1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains routines that manipulate Internet Routing Entries (IREs). 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/stropts.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/ddi.h> 37 #include <sys/cmn_err.h> 38 #include <sys/policy.h> 39 40 #include <sys/systm.h> 41 #include <sys/kmem.h> 42 #include <sys/param.h> 43 #include <sys/socket.h> 44 #include <net/if.h> 45 #include <net/route.h> 46 #include <netinet/in.h> 47 #include <net/if_dl.h> 48 #include <netinet/ip6.h> 49 #include <netinet/icmp6.h> 50 51 #include <inet/common.h> 52 #include <inet/mi.h> 53 #include <inet/ip.h> 54 #include <inet/ip6.h> 55 #include <inet/ip_ndp.h> 56 #include <inet/arp.h> 57 #include <inet/ip_if.h> 58 #include <inet/ip_ire.h> 59 #include <inet/ip_ftable.h> 60 #include <inet/ip_rts.h> 61 #include <inet/nd.h> 62 63 #include <inet/tcp.h> 64 #include <inet/ipclassifier.h> 65 #include <sys/zone.h> 66 #include <sys/cpuvar.h> 67 68 #include <sys/tsol/label.h> 69 #include <sys/tsol/tnet.h> 70 71 struct kmem_cache *rt_entry_cache; 72 73 typedef struct nce_clookup_s { 74 ipaddr_t ncecl_addr; 75 boolean_t ncecl_found; 76 } nce_clookup_t; 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the forwarding table in which is ire stored. 86 * 87 * ire_ill, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, 89 * ire_bucket 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_refcnt, ire_identical_ref 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_generation 117 * - Under ire_lock 118 * 119 * ire_nce_cache 120 * - Under ire_lock 121 * 122 * ire_dep_parent (To next IRE in recursive lookup chain) 123 * - Under ips_ire_dep_lock. Write held when modifying. Read held when 124 * walking. We also hold ire_lock when modifying to allow the data path 125 * to only acquire ire_lock. 126 * 127 * ire_dep_parent_generation (Generation number from ire_dep_parent) 128 * - Under ips_ire_dep_lock and/or ire_lock. (A read claim on the dep_lock 129 * and ire_lock held when modifying) 130 * 131 * ire_dep_children (From parent to first child) 132 * ire_dep_sib_next (linked list of siblings) 133 * ire_dep_sib_ptpn (linked list of siblings) 134 * - Under ips_ire_dep_lock. Write held when modifying. Read held when 135 * walking. 136 * 137 * As we always hold the bucket locks in all the places while accessing 138 * the above values, it is natural to use them for protecting them. 139 * 140 * We have a forwarding table for IPv4 and IPv6. The IPv6 forwarding table 141 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t 142 * structures. ip_forwarding_table_v6 is allocated dynamically in 143 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 144 * initializing the same bucket. Once a bucket is initialized, it is never 145 * de-alloacted. This assumption enables us to access 146 * ip_forwarding_table_v6[i] without any locks. 147 * 148 * The forwarding table for IPv4 is a radix tree whose leaves 149 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t 150 * for IPv4 is dynamically allocated and freed. 151 * 152 * Each irb_t - ire bucket structure has a lock to protect 153 * a bucket and the ires residing in the bucket have a back pointer to 154 * the bucket structure. It also has a reference count for the number 155 * of threads walking the bucket - irb_refcnt which is bumped up 156 * using the irb_refhold function. The flags irb_marks can be 157 * set to IRB_MARK_CONDEMNED indicating that there are some ires 158 * in this bucket that are IRE_IS_CONDEMNED and the 159 * last thread to leave the bucket should delete the ires. Usually 160 * this is done by the irb_refrele function which is used to decrement 161 * the reference count on a bucket. See comments above irb_t structure 162 * definition in ip.h for further details. 163 * 164 * The ire_refhold/ire_refrele functions operate on the ire which increments/ 165 * decrements the reference count, ire_refcnt, atomically on the ire. 166 * ire_refcnt is modified only using those functions. Operations on the IRE 167 * could be described as follows : 168 * 169 * CREATE an ire with reference count initialized to 1. 170 * 171 * ADDITION of an ire holds the bucket lock, checks for duplicates 172 * and then adds the ire. ire_add returns the ire after 173 * bumping up once more i.e the reference count is 2. This is to avoid 174 * an extra lookup in the functions calling ire_add which wants to 175 * work with the ire after adding. 176 * 177 * LOOKUP of an ire bumps up the reference count using ire_refhold 178 * function. It is valid to bump up the referece count of the IRE, 179 * after the lookup has returned an ire. Following are the lookup 180 * functions that return an HELD ire : 181 * 182 * ire_ftable_lookup[_v6], ire_lookup_multi_ill[_v6] 183 * 184 * DELETION of an ire holds the bucket lock, removes it from the list 185 * and then decrements the reference count for having removed from the list 186 * by using the ire_refrele function. If some other thread has looked up 187 * the ire, the reference count would have been bumped up and hence 188 * this ire will not be freed once deleted. It will be freed once the 189 * reference count drops to zero. 190 * 191 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 192 * lookups acquire the bucket lock as RW_READER. 193 * 194 * The general rule is to do the ire_refrele in the function 195 * that is passing the ire as an argument. 196 * 197 * In trying to locate ires the following points are to be noted. 198 * 199 * IRE_IS_CONDEMNED signifies that the ire has been logically deleted and is 200 * to be ignored when walking the ires using ire_next. 201 * 202 * Zones note: 203 * Walking IREs within a given zone also walks certain ires in other 204 * zones. This is done intentionally. IRE walks with a specified 205 * zoneid are used only when doing informational reports, and 206 * zone users want to see things that they can access. See block 207 * comment in ire_walk_ill_match(). 208 */ 209 210 /* 211 * The size of the forwarding table. We will make sure that it is a 212 * power of 2 in ip_ire_init(). 213 * Setable in /etc/system 214 */ 215 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 216 217 struct kmem_cache *ire_cache; 218 struct kmem_cache *ncec_cache; 219 struct kmem_cache *nce_cache; 220 221 static ire_t ire_null; 222 223 static ire_t *ire_add_v4(ire_t *ire); 224 static void ire_delete_v4(ire_t *ire); 225 static void ire_dep_invalidate_children(ire_t *child); 226 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 227 zoneid_t zoneid, ip_stack_t *); 228 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 229 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 230 #ifdef DEBUG 231 static void ire_trace_cleanup(const ire_t *); 232 #endif 233 static void ire_dep_incr_generation_locked(ire_t *); 234 235 /* 236 * Following are the functions to increment/decrement the reference 237 * count of the IREs and IRBs (ire bucket). 