1 /* 2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 */ 5 6 /* 7 * Copyright (c) 1988, 1991, 1993 8 * The Regents of the University of California. All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)rtsock.c 8.6 (Berkeley) 2/11/95 39 */ 40 41 /* 42 * This file contains routines that processes routing socket requests. 43 */ 44 45 #include <sys/types.h> 46 #include <sys/stream.h> 47 #include <sys/stropts.h> 48 #include <sys/ddi.h> 49 #include <sys/strsubr.h> 50 #include <sys/cmn_err.h> 51 #include <sys/debug.h> 52 #include <sys/policy.h> 53 #include <sys/zone.h> 54 55 #include <sys/systm.h> 56 #include <sys/param.h> 57 #include <sys/socket.h> 58 #include <sys/strsun.h> 59 #include <net/if.h> 60 #include <net/route.h> 61 #include <netinet/in.h> 62 #include <net/if_dl.h> 63 #include <netinet/ip6.h> 64 65 #include <inet/common.h> 66 #include <inet/ip.h> 67 #include <inet/ip6.h> 68 #include <inet/ip_if.h> 69 #include <inet/ip_ire.h> 70 #include <inet/ip_ftable.h> 71 #include <inet/ip_rts.h> 72 73 #include <inet/ipclassifier.h> 74 75 #include <sys/tsol/tndb.h> 76 #include <sys/tsol/tnet.h> 77 78 #define RTS_MSG_SIZE(type, rtm_addrs, af, sacnt) \ 79 (rts_data_msg_size(rtm_addrs, af, sacnt) + rts_header_msg_size(type)) 80 81 static size_t rts_copyfromsockaddr(struct sockaddr *sa, in6_addr_t *addrp); 82 static void rts_fill_msg(int type, int rtm_addrs, ipaddr_t dst, 83 ipaddr_t mask, ipaddr_t gateway, ipaddr_t src_addr, ipaddr_t brd_addr, 84 ipaddr_t author, ipaddr_t ifaddr, const ill_t *ill, mblk_t *mp, 85 const tsol_gc_t *); 86 static int rts_getaddrs(rt_msghdr_t *rtm, in6_addr_t *dst_addrp, 87 in6_addr_t *gw_addrp, in6_addr_t *net_maskp, in6_addr_t *authorp, 88 in6_addr_t *if_addrp, in6_addr_t *src_addrp, ushort_t *indexp, 89 sa_family_t *afp, tsol_rtsecattr_t *rtsecattr, int *error); 90 static void rts_getifdata(if_data_t *if_data, const ipif_t *ipif); 91 static int rts_getmetrics(ire_t *ire, rt_metrics_t *metrics); 92 static mblk_t *rts_rtmget(mblk_t *mp, ire_t *ire, ire_t *ifire, 93 const in6_addr_t *setsrc, tsol_ire_gw_secattr_t *attrp, sa_family_t af); 94 static void rts_setmetrics(ire_t *ire, uint_t which, rt_metrics_t *metrics); 95 static ire_t *ire_lookup_v4(ipaddr_t dst_addr, ipaddr_t net_mask, 96 ipaddr_t gw_addr, const ill_t *ill, zoneid_t zoneid, 97 const ts_label_t *tsl, int match_flags, ip_stack_t *ipst, ire_t **pifire, 98 ipaddr_t *v4setsrcp, tsol_ire_gw_secattr_t **gwattrp); 99 static ire_t *ire_lookup_v6(const in6_addr_t *dst_addr_v6, 100 const in6_addr_t *net_mask_v6, const in6_addr_t *gw_addr_v6, 101 const ill_t *ill, zoneid_t zoneid, const ts_label_t *tsl, int match_flags, 102 ip_stack_t *ipst, ire_t **pifire, 103 in6_addr_t *v6setsrcp, tsol_ire_gw_secattr_t **gwattrp); 104 105 /* 106 * Send `mp' to all eligible routing queues. A queue is ineligible if: 107 * 108 * 1. SO_USELOOPBACK is off and it is not the originating queue. 109 * 2. RTA_UNDER_IPMP is on and RTSQ_UNDER_IPMP is not set in `flags'. 110 * 3. RTA_UNDER_IPMP is off and RTSQ_NORMAL is not set in `flags'. 111 * 4. It is not the same address family as `af', and `af' isn't AF_UNSPEC. 112 */ 113 void 114 rts_queue_input(mblk_t *mp, conn_t *o_connp, sa_family_t af, uint_t flags, 115 ip_stack_t *ipst) 116 { 117 mblk_t *mp1; 118 conn_t *connp, *next_connp; 119 120 /* 121 * Since we don't have an ill_t here, RTSQ_DEFAULT must already be 122 * resolved to one or more of RTSQ_NORMAL|RTSQ_UNDER_IPMP at this point. 123 */ 124 ASSERT(!(flags & RTSQ_DEFAULT)); 125 126 mutex_enter(&ipst->ips_rts_clients->connf_lock); 127 connp = ipst->ips_rts_clients->connf_head; 128 129 for (; connp != NULL; connp = next_connp) { 130 next_connp = connp->conn_next; 131 /* 132 * If there was a family specified when this routing socket was 133 * created and it doesn't match the family of the message to 134 * copy, then continue. 135 */ 136 if ((connp->conn_proto != AF_UNSPEC) && 137 (connp->conn_proto != af)) 138 continue; 139 140 /* 141 * Queue the message only if the conn_t and flags match. 142 */ 143 if (connp->conn_rtaware & RTAW_UNDER_IPMP) { 144 if (!(flags & RTSQ_UNDER_IPMP)) 145 continue; 146 } else { 147 if (!(flags & RTSQ_NORMAL)) 148 continue; 149 } 150 /* 151 * For the originating queue, we only copy the message upstream 152 * if loopback is set. For others reading on the routing 153 * socket, we check if there is room upstream for a copy of the 154 * message. 155 */ 156 if ((o_connp == connp) && connp->conn_useloopback == 0) { 157 connp = connp->conn_next; 158 continue; 159 } 160 CONN_INC_REF(connp); 161 mutex_exit(&ipst->ips_rts_clients->connf_lock); 162 /* Pass to rts_input */ 163 if (IPCL_IS_NONSTR(connp) ? !connp->conn_flow_cntrld : 164 canputnext(connp->conn_rq)) { 165 mp1 = dupmsg(mp); 166 if (mp1 == NULL) 167 mp1 = copymsg(mp); 168 /* Note that we pass a NULL ira to rts_input */ 169 if (mp1 != NULL) 170 (connp->conn_recv)(connp, mp1, NULL, NULL); 171 } 172 173 mutex_enter(&ipst->ips_rts_clients->connf_lock); 174 /* reload next_connp since conn_next may have changed */ 175 next_connp = connp->conn_next; 176 CONN_DEC_REF(connp); 177 } 178 mutex_exit(&ipst->ips_rts_clients->connf_lock); 179 freemsg(mp); 180 } 181 182 /* 183 * Takes an ire and sends an ack to all the routing sockets. This 184 * routine is used 185 * - when a route is created/deleted through the ioctl interface. 186 * - when a stale redirect is deleted 187 */ 188 void 189 ip_rts_rtmsg(int type, ire_t *ire, int error, ip_stack_t *ipst) 190 { 191 mblk_t *mp; 192 rt_msghdr_t *rtm; 193 int rtm_addrs = (RTA_DST | RTA_NETMASK | RTA_GATEWAY); 194 sa_family_t af; 195 in6_addr_t gw_addr_v6; 196 197 if (ire == NULL) 198 return; 199 ASSERT(ire->ire_ipversion == IPV4_VERSION || 200 ire->ire_ipversion == IPV6_VERSION); 201 202 ASSERT(!(ire->ire_type & IRE_IF_CLONE)); 203 204 if (ire->ire_flags & RTF_SETSRC) 205 rtm_addrs |= RTA_SRC; 206 207 switch (ire->ire_ipversion) { 208 case IPV4_VERSION: 209 af = AF_INET; 210 mp = rts_alloc_msg(type, rtm_addrs, af, 0); 211 if (mp == NULL) 212 return; 213 rts_fill_msg(type, rtm_addrs, ire->ire_addr, ire->ire_mask, 214 ire->ire_gateway_addr, ire->ire_setsrc_addr, 0, 0, 0, NULL, 215 mp, NULL); 216 break; 217 case IPV6_VERSION: 218 af = AF_INET6; 219 mp = rts_alloc_msg(type, rtm_addrs, af, 0); 220 if (mp == NULL) 221 return; 222 mutex_enter(&ire->ire_lock); 223 gw_addr_v6 = ire->ire_gateway_addr_v6; 224 mutex_exit(&ire->ire_lock); 225 rts_fill_msg_v6(type, rtm_addrs, &ire->ire_addr_v6, 226 &ire->ire_mask_v6, &gw_addr_v6, 227 &ire->ire_setsrc_addr_v6, &ipv6_all_zeros, &ipv6_all_zeros, 228 &ipv6_all_zeros, NULL, mp, NULL); 229 break; 230 } 231 rtm = (rt_msghdr_t *)mp->b_rptr; 232 mp->b_wptr = (uchar_t *)&mp->b_rptr[rtm->rtm_msglen]; 233 rtm->rtm_addrs = rtm_addrs; 234 rtm->rtm_flags = ire->ire_flags; 235 if (error != 0) 236 rtm->rtm_errno = error; 237 else 238 rtm->rtm_flags |= RTF_DONE; 239 rts_queue_input(mp, NULL, af, RTSQ_ALL, ipst); 240 } 241 242 /* 243 * This is a call from the RTS module 244 * indicating that this is a Routing Socket 245 * Stream. Insert this conn_t in routing 246 * socket client list. 247 */ 248 void 249 ip_rts_register(conn_t *connp) 250 { 251 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 252 253 connp->conn_useloopback = 1; 254 ipcl_hash_insert_wildcard(ipst->ips_rts_clients, connp); 255 } 256 257 /* 258 * This is a call from the RTS module indicating that it is closing. 259 */ 260 void 261 ip_rts_unregister(conn_t *connp) 262 { 263 ipcl_hash_remove(connp); 264 } 265 266 /* 267 * Processes requests received on a routing socket. It extracts all the 268 * arguments and calls the appropriate function to process the request. 