1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains routines that manipulate Internet Routing Entries (IREs). 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/stropts.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/ddi.h> 37 #include <sys/cmn_err.h> 38 #include <sys/policy.h> 39 40 #include <sys/systm.h> 41 #include <sys/kmem.h> 42 #include <sys/param.h> 43 #include <sys/socket.h> 44 #include <net/if.h> 45 #include <net/route.h> 46 #include <netinet/in.h> 47 #include <net/if_dl.h> 48 #include <netinet/ip6.h> 49 #include <netinet/icmp6.h> 50 51 #include <inet/common.h> 52 #include <inet/mi.h> 53 #include <inet/ip.h> 54 #include <inet/ip6.h> 55 #include <inet/ip_ndp.h> 56 #include <inet/arp.h> 57 #include <inet/ip_if.h> 58 #include <inet/ip_ire.h> 59 #include <inet/ip_ftable.h> 60 #include <inet/ip_rts.h> 61 #include <inet/nd.h> 62 63 #include <net/pfkeyv2.h> 64 #include <inet/ipsec_info.h> 65 #include <inet/sadb.h> 66 #include <inet/tcp.h> 67 #include <inet/ipclassifier.h> 68 #include <sys/zone.h> 69 #include <sys/cpuvar.h> 70 71 #include <sys/tsol/label.h> 72 #include <sys/tsol/tnet.h> 73 74 struct kmem_cache *rt_entry_cache; 75 76 /* 77 * Synchronization notes: 78 * 79 * The fields of the ire_t struct are protected in the following way : 80 * 81 * ire_next/ire_ptpn 82 * 83 * - bucket lock of the respective tables (cache or forwarding tables). 84 * 85 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 86 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 87 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 88 * 89 * - Set in ire_create_v4/v6 and never changes after that. Thus, 90 * we don't need a lock whenever these fields are accessed. 91 * 92 * - ire_bucket and ire_masklen (also set in ire_create) is set in 93 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 94 * changes after that. Thus we don't need a lock whenever these 95 * fields are accessed. 96 * 97 * ire_gateway_addr_v4[v6] 98 * 99 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 100 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 101 * it assumed to be atomic and hence the other parts of the code 102 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 103 * and hence any access to it uses ire_lock to get/set the right value. 104 * 105 * ire_ident, ire_refcnt 106 * 107 * - Updated atomically using atomic_add_32 108 * 109 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 110 * 111 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 112 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 113 * 114 * ire_max_frag, ire_frag_flag 115 * 116 * - ire_lock is used to set/read both of them together. 117 * 118 * ire_tire_mark 119 * 120 * - Set in ire_create and updated in ire_expire, which is called 121 * by only one function namely ip_trash_timer_expire. Thus only 122 * one function updates and examines the value. 123 * 124 * ire_marks 125 * - bucket lock protects this. 126 * 127 * ire_ll_hdr_length 128 * 129 * - Place holder for returning the information to the upper layers 130 * when IRE_DB_REQ comes down. 131 * 132 * 133 * ipv6_ire_default_count is protected by the bucket lock of 134 * ip_forwarding_table_v6[0][0]. 135 * 136 * ipv6_ire_default_index is not protected as it is just a hint 137 * at which default gateway to use. There is nothing 138 * wrong in using the same gateway for two different connections. 139 * 140 * As we always hold the bucket locks in all the places while accessing 141 * the above values, it is natural to use them for protecting them. 142 * 143 * We have a separate cache table and forwarding table for IPv4 and IPv6. 144 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 145 * array of irb_t structures. The IPv6 forwarding table 146 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t 147 * structure. ip_forwarding_table_v6 is allocated dynamically in 148 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 149 * initializing the same bucket. Once a bucket is initialized, it is never 150 * de-alloacted. This assumption enables us to access 151 * ip_forwarding_table_v6[i] without any locks. 152 * 153 * The forwarding table for IPv4 is a radix tree whose leaves 154 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t 155 * for IPv4 is dynamically allocated and freed. 156 * 157 * Each irb_t - ire bucket structure has a lock to protect 158 * a bucket and the ires residing in the bucket have a back pointer to 159 * the bucket structure. It also has a reference count for the number 160 * of threads walking the bucket - irb_refcnt which is bumped up 161 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 162 * set to IRE_MARK_CONDEMNED indicating that there are some ires 163 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 164 * last thread to leave the bucket should delete the ires. Usually 165 * this is done by the IRB_REFRELE macro which is used to decrement 166 * the reference count on a bucket. See comments above irb_t structure 167 * definition in ip.h for further details. 168 * 169 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 170 * decrements the reference count, ire_refcnt, atomically on the ire. 171 * ire_refcnt is modified only using this macro. Operations on the IRE 172 * could be described as follows : 173 * 174 * CREATE an ire with reference count initialized to 1. 175 * 176 * ADDITION of an ire holds the bucket lock, checks for duplicates 177 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 178 * bumping up once more i.e the reference count is 2. This is to avoid 179 * an extra lookup in the functions calling ire_add which wants to 180 * work with the ire after adding. 181 * 182 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 183 * macro. It is valid to bump up the referece count of the IRE, 184 * after the lookup has returned an ire. Following are the lookup 185 * functions that return an HELD ire : 186 * 187 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 188 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 189 * ipif_to_ire[_v6]. 190 * 191 * DELETION of an ire holds the bucket lock, removes it from the list 192 * and then decrements the reference count for having removed from the list 193 * by using the IRE_REFRELE macro. If some other thread has looked up 194 * the ire, the reference count would have been bumped up and hence 195 * this ire will not be freed once deleted. It will be freed once the 196 * reference count drops to zero. 197 * 198 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 199 * lookups acquire the bucket lock as RW_READER. 200 * 201 * NOTE : The only functions that does the IRE_REFRELE when an ire is 202 * passed as an argument are : 203 * 204 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 205 * broadcast ires it looks up internally within 206 * the function. Currently, for simplicity it does 207 * not differentiate the one that is passed in and 208 * the ones it looks up internally. It always 209 * IRE_REFRELEs. 210 * 2) ire_send 211 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 212 * that take ire as an argument, it has to selectively 213 * IRE_REFRELE the ire. To maintain symmetry, 214 * ire_send_v6 does the same. 215 * 216 * Otherwise, the general rule is to do the IRE_REFRELE in the function 217 * that is passing the ire as an argument. 218 * 219 * In trying to locate ires the following points are to be noted. 220 * 221 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 222 * to be ignored when walking the ires using ire_next. 223 * 224 * Zones note: 225 * Walking IREs within a given zone also walks certain ires in other 226 * zones. This is done intentionally. IRE walks with a specified 227 * zoneid are used only when doing informational reports, and 228 * zone users want to see things that they can access. See block 229 * comment in ire_walk_ill_match(). 230 */ 231 232 /* 233 * The minimum size of IRE cache table. It will be recalcuated in 234 * ip_ire_init(). 235 * Setable in /etc/system 236 */ 237 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 238 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 239 240 /* 241 * The size of the forwarding table. We will make sure that it is a 242 * power of 2 in ip_ire_init(). 243 * Setable in /etc/system 244 */ 245 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 246 247 struct kmem_cache *ire_cache; 248 static ire_t ire_null; 249 250 /* 251 * The threshold number of IRE in a bucket when the IREs are 252 * cleaned up. This threshold is calculated later in ip_open() 253 * based on the speed of CPU and available memory. This default 254 * value is the maximum. 255 * 256 * We have two kinds of cached IRE, temporary and 257 * non-temporary. Temporary IREs are marked with 258 * IRE_MARK_TEMPORARY. They are IREs created for non 259 * TCP traffic and for forwarding purposes. All others 260 * are non-temporary IREs. We don't mark IRE created for 261 * TCP as temporary because TCP is stateful and there are 262 * info stored in the IRE which can be shared by other TCP 263 * connections to the same destination. For connected 264 * endpoint, we also don't want to mark the IRE used as 265 * temporary because the same IRE will be used frequently, 266 * otherwise, the app should not do a connect(). We change 267 * the marking at ip_bind_connected_*() if necessary. 268 * 269 * We want to keep the cache IRE hash bucket length reasonably 270 * short, otherwise IRE lookup functions will take "forever." 271 * We use the "crude" function that the IRE bucket 272 * length should be based on the CPU speed, which is 1 entry 273 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 274 * (n). This means that with a 750MHz CPU, the max bucket 275 * length can be (750 >> n) entries. 276 * 277 * Note that this threshold is separate for temp and non-temp 278 * IREs. This means that the actual bucket length can be 279 * twice as that. And while we try to keep temporary IRE 280 * length at most at the threshold value, we do not attempt to 281 * make the length for non-temporary IREs fixed, for the 282 * reason stated above. Instead, we start trying to find 283 * "unused" non-temporary IREs when the bucket length reaches 284 * this threshold and clean them up. 285 * 286 * We also want to limit the amount of memory used by 287 * IREs. So if we are allowed to use ~3% of memory (M) 288 * for those IREs, each bucket should not have more than 289 * 290 * M / num of cache bucket / sizeof (ire_t) 291 * 292 * Again the above memory uses are separate for temp and 293 * non-temp cached IREs. 294 * 295 * We may also want the limit to be a function of the number 296 * of interfaces and number of CPUs. Doing the initialization 297 * in ip_open() means that every time an interface is plumbed, 298 * the max is re-calculated. Right now, we don't do anything 299 * different. In future, when we have more experience, we 300 * may want to change this behavior. 301 */ 302 uint32_t ip_ire_max_bucket_cnt = 10; /* Setable in /etc/system */ 303 uint32_t ip6_ire_max_bucket_cnt = 10; 304 uint32_t ip_ire_cleanup_cnt = 2; 305 306 /* 307 * The minimum of the temporary IRE bucket count. We do not want 308 * the length of each bucket to be too short. This may hurt 309 * performance of some apps as the temporary IREs are removed too 310 * often. 311 */ 312 uint32_t ip_ire_min_bucket_cnt = 3; /* /etc/system - not used */ 313 uint32_t ip6_ire_min_bucket_cnt = 3; 314 315 /* 316 * The ratio of memory consumed by IRE used for temporary to available 317 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 318 * value can be changed in /etc/system. 6 is a reasonable number. 319 */ 320 uint32_t ip_ire_mem_ratio = 6; /* /etc/system */ 321 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 322 uint32_t ip_ire_cpu_ratio = 7; /* /etc/system */ 323 324 typedef struct nce_clookup_s { 325 ipaddr_t ncecl_addr; 326 boolean_t ncecl_found; 327 } nce_clookup_t; 328 329 /* 330 * The maximum number of buckets in IRE cache table. In future, we may 331 * want to make it a dynamic hash table. For the moment, we fix the 332 * size and allocate the table in ip_ire_init() when IP is first loaded. 333 * We take into account the amount of memory a system has. 334 */ 335 #define IP_MAX_CACHE_TABLE_SIZE 4096 336 337 /* Setable in /etc/system */ 338 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 339 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 340 341 /* Zero iulp_t for initialization. */ 342 const iulp_t ire_uinfo_null = { 0 }; 343 344 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 345 ipsq_func_t func, boolean_t); 346 static void ire_delete_v4(ire_t *ire); 347 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 348 zoneid_t zoneid, ip_stack_t *); 349 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 350 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 351 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, 352 ire_t *ref_ire); 353 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 354 static ire_t *ip4_ctable_lookup_impl(ire_ctable_args_t *margs); 355 #ifdef DEBUG 356 static void ire_trace_cleanup(const ire_t *); 357 #endif 358 359 /* 360 * To avoid bloating the code, we call this function instead of 361 * using the macro IRE_REFRELE. Use macro only in performance 362 * critical paths. 363 * 364 * Must not be called while holding any locks. Otherwise if this is 365 * the last reference to be released there is a chance of recursive mutex 366 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 367 * to restart an ioctl. The one exception is when the caller is sure that 368 * this is not the last reference to be released. Eg. if the caller is 369 * sure that the ire has not been deleted and won't be deleted. 370 */ 371 void 372 ire_refrele(ire_t *ire) 373 { 374 IRE_REFRELE(ire); 375 } 376 377 void 378 ire_refrele_notr(ire_t *ire) 379 { 380 IRE_REFRELE_NOTR(ire); 381 } 382 383 /* 384 * kmem_cache_alloc constructor for IRE in kma space. 385 * Note that when ire_mp is set the IRE is stored in that mblk and 386 * not in this cache. 387 */ 388 /* ARGSUSED */ 389 static int 390 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 391 { 392 ire_t *ire = buf; 393 394 ire->ire_nce = NULL; 395 396 return (0); 397 } 398 399 /* ARGSUSED1 */ 400 static void 401 ip_ire_destructor(void *buf, void *cdrarg) 402 { 403 ire_t *ire = buf; 404 405 ASSERT(ire->ire_nce == NULL); 406 } 407 408 /* 409 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 410 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 411 * for an existing CACHED IRE. 412 */ 413 /* ARGSUSED */ 414 int 415 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 416 { 417 uchar_t *addr_ucp; 418 ipic_t *ipic; 419 ire_t *ire; 420 ipaddr_t addr; 421 in6_addr_t v6addr; 422 irb_t *irb; 423 zoneid_t zoneid; 424 ip_stack_t *ipst = CONNQ_TO_IPST(q); 425 426 ASSERT(q->q_next == NULL); 427 zoneid = Q_TO_CONN(q)->conn_zoneid; 428 429 /* 430 * Check privilege using the ioctl credential; if it is NULL 431 * then this is a kernel message and therefor privileged. 432 */ 433 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 434 return (EPERM); 435 436 ipic = (ipic_t *)mp->b_rptr; 437 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 438 ipic->ipic_addr_length))) { 439 return (EINVAL); 440 } 441 if (!OK_32PTR(addr_ucp)) 442 return (EINVAL); 443 switch (ipic->ipic_addr_length) { 444 case IP_ADDR_LEN: { 445 /* Extract the destination address. */ 446 addr = *(ipaddr_t *)addr_ucp; 447 /* Find the corresponding IRE. */ 448 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 449 break; 450 } 451 case IPV6_ADDR_LEN: { 452 /* Extract the destination address. */ 453 v6addr = *(in6_addr_t *)addr_ucp; 454 /* Find the corresponding IRE. */ 455 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst); 456 break; 457 } 458 default: 459 return (EINVAL); 460 } 461 462 if (ire == NULL) 463 return (ENOENT); 464 /* 465 * Update the round trip time estimate and/or the max frag size 466 * and/or the slow start threshold. 467 * 468 * We serialize multiple advises using ire_lock. 469 */ 470 mutex_enter(&ire->ire_lock); 471 if (ipic->ipic_rtt) { 472 /* 473 * If there is no old cached values, initialize them 474 * conservatively. Set them to be (1.5 * new value). 475 */ 476 if (ire->ire_uinfo.iulp_rtt != 0) { 477 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 478 ipic->ipic_rtt) >> 1; 479 } else { 480 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 481 (ipic->ipic_rtt >> 1); 482 } 483 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 484 ire->ire_uinfo.iulp_rtt_sd = 485 (ire->ire_uinfo.iulp_rtt_sd + 486 ipic->ipic_rtt_sd) >> 1; 487 } else { 488 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 489 (ipic->ipic_rtt_sd >> 1); 490 } 491 } 492 if (ipic->ipic_max_frag) 493 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 494 if (ipic->ipic_ssthresh != 0) { 495 if (ire->ire_uinfo.iulp_ssthresh != 0) 496 ire->ire_uinfo.iulp_ssthresh = 497 (ipic->ipic_ssthresh + 498 ire->ire_uinfo.iulp_ssthresh) >> 1; 499 else 500 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 501 } 502 /* 503 * Don't need the ire_lock below this. ire_type does not change 504 * after initialization. ire_marks is protected by irb_lock. 505 */ 506 mutex_exit(&ire->ire_lock); 507 508 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 509 /* 510 * Only increment the temporary IRE count if the original 511 * IRE is not already marked temporary. 512 */ 513 irb = ire->ire_bucket; 514 rw_enter(&irb->irb_lock, RW_WRITER); 515 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 516 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 517 irb->irb_tmp_ire_cnt++; 518 } 519 ire->ire_marks |= ipic->ipic_ire_marks; 520 rw_exit(&irb->irb_lock); 521 } 522 523 ire_refrele(ire); 524 return (0); 525 } 526 527 /* 528 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 529 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 530 * for a host that is not responding. This will force an attempt to 531 * establish a new route, if available, and flush out the ARP entry so 532 * it will re-resolve. Management processes may want to use the 533 * version that generates a reply. 534 * 535 * This function does not support IPv6 since Neighbor Unreachability Detection 536 * means that negative advise like this is useless. 537 */ 538 /* ARGSUSED */ 539 int 540 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 541 { 542 uchar_t *addr_ucp; 543 ipaddr_t addr; 544 ire_t *ire; 545 ipid_t *ipid; 546 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 547 zoneid_t zoneid; 548 ire_t *gire = NULL; 549 ill_t *ill; 550 mblk_t *arp_mp; 551 ip_stack_t *ipst; 552 553 ASSERT(q->q_next == NULL); 554 zoneid = Q_TO_CONN(q)->conn_zoneid; 555 ipst = CONNQ_TO_IPST(q); 556 557 /* 558 * Check privilege using the ioctl credential; if it is NULL 559 * then this is a kernel message and therefor privileged. 560 */ 561 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 562 return (EPERM); 563 564 ipid = (ipid_t *)mp->b_rptr; 565 566 /* Only actions on IRE_CACHEs are acceptable at present. */ 567 if (ipid->ipid_ire_type != IRE_CACHE) 568 return (EINVAL); 569 570 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 571 ipid->ipid_addr_length); 572 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 573 return (EINVAL); 574 switch (ipid->ipid_addr_length) { 575 case IP_ADDR_LEN: 576 /* addr_ucp points at IP addr */ 577 break; 578 case sizeof (sin_t): { 579 sin_t *sin; 580 /* 581 * got complete (sockaddr) address - increment addr_ucp to point 582 * at the ip_addr field. 583 */ 584 sin = (sin_t *)addr_ucp; 585 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 586 break; 587 } 588 default: 589 return (EINVAL); 590 } 591 /* Extract the destination address. */ 592 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 593 594 /* Try to find the CACHED IRE. */ 595 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 596 597 /* Nail it. */ 598 if (ire) { 599 /* Allow delete only on CACHE entries */ 600 if (ire->ire_type != IRE_CACHE) { 601 ire_refrele(ire); 602 return (EINVAL); 603 } 604 605 /* 606 * Verify that the IRE has been around for a while. 607 * This is to protect against transport protocols 608 * that are too eager in sending delete messages. 609 */ 610 if (gethrestime_sec() < 611 ire->ire_create_time + ipst->ips_ip_ignore_delete_time) { 612 ire_refrele(ire); 613 return (EINVAL); 614 } 615 /* 616 * Now we have a potentially dead cache entry. We need 617 * to remove it. 618 * If this cache entry is generated from a 619 * default route (i.e., ire_cmask == 0), 620 * search the default list and mark it dead and some 621 * background process will try to activate it. 622 */ 623 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 624 /* 625 * Make sure that we pick a different 626 * IRE_DEFAULT next time. 627 */ 628 ire_t *gw_ire; 629 irb_t *irb = NULL; 630 uint_t match_flags; 631 632 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 633 634 gire = ire_ftable_lookup(ire->ire_addr, 635 ire->ire_cmask, 0, 0, 636 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags, 637 ipst); 638 639 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 640 (void *)gire)); 641 642 if (gire != NULL) { 643 irb = gire->ire_bucket; 644 645 /* 646 * We grab it as writer just to serialize 647 * multiple threads trying to bump up 648 * irb_rr_origin 649 */ 650 rw_enter(&irb->irb_lock, RW_WRITER); 651 if ((gw_ire = irb->irb_rr_origin) == NULL) { 652 rw_exit(&irb->irb_lock); 653 goto done; 654 } 655 656 DTRACE_PROBE1(ip__ire__del__origin, 657 (ire_t *), gw_ire); 658 659 /* Skip past the potentially bad gateway */ 660 if (ire->ire_gateway_addr == 661 gw_ire->ire_gateway_addr) { 662 ire_t *next = gw_ire->ire_next; 663 664 DTRACE_PROBE2(ip__ire__del, 665 (ire_t *), gw_ire, (irb_t *), irb); 666 IRE_FIND_NEXT_ORIGIN(next); 667 irb->irb_rr_origin = next; 668 } 669 rw_exit(&irb->irb_lock); 670 } 671 } 672 done: 673 if (gire != NULL) 674 IRE_REFRELE(gire); 675 /* report the bad route to routing sockets */ 676 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 677 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 678 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst); 679 routing_sock_info = B_TRUE; 680 681 /* 682 * TCP is really telling us to start over completely, and it 683 * expects that we'll resend the ARP query. Tell ARP to 684 * discard the entry, if this is a local destination. 685 * 686 * But, if the ARP entry is permanent then it shouldn't be 687 * deleted, so we set ARED_F_PRESERVE_PERM. 688 */ 689 ill = ire->ire_stq->q_ptr; 690 if (ire->ire_gateway_addr == 0 && 691 (arp_mp = ill_ared_alloc(ill, addr)) != NULL) { 692 ared_t *ared = (ared_t *)arp_mp->b_rptr; 693 694 ASSERT(ared->ared_cmd == AR_ENTRY_DELETE); 695 ared->ared_flags |= ARED_F_PRESERVE_PERM; 696 putnext(ill->ill_rq, arp_mp); 697 } 698 699 ire_delete(ire); 700 ire_refrele(ire); 701 } 702 /* 703 * Also look for an IRE_HOST type redirect ire and 704 * remove it if present. 