1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/stropts.h> 31 #include <sys/errno.h> 32 #include <sys/strlog.h> 33 #include <sys/tihdr.h> 34 #include <sys/socket.h> 35 #include <sys/ddi.h> 36 #include <sys/sunddi.h> 37 #include <sys/kmem.h> 38 #include <sys/cmn_err.h> 39 #include <sys/vtrace.h> 40 #include <sys/debug.h> 41 #include <sys/atomic.h> 42 #include <sys/strsun.h> 43 #include <sys/random.h> 44 #include <netinet/in.h> 45 #include <net/if.h> 46 #include <netinet/ip6.h> 47 #include <netinet/icmp6.h> 48 #include <net/pfkeyv2.h> 49 50 #include <inet/common.h> 51 #include <inet/mi.h> 52 #include <inet/ip.h> 53 #include <inet/ip6.h> 54 #include <inet/nd.h> 55 #include <inet/ipsec_info.h> 56 #include <inet/ipsec_impl.h> 57 #include <inet/sadb.h> 58 #include <inet/ipsecah.h> 59 #include <inet/ipsec_impl.h> 60 #include <inet/ipdrop.h> 61 #include <sys/taskq.h> 62 #include <sys/policy.h> 63 #include <sys/iphada.h> 64 #include <sys/strsun.h> 65 66 #include <sys/crypto/common.h> 67 #include <sys/crypto/api.h> 68 #include <sys/kstat.h> 69 #include <sys/strsubr.h> 70 71 /* Packet dropper for AH drops. */ 72 static ipdropper_t ah_dropper; 73 74 static kmutex_t ipsecah_param_lock; /* Protect ipsecah_param_arr[] below. */ 75 /* 76 * Table of ND variables supported by ipsecah. These are loaded into 77 * ipsecah_g_nd in ipsecah_init_nd. 78 * All of these are alterable, within the min/max values given, at run time. 79 */ 80 static ipsecahparam_t ipsecah_param_arr[] = { 81 /* min max value name */ 82 { 0, 3, 0, "ipsecah_debug"}, 83 { 125, 32000, SADB_AGE_INTERVAL_DEFAULT, "ipsecah_age_interval"}, 84 { 1, 10, 1, "ipsecah_reap_delay"}, 85 { 1, SADB_MAX_REPLAY, 64, "ipsecah_replay_size"}, 86 { 1, 300, 15, "ipsecah_acquire_timeout"}, 87 { 1, 1800, 90, "ipsecah_larval_timeout"}, 88 /* Default lifetime values for ACQUIRE messages. */ 89 { 0, 0xffffffffU, 0, "ipsecah_default_soft_bytes"}, 90 { 0, 0xffffffffU, 0, "ipsecah_default_hard_bytes"}, 91 { 0, 0xffffffffU, 24000, "ipsecah_default_soft_addtime"}, 92 { 0, 0xffffffffU, 28800, "ipsecah_default_hard_addtime"}, 93 { 0, 0xffffffffU, 0, "ipsecah_default_soft_usetime"}, 94 { 0, 0xffffffffU, 0, "ipsecah_default_hard_usetime"}, 95 { 0, 1, 0, "ipsecah_log_unknown_spi"}, 96 }; 97 #define ipsecah_debug ipsecah_param_arr[0].ipsecah_param_value 98 #define ipsecah_age_interval ipsecah_param_arr[1].ipsecah_param_value 99 #define ipsecah_age_int_max ipsecah_param_arr[1].ipsecah_param_max 100 #define ipsecah_reap_delay ipsecah_param_arr[2].ipsecah_param_value 101 #define ipsecah_replay_size ipsecah_param_arr[3].ipsecah_param_value 102 #define ipsecah_acquire_timeout ipsecah_param_arr[4].ipsecah_param_value 103 #define ipsecah_larval_timeout ipsecah_param_arr[5].ipsecah_param_value 104 #define ipsecah_default_soft_bytes ipsecah_param_arr[6].ipsecah_param_value 105 #define ipsecah_default_hard_bytes ipsecah_param_arr[7].ipsecah_param_value 106 #define ipsecah_default_soft_addtime ipsecah_param_arr[8].ipsecah_param_value 107 #define ipsecah_default_hard_addtime ipsecah_param_arr[9].ipsecah_param_value 108 #define ipsecah_default_soft_usetime ipsecah_param_arr[10].ipsecah_param_value 109 #define ipsecah_default_hard_usetime ipsecah_param_arr[11].ipsecah_param_value 110 #define ipsecah_log_unknown_spi ipsecah_param_arr[12].ipsecah_param_value 111 112 #define ah0dbg(a) printf a 113 /* NOTE: != 0 instead of > 0 so lint doesn't complain. */ 114 #define ah1dbg(a) if (ipsecah_debug != 0) printf a 115 #define ah2dbg(a) if (ipsecah_debug > 1) printf a 116 #define ah3dbg(a) if (ipsecah_debug > 2) printf a 117 118 static IDP ipsecah_g_nd; 119 120 /* 121 * XXX This is broken. Padding should be determined dynamically 122 * depending on the ICV size and IP version number so that the 123 * total AH header size is a multiple of 32 bits or 64 bits 124 * for V4 and V6 respectively. For 96bit ICVs we have no problems. 125 * Anything different from that, we need to fix our code. 126 */ 127 #define IPV4_PADDING_ALIGN 0x04 /* Multiple of 32 bits */ 128 #define IPV6_PADDING_ALIGN 0x04 /* Multiple of 32 bits */ 129 130 /* 131 * Helper macro. Avoids a call to msgdsize if there is only one 132 * mblk in the chain. 133 */ 134 #define AH_MSGSIZE(mp) ((mp)->b_cont != NULL ? msgdsize(mp) : MBLKL(mp)) 135 136 static ipsec_status_t ah_auth_out_done(mblk_t *); 137 static ipsec_status_t ah_auth_in_done(mblk_t *); 138 static mblk_t *ah_process_ip_options_v4(mblk_t *, ipsa_t *, int *, uint_t, 139 boolean_t); 140 static mblk_t *ah_process_ip_options_v6(mblk_t *, ipsa_t *, int *, uint_t, 141 boolean_t); 142 static void ah_getspi(mblk_t *, keysock_in_t *); 143 static ipsec_status_t ah_inbound_accelerated(mblk_t *, boolean_t, ipsa_t *, 144 uint32_t); 145 static ipsec_status_t ah_outbound_accelerated_v4(mblk_t *, ipsa_t *); 146 static ipsec_status_t ah_outbound_accelerated_v6(mblk_t *, ipsa_t *); 147 static ipsec_status_t ah_outbound(mblk_t *); 148 149 static int ipsecah_open(queue_t *, dev_t *, int, int, cred_t *); 150 static int ipsecah_close(queue_t *); 151 static void ipsecah_rput(queue_t *, mblk_t *); 152 static void ipsecah_wput(queue_t *, mblk_t *); 153 static void ah_send_acquire(ipsacq_t *, mblk_t *); 154 static boolean_t ah_register_out(uint32_t, uint32_t, uint_t); 155 156 static struct module_info info = { 157 5136, "ipsecah", 0, INFPSZ, 65536, 1024 158 }; 159 160 static struct qinit rinit = { 161 (pfi_t)ipsecah_rput, NULL, ipsecah_open, ipsecah_close, NULL, &info, 162 NULL 163 }; 164 165 static struct qinit winit = { 166 (pfi_t)ipsecah_wput, NULL, ipsecah_open, ipsecah_close, NULL, &info, 167 NULL 168 }; 169 170 struct streamtab ipsecahinfo = { 171 &rinit, &winit, NULL, NULL 172 }; 173 174 /* 175 * Keysock instance of AH. "There can be only one." :) 176 * Use casptr() on this because I don't set it until KEYSOCK_HELLO comes down. 177 * Paired up with the ah_pfkey_q is the ah_event, which will age SAs. 178 */ 179 static queue_t *ah_pfkey_q; 180 static timeout_id_t ah_event; 181 static taskq_t *ah_taskq; 182 183 static mblk_t *ah_ip_unbind; 184 185 /* 186 * Stats. This may eventually become a full-blown SNMP MIB once that spec 187 * stabilizes. 188 */ 189 typedef struct 190 { 191 kstat_named_t ah_stat_num_aalgs; 192 kstat_named_t ah_stat_good_auth; 193 kstat_named_t ah_stat_bad_auth; 194 kstat_named_t ah_stat_replay_failures; 195 kstat_named_t ah_stat_replay_early_failures; 196 kstat_named_t ah_stat_keysock_in; 197 kstat_named_t ah_stat_out_requests; 198 kstat_named_t ah_stat_acquire_requests; 199 kstat_named_t ah_stat_bytes_expired; 200 kstat_named_t ah_stat_out_discards; 201 kstat_named_t ah_stat_in_accelerated; 202 kstat_named_t ah_stat_out_accelerated; 203 kstat_named_t ah_stat_noaccel; 204 kstat_named_t ah_stat_crypto_sync; 205 kstat_named_t ah_stat_crypto_async; 206 kstat_named_t ah_stat_crypto_failures; 207 } ah_kstats_t; 208 209 #define AH_BUMP_STAT(x) (ah_kstats->ah_stat_ ## x).value.ui64++ 210 #define AH_DEBUMP_STAT(x) (ah_kstats->ah_stat_ ## x).value.ui64-- 211 212 uint32_t ah_hash_size = IPSEC_DEFAULT_HASH_SIZE; 213 static kstat_t *ah_ksp; 214 static ah_kstats_t *ah_kstats; 215 216 static int ah_kstat_update(kstat_t *, int); 217 218 uint64_t ipsacq_maxpackets = IPSACQ_MAXPACKETS; 219 220 static boolean_t 221 ah_kstat_init(void) 222 { 223 224 ah_ksp = kstat_create("ipsecah", 0, "ah_stat", "net", 225 KSTAT_TYPE_NAMED, sizeof (*ah_kstats) / sizeof (kstat_named_t), 226 KSTAT_FLAG_PERSISTENT); 227 228 if (ah_ksp == NULL) 229 return (B_FALSE); 230 231 ah_kstats = ah_ksp->ks_data; 232 233 ah_ksp->ks_update = ah_kstat_update; 234 235 #define K64 KSTAT_DATA_UINT64 236 #define KI(x) kstat_named_init(&(ah_kstats->ah_stat_##x), #x, K64) 237 238 KI(num_aalgs); 239 KI(good_auth); 240 KI(bad_auth); 241 KI(replay_failures); 242 KI(replay_early_failures); 243 KI(keysock_in); 244 KI(out_requests); 245 KI(acquire_requests); 246 KI(bytes_expired); 247 KI(out_discards); 248 KI(in_accelerated); 249 KI(out_accelerated); 250 KI(noaccel); 251 KI(crypto_sync); 252 KI(crypto_async); 253 KI(crypto_failures); 254 255 #undef KI 256 #undef K64 257 258 kstat_install(ah_ksp); 259 IP_ACQUIRE_STAT(maxpackets, ipsacq_maxpackets); 260 return (B_TRUE); 261 } 262 263 static int 264 ah_kstat_update(kstat_t *kp, int rw) 265 { 266 ah_kstats_t *ekp; 267 268 if ((kp == NULL) || (kp->ks_data == NULL)) 269 return (EIO); 270 271 if (rw == KSTAT_WRITE) 272 return (EACCES); 273 274 ASSERT(kp == ah_ksp); 275 ekp = (ah_kstats_t *)kp->ks_data; 276 ASSERT(ekp == ah_kstats); 277 278 mutex_enter(&alg_lock); 279 ekp->ah_stat_num_aalgs.value.ui64 = ipsec_nalgs[IPSEC_ALG_AUTH]; 280 mutex_exit(&alg_lock); 281 282 return (0); 283 } 284 285 /* 286 * Don't have to lock ipsec_age_interval, as only one thread will access it at 287 * a time, because I control the one function that does a qtimeout() on 288 * ah_pfkey_q. 289 */ 290 /* ARGSUSED */ 291 static void 292 ah_ager(void *ignoreme) 293 { 294 hrtime_t begin = gethrtime(); 295 296 sadb_ager(&ah_sadb.s_v4, ah_pfkey_q, ah_sadb.s_ip_q, 297 ipsecah_reap_delay); 298 sadb_ager(&ah_sadb.s_v6, ah_pfkey_q, ah_sadb.s_ip_q, 299 ipsecah_reap_delay); 300 301 ah_event = sadb_retimeout(begin, ah_pfkey_q, ah_ager, 302 &ipsecah_age_interval, ipsecah_age_int_max, info.mi_idnum); 303 } 304 305 /* 306 * Get an AH NDD parameter. 307 */ 308 /* ARGSUSED */ 309 static int 310 ipsecah_param_get(q, mp, cp, cr) 311 queue_t *q; 312 mblk_t *mp; 313 caddr_t cp; 314 cred_t *cr; 315 { 316 ipsecahparam_t *ipsecahpa = (ipsecahparam_t *)cp; 317 uint_t value; 318 319 mutex_enter(&ipsecah_param_lock); 320 value = ipsecahpa->ipsecah_param_value; 321 mutex_exit(&ipsecah_param_lock); 322 323 (void) mi_mpprintf(mp, "%u", value); 324 return (0); 325 } 326 327 /* 328 * This routine sets an NDD variable in a ipsecahparam_t structure. 329 */ 330 /* ARGSUSED */ 331 static int 332 ipsecah_param_set(q, mp, value, cp, cr) 333 queue_t *q; 334 mblk_t *mp; 335 char *value; 336 caddr_t cp; 337 cred_t *cr; 338 { 339 ulong_t new_value; 340 ipsecahparam_t *ipsecahpa = (ipsecahparam_t *)cp; 341 342 /* 343 * Fail the request if the new value does not lie within the 344 * required bounds. 345 */ 346 if (ddi_strtoul(value, NULL, 10, &new_value) != 0 || 347 new_value < ipsecahpa->ipsecah_param_min || 348 new_value > ipsecahpa->ipsecah_param_max) { 349 return (EINVAL); 350 } 351 352 /* Set the new value */ 353 mutex_enter(&ipsecah_param_lock); 354 ipsecahpa->ipsecah_param_value = new_value; 355 mutex_exit(&ipsecah_param_lock); 356 return (0); 357 } 358 359 /* 360 * Using lifetime NDD variables, fill in an extended combination's 361 * lifetime information. 362 */ 363 void 364 ipsecah_fill_defs(sadb_x_ecomb_t *ecomb) 365 { 366 ecomb->sadb_x_ecomb_soft_bytes = ipsecah_default_soft_bytes; 367 ecomb->sadb_x_ecomb_hard_bytes = ipsecah_default_hard_bytes; 368 ecomb->sadb_x_ecomb_soft_addtime = ipsecah_default_soft_addtime; 369 ecomb->sadb_x_ecomb_hard_addtime = ipsecah_default_hard_addtime; 370 ecomb->sadb_x_ecomb_soft_usetime = ipsecah_default_soft_usetime; 371 ecomb->sadb_x_ecomb_hard_usetime = ipsecah_default_hard_usetime; 372 } 373 374 /* 375 * Initialize things for AH at module load time. 376 */ 377 boolean_t 378 ipsecah_ddi_init(void) 379 { 380 int count; 381 ipsecahparam_t *ahp = ipsecah_param_arr; 382 383 for (count = A_CNT(ipsecah_param_arr); count-- > 0; ahp++) { 384 if (ahp->ipsecah_param_name != NULL && 385 ahp->ipsecah_param_name[0]) { 386 if (!nd_load(&ipsecah_g_nd, ahp->ipsecah_param_name, 387 ipsecah_param_get, ipsecah_param_set, 388 (caddr_t)ahp)) { 389 nd_free(&ipsecah_g_nd); 390 return (B_FALSE); 391 } 392 } 393 } 394 395 if (!ah_kstat_init()) { 396 nd_free(&ipsecah_g_nd); 397 return (B_FALSE); 398 } 399 400 ah_taskq = taskq_create("ah_taskq", 1, minclsyspri, 401 IPSEC_TASKQ_MIN, IPSEC_TASKQ_MAX, 0); 402 403 ah_sadb.s_acquire_timeout = &ipsecah_acquire_timeout; 404 ah_sadb.s_acqfn = ah_send_acquire; 405 406 sadbp_init("AH", &ah_sadb, SADB_SATYPE_AH, ah_hash_size); 407 408 mutex_init(&ipsecah_param_lock, NULL, MUTEX_DEFAULT, 0); 409 410 ip_drop_register(&ah_dropper, "IPsec AH"); 411 412 return (B_TRUE); 413 } 414 415 /* 416 * Destroy things for AH at module unload time. 417 */ 418 void 419 ipsecah_ddi_destroy(void) 420 { 421 ah1dbg(("In ddi_destroy.\n")); 422 423 sadbp_destroy(&ah_sadb); 424 ip_drop_unregister(&ah_dropper); 425 taskq_destroy(ah_taskq); 426 mutex_destroy(&ipsecah_param_lock); 427 nd_free(&ipsecah_g_nd); 428 429 kstat_delete(ah_ksp); 430 } 431 432 /* 433 * AH module open routine. The module should be opened by keysock. 434 */ 435 /* ARGSUSED */ 436 static int 437 ipsecah_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 438 { 439 if (secpolicy_net_config(credp, B_FALSE) != 0) { 440 ah1dbg(("Non-privileged user trying to open ipsecah.\n")); 441 return (EPERM); 442 } 443 444 if (q->q_ptr != NULL) 445 return (0); /* Re-open of an already open instance. */ 446 447 if (sflag != MODOPEN) 448 return (EINVAL); 449 450 /* 451 * ASSUMPTIONS (because I'm MT_OCEXCL): 452 * 453 * * I'm being pushed on top of IP for all my opens (incl. #1). 454 * * Only ipsecah_open() can write into ah_sadb.s_ip_q. 455 * * Because of this, I can check lazily for ah_sadb.s_ip_q. 456 * 457 * If these assumptions are wrong, I'm in BIG trouble... 458 */ 459 460 q->q_ptr = q; /* just so I know I'm open */ 461 462 if (ah_sadb.s_ip_q == NULL) { 463 struct T_unbind_req *tur; 464 465 ah_sadb.s_ip_q = WR(q); 466 /* Allocate an unbind... */ 467 ah_ip_unbind = allocb(sizeof (struct T_unbind_req), BPRI_HI); 468 469 /* 470 * Send down T_BIND_REQ to bind IPPROTO_AH. 471 * Handle the ACK here in AH. 472 */ 473 qprocson(q); 474 if (ah_ip_unbind == NULL || 475 !sadb_t_bind_req(ah_sadb.s_ip_q, IPPROTO_AH)) { 476 if (ah_ip_unbind != NULL) { 477 freeb(ah_ip_unbind); 478 ah_ip_unbind = NULL; 479 } 480 q->q_ptr = NULL; 481 qprocsoff(q); 482 return (ENOMEM); 483 } 484 485 ah_ip_unbind->b_datap->db_type = M_PROTO; 486 tur = (struct T_unbind_req *)ah_ip_unbind->b_rptr; 487 tur->PRIM_type = T_UNBIND_REQ; 488 } else { 489 qprocson(q); 490 } 491 492 /* 493 * For now, there's not much I can do. I'll be getting a message 494 * passed down to me from keysock (in my wput), and a T_BIND_ACK 495 * up from IP (in my rput). 496 */ 497 498 return (0); 499 } 500 501 /* 502 * AH module close routine. 503 */ 504 static int 505 ipsecah_close(queue_t *q) 506 { 507 /* 508 * If ah_sadb.s_ip_q is attached to this instance, send a 509 * T_UNBIND_REQ to IP for the instance before doing 510 * a qprocsoff(). 511 */ 512 if (WR(q) == ah_sadb.s_ip_q && ah_ip_unbind != NULL) { 513 putnext(WR(q), ah_ip_unbind); 514 ah_ip_unbind = NULL; 515 } 516 517 /* 518 * Clean up q_ptr, if needed. 519 */ 520 qprocsoff(q); 521 522 /* Keysock queue check is safe, because of OCEXCL perimeter. */ 523 524 if (q == ah_pfkey_q) { 525 ah0dbg(("ipsecah_close: Ummm... keysock is closing AH.\n")); 526 ah_pfkey_q = NULL; 527 /* Detach qtimeouts. */ 528 (void) quntimeout(q, ah_event); 529 } 530 531 if (WR(q) == ah_sadb.s_ip_q) { 532 /* 533 * If the ah_sadb.s_ip_q is attached to this instance, find 534 * another. The OCEXCL outer perimeter helps us here. 535 */ 536 537 ah_sadb.s_ip_q = NULL; 538 539 /* 540 * Find a replacement queue for ah_sadb.s_ip_q. 541 */ 542 if (ah_pfkey_q != NULL && ah_pfkey_q != RD(q)) { 543 /* 544 * See if we can use the pfkey_q. 545 */ 546 ah_sadb.s_ip_q = WR(ah_pfkey_q); 547 } 548 549 if (ah_sadb.s_ip_q == NULL || 550 !sadb_t_bind_req(ah_sadb.s_ip_q, IPPROTO_AH)) { 551 ah1dbg(("ipsecah: Can't reassign ah_sadb.s_ip_q.\n")); 552 ah_sadb.s_ip_q = NULL; 553 } else { 554 ah_ip_unbind = allocb(sizeof (struct T_unbind_req), 555 BPRI_HI); 556 557 if (ah_ip_unbind != NULL) { 558 struct T_unbind_req *tur; 559 560 ah_ip_unbind->b_datap->db_type = M_PROTO; 561 tur = (struct T_unbind_req *) 562 ah_ip_unbind->b_rptr; 563 tur->PRIM_type = T_UNBIND_REQ; 564 } 565 /* If it's NULL, I can't do much here. */ 566 } 567 } 568 569 return (0); 570 } 571 572 /* 573 * AH module read put routine. 