1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/stropts.h> 31 #include <sys/errno.h> 32 #include <sys/strlog.h> 33 #include <sys/tihdr.h> 34 #include <sys/socket.h> 35 #include <sys/ddi.h> 36 #include <sys/sunddi.h> 37 #include <sys/kmem.h> 38 #include <sys/cmn_err.h> 39 #include <sys/vtrace.h> 40 #include <sys/debug.h> 41 #include <sys/atomic.h> 42 #include <sys/strsun.h> 43 #include <sys/random.h> 44 #include <netinet/in.h> 45 #include <net/if.h> 46 #include <netinet/ip6.h> 47 #include <netinet/icmp6.h> 48 #include <net/pfkeyv2.h> 49 50 #include <inet/common.h> 51 #include <inet/mi.h> 52 #include <inet/ip.h> 53 #include <inet/ip6.h> 54 #include <inet/nd.h> 55 #include <inet/ipsec_info.h> 56 #include <inet/ipsec_impl.h> 57 #include <inet/sadb.h> 58 #include <inet/ipsecah.h> 59 #include <inet/ipsec_impl.h> 60 #include <inet/ipdrop.h> 61 #include <sys/taskq.h> 62 #include <sys/policy.h> 63 #include <sys/iphada.h> 64 #include <sys/strsun.h> 65 66 #include <sys/crypto/common.h> 67 #include <sys/crypto/api.h> 68 #include <sys/kstat.h> 69 #include <sys/strsubr.h> 70 71 /* Packet dropper for AH drops. */ 72 static ipdropper_t ah_dropper; 73 74 static kmutex_t ipsecah_param_lock; /* Protect ipsecah_param_arr[] below. */ 75 /* 76 * Table of ND variables supported by ipsecah. These are loaded into 77 * ipsecah_g_nd in ipsecah_init_nd. 78 * All of these are alterable, within the min/max values given, at run time. 79 */ 80 static ipsecahparam_t ipsecah_param_arr[] = { 81 /* min max value name */ 82 { 0, 3, 0, "ipsecah_debug"}, 83 { 125, 32000, SADB_AGE_INTERVAL_DEFAULT, "ipsecah_age_interval"}, 84 { 1, 10, 1, "ipsecah_reap_delay"}, 85 { 1, SADB_MAX_REPLAY, 64, "ipsecah_replay_size"}, 86 { 1, 300, 15, "ipsecah_acquire_timeout"}, 87 { 1, 1800, 90, "ipsecah_larval_timeout"}, 88 /* Default lifetime values for ACQUIRE messages. */ 89 { 0, 0xffffffffU, 0, "ipsecah_default_soft_bytes"}, 90 { 0, 0xffffffffU, 0, "ipsecah_default_hard_bytes"}, 91 { 0, 0xffffffffU, 24000, "ipsecah_default_soft_addtime"}, 92 { 0, 0xffffffffU, 28800, "ipsecah_default_hard_addtime"}, 93 { 0, 0xffffffffU, 0, "ipsecah_default_soft_usetime"}, 94 { 0, 0xffffffffU, 0, "ipsecah_default_hard_usetime"}, 95 { 0, 1, 0, "ipsecah_log_unknown_spi"}, 96 }; 97 #define ipsecah_debug ipsecah_param_arr[0].ipsecah_param_value 98 #define ipsecah_age_interval ipsecah_param_arr[1].ipsecah_param_value 99 #define ipsecah_age_int_max ipsecah_param_arr[1].ipsecah_param_max 100 #define ipsecah_reap_delay ipsecah_param_arr[2].ipsecah_param_value 101 #define ipsecah_replay_size ipsecah_param_arr[3].ipsecah_param_value 102 #define ipsecah_acquire_timeout ipsecah_param_arr[4].ipsecah_param_value 103 #define ipsecah_larval_timeout ipsecah_param_arr[5].ipsecah_param_value 104 #define ipsecah_default_soft_bytes ipsecah_param_arr[6].ipsecah_param_value 105 #define ipsecah_default_hard_bytes ipsecah_param_arr[7].ipsecah_param_value 106 #define ipsecah_default_soft_addtime ipsecah_param_arr[8].ipsecah_param_value 107 #define ipsecah_default_hard_addtime ipsecah_param_arr[9].ipsecah_param_value 108 #define ipsecah_default_soft_usetime ipsecah_param_arr[10].ipsecah_param_value 109 #define ipsecah_default_hard_usetime ipsecah_param_arr[11].ipsecah_param_value 110 #define ipsecah_log_unknown_spi ipsecah_param_arr[12].ipsecah_param_value 111 112 #define ah0dbg(a) printf a 113 /* NOTE: != 0 instead of > 0 so lint doesn't complain. */ 114 #define ah1dbg(a) if (ipsecah_debug != 0) printf a 115 #define ah2dbg(a) if (ipsecah_debug > 1) printf a 116 #define ah3dbg(a) if (ipsecah_debug > 2) printf a 117 118 static IDP ipsecah_g_nd; 119 120 /* 121 * XXX This is broken. Padding should be determined dynamically 122 * depending on the ICV size and IP version number so that the 123 * total AH header size is a multiple of 32 bits or 64 bits 124 * for V4 and V6 respectively. For 96bit ICVs we have no problems. 125 * Anything different from that, we need to fix our code. 126 */ 127 #define IPV4_PADDING_ALIGN 0x04 /* Multiple of 32 bits */ 128 #define IPV6_PADDING_ALIGN 0x04 /* Multiple of 32 bits */ 129 130 /* 131 * Helper macro. Avoids a call to msgdsize if there is only one 132 * mblk in the chain. 133 */ 134 #define AH_MSGSIZE(mp) ((mp)->b_cont != NULL ? msgdsize(mp) : MBLKL(mp)) 135 136 static ipsec_status_t ah_auth_out_done(mblk_t *); 137 static ipsec_status_t ah_auth_in_done(mblk_t *); 138 static mblk_t *ah_process_ip_options_v4(mblk_t *, ipsa_t *, int *, uint_t, 139 boolean_t); 140 static mblk_t *ah_process_ip_options_v6(mblk_t *, ipsa_t *, int *, uint_t, 141 boolean_t); 142 static void ah_getspi(mblk_t *, keysock_in_t *); 143 static ipsec_status_t ah_inbound_accelerated(mblk_t *, boolean_t, ipsa_t *, 144 uint32_t); 145 static ipsec_status_t ah_outbound_accelerated_v4(mblk_t *, ipsa_t *); 146 static ipsec_status_t ah_outbound_accelerated_v6(mblk_t *, ipsa_t *); 147 static ipsec_status_t ah_outbound(mblk_t *); 148 149 static int ipsecah_open(queue_t *, dev_t *, int, int, cred_t *); 150 static int ipsecah_close(queue_t *); 151 static void ipsecah_rput(queue_t *, mblk_t *); 152 static void ipsecah_wput(queue_t *, mblk_t *); 153 static void ah_send_acquire(ipsacq_t *, mblk_t *); 154 static boolean_t ah_register_out(uint32_t, uint32_t, uint_t); 155 156 static struct module_info info = { 157 5136, "ipsecah", 0, INFPSZ, 65536, 1024 158 }; 159 160 static struct qinit rinit = { 161 (pfi_t)ipsecah_rput, NULL, ipsecah_open, ipsecah_close, NULL, &info, 162 NULL 163 }; 164 165 static struct qinit winit = { 166 (pfi_t)ipsecah_wput, NULL, ipsecah_open, ipsecah_close, NULL, &info, 167 NULL 168 }; 169 170 struct streamtab ipsecahinfo = { 171 &rinit, &winit, NULL, NULL 172 }; 173 174 /* 175 * Keysock instance of AH. "There can be only one." :) 176 * Use casptr() on this because I don't set it until KEYSOCK_HELLO comes down. 177 * Paired up with the ah_pfkey_q is the ah_event, which will age SAs. 178 */ 179 static queue_t *ah_pfkey_q; 180 static timeout_id_t ah_event; 181 static taskq_t *ah_taskq; 182 183 static mblk_t *ah_ip_unbind; 184 185 /* 186 * Stats. This may eventually become a full-blown SNMP MIB once that spec 187 * stabilizes. 188 */ 189 typedef struct 190 { 191 kstat_named_t ah_stat_num_aalgs; 192 kstat_named_t ah_stat_good_auth; 193 kstat_named_t ah_stat_bad_auth; 194 kstat_named_t ah_stat_replay_failures; 195 kstat_named_t ah_stat_replay_early_failures; 196 kstat_named_t ah_stat_keysock_in; 197 kstat_named_t ah_stat_out_requests; 198 kstat_named_t ah_stat_acquire_requests; 199 kstat_named_t ah_stat_bytes_expired; 200 kstat_named_t ah_stat_out_discards; 201 kstat_named_t ah_stat_in_accelerated; 202 kstat_named_t ah_stat_out_accelerated; 203 kstat_named_t ah_stat_noaccel; 204 kstat_named_t ah_stat_crypto_sync; 205 kstat_named_t ah_stat_crypto_async; 206 kstat_named_t ah_stat_crypto_failures; 207 } ah_kstats_t; 208 209 #define AH_BUMP_STAT(x) (ah_kstats->ah_stat_ ## x).value.ui64++ 210 #define AH_DEBUMP_STAT(x) (ah_kstats->ah_stat_ ## x).value.ui64-- 211 212 uint32_t ah_hash_size = IPSEC_DEFAULT_HASH_SIZE; 213 static kstat_t *ah_ksp; 214 static ah_kstats_t *ah_kstats; 215 216 static int ah_kstat_update(kstat_t *, int); 217 218 uint64_t ipsacq_maxpackets = IPSACQ_MAXPACKETS; 219 220 static boolean_t 221 ah_kstat_init(void) 222 { 223 224 ah_ksp = kstat_create("ipsecah", 0, "ah_stat", "net", 225 KSTAT_TYPE_NAMED, sizeof (*ah_kstats) / sizeof (kstat_named_t), 226 KSTAT_FLAG_PERSISTENT); 227 228 if (ah_ksp == NULL) 229 return (B_FALSE); 230 231 ah_kstats = ah_ksp->ks_data; 232 233 ah_ksp->ks_update = ah_kstat_update; 234 235 #define K64 KSTAT_DATA_UINT64 236 #define KI(x) kstat_named_init(&(ah_kstats->ah_stat_##x), #x, K64) 237 238 KI(num_aalgs); 239 KI(good_auth); 240 KI(bad_auth); 241 KI(replay_failures); 242 KI(replay_early_failures); 243 KI(keysock_in); 244 KI(out_requests); 245 KI(acquire_requests); 246 KI(bytes_expired); 247 KI(out_discards); 248 KI(in_accelerated); 249 KI(out_accelerated); 250 KI(noaccel); 251 KI(crypto_sync); 252 KI(crypto_async); 253 KI(crypto_failures); 254 255 #undef KI 256 #undef K64 257 258 kstat_install(ah_ksp); 259 IP_ACQUIRE_STAT(maxpackets, ipsacq_maxpackets); 260 return (B_TRUE); 261 } 262 263 static int 264 ah_kstat_update(kstat_t *kp, int rw) 265 { 266 ah_kstats_t *ekp; 267 268 if ((kp == NULL) || (kp->ks_data == NULL)) 269 return (EIO); 270 271 if (rw == KSTAT_WRITE) 272 return (EACCES); 273 274 ASSERT(kp == ah_ksp); 275 ekp = (ah_kstats_t *)kp->ks_data; 276 ASSERT(ekp == ah_kstats); 277 278 mutex_enter(&alg_lock); 279 ekp->ah_stat_num_aalgs.value.ui64 = ipsec_nalgs[IPSEC_ALG_AUTH]; 280 mutex_exit(&alg_lock); 281 282 return (0); 283 } 284 285 /* 286 * Don't have to lock ipsec_age_interval, as only one thread will access it at 287 * a time, because I control the one function that does a qtimeout() on 288 * ah_pfkey_q. 289 */ 290 /* ARGSUSED */ 291 static void 292 ah_ager(void *ignoreme) 293 { 294 hrtime_t begin = gethrtime(); 295 296 sadb_ager(&ah_sadb.s_v4, ah_pfkey_q, ah_sadb.s_ip_q, 297 ipsecah_reap_delay); 298 sadb_ager(&ah_sadb.s_v6, ah_pfkey_q, ah_sadb.s_ip_q, 299 ipsecah_reap_delay); 300 301 ah_event = sadb_retimeout(begin, ah_pfkey_q, ah_ager, 302 &ipsecah_age_interval, ipsecah_age_int_max, info.mi_idnum); 303 } 304 305 /* 306 * Get an AH NDD parameter. 307 */ 308 /* ARGSUSED */ 309 static int 310 ipsecah_param_get(q, mp, cp, cr) 311 queue_t *q; 312 mblk_t *mp; 313 caddr_t cp; 314 cred_t *cr; 315 { 316 ipsecahparam_t *ipsecahpa = (ipsecahparam_t *)cp; 317 uint_t value; 318 319 mutex_enter(&ipsecah_param_lock); 320 value = ipsecahpa->ipsecah_param_value; 321 mutex_exit(&ipsecah_param_lock); 322 323 (void) mi_mpprintf(mp, "%u", value); 324 return (0); 325 } 326 327 /* 328 * This routine sets an NDD variable in a ipsecahparam_t structure. 329 */ 330 /* ARGSUSED */ 331 static int 332 ipsecah_param_set(q, mp, value, cp, cr) 333 queue_t *q; 334 mblk_t *mp; 335 char *value; 336 caddr_t cp; 337 cred_t *cr; 338 { 339 ulong_t new_value; 340 ipsecahparam_t *ipsecahpa = (ipsecahparam_t *)cp; 341 342 /* 343 * Fail the request if the new value does not lie within the 344 * required bounds. 345 */ 346 if (ddi_strtoul(value, NULL, 10, &new_value) != 0 || 347 new_value < ipsecahpa->ipsecah_param_min || 348 new_value > ipsecahpa->ipsecah_param_max) { 349 return (EINVAL); 350 } 351 352 /* Set the new value */ 353 mutex_enter(&ipsecah_param_lock); 354 ipsecahpa->ipsecah_param_value = new_value; 355 mutex_exit(&ipsecah_param_lock); 356 return (0); 357 } 358 359 /* 360 * Using lifetime NDD variables, fill in an extended combination's 361 * lifetime information. 362 */ 363 void 364 ipsecah_fill_defs(sadb_x_ecomb_t *ecomb) 365 { 366 ecomb->sadb_x_ecomb_soft_bytes = ipsecah_default_soft_bytes; 367 ecomb->sadb_x_ecomb_hard_bytes = ipsecah_default_hard_bytes; 368 ecomb->sadb_x_ecomb_soft_addtime = ipsecah_default_soft_addtime; 369 ecomb->sadb_x_ecomb_hard_addtime = ipsecah_default_hard_addtime; 370 ecomb->sadb_x_ecomb_soft_usetime = ipsecah_default_soft_usetime; 371 ecomb->sadb_x_ecomb_hard_usetime = ipsecah_default_hard_usetime; 372 } 373 374 /* 375 * Initialize things for AH at module load time. 376 */ 377 boolean_t 378 ipsecah_ddi_init(void) 379 { 380 int count; 381 ipsecahparam_t *ahp = ipsecah_param_arr; 382 383 for (count = A_CNT(ipsecah_param_arr); count-- > 0; ahp++) { 384 if (ahp->ipsecah_param_name != NULL && 385 ahp->ipsecah_param_name[0]) { 386 if (!nd_load(&ipsecah_g_nd, ahp->ipsecah_param_name, 387 ipsecah_param_get, ipsecah_param_set, 388 (caddr_t)ahp)) { 389 nd_free(&ipsecah_g_nd); 390 return (B_FALSE); 391 } 392 } 393 } 394 395 if (!ah_kstat_init()) { 396 nd_free(&ipsecah_g_nd); 397 return (B_FALSE); 398 } 399 400 ah_taskq = taskq_create("ah_taskq", 1, minclsyspri, 401 IPSEC_TASKQ_MIN, IPSEC_TASKQ_MAX, 0); 402 403 ah_sadb.s_acquire_timeout = &ipsecah_acquire_timeout; 404 ah_sadb.s_acqfn = ah_send_acquire; 405 406 sadbp_init("AH", &ah_sadb, SADB_SATYPE_AH, ah_hash_size); 407 408 mutex_init(&ipsecah_param_lock, NULL, MUTEX_DEFAULT, 0); 409 410 ip_drop_register(&ah_dropper, "IPsec AH"); 411 412 return (B_TRUE); 413 } 414 415 /* 416 * Destroy things for AH at module unload time. 417 */ 418 void 419 ipsecah_ddi_destroy(void) 420 { 421 ah1dbg(("In ddi_destroy.\n")); 422 423 sadbp_destroy(&ah_sadb); 424 ip_drop_unregister(&ah_dropper); 425 taskq_destroy(ah_taskq); 426 mutex_destroy(&ipsecah_param_lock); 427 nd_free(&ipsecah_g_nd); 428 429 kstat_delete(ah_ksp); 430 } 431 432 /* 433 * AH module open routine. The module should be opened by keysock. 434 */ 435 /* ARGSUSED */ 436 static int 437 ipsecah_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 438 { 439 if (secpolicy_net_config(credp, B_FALSE) != 0) { 440 ah1dbg(("Non-privileged user trying to open ipsecah.\n")); 441 return (EPERM); 442 } 443 444 if (q->q_ptr != NULL) 445 return (0); /* Re-open of an already open instance. */ 446 447 if (sflag != MODOPEN) 448 return (EINVAL); 449 450 /* 451 * ASSUMPTIONS (because I'm MT_OCEXCL): 452 * 453 * * I'm being pushed on top of IP for all my opens (incl. #1). 454 * * Only ipsecah_open() can write into ah_sadb.s_ip_q. 455 * * Because of this, I can check lazily for ah_sadb.s_ip_q. 456 * 457 * If these assumptions are wrong, I'm in BIG trouble... 458 */ 459 460 q->q_ptr = q; /* just so I know I'm open */ 461 462 if (ah_sadb.s_ip_q == NULL) { 463 struct T_unbind_req *tur; 464 465 ah_sadb.s_ip_q = WR(q); 466 /* Allocate an unbind... */ 467 ah_ip_unbind = allocb(sizeof (struct T_unbind_req), BPRI_HI); 468 469 /* 470 * Send down T_BIND_REQ to bind IPPROTO_AH. 471 * Handle the ACK here in AH. 472 */ 473 qprocson(q); 474 if (ah_ip_unbind == NULL || 475 !sadb_t_bind_req(ah_sadb.s_ip_q, IPPROTO_AH)) { 476 if (ah_ip_unbind != NULL) { 477 freeb(ah_ip_unbind); 478 ah_ip_unbind = NULL; 479 } 480 q->q_ptr = NULL; 481 qprocsoff(q); 482 return (ENOMEM); 483 } 484 485 ah_ip_unbind->b_datap->db_type = M_PROTO; 486 tur = (struct T_unbind_req *)ah_ip_unbind->b_rptr; 487 tur->PRIM_type = T_UNBIND_REQ; 488 } else { 489 qprocson(q); 490 } 491 492 /* 493 * For now, there's not much I can do. I'll be getting a message 494 * passed down to me from keysock (in my wput), and a T_BIND_ACK 495 * up from IP (in my rput). 496 */ 497 498 return (0); 499 } 500 501 /* 502 * AH module close routine. 503 */ 504 static int 505 ipsecah_close(queue_t *q) 506 { 507 /* 508 * If ah_sadb.s_ip_q is attached to this instance, send a 509 * T_UNBIND_REQ to IP for the instance before doing 510 * a qprocsoff(). 511 */ 512 if (WR(q) == ah_sadb.s_ip_q && ah_ip_unbind != NULL) { 513 putnext(WR(q), ah_ip_unbind); 514 ah_ip_unbind = NULL; 515 } 516 517 /* 518 * Clean up q_ptr, if needed. 519 */ 520 qprocsoff(q); 521 522 /* Keysock queue check is safe, because of OCEXCL perimeter. */ 523 524 if (q == ah_pfkey_q) { 525 ah0dbg(("ipsecah_close: Ummm... keysock is closing AH.\n")); 526 ah_pfkey_q = NULL; 527 /* Detach qtimeouts. */ 528 (void) quntimeout(q, ah_event); 529 } 530 531 if (WR(q) == ah_sadb.s_ip_q) { 532 /* 533 * If the ah_sadb.s_ip_q is attached to this instance, find 534 * another. The OCEXCL outer perimeter helps us here. 535 */ 536 537 ah_sadb.s_ip_q = NULL; 538 539 /* 540 * Find a replacement queue for ah_sadb.s_ip_q. 541 */ 542 if (ah_pfkey_q != NULL && ah_pfkey_q != RD(q)) { 543 /* 544 * See if we can use the pfkey_q. 545 */ 546 ah_sadb.s_ip_q = WR(ah_pfkey_q); 547 } 548 549 if (ah_sadb.s_ip_q == NULL || 550 !sadb_t_bind_req(ah_sadb.s_ip_q, IPPROTO_AH)) { 551 ah1dbg(("ipsecah: Can't reassign ah_sadb.s_ip_q.\n")); 552 ah_sadb.s_ip_q = NULL; 553 } else { 554 ah_ip_unbind = allocb(sizeof (struct T_unbind_req), 555 BPRI_HI); 556 557 if (ah_ip_unbind != NULL) { 558 struct T_unbind_req *tur; 559 560 ah_ip_unbind->b_datap->db_type = M_PROTO; 561 tur = (struct T_unbind_req *) 562 ah_ip_unbind->b_rptr; 563 tur->PRIM_type = T_UNBIND_REQ; 564 } 565 /* If it's NULL, I can't do much here. */ 566 } 567 } 568 569 return (0); 570 } 571 572 /* 573 * AH module read put routine. 