1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * IP interface to squeues. 28 * 29 * IP uses squeues to force serialization of packets, both incoming and 30 * outgoing. Each squeue is associated with a connection instance (conn_t) 31 * above, and a soft ring (if enabled) below. Each CPU will have a default 32 * squeue for outbound connections, and each soft ring of an interface will 33 * have an squeue to which it sends incoming packets. squeues are never 34 * destroyed, and if they become unused they are kept around against future 35 * needs. 36 * 37 * IP organizes its squeues using squeue sets (squeue_set_t). For each CPU 38 * in the system there will be one squeue set, all of whose squeues will be 39 * bound to that CPU, plus one additional set known as the unbound set. Sets 40 * associated with CPUs will have one default squeue, for outbound 41 * connections, and a linked list of squeues used by various NICs for inbound 42 * packets. The unbound set also has a linked list of squeues, but no default 43 * squeue. 44 * 45 * When a CPU goes offline its squeue set is destroyed, and all its squeues 46 * are moved to the unbound set. When a CPU comes online, a new squeue set is 47 * created and the default set is searched for a default squeue formerly bound 48 * to this CPU. If no default squeue is found, a new one is created. 49 * 50 * Two fields of the squeue_t, namely sq_next and sq_set, are owned by IP 51 * and not the squeue code. squeue.c will not touch them, and we can modify 52 * them without holding the squeue lock because of the guarantee that squeues 53 * are never destroyed. ip_squeue locks must be held, however. 54 * 55 * All the squeue sets are protected by a single lock, the sqset_lock. This 56 * is also used to protect the sq_next and sq_set fields of an squeue_t. 57 * 58 * The lock order is: cpu_lock --> ill_lock --> sqset_lock --> sq_lock 59 * 60 * There are two modes of associating connection with squeues. The first mode 61 * associates each connection with the CPU that creates the connection (either 62 * during open time or during accept time). The second mode associates each 63 * connection with a random CPU, effectively distributing load over all CPUs 64 * and all squeues in the system. The mode is controlled by the 65 * ip_squeue_fanout variable. 66 * 67 * NOTE: The fact that there is an association between each connection and 68 * squeue and squeue and CPU does not mean that each connection is always 69 * processed on this CPU and on this CPU only. Any thread calling squeue_enter() 70 * may process the connection on whatever CPU it is scheduled. The squeue to CPU 71 * binding is only relevant for the worker thread. 