1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/stream.h> 28 #include <sys/strsubr.h> 29 #include <sys/stropts.h> 30 #include <sys/strsun.h> 31 #include <sys/strlog.h> 32 #define _SUN_TPI_VERSION 2 33 #include <sys/tihdr.h> 34 #include <sys/timod.h> 35 #include <sys/ddi.h> 36 #include <sys/sunddi.h> 37 #include <sys/cmn_err.h> 38 #include <sys/proc.h> 39 #include <sys/suntpi.h> 40 #include <sys/policy.h> 41 #include <sys/zone.h> 42 #include <sys/disp.h> 43 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <netinet/in.h> 47 48 #include <inet/common.h> 49 #include <netinet/ip6.h> 50 #include <inet/ip.h> 51 #include <inet/ipclassifier.h> 52 #include <inet/proto_set.h> 53 #include <inet/nd.h> 54 #include <inet/optcom.h> 55 #include <netinet/ip_mroute.h> 56 #include <sys/isa_defs.h> 57 #include <net/route.h> 58 59 #include <inet/rts_impl.h> 60 #include <inet/ip_rts.h> 61 62 /* 63 * This is a transport provider for routing sockets. Downstream messages are 64 * wrapped with a IP_IOCTL header, and ip_wput_ioctl calls the appropriate entry 65 * in the ip_ioctl_ftbl callout table to pass the routing socket data into IP. 66 * Upstream messages are generated for listeners of the routing socket as well 67 * as the message sender (unless they have turned off their end using 68 * SO_USELOOPBACK or shutdown(3n)). Upstream messages may also be generated 69 * asynchronously when: 70 * 71 * Interfaces are brought up or down. 72 * Addresses are assigned to interfaces. 73 * ICMP redirects are processed and a IRE_HOST/RTF_DYNAMIC is installed. 74 * No route is found while sending a packet. 75 * When TCP requests IP to remove an IRE_CACHE of a troubled destination. 76 * 77 * Since all we do is reformat the messages between routing socket and 78 * ioctl forms, no synchronization is necessary in this module; all 79 * the dirty work is done down in ip. 80 */ 81 82 /* Default structure copied into T_INFO_ACK messages */ 83 static struct T_info_ack rts_g_t_info_ack = { 84 T_INFO_ACK, 85 T_INFINITE, /* TSDU_size. Maximum size messages. */ 86 T_INVALID, /* ETSDU_size. No expedited data. */ 87 T_INVALID, /* CDATA_size. No connect data. */ 88 T_INVALID, /* DDATA_size. No disconnect data. */ 89 0, /* ADDR_size. */ 90 0, /* OPT_size - not initialized here */ 91 64 * 1024, /* TIDU_size. rts allows maximum size messages. */ 92 T_COTS, /* SERV_type. rts supports connection oriented. */ 93 TS_UNBND, /* CURRENT_state. This is set from rts_state. */ 94 (XPG4_1) /* PROVIDER_flag */ 95 }; 96 97 /* 98 * Table of ND variables supported by rts. These are loaded into rts_g_nd 99 * in rts_open. 100 * All of these are alterable, within the min/max values given, at run time. 101 */ 102 static rtsparam_t lcl_param_arr[] = { 103 /* min max value name */ 104 { 4096, 65536, 8192, "rts_xmit_hiwat"}, 105 { 0, 65536, 1024, "rts_xmit_lowat"}, 106 { 4096, 65536, 8192, "rts_recv_hiwat"}, 107 { 65536, 1024*1024*1024, 256*1024, "rts_max_buf"}, 108 }; 109 #define rtss_xmit_hiwat rtss_params[0].rts_param_value 110 #define rtss_xmit_lowat rtss_params[1].rts_param_value 111 #define rtss_recv_hiwat rtss_params[2].rts_param_value 112 #define rtss_max_buf rtss_params[3].rts_param_value 113 114 static void rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, 115 int sys_error); 116 static void rts_input(void *, mblk_t *, void *); 117 static mblk_t *rts_ioctl_alloc(mblk_t *data, cred_t *cr); 118 static int rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 119 static boolean_t rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt); 120 static int rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 121 cred_t *cr); 122 static void rts_rsrv(queue_t *q); 123 static void *rts_stack_init(netstackid_t stackid, netstack_t *ns); 124 static void rts_stack_fini(netstackid_t stackid, void *arg); 125 static void rts_wput(queue_t *q, mblk_t *mp); 126 static void rts_wput_iocdata(queue_t *q, mblk_t *mp); 127 static void rts_wput_other(queue_t *q, mblk_t *mp); 128 static int rts_wrw(queue_t *q, struiod_t *dp); 129 130 static int rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, 131 cred_t *credp); 132 static conn_t *rts_open(int flag, cred_t *credp); 133 134 static int rts_stream_close(queue_t *q); 135 static int rts_close(sock_lower_handle_t proto_handle, int flags, 136 cred_t *cr); 137 138 static struct module_info rts_mod_info = { 139 129, "rts", 1, INFPSZ, 512, 128 140 }; 141 142 static struct qinit rtsrinit = { 143 NULL, (pfi_t)rts_rsrv, rts_stream_open, rts_stream_close, NULL, 144 &rts_mod_info 145 }; 146 147 static struct qinit rtswinit = { 148 (pfi_t)rts_wput, NULL, NULL, NULL, NULL, &rts_mod_info, 149 NULL, (pfi_t)rts_wrw, NULL, STRUIOT_STANDARD 150 }; 151 152 struct streamtab rtsinfo = { 153 &rtsrinit, &rtswinit 154 }; 155 156 /* 157 * This routine allocates the necessary 158 * message blocks for IOCTL wrapping the 159 * user data. 160 */ 161 static mblk_t * 162 rts_ioctl_alloc(mblk_t *data, cred_t *cr) 163 { 164 mblk_t *mp = NULL; 165 mblk_t *mp1 = NULL; 166 ipllc_t *ipllc; 167 struct iocblk *ioc; 168 169 mp = allocb_cred(sizeof (ipllc_t), cr); 170 if (mp == NULL) 171 return (NULL); 172 mp1 = allocb_cred(sizeof (struct iocblk), cr); 173 if (mp1 == NULL) { 174 freeb(mp); 175 return (NULL); 176 } 177 178 ipllc = (ipllc_t *)mp->b_rptr; 179 ipllc->ipllc_cmd = IP_IOC_RTS_REQUEST; 180 ipllc->ipllc_name_offset = 0; 181 ipllc->ipllc_name_length = 0; 182 mp->b_wptr += sizeof (ipllc_t); 183 mp->b_cont = data; 184 185 ioc = (struct iocblk *)mp1->b_rptr; 186 ioc->ioc_cmd = IP_IOCTL; 187 ioc->ioc_error = 0; 188 ioc->ioc_cr = NULL; 189 ioc->ioc_count = msgdsize(mp); 190 mp1->b_wptr += sizeof (struct iocblk); 191 mp1->b_datap->db_type = M_IOCTL; 192 mp1->b_cont = mp; 193 194 return (mp1); 195 } 196 197 /* 198 * This routine closes rts stream, by disabling 199 * put/srv routines and freeing the this module 200 * internal datastructure. 