238 * 239 * 1) We bump up the reference count of an IRE to make sure that 240 * it does not get deleted and freed while we are using it. 241 * Typically all the lookup functions hold the bucket lock, 242 * and look for the IRE. If it finds an IRE, it bumps up the 243 * reference count before dropping the lock. Sometimes we *may* want 244 * to bump up the reference count after we *looked* up i.e without 245 * holding the bucket lock. So, the ire_refhold function does not assert 246 * on the bucket lock being held. Any thread trying to delete from 247 * the hash bucket can still do so but cannot free the IRE if 248 * ire_refcnt is not 0. 249 * 250 * 2) We bump up the reference count on the bucket where the IRE resides 251 * (IRB), when we want to prevent the IREs getting deleted from a given 252 * hash bucket. This makes life easier for ire_walk type functions which 253 * wants to walk the IRE list, call a function, but needs to drop 254 * the bucket lock to prevent recursive rw_enters. While the 255 * lock is dropped, the list could be changed by other threads or 256 * the same thread could end up deleting the ire or the ire pointed by 257 * ire_next. ire_refholding the ire or ire_next is not sufficient as 258 * a delete will still remove the ire from the bucket while we have 259 * dropped the lock and hence the ire_next would be NULL. Thus, we 260 * need a mechanism to prevent deletions from a given bucket. 261 * 262 * To prevent deletions, we bump up the reference count on the 263 * bucket. If the bucket is held, ire_delete just marks both 264 * the ire and irb as CONDEMNED. When the 265 * reference count on the bucket drops to zero, all the CONDEMNED ires 266 * are deleted. We don't have to bump up the reference count on the 267 * bucket if we are walking the bucket and never have to drop the bucket 268 * lock. Note that irb_refhold does not prevent addition of new ires 269 * in the list. It is okay because addition of new ires will not cause 270 * ire_next to point to freed memory. We do irb_refhold only when 271 * all of the 3 conditions are true : 272 * 273 * 1) The code needs to walk the IRE bucket from start to end. 274 * 2) It may have to drop the bucket lock sometimes while doing (1) 275 * 3) It does not want any ires to be deleted meanwhile. 276 */ 277 278 /* 279 * Bump up the reference count on the hash bucket - IRB to 280 * prevent ires from being deleted in this bucket. 281 */ 282 void 283 irb_refhold(irb_t *irb) 284 { 285 rw_enter(&irb->irb_lock, RW_WRITER); 286 irb->irb_refcnt++; 287 ASSERT(irb->irb_refcnt != 0); 288 rw_exit(&irb->irb_lock); 289 } 290 291 void 292 irb_refhold_locked(irb_t *irb) 293 { 294 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 295 irb->irb_refcnt++; 296 ASSERT(irb->irb_refcnt != 0); 297 } 298 299 /* 300 * Note: when IRB_MARK_DYNAMIC is not set the irb_t 301 * is statically allocated, so that when the irb_refcnt goes to 0, 302 * we simply clean up the ire list and continue. 303 */ 304 void 305 irb_refrele(irb_t *irb) 306 { 307 if (irb->irb_marks & IRB_MARK_DYNAMIC) { 308 irb_refrele_ftable(irb); 309 } else { 310 rw_enter(&irb->irb_lock, RW_WRITER); 311 ASSERT(irb->irb_refcnt != 0); 312 if (--irb->irb_refcnt == 0 && 313 (irb->irb_marks & IRB_MARK_CONDEMNED)) { 314 ire_t *ire_list; 315 316 ire_list = ire_unlink(irb); 317 rw_exit(&irb->irb_lock); 318 ASSERT(ire_list != NULL); 319 ire_cleanup(ire_list); 320 } else { 321 rw_exit(&irb->irb_lock); 322 } 323 } 324 } 325 326 327 /* 328 * Bump up the reference count on the IRE. We cannot assert that the 329 * bucket lock is being held as it is legal to bump up the reference 330 * count after the first lookup has returned the IRE without 331 * holding the lock. 332 */ 333 void 334 ire_refhold(ire_t *ire) 335 { 336 atomic_add_32(&(ire)->ire_refcnt, 1); 337 ASSERT((ire)->ire_refcnt != 0); 338 #ifdef DEBUG 339 ire_trace_ref(ire); 340 #endif 341 } 342 343 void 344 ire_refhold_notr(ire_t *ire) 345 { 346 atomic_add_32(&(ire)->ire_refcnt, 1); 347 ASSERT((ire)->ire_refcnt != 0); 348 } 349 350 void 351 ire_refhold_locked(ire_t *ire) 352 { 353 #ifdef DEBUG 354 ire_trace_ref(ire); 355 #endif 356 ire->ire_refcnt++; 357 } 358 359 /* 360 * Release a ref on an IRE. 361 * 362 * Must not be called while holding any locks. Otherwise if this is 363 * the last reference to be released there is a chance of recursive mutex 364 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 365 * to restart an ioctl. The one exception is when the caller is sure that 366 * this is not the last reference to be released. Eg. if the caller is 367 * sure that the ire has not been deleted and won't be deleted. 368 * 369 * In architectures e.g sun4u, where atomic_add_32_nv is just 370 * a cas, we need to maintain the right memory barrier semantics 371 * as that of mutex_exit i.e all the loads and stores should complete 372 * before the cas is executed. membar_exit() does that here. 373 */ 374 void 375 ire_refrele(ire_t *ire) 376 { 377 #ifdef DEBUG 378 ire_untrace_ref(ire); 379 #endif 380 ASSERT((ire)->ire_refcnt != 0); 381 membar_exit(); 382 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) 383 ire_inactive(ire); 384 } 385 386 void 387 ire_refrele_notr(ire_t *ire) 388 { 389 ASSERT((ire)->ire_refcnt != 0); 390 membar_exit(); 391 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) 392 ire_inactive(ire); 393 } 394 395 /* 396 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 397 * IOCTL[s]. The NO_REPLY form is used by TCP to tell IP that it is 398 * having problems reaching a particular destination. 399 * This will make IP consider alternate routes (e.g., when there are 400 * muliple default routes), and it will also make IP discard any (potentially) 401 * stale redirect. 402 * Management processes may want to use the version that generates a reply. 403 * 404 * With the use of NUD like behavior for IPv4/ARP in addition to IPv6 405 * this function shouldn't be necessary for IP to recover from a bad redirect, 406 * a bad default router (when there are multiple default routers), or 407 * a stale ND/ARP entry. But we retain it in any case. 408 * For instance, this is helpful when TCP suspects a failure before NUD does. 409 */ 410 int 411 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 412 { 413 uchar_t *addr_ucp; 414 uint_t ipversion; 415 sin_t *sin; 416 sin6_t *sin6; 417 ipaddr_t v4addr; 418 in6_addr_t v6addr; 419 ire_t *ire; 420 ipid_t *ipid; 421 zoneid_t zoneid; 422 ip_stack_t *ipst; 423 424 ASSERT(q->q_next == NULL); 425 zoneid = IPCL_ZONEID(Q_TO_CONN(q)); 426 ipst = CONNQ_TO_IPST(q); 427 428 /* 429 * Check privilege using the ioctl credential; if it is NULL 430 * then this is a kernel message and therefor privileged. 