ipl->ipl_local_cid != NULL)
4836 		IPSID_REFRELE(ipl->ipl_local_cid);
4837 	if (ipl->ipl_remote_cid != NULL)
4838 		IPSID_REFRELE(ipl->ipl_remote_cid);
4839 	if (ipl->ipl_local_id != NULL)
4840 		crfree(ipl->ipl_local_id);
4841 	mutex_destroy(&ipl->ipl_lock);
4842 	kmem_free(ipl, sizeof (*ipl));
4843 }
4844 
4845 ipsec_latch_t *
4846 iplatch_create()
4847 {
4848 	ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP);
4849 	if (ipl == NULL)
4850 		return (ipl);
4851 	bzero(ipl, sizeof (*ipl));
4852 	mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
4853 	ipl->ipl_refcnt = 1;
4854 	return (ipl);
4855 }
4856 
4857 /*
4858  * Hash function for ID hash table.
4859  */
4860 static uint32_t
4861 ipsid_hash(int idtype, char *idstring)
4862 {
4863 	uint32_t hval = idtype;
4864 	unsigned char c;
4865 
4866 	while ((c = *idstring++) != 0) {
4867 		hval = (hval << 4) | (hval >> 28);
4868 		hval ^= c;
4869 	}
4870 	hval = hval ^ (hval >> 16);
4871 	return (hval & (IPSID_HASHSIZE-1));
4872 }
4873 
4874 /*
4875  * Look up identity string in hash table.  Return identity object
4876  * corresponding to the name -- either preexisting, or newly allocated.
4877  *
4878  * Return NULL if we need to allocate a new one and can't get memory.
4879  */
4880 ipsid_t *
4881 ipsid_lookup(int idtype, char *idstring, netstack_t *ns)
4882 {
4883 	ipsid_t *retval;
4884 	char *nstr;
4885 	int idlen = strlen(idstring) + 1;
4886 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4887 	ipsif_t *bucket;
4888 
4889 	bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)];
4890 
4891 	mutex_enter(&bucket->ipsif_lock);
4892 
4893 	for (retval = bucket->ipsif_head; retval != NULL;
4894 	    retval = retval->ipsid_next) {
4895 		if (idtype != retval->ipsid_type)
4896 			continue;
4897 		if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
4898 			continue;
4899 
4900 		IPSID_REFHOLD(retval);
4901 		mutex_exit(&bucket->ipsif_lock);
4902 		return (retval);
4903 	}
4904 
4905 	retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
4906 	if (!retval) {
4907 		mutex_exit(&bucket->ipsif_lock);
4908 		return (NULL);
4909 	}
4910 
4911 	nstr = kmem_alloc(idlen, KM_NOSLEEP);
4912 	if (!nstr) {
4913 		mutex_exit(&bucket->ipsif_lock);
4914 		kmem_free(retval, sizeof (*retval));
4915 		return (NULL);
4916 	}
4917 
4918 	retval->ipsid_refcnt = 1;
4919 	retval->ipsid_next = bucket->ipsif_head;
4920 	if (retval->ipsid_next != NULL)
4921 		retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
4922 	retval->ipsid_ptpn = &bucket->ipsif_head;
4923 	retval->ipsid_type = idtype;
4924 	retval->ipsid_cid = nstr;
4925 	bucket->ipsif_head = retval;
4926 	bcopy(idstring, nstr, idlen);
4927 	mutex_exit(&bucket->ipsif_lock);
4928 
4929 	return (retval);
4930 }
4931 
4932 /*
4933  * Garbage collect the identity hash table.
4934  */
4935 void
4936 ipsid_gc(netstack_t *ns)
4937 {
4938 	int i, len;
4939 	ipsid_t *id, *nid;
4940 	ipsif_t *bucket;
4941 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4942 
4943 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4944 		bucket = &ipss->ipsec_ipsid_buckets[i];
4945 		mutex_enter(&bucket->ipsif_lock);
4946 		for (id = bucket->ipsif_head; id != NULL; id = nid) {
4947 			nid = id->ipsid_next;
4948 			if (id->ipsid_refcnt == 0) {
4949 				*id->ipsid_ptpn = nid;
4950 				if (nid != NULL)
4951 					nid->ipsid_ptpn = id->ipsid_ptpn;
4952 				len = strlen(id->ipsid_cid) + 1;
4953 				kmem_free(id->ipsid_cid, len);
4954 				kmem_free(id, sizeof (*id));
4955 			}
4956 		}
4957 		mutex_exit(&bucket->ipsif_lock);
4958 	}
4959 }
4960 
4961 /*
4962  * Return true if two identities are the same.
4963  */
4964 boolean_t
4965 ipsid_equal(ipsid_t *id1, ipsid_t *id2)
4966 {
4967 	if (id1 == id2)
4968 		return (B_TRUE);
4969 #ifdef DEBUG
4970 	if ((id1 == NULL) || (id2 == NULL))
4971 		return (B_FALSE);
4972 	/*
4973 	 * test that we're interning id's correctly..
4974 	 */
4975 	ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
4976 	    (id1->ipsid_type != id2->ipsid_type));
4977 #endif
4978 	return (B_FALSE);
4979 }
4980 
4981 /*
4982  * Initialize identity table; called during module initialization.
4983  */
4984 static void
4985 ipsid_init(netstack_t *ns)
4986 {
4987 	ipsif_t *bucket;
4988 	int i;
4989 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4990 
4991 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4992 		bucket = &ipss->ipsec_ipsid_buckets[i];
4993 		mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
4994 	}
4995 }
4996 
4997 /*
4998  * Free identity table (preparatory to module unload)
4999  */
5000 static void
5001 ipsid_fini(netstack_t *ns)
5002 {
5003 	ipsif_t *bucket;
5004 	int i;
5005 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
5006 
5007 	for (i = 0; i < IPSID_HASHSIZE; i++) {
5008 		bucket = &ipss->ipsec_ipsid_buckets[i];
5009 		ASSERT(bucket->ipsif_head == NULL);
5010 		mutex_destroy(&bucket->ipsif_lock);
5011 	}
5012 }
5013 
5014 /*
5015  * Update the minimum and maximum supported key sizes for the
5016  * specified algorithm. Must be called while holding the algorithms lock.
5017  */
5018 void
5019 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type,
5020     netstack_t *ns)
5021 {
5022 	size_t crypto_min = (size_t)-1, crypto_max = 0;
5023 	size_t cur_crypto_min, cur_crypto_max;
5024 	boolean_t is_valid;
5025 	crypto_mechanism_info_t *mech_infos;
5026 	uint_t nmech_infos;
5027 	int crypto_rc, i;
5028 	crypto_mech_usage_t mask;
5029 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
5030 
5031 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
5032 
5033 	/*
5034 	 * Compute the min, max, and default key sizes (in number of
5035 	 * increments to the default key size in bits) as defined
5036 	 * by the algorithm mappings. This range of key sizes is used
5037 	 * for policy related operations. The effective key sizes
5038 	 * supported by the framework could be more limited than
5039 	 * those defined for an algorithm.
5040 	 */
5041 	alg->alg_default_bits = alg->alg_key_sizes[0];
5042 	if (alg->alg_increment != 0) {
5043 		/* key sizes are defined by range & increment */
5044 		alg->alg_minbits = alg->alg_key_sizes[1];
5045 		alg->alg_maxbits = alg->alg_key_sizes[2];
5046 
5047 		alg->alg_default = SADB_ALG_DEFAULT_INCR(alg->alg_minbits,
5048 		    alg->alg_increment, alg->alg_default_bits);
5049 	} else if (alg->alg_nkey_sizes == 0) {
5050 		/* no specified key size for algorithm */
5051 		alg->alg_minbits = alg->alg_maxbits = 0;
5052 	} else {
5053 		/* key sizes are defined by enumeration */
5054 		alg->alg_minbits = (uint16_t)-1;
5055 		alg->alg_maxbits = 0;
5056 
5057 		for (i = 0; i < alg->alg_nkey_sizes; i++) {
5058 			if (alg->alg_key_sizes[i] < alg->alg_minbits)
5059 				alg->alg_minbits = alg->alg_key_sizes[i];
5060 			if (alg->alg_key_sizes[i] > alg->alg_maxbits)
5061 				alg->alg_maxbits = alg->alg_key_sizes[i];
5062 		}
5063 		alg->alg_default = 0;
5064 	}
5065 
5066 	if (!(alg->alg_flags & ALG_FLAG_VALID))
5067 		return;
5068 
5069 	/*
5070 	 * Mechanisms do not apply to the NULL encryption
5071 	 * algorithm, so simply return for this case.
5072 	 */
5073 	if (alg->alg_id == SADB_EALG_NULL)
5074 		return;
5075 
5076 	/*
5077 	 * Find the min and max key sizes supported by the cryptographic
5078 	 * framework providers.
5079 	 */
5080 
5081 	/* get the key sizes supported by the framework */
5082 	crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
5083 	    &mech_infos, &nmech_infos, KM_SLEEP);
5084 	if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
5085 		alg->alg_flags &= ~ALG_FLAG_VALID;
5086 		return;
5087 	}
5088 
5089 	/* min and max key sizes supported by framework */
5090 	for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
5091 		int unit_bits;
5092 
5093 		/*
5094 		 * Ignore entries that do not support the operations
5095 		 * needed for the algorithm type.
5096 		 */
5097 		if (alg_type == IPSEC_ALG_AUTH) {
5098 			mask = CRYPTO_MECH_USAGE_MAC;
5099 		} else {
5100 			mask = CRYPTO_MECH_USAGE_ENCRYPT |
5101 			    CRYPTO_MECH_USAGE_DECRYPT;
5102 		}
5103 		if ((mech_infos[i].mi_usage & mask) != mask)
5104 			continue;
5105 
5106 		unit_bits = (mech_infos[i].mi_keysize_unit ==
5107 		    CRYPTO_KEYSIZE_UNIT_IN_BYTES)  ? 8 : 1;
5108 		/* adjust min/max supported by framework */
5109 		cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
5110 		cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
5111 
5112 		if (cur_crypto_min < crypto_min)
5113 			crypto_min = cur_crypto_min;
5114 
5115 		/*
5116 		 * CRYPTO_EFFECTIVELY_INFINITE is a special value of
5117 		 * the crypto framework which means "no upper limit".
5118 		 */
5119 		if (mech_infos[i].mi_max_key_size ==
5120 		    CRYPTO_EFFECTIVELY_INFINITE) {
5121 			crypto_max = (size_t)-1;
5122 		} else if (cur_crypto_max > crypto_max) {
5123 			crypto_max = cur_crypto_max;
5124 		}
5125 
5126 		is_valid = B_TRUE;
5127 	}
5128 
5129 	kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
5130 	    nmech_infos);
5131 
5132 	if (!is_valid) {
5133 		/* no key sizes supported by framework */
5134 		alg->alg_flags &= ~ALG_FLAG_VALID;
5135 		return;
5136 	}
5137 
5138 	/*
5139 	 * Determine min and max key sizes from alg_key_sizes[].
