xref: /titanic_41/usr/src/uts/common/inet/ip/sadb.c (revision afd1ac7b1c9a8cdf273c865aa5e9a14620341443)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/stream.h>
31 #include <sys/stropts.h>
32 #include <sys/ddi.h>
33 #include <sys/debug.h>
34 #include <sys/cmn_err.h>
35 #include <sys/stream.h>
36 #include <sys/strlog.h>
37 #include <sys/kmem.h>
38 #include <sys/sunddi.h>
39 #include <sys/tihdr.h>
40 #include <sys/atomic.h>
41 #include <sys/socket.h>
42 #include <sys/sysmacros.h>
43 #include <sys/crypto/common.h>
44 #include <sys/crypto/api.h>
45 #include <sys/zone.h>
46 #include <netinet/in.h>
47 #include <net/if.h>
48 #include <net/pfkeyv2.h>
49 #include <inet/common.h>
50 #include <netinet/ip6.h>
51 #include <inet/ip.h>
52 #include <inet/ip6.h>
53 #include <inet/ipsec_info.h>
54 #include <inet/ipsec_impl.h>
55 #include <inet/tcp.h>
56 #include <inet/sadb.h>
57 #include <inet/ipsecah.h>
58 #include <inet/ipsecesp.h>
59 #include <sys/random.h>
60 #include <sys/dlpi.h>
61 #include <sys/iphada.h>
62 #include <inet/ip_if.h>
63 #include <inet/ipdrop.h>
64 #include <inet/ipclassifier.h>
65 #include <inet/sctp_ip.h>
66 
67 /*
68  * This source file contains Security Association Database (SADB) common
69  * routines.  They are linked in with the AH module.  Since AH has no chance
70  * of falling under export control, it was safe to link it in there.
71  */
72 
73 /* Packet dropper for generic SADB drops. */
74 static ipdropper_t sadb_dropper;
75 
76 static mblk_t *sadb_extended_acquire(ipsec_selector_t *, ipsec_policy_t *,
77     ipsec_action_t *, uint32_t, uint32_t);
78 static void sadb_ill_df(ill_t *, mblk_t *, isaf_t *, int, boolean_t);
79 static ipsa_t *sadb_torch_assoc(isaf_t *, ipsa_t *, boolean_t, mblk_t **);
80 static void sadb_drain_torchq(queue_t *q, mblk_t *);
81 static void sadb_destroy_acqlist(iacqf_t **, uint_t, boolean_t);
82 static void sadb_destroy(sadb_t *sp);
83 
84 static time_t sadb_add_time(time_t base, uint64_t delta);
85 
86 #define	SET_EXPIRE(sa, delta, exp) {				\
87 	if (((sa)->ipsa_ ## delta) != 0) {				\
88 		(sa)->ipsa_ ## exp = sadb_add_time((sa)->ipsa_addtime,	\
89 			(sa)->ipsa_ ## delta);				\
90 	}								\
91 }
92 
93 #define	UPDATE_EXPIRE(sa, delta, exp) {					\
94 	if (((sa)->ipsa_ ## delta) != 0) {				\
95 		time_t tmp = sadb_add_time((sa)->ipsa_usetime,		\
96 			(sa)->ipsa_ ## delta);				\
97 		if (((sa)->ipsa_ ## exp) == 0)				\
98 			(sa)->ipsa_ ## exp = tmp;			\
99 		else							\
100 			(sa)->ipsa_ ## exp = 				\
101 			    MIN((sa)->ipsa_ ## exp, tmp); 		\
102 	}								\
103 }
104 
105 
106 /* wrap the macro so we can pass it as a function pointer */
107 void
108 sadb_sa_refrele(void *target)
109 {
110 	IPSA_REFRELE(((ipsa_t *)target));
111 }
112 
113 /*
114  * We presume that sizeof (long) == sizeof (time_t) and that time_t is
115  * a signed type.
116  */
117 #define	TIME_MAX LONG_MAX
118 
119 /*
120  * PF_KEY gives us lifetimes in uint64_t seconds.  We presume that
121  * time_t is defined to be a signed type with the same range as
122  * "long".  On ILP32 systems, we thus run the risk of wrapping around
123  * at end of time, as well as "overwrapping" the clock back around
124  * into a seemingly valid but incorrect future date earlier than the
125  * desired expiration.
126  *
127  * In order to avoid odd behavior (either negative lifetimes or loss
128  * of high order bits) when someone asks for bizarrely long SA
129  * lifetimes, we do a saturating add for expire times.
130  *
131  * We presume that ILP32 systems will be past end of support life when
132  * the 32-bit time_t overflows (a dangerous assumption, mind you..).
133  *
134  * On LP64, 2^64 seconds are about 5.8e11 years, at which point we
135  * will hopefully have figured out clever ways to avoid the use of
136  * fixed-sized integers in computation.
137  */
138 static time_t
139 sadb_add_time(time_t base, uint64_t delta)
140 {
141 	time_t sum;
142 
143 	/*
144 	 * Clip delta to the maximum possible time_t value to
145 	 * prevent "overwrapping" back into a shorter-than-desired
146 	 * future time.
147 	 */
148 	if (delta > TIME_MAX)
149 		delta = TIME_MAX;
150 	/*
151 	 * This sum may still overflow.
152 	 */
153 	sum = base + delta;
154 
155 	/*
156 	 * .. so if the result is less than the base, we overflowed.
157 	 */
158 	if (sum < base)
159 		sum = TIME_MAX;
160 
161 	return (sum);
162 }
163 
164 /*
165  * Callers of this function have already created a working security
166  * association, and have found the appropriate table & hash chain.  All this
167  * function does is check duplicates, and insert the SA.  The caller needs to
168  * hold the hash bucket lock and increment the refcnt before insertion.
169  *
170  * Return 0 if success, EEXIST if collision.
171  */
172 int
173 sadb_insertassoc(ipsa_t *ipsa, isaf_t *bucket)
174 {
175 	ipsa_t **ptpn = NULL;
176 	ipsa_t *walker;
177 	boolean_t unspecsrc;
178 
179 	ASSERT(MUTEX_HELD(&bucket->isaf_lock));
180 
181 	unspecsrc = IPSA_IS_ADDR_UNSPEC(ipsa->ipsa_srcaddr, ipsa->ipsa_addrfam);
182 
183 	walker = bucket->isaf_ipsa;
184 	ASSERT(walker == NULL || ipsa->ipsa_addrfam == walker->ipsa_addrfam);
185 
186 	/*
187 	 * Find insertion point (pointed to with **ptpn).  Insert at the head
188 	 * of the list unless there's an unspecified source address, then
189 	 * insert it after the last SA with a specified source address.
190 	 *
191 	 * BTW, you'll have to walk the whole chain, matching on {DST, SPI}
192 	 * checking for collisions.
193 	 */
194 
195 	while (walker != NULL) {
196 		if (IPSA_ARE_ADDR_EQUAL(walker->ipsa_dstaddr,
197 		    ipsa->ipsa_dstaddr, ipsa->ipsa_addrfam)) {
198 			if (walker->ipsa_spi == ipsa->ipsa_spi)
199 				return (EEXIST);
200 
201 			mutex_enter(&walker->ipsa_lock);
202 			if (ipsa->ipsa_state == IPSA_STATE_MATURE &&
203 			    (walker->ipsa_flags & IPSA_F_USED) &&
204 			    ((walker->ipsa_unique_id &
205 				walker->ipsa_unique_mask) ==
206 				(ipsa->ipsa_unique_id &
207 				    ipsa->ipsa_unique_mask))) {
208 				walker->ipsa_flags |= IPSA_F_CINVALID;
209 			}
210 			mutex_exit(&walker->ipsa_lock);
211 		}
212 
213 		if (ptpn == NULL && unspecsrc) {
214 			if (IPSA_IS_ADDR_UNSPEC(walker->ipsa_srcaddr,
215 			    walker->ipsa_addrfam))
216 				ptpn = walker->ipsa_ptpn;
217 			else if (walker->ipsa_next == NULL)
218 				ptpn = &walker->ipsa_next;
219 		}
220 
221 		walker = walker->ipsa_next;
222 	}
223 
224 	if (ptpn == NULL)
225 		ptpn = &bucket->isaf_ipsa;
226 	ipsa->ipsa_next = *ptpn;
227 	ipsa->ipsa_ptpn = ptpn;
228 	if (ipsa->ipsa_next != NULL)
229 		ipsa->ipsa_next->ipsa_ptpn = &ipsa->ipsa_next;
230 	*ptpn = ipsa;
231 	ipsa->ipsa_linklock = &bucket->isaf_lock;
232 
233 	return (0);
234 }
235 
236 /*
237  * Free a security association.  Its reference count is 0, which means
238  * I must free it.  The SA must be unlocked and must not be linked into
239  * any fanout list.
240  */
241 static void
242 sadb_freeassoc(ipsa_t *ipsa)
243 {
244 	ASSERT(!MUTEX_HELD(&ipsa->ipsa_lock));
245 	ASSERT(ipsa->ipsa_refcnt == 0);
246 	ASSERT(ipsa->ipsa_next == NULL);
247 	ASSERT(ipsa->ipsa_ptpn == NULL);
248 
249 	ip_drop_packet(sadb_clear_lpkt(ipsa), B_TRUE, NULL, NULL,
250 	    &ipdrops_sadb_inlarval_timeout, &sadb_dropper);
251 
252 	mutex_enter(&ipsa->ipsa_lock);
253 
254 	if (ipsa->ipsa_natt_ka_timer != 0)
255 		(void) quntimeout(ipsa->ipsa_natt_q, ipsa->ipsa_natt_ka_timer);
256 
257 	ipsec_destroy_ctx_tmpl(ipsa, IPSEC_ALG_AUTH);
258 	ipsec_destroy_ctx_tmpl(ipsa, IPSEC_ALG_ENCR);
259 	mutex_exit(&ipsa->ipsa_lock);
260 
261 	/* bzero() these fields for paranoia's sake. */
262 	if (ipsa->ipsa_authkey != NULL) {
263 		bzero(ipsa->ipsa_authkey, ipsa->ipsa_authkeylen);
264 		kmem_free(ipsa->ipsa_authkey, ipsa->ipsa_authkeylen);
265 	}
266 	if (ipsa->ipsa_encrkey != NULL) {
267 		bzero(ipsa->ipsa_encrkey, ipsa->ipsa_encrkeylen);
268 		kmem_free(ipsa->ipsa_encrkey, ipsa->ipsa_encrkeylen);
269 	}
270 	if (ipsa->ipsa_src_cid != NULL) {
271 		IPSID_REFRELE(ipsa->ipsa_src_cid);
272 	}
273 	if (ipsa->ipsa_dst_cid != NULL) {
274 		IPSID_REFRELE(ipsa->ipsa_dst_cid);
275 	}
276 	if (ipsa->ipsa_proxy_cid != NULL) {
277 		IPSID_REFRELE(ipsa->ipsa_proxy_cid);
278 	}
279 	if (ipsa->ipsa_integ != NULL)
280 		kmem_free(ipsa->ipsa_integ, ipsa->ipsa_integlen);
281 	if (ipsa->ipsa_sens != NULL)
282 		kmem_free(ipsa->ipsa_sens, ipsa->ipsa_senslen);
283 
284 	mutex_destroy(&ipsa->ipsa_lock);
285 	kmem_free(ipsa, sizeof (*ipsa));
286 }
287 
288 /*
289  * Unlink a security association from a hash bucket.  Assume the hash bucket
290  * lock is held, but the association's lock is not.
291  *
292  * Note that we do not bump the bucket's generation number here because
293  * we might not be making a visible change to the set of visible SA's.
294  * All callers MUST bump the bucket's generation number before they unlock
295  * the bucket if they use sadb_unlinkassoc to permanetly remove an SA which
296  * was present in the bucket at the time it was locked.
297  */
298 void
299 sadb_unlinkassoc(ipsa_t *ipsa)
300 {
301 	ASSERT(ipsa->ipsa_linklock != NULL);
302 	ASSERT(MUTEX_HELD(ipsa->ipsa_linklock));
303 
304 	/* These fields are protected by the link lock. */
305 	*(ipsa->ipsa_ptpn) = ipsa->ipsa_next;
306 	if (ipsa->ipsa_next != NULL) {
307 		ipsa->ipsa_next->ipsa_ptpn = ipsa->ipsa_ptpn;
308 		ipsa->ipsa_next = NULL;
309 	}
310 
311 	ipsa->ipsa_ptpn = NULL;
312 
313 	/* This may destroy the SA. */
314 	IPSA_REFRELE(ipsa);
315 }
316 
317 /*
318  * Create a larval security association with the specified SPI.	 All other
319  * fields are zeroed.
320  */
321 static ipsa_t *
322 sadb_makelarvalassoc(uint32_t spi, uint32_t *src, uint32_t *dst, int addrfam)
323 {
324 	ipsa_t *newbie;
325 
326 	/*
327 	 * Allocate...
328 	 */
329 
330 	newbie = (ipsa_t *)kmem_zalloc(sizeof (ipsa_t), KM_NOSLEEP);
331 	if (newbie == NULL) {
332 		/* Can't make new larval SA. */
333 		return (NULL);
334 	}
335 
336 	/* Assigned requested SPI, assume caller does SPI allocation magic. */
337 	newbie->ipsa_spi = spi;
338 
339 	/*
340 	 * Copy addresses...
341 	 */
342 
343 	IPSA_COPY_ADDR(newbie->ipsa_srcaddr, src, addrfam);
344 	IPSA_COPY_ADDR(newbie->ipsa_dstaddr, dst, addrfam);
345 
346 	newbie->ipsa_addrfam = addrfam;
347 
348 	/*
349 	 * Set common initialization values, including refcnt.
350 	 */
351 	mutex_init(&newbie->ipsa_lock, NULL, MUTEX_DEFAULT, NULL);
352 	newbie->ipsa_state = IPSA_STATE_LARVAL;
353 	newbie->ipsa_refcnt = 1;
354 	newbie->ipsa_freefunc = sadb_freeassoc;
355 
356 	/*
357 	 * There aren't a lot of other common initialization values, as
358 	 * they are copied in from the PF_KEY message.
359 	 */
360 
361 	return (newbie);
362 }
363 
364 /*
365  * Call me to initialize a security association fanout.
366  */
367 static int
368 sadb_init_fanout(isaf_t **tablep, uint_t size, int kmflag)
369 {
370 	isaf_t *table;
371 	int i;
372 
373 	table = (isaf_t *)kmem_alloc(size * sizeof (*table), kmflag);
374 	*tablep = table;
375 
376 	if (table == NULL)
377 		return (ENOMEM);
378 
379 	for (i = 0; i < size; i++) {
380 		mutex_init(&(table[i].isaf_lock), NULL, MUTEX_DEFAULT, NULL);
381 		table[i].isaf_ipsa = NULL;
382 		table[i].isaf_gen = 0;
383 	}
384 
385 	return (0);
386 }
387 
388 /*
389  * Call me to initialize an acquire fanout
390  */
391 static int
392 sadb_init_acfanout(iacqf_t **tablep, uint_t size, int kmflag)
393 {
394 	iacqf_t *table;
395 	int i;
396 
397 	table = (iacqf_t *)kmem_alloc(size * sizeof (*table), kmflag);
398 	*tablep = table;
399 
400 	if (table == NULL)
401 		return (ENOMEM);
402 
403 	for (i = 0; i < size; i++) {
404 		mutex_init(&(table[i].iacqf_lock), NULL, MUTEX_DEFAULT, NULL);
405 		table[i].iacqf_ipsacq = NULL;
406 	}
407 
408 	return (0);
409 }
410 
411 /*
412  * Attempt to initialize an SADB instance.  On failure, return ENOMEM;
413  * caller must clean up partial allocations.
414  */
415 static int
416 sadb_init_trial(sadb_t *sp, uint_t size, int kmflag)
417 {
418 	ASSERT(sp->sdb_of == NULL);
419 	ASSERT(sp->sdb_if == NULL);
420 	ASSERT(sp->sdb_acq == NULL);
421 
422 	sp->sdb_hashsize = size;
423 	if (sadb_init_fanout(&sp->sdb_of, size, kmflag) != 0)
424 		return (ENOMEM);
425 	if (sadb_init_fanout(&sp->sdb_if, size, kmflag) != 0)
426 		return (ENOMEM);
427 	if (sadb_init_acfanout(&sp->sdb_acq, size, kmflag) != 0)
428 		return (ENOMEM);
429 
430 	return (0);
431 }
432 
433 /*
434  * Call me to initialize an SADB instance; fall back to default size on failure.
435  */
436 static void
437 sadb_init(const char *name, sadb_t *sp, uint_t size, uint_t ver)
438 {
439 	ASSERT(sp->sdb_of == NULL);
440 	ASSERT(sp->sdb_if == NULL);
441 	ASSERT(sp->sdb_acq == NULL);
442 
443 	if (size < IPSEC_DEFAULT_HASH_SIZE)
444 		size = IPSEC_DEFAULT_HASH_SIZE;
445 
446 	if (sadb_init_trial(sp, size, KM_NOSLEEP) != 0) {
447 
448 		cmn_err(CE_WARN,
449 		    "Unable to allocate %u entry IPv%u %s SADB hash table",
450 		    size, ver, name);
451 
452 		sadb_destroy(sp);
453 		size = IPSEC_DEFAULT_HASH_SIZE;
454 		cmn_err(CE_WARN, "Falling back to %d entries", size);
455 		(void) sadb_init_trial(sp, size, KM_SLEEP);
456 	}
457 }
458 
459 
460 /*
461  * Initialize an SADB-pair.
462  */
463 void
464 sadbp_init(const char *name, sadbp_t *sp, int type, int size)
465 {
466 	sadb_init(name, &sp->s_v4, size, 4);
467 	sadb_init(name, &sp->s_v6, size, 6);
468 
469 	sp->s_satype = type;
470 
471 	ASSERT((type == SADB_SATYPE_AH) || (type == SADB_SATYPE_ESP));
472 	if (type == SADB_SATYPE_AH)
473 		ip_drop_register(&sadb_dropper, "IPsec SADB");
474 }
475 
476 /*
477  * Deliver a single SADB_DUMP message representing a single SA.  This is
478  * called many times by sadb_dump().
479  *
480  * If the return value of this is ENOBUFS (not the same as ENOMEM), then
481  * the caller should take that as a hint that dupb() on the "original answer"
482  * failed, and that perhaps the caller should try again with a copyb()ed
483  * "original answer".
484  */
485 static int
486 sadb_dump_deliver(queue_t *pfkey_q, mblk_t *original_answer, ipsa_t *ipsa,
487     sadb_msg_t *samsg)
488 {
489 	mblk_t *answer;
490 
491 	answer = dupb(original_answer);
492 	if (answer == NULL)
493 		return (ENOBUFS);
494 	answer->b_cont = sadb_sa2msg(ipsa, samsg);
495 	if (answer->b_cont == NULL) {
496 		freeb(answer);
497 		return (ENOMEM);
498 	}
499 
500 	/* Just do a putnext, and let keysock deal with flow control. */
501 	putnext(pfkey_q, answer);
502 	return (0);
503 }
504 
505 /*
506  * Common function to allocate and prepare a keysock_out_t M_CTL message.
507  */
508 mblk_t *
509 sadb_keysock_out(minor_t serial)
510 {
511 	mblk_t *mp;
512 	keysock_out_t *kso;
513 
514 	mp = allocb(sizeof (ipsec_info_t), BPRI_HI);
515 	if (mp != NULL) {
516 		mp->b_datap->db_type = M_CTL;
517 		mp->b_wptr += sizeof (ipsec_info_t);
518 		kso = (keysock_out_t *)mp->b_rptr;
519 		kso->ks_out_type = KEYSOCK_OUT;
520 		kso->ks_out_len = sizeof (*kso);
521 		kso->ks_out_serial = serial;
522 	}
523 
524 	return (mp);
525 }
526 
527 /*
528  * Perform an SADB_DUMP, spewing out every SA in an array of SA fanouts
529  * to keysock.
530  */
531 static int
532 sadb_dump_fanout(queue_t *pfkey_q, mblk_t *mp, minor_t serial, isaf_t *fanout,
533     int num_entries, boolean_t do_peers)
534 {
535 	int i, error = 0;
536 	mblk_t *original_answer;
537 	ipsa_t *walker;
538 	sadb_msg_t *samsg;
539 
540 	/*
541 	 * For each IPSA hash bucket do:
542 	 *	- Hold the mutex
543 	 *	- Walk each entry, doing an sadb_dump_deliver() on it.
544 	 */
545 	ASSERT(mp->b_cont != NULL);
546 	samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
547 
548 	original_answer = sadb_keysock_out(serial);
549 	if (original_answer == NULL)
550 		return (ENOMEM);
551 
552 	for (i = 0; i < num_entries; i++) {
553 		mutex_enter(&fanout[i].isaf_lock);
554 		for (walker = fanout[i].isaf_ipsa; walker != NULL;
555 		    walker = walker->ipsa_next) {
556 			if (!do_peers && walker->ipsa_haspeer)
557 				continue;
558 			error = sadb_dump_deliver(pfkey_q, original_answer,
559 			    walker, samsg);
560 			if (error == ENOBUFS) {
561 				mblk_t *new_original_answer;
562 
563 				/* Ran out of dupb's.  Try a copyb. */
564 				new_original_answer = copyb(original_answer);
565 				if (new_original_answer == NULL) {
566 					error = ENOMEM;
567 				} else {
568 					freeb(original_answer);
569 					original_answer = new_original_answer;
570 					error = sadb_dump_deliver(pfkey_q,
571 					    original_answer, walker, samsg);
572 				}
573 			}
574 			if (error != 0)
575 				break;	/* out of for loop. */
576 		}
577 		mutex_exit(&fanout[i].isaf_lock);
578 		if (error != 0)
579 			break;	/* out of for loop. */
580 	}
581 
582 	freeb(original_answer);
583 	return (error);
584 }
585 
586 /*
587  * Dump an entire SADB; outbound first, then inbound.
588  */
589 
590 int
591 sadb_dump(queue_t *pfkey_q, mblk_t *mp, minor_t serial, sadb_t *sp)
592 {
593 	int error;
594 
595 	/* Dump outbound */
596 	error = sadb_dump_fanout(pfkey_q, mp, serial, sp->sdb_of,
597 	    sp->sdb_hashsize, B_TRUE);
598 	if (error)
599 		return (error);
600 
601 	/* Dump inbound */
602 	return sadb_dump_fanout(pfkey_q, mp, serial, sp->sdb_if,
603 	    sp->sdb_hashsize, B_FALSE);
604 }
605 
606 /*
607  * Generic sadb table walker.
608  *
609  * Call "walkfn" for each SA in each bucket in "table"; pass the
610  * bucket, the entry and "cookie" to the callback function.
611  * Take care to ensure that walkfn can delete the SA without screwing
612  * up our traverse.
613  *
614  * The bucket is locked for the duration of the callback, both so that the
615  * callback can just call sadb_unlinkassoc() when it wants to delete something,
616  * and so that no new entries are added while we're walking the list.
617  */
618 static void
619 sadb_walker(isaf_t *table, uint_t numentries,
620     void (*walkfn)(isaf_t *head, ipsa_t *entry, void *cookie),
621     void *cookie)
622 {
623 	int i;
624 	for (i = 0; i < numentries; i++) {
625 		ipsa_t *entry, *next;
626 
627 		mutex_enter(&table[i].isaf_lock);
628 
629 		for (entry = table[i].isaf_ipsa; entry != NULL;
630 		    entry = next) {
631 			next = entry->ipsa_next;
632 			(*walkfn)(&table[i], entry, cookie);
633 		}
634 		mutex_exit(&table[i].isaf_lock);
635 	}
636 }
637 
638 /*
639  * From the given SA, construct a dl_ct_ipsec_key and
640  * a dl_ct_ipsec structures to be sent to the adapter as part
641  * of a DL_CONTROL_REQ.
642  *
643  * ct_sa must point to the storage allocated for the key
644  * structure and must be followed by storage allocated
645  * for the SA information that must be sent to the driver
646  * as part of the DL_CONTROL_REQ request.
647  *
648  * The is_inbound boolean indicates whether the specified
649  * SA is part of an inbound SA table.
650  *
651  * Returns B_TRUE if the corresponding SA must be passed to
652  * a provider, B_FALSE otherwise; frees *mp if it returns B_FALSE.
653  */
654 static boolean_t
655 sadb_req_from_sa(ipsa_t *sa, mblk_t *mp, boolean_t is_inbound)
656 {
657 	dl_ct_ipsec_key_t *keyp;
658 	dl_ct_ipsec_t *sap;
659 	void *ct_sa = mp->b_wptr;
660 
661 	ASSERT(MUTEX_HELD(&sa->ipsa_lock));
662 
663 	keyp = (dl_ct_ipsec_key_t *)(ct_sa);
664 	sap = (dl_ct_ipsec_t *)(keyp + 1);
665 
666 	IPSECHW_DEBUG(IPSECHW_CAPAB, ("sadb_req_from_sa: "
667 	    "is_inbound = %d\n", is_inbound));
668 
669 	/* initialize flag */
670 	sap->sadb_sa_flags = 0;
671 	if (is_inbound) {
672 		sap->sadb_sa_flags |= DL_CT_IPSEC_INBOUND;
673 		/*
674 		 * If an inbound SA has a peer, then mark it has being
675 		 * an outbound SA as well.
676 		 */
677 		if (sa->ipsa_haspeer)
678 			sap->sadb_sa_flags |= DL_CT_IPSEC_OUTBOUND;
679 	} else {
680 		/*
681 		 * If an outbound SA has a peer, then don't send it,
682 		 * since we will send the copy from the inbound table.
683 		 */
684 		if (sa->ipsa_haspeer) {
685 			freemsg(mp);
686 			return (B_FALSE);
687 		}
688 		sap->sadb_sa_flags |= DL_CT_IPSEC_OUTBOUND;
689 	}
690 
691 	keyp->dl_key_spi = sa->ipsa_spi;
692 	bcopy(sa->ipsa_dstaddr, keyp->dl_key_dest_addr,
693 	    DL_CTL_IPSEC_ADDR_LEN);
694 	keyp->dl_key_addr_family = sa->ipsa_addrfam;
695 
696 	sap->sadb_sa_auth = sa->ipsa_auth_alg;
697 	sap->sadb_sa_encrypt = sa->ipsa_encr_alg;
698 
699 	sap->sadb_key_len_a = sa->ipsa_authkeylen;
700 	sap->sadb_key_bits_a = sa->ipsa_authkeybits;
701 	bcopy(sa->ipsa_authkey,
702 	    sap->sadb_key_data_a, sap->sadb_key_len_a);
703 
704 	sap->sadb_key_len_e = sa->ipsa_encrkeylen;
705 	sap->sadb_key_bits_e = sa->ipsa_encrkeybits;
706 	bcopy(sa->ipsa_encrkey,
707 	    sap->sadb_key_data_e, sap->sadb_key_len_e);
708 
709 	mp->b_wptr += sizeof (dl_ct_ipsec_t) + sizeof (dl_ct_ipsec_key_t);
710 	return (B_TRUE);
711 }
712 
713 /*
714  * Called from AH or ESP to format a message which will be used to inform
715  * IPsec-acceleration-capable ills of a SADB change.
716  * (It is not possible to send the message to IP directly from this function
717  * since the SA, if any, is locked during the call).
718  *
719  * dl_operation: DL_CONTROL_REQ operation (add, delete, update, etc)
720  * sa_type: identifies whether the operation applies to AH or ESP
721  *	(must be one of SADB_SATYPE_AH or SADB_SATYPE_ESP)
722  * sa: Pointer to an SA.  Must be non-NULL and locked
723  *	for ADD, DELETE, GET, and UPDATE operations.
724  * This function returns an mblk chain that must be passed to IP
725  * for forwarding to the IPsec capable providers.
726  */
727 mblk_t *
728 sadb_fmt_sa_req(uint_t dl_operation, uint_t sa_type, ipsa_t *sa,
729     boolean_t is_inbound)
730 {
731 	mblk_t *mp;
732 	dl_control_req_t *ctrl;
733 	boolean_t need_key = B_FALSE;
734 	mblk_t *ctl_mp = NULL;
735 	ipsec_ctl_t *ctl;
736 
737 	/*
738 	 * 1 allocate and initialize DL_CONTROL_REQ M_PROTO
739 	 * 2 if a key is needed for the operation
740 	 *    2.1 initialize key
741 	 *    2.2 if a full SA is needed for the operation
742 	 *	2.2.1 initialize full SA info
743 	 * 3 return message; caller will call ill_ipsec_capab_send_all()
744 	 * to send the resulting message to IPsec capable ills.
745 	 */
746 
747 	ASSERT(sa_type == SADB_SATYPE_AH || sa_type == SADB_SATYPE_ESP);
748 
749 	/*
750 	 * Allocate DL_CONTROL_REQ M_PROTO
751 	 * We allocate room for the SA even if it's not needed
752 	 * by some of the operations (for example flush)
753 	 */
754 	mp = allocb(sizeof (dl_control_req_t) +
755 	    sizeof (dl_ct_ipsec_key_t) + sizeof (dl_ct_ipsec_t), BPRI_HI);
756 	if (mp == NULL)
757 		return (NULL);
758 	mp->b_datap->db_type = M_PROTO;
759 
760 	/* initialize dl_control_req_t */
761 	ctrl = (dl_control_req_t *)mp->b_wptr;
762 	ctrl->dl_primitive = DL_CONTROL_REQ;
763 	ctrl->dl_operation = dl_operation;
764 	ctrl->dl_type = sa_type == SADB_SATYPE_AH ? DL_CT_IPSEC_AH :
765 	    DL_CT_IPSEC_ESP;
766 	ctrl->dl_key_offset = sizeof (dl_control_req_t);
767 	ctrl->dl_key_length = sizeof (dl_ct_ipsec_key_t);
768 	ctrl->dl_data_offset = sizeof (dl_control_req_t) +
769 	    sizeof (dl_ct_ipsec_key_t);
770 	ctrl->dl_data_length = sizeof (dl_ct_ipsec_t);
771 	mp->b_wptr += sizeof (dl_control_req_t);
772 
773 	if ((dl_operation == DL_CO_SET) || (dl_operation == DL_CO_DELETE)) {
774 		ASSERT(sa != NULL);
775 		ASSERT(MUTEX_HELD(&sa->ipsa_lock));
776 
777 		need_key = B_TRUE;
778 
779 		/*
780 		 * Initialize key and SA data. Note that for some
781 		 * operations the SA data is ignored by the provider
782 		 * (delete, etc.)
