1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "@(#)spd.c 1.61 08/07/15 SMI" 27 28 /* 29 * IPsec Security Policy Database. 30 * 31 * This module maintains the SPD and provides routines used by ip and ip6 32 * to apply IPsec policy to inbound and outbound datagrams. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/stream.h> 37 #include <sys/stropts.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strsubr.h> 40 #include <sys/strlog.h> 41 #include <sys/cmn_err.h> 42 #include <sys/zone.h> 43 44 #include <sys/systm.h> 45 #include <sys/param.h> 46 #include <sys/kmem.h> 47 #include <sys/ddi.h> 48 49 #include <sys/crypto/api.h> 50 51 #include <inet/common.h> 52 #include <inet/mi.h> 53 54 #include <netinet/ip6.h> 55 #include <netinet/icmp6.h> 56 #include <netinet/udp.h> 57 58 #include <inet/ip.h> 59 #include <inet/ip6.h> 60 61 #include <net/pfkeyv2.h> 62 #include <net/pfpolicy.h> 63 #include <inet/ipsec_info.h> 64 #include <inet/sadb.h> 65 #include <inet/ipsec_impl.h> 66 67 #include <inet/ip_impl.h> /* For IP_MOD_ID */ 68 69 #include <inet/ipsecah.h> 70 #include <inet/ipsecesp.h> 71 #include <inet/ipdrop.h> 72 #include <inet/ipclassifier.h> 73 #include <inet/tun.h> 74 75 static void ipsec_update_present_flags(ipsec_stack_t *); 76 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *, 77 netstack_t *); 78 static void ipsec_out_free(void *); 79 static void ipsec_in_free(void *); 80 static mblk_t *ipsec_attach_global_policy(mblk_t **, conn_t *, 81 ipsec_selector_t *, netstack_t *); 82 static mblk_t *ipsec_apply_global_policy(mblk_t *, conn_t *, 83 ipsec_selector_t *, netstack_t *); 84 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *, 85 ipha_t *, ip6_t *, uint64_t, netstack_t *); 86 static void ipsec_in_release_refs(ipsec_in_t *); 87 static void ipsec_out_release_refs(ipsec_out_t *); 88 static void ipsec_action_free_table(ipsec_action_t *); 89 static void ipsec_action_reclaim(void *); 90 static void ipsec_action_reclaim_stack(netstack_t *); 91 static void ipsid_init(netstack_t *); 92 static void ipsid_fini(netstack_t *); 93 94 /* sel_flags values for ipsec_init_inbound_sel(). */ 95 #define SEL_NONE 0x0000 96 #define SEL_PORT_POLICY 0x0001 97 #define SEL_IS_ICMP 0x0002 98 #define SEL_TUNNEL_MODE 0x0004 99 100 /* Return values for ipsec_init_inbound_sel(). */ 101 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG} 102 selret_t; 103 104 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *, 105 ipha_t *, ip6_t *, uint8_t); 106 107 static boolean_t ipsec_check_ipsecin_action(struct ipsec_in_s *, mblk_t *, 108 struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **, 109 kstat_named_t **); 110 static void ipsec_unregister_prov_update(void); 111 static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *); 112 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *); 113 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *); 114 static boolean_t ipsec_kstat_init(ipsec_stack_t *); 115 static void ipsec_kstat_destroy(ipsec_stack_t *); 116 static int ipsec_free_tables(ipsec_stack_t *); 117 static int tunnel_compare(const void *, const void *); 118 static void ipsec_freemsg_chain(mblk_t *); 119 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, ire_t *, 120 struct kstat_named *, ipdropper_t *); 121 static boolean_t ipsec_kstat_init(ipsec_stack_t *); 122 static void ipsec_kstat_destroy(ipsec_stack_t *); 123 static int ipsec_free_tables(ipsec_stack_t *); 124 static int tunnel_compare(const void *, const void *); 125 static void ipsec_freemsg_chain(mblk_t *); 126 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, ire_t *, 127 struct kstat_named *, ipdropper_t *); 128 129 /* 130 * Selector hash table is statically sized at module load time. 131 * we default to 251 buckets, which is the largest prime number under 255 132 */ 133 134 #define IPSEC_SPDHASH_DEFAULT 251 135 136 /* SPD hash-size tunable per tunnel. */ 137 #define TUN_SPDHASH_DEFAULT 5 138 139 uint32_t ipsec_spd_hashsize; 140 uint32_t tun_spd_hashsize; 141 142 #define IPSEC_SEL_NOHASH ((uint32_t)(~0)) 143 144 /* 145 * Handle global across all stack instances 146 */ 147 static crypto_notify_handle_t prov_update_handle = NULL; 148 149 static kmem_cache_t *ipsec_action_cache; 150 static kmem_cache_t *ipsec_sel_cache; 151 static kmem_cache_t *ipsec_pol_cache; 152 static kmem_cache_t *ipsec_info_cache; 153 154 /* Frag cache prototypes */ 155 static void ipsec_fragcache_clean(ipsec_fragcache_t *); 156 static ipsec_fragcache_entry_t *fragcache_delentry(int, 157 ipsec_fragcache_entry_t *, ipsec_fragcache_t *); 158 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *); 159 void ipsec_fragcache_uninit(ipsec_fragcache_t *); 160 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *, int, 161 ipsec_stack_t *); 162 163 int ipsec_hdr_pullup_needed = 0; 164 int ipsec_weird_null_inbound_policy = 0; 165 166 #define ALGBITS_ROUND_DOWN(x, align) (((x)/(align))*(align)) 167 #define ALGBITS_ROUND_UP(x, align) ALGBITS_ROUND_DOWN((x)+(align)-1, align) 168 169 /* 170 * Inbound traffic should have matching identities for both SA's. 171 */ 172 173 #define SA_IDS_MATCH(sa1, sa2) \ 174 (((sa1) == NULL) || ((sa2) == NULL) || \ 175 (((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) && \ 176 (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid)))) 177 178 /* 179 * IPv6 Fragments 180 */ 181 #define IS_V6_FRAGMENT(ipp) (ipp.ipp_fields & IPPF_FRAGHDR) 182 183 /* 184 * Policy failure messages. 185 */ 186 static char *ipsec_policy_failure_msgs[] = { 187 188 /* IPSEC_POLICY_NOT_NEEDED */ 189 "%s: Dropping the datagram because the incoming packet " 190 "is %s, but the recipient expects clear; Source %s, " 191 "Destination %s.\n", 192 193 /* IPSEC_POLICY_MISMATCH */ 194 "%s: Policy Failure for the incoming packet (%s); Source %s, " 195 "Destination %s.\n", 196 197 /* IPSEC_POLICY_AUTH_NOT_NEEDED */ 198 "%s: Authentication present while not expected in the " 199 "incoming %s packet; Source %s, Destination %s.\n", 200 201 /* IPSEC_POLICY_ENCR_NOT_NEEDED */ 202 "%s: Encryption present while not expected in the " 203 "incoming %s packet; Source %s, Destination %s.\n", 204 205 /* IPSEC_POLICY_SE_NOT_NEEDED */ 206 "%s: Self-Encapsulation present while not expected in the " 207 "incoming %s packet; Source %s, Destination %s.\n", 208 }; 209 210 /* 211 * General overviews: 212 * 213 * Locking: 214 * 215 * All of the system policy structures are protected by a single 216 * rwlock. These structures are threaded in a 217 * fairly complex fashion and are not expected to change on a 218 * regular basis, so this should not cause scaling/contention 219 * problems. As a result, policy checks should (hopefully) be MT-hot. 220 * 221 * Allocation policy: 222 * 223 * We use custom kmem cache types for the various 224 * bits & pieces of the policy data structures. All allocations 225 * use KM_NOSLEEP instead of KM_SLEEP for policy allocation. The 226 * policy table is of potentially unbounded size, so we don't 227 * want to provide a way to hog all system memory with policy 228 * entries.. 229 */ 230 231 /* Convenient functions for freeing or dropping a b_next linked mblk chain */ 232 233 /* Free all messages in an mblk chain */ 234 static void 235 ipsec_freemsg_chain(mblk_t *mp) 236 { 237 mblk_t *mpnext; 238 while (mp != NULL) { 239 ASSERT(mp->b_prev == NULL); 240 mpnext = mp->b_next; 241 mp->b_next = NULL; 242 freemsg(mp); /* Always works, even if NULL */ 243 mp = mpnext; 244 } 245 } 246 247 /* ip_drop all messages in an mblk chain */ 248 static void 249 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *arriving, 250 ire_t *outbound_ire, struct kstat_named *counter, ipdropper_t *who_called) 251 { 252 mblk_t *mpnext; 253 while (mp != NULL) { 254 ASSERT(mp->b_prev == NULL); 255 mpnext = mp->b_next; 256 mp->b_next = NULL; 257 ip_drop_packet(mp, inbound, arriving, outbound_ire, counter, 258 who_called); 259 mp = mpnext; 260 } 261 } 262 263 /* 264 * AVL tree comparison function. 265 * the in-kernel avl assumes unique keys for all objects. 266 * Since sometimes policy will duplicate rules, we may insert 267 * multiple rules with the same rule id, so we need a tie-breaker. 268 */ 269 static int 270 ipsec_policy_cmpbyid(const void *a, const void *b) 271 { 272 const ipsec_policy_t *ipa, *ipb; 273 uint64_t idxa, idxb; 274 275 ipa = (const ipsec_policy_t *)a; 276 ipb = (const ipsec_policy_t *)b; 277 idxa = ipa->ipsp_index; 278 idxb = ipb->ipsp_index; 279 280 if (idxa < idxb) 281 return (-1); 282 if (idxa > idxb) 283 return (1); 284 /* 285 * Tie-breaker #1: All installed policy rules have a non-NULL 286 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not 287 * actually in-tree but rather a template node being used in 288 * an avl_find query; see ipsec_policy_delete(). This gives us 289 * a placeholder in the ordering just before the the first entry with 290 * a key >= the one we're looking for, so we can walk forward from 291 * that point to get the remaining entries with the same id. 292 */ 293 if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL)) 294 return (-1); 295 if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL)) 296 return (1); 297 /* 298 * At most one of the arguments to the comparison should have a 299 * NULL selector pointer; if not, the tree is broken. 300 */ 301 ASSERT(ipa->ipsp_sel != NULL); 302 ASSERT(ipb->ipsp_sel != NULL); 303 /* 304 * Tie-breaker #2: use the virtual address of the policy node 305 * to arbitrarily break ties. Since we use the new tree node in 306 * the avl_find() in ipsec_insert_always, the new node will be 307 * inserted into the tree in the right place in the sequence. 308 */ 309 if (ipa < ipb) 310 return (-1); 311 if (ipa > ipb) 312 return (1); 313 return (0); 314 } 315 316 /* 317 * Free what ipsec_alloc_table allocated. 318 */ 319 void 320 ipsec_polhead_free_table(ipsec_policy_head_t *iph) 321 { 322 int dir; 323 int i; 324 325 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 326 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 327 328 if (ipr->ipr_hash == NULL) 329 continue; 330 331 for (i = 0; i < ipr->ipr_nchains; i++) { 332 ASSERT(ipr->ipr_hash[i].hash_head == NULL); 333 } 334 kmem_free(ipr->ipr_hash, ipr->ipr_nchains * 335 sizeof (ipsec_policy_hash_t)); 336 ipr->ipr_hash = NULL; 337 } 338 } 339 340 void 341 ipsec_polhead_destroy(ipsec_policy_head_t *iph) 342 { 343 int dir; 344 345 avl_destroy(&iph->iph_rulebyid); 346 rw_destroy(&iph->iph_lock); 347 348 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 349 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 350 int chain; 351 352 for (chain = 0; chain < ipr->ipr_nchains; chain++) 353 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock)); 354 355 } 356 ipsec_polhead_free_table(iph); 357 } 358 359 /* 360 * Free the IPsec stack instance. 361 */ 362 /* ARGSUSED */ 363 static void 364 ipsec_stack_fini(netstackid_t stackid, void *arg) 365 { 366 ipsec_stack_t *ipss = (ipsec_stack_t *)arg; 367 void *cookie; 368 ipsec_tun_pol_t *node; 369 netstack_t *ns = ipss->ipsec_netstack; 370 int i; 371 ipsec_algtype_t algtype; 372 373 ipsec_loader_destroy(ipss); 374 375 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER); 376 /* 377 * It's possible we can just ASSERT() the tree is empty. After all, 378 * we aren't called until IP is ready to unload (and presumably all 379 * tunnels have been unplumbed). But we'll play it safe for now, the 380 * loop will just exit immediately if it's empty. 381 */ 382 cookie = NULL; 383 while ((node = (ipsec_tun_pol_t *) 384 avl_destroy_nodes(&ipss->ipsec_tunnel_policies, 385 &cookie)) != NULL) { 386 ITP_REFRELE(node, ns); 387 } 388 avl_destroy(&ipss->ipsec_tunnel_policies); 389 rw_exit(&ipss->ipsec_tunnel_policy_lock); 390 rw_destroy(&ipss->ipsec_tunnel_policy_lock); 391 392 ipsec_config_flush(ns); 393 394 ipsec_kstat_destroy(ipss); 395 396 ip_drop_unregister(&ipss->ipsec_dropper); 397 398 ip_drop_unregister(&ipss->ipsec_spd_dropper); 399 ip_drop_destroy(ipss); 400 /* 401 * Globals start with ref == 1 to prevent IPPH_REFRELE() from 402 * attempting to free them, hence they should have 1 now. 403 */ 404 ipsec_polhead_destroy(&ipss->ipsec_system_policy); 405 ASSERT(ipss->ipsec_system_policy.iph_refs == 1); 406 ipsec_polhead_destroy(&ipss->ipsec_inactive_policy); 407 ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1); 408 409 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) { 410 ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head); 411 ipss->ipsec_action_hash[i].hash_head = NULL; 412 mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock)); 413 } 414 415 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) { 416 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL); 417 mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock)); 418 } 419 420 mutex_enter(&ipss->ipsec_alg_lock); 421 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) { 422 int nalgs = ipss->ipsec_nalgs[algtype]; 423 424 for (i = 0; i < nalgs; i++) { 425 if (ipss->ipsec_alglists[algtype][i] != NULL) 426 ipsec_alg_unreg(algtype, i, ns); 427 } 428 } 429 mutex_exit(&ipss->ipsec_alg_lock); 430 mutex_destroy(&ipss->ipsec_alg_lock); 431 432 ipsid_gc(ns); 433 ipsid_fini(ns); 434 435 (void) ipsec_free_tables(ipss); 436 kmem_free(ipss, sizeof (*ipss)); 437 } 438 439 void 440 ipsec_policy_g_destroy(void) 441 { 442 kmem_cache_destroy(ipsec_action_cache); 443 kmem_cache_destroy(ipsec_sel_cache); 444 kmem_cache_destroy(ipsec_pol_cache); 445 kmem_cache_destroy(ipsec_info_cache); 446 447 ipsec_unregister_prov_update(); 448 449 netstack_unregister(NS_IPSEC); 450 } 451 452 453 /* 454 * Free what ipsec_alloc_tables allocated. 455 * Called when table allocation fails to free the table. 456 */ 457 static int 458 ipsec_free_tables(ipsec_stack_t *ipss) 459 { 460 int i; 461 462 if (ipss->ipsec_sel_hash != NULL) { 463 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) { 464 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL); 465 } 466 kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize * 467 sizeof (*ipss->ipsec_sel_hash)); 468 ipss->ipsec_sel_hash = NULL; 469 ipss->ipsec_spd_hashsize = 0; 470 } 471 ipsec_polhead_free_table(&ipss->ipsec_system_policy); 472 ipsec_polhead_free_table(&ipss->ipsec_inactive_policy); 473 474 return (ENOMEM); 475 } 476 477 /* 478 * Attempt to allocate the tables in a single policy head. 479 * Return nonzero on failure after cleaning up any work in progress. 480 */ 481 int 482 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag, 483 boolean_t global_cleanup, netstack_t *ns) 484 { 485 int dir; 486 487 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 488 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 489 490 ipr->ipr_nchains = nchains; 491 ipr->ipr_hash = kmem_zalloc(nchains * 492 sizeof (ipsec_policy_hash_t), kmflag); 493 if (ipr->ipr_hash == NULL) 494 return (global_cleanup ? 495 ipsec_free_tables(ns->netstack_ipsec) : 496 ENOMEM); 497 } 498 return (0); 499 } 500 501 /* 502 * Attempt to allocate the various tables. Return nonzero on failure 503 * after cleaning up any work in progress. 504 */ 505 static int 506 ipsec_alloc_tables(int kmflag, netstack_t *ns) 507 { 508 int error; 509 ipsec_stack_t *ipss = ns->netstack_ipsec; 510 511 error = ipsec_alloc_table(&ipss->ipsec_system_policy, 512 ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns); 513 if (error != 0) 514 return (error); 515 516 error = ipsec_alloc_table(&ipss->ipsec_inactive_policy, 517 ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns); 518 if (error != 0) 519 return (error); 520 521 ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize * 522 sizeof (*ipss->ipsec_sel_hash), kmflag); 523 524 if (ipss->ipsec_sel_hash == NULL) 525 return (ipsec_free_tables(ipss)); 526 527 return (0); 528 } 529 530 /* 531 * After table allocation, initialize a policy head. 532 */ 533 void 534 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains) 535 { 536 int dir, chain; 537 538 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL); 539 avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid, 540 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid)); 541 542 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 543 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 544 ipr->ipr_nchains = nchains; 545 546 for (chain = 0; chain < nchains; chain++) { 547 mutex_init(&(ipr->ipr_hash[chain].hash_lock), 548 NULL, MUTEX_DEFAULT, NULL); 549 } 550 } 551 } 552 553 static boolean_t 554 ipsec_kstat_init(ipsec_stack_t *ipss) 555 { 556 ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net", 557 KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t), 558 KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid); 559 560 if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL) 561 return (B_FALSE); 562 563 ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data; 564 565 #define KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64) 566 KI(esp_stat_in_requests); 567 KI(esp_stat_in_discards); 568 KI(esp_stat_lookup_failure); 569 KI(ah_stat_in_requests); 570 KI(ah_stat_in_discards); 571 KI(ah_stat_lookup_failure); 572 KI(sadb_acquire_maxpackets); 573 KI(sadb_acquire_qhiwater); 574 #undef KI 575 576 kstat_install(ipss->ipsec_ksp); 577 return (B_TRUE); 578 } 579 580 static void 581 ipsec_kstat_destroy(ipsec_stack_t *ipss) 582 { 583 kstat_delete_netstack(ipss->ipsec_ksp, 584 ipss->ipsec_netstack->netstack_stackid); 585 ipss->ipsec_kstats = NULL; 586 587 } 588 589 /* 590 * Initialize the IPsec stack instance. 591 */ 592 /* ARGSUSED */ 593 static void * 594 ipsec_stack_init(netstackid_t stackid, netstack_t *ns) 595 { 596 ipsec_stack_t *ipss; 597 int i; 598 599 ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP); 600 ipss->ipsec_netstack = ns; 601 602 /* 603 * FIXME: netstack_ipsec is used by some of the routines we call 604 * below, but it isn't set until this routine returns. 605 * Either we introduce optional xxx_stack_alloc() functions 606 * that will be called by the netstack framework before xxx_stack_init, 607 * or we switch spd.c and sadb.c to operate on ipsec_stack_t 608 * (latter has some include file order issues for sadb.h, but makes 609 * sense if we merge some of the ipsec related stack_t's together. 610 */ 611 ns->netstack_ipsec = ipss; 612 613 /* 614 * Make two attempts to allocate policy hash tables; try it at 615 * the "preferred" size (may be set in /etc/system) first, 616 * then fall back to the default size. 617 */ 618 ipss->ipsec_spd_hashsize = (ipsec_spd_hashsize == 0) ? 619 IPSEC_SPDHASH_DEFAULT : ipsec_spd_hashsize; 620 621 if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) { 622 cmn_err(CE_WARN, 623 "Unable to allocate %d entry IPsec policy hash table", 624 ipss->ipsec_spd_hashsize); 625 ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT; 626 cmn_err(CE_WARN, "Falling back to %d entries", 627 ipss->ipsec_spd_hashsize); 628 (void) ipsec_alloc_tables(KM_SLEEP, ns); 629 } 630 631 /* Just set a default for tunnels. */ 632 ipss->ipsec_tun_spd_hashsize = (tun_spd_hashsize == 0) ? 633 TUN_SPDHASH_DEFAULT : tun_spd_hashsize; 634 635 ipsid_init(ns); 636 /* 637 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting 638 * to free them. 639 */ 640 ipss->ipsec_system_policy.iph_refs = 1; 641 ipss->ipsec_inactive_policy.iph_refs = 1; 642 ipsec_polhead_init(&ipss->ipsec_system_policy, 643 ipss->ipsec_spd_hashsize); 644 ipsec_polhead_init(&ipss->ipsec_inactive_policy, 645 ipss->ipsec_spd_hashsize); 646 rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL); 647 avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare, 648 sizeof (ipsec_tun_pol_t), 0); 649 650 ipss->ipsec_next_policy_index = 1; 651 652 rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL); 653 rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL); 654 655 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) 656 mutex_init(&(ipss->ipsec_action_hash[i].hash_lock), 657 NULL, MUTEX_DEFAULT, NULL); 658 659 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) 660 mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock), 661 NULL, MUTEX_DEFAULT, NULL); 662 663 mutex_init(&ipss->ipsec_alg_lock, NULL, MUTEX_DEFAULT, NULL); 664 for (i = 0; i < IPSEC_NALGTYPES; i++) { 665 ipss->ipsec_nalgs[i] = 0; 666 } 667 668 ip_drop_init(ipss); 669 ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD"); 670 671 /* Set function to dummy until tun is loaded */ 672 rw_init(&ipss->ipsec_itp_get_byaddr_rw_lock, NULL, RW_DEFAULT, NULL); 673 rw_enter(&ipss->ipsec_itp_get_byaddr_rw_lock, RW_WRITER); 674 ipss->ipsec_itp_get_byaddr = itp_get_byaddr_dummy; 675 rw_exit(&ipss->ipsec_itp_get_byaddr_rw_lock); 676 677 /* IP's IPsec code calls the packet dropper */ 678 ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing"); 679 680 (void) ipsec_kstat_init(ipss); 681 682 ipsec_loader_init(ipss); 683 ipsec_loader_start(ipss); 684 685 return (ipss); 686 } 687 688 /* Global across all stack instances */ 689 void 690 ipsec_policy_g_init(void) 691 { 692 ipsec_action_cache = kmem_cache_create("ipsec_actions", 693 sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL, 694 ipsec_action_reclaim, NULL, NULL, 0); 695 ipsec_sel_cache = kmem_cache_create("ipsec_selectors", 696 sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL, 697 NULL, NULL, NULL, 0); 698 ipsec_pol_cache = kmem_cache_create("ipsec_policy", 699 sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL, 700 NULL, NULL, NULL, 0); 701 ipsec_info_cache = kmem_cache_create("ipsec_info", 702 sizeof (ipsec_info_t), _POINTER_ALIGNMENT, NULL, NULL, 703 NULL, NULL, NULL, 0); 704 705 /* 706 * We want to be informed each time a stack is created or 707 * destroyed in the kernel, so we can maintain the 708 * set of ipsec_stack_t's. 709 */ 710 netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini); 711 } 712 713 /* 714 * Sort algorithm lists. 715 * 716 * I may need to split this based on 717 * authentication/encryption, and I may wish to have an administrator 718 * configure this list. Hold on to some NDD variables... 719 * 720 * XXX For now, sort on minimum key size (GAG!). While minimum key size is 721 * not the ideal metric, it's the only quantifiable measure available. 722 * We need a better metric for sorting algorithms by preference. 723 */ 724 static void 725 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns) 726 { 727 ipsec_stack_t *ipss = ns->netstack_ipsec; 728 ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid]; 729 uint8_t holder, swap; 730 uint_t i; 731 uint_t count = ipss->ipsec_nalgs[at]; 732 ASSERT(ai != NULL); 733 ASSERT(algid == ai->alg_id); 734 735 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 736 737 holder = algid; 738 739 for (i = 0; i < count - 1; i++) { 740 ipsec_alginfo_t *alt; 741 742 alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]]; 743 /* 744 * If you want to give precedence to newly added algs, 745 * add the = in the > comparison. 746 */ 747 if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) { 748 /* Swap sortlist[i] and holder. */ 749 swap = ipss->ipsec_sortlist[at][i]; 750 ipss->ipsec_sortlist[at][i] = holder; 751 holder = swap; 752 ai = alt; 753 } /* Else just continue. */ 754 } 755 756 /* Store holder in last slot. */ 757 ipss->ipsec_sortlist[at][i] = holder; 758 } 759 760 /* 761 * Remove an algorithm from a sorted algorithm list. 762 * This should be considerably easier, even with complex sorting. 763 */ 764 static void 765 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns) 766 { 767 boolean_t copyback = B_FALSE; 768 int i; 769 ipsec_stack_t *ipss = ns->netstack_ipsec; 770 int newcount = ipss->ipsec_nalgs[at]; 771 772 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 773 774 for (i = 0; i <= newcount; i++) { 775 if (copyback) { 776 ipss->ipsec_sortlist[at][i-1] = 777 ipss->ipsec_sortlist[at][i]; 778 } else if (ipss->ipsec_sortlist[at][i] == algid) { 779 copyback = B_TRUE; 780 } 781 } 782 } 783 784 /* 785 * Add the specified algorithm to the algorithm tables. 786 * Must be called while holding the algorithm table writer lock. 787 */ 788 void 789 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns) 790 { 791 ipsec_stack_t *ipss = ns->netstack_ipsec; 792 793 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 794 795 ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL); 796 ipsec_alg_fix_min_max(alg, algtype, ns); 797 ipss->ipsec_alglists[algtype][alg->alg_id] = alg; 798 799 ipss->ipsec_nalgs[algtype]++; 800 alg_insert_sortlist(algtype, alg->alg_id, ns); 801 } 802 803 /* 804 * Remove the specified algorithm from the algorithm tables. 805 * Must be called while holding the algorithm table writer lock. 806 */ 807 void 808 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns) 809 { 810 ipsec_stack_t *ipss = ns->netstack_ipsec; 811 812 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 813 814 ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL); 815 ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]); 816 ipss->ipsec_alglists[algtype][algid] = NULL; 817 818 ipss->ipsec_nalgs[algtype]--; 819 alg_remove_sortlist(algtype, algid, ns); 820 } 821 822 /* 823 * Hooks for spdsock to get a grip on system policy. 824 */ 825 826 ipsec_policy_head_t * 827 ipsec_system_policy(netstack_t *ns) 828 { 829 ipsec_stack_t *ipss = ns->netstack_ipsec; 830 ipsec_policy_head_t *h = &ipss->ipsec_system_policy; 831 832 IPPH_REFHOLD(h); 833 return (h); 834 } 835 836 ipsec_policy_head_t * 837 ipsec_inactive_policy(netstack_t *ns) 838 { 839 ipsec_stack_t *ipss = ns->netstack_ipsec; 840 ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy; 841 842 IPPH_REFHOLD(h); 843 return (h); 844 } 845 846 /* 847 * Lock inactive policy, then active policy, then exchange policy root 848 * pointers. 849 */ 850 void 851 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive, 852 netstack_t *ns) 853 { 854 int af, dir; 855 avl_tree_t r1, r2; 856 857 rw_enter(&inactive->iph_lock, RW_WRITER); 858 rw_enter(&active->iph_lock, RW_WRITER); 859 860 r1 = active->iph_rulebyid; 861 r2 = inactive->iph_rulebyid; 862 active->iph_rulebyid = r2; 863 inactive->iph_rulebyid = r1; 864 865 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 866 ipsec_policy_hash_t *h1, *h2; 867 868 h1 = active->iph_root[dir].ipr_hash; 869 h2 = inactive->iph_root[dir].ipr_hash; 870 active->iph_root[dir].ipr_hash = h2; 871 inactive->iph_root[dir].ipr_hash = h1; 872 873 for (af = 0; af < IPSEC_NAF; af++) { 874 ipsec_policy_t *t1, *t2; 875 876 t1 = active->iph_root[dir].ipr_nonhash[af]; 877 t2 = inactive->iph_root[dir].ipr_nonhash[af]; 878 active->iph_root[dir].ipr_nonhash[af] = t2; 879 inactive->iph_root[dir].ipr_nonhash[af] = t1; 880 if (t1 != NULL) { 881 t1->ipsp_hash.hash_pp = 882 &(inactive->iph_root[dir].ipr_nonhash[af]); 883 } 884 if (t2 != NULL) { 885 t2->ipsp_hash.hash_pp = 886 &(active->iph_root[dir].ipr_nonhash[af]); 887 } 888 889 } 890 } 891 active->iph_gen++; 892 inactive->iph_gen++; 893 ipsec_update_present_flags(ns->netstack_ipsec); 894 rw_exit(&active->iph_lock); 895 rw_exit(&inactive->iph_lock); 896 } 897 898 /* 899 * Swap global policy primary/secondary. 