5140 	 * defined for the algorithm entry. Adjust key sizes based on
5141 	 * those supported by the framework.
5142 	 */
5143 	alg->alg_ef_default_bits = alg->alg_key_sizes[0];
5144 	if (alg->alg_increment != 0) {
5145 		/* supported key sizes are defined by range  & increment */
5146 		crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
5147 		crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
5148 
5149 		alg->alg_ef_minbits = MAX(alg->alg_minbits,
5150 		    (uint16_t)crypto_min);
5151 		alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
5152 		    (uint16_t)crypto_max);
5153 
5154 		/*
5155 		 * If the sizes supported by the framework are outside
5156 		 * the range of sizes defined by the algorithm mappings,
5157 		 * the algorithm cannot be used. Check for this
5158 		 * condition here.
5159 		 */
5160 		if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
5161 			alg->alg_flags &= ~ALG_FLAG_VALID;
5162 			return;
5163 		}
5164 
5165 		if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
5166 			alg->alg_ef_default_bits = alg->alg_ef_minbits;
5167 		if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
5168 			alg->alg_ef_default_bits = alg->alg_ef_maxbits;
5169 
5170 		alg->alg_ef_default = SADB_ALG_DEFAULT_INCR(alg->alg_ef_minbits,
5171 		    alg->alg_increment, alg->alg_ef_default_bits);
5172 	} else if (alg->alg_nkey_sizes == 0) {
5173 		/* no specified key size for algorithm */
5174 		alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
5175 	} else {
5176 		/* supported key sizes are defined by enumeration */
5177 		alg->alg_ef_minbits = (uint16_t)-1;
5178 		alg->alg_ef_maxbits = 0;
5179 
5180 		for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
5181 			/*
5182 			 * Ignore the current key size if it is not in the
5183 			 * range of sizes supported by the framework.
5184 			 */
5185 			if (alg->alg_key_sizes[i] < crypto_min ||
5186 			    alg->alg_key_sizes[i] > crypto_max)
5187 				continue;
5188 			if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
5189 				alg->alg_ef_minbits = alg->alg_key_sizes[i];
5190 			if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
5191 				alg->alg_ef_maxbits = alg->alg_key_sizes[i];
5192 			is_valid = B_TRUE;
5193 		}
5194 
5195 		if (!is_valid) {
5196 			alg->alg_flags &= ~ALG_FLAG_VALID;
5197 			return;
5198 		}
5199 		alg->alg_ef_default = 0;
5200 	}
5201 }
5202 
5203 /*
5204  * Free the memory used by the specified algorithm.
5205  */
5206 void
5207 ipsec_alg_free(ipsec_alginfo_t *alg)
5208 {
5209 	if (alg == NULL)
5210 		return;
5211 
5212 	if (alg->alg_key_sizes != NULL) {
5213 		kmem_free(alg->alg_key_sizes,
5214 		    (alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
5215 		alg->alg_key_sizes = NULL;
5216 	}
5217 	if (alg->alg_block_sizes != NULL) {
5218 		kmem_free(alg->alg_block_sizes,
5219 		    (alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
5220 		alg->alg_block_sizes = NULL;
5221 	}
5222 	kmem_free(alg, sizeof (*alg));
5223 }
5224 
5225 /*
5226  * Check the validity of the specified key size for an algorithm.
5227  * Returns B_TRUE if key size is valid, B_FALSE otherwise.
5228  */
5229 boolean_t
5230 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
5231 {
5232 	if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
5233 		return (B_FALSE);
5234 
5235 	if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
5236 		/*
5237 		 * If the key sizes are defined by enumeration, the new
5238 		 * key size must be equal to one of the supported values.
5239 		 */
5240 		int i;
5241 
5242 		for (i = 0; i < alg->alg_nkey_sizes; i++)
5243 			if (key_size == alg->alg_key_sizes[i])
5244 				break;
5245 		if (i == alg->alg_nkey_sizes)
5246 			return (B_FALSE);
5247 	}
5248 
5249 	return (B_TRUE);
5250 }
5251 
5252 /*
5253  * Callback function invoked by the crypto framework when a provider
5254  * registers or unregisters. This callback updates the algorithms
5255  * tables when a crypto algorithm is no longer available or becomes
5256  * available, and triggers the freeing/creation of context templates
5257  * associated with existing SAs, if needed.
5258  *
5259  * Need to walk all stack instances since the callback is global
5260  * for all instances
5261  */
5262 void
5263 ipsec_prov_update_callback(uint32_t event, void *event_arg)
5264 {
5265 	netstack_handle_t nh;
5266 	netstack_t *ns;
5267 
5268 	netstack_next_init(&nh);
5269 	while ((ns = netstack_next(&nh)) != NULL) {
5270 		ipsec_prov_update_callback_stack(event, event_arg, ns);
5271 		netstack_rele(ns);
5272 	}
5273 	netstack_next_fini(&nh);
5274 }
5275 
5276 static void
5277 ipsec_prov_update_callback_stack(uint32_t event, void *event_arg,
5278     netstack_t *ns)
5279 {
5280 	crypto_notify_event_change_t *prov_change =
5281 	    (crypto_notify_event_change_t *)event_arg;
5282 	uint_t algidx, algid, algtype, mech_count, mech_idx;
5283 	ipsec_alginfo_t *alg;
5284 	ipsec_alginfo_t oalg;
5285 	crypto_mech_name_t *mechs;
5286 	boolean_t alg_changed = B_FALSE;
5287 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
5288 
5289 	/* ignore events for which we didn't register */
5290 	if (event != CRYPTO_EVENT_MECHS_CHANGED) {
5291 		ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
5292 		    " received from crypto framework\n", event));
5293 		return;
5294 	}
5295 
5296 	mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
5297 	if (mechs == NULL)
5298 		return;
5299 
5300 	/*
5301 	 * Walk the list of currently defined IPsec algorithm. Update
5302 	 * the algorithm valid flag and trigger an update of the
5303 	 * SAs that depend on that algorithm.
5304 	 */
5305 	mutex_enter(&ipss->ipsec_alg_lock);
5306 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
5307 		for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype];
5308 		    algidx++) {
5309 
5310 			algid = ipss->ipsec_sortlist[algtype][algidx];
5311 			alg = ipss->ipsec_alglists[algtype][algid];
5312 			ASSERT(alg != NULL);
5313 
5314 			/*
5315 			 * Skip the algorithms which do not map to the
5316 			 * crypto framework provider being added or removed.
5317 			 */
5318 			if (strncmp(alg->alg_mech_name,
5319 			    prov_change->ec_mech_name,
5320 			    CRYPTO_MAX_MECH_NAME) != 0)
5321 				continue;
5322 
5323 			/*
5324 			 * Determine if the mechanism is valid. If it
5325 			 * is not, mark the algorithm as being invalid. If
5326 			 * it is, mark the algorithm as being valid.
5327 			 */
5328 			for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
5329 				if (strncmp(alg->alg_mech_name,
5330 				    mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
5331 					break;
5332 			if (mech_idx == mech_count &&
5333 			    alg->alg_flags & ALG_FLAG_VALID) {
5334 				alg->alg_flags &= ~ALG_FLAG_VALID;
5335 				alg_changed = B_TRUE;
5336 			} else if (mech_idx < mech_count &&
5337 			    !(alg->alg_flags & ALG_FLAG_VALID)) {
5338 				alg->alg_flags |= ALG_FLAG_VALID;
5339 				alg_changed = B_TRUE;
5340 			}
5341 
5342 			/*
5343 			 * Update the supported key sizes, regardless
5344 			 * of whether a crypto provider was added or
5345 			 * removed.
5346 			 */
5347 			oalg = *alg;
5348 			ipsec_alg_fix_min_max(alg, algtype, ns);
5349 			if (!alg_changed &&
5350 			    alg->alg_ef_minbits != oalg.alg_ef_minbits ||
5351 			    alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
5352 			    alg->alg_ef_default != oalg.alg_ef_default ||
5353 			    alg->alg_ef_default_bits !=
5354 			    oalg.alg_ef_default_bits)
5355 				alg_changed = B_TRUE;
5356 
5357 			/*
5358 			 * Update the affected SAs if a software provider is
5359 			 * being added or removed.
5360 			 */
5361 			if (prov_change->ec_provider_type ==
5362 			    CRYPTO_SW_PROVIDER)
5363 				sadb_alg_update(algtype, alg->alg_id,
5364 				    prov_change->ec_change ==
5365 				    CRYPTO_MECH_ADDED, ns);
5366 		}
5367 	}
5368 	mutex_exit(&ipss->ipsec_alg_lock);
5369 	crypto_free_mech_list(mechs, mech_count);
5370 
5371 	if (alg_changed) {
5372 		/*
5373 		 * An algorithm has changed, i.e. it became valid or
5374 		 * invalid, or its support key sizes have changed.
5375 		 * Notify ipsecah and ipsecesp of this change so
5376 		 * that they can send a SADB_REGISTER to their consumers.
5377 		 */
5378 		ipsecah_algs_changed(ns);
5379 		ipsecesp_algs_changed(ns);
5380 	}
5381 }
5382 
5383 /*
5384  * Registers with the crypto framework to be notified of crypto
5385  * providers changes. Used to update the algorithm tables and
5386  * to free or create context templates if needed. Invoked after IPsec
5387  * is loaded successfully.
5388  *
5389  * This is called separately for each IP instance, so we ensure we only
5390  * register once.
5391  */
5392 void
5393 ipsec_register_prov_update(void)
5394 {
5395 	if (prov_update_handle != NULL)
5396 		return;
5397 
5398 	prov_update_handle = crypto_notify_events(
5399 	    ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED);
5400 }
5401 
5402 /*
5403  * Unregisters from the framework to be notified of crypto providers
5404  * changes. Called from ipsec_policy_g_destroy().
5405  */
5406 static void
5407 ipsec_unregister_prov_update(void)
5408 {
5409 	if (prov_update_handle != NULL)
5410 		crypto_unnotify_events(prov_update_handle);
5411 }
5412 
5413 /*
5414  * Tunnel-mode support routines.
5415  */
5416 
5417 /*
5418  * Returns an mblk chain suitable for putnext() if policies match and IPsec
5419  * SAs are available.  If there's no per-tunnel policy, or a match comes back
5420  * with no match, then still return the packet and have global policy take
5421  * a crack at it in IP.
5422  *
5423  * Remember -> we can be forwarding packets.  Keep that in mind w.r.t.
5424  * inner-packet contents.