783 		 */
784 		if (!sadb_req_from_sa(sa, mp, is_inbound))
785 			return (NULL);
786 	}
787 
788 	/* construct control message */
789 	ctl_mp = allocb(sizeof (ipsec_ctl_t), BPRI_HI);
790 	if (ctl_mp == NULL) {
791 		cmn_err(CE_WARN, "sadb_fmt_sa_req: allocb failed\n");
792 		freemsg(mp);
793 		return (NULL);
794 	}
795 
796 	ctl_mp->b_datap->db_type = M_CTL;
797 	ctl_mp->b_wptr += sizeof (ipsec_ctl_t);
798 	ctl_mp->b_cont = mp;
799 
800 	ctl = (ipsec_ctl_t *)ctl_mp->b_rptr;
801 	ctl->ipsec_ctl_type = IPSEC_CTL;
802 	ctl->ipsec_ctl_len  = sizeof (ipsec_ctl_t);
803 	ctl->ipsec_ctl_sa_type = sa_type;
804 
805 	if (need_key) {
806 		/*
807 		 * Keep an additional reference on SA, since it will be
808 		 * needed by IP to send control messages corresponding
809 		 * to that SA from its perimeter. IP will do a
810 		 * IPSA_REFRELE when done with the request.
811 		 */
812 		ASSERT(MUTEX_HELD(&sa->ipsa_lock));
813 		IPSA_REFHOLD(sa);
814 		ctl->ipsec_ctl_sa = sa;
815 	} else
816 		ctl->ipsec_ctl_sa = NULL;
817 
818 	return (ctl_mp);
819 }
820 
821 
822 /*
823  * Called by sadb_ill_download() to dump the entries for a specific
824  * fanout table.  For each SA entry in the table passed as argument,
825  * use mp as a template and constructs a full DL_CONTROL message, and
826  * call ill_dlpi_send(), provided by IP, to send the resulting
827  * messages to the ill.
828  */
829 static void
830 sadb_ill_df(ill_t *ill, mblk_t *mp, isaf_t *fanout, int num_entries,
831     boolean_t is_inbound)
832 {
833 	ipsa_t *walker;
834 	mblk_t *nmp, *salist;
835 	int i, error = 0;
836 
837 	IPSECHW_DEBUG(IPSECHW_SADB, ("sadb_ill_df: fanout at 0x%p ne=%d\n",
838 	    (void *)fanout, num_entries));
839 	/*
840 	 * For each IPSA hash bucket do:
841 	 *	- Hold the mutex
842 	 *	- Walk each entry, sending a corresponding request to IP
843 	 *	  for it.
844 	 */
845 	ASSERT(mp->b_datap->db_type == M_PROTO);
846 
847 	for (i = 0; i < num_entries; i++) {
848 		mutex_enter(&fanout[i].isaf_lock);
849 		salist = NULL;
850 
851 		for (walker = fanout[i].isaf_ipsa; walker != NULL;
852 		    walker = walker->ipsa_next) {
853 			IPSECHW_DEBUG(IPSECHW_SADB,
854 			    ("sadb_ill_df: sending SA to ill via IP \n"));
855 			/*
856 			 * Duplicate the template mp passed and
857 			 * complete DL_CONTROL_REQ data.
858 			 * To be more memory efficient, we could use
859 			 * dupb() for the M_CTL and copyb() for the M_PROTO
860 			 * as the M_CTL, since the M_CTL is the same for
861 			 * every SA entry passed down to IP for the same ill.
862 			 *
863 			 * Note that copymsg/copyb ensure that the new mblk
864 			 * is at least as large as the source mblk even if it's
865 			 * not using all its storage -- therefore, nmp
866 			 * has trailing space for sadb_req_from_sa to add
867 			 * the SA-specific bits.
868 			 */
869 			mutex_enter(&walker->ipsa_lock);
870 			if (ipsec_capab_match(ill,
871 			    ill->ill_phyint->phyint_ifindex, ill->ill_isv6,
872 			    walker)) {
873 				nmp = copymsg(mp);
874 				if (nmp == NULL) {
875 					IPSECHW_DEBUG(IPSECHW_SADB,
876 					    ("sadb_ill_df: alloc error\n"));
877 					error = ENOMEM;
878 					mutex_exit(&walker->ipsa_lock);
879 					break;
880 				}
881 				if (sadb_req_from_sa(walker, nmp, is_inbound)) {
882 					nmp->b_next = salist;
883 					salist = nmp;
884 				}
885 			}
886 			mutex_exit(&walker->ipsa_lock);
887 		}
888 		mutex_exit(&fanout[i].isaf_lock);
889 		while (salist != NULL) {
890 			nmp = salist;
891 			salist = nmp->b_next;
892 			nmp->b_next = NULL;
893 			ill_dlpi_send(ill, nmp);
894 		}
895 		if (error != 0)
896 			break;	/* out of for loop. */
897 	}
898 }
899 
900 /*
901  * Called by ill_ipsec_capab_add(). Sends a copy of the SADB of
902  * the type specified by sa_type to the specified ill.
903  *
904  * We call for each fanout table defined by the SADB (one per
905  * protocol). sadb_ill_df() finally calls ill_dlpi_send() for
906  * each SADB entry in order to send a corresponding DL_CONTROL_REQ
907  * message to the ill.
908  */
909 void
910 sadb_ill_download(ill_t *ill, uint_t sa_type)
911 {
912 	mblk_t *protomp;	/* prototype message */
913 	dl_control_req_t *ctrl;
914 	sadbp_t *spp;
915 	sadb_t *sp;
916 	int dlt;
917 
918 	ASSERT(sa_type == SADB_SATYPE_AH || sa_type == SADB_SATYPE_ESP);
919 
920 	/*
921 	 * Allocate and initialize prototype answer. A duplicate for
922 	 * each SA is sent down to the interface.
923 	 */
924 
925 	/* DL_CONTROL_REQ M_PROTO mblk_t */
926 	protomp = allocb(sizeof (dl_control_req_t) +
927 	    sizeof (dl_ct_ipsec_key_t) + sizeof (dl_ct_ipsec_t), BPRI_HI);
928 	if (protomp == NULL)
929 		return;
930 	protomp->b_datap->db_type = M_PROTO;
931 
932 	dlt = (sa_type == SADB_SATYPE_AH) ? DL_CT_IPSEC_AH : DL_CT_IPSEC_ESP;
933 	spp = (sa_type == SADB_SATYPE_ESP) ? &esp_sadb : &ah_sadb;
934 
935 	ctrl = (dl_control_req_t *)protomp->b_wptr;
936 	ctrl->dl_primitive = DL_CONTROL_REQ;
937 	ctrl->dl_operation = DL_CO_SET;
938 	ctrl->dl_type = dlt;
939 	ctrl->dl_key_offset = sizeof (dl_control_req_t);
940 	ctrl->dl_key_length = sizeof (dl_ct_ipsec_key_t);
941 	ctrl->dl_data_offset = sizeof (dl_control_req_t) +
942 	    sizeof (dl_ct_ipsec_key_t);
943 	ctrl->dl_data_length = sizeof (dl_ct_ipsec_t);
944 	protomp->b_wptr += sizeof (dl_control_req_t);
945 
946 	/*
947 	 * then for each SADB entry, we fill out the dl_ct_ipsec_key_t
948 	 * and dl_ct_ipsec_t
949 	 */
950 	sp = ill->ill_isv6 ? &(spp->s_v6) : &(spp->s_v4);
951 	sadb_ill_df(ill, protomp, sp->sdb_of, sp->sdb_hashsize, B_FALSE);
952 	sadb_ill_df(ill, protomp, sp->sdb_if, sp->sdb_hashsize, B_TRUE);
953 	freemsg(protomp);
954 }
955 
956 /*
957  * Call me to free up a security association fanout.  Use the forever
958  * variable to indicate freeing up the SAs (forever == B_FALSE, e.g.
959  * an SADB_FLUSH message), or destroying everything (forever == B_TRUE,
960  * when a module is unloaded).
961  */
962 static void
963 sadb_destroyer(isaf_t **tablep, uint_t numentries, boolean_t forever)
964 {
965 	int i;
966 	isaf_t *table = *tablep;
967 
968 	if (table == NULL)
969 		return;
970 
971 	for (i = 0; i < numentries; i++) {
972 		mutex_enter(&table[i].isaf_lock);
973 		while (table[i].isaf_ipsa != NULL)
974 			sadb_unlinkassoc(table[i].isaf_ipsa);
975 		table[i].isaf_gen++;
976 		mutex_exit(&table[i].isaf_lock);
977 		if (forever)
978 			mutex_destroy(&(table[i].isaf_lock));
979 	}
980 
981 	if (forever) {
982 		*tablep = NULL;
983 		kmem_free(table, numentries * sizeof (*table));
984 	}
985 }
986 
987 /*
988  * Entry points to sadb_destroyer().
989  */
990 static void
991 sadb_flush(sadb_t *sp)
992 {
993 	/*
994 	 * Flush out each bucket, one at a time.  Were it not for keysock's
995 	 * enforcement, there would be a subtlety where I could add on the
996 	 * heels of a flush.  With keysock's enforcement, however, this
997 	 * makes ESP's job easy.
998 	 */
999 	sadb_destroyer(&sp->sdb_of, sp->sdb_hashsize, B_FALSE);
1000 	sadb_destroyer(&sp->sdb_if, sp->sdb_hashsize, B_FALSE);
1001 
1002 	/* For each acquire, destroy it; leave the bucket mutex alone. */
1003 	sadb_destroy_acqlist(&sp->sdb_acq, sp->sdb_hashsize, B_FALSE);
1004 }
1005 
1006 static void
1007 sadb_destroy(sadb_t *sp)
1008 {
1009 	sadb_destroyer(&sp->sdb_of, sp->sdb_hashsize, B_TRUE);
1010 	sadb_destroyer(&sp->sdb_if, sp->sdb_hashsize, B_TRUE);
1011 
1012 	/* For each acquire, destroy it, including the bucket mutex. */
1013 	sadb_destroy_acqlist(&sp->sdb_acq, sp->sdb_hashsize, B_TRUE);
1014 
1015 	ASSERT(sp->sdb_of == NULL);
1016 	ASSERT(sp->sdb_if == NULL);
1017 	ASSERT(sp->sdb_acq == NULL);
1018 }
1019 
1020 static void
1021 sadb_send_flush_req(sadbp_t *spp)
1022 {
1023 	mblk_t *ctl_mp;
1024 
1025 	/*
1026 	 * we've been unplumbed, or never were plumbed; don't go there.
1027 	 */
1028 	if (spp->s_ip_q == NULL)
1029 		return;
1030 
1031 	/* have IP send a flush msg to the IPsec accelerators */
1032 	ctl_mp = sadb_fmt_sa_req(DL_CO_FLUSH, spp->s_satype, NULL, B_TRUE);
1033 	if (ctl_mp != NULL)
1034 		putnext(spp->s_ip_q, ctl_mp);
1035 }
1036 
1037 void
1038 sadbp_flush(sadbp_t *spp)
1039 {
1040 	sadb_flush(&spp->s_v4);
1041 	sadb_flush(&spp->s_v6);
1042 
1043 	sadb_send_flush_req(spp);
1044 }
1045 
1046 void
1047 sadbp_destroy(sadbp_t *spp)
1048 {
1049 	sadb_destroy(&spp->s_v4);
1050 	sadb_destroy(&spp->s_v6);
1051 
1052 	sadb_send_flush_req(spp);
1053 	if (spp->s_satype == SADB_SATYPE_AH)
1054 		ip_drop_unregister(&sadb_dropper);
1055 }
1056 
1057 
1058 /*
1059  * Check hard vs. soft lifetimes.  If there's a reality mismatch (e.g.
1060  * soft lifetimes > hard lifetimes) return an appropriate diagnostic for
1061  * EINVAL.
1062  */
1063 int
1064 sadb_hardsoftchk(sadb_lifetime_t *hard, sadb_lifetime_t *soft)
1065 {
1066 	if (hard == NULL || soft == NULL)
1067 		return (0);
1068 
1069 	if (hard->sadb_lifetime_allocations != 0 &&
1070 	    soft->sadb_lifetime_allocations != 0 &&
1071 	    hard->sadb_lifetime_allocations < soft->sadb_lifetime_allocations)
1072 		return (SADB_X_DIAGNOSTIC_ALLOC_HSERR);
1073 
1074 	if (hard->sadb_lifetime_bytes != 0 &&
1075 	    soft->sadb_lifetime_bytes != 0 &&
1076 	    hard->sadb_lifetime_bytes < soft->sadb_lifetime_bytes)
1077 		return (SADB_X_DIAGNOSTIC_BYTES_HSERR);
1078 
1079 	if (hard->sadb_lifetime_addtime != 0 &&
1080 	    soft->sadb_lifetime_addtime != 0 &&
1081 	    hard->sadb_lifetime_addtime < soft->sadb_lifetime_addtime)
1082 		return (SADB_X_DIAGNOSTIC_ADDTIME_HSERR);
1083 
1084 	if (hard->sadb_lifetime_usetime != 0 &&
1085 	    soft->sadb_lifetime_usetime != 0 &&
1086 	    hard->sadb_lifetime_usetime < soft->sadb_lifetime_usetime)
1087 		return (SADB_X_DIAGNOSTIC_USETIME_HSERR);
1088 
1089 	return (0);
1090 }
1091 
1092 /*
1093  * Clone a security association for the purposes of inserting a single SA
1094  * into inbound and outbound tables respectively.
1095  */
1096 static ipsa_t *
1097 sadb_cloneassoc(ipsa_t *ipsa)
1098 {
1099 	ipsa_t *newbie;
1100 	boolean_t error = B_FALSE;
1101 
1102 	ASSERT(!MUTEX_HELD(&(ipsa->ipsa_lock)));
1103 
1104 	newbie = kmem_alloc(sizeof (ipsa_t), KM_NOSLEEP);
1105 	if (newbie == NULL)
1106 		return (NULL);
1107 
1108 	/* Copy over what we can. */
1109 	*newbie = *ipsa;
1110 
1111 	/* bzero and initialize locks, in case *_init() allocates... */
1112 	mutex_init(&newbie->ipsa_lock, NULL, MUTEX_DEFAULT, NULL);
1113 
1114 	/*
1115 	 * While somewhat dain-bramaged, the most graceful way to
1116 	 * recover from errors is to keep plowing through the
1117 	 * allocations, and getting what I can.  It's easier to call
1118 	 * sadb_freeassoc() on the stillborn clone when all the
1119 	 * pointers aren't pointing to the parent's data.
1120 	 */
1121 
1122 	if (ipsa->ipsa_authkey != NULL) {
1123 		newbie->ipsa_authkey = kmem_alloc(newbie->ipsa_authkeylen,
1124 		    KM_NOSLEEP);
1125 		if (newbie->ipsa_authkey == NULL) {
1126 			error = B_TRUE;
1127 		} else {
1128 			bcopy(ipsa->ipsa_authkey, newbie->ipsa_authkey,
1129 			    newbie->ipsa_authkeylen);
1130 
1131 			newbie->ipsa_kcfauthkey.ck_data =
1132 			    newbie->ipsa_authkey;
1133 		}
1134 
1135 		if (newbie->ipsa_amech.cm_param != NULL) {
1136 			newbie->ipsa_amech.cm_param =
1137 			    (char *)&newbie->ipsa_mac_len;
1138 		}
1139 	}
1140 
1141 	if (ipsa->ipsa_encrkey != NULL) {
1142 		newbie->ipsa_encrkey = kmem_alloc(newbie->ipsa_encrkeylen,
1143 		    KM_NOSLEEP);
1144 		if (newbie->ipsa_encrkey == NULL) {
1145 			error = B_TRUE;
1146 		} else {
1147 			bcopy(ipsa->ipsa_encrkey, newbie->ipsa_encrkey,
1148 			    newbie->ipsa_encrkeylen);
1149 
1150 			newbie->ipsa_kcfencrkey.ck_data =
1151 			    newbie->ipsa_encrkey;
1152 		}
1153 	}
1154 
1155 	newbie->ipsa_authtmpl = NULL;
1156 	newbie->ipsa_encrtmpl = NULL;
1157 
1158 	if (ipsa->ipsa_integ != NULL) {
1159 		newbie->ipsa_integ = kmem_alloc(newbie->ipsa_integlen,
1160 		    KM_NOSLEEP);
1161 		if (newbie->ipsa_integ == NULL) {
1162 			error = B_TRUE;
1163 		} else {
1164 			bcopy(ipsa->ipsa_integ, newbie->ipsa_integ,
1165 			    newbie->ipsa_integlen);
1166 		}
1167 	}
1168 
1169 	if (ipsa->ipsa_sens != NULL) {
1170 		newbie->ipsa_sens = kmem_alloc(newbie->ipsa_senslen,
1171 		    KM_NOSLEEP);
1172 		if (newbie->ipsa_sens == NULL) {
1173 			error = B_TRUE;
1174 		} else {
1175 			bcopy(ipsa->ipsa_sens, newbie->ipsa_sens,
1176 			    newbie->ipsa_senslen);
1177 		}
1178 	}
1179 
1180 	if (ipsa->ipsa_src_cid != NULL) {
1181 		newbie->ipsa_src_cid = ipsa->ipsa_src_cid;
1182 		IPSID_REFHOLD(ipsa->ipsa_src_cid);
1183 	}
1184 
1185 	if (ipsa->ipsa_dst_cid != NULL) {
1186 		newbie->ipsa_dst_cid = ipsa->ipsa_dst_cid;
1187 		IPSID_REFHOLD(ipsa->ipsa_dst_cid);
1188 	}
1189 
1190 #if 0 /* XXX PROXY  - Proxy identities not supported yet. */
1191 	if (ipsa->ipsa_proxy_cid != NULL) {
1192 		newbie->ipsa_proxy_cid = ipsa->ipsa_proxy_cid;
1193 		IPSID_REFHOLD(ipsa->ipsa_proxy_cid);
1194 	}
1195 #endif /* XXX PROXY */
1196 
1197 	if (error) {
1198 		sadb_freeassoc(newbie);
1199 		return (NULL);
1200 	}
1201 
1202 	return (newbie);
1203 }
1204 
1205 /*
1206  * Initialize a SADB address extension at the address specified by addrext.
1207  * Return a pointer to the end of the new address extension.
1208  */
1209 static uint8_t *
1210 sadb_make_addr_ext(uint8_t *start, uint8_t *end, uint16_t exttype,
1211     sa_family_t af, uint32_t *addr, uint16_t port, uint8_t proto)
1212 {
1213 	struct sockaddr_in *sin;
1214 	struct sockaddr_in6 *sin6;
1215 	uint8_t *cur = start;
1216 	int addrext_len;
1217 	int sin_len;
1218 	sadb_address_t *addrext	= (sadb_address_t *)cur;
1219 
1220 	if (cur == NULL)
1221 		return (NULL);
1222 
1223 	cur += sizeof (*addrext);
1224 	if (cur > end)
1225 		return (NULL);
1226 
1227 	addrext->sadb_address_proto = proto;
1228 	addrext->sadb_address_prefixlen = 0;
1229 	addrext->sadb_address_reserved = 0;
1230 	addrext->sadb_address_exttype = exttype;
1231 
1232 	switch (af) {
1233 	case AF_INET:
1234 		sin = (struct sockaddr_in *)cur;
1235 		sin_len = sizeof (*sin);
1236 		cur += sin_len;
1237 		if (cur > end)
1238 			return (NULL);
1239 
1240 		sin->sin_family = af;
1241 		bzero(sin->sin_zero, sizeof (sin->sin_zero));
1242 		sin->sin_port = port;
1243 		IPSA_COPY_ADDR(&sin->sin_addr, addr, af);
1244 		break;
1245 	case AF_INET6:
1246 		sin6 = (struct sockaddr_in6 *)cur;
1247 		sin_len = sizeof (*sin6);
1248 		cur += sin_len;
1249 		if (cur > end)
1250 			return (NULL);
1251 
1252 		bzero(sin6, sizeof (*sin6));
1253 		sin6->sin6_family = af;
1254 		sin6->sin6_port = port;
1255 		IPSA_COPY_ADDR(&sin6->sin6_addr, addr, af);
1256 		break;
1257 	}
1258 
1259 	addrext_len = roundup(cur - start, sizeof (uint64_t));
1260 	addrext->sadb_address_len = SADB_8TO64(addrext_len);
1261 
1262 	cur = start + addrext_len;
1263 	if (cur > end)
1264 		cur = NULL;
1265 
1266 	return (cur);
1267 }
1268 
1269 /*
1270  * Construct a key management cookie extension.
1271  */
1272 
1273 static uint8_t *
1274 sadb_make_kmc_ext(uint8_t *cur, uint8_t *end, uint32_t kmp, uint32_t kmc)
1275 {
1276 	sadb_x_kmc_t *kmcext = (sadb_x_kmc_t *)cur;
1277 
1278 	if (cur == NULL)
1279 		return (NULL);
1280 
1281 	cur += sizeof (*kmcext);
1282 
1283 	if (cur > end)
1284 		return (NULL);
1285 
1286 	kmcext->sadb_x_kmc_len = SADB_8TO64(sizeof (*kmcext));
1287 	kmcext->sadb_x_kmc_exttype = SADB_X_EXT_KM_COOKIE;
1288 	kmcext->sadb_x_kmc_proto = kmp;
1289 	kmcext->sadb_x_kmc_cookie = kmc;
1290 	kmcext->sadb_x_kmc_reserved = 0;
1291 
1292 	return (cur);
1293 }
1294 
1295 /*
1296  * Given an original message header with sufficient space following it, and an
1297  * SA, construct a full PF_KEY message with all of the relevant extensions.
1298  * This is mostly used for SADB_GET, and SADB_DUMP.
1299  */
1300 mblk_t *
1301 sadb_sa2msg(ipsa_t *ipsa, sadb_msg_t *samsg)
1302 {
1303 	int alloclen, addrsize, paddrsize, authsize, encrsize;
1304 	int srcidsize, dstidsize;
1305 	sa_family_t fam, pfam;	/* Address family for SADB_EXT_ADDRESS */
1306 				/* src/dst and proxy sockaddrs. */
1307 	/*
1308 	 * The following are pointers into the PF_KEY message this PF_KEY
1309 	 * message creates.
1310 	 */
1311 	sadb_msg_t *newsamsg;
1312 	sadb_sa_t *assoc;
1313 	sadb_lifetime_t *lt;
1314 	sadb_key_t *key;
1315 	sadb_ident_t *ident;
1316 	sadb_sens_t *sens;
1317 	sadb_ext_t *walker;	/* For when we need a generic ext. pointer. */
1318 	mblk_t *mp;
1319 	uint64_t *bitmap;
1320 	uint8_t *cur, *end;
1321 	/* These indicate the presence of the above extension fields. */
1322 	boolean_t soft, hard, proxy, auth, encr, sensinteg, srcid, dstid;
1323 #if 0 /* XXX PROXY see below... */
1324 	boolean_t proxyid, iv;
1325 	int proxyidsize, ivsize;
1326 #endif /* XXX PROXY */
1327 
1328 	/* First off, figure out the allocation length for this message. */
1329 
1330 	/*
1331 	 * Constant stuff.  This includes base, SA, address (src, dst),
1332 	 * and lifetime (current).
1333 	 */
1334 	alloclen = sizeof (sadb_msg_t) + sizeof (sadb_sa_t) +
1335 	    sizeof (sadb_lifetime_t);
1336 
1337 	fam = ipsa->ipsa_addrfam;
1338 	switch (fam) {
1339 	case AF_INET:
1340 		addrsize = roundup(sizeof (struct sockaddr_in) +
1341 		    sizeof (sadb_address_t), sizeof (uint64_t));
1342 		break;
1343 	case AF_INET6:
1344 		addrsize = roundup(sizeof (struct sockaddr_in6) +
1345 		    sizeof (sadb_address_t), sizeof (uint64_t));
1346 		break;
1347 	default:
1348 		return (NULL);
1349 	}
1350 	/*
1351 	 * Allocate TWO address extensions, for source and destination.
1352 	 * (Thus, the * 2.)
1353 	 */
1354 	alloclen += addrsize * 2;
1355 	if (ipsa->ipsa_flags & IPSA_F_NATT_REM)
1356 	    alloclen += addrsize;
1357 	if (ipsa->ipsa_flags & IPSA_F_NATT_LOC)
1358 	    alloclen += addrsize;
1359 
1360 
1361 	/* How 'bout other lifetimes? */
1362 	if (ipsa->ipsa_softaddlt != 0 || ipsa->ipsa_softuselt != 0 ||
1363 	    ipsa->ipsa_softbyteslt != 0 || ipsa->ipsa_softalloc != 0) {
1364 		alloclen += sizeof (sadb_lifetime_t);
1365 		soft = B_TRUE;
1366 	} else {
1367 		soft = B_FALSE;
1368 	}
1369 
1370 	if (ipsa->ipsa_hardaddlt != 0 || ipsa->ipsa_harduselt != 0 ||
1371 	    ipsa->ipsa_hardbyteslt != 0 || ipsa->ipsa_hardalloc != 0) {
1372 		alloclen += sizeof (sadb_lifetime_t);
1373 		hard = B_TRUE;
1374 	} else {
1375 		hard = B_FALSE;
1376 	}
1377 
1378 	/* Proxy address? */
1379 	if (!IPSA_IS_ADDR_UNSPEC(ipsa->ipsa_proxysrc, ipsa->ipsa_proxyfam)) {
1380 		pfam = ipsa->ipsa_proxyfam;
1381 		switch (pfam) {
1382 		case AF_INET6:
1383 			paddrsize = roundup(sizeof (struct sockaddr_in6) +
1384 			    sizeof (sadb_address_t), sizeof (uint64_t));
1385 			break;
1386 		case AF_INET:
1387 			paddrsize = roundup(sizeof (struct sockaddr_in) +
1388 			    sizeof (sadb_address_t), sizeof (uint64_t));
1389 			break;
1390 		default:
1391 			cmn_err(CE_PANIC,
1392 			    "IPsec SADB: Proxy length failure.\n");
1393 			break;
1394 		}
1395 		proxy = B_TRUE;
1396 		alloclen += paddrsize;
1397 	} else {
1398 		proxy = B_FALSE;
1399 	}
1400 
1401 	/* For the following fields, assume that length != 0 ==> stuff */
1402 	if (ipsa->ipsa_authkeylen != 0) {
1403 		authsize = roundup(sizeof (sadb_key_t) + ipsa->ipsa_authkeylen,
1404 		    sizeof (uint64_t));
1405 		alloclen += authsize;
1406 		auth = B_TRUE;
1407 	} else {
1408 		auth = B_FALSE;
1409 	}
1410 
1411 	if (ipsa->ipsa_encrkeylen != 0) {
1412 		encrsize = roundup(sizeof (sadb_key_t) + ipsa->ipsa_encrkeylen,
1413 		    sizeof (uint64_t));
1414 		alloclen += encrsize;
1415 		encr = B_TRUE;
1416 	} else {
1417 		encr = B_FALSE;
1418 	}
1419 
1420 	/* No need for roundup on sens and integ. */
1421 	if (ipsa->ipsa_integlen != 0 || ipsa->ipsa_senslen != 0) {
1422 		alloclen += sizeof (sadb_key_t) + ipsa->ipsa_integlen +
1423 		    ipsa->ipsa_senslen;
1424 		sensinteg = B_TRUE;
1425 	} else {
1426 		sensinteg = B_FALSE;
1427 	}
1428 
1429 	/*
1430 	 * Must use strlen() here for lengths.	Identities use NULL
1431 	 * pointers to indicate their nonexistence.