900 */ 901 void 902 ipsec_swap_global_policy(netstack_t *ns) 903 { 904 ipsec_stack_t *ipss = ns->netstack_ipsec; 905 906 ipsec_swap_policy(&ipss->ipsec_system_policy, 907 &ipss->ipsec_inactive_policy, ns); 908 } 909 910 /* 911 * Clone one policy rule.. 912 */ 913 static ipsec_policy_t * 914 ipsec_copy_policy(const ipsec_policy_t *src) 915 { 916 ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP); 917 918 if (dst == NULL) 919 return (NULL); 920 921 /* 922 * Adjust refcounts of cloned state. 923 */ 924 IPACT_REFHOLD(src->ipsp_act); 925 src->ipsp_sel->ipsl_refs++; 926 927 HASH_NULL(dst, ipsp_hash); 928 dst->ipsp_refs = 1; 929 dst->ipsp_sel = src->ipsp_sel; 930 dst->ipsp_act = src->ipsp_act; 931 dst->ipsp_prio = src->ipsp_prio; 932 dst->ipsp_index = src->ipsp_index; 933 934 return (dst); 935 } 936 937 void 938 ipsec_insert_always(avl_tree_t *tree, void *new_node) 939 { 940 void *node; 941 avl_index_t where; 942 943 node = avl_find(tree, new_node, &where); 944 ASSERT(node == NULL); 945 avl_insert(tree, new_node, where); 946 } 947 948 949 static int 950 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src, 951 ipsec_policy_t **dstp) 952 { 953 for (; src != NULL; src = src->ipsp_hash.hash_next) { 954 ipsec_policy_t *dst = ipsec_copy_policy(src); 955 if (dst == NULL) 956 return (ENOMEM); 957 958 HASHLIST_INSERT(dst, ipsp_hash, *dstp); 959 ipsec_insert_always(&dph->iph_rulebyid, dst); 960 } 961 return (0); 962 } 963 964 965 966 /* 967 * Make one policy head look exactly like another. 968 * 969 * As with ipsec_swap_policy, we lock the destination policy head first, then 970 * the source policy head. Note that we only need to read-lock the source 971 * policy head as we are not changing it. 972 */ 973 int 974 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph, 975 netstack_t *ns) 976 { 977 int af, dir, chain, nchains; 978 979 rw_enter(&dph->iph_lock, RW_WRITER); 980 981 ipsec_polhead_flush(dph, ns); 982 983 rw_enter(&sph->iph_lock, RW_READER); 984 985 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 986 ipsec_policy_root_t *dpr = &dph->iph_root[dir]; 987 ipsec_policy_root_t *spr = &sph->iph_root[dir]; 988 nchains = dpr->ipr_nchains; 989 990 ASSERT(dpr->ipr_nchains == spr->ipr_nchains); 991 992 for (af = 0; af < IPSEC_NAF; af++) { 993 if (ipsec_copy_chain(dph, spr->ipr_nonhash[af], 994 &dpr->ipr_nonhash[af])) 995 goto abort_copy; 996 } 997 998 for (chain = 0; chain < nchains; chain++) { 999 if (ipsec_copy_chain(dph, 1000 spr->ipr_hash[chain].hash_head, 1001 &dpr->ipr_hash[chain].hash_head)) 1002 goto abort_copy; 1003 } 1004 } 1005 1006 dph->iph_gen++; 1007 1008 rw_exit(&sph->iph_lock); 1009 rw_exit(&dph->iph_lock); 1010 return (0); 1011 1012 abort_copy: 1013 ipsec_polhead_flush(dph, ns); 1014 rw_exit(&sph->iph_lock); 1015 rw_exit(&dph->iph_lock); 1016 return (ENOMEM); 1017 } 1018 1019 /* 1020 * Clone currently active policy to the inactive policy list. 1021 */ 1022 int 1023 ipsec_clone_system_policy(netstack_t *ns) 1024 { 1025 ipsec_stack_t *ipss = ns->netstack_ipsec; 1026 1027 return (ipsec_copy_polhead(&ipss->ipsec_system_policy, 1028 &ipss->ipsec_inactive_policy, ns)); 1029 } 1030 1031 /* 1032 * Generic "do we have IPvN policy" answer. 1033 */ 1034 boolean_t 1035 iph_ipvN(ipsec_policy_head_t *iph, boolean_t v6) 1036 { 1037 int i, hval; 1038 uint32_t valbit; 1039 ipsec_policy_root_t *ipr; 1040 ipsec_policy_t *ipp; 1041 1042 if (v6) { 1043 valbit = IPSL_IPV6; 1044 hval = IPSEC_AF_V6; 1045 } else { 1046 valbit = IPSL_IPV4; 1047 hval = IPSEC_AF_V4; 1048 } 1049 1050 ASSERT(RW_LOCK_HELD(&iph->iph_lock)); 1051 for (ipr = iph->iph_root; ipr < &(iph->iph_root[IPSEC_NTYPES]); ipr++) { 1052 if (ipr->ipr_nonhash[hval] != NULL) 1053 return (B_TRUE); 1054 for (i = 0; i < ipr->ipr_nchains; i++) { 1055 for (ipp = ipr->ipr_hash[i].hash_head; ipp != NULL; 1056 ipp = ipp->ipsp_hash.hash_next) { 1057 if (ipp->ipsp_sel->ipsl_key.ipsl_valid & valbit) 1058 return (B_TRUE); 1059 } 1060 } 1061 } 1062 1063 return (B_FALSE); 1064 } 1065 1066 /* 1067 * Extract the string from ipsec_policy_failure_msgs[type] and 1068 * log it. 1069 * 1070 */ 1071 void 1072 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h, 1073 boolean_t secure, netstack_t *ns) 1074 { 1075 char sbuf[INET6_ADDRSTRLEN]; 1076 char dbuf[INET6_ADDRSTRLEN]; 1077 char *s; 1078 char *d; 1079 ipsec_stack_t *ipss = ns->netstack_ipsec; 1080 1081 ASSERT((ipha == NULL && ip6h != NULL) || 1082 (ip6h == NULL && ipha != NULL)); 1083 1084 if (ipha != NULL) { 1085 s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf)); 1086 d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf)); 1087 } else { 1088 s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf)); 1089 d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf)); 1090 1091 } 1092 1093 /* Always bump the policy failure counter. */ 1094 ipss->ipsec_policy_failure_count[type]++; 1095 1096 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 1097 ipsec_policy_failure_msgs[type], func_name, 1098 (secure ? "secure" : "not secure"), s, d); 1099 } 1100 1101 /* 1102 * Rate-limiting front-end to strlog() for AH and ESP. Uses the ndd variables 1103 * in /dev/ip and the same rate-limiting clock so that there's a single 1104 * knob to turn to throttle the rate of messages. 1105 */ 1106 void 1107 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl, 1108 char *fmt, ...) 1109 { 1110 va_list adx; 1111 hrtime_t current = gethrtime(); 1112 ip_stack_t *ipst = ns->netstack_ip; 1113 ipsec_stack_t *ipss = ns->netstack_ipsec; 1114 1115 sl |= SL_CONSOLE; 1116 /* 1117 * Throttle logging to stop syslog from being swamped. If variable 1118 * 'ipsec_policy_log_interval' is zero, don't log any messages at 1119 * all, otherwise log only one message every 'ipsec_policy_log_interval' 1120 * msec. Convert interval (in msec) to hrtime (in nsec). 1121 */ 1122 1123 if (ipst->ips_ipsec_policy_log_interval) { 1124 if (ipss->ipsec_policy_failure_last + 1125 ((hrtime_t)ipst->ips_ipsec_policy_log_interval * 1126 (hrtime_t)1000000) <= current) { 1127 va_start(adx, fmt); 1128 (void) vstrlog(mid, sid, level, sl, fmt, adx); 1129 va_end(adx); 1130 ipss->ipsec_policy_failure_last = current; 1131 } 1132 } 1133 } 1134 1135 void 1136 ipsec_config_flush(netstack_t *ns) 1137 { 1138 ipsec_stack_t *ipss = ns->netstack_ipsec; 1139 1140 rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER); 1141 ipsec_polhead_flush(&ipss->ipsec_system_policy, ns); 1142 ipss->ipsec_next_policy_index = 1; 1143 rw_exit(&ipss->ipsec_system_policy.iph_lock); 1144 ipsec_action_reclaim_stack(ns); 1145 } 1146 1147 /* 1148 * Clip a policy's min/max keybits vs. the capabilities of the 1149 * algorithm. 1150 */ 1151 static void 1152 act_alg_adjust(uint_t algtype, uint_t algid, 1153 uint16_t *minbits, uint16_t *maxbits, netstack_t *ns) 1154 { 1155 ipsec_stack_t *ipss = ns->netstack_ipsec; 1156 ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid]; 1157 1158 if (algp != NULL) { 1159 /* 1160 * If passed-in minbits is zero, we assume the caller trusts 1161 * us with setting the minimum key size. We pick the 1162 * algorithms DEFAULT key size for the minimum in this case. 1163 */ 1164 if (*minbits == 0) { 1165 *minbits = algp->alg_default_bits; 1166 ASSERT(*minbits >= algp->alg_minbits); 1167 } else { 1168 *minbits = MAX(MIN(*minbits, algp->alg_maxbits), 1169 algp->alg_minbits); 1170 } 1171 if (*maxbits == 0) 1172 *maxbits = algp->alg_maxbits; 1173 else 1174 *maxbits = MIN(MAX(*maxbits, algp->alg_minbits), 1175 algp->alg_maxbits); 1176 ASSERT(*minbits <= *maxbits); 1177 } else { 1178 *minbits = 0; 1179 *maxbits = 0; 1180 } 1181 } 1182 1183 /* 1184 * Check an action's requested algorithms against the algorithms currently 1185 * loaded in the system. 1186 */ 1187 boolean_t 1188 ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns) 1189 { 1190 ipsec_prot_t *ipp; 1191 ipsec_stack_t *ipss = ns->netstack_ipsec; 1192 1193 ipp = &act->ipa_apply; 1194 1195 if (ipp->ipp_use_ah && 1196 ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) { 1197 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG; 1198 return (B_FALSE); 1199 } 1200 if (ipp->ipp_use_espa && 1201 ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] == 1202 NULL) { 1203 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG; 1204 return (B_FALSE); 1205 } 1206 if (ipp->ipp_use_esp && 1207 ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) { 1208 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG; 1209 return (B_FALSE); 1210 } 1211 1212 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg, 1213 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns); 1214 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg, 1215 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns); 1216 act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg, 1217 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns); 1218 1219 if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) { 1220 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE; 1221 return (B_FALSE); 1222 } 1223 if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) { 1224 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE; 1225 return (B_FALSE); 1226 } 1227 if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) { 1228 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE; 1229 return (B_FALSE); 1230 } 1231 /* TODO: sanity check lifetimes */ 1232 return (B_TRUE); 1233 } 1234 1235 /* 1236 * Set up a single action during wildcard expansion.. 1237 */ 1238 static void 1239 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act, 1240 uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns) 1241 { 1242 ipsec_prot_t *ipp; 1243 1244 *outact = *act; 1245 ipp = &outact->ipa_apply; 1246 ipp->ipp_auth_alg = (uint8_t)auth_alg; 1247 ipp->ipp_encr_alg = (uint8_t)encr_alg; 1248 ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg; 1249 1250 act_alg_adjust(IPSEC_ALG_AUTH, auth_alg, 1251 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns); 1252 act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg, 1253 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns); 1254 act_alg_adjust(IPSEC_ALG_ENCR, encr_alg, 1255 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns); 1256 } 1257 1258 /* 1259 * combinatoric expansion time: expand a wildcarded action into an 1260 * array of wildcarded actions; we return the exploded action list, 1261 * and return a count in *nact (output only). 1262 */ 1263 static ipsec_act_t * 1264 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns) 1265 { 1266 boolean_t use_ah, use_esp, use_espa; 1267 boolean_t wild_auth, wild_encr, wild_eauth; 1268 uint_t auth_alg, auth_idx, auth_min, auth_max; 1269 uint_t eauth_alg, eauth_idx, eauth_min, eauth_max; 1270 uint_t encr_alg, encr_idx, encr_min, encr_max; 1271 uint_t action_count, ai; 1272 ipsec_act_t *outact; 1273 ipsec_stack_t *ipss = ns->netstack_ipsec; 1274 1275 if (act->ipa_type != IPSEC_ACT_APPLY) { 1276 outact = kmem_alloc(sizeof (*act), KM_NOSLEEP); 1277 *nact = 1; 1278 if (outact != NULL) 1279 bcopy(act, outact, sizeof (*act)); 1280 return (outact); 1281 } 1282 /* 1283 * compute the combinatoric explosion.. 1284 * 1285 * we assume a request for encr if esp_req is PREF_REQUIRED 1286 * we assume a request for ah auth if ah_req is PREF_REQUIRED. 1287 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED 1288 */ 1289 1290 use_ah = act->ipa_apply.ipp_use_ah; 1291 use_esp = act->ipa_apply.ipp_use_esp; 1292 use_espa = act->ipa_apply.ipp_use_espa; 1293 auth_alg = act->ipa_apply.ipp_auth_alg; 1294 eauth_alg = act->ipa_apply.ipp_esp_auth_alg; 1295 encr_alg = act->ipa_apply.ipp_encr_alg; 1296 1297 wild_auth = use_ah && (auth_alg == 0); 1298 wild_eauth = use_espa && (eauth_alg == 0); 1299 wild_encr = use_esp && (encr_alg == 0); 1300 1301 action_count = 1; 1302 auth_min = auth_max = auth_alg; 1303 eauth_min = eauth_max = eauth_alg; 1304 encr_min = encr_max = encr_alg; 1305 1306 /* 1307 * set up for explosion.. for each dimension, expand output 1308 * size by the explosion factor. 1309 * 1310 * Don't include the "any" algorithms, if defined, as no 1311 * kernel policies should be set for these algorithms. 1312 */ 1313 1314 #define SET_EXP_MINMAX(type, wild, alg, min, max, ipss) \ 1315 if (wild) { \ 1316 int nalgs = ipss->ipsec_nalgs[type]; \ 1317 if (ipss->ipsec_alglists[type][alg] != NULL) \ 1318 nalgs--; \ 1319 action_count *= nalgs; \ 1320 min = 0; \ 1321 max = ipss->ipsec_nalgs[type] - 1; \ 1322 } 1323 1324 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE, 1325 auth_min, auth_max, ipss); 1326 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE, 1327 eauth_min, eauth_max, ipss); 1328 SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE, 1329 encr_min, encr_max, ipss); 1330 1331 #undef SET_EXP_MINMAX 1332 1333 /* 1334 * ok, allocate the whole mess.. 1335 */ 1336 1337 outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP); 1338 if (outact == NULL) 1339 return (NULL); 1340 1341 /* 1342 * Now compute all combinations. Note that non-wildcarded 1343 * dimensions just get a single value from auth_min, while 1344 * wildcarded dimensions indirect through the sortlist. 1345 * 1346 * We do encryption outermost since, at this time, there's 1347 * greater difference in security and performance between 1348 * encryption algorithms vs. authentication algorithms. 1349 */ 1350 1351 ai = 0; 1352 1353 #define WHICH_ALG(type, wild, idx, ipss) \ 1354 ((wild)?(ipss->ipsec_sortlist[type][idx]):(idx)) 1355 1356 for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) { 1357 encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss); 1358 if (wild_encr && encr_alg == SADB_EALG_NONE) 1359 continue; 1360 for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) { 1361 auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth, 1362 auth_idx, ipss); 1363 if (wild_auth && auth_alg == SADB_AALG_NONE) 1364 continue; 1365 for (eauth_idx = eauth_min; eauth_idx <= eauth_max; 1366 eauth_idx++) { 1367 eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH, 1368 wild_eauth, eauth_idx, ipss); 1369 if (wild_eauth && eauth_alg == SADB_AALG_NONE) 1370 continue; 1371 1372 ipsec_setup_act(&outact[ai], act, 1373 auth_alg, encr_alg, eauth_alg, ns); 1374 ai++; 1375 } 1376 } 1377 } 1378 1379 #undef WHICH_ALG 1380 1381 ASSERT(ai == action_count); 1382 *nact = action_count; 1383 return (outact); 1384 } 1385 1386 /* 1387 * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t. 1388 */ 1389 static void 1390 ipsec_prot_from_req(ipsec_req_t *req, ipsec_prot_t *ipp) 1391 { 1392 bzero(ipp, sizeof (*ipp)); 1393 /* 1394 * ipp_use_* are bitfields. Look at "!!" in the following as a 1395 * "boolean canonicalization" operator. 1396 */ 1397 ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED); 1398 ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED); 1399 ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg); 1400 ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED); 1401 ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) & 1402 IPSEC_PREF_UNIQUE); 1403 ipp->ipp_encr_alg = req->ipsr_esp_alg; 1404 /* 1405 * SADB_AALG_ANY is a placeholder to distinguish "any" from 1406 * "none" above. If auth is required, as determined above, 1407 * SADB_AALG_ANY becomes 0, which is the representation 1408 * of "any" and "none" in PF_KEY v2. 1409 */ 1410 ipp->ipp_auth_alg = (req->ipsr_auth_alg != SADB_AALG_ANY) ? 1411 req->ipsr_auth_alg : 0; 1412 ipp->ipp_esp_auth_alg = (req->ipsr_esp_auth_alg != SADB_AALG_ANY) ? 1413 req->ipsr_esp_auth_alg : 0; 1414 } 1415 1416 /* 1417 * Extract a new-style action from a request. 1418 */ 1419 void 1420 ipsec_actvec_from_req(ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp, 1421 netstack_t *ns) 1422 { 1423 struct ipsec_act act; 1424 1425 bzero(&act, sizeof (act)); 1426 if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) && 1427 (req->ipsr_esp_req & IPSEC_PREF_NEVER)) { 1428 act.ipa_type = IPSEC_ACT_BYPASS; 1429 } else { 1430 act.ipa_type = IPSEC_ACT_APPLY; 1431 ipsec_prot_from_req(req, &act.ipa_apply); 1432 } 1433 *actp = ipsec_act_wildcard_expand(&act, nactp, ns); 1434 } 1435 1436 /* 1437 * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat). 1438 * We assume caller has already zero'ed *req for us. 1439 */ 1440 static int 1441 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req) 1442 { 1443 req->ipsr_esp_alg = ipp->ipp_encr_alg; 1444 req->ipsr_auth_alg = ipp->ipp_auth_alg; 1445 req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg; 1446 1447 if (ipp->ipp_use_unique) { 1448 req->ipsr_ah_req |= IPSEC_PREF_UNIQUE; 1449 req->ipsr_esp_req |= IPSEC_PREF_UNIQUE; 1450 } 1451 if (ipp->ipp_use_se) 1452 req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED; 1453 if (ipp->ipp_use_ah) 1454 req->ipsr_ah_req |= IPSEC_PREF_REQUIRED; 1455 if (ipp->ipp_use_esp) 1456 req->ipsr_esp_req |= IPSEC_PREF_REQUIRED; 1457 return (sizeof (*req)); 1458 } 1459 1460 /* 1461 * Convert a new-style action back to an ipsec_req_t (more backwards compat). 1462 * We assume caller has already zero'ed *req for us. 1463 */ 1464 static int 1465 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req) 1466 { 1467 switch (ap->ipa_act.ipa_type) { 1468 case IPSEC_ACT_BYPASS: 1469 req->ipsr_ah_req = IPSEC_PREF_NEVER; 1470 req->ipsr_esp_req = IPSEC_PREF_NEVER; 1471 return (sizeof (*req)); 1472 case IPSEC_ACT_APPLY: 1473 return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req)); 1474 } 1475 return (sizeof (*req)); 1476 } 1477 1478 /* 1479 * Convert a new-style action back to an ipsec_req_t (more backwards compat). 1480 * We assume caller has already zero'ed *req for us. 1481 */ 1482 int 1483 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af) 1484 { 1485 ipsec_policy_t *p; 1486 1487 /* 1488 * FULL-PERSOCK: consult hash table, too? 1489 */ 1490 for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af]; 1491 p != NULL; 1492 p = p->ipsp_hash.hash_next) { 1493 if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0) 1494 return (ipsec_req_from_act(p->ipsp_act, req)); 1495 } 1496 return (sizeof (*req)); 1497 } 1498 1499 /* 1500 * Based on per-socket or latched policy, convert to an appropriate 1501 * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can 1502 * be tail-called from ip. 1503 */ 1504 int 1505 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af) 1506 { 1507 ipsec_latch_t *ipl; 1508 int rv = sizeof (ipsec_req_t); 1509 1510 bzero(req, sizeof (*req)); 1511 1512 mutex_enter(&connp->conn_lock); 1513 ipl = connp->conn_latch; 1514 1515 /* 1516 * Find appropriate policy. First choice is latched action; 1517 * failing that, see latched policy; failing that, 1518 * look at configured policy. 1519 */ 1520 if (ipl != NULL) { 1521 if (ipl->ipl_in_action != NULL) { 1522 rv = ipsec_req_from_act(ipl->ipl_in_action, req); 1523 goto done; 1524 } 1525 if (ipl->ipl_in_policy != NULL) { 1526 rv = ipsec_req_from_act(ipl->ipl_in_policy->ipsp_act, 1527 req); 1528 goto done; 1529 } 1530 } 1531 if (connp->conn_policy != NULL) 1532 rv = ipsec_req_from_head(connp->conn_policy, req, af); 1533 done: 1534 mutex_exit(&connp->conn_lock); 1535 return (rv); 1536 } 1537 1538 void 1539 ipsec_actvec_free(ipsec_act_t *act, uint_t nact) 1540 { 1541 kmem_free(act, nact * sizeof (*act)); 1542 } 1543 1544 /* 1545 * When outbound policy is not cached, look it up the hard way and attach 1546 * an ipsec_out_t to the packet.. 1547 */ 1548 static mblk_t * 1549 ipsec_attach_global_policy(mblk_t **mp, conn_t *connp, ipsec_selector_t *sel, 1550 netstack_t *ns) 1551 { 1552 ipsec_policy_t *p; 1553 1554 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel, ns); 1555 1556 if (p == NULL) 1557 return (NULL); 1558 return (ipsec_attach_ipsec_out(mp, connp, p, sel->ips_protocol, ns)); 1559 } 1560 1561 /* 1562 * We have an ipsec_out already, but don't have cached policy; fill it in 1563 * with the right actions. 1564 */ 1565 static mblk_t * 1566 ipsec_apply_global_policy(mblk_t *ipsec_mp, conn_t *connp, 1567 ipsec_selector_t *sel, netstack_t *ns) 1568 { 1569 ipsec_out_t *io; 1570 ipsec_policy_t *p; 1571 1572 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 1573 ASSERT(ipsec_mp->b_cont->b_datap->db_type == M_DATA); 1574 1575 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1576 1577 if (io->ipsec_out_policy == NULL) { 1578 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, io, sel, ns); 1579 io->ipsec_out_policy = p; 1580 } 1581 return (ipsec_mp); 1582 } 1583 1584 1585 /* 1586 * Consumes a reference to ipsp. 1587 */ 1588 static mblk_t * 1589 ipsec_check_loopback_policy(mblk_t *first_mp, boolean_t mctl_present, 1590 ipsec_policy_t *ipsp) 1591 { 1592 mblk_t *ipsec_mp; 1593 ipsec_in_t *ii; 1594 netstack_t *ns; 1595 1596 if (!mctl_present) 1597 return (first_mp); 1598 1599 ipsec_mp = first_mp; 1600 1601 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 1602 ns = ii->ipsec_in_ns; 1603 ASSERT(ii->ipsec_in_loopback); 1604 IPPOL_REFRELE(ipsp, ns); 1605 1606 /* 1607 * We should do an actual policy check here. Revisit this 1608 * when we revisit the IPsec API. (And pass a conn_t in when we 1609 * get there.) 1610 */ 1611 1612 return (first_mp); 1613 } 1614 1615 /* 1616 * Check that packet's inbound ports & proto match the selectors 1617 * expected by the SAs it traversed on the way in. 1618 */ 1619 static boolean_t 1620 ipsec_check_ipsecin_unique(ipsec_in_t *ii, const char **reason, 1621 kstat_named_t **counter, uint64_t pkt_unique) 1622 { 1623 uint64_t ah_mask, esp_mask; 1624 ipsa_t *ah_assoc; 1625 ipsa_t *esp_assoc; 1626 netstack_t *ns = ii->ipsec_in_ns; 1627 ipsec_stack_t *ipss = ns->netstack_ipsec; 1628 1629 ASSERT(ii->ipsec_in_secure); 1630 ASSERT(!ii->ipsec_in_loopback); 1631 1632 ah_assoc = ii->ipsec_in_ah_sa; 1633 esp_assoc = ii->ipsec_in_esp_sa; 1634 ASSERT((ah_assoc != NULL) || (esp_assoc != NULL)); 1635 1636 ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0; 1637 esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0; 1638 1639 if ((ah_mask == 0) && (esp_mask == 0)) 1640 return (B_TRUE); 1641 1642 /* 1643 * The pkt_unique check will also check for tunnel mode on the SA 1644 * vs. the tunneled_packet boolean. "Be liberal in what you receive" 1645 * should not apply in this case. ;) 1646 */ 1647 1648 if (ah_mask != 0 && 1649 ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) { 1650 *reason = "AH inner header mismatch"; 1651 *counter = DROPPER(ipss, ipds_spd_ah_innermismatch); 1652 return (B_FALSE); 1653 } 1654 if (esp_mask != 0 && 1655 esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) { 1656 *reason = "ESP inner header mismatch"; 1657 *counter = DROPPER(ipss, ipds_spd_esp_innermismatch); 1658 return (B_FALSE); 1659 } 1660 return (B_TRUE); 1661 } 1662 1663 static boolean_t 1664 ipsec_check_ipsecin_action(ipsec_in_t *ii, mblk_t *mp, ipsec_action_t *ap, 1665 ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter) 1666 { 1667 boolean_t ret = B_TRUE; 1668 ipsec_prot_t *ipp; 1669 ipsa_t *ah_assoc; 1670 ipsa_t *esp_assoc; 1671 boolean_t decaps; 1672 netstack_t *ns = ii->ipsec_in_ns; 1673 ipsec_stack_t *ipss = ns->netstack_ipsec; 1674 1675 ASSERT((ipha == NULL && ip6h != NULL) || 1676 (ip6h == NULL && ipha != NULL)); 1677 1678 if (ii->ipsec_in_loopback) { 1679 /* 1680 * Besides accepting pointer-equivalent actions, we also 1681 * accept any ICMP errors we generated for ourselves, 1682 * regardless of policy. If we do not wish to make this 1683 * assumption in the future, check here, and where 1684 * icmp_loopback is initialized in ip.c and ip6.c. (Look for 1685 * ipsec_out_icmp_loopback.) 1686 */ 1687 if (ap == ii->ipsec_in_action || ii->ipsec_in_icmp_loopback) 1688 return (B_TRUE); 1689 1690 /* Deep compare necessary here?? */ 1691 *counter = DROPPER(ipss, ipds_spd_loopback_mismatch); 1692 *reason = "loopback policy mismatch"; 1693 return (B_FALSE); 1694 } 1695 ASSERT(!ii->ipsec_in_icmp_loopback); 1696 1697 ah_assoc = ii->ipsec_in_ah_sa; 1698 esp_assoc = ii->ipsec_in_esp_sa; 1699 1700 decaps = ii->ipsec_in_decaps; 1701 1702 switch (ap->ipa_act.ipa_type) { 1703 case IPSEC_ACT_DISCARD: 1704 case IPSEC_ACT_REJECT: 1705 /* Should "fail hard" */ 1706 *counter = DROPPER(ipss, ipds_spd_explicit); 1707 *reason = "blocked by policy"; 1708 return (B_FALSE); 1709 1710 case IPSEC_ACT_BYPASS: 1711 case IPSEC_ACT_CLEAR: 1712 *counter = DROPPER(ipss, ipds_spd_got_secure); 1713 *reason = "expected clear, got protected"; 1714 return (B_FALSE); 1715 1716 case IPSEC_ACT_APPLY: 1717 ipp = &ap->ipa_act.ipa_apply; 1718 /* 1719 * As of now we do the simple checks of whether 1720 * the datagram has gone through the required IPSEC 1721 * protocol constraints or not. We might have more 1722 * in the future like sensitive levels, key bits, etc. 1723 * If it fails the constraints, check whether we would 1724 * have accepted this if it had come in clear. 1725 */ 1726 if (ipp->ipp_use_ah) { 1727 if (ah_assoc == NULL) { 1728 ret = ipsec_inbound_accept_clear(mp, ipha, 1729 ip6h); 1730 *counter = DROPPER(ipss, ipds_spd_got_clear); 1731 *reason = "unprotected not accepted"; 1732 break; 1733 } 1734 ASSERT(ah_assoc != NULL); 1735 ASSERT(ipp->ipp_auth_alg != 0); 1736 1737 if (ah_assoc->ipsa_auth_alg != 1738 ipp->ipp_auth_alg) { 1739 *counter = DROPPER(ipss, ipds_spd_bad_ahalg); 1740 *reason = "unacceptable ah alg"; 1741 ret = B_FALSE; 1742 break; 1743 } 1744 } else if (ah_assoc != NULL) { 1745 /* 1746 * Don't allow this. Check IPSEC NOTE above 1747 * ip_fanout_proto(). 1748 */ 1749 *counter = DROPPER(ipss, ipds_spd_got_ah); 1750 *reason = "unexpected AH"; 1751 ret = B_FALSE; 1752 break; 1753 } 1754 if (ipp->ipp_use_esp) { 1755 if (esp_assoc == NULL) { 1756 ret = ipsec_inbound_accept_clear(mp, ipha, 1757 ip6h); 1758 *counter = DROPPER(ipss, ipds_spd_got_clear); 1759 *reason = "unprotected not accepted"; 1760 break; 1761 } 1762 ASSERT(esp_assoc != NULL); 1763 ASSERT(ipp->ipp_encr_alg != 0); 1764 1765 if (esp_assoc->ipsa_encr_alg != 1766 ipp->ipp_encr_alg) { 1767 *counter = DROPPER(ipss, ipds_spd_bad_espealg); 1768 *reason = "unacceptable esp alg"; 1769 ret = B_FALSE; 1770 break; 1771 } 1772 /* 1773 * If the client does not need authentication, 1774 * we don't verify the alogrithm. 1775 */ 1776 if (ipp->ipp_use_espa) { 1777 if (esp_assoc->ipsa_auth_alg != 1778 ipp->ipp_esp_auth_alg) { 1779 *counter = DROPPER(ipss, 1780 ipds_spd_bad_espaalg); 1781 *reason = "unacceptable esp auth alg"; 1782 ret = B_FALSE; 1783 break; 1784 } 1785 } 1786 } else if (esp_assoc != NULL) { 1787 /* 1788 * Don't allow this. Check IPSEC NOTE above 1789 * ip_fanout_proto(). 1790 */ 1791 *counter = DROPPER(ipss, ipds_spd_got_esp); 1792 *reason = "unexpected ESP"; 1793 ret = B_FALSE; 1794 break; 1795 } 1796 if (ipp->ipp_use_se) { 1797 if (!decaps) { 1798 ret = ipsec_inbound_accept_clear(mp, ipha, 1799 ip6h); 1800 if (!ret) { 1801 /* XXX mutant? */ 1802 *counter = DROPPER(ipss, 1803 ipds_spd_bad_selfencap); 1804 *reason = "self encap not found"; 1805 break; 1806 } 1807 } 1808 } else if (decaps) { 1809 /* 1810 * XXX If the packet comes in tunneled and the 1811 * recipient does not expect it to be tunneled, it 1812 * is okay. But we drop to be consistent with the 1813 * other cases. 