705 */ 706 ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL, 707 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 708 709 /* Nail it. */ 710 if (ire != NULL) { 711 if (ire->ire_flags & RTF_DYNAMIC) { 712 if (!routing_sock_info) { 713 ip_rts_change(RTM_LOSING, ire->ire_addr, 714 ire->ire_gateway_addr, ire->ire_mask, 715 ire->ire_src_addr, 0, 0, 0, 716 (RTA_DST | RTA_GATEWAY | 717 RTA_NETMASK | RTA_IFA), 718 ipst); 719 } 720 ire_delete(ire); 721 } 722 ire_refrele(ire); 723 } 724 return (0); 725 } 726 727 /* 728 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 729 * down from the Upper Level Protocol to request a copy of the IRE (to check 730 * its type or to extract information like round-trip time estimates or the 731 * MTU.) 732 * The address is assumed to be in the ire_addr field. If no IRE is found 733 * an IRE is returned with ire_type being zero. 734 * Note that the upper lavel protocol has to check for broadcast 735 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 736 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 737 * end of the returned message. 738 * 739 * TCP sends down a message of this type with a connection request packet 740 * chained on. UDP and ICMP send it down to verify that a route exists for 741 * the destination address when they get connected. 742 */ 743 void 744 ip_ire_req(queue_t *q, mblk_t *mp) 745 { 746 ire_t *inire; 747 ire_t *ire; 748 mblk_t *mp1; 749 ire_t *sire = NULL; 750 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 751 ip_stack_t *ipst = CONNQ_TO_IPST(q); 752 753 ASSERT(q->q_next == NULL); 754 755 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 756 !OK_32PTR(mp->b_rptr)) { 757 freemsg(mp); 758 return; 759 } 760 inire = (ire_t *)mp->b_rptr; 761 /* 762 * Got it, now take our best shot at an IRE. 763 */ 764 if (inire->ire_ipversion == IPV6_VERSION) { 765 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 766 NULL, &sire, zoneid, NULL, 767 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 768 } else { 769 ASSERT(inire->ire_ipversion == IPV4_VERSION); 770 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 771 NULL, &sire, zoneid, NULL, 772 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 773 } 774 775 /* 776 * We prevent returning IRES with source address INADDR_ANY 777 * as these were temporarily created for sending packets 778 * from endpoints that have conn_unspec_src set. 779 */ 780 if (ire == NULL || 781 (ire->ire_ipversion == IPV4_VERSION && 782 ire->ire_src_addr == INADDR_ANY) || 783 (ire->ire_ipversion == IPV6_VERSION && 784 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 785 inire->ire_type = 0; 786 } else { 787 bcopy(ire, inire, sizeof (ire_t)); 788 /* Copy the route metrics from the parent. */ 789 if (sire != NULL) { 790 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 791 sizeof (iulp_t)); 792 } 793 794 /* Pass the latest setting of the ip_path_mtu_discovery */ 795 inire->ire_frag_flag |= 796 (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 797 } 798 if (ire != NULL) 799 ire_refrele(ire); 800 if (sire != NULL) 801 ire_refrele(sire); 802 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 803 mp->b_datap->db_type = IRE_DB_TYPE; 804 805 /* Put the IRE_DB_TYPE mblk last in the chain */ 806 mp1 = mp->b_cont; 807 if (mp1 != NULL) { 808 mp->b_cont = NULL; 809 linkb(mp1, mp); 810 mp = mp1; 811 } 812 qreply(q, mp); 813 } 814 815 /* 816 * Send a packet using the specified IRE. 817 * If ire_src_addr_v6 is all zero then discard the IRE after 818 * the packet has been sent. 819 */ 820 static void 821 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 822 { 823 mblk_t *ipsec_mp; 824 boolean_t is_secure; 825 uint_t ifindex; 826 ill_t *ill; 827 zoneid_t zoneid = ire->ire_zoneid; 828 ip_stack_t *ipst = ire->ire_ipst; 829 830 ASSERT(ire->ire_ipversion == IPV4_VERSION); 831 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 832 ipsec_mp = pkt; 833 is_secure = (pkt->b_datap->db_type == M_CTL); 834 if (is_secure) { 835 ipsec_out_t *io; 836 837 pkt = pkt->b_cont; 838 io = (ipsec_out_t *)ipsec_mp->b_rptr; 839 if (io->ipsec_out_type == IPSEC_OUT) 840 zoneid = io->ipsec_out_zoneid; 841 } 842 843 /* If the packet originated externally then */ 844 if (pkt->b_prev) { 845 ire_refrele(ire); 846 /* 847 * Extract the ifindex from b_prev (set in ip_rput_noire). 848 * Look up interface to see if it still exists (it could have 849 * been unplumbed by the time the reply came back from ARP) 850 */ 851 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 852 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 853 NULL, NULL, NULL, NULL, ipst); 854 if (ill == NULL) { 855 pkt->b_prev = NULL; 856 pkt->b_next = NULL; 857 freemsg(ipsec_mp); 858 return; 859 } 860 q = ill->ill_rq; 861 pkt->b_prev = NULL; 862 /* 863 * This packet has not gone through IPSEC processing 864 * and hence we should not have any IPSEC message 865 * prepended. 866 */ 867 ASSERT(ipsec_mp == pkt); 868 put(q, pkt); 869 ill_refrele(ill); 870 } else if (pkt->b_next) { 871 /* Packets from multicast router */ 872 pkt->b_next = NULL; 873 /* 874 * We never get the IPSEC_OUT while forwarding the 875 * packet for multicast router. 876 */ 877 ASSERT(ipsec_mp == pkt); 878 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 879 ire_refrele(ire); 880 } else { 881 /* Locally originated packets */ 882 boolean_t delete_ire = B_FALSE; 883 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 884 885 /* 886 * If this IRE shouldn't be kept in the table (because its 887 * source address is unspecified), hold a reference to it so 888 * we can delete it even after e.g. ip_wput_ire() has dropped 889 * its reference. 890 */ 891 if (!(ire->ire_marks & IRE_MARK_NOADD) && 892 ire->ire_src_addr == INADDR_ANY) { 893 delete_ire = B_TRUE; 894 IRE_REFHOLD(ire); 895 } 896 897 /* 898 * If we were resolving a router we can not use the 899 * routers IRE for sending the packet (since it would 900 * violate the uniqness of the IP idents) thus we 901 * make another pass through ip_wput to create the IRE_CACHE 902 * for the destination. 903 * When IRE_MARK_NOADD is set, ire_add() is not called. 904 * Thus ip_wput() will never find a ire and result in an 905 * infinite loop. Thus we check whether IRE_MARK_NOADD is 906 * is set. This also implies that IRE_MARK_NOADD can only be 907 * used to send packets to directly connected hosts. 908 */ 909 if (ipha->ipha_dst != ire->ire_addr && 910 !(ire->ire_marks & IRE_MARK_NOADD)) { 911 ire_refrele(ire); /* Held in ire_add */ 912 if (CONN_Q(q)) { 913 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, 914 IRE_SEND); 915 } else { 916 (void) ip_output((void *)(uintptr_t)zoneid, 917 ipsec_mp, q, IRE_SEND); 918 } 919 } else { 920 if (is_secure) { 921 ipsec_out_t *oi; 922 ipha_t *ipha; 923 924 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 925 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 926 if (oi->ipsec_out_proc_begin) { 927 /* 928 * This is the case where 929 * ip_wput_ipsec_out could not find 930 * the IRE and recreated a new one. 931 * As ip_wput_ipsec_out does ire 932 * lookups, ire_refrele for the extra 933 * bump in ire_add. 934 */ 935 ire_refrele(ire); 936 ip_wput_ipsec_out(q, ipsec_mp, ipha, 937 NULL, NULL); 938 } else { 939 /* 940 * IRE_REFRELE will be done in 941 * ip_wput_ire. 942 */ 943 ip_wput_ire(q, ipsec_mp, ire, NULL, 944 IRE_SEND, zoneid); 945 } 946 } else { 947 /* 948 * IRE_REFRELE will be done in ip_wput_ire. 949 */ 950 ip_wput_ire(q, ipsec_mp, ire, NULL, 951 IRE_SEND, zoneid); 952 } 953 } 954 /* 955 * Special code to support sending a single packet with 956 * conn_unspec_src using an IRE which has no source address. 957 * The IRE is deleted here after sending the packet to avoid 958 * having other code trip on it. But before we delete the 959 * ire, somebody could have looked up this ire. 960 * We prevent returning/using this IRE by the upper layers 961 * by making checks to NULL source address in other places 962 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 963 * Though this does not completely prevent other threads 964 * from using this ire, this should not cause any problems. 965 */ 966 if (delete_ire) { 967 ip1dbg(("ire_send: delete IRE\n")); 968 ire_delete(ire); 969 ire_refrele(ire); /* Held above */ 970 } 971 } 972 } 973 974 /* 975 * Send a packet using the specified IRE. 976 * If ire_src_addr_v6 is all zero then discard the IRE after 977 * the packet has been sent. 978 */ 979 static void 980 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 981 { 982 mblk_t *ipsec_mp; 983 boolean_t secure; 984 uint_t ifindex; 985 zoneid_t zoneid = ire->ire_zoneid; 986 ip_stack_t *ipst = ire->ire_ipst; 987 988 ASSERT(ire->ire_ipversion == IPV6_VERSION); 989 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 990 if (pkt->b_datap->db_type == M_CTL) { 991 ipsec_out_t *io; 992 993 ipsec_mp = pkt; 994 pkt = pkt->b_cont; 995 secure = B_TRUE; 996 io = (ipsec_out_t *)ipsec_mp->b_rptr; 997 if (io->ipsec_out_type == IPSEC_OUT) 998 zoneid = io->ipsec_out_zoneid; 999 } else { 1000 ipsec_mp = pkt; 1001 secure = B_FALSE; 1002 } 1003 1004 /* If the packet originated externally then */ 1005 if (pkt->b_prev) { 1006 ill_t *ill; 1007 /* 1008 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1009 * Look up interface to see if it still exists (it could have 1010 * been unplumbed by the time the reply came back from the 1011 * resolver). 1012 */ 1013 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1014 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1015 NULL, NULL, NULL, NULL, ipst); 1016 if (ill == NULL) { 1017 pkt->b_prev = NULL; 1018 pkt->b_next = NULL; 1019 freemsg(ipsec_mp); 1020 ire_refrele(ire); /* Held in ire_add */ 1021 return; 1022 } 1023 q = ill->ill_rq; 1024 pkt->b_prev = NULL; 1025 /* 1026 * This packet has not gone through IPSEC processing 1027 * and hence we should not have any IPSEC message 1028 * prepended. 1029 */ 1030 ASSERT(ipsec_mp == pkt); 1031 put(q, pkt); 1032 ill_refrele(ill); 1033 } else if (pkt->b_next) { 1034 /* Packets from multicast router */ 1035 pkt->b_next = NULL; 1036 /* 1037 * We never get the IPSEC_OUT while forwarding the 1038 * packet for multicast router. 1039 */ 1040 ASSERT(ipsec_mp == pkt); 1041 /* 1042 * XXX TODO IPv6. 1043 */ 1044 freemsg(pkt); 1045 #ifdef XXX 1046 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1047 #endif 1048 } else { 1049 if (secure) { 1050 ipsec_out_t *oi; 1051 ip6_t *ip6h; 1052 1053 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1054 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1055 if (oi->ipsec_out_proc_begin) { 1056 /* 1057 * This is the case where 1058 * ip_wput_ipsec_out could not find 1059 * the IRE and recreated a new one. 1060 */ 1061 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1062 NULL, NULL); 1063 } else { 1064 if (CONN_Q(q)) { 1065 (void) ip_output_v6(Q_TO_CONN(q), 1066 ipsec_mp, q, IRE_SEND); 1067 } else { 1068 (void) ip_output_v6( 1069 (void *)(uintptr_t)zoneid, 1070 ipsec_mp, q, IRE_SEND); 1071 } 1072 } 1073 } else { 1074 /* 1075 * Send packets through ip_output_v6 so that any 1076 * ip6_info header can be processed again. 1077 */ 1078 if (CONN_Q(q)) { 1079 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1080 IRE_SEND); 1081 } else { 1082 (void) ip_output_v6((void *)(uintptr_t)zoneid, 1083 ipsec_mp, q, IRE_SEND); 1084 } 1085 } 1086 /* 1087 * Special code to support sending a single packet with 1088 * conn_unspec_src using an IRE which has no source address. 1089 * The IRE is deleted here after sending the packet to avoid 1090 * having other code trip on it. But before we delete the 1091 * ire, somebody could have looked up this ire. 1092 * We prevent returning/using this IRE by the upper layers 1093 * by making checks to NULL source address in other places 1094 * like e.g ip_ire_append_v6, ip_ire_req and 1095 * ip_bind_connected_v6. Though, this does not completely 1096 * prevent other threads from using this ire, this should 1097 * not cause any problems. 1098 */ 1099 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1100 ip1dbg(("ire_send_v6: delete IRE\n")); 1101 ire_delete(ire); 1102 } 1103 } 1104 ire_refrele(ire); /* Held in ire_add */ 1105 } 1106 1107 /* 1108 * Make sure that IRE bucket does not get too long. 1109 * This can cause lock up because ire_cache_lookup() 1110 * may take "forever" to finish. 1111 * 1112 * We only remove a maximum of cnt IREs each time. This 1113 * should keep the bucket length approximately constant, 1114 * depending on cnt. This should be enough to defend 1115 * against DoS attack based on creating temporary IREs 1116 * (for forwarding and non-TCP traffic). 1117 * 1118 * We also pass in the address of the newly created IRE 1119 * as we do not want to remove this straight after adding 1120 * it. New IREs are normally added at the tail of the 1121 * bucket. This means that we are removing the "oldest" 1122 * temporary IREs added. Only if there are IREs with 1123 * the same ire_addr, do we not add it at the tail. Refer 1124 * to ire_add_v*(). It should be OK for our purpose. 1125 * 1126 * For non-temporary cached IREs, we make sure that they 1127 * have not been used for some time (defined below), they 1128 * are non-local destinations, and there is no one using 1129 * them at the moment (refcnt == 1). 1130 * 1131 * The above means that the IRE bucket length may become 1132 * very long, consisting of mostly non-temporary IREs. 1133 * This can happen when the hash function does a bad job 1134 * so that most TCP connections cluster to a specific bucket. 1135 * This "hopefully" should never happen. It can also 1136 * happen if most TCP connections have very long lives. 1137 * Even with the minimal hash table size of 256, there 1138 * has to be a lot of such connections to make the bucket 1139 * length unreasonably long. This should probably not 1140 * happen either. The third can when this can happen is 1141 * when the machine is under attack, such as SYN flooding. 1142 * TCP should already have the proper mechanism to protect 1143 * that. So we should be safe. 1144 * 1145 * This function is called by ire_add_then_send() after 1146 * a new IRE is added and the packet is sent. 1147 * 1148 * The idle cutoff interval is set to 60s. It can be 1149 * changed using /etc/system. 1150 */ 1151 uint32_t ire_idle_cutoff_interval = 60000; 1152 1153 static void 1154 ire_cache_cleanup(irb_t *irb, uint32_t threshold, ire_t *ref_ire) 1155 { 1156 ire_t *ire; 1157 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1158 int cnt = ip_ire_cleanup_cnt; 1159 1160 /* 1161 * Try to remove cnt temporary IREs first. 1162 */ 1163 for (ire = irb->irb_ire; cnt > 0 && ire != NULL; ire = ire->ire_next) { 1164 if (ire == ref_ire) 1165 continue; 1166 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1167 continue; 1168 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1169 ASSERT(ire->ire_type == IRE_CACHE); 1170 ire_delete(ire); 1171 cnt--; 1172 } 1173 } 1174 if (cnt == 0) 1175 return; 1176 1177 /* 1178 * If we didn't satisfy our removal target from temporary IREs 1179 * we see how many non-temporary IREs are currently in the bucket. 1180 * If this quantity is above the threshold then we see if there are any 1181 * candidates for removal. We are still limited to removing a maximum 1182 * of cnt IREs. 1183 */ 1184 if ((irb->irb_ire_cnt - irb->irb_tmp_ire_cnt) > threshold) { 1185 for (ire = irb->irb_ire; cnt > 0 && ire != NULL; 1186 ire = ire->ire_next) { 1187 if (ire == ref_ire) 1188 continue; 1189 if (ire->ire_type != IRE_CACHE) 1190 continue; 1191 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1192 continue; 1193 if ((ire->ire_refcnt == 1) && 1194 (lbolt - ire->ire_last_used_time > cut_off)) { 1195 ire_delete(ire); 1196 cnt--; 1197 } 1198 } 1199 } 1200 } 1201 1202 /* 1203 * ire_add_then_send is called when a new IRE has been created in order to 1204 * route an outgoing packet. Typically, it is called from ip_wput when 1205 * a response comes back down from a resolver. We add the IRE, and then 1206 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1207 * However, we do not add the newly created IRE in the cache when 1208 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1209 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by 1210 * ip_wput_ire() and get deleted. 1211 * Multirouting support: the packet is silently discarded when the new IRE 1212 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1213 * RTF_MULTIRT flag for the same destination address. 1214 * In this case, we just want to register this additional ire without 1215 * sending the packet, as it has already been replicated through 1216 * existing multirt routes in ip_wput(). 1217 */ 1218 void 1219 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1220 { 1221 irb_t *irb; 1222 boolean_t drop = B_FALSE; 1223 boolean_t mctl_present; 1224 mblk_t *first_mp = NULL; 1225 mblk_t *data_mp = NULL; 1226 ire_t *dst_ire; 1227 ipha_t *ipha; 1228 ip6_t *ip6h; 1229 ip_stack_t *ipst = ire->ire_ipst; 1230 int ire_limit; 1231 1232 if (mp != NULL) { 1233 /* 1234 * We first have to retrieve the destination address carried 1235 * by the packet. 1236 * We can't rely on ire as it can be related to a gateway. 1237 * The destination address will help in determining if 1238 * other RTF_MULTIRT ires are already registered. 1239 * 1240 * We first need to know where we are going : v4 or V6. 1241 * the ire version is enough, as there is no risk that 1242 * we resolve an IPv6 address with an IPv4 ire 1243 * or vice versa. 1244 */ 1245 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1246 data_mp = mp; 1247 mp = first_mp; 1248 if (ire->ire_ipversion == IPV4_VERSION) { 1249 ipha = (ipha_t *)data_mp->b_rptr; 1250 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1251 ire->ire_zoneid, msg_getlabel(mp), ipst); 1252 } else { 1253 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1254 ip6h = (ip6_t *)data_mp->b_rptr; 1255 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1256 ire->ire_zoneid, msg_getlabel(mp), ipst); 1257 } 1258 if (dst_ire != NULL) { 1259 if (dst_ire->ire_flags & RTF_MULTIRT) { 1260 /* 1261 * At least one resolved multirt route 1262 * already exists for the destination, 1263 * don't sent this packet: either drop it 1264 * or complete the pending resolution, 1265 * depending on the ire. 1266 */ 1267 drop = B_TRUE; 1268 } 1269 ip1dbg(("ire_add_then_send: dst_ire %p " 1270 "[dst %08x, gw %08x], drop %d\n", 1271 (void *)dst_ire, 1272 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1273 ntohl(dst_ire->ire_addr) : \ 1274 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1275 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1276 ntohl(dst_ire->ire_gateway_addr) : \ 1277 ntohl(V4_PART_OF_V6( 1278 dst_ire->ire_gateway_addr_v6)), 1279 drop)); 1280 ire_refrele(dst_ire); 1281 } 1282 } 1283 1284 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1285 /* Regular packets with cache bound ires are here. */ 1286 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1287 1288 if (ire == NULL) { 1289 mp->b_prev = NULL; 1290 mp->b_next = NULL; 1291 MULTIRT_DEBUG_UNTAG(mp); 1292 freemsg(mp); 1293 return; 1294 } 1295 if (mp == NULL) { 1296 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1297 return; 1298 } 1299 } 1300 if (drop) { 1301 /* 1302 * If we're adding an RTF_MULTIRT ire, the resolution 1303 * is over: we just drop the packet. 1304 */ 1305 if (ire->ire_flags & RTF_MULTIRT) { 1306 data_mp->b_prev = NULL; 1307 data_mp->b_next = NULL; 1308 MULTIRT_DEBUG_UNTAG(mp); 1309 freemsg(mp); 1310 } else { 1311 /* 1312 * Otherwise, we're adding the ire to a gateway 1313 * for a multirt route. 1314 * Invoke ip_newroute() to complete the resolution 1315 * of the route. We will then come back here and 1316 * finally drop this packet in the above code. 1317 */ 1318 if (ire->ire_ipversion == IPV4_VERSION) { 1319 /* 1320 * TODO: in order for CGTP to work in non-global 1321 * zones, ip_newroute() must create the IRE 1322 * cache in the zone indicated by 1323 * ire->ire_zoneid. 1324 */ 1325 ip_newroute(q, mp, ipha->ipha_dst, 1326 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 1327 ire->ire_zoneid, ipst); 1328 } else { 1329 int minlen = sizeof (ip6i_t) + IPV6_HDR_LEN; 1330 1331 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1332 1333 /* 1334 * If necessary, skip over the ip6i_t to find 1335 * the header with the actual source address. 1336 */ 1337 if (ip6h->ip6_nxt == IPPROTO_RAW) { 1338 if (MBLKL(data_mp) < minlen && 1339 pullupmsg(data_mp, -1) == 0) { 1340 ip1dbg(("ire_add_then_send: " 1341 "cannot pullupmsg ip6i\n")); 1342 if (mctl_present) 1343 freeb(first_mp); 1344 ire_refrele(ire); 1345 return; 1346 } 1347 ASSERT(MBLKL(data_mp) >= IPV6_HDR_LEN); 1348 ip6h = (ip6_t *)(data_mp->b_rptr + 1349 sizeof (ip6i_t)); 1350 } 1351 ip_newroute_v6(q, mp, &ip6h->ip6_dst, 1352 &ip6h->ip6_src, NULL, ire->ire_zoneid, 1353 ipst); 1354 } 1355 } 1356 1357 ire_refrele(ire); /* As done by ire_send(). */ 1358 return; 1359 } 1360 /* 1361 * Need to remember ire_bucket here as ire_send*() may delete 1362 * the ire so we cannot reference it after that. 1363 */ 1364 irb = ire->ire_bucket; 1365 if (ire->ire_ipversion == IPV4_VERSION) { 1366 ire_send(q, mp, ire); 1367 ire_limit = ip_ire_max_bucket_cnt; 1368 } else { 1369 ire_send_v6(q, mp, ire); 1370 ire_limit = ip6_ire_max_bucket_cnt; 1371 } 1372 1373 /* 1374 * irb is NULL if the IRE was not added to the hash. This happens 1375 * when IRE_MARK_NOADD is set and when IREs are returned from 1376 * ire_update_srcif_v4(). 