574 */ 575 /* ARGSUSED */ 576 static void 577 ipsecah_rput(queue_t *q, mblk_t *mp) 578 { 579 keysock_in_t *ksi; 580 int *addrtype; 581 ire_t *ire; 582 mblk_t *ire_mp, *last_mp; 583 584 switch (mp->b_datap->db_type) { 585 case M_CTL: 586 /* 587 * IPsec request of some variety from IP. IPSEC_{IN,OUT} 588 * are the common cases, but even ICMP error messages from IP 589 * may rise up here. 590 * 591 * Ummmm, actually, this can also be the reflected KEYSOCK_IN 592 * message, with an IRE_DB_TYPE hung off at the end. 593 */ 594 switch (((ipsec_info_t *)(mp->b_rptr))->ipsec_info_type) { 595 case KEYSOCK_IN: 596 last_mp = mp; 597 while (last_mp->b_cont != NULL && 598 last_mp->b_cont->b_datap->db_type != IRE_DB_TYPE) 599 last_mp = last_mp->b_cont; 600 601 if (last_mp->b_cont == NULL) { 602 freemsg(mp); 603 break; /* Out of switch. */ 604 } 605 606 ire_mp = last_mp->b_cont; 607 last_mp->b_cont = NULL; 608 609 ksi = (keysock_in_t *)mp->b_rptr; 610 611 if (ksi->ks_in_srctype == KS_IN_ADDR_UNKNOWN) 612 addrtype = &ksi->ks_in_srctype; 613 else if (ksi->ks_in_dsttype == KS_IN_ADDR_UNKNOWN) 614 addrtype = &ksi->ks_in_dsttype; 615 else if (ksi->ks_in_proxytype == KS_IN_ADDR_UNKNOWN) 616 addrtype = &ksi->ks_in_proxytype; 617 618 ire = (ire_t *)ire_mp->b_rptr; 619 620 *addrtype = sadb_addrset(ire); 621 622 freemsg(ire_mp); 623 if (ah_pfkey_q != NULL) { 624 /* 625 * Decrement counter to make up for 626 * auto-increment in ipsecah_wput(). 627 * I'm running all MT-hot through here, so 628 * don't worry about perimeters and lateral 629 * puts. 630 */ 631 AH_DEBUMP_STAT(keysock_in); 632 ipsecah_wput(WR(ah_pfkey_q), mp); 633 } else { 634 freemsg(mp); 635 } 636 break; 637 default: 638 freemsg(mp); 639 break; 640 } 641 break; 642 case M_PROTO: 643 case M_PCPROTO: 644 /* TPI message of some sort. */ 645 switch (*((t_scalar_t *)mp->b_rptr)) { 646 case T_BIND_ACK: 647 /* We expect this. */ 648 ah3dbg(("Thank you IP from AH for T_BIND_ACK\n")); 649 break; 650 case T_ERROR_ACK: 651 cmn_err(CE_WARN, 652 "ipsecah: AH received T_ERROR_ACK from IP."); 653 break; 654 case T_OK_ACK: 655 /* Probably from a (rarely sent) T_UNBIND_REQ. */ 656 break; 657 default: 658 ah1dbg(("Unknown M_{,PC}PROTO message.\n")); 659 } 660 freemsg(mp); 661 break; 662 default: 663 /* For now, passthru message. */ 664 ah2dbg(("AH got unknown mblk type %d.\n", 665 mp->b_datap->db_type)); 666 putnext(q, mp); 667 } 668 } 669 670 /* 671 * Construct an SADB_REGISTER message with the current algorithms. 672 */ 673 static boolean_t 674 ah_register_out(uint32_t sequence, uint32_t pid, uint_t serial) 675 { 676 mblk_t *mp; 677 boolean_t rc = B_TRUE; 678 sadb_msg_t *samsg; 679 sadb_supported_t *sasupp; 680 sadb_alg_t *saalg; 681 uint_t allocsize = sizeof (*samsg); 682 uint_t i, numalgs_snap; 683 ipsec_alginfo_t **authalgs; 684 uint_t num_aalgs; 685 686 /* Allocate the KEYSOCK_OUT. */ 687 mp = sadb_keysock_out(serial); 688 if (mp == NULL) { 689 ah0dbg(("ah_register_out: couldn't allocate mblk.\n")); 690 return (B_FALSE); 691 } 692 693 /* 694 * Allocate the PF_KEY message that follows KEYSOCK_OUT. 695 * The alg reader lock needs to be held while allocating 696 * the variable part (i.e. the algorithms) of the message. 697 */ 698 699 mutex_enter(&alg_lock); 700 701 /* 702 * Return only valid algorithms, so the number of algorithms 703 * to send up may be less than the number of algorithm entries 704 * in the table. 705 */ 706 authalgs = ipsec_alglists[IPSEC_ALG_AUTH]; 707 for (num_aalgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++) 708 if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) 709 num_aalgs++; 710 711 /* 712 * Fill SADB_REGISTER message's algorithm descriptors. Hold 713 * down the lock while filling it. 714 */ 715 if (num_aalgs != 0) { 716 allocsize += (num_aalgs * sizeof (*saalg)); 717 allocsize += sizeof (*sasupp); 718 } 719 mp->b_cont = allocb(allocsize, BPRI_HI); 720 if (mp->b_cont == NULL) { 721 mutex_exit(&alg_lock); 722 freemsg(mp); 723 return (B_FALSE); 724 } 725 726 mp->b_cont->b_wptr += allocsize; 727 if (num_aalgs != 0) { 728 729 saalg = (sadb_alg_t *)(mp->b_cont->b_rptr + sizeof (*samsg) + 730 sizeof (*sasupp)); 731 ASSERT(((ulong_t)saalg & 0x7) == 0); 732 733 numalgs_snap = 0; 734 for (i = 0; 735 ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_aalgs)); i++) { 736 if (authalgs[i] == NULL || !ALG_VALID(authalgs[i])) 737 continue; 738 739 saalg->sadb_alg_id = authalgs[i]->alg_id; 740 saalg->sadb_alg_ivlen = 0; 741 saalg->sadb_alg_minbits = authalgs[i]->alg_ef_minbits; 742 saalg->sadb_alg_maxbits = authalgs[i]->alg_ef_maxbits; 743 saalg->sadb_x_alg_increment = 744 authalgs[i]->alg_increment; 745 saalg->sadb_x_alg_defincr = authalgs[i]->alg_ef_default; 746 numalgs_snap++; 747 saalg++; 748 } 749 ASSERT(numalgs_snap == num_aalgs); 750 #ifdef DEBUG 751 /* 752 * Reality check to make sure I snagged all of the 753 * algorithms. 754 */ 755 for (; i < IPSEC_MAX_ALGS; i++) 756 if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) 757 cmn_err(CE_PANIC, 758 "ah_register_out()! Missed #%d.\n", i); 759 #endif /* DEBUG */ 760 } 761 762 mutex_exit(&alg_lock); 763 764 /* Now fill the restof the SADB_REGISTER message. */ 765 766 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 767 samsg->sadb_msg_version = PF_KEY_V2; 768 samsg->sadb_msg_type = SADB_REGISTER; 769 samsg->sadb_msg_errno = 0; 770 samsg->sadb_msg_satype = SADB_SATYPE_AH; 771 samsg->sadb_msg_len = SADB_8TO64(allocsize); 772 samsg->sadb_msg_reserved = 0; 773 /* 774 * Assume caller has sufficient sequence/pid number info. If it's one 775 * from me over a new alg., I could give two hoots about sequence. 776 */ 777 samsg->sadb_msg_seq = sequence; 778 samsg->sadb_msg_pid = pid; 779 780 if (allocsize > sizeof (*samsg)) { 781 sasupp = (sadb_supported_t *)(samsg + 1); 782 sasupp->sadb_supported_len = 783 SADB_8TO64(allocsize - sizeof (sadb_msg_t)); 784 sasupp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 785 sasupp->sadb_supported_reserved = 0; 786 } 787 788 if (ah_pfkey_q != NULL) 789 putnext(ah_pfkey_q, mp); 790 else { 791 rc = B_FALSE; 792 freemsg(mp); 793 } 794 795 return (rc); 796 } 797 798 /* 799 * Invoked when the algorithm table changes. Causes SADB_REGISTER 800 * messages continaining the current list of algorithms to be 801 * sent up to the AH listeners. 802 */ 803 void 804 ipsecah_algs_changed(void) 805 { 806 /* 807 * Time to send a PF_KEY SADB_REGISTER message to AH listeners 808 * everywhere. (The function itself checks for NULL ah_pfkey_q.) 809 */ 810 (void) ah_register_out(0, 0, 0); 811 } 812 813 /* 814 * Stub function that taskq_dispatch() invokes to take the mblk (in arg) 815 * and put() it into AH and STREAMS again. 816 */ 817 static void 818 inbound_task(void *arg) 819 { 820 ah_t *ah; 821 mblk_t *mp = (mblk_t *)arg; 822 ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr; 823 int ipsec_rc; 824 825 ah2dbg(("in AH inbound_task")); 826 827 ah = ipsec_inbound_ah_sa(mp); 828 if (ah == NULL) 829 return; 830 ASSERT(ii->ipsec_in_ah_sa != NULL); 831 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func(mp, ah); 832 if (ipsec_rc != IPSEC_STATUS_SUCCESS) 833 return; 834 ip_fanout_proto_again(mp, NULL, NULL, NULL); 835 } 836 837 838 /* 839 * Now that weak-key passed, actually ADD the security association, and 840 * send back a reply ADD message. 841 */ 842 static int 843 ah_add_sa_finish(mblk_t *mp, sadb_msg_t *samsg, keysock_in_t *ksi) 844 { 845 isaf_t *primary, *secondary, *inbound, *outbound; 846 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 847 sadb_address_t *dstext = 848 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 849 struct sockaddr_in *dst; 850 struct sockaddr_in6 *dst6; 851 boolean_t is_ipv4, clone = B_FALSE, is_inbound = B_FALSE; 852 uint32_t *dstaddr; 853 ipsa_t *larval; 854 ipsacq_t *acqrec; 855 iacqf_t *acq_bucket; 856 mblk_t *acq_msgs = NULL; 857 mblk_t *lpkt; 858 int rc; 859 sadb_t *sp; 860 int outhash; 861 862 /* 863 * Locate the appropriate table(s). 864 */ 865 866 dst = (struct sockaddr_in *)(dstext + 1); 867 dst6 = (struct sockaddr_in6 *)dst; 868 is_ipv4 = (dst->sin_family == AF_INET); 869 if (is_ipv4) { 870 sp = &ah_sadb.s_v4; 871 dstaddr = (uint32_t *)(&dst->sin_addr); 872 outhash = OUTBOUND_HASH_V4(sp, *(ipaddr_t *)dstaddr); 873 } else { 874 ASSERT(dst->sin_family == AF_INET6); 875 sp = &ah_sadb.s_v6; 876 dstaddr = (uint32_t *)(&dst6->sin6_addr); 877 outhash = OUTBOUND_HASH_V6(sp, *(in6_addr_t *)dstaddr); 878 } 879 880 inbound = INBOUND_BUCKET(sp, assoc->sadb_sa_spi); 881 outbound = &sp->sdb_of[outhash]; 882 883 switch (ksi->ks_in_dsttype) { 884 case KS_IN_ADDR_MBCAST: 885 clone = B_TRUE; /* All mcast SAs can be bidirectional */ 886 /* FALLTHRU */ 887 case KS_IN_ADDR_ME: 888 primary = inbound; 889 secondary = outbound; 890 /* 891 * If the source address is either one of mine, or unspecified 892 * (which is best summed up by saying "not 'not mine'"), 893 * then the association is potentially bi-directional, 894 * in that it can be used for inbound traffic and outbound 895 * traffic. The best example of such and SA is a multicast 896 * SA (which allows me to receive the outbound traffic). 897 */ 898 if (ksi->ks_in_srctype != KS_IN_ADDR_NOTME) 899 clone = B_TRUE; 900 is_inbound = B_TRUE; 901 break; 902 case KS_IN_ADDR_NOTME: 903 primary = outbound; 904 secondary = inbound; 905 /* 906 * If the source address literally not mine (either 907 * unspecified or not mine), then this SA may have an 908 * address that WILL be mine after some configuration. 909 * We pay the price for this by making it a bi-directional 910 * SA. 911 */ 912 if (ksi->ks_in_srctype != KS_IN_ADDR_ME) 913 clone = B_TRUE; 914 break; 915 default: 916 samsg->sadb_x_msg_diagnostic = SADB_X_DIAGNOSTIC_BAD_DST; 917 return (EINVAL); 918 } 919 920 /* 921 * Find a ACQUIRE list entry if possible. If we've added an SA that 922 * suits the needs of an ACQUIRE list entry, we can eliminate the 923 * ACQUIRE list entry and transmit the enqueued packets. Use the 924 * high-bit of the sequence number to queue it. Key off destination 925 * addr, and change acqrec's state. 926 */ 927 928 if (samsg->sadb_msg_seq & IACQF_LOWEST_SEQ) { 929 acq_bucket = &sp->sdb_acq[outhash]; 930 mutex_enter(&acq_bucket->iacqf_lock); 931 for (acqrec = acq_bucket->iacqf_ipsacq; acqrec != NULL; 932 acqrec = acqrec->ipsacq_next) { 933 mutex_enter(&acqrec->ipsacq_lock); 934 /* 935 * Q: I only check sequence. Should I check dst? 936 * A: Yes, check dest because those are the packets 937 * that are queued up. 938 */ 939 if (acqrec->ipsacq_seq == samsg->sadb_msg_seq && 940 IPSA_ARE_ADDR_EQUAL(dstaddr, 941 acqrec->ipsacq_dstaddr, acqrec->ipsacq_addrfam)) 942 break; 943 mutex_exit(&acqrec->ipsacq_lock); 944 } 945 if (acqrec != NULL) { 946 /* 947 * AHA! I found an ACQUIRE record for this SA. 948 * Grab the msg list, and free the acquire record. 949 * I already am holding the lock for this record, 950 * so all I have to do is free it. 951 */ 952 acq_msgs = acqrec->ipsacq_mp; 953 acqrec->ipsacq_mp = NULL; 954 mutex_exit(&acqrec->ipsacq_lock); 955 sadb_destroy_acquire(acqrec); 956 } 957 mutex_exit(&acq_bucket->iacqf_lock); 958 } 959 960 /* 961 * Find PF_KEY message, and see if I'm an update. If so, find entry 962 * in larval list (if there). 963 */ 964 965 larval = NULL; 966 967 if (samsg->sadb_msg_type == SADB_UPDATE) { 968 mutex_enter(&inbound->isaf_lock); 969 larval = ipsec_getassocbyspi(inbound, assoc->sadb_sa_spi, 970 ALL_ZEROES_PTR, dstaddr, dst->sin_family); 971 mutex_exit(&inbound->isaf_lock); 972 973 if ((larval == NULL) || 974 (larval->ipsa_state != IPSA_STATE_LARVAL)) { 975 ah0dbg(("Larval update, but larval disappeared.\n")); 976 return (ESRCH); 977 } /* Else sadb_common_add unlinks it for me! */ 978 } 979 980 lpkt = NULL; 981 if (larval != NULL) 982 lpkt = sadb_clear_lpkt(larval); 983 984 rc = sadb_common_add(ah_sadb.s_ip_q, ah_pfkey_q, mp, samsg, ksi, 985 primary, secondary, larval, clone, is_inbound); 986 987 /* 988 * How much more stack will I create with all of these 989 * ah_inbound_* and ah_outbound_*() calls? 990 */ 991 992 993 if (rc == 0 && lpkt != NULL) 994 rc = !taskq_dispatch(ah_taskq, inbound_task, 995 (void *) lpkt, TQ_NOSLEEP); 996 997 if (rc != 0) { 998 ip_drop_packet(lpkt, B_TRUE, NULL, NULL, 999 &ipdrops_sadb_inlarval_timeout, &ah_dropper); 1000 } 1001 1002 while (acq_msgs != NULL) { 1003 mblk_t *mp = acq_msgs; 1004 1005 acq_msgs = acq_msgs->b_next; 1006 mp->b_next = NULL; 1007 if (rc == 0) { 1008 ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr; 1009 1010 ASSERT(ah_sadb.s_ip_q != NULL); 1011 if (ipsec_outbound_sa(mp, IPPROTO_AH)) { 1012 io->ipsec_out_ah_done = B_TRUE; 1013 if (ah_outbound(mp) == IPSEC_STATUS_SUCCESS) { 1014 ipha_t *ipha = (ipha_t *) 1015 mp->b_cont->b_rptr; 1016 if (is_ipv4) { 1017 ip_wput_ipsec_out(NULL, mp, 1018 ipha, NULL, NULL); 1019 } else { 1020 ip6_t *ip6h = (ip6_t *)ipha; 1021 ip_wput_ipsec_out_v6(NULL, 1022 mp, ip6h, NULL, NULL); 1023 } 1024 } 1025 continue; 1026 } 1027 } 1028 AH_BUMP_STAT(out_discards); 1029 ip_drop_packet(mp, B_FALSE, NULL, NULL, 1030 &ipdrops_sadb_acquire_timeout, &ah_dropper); 1031 } 1032 1033 return (rc); 1034 } 1035 1036 /* 1037 * Add new AH security association. This may become a generic AH/ESP 1038 * routine eventually. 1039 */ 1040 static int 1041 ah_add_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 1042 { 1043 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 1044 sadb_address_t *srcext = 1045 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 1046 sadb_address_t *dstext = 1047 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 1048 sadb_key_t *key = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH]; 1049 struct sockaddr_in *src, *dst; 1050 /* We don't need sockaddr_in6 for now. */ 1051 sadb_lifetime_t *soft = 1052 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT]; 1053 sadb_lifetime_t *hard = 1054 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD]; 1055 ipsec_alginfo_t *aalg; 1056 1057 /* I need certain extensions present for an ADD message. */ 1058 if (srcext == NULL) { 1059 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 1060 return (EINVAL); 1061 } 1062 if (dstext == NULL) { 1063 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 1064 return (EINVAL); 1065 } 1066 if (assoc == NULL) { 1067 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 1068 return (EINVAL); 1069 } 1070 if (key == NULL) { 1071 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_AKEY; 1072 return (EINVAL); 1073 } 1074 1075 src = (struct sockaddr_in *)(srcext + 1); 1076 dst = (struct sockaddr_in *)(dstext + 1); 1077 1078 /* Sundry ADD-specific reality checks. */ 1079 /* XXX STATS : Logging/stats here? */ 1080 1081 if (assoc->sadb_sa_state != SADB_SASTATE_MATURE) { 1082 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 1083 return (EINVAL); 1084 } 1085 if (assoc->sadb_sa_encrypt != SADB_EALG_NONE) { 1086 *diagnostic = SADB_X_DIAGNOSTIC_ENCR_NOTSUPP; 1087 return (EINVAL); 1088 } 1089 if (assoc->sadb_sa_flags & ~(SADB_SAFLAGS_NOREPLAY)) { 1090 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS; 1091 return (EINVAL); 1092 } 1093 1094 if ((*diagnostic = sadb_hardsoftchk(hard, soft)) != 0) 1095 return (EINVAL); 1096 1097 if (src->sin_family != dst->sin_family) { 1098 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 1099 return (EINVAL); 1100 } 1101 1102 /* Stuff I don't support, for now. XXX Diagnostic? */ 1103 if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL || 1104 ksi->ks_in_extv[SADB_EXT_SENSITIVITY] != NULL) 1105 return (EOPNOTSUPP); 1106 1107 /* 1108 * XXX Policy : I'm not checking identities or sensitivity 1109 * labels at this time, but if I did, I'd do them here, before I sent 1110 * the weak key check up to the algorithm. 1111 */ 1112 1113 /* verify that there is a mapping for the specified algorithm */ 1114 mutex_enter(&alg_lock); 1115 aalg = ipsec_alglists[IPSEC_ALG_AUTH][assoc->sadb_sa_auth]; 1116 if (aalg == NULL || !ALG_VALID(aalg)) { 1117 mutex_exit(&alg_lock); 1118 ah1dbg(("Couldn't find auth alg #%d.