269 * 270 * RTA_SRC bit flag requests are sent by 'route -setsrc'. 271 * 272 * In general, this function does not consume the message supplied but rather 273 * sends the message upstream with an appropriate UNIX errno. 274 */ 275 int 276 ip_rts_request_common(mblk_t *mp, conn_t *connp, cred_t *ioc_cr) 277 { 278 rt_msghdr_t *rtm = NULL; 279 in6_addr_t dst_addr_v6; 280 in6_addr_t src_addr_v6; 281 in6_addr_t gw_addr_v6; 282 in6_addr_t net_mask_v6; 283 in6_addr_t author_v6; 284 in6_addr_t if_addr_v6; 285 mblk_t *mp1; 286 ire_t *ire = NULL; 287 ire_t *ifire = NULL; 288 ipaddr_t v4setsrc; 289 in6_addr_t v6setsrc = ipv6_all_zeros; 290 tsol_ire_gw_secattr_t *gwattr = NULL; 291 int error = 0; 292 int match_flags = MATCH_IRE_DSTONLY; 293 int match_flags_local = MATCH_IRE_TYPE | MATCH_IRE_GW; 294 int found_addrs; 295 sa_family_t af; 296 ipaddr_t dst_addr; 297 ipaddr_t gw_addr; 298 ipaddr_t src_addr; 299 ipaddr_t net_mask; 300 ushort_t index; 301 boolean_t gcgrp_xtraref = B_FALSE; 302 tsol_gcgrp_addr_t ga; 303 tsol_rtsecattr_t rtsecattr; 304 struct rtsa_s *rtsap = NULL; 305 tsol_gcgrp_t *gcgrp = NULL; 306 tsol_gc_t *gc = NULL; 307 ts_label_t *tsl = NULL; 308 zoneid_t zoneid; 309 ip_stack_t *ipst; 310 ill_t *ill = NULL; 311 312 zoneid = connp->conn_zoneid; 313 ipst = connp->conn_netstack->netstack_ip; 314 315 if (mp->b_cont != NULL && !pullupmsg(mp, -1)) { 316 freemsg(mp); 317 error = EINVAL; 318 goto done; 319 } 320 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) { 321 freemsg(mp); 322 error = EINVAL; 323 goto done; 324 } 325 326 /* 327 * Check the routing message for basic consistency including the 328 * version number and that the number of octets written is the same 329 * as specified by the rtm_msglen field. 330 * 331 * At this point, an error can be delivered back via rtm_errno. 332 */ 333 rtm = (rt_msghdr_t *)mp->b_rptr; 334 if ((mp->b_wptr - mp->b_rptr) != rtm->rtm_msglen) { 335 error = EINVAL; 336 goto done; 337 } 338 if (rtm->rtm_version != RTM_VERSION) { 339 error = EPROTONOSUPPORT; 340 goto done; 341 } 342 343 /* Only allow RTM_GET or RTM_RESOLVE for unprivileged process */ 344 if (rtm->rtm_type != RTM_GET && 345 rtm->rtm_type != RTM_RESOLVE && 346 (ioc_cr == NULL || 347 secpolicy_ip_config(ioc_cr, B_FALSE) != 0)) { 348 error = EPERM; 349 goto done; 350 } 351 352 found_addrs = rts_getaddrs(rtm, &dst_addr_v6, &gw_addr_v6, &net_mask_v6, 353 &author_v6, &if_addr_v6, &src_addr_v6, &index, &af, &rtsecattr, 354 &error); 355 356 if (error != 0) 357 goto done; 358 359 if ((found_addrs & RTA_DST) == 0) { 360 error = EINVAL; 361 goto done; 362 } 363 364 /* 365 * Based on the address family of the destination address, determine 366 * the destination, gateway and netmask and return the appropriate error 367 * if an unknown address family was specified (following the errno 368 * values that 4.4BSD-Lite2 returns.) 369 */ 370 switch (af) { 371 case AF_INET: 372 IN6_V4MAPPED_TO_IPADDR(&dst_addr_v6, dst_addr); 373 IN6_V4MAPPED_TO_IPADDR(&src_addr_v6, src_addr); 374 IN6_V4MAPPED_TO_IPADDR(&gw_addr_v6, gw_addr); 375 if (((found_addrs & RTA_NETMASK) == 0) || 376 (rtm->rtm_flags & RTF_HOST)) 377 net_mask = IP_HOST_MASK; 378 else 379 IN6_V4MAPPED_TO_IPADDR(&net_mask_v6, net_mask); 380 break; 381 case AF_INET6: 382 if (((found_addrs & RTA_NETMASK) == 0) || 383 (rtm->rtm_flags & RTF_HOST)) 384 net_mask_v6 = ipv6_all_ones; 385 break; 386 default: 387 /* 388 * These errno values are meant to be compatible with 389 * 4.4BSD-Lite2 for the given message types. 390 */ 391 switch (rtm->rtm_type) { 392 case RTM_ADD: 393 case RTM_DELETE: 394 error = ESRCH; 395 goto done; 396 case RTM_GET: 397 case RTM_CHANGE: 398 error = EAFNOSUPPORT; 399 goto done; 400 default: 401 error = EOPNOTSUPP; 402 goto done; 403 } 404 } 405 406 /* 407 * At this point, the address family must be something known. 408 */ 409 ASSERT(af == AF_INET || af == AF_INET6); 410 411 /* Handle RTA_IFP */ 412 if (index != 0) { 413 ipif_t *ipif; 414 lookup: 415 ill = ill_lookup_on_ifindex(index, af == AF_INET6, ipst); 416 if (ill == NULL) { 417 error = EINVAL; 418 goto done; 419 } 420 421 /* 422 * Since all interfaces in an IPMP group must be equivalent, 423 * we prevent changes to a specific underlying interface's 424 * routing configuration. However, for backward compatibility, 425 * we intepret a request to add a route on an underlying 426 * interface as a request to add a route on its IPMP interface. 427 */ 428 if (IS_UNDER_IPMP(ill)) { 429 switch (rtm->rtm_type) { 430 case RTM_CHANGE: 431 case RTM_DELETE: 432 error = EINVAL; 433 goto done; 434 case RTM_ADD: 435 index = ipmp_ill_get_ipmp_ifindex(ill); 436 ill_refrele(ill); 437 if (index == 0) { 438 ill = NULL; /* already refrele'd */ 439 error = EINVAL; 440 goto done; 441 } 442 goto lookup; 443 } 444 } 445 446 match_flags |= MATCH_IRE_ILL; 447 /* 448 * This provides the same zoneid as in Solaris 10 449 * that -ifp picks the zoneid from the first ipif on the ill. 450 * But it might not be useful since the first ipif will always 451 * have the same zoneid as the ill. 452 */ 453 ipif = ipif_get_next_ipif(NULL, ill); 454 if (ipif != NULL) { 455 zoneid = ipif->ipif_zoneid; 456 ipif_refrele(ipif); 457 } 458 } 459 460 /* 461 * If a netmask was supplied in the message, then subsequent route 462 * lookups will attempt to match on the netmask as well. 463 */ 464 if ((found_addrs & RTA_NETMASK) != 0) 465 match_flags |= MATCH_IRE_MASK; 466 467 /* 468 * We only process any passed-in route security attributes for 469 * either RTM_ADD or RTM_CHANGE message; We overload them 470 * to do an RTM_GET as a different label; ignore otherwise. 471 */ 472 if (rtm->rtm_type == RTM_ADD || rtm->rtm_type == RTM_CHANGE || 473 rtm->rtm_type == RTM_GET) { 474 ASSERT(rtsecattr.rtsa_cnt <= TSOL_RTSA_REQUEST_MAX); 475 if (rtsecattr.rtsa_cnt > 0) 476 rtsap = &rtsecattr.rtsa_attr[0]; 477 } 478 479 switch (rtm->rtm_type) { 480 case RTM_ADD: 481 /* if we are adding a route, gateway is a must */ 482 if ((found_addrs & RTA_GATEWAY) == 0) { 483 error = EINVAL; 484 goto done; 485 } 486 487 /* Multirouting does not support net routes. */ 488 if ((rtm->rtm_flags & (RTF_MULTIRT | RTF_HOST)) == 489 RTF_MULTIRT) { 490 error = EADDRNOTAVAIL; 491 goto done; 492 } 493 494 /* 495 * Multirouting and user-specified source addresses 496 * do not support interface based routing. 497 * Assigning a source address to an interface based 498 * route is achievable by plumbing a new ipif and 499 * setting up the interface route via this ipif, 500 * though. 501 */ 502 if (rtm->rtm_flags & (RTF_MULTIRT | RTF_SETSRC)) { 503 if ((rtm->rtm_flags & RTF_GATEWAY) == 0) { 504 error = EADDRNOTAVAIL; 505 goto done; 506 } 507 } 508 509 switch (af) { 510 case AF_INET: 511 if (src_addr != INADDR_ANY) { 512 uint_t type; 513 514 /* 515 * The RTF_SETSRC flag is present, check that 516 * the supplied src address is not the loopback 517 * address. This would produce martian packets. 518 */ 519 if (src_addr == htonl(INADDR_LOOPBACK)) { 520 error = EINVAL; 521 goto done; 522 } 523 /* 524 * Also check that the supplied address is a 525 * valid, local one. Only allow IFF_UP ones 526 */ 527 type = ip_type_v4(src_addr, ipst); 528 if (!(type & (IRE_LOCAL|IRE_LOOPBACK))) { 529 error = EADDRNOTAVAIL; 530 goto done; 531 } 532 } else { 533 /* 534 * The RTF_SETSRC modifier must be associated 535 * to a non-null source address. 