1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/stropts.h> 31 #include <sys/errno.h> 32 #include <sys/strlog.h> 33 #include <sys/tihdr.h> 34 #include <sys/socket.h> 35 #include <sys/ddi.h> 36 #include <sys/sunddi.h> 37 #include <sys/kmem.h> 38 #include <sys/sysmacros.h> 39 #include <sys/cmn_err.h> 40 #include <sys/vtrace.h> 41 #include <sys/debug.h> 42 #include <sys/atomic.h> 43 #include <sys/strsun.h> 44 #include <sys/random.h> 45 #include <netinet/in.h> 46 #include <net/if.h> 47 #include <netinet/ip6.h> 48 #include <net/pfkeyv2.h> 49 50 #include <inet/common.h> 51 #include <inet/mi.h> 52 #include <inet/nd.h> 53 #include <inet/ip.h> 54 #include <inet/ip6.h> 55 #include <inet/sadb.h> 56 #include <inet/ipsec_info.h> 57 #include <inet/ipsec_impl.h> 58 #include <inet/ipsecesp.h> 59 #include <inet/ipdrop.h> 60 #include <inet/tcp.h> 61 #include <sys/kstat.h> 62 #include <sys/policy.h> 63 #include <sys/strsun.h> 64 #include <inet/udp_impl.h> 65 #include <sys/taskq.h> 66 67 #include <sys/iphada.h> 68 69 /* Packet dropper for ESP drops. */ 70 static ipdropper_t esp_dropper; 71 72 static kmutex_t ipsecesp_param_lock; /* Protects ipsecesp_param_arr[] below. */ 73 /* 74 * Table of ND variables supported by ipsecesp. These are loaded into 75 * ipsecesp_g_nd in ipsecesp_init_nd. 76 * All of these are alterable, within the min/max values given, at run time. 77 */ 78 static ipsecespparam_t ipsecesp_param_arr[] = { 79 /* min max value name */ 80 { 0, 3, 0, "ipsecesp_debug"}, 81 { 125, 32000, SADB_AGE_INTERVAL_DEFAULT, "ipsecesp_age_interval"}, 82 { 1, 10, 1, "ipsecesp_reap_delay"}, 83 { 1, SADB_MAX_REPLAY, 64, "ipsecesp_replay_size"}, 84 { 1, 300, 15, "ipsecesp_acquire_timeout"}, 85 { 1, 1800, 90, "ipsecesp_larval_timeout"}, 86 /* Default lifetime values for ACQUIRE messages. */ 87 { 0, 0xffffffffU, 0, "ipsecesp_default_soft_bytes"}, 88 { 0, 0xffffffffU, 0, "ipsecesp_default_hard_bytes"}, 89 { 0, 0xffffffffU, 24000, "ipsecesp_default_soft_addtime"}, 90 { 0, 0xffffffffU, 28800, "ipsecesp_default_hard_addtime"}, 91 { 0, 0xffffffffU, 0, "ipsecesp_default_soft_usetime"}, 92 { 0, 0xffffffffU, 0, "ipsecesp_default_hard_usetime"}, 93 { 0, 1, 0, "ipsecesp_log_unknown_spi"}, 94 { 0, 2, 1, "ipsecesp_padding_check"}, 95 }; 96 #define ipsecesp_debug ipsecesp_param_arr[0].ipsecesp_param_value 97 #define ipsecesp_age_interval ipsecesp_param_arr[1].ipsecesp_param_value 98 #define ipsecesp_age_int_max ipsecesp_param_arr[1].ipsecesp_param_max 99 #define ipsecesp_reap_delay ipsecesp_param_arr[2].ipsecesp_param_value 100 #define ipsecesp_replay_size ipsecesp_param_arr[3].ipsecesp_param_value 101 #define ipsecesp_acquire_timeout ipsecesp_param_arr[4].ipsecesp_param_value 102 #define ipsecesp_larval_timeout ipsecesp_param_arr[5].ipsecesp_param_value 103 #define ipsecesp_default_soft_bytes \ 104 ipsecesp_param_arr[6].ipsecesp_param_value 105 #define ipsecesp_default_hard_bytes \ 106 ipsecesp_param_arr[7].ipsecesp_param_value 107 #define ipsecesp_default_soft_addtime \ 108 ipsecesp_param_arr[8].ipsecesp_param_value 109 #define ipsecesp_default_hard_addtime \ 110 ipsecesp_param_arr[9].ipsecesp_param_value 111 #define ipsecesp_default_soft_usetime \ 112 ipsecesp_param_arr[10].ipsecesp_param_value 113 #define ipsecesp_default_hard_usetime \ 114 ipsecesp_param_arr[11].ipsecesp_param_value 115 #define ipsecesp_log_unknown_spi \ 116 ipsecesp_param_arr[12].ipsecesp_param_value 117 #define ipsecesp_padding_check \ 118 ipsecesp_param_arr[13].ipsecesp_param_value 119 120 #define esp0dbg(a) printf a 121 /* NOTE: != 0 instead of > 0 so lint doesn't complain. */ 122 #define esp1dbg(a) if (ipsecesp_debug != 0) printf a 123 #define esp2dbg(a) if (ipsecesp_debug > 1) printf a 124 #define esp3dbg(a) if (ipsecesp_debug > 2) printf a 125 126 static IDP ipsecesp_g_nd; 127 128 static int ipsecesp_open(queue_t *, dev_t *, int, int, cred_t *); 129 static int ipsecesp_close(queue_t *); 130 static void ipsecesp_rput(queue_t *, mblk_t *); 131 static void ipsecesp_wput(queue_t *, mblk_t *); 132 static void esp_send_acquire(ipsacq_t *, mblk_t *); 133 134 static ipsec_status_t esp_outbound_accelerated(mblk_t *, uint_t); 135 static ipsec_status_t esp_inbound_accelerated(mblk_t *, mblk_t *, 136 boolean_t, ipsa_t *); 137 138 static boolean_t esp_register_out(uint32_t, uint32_t, uint_t); 139 static boolean_t esp_strip_header(mblk_t *, boolean_t, uint32_t, 140 kstat_named_t **); 141 static ipsec_status_t esp_submit_req_inbound(mblk_t *, ipsa_t *, uint_t); 142 static ipsec_status_t esp_submit_req_outbound(mblk_t *, ipsa_t *, uchar_t *, 143 uint_t); 144 145 static struct module_info info = { 146 5137, "ipsecesp", 0, INFPSZ, 65536, 1024 147 }; 148 149 static struct qinit rinit = { 150 (pfi_t)ipsecesp_rput, NULL, ipsecesp_open, ipsecesp_close, NULL, &info, 151 NULL 152 }; 153 154 static struct qinit winit = { 155 (pfi_t)ipsecesp_wput, NULL, ipsecesp_open, ipsecesp_close, NULL, &info, 156 NULL 157 }; 158 159 struct streamtab ipsecespinfo = { 160 &rinit, &winit, NULL, NULL 161 }; 162 163 /* 164 * Keysock instance of ESP. "There can be only one." :) 165 * Use casptr() on this because I don't set it until KEYSOCK_HELLO comes down. 166 * Paired up with the esp_pfkey_q is the esp_event, which will age SAs. 167 */ 168 static queue_t *esp_pfkey_q; 169 static timeout_id_t esp_event; 170 static taskq_t *esp_taskq; 171 172 /* 173 * OTOH, this one is set at open/close, and I'm D_MTQPAIR for now. 174 * 175 * Question: Do I need this, given that all instance's esps->esps_wq point 176 * to IP? 177 * 178 * Answer: Yes, because I need to know which queue is BOUND to 179 * IPPROTO_ESP 180 */ 181 static mblk_t *esp_ip_unbind; 182 183 /* 184 * Stats. This may eventually become a full-blown SNMP MIB once that spec 185 * stabilizes. 186 */ 187 188 typedef struct { 189 kstat_named_t esp_stat_num_aalgs; 190 kstat_named_t esp_stat_good_auth; 191 kstat_named_t esp_stat_bad_auth; 192 kstat_named_t esp_stat_bad_padding; 193 kstat_named_t esp_stat_replay_failures; 194 kstat_named_t esp_stat_replay_early_failures; 195 kstat_named_t esp_stat_keysock_in; 196 kstat_named_t esp_stat_out_requests; 197 kstat_named_t esp_stat_acquire_requests; 198 kstat_named_t esp_stat_bytes_expired; 199 kstat_named_t esp_stat_out_discards; 200 kstat_named_t esp_stat_in_accelerated; 201 kstat_named_t esp_stat_out_accelerated; 202 kstat_named_t esp_stat_noaccel; 203 kstat_named_t esp_stat_crypto_sync; 204 kstat_named_t esp_stat_crypto_async; 205 kstat_named_t esp_stat_crypto_failures; 206 kstat_named_t esp_stat_num_ealgs; 207 kstat_named_t esp_stat_bad_decrypt; 208 } esp_kstats_t; 209 210 uint32_t esp_hash_size = IPSEC_DEFAULT_HASH_SIZE; 211 #define ESP_BUMP_STAT(x) (esp_kstats->esp_stat_ ## x).value.ui64++ 212 #define ESP_DEBUMP_STAT(x) (esp_kstats->esp_stat_ ## x).value.ui64-- 213 214 static kstat_t *esp_ksp; 215 static esp_kstats_t *esp_kstats; 216 217 static int esp_kstat_update(kstat_t *, int); 218 219 static boolean_t 220 esp_kstat_init(void) 221 { 222 esp_ksp = kstat_create("ipsecesp", 0, "esp_stat", "net", 223 KSTAT_TYPE_NAMED, sizeof (*esp_kstats) / sizeof (kstat_named_t), 224 KSTAT_FLAG_PERSISTENT); 225 226 if (esp_ksp == NULL) 227 return (B_FALSE); 228 229 esp_kstats = esp_ksp->ks_data; 230 231 esp_ksp->ks_update = esp_kstat_update; 232 233 #define K64 KSTAT_DATA_UINT64 234 #define KI(x) kstat_named_init(&(esp_kstats->esp_stat_##x), #x, K64) 235 236 KI(num_aalgs); 237 KI(num_ealgs); 238 KI(good_auth); 239 KI(bad_auth); 240 KI(bad_padding); 241 KI(replay_failures); 242 KI(replay_early_failures); 243 KI(keysock_in); 244 KI(out_requests); 245 KI(acquire_requests); 246 KI(bytes_expired); 247 KI(out_discards); 248 KI(in_accelerated); 249 KI(out_accelerated); 250 KI(noaccel); 251 KI(crypto_sync); 252 KI(crypto_async); 253 KI(crypto_failures); 254 KI(bad_decrypt); 255 256 #undef KI 257 #undef K64 258 259 kstat_install(esp_ksp); 260 261 return (B_TRUE); 262 } 263 264 static int 265 esp_kstat_update(kstat_t *kp, int rw) 266 { 267 esp_kstats_t *ekp; 268 269 if ((kp == NULL) || (kp->ks_data == NULL)) 270 return (EIO); 271 272 if (rw == KSTAT_WRITE) 273 return (EACCES); 274 275 ASSERT(kp == esp_ksp); 276 ekp = (esp_kstats_t *)kp->ks_data; 277 ASSERT(ekp == esp_kstats); 278 279 mutex_enter(&alg_lock); 280 ekp->esp_stat_num_aalgs.value.ui64 = ipsec_nalgs[IPSEC_ALG_AUTH]; 281 ekp->esp_stat_num_ealgs.value.ui64 = ipsec_nalgs[IPSEC_ALG_ENCR]; 282 mutex_exit(&alg_lock); 283 284 return (0); 285 } 286 287 #ifdef DEBUG 288 /* 289 * Debug routine, useful to see pre-encryption data. 290 */ 291 static char * 292 dump_msg(mblk_t *mp) 293 { 294 char tmp_str[3], tmp_line[256]; 295 296 while (mp != NULL) { 297 unsigned char *ptr; 298 299 printf("mblk address 0x%p, length %ld, db_ref %d " 300 "type %d, base 0x%p, lim 0x%p\n", 301 (void *) mp, (long)(mp->b_wptr - mp->b_rptr), 302 mp->b_datap->db_ref, mp->b_datap->db_type, 303 (void *)mp->b_datap->db_base, (void *)mp->b_datap->db_lim); 304 ptr = mp->b_rptr; 305 306 tmp_line[0] = '\0'; 307 while (ptr < mp->b_wptr) { 308 uint_t diff; 309 310 diff = (ptr - mp->b_rptr); 311 if (!(diff & 0x1f)) { 312 if (strlen(tmp_line) > 0) { 313 printf("bytes: %s\n", tmp_line); 314 tmp_line[0] = '\0'; 315 } 316 } 317 if (!(diff & 0x3)) 318 (void) strcat(tmp_line, " "); 319 (void) sprintf(tmp_str, "%02x", *ptr); 320 (void) strcat(tmp_line, tmp_str); 321 ptr++; 322 } 323 if (strlen(tmp_line) > 0) 324 printf("bytes: %s\n", tmp_line); 325 326 mp = mp->b_cont; 327 } 328 329 return ("\n"); 330 } 331 332 #else /* DEBUG */ 333 static char * 334 dump_msg(mblk_t *mp) 335 { 336 printf("Find value of mp %p.\n", mp); 337 return ("\n"); 338 } 339 #endif /* DEBUG */ 340 341 /* 342 * Don't have to lock age_interval, as only one thread will access it at 343 * a time, because I control the one function that does with timeout(). 344 */ 345 /* ARGSUSED */ 346 static void 347 esp_ager(void *ignoreme) 348 { 349 hrtime_t begin = gethrtime(); 350 351 sadb_ager(&esp_sadb.s_v4, esp_pfkey_q, esp_sadb.s_ip_q, 352 ipsecesp_reap_delay); 353 sadb_ager(&esp_sadb.s_v6, esp_pfkey_q, esp_sadb.s_ip_q, 354 ipsecesp_reap_delay); 355 356 esp_event = sadb_retimeout(begin, esp_pfkey_q, esp_ager, 357 &(ipsecesp_age_interval), ipsecesp_age_int_max, info.mi_idnum); 358 } 359 360 /* 361 * Get an ESP NDD parameter. 362 */ 363 /* ARGSUSED */ 364 static int 365 ipsecesp_param_get(q, mp, cp, cr) 366 queue_t *q; 367 mblk_t *mp; 368 caddr_t cp; 369 cred_t *cr; 370 { 371 ipsecespparam_t *ipsecesppa = (ipsecespparam_t *)cp; 372 uint_t value; 373 374 mutex_enter(&ipsecesp_param_lock); 375 value = ipsecesppa->ipsecesp_param_value; 376 mutex_exit(&ipsecesp_param_lock); 377 378 (void) mi_mpprintf(mp, "%u", value); 379 return (0); 380 } 381 382 /* 383 * This routine sets an NDD variable in a ipsecespparam_t structure. 384 */ 385 /* ARGSUSED */ 386 static int 387 ipsecesp_param_set(q, mp, value, cp, cr) 388 queue_t *q; 389 mblk_t *mp; 390 char *value; 391 caddr_t cp; 392 cred_t *cr; 393 { 394 ulong_t new_value; 395 ipsecespparam_t *ipsecesppa = (ipsecespparam_t *)cp; 396 397 /* 398 * Fail the request if the new value does not lie within the 399 * required bounds. 400 */ 401 if (ddi_strtoul(value, NULL, 10, &new_value) != 0 || 402 new_value < ipsecesppa->ipsecesp_param_min || 403 new_value > ipsecesppa->ipsecesp_param_max) { 404 return (EINVAL); 405 } 406 407 /* Set the new value */ 408 mutex_enter(&ipsecesp_param_lock); 409 ipsecesppa->ipsecesp_param_value = new_value; 410 mutex_exit(&ipsecesp_param_lock); 411 return (0); 412 } 413 414 /* 415 * Using lifetime NDD variables, fill in an extended combination's 416 * lifetime information. 417 */ 418 void 419 ipsecesp_fill_defs(sadb_x_ecomb_t *ecomb) 420 { 421 ecomb->sadb_x_ecomb_soft_bytes = ipsecesp_default_soft_bytes; 422 ecomb->sadb_x_ecomb_hard_bytes = ipsecesp_default_hard_bytes; 423 ecomb->sadb_x_ecomb_soft_addtime = ipsecesp_default_soft_addtime; 424 ecomb->sadb_x_ecomb_hard_addtime = ipsecesp_default_hard_addtime; 425 ecomb->sadb_x_ecomb_soft_usetime = ipsecesp_default_soft_usetime; 426 ecomb->sadb_x_ecomb_hard_usetime = ipsecesp_default_hard_usetime; 427 } 428 429 /* 430 * Initialize things for ESP at module load time. 431 */ 432 boolean_t 433 ipsecesp_ddi_init(void) 434 { 435 int count; 436 ipsecespparam_t *espp = ipsecesp_param_arr; 437 438 for (count = A_CNT(ipsecesp_param_arr); count-- > 0; espp++) { 439 if (espp->ipsecesp_param_name != NULL && 440 espp->ipsecesp_param_name[0]) { 441 if (!nd_load(&ipsecesp_g_nd, espp->ipsecesp_param_name, 442 ipsecesp_param_get, ipsecesp_param_set, 443 (caddr_t)espp)) { 444 nd_free(&ipsecesp_g_nd); 445 return (B_FALSE); 446 } 447 } 448 } 449 450 if (!esp_kstat_init()) { 451 nd_free(&ipsecesp_g_nd); 452 return (B_FALSE); 453 } 454 455 esp_sadb.s_acquire_timeout = &ipsecesp_acquire_timeout; 456 esp_sadb.s_acqfn = esp_send_acquire; 457 sadbp_init("ESP", &esp_sadb, SADB_SATYPE_ESP, esp_hash_size); 458 459 esp_taskq = taskq_create("esp_taskq", 1, minclsyspri, 460 IPSEC_TASKQ_MIN, IPSEC_TASKQ_MAX, 0); 461 462 mutex_init(&ipsecesp_param_lock, NULL, MUTEX_DEFAULT, 0); 463 464 ip_drop_register(&esp_dropper, "IPsec ESP"); 465 466 return (B_TRUE); 467 } 468 469 /* 470 * Destroy things for ESP at module unload time. 471 */ 472 void 473 ipsecesp_ddi_destroy(void) 474 { 475 esp1dbg(("In ipsecesp_ddi_destroy.\n")); 476 477 sadbp_destroy(&esp_sadb); 478 ip_drop_unregister(&esp_dropper); 479 taskq_destroy(esp_taskq); 480 mutex_destroy(&ipsecesp_param_lock); 481 nd_free(&ipsecesp_g_nd); 482 kstat_delete(esp_ksp); 483 } 484 485 /* 486 * ESP module open routine. 487 */ 488 /* ARGSUSED */ 489 static int 490 ipsecesp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 491 { 492 if (secpolicy_net_config(credp, B_FALSE) != 0) { 493 esp1dbg(("Non-privileged user trying to open ipsecesp.