431 */ 432 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 433 return (EPERM); 434 435 ipid = (ipid_t *)mp->b_rptr; 436 437 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 438 ipid->ipid_addr_length); 439 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 440 return (EINVAL); 441 switch (ipid->ipid_addr_length) { 442 case sizeof (sin_t): 443 /* 444 * got complete (sockaddr) address - increment addr_ucp to point 445 * at the ip_addr field. 446 */ 447 sin = (sin_t *)addr_ucp; 448 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 449 ipversion = IPV4_VERSION; 450 break; 451 case sizeof (sin6_t): 452 /* 453 * got complete (sockaddr) address - increment addr_ucp to point 454 * at the ip_addr field. 455 */ 456 sin6 = (sin6_t *)addr_ucp; 457 addr_ucp = (uchar_t *)&sin6->sin6_addr; 458 ipversion = IPV6_VERSION; 459 break; 460 default: 461 return (EINVAL); 462 } 463 if (ipversion == IPV4_VERSION) { 464 /* Extract the destination address. */ 465 bcopy(addr_ucp, &v4addr, IP_ADDR_LEN); 466 467 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 468 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 469 } else { 470 /* Extract the destination address. */ 471 bcopy(addr_ucp, &v6addr, IPV6_ADDR_LEN); 472 473 ire = ire_ftable_lookup_v6(&v6addr, NULL, NULL, 0, NULL, 474 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 475 } 476 if (ire != NULL) { 477 if (ipversion == IPV4_VERSION) { 478 ip_rts_change(RTM_LOSING, ire->ire_addr, 479 ire->ire_gateway_addr, ire->ire_mask, 480 (Q_TO_CONN(q))->conn_laddr_v4, 0, 0, 0, 481 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 482 ire->ire_ipst); 483 } 484 (void) ire_no_good(ire); 485 ire_refrele(ire); 486 } 487 return (0); 488 } 489 490 /* 491 * Initialize the ire that is specific to IPv4 part and call 492 * ire_init_common to finish it. 493 * Returns zero or errno. 494 */ 495 int 496 ire_init_v4(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *gateway, 497 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, 498 tsol_gc_t *gc, ip_stack_t *ipst) 499 { 500 int error; 501 502 /* 503 * Reject IRE security attribute creation/initialization 504 * if system is not running in Trusted mode. 505 */ 506 if (gc != NULL && !is_system_labeled()) 507 return (EINVAL); 508 509 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 510 511 if (addr != NULL) 512 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 513 if (gateway != NULL) 514 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 515 516 /* Make sure we don't have stray values in some fields */ 517 switch (type) { 518 case IRE_LOOPBACK: 519 case IRE_HOST: 520 case IRE_BROADCAST: 521 case IRE_LOCAL: 522 case IRE_IF_CLONE: 523 ire->ire_mask = IP_HOST_MASK; 524 ire->ire_masklen = IPV4_ABITS; 525 break; 526 case IRE_PREFIX: 527 case IRE_DEFAULT: 528 case IRE_IF_RESOLVER: 529 case IRE_IF_NORESOLVER: 530 if (mask != NULL) { 531 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 532 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 533 } 534 break; 535 case IRE_MULTICAST: 536 case IRE_NOROUTE: 537 ASSERT(mask == NULL); 538 break; 539 default: 540 ASSERT(0); 541 return (EINVAL); 542 } 543 544 error = ire_init_common(ire, type, ill, zoneid, flags, IPV4_VERSION, 545 gc, ipst); 546 if (error != NULL) 547 return (error); 548 549 /* Determine which function pointers to use */ 550 ire->ire_postfragfn = ip_xmit; /* Common case */ 551 552 switch (ire->ire_type) { 553 case IRE_LOCAL: 554 ire->ire_sendfn = ire_send_local_v4; 555 ire->ire_recvfn = ire_recv_local_v4; 556 ASSERT(ire->ire_ill != NULL); 557 if (ire->ire_ill->ill_flags & ILLF_NOACCEPT) 558 ire->ire_recvfn = ire_recv_noaccept_v6; 559 break; 560 case IRE_LOOPBACK: 561 ire->ire_sendfn = ire_send_local_v4; 562 ire->ire_recvfn = ire_recv_loopback_v4; 563 break; 564 case IRE_BROADCAST: 565 ire->ire_postfragfn = ip_postfrag_loopcheck; 566 ire->ire_sendfn = ire_send_broadcast_v4; 567 ire->ire_recvfn = ire_recv_broadcast_v4; 568 break; 569 case IRE_MULTICAST: 570 ire->ire_postfragfn = ip_postfrag_loopcheck; 571 ire->ire_sendfn = ire_send_multicast_v4; 572 ire->ire_recvfn = ire_recv_multicast_v4; 573 break; 574 default: 575 /* 576 * For IRE_IF_ALL and IRE_OFFLINK we forward received 577 * packets by default. 578 */ 579 ire->ire_sendfn = ire_send_wire_v4; 580 ire->ire_recvfn = ire_recv_forward_v4; 581 break; 582 } 583 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 584 ire->ire_sendfn = ire_send_noroute_v4; 585 ire->ire_recvfn = ire_recv_noroute_v4; 586 } else if (ire->ire_flags & RTF_MULTIRT) { 587 ire->ire_postfragfn = ip_postfrag_multirt_v4; 588 ire->ire_sendfn = ire_send_multirt_v4; 589 /* Multirt receive of broadcast uses ire_recv_broadcast_v4 */ 590 if (ire->ire_type != IRE_BROADCAST) 591 ire->ire_recvfn = ire_recv_multirt_v4; 592 } 593 ire->ire_nce_capable = ire_determine_nce_capable(ire); 594 return (0); 595 } 596 597 /* 598 * Determine ire_nce_capable 599 */ 600 boolean_t 601 ire_determine_nce_capable(ire_t *ire) 602 { 603 int max_masklen; 604 605 if ((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 606 (ire->ire_type & IRE_MULTICAST)) 607 return (B_TRUE); 608 609 if (ire->ire_ipversion == IPV4_VERSION) 610 max_masklen = IPV4_ABITS; 611 else 612 max_masklen = IPV6_ABITS; 613 614 if ((ire->ire_type & IRE_ONLINK) && ire->ire_masklen == max_masklen) 615 return (B_TRUE); 616 return (B_FALSE); 617 } 618 619 /* 620 * ire_create is called to allocate and initialize a new IRE. 621 * 622 * NOTE : This is called as writer sometimes though not required 623 * by this function. 624 */ 625 ire_t * 626 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *gateway, 627 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, 628 ip_stack_t *ipst) 629 { 630 ire_t *ire; 631 int error; 632 633 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 634 if (ire == NULL) { 635 DTRACE_PROBE(kmem__cache__alloc); 636 return (NULL); 637 } 638 *ire = ire_null; 639 640 error = ire_init_v4(ire, addr, mask, gateway, type, ill, zoneid, flags, 641 gc, ipst); 642 if (error != 0) { 643 DTRACE_PROBE2(ire__init, ire_t *, ire, int, error); 644 kmem_cache_free(ire_cache, ire); 645 return (NULL); 646 } 647 return (ire); 648 } 649 650 /* 651 * Common to IPv4 and IPv6 652 * Returns zero or errno. 