\n", assoc->sadb_sa_auth)); 1119 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG; 1120 return (EINVAL); 1121 } 1122 ASSERT(aalg->alg_mech_type != CRYPTO_MECHANISM_INVALID); 1123 1124 /* sanity check key sizes */ 1125 if (!ipsec_valid_key_size(key->sadb_key_bits, aalg)) { 1126 mutex_exit(&alg_lock); 1127 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AKEYBITS; 1128 return (EINVAL); 1129 } 1130 1131 /* check key and fix parity if needed */ 1132 if (ipsec_check_key(aalg->alg_mech_type, key, B_TRUE, 1133 diagnostic) != 0) { 1134 mutex_exit(&alg_lock); 1135 return (EINVAL); 1136 } 1137 1138 mutex_exit(&alg_lock); 1139 1140 return (ah_add_sa_finish(mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi)); 1141 } 1142 1143 /* 1144 * Update a security association. Updates come in two varieties. The first 1145 * is an update of lifetimes on a non-larval SA. The second is an update of 1146 * a larval SA, which ends up looking a lot more like an add. 1147 */ 1148 static int 1149 ah_update_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 1150 { 1151 sadb_address_t *dstext = 1152 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 1153 struct sockaddr_in *sin; 1154 1155 if (dstext == NULL) { 1156 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 1157 return (EINVAL); 1158 } 1159 sin = (struct sockaddr_in *)(dstext + 1); 1160 return (sadb_update_sa(mp, ksi, 1161 (sin->sin_family == AF_INET6) ? &ah_sadb.s_v6 : &ah_sadb.s_v4, 1162 diagnostic, ah_pfkey_q, ah_add_sa)); 1163 } 1164 1165 /* 1166 * Delete a security association. This is REALLY likely to be code common to 1167 * both AH and ESP. Find the association, then unlink it. 1168 */ 1169 static int 1170 ah_del_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 1171 { 1172 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 1173 sadb_address_t *dstext = 1174 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 1175 sadb_address_t *srcext = 1176 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 1177 struct sockaddr_in *sin; 1178 1179 if (assoc == NULL) { 1180 if (dstext != NULL) 1181 sin = (struct sockaddr_in *)(dstext + 1); 1182 else if (srcext != NULL) 1183 sin = (struct sockaddr_in *)(srcext + 1); 1184 else { 1185 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 1186 return (EINVAL); 1187 } 1188 return sadb_purge_sa(mp, ksi, 1189 (sin->sin_family == AF_INET6) ? &ah_sadb.s_v6 : 1190 &ah_sadb.s_v4, 1191 diagnostic, ah_pfkey_q, ah_sadb.s_ip_q); 1192 } 1193 1194 return (sadb_del_sa(mp, ksi, &ah_sadb, diagnostic, ah_pfkey_q)); 1195 } 1196 1197 /* 1198 * Convert the entire contents of all of AH's SA tables into PF_KEY SADB_DUMP 1199 * messages. 1200 */ 1201 static void 1202 ah_dump(mblk_t *mp, keysock_in_t *ksi) 1203 { 1204 int error; 1205 sadb_msg_t *samsg; 1206 1207 /* 1208 * Dump each fanout, bailing if error is non-zero. 1209 */ 1210 1211 error = sadb_dump(ah_pfkey_q, mp, ksi->ks_in_serial, &ah_sadb.s_v4); 1212 if (error != 0) 1213 goto bail; 1214 1215 error = sadb_dump(ah_pfkey_q, mp, ksi->ks_in_serial, &ah_sadb.s_v6); 1216 bail: 1217 ASSERT(mp->b_cont != NULL); 1218 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 1219 samsg->sadb_msg_errno = (uint8_t)error; 1220 sadb_pfkey_echo(ah_pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi, 1221 NULL); 1222 } 1223 1224 /* 1225 * AH parsing of PF_KEY messages. Keysock did most of the really silly 1226 * error cases. What I receive is a fully-formed, syntactically legal 1227 * PF_KEY message. I then need to check semantics... 1228 * 1229 * This code may become common to AH and ESP. Stay tuned. 1230 * 1231 * I also make the assumption that db_ref's are cool. If this assumption 1232 * is wrong, this means that someone other than keysock or me has been 1233 * mucking with PF_KEY messages. 1234 */ 1235 static void 1236 ah_parse_pfkey(mblk_t *mp) 1237 { 1238 mblk_t *msg = mp->b_cont; 1239 sadb_msg_t *samsg; 1240 keysock_in_t *ksi; 1241 int error; 1242 int diagnostic = SADB_X_DIAGNOSTIC_NONE; 1243 1244 ASSERT(msg != NULL); 1245 samsg = (sadb_msg_t *)msg->b_rptr; 1246 ksi = (keysock_in_t *)mp->b_rptr; 1247 1248 /* 1249 * If applicable, convert unspecified AF_INET6 to unspecified 1250 * AF_INET. 1251 */ 1252 sadb_srcaddrfix(ksi); 1253 1254 switch (samsg->sadb_msg_type) { 1255 case SADB_ADD: 1256 error = ah_add_sa(mp, ksi, &diagnostic); 1257 if (error != 0) { 1258 sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic, 1259 ksi->ks_in_serial); 1260 } 1261 /* else ah_add_sa() took care of things. */ 1262 break; 1263 case SADB_DELETE: 1264 error = ah_del_sa(mp, ksi, &diagnostic); 1265 if (error != 0) { 1266 sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic, 1267 ksi->ks_in_serial); 1268 } 1269 /* Else ah_del_sa() took care of things. */ 1270 break; 1271 case SADB_GET: 1272 error = sadb_get_sa(mp, ksi, &ah_sadb, &diagnostic, ah_pfkey_q); 1273 if (error != 0) { 1274 sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic, 1275 ksi->ks_in_serial); 1276 } 1277 /* Else sadb_get_sa() took care of things. */ 1278 break; 1279 case SADB_FLUSH: 1280 sadbp_flush(&ah_sadb); 1281 sadb_pfkey_echo(ah_pfkey_q, mp, samsg, ksi, NULL); 1282 break; 1283 case SADB_REGISTER: 1284 /* 1285 * Hmmm, let's do it! Check for extensions (there should 1286 * be none), extract the fields, call ah_register_out(), 1287 * then either free or report an error. 1288 * 1289 * Keysock takes care of the PF_KEY bookkeeping for this. 1290 */ 1291 if (ah_register_out(samsg->sadb_msg_seq, samsg->sadb_msg_pid, 1292 ksi->ks_in_serial)) { 1293 freemsg(mp); 1294 } else { 1295 /* 1296 * Only way this path hits is if there is a memory 1297 * failure. It will not return B_FALSE because of 1298 * lack of ah_pfkey_q if I am in wput(). 1299 */ 1300 sadb_pfkey_error(ah_pfkey_q, mp, ENOMEM, diagnostic, 1301 ksi->ks_in_serial); 1302 } 1303 break; 1304 case SADB_UPDATE: 1305 /* 1306 * Find a larval, if not there, find a full one and get 1307 * strict. 1308 */ 1309 error = ah_update_sa(mp, ksi, &diagnostic); 1310 if (error != 0) { 1311 sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic, 1312 ksi->ks_in_serial); 1313 } 1314 /* else ah_update_sa() took care of things. */ 1315 break; 1316 case SADB_GETSPI: 1317 /* 1318 * Reserve a new larval entry. 1319 */ 1320 ah_getspi(mp, ksi); 1321 break; 1322 case SADB_ACQUIRE: 1323 /* 1324 * Find larval and/or ACQUIRE record and kill it (them), I'm 1325 * most likely an error. Inbound ACQUIRE messages should only 1326 * have the base header. 1327 */ 1328 sadb_in_acquire(samsg, &ah_sadb, ah_pfkey_q); 1329 freemsg(mp); 1330 break; 1331 case SADB_DUMP: 1332 /* 1333 * Dump all entries. 1334 */ 1335 ah_dump(mp, ksi); 1336 /* ah_dump will take care of the return message, etc. */ 1337 break; 1338 case SADB_EXPIRE: 1339 /* Should never reach me. */ 1340 sadb_pfkey_error(ah_pfkey_q, mp, EOPNOTSUPP, diagnostic, 1341 ksi->ks_in_serial); 1342 break; 1343 default: 1344 sadb_pfkey_error(ah_pfkey_q, mp, EINVAL, 1345 SADB_X_DIAGNOSTIC_UNKNOWN_MSG, ksi->ks_in_serial); 1346 break; 1347 } 1348 } 1349 1350 /* 1351 * Handle case where PF_KEY says it can't find a keysock for one of my 1352 * ACQUIRE messages. 1353 */ 1354 static void 1355 ah_keysock_no_socket(mblk_t *mp) 1356 { 1357 sadb_msg_t *samsg; 1358 keysock_out_err_t *kse = (keysock_out_err_t *)mp->b_rptr; 1359 1360 if (mp->b_cont == NULL) { 1361 freemsg(mp); 1362 return; 1363 } 1364 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 1365 1366 /* 1367 * If keysock can't find any registered, delete the acquire record 1368 * immediately, and handle errors. 1369 */ 1370 if (samsg->sadb_msg_type == SADB_ACQUIRE) { 1371 samsg->sadb_msg_errno = kse->ks_err_errno; 1372 samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg)); 1373 /* 1374 * Use the write-side of the ah_pfkey_q, in case there is 1375 * no ah_sadb.s_ip_q. 1376 */ 1377 sadb_in_acquire(samsg, &ah_sadb, WR(ah_pfkey_q)); 1378 } 1379 1380 freemsg(mp); 1381 } 1382 1383 /* 1384 * First-cut reality check for an inbound PF_KEY message. 1385 */ 1386 static boolean_t 1387 ah_pfkey_reality_failures(mblk_t *mp, keysock_in_t *ksi) 1388 { 1389 int diagnostic; 1390 1391 if (mp->b_cont == NULL) { 1392 freemsg(mp); 1393 return (B_TRUE); 1394 } 1395 1396 if (ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT] != NULL) { 1397 diagnostic = SADB_X_DIAGNOSTIC_EKEY_PRESENT; 1398 goto badmsg; 1399 } 1400 if (ksi->ks_in_extv[SADB_EXT_PROPOSAL] != NULL) { 1401 diagnostic = SADB_X_DIAGNOSTIC_PROP_PRESENT; 1402 goto badmsg; 1403 } 1404 if (ksi->ks_in_extv[SADB_EXT_SUPPORTED_AUTH] != NULL || 1405 ksi->ks_in_extv[SADB_EXT_SUPPORTED_ENCRYPT] != NULL) { 1406 diagnostic = SADB_X_DIAGNOSTIC_SUPP_PRESENT; 1407 goto badmsg; 1408 } 1409 if (ksi->ks_in_srctype == KS_IN_ADDR_MBCAST) { 1410 diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC; 1411 goto badmsg; 1412 } 1413 if (ksi->ks_in_dsttype == KS_IN_ADDR_UNSPEC) { 1414 diagnostic = SADB_X_DIAGNOSTIC_BAD_DST; 1415 goto badmsg; 1416 } 1417 1418 return (B_FALSE); /* False ==> no failures */ 1419 1420 badmsg: 1421 sadb_pfkey_error(ah_pfkey_q, mp, EINVAL, diagnostic, ksi->ks_in_serial); 1422 return (B_TRUE); /* True ==> failures */ 1423 } 1424 1425 /* 1426 * AH module write put routine. 1427 */ 1428 static void 1429 ipsecah_wput(queue_t *q, mblk_t *mp) 1430 { 1431 ipsec_info_t *ii; 1432 keysock_in_t *ksi; 1433 int rc; 1434 struct iocblk *iocp; 1435 1436 ah3dbg(("In ah_wput().\n")); 1437 1438 /* NOTE: Each case must take care of freeing or passing mp. */ 1439 switch (mp->b_datap->db_type) { 1440 case M_CTL: 1441 if ((mp->b_wptr - mp->b_rptr) < sizeof (ipsec_info_t)) { 1442 /* Not big enough message. */ 1443 freemsg(mp); 1444 break; 1445 } 1446 ii = (ipsec_info_t *)mp->b_rptr; 1447 1448 switch (ii->ipsec_info_type) { 1449 case KEYSOCK_OUT_ERR: 1450 ah1dbg(("Got KEYSOCK_OUT_ERR message.\n")); 1451 ah_keysock_no_socket(mp); 1452 break; 1453 case KEYSOCK_IN: 1454 AH_BUMP_STAT(keysock_in); 1455 ah3dbg(("Got KEYSOCK_IN message.\n")); 1456 ksi = (keysock_in_t *)ii; 1457 /* 1458 * Some common reality checks. 1459 */ 1460 1461 if (ah_pfkey_reality_failures(mp, ksi)) 1462 return; 1463 1464 /* 1465 * Use 'q' instead of ah_sadb.s_ip_q, since 1466 * it's the write side already, and it'll go 1467 * down to IP. Use ah_pfkey_q because we 1468 * wouldn't get here if that weren't set, and 1469 * the RD(q) has been done already. 1470 */ 1471 if (ksi->ks_in_srctype == KS_IN_ADDR_UNKNOWN) { 1472 rc = sadb_addrcheck(q, ah_pfkey_q, mp, 1473 ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC], 1474 ksi->ks_in_serial); 1475 if (rc == KS_IN_ADDR_UNKNOWN) 1476 return; 1477 else 1478 ksi->ks_in_srctype = rc; 1479 } 1480 if (ksi->ks_in_dsttype == KS_IN_ADDR_UNKNOWN) { 1481 rc = sadb_addrcheck(q, ah_pfkey_q, mp, 1482 ksi->ks_in_extv[SADB_EXT_ADDRESS_DST], 1483 ksi->ks_in_serial); 1484 if (rc == KS_IN_ADDR_UNKNOWN) 1485 return; 1486 else 1487 ksi->ks_in_dsttype = rc; 1488 } 1489 /* 1490 * XXX Proxy may be a different address family. 1491 */ 1492 if (ksi->ks_in_proxytype == KS_IN_ADDR_UNKNOWN) { 1493 rc = sadb_addrcheck(q, ah_pfkey_q, mp, 1494 ksi->ks_in_extv[SADB_EXT_ADDRESS_PROXY], 1495 ksi->ks_in_serial); 1496 if (rc == KS_IN_ADDR_UNKNOWN) 1497 return; 1498 else 1499 ksi->ks_in_proxytype = rc; 1500 } 1501 ah_parse_pfkey(mp); 1502 break; 1503 case KEYSOCK_HELLO: 1504 sadb_keysock_hello(&ah_pfkey_q, q, mp, 1505 ah_ager, &ah_event, SADB_SATYPE_AH); 1506 break; 1507 default: 1508 ah1dbg(("Got M_CTL from above of 0x%x.\n", 1509 ii->ipsec_info_type)); 1510 freemsg(mp); 1511 break; 1512 } 1513 break; 1514 case M_IOCTL: 1515 iocp = (struct iocblk *)mp->b_rptr; 1516 switch (iocp->ioc_cmd) { 1517 case ND_SET: 1518 case ND_GET: 1519 if (nd_getset(q, ipsecah_g_nd, mp)) { 1520 qreply(q, mp); 1521 return; 1522 } else { 1523 iocp->ioc_error = ENOENT; 1524 } 1525 /* FALLTHRU */ 1526 default: 1527 /* We really don't support any other ioctls, do we? */ 1528 1529 /* Return EINVAL */ 1530 if (iocp->ioc_error != ENOENT) 1531 iocp->ioc_error = EINVAL; 1532 iocp->ioc_count = 0; 1533 mp->b_datap->db_type = M_IOCACK; 1534 qreply(q, mp); 1535 return; 1536 } 1537 default: 1538 ah3dbg(("Got default message, type %d, passing to IP.\n", 1539 mp->b_datap->db_type)); 1540 putnext(q, mp); 1541 } 1542 } 1543 1544 /* 1545 * Updating use times can be tricky business if the ipsa_haspeer flag is 1546 * set. This function is called once in an SA's lifetime. 1547 * 1548 * Caller has to REFRELE "assoc" which is passed in. This function has 1549 * to REFRELE any peer SA that is obtained. 1550 */ 1551 static void 1552 ah_set_usetime(ipsa_t *assoc, boolean_t inbound) 1553 { 1554 ipsa_t *inassoc, *outassoc; 1555 isaf_t *bucket; 1556 sadb_t *sp; 1557 int outhash; 1558 boolean_t isv6; 1559 1560 /* No peer? No problem! */ 1561 if (!assoc->ipsa_haspeer) { 1562 sadb_set_usetime(assoc); 1563 return; 1564 } 1565 1566 /* 1567 * Otherwise, we want to grab both the original assoc and its peer. 1568 * There might be a race for this, but if it's a real race, the times 1569 * will be out-of-synch by at most a second, and since our time 1570 * granularity is a second, this won't be a problem. 1571 * 1572 * If we need tight synchronization on the peer SA, then we need to 1573 * reconsider. 1574 */ 1575 1576 /* Use address family to select IPv6/IPv4 */ 1577 isv6 = (assoc->ipsa_addrfam == AF_INET6); 1578 if (isv6) { 1579 sp = &ah_sadb.s_v6; 1580 } else { 1581 sp = &ah_sadb.s_v4; 1582 ASSERT(assoc->ipsa_addrfam == AF_INET); 1583 } 1584 if (inbound) { 1585 inassoc = assoc; 1586 if (isv6) 1587 outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *) 1588 &inassoc->ipsa_dstaddr)); 1589 else 1590 outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *) 1591 &inassoc->ipsa_dstaddr)); 1592 bucket = &sp->sdb_of[outhash]; 1593 1594 mutex_enter(&bucket->isaf_lock); 1595 outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi, 1596 inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr, 1597 inassoc->ipsa_addrfam); 1598 mutex_exit(&bucket->isaf_lock); 1599 if (outassoc == NULL) { 1600 /* Q: Do we wish to set haspeer == B_FALSE? */ 1601 ah0dbg(("ah_set_usetime: " 1602 "can't find peer for inbound.\n")); 1603 sadb_set_usetime(inassoc); 1604 return; 1605 } 1606 } else { 1607 outassoc = assoc; 1608 bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi); 1609 mutex_enter(&bucket->isaf_lock); 1610 inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi, 1611 outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr, 1612 outassoc->ipsa_addrfam); 1613 mutex_exit(&bucket->isaf_lock); 1614 if (inassoc == NULL) { 1615 /* Q: Do we wish to set haspeer == B_FALSE? */ 1616 ah0dbg(("ah_set_usetime: " 1617 "can't find peer for outbound.\n")); 1618 sadb_set_usetime(outassoc); 1619 return; 1620 } 1621 } 1622 1623 /* Update usetime on both. */ 1624 sadb_set_usetime(inassoc); 1625 sadb_set_usetime(outassoc); 1626 1627 /* 1628 * REFRELE any peer SA. 1629 * 1630 * Because of the multi-line macro nature of IPSA_REFRELE, keep 1631 * them in { }. 1632 */ 1633 if (inbound) { 1634 IPSA_REFRELE(outassoc); 1635 } else { 1636 IPSA_REFRELE(inassoc); 1637 } 1638 } 1639 1640 /* 1641 * Add a number of bytes to what the SA has protected so far. Return 1642 * B_TRUE if the SA can still protect that many bytes. 1643 * 1644 * Caller must REFRELE the passed-in assoc. This function must REFRELE 1645 * any obtained peer SA. 1646 */ 1647 static boolean_t 1648 ah_age_bytes(ipsa_t *assoc, uint64_t bytes, boolean_t inbound) 1649 { 1650 ipsa_t *inassoc, *outassoc; 1651 isaf_t *bucket; 1652 boolean_t inrc, outrc, isv6; 1653 sadb_t *sp; 1654 int outhash; 1655 1656 /* No peer? No problem! */ 1657 if (!assoc->ipsa_haspeer) { 1658 return (sadb_age_bytes(ah_pfkey_q, assoc, bytes, 1659 B_TRUE)); 1660 } 1661 1662 /* 1663 * Otherwise, we want to grab both the original assoc and its peer. 1664 * There might be a race for this, but if it's a real race, two 1665 * expire messages may occur. We limit this by only sending the 1666 * expire message on one of the peers, we'll pick the inbound 1667 * arbitrarily. 