\n")); 494 return (EPERM); 495 } 496 497 if (q->q_ptr != NULL) 498 return (0); /* Re-open of an already open instance. */ 499 500 if (sflag != MODOPEN) 501 return (EINVAL); 502 503 /* 504 * ASSUMPTIONS (because I'm MT_OCEXCL): 505 * 506 * * I'm being pushed on top of IP for all my opens (incl. #1). 507 * * Only ipsecesp_open() can write into esp_sadb.s_ip_q. 508 * * Because of this, I can check lazily for esp_sadb.s_ip_q. 509 * 510 * If these assumptions are wrong, I'm in BIG trouble... 511 */ 512 513 q->q_ptr = q; /* just so I know I'm open */ 514 515 if (esp_sadb.s_ip_q == NULL) { 516 struct T_unbind_req *tur; 517 518 esp_sadb.s_ip_q = WR(q); 519 /* Allocate an unbind... */ 520 esp_ip_unbind = allocb(sizeof (struct T_unbind_req), BPRI_HI); 521 522 /* 523 * Send down T_BIND_REQ to bind IPPROTO_ESP. 524 * Handle the ACK here in ESP. 525 */ 526 qprocson(q); 527 if (esp_ip_unbind == NULL || 528 !sadb_t_bind_req(esp_sadb.s_ip_q, IPPROTO_ESP)) { 529 if (esp_ip_unbind != NULL) { 530 freeb(esp_ip_unbind); 531 esp_ip_unbind = NULL; 532 } 533 q->q_ptr = NULL; 534 return (ENOMEM); 535 } 536 537 esp_ip_unbind->b_datap->db_type = M_PROTO; 538 tur = (struct T_unbind_req *)esp_ip_unbind->b_rptr; 539 tur->PRIM_type = T_UNBIND_REQ; 540 } else { 541 qprocson(q); 542 } 543 544 /* 545 * For now, there's not much I can do. I'll be getting a message 546 * passed down to me from keysock (in my wput), and a T_BIND_ACK 547 * up from IP (in my rput). 548 */ 549 550 return (0); 551 } 552 553 /* 554 * ESP module close routine. 555 */ 556 static int 557 ipsecesp_close(queue_t *q) 558 { 559 /* 560 * If esp_sadb.s_ip_q is attached to this instance, send a 561 * T_UNBIND_REQ to IP for the instance before doing 562 * a qprocsoff(). 563 */ 564 if (WR(q) == esp_sadb.s_ip_q && esp_ip_unbind != NULL) { 565 putnext(WR(q), esp_ip_unbind); 566 esp_ip_unbind = NULL; 567 } 568 569 /* 570 * Clean up q_ptr, if needed. 571 */ 572 qprocsoff(q); 573 574 /* Keysock queue check is safe, because of OCEXCL perimeter. */ 575 576 if (q == esp_pfkey_q) { 577 esp0dbg(("ipsecesp_close: Ummm... keysock is closing ESP.\n")); 578 esp_pfkey_q = NULL; 579 /* Detach qtimeouts. */ 580 (void) quntimeout(q, esp_event); 581 } 582 583 if (WR(q) == esp_sadb.s_ip_q) { 584 /* 585 * If the esp_sadb.s_ip_q is attached to this instance, find 586 * another. The OCEXCL outer perimeter helps us here. 587 */ 588 esp_sadb.s_ip_q = NULL; 589 590 /* 591 * Find a replacement queue for esp_sadb.s_ip_q. 592 */ 593 if (esp_pfkey_q != NULL && esp_pfkey_q != RD(q)) { 594 /* 595 * See if we can use the pfkey_q. 596 */ 597 esp_sadb.s_ip_q = WR(esp_pfkey_q); 598 } 599 600 if (esp_sadb.s_ip_q == NULL || 601 !sadb_t_bind_req(esp_sadb.s_ip_q, IPPROTO_ESP)) { 602 esp1dbg(("ipsecesp: Can't reassign ip_q.\n")); 603 esp_sadb.s_ip_q = NULL; 604 } else { 605 esp_ip_unbind = allocb(sizeof (struct T_unbind_req), 606 BPRI_HI); 607 608 if (esp_ip_unbind != NULL) { 609 struct T_unbind_req *tur; 610 611 esp_ip_unbind->b_datap->db_type = M_PROTO; 612 tur = (struct T_unbind_req *) 613 esp_ip_unbind->b_rptr; 614 tur->PRIM_type = T_UNBIND_REQ; 615 } 616 /* If it's NULL, I can't do much here. */ 617 } 618 } 619 620 return (0); 621 } 622 623 /* 624 * Add a number of bytes to what the SA has protected so far. Return 625 * B_TRUE if the SA can still protect that many bytes. 626 * 627 * Caller must REFRELE the passed-in assoc. This function must REFRELE 628 * any obtained peer SA. 629 */ 630 static boolean_t 631 esp_age_bytes(ipsa_t *assoc, uint64_t bytes, boolean_t inbound) 632 { 633 ipsa_t *inassoc, *outassoc; 634 isaf_t *bucket; 635 boolean_t inrc, outrc, isv6; 636 sadb_t *sp; 637 int outhash; 638 639 /* No peer? No problem! */ 640 if (!assoc->ipsa_haspeer) { 641 return (sadb_age_bytes(esp_pfkey_q, assoc, bytes, 642 B_TRUE)); 643 } 644 645 /* 646 * Otherwise, we want to grab both the original assoc and its peer. 647 * There might be a race for this, but if it's a real race, two 648 * expire messages may occur. We limit this by only sending the 649 * expire message on one of the peers, we'll pick the inbound 650 * arbitrarily. 651 * 652 * If we need tight synchronization on the peer SA, then we need to 653 * reconsider. 654 */ 655 656 /* Use address length to select IPv6/IPv4 */ 657 isv6 = (assoc->ipsa_addrfam == AF_INET6); 658 sp = isv6 ? &esp_sadb.s_v6 : &esp_sadb.s_v4; 659 660 if (inbound) { 661 inassoc = assoc; 662 if (isv6) { 663 outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *) 664 &inassoc->ipsa_dstaddr)); 665 } else { 666 outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *) 667 &inassoc->ipsa_dstaddr)); 668 } 669 bucket = &sp->sdb_of[outhash]; 670 mutex_enter(&bucket->isaf_lock); 671 outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi, 672 inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr, 673 inassoc->ipsa_addrfam); 674 mutex_exit(&bucket->isaf_lock); 675 if (outassoc == NULL) { 676 /* Q: Do we wish to set haspeer == B_FALSE? */ 677 esp0dbg(("esp_age_bytes: " 678 "can't find peer for inbound.\n")); 679 return (sadb_age_bytes(esp_pfkey_q, inassoc, 680 bytes, B_TRUE)); 681 } 682 } else { 683 outassoc = assoc; 684 bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi); 685 mutex_enter(&bucket->isaf_lock); 686 inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi, 687 outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr, 688 outassoc->ipsa_addrfam); 689 mutex_exit(&bucket->isaf_lock); 690 if (inassoc == NULL) { 691 /* Q: Do we wish to set haspeer == B_FALSE? */ 692 esp0dbg(("esp_age_bytes: " 693 "can't find peer for outbound.\n")); 694 return (sadb_age_bytes(esp_pfkey_q, outassoc, 695 bytes, B_TRUE)); 696 } 697 } 698 699 inrc = sadb_age_bytes(esp_pfkey_q, inassoc, bytes, B_TRUE); 700 outrc = sadb_age_bytes(esp_pfkey_q, outassoc, bytes, B_FALSE); 701 702 /* 703 * REFRELE any peer SA. 704 * 705 * Because of the multi-line macro nature of IPSA_REFRELE, keep 706 * them in { }. 707 */ 708 if (inbound) { 709 IPSA_REFRELE(outassoc); 710 } else { 711 IPSA_REFRELE(inassoc); 712 } 713 714 return (inrc && outrc); 715 } 716 717 /* 718 * Do incoming NAT-T manipulations for packet. 719 */ 720 static ipsec_status_t 721 esp_fix_natt_checksums(mblk_t *data_mp, ipsa_t *assoc) 722 { 723 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 724 tcpha_t *tcph; 725 udpha_t *udpha; 726 /* Initialize to our inbound cksum adjustment... */ 727 uint32_t sum = assoc->ipsa_inbound_cksum; 728 729 switch (ipha->ipha_protocol) { 730 case IPPROTO_TCP: 731 tcph = (tcpha_t *)(data_mp->b_rptr + 732 IPH_HDR_LENGTH(ipha)); 733 734 #define DOWN_SUM(x) (x) = ((x) & 0xFFFF) + ((x) >> 16) 735 sum += ~ntohs(tcph->tha_sum) & 0xFFFF; 736 DOWN_SUM(sum); 737 DOWN_SUM(sum); 738 tcph->tha_sum = ~htons(sum); 739 break; 740 case IPPROTO_UDP: 741 udpha = (udpha_t *)(data_mp->b_rptr + IPH_HDR_LENGTH(ipha)); 742 743 if (udpha->uha_checksum != 0) { 744 /* Adujst if the inbound one was not zero. */ 745 sum += ~ntohs(udpha->uha_checksum) & 0xFFFF; 746 DOWN_SUM(sum); 747 DOWN_SUM(sum); 748 udpha->uha_checksum = ~htons(sum); 749 if (udpha->uha_checksum == 0) 750 udpha->uha_checksum = 0xFFFF; 751 } 752 #undef DOWN_SUM 753 break; 754 case IPPROTO_IP: 755 /* 756 * This case is only an issue for self-encapsulated 757 * packets. So for now, fall through. 758 */ 759 break; 760 } 761 return (IPSEC_STATUS_SUCCESS); 762 } 763 764 765 /* 766 * Strip ESP header and fix IP header 767 * Returns B_TRUE on success, B_FALSE if an error occured. 768 */ 769 static boolean_t 770 esp_strip_header(mblk_t *data_mp, boolean_t isv4, uint32_t ivlen, 771 kstat_named_t **counter) 772 { 773 ipha_t *ipha; 774 ip6_t *ip6h; 775 uint_t divpoint; 776 mblk_t *scratch; 777 uint8_t nexthdr, padlen; 778 uint8_t lastpad; 779 780 /* 781 * Strip ESP data and fix IP header. 782 * 783 * XXX In case the beginning of esp_inbound() changes to not do a 784 * pullup, this part of the code can remain unchanged. 785 */ 786 if (isv4) { 787 ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ipha_t)); 788 ipha = (ipha_t *)data_mp->b_rptr; 789 ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (esph_t) + 790 IPH_HDR_LENGTH(ipha)); 791 divpoint = IPH_HDR_LENGTH(ipha); 792 } else { 793 ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ip6_t)); 794 ip6h = (ip6_t *)data_mp->b_rptr; 795 divpoint = ip_hdr_length_v6(data_mp, ip6h); 796 } 797 798 scratch = data_mp; 799 while (scratch->b_cont != NULL) 800 scratch = scratch->b_cont; 801 802 ASSERT((scratch->b_wptr - scratch->b_rptr) >= 3); 803 804 /* 805 * "Next header" and padding length are the last two bytes in the 806 * ESP-protected datagram, thus the explicit - 1 and - 2. 807 * lastpad is the last byte of the padding, which can be used for 808 * a quick check to see if the padding is correct. 809 */ 810 nexthdr = *(scratch->b_wptr - 1); 811 padlen = *(scratch->b_wptr - 2); 812 lastpad = *(scratch->b_wptr - 3); 813 814 if (isv4) { 815 /* Fix part of the IP header. */ 816 ipha->ipha_protocol = nexthdr; 817 /* 818 * Reality check the padlen. The explicit - 2 is for the 819 * padding length and the next-header bytes. 820 */ 821 if (padlen >= ntohs(ipha->ipha_length) - sizeof (ipha_t) - 2 - 822 sizeof (esph_t) - ivlen) { 823 ESP_BUMP_STAT(bad_decrypt); 824 ipsec_rl_strlog(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 825 "Possibly corrupt ESP packet."); 826 esp1dbg(("padlen (%d) is greater than:\n", padlen)); 827 esp1dbg(("pkt len(%d) - ip hdr - esp hdr - ivlen(%d) " 828 "= %d.\n", ntohs(ipha->ipha_length), ivlen, 829 (int)(ntohs(ipha->ipha_length) - sizeof (ipha_t) - 830 2 - sizeof (esph_t) - ivlen))); 831 *counter = &ipdrops_esp_bad_padlen; 832 return (B_FALSE); 833 } 834 835 /* 836 * Fix the rest of the header. The explicit - 2 is for the 837 * padding length and the next-header bytes. 838 */ 839 ipha->ipha_length = htons(ntohs(ipha->ipha_length) - padlen - 840 2 - sizeof (esph_t) - ivlen); 841 ipha->ipha_hdr_checksum = 0; 842 ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha); 843 } else { 844 if (ip6h->ip6_nxt == IPPROTO_ESP) { 845 ip6h->ip6_nxt = nexthdr; 846 } else { 847 ip6_pkt_t ipp; 848 849 bzero(&ipp, sizeof (ipp)); 850 (void) ip_find_hdr_v6(data_mp, ip6h, &ipp, NULL); 851 if (ipp.ipp_dstopts != NULL) { 852 ipp.ipp_dstopts->ip6d_nxt = nexthdr; 853 } else if (ipp.ipp_rthdr != NULL) { 854 ipp.ipp_rthdr->ip6r_nxt = nexthdr; 855 } else if (ipp.ipp_hopopts != NULL) { 856 ipp.ipp_hopopts->ip6h_nxt = nexthdr; 857 } else { 858 /* Panic a DEBUG kernel. */ 859 ASSERT(ipp.ipp_hopopts != NULL); 860 /* Otherwise, pretend it's IP + ESP. */ 861 cmn_err(CE_WARN, "ESP IPv6 headers wrong.\n"); 862 ip6h->ip6_nxt = nexthdr; 863 } 864 } 865 866 if (padlen >= ntohs(ip6h->ip6_plen) - 2 - sizeof (esph_t) - 867 ivlen) { 868 ESP_BUMP_STAT(bad_decrypt); 869 ipsec_rl_strlog(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 870 "Possibly corrupt ESP packet."); 871 esp1dbg(("padlen (%d) is greater than:\n", padlen)); 872 esp1dbg(("pkt len(%u) - ip hdr - esp hdr - ivlen(%d)" 873 " = %u.\n", (unsigned)(ntohs(ip6h->ip6_plen) 874 + sizeof (ip6_t)), ivlen, 875 (unsigned)(ntohs(ip6h->ip6_plen) - 2 - 876 sizeof (esph_t) - ivlen))); 877 *counter = &ipdrops_esp_bad_padlen; 878 return (B_FALSE); 879 } 880 881 882 /* 883 * Fix the rest of the header. The explicit - 2 is for the 884 * padding length and the next-header bytes. IPv6 is nice, 885 * because there's no hdr checksum! 886 */ 887 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - padlen - 888 2 - sizeof (esph_t) - ivlen); 889 } 890 891 if (ipsecesp_padding_check > 0 && 892 padlen != lastpad && padlen != 0) { 893 ipsec_rl_strlog(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 894 "Possibly corrupt ESP packet."); 895 esp1dbg(("lastpad (%d) not equal to padlen (%d):\n", 896 lastpad, padlen)); 897 ESP_BUMP_STAT(bad_padding); 898 *counter = &ipdrops_esp_bad_padding; 899 return (B_FALSE); 900 } 901 902 if (ipsecesp_padding_check > 1) { 903 uint8_t *last = (uint8_t *)(scratch->b_wptr - 3); 904 uint8_t lastval = *last; 905 906 /* 907 * this assert may have to become an if 908 * and a pullup if we start accepting 909 * multi-dblk mblks. Any packet here will 910 * have been pulled up in esp_inbound. 911 */ 912 ASSERT(MBLKL(scratch) >= lastval + 3); 913 914 while (lastval != 0) { 915 if (lastval != *last) { 916 ipsec_rl_strlog(info.mi_idnum, 0, 0, 917 SL_ERROR | SL_WARN, 918 "Possibly corrupt ESP packet."); 919 esp1dbg(("padding not in correct" 920 " format:\n")); 921 ESP_BUMP_STAT(bad_padding); 922 *counter = &ipdrops_esp_bad_padding; 923 return (B_FALSE); 924 } 925 lastval--; last--; 926 } 927 } 928 929 /* Trim off the padding. */ 930 ASSERT(data_mp->b_cont == NULL); 931 data_mp->b_wptr -= (padlen + 2); 932 933 /* 934 * Remove the ESP header. 935 * 936 * The above assertions about data_mp's size will make this work. 937 * 938 * XXX Question: If I send up and get back a contiguous mblk, 939 * would it be quicker to bcopy over, or keep doing the dupb stuff? 940 * I go with copying for now. 941 */ 942 943 if (IS_P2ALIGNED(data_mp->b_rptr, sizeof (uint32_t)) && 944 IS_P2ALIGNED(ivlen, sizeof (uint32_t))) { 945 uint8_t *start = data_mp->b_rptr; 946 uint32_t *src, *dst; 947 948 src = (uint32_t *)(start + divpoint); 949 dst = (uint32_t *)(start + divpoint + sizeof (esph_t) + ivlen); 950 951 ASSERT(IS_P2ALIGNED(dst, sizeof (uint32_t)) && 952 IS_P2ALIGNED(src, sizeof (uint32_t))); 953 954 do { 955 src--; 956 dst--; 957 *dst = *src; 958 } while (src != (uint32_t *)start); 959 960 data_mp->b_rptr = (uchar_t *)dst; 961 } else { 962 uint8_t *start = data_mp->b_rptr; 963 uint8_t *src, *dst; 964 965 src = start + divpoint; 966 dst = src + sizeof (esph_t) + ivlen; 967 968 do { 969 src--; 970 dst--; 971 *dst = *src; 972 } while (src != start); 973 974 data_mp->b_rptr = dst; 975 } 976 977 esp2dbg(("data_mp after inbound ESP adjustment:\n")); 978 esp2dbg((dump_msg(data_mp))); 979 980 return (B_TRUE); 981 } 982 983 /* 984 * Updating use times can be tricky business if the ipsa_haspeer flag is 985 * set. This function is called once in an SA's lifetime. 