1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/stream.h> 28 #include <sys/strsubr.h> 29 #include <sys/stropts.h> 30 #include <sys/strsun.h> 31 #include <sys/strlog.h> 32 #define _SUN_TPI_VERSION 2 33 #include <sys/tihdr.h> 34 #include <sys/timod.h> 35 #include <sys/ddi.h> 36 #include <sys/sunddi.h> 37 #include <sys/cmn_err.h> 38 #include <sys/proc.h> 39 #include <sys/suntpi.h> 40 #include <sys/policy.h> 41 #include <sys/zone.h> 42 #include <sys/disp.h> 43 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <netinet/in.h> 47 48 #include <inet/common.h> 49 #include <netinet/ip6.h> 50 #include <inet/ip.h> 51 #include <inet/ipclassifier.h> 52 #include <inet/proto_set.h> 53 #include <inet/nd.h> 54 #include <inet/optcom.h> 55 #include <netinet/ip_mroute.h> 56 #include <sys/isa_defs.h> 57 #include <net/route.h> 58 59 #include <inet/rts_impl.h> 60 #include <inet/ip_rts.h> 61 62 /* 63 * This is a transport provider for routing sockets. Downstream messages are 64 * wrapped with a IP_IOCTL header, and ip_wput_ioctl calls the appropriate entry 65 * in the ip_ioctl_ftbl callout table to pass the routing socket data into IP. 66 * Upstream messages are generated for listeners of the routing socket as well 67 * as the message sender (unless they have turned off their end using 68 * SO_USELOOPBACK or shutdown(3n)). Upstream messages may also be generated 69 * asynchronously when: 70 * 71 * Interfaces are brought up or down. 72 * Addresses are assigned to interfaces. 73 * ICMP redirects are processed and a IRE_HOST/RTF_DYNAMIC is installed. 74 * No route is found while sending a packet. 75 * 76 * Since all we do is reformat the messages between routing socket and 77 * ioctl forms, no synchronization is necessary in this module; all 78 * the dirty work is done down in ip. 79 */ 80 81 /* Default structure copied into T_INFO_ACK messages */ 82 static struct T_info_ack rts_g_t_info_ack = { 83 T_INFO_ACK, 84 T_INFINITE, /* TSDU_size. Maximum size messages. */ 85 T_INVALID, /* ETSDU_size. No expedited data. */ 86 T_INVALID, /* CDATA_size. No connect data. */ 87 T_INVALID, /* DDATA_size. No disconnect data. */ 88 0, /* ADDR_size. */ 89 0, /* OPT_size - not initialized here */ 90 64 * 1024, /* TIDU_size. rts allows maximum size messages. */ 91 T_COTS, /* SERV_type. rts supports connection oriented. */ 92 TS_UNBND, /* CURRENT_state. This is set from rts_state. */ 93 (XPG4_1) /* PROVIDER_flag */ 94 }; 95 96 /* 97 * Table of ND variables supported by rts. These are loaded into rts_g_nd 98 * in rts_open. 99 * All of these are alterable, within the min/max values given, at run time. 100 */ 101 static rtsparam_t lcl_param_arr[] = { 102 /* min max value name */ 103 { 4096, 65536, 8192, "rts_xmit_hiwat"}, 104 { 0, 65536, 1024, "rts_xmit_lowat"}, 105 { 4096, 65536, 8192, "rts_recv_hiwat"}, 106 { 65536, 1024*1024*1024, 256*1024, "rts_max_buf"}, 107 }; 108 #define rtss_xmit_hiwat rtss_params[0].rts_param_value 109 #define rtss_xmit_lowat rtss_params[1].rts_param_value 110 #define rtss_recv_hiwat rtss_params[2].rts_param_value 111 #define rtss_max_buf rtss_params[3].rts_param_value 112 113 static void rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, 114 int sys_error); 115 static void rts_input(void *, mblk_t *, void *, ip_recv_attr_t *); 116 static void rts_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *); 117 static mblk_t *rts_ioctl_alloc(mblk_t *data); 118 static int rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 119 static boolean_t rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt); 120 static int rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 121 cred_t *cr); 122 static void rts_rsrv(queue_t *q); 123 static void *rts_stack_init(netstackid_t stackid, netstack_t *ns); 124 static void rts_stack_fini(netstackid_t stackid, void *arg); 125 static void rts_wput(queue_t *q, mblk_t *mp); 126 static void rts_wput_iocdata(queue_t *q, mblk_t *mp); 127 static void rts_wput_other(queue_t *q, mblk_t *mp); 128 static int rts_wrw(queue_t *q, struiod_t *dp); 129 130 static int rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, 131 cred_t *credp); 132 static conn_t *rts_open(int flag, cred_t *credp); 133 134 static int rts_stream_close(queue_t *q); 135 static int rts_close(sock_lower_handle_t proto_handle, int flags, 136 cred_t *cr); 137 138 static struct module_info rts_mod_info = { 139 129, "rts", 1, INFPSZ, 512, 128 140 }; 141 142 static struct qinit rtsrinit = { 143 NULL, (pfi_t)rts_rsrv, rts_stream_open, rts_stream_close, NULL, 144 &rts_mod_info 145 }; 146 147 static struct qinit rtswinit = { 148 (pfi_t)rts_wput, NULL, NULL, NULL, NULL, &rts_mod_info, 149 NULL, (pfi_t)rts_wrw, NULL, STRUIOT_STANDARD 150 }; 151 152 struct streamtab rtsinfo = { 153 &rtsrinit, &rtswinit 154 }; 155 156 /* 157 * This routine allocates the necessary 158 * message blocks for IOCTL wrapping the 159 * user data. 160 */ 161 static mblk_t * 162 rts_ioctl_alloc(mblk_t *data) 163 { 164 mblk_t *mp = NULL; 165 mblk_t *mp1 = NULL; 166 ipllc_t *ipllc; 167 struct iocblk *ioc; 168 169 mp = allocb_tmpl(sizeof (ipllc_t), data); 170 if (mp == NULL) 171 return (NULL); 172 mp1 = allocb_tmpl(sizeof (struct iocblk), data); 173 if (mp1 == NULL) { 174 freeb(mp); 175 return (NULL); 176 } 177 178 ipllc = (ipllc_t *)mp->b_rptr; 179 ipllc->ipllc_cmd = IP_IOC_RTS_REQUEST; 180 ipllc->ipllc_name_offset = 0; 181 ipllc->ipllc_name_length = 0; 182 mp->b_wptr += sizeof (ipllc_t); 183 mp->b_cont = data; 184 185 ioc = (struct iocblk *)mp1->b_rptr; 186 ioc->ioc_cmd = IP_IOCTL; 187 ioc->ioc_error = 0; 188 ioc->ioc_cr = NULL; 189 ioc->ioc_count = msgdsize(mp); 190 mp1->b_wptr += sizeof (struct iocblk); 191 mp1->b_datap->db_type = M_IOCTL; 192 mp1->b_cont = mp; 193 194 return (mp1); 195 } 196 197 /* 198 * This routine closes rts stream, by disabling 199 * put/srv routines and freeing the this module 200 * internal datastructure. 