1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/stream.h> 28 #include <sys/strsubr.h> 29 #include <sys/stropts.h> 30 #include <sys/strsun.h> 31 #include <sys/strlog.h> 32 #define _SUN_TPI_VERSION 2 33 #include <sys/tihdr.h> 34 #include <sys/timod.h> 35 #include <sys/ddi.h> 36 #include <sys/sunddi.h> 37 #include <sys/cmn_err.h> 38 #include <sys/proc.h> 39 #include <sys/suntpi.h> 40 #include <sys/policy.h> 41 #include <sys/zone.h> 42 #include <sys/disp.h> 43 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <netinet/in.h> 47 48 #include <inet/common.h> 49 #include <netinet/ip6.h> 50 #include <inet/ip.h> 51 #include <inet/ipclassifier.h> 52 #include <inet/proto_set.h> 53 #include <inet/nd.h> 54 #include <inet/optcom.h> 55 #include <netinet/ip_mroute.h> 56 #include <sys/isa_defs.h> 57 #include <net/route.h> 58 59 #include <inet/rts_impl.h> 60 #include <inet/ip_rts.h> 61 62 /* 63 * This is a transport provider for routing sockets. Downstream messages are 64 * wrapped with a IP_IOCTL header, and ip_wput_ioctl calls the appropriate entry 65 * in the ip_ioctl_ftbl callout table to pass the routing socket data into IP. 66 * Upstream messages are generated for listeners of the routing socket as well 67 * as the message sender (unless they have turned off their end using 68 * SO_USELOOPBACK or shutdown(3n)). Upstream messages may also be generated 69 * asynchronously when: 70 * 71 * Interfaces are brought up or down. 72 * Addresses are assigned to interfaces. 73 * ICMP redirects are processed and a IRE_HOST/RTF_DYNAMIC is installed. 74 * No route is found while sending a packet. 75 * 76 * Since all we do is reformat the messages between routing socket and 77 * ioctl forms, no synchronization is necessary in this module; all 78 * the dirty work is done down in ip. 79 */ 80 81 /* Default structure copied into T_INFO_ACK messages */ 82 static struct T_info_ack rts_g_t_info_ack = { 83 T_INFO_ACK, 84 T_INFINITE, /* TSDU_size. Maximum size messages. */ 85 T_INVALID, /* ETSDU_size. No expedited data. */ 86 T_INVALID, /* CDATA_size. No connect data. */ 87 T_INVALID, /* DDATA_size. No disconnect data. */ 88 0, /* ADDR_size. */ 89 0, /* OPT_size - not initialized here */ 90 64 * 1024, /* TIDU_size. rts allows maximum size messages. */ 91 T_COTS, /* SERV_type. rts supports connection oriented. */ 92 TS_UNBND, /* CURRENT_state. This is set from rts_state. */ 93 (XPG4_1) /* PROVIDER_flag */ 94 }; 95 96 /* 97 * Table of ND variables supported by rts. These are loaded into rts_g_nd 98 * in rts_open. 99 * All of these are alterable, within the min/max values given, at run time. 100 */ 101 static rtsparam_t lcl_param_arr[] = { 102 /* min max value name */ 103 { 4096, 65536, 8192, "rts_xmit_hiwat"}, 104 { 0, 65536, 1024, "rts_xmit_lowat"}, 105 { 4096, 65536, 8192, "rts_recv_hiwat"}, 106 { 65536, 1024*1024*1024, 256*1024, "rts_max_buf"}, 107 }; 108 #define rtss_xmit_hiwat rtss_params[0].rts_param_value 109 #define rtss_xmit_lowat rtss_params[1].rts_param_value 110 #define rtss_recv_hiwat rtss_params[2].rts_param_value 111 #define rtss_max_buf rtss_params[3].rts_param_value 112 113 static void rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, 114 int sys_error); 115 static void rts_input(void *, mblk_t *, void *, ip_recv_attr_t *); 116 static void rts_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *); 117 static mblk_t *rts_ioctl_alloc(mblk_t *data); 118 static int rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 119 static boolean_t rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt); 120 static int rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 121 cred_t *cr); 122 static void rts_rsrv(queue_t *q); 123 static void *rts_stack_init(netstackid_t stackid, netstack_t *ns); 124 static void rts_stack_fini(netstackid_t stackid, void *arg); 125 static void rts_wput(queue_t *q, mblk_t *mp); 126 static void rts_wput_iocdata(queue_t *q, mblk_t *mp); 127 static void rts_wput_other(queue_t *q, mblk_t *mp); 128 static int rts_wrw(queue_t *q, struiod_t *dp); 129 130 static int rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, 131 cred_t *credp); 132 static conn_t *rts_open(int flag, cred_t *credp); 133 134 static int rts_stream_close(queue_t *q); 135 static int rts_close(sock_lower_handle_t proto_handle, int flags, 136 cred_t *cr); 137 138 static struct module_info rts_mod_info = { 139 129, "rts", 1, INFPSZ, 512, 128 140 }; 141 142 static struct qinit rtsrinit = { 143 NULL, (pfi_t)rts_rsrv, rts_stream_open, rts_stream_close, NULL, 144 &rts_mod_info 145 }; 146 147 static struct qinit rtswinit = { 148 (pfi_t)rts_wput, NULL, NULL, NULL, NULL, &rts_mod_info, 149 NULL, (pfi_t)rts_wrw, NULL, STRUIOT_STANDARD 150 }; 151 152 struct streamtab rtsinfo = { 153 &rtsrinit, &rtswinit 154 }; 155 156 /* 157 * This routine allocates the necessary 158 * message blocks for IOCTL wrapping the 159 * user data. 160 */ 161 static mblk_t * 162 rts_ioctl_alloc(mblk_t *data) 163 { 164 mblk_t *mp = NULL; 165 mblk_t *mp1 = NULL; 166 ipllc_t *ipllc; 167 struct iocblk *ioc; 168 169 mp = allocb_tmpl(sizeof (ipllc_t), data); 170 if (mp == NULL) 171 return (NULL); 172 mp1 = allocb_tmpl(sizeof (struct iocblk), data); 173 if (mp1 == NULL) { 174 freeb(mp); 175 return (NULL); 176 } 177 178 ipllc = (ipllc_t *)mp->b_rptr; 179 ipllc->ipllc_cmd = IP_IOC_RTS_REQUEST; 180 ipllc->ipllc_name_offset = 0; 181 ipllc->ipllc_name_length = 0; 182 mp->b_wptr += sizeof (ipllc_t); 183 mp->b_cont = data; 184 185 ioc = (struct iocblk *)mp1->b_rptr; 186 ioc->ioc_cmd = IP_IOCTL; 187 ioc->ioc_error = 0; 188 ioc->ioc_cr = NULL; 189 ioc->ioc_count = msgdsize(mp); 190 mp1->b_wptr += sizeof (struct iocblk); 191 mp1->b_datap->db_type = M_IOCTL; 192 mp1->b_cont = mp; 193 194 return (mp1); 195 } 196 197 /* 198 * This routine closes rts stream, by disabling 199 * put/srv routines and freeing the this module 200 * internal datastructure. 