536 */ 537 if (rtm->rtm_flags & RTF_SETSRC) { 538 error = EINVAL; 539 goto done; 540 } 541 } 542 543 error = ip_rt_add(dst_addr, net_mask, gw_addr, src_addr, 544 rtm->rtm_flags, ill, &ire, B_FALSE, 545 rtsap, ipst, zoneid); 546 if (ill != NULL) 547 ASSERT(!MUTEX_HELD(&ill->ill_lock)); 548 break; 549 case AF_INET6: 550 if (!IN6_IS_ADDR_UNSPECIFIED(&src_addr_v6)) { 551 uint_t type; 552 553 /* 554 * The RTF_SETSRC flag is present, check that 555 * the supplied src address is not the loopback 556 * address. This would produce martian packets. 557 */ 558 if (IN6_IS_ADDR_LOOPBACK(&src_addr_v6)) { 559 error = EINVAL; 560 goto done; 561 } 562 /* 563 * Also check that the supplied address is a 564 * valid, local one. Only allow UP ones. 565 */ 566 type = ip_type_v6(&src_addr_v6, ipst); 567 if (!(type & (IRE_LOCAL|IRE_LOOPBACK))) { 568 error = EADDRNOTAVAIL; 569 goto done; 570 } 571 572 error = ip_rt_add_v6(&dst_addr_v6, &net_mask_v6, 573 &gw_addr_v6, &src_addr_v6, rtm->rtm_flags, 574 ill, &ire, rtsap, ipst, zoneid); 575 break; 576 } 577 /* 578 * The RTF_SETSRC modifier must be associated 579 * to a non-null source address. 580 */ 581 if (rtm->rtm_flags & RTF_SETSRC) { 582 error = EINVAL; 583 goto done; 584 } 585 error = ip_rt_add_v6(&dst_addr_v6, &net_mask_v6, 586 &gw_addr_v6, NULL, rtm->rtm_flags, 587 ill, &ire, rtsap, ipst, zoneid); 588 if (ill != NULL) 589 ASSERT(!MUTEX_HELD(&ill->ill_lock)); 590 break; 591 } 592 if (error != 0) 593 goto done; 594 ASSERT(ire != NULL); 595 rts_setmetrics(ire, rtm->rtm_inits, &rtm->rtm_rmx); 596 break; 597 case RTM_DELETE: 598 /* if we are deleting a route, gateway is a must */ 599 if ((found_addrs & RTA_GATEWAY) == 0) { 600 error = EINVAL; 601 goto done; 602 } 603 /* 604 * The RTF_SETSRC modifier does not make sense 605 * when deleting a route. 606 */ 607 if (rtm->rtm_flags & RTF_SETSRC) { 608 error = EINVAL; 609 goto done; 610 } 611 612 switch (af) { 613 case AF_INET: 614 error = ip_rt_delete(dst_addr, net_mask, gw_addr, 615 found_addrs, rtm->rtm_flags, ill, B_FALSE, 616 ipst, zoneid); 617 break; 618 case AF_INET6: 619 error = ip_rt_delete_v6(&dst_addr_v6, &net_mask_v6, 620 &gw_addr_v6, found_addrs, rtm->rtm_flags, ill, 621 ipst, zoneid); 622 break; 623 } 624 break; 625 case RTM_GET: 626 case RTM_CHANGE: 627 /* 628 * In the case of RTM_GET, the forwarding table should be 629 * searched recursively. Also, if a gateway was 630 * specified then the gateway address must also be matched. 631 * 632 * In the case of RTM_CHANGE, the gateway address (if supplied) 633 * is the new gateway address so matching on the gateway address 634 * is not done. This can lead to ambiguity when looking up the 635 * route to change as usually only the destination (and netmask, 636 * if supplied) is used for the lookup. However if a RTA_IFP 637 * sockaddr is also supplied, it can disambiguate which route to 638 * change provided the ambigous routes are tied to distinct 639 * ill's (or interface indices). If the routes are not tied to 640 * any particular interfaces (for example, with traditional 641 * gateway routes), then a RTA_IFP sockaddr will be of no use as 642 * it won't match any such routes. 643 * RTA_SRC is not supported for RTM_GET and RTM_CHANGE, 644 * except when RTM_CHANGE is combined to RTF_SETSRC. 645 */ 646 if (((found_addrs & RTA_SRC) != 0) && 647 ((rtm->rtm_type == RTM_GET) || 648 !(rtm->rtm_flags & RTF_SETSRC))) { 649 error = EOPNOTSUPP; 650 goto done; 651 } 652 653 if (rtm->rtm_type == RTM_GET) { 654 match_flags |= MATCH_IRE_SECATTR; 655 match_flags_local |= MATCH_IRE_SECATTR; 656 if ((found_addrs & RTA_GATEWAY) != 0) 657 match_flags |= MATCH_IRE_GW; 658 if (ioc_cr) 659 tsl = crgetlabel(ioc_cr); 660 if (rtsap != NULL) { 661 if (rtsa_validate(rtsap) != 0) { 662 error = EINVAL; 663 goto done; 664 } 665 if (tsl != NULL && 666 crgetzoneid(ioc_cr) != GLOBAL_ZONEID && 667 (tsl->tsl_doi != rtsap->rtsa_doi || 668 !bldominates(&tsl->tsl_label, 669 &rtsap->rtsa_slrange.lower_bound))) { 670 error = EPERM; 671 goto done; 672 } 673 tsl = labelalloc( 674 &rtsap->rtsa_slrange.lower_bound, 675 rtsap->rtsa_doi, KM_NOSLEEP); 676 } 677 } 678 if (rtm->rtm_type == RTM_CHANGE) { 679 if ((found_addrs & RTA_GATEWAY) && 680 (rtm->rtm_flags & RTF_SETSRC)) { 681 /* 682 * Do not want to change the gateway, 683 * but rather the source address. 684 */ 685 match_flags |= MATCH_IRE_GW; 686 } 687 } 688 689 /* 690 * If the netmask is all ones (either as supplied or as derived 691 * above), then first check for an IRE_LOOPBACK or 692 * IRE_LOCAL entry. 693 * 694 * If we didn't check for or find an IRE_LOOPBACK or IRE_LOCAL 695 * entry, then look for any other type of IRE. 696 */ 697 switch (af) { 698 case AF_INET: 699 if (net_mask == IP_HOST_MASK) { 700 ire = ire_ftable_lookup_v4(dst_addr, 0, gw_addr, 701 IRE_LOCAL | IRE_LOOPBACK, NULL, zoneid, 702 tsl, match_flags_local, 0, ipst, NULL); 703 } 704 if (ire == NULL) { 705 ire = ire_lookup_v4(dst_addr, net_mask, 706 gw_addr, ill, zoneid, tsl, match_flags, 707 ipst, &ifire, &v4setsrc, &gwattr); 708 IN6_IPADDR_TO_V4MAPPED(v4setsrc, &v6setsrc); 709 } 710 break; 711 case AF_INET6: 712 if (IN6_ARE_ADDR_EQUAL(&net_mask_v6, &ipv6_all_ones)) { 713 ire = ire_ftable_lookup_v6(&dst_addr_v6, NULL, 714 &gw_addr_v6, IRE_LOCAL | IRE_LOOPBACK, NULL, 715 zoneid, tsl, match_flags_local, 0, ipst, 716 NULL); 717 } 718 if (ire == NULL) { 719 ire = ire_lookup_v6(&dst_addr_v6, 720 &net_mask_v6, &gw_addr_v6, ill, zoneid, 721 tsl, match_flags, ipst, &ifire, &v6setsrc, 722 &gwattr); 723 } 724 break; 725 } 726 if (tsl != NULL && tsl != crgetlabel(ioc_cr)) 727 label_rele(tsl); 728 729 if (ire == NULL) { 730 error = ESRCH; 731 goto done; 732 } 733 /* 734 * Want to return failure if we get an IRE_NOROUTE from 735 * ire_route_recursive 736 */ 737 if (ire->ire_type & IRE_NOROUTE) { 738 ire_refrele(ire); 739 ire = NULL; 740 error = ESRCH; 741 goto done; 742 } 743 744 /* we know the IRE before we come here */ 745 switch (rtm->rtm_type) { 746 case RTM_GET: 747 mp1 = rts_rtmget(mp, ire, ifire, &v6setsrc, gwattr, af); 748 if (mp1 == NULL) { 749 error = ENOBUFS; 750 goto done; 751 } 752 freemsg(mp); 753 mp = mp1; 754 rtm = (rt_msghdr_t *)mp->b_rptr; 755 break; 756 case RTM_CHANGE: 757 /* 758 * Do not allow to the multirouting state of a route 759 * to be changed. This aims to prevent undesirable 760 * stages where both multirt and non-multirt routes 761 * for the same destination are declared. 762 */ 763 if ((ire->ire_flags & RTF_MULTIRT) != 764 (rtm->rtm_flags & RTF_MULTIRT)) { 765 error = EINVAL; 766 goto done; 767 } 768 /* 769 * Note that we do not need to do 770 * ire_flush_cache_*(IRE_FLUSH_ADD) as a change 771 * in metrics or gateway will not affect existing 772 * routes since it does not create a more specific 773 * route. 774 */ 775 switch (af) { 776 case AF_INET: 777 if ((found_addrs & RTA_GATEWAY) != 0 && 778 (ire->ire_gateway_addr != gw_addr)) { 779 ire->ire_gateway_addr = gw_addr; 780 } 781 782 if (rtsap != NULL) { 783 ga.ga_af = AF_INET; 784 IN6_IPADDR_TO_V4MAPPED( 785 ire->ire_gateway_addr, &ga.ga_addr); 786 787 gcgrp = gcgrp_lookup(&ga, B_TRUE); 788 if (gcgrp == NULL) { 789 error = ENOMEM; 790 goto done; 791 } 792 } 793 794 if ((found_addrs & RTA_SRC) != 0 && 795 (rtm->rtm_flags & RTF_SETSRC) != 0 && 796 (ire->ire_setsrc_addr != src_addr)) { 797 if (src_addr != INADDR_ANY) { 798 uint_t type; 799 800 /* 801 * The RTF_SETSRC flag is 802 * present, check that the 803 * supplied src address is not 804 * the loopback address. This 805 * would produce martian 806 * packets. 807 */ 808 if (src_addr == 809 htonl(INADDR_LOOPBACK)) { 810 error = EINVAL; 811 goto done; 812 } 813 /* 814 * Also check that the 815 * supplied addr is a valid 816 * local address. 817 */ 818 type = ip_type_v4(src_addr, 819 ipst); 820 if (!