574 */ 575 /* ARGSUSED */ 576 static void 577 ipsecah_rput(queue_t *q, mblk_t *mp) 578 { 579 keysock_in_t *ksi; 580 int *addrtype; 581 ire_t *ire; 582 mblk_t *ire_mp, *last_mp; 583 584 switch (mp->b_datap->db_type) { 585 case M_CTL: 586 /* 587 * IPsec request of some variety from IP. IPSEC_{IN,OUT} 588 * are the common cases, but even ICMP error messages from IP 589 * may rise up here. 590 * 591 * Ummmm, actually, this can also be the reflected KEYSOCK_IN 592 * message, with an IRE_DB_TYPE hung off at the end. 593 */ 594 switch (((ipsec_info_t *)(mp->b_rptr))->ipsec_info_type) { 595 case KEYSOCK_IN: 596 last_mp = mp; 597 while (last_mp->b_cont != NULL && 598 last_mp->b_cont->b_datap->db_type != IRE_DB_TYPE) 599 last_mp = last_mp->b_cont; 600 601 if (last_mp->b_cont == NULL) { 602 freemsg(mp); 603 break; /* Out of switch. */ 604 } 605 606 ire_mp = last_mp->b_cont; 607 last_mp->b_cont = NULL; 608 609 ksi = (keysock_in_t *)mp->b_rptr; 610 611 if (ksi->ks_in_srctype == KS_IN_ADDR_UNKNOWN) 612 addrtype = &ksi->ks_in_srctype; 613 else if (ksi->ks_in_dsttype == KS_IN_ADDR_UNKNOWN) 614 addrtype = &ksi->ks_in_dsttype; 615 else if (ksi->ks_in_proxytype == KS_IN_ADDR_UNKNOWN) 616 addrtype = &ksi->ks_in_proxytype; 617 618 ire = (ire_t *)ire_mp->b_rptr; 619 620 *addrtype = sadb_addrset(ire); 621 622 freemsg(ire_mp); 623 if (ah_pfkey_q != NULL) { 624 /* 625 * Decrement counter to make up for 626 * auto-increment in ipsecah_wput(). 627 * I'm running all MT-hot through here, so 628 * don't worry about perimeters and lateral 629 * puts. 630 */ 631 AH_DEBUMP_STAT(keysock_in); 632 ipsecah_wput(WR(ah_pfkey_q), mp); 633 } else { 634 freemsg(mp); 635 } 636 break; 637 default: 638 freemsg(mp); 639 break; 640 } 641 break; 642 case M_PROTO: 643 case M_PCPROTO: 644 /* TPI message of some sort. */ 645 switch (*((t_scalar_t *)mp->b_rptr)) { 646 case T_BIND_ACK: 647 /* We expect this. */ 648 ah3dbg(("Thank you IP from AH for T_BIND_ACK\n")); 649 break; 650 case T_ERROR_ACK: 651 cmn_err(CE_WARN, 652 "ipsecah: AH received T_ERROR_ACK from IP."); 653 break; 654 case T_OK_ACK: 655 /* Probably from a (rarely sent) T_UNBIND_REQ. */ 656 break; 657 default: 658 ah1dbg(("Unknown M_{,PC}PROTO message.\n")); 659 } 660 freemsg(mp); 661 break; 662 default: 663 /* For now, passthru message. */ 664 ah2dbg(("AH got unknown mblk type %d.\n", 665 mp->b_datap->db_type)); 666 putnext(q, mp); 667 } 668 } 669 670 /* 671 * Construct an SADB_REGISTER message with the current algorithms. 672 */ 673 static boolean_t 674 ah_register_out(uint32_t sequence, uint32_t pid, uint_t serial) 675 { 676 mblk_t *mp; 677 boolean_t rc = B_TRUE; 678 sadb_msg_t *samsg; 679 sadb_supported_t *sasupp; 680 sadb_alg_t *saalg; 681 uint_t allocsize = sizeof (*samsg); 682 uint_t i, numalgs_snap; 683 ipsec_alginfo_t **authalgs; 684 uint_t num_aalgs; 685 686 /* Allocate the KEYSOCK_OUT. */ 687 mp = sadb_keysock_out(serial); 688 if (mp == NULL) { 689 ah0dbg(("ah_register_out: couldn't allocate mblk.\n")); 690 return (B_FALSE); 691 } 692 693 /* 694 * Allocate the PF_KEY message that follows KEYSOCK_OUT. 695 * The alg reader lock needs to be held while allocating 696 * the variable part (i.e. the algorithms) of the message. 697 */ 698 699 mutex_enter(&alg_lock); 700 701 /* 702 * Return only valid algorithms, so the number of algorithms 703 * to send up may be less than the number of algorithm entries 704 * in the table. 705 */ 706 authalgs = ipsec_alglists[IPSEC_ALG_AUTH]; 707 for (num_aalgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++) 708 if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) 709 num_aalgs++; 710 711 /* 712 * Fill SADB_REGISTER message's algorithm descriptors. Hold 713 * down the lock while filling it. 714 */ 715 if (num_aalgs != 0) { 716 allocsize += (num_aalgs * sizeof (*saalg)); 717 allocsize += sizeof (*sasupp); 718 } 719 mp->b_cont = allocb(allocsize, BPRI_HI); 720 if (mp->b_cont == NULL) { 721 mutex_exit(&alg_lock); 722 freemsg(mp); 723 return (B_FALSE); 724 } 725 726 mp->b_cont->b_wptr += allocsize; 727 if (num_aalgs != 0) { 728 729 saalg = (sadb_alg_t *)(mp->b_cont->b_rptr + sizeof (*samsg) + 730 sizeof (*sasupp)); 731 ASSERT(((ulong_t)saalg & 0x7) == 0); 732 733 numalgs_snap = 0; 734 for (i = 0; 735 ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_aalgs)); i++) { 736 if (authalgs[i] == NULL || !ALG_VALID(authalgs[i])) 737 continue; 738 739 saalg->sadb_alg_id = authalgs[i]->alg_id; 740 saalg->sadb_alg_ivlen = 0; 741 saalg->sadb_alg_minbits = authalgs[i]->alg_ef_minbits; 742 saalg->sadb_alg_maxbits = authalgs[i]->alg_ef_maxbits; 743 saalg->sadb_x_alg_increment = 744 authalgs[i]->alg_increment; 745 saalg->sadb_x_alg_defincr = authalgs[i]->alg_ef_default; 746 numalgs_snap++; 747 saalg++; 748 } 749 ASSERT(numalgs_snap == num_aalgs); 750 #ifdef DEBUG 751 /* 752 * Reality check to make sure I snagged all of the 753 * algorithms. 754 */ 755 for (; i < IPSEC_MAX_ALGS; i++) 756 if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) 757 cmn_err(CE_PANIC, 758 "ah_register_out()! Missed #%d.\n", i); 759 #endif /* DEBUG */ 760 } 761 762 mutex_exit(&alg_lock); 763 764 /* Now fill the restof the SADB_REGISTER message. */ 765 766 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 767 samsg->sadb_msg_version = PF_KEY_V2; 768 samsg->sadb_msg_type = SADB_REGISTER; 769 samsg->sadb_msg_errno = 0; 770 samsg->sadb_msg_satype = SADB_SATYPE_AH; 771 samsg->sadb_msg_len = SADB_8TO64(allocsize); 772 samsg->sadb_msg_reserved = 0; 773 /* 774 * Assume caller has sufficient sequence/pid number info. If it's one 775 * from me over a new alg., I could give two hoots about sequence. 776 */ 777 samsg->sadb_msg_seq = sequence; 778 samsg->sadb_msg_pid = pid; 779 780 if (allocsize > sizeof (*samsg)) { 781 sasupp = (sadb_supported_t *)(samsg + 1); 782 sasupp->sadb_supported_len = 783 SADB_8TO64(allocsize - sizeof (sadb_msg_t)); 784 sasupp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 785 sasupp->sadb_supported_reserved = 0; 786 } 787 788 if (ah_pfkey_q != NULL) 789 putnext(ah_pfkey_q, mp); 790 else { 791 rc = B_FALSE; 792 freemsg(mp); 793 } 794 795 return (rc); 796 } 797 798 /* 799 * Invoked when the algorithm table changes. Causes SADB_REGISTER 800 * messages continaining the current list of algorithms to be 801 * sent up to the AH listeners. 802 */ 803 void 804 ipsecah_algs_changed(void) 805 { 806 /* 807 * Time to send a PF_KEY SADB_REGISTER message to AH listeners 808 * everywhere. (The function itself checks for NULL ah_pfkey_q.) 809 */ 810 (void) ah_register_out(0, 0, 0); 811 } 812 813 /* 814 * Stub function that taskq_dispatch() invokes to take the mblk (in arg) 815 * and put() it into AH and STREAMS again. 816 */ 817 static void 818 inbound_task(void *arg) 819 { 820 ah_t *ah; 821 mblk_t *mp = (mblk_t *)arg; 822 ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr; 823 int ipsec_rc; 824 825 ah2dbg(("in AH inbound_task")); 826 827 ah = ipsec_inbound_ah_sa(mp); 828 if (ah == NULL) 829 return; 830 ASSERT(ii->ipsec_in_ah_sa != NULL); 831 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func(mp, ah); 832 if (ipsec_rc != IPSEC_STATUS_SUCCESS) 833 return; 834 ip_fanout_proto_again(mp, NULL, NULL, NULL); 835 } 836 837 838 /* 839 * Now that weak-key passed, actually ADD the security association, and 840 * send back a reply ADD message. 841 */ 842 static int 843 ah_add_sa_finish(mblk_t *mp, sadb_msg_t *samsg, keysock_in_t *ksi) 844 { 845 isaf_t *primary, *secondary, *inbound, *outbound; 846 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 847 sadb_address_t *dstext = 848 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 849 struct sockaddr_in *dst; 850 struct sockaddr_in6 *dst6; 851 boolean_t is_ipv4, clone = B_FALSE, is_inbound = B_FALSE; 852 uint32_t *dstaddr; 853 ipsa_t *larval; 854 ipsacq_t *acqrec; 855 iacqf_t *acq_bucket; 856 mblk_t *acq_msgs = NULL; 857 mblk_t *lpkt; 858 int rc; 859 sadb_t *sp; 860 int outhash; 861 862 /* 863 * Locate the appropriate table(s). 864 */ 865 866 dst = (struct sockaddr_in *)(dstext + 1); 867 dst6 = (struct sockaddr_in6 *)dst; 868 is_ipv4 = (dst->sin_family == AF_INET); 869 if (is_ipv4) { 870 sp = &ah_sadb.s_v4; 871 dstaddr = (uint32_t *)(&dst->sin_addr); 872 outhash = OUTBOUND_HASH_V4(sp, *(ipaddr_t *)dstaddr); 873 } else { 874 ASSERT(dst->sin_family == AF_INET6); 875 sp = &ah_sadb.s_v6; 876 dstaddr = (uint32_t *)(&dst6->sin6_addr); 877 outhash = OUTBOUND_HASH_V6(sp, *(in6_addr_t *)dstaddr); 878 } 879 880 inbound = INBOUND_BUCKET(sp, assoc->sadb_sa_spi); 881 outbound = &sp->sdb_of[outhash]; 882 883 switch (ksi->ks_in_dsttype) { 884 case KS_IN_ADDR_MBCAST: 885 clone = B_TRUE; /* All mcast SAs can be bidirectional */ 886 /* FALLTHRU */ 887 case KS_IN_ADDR_ME: 888 primary = inbound; 889 secondary = outbound; 890 /* 891 * If the source address is either one of mine, or unspecified 892 * (which is best summed up by saying "not 'not mine'"), 893 * then the association is potentially bi-directional, 894 * in that it can be used for inbound traffic and outbound 895 * traffic. The best example of such and SA is a multicast 896 * SA (which allows me to receive the outbound traffic). 897 */ 898 if (ksi->ks_in_srctype != KS_IN_ADDR_NOTME) 899 clone = B_TRUE; 900 is_inbound = B_TRUE; 901 break; 902 case KS_IN_ADDR_NOTME: 903 primary = outbound; 904 secondary = inbound; 905 /* 906 * If the source address literally not mine (either 907 * unspecified or not mine), then this SA may have an 908 * address that WILL be mine after some configuration. 909 * We pay the price for this by making it a bi-directional 910 * SA. 911 */ 912 if (ksi->ks_in_srctype != KS_IN_ADDR_ME) 913 clone = B_TRUE; 914 break; 915 default: 916 samsg->sadb_x_msg_diagnostic = SADB_X_DIAGNOSTIC_BAD_DST; 917 return (EINVAL); 918 } 919 920 /* 921 * Find a ACQUIRE list entry if possible. If we've added an SA that 922 * suits the needs of an ACQUIRE list entry, we can eliminate the 923 * ACQUIRE list entry and transmit the enqueued packets. Use the 924 * high-bit of the sequence number to queue it. Key off destination 925 * addr, and change acqrec's state. 926 */ 927 928 if (samsg->sadb_msg_seq & IACQF_LOWEST_SEQ) { 929 acq_bucket = &sp->sdb_acq[outhash]; 930 mutex_enter(&acq_bucket->iacqf_lock); 931 for (acqrec = acq_bucket->iacqf_ipsacq; acqrec != NULL; 932 acqrec = acqrec->ipsacq_next) { 933 mutex_enter(&acqrec->ipsacq_lock); 934 /* 935 * Q: I only check sequence. Should I check dst? 936 * A: Yes, check dest because those are the packets 937 * that are queued up. 938 */ 939 if (acqrec->ipsacq_seq == samsg->sadb_msg_seq && 940 IPSA_ARE_ADDR_EQUAL(dstaddr, 941 acqrec->ipsacq_dstaddr, acqrec->ipsacq_addrfam)) 942 break; 943 mutex_exit(&acqrec->ipsacq_lock); 944 } 945 if (acqrec != NULL) { 946 /* 947 * AHA! I found an ACQUIRE record for this SA. 948 * Grab the msg list, and free the acquire record. 949 * I already am holding the lock for this record, 950 * so all I have to do is free it. 951 */ 952 acq_msgs = acqrec->ipsacq_mp; 953 acqrec->ipsacq_mp = NULL; 954 mutex_exit(&acqrec->ipsacq_lock); 955 sadb_destroy_acquire(acqrec); 956 } 957 mutex_exit(&acq_bucket->iacqf_lock); 958 } 959 960 /* 961 * Find PF_KEY message, and see if I'm an update. If so, find entry 962 * in larval list (if there). 963 */ 964 965 larval = NULL; 966 967 if (samsg->sadb_msg_type == SADB_UPDATE) { 968 mutex_enter(&inbound->isaf_lock); 969 larval = ipsec_getassocbyspi(inbound, assoc->sadb_sa_spi, 970 ALL_ZEROES_PTR, dstaddr, dst->sin_family); 971 mutex_exit(&inbound->isaf_lock); 972 973 if ((larval == NULL) || 974 (larval->ipsa_state != IPSA_STATE_LARVAL)) { 975 ah0dbg(("Larval update, but larval disappeared.\n")); 976 return (ESRCH); 977 } /* Else sadb_common_add unlinks it for me! */ 978 } 979 980 lpkt = NULL; 981 if (larval != NULL) 982 lpkt = sadb_clear_lpkt(larval); 983 984 rc = sadb_common_add(ah_sadb.s_ip_q, ah_pfkey_q, mp, samsg, ksi, 985 primary, secondary, larval, clone, is_inbound); 986 987 /* 988 * How much more stack will I create with all of these 989 * ah_inbound_* and ah_outbound_*() calls? 990 */ 991 992 993 if (rc == 0 && lpkt != NULL) 994 rc = !taskq_dispatch(ah_taskq, inbound_task, 995 (void *) lpkt, TQ_NOSLEEP); 996 997 if (rc != 0) { 998 ip_drop_packet(lpkt, B_TRUE, NULL, NULL, 999 &ipdrops_sadb_inlarval_timeout, &ah_dropper); 1000 } 1001 1002 while (acq_msgs != NULL) { 1003 mblk_t *mp = acq_msgs; 1004 1005 acq_msgs = acq_msgs->b_next; 1006 mp->b_next = NULL; 1007 if (rc == 0) { 1008 ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr; 1009 1010 ASSERT(ah_sadb.s_ip_q != NULL); 1011 if (ipsec_outbound_sa(mp, IPPROTO_AH)) { 1012 io->ipsec_out_ah_done = B_TRUE; 1013 if (ah_outbound(mp) == IPSEC_STATUS_SUCCESS) { 1014 ipha_t *ipha = (ipha_t *) 1015 mp->b_cont->b_rptr; 1016 if (is_ipv4) { 1017 ip_wput_ipsec_out(NULL, mp, 1018 ipha, NULL, NULL); 1019 } else { 1020 ip6_t *ip6h = (ip6_t *)ipha; 1021 ip_wput_ipsec_out_v6(NULL, 1022 mp, ip6h, NULL, NULL); 1023 } 1024 } 1025 continue; 1026 } 1027 } 1028 AH_BUMP_STAT(out_discards); 1029 ip_drop_packet(mp, B_FALSE, NULL, NULL, 1030 &ipdrops_sadb_acquire_timeout, &ah_dropper); 1031 } 1032 1033 return (rc); 1034 } 1035 1036 /* 1037 * Add new AH security association. This may become a generic AH/ESP 1038 * routine eventually. 1039 */ 1040 static int 1041 ah_add_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 1042 { 1043 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 1044 sadb_address_t *srcext = 1045 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 1046 sadb_address_t *dstext = 1047 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 1048 sadb_key_t *key = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH]; 1049 struct sockaddr_in *src, *dst; 1050 /* We don't need sockaddr_in6 for now. */ 1051 sadb_lifetime_t *soft = 1052 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT]; 1053 sadb_lifetime_t *hard = 1054 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD]; 1055 ipsec_alginfo_t *aalg; 1056 1057 /* I need certain extensions present for an ADD message. */ 1058 if (srcext == NULL) { 1059 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 1060 return (EINVAL); 1061 } 1062 if (dstext == NULL) { 1063 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 1064 return (EINVAL); 1065 } 1066 if (assoc == NULL) { 1067 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 1068 return (EINVAL); 1069 } 1070 if (key == NULL) { 1071 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_AKEY; 1072 return (EINVAL); 1073 } 1074 1075 src = (struct sockaddr_in *)(srcext + 1); 1076 dst = (struct sockaddr_in *)(dstext + 1); 1077 1078 /* Sundry ADD-specific reality checks. */ 1079 /* XXX STATS : Logging/stats here? */ 1080 1081 if (assoc->sadb_sa_state != SADB_SASTATE_MATURE) { 1082 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 1083 return (EINVAL); 1084 } 1085 if (assoc->sadb_sa_encrypt != SADB_EALG_NONE) { 1086 *diagnostic = SADB_X_DIAGNOSTIC_ENCR_NOTSUPP; 1087 return (EINVAL); 1088 } 1089 if (assoc->sadb_sa_flags & ~(SADB_SAFLAGS_NOREPLAY)) { 1090 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS; 1091 return (EINVAL); 1092 } 1093 1094 if ((*diagnostic = sadb_hardsoftchk(hard, soft)) != 0) 1095 return (EINVAL); 1096 1097 if (src->sin_family != dst->sin_family) { 1098 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 1099 return (EINVAL); 1100 } 1101 1102 /* Stuff I don't support, for now. XXX Diagnostic? */ 1103 if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL || 1104 ksi->ks_in_extv[SADB_EXT_SENSITIVITY] != NULL) 1105 return (EOPNOTSUPP); 1106 1107 /* 1108 * XXX Policy : I'm not checking identities or sensitivity 1109 * labels at this time, but if I did, I'd do them here, before I sent 1110 * the weak key check up to the algorithm. 1111 */ 1112 1113 /* verify that there is a mapping for the specified algorithm */ 1114 mutex_enter(&alg_lock); 1115 aalg = ipsec_alglists[IPSEC_ALG_AUTH][assoc->sadb_sa_auth]; 1116 if (aalg == NULL || !ALG_VALID(aalg)) { 1117 mutex_exit(&alg_lock); 1118 ah1dbg(("Couldn't find auth alg #%d.