653 */ 654 int 655 ire_init_common(ire_t *ire, ushort_t type, ill_t *ill, zoneid_t zoneid, 656 uint_t flags, uchar_t ipversion, tsol_gc_t *gc, ip_stack_t *ipst) 657 { 658 int error; 659 660 #ifdef DEBUG 661 if (ill != NULL) { 662 if (ill->ill_isv6) 663 ASSERT(ipversion == IPV6_VERSION); 664 else 665 ASSERT(ipversion == IPV4_VERSION); 666 } 667 #endif /* DEBUG */ 668 669 /* 670 * Create/initialize IRE security attribute only in Trusted mode; 671 * if the passed in gc is non-NULL, we expect that the caller 672 * has held a reference to it and will release it when this routine 673 * returns a failure, otherwise we own the reference. We do this 674 * prior to initializing the rest IRE fields. 675 */ 676 if (is_system_labeled()) { 677 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 678 IRE_IF_ALL | IRE_MULTICAST | IRE_NOROUTE)) != 0) { 679 /* release references on behalf of caller */ 680 if (gc != NULL) 681 GC_REFRELE(gc); 682 } else { 683 error = tsol_ire_init_gwattr(ire, ipversion, gc); 684 if (error != 0) 685 return (error); 686 } 687 } 688 689 ire->ire_type = type; 690 ire->ire_flags = RTF_UP | flags; 691 ire->ire_create_time = (uint32_t)gethrestime_sec(); 692 ire->ire_generation = IRE_GENERATION_INITIAL; 693 694 /* 695 * The ill_ire_cnt isn't increased until 696 * the IRE is added to ensure that a walker will find 697 * all IREs that hold a reference on an ill. 698 * 699 * Note that ill_ire_multicast doesn't hold a ref on the ill since 700 * ire_add() is not called for the IRE_MULTICAST. 701 */ 702 ire->ire_ill = ill; 703 ire->ire_zoneid = zoneid; 704 ire->ire_ipversion = ipversion; 705 706 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 707 ire->ire_refcnt = 1; 708 ire->ire_identical_ref = 1; /* Number of ire_delete's needed */ 709 ire->ire_ipst = ipst; /* No netstack_hold */ 710 ire->ire_trace_disable = B_FALSE; 711 712 return (0); 713 } 714 715 /* 716 * This creates an IRE_BROADCAST based on the arguments. 717 * A mirror is ire_lookup_bcast(). 718 * 719 * Any supression of unneeded ones is done in ire_add_v4. 720 * We add one IRE_BROADCAST per address. ire_send_broadcast_v4() 721 * takes care of generating a loopback copy of the packet. 722 */ 723 ire_t ** 724 ire_create_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid, ire_t **irep) 725 { 726 ip_stack_t *ipst = ill->ill_ipst; 727 728 ASSERT(IAM_WRITER_ILL(ill)); 729 730 *irep++ = ire_create( 731 (uchar_t *)&addr, /* dest addr */ 732 (uchar_t *)&ip_g_all_ones, /* mask */ 733 NULL, /* no gateway */ 734 IRE_BROADCAST, 735 ill, 736 zoneid, 737 RTF_KERNEL, 738 NULL, 739 ipst); 740 741 return (irep); 742 } 743 744 /* 745 * This looks up an IRE_BROADCAST based on the arguments. 746 * Mirrors ire_create_bcast(). 747 */ 748 ire_t * 749 ire_lookup_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 750 { 751 ire_t *ire; 752 int match_args; 753 754 match_args = MATCH_IRE_TYPE | MATCH_IRE_ILL | MATCH_IRE_GW | 755 MATCH_IRE_MASK | MATCH_IRE_ZONEONLY; 756 757 if (IS_UNDER_IPMP(ill)) 758 match_args |= MATCH_IRE_TESTHIDDEN; 759 760 ire = ire_ftable_lookup_v4( 761 addr, /* dest addr */ 762 ip_g_all_ones, /* mask */ 763 0, /* no gateway */ 764 IRE_BROADCAST, 765 ill, 766 zoneid, 767 NULL, 768 match_args, 769 0, 770 ill->ill_ipst, 771 NULL); 772 return (ire); 773 } 774 775 /* Arrange to call the specified function for every IRE in the world. */ 776 void 777 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 778 { 779 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 780 } 781 782 void 783 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 784 { 785 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 786 } 787 788 void 789 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 790 { 791 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 792 } 793 794 /* 795 * Walk a particular version. version == 0 means both v4 and v6. 796 */ 797 static void 798 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 799 ip_stack_t *ipst) 800 { 801 if (vers != IPV6_VERSION) { 802 /* 803 * ip_forwarding_table variable doesn't matter for IPv4 since 804 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 805 */ 806 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 807 0, NULL, 808 NULL, zoneid, ipst); 809 } 810 if (vers != IPV4_VERSION) { 811 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 812 ipst->ips_ip6_ftable_hash_size, 813 ipst->ips_ip_forwarding_table_v6, 814 NULL, zoneid, ipst); 815 } 816 } 817 818 /* 819 * Arrange to call the specified function for every IRE that matches the ill. 820 */ 821 void 822 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 823 ill_t *ill) 824 { 825 uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION); 826 827 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill); 828 } 829 830 /* 831 * Walk a particular ill and version. 832 */ 833 static void 834 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 835 void *arg, uchar_t vers, ill_t *ill) 836 { 837 ip_stack_t *ipst = ill->ill_ipst; 838 839 if (vers == IPV4_VERSION) { 840 ire_walk_ill_tables(match_flags, ire_type, func, arg, 841 IP_MASK_TABLE_SIZE, 842 0, NULL, 843 ill, ALL_ZONES, ipst); 844 } 845 if (vers != IPV4_VERSION) { 846 ire_walk_ill_tables(match_flags, ire_type, func, arg, 847 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 848 ipst->ips_ip_forwarding_table_v6, 849 ill, ALL_ZONES, ipst); 850 } 851 } 852 853 /* 854 * Do the specific matching of IREs to shared-IP zones. 855 * 856 * We have the same logic as in ire_match_args but implemented slightly 857 * differently. 858 */ 859 boolean_t 860 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 861 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 862 { 863 ill_t *dst_ill = ire->ire_ill; 864 865 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 866 867 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 868 ire->ire_zoneid != ALL_ZONES) { 869 /* 870 * We're walking the IREs for a specific zone. The only relevant 871 * IREs are: 872 * - all IREs with a matching ire_zoneid 873 * - IRE_IF_ALL IREs for interfaces with a usable source addr 874 * with a matching zone 875 * - IRE_OFFLINK with a gateway reachable from the zone 876 * Note that ealier we only did the IRE_OFFLINK check for 877 * IRE_DEFAULT (and only when we had multiple IRE_DEFAULTs). 878 */ 879 if (ire->ire_type & IRE_ONLINK) { 880 uint_t ifindex; 881 882 /* 883 * Note there is no IRE_INTERFACE on vniN thus 884 * can't do an IRE lookup for a matching route. 