1814 */ 1815 *counter = DROPPER(ipss, ipds_spd_got_selfencap); 1816 *reason = "unexpected self encap"; 1817 ret = B_FALSE; 1818 break; 1819 } 1820 if (ii->ipsec_in_action != NULL) { 1821 /* 1822 * This can happen if we do a double policy-check on 1823 * a packet 1824 * XXX XXX should fix this case! 1825 */ 1826 IPACT_REFRELE(ii->ipsec_in_action); 1827 } 1828 ASSERT(ii->ipsec_in_action == NULL); 1829 IPACT_REFHOLD(ap); 1830 ii->ipsec_in_action = ap; 1831 break; /* from switch */ 1832 } 1833 return (ret); 1834 } 1835 1836 static boolean_t 1837 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa) 1838 { 1839 ASSERT(ipl->ipl_ids_latched == B_TRUE); 1840 return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) && 1841 ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid); 1842 } 1843 1844 /* 1845 * Takes a latched conn and an inbound packet and returns a unique_id suitable 1846 * for SA comparisons. Most of the time we will copy from the conn_t, but 1847 * there are cases when the conn_t is latched but it has wildcard selectors, 1848 * and then we need to fallback to scooping them out of the packet. 1849 * 1850 * Assume we'll never have 0 with a conn_t present, so use 0 as a failure. We 1851 * can get away with this because we only have non-zero ports/proto for 1852 * latched conn_ts. 1853 * 1854 * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough 1855 * to not be a nice macro. 1856 */ 1857 static uint64_t 1858 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h) 1859 { 1860 ipsec_selector_t sel; 1861 uint8_t ulp = connp->conn_ulp; 1862 1863 ASSERT(connp->conn_latch->ipl_in_policy != NULL); 1864 1865 if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) && 1866 (connp->conn_fport == 0 || connp->conn_lport == 0)) { 1867 /* Slow path - we gotta grab from the packet. */ 1868 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, 1869 SEL_NONE) != SELRET_SUCCESS) { 1870 /* Failure -> have caller free packet with ENOMEM. */ 1871 return (0); 1872 } 1873 return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port, 1874 sel.ips_protocol, 0)); 1875 } 1876 1877 #ifdef DEBUG_NOT_UNTIL_6478464 1878 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) == 1879 SELRET_SUCCESS) { 1880 ASSERT(sel.ips_local_port == connp->conn_lport); 1881 ASSERT(sel.ips_remote_port == connp->conn_fport); 1882 ASSERT(sel.ips_protocol == connp->conn_ulp); 1883 } 1884 ASSERT(connp->conn_ulp != 0); 1885 #endif 1886 1887 return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0)); 1888 } 1889 1890 /* 1891 * Called to check policy on a latched connection, both from this file 1892 * and from tcp.c 1893 */ 1894 boolean_t 1895 ipsec_check_ipsecin_latch(ipsec_in_t *ii, mblk_t *mp, ipsec_latch_t *ipl, 1896 ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter, 1897 conn_t *connp) 1898 { 1899 netstack_t *ns = ii->ipsec_in_ns; 1900 ipsec_stack_t *ipss = ns->netstack_ipsec; 1901 1902 ASSERT(ipl->ipl_ids_latched == B_TRUE); 1903 1904 if (!ii->ipsec_in_loopback) { 1905 /* 1906 * Over loopback, there aren't real security associations, 1907 * so there are neither identities nor "unique" values 1908 * for us to check the packet against. 1909 */ 1910 if ((ii->ipsec_in_ah_sa != NULL) && 1911 (!spd_match_inbound_ids(ipl, ii->ipsec_in_ah_sa))) { 1912 *counter = DROPPER(ipss, ipds_spd_ah_badid); 1913 *reason = "AH identity mismatch"; 1914 return (B_FALSE); 1915 } 1916 1917 if ((ii->ipsec_in_esp_sa != NULL) && 1918 (!spd_match_inbound_ids(ipl, ii->ipsec_in_esp_sa))) { 1919 *counter = DROPPER(ipss, ipds_spd_esp_badid); 1920 *reason = "ESP identity mismatch"; 1921 return (B_FALSE); 1922 } 1923 1924 /* 1925 * Can fudge pkt_unique from connp because we're latched. 1926 * In DEBUG kernels (see conn_to_unique()'s implementation), 1927 * verify this even if it REALLY slows things down. 1928 */ 1929 if (!ipsec_check_ipsecin_unique(ii, reason, counter, 1930 conn_to_unique(connp, mp, ipha, ip6h))) { 1931 return (B_FALSE); 1932 } 1933 } 1934 1935 return (ipsec_check_ipsecin_action(ii, mp, ipl->ipl_in_action, 1936 ipha, ip6h, reason, counter)); 1937 } 1938 1939 /* 1940 * Check to see whether this secured datagram meets the policy 1941 * constraints specified in ipsp. 1942 * 1943 * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy. 1944 * 1945 * Consumes a reference to ipsp. 1946 */ 1947 static mblk_t * 1948 ipsec_check_ipsecin_policy(mblk_t *first_mp, ipsec_policy_t *ipsp, 1949 ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, netstack_t *ns) 1950 { 1951 ipsec_in_t *ii; 1952 ipsec_action_t *ap; 1953 const char *reason = "no policy actions found"; 1954 mblk_t *data_mp, *ipsec_mp; 1955 ipsec_stack_t *ipss = ns->netstack_ipsec; 1956 ip_stack_t *ipst = ns->netstack_ip; 1957 kstat_named_t *counter; 1958 1959 counter = DROPPER(ipss, ipds_spd_got_secure); 1960 1961 data_mp = first_mp->b_cont; 1962 ipsec_mp = first_mp; 1963 1964 ASSERT(ipsp != NULL); 1965 1966 ASSERT((ipha == NULL && ip6h != NULL) || 1967 (ip6h == NULL && ipha != NULL)); 1968 1969 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 1970 1971 if (ii->ipsec_in_loopback) 1972 return (ipsec_check_loopback_policy(first_mp, B_TRUE, ipsp)); 1973 ASSERT(ii->ipsec_in_type == IPSEC_IN); 1974 ASSERT(ii->ipsec_in_secure); 1975 1976 if (ii->ipsec_in_action != NULL) { 1977 /* 1978 * this can happen if we do a double policy-check on a packet 1979 * Would be nice to be able to delete this test.. 1980 */ 1981 IPACT_REFRELE(ii->ipsec_in_action); 1982 } 1983 ASSERT(ii->ipsec_in_action == NULL); 1984 1985 if (!SA_IDS_MATCH(ii->ipsec_in_ah_sa, ii->ipsec_in_esp_sa)) { 1986 reason = "inbound AH and ESP identities differ"; 1987 counter = DROPPER(ipss, ipds_spd_ahesp_diffid); 1988 goto drop; 1989 } 1990 1991 if (!ipsec_check_ipsecin_unique(ii, &reason, &counter, pkt_unique)) 1992 goto drop; 1993 1994 /* 1995 * Ok, now loop through the possible actions and see if any 1996 * of them work for us. 1997 */ 1998 1999 for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) { 2000 if (ipsec_check_ipsecin_action(ii, data_mp, ap, 2001 ipha, ip6h, &reason, &counter)) { 2002 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2003 IPPOL_REFRELE(ipsp, ns); 2004 return (first_mp); 2005 } 2006 } 2007 drop: 2008 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 2009 "ipsec inbound policy mismatch: %s, packet dropped\n", 2010 reason); 2011 IPPOL_REFRELE(ipsp, ns); 2012 ASSERT(ii->ipsec_in_action == NULL); 2013 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2014 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 2015 &ipss->ipsec_spd_dropper); 2016 return (NULL); 2017 } 2018 2019 /* 2020 * sleazy prefix-length-based compare. 2021 * another inlining candidate.. 2022 */ 2023 boolean_t 2024 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p) 2025 { 2026 int offset = pfxlen>>3; 2027 int bitsleft = pfxlen & 7; 2028 uint8_t *addr2 = (uint8_t *)addr2p; 2029 2030 /* 2031 * and there was much evil.. 2032 * XXX should inline-expand the bcmp here and do this 32 bits 2033 * or 64 bits at a time.. 2034 */ 2035 return ((bcmp(addr1, addr2, offset) == 0) && 2036 ((bitsleft == 0) || 2037 (((addr1[offset] ^ addr2[offset]) & (0xff<<(8-bitsleft))) == 0))); 2038 } 2039 2040 static ipsec_policy_t * 2041 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain, 2042 ipsec_selector_t *sel, boolean_t is_icmp_inv_acq) 2043 { 2044 ipsec_selkey_t *isel; 2045 ipsec_policy_t *p; 2046 int bpri = best ? best->ipsp_prio : 0; 2047 2048 for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) { 2049 uint32_t valid; 2050 2051 if (p->ipsp_prio <= bpri) 2052 continue; 2053 isel = &p->ipsp_sel->ipsl_key; 2054 valid = isel->ipsl_valid; 2055 2056 if ((valid & IPSL_PROTOCOL) && 2057 (isel->ipsl_proto != sel->ips_protocol)) 2058 continue; 2059 2060 if ((valid & IPSL_REMOTE_ADDR) && 2061 !ip_addr_match((uint8_t *)&isel->ipsl_remote, 2062 isel->ipsl_remote_pfxlen, &sel->ips_remote_addr_v6)) 2063 continue; 2064 2065 if ((valid & IPSL_LOCAL_ADDR) && 2066 !ip_addr_match((uint8_t *)&isel->ipsl_local, 2067 isel->ipsl_local_pfxlen, &sel->ips_local_addr_v6)) 2068 continue; 2069 2070 if ((valid & IPSL_REMOTE_PORT) && 2071 isel->ipsl_rport != sel->ips_remote_port) 2072 continue; 2073 2074 if ((valid & IPSL_LOCAL_PORT) && 2075 isel->ipsl_lport != sel->ips_local_port) 2076 continue; 2077 2078 if (!is_icmp_inv_acq) { 2079 if ((valid & IPSL_ICMP_TYPE) && 2080 (isel->ipsl_icmp_type > sel->ips_icmp_type || 2081 isel->ipsl_icmp_type_end < sel->ips_icmp_type)) { 2082 continue; 2083 } 2084 2085 if ((valid & IPSL_ICMP_CODE) && 2086 (isel->ipsl_icmp_code > sel->ips_icmp_code || 2087 isel->ipsl_icmp_code_end < 2088 sel->ips_icmp_code)) { 2089 continue; 2090 } 2091 } else { 2092 /* 2093 * special case for icmp inverse acquire 2094 * we only want policies that aren't drop/pass 2095 */ 2096 if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY) 2097 continue; 2098 } 2099 2100 /* we matched all the packet-port-field selectors! */ 2101 best = p; 2102 bpri = p->ipsp_prio; 2103 } 2104 2105 return (best); 2106 } 2107 2108 /* 2109 * Try to find and return the best policy entry under a given policy 2110 * root for a given set of selectors; the first parameter "best" is 2111 * the current best policy so far. If "best" is non-null, we have a 2112 * reference to it. We return a reference to a policy; if that policy 2113 * is not the original "best", we need to release that reference 2114 * before returning. 2115 */ 2116 ipsec_policy_t * 2117 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head, 2118 int direction, ipsec_selector_t *sel, netstack_t *ns) 2119 { 2120 ipsec_policy_t *curbest; 2121 ipsec_policy_root_t *root; 2122 uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq; 2123 int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6; 2124 2125 curbest = best; 2126 root = &head->iph_root[direction]; 2127 2128 #ifdef DEBUG 2129 if (is_icmp_inv_acq) { 2130 if (sel->ips_isv4) { 2131 if (sel->ips_protocol != IPPROTO_ICMP) { 2132 cmn_err(CE_WARN, "ipsec_find_policy_head:" 2133 " expecting icmp, got %d", 2134 sel->ips_protocol); 2135 } 2136 } else { 2137 if (sel->ips_protocol != IPPROTO_ICMPV6) { 2138 cmn_err(CE_WARN, "ipsec_find_policy_head:" 2139 " expecting icmpv6, got %d", 2140 sel->ips_protocol); 2141 } 2142 } 2143 } 2144 #endif 2145 2146 rw_enter(&head->iph_lock, RW_READER); 2147 2148 if (root->ipr_nchains > 0) { 2149 curbest = ipsec_find_policy_chain(curbest, 2150 root->ipr_hash[selector_hash(sel, root)].hash_head, sel, 2151 is_icmp_inv_acq); 2152 } 2153 curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel, 2154 is_icmp_inv_acq); 2155 2156 /* 2157 * Adjust reference counts if we found anything new. 2158 */ 2159 if (curbest != best) { 2160 ASSERT(curbest != NULL); 2161 IPPOL_REFHOLD(curbest); 2162 2163 if (best != NULL) { 2164 IPPOL_REFRELE(best, ns); 2165 } 2166 } 2167 2168 rw_exit(&head->iph_lock); 2169 2170 return (curbest); 2171 } 2172 2173 /* 2174 * Find the best system policy (either global or per-interface) which 2175 * applies to the given selector; look in all the relevant policy roots 2176 * to figure out which policy wins. 2177 * 2178 * Returns a reference to a policy; caller must release this 2179 * reference when done. 2180 */ 2181 ipsec_policy_t * 2182 ipsec_find_policy(int direction, conn_t *connp, ipsec_out_t *io, 2183 ipsec_selector_t *sel, netstack_t *ns) 2184 { 2185 ipsec_policy_t *p; 2186 ipsec_stack_t *ipss = ns->netstack_ipsec; 2187 2188 p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy, 2189 direction, sel, ns); 2190 if ((connp != NULL) && (connp->conn_policy != NULL)) { 2191 p = ipsec_find_policy_head(p, connp->conn_policy, 2192 direction, sel, ns); 2193 } else if ((io != NULL) && (io->ipsec_out_polhead != NULL)) { 2194 p = ipsec_find_policy_head(p, io->ipsec_out_polhead, 2195 direction, sel, ns); 2196 } 2197 2198 return (p); 2199 } 2200 2201 /* 2202 * Check with global policy and see whether this inbound 2203 * packet meets the policy constraints. 2204 * 2205 * Locate appropriate policy from global policy, supplemented by the 2206 * conn's configured and/or cached policy if the conn is supplied. 2207 * 2208 * Dispatch to ipsec_check_ipsecin_policy if we have policy and an 2209 * encrypted packet to see if they match. 2210 * 2211 * Otherwise, see if the policy allows cleartext; if not, drop it on the 2212 * floor. 2213 */ 2214 mblk_t * 2215 ipsec_check_global_policy(mblk_t *first_mp, conn_t *connp, 2216 ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present, netstack_t *ns) 2217 { 2218 ipsec_policy_t *p; 2219 ipsec_selector_t sel; 2220 mblk_t *data_mp, *ipsec_mp; 2221 boolean_t policy_present; 2222 kstat_named_t *counter; 2223 ipsec_in_t *ii = NULL; 2224 uint64_t pkt_unique; 2225 ipsec_stack_t *ipss = ns->netstack_ipsec; 2226 ip_stack_t *ipst = ns->netstack_ip; 2227 2228 data_mp = mctl_present ? first_mp->b_cont : first_mp; 2229 ipsec_mp = mctl_present ? first_mp : NULL; 2230 2231 sel.ips_is_icmp_inv_acq = 0; 2232 2233 ASSERT((ipha == NULL && ip6h != NULL) || 2234 (ip6h == NULL && ipha != NULL)); 2235 2236 if (ipha != NULL) 2237 policy_present = ipss->ipsec_inbound_v4_policy_present; 2238 else 2239 policy_present = ipss->ipsec_inbound_v6_policy_present; 2240 2241 if (!policy_present && connp == NULL) { 2242 /* 2243 * No global policy and no per-socket policy; 2244 * just pass it back (but we shouldn't get here in that case) 2245 */ 2246 return (first_mp); 2247 } 2248 2249 if (ipsec_mp != NULL) { 2250 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 2251 ii = (ipsec_in_t *)(ipsec_mp->b_rptr); 2252 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2253 } 2254 2255 /* 2256 * If we have cached policy, use it. 2257 * Otherwise consult system policy. 2258 */ 2259 if ((connp != NULL) && (connp->conn_latch != NULL)) { 2260 p = connp->conn_latch->ipl_in_policy; 2261 if (p != NULL) { 2262 IPPOL_REFHOLD(p); 2263 } 2264 /* 2265 * Fudge sel for UNIQUE_ID setting below. 2266 */ 2267 pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h); 2268 } else { 2269 /* Initialize the ports in the selector */ 2270 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, 2271 SEL_NONE) == SELRET_NOMEM) { 2272 /* 2273 * Technically not a policy mismatch, but it is 2274 * an internal failure. 2275 */ 2276 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 2277 "ipsec_init_inbound_sel", ipha, ip6h, B_FALSE, ns); 2278 counter = DROPPER(ipss, ipds_spd_nomem); 2279 goto fail; 2280 } 2281 2282 /* 2283 * Find the policy which best applies. 2284 * 2285 * If we find global policy, we should look at both 2286 * local policy and global policy and see which is 2287 * stronger and match accordingly. 2288 * 2289 * If we don't find a global policy, check with 2290 * local policy alone. 2291 */ 2292 2293 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel, 2294 ns); 2295 pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port, 2296 sel.ips_local_port, sel.ips_protocol, 0); 2297 } 2298 2299 if (p == NULL) { 2300 if (ipsec_mp == NULL) { 2301 /* 2302 * We have no policy; default to succeeding. 2303 * XXX paranoid system design doesn't do this. 2304 */ 2305 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2306 return (first_mp); 2307 } else { 2308 counter = DROPPER(ipss, ipds_spd_got_secure); 2309 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 2310 "ipsec_check_global_policy", ipha, ip6h, B_TRUE, 2311 ns); 2312 goto fail; 2313 } 2314 } 2315 if ((ii != NULL) && (ii->ipsec_in_secure)) { 2316 return (ipsec_check_ipsecin_policy(ipsec_mp, p, ipha, ip6h, 2317 pkt_unique, ns)); 2318 } 2319 if (p->ipsp_act->ipa_allow_clear) { 2320 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2321 IPPOL_REFRELE(p, ns); 2322 return (first_mp); 2323 } 2324 IPPOL_REFRELE(p, ns); 2325 /* 2326 * If we reach here, we will drop the packet because it failed the 2327 * global policy check because the packet was cleartext, and it 2328 * should not have been. 2329 */ 2330 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 2331 "ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns); 2332 counter = DROPPER(ipss, ipds_spd_got_clear); 2333 2334 fail: 2335 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 2336 &ipss->ipsec_spd_dropper); 2337 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2338 return (NULL); 2339 } 2340 2341 /* 2342 * We check whether an inbound datagram is a valid one 2343 * to accept in clear. If it is secure, it is the job 2344 * of IPSEC to log information appropriately if it 2345 * suspects that it may not be the real one. 2346 * 2347 * It is called only while fanning out to the ULP 2348 * where ULP accepts only secure data and the incoming 2349 * is clear. Usually we never accept clear datagrams in 2350 * such cases. ICMP is the only exception. 2351 * 2352 * NOTE : We don't call this function if the client (ULP) 2353 * is willing to accept things in clear. 2354 */ 2355 boolean_t 2356 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h) 2357 { 2358 ushort_t iph_hdr_length; 2359 icmph_t *icmph; 2360 icmp6_t *icmp6; 2361 uint8_t *nexthdrp; 2362 2363 ASSERT((ipha != NULL && ip6h == NULL) || 2364 (ipha == NULL && ip6h != NULL)); 2365 2366 if (ip6h != NULL) { 2367 iph_hdr_length = ip_hdr_length_v6(mp, ip6h); 2368 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 2369 &nexthdrp)) { 2370 return (B_FALSE); 2371 } 2372 if (*nexthdrp != IPPROTO_ICMPV6) 2373 return (B_FALSE); 2374 icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]); 2375 /* Match IPv6 ICMP policy as closely as IPv4 as possible. */ 2376 switch (icmp6->icmp6_type) { 2377 case ICMP6_PARAM_PROB: 2378 /* Corresponds to port/proto unreach in IPv4. */ 2379 case ICMP6_ECHO_REQUEST: 2380 /* Just like IPv4. */ 2381 return (B_FALSE); 2382 2383 case MLD_LISTENER_QUERY: 2384 case MLD_LISTENER_REPORT: 2385 case MLD_LISTENER_REDUCTION: 2386 /* 2387 * XXX Seperate NDD in IPv4 what about here? 2388 * Plus, mcast is important to ND. 2389 */ 2390 case ICMP6_DST_UNREACH: 2391 /* Corresponds to HOST/NET unreachable in IPv4. */ 2392 case ICMP6_PACKET_TOO_BIG: 2393 case ICMP6_ECHO_REPLY: 2394 /* These are trusted in IPv4. */ 2395 case ND_ROUTER_SOLICIT: 2396 case ND_ROUTER_ADVERT: 2397 case ND_NEIGHBOR_SOLICIT: 2398 case ND_NEIGHBOR_ADVERT: 2399 case ND_REDIRECT: 2400 /* Trust ND messages for now. */ 2401 case ICMP6_TIME_EXCEEDED: 2402 default: 2403 return (B_TRUE); 2404 } 2405 } else { 2406 /* 2407 * If it is not ICMP, fail this request. 2408 */ 2409 if (ipha->ipha_protocol != IPPROTO_ICMP) { 2410 #ifdef FRAGCACHE_DEBUG 2411 cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n", 2412 ipha->ipha_protocol); 2413 #endif 2414 return (B_FALSE); 2415 } 2416 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2417 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2418 /* 2419 * It is an insecure icmp message. Check to see whether we are 2420 * willing to accept this one. 2421 */ 2422 2423 switch (icmph->icmph_type) { 2424 case ICMP_ECHO_REPLY: 2425 case ICMP_TIME_STAMP_REPLY: 2426 case ICMP_INFO_REPLY: 2427 case ICMP_ROUTER_ADVERTISEMENT: 2428 /* 2429 * We should not encourage clear replies if this 2430 * client expects secure. If somebody is replying 2431 * in clear some mailicious user watching both the 2432 * request and reply, can do chosen-plain-text attacks. 2433 * With global policy we might be just expecting secure 2434 * but sending out clear. We don't know what the right 2435 * thing is. We can't do much here as we can't control 2436 * the sender here. Till we are sure of what to do, 2437 * accept them. 2438 */ 2439 return (B_TRUE); 2440 case ICMP_ECHO_REQUEST: 2441 case ICMP_TIME_STAMP_REQUEST: 2442 case ICMP_INFO_REQUEST: 2443 case ICMP_ADDRESS_MASK_REQUEST: 2444 case ICMP_ROUTER_SOLICITATION: 2445 case ICMP_ADDRESS_MASK_REPLY: 2446 /* 2447 * Don't accept this as somebody could be sending 2448 * us plain text to get encrypted data. If we reply, 2449 * it will lead to chosen plain text attack. 2450 */ 2451 return (B_FALSE); 2452 case ICMP_DEST_UNREACHABLE: 2453 switch (icmph->icmph_code) { 2454 case ICMP_FRAGMENTATION_NEEDED: 2455 /* 2456 * Be in sync with icmp_inbound, where we have 2457 * already set ire_max_frag. 2458 */ 2459 #ifdef FRAGCACHE_DEBUG 2460 cmn_err(CE_WARN, "ICMP frag needed\n"); 2461 #endif 2462 return (B_TRUE); 2463 case ICMP_HOST_UNREACHABLE: 2464 case ICMP_NET_UNREACHABLE: 2465 /* 2466 * By accepting, we could reset a connection. 2467 * How do we solve the problem of some 2468 * intermediate router sending in-secure ICMP 2469 * messages ? 2470 */ 2471 return (B_TRUE); 2472 case ICMP_PORT_UNREACHABLE: 2473 case ICMP_PROTOCOL_UNREACHABLE: 2474 default : 2475 return (B_FALSE); 2476 } 2477 case ICMP_SOURCE_QUENCH: 2478 /* 2479 * If this is an attack, TCP will slow start 2480 * because of this. Is it very harmful ? 2481 */ 2482 return (B_TRUE); 2483 case ICMP_PARAM_PROBLEM: 2484 return (B_FALSE); 2485 case ICMP_TIME_EXCEEDED: 2486 return (B_TRUE); 2487 case ICMP_REDIRECT: 2488 return (B_FALSE); 2489 default : 2490 return (B_FALSE); 2491 } 2492 } 2493 } 2494 2495 void 2496 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote) 2497 { 2498 mutex_enter(&ipl->ipl_lock); 2499 2500 if (ipl->ipl_ids_latched) { 2501 /* I lost, someone else got here before me */ 2502 mutex_exit(&ipl->ipl_lock); 2503 return; 2504 } 2505 2506 if (local != NULL) 2507 IPSID_REFHOLD(local); 2508 if (remote != NULL) 2509 IPSID_REFHOLD(remote); 2510 2511 ipl->ipl_local_cid = local; 2512 ipl->ipl_remote_cid = remote; 2513 ipl->ipl_ids_latched = B_TRUE; 2514 mutex_exit(&ipl->ipl_lock); 2515 } 2516 2517 void 2518 ipsec_latch_inbound(ipsec_latch_t *ipl, ipsec_in_t *ii) 2519 { 2520 ipsa_t *sa; 2521 2522 if (!ipl->ipl_ids_latched) { 2523 ipsid_t *local = NULL; 2524 ipsid_t *remote = NULL; 2525 2526 if (!ii->ipsec_in_loopback) { 2527 if (ii->ipsec_in_esp_sa != NULL) 2528 sa = ii->ipsec_in_esp_sa; 2529 else 2530 sa = ii->ipsec_in_ah_sa; 2531 ASSERT(sa != NULL); 2532 local = sa->ipsa_dst_cid; 2533 remote = sa->ipsa_src_cid; 2534 } 2535 ipsec_latch_ids(ipl, local, remote); 2536 } 2537 ipl->ipl_in_action = ii->ipsec_in_action; 2538 IPACT_REFHOLD(ipl->ipl_in_action); 2539 } 2540 2541 /* 2542 * Check whether the policy constraints are met either for an 2543 * inbound datagram; called from IP in numerous places. 2544 * 2545 * Note that this is not a chokepoint for inbound policy checks; 2546 * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy() 2547 */ 2548 mblk_t * 2549 ipsec_check_inbound_policy(mblk_t *first_mp, conn_t *connp, 2550 ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present) 2551 { 2552 ipsec_in_t *ii; 2553 boolean_t ret; 2554 mblk_t *mp = mctl_present ? first_mp->b_cont : first_mp; 2555 mblk_t *ipsec_mp = mctl_present ? first_mp : NULL; 2556 ipsec_latch_t *ipl; 2557 uint64_t unique_id; 2558 ipsec_stack_t *ipss; 2559 ip_stack_t *ipst; 2560 netstack_t *ns; 2561 ipsec_policy_head_t *policy_head; 2562 2563 ASSERT(connp != NULL); 2564 ns = connp->conn_netstack; 2565 ipss = ns->netstack_ipsec; 2566 ipst = ns->netstack_ip; 2567 2568 if (ipsec_mp == NULL) { 2569 clear: 2570 /* 2571 * This is the case where the incoming datagram is 2572 * cleartext and we need to see whether this client 2573 * would like to receive such untrustworthy things from 2574 * the wire. 2575 */ 2576 ASSERT(mp != NULL); 2577 2578 mutex_enter(&connp->conn_lock); 2579 if (connp->conn_state_flags & CONN_CONDEMNED) { 2580 mutex_exit(&connp->conn_lock); 2581 ip_drop_packet(first_mp, B_TRUE, NULL, 2582 NULL, DROPPER(ipss, ipds_spd_got_clear), 2583 &ipss->ipsec_spd_dropper); 2584 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2585 return (NULL); 2586 } 2587 if ((ipl = connp->conn_latch) != NULL) { 2588 /* Hold a reference in case the conn is closing */ 2589 IPLATCH_REFHOLD(ipl); 2590 mutex_exit(&connp->conn_lock); 2591 /* 2592 * Policy is cached in the conn. 2593 */ 2594 if ((ipl->ipl_in_policy != NULL) && 2595 (!ipl->ipl_in_policy->ipsp_act->ipa_allow_clear)) { 2596 ret = ipsec_inbound_accept_clear(mp, 2597 ipha, ip6h); 2598 if (ret) { 2599 BUMP_MIB(&ipst->ips_ip_mib, 2600 ipsecInSucceeded); 2601 IPLATCH_REFRELE(ipl, ns); 2602 return (first_mp); 2603 } else { 2604 ipsec_log_policy_failure( 2605 IPSEC_POLICY_MISMATCH, 2606 "ipsec_check_inbound_policy", ipha, 2607 ip6h, B_FALSE, ns); 2608 ip_drop_packet(first_mp, B_TRUE, NULL, 2609 NULL, 2610 DROPPER(ipss, ipds_spd_got_clear), 2611 &ipss->ipsec_spd_dropper); 2612 BUMP_MIB(&ipst->ips_ip_mib, 2613 ipsecInFailed); 2614 IPLATCH_REFRELE(ipl, ns); 2615 return (NULL); 2616 } 2617 } else { 2618 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2619 IPLATCH_REFRELE(ipl, ns); 2620 return (first_mp); 2621 } 2622 } else { 2623 uchar_t db_type; 2624 policy_head = connp->conn_policy; 2625 2626 /* Hold a reference in case the conn is closing */ 2627 if (policy_head != NULL) 2628 IPPH_REFHOLD(policy_head); 2629 mutex_exit(&connp->conn_lock); 2630 /* 2631 * As this is a non-hardbound connection we need 2632 * to look at both per-socket policy and global 2633 * policy. As this is cleartext, mark the mp as 2634 * M_DATA in case if it is an ICMP error being 2635 * reported before calling ipsec_check_global_policy 2636 * so that it does not mistake it for IPSEC_IN. 2637 */ 2638 db_type = mp->b_datap->db_type; 2639 mp->b_datap->db_type = M_DATA; 2640 first_mp = ipsec_check_global_policy(first_mp, connp, 2641 ipha, ip6h, mctl_present, ns); 2642 if (policy_head != NULL) 2643 IPPH_REFRELE(policy_head, ns); 2644 if (first_mp != NULL) 2645 mp->b_datap->db_type = db_type; 2646 return (first_mp); 2647 } 2648 } 2649 /* 2650 * If it is inbound check whether the attached message 2651 * is secure or not. We have a special case for ICMP, 2652 * where we have a IPSEC_IN message and the attached 2653 * message is not secure. See icmp_inbound_error_fanout 2654 * for details. 2655 */ 2656 ASSERT(ipsec_mp != NULL); 2657 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 2658 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 2659 2660 if (!ii->ipsec_in_secure) 2661 goto clear; 2662 2663 /* 2664 * mp->b_cont could be either a M_CTL message 2665 * for icmp errors being sent up or a M_DATA message. 2666 */ 2667 ASSERT(mp->b_datap->db_type == M_CTL || mp->b_datap->db_type == M_DATA); 2668 2669 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2670 2671 mutex_enter(&connp->conn_lock); 2672 /* Connection is closing */ 2673 if (connp->conn_state_flags & CONN_CONDEMNED) { 2674 mutex_exit(&connp->conn_lock); 2675 ip_drop_packet(first_mp, B_TRUE, NULL, 2676 NULL, DROPPER(ipss, ipds_spd_got_clear), 2677 &ipss->ipsec_spd_dropper); 2678 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2679 return (NULL); 2680 } 2681 2682 /* 2683 * Once a connection is latched it remains so for life, the conn_latch 2684 * pointer on the conn has not changed, simply initializing ipl here 2685 * as the earlier initialization was done only in the cleartext case. 2686 */ 2687 if ((ipl = connp->conn_latch) == NULL) { 2688 mblk_t *retmp; 2689 policy_head = connp->conn_policy; 2690 2691 /* Hold a reference in case the conn is closing */ 2692 if (policy_head != NULL) 2693 IPPH_REFHOLD(policy_head); 2694 mutex_exit(&connp->conn_lock); 2695 /* 2696 * We don't have policies cached in the conn 2697 * for this stream. So, look at the global 2698 * policy. It will check against conn or global 2699 * depending on whichever is stronger. 