5425  */
5426 mblk_t *
5427 ipsec_tun_outbound(mblk_t *mp, tun_t *atp, ipha_t *inner_ipv4,
5428     ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len,
5429     netstack_t *ns)
5430 {
5431 	ipsec_tun_pol_t *itp = atp->tun_itp;
5432 	ipsec_policy_head_t *polhead;
5433 	ipsec_selector_t sel;
5434 	mblk_t *ipsec_mp, *ipsec_mp_head, *nmp;
5435 	mblk_t *spare_mp = NULL;
5436 	ipsec_out_t *io;
5437 	boolean_t is_fragment;
5438 	ipsec_policy_t *pol;
5439 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5440 
5441 	ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL ||
5442 	    outer_ipv4 != NULL && outer_ipv6 == NULL);
5443 	/* We take care of inners in a bit. */
5444 
5445 	/* No policy on this tunnel - let global policy have at it. */
5446 	if (itp == NULL || !(itp->itp_flags & ITPF_P_ACTIVE))
5447 		return (mp);
5448 	polhead = itp->itp_policy;
5449 
5450 	bzero(&sel, sizeof (sel));
5451 	if (inner_ipv4 != NULL) {
5452 		ASSERT(inner_ipv6 == NULL);
5453 		sel.ips_isv4 = B_TRUE;
5454 		sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5455 		sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5456 		sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol;
5457 		is_fragment =
5458 		    IS_V4_FRAGMENT(inner_ipv4->ipha_fragment_offset_and_flags);
5459 	} else {
5460 		ASSERT(inner_ipv6 != NULL);
5461 		sel.ips_isv4 = B_FALSE;
5462 		sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5463 		/* Use ip_get_dst_v6() just for the fragment bit. */
5464 		sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6,
5465 		    &is_fragment);
5466 		/*
5467 		 * Reset, because we don't care about routing-header dests
5468 		 * in the forwarding/tunnel path.
5469 		 */
5470 		sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5471 	}
5472 
5473 	if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) {
5474 		if (is_fragment) {
5475 			ipha_t *oiph;
5476 			ipha_t *iph = NULL;
5477 			ip6_t *ip6h = NULL;
5478 			int hdr_len;
5479 			uint16_t ip6_hdr_length;
5480 			uint8_t v6_proto;
5481 			uint8_t *v6_proto_p;
5482 
5483 			/*
5484 			 * We have a fragment we need to track!
5485 			 */
5486 			mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp,
5487 			    outer_hdr_len, ipss);
5488 			if (mp == NULL)
5489 				return (NULL);
5490 
5491 			/*
5492 			 * If we get here, we have a full
5493 			 * fragment chain
5494 			 */
5495 
5496 			oiph = (ipha_t *)mp->b_rptr;
5497 			if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
5498 				hdr_len = ((outer_hdr_len != 0) ?
5499 				    IPH_HDR_LENGTH(oiph) : 0);
5500 				iph = (ipha_t *)(mp->b_rptr + hdr_len);
5501 			} else {
5502 				ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
5503 				if ((spare_mp = msgpullup(mp, -1)) == NULL) {
5504 					ip_drop_packet_chain(mp, B_FALSE,
5505 					    NULL, NULL,
5506 					    DROPPER(ipss, ipds_spd_nomem),
5507 					    &ipss->ipsec_spd_dropper);
5508 				}
5509 				ip6h = (ip6_t *)spare_mp->b_rptr;
5510 				(void) ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
5511 				    &ip6_hdr_length, &v6_proto_p);
5512 				hdr_len = ip6_hdr_length;
5513 			}
5514 			outer_hdr_len = hdr_len;
5515 
5516 			if (sel.ips_isv4) {
5517 				if (iph == NULL) {
5518 					/* Was v6 outer */
5519 					iph = (ipha_t *)(mp->b_rptr + hdr_len);
5520 				}
5521 				inner_ipv4 = iph;
5522 				sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5523 				sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5524 				sel.ips_protocol =
5525 				    (uint8_t)inner_ipv4->ipha_protocol;
5526 			} else {
5527 				if ((spare_mp == NULL) &&
5528 				    ((spare_mp = msgpullup(mp, -1)) == NULL)) {
5529 					ip_drop_packet_chain(mp, B_FALSE,
5530 					    NULL, NULL,
5531 					    DROPPER(ipss, ipds_spd_nomem),
5532 					    &ipss->ipsec_spd_dropper);
5533 				}
5534 				inner_ipv6 = (ip6_t *)(spare_mp->b_rptr +
5535 				    hdr_len);
5536 				sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5537 				sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5538 				(void) ip_hdr_length_nexthdr_v6(spare_mp,
5539 				    inner_ipv6, &ip6_hdr_length,
5540 				    &v6_proto_p);
5541 				v6_proto = *v6_proto_p;
5542 				sel.ips_protocol = v6_proto;
5543 #ifdef FRAGCACHE_DEBUG
5544 				cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n",
5545 				    sel.ips_protocol);
5546 #endif
5547 			}
5548 			/* Ports are extracted below */
5549 		}
5550 
5551 		/* Get ports... */
5552 		if (spare_mp != NULL) {
5553 			if (!ipsec_init_outbound_ports(&sel, spare_mp,
5554 			    inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
5555 				/*
5556 				 * callee did ip_drop_packet_chain() on
5557 				 * spare_mp
5558 				 */
5559 				ipsec_freemsg_chain(mp);
5560 				return (NULL);
5561 			}
5562 		} else {
5563 			if (!ipsec_init_outbound_ports(&sel, mp,
5564 			    inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
5565 				/* callee did ip_drop_packet_chain() on mp. */
5566 				return (NULL);
5567 			}
5568 		}
5569 #ifdef FRAGCACHE_DEBUG
5570 		if (inner_ipv4 != NULL)
5571 			cmn_err(CE_WARN,
5572 			    "(v4) sel.ips_protocol = %d, "
5573 			    "sel.ips_local_port = %d, "
5574 			    "sel.ips_remote_port = %d\n",
5575 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5576 			    ntohs(sel.ips_remote_port));
5577 		if (inner_ipv6 != NULL)
5578 			cmn_err(CE_WARN,
5579 			    "(v6) sel.ips_protocol = %d, "
5580 			    "sel.ips_local_port = %d, "
5581 			    "sel.ips_remote_port = %d\n",
5582 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5583 			    ntohs(sel.ips_remote_port));
5584 #endif
5585 		/* Success so far - done with spare_mp */
5586 		ipsec_freemsg_chain(spare_mp);
5587 	}
5588 	rw_enter(&polhead->iph_lock, RW_READER);
5589 	pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND,
5590 	    &sel, ns);
5591 	rw_exit(&polhead->iph_lock);
5592 	if (pol == NULL) {
5593 		/*
5594 		 * No matching policy on this tunnel, drop the packet.
5595 		 *
5596 		 * NOTE:  Tunnel-mode tunnels are different from the
5597 		 * IP global transport mode policy head.  For a tunnel-mode
5598 		 * tunnel, we drop the packet in lieu of passing it
5599 		 * along accepted the way a global-policy miss would.
5600 		 *
5601 		 * NOTE2:  "negotiate transport" tunnels should match ALL
5602 		 * inbound packets, but we do not uncomment the ASSERT()
5603 		 * below because if/when we open PF_POLICY, a user can
5604 		 * shoot him/her-self in the foot with a 0 priority.
5605 		 */
5606 
5607 		/* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */
5608 #ifdef FRAGCACHE_DEBUG
5609 		cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel "
5610 		    "per-port policy\n");
5611 #endif
5612 		ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
5613 		    DROPPER(ipss, ipds_spd_explicit),
5614 		    &ipss->ipsec_spd_dropper);
5615 		return (NULL);
5616 	}
5617 
5618 #ifdef FRAGCACHE_DEBUG
5619 	cmn_err(CE_WARN, "Having matching tunnel per-port policy\n");
5620 #endif
5621 
5622 	/* Construct an IPSEC_OUT message. */
5623 	ipsec_mp = ipsec_mp_head = ipsec_alloc_ipsec_out(ns);
5624 	if (ipsec_mp == NULL) {
5625 		IPPOL_REFRELE(pol, ns);
5626 		ip_drop_packet(mp, B_FALSE, NULL, NULL,
5627 		    DROPPER(ipss, ipds_spd_nomem),
5628 		    &ipss->ipsec_spd_dropper);
5629 		return (NULL);
5630 	}
5631 	ipsec_mp->b_cont = mp;
5632 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
5633 	IPPH_REFHOLD(polhead);
5634 	/*
5635 	 * NOTE: free() function of ipsec_out mblk will release polhead and
5636 	 * pol references.
5637 	 */
5638 	io->ipsec_out_polhead = polhead;
5639 	io->ipsec_out_policy = pol;
5640 	io->ipsec_out_zoneid = atp->tun_zoneid;
5641 	io->ipsec_out_v4 = (outer_ipv4 != NULL);
5642 	io->ipsec_out_secure = B_TRUE;
5643 
5644 	if (!(itp->itp_flags & ITPF_P_TUNNEL)) {
5645 		/* Set up transport mode for tunnelled packets. */
5646 		io->ipsec_out_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP :
5647 		    IPPROTO_IPV6;
5648 		return (ipsec_mp);
5649 	}
5650 
5651 	/* Fill in tunnel-mode goodies here. */
5652 	io->ipsec_out_tunnel = B_TRUE;
5653 	/* XXX Do I need to fill in all of the goodies here? */
5654 	if (inner_ipv4) {
5655 		io->ipsec_out_inaf = AF_INET;
5656 		io->ipsec_out_insrc[0] =
5657 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4;
5658 		io->ipsec_out_indst[0] =
5659 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4;
5660 	} else {
5661 		io->ipsec_out_inaf = AF_INET6;
5662 		io->ipsec_out_insrc[0] =
5663 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0];
5664 		io->ipsec_out_insrc[1] =
5665 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1];
5666 		io->ipsec_out_insrc[2] =
5667 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2];
5668 		io->ipsec_out_insrc[3] =
5669 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3];
5670 		io->ipsec_out_indst[0] =
5671 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0];
5672 		io->ipsec_out_indst[1] =
5673 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1];
5674 		io->ipsec_out_indst[2] =
5675 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2];
5676 		io->ipsec_out_indst[3] =
5677 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3];
5678 	}
5679 	io->ipsec_out_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen;
5680 	io->ipsec_out_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen;
5681 	/* NOTE:  These are used for transport mode too. */
5682 	io->ipsec_out_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport;
5683 	io->ipsec_out_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport;
5684 	io->ipsec_out_proto = pol->ipsp_sel->ipsl_key.ipsl_proto;
5685 
5686 	/*
5687 	 * The mp pointer still valid
5688 	 * Add ipsec_out to each fragment.