201 */ 202 static int 203 rts_common_close(queue_t *q, conn_t *connp) 204 { 205 206 ASSERT(connp != NULL && IPCL_IS_RTS(connp)); 207 208 ip_rts_unregister(connp); 209 210 ip_quiesce_conn(connp); 211 212 if (!IPCL_IS_NONSTR(connp)) { 213 qprocsoff(q); 214 } 215 216 /* 217 * Now we are truly single threaded on this stream, and can 218 * delete the things hanging off the connp, and finally the connp. 219 * We removed this connp from the fanout list, it cannot be 220 * accessed thru the fanouts, and we already waited for the 221 * conn_ref to drop to 0. We are already in close, so 222 * there cannot be any other thread from the top. qprocsoff 223 * has completed, and service has completed or won't run in 224 * future. 225 */ 226 ASSERT(connp->conn_ref == 1); 227 228 if (!IPCL_IS_NONSTR(connp)) { 229 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 230 } else { 231 ip_free_helper_stream(connp); 232 } 233 234 connp->conn_ref--; 235 ipcl_conn_destroy(connp); 236 return (0); 237 } 238 239 static int 240 rts_stream_close(queue_t *q) 241 { 242 conn_t *connp = Q_TO_CONN(q); 243 244 (void) rts_common_close(q, connp); 245 q->q_ptr = WR(q)->q_ptr = NULL; 246 return (0); 247 } 248 249 /* 250 * This is the open routine for routing socket. It allocates 251 * rts_t structure for the stream and tells IP that it is a routing socket. 252 */ 253 /* ARGSUSED */ 254 static int 255 rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 256 { 257 conn_t *connp; 258 dev_t conn_dev; 259 rts_t *rts; 260 261 /* If the stream is already open, return immediately. */ 262 if (q->q_ptr != NULL) 263 return (0); 264 265 if (sflag == MODOPEN) 266 return (EINVAL); 267 268 /* 269 * Since RTS is not used so heavily, allocating from the small 270 * arena should be sufficient. 271 */ 272 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 273 return (EBUSY); 274 } 275 276 connp = rts_open(flag, credp); 277 ASSERT(connp != NULL); 278 279 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 280 281 rts = connp->conn_rts; 282 rw_enter(&rts->rts_rwlock, RW_WRITER); 283 connp->conn_dev = conn_dev; 284 connp->conn_minor_arena = ip_minor_arena_sa; 285 286 q->q_ptr = connp; 287 WR(q)->q_ptr = connp; 288 connp->conn_rq = q; 289 connp->conn_wq = WR(q); 290 291 WR(q)->q_hiwat = connp->conn_sndbuf; 292 WR(q)->q_lowat = connp->conn_sndlowat; 293 294 mutex_enter(&connp->conn_lock); 295 connp->conn_state_flags &= ~CONN_INCIPIENT; 296 mutex_exit(&connp->conn_lock); 297 rw_exit(&rts->rts_rwlock); 298 299 /* Indicate to IP that this is a routing socket client */ 300 ip_rts_register(connp); 301 302 qprocson(q); 303 304 return (0); 305 } 306 307 /* ARGSUSED */ 308 static conn_t * 309 rts_open(int flag, cred_t *credp) 310 { 311 netstack_t *ns; 312 rts_stack_t *rtss; 313 rts_t *rts; 314 conn_t *connp; 315 zoneid_t zoneid; 316 317 ns = netstack_find_by_cred(credp); 318 ASSERT(ns != NULL); 319 rtss = ns->netstack_rts; 320 ASSERT(rtss != NULL); 321 322 /* 323 * For exclusive stacks we set the zoneid to zero 324 * to make RTS operate as if in the global zone. 325 */ 326 if (ns->netstack_stackid != GLOBAL_NETSTACKID) 327 zoneid = GLOBAL_ZONEID; 328 else 329 zoneid = crgetzoneid(credp); 330 331 connp = ipcl_conn_create(IPCL_RTSCONN, KM_SLEEP, ns); 332 rts = connp->conn_rts; 333 334 /* 335 * ipcl_conn_create did a netstack_hold. Undo the hold that was 336 * done by netstack_find_by_cred() 337 */ 338 netstack_rele(ns); 339 340 rw_enter(&rts->rts_rwlock, RW_WRITER); 341 ASSERT(connp->conn_rts == rts); 342 ASSERT(rts->rts_connp == connp); 343 344 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 345 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 346 connp->conn_ixa->ixa_zoneid = zoneid; 347 connp->conn_zoneid = zoneid; 348 connp->conn_flow_cntrld = B_FALSE; 349 350 rts->rts_rtss = rtss; 351 352 connp->conn_rcvbuf = rtss->rtss_recv_hiwat; 353 connp->conn_sndbuf = rtss->rtss_xmit_hiwat; 354 connp->conn_sndlowat = rtss->rtss_xmit_lowat; 355 connp->conn_rcvlowat = rts_mod_info.mi_lowat; 356 357 connp->conn_family = PF_ROUTE; 358 connp->conn_so_type = SOCK_RAW; 359 /* SO_PROTOTYPE is always sent down by sockfs setting conn_proto */ 360 361 connp->conn_recv = rts_input; 362 connp->conn_recvicmp = rts_icmp_input; 363 364 crhold(credp); 365 connp->conn_cred = credp; 366 connp->conn_cpid = curproc->p_pid; 367 /* Cache things in ixa without an extra refhold */ 368 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 369 connp->conn_ixa->ixa_cred = connp->conn_cred; 370 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 371 if (is_system_labeled()) 372 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 373 374 /* 375 * rts sockets start out as bound and connected 376 * For streams based sockets, socket state is set to 377 * SS_ISBOUND | SS_ISCONNECTED in so_strinit. 378 */ 379 rts->rts_state = TS_DATA_XFER; 380 rw_exit(&rts->rts_rwlock); 381 382 return (connp); 383 } 384 385 /* 386 * This routine creates a T_ERROR_ACK message and passes it upstream. 