2700 */ 2701 retmp = ipsec_check_global_policy(first_mp, connp, 2702 ipha, ip6h, mctl_present, ns); 2703 if (policy_head != NULL) 2704 IPPH_REFRELE(policy_head, ns); 2705 return (retmp); 2706 } 2707 2708 IPLATCH_REFHOLD(ipl); 2709 mutex_exit(&connp->conn_lock); 2710 2711 if (ipl->ipl_in_action != NULL) { 2712 /* Policy is cached & latched; fast(er) path */ 2713 const char *reason; 2714 kstat_named_t *counter; 2715 2716 if (ipsec_check_ipsecin_latch(ii, mp, ipl, 2717 ipha, ip6h, &reason, &counter, connp)) { 2718 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2719 IPLATCH_REFRELE(ipl, ns); 2720 return (first_mp); 2721 } 2722 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, 2723 SL_ERROR|SL_WARN|SL_CONSOLE, 2724 "ipsec inbound policy mismatch: %s, packet dropped\n", 2725 reason); 2726 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 2727 &ipss->ipsec_spd_dropper); 2728 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2729 IPLATCH_REFRELE(ipl, ns); 2730 return (NULL); 2731 } else if (ipl->ipl_in_policy == NULL) { 2732 ipsec_weird_null_inbound_policy++; 2733 IPLATCH_REFRELE(ipl, ns); 2734 return (first_mp); 2735 } 2736 2737 unique_id = conn_to_unique(connp, mp, ipha, ip6h); 2738 IPPOL_REFHOLD(ipl->ipl_in_policy); 2739 first_mp = ipsec_check_ipsecin_policy(first_mp, ipl->ipl_in_policy, 2740 ipha, ip6h, unique_id, ns); 2741 /* 2742 * NOTE: ipsecIn{Failed,Succeeeded} bumped by 2743 * ipsec_check_ipsecin_policy(). 2744 */ 2745 if (first_mp != NULL) 2746 ipsec_latch_inbound(ipl, ii); 2747 IPLATCH_REFRELE(ipl, ns); 2748 return (first_mp); 2749 } 2750 2751 /* 2752 * Returns: 2753 * 2754 * SELRET_NOMEM --> msgpullup() needed to gather things failed. 2755 * SELRET_BADPKT --> If we're being called after tunnel-mode fragment 2756 * gathering, the initial fragment is too short for 2757 * useful data. Only returned if SEL_TUNNEL_FIRSTFRAG is 2758 * set. 2759 * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data. 2760 * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet. Caller 2761 * should put this packet in a fragment-gathering queue. 2762 * Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY 2763 * is set. 2764 */ 2765 static selret_t 2766 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha, 2767 ip6_t *ip6h, uint8_t sel_flags) 2768 { 2769 uint16_t *ports; 2770 ushort_t hdr_len; 2771 int outer_hdr_len = 0; /* For ICMP tunnel-mode cases... */ 2772 mblk_t *spare_mp = NULL; 2773 uint8_t *nexthdrp; 2774 uint8_t nexthdr; 2775 uint8_t *typecode; 2776 uint8_t check_proto; 2777 ip6_pkt_t ipp; 2778 boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY); 2779 boolean_t is_icmp = (sel_flags & SEL_IS_ICMP); 2780 boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE); 2781 2782 ASSERT((ipha == NULL && ip6h != NULL) || 2783 (ipha != NULL && ip6h == NULL)); 2784 2785 if (ip6h != NULL) { 2786 if (is_icmp) 2787 outer_hdr_len = ((uint8_t *)ip6h) - mp->b_rptr; 2788 2789 check_proto = IPPROTO_ICMPV6; 2790 sel->ips_isv4 = B_FALSE; 2791 sel->ips_local_addr_v6 = ip6h->ip6_dst; 2792 sel->ips_remote_addr_v6 = ip6h->ip6_src; 2793 2794 bzero(&ipp, sizeof (ipp)); 2795 (void) ip_find_hdr_v6(mp, ip6h, &ipp, NULL); 2796 2797 nexthdr = ip6h->ip6_nxt; 2798 switch (nexthdr) { 2799 case IPPROTO_HOPOPTS: 2800 case IPPROTO_ROUTING: 2801 case IPPROTO_DSTOPTS: 2802 case IPPROTO_FRAGMENT: 2803 /* 2804 * Use ip_hdr_length_nexthdr_v6(). And have a spare 2805 * mblk that's contiguous to feed it 2806 */ 2807 if ((spare_mp = msgpullup(mp, -1)) == NULL) 2808 return (SELRET_NOMEM); 2809 if (!ip_hdr_length_nexthdr_v6(spare_mp, 2810 (ip6_t *)(spare_mp->b_rptr + outer_hdr_len), 2811 &hdr_len, &nexthdrp)) { 2812 /* Malformed packet - caller frees. */ 2813 ipsec_freemsg_chain(spare_mp); 2814 return (SELRET_BADPKT); 2815 } 2816 nexthdr = *nexthdrp; 2817 /* We can just extract based on hdr_len now. */ 2818 break; 2819 default: 2820 hdr_len = IPV6_HDR_LEN; 2821 break; 2822 } 2823 2824 if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) { 2825 /* IPv6 Fragment */ 2826 ipsec_freemsg_chain(spare_mp); 2827 return (SELRET_TUNFRAG); 2828 } 2829 } else { 2830 if (is_icmp) 2831 outer_hdr_len = ((uint8_t *)ipha) - mp->b_rptr; 2832 check_proto = IPPROTO_ICMP; 2833 sel->ips_isv4 = B_TRUE; 2834 sel->ips_local_addr_v4 = ipha->ipha_dst; 2835 sel->ips_remote_addr_v4 = ipha->ipha_src; 2836 nexthdr = ipha->ipha_protocol; 2837 hdr_len = IPH_HDR_LENGTH(ipha); 2838 2839 if (port_policy_present && 2840 IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) && 2841 !is_icmp) { 2842 /* IPv4 Fragment */ 2843 ipsec_freemsg_chain(spare_mp); 2844 return (SELRET_TUNFRAG); 2845 } 2846 2847 } 2848 sel->ips_protocol = nexthdr; 2849 2850 if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP && 2851 nexthdr != IPPROTO_SCTP && nexthdr != check_proto) || 2852 (!port_policy_present && tunnel_mode)) { 2853 sel->ips_remote_port = sel->ips_local_port = 0; 2854 ipsec_freemsg_chain(spare_mp); 2855 return (SELRET_SUCCESS); 2856 } 2857 2858 if (&mp->b_rptr[hdr_len] + 4 > mp->b_wptr) { 2859 /* If we didn't pullup a copy already, do so now. */ 2860 /* 2861 * XXX performance, will upper-layers frequently split TCP/UDP 2862 * apart from IP or options? If so, perhaps we should revisit 2863 * the spare_mp strategy. 2864 */ 2865 ipsec_hdr_pullup_needed++; 2866 if (spare_mp == NULL && 2867 (spare_mp = msgpullup(mp, -1)) == NULL) { 2868 return (SELRET_NOMEM); 2869 } 2870 ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len]; 2871 } else { 2872 ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len]; 2873 } 2874 2875 if (nexthdr == check_proto) { 2876 typecode = (uint8_t *)ports; 2877 sel->ips_icmp_type = *typecode++; 2878 sel->ips_icmp_code = *typecode; 2879 sel->ips_remote_port = sel->ips_local_port = 0; 2880 } else { 2881 sel->ips_remote_port = *ports++; 2882 sel->ips_local_port = *ports; 2883 } 2884 ipsec_freemsg_chain(spare_mp); 2885 return (SELRET_SUCCESS); 2886 } 2887 2888 static boolean_t 2889 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha, 2890 ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss) 2891 { 2892 /* 2893 * XXX cut&paste shared with ipsec_init_inbound_sel 2894 */ 2895 uint16_t *ports; 2896 ushort_t hdr_len; 2897 mblk_t *spare_mp = NULL; 2898 uint8_t *nexthdrp; 2899 uint8_t nexthdr; 2900 uint8_t *typecode; 2901 uint8_t check_proto; 2902 2903 ASSERT((ipha == NULL && ip6h != NULL) || 2904 (ipha != NULL && ip6h == NULL)); 2905 2906 if (ip6h != NULL) { 2907 check_proto = IPPROTO_ICMPV6; 2908 nexthdr = ip6h->ip6_nxt; 2909 switch (nexthdr) { 2910 case IPPROTO_HOPOPTS: 2911 case IPPROTO_ROUTING: 2912 case IPPROTO_DSTOPTS: 2913 case IPPROTO_FRAGMENT: 2914 /* 2915 * Use ip_hdr_length_nexthdr_v6(). And have a spare 2916 * mblk that's contiguous to feed it 2917 */ 2918 spare_mp = msgpullup(mp, -1); 2919 if (spare_mp == NULL || 2920 !ip_hdr_length_nexthdr_v6(spare_mp, 2921 (ip6_t *)(spare_mp->b_rptr + outer_hdr_len), 2922 &hdr_len, &nexthdrp)) { 2923 /* Always works, even if NULL. */ 2924 ipsec_freemsg_chain(spare_mp); 2925 ip_drop_packet_chain(mp, B_FALSE, NULL, NULL, 2926 DROPPER(ipss, ipds_spd_nomem), 2927 &ipss->ipsec_spd_dropper); 2928 return (B_FALSE); 2929 } else { 2930 nexthdr = *nexthdrp; 2931 /* We can just extract based on hdr_len now. */ 2932 } 2933 break; 2934 default: 2935 hdr_len = IPV6_HDR_LEN; 2936 break; 2937 } 2938 } else { 2939 check_proto = IPPROTO_ICMP; 2940 hdr_len = IPH_HDR_LENGTH(ipha); 2941 nexthdr = ipha->ipha_protocol; 2942 } 2943 2944 sel->ips_protocol = nexthdr; 2945 if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP && 2946 nexthdr != IPPROTO_SCTP && nexthdr != check_proto) { 2947 sel->ips_local_port = sel->ips_remote_port = 0; 2948 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */ 2949 return (B_TRUE); 2950 } 2951 2952 if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) { 2953 /* If we didn't pullup a copy already, do so now. */ 2954 /* 2955 * XXX performance, will upper-layers frequently split TCP/UDP 2956 * apart from IP or options? If so, perhaps we should revisit 2957 * the spare_mp strategy. 2958 * 2959 * XXX should this be msgpullup(mp, hdr_len+4) ??? 2960 */ 2961 if (spare_mp == NULL && 2962 (spare_mp = msgpullup(mp, -1)) == NULL) { 2963 ip_drop_packet_chain(mp, B_FALSE, NULL, NULL, 2964 DROPPER(ipss, ipds_spd_nomem), 2965 &ipss->ipsec_spd_dropper); 2966 return (B_FALSE); 2967 } 2968 ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len]; 2969 } else { 2970 ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len]; 2971 } 2972 2973 if (nexthdr == check_proto) { 2974 typecode = (uint8_t *)ports; 2975 sel->ips_icmp_type = *typecode++; 2976 sel->ips_icmp_code = *typecode; 2977 sel->ips_remote_port = sel->ips_local_port = 0; 2978 } else { 2979 sel->ips_local_port = *ports++; 2980 sel->ips_remote_port = *ports; 2981 } 2982 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */ 2983 return (B_TRUE); 2984 } 2985 2986 /* 2987 * Create an ipsec_action_t based on the way an inbound packet was protected. 2988 * Used to reflect traffic back to a sender. 2989 * 2990 * We don't bother interning the action into the hash table. 2991 */ 2992 ipsec_action_t * 2993 ipsec_in_to_out_action(ipsec_in_t *ii) 2994 { 2995 ipsa_t *ah_assoc, *esp_assoc; 2996 uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0; 2997 ipsec_action_t *ap; 2998 boolean_t unique; 2999 3000 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP); 3001 3002 if (ap == NULL) 3003 return (NULL); 3004 3005 bzero(ap, sizeof (*ap)); 3006 HASH_NULL(ap, ipa_hash); 3007 ap->ipa_next = NULL; 3008 ap->ipa_refs = 1; 3009 3010 /* 3011 * Get the algorithms that were used for this packet. 3012 */ 3013 ap->ipa_act.ipa_type = IPSEC_ACT_APPLY; 3014 ap->ipa_act.ipa_log = 0; 3015 ah_assoc = ii->ipsec_in_ah_sa; 3016 ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL); 3017 3018 esp_assoc = ii->ipsec_in_esp_sa; 3019 ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL); 3020 3021 if (esp_assoc != NULL) { 3022 encr_alg = esp_assoc->ipsa_encr_alg; 3023 espa_alg = esp_assoc->ipsa_auth_alg; 3024 ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0); 3025 } 3026 if (ah_assoc != NULL) 3027 auth_alg = ah_assoc->ipsa_auth_alg; 3028 3029 ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg; 3030 ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg; 3031 ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg; 3032 ap->ipa_act.ipa_apply.ipp_use_se = ii->ipsec_in_decaps; 3033 unique = B_FALSE; 3034 3035 if (esp_assoc != NULL) { 3036 ap->ipa_act.ipa_apply.ipp_espa_minbits = 3037 esp_assoc->ipsa_authkeybits; 3038 ap->ipa_act.ipa_apply.ipp_espa_maxbits = 3039 esp_assoc->ipsa_authkeybits; 3040 ap->ipa_act.ipa_apply.ipp_espe_minbits = 3041 esp_assoc->ipsa_encrkeybits; 3042 ap->ipa_act.ipa_apply.ipp_espe_maxbits = 3043 esp_assoc->ipsa_encrkeybits; 3044 ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp; 3045 ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc; 3046 if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE) 3047 unique = B_TRUE; 3048 } 3049 if (ah_assoc != NULL) { 3050 ap->ipa_act.ipa_apply.ipp_ah_minbits = 3051 ah_assoc->ipsa_authkeybits; 3052 ap->ipa_act.ipa_apply.ipp_ah_maxbits = 3053 ah_assoc->ipsa_authkeybits; 3054 ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp; 3055 ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc; 3056 if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE) 3057 unique = B_TRUE; 3058 } 3059 ap->ipa_act.ipa_apply.ipp_use_unique = unique; 3060 ap->ipa_want_unique = unique; 3061 ap->ipa_allow_clear = B_FALSE; 3062 ap->ipa_want_se = ii->ipsec_in_decaps; 3063 ap->ipa_want_ah = (ah_assoc != NULL); 3064 ap->ipa_want_esp = (esp_assoc != NULL); 3065 3066 ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act); 3067 3068 ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */ 3069 3070 return (ap); 3071 } 3072 3073 3074 /* 3075 * Compute the worst-case amount of extra space required by an action. 3076 * Note that, because of the ESP considerations listed below, this is 3077 * actually not the same as the best-case reduction in the MTU; in the 3078 * future, we should pass additional information to this function to 3079 * allow the actual MTU impact to be computed. 3080 * 3081 * AH: Revisit this if we implement algorithms with 3082 * a verifier size of more than 12 bytes. 3083 * 3084 * ESP: A more exact but more messy computation would take into 3085 * account the interaction between the cipher block size and the 3086 * effective MTU, yielding the inner payload size which reflects a 3087 * packet with *minimum* ESP padding.. 3088 */ 3089 int32_t 3090 ipsec_act_ovhd(const ipsec_act_t *act) 3091 { 3092 int32_t overhead = 0; 3093 3094 if (act->ipa_type == IPSEC_ACT_APPLY) { 3095 const ipsec_prot_t *ipp = &act->ipa_apply; 3096 3097 if (ipp->ipp_use_ah) 3098 overhead += IPSEC_MAX_AH_HDR_SIZE; 3099 if (ipp->ipp_use_esp) { 3100 overhead += IPSEC_MAX_ESP_HDR_SIZE; 3101 overhead += sizeof (struct udphdr); 3102 } 3103 if (ipp->ipp_use_se) 3104 overhead += IP_SIMPLE_HDR_LENGTH; 3105 } 3106 return (overhead); 3107 } 3108 3109 /* 3110 * This hash function is used only when creating policies and thus is not 3111 * performance-critical for packet flows. 3112 * 3113 * Future work: canonicalize the structures hashed with this (i.e., 3114 * zeroize padding) so the hash works correctly. 3115 */ 3116 /* ARGSUSED */ 3117 static uint32_t 3118 policy_hash(int size, const void *start, const void *end) 3119 { 3120 return (0); 3121 } 3122 3123 3124 /* 3125 * Hash function macros for each address type. 3126 * 3127 * The IPV6 hash function assumes that the low order 32-bits of the 3128 * address (typically containing the low order 24 bits of the mac 3129 * address) are reasonably well-distributed. Revisit this if we run 3130 * into trouble from lots of collisions on ::1 addresses and the like 3131 * (seems unlikely). 3132 */ 3133 #define IPSEC_IPV4_HASH(a, n) ((a) % (n)) 3134 #define IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n)) 3135 3136 /* 3137 * These two hash functions should produce coordinated values 3138 * but have slightly different roles. 3139 */ 3140 static uint32_t 3141 selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns) 3142 { 3143 uint32_t valid = selkey->ipsl_valid; 3144 ipsec_stack_t *ipss = ns->netstack_ipsec; 3145 3146 if (!(valid & IPSL_REMOTE_ADDR)) 3147 return (IPSEC_SEL_NOHASH); 3148 3149 if (valid & IPSL_IPV4) { 3150 if (selkey->ipsl_remote_pfxlen == 32) { 3151 return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4, 3152 ipss->ipsec_spd_hashsize)); 3153 } 3154 } 3155 if (valid & IPSL_IPV6) { 3156 if (selkey->ipsl_remote_pfxlen == 128) { 3157 return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6, 3158 ipss->ipsec_spd_hashsize)); 3159 } 3160 } 3161 return (IPSEC_SEL_NOHASH); 3162 } 3163 3164 static uint32_t 3165 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root) 3166 { 3167 if (sel->ips_isv4) { 3168 return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4, 3169 root->ipr_nchains)); 3170 } 3171 return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains)); 3172 } 3173 3174 /* 3175 * Intern actions into the action hash table. 3176 */ 3177 ipsec_action_t * 3178 ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns) 3179 { 3180 int i; 3181 uint32_t hval; 3182 ipsec_action_t *ap; 3183 ipsec_action_t *prev = NULL; 3184 int32_t overhead, maxovhd = 0; 3185 boolean_t allow_clear = B_FALSE; 3186 boolean_t want_ah = B_FALSE; 3187 boolean_t want_esp = B_FALSE; 3188 boolean_t want_se = B_FALSE; 3189 boolean_t want_unique = B_FALSE; 3190 ipsec_stack_t *ipss = ns->netstack_ipsec; 3191 3192 /* 3193 * TODO: should canonicalize a[] (i.e., zeroize any padding) 3194 * so we can use a non-trivial policy_hash function. 3195 */ 3196 for (i = n-1; i >= 0; i--) { 3197 hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]); 3198 3199 HASH_LOCK(ipss->ipsec_action_hash, hval); 3200 3201 for (HASH_ITERATE(ap, ipa_hash, 3202 ipss->ipsec_action_hash, hval)) { 3203 if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0) 3204 continue; 3205 if (ap->ipa_next != prev) 3206 continue; 3207 break; 3208 } 3209 if (ap != NULL) { 3210 HASH_UNLOCK(ipss->ipsec_action_hash, hval); 3211 prev = ap; 3212 continue; 3213 } 3214 /* 3215 * need to allocate a new one.. 3216 */ 3217 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP); 3218 if (ap == NULL) { 3219 HASH_UNLOCK(ipss->ipsec_action_hash, hval); 3220 if (prev != NULL) 3221 ipsec_action_free(prev); 3222 return (NULL); 3223 } 3224 HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval); 3225 3226 ap->ipa_next = prev; 3227 ap->ipa_act = a[i]; 3228 3229 overhead = ipsec_act_ovhd(&a[i]); 3230 if (maxovhd < overhead) 3231 maxovhd = overhead; 3232 3233 if ((a[i].ipa_type == IPSEC_ACT_BYPASS) || 3234 (a[i].ipa_type == IPSEC_ACT_CLEAR)) 3235 allow_clear = B_TRUE; 3236 if (a[i].ipa_type == IPSEC_ACT_APPLY) { 3237 const ipsec_prot_t *ipp = &a[i].ipa_apply; 3238 3239 ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp); 3240 want_ah |= ipp->ipp_use_ah; 3241 want_esp |= ipp->ipp_use_esp; 3242 want_se |= ipp->ipp_use_se; 3243 want_unique |= ipp->ipp_use_unique; 3244 } 3245 ap->ipa_allow_clear = allow_clear; 3246 ap->ipa_want_ah = want_ah; 3247 ap->ipa_want_esp = want_esp; 3248 ap->ipa_want_se = want_se; 3249 ap->ipa_want_unique = want_unique; 3250 ap->ipa_refs = 1; /* from the hash table */ 3251 ap->ipa_ovhd = maxovhd; 3252 if (prev) 3253 prev->ipa_refs++; 3254 prev = ap; 3255 HASH_UNLOCK(ipss->ipsec_action_hash, hval); 3256 } 3257 3258 ap->ipa_refs++; /* caller's reference */ 3259 3260 return (ap); 3261 } 3262 3263 /* 3264 * Called when refcount goes to 0, indicating that all references to this 3265 * node are gone. 3266 * 3267 * This does not unchain the action from the hash table. 3268 */ 3269 void 3270 ipsec_action_free(ipsec_action_t *ap) 3271 { 3272 for (;;) { 3273 ipsec_action_t *np = ap->ipa_next; 3274 ASSERT(ap->ipa_refs == 0); 3275 ASSERT(ap->ipa_hash.hash_pp == NULL); 3276 kmem_cache_free(ipsec_action_cache, ap); 3277 ap = np; 3278 /* Inlined IPACT_REFRELE -- avoid recursion */ 3279 if (ap == NULL) 3280 break; 3281 membar_exit(); 3282 if (atomic_add_32_nv(&(ap)->ipa_refs, -1) != 0) 3283 break; 3284 /* End inlined IPACT_REFRELE */ 3285 } 3286 } 3287 3288 /* 3289 * Called when the action hash table goes away. 3290 * 3291 * The actions can be queued on an mblk with ipsec_in or 3292 * ipsec_out, hence the actions might still be around. 3293 * But we decrement ipa_refs here since we no longer have 3294 * a reference to the action from the hash table. 3295 */ 3296 static void 3297 ipsec_action_free_table(ipsec_action_t *ap) 3298 { 3299 while (ap != NULL) { 3300 ipsec_action_t *np = ap->ipa_next; 3301 3302 /* FIXME: remove? */ 3303 (void) printf("ipsec_action_free_table(%p) ref %d\n", 3304 (void *)ap, ap->ipa_refs); 3305 ASSERT(ap->ipa_refs > 0); 3306 IPACT_REFRELE(ap); 3307 ap = np; 3308 } 3309 } 3310 3311 /* 3312 * Need to walk all stack instances since the reclaim function 3313 * is global for all instances 3314 */ 3315 /* ARGSUSED */ 3316 static void 3317 ipsec_action_reclaim(void *arg) 3318 { 3319 netstack_handle_t nh; 3320 netstack_t *ns; 3321 3322 netstack_next_init(&nh); 3323 while ((ns = netstack_next(&nh)) != NULL) { 3324 ipsec_action_reclaim_stack(ns); 3325 netstack_rele(ns); 3326 } 3327 netstack_next_fini(&nh); 3328 } 3329 3330 /* 3331 * Periodically sweep action hash table for actions with refcount==1, and 3332 * nuke them. We cannot do this "on demand" (i.e., from IPACT_REFRELE) 3333 * because we can't close the race between another thread finding the action 3334 * in the hash table without holding the bucket lock during IPACT_REFRELE. 3335 * Instead, we run this function sporadically to clean up after ourselves; 3336 * we also set it as the "reclaim" function for the action kmem_cache. 3337 * 3338 * Note that it may take several passes of ipsec_action_gc() to free all 3339 * "stale" actions. 3340 */ 3341 static void 3342 ipsec_action_reclaim_stack(netstack_t *ns) 3343 { 3344 int i; 3345 ipsec_stack_t *ipss = ns->netstack_ipsec; 3346 3347 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) { 3348 ipsec_action_t *ap, *np; 3349 3350 /* skip the lock if nobody home */ 3351 if (ipss->ipsec_action_hash[i].hash_head == NULL) 3352 continue; 3353 3354 HASH_LOCK(ipss->ipsec_action_hash, i); 3355 for (ap = ipss->ipsec_action_hash[i].hash_head; 3356 ap != NULL; ap = np) { 3357 ASSERT(ap->ipa_refs > 0); 3358 np = ap->ipa_hash.hash_next; 3359 if (ap->ipa_refs > 1) 3360 continue; 3361 HASH_UNCHAIN(ap, ipa_hash, 3362 ipss->ipsec_action_hash, i); 3363 IPACT_REFRELE(ap); 3364 } 3365 HASH_UNLOCK(ipss->ipsec_action_hash, i); 3366 } 3367 } 3368 3369 /* 3370 * Intern a selector set into the selector set hash table. 3371 * This is simpler than the actions case.. 3372 */ 3373 static ipsec_sel_t * 3374 ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns) 3375 { 3376 ipsec_sel_t *sp; 3377 uint32_t hval, bucket; 3378 ipsec_stack_t *ipss = ns->netstack_ipsec; 3379 3380 /* 3381 * Exactly one AF bit should be set in selkey. 3382 */ 3383 ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^ 3384 !(selkey->ipsl_valid & IPSL_IPV6)); 3385 3386 hval = selkey_hash(selkey, ns); 3387 /* Set pol_hval to uninitialized until we put it in a polhead. */ 3388 selkey->ipsl_sel_hval = hval; 3389 3390 bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval; 3391 3392 ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket)); 3393 HASH_LOCK(ipss->ipsec_sel_hash, bucket); 3394 3395 for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) { 3396 if (bcmp(&sp->ipsl_key, selkey, 3397 offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0) 3398 break; 3399 } 3400 if (sp != NULL) { 3401 sp->ipsl_refs++; 3402 3403 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket); 3404 return (sp); 3405 } 3406 3407 sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP); 3408 if (sp == NULL) { 3409 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket); 3410 return (NULL); 3411 } 3412 3413 HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket); 3414 sp->ipsl_refs = 2; /* one for hash table, one for caller */ 3415 sp->ipsl_key = *selkey; 3416 /* Set to uninitalized and have insertion into polhead fix things. */ 3417 if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH) 3418 sp->ipsl_key.ipsl_pol_hval = 0; 3419 else 3420 sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH; 3421 3422 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket); 3423 3424 return (sp); 3425 } 3426 3427 static void 3428 ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns) 3429 { 3430 ipsec_sel_t *sp = *spp; 3431 int hval = sp->ipsl_key.ipsl_sel_hval; 3432 ipsec_stack_t *ipss = ns->netstack_ipsec; 3433 3434 *spp = NULL; 3435 3436 if (hval == IPSEC_SEL_NOHASH) 3437 hval = 0; 3438 3439 ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval)); 3440 HASH_LOCK(ipss->ipsec_sel_hash, hval); 3441 if (--sp->ipsl_refs == 1) { 3442 HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval); 3443 sp->ipsl_refs--; 3444 HASH_UNLOCK(ipss->ipsec_sel_hash, hval); 3445 ASSERT(sp->ipsl_refs == 0); 3446 kmem_cache_free(ipsec_sel_cache, sp); 3447 /* Caller unlocks */ 3448 return; 3449 } 3450 3451 HASH_UNLOCK(ipss->ipsec_sel_hash, hval); 3452 } 3453 3454 /* 3455 * Free a policy rule which we know is no longer being referenced. 3456 */ 3457 void 3458 ipsec_policy_free(ipsec_policy_t *ipp, netstack_t *ns) 3459 { 3460 ASSERT(ipp->ipsp_refs == 0); 3461 ASSERT(ipp->ipsp_sel != NULL); 3462 ASSERT(ipp->ipsp_act != NULL); 3463 3464 ipsec_sel_rel(&ipp->ipsp_sel, ns); 3465 IPACT_REFRELE(ipp->ipsp_act); 3466 kmem_cache_free(ipsec_pol_cache, ipp); 3467 } 3468 3469 /* 3470 * Construction of new policy rules; construct a policy, and add it to 3471 * the appropriate tables. 3472 */ 3473 ipsec_policy_t * 3474 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a, 3475 int nacts, int prio, uint64_t *index_ptr, netstack_t *ns) 3476 { 3477 ipsec_action_t *ap; 3478 ipsec_sel_t *sp; 3479 ipsec_policy_t *ipp; 3480 ipsec_stack_t *ipss = ns->netstack_ipsec; 3481 3482 if (index_ptr == NULL) 3483 index_ptr = &ipss->ipsec_next_policy_index; 3484 3485 ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP); 3486 ap = ipsec_act_find(a, nacts, ns); 3487 sp = ipsec_find_sel(keys, ns); 3488 3489 if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) { 3490 if (ap != NULL) { 3491 IPACT_REFRELE(ap); 3492 } 3493 if (sp != NULL) 3494 ipsec_sel_rel(&sp, ns); 3495 if (ipp != NULL) 3496 kmem_cache_free(ipsec_pol_cache, ipp); 3497 return (NULL); 3498 } 3499 3500 HASH_NULL(ipp, ipsp_hash); 3501 3502 ipp->ipsp_refs = 1; /* caller's reference */ 3503 ipp->ipsp_sel = sp; 3504 ipp->ipsp_act = ap; 3505 ipp->ipsp_prio = prio; /* rule priority */ 3506 ipp->ipsp_index = *index_ptr; 3507 (*index_ptr)++; 3508 3509 return (ipp); 3510 } 3511 3512 static void 3513 ipsec_update_present_flags(ipsec_stack_t *ipss) 3514 { 3515 boolean_t hashpol; 3516 3517 hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0); 3518 3519 if (hashpol) { 3520 ipss->ipsec_outbound_v4_policy_present = B_TRUE; 3521 ipss->ipsec_outbound_v6_policy_present = B_TRUE; 3522 ipss->ipsec_inbound_v4_policy_present = B_TRUE; 3523 ipss->ipsec_inbound_v6_policy_present = B_TRUE; 3524 return; 3525 } 3526 3527 ipss->ipsec_outbound_v4_policy_present = (NULL != 3528 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND]. 3529 ipr_nonhash[IPSEC_AF_V4]); 3530 ipss->ipsec_outbound_v6_policy_present = (NULL != 3531 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND]. 3532 ipr_nonhash[IPSEC_AF_V6]); 3533 ipss->ipsec_inbound_v4_policy_present = (NULL != 3534 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND]. 3535 ipr_nonhash[IPSEC_AF_V4]); 3536 ipss->ipsec_inbound_v6_policy_present = (NULL != 3537 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND]. 