986 * 987 * Caller has to REFRELE "assoc" which is passed in. This function has 988 * to REFRELE any peer SA that is obtained. 989 */ 990 static void 991 esp_set_usetime(ipsa_t *assoc, boolean_t inbound) 992 { 993 ipsa_t *inassoc, *outassoc; 994 isaf_t *bucket; 995 sadb_t *sp; 996 int outhash; 997 boolean_t isv6; 998 999 /* No peer? No problem! */ 1000 if (!assoc->ipsa_haspeer) { 1001 sadb_set_usetime(assoc); 1002 return; 1003 } 1004 1005 /* 1006 * Otherwise, we want to grab both the original assoc and its peer. 1007 * There might be a race for this, but if it's a real race, the times 1008 * will be out-of-synch by at most a second, and since our time 1009 * granularity is a second, this won't be a problem. 1010 * 1011 * If we need tight synchronization on the peer SA, then we need to 1012 * reconsider. 1013 */ 1014 1015 /* Use address length to select IPv6/IPv4 */ 1016 isv6 = (assoc->ipsa_addrfam == AF_INET6); 1017 sp = isv6 ? &esp_sadb.s_v6 : &esp_sadb.s_v4; 1018 1019 if (inbound) { 1020 inassoc = assoc; 1021 if (isv6) { 1022 outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *) 1023 &inassoc->ipsa_dstaddr)); 1024 } else { 1025 outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *) 1026 &inassoc->ipsa_dstaddr)); 1027 } 1028 bucket = &sp->sdb_of[outhash]; 1029 mutex_enter(&bucket->isaf_lock); 1030 outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi, 1031 inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr, 1032 inassoc->ipsa_addrfam); 1033 mutex_exit(&bucket->isaf_lock); 1034 if (outassoc == NULL) { 1035 /* Q: Do we wish to set haspeer == B_FALSE? */ 1036 esp0dbg(("esp_set_usetime: " 1037 "can't find peer for inbound.\n")); 1038 sadb_set_usetime(inassoc); 1039 return; 1040 } 1041 } else { 1042 outassoc = assoc; 1043 bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi); 1044 mutex_enter(&bucket->isaf_lock); 1045 inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi, 1046 outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr, 1047 outassoc->ipsa_addrfam); 1048 mutex_exit(&bucket->isaf_lock); 1049 if (inassoc == NULL) { 1050 /* Q: Do we wish to set haspeer == B_FALSE? */ 1051 esp0dbg(("esp_set_usetime: " 1052 "can't find peer for outbound.\n")); 1053 sadb_set_usetime(outassoc); 1054 return; 1055 } 1056 } 1057 1058 /* Update usetime on both. */ 1059 sadb_set_usetime(inassoc); 1060 sadb_set_usetime(outassoc); 1061 1062 /* 1063 * REFRELE any peer SA. 1064 * 1065 * Because of the multi-line macro nature of IPSA_REFRELE, keep 1066 * them in { }. 1067 */ 1068 if (inbound) { 1069 IPSA_REFRELE(outassoc); 1070 } else { 1071 IPSA_REFRELE(inassoc); 1072 } 1073 } 1074 1075 /* 1076 * Handle ESP inbound data for IPv4 and IPv6. 1077 * On success returns B_TRUE, on failure returns B_FALSE and frees the 1078 * mblk chain ipsec_in_mp. 1079 */ 1080 ipsec_status_t 1081 esp_inbound(mblk_t *ipsec_in_mp, void *arg) 1082 { 1083 mblk_t *data_mp = ipsec_in_mp->b_cont; 1084 ipsec_in_t *ii = (ipsec_in_t *)ipsec_in_mp->b_rptr; 1085 esph_t *esph = (esph_t *)arg; 1086 ipsa_t *ipsa = ii->ipsec_in_esp_sa; 1087 1088 if (ipsa->ipsa_usetime == 0) 1089 esp_set_usetime(ipsa, B_TRUE); 1090 1091 /* 1092 * We may wish to check replay in-range-only here as an optimization. 1093 * Include the reality check of ipsa->ipsa_replay > 1094 * ipsa->ipsa_replay_wsize for times when it's the first N packets, 1095 * where N == ipsa->ipsa_replay_wsize. 1096 * 1097 * Another check that may come here later is the "collision" check. 1098 * If legitimate packets flow quickly enough, this won't be a problem, 1099 * but collisions may cause authentication algorithm crunching to 1100 * take place when it doesn't need to. 1101 */ 1102 if (!sadb_replay_peek(ipsa, esph->esph_replay)) { 1103 ESP_BUMP_STAT(replay_early_failures); 1104 IP_ESP_BUMP_STAT(in_discards); 1105 /* 1106 * TODO: Extract inbound interface from the IPSEC_IN 1107 * message's ii->ipsec_in_rill_index. 1108 */ 1109 ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, 1110 &ipdrops_esp_early_replay, &esp_dropper); 1111 return (IPSEC_STATUS_FAILED); 1112 } 1113 1114 /* 1115 * Has this packet already been processed by a hardware 1116 * IPsec accelerator? 1117 */ 1118 if (ii->ipsec_in_accelerated) { 1119 ipsec_status_t rv; 1120 esp3dbg(("esp_inbound: pkt processed by ill=%d isv6=%d\n", 1121 ii->ipsec_in_ill_index, !ii->ipsec_in_v4)); 1122 rv = esp_inbound_accelerated(ipsec_in_mp, 1123 data_mp, ii->ipsec_in_v4, ipsa); 1124 return (rv); 1125 } 1126 ESP_BUMP_STAT(noaccel); 1127 1128 /* 1129 * Adjust the IP header's payload length to reflect the removal 1130 * of the ICV. 1131 */ 1132 if (!ii->ipsec_in_v4) { 1133 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 1134 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 1135 ipsa->ipsa_mac_len); 1136 } else { 1137 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 1138 ipha->ipha_length = htons(ntohs(ipha->ipha_length) - 1139 ipsa->ipsa_mac_len); 1140 } 1141 1142 /* submit the request to the crypto framework */ 1143 return (esp_submit_req_inbound(ipsec_in_mp, ipsa, 1144 (uint8_t *)esph - data_mp->b_rptr)); 1145 } 1146 1147 /* 1148 * Perform the really difficult work of inserting the proposed situation. 1149 * Called while holding the algorithm lock. 1150 */ 1151 static void 1152 esp_insert_prop(sadb_prop_t *prop, ipsacq_t *acqrec, uint_t combs) 1153 { 1154 sadb_comb_t *comb = (sadb_comb_t *)(prop + 1); 1155 ipsec_out_t *io; 1156 ipsec_action_t *ap; 1157 ipsec_prot_t *prot; 1158 1159 ASSERT(MUTEX_HELD(&alg_lock)); 1160 io = (ipsec_out_t *)acqrec->ipsacq_mp->b_rptr; 1161 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1162 1163 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 1164 prop->sadb_prop_len = SADB_8TO64(sizeof (sadb_prop_t)); 1165 *(uint32_t *)(&prop->sadb_prop_replay) = 0; /* Quick zero-out! */ 1166 1167 prop->sadb_prop_replay = ipsecesp_replay_size; 1168 1169 /* 1170 * Based upon algorithm properties, and what-not, prioritize 1171 * a proposal. If the IPSEC_OUT message has an algorithm specified, 1172 * use it first and foremost. 1173 * 1174 * For each action in policy list 1175 * Add combination. If I've hit limit, return. 1176 */ 1177 1178 for (ap = acqrec->ipsacq_act; ap != NULL; 1179 ap = ap->ipa_next) { 1180 ipsec_alginfo_t *ealg = NULL; 1181 ipsec_alginfo_t *aalg = NULL; 1182 1183 if (ap->ipa_act.ipa_type != IPSEC_POLICY_APPLY) 1184 continue; 1185 1186 prot = &ap->ipa_act.ipa_apply; 1187 1188 if (!(prot->ipp_use_esp)) 1189 continue; 1190 1191 if (prot->ipp_esp_auth_alg != 0) { 1192 aalg = ipsec_alglists[IPSEC_ALG_AUTH] 1193 [prot->ipp_esp_auth_alg]; 1194 if (aalg == NULL || !ALG_VALID(aalg)) 1195 continue; 1196 } 1197 1198 ASSERT(prot->ipp_encr_alg > 0); 1199 ealg = ipsec_alglists[IPSEC_ALG_ENCR][prot->ipp_encr_alg]; 1200 if (ealg == NULL || !ALG_VALID(ealg)) 1201 continue; 1202 1203 comb->sadb_comb_flags = 0; 1204 comb->sadb_comb_reserved = 0; 1205 comb->sadb_comb_encrypt = ealg->alg_id; 1206 comb->sadb_comb_encrypt_minbits = 1207 MAX(prot->ipp_espe_minbits, ealg->alg_ef_minbits); 1208 comb->sadb_comb_encrypt_maxbits = 1209 MIN(prot->ipp_espe_maxbits, ealg->alg_ef_maxbits); 1210 if (aalg == NULL) { 1211 comb->sadb_comb_auth = 0; 1212 comb->sadb_comb_auth_minbits = 0; 1213 comb->sadb_comb_auth_maxbits = 0; 1214 } else { 1215 comb->sadb_comb_auth = aalg->alg_id; 1216 comb->sadb_comb_auth_minbits = 1217 MAX(prot->ipp_espa_minbits, aalg->alg_ef_minbits); 1218 comb->sadb_comb_auth_maxbits = 1219 MIN(prot->ipp_espa_maxbits, aalg->alg_ef_maxbits); 1220 } 1221 1222 /* 1223 * The following may be based on algorithm 1224 * properties, but in the meantime, we just pick 1225 * some good, sensible numbers. Key mgmt. can 1226 * (and perhaps should) be the place to finalize 1227 * such decisions. 1228 */ 1229 1230 /* 1231 * No limits on allocations, since we really don't 1232 * support that concept currently. 1233 */ 1234 comb->sadb_comb_soft_allocations = 0; 1235 comb->sadb_comb_hard_allocations = 0; 1236 1237 /* 1238 * These may want to come from policy rule.. 1239 */ 1240 comb->sadb_comb_soft_bytes = ipsecesp_default_soft_bytes; 1241 comb->sadb_comb_hard_bytes = ipsecesp_default_hard_bytes; 1242 comb->sadb_comb_soft_addtime = ipsecesp_default_soft_addtime; 1243 comb->sadb_comb_hard_addtime = ipsecesp_default_hard_addtime; 1244 comb->sadb_comb_soft_usetime = ipsecesp_default_soft_usetime; 1245 comb->sadb_comb_hard_usetime = ipsecesp_default_hard_usetime; 1246 1247 prop->sadb_prop_len += SADB_8TO64(sizeof (*comb)); 1248 if (--combs == 0) 1249 break; /* out of space.. */ 1250 comb++; 1251 } 1252 } 1253 1254 /* 1255 * Prepare and actually send the SADB_ACQUIRE message to PF_KEY. 1256 */ 1257 static void 1258 esp_send_acquire(ipsacq_t *acqrec, mblk_t *extended) 1259 { 1260 uint_t combs; 1261 sadb_msg_t *samsg; 1262 sadb_prop_t *prop; 1263 mblk_t *pfkeymp, *msgmp; 1264 1265 ESP_BUMP_STAT(acquire_requests); 1266 1267 if (esp_pfkey_q == NULL) 1268 return; 1269 1270 /* Set up ACQUIRE. */ 1271 pfkeymp = sadb_setup_acquire(acqrec, SADB_SATYPE_ESP); 1272 if (pfkeymp == NULL) { 1273 esp0dbg(("sadb_setup_acquire failed.\n")); 1274 return; 1275 } 1276 ASSERT(MUTEX_HELD(&alg_lock)); 1277 combs = ipsec_nalgs[IPSEC_ALG_AUTH] * ipsec_nalgs[IPSEC_ALG_ENCR]; 1278 msgmp = pfkeymp->b_cont; 1279 samsg = (sadb_msg_t *)(msgmp->b_rptr); 1280 1281 /* Insert proposal here. */ 1282 1283 prop = (sadb_prop_t *)(((uint64_t *)samsg) + samsg->sadb_msg_len); 1284 esp_insert_prop(prop, acqrec, combs); 1285 samsg->sadb_msg_len += prop->sadb_prop_len; 1286 msgmp->b_wptr += SADB_64TO8(samsg->sadb_msg_len); 1287 1288 mutex_exit(&alg_lock); 1289 1290 /* 1291 * Must mutex_exit() before sending PF_KEY message up, in 1292 * order to avoid recursive mutex_enter() if there are no registered 1293 * listeners. 1294 * 1295 * Once I've sent the message, I'm cool anyway. 1296 */ 1297 mutex_exit(&acqrec->ipsacq_lock); 1298 if (extended != NULL) { 1299 putnext(esp_pfkey_q, extended); 1300 } 1301 putnext(esp_pfkey_q, pfkeymp); 1302 } 1303 1304 /* 1305 * Handle the SADB_GETSPI message. Create a larval SA. 1306 */ 1307 static void 1308 esp_getspi(mblk_t *mp, keysock_in_t *ksi) 1309 { 1310 ipsa_t *newbie, *target; 1311 isaf_t *outbound, *inbound; 1312 int rc, diagnostic; 1313 sadb_sa_t *assoc; 1314 keysock_out_t *kso; 1315 uint32_t newspi; 1316 1317 /* 1318 * Randomly generate a proposed SPI value 1319 */ 1320 (void) random_get_pseudo_bytes((uint8_t *)&newspi, sizeof (uint32_t)); 1321 newbie = sadb_getspi(ksi, newspi, &diagnostic); 1322 1323 if (newbie == NULL) { 1324 sadb_pfkey_error(esp_pfkey_q, mp, ENOMEM, diagnostic, 1325 ksi->ks_in_serial); 1326 return; 1327 } else if (newbie == (ipsa_t *)-1) { 1328 sadb_pfkey_error(esp_pfkey_q, mp, EINVAL, diagnostic, 1329 ksi->ks_in_serial); 1330 return; 1331 } 1332 1333 /* 1334 * XXX - We may randomly collide. We really should recover from this. 1335 * Unfortunately, that could require spending way-too-much-time 1336 * in here. For now, let the user retry. 1337 */ 1338 1339 if (newbie->ipsa_addrfam == AF_INET6) { 1340 outbound = OUTBOUND_BUCKET_V6(&esp_sadb.s_v6, 1341 *(uint32_t *)(newbie->ipsa_dstaddr)); 1342 inbound = INBOUND_BUCKET(&esp_sadb.s_v6, newbie->ipsa_spi); 1343 } else { 1344 ASSERT(newbie->ipsa_addrfam == AF_INET); 1345 outbound = OUTBOUND_BUCKET_V4(&esp_sadb.s_v4, 1346 *(uint32_t *)(newbie->ipsa_dstaddr)); 1347 inbound = INBOUND_BUCKET(&esp_sadb.s_v4, newbie->ipsa_spi); 1348 } 1349 1350 mutex_enter(&outbound->isaf_lock); 1351 mutex_enter(&inbound->isaf_lock); 1352 1353 /* 1354 * Check for collisions (i.e. did sadb_getspi() return with something 1355 * that already exists?). 1356 * 1357 * Try outbound first. Even though SADB_GETSPI is traditionally 1358 * for inbound SAs, you never know what a user might do. 1359 */ 1360 target = ipsec_getassocbyspi(outbound, newbie->ipsa_spi, 1361 newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, newbie->ipsa_addrfam); 1362 if (target == NULL) { 1363 target = ipsec_getassocbyspi(inbound, newbie->ipsa_spi, 1364 newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, 1365 newbie->ipsa_addrfam); 1366 } 1367 1368 /* 1369 * I don't have collisions elsewhere! 1370 * (Nor will I because I'm still holding inbound/outbound locks.) 1371 */ 1372 1373 if (target != NULL) { 1374 rc = EEXIST; 1375 IPSA_REFRELE(target); 1376 } else { 1377 /* 1378 * sadb_insertassoc() also checks for collisions, so 1379 * if there's a colliding entry, rc will be set 1380 * to EEXIST. 1381 */ 1382 rc = sadb_insertassoc(newbie, inbound); 1383 (void) drv_getparm(TIME, &newbie->ipsa_hardexpiretime); 1384 newbie->ipsa_hardexpiretime += ipsecesp_larval_timeout; 1385 } 1386 1387 /* 1388 * Can exit outbound mutex. Hold inbound until we're done 1389 * with newbie. 