201 */ 202 static int 203 rts_common_close(queue_t *q, conn_t *connp) 204 { 205 206 ASSERT(connp != NULL && IPCL_IS_RTS(connp)); 207 208 ip_rts_unregister(connp); 209 210 ip_quiesce_conn(connp); 211 212 if (!IPCL_IS_NONSTR(connp)) { 213 qprocsoff(q); 214 } 215 216 /* 217 * Now we are truly single threaded on this stream, and can 218 * delete the things hanging off the connp, and finally the connp. 219 * We removed this connp from the fanout list, it cannot be 220 * accessed thru the fanouts, and we already waited for the 221 * conn_ref to drop to 0. We are already in close, so 222 * there cannot be any other thread from the top. qprocsoff 223 * has completed, and service has completed or won't run in 224 * future. 225 */ 226 ASSERT(connp->conn_ref == 1); 227 228 if (!IPCL_IS_NONSTR(connp)) { 229 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 230 } else { 231 ip_free_helper_stream(connp); 232 } 233 234 connp->conn_ref--; 235 ipcl_conn_destroy(connp); 236 return (0); 237 } 238 239 static int 240 rts_stream_close(queue_t *q) 241 { 242 conn_t *connp = Q_TO_CONN(q); 243 244 (void) rts_common_close(q, connp); 245 q->q_ptr = WR(q)->q_ptr = NULL; 246 return (0); 247 } 248 249 /* 250 * This is the open routine for routing socket. It allocates 251 * rts_t structure for the stream and tells IP that it is a routing socket. 252 */ 253 /* ARGSUSED */ 254 static int 255 rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 256 { 257 conn_t *connp; 258 dev_t conn_dev; 259 rts_t *rts; 260 261 /* If the stream is already open, return immediately. */ 262 if (q->q_ptr != NULL) 263 return (0); 264 265 if (sflag == MODOPEN) 266 return (EINVAL); 267 268 /* 269 * Since RTS is not used so heavily, allocating from the small 270 * arena should be sufficient. 271 */ 272 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 273 return (EBUSY); 274 } 275 276 connp = rts_open(flag, credp); 277 ASSERT(connp != NULL); 278 279 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 280 281 rts = connp->conn_rts; 282 rw_enter(&rts->rts_rwlock, RW_WRITER); 283 connp->conn_dev = conn_dev; 284 connp->conn_minor_arena = ip_minor_arena_sa; 285 286 q->q_ptr = connp; 287 WR(q)->q_ptr = connp; 288 connp->conn_rq = q; 289 connp->conn_wq = WR(q); 290 291 WR(q)->q_hiwat = connp->conn_sndbuf; 292 WR(q)->q_lowat = connp->conn_sndlowat; 293 294 mutex_enter(&connp->conn_lock); 295 connp->conn_state_flags &= ~CONN_INCIPIENT; 296 mutex_exit(&connp->conn_lock); 297 rw_exit(&rts->rts_rwlock); 298 299 /* Indicate to IP that this is a routing socket client */ 300 ip_rts_register(connp); 301 302 qprocson(q); 303 304 return (0); 305 } 306 307 /* ARGSUSED */ 308 static conn_t * 309 rts_open(int flag, cred_t *credp) 310 { 311 netstack_t *ns; 312 rts_stack_t *rtss; 313 rts_t *rts; 314 conn_t *connp; 315 zoneid_t zoneid; 316 317 ns = netstack_find_by_cred(credp); 318 ASSERT(ns != NULL); 319 rtss = ns->netstack_rts; 320 ASSERT(rtss != NULL); 321 322 /* 323 * For exclusive stacks we set the zoneid to zero 324 * to make RTS operate as if in the global zone. 325 */ 326 if (ns->netstack_stackid != GLOBAL_NETSTACKID) 327 zoneid = GLOBAL_ZONEID; 328 else 329 zoneid = crgetzoneid(credp); 330 331 connp = ipcl_conn_create(IPCL_RTSCONN, KM_SLEEP, ns); 332 rts = connp->conn_rts; 333 334 /* 335 * ipcl_conn_create did a netstack_hold. Undo the hold that was 336 * done by netstack_find_by_cred() 337 */ 338 netstack_rele(ns); 339 340 rw_enter(&rts->rts_rwlock, RW_WRITER); 341 ASSERT(connp->conn_rts == rts); 342 ASSERT(rts->rts_connp == connp); 343 344 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 345 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 346 connp->conn_ixa->ixa_zoneid = zoneid; 347 connp->conn_zoneid = zoneid; 348 connp->conn_flow_cntrld = B_FALSE; 349 350 rts->rts_rtss = rtss; 351 352 connp->conn_rcvbuf = rtss->rtss_recv_hiwat; 353 connp->conn_sndbuf = rtss->rtss_xmit_hiwat; 354 connp->conn_sndlowat = rtss->rtss_xmit_lowat; 355 connp->conn_rcvlowat = rts_mod_info.mi_lowat; 356 357 connp->conn_family = PF_ROUTE; 358 connp->conn_so_type = SOCK_RAW; 359 /* SO_PROTOTYPE is always sent down by sockfs setting conn_proto */ 360 361 connp->conn_recv = rts_input; 362 connp->conn_recvicmp = rts_icmp_input; 363 364 crhold(credp); 365 connp->conn_cred = credp; 366 connp->conn_cpid = curproc->p_pid; 367 /* Cache things in ixa without an extra refhold */ 368 connp->conn_ixa->ixa_cred = connp->conn_cred; 369 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 370 if (is_system_labeled()) 371 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 372 373 /* 374 * rts sockets start out as bound and connected 375 * For streams based sockets, socket state is set to 376 * SS_ISBOUND | SS_ISCONNECTED in so_strinit. 377 */ 378 rts->rts_state = TS_DATA_XFER; 379 rw_exit(&rts->rts_rwlock); 380 381 return (connp); 382 } 383 384 /* 385 * This routine creates a T_ERROR_ACK message and passes it upstream. 