1668 * 1669 * If we need tight synchronization on the peer SA, then we need to 1670 * reconsider. 1671 */ 1672 1673 /* Pick v4/v6 bucket based on addrfam. */ 1674 isv6 = (assoc->ipsa_addrfam == AF_INET6); 1675 if (isv6) { 1676 sp = &ah_sadb.s_v6; 1677 } else { 1678 sp = &ah_sadb.s_v4; 1679 ASSERT(assoc->ipsa_addrfam == AF_INET); 1680 } 1681 if (inbound) { 1682 inassoc = assoc; 1683 if (isv6) 1684 outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *) 1685 &inassoc->ipsa_dstaddr)); 1686 else 1687 outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *) 1688 &inassoc->ipsa_dstaddr)); 1689 bucket = &sp->sdb_of[outhash]; 1690 mutex_enter(&bucket->isaf_lock); 1691 outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi, 1692 inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr, 1693 inassoc->ipsa_addrfam); 1694 mutex_exit(&bucket->isaf_lock); 1695 if (outassoc == NULL) { 1696 /* Q: Do we wish to set haspeer == B_FALSE? */ 1697 ah0dbg(("ah_age_bytes: " 1698 "can't find peer for inbound.\n")); 1699 return (sadb_age_bytes(ah_pfkey_q, inassoc, 1700 bytes, B_TRUE)); 1701 } 1702 } else { 1703 outassoc = assoc; 1704 bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi); 1705 mutex_enter(&bucket->isaf_lock); 1706 inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi, 1707 outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr, 1708 outassoc->ipsa_addrfam); 1709 mutex_exit(&bucket->isaf_lock); 1710 if (inassoc == NULL) { 1711 /* Q: Do we wish to set haspeer == B_FALSE? */ 1712 ah0dbg(("ah_age_bytes: " 1713 "can't find peer for outbound.\n")); 1714 return (sadb_age_bytes(ah_pfkey_q, outassoc, 1715 bytes, B_TRUE)); 1716 } 1717 } 1718 1719 inrc = sadb_age_bytes(ah_pfkey_q, inassoc, bytes, B_TRUE); 1720 outrc = sadb_age_bytes(ah_pfkey_q, outassoc, bytes, B_FALSE); 1721 1722 /* 1723 * REFRELE any peer SA. 1724 * 1725 * Because of the multi-line macro nature of IPSA_REFRELE, keep 1726 * them in { }. 1727 */ 1728 if (inbound) { 1729 IPSA_REFRELE(outassoc); 1730 } else { 1731 IPSA_REFRELE(inassoc); 1732 } 1733 1734 return (inrc && outrc); 1735 } 1736 1737 /* 1738 * Perform the really difficult work of inserting the proposed situation. 1739 * Called while holding the algorithm lock. 1740 */ 1741 static void 1742 ah_insert_prop(sadb_prop_t *prop, ipsacq_t *acqrec, uint_t combs) 1743 { 1744 sadb_comb_t *comb = (sadb_comb_t *)(prop + 1); 1745 ipsec_out_t *io; 1746 ipsec_action_t *ap; 1747 ipsec_prot_t *prot; 1748 io = (ipsec_out_t *)acqrec->ipsacq_mp->b_rptr; 1749 1750 ASSERT(MUTEX_HELD(&alg_lock)); 1751 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1752 1753 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 1754 prop->sadb_prop_len = SADB_8TO64(sizeof (sadb_prop_t)); 1755 *(uint32_t *)(&prop->sadb_prop_replay) = 0; /* Quick zero-out! */ 1756 1757 prop->sadb_prop_replay = ipsecah_replay_size; 1758 1759 /* 1760 * Based upon algorithm properties, and what-not, prioritize a 1761 * proposal, based on the ordering of the ah algorithms in the 1762 * alternatives presented in the policy rule passed down 1763 * through the ipsec_out_t and attached to the acquire record. 1764 */ 1765 1766 for (ap = acqrec->ipsacq_act; ap != NULL; 1767 ap = ap->ipa_next) { 1768 ipsec_alginfo_t *aalg; 1769 1770 if ((ap->ipa_act.ipa_type != IPSEC_POLICY_APPLY) || 1771 (!ap->ipa_act.ipa_apply.ipp_use_ah)) 1772 continue; 1773 1774 prot = &ap->ipa_act.ipa_apply; 1775 1776 ASSERT(prot->ipp_auth_alg > 0); 1777 1778 aalg = ipsec_alglists[IPSEC_ALG_AUTH][prot->ipp_auth_alg]; 1779 if (aalg == NULL || !ALG_VALID(aalg)) 1780 continue; 1781 1782 /* XXX check aalg for duplicates??.. */ 1783 1784 comb->sadb_comb_flags = 0; 1785 comb->sadb_comb_reserved = 0; 1786 comb->sadb_comb_encrypt = 0; 1787 comb->sadb_comb_encrypt_minbits = 0; 1788 comb->sadb_comb_encrypt_maxbits = 0; 1789 1790 comb->sadb_comb_auth = aalg->alg_id; 1791 comb->sadb_comb_auth_minbits = prot->ipp_ah_minbits; 1792 comb->sadb_comb_auth_maxbits = prot->ipp_ah_maxbits; 1793 1794 /* 1795 * The following may be based on algorithm 1796 * properties, but in the meantime, we just pick 1797 * some good, sensible numbers. Key mgmt. can 1798 * (and perhaps should) be the place to finalize 1799 * such decisions. 1800 */ 1801 1802 /* 1803 * No limits on allocations, since we really don't 1804 * support that concept currently. 1805 */ 1806 comb->sadb_comb_soft_allocations = 0; 1807 comb->sadb_comb_hard_allocations = 0; 1808 1809 /* 1810 * These may want to come from policy rule.. 1811 */ 1812 comb->sadb_comb_soft_bytes = ipsecah_default_soft_bytes; 1813 comb->sadb_comb_hard_bytes = ipsecah_default_hard_bytes; 1814 comb->sadb_comb_soft_addtime = ipsecah_default_soft_addtime; 1815 comb->sadb_comb_hard_addtime = ipsecah_default_hard_addtime; 1816 comb->sadb_comb_soft_usetime = ipsecah_default_soft_usetime; 1817 comb->sadb_comb_hard_usetime = ipsecah_default_hard_usetime; 1818 1819 prop->sadb_prop_len += SADB_8TO64(sizeof (*comb)); 1820 if (--combs == 0) 1821 return; /* out of space.. */ 1822 comb++; 1823 } 1824 } 1825 1826 /* 1827 * Prepare and actually send the SADB_ACQUIRE message to PF_KEY. 1828 */ 1829 static void 1830 ah_send_acquire(ipsacq_t *acqrec, mblk_t *extended) 1831 { 1832 mblk_t *pfkeymp, *msgmp; 1833 uint_t allocsize, combs; 1834 sadb_msg_t *samsg; 1835 sadb_prop_t *prop; 1836 uint8_t *cur, *end; 1837 1838 AH_BUMP_STAT(acquire_requests); 1839 1840 ASSERT(MUTEX_HELD(&acqrec->ipsacq_lock)); 1841 1842 pfkeymp = sadb_keysock_out(0); 1843 if (pfkeymp == NULL) { 1844 ah1dbg(("ah_send_acquire: 1st allocb() failed.\n")); 1845 /* Just bail. */ 1846 goto done; 1847 } 1848 1849 /* 1850 * First, allocate a basic ACQUIRE message. Beyond that, 1851 * you need to extract certificate info from 1852 */ 1853 allocsize = sizeof (sadb_msg_t) + sizeof (sadb_address_t) + 1854 sizeof (sadb_address_t) + sizeof (sadb_prop_t); 1855 1856 switch (acqrec->ipsacq_addrfam) { 1857 case AF_INET: 1858 allocsize += 2 * sizeof (struct sockaddr_in); 1859 break; 1860 case AF_INET6: 1861 allocsize += 2 * sizeof (struct sockaddr_in6); 1862 break; 1863 } 1864 1865 mutex_enter(&alg_lock); 1866 1867 combs = ipsec_nalgs[IPSEC_ALG_AUTH]; 1868 1869 allocsize += combs * sizeof (sadb_comb_t); 1870 1871 /* 1872 * XXX If there are: 1873 * certificate IDs 1874 * proxy address 1875 * <Others> 1876 * add additional allocation size. 1877 */ 1878 1879 msgmp = allocb(allocsize, BPRI_HI); 1880 if (msgmp == NULL) { 1881 ah0dbg(("ah_send_acquire: 2nd allocb() failed.\n")); 1882 /* Just bail. */ 1883 freemsg(pfkeymp); 1884 pfkeymp = NULL; 1885 goto done; 1886 } 1887 1888 cur = msgmp->b_rptr; 1889 end = cur + allocsize; 1890 samsg = (sadb_msg_t *)cur; 1891 pfkeymp->b_cont = msgmp; 1892 1893 /* Set up ACQUIRE. */ 1894 cur = sadb_setup_acquire(cur, end, acqrec); 1895 if (cur == NULL) { 1896 ah0dbg(("sadb_setup_acquire failed.\n")); 1897 /* Just bail. */ 1898 freemsg(pfkeymp); 1899 pfkeymp = NULL; 1900 goto done; 1901 } 1902 samsg->sadb_msg_satype = SADB_SATYPE_AH; 1903 1904 /* XXX Insert proxy address information here. */ 1905 1906 /* XXX Insert identity information here. */ 1907 1908 /* XXXMLS Insert sensitivity information here. */ 1909 1910 /* Insert proposal here. */ 1911 1912 prop = (sadb_prop_t *)(((uint64_t *)samsg) + samsg->sadb_msg_len); 1913 ah_insert_prop(prop, acqrec, combs); 1914 samsg->sadb_msg_len += prop->sadb_prop_len; 1915 msgmp->b_wptr += SADB_64TO8(samsg->sadb_msg_len); 1916 1917 done: 1918 mutex_exit(&alg_lock); 1919 1920 /* 1921 * Must mutex_exit() before sending PF_KEY message up, in 1922 * order to avoid recursive mutex_enter() if there are no registered 1923 * listeners. 1924 * 1925 * Once I've sent the message, I'm cool anyway. 1926 */ 1927 mutex_exit(&acqrec->ipsacq_lock); 1928 if (ah_pfkey_q != NULL && pfkeymp != NULL) { 1929 if (extended != NULL) { 1930 putnext(ah_pfkey_q, extended); 1931 } 1932 putnext(ah_pfkey_q, pfkeymp); 1933 return; 1934 } 1935 /* NOTE: freemsg() works for extended == NULL. */ 1936 freemsg(extended); 1937 freemsg(pfkeymp); 1938 } 1939 1940 /* 1941 * Handle the SADB_GETSPI message. Create a larval SA. 1942 */ 1943 static void 1944 ah_getspi(mblk_t *mp, keysock_in_t *ksi) 1945 { 1946 ipsa_t *newbie, *target; 1947 isaf_t *outbound, *inbound; 1948 int rc, diagnostic; 1949 sadb_sa_t *assoc; 1950 keysock_out_t *kso; 1951 uint32_t newspi; 1952 1953 /* 1954 * Randomly generate a proposed SPI value. 1955 */ 1956 (void) random_get_pseudo_bytes((uint8_t *)&newspi, sizeof (uint32_t)); 1957 newbie = sadb_getspi(ksi, newspi, &diagnostic); 1958 1959 if (newbie == NULL) { 1960 sadb_pfkey_error(ah_pfkey_q, mp, ENOMEM, diagnostic, 1961 ksi->ks_in_serial); 1962 return; 1963 } else if (newbie == (ipsa_t *)-1) { 1964 sadb_pfkey_error(ah_pfkey_q, mp, EINVAL, diagnostic, 1965 ksi->ks_in_serial); 1966 return; 1967 } 1968 1969 /* 1970 * XXX - We may randomly collide. We really should recover from this. 1971 * Unfortunately, that could require spending way-too-much-time 1972 * in here. For now, let the user retry. 1973 */ 1974 1975 if (newbie->ipsa_addrfam == AF_INET6) { 1976 outbound = OUTBOUND_BUCKET_V6(&ah_sadb.s_v6, 1977 *(uint32_t *)(newbie->ipsa_dstaddr)); 1978 inbound = INBOUND_BUCKET(&ah_sadb.s_v6, newbie->ipsa_spi); 1979 } else { 1980 outbound = OUTBOUND_BUCKET_V4(&ah_sadb.s_v4, 1981 *(uint32_t *)(newbie->ipsa_dstaddr)); 1982 inbound = INBOUND_BUCKET(&ah_sadb.s_v4, newbie->ipsa_spi); 1983 } 1984 1985 mutex_enter(&outbound->isaf_lock); 1986 mutex_enter(&inbound->isaf_lock); 1987 1988 /* 1989 * Check for collisions (i.e. did sadb_getspi() return with something 1990 * that already exists?). 1991 * 1992 * Try outbound first. Even though SADB_GETSPI is traditionally 1993 * for inbound SAs, you never know what a user might do. 1994 */ 1995 target = ipsec_getassocbyspi(outbound, newbie->ipsa_spi, 1996 newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, newbie->ipsa_addrfam); 1997 if (target == NULL) { 1998 target = ipsec_getassocbyspi(inbound, newbie->ipsa_spi, 1999 newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, 2000 newbie->ipsa_addrfam); 2001 } 2002 2003 /* 2004 * I don't have collisions elsewhere! 2005 * (Nor will I because I'm still holding inbound/outbound locks.) 2006 */ 2007 2008 if (target != NULL) { 2009 rc = EEXIST; 2010 IPSA_REFRELE(target); 2011 } else { 2012 /* 2013 * sadb_insertassoc() also checks for collisions, so 2014 * if there's a colliding larval entry, rc will be set 2015 * to EEXIST. 2016 */ 2017 rc = sadb_insertassoc(newbie, inbound); 2018 (void) drv_getparm(TIME, &newbie->ipsa_hardexpiretime); 2019 newbie->ipsa_hardexpiretime += ipsecah_larval_timeout; 2020 } 2021 2022 /* 2023 * Can exit outbound mutex. Hold inbound until we're done with 2024 * newbie. 2025 */ 2026 mutex_exit(&outbound->isaf_lock); 2027 2028 if (rc != 0) { 2029 mutex_exit(&inbound->isaf_lock); 2030 IPSA_REFRELE(newbie); 2031 sadb_pfkey_error(ah_pfkey_q, mp, rc, SADB_X_DIAGNOSTIC_NONE, 2032 ksi->ks_in_serial); 2033 return; 2034 } 2035 2036 /* Can write here because I'm still holding the bucket lock. */ 2037 newbie->ipsa_type = SADB_SATYPE_AH; 2038 2039 /* 2040 * Construct successful return message. We have one thing going 2041 * for us in PF_KEY v2. That's the fact that 2042 * sizeof (sadb_spirange_t) == sizeof (sadb_sa_t) 2043 */ 2044 assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE]; 2045 assoc->sadb_sa_exttype = SADB_EXT_SA; 2046 assoc->sadb_sa_spi = newbie->ipsa_spi; 2047 *((uint64_t *)(&assoc->sadb_sa_replay)) = 0; 2048 mutex_exit(&inbound->isaf_lock); 2049 2050 /* Convert KEYSOCK_IN to KEYSOCK_OUT. */ 2051 kso = (keysock_out_t *)ksi; 2052 kso->ks_out_len = sizeof (*kso); 2053 kso->ks_out_serial = ksi->ks_in_serial; 2054 kso->ks_out_type = KEYSOCK_OUT; 2055 2056 /* 2057 * Can safely putnext() to ah_pfkey_q, because this is a turnaround 2058 * from the ah_pfkey_q. 2059 */ 2060 putnext(ah_pfkey_q, mp); 2061 } 2062 2063 /* 2064 * IPv6 sends up the ICMP errors for validation and the removal of the AH 2065 * header. 2066 */ 2067 static ipsec_status_t 2068 ah_icmp_error_v6(mblk_t *ipsec_mp) 2069 { 2070 mblk_t *mp; 2071 ip6_t *ip6h, *oip6h; 2072 uint16_t hdr_length, ah_length; 2073 uint8_t *nexthdrp; 2074 ah_t *ah; 2075 icmp6_t *icmp6; 2076 isaf_t *isaf; 2077 ipsa_t *assoc; 2078 uint8_t *post_ah_ptr; 2079 2080 mp = ipsec_mp->b_cont; 2081 ASSERT(mp->b_datap->db_type == M_CTL); 2082 2083 /* 2084 * Change the type to M_DATA till we finish pullups. 2085 */ 2086 mp->b_datap->db_type = M_DATA; 2087 2088 /* 2089 * Eat the cost of a pullupmsg() for now. It makes the rest of this 2090 * code far less convoluted. 2091 */ 2092 if (!pullupmsg(mp, -1) || 2093 !ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, &hdr_length, 2094 &nexthdrp) || 2095 mp->b_rptr + hdr_length + sizeof (icmp6_t) + sizeof (ip6_t) + 2096 sizeof (ah_t) > mp->b_wptr) { 2097 IP_AH_BUMP_STAT(in_discards); 2098 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_nomem, 2099 &ah_dropper); 2100 return (IPSEC_STATUS_FAILED); 2101 } 2102 2103 oip6h = (ip6_t *)mp->b_rptr; 2104 icmp6 = (icmp6_t *)((uint8_t *)oip6h + hdr_length); 2105 ip6h = (ip6_t *)(icmp6 + 1); 2106 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp)) { 2107 IP_AH_BUMP_STAT(in_discards); 2108 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, 2109 &ipdrops_ah_bad_v6_hdrs, &ah_dropper); 2110 return (IPSEC_STATUS_FAILED); 2111 } 2112 ah = (ah_t *)((uint8_t *)ip6h + hdr_length); 2113 2114 isaf = OUTBOUND_BUCKET_V6(&ah_sadb.s_v6, ip6h->ip6_dst); 2115 mutex_enter(&isaf->isaf_lock); 2116 assoc = ipsec_getassocbyspi(isaf, ah->ah_spi, 2117 (uint32_t *)&ip6h->ip6_src, (uint32_t *)&ip6h->ip6_dst, AF_INET6); 2118 mutex_exit(&isaf->isaf_lock); 2119 2120 if (assoc == NULL) { 2121 IP_AH_BUMP_STAT(lookup_failure); 2122 IP_AH_BUMP_STAT(in_discards); 2123 if (ipsecah_log_unknown_spi) { 2124 ipsec_assocfailure(info.mi_idnum, 0, 0, 2125 SL_CONSOLE | SL_WARN | SL_ERROR, 2126 "Bad ICMP message - No association for the " 2127 "attached AH header whose spi is 0x%x, " 2128 "sender is 0x%x\n", 2129 ah->ah_spi, &oip6h->ip6_src, AF_INET6); 2130 } 2131 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa, 2132 &ah_dropper); 2133 return (IPSEC_STATUS_FAILED); 2134 } 2135 2136 IPSA_REFRELE(assoc); 2137 2138 /* 2139 * There seems to be a valid association. If there is enough of AH 2140 * header remove it, otherwise bail. One could check whether it has 2141 * complete AH header plus 8 bytes but it does not make sense if an 2142 * icmp error is returned for ICMP messages e.g ICMP time exceeded, 2143 * that are being sent up. Let the caller figure out. 2144 * 2145 * NOTE: ah_length is the number of 32 bit words minus 2. 2146 */ 2147 ah_length = (ah->ah_length << 2) + 8; 2148 post_ah_ptr = (uint8_t *)ah + ah_length; 2149 2150 if (post_ah_ptr > mp->b_wptr) { 2151 IP_AH_BUMP_STAT(in_discards); 2152 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, 2153 &ipdrops_ah_bad_length, &ah_dropper); 2154 return (IPSEC_STATUS_FAILED); 2155 } 2156 2157 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - ah_length); 2158 *nexthdrp = ah->ah_nexthdr; 2159 ovbcopy(post_ah_ptr, ah, 2160 (size_t)((uintptr_t)mp->b_wptr - (uintptr_t)post_ah_ptr)); 2161 mp->b_wptr -= ah_length; 2162 /* Rewhack to be an ICMP error. */ 2163 mp->b_datap->db_type = M_CTL; 2164 2165 return (IPSEC_STATUS_SUCCESS); 2166 } 2167 2168 /* 2169 * IP sends up the ICMP errors for validation and the removal of 2170 * the AH header. 2171 */ 2172 static ipsec_status_t 2173 ah_icmp_error_v4(mblk_t *ipsec_mp) 2174 { 2175 mblk_t *mp; 2176 mblk_t *mp1; 2177 icmph_t *icmph; 2178 int iph_hdr_length; 2179 int hdr_length; 2180 isaf_t *hptr; 2181 ipsa_t *assoc; 2182 int ah_length; 2183 ipha_t *ipha; 2184 ipha_t *oipha; 2185 ah_t *ah; 2186 uint32_t length; 2187 int alloc_size; 2188 uint8_t nexthdr; 2189 2190 mp = ipsec_mp->b_cont; 2191 ASSERT(mp->b_datap->db_type == M_CTL); 2192 2193 /* 2194 * Change the type to M_DATA till we finish pullups. 