1390 */ 1391 mutex_exit(&outbound->isaf_lock); 1392 1393 if (rc != 0) { 1394 mutex_exit(&inbound->isaf_lock); 1395 IPSA_REFRELE(newbie); 1396 sadb_pfkey_error(esp_pfkey_q, mp, rc, SADB_X_DIAGNOSTIC_NONE, 1397 ksi->ks_in_serial); 1398 return; 1399 } 1400 1401 1402 /* Can write here because I'm still holding the bucket lock. */ 1403 newbie->ipsa_type = SADB_SATYPE_ESP; 1404 1405 /* 1406 * Construct successful return message. We have one thing going 1407 * for us in PF_KEY v2. That's the fact that 1408 * sizeof (sadb_spirange_t) == sizeof (sadb_sa_t) 1409 */ 1410 assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE]; 1411 assoc->sadb_sa_exttype = SADB_EXT_SA; 1412 assoc->sadb_sa_spi = newbie->ipsa_spi; 1413 *((uint64_t *)(&assoc->sadb_sa_replay)) = 0; 1414 mutex_exit(&inbound->isaf_lock); 1415 1416 /* Convert KEYSOCK_IN to KEYSOCK_OUT. */ 1417 kso = (keysock_out_t *)ksi; 1418 kso->ks_out_len = sizeof (*kso); 1419 kso->ks_out_serial = ksi->ks_in_serial; 1420 kso->ks_out_type = KEYSOCK_OUT; 1421 1422 /* 1423 * Can safely putnext() to esp_pfkey_q, because this is a turnaround 1424 * from the esp_pfkey_q. 1425 */ 1426 putnext(esp_pfkey_q, mp); 1427 } 1428 1429 /* 1430 * Insert the ESP header into a packet. Duplicate an mblk, and insert a newly 1431 * allocated mblk with the ESP header in between the two. 1432 */ 1433 static boolean_t 1434 esp_insert_esp(mblk_t *mp, mblk_t *esp_mp, uint_t divpoint) 1435 { 1436 mblk_t *split_mp = mp; 1437 uint_t wheretodiv = divpoint; 1438 1439 while ((split_mp->b_wptr - split_mp->b_rptr) < wheretodiv) { 1440 wheretodiv -= (split_mp->b_wptr - split_mp->b_rptr); 1441 split_mp = split_mp->b_cont; 1442 ASSERT(split_mp != NULL); 1443 } 1444 1445 if (split_mp->b_wptr - split_mp->b_rptr != wheretodiv) { 1446 mblk_t *scratch; 1447 1448 /* "scratch" is the 2nd half, split_mp is the first. */ 1449 scratch = dupb(split_mp); 1450 if (scratch == NULL) { 1451 esp1dbg(("esp_insert_esp: can't allocate scratch.\n")); 1452 return (B_FALSE); 1453 } 1454 /* NOTE: dupb() doesn't set b_cont appropriately. */ 1455 scratch->b_cont = split_mp->b_cont; 1456 scratch->b_rptr += wheretodiv; 1457 split_mp->b_wptr = split_mp->b_rptr + wheretodiv; 1458 split_mp->b_cont = scratch; 1459 } 1460 /* 1461 * At this point, split_mp is exactly "wheretodiv" bytes long, and 1462 * holds the end of the pre-ESP part of the datagram. 1463 */ 1464 esp_mp->b_cont = split_mp->b_cont; 1465 split_mp->b_cont = esp_mp; 1466 1467 return (B_TRUE); 1468 } 1469 1470 /* 1471 * Finish processing of an inbound ESP packet after processing by the 1472 * crypto framework. 1473 * - Remove the ESP header. 1474 * - Send packet back to IP. 1475 * If authentication was performed on the packet, this function is called 1476 * only if the authentication succeeded. 1477 * On success returns B_TRUE, on failure returns B_FALSE and frees the 1478 * mblk chain ipsec_in_mp. 1479 */ 1480 static ipsec_status_t 1481 esp_in_done(mblk_t *ipsec_in_mp) 1482 { 1483 ipsec_in_t *ii = (ipsec_in_t *)ipsec_in_mp->b_rptr; 1484 mblk_t *data_mp; 1485 ipsa_t *assoc; 1486 uint_t espstart; 1487 uint32_t ivlen = 0; 1488 uint_t processed_len; 1489 esph_t *esph; 1490 kstat_named_t *counter; 1491 boolean_t is_natt; 1492 1493 assoc = ii->ipsec_in_esp_sa; 1494 ASSERT(assoc != NULL); 1495 1496 is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0); 1497 1498 /* get the pointer to the ESP header */ 1499 if (assoc->ipsa_encr_alg == SADB_EALG_NULL) { 1500 /* authentication-only ESP */ 1501 espstart = ii->ipsec_in_crypto_data.cd_offset; 1502 processed_len = ii->ipsec_in_crypto_data.cd_length; 1503 } else { 1504 /* encryption present */ 1505 ivlen = assoc->ipsa_iv_len; 1506 if (assoc->ipsa_auth_alg == SADB_AALG_NONE) { 1507 /* encryption-only ESP */ 1508 espstart = ii->ipsec_in_crypto_data.cd_offset - 1509 sizeof (esph_t) - assoc->ipsa_iv_len; 1510 processed_len = ii->ipsec_in_crypto_data.cd_length + 1511 ivlen; 1512 } else { 1513 /* encryption with authentication */ 1514 espstart = ii->ipsec_in_crypto_dual_data.dd_offset1; 1515 processed_len = ii->ipsec_in_crypto_dual_data.dd_len2 + 1516 ivlen; 1517 } 1518 } 1519 1520 data_mp = ipsec_in_mp->b_cont; 1521 esph = (esph_t *)(data_mp->b_rptr + espstart); 1522 1523 if (assoc->ipsa_auth_alg != IPSA_AALG_NONE) { 1524 /* authentication passed if we reach this point */ 1525 ESP_BUMP_STAT(good_auth); 1526 data_mp->b_wptr -= assoc->ipsa_mac_len; 1527 1528 /* 1529 * Check replay window here! 1530 * For right now, assume keysock will set the replay window 1531 * size to zero for SAs that have an unspecified sender. 1532 * This may change... 1533 */ 1534 1535 if (!sadb_replay_check(assoc, esph->esph_replay)) { 1536 /* 1537 * Log the event. As of now we print out an event. 1538 * Do not print the replay failure number, or else 1539 * syslog cannot collate the error messages. Printing 1540 * the replay number that failed opens a denial-of- 1541 * service attack. 1542 */ 1543 ipsec_assocfailure(info.mi_idnum, 0, 0, 1544 SL_ERROR | SL_WARN, 1545 "Replay failed for ESP spi 0x%x, dst %s.\n", 1546 assoc->ipsa_spi, assoc->ipsa_dstaddr, 1547 assoc->ipsa_addrfam); 1548 ESP_BUMP_STAT(replay_failures); 1549 counter = &ipdrops_esp_replay; 1550 goto drop_and_bail; 1551 } 1552 } 1553 1554 if (!esp_age_bytes(assoc, processed_len, B_TRUE)) { 1555 /* The ipsa has hit hard expiration, LOG and AUDIT. */ 1556 ipsec_assocfailure(info.mi_idnum, 0, 0, 1557 SL_ERROR | SL_WARN, 1558 "ESP association 0x%x, dst %s had bytes expire.\n", 1559 assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam); 1560 ESP_BUMP_STAT(bytes_expired); 1561 counter = &ipdrops_esp_bytes_expire; 1562 goto drop_and_bail; 1563 } 1564 1565 /* 1566 * Remove ESP header and padding from packet. I hope the compiler 1567 * spews "branch, predict taken" code for this. 1568 */ 1569 1570 if (esp_strip_header(data_mp, ii->ipsec_in_v4, ivlen, &counter)) { 1571 if (is_natt) 1572 return (esp_fix_natt_checksums(data_mp, assoc)); 1573 return (IPSEC_STATUS_SUCCESS); 1574 } 1575 1576 esp1dbg(("esp_in_done: esp_strip_header() failed\n")); 1577 drop_and_bail: 1578 IP_ESP_BUMP_STAT(in_discards); 1579 /* 1580 * TODO: Extract inbound interface from the IPSEC_IN message's 1581 * ii->ipsec_in_rill_index. 1582 */ 1583 ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, counter, &esp_dropper); 1584 return (IPSEC_STATUS_FAILED); 1585 } 1586 1587 /* 1588 * Called upon failing the inbound ICV check. The message passed as 1589 * argument is freed. 1590 */ 1591 static void 1592 esp_log_bad_auth(mblk_t *ipsec_in) 1593 { 1594 ipsec_in_t *ii = (ipsec_in_t *)ipsec_in->b_rptr; 1595 ipsa_t *assoc = ii->ipsec_in_esp_sa; 1596 1597 /* 1598 * Log the event. Don't print to the console, block 1599 * potential denial-of-service attack. 1600 */ 1601 ESP_BUMP_STAT(bad_auth); 1602 1603 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 1604 "ESP Authentication failed for spi 0x%x, dst %s.\n", 1605 assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam); 1606 1607 IP_ESP_BUMP_STAT(in_discards); 1608 /* 1609 * TODO: Extract inbound interface from the IPSEC_IN 1610 * message's ii->ipsec_in_rill_index. 1611 */ 1612 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_esp_bad_auth, 1613 &esp_dropper); 1614 } 1615 1616 1617 /* 1618 * Invoked for outbound packets after ESP processing. If the packet 1619 * also requires AH, performs the AH SA selection and AH processing. 1620 * Returns B_TRUE if the AH processing was not needed or if it was 1621 * performed successfully. Returns B_FALSE and consumes the passed mblk 1622 * if AH processing was required but could not be performed. 1623 */ 1624 static boolean_t 1625 esp_do_outbound_ah(mblk_t *ipsec_mp) 1626 { 1627 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 1628 ipsec_status_t ipsec_rc; 1629 ipsec_action_t *ap; 1630 1631 ap = io->ipsec_out_act; 1632 if (ap == NULL) { 1633 ipsec_policy_t *pp = io->ipsec_out_policy; 1634 ap = pp->ipsp_act; 1635 } 1636 1637 if (!ap->ipa_want_ah) 1638 return (B_TRUE); 1639 1640 ASSERT(io->ipsec_out_ah_done == B_FALSE); 1641 1642 if (io->ipsec_out_ah_sa == NULL) { 1643 if (!ipsec_outbound_sa(ipsec_mp, IPPROTO_AH)) { 1644 sadb_acquire(ipsec_mp, io, B_TRUE, B_FALSE); 1645 return (B_FALSE); 1646 } 1647 } 1648 ASSERT(io->ipsec_out_ah_sa != NULL); 1649 1650 io->ipsec_out_ah_done = B_TRUE; 1651 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 1652 return (ipsec_rc == IPSEC_STATUS_SUCCESS); 1653 } 1654 1655 1656 /* 1657 * Kernel crypto framework callback invoked after completion of async 1658 * crypto requests. 1659 */ 1660 static void 1661 esp_kcf_callback(void *arg, int status) 1662 { 1663 mblk_t *ipsec_mp = (mblk_t *)arg; 1664 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 1665 boolean_t is_inbound = (ii->ipsec_in_type == IPSEC_IN); 1666 1667 ASSERT(ipsec_mp->b_cont != NULL); 1668 1669 if (status == CRYPTO_SUCCESS) { 1670 if (is_inbound) { 1671 if (esp_in_done(ipsec_mp) != IPSEC_STATUS_SUCCESS) 1672 return; 1673 1674 /* finish IPsec processing */ 1675 ip_fanout_proto_again(ipsec_mp, NULL, NULL, NULL); 1676 } else { 1677 /* 1678 * If a ICV was computed, it was stored by the 1679 * crypto framework at the end of the packet. 1680 */ 1681 ipha_t *ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 1682 1683 /* do AH processing if needed */ 1684 if (!esp_do_outbound_ah(ipsec_mp)) 1685 return; 1686 1687 /* finish IPsec processing */ 1688 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 1689 ip_wput_ipsec_out(NULL, ipsec_mp, ipha, NULL, 1690 NULL); 1691 } else { 1692 ip6_t *ip6h = (ip6_t *)ipha; 1693 ip_wput_ipsec_out_v6(NULL, ipsec_mp, ip6h, 1694 NULL, NULL); 1695 } 1696 } 1697 1698 } else if (status == CRYPTO_INVALID_MAC) { 1699 esp_log_bad_auth(ipsec_mp); 1700 1701 } else { 1702 esp1dbg(("esp_kcf_callback: crypto failed with 0x%x\n", 1703 status)); 1704 ESP_BUMP_STAT(crypto_failures); 1705 if (is_inbound) 1706 IP_ESP_BUMP_STAT(in_discards); 1707 else 1708 ESP_BUMP_STAT(out_discards); 1709 ip_drop_packet(ipsec_mp, is_inbound, NULL, NULL, 1710 &ipdrops_esp_crypto_failed, &esp_dropper); 1711 } 1712 } 1713 1714 /* 1715 * Invoked on crypto framework failure during inbound and outbound processing. 1716 */ 1717 static void 1718 esp_crypto_failed(mblk_t *mp, boolean_t is_inbound, int kef_rc) 1719 { 1720 esp1dbg(("crypto failed for %s ESP with 0x%x\n", 1721 is_inbound ? "inbound" : "outbound", kef_rc)); 1722 ip_drop_packet(mp, is_inbound, NULL, NULL, &ipdrops_esp_crypto_failed, 1723 &esp_dropper); 1724 ESP_BUMP_STAT(crypto_failures); 1725 if (is_inbound) 1726 IP_ESP_BUMP_STAT(in_discards); 1727 else 1728 ESP_BUMP_STAT(out_discards); 1729 } 1730 1731 #define ESP_INIT_CALLREQ(_cr) { \ 1732 (_cr)->cr_flag = CRYPTO_SKIP_REQID|CRYPTO_RESTRICTED; \ 1733 (_cr)->cr_callback_arg = ipsec_mp; \ 1734 (_cr)->cr_callback_func = esp_kcf_callback; \ 1735 } 1736 1737 #define ESP_INIT_CRYPTO_MAC(mac, icvlen, icvbuf) { \ 1738 (mac)->cd_format = CRYPTO_DATA_RAW; \ 1739 (mac)->cd_offset = 0; \ 1740 (mac)->cd_length = icvlen; \ 1741 (mac)->cd_raw.iov_base = (char *)icvbuf; \ 1742 (mac)->cd_raw.iov_len = icvlen; \ 1743 } 1744 1745 #define ESP_INIT_CRYPTO_DATA(data, mp, off, len) { \ 1746 if (MBLKL(mp) >= (len) + (off)) { \ 1747 (data)->cd_format = CRYPTO_DATA_RAW; \ 1748 (data)->cd_raw.iov_base = (char *)(mp)->b_rptr; \ 1749 (data)->cd_raw.iov_len = MBLKL(mp); \ 1750 (data)->cd_offset = off; \ 1751 } else { \ 1752 (data)->cd_format = CRYPTO_DATA_MBLK; \ 1753 (data)->cd_mp = mp; \ 1754 (data)->cd_offset = off; \ 1755 } \ 1756 (data)->cd_length = len; \ 1757 } 1758 1759 #define ESP_INIT_CRYPTO_DUAL_DATA(data, mp, off1, len1, off2, len2) { \ 1760 (data)->dd_format = CRYPTO_DATA_MBLK; \ 1761 (data)->dd_mp = mp; \ 1762 (data)->dd_len1 = len1; \ 1763 (data)->dd_offset1 = off1; \ 1764 (data)->dd_len2 = len2; \ 1765 (data)->dd_offset2 = off2; \ 1766 } 1767 1768 static ipsec_status_t 1769 esp_submit_req_inbound(mblk_t *ipsec_mp, ipsa_t *assoc, uint_t esph_offset) 1770 { 1771 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 1772 boolean_t do_auth; 1773 uint_t auth_offset, msg_len, auth_len; 1774 crypto_call_req_t call_req; 1775 mblk_t *esp_mp; 1776 int kef_rc = CRYPTO_FAILED; 1777 uint_t icv_len = assoc->ipsa_mac_len; 1778 crypto_ctx_template_t auth_ctx_tmpl; 1779 boolean_t do_encr; 1780 uint_t encr_offset, encr_len; 1781 uint_t iv_len = assoc->ipsa_iv_len; 1782 crypto_ctx_template_t encr_ctx_tmpl; 1783 1784 ASSERT(ii->ipsec_in_type == IPSEC_IN); 1785 1786 do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE; 1787 do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL; 1788 1789 /* 1790 * An inbound packet is of the form: 1791 * IPSEC_IN -> [IP,options,ESP,IV,data,ICV,pad] 1792 */ 1793 esp_mp = ipsec_mp->b_cont; 1794 msg_len = MBLKL(esp_mp); 1795 1796 ESP_INIT_CALLREQ(&call_req); 1797 1798 if (do_auth) { 1799 /* force asynchronous processing? */ 1800 if (ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == 1801 IPSEC_ALGS_EXEC_ASYNC) 1802 call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE; 1803 1804 /* authentication context template */ 1805 IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH, 1806 auth_ctx_tmpl); 1807 1808 /* ICV to be verified */ 1809 ESP_INIT_CRYPTO_MAC(&ii->ipsec_in_crypto_mac, 1810 icv_len, esp_mp->b_wptr - icv_len); 1811 1812 /* authentication starts at the ESP header */ 1813 auth_offset = esph_offset; 1814 auth_len = msg_len - auth_offset - icv_len; 1815 if (!do_encr) { 1816 /* authentication only */ 1817 /* initialize input data argument */ 1818 ESP_INIT_CRYPTO_DATA(&ii->ipsec_in_crypto_data, 1819 esp_mp, auth_offset, auth_len); 1820 1821 /* call the crypto framework */ 1822 kef_rc = crypto_mac_verify(&assoc->ipsa_amech, 1823 &ii->ipsec_in_crypto_data, 1824 &assoc->ipsa_kcfauthkey, auth_ctx_tmpl, 1825 &ii->ipsec_in_crypto_mac, &call_req); 1826 } 1827 } 1828 1829 if (do_encr) { 1830 /* force asynchronous processing? */ 1831 if (ipsec_algs_exec_mode[IPSEC_ALG_ENCR] == 1832 IPSEC_ALGS_EXEC_ASYNC) 1833 call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE; 1834 1835 /* encryption template */ 1836 IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR, 1837 encr_ctx_tmpl); 1838 1839 /* skip IV, since it is passed separately */ 1840 encr_offset = esph_offset + sizeof (esph_t) + iv_len; 1841 encr_len = msg_len - encr_offset; 1842 1843 if (!do_auth) { 1844 /* decryption only */ 1845 /* initialize input data argument */ 1846 ESP_INIT_CRYPTO_DATA(&ii->ipsec_in_crypto_data, 1847 esp_mp, encr_offset, encr_len); 1848 1849 /* specify IV */ 1850 ii->ipsec_in_crypto_data.cd_miscdata = 1851 (char *)esp_mp->b_rptr + sizeof (esph_t) + 1852 esph_offset; 1853 1854 /* call the crypto framework */ 1855 kef_rc = crypto_decrypt(&assoc->ipsa_emech, 1856 &ii->ipsec_in_crypto_data, 1857 &assoc->ipsa_kcfencrkey, encr_ctx_tmpl, 