\n", assoc->sadb_sa_auth)); 1119 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG; 1120 return (EINVAL); 1121 } 1122 ASSERT(aalg->alg_mech_type != CRYPTO_MECHANISM_INVALID); 1123 1124 /* sanity check key sizes */ 1125 if (!ipsec_valid_key_size(key->sadb_key_bits, aalg)) { 1126 mutex_exit(&alg_lock); 1127 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AKEYBITS; 1128 return (EINVAL); 1129 } 1130 1131 /* check key and fix parity if needed */ 1132 if (ipsec_check_key(aalg->alg_mech_type, key, B_TRUE, 1133 diagnostic) != 0) { 1134 mutex_exit(&alg_lock); 1135 return (EINVAL); 1136 } 1137 1138 mutex_exit(&alg_lock); 1139 1140 return (ah_add_sa_finish(mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi)); 1141 } 1142 1143 /* 1144 * Update a security association. Updates come in two varieties. The first 1145 * is an update of lifetimes on a non-larval SA. The second is an update of 1146 * a larval SA, which ends up looking a lot more like an add. 1147 */ 1148 static int 1149 ah_update_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 1150 { 1151 sadb_address_t *dstext = 1152 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 1153 struct sockaddr_in *sin; 1154 1155 if (dstext == NULL) { 1156 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 1157 return (EINVAL); 1158 } 1159 sin = (struct sockaddr_in *)(dstext + 1); 1160 return (sadb_update_sa(mp, ksi, 1161 (sin->sin_family == AF_INET6) ? &ah_sadb.s_v6 : &ah_sadb.s_v4, 1162 diagnostic, ah_pfkey_q, ah_add_sa)); 1163 } 1164 1165 /* 1166 * Delete a security association. This is REALLY likely to be code common to 1167 * both AH and ESP. Find the association, then unlink it. 1168 */ 1169 static int 1170 ah_del_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 1171 { 1172 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 1173 sadb_address_t *dstext = 1174 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 1175 sadb_address_t *srcext = 1176 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 1177 struct sockaddr_in *sin; 1178 1179 if (assoc == NULL) { 1180 if (dstext != NULL) 1181 sin = (struct sockaddr_in *)(dstext + 1); 1182 else if (srcext != NULL) 1183 sin = (struct sockaddr_in *)(srcext + 1); 1184 else { 1185 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 1186 return (EINVAL); 1187 } 1188 return sadb_purge_sa(mp, ksi, 1189 (sin->sin_family == AF_INET6) ? &ah_sadb.s_v6 : 1190 &ah_sadb.s_v4, 1191 diagnostic, ah_pfkey_q, ah_sadb.s_ip_q); 1192 } 1193 1194 return (sadb_del_sa(mp, ksi, &ah_sadb, diagnostic, ah_pfkey_q)); 1195 } 1196 1197 /* 1198 * Convert the entire contents of all of AH's SA tables into PF_KEY SADB_DUMP 1199 * messages. 1200 */ 1201 static void 1202 ah_dump(mblk_t *mp, keysock_in_t *ksi) 1203 { 1204 int error; 1205 sadb_msg_t *samsg; 1206 1207 /* 1208 * Dump each fanout, bailing if error is non-zero. 1209 */ 1210 1211 error = sadb_dump(ah_pfkey_q, mp, ksi->ks_in_serial, &ah_sadb.s_v4); 1212 if (error != 0) 1213 goto bail; 1214 1215 error = sadb_dump(ah_pfkey_q, mp, ksi->ks_in_serial, &ah_sadb.s_v6); 1216 bail: 1217 ASSERT(mp->b_cont != NULL); 1218 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 1219 samsg->sadb_msg_errno = (uint8_t)error; 1220 sadb_pfkey_echo(ah_pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi, 1221 NULL); 1222 } 1223 1224 /* 1225 * AH parsing of PF_KEY messages. Keysock did most of the really silly 1226 * error cases. What I receive is a fully-formed, syntactically legal 1227 * PF_KEY message. I then need to check semantics... 1228 * 1229 * This code may become common to AH and ESP. Stay tuned. 1230 * 1231 * I also make the assumption that db_ref's are cool. If this assumption 1232 * is wrong, this means that someone other than keysock or me has been 1233 * mucking with PF_KEY messages. 1234 */ 1235 static void 1236 ah_parse_pfkey(mblk_t *mp) 1237 { 1238 mblk_t *msg = mp->b_cont; 1239 sadb_msg_t *samsg; 1240 keysock_in_t *ksi; 1241 int error; 1242 int diagnostic = SADB_X_DIAGNOSTIC_NONE; 1243 1244 ASSERT(msg != NULL); 1245 samsg = (sadb_msg_t *)msg->b_rptr; 1246 ksi = (keysock_in_t *)mp->b_rptr; 1247 1248 /* 1249 * If applicable, convert unspecified AF_INET6 to unspecified 1250 * AF_INET. 1251 */ 1252 sadb_srcaddrfix(ksi); 1253 1254 switch (samsg->sadb_msg_type) { 1255 case SADB_ADD: 1256 error = ah_add_sa(mp, ksi, &diagnostic); 1257 if (error != 0) { 1258 sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic, 1259 ksi->ks_in_serial); 1260 } 1261 /* else ah_add_sa() took care of things. */ 1262 break; 1263 case SADB_DELETE: 1264 error = ah_del_sa(mp, ksi, &diagnostic); 1265 if (error != 0) { 1266 sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic, 1267 ksi->ks_in_serial); 1268 } 1269 /* Else ah_del_sa() took care of things. */ 1270 break; 1271 case SADB_GET: 1272 error = sadb_get_sa(mp, ksi, &ah_sadb, &diagnostic, ah_pfkey_q); 1273 if (error != 0) { 1274 sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic, 1275 ksi->ks_in_serial); 1276 } 1277 /* Else sadb_get_sa() took care of things. */ 1278 break; 1279 case SADB_FLUSH: 1280 sadbp_flush(&ah_sadb); 1281 sadb_pfkey_echo(ah_pfkey_q, mp, samsg, ksi, NULL); 1282 break; 1283 case SADB_REGISTER: 1284 /* 1285 * Hmmm, let's do it! Check for extensions (there should 1286 * be none), extract the fields, call ah_register_out(), 1287 * then either free or report an error. 1288 * 1289 * Keysock takes care of the PF_KEY bookkeeping for this. 1290 */ 1291 if (ah_register_out(samsg->sadb_msg_seq, samsg->sadb_msg_pid, 1292 ksi->ks_in_serial)) { 1293 freemsg(mp); 1294 } else { 1295 /* 1296 * Only way this path hits is if there is a memory 1297 * failure. It will not return B_FALSE because of 1298 * lack of ah_pfkey_q if I am in wput(). 1299 */ 1300 sadb_pfkey_error(ah_pfkey_q, mp, ENOMEM, diagnostic, 1301 ksi->ks_in_serial); 1302 } 1303 break; 1304 case SADB_UPDATE: 1305 /* 1306 * Find a larval, if not there, find a full one and get 1307 * strict. 1308 */ 1309 error = ah_update_sa(mp, ksi, &diagnostic); 1310 if (error != 0) { 1311 sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic, 1312 ksi->ks_in_serial); 1313 } 1314 /* else ah_update_sa() took care of things. */ 1315 break; 1316 case SADB_GETSPI: 1317 /* 1318 * Reserve a new larval entry. 1319 */ 1320 ah_getspi(mp, ksi); 1321 break; 1322 case SADB_ACQUIRE: 1323 /* 1324 * Find larval and/or ACQUIRE record and kill it (them), I'm 1325 * most likely an error. Inbound ACQUIRE messages should only 1326 * have the base header. 1327 */ 1328 sadb_in_acquire(samsg, &ah_sadb, ah_pfkey_q); 1329 freemsg(mp); 1330 break; 1331 case SADB_DUMP: 1332 /* 1333 * Dump all entries. 1334 */ 1335 ah_dump(mp, ksi); 1336 /* ah_dump will take care of the return message, etc. */ 1337 break; 1338 case SADB_EXPIRE: 1339 /* Should never reach me. */ 1340 sadb_pfkey_error(ah_pfkey_q, mp, EOPNOTSUPP, diagnostic, 1341 ksi->ks_in_serial); 1342 break; 1343 default: 1344 sadb_pfkey_error(ah_pfkey_q, mp, EINVAL, 1345 SADB_X_DIAGNOSTIC_UNKNOWN_MSG, ksi->ks_in_serial); 1346 break; 1347 } 1348 } 1349 1350 /* 1351 * Handle case where PF_KEY says it can't find a keysock for one of my 1352 * ACQUIRE messages. 1353 */ 1354 static void 1355 ah_keysock_no_socket(mblk_t *mp) 1356 { 1357 sadb_msg_t *samsg; 1358 keysock_out_err_t *kse = (keysock_out_err_t *)mp->b_rptr; 1359 1360 if (mp->b_cont == NULL) { 1361 freemsg(mp); 1362 return; 1363 } 1364 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 1365 1366 /* 1367 * If keysock can't find any registered, delete the acquire record 1368 * immediately, and handle errors. 1369 */ 1370 if (samsg->sadb_msg_type == SADB_ACQUIRE) { 1371 samsg->sadb_msg_errno = kse->ks_err_errno; 1372 samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg)); 1373 /* 1374 * Use the write-side of the ah_pfkey_q, in case there is 1375 * no ah_sadb.s_ip_q. 1376 */ 1377 sadb_in_acquire(samsg, &ah_sadb, WR(ah_pfkey_q)); 1378 } 1379 1380 freemsg(mp); 1381 } 1382 1383 /* 1384 * First-cut reality check for an inbound PF_KEY message. 1385 */ 1386 static boolean_t 1387 ah_pfkey_reality_failures(mblk_t *mp, keysock_in_t *ksi) 1388 { 1389 int diagnostic; 1390 1391 if (mp->b_cont == NULL) { 1392 freemsg(mp); 1393 return (B_TRUE); 1394 } 1395 1396 if (ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT] != NULL) { 1397 diagnostic = SADB_X_DIAGNOSTIC_EKEY_PRESENT; 1398 goto badmsg; 1399 } 1400 if (ksi->ks_in_extv[SADB_EXT_PROPOSAL] != NULL) { 1401 diagnostic = SADB_X_DIAGNOSTIC_PROP_PRESENT; 1402 goto badmsg; 1403 } 1404 if (ksi->ks_in_extv[SADB_EXT_SUPPORTED_AUTH] != NULL || 1405 ksi->ks_in_extv[SADB_EXT_SUPPORTED_ENCRYPT] != NULL) { 1406 diagnostic = SADB_X_DIAGNOSTIC_SUPP_PRESENT; 1407 goto badmsg; 1408 } 1409 if (ksi->ks_in_srctype == KS_IN_ADDR_MBCAST) { 1410 diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC; 1411 goto badmsg; 1412 } 1413 if (ksi->ks_in_dsttype == KS_IN_ADDR_UNSPEC) { 1414 diagnostic = SADB_X_DIAGNOSTIC_BAD_DST; 1415 goto badmsg; 1416 } 1417 1418 return (B_FALSE); /* False ==> no failures */ 1419 1420 badmsg: 1421 sadb_pfkey_error(ah_pfkey_q, mp, EINVAL, diagnostic, ksi->ks_in_serial); 1422 return (B_TRUE); /* True ==> failures */ 1423 } 1424 1425 /* 1426 * AH module write put routine. 1427 */ 1428 static void 1429 ipsecah_wput(queue_t *q, mblk_t *mp) 1430 { 1431 ipsec_info_t *ii; 1432 keysock_in_t *ksi; 1433 int rc; 1434 struct iocblk *iocp; 1435 1436 ah3dbg(("In ah_wput().\n")); 1437 1438 /* NOTE: Each case must take care of freeing or passing mp. */ 1439 switch (mp->b_datap->db_type) { 1440 case M_CTL: 1441 if ((mp->b_wptr - mp->b_rptr) < sizeof (ipsec_info_t)) { 1442 /* Not big enough message. */ 1443 freemsg(mp); 1444 break; 1445 } 1446 ii = (ipsec_info_t *)mp->b_rptr; 1447 1448 switch (ii->ipsec_info_type) { 1449 case KEYSOCK_OUT_ERR: 1450 ah1dbg(("Got KEYSOCK_OUT_ERR message.\n")); 1451 ah_keysock_no_socket(mp); 1452 break; 1453 case KEYSOCK_IN: 1454 AH_BUMP_STAT(keysock_in); 1455 ah3dbg(("Got KEYSOCK_IN message.\n")); 1456 ksi = (keysock_in_t *)ii; 1457 /* 1458 * Some common reality checks. 1459 */ 1460 1461 if (ah_pfkey_reality_failures(mp, ksi)) 1462 return; 1463 1464 /* 1465 * Use 'q' instead of ah_sadb.s_ip_q, since 1466 * it's the write side already, and it'll go 1467 * down to IP. Use ah_pfkey_q because we 1468 * wouldn't get here if that weren't set, and 1469 * the RD(q) has been done already. 1470 */ 1471 if (ksi->ks_in_srctype == KS_IN_ADDR_UNKNOWN) { 1472 rc = sadb_addrcheck(q, ah_pfkey_q, mp, 1473 ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC], 1474 ksi->ks_in_serial); 1475 if (rc == KS_IN_ADDR_UNKNOWN) 1476 return; 1477 else 1478 ksi->ks_in_srctype = rc; 1479 } 1480 if (ksi->ks_in_dsttype == KS_IN_ADDR_UNKNOWN) { 1481 rc = sadb_addrcheck(q, ah_pfkey_q, mp, 1482 ksi->ks_in_extv[SADB_EXT_ADDRESS_DST], 1483 ksi->ks_in_serial); 1484 if (rc == KS_IN_ADDR_UNKNOWN) 1485 return; 1486 else 1487 ksi->ks_in_dsttype = rc; 1488 } 1489 /* 1490 * XXX Proxy may be a different address family. 1491 */ 1492 if (ksi->ks_in_proxytype == KS_IN_ADDR_UNKNOWN) { 1493 rc = sadb_addrcheck(q, ah_pfkey_q, mp, 1494 ksi->ks_in_extv[SADB_EXT_ADDRESS_PROXY], 1495 ksi->ks_in_serial); 1496 if (rc == KS_IN_ADDR_UNKNOWN) 1497 return; 1498 else 1499 ksi->ks_in_proxytype = rc; 1500 } 1501 ah_parse_pfkey(mp); 1502 break; 1503 case KEYSOCK_HELLO: 1504 sadb_keysock_hello(&ah_pfkey_q, q, mp, 1505 ah_ager, &ah_event, SADB_SATYPE_AH); 1506 break; 1507 default: 1508 ah1dbg(("Got M_CTL from above of 0x%x.\n", 1509 ii->ipsec_info_type)); 1510 freemsg(mp); 1511 break; 1512 } 1513 break; 1514 case M_IOCTL: 1515 iocp = (struct iocblk *)mp->b_rptr; 1516 switch (iocp->ioc_cmd) { 1517 case ND_SET: 1518 case ND_GET: 1519 if (nd_getset(q, ipsecah_g_nd, mp)) { 1520 qreply(q, mp); 1521 return; 1522 } else { 1523 iocp->ioc_error = ENOENT; 1524 } 1525 /* FALLTHRU */ 1526 default: 1527 /* We really don't support any other ioctls, do we? */ 1528 1529 /* Return EINVAL */ 1530 if (iocp->ioc_error != ENOENT) 1531 iocp->ioc_error = EINVAL; 1532 iocp->ioc_count = 0; 1533 mp->b_datap->db_type = M_IOCACK; 1534 qreply(q, mp); 1535 return; 1536 } 1537 default: 1538 ah3dbg(("Got default message, type %d, passing to IP.\n", 1539 mp->b_datap->db_type)); 1540 putnext(q, mp); 1541 } 1542 } 1543 1544 /* 1545 * Updating use times can be tricky business if the ipsa_haspeer flag is 1546 * set. This function is called once in an SA's lifetime. 1547 * 1548 * Caller has to REFRELE "assoc" which is passed in. This function has 1549 * to REFRELE any peer SA that is obtained. 1550 */ 1551 static void 1552 ah_set_usetime(ipsa_t *assoc, boolean_t inbound) 1553 { 1554 ipsa_t *inassoc, *outassoc; 1555 isaf_t *bucket; 1556 sadb_t *sp; 1557 int outhash; 1558 boolean_t isv6; 1559 1560 /* No peer? No problem! */ 1561 if (!assoc->ipsa_haspeer) { 1562 sadb_set_usetime(assoc); 1563 return; 1564 } 1565 1566 /* 1567 * Otherwise, we want to grab both the original assoc and its peer. 1568 * There might be a race for this, but if it's a real race, the times 1569 * will be out-of-synch by at most a second, and since our time 1570 * granularity is a second, this won't be a problem. 1571 * 1572 * If we need tight synchronization on the peer SA, then we need to 1573 * reconsider. 1574 */ 1575 1576 /* Use address family to select IPv6/IPv4 */ 1577 isv6 = (assoc->ipsa_addrfam == AF_INET6); 1578 if (isv6) { 1579 sp = &ah_sadb.s_v6; 1580 } else { 1581 sp = &ah_sadb.s_v4; 1582 ASSERT(assoc->ipsa_addrfam == AF_INET); 1583 } 1584 if (inbound) { 1585 inassoc = assoc; 1586 if (isv6) 1587 outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *) 1588 &inassoc->ipsa_dstaddr)); 1589 else 1590 outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *) 1591 &inassoc->ipsa_dstaddr)); 1592 bucket = &sp->sdb_of[outhash]; 1593 1594 mutex_enter(&bucket->isaf_lock); 1595 outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi, 1596 inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr, 1597 inassoc->ipsa_addrfam); 1598 mutex_exit(&bucket->isaf_lock); 1599 if (outassoc == NULL) { 1600 /* Q: Do we wish to set haspeer == B_FALSE? */ 1601 ah0dbg(("ah_set_usetime: " 1602 "can't find peer for inbound.\n")); 1603 sadb_set_usetime(inassoc); 1604 return; 1605 } 1606 } else { 1607 outassoc = assoc; 1608 bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi); 1609 mutex_enter(&bucket->isaf_lock); 1610 inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi, 1611 outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr, 1612 outassoc->ipsa_addrfam); 1613 mutex_exit(&bucket->isaf_lock); 1614 if (inassoc == NULL) { 1615 /* Q: Do we wish to set haspeer == B_FALSE? */ 1616 ah0dbg(("ah_set_usetime: " 1617 "can't find peer for outbound.\n")); 1618 sadb_set_usetime(outassoc); 1619 return; 1620 } 1621 } 1622 1623 /* Update usetime on both. */ 1624 sadb_set_usetime(inassoc); 1625 sadb_set_usetime(outassoc); 1626 1627 /* 1628 * REFRELE any peer SA. 1629 * 1630 * Because of the multi-line macro nature of IPSA_REFRELE, keep 1631 * them in { }. 1632 */ 1633 if (inbound) { 1634 IPSA_REFRELE(outassoc); 1635 } else { 1636 IPSA_REFRELE(inassoc); 1637 } 1638 } 1639 1640 /* 1641 * Add a number of bytes to what the SA has protected so far. Return 1642 * B_TRUE if the SA can still protect that many bytes. 1643 * 1644 * Caller must REFRELE the passed-in assoc. This function must REFRELE 1645 * any obtained peer SA. 1646 */ 1647 static boolean_t 1648 ah_age_bytes(ipsa_t *assoc, uint64_t bytes, boolean_t inbound) 1649 { 1650 ipsa_t *inassoc, *outassoc; 1651 isaf_t *bucket; 1652 boolean_t inrc, outrc, isv6; 1653 sadb_t *sp; 1654 int outhash; 1655 1656 /* No peer? No problem! */ 1657 if (!assoc->ipsa_haspeer) { 1658 return (sadb_age_bytes(ah_pfkey_q, assoc, bytes, 1659 B_TRUE)); 1660 } 1661 1662 /* 1663 * Otherwise, we want to grab both the original assoc and its peer. 1664 * There might be a race for this, but if it's a real race, two 1665 * expire messages may occur. We limit this by only sending the 1666 * expire message on one of the peers, we'll pick the inbound 1667 * arbitrarily. 