5689 	 * The fragment head already has one
5690 	 */
5691 	nmp = mp->b_next;
5692 	mp->b_next = NULL;
5693 	mp = nmp;
5694 	ASSERT(ipsec_mp != NULL);
5695 	while (mp != NULL) {
5696 		nmp = mp->b_next;
5697 		ipsec_mp->b_next = ipsec_out_tag(ipsec_mp_head, mp, ns);
5698 		if (ipsec_mp->b_next == NULL) {
5699 			ip_drop_packet_chain(ipsec_mp_head, B_FALSE, NULL, NULL,
5700 			    DROPPER(ipss, ipds_spd_nomem),
5701 			    &ipss->ipsec_spd_dropper);
5702 			ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
5703 			    DROPPER(ipss, ipds_spd_nomem),
5704 			    &ipss->ipsec_spd_dropper);
5705 			return (NULL);
5706 		}
5707 		ipsec_mp = ipsec_mp->b_next;
5708 		mp->b_next = NULL;
5709 		mp = nmp;
5710 	}
5711 	return (ipsec_mp_head);
5712 }
5713 
5714 /*
5715  * NOTE: The following releases pol's reference and
5716  * calls ip_drop_packet() for me on NULL returns.
5717  */
5718 mblk_t *
5719 ipsec_check_ipsecin_policy_reasm(mblk_t *ipsec_mp, ipsec_policy_t *pol,
5720     ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns)
5721 {
5722 	/* Assume ipsec_mp is a chain of b_next-linked IPSEC_IN M_CTLs. */
5723 	mblk_t *data_chain = NULL, *data_tail = NULL;
5724 	mblk_t *ii_next;
5725 
5726 	while (ipsec_mp != NULL) {
5727 		ii_next = ipsec_mp->b_next;
5728 		ipsec_mp->b_next = NULL;  /* No tripping asserts. */
5729 
5730 		/*
5731 		 * Need IPPOL_REFHOLD(pol) for extras because
5732 		 * ipsecin_policy does the refrele.
5733 		 */
5734 		IPPOL_REFHOLD(pol);
5735 
5736 		if (ipsec_check_ipsecin_policy(ipsec_mp, pol, inner_ipv4,
5737 		    inner_ipv6, pkt_unique, ns) != NULL) {
5738 			if (data_tail == NULL) {
5739 				/* First one */
5740 				data_chain = data_tail = ipsec_mp->b_cont;
5741 			} else {
5742 				data_tail->b_next = ipsec_mp->b_cont;
5743 				data_tail = data_tail->b_next;
5744 			}
5745 			freeb(ipsec_mp);
5746 		} else {
5747 			/*
5748 			 * ipsec_check_ipsecin_policy() freed ipsec_mp
5749 			 * already.   Need to get rid of any extra pol
5750 			 * references, and any remaining bits as well.
5751 			 */
5752 			IPPOL_REFRELE(pol, ns);
5753 			ipsec_freemsg_chain(data_chain);
5754 			ipsec_freemsg_chain(ii_next);	/* ipdrop stats? */
5755 			return (NULL);
5756 		}
5757 		ipsec_mp = ii_next;
5758 	}
5759 	/*
5760 	 * One last release because either the loop bumped it up, or we never
5761 	 * called ipsec_check_ipsecin_policy().
5762 	 */
5763 	IPPOL_REFRELE(pol, ns);
5764 
5765 	/* data_chain is ready for return to tun module. */
5766 	return (data_chain);
5767 }
5768 
5769 
5770 /*
5771  * Returns B_TRUE if the inbound packet passed an IPsec policy check.  Returns
5772  * B_FALSE if it failed or if it is a fragment needing its friends before a
5773  * policy check can be performed.
5774  *
5775  * Expects a non-NULL *data_mp, an optional ipsec_mp, and a non-NULL polhead.
5776  * data_mp may be reassigned with a b_next chain of packets if fragments
5777  * neeeded to be collected for a proper policy check.
5778  *
5779  * Always frees ipsec_mp, but only frees data_mp if returns B_FALSE.  This
5780  * function calls ip_drop_packet() on data_mp if need be.
5781  *
5782  * NOTE:  outer_hdr_len is signed.  If it's a negative value, the caller
5783  * is inspecting an ICMP packet.
5784  */
5785 boolean_t
5786 ipsec_tun_inbound(mblk_t *ipsec_mp, mblk_t **data_mp, ipsec_tun_pol_t *itp,
5787     ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4,
5788     ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns)
5789 {
5790 	ipsec_policy_head_t *polhead;
5791 	ipsec_selector_t sel;
5792 	mblk_t *message = (ipsec_mp == NULL) ? *data_mp : ipsec_mp;
5793 	ipsec_policy_t *pol;
5794 	uint16_t tmpport;
5795 	selret_t rc;
5796 	boolean_t retval, port_policy_present, is_icmp, global_present;
5797 	in6_addr_t tmpaddr;
5798 	ipaddr_t tmp4;
5799 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5800 	uint8_t flags, *holder, *outer_hdr;
5801 
5802 	sel.ips_is_icmp_inv_acq = 0;
5803 
5804 	if (outer_ipv4 != NULL) {
5805 		ASSERT(outer_ipv6 == NULL);
5806 		outer_hdr = (uint8_t *)outer_ipv4;
5807 		global_present = ipss->ipsec_inbound_v4_policy_present;
5808 	} else {
5809 		outer_hdr = (uint8_t *)outer_ipv6;
5810 		global_present = ipss->ipsec_inbound_v6_policy_present;
5811 	}
5812 	ASSERT(outer_hdr != NULL);
5813 
5814 	ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL ||
5815 	    inner_ipv4 == NULL && inner_ipv6 != NULL);
5816 	ASSERT(message == *data_mp || message->b_cont == *data_mp);
5817 
5818 	if (outer_hdr_len < 0) {
5819 		outer_hdr_len = (-outer_hdr_len);
5820 		is_icmp = B_TRUE;
5821 	} else {
5822 		is_icmp = B_FALSE;
5823 	}
5824 
5825 	if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) {
5826 		polhead = itp->itp_policy;
5827 		/*
5828 		 * We need to perform full Tunnel-Mode enforcement,
5829 		 * and we need to have inner-header data for such enforcement.
5830 		 *
5831 		 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound
5832 		 * and on return.
5833 		 */
5834 
5835 		port_policy_present = ((itp->itp_flags &
5836 		    ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE);
5837 		flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) |
5838 		    (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE);
5839 
5840 		rc = ipsec_init_inbound_sel(&sel, *data_mp, inner_ipv4,
5841 		    inner_ipv6, flags);
5842 
5843 		switch (rc) {
5844 		case SELRET_NOMEM:
5845 			ip_drop_packet(message, B_TRUE, NULL, NULL,
5846 			    DROPPER(ipss, ipds_spd_nomem),
5847 			    &ipss->ipsec_spd_dropper);
5848 			return (B_FALSE);
5849 		case SELRET_TUNFRAG:
5850 			/*
5851 			 * At this point, if we're cleartext, we don't want
5852 			 * to go there.
5853 			 */
5854 			if (ipsec_mp == NULL) {
5855 				ip_drop_packet(*data_mp, B_TRUE, NULL, NULL,
5856 				    DROPPER(ipss, ipds_spd_got_clear),
5857 				    &ipss->ipsec_spd_dropper);
5858 				*data_mp = NULL;
5859 				return (B_FALSE);
5860 			}
5861 			ASSERT(((ipsec_in_t *)ipsec_mp->b_rptr)->
5862 			    ipsec_in_secure);
5863 			message = ipsec_fragcache_add(&itp->itp_fragcache,
5864 			    ipsec_mp, *data_mp, outer_hdr_len, ipss);
5865 
5866 			if (message == NULL) {
5867 				/*
5868 				 * Data is cached, fragment chain is not
5869 				 * complete.  I consume ipsec_mp and data_mp
5870 				 */
5871 				return (B_FALSE);
5872 			}
5873 
5874 			/*
5875 			 * If we get here, we have a full fragment chain.
5876 			 * Reacquire headers and selectors from first fragment.
5877 			 */
5878 			if (inner_ipv4 != NULL) {
5879 				inner_ipv4 = (ipha_t *)message->b_cont->b_rptr;
5880 				ASSERT(message->b_cont->b_wptr -
5881 				    message->b_cont->b_rptr > sizeof (ipha_t));
5882 			} else {
5883 				inner_ipv6 = (ip6_t *)message->b_cont->b_rptr;
5884 				ASSERT(message->b_cont->b_wptr -
5885 				    message->b_cont->b_rptr > sizeof (ip6_t));
5886 			}
5887 			/* Use SEL_NONE so we always get ports! */
5888 			rc = ipsec_init_inbound_sel(&sel, message->b_cont,
5889 			    inner_ipv4, inner_ipv6, SEL_NONE);
5890 			switch (rc) {
5891 			case SELRET_SUCCESS:
5892 				/*
5893 				 * Get to same place as first caller's
5894 				 * SELRET_SUCCESS case.
5895 				 */
5896 				break;
5897 			case SELRET_NOMEM:
5898 				ip_drop_packet_chain(message, B_TRUE,
5899 				    NULL, NULL,
5900 				    DROPPER(ipss, ipds_spd_nomem),
5901 				    &ipss->ipsec_spd_dropper);
5902 				return (B_FALSE);
5903 			case SELRET_BADPKT:
5904 				ip_drop_packet_chain(message, B_TRUE,
5905 				    NULL, NULL,
5906 				    DROPPER(ipss, ipds_spd_malformed_frag),
5907 				    &ipss->ipsec_spd_dropper);
5908 				return (B_FALSE);
5909 			case SELRET_TUNFRAG:
5910 				cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)");
5911 				/* FALLTHRU */
5912 			default:
5913 				cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)"
5914 				    " returns bizarro 0x%x", rc);
5915 				/* Guaranteed panic! */
5916 				ASSERT(rc == SELRET_NOMEM);
5917 				return (B_FALSE);
5918 			}
5919 			/* FALLTHRU */
5920 		case SELRET_SUCCESS:
5921 			/*
5922 			 * Common case:
5923 			 * No per-port policy or a non-fragment.  Keep going.
5924 			 */
5925 			break;
5926 		case SELRET_BADPKT:
5927 			/*
5928 			 * We may receive ICMP (with IPv6 inner) packets that
5929 			 * trigger this return value.  Send 'em in for
5930 			 * enforcement checking.
5931 			 */
5932 			cmn_err(CE_NOTE, "ipsec_tun_inbound(): "
5933 			    "sending 'bad packet' in for enforcement");
5934 			break;
5935 		default:
5936 			cmn_err(CE_WARN,
5937 			    "ipsec_init_inbound_sel() returns bizarro 0x%x",
5938 			    rc);
5939 			ASSERT(rc == SELRET_NOMEM);	/* Guaranteed panic! */
5940 			return (B_FALSE);
5941 		}
5942 
5943 		if (is_icmp) {
5944 			/*
5945 			 * Swap local/remote because this is an ICMP packet.