885 */ 886 ifindex = dst_ill->ill_usesrc_ifindex; 887 if (ifindex == 0) 888 return (B_FALSE); 889 890 /* 891 * If there is a usable source address in the 892 * zone, then it's ok to return an 893 * IRE_INTERFACE 894 */ 895 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 896 zoneid, ipst)) { 897 return (B_FALSE); 898 } 899 } 900 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 901 ipif_t *tipif; 902 903 mutex_enter(&dst_ill->ill_lock); 904 for (tipif = dst_ill->ill_ipif; 905 tipif != NULL; tipif = tipif->ipif_next) { 906 if (!IPIF_IS_CONDEMNED(tipif) && 907 (tipif->ipif_flags & IPIF_UP) && 908 (tipif->ipif_zoneid == zoneid || 909 tipif->ipif_zoneid == ALL_ZONES)) 910 break; 911 } 912 mutex_exit(&dst_ill->ill_lock); 913 if (tipif == NULL) { 914 return (B_FALSE); 915 } 916 } 917 } 918 /* 919 * Except for ALL_ZONES, we only match the offlink routes 920 * where ire_gateway_addr has an IRE_INTERFACE for the zoneid. 921 * Since we can have leftover routes after the IP addresses have 922 * changed, the global zone will also match offlink routes where the 923 * gateway is unreachable from any zone. 924 */ 925 if ((ire->ire_type & IRE_OFFLINK) && zoneid != ALL_ZONES) { 926 in6_addr_t gw_addr_v6; 927 boolean_t reach; 928 929 if (ire->ire_ipversion == IPV4_VERSION) { 930 reach = ire_gateway_ok_zone_v4(ire->ire_gateway_addr, 931 zoneid, dst_ill, NULL, ipst, B_FALSE); 932 } else { 933 ASSERT(ire->ire_ipversion == IPV6_VERSION); 934 mutex_enter(&ire->ire_lock); 935 gw_addr_v6 = ire->ire_gateway_addr_v6; 936 mutex_exit(&ire->ire_lock); 937 938 reach = ire_gateway_ok_zone_v6(&gw_addr_v6, zoneid, 939 dst_ill, NULL, ipst, B_FALSE); 940 } 941 if (!reach) { 942 if (zoneid != GLOBAL_ZONEID) 943 return (B_FALSE); 944 945 /* 946 * Check if ALL_ZONES reachable - if not then let the 947 * global zone see it. 948 */ 949 if (ire->ire_ipversion == IPV4_VERSION) { 950 reach = ire_gateway_ok_zone_v4( 951 ire->ire_gateway_addr, ALL_ZONES, 952 dst_ill, NULL, ipst, B_FALSE); 953 } else { 954 reach = ire_gateway_ok_zone_v6(&gw_addr_v6, 955 ALL_ZONES, dst_ill, NULL, ipst, B_FALSE); 956 } 957 if (reach) { 958 /* 959 * Some other zone could see it, hence hide it 960 * in the global zone. 961 */ 962 return (B_FALSE); 963 } 964 } 965 } 966 967 if (((!(match_flags & MATCH_IRE_TYPE)) || 968 (ire->ire_type & ire_type)) && 969 ((!(match_flags & MATCH_IRE_ILL)) || 970 (dst_ill == ill || 971 dst_ill != NULL && IS_IN_SAME_ILLGRP(dst_ill, ill)))) { 972 return (B_TRUE); 973 } 974 return (B_FALSE); 975 } 976 977 int 978 rtfunc(struct radix_node *rn, void *arg) 979 { 980 struct rtfuncarg *rtf = arg; 981 struct rt_entry *rt; 982 irb_t *irb; 983 ire_t *ire; 984 boolean_t ret; 985 986 rt = (struct rt_entry *)rn; 987 ASSERT(rt != NULL); 988 irb = &rt->rt_irb; 989 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 990 if ((rtf->rt_match_flags != 0) || 991 (rtf->rt_zoneid != ALL_ZONES)) { 992 ret = ire_walk_ill_match(rtf->rt_match_flags, 993 rtf->rt_ire_type, ire, 994 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 995 } else { 996 ret = B_TRUE; 997 } 998 if (ret) 999 (*rtf->rt_func)(ire, rtf->rt_arg); 1000 } 1001 return (0); 1002 } 1003 1004 /* 1005 * Walk the ftable entries that match the ill. 1006 */ 1007 void 1008 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 1009 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 1010 ill_t *ill, zoneid_t zoneid, 1011 ip_stack_t *ipst) 1012 { 1013 irb_t *irb_ptr; 1014 irb_t *irb; 1015 ire_t *ire; 1016 int i, j; 1017 boolean_t ret; 1018 struct rtfuncarg rtfarg; 1019 1020 ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL)); 1021 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 1022 1023 /* knobs such that routine is called only for v6 case */ 1024 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 1025 for (i = (ftbl_sz - 1); i >= 0; i--) { 1026 if ((irb_ptr = ipftbl[i]) == NULL) 1027 continue; 1028 for (j = 0; j < htbl_sz; j++) { 1029 irb = &irb_ptr[j]; 1030 if (irb->irb_ire == NULL) 1031 continue; 1032 1033 irb_refhold(irb); 1034 for (ire = irb->irb_ire; ire != NULL; 1035 ire = ire->ire_next) { 1036 if (match_flags == 0 && 1037 zoneid == ALL_ZONES) { 1038 ret = B_TRUE; 1039 } else { 1040 ret = 1041 ire_walk_ill_match( 1042 match_flags, 1043 ire_type, ire, ill, 1044 zoneid, ipst); 1045 } 1046 if (ret) 1047 (*func)(ire, arg); 1048 } 1049 irb_refrele(irb); 1050 } 1051 } 1052 } else { 1053 bzero(&rtfarg, sizeof (rtfarg)); 1054 rtfarg.rt_func = func; 1055 rtfarg.rt_arg = arg; 1056 if (match_flags != 0) { 1057 rtfarg.rt_match_flags = match_flags; 1058 } 1059 rtfarg.rt_ire_type = ire_type; 1060 rtfarg.rt_ill = ill; 1061 rtfarg.rt_zoneid = zoneid; 1062 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 1063 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 1064 ipst->ips_ip_ftable, 1065 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 1066 } 1067 } 1068 1069 /* 1070 * This function takes a mask and returns 1071 * number of bits set in the mask. If no 1072 * bit is set it returns 0. 1073 * Assumes a contiguous mask. 1074 */ 1075 int 1076 ip_mask_to_plen(ipaddr_t mask) 1077 { 1078 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 1079 } 1080 1081 /* 1082 * Convert length for a mask to the mask. 1083 */ 1084 ipaddr_t 1085 ip_plen_to_mask(uint_t masklen) 1086 { 1087 if (masklen == 0) 1088 return (0); 1089 1090 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 1091 } 1092 1093 void 1094 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 1095 { 1096 ill_t *ill; 1097 1098 ill = ire->ire_ill; 1099 if (ill != NULL) 1100 mutex_exit(&ill->ill_lock); 1101 rw_exit(&irb_ptr->irb_lock); 1102 } 1103 1104 /* 1105 * ire_add_v[46] atomically make sure that the ill associated 1106 * with the new ire is not going away i.e., we check ILL_CONDEMNED. 1107 */ 1108 int 1109 ire_atomic_start(irb_t *irb_ptr, ire_t *ire) 1110 { 1111 ill_t *ill; 1112 1113 ill = ire->ire_ill; 1114 1115 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 1116 if (ill != NULL) { 1117 mutex_enter(&ill->ill_lock); 1118 1119 /* 1120 * Don't allow IRE's to be created on dying ills. 1121 */ 1122 if (ill->ill_state_flags & ILL_CONDEMNED) { 1123 ire_atomic_end(irb_ptr, ire); 1124 return (ENXIO); 1125 } 1126 1127 if (IS_UNDER_IPMP(ill)) { 1128 int error = 0; 1129 mutex_enter(&ill->ill_phyint->phyint_lock); 1130 if (!ipmp_ill_is_active(ill) && 1131 IRE_HIDDEN_TYPE(ire->ire_type) && 1132 !ire->ire_testhidden) { 1133 error = EINVAL; 1134 } 1135 mutex_exit(&ill->ill_phyint->phyint_lock); 1136 if (error != 0) { 1137 ire_atomic_end(irb_ptr, ire); 1138 return (error); 1139 } 1140 } 1141 1142 } 1143 return (0); 1144 } 1145 1146 /* 1147 * Add a fully initialized IRE to the forwarding table. 1148 * This returns NULL on failure, or a held IRE on success. 