201 */ 202 static int 203 rts_common_close(queue_t *q, conn_t *connp) 204 { 205 206 ASSERT(connp != NULL && IPCL_IS_RTS(connp)); 207 208 ip_rts_unregister(connp); 209 210 ip_quiesce_conn(connp); 211 212 if (!IPCL_IS_NONSTR(connp)) { 213 qprocsoff(q); 214 215 /* 216 * Now we are truly single threaded on this stream, and can 217 * delete the things hanging off the connp, and finally the 218 * connp. 219 * We removed this connp from the fanout list, it cannot be 220 * accessed thru the fanouts, and we already waited for the 221 * conn_ref to drop to 0. We are already in close, so 222 * there cannot be any other thread from the top. qprocsoff 223 * has completed, and service has completed or won't run in 224 * future. 225 */ 226 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 227 } else { 228 ip_free_helper_stream(connp); 229 } 230 ASSERT(connp->conn_ref == 1); 231 232 233 connp->conn_ref--; 234 ipcl_conn_destroy(connp); 235 236 return (0); 237 } 238 239 static int 240 rts_stream_close(queue_t *q) 241 { 242 conn_t *connp = Q_TO_CONN(q); 243 244 (void) rts_common_close(q, connp); 245 q->q_ptr = WR(q)->q_ptr = NULL; 246 return (0); 247 } 248 249 /* 250 * This is the open routine for routing socket. It allocates 251 * rts_t structure for the stream and tells IP that it is a routing socket. 252 */ 253 /* ARGSUSED */ 254 static int 255 rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 256 { 257 conn_t *connp; 258 dev_t conn_dev; 259 rts_stack_t *rtss; 260 rts_t *rts; 261 262 /* If the stream is already open, return immediately. */ 263 if (q->q_ptr != NULL) 264 return (0); 265 266 if (sflag == MODOPEN) 267 return (EINVAL); 268 269 270 /* 271 * Since RTS is not used so heavily, allocating from the small 272 * arena should be sufficient. 273 */ 274 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 275 return (EBUSY); 276 } 277 278 connp = rts_open(flag, credp); 279 ASSERT(connp != NULL); 280 281 282 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 283 284 rts = connp->conn_rts; 285 286 rw_enter(&rts->rts_rwlock, RW_WRITER); 287 connp->conn_dev = conn_dev; 288 connp->conn_minor_arena = ip_minor_arena_sa; 289 290 /* 291 * Initialize the rts_t structure for this stream. 292 */ 293 q->q_ptr = connp; 294 WR(q)->q_ptr = connp; 295 connp->conn_rq = q; 296 connp->conn_wq = WR(q); 297 298 rtss = rts->rts_rtss; 299 q->q_hiwat = rtss->rtss_recv_hiwat; 300 WR(q)->q_hiwat = rtss->rtss_xmit_hiwat; 301 WR(q)->q_lowat = rtss->rtss_xmit_lowat; 302 303 304 305 mutex_enter(&connp->conn_lock); 306 connp->conn_state_flags &= ~CONN_INCIPIENT; 307 mutex_exit(&connp->conn_lock); 308 309 qprocson(q); 310 rw_exit(&rts->rts_rwlock); 311 /* 312 * Indicate the down IP module that this is a routing socket 313 * client by sending an RTS IOCTL without any user data. Although 314 * this is just a notification message (without any real routing 315 * request), we pass in any credential for correctness sake. 316 */ 317 ip_rts_register(connp); 318 319 return (0); 320 } 321 322 /* ARGSUSED */ 323 static conn_t * 324 rts_open(int flag, cred_t *credp) 325 { 326 netstack_t *ns; 327 rts_stack_t *rtss; 328 rts_t *rts; 329 conn_t *connp; 330 zoneid_t zoneid; 331 332 ns = netstack_find_by_cred(credp); 333 ASSERT(ns != NULL); 334 rtss = ns->netstack_rts; 335 ASSERT(rtss != NULL); 336 337 /* 338 * For exclusive stacks we set the zoneid to zero 339 * to make RTS operate as if in the global zone. 340 */ 341 if (ns->netstack_stackid != GLOBAL_NETSTACKID) 342 zoneid = GLOBAL_ZONEID; 343 else 344 zoneid = crgetzoneid(credp); 345 346 connp = ipcl_conn_create(IPCL_RTSCONN, KM_SLEEP, ns); 347 rts = connp->conn_rts; 348 349 /* 350 * ipcl_conn_create did a netstack_hold. Undo the hold that was 351 * done by netstack_find_by_cred() 352 */ 353 netstack_rele(ns); 354 355 356 rw_enter(&rts->rts_rwlock, RW_WRITER); 357 ASSERT(connp->conn_rts == rts); 358 ASSERT(rts->rts_connp == connp); 359 360 connp->conn_zoneid = zoneid; 361 connp->conn_flow_cntrld = B_FALSE; 362 363 connp->conn_ulp_labeled = is_system_labeled(); 364 365 rts->rts_rtss = rtss; 366 rts->rts_xmit_hiwat = rtss->rtss_xmit_hiwat; 367 368 connp->conn_recv = rts_input; 369 crhold(credp); 370 connp->conn_cred = credp; 371 372 /* 373 * rts sockets start out as bound and connected 374 * For streams based sockets, socket state is set to 375 * SS_ISBOUND | SS_ISCONNECTED in so_strinit. 376 */ 377 rts->rts_state = TS_DATA_XFER; 378 rw_exit(&rts->rts_rwlock); 379 380 return (connp); 381 } 382 383 /* 384 * This routine creates a T_ERROR_ACK message and passes it upstream. 385 */ 386 static void 387 rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) 388 { 389 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 390 qreply(q, mp); 391 } 392 393 /* 394 * This routine creates a T_OK_ACK message and passes it upstream. 395 */ 396 static void 397 rts_ok_ack(queue_t *q, mblk_t *mp) 398 { 399 if ((mp = mi_tpi_ok_ack_alloc(mp)) != NULL) 400 qreply(q, mp); 401 } 402 403 /* 404 * This routine is called by rts_wput to handle T_UNBIND_REQ messages. 405 */ 406 static void 407 rts_tpi_unbind(queue_t *q, mblk_t *mp) 408 { 409 conn_t *connp = Q_TO_CONN(q); 410 rts_t *rts = connp->conn_rts; 411 412 /* If a bind has not been done, we can't unbind. */ 413 if (rts->rts_state != TS_IDLE) { 414 rts_err_ack(q, mp, TOUTSTATE, 0); 415 return; 416 } 417 rts->rts_state = TS_UNBND; 418 rts_ok_ack(q, mp); 419 } 420 421 /* 422 * This routine is called to handle each 423 * O_T_BIND_REQ/T_BIND_REQ message passed to 424 * rts_wput. Note: This routine works with both 425 * O_T_BIND_REQ and T_BIND_REQ semantics. 