386 */ 387 static void 388 rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) 389 { 390 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 391 qreply(q, mp); 392 } 393 394 /* 395 * This routine creates a T_OK_ACK message and passes it upstream. 396 */ 397 static void 398 rts_ok_ack(queue_t *q, mblk_t *mp) 399 { 400 if ((mp = mi_tpi_ok_ack_alloc(mp)) != NULL) 401 qreply(q, mp); 402 } 403 404 /* 405 * This routine is called by rts_wput to handle T_UNBIND_REQ messages. 406 */ 407 static void 408 rts_tpi_unbind(queue_t *q, mblk_t *mp) 409 { 410 conn_t *connp = Q_TO_CONN(q); 411 rts_t *rts = connp->conn_rts; 412 413 /* If a bind has not been done, we can't unbind. */ 414 if (rts->rts_state != TS_IDLE) { 415 rts_err_ack(q, mp, TOUTSTATE, 0); 416 return; 417 } 418 rts->rts_state = TS_UNBND; 419 rts_ok_ack(q, mp); 420 } 421 422 /* 423 * This routine is called to handle each 424 * O_T_BIND_REQ/T_BIND_REQ message passed to 425 * rts_wput. Note: This routine works with both 426 * O_T_BIND_REQ and T_BIND_REQ semantics. 427 */ 428 static void 429 rts_tpi_bind(queue_t *q, mblk_t *mp) 430 { 431 conn_t *connp = Q_TO_CONN(q); 432 rts_t *rts = connp->conn_rts; 433 struct T_bind_req *tbr; 434 435 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 436 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 437 "rts_tpi_bind: bad data, %d", rts->rts_state); 438 rts_err_ack(q, mp, TBADADDR, 0); 439 return; 440 } 441 if (rts->rts_state != TS_UNBND) { 442 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 443 "rts_tpi_bind: bad state, %d", rts->rts_state); 444 rts_err_ack(q, mp, TOUTSTATE, 0); 445 return; 446 } 447 tbr = (struct T_bind_req *)mp->b_rptr; 448 if (tbr->ADDR_length != 0) { 449 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 450 "rts_tpi_bind: bad ADDR_length %d", tbr->ADDR_length); 451 rts_err_ack(q, mp, TBADADDR, 0); 452 return; 453 } 454 /* Generic request */ 455 tbr->ADDR_offset = (t_scalar_t)sizeof (struct T_bind_req); 456 tbr->ADDR_length = 0; 457 tbr->PRIM_type = T_BIND_ACK; 458 mp->b_datap->db_type = M_PCPROTO; 459 rts->rts_state = TS_IDLE; 460 qreply(q, mp); 461 } 462 463 static void 464 rts_copy_info(struct T_info_ack *tap, rts_t *rts) 465 { 466 *tap = rts_g_t_info_ack; 467 tap->CURRENT_state = rts->rts_state; 468 tap->OPT_size = rts_max_optsize; 469 } 470 471 /* 472 * This routine responds to T_CAPABILITY_REQ messages. It is called by 473 * rts_wput. Much of the T_CAPABILITY_ACK information is copied from 474 * rts_g_t_info_ack. The current state of the stream is copied from 475 * rts_state. 476 */ 477 static void 478 rts_capability_req(queue_t *q, mblk_t *mp) 479 { 480 conn_t *connp = Q_TO_CONN(q); 481 rts_t *rts = connp->conn_rts; 482 t_uscalar_t cap_bits1; 483 struct T_capability_ack *tcap; 484 485 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 486 487 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 488 mp->b_datap->db_type, T_CAPABILITY_ACK); 489 if (mp == NULL) 490 return; 491 492 tcap = (struct T_capability_ack *)mp->b_rptr; 493 tcap->CAP_bits1 = 0; 494 495 if (cap_bits1 & TC1_INFO) { 496 rts_copy_info(&tcap->INFO_ack, rts); 497 tcap->CAP_bits1 |= TC1_INFO; 498 } 499 500 qreply(q, mp); 501 } 502 503 /* 504 * This routine responds to T_INFO_REQ messages. It is called by rts_wput. 505 * Most of the T_INFO_ACK information is copied from rts_g_t_info_ack. 506 * The current state of the stream is copied from rts_state. 507 */ 508 static void 509 rts_info_req(queue_t *q, mblk_t *mp) 510 { 511 conn_t *connp = Q_TO_CONN(q); 512 rts_t *rts = connp->conn_rts; 513 514 mp = tpi_ack_alloc(mp, sizeof (rts_g_t_info_ack), M_PCPROTO, 515 T_INFO_ACK); 516 if (mp == NULL) 517 return; 518 rts_copy_info((struct T_info_ack *)mp->b_rptr, rts); 519 qreply(q, mp); 520 } 521 522 /* 523 * This routine gets default values of certain options whose default 524 * values are maintained by protcol specific code 525 */ 526 /* ARGSUSED */ 527 int 528 rts_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 529 { 530 /* no default value processed by protocol specific code currently */ 531 return (-1); 532 } 533 534 535 static int 536 rts_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 537 { 538 rts_t *rts = connp->conn_rts; 539 conn_opt_arg_t coas; 540 int retval; 541 542 ASSERT(RW_READ_HELD(&rts->rts_rwlock)); 543 544 switch (level) { 545 /* do this in conn_opt_get? */ 546 case SOL_ROUTE: 547 switch (name) { 548 case RT_AWARE: 549 mutex_enter(&connp->conn_lock); 550 *(int *)ptr = connp->conn_rtaware; 551 mutex_exit(&connp->conn_lock); 552 return (0); 553 } 554 break; 555 } 556 coas.coa_connp = connp; 557 coas.coa_ixa = connp->conn_ixa; 558 coas.coa_ipp = &connp->conn_xmit_ipp; 559 mutex_enter(&connp->conn_lock); 560 retval = conn_opt_get(&coas, level, name, ptr); 561 mutex_exit(&connp->conn_lock); 562 return (retval); 563 } 564 565 /* ARGSUSED */ 566 static int 567 rts_do_opt_set(conn_t *connp, int level, int name, uint_t inlen, 568 uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, cred_t *cr, 569 void *thisdg_attrs, boolean_t checkonly) 570 { 571 int *i1 = (int *)invalp; 572 rts_t *rts = connp->conn_rts; 573 rts_stack_t *rtss = rts->rts_rtss; 574 int error; 575 conn_opt_arg_t coas; 576 577 coas.coa_connp = connp; 578 coas.coa_ixa = connp->conn_ixa; 579 coas.coa_ipp = &connp->conn_xmit_ipp; 580 581 ASSERT(RW_WRITE_HELD(&rts->rts_rwlock)); 582 583 /* 584 * For rts, we should have no ancillary data sent down 585 * (rts_wput doesn't handle options). 