(type & 821 (IRE_LOCAL|IRE_LOOPBACK))) { 822 error = EADDRNOTAVAIL; 823 goto done; 824 } 825 ire->ire_flags |= RTF_SETSRC; 826 ire->ire_setsrc_addr = 827 src_addr; 828 } else { 829 ire->ire_flags &= ~RTF_SETSRC; 830 ire->ire_setsrc_addr = 831 INADDR_ANY; 832 } 833 /* 834 * Let conn_ixa caching know that 835 * source address selection changed 836 */ 837 ip_update_source_selection(ipst); 838 } 839 ire_flush_cache_v4(ire, IRE_FLUSH_GWCHANGE); 840 break; 841 case AF_INET6: 842 mutex_enter(&ire->ire_lock); 843 if ((found_addrs & RTA_GATEWAY) != 0 && 844 !IN6_ARE_ADDR_EQUAL( 845 &ire->ire_gateway_addr_v6, &gw_addr_v6)) { 846 ire->ire_gateway_addr_v6 = gw_addr_v6; 847 } 848 mutex_exit(&ire->ire_lock); 849 850 if (rtsap != NULL) { 851 ga.ga_af = AF_INET6; 852 mutex_enter(&ire->ire_lock); 853 ga.ga_addr = ire->ire_gateway_addr_v6; 854 mutex_exit(&ire->ire_lock); 855 856 gcgrp = gcgrp_lookup(&ga, B_TRUE); 857 if (gcgrp == NULL) { 858 error = ENOMEM; 859 goto done; 860 } 861 } 862 863 if ((found_addrs & RTA_SRC) != 0 && 864 (rtm->rtm_flags & RTF_SETSRC) != 0 && 865 !IN6_ARE_ADDR_EQUAL( 866 &ire->ire_setsrc_addr_v6, &src_addr_v6)) { 867 if (!IN6_IS_ADDR_UNSPECIFIED( 868 &src_addr_v6)) { 869 uint_t type; 870 871 /* 872 * The RTF_SETSRC flag is 873 * present, check that the 874 * supplied src address is not 875 * the loopback address. This 876 * would produce martian 877 * packets. 878 */ 879 if (IN6_IS_ADDR_LOOPBACK( 880 &src_addr_v6)) { 881 error = EINVAL; 882 goto done; 883 } 884 /* 885 * Also check that the 886 * supplied addr is a valid 887 * local address. 888 */ 889 type = ip_type_v6(&src_addr_v6, 890 ipst); 891 if (!(type & 892 (IRE_LOCAL|IRE_LOOPBACK))) { 893 error = EADDRNOTAVAIL; 894 goto done; 895 } 896 mutex_enter(&ire->ire_lock); 897 ire->ire_flags |= RTF_SETSRC; 898 ire->ire_setsrc_addr_v6 = 899 src_addr_v6; 900 mutex_exit(&ire->ire_lock); 901 } else { 902 mutex_enter(&ire->ire_lock); 903 ire->ire_flags &= ~RTF_SETSRC; 904 ire->ire_setsrc_addr_v6 = 905 ipv6_all_zeros; 906 mutex_exit(&ire->ire_lock); 907 } 908 /* 909 * Let conn_ixa caching know that 910 * source address selection changed 911 */ 912 ip_update_source_selection(ipst); 913 } 914 ire_flush_cache_v6(ire, IRE_FLUSH_GWCHANGE); 915 break; 916 } 917 918 if (rtsap != NULL) { 919 ASSERT(gcgrp != NULL); 920 921 /* 922 * Create and add the security attribute to 923 * prefix IRE; it will add a reference to the 924 * group upon allocating a new entry. If it 925 * finds an already-existing entry for the 926 * security attribute, it simply returns it 927 * and no new group reference is made. 928 */ 929 gc = gc_create(rtsap, gcgrp, &gcgrp_xtraref); 930 if (gc == NULL || 931 (error = tsol_ire_init_gwattr(ire, 932 ire->ire_ipversion, gc)) != 0) { 933 if (gc != NULL) { 934 GC_REFRELE(gc); 935 } else { 936 /* gc_create failed */ 937 error = ENOMEM; 938 } 939 goto done; 940 } 941 } 942 rts_setmetrics(ire, rtm->rtm_inits, &rtm->rtm_rmx); 943 break; 944 } 945 break; 946 default: 947 error = EOPNOTSUPP; 948 break; 949 } 950 done: 951 if (ire != NULL) 952 ire_refrele(ire); 953 if (ifire != NULL) 954 ire_refrele(ifire); 955 if (ill != NULL) 956 ill_refrele(ill); 957 958 if (gcgrp_xtraref) 959 GCGRP_REFRELE(gcgrp); 960 961 if (rtm != NULL) { 962 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 963 if (error != 0) { 964 rtm->rtm_errno = error; 965 /* Send error ACK */ 966 ip1dbg(("ip_rts_request: error %d\n", error)); 967 } else { 968 rtm->rtm_flags |= RTF_DONE; 969 /* OK ACK already set up by caller except this */ 970 ip2dbg(("ip_rts_request: OK ACK\n")); 971 } 972 rts_queue_input(mp, connp, af, RTSQ_ALL, ipst); 973 } 974 return (error); 975 } 976 977 /* 978 * Helper function that can do recursive lookups including when 979 * MATCH_IRE_GW and/or MATCH_IRE_MASK is set. 980 */ 981 static ire_t * 982 ire_lookup_v4(ipaddr_t dst_addr, ipaddr_t net_mask, ipaddr_t gw_addr, 983 const ill_t *ill, zoneid_t zoneid, const ts_label_t *tsl, 984 int match_flags, ip_stack_t *ipst, ire_t **pifire, ipaddr_t *v4setsrcp, 985 tsol_ire_gw_secattr_t **gwattrp) 986 { 987 ire_t *ire; 988 ire_t *ifire = NULL; 989 uint_t ire_type; 990 991 *pifire = NULL; 992 *v4setsrcp = INADDR_ANY; 993 *gwattrp = NULL; 994 995 /* Skip IRE_IF_CLONE */ 996 match_flags |= MATCH_IRE_TYPE; 997 ire_type = (IRE_ONLINK|IRE_OFFLINK) & ~IRE_IF_CLONE; 998 999 /* 1000 * ire_route_recursive can't match gateway or mask thus if they are 1001 * set we have to do two steps of lookups 1002 */ 1003 if (match_flags & (MATCH_IRE_GW|MATCH_IRE_MASK)) { 1004 ire = ire_ftable_lookup_v4(dst_addr, net_mask, gw_addr, 1005 ire_type, ill, zoneid, tsl, match_flags, 0, ipst, NULL); 1006 1007 if (ire == NULL ||(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) 1008 return (ire); 1009 1010 if (ire->ire_type & IRE_ONLINK) 1011 return (ire); 1012 1013 if (ire->ire_flags & RTF_SETSRC) { 1014 ASSERT(ire->ire_setsrc_addr != INADDR_ANY); 1015 *v4setsrcp = ire->ire_setsrc_addr; 1016 v4setsrcp = NULL; 1017 } 1018 1019 /* The first ire_gw_secattr is passed back */ 1020 if (ire->ire_gw_secattr != NULL) { 1021 *gwattrp = ire->ire_gw_secattr; 1022 gwattrp = NULL; 1023 } 1024 1025 /* Look for an interface ire recursively based on the gateway */ 1026 dst_addr = ire->ire_gateway_addr; 1027 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_MASK); 1028 ifire = ire_route_recursive_v4(dst_addr, ire_type, ill, zoneid, 1029 tsl, match_flags, B_FALSE, 0, ipst, v4setsrcp, gwattrp, 1030 NULL); 1031 } else { 1032 ire = ire_route_recursive_v4(dst_addr, ire_type, ill, zoneid, 1033 tsl, match_flags, B_FALSE, 0, ipst, v4setsrcp, gwattrp, 1034 NULL); 1035 } 1036 *pifire = ifire; 1037 return (ire); 1038 } 1039 1040 static ire_t * 1041 ire_lookup_v6(const in6_addr_t *dst_addr_v6, 1042 const in6_addr_t *net_mask_v6, const in6_addr_t *gw_addr_v6, 1043 const ill_t *ill, zoneid_t zoneid, const ts_label_t *tsl, int match_flags, 1044 ip_stack_t *ipst, ire_t **pifire, 1045 in6_addr_t *v6setsrcp, tsol_ire_gw_secattr_t **gwattrp) 1046 { 1047 ire_t *ire; 1048 ire_t *ifire = NULL; 1049 uint_t ire_type; 1050 1051 *pifire = NULL; 1052 *v6setsrcp = ipv6_all_zeros; 1053 *gwattrp = NULL; 1054 1055 /* Skip IRE_IF_CLONE */ 1056 match_flags |= MATCH_IRE_TYPE; 1057 ire_type = (IRE_ONLINK|IRE_OFFLINK) & ~IRE_IF_CLONE; 1058 1059 /* 1060 * ire_route_recursive can't match gateway or mask thus if they are 1061 * set we have to do two steps of lookups 1062 */ 1063 if (match_flags & (MATCH_IRE_GW|MATCH_IRE_MASK)) { 1064 in6_addr_t dst; 1065 1066 ire = ire_ftable_lookup_v6(dst_addr_v6, net_mask_v6, 1067 gw_addr_v6, ire_type, ill, zoneid, tsl, match_flags, 0, 1068 ipst, NULL); 1069 1070 if (ire == NULL ||(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) 1071 return (ire); 1072 1073 if (ire->ire_type & IRE_ONLINK) 1074 return (ire); 1075 1076 if (ire->ire_flags & RTF_SETSRC) { 1077 ASSERT(!IN6_IS_ADDR_UNSPECIFIED( 1078 &ire->ire_setsrc_addr_v6)); 1079 *v6setsrcp = ire->ire_setsrc_addr_v6; 1080 v6setsrcp = NULL; 1081 } 1082 1083 /* The first ire_gw_secattr is passed back */ 1084 if (ire->ire_gw_secattr != NULL) { 1085 *gwattrp = ire->ire_gw_secattr; 1086 gwattrp = NULL; 1087 } 1088 1089 mutex_enter(&ire->ire_lock); 1090 dst = ire->ire_gateway_addr_v6; 1091 mutex_exit(&ire->ire_lock); 1092 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_MASK); 1093 ifire = ire_route_recursive_v6(&dst, ire_type, ill, zoneid, tsl, 1094 match_flags, B_FALSE, 0, ipst, v6setsrcp, gwattrp, NULL); 1095 } else { 1096 ire = ire_route_recursive_v6(dst_addr_v6, ire_type, ill, zoneid, 1097 tsl, match_flags, B_FALSE, 0, ipst, v6setsrcp, gwattrp, 1098 NULL); 1099 } 1100 *pifire = ifire; 1101 return (ire); 1102 } 1103 1104 1105 /* 1106 * Handle IP_IOC_RTS_REQUEST ioctls 1107 */ 1108 int 1109 ip_rts_request(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 1110 { 1111 conn_t *connp = Q_TO_CONN(q); 1112 IOCP iocp = (IOCP)mp->b_rptr; 1113 mblk_t *mp1, *ioc_mp = mp; 1114 int error = 0; 1115 ip_stack_t *ipst; 1116 1117 ipst = connp->conn_netstack->netstack_ip; 1118 1119 ASSERT(mp->b_cont != NULL); 1120 /* ioc_mp holds mp */ 1121 mp = mp->b_cont; 1122 1123 /* 1124 * The Routing Socket data starts on 1125 * next block. If there is no next block 1126 * this is an indication from routing module 1127 * that it is a routing socket stream queue. 