1858 NULL, &call_req); 1859 } 1860 } 1861 1862 if (do_auth && do_encr) { 1863 /* dual operation */ 1864 /* initialize input data argument */ 1865 ESP_INIT_CRYPTO_DUAL_DATA(&ii->ipsec_in_crypto_dual_data, 1866 esp_mp, auth_offset, auth_len, 1867 encr_offset, encr_len - icv_len); 1868 1869 /* specify IV */ 1870 ii->ipsec_in_crypto_dual_data.dd_miscdata = 1871 (char *)esp_mp->b_rptr + sizeof (esph_t) + esph_offset; 1872 1873 /* call the framework */ 1874 kef_rc = crypto_mac_verify_decrypt(&assoc->ipsa_amech, 1875 &assoc->ipsa_emech, &ii->ipsec_in_crypto_dual_data, 1876 &assoc->ipsa_kcfauthkey, &assoc->ipsa_kcfencrkey, 1877 auth_ctx_tmpl, encr_ctx_tmpl, &ii->ipsec_in_crypto_mac, 1878 NULL, &call_req); 1879 } 1880 1881 switch (kef_rc) { 1882 case CRYPTO_SUCCESS: 1883 ESP_BUMP_STAT(crypto_sync); 1884 return (esp_in_done(ipsec_mp)); 1885 case CRYPTO_QUEUED: 1886 /* esp_kcf_callback() will be invoked on completion */ 1887 ESP_BUMP_STAT(crypto_async); 1888 return (IPSEC_STATUS_PENDING); 1889 case CRYPTO_INVALID_MAC: 1890 ESP_BUMP_STAT(crypto_sync); 1891 esp_log_bad_auth(ipsec_mp); 1892 return (IPSEC_STATUS_FAILED); 1893 } 1894 1895 esp_crypto_failed(ipsec_mp, B_TRUE, kef_rc); 1896 return (IPSEC_STATUS_FAILED); 1897 } 1898 1899 static ipsec_status_t 1900 esp_submit_req_outbound(mblk_t *ipsec_mp, ipsa_t *assoc, uchar_t *icv_buf, 1901 uint_t payload_len) 1902 { 1903 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 1904 uint_t auth_len; 1905 crypto_call_req_t call_req; 1906 mblk_t *esp_mp; 1907 int kef_rc = CRYPTO_FAILED; 1908 uint_t icv_len = assoc->ipsa_mac_len; 1909 crypto_ctx_template_t auth_ctx_tmpl; 1910 boolean_t do_auth; 1911 boolean_t do_encr; 1912 uint_t iv_len = assoc->ipsa_iv_len; 1913 crypto_ctx_template_t encr_ctx_tmpl; 1914 boolean_t is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0); 1915 size_t esph_offset = (is_natt ? UDPH_SIZE : 0); 1916 1917 esp3dbg(("esp_submit_req_outbound:%s", is_natt ? "natt" : "not natt")); 1918 1919 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1920 1921 do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL; 1922 do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE; 1923 1924 /* 1925 * Outbound IPsec packets are of the form: 1926 * IPSEC_OUT -> [IP,options] -> [ESP,IV] -> [data] -> [pad,ICV] 1927 * unless it's NATT, then it's 1928 * IPSEC_OUT -> [IP,options] -> [udp][ESP,IV] -> [data] -> [pad,ICV] 1929 * Get a pointer to the mblk containing the ESP header. 1930 */ 1931 ASSERT(ipsec_mp->b_cont != NULL && ipsec_mp->b_cont->b_cont != NULL); 1932 esp_mp = ipsec_mp->b_cont->b_cont; 1933 1934 ESP_INIT_CALLREQ(&call_req); 1935 1936 if (do_auth) { 1937 /* force asynchronous processing? */ 1938 if (ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == 1939 IPSEC_ALGS_EXEC_ASYNC) 1940 call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE; 1941 1942 /* authentication context template */ 1943 IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH, 1944 auth_ctx_tmpl); 1945 1946 /* where to store the computed mac */ 1947 ESP_INIT_CRYPTO_MAC(&io->ipsec_out_crypto_mac, 1948 icv_len, icv_buf); 1949 1950 /* authentication starts at the ESP header */ 1951 auth_len = payload_len + iv_len + sizeof (esph_t); 1952 if (!do_encr) { 1953 /* authentication only */ 1954 /* initialize input data argument */ 1955 ESP_INIT_CRYPTO_DATA(&io->ipsec_out_crypto_data, 1956 esp_mp, esph_offset, auth_len); 1957 1958 /* call the crypto framework */ 1959 kef_rc = crypto_mac(&assoc->ipsa_amech, 1960 &io->ipsec_out_crypto_data, 1961 &assoc->ipsa_kcfauthkey, auth_ctx_tmpl, 1962 &io->ipsec_out_crypto_mac, &call_req); 1963 } 1964 } 1965 1966 if (do_encr) { 1967 /* force asynchronous processing? */ 1968 if (ipsec_algs_exec_mode[IPSEC_ALG_ENCR] == 1969 IPSEC_ALGS_EXEC_ASYNC) 1970 call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE; 1971 1972 /* encryption context template */ 1973 IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR, 1974 encr_ctx_tmpl); 1975 1976 if (!do_auth) { 1977 /* encryption only, skip mblk that contains ESP hdr */ 1978 /* initialize input data argument */ 1979 ESP_INIT_CRYPTO_DATA(&io->ipsec_out_crypto_data, 1980 esp_mp->b_cont, 0, payload_len); 1981 1982 /* specify IV */ 1983 io->ipsec_out_crypto_data.cd_miscdata = 1984 (char *)esp_mp->b_rptr + sizeof (esph_t) + 1985 esph_offset; 1986 1987 /* call the crypto framework */ 1988 kef_rc = crypto_encrypt(&assoc->ipsa_emech, 1989 &io->ipsec_out_crypto_data, 1990 &assoc->ipsa_kcfencrkey, encr_ctx_tmpl, 1991 NULL, &call_req); 1992 } 1993 } 1994 1995 if (do_auth && do_encr) { 1996 /* 1997 * Encryption and authentication: 1998 * Pass the pointer to the mblk chain starting at the ESP 1999 * header to the framework. Skip the ESP header mblk 2000 * for encryption, which is reflected by an encryption 2001 * offset equal to the length of that mblk. Start 2002 * the authentication at the ESP header, i.e. use an 2003 * authentication offset of zero. 2004 */ 2005 ESP_INIT_CRYPTO_DUAL_DATA(&io->ipsec_out_crypto_dual_data, 2006 esp_mp, MBLKL(esp_mp), payload_len, esph_offset, auth_len); 2007 2008 /* specify IV */ 2009 io->ipsec_out_crypto_dual_data.dd_miscdata = 2010 (char *)esp_mp->b_rptr + sizeof (esph_t) + esph_offset; 2011 2012 /* call the framework */ 2013 kef_rc = crypto_encrypt_mac(&assoc->ipsa_emech, 2014 &assoc->ipsa_amech, NULL, 2015 &assoc->ipsa_kcfencrkey, &assoc->ipsa_kcfauthkey, 2016 encr_ctx_tmpl, auth_ctx_tmpl, 2017 &io->ipsec_out_crypto_dual_data, 2018 &io->ipsec_out_crypto_mac, &call_req); 2019 } 2020 2021 switch (kef_rc) { 2022 case CRYPTO_SUCCESS: 2023 ESP_BUMP_STAT(crypto_sync); 2024 return (IPSEC_STATUS_SUCCESS); 2025 case CRYPTO_QUEUED: 2026 /* esp_kcf_callback() will be invoked on completion */ 2027 ESP_BUMP_STAT(crypto_async); 2028 return (IPSEC_STATUS_PENDING); 2029 } 2030 2031 esp_crypto_failed(ipsec_mp, B_TRUE, kef_rc); 2032 return (IPSEC_STATUS_FAILED); 2033 } 2034 2035 /* 2036 * Handle outbound IPsec processing for IPv4 and IPv6 2037 * On success returns B_TRUE, on failure returns B_FALSE and frees the 2038 * mblk chain ipsec_in_mp. 2039 */ 2040 static ipsec_status_t 2041 esp_outbound(mblk_t *mp) 2042 { 2043 mblk_t *ipsec_out_mp, *data_mp, *espmp, *tailmp; 2044 ipsec_out_t *io; 2045 ipha_t *ipha; 2046 ip6_t *ip6h; 2047 esph_t *esph; 2048 uint_t af; 2049 uint8_t *nhp; 2050 uintptr_t divpoint, datalen, adj, padlen, i, alloclen; 2051 uintptr_t esplen = sizeof (esph_t); 2052 uint8_t protocol; 2053 ipsa_t *assoc; 2054 uint_t iv_len = 0, mac_len = 0; 2055 uchar_t *icv_buf; 2056 udpha_t *udpha; 2057 boolean_t is_natt = B_FALSE; 2058 2059 ESP_BUMP_STAT(out_requests); 2060 2061 ipsec_out_mp = mp; 2062 data_mp = ipsec_out_mp->b_cont; 2063 2064 /* 2065 * <sigh> We have to copy the message here, because TCP (for example) 2066 * keeps a dupb() of the message lying around for retransmission. 2067 * Since ESP changes the whole of the datagram, we have to create our 2068 * own copy lest we clobber TCP's data. Since we have to copy anyway, 2069 * we might as well make use of msgpullup() and get the mblk into one 2070 * contiguous piece! 2071 */ 2072 ipsec_out_mp->b_cont = msgpullup(data_mp, -1); 2073 if (ipsec_out_mp->b_cont == NULL) { 2074 esp0dbg(("esp_outbound: msgpullup() failed, " 2075 "dropping packet.\n")); 2076 ipsec_out_mp->b_cont = data_mp; 2077 /* 2078 * TODO: Find the outbound IRE for this packet and 2079 * pass it to ip_drop_packet(). 2080 */ 2081 ip_drop_packet(ipsec_out_mp, B_FALSE, NULL, NULL, 2082 &ipdrops_esp_nomem, &esp_dropper); 2083 return (IPSEC_STATUS_FAILED); 2084 } else { 2085 freemsg(data_mp); 2086 data_mp = ipsec_out_mp->b_cont; 2087 } 2088 2089 io = (ipsec_out_t *)ipsec_out_mp->b_rptr; 2090 2091 /* 2092 * Reality check.... 2093 */ 2094 2095 ipha = (ipha_t *)data_mp->b_rptr; /* So we can call esp_acquire(). */ 2096 2097 if (io->ipsec_out_v4) { 2098 af = AF_INET; 2099 divpoint = IPH_HDR_LENGTH(ipha); 2100 datalen = ntohs(ipha->ipha_length) - divpoint; 2101 nhp = (uint8_t *)&ipha->ipha_protocol; 2102 } else { 2103 ip6_pkt_t ipp; 2104 2105 af = AF_INET6; 2106 ip6h = (ip6_t *)ipha; 2107 bzero(&ipp, sizeof (ipp)); 2108 divpoint = ip_find_hdr_v6(data_mp, ip6h, &ipp, NULL); 2109 if (ipp.ipp_dstopts != NULL && 2110 ipp.ipp_dstopts->ip6d_nxt != IPPROTO_ROUTING) { 2111 /* 2112 * Destination options are tricky. If we get in here, 2113 * then we have a terminal header following the 2114 * destination options. We need to adjust backwards 2115 * so we insert ESP BEFORE the destination options 2116 * bag. (So that the dstopts get encrypted!) 2117 * 2118 * Since this is for outbound packets only, we know 2119 * that non-terminal destination options only precede 2120 * routing headers. 2121 */ 2122 divpoint -= ipp.ipp_dstoptslen; 2123 } 2124 datalen = ntohs(ip6h->ip6_plen) + sizeof (ip6_t) - divpoint; 2125 2126 if (ipp.ipp_rthdr != NULL) { 2127 nhp = &ipp.ipp_rthdr->ip6r_nxt; 2128 } else if (ipp.ipp_hopopts != NULL) { 2129 nhp = &ipp.ipp_hopopts->ip6h_nxt; 2130 } else { 2131 ASSERT(divpoint == sizeof (ip6_t)); 2132 /* It's probably IP + ESP. */ 2133 nhp = &ip6h->ip6_nxt; 2134 } 2135 } 2136 assoc = io->ipsec_out_esp_sa; 2137 ASSERT(assoc != NULL); 2138 2139 if (assoc->ipsa_usetime == 0) 2140 esp_set_usetime(assoc, B_FALSE); 2141 2142 if (assoc->ipsa_auth_alg != SADB_AALG_NONE) 2143 mac_len = assoc->ipsa_mac_len; 2144 2145 if (assoc->ipsa_flags & IPSA_F_NATT) { 2146 /* wedge in fake UDP */ 2147 is_natt = B_TRUE; 2148 esplen += UDPH_SIZE; 2149 } 2150 2151 if (assoc->ipsa_encr_alg != SADB_EALG_NULL) 2152 iv_len = assoc->ipsa_iv_len; 2153 2154 /* 2155 * Set up ESP header and encryption padding for ENCR PI request. 2156 */ 2157 2158 /* 2159 * Determine the padding length. Pad to 4-bytes. 2160 * 2161 * Include the two additional bytes (hence the - 2) for the padding 2162 * length and the next header. Take this into account when 2163 * calculating the actual length of the padding. 2164 */ 2165 2166 if (assoc->ipsa_encr_alg != SADB_EALG_NULL) { 2167 padlen = ((unsigned)(iv_len - datalen - 2)) % iv_len; 2168 } else { 2169 padlen = ((unsigned)(sizeof (uint32_t) - datalen - 2)) % 2170 sizeof (uint32_t); 2171 } 2172 2173 /* Allocate ESP header and IV. */ 2174 esplen += iv_len; 2175 2176 /* 2177 * Update association byte-count lifetimes. Don't forget to take 2178 * into account the padding length and next-header (hence the + 2). 2179 * 2180 * Use the amount of data fed into the "encryption algorithm". This 2181 * is the IV, the data length, the padding length, and the final two 2182 * bytes (padlen, and next-header). 2183 * 2184 */ 2185 2186 if (!esp_age_bytes(assoc, datalen + padlen + iv_len + 2, B_FALSE)) { 2187 /* 2188 * TODO: Find the outbound IRE for this packet and 2189 * pass it to ip_drop_packet(). 2190 */ 2191 ip_drop_packet(mp, B_FALSE, NULL, NULL, 2192 &ipdrops_esp_bytes_expire, &esp_dropper); 2193 return (IPSEC_STATUS_FAILED); 2194 } 2195 2196 espmp = allocb(esplen, BPRI_HI); 2197 if (espmp == NULL) { 2198 ESP_BUMP_STAT(out_discards); 2199 esp1dbg(("esp_outbound: can't allocate espmp.\n")); 2200 /* 2201 * TODO: Find the outbound IRE for this packet and 2202 * pass it to ip_drop_packet(). 2203 */ 2204 ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_esp_nomem, 2205 &esp_dropper); 2206 return (IPSEC_STATUS_FAILED); 2207 } 2208 espmp->b_wptr += esplen; 2209 esph = (esph_t *)espmp->b_rptr; 2210 2211 if (is_natt) { 2212 esp3dbg(("esp_outbound: NATT")); 2213 2214 udpha = (udpha_t *)espmp->b_rptr; 2215 udpha->uha_src_port = htons(IPPORT_IKE_NATT); 2216 if (assoc->ipsa_remote_port != 0) 2217 udpha->uha_dst_port = assoc->ipsa_remote_port; 2218 else 2219 udpha->uha_dst_port = htons(IPPORT_IKE_NATT); 2220 /* 2221 * Set the checksum to 0, so that the ip_wput_ipsec_out() 2222 * can do the right thing. 2223 */ 2224 udpha->uha_checksum = 0; 2225 esph = (esph_t *)(udpha + 1); 2226 } 2227 2228 esph->esph_spi = assoc->ipsa_spi; 2229 2230 esph->esph_replay = htonl(atomic_add_32_nv(&assoc->ipsa_replay, 1)); 2231 if (esph->esph_replay == 0 && assoc->ipsa_replay_wsize != 0) { 2232 /* 2233 * XXX We have replay counter wrapping. 2234 * We probably want to nuke this SA (and its peer). 2235 */ 2236 ipsec_assocfailure(info.mi_idnum, 0, 0, 2237 SL_ERROR | SL_CONSOLE | SL_WARN, 2238 "Outbound ESP SA (0x%x, %s) has wrapped sequence.\n", 2239 esph->esph_spi, assoc->ipsa_dstaddr, af); 2240 2241 ESP_BUMP_STAT(out_discards); 2242 sadb_replay_delete(assoc); 2243 /* 2244 * TODO: Find the outbound IRE for this packet and 2245 * pass it to ip_drop_packet(). 2246 */ 2247 ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_esp_replay, 2248 &esp_dropper); 2249 return (IPSEC_STATUS_FAILED); 2250 } 2251 2252 /* 2253 * Set the IV to a random quantity. We do not require the 2254 * highest quality random bits, but for best security with CBC 2255 * mode ciphers, the value must be unlikely to repeat and also 2256 * must not be known in advance to an adversary capable of 2257 * influencing the plaintext. 2258 */ 2259 (void) random_get_pseudo_bytes((uint8_t *)(esph + 1), iv_len); 2260 2261 /* Fix the IP header. */ 2262 alloclen = padlen + 2 + mac_len; 2263 adj = alloclen + (espmp->b_wptr - espmp->b_rptr); 2264 2265 protocol = *nhp; 2266 2267 if (io->ipsec_out_v4) { 2268 ipha->ipha_length = htons(ntohs(ipha->ipha_length) + adj); 2269 if (is_natt) { 2270 *nhp = IPPROTO_UDP; 2271 udpha->uha_length = htons(ntohs(ipha->ipha_length) - 2272 IPH_HDR_LENGTH(ipha)); 2273 } else { 2274 *nhp = IPPROTO_ESP; 2275 } 2276 ipha->ipha_hdr_checksum = 0; 2277 ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha); 2278 } else { 2279 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) + adj); 2280 *nhp = IPPROTO_ESP; 2281 } 2282 2283 /* I've got the two ESP mblks, now insert them. */ 2284 2285 esp2dbg(("data_mp before outbound ESP adjustment:\n")); 2286 esp2dbg((dump_msg(data_mp))); 2287 2288 if (!esp_insert_esp(data_mp, espmp, divpoint)) { 2289 ESP_BUMP_STAT(out_discards); 2290 /* NOTE: esp_insert_esp() only fails if there's no memory. */ 2291 /* 2292 * TODO: Find the outbound IRE for this packet and 2293 * pass it to ip_drop_packet(). 