586 */ 587 ASSERT(thisdg_attrs == NULL); 588 589 /* 590 * For fixed length options, no sanity check 591 * of passed in length is done. It is assumed *_optcom_req() 592 * routines do the right thing. 593 */ 594 595 switch (level) { 596 case SOL_SOCKET: 597 switch (name) { 598 case SO_PROTOTYPE: 599 /* 600 * Routing socket applications that call socket() with 601 * a third argument can filter which messages will be 602 * sent upstream thanks to sockfs. so_socket() sends 603 * down the SO_PROTOTYPE and rts_queue_input() 604 * implements the filtering. 605 */ 606 if (*i1 != AF_INET && *i1 != AF_INET6) { 607 *outlenp = 0; 608 return (EPROTONOSUPPORT); 609 } 610 if (!checkonly) 611 connp->conn_proto = *i1; 612 *outlenp = inlen; 613 return (0); 614 615 /* 616 * The following two items can be manipulated, 617 * but changing them should do nothing. 618 */ 619 case SO_SNDBUF: 620 if (*i1 > rtss->rtss_max_buf) { 621 *outlenp = 0; 622 return (ENOBUFS); 623 } 624 break; /* goto sizeof (int) option return */ 625 case SO_RCVBUF: 626 if (*i1 > rtss->rtss_max_buf) { 627 *outlenp = 0; 628 return (ENOBUFS); 629 } 630 break; /* goto sizeof (int) option return */ 631 } 632 break; 633 case SOL_ROUTE: 634 switch (name) { 635 case RT_AWARE: 636 if (!checkonly) { 637 mutex_enter(&connp->conn_lock); 638 connp->conn_rtaware = *i1; 639 mutex_exit(&connp->conn_lock); 640 } 641 *outlenp = inlen; 642 return (0); 643 } 644 break; 645 } 646 /* Serialized setsockopt since we are D_MTQPAIR */ 647 error = conn_opt_set(&coas, level, name, inlen, invalp, 648 checkonly, cr); 649 if (error != 0) { 650 *outlenp = 0; 651 return (error); 652 } 653 /* 654 * Common case of return from an option that is sizeof (int) 655 */ 656 if (invalp != outvalp) { 657 /* don't trust bcopy for identical src/dst */ 658 (void) bcopy(invalp, outvalp, inlen); 659 } 660 *outlenp = (t_uscalar_t)sizeof (int); 661 return (0); 662 } 663 664 static int 665 rts_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 666 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 667 void *thisdg_attrs, cred_t *cr) 668 { 669 boolean_t checkonly = B_FALSE; 670 671 if (optset_context) { 672 switch (optset_context) { 673 case SETFN_OPTCOM_CHECKONLY: 674 checkonly = B_TRUE; 675 /* 676 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 677 * inlen != 0 implies value supplied and 678 * we have to "pretend" to set it. 679 * inlen == 0 implies that there is no value part 680 * in T_CHECK request and just validation 681 * done elsewhere should be enough, we just return here. 682 */ 683 if (inlen == 0) { 684 *outlenp = 0; 685 return (0); 686 } 687 break; 688 case SETFN_OPTCOM_NEGOTIATE: 689 checkonly = B_FALSE; 690 break; 691 case SETFN_UD_NEGOTIATE: 692 case SETFN_CONN_NEGOTIATE: 693 checkonly = B_FALSE; 694 /* 695 * Negotiating local and "association-related" options 696 * through T_UNITDATA_REQ or T_CONN_{REQ,CON} 697 * Not allowed in this module. 698 */ 699 return (EINVAL); 700 default: 701 /* 702 * We should never get here 703 */ 704 *outlenp = 0; 705 return (EINVAL); 706 } 707 708 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 709 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 710 711 } 712 return (rts_do_opt_set(connp, level, name, inlen, invalp, outlenp, 713 outvalp, cr, thisdg_attrs, checkonly)); 714 715 } 716 717 /* 718 * This routine retrieves the current status of socket options. 719 * It returns the size of the option retrieved. 720 */ 721 int 722 rts_tpi_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 723 { 724 rts_t *rts; 725 int err; 726 727 rts = Q_TO_RTS(q); 728 rw_enter(&rts->rts_rwlock, RW_READER); 729 err = rts_opt_get(Q_TO_CONN(q), level, name, ptr); 730 rw_exit(&rts->rts_rwlock); 731 return (err); 732 } 733 734 /* 735 * This routine sets socket options. 736 */ 737 /*ARGSUSED*/ 738 int 739 rts_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 740 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 741 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr) 742 { 743 conn_t *connp = Q_TO_CONN(q); 744 int error; 745 rts_t *rts = connp->conn_rts; 746 747 748 rw_enter(&rts->rts_rwlock, RW_WRITER); 749 error = rts_opt_set(connp, optset_context, level, name, inlen, invalp, 750 outlenp, outvalp, thisdg_attrs, cr); 751 rw_exit(&rts->rts_rwlock); 752 return (error); 753 } 754 755 /* 756 * This routine retrieves the value of an ND variable in a rtsparam_t 757 * structure. It is called through nd_getset when a user reads the 758 * variable. 759 */ 760 /* ARGSUSED */ 761 static int 762 rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 763 { 764 rtsparam_t *rtspa = (rtsparam_t *)cp; 765 766 (void) mi_mpprintf(mp, "%u", rtspa->rts_param_value); 767 return (0); 768 } 769 770 /* 771 * Walk through the param array specified registering each element with the 772 * named dispatch (ND) handler. 773 */ 774 static boolean_t 775 rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt) 776 { 777 for (; cnt-- > 0; rtspa++) { 778 if (rtspa->rts_param_name != NULL && rtspa->rts_param_name[0]) { 779 if (!nd_load(ndp, rtspa->rts_param_name, 780 rts_param_get, rts_param_set, (caddr_t)rtspa)) { 781 nd_free(ndp); 782 return (B_FALSE); 783 } 784 } 785 } 786 return (B_TRUE); 787 } 788 789 /* This routine sets an ND variable in a rtsparam_t structure. */ 790 /* ARGSUSED */ 791 static int 792 rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 793 { 794 ulong_t new_value; 795 rtsparam_t *rtspa = (rtsparam_t *)cp; 796 797 /* 798 * Fail the request if the new value does not lie within the 799 * required bounds. 