2195 */ 2196 mp->b_datap->db_type = M_DATA; 2197 2198 oipha = ipha = (ipha_t *)mp->b_rptr; 2199 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2200 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2201 2202 ipha = (ipha_t *)&icmph[1]; 2203 hdr_length = IPH_HDR_LENGTH(ipha); 2204 2205 /* 2206 * See if we have enough to locate the SPI 2207 */ 2208 if ((uchar_t *)ipha + hdr_length + 8 > mp->b_wptr) { 2209 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 8 - 2210 mp->b_rptr)) { 2211 ipsec_rl_strlog(info.mi_idnum, 0, 0, 2212 SL_WARN | SL_ERROR, 2213 "ICMP error: Small AH header\n"); 2214 IP_AH_BUMP_STAT(in_discards); 2215 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, 2216 &ipdrops_ah_bad_length, &ah_dropper); 2217 return (IPSEC_STATUS_FAILED); 2218 } 2219 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2220 ipha = (ipha_t *)&icmph[1]; 2221 } 2222 2223 ah = (ah_t *)((uint8_t *)ipha + hdr_length); 2224 nexthdr = ah->ah_nexthdr; 2225 2226 hptr = OUTBOUND_BUCKET_V4(&ah_sadb.s_v4, ipha->ipha_dst); 2227 mutex_enter(&hptr->isaf_lock); 2228 assoc = ipsec_getassocbyspi(hptr, ah->ah_spi, 2229 (uint32_t *)&ipha->ipha_src, (uint32_t *)&ipha->ipha_dst, AF_INET); 2230 mutex_exit(&hptr->isaf_lock); 2231 2232 if (assoc == NULL) { 2233 IP_AH_BUMP_STAT(lookup_failure); 2234 IP_AH_BUMP_STAT(in_discards); 2235 if (ipsecah_log_unknown_spi) { 2236 ipsec_assocfailure(info.mi_idnum, 0, 0, 2237 SL_CONSOLE | SL_WARN | SL_ERROR, 2238 "Bad ICMP message - No association for the " 2239 "attached AH header whose spi is 0x%x, " 2240 "sender is 0x%x\n", 2241 ah->ah_spi, &oipha->ipha_src, AF_INET); 2242 } 2243 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa, 2244 &ah_dropper); 2245 return (IPSEC_STATUS_FAILED); 2246 } 2247 2248 IPSA_REFRELE(assoc); 2249 /* 2250 * There seems to be a valid association. If there 2251 * is enough of AH header remove it, otherwise remove 2252 * as much as possible and send it back. One could check 2253 * whether it has complete AH header plus 8 bytes but it 2254 * does not make sense if an icmp error is returned for 2255 * ICMP messages e.g ICMP time exceeded, that are being 2256 * sent up. Let the caller figure out. 2257 * 2258 * NOTE: ah_length is the number of 32 bit words minus 2. 2259 */ 2260 ah_length = (ah->ah_length << 2) + 8; 2261 2262 if ((uchar_t *)ipha + hdr_length + ah_length > mp->b_wptr) { 2263 if (mp->b_cont == NULL) { 2264 /* 2265 * There is nothing to pullup. Just remove as 2266 * much as possible. This is a common case for 2267 * IPV4. 2268 */ 2269 ah_length = (mp->b_wptr - ((uchar_t *)ipha + 2270 hdr_length)); 2271 goto done; 2272 } 2273 /* Pullup the full ah header */ 2274 if (!pullupmsg(mp, (uchar_t *)ah + ah_length - mp->b_rptr)) { 2275 /* 2276 * pullupmsg could have failed if there was not 2277 * enough to pullup or memory allocation failed. 2278 * We tried hard, give up now. 2279 */ 2280 IP_AH_BUMP_STAT(in_discards); 2281 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, 2282 &ipdrops_ah_nomem, &ah_dropper); 2283 return (IPSEC_STATUS_FAILED); 2284 } 2285 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2286 ipha = (ipha_t *)&icmph[1]; 2287 } 2288 done: 2289 /* 2290 * Remove the AH header and change the protocol. 2291 * Don't update the spi fields in the ipsec_in 2292 * message as we are called just to validate the 2293 * message attached to the ICMP message. 2294 * 2295 * If we never pulled up since all of the message 2296 * is in one single mblk, we can't remove the AH header 2297 * by just setting the b_wptr to the beginning of the 2298 * AH header. We need to allocate a mblk that can hold 2299 * up until the inner IP header and copy them. 2300 */ 2301 alloc_size = iph_hdr_length + sizeof (icmph_t) + hdr_length; 2302 2303 if ((mp1 = allocb(alloc_size, BPRI_LO)) == NULL) { 2304 IP_AH_BUMP_STAT(in_discards); 2305 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_nomem, 2306 &ah_dropper); 2307 return (IPSEC_STATUS_FAILED); 2308 } 2309 /* ICMP errors are M_CTL messages */ 2310 mp1->b_datap->db_type = M_CTL; 2311 ipsec_mp->b_cont = mp1; 2312 bcopy(mp->b_rptr, mp1->b_rptr, alloc_size); 2313 mp1->b_wptr += alloc_size; 2314 2315 /* 2316 * Skip whatever we have copied and as much of AH header 2317 * possible. If we still have something left in the original 2318 * message, tag on. 2319 */ 2320 mp->b_rptr = (uchar_t *)ipha + hdr_length + ah_length; 2321 2322 if (mp->b_rptr != mp->b_wptr) { 2323 mp1->b_cont = mp; 2324 } else { 2325 if (mp->b_cont != NULL) 2326 mp1->b_cont = mp->b_cont; 2327 freeb(mp); 2328 } 2329 2330 ipha = (ipha_t *)(mp1->b_rptr + iph_hdr_length + sizeof (icmph_t)); 2331 ipha->ipha_protocol = nexthdr; 2332 length = ntohs(ipha->ipha_length); 2333 length -= ah_length; 2334 ipha->ipha_length = htons((uint16_t)length); 2335 ipha->ipha_hdr_checksum = 0; 2336 ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha); 2337 2338 return (IPSEC_STATUS_SUCCESS); 2339 } 2340 2341 /* 2342 * IP calls this to validate the ICMP errors that 2343 * we got from the network. 2344 */ 2345 ipsec_status_t 2346 ipsecah_icmp_error(mblk_t *mp) 2347 { 2348 ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr; 2349 2350 if (ii->ipsec_in_v4) 2351 return (ah_icmp_error_v4(mp)); 2352 else 2353 return (ah_icmp_error_v6(mp)); 2354 } 2355 2356 static int 2357 ah_fix_tlv_options_v6(uint8_t *oi_opt, uint8_t *pi_opt, uint_t ehdrlen, 2358 uint8_t hdr_type, boolean_t copy_always) 2359 { 2360 uint8_t opt_type; 2361 uint_t optlen; 2362 2363 ASSERT(hdr_type == IPPROTO_DSTOPTS || hdr_type == IPPROTO_HOPOPTS); 2364 2365 /* 2366 * Copy the next header and hdr ext. len of the HOP-by-HOP 2367 * and Destination option. 2368 */ 2369 *pi_opt++ = *oi_opt++; 2370 *pi_opt++ = *oi_opt++; 2371 ehdrlen -= 2; 2372 2373 /* 2374 * Now handle all the TLV encoded options. 2375 */ 2376 while (ehdrlen != 0) { 2377 opt_type = *oi_opt; 2378 2379 if (opt_type == IP6OPT_PAD1) { 2380 optlen = 1; 2381 } else { 2382 if (ehdrlen < 2) 2383 goto bad_opt; 2384 optlen = 2 + oi_opt[1]; 2385 if (optlen > ehdrlen) 2386 goto bad_opt; 2387 } 2388 if (copy_always || !(opt_type & IP6OPT_MUTABLE)) { 2389 bcopy(oi_opt, pi_opt, optlen); 2390 } else { 2391 if (optlen == 1) { 2392 *pi_opt = 0; 2393 } else { 2394 /* 2395 * Copy the type and data length fields. 2396 * Zero the option data by skipping 2397 * option type and option data len 2398 * fields. 2399 */ 2400 *pi_opt = *oi_opt; 2401 *(pi_opt + 1) = *(oi_opt + 1); 2402 bzero(pi_opt + 2, optlen - 2); 2403 } 2404 } 2405 ehdrlen -= optlen; 2406 oi_opt += optlen; 2407 pi_opt += optlen; 2408 } 2409 return (0); 2410 bad_opt: 2411 return (-1); 2412 } 2413 2414 /* 2415 * Construct a pseudo header for AH, processing all the options. 2416 * 2417 * oip6h is the IPv6 header of the incoming or outgoing packet. 2418 * ip6h is the pointer to the pseudo headers IPV6 header. All 2419 * the space needed for the options have been allocated including 2420 * the AH header. 2421 * 2422 * If copy_always is set, all the options that appear before AH are copied 2423 * blindly without checking for IP6OPT_MUTABLE. This is used by 2424 * ah_auth_out_done(). Please refer to that function for details. 2425 * 2426 * NOTE : 2427 * 2428 * * AH header is never copied in this function even if copy_always 2429 * is set. It just returns the ah_offset - offset of the AH header 2430 * and the caller needs to do the copying. This is done so that we 2431 * don't have pass extra arguments e.g. SA etc. and also, 2432 * it is not needed when ah_auth_out_done is calling this function. 2433 */ 2434 static uint_t 2435 ah_fix_phdr_v6(ip6_t *ip6h, ip6_t *oip6h, boolean_t outbound, 2436 boolean_t copy_always) 2437 { 2438 uint8_t *oi_opt; 2439 uint8_t *pi_opt; 2440 uint8_t nexthdr; 2441 uint8_t *prev_nexthdr; 2442 ip6_hbh_t *hbhhdr; 2443 ip6_dest_t *dsthdr = NULL; 2444 ip6_rthdr0_t *rthdr; 2445 int ehdrlen; 2446 ah_t *ah; 2447 int ret; 2448 2449 /* 2450 * In the outbound case for source route, ULP has already moved 2451 * the first hop, which is now in ip6_dst. We need to re-arrange 2452 * the header to make it look like how it would appear in the 2453 * receiver i.e 2454 * 2455 * Because of ip_massage_options_v6 the header looks like 2456 * this : 2457 * 2458 * ip6_src = S, ip6_dst = I1. followed by I2,I3,D. 2459 * 2460 * When it reaches the receiver, it would look like 2461 * 2462 * ip6_src = S, ip6_dst = D. followed by I1,I2,I3. 2463 * 2464 * NOTE : We assume that there are no problems with the options 2465 * as IP should have already checked this. 2466 */ 2467 2468 oi_opt = (uchar_t *)&oip6h[1]; 2469 pi_opt = (uchar_t *)&ip6h[1]; 2470 2471 /* 2472 * We set the prev_nexthdr properly in the pseudo header. 2473 * After we finish authentication and come back from the 2474 * algorithm module, pseudo header will become the real 2475 * IP header. 2476 */ 2477 prev_nexthdr = (uint8_t *)&ip6h->ip6_nxt; 2478 nexthdr = oip6h->ip6_nxt; 2479 /* Assume IP has already stripped it */ 2480 ASSERT(nexthdr != IPPROTO_FRAGMENT && nexthdr != IPPROTO_RAW); 2481 ah = NULL; 2482 dsthdr = NULL; 2483 for (;;) { 2484 switch (nexthdr) { 2485 case IPPROTO_HOPOPTS: 2486 hbhhdr = (ip6_hbh_t *)oi_opt; 2487 nexthdr = hbhhdr->ip6h_nxt; 2488 ehdrlen = 8 * (hbhhdr->ip6h_len + 1); 2489 ret = ah_fix_tlv_options_v6(oi_opt, pi_opt, ehdrlen, 2490 IPPROTO_HOPOPTS, copy_always); 2491 /* 2492 * Return a zero offset indicating error if there 2493 * was error. 2494 */ 2495 if (ret == -1) 2496 return (0); 2497 hbhhdr = (ip6_hbh_t *)pi_opt; 2498 prev_nexthdr = (uint8_t *)&hbhhdr->ip6h_nxt; 2499 break; 2500 case IPPROTO_ROUTING: 2501 rthdr = (ip6_rthdr0_t *)oi_opt; 2502 nexthdr = rthdr->ip6r0_nxt; 2503 ehdrlen = 8 * (rthdr->ip6r0_len + 1); 2504 if (!copy_always && outbound) { 2505 int i, left; 2506 ip6_rthdr0_t *prthdr; 2507 in6_addr_t *ap, *pap; 2508 2509 left = rthdr->ip6r0_segleft; 2510 prthdr = (ip6_rthdr0_t *)pi_opt; 2511 pap = (in6_addr_t *)(prthdr + 1); 2512 ap = (in6_addr_t *)(rthdr + 1); 2513 /* 2514 * First eight bytes except seg_left 2515 * does not change en route. 2516 */ 2517 bcopy(oi_opt, pi_opt, 8); 2518 prthdr->ip6r0_segleft = 0; 2519 /* 2520 * First address has been moved to 2521 * the destination address of the 2522 * ip header by ip_massage_options_v6. 2523 * And the real destination address is 2524 * in the last address part of the 2525 * option. 2526 */ 2527 *pap = oip6h->ip6_dst; 2528 for (i = 1; i < left - 1; i++) 2529 pap[i] = ap[i - 1]; 2530 ip6h->ip6_dst = *(ap + left - 1); 2531 } else { 2532 bcopy(oi_opt, pi_opt, ehdrlen); 2533 } 2534 rthdr = (ip6_rthdr0_t *)pi_opt; 2535 prev_nexthdr = (uint8_t *)&rthdr->ip6r0_nxt; 2536 break; 2537 case IPPROTO_DSTOPTS: 2538 /* 2539 * Destination options are tricky. If there is 2540 * a terminal (e.g. non-IPv6-extension) header 2541 * following the destination options, don't 2542 * reset prev_nexthdr or advance the AH insertion 2543 * point and just treat this as a terminal header. 2544 * 2545 * If this is an inbound packet, just deal with 2546 * it as is. 2547 */ 2548 dsthdr = (ip6_dest_t *)oi_opt; 2549 /* 2550 * XXX I hope common-subexpression elimination 2551 * saves us the double-evaluate. 2552 */ 2553 if (outbound && dsthdr->ip6d_nxt != IPPROTO_ROUTING && 2554 dsthdr->ip6d_nxt != IPPROTO_HOPOPTS) 2555 goto terminal_hdr; 2556 nexthdr = dsthdr->ip6d_nxt; 2557 ehdrlen = 8 * (dsthdr->ip6d_len + 1); 2558 ret = ah_fix_tlv_options_v6(oi_opt, pi_opt, ehdrlen, 2559 IPPROTO_DSTOPTS, copy_always); 2560 /* 2561 * Return a zero offset indicating error if there 2562 * was error. 2563 */ 2564 if (ret == -1) 2565 return (0); 2566 break; 2567 case IPPROTO_AH: 2568 /* 2569 * Be conservative in what you send. We shouldn't 2570 * see two same-scoped AH's in one packet. 2571 * (Inner-IP-scoped AH will be hit by terminal 2572 * header of IP or IPv6.) 2573 */ 2574 ASSERT(!outbound); 2575 return ((uint_t)(pi_opt - (uint8_t *)ip6h)); 2576 default: 2577 ASSERT(outbound); 2578 terminal_hdr: 2579 *prev_nexthdr = IPPROTO_AH; 2580 ah = (ah_t *)pi_opt; 2581 ah->ah_nexthdr = nexthdr; 2582 return ((uint_t)(pi_opt - (uint8_t *)ip6h)); 2583 } 2584 pi_opt += ehdrlen; 2585 oi_opt += ehdrlen; 2586 } 2587 /* NOTREACHED */ 2588 } 2589 2590 static boolean_t 2591 ah_finish_up(ah_t *phdr_ah, ah_t *inbound_ah, ipsa_t *assoc, 2592 int ah_data_sz, int ah_align_sz) 2593 { 2594 int i; 2595 2596 /* 2597 * Padding : 2598 * 2599 * 1) Authentication data may have to be padded 2600 * before ICV calculation if ICV is not a multiple 2601 * of 64 bits. This padding is arbitrary and transmitted 2602 * with the packet at the end of the authentication data. 2603 * Payload length should include the padding bytes. 2604 * 2605 * 2) Explicit padding of the whole datagram may be 2606 * required by the algorithm which need not be 2607 * transmitted. It is assumed that this will be taken 2608 * care by the algorithm module. 2609 */ 2610 bzero(phdr_ah + 1, ah_data_sz); /* Zero out ICV for pseudo-hdr. */ 2611 2612 if (inbound_ah == NULL) { 2613 /* Outbound AH datagram. */ 2614 2615 phdr_ah->ah_length = (ah_align_sz >> 2) + 1; 2616 phdr_ah->ah_reserved = 0; 2617 phdr_ah->ah_spi = assoc->ipsa_spi; 2618 2619 phdr_ah->ah_replay = 2620 htonl(atomic_add_32_nv(&assoc->ipsa_replay, 1)); 2621 if (phdr_ah->ah_replay == 0 && assoc->ipsa_replay_wsize != 0) { 2622 /* 2623 * XXX We have replay counter wrapping. We probably 2624 * want to nuke this SA (and its peer). 2625 */ 2626 ipsec_assocfailure(info.mi_idnum, 0, 0, 2627 SL_ERROR | SL_CONSOLE | SL_WARN, 2628 "Outbound AH SA (0x%x), dst %s has wrapped " 2629 "sequence.\n", phdr_ah->ah_spi, 2630 assoc->ipsa_dstaddr, assoc->ipsa_addrfam); 2631 2632 sadb_replay_delete(assoc); 2633 /* Caller will free phdr_mp and return NULL. */ 2634 return (B_FALSE); 2635 } 2636 2637 if (ah_data_sz != ah_align_sz) { 2638 uchar_t *pad = ((uchar_t *)phdr_ah + sizeof (ah_t) + 2639 ah_data_sz); 2640 2641 for (i = 0; i < (ah_align_sz - ah_data_sz); i++) { 2642 pad[i] = (uchar_t)i; /* Fill the padding */ 2643 } 2644 } 2645 } else { 2646 /* Inbound AH datagram. */ 2647 phdr_ah->ah_nexthdr = inbound_ah->ah_nexthdr; 2648 phdr_ah->ah_length = inbound_ah->ah_length; 2649 phdr_ah->ah_reserved = 0; 2650 ASSERT(inbound_ah->ah_spi == assoc->ipsa_spi); 2651 phdr_ah->ah_spi = inbound_ah->ah_spi; 2652 phdr_ah->ah_replay = inbound_ah->ah_replay; 2653 2654 if (ah_data_sz != ah_align_sz) { 2655 uchar_t *opad = ((uchar_t *)inbound_ah + sizeof (ah_t) + 2656 ah_data_sz); 2657 uchar_t *pad = ((uchar_t *)phdr_ah + sizeof (ah_t) + 2658 ah_data_sz); 2659 2660 for (i = 0; i < (ah_align_sz - ah_data_sz); i++) { 2661 pad[i] = opad[i]; /* Copy the padding */ 2662 } 2663 } 2664 } 2665 2666 return (B_TRUE); 2667 } 2668 2669 /* 2670 * Called upon failing the inbound ICV check. The message passed as 2671 * argument is freed. 2672 */ 2673 static void 2674 ah_log_bad_auth(mblk_t *ipsec_in) 2675 { 2676 mblk_t *mp = ipsec_in->b_cont->b_cont; 2677 ipsec_in_t *ii = (ipsec_in_t *)ipsec_in->b_rptr; 2678 boolean_t isv4 = ii->ipsec_in_v4; 2679 ipsa_t *assoc = ii->ipsec_in_ah_sa; 2680 int af; 2681 void *addr; 2682 2683 mp->b_rptr -= ii->ipsec_in_skip_len; 2684 2685 if (isv4) { 2686 ipha_t *ipha = (ipha_t *)mp->b_rptr; 2687 addr = &ipha->ipha_dst; 2688 af = AF_INET; 2689 } else { 2690 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 2691 addr = &ip6h->ip6_dst; 2692 af = AF_INET6; 2693 } 2694 2695 /* 2696 * Log the event. Don't print to the console, block 2697 * potential denial-of-service attack. 2698 */ 2699 AH_BUMP_STAT(bad_auth); 2700 2701 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 2702 "AH Authentication failed spi %x, dst_addr %s", 2703 assoc->ipsa_spi, addr, af); 2704 2705 IP_AH_BUMP_STAT(in_discards); 2706 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_bad_auth, 2707 &ah_dropper); 2708 } 2709 2710 /* 2711 * Kernel crypto framework callback invoked after completion of async 2712 * crypto requests. 