2294 */ 2295 ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_esp_nomem, 2296 &esp_dropper); 2297 freeb(espmp); 2298 return (IPSEC_STATUS_FAILED); 2299 } 2300 2301 /* Append padding (and leave room for ICV). */ 2302 for (tailmp = data_mp; tailmp->b_cont != NULL; tailmp = tailmp->b_cont) 2303 ; 2304 if (tailmp->b_wptr + alloclen > tailmp->b_datap->db_lim) { 2305 tailmp->b_cont = allocb(alloclen, BPRI_HI); 2306 if (tailmp->b_cont == NULL) { 2307 ESP_BUMP_STAT(out_discards); 2308 esp0dbg(("esp_outbound: Can't allocate tailmp.\n")); 2309 /* 2310 * TODO: Find the outbound IRE for this packet and 2311 * pass it to ip_drop_packet(). 2312 */ 2313 ip_drop_packet(mp, B_FALSE, NULL, NULL, 2314 &ipdrops_esp_nomem, &esp_dropper); 2315 return (IPSEC_STATUS_FAILED); 2316 } 2317 tailmp = tailmp->b_cont; 2318 } 2319 2320 /* 2321 * If there's padding, N bytes of padding must be of the form 0x1, 2322 * 0x2, 0x3... 0xN. 2323 */ 2324 for (i = 0; i < padlen; ) { 2325 i++; 2326 *tailmp->b_wptr++ = i; 2327 } 2328 *tailmp->b_wptr++ = i; 2329 *tailmp->b_wptr++ = protocol; 2330 2331 esp2dbg(("data_Mp before encryption:\n")); 2332 esp2dbg((dump_msg(data_mp))); 2333 2334 /* 2335 * The packet is eligible for hardware acceleration if the 2336 * following conditions are satisfied: 2337 * 2338 * 1. the packet will not be fragmented 2339 * 2. the provider supports the algorithms specified by SA 2340 * 3. there is no pending control message being exchanged 2341 * 4. snoop is not attached 2342 * 5. the destination address is not a multicast address 2343 * 2344 * All five of these conditions are checked by IP prior to 2345 * sending the packet to ESP. 2346 * 2347 * But We, and We Alone, can, nay MUST check if the packet 2348 * is over NATT, and then disqualify it from hardware 2349 * acceleration. 2350 */ 2351 2352 if (io->ipsec_out_is_capab_ill && !(assoc->ipsa_flags & IPSA_F_NATT)) { 2353 return (esp_outbound_accelerated(ipsec_out_mp, mac_len)); 2354 } 2355 ESP_BUMP_STAT(noaccel); 2356 2357 /* 2358 * Okay. I've set up the pre-encryption ESP. Let's do it! 2359 */ 2360 2361 if (mac_len > 0) { 2362 ASSERT(tailmp->b_wptr + mac_len <= tailmp->b_datap->db_lim); 2363 icv_buf = tailmp->b_wptr; 2364 tailmp->b_wptr += mac_len; 2365 } else { 2366 icv_buf = NULL; 2367 } 2368 2369 return (esp_submit_req_outbound(ipsec_out_mp, assoc, icv_buf, 2370 datalen + padlen + 2)); 2371 } 2372 2373 /* 2374 * IP calls this to validate the ICMP errors that 2375 * we got from the network. 2376 */ 2377 ipsec_status_t 2378 ipsecesp_icmp_error(mblk_t *ipsec_mp) 2379 { 2380 /* 2381 * Unless we get an entire packet back, this function is useless. 2382 * Why? 2383 * 2384 * 1.) Partial packets are useless, because the "next header" 2385 * is at the end of the decrypted ESP packet. Without the 2386 * whole packet, this is useless. 2387 * 2388 * 2.) If we every use a stateful cipher, such as a stream or a 2389 * one-time pad, we can't do anything. 2390 * 2391 * Since the chances of us getting an entire packet back are very 2392 * very small, we discard here. 2393 */ 2394 IP_ESP_BUMP_STAT(in_discards); 2395 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_esp_icmp, 2396 &esp_dropper); 2397 return (IPSEC_STATUS_FAILED); 2398 } 2399 2400 /* 2401 * ESP module read put routine. 2402 */ 2403 /* ARGSUSED */ 2404 static void 2405 ipsecesp_rput(queue_t *q, mblk_t *mp) 2406 { 2407 ASSERT(mp->b_datap->db_type != M_CTL); /* No more IRE_DB_REQ. */ 2408 switch (mp->b_datap->db_type) { 2409 case M_PROTO: 2410 case M_PCPROTO: 2411 /* TPI message of some sort. */ 2412 switch (*((t_scalar_t *)mp->b_rptr)) { 2413 case T_BIND_ACK: 2414 esp3dbg(("Thank you IP from ESP for T_BIND_ACK\n")); 2415 break; 2416 case T_ERROR_ACK: 2417 cmn_err(CE_WARN, 2418 "ipsecesp: ESP received T_ERROR_ACK from IP."); 2419 /* 2420 * Make esp_sadb.s_ip_q NULL, and in the 2421 * future, perhaps try again. 2422 */ 2423 esp_sadb.s_ip_q = NULL; 2424 break; 2425 case T_OK_ACK: 2426 /* Probably from a (rarely sent) T_UNBIND_REQ. */ 2427 break; 2428 default: 2429 esp0dbg(("Unknown M_{,PC}PROTO message.\n")); 2430 } 2431 freemsg(mp); 2432 break; 2433 default: 2434 /* For now, passthru message. */ 2435 esp2dbg(("ESP got unknown mblk type %d.\n", 2436 mp->b_datap->db_type)); 2437 putnext(q, mp); 2438 } 2439 } 2440 2441 /* 2442 * Construct an SADB_REGISTER message with the current algorithms. 2443 */ 2444 static boolean_t 2445 esp_register_out(uint32_t sequence, uint32_t pid, uint_t serial) 2446 { 2447 mblk_t *pfkey_msg_mp, *keysock_out_mp; 2448 sadb_msg_t *samsg; 2449 sadb_supported_t *sasupp_auth = NULL; 2450 sadb_supported_t *sasupp_encr = NULL; 2451 sadb_alg_t *saalg; 2452 uint_t allocsize = sizeof (*samsg); 2453 uint_t i, numalgs_snap; 2454 int current_aalgs; 2455 ipsec_alginfo_t **authalgs; 2456 uint_t num_aalgs; 2457 int current_ealgs; 2458 ipsec_alginfo_t **encralgs; 2459 uint_t num_ealgs; 2460 2461 /* Allocate the KEYSOCK_OUT. */ 2462 keysock_out_mp = sadb_keysock_out(serial); 2463 if (keysock_out_mp == NULL) { 2464 esp0dbg(("esp_register_out: couldn't allocate mblk.\n")); 2465 return (B_FALSE); 2466 } 2467 2468 /* 2469 * Allocate the PF_KEY message that follows KEYSOCK_OUT. 2470 */ 2471 2472 mutex_enter(&alg_lock); 2473 2474 /* 2475 * Fill SADB_REGISTER message's algorithm descriptors. Hold 2476 * down the lock while filling it. 2477 * 2478 * Return only valid algorithms, so the number of algorithms 2479 * to send up may be less than the number of algorithm entries 2480 * in the table. 2481 */ 2482 authalgs = ipsec_alglists[IPSEC_ALG_AUTH]; 2483 for (num_aalgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++) 2484 if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) 2485 num_aalgs++; 2486 2487 if (num_aalgs != 0) { 2488 allocsize += (num_aalgs * sizeof (*saalg)); 2489 allocsize += sizeof (*sasupp_auth); 2490 } 2491 encralgs = ipsec_alglists[IPSEC_ALG_ENCR]; 2492 for (num_ealgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++) 2493 if (encralgs[i] != NULL && ALG_VALID(encralgs[i])) 2494 num_ealgs++; 2495 2496 if (num_ealgs != 0) { 2497 allocsize += (num_ealgs * sizeof (*saalg)); 2498 allocsize += sizeof (*sasupp_encr); 2499 } 2500 keysock_out_mp->b_cont = allocb(allocsize, BPRI_HI); 2501 if (keysock_out_mp->b_cont == NULL) { 2502 mutex_exit(&alg_lock); 2503 freemsg(keysock_out_mp); 2504 return (B_FALSE); 2505 } 2506 2507 pfkey_msg_mp = keysock_out_mp->b_cont; 2508 pfkey_msg_mp->b_wptr += allocsize; 2509 if (num_aalgs != 0) { 2510 sasupp_auth = (sadb_supported_t *) 2511 (pfkey_msg_mp->b_rptr + sizeof (*samsg)); 2512 saalg = (sadb_alg_t *)(sasupp_auth + 1); 2513 2514 ASSERT(((ulong_t)saalg & 0x7) == 0); 2515 2516 numalgs_snap = 0; 2517 for (i = 0; 2518 ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_aalgs)); i++) { 2519 if (authalgs[i] == NULL || !ALG_VALID(authalgs[i])) 2520 continue; 2521 2522 saalg->sadb_alg_id = authalgs[i]->alg_id; 2523 saalg->sadb_alg_ivlen = 0; 2524 saalg->sadb_alg_minbits = authalgs[i]->alg_ef_minbits; 2525 saalg->sadb_alg_maxbits = authalgs[i]->alg_ef_maxbits; 2526 saalg->sadb_x_alg_defincr = authalgs[i]->alg_ef_default; 2527 saalg->sadb_x_alg_increment = 2528 authalgs[i]->alg_increment; 2529 numalgs_snap++; 2530 saalg++; 2531 } 2532 ASSERT(numalgs_snap == num_aalgs); 2533 #ifdef DEBUG 2534 /* 2535 * Reality check to make sure I snagged all of the 2536 * algorithms. 2537 */ 2538 for (; i < IPSEC_MAX_ALGS; i++) { 2539 if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) { 2540 cmn_err(CE_PANIC, "esp_register_out()! " 2541 "Missed aalg #%d.\n", i); 2542 } 2543 } 2544 #endif /* DEBUG */ 2545 } else { 2546 saalg = (sadb_alg_t *)(pfkey_msg_mp->b_rptr + sizeof (*samsg)); 2547 } 2548 2549 if (num_ealgs != 0) { 2550 sasupp_encr = (sadb_supported_t *)saalg; 2551 saalg = (sadb_alg_t *)(sasupp_encr + 1); 2552 2553 numalgs_snap = 0; 2554 for (i = 0; 2555 ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_ealgs)); i++) { 2556 if (encralgs[i] == NULL || !ALG_VALID(encralgs[i])) 2557 continue; 2558 saalg->sadb_alg_id = encralgs[i]->alg_id; 2559 saalg->sadb_alg_ivlen = encralgs[i]->alg_datalen; 2560 saalg->sadb_alg_minbits = encralgs[i]->alg_ef_minbits; 2561 saalg->sadb_alg_maxbits = encralgs[i]->alg_ef_maxbits; 2562 saalg->sadb_x_alg_defincr = encralgs[i]->alg_ef_default; 2563 saalg->sadb_x_alg_increment = 2564 encralgs[i]->alg_increment; 2565 numalgs_snap++; 2566 saalg++; 2567 } 2568 ASSERT(numalgs_snap == num_ealgs); 2569 #ifdef DEBUG 2570 /* 2571 * Reality check to make sure I snagged all of the 2572 * algorithms. 2573 */ 2574 for (; i < IPSEC_MAX_ALGS; i++) { 2575 if (encralgs[i] != NULL && ALG_VALID(encralgs[i])) { 2576 cmn_err(CE_PANIC, "esp_register_out()! " 2577 "Missed ealg #%d.\n", i); 2578 } 2579 } 2580 #endif /* DEBUG */ 2581 } 2582 2583 current_aalgs = num_aalgs; 2584 current_ealgs = num_ealgs; 2585 2586 mutex_exit(&alg_lock); 2587 2588 /* Now fill the rest of the SADB_REGISTER message. */ 2589 2590 samsg = (sadb_msg_t *)pfkey_msg_mp->b_rptr; 2591 samsg->sadb_msg_version = PF_KEY_V2; 2592 samsg->sadb_msg_type = SADB_REGISTER; 2593 samsg->sadb_msg_errno = 0; 2594 samsg->sadb_msg_satype = SADB_SATYPE_ESP; 2595 samsg->sadb_msg_len = SADB_8TO64(allocsize); 2596 samsg->sadb_msg_reserved = 0; 2597 /* 2598 * Assume caller has sufficient sequence/pid number info. If it's one 2599 * from me over a new alg., I could give two hoots about sequence. 2600 */ 2601 samsg->sadb_msg_seq = sequence; 2602 samsg->sadb_msg_pid = pid; 2603 2604 if (sasupp_auth != NULL) { 2605 sasupp_auth->sadb_supported_len = 2606 SADB_8TO64(sizeof (*sasupp_auth) + 2607 sizeof (*saalg) * current_aalgs); 2608 sasupp_auth->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 2609 sasupp_auth->sadb_supported_reserved = 0; 2610 } 2611 2612 if (sasupp_encr != NULL) { 2613 sasupp_encr->sadb_supported_len = 2614 SADB_8TO64(sizeof (*sasupp_encr) + 2615 sizeof (*saalg) * current_ealgs); 2616 sasupp_encr->sadb_supported_exttype = 2617 SADB_EXT_SUPPORTED_ENCRYPT; 2618 sasupp_encr->sadb_supported_reserved = 0; 2619 } 2620 2621 if (esp_pfkey_q != NULL) 2622 putnext(esp_pfkey_q, keysock_out_mp); 2623 else { 2624 freemsg(keysock_out_mp); 2625 return (B_FALSE); 2626 } 2627 2628 return (B_TRUE); 2629 } 2630 2631 /* 2632 * Invoked when the algorithm table changes. Causes SADB_REGISTER 2633 * messages continaining the current list of algorithms to be 2634 * sent up to the ESP listeners. 2635 */ 2636 void 2637 ipsecesp_algs_changed(void) 2638 { 2639 /* 2640 * Time to send a PF_KEY SADB_REGISTER message to ESP listeners 2641 * everywhere. (The function itself checks for NULL esp_pfkey_q.) 2642 */ 2643 (void) esp_register_out(0, 0, 0); 2644 } 2645 2646 /* 2647 * taskq_dispatch handler. 2648 */ 2649 static void 2650 inbound_task(void *arg) 2651 { 2652 esph_t *esph; 2653 mblk_t *mp = (mblk_t *)arg; 2654 ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr; 2655 int ipsec_rc; 2656 2657 esp2dbg(("in ESP inbound_task")); 2658 2659 esph = ipsec_inbound_esp_sa(mp); 2660 if (esph == NULL) 2661 return; 2662 ASSERT(ii->ipsec_in_esp_sa != NULL); 2663 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func(mp, esph); 2664 if (ipsec_rc != IPSEC_STATUS_SUCCESS) 2665 return; 2666 ip_fanout_proto_again(mp, NULL, NULL, NULL); 2667 } 2668 2669 /* 2670 * Now that weak-key passed, actually ADD the security association, and 2671 * send back a reply ADD message. 2672 */ 2673 static int 2674 esp_add_sa_finish(mblk_t *mp, sadb_msg_t *samsg, keysock_in_t *ksi, 2675 int *diagnostic) 2676 { 2677 isaf_t *primary, *secondary, *inbound, *outbound; 2678 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 2679 sadb_address_t *dstext = 2680 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 2681 struct sockaddr_in *dst; 2682 struct sockaddr_in6 *dst6; 2683 boolean_t is_ipv4, clone = B_FALSE, is_inbound = B_FALSE; 2684 uint32_t *dstaddr; 2685 ipsa_t *larval = NULL; 2686 ipsacq_t *acqrec; 2687 iacqf_t *acq_bucket; 2688 mblk_t *acq_msgs = NULL; 2689 int rc; 2690 sadb_t *sp; 2691 int outhash; 2692 mblk_t *lpkt; 2693 2694 /* 2695 * Locate the appropriate table(s). 2696 */ 2697 2698 dst = (struct sockaddr_in *)(dstext + 1); 2699 dst6 = (struct sockaddr_in6 *)dst; 2700 is_ipv4 = (dst->sin_family == AF_INET); 2701 if (is_ipv4) { 2702 sp = &esp_sadb.s_v4; 2703 dstaddr = (uint32_t *)(&dst->sin_addr); 2704 outhash = OUTBOUND_HASH_V4(sp, *(ipaddr_t *)dstaddr); 2705 } else { 2706 sp = &esp_sadb.s_v6; 2707 dstaddr = (uint32_t *)(&dst6->sin6_addr); 2708 outhash = OUTBOUND_HASH_V6(sp, *(in6_addr_t *)dstaddr); 2709 } 2710 2711 inbound = INBOUND_BUCKET(sp, assoc->sadb_sa_spi); 2712 outbound = &sp->sdb_of[outhash]; 2713 2714 switch (ksi->ks_in_dsttype) { 2715 case KS_IN_ADDR_MBCAST: 2716 clone = B_TRUE; /* All mcast SAs can be bidirectional */ 2717 /* FALLTHRU */ 2718 case KS_IN_ADDR_ME: 2719 primary = inbound; 2720 secondary = outbound; 2721 /* 2722 * If the source address is either one of mine, or unspecified 2723 * (which is best summed up by saying "not 'not mine'"), 2724 * then the association is potentially bi-directional, 2725 * in that it can be used for inbound traffic and outbound 2726 * traffic. The best example of such an SA is a multicast 2727 * SA (which allows me to receive the outbound traffic). 2728 */ 2729 if (ksi->ks_in_srctype != KS_IN_ADDR_NOTME) 2730 clone = B_TRUE; 2731 is_inbound = B_TRUE; 2732 break; 2733 case KS_IN_ADDR_NOTME: 2734 primary = outbound; 2735 secondary = inbound; 2736 /* 2737 * If the source address literally not mine (either 2738 * unspecified or not mine), then this SA may have an 2739 * address that WILL be mine after some configuration. 