1377 */ 1378 if (irb != NULL) { 1379 IRB_REFHOLD(irb); 1380 if (irb->irb_ire_cnt > ire_limit) 1381 ire_cache_cleanup(irb, ire_limit, ire); 1382 IRB_REFRELE(irb); 1383 } 1384 } 1385 1386 /* 1387 * Initialize the ire that is specific to IPv4 part and call 1388 * ire_init_common to finish it. 1389 */ 1390 ire_t * 1391 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1392 uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1393 queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1394 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1395 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1396 { 1397 ASSERT(type != IRE_CACHE || stq != NULL); 1398 /* 1399 * Reject IRE security attribute creation/initialization 1400 * if system is not running in Trusted mode. 1401 */ 1402 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1403 return (NULL); 1404 1405 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 1406 1407 if (addr != NULL) 1408 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1409 if (src_addr != NULL) 1410 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1411 if (mask != NULL) { 1412 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1413 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1414 } 1415 if (gateway != NULL) { 1416 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1417 } 1418 1419 if (type == IRE_CACHE) 1420 ire->ire_cmask = cmask; 1421 1422 /* ire_init_common will free the mblks upon encountering any failure */ 1423 if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif, 1424 phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst)) 1425 return (NULL); 1426 1427 return (ire); 1428 } 1429 1430 /* 1431 * Similar to ire_create except that it is called only when 1432 * we want to allocate ire as an mblk e.g. we have an external 1433 * resolver ARP. 1434 */ 1435 ire_t * 1436 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1437 uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type, 1438 ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1439 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, 1440 ip_stack_t *ipst) 1441 { 1442 ire_t *ire, *buf; 1443 ire_t *ret_ire; 1444 mblk_t *mp; 1445 size_t bufsize; 1446 frtn_t *frtnp; 1447 ill_t *ill; 1448 1449 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1450 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1451 if (buf == NULL) { 1452 ip1dbg(("ire_create_mp: alloc failed\n")); 1453 return (NULL); 1454 } 1455 frtnp = (frtn_t *)(buf + 1); 1456 frtnp->free_arg = (caddr_t)buf; 1457 frtnp->free_func = ire_freemblk; 1458 1459 /* 1460 * Allocate the new IRE. The ire created will hold a ref on 1461 * an nce_t after ire_nce_init, and this ref must either be 1462 * (a) transferred to the ire_cache entry created when ire_add_v4 1463 * is called after successful arp resolution, or, 1464 * (b) released, when arp resolution fails 1465 * Case (b) is handled in ire_freemblk() which will be called 1466 * when mp is freed as a result of failed arp. 1467 */ 1468 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1469 if (mp == NULL) { 1470 ip1dbg(("ire_create_mp: alloc failed\n")); 1471 kmem_free(buf, bufsize); 1472 return (NULL); 1473 } 1474 ire = (ire_t *)mp->b_rptr; 1475 mp->b_wptr = (uchar_t *)&ire[1]; 1476 1477 /* Start clean. */ 1478 *ire = ire_null; 1479 ire->ire_mp = mp; 1480 mp->b_datap->db_type = IRE_DB_TYPE; 1481 ire->ire_marks |= IRE_MARK_UNCACHED; 1482 1483 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce, 1484 rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc, 1485 gcgrp, ipst); 1486 1487 ill = (ill_t *)(stq->q_ptr); 1488 if (ret_ire == NULL) { 1489 /* ire_freemblk needs these set */ 1490 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1491 ire->ire_stackid = ipst->ips_netstack->netstack_stackid; 1492 ire->ire_ipst = ipst; 1493 freeb(ire->ire_mp); 1494 return (NULL); 1495 } 1496 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1497 ret_ire->ire_stackid = ipst->ips_netstack->netstack_stackid; 1498 ASSERT(ret_ire == ire); 1499 ASSERT(ret_ire->ire_ipst == ipst); 1500 /* 1501 * ire_max_frag is normally zero here and is atomically set 1502 * under the irebucket lock in ire_add_v[46] except for the 1503 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1504 * is non-zero here. 1505 */ 1506 ire->ire_max_frag = max_frag; 1507 return (ire); 1508 } 1509 1510 /* 1511 * ire_create is called to allocate and initialize a new IRE. 1512 * 1513 * NOTE : This is called as writer sometimes though not required 1514 * by this function. 1515 */ 1516 ire_t * 1517 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1518 uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq, 1519 ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1520 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1521 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1522 { 1523 ire_t *ire; 1524 ire_t *ret_ire; 1525 1526 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1527 if (ire == NULL) { 1528 ip1dbg(("ire_create: alloc failed\n")); 1529 return (NULL); 1530 } 1531 *ire = ire_null; 1532 1533 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp, 1534 src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags, 1535 ulp_info, gc, gcgrp, ipst); 1536 1537 if (ret_ire == NULL) { 1538 kmem_cache_free(ire_cache, ire); 1539 return (NULL); 1540 } 1541 ASSERT(ret_ire == ire); 1542 return (ire); 1543 } 1544 1545 /* 1546 * Common to IPv4 and IPv6 1547 */ 1548 boolean_t 1549 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1550 queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle, 1551 uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info, 1552 tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1553 { 1554 ire->ire_max_fragp = max_fragp; 1555 ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 1556 1557 #ifdef DEBUG 1558 if (ipif != NULL) { 1559 if (ipif->ipif_isv6) 1560 ASSERT(ipversion == IPV6_VERSION); 1561 else 1562 ASSERT(ipversion == IPV4_VERSION); 1563 } 1564 #endif /* DEBUG */ 1565 1566 /* 1567 * Create/initialize IRE security attribute only in Trusted mode; 1568 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1569 * has held a reference to it and will release it when this routine 1570 * returns a failure, otherwise we own the reference. We do this 1571 * prior to initializing the rest IRE fields. 1572 * 1573 * Don't allocate ire_gw_secattr for the resolver case to prevent 1574 * memory leak (in case of external resolution failure). We'll 1575 * allocate it after a successful external resolution, in ire_add(). 1576 * Note that ire->ire_mp != NULL here means this ire is headed 1577 * to an external resolver. 1578 */ 1579 if (is_system_labeled()) { 1580 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1581 IRE_INTERFACE)) != 0) { 1582 /* release references on behalf of caller */ 1583 if (gc != NULL) 1584 GC_REFRELE(gc); 1585 if (gcgrp != NULL) 1586 GCGRP_REFRELE(gcgrp); 1587 } else if ((ire->ire_mp == NULL) && 1588 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1589 return (B_FALSE); 1590 } 1591 } 1592 1593 ire->ire_stq = stq; 1594 ire->ire_rfq = rfq; 1595 ire->ire_type = type; 1596 ire->ire_flags = RTF_UP | flags; 1597 ire->ire_ident = TICK_TO_MSEC(lbolt); 1598 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1599 1600 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1601 ire->ire_last_used_time = lbolt; 1602 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1603 1604 /* 1605 * If this IRE is an IRE_CACHE, inherit the handles from the 1606 * parent IREs. For others in the forwarding table, assign appropriate 1607 * new ones. 1608 * 1609 * The mutex protecting ire_handle is because ire_create is not always 1610 * called as a writer. 1611 */ 1612 if (ire->ire_type & IRE_OFFSUBNET) { 1613 mutex_enter(&ipst->ips_ire_handle_lock); 1614 ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++; 1615 mutex_exit(&ipst->ips_ire_handle_lock); 1616 } else if (ire->ire_type & IRE_INTERFACE) { 1617 mutex_enter(&ipst->ips_ire_handle_lock); 1618 ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++; 1619 mutex_exit(&ipst->ips_ire_handle_lock); 1620 } else if (ire->ire_type == IRE_CACHE) { 1621 ire->ire_phandle = phandle; 1622 ire->ire_ihandle = ihandle; 1623 } 1624 ire->ire_ipif = ipif; 1625 if (ipif != NULL) { 1626 ire->ire_ipif_seqid = ipif->ipif_seqid; 1627 ire->ire_ipif_ifindex = 1628 ipif->ipif_ill->ill_phyint->phyint_ifindex; 1629 ire->ire_zoneid = ipif->ipif_zoneid; 1630 } else { 1631 ire->ire_zoneid = GLOBAL_ZONEID; 1632 } 1633 ire->ire_ipversion = ipversion; 1634 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1635 if (ipversion == IPV4_VERSION) { 1636 /* 1637 * IPv6 initializes the ire_nce in ire_add_v6, which expects 1638 * to find the ire_nce to be null when it is called. 1639 */ 1640 if (ire_nce_init(ire, src_nce) != 0) { 1641 /* some failure occurred. propagate error back */ 1642 return (B_FALSE); 1643 } 1644 } 1645 ire->ire_refcnt = 1; 1646 ire->ire_ipst = ipst; /* No netstack_hold */ 1647 ire->ire_trace_disable = B_FALSE; 1648 1649 return (B_TRUE); 1650 } 1651 1652 /* 1653 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1654 * It is passed a pointer to a slot in an IRE pointer array into which to 1655 * place the pointer to the new IRE, if indeed we create one. If the 1656 * IRE corresponding to the address passed in would be a duplicate of an 1657 * existing one, we don't create the new one. irep is incremented before 1658 * return only if we do create a new IRE. (Always called as writer.) 1659 * 1660 * Note that with the "match_flags" parameter, we can match on either 1661 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1662 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1663 * we only create broadcast ire's on a per physical interface basis. If 1664 * someone is going to be mucking with logical interfaces, it is important 1665 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1666 * logical interface will not cause critical broadcast IRE's to be deleted. 1667 */ 1668 ire_t ** 1669 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1670 int match_flags) 1671 { 1672 ire_t *ire; 1673 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1674 boolean_t prefer; 1675 ill_t *ill = ipif->ipif_ill; 1676 ip_stack_t *ipst = ill->ill_ipst; 1677 1678 /* 1679 * No broadcast IREs for the LOOPBACK interface 1680 * or others such as point to point and IPIF_NOXMIT. 1681 */ 1682 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1683 (ipif->ipif_flags & IPIF_NOXMIT)) 1684 return (irep); 1685 1686 /* 1687 * If this new IRE would be a duplicate, only prefer it if one of 1688 * the following is true: 1689 * 1690 * 1. The existing one has IPIF_DEPRECATED|IPIF_LOCAL|IPIF_ANYCAST 1691 * set and the new one has all of those clear. 1692 * 1693 * 2. The existing one corresponds to an underlying ILL in an IPMP 1694 * group and the new one corresponds to an IPMP group interface. 1695 */ 1696 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1697 ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) { 1698 prefer = ((ire->ire_ipif->ipif_flags & check_flags) && 1699 !(ipif->ipif_flags & check_flags)) || 1700 (IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && IS_IPMP(ill)); 1701 if (!prefer) { 1702 ire_refrele(ire); 1703 return (irep); 1704 } 1705 1706 /* 1707 * Bcast ires exist in pairs. Both have to be deleted, 1708 * Since we are exclusive we can make the above assertion. 1709 * The 1st has to be refrele'd since it was ctable_lookup'd. 1710 */ 1711 ASSERT(IAM_WRITER_IPIF(ipif)); 1712 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 1713 ire_delete(ire->ire_next); 1714 ire_delete(ire); 1715 ire_refrele(ire); 1716 } 1717 return (ire_create_bcast(ipif, addr, irep)); 1718 } 1719 1720 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 1721 1722 /* 1723 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 1724 * It leaves all the verifying and deleting to those routines. So it always 1725 * creates 2 bcast ires and chains them into the ire array passed in. 1726 */ 1727 ire_t ** 1728 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 1729 { 1730 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1731 ill_t *ill = ipif->ipif_ill; 1732 1733 ASSERT(IAM_WRITER_IPIF(ipif)); 1734 1735 if (IS_IPMP(ill)) { 1736 /* 1737 * Broadcast IREs for the IPMP meta-interface use the 1738 * nominated broadcast interface to send and receive packets. 1739 * If there's no nominated interface, send the packets down to 1740 * the IPMP stub driver, which will discard them. If the 1741 * nominated broadcast interface changes, ill_refresh_bcast() 1742 * will refresh the broadcast IREs. 1743 */ 1744 if ((ill = ipmp_illgrp_cast_ill(ill->ill_grp)) == NULL) 1745 ill = ipif->ipif_ill; 1746 } 1747 1748 *irep++ = ire_create( 1749 (uchar_t *)&addr, /* dest addr */ 1750 (uchar_t *)&ip_g_all_ones, /* mask */ 1751 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 1752 NULL, /* no gateway */ 1753 &ipif->ipif_mtu, /* max frag */ 1754 NULL, /* no src nce */ 1755 ill->ill_rq, /* recv-from queue */ 1756 ill->ill_wq, /* send-to queue */ 1757 IRE_BROADCAST, 1758 ipif, 1759 0, 1760 0, 1761 0, 1762 0, 1763 &ire_uinfo_null, 1764 NULL, 1765 NULL, 1766 ipst); 1767 1768 *irep++ = ire_create( 1769 (uchar_t *)&addr, /* dest address */ 1770 (uchar_t *)&ip_g_all_ones, /* mask */ 1771 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 1772 NULL, /* no gateway */ 1773 &ip_loopback_mtu, /* max frag size */ 1774 NULL, /* no src_nce */ 1775 ill->ill_rq, /* recv-from queue */ 1776 NULL, /* no send-to queue */ 1777 IRE_BROADCAST, /* Needed for fanout in wput */ 1778 ipif, 1779 0, 1780 0, 1781 0, 1782 0, 1783 &ire_uinfo_null, 1784 NULL, 1785 NULL, 1786 ipst); 1787 1788 return (irep); 1789 } 1790 1791 /* 1792 * ire_walk routine to delete or update any IRE_CACHE that might contain 1793 * stale information. 1794 * The flags state which entries to delete or update. 1795 * Garbage collection is done separately using kmem alloc callbacks to 1796 * ip_trash_ire_reclaim. 1797 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 1798 * since other stale information is cleaned up using NUD. 1799 */ 1800 void 1801 ire_expire(ire_t *ire, char *arg) 1802 { 1803 ire_expire_arg_t *ieap = (ire_expire_arg_t *)(uintptr_t)arg; 1804 ill_t *stq_ill; 1805 int flush_flags = ieap->iea_flush_flag; 1806 ip_stack_t *ipst = ieap->iea_ipst; 1807 1808 if ((flush_flags & FLUSH_REDIRECT_TIME) && 1809 (ire->ire_flags & RTF_DYNAMIC)) { 1810 /* Make sure we delete the corresponding IRE_CACHE */ 1811 ip1dbg(("ire_expire: all redirects\n")); 1812 ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst); 1813 ire_delete(ire); 1814 atomic_dec_32(&ipst->ips_ip_redirect_cnt); 1815 return; 1816 } 1817 if (ire->ire_type != IRE_CACHE) 1818 return; 1819 1820 if (flush_flags & FLUSH_ARP_TIME) { 1821 /* 1822 * Remove all IRE_CACHE except IPv4 multicast ires. These 1823 * ires will be deleted by ip_trash_ire_reclaim_stack() 1824 * when system runs low in memory. 1825 * Verify that create time is more than ip_ire_arp_interval 1826 * milliseconds ago. 1827 */ 1828 1829 if (!(ire->ire_ipversion == IPV4_VERSION && 1830 CLASSD(ire->ire_addr)) && NCE_EXPIRED(ire->ire_nce, ipst)) { 1831 ire_delete(ire); 1832 return; 1833 } 1834 } 1835 1836 if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 1837 (ire->ire_ipif != NULL)) { 1838 /* Increase pmtu if it is less than the interface mtu */ 1839 mutex_enter(&ire->ire_lock); 1840 /* 1841 * If the ipif is a vni (whose mtu is 0, since it's virtual) 1842 * get the mtu from the sending interfaces' ipif 1843 */ 1844 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 1845 stq_ill = ire->ire_stq->q_ptr; 1846 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 1847 IP_MAXPACKET); 1848 } else { 1849 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 1850 IP_MAXPACKET); 1851 } 1852 ire->ire_marks &= ~IRE_MARK_PMTU; 1853 ire->ire_frag_flag |= IPH_DF; 1854 mutex_exit(&ire->ire_lock); 1855 } 1856 } 1857 1858 /* 1859 * Return any local address. We use this to target ourselves 1860 * when the src address was specified as 'default'. 1861 * Preference for IRE_LOCAL entries. 1862 */ 1863 ire_t * 1864 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst) 1865 { 1866 ire_t *ire; 1867 irb_t *irb; 1868 ire_t *maybe = NULL; 1869 int i; 1870 1871 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 1872 irb = &ipst->ips_ip_cache_table[i]; 1873 if (irb->irb_ire == NULL) 1874 continue; 1875 rw_enter(&irb->irb_lock, RW_READER); 1876 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1877 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 1878 (ire->ire_zoneid != zoneid && 1879 ire->ire_zoneid != ALL_ZONES)) 1880 continue; 1881 switch (ire->ire_type) { 1882 case IRE_LOOPBACK: 1883 if (maybe == NULL) { 1884 IRE_REFHOLD(ire); 1885 maybe = ire; 1886 } 1887 break; 1888 case IRE_LOCAL: 1889 if (maybe != NULL) { 1890 ire_refrele(maybe); 1891 } 1892 IRE_REFHOLD(ire); 1893 rw_exit(&irb->irb_lock); 1894 return (ire); 1895 } 1896 } 1897 rw_exit(&irb->irb_lock); 1898 } 1899 return (maybe); 1900 } 1901 1902 /* 1903 * If the specified IRE is associated with a particular ILL, return 1904 * that ILL pointer (May be called as writer.). 1905 * 1906 * NOTE : This is not a generic function that can be used always. 1907 * This function always returns the ill of the outgoing packets 1908 * if this ire is used. 1909 */ 1910 ill_t * 1911 ire_to_ill(const ire_t *ire) 1912 { 1913 ill_t *ill = NULL; 1914 1915 /* 1916 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 1917 * the source address from. ire_stq is the one where the 1918 * packets will be sent out on. We return that here. 1919 * 1920 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 1921 * copy and they always exist next to each other with loopback 1922 * copy being the first one. If we are called on the non-loopback 1923 * copy, return the one pointed by ire_stq. If it was called on 1924 * a loopback copy, we still return the one pointed by the next 1925 * ire's ire_stq pointer i.e the one pointed by the non-loopback 1926 * copy. We don't want use ire_ipif as it might represent the 1927 * source address (if we borrow source addresses for 1928 * IRE_BROADCASTS in the future). 1929 * However if an interface is currently coming up, the above 1930 * condition may not hold during that period since the ires 1931 * are added one at a time. Thus one of the pair could have been 1932 * added and the other not yet added. 1933 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill. 1934 * 4) For all others return the ones pointed by ire_ipif->ipif_ill. 1935 * That handles IRE_LOOPBACK. 1936 */ 1937 1938 if (ire->ire_type == IRE_CACHE) { 1939 ill = (ill_t *)ire->ire_stq->q_ptr; 1940 } else if (ire->ire_type == IRE_BROADCAST) { 1941 if (ire->ire_stq != NULL) { 1942 ill = (ill_t *)ire->ire_stq->q_ptr; 1943 } else { 1944 ire_t *ire_next; 1945 1946 ire_next = ire->ire_next; 1947 if (ire_next != NULL && 1948 ire_next->ire_type == IRE_BROADCAST && 1949 ire_next->ire_addr == ire->ire_addr && 1950 ire_next->ire_ipif == ire->ire_ipif) { 1951 ill = (ill_t *)ire_next->ire_stq->q_ptr; 1952 } 1953 } 1954 } else if (ire->ire_rfq != NULL) { 1955 ill = ire->ire_rfq->q_ptr; 1956 } else if (ire->ire_ipif != NULL) { 1957 ill = ire->ire_ipif->ipif_ill; 1958 } 1959 return (ill); 1960 } 1961 1962 /* Arrange to call the specified function for every IRE in the world. */ 1963 void 1964 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 1965 { 1966 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 1967 } 1968 1969 void 1970 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 1971 { 1972 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 1973 } 1974 1975 void 1976 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 1977 { 1978 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 1979 } 1980 1981 /* 1982 * Walk a particular version. version == 0 means both v4 and v6. 1983 */ 1984 static void 1985 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 1986 ip_stack_t *ipst) 1987 { 1988 if (vers != IPV6_VERSION) { 1989 /* 1990 * ip_forwarding_table variable doesn't matter for IPv4 since 1991 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 1992 */ 1993 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 1994 0, NULL, 1995 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 1996 NULL, zoneid, ipst); 1997 } 1998 if (vers != IPV4_VERSION) { 1999 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 2000 ipst->ips_ip6_ftable_hash_size, 2001 ipst->ips_ip_forwarding_table_v6, 2002 ipst->ips_ip6_cache_table_size, 2003 ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst); 2004 } 2005 } 2006 2007 /* 2008 * Arrange to call the specified function for every IRE that matches the ill. 2009 */ 2010 void 2011 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2012 ill_t *ill) 2013 { 2014 uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION); 2015 2016 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill); 2017 } 2018 2019 void 2020 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2021 ill_t *ill) 2022 { 2023 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2024 ill); 2025 } 2026 2027 void 2028 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2029 ill_t *ill) 2030 { 2031 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2032 ill); 2033 } 2034 2035 /* 2036 * Walk a particular ill and version. 2037 */ 2038 static void 2039 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2040 void *arg, uchar_t vers, ill_t *ill) 2041 { 2042 ip_stack_t *ipst = ill->ill_ipst; 2043 2044 if (vers == IPV4_VERSION) { 2045 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2046 IP_MASK_TABLE_SIZE, 0, 2047 NULL, ipst->ips_ip_cache_table_size, 2048 ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst); 2049 } else if (vers == IPV6_VERSION) { 2050 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2051 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 2052 ipst->ips_ip_forwarding_table_v6, 2053 ipst->ips_ip6_cache_table_size, 2054 ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst); 2055 } 2056 } 2057 2058 boolean_t 2059 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2060 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 2061 { 2062 ill_t *ire_stq_ill = NULL; 2063 ill_t *ire_ipif_ill = NULL; 2064 2065 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2066 /* 2067 * MATCH_IRE_ILL: We match both on ill pointed by ire_stq and 2068 * ire_ipif. Only in the case of IRE_CACHEs can ire_stq and 2069 * ire_ipif be pointing to different ills. But we want to keep 2070 * this function generic enough for future use. So, we always 2071 * try to match on both. The only caller of this function 2072 * ire_walk_ill_tables, will call "func" after we return from 2073 * this function. We expect "func" to do the right filtering 2074 * of ires in this case. 2075 */ 2076 if (match_flags & MATCH_IRE_ILL) { 2077 if (ire->ire_stq != NULL) 2078 ire_stq_ill = ire->ire_stq->q_ptr; 2079 if (ire->ire_ipif != NULL) 2080 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2081 } 2082 2083 if (zoneid != ALL_ZONES) { 2084 /* 2085 * We're walking the IREs for a specific zone. The only relevant 2086 * IREs are: 2087 * - all IREs with a matching ire_zoneid 2088 * - all IRE_OFFSUBNETs as they're shared across all zones 2089 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2090 * with a matching zone 2091 * - IRE_DEFAULTs with a gateway reachable from the zone 2092 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2093 * using the same rule; but the above rules are consistent with 2094 * the behavior of ire_ftable_lookup[_v6]() so that all the 2095 * routes that can be matched during lookup are also matched 2096 * here. 2097 */ 2098 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2099 /* 2100 * Note, IRE_INTERFACE can have the stq as NULL. For 2101 * example, if the default multicast route is tied to 2102 * the loopback address. 