2713 */ 2714 static void 2715 ah_kcf_callback(void *arg, int status) 2716 { 2717 mblk_t *ipsec_mp = (mblk_t *)arg; 2718 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 2719 boolean_t is_inbound = (ii->ipsec_in_type == IPSEC_IN); 2720 2721 ASSERT(ipsec_mp->b_cont != NULL); 2722 2723 if (status == CRYPTO_SUCCESS) { 2724 if (is_inbound) { 2725 if (ah_auth_in_done(ipsec_mp) != IPSEC_STATUS_SUCCESS) 2726 return; 2727 /* finish IPsec processing */ 2728 ip_fanout_proto_again(ipsec_mp, NULL, NULL, NULL); 2729 } else { 2730 ipha_t *ipha; 2731 2732 if (ah_auth_out_done(ipsec_mp) != IPSEC_STATUS_SUCCESS) 2733 return; 2734 2735 /* finish IPsec processing */ 2736 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 2737 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 2738 ip_wput_ipsec_out(NULL, ipsec_mp, ipha, NULL, 2739 NULL); 2740 } else { 2741 ip6_t *ip6h = (ip6_t *)ipha; 2742 ip_wput_ipsec_out_v6(NULL, ipsec_mp, ip6h, 2743 NULL, NULL); 2744 } 2745 } 2746 2747 } else if (status == CRYPTO_INVALID_MAC) { 2748 ah_log_bad_auth(ipsec_mp); 2749 2750 } else { 2751 ah1dbg(("ah_kcf_callback: crypto failed with 0x%x\n", status)); 2752 AH_BUMP_STAT(crypto_failures); 2753 if (is_inbound) 2754 IP_AH_BUMP_STAT(in_discards); 2755 else 2756 AH_BUMP_STAT(out_discards); 2757 ip_drop_packet(ipsec_mp, is_inbound, NULL, NULL, 2758 &ipdrops_ah_crypto_failed, &ah_dropper); 2759 } 2760 } 2761 2762 /* 2763 * Invoked on kernel crypto failure during inbound and outbound processing. 2764 */ 2765 static void 2766 ah_crypto_failed(mblk_t *mp, boolean_t is_inbound, int kef_rc) 2767 { 2768 ah1dbg(("crypto failed for %s AH with 0x%x\n", 2769 is_inbound ? "inbound" : "outbound", kef_rc)); 2770 ip_drop_packet(mp, is_inbound, NULL, NULL, &ipdrops_ah_crypto_failed, 2771 &ah_dropper); 2772 AH_BUMP_STAT(crypto_failures); 2773 if (is_inbound) 2774 IP_AH_BUMP_STAT(in_discards); 2775 else 2776 AH_BUMP_STAT(out_discards); 2777 } 2778 2779 /* 2780 * Helper macros for the ah_submit_req_{inbound,outbound}() functions. 2781 */ 2782 2783 #define AH_INIT_CALLREQ(_cr) { \ 2784 (_cr)->cr_flag = CRYPTO_SKIP_REQID|CRYPTO_RESTRICTED; \ 2785 if (ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == IPSEC_ALGS_EXEC_ASYNC) \ 2786 (_cr)->cr_flag |= CRYPTO_ALWAYS_QUEUE; \ 2787 (_cr)->cr_callback_arg = ipsec_mp; \ 2788 (_cr)->cr_callback_func = ah_kcf_callback; \ 2789 } 2790 2791 #define AH_INIT_CRYPTO_DATA(data, msglen, mblk) { \ 2792 (data)->cd_format = CRYPTO_DATA_MBLK; \ 2793 (data)->cd_mp = mblk; \ 2794 (data)->cd_offset = 0; \ 2795 (data)->cd_length = msglen; \ 2796 } 2797 2798 #define AH_INIT_CRYPTO_MAC(mac, icvlen, icvbuf) { \ 2799 (mac)->cd_format = CRYPTO_DATA_RAW; \ 2800 (mac)->cd_offset = 0; \ 2801 (mac)->cd_length = icvlen; \ 2802 (mac)->cd_raw.iov_base = icvbuf; \ 2803 (mac)->cd_raw.iov_len = icvlen; \ 2804 } 2805 2806 /* 2807 * Submit an inbound packet for processing by the crypto framework. 2808 */ 2809 static ipsec_status_t 2810 ah_submit_req_inbound(mblk_t *ipsec_mp, size_t skip_len, uint32_t ah_offset, 2811 ipsa_t *assoc) 2812 { 2813 int kef_rc; 2814 mblk_t *phdr_mp; 2815 crypto_call_req_t call_req; 2816 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 2817 uint_t icv_len = assoc->ipsa_mac_len; 2818 crypto_ctx_template_t ctx_tmpl; 2819 2820 phdr_mp = ipsec_mp->b_cont; 2821 ASSERT(phdr_mp != NULL); 2822 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2823 2824 /* init arguments for the crypto framework */ 2825 AH_INIT_CRYPTO_DATA(&ii->ipsec_in_crypto_data, AH_MSGSIZE(phdr_mp), 2826 phdr_mp); 2827 2828 AH_INIT_CRYPTO_MAC(&ii->ipsec_in_crypto_mac, icv_len, 2829 (char *)phdr_mp->b_cont->b_rptr - skip_len + ah_offset + 2830 sizeof (ah_t)); 2831 2832 AH_INIT_CALLREQ(&call_req); 2833 2834 ii->ipsec_in_skip_len = skip_len; 2835 2836 IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH, ctx_tmpl); 2837 2838 /* call KEF to do the MAC operation */ 2839 kef_rc = crypto_mac_verify(&assoc->ipsa_amech, 2840 &ii->ipsec_in_crypto_data, &assoc->ipsa_kcfauthkey, ctx_tmpl, 2841 &ii->ipsec_in_crypto_mac, &call_req); 2842 2843 switch (kef_rc) { 2844 case CRYPTO_SUCCESS: 2845 AH_BUMP_STAT(crypto_sync); 2846 return (ah_auth_in_done(ipsec_mp)); 2847 case CRYPTO_QUEUED: 2848 /* ah_callback() will be invoked on completion */ 2849 AH_BUMP_STAT(crypto_async); 2850 return (IPSEC_STATUS_PENDING); 2851 case CRYPTO_INVALID_MAC: 2852 AH_BUMP_STAT(crypto_sync); 2853 ah_log_bad_auth(ipsec_mp); 2854 return (IPSEC_STATUS_FAILED); 2855 } 2856 2857 ah_crypto_failed(ipsec_mp, B_TRUE, kef_rc); 2858 return (IPSEC_STATUS_FAILED); 2859 } 2860 2861 /* 2862 * Submit an outbound packet for processing by the crypto framework. 2863 */ 2864 static ipsec_status_t 2865 ah_submit_req_outbound(mblk_t *ipsec_mp, size_t skip_len, ipsa_t *assoc) 2866 { 2867 int kef_rc; 2868 mblk_t *phdr_mp; 2869 crypto_call_req_t call_req; 2870 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 2871 uint_t icv_len = assoc->ipsa_mac_len; 2872 2873 phdr_mp = ipsec_mp->b_cont; 2874 ASSERT(phdr_mp != NULL); 2875 ASSERT(io->ipsec_out_type == IPSEC_OUT); 2876 2877 /* init arguments for the crypto framework */ 2878 AH_INIT_CRYPTO_DATA(&io->ipsec_out_crypto_data, AH_MSGSIZE(phdr_mp), 2879 phdr_mp); 2880 2881 AH_INIT_CRYPTO_MAC(&io->ipsec_out_crypto_mac, icv_len, 2882 (char *)phdr_mp->b_wptr); 2883 2884 AH_INIT_CALLREQ(&call_req); 2885 2886 io->ipsec_out_skip_len = skip_len; 2887 2888 ASSERT(io->ipsec_out_ah_sa != NULL); 2889 2890 /* call KEF to do the MAC operation */ 2891 kef_rc = crypto_mac(&assoc->ipsa_amech, &io->ipsec_out_crypto_data, 2892 &assoc->ipsa_kcfauthkey, assoc->ipsa_authtmpl, 2893 &io->ipsec_out_crypto_mac, &call_req); 2894 2895 switch (kef_rc) { 2896 case CRYPTO_SUCCESS: 2897 AH_BUMP_STAT(crypto_sync); 2898 return (ah_auth_out_done(ipsec_mp)); 2899 case CRYPTO_QUEUED: 2900 /* ah_callback() will be invoked on completion */ 2901 AH_BUMP_STAT(crypto_async); 2902 return (IPSEC_STATUS_PENDING); 2903 } 2904 2905 ah_crypto_failed(ipsec_mp, B_FALSE, kef_rc); 2906 return (IPSEC_STATUS_FAILED); 2907 } 2908 2909 /* 2910 * This function constructs a pseudo header by looking at the IP header 2911 * and options if any. This is called for both outbound and inbound, 2912 * before computing the ICV. 2913 */ 2914 static mblk_t * 2915 ah_process_ip_options_v6(mblk_t *mp, ipsa_t *assoc, int *length_to_skip, 2916 uint_t ah_data_sz, boolean_t outbound) 2917 { 2918 ip6_t *ip6h; 2919 ip6_t *oip6h; 2920 mblk_t *phdr_mp; 2921 int option_length; 2922 uint_t ah_align_sz; 2923 uint_t ah_offset; 2924 int hdr_size; 2925 2926 /* 2927 * Allocate space for the authentication data also. It is 2928 * useful both during the ICV calculation where we need to 2929 * feed in zeroes and while sending the datagram back to IP 2930 * where we will be using the same space. 2931 * 2932 * We need to allocate space for padding bytes if it is not 2933 * a multiple of IPV6_PADDING_ALIGN. 2934 * 2935 * In addition, we allocate space for the ICV computed by 2936 * the kernel crypto framework, saving us a separate kmem 2937 * allocation down the road. 2938 */ 2939 2940 ah_align_sz = P2ALIGN(ah_data_sz + IPV6_PADDING_ALIGN - 1, 2941 IPV6_PADDING_ALIGN); 2942 2943 ASSERT(ah_align_sz >= ah_data_sz); 2944 2945 hdr_size = ipsec_ah_get_hdr_size_v6(mp, B_FALSE); 2946 option_length = hdr_size - IPV6_HDR_LEN; 2947 2948 /* This was not included in ipsec_ah_get_hdr_size_v6() */ 2949 hdr_size += (sizeof (ah_t) + ah_align_sz); 2950 2951 if (!outbound && (MBLKL(mp) < hdr_size)) { 2952 /* 2953 * We have post-AH header options in a separate mblk, 2954 * a pullup is required. 2955 */ 2956 if (!pullupmsg(mp, hdr_size)) 2957 return (NULL); 2958 } 2959 2960 if ((phdr_mp = allocb(hdr_size + ah_data_sz, BPRI_HI)) == NULL) { 2961 return (NULL); 2962 } 2963 2964 oip6h = (ip6_t *)mp->b_rptr; 2965 2966 /* 2967 * Form the basic IP header first. Zero out the header 2968 * so that the mutable fields are zeroed out. 2969 */ 2970 ip6h = (ip6_t *)phdr_mp->b_rptr; 2971 bzero(ip6h, sizeof (ip6_t)); 2972 ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 2973 2974 if (outbound) { 2975 /* 2976 * Include the size of AH and authentication data. 2977 * This is how our recipient would compute the 2978 * authentication data. Look at what we do in the 2979 * inbound case below. 2980 */ 2981 ip6h->ip6_plen = htons(ntohs(oip6h->ip6_plen) + 2982 sizeof (ah_t) + ah_align_sz); 2983 } else { 2984 ip6h->ip6_plen = oip6h->ip6_plen; 2985 } 2986 2987 ip6h->ip6_src = oip6h->ip6_src; 2988 ip6h->ip6_dst = oip6h->ip6_dst; 2989 2990 *length_to_skip = IPV6_HDR_LEN; 2991 if (option_length == 0) { 2992 /* Form the AH header */ 2993 ip6h->ip6_nxt = IPPROTO_AH; 2994 ((ah_t *)(ip6h + 1))->ah_nexthdr = oip6h->ip6_nxt; 2995 ah_offset = *length_to_skip; 2996 } else { 2997 ip6h->ip6_nxt = oip6h->ip6_nxt; 2998 /* option_length does not include the AH header's size */ 2999 *length_to_skip += option_length; 3000 3001 ah_offset = ah_fix_phdr_v6(ip6h, oip6h, outbound, B_FALSE); 3002 if (ah_offset == 0) { 3003 ip_drop_packet(phdr_mp, !outbound, NULL, NULL, 3004 &ipdrops_ah_bad_v6_hdrs, &ah_dropper); 3005 return (NULL); 3006 } 3007 } 3008 3009 if (!ah_finish_up(((ah_t *)((uint8_t *)ip6h + ah_offset)), 3010 (outbound ? NULL : ((ah_t *)((uint8_t *)oip6h + ah_offset))), 3011 assoc, ah_data_sz, ah_align_sz)) { 3012 freeb(phdr_mp); 3013 /* 3014 * Returning NULL will tell the caller to 3015 * IPSA_REFELE(), free the memory, etc. 3016 */ 3017 return (NULL); 3018 } 3019 3020 phdr_mp->b_wptr = ((uint8_t *)ip6h + ah_offset + sizeof (ah_t) + 3021 ah_align_sz); 3022 if (!outbound) 3023 *length_to_skip += sizeof (ah_t) + ah_align_sz; 3024 return (phdr_mp); 3025 } 3026 3027 /* 3028 * This function constructs a pseudo header by looking at the IP header 3029 * and options if any. This is called for both outbound and inbound, 3030 * before computing the ICV. 3031 */ 3032 static mblk_t * 3033 ah_process_ip_options_v4(mblk_t *mp, ipsa_t *assoc, int *length_to_skip, 3034 uint_t ah_data_sz, boolean_t outbound) 3035 { 3036 ipoptp_t opts; 3037 uint32_t option_length; 3038 ipha_t *ipha; 3039 ipha_t *oipha; 3040 mblk_t *phdr_mp; 3041 int size; 3042 uchar_t *optptr; 3043 uint8_t optval; 3044 uint8_t optlen; 3045 ipaddr_t dst; 3046 uint32_t v_hlen_tos_len; 3047 int ip_hdr_length; 3048 uint_t ah_align_sz; 3049 uint32_t off; 3050 3051 #ifdef _BIG_ENDIAN 3052 #define V_HLEN (v_hlen_tos_len >> 24) 3053 #else 3054 #define V_HLEN (v_hlen_tos_len & 0xFF) 3055 #endif 3056 3057 oipha = (ipha_t *)mp->b_rptr; 3058 v_hlen_tos_len = ((uint32_t *)oipha)[0]; 3059 3060 /* 3061 * Allocate space for the authentication data also. It is 3062 * useful both during the ICV calculation where we need to 3063 * feed in zeroes and while sending the datagram back to IP 3064 * where we will be using the same space. 3065 * 3066 * We need to allocate space for padding bytes if it is not 3067 * a multiple of IPV4_PADDING_ALIGN. 3068 * 3069 * In addition, we allocate space for the ICV computed by 3070 * the kernel crypto framework, saving us a separate kmem 3071 * allocation down the road. 3072 */ 3073 3074 ah_align_sz = P2ALIGN(ah_data_sz + IPV4_PADDING_ALIGN - 1, 3075 IPV4_PADDING_ALIGN); 3076 3077 ASSERT(ah_align_sz >= ah_data_sz); 3078 3079 size = IP_SIMPLE_HDR_LENGTH + sizeof (ah_t) + ah_align_sz + 3080 ah_data_sz; 3081 3082 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 3083 option_length = oipha->ipha_version_and_hdr_length - 3084 (uint8_t)((IP_VERSION << 4) + 3085 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 3086 option_length <<= 2; 3087 size += option_length; 3088 } 3089 3090 if ((phdr_mp = allocb(size, BPRI_HI)) == NULL) { 3091 return (NULL); 3092 } 3093 3094 /* 3095 * Form the basic IP header first. 3096 */ 3097 ipha = (ipha_t *)phdr_mp->b_rptr; 3098 ipha->ipha_version_and_hdr_length = oipha->ipha_version_and_hdr_length; 3099 ipha->ipha_type_of_service = 0; 3100 3101 if (outbound) { 3102 /* 3103 * Include the size of AH and authentication data. 3104 * This is how our recipient would compute the 3105 * authentication data. Look at what we do in the 3106 * inbound case below. 3107 */ 3108 ipha->ipha_length = ntohs(htons(oipha->ipha_length) + 3109 sizeof (ah_t) + ah_align_sz); 3110 } else { 3111 ipha->ipha_length = oipha->ipha_length; 3112 } 3113 3114 ipha->ipha_ident = oipha->ipha_ident; 3115 ipha->ipha_fragment_offset_and_flags = 0; 3116 ipha->ipha_ttl = 0; 3117 ipha->ipha_protocol = IPPROTO_AH; 3118 ipha->ipha_hdr_checksum = 0; 3119 ipha->ipha_src = oipha->ipha_src; 3120 ipha->ipha_dst = dst = oipha->ipha_dst; 3121 3122 /* 3123 * If there is no option to process return now. 3124 */ 3125 ip_hdr_length = IP_SIMPLE_HDR_LENGTH; 3126 3127 if (V_HLEN == IP_SIMPLE_HDR_VERSION) { 3128 /* Form the AH header */ 3129 goto ah_hdr; 3130 } 3131 3132 ip_hdr_length += option_length; 3133 3134 /* 3135 * We have options. In the outbound case for source route, 3136 * ULP has already moved the first hop, which is now in 3137 * ipha_dst. We need the final destination for the calculation 3138 * of authentication data. And also make sure that mutable 3139 * and experimental fields are zeroed out in the IP options. 3140 */ 3141 3142 bcopy(&oipha[1], &ipha[1], option_length); 3143 3144 for (optval = ipoptp_first(&opts, ipha); 3145 optval != IPOPT_EOL; 3146 optval = ipoptp_next(&opts)) { 3147 optptr = opts.ipoptp_cur; 3148 optlen = opts.ipoptp_len; 3149 switch (optval) { 3150 case IPOPT_EXTSEC: 3151 case IPOPT_COMSEC: 3152 case IPOPT_RA: 3153 case IPOPT_SDMDD: 3154 case IPOPT_SECURITY: 3155 /* 3156 * These options are Immutable, leave them as-is. 3157 * Note that IPOPT_NOP is also Immutable, but it 3158 * was skipped by ipoptp_next() and thus remains 3159 * intact in the header. 3160 */ 3161 break; 3162 case IPOPT_SSRR: 3163 case IPOPT_LSRR: 3164 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) 3165 goto bad_ipv4opt; 3166 /* 3167 * These two are mutable and will be zeroed, but 3168 * first get the final destination. 3169 */ 3170 off = optptr[IPOPT_OFFSET]; 3171 /* 3172 * If one of the conditions is true, it means 3173 * end of options and dst already has the right 3174 * value. So, just fall through. 3175 */ 3176 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 3177 off = optlen - IP_ADDR_LEN; 3178 bcopy(&optptr[off], &dst, IP_ADDR_LEN); 3179 } 3180 /* FALLTHRU */ 3181 case IPOPT_RR: 3182 case IPOPT_TS: 3183 case IPOPT_SATID: 3184 default: 3185 /* 3186 * optlen should include from the beginning of an 3187 * option. 3188 * NOTE : Stream Identifier Option (SID): RFC 791 3189 * shows the bit pattern of optlen as 2 and documents 3190 * the length as 4. We assume it to be 2 here. 3191 */ 3192 bzero(optptr, optlen); 3193 break; 3194 } 3195 } 3196 3197 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 3198 bad_ipv4opt: 3199 ah1dbg(("AH : bad IPv4 option")); 3200 freeb(phdr_mp); 3201 return (NULL); 3202 } 3203 3204 /* 3205 * Don't change ipha_dst for an inbound datagram as it points 3206 * to the right value. Only for the outbound with LSRR/SSRR, 3207 * because of ip_massage_options called by the ULP, ipha_dst 3208 * points to the first hop and we need to use the final 3209 * destination for computing the ICV. 3210 */ 3211 3212 if (outbound) 3213 ipha->ipha_dst = dst; 3214 ah_hdr: 3215 ((ah_t *)((uint8_t *)ipha + ip_hdr_length))->ah_nexthdr = 3216 oipha->ipha_protocol; 3217 if (!ah_finish_up(((ah_t *)((uint8_t *)ipha + ip_hdr_length)), 3218 (outbound ? NULL : ((ah_t *)((uint8_t *)oipha + ip_hdr_length))), 3219 assoc, ah_data_sz, ah_align_sz)) { 3220 freeb(phdr_mp); 3221 /* 3222 * Returning NULL will tell the caller to IPSA_REFELE(), free 3223 * the memory, etc. 3224 */ 3225 return (NULL); 3226 } 3227 3228 phdr_mp->b_wptr = ((uchar_t *)ipha + ip_hdr_length + 3229 sizeof (ah_t) + ah_align_sz); 3230 3231 ASSERT(phdr_mp->b_wptr <= phdr_mp->b_datap->db_lim); 3232 if (outbound) 3233 *length_to_skip = ip_hdr_length; 3234 else 3235 *length_to_skip = ip_hdr_length + sizeof (ah_t) + ah_align_sz; 3236 return (phdr_mp); 3237 } 3238 3239 /* 3240 * Authenticate an outbound datagram. This function is called 3241 * whenever IP sends an outbound datagram that needs authentication. 