1668 * 1669 * If we need tight synchronization on the peer SA, then we need to 1670 * reconsider. 1671 */ 1672 1673 /* Pick v4/v6 bucket based on addrfam. */ 1674 isv6 = (assoc->ipsa_addrfam == AF_INET6); 1675 if (isv6) { 1676 sp = &ah_sadb.s_v6; 1677 } else { 1678 sp = &ah_sadb.s_v4; 1679 ASSERT(assoc->ipsa_addrfam == AF_INET); 1680 } 1681 if (inbound) { 1682 inassoc = assoc; 1683 if (isv6) 1684 outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *) 1685 &inassoc->ipsa_dstaddr)); 1686 else 1687 outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *) 1688 &inassoc->ipsa_dstaddr)); 1689 bucket = &sp->sdb_of[outhash]; 1690 mutex_enter(&bucket->isaf_lock); 1691 outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi, 1692 inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr, 1693 inassoc->ipsa_addrfam); 1694 mutex_exit(&bucket->isaf_lock); 1695 if (outassoc == NULL) { 1696 /* Q: Do we wish to set haspeer == B_FALSE? */ 1697 ah0dbg(("ah_age_bytes: " 1698 "can't find peer for inbound.\n")); 1699 return (sadb_age_bytes(ah_pfkey_q, inassoc, 1700 bytes, B_TRUE)); 1701 } 1702 } else { 1703 outassoc = assoc; 1704 bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi); 1705 mutex_enter(&bucket->isaf_lock); 1706 inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi, 1707 outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr, 1708 outassoc->ipsa_addrfam); 1709 mutex_exit(&bucket->isaf_lock); 1710 if (inassoc == NULL) { 1711 /* Q: Do we wish to set haspeer == B_FALSE? */ 1712 ah0dbg(("ah_age_bytes: " 1713 "can't find peer for outbound.\n")); 1714 return (sadb_age_bytes(ah_pfkey_q, outassoc, 1715 bytes, B_TRUE)); 1716 } 1717 } 1718 1719 inrc = sadb_age_bytes(ah_pfkey_q, inassoc, bytes, B_TRUE); 1720 outrc = sadb_age_bytes(ah_pfkey_q, outassoc, bytes, B_FALSE); 1721 1722 /* 1723 * REFRELE any peer SA. 1724 * 1725 * Because of the multi-line macro nature of IPSA_REFRELE, keep 1726 * them in { }. 1727 */ 1728 if (inbound) { 1729 IPSA_REFRELE(outassoc); 1730 } else { 1731 IPSA_REFRELE(inassoc); 1732 } 1733 1734 return (inrc && outrc); 1735 } 1736 1737 /* 1738 * Perform the really difficult work of inserting the proposed situation. 1739 * Called while holding the algorithm lock. 1740 */ 1741 static void 1742 ah_insert_prop(sadb_prop_t *prop, ipsacq_t *acqrec, uint_t combs) 1743 { 1744 sadb_comb_t *comb = (sadb_comb_t *)(prop + 1); 1745 ipsec_out_t *io; 1746 ipsec_action_t *ap; 1747 ipsec_prot_t *prot; 1748 io = (ipsec_out_t *)acqrec->ipsacq_mp->b_rptr; 1749 1750 ASSERT(MUTEX_HELD(&alg_lock)); 1751 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1752 1753 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 1754 prop->sadb_prop_len = SADB_8TO64(sizeof (sadb_prop_t)); 1755 *(uint32_t *)(&prop->sadb_prop_replay) = 0; /* Quick zero-out! */ 1756 1757 prop->sadb_prop_replay = ipsecah_replay_size; 1758 1759 /* 1760 * Based upon algorithm properties, and what-not, prioritize a 1761 * proposal, based on the ordering of the ah algorithms in the 1762 * alternatives presented in the policy rule passed down 1763 * through the ipsec_out_t and attached to the acquire record. 1764 */ 1765 1766 for (ap = acqrec->ipsacq_act; ap != NULL; 1767 ap = ap->ipa_next) { 1768 ipsec_alginfo_t *aalg; 1769 1770 if ((ap->ipa_act.ipa_type != IPSEC_POLICY_APPLY) || 1771 (!ap->ipa_act.ipa_apply.ipp_use_ah)) 1772 continue; 1773 1774 prot = &ap->ipa_act.ipa_apply; 1775 1776 ASSERT(prot->ipp_auth_alg > 0); 1777 1778 aalg = ipsec_alglists[IPSEC_ALG_AUTH][prot->ipp_auth_alg]; 1779 if (aalg == NULL || !ALG_VALID(aalg)) 1780 continue; 1781 1782 /* XXX check aalg for duplicates??.. */ 1783 1784 comb->sadb_comb_flags = 0; 1785 comb->sadb_comb_reserved = 0; 1786 comb->sadb_comb_encrypt = 0; 1787 comb->sadb_comb_encrypt_minbits = 0; 1788 comb->sadb_comb_encrypt_maxbits = 0; 1789 1790 comb->sadb_comb_auth = aalg->alg_id; 1791 comb->sadb_comb_auth_minbits = 1792 MAX(prot->ipp_ah_minbits, aalg->alg_ef_minbits); 1793 comb->sadb_comb_auth_maxbits = 1794 MIN(prot->ipp_ah_maxbits, aalg->alg_ef_maxbits); 1795 1796 /* 1797 * The following may be based on algorithm 1798 * properties, but in the meantime, we just pick 1799 * some good, sensible numbers. Key mgmt. can 1800 * (and perhaps should) be the place to finalize 1801 * such decisions. 1802 */ 1803 1804 /* 1805 * No limits on allocations, since we really don't 1806 * support that concept currently. 1807 */ 1808 comb->sadb_comb_soft_allocations = 0; 1809 comb->sadb_comb_hard_allocations = 0; 1810 1811 /* 1812 * These may want to come from policy rule.. 1813 */ 1814 comb->sadb_comb_soft_bytes = ipsecah_default_soft_bytes; 1815 comb->sadb_comb_hard_bytes = ipsecah_default_hard_bytes; 1816 comb->sadb_comb_soft_addtime = ipsecah_default_soft_addtime; 1817 comb->sadb_comb_hard_addtime = ipsecah_default_hard_addtime; 1818 comb->sadb_comb_soft_usetime = ipsecah_default_soft_usetime; 1819 comb->sadb_comb_hard_usetime = ipsecah_default_hard_usetime; 1820 1821 prop->sadb_prop_len += SADB_8TO64(sizeof (*comb)); 1822 if (--combs == 0) 1823 return; /* out of space.. */ 1824 comb++; 1825 } 1826 } 1827 1828 /* 1829 * Prepare and actually send the SADB_ACQUIRE message to PF_KEY. 1830 */ 1831 static void 1832 ah_send_acquire(ipsacq_t *acqrec, mblk_t *extended) 1833 { 1834 mblk_t *pfkeymp, *msgmp; 1835 uint_t allocsize, combs; 1836 sadb_msg_t *samsg; 1837 sadb_prop_t *prop; 1838 uint8_t *cur, *end; 1839 1840 AH_BUMP_STAT(acquire_requests); 1841 1842 ASSERT(MUTEX_HELD(&acqrec->ipsacq_lock)); 1843 1844 pfkeymp = sadb_keysock_out(0); 1845 if (pfkeymp == NULL) { 1846 ah1dbg(("ah_send_acquire: 1st allocb() failed.\n")); 1847 /* Just bail. */ 1848 goto done; 1849 } 1850 1851 /* 1852 * First, allocate a basic ACQUIRE message. Beyond that, 1853 * you need to extract certificate info from 1854 */ 1855 allocsize = sizeof (sadb_msg_t) + sizeof (sadb_address_t) + 1856 sizeof (sadb_address_t) + sizeof (sadb_prop_t); 1857 1858 switch (acqrec->ipsacq_addrfam) { 1859 case AF_INET: 1860 allocsize += 2 * sizeof (struct sockaddr_in); 1861 break; 1862 case AF_INET6: 1863 allocsize += 2 * sizeof (struct sockaddr_in6); 1864 break; 1865 } 1866 1867 mutex_enter(&alg_lock); 1868 1869 combs = ipsec_nalgs[IPSEC_ALG_AUTH]; 1870 1871 allocsize += combs * sizeof (sadb_comb_t); 1872 1873 /* 1874 * XXX If there are: 1875 * certificate IDs 1876 * proxy address 1877 * <Others> 1878 * add additional allocation size. 1879 */ 1880 1881 msgmp = allocb(allocsize, BPRI_HI); 1882 if (msgmp == NULL) { 1883 ah0dbg(("ah_send_acquire: 2nd allocb() failed.\n")); 1884 /* Just bail. */ 1885 freemsg(pfkeymp); 1886 pfkeymp = NULL; 1887 goto done; 1888 } 1889 1890 cur = msgmp->b_rptr; 1891 end = cur + allocsize; 1892 samsg = (sadb_msg_t *)cur; 1893 pfkeymp->b_cont = msgmp; 1894 1895 /* Set up ACQUIRE. */ 1896 cur = sadb_setup_acquire(cur, end, acqrec); 1897 if (cur == NULL) { 1898 ah0dbg(("sadb_setup_acquire failed.\n")); 1899 /* Just bail. */ 1900 freemsg(pfkeymp); 1901 pfkeymp = NULL; 1902 goto done; 1903 } 1904 samsg->sadb_msg_satype = SADB_SATYPE_AH; 1905 1906 /* XXX Insert proxy address information here. */ 1907 1908 /* XXX Insert identity information here. */ 1909 1910 /* XXXMLS Insert sensitivity information here. */ 1911 1912 /* Insert proposal here. */ 1913 1914 prop = (sadb_prop_t *)(((uint64_t *)samsg) + samsg->sadb_msg_len); 1915 ah_insert_prop(prop, acqrec, combs); 1916 samsg->sadb_msg_len += prop->sadb_prop_len; 1917 msgmp->b_wptr += SADB_64TO8(samsg->sadb_msg_len); 1918 1919 done: 1920 mutex_exit(&alg_lock); 1921 1922 /* 1923 * Must mutex_exit() before sending PF_KEY message up, in 1924 * order to avoid recursive mutex_enter() if there are no registered 1925 * listeners. 1926 * 1927 * Once I've sent the message, I'm cool anyway. 1928 */ 1929 mutex_exit(&acqrec->ipsacq_lock); 1930 if (ah_pfkey_q != NULL && pfkeymp != NULL) { 1931 if (extended != NULL) { 1932 putnext(ah_pfkey_q, extended); 1933 } 1934 putnext(ah_pfkey_q, pfkeymp); 1935 return; 1936 } 1937 /* NOTE: freemsg() works for extended == NULL. */ 1938 freemsg(extended); 1939 freemsg(pfkeymp); 1940 } 1941 1942 /* 1943 * Handle the SADB_GETSPI message. Create a larval SA. 1944 */ 1945 static void 1946 ah_getspi(mblk_t *mp, keysock_in_t *ksi) 1947 { 1948 ipsa_t *newbie, *target; 1949 isaf_t *outbound, *inbound; 1950 int rc, diagnostic; 1951 sadb_sa_t *assoc; 1952 keysock_out_t *kso; 1953 uint32_t newspi; 1954 1955 /* 1956 * Randomly generate a proposed SPI value. 1957 */ 1958 (void) random_get_pseudo_bytes((uint8_t *)&newspi, sizeof (uint32_t)); 1959 newbie = sadb_getspi(ksi, newspi, &diagnostic); 1960 1961 if (newbie == NULL) { 1962 sadb_pfkey_error(ah_pfkey_q, mp, ENOMEM, diagnostic, 1963 ksi->ks_in_serial); 1964 return; 1965 } else if (newbie == (ipsa_t *)-1) { 1966 sadb_pfkey_error(ah_pfkey_q, mp, EINVAL, diagnostic, 1967 ksi->ks_in_serial); 1968 return; 1969 } 1970 1971 /* 1972 * XXX - We may randomly collide. We really should recover from this. 1973 * Unfortunately, that could require spending way-too-much-time 1974 * in here. For now, let the user retry. 1975 */ 1976 1977 if (newbie->ipsa_addrfam == AF_INET6) { 1978 outbound = OUTBOUND_BUCKET_V6(&ah_sadb.s_v6, 1979 *(uint32_t *)(newbie->ipsa_dstaddr)); 1980 inbound = INBOUND_BUCKET(&ah_sadb.s_v6, newbie->ipsa_spi); 1981 } else { 1982 outbound = OUTBOUND_BUCKET_V4(&ah_sadb.s_v4, 1983 *(uint32_t *)(newbie->ipsa_dstaddr)); 1984 inbound = INBOUND_BUCKET(&ah_sadb.s_v4, newbie->ipsa_spi); 1985 } 1986 1987 mutex_enter(&outbound->isaf_lock); 1988 mutex_enter(&inbound->isaf_lock); 1989 1990 /* 1991 * Check for collisions (i.e. did sadb_getspi() return with something 1992 * that already exists?). 1993 * 1994 * Try outbound first. Even though SADB_GETSPI is traditionally 1995 * for inbound SAs, you never know what a user might do. 1996 */ 1997 target = ipsec_getassocbyspi(outbound, newbie->ipsa_spi, 1998 newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, newbie->ipsa_addrfam); 1999 if (target == NULL) { 2000 target = ipsec_getassocbyspi(inbound, newbie->ipsa_spi, 2001 newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, 2002 newbie->ipsa_addrfam); 2003 } 2004 2005 /* 2006 * I don't have collisions elsewhere! 2007 * (Nor will I because I'm still holding inbound/outbound locks.) 2008 */ 2009 2010 if (target != NULL) { 2011 rc = EEXIST; 2012 IPSA_REFRELE(target); 2013 } else { 2014 /* 2015 * sadb_insertassoc() also checks for collisions, so 2016 * if there's a colliding larval entry, rc will be set 2017 * to EEXIST. 2018 */ 2019 rc = sadb_insertassoc(newbie, inbound); 2020 (void) drv_getparm(TIME, &newbie->ipsa_hardexpiretime); 2021 newbie->ipsa_hardexpiretime += ipsecah_larval_timeout; 2022 } 2023 2024 /* 2025 * Can exit outbound mutex. Hold inbound until we're done with 2026 * newbie. 2027 */ 2028 mutex_exit(&outbound->isaf_lock); 2029 2030 if (rc != 0) { 2031 mutex_exit(&inbound->isaf_lock); 2032 IPSA_REFRELE(newbie); 2033 sadb_pfkey_error(ah_pfkey_q, mp, rc, SADB_X_DIAGNOSTIC_NONE, 2034 ksi->ks_in_serial); 2035 return; 2036 } 2037 2038 /* Can write here because I'm still holding the bucket lock. */ 2039 newbie->ipsa_type = SADB_SATYPE_AH; 2040 2041 /* 2042 * Construct successful return message. We have one thing going 2043 * for us in PF_KEY v2. That's the fact that 2044 * sizeof (sadb_spirange_t) == sizeof (sadb_sa_t) 2045 */ 2046 assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE]; 2047 assoc->sadb_sa_exttype = SADB_EXT_SA; 2048 assoc->sadb_sa_spi = newbie->ipsa_spi; 2049 *((uint64_t *)(&assoc->sadb_sa_replay)) = 0; 2050 mutex_exit(&inbound->isaf_lock); 2051 2052 /* Convert KEYSOCK_IN to KEYSOCK_OUT. */ 2053 kso = (keysock_out_t *)ksi; 2054 kso->ks_out_len = sizeof (*kso); 2055 kso->ks_out_serial = ksi->ks_in_serial; 2056 kso->ks_out_type = KEYSOCK_OUT; 2057 2058 /* 2059 * Can safely putnext() to ah_pfkey_q, because this is a turnaround 2060 * from the ah_pfkey_q. 2061 */ 2062 putnext(ah_pfkey_q, mp); 2063 } 2064 2065 /* 2066 * IPv6 sends up the ICMP errors for validation and the removal of the AH 2067 * header. 2068 */ 2069 static ipsec_status_t 2070 ah_icmp_error_v6(mblk_t *ipsec_mp) 2071 { 2072 mblk_t *mp; 2073 ip6_t *ip6h, *oip6h; 2074 uint16_t hdr_length, ah_length; 2075 uint8_t *nexthdrp; 2076 ah_t *ah; 2077 icmp6_t *icmp6; 2078 isaf_t *isaf; 2079 ipsa_t *assoc; 2080 uint8_t *post_ah_ptr; 2081 2082 mp = ipsec_mp->b_cont; 2083 ASSERT(mp->b_datap->db_type == M_CTL); 2084 2085 /* 2086 * Change the type to M_DATA till we finish pullups. 2087 */ 2088 mp->b_datap->db_type = M_DATA; 2089 2090 /* 2091 * Eat the cost of a pullupmsg() for now. It makes the rest of this 2092 * code far less convoluted. 2093 */ 2094 if (!pullupmsg(mp, -1) || 2095 !ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, &hdr_length, 2096 &nexthdrp) || 2097 mp->b_rptr + hdr_length + sizeof (icmp6_t) + sizeof (ip6_t) + 2098 sizeof (ah_t) > mp->b_wptr) { 2099 IP_AH_BUMP_STAT(in_discards); 2100 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_nomem, 2101 &ah_dropper); 2102 return (IPSEC_STATUS_FAILED); 2103 } 2104 2105 oip6h = (ip6_t *)mp->b_rptr; 2106 icmp6 = (icmp6_t *)((uint8_t *)oip6h + hdr_length); 2107 ip6h = (ip6_t *)(icmp6 + 1); 2108 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp)) { 2109 IP_AH_BUMP_STAT(in_discards); 2110 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, 2111 &ipdrops_ah_bad_v6_hdrs, &ah_dropper); 2112 return (IPSEC_STATUS_FAILED); 2113 } 2114 ah = (ah_t *)((uint8_t *)ip6h + hdr_length); 2115 2116 isaf = OUTBOUND_BUCKET_V6(&ah_sadb.s_v6, ip6h->ip6_dst); 2117 mutex_enter(&isaf->isaf_lock); 2118 assoc = ipsec_getassocbyspi(isaf, ah->ah_spi, 2119 (uint32_t *)&ip6h->ip6_src, (uint32_t *)&ip6h->ip6_dst, AF_INET6); 2120 mutex_exit(&isaf->isaf_lock); 2121 2122 if (assoc == NULL) { 2123 IP_AH_BUMP_STAT(lookup_failure); 2124 IP_AH_BUMP_STAT(in_discards); 2125 if (ipsecah_log_unknown_spi) { 2126 ipsec_assocfailure(info.mi_idnum, 0, 0, 2127 SL_CONSOLE | SL_WARN | SL_ERROR, 2128 "Bad ICMP message - No association for the " 2129 "attached AH header whose spi is 0x%x, " 2130 "sender is 0x%x\n", 2131 ah->ah_spi, &oip6h->ip6_src, AF_INET6); 2132 } 2133 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa, 2134 &ah_dropper); 2135 return (IPSEC_STATUS_FAILED); 2136 } 2137 2138 IPSA_REFRELE(assoc); 2139 2140 /* 2141 * There seems to be a valid association. If there is enough of AH 2142 * header remove it, otherwise bail. One could check whether it has 2143 * complete AH header plus 8 bytes but it does not make sense if an 2144 * icmp error is returned for ICMP messages e.g ICMP time exceeded, 2145 * that are being sent up. Let the caller figure out. 2146 * 2147 * NOTE: ah_length is the number of 32 bit words minus 2. 2148 */ 2149 ah_length = (ah->ah_length << 2) + 8; 2150 post_ah_ptr = (uint8_t *)ah + ah_length; 2151 2152 if (post_ah_ptr > mp->b_wptr) { 2153 IP_AH_BUMP_STAT(in_discards); 2154 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, 2155 &ipdrops_ah_bad_length, &ah_dropper); 2156 return (IPSEC_STATUS_FAILED); 2157 } 2158 2159 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - ah_length); 2160 *nexthdrp = ah->ah_nexthdr; 2161 ovbcopy(post_ah_ptr, ah, 2162 (size_t)((uintptr_t)mp->b_wptr - (uintptr_t)post_ah_ptr)); 2163 mp->b_wptr -= ah_length; 2164 /* Rewhack to be an ICMP error. */ 2165 mp->b_datap->db_type = M_CTL; 2166 2167 return (IPSEC_STATUS_SUCCESS); 2168 } 2169 2170 /* 2171 * IP sends up the ICMP errors for validation and the removal of 2172 * the AH header. 2173 */ 2174 static ipsec_status_t 2175 ah_icmp_error_v4(mblk_t *ipsec_mp) 2176 { 2177 mblk_t *mp; 2178 mblk_t *mp1; 2179 icmph_t *icmph; 2180 int iph_hdr_length; 2181 int hdr_length; 2182 isaf_t *hptr; 2183 ipsa_t *assoc; 2184 int ah_length; 2185 ipha_t *ipha; 2186 ipha_t *oipha; 2187 ah_t *ah; 2188 uint32_t length; 2189 int alloc_size; 2190 uint8_t nexthdr; 2191 2192 mp = ipsec_mp->b_cont; 2193 ASSERT(mp->b_datap->db_type == M_CTL); 2194 2195 /* 2196 * Change the type to M_DATA till we finish pullups. 