387 */ 388 static void 389 rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) 390 { 391 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 392 qreply(q, mp); 393 } 394 395 /* 396 * This routine creates a T_OK_ACK message and passes it upstream. 397 */ 398 static void 399 rts_ok_ack(queue_t *q, mblk_t *mp) 400 { 401 if ((mp = mi_tpi_ok_ack_alloc(mp)) != NULL) 402 qreply(q, mp); 403 } 404 405 /* 406 * This routine is called by rts_wput to handle T_UNBIND_REQ messages. 407 */ 408 static void 409 rts_tpi_unbind(queue_t *q, mblk_t *mp) 410 { 411 conn_t *connp = Q_TO_CONN(q); 412 rts_t *rts = connp->conn_rts; 413 414 /* If a bind has not been done, we can't unbind. */ 415 if (rts->rts_state != TS_IDLE) { 416 rts_err_ack(q, mp, TOUTSTATE, 0); 417 return; 418 } 419 rts->rts_state = TS_UNBND; 420 rts_ok_ack(q, mp); 421 } 422 423 /* 424 * This routine is called to handle each 425 * O_T_BIND_REQ/T_BIND_REQ message passed to 426 * rts_wput. Note: This routine works with both 427 * O_T_BIND_REQ and T_BIND_REQ semantics. 428 */ 429 static void 430 rts_tpi_bind(queue_t *q, mblk_t *mp) 431 { 432 conn_t *connp = Q_TO_CONN(q); 433 rts_t *rts = connp->conn_rts; 434 struct T_bind_req *tbr; 435 436 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 437 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 438 "rts_tpi_bind: bad data, %d", rts->rts_state); 439 rts_err_ack(q, mp, TBADADDR, 0); 440 return; 441 } 442 if (rts->rts_state != TS_UNBND) { 443 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 444 "rts_tpi_bind: bad state, %d", rts->rts_state); 445 rts_err_ack(q, mp, TOUTSTATE, 0); 446 return; 447 } 448 tbr = (struct T_bind_req *)mp->b_rptr; 449 if (tbr->ADDR_length != 0) { 450 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 451 "rts_tpi_bind: bad ADDR_length %d", tbr->ADDR_length); 452 rts_err_ack(q, mp, TBADADDR, 0); 453 return; 454 } 455 /* Generic request */ 456 tbr->ADDR_offset = (t_scalar_t)sizeof (struct T_bind_req); 457 tbr->ADDR_length = 0; 458 tbr->PRIM_type = T_BIND_ACK; 459 mp->b_datap->db_type = M_PCPROTO; 460 rts->rts_state = TS_IDLE; 461 qreply(q, mp); 462 } 463 464 static void 465 rts_copy_info(struct T_info_ack *tap, rts_t *rts) 466 { 467 *tap = rts_g_t_info_ack; 468 tap->CURRENT_state = rts->rts_state; 469 tap->OPT_size = rts_max_optsize; 470 } 471 472 /* 473 * This routine responds to T_CAPABILITY_REQ messages. It is called by 474 * rts_wput. Much of the T_CAPABILITY_ACK information is copied from 475 * rts_g_t_info_ack. The current state of the stream is copied from 476 * rts_state. 477 */ 478 static void 479 rts_capability_req(queue_t *q, mblk_t *mp) 480 { 481 conn_t *connp = Q_TO_CONN(q); 482 rts_t *rts = connp->conn_rts; 483 t_uscalar_t cap_bits1; 484 struct T_capability_ack *tcap; 485 486 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 487 488 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 489 mp->b_datap->db_type, T_CAPABILITY_ACK); 490 if (mp == NULL) 491 return; 492 493 tcap = (struct T_capability_ack *)mp->b_rptr; 494 tcap->CAP_bits1 = 0; 495 496 if (cap_bits1 & TC1_INFO) { 497 rts_copy_info(&tcap->INFO_ack, rts); 498 tcap->CAP_bits1 |= TC1_INFO; 499 } 500 501 qreply(q, mp); 502 } 503 504 /* 505 * This routine responds to T_INFO_REQ messages. It is called by rts_wput. 506 * Most of the T_INFO_ACK information is copied from rts_g_t_info_ack. 507 * The current state of the stream is copied from rts_state. 508 */ 509 static void 510 rts_info_req(queue_t *q, mblk_t *mp) 511 { 512 conn_t *connp = Q_TO_CONN(q); 513 rts_t *rts = connp->conn_rts; 514 515 mp = tpi_ack_alloc(mp, sizeof (rts_g_t_info_ack), M_PCPROTO, 516 T_INFO_ACK); 517 if (mp == NULL) 518 return; 519 rts_copy_info((struct T_info_ack *)mp->b_rptr, rts); 520 qreply(q, mp); 521 } 522 523 /* 524 * This routine gets default values of certain options whose default 525 * values are maintained by protcol specific code 526 */ 527 /* ARGSUSED */ 528 int 529 rts_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 530 { 531 /* no default value processed by protocol specific code currently */ 532 return (-1); 533 } 534 535 536 static int 537 rts_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 538 { 539 rts_t *rts = connp->conn_rts; 540 conn_opt_arg_t coas; 541 int retval; 542 543 ASSERT(RW_READ_HELD(&rts->rts_rwlock)); 544 545 switch (level) { 546 /* do this in conn_opt_get? */ 547 case SOL_ROUTE: 548 switch (name) { 549 case RT_AWARE: 550 mutex_enter(&connp->conn_lock); 551 *(int *)ptr = connp->conn_rtaware; 552 mutex_exit(&connp->conn_lock); 553 return (0); 554 } 555 break; 556 } 557 coas.coa_connp = connp; 558 coas.coa_ixa = connp->conn_ixa; 559 coas.coa_ipp = &connp->conn_xmit_ipp; 560 mutex_enter(&connp->conn_lock); 561 retval = conn_opt_get(&coas, level, name, ptr); 562 mutex_exit(&connp->conn_lock); 563 return (retval); 564 } 565 566 /* ARGSUSED */ 567 static int 568 rts_do_opt_set(conn_t *connp, int level, int name, uint_t inlen, 569 uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, cred_t *cr, 570 void *thisdg_attrs, boolean_t checkonly) 571 { 572 int *i1 = (int *)invalp; 573 rts_t *rts = connp->conn_rts; 574 rts_stack_t *rtss = rts->rts_rtss; 575 int error; 576 conn_opt_arg_t coas; 577 578 coas.coa_connp = connp; 579 coas.coa_ixa = connp->conn_ixa; 580 coas.coa_ipp = &connp->conn_xmit_ipp; 581 582 ASSERT(RW_WRITE_HELD(&rts->rts_rwlock)); 583 584 /* 585 * For rts, we should have no ancillary data sent down 586 * (rts_wput doesn't handle options). 