426 */ 427 static void 428 rts_tpi_bind(queue_t *q, mblk_t *mp) 429 { 430 conn_t *connp = Q_TO_CONN(q); 431 rts_t *rts = connp->conn_rts; 432 mblk_t *mp1; 433 struct T_bind_req *tbr; 434 435 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 436 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 437 "rts_tpi_bind: bad data, %d", rts->rts_state); 438 rts_err_ack(q, mp, TBADADDR, 0); 439 return; 440 } 441 if (rts->rts_state != TS_UNBND) { 442 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 443 "rts_tpi_bind: bad state, %d", rts->rts_state); 444 rts_err_ack(q, mp, TOUTSTATE, 0); 445 return; 446 } 447 /* 448 * Reallocate the message to make sure we have enough room for an 449 * address and the protocol type. 450 */ 451 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin_t), 1); 452 if (mp1 == NULL) { 453 rts_err_ack(q, mp, TSYSERR, ENOMEM); 454 return; 455 } 456 mp = mp1; 457 tbr = (struct T_bind_req *)mp->b_rptr; 458 if (tbr->ADDR_length != 0) { 459 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 460 "rts_tpi_bind: bad ADDR_length %d", tbr->ADDR_length); 461 rts_err_ack(q, mp, TBADADDR, 0); 462 return; 463 } 464 /* Generic request */ 465 tbr->ADDR_offset = (t_scalar_t)sizeof (struct T_bind_req); 466 tbr->ADDR_length = 0; 467 tbr->PRIM_type = T_BIND_ACK; 468 rts->rts_state = TS_IDLE; 469 qreply(q, mp); 470 } 471 472 static void 473 rts_copy_info(struct T_info_ack *tap, rts_t *rts) 474 { 475 *tap = rts_g_t_info_ack; 476 tap->CURRENT_state = rts->rts_state; 477 tap->OPT_size = rts_max_optsize; 478 } 479 480 /* 481 * This routine responds to T_CAPABILITY_REQ messages. It is called by 482 * rts_wput. Much of the T_CAPABILITY_ACK information is copied from 483 * rts_g_t_info_ack. The current state of the stream is copied from 484 * rts_state. 485 */ 486 static void 487 rts_capability_req(queue_t *q, mblk_t *mp) 488 { 489 conn_t *connp = Q_TO_CONN(q); 490 rts_t *rts = connp->conn_rts; 491 t_uscalar_t cap_bits1; 492 struct T_capability_ack *tcap; 493 494 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 495 496 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 497 mp->b_datap->db_type, T_CAPABILITY_ACK); 498 if (mp == NULL) 499 return; 500 501 tcap = (struct T_capability_ack *)mp->b_rptr; 502 tcap->CAP_bits1 = 0; 503 504 if (cap_bits1 & TC1_INFO) { 505 rts_copy_info(&tcap->INFO_ack, rts); 506 tcap->CAP_bits1 |= TC1_INFO; 507 } 508 509 qreply(q, mp); 510 } 511 512 /* 513 * This routine responds to T_INFO_REQ messages. It is called by rts_wput. 514 * Most of the T_INFO_ACK information is copied from rts_g_t_info_ack. 515 * The current state of the stream is copied from rts_state. 516 */ 517 static void 518 rts_info_req(queue_t *q, mblk_t *mp) 519 { 520 conn_t *connp = Q_TO_CONN(q); 521 rts_t *rts = connp->conn_rts; 522 523 mp = tpi_ack_alloc(mp, sizeof (rts_g_t_info_ack), M_PCPROTO, 524 T_INFO_ACK); 525 if (mp == NULL) 526 return; 527 rts_copy_info((struct T_info_ack *)mp->b_rptr, rts); 528 qreply(q, mp); 529 } 530 531 /* 532 * This routine gets default values of certain options whose default 533 * values are maintained by protcol specific code 534 */ 535 /* ARGSUSED */ 536 int 537 rts_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 538 { 539 /* no default value processed by protocol specific code currently */ 540 return (-1); 541 } 542 543 544 static int 545 rts_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 546 { 547 rts_t *rts = connp->conn_rts; 548 int *i1 = (int *)ptr; 549 550 ASSERT(RW_READ_HELD(&rts->rts_rwlock)); 551 552 switch (level) { 553 case SOL_SOCKET: 554 switch (name) { 555 case SO_DEBUG: 556 *i1 = rts->rts_debug; 557 break; 558 case SO_REUSEADDR: 559 *i1 = rts->rts_reuseaddr; 560 break; 561 case SO_TYPE: 562 *i1 = SOCK_RAW; 563 break; 564 /* 565 * The following three items are available here, 566 * but are only meaningful to IP. 567 */ 568 case SO_DONTROUTE: 569 *i1 = rts->rts_dontroute; 570 break; 571 case SO_USELOOPBACK: 572 *i1 = rts->rts_useloopback; 573 break; 574 case SO_BROADCAST: 575 *i1 = rts->rts_broadcast; 576 break; 577 case SO_PROTOTYPE: 578 *i1 = rts->rts_proto; 579 break; 580 /* 581 * The following two items can be manipulated, 582 * but changing them should do nothing. 583 */ 584 case SO_SNDBUF: 585 ASSERT(rts->rts_xmit_hiwat <= INT_MAX); 586 *i1 = (int)(rts->rts_xmit_hiwat); 587 break; 588 case SO_RCVBUF: 589 ASSERT(rts->rts_recv_hiwat <= INT_MAX); 590 *i1 = (int)(rts->rts_recv_hiwat); 591 break; 592 case SO_DOMAIN: 593 *i1 = PF_ROUTE; 594 break; 595 default: 596 return (-1); 597 } 598 break; 599 case SOL_ROUTE: 600 switch (name) { 601 case RT_AWARE: 602 mutex_enter(&connp->conn_lock); 603 *i1 = connp->conn_rtaware; 604 mutex_exit(&connp->conn_lock); 605 break; 606 } 607 break; 608 default: 609 return (-1); 610 } 611 return ((int)sizeof (int)); 612 } 613 614 /* ARGSUSED */ 615 static int 616 rts_do_opt_set(conn_t *connp, int level, int name, uint_t inlen, 617 uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, cred_t *cr, 618 void *thisdg_attrs, boolean_t checkonly) 619 { 620 int *i1 = (int *)invalp; 621 rts_t *rts = connp->conn_rts; 622 rts_stack_t *rtss = rts->rts_rtss; 623 624 ASSERT(RW_WRITE_HELD(&rts->rts_rwlock)); 625 626 /* 627 * For rts, we should have no ancillary data sent down 628 * (rts_wput doesn't handle options). 629 */ 630 ASSERT(thisdg_attrs == NULL); 631 632 /* 633 * For fixed length options, no sanity check 634 * of passed in length is done. It is assumed *_optcom_req() 635 * routines do the right thing. 