3538 ipr_nonhash[IPSEC_AF_V6]); 3539 } 3540 3541 boolean_t 3542 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir, 3543 netstack_t *ns) 3544 { 3545 ipsec_sel_t *sp; 3546 ipsec_policy_t *ip, *nip, *head; 3547 int af; 3548 ipsec_policy_root_t *pr = &php->iph_root[dir]; 3549 3550 sp = ipsec_find_sel(keys, ns); 3551 3552 if (sp == NULL) 3553 return (B_FALSE); 3554 3555 af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6; 3556 3557 rw_enter(&php->iph_lock, RW_WRITER); 3558 3559 if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) { 3560 head = pr->ipr_nonhash[af]; 3561 } else { 3562 head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head; 3563 } 3564 3565 for (ip = head; ip != NULL; ip = nip) { 3566 nip = ip->ipsp_hash.hash_next; 3567 if (ip->ipsp_sel != sp) { 3568 continue; 3569 } 3570 3571 IPPOL_UNCHAIN(php, ip, ns); 3572 3573 php->iph_gen++; 3574 ipsec_update_present_flags(ns->netstack_ipsec); 3575 3576 rw_exit(&php->iph_lock); 3577 3578 ipsec_sel_rel(&sp, ns); 3579 3580 return (B_TRUE); 3581 } 3582 3583 rw_exit(&php->iph_lock); 3584 ipsec_sel_rel(&sp, ns); 3585 return (B_FALSE); 3586 } 3587 3588 int 3589 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index, 3590 netstack_t *ns) 3591 { 3592 boolean_t found = B_FALSE; 3593 ipsec_policy_t ipkey; 3594 ipsec_policy_t *ip; 3595 avl_index_t where; 3596 3597 (void) memset(&ipkey, 0, sizeof (ipkey)); 3598 ipkey.ipsp_index = policy_index; 3599 3600 rw_enter(&php->iph_lock, RW_WRITER); 3601 3602 /* 3603 * We could be cleverer here about the walk. 3604 * but well, (k+1)*log(N) will do for now (k==number of matches, 3605 * N==number of table entries 3606 */ 3607 for (;;) { 3608 ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid, 3609 (void *)&ipkey, &where); 3610 ASSERT(ip == NULL); 3611 3612 ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER); 3613 3614 if (ip == NULL) 3615 break; 3616 3617 if (ip->ipsp_index != policy_index) { 3618 ASSERT(ip->ipsp_index > policy_index); 3619 break; 3620 } 3621 3622 IPPOL_UNCHAIN(php, ip, ns); 3623 found = B_TRUE; 3624 } 3625 3626 if (found) { 3627 php->iph_gen++; 3628 ipsec_update_present_flags(ns->netstack_ipsec); 3629 } 3630 3631 rw_exit(&php->iph_lock); 3632 3633 return (found ? 0 : ENOENT); 3634 } 3635 3636 /* 3637 * Given a constructed ipsec_policy_t policy rule, see if it can be entered 3638 * into the correct policy ruleset. As a side-effect, it sets the hash 3639 * entries on "ipp"'s ipsp_pol_hval. 3640 * 3641 * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a 3642 * duplicate policy exists with exactly the same selectors), or an icmp 3643 * rule exists with a different encryption/authentication action. 3644 */ 3645 boolean_t 3646 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction) 3647 { 3648 ipsec_policy_root_t *pr = &php->iph_root[direction]; 3649 int af = -1; 3650 ipsec_policy_t *p2, *head; 3651 uint8_t check_proto; 3652 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key; 3653 uint32_t valid = selkey->ipsl_valid; 3654 3655 if (valid & IPSL_IPV6) { 3656 ASSERT(!(valid & IPSL_IPV4)); 3657 af = IPSEC_AF_V6; 3658 check_proto = IPPROTO_ICMPV6; 3659 } else { 3660 ASSERT(valid & IPSL_IPV4); 3661 af = IPSEC_AF_V4; 3662 check_proto = IPPROTO_ICMP; 3663 } 3664 3665 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3666 3667 /* 3668 * Double-check that we don't have any duplicate selectors here. 3669 * Because selectors are interned below, we need only compare pointers 3670 * for equality. 3671 */ 3672 if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) { 3673 head = pr->ipr_nonhash[af]; 3674 } else { 3675 selkey->ipsl_pol_hval = 3676 (selkey->ipsl_valid & IPSL_IPV4) ? 3677 IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4, 3678 pr->ipr_nchains) : 3679 IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6, 3680 pr->ipr_nchains); 3681 3682 head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head; 3683 } 3684 3685 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) { 3686 if (p2->ipsp_sel == ipp->ipsp_sel) 3687 return (B_FALSE); 3688 } 3689 3690 /* 3691 * If it's ICMP and not a drop or pass rule, run through the ICMP 3692 * rules and make sure the action is either new or the same as any 3693 * other actions. We don't have to check the full chain because 3694 * discard and bypass will override all other actions 3695 */ 3696 3697 if (valid & IPSL_PROTOCOL && 3698 selkey->ipsl_proto == check_proto && 3699 (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) { 3700 3701 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) { 3702 3703 if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL && 3704 p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto && 3705 (p2->ipsp_act->ipa_act.ipa_type == 3706 IPSEC_ACT_APPLY)) { 3707 return (ipsec_compare_action(p2, ipp)); 3708 } 3709 } 3710 } 3711 3712 return (B_TRUE); 3713 } 3714 3715 /* 3716 * compare the action chains of two policies for equality 3717 * B_TRUE -> effective equality 3718 */ 3719 3720 static boolean_t 3721 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2) 3722 { 3723 3724 ipsec_action_t *act1, *act2; 3725 3726 /* We have a valid rule. Let's compare the actions */ 3727 if (p1->ipsp_act == p2->ipsp_act) { 3728 /* same action. We are good */ 3729 return (B_TRUE); 3730 } 3731 3732 /* we have to walk the chain */ 3733 3734 act1 = p1->ipsp_act; 3735 act2 = p2->ipsp_act; 3736 3737 while (act1 != NULL && act2 != NULL) { 3738 3739 /* otherwise, Are we close enough? */ 3740 if (act1->ipa_allow_clear != act2->ipa_allow_clear || 3741 act1->ipa_want_ah != act2->ipa_want_ah || 3742 act1->ipa_want_esp != act2->ipa_want_esp || 3743 act1->ipa_want_se != act2->ipa_want_se) { 3744 /* Nope, we aren't */ 3745 return (B_FALSE); 3746 } 3747 3748 if (act1->ipa_want_ah) { 3749 if (act1->ipa_act.ipa_apply.ipp_auth_alg != 3750 act2->ipa_act.ipa_apply.ipp_auth_alg) { 3751 return (B_FALSE); 3752 } 3753 3754 if (act1->ipa_act.ipa_apply.ipp_ah_minbits != 3755 act2->ipa_act.ipa_apply.ipp_ah_minbits || 3756 act1->ipa_act.ipa_apply.ipp_ah_maxbits != 3757 act2->ipa_act.ipa_apply.ipp_ah_maxbits) { 3758 return (B_FALSE); 3759 } 3760 } 3761 3762 if (act1->ipa_want_esp) { 3763 if (act1->ipa_act.ipa_apply.ipp_use_esp != 3764 act2->ipa_act.ipa_apply.ipp_use_esp || 3765 act1->ipa_act.ipa_apply.ipp_use_espa != 3766 act2->ipa_act.ipa_apply.ipp_use_espa) { 3767 return (B_FALSE); 3768 } 3769 3770 if (act1->ipa_act.ipa_apply.ipp_use_esp) { 3771 if (act1->ipa_act.ipa_apply.ipp_encr_alg != 3772 act2->ipa_act.ipa_apply.ipp_encr_alg) { 3773 return (B_FALSE); 3774 } 3775 3776 if (act1->ipa_act.ipa_apply.ipp_espe_minbits != 3777 act2->ipa_act.ipa_apply.ipp_espe_minbits || 3778 act1->ipa_act.ipa_apply.ipp_espe_maxbits != 3779 act2->ipa_act.ipa_apply.ipp_espe_maxbits) { 3780 return (B_FALSE); 3781 } 3782 } 3783 3784 if (act1->ipa_act.ipa_apply.ipp_use_espa) { 3785 if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg != 3786 act2->ipa_act.ipa_apply.ipp_esp_auth_alg) { 3787 return (B_FALSE); 3788 } 3789 3790 if (act1->ipa_act.ipa_apply.ipp_espa_minbits != 3791 act2->ipa_act.ipa_apply.ipp_espa_minbits || 3792 act1->ipa_act.ipa_apply.ipp_espa_maxbits != 3793 act2->ipa_act.ipa_apply.ipp_espa_maxbits) { 3794 return (B_FALSE); 3795 } 3796 } 3797 3798 } 3799 3800 act1 = act1->ipa_next; 3801 act2 = act2->ipa_next; 3802 } 3803 3804 if (act1 != NULL || act2 != NULL) { 3805 return (B_FALSE); 3806 } 3807 3808 return (B_TRUE); 3809 } 3810 3811 3812 /* 3813 * Given a constructed ipsec_policy_t policy rule, enter it into 3814 * the correct policy ruleset. 3815 * 3816 * ipsec_check_policy() is assumed to have succeeded first (to check for 3817 * duplicates). 3818 */ 3819 void 3820 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction, 3821 netstack_t *ns) 3822 { 3823 ipsec_policy_root_t *pr = &php->iph_root[direction]; 3824 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key; 3825 uint32_t valid = selkey->ipsl_valid; 3826 uint32_t hval = selkey->ipsl_pol_hval; 3827 int af = -1; 3828 3829 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3830 3831 if (valid & IPSL_IPV6) { 3832 ASSERT(!(valid & IPSL_IPV4)); 3833 af = IPSEC_AF_V6; 3834 } else { 3835 ASSERT(valid & IPSL_IPV4); 3836 af = IPSEC_AF_V4; 3837 } 3838 3839 php->iph_gen++; 3840 3841 if (hval == IPSEC_SEL_NOHASH) { 3842 HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]); 3843 } else { 3844 HASH_LOCK(pr->ipr_hash, hval); 3845 HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval); 3846 HASH_UNLOCK(pr->ipr_hash, hval); 3847 } 3848 3849 ipsec_insert_always(&php->iph_rulebyid, ipp); 3850 3851 ipsec_update_present_flags(ns->netstack_ipsec); 3852 } 3853 3854 static void 3855 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr, 3856 netstack_t *ns) 3857 { 3858 ipsec_policy_t *ip, *nip; 3859 int af, chain, nchain; 3860 3861 for (af = 0; af < IPSEC_NAF; af++) { 3862 for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) { 3863 nip = ip->ipsp_hash.hash_next; 3864 IPPOL_UNCHAIN(php, ip, ns); 3865 } 3866 ipr->ipr_nonhash[af] = NULL; 3867 } 3868 nchain = ipr->ipr_nchains; 3869 3870 for (chain = 0; chain < nchain; chain++) { 3871 for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL; 3872 ip = nip) { 3873 nip = ip->ipsp_hash.hash_next; 3874 IPPOL_UNCHAIN(php, ip, ns); 3875 } 3876 ipr->ipr_hash[chain].hash_head = NULL; 3877 } 3878 } 3879 3880 void 3881 ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns) 3882 { 3883 int dir; 3884 3885 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3886 3887 for (dir = 0; dir < IPSEC_NTYPES; dir++) 3888 ipsec_ipr_flush(php, &php->iph_root[dir], ns); 3889 3890 ipsec_update_present_flags(ns->netstack_ipsec); 3891 } 3892 3893 void 3894 ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns) 3895 { 3896 int dir; 3897 3898 ASSERT(php->iph_refs == 0); 3899 3900 rw_enter(&php->iph_lock, RW_WRITER); 3901 ipsec_polhead_flush(php, ns); 3902 rw_exit(&php->iph_lock); 3903 rw_destroy(&php->iph_lock); 3904 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 3905 ipsec_policy_root_t *ipr = &php->iph_root[dir]; 3906 int chain; 3907 3908 for (chain = 0; chain < ipr->ipr_nchains; chain++) 3909 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock)); 3910 3911 } 3912 ipsec_polhead_free_table(php); 3913 kmem_free(php, sizeof (*php)); 3914 } 3915 3916 static void 3917 ipsec_ipr_init(ipsec_policy_root_t *ipr) 3918 { 3919 int af; 3920 3921 ipr->ipr_nchains = 0; 3922 ipr->ipr_hash = NULL; 3923 3924 for (af = 0; af < IPSEC_NAF; af++) { 3925 ipr->ipr_nonhash[af] = NULL; 3926 } 3927 } 3928 3929 ipsec_policy_head_t * 3930 ipsec_polhead_create(void) 3931 { 3932 ipsec_policy_head_t *php; 3933 3934 php = kmem_alloc(sizeof (*php), KM_NOSLEEP); 3935 if (php == NULL) 3936 return (php); 3937 3938 rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL); 3939 php->iph_refs = 1; 3940 php->iph_gen = 0; 3941 3942 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]); 3943 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]); 3944 3945 avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid, 3946 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid)); 3947 3948 return (php); 3949 } 3950 3951 /* 3952 * Clone the policy head into a new polhead; release one reference to the 3953 * old one and return the only reference to the new one. 3954 * If the old one had a refcount of 1, just return it. 3955 */ 3956 ipsec_policy_head_t * 3957 ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns) 3958 { 3959 ipsec_policy_head_t *nphp; 3960 3961 if (php == NULL) 3962 return (ipsec_polhead_create()); 3963 else if (php->iph_refs == 1) 3964 return (php); 3965 3966 nphp = ipsec_polhead_create(); 3967 if (nphp == NULL) 3968 return (NULL); 3969 3970 if (ipsec_copy_polhead(php, nphp, ns) != 0) { 3971 ipsec_polhead_free(nphp, ns); 3972 return (NULL); 3973 } 3974 IPPH_REFRELE(php, ns); 3975 return (nphp); 3976 } 3977 3978 /* 3979 * When sending a response to a ICMP request or generating a RST 3980 * in the TCP case, the outbound packets need to go at the same level 3981 * of protection as the incoming ones i.e we associate our outbound 3982 * policy with how the packet came in. We call this after we have 3983 * accepted the incoming packet which may or may not have been in 3984 * clear and hence we are sending the reply back with the policy 3985 * matching the incoming datagram's policy. 3986 * 3987 * NOTE : This technology serves two purposes : 3988 * 3989 * 1) If we have multiple outbound policies, we send out a reply 3990 * matching with how it came in rather than matching the outbound 3991 * policy. 3992 * 3993 * 2) For assymetric policies, we want to make sure that incoming 3994 * and outgoing has the same level of protection. Assymetric 3995 * policies exist only with global policy where we may not have 3996 * both outbound and inbound at the same time. 3997 * 3998 * NOTE2: This function is called by cleartext cases, so it needs to be 3999 * in IP proper. 4000 */ 4001 boolean_t 4002 ipsec_in_to_out(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h) 4003 { 4004 ipsec_in_t *ii; 4005 ipsec_out_t *io; 4006 boolean_t v4; 4007 mblk_t *mp; 4008 boolean_t secure; 4009 uint_t ifindex; 4010 ipsec_selector_t sel; 4011 ipsec_action_t *reflect_action = NULL; 4012 zoneid_t zoneid; 4013 netstack_t *ns; 4014 4015 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 4016 4017 bzero((void*)&sel, sizeof (sel)); 4018 4019 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 4020 4021 mp = ipsec_mp->b_cont; 4022 ASSERT(mp != NULL); 4023 4024 if (ii->ipsec_in_action != NULL) { 4025 /* transfer reference.. */ 4026 reflect_action = ii->ipsec_in_action; 4027 ii->ipsec_in_action = NULL; 4028 } else if (!ii->ipsec_in_loopback) 4029 reflect_action = ipsec_in_to_out_action(ii); 4030 secure = ii->ipsec_in_secure; 4031 ifindex = ii->ipsec_in_ill_index; 4032 zoneid = ii->ipsec_in_zoneid; 4033 ASSERT(zoneid != ALL_ZONES); 4034 ns = ii->ipsec_in_ns; 4035 v4 = ii->ipsec_in_v4; 4036 4037 ipsec_in_release_refs(ii); /* No netstack_rele/hold needed */ 4038 4039 /* 4040 * The caller is going to send the datagram out which might 4041 * go on the wire or delivered locally through ip_wput_local. 4042 * 4043 * 1) If it goes out on the wire, new associations will be 4044 * obtained. 4045 * 2) If it is delivered locally, ip_wput_local will convert 4046 * this IPSEC_OUT to a IPSEC_IN looking at the requests. 4047 */ 4048 4049 io = (ipsec_out_t *)ipsec_mp->b_rptr; 4050 bzero(io, sizeof (ipsec_out_t)); 4051 io->ipsec_out_type = IPSEC_OUT; 4052 io->ipsec_out_len = sizeof (ipsec_out_t); 4053 io->ipsec_out_frtn.free_func = ipsec_out_free; 4054 io->ipsec_out_frtn.free_arg = (char *)io; 4055 io->ipsec_out_act = reflect_action; 4056 4057 if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, 4058 ns->netstack_ipsec)) 4059 return (B_FALSE); 4060 4061 io->ipsec_out_src_port = sel.ips_local_port; 4062 io->ipsec_out_dst_port = sel.ips_remote_port; 4063 io->ipsec_out_proto = sel.ips_protocol; 4064 io->ipsec_out_icmp_type = sel.ips_icmp_type; 4065 io->ipsec_out_icmp_code = sel.ips_icmp_code; 4066 4067 /* 4068 * Don't use global policy for this, as we want 4069 * to use the same protection that was applied to the inbound packet. 4070 */ 4071 io->ipsec_out_use_global_policy = B_FALSE; 4072 io->ipsec_out_proc_begin = B_FALSE; 4073 io->ipsec_out_secure = secure; 4074 io->ipsec_out_v4 = v4; 4075 io->ipsec_out_ill_index = ifindex; 4076 io->ipsec_out_zoneid = zoneid; 4077 io->ipsec_out_ns = ns; /* No netstack_hold */ 4078 4079 return (B_TRUE); 4080 } 4081 4082 mblk_t * 4083 ipsec_in_tag(mblk_t *mp, mblk_t *cont, netstack_t *ns) 4084 { 4085 ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr; 4086 ipsec_in_t *nii; 4087 mblk_t *nmp; 4088 frtn_t nfrtn; 4089 ipsec_stack_t *ipss = ns->netstack_ipsec; 4090 4091 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4092 ASSERT(ii->ipsec_in_len == sizeof (ipsec_in_t)); 4093 4094 nmp = ipsec_in_alloc(ii->ipsec_in_v4, ns); 4095 if (nmp == NULL) { 4096 ip_drop_packet_chain(cont, B_FALSE, NULL, NULL, 4097 DROPPER(ipss, ipds_spd_nomem), 4098 &ipss->ipsec_spd_dropper); 4099 return (NULL); 4100 } 4101 4102 ASSERT(nmp->b_datap->db_type == M_CTL); 4103 ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t))); 4104 4105 /* 4106 * Bump refcounts. 4107 */ 4108 if (ii->ipsec_in_ah_sa != NULL) 4109 IPSA_REFHOLD(ii->ipsec_in_ah_sa); 4110 if (ii->ipsec_in_esp_sa != NULL) 4111 IPSA_REFHOLD(ii->ipsec_in_esp_sa); 4112 if (ii->ipsec_in_policy != NULL) 4113 IPPH_REFHOLD(ii->ipsec_in_policy); 4114 4115 /* 4116 * Copy everything, but preserve the free routine provided by 4117 * ipsec_in_alloc(). 4118 */ 4119 nii = (ipsec_in_t *)nmp->b_rptr; 4120 nfrtn = nii->ipsec_in_frtn; 4121 bcopy(ii, nii, sizeof (*ii)); 4122 nii->ipsec_in_frtn = nfrtn; 4123 4124 nmp->b_cont = cont; 4125 4126 return (nmp); 4127 } 4128 4129 mblk_t * 4130 ipsec_out_tag(mblk_t *mp, mblk_t *cont, netstack_t *ns) 4131 { 4132 ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr; 4133 ipsec_out_t *nio; 4134 mblk_t *nmp; 4135 frtn_t nfrtn; 4136 ipsec_stack_t *ipss = ns->netstack_ipsec; 4137 4138 ASSERT(io->ipsec_out_type == IPSEC_OUT); 4139 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 4140 4141 nmp = ipsec_alloc_ipsec_out(ns); 4142 if (nmp == NULL) { 4143 ip_drop_packet_chain(cont, B_FALSE, NULL, NULL, 4144 DROPPER(ipss, ipds_spd_nomem), 4145 &ipss->ipsec_spd_dropper); 4146 return (NULL); 4147 } 4148 ASSERT(nmp->b_datap->db_type == M_CTL); 4149 ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t))); 4150 4151 /* 4152 * Bump refcounts. 4153 */ 4154 if (io->ipsec_out_ah_sa != NULL) 4155 IPSA_REFHOLD(io->ipsec_out_ah_sa); 4156 if (io->ipsec_out_esp_sa != NULL) 4157 IPSA_REFHOLD(io->ipsec_out_esp_sa); 4158 if (io->ipsec_out_polhead != NULL) 4159 IPPH_REFHOLD(io->ipsec_out_polhead); 4160 if (io->ipsec_out_policy != NULL) 4161 IPPOL_REFHOLD(io->ipsec_out_policy); 4162 if (io->ipsec_out_act != NULL) 4163 IPACT_REFHOLD(io->ipsec_out_act); 4164 if (io->ipsec_out_latch != NULL) 4165 IPLATCH_REFHOLD(io->ipsec_out_latch); 4166 if (io->ipsec_out_cred != NULL) 4167 crhold(io->ipsec_out_cred); 4168 4169 /* 4170 * Copy everything, but preserve the free routine provided by 4171 * ipsec_alloc_ipsec_out(). 4172 */ 4173 nio = (ipsec_out_t *)nmp->b_rptr; 4174 nfrtn = nio->ipsec_out_frtn; 4175 bcopy(io, nio, sizeof (*io)); 4176 nio->ipsec_out_frtn = nfrtn; 4177 4178 nmp->b_cont = cont; 4179 4180 return (nmp); 4181 } 4182 4183 static void 4184 ipsec_out_release_refs(ipsec_out_t *io) 4185 { 4186 netstack_t *ns = io->ipsec_out_ns; 4187 4188 ASSERT(io->ipsec_out_type == IPSEC_OUT); 4189 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 4190 ASSERT(io->ipsec_out_ns != NULL); 4191 4192 /* Note: IPSA_REFRELE is multi-line macro */ 4193 if (io->ipsec_out_ah_sa != NULL) 4194 IPSA_REFRELE(io->ipsec_out_ah_sa); 4195 if (io->ipsec_out_esp_sa != NULL) 4196 IPSA_REFRELE(io->ipsec_out_esp_sa); 4197 if (io->ipsec_out_polhead != NULL) 4198 IPPH_REFRELE(io->ipsec_out_polhead, ns); 4199 if (io->ipsec_out_policy != NULL) 4200 IPPOL_REFRELE(io->ipsec_out_policy, ns); 4201 if (io->ipsec_out_act != NULL) 4202 IPACT_REFRELE(io->ipsec_out_act); 4203 if (io->ipsec_out_cred != NULL) { 4204 crfree(io->ipsec_out_cred); 4205 io->ipsec_out_cred = NULL; 4206 } 4207 if (io->ipsec_out_latch) { 4208 IPLATCH_REFRELE(io->ipsec_out_latch, ns); 4209 io->ipsec_out_latch = NULL; 4210 } 4211 } 4212 4213 static void 4214 ipsec_out_free(void *arg) 4215 { 4216 ipsec_out_t *io = (ipsec_out_t *)arg; 4217 ipsec_out_release_refs(io); 4218 kmem_cache_free(ipsec_info_cache, arg); 4219 } 4220 4221 static void 4222 ipsec_in_release_refs(ipsec_in_t *ii) 4223 { 4224 netstack_t *ns = ii->ipsec_in_ns; 4225 4226 ASSERT(ii->ipsec_in_ns != NULL); 4227 4228 /* Note: IPSA_REFRELE is multi-line macro */ 4229 if (ii->ipsec_in_ah_sa != NULL) 4230 IPSA_REFRELE(ii->ipsec_in_ah_sa); 4231 if (ii->ipsec_in_esp_sa != NULL) 4232 IPSA_REFRELE(ii->ipsec_in_esp_sa); 4233 if (ii->ipsec_in_policy != NULL) 4234 IPPH_REFRELE(ii->ipsec_in_policy, ns); 4235 if (ii->ipsec_in_da != NULL) { 4236 freeb(ii->ipsec_in_da); 4237 ii->ipsec_in_da = NULL; 4238 } 4239 } 4240 4241 static void 4242 ipsec_in_free(void *arg) 4243 { 4244 ipsec_in_t *ii = (ipsec_in_t *)arg; 4245 ipsec_in_release_refs(ii); 4246 kmem_cache_free(ipsec_info_cache, arg); 4247 } 4248 4249 /* 4250 * This is called only for outbound datagrams if the datagram needs to 4251 * go out secure. A NULL mp can be passed to get an ipsec_out. This 4252 * facility is used by ip_unbind. 4253 * 4254 * NOTE : o As the data part could be modified by ipsec_out_process etc. 4255 * we can't make it fast by calling a dup. 4256 */ 4257 mblk_t * 4258 ipsec_alloc_ipsec_out(netstack_t *ns) 4259 { 4260 mblk_t *ipsec_mp; 4261 ipsec_out_t *io = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP); 4262 4263 if (io == NULL) 4264 return (NULL); 4265 4266 bzero(io, sizeof (ipsec_out_t)); 4267 4268 io->ipsec_out_type = IPSEC_OUT; 4269 io->ipsec_out_len = sizeof (ipsec_out_t); 4270 io->ipsec_out_frtn.free_func = ipsec_out_free; 4271 io->ipsec_out_frtn.free_arg = (char *)io; 4272 4273 /* 4274 * Set the zoneid to ALL_ZONES which is used as an invalid value. Code 4275 * using ipsec_out_zoneid should assert that the zoneid has been set to 4276 * a sane value. 4277 */ 4278 io->ipsec_out_zoneid = ALL_ZONES; 4279 io->ipsec_out_ns = ns; /* No netstack_hold */ 4280 4281 ipsec_mp = desballoc((uint8_t *)io, sizeof (ipsec_info_t), BPRI_HI, 4282 &io->ipsec_out_frtn); 4283 if (ipsec_mp == NULL) { 4284 ipsec_out_free(io); 4285 4286 return (NULL); 4287 } 4288 ipsec_mp->b_datap->db_type = M_CTL; 4289 ipsec_mp->b_wptr = ipsec_mp->b_rptr + sizeof (ipsec_info_t); 4290 4291 return (ipsec_mp); 4292 } 4293 4294 /* 4295 * Attach an IPSEC_OUT; use pol for policy if it is non-null. 4296 * Otherwise initialize using conn. 4297 * 4298 * If pol is non-null, we consume a reference to it. 4299 */ 4300 mblk_t * 4301 ipsec_attach_ipsec_out(mblk_t **mp, conn_t *connp, ipsec_policy_t *pol, 4302 uint8_t proto, netstack_t *ns) 4303 { 4304 mblk_t *ipsec_mp; 4305 ipsec_stack_t *ipss = ns->netstack_ipsec; 4306 4307 ASSERT((pol != NULL) || (connp != NULL)); 4308 4309 ipsec_mp = ipsec_alloc_ipsec_out(ns); 4310 if (ipsec_mp == NULL) { 4311 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_NOTE, 4312 "ipsec_attach_ipsec_out: Allocation failure\n"); 4313 ip_drop_packet(*mp, B_FALSE, NULL, NULL, 4314 DROPPER(ipss, ipds_spd_nomem), 4315 &ipss->ipsec_spd_dropper); 4316 *mp = NULL; 4317 return (NULL); 4318 } 4319 ipsec_mp->b_cont = *mp; 4320 /* 4321 * If *mp is NULL, ipsec_init_ipsec_out() won't/should not be using it. 4322 */ 4323 return (ipsec_init_ipsec_out(ipsec_mp, mp, connp, pol, proto, ns)); 4324 } 4325 4326 /* 4327 * Initialize the IPSEC_OUT (ipsec_mp) using pol if it is non-null. 4328 * Otherwise initialize using conn. 4329 * 4330 * If pol is non-null, we consume a reference to it. 4331 */ 4332 mblk_t * 4333 ipsec_init_ipsec_out(mblk_t *ipsec_mp, mblk_t **mp, conn_t *connp, 4334 ipsec_policy_t *pol, uint8_t proto, netstack_t *ns) 4335 { 4336 ipsec_out_t *io; 4337 ipsec_policy_t *p; 4338 ipha_t *ipha; 4339 ip6_t *ip6h; 4340 ipsec_stack_t *ipss = ns->netstack_ipsec; 4341 4342 ASSERT(ipsec_mp->b_cont == *mp); 4343 4344 ASSERT((pol != NULL) || (connp != NULL)); 4345 4346 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 4347 ASSERT(ipsec_mp->b_wptr == (ipsec_mp->b_rptr + sizeof (ipsec_info_t))); 4348 io = (ipsec_out_t *)ipsec_mp->b_rptr; 4349 ASSERT(io->ipsec_out_type == IPSEC_OUT); 4350 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 4351 io->ipsec_out_latch = NULL; 4352 /* 4353 * Set the zoneid when we have the connp. 4354 * Otherwise, we're called from ip_wput_attach_policy() who will take 4355 * care of setting the zoneid. 4356 */ 4357 if (connp != NULL) 4358 io->ipsec_out_zoneid = connp->conn_zoneid; 4359 4360 io->ipsec_out_ns = ns; /* No netstack_hold */ 4361 4362 if (*mp != NULL) { 4363 ipha = (ipha_t *)(*mp)->b_rptr; 4364 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 4365 io->ipsec_out_v4 = B_TRUE; 4366 ip6h = NULL; 4367 } else { 4368 io->ipsec_out_v4 = B_FALSE; 4369 ip6h = (ip6_t *)ipha; 4370 ipha = NULL; 4371 } 4372 } else { 4373 ASSERT(connp != NULL && connp->conn_policy_cached); 4374 ip6h = NULL; 4375 ipha = NULL; 4376 io->ipsec_out_v4 = !connp->conn_pkt_isv6; 4377 } 4378 4379 p = NULL; 4380 4381 /* 4382 * Take latched policies over global policy. Check here again for 4383 * this, in case we had conn_latch set while the packet was flying 4384 * around in IP. 4385 */ 4386 if (connp != NULL && connp->conn_latch != NULL) { 4387 ASSERT(ns == connp->conn_netstack); 4388 p = connp->conn_latch->ipl_out_policy; 4389 io->ipsec_out_latch = connp->conn_latch; 4390 IPLATCH_REFHOLD(connp->conn_latch); 4391 if (p != NULL) { 4392 IPPOL_REFHOLD(p); 4393 } 4394 io->ipsec_out_src_port = connp->conn_lport; 4395 io->ipsec_out_dst_port = connp->conn_fport; 4396 io->ipsec_out_icmp_type = io->ipsec_out_icmp_code = 0; 4397 if (pol != NULL) 4398 IPPOL_REFRELE(pol, ns); 4399 } else if (pol != NULL) { 4400 ipsec_selector_t sel; 4401 4402 bzero((void*)&sel, sizeof (sel)); 4403 4404 p = pol; 4405 /* 4406 * conn does not have the port information. Get 4407 * it from the packet. 4408 */ 4409 4410 if (!ipsec_init_outbound_ports(&sel, *mp, ipha, ip6h, 0, 4411 ns->netstack_ipsec)) { 4412 /* Callee did ip_drop_packet() on *mp. */ 4413 *mp = NULL; 4414 freeb(ipsec_mp); 4415 return (NULL); 4416 } 4417 io->ipsec_out_src_port = sel.ips_local_port; 4418 io->ipsec_out_dst_port = sel.ips_remote_port; 4419 io->ipsec_out_icmp_type = sel.ips_icmp_type; 4420 io->ipsec_out_icmp_code = sel.ips_icmp_code; 4421 } 4422 4423 io->ipsec_out_proto = proto; 4424 io->ipsec_out_use_global_policy = B_TRUE; 4425 io->ipsec_out_secure = (p != NULL); 4426 io->ipsec_out_policy = p; 4427 4428 if (p == NULL) { 4429 if (connp->conn_policy != NULL) { 4430 io->ipsec_out_secure = B_TRUE; 4431 ASSERT(io->ipsec_out_latch == NULL); 4432 ASSERT(io->ipsec_out_use_global_policy == B_TRUE); 4433 io->ipsec_out_need_policy = B_TRUE; 4434 ASSERT(io->ipsec_out_polhead == NULL); 4435 IPPH_REFHOLD(connp->conn_policy); 4436 io->ipsec_out_polhead = connp->conn_policy; 4437 } 4438 } else { 4439 /* Handle explicit drop action. */ 4440 if (p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_DISCARD || 4441 p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_REJECT) { 4442 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 4443 DROPPER(ipss, ipds_spd_explicit), 4444 &ipss->ipsec_spd_dropper); 4445 *mp = NULL; 4446 ipsec_mp = NULL; 4447 } 4448 } 4449 4450 return (ipsec_mp); 4451 } 4452 4453 /* 4454 * Allocate an IPSEC_IN mblk. This will be prepended to an inbound datagram 4455 * and keep track of what-if-any IPsec processing will be applied to the 4456 * datagram. 4457 */ 4458 mblk_t * 4459 ipsec_in_alloc(boolean_t isv4, netstack_t *ns) 4460 { 4461 mblk_t *ipsec_in; 4462 ipsec_in_t *ii = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP); 4463 4464 if (ii == NULL) 4465 return (NULL); 4466 4467 bzero(ii, sizeof (ipsec_info_t)); 4468 ii->ipsec_in_type = IPSEC_IN; 4469 ii->ipsec_in_len = sizeof (ipsec_in_t); 4470 4471 ii->ipsec_in_v4 = isv4; 4472 ii->ipsec_in_secure = B_TRUE; 4473 ii->ipsec_in_ns = ns; /* No netstack_hold */ 4474 ii->ipsec_in_stackid = ns->netstack_stackid; 4475 4476 ii->ipsec_in_frtn.free_func = ipsec_in_free; 4477 ii->ipsec_in_frtn.free_arg = (char *)ii; 4478 4479 ipsec_in = desballoc((uint8_t *)ii, sizeof (ipsec_info_t), BPRI_HI, 4480 &ii->ipsec_in_frtn); 4481 if (ipsec_in == NULL) { 4482 ip1dbg(("ipsec_in_alloc: IPSEC_IN allocation failure.