3242 */ 3243 static ipsec_status_t 3244 ah_outbound(mblk_t *ipsec_out) 3245 { 3246 mblk_t *mp; 3247 mblk_t *phdr_mp; 3248 ipsec_out_t *oi; 3249 ipsa_t *assoc; 3250 int length_to_skip; 3251 uint_t ah_align_sz; 3252 uint_t age_bytes; 3253 3254 /* 3255 * Construct the chain of mblks 3256 * 3257 * IPSEC_OUT->PSEUDO_HDR->DATA 3258 * 3259 * one by one. 3260 */ 3261 3262 AH_BUMP_STAT(out_requests); 3263 3264 ASSERT(ipsec_out->b_datap->db_type == M_CTL); 3265 3266 ASSERT(MBLKL(ipsec_out) >= sizeof (ipsec_info_t)); 3267 3268 mp = ipsec_out->b_cont; 3269 oi = (ipsec_out_t *)ipsec_out->b_rptr; 3270 3271 ASSERT(mp->b_datap->db_type == M_DATA); 3272 3273 assoc = oi->ipsec_out_ah_sa; 3274 ASSERT(assoc != NULL); 3275 if (assoc->ipsa_usetime == 0) 3276 ah_set_usetime(assoc, B_FALSE); 3277 3278 /* 3279 * Age SA according to number of bytes that will be sent after 3280 * adding the AH header, ICV, and padding to the packet. 3281 */ 3282 3283 if (oi->ipsec_out_v4) { 3284 ipha_t *ipha = (ipha_t *)mp->b_rptr; 3285 ah_align_sz = P2ALIGN(assoc->ipsa_mac_len + 3286 IPV4_PADDING_ALIGN - 1, IPV4_PADDING_ALIGN); 3287 age_bytes = ntohs(ipha->ipha_length) + sizeof (ah_t) + 3288 ah_align_sz; 3289 } else { 3290 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 3291 ah_align_sz = P2ALIGN(assoc->ipsa_mac_len + 3292 IPV6_PADDING_ALIGN - 1, IPV6_PADDING_ALIGN); 3293 age_bytes = sizeof (ip6_t) + ntohs(ip6h->ip6_plen) + 3294 sizeof (ah_t) + ah_align_sz; 3295 } 3296 3297 if (!ah_age_bytes(assoc, age_bytes, B_FALSE)) { 3298 /* rig things as if ipsec_getassocbyconn() failed */ 3299 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 3300 "AH association 0x%x, dst %s had bytes expire.\n", 3301 ntohl(assoc->ipsa_spi), assoc->ipsa_dstaddr, AF_INET); 3302 freemsg(ipsec_out); 3303 return (IPSEC_STATUS_FAILED); 3304 } 3305 3306 if (oi->ipsec_out_is_capab_ill) { 3307 ah3dbg(("ah_outbound: pkt can be accelerated\n")); 3308 if (oi->ipsec_out_v4) 3309 return (ah_outbound_accelerated_v4(ipsec_out, assoc)); 3310 else 3311 return (ah_outbound_accelerated_v6(ipsec_out, assoc)); 3312 } 3313 AH_BUMP_STAT(noaccel); 3314 3315 /* 3316 * Insert pseudo header: 3317 * IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP 3318 */ 3319 3320 if (oi->ipsec_out_v4) { 3321 phdr_mp = ah_process_ip_options_v4(mp, assoc, &length_to_skip, 3322 assoc->ipsa_mac_len, B_TRUE); 3323 } else { 3324 phdr_mp = ah_process_ip_options_v6(mp, assoc, &length_to_skip, 3325 assoc->ipsa_mac_len, B_TRUE); 3326 } 3327 3328 if (phdr_mp == NULL) { 3329 AH_BUMP_STAT(out_discards); 3330 ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL, 3331 &ipdrops_ah_bad_v4_opts, &ah_dropper); 3332 return (IPSEC_STATUS_FAILED); 3333 } 3334 3335 ipsec_out->b_cont = phdr_mp; 3336 phdr_mp->b_cont = mp; 3337 mp->b_rptr += length_to_skip; 3338 3339 /* 3340 * At this point ipsec_out points to the IPSEC_OUT, new_mp 3341 * points to an mblk containing the pseudo header (IP header, 3342 * AH header, and ICV with mutable fields zero'ed out). 3343 * mp points to the mblk containing the ULP data. The original 3344 * IP header is kept before the ULP data in mp. 3345 */ 3346 3347 /* submit MAC request to KCF */ 3348 return (ah_submit_req_outbound(ipsec_out, length_to_skip, assoc)); 3349 } 3350 3351 static ipsec_status_t 3352 ah_inbound(mblk_t *ipsec_in_mp, void *arg) 3353 { 3354 mblk_t *data_mp = ipsec_in_mp->b_cont; 3355 ipsec_in_t *ii = (ipsec_in_t *)ipsec_in_mp->b_rptr; 3356 ah_t *ah = (ah_t *)arg; 3357 ipsa_t *assoc = ii->ipsec_in_ah_sa; 3358 int length_to_skip; 3359 int ah_length; 3360 mblk_t *phdr_mp; 3361 uint32_t ah_offset; 3362 3363 ASSERT(assoc != NULL); 3364 if (assoc->ipsa_usetime == 0) 3365 ah_set_usetime(assoc, B_TRUE); 3366 3367 /* 3368 * We may wish to check replay in-range-only here as an optimization. 3369 * Include the reality check of ipsa->ipsa_replay > 3370 * ipsa->ipsa_replay_wsize for times when it's the first N packets, 3371 * where N == ipsa->ipsa_replay_wsize. 3372 * 3373 * Another check that may come here later is the "collision" check. 3374 * If legitimate packets flow quickly enough, this won't be a problem, 3375 * but collisions may cause authentication algorithm crunching to 3376 * take place when it doesn't need to. 3377 */ 3378 if (!sadb_replay_peek(assoc, ah->ah_replay)) { 3379 AH_BUMP_STAT(replay_early_failures); 3380 IP_AH_BUMP_STAT(in_discards); 3381 ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, 3382 &ipdrops_ah_early_replay, &ah_dropper); 3383 return (IPSEC_STATUS_FAILED); 3384 } 3385 3386 /* 3387 * The offset of the AH header can be computed from its pointer 3388 * within the data mblk, which was pulled up until the AH header 3389 * by ipsec_inbound_ah_sa() during SA selection. 3390 */ 3391 ah_offset = (uchar_t *)ah - data_mp->b_rptr; 3392 3393 /* 3394 * Has this packet already been processed by a hardware 3395 * IPsec accelerator? 3396 */ 3397 if (ii->ipsec_in_accelerated) { 3398 ah3dbg(("ah_inbound_v6: pkt processed by ill=%d isv6=%d\n", 3399 ii->ipsec_in_ill_index, !ii->ipsec_in_v4)); 3400 return (ah_inbound_accelerated(ipsec_in_mp, ii->ipsec_in_v4, 3401 assoc, ah_offset)); 3402 } 3403 AH_BUMP_STAT(noaccel); 3404 3405 /* 3406 * We need to pullup until the ICV before we call 3407 * ah_process_ip_options_v6. 3408 */ 3409 ah_length = (ah->ah_length << 2) + 8; 3410 3411 /* 3412 * NOTE : If we want to use any field of IP/AH header, you need 3413 * to re-assign following the pullup. 3414 */ 3415 if (((uchar_t *)ah + ah_length) > data_mp->b_wptr) { 3416 if (!pullupmsg(data_mp, (uchar_t *)ah + ah_length - 3417 data_mp->b_rptr)) { 3418 (void) ipsec_rl_strlog(info.mi_idnum, 0, 0, 3419 SL_WARN | SL_ERROR, 3420 "ah_inbound: Small AH header\n"); 3421 IP_AH_BUMP_STAT(in_discards); 3422 ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, 3423 &ipdrops_ah_nomem, &ah_dropper); 3424 return (IPSEC_STATUS_FAILED); 3425 } 3426 } 3427 3428 /* 3429 * Insert pseudo header: 3430 * IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP 3431 */ 3432 if (ii->ipsec_in_v4) { 3433 phdr_mp = ah_process_ip_options_v4(data_mp, assoc, 3434 &length_to_skip, assoc->ipsa_mac_len, B_FALSE); 3435 } else { 3436 phdr_mp = ah_process_ip_options_v6(data_mp, assoc, 3437 &length_to_skip, assoc->ipsa_mac_len, B_FALSE); 3438 } 3439 3440 if (phdr_mp == NULL) { 3441 IP_AH_BUMP_STAT(in_discards); 3442 ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, 3443 ii->ipsec_in_v4 ? &ipdrops_ah_bad_v4_opts : 3444 &ipdrops_ah_bad_v6_hdrs, &ah_dropper); 3445 return (IPSEC_STATUS_FAILED); 3446 } 3447 3448 ipsec_in_mp->b_cont = phdr_mp; 3449 phdr_mp->b_cont = data_mp; 3450 data_mp->b_rptr += length_to_skip; 3451 3452 /* submit request to KCF */ 3453 return (ah_submit_req_inbound(ipsec_in_mp, length_to_skip, ah_offset, 3454 assoc)); 3455 } 3456 3457 /* 3458 * ah_inbound_accelerated: 3459 * Called from ah_inbound() to process IPsec packets that have been 3460 * accelerated by hardware. 3461 * 3462 * Basically does what ah_auth_in_done() with some changes since 3463 * no pseudo-headers are involved, i.e. the passed message is a 3464 * IPSEC_INFO->DATA. 3465 * 3466 * It is assumed that only packets that have been successfully 3467 * processed by the adapter come here. 3468 * 3469 * 1. get algorithm structure corresponding to association 3470 * 2. calculate pointers to authentication header and ICV 3471 * 3. compare ICV in AH header with ICV in data attributes 3472 * 3.1 if different: 3473 * 3.1.1 generate error 3474 * 3.1.2 discard message 3475 * 3.2 if ICV matches: 3476 * 3.2.1 check replay 3477 * 3.2.2 remove AH header 3478 * 3.2.3 age SA byte 3479 * 3.2.4 send to IP 3480 */ 3481 ipsec_status_t 3482 ah_inbound_accelerated(mblk_t *ipsec_in, boolean_t isv4, ipsa_t *assoc, 3483 uint32_t ah_offset) 3484 { 3485 mblk_t *mp; 3486 ipha_t *ipha; 3487 ah_t *ah; 3488 ipsec_in_t *ii; 3489 uint32_t icv_len; 3490 uint32_t align_len; 3491 uint32_t age_bytes; 3492 ip6_t *ip6h; 3493 uint8_t *in_icv; 3494 mblk_t *hada_mp; 3495 uint32_t next_hdr; 3496 da_ipsec_t *hada; 3497 kstat_named_t *counter; 3498 3499 AH_BUMP_STAT(in_accelerated); 3500 3501 ii = (ipsec_in_t *)ipsec_in->b_rptr; 3502 mp = ipsec_in->b_cont; 3503 hada_mp = ii->ipsec_in_da; 3504 ASSERT(hada_mp != NULL); 3505 hada = (da_ipsec_t *)hada_mp->b_rptr; 3506 3507 /* 3508 * We only support one level of decapsulation in hardware, so 3509 * nuke the pointer. 3510 */ 3511 ii->ipsec_in_da = NULL; 3512 ii->ipsec_in_accelerated = B_FALSE; 3513 3514 /* 3515 * Extract ICV length from attributes M_CTL and sanity check 3516 * its value. We allow the mblk to be smaller than da_ipsec_t 3517 * for a small ICV, as long as the entire ICV fits within the mblk. 3518 * Also ensures that the ICV length computed by Provider 3519 * corresponds to the ICV length of the algorithm specified by the SA. 3520 */ 3521 icv_len = hada->da_icv_len; 3522 if ((icv_len != assoc->ipsa_mac_len) || 3523 (icv_len > DA_ICV_MAX_LEN) || (MBLKL(hada_mp) < 3524 (sizeof (da_ipsec_t) - DA_ICV_MAX_LEN + icv_len))) { 3525 ah0dbg(("ah_inbound_accelerated: " 3526 "ICV len (%u) incorrect or mblk too small (%u)\n", 3527 icv_len, (uint32_t)(MBLKL(hada_mp)))); 3528 counter = &ipdrops_ah_bad_length; 3529 goto ah_in_discard; 3530 } 3531 ASSERT(icv_len != 0); 3532 3533 /* compute the padded AH ICV len */ 3534 if (isv4) { 3535 ipha = (ipha_t *)mp->b_rptr; 3536 align_len = (icv_len + IPV4_PADDING_ALIGN - 1) & 3537 -IPV4_PADDING_ALIGN; 3538 } else { 3539 ip6h = (ip6_t *)mp->b_rptr; 3540 align_len = (icv_len + IPV6_PADDING_ALIGN - 1) & 3541 -IPV6_PADDING_ALIGN; 3542 } 3543 3544 ah = (ah_t *)(mp->b_rptr + ah_offset); 3545 in_icv = (uint8_t *)ah + sizeof (ah_t); 3546 3547 /* compare ICV in AH header vs ICV computed by adapter */ 3548 if (bcmp(hada->da_icv, in_icv, icv_len)) { 3549 int af; 3550 void *addr; 3551 3552 if (isv4) { 3553 addr = &ipha->ipha_dst; 3554 af = AF_INET; 3555 } else { 3556 addr = &ip6h->ip6_dst; 3557 af = AF_INET6; 3558 } 3559 3560 /* 3561 * Log the event. Don't print to the console, block 3562 * potential denial-of-service attack. 3563 */ 3564 AH_BUMP_STAT(bad_auth); 3565 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 3566 "AH Authentication failed spi %x, dst_addr %s", 3567 assoc->ipsa_spi, addr, af); 3568 counter = &ipdrops_ah_bad_auth; 3569 goto ah_in_discard; 3570 } 3571 3572 ah3dbg(("AH succeeded, checking replay\n")); 3573 AH_BUMP_STAT(good_auth); 3574 3575 if (!sadb_replay_check(assoc, ah->ah_replay)) { 3576 int af; 3577 void *addr; 3578 3579 if (isv4) { 3580 addr = &ipha->ipha_dst; 3581 af = AF_INET; 3582 } else { 3583 addr = &ip6h->ip6_dst; 3584 af = AF_INET6; 3585 } 3586 3587 /* 3588 * Log the event. As of now we print out an event. 3589 * Do not print the replay failure number, or else 3590 * syslog cannot collate the error messages. Printing 3591 * the replay number that failed (or printing to the 3592 * console) opens a denial-of-service attack. 3593 */ 3594 AH_BUMP_STAT(replay_failures); 3595 ipsec_assocfailure(info.mi_idnum, 0, 0, 3596 SL_ERROR | SL_WARN, 3597 "Replay failed for AH spi %x, dst_addr %s", 3598 assoc->ipsa_spi, addr, af); 3599 counter = &ipdrops_ah_replay; 3600 goto ah_in_discard; 3601 } 3602 3603 /* 3604 * Remove AH header. We do this by copying everything before 3605 * the AH header onto the AH header+ICV. 3606 */ 3607 /* overwrite AH with what was preceeding it (IP header) */ 3608 next_hdr = ah->ah_nexthdr; 3609 ovbcopy(mp->b_rptr, mp->b_rptr + sizeof (ah_t) + align_len, 3610 ah_offset); 3611 mp->b_rptr += sizeof (ah_t) + align_len; 3612 if (isv4) { 3613 /* adjust IP header next protocol */ 3614 ipha = (ipha_t *)mp->b_rptr; 3615 ipha->ipha_protocol = next_hdr; 3616 3617 age_bytes = ipha->ipha_length; 3618 3619 /* adjust length in IP header */ 3620 ipha->ipha_length -= (sizeof (ah_t) + align_len); 3621 3622 /* recalculate checksum */ 3623 ipha->ipha_hdr_checksum = 0; 3624 ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha); 3625 } else { 3626 /* adjust IP header next protocol */ 3627 ip6h = (ip6_t *)mp->b_rptr; 3628 ip6h->ip6_nxt = next_hdr; 3629 3630 age_bytes = sizeof (ip6_t) + ntohs(ip6h->ip6_plen) + 3631 sizeof (ah_t); 3632 3633 /* adjust length in IP header */ 3634 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 3635 (sizeof (ah_t) + align_len)); 3636 } 3637 3638 /* age SA */ 3639 if (!ah_age_bytes(assoc, age_bytes, B_TRUE)) { 3640 /* The ipsa has hit hard expiration, LOG and AUDIT. */ 3641 ipsec_assocfailure(info.mi_idnum, 0, 0, 3642 SL_ERROR | SL_WARN, 3643 "AH Association 0x%x, dst %s had bytes expire.\n", 3644 assoc->ipsa_spi, assoc->ipsa_dstaddr, 3645 AF_INET); 3646 AH_BUMP_STAT(bytes_expired); 3647 counter = &ipdrops_ah_bytes_expire; 3648 goto ah_in_discard; 3649 } 3650 3651 freeb(hada_mp); 3652 return (IPSEC_STATUS_SUCCESS); 3653 3654 ah_in_discard: 3655 IP_AH_BUMP_STAT(in_discards); 3656 freeb(hada_mp); 3657 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, counter, &ah_dropper); 3658 return (IPSEC_STATUS_FAILED); 3659 } 3660 3661 /* 3662 * ah_outbound_accelerated_v4: 3663 * Called from ah_outbound_v4() and once it is determined that the 3664 * packet is elligible for hardware acceleration. 3665 * 3666 * We proceed as follows: 3667 * 1. allocate and initialize attributes mblk 3668 * 2. mark IPSEC_OUT to indicate that pkt is accelerated 3669 * 3. insert AH header 3670 */ 3671 static ipsec_status_t 3672 ah_outbound_accelerated_v4(mblk_t *ipsec_mp, ipsa_t *assoc) 3673 { 3674 mblk_t *mp, *new_mp; 3675 ipsec_out_t *oi; 3676 uint_t ah_data_sz; /* ICV length, algorithm dependent */ 3677 uint_t ah_align_sz; /* ICV length + padding */ 3678 uint32_t v_hlen_tos_len; /* from original IP header */ 3679 ipha_t *oipha; /* original IP header */ 3680 ipha_t *nipha; /* new IP header */ 3681 uint_t option_length = 0; 3682 uint_t new_hdr_len; /* new header length */ 3683 uint_t iphdr_length; 3684 ah_t *ah_hdr; /* ptr to AH header */ 3685 3686 AH_BUMP_STAT(out_accelerated); 3687 3688 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 3689 mp = ipsec_mp->b_cont; 3690 3691 oipha = (ipha_t *)mp->b_rptr; 3692 v_hlen_tos_len = ((uint32_t *)oipha)[0]; 3693 3694 /* mark packet as being accelerated in IPSEC_OUT */ 3695 ASSERT(oi->ipsec_out_accelerated == B_FALSE); 3696 oi->ipsec_out_accelerated = B_TRUE; 3697 3698 /* calculate authentication data length, i.e. ICV + padding */ 3699 ah_data_sz = assoc->ipsa_mac_len; 3700 ah_align_sz = (ah_data_sz + IPV4_PADDING_ALIGN - 1) & 3701 -IPV4_PADDING_ALIGN; 3702 3703 /* 3704 * Insert pseudo header: 3705 * IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP 3706 */ 3707 3708 /* IP + AH + authentication + padding data length */ 3709 new_hdr_len = IP_SIMPLE_HDR_LENGTH + sizeof (ah_t) + ah_align_sz; 3710 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 3711 option_length = oipha->ipha_version_and_hdr_length - 3712 (uint8_t)((IP_VERSION << 4) + 3713 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 3714 option_length <<= 2; 3715 new_hdr_len += option_length; 3716 } 3717 3718 /* allocate pseudo-header mblk */ 3719 if ((new_mp = allocb(new_hdr_len, BPRI_HI)) == NULL) { 3720 /* IPsec kstats: bump bean counter here */ 3721 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 3722 &ipdrops_ah_nomem, &ah_dropper); 3723 return (IPSEC_STATUS_FAILED); 3724 } 3725 3726 new_mp->b_cont = mp; 3727 ipsec_mp->b_cont = new_mp; 3728 new_mp->b_wptr += new_hdr_len; 3729 3730 /* copy original IP header to new header */ 3731 bcopy(mp->b_rptr, new_mp->b_rptr, IP_SIMPLE_HDR_LENGTH + 3732 option_length); 3733 3734 /* update IP header */ 3735 nipha = (ipha_t *)new_mp->b_rptr; 3736 nipha->ipha_protocol = IPPROTO_AH; 3737 iphdr_length = ntohs(nipha->ipha_length); 3738 iphdr_length += sizeof (ah_t) + ah_align_sz; 3739 nipha->ipha_length = htons(iphdr_length); 3740 nipha->ipha_hdr_checksum = 0; 3741 nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha); 3742 3743 /* skip original IP header in mp */ 3744 mp->b_rptr += IP_SIMPLE_HDR_LENGTH + option_length; 3745 3746 /* initialize AH header */ 3747 ah_hdr = (ah_t *)(new_mp->b_rptr + IP_SIMPLE_HDR_LENGTH + 3748 option_length); 3749 ah_hdr->ah_nexthdr = oipha->ipha_protocol; 3750 if (!ah_finish_up(ah_hdr, NULL, assoc, ah_data_sz, ah_align_sz)) { 3751 /* Only way this fails is if outbound replay counter wraps. */ 3752 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 3753 &ipdrops_ah_replay, &ah_dropper); 3754 return (IPSEC_STATUS_FAILED); 3755 } 3756 3757 return (IPSEC_STATUS_SUCCESS); 3758 } 3759 3760 /* 3761 * ah_outbound_accelerated_v6: 3762 * 3763 * Called from ah_outbound_v6() once it is determined that the packet 3764 * is eligible for hardware acceleration. 