1432 	 */
1433 	if (ipsa->ipsa_src_cid != NULL) {
1434 		srcidsize = roundup(sizeof (sadb_ident_t) +
1435 		    strlen(ipsa->ipsa_src_cid->ipsid_cid) + 1,
1436 		    sizeof (uint64_t));
1437 		alloclen += srcidsize;
1438 		srcid = B_TRUE;
1439 	} else {
1440 		srcid = B_FALSE;
1441 	}
1442 
1443 	if (ipsa->ipsa_dst_cid != NULL) {
1444 		dstidsize = roundup(sizeof (sadb_ident_t) +
1445 		    strlen(ipsa->ipsa_dst_cid->ipsid_cid) + 1,
1446 		    sizeof (uint64_t));
1447 		alloclen += dstidsize;
1448 		dstid = B_TRUE;
1449 	} else {
1450 		dstid = B_FALSE;
1451 	}
1452 
1453 #if 0 /* XXX PROXY not yet. */
1454 	if (ipsa->ipsa_proxy_cid != NULL) {
1455 		proxyidsize = roundup(sizeof (sadb_ident_t) +
1456 		    strlen(ipsa->ipsa_proxy_cid->ipsid_cid) + 1,
1457 		    sizeof (uint64_t));
1458 		alloclen += proxyidsize;
1459 		proxyid = B_TRUE;
1460 	} else {
1461 		proxyid = B_FALSE;
1462 	}
1463 #endif /* XXX PROXY */
1464 	if ((ipsa->ipsa_kmp != 0) || (ipsa->ipsa_kmc != 0))
1465 		alloclen += sizeof (sadb_x_kmc_t);
1466 
1467 	/* Make sure the allocation length is a multiple of 8 bytes. */
1468 	ASSERT((alloclen & 0x7) == 0);
1469 
1470 	/* XXX Possibly make it esballoc, with a bzero-ing free_ftn. */
1471 	mp = allocb(alloclen, BPRI_HI);
1472 	if (mp == NULL)
1473 		return (NULL);
1474 
1475 	mp->b_wptr += alloclen;
1476 	end = mp->b_wptr;
1477 	newsamsg = (sadb_msg_t *)mp->b_rptr;
1478 	*newsamsg = *samsg;
1479 	newsamsg->sadb_msg_len = (uint16_t)SADB_8TO64(alloclen);
1480 
1481 	mutex_enter(&ipsa->ipsa_lock);	/* Since I'm grabbing SA fields... */
1482 
1483 	newsamsg->sadb_msg_satype = ipsa->ipsa_type;
1484 
1485 	assoc = (sadb_sa_t *)(newsamsg + 1);
1486 	assoc->sadb_sa_len = SADB_8TO64(sizeof (*assoc));
1487 	assoc->sadb_sa_exttype = SADB_EXT_SA;
1488 	assoc->sadb_sa_spi = ipsa->ipsa_spi;
1489 	assoc->sadb_sa_replay = ipsa->ipsa_replay_wsize;
1490 	assoc->sadb_sa_state = ipsa->ipsa_state;
1491 	assoc->sadb_sa_auth = ipsa->ipsa_auth_alg;
1492 	assoc->sadb_sa_encrypt = ipsa->ipsa_encr_alg;
1493 	assoc->sadb_sa_flags = ipsa->ipsa_flags;
1494 
1495 	lt = (sadb_lifetime_t *)(assoc + 1);
1496 	lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt));
1497 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
1498 	lt->sadb_lifetime_allocations = ipsa->ipsa_alloc;
1499 	lt->sadb_lifetime_bytes = ipsa->ipsa_bytes;
1500 	lt->sadb_lifetime_addtime = ipsa->ipsa_addtime;
1501 	lt->sadb_lifetime_usetime = ipsa->ipsa_usetime;
1502 
1503 	if (hard) {
1504 		lt++;
1505 		lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt));
1506 		lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
1507 		lt->sadb_lifetime_allocations = ipsa->ipsa_hardalloc;
1508 		lt->sadb_lifetime_bytes = ipsa->ipsa_hardbyteslt;
1509 		lt->sadb_lifetime_addtime = ipsa->ipsa_hardaddlt;
1510 		lt->sadb_lifetime_usetime = ipsa->ipsa_harduselt;
1511 	}
1512 
1513 	if (soft) {
1514 		lt++;
1515 		lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt));
1516 		lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
1517 		lt->sadb_lifetime_allocations = ipsa->ipsa_softalloc;
1518 		lt->sadb_lifetime_bytes = ipsa->ipsa_softbyteslt;
1519 		lt->sadb_lifetime_addtime = ipsa->ipsa_softaddlt;
1520 		lt->sadb_lifetime_usetime = ipsa->ipsa_softuselt;
1521 	}
1522 
1523 	cur = (uint8_t *)(lt + 1);
1524 
1525 	cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, fam,
1526 	    ipsa->ipsa_srcaddr, SA_SRCPORT(ipsa), SA_PROTO(ipsa));
1527 	if (cur == NULL) {
1528 		freemsg(mp);
1529 		mp = NULL;
1530 		goto bail;
1531 	}
1532 
1533 	cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, fam,
1534 	    ipsa->ipsa_dstaddr, SA_DSTPORT(ipsa), SA_PROTO(ipsa));
1535 	if (cur == NULL) {
1536 		freemsg(mp);
1537 		mp = NULL;
1538 		goto bail;
1539 	}
1540 
1541 	if (ipsa->ipsa_flags & IPSA_F_NATT_LOC) {
1542 		cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_NATT_LOC,
1543 		    fam, ipsa->ipsa_natt_addr_loc, 0, 0);
1544 		if (cur == NULL) {
1545 			freemsg(mp);
1546 			mp = NULL;
1547 			goto bail;
1548 		}
1549 	}
1550 
1551 	if (ipsa->ipsa_flags & IPSA_F_NATT_REM) {
1552 		cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_NATT_REM,
1553 		    fam, ipsa->ipsa_natt_addr_rem, ipsa->ipsa_remote_port,
1554 		    IPPROTO_UDP);
1555 		if (cur == NULL) {
1556 			freemsg(mp);
1557 			mp = NULL;
1558 			goto bail;
1559 		}
1560 	}
1561 
1562 	if (proxy) {
1563 		/*
1564 		 * XXX PROXY When we expand the definition of proxy to include
1565 		 * both inner and outer IP addresses, this will have to
1566 		 * be expanded.
1567 		 */
1568 		cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_PROXY,
1569 		    pfam, ipsa->ipsa_proxysrc, 0, 0);
1570 		if (cur == NULL) {
1571 			freemsg(mp);
1572 			mp = NULL;
1573 			goto bail;
1574 		}
1575 	}
1576 
1577 	if ((ipsa->ipsa_kmp != 0) || (ipsa->ipsa_kmc != 0)) {
1578 		cur = sadb_make_kmc_ext(cur, end,
1579 		    ipsa->ipsa_kmp, ipsa->ipsa_kmc);
1580 		if (cur == NULL) {
1581 			freemsg(mp);
1582 			mp = NULL;
1583 			goto bail;
1584 		}
1585 	}
1586 
1587 	walker = (sadb_ext_t *)cur;
1588 	if (auth) {
1589 		key = (sadb_key_t *)walker;
1590 		key->sadb_key_len = SADB_8TO64(authsize);
1591 		key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
1592 		key->sadb_key_bits = ipsa->ipsa_authkeybits;
1593 		key->sadb_key_reserved = 0;
1594 		bcopy(ipsa->ipsa_authkey, key + 1, ipsa->ipsa_authkeylen);
1595 		walker = (sadb_ext_t *)((uint64_t *)walker +
1596 		    walker->sadb_ext_len);
1597 	}
1598 
1599 	if (encr) {
1600 		key = (sadb_key_t *)walker;
1601 		key->sadb_key_len = SADB_8TO64(encrsize);
1602 		key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
1603 		key->sadb_key_bits = ipsa->ipsa_encrkeybits;
1604 		key->sadb_key_reserved = 0;
1605 		bcopy(ipsa->ipsa_encrkey, key + 1, ipsa->ipsa_encrkeylen);
1606 		walker = (sadb_ext_t *)((uint64_t *)walker +
1607 		    walker->sadb_ext_len);
1608 	}
1609 
1610 	if (srcid) {
1611 		ident = (sadb_ident_t *)walker;
1612 		ident->sadb_ident_len = SADB_8TO64(srcidsize);
1613 		ident->sadb_ident_exttype = SADB_EXT_IDENTITY_SRC;
1614 		ident->sadb_ident_type = ipsa->ipsa_src_cid->ipsid_type;
1615 		ident->sadb_ident_id = 0;
1616 		ident->sadb_ident_reserved = 0;
1617 		(void) strcpy((char *)(ident + 1),
1618 		    ipsa->ipsa_src_cid->ipsid_cid);
1619 		walker = (sadb_ext_t *)((uint64_t *)walker +
1620 		    walker->sadb_ext_len);
1621 	}
1622 
1623 	if (dstid) {
1624 		ident = (sadb_ident_t *)walker;
1625 		ident->sadb_ident_len = SADB_8TO64(dstidsize);
1626 		ident->sadb_ident_exttype = SADB_EXT_IDENTITY_DST;
1627 		ident->sadb_ident_type = ipsa->ipsa_dst_cid->ipsid_type;
1628 		ident->sadb_ident_id = 0;
1629 		ident->sadb_ident_reserved = 0;
1630 		(void) strcpy((char *)(ident + 1),
1631 		    ipsa->ipsa_dst_cid->ipsid_cid);
1632 		walker = (sadb_ext_t *)((uint64_t *)walker +
1633 		    walker->sadb_ext_len);
1634 	}
1635 
1636 #if 0 /* XXX PROXY not yet */
1637 	if (proxyid) {
1638 		ident = (sadb_ident_t *)walker;
1639 		ident->sadb_ident_len = SADB_8TO64(proxyidsize);
1640 		ident->sadb_ident_exttype = SADB_EXT_IDENTITY_PROXY;
1641 		ident->sadb_ident_type = ipsa->ipsa_pcid_type;
1642 		ident->sadb_ident_id = 0;
1643 		ident->sadb_ident_reserved = 0;
1644 		(void) strcpy((char *)(ident + 1), ipsa->ipsa_proxy_cid);
1645 		walker = (sadb_ext_t *)((uint64_t *)walker +
1646 		    walker->sadb_ext_len);
1647 	}
1648 #endif /* XXX PROXY */
1649 
1650 	if (sensinteg) {
1651 		sens = (sadb_sens_t *)walker;
1652 		sens->sadb_sens_len = SADB_8TO64(sizeof (sadb_sens_t *) +
1653 		    ipsa->ipsa_senslen + ipsa->ipsa_integlen);
1654 		sens->sadb_sens_dpd = ipsa->ipsa_dpd;
1655 		sens->sadb_sens_sens_level = ipsa->ipsa_senslevel;
1656 		sens->sadb_sens_integ_level = ipsa->ipsa_integlevel;
1657 		sens->sadb_sens_sens_len = SADB_8TO64(ipsa->ipsa_senslen);
1658 		sens->sadb_sens_integ_len = SADB_8TO64(ipsa->ipsa_integlen);
1659 		sens->sadb_sens_reserved = 0;
1660 		bitmap = (uint64_t *)(sens + 1);
1661 		if (ipsa->ipsa_sens != NULL) {
1662 			bcopy(ipsa->ipsa_sens, bitmap, ipsa->ipsa_senslen);
1663 			bitmap += sens->sadb_sens_sens_len;
1664 		}
1665 		if (ipsa->ipsa_integ != NULL)
1666 			bcopy(ipsa->ipsa_integ, bitmap, ipsa->ipsa_integlen);
1667 		walker = (sadb_ext_t *)((uint64_t *)walker +
1668 		    walker->sadb_ext_len);
1669 	}
1670 
1671 bail:
1672 	/* Pardon any delays... */
1673 	mutex_exit(&ipsa->ipsa_lock);
1674 
1675 	return (mp);
1676 }
1677 
1678 /*
1679  * Strip out key headers or unmarked headers (SADB_EXT_KEY_*, SADB_EXT_UNKNOWN)
1680  * and adjust base message accordingly.
1681  *
1682  * Assume message is pulled up in one piece of contiguous memory.
1683  *
1684  * Say if we start off with:
1685  *
1686  * +------+----+-------------+-----------+---------------+---------------+
1687  * | base | SA | source addr | dest addr | rsrvd. or key | soft lifetime |
1688  * +------+----+-------------+-----------+---------------+---------------+
1689  *
1690  * we will end up with
1691  *
1692  * +------+----+-------------+-----------+---------------+
1693  * | base | SA | source addr | dest addr | soft lifetime |
1694  * +------+----+-------------+-----------+---------------+
1695  */
1696 static void
1697 sadb_strip(sadb_msg_t *samsg)
1698 {
1699 	sadb_ext_t *ext;
1700 	uint8_t *target = NULL;
1701 	uint8_t *msgend;
1702 	int sofar = SADB_8TO64(sizeof (*samsg));
1703 	int copylen;
1704 
1705 	ext = (sadb_ext_t *)(samsg + 1);
1706 	msgend = (uint8_t *)samsg;
1707 	msgend += SADB_64TO8(samsg->sadb_msg_len);
1708 	while ((uint8_t *)ext < msgend) {
1709 		if (ext->sadb_ext_type == SADB_EXT_RESERVED ||
1710 		    ext->sadb_ext_type == SADB_EXT_KEY_AUTH ||
1711 		    ext->sadb_ext_type == SADB_EXT_KEY_ENCRYPT) {
1712 			/*
1713 			 * Aha!	 I found a header to be erased.
1714 			 */
1715 
1716 			if (target != NULL) {
1717 				/*
1718 				 * If I had a previous header to be erased,
1719 				 * copy over it.  I can get away with just
1720 				 * copying backwards because the target will
1721 				 * always be 8 bytes behind the source.
1722 				 */
1723 				copylen = ((uint8_t *)ext) - (target +
1724 				    SADB_64TO8(
1725 					((sadb_ext_t *)target)->sadb_ext_len));
1726 				ovbcopy(((uint8_t *)ext - copylen), target,
1727 				    copylen);
1728 				target += copylen;
1729 				((sadb_ext_t *)target)->sadb_ext_len =
1730 				    SADB_8TO64(((uint8_t *)ext) - target +
1731 					SADB_64TO8(ext->sadb_ext_len));
1732 			} else {
1733 				target = (uint8_t *)ext;
1734 			}
1735 		} else {
1736 			sofar += ext->sadb_ext_len;
1737 		}
1738 
1739 		ext = (sadb_ext_t *)(((uint64_t *)ext) + ext->sadb_ext_len);
1740 	}
1741 
1742 	ASSERT((uint8_t *)ext == msgend);
1743 
1744 	if (target != NULL) {
1745 		copylen = ((uint8_t *)ext) - (target +
1746 		    SADB_64TO8(((sadb_ext_t *)target)->sadb_ext_len));
1747 		if (copylen != 0)
1748 			ovbcopy(((uint8_t *)ext - copylen), target, copylen);
1749 	}
1750 
1751 	/* Adjust samsg. */
1752 	samsg->sadb_msg_len = (uint16_t)sofar;
1753 
1754 	/* Assume all of the rest is cleared by caller in sadb_pfkey_echo(). */
1755 }
1756 
1757 /*
1758  * AH needs to send an error to PF_KEY.	 Assume mp points to an M_CTL
1759  * followed by an M_DATA with a PF_KEY message in it.  The serial of
1760  * the sending keysock instance is included.
1761  */
1762 void
1763 sadb_pfkey_error(queue_t *pfkey_q, mblk_t *mp, int error, int diagnostic,
1764     uint_t serial)
1765 {
1766 	mblk_t *msg = mp->b_cont;
1767 	sadb_msg_t *samsg;
1768 	keysock_out_t *kso;
1769 
1770 	/*
1771 	 * Enough functions call this to merit a NULL queue check.
1772 	 */
1773 	if (pfkey_q == NULL) {
1774 		freemsg(mp);
1775 		return;
1776 	}
1777 
1778 	ASSERT(msg != NULL);
1779 	ASSERT((mp->b_wptr - mp->b_rptr) == sizeof (ipsec_info_t));
1780 	ASSERT((msg->b_wptr - msg->b_rptr) >= sizeof (sadb_msg_t));
1781 	samsg = (sadb_msg_t *)msg->b_rptr;
1782 	kso = (keysock_out_t *)mp->b_rptr;
1783 
1784 	kso->ks_out_type = KEYSOCK_OUT;
1785 	kso->ks_out_len = sizeof (*kso);
1786 	kso->ks_out_serial = serial;
1787 
1788 	/*
1789 	 * Only send the base message up in the event of an error.
1790 	 * Don't worry about bzero()-ing, because it was probably bogus
1791 	 * anyway.
1792 	 */
1793 	msg->b_wptr = msg->b_rptr + sizeof (*samsg);
1794 	samsg = (sadb_msg_t *)msg->b_rptr;
1795 	samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg));
1796 	samsg->sadb_msg_errno = (uint8_t)error;
1797 	if (diagnostic != SADB_X_DIAGNOSTIC_PRESET)
1798 		samsg->sadb_x_msg_diagnostic = (uint16_t)diagnostic;
1799 
1800 	putnext(pfkey_q, mp);
1801 }
1802 
1803 /*
1804  * Send a successful return packet back to keysock via the queue in pfkey_q.
1805  *
1806  * Often, an SA is associated with the reply message, it's passed in if needed,
1807  * and NULL if not.  BTW, that ipsa will have its refcnt appropriately held,
1808  * and the caller will release said refcnt.
1809  */
1810 void
1811 sadb_pfkey_echo(queue_t *pfkey_q, mblk_t *mp, sadb_msg_t *samsg,
1812     keysock_in_t *ksi, ipsa_t *ipsa)
1813 {
1814 	keysock_out_t *kso;
1815 	mblk_t *mp1;
1816 	sadb_msg_t *newsamsg;
1817 	uint8_t *oldend;
1818 
1819 	ASSERT((mp->b_cont != NULL) &&
1820 	    ((void *)samsg == (void *)mp->b_cont->b_rptr) &&
1821 	    ((void *)mp->b_rptr == (void *)ksi));
1822 
1823 	switch (samsg->sadb_msg_type) {
1824 	case SADB_ADD:
1825 	case SADB_UPDATE:
1826 	case SADB_FLUSH:
1827 	case SADB_DUMP:
1828 		/*
1829 		 * I have all of the message already.  I just need to strip
1830 		 * out the keying material and echo the message back.
1831 		 *
1832 		 * NOTE: for SADB_DUMP, the function sadb_dump() did the
1833 		 * work.  When DUMP reaches here, it should only be a base
1834 		 * message.
1835 		 */
1836 	justecho:
1837 		ASSERT(samsg->sadb_msg_type != SADB_DUMP ||
1838 		    samsg->sadb_msg_len == SADB_8TO64(sizeof (sadb_msg_t)));
1839 
1840 		if (ksi->ks_in_extv[SADB_EXT_KEY_AUTH] != NULL ||
1841 		    ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT] != NULL) {
1842 			sadb_strip(samsg);
1843 			/* Assume PF_KEY message is contiguous. */
1844 			ASSERT(mp->b_cont->b_cont == NULL);
1845 			oldend = mp->b_cont->b_wptr;
1846 			mp->b_cont->b_wptr = mp->b_cont->b_rptr +
1847 			    SADB_64TO8(samsg->sadb_msg_len);
1848 			bzero(mp->b_cont->b_wptr, oldend - mp->b_cont->b_wptr);
1849 		}
1850 		break;
1851 	case SADB_GET:
1852 		/*
1853 		 * Do a lot of work here, because of the ipsa I just found.
1854 		 * First abandon the PF_KEY message, then construct
1855 		 * the new one.
1856 		 */
1857 		mp1 = sadb_sa2msg(ipsa, samsg);
1858 		if (mp1 == NULL) {
1859 			sadb_pfkey_error(pfkey_q, mp, ENOMEM,
1860 			    SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial);
1861 			return;
1862 		}
1863 		freemsg(mp->b_cont);
1864 		mp->b_cont = mp1;
1865 		break;
1866 	case SADB_DELETE:
1867 		if (ipsa == NULL)
1868 			goto justecho;
1869 		/*
1870 		 * Because listening KMds may require more info, treat
1871 		 * DELETE like a special case of GET.
1872 		 */
1873 		mp1 = sadb_sa2msg(ipsa, samsg);
1874 		if (mp1 == NULL) {
1875 			sadb_pfkey_error(pfkey_q, mp, ENOMEM,
1876 			    SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial);
1877 			return;
1878 		}
1879 		newsamsg = (sadb_msg_t *)mp1->b_rptr;
1880 		sadb_strip(newsamsg);
1881 		oldend = mp1->b_wptr;
1882 		mp1->b_wptr = mp1->b_rptr + SADB_64TO8(newsamsg->sadb_msg_len);
1883 		bzero(mp1->b_wptr, oldend - mp1->b_wptr);
1884 		freemsg(mp->b_cont);
1885 		mp->b_cont = mp1;
1886 		break;
1887 	default:
1888 		if (mp != NULL)
1889 			freemsg(mp);
1890 		return;
1891 	}
1892 
1893 	/* ksi is now null and void. */
1894 	kso = (keysock_out_t *)ksi;
1895 	kso->ks_out_type = KEYSOCK_OUT;
1896 	kso->ks_out_len = sizeof (*kso);
1897 	kso->ks_out_serial = ksi->ks_in_serial;
1898 	/* We're ready to send... */
1899 	putnext(pfkey_q, mp);
1900 }
1901 
1902 /*
1903  * Set up a global pfkey_q instance for AH, ESP, or some other consumer.
1904  */
1905 void
1906 sadb_keysock_hello(queue_t **pfkey_qp, queue_t *q, mblk_t *mp,
1907     void (*ager)(void *), timeout_id_t *top, int satype)
1908 {
1909 	keysock_hello_ack_t *kha;
1910 	queue_t *oldq;
1911 
1912 	ASSERT(OTHERQ(q) != NULL);
1913 
1914 	/*
1915 	 * First, check atomically that I'm the first and only keysock
1916 	 * instance.
1917 	 *
1918 	 * Use OTHERQ(q), because qreply(q, mp) == putnext(OTHERQ(q), mp),
1919 	 * and I want this module to say putnext(*_pfkey_q, mp) for PF_KEY
1920 	 * messages.
1921 	 */
1922 
1923 	oldq = casptr((void **)pfkey_qp, NULL, OTHERQ(q));
1924 	if (oldq != NULL) {
1925 		ASSERT(oldq != q);
1926 		cmn_err(CE_WARN, "Danger!  Multiple keysocks on top of %s.\n",
1927 		    (satype == SADB_SATYPE_ESP)? "ESP" : "AH or other");
1928 		freemsg(mp);
1929 		return;
1930 	}
1931 
1932 	kha = (keysock_hello_ack_t *)mp->b_rptr;
1933 	kha->ks_hello_len = sizeof (keysock_hello_ack_t);
1934 	kha->ks_hello_type = KEYSOCK_HELLO_ACK;
1935 	kha->ks_hello_satype = (uint8_t)satype;
1936 
1937 	/*
1938 	 * If we made it past the casptr, then we have "exclusive" access
1939 	 * to the timeout handle.  Fire it off in 4 seconds, because it
1940 	 * just seems like a good interval.
1941 	 */
1942 	*top = qtimeout(*pfkey_qp, ager, NULL, drv_usectohz(4000000));
1943 
1944 	putnext(*pfkey_qp, mp);
1945 }
1946 
1947 /*
1948  * Send IRE_DB_REQ down to IP to get properties of address.
1949  * If I can determine the address, return the proper type.  If an error
1950  * occurs, or if I have to send down an IRE_DB_REQ, return UNKNOWN, and
1951  * the caller will just let go of mp w/o freeing it.
1952  *
1953  * To handle the compatible IPv6 addresses (i.e. ::FFFF:<v4-address>),
1954  * this function will also convert such AF_INET6 addresses into AF_INET
1955  * addresses.
1956  *
1957  * Whomever called the function will handle the return message that IP sends
1958  * in response to the message this function generates.
1959  */
1960 int
1961 sadb_addrcheck(queue_t *ip_q, queue_t *pfkey_q, mblk_t *mp, sadb_ext_t *ext,
1962     uint_t serial)
1963 {
1964 	sadb_address_t *addr = (sadb_address_t *)ext;
1965 	struct sockaddr_in *sin;
1966 	struct sockaddr_in6 *sin6;
1967 	mblk_t *ire_db_req_mp;
1968 	ire_t *ire;
1969 	int diagnostic;
1970 
1971 	ASSERT(ext != NULL);
1972 	ASSERT((ext->sadb_ext_type == SADB_EXT_ADDRESS_SRC) ||
1973 	    (ext->sadb_ext_type == SADB_EXT_ADDRESS_DST) ||
1974 	    (ext->sadb_ext_type == SADB_EXT_ADDRESS_PROXY));
1975 
1976 	ire_db_req_mp = allocb(sizeof (ire_t), BPRI_HI);
1977 	if (ire_db_req_mp == NULL) {
1978 		/* cmn_err(CE_WARN, "sadb_addrcheck: allocb() failed.\n"); */
1979 		sadb_pfkey_error(pfkey_q, mp, ENOMEM, SADB_X_DIAGNOSTIC_NONE,
1980 		    serial);
1981 		return (KS_IN_ADDR_UNKNOWN);
1982 	}
1983 
1984 	ire_db_req_mp->b_datap->db_type = IRE_DB_REQ_TYPE;
1985 	ire_db_req_mp->b_wptr += sizeof (ire_t);
1986 	ire = (ire_t *)ire_db_req_mp->b_rptr;
1987 
1988 	/* Assign both sockaddrs, the compiler will do the right thing. */
1989 	sin = (struct sockaddr_in *)(addr + 1);
1990 	sin6 = (struct sockaddr_in6 *)(addr + 1);
1991 
1992 	switch (sin->sin_family) {
1993 	case AF_INET6:
1994 		/* Because of the longer IPv6 addrs, do check first. */
1995 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
1996 			if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
1997 				freemsg(ire_db_req_mp);
1998 				return (KS_IN_ADDR_MBCAST);
1999 			}
2000 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
2001 				freemsg(ire_db_req_mp);
2002 				return (KS_IN_ADDR_UNSPEC);
2003 			}
2004 			ire->ire_ipversion = IPV6_VERSION;
2005 			ire->ire_addr_v6 = sin6->sin6_addr;
2006 			break;	/* Out of switch. */
2007 		}
2008 		/*
2009 		 * Convert to an AF_INET sockaddr.  This means
2010 		 * the return messages will have the extra space, but
2011 		 * have AF_INET sockaddrs instead of AF_INET6.
2012 		 *
2013 		 * Yes, RFC 2367 isn't clear on what to do here w.r.t.
2014 		 * mapped addresses, but since AF_INET6 ::ffff:<v4> is
2015 		 * equal to AF_INET <v4>, it shouldnt be a huge
2016 		 * problem.
2017 		 */
2018 		ASSERT(&sin->sin_port == &sin6->sin6_port);
2019 		sin->sin_family = AF_INET;
2020 		IN6_V4MAPPED_TO_INADDR(&sin6->sin6_addr, &sin->sin_addr);
2021 		bzero(&sin->sin_zero, sizeof (sin->sin_zero));
2022 		/* FALLTHRU */
2023 	case AF_INET:
2024 		ire->ire_ipversion = IPV4_VERSION;
2025 		ire->ire_addr = sin->sin_addr.s_addr;
2026 		if (ire->ire_addr == INADDR_ANY) {
2027 			freemsg(ire_db_req_mp);
2028 			return (KS_IN_ADDR_UNSPEC);
2029 		}
2030 		if (CLASSD(ire->ire_addr)) {
2031 			freemsg(ire_db_req_mp);
2032 			return (KS_IN_ADDR_MBCAST);
2033 		}
2034 		break;
2035 	default:
2036 		freemsg(ire_db_req_mp);
2037 
2038 		switch (ext->sadb_ext_type) {
2039 		case SADB_EXT_ADDRESS_SRC:
2040 			diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC_AF;
2041 			break;
2042 		case SADB_EXT_ADDRESS_DST:
2043 			diagnostic = SADB_X_DIAGNOSTIC_BAD_DST_AF;
2044 			break;
2045 		case SADB_EXT_ADDRESS_PROXY:
2046 			diagnostic = SADB_X_DIAGNOSTIC_BAD_PROXY_AF;
2047 			break;
2048 			/* There is no default, see above ASSERT. */
2049 		}
2050 
2051 		sadb_pfkey_error(pfkey_q, mp, EINVAL, diagnostic, serial);
2052 		return (KS_IN_ADDR_UNKNOWN);
2053 	}
2054 	ire_db_req_mp->b_cont = mp;
2055 
2056 	ASSERT(ip_q != NULL);
2057 	putnext(ip_q, ire_db_req_mp);
2058 	return (KS_IN_ADDR_UNKNOWN);
2059 }
2060 
2061 /*
2062  * For the case of src == unspecified AF_INET6, and dst == AF_INET, convert
2063  * the source to AF_INET.
2064  */
2065 void
2066 sadb_srcaddrfix(keysock_in_t *ksi)
2067 {
2068 	struct sockaddr_in *src;
2069 	struct sockaddr_in6 *dst;
2070 	sadb_address_t *srcext, *dstext;
2071 	uint16_t sport;
2072 
2073 	if (ksi->ks_in_srctype != KS_IN_ADDR_UNSPEC ||
2074 	    ksi->ks_in_dsttype == KS_IN_ADDR_NOTTHERE)
2075 		return;
2076 
2077 	dstext = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
2078 	dst = (struct sockaddr_in6 *)(dstext + 1);
2079 	srcext = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
2080 	src = (struct sockaddr_in *)(srcext + 1);
2081 
2082 	/*
2083 	 * If unspecified IPv4 source, but an IPv6 dest, don't bother
2084 	 * fixing, as it should be an error.
2085 	 */
2086 	if (dst->sin6_family == src->sin_family ||
2087 	    src->sin_family == AF_INET)
2088 		return;
2089 
2090 	/*
2091 	 * Convert "src" to AF_INET INADDR_ANY.  We rely on sin_port being
2092 	 * in the same place for sockaddr_in and sockaddr_in6.
2093 	 */
2094 	sport = src->sin_port;
2095 	bzero(src, sizeof (*src));
2096 	src->sin_family = AF_INET;
2097 	src->sin_port = sport;
2098 }
2099 
2100 /*
2101  * Set the results in "addrtype", given an IRE as requested by
2102  * sadb_addrcheck().
2103  */
2104 int
2105 sadb_addrset(ire_t *ire)
2106 {
2107 	if ((ire->ire_type & IRE_BROADCAST) ||
2108 	    (ire->ire_ipversion == IPV4_VERSION && CLASSD(ire->ire_addr)) ||
2109 	    (ire->ire_ipversion == IPV6_VERSION &&
2110 		IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6))))
2111 		return (KS_IN_ADDR_MBCAST);
2112 	if (ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK))
2113 		return (KS_IN_ADDR_ME);
2114 	return (KS_IN_ADDR_NOTME);
2115 }
2116 
2117 
2118 /*
2119  * Walker callback function to delete sa's based on src/dst address.
2120  * Assumes that we're called with *head locked, no other locks held;
2121  * Conveniently, and not coincidentally, this is both what sadb_walker
2122  * gives us and also what sadb_unlinkassoc expects.