587 */ 588 ASSERT(thisdg_attrs == NULL); 589 590 /* 591 * For fixed length options, no sanity check 592 * of passed in length is done. It is assumed *_optcom_req() 593 * routines do the right thing. 594 */ 595 596 switch (level) { 597 case SOL_SOCKET: 598 switch (name) { 599 case SO_PROTOTYPE: 600 /* 601 * Routing socket applications that call socket() with 602 * a third argument can filter which messages will be 603 * sent upstream thanks to sockfs. so_socket() sends 604 * down the SO_PROTOTYPE and rts_queue_input() 605 * implements the filtering. 606 */ 607 if (*i1 != AF_INET && *i1 != AF_INET6) { 608 *outlenp = 0; 609 return (EPROTONOSUPPORT); 610 } 611 if (!checkonly) 612 connp->conn_proto = *i1; 613 *outlenp = inlen; 614 return (0); 615 616 /* 617 * The following two items can be manipulated, 618 * but changing them should do nothing. 619 */ 620 case SO_SNDBUF: 621 if (*i1 > rtss->rtss_max_buf) { 622 *outlenp = 0; 623 return (ENOBUFS); 624 } 625 break; /* goto sizeof (int) option return */ 626 case SO_RCVBUF: 627 if (*i1 > rtss->rtss_max_buf) { 628 *outlenp = 0; 629 return (ENOBUFS); 630 } 631 break; /* goto sizeof (int) option return */ 632 } 633 break; 634 case SOL_ROUTE: 635 switch (name) { 636 case RT_AWARE: 637 if (!checkonly) { 638 mutex_enter(&connp->conn_lock); 639 connp->conn_rtaware = *i1; 640 mutex_exit(&connp->conn_lock); 641 } 642 *outlenp = inlen; 643 return (0); 644 } 645 break; 646 } 647 /* Serialized setsockopt since we are D_MTQPAIR */ 648 error = conn_opt_set(&coas, level, name, inlen, invalp, 649 checkonly, cr); 650 if (error != 0) { 651 *outlenp = 0; 652 return (error); 653 } 654 /* 655 * Common case of return from an option that is sizeof (int) 656 */ 657 if (invalp != outvalp) { 658 /* don't trust bcopy for identical src/dst */ 659 (void) bcopy(invalp, outvalp, inlen); 660 } 661 *outlenp = (t_uscalar_t)sizeof (int); 662 return (0); 663 } 664 665 static int 666 rts_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 667 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 668 void *thisdg_attrs, cred_t *cr) 669 { 670 boolean_t checkonly = B_FALSE; 671 672 if (optset_context) { 673 switch (optset_context) { 674 case SETFN_OPTCOM_CHECKONLY: 675 checkonly = B_TRUE; 676 /* 677 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 678 * inlen != 0 implies value supplied and 679 * we have to "pretend" to set it. 680 * inlen == 0 implies that there is no value part 681 * in T_CHECK request and just validation 682 * done elsewhere should be enough, we just return here. 683 */ 684 if (inlen == 0) { 685 *outlenp = 0; 686 return (0); 687 } 688 break; 689 case SETFN_OPTCOM_NEGOTIATE: 690 checkonly = B_FALSE; 691 break; 692 case SETFN_UD_NEGOTIATE: 693 case SETFN_CONN_NEGOTIATE: 694 checkonly = B_FALSE; 695 /* 696 * Negotiating local and "association-related" options 697 * through T_UNITDATA_REQ or T_CONN_{REQ,CON} 698 * Not allowed in this module. 699 */ 700 return (EINVAL); 701 default: 702 /* 703 * We should never get here 704 */ 705 *outlenp = 0; 706 return (EINVAL); 707 } 708 709 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 710 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 711 712 } 713 return (rts_do_opt_set(connp, level, name, inlen, invalp, outlenp, 714 outvalp, cr, thisdg_attrs, checkonly)); 715 716 } 717 718 /* 719 * This routine retrieves the current status of socket options. 720 * It returns the size of the option retrieved. 721 */ 722 int 723 rts_tpi_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 724 { 725 rts_t *rts; 726 int err; 727 728 rts = Q_TO_RTS(q); 729 rw_enter(&rts->rts_rwlock, RW_READER); 730 err = rts_opt_get(Q_TO_CONN(q), level, name, ptr); 731 rw_exit(&rts->rts_rwlock); 732 return (err); 733 } 734 735 /* 736 * This routine sets socket options. 737 */ 738 /*ARGSUSED*/ 739 int 740 rts_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 741 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 742 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr) 743 { 744 conn_t *connp = Q_TO_CONN(q); 745 int error; 746 rts_t *rts = connp->conn_rts; 747 748 749 rw_enter(&rts->rts_rwlock, RW_WRITER); 750 error = rts_opt_set(connp, optset_context, level, name, inlen, invalp, 751 outlenp, outvalp, thisdg_attrs, cr); 752 rw_exit(&rts->rts_rwlock); 753 return (error); 754 } 755 756 /* 757 * This routine retrieves the value of an ND variable in a rtsparam_t 758 * structure. It is called through nd_getset when a user reads the 759 * variable. 760 */ 761 /* ARGSUSED */ 762 static int 763 rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 764 { 765 rtsparam_t *rtspa = (rtsparam_t *)cp; 766 767 (void) mi_mpprintf(mp, "%u", rtspa->rts_param_value); 768 return (0); 769 } 770 771 /* 772 * Walk through the param array specified registering each element with the 773 * named dispatch (ND) handler. 774 */ 775 static boolean_t 776 rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt) 777 { 778 for (; cnt-- > 0; rtspa++) { 779 if (rtspa->rts_param_name != NULL && rtspa->rts_param_name[0]) { 780 if (!nd_load(ndp, rtspa->rts_param_name, 781 rts_param_get, rts_param_set, (caddr_t)rtspa)) { 782 nd_free(ndp); 783 return (B_FALSE); 784 } 785 } 786 } 787 return (B_TRUE); 788 } 789 790 /* This routine sets an ND variable in a rtsparam_t structure. */ 791 /* ARGSUSED */ 792 static int 793 rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 794 { 795 ulong_t new_value; 796 rtsparam_t *rtspa = (rtsparam_t *)cp; 797 798 /* 799 * Fail the request if the new value does not lie within the 800 * required bounds. 