636 */ 637 638 switch (level) { 639 case SOL_SOCKET: 640 switch (name) { 641 case SO_REUSEADDR: 642 if (!checkonly) 643 rts->rts_reuseaddr = *i1; 644 break; /* goto sizeof (int) option return */ 645 case SO_DEBUG: 646 if (!checkonly) 647 rts->rts_debug = *i1; 648 break; /* goto sizeof (int) option return */ 649 /* 650 * The following three items are available here, 651 * but are only meaningful to IP. 652 */ 653 case SO_DONTROUTE: 654 if (!checkonly) 655 rts->rts_dontroute = *i1; 656 break; /* goto sizeof (int) option return */ 657 case SO_USELOOPBACK: 658 if (!checkonly) 659 rts->rts_useloopback = *i1; 660 break; /* goto sizeof (int) option return */ 661 case SO_BROADCAST: 662 if (!checkonly) 663 rts->rts_broadcast = *i1; 664 break; /* goto sizeof (int) option return */ 665 case SO_PROTOTYPE: 666 /* 667 * Routing socket applications that call socket() with 668 * a third argument can filter which messages will be 669 * sent upstream thanks to sockfs. so_socket() sends 670 * down the SO_PROTOTYPE and rts_queue_input() 671 * implements the filtering. 672 */ 673 if (*i1 != AF_INET && *i1 != AF_INET6) 674 return (EPROTONOSUPPORT); 675 if (!checkonly) 676 rts->rts_proto = *i1; 677 break; /* goto sizeof (int) option return */ 678 /* 679 * The following two items can be manipulated, 680 * but changing them should do nothing. 681 */ 682 case SO_SNDBUF: 683 if (*i1 > rtss->rtss_max_buf) { 684 *outlenp = 0; 685 return (ENOBUFS); 686 } 687 if (!checkonly) { 688 rts->rts_xmit_hiwat = *i1; 689 if (!IPCL_IS_NONSTR(connp)) 690 connp->conn_wq->q_hiwat = *i1; 691 } 692 break; /* goto sizeof (int) option return */ 693 case SO_RCVBUF: 694 if (*i1 > rtss->rtss_max_buf) { 695 *outlenp = 0; 696 return (ENOBUFS); 697 } 698 if (!checkonly) { 699 rts->rts_recv_hiwat = *i1; 700 rw_exit(&rts->rts_rwlock); 701 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 702 *i1); 703 rw_enter(&rts->rts_rwlock, RW_WRITER); 704 } 705 706 break; /* goto sizeof (int) option return */ 707 default: 708 *outlenp = 0; 709 return (EINVAL); 710 } 711 break; 712 case SOL_ROUTE: 713 switch (name) { 714 case RT_AWARE: 715 if (!checkonly) { 716 mutex_enter(&connp->conn_lock); 717 connp->conn_rtaware = *i1; 718 mutex_exit(&connp->conn_lock); 719 } 720 break; /* goto sizeof (int) option return */ 721 default: 722 *outlenp = 0; 723 return (EINVAL); 724 } 725 break; 726 default: 727 *outlenp = 0; 728 return (EINVAL); 729 } 730 /* 731 * Common case of return from an option that is sizeof (int) 732 */ 733 if (invalp != outvalp) { 734 /* don't trust bcopy for identical src/dst */ 735 (void) bcopy(invalp, outvalp, inlen); 736 } 737 *outlenp = (t_uscalar_t)sizeof (int); 738 return (0); 739 } 740 741 static int 742 rts_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 743 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 744 void *thisdg_attrs, cred_t *cr) 745 { 746 boolean_t checkonly = B_FALSE; 747 748 if (optset_context) { 749 switch (optset_context) { 750 case SETFN_OPTCOM_CHECKONLY: 751 checkonly = B_TRUE; 752 /* 753 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 754 * inlen != 0 implies value supplied and 755 * we have to "pretend" to set it. 756 * inlen == 0 implies that there is no value part 757 * in T_CHECK request and just validation 758 * done elsewhere should be enough, we just return here. 759 */ 760 if (inlen == 0) { 761 *outlenp = 0; 762 return (0); 763 } 764 break; 765 case SETFN_OPTCOM_NEGOTIATE: 766 checkonly = B_FALSE; 767 break; 768 case SETFN_UD_NEGOTIATE: 769 case SETFN_CONN_NEGOTIATE: 770 checkonly = B_FALSE; 771 /* 772 * Negotiating local and "association-related" options 773 * through T_UNITDATA_REQ or T_CONN_{REQ,CON} 774 * Not allowed in this module. 775 */ 776 return (EINVAL); 777 default: 778 /* 779 * We should never get here 780 */ 781 *outlenp = 0; 782 return (EINVAL); 783 } 784 785 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 786 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 787 788 } 789 return (rts_do_opt_set(connp, level, name, inlen, invalp, outlenp, 790 outvalp, cr, thisdg_attrs, checkonly)); 791 792 } 793 794 /* 795 * This routine retrieves the current status of socket options. 796 * It returns the size of the option retrieved. 797 */ 798 int 799 rts_tpi_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 800 { 801 rts_t *rts; 802 int err; 803 804 rts = Q_TO_RTS(q); 805 rw_enter(&rts->rts_rwlock, RW_READER); 806 err = rts_opt_get(Q_TO_CONN(q), level, name, ptr); 807 rw_exit(&rts->rts_rwlock); 808 return (err); 809 } 810 811 /* 812 * This routine sets socket options. 813 */ 814 /*ARGSUSED*/ 815 int 816 rts_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 817 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 818 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 819 { 820 conn_t *connp = Q_TO_CONN(q); 821 int error; 822 rts_t *rts = connp->conn_rts; 823 824 825 rw_enter(&rts->rts_rwlock, RW_WRITER); 826 error = rts_opt_set(connp, optset_context, level, name, inlen, invalp, 827 outlenp, outvalp, thisdg_attrs, cr); 828 rw_exit(&rts->rts_rwlock); 829 return (error); 830 } 831 832 /* 833 * This routine retrieves the value of an ND variable in a rtsparam_t 834 * structure. It is called through nd_getset when a user reads the 835 * variable. 836 */ 837 /* ARGSUSED */ 838 static int 839 rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 840 { 841 rtsparam_t *rtspa = (rtsparam_t *)cp; 842 843 (void) mi_mpprintf(mp, "%u", rtspa->rts_param_value); 844 return (0); 845 } 846 847 /* 848 * Walk through the param array specified registering each element with the 849 * named dispatch (ND) handler. 850 */ 851 static boolean_t 852 rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt) 853 { 854 for (; cnt-- > 0; rtspa++) { 855 if (rtspa->rts_param_name != NULL && rtspa->rts_param_name[0]) { 856 if (!nd_load(ndp, rtspa->rts_param_name, 857 rts_param_get, rts_param_set, (caddr_t)rtspa)) { 858 nd_free(ndp); 859 return (B_FALSE); 860 } 861 } 862 } 863 return (B_TRUE); 864 } 865 866 /* This routine sets an ND variable in a rtsparam_t structure. */ 867 /* ARGSUSED */ 868 static int 869 rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 870 { 871 ulong_t new_value; 872 rtsparam_t *rtspa = (rtsparam_t *)cp; 873 874 /* 875 * Fail the request if the new value does not lie within the 876 * required bounds. 