2103 */ 2104 if ((ire->ire_type & IRE_INTERFACE) && 2105 (ire->ire_stq != NULL)) { 2106 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2107 if (ire->ire_ipversion == IPV4_VERSION) { 2108 if (!ipif_usesrc_avail(ire_stq_ill, 2109 zoneid)) 2110 /* No usable src addr in zone */ 2111 return (B_FALSE); 2112 } else if (ire_stq_ill->ill_usesrc_ifindex 2113 != 0) { 2114 /* 2115 * For IPv6 use ipif_select_source_v6() 2116 * so the right scope selection is done 2117 */ 2118 ipif_t *src_ipif; 2119 src_ipif = 2120 ipif_select_source_v6(ire_stq_ill, 2121 &ire->ire_addr_v6, B_FALSE, 2122 IPV6_PREFER_SRC_DEFAULT, 2123 zoneid); 2124 if (src_ipif != NULL) { 2125 ipif_refrele(src_ipif); 2126 } else { 2127 return (B_FALSE); 2128 } 2129 } else { 2130 return (B_FALSE); 2131 } 2132 2133 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2134 return (B_FALSE); 2135 } 2136 } 2137 2138 /* 2139 * Match all default routes from the global zone, irrespective 2140 * of reachability. For a non-global zone only match those 2141 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid. 2142 */ 2143 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2144 int ire_match_flags = 0; 2145 in6_addr_t gw_addr_v6; 2146 ire_t *rire; 2147 2148 ire_match_flags |= MATCH_IRE_TYPE; 2149 if (ire->ire_ipif != NULL) 2150 ire_match_flags |= MATCH_IRE_ILL; 2151 2152 if (ire->ire_ipversion == IPV4_VERSION) { 2153 rire = ire_route_lookup(ire->ire_gateway_addr, 2154 0, 0, IRE_INTERFACE, ire->ire_ipif, NULL, 2155 zoneid, NULL, ire_match_flags, ipst); 2156 } else { 2157 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2158 mutex_enter(&ire->ire_lock); 2159 gw_addr_v6 = ire->ire_gateway_addr_v6; 2160 mutex_exit(&ire->ire_lock); 2161 rire = ire_route_lookup_v6(&gw_addr_v6, 2162 NULL, NULL, IRE_INTERFACE, ire->ire_ipif, 2163 NULL, zoneid, NULL, ire_match_flags, ipst); 2164 } 2165 if (rire == NULL) { 2166 return (B_FALSE); 2167 } 2168 ire_refrele(rire); 2169 } 2170 } 2171 2172 if (((!(match_flags & MATCH_IRE_TYPE)) || 2173 (ire->ire_type & ire_type)) && 2174 ((!(match_flags & MATCH_IRE_ILL)) || 2175 (ire_stq_ill == ill || ire_ipif_ill == ill || 2176 ire_ipif_ill != NULL && IS_IN_SAME_ILLGRP(ire_ipif_ill, ill)))) { 2177 return (B_TRUE); 2178 } 2179 return (B_FALSE); 2180 } 2181 2182 int 2183 rtfunc(struct radix_node *rn, void *arg) 2184 { 2185 struct rtfuncarg *rtf = arg; 2186 struct rt_entry *rt; 2187 irb_t *irb; 2188 ire_t *ire; 2189 boolean_t ret; 2190 2191 rt = (struct rt_entry *)rn; 2192 ASSERT(rt != NULL); 2193 irb = &rt->rt_irb; 2194 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2195 if ((rtf->rt_match_flags != 0) || 2196 (rtf->rt_zoneid != ALL_ZONES)) { 2197 ret = ire_walk_ill_match(rtf->rt_match_flags, 2198 rtf->rt_ire_type, ire, 2199 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 2200 } else 2201 ret = B_TRUE; 2202 if (ret) 2203 (*rtf->rt_func)(ire, rtf->rt_arg); 2204 } 2205 return (0); 2206 } 2207 2208 /* 2209 * Walk the ftable and the ctable entries that match the ill. 2210 */ 2211 void 2212 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2213 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2214 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid, 2215 ip_stack_t *ipst) 2216 { 2217 irb_t *irb_ptr; 2218 irb_t *irb; 2219 ire_t *ire; 2220 int i, j; 2221 boolean_t ret; 2222 struct rtfuncarg rtfarg; 2223 2224 ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL)); 2225 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2226 /* 2227 * Optimize by not looking at the forwarding table if there 2228 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2229 * specified in ire_type. 2230 */ 2231 if (!(match_flags & MATCH_IRE_TYPE) || 2232 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2233 /* knobs such that routine is called only for v6 case */ 2234 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 2235 for (i = (ftbl_sz - 1); i >= 0; i--) { 2236 if ((irb_ptr = ipftbl[i]) == NULL) 2237 continue; 2238 for (j = 0; j < htbl_sz; j++) { 2239 irb = &irb_ptr[j]; 2240 if (irb->irb_ire == NULL) 2241 continue; 2242 2243 IRB_REFHOLD(irb); 2244 for (ire = irb->irb_ire; ire != NULL; 2245 ire = ire->ire_next) { 2246 if (match_flags == 0 && 2247 zoneid == ALL_ZONES) { 2248 ret = B_TRUE; 2249 } else { 2250 ret = 2251 ire_walk_ill_match( 2252 match_flags, 2253 ire_type, ire, ill, 2254 zoneid, ipst); 2255 } 2256 if (ret) 2257 (*func)(ire, arg); 2258 } 2259 IRB_REFRELE(irb); 2260 } 2261 } 2262 } else { 2263 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2264 rtfarg.rt_func = func; 2265 rtfarg.rt_arg = arg; 2266 if (match_flags != 0) { 2267 rtfarg.rt_match_flags = match_flags; 2268 } 2269 rtfarg.rt_ire_type = ire_type; 2270 rtfarg.rt_ill = ill; 2271 rtfarg.rt_zoneid = zoneid; 2272 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 2273 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 2274 ipst->ips_ip_ftable, 2275 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 2276 } 2277 } 2278 2279 /* 2280 * Optimize by not looking at the cache table if there 2281 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2282 * specified in ire_type. 2283 */ 2284 if (!(match_flags & MATCH_IRE_TYPE) || 2285 ((ire_type & IRE_CACHETABLE) != 0)) { 2286 for (i = 0; i < ctbl_sz; i++) { 2287 irb = &ipctbl[i]; 2288 if (irb->irb_ire == NULL) 2289 continue; 2290 IRB_REFHOLD(irb); 2291 for (ire = irb->irb_ire; ire != NULL; 2292 ire = ire->ire_next) { 2293 if (match_flags == 0 && zoneid == ALL_ZONES) { 2294 ret = B_TRUE; 2295 } else { 2296 ret = ire_walk_ill_match( 2297 match_flags, ire_type, 2298 ire, ill, zoneid, ipst); 2299 } 2300 if (ret) 2301 (*func)(ire, arg); 2302 } 2303 IRB_REFRELE(irb); 2304 } 2305 } 2306 } 2307 2308 /* 2309 * This function takes a mask and returns 2310 * number of bits set in the mask. If no 2311 * bit is set it returns 0. 2312 * Assumes a contiguous mask. 2313 */ 2314 int 2315 ip_mask_to_plen(ipaddr_t mask) 2316 { 2317 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2318 } 2319 2320 /* 2321 * Convert length for a mask to the mask. 2322 */ 2323 ipaddr_t 2324 ip_plen_to_mask(uint_t masklen) 2325 { 2326 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2327 } 2328 2329 void 2330 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2331 { 2332 ill_t *stq_ill, *ipif_ill; 2333 ip_stack_t *ipst = ire->ire_ipst; 2334 2335 stq_ill = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2336 ipif_ill = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2337 RELEASE_ILL_LOCKS(ipif_ill, stq_ill); 2338 rw_exit(&irb_ptr->irb_lock); 2339 rw_exit(&ipst->ips_ill_g_usesrc_lock); 2340 } 2341 2342 /* 2343 * ire_add_v[46] atomically make sure that the ipif or ill associated 2344 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 2345 * before adding the ire to the table. This ensures that we don't create 2346 * new IRE_CACHEs with stale values for parameters that are passed to 2347 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 2348 * to the ipif_mtu, and not the value. The actual value is derived from the 2349 * parent ire or ipif under the bucket lock. 2350 */ 2351 int 2352 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 2353 ipsq_func_t func) 2354 { 2355 ill_t *stq_ill; 2356 ill_t *ipif_ill; 2357 int error = 0; 2358 ill_t *ill = NULL; 2359 ip_stack_t *ipst = ire->ire_ipst; 2360 2361 stq_ill = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2362 ipif_ill = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2363 2364 ASSERT((q != NULL && mp != NULL && func != NULL) || 2365 (q == NULL && mp == NULL && func == NULL)); 2366 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 2367 GRAB_CONN_LOCK(q); 2368 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 2369 GRAB_ILL_LOCKS(ipif_ill, stq_ill); 2370 2371 /* 2372 * While the IRE is in the process of being added, a user may have 2373 * invoked the ifconfig usesrc option on the stq_ill to make it a 2374 * usesrc client ILL. Check for this possibility here, if it is true 2375 * then we fail adding the IRE_CACHE. Another check is to make sure 2376 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 2377 * group. The ill_g_usesrc_lock is released in ire_atomic_end 2378 */ 2379 if ((ire->ire_type & IRE_CACHE) && 2380 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 2381 if (stq_ill->ill_usesrc_ifindex != 0) { 2382 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 2383 if ((ipif_ill->ill_phyint->phyint_ifindex != 2384 stq_ill->ill_usesrc_ifindex) || 2385 (ipif_ill->ill_usesrc_grp_next == NULL) || 2386 (ipif_ill->ill_usesrc_ifindex != 0)) { 2387 error = EINVAL; 2388 goto done; 2389 } 2390 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 2391 error = EINVAL; 2392 goto done; 2393 } 2394 } 2395 2396 /* 2397 * Don't allow IRE's to be created on changing ill's. Also, since 2398 * IPMP flags can be set on an ill without quiescing it, if we're not 2399 * a writer on stq_ill, check that the flags still allow IRE creation. 2400 */ 2401 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 2402 if (stq_ill->ill_state_flags & ILL_CHANGING) { 2403 ill = stq_ill; 2404 error = EAGAIN; 2405 } else if (IS_UNDER_IPMP(stq_ill)) { 2406 mutex_enter(&stq_ill->ill_phyint->phyint_lock); 2407 if (!ipmp_ill_is_active(stq_ill) && 2408 !(ire->ire_marks & IRE_MARK_TESTHIDDEN)) { 2409 error = EINVAL; 2410 } 2411 mutex_exit(&stq_ill->ill_phyint->phyint_lock); 2412 } 2413 if (error != 0) 2414 goto done; 2415 } 2416 2417 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 2418 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 2419 ill = ipif_ill; 2420 error = EAGAIN; 2421 goto done; 2422 } 2423 2424 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 2425 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 2426 ill = ire->ire_ipif->ipif_ill; 2427 ASSERT(ill != NULL); 2428 error = EAGAIN; 2429 goto done; 2430 } 2431 2432 done: 2433 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 2434 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 2435 mutex_enter(&ipsq->ipsq_lock); 2436 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 2437 ire_atomic_end(irb_ptr, ire); 2438 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 2439 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 2440 mutex_exit(&ipsq->ipsq_lock); 2441 error = EINPROGRESS; 2442 } else if (error != 0) { 2443 ire_atomic_end(irb_ptr, ire); 2444 } 2445 2446 RELEASE_CONN_LOCK(q); 2447 return (error); 2448 } 2449 2450 /* 2451 * Add a fully initialized IRE to an appropriate table based on 2452 * ire_type. 2453 * 2454 * allow_unresolved == B_FALSE indicates a legacy code-path call 2455 * that has prohibited the addition of incomplete ire's. If this 2456 * parameter is set, and we find an nce that is in a state other 2457 * than ND_REACHABLE, we fail the add. Note that nce_state could be 2458 * something other than ND_REACHABLE if the nce had just expired and 2459 * the ire_create preceding the ire_add added a new ND_INITIAL nce. 2460 */ 2461 int 2462 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 2463 boolean_t allow_unresolved) 2464 { 2465 ire_t *ire1; 2466 ill_t *stq_ill = NULL; 2467 ill_t *ill; 2468 ipif_t *ipif = NULL; 2469 ill_walk_context_t ctx; 2470 ire_t *ire = *irep; 2471 int error; 2472 boolean_t ire_is_mblk = B_FALSE; 2473 tsol_gcgrp_t *gcgrp = NULL; 2474 tsol_gcgrp_addr_t ga; 2475 ip_stack_t *ipst = ire->ire_ipst; 2476 2477 /* get ready for the day when original ire is not created as mblk */ 2478 if (ire->ire_mp != NULL) { 2479 ire_is_mblk = B_TRUE; 2480 /* Copy the ire to a kmem_alloc'ed area */ 2481 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 2482 if (ire1 == NULL) { 2483 ip1dbg(("ire_add: alloc failed\n")); 2484 ire_delete(ire); 2485 *irep = NULL; 2486 return (ENOMEM); 2487 } 2488 ire->ire_marks &= ~IRE_MARK_UNCACHED; 2489 *ire1 = *ire; 2490 ire1->ire_mp = NULL; 2491 ire1->ire_stq_ifindex = 0; 2492 freeb(ire->ire_mp); 2493 ire = ire1; 2494 } 2495 if (ire->ire_stq != NULL) 2496 stq_ill = ire->ire_stq->q_ptr; 2497 2498 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 2499 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 2500 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2501 ill = ILL_START_WALK_ALL(&ctx, ipst); 2502 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2503 mutex_enter(&ill->ill_lock); 2504 if (ill->ill_state_flags & ILL_CONDEMNED) { 2505 mutex_exit(&ill->ill_lock); 2506 continue; 2507 } 2508 /* 2509 * We need to make sure that the ipif is a valid one 2510 * before adding the IRE_CACHE. This happens only 2511 * with IRE_CACHE when there is an external resolver. 2512 * 2513 * We can unplumb a logical interface while the 2514 * packet is waiting in ARP with the IRE. Then, 2515 * later on when we feed the IRE back, the ipif 2516 * has to be re-checked. This can't happen with 2517 * NDP currently, as we never queue the IRE with 2518 * the packet. We always try to recreate the IRE 2519 * when the resolution is completed. But, we do 2520 * it for IPv6 also here so that in future if 2521 * we have external resolvers, it will work without 2522 * any change. 2523 */ 2524 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 2525 if (ipif != NULL) { 2526 ipif_refhold_locked(ipif); 2527 mutex_exit(&ill->ill_lock); 2528 break; 2529 } 2530 mutex_exit(&ill->ill_lock); 2531 } 2532 rw_exit(&ipst->ips_ill_g_lock); 2533 if (ipif == NULL || 2534 (ipif->ipif_isv6 && 2535 !IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) && 2536 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 2537 &ipif->ipif_v6src_addr)) || 2538 (!ipif->ipif_isv6 && 2539 ire->ire_src_addr != ipif->ipif_src_addr) || 2540 ire->ire_zoneid != ipif->ipif_zoneid) { 2541 if (ipif != NULL) 2542 ipif_refrele(ipif); 2543 ire->ire_ipif = NULL; 2544 ire_delete(ire); 2545 *irep = NULL; 2546 return (EINVAL); 2547 } 2548 2549 ASSERT(ill != NULL); 2550 2551 /* 2552 * Since we didn't attach label security attributes to the 2553 * ire for the resolver case, we need to add it now. (only 2554 * for v4 resolver and v6 xresolv case). 2555 */ 2556 if (is_system_labeled() && ire_is_mblk) { 2557 if (ire->ire_ipversion == IPV4_VERSION) { 2558 ga.ga_af = AF_INET; 2559 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 2560 INADDR_ANY ? ire->ire_gateway_addr : 2561 ire->ire_addr, &ga.ga_addr); 2562 } else { 2563 ga.ga_af = AF_INET6; 2564 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 2565 &ire->ire_gateway_addr_v6) ? 2566 ire->ire_addr_v6 : 2567 ire->ire_gateway_addr_v6; 2568 } 2569 gcgrp = gcgrp_lookup(&ga, B_FALSE); 2570 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 2571 NULL, gcgrp); 2572 if (error != 0) { 2573 if (gcgrp != NULL) { 2574 GCGRP_REFRELE(gcgrp); 2575 gcgrp = NULL; 2576 } 2577 ipif_refrele(ipif); 2578 ire->ire_ipif = NULL; 2579 ire_delete(ire); 2580 *irep = NULL; 2581 return (error); 2582 } 2583 } 2584 } 2585 2586 /* 2587 * In case ire was changed 2588 */ 2589 *irep = ire; 2590 if (ire->ire_ipversion == IPV6_VERSION) 2591 error = ire_add_v6(irep, q, mp, func); 2592 else 2593 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 2594 if (ipif != NULL) 2595 ipif_refrele(ipif); 2596 return (error); 2597 } 2598 2599 /* 2600 * Add an initialized IRE to an appropriate table based on ire_type. 2601 * 2602 * The forward table contains IRE_PREFIX/IRE_HOST and 2603 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 2604 * 2605 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 2606 * and IRE_CACHE. 2607 * 2608 * NOTE : This function is called as writer though not required 2609 * by this function. 2610 */ 2611 static int 2612 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 2613 boolean_t allow_unresolved) 2614 { 2615 ire_t *ire1; 2616 irb_t *irb_ptr; 2617 ire_t **irep; 2618 int flags; 2619 ire_t *pire = NULL; 2620 ill_t *stq_ill; 2621 ire_t *ire = *ire_p; 2622 int error; 2623 boolean_t need_refrele = B_FALSE; 2624 nce_t *nce; 2625 ip_stack_t *ipst = ire->ire_ipst; 2626 uint_t marks = 0; 2627 2628 /* 2629 * IREs with source addresses hosted on interfaces that are under IPMP 2630 * should be hidden so that applications don't accidentally end up 2631 * sending packets with test addresses as their source addresses, or 2632 * sending out interfaces that are e.g. IFF_INACTIVE. Hide them here. 2633 */ 2634 if (ire->ire_ipif != NULL && IS_UNDER_IPMP(ire->ire_ipif->ipif_ill)) 2635 marks |= IRE_MARK_TESTHIDDEN; 2636 2637 if (ire->ire_ipif != NULL) 2638 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 2639 if (ire->ire_stq != NULL) 2640 ASSERT(!MUTEX_HELD( 2641 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 2642 ASSERT(ire->ire_ipversion == IPV4_VERSION); 2643 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 2644 2645 /* Find the appropriate list head. */ 2646 switch (ire->ire_type) { 2647 case IRE_HOST: 2648 ire->ire_mask = IP_HOST_MASK; 2649 ire->ire_masklen = IP_ABITS; 2650 ire->ire_marks |= marks; 2651 if ((ire->ire_flags & RTF_SETSRC) == 0) 2652 ire->ire_src_addr = 0; 2653 break; 2654 case IRE_CACHE: 2655 ire->ire_mask = IP_HOST_MASK; 2656 ire->ire_masklen = IP_ABITS; 2657 ire->ire_marks |= marks; 2658 break; 2659 case IRE_BROADCAST: 2660 case IRE_LOCAL: 2661 case IRE_LOOPBACK: 2662 ire->ire_mask = IP_HOST_MASK; 2663 ire->ire_masklen = IP_ABITS; 2664 break; 2665 case IRE_PREFIX: 2666 case IRE_DEFAULT: 2667 ire->ire_marks |= marks; 2668 if ((ire->ire_flags & RTF_SETSRC) == 0) 2669 ire->ire_src_addr = 0; 2670 break; 2671 case IRE_IF_RESOLVER: 2672 case IRE_IF_NORESOLVER: 2673 ire->ire_marks |= marks; 2674 break; 2675 default: 2676 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 2677 (void *)ire, ire->ire_type)); 2678 ire_delete(ire); 2679 *ire_p = NULL; 2680 return (EINVAL); 2681 } 2682 2683 /* Make sure the address is properly masked. */ 2684 ire->ire_addr &= ire->ire_mask; 2685 2686 /* 2687 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 2688 * of the interface route while adding an IRE_CACHE for an on-link 2689 * destination in the IRE_IF_RESOLVER case, since the ire has to 2690 * go to ARP and return. We can't do a REFHOLD on the 2691 * associated interface ire for fear of ARP freeing the message. 2692 * Here we look up the interface ire in the forwarding table and 2693 * make sure that the interface route has not been deleted. 2694 */ 2695 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 2696 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 2697 2698 ASSERT(ire->ire_max_fragp == NULL); 2699 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 2700 /* 2701 * The ihandle that we used in ip_newroute_multi 2702 * comes from the interface route corresponding 2703 * to ire_ipif. Lookup here to see if it exists 2704 * still. 2705 * If the ire has a source address assigned using 2706 * RTF_SETSRC, ire_ipif is the logical interface holding 2707 * this source address, so we can't use it to check for 2708 * the existence of the interface route. Instead we rely 2709 * on the brute force ihandle search in 2710 * ire_ihandle_lookup_onlink() below. 2711 */ 2712 pire = ipif_to_ire(ire->ire_ipif); 2713 if (pire == NULL) { 2714 ire_delete(ire); 2715 *ire_p = NULL; 2716 return (EINVAL); 2717 } else if (pire->ire_ihandle != ire->ire_ihandle) { 2718 ire_refrele(pire); 2719 ire_delete(ire); 2720 *ire_p = NULL; 2721 return (EINVAL); 2722 } 2723 } else { 2724 pire = ire_ihandle_lookup_onlink(ire); 2725 if (pire == NULL) { 2726 ire_delete(ire); 2727 *ire_p = NULL; 2728 return (EINVAL); 2729 } 2730 } 2731 /* Prevent pire from getting deleted */ 2732 IRB_REFHOLD(pire->ire_bucket); 2733 /* Has it been removed already ? */ 2734 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 2735 IRB_REFRELE(pire->ire_bucket); 2736 ire_refrele(pire); 2737 ire_delete(ire); 2738 *ire_p = NULL; 2739 return (EINVAL); 2740 } 2741 } else { 2742 ASSERT(ire->ire_max_fragp != NULL); 2743 } 2744 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 2745 2746 if (ire->ire_ipif != NULL) { 2747 /* 2748 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 2749 * for historic reasons and to maintain symmetry with 2750 * IPv6 code path. Historically this was used by 2751 * multicast code to create multiple IRE_CACHES on 2752 * a single ill with different ipifs. This was used 2753 * so that multicast packets leaving the node had the 2754 * right source address. This is no longer needed as 2755 * ip_wput initializes the address correctly. 2756 */ 2757 flags |= MATCH_IRE_IPIF; 2758 /* 2759 * If we are creating a hidden IRE, make sure we search for 2760 * hidden IREs when searching for duplicates below. 2761 * Otherwise, we might find an IRE on some other interface 2762 * that's not marked hidden. 2763 */ 2764 if (ire->ire_marks & IRE_MARK_TESTHIDDEN) 2765 flags |= MATCH_IRE_MARK_TESTHIDDEN; 2766 } 2767 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 2768 irb_ptr = ire_get_bucket(ire); 2769 need_refrele = B_TRUE; 2770 if (irb_ptr == NULL) { 2771 /* 2772 * This assumes that the ire has not added 2773 * a reference to the ipif. 2774 */ 2775 ire->ire_ipif = NULL; 2776 ire_delete(ire); 2777 if (pire != NULL) { 2778 IRB_REFRELE(pire->ire_bucket); 2779 ire_refrele(pire); 2780 } 2781 *ire_p = NULL; 2782 return (EINVAL); 2783 } 2784 } else { 2785 irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH( 2786 ire->ire_addr, ipst->ips_ip_cache_table_size)]); 2787 } 2788 2789 /* 2790 * Start the atomic add of the ire. Grab the ill locks, 2791 * ill_g_usesrc_lock and the bucket lock. Check for condemned 2792 * 2793 * If ipif or ill is changing ire_atomic_start() may queue the 2794 * request and return EINPROGRESS. 2795 * To avoid lock order problems, get the ndp4->ndp_g_lock. 2796 */ 2797 mutex_enter(&ipst->ips_ndp4->ndp_g_lock); 2798 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 2799 if (error != 0) { 2800 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2801 /* 2802 * We don't know whether it is a valid ipif or not. 2803 * So, set it to NULL. This assumes that the ire has not added 2804 * a reference to the ipif. 2805 */ 2806 ire->ire_ipif = NULL; 2807 ire_delete(ire); 2808 if (pire != NULL) { 2809 IRB_REFRELE(pire->ire_bucket); 2810 ire_refrele(pire); 2811 } 2812 *ire_p = NULL; 2813 if (need_refrele) 2814 IRB_REFRELE(irb_ptr); 2815 return (error); 2816 } 2817 /* 2818 * To avoid creating ires having stale values for the ire_max_frag 2819 * we get the latest value atomically here. For more details 2820 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 2821 * in ip_rput_dlpi_writer 2822 */ 2823 if (ire->ire_max_fragp == NULL) { 2824 if (CLASSD(ire->ire_addr)) 2825 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 2826 else 2827 ire->ire_max_frag = pire->ire_max_frag; 2828 } else { 2829 uint_t max_frag; 2830 2831 max_frag = *ire->ire_max_fragp; 2832 ire->ire_max_fragp = NULL; 2833 ire->ire_max_frag = max_frag; 2834 } 2835 /* 2836 * Atomically check for duplicate and insert in the table. 