\n")); 4483 ipsec_in_free(ii); 4484 return (NULL); 4485 } 4486 4487 ipsec_in->b_datap->db_type = M_CTL; 4488 ipsec_in->b_wptr += sizeof (ipsec_info_t); 4489 4490 return (ipsec_in); 4491 } 4492 4493 /* 4494 * This is called from ip_wput_local when a packet which needs 4495 * security is looped back, to convert the IPSEC_OUT to a IPSEC_IN 4496 * before fanout, where the policy check happens. In most of the 4497 * cases, IPSEC processing has *never* been done. There is one case 4498 * (ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed) where 4499 * the packet is destined for localhost, IPSEC processing has already 4500 * been done. 4501 * 4502 * Future: This could happen after SA selection has occurred for 4503 * outbound.. which will tell us who the src and dst identities are.. 4504 * Then it's just a matter of splicing the ah/esp SA pointers from the 4505 * ipsec_out_t to the ipsec_in_t. 4506 */ 4507 void 4508 ipsec_out_to_in(mblk_t *ipsec_mp) 4509 { 4510 ipsec_in_t *ii; 4511 ipsec_out_t *io; 4512 ipsec_policy_t *pol; 4513 ipsec_action_t *act; 4514 boolean_t v4, icmp_loopback; 4515 zoneid_t zoneid; 4516 netstack_t *ns; 4517 4518 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 4519 4520 io = (ipsec_out_t *)ipsec_mp->b_rptr; 4521 4522 v4 = io->ipsec_out_v4; 4523 zoneid = io->ipsec_out_zoneid; 4524 icmp_loopback = io->ipsec_out_icmp_loopback; 4525 ns = io->ipsec_out_ns; 4526 4527 act = io->ipsec_out_act; 4528 if (act == NULL) { 4529 pol = io->ipsec_out_policy; 4530 if (pol != NULL) { 4531 act = pol->ipsp_act; 4532 IPACT_REFHOLD(act); 4533 } 4534 } 4535 io->ipsec_out_act = NULL; 4536 4537 ipsec_out_release_refs(io); /* No netstack_rele/hold needed */ 4538 4539 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 4540 bzero(ii, sizeof (ipsec_in_t)); 4541 ii->ipsec_in_type = IPSEC_IN; 4542 ii->ipsec_in_len = sizeof (ipsec_in_t); 4543 ii->ipsec_in_loopback = B_TRUE; 4544 ii->ipsec_in_ns = ns; /* No netstack_hold */ 4545 4546 ii->ipsec_in_frtn.free_func = ipsec_in_free; 4547 ii->ipsec_in_frtn.free_arg = (char *)ii; 4548 ii->ipsec_in_action = act; 4549 ii->ipsec_in_zoneid = zoneid; 4550 4551 /* 4552 * In most of the cases, we can't look at the ipsec_out_XXX_sa 4553 * because this never went through IPSEC processing. So, look at 4554 * the requests and infer whether it would have gone through 4555 * IPSEC processing or not. Initialize the "done" fields with 4556 * the requests. The possible values for "done" fields are : 4557 * 4558 * 1) zero, indicates that a particular preference was never 4559 * requested. 4560 * 2) non-zero, indicates that it could be IPSEC_PREF_REQUIRED/ 4561 * IPSEC_PREF_NEVER. If IPSEC_REQ_DONE is set, it means that 4562 * IPSEC processing has been completed. 4563 */ 4564 ii->ipsec_in_secure = B_TRUE; 4565 ii->ipsec_in_v4 = v4; 4566 ii->ipsec_in_icmp_loopback = icmp_loopback; 4567 } 4568 4569 /* 4570 * Consults global policy to see whether this datagram should 4571 * go out secure. If so it attaches a ipsec_mp in front and 4572 * returns. 4573 */ 4574 mblk_t * 4575 ip_wput_attach_policy(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 4576 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 4577 { 4578 mblk_t *mp; 4579 ipsec_out_t *io = NULL; 4580 ipsec_selector_t sel; 4581 uint_t ill_index; 4582 boolean_t conn_dontroutex; 4583 boolean_t conn_multicast_loopx; 4584 boolean_t policy_present; 4585 ip_stack_t *ipst = ire->ire_ipst; 4586 netstack_t *ns = ipst->ips_netstack; 4587 ipsec_stack_t *ipss = ns->netstack_ipsec; 4588 4589 ASSERT((ipha != NULL && ip6h == NULL) || 4590 (ip6h != NULL && ipha == NULL)); 4591 4592 bzero((void*)&sel, sizeof (sel)); 4593 4594 if (ipha != NULL) 4595 policy_present = ipss->ipsec_outbound_v4_policy_present; 4596 else 4597 policy_present = ipss->ipsec_outbound_v6_policy_present; 4598 /* 4599 * Fast Path to see if there is any policy. 4600 */ 4601 if (!policy_present) { 4602 if (ipsec_mp->b_datap->db_type == M_CTL) { 4603 io = (ipsec_out_t *)ipsec_mp->b_rptr; 4604 if (!io->ipsec_out_secure) { 4605 /* 4606 * If there is no global policy and ip_wput 4607 * or ip_wput_multicast has attached this mp 4608 * for multicast case, free the ipsec_mp and 4609 * return the original mp. 4610 */ 4611 mp = ipsec_mp->b_cont; 4612 freeb(ipsec_mp); 4613 ipsec_mp = mp; 4614 io = NULL; 4615 } 4616 ASSERT(io == NULL || !io->ipsec_out_tunnel); 4617 } 4618 if (((io == NULL) || (io->ipsec_out_polhead == NULL)) && 4619 ((connp == NULL) || (connp->conn_policy == NULL))) 4620 return (ipsec_mp); 4621 } 4622 4623 ill_index = 0; 4624 conn_multicast_loopx = conn_dontroutex = B_FALSE; 4625 mp = ipsec_mp; 4626 if (ipsec_mp->b_datap->db_type == M_CTL) { 4627 mp = ipsec_mp->b_cont; 4628 /* 4629 * This is a connection where we have some per-socket 4630 * policy or ip_wput has attached an ipsec_mp for 4631 * the multicast datagram. 4632 */ 4633 io = (ipsec_out_t *)ipsec_mp->b_rptr; 4634 if (!io->ipsec_out_secure) { 4635 /* 4636 * This ipsec_mp was allocated in ip_wput or 4637 * ip_wput_multicast so that we will know the 4638 * value of ill_index, conn_dontroute, 4639 * conn_multicast_loop in the multicast case if 4640 * we inherit global policy here. 4641 */ 4642 ill_index = io->ipsec_out_ill_index; 4643 conn_dontroutex = io->ipsec_out_dontroute; 4644 conn_multicast_loopx = io->ipsec_out_multicast_loop; 4645 freeb(ipsec_mp); 4646 ipsec_mp = mp; 4647 io = NULL; 4648 } 4649 ASSERT(io == NULL || !io->ipsec_out_tunnel); 4650 } 4651 4652 if (ipha != NULL) { 4653 sel.ips_local_addr_v4 = (ipha->ipha_src != 0 ? 4654 ipha->ipha_src : ire->ire_src_addr); 4655 sel.ips_remote_addr_v4 = ip_get_dst(ipha); 4656 sel.ips_protocol = (uint8_t)ipha->ipha_protocol; 4657 sel.ips_isv4 = B_TRUE; 4658 } else { 4659 ushort_t hdr_len; 4660 uint8_t *nexthdrp; 4661 boolean_t is_fragment; 4662 4663 sel.ips_isv4 = B_FALSE; 4664 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) { 4665 if (!unspec_src) 4666 sel.ips_local_addr_v6 = ire->ire_src_addr_v6; 4667 } else { 4668 sel.ips_local_addr_v6 = ip6h->ip6_src; 4669 } 4670 4671 sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, mp, &is_fragment); 4672 if (is_fragment) { 4673 /* 4674 * It's a packet fragment for a packet that 4675 * we have already processed (since IPsec processing 4676 * is done before fragmentation), so we don't 4677 * have to do policy checks again. Fragments can 4678 * come back to us for processing if they have 4679 * been queued up due to flow control. 4680 */ 4681 if (ipsec_mp->b_datap->db_type == M_CTL) { 4682 mp = ipsec_mp->b_cont; 4683 freeb(ipsec_mp); 4684 ipsec_mp = mp; 4685 } 4686 return (ipsec_mp); 4687 } 4688 4689 /* IPv6 common-case. */ 4690 sel.ips_protocol = ip6h->ip6_nxt; 4691 switch (ip6h->ip6_nxt) { 4692 case IPPROTO_TCP: 4693 case IPPROTO_UDP: 4694 case IPPROTO_SCTP: 4695 case IPPROTO_ICMPV6: 4696 break; 4697 default: 4698 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, 4699 &hdr_len, &nexthdrp)) { 4700 BUMP_MIB(&ipst->ips_ip6_mib, 4701 ipIfStatsOutDiscards); 4702 freemsg(ipsec_mp); /* Not IPsec-related drop. */ 4703 return (NULL); 4704 } 4705 sel.ips_protocol = *nexthdrp; 4706 break; 4707 } 4708 } 4709 4710 if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) { 4711 if (ipha != NULL) { 4712 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 4713 } else { 4714 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 4715 } 4716 4717 /* Callee dropped the packet. */ 4718 return (NULL); 4719 } 4720 4721 if (io != NULL) { 4722 /* 4723 * We seem to have some local policy (we already have 4724 * an ipsec_out). Look at global policy and see 4725 * whether we have to inherit or not. 4726 */ 4727 io->ipsec_out_need_policy = B_FALSE; 4728 ipsec_mp = ipsec_apply_global_policy(ipsec_mp, connp, 4729 &sel, ns); 4730 ASSERT((io->ipsec_out_policy != NULL) || 4731 (io->ipsec_out_act != NULL)); 4732 ASSERT(io->ipsec_out_need_policy == B_FALSE); 4733 return (ipsec_mp); 4734 } 4735 /* 4736 * We pass in a pointer to a pointer because mp can become 4737 * NULL due to allocation failures or explicit drops. Callers 4738 * of this function should assume a NULL mp means the packet 4739 * was dropped. 4740 */ 4741 ipsec_mp = ipsec_attach_global_policy(&mp, connp, &sel, ns); 4742 if (ipsec_mp == NULL) 4743 return (mp); 4744 4745 /* 4746 * Copy the right port information. 4747 */ 4748 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 4749 io = (ipsec_out_t *)ipsec_mp->b_rptr; 4750 4751 ASSERT(io->ipsec_out_need_policy == B_FALSE); 4752 ASSERT((io->ipsec_out_policy != NULL) || 4753 (io->ipsec_out_act != NULL)); 4754 io->ipsec_out_src_port = sel.ips_local_port; 4755 io->ipsec_out_dst_port = sel.ips_remote_port; 4756 io->ipsec_out_icmp_type = sel.ips_icmp_type; 4757 io->ipsec_out_icmp_code = sel.ips_icmp_code; 4758 /* 4759 * Set ill_index, conn_dontroute and conn_multicast_loop 4760 * for multicast datagrams. 4761 */ 4762 io->ipsec_out_ill_index = ill_index; 4763 io->ipsec_out_dontroute = conn_dontroutex; 4764 io->ipsec_out_multicast_loop = conn_multicast_loopx; 4765 4766 if (zoneid == ALL_ZONES) 4767 zoneid = GLOBAL_ZONEID; 4768 io->ipsec_out_zoneid = zoneid; 4769 return (ipsec_mp); 4770 } 4771 4772 /* 4773 * When appropriate, this function caches inbound and outbound policy 4774 * for this connection. 4775 * 4776 * XXX need to work out more details about per-interface policy and 4777 * caching here! 4778 * 4779 * XXX may want to split inbound and outbound caching for ill.. 4780 */ 4781 int 4782 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4) 4783 { 4784 boolean_t global_policy_present; 4785 netstack_t *ns = connp->conn_netstack; 4786 ipsec_stack_t *ipss = ns->netstack_ipsec; 4787 4788 /* 4789 * There is no policy latching for ICMP sockets because we can't 4790 * decide on which policy to use until we see the packet and get 4791 * type/code selectors. 4792 */ 4793 if (connp->conn_ulp == IPPROTO_ICMP || 4794 connp->conn_ulp == IPPROTO_ICMPV6) { 4795 connp->conn_in_enforce_policy = 4796 connp->conn_out_enforce_policy = B_TRUE; 4797 if (connp->conn_latch != NULL) { 4798 IPLATCH_REFRELE(connp->conn_latch, ns); 4799 connp->conn_latch = NULL; 4800 } 4801 connp->conn_flags |= IPCL_CHECK_POLICY; 4802 return (0); 4803 } 4804 4805 global_policy_present = isv4 ? 4806 (ipss->ipsec_outbound_v4_policy_present || 4807 ipss->ipsec_inbound_v4_policy_present) : 4808 (ipss->ipsec_outbound_v6_policy_present || 4809 ipss->ipsec_inbound_v6_policy_present); 4810 4811 if ((connp->conn_policy != NULL) || global_policy_present) { 4812 ipsec_selector_t sel; 4813 ipsec_policy_t *p; 4814 4815 if (connp->conn_latch == NULL && 4816 (connp->conn_latch = iplatch_create()) == NULL) { 4817 return (ENOMEM); 4818 } 4819 4820 sel.ips_protocol = connp->conn_ulp; 4821 sel.ips_local_port = connp->conn_lport; 4822 sel.ips_remote_port = connp->conn_fport; 4823 sel.ips_is_icmp_inv_acq = 0; 4824 sel.ips_isv4 = isv4; 4825 if (isv4) { 4826 sel.ips_local_addr_v4 = connp->conn_src; 4827 sel.ips_remote_addr_v4 = connp->conn_rem; 4828 } else { 4829 sel.ips_local_addr_v6 = connp->conn_srcv6; 4830 sel.ips_remote_addr_v6 = connp->conn_remv6; 4831 } 4832 4833 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel, 4834 ns); 4835 if (connp->conn_latch->ipl_in_policy != NULL) 4836 IPPOL_REFRELE(connp->conn_latch->ipl_in_policy, ns); 4837 connp->conn_latch->ipl_in_policy = p; 4838 connp->conn_in_enforce_policy = (p != NULL); 4839 4840 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, &sel, 4841 ns); 4842 if (connp->conn_latch->ipl_out_policy != NULL) 4843 IPPOL_REFRELE(connp->conn_latch->ipl_out_policy, ns); 4844 connp->conn_latch->ipl_out_policy = p; 4845 connp->conn_out_enforce_policy = (p != NULL); 4846 4847 /* Clear the latched actions too, in case we're recaching. */ 4848 if (connp->conn_latch->ipl_out_action != NULL) 4849 IPACT_REFRELE(connp->conn_latch->ipl_out_action); 4850 if (connp->conn_latch->ipl_in_action != NULL) 4851 IPACT_REFRELE(connp->conn_latch->ipl_in_action); 4852 } 4853 4854 /* 4855 * We may or may not have policy for this endpoint. We still set 4856 * conn_policy_cached so that inbound datagrams don't have to look 4857 * at global policy as policy is considered latched for these 4858 * endpoints. We should not set conn_policy_cached until the conn 4859 * reflects the actual policy. If we *set* this before inheriting 4860 * the policy there is a window where the check 4861 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy 4862 * on the conn (because we have not yet copied the policy on to 4863 * conn and hence not set conn_in_enforce_policy) nor with the 4864 * global policy (because conn_policy_cached is already set). 4865 */ 4866 connp->conn_policy_cached = B_TRUE; 4867 if (connp->conn_in_enforce_policy) 4868 connp->conn_flags |= IPCL_CHECK_POLICY; 4869 return (0); 4870 } 4871 4872 void 4873 iplatch_free(ipsec_latch_t *ipl, netstack_t *ns) 4874 { 4875 if (ipl->ipl_out_policy != NULL) 4876 IPPOL_REFRELE(ipl->ipl_out_policy, ns); 4877 if (ipl->ipl_in_policy != NULL) 4878 IPPOL_REFRELE(ipl->ipl_in_policy, ns); 4879 if (ipl->ipl_in_action != NULL) 4880 IPACT_REFRELE(ipl->ipl_in_action); 4881 if (ipl->ipl_out_action != NULL) 4882 IPACT_REFRELE(ipl->ipl_out_action); 4883 if (ipl->ipl_local_cid != NULL) 4884 IPSID_REFRELE(ipl->ipl_local_cid); 4885 if (ipl->ipl_remote_cid != NULL) 4886 IPSID_REFRELE(ipl->ipl_remote_cid); 4887 if (ipl->ipl_local_id != NULL) 4888 crfree(ipl->ipl_local_id); 4889 mutex_destroy(&ipl->ipl_lock); 4890 kmem_free(ipl, sizeof (*ipl)); 4891 } 4892 4893 ipsec_latch_t * 4894 iplatch_create() 4895 { 4896 ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP); 4897 if (ipl == NULL) 4898 return (ipl); 4899 bzero(ipl, sizeof (*ipl)); 4900 mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL); 4901 ipl->ipl_refcnt = 1; 4902 return (ipl); 4903 } 4904 4905 /* 4906 * Hash function for ID hash table. 4907 */ 4908 static uint32_t 4909 ipsid_hash(int idtype, char *idstring) 4910 { 4911 uint32_t hval = idtype; 4912 unsigned char c; 4913 4914 while ((c = *idstring++) != 0) { 4915 hval = (hval << 4) | (hval >> 28); 4916 hval ^= c; 4917 } 4918 hval = hval ^ (hval >> 16); 4919 return (hval & (IPSID_HASHSIZE-1)); 4920 } 4921 4922 /* 4923 * Look up identity string in hash table. Return identity object 4924 * corresponding to the name -- either preexisting, or newly allocated. 4925 * 4926 * Return NULL if we need to allocate a new one and can't get memory. 4927 */ 4928 ipsid_t * 4929 ipsid_lookup(int idtype, char *idstring, netstack_t *ns) 4930 { 4931 ipsid_t *retval; 4932 char *nstr; 4933 int idlen = strlen(idstring) + 1; 4934 ipsec_stack_t *ipss = ns->netstack_ipsec; 4935 ipsif_t *bucket; 4936 4937 bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)]; 4938 4939 mutex_enter(&bucket->ipsif_lock); 4940 4941 for (retval = bucket->ipsif_head; retval != NULL; 4942 retval = retval->ipsid_next) { 4943 if (idtype != retval->ipsid_type) 4944 continue; 4945 if (bcmp(idstring, retval->ipsid_cid, idlen) != 0) 4946 continue; 4947 4948 IPSID_REFHOLD(retval); 4949 mutex_exit(&bucket->ipsif_lock); 4950 return (retval); 4951 } 4952 4953 retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP); 4954 if (!retval) { 4955 mutex_exit(&bucket->ipsif_lock); 4956 return (NULL); 4957 } 4958 4959 nstr = kmem_alloc(idlen, KM_NOSLEEP); 4960 if (!nstr) { 4961 mutex_exit(&bucket->ipsif_lock); 4962 kmem_free(retval, sizeof (*retval)); 4963 return (NULL); 4964 } 4965 4966 retval->ipsid_refcnt = 1; 4967 retval->ipsid_next = bucket->ipsif_head; 4968 if (retval->ipsid_next != NULL) 4969 retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next; 4970 retval->ipsid_ptpn = &bucket->ipsif_head; 4971 retval->ipsid_type = idtype; 4972 retval->ipsid_cid = nstr; 4973 bucket->ipsif_head = retval; 4974 bcopy(idstring, nstr, idlen); 4975 mutex_exit(&bucket->ipsif_lock); 4976 4977 return (retval); 4978 } 4979 4980 /* 4981 * Garbage collect the identity hash table. 4982 */ 4983 void 4984 ipsid_gc(netstack_t *ns) 4985 { 4986 int i, len; 4987 ipsid_t *id, *nid; 4988 ipsif_t *bucket; 4989 ipsec_stack_t *ipss = ns->netstack_ipsec; 4990 4991 for (i = 0; i < IPSID_HASHSIZE; i++) { 4992 bucket = &ipss->ipsec_ipsid_buckets[i]; 4993 mutex_enter(&bucket->ipsif_lock); 4994 for (id = bucket->ipsif_head; id != NULL; id = nid) { 4995 nid = id->ipsid_next; 4996 if (id->ipsid_refcnt == 0) { 4997 *id->ipsid_ptpn = nid; 4998 if (nid != NULL) 4999 nid->ipsid_ptpn = id->ipsid_ptpn; 5000 len = strlen(id->ipsid_cid) + 1; 5001 kmem_free(id->ipsid_cid, len); 5002 kmem_free(id, sizeof (*id)); 5003 } 5004 } 5005 mutex_exit(&bucket->ipsif_lock); 5006 } 5007 } 5008 5009 /* 5010 * Return true if two identities are the same. 5011 */ 5012 boolean_t 5013 ipsid_equal(ipsid_t *id1, ipsid_t *id2) 5014 { 5015 if (id1 == id2) 5016 return (B_TRUE); 5017 #ifdef DEBUG 5018 if ((id1 == NULL) || (id2 == NULL)) 5019 return (B_FALSE); 5020 /* 5021 * test that we're interning id's correctly.. 5022 */ 5023 ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) || 5024 (id1->ipsid_type != id2->ipsid_type)); 5025 #endif 5026 return (B_FALSE); 5027 } 5028 5029 /* 5030 * Initialize identity table; called during module initialization. 5031 */ 5032 static void 5033 ipsid_init(netstack_t *ns) 5034 { 5035 ipsif_t *bucket; 5036 int i; 5037 ipsec_stack_t *ipss = ns->netstack_ipsec; 5038 5039 for (i = 0; i < IPSID_HASHSIZE; i++) { 5040 bucket = &ipss->ipsec_ipsid_buckets[i]; 5041 mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL); 5042 } 5043 } 5044 5045 /* 5046 * Free identity table (preparatory to module unload) 5047 */ 5048 static void 5049 ipsid_fini(netstack_t *ns) 5050 { 5051 ipsif_t *bucket; 5052 int i; 5053 ipsec_stack_t *ipss = ns->netstack_ipsec; 5054 5055 for (i = 0; i < IPSID_HASHSIZE; i++) { 5056 bucket = &ipss->ipsec_ipsid_buckets[i]; 5057 ASSERT(bucket->ipsif_head == NULL); 5058 mutex_destroy(&bucket->ipsif_lock); 5059 } 5060 } 5061 5062 /* 5063 * Update the minimum and maximum supported key sizes for the 5064 * specified algorithm. Must be called while holding the algorithms lock. 5065 */ 5066 void 5067 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type, 5068 netstack_t *ns) 5069 { 5070 size_t crypto_min = (size_t)-1, crypto_max = 0; 5071 size_t cur_crypto_min, cur_crypto_max; 5072 boolean_t is_valid; 5073 crypto_mechanism_info_t *mech_infos; 5074 uint_t nmech_infos; 5075 int crypto_rc, i; 5076 crypto_mech_usage_t mask; 5077 ipsec_stack_t *ipss = ns->netstack_ipsec; 5078 5079 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 5080 5081 /* 5082 * Compute the min, max, and default key sizes (in number of 5083 * increments to the default key size in bits) as defined 5084 * by the algorithm mappings. This range of key sizes is used 5085 * for policy related operations. The effective key sizes 5086 * supported by the framework could be more limited than 5087 * those defined for an algorithm. 5088 */ 5089 alg->alg_default_bits = alg->alg_key_sizes[0]; 5090 if (alg->alg_increment != 0) { 5091 /* key sizes are defined by range & increment */ 5092 alg->alg_minbits = alg->alg_key_sizes[1]; 5093 alg->alg_maxbits = alg->alg_key_sizes[2]; 5094 5095 alg->alg_default = SADB_ALG_DEFAULT_INCR(alg->alg_minbits, 5096 alg->alg_increment, alg->alg_default_bits); 5097 } else if (alg->alg_nkey_sizes == 0) { 5098 /* no specified key size for algorithm */ 5099 alg->alg_minbits = alg->alg_maxbits = 0; 5100 } else { 5101 /* key sizes are defined by enumeration */ 5102 alg->alg_minbits = (uint16_t)-1; 5103 alg->alg_maxbits = 0; 5104 5105 for (i = 0; i < alg->alg_nkey_sizes; i++) { 5106 if (alg->alg_key_sizes[i] < alg->alg_minbits) 5107 alg->alg_minbits = alg->alg_key_sizes[i]; 5108 if (alg->alg_key_sizes[i] > alg->alg_maxbits) 5109 alg->alg_maxbits = alg->alg_key_sizes[i]; 5110 } 5111 alg->alg_default = 0; 5112 } 5113 5114 if (!(alg->alg_flags & ALG_FLAG_VALID)) 5115 return; 5116 5117 /* 5118 * Mechanisms do not apply to the NULL encryption 5119 * algorithm, so simply return for this case. 5120 */ 5121 if (alg->alg_id == SADB_EALG_NULL) 5122 return; 5123 5124 /* 5125 * Find the min and max key sizes supported by the cryptographic 5126 * framework providers. 5127 */ 5128 5129 /* get the key sizes supported by the framework */ 5130 crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type, 5131 &mech_infos, &nmech_infos, KM_SLEEP); 5132 if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) { 5133 alg->alg_flags &= ~ALG_FLAG_VALID; 5134 return; 5135 } 5136 5137 /* min and max key sizes supported by framework */ 5138 for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) { 5139 int unit_bits; 5140 5141 /* 5142 * Ignore entries that do not support the operations 5143 * needed for the algorithm type. 5144 */ 5145 if (alg_type == IPSEC_ALG_AUTH) { 5146 mask = CRYPTO_MECH_USAGE_MAC; 5147 } else { 5148 mask = CRYPTO_MECH_USAGE_ENCRYPT | 5149 CRYPTO_MECH_USAGE_DECRYPT; 5150 } 5151 if ((mech_infos[i].mi_usage & mask) != mask) 5152 continue; 5153 5154 unit_bits = (mech_infos[i].mi_keysize_unit == 5155 CRYPTO_KEYSIZE_UNIT_IN_BYTES) ? 8 : 1; 5156 /* adjust min/max supported by framework */ 5157 cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits; 5158 cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits; 5159 5160 if (cur_crypto_min < crypto_min) 5161 crypto_min = cur_crypto_min; 5162 5163 /* 5164 * CRYPTO_EFFECTIVELY_INFINITE is a special value of 5165 * the crypto framework which means "no upper limit". 5166 */ 5167 if (mech_infos[i].mi_max_key_size == 5168 CRYPTO_EFFECTIVELY_INFINITE) { 5169 crypto_max = (size_t)-1; 5170 } else if (cur_crypto_max > crypto_max) { 5171 crypto_max = cur_crypto_max; 5172 } 5173 5174 is_valid = B_TRUE; 5175 } 5176 5177 kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) * 5178 nmech_infos); 5179 5180 if (!is_valid) { 5181 /* no key sizes supported by framework */ 5182 alg->alg_flags &= ~ALG_FLAG_VALID; 5183 return; 5184 } 5185 5186 /* 5187 * Determine min and max key sizes from alg_key_sizes[]. 5188 * defined for the algorithm entry. Adjust key sizes based on 5189 * those supported by the framework. 5190 */ 5191 alg->alg_ef_default_bits = alg->alg_key_sizes[0]; 5192 if (alg->alg_increment != 0) { 5193 /* supported key sizes are defined by range & increment */ 5194 crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment); 5195 crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment); 5196 5197 alg->alg_ef_minbits = MAX(alg->alg_minbits, 5198 (uint16_t)crypto_min); 5199 alg->alg_ef_maxbits = MIN(alg->alg_maxbits, 5200 (uint16_t)crypto_max); 5201 5202 /* 5203 * If the sizes supported by the framework are outside 5204 * the range of sizes defined by the algorithm mappings, 5205 * the algorithm cannot be used. Check for this 5206 * condition here. 5207 */ 5208 if (alg->alg_ef_minbits > alg->alg_ef_maxbits) { 5209 alg->alg_flags &= ~ALG_FLAG_VALID; 5210 return; 5211 } 5212 5213 if (alg->alg_ef_default_bits < alg->alg_ef_minbits) 5214 alg->alg_ef_default_bits = alg->alg_ef_minbits; 5215 if (alg->alg_ef_default_bits > alg->alg_ef_maxbits) 5216 alg->alg_ef_default_bits = alg->alg_ef_maxbits; 5217 5218 alg->alg_ef_default = SADB_ALG_DEFAULT_INCR(alg->alg_ef_minbits, 5219 alg->alg_increment, alg->alg_ef_default_bits); 5220 } else if (alg->alg_nkey_sizes == 0) { 5221 /* no specified key size for algorithm */ 5222 alg->alg_ef_minbits = alg->alg_ef_maxbits = 0; 5223 } else { 5224 /* supported key sizes are defined by enumeration */ 5225 alg->alg_ef_minbits = (uint16_t)-1; 5226 alg->alg_ef_maxbits = 0; 5227 5228 for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) { 5229 /* 5230 * Ignore the current key size if it is not in the 5231 * range of sizes supported by the framework. 5232 */ 5233 if (alg->alg_key_sizes[i] < crypto_min || 5234 alg->alg_key_sizes[i] > crypto_max) 5235 continue; 5236 if (alg->alg_key_sizes[i] < alg->alg_ef_minbits) 5237 alg->alg_ef_minbits = alg->alg_key_sizes[i]; 5238 if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits) 5239 alg->alg_ef_maxbits = alg->alg_key_sizes[i]; 5240 is_valid = B_TRUE; 5241 } 5242 5243 if (!is_valid) { 5244 alg->alg_flags &= ~ALG_FLAG_VALID; 5245 return; 5246 } 5247 alg->alg_ef_default = 0; 5248 } 5249 } 5250 5251 /* 5252 * Free the memory used by the specified algorithm. 5253 */ 5254 void 5255 ipsec_alg_free(ipsec_alginfo_t *alg) 5256 { 5257 if (alg == NULL) 5258 return; 5259 5260 if (alg->alg_key_sizes != NULL) { 5261 kmem_free(alg->alg_key_sizes, 5262 (alg->alg_nkey_sizes + 1) * sizeof (uint16_t)); 5263 alg->alg_key_sizes = NULL; 5264 } 5265 if (alg->alg_block_sizes != NULL) { 5266 kmem_free(alg->alg_block_sizes, 5267 (alg->alg_nblock_sizes + 1) * sizeof (uint16_t)); 5268 alg->alg_block_sizes = NULL; 5269 } 5270 kmem_free(alg, sizeof (*alg)); 5271 } 5272 5273 /* 5274 * Check the validity of the specified key size for an algorithm. 5275 * Returns B_TRUE if key size is valid, B_FALSE otherwise. 5276 */ 5277 boolean_t 5278 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg) 5279 { 5280 if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits) 5281 return (B_FALSE); 5282 5283 if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) { 5284 /* 5285 * If the key sizes are defined by enumeration, the new 5286 * key size must be equal to one of the supported values. 5287 */ 5288 int i; 5289 5290 for (i = 0; i < alg->alg_nkey_sizes; i++) 5291 if (key_size == alg->alg_key_sizes[i]) 5292 break; 5293 if (i == alg->alg_nkey_sizes) 5294 return (B_FALSE); 5295 } 5296 5297 return (B_TRUE); 5298 } 5299 5300 /* 5301 * Callback function invoked by the crypto framework when a provider 5302 * registers or unregisters. This callback updates the algorithms 5303 * tables when a crypto algorithm is no longer available or becomes 5304 * available, and triggers the freeing/creation of context templates 5305 * associated with existing SAs, if needed. 5306 * 5307 * Need to walk all stack instances since the callback is global 5308 * for all instances 5309 */ 5310 void 5311 ipsec_prov_update_callback(uint32_t event, void *event_arg) 5312 { 5313 netstack_handle_t nh; 5314 netstack_t *ns; 5315 5316 netstack_next_init(&nh); 5317 while ((ns = netstack_next(&nh)) != NULL) { 5318 ipsec_prov_update_callback_stack(event, event_arg, ns); 5319 netstack_rele(ns); 5320 } 5321 netstack_next_fini(&nh); 5322 } 5323 5324 static void 5325 ipsec_prov_update_callback_stack(uint32_t event, void *event_arg, 5326 netstack_t *ns) 5327 { 5328 crypto_notify_event_change_t *prov_change = 5329 (crypto_notify_event_change_t *)event_arg; 5330 uint_t algidx, algid, algtype, mech_count, mech_idx; 5331 ipsec_alginfo_t *alg; 5332 ipsec_alginfo_t oalg; 5333 crypto_mech_name_t *mechs; 5334 boolean_t alg_changed = B_FALSE; 5335 ipsec_stack_t *ipss = ns->netstack_ipsec; 5336 5337 /* ignore events for which we didn't register */ 5338 if (event != CRYPTO_EVENT_MECHS_CHANGED) { 5339 ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x " 5340 " received from crypto framework\n", event)); 5341 return; 5342 } 5343 5344 mechs = crypto_get_mech_list(&mech_count, KM_SLEEP); 5345 if (mechs == NULL) 5346 return; 5347 5348 /* 5349 * Walk the list of currently defined IPsec algorithm. Update 5350 * the algorithm valid flag and trigger an update of the 5351 * SAs that depend on that algorithm. 