5946 			 */
5947 			tmpaddr = sel.ips_local_addr_v6;
5948 			sel.ips_local_addr_v6 = sel.ips_remote_addr_v6;
5949 			sel.ips_remote_addr_v6 = tmpaddr;
5950 			tmpport = sel.ips_local_port;
5951 			sel.ips_local_port = sel.ips_remote_port;
5952 			sel.ips_remote_port = tmpport;
5953 		}
5954 
5955 		/* find_policy_head() */
5956 		rw_enter(&polhead->iph_lock, RW_READER);
5957 		pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND,
5958 		    &sel, ns);
5959 		rw_exit(&polhead->iph_lock);
5960 		if (pol != NULL) {
5961 			if (ipsec_mp == NULL ||
5962 			    !((ipsec_in_t *)ipsec_mp->b_rptr)->
5963 			    ipsec_in_secure) {
5964 				retval = pol->ipsp_act->ipa_allow_clear;
5965 				if (!retval) {
5966 					/*
5967 					 * XXX should never get here with
5968 					 * tunnel reassembled fragments?
5969 					 */
5970 					ASSERT(message->b_next == NULL);
5971 					ip_drop_packet(message, B_TRUE, NULL,
5972 					    NULL,
5973 					    DROPPER(ipss, ipds_spd_got_clear),
5974 					    &ipss->ipsec_spd_dropper);
5975 				} else if (ipsec_mp != NULL) {
5976 					freeb(ipsec_mp);
5977 				}
5978 
5979 				IPPOL_REFRELE(pol, ns);
5980 				return (retval);
5981 			}
5982 			/*
5983 			 * NOTE: The following releases pol's reference and
5984 			 * calls ip_drop_packet() for me on NULL returns.
5985 			 *
5986 			 * "sel" is still good here, so let's use it!
5987 			 */
5988 			*data_mp = ipsec_check_ipsecin_policy_reasm(message,
5989 			    pol, inner_ipv4, inner_ipv6, SA_UNIQUE_ID(
5990 			    sel.ips_remote_port, sel.ips_local_port,
5991 			    (inner_ipv4 == NULL) ? IPPROTO_IPV6 :
5992 			    IPPROTO_ENCAP, sel.ips_protocol), ns);
5993 			return (*data_mp != NULL);
5994 		}
5995 
5996 		/*
5997 		 * Else fallthru and check the global policy on the outer
5998 		 * header(s) if this tunnel is an old-style transport-mode
5999 		 * one.  Drop the packet explicitly (no policy entry) for
6000 		 * a new-style tunnel-mode tunnel.
6001 		 */
6002 		if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) {
6003 			ip_drop_packet_chain(message, B_TRUE, NULL,
6004 			    NULL,
6005 			    DROPPER(ipss, ipds_spd_explicit),
6006 			    &ipss->ipsec_spd_dropper);
6007 			return (B_FALSE);
6008 		}
6009 	}
6010 
6011 	/*
6012 	 * NOTE:  If we reach here, we will not have packet chains from
6013 	 * fragcache_add(), because the only way I get chains is on a
6014 	 * tunnel-mode tunnel, which either returns with a pass, or gets
6015 	 * hit by the ip_drop_packet_chain() call right above here.
6016 	 */
6017 
6018 	/* If no per-tunnel security, check global policy now. */
6019 	if (ipsec_mp != NULL && !global_present) {
6020 		if (((ipsec_in_t *)(ipsec_mp->b_rptr))->
6021 		    ipsec_in_icmp_loopback) {
6022 			/*
6023 			 * This is an ICMP message with an ipsec_mp
6024 			 * attached.  We should accept it.
6025 			 */
6026 			if (ipsec_mp != NULL)
6027 				freeb(ipsec_mp);
6028 			return (B_TRUE);
6029 		}
6030 
6031 		ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
6032 		    DROPPER(ipss, ipds_spd_got_secure),
6033 		    &ipss->ipsec_spd_dropper);
6034 		return (B_FALSE);
6035 	}
6036 
6037 	/*
6038 	 * The following assertion is valid because only the tun module alters
6039 	 * the mblk chain - stripping the outer header by advancing mp->b_rptr.
6040 	 */
6041 	ASSERT(is_icmp || ((*data_mp)->b_datap->db_base <= outer_hdr &&
6042 	    outer_hdr < (*data_mp)->b_rptr));
6043 	holder = (*data_mp)->b_rptr;
6044 	(*data_mp)->b_rptr = outer_hdr;
6045 
6046 	if (is_icmp) {
6047 		/*
6048 		 * For ICMP packets, "outer_ipvN" is set to the outer header
6049 		 * that is *INSIDE* the ICMP payload.  For global policy
6050 		 * checking, we need to reverse src/dst on the payload in
6051 		 * order to construct selectors appropriately.  See "ripha"
6052 		 * constructions in ip.c.  To avoid a bug like 6478464 (see
6053 		 * earlier in this file), we will actually exchange src/dst
6054 		 * in the packet, and reverse if after the call to
6055 		 * ipsec_check_global_policy().
6056 		 */
6057 		if (outer_ipv4 != NULL) {
6058 			tmp4 = outer_ipv4->ipha_src;
6059 			outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
6060 			outer_ipv4->ipha_dst = tmp4;
6061 		} else {
6062 			ASSERT(outer_ipv6 != NULL);
6063 			tmpaddr = outer_ipv6->ip6_src;
6064 			outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
6065 			outer_ipv6->ip6_dst = tmpaddr;
6066 		}
6067 	}
6068 
6069 	/* NOTE:  Frees message if it returns NULL. */
6070 	if (ipsec_check_global_policy(message, NULL, outer_ipv4, outer_ipv6,
6071 	    (ipsec_mp != NULL), ns) == NULL) {
6072 		return (B_FALSE);
6073 	}
6074 
6075 	if (is_icmp) {
6076 		/* Set things back to normal. */
6077 		if (outer_ipv4 != NULL) {
6078 			tmp4 = outer_ipv4->ipha_src;
6079 			outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
6080 			outer_ipv4->ipha_dst = tmp4;
6081 		} else {
6082 			/* No need for ASSERT()s now. */
6083 			tmpaddr = outer_ipv6->ip6_src;
6084 			outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
6085 			outer_ipv6->ip6_dst = tmpaddr;
6086 		}
6087 	}
6088 
6089 	(*data_mp)->b_rptr = holder;
6090 
6091 	if (ipsec_mp != NULL)
6092 		freeb(ipsec_mp);
6093 
6094 	/*
6095 	 * At this point, we pretend it's a cleartext accepted
6096 	 * packet.
6097 	 */
6098 	return (B_TRUE);
6099 }
6100 
6101 /*
6102  * AVL comparison routine for our list of tunnel polheads.
6103  */
6104 static int
6105 tunnel_compare(const void *arg1, const void *arg2)
6106 {
6107 	ipsec_tun_pol_t *left, *right;
6108 	int rc;
6109 
6110 	left = (ipsec_tun_pol_t *)arg1;
6111 	right = (ipsec_tun_pol_t *)arg2;
6112 
6113 	rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ);
6114 	return (rc == 0 ? rc : (rc > 0 ? 1 : -1));
6115 }
6116 
6117 /*
6118  * Free a tunnel policy node.
6119  */
6120 void
6121 itp_free(ipsec_tun_pol_t *node, netstack_t *ns)
6122 {
6123 	IPPH_REFRELE(node->itp_policy, ns);
6124 	IPPH_REFRELE(node->itp_inactive, ns);
6125 	mutex_destroy(&node->itp_lock);
6126 	kmem_free(node, sizeof (*node));
6127 }
6128 
6129 void
6130 itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns)
6131 {
6132 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6133 
6134 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
6135 	ipss->ipsec_tunnel_policy_gen++;
6136 	ipsec_fragcache_uninit(&node->itp_fragcache);
6137 	avl_remove(&ipss->ipsec_tunnel_policies, node);
6138 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6139 	ITP_REFRELE(node, ns);
6140 }
6141 
6142 /*
6143  * Public interface to look up a tunnel security policy by name.  Used by
6144  * spdsock mostly.  Returns "node" with a bumped refcnt.
6145  */
6146 ipsec_tun_pol_t *
6147 get_tunnel_policy(char *name, netstack_t *ns)
6148 {
6149 	ipsec_tun_pol_t *node, lookup;
6150 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6151 
6152 	(void) strncpy(lookup.itp_name, name, LIFNAMSIZ);
6153 
6154 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
6155 	node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
6156 	    &lookup, NULL);
6157 	if (node != NULL) {
6158 		ITP_REFHOLD(node);
6159 	}
6160 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6161 
6162 	return (node);
6163 }
6164 
6165 /*
6166  * Public interface to walk all tunnel security polcies.  Useful for spdsock
6167  * DUMP operations.  iterator() will not consume a reference.
6168  */
6169 void
6170 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *),
6171     void *arg, netstack_t *ns)
6172 {
6173 	ipsec_tun_pol_t *node;
6174 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6175 
6176 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
6177 	for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL;
6178 	    node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) {
6179 		iterator(node, arg, ns);
6180 	}
6181 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6182 }
6183 
6184 /*
6185  * Initialize policy head.  This can only fail if there's a memory problem.
6186  */
6187 static boolean_t
6188 tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns)
6189 {
6190 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6191 
6192 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
6193 	iph->iph_refs = 1;
6194 	iph->iph_gen = 0;
6195 	if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize,
6196 	    KM_SLEEP, B_FALSE, ns) != 0) {
6197 		ipsec_polhead_free_table(iph);
6198 		return (B_FALSE);
6199 	}
6200 	ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize);
6201 	return (B_TRUE);
6202 }
6203 
6204 /*
6205  * Create a tunnel policy node with "name".  Set errno with
6206  * ENOMEM if there's a memory problem, and EEXIST if there's an existing
6207  * node.