800 */ 801 if (ddi_strtoul(value, NULL, 10, &new_value) != 0 || 802 new_value < rtspa->rts_param_min || 803 new_value > rtspa->rts_param_max) { 804 return (EINVAL); 805 } 806 807 /* Set the new value */ 808 rtspa->rts_param_value = new_value; 809 return (0); 810 } 811 812 /* 813 * Empty rsrv routine which is used by rts_input to cause a wakeup 814 * of a thread in qwait. 815 */ 816 /*ARGSUSED*/ 817 static void 818 rts_rsrv(queue_t *q) 819 { 820 } 821 822 /* 823 * This routine handles synchronous messages passed downstream. It either 824 * consumes the message or passes it downstream; it never queues a 825 * a message. The data messages that go down are wrapped in an IOCTL 826 * message. 827 * 828 * Since it is synchronous, it waits for the M_IOCACK/M_IOCNAK so that 829 * it can return an immediate error (such as ENETUNREACH when adding a route). 830 * It uses the RTS_WRW_PENDING to ensure that each rts instance has only 831 * one M_IOCTL outstanding at any given time. 832 */ 833 static int 834 rts_wrw(queue_t *q, struiod_t *dp) 835 { 836 mblk_t *mp = dp->d_mp; 837 mblk_t *mp1; 838 int error; 839 rt_msghdr_t *rtm; 840 conn_t *connp = Q_TO_CONN(q); 841 rts_t *rts = connp->conn_rts; 842 843 while (rts->rts_flag & RTS_WRW_PENDING) { 844 if (qwait_rw(q)) { 845 rts->rts_error = EINTR; 846 goto err_ret; 847 } 848 } 849 rts->rts_flag |= RTS_WRW_PENDING; 850 851 if (isuioq(q) && (error = struioget(q, mp, dp, 0))) { 852 /* 853 * Uio error of some sort, so just return the error. 854 */ 855 rts->rts_error = error; 856 goto err_ret; 857 } 858 /* 859 * Pass the mblk (chain) onto wput(). 860 */ 861 dp->d_mp = 0; 862 863 switch (mp->b_datap->db_type) { 864 case M_PROTO: 865 case M_PCPROTO: 866 /* Expedite other than T_DATA_REQ to below the switch */ 867 if (((mp->b_wptr - mp->b_rptr) != 868 sizeof (struct T_data_req)) || 869 (((union T_primitives *)mp->b_rptr)->type != T_DATA_REQ)) 870 break; 871 if ((mp1 = mp->b_cont) == NULL) { 872 rts->rts_error = EINVAL; 873 freemsg(mp); 874 goto err_ret; 875 } 876 freeb(mp); 877 mp = mp1; 878 /* FALLTHRU */ 879 case M_DATA: 880 /* 881 * The semantics of the routing socket is such that the rtm_pid 882 * field is automatically filled in during requests with the 883 * current process' pid. We do this here (where we still have 884 * user context) after checking we have at least a message the 885 * size of a routing message header. 886 */ 887 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) { 888 if (!pullupmsg(mp, sizeof (rt_msghdr_t))) { 889 rts->rts_error = EINVAL; 890 freemsg(mp); 891 goto err_ret; 892 } 893 } 894 rtm = (rt_msghdr_t *)mp->b_rptr; 895 rtm->rtm_pid = curproc->p_pid; 896 break; 897 default: 898 break; 899 } 900 rts->rts_flag |= RTS_WPUT_PENDING; 901 rts_wput(q, mp); 902 while (rts->rts_flag & RTS_WPUT_PENDING) 903 if (qwait_rw(q)) { 904 /* RTS_WPUT_PENDING will be cleared below */ 905 rts->rts_error = EINTR; 906 break; 907 } 908 err_ret: 909 rts->rts_flag &= ~(RTS_WPUT_PENDING | RTS_WRW_PENDING); 910 return (rts->rts_error); 911 } 912 913 /* 914 * This routine handles all messages passed downstream. It either 915 * consumes the message or passes it downstream; it never queues a 916 * a message. The data messages that go down are wrapped in an IOCTL 917 * message. 918 */ 919 static void 920 rts_wput(queue_t *q, mblk_t *mp) 921 { 922 uchar_t *rptr = mp->b_rptr; 923 mblk_t *mp1; 924 conn_t *connp = Q_TO_CONN(q); 925 rts_t *rts = connp->conn_rts; 926 927 switch (mp->b_datap->db_type) { 928 case M_DATA: 929 break; 930 case M_PROTO: 931 case M_PCPROTO: 932 if ((mp->b_wptr - rptr) == sizeof (struct T_data_req)) { 933 /* Expedite valid T_DATA_REQ to below the switch */ 934 if (((union T_primitives *)rptr)->type == T_DATA_REQ) { 935 mp1 = mp->b_cont; 936 freeb(mp); 937 if (mp1 == NULL) 938 return; 939 mp = mp1; 940 break; 941 } 942 } 943 /* FALLTHRU */ 944 default: 945 rts_wput_other(q, mp); 946 return; 947 } 948 949 950 ASSERT(msg_getcred(mp, NULL) != NULL); 951 952 mp1 = rts_ioctl_alloc(mp); 953 if (mp1 == NULL) { 954 ASSERT(rts != NULL); 955 freemsg(mp); 956 if (rts->rts_flag & RTS_WPUT_PENDING) { 957 rts->rts_error = ENOMEM; 958 rts->rts_flag &= ~RTS_WPUT_PENDING; 959 } 960 return; 961 } 962 ip_wput_nondata(q, mp1); 963 } 964 965 966 /* 967 * Handles all the control message, if it 968 * can not understand it, it will 969 * pass down stream. 970 */ 971 static void 972 rts_wput_other(queue_t *q, mblk_t *mp) 973 { 974 conn_t *connp = Q_TO_CONN(q); 975 rts_t *rts = connp->conn_rts; 976 uchar_t *rptr = mp->b_rptr; 977 struct iocblk *iocp; 978 cred_t *cr; 979 rts_stack_t *rtss; 980 981 rtss = rts->rts_rtss; 982 983 switch (mp->b_datap->db_type) { 984 case M_PROTO: 985 case M_PCPROTO: 986 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) { 987 /* 988 * If the message does not contain a PRIM_type, 989 * throw it away. 990 */ 991 freemsg(mp); 992 return; 993 } 994 switch (((union T_primitives *)rptr)->type) { 995 case T_BIND_REQ: 996 case O_T_BIND_REQ: 997 rts_tpi_bind(q, mp); 998 return; 999 case T_UNBIND_REQ: 1000 rts_tpi_unbind(q, mp); 1001 return; 1002 case T_CAPABILITY_REQ: 1003 rts_capability_req(q, mp); 1004 return; 1005 case T_INFO_REQ: 1006 rts_info_req(q, mp); 1007 return; 1008 case T_SVR4_OPTMGMT_REQ: 1009 case T_OPTMGMT_REQ: 1010 /* 1011 * All Solaris components should pass a db_credp 1012 * for this TPI message, hence we ASSERT. 