2837 */ 2838 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 2839 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 2840 continue; 2841 if (ire->ire_ipif != NULL) { 2842 /* 2843 * We do MATCH_IRE_ILL implicitly here for IREs 2844 * with a non-null ire_ipif, including IRE_CACHEs. 2845 * As ire_ipif and ire_stq could point to two 2846 * different ills, we can't pass just ire_ipif to 2847 * ire_match_args and get a match on both ills. 2848 * This is just needed for duplicate checks here and 2849 * so we don't add an extra argument to 2850 * ire_match_args for this. Do it locally. 2851 * 2852 * NOTE : Currently there is no part of the code 2853 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 2854 * match for IRE_CACHEs. Thus we don't want to 2855 * extend the arguments to ire_match_args. 2856 */ 2857 if (ire1->ire_stq != ire->ire_stq) 2858 continue; 2859 /* 2860 * Multiroute IRE_CACHEs for a given destination can 2861 * have the same ire_ipif, typically if their source 2862 * address is forced using RTF_SETSRC, and the same 2863 * send-to queue. We differentiate them using the parent 2864 * handle. 2865 */ 2866 if (ire->ire_type == IRE_CACHE && 2867 (ire1->ire_flags & RTF_MULTIRT) && 2868 (ire->ire_flags & RTF_MULTIRT) && 2869 (ire1->ire_phandle != ire->ire_phandle)) 2870 continue; 2871 } 2872 if (ire1->ire_zoneid != ire->ire_zoneid) 2873 continue; 2874 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 2875 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 2876 ire->ire_zoneid, 0, NULL, flags, NULL)) { 2877 /* 2878 * Return the old ire after doing a REFHOLD. 2879 * As most of the callers continue to use the IRE 2880 * after adding, we return a held ire. This will 2881 * avoid a lookup in the caller again. If the callers 2882 * don't want to use it, they need to do a REFRELE. 2883 */ 2884 ip1dbg(("found dup ire existing %p new %p\n", 2885 (void *)ire1, (void *)ire)); 2886 IRE_REFHOLD(ire1); 2887 ire_atomic_end(irb_ptr, ire); 2888 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2889 ire_delete(ire); 2890 if (pire != NULL) { 2891 /* 2892 * Assert that it is not removed from the 2893 * list yet. 2894 */ 2895 ASSERT(pire->ire_ptpn != NULL); 2896 IRB_REFRELE(pire->ire_bucket); 2897 ire_refrele(pire); 2898 } 2899 *ire_p = ire1; 2900 if (need_refrele) 2901 IRB_REFRELE(irb_ptr); 2902 return (0); 2903 } 2904 } 2905 2906 if (ire->ire_type & IRE_CACHE) { 2907 ASSERT(ire->ire_stq != NULL); 2908 nce = ndp_lookup_v4(ire_to_ill(ire), 2909 ((ire->ire_gateway_addr != INADDR_ANY) ? 2910 &ire->ire_gateway_addr : &ire->ire_addr), 2911 B_TRUE); 2912 if (nce != NULL) 2913 mutex_enter(&nce->nce_lock); 2914 /* 2915 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 2916 * and the caller has prohibited the addition of incomplete 2917 * ire's, we fail the add. Note that nce_state could be 2918 * something other than ND_REACHABLE if the nce had 2919 * just expired and the ire_create preceding the 2920 * ire_add added a new ND_INITIAL nce. 2921 */ 2922 if ((nce == NULL) || 2923 (nce->nce_flags & NCE_F_CONDEMNED) || 2924 (!allow_unresolved && 2925 (nce->nce_state != ND_REACHABLE))) { 2926 if (nce != NULL) { 2927 DTRACE_PROBE1(ire__bad__nce, nce_t *, nce); 2928 mutex_exit(&nce->nce_lock); 2929 } 2930 ire_atomic_end(irb_ptr, ire); 2931 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2932 if (nce != NULL) 2933 NCE_REFRELE(nce); 2934 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 2935 ire_delete(ire); 2936 if (pire != NULL) { 2937 IRB_REFRELE(pire->ire_bucket); 2938 ire_refrele(pire); 2939 } 2940 *ire_p = NULL; 2941 if (need_refrele) 2942 IRB_REFRELE(irb_ptr); 2943 return (EINVAL); 2944 } else { 2945 ire->ire_nce = nce; 2946 mutex_exit(&nce->nce_lock); 2947 /* 2948 * We are associating this nce to the ire, so 2949 * change the nce ref taken in ndp_lookup_v4() from 2950 * NCE_REFHOLD to NCE_REFHOLD_NOTR 2951 */ 2952 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 2953 } 2954 } 2955 /* 2956 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 2957 * grouping identical addresses together on the hash chain. We do 2958 * this only for IRE_BROADCASTs as ip_wput_ire is currently interested 2959 * in such groupings only for broadcasts. 2960 * 2961 * Find the first entry that matches ire_addr. *irep will be null 2962 * if no match. 2963 * 2964 * Note: the loopback and non-loopback broadcast entries for an 2965 * interface MUST be added before any MULTIRT entries. 2966 */ 2967 irep = (ire_t **)irb_ptr; 2968 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 2969 irep = &ire1->ire_next; 2970 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 2971 /* 2972 * We found some ire (i.e *irep) with a matching addr. We 2973 * want to group ires with same addr. 2974 */ 2975 for (;;) { 2976 ire1 = *irep; 2977 if ((ire1->ire_next == NULL) || 2978 (ire1->ire_next->ire_addr != ire->ire_addr) || 2979 (ire1->ire_type != IRE_BROADCAST) || 2980 (ire1->ire_flags & RTF_MULTIRT) || 2981 (ire1->ire_ipif->ipif_ill->ill_grp == 2982 ire->ire_ipif->ipif_ill->ill_grp)) 2983 break; 2984 irep = &ire1->ire_next; 2985 } 2986 ASSERT(*irep != NULL); 2987 /* 2988 * The ire will be added before *irep, so 2989 * if irep is a MULTIRT ire, just break to 2990 * ire insertion code. 2991 */ 2992 if (((*irep)->ire_flags & RTF_MULTIRT) != 0) 2993 goto insert_ire; 2994 2995 irep = &((*irep)->ire_next); 2996 2997 /* 2998 * Either we have hit the end of the list or the address 2999 * did not match. 3000 */ 3001 while (*irep != NULL) { 3002 ire1 = *irep; 3003 if ((ire1->ire_addr != ire->ire_addr) || 3004 (ire1->ire_type != IRE_BROADCAST)) 3005 break; 3006 if (ire1->ire_ipif == ire->ire_ipif) { 3007 irep = &ire1->ire_next; 3008 break; 3009 } 3010 irep = &ire1->ire_next; 3011 } 3012 } else if (*irep != NULL) { 3013 /* 3014 * Find the last ire which matches ire_addr. 3015 * Needed to do tail insertion among entries with the same 3016 * ire_addr. 3017 */ 3018 while (ire->ire_addr == ire1->ire_addr) { 3019 irep = &ire1->ire_next; 3020 ire1 = *irep; 3021 if (ire1 == NULL) 3022 break; 3023 } 3024 } 3025 3026 insert_ire: 3027 /* Insert at *irep */ 3028 ire1 = *irep; 3029 if (ire1 != NULL) 3030 ire1->ire_ptpn = &ire->ire_next; 3031 ire->ire_next = ire1; 3032 /* Link the new one in. */ 3033 ire->ire_ptpn = irep; 3034 3035 /* 3036 * ire_walk routines de-reference ire_next without holding 3037 * a lock. Before we point to the new ire, we want to make 3038 * sure the store that sets the ire_next of the new ire 3039 * reaches global visibility, so that ire_walk routines 3040 * don't see a truncated list of ires i.e if the ire_next 3041 * of the new ire gets set after we do "*irep = ire" due 3042 * to re-ordering, the ire_walk thread will see a NULL 3043 * once it accesses the ire_next of the new ire. 3044 * membar_producer() makes sure that the following store 3045 * happens *after* all of the above stores. 3046 */ 3047 membar_producer(); 3048 *irep = ire; 3049 ire->ire_bucket = irb_ptr; 3050 /* 3051 * We return a bumped up IRE above. Keep it symmetrical 3052 * so that the callers will always have to release. This 3053 * helps the callers of this function because they continue 3054 * to use the IRE after adding and hence they don't have to 3055 * lookup again after we return the IRE. 3056 * 3057 * NOTE : We don't have to use atomics as this is appearing 3058 * in the list for the first time and no one else can bump 3059 * up the reference count on this yet. 3060 */ 3061 IRE_REFHOLD_LOCKED(ire); 3062 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 3063 3064 irb_ptr->irb_ire_cnt++; 3065 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3066 irb_ptr->irb_nire++; 3067 3068 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3069 irb_ptr->irb_tmp_ire_cnt++; 3070 3071 if (ire->ire_ipif != NULL) { 3072 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ire->ire_ipif, 3073 (char *), "ire", (void *), ire); 3074 ire->ire_ipif->ipif_ire_cnt++; 3075 if (ire->ire_stq != NULL) { 3076 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3077 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), stq_ill, 3078 (char *), "ire", (void *), ire); 3079 stq_ill->ill_ire_cnt++; 3080 } 3081 } else { 3082 ASSERT(ire->ire_stq == NULL); 3083 } 3084 3085 ire_atomic_end(irb_ptr, ire); 3086 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3087 3088 if (pire != NULL) { 3089 /* Assert that it is not removed from the list yet */ 3090 ASSERT(pire->ire_ptpn != NULL); 3091 IRB_REFRELE(pire->ire_bucket); 3092 ire_refrele(pire); 3093 } 3094 3095 if (ire->ire_type != IRE_CACHE) { 3096 /* 3097 * For ire's with host mask see if there is an entry 3098 * in the cache. If there is one flush the whole cache as 3099 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3100 * If no entry is found than there is no need to flush the 3101 * cache. 3102 */ 3103 if (ire->ire_mask == IP_HOST_MASK) { 3104 ire_t *lire; 3105 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3106 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3107 if (lire != NULL) { 3108 ire_refrele(lire); 3109 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3110 } 3111 } else { 3112 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3113 } 3114 } 3115 /* 3116 * We had to delay the fast path probe until the ire is inserted 3117 * in the list. Otherwise the fast path ack won't find the ire in 3118 * the table. 3119 */ 3120 if (ire->ire_type == IRE_CACHE || 3121 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) { 3122 ASSERT(ire->ire_nce != NULL); 3123 if (ire->ire_nce->nce_state == ND_REACHABLE) 3124 nce_fastpath(ire->ire_nce); 3125 } 3126 if (ire->ire_ipif != NULL) 3127 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3128 *ire_p = ire; 3129 if (need_refrele) { 3130 IRB_REFRELE(irb_ptr); 3131 } 3132 return (0); 3133 } 3134 3135 /* 3136 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3137 * do the final cleanup for this ire. 3138 */ 3139 void 3140 ire_cleanup(ire_t *ire) 3141 { 3142 ire_t *ire_next; 3143 ip_stack_t *ipst = ire->ire_ipst; 3144 3145 ASSERT(ire != NULL); 3146 3147 while (ire != NULL) { 3148 ire_next = ire->ire_next; 3149 if (ire->ire_ipversion == IPV4_VERSION) { 3150 ire_delete_v4(ire); 3151 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 3152 ire_stats_deleted); 3153 } else { 3154 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3155 ire_delete_v6(ire); 3156 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 3157 ire_stats_deleted); 3158 } 3159 /* 3160 * Now it's really out of the list. Before doing the 3161 * REFRELE, set ire_next to NULL as ire_inactive asserts 3162 * so. 3163 */ 3164 ire->ire_next = NULL; 3165 IRE_REFRELE_NOTR(ire); 3166 ire = ire_next; 3167 } 3168 } 3169 3170 /* 3171 * IRB_REFRELE is the only caller of the function. It calls to unlink 3172 * all the CONDEMNED ires from this bucket. 3173 */ 3174 ire_t * 3175 ire_unlink(irb_t *irb) 3176 { 3177 ire_t *ire; 3178 ire_t *ire1; 3179 ire_t **ptpn; 3180 ire_t *ire_list = NULL; 3181 3182 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3183 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3184 (irb->irb_refcnt == 0)); 3185 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3186 ASSERT(irb->irb_ire != NULL); 3187 3188 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3189 ip_stack_t *ipst = ire->ire_ipst; 3190 3191 ire1 = ire->ire_next; 3192 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3193 ptpn = ire->ire_ptpn; 3194 ire1 = ire->ire_next; 3195 if (ire1) 3196 ire1->ire_ptpn = ptpn; 3197 *ptpn = ire1; 3198 ire->ire_ptpn = NULL; 3199 ire->ire_next = NULL; 3200 if (ire->ire_type == IRE_DEFAULT) { 3201 /* 3202 * IRE is out of the list. We need to adjust 3203 * the accounting before the caller drops 3204 * the lock. 3205 */ 3206 if (ire->ire_ipversion == IPV6_VERSION) { 3207 ASSERT(ipst-> 3208 ips_ipv6_ire_default_count != 3209 0); 3210 ipst->ips_ipv6_ire_default_count--; 3211 } 3212 } 3213 /* 3214 * We need to call ire_delete_v4 or ire_delete_v6 3215 * to clean up the cache or the redirects pointing at 3216 * the default gateway. We need to drop the lock 3217 * as ire_flush_cache/ire_delete_host_redircts require 3218 * so. But we can't drop the lock, as ire_unlink needs 3219 * to atomically remove the ires from the list. 3220 * So, create a temporary list of CONDEMNED ires 3221 * for doing ire_delete_v4/ire_delete_v6 operations 3222 * later on. 3223 */ 3224 ire->ire_next = ire_list; 3225 ire_list = ire; 3226 } 3227 } 3228 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3229 return (ire_list); 3230 } 3231 3232 /* 3233 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3234 * ARP message on any of its interface queue, it scans the nce table and 3235 * deletes and calls ndp_delete() for the appropriate nce. This action 3236 * also deletes all the neighbor/ire cache entries for that address. 3237 * This function is called from ip_arp_news in ip.c and also for 3238 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3239 * true if it finds a nce entry which is used by ip_arp_news to determine if 3240 * it needs to do an ire_walk_v4. The return value is also used for the 3241 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3242 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3243 * ip_if->ipif_ill also needs to be matched. 3244 */ 3245 boolean_t 3246 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst) 3247 { 3248 ill_t *ill; 3249 nce_t *nce; 3250 3251 ill = (ipif ? ipif->ipif_ill : NULL); 3252 3253 if (ill != NULL) { 3254 /* 3255 * clean up the nce (and any relevant ire's) that matches 3256 * on addr and ill. 3257 */ 3258 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3259 if (nce != NULL) { 3260 ndp_delete(nce); 3261 return (B_TRUE); 3262 } 3263 } else { 3264 /* 3265 * ill is wildcard. clean up all nce's and 3266 * ire's that match on addr 3267 */ 3268 nce_clookup_t cl; 3269 3270 cl.ncecl_addr = addr; 3271 cl.ncecl_found = B_FALSE; 3272 3273 ndp_walk_common(ipst->ips_ndp4, NULL, 3274 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3275 3276 /* 3277 * ncecl_found would be set by ip_nce_clookup_and_delete if 3278 * we found a matching nce. 3279 */ 3280 return (cl.ncecl_found); 3281 } 3282 return (B_FALSE); 3283 3284 } 3285 3286 /* Delete the supplied nce if its nce_addr matches the supplied address */ 3287 static void 3288 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 3289 { 3290 nce_clookup_t *cl = (nce_clookup_t *)arg; 3291 ipaddr_t nce_addr; 3292 3293 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 3294 if (nce_addr == cl->ncecl_addr) { 3295 cl->ncecl_found = B_TRUE; 3296 /* clean up the nce (and any relevant ire's) */ 3297 ndp_delete(nce); 3298 } 3299 } 3300 3301 /* 3302 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 3303 * when there are no ire's left in the bucket. Returns TRUE if the bucket 3304 * is deleted and freed. 3305 */ 3306 boolean_t 3307 irb_inactive(irb_t *irb) 3308 { 3309 struct rt_entry *rt; 3310 struct radix_node *rn; 3311 ip_stack_t *ipst = irb->irb_ipst; 3312 3313 ASSERT(irb->irb_ipst != NULL); 3314 3315 rt = IRB2RT(irb); 3316 rn = (struct radix_node *)rt; 3317 3318 /* first remove it from the radix tree. */ 3319 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 3320 rw_enter(&irb->irb_lock, RW_WRITER); 3321 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 3322 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 3323 ipst->ips_ip_ftable); 3324 DTRACE_PROBE1(irb__free, rt_t *, rt); 3325 ASSERT((void *)rn == (void *)rt); 3326 Free(rt, rt_entry_cache); 3327 /* irb_lock is freed */ 3328 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3329 return (B_TRUE); 3330 } 3331 rw_exit(&irb->irb_lock); 3332 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3333 return (B_FALSE); 3334 } 3335 3336 /* 3337 * Delete the specified IRE. 3338 */ 3339 void 3340 ire_delete(ire_t *ire) 3341 { 3342 ire_t *ire1; 3343 ire_t **ptpn; 3344 irb_t *irb; 3345 ip_stack_t *ipst = ire->ire_ipst; 3346 3347 if ((irb = ire->ire_bucket) == NULL) { 3348 /* 3349 * It was never inserted in the list. Should call REFRELE 3350 * to free this IRE. 3351 */ 3352 IRE_REFRELE_NOTR(ire); 3353 return; 3354 } 3355 3356 rw_enter(&irb->irb_lock, RW_WRITER); 3357 3358 if (irb->irb_rr_origin == ire) { 3359 irb->irb_rr_origin = NULL; 3360 } 3361 3362 /* 3363 * In case of V4 we might still be waiting for fastpath ack. 3364 */ 3365 if (ire->ire_ipversion == IPV4_VERSION && 3366 (ire->ire_type == IRE_CACHE || 3367 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) { 3368 ASSERT(ire->ire_nce != NULL); 3369 nce_fastpath_list_delete(ire->ire_nce); 3370 } 3371 3372 if (ire->ire_ptpn == NULL) { 3373 /* 3374 * Some other thread has removed us from the list. 3375 * It should have done the REFRELE for us. 3376 */ 3377 rw_exit(&irb->irb_lock); 3378 return; 3379 } 3380 3381 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3382 irb->irb_ire_cnt--; 3383 ire->ire_marks |= IRE_MARK_CONDEMNED; 3384 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 3385 irb->irb_tmp_ire_cnt--; 3386 ire->ire_marks &= ~IRE_MARK_TEMPORARY; 3387 } 3388 } 3389 3390 if (irb->irb_refcnt != 0) { 3391 /* 3392 * The last thread to leave this bucket will 3393 * delete this ire. 3394 */ 3395 irb->irb_marks |= IRB_MARK_CONDEMNED; 3396 rw_exit(&irb->irb_lock); 3397 return; 3398 } 3399 3400 /* 3401 * Normally to delete an ire, we walk the bucket. While we 3402 * walk the bucket, we normally bump up irb_refcnt and hence 3403 * we return from above where we mark CONDEMNED and the ire 3404 * gets deleted from ire_unlink. This case is where somebody 3405 * knows the ire e.g by doing a lookup, and wants to delete the 3406 * IRE. irb_refcnt would be 0 in this case if nobody is walking 3407 * the bucket. 3408 */ 3409 ptpn = ire->ire_ptpn; 3410 ire1 = ire->ire_next; 3411 if (ire1 != NULL) 3412 ire1->ire_ptpn = ptpn; 3413 ASSERT(ptpn != NULL); 3414 *ptpn = ire1; 3415 ire->ire_ptpn = NULL; 3416 ire->ire_next = NULL; 3417 if (ire->ire_ipversion == IPV6_VERSION) { 3418 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 3419 } else { 3420 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 3421 } 3422 /* 3423 * ip_wput/ip_wput_v6 checks this flag to see whether 3424 * it should still use the cached ire or not. 3425 */ 3426 if (ire->ire_type == IRE_DEFAULT) { 3427 /* 3428 * IRE is out of the list. We need to adjust the 3429 * accounting before we drop the lock. 3430 */ 3431 if (ire->ire_ipversion == IPV6_VERSION) { 3432 ASSERT(ipst->ips_ipv6_ire_default_count != 0); 3433 ipst->ips_ipv6_ire_default_count--; 3434 } 3435 } 3436 rw_exit(&irb->irb_lock); 3437 3438 if (ire->ire_ipversion == IPV6_VERSION) { 3439 ire_delete_v6(ire); 3440 } else { 3441 ire_delete_v4(ire); 3442 } 3443 /* 3444 * We removed it from the list. Decrement the 3445 * reference count. 3446 */ 3447 IRE_REFRELE_NOTR(ire); 3448 } 3449 3450 /* 3451 * Delete the specified IRE. 3452 * All calls should use ire_delete(). 3453 * Sometimes called as writer though not required by this function. 3454 * 3455 * NOTE : This function is called only if the ire was added 3456 * in the list. 3457 */ 3458 static void 3459 ire_delete_v4(ire_t *ire) 3460 { 3461 ip_stack_t *ipst = ire->ire_ipst; 3462 3463 ASSERT(ire->ire_refcnt >= 1); 3464 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3465 3466 if (ire->ire_type != IRE_CACHE) 3467 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 3468 if (ire->ire_type == IRE_DEFAULT) { 3469 /* 3470 * when a default gateway is going away 3471 * delete all the host redirects pointing at that 3472 * gateway. 3473 */ 3474 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 3475 } 3476 } 3477 3478 /* 3479 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 3480 * to free the ire when the reference count goes to zero. 3481 */ 3482 void 3483 ire_inactive(ire_t *ire) 3484 { 3485 nce_t *nce; 3486 ill_t *ill = NULL; 3487 ill_t *stq_ill = NULL; 3488 ipif_t *ipif; 3489 boolean_t need_wakeup = B_FALSE; 3490 irb_t *irb; 3491 ip_stack_t *ipst = ire->ire_ipst; 3492 3493 ASSERT(ire->ire_refcnt == 0); 3494 ASSERT(ire->ire_ptpn == NULL); 3495 ASSERT(ire->ire_next == NULL); 3496 3497 if (ire->ire_gw_secattr != NULL) { 3498 ire_gw_secattr_free(ire->ire_gw_secattr); 3499 ire->ire_gw_secattr = NULL; 3500 } 3501 3502 if (ire->ire_mp != NULL) { 3503 ASSERT(ire->ire_bucket == NULL); 3504 mutex_destroy(&ire->ire_lock); 3505 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3506 if (ire->ire_nce != NULL) 3507 NCE_REFRELE_NOTR(ire->ire_nce); 3508 freeb(ire->ire_mp); 3509 return; 3510 } 3511 3512 if ((nce = ire->ire_nce) != NULL) { 3513 NCE_REFRELE_NOTR(nce); 3514 ire->ire_nce = NULL; 3515 } 3516 3517 if (ire->ire_ipif == NULL) 3518 goto end; 3519 3520 ipif = ire->ire_ipif; 3521 ill = ipif->ipif_ill; 3522 3523 if (ire->ire_bucket == NULL) { 3524 /* The ire was never inserted in the table. */ 3525 goto end; 3526 } 3527 3528 /* 3529 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 3530 * non-null ill_ire_count also goes down by 1. 3531 * 3532 * The ipif that is associated with an ire is ire->ire_ipif and 3533 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 3534 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 3535 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. 3536 * However, for VNI or IPMP IRE entries, stq_ill can be different. 3537 * If this is different from ire->ire_ipif->ipif_ill and if the 3538 * ill_ire_cnt on the stq_ill also has dropped to zero, we call 3539 * ipif_ill_refrele_tail on the stq_ill. 3540 */ 3541 if (ire->ire_stq != NULL) 3542 stq_ill = ire->ire_stq->q_ptr; 3543 3544 if (stq_ill == NULL || stq_ill == ill) { 3545 /* Optimize the most common case */ 3546 mutex_enter(&ill->ill_lock); 3547 ASSERT(ipif->ipif_ire_cnt != 0); 3548 DTRACE_PROBE3(ipif__decr__cnt, (ipif_t *), ipif, 3549 (char *), "ire", (void *), ire); 3550 ipif->ipif_ire_cnt--; 3551 if (IPIF_DOWN_OK(ipif)) 3552 need_wakeup = B_TRUE; 3553 if (stq_ill != NULL) { 3554 ASSERT(stq_ill->ill_ire_cnt != 0); 3555 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), stq_ill, 3556 (char *), "ire", (void *), ire); 3557 stq_ill->ill_ire_cnt--; 3558 if (ILL_DOWN_OK(stq_ill)) 3559 need_wakeup = B_TRUE; 3560 } 3561 if (need_wakeup) { 3562 /* Drops the ill lock */ 3563 ipif_ill_refrele_tail(ill); 3564 } else { 3565 mutex_exit(&ill->ill_lock); 3566 } 3567 } else { 3568 /* 3569 * We can't grab all the ill locks at the same time. 3570 * It can lead to recursive lock enter in the call to 3571 * ipif_ill_refrele_tail and later. Instead do it 1 at 3572 * a time. 3573 */ 3574 mutex_enter(&ill->ill_lock); 3575 ASSERT(ipif->ipif_ire_cnt != 0); 3576 DTRACE_PROBE3(ipif__decr__cnt, (ipif_t *), ipif, 3577 (char *), "ire", (void *), ire); 3578 ipif->ipif_ire_cnt--; 3579 if (IPIF_DOWN_OK(ipif)) { 3580 /* Drops the lock */ 3581 ipif_ill_refrele_tail(ill); 3582 } else { 3583 mutex_exit(&ill->ill_lock); 3584 } 3585 if (stq_ill != NULL) { 3586 mutex_enter(&stq_ill->ill_lock); 3587 ASSERT(stq_ill->ill_ire_cnt != 0); 3588 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), stq_ill, 3589 (char *), "ire", (void *), ire); 3590 stq_ill->ill_ire_cnt--; 3591 if (ILL_DOWN_OK(stq_ill)) { 3592 /* Drops the ill lock */ 3593 ipif_ill_refrele_tail(stq_ill); 3594 } else { 3595 mutex_exit(&stq_ill->ill_lock); 3596 } 3597 } 3598 } 3599 end: 3600 /* This should be true for both V4 and V6 */ 3601 3602 if ((ire->ire_type & IRE_FORWARDTABLE) && 3603 (ire->ire_ipversion == IPV4_VERSION) && 3604 ((irb = ire->ire_bucket) != NULL)) { 3605 rw_enter(&irb->irb_lock, RW_WRITER); 3606 irb->irb_nire--; 3607 /* 3608 * Instead of examining the conditions for freeing 3609 * the radix node here, we do it by calling 3610 * IRB_REFRELE which is a single point in the code 3611 * that embeds that logic. Bump up the refcnt to 3612 * be able to call IRB_REFRELE 3613 */ 3614 IRB_REFHOLD_LOCKED(irb); 3615 rw_exit(&irb->irb_lock); 3616 IRB_REFRELE(irb); 3617 } 3618 ire->ire_ipif = NULL; 3619 3620 #ifdef DEBUG 3621 ire_trace_cleanup(ire); 3622 #endif 3623 mutex_destroy(&ire->ire_lock); 3624 if (ire->ire_ipversion == IPV6_VERSION) { 3625 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 3626 } else { 3627 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3628 } 3629 ASSERT(ire->ire_mp == NULL); 3630 /* Has been allocated out of the cache */ 3631 kmem_cache_free(ire_cache, ire); 3632 } 3633 3634 /* 3635 * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect 3636 * entries that have a given gateway address. 