6208  */
6209 ipsec_tun_pol_t *
6210 create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns)
6211 {
6212 	ipsec_tun_pol_t *newbie, *existing;
6213 	avl_index_t where;
6214 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6215 
6216 	newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
6217 	if (newbie == NULL) {
6218 		*errno = ENOMEM;
6219 		return (NULL);
6220 	}
6221 	if (!ipsec_fragcache_init(&newbie->itp_fragcache)) {
6222 		kmem_free(newbie, sizeof (*newbie));
6223 		*errno = ENOMEM;
6224 		return (NULL);
6225 	}
6226 
6227 	(void) strncpy(newbie->itp_name, name, LIFNAMSIZ);
6228 
6229 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
6230 	existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
6231 	    newbie, &where);
6232 	if (existing != NULL) {
6233 		itp_free(newbie, ns);
6234 		*errno = EEXIST;
6235 		rw_exit(&ipss->ipsec_tunnel_policy_lock);
6236 		return (NULL);
6237 	}
6238 	ipss->ipsec_tunnel_policy_gen++;
6239 	*gen = ipss->ipsec_tunnel_policy_gen;
6240 	newbie->itp_refcnt = 2;	/* One for the caller, one for the tree. */
6241 	newbie->itp_next_policy_index = 1;
6242 	avl_insert(&ipss->ipsec_tunnel_policies, newbie, where);
6243 	mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL);
6244 	newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t),
6245 	    KM_NOSLEEP);
6246 	if (newbie->itp_policy == NULL)
6247 		goto nomem;
6248 	newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t),
6249 	    KM_NOSLEEP);
6250 	if (newbie->itp_inactive == NULL) {
6251 		kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6252 		goto nomem;
6253 	}
6254 
6255 	if (!tunnel_polhead_init(newbie->itp_policy, ns)) {
6256 		kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6257 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6258 		goto nomem;
6259 	} else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) {
6260 		IPPH_REFRELE(newbie->itp_policy, ns);
6261 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6262 		goto nomem;
6263 	}
6264 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6265 
6266 	return (newbie);
6267 nomem:
6268 	*errno = ENOMEM;
6269 	kmem_free(newbie, sizeof (*newbie));
6270 	return (NULL);
6271 }
6272 
6273 /*
6274  * We can't call the tun_t lookup function until tun is
6275  * loaded, so create a dummy function to avoid symbol
6276  * lookup errors on boot.
6277  */
6278 /* ARGSUSED */
6279 ipsec_tun_pol_t *
6280 itp_get_byaddr_dummy(uint32_t *laddr, uint32_t *faddr, int af, netstack_t *ns)
6281 {
6282 	return (NULL);  /* Always return NULL. */
6283 }
6284 
6285 /*
6286  * Frag cache code, based on SunScreen 3.2 source
6287  *	screen/kernel/common/screen_fragcache.c
6288  */
6289 
6290 #define	IPSEC_FRAG_TTL_MAX	5
6291 /*
6292  * Note that the following parameters create 256 hash buckets
6293  * with 1024 free entries to be distributed.  Things are cleaned
6294  * periodically and are attempted to be cleaned when there is no
6295  * free space, but this system errs on the side of dropping packets
6296  * over creating memory exhaustion.  We may decide to make hash
6297  * factor a tunable if this proves to be a bad decision.
6298  */
6299 #define	IPSEC_FRAG_HASH_SLOTS	(1<<8)
6300 #define	IPSEC_FRAG_HASH_FACTOR	4
6301 #define	IPSEC_FRAG_HASH_SIZE	(IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR)
6302 
6303 #define	IPSEC_FRAG_HASH_MASK		(IPSEC_FRAG_HASH_SLOTS - 1)
6304 #define	IPSEC_FRAG_HASH_FUNC(id)	(((id) & IPSEC_FRAG_HASH_MASK) ^ \
6305 					    (((id) / \
6306 					    (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \
6307 					    IPSEC_FRAG_HASH_MASK))
6308 
6309 /* Maximum fragments per packet.  48 bytes payload x 1366 packets > 64KB */
6310 #define	IPSEC_MAX_FRAGS		1366
6311 
6312 #define	V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \
6313 				    IPH_OFFSET) << 3)
6314 #define	V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \
6315 		IPH_MF)
6316 
6317 /*
6318  * Initialize an ipsec fragcache instance.
6319  * Returns B_FALSE if memory allocation fails.
6320  */
6321 boolean_t
6322 ipsec_fragcache_init(ipsec_fragcache_t *frag)
6323 {
6324 	ipsec_fragcache_entry_t *ftemp;
6325 	int i;
6326 
6327 	mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL);
6328 	frag->itpf_ptr = (ipsec_fragcache_entry_t **)
6329 	    kmem_zalloc(sizeof (ipsec_fragcache_entry_t *) *
6330 	    IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP);
6331 	if (frag->itpf_ptr == NULL)
6332 		return (B_FALSE);
6333 
6334 	ftemp = (ipsec_fragcache_entry_t *)
6335 	    kmem_zalloc(sizeof (ipsec_fragcache_entry_t) *
6336 	    IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP);
6337 	if (ftemp == NULL) {
6338 		kmem_free(frag->itpf_ptr, sizeof (ipsec_fragcache_entry_t *) *
6339 		    IPSEC_FRAG_HASH_SLOTS);
6340 		return (B_FALSE);
6341 	}
6342 
6343 	frag->itpf_freelist = NULL;
6344 
6345 	for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) {
6346 		ftemp->itpfe_next = frag->itpf_freelist;
6347 		frag->itpf_freelist = ftemp;
6348 		ftemp++;
6349 	}
6350 
6351 	frag->itpf_expire_hint = 0;
6352 
6353 	return (B_TRUE);
6354 }
6355 
6356 void
6357 ipsec_fragcache_uninit(ipsec_fragcache_t *frag)
6358 {
6359 	ipsec_fragcache_entry_t *fep;
6360 	int i;
6361 
6362 	mutex_enter(&frag->itpf_lock);
6363 	if (frag->itpf_ptr) {
6364 		/* Delete any existing fragcache entry chains */
6365 		for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6366 			fep = (frag->itpf_ptr)[i];
6367 			while (fep != NULL) {
6368 				/* Returned fep is next in chain or NULL */
6369 				fep = fragcache_delentry(i, fep, frag);
6370 			}
6371 		}
6372 		/*
6373 		 * Chase the pointers back to the beginning
6374 		 * of the memory allocation and then
6375 		 * get rid of the allocated freelist
6376 		 */
6377 		while (frag->itpf_freelist->itpfe_next != NULL)
6378 			frag->itpf_freelist = frag->itpf_freelist->itpfe_next;
6379 		/*
6380 		 * XXX - If we ever dynamically grow the freelist
6381 		 * then we'll have to free entries individually
6382 		 * or determine how many entries or chunks we have
6383 		 * grown since the initial allocation.
6384 		 */
6385 		kmem_free(frag->itpf_freelist,
6386 		    sizeof (ipsec_fragcache_entry_t) *
6387 		    IPSEC_FRAG_HASH_SIZE);
6388 		/* Free the fragcache structure */
6389 		kmem_free(frag->itpf_ptr,
6390 		    sizeof (ipsec_fragcache_entry_t *) *
6391 		    IPSEC_FRAG_HASH_SLOTS);
6392 	}
6393 	mutex_exit(&frag->itpf_lock);
6394 	mutex_destroy(&frag->itpf_lock);
6395 }
6396 
6397 /*
6398  * Add a fragment to the fragment cache.   Consumes mp if NULL is returned.
6399  * Returns mp if a whole fragment has been assembled, NULL otherwise
6400  */
6401 
6402 mblk_t *
6403 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *ipsec_mp, mblk_t *mp,
6404     int outer_hdr_len, ipsec_stack_t *ipss)
6405 {
6406 	boolean_t is_v4;
6407 	time_t itpf_time;
6408 	ipha_t *iph;
6409 	ipha_t *oiph;
6410 	ip6_t *ip6h = NULL;
6411 	uint8_t v6_proto;
6412 	uint8_t *v6_proto_p;
6413 	uint16_t ip6_hdr_length;
6414 	ip6_pkt_t ipp;
6415 	ip6_frag_t *fraghdr;
6416 	ipsec_fragcache_entry_t *fep;
6417 	int i;
6418 	mblk_t *nmp, *prevmp, *spare_mp = NULL;
6419 	int firstbyte, lastbyte;
6420 	int offset;
6421 	int last;
6422 	boolean_t inbound = (ipsec_mp != NULL);
6423 	mblk_t *first_mp = inbound ? ipsec_mp : mp;
6424 
6425 	mutex_enter(&frag->itpf_lock);
6426 
6427 	oiph  = (ipha_t *)mp->b_rptr;
6428 	iph  = (ipha_t *)(mp->b_rptr + outer_hdr_len);
6429 	if (IPH_HDR_VERSION(iph) == IPV4_VERSION) {
6430 		is_v4 = B_TRUE;
6431 	} else {
6432 		ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION);
6433 		if ((spare_mp = msgpullup(mp, -1)) == NULL) {
6434 			mutex_exit(&frag->itpf_lock);
6435 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6436 			    DROPPER(ipss, ipds_spd_nomem),
6437 			    &ipss->ipsec_spd_dropper);
6438 			return (NULL);
6439 		}
6440 		ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len);
6441 
6442 		if (!ip_hdr_length_nexthdr_v6(spare_mp, ip6h, &ip6_hdr_length,
6443 		    &v6_proto_p)) {
6444 			/*
6445 			 * Find upper layer protocol.
6446 			 * If it fails we have a malformed packet
6447 			 */
6448 			mutex_exit(&frag->itpf_lock);
6449 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6450 			    DROPPER(ipss, ipds_spd_malformed_packet),
6451 			    &ipss->ipsec_spd_dropper);
6452 			freemsg(spare_mp);
6453 			return (NULL);
6454 		} else {
6455 			v6_proto = *v6_proto_p;
6456 		}
6457 
6458 
6459 		bzero(&ipp, sizeof (ipp));
6460 		(void) ip_find_hdr_v6(spare_mp, ip6h, &ipp, NULL);
6461 		if (!(ipp.ipp_fields & IPPF_FRAGHDR)) {
6462 			/*
6463 			 * We think this is a fragment, but didn't find
6464 			 * a fragment header.  Something is wrong.
6465 			 */
6466 			mutex_exit(&frag->itpf_lock);
6467 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6468 			    DROPPER(ipss, ipds_spd_malformed_frag),
6469 			    &ipss->ipsec_spd_dropper);
6470 			freemsg(spare_mp);
6471 			return (NULL);
6472 		}
6473 		fraghdr = ipp.ipp_fraghdr;
6474 		is_v4 = B_FALSE;
6475 	}
6476 
6477 	/* Anything to cleanup? */
6478 
6479 	/*
6480 	 * This cleanup call could be put in a timer loop
6481 	 * but it may actually be just as reasonable a decision to
6482 	 * leave it here.  The disadvantage is this only gets called when
6483 	 * frags are added.  The advantage is that it is not
6484 	 * susceptible to race conditions like a time-based cleanup
6485 	 * may be.