1128 * We need to support that for compatibility with SDP since 1129 * it has a contract private interface to use IP_IOC_RTS_REQUEST. 1130 * Note: SDP no longer uses IP_IOC_RTS_REQUEST - we can remove this. 1131 */ 1132 if (mp->b_cont == NULL) { 1133 /* 1134 * This is a message from SDP 1135 * indicating that this is a Routing Socket 1136 * Stream. Insert this conn_t in routing 1137 * socket client list. 1138 */ 1139 connp->conn_useloopback = 1; 1140 ipcl_hash_insert_wildcard(ipst->ips_rts_clients, connp); 1141 goto done; 1142 } 1143 mp1 = dupmsg(mp->b_cont); 1144 if (mp1 == NULL) { 1145 error = ENOBUFS; 1146 goto done; 1147 } 1148 mp = mp1; 1149 1150 error = ip_rts_request_common(mp, connp, ioc_cr); 1151 done: 1152 iocp->ioc_error = error; 1153 ioc_mp->b_datap->db_type = M_IOCACK; 1154 if (iocp->ioc_error != 0) 1155 iocp->ioc_count = 0; 1156 /* Note that we pass a NULL ira to rts_input */ 1157 (connp->conn_recv)(connp, ioc_mp, NULL, NULL); 1158 1159 /* conn was refheld in ip_wput_ioctl. */ 1160 CONN_OPER_PENDING_DONE(connp); 1161 1162 return (error); 1163 } 1164 1165 /* 1166 * Build a reply to the RTM_GET request contained in the given message block 1167 * using the retrieved IRE of the destination address, the parent IRE (if it 1168 * exists) and the address family. 1169 * 1170 * Returns a pointer to a message block containing the reply if successful, 1171 * otherwise NULL is returned. 1172 */ 1173 static mblk_t * 1174 rts_rtmget(mblk_t *mp, ire_t *ire, ire_t *ifire, const in6_addr_t *setsrc, 1175 tsol_ire_gw_secattr_t *attrp, sa_family_t af) 1176 { 1177 rt_msghdr_t *rtm; 1178 rt_msghdr_t *new_rtm; 1179 mblk_t *new_mp; 1180 int rtm_addrs; 1181 int rtm_flags; 1182 tsol_gc_t *gc = NULL; 1183 tsol_gcgrp_t *gcgrp = NULL; 1184 ill_t *ill; 1185 ipif_t *ipif = NULL; 1186 ipaddr_t brdaddr; /* IFF_POINTOPOINT destination */ 1187 ipaddr_t ifaddr; 1188 in6_addr_t brdaddr6; /* IFF_POINTOPOINT destination */ 1189 in6_addr_t ifaddr6; 1190 ipaddr_t v4setsrc; 1191 1192 rtm = (rt_msghdr_t *)mp->b_rptr; 1193 1194 /* 1195 * Find the ill used to send packets. This will be NULL in case 1196 * of a reject or blackhole. 1197 */ 1198 if (ifire != NULL) 1199 ill = ire_nexthop_ill(ifire); 1200 else 1201 ill = ire_nexthop_ill(ire); 1202 1203 if (attrp != NULL) { 1204 mutex_enter(&attrp->igsa_lock); 1205 if ((gc = attrp->igsa_gc) != NULL) { 1206 gcgrp = gc->gc_grp; 1207 ASSERT(gcgrp != NULL); 1208 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 1209 } 1210 mutex_exit(&attrp->igsa_lock); 1211 } 1212 1213 /* 1214 * Always return RTA_DST, RTA_GATEWAY and RTA_NETMASK. 1215 * 1216 * The 4.4BSD-Lite2 code (net/rtsock.c) returns both 1217 * RTA_IFP and RTA_IFA if either is defined, and also 1218 * returns RTA_BRD if the appropriate interface is 1219 * point-to-point. 1220 */ 1221 rtm_addrs = (RTA_DST | RTA_GATEWAY | RTA_NETMASK); 1222 if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) && ill != NULL) { 1223 rtm_addrs |= (RTA_IFP | RTA_IFA); 1224 /* 1225 * We associate an IRE with an ILL, hence we don't exactly 1226 * know what might make sense for RTA_IFA and RTA_BRD. We 1227 * pick the first ipif on the ill. 1228 */ 1229 ipif = ipif_get_next_ipif(NULL, ill); 1230 if (ipif != NULL) { 1231 if (ipif->ipif_isv6) 1232 ifaddr6 = ipif->ipif_v6lcl_addr; 1233 else 1234 ifaddr = ipif->ipif_lcl_addr; 1235 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 1236 rtm_addrs |= RTA_BRD; 1237 if (ipif->ipif_isv6) 1238 brdaddr6 = ipif->ipif_v6pp_dst_addr; 1239 else 1240 brdaddr = ipif->ipif_pp_dst_addr; 1241 } 1242 ipif_refrele(ipif); 1243 } 1244 } 1245 1246 new_mp = rts_alloc_msg(RTM_GET, rtm_addrs, af, gc != NULL ? 1 : 0); 1247 if (new_mp == NULL) { 1248 if (gcgrp != NULL) 1249 rw_exit(&gcgrp->gcgrp_rwlock); 1250 if (ill != NULL) 1251 ill_refrele(ill); 1252 return (NULL); 1253 } 1254 1255 /* 1256 * We set the destination address, gateway address, 1257 * netmask and flags in the RTM_GET response depending 1258 * on whether we found a parent IRE or not. 1259 * In particular, if we did find a parent IRE during the 1260 * recursive search, use that IRE's gateway address. 1261 * Otherwise, we use the IRE's source address for the 1262 * gateway address. 1263 */ 1264 ASSERT(af == AF_INET || af == AF_INET6); 1265 switch (af) { 1266 case AF_INET: 1267 IN6_V4MAPPED_TO_IPADDR(setsrc, v4setsrc); 1268 if (v4setsrc != INADDR_ANY) 1269 rtm_addrs |= RTA_SRC; 1270 1271 rtm_flags = ire->ire_flags; 1272 rts_fill_msg(RTM_GET, rtm_addrs, ire->ire_addr, 1273 ire->ire_mask, ire->ire_gateway_addr, v4setsrc, 1274 brdaddr, 0, ifaddr, ill, new_mp, gc); 1275 break; 1276 case AF_INET6: 1277 if (!IN6_IS_ADDR_UNSPECIFIED(setsrc)) 1278 rtm_addrs |= RTA_SRC; 1279 1280 rtm_flags = ire->ire_flags; 1281 rts_fill_msg_v6(RTM_GET, rtm_addrs, &ire->ire_addr_v6, 1282 &ire->ire_mask_v6, &ire->ire_gateway_addr_v6, 1283 setsrc, &brdaddr6, &ipv6_all_zeros, 1284 &ifaddr6, ill, new_mp, gc); 1285 break; 1286 } 1287 1288 if (gcgrp != NULL) 1289 rw_exit(&gcgrp->gcgrp_rwlock); 1290 1291 new_rtm = (rt_msghdr_t *)new_mp->b_rptr; 1292 1293 /* 1294 * The rtm_msglen, rtm_version and rtm_type fields in 1295 * RTM_GET response are filled in by rts_fill_msg. 1296 * 1297 * rtm_addrs and rtm_flags are filled in based on what 1298 * was requested and the state of the IREs looked up 1299 * above. 1300 * 1301 * rtm_inits and rtm_rmx are filled in with metrics 1302 * based on whether a parent IRE was found or not. 1303 * 1304 * TODO: rtm_index and rtm_use should probably be 1305 * filled in with something resonable here and not just 1306 * copied from the request. 1307 */ 1308 new_rtm->rtm_index = rtm->rtm_index; 1309 new_rtm->rtm_pid = rtm->rtm_pid; 1310 new_rtm->rtm_seq = rtm->rtm_seq; 1311 new_rtm->rtm_use = rtm->rtm_use; 1312 new_rtm->rtm_addrs = rtm_addrs; 1313 new_rtm->rtm_flags = rtm_flags; 1314 new_rtm->rtm_inits = rts_getmetrics(ire, &new_rtm->rtm_rmx); 1315 if (ill != NULL) 1316 ill_refrele(ill); 1317 return (new_mp); 1318 } 1319 1320 /* 1321 * Fill the given if_data_t with interface statistics. 1322 */ 1323 static void 1324 rts_getifdata(if_data_t *if_data, const ipif_t *ipif) 1325 { 1326 if_data->ifi_type = ipif->ipif_ill->ill_type; 1327 /* ethernet, tokenring, etc */ 1328 if_data->ifi_addrlen = 0; /* media address length */ 1329 if_data->ifi_hdrlen = 0; /* media header length */ 1330 if_data->ifi_mtu = ipif->ipif_ill->ill_mtu; /* mtu */ 1331 if_data->ifi_metric = ipif->ipif_metric; /* metric (external only) */ 1332 if_data->ifi_baudrate = 0; /* linespeed */ 1333 1334 if_data->ifi_ipackets = 0; /* packets received on if */ 1335 if_data->ifi_ierrors = 0; /* input errors on interface */ 1336 if_data->ifi_opackets = 0; /* packets sent on interface */ 1337 if_data->ifi_oerrors = 0; /* output errors on if */ 1338 if_data->ifi_collisions = 0; /* collisions on csma if */ 1339 if_data->ifi_ibytes = 0; /* total number received */ 1340 if_data->ifi_obytes = 0; /* total number sent */ 1341 if_data->ifi_imcasts = 0; /* multicast packets received */ 1342 if_data->ifi_omcasts = 0; /* multicast packets sent */ 1343 if_data->ifi_iqdrops = 0; /* dropped on input */ 1344 if_data->ifi_noproto = 0; /* destined for unsupported */ 1345 /* protocol. */ 1346 } 1347 1348 /* 1349 * Set the metrics on a forwarding table route. 