2123  */
2124 
2125 struct sadb_purge_state
2126 {
2127 	uint32_t *src;
2128 	uint32_t *dst;
2129 	sa_family_t af;
2130 	boolean_t inbnd;
2131 	char *sidstr;
2132 	char *didstr;
2133 	uint16_t sidtype;
2134 	uint16_t didtype;
2135 	uint32_t kmproto;
2136 	mblk_t *mq;
2137 };
2138 
2139 static void
2140 sadb_purge_cb(isaf_t *head, ipsa_t *entry, void *cookie)
2141 {
2142 	struct sadb_purge_state *ps = (struct sadb_purge_state *)cookie;
2143 
2144 	ASSERT(MUTEX_HELD(&head->isaf_lock));
2145 
2146 	mutex_enter(&entry->ipsa_lock);
2147 
2148 	if ((entry->ipsa_state == IPSA_STATE_LARVAL) ||
2149 	    (ps->src != NULL &&
2150 		!IPSA_ARE_ADDR_EQUAL(entry->ipsa_srcaddr, ps->src, ps->af)) ||
2151 	    (ps->dst != NULL &&
2152 		!IPSA_ARE_ADDR_EQUAL(entry->ipsa_dstaddr, ps->dst, ps->af)) ||
2153 	    (ps->didstr != NULL &&
2154 		(entry->ipsa_dst_cid != NULL) &&
2155 		!(ps->didtype == entry->ipsa_dst_cid->ipsid_type &&
2156 		    strcmp(ps->didstr, entry->ipsa_dst_cid->ipsid_cid) == 0)) ||
2157 	    (ps->sidstr != NULL &&
2158 		(entry->ipsa_src_cid != NULL) &&
2159 		!(ps->sidtype == entry->ipsa_src_cid->ipsid_type &&
2160 		    strcmp(ps->sidstr, entry->ipsa_src_cid->ipsid_cid) == 0)) ||
2161 	    (ps->kmproto <= SADB_X_KMP_MAX && ps->kmproto != entry->ipsa_kmp)) {
2162 		mutex_exit(&entry->ipsa_lock);
2163 		return;
2164 	}
2165 
2166 	entry->ipsa_state = IPSA_STATE_DEAD;
2167 	(void) sadb_torch_assoc(head, entry, ps->inbnd, &ps->mq);
2168 }
2169 
2170 /*
2171  * Common code to purge an SA with a matching src or dst address.
2172  * Don't kill larval SA's in such a purge.
2173  */
2174 int
2175 sadb_purge_sa(mblk_t *mp, keysock_in_t *ksi, sadb_t *sp,
2176     int *diagnostic, queue_t *pfkey_q, queue_t *ip_q)
2177 {
2178 	sadb_address_t *dstext =
2179 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
2180 	sadb_address_t *srcext =
2181 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
2182 	sadb_ident_t *dstid =
2183 	    (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_DST];
2184 	sadb_ident_t *srcid =
2185 	    (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC];
2186 	sadb_x_kmc_t *kmc =
2187 	    (sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE];
2188 	struct sockaddr_in *src, *dst;
2189 	struct sockaddr_in6 *src6, *dst6;
2190 	struct sadb_purge_state ps;
2191 
2192 	/*
2193 	 * Don't worry about IPv6 v4-mapped addresses, sadb_addrcheck()
2194 	 * takes care of them.
2195 	 */
2196 
2197 	/* enforced by caller */
2198 	ASSERT((dstext != NULL) || (srcext != NULL));
2199 
2200 	ps.src = NULL;
2201 	ps.dst = NULL;
2202 #ifdef DEBUG
2203 	ps.af = (sa_family_t)-1;
2204 #endif
2205 	ps.mq = NULL;
2206 	ps.sidstr = NULL;
2207 	ps.didstr = NULL;
2208 	ps.kmproto = SADB_X_KMP_MAX + 1;
2209 
2210 	if (dstext != NULL) {
2211 		dst = (struct sockaddr_in *)(dstext + 1);
2212 		ps.af = dst->sin_family;
2213 		if (dst->sin_family == AF_INET6) {
2214 			dst6 = (struct sockaddr_in6 *)dst;
2215 			ps.dst = (uint32_t *)&dst6->sin6_addr;
2216 		} else {
2217 			ps.dst = (uint32_t *)&dst->sin_addr;
2218 		}
2219 	}
2220 
2221 	if (srcext != NULL) {
2222 		src = (struct sockaddr_in *)(srcext + 1);
2223 		ps.af = src->sin_family;
2224 		if (src->sin_family == AF_INET6) {
2225 			src6 = (struct sockaddr_in6 *)(srcext + 1);
2226 			ps.src = (uint32_t *)&src6->sin6_addr;
2227 		} else {
2228 			ps.src = (uint32_t *)&src->sin_addr;
2229 		}
2230 
2231 		if (dstext != NULL) {
2232 			if (src->sin_family != dst->sin_family) {
2233 				*diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
2234 				return (EINVAL);
2235 			}
2236 		}
2237 	}
2238 	ASSERT(ps.af != (sa_family_t)-1);
2239 
2240 	if (dstid != NULL) {
2241 		/*
2242 		 * NOTE:  May need to copy string in the future
2243 		 * if the inbound keysock message disappears for some strange
2244 		 * reason.
2245 		 */
2246 		ps.didstr = (char *)(dstid + 1);
2247 		ps.didtype = dstid->sadb_ident_type;
2248 	}
2249 
2250 	if (srcid != NULL) {
2251 		/*
2252 		 * NOTE:  May need to copy string in the future
2253 		 * if the inbound keysock message disappears for some strange
2254 		 * reason.
2255 		 */
2256 		ps.sidstr = (char *)(srcid + 1);
2257 		ps.sidtype = srcid->sadb_ident_type;
2258 	}
2259 
2260 	if (kmc != NULL)
2261 		ps.kmproto = kmc->sadb_x_kmc_proto;
2262 
2263 	/*
2264 	 * This is simple, crude, and effective.
2265 	 * Unimplemented optimizations (TBD):
2266 	 * - we can limit how many places we search based on where we
2267 	 * think the SA is filed.
2268 	 * - if we get a dst address, we can hash based on dst addr to find
2269 	 * the correct bucket in the outbound table.
2270 	 */
2271 	ps.inbnd = B_TRUE;
2272 	sadb_walker(sp->sdb_if, sp->sdb_hashsize, sadb_purge_cb, &ps);
2273 	ps.inbnd = B_FALSE;
2274 	sadb_walker(sp->sdb_of, sp->sdb_hashsize, sadb_purge_cb, &ps);
2275 
2276 	if (ps.mq != NULL)
2277 		sadb_drain_torchq(ip_q, ps.mq);
2278 
2279 	ASSERT(mp->b_cont != NULL);
2280 	sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi,
2281 	    NULL);
2282 	return (0);
2283 }
2284 
2285 /*
2286  * Common code to delete/get an SA.
2287  */
2288 int
2289 sadb_delget_sa(mblk_t *mp, keysock_in_t *ksi, sadbp_t *spp,
2290     int *diagnostic, queue_t *pfkey_q, boolean_t delete)
2291 {
2292 	sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
2293 	sadb_address_t *srcext =
2294 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
2295 	sadb_address_t *dstext =
2296 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
2297 	struct sockaddr_in *src, *dst;
2298 	struct sockaddr_in6 *src6, *dst6;
2299 	sadb_t *sp;
2300 	ipsa_t *outbound_target, *inbound_target;
2301 	isaf_t *inbound, *outbound;
2302 	uint32_t *srcaddr, *dstaddr;
2303 	mblk_t *torchq = NULL;
2304 	sa_family_t af;
2305 
2306 	if (dstext == NULL) {
2307 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
2308 		return (EINVAL);
2309 	}
2310 	if (assoc == NULL) {
2311 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
2312 		return (EINVAL);
2313 	}
2314 
2315 	/*
2316 	 * Don't worry about IPv6 v4-mapped addresses, sadb_addrcheck()
2317 	 * takes care of them.
2318 	 */
2319 
2320 	dst = (struct sockaddr_in *)(dstext + 1);
2321 	af = dst->sin_family;
2322 	if (af == AF_INET6) {
2323 		sp = &spp->s_v6;
2324 		dst6 = (struct sockaddr_in6 *)dst;
2325 		dstaddr = (uint32_t *)&dst6->sin6_addr;
2326 		if (srcext != NULL) {
2327 			src6 = (struct sockaddr_in6 *)(srcext + 1);
2328 			srcaddr = (uint32_t *)&src6->sin6_addr;
2329 			if (src6->sin6_family != AF_INET6) {
2330 				*diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
2331 				return (EINVAL);
2332 			}
2333 		} else {
2334 			srcaddr = ALL_ZEROES_PTR;
2335 		}
2336 
2337 		outbound = OUTBOUND_BUCKET_V6(sp, *(uint32_t *)dstaddr);
2338 	} else {
2339 		sp = &spp->s_v4;
2340 		dstaddr = (uint32_t *)&dst->sin_addr;
2341 		if (srcext != NULL) {
2342 			src = (struct sockaddr_in *)(srcext + 1);
2343 			srcaddr = (uint32_t *)&src->sin_addr;
2344 			if (src->sin_family != AF_INET) {
2345 				*diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
2346 				return (EINVAL);
2347 			}
2348 		} else {
2349 			srcaddr = ALL_ZEROES_PTR;
2350 		}
2351 		outbound = OUTBOUND_BUCKET_V4(sp, *(uint32_t *)dstaddr);
2352 	}
2353 
2354 	inbound = INBOUND_BUCKET(sp, assoc->sadb_sa_spi);
2355 
2356 	/* Lock down both buckets. */
2357 	mutex_enter(&outbound->isaf_lock);
2358 	mutex_enter(&inbound->isaf_lock);
2359 
2360 	/* Try outbound first. */
2361 	outbound_target = ipsec_getassocbyspi(outbound, assoc->sadb_sa_spi,
2362 	    srcaddr, dstaddr, af);
2363 
2364 	if (outbound_target == NULL || outbound_target->ipsa_haspeer) {
2365 		inbound_target = ipsec_getassocbyspi(inbound,
2366 		    assoc->sadb_sa_spi, srcaddr, dstaddr, af);
2367 	} else {
2368 		inbound_target = NULL;
2369 	}
2370 
2371 	if (outbound_target == NULL && inbound_target == NULL) {
2372 		mutex_exit(&inbound->isaf_lock);
2373 		mutex_exit(&outbound->isaf_lock);
2374 		return (ESRCH);
2375 	}
2376 
2377 	if (delete) {
2378 		/* At this point, I have one or two SAs to be deleted. */
2379 		if (outbound_target != NULL) {
2380 			mutex_enter(&outbound_target->ipsa_lock);
2381 			outbound_target->ipsa_state = IPSA_STATE_DEAD;
2382 			(void) sadb_torch_assoc(outbound, outbound_target,
2383 			    B_FALSE, &torchq);
2384 		}
2385 
2386 		if (inbound_target != NULL) {
2387 			mutex_enter(&inbound_target->ipsa_lock);
2388 			inbound_target->ipsa_state = IPSA_STATE_DEAD;
2389 			(void) sadb_torch_assoc(inbound, inbound_target,
2390 			    B_TRUE, &torchq);
2391 		}
2392 	}
2393 
2394 	mutex_exit(&inbound->isaf_lock);
2395 	mutex_exit(&outbound->isaf_lock);
2396 
2397 	if (torchq != NULL)
2398 		sadb_drain_torchq(spp->s_ip_q, torchq);
2399 
2400 	/*
2401 	 * Because of the multi-line macro nature of IPSA_REFRELE, keep
2402 	 * them in { }.
2403 	 */
2404 	ASSERT(mp->b_cont != NULL);
2405 	sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi,
2406 	    (outbound_target != NULL ? outbound_target : inbound_target));
2407 
2408 	if (outbound_target != NULL) {
2409 		IPSA_REFRELE(outbound_target);
2410 	}
2411 	if (inbound_target != NULL) {
2412 		IPSA_REFRELE(inbound_target);
2413 	}
2414 
2415 	return (0);
2416 }
2417 
2418 /*
2419  * Common code to set ipsa_unique_id; used from both add and update paths.
2420  */
2421 static void
2422 sadb_set_unique(ipsa_t *sa, uint8_t proto,
2423     struct sockaddr_in *src, struct sockaddr_in *dst)
2424 {
2425 	/* Assume that ports are in the same place for INET and INET6 */
2426 	uint16_t srcport = src->sin_port;
2427 	uint16_t dstport = dst->sin_port;
2428 
2429 	sa->ipsa_unique_id = SA_UNIQUE_ID(srcport, dstport, proto);
2430 	sa->ipsa_unique_mask = SA_UNIQUE_MASK(srcport, dstport, proto);
2431 	if (sa->ipsa_unique_mask != 0)
2432 		sa->ipsa_flags |= IPSA_F_UNIQUE;
2433 }
2434 
2435 
2436 /*
2437  * Initialize the mechanism parameters associated with an SA.
2438  * These parameters can be shared by multiple packets, which saves
2439  * us from the overhead of consulting the algorithm table for
2440  * each packet.
2441  */
2442 static void
2443 sadb_init_alginfo(ipsa_t *sa)
2444 {
2445 	ipsec_alginfo_t *alg;
2446 
2447 	mutex_enter(&alg_lock);
2448 
2449 	if (sa->ipsa_encrkey != NULL) {
2450 		alg = ipsec_alglists[IPSEC_ALG_ENCR][sa->ipsa_encr_alg];
2451 		if (alg != NULL && ALG_VALID(alg)) {
2452 			sa->ipsa_emech.cm_type = alg->alg_mech_type;
2453 			sa->ipsa_emech.cm_param = NULL;
2454 			sa->ipsa_emech.cm_param_len = 0;
2455 			sa->ipsa_iv_len = alg->alg_datalen;
2456 		} else
2457 			sa->ipsa_emech.cm_type = CRYPTO_MECHANISM_INVALID;
2458 	}
2459 
2460 	if (sa->ipsa_authkey != NULL) {
2461 		alg = ipsec_alglists[IPSEC_ALG_AUTH][sa->ipsa_auth_alg];
2462 		if (alg != NULL && ALG_VALID(alg)) {
2463 			sa->ipsa_amech.cm_type = alg->alg_mech_type;
2464 			sa->ipsa_amech.cm_param = (char *)&sa->ipsa_mac_len;
2465 			sa->ipsa_amech.cm_param_len = sizeof (size_t);
2466 			sa->ipsa_mac_len = (size_t)alg->alg_datalen;
2467 		} else
2468 			sa->ipsa_amech.cm_type = CRYPTO_MECHANISM_INVALID;
2469 	}
2470 
2471 	mutex_exit(&alg_lock);
2472 }
2473 
2474 
2475 /*
2476  * This function is called from consumers that need to insert a fully-grown
2477  * security association into its tables.  This function takes into account that
2478  * SAs can be "inbound", "outbound", or "both".	 The "primary" and "secondary"
2479  * hash bucket parameters are set in order of what the SA will be most of the
2480  * time.  (For example, an SA with an unspecified source, and a multicast
2481  * destination will primarily be an outbound SA.  OTOH, if that destination
2482  * is unicast for this node, then the SA will primarily be inbound.)
2483  *
2484  * It takes a lot of parameters because even if clone is B_FALSE, this needs
2485  * to check both buckets for purposes of collision.
2486  *
2487  * Return 0 upon success.  Return various errnos (ENOMEM, EEXIST) for
2488  * various error conditions.  No need to set samsg->sadb_x_msg_diagnostic with
2489  * additional diagnostic information because ENOMEM and EEXIST are self-
2490  * explanitory.
2491  */
2492 int
2493 sadb_common_add(queue_t *ip_q, queue_t *pfkey_q, mblk_t *mp, sadb_msg_t *samsg,
2494     keysock_in_t *ksi, isaf_t *primary, isaf_t *secondary,
2495     ipsa_t *newbie, boolean_t clone, boolean_t is_inbound)
2496 {
2497 	ipsa_t *newbie_clone = NULL, *scratch;
2498 	sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
2499 	sadb_address_t *srcext =
2500 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
2501 	sadb_address_t *dstext =
2502 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
2503 	sadb_address_t *proxyext =
2504 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_PROXY];
2505 	sadb_address_t *natt_loc_ext =
2506 	    (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC];
2507 	sadb_address_t *natt_rem_ext =
2508 	    (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM];
2509 	sadb_x_kmc_t *kmcext =
2510 	    (sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE];
2511 	sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH];
2512 	sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT];
2513 #if 0
2514 	/*
2515 	 * XXXMLS - When Trusted Solaris or Multi-Level Secure functionality
2516 	 * comes to ON, examine these if 0'ed fragments.  Look for XXXMLS.
2517 	 */
2518 	sadb_sens_t *sens = (sadb_sens_t *);
2519 #endif
2520 	struct sockaddr_in *src, *dst, *proxy, *natt_loc, *natt_rem;
2521 	struct sockaddr_in6 *src6, *dst6, *proxy6, *natt_loc6, *natt_rem6;
2522 	sadb_lifetime_t *soft =
2523 	    (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT];
2524 	sadb_lifetime_t *hard =
2525 	    (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD];
2526 	sa_family_t af;
2527 	int error = 0;
2528 	boolean_t isupdate = (newbie != NULL);
2529 	uint32_t *src_addr_ptr, *dst_addr_ptr, *proxy_addr_ptr;
2530 	uint32_t *natt_loc_ptr = NULL, *natt_rem_ptr = NULL;
2531 	uint32_t running_sum = 0;
2532 	mblk_t *ctl_mp = NULL;
2533 
2534 	src = (struct sockaddr_in *)(srcext + 1);
2535 	src6 = (struct sockaddr_in6 *)(srcext + 1);
2536 	dst = (struct sockaddr_in *)(dstext + 1);
2537 	dst6 = (struct sockaddr_in6 *)(dstext + 1);
2538 	if (proxyext != NULL) {
2539 		proxy = (struct sockaddr_in *)(proxyext + 1);
2540 		proxy6 = (struct sockaddr_in6 *)(proxyext + 1);
2541 	} else {
2542 		proxy = NULL;
2543 		proxy6 = NULL;
2544 	}
2545 
2546 	af = src->sin_family;
2547 
2548 	if (af == AF_INET) {
2549 		src_addr_ptr = (uint32_t *)&src->sin_addr;
2550 		dst_addr_ptr = (uint32_t *)&dst->sin_addr;
2551 	} else {
2552 		ASSERT(af == AF_INET6);
2553 		src_addr_ptr = (uint32_t *)&src6->sin6_addr;
2554 		dst_addr_ptr = (uint32_t *)&dst6->sin6_addr;
2555 	}
2556 
2557 	if (!isupdate) {
2558 		newbie = sadb_makelarvalassoc(assoc->sadb_sa_spi,
2559 		    src_addr_ptr, dst_addr_ptr, af);
2560 		if (newbie == NULL)
2561 			return (ENOMEM);
2562 	}
2563 
2564 	mutex_enter(&newbie->ipsa_lock);
2565 
2566 	if (proxy != NULL) {
2567 		if (proxy->sin_family == AF_INET) {
2568 			proxy_addr_ptr = (uint32_t *)&proxy->sin_addr;
2569 		} else {
2570 			ASSERT(proxy->sin_family == AF_INET6);
2571 			proxy_addr_ptr = (uint32_t *)&proxy6->sin6_addr;
2572 		}
2573 		newbie->ipsa_proxyfam = proxy->sin_family;
2574 
2575 		IPSA_COPY_ADDR(newbie->ipsa_proxysrc, proxy_addr_ptr,
2576 		    newbie->ipsa_proxyfam);
2577 	}
2578 
2579 #define	DOWN_SUM(x) (x) = ((x) & 0xFFFF) +	 ((x) >> 16)
2580 
2581 
2582 	if (natt_rem_ext != NULL) {
2583 		uint32_t l_src;
2584 		uint32_t l_rem;
2585 
2586 		natt_rem = (struct sockaddr_in *)(natt_rem_ext + 1);
2587 		natt_rem6 = (struct sockaddr_in6 *)(natt_rem_ext + 1);
2588 
2589 		if (natt_rem->sin_family == AF_INET) {
2590 			natt_rem_ptr = (uint32_t *)(&natt_rem->sin_addr);
2591 			newbie->ipsa_remote_port = natt_rem->sin_port;
2592 			l_src = *src_addr_ptr;
2593 			l_rem = *natt_rem_ptr;
2594 		} else {
2595 			if (!IN6_IS_ADDR_V4MAPPED(&natt_rem6->sin6_addr)) {
2596 				goto error;
2597 			}
2598 			ASSERT(natt_rem->sin_family == AF_INET6);
2599 
2600 			natt_rem_ptr = ((uint32_t *)
2601 			    (&natt_rem6->sin6_addr)) + 3;
2602 			newbie->ipsa_remote_port = natt_rem6->sin6_port;
2603 			l_src = *src_addr_ptr;
2604 			l_rem = *natt_rem_ptr;
2605 		}
2606 		IPSA_COPY_ADDR(newbie->ipsa_natt_addr_rem, natt_rem_ptr, af);
2607 
2608 		l_src = ntohl(l_src);
2609 		DOWN_SUM(l_src);
2610 		DOWN_SUM(l_src);
2611 		l_rem = ntohl(l_rem);
2612 		DOWN_SUM(l_rem);
2613 		DOWN_SUM(l_rem);
2614 
2615 		/*
2616 		 * We're 1's complement for checksums, so check for wraparound
2617 		 * here.
2618 		 */
2619 		if (l_rem > l_src)
2620 			l_src--;
2621 
2622 		running_sum += l_src - l_rem;
2623 
2624 		DOWN_SUM(running_sum);
2625 		DOWN_SUM(running_sum);
2626 	}
2627 
2628 	if (natt_loc_ext != NULL) {
2629 		uint32_t l_dst;
2630 		uint32_t l_loc;
2631 
2632 		natt_loc = (struct sockaddr_in *)(natt_loc_ext + 1);
2633 		natt_loc6 = (struct sockaddr_in6 *)(natt_loc_ext + 1);
2634 
2635 		if (natt_loc->sin_family == AF_INET) {
2636 			natt_loc_ptr = (uint32_t *)&natt_loc->sin_addr;
2637 			l_dst = *dst_addr_ptr;
2638 			l_loc = *natt_loc_ptr;
2639 
2640 		} else {
2641 			if (!IN6_IS_ADDR_V4MAPPED(&natt_loc6->sin6_addr)) {
2642 				goto error;
2643 			}
2644 			ASSERT(natt_loc->sin_family == AF_INET6);
2645 			natt_loc_ptr = ((uint32_t *)&natt_loc6->sin6_addr) + 3;
2646 			l_dst = *dst_addr_ptr;
2647 			l_loc = *natt_loc_ptr;
2648 
2649 		}
2650 		IPSA_COPY_ADDR(newbie->ipsa_natt_addr_loc, natt_loc_ptr, af);
2651 
2652 		l_loc = ntohl(l_loc);
2653 		DOWN_SUM(l_loc);
2654 		DOWN_SUM(l_loc);
2655 		l_dst = ntohl(l_dst);
2656 		DOWN_SUM(l_dst);
2657 		DOWN_SUM(l_dst);
2658 
2659 		/*
2660 		 * We're 1's complement for checksums, so check for wraparound
2661 		 * here.
2662 		 */
2663 		if (l_loc > l_dst)
2664 			l_dst--;
2665 
2666 		running_sum += l_dst - l_loc;
2667 		DOWN_SUM(running_sum);
2668 		DOWN_SUM(running_sum);
2669 	}
2670 
2671 	newbie->ipsa_inbound_cksum = running_sum;
2672 #undef DOWN_SUM
2673 
2674 	newbie->ipsa_type = samsg->sadb_msg_satype;
2675 	ASSERT(assoc->sadb_sa_state == SADB_SASTATE_MATURE);
2676 	newbie->ipsa_auth_alg = assoc->sadb_sa_auth;
2677 	newbie->ipsa_encr_alg = assoc->sadb_sa_encrypt;
2678 	newbie->ipsa_flags = assoc->sadb_sa_flags;
2679 	/*
2680 	 * If unspecified source address, force replay_wsize to 0.
2681 	 * This is because an SA that has multiple sources of secure
2682 	 * traffic cannot enforce a replay counter w/o synchronizing the
2683 	 * senders.
2684 	 */
2685 	if (ksi->ks_in_srctype != KS_IN_ADDR_UNSPEC)
2686 		newbie->ipsa_replay_wsize = assoc->sadb_sa_replay;
2687 	else
2688 		newbie->ipsa_replay_wsize = 0;
2689 
2690 	(void) drv_getparm(TIME, &newbie->ipsa_addtime);
2691 
2692 	/* Set unique value */
2693 	sadb_set_unique(newbie, dstext->sadb_address_proto, src, dst);
2694 
2695 	if (kmcext != NULL) {
2696 		newbie->ipsa_kmp = kmcext->sadb_x_kmc_proto;
2697 		newbie->ipsa_kmc = kmcext->sadb_x_kmc_cookie;
2698 	}
2699 
2700 	/*
2701 	 * XXX CURRENT lifetime checks MAY BE needed for an UPDATE.
2702 	 * The spec says that one can update current lifetimes, but
2703 	 * that seems impractical, especially in the larval-to-mature
2704 	 * update that this function performs.
2705 	 */
2706 	if (soft != NULL) {
2707 		newbie->ipsa_softaddlt = soft->sadb_lifetime_addtime;
2708 		newbie->ipsa_softuselt = soft->sadb_lifetime_usetime;
2709 		newbie->ipsa_softbyteslt = soft->sadb_lifetime_bytes;
2710 		newbie->ipsa_softalloc = soft->sadb_lifetime_allocations;
2711 		SET_EXPIRE(newbie, softaddlt, softexpiretime);
2712 	}
2713 	if (hard != NULL) {
2714 		newbie->ipsa_hardaddlt = hard->sadb_lifetime_addtime;
2715 		newbie->ipsa_harduselt = hard->sadb_lifetime_usetime;
2716 		newbie->ipsa_hardbyteslt = hard->sadb_lifetime_bytes;
2717 		newbie->ipsa_hardalloc = hard->sadb_lifetime_allocations;
2718 		SET_EXPIRE(newbie, hardaddlt, hardexpiretime);
2719 	}
2720 
2721 	newbie->ipsa_authtmpl = NULL;
2722 	newbie->ipsa_encrtmpl = NULL;
2723 
2724 	if (akey != NULL) {
2725 		newbie->ipsa_authkeybits = akey->sadb_key_bits;
2726 		newbie->ipsa_authkeylen = SADB_1TO8(akey->sadb_key_bits);
2727 		/* In case we have to round up to the next byte... */
2728 		if ((akey->sadb_key_bits & 0x7) != 0)
2729 			newbie->ipsa_authkeylen++;
2730 		newbie->ipsa_authkey = kmem_alloc(newbie->ipsa_authkeylen,
2731 		    KM_NOSLEEP);
2732 		if (newbie->ipsa_authkey == NULL) {
2733 			error = ENOMEM;
2734 			mutex_exit(&newbie->ipsa_lock);
2735 			goto error;
2736 		}
2737 		bcopy(akey + 1, newbie->ipsa_authkey, newbie->ipsa_authkeylen);
2738 		bzero(akey + 1, newbie->ipsa_authkeylen);
2739 
2740 		/*
2741 		 * Pre-initialize the kernel crypto framework key
2742 		 * structure.
2743 		 */
2744 		newbie->ipsa_kcfauthkey.ck_format = CRYPTO_KEY_RAW;
2745 		newbie->ipsa_kcfauthkey.ck_length = newbie->ipsa_authkeybits;
2746 		newbie->ipsa_kcfauthkey.ck_data = newbie->ipsa_authkey;
2747 
2748 		mutex_enter(&alg_lock);
2749 		error = ipsec_create_ctx_tmpl(newbie, IPSEC_ALG_AUTH);
2750 		mutex_exit(&alg_lock);
2751 		if (error != 0) {
2752 			mutex_exit(&newbie->ipsa_lock);
2753 			goto error;
2754 		}
2755 	}
2756 
2757 	if (ekey != NULL) {
2758 		newbie->ipsa_encrkeybits = ekey->sadb_key_bits;
2759 		newbie->ipsa_encrkeylen = SADB_1TO8(ekey->sadb_key_bits);
2760 		/* In case we have to round up to the next byte... */
2761 		if ((ekey->sadb_key_bits & 0x7) != 0)
2762 			newbie->ipsa_encrkeylen++;
2763 		newbie->ipsa_encrkey = kmem_alloc(newbie->ipsa_encrkeylen,
2764 		    KM_NOSLEEP);
2765 		if (newbie->ipsa_encrkey == NULL) {
2766 			error = ENOMEM;
2767 			mutex_exit(&newbie->ipsa_lock);
2768 			goto error;
2769 		}
2770 		bcopy(ekey + 1, newbie->ipsa_encrkey, newbie->ipsa_encrkeylen);
2771 		/* XXX is this safe w.r.t db_ref, etc? */
2772 		bzero(ekey + 1, newbie->ipsa_encrkeylen);
2773 
2774 		/*
2775 		 * Pre-initialize the kernel crypto framework key
2776 		 * structure.
2777 		 */
2778 		newbie->ipsa_kcfencrkey.ck_format = CRYPTO_KEY_RAW;
2779 		newbie->ipsa_kcfencrkey.ck_length = newbie->ipsa_encrkeybits;
2780 		newbie->ipsa_kcfencrkey.ck_data = newbie->ipsa_encrkey;
2781 
2782 		mutex_enter(&alg_lock);
2783 		error = ipsec_create_ctx_tmpl(newbie, IPSEC_ALG_ENCR);
2784 		mutex_exit(&alg_lock);
2785 		if (error != 0) {
2786 			mutex_exit(&newbie->ipsa_lock);
2787 			goto error;
2788 		}
2789 	}
2790 
2791 	sadb_init_alginfo(newbie);
2792 
2793 	/*
2794 	 * Ptrs to processing functions.
2795 	 */
2796 	if (newbie->ipsa_type == SADB_SATYPE_ESP)
2797 		ipsecesp_init_funcs(newbie);
2798 	else
2799 		ipsecah_init_funcs(newbie);
2800 	ASSERT(newbie->ipsa_output_func != NULL &&
2801 	    newbie->ipsa_input_func != NULL);
2802 
2803 	/*
2804 	 * Certificate ID stuff.
2805 	 */
2806 	if (ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC] != NULL) {
2807 		sadb_ident_t *id =
2808 		    (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC];
2809 
2810 		/*
2811 		 * Can assume strlen() will return okay because ext_check() in
2812 		 * keysock.c prepares the string for us.