801 */ 802 if (ddi_strtoul(value, NULL, 10, &new_value) != 0 || 803 new_value < rtspa->rts_param_min || 804 new_value > rtspa->rts_param_max) { 805 return (EINVAL); 806 } 807 808 /* Set the new value */ 809 rtspa->rts_param_value = new_value; 810 return (0); 811 } 812 813 /* 814 * Empty rsrv routine which is used by rts_input to cause a wakeup 815 * of a thread in qwait. 816 */ 817 /*ARGSUSED*/ 818 static void 819 rts_rsrv(queue_t *q) 820 { 821 } 822 823 /* 824 * This routine handles synchronous messages passed downstream. It either 825 * consumes the message or passes it downstream; it never queues a 826 * a message. The data messages that go down are wrapped in an IOCTL 827 * message. 828 * 829 * Since it is synchronous, it waits for the M_IOCACK/M_IOCNAK so that 830 * it can return an immediate error (such as ENETUNREACH when adding a route). 831 * It uses the RTS_WRW_PENDING to ensure that each rts instance has only 832 * one M_IOCTL outstanding at any given time. 833 */ 834 static int 835 rts_wrw(queue_t *q, struiod_t *dp) 836 { 837 mblk_t *mp = dp->d_mp; 838 mblk_t *mp1; 839 int error; 840 rt_msghdr_t *rtm; 841 conn_t *connp = Q_TO_CONN(q); 842 rts_t *rts = connp->conn_rts; 843 844 while (rts->rts_flag & RTS_WRW_PENDING) { 845 if (qwait_rw(q)) { 846 rts->rts_error = EINTR; 847 goto err_ret; 848 } 849 } 850 rts->rts_flag |= RTS_WRW_PENDING; 851 852 if (isuioq(q) && (error = struioget(q, mp, dp, 0))) { 853 /* 854 * Uio error of some sort, so just return the error. 855 */ 856 rts->rts_error = error; 857 goto err_ret; 858 } 859 /* 860 * Pass the mblk (chain) onto wput(). 861 */ 862 dp->d_mp = 0; 863 864 switch (mp->b_datap->db_type) { 865 case M_PROTO: 866 case M_PCPROTO: 867 /* Expedite other than T_DATA_REQ to below the switch */ 868 if (((mp->b_wptr - mp->b_rptr) != 869 sizeof (struct T_data_req)) || 870 (((union T_primitives *)mp->b_rptr)->type != T_DATA_REQ)) 871 break; 872 if ((mp1 = mp->b_cont) == NULL) { 873 rts->rts_error = EINVAL; 874 freemsg(mp); 875 goto err_ret; 876 } 877 freeb(mp); 878 mp = mp1; 879 /* FALLTHRU */ 880 case M_DATA: 881 /* 882 * The semantics of the routing socket is such that the rtm_pid 883 * field is automatically filled in during requests with the 884 * current process' pid. We do this here (where we still have 885 * user context) after checking we have at least a message the 886 * size of a routing message header. 887 */ 888 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) { 889 if (!pullupmsg(mp, sizeof (rt_msghdr_t))) { 890 rts->rts_error = EINVAL; 891 freemsg(mp); 892 goto err_ret; 893 } 894 } 895 rtm = (rt_msghdr_t *)mp->b_rptr; 896 rtm->rtm_pid = curproc->p_pid; 897 break; 898 default: 899 break; 900 } 901 rts->rts_flag |= RTS_WPUT_PENDING; 902 rts_wput(q, mp); 903 while (rts->rts_flag & RTS_WPUT_PENDING) 904 if (qwait_rw(q)) { 905 /* RTS_WPUT_PENDING will be cleared below */ 906 rts->rts_error = EINTR; 907 break; 908 } 909 err_ret: 910 rts->rts_flag &= ~(RTS_WPUT_PENDING | RTS_WRW_PENDING); 911 return (rts->rts_error); 912 } 913 914 /* 915 * This routine handles all messages passed downstream. It either 916 * consumes the message or passes it downstream; it never queues a 917 * a message. The data messages that go down are wrapped in an IOCTL 918 * message. 919 */ 920 static void 921 rts_wput(queue_t *q, mblk_t *mp) 922 { 923 uchar_t *rptr = mp->b_rptr; 924 mblk_t *mp1; 925 conn_t *connp = Q_TO_CONN(q); 926 rts_t *rts = connp->conn_rts; 927 928 switch (mp->b_datap->db_type) { 929 case M_DATA: 930 break; 931 case M_PROTO: 932 case M_PCPROTO: 933 if ((mp->b_wptr - rptr) == sizeof (struct T_data_req)) { 934 /* Expedite valid T_DATA_REQ to below the switch */ 935 if (((union T_primitives *)rptr)->type == T_DATA_REQ) { 936 mp1 = mp->b_cont; 937 freeb(mp); 938 if (mp1 == NULL) 939 return; 940 mp = mp1; 941 break; 942 } 943 } 944 /* FALLTHRU */ 945 default: 946 rts_wput_other(q, mp); 947 return; 948 } 949 950 951 ASSERT(msg_getcred(mp, NULL) != NULL); 952 953 mp1 = rts_ioctl_alloc(mp); 954 if (mp1 == NULL) { 955 ASSERT(rts != NULL); 956 freemsg(mp); 957 if (rts->rts_flag & RTS_WPUT_PENDING) { 958 rts->rts_error = ENOMEM; 959 rts->rts_flag &= ~RTS_WPUT_PENDING; 960 } 961 return; 962 } 963 ip_wput_nondata(q, mp1); 964 } 965 966 967 /* 968 * Handles all the control message, if it 969 * can not understand it, it will 970 * pass down stream. 971 */ 972 static void 973 rts_wput_other(queue_t *q, mblk_t *mp) 974 { 975 conn_t *connp = Q_TO_CONN(q); 976 rts_t *rts = connp->conn_rts; 977 uchar_t *rptr = mp->b_rptr; 978 struct iocblk *iocp; 979 cred_t *cr; 980 rts_stack_t *rtss; 981 982 rtss = rts->rts_rtss; 983 984 switch (mp->b_datap->db_type) { 985 case M_PROTO: 986 case M_PCPROTO: 987 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) { 988 /* 989 * If the message does not contain a PRIM_type, 990 * throw it away. 991 */ 992 freemsg(mp); 993 return; 994 } 995 switch (((union T_primitives *)rptr)->type) { 996 case T_BIND_REQ: 997 case O_T_BIND_REQ: 998 rts_tpi_bind(q, mp); 999 return; 1000 case T_UNBIND_REQ: 1001 rts_tpi_unbind(q, mp); 1002 return; 1003 case T_CAPABILITY_REQ: 1004 rts_capability_req(q, mp); 1005 return; 1006 case T_INFO_REQ: 1007 rts_info_req(q, mp); 1008 return; 1009 case T_SVR4_OPTMGMT_REQ: 1010 case T_OPTMGMT_REQ: 1011 /* 1012 * All Solaris components should pass a db_credp 1013 * for this TPI message, hence we ASSERT. 