1350 */ 1351 static void 1352 rts_setmetrics(ire_t *ire, uint_t which, rt_metrics_t *metrics) 1353 { 1354 clock_t rtt; 1355 clock_t rtt_sd; 1356 ill_t *ill; 1357 ifrt_t *ifrt; 1358 mblk_t *mp; 1359 in6_addr_t gw_addr_v6; 1360 1361 /* Need to add back some metrics to the IRE? */ 1362 /* 1363 * Bypass obtaining the lock and searching ill_saved_ire_mp in the 1364 * common case of no metrics. 1365 */ 1366 if (which == 0) 1367 return; 1368 ire->ire_metrics.iulp_set = B_TRUE; 1369 1370 /* 1371 * iulp_rtt and iulp_rtt_sd are in milliseconds, but 4.4BSD-Lite2's 1372 * <net/route.h> says: rmx_rtt and rmx_rttvar are stored as 1373 * microseconds. 1374 */ 1375 if (which & RTV_RTT) 1376 rtt = metrics->rmx_rtt / 1000; 1377 if (which & RTV_RTTVAR) 1378 rtt_sd = metrics->rmx_rttvar / 1000; 1379 1380 /* 1381 * Update the metrics in the IRE itself. 1382 */ 1383 mutex_enter(&ire->ire_lock); 1384 if (which & RTV_MTU) 1385 ire->ire_metrics.iulp_mtu = metrics->rmx_mtu; 1386 if (which & RTV_RTT) 1387 ire->ire_metrics.iulp_rtt = rtt; 1388 if (which & RTV_SSTHRESH) 1389 ire->ire_metrics.iulp_ssthresh = metrics->rmx_ssthresh; 1390 if (which & RTV_RTTVAR) 1391 ire->ire_metrics.iulp_rtt_sd = rtt_sd; 1392 if (which & RTV_SPIPE) 1393 ire->ire_metrics.iulp_spipe = metrics->rmx_sendpipe; 1394 if (which & RTV_RPIPE) 1395 ire->ire_metrics.iulp_rpipe = metrics->rmx_recvpipe; 1396 mutex_exit(&ire->ire_lock); 1397 1398 /* 1399 * Search through the ifrt_t chain hanging off the ILL in order to 1400 * reflect the metric change there. 1401 */ 1402 ill = ire->ire_ill; 1403 if (ill == NULL) 1404 return; 1405 ASSERT((ill->ill_isv6 && ire->ire_ipversion == IPV6_VERSION) || 1406 ((!ill->ill_isv6 && ire->ire_ipversion == IPV4_VERSION))); 1407 if (ill->ill_isv6) { 1408 mutex_enter(&ire->ire_lock); 1409 gw_addr_v6 = ire->ire_gateway_addr_v6; 1410 mutex_exit(&ire->ire_lock); 1411 } 1412 mutex_enter(&ill->ill_saved_ire_lock); 1413 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 1414 /* 1415 * On a given ill, the tuple of address, gateway, mask, 1416 * ire_type and zoneid unique for each saved IRE. 1417 */ 1418 ifrt = (ifrt_t *)mp->b_rptr; 1419 if (ill->ill_isv6) { 1420 if (!IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 1421 &ire->ire_addr_v6) || 1422 !IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 1423 &gw_addr_v6) || 1424 !IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 1425 &ire->ire_mask_v6)) 1426 continue; 1427 } else { 1428 if (ifrt->ifrt_addr != ire->ire_addr || 1429 ifrt->ifrt_gateway_addr != ire->ire_gateway_addr || 1430 ifrt->ifrt_mask != ire->ire_mask) 1431 continue; 1432 } 1433 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 1434 ifrt->ifrt_type != ire->ire_type) 1435 continue; 1436 1437 if (which & RTV_MTU) 1438 ifrt->ifrt_metrics.iulp_mtu = metrics->rmx_mtu; 1439 if (which & RTV_RTT) 1440 ifrt->ifrt_metrics.iulp_rtt = rtt; 1441 if (which & RTV_SSTHRESH) { 1442 ifrt->ifrt_metrics.iulp_ssthresh = 1443 metrics->rmx_ssthresh; 1444 } 1445 if (which & RTV_RTTVAR) 1446 ifrt->ifrt_metrics.iulp_rtt_sd = metrics->rmx_rttvar; 1447 if (which & RTV_SPIPE) 1448 ifrt->ifrt_metrics.iulp_spipe = metrics->rmx_sendpipe; 1449 if (which & RTV_RPIPE) 1450 ifrt->ifrt_metrics.iulp_rpipe = metrics->rmx_recvpipe; 1451 break; 1452 } 1453 mutex_exit(&ill->ill_saved_ire_lock); 1454 1455 /* 1456 * Update any IRE_IF_CLONE hanging created from this IRE_IF so they 1457 * get any new iulp_mtu. 1458 * We do that by deleting them; ire_create_if_clone will pick 1459 * up the new metrics. 1460 */ 1461 if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != 0) 1462 ire_dep_delete_if_clone(ire); 1463 } 1464 1465 /* 1466 * Get the metrics from a forwarding table route. 1467 */ 1468 static int 1469 rts_getmetrics(ire_t *ire, rt_metrics_t *metrics) 1470 { 1471 int metrics_set = 0; 1472 1473 bzero(metrics, sizeof (rt_metrics_t)); 1474 1475 /* 1476 * iulp_rtt and iulp_rtt_sd are in milliseconds, but 4.4BSD-Lite2's 1477 * <net/route.h> says: rmx_rtt and rmx_rttvar are stored as 1478 * microseconds. 1479 */ 1480 metrics->rmx_rtt = ire->ire_metrics.iulp_rtt * 1000; 1481 metrics_set |= RTV_RTT; 1482 metrics->rmx_mtu = ire->ire_metrics.iulp_mtu; 1483 metrics_set |= RTV_MTU; 1484 metrics->rmx_ssthresh = ire->ire_metrics.iulp_ssthresh; 1485 metrics_set |= RTV_SSTHRESH; 1486 metrics->rmx_rttvar = ire->ire_metrics.iulp_rtt_sd * 1000; 1487 metrics_set |= RTV_RTTVAR; 1488 metrics->rmx_sendpipe = ire->ire_metrics.iulp_spipe; 1489 metrics_set |= RTV_SPIPE; 1490 metrics->rmx_recvpipe = ire->ire_metrics.iulp_rpipe; 1491 metrics_set |= RTV_RPIPE; 1492 return (metrics_set); 1493 } 1494 1495 /* 1496 * Given two sets of metrics (src and dst), use the dst values if they are 1497 * set. If a dst value is not set but the src value is set, then we use 1498 * the src value. 1499 * dst is updated with the new values. 1500 * This is used to merge information from a dce_t and ire_metrics, where the 1501 * dce values takes precedence. 1502 */ 1503 void 1504 rts_merge_metrics(iulp_t *dst, const iulp_t *src) 1505 { 1506 if (!src->iulp_set) 1507 return; 1508 1509 if (dst->iulp_ssthresh == 0) 1510 dst->iulp_ssthresh = src->iulp_ssthresh; 1511 if (dst->iulp_rtt == 0) 1512 dst->iulp_rtt = src->iulp_rtt; 1513 if (dst->iulp_rtt_sd == 0) 1514 dst->iulp_rtt_sd = src->iulp_rtt_sd; 1515 if (dst->iulp_spipe == 0) 1516 dst->iulp_spipe = src->iulp_spipe; 1517 if (dst->iulp_rpipe == 0) 1518 dst->iulp_rpipe = src->iulp_rpipe; 1519 if (dst->iulp_rtomax == 0) 1520 dst->iulp_rtomax = src->iulp_rtomax; 1521 if (dst->iulp_sack == 0) 1522 dst->iulp_sack = src->iulp_sack; 1523 if (dst->iulp_tstamp_ok == 0) 1524 dst->iulp_tstamp_ok = src->iulp_tstamp_ok; 1525 if (dst->iulp_wscale_ok == 0) 1526 dst->iulp_wscale_ok = src->iulp_wscale_ok; 1527 if (dst->iulp_ecn_ok == 0) 1528 dst->iulp_ecn_ok = src->iulp_ecn_ok; 1529 if (dst->iulp_pmtud_ok == 0) 1530 dst->iulp_pmtud_ok = src->iulp_pmtud_ok; 1531 if (dst->iulp_mtu == 0) 1532 dst->iulp_mtu = src->iulp_mtu; 1533 } 1534 1535 1536 /* 1537 * Takes a pointer to a routing message and extracts necessary info by looking 1538 * at the rtm->rtm_addrs bits and store the requested sockaddrs in the pointers 1539 * passed (all of which must be valid). 1540 * 1541 * The bitmask of sockaddrs actually found in the message is returned, or zero 1542 * is returned in the case of an error. 1543 */ 1544 static int 1545 rts_getaddrs(rt_msghdr_t *rtm, in6_addr_t *dst_addrp, in6_addr_t *gw_addrp, 1546 in6_addr_t *net_maskp, in6_addr_t *authorp, in6_addr_t *if_addrp, 1547 in6_addr_t *in_src_addrp, ushort_t *indexp, sa_family_t *afp, 1548 tsol_rtsecattr_t *rtsecattr, int *error) 1549 { 1550 struct sockaddr *sa; 1551 int i; 1552 int addr_bits; 1553 int length; 1554 int found_addrs = 0; 1555 caddr_t cp; 1556 size_t size; 1557 struct sockaddr_dl *sdl; 1558 1559 *dst_addrp = ipv6_all_zeros; 1560 *gw_addrp = ipv6_all_zeros; 1561 *net_maskp = ipv6_all_zeros; 1562 *authorp = ipv6_all_zeros; 1563 *if_addrp = ipv6_all_zeros; 1564 *in_src_addrp = ipv6_all_zeros; 1565 *indexp = 0; 1566 *afp = AF_UNSPEC; 1567 rtsecattr->rtsa_cnt = 0; 1568 *error = 0; 1569 1570 /* 1571 * At present we handle only RTA_DST, RTA_GATEWAY, RTA_NETMASK, RTA_IFP, 1572 * RTA_IFA and RTA_AUTHOR. The rest will be added as we need them. 1573 */ 1574 cp = (caddr_t)&rtm[1]; 1575 length = rtm->rtm_msglen; 1576 for (i = 0; (i < RTA_NUMBITS) && ((cp - (caddr_t)rtm) < length); i++) { 1577 /* 1578 * The address family we are working with starts out as 1579 * AF_UNSPEC, but is set to the one specified with the 1580 * destination address. 