2197 */ 2198 mp->b_datap->db_type = M_DATA; 2199 2200 oipha = ipha = (ipha_t *)mp->b_rptr; 2201 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2202 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2203 2204 ipha = (ipha_t *)&icmph[1]; 2205 hdr_length = IPH_HDR_LENGTH(ipha); 2206 2207 /* 2208 * See if we have enough to locate the SPI 2209 */ 2210 if ((uchar_t *)ipha + hdr_length + 8 > mp->b_wptr) { 2211 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 8 - 2212 mp->b_rptr)) { 2213 ipsec_rl_strlog(info.mi_idnum, 0, 0, 2214 SL_WARN | SL_ERROR, 2215 "ICMP error: Small AH header\n"); 2216 IP_AH_BUMP_STAT(in_discards); 2217 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, 2218 &ipdrops_ah_bad_length, &ah_dropper); 2219 return (IPSEC_STATUS_FAILED); 2220 } 2221 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2222 ipha = (ipha_t *)&icmph[1]; 2223 } 2224 2225 ah = (ah_t *)((uint8_t *)ipha + hdr_length); 2226 nexthdr = ah->ah_nexthdr; 2227 2228 hptr = OUTBOUND_BUCKET_V4(&ah_sadb.s_v4, ipha->ipha_dst); 2229 mutex_enter(&hptr->isaf_lock); 2230 assoc = ipsec_getassocbyspi(hptr, ah->ah_spi, 2231 (uint32_t *)&ipha->ipha_src, (uint32_t *)&ipha->ipha_dst, AF_INET); 2232 mutex_exit(&hptr->isaf_lock); 2233 2234 if (assoc == NULL) { 2235 IP_AH_BUMP_STAT(lookup_failure); 2236 IP_AH_BUMP_STAT(in_discards); 2237 if (ipsecah_log_unknown_spi) { 2238 ipsec_assocfailure(info.mi_idnum, 0, 0, 2239 SL_CONSOLE | SL_WARN | SL_ERROR, 2240 "Bad ICMP message - No association for the " 2241 "attached AH header whose spi is 0x%x, " 2242 "sender is 0x%x\n", 2243 ah->ah_spi, &oipha->ipha_src, AF_INET); 2244 } 2245 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa, 2246 &ah_dropper); 2247 return (IPSEC_STATUS_FAILED); 2248 } 2249 2250 IPSA_REFRELE(assoc); 2251 /* 2252 * There seems to be a valid association. If there 2253 * is enough of AH header remove it, otherwise remove 2254 * as much as possible and send it back. One could check 2255 * whether it has complete AH header plus 8 bytes but it 2256 * does not make sense if an icmp error is returned for 2257 * ICMP messages e.g ICMP time exceeded, that are being 2258 * sent up. Let the caller figure out. 2259 * 2260 * NOTE: ah_length is the number of 32 bit words minus 2. 2261 */ 2262 ah_length = (ah->ah_length << 2) + 8; 2263 2264 if ((uchar_t *)ipha + hdr_length + ah_length > mp->b_wptr) { 2265 if (mp->b_cont == NULL) { 2266 /* 2267 * There is nothing to pullup. Just remove as 2268 * much as possible. This is a common case for 2269 * IPV4. 2270 */ 2271 ah_length = (mp->b_wptr - ((uchar_t *)ipha + 2272 hdr_length)); 2273 goto done; 2274 } 2275 /* Pullup the full ah header */ 2276 if (!pullupmsg(mp, (uchar_t *)ah + ah_length - mp->b_rptr)) { 2277 /* 2278 * pullupmsg could have failed if there was not 2279 * enough to pullup or memory allocation failed. 2280 * We tried hard, give up now. 2281 */ 2282 IP_AH_BUMP_STAT(in_discards); 2283 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, 2284 &ipdrops_ah_nomem, &ah_dropper); 2285 return (IPSEC_STATUS_FAILED); 2286 } 2287 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2288 ipha = (ipha_t *)&icmph[1]; 2289 } 2290 done: 2291 /* 2292 * Remove the AH header and change the protocol. 2293 * Don't update the spi fields in the ipsec_in 2294 * message as we are called just to validate the 2295 * message attached to the ICMP message. 2296 * 2297 * If we never pulled up since all of the message 2298 * is in one single mblk, we can't remove the AH header 2299 * by just setting the b_wptr to the beginning of the 2300 * AH header. We need to allocate a mblk that can hold 2301 * up until the inner IP header and copy them. 2302 */ 2303 alloc_size = iph_hdr_length + sizeof (icmph_t) + hdr_length; 2304 2305 if ((mp1 = allocb(alloc_size, BPRI_LO)) == NULL) { 2306 IP_AH_BUMP_STAT(in_discards); 2307 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_nomem, 2308 &ah_dropper); 2309 return (IPSEC_STATUS_FAILED); 2310 } 2311 /* ICMP errors are M_CTL messages */ 2312 mp1->b_datap->db_type = M_CTL; 2313 ipsec_mp->b_cont = mp1; 2314 bcopy(mp->b_rptr, mp1->b_rptr, alloc_size); 2315 mp1->b_wptr += alloc_size; 2316 2317 /* 2318 * Skip whatever we have copied and as much of AH header 2319 * possible. If we still have something left in the original 2320 * message, tag on. 2321 */ 2322 mp->b_rptr = (uchar_t *)ipha + hdr_length + ah_length; 2323 2324 if (mp->b_rptr != mp->b_wptr) { 2325 mp1->b_cont = mp; 2326 } else { 2327 if (mp->b_cont != NULL) 2328 mp1->b_cont = mp->b_cont; 2329 freeb(mp); 2330 } 2331 2332 ipha = (ipha_t *)(mp1->b_rptr + iph_hdr_length + sizeof (icmph_t)); 2333 ipha->ipha_protocol = nexthdr; 2334 length = ntohs(ipha->ipha_length); 2335 length -= ah_length; 2336 ipha->ipha_length = htons((uint16_t)length); 2337 ipha->ipha_hdr_checksum = 0; 2338 ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha); 2339 2340 return (IPSEC_STATUS_SUCCESS); 2341 } 2342 2343 /* 2344 * IP calls this to validate the ICMP errors that 2345 * we got from the network. 2346 */ 2347 ipsec_status_t 2348 ipsecah_icmp_error(mblk_t *mp) 2349 { 2350 ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr; 2351 2352 if (ii->ipsec_in_v4) 2353 return (ah_icmp_error_v4(mp)); 2354 else 2355 return (ah_icmp_error_v6(mp)); 2356 } 2357 2358 static int 2359 ah_fix_tlv_options_v6(uint8_t *oi_opt, uint8_t *pi_opt, uint_t ehdrlen, 2360 uint8_t hdr_type, boolean_t copy_always) 2361 { 2362 uint8_t opt_type; 2363 uint_t optlen; 2364 2365 ASSERT(hdr_type == IPPROTO_DSTOPTS || hdr_type == IPPROTO_HOPOPTS); 2366 2367 /* 2368 * Copy the next header and hdr ext. len of the HOP-by-HOP 2369 * and Destination option. 2370 */ 2371 *pi_opt++ = *oi_opt++; 2372 *pi_opt++ = *oi_opt++; 2373 ehdrlen -= 2; 2374 2375 /* 2376 * Now handle all the TLV encoded options. 2377 */ 2378 while (ehdrlen != 0) { 2379 opt_type = *oi_opt; 2380 2381 if (opt_type == IP6OPT_PAD1) { 2382 optlen = 1; 2383 } else { 2384 if (ehdrlen < 2) 2385 goto bad_opt; 2386 optlen = 2 + oi_opt[1]; 2387 if (optlen > ehdrlen) 2388 goto bad_opt; 2389 } 2390 if (copy_always || !(opt_type & IP6OPT_MUTABLE)) { 2391 bcopy(oi_opt, pi_opt, optlen); 2392 } else { 2393 if (optlen == 1) { 2394 *pi_opt = 0; 2395 } else { 2396 /* 2397 * Copy the type and data length fields. 2398 * Zero the option data by skipping 2399 * option type and option data len 2400 * fields. 2401 */ 2402 *pi_opt = *oi_opt; 2403 *(pi_opt + 1) = *(oi_opt + 1); 2404 bzero(pi_opt + 2, optlen - 2); 2405 } 2406 } 2407 ehdrlen -= optlen; 2408 oi_opt += optlen; 2409 pi_opt += optlen; 2410 } 2411 return (0); 2412 bad_opt: 2413 return (-1); 2414 } 2415 2416 /* 2417 * Construct a pseudo header for AH, processing all the options. 2418 * 2419 * oip6h is the IPv6 header of the incoming or outgoing packet. 2420 * ip6h is the pointer to the pseudo headers IPV6 header. All 2421 * the space needed for the options have been allocated including 2422 * the AH header. 2423 * 2424 * If copy_always is set, all the options that appear before AH are copied 2425 * blindly without checking for IP6OPT_MUTABLE. This is used by 2426 * ah_auth_out_done(). Please refer to that function for details. 2427 * 2428 * NOTE : 2429 * 2430 * * AH header is never copied in this function even if copy_always 2431 * is set. It just returns the ah_offset - offset of the AH header 2432 * and the caller needs to do the copying. This is done so that we 2433 * don't have pass extra arguments e.g. SA etc. and also, 2434 * it is not needed when ah_auth_out_done is calling this function. 2435 */ 2436 static uint_t 2437 ah_fix_phdr_v6(ip6_t *ip6h, ip6_t *oip6h, boolean_t outbound, 2438 boolean_t copy_always) 2439 { 2440 uint8_t *oi_opt; 2441 uint8_t *pi_opt; 2442 uint8_t nexthdr; 2443 uint8_t *prev_nexthdr; 2444 ip6_hbh_t *hbhhdr; 2445 ip6_dest_t *dsthdr = NULL; 2446 ip6_rthdr0_t *rthdr; 2447 int ehdrlen; 2448 ah_t *ah; 2449 int ret; 2450 2451 /* 2452 * In the outbound case for source route, ULP has already moved 2453 * the first hop, which is now in ip6_dst. We need to re-arrange 2454 * the header to make it look like how it would appear in the 2455 * receiver i.e 2456 * 2457 * Because of ip_massage_options_v6 the header looks like 2458 * this : 2459 * 2460 * ip6_src = S, ip6_dst = I1. followed by I2,I3,D. 2461 * 2462 * When it reaches the receiver, it would look like 2463 * 2464 * ip6_src = S, ip6_dst = D. followed by I1,I2,I3. 2465 * 2466 * NOTE : We assume that there are no problems with the options 2467 * as IP should have already checked this. 2468 */ 2469 2470 oi_opt = (uchar_t *)&oip6h[1]; 2471 pi_opt = (uchar_t *)&ip6h[1]; 2472 2473 /* 2474 * We set the prev_nexthdr properly in the pseudo header. 2475 * After we finish authentication and come back from the 2476 * algorithm module, pseudo header will become the real 2477 * IP header. 2478 */ 2479 prev_nexthdr = (uint8_t *)&ip6h->ip6_nxt; 2480 nexthdr = oip6h->ip6_nxt; 2481 /* Assume IP has already stripped it */ 2482 ASSERT(nexthdr != IPPROTO_FRAGMENT && nexthdr != IPPROTO_RAW); 2483 ah = NULL; 2484 dsthdr = NULL; 2485 for (;;) { 2486 switch (nexthdr) { 2487 case IPPROTO_HOPOPTS: 2488 hbhhdr = (ip6_hbh_t *)oi_opt; 2489 nexthdr = hbhhdr->ip6h_nxt; 2490 ehdrlen = 8 * (hbhhdr->ip6h_len + 1); 2491 ret = ah_fix_tlv_options_v6(oi_opt, pi_opt, ehdrlen, 2492 IPPROTO_HOPOPTS, copy_always); 2493 /* 2494 * Return a zero offset indicating error if there 2495 * was error. 2496 */ 2497 if (ret == -1) 2498 return (0); 2499 hbhhdr = (ip6_hbh_t *)pi_opt; 2500 prev_nexthdr = (uint8_t *)&hbhhdr->ip6h_nxt; 2501 break; 2502 case IPPROTO_ROUTING: 2503 rthdr = (ip6_rthdr0_t *)oi_opt; 2504 nexthdr = rthdr->ip6r0_nxt; 2505 ehdrlen = 8 * (rthdr->ip6r0_len + 1); 2506 if (!copy_always && outbound) { 2507 int i, left; 2508 ip6_rthdr0_t *prthdr; 2509 in6_addr_t *ap, *pap; 2510 2511 left = rthdr->ip6r0_segleft; 2512 prthdr = (ip6_rthdr0_t *)pi_opt; 2513 pap = (in6_addr_t *)(prthdr + 1); 2514 ap = (in6_addr_t *)(rthdr + 1); 2515 /* 2516 * First eight bytes except seg_left 2517 * does not change en route. 2518 */ 2519 bcopy(oi_opt, pi_opt, 8); 2520 prthdr->ip6r0_segleft = 0; 2521 /* 2522 * First address has been moved to 2523 * the destination address of the 2524 * ip header by ip_massage_options_v6. 2525 * And the real destination address is 2526 * in the last address part of the 2527 * option. 2528 */ 2529 *pap = oip6h->ip6_dst; 2530 for (i = 1; i < left - 1; i++) 2531 pap[i] = ap[i - 1]; 2532 ip6h->ip6_dst = *(ap + left - 1); 2533 } else { 2534 bcopy(oi_opt, pi_opt, ehdrlen); 2535 } 2536 rthdr = (ip6_rthdr0_t *)pi_opt; 2537 prev_nexthdr = (uint8_t *)&rthdr->ip6r0_nxt; 2538 break; 2539 case IPPROTO_DSTOPTS: 2540 /* 2541 * Destination options are tricky. If there is 2542 * a terminal (e.g. non-IPv6-extension) header 2543 * following the destination options, don't 2544 * reset prev_nexthdr or advance the AH insertion 2545 * point and just treat this as a terminal header. 2546 * 2547 * If this is an inbound packet, just deal with 2548 * it as is. 2549 */ 2550 dsthdr = (ip6_dest_t *)oi_opt; 2551 /* 2552 * XXX I hope common-subexpression elimination 2553 * saves us the double-evaluate. 2554 */ 2555 if (outbound && dsthdr->ip6d_nxt != IPPROTO_ROUTING && 2556 dsthdr->ip6d_nxt != IPPROTO_HOPOPTS) 2557 goto terminal_hdr; 2558 nexthdr = dsthdr->ip6d_nxt; 2559 ehdrlen = 8 * (dsthdr->ip6d_len + 1); 2560 ret = ah_fix_tlv_options_v6(oi_opt, pi_opt, ehdrlen, 2561 IPPROTO_DSTOPTS, copy_always); 2562 /* 2563 * Return a zero offset indicating error if there 2564 * was error. 2565 */ 2566 if (ret == -1) 2567 return (0); 2568 break; 2569 case IPPROTO_AH: 2570 /* 2571 * Be conservative in what you send. We shouldn't 2572 * see two same-scoped AH's in one packet. 2573 * (Inner-IP-scoped AH will be hit by terminal 2574 * header of IP or IPv6.) 2575 */ 2576 ASSERT(!outbound); 2577 return ((uint_t)(pi_opt - (uint8_t *)ip6h)); 2578 default: 2579 ASSERT(outbound); 2580 terminal_hdr: 2581 *prev_nexthdr = IPPROTO_AH; 2582 ah = (ah_t *)pi_opt; 2583 ah->ah_nexthdr = nexthdr; 2584 return ((uint_t)(pi_opt - (uint8_t *)ip6h)); 2585 } 2586 pi_opt += ehdrlen; 2587 oi_opt += ehdrlen; 2588 } 2589 /* NOTREACHED */ 2590 } 2591 2592 static boolean_t 2593 ah_finish_up(ah_t *phdr_ah, ah_t *inbound_ah, ipsa_t *assoc, 2594 int ah_data_sz, int ah_align_sz) 2595 { 2596 int i; 2597 2598 /* 2599 * Padding : 2600 * 2601 * 1) Authentication data may have to be padded 2602 * before ICV calculation if ICV is not a multiple 2603 * of 64 bits. This padding is arbitrary and transmitted 2604 * with the packet at the end of the authentication data. 2605 * Payload length should include the padding bytes. 2606 * 2607 * 2) Explicit padding of the whole datagram may be 2608 * required by the algorithm which need not be 2609 * transmitted. It is assumed that this will be taken 2610 * care by the algorithm module. 2611 */ 2612 bzero(phdr_ah + 1, ah_data_sz); /* Zero out ICV for pseudo-hdr. */ 2613 2614 if (inbound_ah == NULL) { 2615 /* Outbound AH datagram. */ 2616 2617 phdr_ah->ah_length = (ah_align_sz >> 2) + 1; 2618 phdr_ah->ah_reserved = 0; 2619 phdr_ah->ah_spi = assoc->ipsa_spi; 2620 2621 phdr_ah->ah_replay = 2622 htonl(atomic_add_32_nv(&assoc->ipsa_replay, 1)); 2623 if (phdr_ah->ah_replay == 0 && assoc->ipsa_replay_wsize != 0) { 2624 /* 2625 * XXX We have replay counter wrapping. We probably 2626 * want to nuke this SA (and its peer). 2627 */ 2628 ipsec_assocfailure(info.mi_idnum, 0, 0, 2629 SL_ERROR | SL_CONSOLE | SL_WARN, 2630 "Outbound AH SA (0x%x), dst %s has wrapped " 2631 "sequence.\n", phdr_ah->ah_spi, 2632 assoc->ipsa_dstaddr, assoc->ipsa_addrfam); 2633 2634 sadb_replay_delete(assoc); 2635 /* Caller will free phdr_mp and return NULL. */ 2636 return (B_FALSE); 2637 } 2638 2639 if (ah_data_sz != ah_align_sz) { 2640 uchar_t *pad = ((uchar_t *)phdr_ah + sizeof (ah_t) + 2641 ah_data_sz); 2642 2643 for (i = 0; i < (ah_align_sz - ah_data_sz); i++) { 2644 pad[i] = (uchar_t)i; /* Fill the padding */ 2645 } 2646 } 2647 } else { 2648 /* Inbound AH datagram. */ 2649 phdr_ah->ah_nexthdr = inbound_ah->ah_nexthdr; 2650 phdr_ah->ah_length = inbound_ah->ah_length; 2651 phdr_ah->ah_reserved = 0; 2652 ASSERT(inbound_ah->ah_spi == assoc->ipsa_spi); 2653 phdr_ah->ah_spi = inbound_ah->ah_spi; 2654 phdr_ah->ah_replay = inbound_ah->ah_replay; 2655 2656 if (ah_data_sz != ah_align_sz) { 2657 uchar_t *opad = ((uchar_t *)inbound_ah + sizeof (ah_t) + 2658 ah_data_sz); 2659 uchar_t *pad = ((uchar_t *)phdr_ah + sizeof (ah_t) + 2660 ah_data_sz); 2661 2662 for (i = 0; i < (ah_align_sz - ah_data_sz); i++) { 2663 pad[i] = opad[i]; /* Copy the padding */ 2664 } 2665 } 2666 } 2667 2668 return (B_TRUE); 2669 } 2670 2671 /* 2672 * Called upon failing the inbound ICV check. The message passed as 2673 * argument is freed. 2674 */ 2675 static void 2676 ah_log_bad_auth(mblk_t *ipsec_in) 2677 { 2678 mblk_t *mp = ipsec_in->b_cont->b_cont; 2679 ipsec_in_t *ii = (ipsec_in_t *)ipsec_in->b_rptr; 2680 boolean_t isv4 = ii->ipsec_in_v4; 2681 ipsa_t *assoc = ii->ipsec_in_ah_sa; 2682 int af; 2683 void *addr; 2684 2685 mp->b_rptr -= ii->ipsec_in_skip_len; 2686 2687 if (isv4) { 2688 ipha_t *ipha = (ipha_t *)mp->b_rptr; 2689 addr = &ipha->ipha_dst; 2690 af = AF_INET; 2691 } else { 2692 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 2693 addr = &ip6h->ip6_dst; 2694 af = AF_INET6; 2695 } 2696 2697 /* 2698 * Log the event. Don't print to the console, block 2699 * potential denial-of-service attack. 2700 */ 2701 AH_BUMP_STAT(bad_auth); 2702 2703 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 2704 "AH Authentication failed spi %x, dst_addr %s", 2705 assoc->ipsa_spi, addr, af); 2706 2707 IP_AH_BUMP_STAT(in_discards); 2708 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_bad_auth, 2709 &ah_dropper); 2710 } 2711 2712 /* 2713 * Kernel crypto framework callback invoked after completion of async 2714 * crypto requests. 