1014 * But in case there is some other M_PROTO that looks 1015 * like a TPI message sent by some other kernel 1016 * component, we check and return an error. 1017 */ 1018 cr = msg_getcred(mp, NULL); 1019 ASSERT(cr != NULL); 1020 if (cr == NULL) { 1021 rts_err_ack(q, mp, TSYSERR, EINVAL); 1022 return; 1023 } 1024 if (((union T_primitives *)rptr)->type == 1025 T_SVR4_OPTMGMT_REQ) { 1026 svr4_optcom_req(q, mp, cr, &rts_opt_obj); 1027 } else { 1028 tpi_optcom_req(q, mp, cr, &rts_opt_obj); 1029 } 1030 return; 1031 case O_T_CONN_RES: 1032 case T_CONN_RES: 1033 case T_DISCON_REQ: 1034 /* Not supported by rts. */ 1035 rts_err_ack(q, mp, TNOTSUPPORT, 0); 1036 return; 1037 case T_DATA_REQ: 1038 case T_EXDATA_REQ: 1039 case T_ORDREL_REQ: 1040 /* Illegal for rts. */ 1041 freemsg(mp); 1042 (void) putnextctl1(RD(q), M_ERROR, EPROTO); 1043 return; 1044 1045 default: 1046 break; 1047 } 1048 break; 1049 case M_IOCTL: 1050 iocp = (struct iocblk *)mp->b_rptr; 1051 switch (iocp->ioc_cmd) { 1052 case ND_SET: 1053 case ND_GET: 1054 if (nd_getset(q, rtss->rtss_g_nd, mp)) { 1055 qreply(q, mp); 1056 return; 1057 } 1058 break; 1059 case TI_GETPEERNAME: 1060 mi_copyin(q, mp, NULL, 1061 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 1062 return; 1063 default: 1064 break; 1065 } 1066 case M_IOCDATA: 1067 rts_wput_iocdata(q, mp); 1068 return; 1069 default: 1070 break; 1071 } 1072 ip_wput_nondata(q, mp); 1073 } 1074 1075 /* 1076 * Called by rts_wput_other to handle all M_IOCDATA messages. 1077 */ 1078 static void 1079 rts_wput_iocdata(queue_t *q, mblk_t *mp) 1080 { 1081 struct sockaddr *rtsaddr; 1082 mblk_t *mp1; 1083 STRUCT_HANDLE(strbuf, sb); 1084 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 1085 1086 /* Make sure it is one of ours. */ 1087 switch (iocp->ioc_cmd) { 1088 case TI_GETPEERNAME: 1089 break; 1090 default: 1091 ip_wput_nondata(q, mp); 1092 return; 1093 } 1094 switch (mi_copy_state(q, mp, &mp1)) { 1095 case -1: 1096 return; 1097 case MI_COPY_CASE(MI_COPY_IN, 1): 1098 break; 1099 case MI_COPY_CASE(MI_COPY_OUT, 1): 1100 /* Copy out the strbuf. */ 1101 mi_copyout(q, mp); 1102 return; 1103 case MI_COPY_CASE(MI_COPY_OUT, 2): 1104 /* All done. */ 1105 mi_copy_done(q, mp, 0); 1106 return; 1107 default: 1108 mi_copy_done(q, mp, EPROTO); 1109 return; 1110 } 1111 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 1112 if (STRUCT_FGET(sb, maxlen) < (int)sizeof (sin_t)) { 1113 mi_copy_done(q, mp, EINVAL); 1114 return; 1115 } 1116 switch (iocp->ioc_cmd) { 1117 case TI_GETPEERNAME: 1118 break; 1119 default: 1120 mi_copy_done(q, mp, EPROTO); 1121 return; 1122 } 1123 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), sizeof (sin_t), 1124 B_TRUE); 1125 if (mp1 == NULL) 1126 return; 1127 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 1128 rtsaddr = (struct sockaddr *)mp1->b_rptr; 1129 mp1->b_wptr = (uchar_t *)&rtsaddr[1]; 1130 bzero(rtsaddr, sizeof (struct sockaddr)); 1131 rtsaddr->sa_family = AF_ROUTE; 1132 /* Copy out the address */ 1133 mi_copyout(q, mp); 1134 } 1135 1136 /* 1137 * IP passes up a NULL ira. 1138 */ 1139 /*ARGSUSED2*/ 1140 static void 1141 rts_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 1142 { 1143 conn_t *connp = (conn_t *)arg1; 1144 rts_t *rts = connp->conn_rts; 1145 struct iocblk *iocp; 1146 mblk_t *mp1; 1147 struct T_data_ind *tdi; 1148 int error; 1149 1150 switch (mp->b_datap->db_type) { 1151 case M_IOCACK: 1152 case M_IOCNAK: 1153 iocp = (struct iocblk *)mp->b_rptr; 1154 ASSERT(!IPCL_IS_NONSTR(connp)); 1155 if (rts->rts_flag & (RTS_WPUT_PENDING)) { 1156 rts->rts_flag &= ~RTS_WPUT_PENDING; 1157 rts->rts_error = iocp->ioc_error; 1158 /* 1159 * Tell rts_wvw/qwait that we are done. 1160 * Note: there is no qwait_wakeup() we can use. 1161 */ 1162 qenable(connp->conn_rq); 1163 freemsg(mp); 1164 return; 1165 } 1166 break; 1167 case M_DATA: 1168 /* 1169 * Prepend T_DATA_IND to prevent the stream head from 1170 * consolidating multiple messages together. 1171 * If the allocation fails just send up the M_DATA. 1172 */ 1173 mp1 = allocb(sizeof (*tdi), BPRI_MED); 1174 if (mp1 != NULL) { 1175 mp1->b_cont = mp; 1176 mp = mp1; 1177 1178 mp->b_datap->db_type = M_PROTO; 1179 mp->b_wptr += sizeof (*tdi); 1180 tdi = (struct T_data_ind *)mp->b_rptr; 1181 tdi->PRIM_type = T_DATA_IND; 1182 tdi->MORE_flag = 0; 1183 } 1184 break; 1185 default: 1186 break; 1187 } 1188 1189 if (IPCL_IS_NONSTR(connp)) { 1190 if ((*connp->conn_upcalls->su_recv) 1191 (connp->conn_upper_handle, mp, msgdsize(mp), 0, 1192 &error, NULL) < 0) { 1193 ASSERT(error == ENOSPC); 1194 /* 1195 * Let's confirm hoding the lock that 1196 * we are out of recv space. 