72 * 73 * INTERFACE: 74 * 75 * squeue_t *ip_squeue_get(ill_rx_ring_t) 76 * 77 * Returns the squeue associated with an ill receive ring. If the ring is 78 * not bound to a CPU, and we're currently servicing the interrupt which 79 * generated the packet, then bind the squeue to CPU. 80 * 81 * 82 * DR Notes 83 * ======== 84 * 85 * The ip_squeue_init() registers a call-back function with the CPU DR 86 * subsystem using register_cpu_setup_func(). The call-back function does two 87 * things: 88 * 89 * o When the CPU is going off-line or unconfigured, the worker thread is 90 * unbound from the CPU. This allows the CPU unconfig code to move it to 91 * another CPU. 92 * 93 * o When the CPU is going online, it creates a new squeue for this CPU if 94 * necessary and binds the squeue worker thread to this CPU. 95 * 96 * TUNABLES: 97 * 98 * ip_squeue_fanout: used when TCP calls IP_SQUEUE_GET(). If 1, then 99 * pick the default squeue from a random CPU, otherwise use our CPU's default 100 * squeue. 101 * 102 * ip_squeue_fanout can be accessed and changed using ndd on /dev/tcp or 103 * /dev/ip. 104 * 105 * ip_squeue_worker_wait: global value for the sq_wait field for all squeues * 106 * created. This is the time squeue code waits before waking up the worker 107 * thread after queuing a request. 108 */ 109 110 #include <sys/types.h> 111 #include <sys/debug.h> 112 #include <sys/kmem.h> 113 #include <sys/cpuvar.h> 114 #include <sys/cmn_err.h> 115 116 #include <inet/common.h> 117 #include <inet/ip.h> 118 #include <netinet/ip6.h> 119 #include <inet/ip_if.h> 120 #include <inet/ip_ire.h> 121 #include <inet/nd.h> 122 #include <inet/ipclassifier.h> 123 #include <sys/types.h> 124 #include <sys/conf.h> 125 #include <sys/sunddi.h> 126 #include <sys/dlpi.h> 127 #include <sys/squeue_impl.h> 128 #include <sys/tihdr.h> 129 #include <inet/udp_impl.h> 130 #include <sys/strsubr.h> 131 #include <sys/zone.h> 132 #include <sys/dld.h> 133 #include <sys/atomic.h> 134 135 /* 136 * List of all created squeue sets. The list and its size are protected by 137 * sqset_lock. 138 */ 139 static squeue_set_t **sqset_global_list; /* list 0 is the unbound list */ 140 static uint_t sqset_global_size; 141 kmutex_t sqset_lock; 142 143 static void (*ip_squeue_create_callback)(squeue_t *) = NULL; 144 145 /* 146 * ip_squeue_worker_wait: global value for the sq_wait field for all squeues 147 * created. This is the time squeue code waits before waking up the worker 148 * thread after queuing a request. 149 */ 150 uint_t ip_squeue_worker_wait = 10; 151 152 static squeue_t *ip_squeue_create(pri_t); 153 static squeue_set_t *ip_squeue_set_create(processorid_t); 154 static int ip_squeue_cpu_setup(cpu_setup_t, int, void *); 155 static void ip_squeue_set_move(squeue_t *, squeue_set_t *); 156 static void ip_squeue_set_destroy(cpu_t *); 157 static void ip_squeue_clean(void *, mblk_t *, void *); 158 159 #define CPU_ISON(c) (c != NULL && CPU_ACTIVE(c) && (c->cpu_flags & CPU_EXISTS)) 160 161 static squeue_t * 162 ip_squeue_create(pri_t pri) 163 { 164 squeue_t *sqp; 165 166 sqp = squeue_create(ip_squeue_worker_wait, pri); 167 ASSERT(sqp != NULL); 168 if (ip_squeue_create_callback != NULL) 169 ip_squeue_create_callback(sqp); 170 return (sqp); 171 } 172 173 /* 174 * Create a new squeue_set. If id == -1, then we're creating the unbound set, 175 * which should only happen once when we are first initialized. Otherwise id 176 * is the id of the CPU that needs a set, either because we are initializing 177 * or because the CPU has come online. 