5352 */ 5353 mutex_enter(&ipss->ipsec_alg_lock); 5354 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) { 5355 for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype]; 5356 algidx++) { 5357 5358 algid = ipss->ipsec_sortlist[algtype][algidx]; 5359 alg = ipss->ipsec_alglists[algtype][algid]; 5360 ASSERT(alg != NULL); 5361 5362 /* 5363 * Skip the algorithms which do not map to the 5364 * crypto framework provider being added or removed. 5365 */ 5366 if (strncmp(alg->alg_mech_name, 5367 prov_change->ec_mech_name, 5368 CRYPTO_MAX_MECH_NAME) != 0) 5369 continue; 5370 5371 /* 5372 * Determine if the mechanism is valid. If it 5373 * is not, mark the algorithm as being invalid. If 5374 * it is, mark the algorithm as being valid. 5375 */ 5376 for (mech_idx = 0; mech_idx < mech_count; mech_idx++) 5377 if (strncmp(alg->alg_mech_name, 5378 mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0) 5379 break; 5380 if (mech_idx == mech_count && 5381 alg->alg_flags & ALG_FLAG_VALID) { 5382 alg->alg_flags &= ~ALG_FLAG_VALID; 5383 alg_changed = B_TRUE; 5384 } else if (mech_idx < mech_count && 5385 !(alg->alg_flags & ALG_FLAG_VALID)) { 5386 alg->alg_flags |= ALG_FLAG_VALID; 5387 alg_changed = B_TRUE; 5388 } 5389 5390 /* 5391 * Update the supported key sizes, regardless 5392 * of whether a crypto provider was added or 5393 * removed. 5394 */ 5395 oalg = *alg; 5396 ipsec_alg_fix_min_max(alg, algtype, ns); 5397 if (!alg_changed && 5398 alg->alg_ef_minbits != oalg.alg_ef_minbits || 5399 alg->alg_ef_maxbits != oalg.alg_ef_maxbits || 5400 alg->alg_ef_default != oalg.alg_ef_default || 5401 alg->alg_ef_default_bits != 5402 oalg.alg_ef_default_bits) 5403 alg_changed = B_TRUE; 5404 5405 /* 5406 * Update the affected SAs if a software provider is 5407 * being added or removed. 5408 */ 5409 if (prov_change->ec_provider_type == 5410 CRYPTO_SW_PROVIDER) 5411 sadb_alg_update(algtype, alg->alg_id, 5412 prov_change->ec_change == 5413 CRYPTO_MECH_ADDED, ns); 5414 } 5415 } 5416 mutex_exit(&ipss->ipsec_alg_lock); 5417 crypto_free_mech_list(mechs, mech_count); 5418 5419 if (alg_changed) { 5420 /* 5421 * An algorithm has changed, i.e. it became valid or 5422 * invalid, or its support key sizes have changed. 5423 * Notify ipsecah and ipsecesp of this change so 5424 * that they can send a SADB_REGISTER to their consumers. 5425 */ 5426 ipsecah_algs_changed(ns); 5427 ipsecesp_algs_changed(ns); 5428 } 5429 } 5430 5431 /* 5432 * Registers with the crypto framework to be notified of crypto 5433 * providers changes. Used to update the algorithm tables and 5434 * to free or create context templates if needed. Invoked after IPsec 5435 * is loaded successfully. 5436 * 5437 * This is called separately for each IP instance, so we ensure we only 5438 * register once. 5439 */ 5440 void 5441 ipsec_register_prov_update(void) 5442 { 5443 if (prov_update_handle != NULL) 5444 return; 5445 5446 prov_update_handle = crypto_notify_events( 5447 ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED); 5448 } 5449 5450 /* 5451 * Unregisters from the framework to be notified of crypto providers 5452 * changes. Called from ipsec_policy_g_destroy(). 5453 */ 5454 static void 5455 ipsec_unregister_prov_update(void) 5456 { 5457 if (prov_update_handle != NULL) 5458 crypto_unnotify_events(prov_update_handle); 5459 } 5460 5461 /* 5462 * Tunnel-mode support routines. 5463 */ 5464 5465 /* 5466 * Returns an mblk chain suitable for putnext() if policies match and IPsec 5467 * SAs are available. If there's no per-tunnel policy, or a match comes back 5468 * with no match, then still return the packet and have global policy take 5469 * a crack at it in IP. 5470 * 5471 * Remember -> we can be forwarding packets. Keep that in mind w.r.t. 5472 * inner-packet contents. 5473 */ 5474 mblk_t * 5475 ipsec_tun_outbound(mblk_t *mp, tun_t *atp, ipha_t *inner_ipv4, 5476 ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len, 5477 netstack_t *ns) 5478 { 5479 ipsec_tun_pol_t *itp = atp->tun_itp; 5480 ipsec_policy_head_t *polhead; 5481 ipsec_selector_t sel; 5482 mblk_t *ipsec_mp, *ipsec_mp_head, *nmp; 5483 ipsec_out_t *io; 5484 boolean_t is_fragment; 5485 ipsec_policy_t *pol; 5486 ipsec_stack_t *ipss = ns->netstack_ipsec; 5487 5488 ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL || 5489 outer_ipv4 != NULL && outer_ipv6 == NULL); 5490 /* We take care of inners in a bit. */ 5491 5492 /* No policy on this tunnel - let global policy have at it. */ 5493 if (itp == NULL || !(itp->itp_flags & ITPF_P_ACTIVE)) 5494 return (mp); 5495 polhead = itp->itp_policy; 5496 5497 bzero(&sel, sizeof (sel)); 5498 if (inner_ipv4 != NULL) { 5499 ASSERT(inner_ipv6 == NULL); 5500 sel.ips_isv4 = B_TRUE; 5501 sel.ips_local_addr_v4 = inner_ipv4->ipha_src; 5502 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst; 5503 sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol; 5504 } else { 5505 ASSERT(inner_ipv6 != NULL); 5506 sel.ips_isv4 = B_FALSE; 5507 sel.ips_local_addr_v6 = inner_ipv6->ip6_src; 5508 /* 5509 * We don't care about routing-header dests in the 5510 * forwarding/tunnel path, so just grab ip6_dst. 5511 */ 5512 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst; 5513 } 5514 5515 if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) { 5516 /* 5517 * Caller can prepend the outer header, which means 5518 * inner_ipv[46] may be stuck in the middle. Pullup the whole 5519 * mess now if need-be, for easier processing later. Don't 5520 * forget to rewire the outer header too. 5521 */ 5522 if (mp->b_cont != NULL) { 5523 nmp = msgpullup(mp, -1); 5524 if (nmp == NULL) { 5525 ip_drop_packet(mp, B_FALSE, NULL, NULL, 5526 DROPPER(ipss, ipds_spd_nomem), 5527 &ipss->ipsec_spd_dropper); 5528 return (NULL); 5529 } 5530 freemsg(mp); 5531 mp = nmp; 5532 if (outer_ipv4 != NULL) 5533 outer_ipv4 = (ipha_t *)mp->b_rptr; 5534 else 5535 outer_ipv6 = (ip6_t *)mp->b_rptr; 5536 if (inner_ipv4 != NULL) { 5537 inner_ipv4 = 5538 (ipha_t *)(mp->b_rptr + outer_hdr_len); 5539 } else { 5540 inner_ipv6 = 5541 (ip6_t *)(mp->b_rptr + outer_hdr_len); 5542 } 5543 } 5544 if (inner_ipv4 != NULL) { 5545 is_fragment = IS_V4_FRAGMENT( 5546 inner_ipv4->ipha_fragment_offset_and_flags); 5547 } else { 5548 sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6, mp, 5549 &is_fragment); 5550 } 5551 5552 if (is_fragment) { 5553 ipha_t *oiph; 5554 ipha_t *iph = NULL; 5555 ip6_t *ip6h = NULL; 5556 int hdr_len; 5557 uint16_t ip6_hdr_length; 5558 uint8_t v6_proto; 5559 uint8_t *v6_proto_p; 5560 5561 /* 5562 * We have a fragment we need to track! 5563 */ 5564 mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp, 5565 outer_hdr_len, ipss); 5566 if (mp == NULL) 5567 return (NULL); 5568 ASSERT(mp->b_cont == NULL); 5569 5570 /* 5571 * If we get here, we have a full 5572 * fragment chain 5573 */ 5574 5575 oiph = (ipha_t *)mp->b_rptr; 5576 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) { 5577 hdr_len = ((outer_hdr_len != 0) ? 5578 IPH_HDR_LENGTH(oiph) : 0); 5579 iph = (ipha_t *)(mp->b_rptr + hdr_len); 5580 } else { 5581 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION); 5582 ip6h = (ip6_t *)mp->b_rptr; 5583 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, 5584 &ip6_hdr_length, &v6_proto_p)) { 5585 ip_drop_packet_chain(mp, B_FALSE, 5586 NULL, NULL, DROPPER(ipss, 5587 ipds_spd_malformed_packet), 5588 &ipss->ipsec_spd_dropper); 5589 return (NULL); 5590 } 5591 hdr_len = ip6_hdr_length; 5592 } 5593 outer_hdr_len = hdr_len; 5594 5595 if (sel.ips_isv4) { 5596 if (iph == NULL) { 5597 /* Was v6 outer */ 5598 iph = (ipha_t *)(mp->b_rptr + hdr_len); 5599 } 5600 inner_ipv4 = iph; 5601 sel.ips_local_addr_v4 = inner_ipv4->ipha_src; 5602 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst; 5603 sel.ips_protocol = 5604 (uint8_t)inner_ipv4->ipha_protocol; 5605 } else { 5606 inner_ipv6 = (ip6_t *)(mp->b_rptr + 5607 hdr_len); 5608 sel.ips_local_addr_v6 = inner_ipv6->ip6_src; 5609 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst; 5610 if (!ip_hdr_length_nexthdr_v6(mp, 5611 inner_ipv6, &ip6_hdr_length, &v6_proto_p)) { 5612 ip_drop_packet_chain(mp, B_FALSE, 5613 NULL, NULL, DROPPER(ipss, 5614 ipds_spd_malformed_frag), 5615 &ipss->ipsec_spd_dropper); 5616 return (NULL); 5617 } 5618 v6_proto = *v6_proto_p; 5619 sel.ips_protocol = v6_proto; 5620 #ifdef FRAGCACHE_DEBUG 5621 cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n", 5622 sel.ips_protocol); 5623 #endif 5624 } 5625 /* Ports are extracted below */ 5626 } 5627 5628 /* Get ports... */ 5629 if (!ipsec_init_outbound_ports(&sel, mp, 5630 inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) { 5631 /* callee did ip_drop_packet_chain() on mp. */ 5632 return (NULL); 5633 } 5634 #ifdef FRAGCACHE_DEBUG 5635 if (inner_ipv4 != NULL) 5636 cmn_err(CE_WARN, 5637 "(v4) sel.ips_protocol = %d, " 5638 "sel.ips_local_port = %d, " 5639 "sel.ips_remote_port = %d\n", 5640 sel.ips_protocol, ntohs(sel.ips_local_port), 5641 ntohs(sel.ips_remote_port)); 5642 if (inner_ipv6 != NULL) 5643 cmn_err(CE_WARN, 5644 "(v6) sel.ips_protocol = %d, " 5645 "sel.ips_local_port = %d, " 5646 "sel.ips_remote_port = %d\n", 5647 sel.ips_protocol, ntohs(sel.ips_local_port), 5648 ntohs(sel.ips_remote_port)); 5649 #endif 5650 /* Success so far! */ 5651 } 5652 rw_enter(&polhead->iph_lock, RW_READER); 5653 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND, 5654 &sel, ns); 5655 rw_exit(&polhead->iph_lock); 5656 if (pol == NULL) { 5657 /* 5658 * No matching policy on this tunnel, drop the packet. 5659 * 5660 * NOTE: Tunnel-mode tunnels are different from the 5661 * IP global transport mode policy head. For a tunnel-mode 5662 * tunnel, we drop the packet in lieu of passing it 5663 * along accepted the way a global-policy miss would. 5664 * 5665 * NOTE2: "negotiate transport" tunnels should match ALL 5666 * inbound packets, but we do not uncomment the ASSERT() 5667 * below because if/when we open PF_POLICY, a user can 5668 * shoot him/her-self in the foot with a 0 priority. 5669 */ 5670 5671 /* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */ 5672 #ifdef FRAGCACHE_DEBUG 5673 cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel " 5674 "per-port policy\n"); 5675 #endif 5676 ip_drop_packet_chain(mp, B_FALSE, NULL, NULL, 5677 DROPPER(ipss, ipds_spd_explicit), 5678 &ipss->ipsec_spd_dropper); 5679 return (NULL); 5680 } 5681 5682 #ifdef FRAGCACHE_DEBUG 5683 cmn_err(CE_WARN, "Having matching tunnel per-port policy\n"); 5684 #endif 5685 5686 /* Construct an IPSEC_OUT message. */ 5687 ipsec_mp = ipsec_mp_head = ipsec_alloc_ipsec_out(ns); 5688 if (ipsec_mp == NULL) { 5689 IPPOL_REFRELE(pol, ns); 5690 ip_drop_packet(mp, B_FALSE, NULL, NULL, 5691 DROPPER(ipss, ipds_spd_nomem), 5692 &ipss->ipsec_spd_dropper); 5693 return (NULL); 5694 } 5695 ipsec_mp->b_cont = mp; 5696 io = (ipsec_out_t *)ipsec_mp->b_rptr; 5697 IPPH_REFHOLD(polhead); 5698 /* 5699 * NOTE: free() function of ipsec_out mblk will release polhead and 5700 * pol references. 5701 */ 5702 io->ipsec_out_polhead = polhead; 5703 io->ipsec_out_policy = pol; 5704 io->ipsec_out_zoneid = atp->tun_zoneid; 5705 io->ipsec_out_v4 = (outer_ipv4 != NULL); 5706 io->ipsec_out_secure = B_TRUE; 5707 5708 if (!(itp->itp_flags & ITPF_P_TUNNEL)) { 5709 /* Set up transport mode for tunnelled packets. */ 5710 io->ipsec_out_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP : 5711 IPPROTO_IPV6; 5712 return (ipsec_mp); 5713 } 5714 5715 /* Fill in tunnel-mode goodies here. */ 5716 io->ipsec_out_tunnel = B_TRUE; 5717 /* XXX Do I need to fill in all of the goodies here? */ 5718 if (inner_ipv4) { 5719 io->ipsec_out_inaf = AF_INET; 5720 io->ipsec_out_insrc[0] = 5721 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4; 5722 io->ipsec_out_indst[0] = 5723 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4; 5724 } else { 5725 io->ipsec_out_inaf = AF_INET6; 5726 io->ipsec_out_insrc[0] = 5727 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0]; 5728 io->ipsec_out_insrc[1] = 5729 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1]; 5730 io->ipsec_out_insrc[2] = 5731 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2]; 5732 io->ipsec_out_insrc[3] = 5733 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3]; 5734 io->ipsec_out_indst[0] = 5735 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0]; 5736 io->ipsec_out_indst[1] = 5737 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1]; 5738 io->ipsec_out_indst[2] = 5739 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2]; 5740 io->ipsec_out_indst[3] = 5741 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3]; 5742 } 5743 io->ipsec_out_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen; 5744 io->ipsec_out_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen; 5745 /* NOTE: These are used for transport mode too. */ 5746 io->ipsec_out_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport; 5747 io->ipsec_out_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport; 5748 io->ipsec_out_proto = pol->ipsp_sel->ipsl_key.ipsl_proto; 5749 5750 /* 5751 * The mp pointer still valid 5752 * Add ipsec_out to each fragment. 5753 * The fragment head already has one 5754 */ 5755 nmp = mp->b_next; 5756 mp->b_next = NULL; 5757 mp = nmp; 5758 ASSERT(ipsec_mp != NULL); 5759 while (mp != NULL) { 5760 nmp = mp->b_next; 5761 ipsec_mp->b_next = ipsec_out_tag(ipsec_mp_head, mp, ns); 5762 if (ipsec_mp->b_next == NULL) { 5763 ip_drop_packet_chain(ipsec_mp_head, B_FALSE, NULL, NULL, 5764 DROPPER(ipss, ipds_spd_nomem), 5765 &ipss->ipsec_spd_dropper); 5766 ip_drop_packet_chain(mp, B_FALSE, NULL, NULL, 5767 DROPPER(ipss, ipds_spd_nomem), 5768 &ipss->ipsec_spd_dropper); 5769 return (NULL); 5770 } 5771 ipsec_mp = ipsec_mp->b_next; 5772 mp->b_next = NULL; 5773 mp = nmp; 5774 } 5775 return (ipsec_mp_head); 5776 } 5777 5778 /* 5779 * NOTE: The following releases pol's reference and 5780 * calls ip_drop_packet() for me on NULL returns. 5781 */ 5782 mblk_t * 5783 ipsec_check_ipsecin_policy_reasm(mblk_t *ipsec_mp, ipsec_policy_t *pol, 5784 ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns) 5785 { 5786 /* Assume ipsec_mp is a chain of b_next-linked IPSEC_IN M_CTLs. */ 5787 mblk_t *data_chain = NULL, *data_tail = NULL; 5788 mblk_t *ii_next; 5789 5790 while (ipsec_mp != NULL) { 5791 ii_next = ipsec_mp->b_next; 5792 ipsec_mp->b_next = NULL; /* No tripping asserts. */ 5793 5794 /* 5795 * Need IPPOL_REFHOLD(pol) for extras because 5796 * ipsecin_policy does the refrele. 5797 */ 5798 IPPOL_REFHOLD(pol); 5799 5800 if (ipsec_check_ipsecin_policy(ipsec_mp, pol, inner_ipv4, 5801 inner_ipv6, pkt_unique, ns) != NULL) { 5802 if (data_tail == NULL) { 5803 /* First one */ 5804 data_chain = data_tail = ipsec_mp->b_cont; 5805 } else { 5806 data_tail->b_next = ipsec_mp->b_cont; 5807 data_tail = data_tail->b_next; 5808 } 5809 freeb(ipsec_mp); 5810 } else { 5811 /* 5812 * ipsec_check_ipsecin_policy() freed ipsec_mp 5813 * already. Need to get rid of any extra pol 5814 * references, and any remaining bits as well. 5815 */ 5816 IPPOL_REFRELE(pol, ns); 5817 ipsec_freemsg_chain(data_chain); 5818 ipsec_freemsg_chain(ii_next); /* ipdrop stats? */ 5819 return (NULL); 5820 } 5821 ipsec_mp = ii_next; 5822 } 5823 /* 5824 * One last release because either the loop bumped it up, or we never 5825 * called ipsec_check_ipsecin_policy(). 5826 */ 5827 IPPOL_REFRELE(pol, ns); 5828 5829 /* data_chain is ready for return to tun module. */ 5830 return (data_chain); 5831 } 5832 5833 5834 /* 5835 * Returns B_TRUE if the inbound packet passed an IPsec policy check. Returns 5836 * B_FALSE if it failed or if it is a fragment needing its friends before a 5837 * policy check can be performed. 5838 * 5839 * Expects a non-NULL *data_mp, an optional ipsec_mp, and a non-NULL polhead. 5840 * data_mp may be reassigned with a b_next chain of packets if fragments 5841 * neeeded to be collected for a proper policy check. 5842 * 5843 * Always frees ipsec_mp, but only frees data_mp if returns B_FALSE. This 5844 * function calls ip_drop_packet() on data_mp if need be. 5845 * 5846 * NOTE: outer_hdr_len is signed. If it's a negative value, the caller 5847 * is inspecting an ICMP packet. 5848 */ 5849 boolean_t 5850 ipsec_tun_inbound(mblk_t *ipsec_mp, mblk_t **data_mp, ipsec_tun_pol_t *itp, 5851 ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4, 5852 ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns) 5853 { 5854 ipsec_policy_head_t *polhead; 5855 ipsec_selector_t sel; 5856 mblk_t *message = (ipsec_mp == NULL) ? *data_mp : ipsec_mp; 5857 ipsec_policy_t *pol; 5858 uint16_t tmpport; 5859 selret_t rc; 5860 boolean_t retval, port_policy_present, is_icmp, global_present; 5861 in6_addr_t tmpaddr; 5862 ipaddr_t tmp4; 5863 ipsec_stack_t *ipss = ns->netstack_ipsec; 5864 uint8_t flags, *holder, *outer_hdr; 5865 5866 sel.ips_is_icmp_inv_acq = 0; 5867 5868 if (outer_ipv4 != NULL) { 5869 ASSERT(outer_ipv6 == NULL); 5870 outer_hdr = (uint8_t *)outer_ipv4; 5871 global_present = ipss->ipsec_inbound_v4_policy_present; 5872 } else { 5873 outer_hdr = (uint8_t *)outer_ipv6; 5874 global_present = ipss->ipsec_inbound_v6_policy_present; 5875 } 5876 ASSERT(outer_hdr != NULL); 5877 5878 ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL || 5879 inner_ipv4 == NULL && inner_ipv6 != NULL); 5880 ASSERT(message == *data_mp || message->b_cont == *data_mp); 5881 5882 if (outer_hdr_len < 0) { 5883 outer_hdr_len = (-outer_hdr_len); 5884 is_icmp = B_TRUE; 5885 } else { 5886 is_icmp = B_FALSE; 5887 } 5888 5889 if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) { 5890 polhead = itp->itp_policy; 5891 /* 5892 * We need to perform full Tunnel-Mode enforcement, 5893 * and we need to have inner-header data for such enforcement. 5894 * 5895 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound 5896 * and on return. 5897 */ 5898 5899 port_policy_present = ((itp->itp_flags & 5900 ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE); 5901 flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) | 5902 (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE); 5903 5904 rc = ipsec_init_inbound_sel(&sel, *data_mp, inner_ipv4, 5905 inner_ipv6, flags); 5906 5907 switch (rc) { 5908 case SELRET_NOMEM: 5909 ip_drop_packet(message, B_TRUE, NULL, NULL, 5910 DROPPER(ipss, ipds_spd_nomem), 5911 &ipss->ipsec_spd_dropper); 5912 return (B_FALSE); 5913 case SELRET_TUNFRAG: 5914 /* 5915 * At this point, if we're cleartext, we don't want 5916 * to go there. 5917 */ 5918 if (ipsec_mp == NULL) { 5919 ip_drop_packet(*data_mp, B_TRUE, NULL, NULL, 5920 DROPPER(ipss, ipds_spd_got_clear), 5921 &ipss->ipsec_spd_dropper); 5922 *data_mp = NULL; 5923 return (B_FALSE); 5924 } 5925 ASSERT(((ipsec_in_t *)ipsec_mp->b_rptr)-> 5926 ipsec_in_secure); 5927 message = ipsec_fragcache_add(&itp->itp_fragcache, 5928 ipsec_mp, *data_mp, outer_hdr_len, ipss); 5929 5930 if (message == NULL) { 5931 /* 5932 * Data is cached, fragment chain is not 5933 * complete. I consume ipsec_mp and data_mp 5934 */ 5935 return (B_FALSE); 5936 } 5937 5938 /* 5939 * If we get here, we have a full fragment chain. 5940 * Reacquire headers and selectors from first fragment. 5941 */ 5942 if (inner_ipv4 != NULL) { 5943 inner_ipv4 = (ipha_t *)message->b_cont->b_rptr; 5944 ASSERT(message->b_cont->b_wptr - 5945 message->b_cont->b_rptr > sizeof (ipha_t)); 5946 } else { 5947 inner_ipv6 = (ip6_t *)message->b_cont->b_rptr; 5948 ASSERT(message->b_cont->b_wptr - 5949 message->b_cont->b_rptr > sizeof (ip6_t)); 5950 } 5951 /* Use SEL_NONE so we always get ports! */ 5952 rc = ipsec_init_inbound_sel(&sel, message->b_cont, 5953 inner_ipv4, inner_ipv6, SEL_NONE); 5954 switch (rc) { 5955 case SELRET_SUCCESS: 5956 /* 5957 * Get to same place as first caller's 5958 * SELRET_SUCCESS case. 5959 */ 5960 break; 5961 case SELRET_NOMEM: 5962 ip_drop_packet_chain(message, B_TRUE, 5963 NULL, NULL, 5964 DROPPER(ipss, ipds_spd_nomem), 5965 &ipss->ipsec_spd_dropper); 5966 return (B_FALSE); 5967 case SELRET_BADPKT: 5968 ip_drop_packet_chain(message, B_TRUE, 5969 NULL, NULL, 5970 DROPPER(ipss, ipds_spd_malformed_frag), 5971 &ipss->ipsec_spd_dropper); 5972 return (B_FALSE); 5973 case SELRET_TUNFRAG: 5974 cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)"); 5975 /* FALLTHRU */ 5976 default: 5977 cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)" 5978 " returns bizarro 0x%x", rc); 5979 /* Guaranteed panic! */ 5980 ASSERT(rc == SELRET_NOMEM); 5981 return (B_FALSE); 5982 } 5983 /* FALLTHRU */ 5984 case SELRET_SUCCESS: 5985 /* 5986 * Common case: 5987 * No per-port policy or a non-fragment. Keep going. 5988 */ 5989 break; 5990 case SELRET_BADPKT: 5991 /* 5992 * We may receive ICMP (with IPv6 inner) packets that 5993 * trigger this return value. Send 'em in for 5994 * enforcement checking. 5995 */ 5996 cmn_err(CE_NOTE, "ipsec_tun_inbound(): " 5997 "sending 'bad packet' in for enforcement"); 5998 break; 5999 default: 6000 cmn_err(CE_WARN, 6001 "ipsec_init_inbound_sel() returns bizarro 0x%x", 6002 rc); 6003 ASSERT(rc == SELRET_NOMEM); /* Guaranteed panic! */ 6004 return (B_FALSE); 6005 } 6006 6007 if (is_icmp) { 6008 /* 6009 * Swap local/remote because this is an ICMP packet. 6010 */ 6011 tmpaddr = sel.ips_local_addr_v6; 6012 sel.ips_local_addr_v6 = sel.ips_remote_addr_v6; 6013 sel.ips_remote_addr_v6 = tmpaddr; 6014 tmpport = sel.ips_local_port; 6015 sel.ips_local_port = sel.ips_remote_port; 6016 sel.ips_remote_port = tmpport; 6017 } 6018 6019 /* find_policy_head() */ 6020 rw_enter(&polhead->iph_lock, RW_READER); 6021 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND, 6022 &sel, ns); 6023 rw_exit(&polhead->iph_lock); 6024 if (pol != NULL) { 6025 if (ipsec_mp == NULL || 6026 !((ipsec_in_t *)ipsec_mp->b_rptr)-> 6027 ipsec_in_secure) { 6028 retval = pol->ipsp_act->ipa_allow_clear; 6029 if (!retval) { 6030 /* 6031 * XXX should never get here with 6032 * tunnel reassembled fragments? 6033 */ 6034 ASSERT(message->b_next == NULL); 6035 ip_drop_packet(message, B_TRUE, NULL, 6036 NULL, 6037 DROPPER(ipss, ipds_spd_got_clear), 6038 &ipss->ipsec_spd_dropper); 6039 } else if (ipsec_mp != NULL) { 6040 freeb(ipsec_mp); 6041 } 6042 6043 IPPOL_REFRELE(pol, ns); 6044 return (retval); 6045 } 6046 /* 6047 * NOTE: The following releases pol's reference and 6048 * calls ip_drop_packet() for me on NULL returns. 6049 * 6050 * "sel" is still good here, so let's use it! 6051 */ 6052 *data_mp = ipsec_check_ipsecin_policy_reasm(message, 6053 pol, inner_ipv4, inner_ipv6, SA_UNIQUE_ID( 6054 sel.ips_remote_port, sel.ips_local_port, 6055 (inner_ipv4 == NULL) ? IPPROTO_IPV6 : 6056 IPPROTO_ENCAP, sel.ips_protocol), ns); 6057 return (*data_mp != NULL); 6058 } 6059 6060 /* 6061 * Else fallthru and check the global policy on the outer 6062 * header(s) if this tunnel is an old-style transport-mode 6063 * one. Drop the packet explicitly (no policy entry) for 6064 * a new-style tunnel-mode tunnel. 6065 */ 6066 if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) { 6067 ip_drop_packet_chain(message, B_TRUE, NULL, 6068 NULL, 6069 DROPPER(ipss, ipds_spd_explicit), 6070 &ipss->ipsec_spd_dropper); 6071 return (B_FALSE); 6072 } 6073 } 6074 6075 /* 6076 * NOTE: If we reach here, we will not have packet chains from 6077 * fragcache_add(), because the only way I get chains is on a 6078 * tunnel-mode tunnel, which either returns with a pass, or gets 6079 * hit by the ip_drop_packet_chain() call right above here. 6080 */ 6081 6082 /* If no per-tunnel security, check global policy now. */ 6083 if (ipsec_mp != NULL && !global_present) { 6084 if (((ipsec_in_t *)(ipsec_mp->b_rptr))-> 6085 ipsec_in_icmp_loopback) { 6086 /* 6087 * This is an ICMP message with an ipsec_mp 6088 * attached. We should accept it. 6089 */ 6090 if (ipsec_mp != NULL) 6091 freeb(ipsec_mp); 6092 return (B_TRUE); 6093 } 6094 6095 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, 6096 DROPPER(ipss, ipds_spd_got_secure), 6097 &ipss->ipsec_spd_dropper); 6098 return (B_FALSE); 6099 } 6100 6101 /* 6102 * The following assertion is valid because only the tun module alters 6103 * the mblk chain - stripping the outer header by advancing mp->b_rptr. 6104 */ 6105 ASSERT(is_icmp || ((*data_mp)->b_datap->db_base <= outer_hdr && 6106 outer_hdr < (*data_mp)->b_rptr)); 6107 holder = (*data_mp)->b_rptr; 6108 (*data_mp)->b_rptr = outer_hdr; 6109 6110 if (is_icmp) { 6111 /* 6112 * For ICMP packets, "outer_ipvN" is set to the outer header 6113 * that is *INSIDE* the ICMP payload. For global policy 6114 * checking, we need to reverse src/dst on the payload in 6115 * order to construct selectors appropriately. See "ripha" 6116 * constructions in ip.c. To avoid a bug like 6478464 (see 6117 * earlier in this file), we will actually exchange src/dst 6118 * in the packet, and reverse if after the call to 6119 * ipsec_check_global_policy(). 6120 */ 6121 if (outer_ipv4 != NULL) { 6122 tmp4 = outer_ipv4->ipha_src; 6123 outer_ipv4->ipha_src = outer_ipv4->ipha_dst; 6124 outer_ipv4->ipha_dst = tmp4; 6125 } else { 6126 ASSERT(outer_ipv6 != NULL); 6127 tmpaddr = outer_ipv6->ip6_src; 6128 outer_ipv6->ip6_src = outer_ipv6->ip6_dst; 6129 outer_ipv6->ip6_dst = tmpaddr; 6130 } 6131 } 6132 6133 /* NOTE: Frees message if it returns NULL. */ 6134 if (ipsec_check_global_policy(message, NULL, outer_ipv4, outer_ipv6, 6135 (ipsec_mp != NULL), ns) == NULL) { 6136 return (B_FALSE); 6137 } 6138 6139 if (is_icmp) { 6140 /* Set things back to normal. */ 6141 if (outer_ipv4 != NULL) { 6142 tmp4 = outer_ipv4->ipha_src; 6143 outer_ipv4->ipha_src = outer_ipv4->ipha_dst; 6144 outer_ipv4->ipha_dst = tmp4; 6145 } else { 6146 /* No need for ASSERT()s now. */ 6147 tmpaddr = outer_ipv6->ip6_src; 6148 outer_ipv6->ip6_src = outer_ipv6->ip6_dst; 6149 outer_ipv6->ip6_dst = tmpaddr; 6150 } 6151 } 6152 6153 (*data_mp)->b_rptr = holder; 6154 6155 if (ipsec_mp != NULL) 6156 freeb(ipsec_mp); 6157 6158 /* 6159 * At this point, we pretend it's a cleartext accepted 6160 * packet. 6161 */ 6162 return (B_TRUE); 6163 } 6164 6165 /* 6166 * AVL comparison routine for our list of tunnel polheads. 6167 */ 6168 static int 6169 tunnel_compare(const void *arg1, const void *arg2) 6170 { 6171 ipsec_tun_pol_t *left, *right; 6172 int rc; 6173 6174 left = (ipsec_tun_pol_t *)arg1; 6175 right = (ipsec_tun_pol_t *)arg2; 6176 6177 rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ); 6178 return (rc == 0 ? rc : (rc > 0 ? 1 : -1)); 6179 } 6180 6181 /* 6182 * Free a tunnel policy node. 6183 */ 6184 void 6185 itp_free(ipsec_tun_pol_t *node, netstack_t *ns) 6186 { 6187 IPPH_REFRELE(node->itp_policy, ns); 6188 IPPH_REFRELE(node->itp_inactive, ns); 6189 mutex_destroy(&node->itp_lock); 6190 kmem_free(node, sizeof (*node)); 6191 } 6192 6193 void 6194 itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns) 6195 { 6196 ipsec_stack_t *ipss = ns->netstack_ipsec; 6197 6198 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER); 6199 ipss->ipsec_tunnel_policy_gen++; 6200 ipsec_fragcache_uninit(&node->itp_fragcache); 6201 avl_remove(&ipss->ipsec_tunnel_policies, node); 6202 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6203 ITP_REFRELE(node, ns); 6204 } 6205 6206 /* 6207 * Public interface to look up a tunnel security policy by name. Used by 6208 * spdsock mostly. Returns "node" with a bumped refcnt. 