1197 */ 1198 mutex_enter(&rts->rts_recv_mutex); 1199 if ((*connp->conn_upcalls->su_recv) 1200 (connp->conn_upper_handle, NULL, 0, 0, 1201 &error, NULL) < 0) { 1202 ASSERT(error == ENOSPC); 1203 connp->conn_flow_cntrld = B_TRUE; 1204 } 1205 mutex_exit(&rts->rts_recv_mutex); 1206 } 1207 } else { 1208 putnext(connp->conn_rq, mp); 1209 } 1210 } 1211 1212 /*ARGSUSED*/ 1213 static void 1214 rts_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 1215 { 1216 freemsg(mp); 1217 } 1218 1219 void 1220 rts_ddi_g_init(void) 1221 { 1222 rts_max_optsize = optcom_max_optsize(rts_opt_obj.odb_opt_des_arr, 1223 rts_opt_obj.odb_opt_arr_cnt); 1224 1225 /* 1226 * We want to be informed each time a stack is created or 1227 * destroyed in the kernel, so we can maintain the 1228 * set of rts_stack_t's. 1229 */ 1230 netstack_register(NS_RTS, rts_stack_init, NULL, rts_stack_fini); 1231 } 1232 1233 void 1234 rts_ddi_g_destroy(void) 1235 { 1236 netstack_unregister(NS_RTS); 1237 } 1238 1239 #define INET_NAME "ip" 1240 1241 /* 1242 * Initialize the RTS stack instance. 1243 */ 1244 /* ARGSUSED */ 1245 static void * 1246 rts_stack_init(netstackid_t stackid, netstack_t *ns) 1247 { 1248 rts_stack_t *rtss; 1249 rtsparam_t *pa; 1250 int error = 0; 1251 major_t major; 1252 1253 rtss = (rts_stack_t *)kmem_zalloc(sizeof (*rtss), KM_SLEEP); 1254 rtss->rtss_netstack = ns; 1255 1256 pa = (rtsparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 1257 rtss->rtss_params = pa; 1258 bcopy(lcl_param_arr, rtss->rtss_params, sizeof (lcl_param_arr)); 1259 1260 (void) rts_param_register(&rtss->rtss_g_nd, 1261 rtss->rtss_params, A_CNT(lcl_param_arr)); 1262 1263 major = mod_name_to_major(INET_NAME); 1264 error = ldi_ident_from_major(major, &rtss->rtss_ldi_ident); 1265 ASSERT(error == 0); 1266 return (rtss); 1267 } 1268 1269 /* 1270 * Free the RTS stack instance. 1271 */ 1272 /* ARGSUSED */ 1273 static void 1274 rts_stack_fini(netstackid_t stackid, void *arg) 1275 { 1276 rts_stack_t *rtss = (rts_stack_t *)arg; 1277 1278 nd_free(&rtss->rtss_g_nd); 1279 kmem_free(rtss->rtss_params, sizeof (lcl_param_arr)); 1280 rtss->rtss_params = NULL; 1281 ldi_ident_release(rtss->rtss_ldi_ident); 1282 kmem_free(rtss, sizeof (*rtss)); 1283 } 1284 1285 /* ARGSUSED */ 1286 int 1287 rts_accept(sock_lower_handle_t lproto_handle, 1288 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 1289 cred_t *cr) 1290 { 1291 return (EINVAL); 1292 } 1293 1294 /* ARGSUSED */ 1295 static int 1296 rts_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 1297 socklen_t len, cred_t *cr) 1298 { 1299 /* 1300 * rebind not allowed 1301 */ 1302 return (EINVAL); 1303 } 1304 1305 /* ARGSUSED */ 1306 int 1307 rts_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 1308 { 1309 return (EINVAL); 1310 } 1311 1312 /* ARGSUSED */ 1313 int 1314 rts_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 1315 socklen_t len, sock_connid_t *id, cred_t *cr) 1316 { 1317 /* 1318 * rts sockets start out as bound and connected 1319 */ 1320 *id = 0; 1321 return (EISCONN); 1322 } 1323 1324 /* ARGSUSED */ 1325 int 1326 rts_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 1327 socklen_t *addrlen, cred_t *cr) 1328 { 1329 bzero(addr, sizeof (struct sockaddr)); 1330 addr->sa_family = AF_ROUTE; 1331 *addrlen = sizeof (struct sockaddr); 1332 1333 return (0); 1334 } 1335 1336 /* ARGSUSED */ 1337 int 1338 rts_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 1339 socklen_t *addrlen, cred_t *cr) 1340 { 1341 bzero(addr, sizeof (struct sockaddr)); 1342 addr->sa_family = AF_ROUTE; 1343 *addrlen = sizeof (struct sockaddr); 1344 1345 return (0); 1346 } 1347 1348 static int 1349 rts_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 1350 void *optvalp, socklen_t *optlen, cred_t *cr) 1351 { 1352 conn_t *connp = (conn_t *)proto_handle; 1353 rts_t *rts = connp->conn_rts; 1354 int error; 1355 t_uscalar_t max_optbuf_len; 1356 void *optvalp_buf; 1357 int len; 1358 1359 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 1360 rts_opt_obj.odb_opt_des_arr, 1361 rts_opt_obj.odb_opt_arr_cnt, 1362 B_FALSE, B_TRUE, cr); 1363 if (error != 0) { 1364 if (error < 0) 1365 error = proto_tlitosyserr(-error); 1366 return (error); 1367 } 1368 1369 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 1370 rw_enter(&rts->rts_rwlock, RW_READER); 1371 len = rts_opt_get(connp, level, option_name, optvalp_buf); 1372 rw_exit(&rts->rts_rwlock); 1373 if (len == -1) { 1374 kmem_free(optvalp_buf, max_optbuf_len); 1375 return (EINVAL); 1376 } 1377 1378 /* 1379 * update optlen and copy option value 1380 */ 1381 t_uscalar_t size = MIN(len, *optlen); 1382 1383 bcopy(optvalp_buf, optvalp, size); 1384 bcopy(&size, optlen, sizeof (size)); 1385 kmem_free(optvalp_buf, max_optbuf_len); 1386 return (0); 1387 } 1388 1389 static int 1390 rts_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 1391 const void *optvalp, socklen_t optlen, cred_t *cr) 1392 { 1393 conn_t *connp = (conn_t *)proto_handle; 1394 rts_t *rts = connp->conn_rts; 1395 int error; 1396 1397 error = proto_opt_check(level, option_name, optlen, NULL, 1398 rts_opt_obj.odb_opt_des_arr, 1399 rts_opt_obj.odb_opt_arr_cnt, 1400 B_TRUE, B_FALSE, cr); 1401 1402 if (error != 0) { 1403 if (error < 0) 1404 error = proto_tlitosyserr(-error); 1405 return (error); 1406 } 1407 1408 rw_enter(&rts->rts_rwlock, RW_WRITER); 1409 error = rts_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 1410 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 1411 NULL, cr); 1412 rw_exit(&rts->rts_rwlock); 1413 1414 ASSERT(error >= 0); 1415 1416 return (error); 1417 } 1418 1419 /* ARGSUSED */ 1420 static int 1421 rts_send(sock_lower_handle_t proto_handle, mblk_t *mp, 1422 struct nmsghdr *msg, cred_t *cr) 1423 { 1424 conn_t *connp = (conn_t *)proto_handle; 1425 rt_msghdr_t *rtm; 1426 int error; 1427 1428 ASSERT(DB_TYPE(mp) == M_DATA); 1429 /* 1430 * The semantics of the routing socket is such that the rtm_pid 1431 * field is automatically filled in during requests with the 1432 * current process' pid. We do this here (where we still have 1433 * user context) after checking we have at least a message the 1434 * size of a routing message header. 