178 * 179 * If id != -1, then we need at a minimum to provide a default squeue for the 180 * new set. We search the unbound set for candidates, and if none are found we 181 * create a new one. 182 */ 183 static squeue_set_t * 184 ip_squeue_set_create(processorid_t id) 185 { 186 squeue_set_t *sqs; 187 squeue_set_t *src = sqset_global_list[0]; 188 squeue_t **lastsqp, *sq; 189 squeue_t **defaultq_lastp = NULL; 190 191 sqs = kmem_zalloc(sizeof (squeue_set_t), KM_SLEEP); 192 sqs->sqs_cpuid = id; 193 194 if (id == -1) { 195 ASSERT(sqset_global_size == 0); 196 sqset_global_list[0] = sqs; 197 sqset_global_size = 1; 198 return (sqs); 199 } 200 201 /* 202 * When we create an squeue set id != -1, we need to give it a 203 * default squeue, in order to support fanout of conns across 204 * CPUs. Try to find a former default squeue that matches this 205 * cpu id on the unbound squeue set. If no such squeue is found, 206 * find some non-default TCP squeue and steal it. If still no such 207 * candidate is found, create a new squeue. 208 */ 209 210 ASSERT(MUTEX_HELD(&cpu_lock)); 211 mutex_enter(&sqset_lock); 212 lastsqp = &src->sqs_head; 213 214 while (*lastsqp) { 215 if ((*lastsqp)->sq_bind == id && 216 (*lastsqp)->sq_state & SQS_DEFAULT) { 217 defaultq_lastp = lastsqp; 218 break; 219 } 220 if (defaultq_lastp == NULL && 221 !((*lastsqp)->sq_state & SQS_DEFAULT)) { 222 defaultq_lastp = lastsqp; 223 } 224 lastsqp = &(*lastsqp)->sq_next; 225 226 } 227 if (defaultq_lastp) { 228 /* Remove from src set and set SQS_DEFAULT */ 229 sq = *defaultq_lastp; 230 *defaultq_lastp = sq->sq_next; 231 sq->sq_next = NULL; 232 if (!(sq->sq_state & SQS_DEFAULT)) { 233 mutex_enter(&sq->sq_lock); 234 sq->sq_state |= SQS_DEFAULT; 235 mutex_exit(&sq->sq_lock); 236 } 237 } else { 238 sq = ip_squeue_create(SQUEUE_DEFAULT_PRIORITY); 239 sq->sq_state |= SQS_DEFAULT; 240 } 241 242 sq->sq_set = sqs; 243 sqs->sqs_default = sq; 244 squeue_bind(sq, id); /* this locks squeue mutex */ 245 246 ASSERT(sqset_global_size <= NCPU); 247 sqset_global_list[sqset_global_size++] = sqs; 248 mutex_exit(&sqset_lock); 249 return (sqs); 250 } 251 252 /* 253 * Called by ill_ring_add() to find an squeue to associate with a new ring. 254 */ 255 256 squeue_t * 257 ip_squeue_getfree(pri_t pri) 258 { 259 squeue_set_t *sqs = sqset_global_list[0]; 260 squeue_t *sq; 261 262 mutex_enter(&sqset_lock); 263 for (sq = sqs->sqs_head; sq != NULL; sq = sq->sq_next) { 264 /* 265 * Select a non-default squeue 266 */ 267 if (!(sq->sq_state & (SQS_DEFAULT | SQS_ILL_BOUND))) 268 break; 269 } 270 271 if (sq == NULL) { 272 sq = ip_squeue_create(pri); 273 sq->sq_set = sqs; 274 sq->sq_next = sqs->sqs_head; 275 sqs->sqs_head = sq; 276 } 277 278 ASSERT(!(sq->sq_state & (SQS_POLL_THR_CONTROL | SQS_WORKER_THR_CONTROL | 279 SQS_POLL_CLEANUP_DONE | SQS_POLL_QUIESCE_DONE | 280 SQS_POLL_THR_QUIESCED))); 281 282 mutex_enter(&sq->sq_lock); 283 sq->sq_state |= SQS_ILL_BOUND; 284 mutex_exit(&sq->sq_lock); 285 mutex_exit(&sqset_lock); 286 287 if (sq->sq_priority != pri) { 288 thread_lock(sq->sq_worker); 289 (void) thread_change_pri(sq->sq_worker, pri, 0); 290 thread_unlock(sq->sq_worker); 291 292 thread_lock(sq->sq_poll_thr); 293 (void) thread_change_pri(sq->sq_poll_thr, pri, 0); 294 thread_unlock(sq->sq_poll_thr); 295 296 sq->sq_priority = pri; 297 } 298 return (sq); 299 } 300 301 /* 302 * Initialize IP squeues. 