877 */ 878 if (ddi_strtoul(value, NULL, 10, &new_value) != 0 || 879 new_value < rtspa->rts_param_min || 880 new_value > rtspa->rts_param_max) { 881 return (EINVAL); 882 } 883 884 /* Set the new value */ 885 rtspa->rts_param_value = new_value; 886 return (0); 887 } 888 889 /* 890 * Empty rsrv routine which is used by rts_input to cause a wakeup 891 * of a thread in qwait. 892 */ 893 /*ARGSUSED*/ 894 static void 895 rts_rsrv(queue_t *q) 896 { 897 } 898 899 /* 900 * This routine handles synchronous messages passed downstream. It either 901 * consumes the message or passes it downstream; it never queues a 902 * a message. The data messages that go down are wrapped in an IOCTL 903 * message. 904 * 905 * Since it is synchronous, it waits for the M_IOCACK/M_IOCNAK so that 906 * it can return an immediate error (such as ENETUNREACH when adding a route). 907 * It uses the RTS_WRW_PENDING to ensure that each rts instance has only 908 * one M_IOCTL outstanding at any given time. 909 */ 910 static int 911 rts_wrw(queue_t *q, struiod_t *dp) 912 { 913 mblk_t *mp = dp->d_mp; 914 mblk_t *mp1; 915 int error; 916 rt_msghdr_t *rtm; 917 conn_t *connp = Q_TO_CONN(q); 918 rts_t *rts = connp->conn_rts; 919 920 while (rts->rts_flag & RTS_WRW_PENDING) { 921 if (qwait_rw(q)) { 922 rts->rts_error = EINTR; 923 goto err_ret; 924 } 925 } 926 rts->rts_flag |= RTS_WRW_PENDING; 927 928 if (isuioq(q) && (error = struioget(q, mp, dp, 0))) { 929 /* 930 * Uio error of some sort, so just return the error. 931 */ 932 rts->rts_error = error; 933 goto err_ret; 934 } 935 /* 936 * Pass the mblk (chain) onto wput(). 937 */ 938 dp->d_mp = 0; 939 940 switch (mp->b_datap->db_type) { 941 case M_PROTO: 942 case M_PCPROTO: 943 /* Expedite other than T_DATA_REQ to below the switch */ 944 if (((mp->b_wptr - mp->b_rptr) != 945 sizeof (struct T_data_req)) || 946 (((union T_primitives *)mp->b_rptr)->type != T_DATA_REQ)) 947 break; 948 if ((mp1 = mp->b_cont) == NULL) { 949 rts->rts_error = EINVAL; 950 goto err_ret; 951 } 952 freeb(mp); 953 mp = mp1; 954 /* FALLTHRU */ 955 case M_DATA: 956 /* 957 * The semantics of the routing socket is such that the rtm_pid 958 * field is automatically filled in during requests with the 959 * current process' pid. We do this here (where we still have 960 * user context) after checking we have at least a message the 961 * size of a routing message header. 962 */ 963 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) { 964 if (!pullupmsg(mp, sizeof (rt_msghdr_t))) { 965 rts->rts_error = EINVAL; 966 goto err_ret; 967 } 968 } 969 rtm = (rt_msghdr_t *)mp->b_rptr; 970 rtm->rtm_pid = curproc->p_pid; 971 break; 972 default: 973 break; 974 } 975 rts->rts_flag |= RTS_WPUT_PENDING; 976 rts_wput(q, mp); 977 while (rts->rts_flag & RTS_WPUT_PENDING) 978 if (qwait_rw(q)) { 979 /* RTS_WPUT_PENDING will be cleared below */ 980 rts->rts_error = EINTR; 981 break; 982 } 983 err_ret: 984 rts->rts_flag &= ~(RTS_WPUT_PENDING | RTS_WRW_PENDING); 985 return (rts->rts_error); 986 } 987 988 /* 989 * This routine handles all messages passed downstream. It either 990 * consumes the message or passes it downstream; it never queues a 991 * a message. The data messages that go down are wrapped in an IOCTL 992 * message. 993 * 994 * FIXME? Should we call IP rts_request directly? Could punt on returning 995 * errno in the case when it defers processing due to 996 * IPIF_CHANGING/ILL_CHANGING??? 997 */ 998 static void 999 rts_wput(queue_t *q, mblk_t *mp) 1000 { 1001 uchar_t *rptr = mp->b_rptr; 1002 mblk_t *mp1; 1003 conn_t *connp = Q_TO_CONN(q); 1004 rts_t *rts = connp->conn_rts; 1005 1006 switch (mp->b_datap->db_type) { 1007 case M_DATA: 1008 break; 1009 case M_PROTO: 1010 case M_PCPROTO: 1011 if ((mp->b_wptr - rptr) == sizeof (struct T_data_req)) { 1012 /* Expedite valid T_DATA_REQ to below the switch */ 1013 if (((union T_primitives *)rptr)->type == T_DATA_REQ) { 1014 mp1 = mp->b_cont; 1015 freeb(mp); 1016 if (mp1 == NULL) 1017 return; 1018 mp = mp1; 1019 break; 1020 } 1021 } 1022 /* FALLTHRU */ 1023 default: 1024 rts_wput_other(q, mp); 1025 return; 1026 } 1027 1028 1029 mp1 = rts_ioctl_alloc(mp, DB_CRED(mp)); 1030 if (mp1 == NULL) { 1031 ASSERT(rts != NULL); 1032 freemsg(mp); 1033 if (rts->rts_flag & RTS_WPUT_PENDING) { 1034 rts->rts_error = ENOMEM; 1035 rts->rts_flag &= ~RTS_WPUT_PENDING; 1036 } 1037 return; 1038 } 1039 ip_output(connp, mp1, q, IP_WPUT); 1040 } 1041 1042 1043 /* 1044 * Handles all the control message, if it 1045 * can not understand it, it will 1046 * pass down stream. 1047 */ 1048 static void 1049 rts_wput_other(queue_t *q, mblk_t *mp) 1050 { 1051 conn_t *connp = Q_TO_CONN(q); 1052 rts_t *rts = connp->conn_rts; 1053 uchar_t *rptr = mp->b_rptr; 1054 struct iocblk *iocp; 1055 cred_t *cr; 1056 rts_stack_t *rtss; 1057 1058 rtss = rts->rts_rtss; 1059 1060 cr = DB_CREDDEF(mp, connp->conn_cred); 1061 1062 switch (mp->b_datap->db_type) { 1063 case M_PROTO: 1064 case M_PCPROTO: 1065 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) { 1066 /* 1067 * If the message does not contain a PRIM_type, 1068 * throw it away. 1069 */ 1070 freemsg(mp); 1071 return; 1072 } 1073 switch (((union T_primitives *)rptr)->type) { 1074 case T_BIND_REQ: 1075 case O_T_BIND_REQ: 1076 rts_tpi_bind(q, mp); 1077 return; 1078 case T_UNBIND_REQ: 1079 rts_tpi_unbind(q, mp); 1080 return; 1081 case T_CAPABILITY_REQ: 1082 rts_capability_req(q, mp); 1083 return; 1084 case T_INFO_REQ: 1085 rts_info_req(q, mp); 1086 return; 1087 case T_SVR4_OPTMGMT_REQ: 1088 (void) svr4_optcom_req(q, mp, cr, &rts_opt_obj, 1089 