6209 */ 6210 ipsec_tun_pol_t * 6211 get_tunnel_policy(char *name, netstack_t *ns) 6212 { 6213 ipsec_tun_pol_t *node, lookup; 6214 ipsec_stack_t *ipss = ns->netstack_ipsec; 6215 6216 (void) strncpy(lookup.itp_name, name, LIFNAMSIZ); 6217 6218 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER); 6219 node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies, 6220 &lookup, NULL); 6221 if (node != NULL) { 6222 ITP_REFHOLD(node); 6223 } 6224 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6225 6226 return (node); 6227 } 6228 6229 /* 6230 * Public interface to walk all tunnel security polcies. Useful for spdsock 6231 * DUMP operations. iterator() will not consume a reference. 6232 */ 6233 void 6234 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *), 6235 void *arg, netstack_t *ns) 6236 { 6237 ipsec_tun_pol_t *node; 6238 ipsec_stack_t *ipss = ns->netstack_ipsec; 6239 6240 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER); 6241 for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL; 6242 node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) { 6243 iterator(node, arg, ns); 6244 } 6245 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6246 } 6247 6248 /* 6249 * Initialize policy head. This can only fail if there's a memory problem. 6250 */ 6251 static boolean_t 6252 tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns) 6253 { 6254 ipsec_stack_t *ipss = ns->netstack_ipsec; 6255 6256 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL); 6257 iph->iph_refs = 1; 6258 iph->iph_gen = 0; 6259 if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize, 6260 KM_SLEEP, B_FALSE, ns) != 0) { 6261 ipsec_polhead_free_table(iph); 6262 return (B_FALSE); 6263 } 6264 ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize); 6265 return (B_TRUE); 6266 } 6267 6268 /* 6269 * Create a tunnel policy node with "name". Set errno with 6270 * ENOMEM if there's a memory problem, and EEXIST if there's an existing 6271 * node. 6272 */ 6273 ipsec_tun_pol_t * 6274 create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns) 6275 { 6276 ipsec_tun_pol_t *newbie, *existing; 6277 avl_index_t where; 6278 ipsec_stack_t *ipss = ns->netstack_ipsec; 6279 6280 newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP); 6281 if (newbie == NULL) { 6282 *errno = ENOMEM; 6283 return (NULL); 6284 } 6285 if (!ipsec_fragcache_init(&newbie->itp_fragcache)) { 6286 kmem_free(newbie, sizeof (*newbie)); 6287 *errno = ENOMEM; 6288 return (NULL); 6289 } 6290 6291 (void) strncpy(newbie->itp_name, name, LIFNAMSIZ); 6292 6293 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER); 6294 existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies, 6295 newbie, &where); 6296 if (existing != NULL) { 6297 itp_free(newbie, ns); 6298 *errno = EEXIST; 6299 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6300 return (NULL); 6301 } 6302 ipss->ipsec_tunnel_policy_gen++; 6303 *gen = ipss->ipsec_tunnel_policy_gen; 6304 newbie->itp_refcnt = 2; /* One for the caller, one for the tree. */ 6305 newbie->itp_next_policy_index = 1; 6306 avl_insert(&ipss->ipsec_tunnel_policies, newbie, where); 6307 mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL); 6308 newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t), 6309 KM_NOSLEEP); 6310 if (newbie->itp_policy == NULL) 6311 goto nomem; 6312 newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t), 6313 KM_NOSLEEP); 6314 if (newbie->itp_inactive == NULL) { 6315 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t)); 6316 goto nomem; 6317 } 6318 6319 if (!tunnel_polhead_init(newbie->itp_policy, ns)) { 6320 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t)); 6321 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t)); 6322 goto nomem; 6323 } else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) { 6324 IPPH_REFRELE(newbie->itp_policy, ns); 6325 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t)); 6326 goto nomem; 6327 } 6328 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6329 6330 return (newbie); 6331 nomem: 6332 *errno = ENOMEM; 6333 kmem_free(newbie, sizeof (*newbie)); 6334 return (NULL); 6335 } 6336 6337 /* 6338 * We can't call the tun_t lookup function until tun is 6339 * loaded, so create a dummy function to avoid symbol 6340 * lookup errors on boot. 6341 */ 6342 /* ARGSUSED */ 6343 ipsec_tun_pol_t * 6344 itp_get_byaddr_dummy(uint32_t *laddr, uint32_t *faddr, int af, netstack_t *ns) 6345 { 6346 return (NULL); /* Always return NULL. */ 6347 } 6348 6349 /* 6350 * Frag cache code, based on SunScreen 3.2 source 6351 * screen/kernel/common/screen_fragcache.c 6352 */ 6353 6354 #define IPSEC_FRAG_TTL_MAX 5 6355 /* 6356 * Note that the following parameters create 256 hash buckets 6357 * with 1024 free entries to be distributed. Things are cleaned 6358 * periodically and are attempted to be cleaned when there is no 6359 * free space, but this system errs on the side of dropping packets 6360 * over creating memory exhaustion. We may decide to make hash 6361 * factor a tunable if this proves to be a bad decision. 6362 */ 6363 #define IPSEC_FRAG_HASH_SLOTS (1<<8) 6364 #define IPSEC_FRAG_HASH_FACTOR 4 6365 #define IPSEC_FRAG_HASH_SIZE (IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR) 6366 6367 #define IPSEC_FRAG_HASH_MASK (IPSEC_FRAG_HASH_SLOTS - 1) 6368 #define IPSEC_FRAG_HASH_FUNC(id) (((id) & IPSEC_FRAG_HASH_MASK) ^ \ 6369 (((id) / \ 6370 (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \ 6371 IPSEC_FRAG_HASH_MASK)) 6372 6373 /* Maximum fragments per packet. 48 bytes payload x 1366 packets > 64KB */ 6374 #define IPSEC_MAX_FRAGS 1366 6375 6376 #define V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \ 6377 IPH_OFFSET) << 3) 6378 #define V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \ 6379 IPH_MF) 6380 6381 /* 6382 * Initialize an ipsec fragcache instance. 6383 * Returns B_FALSE if memory allocation fails. 6384 */ 6385 boolean_t 6386 ipsec_fragcache_init(ipsec_fragcache_t *frag) 6387 { 6388 ipsec_fragcache_entry_t *ftemp; 6389 int i; 6390 6391 mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL); 6392 frag->itpf_ptr = (ipsec_fragcache_entry_t **) 6393 kmem_zalloc(sizeof (ipsec_fragcache_entry_t *) * 6394 IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP); 6395 if (frag->itpf_ptr == NULL) 6396 return (B_FALSE); 6397 6398 ftemp = (ipsec_fragcache_entry_t *) 6399 kmem_zalloc(sizeof (ipsec_fragcache_entry_t) * 6400 IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP); 6401 if (ftemp == NULL) { 6402 kmem_free(frag->itpf_ptr, sizeof (ipsec_fragcache_entry_t *) * 6403 IPSEC_FRAG_HASH_SLOTS); 6404 return (B_FALSE); 6405 } 6406 6407 frag->itpf_freelist = NULL; 6408 6409 for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) { 6410 ftemp->itpfe_next = frag->itpf_freelist; 6411 frag->itpf_freelist = ftemp; 6412 ftemp++; 6413 } 6414 6415 frag->itpf_expire_hint = 0; 6416 6417 return (B_TRUE); 6418 } 6419 6420 void 6421 ipsec_fragcache_uninit(ipsec_fragcache_t *frag) 6422 { 6423 ipsec_fragcache_entry_t *fep; 6424 int i; 6425 6426 mutex_enter(&frag->itpf_lock); 6427 if (frag->itpf_ptr) { 6428 /* Delete any existing fragcache entry chains */ 6429 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) { 6430 fep = (frag->itpf_ptr)[i]; 6431 while (fep != NULL) { 6432 /* Returned fep is next in chain or NULL */ 6433 fep = fragcache_delentry(i, fep, frag); 6434 } 6435 } 6436 /* 6437 * Chase the pointers back to the beginning 6438 * of the memory allocation and then 6439 * get rid of the allocated freelist 6440 */ 6441 while (frag->itpf_freelist->itpfe_next != NULL) 6442 frag->itpf_freelist = frag->itpf_freelist->itpfe_next; 6443 /* 6444 * XXX - If we ever dynamically grow the freelist 6445 * then we'll have to free entries individually 6446 * or determine how many entries or chunks we have 6447 * grown since the initial allocation. 6448 */ 6449 kmem_free(frag->itpf_freelist, 6450 sizeof (ipsec_fragcache_entry_t) * 6451 IPSEC_FRAG_HASH_SIZE); 6452 /* Free the fragcache structure */ 6453 kmem_free(frag->itpf_ptr, 6454 sizeof (ipsec_fragcache_entry_t *) * 6455 IPSEC_FRAG_HASH_SLOTS); 6456 } 6457 mutex_exit(&frag->itpf_lock); 6458 mutex_destroy(&frag->itpf_lock); 6459 } 6460 6461 /* 6462 * Add a fragment to the fragment cache. Consumes mp if NULL is returned. 6463 * Returns mp if a whole fragment has been assembled, NULL otherwise 6464 */ 6465 6466 mblk_t * 6467 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *ipsec_mp, mblk_t *mp, 6468 int outer_hdr_len, ipsec_stack_t *ipss) 6469 { 6470 boolean_t is_v4; 6471 time_t itpf_time; 6472 ipha_t *iph; 6473 ipha_t *oiph; 6474 ip6_t *ip6h = NULL; 6475 uint8_t v6_proto; 6476 uint8_t *v6_proto_p; 6477 uint16_t ip6_hdr_length; 6478 ip6_pkt_t ipp; 6479 ip6_frag_t *fraghdr; 6480 ipsec_fragcache_entry_t *fep; 6481 int i; 6482 mblk_t *nmp, *prevmp; 6483 int firstbyte, lastbyte; 6484 int offset; 6485 int last; 6486 boolean_t inbound = (ipsec_mp != NULL); 6487 mblk_t *first_mp = inbound ? ipsec_mp : mp; 6488 6489 ASSERT(first_mp == mp || first_mp->b_cont == mp); 6490 6491 /* 6492 * You're on the slow path, so insure that every packet in the 6493 * cache is a single-mblk one. 6494 */ 6495 if (mp->b_cont != NULL) { 6496 nmp = msgpullup(mp, -1); 6497 if (nmp == NULL) { 6498 ip_drop_packet(first_mp, inbound, NULL, NULL, 6499 DROPPER(ipss, ipds_spd_nomem), 6500 &ipss->ipsec_spd_dropper); 6501 return (NULL); 6502 } 6503 freemsg(mp); 6504 if (ipsec_mp != NULL) 6505 ipsec_mp->b_cont = nmp; 6506 mp = nmp; 6507 } 6508 6509 mutex_enter(&frag->itpf_lock); 6510 6511 oiph = (ipha_t *)mp->b_rptr; 6512 iph = (ipha_t *)(mp->b_rptr + outer_hdr_len); 6513 6514 if (IPH_HDR_VERSION(iph) == IPV4_VERSION) { 6515 is_v4 = B_TRUE; 6516 } else { 6517 ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION); 6518 ip6h = (ip6_t *)(mp->b_rptr + outer_hdr_len); 6519 6520 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip6_hdr_length, 6521 &v6_proto_p)) { 6522 /* 6523 * Find upper layer protocol. 6524 * If it fails we have a malformed packet 6525 */ 6526 mutex_exit(&frag->itpf_lock); 6527 ip_drop_packet(first_mp, inbound, NULL, NULL, 6528 DROPPER(ipss, ipds_spd_malformed_packet), 6529 &ipss->ipsec_spd_dropper); 6530 return (NULL); 6531 } else { 6532 v6_proto = *v6_proto_p; 6533 } 6534 6535 6536 bzero(&ipp, sizeof (ipp)); 6537 (void) ip_find_hdr_v6(mp, ip6h, &ipp, NULL); 6538 if (!(ipp.ipp_fields & IPPF_FRAGHDR)) { 6539 /* 6540 * We think this is a fragment, but didn't find 6541 * a fragment header. Something is wrong. 6542 */ 6543 mutex_exit(&frag->itpf_lock); 6544 ip_drop_packet(first_mp, inbound, NULL, NULL, 6545 DROPPER(ipss, ipds_spd_malformed_frag), 6546 &ipss->ipsec_spd_dropper); 6547 return (NULL); 6548 } 6549 fraghdr = ipp.ipp_fraghdr; 6550 is_v4 = B_FALSE; 6551 } 6552 6553 /* Anything to cleanup? */ 6554 6555 /* 6556 * This cleanup call could be put in a timer loop 6557 * but it may actually be just as reasonable a decision to 6558 * leave it here. The disadvantage is this only gets called when 6559 * frags are added. The advantage is that it is not 6560 * susceptible to race conditions like a time-based cleanup 6561 * may be. 6562 */ 6563 itpf_time = gethrestime_sec(); 6564 if (itpf_time >= frag->itpf_expire_hint) 6565 ipsec_fragcache_clean(frag); 6566 6567 /* Lookup to see if there is an existing entry */ 6568 6569 if (is_v4) 6570 i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident); 6571 else 6572 i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident); 6573 6574 for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) { 6575 if (is_v4) { 6576 ASSERT(iph != NULL); 6577 if ((fep->itpfe_id == iph->ipha_ident) && 6578 (fep->itpfe_src == iph->ipha_src) && 6579 (fep->itpfe_dst == iph->ipha_dst) && 6580 (fep->itpfe_proto == iph->ipha_protocol)) 6581 break; 6582 } else { 6583 ASSERT(fraghdr != NULL); 6584 ASSERT(fep != NULL); 6585 if ((fep->itpfe_id == fraghdr->ip6f_ident) && 6586 IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6, 6587 &ip6h->ip6_src) && 6588 IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6, 6589 &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto)) 6590 break; 6591 } 6592 } 6593 6594 if (is_v4) { 6595 firstbyte = V4_FRAG_OFFSET(iph); 6596 lastbyte = firstbyte + ntohs(iph->ipha_length) - 6597 IPH_HDR_LENGTH(iph); 6598 last = (V4_MORE_FRAGS(iph) == 0); 6599 #ifdef FRAGCACHE_DEBUG 6600 cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, " 6601 "last = %d, id = %d\n", firstbyte, lastbyte, last, 6602 iph->ipha_ident); 6603 #endif 6604 } else { 6605 firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK); 6606 lastbyte = firstbyte + ntohs(ip6h->ip6_plen) + 6607 sizeof (ip6_t) - ip6_hdr_length; 6608 last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0; 6609 #ifdef FRAGCACHE_DEBUG 6610 cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, " 6611 "last = %d, id = %d, fraghdr = %p, mp = %p\n", 6612 firstbyte, lastbyte, last, fraghdr->ip6f_ident, 6613 fraghdr, mp); 6614 #endif 6615 } 6616 6617 /* check for bogus fragments and delete the entry */ 6618 if (firstbyte > 0 && firstbyte <= 8) { 6619 if (fep != NULL) 6620 (void) fragcache_delentry(i, fep, frag); 6621 mutex_exit(&frag->itpf_lock); 6622 ip_drop_packet(first_mp, inbound, NULL, NULL, 6623 DROPPER(ipss, ipds_spd_malformed_frag), 6624 &ipss->ipsec_spd_dropper); 6625 return (NULL); 6626 } 6627 6628 /* Not found, allocate a new entry */ 6629 if (fep == NULL) { 6630 if (frag->itpf_freelist == NULL) { 6631 /* see if there is some space */ 6632 ipsec_fragcache_clean(frag); 6633 if (frag->itpf_freelist == NULL) { 6634 mutex_exit(&frag->itpf_lock); 6635 ip_drop_packet(first_mp, inbound, NULL, NULL, 6636 DROPPER(ipss, ipds_spd_nomem), 6637 &ipss->ipsec_spd_dropper); 6638 return (NULL); 6639 } 6640 } 6641 6642 fep = frag->itpf_freelist; 6643 frag->itpf_freelist = fep->itpfe_next; 6644 6645 if (is_v4) { 6646 bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src, 6647 sizeof (struct in_addr)); 6648 bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst, 6649 sizeof (struct in_addr)); 6650 fep->itpfe_id = iph->ipha_ident; 6651 fep->itpfe_proto = iph->ipha_protocol; 6652 i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id); 6653 } else { 6654 bcopy((in6_addr_t *)&ip6h->ip6_src, 6655 (in6_addr_t *)&fep->itpfe_src6, 6656 sizeof (struct in6_addr)); 6657 bcopy((in6_addr_t *)&ip6h->ip6_dst, 6658 (in6_addr_t *)&fep->itpfe_dst6, 6659 sizeof (struct in6_addr)); 6660 fep->itpfe_id = fraghdr->ip6f_ident; 6661 fep->itpfe_proto = v6_proto; 6662 i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id); 6663 } 6664 itpf_time = gethrestime_sec(); 6665 fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1; 6666 fep->itpfe_last = 0; 6667 fep->itpfe_fraglist = NULL; 6668 fep->itpfe_depth = 0; 6669 fep->itpfe_next = (frag->itpf_ptr)[i]; 6670 (frag->itpf_ptr)[i] = fep; 6671 6672 if (frag->itpf_expire_hint > fep->itpfe_exp) 6673 frag->itpf_expire_hint = fep->itpfe_exp; 6674 6675 } 6676 6677 /* Insert it in the frag list */ 6678 /* List is in order by starting offset of fragments */ 6679 6680 prevmp = NULL; 6681 for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) { 6682 ipha_t *niph; 6683 ipha_t *oniph; 6684 ip6_t *nip6h; 6685 ip6_pkt_t nipp; 6686 ip6_frag_t *nfraghdr; 6687 uint16_t nip6_hdr_length; 6688 uint8_t *nv6_proto_p; 6689 int nfirstbyte, nlastbyte; 6690 char *data, *ndata; 6691 mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp); 6692 int hdr_len; 6693 6694 oniph = (ipha_t *)mp->b_rptr; 6695 nip6h = NULL; 6696 niph = NULL; 6697 6698 /* 6699 * Determine outer header type and length and set 6700 * pointers appropriately 6701 */ 6702 6703 if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) { 6704 hdr_len = ((outer_hdr_len != 0) ? 6705 IPH_HDR_LENGTH(oiph) : 0); 6706 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len); 6707 } else { 6708 ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION); 6709 ASSERT(ndata_mp->b_cont == NULL); 6710 nip6h = (ip6_t *)ndata_mp->b_rptr; 6711 (void) ip_hdr_length_nexthdr_v6(ndata_mp, nip6h, 6712 &nip6_hdr_length, &v6_proto_p); 6713 hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0); 6714 } 6715 6716 /* 6717 * Determine inner header type and length and set 6718 * pointers appropriately 6719 */ 6720 6721 if (is_v4) { 6722 if (niph == NULL) { 6723 /* Was v6 outer */ 6724 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len); 6725 } 6726 nfirstbyte = V4_FRAG_OFFSET(niph); 6727 nlastbyte = nfirstbyte + ntohs(niph->ipha_length) - 6728 IPH_HDR_LENGTH(niph); 6729 } else { 6730 ASSERT(ndata_mp->b_cont == NULL); 6731 nip6h = (ip6_t *)(ndata_mp->b_rptr + hdr_len); 6732 if (!ip_hdr_length_nexthdr_v6(ndata_mp, nip6h, 6733 &nip6_hdr_length, &nv6_proto_p)) { 6734 mutex_exit(&frag->itpf_lock); 6735 ip_drop_packet_chain(nmp, inbound, NULL, NULL, 6736 DROPPER(ipss, ipds_spd_malformed_frag), 6737 &ipss->ipsec_spd_dropper); 6738 ipsec_freemsg_chain(ndata_mp); 6739 return (NULL); 6740 } 6741 bzero(&nipp, sizeof (nipp)); 6742 (void) ip_find_hdr_v6(ndata_mp, nip6h, &nipp, NULL); 6743 nfraghdr = nipp.ipp_fraghdr; 6744 nfirstbyte = ntohs(nfraghdr->ip6f_offlg & 6745 IP6F_OFF_MASK); 6746 nlastbyte = nfirstbyte + ntohs(nip6h->ip6_plen) + 6747 sizeof (ip6_t) - nip6_hdr_length; 6748 } 6749 6750 /* Check for overlapping fragments */ 6751 if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) { 6752 /* 6753 * Overlap Check: 6754 * ~~~~--------- # Check if the newly 6755 * ~ ndata_mp| # received fragment 6756 * ~~~~--------- # overlaps with the 6757 * ---------~~~~~~ # current fragment. 6758 * | mp ~ 6759 * ---------~~~~~~ 6760 */ 6761 if (is_v4) { 6762 data = (char *)iph + IPH_HDR_LENGTH(iph) + 6763 firstbyte - nfirstbyte; 6764 ndata = (char *)niph + IPH_HDR_LENGTH(niph); 6765 } else { 6766 data = (char *)ip6h + 6767 nip6_hdr_length + firstbyte - 6768 nfirstbyte; 6769 ndata = (char *)nip6h + nip6_hdr_length; 6770 } 6771 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) - 6772 firstbyte)) { 6773 /* Overlapping data does not match */ 6774 (void) fragcache_delentry(i, fep, frag); 6775 mutex_exit(&frag->itpf_lock); 6776 ip_drop_packet(first_mp, inbound, NULL, NULL, 6777 DROPPER(ipss, ipds_spd_overlap_frag), 6778 &ipss->ipsec_spd_dropper); 6779 return (NULL); 6780 } 6781 /* Part of defense for jolt2.c fragmentation attack */ 6782 if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) { 6783 /* 6784 * Check for identical or subset fragments: 6785 * ---------- ~~~~--------~~~~~ 6786 * | nmp | or ~ nmp ~ 6787 * ---------- ~~~~--------~~~~~ 6788 * ---------- ------ 6789 * | mp | | mp | 6790 * ---------- ------ 6791 */ 6792 mutex_exit(&frag->itpf_lock); 6793 ip_drop_packet(first_mp, inbound, NULL, NULL, 6794 DROPPER(ipss, ipds_spd_evil_frag), 6795 &ipss->ipsec_spd_dropper); 6796 return (NULL); 6797 } 6798 6799 } 6800 6801 /* Correct location for this fragment? */ 6802 if (firstbyte <= nfirstbyte) { 6803 /* 6804 * Check if the tail end of the new fragment overlaps 6805 * with the head of the current fragment. 6806 * --------~~~~~~~ 6807 * | nmp ~ 6808 * --------~~~~~~~ 6809 * ~~~~~-------- 6810 * ~ mp | 6811 * ~~~~~-------- 6812 */ 6813 if (lastbyte > nfirstbyte) { 6814 /* Fragments overlap */ 6815 data = (char *)iph + IPH_HDR_LENGTH(iph) + 6816 firstbyte - nfirstbyte; 6817 ndata = (char *)niph + IPH_HDR_LENGTH(niph); 6818 if (is_v4) { 6819 data = (char *)iph + 6820 IPH_HDR_LENGTH(iph) + firstbyte - 6821 nfirstbyte; 6822 ndata = (char *)niph + 6823 IPH_HDR_LENGTH(niph); 6824 } else { 6825 data = (char *)ip6h + 6826 nip6_hdr_length + firstbyte - 6827 nfirstbyte; 6828 ndata = (char *)nip6h + nip6_hdr_length; 6829 } 6830 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) 6831 - nfirstbyte)) { 6832 /* Overlap mismatch */ 6833 (void) fragcache_delentry(i, fep, frag); 6834 mutex_exit(&frag->itpf_lock); 6835 ip_drop_packet(first_mp, inbound, NULL, 6836 NULL, DROPPER(ipss, 6837 ipds_spd_overlap_frag), 6838 &ipss->ipsec_spd_dropper); 6839 return (NULL); 6840 } 6841 } 6842 6843 /* 6844 * Fragment does not illegally overlap and can now 6845 * be inserted into the chain 6846 */ 6847 break; 6848 } 6849 6850 prevmp = nmp; 6851 } 6852 first_mp->b_next = nmp; 6853 6854 if (prevmp == NULL) { 6855 fep->itpfe_fraglist = first_mp; 6856 } else { 6857 prevmp->b_next = first_mp; 6858 } 6859 if (last) 6860 fep->itpfe_last = 1; 6861 6862 /* Part of defense for jolt2.c fragmentation attack */ 6863 if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) { 6864 (void) fragcache_delentry(i, fep, frag); 6865 mutex_exit(&frag->itpf_lock); 6866 ip_drop_packet(first_mp, inbound, NULL, NULL, 6867 DROPPER(ipss, ipds_spd_max_frags), 6868 &ipss->ipsec_spd_dropper); 6869 return (NULL); 6870 } 6871 6872 /* Check for complete packet */ 6873 6874 if (!fep->itpfe_last) { 6875 mutex_exit(&frag->itpf_lock); 6876 #ifdef FRAGCACHE_DEBUG 6877 cmn_err(CE_WARN, "Fragment cached, not last.\n"); 6878 #endif 6879 return (NULL); 6880 } 6881 6882 #ifdef FRAGCACHE_DEBUG 6883 cmn_err(CE_WARN, "Last fragment cached.\n"); 6884 cmn_err(CE_WARN, "mp = %p, first_mp = %p.\n", mp, first_mp); 6885 #endif 6886 6887 offset = 0; 6888 for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) { 6889 mblk_t *data_mp = (inbound ? mp->b_cont : mp); 6890 int hdr_len; 6891 6892 oiph = (ipha_t *)data_mp->b_rptr; 6893 ip6h = NULL; 6894 iph = NULL; 6895 6896 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) { 6897 hdr_len = ((outer_hdr_len != 0) ? 6898 IPH_HDR_LENGTH(oiph) : 0); 6899 iph = (ipha_t *)(data_mp->b_rptr + hdr_len); 6900 } else { 6901 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION); 6902 ASSERT(data_mp->b_cont == NULL); 6903 ip6h = (ip6_t *)data_mp->b_rptr; 6904 (void) ip_hdr_length_nexthdr_v6(data_mp, ip6h, 6905 &ip6_hdr_length, &v6_proto_p); 6906 hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0); 6907 } 6908 6909 /* Calculate current fragment start/end */ 6910 if (is_v4) { 6911 if (iph == NULL) { 6912 /* Was v6 outer */ 6913 iph = (ipha_t *)(data_mp->b_rptr + hdr_len); 6914 } 6915 firstbyte = V4_FRAG_OFFSET(iph); 6916 lastbyte = firstbyte + ntohs(iph->ipha_length) - 6917 IPH_HDR_LENGTH(iph); 6918 } else { 6919 ASSERT(data_mp->b_cont == NULL); 6920 ip6h = (ip6_t *)(data_mp->b_rptr + hdr_len); 6921 if (!ip_hdr_length_nexthdr_v6(data_mp, ip6h, 6922 &ip6_hdr_length, &v6_proto_p)) { 6923 mutex_exit(&frag->itpf_lock); 6924 ip_drop_packet_chain(mp, inbound, NULL, NULL, 6925 DROPPER(ipss, ipds_spd_malformed_frag), 6926 &ipss->ipsec_spd_dropper); 6927 return (NULL); 6928 } 6929 v6_proto = *v6_proto_p; 6930 bzero(&ipp, sizeof (ipp)); 6931 (void) ip_find_hdr_v6(data_mp, ip6h, &ipp, NULL); 6932 fraghdr = ipp.ipp_fraghdr; 6933 firstbyte = ntohs(fraghdr->ip6f_offlg & 6934 IP6F_OFF_MASK); 6935 lastbyte = firstbyte + ntohs(ip6h->ip6_plen) + 6936 sizeof (ip6_t) - ip6_hdr_length; 6937 } 6938 6939 /* 6940 * If this fragment is greater than current offset, 6941 * we have a missing fragment so return NULL 6942 */ 6943 if (firstbyte > offset) { 6944 mutex_exit(&frag->itpf_lock); 6945 #ifdef FRAGCACHE_DEBUG 6946 /* 6947 * Note, this can happen when the last frag 6948 * gets sent through because it is smaller 6949 * than the MTU. It is not necessarily an 6950 * error condition. 6951 */ 6952 cmn_err(CE_WARN, "Frag greater than offset! : " 6953 "missing fragment: firstbyte = %d, offset = %d, " 6954 "mp = %p\n", firstbyte, offset, mp); 6955 #endif 6956 return (NULL); 6957 } 6958 6959 /* 6960 * If we are at the last fragment, we have the complete 6961 * packet, so rechain things and return it to caller 6962 * for processing 6963 */ 6964 6965 if ((is_v4 && !V4_MORE_FRAGS(iph)) || 6966 (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) { 6967 mp = fep->itpfe_fraglist; 6968 fep->itpfe_fraglist = NULL; 6969 (void) fragcache_delentry(i, fep, frag); 6970 mutex_exit(&frag->itpf_lock); 6971 6972 if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) > 6973 65535)) || (!is_v4 && (firstbyte + 6974 ntohs(ip6h->ip6_plen) > 65535))) { 6975 /* It is an invalid "ping-o-death" packet */ 6976 /* Discard it */ 6977 ip_drop_packet_chain(mp, inbound, NULL, NULL, 6978 DROPPER(ipss, ipds_spd_evil_frag), 6979 &ipss->ipsec_spd_dropper); 6980 return (NULL); 6981 } 6982 #ifdef FRAGCACHE_DEBUG 6983 cmn_err(CE_WARN, "Fragcache returning mp = %p, " 6984 "mp->b_next = %p", mp, mp->b_next); 6985 #endif 6986 /* 6987 * For inbound case, mp has ipsec_in b_next'd chain 6988 * For outbound case, it is just data mp chain 6989 */ 6990 return (mp); 6991 } 6992 6993 /* 6994 * Update new ending offset if this 6995 * fragment extends the packet 6996 */ 6997 if (offset < lastbyte) 6998 offset = lastbyte; 6999 } 7000 7001 mutex_exit(&frag->itpf_lock); 7002 7003 /* Didn't find last fragment, so return NULL */ 7004 return (NULL); 7005 } 7006 7007 static void 7008 ipsec_fragcache_clean(ipsec_fragcache_t *frag) 7009 { 7010 ipsec_fragcache_entry_t *fep; 7011 int i; 7012 ipsec_fragcache_entry_t *earlyfep = NULL; 7013 time_t itpf_time; 7014 int earlyexp; 7015 int earlyi = 0; 7016 7017 ASSERT(MUTEX_HELD(&frag->itpf_lock)); 7018 7019 itpf_time = gethrestime_sec(); 7020 earlyexp = itpf_time + 10000; 7021 7022 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) { 7023 fep = (frag->itpf_ptr)[i]; 7024 while (fep) { 7025 if (fep->itpfe_exp < itpf_time) { 7026 /* found */ 7027 fep = fragcache_delentry(i, fep, frag); 7028 } else { 7029 if (fep->itpfe_exp < earlyexp) { 7030 earlyfep = fep; 7031 earlyexp = fep->itpfe_exp; 7032 earlyi = i; 7033 } 7034 fep = fep->itpfe_next; 7035 } 7036 } 7037 } 7038 7039 frag->itpf_expire_hint = earlyexp; 7040 7041 /* if (!found) */ 7042 if (frag->itpf_freelist == NULL) 7043 (void) fragcache_delentry(earlyi, earlyfep, frag); 7044 } 7045 7046 static ipsec_fragcache_entry_t * 7047 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep, 7048 ipsec_fragcache_t *frag) 7049 { 7050 ipsec_fragcache_entry_t *targp; 7051 ipsec_fragcache_entry_t *nextp = fep->itpfe_next; 7052 7053 ASSERT(MUTEX_HELD(&frag->itpf_lock)); 7054 7055 /* Free up any fragment list still in cache entry */ 7056 ipsec_freemsg_chain(fep->itpfe_fraglist); 7057 7058 targp = (frag->itpf_ptr)[slot]; 7059 ASSERT(targp != 0); 7060 7061 if (targp == fep) { 7062 /* unlink from head of hash chain */ 7063 (frag->itpf_ptr)[slot] = nextp; 7064 /* link into free list */ 7065 fep->itpfe_next = frag->itpf_freelist; 7066 frag->itpf_freelist = fep; 7067 return (nextp); 7068 } 7069 7070 /* maybe should use double linked list to make update faster */ 7071 /* must be past front of chain */ 7072 while (targp) { 7073 if (targp->itpfe_next == fep) { 7074 /* unlink from hash chain */ 7075 targp->itpfe_next = nextp; 7076 /* link into free list */ 7077 fep->itpfe_next = frag->itpf_freelist; 7078 frag->itpf_freelist = fep; 7079 return (nextp); 7080 } 7081 targp = targp->itpfe_next; 7082 ASSERT(targp != 0); 7083 } 7084 /* NOTREACHED */ 7085 return (NULL); 7086 } 7087