1149 * Normally the returned IRE is the same as the argument. But a different 1150 * IRE will be returned if the added IRE is deemed identical to an existing 1151 * one. In that case ire_identical_ref will be increased. 1152 * The caller always needs to do an ire_refrele() on the returned IRE. 1153 */ 1154 ire_t * 1155 ire_add(ire_t *ire) 1156 { 1157 if (IRE_HIDDEN_TYPE(ire->ire_type) && 1158 ire->ire_ill != NULL && IS_UNDER_IPMP(ire->ire_ill)) { 1159 /* 1160 * IREs hosted on interfaces that are under IPMP 1161 * should be hidden so that applications don't 1162 * accidentally end up sending packets with test 1163 * addresses as their source addresses, or 1164 * sending out interfaces that are e.g. IFF_INACTIVE. 1165 * Hide them here. 1166 */ 1167 ire->ire_testhidden = B_TRUE; 1168 } 1169 1170 if (ire->ire_ipversion == IPV6_VERSION) 1171 return (ire_add_v6(ire)); 1172 else 1173 return (ire_add_v4(ire)); 1174 } 1175 1176 /* 1177 * Add a fully initialized IPv4 IRE to the forwarding table. 1178 * This returns NULL on failure, or a held IRE on success. 1179 * Normally the returned IRE is the same as the argument. But a different 1180 * IRE will be returned if the added IRE is deemed identical to an existing 1181 * one. In that case ire_identical_ref will be increased. 1182 * The caller always needs to do an ire_refrele() on the returned IRE. 1183 */ 1184 static ire_t * 1185 ire_add_v4(ire_t *ire) 1186 { 1187 ire_t *ire1; 1188 irb_t *irb_ptr; 1189 ire_t **irep; 1190 int match_flags; 1191 int error; 1192 ip_stack_t *ipst = ire->ire_ipst; 1193 1194 if (ire->ire_ill != NULL) 1195 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); 1196 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1197 1198 /* Make sure the address is properly masked. */ 1199 ire->ire_addr &= ire->ire_mask; 1200 1201 match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 1202 1203 if (ire->ire_ill != NULL) { 1204 match_flags |= MATCH_IRE_ILL; 1205 } 1206 irb_ptr = ire_get_bucket(ire); 1207 if (irb_ptr == NULL) { 1208 printf("no bucket for %p\n", (void *)ire); 1209 ire_delete(ire); 1210 return (NULL); 1211 } 1212 1213 /* 1214 * Start the atomic add of the ire. Grab the ill lock, 1215 * the bucket lock. Check for condemned. 1216 */ 1217 error = ire_atomic_start(irb_ptr, ire); 1218 if (error != 0) { 1219 printf("no ire_atomic_start for %p\n", (void *)ire); 1220 ire_delete(ire); 1221 irb_refrele(irb_ptr); 1222 return (NULL); 1223 } 1224 /* 1225 * If we are creating a hidden IRE, make sure we search for 1226 * hidden IREs when searching for duplicates below. 1227 * Otherwise, we might find an IRE on some other interface 1228 * that's not marked hidden. 1229 */ 1230 if (ire->ire_testhidden) 1231 match_flags |= MATCH_IRE_TESTHIDDEN; 1232 1233 /* 1234 * Atomically check for duplicate and insert in the table. 1235 */ 1236 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 1237 if (IRE_IS_CONDEMNED(ire1)) 1238 continue; 1239 /* 1240 * Here we need an exact match on zoneid, i.e., 1241 * ire_match_args doesn't fit. 1242 */ 1243 if (ire1->ire_zoneid != ire->ire_zoneid) 1244 continue; 1245 1246 if (ire1->ire_type != ire->ire_type) 1247 continue; 1248 1249 /* 1250 * Note: We do not allow multiple routes that differ only 1251 * in the gateway security attributes; such routes are 1252 * considered duplicates. 1253 * To change that we explicitly have to treat them as 1254 * different here. 1255 */ 1256 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 1257 ire->ire_gateway_addr, ire->ire_type, ire->ire_ill, 1258 ire->ire_zoneid, NULL, match_flags)) { 1259 /* 1260 * Return the old ire after doing a REFHOLD. 1261 * As most of the callers continue to use the IRE 1262 * after adding, we return a held ire. This will 1263 * avoid a lookup in the caller again. If the callers 1264 * don't want to use it, they need to do a REFRELE. 1265 */ 1266 atomic_add_32(&ire1->ire_identical_ref, 1); 1267 DTRACE_PROBE2(ire__add__exist, ire_t *, ire1, 1268 ire_t *, ire); 1269 ire_refhold(ire1); 1270 ire_atomic_end(irb_ptr, ire); 1271 ire_delete(ire); 1272 irb_refrele(irb_ptr); 1273 return (ire1); 1274 } 1275 } 1276 1277 /* 1278 * Normally we do head insertion since most things do not care about 1279 * the order of the IREs in the bucket. Note that ip_cgtp_bcast_add 1280 * assumes we at least do head insertion so that its IRE_BROADCAST 1281 * arrive ahead of existing IRE_HOST for the same address. 1282 * However, due to shared-IP zones (and restrict_interzone_loopback) 1283 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same 1284 * address. For that reason we do tail insertion for IRE_IF_CLONE. 1285 * Due to the IRE_BROADCAST on cgtp0, which must be last in the bucket, 1286 * we do tail insertion of IRE_BROADCASTs that do not have RTF_MULTIRT 1287 * set. 1288 */ 1289 irep = (ire_t **)irb_ptr; 1290 if ((ire->ire_type & IRE_IF_CLONE) || 1291 ((ire->ire_type & IRE_BROADCAST) && 1292 !(ire->ire_flags & RTF_MULTIRT))) { 1293 while ((ire1 = *irep) != NULL) 1294 irep = &ire1->ire_next; 1295 } 1296 /* Insert at *irep */ 1297 ire1 = *irep; 1298 if (ire1 != NULL) 1299 ire1->ire_ptpn = &ire->ire_next; 1300 ire->ire_next = ire1; 1301 /* Link the new one in. */ 1302 ire->ire_ptpn = irep; 1303 1304 /* 1305 * ire_walk routines de-reference ire_next without holding 1306 * a lock. Before we point to the new ire, we want to make 1307 * sure the store that sets the ire_next of the new ire 1308 * reaches global visibility, so that ire_walk routines 1309 * don't see a truncated list of ires i.e if the ire_next 1310 * of the new ire gets set after we do "*irep = ire" due 1311 * to re-ordering, the ire_walk thread will see a NULL 1312 * once it accesses the ire_next of the new ire. 1313 * membar_producer() makes sure that the following store 1314 * happens *after* all of the above stores. 