B_TRUE); 1090 return; 1091 case T_OPTMGMT_REQ: 1092 (void) tpi_optcom_req(q, mp, cr, &rts_opt_obj, B_TRUE); 1093 return; 1094 case O_T_CONN_RES: 1095 case T_CONN_RES: 1096 case T_DISCON_REQ: 1097 /* Not supported by rts. */ 1098 rts_err_ack(q, mp, TNOTSUPPORT, 0); 1099 return; 1100 case T_DATA_REQ: 1101 case T_EXDATA_REQ: 1102 case T_ORDREL_REQ: 1103 /* Illegal for rts. */ 1104 freemsg(mp); 1105 (void) putnextctl1(RD(q), M_ERROR, EPROTO); 1106 return; 1107 1108 default: 1109 break; 1110 } 1111 break; 1112 case M_IOCTL: 1113 iocp = (struct iocblk *)mp->b_rptr; 1114 switch (iocp->ioc_cmd) { 1115 case ND_SET: 1116 case ND_GET: 1117 if (nd_getset(q, rtss->rtss_g_nd, mp)) { 1118 qreply(q, mp); 1119 return; 1120 } 1121 break; 1122 case TI_GETPEERNAME: 1123 mi_copyin(q, mp, NULL, 1124 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 1125 return; 1126 default: 1127 break; 1128 } 1129 case M_IOCDATA: 1130 rts_wput_iocdata(q, mp); 1131 return; 1132 default: 1133 break; 1134 } 1135 ip_output(connp, mp, q, IP_WPUT); 1136 } 1137 1138 /* 1139 * Called by rts_wput_other to handle all M_IOCDATA messages. 1140 */ 1141 static void 1142 rts_wput_iocdata(queue_t *q, mblk_t *mp) 1143 { 1144 conn_t *connp = Q_TO_CONN(q); 1145 struct sockaddr *rtsaddr; 1146 mblk_t *mp1; 1147 STRUCT_HANDLE(strbuf, sb); 1148 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 1149 1150 /* Make sure it is one of ours. */ 1151 switch (iocp->ioc_cmd) { 1152 case TI_GETPEERNAME: 1153 break; 1154 default: 1155 ip_output(connp, mp, q, IP_WPUT); 1156 return; 1157 } 1158 switch (mi_copy_state(q, mp, &mp1)) { 1159 case -1: 1160 return; 1161 case MI_COPY_CASE(MI_COPY_IN, 1): 1162 break; 1163 case MI_COPY_CASE(MI_COPY_OUT, 1): 1164 /* Copy out the strbuf. */ 1165 mi_copyout(q, mp); 1166 return; 1167 case MI_COPY_CASE(MI_COPY_OUT, 2): 1168 /* All done. */ 1169 mi_copy_done(q, mp, 0); 1170 return; 1171 default: 1172 mi_copy_done(q, mp, EPROTO); 1173 return; 1174 } 1175 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 1176 if (STRUCT_FGET(sb, maxlen) < (int)sizeof (sin_t)) { 1177 mi_copy_done(q, mp, EINVAL); 1178 return; 1179 } 1180 switch (iocp->ioc_cmd) { 1181 case TI_GETPEERNAME: 1182 break; 1183 default: 1184 mi_copy_done(q, mp, EPROTO); 1185 return; 1186 } 1187 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), sizeof (sin_t), 1188 B_TRUE); 1189 if (mp1 == NULL) 1190 return; 1191 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 1192 rtsaddr = (struct sockaddr *)mp1->b_rptr; 1193 mp1->b_wptr = (uchar_t *)&rtsaddr[1]; 1194 bzero(rtsaddr, sizeof (struct sockaddr)); 1195 rtsaddr->sa_family = AF_ROUTE; 1196 /* Copy out the address */ 1197 mi_copyout(q, mp); 1198 } 1199 1200 /*ARGSUSED2*/ 1201 static void 1202 rts_input(void *arg1, mblk_t *mp, void *arg2) 1203 { 1204 conn_t *connp = (conn_t *)arg1; 1205 rts_t *rts = connp->conn_rts; 1206 struct iocblk *iocp; 1207 mblk_t *mp1; 1208 struct T_data_ind *tdi; 1209 int error; 1210 1211 switch (mp->b_datap->db_type) { 1212 case M_IOCACK: 1213 case M_IOCNAK: 1214 iocp = (struct iocblk *)mp->b_rptr; 1215 if (IPCL_IS_NONSTR(connp)) { 1216 ASSERT(rts->rts_flag & (RTS_REQ_PENDING)); 1217 mutex_enter(&rts->rts_send_mutex); 1218 rts->rts_flag &= ~RTS_REQ_INPROG; 1219 rts->rts_error = iocp->ioc_error; 1220 cv_signal(&rts->rts_io_cv); 1221 mutex_exit(&rts->rts_send_mutex); 1222 freemsg(mp); 1223 return; 1224 } else { 1225 if (rts->rts_flag & (RTS_WPUT_PENDING)) { 1226 rts->rts_flag &= ~RTS_WPUT_PENDING; 1227 rts->rts_error = iocp->ioc_error; 1228 /* 1229 * Tell rts_wvw/qwait that we are done. 1230 * Note: there is no qwait_wakeup() we can use. 1231 */ 1232 qenable(connp->conn_rq); 1233 freemsg(mp); 1234 return; 1235 } 1236 } 1237 break; 1238 case M_DATA: 1239 /* 1240 * Prepend T_DATA_IND to prevent the stream head from 1241 * consolidating multiple messages together. 1242 * If the allocation fails just send up the M_DATA. 1243 */ 1244 mp1 = allocb(sizeof (*tdi), BPRI_MED); 1245 if (mp1 != NULL) { 1246 mp1->b_cont = mp; 1247 mp = mp1; 1248 1249 mp->b_datap->db_type = M_PROTO; 1250 mp->b_wptr += sizeof (*tdi); 1251 tdi = (struct T_data_ind *)mp->b_rptr; 1252 tdi->PRIM_type = T_DATA_IND; 1253 tdi->MORE_flag = 0; 1254 } 1255 break; 1256 default: 1257 break; 1258 } 1259 1260 if (IPCL_IS_NONSTR(connp)) { 1261 if ((*connp->conn_upcalls->su_recv) 1262 (connp->conn_upper_handle, mp, msgdsize(mp), 0, 1263 &error, NULL) < 0) { 1264 ASSERT(error == ENOSPC); 1265 /* 1266 * Let's confirm hoding the lock that 1267 * we are out of recv space. 1268 */ 1269 mutex_enter(&rts->rts_recv_mutex); 1270 if ((*connp->conn_upcalls->su_recv) 1271 (connp->conn_upper_handle, NULL, 0, 0, 1272 &error, NULL) < 0) { 1273 ASSERT(error == ENOSPC); 1274 connp->conn_flow_cntrld = B_TRUE; 1275 } 1276 mutex_exit(&rts->rts_recv_mutex); 1277 } 1278 } else { 1279 putnext(connp->conn_rq, mp); 1280 } 1281 } 1282 1283 1284 void 1285 rts_ddi_g_init(void) 1286 { 1287 rts_max_optsize = optcom_max_optsize(rts_opt_obj.odb_opt_des_arr, 1288 rts_opt_obj.odb_opt_arr_cnt); 1289 1290 /* 1291 * We want to be informed each time a stack is created or 1292 * destroyed in the kernel, so we can maintain the 1293 * set of rts_stack_t's. 1294 */ 1295 netstack_register(NS_RTS, rts_stack_init, NULL, rts_stack_fini); 1296 } 1297 1298 void 1299 rts_ddi_g_destroy(void) 1300 { 1301 netstack_unregister(NS_RTS); 1302 } 1303 1304 #define INET_NAME "ip" 1305 1306 /* 1307 * Initialize the RTS stack instance. 