1581 * 1582 * If the "working" address family that has been set to 1583 * something other than AF_UNSPEC, then the address family of 1584 * subsequent sockaddrs must either be AF_UNSPEC (for 1585 * compatibility with older programs) or must be the same as our 1586 * "working" one. 1587 * 1588 * This code assumes that RTA_DST (1) comes first in the loop. 1589 */ 1590 sa = (struct sockaddr *)cp; 1591 addr_bits = (rtm->rtm_addrs & (1 << i)); 1592 if (addr_bits == 0) 1593 continue; 1594 switch (addr_bits) { 1595 case RTA_DST: 1596 size = rts_copyfromsockaddr(sa, dst_addrp); 1597 *afp = sa->sa_family; 1598 break; 1599 case RTA_GATEWAY: 1600 if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC) 1601 return (0); 1602 size = rts_copyfromsockaddr(sa, gw_addrp); 1603 break; 1604 case RTA_NETMASK: 1605 if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC) 1606 return (0); 1607 size = rts_copyfromsockaddr(sa, net_maskp); 1608 break; 1609 case RTA_IFP: 1610 if (sa->sa_family != AF_LINK && 1611 sa->sa_family != AF_UNSPEC) 1612 return (0); 1613 sdl = (struct sockaddr_dl *)cp; 1614 *indexp = sdl->sdl_index; 1615 size = sizeof (struct sockaddr_dl); 1616 break; 1617 case RTA_SRC: 1618 /* Source address of the incoming packet */ 1619 size = rts_copyfromsockaddr(sa, in_src_addrp); 1620 *afp = sa->sa_family; 1621 break; 1622 case RTA_IFA: 1623 if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC) 1624 return (0); 1625 size = rts_copyfromsockaddr(sa, if_addrp); 1626 break; 1627 case RTA_AUTHOR: 1628 if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC) 1629 return (0); 1630 size = rts_copyfromsockaddr(sa, authorp); 1631 break; 1632 default: 1633 return (0); 1634 } 1635 if (size == 0) 1636 return (0); 1637 cp += size; 1638 found_addrs |= addr_bits; 1639 } 1640 1641 /* 1642 * Parse the routing message and look for any security- 1643 * related attributes for the route. For each valid 1644 * attribute, allocate/obtain the corresponding kernel 1645 * route security attributes. 1646 */ 1647 if (((cp - (caddr_t)rtm) < length) && is_system_labeled()) { 1648 *error = tsol_rtsa_init(rtm, rtsecattr, cp); 1649 ASSERT(rtsecattr->rtsa_cnt <= TSOL_RTSA_REQUEST_MAX); 1650 } 1651 1652 return (found_addrs); 1653 } 1654 1655 /* 1656 * Fills the message with the given info. 1657 */ 1658 static void 1659 rts_fill_msg(int type, int rtm_addrs, ipaddr_t dst, ipaddr_t mask, 1660 ipaddr_t gateway, ipaddr_t src_addr, ipaddr_t brd_addr, ipaddr_t author, 1661 ipaddr_t ifaddr, const ill_t *ill, mblk_t *mp, 1662 const tsol_gc_t *gc) 1663 { 1664 rt_msghdr_t *rtm; 1665 sin_t *sin; 1666 size_t data_size, header_size; 1667 uchar_t *cp; 1668 int i; 1669 1670 ASSERT(mp != NULL); 1671 /* 1672 * First find the type of the message 1673 * and its length. 1674 */ 1675 header_size = rts_header_msg_size(type); 1676 /* 1677 * Now find the size of the data 1678 * that follows the message header. 1679 */ 1680 data_size = rts_data_msg_size(rtm_addrs, AF_INET, gc != NULL ? 1 : 0); 1681 1682 rtm = (rt_msghdr_t *)mp->b_rptr; 1683 mp->b_wptr = &mp->b_rptr[header_size]; 1684 cp = mp->b_wptr; 1685 bzero(cp, data_size); 1686 for (i = 0; i < RTA_NUMBITS; i++) { 1687 sin = (sin_t *)cp; 1688 switch (rtm_addrs & (1 << i)) { 1689 case RTA_DST: 1690 sin->sin_addr.s_addr = dst; 1691 sin->sin_family = AF_INET; 1692 cp += sizeof (sin_t); 1693 break; 1694 case RTA_GATEWAY: 1695 sin->sin_addr.s_addr = gateway; 1696 sin->sin_family = AF_INET; 1697 cp += sizeof (sin_t); 1698 break; 1699 case RTA_NETMASK: 1700 sin->sin_addr.s_addr = mask; 1701 sin->sin_family = AF_INET; 1702 cp += sizeof (sin_t); 1703 break; 1704 case RTA_IFP: 1705 cp += ill_dls_info((struct sockaddr_dl *)cp, ill); 1706 break; 1707 case RTA_IFA: 1708 sin->sin_addr.s_addr = ifaddr; 1709 sin->sin_family = AF_INET; 1710 cp += sizeof (sin_t); 1711 break; 1712 case RTA_SRC: 1713 sin->sin_addr.s_addr = src_addr; 1714 sin->sin_family = AF_INET; 1715 cp += sizeof (sin_t); 1716 break; 1717 case RTA_AUTHOR: 1718 sin->sin_addr.s_addr = author; 1719 sin->sin_family = AF_INET; 1720 cp += sizeof (sin_t); 1721 break; 1722 case RTA_BRD: 1723 /* 1724 * RTA_BRD is used typically to specify a point-to-point 1725 * destination address. 1726 */ 1727 sin->sin_addr.s_addr = brd_addr; 1728 sin->sin_family = AF_INET; 1729 cp += sizeof (sin_t); 1730 break; 1731 } 1732 } 1733 1734 if (gc != NULL) { 1735 rtm_ext_t *rtm_ext; 1736 struct rtsa_s *rp_dst; 1737 tsol_rtsecattr_t *rsap; 1738 1739 ASSERT(gc->gc_grp != NULL); 1740 ASSERT(RW_LOCK_HELD(&gc->gc_grp->gcgrp_rwlock)); 1741 1742 rtm_ext = (rtm_ext_t *)cp; 1743 rtm_ext->rtmex_type = RTMEX_GATEWAY_SECATTR; 1744 rtm_ext->rtmex_len = TSOL_RTSECATTR_SIZE(1); 1745 1746 rsap = (tsol_rtsecattr_t *)(rtm_ext + 1); 1747 rsap->rtsa_cnt = 1; 1748 rp_dst = rsap->rtsa_attr; 1749 1750 ASSERT(gc->gc_db != NULL); 1751 bcopy(&gc->gc_db->gcdb_attr, rp_dst, sizeof (*rp_dst)); 1752 cp = (uchar_t *)rp_dst; 1753 } 1754 1755 mp->b_wptr = cp; 1756 mp->b_cont = NULL; 1757 /* 1758 * set the fields that are common to 1759 * to different messages. 1760 */ 1761 rtm->rtm_msglen = (short)(header_size + data_size); 1762 rtm->rtm_version = RTM_VERSION; 1763 rtm->rtm_type = (uchar_t)type; 1764 } 1765 1766 /* 1767 * Allocates and initializes a routing socket message. 1768 * Note that sacnt is either zero or one. 1769 */ 1770 mblk_t * 1771 rts_alloc_msg(int type, int rtm_addrs, sa_family_t af, uint_t sacnt) 1772 { 1773 size_t length; 1774 mblk_t *mp; 1775 1776 length = RTS_MSG_SIZE(type, rtm_addrs, af, sacnt); 1777 mp = allocb(length, BPRI_MED); 1778 if (mp == NULL) 1779 return (mp); 1780 bzero(mp->b_rptr, length); 1781 return (mp); 1782 } 1783 1784 /* 1785 * Returns the size of the routing 1786 * socket message header size. 1787 */ 1788 size_t 1789 rts_header_msg_size(int type) 1790 { 1791 switch (type) { 1792 case RTM_DELADDR: 1793 case RTM_NEWADDR: 1794 case RTM_CHGADDR: 1795 case RTM_FREEADDR: 1796 return (sizeof (ifa_msghdr_t)); 1797 case RTM_IFINFO: 1798 return (sizeof (if_msghdr_t)); 1799 default: 1800 return (sizeof (rt_msghdr_t)); 1801 } 1802 } 1803 1804 /* 1805 * Returns the size of the message needed with the given rtm_addrs and family. 1806 * 1807 * It is assumed that all of the sockaddrs (with the exception of RTA_IFP) are 1808 * of the same family (currently either AF_INET or AF_INET6). 1809 */ 1810 size_t 1811 rts_data_msg_size(int rtm_addrs, sa_family_t af, uint_t sacnt) 1812 { 1813 int i; 1814 size_t length = 0; 1815 1816 for (i = 0; i < RTA_NUMBITS; i++) { 1817 switch (rtm_addrs & (1 << i)) { 1818 case RTA_IFP: 1819 length += sizeof (struct sockaddr_dl); 1820 break; 1821 case RTA_DST: 1822 case RTA_GATEWAY: 1823 case RTA_NETMASK: 1824 case RTA_SRC: 1825 case RTA_IFA: 1826 case RTA_AUTHOR: 1827 case RTA_BRD: 1828 ASSERT(af == AF_INET || af == AF_INET6); 1829 switch (af) { 1830 case AF_INET: 1831 length += sizeof (sin_t); 1832 break; 1833 case AF_INET6: 1834 length += sizeof (sin6_t); 1835 break; 1836 } 1837 break; 1838 } 1839 } 1840 if (sacnt > 0) 1841 length += sizeof (rtm_ext_t) + TSOL_RTSECATTR_SIZE(sacnt); 1842 1843 return (length); 1844 } 1845 1846 /* 1847 * This routine is called to generate a message to the routing 1848 * socket indicating that a redirect has occured, a routing lookup 1849 * has failed, or that a protocol has detected timeouts to a particular 1850 * destination. This routine is called for message types RTM_LOSING, 1851 * RTM_REDIRECT, and RTM_MISS. 1852 */ 1853 void 1854 ip_rts_change(int type, ipaddr_t dst_addr, ipaddr_t gw_addr, ipaddr_t net_mask, 1855 ipaddr_t source, ipaddr_t author, int flags, int error, int rtm_addrs, 1856 ip_stack_t *ipst) 1857 { 1858 rt_msghdr_t *rtm; 1859 mblk_t *mp; 1860 1861 if (rtm_addrs == 0) 1862 return; 1863 mp = rts_alloc_msg(type, rtm_addrs, AF_INET, 0); 1864 if (mp == NULL) 1865 return; 1866 rts_fill_msg(type, rtm_addrs, dst_addr, net_mask, gw_addr, source, 0, 1867 author, 0, NULL, mp, NULL); 1868 rtm = (rt_msghdr_t *)mp->b_rptr; 1869 rtm->rtm_flags = flags; 1870 rtm->rtm_errno = error; 1871 rtm->rtm_flags |= RTF_DONE; 1872 rtm->rtm_addrs = rtm_addrs; 1873 rts_queue_input(mp, NULL, AF_INET, RTSQ_ALL, ipst); 1874 } 1875 1876 /* 1877 * This routine is called to generate a message to the routing 1878 * socket indicating that the status of a network interface has changed. 