1315 */ 1316 membar_producer(); 1317 *irep = ire; 1318 ire->ire_bucket = irb_ptr; 1319 /* 1320 * We return a bumped up IRE above. Keep it symmetrical 1321 * so that the callers will always have to release. This 1322 * helps the callers of this function because they continue 1323 * to use the IRE after adding and hence they don't have to 1324 * lookup again after we return the IRE. 1325 * 1326 * NOTE : We don't have to use atomics as this is appearing 1327 * in the list for the first time and no one else can bump 1328 * up the reference count on this yet. 1329 */ 1330 ire_refhold_locked(ire); 1331 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 1332 1333 irb_ptr->irb_ire_cnt++; 1334 if (irb_ptr->irb_marks & IRB_MARK_DYNAMIC) 1335 irb_ptr->irb_nire++; 1336 1337 if (ire->ire_ill != NULL) { 1338 ire->ire_ill->ill_ire_cnt++; 1339 ASSERT(ire->ire_ill->ill_ire_cnt != 0); /* Wraparound */ 1340 } 1341 1342 ire_atomic_end(irb_ptr, ire); 1343 1344 /* Make any caching of the IREs be notified or updated */ 1345 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 1346 1347 if (ire->ire_ill != NULL) 1348 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); 1349 irb_refrele(irb_ptr); 1350 return (ire); 1351 } 1352 1353 /* 1354 * irb_refrele is the only caller of the function. ire_unlink calls to 1355 * do the final cleanup for this ire. 1356 */ 1357 void 1358 ire_cleanup(ire_t *ire) 1359 { 1360 ire_t *ire_next; 1361 ip_stack_t *ipst = ire->ire_ipst; 1362 1363 ASSERT(ire != NULL); 1364 1365 while (ire != NULL) { 1366 ire_next = ire->ire_next; 1367 if (ire->ire_ipversion == IPV4_VERSION) { 1368 ire_delete_v4(ire); 1369 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 1370 ire_stats_deleted); 1371 } else { 1372 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1373 ire_delete_v6(ire); 1374 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 1375 ire_stats_deleted); 1376 } 1377 /* 1378 * Now it's really out of the list. Before doing the 1379 * REFRELE, set ire_next to NULL as ire_inactive asserts 1380 * so. 1381 */ 1382 ire->ire_next = NULL; 1383 ire_refrele_notr(ire); 1384 ire = ire_next; 1385 } 1386 } 1387 1388 /* 1389 * irb_refrele is the only caller of the function. It calls to unlink 1390 * all the CONDEMNED ires from this bucket. 1391 */ 1392 ire_t * 1393 ire_unlink(irb_t *irb) 1394 { 1395 ire_t *ire; 1396 ire_t *ire1; 1397 ire_t **ptpn; 1398 ire_t *ire_list = NULL; 1399 1400 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 1401 ASSERT(((irb->irb_marks & IRB_MARK_DYNAMIC) && irb->irb_refcnt == 1) || 1402 (irb->irb_refcnt == 0)); 1403 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 1404 ASSERT(irb->irb_ire != NULL); 1405 1406 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 1407 ire1 = ire->ire_next; 1408 if (IRE_IS_CONDEMNED(ire)) { 1409 ptpn = ire->ire_ptpn; 1410 ire1 = ire->ire_next; 1411 if (ire1) 1412 ire1->ire_ptpn = ptpn; 1413 *ptpn = ire1; 1414 ire->ire_ptpn = NULL; 1415 ire->ire_next = NULL; 1416 1417 /* 1418 * We need to call ire_delete_v4 or ire_delete_v6 to 1419 * clean up dependents and the redirects pointing at 1420 * the default gateway. We need to drop the lock 1421 * as ire_flush_cache/ire_delete_host_redircts require 1422 * so. But we can't drop the lock, as ire_unlink needs 1423 * to atomically remove the ires from the list. 1424 * So, create a temporary list of CONDEMNED ires 1425 * for doing ire_delete_v4/ire_delete_v6 operations 1426 * later on. 1427 */ 1428 ire->ire_next = ire_list; 1429 ire_list = ire; 1430 } 1431 } 1432 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 1433 return (ire_list); 1434 } 1435 1436 /* 1437 * Clean up the radix node for this ire. Must be called by irb_refrele 1438 * when there are no ire's left in the bucket. Returns TRUE if the bucket 1439 * is deleted and freed. 1440 */ 1441 boolean_t 1442 irb_inactive(irb_t *irb) 1443 { 1444 struct rt_entry *rt; 1445 struct radix_node *rn; 1446 ip_stack_t *ipst = irb->irb_ipst; 1447 1448 ASSERT(irb->irb_ipst != NULL); 1449 1450 rt = IRB2RT(irb); 1451 rn = (struct radix_node *)rt; 1452 1453 /* first remove it from the radix tree. */ 1454 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1455 rw_enter(&irb->irb_lock, RW_WRITER); 1456 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 1457 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 1458 ipst->ips_ip_ftable); 1459 DTRACE_PROBE1(irb__free, rt_t *, rt); 1460 ASSERT((void *)rn == (void *)rt); 1461 Free(rt, rt_entry_cache); 1462 /* irb_lock is freed */ 1463 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1464 return (B_TRUE); 1465 } 1466 rw_exit(&irb->irb_lock); 1467 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1468 return (B_FALSE); 1469 } 1470 1471 /* 1472 * Delete the specified IRE. 1473 * We assume that if ire_bucket is not set then ire_ill->ill_ire_cnt was 1474 * not incremented i.e., that the insertion in the bucket and the increment 1475 * of that counter is done atomically. 1476 */ 1477 void 1478 ire_delete(ire_t *ire) 1479 { 1480 ire_t *ire1; 1481 ire_t **ptpn; 1482 irb_t *irb; 1483 ip_stack_t *ipst = ire->ire_ipst; 1484 1485 if ((irb = ire->ire_bucket) == NULL) { 1486 /* 1487 * It was never inserted in the list. Should call REFRELE 1488 * to free this IRE. 1489 */ 1490 ire_make_condemned(ire); 1491 ire_refrele_notr(ire); 1492 return; 1493 } 1494 1495 /* 1496 * Move the use counts from an IRE_IF_CLONE to its parent 1497 * IRE_INTERFACE. 1498 * We need to do this before acquiring irb_lock. 1499 */ 1500 if (ire->ire_type & IRE_IF_CLONE) { 1501 ire_t *parent; 1502 1503 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 1504 if ((parent = ire->ire_dep_parent) != NULL) { 1505 parent->ire_ob_pkt_count += ire->ire_ob_pkt_count; 1506 parent->ire_ib_pkt_count += ire->ire_ib_pkt_count; 1507 ire->ire_ob_pkt_count = 0; 1508 ire->ire_ib_pkt_count = 0; 1509 } 1510 rw_exit(&ipst->ips_ire_dep_lock); 1511 } 1512 1513 rw_enter(&irb->irb_lock, RW_WRITER); 1514 if (ire->ire_ptpn == NULL) { 1515 /* 1516 * Some other thread has removed us from the list. 1517 * It should have done the REFRELE for us. 1518 */ 1519 rw_exit(&irb->irb_lock); 1520 return; 1521 } 1522 1523 if (!IRE_IS_CONDEMNED(ire)) { 1524 /* Is this an IRE representing multiple duplicate entries? */ 1525 ASSERT(ire->ire_identical_ref >= 1); 1526 if (atomic_add_32_nv(&ire->ire_identical_ref, -1) != 0) { 1527 /* Removed one of the identical parties */ 1528 rw_exit(&irb->irb_lock); 1529 return; 1530 } 1531 1532 irb->irb_ire_cnt--; 1533 ire_make_condemned(ire); 1534 } 1535 1536 if (irb->irb_refcnt != 0) { 1537 /* 1538 * The last thread to leave this bucket will 1539 * delete this ire. 1540 */ 1541 irb->irb_marks |= IRB_MARK_CONDEMNED; 1542 rw_exit(&irb->irb_lock); 1543 return; 1544 } 1545 1546 /* 1547 * Normally to delete an ire, we walk the bucket. While we 1548 * walk the bucket, we normally bump up irb_refcnt and hence 1549 * we return from above where we mark CONDEMNED and the ire 1550 * gets deleted from ire_unlink. This case is where somebody 1551 * knows the ire e.g by doing a lookup, and wants to delete the 1552 * IRE. irb_refcnt would be 0 in this case if nobody is walking 1553 * the bucket. 