1435 */ 1436 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) { 1437 if (!pullupmsg(mp, sizeof (rt_msghdr_t))) { 1438 freemsg(mp); 1439 return (EINVAL); 1440 } 1441 } 1442 rtm = (rt_msghdr_t *)mp->b_rptr; 1443 rtm->rtm_pid = curproc->p_pid; 1444 1445 /* 1446 * We are not constrained by the ioctl interface and 1447 * ip_rts_request_common processing requests synchronously hence 1448 * we can send them down concurrently. 1449 */ 1450 error = ip_rts_request_common(mp, connp, cr); 1451 return (error); 1452 } 1453 1454 /* ARGSUSED */ 1455 sock_lower_handle_t 1456 rts_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 1457 uint_t *smodep, int *errorp, int flags, cred_t *credp) 1458 { 1459 conn_t *connp; 1460 1461 if (family != AF_ROUTE || type != SOCK_RAW || 1462 (proto != 0 && proto != AF_INET && proto != AF_INET6)) { 1463 *errorp = EPROTONOSUPPORT; 1464 return (NULL); 1465 } 1466 1467 connp = rts_open(flags, credp); 1468 ASSERT(connp != NULL); 1469 connp->conn_flags |= IPCL_NONSTR; 1470 1471 connp->conn_proto = proto; 1472 1473 mutex_enter(&connp->conn_lock); 1474 connp->conn_state_flags &= ~CONN_INCIPIENT; 1475 mutex_exit(&connp->conn_lock); 1476 1477 *errorp = 0; 1478 *smodep = SM_ATOMIC; 1479 *sock_downcalls = &sock_rts_downcalls; 1480 return ((sock_lower_handle_t)connp); 1481 } 1482 1483 /* ARGSUSED */ 1484 void 1485 rts_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 1486 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 1487 { 1488 conn_t *connp = (conn_t *)proto_handle; 1489 struct sock_proto_props sopp; 1490 1491 connp->conn_upcalls = sock_upcalls; 1492 connp->conn_upper_handle = sock_handle; 1493 1494 sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 1495 SOCKOPT_MAXBLK | SOCKOPT_MAXPSZ | SOCKOPT_MINPSZ; 1496 sopp.sopp_wroff = 0; 1497 sopp.sopp_rxhiwat = connp->conn_rcvbuf; 1498 sopp.sopp_rxlowat = connp->conn_rcvlowat; 1499 sopp.sopp_maxblk = INFPSZ; 1500 sopp.sopp_maxpsz = rts_mod_info.mi_maxpsz; 1501 sopp.sopp_minpsz = (rts_mod_info.mi_minpsz == 1) ? 0 : 1502 rts_mod_info.mi_minpsz; 1503 1504 (*connp->conn_upcalls->su_set_proto_props) 1505 (connp->conn_upper_handle, &sopp); 1506 1507 /* 1508 * We treat it as already connected for routing socket. 1509 */ 1510 (*connp->conn_upcalls->su_connected) 1511 (connp->conn_upper_handle, 0, NULL, -1); 1512 1513 /* Indicate to IP that this is a routing socket client */ 1514 ip_rts_register(connp); 1515 } 1516 1517 /* ARGSUSED */ 1518 int 1519 rts_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 1520 { 1521 conn_t *connp = (conn_t *)proto_handle; 1522 1523 ASSERT(connp != NULL && IPCL_IS_RTS(connp)); 1524 return (rts_common_close(NULL, connp)); 1525 } 1526 1527 /* ARGSUSED */ 1528 int 1529 rts_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 1530 { 1531 conn_t *connp = (conn_t *)proto_handle; 1532 1533 /* shut down the send side */ 1534 if (how != SHUT_RD) 1535 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 1536 SOCK_OPCTL_SHUT_SEND, 0); 1537 /* shut down the recv side */ 1538 if (how != SHUT_WR) 1539 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 1540 SOCK_OPCTL_SHUT_RECV, 0); 1541 return (0); 1542 } 1543 1544 void 1545 rts_clr_flowctrl(sock_lower_handle_t proto_handle) 1546 { 1547 conn_t *connp = (conn_t *)proto_handle; 1548 rts_t *rts = connp->conn_rts; 1549 1550 mutex_enter(&rts->rts_recv_mutex); 1551 connp->conn_flow_cntrld = B_FALSE; 1552 mutex_exit(&rts->rts_recv_mutex); 1553 } 1554 1555 int 1556 rts_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 1557 int mode, int32_t *rvalp, cred_t *cr) 1558 { 1559 conn_t *connp = (conn_t *)proto_handle; 1560 int error; 1561 1562 /* 1563 * If we don't have a helper stream then create one. 1564 * ip_create_helper_stream takes care of locking the conn_t, 1565 * so this check for NULL is just a performance optimization. 1566 */ 1567 if (connp->conn_helper_info == NULL) { 1568 rts_stack_t *rtss = connp->conn_rts->rts_rtss; 1569 1570 ASSERT(rtss->rtss_ldi_ident != NULL); 1571 1572 /* 1573 * Create a helper stream for non-STREAMS socket. 1574 */ 1575 error = ip_create_helper_stream(connp, rtss->rtss_ldi_ident); 1576 if (error != 0) { 1577 ip0dbg(("rts_ioctl: create of IP helper stream " 1578 "failed %d\n", error)); 1579 return (error); 1580 } 1581 } 1582 1583 switch (cmd) { 1584 case ND_SET: 1585 case ND_GET: 1586 case TI_GETPEERNAME: 1587 case TI_GETMYNAME: 1588 #ifdef DEUG 1589 cmn_err(CE_CONT, "rts_ioctl cmd 0x%x on non sreams" 1590 " socket", cmd); 1591 #endif 1592 error = EINVAL; 1593 break; 1594 default: 1595 /* 1596 * Pass on to IP using helper stream 1597 */ 1598 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 1599 cmd, arg, mode, cr, rvalp); 1600 break; 1601 } 1602 1603 return (error); 1604 } 1605 1606 sock_downcalls_t sock_rts_downcalls = { 1607 rts_activate, 1608 rts_accept, 1609 rts_bind, 1610 rts_listen, 1611 rts_connect, 1612 rts_getpeername, 1613 rts_getsockname, 1614 rts_getsockopt, 1615 rts_setsockopt, 1616 rts_send, 1617 NULL, 1618 NULL, 1619 NULL, 1620 rts_shutdown, 1621 rts_clr_flowctrl, 1622 rts_ioctl, 1623 rts_close 1624 }; 1625