1308 */ 1309 /* ARGSUSED */ 1310 static void * 1311 rts_stack_init(netstackid_t stackid, netstack_t *ns) 1312 { 1313 rts_stack_t *rtss; 1314 rtsparam_t *pa; 1315 int error = 0; 1316 major_t major; 1317 1318 rtss = (rts_stack_t *)kmem_zalloc(sizeof (*rtss), KM_SLEEP); 1319 rtss->rtss_netstack = ns; 1320 1321 pa = (rtsparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 1322 rtss->rtss_params = pa; 1323 bcopy(lcl_param_arr, rtss->rtss_params, sizeof (lcl_param_arr)); 1324 1325 (void) rts_param_register(&rtss->rtss_g_nd, 1326 rtss->rtss_params, A_CNT(lcl_param_arr)); 1327 1328 major = mod_name_to_major(INET_NAME); 1329 error = ldi_ident_from_major(major, &rtss->rtss_ldi_ident); 1330 ASSERT(error == 0); 1331 return (rtss); 1332 } 1333 1334 /* 1335 * Free the RTS stack instance. 1336 */ 1337 /* ARGSUSED */ 1338 static void 1339 rts_stack_fini(netstackid_t stackid, void *arg) 1340 { 1341 rts_stack_t *rtss = (rts_stack_t *)arg; 1342 1343 nd_free(&rtss->rtss_g_nd); 1344 kmem_free(rtss->rtss_params, sizeof (lcl_param_arr)); 1345 rtss->rtss_params = NULL; 1346 ldi_ident_release(rtss->rtss_ldi_ident); 1347 kmem_free(rtss, sizeof (*rtss)); 1348 } 1349 1350 /* ARGSUSED */ 1351 int 1352 rts_accept(sock_lower_handle_t lproto_handle, 1353 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 1354 cred_t *cr) 1355 { 1356 return (EINVAL); 1357 } 1358 1359 /* ARGSUSED */ 1360 static int 1361 rts_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 1362 socklen_t len, cred_t *cr) 1363 { 1364 /* 1365 * rebind not allowed 1366 */ 1367 return (EINVAL); 1368 } 1369 1370 /* ARGSUSED */ 1371 int 1372 rts_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 1373 { 1374 return (EINVAL); 1375 } 1376 1377 /* ARGSUSED */ 1378 int 1379 rts_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 1380 socklen_t len, sock_connid_t *id, cred_t *cr) 1381 { 1382 /* 1383 * rts sockets start out as bound and connected 1384 */ 1385 *id = 0; 1386 return (EISCONN); 1387 } 1388 1389 /* ARGSUSED */ 1390 int 1391 rts_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 1392 socklen_t *addrlen, cred_t *cr) 1393 { 1394 conn_t *connp = (conn_t *)proto_handle; 1395 rts_t *rts = connp->conn_rts; 1396 1397 ASSERT(rts != NULL); 1398 1399 bzero(addr, sizeof (struct sockaddr)); 1400 addr->sa_family = AF_ROUTE; 1401 *addrlen = sizeof (struct sockaddr); 1402 1403 return (0); 1404 } 1405 1406 /* ARGSUSED */ 1407 int 1408 rts_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 1409 socklen_t *addrlen, cred_t *cr) 1410 { 1411 return (EOPNOTSUPP); 1412 } 1413 1414 static int 1415 rts_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 1416 void *optvalp, socklen_t *optlen, cred_t *cr) 1417 { 1418 conn_t *connp = (conn_t *)proto_handle; 1419 rts_t *rts = connp->conn_rts; 1420 int error; 1421 t_uscalar_t max_optbuf_len; 1422 void *optvalp_buf; 1423 int len; 1424 1425 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 1426 rts_opt_obj.odb_opt_des_arr, 1427 rts_opt_obj.odb_opt_arr_cnt, 1428 rts_opt_obj.odb_topmost_tpiprovider, 1429 B_FALSE, B_TRUE, cr); 1430 if (error != 0) { 1431 if (error < 0) 1432 error = proto_tlitosyserr(-error); 1433 return (error); 1434 } 1435 1436 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 1437 rw_enter(&rts->rts_rwlock, RW_READER); 1438 len = rts_opt_get(connp, level, option_name, optvalp_buf); 1439 rw_exit(&rts->rts_rwlock); 1440 1441 if (len < 0) { 1442 /* 1443 * Pass on to IP 1444 */ 1445 error = ip_get_options(connp, level, option_name, 1446 optvalp, optlen, cr); 1447 } else { 1448 /* 1449 * update optlen and copy option value 1450 */ 1451 t_uscalar_t size = MIN(len, *optlen); 1452 bcopy(optvalp_buf, optvalp, size); 1453 bcopy(&size, optlen, sizeof (size)); 1454 error = 0; 1455 } 1456 1457 kmem_free(optvalp_buf, max_optbuf_len); 1458 return (error); 1459 } 1460 1461 static int 1462 rts_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 1463 const void *optvalp, socklen_t optlen, cred_t *cr) 1464 { 1465 conn_t *connp = (conn_t *)proto_handle; 1466 rts_t *rts = connp->conn_rts; 1467 int error; 1468 1469 error = proto_opt_check(level, option_name, optlen, NULL, 1470 rts_opt_obj.odb_opt_des_arr, 1471 rts_opt_obj.odb_opt_arr_cnt, 1472 rts_opt_obj.odb_topmost_tpiprovider, 1473 B_TRUE, B_FALSE, cr); 1474 1475 if (error != 0) { 1476 if (error < 0) 1477 error = proto_tlitosyserr(-error); 1478 return (error); 1479 } 1480 1481 rw_enter(&rts->rts_rwlock, RW_WRITER); 1482 error = rts_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 1483 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 1484 NULL, cr); 1485 rw_exit(&rts->rts_rwlock); 1486 1487 ASSERT(error >= 0); 1488 1489 return (error); 1490 } 1491 1492 /* ARGSUSED */ 1493 static int 1494 rts_send(sock_lower_handle_t proto_handle, mblk_t *mp, 1495 struct nmsghdr *msg, cred_t *cr) 1496 { 1497 mblk_t *mp1; 1498 conn_t *connp = (conn_t *)proto_handle; 1499 rts_t *rts = connp->conn_rts; 1500 rt_msghdr_t *rtm; 1501 int error; 1502 1503 ASSERT(DB_TYPE(mp) == M_DATA); 1504 /* 1505 * The semantics of the routing socket is such that the rtm_pid 1506 * field is automatically filled in during requests with the 1507 * current process' pid. We do this here (where we still have 1508 * user context) after checking we have at least a message the 1509 * size of a routing message header. 1510 */ 1511 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) { 1512 if (!pullupmsg(mp, sizeof (rt_msghdr_t))) { 1513 rts->rts_error = EINVAL; 1514 freemsg(mp); 1515 return (rts->rts_error); 1516 } 1517 } 1518 rtm = (rt_msghdr_t *)mp->b_rptr; 1519 rtm->rtm_pid = curproc->p_pid; 1520 1521 mp1 = rts_ioctl_alloc(mp, DB_CRED(mp)); 1522 if (mp1 == NULL) { 1523 ASSERT(rts != NULL); 1524 freemsg(mp); 1525 return (ENOMEM); 1526 } 1527 1528 /* 1529 * Allow only one outstanding request(ioctl) at any given time 1530 */ 1531 mutex_enter(&rts->rts_send_mutex); 1532 while (rts->rts_flag & RTS_REQ_PENDING) { 1533 int ret; 1534 1535 ret = cv_wait_sig(&rts->rts_send_cv, &rts->rts_send_mutex); 1536 if (ret <= 0) { 1537 mutex_exit(&rts->rts_send_mutex); 1538 freemsg(mp); 1539 return (EINTR); 1540 } 1541 } 1542 1543 rts->rts_flag |= RTS_REQ_PENDING; 1544 1545 rts->rts_flag |= RTS_REQ_INPROG; 1546 1547 mutex_exit(&rts->rts_send_mutex); 1548 1549 CONN_INC_REF(connp); 1550 1551 error = ip_rts_request_common(rts->rts_connp->conn_wq, mp1, connp, 1552 DB_CREDDEF(mp, connp->conn_cred)); 1553 1554 mutex_enter(&rts->rts_send_mutex); 1555 if (error == EINPROGRESS) { 1556 ASSERT(rts->rts_flag & RTS_REQ_INPROG); 1557 if (rts->rts_flag & RTS_REQ_INPROG) { 1558 /* 1559 * Once the request has been issued we wait for 1560 * completion 1561 */ 1562 cv_wait(&rts->rts_io_cv, &rts->rts_send_mutex); 1563 error = rts->rts_error; 1564 } 1565 } 1566 1567 ASSERT((error != 0) || !