2813 		 */
2814 		newbie->ipsa_src_cid = ipsid_lookup(id->sadb_ident_type,
2815 		    (char *)(id+1));
2816 		if (newbie->ipsa_src_cid == NULL) {
2817 			error = ENOMEM;
2818 			mutex_exit(&newbie->ipsa_lock);
2819 			goto error;
2820 		}
2821 	}
2822 
2823 	if (ksi->ks_in_extv[SADB_EXT_IDENTITY_DST] != NULL) {
2824 		sadb_ident_t *id =
2825 		    (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_DST];
2826 
2827 		/*
2828 		 * Can assume strlen() will return okay because ext_check() in
2829 		 * keysock.c prepares the string for us.
2830 		 */
2831 		newbie->ipsa_dst_cid = ipsid_lookup(id->sadb_ident_type,
2832 		    (char *)(id+1));
2833 		if (newbie->ipsa_dst_cid == NULL) {
2834 			error = ENOMEM;
2835 			mutex_exit(&newbie->ipsa_lock);
2836 			goto error;
2837 		}
2838 	}
2839 
2840 #if 0
2841 	/* XXXMLS  SENSITIVITY handling code. */
2842 	if (sens != NULL) {
2843 		int i;
2844 		uint64_t *bitmap = (uint64_t *)(sens + 1);
2845 
2846 		newbie->ipsa_dpd = sens->sadb_sens_dpd;
2847 		newbie->ipsa_senslevel = sens->sadb_sens_sens_level;
2848 		newbie->ipsa_integlevel = sens->sadb_sens_integ_level;
2849 		newbie->ipsa_senslen = SADB_64TO8(sens->sadb_sens_sens_len);
2850 		newbie->ipsa_integlen = SADB_64TO8(sens->sadb_sens_integ_len);
2851 		newbie->ipsa_integ = kmem_alloc(newbie->ipsa_integlen,
2852 		    KM_NOSLEEP);
2853 		if (newbie->ipsa_integ == NULL) {
2854 			error = ENOMEM;
2855 			mutex_exit(&newbie->ipsa_lock);
2856 			goto error;
2857 		}
2858 		newbie->ipsa_sens = kmem_alloc(newbie->ipsa_senslen,
2859 		    KM_NOSLEEP);
2860 		if (newbie->ipsa_sens == NULL) {
2861 			error = ENOMEM;
2862 			mutex_exit(&newbie->ipsa_lock);
2863 			goto error;
2864 		}
2865 		for (i = 0; i < sens->sadb_sens_sens_len; i++) {
2866 			newbie->ipsa_sens[i] = *bitmap;
2867 			bitmap++;
2868 		}
2869 		for (i = 0; i < sens->sadb_sens_integ_len; i++) {
2870 			newbie->ipsa_integ[i] = *bitmap;
2871 			bitmap++;
2872 		}
2873 	}
2874 
2875 #endif
2876 
2877 	/* now that the SA has been updated, set its new state */
2878 	newbie->ipsa_state = assoc->sadb_sa_state;
2879 
2880 	/*
2881 	 * The less locks I hold when doing an insertion and possible cloning,
2882 	 * the better!
2883 	 */
2884 	mutex_exit(&newbie->ipsa_lock);
2885 
2886 	if (clone) {
2887 		newbie_clone = sadb_cloneassoc(newbie);
2888 
2889 		if (newbie_clone == NULL) {
2890 			error = ENOMEM;
2891 			goto error;
2892 		}
2893 		newbie->ipsa_haspeer = B_TRUE;
2894 		newbie_clone->ipsa_haspeer = B_TRUE;
2895 	}
2896 
2897 	/*
2898 	 * Enter the bucket locks.  The order of entry is outbound,
2899 	 * inbound.  We map "primary" and "secondary" into outbound and inbound
2900 	 * based on the destination address type.  If the destination address
2901 	 * type is for a node that isn't mine (or potentially mine), the
2902 	 * "primary" bucket is the outbound one.
2903 	 */
2904 	if (ksi->ks_in_dsttype == KS_IN_ADDR_NOTME) {
2905 		/* primary == outbound */
2906 		mutex_enter(&primary->isaf_lock);
2907 		mutex_enter(&secondary->isaf_lock);
2908 	} else {
2909 		/* primary == inbound */
2910 		mutex_enter(&secondary->isaf_lock);
2911 		mutex_enter(&primary->isaf_lock);
2912 	}
2913 
2914 	IPSECHW_DEBUG(IPSECHW_SADB, ("sadb_common_add: spi = 0x%x\n",
2915 	    newbie->ipsa_spi));
2916 
2917 	/*
2918 	 * sadb_insertassoc() doesn't increment the reference
2919 	 * count.  We therefore have to increment the
2920 	 * reference count one more time to reflect the
2921 	 * pointers of the table that reference this SA.
2922 	 */
2923 	IPSA_REFHOLD(newbie);
2924 
2925 	if (isupdate) {
2926 		/*
2927 		 * Unlink from larval holding cell in the "inbound" fanout.
2928 		 */
2929 		ASSERT(newbie->ipsa_linklock == &primary->isaf_lock ||
2930 		    newbie->ipsa_linklock == &secondary->isaf_lock);
2931 		sadb_unlinkassoc(newbie);
2932 	}
2933 
2934 	mutex_enter(&newbie->ipsa_lock);
2935 	error = sadb_insertassoc(newbie, primary);
2936 	if (error == 0) {
2937 		ctl_mp = sadb_fmt_sa_req(DL_CO_SET, newbie->ipsa_type, newbie,
2938 		    is_inbound);
2939 	}
2940 	mutex_exit(&newbie->ipsa_lock);
2941 
2942 	if (error != 0) {
2943 		/*
2944 		 * Since sadb_insertassoc() failed, we must decrement the
2945 		 * refcount again so the cleanup code will actually free
2946 		 * the offending SA.
2947 		 */
2948 		IPSA_REFRELE(newbie);
2949 		goto error_unlock;
2950 	}
2951 
2952 	if (newbie_clone != NULL) {
2953 		mutex_enter(&newbie_clone->ipsa_lock);
2954 		error = sadb_insertassoc(newbie_clone, secondary);
2955 		mutex_exit(&newbie_clone->ipsa_lock);
2956 		if (error != 0) {
2957 			/* Collision in secondary table. */
2958 			sadb_unlinkassoc(newbie);  /* This does REFRELE. */
2959 			goto error_unlock;
2960 		}
2961 		IPSA_REFHOLD(newbie_clone);
2962 	} else {
2963 		ASSERT(primary != secondary);
2964 		scratch = ipsec_getassocbyspi(secondary, newbie->ipsa_spi,
2965 		    ALL_ZEROES_PTR, newbie->ipsa_dstaddr, af);
2966 		if (scratch != NULL) {
2967 			/* Collision in secondary table. */
2968 			sadb_unlinkassoc(newbie);  /* This does REFRELE. */
2969 			/* Set the error, since ipsec_getassocbyspi() can't. */
2970 			error = EEXIST;
2971 			goto error_unlock;
2972 		}
2973 	}
2974 
2975 	/* OKAY!  So let's do some reality check assertions. */
2976 
2977 	ASSERT(!MUTEX_HELD(&newbie->ipsa_lock));
2978 	ASSERT(newbie_clone == NULL || (!MUTEX_HELD(&newbie_clone->ipsa_lock)));
2979 	/*
2980 	 * If hardware acceleration could happen, send it.
2981 	 */
2982 	if (ctl_mp != NULL) {
2983 		putnext(ip_q, ctl_mp);
2984 		ctl_mp = NULL;
2985 	}
2986 
2987 error_unlock:
2988 
2989 	/*
2990 	 * We can exit the locks in any order.	Only entrance needs to
2991 	 * follow any protocol.
2992 	 */
2993 	mutex_exit(&secondary->isaf_lock);
2994 	mutex_exit(&primary->isaf_lock);
2995 
2996 	/* Common error point for this routine. */
2997 error:
2998 	if (newbie != NULL) {
2999 		IPSA_REFRELE(newbie);
3000 	}
3001 	if (newbie_clone != NULL) {
3002 		IPSA_REFRELE(newbie_clone);
3003 	}
3004 	if (ctl_mp != NULL)
3005 		freemsg(ctl_mp);
3006 
3007 	if (error == 0) {
3008 		/*
3009 		 * Construct favorable PF_KEY return message and send to
3010 		 * keysock.  (Q:  Do I need to pass "newbie"?  If I do,
3011 		 * make sure to REFHOLD, call, then REFRELE.)
3012 		 */
3013 		sadb_pfkey_echo(pfkey_q, mp, samsg, ksi, NULL);
3014 	}
3015 
3016 	return (error);
3017 }
3018 
3019 /*
3020  * Set the time of first use for a security association.  Update any
3021  * expiration times as a result.
3022  */
3023 void
3024 sadb_set_usetime(ipsa_t *assoc)
3025 {
3026 	mutex_enter(&assoc->ipsa_lock);
3027 	/*
3028 	 * Caller does check usetime before calling me usually, and
3029 	 * double-checking is better than a mutex_enter/exit hit.
3030 	 */
3031 	if (assoc->ipsa_usetime == 0) {
3032 		/*
3033 		 * This is redundant for outbound SA's, as
3034 		 * ipsec_getassocbyconn() sets the IPSA_F_USED flag already.
3035 		 * Inbound SAs, however, have no such protection.
3036 		 */
3037 		assoc->ipsa_flags |= IPSA_F_USED;
3038 
3039 		(void) drv_getparm(TIME, &assoc->ipsa_usetime);
3040 
3041 		/*
3042 		 * After setting the use time, see if we have a use lifetime
3043 		 * that would cause the actual SA expiration time to shorten.
3044 		 */
3045 		UPDATE_EXPIRE(assoc, softuselt, softexpiretime);
3046 		UPDATE_EXPIRE(assoc, harduselt, hardexpiretime);
3047 	}
3048 	mutex_exit(&assoc->ipsa_lock);
3049 }
3050 
3051 /*
3052  * Send up a PF_KEY expire message for this association.
3053  */
3054 static void
3055 sadb_expire_assoc(queue_t *pfkey_q, ipsa_t *assoc)
3056 {
3057 	mblk_t *mp, *mp1;
3058 	int alloclen, af;
3059 	sadb_msg_t *samsg;
3060 	sadb_lifetime_t *current, *expire;
3061 	sadb_sa_t *saext;
3062 	uint8_t *end;
3063 
3064 	ASSERT(MUTEX_HELD(&assoc->ipsa_lock));
3065 
3066 	/* Don't bother sending if there's no queue. */
3067 	if (pfkey_q == NULL)
3068 		return;
3069 
3070 	mp = sadb_keysock_out(0);
3071 	if (mp == NULL) {
3072 		/* cmn_err(CE_WARN, */
3073 		/*	"sadb_expire_assoc: Can't allocate KEYSOCK_OUT.\n"); */
3074 		return;
3075 	}
3076 
3077 	alloclen = sizeof (*samsg) + sizeof (*current) + sizeof (*expire) +
3078 	    2*sizeof (sadb_address_t) + sizeof (*saext);
3079 
3080 	af = assoc->ipsa_addrfam;
3081 	switch (af) {
3082 	case AF_INET:
3083 		alloclen += 2 * sizeof (struct sockaddr_in);
3084 		break;
3085 	case AF_INET6:
3086 		alloclen += 2 * sizeof (struct sockaddr_in6);
3087 		break;
3088 	default:
3089 		/* Won't happen unless there's a kernel bug. */
3090 		freeb(mp);
3091 		cmn_err(CE_WARN,
3092 		    "sadb_expire_assoc: Unknown address length.\n");
3093 		return;
3094 	}
3095 
3096 	mp->b_cont = allocb(alloclen, BPRI_HI);
3097 	if (mp->b_cont == NULL) {
3098 		freeb(mp);
3099 		/* cmn_err(CE_WARN, */
3100 		/*	"sadb_expire_assoc: Can't allocate message.\n"); */
3101 		return;
3102 	}
3103 
3104 	mp1 = mp;
3105 	mp = mp->b_cont;
3106 	end = mp->b_wptr + alloclen;
3107 
3108 	samsg = (sadb_msg_t *)mp->b_wptr;
3109 	mp->b_wptr += sizeof (*samsg);
3110 	samsg->sadb_msg_version = PF_KEY_V2;
3111 	samsg->sadb_msg_type = SADB_EXPIRE;
3112 	samsg->sadb_msg_errno = 0;
3113 	samsg->sadb_msg_satype = assoc->ipsa_type;
3114 	samsg->sadb_msg_len = SADB_8TO64(alloclen);
3115 	samsg->sadb_msg_reserved = 0;
3116 	samsg->sadb_msg_seq = 0;
3117 	samsg->sadb_msg_pid = 0;
3118 
3119 	saext = (sadb_sa_t *)mp->b_wptr;
3120 	mp->b_wptr += sizeof (*saext);
3121 	saext->sadb_sa_len = SADB_8TO64(sizeof (*saext));
3122 	saext->sadb_sa_exttype = SADB_EXT_SA;
3123 	saext->sadb_sa_spi = assoc->ipsa_spi;
3124 	saext->sadb_sa_replay = assoc->ipsa_replay_wsize;
3125 	saext->sadb_sa_state = assoc->ipsa_state;
3126 	saext->sadb_sa_auth = assoc->ipsa_auth_alg;
3127 	saext->sadb_sa_encrypt = assoc->ipsa_encr_alg;
3128 	saext->sadb_sa_flags = assoc->ipsa_flags;
3129 
3130 	current = (sadb_lifetime_t *)mp->b_wptr;
3131 	mp->b_wptr += sizeof (sadb_lifetime_t);
3132 	current->sadb_lifetime_len = SADB_8TO64(sizeof (*current));
3133 	current->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3134 	current->sadb_lifetime_allocations = assoc->ipsa_alloc;
3135 	current->sadb_lifetime_bytes = assoc->ipsa_bytes;
3136 	current->sadb_lifetime_addtime = assoc->ipsa_addtime;
3137 	current->sadb_lifetime_usetime = assoc->ipsa_usetime;
3138 
3139 	expire = (sadb_lifetime_t *)mp->b_wptr;
3140 	mp->b_wptr += sizeof (*expire);
3141 	expire->sadb_lifetime_len = SADB_8TO64(sizeof (*expire));
3142 
3143 	if (assoc->ipsa_state == IPSA_STATE_DEAD) {
3144 		expire->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
3145 		expire->sadb_lifetime_allocations = assoc->ipsa_hardalloc;
3146 		expire->sadb_lifetime_bytes = assoc->ipsa_hardbyteslt;
3147 		expire->sadb_lifetime_addtime = assoc->ipsa_hardaddlt;
3148 		expire->sadb_lifetime_usetime = assoc->ipsa_harduselt;
3149 	} else {
3150 		ASSERT(assoc->ipsa_state == IPSA_STATE_DYING);
3151 		expire->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
3152 		expire->sadb_lifetime_allocations = assoc->ipsa_softalloc;
3153 		expire->sadb_lifetime_bytes = assoc->ipsa_softbyteslt;
3154 		expire->sadb_lifetime_addtime = assoc->ipsa_softaddlt;
3155 		expire->sadb_lifetime_usetime = assoc->ipsa_softuselt;
3156 	}
3157 
3158 	mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, SADB_EXT_ADDRESS_SRC,
3159 	    af, assoc->ipsa_srcaddr, SA_SRCPORT(assoc), SA_PROTO(assoc));
3160 	ASSERT(mp->b_wptr != NULL);
3161 
3162 	mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, SADB_EXT_ADDRESS_DST,
3163 	    af, assoc->ipsa_dstaddr, SA_DSTPORT(assoc), SA_PROTO(assoc));
3164 	ASSERT(mp->b_wptr != NULL);
3165 
3166 	/* Can just putnext, we're ready to go! */
3167 	putnext(pfkey_q, mp1);
3168 }
3169 
3170 /*
3171  * "Age" the SA with the number of bytes that was used to protect traffic.
3172  * Send an SADB_EXPIRE message if appropriate.	Return B_TRUE if there was
3173  * enough "charge" left in the SA to protect the data.	Return B_FALSE
3174  * otherwise.  (If B_FALSE is returned, the association either was, or became
3175  * DEAD.)
3176  */
3177 boolean_t
3178 sadb_age_bytes(queue_t *pfkey_q, ipsa_t *assoc, uint64_t bytes,
3179     boolean_t sendmsg)
3180 {
3181 	boolean_t rc = B_TRUE;
3182 	uint64_t newtotal;
3183 
3184 	mutex_enter(&assoc->ipsa_lock);
3185 	newtotal = assoc->ipsa_bytes + bytes;
3186 	if (assoc->ipsa_hardbyteslt != 0 &&
3187 	    newtotal >= assoc->ipsa_hardbyteslt) {
3188 		if (assoc->ipsa_state < IPSA_STATE_DEAD) {
3189 			/*
3190 			 * Send EXPIRE message to PF_KEY.  May wish to pawn
3191 			 * this off on another non-interrupt thread.  Also
3192 			 * unlink this SA immediately.
3193 			 */
3194 			assoc->ipsa_state = IPSA_STATE_DEAD;
3195 			if (sendmsg)
3196 				sadb_expire_assoc(pfkey_q, assoc);
3197 			/*
3198 			 * Set non-zero expiration time so sadb_age_assoc()
3199 			 * will work when reaping.
3200 			 */
3201 			assoc->ipsa_hardexpiretime = (time_t)1;
3202 		} /* Else someone beat me to it! */
3203 		rc = B_FALSE;
3204 	} else if (assoc->ipsa_softbyteslt != 0 &&
3205 	    (newtotal >= assoc->ipsa_softbyteslt)) {
3206 		if (assoc->ipsa_state < IPSA_STATE_DYING) {
3207 			/*
3208 			 * Send EXPIRE message to PF_KEY.  May wish to pawn
3209 			 * this off on another non-interrupt thread.
3210 			 */
3211 			assoc->ipsa_state = IPSA_STATE_DYING;
3212 			if (sendmsg)
3213 				sadb_expire_assoc(pfkey_q, assoc);
3214 		} /* Else someone beat me to it! */
3215 	}
3216 	if (rc == B_TRUE)
3217 		assoc->ipsa_bytes = newtotal;
3218 	mutex_exit(&assoc->ipsa_lock);
3219 	return (rc);
3220 }
3221 
3222 /*
3223  * Push one or more DL_CO_DELETE messages queued up by
3224  * sadb_torch_assoc down to the underlying driver now that it's a
3225  * convenient time for it (i.e., ipsa bucket locks not held).
3226  */
3227 static void
3228 sadb_drain_torchq(queue_t *q, mblk_t *mp)
3229 {
3230 	while (mp != NULL) {
3231 		mblk_t *next = mp->b_next;
3232 		mp->b_next = NULL;
3233 		if (q != NULL)
3234 			putnext(q, mp);
3235 		else
3236 			freemsg(mp);
3237 		mp = next;
3238 	}
3239 }
3240 
3241 /*
3242  * "Torch" an individual SA.  Returns NULL, so it can be tail-called from
3243  *     sadb_age_assoc().
3244  *
3245  * If SA is hardware-accelerated, and we can't allocate the mblk
3246  * containing the DL_CO_DELETE, just return; it will remain in the
3247  * table and be swept up by sadb_ager() in a subsequent pass.
3248  */
3249 static ipsa_t *
3250 sadb_torch_assoc(isaf_t *head, ipsa_t *sa, boolean_t inbnd, mblk_t **mq)
3251 {
3252 	mblk_t *mp;
3253 
3254 	ASSERT(MUTEX_HELD(&head->isaf_lock));
3255 	ASSERT(MUTEX_HELD(&sa->ipsa_lock));
3256 	ASSERT(sa->ipsa_state == IPSA_STATE_DEAD);
3257 
3258 	/*
3259 	 * Force cached SAs to be revalidated..
3260 	 */
3261 	head->isaf_gen++;
3262 
3263 	if (sa->ipsa_flags & IPSA_F_HW) {
3264 		mp = sadb_fmt_sa_req(DL_CO_DELETE, sa->ipsa_type, sa, inbnd);
3265 		if (mp == NULL) {
3266 			mutex_exit(&sa->ipsa_lock);
3267 			return (NULL);
3268 		}
3269 		mp->b_next = *mq;
3270 		*mq = mp;
3271 	}
3272 	mutex_exit(&sa->ipsa_lock);
3273 	sadb_unlinkassoc(sa);
3274 
3275 	return (NULL);
3276 }
3277 
3278 /*
3279  * Return "assoc" iff haspeer is true and I send an expire.  This allows
3280  * the consumers' aging functions to tidy up an expired SA's peer.
3281  */
3282 static ipsa_t *
3283 sadb_age_assoc(isaf_t *head, queue_t *pfkey_q, ipsa_t *assoc,
3284     time_t current, int reap_delay, boolean_t inbnd, mblk_t **mq)
3285 {
3286 	ipsa_t *retval = NULL;
3287 
3288 	ASSERT(MUTEX_HELD(&head->isaf_lock));
3289 
3290 	mutex_enter(&assoc->ipsa_lock);
3291 
3292 	if ((assoc->ipsa_state == IPSA_STATE_LARVAL) &&
3293 	    (assoc->ipsa_hardexpiretime <= current)) {
3294 		assoc->ipsa_state = IPSA_STATE_DEAD;
3295 		return (sadb_torch_assoc(head, assoc, inbnd, mq));
3296 	}
3297 
3298 	/*
3299 	 * Check lifetimes.  Fortunately, SA setup is done
3300 	 * such that there are only two times to look at,
3301 	 * softexpiretime, and hardexpiretime.
3302 	 *
3303 	 * Check hard first.
3304 	 */
3305 
3306 	if (assoc->ipsa_hardexpiretime != 0 &&
3307 	    assoc->ipsa_hardexpiretime <= current) {
3308 		if (assoc->ipsa_state == IPSA_STATE_DEAD)
3309 			return (sadb_torch_assoc(head, assoc, inbnd, mq));
3310 
3311 		/*
3312 		 * Send SADB_EXPIRE with hard lifetime, delay for unlinking.
3313 		 */
3314 		assoc->ipsa_state = IPSA_STATE_DEAD;
3315 		if (assoc->ipsa_haspeer) {
3316 			/*
3317 			 * If I return assoc, I have to bump up its
3318 			 * reference count to keep with the ipsa_t reference
3319 			 * count semantics.
3320 			 */
3321 			IPSA_REFHOLD(assoc);
3322 			retval = assoc;
3323 		}
3324 		sadb_expire_assoc(pfkey_q, assoc);
3325 		assoc->ipsa_hardexpiretime = current + reap_delay;
3326 	} else if (assoc->ipsa_softexpiretime != 0 &&
3327 	    assoc->ipsa_softexpiretime <= current &&
3328 	    assoc->ipsa_state < IPSA_STATE_DYING) {
3329 		/*
3330 		 * Send EXPIRE message to PF_KEY.  May wish to pawn
3331 		 * this off on another non-interrupt thread.
3332 		 */
3333 		assoc->ipsa_state = IPSA_STATE_DYING;
3334 		if (assoc->ipsa_haspeer) {
3335 			/*
3336 			 * If I return assoc, I have to bump up its
3337 			 * reference count to keep with the ipsa_t reference
3338 			 * count semantics.
3339 			 */
3340 			IPSA_REFHOLD(assoc);
3341 			retval = assoc;
3342 		}
3343 		sadb_expire_assoc(pfkey_q, assoc);
3344 	}
3345 
3346 	mutex_exit(&assoc->ipsa_lock);
3347 	return (retval);
3348 }
3349 
3350 /*
3351  * Called by a consumer protocol to do ther dirty work of reaping dead
3352  * Security Associations.
3353  */
3354 void
3355 sadb_ager(sadb_t *sp, queue_t *pfkey_q, queue_t *ip_q, int reap_delay)
3356 {
3357 	int i;
3358 	isaf_t *bucket;
3359 	ipsa_t *assoc, *spare;
3360 	iacqf_t *acqlist;
3361 	ipsacq_t *acqrec, *spareacq;
3362 	struct templist {
3363 		ipsa_t *ipsa;
3364 		struct templist *next;
3365 	} *haspeerlist = NULL, *newbie;
3366 	time_t current;
3367 	int outhash;
3368 	mblk_t *mq = NULL;
3369 
3370 	/*
3371 	 * Do my dirty work.  This includes aging real entries, aging
3372 	 * larvals, and aging outstanding ACQUIREs.
3373 	 *
3374 	 * I hope I don't tie up resources for too long.
3375 	 */
3376 
3377 	/* Snapshot current time now. */
3378 	(void) drv_getparm(TIME, &current);
3379 
3380 	/* Age acquires. */
3381 
3382 	for (i = 0; i < sp->sdb_hashsize; i++) {
3383 		acqlist = &sp->sdb_acq[i];
3384 		mutex_enter(&acqlist->iacqf_lock);
3385 		for (acqrec = acqlist->iacqf_ipsacq; acqrec != NULL;
3386 		    acqrec = spareacq) {
3387 			spareacq = acqrec->ipsacq_next;
3388 			if (current > acqrec->ipsacq_expire)
3389 				sadb_destroy_acquire(acqrec);
3390 		}
3391 		mutex_exit(&acqlist->iacqf_lock);
3392 	}
3393 
3394 	/* Age inbound associations. */
3395 	for (i = 0; i < sp->sdb_hashsize; i++) {
3396 		bucket = &(sp->sdb_if[i]);
3397 		mutex_enter(&bucket->isaf_lock);
3398 		for (assoc = bucket->isaf_ipsa; assoc != NULL;
3399 		    assoc = spare) {
3400 			spare = assoc->ipsa_next;
3401 			if (sadb_age_assoc(bucket, pfkey_q, assoc, current,
3402 			    reap_delay, B_TRUE, &mq) != NULL) {
3403 				/*
3404 				 * sadb_age_assoc() increments the refcnt,
3405 				 * effectively doing an IPSA_REFHOLD().
3406 				 */
3407 				newbie = kmem_alloc(sizeof (*newbie),
3408 				    KM_NOSLEEP);
3409 				if (newbie == NULL) {
3410 					/*
3411 					 * Don't forget to REFRELE().
3412 					 */
3413 					IPSA_REFRELE(assoc);
3414 					continue;	/* for loop... */
3415 				}
3416 				newbie->next = haspeerlist;
3417 				newbie->ipsa = assoc;
3418 				haspeerlist = newbie;
3419 			}
3420 		}
3421 		mutex_exit(&bucket->isaf_lock);
3422 	}
3423 
3424 	if (mq != NULL) {
3425 		sadb_drain_torchq(ip_q, mq);
3426 		mq = NULL;
3427 	}
3428 	/*
3429 	 * Haspeer cases will contain both IPv4 and IPv6.  This code
3430 	 * is address independent.
3431 	 */
3432 	while (haspeerlist != NULL) {
3433 		/* "spare" contains the SA that has a peer. */
3434 		spare = haspeerlist->ipsa;
3435 		newbie = haspeerlist;
3436 		haspeerlist = newbie->next;
3437 		kmem_free(newbie, sizeof (*newbie));
3438 		/*
3439 		 * Pick peer bucket based on addrfam.
3440 		 */
3441 		if (spare->ipsa_addrfam == AF_INET6) {
3442 			outhash = OUTBOUND_HASH_V6(sp,
3443 			    *((in6_addr_t *)&spare->ipsa_dstaddr));
3444 		} else {
3445 			outhash = OUTBOUND_HASH_V4(sp,
3446 			    *((ipaddr_t *)&spare->ipsa_dstaddr));
3447 		}
3448 		bucket = &(sp->sdb_of[outhash]);
3449 
3450 		mutex_enter(&bucket->isaf_lock);
3451 		assoc = ipsec_getassocbyspi(bucket, spare->ipsa_spi,
3452 		    spare->ipsa_srcaddr, spare->ipsa_dstaddr,
3453 		    spare->ipsa_addrfam);
3454 		mutex_exit(&bucket->isaf_lock);
3455 		if (assoc != NULL) {
3456 			mutex_enter(&assoc->ipsa_lock);
3457 			mutex_enter(&spare->ipsa_lock);
3458 			assoc->ipsa_state = spare->ipsa_state;
3459 			if (assoc->ipsa_state == IPSA_STATE_DEAD)
3460 				assoc->ipsa_hardexpiretime = 1;
3461 			mutex_exit(&spare->ipsa_lock);
3462 			mutex_exit(&assoc->ipsa_lock);
3463 			IPSA_REFRELE(assoc);
3464 		}
3465 		IPSA_REFRELE(spare);
3466 	}
3467 
3468 	/* Age outbound associations. */
3469 	for (i = 0; i < sp->sdb_hashsize; i++) {
3470 		bucket = &(sp->sdb_of[i]);
3471 		mutex_enter(&bucket->isaf_lock);
3472 		for (assoc = bucket->isaf_ipsa; assoc != NULL;
3473 		    assoc = spare) {
3474 			spare = assoc->ipsa_next;
3475 			if (sadb_age_assoc(bucket, pfkey_q, assoc, current,
3476 			    reap_delay, B_FALSE, &mq) != NULL) {
3477 				/*
3478 				 * sadb_age_assoc() increments the refcnt,
3479 				 * effectively doing an IPSA_REFHOLD().
3480 				 */
3481 				newbie = kmem_alloc(sizeof (*newbie),
3482 				    KM_NOSLEEP);
3483 				if (newbie == NULL) {
3484 					/*
3485 					 * Don't forget to REFRELE().
3486 					 */
3487 					IPSA_REFRELE(assoc);
3488 					continue;	/* for loop... */
3489 				}
3490 				newbie->next = haspeerlist;
3491 				newbie->ipsa = assoc;
3492 				haspeerlist = newbie;
3493 			}
3494 		}
3495 		mutex_exit(&bucket->isaf_lock);
3496 	}
3497 	if (mq != NULL) {
3498 		sadb_drain_torchq(ip_q, mq);
3499 		mq = NULL;
3500 	}
3501 	/*
3502 	 * Haspeer cases will contain both IPv4 and IPv6.  This code
3503 	 * is address independent.
3504 	 */
3505 	while (haspeerlist != NULL) {
3506 		/* "spare" contains the SA that has a peer. */
3507 		spare = haspeerlist->ipsa;
3508 		newbie = haspeerlist;
3509 		haspeerlist = newbie->next;
3510 		kmem_free(newbie, sizeof (*newbie));
3511 		/*
3512 		 * Pick peer bucket based on addrfam.