2715 */ 2716 static void 2717 ah_kcf_callback(void *arg, int status) 2718 { 2719 mblk_t *ipsec_mp = (mblk_t *)arg; 2720 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 2721 boolean_t is_inbound = (ii->ipsec_in_type == IPSEC_IN); 2722 2723 ASSERT(ipsec_mp->b_cont != NULL); 2724 2725 if (status == CRYPTO_SUCCESS) { 2726 if (is_inbound) { 2727 if (ah_auth_in_done(ipsec_mp) != IPSEC_STATUS_SUCCESS) 2728 return; 2729 /* finish IPsec processing */ 2730 ip_fanout_proto_again(ipsec_mp, NULL, NULL, NULL); 2731 } else { 2732 ipha_t *ipha; 2733 2734 if (ah_auth_out_done(ipsec_mp) != IPSEC_STATUS_SUCCESS) 2735 return; 2736 2737 /* finish IPsec processing */ 2738 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 2739 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 2740 ip_wput_ipsec_out(NULL, ipsec_mp, ipha, NULL, 2741 NULL); 2742 } else { 2743 ip6_t *ip6h = (ip6_t *)ipha; 2744 ip_wput_ipsec_out_v6(NULL, ipsec_mp, ip6h, 2745 NULL, NULL); 2746 } 2747 } 2748 2749 } else if (status == CRYPTO_INVALID_MAC) { 2750 ah_log_bad_auth(ipsec_mp); 2751 2752 } else { 2753 ah1dbg(("ah_kcf_callback: crypto failed with 0x%x\n", status)); 2754 AH_BUMP_STAT(crypto_failures); 2755 if (is_inbound) 2756 IP_AH_BUMP_STAT(in_discards); 2757 else 2758 AH_BUMP_STAT(out_discards); 2759 ip_drop_packet(ipsec_mp, is_inbound, NULL, NULL, 2760 &ipdrops_ah_crypto_failed, &ah_dropper); 2761 } 2762 } 2763 2764 /* 2765 * Invoked on kernel crypto failure during inbound and outbound processing. 2766 */ 2767 static void 2768 ah_crypto_failed(mblk_t *mp, boolean_t is_inbound, int kef_rc) 2769 { 2770 ah1dbg(("crypto failed for %s AH with 0x%x\n", 2771 is_inbound ? "inbound" : "outbound", kef_rc)); 2772 ip_drop_packet(mp, is_inbound, NULL, NULL, &ipdrops_ah_crypto_failed, 2773 &ah_dropper); 2774 AH_BUMP_STAT(crypto_failures); 2775 if (is_inbound) 2776 IP_AH_BUMP_STAT(in_discards); 2777 else 2778 AH_BUMP_STAT(out_discards); 2779 } 2780 2781 /* 2782 * Helper macros for the ah_submit_req_{inbound,outbound}() functions. 2783 */ 2784 2785 #define AH_INIT_CALLREQ(_cr) { \ 2786 (_cr)->cr_flag = CRYPTO_SKIP_REQID|CRYPTO_RESTRICTED; \ 2787 if (ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == IPSEC_ALGS_EXEC_ASYNC) \ 2788 (_cr)->cr_flag |= CRYPTO_ALWAYS_QUEUE; \ 2789 (_cr)->cr_callback_arg = ipsec_mp; \ 2790 (_cr)->cr_callback_func = ah_kcf_callback; \ 2791 } 2792 2793 #define AH_INIT_CRYPTO_DATA(data, msglen, mblk) { \ 2794 (data)->cd_format = CRYPTO_DATA_MBLK; \ 2795 (data)->cd_mp = mblk; \ 2796 (data)->cd_offset = 0; \ 2797 (data)->cd_length = msglen; \ 2798 } 2799 2800 #define AH_INIT_CRYPTO_MAC(mac, icvlen, icvbuf) { \ 2801 (mac)->cd_format = CRYPTO_DATA_RAW; \ 2802 (mac)->cd_offset = 0; \ 2803 (mac)->cd_length = icvlen; \ 2804 (mac)->cd_raw.iov_base = icvbuf; \ 2805 (mac)->cd_raw.iov_len = icvlen; \ 2806 } 2807 2808 /* 2809 * Submit an inbound packet for processing by the crypto framework. 2810 */ 2811 static ipsec_status_t 2812 ah_submit_req_inbound(mblk_t *ipsec_mp, size_t skip_len, uint32_t ah_offset, 2813 ipsa_t *assoc) 2814 { 2815 int kef_rc; 2816 mblk_t *phdr_mp; 2817 crypto_call_req_t call_req; 2818 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 2819 uint_t icv_len = assoc->ipsa_mac_len; 2820 crypto_ctx_template_t ctx_tmpl; 2821 2822 phdr_mp = ipsec_mp->b_cont; 2823 ASSERT(phdr_mp != NULL); 2824 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2825 2826 /* init arguments for the crypto framework */ 2827 AH_INIT_CRYPTO_DATA(&ii->ipsec_in_crypto_data, AH_MSGSIZE(phdr_mp), 2828 phdr_mp); 2829 2830 AH_INIT_CRYPTO_MAC(&ii->ipsec_in_crypto_mac, icv_len, 2831 (char *)phdr_mp->b_cont->b_rptr - skip_len + ah_offset + 2832 sizeof (ah_t)); 2833 2834 AH_INIT_CALLREQ(&call_req); 2835 2836 ii->ipsec_in_skip_len = skip_len; 2837 2838 IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH, ctx_tmpl); 2839 2840 /* call KEF to do the MAC operation */ 2841 kef_rc = crypto_mac_verify(&assoc->ipsa_amech, 2842 &ii->ipsec_in_crypto_data, &assoc->ipsa_kcfauthkey, ctx_tmpl, 2843 &ii->ipsec_in_crypto_mac, &call_req); 2844 2845 switch (kef_rc) { 2846 case CRYPTO_SUCCESS: 2847 AH_BUMP_STAT(crypto_sync); 2848 return (ah_auth_in_done(ipsec_mp)); 2849 case CRYPTO_QUEUED: 2850 /* ah_callback() will be invoked on completion */ 2851 AH_BUMP_STAT(crypto_async); 2852 return (IPSEC_STATUS_PENDING); 2853 case CRYPTO_INVALID_MAC: 2854 AH_BUMP_STAT(crypto_sync); 2855 ah_log_bad_auth(ipsec_mp); 2856 return (IPSEC_STATUS_FAILED); 2857 } 2858 2859 ah_crypto_failed(ipsec_mp, B_TRUE, kef_rc); 2860 return (IPSEC_STATUS_FAILED); 2861 } 2862 2863 /* 2864 * Submit an outbound packet for processing by the crypto framework. 2865 */ 2866 static ipsec_status_t 2867 ah_submit_req_outbound(mblk_t *ipsec_mp, size_t skip_len, ipsa_t *assoc) 2868 { 2869 int kef_rc; 2870 mblk_t *phdr_mp; 2871 crypto_call_req_t call_req; 2872 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 2873 uint_t icv_len = assoc->ipsa_mac_len; 2874 2875 phdr_mp = ipsec_mp->b_cont; 2876 ASSERT(phdr_mp != NULL); 2877 ASSERT(io->ipsec_out_type == IPSEC_OUT); 2878 2879 /* init arguments for the crypto framework */ 2880 AH_INIT_CRYPTO_DATA(&io->ipsec_out_crypto_data, AH_MSGSIZE(phdr_mp), 2881 phdr_mp); 2882 2883 AH_INIT_CRYPTO_MAC(&io->ipsec_out_crypto_mac, icv_len, 2884 (char *)phdr_mp->b_wptr); 2885 2886 AH_INIT_CALLREQ(&call_req); 2887 2888 io->ipsec_out_skip_len = skip_len; 2889 2890 ASSERT(io->ipsec_out_ah_sa != NULL); 2891 2892 /* call KEF to do the MAC operation */ 2893 kef_rc = crypto_mac(&assoc->ipsa_amech, &io->ipsec_out_crypto_data, 2894 &assoc->ipsa_kcfauthkey, assoc->ipsa_authtmpl, 2895 &io->ipsec_out_crypto_mac, &call_req); 2896 2897 switch (kef_rc) { 2898 case CRYPTO_SUCCESS: 2899 AH_BUMP_STAT(crypto_sync); 2900 return (ah_auth_out_done(ipsec_mp)); 2901 case CRYPTO_QUEUED: 2902 /* ah_callback() will be invoked on completion */ 2903 AH_BUMP_STAT(crypto_async); 2904 return (IPSEC_STATUS_PENDING); 2905 } 2906 2907 ah_crypto_failed(ipsec_mp, B_FALSE, kef_rc); 2908 return (IPSEC_STATUS_FAILED); 2909 } 2910 2911 /* 2912 * This function constructs a pseudo header by looking at the IP header 2913 * and options if any. This is called for both outbound and inbound, 2914 * before computing the ICV. 2915 */ 2916 static mblk_t * 2917 ah_process_ip_options_v6(mblk_t *mp, ipsa_t *assoc, int *length_to_skip, 2918 uint_t ah_data_sz, boolean_t outbound) 2919 { 2920 ip6_t *ip6h; 2921 ip6_t *oip6h; 2922 mblk_t *phdr_mp; 2923 int option_length; 2924 uint_t ah_align_sz; 2925 uint_t ah_offset; 2926 int hdr_size; 2927 2928 /* 2929 * Allocate space for the authentication data also. It is 2930 * useful both during the ICV calculation where we need to 2931 * feed in zeroes and while sending the datagram back to IP 2932 * where we will be using the same space. 2933 * 2934 * We need to allocate space for padding bytes if it is not 2935 * a multiple of IPV6_PADDING_ALIGN. 2936 * 2937 * In addition, we allocate space for the ICV computed by 2938 * the kernel crypto framework, saving us a separate kmem 2939 * allocation down the road. 2940 */ 2941 2942 ah_align_sz = P2ALIGN(ah_data_sz + IPV6_PADDING_ALIGN - 1, 2943 IPV6_PADDING_ALIGN); 2944 2945 ASSERT(ah_align_sz >= ah_data_sz); 2946 2947 hdr_size = ipsec_ah_get_hdr_size_v6(mp, B_FALSE); 2948 option_length = hdr_size - IPV6_HDR_LEN; 2949 2950 /* This was not included in ipsec_ah_get_hdr_size_v6() */ 2951 hdr_size += (sizeof (ah_t) + ah_align_sz); 2952 2953 if (!outbound && (MBLKL(mp) < hdr_size)) { 2954 /* 2955 * We have post-AH header options in a separate mblk, 2956 * a pullup is required. 2957 */ 2958 if (!pullupmsg(mp, hdr_size)) 2959 return (NULL); 2960 } 2961 2962 if ((phdr_mp = allocb(hdr_size + ah_data_sz, BPRI_HI)) == NULL) { 2963 return (NULL); 2964 } 2965 2966 oip6h = (ip6_t *)mp->b_rptr; 2967 2968 /* 2969 * Form the basic IP header first. Zero out the header 2970 * so that the mutable fields are zeroed out. 2971 */ 2972 ip6h = (ip6_t *)phdr_mp->b_rptr; 2973 bzero(ip6h, sizeof (ip6_t)); 2974 ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 2975 2976 if (outbound) { 2977 /* 2978 * Include the size of AH and authentication data. 2979 * This is how our recipient would compute the 2980 * authentication data. Look at what we do in the 2981 * inbound case below. 2982 */ 2983 ip6h->ip6_plen = htons(ntohs(oip6h->ip6_plen) + 2984 sizeof (ah_t) + ah_align_sz); 2985 } else { 2986 ip6h->ip6_plen = oip6h->ip6_plen; 2987 } 2988 2989 ip6h->ip6_src = oip6h->ip6_src; 2990 ip6h->ip6_dst = oip6h->ip6_dst; 2991 2992 *length_to_skip = IPV6_HDR_LEN; 2993 if (option_length == 0) { 2994 /* Form the AH header */ 2995 ip6h->ip6_nxt = IPPROTO_AH; 2996 ((ah_t *)(ip6h + 1))->ah_nexthdr = oip6h->ip6_nxt; 2997 ah_offset = *length_to_skip; 2998 } else { 2999 ip6h->ip6_nxt = oip6h->ip6_nxt; 3000 /* option_length does not include the AH header's size */ 3001 *length_to_skip += option_length; 3002 3003 ah_offset = ah_fix_phdr_v6(ip6h, oip6h, outbound, B_FALSE); 3004 if (ah_offset == 0) { 3005 ip_drop_packet(phdr_mp, !outbound, NULL, NULL, 3006 &ipdrops_ah_bad_v6_hdrs, &ah_dropper); 3007 return (NULL); 3008 } 3009 } 3010 3011 if (!ah_finish_up(((ah_t *)((uint8_t *)ip6h + ah_offset)), 3012 (outbound ? NULL : ((ah_t *)((uint8_t *)oip6h + ah_offset))), 3013 assoc, ah_data_sz, ah_align_sz)) { 3014 freeb(phdr_mp); 3015 /* 3016 * Returning NULL will tell the caller to 3017 * IPSA_REFELE(), free the memory, etc. 3018 */ 3019 return (NULL); 3020 } 3021 3022 phdr_mp->b_wptr = ((uint8_t *)ip6h + ah_offset + sizeof (ah_t) + 3023 ah_align_sz); 3024 if (!outbound) 3025 *length_to_skip += sizeof (ah_t) + ah_align_sz; 3026 return (phdr_mp); 3027 } 3028 3029 /* 3030 * This function constructs a pseudo header by looking at the IP header 3031 * and options if any. This is called for both outbound and inbound, 3032 * before computing the ICV. 3033 */ 3034 static mblk_t * 3035 ah_process_ip_options_v4(mblk_t *mp, ipsa_t *assoc, int *length_to_skip, 3036 uint_t ah_data_sz, boolean_t outbound) 3037 { 3038 ipoptp_t opts; 3039 uint32_t option_length; 3040 ipha_t *ipha; 3041 ipha_t *oipha; 3042 mblk_t *phdr_mp; 3043 int size; 3044 uchar_t *optptr; 3045 uint8_t optval; 3046 uint8_t optlen; 3047 ipaddr_t dst; 3048 uint32_t v_hlen_tos_len; 3049 int ip_hdr_length; 3050 uint_t ah_align_sz; 3051 uint32_t off; 3052 3053 #ifdef _BIG_ENDIAN 3054 #define V_HLEN (v_hlen_tos_len >> 24) 3055 #else 3056 #define V_HLEN (v_hlen_tos_len & 0xFF) 3057 #endif 3058 3059 oipha = (ipha_t *)mp->b_rptr; 3060 v_hlen_tos_len = ((uint32_t *)oipha)[0]; 3061 3062 /* 3063 * Allocate space for the authentication data also. It is 3064 * useful both during the ICV calculation where we need to 3065 * feed in zeroes and while sending the datagram back to IP 3066 * where we will be using the same space. 3067 * 3068 * We need to allocate space for padding bytes if it is not 3069 * a multiple of IPV4_PADDING_ALIGN. 3070 * 3071 * In addition, we allocate space for the ICV computed by 3072 * the kernel crypto framework, saving us a separate kmem 3073 * allocation down the road. 3074 */ 3075 3076 ah_align_sz = P2ALIGN(ah_data_sz + IPV4_PADDING_ALIGN - 1, 3077 IPV4_PADDING_ALIGN); 3078 3079 ASSERT(ah_align_sz >= ah_data_sz); 3080 3081 size = IP_SIMPLE_HDR_LENGTH + sizeof (ah_t) + ah_align_sz + 3082 ah_data_sz; 3083 3084 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 3085 option_length = oipha->ipha_version_and_hdr_length - 3086 (uint8_t)((IP_VERSION << 4) + 3087 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 3088 option_length <<= 2; 3089 size += option_length; 3090 } 3091 3092 if ((phdr_mp = allocb(size, BPRI_HI)) == NULL) { 3093 return (NULL); 3094 } 3095 3096 /* 3097 * Form the basic IP header first. 3098 */ 3099 ipha = (ipha_t *)phdr_mp->b_rptr; 3100 ipha->ipha_version_and_hdr_length = oipha->ipha_version_and_hdr_length; 3101 ipha->ipha_type_of_service = 0; 3102 3103 if (outbound) { 3104 /* 3105 * Include the size of AH and authentication data. 3106 * This is how our recipient would compute the 3107 * authentication data. Look at what we do in the 3108 * inbound case below. 3109 */ 3110 ipha->ipha_length = ntohs(htons(oipha->ipha_length) + 3111 sizeof (ah_t) + ah_align_sz); 3112 } else { 3113 ipha->ipha_length = oipha->ipha_length; 3114 } 3115 3116 ipha->ipha_ident = oipha->ipha_ident; 3117 ipha->ipha_fragment_offset_and_flags = 0; 3118 ipha->ipha_ttl = 0; 3119 ipha->ipha_protocol = IPPROTO_AH; 3120 ipha->ipha_hdr_checksum = 0; 3121 ipha->ipha_src = oipha->ipha_src; 3122 ipha->ipha_dst = dst = oipha->ipha_dst; 3123 3124 /* 3125 * If there is no option to process return now. 3126 */ 3127 ip_hdr_length = IP_SIMPLE_HDR_LENGTH; 3128 3129 if (V_HLEN == IP_SIMPLE_HDR_VERSION) { 3130 /* Form the AH header */ 3131 goto ah_hdr; 3132 } 3133 3134 ip_hdr_length += option_length; 3135 3136 /* 3137 * We have options. In the outbound case for source route, 3138 * ULP has already moved the first hop, which is now in 3139 * ipha_dst. We need the final destination for the calculation 3140 * of authentication data. And also make sure that mutable 3141 * and experimental fields are zeroed out in the IP options. 3142 */ 3143 3144 bcopy(&oipha[1], &ipha[1], option_length); 3145 3146 for (optval = ipoptp_first(&opts, ipha); 3147 optval != IPOPT_EOL; 3148 optval = ipoptp_next(&opts)) { 3149 optptr = opts.ipoptp_cur; 3150 optlen = opts.ipoptp_len; 3151 switch (optval) { 3152 case IPOPT_EXTSEC: 3153 case IPOPT_COMSEC: 3154 case IPOPT_RA: 3155 case IPOPT_SDMDD: 3156 case IPOPT_SECURITY: 3157 /* 3158 * These options are Immutable, leave them as-is. 3159 * Note that IPOPT_NOP is also Immutable, but it 3160 * was skipped by ipoptp_next() and thus remains 3161 * intact in the header. 3162 */ 3163 break; 3164 case IPOPT_SSRR: 3165 case IPOPT_LSRR: 3166 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) 3167 goto bad_ipv4opt; 3168 /* 3169 * These two are mutable and will be zeroed, but 3170 * first get the final destination. 3171 */ 3172 off = optptr[IPOPT_OFFSET]; 3173 /* 3174 * If one of the conditions is true, it means 3175 * end of options and dst already has the right 3176 * value. So, just fall through. 3177 */ 3178 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 3179 off = optlen - IP_ADDR_LEN; 3180 bcopy(&optptr[off], &dst, IP_ADDR_LEN); 3181 } 3182 /* FALLTHRU */ 3183 case IPOPT_RR: 3184 case IPOPT_TS: 3185 case IPOPT_SATID: 3186 default: 3187 /* 3188 * optlen should include from the beginning of an 3189 * option. 3190 * NOTE : Stream Identifier Option (SID): RFC 791 3191 * shows the bit pattern of optlen as 2 and documents 3192 * the length as 4. We assume it to be 2 here. 3193 */ 3194 bzero(optptr, optlen); 3195 break; 3196 } 3197 } 3198 3199 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 3200 bad_ipv4opt: 3201 ah1dbg(("AH : bad IPv4 option")); 3202 freeb(phdr_mp); 3203 return (NULL); 3204 } 3205 3206 /* 3207 * Don't change ipha_dst for an inbound datagram as it points 3208 * to the right value. Only for the outbound with LSRR/SSRR, 3209 * because of ip_massage_options called by the ULP, ipha_dst 3210 * points to the first hop and we need to use the final 3211 * destination for computing the ICV. 3212 */ 3213 3214 if (outbound) 3215 ipha->ipha_dst = dst; 3216 ah_hdr: 3217 ((ah_t *)((uint8_t *)ipha + ip_hdr_length))->ah_nexthdr = 3218 oipha->ipha_protocol; 3219 if (!ah_finish_up(((ah_t *)((uint8_t *)ipha + ip_hdr_length)), 3220 (outbound ? NULL : ((ah_t *)((uint8_t *)oipha + ip_hdr_length))), 3221 assoc, ah_data_sz, ah_align_sz)) { 3222 freeb(phdr_mp); 3223 /* 3224 * Returning NULL will tell the caller to IPSA_REFELE(), free 3225 * the memory, etc. 3226 */ 3227 return (NULL); 3228 } 3229 3230 phdr_mp->b_wptr = ((uchar_t *)ipha + ip_hdr_length + 3231 sizeof (ah_t) + ah_align_sz); 3232 3233 ASSERT(phdr_mp->b_wptr <= phdr_mp->b_datap->db_lim); 3234 if (outbound) 3235 *length_to_skip = ip_hdr_length; 3236 else 3237 *length_to_skip = ip_hdr_length + sizeof (ah_t) + ah_align_sz; 3238 return (phdr_mp); 3239 } 3240 3241 /* 3242 * Authenticate an outbound datagram. This function is called 3243 * whenever IP sends an outbound datagram that needs authentication. 