303 */ 304 void 305 ip_squeue_init(void (*callback)(squeue_t *)) 306 { 307 int i; 308 squeue_set_t *sqs; 309 310 ASSERT(sqset_global_list == NULL); 311 312 ip_squeue_create_callback = callback; 313 squeue_init(); 314 mutex_init(&sqset_lock, NULL, MUTEX_DEFAULT, NULL); 315 sqset_global_list = 316 kmem_zalloc(sizeof (squeue_set_t *) * (NCPU+1), KM_SLEEP); 317 sqset_global_size = 0; 318 /* 319 * We are called at system boot time and we don't 320 * expect memory allocation failure. 321 */ 322 sqs = ip_squeue_set_create(-1); 323 ASSERT(sqs != NULL); 324 325 mutex_enter(&cpu_lock); 326 /* Create squeue for each active CPU available */ 327 for (i = 0; i < NCPU; i++) { 328 cpu_t *cp = cpu_get(i); 329 if (CPU_ISON(cp) && cp->cpu_squeue_set == NULL) { 330 /* 331 * We are called at system boot time and we don't 332 * expect memory allocation failure then 333 */ 334 cp->cpu_squeue_set = ip_squeue_set_create(cp->cpu_id); 335 ASSERT(cp->cpu_squeue_set != NULL); 336 } 337 } 338 339 register_cpu_setup_func(ip_squeue_cpu_setup, NULL); 340 mutex_exit(&cpu_lock); 341 } 342 343 /* 344 * Get a default squeue, either from the current CPU or a CPU derived by hash 345 * from the index argument, depending upon the setting of ip_squeue_fanout. 346 */ 347 squeue_t * 348 ip_squeue_random(uint_t index) 349 { 350 squeue_set_t *sqs = NULL; 351 squeue_t *sq; 352 353 /* 354 * The minimum value of sqset_global_size is 2, one for the unbound 355 * squeue set and another for the squeue set of the zeroth CPU. 356 * Even though the value could be changing, it can never go below 2, 357 * so the assert does not need the lock protection. 358 */ 359 ASSERT(sqset_global_size > 1); 360 361 /* Protect against changes to sqset_global_list */ 362 mutex_enter(&sqset_lock); 363 364 if (!ip_squeue_fanout) 365 sqs = CPU->cpu_squeue_set; 366 367 /* 368 * sqset_global_list[0] corresponds to the unbound squeue set. 369 * The computation below picks a set other than the unbound set. 370 */ 371 if (sqs == NULL) 372 sqs = sqset_global_list[(index % (sqset_global_size - 1)) + 1]; 373 sq = sqs->sqs_default; 374 375 mutex_exit(&sqset_lock); 376 ASSERT(sq); 377 return (sq); 378 } 379 380 /* 381 * Move squeue from its current set to newset. Not used for default squeues. 382 * Bind or unbind the worker thread as appropriate. 383 */ 384 385 static void 386 ip_squeue_set_move(squeue_t *sq, squeue_set_t *newset) 387 { 388 squeue_set_t *set; 389 squeue_t **lastsqp; 390 processorid_t cpuid = newset->sqs_cpuid; 391 392 ASSERT(!(sq->sq_state & SQS_DEFAULT)); 393 ASSERT(!MUTEX_HELD(&sq->sq_lock)); 394 ASSERT(MUTEX_HELD(&sqset_lock)); 395 396 set = sq->sq_set; 397 if (set == newset) 398 return; 399 400 lastsqp = &set->sqs_head; 401 while (*lastsqp != sq) 402 lastsqp = &(*lastsqp)->sq_next; 403 404 *lastsqp = sq->sq_next; 405 sq->sq_next = newset->sqs_head; 406 newset->sqs_head = sq; 407 sq->sq_set = newset; 408 if (cpuid == -1) 409 squeue_unbind(sq); 410 else 411 squeue_bind(sq, cpuid); 412 } 413 414 /* 415 * Move squeue from its current set to cpuid's set and bind to cpuid. 