3513 		 */
3514 		bucket = INBOUND_BUCKET(sp, spare->ipsa_spi);
3515 		mutex_enter(&bucket->isaf_lock);
3516 		assoc = ipsec_getassocbyspi(bucket, spare->ipsa_spi,
3517 		    spare->ipsa_srcaddr, spare->ipsa_dstaddr,
3518 		    spare->ipsa_addrfam);
3519 		mutex_exit(&bucket->isaf_lock);
3520 		if (assoc != NULL) {
3521 			mutex_enter(&assoc->ipsa_lock);
3522 			mutex_enter(&spare->ipsa_lock);
3523 			assoc->ipsa_state = spare->ipsa_state;
3524 			if (assoc->ipsa_state == IPSA_STATE_DEAD)
3525 				assoc->ipsa_hardexpiretime = 1;
3526 			mutex_exit(&spare->ipsa_lock);
3527 			mutex_exit(&assoc->ipsa_lock);
3528 			IPSA_REFRELE(assoc);
3529 		}
3530 		IPSA_REFRELE(spare);
3531 	}
3532 	/*
3533 	 * Run a GC pass to clean out dead identities.
3534 	 */
3535 	ipsid_gc();
3536 }
3537 
3538 /*
3539  * Figure out when to reschedule the ager.
3540  */
3541 timeout_id_t
3542 sadb_retimeout(hrtime_t begin, queue_t *pfkey_q, void (*ager)(void *),
3543     uint_t *intp, uint_t intmax, short mid)
3544 {
3545 	hrtime_t end = gethrtime();
3546 	uint_t interval = *intp;
3547 
3548 	/*
3549 	 * See how long this took.  If it took too long, increase the
3550 	 * aging interval.
3551 	 */
3552 	if ((end - begin) > interval * 1000000) {
3553 		if (interval >= intmax) {
3554 			/* XXX Rate limit this?  Or recommend flush? */
3555 			(void) strlog(mid, 0, 0, SL_ERROR | SL_WARN,
3556 			    "Too many SA's to age out in %d msec.\n",
3557 			    intmax);
3558 		} else {
3559 			/* Double by shifting by one bit. */
3560 			interval <<= 1;
3561 			interval = min(interval, intmax);
3562 		}
3563 	} else if ((end - begin) <= interval * 500000 &&
3564 		interval > SADB_AGE_INTERVAL_DEFAULT) {
3565 		/*
3566 		 * If I took less than half of the interval, then I should
3567 		 * ratchet the interval back down.  Never automatically
3568 		 * shift below the default aging interval.
3569 		 *
3570 		 * NOTE:This even overrides manual setting of the age
3571 		 *	interval using NDD.
3572 		 */
3573 		/* Halve by shifting one bit. */
3574 		interval >>= 1;
3575 		interval = max(interval, SADB_AGE_INTERVAL_DEFAULT);
3576 	}
3577 	*intp = interval;
3578 	return (qtimeout(pfkey_q, ager, NULL, interval * drv_usectohz(1000)));
3579 }
3580 
3581 
3582 /*
3583  * Update the lifetime values of an SA.	 This is the path an SADB_UPDATE
3584  * message takes when updating a MATURE or DYING SA.
3585  */
3586 static void
3587 sadb_update_lifetimes(ipsa_t *assoc, sadb_lifetime_t *hard,
3588     sadb_lifetime_t *soft)
3589 {
3590 	mutex_enter(&assoc->ipsa_lock);
3591 
3592 	assoc->ipsa_state = IPSA_STATE_MATURE;
3593 
3594 	/*
3595 	 * XXX RFC 2367 mentions how an SADB_EXT_LIFETIME_CURRENT can be
3596 	 * passed in during an update message.	We currently don't handle
3597 	 * these.
3598 	 */
3599 
3600 	if (hard != NULL) {
3601 		if (hard->sadb_lifetime_bytes != 0)
3602 			assoc->ipsa_hardbyteslt = hard->sadb_lifetime_bytes;
3603 		if (hard->sadb_lifetime_usetime != 0)
3604 			assoc->ipsa_harduselt = hard->sadb_lifetime_usetime;
3605 		if (hard->sadb_lifetime_addtime != 0)
3606 			assoc->ipsa_hardaddlt = hard->sadb_lifetime_addtime;
3607 		if (assoc->ipsa_hardaddlt != 0) {
3608 			assoc->ipsa_hardexpiretime =
3609 			    assoc->ipsa_addtime + assoc->ipsa_hardaddlt;
3610 		}
3611 		if (assoc->ipsa_harduselt != 0) {
3612 			if (assoc->ipsa_hardexpiretime != 0) {
3613 				assoc->ipsa_hardexpiretime =
3614 				    min(assoc->ipsa_hardexpiretime,
3615 					assoc->ipsa_usetime +
3616 					assoc->ipsa_harduselt);
3617 			} else {
3618 				assoc->ipsa_hardexpiretime =
3619 				    assoc->ipsa_usetime + assoc->ipsa_harduselt;
3620 			}
3621 		}
3622 
3623 		if (hard->sadb_lifetime_allocations != 0)
3624 			assoc->ipsa_hardalloc = hard->sadb_lifetime_allocations;
3625 	}
3626 
3627 	if (soft != NULL) {
3628 		if (soft->sadb_lifetime_bytes != 0)
3629 			assoc->ipsa_softbyteslt = soft->sadb_lifetime_bytes;
3630 		if (soft->sadb_lifetime_usetime != 0)
3631 			assoc->ipsa_softuselt = soft->sadb_lifetime_usetime;
3632 		if (soft->sadb_lifetime_addtime != 0)
3633 			assoc->ipsa_softaddlt = soft->sadb_lifetime_addtime;
3634 		if (assoc->ipsa_softaddlt != 0) {
3635 			assoc->ipsa_softexpiretime =
3636 			    assoc->ipsa_addtime + assoc->ipsa_softaddlt;
3637 		}
3638 		if (assoc->ipsa_softuselt != 0) {
3639 			if (assoc->ipsa_softexpiretime != 0) {
3640 				assoc->ipsa_softexpiretime =
3641 				    min(assoc->ipsa_softexpiretime,
3642 					assoc->ipsa_usetime +
3643 					assoc->ipsa_softuselt);
3644 			} else {
3645 				assoc->ipsa_softexpiretime =
3646 				    assoc->ipsa_usetime + assoc->ipsa_softuselt;
3647 			}
3648 		}
3649 
3650 		if (soft->sadb_lifetime_allocations != 0)
3651 			assoc->ipsa_softalloc = soft->sadb_lifetime_allocations;
3652 	}
3653 
3654 	mutex_exit(&assoc->ipsa_lock);
3655 }
3656 
3657 /*
3658  * Common code to update an SA.
3659  */
3660 
3661 int
3662 sadb_update_sa(mblk_t *mp, keysock_in_t *ksi,
3663     sadb_t *sp, int *diagnostic, queue_t *pfkey_q,
3664     int (*add_sa_func)(mblk_t *, keysock_in_t *, int *))
3665 {
3666 	sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
3667 	sadb_address_t *srcext =
3668 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
3669 	sadb_address_t *dstext =
3670 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
3671 	sadb_x_kmc_t *kmcext =
3672 	    (sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE];
3673 	sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH];
3674 	sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT];
3675 	struct sockaddr_in *src, *dst;
3676 	struct sockaddr_in6 *src6, *dst6;
3677 	sadb_lifetime_t *soft =
3678 	    (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT];
3679 	sadb_lifetime_t *hard =
3680 	    (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD];
3681 	isaf_t *inbound, *outbound;
3682 	ipsa_t *outbound_target = NULL, *inbound_target = NULL;
3683 	int error = 0;
3684 	uint32_t *srcaddr, *dstaddr;
3685 	sa_family_t af;
3686 	uint32_t kmp = 0, kmc = 0;
3687 
3688 	/* I need certain extensions present for either UPDATE message. */
3689 	if (srcext == NULL) {
3690 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
3691 		return (EINVAL);
3692 	}
3693 	if (dstext == NULL) {
3694 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
3695 		return (EINVAL);
3696 	}
3697 	if (assoc == NULL) {
3698 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
3699 		return (EINVAL);
3700 	}
3701 
3702 	if (kmcext != NULL) {
3703 		kmp = kmcext->sadb_x_kmc_proto;
3704 		kmc = kmcext->sadb_x_kmc_cookie;
3705 	}
3706 
3707 	dst = (struct sockaddr_in *)(dstext + 1);
3708 	src = (struct sockaddr_in *)(srcext + 1);
3709 	af = dst->sin_family;
3710 	if (af == AF_INET6) {
3711 		dst6 = (struct sockaddr_in6 *)dst;
3712 		src6 = (struct sockaddr_in6 *)src;
3713 
3714 		srcaddr = (uint32_t *)&src6->sin6_addr;
3715 		dstaddr = (uint32_t *)&dst6->sin6_addr;
3716 		outbound = OUTBOUND_BUCKET_V6(sp, *(uint32_t *)dstaddr);
3717 #if 0
3718 		/* Not used for now... */
3719 		if (proxyext != NULL)
3720 			proxy6 = (struct sockaddr_in6 *)(proxyext + 1);
3721 #endif
3722 	} else {
3723 		srcaddr = (uint32_t *)&src->sin_addr;
3724 		dstaddr = (uint32_t *)&dst->sin_addr;
3725 		outbound = OUTBOUND_BUCKET_V4(sp, *(uint32_t *)dstaddr);
3726 	}
3727 	inbound = INBOUND_BUCKET(sp, assoc->sadb_sa_spi);
3728 
3729 	/* Lock down both buckets. */
3730 	mutex_enter(&outbound->isaf_lock);
3731 	mutex_enter(&inbound->isaf_lock);
3732 
3733 	/* Try outbound first. */
3734 	outbound_target = ipsec_getassocbyspi(outbound, assoc->sadb_sa_spi,
3735 	    srcaddr, dstaddr, af);
3736 	inbound_target = ipsec_getassocbyspi(inbound, assoc->sadb_sa_spi,
3737 	    srcaddr, dstaddr, af);
3738 
3739 	mutex_exit(&inbound->isaf_lock);
3740 	mutex_exit(&outbound->isaf_lock);
3741 
3742 	if (outbound_target == NULL) {
3743 		if (inbound_target == NULL) {
3744 			return (ESRCH);
3745 		} else if (inbound_target->ipsa_state == IPSA_STATE_LARVAL) {
3746 			/*
3747 			 * REFRELE the target and let the add_sa_func()
3748 			 * deal with updating a larval SA.
3749 			 */
3750 			IPSA_REFRELE(inbound_target);
3751 			return (add_sa_func(mp, ksi, diagnostic));
3752 		}
3753 	}
3754 
3755 	/*
3756 	 * Reality checks for updates of active associations.
3757 	 * Sundry first-pass UPDATE-specific reality checks.
3758 	 * Have to do the checks here, because it's after the add_sa code.
3759 	 * XXX STATS : logging/stats here?
3760 	 */
3761 
3762 	if (assoc->sadb_sa_state != SADB_SASTATE_MATURE) {
3763 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
3764 		error = EINVAL;
3765 		goto bail;
3766 	}
3767 	if (assoc->sadb_sa_flags & ~(SADB_SAFLAGS_NOREPLAY |
3768 		SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM)) {
3769 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS;
3770 		error = EINVAL;
3771 		goto bail;
3772 	}
3773 	if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL) {
3774 		error = EOPNOTSUPP;
3775 		goto bail;
3776 	}
3777 	if ((*diagnostic = sadb_hardsoftchk(hard, soft)) != 0) {
3778 		error = EINVAL;
3779 		goto bail;
3780 	}
3781 	if (src->sin_family != dst->sin_family) {
3782 		*diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
3783 		error = EINVAL;
3784 		goto bail;
3785 	}
3786 	if (akey != NULL) {
3787 		*diagnostic = SADB_X_DIAGNOSTIC_AKEY_PRESENT;
3788 		error = EINVAL;
3789 		goto bail;
3790 	}
3791 	if (ekey != NULL) {
3792 		*diagnostic = SADB_X_DIAGNOSTIC_EKEY_PRESENT;
3793 		error = EINVAL;
3794 		goto bail;
3795 	}
3796 
3797 	if (outbound_target != NULL) {
3798 		if (outbound_target->ipsa_state == IPSA_STATE_DEAD) {
3799 			error = ESRCH;	/* DEAD == Not there, in this case. */
3800 			goto bail;
3801 		}
3802 		if ((kmp != 0) &&
3803 		    ((outbound_target->ipsa_kmp != 0) ||
3804 			(outbound_target->ipsa_kmp != kmp))) {
3805 			*diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMP;
3806 			error = EINVAL;
3807 			goto bail;
3808 		}
3809 		if ((kmc != 0) &&
3810 		    ((outbound_target->ipsa_kmc != 0) ||
3811 			(outbound_target->ipsa_kmc != kmc))) {
3812 			*diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMC;
3813 			error = EINVAL;
3814 			goto bail;
3815 		}
3816 	}
3817 
3818 	if (inbound_target != NULL) {
3819 		if (inbound_target->ipsa_state == IPSA_STATE_DEAD) {
3820 			error = ESRCH;	/* DEAD == Not there, in this case. */
3821 			goto bail;
3822 		}
3823 		if ((kmp != 0) &&
3824 		    ((inbound_target->ipsa_kmp != 0) ||
3825 			(inbound_target->ipsa_kmp != kmp))) {
3826 			*diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMP;
3827 			error = EINVAL;
3828 			goto bail;
3829 		}
3830 		if ((kmc != 0) &&
3831 		    ((inbound_target->ipsa_kmc != 0) ||
3832 			(inbound_target->ipsa_kmc != kmc))) {
3833 			*diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMC;
3834 			error = EINVAL;
3835 			goto bail;
3836 		}
3837 	}
3838 
3839 	if (outbound_target != NULL) {
3840 		sadb_set_unique(outbound_target, dstext->sadb_address_proto,
3841 		    src, dst);
3842 		sadb_update_lifetimes(outbound_target, hard, soft);
3843 		if (kmp != 0)
3844 			outbound_target->ipsa_kmp = kmp;
3845 		if (kmc != 0)
3846 			outbound_target->ipsa_kmc = kmc;
3847 	}
3848 
3849 	if (inbound_target != NULL) {
3850 		sadb_set_unique(inbound_target, dstext->sadb_address_proto,
3851 		    src, dst);
3852 		sadb_update_lifetimes(inbound_target, hard, soft);
3853 		if (kmp != 0)
3854 			inbound_target->ipsa_kmp = kmp;
3855 		if (kmc != 0)
3856 			inbound_target->ipsa_kmc = kmc;
3857 	}
3858 
3859 	sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr,
3860 	    ksi, (outbound_target == NULL) ? inbound_target : outbound_target);
3861 
3862 bail:
3863 	/*
3864 	 * Because of the multi-line macro nature of IPSA_REFRELE, keep
3865 	 * them in { }.
3866 	 */
3867 	if (outbound_target != NULL) {
3868 		IPSA_REFRELE(outbound_target);
3869 	}
3870 	if (inbound_target != NULL) {
3871 		IPSA_REFRELE(inbound_target);
3872 	}
3873 
3874 	return (error);
3875 }
3876 
3877 /*
3878  * The following functions deal with ACQUIRE LISTS.  An ACQUIRE list is
3879  * a list of outstanding SADB_ACQUIRE messages.	 If ipsec_getassocbyconn() fails
3880  * for an outbound datagram, that datagram is queued up on an ACQUIRE record,
3881  * and an SADB_ACQUIRE message is sent up.  Presumably, a user-space key
3882  * management daemon will process the ACQUIRE, use a SADB_GETSPI to reserve
3883  * an SPI value and a larval SA, then SADB_UPDATE the larval SA, and ADD the
3884  * other direction's SA.
3885  */
3886 
3887 /*
3888  * Check the ACQUIRE lists.  If there's an existing ACQUIRE record,
3889  * grab it, lock it, and return it.  Otherwise return NULL.
3890  */
3891 static ipsacq_t *
3892 sadb_checkacquire(iacqf_t *bucket, ipsec_action_t *ap, ipsec_policy_t *pp,
3893     uint32_t *src, uint32_t *dst, uint64_t unique_id)
3894 {
3895 	ipsacq_t *walker;
3896 	sa_family_t fam;
3897 
3898 	/*
3899 	 * Scan list for duplicates.  Check for UNIQUE, src/dest, policy.
3900 	 *
3901 	 * XXX May need search for duplicates based on other things too!
3902 	 */
3903 	for (walker = bucket->iacqf_ipsacq; walker != NULL;
3904 	    walker = walker->ipsacq_next) {
3905 		mutex_enter(&walker->ipsacq_lock);
3906 		fam = walker->ipsacq_addrfam;
3907 		if (IPSA_ARE_ADDR_EQUAL(dst, walker->ipsacq_dstaddr, fam) &&
3908 		    IPSA_ARE_ADDR_EQUAL(src, walker->ipsacq_srcaddr, fam) &&
3909 		    /* XXX PROXY should check for proxy addr here */
3910 		    (ap == walker->ipsacq_act) &&
3911 		    (pp == walker->ipsacq_policy) &&
3912 		    /* XXX do deep compares of ap/pp? */
3913 		    (unique_id == walker->ipsacq_unique_id))
3914 			break;			/* everything matched */
3915 		mutex_exit(&walker->ipsacq_lock);
3916 	}
3917 
3918 	return (walker);
3919 }
3920 
3921 /*
3922  * For this mblk, insert a new acquire record.  Assume bucket contains addrs
3923  * of all of the same length.  Give up (and drop) if memory
3924  * cannot be allocated for a new one; otherwise, invoke callback to
3925  * send the acquire up..
3926  *
3927  * In cases where we need both AH and ESP, add the SA to the ESP ACQUIRE
3928  * list.  The ah_add_sa_finish() routines can look at the packet's ipsec_out_t
3929  * and handle this case specially.
3930  */
3931 void
3932 sadb_acquire(mblk_t *mp, ipsec_out_t *io, boolean_t need_ah, boolean_t need_esp)
3933 {
3934 	sadbp_t *spp;
3935 	sadb_t *sp;
3936 	ipsacq_t *newbie;
3937 	iacqf_t *bucket;
3938 	mblk_t *datamp = mp->b_cont;
3939 	mblk_t *extended;
3940 	ipha_t *ipha = (ipha_t *)datamp->b_rptr;
3941 	ip6_t *ip6h = (ip6_t *)datamp->b_rptr;
3942 	uint32_t *src, *dst;
3943 	ipsec_policy_t *pp = io->ipsec_out_policy;
3944 	ipsec_action_t *ap = io->ipsec_out_act;
3945 	sa_family_t af;
3946 	int hashoffset;
3947 	uint32_t seq;
3948 	uint64_t unique_id = 0;
3949 	ipsec_selector_t sel;
3950 
3951 	ASSERT((pp != NULL) || (ap != NULL));
3952 
3953 	ASSERT(need_ah != NULL || need_esp != NULL);
3954 	/* Assign sadb pointers */
3955 	spp = need_esp ? &esp_sadb : &ah_sadb; /* ESP for AH+ESP */
3956 	sp = io->ipsec_out_v4 ? &spp->s_v4 : &spp->s_v6;
3957 
3958 	if (ap == NULL)
3959 		ap = pp->ipsp_act;
3960 
3961 	ASSERT(ap != NULL);
3962 
3963 	if (ap->ipa_act.ipa_apply.ipp_use_unique)
3964 		unique_id = SA_FORM_UNIQUE_ID(io);
3965 
3966 	/*
3967 	 * Set up an ACQUIRE record.
3968 	 *
3969 	 * Will eventually want to pull the PROXY source address from
3970 	 * either the inner IP header, or from a future extension to the
3971 	 * IPSEC_OUT message.
3972 	 *
3973 	 * Actually, we'll also want to check for duplicates.
3974 	 *
3975 	 * Immediately, make sure the ACQUIRE sequence number doesn't slip
3976 	 * below the lowest point allowed in the kernel.  (In other words,
3977 	 * make sure the high bit on the sequence number is set.)
3978 	 */
3979 
3980 	seq = keysock_next_seq() | IACQF_LOWEST_SEQ;
3981 
3982 	sel.ips_isv4 = io->ipsec_out_v4;
3983 	sel.ips_protocol = io->ipsec_out_proto;
3984 	sel.ips_local_port = io->ipsec_out_src_port;
3985 	sel.ips_remote_port = io->ipsec_out_dst_port;
3986 	sel.ips_icmp_type = io->ipsec_out_icmp_type;
3987 	sel.ips_icmp_code = io->ipsec_out_icmp_code;
3988 	sel.ips_is_icmp_inv_acq = 0;
3989 	if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
3990 		src = (uint32_t *)&ipha->ipha_src;
3991 		dst = (uint32_t *)&ipha->ipha_dst;
3992 		/* No compiler dain-bramage (4438087) for IPv4 addresses. */
3993 		sel.ips_local_addr_v4 = ipha->ipha_src;
3994 		sel.ips_remote_addr_v4 = ipha->ipha_dst;
3995 		af = AF_INET;
3996 		hashoffset = OUTBOUND_HASH_V4(sp, ipha->ipha_dst);
3997 		ASSERT(io->ipsec_out_v4 == B_TRUE);
3998 	} else {
3999 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4000 		src = (uint32_t *)&ip6h->ip6_src;
4001 		dst = (uint32_t *)&ip6h->ip6_dst;
4002 		sel.ips_local_addr_v6 = ip6h->ip6_src;
4003 		sel.ips_remote_addr_v6 = ip6h->ip6_dst;
4004 		af = AF_INET6;
4005 		hashoffset = OUTBOUND_HASH_V6(sp, ip6h->ip6_dst);
4006 		ASSERT(io->ipsec_out_v4 == B_FALSE);
4007 	}
4008 
4009 	/*
4010 	 * Check buckets to see if there is an existing entry.  If so,
4011 	 * grab it.  sadb_checkacquire locks newbie if found.
4012 	 */
4013 	bucket = &(sp->sdb_acq[hashoffset]);
4014 	mutex_enter(&bucket->iacqf_lock);
4015 	newbie = sadb_checkacquire(bucket, ap, pp, src, dst, unique_id);
4016 
4017 	if (newbie == NULL) {
4018 		/*
4019 		 * Otherwise, allocate a new one.
4020 		 */
4021 		newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
4022 		if (newbie == NULL) {
4023 			mutex_exit(&bucket->iacqf_lock);
4024 			ip_drop_packet(mp, B_FALSE, NULL, NULL,
4025 			    &ipdrops_sadb_acquire_nomem, &sadb_dropper);
4026 			return;
4027 		}
4028 		newbie->ipsacq_policy = pp;
4029 		if (pp != NULL) {
4030 			IPPOL_REFHOLD(pp);
4031 		}
4032 		IPACT_REFHOLD(ap);
4033 		newbie->ipsacq_act = ap;
4034 		newbie->ipsacq_linklock = &bucket->iacqf_lock;
4035 		newbie->ipsacq_next = bucket->iacqf_ipsacq;
4036 		newbie->ipsacq_ptpn = &bucket->iacqf_ipsacq;
4037 		if (newbie->ipsacq_next != NULL)
4038 			newbie->ipsacq_next->ipsacq_ptpn = &newbie->ipsacq_next;
4039 		bucket->iacqf_ipsacq = newbie;
4040 		mutex_init(&newbie->ipsacq_lock, NULL, MUTEX_DEFAULT, NULL);
4041 		mutex_enter(&newbie->ipsacq_lock);
4042 	}
4043 
4044 	mutex_exit(&bucket->iacqf_lock);
4045 
4046 	/*
4047 	 * This assert looks silly for now, but we may need to enter newbie's
4048 	 * mutex during a search.
4049 	 */
4050 	ASSERT(MUTEX_HELD(&newbie->ipsacq_lock));
4051 
4052 	mp->b_next = NULL;
4053 	/* Queue up packet.  Use b_next. */
4054 	if (newbie->ipsacq_numpackets == 0) {
4055 		/* First one. */
4056 		newbie->ipsacq_mp = mp;
4057 		newbie->ipsacq_numpackets = 1;
4058 		(void) drv_getparm(TIME, &newbie->ipsacq_expire);
4059 		/*
4060 		 * Extended ACQUIRE with both AH+ESP will use ESP's timeout
4061 		 * value.
4062 		 */
4063 		newbie->ipsacq_expire += *spp->s_acquire_timeout;
4064 		newbie->ipsacq_seq = seq;
4065 		newbie->ipsacq_addrfam = af;
4066 
4067 		newbie->ipsacq_srcport = io->ipsec_out_src_port;
4068 		newbie->ipsacq_dstport = io->ipsec_out_dst_port;
4069 		newbie->ipsacq_icmp_type = io->ipsec_out_icmp_type;
4070 		newbie->ipsacq_icmp_code = io->ipsec_out_icmp_code;
4071 		newbie->ipsacq_proto = io->ipsec_out_proto;
4072 		newbie->ipsacq_unique_id = unique_id;
4073 	} else {
4074 		/* Scan to the end of the list & insert. */
4075 		mblk_t *lastone = newbie->ipsacq_mp;
4076 
4077 		while (lastone->b_next != NULL)
4078 			lastone = lastone->b_next;
4079 		lastone->b_next = mp;
4080 		if (newbie->ipsacq_numpackets++ == IPSACQ_MAXPACKETS) {
4081 			newbie->ipsacq_numpackets = IPSACQ_MAXPACKETS;
4082 			lastone = newbie->ipsacq_mp;
4083 			newbie->ipsacq_mp = lastone->b_next;
4084 			lastone->b_next = NULL;
4085 			ip_drop_packet(lastone, B_FALSE, NULL, NULL,
4086 			    &ipdrops_sadb_acquire_toofull, &sadb_dropper);
4087 		}
4088 	}
4089 
4090 	/*
4091 	 * Reset addresses.  Set them to the most recently added mblk chain,
4092 	 * so that the address pointers in the acquire record will point
4093 	 * at an mblk still attached to the acquire list.
4094 	 */
4095 
4096 	newbie->ipsacq_srcaddr = src;
4097 	newbie->ipsacq_dstaddr = dst;
4098 
4099 	/*
4100 	 * If the acquire record has more than one queued packet, we've
4101 	 * already sent an ACQUIRE, and don't need to repeat ourself.
4102 	 */
4103 	if (newbie->ipsacq_seq != seq || newbie->ipsacq_numpackets > 1) {
4104 		/* I have an acquire outstanding already! */
4105 		mutex_exit(&newbie->ipsacq_lock);
4106 		return;
4107 	}
4108 
4109 	if (keysock_extended_reg()) {
4110 		/*
4111 		 * Construct an extended ACQUIRE.  There are logging
4112 		 * opportunities here in failure cases.
4113 		 */
4114 
4115 		extended = sadb_keysock_out(0);
4116 		if (extended != NULL) {
4117 			extended->b_cont = sadb_extended_acquire(&sel, pp, ap,
4118 			    seq, 0);
4119 			if (extended->b_cont == NULL) {
4120 				freeb(extended);
4121 				extended = NULL;
4122 			}
4123 		}
4124 	} else
4125 		extended = NULL;
4126 
4127 	/*
4128 	 * Send an ACQUIRE message (and possible an extended ACQUIRE) based on
4129 	 * this new record.  The send-acquire callback assumes that acqrec is
4130 	 * already locked.
4131 	 */
4132 	(*spp->s_acqfn)(newbie, extended);
4133 }
4134 
4135 /*
4136  * Unlink and free an acquire record.
4137  */
4138 void
4139 sadb_destroy_acquire(ipsacq_t *acqrec)
4140 {
4141 	mblk_t *mp;
4142 
4143 	ASSERT(MUTEX_HELD(acqrec->ipsacq_linklock));
4144 
4145 	if (acqrec->ipsacq_policy != NULL) {
4146 		IPPOL_REFRELE(acqrec->ipsacq_policy);
4147 	}
4148 	if (acqrec->ipsacq_act != NULL) {
4149 		IPACT_REFRELE(acqrec->ipsacq_act);
4150 	}
4151 
4152 	/* Unlink */
4153 	*(acqrec->ipsacq_ptpn) = acqrec->ipsacq_next;
4154 	if (acqrec->ipsacq_next != NULL)
4155 		acqrec->ipsacq_next->ipsacq_ptpn = acqrec->ipsacq_ptpn;
4156 
4157 	/*
4158 	 * Free hanging mp's.
4159 	 *
4160 	 * XXX Instead of freemsg(), perhaps use IPSEC_REQ_FAILED.
4161 	 */
4162 
4163 	mutex_enter(&acqrec->ipsacq_lock);
4164 	while (acqrec->ipsacq_mp != NULL) {
4165 		mp = acqrec->ipsacq_mp;
4166 		acqrec->ipsacq_mp = mp->b_next;
4167 		mp->b_next = NULL;
4168 		ip_drop_packet(mp, B_FALSE, NULL, NULL,
4169 		    &ipdrops_sadb_acquire_timeout, &sadb_dropper);
4170 	}
4171 	mutex_exit(&acqrec->ipsacq_lock);
4172 
4173 	/* Free */
4174 	mutex_destroy(&acqrec->ipsacq_lock);
4175 	kmem_free(acqrec, sizeof (*acqrec));
4176 }
4177 
4178 /*
4179  * Destroy an acquire list fanout.