3765 * 3766 * We proceed as follows: 3767 * 1. allocate and initialize attributes mblk 3768 * 2. mark IPSEC_OUT to indicate that pkt is accelerated 3769 * 3. insert AH header 3770 */ 3771 static ipsec_status_t 3772 ah_outbound_accelerated_v6(mblk_t *ipsec_mp, ipsa_t *assoc) 3773 { 3774 mblk_t *mp, *phdr_mp; 3775 ipsec_out_t *oi; 3776 uint_t ah_data_sz; /* ICV length, algorithm dependent */ 3777 uint_t ah_align_sz; /* ICV length + padding */ 3778 ip6_t *oip6h; /* original IP header */ 3779 ip6_t *ip6h; /* new IP header */ 3780 uint_t option_length = 0; 3781 uint_t hdr_size; 3782 uint_t ah_offset; 3783 ah_t *ah_hdr; /* ptr to AH header */ 3784 3785 AH_BUMP_STAT(out_accelerated); 3786 3787 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 3788 mp = ipsec_mp->b_cont; 3789 3790 oip6h = (ip6_t *)mp->b_rptr; 3791 3792 /* mark packet as being accelerated in IPSEC_OUT */ 3793 ASSERT(oi->ipsec_out_accelerated == B_FALSE); 3794 oi->ipsec_out_accelerated = B_TRUE; 3795 3796 /* calculate authentication data length, i.e. ICV + padding */ 3797 ah_data_sz = assoc->ipsa_mac_len; 3798 ah_align_sz = (ah_data_sz + IPV4_PADDING_ALIGN - 1) & 3799 -IPV4_PADDING_ALIGN; 3800 3801 ASSERT(ah_align_sz >= ah_data_sz); 3802 3803 hdr_size = ipsec_ah_get_hdr_size_v6(mp, B_FALSE); 3804 option_length = hdr_size - IPV6_HDR_LEN; 3805 3806 /* This was not included in ipsec_ah_get_hdr_size_v6() */ 3807 hdr_size += (sizeof (ah_t) + ah_align_sz); 3808 3809 if ((phdr_mp = allocb(hdr_size, BPRI_HI)) == NULL) { 3810 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, &ipdrops_ah_nomem, 3811 &ah_dropper); 3812 return (IPSEC_STATUS_FAILED); 3813 } 3814 phdr_mp->b_wptr += hdr_size; 3815 3816 /* 3817 * Form the basic IP header first. We always assign every bit 3818 * of the v6 basic header, so a separate bzero is unneeded. 3819 */ 3820 ip6h = (ip6_t *)phdr_mp->b_rptr; 3821 ip6h->ip6_vcf = oip6h->ip6_vcf; 3822 ip6h->ip6_hlim = oip6h->ip6_hlim; 3823 ip6h->ip6_src = oip6h->ip6_src; 3824 ip6h->ip6_dst = oip6h->ip6_dst; 3825 /* 3826 * Include the size of AH and authentication data. 3827 * This is how our recipient would compute the 3828 * authentication data. Look at what we do in the 3829 * inbound case below. 3830 */ 3831 ip6h->ip6_plen = htons(ntohs(oip6h->ip6_plen) + sizeof (ah_t) + 3832 ah_align_sz); 3833 3834 /* 3835 * Insert pseudo header: 3836 * IPSEC_INFO -> [IP6, LLH, ULP] => 3837 * IPSEC_INFO -> [IP, LLH, AH, ICV] -> ULP 3838 */ 3839 3840 if (option_length == 0) { 3841 /* Form the AH header */ 3842 ip6h->ip6_nxt = IPPROTO_AH; 3843 ((ah_t *)(ip6h + 1))->ah_nexthdr = oip6h->ip6_nxt; 3844 ah_offset = IPV6_HDR_LEN; 3845 } else { 3846 ip6h->ip6_nxt = oip6h->ip6_nxt; 3847 /* option_length does not include the AH header's size */ 3848 ah_offset = ah_fix_phdr_v6(ip6h, oip6h, B_TRUE, B_FALSE); 3849 if (ah_offset == 0) { 3850 freemsg(phdr_mp); 3851 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 3852 &ipdrops_ah_bad_v6_hdrs, &ah_dropper); 3853 return (IPSEC_STATUS_FAILED); 3854 } 3855 } 3856 3857 phdr_mp->b_cont = mp; 3858 ipsec_mp->b_cont = phdr_mp; 3859 3860 /* skip original IP header in mp */ 3861 mp->b_rptr += IPV6_HDR_LEN + option_length; 3862 3863 /* initialize AH header */ 3864 ah_hdr = (ah_t *)(phdr_mp->b_rptr + IPV6_HDR_LEN + option_length); 3865 ah_hdr->ah_nexthdr = oip6h->ip6_nxt; 3866 3867 if (!ah_finish_up(((ah_t *)((uint8_t *)ip6h + ah_offset)), NULL, 3868 assoc, ah_data_sz, ah_align_sz)) { 3869 /* Only way this fails is if outbound replay counter wraps. */ 3870 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 3871 &ipdrops_ah_replay, &ah_dropper); 3872 return (IPSEC_STATUS_FAILED); 3873 } 3874 3875 return (IPSEC_STATUS_SUCCESS); 3876 } 3877 3878 /* 3879 * Invoked after processing of an inbound packet by the 3880 * kernel crypto framework. Called by ah_submit_req() for a sync request, 3881 * or by the kcf callback for an async request. 3882 * Returns IPSEC_STATUS_SUCCESS on success, IPSEC_STATUS_FAILED on failure. 3883 * On failure, the mblk chain ipsec_in is freed by this function. 3884 */ 3885 static ipsec_status_t 3886 ah_auth_in_done(mblk_t *ipsec_in) 3887 { 3888 mblk_t *phdr_mp; 3889 ipha_t *ipha; 3890 uint_t ah_offset = 0; 3891 mblk_t *mp; 3892 int align_len; 3893 ah_t *ah; 3894 ipha_t *nipha; 3895 uint32_t length; 3896 ipsec_in_t *ii; 3897 boolean_t isv4; 3898 ip6_t *ip6h; 3899 ip6_t *nip6h; 3900 uint_t icv_len; 3901 ipsa_t *assoc; 3902 kstat_named_t *counter; 3903 3904 ii = (ipsec_in_t *)ipsec_in->b_rptr; 3905 isv4 = ii->ipsec_in_v4; 3906 assoc = ii->ipsec_in_ah_sa; 3907 icv_len = (uint_t)ii->ipsec_in_crypto_mac.cd_raw.iov_len; 3908 3909 phdr_mp = ipsec_in->b_cont; 3910 if (phdr_mp == NULL) { 3911 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_nomem, 3912 &ah_dropper); 3913 return (IPSEC_STATUS_FAILED); 3914 } 3915 3916 mp = phdr_mp->b_cont; 3917 if (mp == NULL) { 3918 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_nomem, 3919 &ah_dropper); 3920 return (IPSEC_STATUS_FAILED); 3921 } 3922 mp->b_rptr -= ii->ipsec_in_skip_len; 3923 3924 if (isv4) { 3925 ipha = (ipha_t *)mp->b_rptr; 3926 ah_offset = ipha->ipha_version_and_hdr_length - 3927 (uint8_t)((IP_VERSION << 4)); 3928 ah_offset <<= 2; 3929 align_len = P2ALIGN(icv_len + IPV4_PADDING_ALIGN - 1, 3930 IPV4_PADDING_ALIGN); 3931 } else { 3932 ip6h = (ip6_t *)mp->b_rptr; 3933 ah_offset = ipsec_ah_get_hdr_size_v6(mp, B_TRUE); 3934 ASSERT((mp->b_wptr - mp->b_rptr) >= ah_offset); 3935 align_len = P2ALIGN(icv_len + IPV6_PADDING_ALIGN - 1, 3936 IPV6_PADDING_ALIGN); 3937 } 3938 3939 ah = (ah_t *)(mp->b_rptr + ah_offset); 3940 3941 /* 3942 * We get here only when authentication passed. 3943 */ 3944 3945 ah3dbg(("AH succeeded, checking replay\n")); 3946 AH_BUMP_STAT(good_auth); 3947 3948 if (!sadb_replay_check(assoc, ah->ah_replay)) { 3949 int af; 3950 void *addr; 3951 3952 if (isv4) { 3953 addr = &ipha->ipha_dst; 3954 af = AF_INET; 3955 } else { 3956 addr = &ip6h->ip6_dst; 3957 af = AF_INET6; 3958 } 3959 3960 /* 3961 * Log the event. As of now we print out an event. 3962 * Do not print the replay failure number, or else 3963 * syslog cannot collate the error messages. Printing 3964 * the replay number that failed (or printing to the 3965 * console) opens a denial-of-service attack. 3966 */ 3967 AH_BUMP_STAT(replay_failures); 3968 ipsec_assocfailure(info.mi_idnum, 0, 0, 3969 SL_ERROR | SL_WARN, 3970 "Replay failed for AH spi %x, dst_addr %s", 3971 assoc->ipsa_spi, addr, af); 3972 counter = &ipdrops_ah_replay; 3973 goto ah_in_discard; 3974 } 3975 3976 /* 3977 * We need to remove the AH header from the original 3978 * datagram. Easy way to do this is to use phdr_mp 3979 * to hold the IP header and the orginal mp to hold 3980 * the rest of it. So, we copy the IP header on to 3981 * phdr_mp, and set the b_rptr in mp past AH header. 3982 */ 3983 if (isv4) { 3984 bcopy(mp->b_rptr, phdr_mp->b_rptr, ah_offset); 3985 phdr_mp->b_wptr = phdr_mp->b_rptr + ah_offset; 3986 nipha = (ipha_t *)phdr_mp->b_rptr; 3987 /* 3988 * Assign the right protocol, adjust the length as we 3989 * are removing the AH header and adjust the checksum to 3990 * account for the protocol and length. 3991 */ 3992 nipha->ipha_protocol = ah->ah_nexthdr; 3993 length = ntohs(nipha->ipha_length); 3994 if (!ah_age_bytes(assoc, length, B_TRUE)) { 3995 /* The ipsa has hit hard expiration, LOG and AUDIT. */ 3996 ipsec_assocfailure(info.mi_idnum, 0, 0, 3997 SL_ERROR | SL_WARN, 3998 "AH Association 0x%x, dst %s had bytes expire.\n", 3999 assoc->ipsa_spi, assoc->ipsa_dstaddr, 4000 AF_INET); 4001 AH_BUMP_STAT(bytes_expired); 4002 counter = &ipdrops_ah_bytes_expire; 4003 goto ah_in_discard; 4004 } 4005 length -= (sizeof (ah_t) + align_len); 4006 4007 nipha->ipha_length = htons((uint16_t)length); 4008 nipha->ipha_hdr_checksum = 0; 4009 nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha); 4010 /* 4011 * Skip IP,AH and the authentication data in the 4012 * original datagram. 4013 */ 4014 mp->b_rptr += (ah_offset + sizeof (ah_t) + align_len); 4015 } else { 4016 uchar_t *whereptr; 4017 int hdrlen; 4018 uint8_t *nexthdr; 4019 ip6_hbh_t *hbhhdr; 4020 ip6_dest_t *dsthdr; 4021 ip6_rthdr0_t *rthdr; 4022 4023 nip6h = (ip6_t *)phdr_mp->b_rptr; 4024 4025 /* 4026 * Make phdr_mp hold until the AH header and make 4027 * mp hold everything past AH header. 4028 */ 4029 length = ntohs(nip6h->ip6_plen); 4030 if (!ah_age_bytes(assoc, length + sizeof (ip6_t), B_TRUE)) { 4031 /* The ipsa has hit hard expiration, LOG and AUDIT. */ 4032 ipsec_assocfailure(info.mi_idnum, 0, 0, 4033 SL_ERROR | SL_WARN, 4034 "AH Association 0x%x, dst %s had bytes " 4035 "expire.\n", assoc->ipsa_spi, &ip6h->ip6_dst, 4036 AF_INET6); 4037 AH_BUMP_STAT(bytes_expired); 4038 counter = &ipdrops_ah_bytes_expire; 4039 goto ah_in_discard; 4040 } 4041 bcopy(ip6h, nip6h, ah_offset); 4042 phdr_mp->b_wptr = phdr_mp->b_rptr + ah_offset; 4043 mp->b_rptr += (ah_offset + sizeof (ah_t) + align_len); 4044 4045 /* 4046 * Update the next header field of the header preceding 4047 * AH with the next header field of AH. Start with the 4048 * IPv6 header and proceed with the extension headers 4049 * until we find what we're looking for. 4050 */ 4051 nexthdr = &nip6h->ip6_nxt; 4052 whereptr = (uchar_t *)nip6h; 4053 hdrlen = sizeof (ip6_t); 4054 4055 while (*nexthdr != IPPROTO_AH) { 4056 whereptr += hdrlen; 4057 /* Assume IP has already stripped it */ 4058 ASSERT(*nexthdr != IPPROTO_FRAGMENT && 4059 *nexthdr != IPPROTO_RAW); 4060 switch (*nexthdr) { 4061 case IPPROTO_HOPOPTS: 4062 hbhhdr = (ip6_hbh_t *)whereptr; 4063 nexthdr = &hbhhdr->ip6h_nxt; 4064 hdrlen = 8 * (hbhhdr->ip6h_len + 1); 4065 break; 4066 case IPPROTO_DSTOPTS: 4067 dsthdr = (ip6_dest_t *)whereptr; 4068 nexthdr = &dsthdr->ip6d_nxt; 4069 hdrlen = 8 * (dsthdr->ip6d_len + 1); 4070 break; 4071 case IPPROTO_ROUTING: 4072 rthdr = (ip6_rthdr0_t *)whereptr; 4073 nexthdr = &rthdr->ip6r0_nxt; 4074 hdrlen = 8 * (rthdr->ip6r0_len + 1); 4075 break; 4076 } 4077 } 4078 *nexthdr = ah->ah_nexthdr; 4079 4080 length -= (sizeof (ah_t) + align_len); 4081 nip6h->ip6_plen = htons((uint16_t)length); 4082 } 4083 4084 if (is_system_labeled()) { 4085 /* 4086 * inherit the label by setting it in the new ip header 4087 */ 4088 mblk_setcred(phdr_mp, DB_CRED(mp)); 4089 } 4090 return (IPSEC_STATUS_SUCCESS); 4091 4092 ah_in_discard: 4093 IP_AH_BUMP_STAT(in_discards); 4094 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, counter, &ah_dropper); 4095 return (IPSEC_STATUS_FAILED); 4096 } 4097 4098 /* 4099 * Invoked after processing of an outbound packet by the 4100 * kernel crypto framework, either by ah_submit_req() for a request 4101 * executed syncrhonously, or by the KEF callback for a request 4102 * executed asynchronously. 4103 */ 4104 static ipsec_status_t 4105 ah_auth_out_done(mblk_t *ipsec_out) 4106 { 4107 mblk_t *phdr_mp; 4108 mblk_t *mp; 4109 int align_len; 4110 uint32_t hdrs_length; 4111 uchar_t *ptr; 4112 uint32_t length; 4113 boolean_t isv4; 4114 ipsec_out_t *io; 4115 size_t icv_len; 4116 4117 io = (ipsec_out_t *)ipsec_out->b_rptr; 4118 isv4 = io->ipsec_out_v4; 4119 icv_len = io->ipsec_out_crypto_mac.cd_raw.iov_len; 4120 4121 phdr_mp = ipsec_out->b_cont; 4122 if (phdr_mp == NULL) { 4123 ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL, 4124 &ipdrops_ah_nomem, &ah_dropper); 4125 return (IPSEC_STATUS_FAILED); 4126 } 4127 4128 mp = phdr_mp->b_cont; 4129 if (mp == NULL) { 4130 ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL, 4131 &ipdrops_ah_nomem, &ah_dropper); 4132 return (IPSEC_STATUS_FAILED); 4133 } 4134 mp->b_rptr -= io->ipsec_out_skip_len; 4135 4136 if (isv4) { 4137 ipha_t *ipha; 4138 ipha_t *nipha; 4139 4140 ipha = (ipha_t *)mp->b_rptr; 4141 hdrs_length = ipha->ipha_version_and_hdr_length - 4142 (uint8_t)((IP_VERSION << 4)); 4143 hdrs_length <<= 2; 4144 align_len = P2ALIGN(icv_len + IPV4_PADDING_ALIGN - 1, 4145 IPV4_PADDING_ALIGN); 4146 /* 4147 * phdr_mp must have the right amount of space for the 4148 * combined IP and AH header. Copy the IP header and 4149 * the ack_data onto AH. Note that the AH header was 4150 * already formed before the ICV calculation and hence 4151 * you don't have to copy it here. 4152 */ 4153 bcopy(mp->b_rptr, phdr_mp->b_rptr, hdrs_length); 4154 4155 ptr = phdr_mp->b_rptr + hdrs_length + sizeof (ah_t); 4156 bcopy(phdr_mp->b_wptr, ptr, icv_len); 4157 4158 /* 4159 * Compute the new header checksum as we are assigning 4160 * IPPROTO_AH and adjusting the length here. 4161 */ 4162 nipha = (ipha_t *)phdr_mp->b_rptr; 4163 4164 nipha->ipha_protocol = IPPROTO_AH; 4165 length = ntohs(nipha->ipha_length); 4166 length += (sizeof (ah_t) + align_len); 4167 nipha->ipha_length = htons((uint16_t)length); 4168 nipha->ipha_hdr_checksum = 0; 4169 nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha); 4170 } else { 4171 ip6_t *ip6h; 4172 ip6_t *nip6h; 4173 uint_t ah_offset; 4174 4175 ip6h = (ip6_t *)mp->b_rptr; 4176 nip6h = (ip6_t *)phdr_mp->b_rptr; 4177 align_len = P2ALIGN(icv_len + IPV6_PADDING_ALIGN - 1, 4178 IPV6_PADDING_ALIGN); 4179 /* 4180 * phdr_mp must have the right amount of space for the 4181 * combined IP and AH header. Copy the IP header with 4182 * options into the pseudo header. When we constructed 4183 * a pseudo header, we did not copy some of the mutable 4184 * fields. We do it now by calling ah_fix_phdr_v6() 4185 * with the last argument B_TRUE. It returns the 4186 * ah_offset into the pseudo header. 4187 */ 4188 4189 bcopy(ip6h, nip6h, IPV6_HDR_LEN); 4190 ah_offset = ah_fix_phdr_v6(nip6h, ip6h, B_TRUE, B_TRUE); 4191 ASSERT(ah_offset != 0); 4192 /* 4193 * phdr_mp can hold exactly the whole IP header with options 4194 * plus the AH header also. Thus subtracting the AH header's 4195 * size should give exactly how much of the original header 4196 * should be skipped. 4197 */ 4198 hdrs_length = (phdr_mp->b_wptr - phdr_mp->b_rptr) - 4199 sizeof (ah_t) - icv_len; 4200 bcopy(phdr_mp->b_wptr, ((uint8_t *)nip6h + ah_offset + 4201 sizeof (ah_t)), icv_len); 4202 length = ntohs(nip6h->ip6_plen); 4203 length += (sizeof (ah_t) + align_len); 4204 nip6h->ip6_plen = htons((uint16_t)length); 4205 } 4206 4207 if (is_system_labeled()) { 4208 /* 4209 * inherit the label by setting it in the new ip header 4210 */ 4211 mblk_setcred(phdr_mp, DB_CRED(mp)); 4212 } 4213 4214 /* Skip the original IP header */ 4215 mp->b_rptr += hdrs_length; 4216 if (mp->b_rptr == mp->b_wptr) { 4217 phdr_mp->b_cont = mp->b_cont; 4218 freeb(mp); 4219 } 4220 4221 return (IPSEC_STATUS_SUCCESS); 4222 } 4223 4224 /* 4225 * Wrapper to allow IP to trigger an AH association failure message 4226 * during SA inbound selection. 4227 */ 4228 void 4229 ipsecah_in_assocfailure(mblk_t *mp, char level, ushort_t sl, char *fmt, 4230 uint32_t spi, void *addr, int af) 4231 { 4232 if (ipsecah_log_unknown_spi) { 4233 ipsec_assocfailure(info.mi_idnum, 0, level, sl, fmt, spi, 4234 addr, af); 4235 } 4236 4237 ip_drop_packet(mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa, 4238 &ah_dropper); 4239 } 4240 4241 /* 4242 * Initialize the AH input and output processing functions. 4243 */ 4244 void 4245 ipsecah_init_funcs(ipsa_t *sa) 4246 { 4247 if (sa->ipsa_output_func == NULL) 4248 sa->ipsa_output_func = ah_outbound; 4249 if (sa->ipsa_input_func == NULL) 4250 sa->ipsa_input_func = ah_inbound; 4251 } 4252