1013 * But in case there is some other M_PROTO that looks 1014 * like a TPI message sent by some other kernel 1015 * component, we check and return an error. 1016 */ 1017 cr = msg_getcred(mp, NULL); 1018 ASSERT(cr != NULL); 1019 if (cr == NULL) { 1020 rts_err_ack(q, mp, TSYSERR, EINVAL); 1021 return; 1022 } 1023 if (((union T_primitives *)rptr)->type == 1024 T_SVR4_OPTMGMT_REQ) { 1025 svr4_optcom_req(q, mp, cr, &rts_opt_obj); 1026 } else { 1027 tpi_optcom_req(q, mp, cr, &rts_opt_obj); 1028 } 1029 return; 1030 case O_T_CONN_RES: 1031 case T_CONN_RES: 1032 case T_DISCON_REQ: 1033 /* Not supported by rts. */ 1034 rts_err_ack(q, mp, TNOTSUPPORT, 0); 1035 return; 1036 case T_DATA_REQ: 1037 case T_EXDATA_REQ: 1038 case T_ORDREL_REQ: 1039 /* Illegal for rts. */ 1040 freemsg(mp); 1041 (void) putnextctl1(RD(q), M_ERROR, EPROTO); 1042 return; 1043 1044 default: 1045 break; 1046 } 1047 break; 1048 case M_IOCTL: 1049 iocp = (struct iocblk *)mp->b_rptr; 1050 switch (iocp->ioc_cmd) { 1051 case ND_SET: 1052 case ND_GET: 1053 if (nd_getset(q, rtss->rtss_g_nd, mp)) { 1054 qreply(q, mp); 1055 return; 1056 } 1057 break; 1058 case TI_GETPEERNAME: 1059 mi_copyin(q, mp, NULL, 1060 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 1061 return; 1062 default: 1063 break; 1064 } 1065 case M_IOCDATA: 1066 rts_wput_iocdata(q, mp); 1067 return; 1068 default: 1069 break; 1070 } 1071 ip_wput_nondata(q, mp); 1072 } 1073 1074 /* 1075 * Called by rts_wput_other to handle all M_IOCDATA messages. 1076 */ 1077 static void 1078 rts_wput_iocdata(queue_t *q, mblk_t *mp) 1079 { 1080 struct sockaddr *rtsaddr; 1081 mblk_t *mp1; 1082 STRUCT_HANDLE(strbuf, sb); 1083 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 1084 1085 /* Make sure it is one of ours. */ 1086 switch (iocp->ioc_cmd) { 1087 case TI_GETPEERNAME: 1088 break; 1089 default: 1090 ip_wput_nondata(q, mp); 1091 return; 1092 } 1093 switch (mi_copy_state(q, mp, &mp1)) { 1094 case -1: 1095 return; 1096 case MI_COPY_CASE(MI_COPY_IN, 1): 1097 break; 1098 case MI_COPY_CASE(MI_COPY_OUT, 1): 1099 /* Copy out the strbuf. */ 1100 mi_copyout(q, mp); 1101 return; 1102 case MI_COPY_CASE(MI_COPY_OUT, 2): 1103 /* All done. */ 1104 mi_copy_done(q, mp, 0); 1105 return; 1106 default: 1107 mi_copy_done(q, mp, EPROTO); 1108 return; 1109 } 1110 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 1111 if (STRUCT_FGET(sb, maxlen) < (int)sizeof (sin_t)) { 1112 mi_copy_done(q, mp, EINVAL); 1113 return; 1114 } 1115 switch (iocp->ioc_cmd) { 1116 case TI_GETPEERNAME: 1117 break; 1118 default: 1119 mi_copy_done(q, mp, EPROTO); 1120 return; 1121 } 1122 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), sizeof (sin_t), 1123 B_TRUE); 1124 if (mp1 == NULL) 1125 return; 1126 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 1127 rtsaddr = (struct sockaddr *)mp1->b_rptr; 1128 mp1->b_wptr = (uchar_t *)&rtsaddr[1]; 1129 bzero(rtsaddr, sizeof (struct sockaddr)); 1130 rtsaddr->sa_family = AF_ROUTE; 1131 /* Copy out the address */ 1132 mi_copyout(q, mp); 1133 } 1134 1135 /* 1136 * IP passes up a NULL ira. 1137 */ 1138 /*ARGSUSED2*/ 1139 static void 1140 rts_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 1141 { 1142 conn_t *connp = (conn_t *)arg1; 1143 rts_t *rts = connp->conn_rts; 1144 struct iocblk *iocp; 1145 mblk_t *mp1; 1146 struct T_data_ind *tdi; 1147 int error; 1148 1149 switch (mp->b_datap->db_type) { 1150 case M_IOCACK: 1151 case M_IOCNAK: 1152 iocp = (struct iocblk *)mp->b_rptr; 1153 ASSERT(!IPCL_IS_NONSTR(connp)); 1154 if (rts->rts_flag & (RTS_WPUT_PENDING)) { 1155 rts->rts_flag &= ~RTS_WPUT_PENDING; 1156 rts->rts_error = iocp->ioc_error; 1157 /* 1158 * Tell rts_wvw/qwait that we are done. 1159 * Note: there is no qwait_wakeup() we can use. 1160 */ 1161 qenable(connp->conn_rq); 1162 freemsg(mp); 1163 return; 1164 } 1165 break; 1166 case M_DATA: 1167 /* 1168 * Prepend T_DATA_IND to prevent the stream head from 1169 * consolidating multiple messages together. 1170 * If the allocation fails just send up the M_DATA. 1171 */ 1172 mp1 = allocb(sizeof (*tdi), BPRI_MED); 1173 if (mp1 != NULL) { 1174 mp1->b_cont = mp; 1175 mp = mp1; 1176 1177 mp->b_datap->db_type = M_PROTO; 1178 mp->b_wptr += sizeof (*tdi); 1179 tdi = (struct T_data_ind *)mp->b_rptr; 1180 tdi->PRIM_type = T_DATA_IND; 1181 tdi->MORE_flag = 0; 1182 } 1183 break; 1184 default: 1185 break; 1186 } 1187 1188 if (IPCL_IS_NONSTR(connp)) { 1189 if ((*connp->conn_upcalls->su_recv) 1190 (connp->conn_upper_handle, mp, msgdsize(mp), 0, 1191 &error, NULL) < 0) { 1192 ASSERT(error == ENOSPC); 1193 /* 1194 * Let's confirm hoding the lock that 1195 * we are out of recv space. 