3637 */ 3638 void 3639 ire_delete_cache_gw(ire_t *ire, char *cp) 3640 { 3641 ipaddr_t gw_addr; 3642 3643 if (!(ire->ire_type & IRE_CACHE) && 3644 !(ire->ire_flags & RTF_DYNAMIC)) 3645 return; 3646 3647 bcopy(cp, &gw_addr, sizeof (gw_addr)); 3648 if (ire->ire_gateway_addr == gw_addr) { 3649 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 3650 (int)ntohl(ire->ire_addr), ire->ire_type, 3651 (int)ntohl(ire->ire_gateway_addr))); 3652 ire_delete(ire); 3653 } 3654 } 3655 3656 /* 3657 * Remove all IRE_CACHE entries that match the ire specified. 3658 * 3659 * The flag argument indicates if the flush request is due to addition 3660 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 3661 * 3662 * This routine takes only the IREs from the forwarding table and flushes 3663 * the corresponding entries from the cache table. 3664 * 3665 * When flushing due to the deletion of an old route, it 3666 * just checks the cache handles (ire_phandle and ire_ihandle) and 3667 * deletes the ones that match. 3668 * 3669 * When flushing due to the creation of a new route, it checks 3670 * if a cache entry's address matches the one in the IRE and 3671 * that the cache entry's parent has a less specific mask than the 3672 * one in IRE. The destination of such a cache entry could be the 3673 * gateway for other cache entries, so we need to flush those as 3674 * well by looking for gateway addresses matching the IRE's address. 3675 */ 3676 void 3677 ire_flush_cache_v4(ire_t *ire, int flag) 3678 { 3679 int i; 3680 ire_t *cire; 3681 irb_t *irb; 3682 ip_stack_t *ipst = ire->ire_ipst; 3683 3684 if (ire->ire_type & IRE_CACHE) 3685 return; 3686 3687 /* 3688 * If a default is just created, there is no point 3689 * in going through the cache, as there will not be any 3690 * cached ires. 3691 */ 3692 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 3693 return; 3694 if (flag == IRE_FLUSH_ADD) { 3695 /* 3696 * This selective flush is due to the addition of 3697 * new IRE. 3698 */ 3699 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3700 irb = &ipst->ips_ip_cache_table[i]; 3701 if ((cire = irb->irb_ire) == NULL) 3702 continue; 3703 IRB_REFHOLD(irb); 3704 for (cire = irb->irb_ire; cire != NULL; 3705 cire = cire->ire_next) { 3706 if (cire->ire_type != IRE_CACHE) 3707 continue; 3708 /* 3709 * If 'cire' belongs to the same subnet 3710 * as the new ire being added, and 'cire' 3711 * is derived from a prefix that is less 3712 * specific than the new ire being added, 3713 * we need to flush 'cire'; for instance, 3714 * when a new interface comes up. 3715 */ 3716 if (((cire->ire_addr & ire->ire_mask) == 3717 (ire->ire_addr & ire->ire_mask)) && 3718 (ip_mask_to_plen(cire->ire_cmask) <= 3719 ire->ire_masklen)) { 3720 ire_delete(cire); 3721 continue; 3722 } 3723 /* 3724 * This is the case when the ire_gateway_addr 3725 * of 'cire' belongs to the same subnet as 3726 * the new ire being added. 3727 * Flushing such ires is sometimes required to 3728 * avoid misrouting: say we have a machine with 3729 * two interfaces (I1 and I2), a default router 3730 * R on the I1 subnet, and a host route to an 3731 * off-link destination D with a gateway G on 3732 * the I2 subnet. 3733 * Under normal operation, we will have an 3734 * on-link cache entry for G and an off-link 3735 * cache entry for D with G as ire_gateway_addr, 3736 * traffic to D will reach its destination 3737 * through gateway G. 3738 * If the administrator does 'ifconfig I2 down', 3739 * the cache entries for D and G will be 3740 * flushed. However, G will now be resolved as 3741 * an off-link destination using R (the default 3742 * router) as gateway. Then D will also be 3743 * resolved as an off-link destination using G 3744 * as gateway - this behavior is due to 3745 * compatibility reasons, see comment in 3746 * ire_ihandle_lookup_offlink(). Traffic to D 3747 * will go to the router R and probably won't 3748 * reach the destination. 3749 * The administrator then does 'ifconfig I2 up'. 3750 * Since G is on the I2 subnet, this routine 3751 * will flush its cache entry. It must also 3752 * flush the cache entry for D, otherwise 3753 * traffic will stay misrouted until the IRE 3754 * times out. 3755 */ 3756 if ((cire->ire_gateway_addr & ire->ire_mask) == 3757 (ire->ire_addr & ire->ire_mask)) { 3758 ire_delete(cire); 3759 continue; 3760 } 3761 } 3762 IRB_REFRELE(irb); 3763 } 3764 } else { 3765 /* 3766 * delete the cache entries based on 3767 * handle in the IRE as this IRE is 3768 * being deleted/changed. 3769 */ 3770 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3771 irb = &ipst->ips_ip_cache_table[i]; 3772 if ((cire = irb->irb_ire) == NULL) 3773 continue; 3774 IRB_REFHOLD(irb); 3775 for (cire = irb->irb_ire; cire != NULL; 3776 cire = cire->ire_next) { 3777 if (cire->ire_type != IRE_CACHE) 3778 continue; 3779 if ((cire->ire_phandle == 0 || 3780 cire->ire_phandle != ire->ire_phandle) && 3781 (cire->ire_ihandle == 0 || 3782 cire->ire_ihandle != ire->ire_ihandle)) 3783 continue; 3784 ire_delete(cire); 3785 } 3786 IRB_REFRELE(irb); 3787 } 3788 } 3789 } 3790 3791 /* 3792 * Matches the arguments passed with the values in the ire. 3793 * 3794 * Note: for match types that match using "ipif" passed in, ipif 3795 * must be checked for non-NULL before calling this routine. 3796 */ 3797 boolean_t 3798 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 3799 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 3800 const ts_label_t *tsl, int match_flags, queue_t *wq) 3801 { 3802 ill_t *ire_ill = NULL, *dst_ill; 3803 ill_t *ipif_ill = NULL; 3804 3805 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3806 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 3807 ASSERT((!(match_flags & MATCH_IRE_ILL)) || 3808 (ipif != NULL && !ipif->ipif_isv6)); 3809 ASSERT(!(match_flags & MATCH_IRE_WQ) || wq != NULL); 3810 3811 /* 3812 * If MATCH_IRE_MARK_TESTHIDDEN is set, then only return the IRE if it 3813 * is in fact hidden, to ensure the caller gets the right one. One 3814 * exception: if the caller passed MATCH_IRE_IHANDLE, then they 3815 * already know the identity of the given IRE_INTERFACE entry and 3816 * there's no point trying to hide it from them. 3817 */ 3818 if (ire->ire_marks & IRE_MARK_TESTHIDDEN) { 3819 if (match_flags & MATCH_IRE_IHANDLE) 3820 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 3821 3822 if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN)) 3823 return (B_FALSE); 3824 } 3825 3826 /* 3827 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 3828 * is used. In that case the routing table is bypassed and the 3829 * packets are sent directly to the specified nexthop. The 3830 * IRE_CACHE entry representing this route should be marked 3831 * with IRE_MARK_PRIVATE_ADDR. 3832 */ 3833 3834 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 3835 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 3836 return (B_FALSE); 3837 3838 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 3839 ire->ire_zoneid != ALL_ZONES) { 3840 /* 3841 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 3842 * valid and does not match that of ire_zoneid, a failure to 3843 * match is reported at this point. Otherwise, since some IREs 3844 * that are available in the global zone can be used in local 3845 * zones, additional checks need to be performed: 3846 * 3847 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 3848 * entries should never be matched in this situation. 3849 * 3850 * IRE entries that have an interface associated with them 3851 * should in general not match unless they are an IRE_LOCAL 3852 * or in the case when MATCH_IRE_DEFAULT has been set in 3853 * the caller. In the case of the former, checking of the 3854 * other fields supplied should take place. 3855 * 3856 * In the case where MATCH_IRE_DEFAULT has been set, 3857 * all of the ipif's associated with the IRE's ill are 3858 * checked to see if there is a matching zoneid. If any 3859 * one ipif has a matching zoneid, this IRE is a 3860 * potential candidate so checking of the other fields 3861 * takes place. 3862 * 3863 * In the case where the IRE_INTERFACE has a usable source 3864 * address (indicated by ill_usesrc_ifindex) in the 3865 * correct zone then it's permitted to return this IRE 3866 */ 3867 if (match_flags & MATCH_IRE_ZONEONLY) 3868 return (B_FALSE); 3869 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 3870 return (B_FALSE); 3871 /* 3872 * Note, IRE_INTERFACE can have the stq as NULL. For 3873 * example, if the default multicast route is tied to 3874 * the loopback address. 3875 */ 3876 if ((ire->ire_type & IRE_INTERFACE) && 3877 (ire->ire_stq != NULL)) { 3878 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 3879 /* 3880 * If there is a usable source address in the 3881 * zone, then it's ok to return an 3882 * IRE_INTERFACE 3883 */ 3884 if (ipif_usesrc_avail(dst_ill, zoneid)) { 3885 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 3886 (void *)dst_ill, 3887 (ire->ire_addr == (addr & mask)))); 3888 } else { 3889 ip3dbg(("ire_match_args: src_ipif NULL" 3890 " dst_ill %p\n", (void *)dst_ill)); 3891 return (B_FALSE); 3892 } 3893 } 3894 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 3895 !(ire->ire_type & IRE_INTERFACE)) { 3896 ipif_t *tipif; 3897 3898 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 3899 return (B_FALSE); 3900 } 3901 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 3902 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 3903 tipif != NULL; tipif = tipif->ipif_next) { 3904 if (IPIF_CAN_LOOKUP(tipif) && 3905 (tipif->ipif_flags & IPIF_UP) && 3906 (tipif->ipif_zoneid == zoneid || 3907 tipif->ipif_zoneid == ALL_ZONES)) 3908 break; 3909 } 3910 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 3911 if (tipif == NULL) { 3912 return (B_FALSE); 3913 } 3914 } 3915 } 3916 3917 /* 3918 * For IRE_CACHE entries, MATCH_IRE_ILL means that somebody wants to 3919 * send out ire_stq (ire_ipif for IRE_CACHE entries is just the means 3920 * of getting a source address -- i.e., ire_src_addr == 3921 * ire->ire_ipif->ipif_src_addr). ire_to_ill() handles this. 3922 * 3923 * NOTE: For IPMP, MATCH_IRE_ILL usually matches any ill in the group. 3924 * However, if MATCH_IRE_MARK_TESTHIDDEN is set (i.e., the IRE is for 3925 * IPMP test traffic), then the ill must match exactly. 3926 */ 3927 if (match_flags & MATCH_IRE_ILL) { 3928 ire_ill = ire_to_ill(ire); 3929 ipif_ill = ipif->ipif_ill; 3930 } 3931 3932 if ((ire->ire_addr == (addr & mask)) && 3933 ((!(match_flags & MATCH_IRE_GW)) || 3934 (ire->ire_gateway_addr == gateway)) && 3935 ((!(match_flags & MATCH_IRE_TYPE)) || 3936 (ire->ire_type & type)) && 3937 ((!(match_flags & MATCH_IRE_SRC)) || 3938 (ire->ire_src_addr == ipif->ipif_src_addr)) && 3939 ((!(match_flags & MATCH_IRE_IPIF)) || 3940 (ire->ire_ipif == ipif)) && 3941 ((!(match_flags & MATCH_IRE_MARK_TESTHIDDEN)) || 3942 (ire->ire_marks & IRE_MARK_TESTHIDDEN)) && 3943 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 3944 (ire->ire_type != IRE_CACHE || 3945 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 3946 ((!(match_flags & MATCH_IRE_WQ)) || 3947 (ire->ire_stq == wq)) && 3948 ((!(match_flags & MATCH_IRE_ILL)) || 3949 (ire_ill == ipif_ill || 3950 (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN) && 3951 ire_ill != NULL && IS_IN_SAME_ILLGRP(ipif_ill, ire_ill)))) && 3952 ((!(match_flags & MATCH_IRE_IHANDLE)) || 3953 (ire->ire_ihandle == ihandle)) && 3954 ((!(match_flags & MATCH_IRE_MASK)) || 3955 (ire->ire_mask == mask)) && 3956 ((!(match_flags & MATCH_IRE_SECATTR)) || 3957 (!is_system_labeled()) || 3958 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 3959 /* We found the matched IRE */ 3960 return (B_TRUE); 3961 } 3962 return (B_FALSE); 3963 } 3964 3965 /* 3966 * Lookup for a route in all the tables 3967 */ 3968 ire_t * 3969 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 3970 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 3971 const ts_label_t *tsl, int flags, ip_stack_t *ipst) 3972 { 3973 ire_t *ire = NULL; 3974 3975 /* 3976 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 3977 * MATCH_IRE_ILL is set. 3978 */ 3979 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL)) && (ipif == NULL)) 3980 return (NULL); 3981 3982 /* 3983 * might be asking for a cache lookup, 3984 * This is not best way to lookup cache, 3985 * user should call ire_cache_lookup directly. 3986 * 3987 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 3988 * in the forwarding table, if the applicable type flags were set. 3989 */ 3990 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 3991 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 3992 tsl, flags, ipst); 3993 if (ire != NULL) 3994 return (ire); 3995 } 3996 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 3997 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 3998 zoneid, 0, tsl, flags, ipst); 3999 } 4000 return (ire); 4001 } 4002 4003 /* 4004 * Delete the IRE cache for the gateway and all IRE caches whose 4005 * ire_gateway_addr points to this gateway, and allow them to 4006 * be created on demand by ip_newroute. 4007 */ 4008 void 4009 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 4010 { 4011 irb_t *irb; 4012 ire_t *ire; 4013 4014 irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4015 ipst->ips_ip_cache_table_size)]; 4016 IRB_REFHOLD(irb); 4017 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4018 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4019 continue; 4020 4021 ASSERT(ire->ire_mask == IP_HOST_MASK); 4022 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4023 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE, NULL)) { 4024 ire_delete(ire); 4025 } 4026 } 4027 IRB_REFRELE(irb); 4028 4029 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst); 4030 } 4031 4032 /* 4033 * Looks up cache table for a route. 4034 * specific lookup can be indicated by 4035 * passing the MATCH_* flags and the 4036 * necessary parameters. 4037 */ 4038 ire_t * 4039 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4040 zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4041 { 4042 ire_ctable_args_t margs; 4043 4044 margs.ict_addr = &addr; 4045 margs.ict_gateway = &gateway; 4046 margs.ict_type = type; 4047 margs.ict_ipif = ipif; 4048 margs.ict_zoneid = zoneid; 4049 margs.ict_tsl = tsl; 4050 margs.ict_flags = flags; 4051 margs.ict_ipst = ipst; 4052 margs.ict_wq = NULL; 4053 4054 return (ip4_ctable_lookup_impl(&margs)); 4055 } 4056 4057 /* 4058 * Check whether the IRE_LOCAL and the IRE potentially used to transmit 4059 * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are identical 4060 * or part of the same illgrp. (In the IPMP case, usually the two IREs 4061 * will both belong to the IPMP ill, but exceptions are possible -- e.g. 4062 * if IPMP test addresses are on their own subnet.) 4063 */ 4064 boolean_t 4065 ire_local_same_lan(ire_t *ire_local, ire_t *xmit_ire) 4066 { 4067 ill_t *recv_ill, *xmit_ill; 4068 4069 ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK)); 4070 ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE)); 4071 4072 recv_ill = ire_to_ill(ire_local); 4073 xmit_ill = ire_to_ill(xmit_ire); 4074 4075 ASSERT(recv_ill != NULL); 4076 ASSERT(xmit_ill != NULL); 4077 4078 return (IS_ON_SAME_LAN(recv_ill, xmit_ill)); 4079 } 4080 4081 /* 4082 * Check if the IRE_LOCAL uses the same ill as another route would use. 4083 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 4084 * then we don't allow this IRE_LOCAL to be used. 4085 */ 4086 boolean_t 4087 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr, 4088 const ts_label_t *tsl, ip_stack_t *ipst) 4089 { 4090 ire_t *alt_ire; 4091 boolean_t rval; 4092 int flags; 4093 4094 flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE; 4095 4096 if (ire_local->ire_ipversion == IPV4_VERSION) { 4097 alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL, 4098 NULL, zoneid, 0, tsl, flags, ipst); 4099 } else { 4100 alt_ire = ire_ftable_lookup_v6(addr, NULL, NULL, 0, NULL, 4101 NULL, zoneid, 0, tsl, flags, ipst); 4102 } 4103 4104 if (alt_ire == NULL) 4105 return (B_FALSE); 4106 4107 if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4108 ire_refrele(alt_ire); 4109 return (B_FALSE); 4110 } 4111 rval = ire_local_same_lan(ire_local, alt_ire); 4112 4113 ire_refrele(alt_ire); 4114 return (rval); 4115 } 4116 4117 /* 4118 * Lookup cache 4119 * 4120 * In general the zoneid has to match (where ALL_ZONES match all of them). 4121 * But for IRE_LOCAL we also need to handle the case where L2 should 4122 * conceptually loop back the packet. This is necessary since neither 4123 * Ethernet drivers nor Ethernet hardware loops back packets sent to their 4124 * own MAC address. This loopback is needed when the normal 4125 * routes (ignoring IREs with different zoneids) would send out the packet on 4126 * the same ill as the ill with which this IRE_LOCAL is associated. 4127 * 4128 * Earlier versions of this code always matched an IRE_LOCAL independently of 4129 * the zoneid. We preserve that earlier behavior when 4130 * ip_restrict_interzone_loopback is turned off. 4131 */ 4132 ire_t * 4133 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl, 4134 ip_stack_t *ipst) 4135 { 4136 irb_t *irb_ptr; 4137 ire_t *ire; 4138 4139 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4140 ipst->ips_ip_cache_table_size)]; 4141 rw_enter(&irb_ptr->irb_lock, RW_READER); 4142 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4143 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4144 IRE_MARK_TESTHIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4145 continue; 4146 } 4147 if (ire->ire_addr == addr) { 4148 /* 4149 * Finally, check if the security policy has any 4150 * restriction on using this route for the specified 4151 * message. 4152 */ 4153 if (tsl != NULL && 4154 ire->ire_gw_secattr != NULL && 4155 tsol_ire_match_gwattr(ire, tsl) != 0) { 4156 continue; 4157 } 4158 4159 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4160 ire->ire_zoneid == ALL_ZONES) { 4161 IRE_REFHOLD(ire); 4162 rw_exit(&irb_ptr->irb_lock); 4163 return (ire); 4164 } 4165 4166 if (ire->ire_type == IRE_LOCAL) { 4167 if (ipst->ips_ip_restrict_interzone_loopback && 4168 !ire_local_ok_across_zones(ire, zoneid, 4169 &addr, tsl, ipst)) 4170 continue; 4171 4172 IRE_REFHOLD(ire); 4173 rw_exit(&irb_ptr->irb_lock); 4174 return (ire); 4175 } 4176 } 4177 } 4178 rw_exit(&irb_ptr->irb_lock); 4179 return (NULL); 4180 } 4181 4182 ire_t * 4183 ire_cache_lookup_simple(ipaddr_t dst, ip_stack_t *ipst) 4184 { 4185 irb_t *irb_ptr; 4186 ire_t *ire; 4187 4188 /* 4189 * Look for an ire in the cachetable whose 4190 * ire_addr matches the destination. 4191 * Since we are being called by forwarding fastpath 4192 * no need to check for Trusted Solaris label. 4193 */ 4194 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH( 4195 dst, ipst->ips_ip_cache_table_size)]; 4196 rw_enter(&irb_ptr->irb_lock, RW_READER); 4197 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4198 if (ire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN | 4199 IRE_MARK_PRIVATE_ADDR)) { 4200 continue; 4201 } 4202 if (ire->ire_addr == dst) { 4203 IRE_REFHOLD(ire); 4204 rw_exit(&irb_ptr->irb_lock); 4205 return (ire); 4206 } 4207 } 4208 rw_exit(&irb_ptr->irb_lock); 4209 return (NULL); 4210 } 4211 4212 /* 4213 * Locate the interface ire that is tied to the cache ire 'cire' via 4214 * cire->ire_ihandle. 4215 * 4216 * We are trying to create the cache ire for an offlink destn based 4217 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4218 * as found by ip_newroute(). We are called from ip_newroute() in 4219 * the IRE_CACHE case. 4220 */ 4221 ire_t * 4222 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4223 { 4224 ire_t *ire; 4225 int match_flags; 4226 ipaddr_t gw_addr; 4227 ipif_t *gw_ipif; 4228 ip_stack_t *ipst = cire->ire_ipst; 4229 4230 ASSERT(cire != NULL && pire != NULL); 4231 4232 /* 4233 * We don't need to specify the zoneid to ire_ftable_lookup() below 4234 * because the ihandle refers to an ipif which can be in only one zone. 4235 */ 4236 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4237 if (pire->ire_ipif != NULL) 4238 match_flags |= MATCH_IRE_ILL; 4239 /* 4240 * We know that the mask of the interface ire equals cire->ire_cmask. 4241 * (When ip_newroute() created 'cire' for the gateway it set its 4242 * cmask from the interface ire's mask) 4243 */ 4244 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4245 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 4246 NULL, match_flags, ipst); 4247 if (ire != NULL) 4248 return (ire); 4249 /* 4250 * If we didn't find an interface ire above, we can't declare failure. 4251 * For backwards compatibility, we need to support prefix routes 4252 * pointing to next hop gateways that are not on-link. 4253 * 4254 * Assume we are trying to ping some offlink destn, and we have the 4255 * routing table below. 4256 * 4257 * Eg. default - gw1 <--- pire (line 1) 4258 * gw1 - gw2 (line 2) 4259 * gw2 - hme0 (line 3) 4260 * 4261 * If we already have a cache ire for gw1 in 'cire', the 4262 * ire_ftable_lookup above would have failed, since there is no 4263 * interface ire to reach gw1. We will fallthru below. 