(rts->rts_flag & RTS_REQ_INPROG)); 1568 ASSERT(MUTEX_HELD(&rts->rts_send_mutex)); 1569 1570 rts->rts_flag &= ~(RTS_REQ_PENDING | RTS_REQ_INPROG); 1571 cv_signal(&rts->rts_send_cv); 1572 mutex_exit(&rts->rts_send_mutex); 1573 return (error); 1574 } 1575 1576 /* ARGSUSED */ 1577 sock_lower_handle_t 1578 rts_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 1579 uint_t *smodep, int *errorp, int flags, cred_t *credp) 1580 { 1581 conn_t *connp; 1582 rts_t *rts; 1583 rts_stack_t *rtss; 1584 1585 if (family != AF_ROUTE || type != SOCK_RAW || 1586 (proto != 0 && proto != AF_INET && proto != AF_INET6)) { 1587 *errorp = EPROTONOSUPPORT; 1588 return (NULL); 1589 } 1590 1591 connp = rts_open(flags, credp); 1592 ASSERT(connp != NULL); 1593 connp->conn_flags |= IPCL_NONSTR; 1594 1595 rts = connp->conn_rts; 1596 rtss = rts->rts_rtss; 1597 1598 rts->rts_xmit_hiwat = rtss->rtss_xmit_hiwat; 1599 rts->rts_xmit_lowat = rtss->rtss_xmit_lowat; 1600 rts->rts_recv_hiwat = rtss->rtss_recv_hiwat; 1601 rts->rts_recv_lowat = rts_mod_info.mi_lowat; 1602 1603 ASSERT(rtss->rtss_ldi_ident != NULL); 1604 1605 *errorp = ip_create_helper_stream(connp, rtss->rtss_ldi_ident); 1606 if (*errorp != 0) { 1607 #ifdef DEBUG 1608 cmn_err(CE_CONT, "rts_create: create of IP helper stream" 1609 " failed\n"); 1610 #endif 1611 (void) rts_close((sock_lower_handle_t)connp, 0, credp); 1612 return (NULL); 1613 } 1614 1615 mutex_enter(&connp->conn_lock); 1616 connp->conn_state_flags &= ~CONN_INCIPIENT; 1617 mutex_exit(&connp->conn_lock); 1618 1619 *errorp = 0; 1620 *smodep = SM_ATOMIC; 1621 *sock_downcalls = &sock_rts_downcalls; 1622 return ((sock_lower_handle_t)connp); 1623 } 1624 1625 /* ARGSUSED */ 1626 void 1627 rts_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 1628 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 1629 { 1630 conn_t *connp = (conn_t *)proto_handle; 1631 rts_t *rts = connp->conn_rts; 1632 rts_stack_t *rtss = rts->rts_rtss; 1633 struct sock_proto_props sopp; 1634 1635 connp->conn_upcalls = sock_upcalls; 1636 connp->conn_upper_handle = sock_handle; 1637 1638 sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 1639 SOCKOPT_MAXBLK | SOCKOPT_MAXPSZ | SOCKOPT_MINPSZ; 1640 sopp.sopp_wroff = 0; 1641 sopp.sopp_rxhiwat = rtss->rtss_recv_hiwat; 1642 sopp.sopp_rxlowat = rts_mod_info.mi_lowat; 1643 sopp.sopp_maxblk = INFPSZ; 1644 sopp.sopp_maxpsz = rts_mod_info.mi_maxpsz; 1645 sopp.sopp_minpsz = (rts_mod_info.mi_minpsz == 1) ? 0 : 1646 rts_mod_info.mi_minpsz; 1647 1648 (*connp->conn_upcalls->su_set_proto_props) 1649 (connp->conn_upper_handle, &sopp); 1650 1651 /* 1652 * We treat it as already connected for routing socket. 1653 */ 1654 (*connp->conn_upcalls->su_connected) 1655 (connp->conn_upper_handle, 0, NULL, -1); 1656 1657 /* 1658 * Indicate the down IP module that this is a routing socket 1659 * client by sending an RTS IOCTL without any user data. Although 1660 * this is just a notification message (without any real routing 1661 * request), we pass in any credential for correctness sake. 1662 */ 1663 ip_rts_register(connp); 1664 } 1665 1666 /* ARGSUSED */ 1667 int 1668 rts_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 1669 { 1670 conn_t *connp = (conn_t *)proto_handle; 1671 1672 ASSERT(connp != NULL && IPCL_IS_RTS(connp)); 1673 return (rts_common_close(NULL, connp)); 1674 } 1675 1676 /* ARGSUSED */ 1677 int 1678 rts_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 1679 { 1680 conn_t *connp = (conn_t *)proto_handle; 1681 1682 /* shut down the send side */ 1683 if (how != SHUT_RD) 1684 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 1685 SOCK_OPCTL_SHUT_SEND, 0); 1686 /* shut down the recv side */ 1687 if (how != SHUT_WR) 1688 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 1689 SOCK_OPCTL_SHUT_RECV, 0); 1690 return (0); 1691 } 1692 1693 void 1694 rts_clr_flowctrl(sock_lower_handle_t proto_handle) 1695 { 1696 conn_t *connp = (conn_t *)proto_handle; 1697 rts_t *rts = connp->conn_rts; 1698 1699 mutex_enter(&rts->rts_recv_mutex); 1700 connp->conn_flow_cntrld = B_FALSE; 1701 mutex_exit(&rts->rts_recv_mutex); 1702 } 1703 1704 int 1705 rts_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 1706 int mode, int32_t *rvalp, cred_t *cr) 1707 { 1708 conn_t *connp = (conn_t *)proto_handle; 1709 int error; 1710 1711 switch (cmd) { 1712 case ND_SET: 1713 case ND_GET: 1714 case TI_GETPEERNAME: 1715 case TI_GETMYNAME: 1716 #ifdef DEUG 1717 cmn_err(CE_CONT, "rts_ioctl cmd 0x%x on non sreams" 1718 " socket", cmd); 1719 #endif 1720 error = EINVAL; 1721 break; 1722 default: 1723 /* 1724 * Pass on to IP using helper stream 1725 */ 1726 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 1727 cmd, arg, mode, cr, rvalp); 1728 break; 1729 } 1730 1731 return (error); 1732 } 1733 1734 sock_downcalls_t sock_rts_downcalls = { 1735 rts_activate, 1736 rts_accept, 1737 rts_bind, 1738 rts_listen, 1739 rts_connect, 1740 rts_getpeername, 1741 rts_getsockname, 1742 rts_getsockopt, 1743 rts_setsockopt, 1744 rts_send, 1745 NULL, 1746 NULL, 1747 NULL, 1748 rts_shutdown, 1749 rts_clr_flowctrl, 1750 rts_ioctl, 1751 rts_close 1752 }; 1753