2740 * We pay the price for this by making it a bi-directional 2741 * SA. 2742 */ 2743 if (ksi->ks_in_srctype != KS_IN_ADDR_ME) 2744 clone = B_TRUE; 2745 break; 2746 default: 2747 *diagnostic = SADB_X_DIAGNOSTIC_BAD_DST; 2748 return (EINVAL); 2749 } 2750 2751 /* 2752 * Find a ACQUIRE list entry if possible. If we've added an SA that 2753 * suits the needs of an ACQUIRE list entry, we can eliminate the 2754 * ACQUIRE list entry and transmit the enqueued packets. Use the 2755 * high-bit of the sequence number to queue it. Key off destination 2756 * addr, and change acqrec's state. 2757 */ 2758 2759 if (samsg->sadb_msg_seq & IACQF_LOWEST_SEQ) { 2760 acq_bucket = &sp->sdb_acq[outhash]; 2761 mutex_enter(&acq_bucket->iacqf_lock); 2762 for (acqrec = acq_bucket->iacqf_ipsacq; acqrec != NULL; 2763 acqrec = acqrec->ipsacq_next) { 2764 mutex_enter(&acqrec->ipsacq_lock); 2765 /* 2766 * Q: I only check sequence. Should I check dst? 2767 * A: Yes, check dest because those are the packets 2768 * that are queued up. 2769 */ 2770 if (acqrec->ipsacq_seq == samsg->sadb_msg_seq && 2771 IPSA_ARE_ADDR_EQUAL(dstaddr, 2772 acqrec->ipsacq_dstaddr, acqrec->ipsacq_addrfam)) 2773 break; 2774 mutex_exit(&acqrec->ipsacq_lock); 2775 } 2776 if (acqrec != NULL) { 2777 /* 2778 * AHA! I found an ACQUIRE record for this SA. 2779 * Grab the msg list, and free the acquire record. 2780 * I already am holding the lock for this record, 2781 * so all I have to do is free it. 2782 */ 2783 acq_msgs = acqrec->ipsacq_mp; 2784 acqrec->ipsacq_mp = NULL; 2785 mutex_exit(&acqrec->ipsacq_lock); 2786 sadb_destroy_acquire(acqrec); 2787 } 2788 mutex_exit(&acq_bucket->iacqf_lock); 2789 } 2790 2791 /* 2792 * Find PF_KEY message, and see if I'm an update. If so, find entry 2793 * in larval list (if there). 2794 */ 2795 2796 if (samsg->sadb_msg_type == SADB_UPDATE) { 2797 mutex_enter(&inbound->isaf_lock); 2798 larval = ipsec_getassocbyspi(inbound, assoc->sadb_sa_spi, 2799 ALL_ZEROES_PTR, dstaddr, dst->sin_family); 2800 mutex_exit(&inbound->isaf_lock); 2801 2802 if (larval == NULL) { 2803 esp0dbg(("Larval update, but larval disappeared.\n")); 2804 return (ESRCH); 2805 } /* Else sadb_common_add unlinks it for me! */ 2806 } 2807 2808 lpkt = NULL; 2809 if (larval != NULL) 2810 lpkt = sadb_clear_lpkt(larval); 2811 2812 rc = sadb_common_add(esp_sadb.s_ip_q, esp_pfkey_q, mp, samsg, ksi, 2813 primary, secondary, larval, clone, is_inbound, diagnostic); 2814 2815 if (rc == 0 && lpkt != NULL) { 2816 rc = !taskq_dispatch(esp_taskq, inbound_task, 2817 (void *) lpkt, TQ_NOSLEEP); 2818 } 2819 2820 if (rc != 0) { 2821 ip_drop_packet(lpkt, B_TRUE, NULL, NULL, 2822 &ipdrops_sadb_inlarval_timeout, &esp_dropper); 2823 } 2824 2825 /* 2826 * How much more stack will I create with all of these 2827 * esp_outbound() calls? 2828 */ 2829 2830 while (acq_msgs != NULL) { 2831 mblk_t *mp = acq_msgs; 2832 2833 acq_msgs = acq_msgs->b_next; 2834 mp->b_next = NULL; 2835 if (rc == 0) { 2836 if (ipsec_outbound_sa(mp, IPPROTO_ESP)) { 2837 ((ipsec_out_t *)(mp->b_rptr))-> 2838 ipsec_out_esp_done = B_TRUE; 2839 if (esp_outbound(mp) == IPSEC_STATUS_SUCCESS) { 2840 ipha_t *ipha; 2841 2842 /* do AH processing if needed */ 2843 if (!esp_do_outbound_ah(mp)) 2844 continue; 2845 2846 ipha = (ipha_t *)mp->b_cont->b_rptr; 2847 2848 /* finish IPsec processing */ 2849 if (is_ipv4) { 2850 ip_wput_ipsec_out(NULL, mp, 2851 ipha, NULL, NULL); 2852 } else { 2853 ip6_t *ip6h = (ip6_t *)ipha; 2854 ip_wput_ipsec_out_v6(NULL, 2855 mp, ip6h, NULL, NULL); 2856 } 2857 } 2858 continue; 2859 } 2860 } 2861 ESP_BUMP_STAT(out_discards); 2862 ip_drop_packet(mp, B_FALSE, NULL, NULL, 2863 &ipdrops_sadb_acquire_timeout, &esp_dropper); 2864 } 2865 2866 return (rc); 2867 } 2868 2869 /* 2870 * Add new ESP security association. This may become a generic AH/ESP 2871 * routine eventually. 2872 */ 2873 static int 2874 esp_add_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 2875 { 2876 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 2877 sadb_address_t *srcext = 2878 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 2879 sadb_address_t *dstext = 2880 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 2881 sadb_address_t *isrcext = 2882 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC]; 2883 sadb_address_t *idstext = 2884 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_DST]; 2885 sadb_address_t *nttext_loc = 2886 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC]; 2887 sadb_address_t *nttext_rem = 2888 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM]; 2889 sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH]; 2890 sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT]; 2891 struct sockaddr_in *src, *dst; 2892 struct sockaddr_in *natt_loc, *natt_rem; 2893 struct sockaddr_in6 *natt_loc6, *natt_rem6; 2894 2895 sadb_lifetime_t *soft = 2896 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT]; 2897 sadb_lifetime_t *hard = 2898 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD]; 2899 2900 /* I need certain extensions present for an ADD message. */ 2901 if (srcext == NULL) { 2902 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 2903 return (EINVAL); 2904 } 2905 if (dstext == NULL) { 2906 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 2907 return (EINVAL); 2908 } 2909 if (isrcext == NULL && idstext != NULL) { 2910 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_SRC; 2911 return (EINVAL); 2912 } 2913 if (isrcext != NULL && idstext == NULL) { 2914 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_DST; 2915 return (EINVAL); 2916 } 2917 if (assoc == NULL) { 2918 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 2919 return (EINVAL); 2920 } 2921 if (ekey == NULL && assoc->sadb_sa_encrypt != SADB_EALG_NULL) { 2922 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_EKEY; 2923 return (EINVAL); 2924 } 2925 2926 src = (struct sockaddr_in *)(srcext + 1); 2927 dst = (struct sockaddr_in *)(dstext + 1); 2928 natt_loc = (struct sockaddr_in *)(nttext_loc + 1); 2929 natt_loc6 = (struct sockaddr_in6 *)(nttext_loc + 1); 2930 natt_rem = (struct sockaddr_in *)(nttext_rem + 1); 2931 natt_rem6 = (struct sockaddr_in6 *)(nttext_rem + 1); 2932 2933 /* Sundry ADD-specific reality checks. */ 2934 /* XXX STATS : Logging/stats here? */ 2935 if (assoc->sadb_sa_state != SADB_SASTATE_MATURE) { 2936 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 2937 return (EINVAL); 2938 } 2939 if (assoc->sadb_sa_encrypt == SADB_EALG_NONE) { 2940 *diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG; 2941 return (EINVAL); 2942 } 2943 2944 if (assoc->sadb_sa_encrypt == SADB_EALG_NULL && 2945 assoc->sadb_sa_auth == SADB_AALG_NONE) { 2946 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG; 2947 return (EINVAL); 2948 } 2949 2950 if (assoc->sadb_sa_flags & ~(SADB_SAFLAGS_NOREPLAY | 2951 SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | 2952 SADB_X_SAFLAGS_TUNNEL)) { 2953 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS; 2954 return (EINVAL); 2955 } 2956 2957 if ((*diagnostic = sadb_hardsoftchk(hard, soft)) != 0) { 2958 return (EINVAL); 2959 } 2960 ASSERT(src->sin_family == dst->sin_family); 2961 2962 if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_LOC) { 2963 if (nttext_loc == NULL) { 2964 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_LOC; 2965 return (EINVAL); 2966 } 2967 2968 if (natt_loc->sin_family == AF_INET6 && 2969 !IN6_IS_ADDR_V4MAPPED(&natt_loc6->sin6_addr)) { 2970 *diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_LOC; 2971 return (EINVAL); 2972 } 2973 } 2974 2975 if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_REM) { 2976 if (nttext_rem == NULL) { 2977 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_REM; 2978 return (EINVAL); 2979 } 2980 if (natt_rem->sin_family == AF_INET6 && 2981 !IN6_IS_ADDR_V4MAPPED(&natt_rem6->sin6_addr)) { 2982 *diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_REM; 2983 return (EINVAL); 2984 } 2985 } 2986 2987 2988 /* Stuff I don't support, for now. XXX Diagnostic? */ 2989 if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL || 2990 ksi->ks_in_extv[SADB_EXT_SENSITIVITY] != NULL) 2991 return (EOPNOTSUPP); 2992 2993 /* 2994 * XXX Policy : I'm not checking identities or sensitivity 2995 * labels at this time, but if I did, I'd do them here, before I sent 2996 * the weak key check up to the algorithm. 2997 */ 2998 2999 mutex_enter(&alg_lock); 3000 3001 /* 3002 * First locate the authentication algorithm. 3003 */ 3004 if (akey != NULL) { 3005 ipsec_alginfo_t *aalg; 3006 3007 aalg = ipsec_alglists[IPSEC_ALG_AUTH][assoc->sadb_sa_auth]; 3008 if (aalg == NULL || !ALG_VALID(aalg)) { 3009 mutex_exit(&alg_lock); 3010 esp1dbg(("Couldn't find auth alg #%d.\n", 3011 assoc->sadb_sa_auth)); 3012 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG; 3013 return (EINVAL); 3014 } 3015 3016 /* 3017 * Sanity check key sizes. 3018 * Note: It's not possible to use SADB_AALG_NONE because 3019 * this auth_alg is not defined with ALG_FLAG_VALID. If this 3020 * ever changes, the same check for SADB_AALG_NONE and 3021 * a auth_key != NULL should be made here ( see below). 3022 */ 3023 if (!ipsec_valid_key_size(akey->sadb_key_bits, aalg)) { 3024 mutex_exit(&alg_lock); 3025 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AKEYBITS; 3026 return (EINVAL); 3027 } 3028 ASSERT(aalg->alg_mech_type != CRYPTO_MECHANISM_INVALID); 3029 3030 /* check key and fix parity if needed */ 3031 if (ipsec_check_key(aalg->alg_mech_type, akey, B_TRUE, 3032 diagnostic) != 0) { 3033 mutex_exit(&alg_lock); 3034 return (EINVAL); 3035 } 3036 } 3037 3038 /* 3039 * Then locate the encryption algorithm. 3040 */ 3041 if (ekey != NULL) { 3042 ipsec_alginfo_t *ealg; 3043 3044 ealg = ipsec_alglists[IPSEC_ALG_ENCR][assoc->sadb_sa_encrypt]; 3045 if (ealg == NULL || !ALG_VALID(ealg)) { 3046 mutex_exit(&alg_lock); 3047 esp1dbg(("Couldn't find encr alg #%d.\n", 3048 assoc->sadb_sa_encrypt)); 3049 *diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG; 3050 return (EINVAL); 3051 } 3052 3053 /* 3054 * Sanity check key sizes. If the encryption algorithm is 3055 * SADB_EALG_NULL but the encryption key is NOT 3056 * NULL then complain. 3057 */ 3058 if ((assoc->sadb_sa_encrypt == SADB_EALG_NULL) || 3059 (!ipsec_valid_key_size(ekey->sadb_key_bits, ealg))) { 3060 mutex_exit(&alg_lock); 3061 *diagnostic = SADB_X_DIAGNOSTIC_BAD_EKEYBITS; 3062 return (EINVAL); 3063 } 3064 ASSERT(ealg->alg_mech_type != CRYPTO_MECHANISM_INVALID); 3065 3066 /* check key */ 3067 if (ipsec_check_key(ealg->alg_mech_type, ekey, B_FALSE, 3068 diagnostic) != 0) { 3069 mutex_exit(&alg_lock); 3070 return (EINVAL); 3071 } 3072 } 3073 mutex_exit(&alg_lock); 3074 3075 return (esp_add_sa_finish(mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi, 3076 diagnostic)); 3077 } 3078 3079 /* 3080 * Update a security association. Updates come in two varieties. The first 3081 * is an update of lifetimes on a non-larval SA. The second is an update of 3082 * a larval SA, which ends up looking a lot more like an add. 3083 */ 3084 static int 3085 esp_update_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 3086 { 3087 sadb_address_t *dstext = 3088 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 3089 struct sockaddr_in *sin; 3090 3091 if (dstext == NULL) { 3092 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 3093 return (EINVAL); 3094 } 3095 3096 sin = (struct sockaddr_in *)(dstext + 1); 3097 return (sadb_update_sa(mp, ksi, 3098 (sin->sin_family == AF_INET6) ? &esp_sadb.s_v6 : &esp_sadb.s_v4, 3099 diagnostic, esp_pfkey_q, esp_add_sa)); 3100 } 3101 3102 /* 3103 * Delete a security association. This is REALLY likely to be code common to 3104 * both AH and ESP. Find the association, then unlink it. 3105 */ 3106 static int 3107 esp_del_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 3108 { 3109 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 3110 sadb_address_t *dstext = 3111 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 3112 sadb_address_t *srcext = 3113 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 3114 struct sockaddr_in *sin; 3115 3116 if (assoc == NULL) { 3117 if (dstext != NULL) { 3118 sin = (struct sockaddr_in *)(dstext + 1); 3119 } else if (srcext != NULL) { 3120 sin = (struct sockaddr_in *)(srcext + 1); 3121 } else { 3122 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 3123 return (EINVAL); 3124 } 3125 return (sadb_purge_sa(mp, ksi, 3126 (sin->sin_family == AF_INET6) ? &esp_sadb.s_v6 : 3127 &esp_sadb.s_v4, esp_pfkey_q, esp_sadb.s_ip_q)); 3128 } 3129 3130 return (sadb_del_sa(mp, ksi, &esp_sadb, diagnostic, esp_pfkey_q)); 3131 } 3132 3133 /* 3134 * Convert the entire contents of all of ESP's SA tables into PF_KEY SADB_DUMP 3135 * messages. 3136 */ 3137 static void 3138 esp_dump(mblk_t *mp, keysock_in_t *ksi) 3139 { 3140 int error; 3141 sadb_msg_t *samsg; 3142 3143 /* 3144 * Dump each fanout, bailing if error is non-zero. 3145 */ 3146 3147 error = sadb_dump(esp_pfkey_q, mp, ksi->ks_in_serial, &esp_sadb.s_v4); 3148 if (error != 0) 3149 goto bail; 3150 3151 error = sadb_dump(esp_pfkey_q, mp, ksi->ks_in_serial, &esp_sadb.s_v6); 3152 bail: 3153 ASSERT(mp->b_cont != NULL); 3154 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 3155 samsg->sadb_msg_errno = (uint8_t)error; 3156 sadb_pfkey_echo(esp_pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi, 3157 NULL); 3158 } 3159 3160 /* 3161 * First-cut reality check for an inbound PF_KEY message. 