4264 * 4265 * Here we duplicate the steps that ire_ftable_lookup() did in 4266 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 4267 * The differences are the following 4268 * i. We want the interface ire only, so we call ire_ftable_lookup() 4269 * instead of ire_route_lookup() 4270 * ii. We look for only prefix routes in the 1st call below. 4271 * ii. We want to match on the ihandle in the 2nd call below. 4272 */ 4273 match_flags = MATCH_IRE_TYPE; 4274 if (pire->ire_ipif != NULL) 4275 match_flags |= MATCH_IRE_ILL; 4276 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 4277 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 4278 if (ire == NULL) 4279 return (NULL); 4280 /* 4281 * At this point 'ire' corresponds to the entry shown in line 2. 4282 * gw_addr is 'gw2' in the example above. 4283 */ 4284 gw_addr = ire->ire_gateway_addr; 4285 gw_ipif = ire->ire_ipif; 4286 ire_refrele(ire); 4287 4288 match_flags |= MATCH_IRE_IHANDLE; 4289 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 4290 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags, 4291 ipst); 4292 return (ire); 4293 } 4294 4295 /* 4296 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 4297 * ire associated with the specified ipif. 4298 * 4299 * This might occasionally be called when IPIF_UP is not set since 4300 * the IP_MULTICAST_IF as well as creating interface routes 4301 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 4302 * 4303 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 4304 * the ipif, this routine might return NULL. 4305 */ 4306 ire_t * 4307 ipif_to_ire(const ipif_t *ipif) 4308 { 4309 ire_t *ire; 4310 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 4311 uint_t match_flags = MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK; 4312 4313 /* 4314 * IRE_INTERFACE entries for ills under IPMP are IRE_MARK_TESTHIDDEN 4315 * so that they aren't accidentally returned. However, if the 4316 * caller's ipif is on an ill under IPMP, there's no need to hide 'em. 4317 */ 4318 if (IS_UNDER_IPMP(ipif->ipif_ill)) 4319 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 4320 4321 ASSERT(!ipif->ipif_isv6); 4322 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 4323 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 4324 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 4325 ipst); 4326 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4327 /* In this case we need to lookup destination address. */ 4328 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 4329 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, match_flags, 4330 ipst); 4331 } else { 4332 ire = ire_ftable_lookup(ipif->ipif_subnet, 4333 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 4334 ALL_ZONES, 0, NULL, match_flags, ipst); 4335 } 4336 return (ire); 4337 } 4338 4339 /* 4340 * ire_walk function. 4341 * Count the number of IRE_CACHE entries in different categories. 4342 */ 4343 void 4344 ire_cache_count(ire_t *ire, char *arg) 4345 { 4346 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 4347 4348 if (ire->ire_type != IRE_CACHE) 4349 return; 4350 4351 icc->icc_total++; 4352 4353 if (ire->ire_ipversion == IPV6_VERSION) { 4354 mutex_enter(&ire->ire_lock); 4355 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4356 mutex_exit(&ire->ire_lock); 4357 icc->icc_onlink++; 4358 return; 4359 } 4360 mutex_exit(&ire->ire_lock); 4361 } else { 4362 if (ire->ire_gateway_addr == 0) { 4363 icc->icc_onlink++; 4364 return; 4365 } 4366 } 4367 4368 ASSERT(ire->ire_ipif != NULL); 4369 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 4370 icc->icc_pmtu++; 4371 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4372 ire->ire_ib_pkt_count) 4373 icc->icc_offlink++; 4374 else 4375 icc->icc_unused++; 4376 } 4377 4378 /* 4379 * ire_walk function called by ip_trash_ire_reclaim(). 4380 * Free a fraction of the IRE_CACHE cache entries. The fractions are 4381 * different for different categories of IRE_CACHE entries. 4382 * A fraction of zero means to not free any in that category. 4383 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 4384 * is N then every Nth hash bucket chain will be freed. 4385 */ 4386 void 4387 ire_cache_reclaim(ire_t *ire, char *arg) 4388 { 4389 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 4390 uint_t rand; 4391 ip_stack_t *ipst = icr->icr_ipst; 4392 4393 if (ire->ire_type != IRE_CACHE) 4394 return; 4395 4396 if (ire->ire_ipversion == IPV6_VERSION) { 4397 rand = (uint_t)lbolt + 4398 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 4399 ipst->ips_ip6_cache_table_size); 4400 mutex_enter(&ire->ire_lock); 4401 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4402 mutex_exit(&ire->ire_lock); 4403 if (icr->icr_onlink != 0 && 4404 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4405 ire_delete(ire); 4406 return; 4407 } 4408 goto done; 4409 } 4410 mutex_exit(&ire->ire_lock); 4411 } else { 4412 rand = (uint_t)lbolt + 4413 IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size); 4414 if (ire->ire_gateway_addr == 0) { 4415 if (icr->icr_onlink != 0 && 4416 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4417 ire_delete(ire); 4418 return; 4419 } 4420 goto done; 4421 } 4422 } 4423 /* Not onlink IRE */ 4424 ASSERT(ire->ire_ipif != NULL); 4425 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 4426 /* Use ptmu fraction */ 4427 if (icr->icr_pmtu != 0 && 4428 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 4429 ire_delete(ire); 4430 return; 4431 } 4432 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4433 ire->ire_ib_pkt_count) { 4434 /* Use offlink fraction */ 4435 if (icr->icr_offlink != 0 && 4436 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 4437 ire_delete(ire); 4438 return; 4439 } 4440 } else { 4441 /* Use unused fraction */ 4442 if (icr->icr_unused != 0 && 4443 (rand/icr->icr_unused)*icr->icr_unused == rand) { 4444 ire_delete(ire); 4445 return; 4446 } 4447 } 4448 done: 4449 /* 4450 * Update tire_mark so that those that haven't been used since this 4451 * reclaim will be considered unused next time we reclaim. 4452 */ 4453 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 4454 } 4455 4456 static void 4457 power2_roundup(uint32_t *value) 4458 { 4459 int i; 4460 4461 for (i = 1; i < 31; i++) { 4462 if (*value <= (1 << i)) 4463 break; 4464 } 4465 *value = (1 << i); 4466 } 4467 4468 /* Global init for all zones */ 4469 void 4470 ip_ire_g_init() 4471 { 4472 /* 4473 * Create ire caches, ire_reclaim() 4474 * will give IRE_CACHE back to system when needed. 4475 * This needs to be done here before anything else, since 4476 * ire_add() expects the cache to be created. 4477 */ 4478 ire_cache = kmem_cache_create("ire_cache", 4479 sizeof (ire_t), 0, ip_ire_constructor, 4480 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 4481 4482 rt_entry_cache = kmem_cache_create("rt_entry", 4483 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 4484 4485 /* 4486 * Have radix code setup kmem caches etc. 4487 */ 4488 rn_init(); 4489 } 4490 4491 void 4492 ip_ire_init(ip_stack_t *ipst) 4493 { 4494 int i; 4495 uint32_t mem_cnt; 4496 uint32_t cpu_cnt; 4497 uint32_t min_cnt; 4498 pgcnt_t mem_avail; 4499 4500 /* 4501 * ip_ire_max_bucket_cnt is sized below based on the memory 4502 * size and the cpu speed of the machine. This is upper 4503 * bounded by the compile time value of ip_ire_max_bucket_cnt 4504 * and is lower bounded by the compile time value of 4505 * ip_ire_min_bucket_cnt. Similar logic applies to 4506 * ip6_ire_max_bucket_cnt. 4507 * 4508 * We calculate this for each IP Instances in order to use 4509 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are 4510 * in effect when the zone is booted. 4511 */ 4512 mem_avail = kmem_avail(); 4513 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4514 ip_cache_table_size / sizeof (ire_t); 4515 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 4516 4517 min_cnt = MIN(cpu_cnt, mem_cnt); 4518 if (min_cnt < ip_ire_min_bucket_cnt) 4519 min_cnt = ip_ire_min_bucket_cnt; 4520 if (ip_ire_max_bucket_cnt > min_cnt) { 4521 ip_ire_max_bucket_cnt = min_cnt; 4522 } 4523 4524 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4525 ip6_cache_table_size / sizeof (ire_t); 4526 min_cnt = MIN(cpu_cnt, mem_cnt); 4527 if (min_cnt < ip6_ire_min_bucket_cnt) 4528 min_cnt = ip6_ire_min_bucket_cnt; 4529 if (ip6_ire_max_bucket_cnt > min_cnt) { 4530 ip6_ire_max_bucket_cnt = min_cnt; 4531 } 4532 4533 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 4534 mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 4535 4536 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 4537 4538 /* Calculate the IPv4 cache table size. */ 4539 ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size, 4540 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4541 ip_ire_max_bucket_cnt)); 4542 if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size) 4543 ipst->ips_ip_cache_table_size = ip_max_cache_table_size; 4544 /* 4545 * Make sure that the table size is always a power of 2. The 4546 * hash macro IRE_ADDR_HASH() depends on that. 4547 */ 4548 power2_roundup(&ipst->ips_ip_cache_table_size); 4549 4550 ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size * 4551 sizeof (irb_t), KM_SLEEP); 4552 4553 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4554 rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL, 4555 RW_DEFAULT, NULL); 4556 } 4557 4558 /* Calculate the IPv6 cache table size. */ 4559 ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size, 4560 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4561 ip6_ire_max_bucket_cnt)); 4562 if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size) 4563 ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size; 4564 /* 4565 * Make sure that the table size is always a power of 2. The 4566 * hash macro IRE_ADDR_HASH_V6() depends on that. 4567 */ 4568 power2_roundup(&ipst->ips_ip6_cache_table_size); 4569 4570 ipst->ips_ip_cache_table_v6 = kmem_zalloc( 4571 ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP); 4572 4573 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4574 rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL, 4575 RW_DEFAULT, NULL); 4576 } 4577 4578 /* 4579 * Make sure that the forwarding table size is a power of 2. 4580 * The IRE*_ADDR_HASH() macroes depend on that. 4581 */ 4582 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 4583 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 4584 4585 ipst->ips_ire_handle = 1; 4586 } 4587 4588 void 4589 ip_ire_g_fini(void) 4590 { 4591 kmem_cache_destroy(ire_cache); 4592 kmem_cache_destroy(rt_entry_cache); 4593 4594 rn_fini(); 4595 } 4596 4597 void 4598 ip_ire_fini(ip_stack_t *ipst) 4599 { 4600 int i; 4601 4602 /* 4603 * Delete all IREs - assumes that the ill/ipifs have 4604 * been removed so what remains are just the ftable and IRE_CACHE. 4605 */ 4606 ire_walk(ire_delete, NULL, ipst); 4607 4608 rn_freehead(ipst->ips_ip_ftable); 4609 ipst->ips_ip_ftable = NULL; 4610 4611 mutex_destroy(&ipst->ips_ire_ft_init_lock); 4612 mutex_destroy(&ipst->ips_ire_handle_lock); 4613 4614 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4615 ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL); 4616 rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock); 4617 } 4618 kmem_free(ipst->ips_ip_cache_table, 4619 ipst->ips_ip_cache_table_size * sizeof (irb_t)); 4620 ipst->ips_ip_cache_table = NULL; 4621 4622 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4623 ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL); 4624 rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock); 4625 } 4626 kmem_free(ipst->ips_ip_cache_table_v6, 4627 ipst->ips_ip6_cache_table_size * sizeof (irb_t)); 4628 ipst->ips_ip_cache_table_v6 = NULL; 4629 4630 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 4631 irb_t *ptr; 4632 int j; 4633 4634 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 4635 continue; 4636 4637 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 4638 ASSERT(ptr[j].irb_ire == NULL); 4639 rw_destroy(&ptr[j].irb_lock); 4640 } 4641 mi_free(ptr); 4642 ipst->ips_ip_forwarding_table_v6[i] = NULL; 4643 } 4644 } 4645 4646 /* 4647 * Check if another multirt route resolution is needed. 4648 * B_TRUE is returned is there remain a resolvable route, 4649 * or if no route for that dst is resolved yet. 4650 * B_FALSE is returned if all routes for that dst are resolved 4651 * or if the remaining unresolved routes are actually not 4652 * resolvable. 4653 * This only works in the global zone. 4654 */ 4655 boolean_t 4656 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst) 4657 { 4658 ire_t *first_fire; 4659 ire_t *first_cire; 4660 ire_t *fire; 4661 ire_t *cire; 4662 irb_t *firb; 4663 irb_t *cirb; 4664 int unres_cnt = 0; 4665 boolean_t resolvable = B_FALSE; 4666 4667 /* Retrieve the first IRE_HOST that matches the destination */ 4668 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 4669 NULL, ALL_ZONES, 0, tsl, 4670 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 4671 4672 /* No route at all */ 4673 if (first_fire == NULL) { 4674 return (B_TRUE); 4675 } 4676 4677 firb = first_fire->ire_bucket; 4678 ASSERT(firb != NULL); 4679 4680 /* Retrieve the first IRE_CACHE ire for that destination. */ 4681 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4682 4683 /* No resolved route. */ 4684 if (first_cire == NULL) { 4685 ire_refrele(first_fire); 4686 return (B_TRUE); 4687 } 4688 4689 /* 4690 * At least one route is resolved. Here we look through the forward 4691 * and cache tables, to compare the number of declared routes 4692 * with the number of resolved routes. The search for a resolvable 4693 * route is performed only if at least one route remains 4694 * unresolved. 4695 */ 4696 cirb = first_cire->ire_bucket; 4697 ASSERT(cirb != NULL); 4698 4699 /* Count the number of routes to that dest that are declared. */ 4700 IRB_REFHOLD(firb); 4701 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4702 if (!(fire->ire_flags & RTF_MULTIRT)) 4703 continue; 4704 if (fire->ire_addr != dst) 4705 continue; 4706 unres_cnt++; 4707 } 4708 IRB_REFRELE(firb); 4709 4710 /* Then subtract the number of routes to that dst that are resolved */ 4711 IRB_REFHOLD(cirb); 4712 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 4713 if (!(cire->ire_flags & RTF_MULTIRT)) 4714 continue; 4715 if (cire->ire_addr != dst) 4716 continue; 4717 if (cire->ire_marks & (IRE_MARK_CONDEMNED|IRE_MARK_TESTHIDDEN)) 4718 continue; 4719 unres_cnt--; 4720 } 4721 IRB_REFRELE(cirb); 4722 4723 /* At least one route is unresolved; search for a resolvable route. */ 4724 if (unres_cnt > 0) 4725 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 4726 MULTIRT_USESTAMP | MULTIRT_CACHEGW, NULL, tsl, ipst); 4727 4728 if (first_fire != NULL) 4729 ire_refrele(first_fire); 4730 4731 if (first_cire != NULL) 4732 ire_refrele(first_cire); 4733 4734 return (resolvable); 4735 } 4736 4737 /* 4738 * Explore a forward_table bucket, starting from fire_arg. 4739 * fire_arg MUST be an IRE_HOST entry. 4740 * 4741 * Return B_TRUE and update *ire_arg and *fire_arg 4742 * if at least one resolvable route is found. *ire_arg 4743 * is the IRE entry for *fire_arg's gateway. 4744 * 4745 * Return B_FALSE otherwise (all routes are resolved or 4746 * the remaining unresolved routes are all unresolvable). 4747 * 4748 * The IRE selection relies on a priority mechanism 4749 * driven by the flags passed in by the caller. 4750 * The caller, such as ip_newroute_ipif(), can get the most 4751 * relevant ire at each stage of a multiple route resolution. 4752 * 4753 * The rules are: 4754 * 4755 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 4756 * ires are preferred for the gateway. This gives the highest 4757 * priority to routes that can be resolved without using 4758 * a resolver. 4759 * 4760 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 4761 * is specified but no IRE_CACHETABLE ire entry for the gateway 4762 * is found, the following rules apply. 4763 * 4764 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 4765 * ires for the gateway, that have not been tried since 4766 * a configurable amount of time, are preferred. 4767 * This applies when a resolver must be invoked for 4768 * a missing route, but we don't want to use the resolver 4769 * upon each packet emission. If no such resolver is found, 4770 * B_FALSE is returned. 4771 * The MULTIRT_USESTAMP flag can be combined with 4772 * MULTIRT_CACHEGW. 4773 * 4774 * - if MULTIRT_USESTAMP is not specified in flags, the first 4775 * unresolved but resolvable route is selected. 4776 * 4777 * - Otherwise, there is no resolvable route, and 4778 * B_FALSE is returned. 4779 * 4780 * At last, MULTIRT_SETSTAMP can be specified in flags to 4781 * request the timestamp of unresolvable routes to 4782 * be refreshed. This prevents the useless exploration 4783 * of those routes for a while, when MULTIRT_USESTAMP is used. 4784 * 4785 * The argument already_resolved_count is an output variable to track number 4786 * of already resolved multirt routes. 4787 * 4788 * This only works in the global zone. 4789 */ 4790 boolean_t 4791 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 4792 int *already_resolved_count, const ts_label_t *tsl, ip_stack_t *ipst) 4793 { 4794 clock_t delta; 4795 ire_t *best_fire = NULL; 4796 ire_t *best_cire = NULL; 4797 ire_t *first_fire; 4798 ire_t *first_cire; 4799 ire_t *fire; 4800 ire_t *cire; 4801 irb_t *firb = NULL; 4802 irb_t *cirb = NULL; 4803 ire_t *gw_ire; 4804 boolean_t already_resolved; 4805 boolean_t res; 4806 ipaddr_t dst; 4807 ipaddr_t gw; 4808 4809 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 4810 (void *)*ire_arg, (void *)*fire_arg, flags)); 4811 4812 ASSERT(ire_arg != NULL); 4813 ASSERT(fire_arg != NULL); 4814 4815 /* Not an IRE_HOST ire; give up. */ 4816 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 4817 return (B_FALSE); 4818 } 4819 4820 /* This is the first IRE_HOST ire for that destination. */ 4821 first_fire = *fire_arg; 4822 firb = first_fire->ire_bucket; 4823 ASSERT(firb != NULL); 4824 4825 dst = first_fire->ire_addr; 4826 4827 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 4828 4829 /* 4830 * Retrieve the first IRE_CACHE ire for that destination; 4831 * if we don't find one, no route for that dest is 4832 * resolved yet. 4833 */ 4834 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4835 if (first_cire != NULL) { 4836 cirb = first_cire->ire_bucket; 4837 } 4838 4839 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 4840 4841 /* 4842 * Search for a resolvable route, giving the top priority 4843 * to routes that can be resolved without any call to the resolver. 4844 */ 4845 IRB_REFHOLD(firb); 4846 4847 if (!CLASSD(dst)) { 4848 /* 4849 * For all multiroute IRE_HOST ires for that destination, 4850 * check if the route via the IRE_HOST's gateway is 4851 * resolved yet. 4852 */ 4853 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4854 4855 if (!(fire->ire_flags & RTF_MULTIRT)) 4856 continue; 4857 if (fire->ire_addr != dst) 4858 continue; 4859 4860 if (fire->ire_gw_secattr != NULL && 4861 tsol_ire_match_gwattr(fire, tsl) != 0) { 4862 continue; 4863 } 4864 4865 gw = fire->ire_gateway_addr; 4866 4867 ip2dbg(("ire_multirt_lookup: fire %p, " 4868 "ire_addr %08x, ire_gateway_addr %08x\n", 4869 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 4870 4871 already_resolved = B_FALSE; 4872 4873 if (first_cire != NULL) { 4874 ASSERT(cirb != NULL); 4875 4876 IRB_REFHOLD(cirb); 4877 /* 4878 * For all IRE_CACHE ires for that 4879 * destination. 4880 */ 4881 for (cire = first_cire; 4882 cire != NULL; 4883 cire = cire->ire_next) { 4884 4885 if (!(cire->ire_flags & RTF_MULTIRT)) 4886 continue; 4887 if (cire->ire_addr != dst) 4888 continue; 4889 if (cire->ire_marks & 4890 (IRE_MARK_CONDEMNED | 4891 IRE_MARK_TESTHIDDEN)) 4892 continue; 4893 4894 if (cire->ire_gw_secattr != NULL && 4895 tsol_ire_match_gwattr(cire, 4896 tsl) != 0) { 4897 continue; 4898 } 4899 4900 /* 4901 * Check if the IRE_CACHE's gateway 4902 * matches the IRE_HOST's gateway. 4903 */ 4904 if (cire->ire_gateway_addr == gw) { 4905 already_resolved = B_TRUE; 4906 break; 4907 } 4908 } 4909 IRB_REFRELE(cirb); 4910 } 4911 4912 /* 4913 * This route is already resolved; 4914 * proceed with next one. 4915 */ 4916 if (already_resolved) { 4917 ip2dbg(("ire_multirt_lookup: found cire %p, " 4918 "already resolved\n", (void *)cire)); 4919 4920 if (already_resolved_count != NULL) 4921 (*already_resolved_count)++; 4922 continue; 4923 } 4924 4925 /* 4926 * The route is unresolved; is it actually 4927 * resolvable, i.e. is there a cache or a resolver 4928 * for the gateway? 4929 */ 4930 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 4931 ALL_ZONES, tsl, 4932 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst); 4933 4934 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 4935 (void *)gw_ire)); 4936 4937 /* 4938 * If gw_ire is typed IRE_CACHETABLE, 4939 * this route can be resolved without any call to the 4940 * resolver. If the MULTIRT_CACHEGW flag is set, 4941 * give the top priority to this ire and exit the 4942 * loop. 4943 * This is typically the case when an ARP reply 4944 * is processed through ip_wput_nondata(). 4945 */ 4946 if ((flags & MULTIRT_CACHEGW) && 4947 (gw_ire != NULL) && 4948 (gw_ire->ire_type & IRE_CACHETABLE)) { 4949 ASSERT(gw_ire->ire_nce == NULL || 4950 gw_ire->ire_nce->nce_state == ND_REACHABLE); 4951 /* 4952 * Release the resolver associated to the 4953 * previous candidate best ire, if any. 4954 */ 4955 if (best_cire != NULL) { 4956 ire_refrele(best_cire); 4957 ASSERT(best_fire != NULL); 4958 } 4959 4960 best_fire = fire; 4961 best_cire = gw_ire; 4962 4963 ip2dbg(("ire_multirt_lookup: found top prio " 4964 "best_fire %p, best_cire %p\n", 4965 (void *)best_fire, (void *)best_cire)); 4966 break; 4967 } 4968 4969 /* 4970 * Compute the time elapsed since our preceding 4971 * attempt to resolve that route. 4972 * If the MULTIRT_USESTAMP flag is set, we take that 4973 * route into account only if this time interval 4974 * exceeds ip_multirt_resolution_interval; 4975 * this prevents us from attempting to resolve a 4976 * broken route upon each sending of a packet. 4977 */ 4978 delta = lbolt - fire->ire_last_used_time; 4979 delta = TICK_TO_MSEC(delta); 4980 4981 res = (boolean_t)((delta > 4982 ipst->ips_ip_multirt_resolution_interval) || 4983 (!(flags & MULTIRT_USESTAMP))); 4984 4985 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 4986 "res %d\n", 4987 (void *)fire, delta, res)); 4988 4989 if (res) { 4990 /* 4991 * We are here if MULTIRT_USESTAMP flag is set 4992 * and the resolver for fire's gateway 4993 * has not been tried since 4994 * ip_multirt_resolution_interval, or if 4995 * MULTIRT_USESTAMP is not set but gw_ire did 4996 * not fill the conditions for MULTIRT_CACHEGW, 4997 * or if neither MULTIRT_USESTAMP nor 4998 * MULTIRT_CACHEGW are set. 4999 */ 5000 if (gw_ire != NULL) { 5001 if (best_fire == NULL) { 5002 ASSERT(best_cire == NULL); 5003 5004 best_fire = fire; 5005 best_cire = gw_ire; 5006 5007 ip2dbg(("ire_multirt_lookup:" 5008 "found candidate " 5009 "best_fire %p, " 5010 "best_cire %p\n", 5011 (void *)best_fire, 5012 (void *)best_cire)); 5013 5014 /* 5015 * If MULTIRT_CACHEGW is not 5016 * set, we ignore the top 5017 * priority ires that can 5018 * be resolved without any 5019 * call to the resolver; 5020 * In that case, there is 5021 * actually no need 5022 * to continue the loop. 5023 */ 5024 if (!