4180  */
4181 static void
4182 sadb_destroy_acqlist(iacqf_t **listp, uint_t numentries, boolean_t forever)
4183 {
4184 	int i;
4185 	iacqf_t *list = *listp;
4186 
4187 	if (list == NULL)
4188 		return;
4189 
4190 	for (i = 0; i < numentries; i++) {
4191 		mutex_enter(&(list[i].iacqf_lock));
4192 		while (list[i].iacqf_ipsacq != NULL)
4193 			sadb_destroy_acquire(list[i].iacqf_ipsacq);
4194 		mutex_exit(&(list[i].iacqf_lock));
4195 		if (forever)
4196 			mutex_destroy(&(list[i].iacqf_lock));
4197 	}
4198 
4199 	if (forever) {
4200 		*listp = NULL;
4201 		kmem_free(list, numentries * sizeof (*list));
4202 	}
4203 }
4204 
4205 static uint8_t *
4206 sadb_new_algdesc(uint8_t *start, uint8_t *limit,
4207     sadb_x_ecomb_t *ecomb, uint8_t satype, uint8_t algtype,
4208     uint8_t alg, uint16_t minbits, uint16_t maxbits)
4209 {
4210 	uint8_t *cur = start;
4211 
4212 	sadb_x_algdesc_t *algdesc = (sadb_x_algdesc_t *)cur;
4213 	cur += sizeof (*algdesc);
4214 	if (cur >= limit)
4215 		return (NULL);
4216 
4217 	ecomb->sadb_x_ecomb_numalgs++;
4218 
4219 	algdesc->sadb_x_algdesc_satype = satype;
4220 	algdesc->sadb_x_algdesc_algtype = algtype;
4221 	algdesc->sadb_x_algdesc_alg = alg;
4222 	algdesc->sadb_x_algdesc_minbits = minbits;
4223 	algdesc->sadb_x_algdesc_maxbits = maxbits;
4224 	algdesc->sadb_x_algdesc_reserved = 0;
4225 	return (cur);
4226 }
4227 
4228 /*
4229  * Convert the given ipsec_action_t into an ecomb starting at *ecomb
4230  * which must fit before *limit
4231  *
4232  * return NULL if we ran out of room or a pointer to the end of the ecomb.
4233  */
4234 static uint8_t *
4235 sadb_action_to_ecomb(uint8_t *start, uint8_t *limit, ipsec_action_t *act)
4236 {
4237 	uint8_t *cur = start;
4238 	sadb_x_ecomb_t *ecomb = (sadb_x_ecomb_t *)cur;
4239 	ipsec_prot_t *ipp;
4240 
4241 	cur += sizeof (*ecomb);
4242 	if (cur >= limit)
4243 		return (NULL);
4244 
4245 	ASSERT(act->ipa_act.ipa_type == IPSEC_ACT_APPLY);
4246 
4247 	ipp = &act->ipa_act.ipa_apply;
4248 
4249 	ecomb->sadb_x_ecomb_numalgs = 0;
4250 	ecomb->sadb_x_ecomb_reserved = 0;
4251 	ecomb->sadb_x_ecomb_reserved2 = 0;
4252 	/*
4253 	 * No limits on allocations, since we really don't support that
4254 	 * concept currently.
4255 	 */
4256 	ecomb->sadb_x_ecomb_soft_allocations = 0;
4257 	ecomb->sadb_x_ecomb_hard_allocations = 0;
4258 
4259 	/*
4260 	 * XXX TBD: Policy or global parameters will eventually be
4261 	 * able to fill in some of these.
4262 	 */
4263 	ecomb->sadb_x_ecomb_flags = 0;
4264 	ecomb->sadb_x_ecomb_soft_bytes = 0;
4265 	ecomb->sadb_x_ecomb_hard_bytes = 0;
4266 	ecomb->sadb_x_ecomb_soft_addtime = 0;
4267 	ecomb->sadb_x_ecomb_hard_addtime = 0;
4268 	ecomb->sadb_x_ecomb_soft_usetime = 0;
4269 	ecomb->sadb_x_ecomb_hard_usetime = 0;
4270 
4271 	if (ipp->ipp_use_ah) {
4272 		cur = sadb_new_algdesc(cur, limit, ecomb,
4273 		    SADB_SATYPE_AH, SADB_X_ALGTYPE_AUTH, ipp->ipp_auth_alg,
4274 		    ipp->ipp_ah_minbits, ipp->ipp_ah_maxbits);
4275 		if (cur == NULL)
4276 			return (NULL);
4277 		ipsecah_fill_defs(ecomb);
4278 	}
4279 
4280 	if (ipp->ipp_use_esp) {
4281 		if (ipp->ipp_use_espa) {
4282 			cur = sadb_new_algdesc(cur, limit, ecomb,
4283 			    SADB_SATYPE_ESP, SADB_X_ALGTYPE_AUTH,
4284 			    ipp->ipp_esp_auth_alg,
4285 			    ipp->ipp_espa_minbits,
4286 			    ipp->ipp_espa_maxbits);
4287 			if (cur == NULL)
4288 				return (NULL);
4289 		}
4290 
4291 		cur = sadb_new_algdesc(cur, limit, ecomb,
4292 		    SADB_SATYPE_ESP, SADB_X_ALGTYPE_CRYPT,
4293 		    ipp->ipp_encr_alg,
4294 		    ipp->ipp_espe_minbits,
4295 		    ipp->ipp_espe_maxbits);
4296 		if (cur == NULL)
4297 			return (NULL);
4298 		/* Fill in lifetimes if and only if AH didn't already... */
4299 		if (!ipp->ipp_use_ah)
4300 			ipsecesp_fill_defs(ecomb);
4301 	}
4302 
4303 	return (cur);
4304 }
4305 
4306 /*
4307  * Construct an extended ACQUIRE message based on a selector and the resulting
4308  * IPsec action.
4309  *
4310  * NOTE: This is used by both inverse ACQUIRE and actual ACQUIRE
4311  * generation. As a consequence, expect this function to evolve
4312  * rapidly.
4313  */
4314 static mblk_t *
4315 sadb_extended_acquire(ipsec_selector_t *sel, ipsec_policy_t *pol,
4316     ipsec_action_t *act, uint32_t seq, uint32_t pid)
4317 {
4318 	mblk_t *mp;
4319 	sadb_msg_t *samsg;
4320 	uint8_t *start, *cur, *end;
4321 	uint32_t *saddrptr, *daddrptr;
4322 	sa_family_t af;
4323 	sadb_prop_t *eprop;
4324 	ipsec_action_t *ap, *an;
4325 	uint8_t proto;
4326 	uint16_t lport, rport;
4327 	uint32_t kmp, kmc;
4328 
4329 	/*
4330 	 * Find the action we want sooner rather than later..
4331 	 */
4332 	an = NULL;
4333 	if (pol == NULL) {
4334 		ap = act;
4335 	} else {
4336 		ap = pol->ipsp_act;
4337 
4338 		if (ap != NULL)
4339 			an = ap->ipa_next;
4340 	}
4341 
4342 	/*
4343 	 * Just take a swag for the allocation for now.	 We can always
4344 	 * alter it later.
4345 	 */
4346 #define	SADB_EXTENDED_ACQUIRE_SIZE	2048
4347 	mp = allocb(SADB_EXTENDED_ACQUIRE_SIZE, BPRI_HI);
4348 	if (mp == NULL)
4349 		return (NULL);
4350 	if (sel->ips_isv4) {
4351 		af = AF_INET;
4352 		saddrptr = (uint32_t *)(&sel->ips_local_addr_v4);
4353 		daddrptr = (uint32_t *)(&sel->ips_remote_addr_v4);
4354 	} else {
4355 		af = AF_INET6;
4356 		saddrptr = (uint32_t *)(&sel->ips_local_addr_v6);
4357 		daddrptr = (uint32_t *)(&sel->ips_remote_addr_v6);
4358 	}
4359 
4360 	start = mp->b_rptr;
4361 	end = start + SADB_EXTENDED_ACQUIRE_SIZE;
4362 
4363 	cur = start;
4364 
4365 	samsg = (sadb_msg_t *)cur;
4366 	cur += sizeof (*samsg);
4367 
4368 	samsg->sadb_msg_version = PF_KEY_V2;
4369 	samsg->sadb_msg_type = SADB_ACQUIRE;
4370 	samsg->sadb_msg_errno = 0;
4371 	samsg->sadb_msg_reserved = 0;
4372 	samsg->sadb_msg_satype = 0;
4373 	samsg->sadb_msg_seq = seq;
4374 	samsg->sadb_msg_pid = pid;
4375 
4376 	proto = sel->ips_protocol;
4377 	lport = sel->ips_local_port;
4378 	rport = sel->ips_remote_port;
4379 
4380 	/*
4381 	 * Unless our policy says "sa unique", drop port/proto
4382 	 * selectors, then add them back if policy rule includes them..
4383 	 */
4384 
4385 	if ((ap != NULL) && (!ap->ipa_want_unique)) {
4386 		proto = 0;
4387 		lport = 0;
4388 		rport = 0;
4389 		if (pol != NULL) {
4390 			ipsec_selkey_t *psel = &pol->ipsp_sel->ipsl_key;
4391 			if (psel->ipsl_valid & IPSL_PROTOCOL)
4392 				proto = psel->ipsl_proto;
4393 			if (psel->ipsl_valid & IPSL_REMOTE_PORT)
4394 				rport = psel->ipsl_rport;
4395 			if (psel->ipsl_valid & IPSL_LOCAL_PORT)
4396 				lport = psel->ipsl_lport;
4397 		}
4398 	}
4399 
4400 	cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, af,
4401 	    saddrptr, lport, proto);
4402 
4403 	if (cur == NULL) {
4404 		freeb(mp);
4405 		return (NULL);
4406 	}
4407 
4408 	cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, af,
4409 	    daddrptr, rport, proto);
4410 
4411 	if (cur == NULL) {
4412 		freeb(mp);
4413 		return (NULL);
4414 	}
4415 
4416 	/*
4417 	 * This section will change a lot as policy evolves.
4418 	 * For now, it'll be relatively simple.
4419 	 */
4420 	eprop = (sadb_prop_t *)cur;
4421 	cur += sizeof (*eprop);
4422 	if (cur > end) {
4423 		/* no space left */
4424 		freeb(mp);
4425 		return (NULL);
4426 	}
4427 
4428 	eprop->sadb_prop_exttype = SADB_X_EXT_EPROP;
4429 	eprop->sadb_x_prop_ereserved = 0;
4430 	eprop->sadb_x_prop_numecombs = 0;
4431 	eprop->sadb_prop_replay = 32;	/* default */
4432 
4433 	kmc = kmp = 0;
4434 
4435 	for (; ap != NULL; ap = an) {
4436 		an = (pol != NULL) ? ap->ipa_next : NULL;
4437 
4438 		/*
4439 		 * Skip non-IPsec policies
4440 		 */
4441 		if (ap->ipa_act.ipa_type != IPSEC_ACT_APPLY)
4442 			continue;
4443 
4444 		if (ap->ipa_act.ipa_apply.ipp_km_proto)
4445 			kmp = ap->ipa_act.ipa_apply.ipp_km_proto;
4446 		if (ap->ipa_act.ipa_apply.ipp_km_cookie)
4447 			kmc = ap->ipa_act.ipa_apply.ipp_km_cookie;
4448 		if (ap->ipa_act.ipa_apply.ipp_replay_depth) {
4449 			eprop->sadb_prop_replay =
4450 			    ap->ipa_act.ipa_apply.ipp_replay_depth;
4451 		}
4452 
4453 		cur = sadb_action_to_ecomb(cur, end, ap);
4454 		if (cur == NULL) { /* no space */
4455 			freeb(mp);
4456 			return (NULL);
4457 		}
4458 		eprop->sadb_x_prop_numecombs++;
4459 	}
4460 
4461 	if (eprop->sadb_x_prop_numecombs == 0) {
4462 		/*
4463 		 * This will happen if we fail to find a policy
4464 		 * allowing for IPsec processing.
4465 		 * Construct an error message.
4466 		 */
4467 		samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg));
4468 		samsg->sadb_msg_errno = ENOENT;
4469 		samsg->sadb_x_msg_diagnostic = 0;
4470 		return (mp);
4471 	}
4472 
4473 	if ((kmp != 0) || (kmc != 0)) {
4474 		cur = sadb_make_kmc_ext(cur, end, kmp, kmc);
4475 		if (cur == NULL) {
4476 			freeb(mp);
4477 			return (NULL);
4478 		}
4479 	}
4480 
4481 	eprop->sadb_prop_len = SADB_8TO64(cur - (uint8_t *)eprop);
4482 	samsg->sadb_msg_len = SADB_8TO64(cur-start);
4483 	mp->b_wptr = cur;
4484 
4485 	return (mp);
4486 }
4487 
4488 /*
4489  * Generic setup of an ACQUIRE message.	 Caller sets satype.
4490  */
4491 uint8_t *
4492 sadb_setup_acquire(uint8_t *start, uint8_t *end, ipsacq_t *acqrec)
4493 {
4494 	sa_family_t af;
4495 	uint8_t *cur = start;
4496 	sadb_msg_t *samsg = (sadb_msg_t *)cur;
4497 	uint16_t sport_typecode;
4498 	uint16_t dport_typecode;
4499 	uint8_t check_proto;
4500 
4501 	cur += sizeof (sadb_msg_t);
4502 	if (cur > end)
4503 		return (NULL);
4504 
4505 	/* use the address length to find the address family */
4506 	af = acqrec->ipsacq_addrfam;
4507 	switch (af) {
4508 	case AF_INET:
4509 		check_proto = IPPROTO_ICMP;
4510 		break;
4511 	case AF_INET6:
4512 		check_proto = IPPROTO_ICMPV6;
4513 		break;
4514 	default:
4515 		/* This should never happen unless we have kernel bugs. */
4516 		cmn_err(CE_WARN,
4517 		    "sadb_setup_acquire:  corrupt ACQUIRE record.\n");
4518 		ASSERT(0);
4519 		return (NULL);
4520 	}
4521 
4522 	samsg->sadb_msg_version = PF_KEY_V2;
4523 	samsg->sadb_msg_type = SADB_ACQUIRE;
4524 	samsg->sadb_msg_errno = 0;
4525 	samsg->sadb_msg_pid = 0;
4526 	samsg->sadb_msg_reserved = 0;
4527 	samsg->sadb_msg_seq = acqrec->ipsacq_seq;
4528 
4529 	ASSERT(MUTEX_HELD(&acqrec->ipsacq_lock));
4530 
4531 	if (acqrec->ipsacq_proto == check_proto) {
4532 		sport_typecode = dport_typecode = 0;
4533 	} else {
4534 		sport_typecode = acqrec->ipsacq_srcport;
4535 		dport_typecode = acqrec->ipsacq_dstport;
4536 	}
4537 
4538 	cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, af,
4539 	    acqrec->ipsacq_srcaddr, sport_typecode, acqrec->ipsacq_proto);
4540 
4541 	cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, af,
4542 	    acqrec->ipsacq_dstaddr, dport_typecode, acqrec->ipsacq_proto);
4543 
4544 	if (cur != NULL)
4545 		samsg->sadb_msg_len = SADB_8TO64(cur - start);
4546 
4547 	return (cur);
4548 }
4549 
4550 /*
4551  * Given an SADB_GETSPI message, find an appropriately ranged SA and
4552  * allocate an SA.  If there are message improprieties, return (ipsa_t *)-1.
4553  * If there was a memory allocation error, return NULL.	 (Assume NULL !=
4554  * (ipsa_t *)-1).
4555  *
4556  * master_spi is passed in host order.
4557  */
4558 ipsa_t *
4559 sadb_getspi(keysock_in_t *ksi, uint32_t master_spi, int *diagnostic)
4560 {
4561 	sadb_address_t *src =
4562 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC],
4563 	    *dst = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
4564 	sadb_spirange_t *range =
4565 	    (sadb_spirange_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE];
4566 	struct sockaddr_in *ssa, *dsa;
4567 	struct sockaddr_in6 *ssa6, *dsa6;
4568 	uint32_t *srcaddr, *dstaddr;
4569 	sa_family_t af;
4570 	uint32_t add, min, max;
4571 
4572 	if (src == NULL) {
4573 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
4574 		return ((ipsa_t *)-1);
4575 	}
4576 	if (dst == NULL) {
4577 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
4578 		return ((ipsa_t *)-1);
4579 	}
4580 	if (range == NULL) {
4581 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_RANGE;
4582 		return ((ipsa_t *)-1);
4583 	}
4584 
4585 	min = ntohl(range->sadb_spirange_min);
4586 	max = ntohl(range->sadb_spirange_max);
4587 	dsa = (struct sockaddr_in *)(dst + 1);
4588 	dsa6 = (struct sockaddr_in6 *)dsa;
4589 
4590 	ssa = (struct sockaddr_in *)(src + 1);
4591 	ssa6 = (struct sockaddr_in6 *)ssa;
4592 	if (dsa->sin_family != ssa->sin_family) {
4593 		*diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
4594 		return ((ipsa_t *)-1);
4595 	}
4596 
4597 	srcaddr = ALL_ZEROES_PTR;
4598 	af = dsa->sin_family;
4599 	switch (af) {
4600 	case AF_INET:
4601 		if (src != NULL)
4602 			srcaddr = (uint32_t *)(&ssa->sin_addr);
4603 		dstaddr = (uint32_t *)(&dsa->sin_addr);
4604 		break;
4605 	case AF_INET6:
4606 		if (src != NULL)
4607 			srcaddr = (uint32_t *)(&ssa6->sin6_addr);
4608 		dstaddr = (uint32_t *)(&dsa6->sin6_addr);
4609 		break;
4610 	default:
4611 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_DST_AF;
4612 		return ((ipsa_t *)-1);
4613 	}
4614 
4615 	if (master_spi < min || master_spi > max) {
4616 		/* Return a random value in the range. */
4617 		(void) random_get_pseudo_bytes((uint8_t *)&add, sizeof (add));
4618 		master_spi = min + (add % (max - min + 1));
4619 	}
4620 
4621 	/*
4622 	 * Since master_spi is passed in host order, we need to htonl() it
4623 	 * for the purposes of creating a new SA.
4624 	 */
4625 	return (sadb_makelarvalassoc(htonl(master_spi), srcaddr, dstaddr, af));
4626 }
4627 
4628 /*
4629  *
4630  * Locate an ACQUIRE and nuke it.  If I have an samsg that's larger than the
4631  * base header, just ignore it.	 Otherwise, lock down the whole ACQUIRE list
4632  * and scan for the sequence number in question.  I may wish to accept an
4633  * address pair with it, for easier searching.
4634  *
4635  * Caller frees the message, so we don't have to here.
4636  *
4637  * NOTE:	The ip_q parameter may be used in the future for ACQUIRE
4638  *		failures.
4639  */
4640 /* ARGSUSED */
4641 void
4642 sadb_in_acquire(sadb_msg_t *samsg, sadbp_t *sp, queue_t *ip_q)
4643 {
4644 	int i;
4645 	ipsacq_t *acqrec;
4646 	iacqf_t *bucket;
4647 
4648 	/*
4649 	 * I only accept the base header for this!
4650 	 * Though to be honest, requiring the dst address would help
4651 	 * immensely.
4652 	 *
4653 	 * XXX	There are already cases where I can get the dst address.
4654 	 */
4655 	if (samsg->sadb_msg_len > SADB_8TO64(sizeof (*samsg)))
4656 		return;
4657 
4658 	/*
4659 	 * Using the samsg->sadb_msg_seq, find the ACQUIRE record, delete it,
4660 	 * (and in the future send a message to IP with the appropriate error
4661 	 * number).
4662 	 *
4663 	 * Q: Do I want to reject if pid != 0?
4664 	 */
4665 
4666 	for (i = 0; i < sp->s_v4.sdb_hashsize; i++) {
4667 		bucket = &sp->s_v4.sdb_acq[i];
4668 		mutex_enter(&bucket->iacqf_lock);
4669 		for (acqrec = bucket->iacqf_ipsacq; acqrec != NULL;
4670 		    acqrec = acqrec->ipsacq_next) {
4671 			if (samsg->sadb_msg_seq == acqrec->ipsacq_seq)
4672 				break;	/* for acqrec... loop. */
4673 		}
4674 		if (acqrec != NULL)
4675 			break;	/* for i = 0... loop. */
4676 
4677 		mutex_exit(&bucket->iacqf_lock);
4678 	}
4679 
4680 	if (acqrec == NULL) {
4681 		for (i = 0; i < sp->s_v6.sdb_hashsize; i++) {
4682 			bucket = &sp->s_v6.sdb_acq[i];
4683 			mutex_enter(&bucket->iacqf_lock);
4684 			for (acqrec = bucket->iacqf_ipsacq; acqrec != NULL;
4685 			    acqrec = acqrec->ipsacq_next) {
4686 				if (samsg->sadb_msg_seq == acqrec->ipsacq_seq)
4687 					break;	/* for acqrec... loop. */
4688 			}
4689 			if (acqrec != NULL)
4690 				break;	/* for i = 0... loop. */
4691 
4692 			mutex_exit(&bucket->iacqf_lock);
4693 		}
4694 	}
4695 
4696 
4697 	if (acqrec == NULL)
4698 		return;
4699 
4700 	/*
4701 	 * What do I do with the errno and IP?	I may need mp's services a
4702 	 * little more.	 See sadb_destroy_acquire() for future directions
4703 	 * beyond free the mblk chain on the acquire record.
4704 	 */
4705 
4706 	ASSERT(&bucket->iacqf_lock == acqrec->ipsacq_linklock);
4707 	sadb_destroy_acquire(acqrec);
4708 	/* Have to exit mutex here, because of breaking out of for loop. */
4709 	mutex_exit(&bucket->iacqf_lock);
4710 }
4711 
4712 /*
4713  * The following functions work with the replay windows of an SA.  They assume
4714  * the ipsa->ipsa_replay_arr is an array of uint64_t, and that the bit vector
4715  * represents the highest sequence number packet received, and back
4716  * (ipsa->ipsa_replay_wsize) packets.
4717  */
4718 
4719 /*
4720  * Is the replay bit set?
4721  */
4722 static boolean_t
4723 ipsa_is_replay_set(ipsa_t *ipsa, uint32_t offset)
4724 {
4725 	uint64_t bit = (uint64_t)1 << (uint64_t)(offset & 63);
4726 
4727 	return ((bit & ipsa->ipsa_replay_arr[offset >> 6]) ? B_TRUE : B_FALSE);
4728 }
4729 
4730 /*
4731  * Shift the bits of the replay window over.
4732  */
4733 static void
4734 ipsa_shift_replay(ipsa_t *ipsa, uint32_t shift)
4735 {
4736 	int i;
4737 	int jump = ((shift - 1) >> 6) + 1;
4738 
4739 	if (shift == 0)
4740 		return;
4741 
4742 	for (i = (ipsa->ipsa_replay_wsize - 1) >> 6; i >= 0; i--) {
4743 		if (i + jump <= (ipsa->ipsa_replay_wsize - 1) >> 6) {
4744 			ipsa->ipsa_replay_arr[i + jump] |=
4745 			    ipsa->ipsa_replay_arr[i] >> (64 - (shift & 63));
4746 		}
4747 		ipsa->ipsa_replay_arr[i] <<= shift;
4748 	}
4749 }
4750 
4751 /*
4752  * Set a bit in the bit vector.
4753  */
4754 static void
4755 ipsa_set_replay(ipsa_t *ipsa, uint32_t offset)
4756 {
4757 	uint64_t bit = (uint64_t)1 << (uint64_t)(offset & 63);
4758 
4759 	ipsa->ipsa_replay_arr[offset >> 6] |= bit;
4760 }
4761 
4762 #define	SADB_MAX_REPLAY_VALUE 0xffffffff
4763 
4764 /*
4765  * Assume caller has NOT done ntohl() already on seq.  Check to see
4766  * if replay sequence number "seq" has been seen already.
4767  */
4768 boolean_t
4769 sadb_replay_check(ipsa_t *ipsa, uint32_t seq)
4770 {
4771 	boolean_t rc;
4772 	uint32_t diff;
4773 
4774 	if (ipsa->ipsa_replay_wsize == 0)
4775 		return (B_TRUE);
4776 
4777 	/*
4778 	 * NOTE:  I've already checked for 0 on the wire in sadb_replay_peek().
4779 	 */
4780 
4781 	/* Convert sequence number into host order before holding the mutex. */
4782 	seq = ntohl(seq);
4783 
4784 	mutex_enter(&ipsa->ipsa_lock);
4785 
4786 	/* Initialize inbound SA's ipsa_replay field to last one received. */
4787 	if (ipsa->ipsa_replay == 0)
4788 		ipsa->ipsa_replay = 1;
4789 
4790 	if (seq > ipsa->ipsa_replay) {
4791 		/*
4792 		 * I have received a new "highest value received".  Shift
4793 		 * the replay window over.
4794 		 */
4795 		diff = seq - ipsa->ipsa_replay;
4796 		if (diff < ipsa->ipsa_replay_wsize) {
4797 			/* In replay window, shift bits over. */
4798 			ipsa_shift_replay(ipsa, diff);
4799 		} else {
4800 			/* WAY FAR AHEAD, clear bits and start again. */
4801 			bzero(ipsa->ipsa_replay_arr,
4802 			    sizeof (ipsa->ipsa_replay_arr));
4803 		}
4804 		ipsa_set_replay(ipsa, 0);
4805 		ipsa->ipsa_replay = seq;
4806 		rc = B_TRUE;
4807 		goto done;
4808 	}
4809 	diff = ipsa->ipsa_replay - seq;
4810 	if (diff >= ipsa->ipsa_replay_wsize || ipsa_is_replay_set(ipsa, diff)) {
4811 		rc = B_FALSE;
4812 		goto done;
4813 	}
4814 	/* Set this packet as seen. */
4815 	ipsa_set_replay(ipsa, diff);
4816 
4817 	rc = B_TRUE;
4818 done:
4819 	mutex_exit(&ipsa->ipsa_lock);
4820 	return (rc);
4821 }
4822 
4823 /*
4824  * "Peek" and see if we should even bother going through the effort of
4825  * running an authentication check on the sequence number passed in.
4826  * this takes into account packets that are below the replay window,
4827  * and collisions with already replayed packets.  Return B_TRUE if it
4828  * is okay to proceed, B_FALSE if this packet should be dropped immeidately.
4829  * Assume same byte-ordering as sadb_replay_check.
4830  */
4831 boolean_t
4832 sadb_replay_peek(ipsa_t *ipsa, uint32_t seq)
4833 {
4834 	boolean_t rc = B_FALSE;
4835 	uint32_t diff;
4836 
4837 	if (ipsa->ipsa_replay_wsize == 0)
4838 		return (B_TRUE);
4839 
4840 	/*
4841 	 * 0 is 0, regardless of byte order... :)
4842 	 *
4843 	 * If I get 0 on the wire (and there is a replay window) then the
4844 	 * sender most likely wrapped.	This ipsa may need to be marked or
4845 	 * something.
4846 	 */
4847 	if (seq == 0)
4848 		return (B_FALSE);
4849 
4850 	seq = ntohl(seq);
4851 	mutex_enter(&ipsa->ipsa_lock);
4852 	if (seq < ipsa->ipsa_replay - ipsa->ipsa_replay_wsize &&
4853 	    ipsa->ipsa_replay >= ipsa->ipsa_replay_wsize)
4854 		goto done;
4855 
4856 	/*
4857 	 * If I've hit 0xffffffff, then quite honestly, I don't need to
4858 	 * bother with formalities.  I'm not accepting any more packets
4859 	 * on this SA.
4860 	 */
4861 	if (ipsa->ipsa_replay == SADB_MAX_REPLAY_VALUE) {
4862 		/*
4863 		 * Since we're already holding the lock, update the
4864 		 * expire time ala. sadb_replay_delete() and return.
4865 		 */
4866 		ipsa->ipsa_hardexpiretime = (time_t)1;
4867 		goto done;
4868 	}
4869 
4870 	if (seq <= ipsa->ipsa_replay) {
4871 		/*
4872 		 * This seq is in the replay window.  I'm not below it,
4873 		 * because I already checked for that above!
4874 		 */
4875 		diff = ipsa->ipsa_replay - seq;
4876 		if (ipsa_is_replay_set(ipsa, diff))
4877 			goto done;
4878 	}
4879 	/* Else return B_TRUE, I'm going to advance the window. */
4880 
4881 	rc = B_TRUE;
4882 done:
4883 	mutex_exit(&ipsa->ipsa_lock);
4884 	return (rc);
4885 }
4886 
4887 /*
4888  * Delete a single SA.
4889  *
4890  * For now, use the quick-and-dirty trick of making the association's
4891  * hard-expire lifetime (time_t)1, ensuring deletion by the *_ager().
4892  */
4893 void
4894 sadb_replay_delete(ipsa_t *assoc)
4895 {
4896 	mutex_enter(&assoc->ipsa_lock);
4897 	assoc->ipsa_hardexpiretime = (time_t)1;
4898 	mutex_exit(&assoc->ipsa_lock);
4899 }
4900 
4901 /*
4902  * Given a queue that presumably points to IP, send a T_BIND_REQ for _proto_
4903  * down.  The caller will handle the T_BIND_ACK locally.
4904  */
4905 boolean_t
4906 sadb_t_bind_req(queue_t *q, int proto)
4907 {
4908 	struct T_bind_req *tbr;
4909 	mblk_t *mp;
4910 
4911 	mp = allocb(sizeof (struct T_bind_req) + 1, BPRI_HI);
4912 	if (mp == NULL) {
4913 		/* cmn_err(CE_WARN, */
4914 		/* "sadb_t_bind_req(%d): couldn't allocate mblk\n", proto); */
4915 		return (B_FALSE);
4916 	}
4917 	mp->b_datap->db_type = M_PCPROTO;
4918 	tbr = (struct T_bind_req *)mp->b_rptr;
4919 	mp->b_wptr += sizeof (struct T_bind_req);
4920 	tbr->PRIM_type = T_BIND_REQ;
4921 	tbr->ADDR_length = 0;
4922 	tbr->ADDR_offset = 0;
4923 	tbr->CONIND_number = 0;
4924 	*mp->b_wptr = (uint8_t)proto;
4925 	mp->b_wptr++;
4926 
4927 	putnext(q, mp);
4928 	return (B_TRUE);
4929 }
4930 
4931 /*
4932  * Rate-limiting front-end to strlog() for AH and ESP.	Uses the ndd variables
4933  * in /dev/ip and the same rate-limiting clock so that there's a single
4934  * knob to turn to throttle the rate of messages.
4935  *
4936  * This function needs to be kept in synch with ipsec_log_policy_failure() in
4937  * ip.c.  Eventually, ipsec_log_policy_failure() should use this function.
4938  */
4939 void
4940 ipsec_rl_strlog(short mid, short sid, char level, ushort_t sl, char *fmt, ...)