6486 	 */
6487 	itpf_time = gethrestime_sec();
6488 	if (itpf_time >= frag->itpf_expire_hint)
6489 		ipsec_fragcache_clean(frag);
6490 
6491 	/* Lookup to see if there is an existing entry */
6492 
6493 	if (is_v4)
6494 		i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident);
6495 	else
6496 		i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident);
6497 
6498 	for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) {
6499 		if (is_v4) {
6500 			ASSERT(iph != NULL);
6501 			if ((fep->itpfe_id == iph->ipha_ident) &&
6502 			    (fep->itpfe_src == iph->ipha_src) &&
6503 			    (fep->itpfe_dst == iph->ipha_dst) &&
6504 			    (fep->itpfe_proto == iph->ipha_protocol))
6505 				break;
6506 		} else {
6507 			ASSERT(fraghdr != NULL);
6508 			ASSERT(fep != NULL);
6509 			if ((fep->itpfe_id == fraghdr->ip6f_ident) &&
6510 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6,
6511 			    &ip6h->ip6_src) &&
6512 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6,
6513 			    &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto))
6514 				break;
6515 		}
6516 	}
6517 
6518 	if (is_v4) {
6519 		firstbyte = V4_FRAG_OFFSET(iph);
6520 		lastbyte  = firstbyte + ntohs(iph->ipha_length) -
6521 		    IPH_HDR_LENGTH(iph);
6522 		last = (V4_MORE_FRAGS(iph) == 0);
6523 #ifdef FRAGCACHE_DEBUG
6524 		cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, "
6525 		    "last = %d, id = %d\n", firstbyte, lastbyte, last,
6526 		    iph->ipha_ident);
6527 #endif
6528 	} else {
6529 		firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
6530 		lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6531 		    sizeof (ip6_t) - ip6_hdr_length;
6532 		last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0;
6533 #ifdef FRAGCACHE_DEBUG
6534 		cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, "
6535 		    "last = %d, id = %d, fraghdr = %p, spare_mp = %p\n",
6536 		    firstbyte, lastbyte, last, fraghdr->ip6f_ident,
6537 		    fraghdr, spare_mp);
6538 #endif
6539 	}
6540 
6541 	/* check for bogus fragments and delete the entry */
6542 	if (firstbyte > 0 && firstbyte <= 8) {
6543 		if (fep != NULL)
6544 			(void) fragcache_delentry(i, fep, frag);
6545 		mutex_exit(&frag->itpf_lock);
6546 		ip_drop_packet(first_mp, inbound, NULL, NULL,
6547 		    DROPPER(ipss, ipds_spd_malformed_frag),
6548 		    &ipss->ipsec_spd_dropper);
6549 		freemsg(spare_mp);
6550 		return (NULL);
6551 	}
6552 
6553 	/* Not found, allocate a new entry */
6554 	if (fep == NULL) {
6555 		if (frag->itpf_freelist == NULL) {
6556 			/* see if there is some space */
6557 			ipsec_fragcache_clean(frag);
6558 			if (frag->itpf_freelist == NULL) {
6559 				mutex_exit(&frag->itpf_lock);
6560 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6561 				    DROPPER(ipss, ipds_spd_nomem),
6562 				    &ipss->ipsec_spd_dropper);
6563 				freemsg(spare_mp);
6564 				return (NULL);
6565 			}
6566 		}
6567 
6568 		fep = frag->itpf_freelist;
6569 		frag->itpf_freelist = fep->itpfe_next;
6570 
6571 		if (is_v4) {
6572 			bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src,
6573 			    sizeof (struct in_addr));
6574 			bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst,
6575 			    sizeof (struct in_addr));
6576 			fep->itpfe_id = iph->ipha_ident;
6577 			fep->itpfe_proto = iph->ipha_protocol;
6578 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6579 		} else {
6580 			bcopy((in6_addr_t *)&ip6h->ip6_src,
6581 			    (in6_addr_t *)&fep->itpfe_src6,
6582 			    sizeof (struct in6_addr));
6583 			bcopy((in6_addr_t *)&ip6h->ip6_dst,
6584 			    (in6_addr_t *)&fep->itpfe_dst6,
6585 			    sizeof (struct in6_addr));
6586 			fep->itpfe_id = fraghdr->ip6f_ident;
6587 			fep->itpfe_proto = v6_proto;
6588 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6589 		}
6590 		itpf_time = gethrestime_sec();
6591 		fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1;
6592 		fep->itpfe_last = 0;
6593 		fep->itpfe_fraglist = NULL;
6594 		fep->itpfe_depth = 0;
6595 		fep->itpfe_next = (frag->itpf_ptr)[i];
6596 		(frag->itpf_ptr)[i] = fep;
6597 
6598 		if (frag->itpf_expire_hint > fep->itpfe_exp)
6599 			frag->itpf_expire_hint = fep->itpfe_exp;
6600 
6601 	}
6602 	freemsg(spare_mp);
6603 
6604 	/* Insert it in the frag list */
6605 	/* List is in order by starting offset of fragments */
6606 
6607 	prevmp = NULL;
6608 	for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) {
6609 		ipha_t *niph;
6610 		ipha_t *oniph;
6611 		ip6_t *nip6h;
6612 		ip6_pkt_t nipp;
6613 		ip6_frag_t *nfraghdr;
6614 		uint16_t nip6_hdr_length;
6615 		uint8_t *nv6_proto_p;
6616 		int nfirstbyte, nlastbyte;
6617 		char *data, *ndata;
6618 		mblk_t *nspare_mp = NULL;
6619 		mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp);
6620 		int hdr_len;
6621 
6622 		oniph  = (ipha_t *)mp->b_rptr;
6623 		nip6h = NULL;
6624 		niph = NULL;
6625 
6626 		/*
6627 		 * Determine outer header type and length and set
6628 		 * pointers appropriately
6629 		 */
6630 
6631 		if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) {
6632 			hdr_len = ((outer_hdr_len != 0) ?
6633 			    IPH_HDR_LENGTH(oiph) : 0);
6634 			niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6635 		} else {
6636 			ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION);
6637 			if ((nspare_mp = msgpullup(ndata_mp, -1)) == NULL) {
6638 				mutex_exit(&frag->itpf_lock);
6639 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6640 				    DROPPER(ipss, ipds_spd_nomem),
6641 				    &ipss->ipsec_spd_dropper);
6642 				return (NULL);
6643 			}
6644 			nip6h = (ip6_t *)nspare_mp->b_rptr;
6645 			(void) ip_hdr_length_nexthdr_v6(nspare_mp, nip6h,
6646 			    &nip6_hdr_length, &v6_proto_p);
6647 			hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0);
6648 		}
6649 
6650 		/*
6651 		 * Determine inner header type and length and set
6652 		 * pointers appropriately
6653 		 */
6654 
6655 		if (is_v4) {
6656 			if (niph == NULL) {
6657 				/* Was v6 outer */
6658 				niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6659 			}
6660 			nfirstbyte = V4_FRAG_OFFSET(niph);
6661 			nlastbyte = nfirstbyte + ntohs(niph->ipha_length) -
6662 			    IPH_HDR_LENGTH(niph);
6663 		} else {
6664 			if ((nspare_mp == NULL) &&
6665 			    ((nspare_mp = msgpullup(ndata_mp, -1)) == NULL)) {
6666 				mutex_exit(&frag->itpf_lock);
6667 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6668 				    DROPPER(ipss, ipds_spd_nomem),
6669 				    &ipss->ipsec_spd_dropper);
6670 				return (NULL);
6671 			}
6672 			nip6h = (ip6_t *)(nspare_mp->b_rptr + hdr_len);
6673 			if (!ip_hdr_length_nexthdr_v6(nspare_mp, nip6h,
6674 			    &nip6_hdr_length, &nv6_proto_p)) {
6675 				mutex_exit(&frag->itpf_lock);
6676 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6677 				    DROPPER(ipss, ipds_spd_malformed_frag),
6678 				    &ipss->ipsec_spd_dropper);
6679 				ipsec_freemsg_chain(nspare_mp);
6680 				return (NULL);
6681 			}
6682 			bzero(&nipp, sizeof (nipp));
6683 			(void) ip_find_hdr_v6(nspare_mp, nip6h, &nipp, NULL);
6684 			nfraghdr = nipp.ipp_fraghdr;
6685 			nfirstbyte = ntohs(nfraghdr->ip6f_offlg &
6686 			    IP6F_OFF_MASK);
6687 			nlastbyte  = nfirstbyte + ntohs(nip6h->ip6_plen) +
6688 			    sizeof (ip6_t) - nip6_hdr_length;
6689 		}
6690 		ipsec_freemsg_chain(nspare_mp);
6691 
6692 		/* Check for overlapping fragments */
6693 		if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) {
6694 			/*
6695 			 * Overlap Check:
6696 			 *  ~~~~---------		# Check if the newly
6697 			 * ~	ndata_mp|		# received fragment
6698 			 *  ~~~~---------		# overlaps with the
6699 			 *	 ---------~~~~~~	# current fragment.
6700 			 *	|    mp		~
6701 			 *	 ---------~~~~~~
6702 			 */
6703 			if (is_v4) {
6704 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6705 				    firstbyte - nfirstbyte;
6706 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6707 			} else {
6708 				data  = (char *)ip6h  +
6709 				    nip6_hdr_length + firstbyte -
6710 				    nfirstbyte;
6711 				ndata = (char *)nip6h + nip6_hdr_length;
6712 			}
6713 			if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) -
6714 			    firstbyte)) {
6715 				/* Overlapping data does not match */
6716 				(void) fragcache_delentry(i, fep, frag);
6717 				mutex_exit(&frag->itpf_lock);
6718 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6719 				    DROPPER(ipss, ipds_spd_overlap_frag),
6720 				    &ipss->ipsec_spd_dropper);
6721 				return (NULL);
6722 			}
6723 			/* Part of defense for jolt2.c fragmentation attack */
6724 			if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) {
6725 				/*
6726 				 * Check for identical or subset fragments:
6727 				 *  ----------	    ~~~~--------~~~~~
6728 				 * |    nmp   | or  ~	   nmp	    ~
6729 				 *  ----------	    ~~~~--------~~~~~
6730 				 *  ----------		  ------
6731 				 * |	mp    |		 |  mp  |
6732 				 *  ----------		  ------
6733 				 */
6734 				mutex_exit(&frag->itpf_lock);
6735 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6736 				    DROPPER(ipss, ipds_spd_evil_frag),
6737 				    &ipss->ipsec_spd_dropper);
6738 				return (NULL);
6739 			}
6740 
6741 		}
6742 
6743 		/* Correct location for this fragment? */
6744 		if (firstbyte <= nfirstbyte) {
6745 			/*
6746 			 * Check if the tail end of the new fragment overlaps
6747 			 * with the head of the current fragment.