416 */ 417 418 int 419 ip_squeue_cpu_move(squeue_t *sq, processorid_t cpuid) 420 { 421 cpu_t *cpu; 422 squeue_set_t *set; 423 424 if (sq->sq_state & SQS_DEFAULT) 425 return (-1); 426 427 ASSERT(MUTEX_HELD(&cpu_lock)); 428 429 cpu = cpu_get(cpuid); 430 if (!CPU_ISON(cpu)) 431 return (-1); 432 433 mutex_enter(&sqset_lock); 434 set = cpu->cpu_squeue_set; 435 if (set != NULL) 436 ip_squeue_set_move(sq, set); 437 mutex_exit(&sqset_lock); 438 return ((set == NULL) ? -1 : 0); 439 } 440 441 /* 442 * The mac layer is calling, asking us to move an squeue to a 443 * new CPU. This routine is called with cpu_lock held. 444 */ 445 void 446 ip_squeue_bind_ring(ill_t *ill, ill_rx_ring_t *rx_ring, processorid_t cpuid) 447 { 448 ASSERT(ILL_MAC_PERIM_HELD(ill)); 449 ASSERT(rx_ring->rr_ill == ill); 450 451 mutex_enter(&ill->ill_lock); 452 if (rx_ring->rr_ring_state == RR_FREE || 453 rx_ring->rr_ring_state == RR_FREE_INPROG) { 454 mutex_exit(&ill->ill_lock); 455 return; 456 } 457 458 if (ip_squeue_cpu_move(rx_ring->rr_sqp, cpuid) != -1) 459 rx_ring->rr_ring_state = RR_SQUEUE_BOUND; 460 461 mutex_exit(&ill->ill_lock); 462 } 463 464 void * 465 ip_squeue_add_ring(ill_t *ill, void *mrp) 466 { 467 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 468 ill_rx_ring_t *rx_ring, *ring_tbl; 469 int ip_rx_index; 470 squeue_t *sq = NULL; 471 pri_t pri; 472 473 ASSERT(ILL_MAC_PERIM_HELD(ill)); 474 ASSERT(mrfp->mrf_type == MAC_RX_FIFO); 475 ASSERT(ill->ill_dld_capab != NULL); 476 477 ring_tbl = ill->ill_dld_capab->idc_poll.idp_ring_tbl; 478 479 mutex_enter(&ill->ill_lock); 480 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 481 rx_ring = &ring_tbl[ip_rx_index]; 482 if (rx_ring->rr_ring_state == RR_FREE) 483 break; 484 } 485 486 if (ip_rx_index == ILL_MAX_RINGS) { 487 /* 488 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 489 * we have devices which can overwhelm this limit, 490 * ILL_MAX_RING should be made configurable. Meanwhile it 491 * cause no panic because driver will pass ip_input a NULL 492 * handle which will make IP allocate the default squeue and 493 * Polling mode will not be used for this ring. 494 */ 495 cmn_err(CE_NOTE, 496 "Reached maximum number of receiving rings (%d) for %s\n", 497 ILL_MAX_RINGS, ill->ill_name); 498 mutex_exit(&ill->ill_lock); 499 return (NULL); 500 } 501 502 bzero(rx_ring, sizeof (ill_rx_ring_t)); 503 rx_ring->rr_rx = (ip_mac_rx_t)mrfp->mrf_receive; 504 /* XXX: Hard code it to tcp accept for now */ 505 rx_ring->rr_ip_accept = (ip_accept_t)ip_accept_tcp; 506 507 rx_ring->rr_intr_handle = mrfp->mrf_intr_handle; 508 rx_ring->rr_intr_enable = (ip_mac_intr_enable_t)mrfp->mrf_intr_enable; 509 rx_ring->rr_intr_disable = 510 (ip_mac_intr_disable_t)mrfp->mrf_intr_disable; 511 rx_ring->rr_rx_handle = mrfp->mrf_rx_arg; 512 rx_ring->rr_ill = ill; 513 514 pri = mrfp->mrf_flow_priority; 515 516 sq = ip_squeue_getfree(pri); 517 518 mutex_enter(&sq->sq_lock); 519 sq->sq_rx_ring = rx_ring; 520 rx_ring->rr_sqp = sq; 521 522 sq->sq_state |= SQS_POLL_CAPAB; 523 524 