3244 */ 3245 static ipsec_status_t 3246 ah_outbound(mblk_t *ipsec_out) 3247 { 3248 mblk_t *mp; 3249 mblk_t *phdr_mp; 3250 ipsec_out_t *oi; 3251 ipsa_t *assoc; 3252 int length_to_skip; 3253 uint_t ah_align_sz; 3254 uint_t age_bytes; 3255 3256 /* 3257 * Construct the chain of mblks 3258 * 3259 * IPSEC_OUT->PSEUDO_HDR->DATA 3260 * 3261 * one by one. 3262 */ 3263 3264 AH_BUMP_STAT(out_requests); 3265 3266 ASSERT(ipsec_out->b_datap->db_type == M_CTL); 3267 3268 ASSERT(MBLKL(ipsec_out) >= sizeof (ipsec_info_t)); 3269 3270 mp = ipsec_out->b_cont; 3271 oi = (ipsec_out_t *)ipsec_out->b_rptr; 3272 3273 ASSERT(mp->b_datap->db_type == M_DATA); 3274 3275 assoc = oi->ipsec_out_ah_sa; 3276 ASSERT(assoc != NULL); 3277 if (assoc->ipsa_usetime == 0) 3278 ah_set_usetime(assoc, B_FALSE); 3279 3280 /* 3281 * Age SA according to number of bytes that will be sent after 3282 * adding the AH header, ICV, and padding to the packet. 3283 */ 3284 3285 if (oi->ipsec_out_v4) { 3286 ipha_t *ipha = (ipha_t *)mp->b_rptr; 3287 ah_align_sz = P2ALIGN(assoc->ipsa_mac_len + 3288 IPV4_PADDING_ALIGN - 1, IPV4_PADDING_ALIGN); 3289 age_bytes = ntohs(ipha->ipha_length) + sizeof (ah_t) + 3290 ah_align_sz; 3291 } else { 3292 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 3293 ah_align_sz = P2ALIGN(assoc->ipsa_mac_len + 3294 IPV6_PADDING_ALIGN - 1, IPV6_PADDING_ALIGN); 3295 age_bytes = sizeof (ip6_t) + ntohs(ip6h->ip6_plen) + 3296 sizeof (ah_t) + ah_align_sz; 3297 } 3298 3299 if (!ah_age_bytes(assoc, age_bytes, B_FALSE)) { 3300 /* rig things as if ipsec_getassocbyconn() failed */ 3301 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 3302 "AH association 0x%x, dst %s had bytes expire.\n", 3303 ntohl(assoc->ipsa_spi), assoc->ipsa_dstaddr, AF_INET); 3304 freemsg(ipsec_out); 3305 return (IPSEC_STATUS_FAILED); 3306 } 3307 3308 if (oi->ipsec_out_is_capab_ill) { 3309 ah3dbg(("ah_outbound: pkt can be accelerated\n")); 3310 if (oi->ipsec_out_v4) 3311 return (ah_outbound_accelerated_v4(ipsec_out, assoc)); 3312 else 3313 return (ah_outbound_accelerated_v6(ipsec_out, assoc)); 3314 } 3315 AH_BUMP_STAT(noaccel); 3316 3317 /* 3318 * Insert pseudo header: 3319 * IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP 3320 */ 3321 3322 if (oi->ipsec_out_v4) { 3323 phdr_mp = ah_process_ip_options_v4(mp, assoc, &length_to_skip, 3324 assoc->ipsa_mac_len, B_TRUE); 3325 } else { 3326 phdr_mp = ah_process_ip_options_v6(mp, assoc, &length_to_skip, 3327 assoc->ipsa_mac_len, B_TRUE); 3328 } 3329 3330 if (phdr_mp == NULL) { 3331 AH_BUMP_STAT(out_discards); 3332 ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL, 3333 &ipdrops_ah_bad_v4_opts, &ah_dropper); 3334 return (IPSEC_STATUS_FAILED); 3335 } 3336 3337 ipsec_out->b_cont = phdr_mp; 3338 phdr_mp->b_cont = mp; 3339 mp->b_rptr += length_to_skip; 3340 3341 /* 3342 * At this point ipsec_out points to the IPSEC_OUT, new_mp 3343 * points to an mblk containing the pseudo header (IP header, 3344 * AH header, and ICV with mutable fields zero'ed out). 3345 * mp points to the mblk containing the ULP data. The original 3346 * IP header is kept before the ULP data in mp. 3347 */ 3348 3349 /* submit MAC request to KCF */ 3350 return (ah_submit_req_outbound(ipsec_out, length_to_skip, assoc)); 3351 } 3352 3353 static ipsec_status_t 3354 ah_inbound(mblk_t *ipsec_in_mp, void *arg) 3355 { 3356 mblk_t *data_mp = ipsec_in_mp->b_cont; 3357 ipsec_in_t *ii = (ipsec_in_t *)ipsec_in_mp->b_rptr; 3358 ah_t *ah = (ah_t *)arg; 3359 ipsa_t *assoc = ii->ipsec_in_ah_sa; 3360 int length_to_skip; 3361 int ah_length; 3362 mblk_t *phdr_mp; 3363 uint32_t ah_offset; 3364 3365 ASSERT(assoc != NULL); 3366 if (assoc->ipsa_usetime == 0) 3367 ah_set_usetime(assoc, B_TRUE); 3368 3369 /* 3370 * We may wish to check replay in-range-only here as an optimization. 3371 * Include the reality check of ipsa->ipsa_replay > 3372 * ipsa->ipsa_replay_wsize for times when it's the first N packets, 3373 * where N == ipsa->ipsa_replay_wsize. 3374 * 3375 * Another check that may come here later is the "collision" check. 3376 * If legitimate packets flow quickly enough, this won't be a problem, 3377 * but collisions may cause authentication algorithm crunching to 3378 * take place when it doesn't need to. 3379 */ 3380 if (!sadb_replay_peek(assoc, ah->ah_replay)) { 3381 AH_BUMP_STAT(replay_early_failures); 3382 IP_AH_BUMP_STAT(in_discards); 3383 ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, 3384 &ipdrops_ah_early_replay, &ah_dropper); 3385 return (IPSEC_STATUS_FAILED); 3386 } 3387 3388 /* 3389 * The offset of the AH header can be computed from its pointer 3390 * within the data mblk, which was pulled up until the AH header 3391 * by ipsec_inbound_ah_sa() during SA selection. 3392 */ 3393 ah_offset = (uchar_t *)ah - data_mp->b_rptr; 3394 3395 /* 3396 * Has this packet already been processed by a hardware 3397 * IPsec accelerator? 3398 */ 3399 if (ii->ipsec_in_accelerated) { 3400 ah3dbg(("ah_inbound_v6: pkt processed by ill=%d isv6=%d\n", 3401 ii->ipsec_in_ill_index, !ii->ipsec_in_v4)); 3402 return (ah_inbound_accelerated(ipsec_in_mp, ii->ipsec_in_v4, 3403 assoc, ah_offset)); 3404 } 3405 AH_BUMP_STAT(noaccel); 3406 3407 /* 3408 * We need to pullup until the ICV before we call 3409 * ah_process_ip_options_v6. 3410 */ 3411 ah_length = (ah->ah_length << 2) + 8; 3412 3413 /* 3414 * NOTE : If we want to use any field of IP/AH header, you need 3415 * to re-assign following the pullup. 3416 */ 3417 if (((uchar_t *)ah + ah_length) > data_mp->b_wptr) { 3418 if (!pullupmsg(data_mp, (uchar_t *)ah + ah_length - 3419 data_mp->b_rptr)) { 3420 (void) ipsec_rl_strlog(info.mi_idnum, 0, 0, 3421 SL_WARN | SL_ERROR, 3422 "ah_inbound: Small AH header\n"); 3423 IP_AH_BUMP_STAT(in_discards); 3424 ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, 3425 &ipdrops_ah_nomem, &ah_dropper); 3426 return (IPSEC_STATUS_FAILED); 3427 } 3428 } 3429 3430 /* 3431 * Insert pseudo header: 3432 * IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP 3433 */ 3434 if (ii->ipsec_in_v4) { 3435 phdr_mp = ah_process_ip_options_v4(data_mp, assoc, 3436 &length_to_skip, assoc->ipsa_mac_len, B_FALSE); 3437 } else { 3438 phdr_mp = ah_process_ip_options_v6(data_mp, assoc, 3439 &length_to_skip, assoc->ipsa_mac_len, B_FALSE); 3440 } 3441 3442 if (phdr_mp == NULL) { 3443 IP_AH_BUMP_STAT(in_discards); 3444 ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, 3445 ii->ipsec_in_v4 ? &ipdrops_ah_bad_v4_opts : 3446 &ipdrops_ah_bad_v6_hdrs, &ah_dropper); 3447 return (IPSEC_STATUS_FAILED); 3448 } 3449 3450 ipsec_in_mp->b_cont = phdr_mp; 3451 phdr_mp->b_cont = data_mp; 3452 data_mp->b_rptr += length_to_skip; 3453 3454 /* submit request to KCF */ 3455 return (ah_submit_req_inbound(ipsec_in_mp, length_to_skip, ah_offset, 3456 assoc)); 3457 } 3458 3459 /* 3460 * ah_inbound_accelerated: 3461 * Called from ah_inbound() to process IPsec packets that have been 3462 * accelerated by hardware. 3463 * 3464 * Basically does what ah_auth_in_done() with some changes since 3465 * no pseudo-headers are involved, i.e. the passed message is a 3466 * IPSEC_INFO->DATA. 3467 * 3468 * It is assumed that only packets that have been successfully 3469 * processed by the adapter come here. 3470 * 3471 * 1. get algorithm structure corresponding to association 3472 * 2. calculate pointers to authentication header and ICV 3473 * 3. compare ICV in AH header with ICV in data attributes 3474 * 3.1 if different: 3475 * 3.1.1 generate error 3476 * 3.1.2 discard message 3477 * 3.2 if ICV matches: 3478 * 3.2.1 check replay 3479 * 3.2.2 remove AH header 3480 * 3.2.3 age SA byte 3481 * 3.2.4 send to IP 3482 */ 3483 ipsec_status_t 3484 ah_inbound_accelerated(mblk_t *ipsec_in, boolean_t isv4, ipsa_t *assoc, 3485 uint32_t ah_offset) 3486 { 3487 mblk_t *mp; 3488 ipha_t *ipha; 3489 ah_t *ah; 3490 ipsec_in_t *ii; 3491 uint32_t icv_len; 3492 uint32_t align_len; 3493 uint32_t age_bytes; 3494 ip6_t *ip6h; 3495 uint8_t *in_icv; 3496 mblk_t *hada_mp; 3497 uint32_t next_hdr; 3498 da_ipsec_t *hada; 3499 kstat_named_t *counter; 3500 3501 AH_BUMP_STAT(in_accelerated); 3502 3503 ii = (ipsec_in_t *)ipsec_in->b_rptr; 3504 mp = ipsec_in->b_cont; 3505 hada_mp = ii->ipsec_in_da; 3506 ASSERT(hada_mp != NULL); 3507 hada = (da_ipsec_t *)hada_mp->b_rptr; 3508 3509 /* 3510 * We only support one level of decapsulation in hardware, so 3511 * nuke the pointer. 3512 */ 3513 ii->ipsec_in_da = NULL; 3514 ii->ipsec_in_accelerated = B_FALSE; 3515 3516 /* 3517 * Extract ICV length from attributes M_CTL and sanity check 3518 * its value. We allow the mblk to be smaller than da_ipsec_t 3519 * for a small ICV, as long as the entire ICV fits within the mblk. 3520 * Also ensures that the ICV length computed by Provider 3521 * corresponds to the ICV length of the algorithm specified by the SA. 3522 */ 3523 icv_len = hada->da_icv_len; 3524 if ((icv_len != assoc->ipsa_mac_len) || 3525 (icv_len > DA_ICV_MAX_LEN) || (MBLKL(hada_mp) < 3526 (sizeof (da_ipsec_t) - DA_ICV_MAX_LEN + icv_len))) { 3527 ah0dbg(("ah_inbound_accelerated: " 3528 "ICV len (%u) incorrect or mblk too small (%u)\n", 3529 icv_len, (uint32_t)(MBLKL(hada_mp)))); 3530 counter = &ipdrops_ah_bad_length; 3531 goto ah_in_discard; 3532 } 3533 ASSERT(icv_len != 0); 3534 3535 /* compute the padded AH ICV len */ 3536 if (isv4) { 3537 ipha = (ipha_t *)mp->b_rptr; 3538 align_len = (icv_len + IPV4_PADDING_ALIGN - 1) & 3539 -IPV4_PADDING_ALIGN; 3540 } else { 3541 ip6h = (ip6_t *)mp->b_rptr; 3542 align_len = (icv_len + IPV6_PADDING_ALIGN - 1) & 3543 -IPV6_PADDING_ALIGN; 3544 } 3545 3546 ah = (ah_t *)(mp->b_rptr + ah_offset); 3547 in_icv = (uint8_t *)ah + sizeof (ah_t); 3548 3549 /* compare ICV in AH header vs ICV computed by adapter */ 3550 if (bcmp(hada->da_icv, in_icv, icv_len)) { 3551 int af; 3552 void *addr; 3553 3554 if (isv4) { 3555 addr = &ipha->ipha_dst; 3556 af = AF_INET; 3557 } else { 3558 addr = &ip6h->ip6_dst; 3559 af = AF_INET6; 3560 } 3561 3562 /* 3563 * Log the event. Don't print to the console, block 3564 * potential denial-of-service attack. 3565 */ 3566 AH_BUMP_STAT(bad_auth); 3567 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 3568 "AH Authentication failed spi %x, dst_addr %s", 3569 assoc->ipsa_spi, addr, af); 3570 counter = &ipdrops_ah_bad_auth; 3571 goto ah_in_discard; 3572 } 3573 3574 ah3dbg(("AH succeeded, checking replay\n")); 3575 AH_BUMP_STAT(good_auth); 3576 3577 if (!sadb_replay_check(assoc, ah->ah_replay)) { 3578 int af; 3579 void *addr; 3580 3581 if (isv4) { 3582 addr = &ipha->ipha_dst; 3583 af = AF_INET; 3584 } else { 3585 addr = &ip6h->ip6_dst; 3586 af = AF_INET6; 3587 } 3588 3589 /* 3590 * Log the event. As of now we print out an event. 3591 * Do not print the replay failure number, or else 3592 * syslog cannot collate the error messages. Printing 3593 * the replay number that failed (or printing to the 3594 * console) opens a denial-of-service attack. 3595 */ 3596 AH_BUMP_STAT(replay_failures); 3597 ipsec_assocfailure(info.mi_idnum, 0, 0, 3598 SL_ERROR | SL_WARN, 3599 "Replay failed for AH spi %x, dst_addr %s", 3600 assoc->ipsa_spi, addr, af); 3601 counter = &ipdrops_ah_replay; 3602 goto ah_in_discard; 3603 } 3604 3605 /* 3606 * Remove AH header. We do this by copying everything before 3607 * the AH header onto the AH header+ICV. 3608 */ 3609 /* overwrite AH with what was preceeding it (IP header) */ 3610 next_hdr = ah->ah_nexthdr; 3611 ovbcopy(mp->b_rptr, mp->b_rptr + sizeof (ah_t) + align_len, 3612 ah_offset); 3613 mp->b_rptr += sizeof (ah_t) + align_len; 3614 if (isv4) { 3615 /* adjust IP header next protocol */ 3616 ipha = (ipha_t *)mp->b_rptr; 3617 ipha->ipha_protocol = next_hdr; 3618 3619 age_bytes = ipha->ipha_length; 3620 3621 /* adjust length in IP header */ 3622 ipha->ipha_length -= (sizeof (ah_t) + align_len); 3623 3624 /* recalculate checksum */ 3625 ipha->ipha_hdr_checksum = 0; 3626 ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha); 3627 } else { 3628 /* adjust IP header next protocol */ 3629 ip6h = (ip6_t *)mp->b_rptr; 3630 ip6h->ip6_nxt = next_hdr; 3631 3632 age_bytes = sizeof (ip6_t) + ntohs(ip6h->ip6_plen) + 3633 sizeof (ah_t); 3634 3635 /* adjust length in IP header */ 3636 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 3637 (sizeof (ah_t) + align_len)); 3638 } 3639 3640 /* age SA */ 3641 if (!ah_age_bytes(assoc, age_bytes, B_TRUE)) { 3642 /* The ipsa has hit hard expiration, LOG and AUDIT. */ 3643 ipsec_assocfailure(info.mi_idnum, 0, 0, 3644 SL_ERROR | SL_WARN, 3645 "AH Association 0x%x, dst %s had bytes expire.\n", 3646 assoc->ipsa_spi, assoc->ipsa_dstaddr, 3647 AF_INET); 3648 AH_BUMP_STAT(bytes_expired); 3649 counter = &ipdrops_ah_bytes_expire; 3650 goto ah_in_discard; 3651 } 3652 3653 freeb(hada_mp); 3654 return (IPSEC_STATUS_SUCCESS); 3655 3656 ah_in_discard: 3657 IP_AH_BUMP_STAT(in_discards); 3658 freeb(hada_mp); 3659 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, counter, &ah_dropper); 3660 return (IPSEC_STATUS_FAILED); 3661 } 3662 3663 /* 3664 * ah_outbound_accelerated_v4: 3665 * Called from ah_outbound_v4() and once it is determined that the 3666 * packet is elligible for hardware acceleration. 3667 * 3668 * We proceed as follows: 3669 * 1. allocate and initialize attributes mblk 3670 * 2. mark IPSEC_OUT to indicate that pkt is accelerated 3671 * 3. insert AH header 3672 */ 3673 static ipsec_status_t 3674 ah_outbound_accelerated_v4(mblk_t *ipsec_mp, ipsa_t *assoc) 3675 { 3676 mblk_t *mp, *new_mp; 3677 ipsec_out_t *oi; 3678 uint_t ah_data_sz; /* ICV length, algorithm dependent */ 3679 uint_t ah_align_sz; /* ICV length + padding */ 3680 uint32_t v_hlen_tos_len; /* from original IP header */ 3681 ipha_t *oipha; /* original IP header */ 3682 ipha_t *nipha; /* new IP header */ 3683 uint_t option_length = 0; 3684 uint_t new_hdr_len; /* new header length */ 3685 uint_t iphdr_length; 3686 ah_t *ah_hdr; /* ptr to AH header */ 3687 3688 AH_BUMP_STAT(out_accelerated); 3689 3690 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 3691 mp = ipsec_mp->b_cont; 3692 3693 oipha = (ipha_t *)mp->b_rptr; 3694 v_hlen_tos_len = ((uint32_t *)oipha)[0]; 3695 3696 /* mark packet as being accelerated in IPSEC_OUT */ 3697 ASSERT(oi->ipsec_out_accelerated == B_FALSE); 3698 oi->ipsec_out_accelerated = B_TRUE; 3699 3700 /* calculate authentication data length, i.e. ICV + padding */ 3701 ah_data_sz = assoc->ipsa_mac_len; 3702 ah_align_sz = (ah_data_sz + IPV4_PADDING_ALIGN - 1) & 3703 -IPV4_PADDING_ALIGN; 3704 3705 /* 3706 * Insert pseudo header: 3707 * IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP 3708 */ 3709 3710 /* IP + AH + authentication + padding data length */ 3711 new_hdr_len = IP_SIMPLE_HDR_LENGTH + sizeof (ah_t) + ah_align_sz; 3712 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 3713 option_length = oipha->ipha_version_and_hdr_length - 3714 (uint8_t)((IP_VERSION << 4) + 3715 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 3716 option_length <<= 2; 3717 new_hdr_len += option_length; 3718 } 3719 3720 /* allocate pseudo-header mblk */ 3721 if ((new_mp = allocb(new_hdr_len, BPRI_HI)) == NULL) { 3722 /* IPsec kstats: bump bean counter here */ 3723 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 3724 &ipdrops_ah_nomem, &ah_dropper); 3725 return (IPSEC_STATUS_FAILED); 3726 } 3727 3728 new_mp->b_cont = mp; 3729 ipsec_mp->b_cont = new_mp; 3730 new_mp->b_wptr += new_hdr_len; 3731 3732 /* copy original IP header to new header */ 3733 bcopy(mp->b_rptr, new_mp->b_rptr, IP_SIMPLE_HDR_LENGTH + 3734 option_length); 3735 3736 /* update IP header */ 3737 nipha = (ipha_t *)new_mp->b_rptr; 3738 nipha->ipha_protocol = IPPROTO_AH; 3739 iphdr_length = ntohs(nipha->ipha_length); 3740 iphdr_length += sizeof (ah_t) + ah_align_sz; 3741 nipha->ipha_length = htons(iphdr_length); 3742 nipha->ipha_hdr_checksum = 0; 3743 nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha); 3744 3745 /* skip original IP header in mp */ 3746 mp->b_rptr += IP_SIMPLE_HDR_LENGTH + option_length; 3747 3748 /* initialize AH header */ 3749 ah_hdr = (ah_t *)(new_mp->b_rptr + IP_SIMPLE_HDR_LENGTH + 3750 option_length); 3751 ah_hdr->ah_nexthdr = oipha->ipha_protocol; 3752 if (!ah_finish_up(ah_hdr, NULL, assoc, ah_data_sz, ah_align_sz)) { 3753 /* Only way this fails is if outbound replay counter wraps. */ 3754 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 3755 &ipdrops_ah_replay, &ah_dropper); 3756 return (IPSEC_STATUS_FAILED); 3757 } 3758 3759 return (IPSEC_STATUS_SUCCESS); 3760 } 3761 3762 /* 3763 * ah_outbound_accelerated_v6: 3764 * 3765 * Called from ah_outbound_v6() once it is determined that the packet 3766 * is eligible for hardware acceleration. 