6748 			 *	  --------~~~~~~~
6749 			 *	 |    nmp	~
6750 			 *	  --------~~~~~~~
6751 			 *  ~~~~~--------
6752 			 *  ~	mp	 |
6753 			 *  ~~~~~--------
6754 			 */
6755 			if (lastbyte > nfirstbyte) {
6756 				/* Fragments overlap */
6757 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6758 				    firstbyte - nfirstbyte;
6759 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6760 				if (is_v4) {
6761 					data  = (char *)iph +
6762 					    IPH_HDR_LENGTH(iph) + firstbyte -
6763 					    nfirstbyte;
6764 					ndata = (char *)niph +
6765 					    IPH_HDR_LENGTH(niph);
6766 				} else {
6767 					data  = (char *)ip6h  +
6768 					    nip6_hdr_length + firstbyte -
6769 					    nfirstbyte;
6770 					ndata = (char *)nip6h + nip6_hdr_length;
6771 				}
6772 				if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6773 				    - nfirstbyte)) {
6774 					/* Overlap mismatch */
6775 					(void) fragcache_delentry(i, fep, frag);
6776 					mutex_exit(&frag->itpf_lock);
6777 					ip_drop_packet(first_mp, inbound, NULL,
6778 					    NULL, DROPPER(ipss,
6779 					    ipds_spd_overlap_frag),
6780 					    &ipss->ipsec_spd_dropper);
6781 					return (NULL);
6782 				}
6783 			}
6784 
6785 			/*
6786 			 * Fragment does not illegally overlap and can now
6787 			 * be inserted into the chain
6788 			 */
6789 			break;
6790 		}
6791 
6792 		prevmp = nmp;
6793 	}
6794 	first_mp->b_next = nmp;
6795 
6796 	if (prevmp == NULL) {
6797 		fep->itpfe_fraglist = first_mp;
6798 	} else {
6799 		prevmp->b_next = first_mp;
6800 	}
6801 	if (last)
6802 		fep->itpfe_last = 1;
6803 
6804 	/* Part of defense for jolt2.c fragmentation attack */
6805 	if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) {
6806 		(void) fragcache_delentry(i, fep, frag);
6807 		mutex_exit(&frag->itpf_lock);
6808 		ip_drop_packet(first_mp, inbound, NULL, NULL,
6809 		    DROPPER(ipss, ipds_spd_max_frags),
6810 		    &ipss->ipsec_spd_dropper);
6811 		return (NULL);
6812 	}
6813 
6814 	/* Check for complete packet */
6815 
6816 	if (!fep->itpfe_last) {
6817 		mutex_exit(&frag->itpf_lock);
6818 #ifdef FRAGCACHE_DEBUG
6819 		cmn_err(CE_WARN, "Fragment cached, not last.\n");
6820 #endif
6821 		return (NULL);
6822 	}
6823 
6824 #ifdef FRAGCACHE_DEBUG
6825 	cmn_err(CE_WARN, "Last fragment cached.\n");
6826 	cmn_err(CE_WARN, "mp = %p, first_mp = %p.\n", mp, first_mp);
6827 #endif
6828 
6829 	offset = 0;
6830 	for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) {
6831 		mblk_t *data_mp = (inbound ? mp->b_cont : mp);
6832 		int hdr_len;
6833 
6834 		oiph  = (ipha_t *)data_mp->b_rptr;
6835 		ip6h = NULL;
6836 		iph = NULL;
6837 
6838 		spare_mp = NULL;
6839 		if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
6840 			hdr_len = ((outer_hdr_len != 0) ?
6841 			    IPH_HDR_LENGTH(oiph) : 0);
6842 			iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6843 		} else {
6844 			ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
6845 			if ((spare_mp = msgpullup(data_mp, -1)) == NULL) {
6846 				mutex_exit(&frag->itpf_lock);
6847 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6848 				    DROPPER(ipss, ipds_spd_nomem),
6849 				    &ipss->ipsec_spd_dropper);
6850 				return (NULL);
6851 			}
6852 			ip6h = (ip6_t *)spare_mp->b_rptr;
6853 			(void) ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
6854 			    &ip6_hdr_length, &v6_proto_p);
6855 			hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0);
6856 		}
6857 
6858 		/* Calculate current fragment start/end */
6859 		if (is_v4) {
6860 			if (iph == NULL) {
6861 				/* Was v6 outer */
6862 				iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6863 			}
6864 			firstbyte = V4_FRAG_OFFSET(iph);
6865 			lastbyte = firstbyte + ntohs(iph->ipha_length) -
6866 			    IPH_HDR_LENGTH(iph);
6867 		} else {
6868 			if ((spare_mp == NULL) &&
6869 			    ((spare_mp = msgpullup(data_mp, -1)) == NULL)) {
6870 				mutex_exit(&frag->itpf_lock);
6871 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6872 				    DROPPER(ipss, ipds_spd_nomem),
6873 				    &ipss->ipsec_spd_dropper);
6874 				return (NULL);
6875 			}
6876 			ip6h = (ip6_t *)(spare_mp->b_rptr + hdr_len);
6877 			if (!ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
6878 			    &ip6_hdr_length, &v6_proto_p)) {
6879 				mutex_exit(&frag->itpf_lock);
6880 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6881 				    DROPPER(ipss, ipds_spd_malformed_frag),
6882 				    &ipss->ipsec_spd_dropper);
6883 				ipsec_freemsg_chain(spare_mp);
6884 				return (NULL);
6885 			}
6886 			v6_proto = *v6_proto_p;
6887 			bzero(&ipp, sizeof (ipp));
6888 			(void) ip_find_hdr_v6(spare_mp, ip6h, &ipp, NULL);
6889 			fraghdr = ipp.ipp_fraghdr;
6890 			firstbyte = ntohs(fraghdr->ip6f_offlg &
6891 			    IP6F_OFF_MASK);
6892 			lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6893 			    sizeof (ip6_t) - ip6_hdr_length;
6894 		}
6895 
6896 		/*
6897 		 * If this fragment is greater than current offset,
6898 		 * we have a missing fragment so return NULL
6899 		 */
6900 		if (firstbyte > offset) {
6901 			mutex_exit(&frag->itpf_lock);
6902 #ifdef FRAGCACHE_DEBUG
6903 			/*
6904 			 * Note, this can happen when the last frag
6905 			 * gets sent through because it is smaller
6906 			 * than the MTU.  It is not necessarily an
6907 			 * error condition.
6908 			 */
6909 			cmn_err(CE_WARN, "Frag greater than offset! : "
6910 			    "missing fragment: firstbyte = %d, offset = %d, "
6911 			    "mp = %p\n", firstbyte, offset, mp);
6912 #endif
6913 			ipsec_freemsg_chain(spare_mp);
6914 			return (NULL);
6915 		}
6916 
6917 		/*
6918 		 * If we are at the last fragment, we have the complete
6919 		 * packet, so rechain things and return it to caller
6920 		 * for processing
6921 		 */
6922 
6923 		if ((is_v4 && !V4_MORE_FRAGS(iph)) ||
6924 		    (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) {
6925 			mp = fep->itpfe_fraglist;
6926 			fep->itpfe_fraglist = NULL;
6927 			(void) fragcache_delentry(i, fep, frag);
6928 			mutex_exit(&frag->itpf_lock);
6929 
6930 			if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) >
6931 			    65535)) || (!is_v4 && (firstbyte +
6932 			    ntohs(ip6h->ip6_plen) > 65535))) {
6933 				/* It is an invalid "ping-o-death" packet */
6934 				/* Discard it */
6935 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6936 				    DROPPER(ipss, ipds_spd_evil_frag),
6937 				    &ipss->ipsec_spd_dropper);
6938 				ipsec_freemsg_chain(spare_mp);
6939 				return (NULL);
6940 			}
6941 #ifdef FRAGCACHE_DEBUG
6942 			cmn_err(CE_WARN, "Fragcache returning mp = %p, "
6943 			    "mp->b_next = %p", mp, mp->b_next);
6944 #endif
6945 			ipsec_freemsg_chain(spare_mp);
6946 			/*
6947 			 * For inbound case, mp has ipsec_in b_next'd chain
6948 			 * For outbound case, it is just data mp chain
6949 			 */
6950 			return (mp);
6951 		}
6952 		ipsec_freemsg_chain(spare_mp);
6953 
6954 		/*
6955 		 * Update new ending offset if this
6956 		 * fragment extends the packet
6957 		 */
6958 		if (offset < lastbyte)
6959 			offset = lastbyte;
6960 	}
6961 
6962 	mutex_exit(&frag->itpf_lock);
6963 
6964 	/* Didn't find last fragment, so return NULL */
6965 	return (NULL);
6966 }
6967 
6968 static void
6969 ipsec_fragcache_clean(ipsec_fragcache_t *frag)
6970 {
6971 	ipsec_fragcache_entry_t *fep;
6972 	int i;
6973 	ipsec_fragcache_entry_t *earlyfep = NULL;
6974 	time_t itpf_time;
6975 	int earlyexp;
6976 	int earlyi = 0;
6977 
6978 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
6979 
6980 	itpf_time = gethrestime_sec();
6981 	earlyexp = itpf_time + 10000;
6982 
6983 	for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6984 		fep = (frag->itpf_ptr)[i];
6985 		while (fep) {
6986 			if (fep->itpfe_exp < itpf_time) {
6987 				/* found */
6988 				fep = fragcache_delentry(i, fep, frag);
6989 			} else {
6990 				if (fep->itpfe_exp < earlyexp) {
6991 					earlyfep = fep;
6992 					earlyexp = fep->itpfe_exp;
6993 					earlyi = i;
6994 				}
6995 				fep = fep->itpfe_next;
6996 			}
6997 		}
6998 	}
6999 
7000 	frag->itpf_expire_hint = earlyexp;
7001 
7002 	/* if (!found) */
7003 	if (frag->itpf_freelist == NULL)
7004 		(void) fragcache_delentry(earlyi, earlyfep, frag);
7005 }
7006 
7007 static ipsec_fragcache_entry_t *
7008 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep,
7009     ipsec_fragcache_t *frag)
7010 {
7011 	ipsec_fragcache_entry_t *targp;
7012 	ipsec_fragcache_entry_t *nextp = fep->itpfe_next;
7013 
7014 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
7015 
7016 	/* Free up any fragment list still in cache entry */
7017 	ipsec_freemsg_chain(fep->itpfe_fraglist);
7018 
7019 	targp = (frag->itpf_ptr)[slot];
7020 	ASSERT(targp != 0);
7021 
7022 	if (targp == fep) {
7023 		/* unlink from head of hash chain */
7024 		(frag->itpf_ptr)[slot] = nextp;
7025 		/* link into free list */
7026 		fep->itpfe_next = frag->itpf_freelist;
7027 		frag->itpf_freelist = fep;
7028 		return (nextp);
7029 	}
7030 
7031 	/* maybe should use double linked list to make update faster */
7032 	/* must be past front of chain */
7033 	while (targp) {
7034 		if (targp->itpfe_next == fep) {
7035 			/* unlink from hash chain */
7036 			targp->itpfe_next = nextp;
7037 			/* link into free list */
7038 			fep->itpfe_next = frag->itpf_freelist;
7039 			frag->itpf_freelist = fep;
7040 			return (nextp);
7041 		}
7042 		targp = targp->itpfe_next;
7043 		ASSERT(targp != 0);
7044 	}
7045 	/* NOTREACHED */
7046 	return (NULL);
7047 }
7048