rx_ring->rr_ring_state = RR_SQUEUE_UNBOUND; 525 sq->sq_ill = ill; 526 mutex_exit(&sq->sq_lock); 527 mutex_exit(&ill->ill_lock); 528 529 DTRACE_PROBE4(ill__ring__add, char *, ill->ill_name, ill_t *, ill, int, 530 ip_rx_index, void *, mrfp->mrf_rx_arg); 531 532 /* Assign the squeue to the specified CPU as well */ 533 mutex_enter(&cpu_lock); 534 (void) ip_squeue_bind_ring(ill, rx_ring, mrfp->mrf_cpu_id); 535 mutex_exit(&cpu_lock); 536 537 return (rx_ring); 538 } 539 540 /* 541 * sanitize the squeue etc. Some of the processing 542 * needs to be done from inside the perimeter. 543 */ 544 void 545 ip_squeue_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 546 { 547 squeue_t *sqp; 548 549 ASSERT(ILL_MAC_PERIM_HELD(ill)); 550 ASSERT(rx_ring != NULL); 551 552 /* Just clean one squeue */ 553 mutex_enter(&ill->ill_lock); 554 if (rx_ring->rr_ring_state == RR_FREE) { 555 mutex_exit(&ill->ill_lock); 556 return; 557 } 558 rx_ring->rr_ring_state = RR_FREE_INPROG; 559 sqp = rx_ring->rr_sqp; 560 561 mutex_enter(&sqp->sq_lock); 562 sqp->sq_state |= SQS_POLL_CLEANUP; 563 cv_signal(&sqp->sq_worker_cv); 564 mutex_exit(&ill->ill_lock); 565 while (!(sqp->sq_state & SQS_POLL_CLEANUP_DONE)) 566 cv_wait(&sqp->sq_ctrlop_done_cv, &sqp->sq_lock); 567 sqp->sq_state &= ~(SQS_POLL_CLEANUP_DONE | SQS_ILL_BOUND); 568 569 ASSERT(!(sqp->sq_state & (SQS_POLL_THR_CONTROL | 570 SQS_WORKER_THR_CONTROL | SQS_POLL_QUIESCE_DONE | 571 SQS_POLL_THR_QUIESCED))); 572 573 cv_signal(&sqp->sq_worker_cv); 574 mutex_exit(&sqp->sq_lock); 575 576 /* 577 * Logically free the squeue. It goes back to the set of unused 578 * squeues 579 */ 580 mutex_enter(&sqset_lock); 581 ip_squeue_set_move(sqp, sqset_global_list[0]); 582 mutex_exit(&sqset_lock); 583 584 mutex_enter(&ill->ill_lock); 585 rx_ring->rr_ring_state = RR_FREE; 586 mutex_exit(&ill->ill_lock); 587 } 588 589 /* 590 * Stop the squeue from polling. This needs to be done 591 * from inside the perimeter. 592 */ 593 void 594 ip_squeue_quiesce_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 595 { 596 squeue_t *sqp; 597 598 ASSERT(ILL_MAC_PERIM_HELD(ill)); 599 ASSERT(rx_ring != NULL); 600 601 sqp = rx_ring->rr_sqp; 602 mutex_enter(&sqp->sq_lock); 603 sqp->sq_state |= SQS_POLL_QUIESCE; 604 cv_signal(&sqp->sq_worker_cv); 605 while (!(sqp->sq_state & SQS_POLL_QUIESCE_DONE)) 606 cv_wait(&sqp->sq_ctrlop_done_cv, &sqp->sq_lock); 607 608 mutex_exit(&sqp->sq_lock); 609 } 610 611 /* 612 * Restart polling etc. Needs to be inside the perimeter to 613 * prevent races. 614 */ 615 void 616 ip_squeue_restart_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 617 { 618 squeue_t *sqp; 619 620 ASSERT(ILL_MAC_PERIM_HELD(ill)); 621 ASSERT(rx_ring != NULL); 622 623 sqp = rx_ring->rr_sqp; 624 mutex_enter(&sqp->sq_lock); 625 /* 626 * Handle change in number of rings between the quiesce and 627 * restart operations by checking for a previous quiesce before 628 * attempting a restart. 629 */ 630 if (!(sqp->sq_state & SQS_POLL_QUIESCE_DONE)) { 631 mutex_exit(&sqp->sq_lock); 632 return; 633 } 634 sqp->sq_state |= SQS_POLL_RESTART; 635 cv_signal(&sqp->sq_worker_cv); 636 while (!