1879 * Message type generated RTM_IFINFO. 1880 */ 1881 void 1882 ip_rts_ifmsg(const ipif_t *ipif, uint_t flags) 1883 { 1884 ip_rts_xifmsg(ipif, 0, 0, flags); 1885 } 1886 1887 void 1888 ip_rts_xifmsg(const ipif_t *ipif, uint64_t set, uint64_t clear, uint_t flags) 1889 { 1890 if_msghdr_t *ifm; 1891 mblk_t *mp; 1892 sa_family_t af; 1893 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1894 1895 /* 1896 * This message should be generated only 1897 * when the physical device is changing 1898 * state. 1899 */ 1900 if (ipif->ipif_id != 0) 1901 return; 1902 if (ipif->ipif_isv6) { 1903 af = AF_INET6; 1904 mp = rts_alloc_msg(RTM_IFINFO, RTA_IFP, af, 0); 1905 if (mp == NULL) 1906 return; 1907 rts_fill_msg_v6(RTM_IFINFO, RTA_IFP, &ipv6_all_zeros, 1908 &ipv6_all_zeros, &ipv6_all_zeros, &ipv6_all_zeros, 1909 &ipv6_all_zeros, &ipv6_all_zeros, &ipv6_all_zeros, 1910 ipif->ipif_ill, mp, NULL); 1911 } else { 1912 af = AF_INET; 1913 mp = rts_alloc_msg(RTM_IFINFO, RTA_IFP, af, 0); 1914 if (mp == NULL) 1915 return; 1916 rts_fill_msg(RTM_IFINFO, RTA_IFP, 0, 0, 0, 0, 0, 0, 0, 1917 ipif->ipif_ill, mp, NULL); 1918 } 1919 ifm = (if_msghdr_t *)mp->b_rptr; 1920 ifm->ifm_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 1921 ifm->ifm_flags = (ipif->ipif_flags | ipif->ipif_ill->ill_flags | 1922 ipif->ipif_ill->ill_phyint->phyint_flags | set) & ~clear; 1923 rts_getifdata(&ifm->ifm_data, ipif); 1924 ifm->ifm_addrs = RTA_IFP; 1925 1926 if (flags & RTSQ_DEFAULT) { 1927 flags = RTSQ_ALL; 1928 /* 1929 * If this message is for an underlying interface, prevent 1930 * "normal" (IPMP-unaware) routing sockets from seeing it. 1931 */ 1932 if (IS_UNDER_IPMP(ipif->ipif_ill)) 1933 flags &= ~RTSQ_NORMAL; 1934 } 1935 1936 rts_queue_input(mp, NULL, af, flags, ipst); 1937 } 1938 1939 /* 1940 * If cmd is RTM_ADD or RTM_DELETE, generate the rt_msghdr_t message; 1941 * otherwise (RTM_NEWADDR, RTM_DELADDR, RTM_CHGADDR and RTM_FREEADDR) 1942 * generate the ifa_msghdr_t message. 1943 */ 1944 static void 1945 rts_new_rtsmsg(int cmd, int error, const ipif_t *ipif, uint_t flags) 1946 { 1947 int rtm_addrs; 1948 mblk_t *mp; 1949 ifa_msghdr_t *ifam; 1950 rt_msghdr_t *rtm; 1951 sa_family_t af; 1952 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1953 1954 /* 1955 * Do not report unspecified address if this is the RTM_CHGADDR or 1956 * RTM_FREEADDR message. 1957 */ 1958 if (cmd == RTM_CHGADDR || cmd == RTM_FREEADDR) { 1959 if (!ipif->ipif_isv6) { 1960 if (ipif->ipif_lcl_addr == INADDR_ANY) 1961 return; 1962 } else if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 1963 return; 1964 } 1965 } 1966 1967 if (ipif->ipif_isv6) 1968 af = AF_INET6; 1969 else 1970 af = AF_INET; 1971 1972 if (cmd == RTM_ADD || cmd == RTM_DELETE) 1973 rtm_addrs = (RTA_DST | RTA_NETMASK); 1974 else 1975 rtm_addrs = (RTA_IFA | RTA_NETMASK | RTA_BRD | RTA_IFP); 1976 1977 mp = rts_alloc_msg(cmd, rtm_addrs, af, 0); 1978 if (mp == NULL) 1979 return; 1980 1981 if (cmd != RTM_ADD && cmd != RTM_DELETE) { 1982 switch (af) { 1983 case AF_INET: 1984 rts_fill_msg(cmd, rtm_addrs, 0, 1985 ipif->ipif_net_mask, 0, ipif->ipif_lcl_addr, 1986 ipif->ipif_pp_dst_addr, 0, 1987 ipif->ipif_lcl_addr, ipif->ipif_ill, 1988 mp, NULL); 1989 break; 1990 case AF_INET6: 1991 rts_fill_msg_v6(cmd, rtm_addrs, 1992 &ipv6_all_zeros, &ipif->ipif_v6net_mask, 1993 &ipv6_all_zeros, &ipif->ipif_v6lcl_addr, 1994 &ipif->ipif_v6pp_dst_addr, &ipv6_all_zeros, 1995 &ipif->ipif_v6lcl_addr, ipif->ipif_ill, 1996 mp, NULL); 1997 break; 1998 } 1999 ifam = (ifa_msghdr_t *)mp->b_rptr; 2000 ifam->ifam_index = 2001 ipif->ipif_ill->ill_phyint->phyint_ifindex; 2002 ifam->ifam_metric = ipif->ipif_metric; 2003 ifam->ifam_flags = ((cmd == RTM_NEWADDR) ? RTF_UP : 0); 2004 ifam->ifam_addrs = rtm_addrs; 2005 } else { 2006 switch (af) { 2007 case AF_INET: 2008 rts_fill_msg(cmd, rtm_addrs, 2009 ipif->ipif_lcl_addr, ipif->ipif_net_mask, 0, 2010 0, 0, 0, 0, NULL, mp, NULL); 2011 break; 2012 case AF_INET6: 2013 rts_fill_msg_v6(cmd, rtm_addrs, 2014 &ipif->ipif_v6lcl_addr, 2015 &ipif->ipif_v6net_mask, &ipv6_all_zeros, 2016 &ipv6_all_zeros, &ipv6_all_zeros, 2017 &ipv6_all_zeros, &ipv6_all_zeros, 2018 NULL, mp, NULL); 2019 break; 2020 } 2021 rtm = (rt_msghdr_t *)mp->b_rptr; 2022 rtm->rtm_index = 2023 ipif->ipif_ill->ill_phyint->phyint_ifindex; 2024 rtm->rtm_flags = ((cmd == RTM_ADD) ? RTF_UP : 0); 2025 rtm->rtm_errno = error; 2026 if (error == 0) 2027 rtm->rtm_flags |= RTF_DONE; 2028 rtm->rtm_addrs = rtm_addrs; 2029 } 2030 rts_queue_input(mp, NULL, af, flags, ipst); 2031 } 2032 2033 /* 2034 * This is called to generate messages to the routing socket 2035 * indicating a network interface has had addresses associated with it. 2036 * The structure of the code is based on the 4.4BSD-Lite2 <net/rtsock.c>. 2037 */ 2038 void 2039 ip_rts_newaddrmsg(int cmd, int error, const ipif_t *ipif, uint_t flags) 2040 { 2041 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 2042 2043 if (flags & RTSQ_DEFAULT) { 2044 flags = RTSQ_ALL; 2045 /* 2046 * If this message is for an underlying interface, prevent 2047 * "normal" (IPMP-unaware) routing sockets from seeing it. 2048 */ 2049 if (IS_UNDER_IPMP(ipif->ipif_ill)) 2050 flags &= ~RTSQ_NORMAL; 2051 } 2052 2053 /* 2054 * Let conn_ixa caching know that source address selection 2055 * changed 2056 */ 2057 if (cmd == RTM_ADD || cmd == RTM_DELETE) 2058 ip_update_source_selection(ipst); 2059 2060 /* 2061 * If the request is DELETE, send RTM_DELETE and RTM_DELADDR. 2062 * if the request is ADD, send RTM_NEWADDR and RTM_ADD. 2063 * otherwise simply send the request. 2064 */ 2065 switch (cmd) { 2066 case RTM_ADD: 2067 rts_new_rtsmsg(RTM_NEWADDR, error, ipif, flags); 2068 rts_new_rtsmsg(RTM_ADD, error, ipif, flags); 2069 break; 2070 case RTM_DELETE: 2071 rts_new_rtsmsg(RTM_DELETE, error, ipif, flags); 2072 rts_new_rtsmsg(RTM_DELADDR, error, ipif, flags); 2073 break; 2074 default: 2075 rts_new_rtsmsg(cmd, error, ipif, flags); 2076 break; 2077 } 2078 } 2079 2080 /* 2081 * Based on the address family specified in a sockaddr, copy the address field 2082 * into an in6_addr_t. 2083 * 2084 * In the case of AF_UNSPEC, we assume the family is actually AF_INET for 2085 * compatibility with programs that leave the family cleared in the sockaddr. 2086 * Callers of rts_copyfromsockaddr should check the family themselves if they 2087 * wish to verify its value. 2088 * 2089 * In the case of AF_INET6, a check is made to ensure that address is not an 2090 * IPv4-mapped address. 2091 */ 2092 size_t 2093 rts_copyfromsockaddr(struct sockaddr *sa, in6_addr_t *addrp) 2094 { 2095 switch (sa->sa_family) { 2096 case AF_INET: 2097 case AF_UNSPEC: 2098 IN6_IPADDR_TO_V4MAPPED(((sin_t *)sa)->sin_addr.s_addr, addrp); 2099 return (sizeof (sin_t)); 2100 case AF_INET6: 2101 *addrp = ((sin6_t *)sa)->sin6_addr; 2102 if (IN6_IS_ADDR_V4MAPPED(addrp)) 2103 return (0); 2104 return (sizeof (sin6_t)); 2105 default: 2106 return (0); 2107 } 2108 } 2109