(flags & 5025 MULTIRT_CACHEGW)) { 5026 break; 5027 } 5028 continue; 5029 } 5030 } else { 5031 /* 5032 * No resolver for the gateway: the 5033 * route is not resolvable. 5034 * If the MULTIRT_SETSTAMP flag is 5035 * set, we stamp the IRE_HOST ire, 5036 * so we will not select it again 5037 * during this resolution interval. 5038 */ 5039 if (flags & MULTIRT_SETSTAMP) 5040 fire->ire_last_used_time = 5041 lbolt; 5042 } 5043 } 5044 5045 if (gw_ire != NULL) 5046 ire_refrele(gw_ire); 5047 } 5048 } else { /* CLASSD(dst) */ 5049 5050 for (fire = first_fire; 5051 fire != NULL; 5052 fire = fire->ire_next) { 5053 5054 if (!(fire->ire_flags & RTF_MULTIRT)) 5055 continue; 5056 if (fire->ire_addr != dst) 5057 continue; 5058 5059 if (fire->ire_gw_secattr != NULL && 5060 tsol_ire_match_gwattr(fire, tsl) != 0) { 5061 continue; 5062 } 5063 5064 already_resolved = B_FALSE; 5065 5066 gw = fire->ire_gateway_addr; 5067 5068 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 5069 NULL, NULL, ALL_ZONES, 0, tsl, 5070 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 5071 MATCH_IRE_SECATTR, ipst); 5072 5073 /* No resolver for the gateway; we skip this ire. */ 5074 if (gw_ire == NULL) { 5075 continue; 5076 } 5077 ASSERT(gw_ire->ire_nce == NULL || 5078 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5079 5080 if (first_cire != NULL) { 5081 5082 IRB_REFHOLD(cirb); 5083 /* 5084 * For all IRE_CACHE ires for that 5085 * destination. 5086 */ 5087 for (cire = first_cire; 5088 cire != NULL; 5089 cire = cire->ire_next) { 5090 5091 if (!(cire->ire_flags & RTF_MULTIRT)) 5092 continue; 5093 if (cire->ire_addr != dst) 5094 continue; 5095 if (cire->ire_marks & 5096 (IRE_MARK_CONDEMNED | 5097 IRE_MARK_TESTHIDDEN)) 5098 continue; 5099 5100 if (cire->ire_gw_secattr != NULL && 5101 tsol_ire_match_gwattr(cire, 5102 tsl) != 0) { 5103 continue; 5104 } 5105 5106 /* 5107 * Cache entries are linked to the 5108 * parent routes using the parent handle 5109 * (ire_phandle). If no cache entry has 5110 * the same handle as fire, fire is 5111 * still unresolved. 5112 */ 5113 ASSERT(cire->ire_phandle != 0); 5114 if (cire->ire_phandle == 5115 fire->ire_phandle) { 5116 already_resolved = B_TRUE; 5117 break; 5118 } 5119 } 5120 IRB_REFRELE(cirb); 5121 } 5122 5123 /* 5124 * This route is already resolved; proceed with 5125 * next one. 5126 */ 5127 if (already_resolved) { 5128 ire_refrele(gw_ire); 5129 if (already_resolved_count != NULL) 5130 (*already_resolved_count)++; 5131 continue; 5132 } 5133 5134 /* 5135 * Compute the time elapsed since our preceding 5136 * attempt to resolve that route. 5137 * If the MULTIRT_USESTAMP flag is set, we take 5138 * that route into account only if this time 5139 * interval exceeds ip_multirt_resolution_interval; 5140 * this prevents us from attempting to resolve a 5141 * broken route upon each sending of a packet. 5142 */ 5143 delta = lbolt - fire->ire_last_used_time; 5144 delta = TICK_TO_MSEC(delta); 5145 5146 res = (boolean_t)((delta > 5147 ipst->ips_ip_multirt_resolution_interval) || 5148 (!(flags & MULTIRT_USESTAMP))); 5149 5150 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 5151 "flags %04x, res %d\n", 5152 (void *)fire, delta, flags, res)); 5153 5154 if (res) { 5155 if (best_cire != NULL) { 5156 /* 5157 * Release the resolver associated 5158 * to the preceding candidate best 5159 * ire, if any. 5160 */ 5161 ire_refrele(best_cire); 5162 ASSERT(best_fire != NULL); 5163 } 5164 best_fire = fire; 5165 best_cire = gw_ire; 5166 continue; 5167 } 5168 5169 ire_refrele(gw_ire); 5170 } 5171 } 5172 5173 if (best_fire != NULL) { 5174 IRE_REFHOLD(best_fire); 5175 } 5176 IRB_REFRELE(firb); 5177 5178 /* Release the first IRE_CACHE we initially looked up, if any. */ 5179 if (first_cire != NULL) 5180 ire_refrele(first_cire); 5181 5182 /* Found a resolvable route. */ 5183 if (best_fire != NULL) { 5184 ASSERT(best_cire != NULL); 5185 5186 if (*fire_arg != NULL) 5187 ire_refrele(*fire_arg); 5188 if (*ire_arg != NULL) 5189 ire_refrele(*ire_arg); 5190 5191 /* 5192 * Update the passed-in arguments with the 5193 * resolvable multirt route we found. 5194 */ 5195 *fire_arg = best_fire; 5196 *ire_arg = best_cire; 5197 5198 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 5199 "*fire_arg %p, *ire_arg %p\n", 5200 (void *)best_fire, (void *)best_cire)); 5201 5202 return (B_TRUE); 5203 } 5204 5205 ASSERT(best_cire == NULL); 5206 5207 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 5208 "*ire_arg %p\n", 5209 (void *)*fire_arg, (void *)*ire_arg)); 5210 5211 /* No resolvable route. */ 5212 return (B_FALSE); 5213 } 5214 5215 /* 5216 * IRE iterator for inbound and loopback broadcast processing. 5217 * Given an IRE_BROADCAST ire, walk the ires with the same destination 5218 * address, but skip over the passed-in ire. Returns the next ire without 5219 * a hold - assumes that the caller holds a reference on the IRE bucket. 5220 */ 5221 ire_t * 5222 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 5223 { 5224 ill_t *ill; 5225 5226 if (curr == NULL) { 5227 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 5228 curr = curr->ire_next) { 5229 if (curr->ire_addr == ire->ire_addr) 5230 break; 5231 } 5232 } else { 5233 curr = curr->ire_next; 5234 } 5235 ill = ire_to_ill(ire); 5236 for (; curr != NULL; curr = curr->ire_next) { 5237 if (curr->ire_addr != ire->ire_addr) { 5238 /* 5239 * All the IREs to a given destination are contiguous; 5240 * break out once the address doesn't match. 5241 */ 5242 break; 5243 } 5244 if (curr == ire) { 5245 /* skip over the passed-in ire */ 5246 continue; 5247 } 5248 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 5249 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 5250 /* 5251 * If the passed-in ire is loopback, skip over 5252 * non-loopback ires and vice versa. 5253 */ 5254 continue; 5255 } 5256 if (ire_to_ill(curr) != ill) { 5257 /* skip over IREs going through a different interface */ 5258 continue; 5259 } 5260 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 5261 /* skip over deleted IREs */ 5262 continue; 5263 } 5264 return (curr); 5265 } 5266 return (NULL); 5267 } 5268 5269 #ifdef DEBUG 5270 void 5271 ire_trace_ref(ire_t *ire) 5272 { 5273 mutex_enter(&ire->ire_lock); 5274 if (ire->ire_trace_disable) { 5275 mutex_exit(&ire->ire_lock); 5276 return; 5277 } 5278 5279 if (th_trace_ref(ire, ire->ire_ipst)) { 5280 mutex_exit(&ire->ire_lock); 5281 } else { 5282 ire->ire_trace_disable = B_TRUE; 5283 mutex_exit(&ire->ire_lock); 5284 ire_trace_cleanup(ire); 5285 } 5286 } 5287 5288 void 5289 ire_untrace_ref(ire_t *ire) 5290 { 5291 mutex_enter(&ire->ire_lock); 5292 if (!ire->ire_trace_disable) 5293 th_trace_unref(ire); 5294 mutex_exit(&ire->ire_lock); 5295 } 5296 5297 static void 5298 ire_trace_cleanup(const ire_t *ire) 5299 { 5300 th_trace_cleanup(ire, ire->ire_trace_disable); 5301 } 5302 #endif /* DEBUG */ 5303 5304 /* 5305 * Generate a message chain with an arp request to resolve the in_ire. 5306 * It is assumed that in_ire itself is currently in the ire cache table, 5307 * so we create a fake_ire filled with enough information about ire_addr etc. 5308 * to retrieve in_ire when the DL_UNITDATA response from the resolver 5309 * comes back. The fake_ire itself is created by calling esballoc with 5310 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 5311 * invoked when the mblk containing fake_ire is freed. 5312 */ 5313 void 5314 ire_arpresolve(ire_t *in_ire) 5315 { 5316 areq_t *areq; 5317 ipaddr_t *addrp; 5318 mblk_t *ire_mp, *areq_mp; 5319 ire_t *ire, *buf; 5320 size_t bufsize; 5321 frtn_t *frtnp; 5322 ill_t *dst_ill; 5323 ip_stack_t *ipst; 5324 5325 ASSERT(in_ire->ire_nce != NULL); 5326 5327 dst_ill = ire_to_ill(in_ire); 5328 ipst = dst_ill->ill_ipst; 5329 5330 /* 5331 * Construct message chain for the resolver 5332 * of the form: 5333 * ARP_REQ_MBLK-->IRE_MBLK 5334 * 5335 * NOTE : If the response does not 5336 * come back, ARP frees the packet. For this reason, 5337 * we can't REFHOLD the bucket of save_ire to prevent 5338 * deletions. We may not be able to REFRELE the bucket 5339 * if the response never comes back. Thus, before 5340 * adding the ire, ire_add_v4 will make sure that the 5341 * interface route does not get deleted. This is the 5342 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 5343 * where we can always prevent deletions because of 5344 * the synchronous nature of adding IRES i.e 5345 * ire_add_then_send is called after creating the IRE. 5346 */ 5347 5348 /* 5349 * We use esballoc to allocate the second part (IRE_MBLK) 5350 * of the message chain depicted above. This mblk will be freed 5351 * by arp when there is a timeout, and otherwise passed to IP 5352 * and IP will free it after processing the ARP response. 5353 */ 5354 5355 bufsize = sizeof (ire_t) + sizeof (frtn_t); 5356 buf = kmem_alloc(bufsize, KM_NOSLEEP); 5357 if (buf == NULL) { 5358 ip1dbg(("ire_arpresolve: alloc buffer failed\n")); 5359 return; 5360 } 5361 frtnp = (frtn_t *)(buf + 1); 5362 frtnp->free_arg = (caddr_t)buf; 5363 frtnp->free_func = ire_freemblk; 5364 5365 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 5366 if (ire_mp == NULL) { 5367 ip1dbg(("ire_arpresolve: esballoc failed\n")); 5368 kmem_free(buf, bufsize); 5369 return; 5370 } 5371 5372 areq_mp = copyb(dst_ill->ill_resolver_mp); 5373 if (areq_mp == NULL) { 5374 freemsg(ire_mp); 5375 return; 5376 } 5377 5378 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 5379 ire = (ire_t *)buf; 5380 /* 5381 * keep enough info in the fake ire so that we can pull up 5382 * the incomplete ire (in_ire) after result comes back from 5383 * arp and make it complete. 5384 */ 5385 *ire = ire_null; 5386 ire->ire_u = in_ire->ire_u; 5387 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 5388 ire->ire_ipif_ifindex = in_ire->ire_ipif_ifindex; 5389 ire->ire_ipif = in_ire->ire_ipif; 5390 ire->ire_stq = dst_ill->ill_wq; 5391 ire->ire_stq_ifindex = dst_ill->ill_phyint->phyint_ifindex; 5392 ire->ire_zoneid = in_ire->ire_zoneid; 5393 ire->ire_stackid = ipst->ips_netstack->netstack_stackid; 5394 ire->ire_ipst = ipst; 5395 5396 /* 5397 * ire_freemblk will be called when ire_mp is freed, both for 5398 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 5399 * when the arp resolution failed. 5400 */ 5401 ire->ire_marks |= IRE_MARK_UNCACHED; 5402 ire->ire_mp = ire_mp; 5403 ire_mp->b_wptr = (uchar_t *)&ire[1]; 5404 ire_mp->b_cont = NULL; 5405 linkb(areq_mp, ire_mp); 5406 5407 /* 5408 * Fill in the source and dest addrs for the resolver. 5409 * NOTE: this depends on memory layouts imposed by 5410 * ill_init(). 5411 */ 5412 areq = (areq_t *)areq_mp->b_rptr; 5413 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 5414 *addrp = ire->ire_src_addr; 5415 5416 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 5417 if (ire->ire_gateway_addr != INADDR_ANY) { 5418 *addrp = ire->ire_gateway_addr; 5419 } else { 5420 *addrp = ire->ire_addr; 5421 } 5422 5423 /* Up to the resolver. */ 5424 if (canputnext(dst_ill->ill_rq)) { 5425 putnext(dst_ill->ill_rq, areq_mp); 5426 } else { 5427 freemsg(areq_mp); 5428 } 5429 } 5430 5431 /* 5432 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 5433 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 5434 * 5435 * This function can be called by ARP via free routine for ire_mp or 5436 * by IPv4(both host and forwarding path) via ire_delete 5437 * in case ARP resolution fails. 5438 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 5439 * (for IP to talk to ARP, it still has to send AR* messages). 5440 * 5441 * Note that the ARP/IP merge should replace the functioanlity by providing 5442 * direct function calls to clean up unresolved entries in ire/nce lists. 5443 */ 5444 void 5445 ire_freemblk(ire_t *ire_mp) 5446 { 5447 nce_t *nce = NULL; 5448 ill_t *ill; 5449 ip_stack_t *ipst; 5450 netstack_t *ns = NULL; 5451 5452 ASSERT(ire_mp != NULL); 5453 5454 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 5455 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 5456 (void *)ire_mp)); 5457 goto cleanup; 5458 } 5459 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 5460 goto cleanup; /* everything succeeded. just free and return */ 5461 } 5462 5463 /* 5464 * the arp information corresponding to this ire_mp was not 5465 * transferred to an ire_cache entry. Need 5466 * to clean up incomplete ire's and nce, if necessary. 5467 */ 5468 ASSERT(ire_mp->ire_stq != NULL); 5469 ASSERT(ire_mp->ire_stq_ifindex != 0); 5470 ASSERT(ire_mp->ire_ipst != NULL); 5471 5472 ns = netstack_find_by_stackid(ire_mp->ire_stackid); 5473 ipst = (ns ? ns->netstack_ip : NULL); 5474 if (ipst == NULL || ipst != ire_mp->ire_ipst) /* Disapeared on us */ 5475 goto cleanup; 5476 5477 /* 5478 * Get any nce's corresponding to this ire_mp. We first have to 5479 * make sure that the ill is still around. 5480 */ 5481 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, 5482 B_FALSE, NULL, NULL, NULL, NULL, ipst); 5483 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 5484 (ill->ill_state_flags & ILL_CONDEMNED)) { 5485 /* 5486 * ill went away. no nce to clean up. 5487 * Note that the ill_state_flags could be set to 5488 * ILL_CONDEMNED after this point, but if we know 5489 * that it is CONDEMNED now, we just bail out quickly. 5490 */ 5491 if (ill != NULL) 5492 ill_refrele(ill); 5493 goto cleanup; 5494 } 5495 nce = ndp_lookup_v4(ill, 5496 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 5497 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 5498 B_FALSE); 5499 ill_refrele(ill); 5500 5501 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 5502 /* 5503 * some incomplete nce was found. 5504 */ 5505 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 5506 nce_t *, nce, ire_t *, ire_mp); 5507 /* 5508 * Send the icmp_unreachable messages for the queued mblks in 5509 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 5510 * for this ire 5511 */ 5512 arp_resolv_failed(nce); 5513 /* 5514 * Delete the nce and clean up all ire's pointing at this nce 5515 * in the cachetable 5516 */ 5517 ndp_delete(nce); 5518 } 5519 if (nce != NULL) 5520 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 5521 5522 cleanup: 5523 if (ns != NULL) 5524 netstack_rele(ns); 5525 /* 5526 * Get rid of the ire buffer 5527 * We call kmem_free here(instead of ire_delete()), since 5528 * this is the freeb's callback. 5529 */ 5530 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 5531 } 5532 5533 /* 5534 * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and 5535 * non-loopback IRE_BROADCAST ire's. 5536 * 5537 * If a neighbor-cache entry has to be created (i.e., one does not already 5538 * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache 5539 * entry are initialized in ndp_add_v4(). These values are picked from 5540 * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the 5541 * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values 5542 * determine the {nce_state, nce_res_mp} of the nce_t created. All 5543 * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp 5544 * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire 5545 * entries, 5546 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 5547 * nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state. 5548 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 5549 * layer resolution is necessary, so that the nce_t will be in the 5550 * ND_REACHABLE state and the nce_res_mp will have a copy of the 5551 * ill_resolver_mp of the outgoing interface. 5552 * 5553 * The link layer information needed for broadcast addresses, and for 5554 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 5555 * never needs re-verification for the lifetime of the nce_t. These are 5556 * therefore marked NCE_F_PERMANENT, and never allowed to expire via 5557 * NCE_EXPIRED. 5558 * 5559 * IRE_CACHE ire's contain the information for the nexthop (ire_gateway_addr) 5560 * in the case of indirect routes, and for the dst itself (ire_addr) in the 5561 * case of direct routes, with the nce_res_mp containing a template 5562 * DL_UNITDATA request. 5563 * 5564 * The actual association of the ire_nce to the nce created here is 5565 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 5566 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 5567 * the ire_nce assignment is done in ire_add_then_send. 5568 */ 5569 int 5570 ire_nce_init(ire_t *ire, nce_t *src_nce) 5571 { 5572 in_addr_t addr4; 5573 int err; 5574 nce_t *nce = NULL; 5575 ill_t *ire_ill; 5576 uint16_t nce_flags = 0; 5577 ip_stack_t *ipst; 5578 5579 if (ire->ire_stq == NULL) 5580 return (0); /* no need to create nce for local/loopback */ 5581 5582 switch (ire->ire_type) { 5583 case IRE_CACHE: 5584 if (ire->ire_gateway_addr != INADDR_ANY) 5585 addr4 = ire->ire_gateway_addr; /* 'G' route */ 5586 else 5587 addr4 = ire->ire_addr; /* direct route */ 5588 break; 5589 case IRE_BROADCAST: 5590 addr4 = ire->ire_addr; 5591 nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST); 5592 break; 5593 default: 5594 return (0); 5595 } 5596 5597 /* 5598 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 5599 * rules in ire_forward_src_ipif. We want the dlureq_mp 5600 * for the outgoing interface, which we get from the ire_stq. 5601 */ 5602 ire_ill = ire_to_ill(ire); 5603 ipst = ire_ill->ill_ipst; 5604 5605 /* 5606 * IRE_IF_NORESOLVER entries never need re-verification and 5607 * do not expire, so we mark them as NCE_F_PERMANENT. 5608 */ 5609 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) 5610 nce_flags |= NCE_F_PERMANENT; 5611 5612 retry_nce: 5613 err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags, 5614 &nce, src_nce); 5615 5616 if (err == EEXIST && NCE_EXPIRED(nce, ipst)) { 5617 /* 5618 * We looked up an expired nce. 5619 * Go back and try to create one again. 5620 */ 5621 ndp_delete(nce); 5622 NCE_REFRELE(nce); 5623 nce = NULL; 5624 goto retry_nce; 5625 } 5626 5627 ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n", 5628 (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err)); 5629 5630 switch (err) { 5631 case 0: 5632 case EEXIST: 5633 /* 5634 * return a pointer to a newly created or existing nce_t; 5635 * note that the ire-nce mapping is many-one, i.e., 5636 * multiple ire's could point to the same nce_t. 5637 */ 5638 break; 5639 default: 5640 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 5641 return (EINVAL); 5642 } 5643 /* 5644 * IRE_BROADCAST ire's must be linked to NCE_F_BCAST nce's and 5645 * vice-versa (IRE_CACHE <-> unicast nce entries). We may have found an 5646 * existing unicast (or bcast) nce when trying to add a BROADCAST (or 5647 * unicast) ire, e.g., when address/netmask modifications were in 5648 * progress, and the ipif_ndp_down() call to quiesce existing state 5649 * during the addr/mask modification may have skipped the ndp_delete() 5650 * because the ipif being affected was not the last one on the ill. We 5651 * recover from the missed ndp_delete() now, by deleting the old nce and 5652 * adding a new one with the correct NCE_F_BCAST state. 5653 */ 5654 if (ire->ire_type == IRE_BROADCAST) { 5655 if ((nce->nce_flags & NCE_F_BCAST) == 0) { 5656 /* IRE_BROADCAST needs NCE_F_BCAST */ 5657 ndp_delete(nce); 5658 NCE_REFRELE(nce); 5659 goto retry_nce; 5660 } 5661 /* 5662 * Two bcast ires are created for each interface; 5663 * 1. loopback copy (which does not have an 5664 * ire_stq, and therefore has no ire_nce), and, 5665 * 2. the non-loopback copy, which has the nce_res_mp 5666 * initialized to a copy of the ill_bcast_mp, and 5667 * is marked as ND_REACHABLE at this point. 5668 * This nce does not undergo any further state changes, 5669 * and exists as long as the interface is plumbed. 5670 * Note: the assignment of ire_nce here is a historical 5671 * artifact of old code that used to inline ire_add(). 5672 */ 5673 ire->ire_nce = nce; 5674 /* 5675 * We are associating this nce to the ire, 5676 * so change the nce ref taken in 5677 * ndp_lookup_then_add_v4() from 5678 * NCE_REFHOLD to NCE_REFHOLD_NOTR 5679 */ 5680 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 5681 } else { 5682 if ((nce->nce_flags & NCE_F_BCAST) != 0) { 5683 /* IRE_CACHE needs unicast nce */ 5684 ndp_delete(nce); 5685 NCE_REFRELE(nce); 5686 goto retry_nce; 5687 } 5688 /* 5689 * We are not using this nce_t just yet so release 5690 * the ref taken in ndp_lookup_then_add_v4() 5691 */ 5692 NCE_REFRELE(nce); 5693 } 5694 return (0); 5695 } 5696 5697 /* 5698 * This is the implementation of the IPv4 IRE cache lookup procedure. 5699 * Separating the interface from the implementation allows additional 5700 * flexibility when specifying search criteria. 5701 */ 5702 static ire_t * 5703 ip4_ctable_lookup_impl(ire_ctable_args_t *margs) 5704 { 5705 irb_t *irb_ptr; 5706 ire_t *ire; 5707 ip_stack_t *ipst = margs->ict_ipst; 5708 5709 if ((margs->ict_flags & (MATCH_IRE_SRC | MATCH_IRE_ILL)) && 5710 (margs->ict_ipif == NULL)) { 5711 return (NULL); 5712 } 5713 5714 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH( 5715 *((ipaddr_t *)margs->ict_addr), ipst->ips_ip_cache_table_size)]; 5716 rw_enter(&irb_ptr->irb_lock, RW_READER); 5717 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 5718 if (ire->ire_marks & IRE_MARK_CONDEMNED) 5719 continue; 5720 ASSERT(ire->ire_mask == IP_HOST_MASK); 5721 if (ire_match_args(ire, *((ipaddr_t *)margs->ict_addr), 5722 ire->ire_mask, *((ipaddr_t *)margs->ict_gateway), 5723 margs->ict_type, margs->ict_ipif, margs->ict_zoneid, 0, 5724 margs->ict_tsl, margs->ict_flags, margs->ict_wq)) { 5725 IRE_REFHOLD(ire); 5726 rw_exit(&irb_ptr->irb_lock); 5727 return (ire); 5728 } 5729 } 5730 5731 rw_exit(&irb_ptr->irb_lock); 5732 return (NULL); 5733 } 5734 5735 /* 5736 * This function locates IRE_CACHE entries which were added by the 5737 * ire_forward() path. We can fully specify the IRE we are looking for by 5738 * providing the ipif (MATCH_IRE_IPIF) *and* the stq (MATCH_IRE_WQ). 5739 */ 5740 ire_t * 5741 ire_arpresolve_lookup(ipaddr_t addr, ipaddr_t gw, ipif_t *ipif, 5742 zoneid_t zoneid, ip_stack_t *ipst, queue_t *wq) 5743 { 5744 ire_ctable_args_t margs; 5745 5746 margs.ict_addr = &addr; 5747 margs.ict_gateway = &gw; 5748 margs.ict_type = IRE_CACHE; 5749 margs.ict_ipif = ipif; 5750 margs.ict_zoneid = zoneid; 5751 margs.ict_tsl = NULL; 5752 margs.ict_flags = MATCH_IRE_GW | MATCH_IRE_IPIF | MATCH_IRE_ZONEONLY | 5753 MATCH_IRE_TYPE | MATCH_IRE_WQ; 5754 margs.ict_ipst = ipst; 5755 margs.ict_wq = wq; 5756 5757 return (ip4_ctable_lookup_impl(&margs)); 5758 } 5759