4941 {
4942 	va_list adx;
4943 	hrtime_t current = gethrtime();
4944 
4945 	/* Convert interval (in msec) to hrtime (in nsec), which means * 10^6 */
4946 	if (ipsec_policy_failure_last +
4947 	    ((hrtime_t)ipsec_policy_log_interval * (hrtime_t)1000000) <=
4948 	    current) {
4949 		/*
4950 		 * Throttle the logging such that I only log one
4951 		 * message every 'ipsec_policy_log_interval' amount
4952 		 * of time.
4953 		 */
4954 		va_start(adx, fmt);
4955 		(void) vstrlog(mid, sid, level, sl, fmt, adx);
4956 		va_end(adx);
4957 		ipsec_policy_failure_last = current;
4958 	}
4959 }
4960 
4961 /*
4962  * Special front-end to ipsec_rl_strlog() dealing with SA failure.
4963  * this is designed to take only a format string with "* %x * %s *", so
4964  * that "spi" is printed first, then "addr" is converted using inet_pton().
4965  *
4966  * This is abstracted out to save the stack space for only when inet_pton()
4967  * is called.  Make sure "spi" is in network order; it usually is when this
4968  * would get called.
4969  */
4970 void
4971 ipsec_assocfailure(short mid, short sid, char level, ushort_t sl, char *fmt,
4972     uint32_t spi, void *addr, int af)
4973 {
4974 	char buf[INET6_ADDRSTRLEN];
4975 
4976 	ASSERT(af == AF_INET6 || af == AF_INET);
4977 
4978 	ipsec_rl_strlog(mid, sid, level, sl, fmt, ntohl(spi),
4979 	    inet_ntop(af, addr, buf, sizeof (buf)));
4980 }
4981 
4982 /*
4983  * Fills in a reference to the policy, if any, from the conn, in *ppp
4984  * Releases a reference to the passed conn_t.
4985  */
4986 
4987 /* ARGSUSED */
4988 static void
4989 ipsec_conn_pol(ipsec_selector_t *sel, conn_t *connp, ipsec_policy_t **ppp,
4990     ipsec_action_t **app)
4991 {
4992 	ipsec_policy_t	*pp;
4993 	ipsec_latch_t	*ipl = connp->conn_latch;
4994 
4995 	if ((ipl != NULL) && (ipl->ipl_out_policy != NULL)) {
4996 		pp = ipl->ipl_out_policy;
4997 		IPPOL_REFHOLD(pp);
4998 	} else {
4999 		pp = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel);
5000 	}
5001 	*ppp = pp;
5002 	CONN_DEC_REF(connp);
5003 }
5004 
5005 /*
5006  * The following functions scan through active conn_t structures
5007  * and return a reference to the best-matching policy it can find.
5008  * Caller must release the reference.
5009  */
5010 static void
5011 ipsec_udp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, ipsec_action_t **app)
5012 {
5013 	connf_t *connfp;
5014 	conn_t *connp = NULL;
5015 	ipsec_selector_t portonly;
5016 
5017 	bzero((void*)&portonly, sizeof (portonly));
5018 
5019 	if (sel->ips_local_port == 0)
5020 		return;
5021 
5022 	connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(sel->ips_local_port)];
5023 	mutex_enter(&connfp->connf_lock);
5024 
5025 	if (sel->ips_isv4) {
5026 		connp = connfp->connf_head;
5027 		while (connp != NULL) {
5028 			if (IPCL_UDP_MATCH(connp, sel->ips_local_port,
5029 			    sel->ips_local_addr_v4, sel->ips_remote_port,
5030 			    sel->ips_remote_addr_v4))
5031 				break;
5032 			connp = connp->conn_next;
5033 		}
5034 
5035 		if (connp == NULL) {
5036 			/* Try port-only match in IPv6. */
5037 			portonly.ips_local_port = sel->ips_local_port;
5038 			sel = &portonly;
5039 		}
5040 	}
5041 
5042 	if (connp == NULL) {
5043 		connp = connfp->connf_head;
5044 		while (connp != NULL) {
5045 			if (IPCL_UDP_MATCH_V6(connp, sel->ips_local_port,
5046 			    sel->ips_local_addr_v6, sel->ips_remote_port,
5047 			    sel->ips_remote_addr_v6))
5048 				break;
5049 			connp = connp->conn_next;
5050 		}
5051 
5052 		if (connp == NULL) {
5053 			mutex_exit(&connfp->connf_lock);
5054 			return;
5055 		}
5056 	}
5057 
5058 	CONN_INC_REF(connp);
5059 	mutex_exit(&connfp->connf_lock);
5060 
5061 	ipsec_conn_pol(sel, connp, ppp, app);
5062 }
5063 
5064 static conn_t *
5065 ipsec_find_listen_conn(uint16_t *pptr, ipsec_selector_t *sel)
5066 {
5067 	connf_t *connfp;
5068 	conn_t *connp = NULL;
5069 	const in6_addr_t *v6addrmatch = &sel->ips_local_addr_v6;
5070 
5071 	if (sel->ips_local_port == 0)
5072 		return (NULL);
5073 
5074 	connfp = &ipcl_bind_fanout[IPCL_BIND_HASH(sel->ips_local_port)];
5075 	mutex_enter(&connfp->connf_lock);
5076 
5077 	if (sel->ips_isv4) {
5078 		connp = connfp->connf_head;
5079 		while (connp != NULL) {
5080 			if (IPCL_BIND_MATCH(connp, IPPROTO_TCP,
5081 			    sel->ips_local_addr_v4, pptr[1]))
5082 				break;
5083 			connp = connp->conn_next;
5084 		}
5085 
5086 		if (connp == NULL) {
5087 			/* Match to all-zeroes. */
5088 			v6addrmatch = &ipv6_all_zeros;
5089 		}
5090 	}
5091 
5092 	if (connp == NULL) {
5093 		connp = connfp->connf_head;
5094 		while (connp != NULL) {
5095 			if (IPCL_BIND_MATCH_V6(connp, IPPROTO_TCP,
5096 			    *v6addrmatch, pptr[1]))
5097 				break;
5098 			connp = connp->conn_next;
5099 		}
5100 
5101 		if (connp == NULL) {
5102 			mutex_exit(&connfp->connf_lock);
5103 			return (NULL);
5104 		}
5105 	}
5106 
5107 	CONN_INC_REF(connp);
5108 	mutex_exit(&connfp->connf_lock);
5109 	return (connp);
5110 }
5111 
5112 static void
5113 ipsec_tcp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, ipsec_action_t **app)
5114 {
5115 	connf_t 	*connfp;
5116 	conn_t		*connp;
5117 	uint32_t	ports;
5118 	uint16_t	*pptr = (uint16_t *)&ports;
5119 
5120 	/*
5121 	 * Find TCP state in the following order:
5122 	 * 1.) Connected conns.
5123 	 * 2.) Listeners.
5124 	 *
5125 	 * Even though #2 will be the common case for inbound traffic, only
5126 	 * following this order insures correctness.
5127 	 */
5128 
5129 	if (sel->ips_local_port == 0)
5130 		return;
5131 
5132 	/*
5133 	 * 0 should be fport, 1 should be lport.  SRC is the local one here.
5134 	 * See ipsec_construct_inverse_acquire() for details.
5135 	 */
5136 	pptr[0] = sel->ips_remote_port;
5137 	pptr[1] = sel->ips_local_port;
5138 
5139 	connfp = &ipcl_conn_fanout[IPCL_CONN_HASH(sel->ips_remote_addr_v4,
5140 	    ports)];
5141 	mutex_enter(&connfp->connf_lock);
5142 	connp = connfp->connf_head;
5143 
5144 	if (sel->ips_isv4) {
5145 		while (connp != NULL) {
5146 			if (IPCL_CONN_MATCH(connp, IPPROTO_TCP,
5147 			    sel->ips_remote_addr_v4, sel->ips_local_addr_v4,
5148 			    ports))
5149 				break;
5150 			connp = connp->conn_next;
5151 		}
5152 	} else {
5153 		while (connp != NULL) {
5154 			if (IPCL_CONN_MATCH_V6(connp, IPPROTO_TCP,
5155 			    sel->ips_remote_addr_v6, sel->ips_local_addr_v6,
5156 			    ports))
5157 				break;
5158 			connp = connp->conn_next;
5159 		}
5160 	}
5161 
5162 	if (connp != NULL) {
5163 		CONN_INC_REF(connp);
5164 		mutex_exit(&connfp->connf_lock);
5165 	} else {
5166 		mutex_exit(&connfp->connf_lock);
5167 
5168 		/* Try the listen hash. */
5169 		if ((connp = ipsec_find_listen_conn(pptr, sel)) == NULL)
5170 			return;
5171 	}
5172 
5173 	ipsec_conn_pol(sel, connp, ppp, app);
5174 }
5175 
5176 static void
5177 ipsec_sctp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp,
5178     ipsec_action_t **app)
5179 {
5180 	conn_t		*connp;
5181 	uint32_t	ports;
5182 	uint16_t	*pptr = (uint16_t *)&ports;
5183 
5184 	/*
5185 	 * Find SCP state in the following order:
5186 	 * 1.) Connected conns.
5187 	 * 2.) Listeners.
5188 	 *
5189 	 * Even though #2 will be the common case for inbound traffic, only
5190 	 * following this order insures correctness.
5191 	 */
5192 
5193 	if (sel->ips_local_port == 0)
5194 		return;
5195 
5196 	/*
5197 	 * 0 should be fport, 1 should be lport.  SRC is the local one here.
5198 	 * See ipsec_construct_inverse_acquire() for details.
5199 	 */
5200 	pptr[0] = sel->ips_remote_port;
5201 	pptr[1] = sel->ips_local_port;
5202 
5203 	if (sel->ips_isv4) {
5204 		in6_addr_t	src, dst;
5205 
5206 		IN6_IPADDR_TO_V4MAPPED(sel->ips_remote_addr_v4, &dst);
5207 		IN6_IPADDR_TO_V4MAPPED(sel->ips_local_addr_v4, &src);
5208 		connp = sctp_find_conn(&dst, &src, ports, 0, ALL_ZONES);
5209 	} else {
5210 		connp = sctp_find_conn(&sel->ips_remote_addr_v6,
5211 		    &sel->ips_local_addr_v6, ports, 0, ALL_ZONES);
5212 	}
5213 	if (connp == NULL)
5214 		return;
5215 	ipsec_conn_pol(sel, connp, ppp, app);
5216 }
5217 
5218 static void
5219 ipsec_oth_pol(ipsec_selector_t *sel,
5220     ipsec_policy_t **ppp, ipsec_action_t **app)
5221 {
5222 	boolean_t	isv4 = sel->ips_isv4;
5223 	connf_t		*connfp;
5224 	conn_t		*connp;
5225 
5226 	if (isv4) {
5227 		connfp = &ipcl_proto_fanout[sel->ips_protocol];
5228 	} else {
5229 		connfp = &ipcl_proto_fanout_v6[sel->ips_protocol];
5230 	}
5231 
5232 	mutex_enter(&connfp->connf_lock);
5233 	for (connp = connfp->connf_head; connp != NULL;
5234 	    connp = connp->conn_next) {
5235 		if (!((isv4 && !((connp->conn_src == 0 ||
5236 		    connp->conn_src == sel->ips_local_addr_v4) &&
5237 		    (connp->conn_rem == 0 ||
5238 		    connp->conn_rem == sel->ips_remote_addr_v4))) ||
5239 		    (!isv4 && !((IN6_IS_ADDR_UNSPECIFIED(&connp->conn_srcv6) ||
5240 		    IN6_ARE_ADDR_EQUAL(&connp->conn_srcv6,
5241 		    &sel->ips_local_addr_v6)) &&
5242 		    (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_remv6) ||
5243 		    IN6_ARE_ADDR_EQUAL(&connp->conn_remv6,
5244 			&sel->ips_remote_addr_v6)))))) {
5245 			break;
5246 		}
5247 	}
5248 	if (connp == NULL) {
5249 		mutex_exit(&connfp->connf_lock);
5250 		return;
5251 	}
5252 
5253 	CONN_INC_REF(connp);
5254 	mutex_exit(&connfp->connf_lock);
5255 
5256 	ipsec_conn_pol(sel, connp, ppp, app);
5257 }
5258 
5259 /*
5260  * Construct an inverse ACQUIRE reply based on:
5261  *
5262  * 1.) Current global policy.
5263  * 2.) An conn_t match depending on what all was passed in the extv[].
5264  * ...
5265  * N.) Other stuff TBD (e.g. identities)
5266  *
5267  * If there is an error, set sadb_msg_errno and sadb_x_msg_diagnostic
5268  * in this function so the caller can extract them where appropriately.
5269  *
5270  * The SRC address is the local one - just like an outbound ACQUIRE message.
5271  */
5272 mblk_t *
5273 ipsec_construct_inverse_acquire(sadb_msg_t *samsg, sadb_ext_t *extv[])
5274 {
5275 	int err;
5276 	int diagnostic;
5277 	sadb_address_t *srcext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_SRC],
5278 	    *dstext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_DST];
5279 	struct sockaddr_in *src, *dst;
5280 	struct sockaddr_in6 *src6, *dst6;
5281 	ipsec_policy_t *pp;
5282 	ipsec_action_t *ap;
5283 	ipsec_selector_t sel;
5284 	mblk_t *retmp;
5285 
5286 	bzero(&sel, sizeof (sel));
5287 	sel.ips_protocol = srcext->sadb_address_proto;
5288 	dst = (struct sockaddr_in *)(dstext + 1);
5289 	if (dst->sin_family == AF_INET6) {
5290 		dst6 = (struct sockaddr_in6 *)dst;
5291 		src6 = (struct sockaddr_in6 *)(srcext + 1);
5292 		if (src6->sin6_family != AF_INET6) {
5293 			diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
5294 			err = EINVAL;
5295 			goto bail;
5296 		}
5297 		sel.ips_remote_addr_v6 = dst6->sin6_addr;
5298 		sel.ips_local_addr_v6 = src6->sin6_addr;
5299 		if (sel.ips_protocol == IPPROTO_ICMPV6) {
5300 			sel.ips_is_icmp_inv_acq = 1;
5301 		} else {
5302 			sel.ips_remote_port = dst6->sin6_port;
5303 			sel.ips_local_port = src6->sin6_port;
5304 		}
5305 		sel.ips_isv4 = B_FALSE;
5306 	} else {
5307 		src = (struct sockaddr_in *)(srcext + 1);
5308 		if (src->sin_family != AF_INET) {
5309 			diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
5310 			err = EINVAL;
5311 			goto bail;
5312 		}
5313 		sel.ips_remote_addr_v4 = dst->sin_addr.s_addr;
5314 		sel.ips_local_addr_v4 = src->sin_addr.s_addr;
5315 		if (sel.ips_protocol == IPPROTO_ICMP) {
5316 			sel.ips_is_icmp_inv_acq = 1;
5317 		} else {
5318 			sel.ips_remote_port = dst->sin_port;
5319 			sel.ips_local_port = src->sin_port;
5320 		}
5321 		sel.ips_isv4 = B_TRUE;
5322 	}
5323 
5324 	/*
5325 	 * Okay, we have the addresses and other selector information.
5326 	 * Let's first find a conn...
5327 	 */
5328 	pp = NULL; ap = NULL;
5329 	switch (sel.ips_protocol) {
5330 	case IPPROTO_TCP:
5331 		ipsec_tcp_pol(&sel, &pp, &ap);
5332 		break;
5333 	case IPPROTO_UDP:
5334 		ipsec_udp_pol(&sel, &pp, &ap);
5335 		break;
5336 	case IPPROTO_SCTP:
5337 		ipsec_sctp_pol(&sel, &pp, &ap);
5338 		break;
5339 	default:
5340 		ipsec_oth_pol(&sel, &pp, &ap);
5341 		break;
5342 	}
5343 
5344 	/*
5345 	 * If we didn't find a matching conn_t, take a look in the global
5346 	 * policy.
5347 	 */
5348 	if ((pp == NULL) && (ap == NULL)) {
5349 		pp = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, NULL, NULL, &sel);
5350 		if (pp == NULL) {
5351 			/* There's no global policy. */
5352 			err = ENOENT;
5353 			diagnostic = 0;
5354 			goto bail;
5355 		}
5356 	}
5357 
5358 	/*
5359 	 * Now that we have a policy entry/widget, construct an ACQUIRE
5360 	 * message based on that, fix fields where appropriate,
5361 	 * and return the message.
5362 	 */
5363 	retmp = sadb_extended_acquire(&sel, pp, ap, samsg->sadb_msg_seq,
5364 	    samsg->sadb_msg_pid);
5365 	if (pp != NULL) {
5366 		IPPOL_REFRELE(pp);
5367 	}
5368 	if (ap != NULL) {
5369 		IPACT_REFRELE(ap);
5370 	}
5371 	if (retmp != NULL) {
5372 		return (retmp);
5373 	} else {
5374 		err = ENOMEM;
5375 		diagnostic = 0;
5376 	bail:
5377 		samsg->sadb_msg_errno = (uint8_t)err;
5378 		samsg->sadb_x_msg_diagnostic = (uint16_t)diagnostic;
5379 		return (NULL);
5380 	}
5381 }
5382 
5383 /*
5384  * ipsa_lpkt is a one-element queue, only manipulated by casptr within
5385  * the next two functions.
5386  *
5387  * These functions loop calling casptr() until the swap "happens",
5388  * turning a compare-and-swap op into an atomic swap operation.
5389  */
5390 
5391 /*
5392  * sadb_set_lpkt: Atomically swap in a value to ipsa->ipsa_lpkt and
5393  * freemsg the previous value.  free clue: freemsg(NULL) is safe.
5394  */
5395 
5396 void
5397 sadb_set_lpkt(ipsa_t *ipsa, mblk_t *npkt)
5398 {
5399 	mblk_t *opkt;
5400 
5401 	membar_producer();
5402 	do
5403 		opkt = ipsa->ipsa_lpkt;
5404 	while (casptr(&ipsa->ipsa_lpkt, opkt, npkt) != opkt);
5405 
5406 	ip_drop_packet(opkt, B_TRUE, NULL, NULL, &ipdrops_sadb_inlarval_replace,
5407 	    &sadb_dropper);
5408 }
5409 
5410 /*
5411  * sadb_clear_lpkt: Atomically clear ipsa->ipsa_lpkt and return the
5412  * previous value.
5413  */
5414 
5415 mblk_t *
5416 sadb_clear_lpkt(ipsa_t *ipsa)
5417 {
5418 	mblk_t *opkt;
5419 
5420 	do
5421 		opkt = ipsa->ipsa_lpkt;
5422 	while (casptr(&ipsa->ipsa_lpkt, opkt, NULL) != opkt);
5423 
5424 	return (opkt);
5425 }
5426 
5427 /*
5428  * Walker callback used by sadb_alg_update() to free/create crypto
5429  * context template when a crypto software provider is removed or
5430  * added.
5431  */
5432 
5433 struct sadb_update_alg_state {
5434 	ipsec_algtype_t alg_type;
5435 	uint8_t alg_id;
5436 	boolean_t is_added;
5437 };
5438 
5439 static void
5440 sadb_alg_update_cb(isaf_t *head, ipsa_t *entry, void *cookie)
5441 {
5442 	struct sadb_update_alg_state *update_state =
5443 	    (struct sadb_update_alg_state *)cookie;
5444 	crypto_ctx_template_t *ctx_tmpl = NULL;
5445 
5446 	ASSERT(MUTEX_HELD(&head->isaf_lock));
5447 
5448 	if (entry->ipsa_state == IPSA_STATE_LARVAL)
5449 		return;
5450 
5451 	mutex_enter(&entry->ipsa_lock);
5452 
5453 	switch (update_state->alg_type) {
5454 	case IPSEC_ALG_AUTH:
5455 		if (entry->ipsa_auth_alg == update_state->alg_id)
5456 			ctx_tmpl = &entry->ipsa_authtmpl;
5457 		break;
5458 	case IPSEC_ALG_ENCR:
5459 		if (entry->ipsa_encr_alg == update_state->alg_id)
5460 			ctx_tmpl = &entry->ipsa_encrtmpl;
5461 		break;
5462 	default:
5463 		ctx_tmpl = NULL;
5464 	}
5465 
5466 	if (ctx_tmpl == NULL) {
5467 		mutex_exit(&entry->ipsa_lock);
5468 		return;
5469 	}
5470 
5471 	/*
5472 	 * The context template of the SA may be affected by the change
5473 	 * of crypto provider.
5474 	 */
5475 	if (update_state->is_added) {
5476 		/* create the context template if not already done */
5477 		if (*ctx_tmpl == NULL) {
5478 			(void) ipsec_create_ctx_tmpl(entry,
5479 			    update_state->alg_type);
5480 		}
5481 	} else {
5482 		/*
5483 		 * The crypto provider was removed. If the context template
5484 		 * exists but it is no longer valid, free it.
5485 		 */
5486 		if (*ctx_tmpl != NULL)
5487 			ipsec_destroy_ctx_tmpl(entry, update_state->alg_type);
5488 	}
5489 
5490 	mutex_exit(&entry->ipsa_lock);
5491 }
5492 
5493 /*
5494  * Invoked by IP when an software crypto provider has been updated.
5495  * The type and id of the corresponding algorithm is passed as argument.
5496  * is_added is B_TRUE if the provider was added, B_FALSE if it was
5497  * removed. The function updates the SADB and free/creates the
5498  * context templates associated with SAs if needed.
5499  */
5500 
5501 #define	SADB_ALG_UPDATE_WALK(sadb, table) \
5502     sadb_walker((sadb).table, (sadb).sdb_hashsize, sadb_alg_update_cb, \
5503 	&update_state)
5504 
5505 void
5506 sadb_alg_update(ipsec_algtype_t alg_type, uint8_t alg_id, boolean_t is_added)
5507 {
5508 	struct sadb_update_alg_state update_state;
5509 
5510 	update_state.alg_type = alg_type;
5511 	update_state.alg_id = alg_id;
5512 	update_state.is_added = is_added;
5513 
5514 	if (alg_type == IPSEC_ALG_AUTH) {
5515 		/* walk the AH tables only for auth. algorithm changes */
5516 		SADB_ALG_UPDATE_WALK(ah_sadb.s_v4, sdb_of);
5517 		SADB_ALG_UPDATE_WALK(ah_sadb.s_v4, sdb_if);
5518 		SADB_ALG_UPDATE_WALK(ah_sadb.s_v6, sdb_of);
5519 		SADB_ALG_UPDATE_WALK(ah_sadb.s_v6, sdb_if);
5520 	}
5521 
5522 	/* walk the ESP tables */
5523 	SADB_ALG_UPDATE_WALK(esp_sadb.s_v4, sdb_of);
5524 	SADB_ALG_UPDATE_WALK(esp_sadb.s_v4, sdb_if);
5525 	SADB_ALG_UPDATE_WALK(esp_sadb.s_v6, sdb_of);
5526 	SADB_ALG_UPDATE_WALK(esp_sadb.s_v6, sdb_if);
5527 }
5528 
5529 /*
5530  * Creates a context template for the specified SA. This function
5531  * is called when an SA is created and when a context template needs
5532  * to be created due to a change of software provider.
5533  */
5534 int
5535 ipsec_create_ctx_tmpl(ipsa_t *sa, ipsec_algtype_t alg_type)
5536 {
5537 	ipsec_alginfo_t *alg;
5538 	crypto_mechanism_t mech;
5539 	crypto_key_t *key;
5540 	crypto_ctx_template_t *sa_tmpl;
5541 	int rv;
5542 
5543 	ASSERT(MUTEX_HELD(&alg_lock));
5544 	ASSERT(MUTEX_HELD(&sa->ipsa_lock));
5545 
5546 	/* get pointers to the algorithm info, context template, and key */
5547 	switch (alg_type) {
5548 	case IPSEC_ALG_AUTH:
5549 		key = &sa->ipsa_kcfauthkey;
5550 		sa_tmpl = &sa->ipsa_authtmpl;
5551 		alg = ipsec_alglists[alg_type][sa->ipsa_auth_alg];
5552 		break;
5553 	case IPSEC_ALG_ENCR:
5554 		key = &sa->ipsa_kcfencrkey;
5555 		sa_tmpl = &sa->ipsa_encrtmpl;
5556 		alg = ipsec_alglists[alg_type][sa->ipsa_encr_alg];
5557 		break;
5558 	default:
5559 		alg = NULL;
5560 	}
5561 
5562 	if (alg == NULL || !ALG_VALID(alg))
5563 		return (EINVAL);
5564 
5565 	/* initialize the mech info structure for the framework */
5566 	ASSERT(alg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
5567 	mech.cm_type = alg->alg_mech_type;
5568 	mech.cm_param = NULL;
5569 	mech.cm_param_len = 0;
5570 
5571 	/* create a new context template */
5572 	rv = crypto_create_ctx_template(&mech, key, sa_tmpl, KM_NOSLEEP);
5573 
5574 	/*
5575 	 * CRYPTO_MECH_NOT_SUPPORTED can be returned if only hardware
5576 	 * providers are available for that mechanism. In that case
5577 	 * we don't fail, and will generate the context template from
5578 	 * the framework callback when a software provider for that
5579 	 * mechanism registers.
5580 	 *
5581 	 * The context template is assigned the special value
5582 	 * IPSEC_CTX_TMPL_ALLOC if the allocation failed due to a
5583 	 * lack of memory. No attempt will be made to use
5584 	 * the context template if it is set to this value.
5585 	 */
5586 	if (rv == CRYPTO_HOST_MEMORY) {
5587 		*sa_tmpl = IPSEC_CTX_TMPL_ALLOC;
5588 	} else if (rv != CRYPTO_SUCCESS) {
5589 		*sa_tmpl = NULL;
5590 		if (rv != CRYPTO_MECH_NOT_SUPPORTED)
5591 			return (EINVAL);
5592 	}
5593 
5594 	return (0);
5595 }
5596 
5597 /*
5598  * Destroy the context template of the specified algorithm type
5599  * of the specified SA. Must be called while holding the SA lock.
5600  */
5601 void
5602 ipsec_destroy_ctx_tmpl(ipsa_t *sa, ipsec_algtype_t alg_type)
5603 {
5604 	ASSERT(MUTEX_HELD(&sa->ipsa_lock));
5605 
5606 	if (alg_type == IPSEC_ALG_AUTH) {
5607 		if (sa->ipsa_authtmpl == IPSEC_CTX_TMPL_ALLOC)
5608 			sa->ipsa_authtmpl = NULL;
5609 		else if (sa->ipsa_authtmpl != NULL) {
5610 			crypto_destroy_ctx_template(sa->ipsa_authtmpl);
5611 			sa->ipsa_authtmpl = NULL;
5612 		}
5613 	} else {
5614 		ASSERT(alg_type == IPSEC_ALG_ENCR);
5615 		if (sa->ipsa_encrtmpl == IPSEC_CTX_TMPL_ALLOC)
5616 			sa->ipsa_encrtmpl = NULL;
5617 		else if (sa->ipsa_encrtmpl != NULL) {
5618 			crypto_destroy_ctx_template(sa->ipsa_encrtmpl);
5619 			sa->ipsa_encrtmpl = NULL;
5620 		}
5621 	}
5622 }
5623 
5624 /*
5625  * Use the kernel crypto framework to check the validity of a key received
5626  * via keysock. Returns 0 if the key is OK, -1 otherwise.
5627  */
5628 int
5629 ipsec_check_key(crypto_mech_type_t mech_type, sadb_key_t *sadb_key,
5630     boolean_t is_auth, int *diag)
5631 {
5632 	crypto_mechanism_t mech;
5633 	crypto_key_t crypto_key;
5634 	int crypto_rc;
5635 
5636 	mech.cm_type = mech_type;
5637 	mech.cm_param = NULL;
5638 	mech.cm_param_len = 0;
5639 
5640 	crypto_key.ck_format = CRYPTO_KEY_RAW;
5641 	crypto_key.ck_data = sadb_key + 1;
5642 	crypto_key.ck_length = sadb_key->sadb_key_bits;
5643 
5644 	crypto_rc = crypto_key_check(&mech, &crypto_key);
5645 
5646 	switch (crypto_rc) {
5647 	case CRYPTO_SUCCESS:
5648 		return (0);
5649 	case CRYPTO_MECHANISM_INVALID:
5650 	case CRYPTO_MECH_NOT_SUPPORTED:
5651 		*diag = is_auth ? SADB_X_DIAGNOSTIC_BAD_AALG :
5652 		    SADB_X_DIAGNOSTIC_BAD_EALG;
5653 		break;
5654 	case CRYPTO_KEY_SIZE_RANGE:
5655 		*diag = is_auth ? SADB_X_DIAGNOSTIC_BAD_AKEYBITS :
5656 		    SADB_X_DIAGNOSTIC_BAD_EKEYBITS;
5657 		break;
5658 	case CRYPTO_WEAK_KEY:
5659 		*diag = is_auth ? SADB_X_DIAGNOSTIC_WEAK_AKEY :
5660 		    SADB_X_DIAGNOSTIC_WEAK_EKEY;
5661 		break;
5662 	}
5663 
5664 	return (-1);
5665 }
5666 
5667 /* ARGSUSED */
5668 static void
5669 sadb_clear_timeouts_walker(isaf_t *head, ipsa_t *ipsa, void *q)
5670 {
5671 	if (!(ipsa->ipsa_flags & IPSA_F_NATT))
5672 		return;
5673 
5674 	mutex_enter(&ipsa->ipsa_lock);
5675 	if (ipsa->ipsa_natt_q != q) {
5676 		mutex_exit(&ipsa->ipsa_lock);
5677 		return;
5678 	}
5679 
5680 	(void) quntimeout(ipsa->ipsa_natt_q, ipsa->ipsa_natt_ka_timer);
5681 
5682 	ipsa->ipsa_natt_ka_timer = 0;
5683 	ipsa->ipsa_natt_q = NULL;
5684 	mutex_exit(&ipsa->ipsa_lock);
5685 }
5686 
5687 void
5688 sadb_clear_timeouts(queue_t *q)
5689 {
5690 	sadb_t *sp = &esp_sadb.s_v4;
5691 
5692 	sadb_walker(sp->sdb_if, sp->sdb_hashsize,
5693 	    sadb_clear_timeouts_walker, q);
5694 }
5695