3767 * 3768 * We proceed as follows: 3769 * 1. allocate and initialize attributes mblk 3770 * 2. mark IPSEC_OUT to indicate that pkt is accelerated 3771 * 3. insert AH header 3772 */ 3773 static ipsec_status_t 3774 ah_outbound_accelerated_v6(mblk_t *ipsec_mp, ipsa_t *assoc) 3775 { 3776 mblk_t *mp, *phdr_mp; 3777 ipsec_out_t *oi; 3778 uint_t ah_data_sz; /* ICV length, algorithm dependent */ 3779 uint_t ah_align_sz; /* ICV length + padding */ 3780 ip6_t *oip6h; /* original IP header */ 3781 ip6_t *ip6h; /* new IP header */ 3782 uint_t option_length = 0; 3783 uint_t hdr_size; 3784 uint_t ah_offset; 3785 ah_t *ah_hdr; /* ptr to AH header */ 3786 3787 AH_BUMP_STAT(out_accelerated); 3788 3789 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 3790 mp = ipsec_mp->b_cont; 3791 3792 oip6h = (ip6_t *)mp->b_rptr; 3793 3794 /* mark packet as being accelerated in IPSEC_OUT */ 3795 ASSERT(oi->ipsec_out_accelerated == B_FALSE); 3796 oi->ipsec_out_accelerated = B_TRUE; 3797 3798 /* calculate authentication data length, i.e. ICV + padding */ 3799 ah_data_sz = assoc->ipsa_mac_len; 3800 ah_align_sz = (ah_data_sz + IPV4_PADDING_ALIGN - 1) & 3801 -IPV4_PADDING_ALIGN; 3802 3803 ASSERT(ah_align_sz >= ah_data_sz); 3804 3805 hdr_size = ipsec_ah_get_hdr_size_v6(mp, B_FALSE); 3806 option_length = hdr_size - IPV6_HDR_LEN; 3807 3808 /* This was not included in ipsec_ah_get_hdr_size_v6() */ 3809 hdr_size += (sizeof (ah_t) + ah_align_sz); 3810 3811 if ((phdr_mp = allocb(hdr_size, BPRI_HI)) == NULL) { 3812 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, &ipdrops_ah_nomem, 3813 &ah_dropper); 3814 return (IPSEC_STATUS_FAILED); 3815 } 3816 phdr_mp->b_wptr += hdr_size; 3817 3818 /* 3819 * Form the basic IP header first. We always assign every bit 3820 * of the v6 basic header, so a separate bzero is unneeded. 3821 */ 3822 ip6h = (ip6_t *)phdr_mp->b_rptr; 3823 ip6h->ip6_vcf = oip6h->ip6_vcf; 3824 ip6h->ip6_hlim = oip6h->ip6_hlim; 3825 ip6h->ip6_src = oip6h->ip6_src; 3826 ip6h->ip6_dst = oip6h->ip6_dst; 3827 /* 3828 * Include the size of AH and authentication data. 3829 * This is how our recipient would compute the 3830 * authentication data. Look at what we do in the 3831 * inbound case below. 3832 */ 3833 ip6h->ip6_plen = htons(ntohs(oip6h->ip6_plen) + sizeof (ah_t) + 3834 ah_align_sz); 3835 3836 /* 3837 * Insert pseudo header: 3838 * IPSEC_INFO -> [IP6, LLH, ULP] => 3839 * IPSEC_INFO -> [IP, LLH, AH, ICV] -> ULP 3840 */ 3841 3842 if (option_length == 0) { 3843 /* Form the AH header */ 3844 ip6h->ip6_nxt = IPPROTO_AH; 3845 ((ah_t *)(ip6h + 1))->ah_nexthdr = oip6h->ip6_nxt; 3846 ah_offset = IPV6_HDR_LEN; 3847 } else { 3848 ip6h->ip6_nxt = oip6h->ip6_nxt; 3849 /* option_length does not include the AH header's size */ 3850 ah_offset = ah_fix_phdr_v6(ip6h, oip6h, B_TRUE, B_FALSE); 3851 if (ah_offset == 0) { 3852 freemsg(phdr_mp); 3853 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 3854 &ipdrops_ah_bad_v6_hdrs, &ah_dropper); 3855 return (IPSEC_STATUS_FAILED); 3856 } 3857 } 3858 3859 phdr_mp->b_cont = mp; 3860 ipsec_mp->b_cont = phdr_mp; 3861 3862 /* skip original IP header in mp */ 3863 mp->b_rptr += IPV6_HDR_LEN + option_length; 3864 3865 /* initialize AH header */ 3866 ah_hdr = (ah_t *)(phdr_mp->b_rptr + IPV6_HDR_LEN + option_length); 3867 ah_hdr->ah_nexthdr = oip6h->ip6_nxt; 3868 3869 if (!ah_finish_up(((ah_t *)((uint8_t *)ip6h + ah_offset)), NULL, 3870 assoc, ah_data_sz, ah_align_sz)) { 3871 /* Only way this fails is if outbound replay counter wraps. */ 3872 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 3873 &ipdrops_ah_replay, &ah_dropper); 3874 return (IPSEC_STATUS_FAILED); 3875 } 3876 3877 return (IPSEC_STATUS_SUCCESS); 3878 } 3879 3880 /* 3881 * Invoked after processing of an inbound packet by the 3882 * kernel crypto framework. Called by ah_submit_req() for a sync request, 3883 * or by the kcf callback for an async request. 3884 * Returns IPSEC_STATUS_SUCCESS on success, IPSEC_STATUS_FAILED on failure. 3885 * On failure, the mblk chain ipsec_in is freed by this function. 3886 */ 3887 static ipsec_status_t 3888 ah_auth_in_done(mblk_t *ipsec_in) 3889 { 3890 mblk_t *phdr_mp; 3891 ipha_t *ipha; 3892 uint_t ah_offset = 0; 3893 mblk_t *mp; 3894 int align_len; 3895 ah_t *ah; 3896 ipha_t *nipha; 3897 uint32_t length; 3898 ipsec_in_t *ii; 3899 boolean_t isv4; 3900 ip6_t *ip6h; 3901 ip6_t *nip6h; 3902 uint_t icv_len; 3903 ipsa_t *assoc; 3904 kstat_named_t *counter; 3905 3906 ii = (ipsec_in_t *)ipsec_in->b_rptr; 3907 isv4 = ii->ipsec_in_v4; 3908 assoc = ii->ipsec_in_ah_sa; 3909 icv_len = (uint_t)ii->ipsec_in_crypto_mac.cd_raw.iov_len; 3910 3911 phdr_mp = ipsec_in->b_cont; 3912 if (phdr_mp == NULL) { 3913 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_nomem, 3914 &ah_dropper); 3915 return (IPSEC_STATUS_FAILED); 3916 } 3917 3918 mp = phdr_mp->b_cont; 3919 if (mp == NULL) { 3920 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_nomem, 3921 &ah_dropper); 3922 return (IPSEC_STATUS_FAILED); 3923 } 3924 mp->b_rptr -= ii->ipsec_in_skip_len; 3925 3926 if (isv4) { 3927 ipha = (ipha_t *)mp->b_rptr; 3928 ah_offset = ipha->ipha_version_and_hdr_length - 3929 (uint8_t)((IP_VERSION << 4)); 3930 ah_offset <<= 2; 3931 align_len = P2ALIGN(icv_len + IPV4_PADDING_ALIGN - 1, 3932 IPV4_PADDING_ALIGN); 3933 } else { 3934 ip6h = (ip6_t *)mp->b_rptr; 3935 ah_offset = ipsec_ah_get_hdr_size_v6(mp, B_TRUE); 3936 ASSERT((mp->b_wptr - mp->b_rptr) >= ah_offset); 3937 align_len = P2ALIGN(icv_len + IPV6_PADDING_ALIGN - 1, 3938 IPV6_PADDING_ALIGN); 3939 } 3940 3941 ah = (ah_t *)(mp->b_rptr + ah_offset); 3942 3943 /* 3944 * We get here only when authentication passed. 3945 */ 3946 3947 ah3dbg(("AH succeeded, checking replay\n")); 3948 AH_BUMP_STAT(good_auth); 3949 3950 if (!sadb_replay_check(assoc, ah->ah_replay)) { 3951 int af; 3952 void *addr; 3953 3954 if (isv4) { 3955 addr = &ipha->ipha_dst; 3956 af = AF_INET; 3957 } else { 3958 addr = &ip6h->ip6_dst; 3959 af = AF_INET6; 3960 } 3961 3962 /* 3963 * Log the event. As of now we print out an event. 3964 * Do not print the replay failure number, or else 3965 * syslog cannot collate the error messages. Printing 3966 * the replay number that failed (or printing to the 3967 * console) opens a denial-of-service attack. 3968 */ 3969 AH_BUMP_STAT(replay_failures); 3970 ipsec_assocfailure(info.mi_idnum, 0, 0, 3971 SL_ERROR | SL_WARN, 3972 "Replay failed for AH spi %x, dst_addr %s", 3973 assoc->ipsa_spi, addr, af); 3974 counter = &ipdrops_ah_replay; 3975 goto ah_in_discard; 3976 } 3977 3978 /* 3979 * We need to remove the AH header from the original 3980 * datagram. Easy way to do this is to use phdr_mp 3981 * to hold the IP header and the orginal mp to hold 3982 * the rest of it. So, we copy the IP header on to 3983 * phdr_mp, and set the b_rptr in mp past AH header. 3984 */ 3985 if (isv4) { 3986 bcopy(mp->b_rptr, phdr_mp->b_rptr, ah_offset); 3987 phdr_mp->b_wptr = phdr_mp->b_rptr + ah_offset; 3988 nipha = (ipha_t *)phdr_mp->b_rptr; 3989 /* 3990 * Assign the right protocol, adjust the length as we 3991 * are removing the AH header and adjust the checksum to 3992 * account for the protocol and length. 3993 */ 3994 nipha->ipha_protocol = ah->ah_nexthdr; 3995 length = ntohs(nipha->ipha_length); 3996 if (!ah_age_bytes(assoc, length, B_TRUE)) { 3997 /* The ipsa has hit hard expiration, LOG and AUDIT. */ 3998 ipsec_assocfailure(info.mi_idnum, 0, 0, 3999 SL_ERROR | SL_WARN, 4000 "AH Association 0x%x, dst %s had bytes expire.\n", 4001 assoc->ipsa_spi, assoc->ipsa_dstaddr, 4002 AF_INET); 4003 AH_BUMP_STAT(bytes_expired); 4004 counter = &ipdrops_ah_bytes_expire; 4005 goto ah_in_discard; 4006 } 4007 length -= (sizeof (ah_t) + align_len); 4008 4009 nipha->ipha_length = htons((uint16_t)length); 4010 nipha->ipha_hdr_checksum = 0; 4011 nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha); 4012 /* 4013 * Skip IP,AH and the authentication data in the 4014 * original datagram. 4015 */ 4016 mp->b_rptr += (ah_offset + sizeof (ah_t) + align_len); 4017 } else { 4018 uchar_t *whereptr; 4019 int hdrlen; 4020 uint8_t *nexthdr; 4021 ip6_hbh_t *hbhhdr; 4022 ip6_dest_t *dsthdr; 4023 ip6_rthdr0_t *rthdr; 4024 4025 nip6h = (ip6_t *)phdr_mp->b_rptr; 4026 4027 /* 4028 * Make phdr_mp hold until the AH header and make 4029 * mp hold everything past AH header. 4030 */ 4031 length = ntohs(nip6h->ip6_plen); 4032 if (!ah_age_bytes(assoc, length + sizeof (ip6_t), B_TRUE)) { 4033 /* The ipsa has hit hard expiration, LOG and AUDIT. */ 4034 ipsec_assocfailure(info.mi_idnum, 0, 0, 4035 SL_ERROR | SL_WARN, 4036 "AH Association 0x%x, dst %s had bytes " 4037 "expire.\n", assoc->ipsa_spi, &ip6h->ip6_dst, 4038 AF_INET6); 4039 AH_BUMP_STAT(bytes_expired); 4040 counter = &ipdrops_ah_bytes_expire; 4041 goto ah_in_discard; 4042 } 4043 bcopy(ip6h, nip6h, ah_offset); 4044 phdr_mp->b_wptr = phdr_mp->b_rptr + ah_offset; 4045 mp->b_rptr += (ah_offset + sizeof (ah_t) + align_len); 4046 4047 /* 4048 * Update the next header field of the header preceding 4049 * AH with the next header field of AH. Start with the 4050 * IPv6 header and proceed with the extension headers 4051 * until we find what we're looking for. 4052 */ 4053 nexthdr = &nip6h->ip6_nxt; 4054 whereptr = (uchar_t *)nip6h; 4055 hdrlen = sizeof (ip6_t); 4056 4057 while (*nexthdr != IPPROTO_AH) { 4058 whereptr += hdrlen; 4059 /* Assume IP has already stripped it */ 4060 ASSERT(*nexthdr != IPPROTO_FRAGMENT && 4061 *nexthdr != IPPROTO_RAW); 4062 switch (*nexthdr) { 4063 case IPPROTO_HOPOPTS: 4064 hbhhdr = (ip6_hbh_t *)whereptr; 4065 nexthdr = &hbhhdr->ip6h_nxt; 4066 hdrlen = 8 * (hbhhdr->ip6h_len + 1); 4067 break; 4068 case IPPROTO_DSTOPTS: 4069 dsthdr = (ip6_dest_t *)whereptr; 4070 nexthdr = &dsthdr->ip6d_nxt; 4071 hdrlen = 8 * (dsthdr->ip6d_len + 1); 4072 break; 4073 case IPPROTO_ROUTING: 4074 rthdr = (ip6_rthdr0_t *)whereptr; 4075 nexthdr = &rthdr->ip6r0_nxt; 4076 hdrlen = 8 * (rthdr->ip6r0_len + 1); 4077 break; 4078 } 4079 } 4080 *nexthdr = ah->ah_nexthdr; 4081 4082 length -= (sizeof (ah_t) + align_len); 4083 nip6h->ip6_plen = htons((uint16_t)length); 4084 } 4085 4086 if (is_system_labeled()) { 4087 /* 4088 * inherit the label by setting it in the new ip header 4089 */ 4090 mblk_setcred(phdr_mp, DB_CRED(mp)); 4091 } 4092 return (IPSEC_STATUS_SUCCESS); 4093 4094 ah_in_discard: 4095 IP_AH_BUMP_STAT(in_discards); 4096 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, counter, &ah_dropper); 4097 return (IPSEC_STATUS_FAILED); 4098 } 4099 4100 /* 4101 * Invoked after processing of an outbound packet by the 4102 * kernel crypto framework, either by ah_submit_req() for a request 4103 * executed syncrhonously, or by the KEF callback for a request 4104 * executed asynchronously. 4105 */ 4106 static ipsec_status_t 4107 ah_auth_out_done(mblk_t *ipsec_out) 4108 { 4109 mblk_t *phdr_mp; 4110 mblk_t *mp; 4111 int align_len; 4112 uint32_t hdrs_length; 4113 uchar_t *ptr; 4114 uint32_t length; 4115 boolean_t isv4; 4116 ipsec_out_t *io; 4117 size_t icv_len; 4118 4119 io = (ipsec_out_t *)ipsec_out->b_rptr; 4120 isv4 = io->ipsec_out_v4; 4121 icv_len = io->ipsec_out_crypto_mac.cd_raw.iov_len; 4122 4123 phdr_mp = ipsec_out->b_cont; 4124 if (phdr_mp == NULL) { 4125 ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL, 4126 &ipdrops_ah_nomem, &ah_dropper); 4127 return (IPSEC_STATUS_FAILED); 4128 } 4129 4130 mp = phdr_mp->b_cont; 4131 if (mp == NULL) { 4132 ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL, 4133 &ipdrops_ah_nomem, &ah_dropper); 4134 return (IPSEC_STATUS_FAILED); 4135 } 4136 mp->b_rptr -= io->ipsec_out_skip_len; 4137 4138 if (isv4) { 4139 ipha_t *ipha; 4140 ipha_t *nipha; 4141 4142 ipha = (ipha_t *)mp->b_rptr; 4143 hdrs_length = ipha->ipha_version_and_hdr_length - 4144 (uint8_t)((IP_VERSION << 4)); 4145 hdrs_length <<= 2; 4146 align_len = P2ALIGN(icv_len + IPV4_PADDING_ALIGN - 1, 4147 IPV4_PADDING_ALIGN); 4148 /* 4149 * phdr_mp must have the right amount of space for the 4150 * combined IP and AH header. Copy the IP header and 4151 * the ack_data onto AH. Note that the AH header was 4152 * already formed before the ICV calculation and hence 4153 * you don't have to copy it here. 4154 */ 4155 bcopy(mp->b_rptr, phdr_mp->b_rptr, hdrs_length); 4156 4157 ptr = phdr_mp->b_rptr + hdrs_length + sizeof (ah_t); 4158 bcopy(phdr_mp->b_wptr, ptr, icv_len); 4159 4160 /* 4161 * Compute the new header checksum as we are assigning 4162 * IPPROTO_AH and adjusting the length here. 4163 */ 4164 nipha = (ipha_t *)phdr_mp->b_rptr; 4165 4166 nipha->ipha_protocol = IPPROTO_AH; 4167 length = ntohs(nipha->ipha_length); 4168 length += (sizeof (ah_t) + align_len); 4169 nipha->ipha_length = htons((uint16_t)length); 4170 nipha->ipha_hdr_checksum = 0; 4171 nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha); 4172 } else { 4173 ip6_t *ip6h; 4174 ip6_t *nip6h; 4175 uint_t ah_offset; 4176 4177 ip6h = (ip6_t *)mp->b_rptr; 4178 nip6h = (ip6_t *)phdr_mp->b_rptr; 4179 align_len = P2ALIGN(icv_len + IPV6_PADDING_ALIGN - 1, 4180 IPV6_PADDING_ALIGN); 4181 /* 4182 * phdr_mp must have the right amount of space for the 4183 * combined IP and AH header. Copy the IP header with 4184 * options into the pseudo header. When we constructed 4185 * a pseudo header, we did not copy some of the mutable 4186 * fields. We do it now by calling ah_fix_phdr_v6() 4187 * with the last argument B_TRUE. It returns the 4188 * ah_offset into the pseudo header. 4189 */ 4190 4191 bcopy(ip6h, nip6h, IPV6_HDR_LEN); 4192 ah_offset = ah_fix_phdr_v6(nip6h, ip6h, B_TRUE, B_TRUE); 4193 ASSERT(ah_offset != 0); 4194 /* 4195 * phdr_mp can hold exactly the whole IP header with options 4196 * plus the AH header also. Thus subtracting the AH header's 4197 * size should give exactly how much of the original header 4198 * should be skipped. 4199 */ 4200 hdrs_length = (phdr_mp->b_wptr - phdr_mp->b_rptr) - 4201 sizeof (ah_t) - icv_len; 4202 bcopy(phdr_mp->b_wptr, ((uint8_t *)nip6h + ah_offset + 4203 sizeof (ah_t)), icv_len); 4204 length = ntohs(nip6h->ip6_plen); 4205 length += (sizeof (ah_t) + align_len); 4206 nip6h->ip6_plen = htons((uint16_t)length); 4207 } 4208 4209 if (is_system_labeled()) { 4210 /* 4211 * inherit the label by setting it in the new ip header 4212 */ 4213 mblk_setcred(phdr_mp, DB_CRED(mp)); 4214 } 4215 4216 /* Skip the original IP header */ 4217 mp->b_rptr += hdrs_length; 4218 if (mp->b_rptr == mp->b_wptr) { 4219 phdr_mp->b_cont = mp->b_cont; 4220 freeb(mp); 4221 } 4222 4223 return (IPSEC_STATUS_SUCCESS); 4224 } 4225 4226 /* 4227 * Wrapper to allow IP to trigger an AH association failure message 4228 * during SA inbound selection. 4229 */ 4230 void 4231 ipsecah_in_assocfailure(mblk_t *mp, char level, ushort_t sl, char *fmt, 4232 uint32_t spi, void *addr, int af) 4233 { 4234 if (ipsecah_log_unknown_spi) { 4235 ipsec_assocfailure(info.mi_idnum, 0, level, sl, fmt, spi, 4236 addr, af); 4237 } 4238 4239 ip_drop_packet(mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa, 4240 &ah_dropper); 4241 } 4242 4243 /* 4244 * Initialize the AH input and output processing functions. 4245 */ 4246 void 4247 ipsecah_init_funcs(ipsa_t *sa) 4248 { 4249 if (sa->ipsa_output_func == NULL) 4250 sa->ipsa_output_func = ah_outbound; 4251 if (sa->ipsa_input_func == NULL) 4252 sa->ipsa_input_func = ah_inbound; 4253 } 4254