3162 */ 3163 static boolean_t 3164 esp_pfkey_reality_failures(mblk_t *mp, keysock_in_t *ksi) 3165 { 3166 int diagnostic; 3167 3168 if (ksi->ks_in_extv[SADB_EXT_PROPOSAL] != NULL) { 3169 diagnostic = SADB_X_DIAGNOSTIC_PROP_PRESENT; 3170 goto badmsg; 3171 } 3172 if (ksi->ks_in_extv[SADB_EXT_SUPPORTED_AUTH] != NULL || 3173 ksi->ks_in_extv[SADB_EXT_SUPPORTED_ENCRYPT] != NULL) { 3174 diagnostic = SADB_X_DIAGNOSTIC_SUPP_PRESENT; 3175 goto badmsg; 3176 } 3177 return (B_FALSE); /* False ==> no failures */ 3178 3179 badmsg: 3180 sadb_pfkey_error(esp_pfkey_q, mp, EINVAL, diagnostic, 3181 ksi->ks_in_serial); 3182 return (B_TRUE); /* True ==> failures */ 3183 } 3184 3185 /* 3186 * ESP parsing of PF_KEY messages. Keysock did most of the really silly 3187 * error cases. What I receive is a fully-formed, syntactically legal 3188 * PF_KEY message. I then need to check semantics... 3189 * 3190 * This code may become common to AH and ESP. Stay tuned. 3191 * 3192 * I also make the assumption that db_ref's are cool. If this assumption 3193 * is wrong, this means that someone other than keysock or me has been 3194 * mucking with PF_KEY messages. 3195 */ 3196 static void 3197 esp_parse_pfkey(mblk_t *mp) 3198 { 3199 mblk_t *msg = mp->b_cont; 3200 sadb_msg_t *samsg; 3201 keysock_in_t *ksi; 3202 int error; 3203 int diagnostic = SADB_X_DIAGNOSTIC_NONE; 3204 3205 ASSERT(msg != NULL); 3206 samsg = (sadb_msg_t *)msg->b_rptr; 3207 ksi = (keysock_in_t *)mp->b_rptr; 3208 3209 /* 3210 * If applicable, convert unspecified AF_INET6 to unspecified 3211 * AF_INET. And do other address reality checks. 3212 */ 3213 if (!sadb_addrfix(ksi, esp_pfkey_q, mp) || 3214 esp_pfkey_reality_failures(mp, ksi)) { 3215 return; 3216 } 3217 3218 switch (samsg->sadb_msg_type) { 3219 case SADB_ADD: 3220 error = esp_add_sa(mp, ksi, &diagnostic); 3221 if (error != 0) { 3222 sadb_pfkey_error(esp_pfkey_q, mp, error, diagnostic, 3223 ksi->ks_in_serial); 3224 } 3225 /* else esp_add_sa() took care of things. */ 3226 break; 3227 case SADB_DELETE: 3228 error = esp_del_sa(mp, ksi, &diagnostic); 3229 if (error != 0) { 3230 sadb_pfkey_error(esp_pfkey_q, mp, error, diagnostic, 3231 ksi->ks_in_serial); 3232 } 3233 /* Else esp_del_sa() took care of things. */ 3234 break; 3235 case SADB_GET: 3236 error = sadb_get_sa(mp, ksi, &esp_sadb, &diagnostic, 3237 esp_pfkey_q); 3238 if (error != 0) { 3239 sadb_pfkey_error(esp_pfkey_q, mp, error, diagnostic, 3240 ksi->ks_in_serial); 3241 } 3242 /* Else sadb_get_sa() took care of things. */ 3243 break; 3244 case SADB_FLUSH: 3245 sadbp_flush(&esp_sadb); 3246 sadb_pfkey_echo(esp_pfkey_q, mp, samsg, ksi, NULL); 3247 break; 3248 case SADB_REGISTER: 3249 /* 3250 * Hmmm, let's do it! Check for extensions (there should 3251 * be none), extract the fields, call esp_register_out(), 3252 * then either free or report an error. 3253 * 3254 * Keysock takes care of the PF_KEY bookkeeping for this. 3255 */ 3256 if (esp_register_out(samsg->sadb_msg_seq, samsg->sadb_msg_pid, 3257 ksi->ks_in_serial)) { 3258 freemsg(mp); 3259 } else { 3260 /* 3261 * Only way this path hits is if there is a memory 3262 * failure. It will not return B_FALSE because of 3263 * lack of esp_pfkey_q if I am in wput(). 3264 */ 3265 sadb_pfkey_error(esp_pfkey_q, mp, ENOMEM, diagnostic, 3266 ksi->ks_in_serial); 3267 } 3268 break; 3269 case SADB_UPDATE: 3270 /* 3271 * Find a larval, if not there, find a full one and get 3272 * strict. 3273 */ 3274 error = esp_update_sa(mp, ksi, &diagnostic); 3275 if (error != 0) { 3276 sadb_pfkey_error(esp_pfkey_q, mp, error, diagnostic, 3277 ksi->ks_in_serial); 3278 } 3279 /* else esp_update_sa() took care of things. */ 3280 break; 3281 case SADB_GETSPI: 3282 /* 3283 * Reserve a new larval entry. 3284 */ 3285 esp_getspi(mp, ksi); 3286 break; 3287 case SADB_ACQUIRE: 3288 /* 3289 * Find larval and/or ACQUIRE record and kill it (them), I'm 3290 * most likely an error. Inbound ACQUIRE messages should only 3291 * have the base header. 3292 */ 3293 sadb_in_acquire(samsg, &esp_sadb, esp_pfkey_q); 3294 freemsg(mp); 3295 break; 3296 case SADB_DUMP: 3297 /* 3298 * Dump all entries. 3299 */ 3300 esp_dump(mp, ksi); 3301 /* esp_dump will take care of the return message, etc. */ 3302 break; 3303 case SADB_EXPIRE: 3304 /* Should never reach me. */ 3305 sadb_pfkey_error(esp_pfkey_q, mp, EOPNOTSUPP, diagnostic, 3306 ksi->ks_in_serial); 3307 break; 3308 default: 3309 sadb_pfkey_error(esp_pfkey_q, mp, EINVAL, 3310 SADB_X_DIAGNOSTIC_UNKNOWN_MSG, ksi->ks_in_serial); 3311 break; 3312 } 3313 } 3314 3315 /* 3316 * Handle case where PF_KEY says it can't find a keysock for one of my 3317 * ACQUIRE messages. 3318 */ 3319 static void 3320 esp_keysock_no_socket(mblk_t *mp) 3321 { 3322 sadb_msg_t *samsg; 3323 keysock_out_err_t *kse = (keysock_out_err_t *)mp->b_rptr; 3324 3325 if (mp->b_cont == NULL) { 3326 freemsg(mp); 3327 return; 3328 } 3329 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 3330 3331 /* 3332 * If keysock can't find any registered, delete the acquire record 3333 * immediately, and handle errors. 3334 */ 3335 if (samsg->sadb_msg_type == SADB_ACQUIRE) { 3336 samsg->sadb_msg_errno = kse->ks_err_errno; 3337 samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg)); 3338 /* 3339 * Use the write-side of the esp_pfkey_q, in case there is 3340 * no esp_sadb.s_ip_q. 3341 */ 3342 sadb_in_acquire(samsg, &esp_sadb, WR(esp_pfkey_q)); 3343 } 3344 3345 freemsg(mp); 3346 } 3347 3348 /* 3349 * ESP module write put routine. 3350 */ 3351 static void 3352 ipsecesp_wput(queue_t *q, mblk_t *mp) 3353 { 3354 ipsec_info_t *ii; 3355 struct iocblk *iocp; 3356 3357 esp3dbg(("In esp_wput().\n")); 3358 3359 /* NOTE: Each case must take care of freeing or passing mp. */ 3360 switch (mp->b_datap->db_type) { 3361 case M_CTL: 3362 if ((mp->b_wptr - mp->b_rptr) < sizeof (ipsec_info_t)) { 3363 /* Not big enough message. */ 3364 freemsg(mp); 3365 break; 3366 } 3367 ii = (ipsec_info_t *)mp->b_rptr; 3368 3369 switch (ii->ipsec_info_type) { 3370 case KEYSOCK_OUT_ERR: 3371 esp1dbg(("Got KEYSOCK_OUT_ERR message.\n")); 3372 esp_keysock_no_socket(mp); 3373 break; 3374 case KEYSOCK_IN: 3375 ESP_BUMP_STAT(keysock_in); 3376 esp3dbg(("Got KEYSOCK_IN message.\n")); 3377 3378 /* Parse the message. */ 3379 esp_parse_pfkey(mp); 3380 break; 3381 case KEYSOCK_HELLO: 3382 sadb_keysock_hello(&esp_pfkey_q, q, mp, 3383 esp_ager, &esp_event, SADB_SATYPE_ESP); 3384 break; 3385 default: 3386 esp2dbg(("Got M_CTL from above of 0x%x.\n", 3387 ii->ipsec_info_type)); 3388 freemsg(mp); 3389 break; 3390 } 3391 break; 3392 case M_IOCTL: 3393 iocp = (struct iocblk *)mp->b_rptr; 3394 switch (iocp->ioc_cmd) { 3395 case ND_SET: 3396 case ND_GET: 3397 if (nd_getset(q, ipsecesp_g_nd, mp)) { 3398 qreply(q, mp); 3399 return; 3400 } else { 3401 iocp->ioc_error = ENOENT; 3402 } 3403 /* FALLTHRU */ 3404 default: 3405 /* We really don't support any other ioctls, do we? */ 3406 3407 /* Return EINVAL */ 3408 if (iocp->ioc_error != ENOENT) 3409 iocp->ioc_error = EINVAL; 3410 iocp->ioc_count = 0; 3411 mp->b_datap->db_type = M_IOCACK; 3412 qreply(q, mp); 3413 return; 3414 } 3415 default: 3416 esp3dbg(("Got default message, type %d, passing to IP.\n", 3417 mp->b_datap->db_type)); 3418 putnext(q, mp); 3419 } 3420 } 3421 3422 /* 3423 * Process an outbound ESP packet that can be accelerated by a IPsec 3424 * hardware acceleration capable Provider. 3425 * The caller already inserted and initialized the ESP header. 3426 * This function allocates a tagging M_CTL, and adds room at the end 3427 * of the packet to hold the ICV if authentication is needed. 3428 * 3429 * On success returns B_TRUE, on failure returns B_FALSE and frees the 3430 * mblk chain ipsec_out. 3431 */ 3432 static ipsec_status_t 3433 esp_outbound_accelerated(mblk_t *ipsec_out, uint_t icv_len) 3434 { 3435 ipsec_out_t *io; 3436 mblk_t *lastmp; 3437 3438 ESP_BUMP_STAT(out_accelerated); 3439 3440 io = (ipsec_out_t *)ipsec_out->b_rptr; 3441 3442 /* mark packet as being accelerated in IPSEC_OUT */ 3443 ASSERT(io->ipsec_out_accelerated == B_FALSE); 3444 io->ipsec_out_accelerated = B_TRUE; 3445 3446 /* 3447 * add room at the end of the packet for the ICV if needed 3448 */ 3449 if (icv_len > 0) { 3450 /* go to last mblk */ 3451 lastmp = ipsec_out; /* For following while loop. */ 3452 do { 3453 lastmp = lastmp->b_cont; 3454 } while (lastmp->b_cont != NULL); 3455 3456 /* if not enough available room, allocate new mblk */ 3457 if ((lastmp->b_wptr + icv_len) > lastmp->b_datap->db_lim) { 3458 lastmp->b_cont = allocb(icv_len, BPRI_HI); 3459 if (lastmp->b_cont == NULL) { 3460 ESP_BUMP_STAT(out_discards); 3461 ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL, 3462 &ipdrops_esp_nomem, &esp_dropper); 3463 return (IPSEC_STATUS_FAILED); 3464 } 3465 lastmp = lastmp->b_cont; 3466 } 3467 lastmp->b_wptr += icv_len; 3468 } 3469 3470 return (IPSEC_STATUS_SUCCESS); 3471 } 3472 3473 /* 3474 * Process an inbound accelerated ESP packet. 3475 * On success returns B_TRUE, on failure returns B_FALSE and frees the 3476 * mblk chain ipsec_in. 3477 */ 3478 static ipsec_status_t 3479 esp_inbound_accelerated(mblk_t *ipsec_in, mblk_t *data_mp, boolean_t isv4, 3480 ipsa_t *assoc) 3481 { 3482 ipsec_in_t *ii; 3483 mblk_t *hada_mp; 3484 uint32_t icv_len = 0; 3485 da_ipsec_t *hada; 3486 ipha_t *ipha; 3487 ip6_t *ip6h; 3488 kstat_named_t *counter; 3489 3490 ESP_BUMP_STAT(in_accelerated); 3491 3492 ii = (ipsec_in_t *)ipsec_in->b_rptr; 3493 hada_mp = ii->ipsec_in_da; 3494 ASSERT(hada_mp != NULL); 3495 hada = (da_ipsec_t *)hada_mp->b_rptr; 3496 3497 /* 3498 * We only support one level of decapsulation in hardware, so 3499 * nuke the pointer. 3500 */ 3501 ii->ipsec_in_da = NULL; 3502 ii->ipsec_in_accelerated = B_FALSE; 3503 3504 if (assoc->ipsa_auth_alg != IPSA_AALG_NONE) { 3505 /* 3506 * ESP with authentication. We expect the Provider to have 3507 * computed the ICV and placed it in the hardware acceleration 3508 * data attributes. 3509 * 3510 * Extract ICV length from attributes M_CTL and sanity check 3511 * its value. We allow the mblk to be smaller than da_ipsec_t 3512 * for a small ICV, as long as the entire ICV fits within the 3513 * mblk. 3514 * 3515 * Also ensures that the ICV length computed by Provider 3516 * corresponds to the ICV length of the agorithm specified by 3517 * the SA. 3518 */ 3519 icv_len = hada->da_icv_len; 3520 if ((icv_len != assoc->ipsa_mac_len) || 3521 (icv_len > DA_ICV_MAX_LEN) || (MBLKL(hada_mp) < 3522 (sizeof (da_ipsec_t) - DA_ICV_MAX_LEN + icv_len))) { 3523 esp0dbg(("esp_inbound_accelerated: " 3524 "ICV len (%u) incorrect or mblk too small (%u)\n", 3525 icv_len, (uint32_t)(MBLKL(hada_mp)))); 3526 counter = &ipdrops_esp_bad_auth; 3527 goto esp_in_discard; 3528 } 3529 } 3530 3531 /* get pointers to IP header */ 3532 if (isv4) { 3533 ipha = (ipha_t *)data_mp->b_rptr; 3534 } else { 3535 ip6h = (ip6_t *)data_mp->b_rptr; 3536 } 3537 3538 /* 3539 * Compare ICV in ESP packet vs ICV computed by adapter. 3540 * We also remove the ICV from the end of the packet since 3541 * it will no longer be needed. 3542 * 3543 * Assume that esp_inbound() already ensured that the pkt 3544 * was in one mblk. 3545 */ 3546 ASSERT(data_mp->b_cont == NULL); 3547 data_mp->b_wptr -= icv_len; 3548 /* adjust IP header */ 3549 if (isv4) 3550 ipha->ipha_length = htons(ntohs(ipha->ipha_length) - icv_len); 3551 else 3552 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - icv_len); 3553 if (icv_len && bcmp(hada->da_icv, data_mp->b_wptr, icv_len)) { 3554 int af; 3555 void *addr; 3556 3557 if (isv4) { 3558 addr = &ipha->ipha_dst; 3559 af = AF_INET; 3560 } else { 3561 addr = &ip6h->ip6_dst; 3562 af = AF_INET6; 3563 } 3564 3565 /* 3566 * Log the event. Don't print to the console, block 3567 * potential denial-of-service attack. 3568 */ 3569 ESP_BUMP_STAT(bad_auth); 3570 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 3571 "ESP Authentication failed spi %x, dst_addr %s", 3572 assoc->ipsa_spi, addr, af); 3573 counter = &ipdrops_esp_bad_auth; 3574 goto esp_in_discard; 3575 } 3576 3577 esp3dbg(("esp_inbound_accelerated: ESP authentication succeeded, " 3578 "checking replay\n")); 3579 3580 ipsec_in->b_cont = data_mp; 3581 3582 /* 3583 * Remove ESP header and padding from packet. 3584 */ 3585 if (!esp_strip_header(data_mp, ii->ipsec_in_v4, assoc->ipsa_iv_len, 3586 &counter)) { 3587 esp1dbg(("esp_inbound_accelerated: " 3588 "esp_strip_header() failed\n")); 3589 goto esp_in_discard; 3590 } 3591 3592 freeb(hada_mp); 3593 3594 /* 3595 * Account for usage.. 3596 */ 3597 if (!esp_age_bytes(assoc, msgdsize(data_mp), B_TRUE)) { 3598 /* The ipsa has hit hard expiration, LOG and AUDIT. */ 3599 ESP_BUMP_STAT(bytes_expired); 3600 IP_ESP_BUMP_STAT(in_discards); 3601 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 3602 "ESP association 0x%x, dst %s had bytes expire.\n", 3603 assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam); 3604 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, 3605 &ipdrops_esp_bytes_expire, &esp_dropper); 3606 return (IPSEC_STATUS_FAILED); 3607 } 3608 3609 /* done processing the packet */ 3610 return (IPSEC_STATUS_SUCCESS); 3611 3612 esp_in_discard: 3613 IP_ESP_BUMP_STAT(in_discards); 3614 freeb(hada_mp); 3615 3616 ipsec_in->b_cont = data_mp; /* For ip_drop_packet()'s sake... */ 3617 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, counter, &esp_dropper); 3618 3619 return (IPSEC_STATUS_FAILED); 3620 } 3621 3622 /* 3623 * Wrapper to allow IP to trigger an ESP association failure message 3624 * during inbound SA selection. 3625 */ 3626 void 3627 ipsecesp_in_assocfailure(mblk_t *mp, char level, ushort_t sl, char *fmt, 3628 uint32_t spi, void *addr, int af) 3629 { 3630 if (ipsecesp_log_unknown_spi) { 3631 ipsec_assocfailure(info.mi_idnum, 0, level, sl, fmt, spi, 3632 addr, af); 3633 } 3634 3635 ip_drop_packet(mp, B_TRUE, NULL, NULL, &ipdrops_esp_no_sa, 3636 &esp_dropper); 3637 } 3638 3639 /* 3640 * Initialize the ESP input and output processing functions. 3641 */ 3642 void 3643 ipsecesp_init_funcs(ipsa_t *sa) 3644 { 3645 if (sa->ipsa_output_func == NULL) 3646 sa->ipsa_output_func = esp_outbound; 3647 if (sa->ipsa_input_func == NULL) 3648 sa->ipsa_input_func = esp_inbound; 3649 } 3650