(sqp->sq_state & SQS_POLL_RESTART_DONE)) 637 cv_wait(&sqp->sq_ctrlop_done_cv, &sqp->sq_lock); 638 sqp->sq_state &= ~SQS_POLL_RESTART_DONE; 639 mutex_exit(&sqp->sq_lock); 640 } 641 642 /* 643 * sanitize all squeues associated with the ill. 644 */ 645 void 646 ip_squeue_clean_all(ill_t *ill) 647 { 648 int idx; 649 ill_rx_ring_t *rx_ring; 650 651 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 652 rx_ring = &ill->ill_dld_capab->idc_poll.idp_ring_tbl[idx]; 653 ip_squeue_clean_ring(ill, rx_ring); 654 } 655 } 656 657 /* 658 * Used by IP to get the squeue associated with a ring. If the squeue isn't 659 * yet bound to a CPU, and we're being called directly from the NIC's 660 * interrupt, then we know what CPU we want to assign the squeue to, so 661 * dispatch that task to a taskq. 662 */ 663 squeue_t * 664 ip_squeue_get(ill_rx_ring_t *ill_rx_ring) 665 { 666 squeue_t *sqp; 667 668 if ((ill_rx_ring == NULL) || ((sqp = ill_rx_ring->rr_sqp) == NULL)) 669 return (IP_SQUEUE_GET(lbolt)); 670 671 return (sqp); 672 } 673 674 /* 675 * Called when a CPU goes offline. It's squeue_set_t is destroyed, and all 676 * squeues are unboudn and moved to the unbound set. 677 */ 678 static void 679 ip_squeue_set_destroy(cpu_t *cpu) 680 { 681 int i; 682 squeue_t *sqp, *lastsqp = NULL; 683 squeue_set_t *sqs, *unbound = sqset_global_list[0]; 684 685 mutex_enter(&sqset_lock); 686 if ((sqs = cpu->cpu_squeue_set) == NULL) { 687 mutex_exit(&sqset_lock); 688 return; 689 } 690 691 /* Move all squeues to unbound set */ 692 693 for (sqp = sqs->sqs_head; sqp; lastsqp = sqp, sqp = sqp->sq_next) { 694 squeue_unbind(sqp); 695 sqp->sq_set = unbound; 696 } 697 if (sqs->sqs_head) { 698 lastsqp->sq_next = unbound->sqs_head; 699 unbound->sqs_head = sqs->sqs_head; 700 } 701 702 /* Also move default squeue to unbound set */ 703 704 sqp = sqs->sqs_default; 705 ASSERT(sqp); 706 ASSERT((sqp->sq_state & (SQS_DEFAULT|SQS_ILL_BOUND)) == SQS_DEFAULT); 707 708 sqp->sq_next = unbound->sqs_head; 709 unbound->sqs_head = sqp; 710 squeue_unbind(sqp); 711 sqp->sq_set = unbound; 712 713 for (i = 1; i < sqset_global_size; i++) 714 if (sqset_global_list[i] == sqs) 715 break; 716 717 ASSERT(i < sqset_global_size); 718 sqset_global_list[i] = sqset_global_list[sqset_global_size - 1]; 719 sqset_global_list[sqset_global_size - 1] = NULL; 720 sqset_global_size--; 721 722 mutex_exit(&sqset_lock); 723 kmem_free(sqs, sizeof (*sqs)); 724 } 725 726 /* 727 * Reconfiguration callback 728 */ 729 /* ARGSUSED */ 730 static int 731 ip_squeue_cpu_setup(cpu_setup_t what, int id, void *arg) 732 { 733 cpu_t *cp = cpu_get(id); 734 735 ASSERT(MUTEX_HELD(&cpu_lock)); 736 switch (what) { 737 case CPU_CONFIG: 738 case CPU_ON: 739 case CPU_INIT: 740 case CPU_CPUPART_IN: 741 if (cp->cpu_squeue_set == NULL) 742 cp->cpu_squeue_set = ip_squeue_set_create(cp->cpu_id); 743 break; 744 case CPU_UNCONFIG: 745 case CPU_OFF: 746 case CPU_CPUPART_OUT: 747 ASSERT((cp->cpu_squeue_set != NULL) || 748 (cp->cpu_flags & CPU_OFFLINE)); 749 if (cp->cpu_squeue_set != NULL) { 750 ip_squeue_set_destroy(cp); 751 cp->cpu_squeue_set = NULL; 752 } 753 break; 754 default: 755 break; 756 } 757 return (0); 758 } 759