1196 */ 1197 mutex_enter(&rts->rts_recv_mutex); 1198 if ((*connp->conn_upcalls->su_recv) 1199 (connp->conn_upper_handle, NULL, 0, 0, 1200 &error, NULL) < 0) { 1201 ASSERT(error == ENOSPC); 1202 connp->conn_flow_cntrld = B_TRUE; 1203 } 1204 mutex_exit(&rts->rts_recv_mutex); 1205 } 1206 } else { 1207 putnext(connp->conn_rq, mp); 1208 } 1209 } 1210 1211 /*ARGSUSED*/ 1212 static void 1213 rts_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 1214 { 1215 freemsg(mp); 1216 } 1217 1218 void 1219 rts_ddi_g_init(void) 1220 { 1221 rts_max_optsize = optcom_max_optsize(rts_opt_obj.odb_opt_des_arr, 1222 rts_opt_obj.odb_opt_arr_cnt); 1223 1224 /* 1225 * We want to be informed each time a stack is created or 1226 * destroyed in the kernel, so we can maintain the 1227 * set of rts_stack_t's. 1228 */ 1229 netstack_register(NS_RTS, rts_stack_init, NULL, rts_stack_fini); 1230 } 1231 1232 void 1233 rts_ddi_g_destroy(void) 1234 { 1235 netstack_unregister(NS_RTS); 1236 } 1237 1238 #define INET_NAME "ip" 1239 1240 /* 1241 * Initialize the RTS stack instance. 1242 */ 1243 /* ARGSUSED */ 1244 static void * 1245 rts_stack_init(netstackid_t stackid, netstack_t *ns) 1246 { 1247 rts_stack_t *rtss; 1248 rtsparam_t *pa; 1249 int error = 0; 1250 major_t major; 1251 1252 rtss = (rts_stack_t *)kmem_zalloc(sizeof (*rtss), KM_SLEEP); 1253 rtss->rtss_netstack = ns; 1254 1255 pa = (rtsparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 1256 rtss->rtss_params = pa; 1257 bcopy(lcl_param_arr, rtss->rtss_params, sizeof (lcl_param_arr)); 1258 1259 (void) rts_param_register(&rtss->rtss_g_nd, 1260 rtss->rtss_params, A_CNT(lcl_param_arr)); 1261 1262 major = mod_name_to_major(INET_NAME); 1263 error = ldi_ident_from_major(major, &rtss->rtss_ldi_ident); 1264 ASSERT(error == 0); 1265 return (rtss); 1266 } 1267 1268 /* 1269 * Free the RTS stack instance. 1270 */ 1271 /* ARGSUSED */ 1272 static void 1273 rts_stack_fini(netstackid_t stackid, void *arg) 1274 { 1275 rts_stack_t *rtss = (rts_stack_t *)arg; 1276 1277 nd_free(&rtss->rtss_g_nd); 1278 kmem_free(rtss->rtss_params, sizeof (lcl_param_arr)); 1279 rtss->rtss_params = NULL; 1280 ldi_ident_release(rtss->rtss_ldi_ident); 1281 kmem_free(rtss, sizeof (*rtss)); 1282 } 1283 1284 /* ARGSUSED */ 1285 int 1286 rts_accept(sock_lower_handle_t lproto_handle, 1287 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 1288 cred_t *cr) 1289 { 1290 return (EINVAL); 1291 } 1292 1293 /* ARGSUSED */ 1294 static int 1295 rts_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 1296 socklen_t len, cred_t *cr) 1297 { 1298 /* 1299 * rebind not allowed 1300 */ 1301 return (EINVAL); 1302 } 1303 1304 /* ARGSUSED */ 1305 int 1306 rts_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 1307 { 1308 return (EINVAL); 1309 } 1310 1311 /* ARGSUSED */ 1312 int 1313 rts_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 1314 socklen_t len, sock_connid_t *id, cred_t *cr) 1315 { 1316 /* 1317 * rts sockets start out as bound and connected 1318 */ 1319 *id = 0; 1320 return (EISCONN); 1321 } 1322 1323 /* ARGSUSED */ 1324 int 1325 rts_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 1326 socklen_t *addrlen, cred_t *cr) 1327 { 1328 bzero(addr, sizeof (struct sockaddr)); 1329 addr->sa_family = AF_ROUTE; 1330 *addrlen = sizeof (struct sockaddr); 1331 1332 return (0); 1333 } 1334 1335 /* ARGSUSED */ 1336 int 1337 rts_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 1338 socklen_t *addrlen, cred_t *cr) 1339 { 1340 bzero(addr, sizeof (struct sockaddr)); 1341 addr->sa_family = AF_ROUTE; 1342 *addrlen = sizeof (struct sockaddr); 1343 1344 return (0); 1345 } 1346 1347 static int 1348 rts_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 1349 void *optvalp, socklen_t *optlen, cred_t *cr) 1350 { 1351 conn_t *connp = (conn_t *)proto_handle; 1352 rts_t *rts = connp->conn_rts; 1353 int error; 1354 t_uscalar_t max_optbuf_len; 1355 void *optvalp_buf; 1356 int len; 1357 1358 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 1359 rts_opt_obj.odb_opt_des_arr, 1360 rts_opt_obj.odb_opt_arr_cnt, 1361 B_FALSE, B_TRUE, cr); 1362 if (error != 0) { 1363 if (error < 0) 1364 error = proto_tlitosyserr(-error); 1365 return (error); 1366 } 1367 1368 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 1369 rw_enter(&rts->rts_rwlock, RW_READER); 1370 len = rts_opt_get(connp, level, option_name, optvalp_buf); 1371 rw_exit(&rts->rts_rwlock); 1372 if (len == -1) { 1373 kmem_free(optvalp_buf, max_optbuf_len); 1374 return (EINVAL); 1375 } 1376 1377 /* 1378 * update optlen and copy option value 1379 */ 1380 t_uscalar_t size = MIN(len, *optlen); 1381 1382 bcopy(optvalp_buf, optvalp, size); 1383 bcopy(&size, optlen, sizeof (size)); 1384 kmem_free(optvalp_buf, max_optbuf_len); 1385 return (0); 1386 } 1387 1388 static int 1389 rts_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 1390 const void *optvalp, socklen_t optlen, cred_t *cr) 1391 { 1392 conn_t *connp = (conn_t *)proto_handle; 1393 rts_t *rts = connp->conn_rts; 1394 int error; 1395 1396 error = proto_opt_check(level, option_name, optlen, NULL, 1397 rts_opt_obj.odb_opt_des_arr, 1398 rts_opt_obj.odb_opt_arr_cnt, 1399 B_TRUE, B_FALSE, cr); 1400 1401 if (error != 0) { 1402 if (error < 0) 1403 error = proto_tlitosyserr(-error); 1404 return (error); 1405 } 1406 1407 rw_enter(&rts->rts_rwlock, RW_WRITER); 1408 error = rts_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 1409 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 1410 NULL, cr); 1411 rw_exit(&rts->rts_rwlock); 1412 1413 ASSERT(error >= 0); 1414 1415 return (error); 1416 } 1417 1418 /* ARGSUSED */ 1419 static int 1420 rts_send(sock_lower_handle_t proto_handle, mblk_t *mp, 1421 struct nmsghdr *msg, cred_t *cr) 1422 { 1423 conn_t *connp = (conn_t *)proto_handle; 1424 rt_msghdr_t *rtm; 1425 int error; 1426 1427 ASSERT(DB_TYPE(mp) == M_DATA); 1428 /* 1429 * The semantics of the routing socket is such that the rtm_pid 1430 * field is automatically filled in during requests with the 1431 * current process' pid. We do this here (where we still have 1432 * user context) after checking we have at least a message the 1433 * size of a routing message header. 1434 */ 1435 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) { 1436 if (!pullupmsg(mp, sizeof (rt_msghdr_t))) { 1437 freemsg(mp); 1438 return (EINVAL); 1439 } 1440 } 1441 rtm = (rt_msghdr_t *)mp->b_rptr; 1442 rtm->rtm_pid = curproc->p_pid; 1443 1444 /* 1445 * We are not constrained by the ioctl interface and 1446 * ip_rts_request_common processing requests synchronously hence 1447 * we can send them down concurrently. 1448 */ 1449 error = ip_rts_request_common(mp, connp, cr); 1450 return (error); 1451 } 1452 1453 /* ARGSUSED */ 1454 sock_lower_handle_t 1455 rts_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 1456 uint_t *smodep, int *errorp, int flags, cred_t *credp) 1457 { 1458 conn_t *connp; 1459 1460 if (family != AF_ROUTE || type != SOCK_RAW || 1461 (proto != 0 && proto != AF_INET && proto != AF_INET6)) { 1462 *errorp = EPROTONOSUPPORT; 1463 return (NULL); 1464 } 1465 1466 connp = rts_open(flags, credp); 1467 ASSERT(connp != NULL); 1468 connp->conn_flags |= IPCL_NONSTR; 1469 1470 connp->conn_proto = proto; 1471 1472 mutex_enter(&connp->conn_lock); 1473 connp->conn_state_flags &= ~CONN_INCIPIENT; 1474 mutex_exit(&connp->conn_lock); 1475 1476 *errorp = 0; 1477 *smodep = SM_ATOMIC; 1478 *sock_downcalls = &sock_rts_downcalls; 1479 return ((sock_lower_handle_t)connp); 1480 } 1481 1482 /* ARGSUSED */ 1483 void 1484 rts_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 1485 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 1486 { 1487 conn_t *connp = (conn_t *)proto_handle; 1488 struct sock_proto_props sopp; 1489 1490 connp->conn_upcalls = sock_upcalls; 1491 connp->conn_upper_handle = sock_handle; 1492 1493 sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 1494 SOCKOPT_MAXBLK | SOCKOPT_MAXPSZ | SOCKOPT_MINPSZ; 1495 sopp.sopp_wroff = 0; 1496 sopp.sopp_rxhiwat = connp->conn_rcvbuf; 1497 sopp.sopp_rxlowat = connp->conn_rcvlowat; 1498 sopp.sopp_maxblk = INFPSZ; 1499 sopp.sopp_maxpsz = rts_mod_info.mi_maxpsz; 1500 sopp.sopp_minpsz = (rts_mod_info.mi_minpsz == 1) ? 0 : 1501 rts_mod_info.mi_minpsz; 1502 1503 (*connp->conn_upcalls->su_set_proto_props) 1504 (connp->conn_upper_handle, &sopp); 1505 1506 /* 1507 * We treat it as already connected for routing socket. 1508 */ 1509 (*connp->conn_upcalls->su_connected) 1510 (connp->conn_upper_handle, 0, NULL, -1); 1511 1512 /* Indicate to IP that this is a routing socket client */ 1513 ip_rts_register(connp); 1514 } 1515 1516 /* ARGSUSED */ 1517 int 1518 rts_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 1519 { 1520 conn_t *connp = (conn_t *)proto_handle; 1521 1522 ASSERT(connp != NULL && IPCL_IS_RTS(connp)); 1523 return (rts_common_close(NULL, connp)); 1524 } 1525 1526 /* ARGSUSED */ 1527 int 1528 rts_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 1529 { 1530 conn_t *connp = (conn_t *)proto_handle; 1531 1532 /* shut down the send side */ 1533 if (how != SHUT_RD) 1534 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 1535 SOCK_OPCTL_SHUT_SEND, 0); 1536 /* shut down the recv side */ 1537 if (how != SHUT_WR) 1538 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 1539 SOCK_OPCTL_SHUT_RECV, 0); 1540 return (0); 1541 } 1542 1543 void 1544 rts_clr_flowctrl(sock_lower_handle_t proto_handle) 1545 { 1546 conn_t *connp = (conn_t *)proto_handle; 1547 rts_t *rts = connp->conn_rts; 1548 1549 mutex_enter(&rts->rts_recv_mutex); 1550 connp->conn_flow_cntrld = B_FALSE; 1551 mutex_exit(&rts->rts_recv_mutex); 1552 } 1553 1554 int 1555 rts_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 1556 int mode, int32_t *rvalp, cred_t *cr) 1557 { 1558 conn_t *connp = (conn_t *)proto_handle; 1559 int error; 1560 1561 /* 1562 * If we don't have a helper stream then create one. 1563 * ip_create_helper_stream takes care of locking the conn_t, 1564 * so this check for NULL is just a performance optimization. 1565 */ 1566 if (connp->conn_helper_info == NULL) { 1567 rts_stack_t *rtss = connp->conn_rts->rts_rtss; 1568 1569 ASSERT(rtss->rtss_ldi_ident != NULL); 1570 1571 /* 1572 * Create a helper stream for non-STREAMS socket. 1573 */ 1574 error = ip_create_helper_stream(connp, rtss->rtss_ldi_ident); 1575 if (error != 0) { 1576 ip0dbg(("rts_ioctl: create of IP helper stream " 1577 "failed %d\n", error)); 1578 return (error); 1579 } 1580 } 1581 1582 switch (cmd) { 1583 case ND_SET: 1584 case ND_GET: 1585 case TI_GETPEERNAME: 1586 case TI_GETMYNAME: 1587 #ifdef DEUG 1588 cmn_err(CE_CONT, "rts_ioctl cmd 0x%x on non sreams" 1589 " socket", cmd); 1590 #endif 1591 error = EINVAL; 1592 break; 1593 default: 1594 /* 1595 * Pass on to IP using helper stream 1596 */ 1597 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 1598 cmd, arg, mode, cr, rvalp); 1599 break; 1600 } 1601 1602 return (error); 1603 } 1604 1605 sock_downcalls_t sock_rts_downcalls = { 1606 rts_activate, 1607 rts_accept, 1608 rts_bind, 1609 rts_listen, 1610 rts_connect, 1611 rts_getpeername, 1612 rts_getsockname, 1613 rts_getsockopt, 1614 rts_setsockopt, 1615 rts_send, 1616 NULL, 1617 NULL, 1618 NULL, 1619 rts_shutdown, 1620 rts_clr_flowctrl, 1621 rts_ioctl, 1622 rts_close 1623 }; 1624