1554 */ 1555 ptpn = ire->ire_ptpn; 1556 ire1 = ire->ire_next; 1557 if (ire1 != NULL) 1558 ire1->ire_ptpn = ptpn; 1559 ASSERT(ptpn != NULL); 1560 *ptpn = ire1; 1561 ire->ire_ptpn = NULL; 1562 ire->ire_next = NULL; 1563 if (ire->ire_ipversion == IPV6_VERSION) { 1564 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 1565 } else { 1566 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 1567 } 1568 rw_exit(&irb->irb_lock); 1569 1570 /* Cleanup dependents and related stuff */ 1571 if (ire->ire_ipversion == IPV6_VERSION) { 1572 ire_delete_v6(ire); 1573 } else { 1574 ire_delete_v4(ire); 1575 } 1576 /* 1577 * We removed it from the list. Decrement the 1578 * reference count. 1579 */ 1580 ire_refrele_notr(ire); 1581 } 1582 1583 /* 1584 * Delete the specified IRE. 1585 * All calls should use ire_delete(). 1586 * Sometimes called as writer though not required by this function. 1587 * 1588 * NOTE : This function is called only if the ire was added 1589 * in the list. 1590 */ 1591 static void 1592 ire_delete_v4(ire_t *ire) 1593 { 1594 ip_stack_t *ipst = ire->ire_ipst; 1595 1596 ASSERT(ire->ire_refcnt >= 1); 1597 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1598 1599 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 1600 if (ire->ire_type == IRE_DEFAULT) { 1601 /* 1602 * when a default gateway is going away 1603 * delete all the host redirects pointing at that 1604 * gateway. 1605 */ 1606 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 1607 } 1608 1609 /* 1610 * If we are deleting an IRE_INTERFACE then we make sure we also 1611 * delete any IRE_IF_CLONE that has been created from it. 1612 * Those are always in ire_dep_children. 1613 */ 1614 if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != NULL) 1615 ire_dep_delete_if_clone(ire); 1616 1617 /* Remove from parent dependencies and child */ 1618 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 1619 if (ire->ire_dep_parent != NULL) 1620 ire_dep_remove(ire); 1621 1622 while (ire->ire_dep_children != NULL) 1623 ire_dep_remove(ire->ire_dep_children); 1624 rw_exit(&ipst->ips_ire_dep_lock); 1625 } 1626 1627 /* 1628 * ire_refrele is the only caller of the function. It calls 1629 * to free the ire when the reference count goes to zero. 1630 */ 1631 void 1632 ire_inactive(ire_t *ire) 1633 { 1634 ill_t *ill; 1635 irb_t *irb; 1636 ip_stack_t *ipst = ire->ire_ipst; 1637 1638 ASSERT(ire->ire_refcnt == 0); 1639 ASSERT(ire->ire_ptpn == NULL); 1640 ASSERT(ire->ire_next == NULL); 1641 1642 /* Count how many condemned ires for kmem_cache callback */ 1643 ASSERT(IRE_IS_CONDEMNED(ire)); 1644 atomic_add_32(&ipst->ips_num_ire_condemned, -1); 1645 1646 if (ire->ire_gw_secattr != NULL) { 1647 ire_gw_secattr_free(ire->ire_gw_secattr); 1648 ire->ire_gw_secattr = NULL; 1649 } 1650 1651 /* 1652 * ire_nce_cache is cleared in ire_delete, and we make sure we don't 1653 * set it once the ire is marked condemned. 1654 */ 1655 ASSERT(ire->ire_nce_cache == NULL); 1656 1657 /* 1658 * Since any parent would have a refhold on us they would already 1659 * have been removed. 1660 */ 1661 ASSERT(ire->ire_dep_parent == NULL); 1662 ASSERT(ire->ire_dep_sib_next == NULL); 1663 ASSERT(ire->ire_dep_sib_ptpn == NULL); 1664 1665 /* 1666 * Since any children would have a refhold on us they should have 1667 * already been removed. 1668 */ 1669 ASSERT(ire->ire_dep_children == NULL); 1670 1671 /* 1672 * ill_ire_ref is increased when the IRE is inserted in the 1673 * bucket - not when the IRE is created. 1674 */ 1675 irb = ire->ire_bucket; 1676 ill = ire->ire_ill; 1677 if (irb != NULL && ill != NULL) { 1678 mutex_enter(&ill->ill_lock); 1679 ASSERT(ill->ill_ire_cnt != 0); 1680 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), ill, 1681 (char *), "ire", (void *), ire); 1682 ill->ill_ire_cnt--; 1683 if (ILL_DOWN_OK(ill)) { 1684 /* Drops the ill lock */ 1685 ipif_ill_refrele_tail(ill); 1686 } else { 1687 mutex_exit(&ill->ill_lock); 1688 } 1689 } 1690 ire->ire_ill = NULL; 1691 1692 /* This should be true for both V4 and V6 */ 1693 if (irb != NULL && (irb->irb_marks & IRB_MARK_DYNAMIC)) { 1694 rw_enter(&irb->irb_lock, RW_WRITER); 1695 irb->irb_nire--; 1696 /* 1697 * Instead of examining the conditions for freeing 1698 * the radix node here, we do it by calling 1699 * irb_refrele which is a single point in the code 1700 * that embeds that logic. Bump up the refcnt to 1701 * be able to call irb_refrele 1702 */ 1703 irb_refhold_locked(irb); 1704 rw_exit(&irb->irb_lock); 1705 irb_refrele(irb); 1706 } 1707 1708 #ifdef DEBUG 1709 ire_trace_cleanup(ire); 1710 #endif 1711 mutex_destroy(&ire->ire_lock); 1712 if (ire->ire_ipversion == IPV6_VERSION) { 1713 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 1714 } else { 1715 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 1716 } 1717 kmem_cache_free(ire_cache, ire); 1718 } 1719 1720 /* 1721 * ire_update_generation is the callback function provided by 1722 * ire_get_bucket() to update the generation number of any 1723 * matching shorter route when a new route is added. 1724 * 1725 * This fucntion always returns a failure return (B_FALSE) 1726 * to force the caller (rn_matchaddr_args) 1727 * to back-track up the tree looking for shorter matches. 1728 */ 1729 /* ARGSUSED */ 1730 static boolean_t 1731 ire_update_generation(struct radix_node *rn, void *arg) 1732 { 1733 struct rt_entry *rt = (struct rt_entry *)rn; 1734 1735 /* We need to handle all in the same bucket */ 1736 irb_increment_generation(&rt->rt_irb); 1737 return (B_FALSE); 1738 } 1739 1740 /* 1741 * Take care of all the generation numbers in the bucket. 1742 */ 1743 void 1744 irb_increment_generation(irb_t *irb) 1745 { 1746 ire_t *ire; 1747 ip_stack_t *ipst; 1748 1749 if (irb == NULL || irb->irb_ire_cnt == 0) 1750 return; 1751 1752 ipst = irb->irb_ipst; 1753 /* 1754 * we cannot do an irb_refhold/irb_refrele here as the caller 1755 * already has the global RADIX_NODE_HEAD_WLOCK, and the irb_refrele 1756 * may result in an attempt to free the irb_t, which also needs 1757 * the RADIX_NODE_HEAD lock. However, since we want to traverse the 1758 * irb_ire list without fear of having a condemned ire removed from 1759 * the list, we acquire the irb_lock as WRITER. Moreover, since 1760 * the ire_generation increments are done under the ire_dep_lock, 1761 * acquire the locks in the prescribed lock order first. 1762 */ 1763 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 1764 rw_enter(&irb->irb_lock, RW_WRITER); 1765 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1766 if (!IRE_IS_CONDEMNED(ire)) 1767 ire_increment_generation(ire); /* Ourselves */ 1768 ire_dep_incr_generation_locked(ire); /* Dependants */ 1769 } 1770 rw_exit(&irb->irb_lock); 1771 rw_exit(&ipst->ips_ire_dep_lock); 1772 } 1773 1774 /* 1775 * When an IRE is added or deleted this routine is called to make sure 1776 * any caching of IRE information is notified or updated. 1777 * 1778 * The flag argument indicates if the flush request is due to addition 1779 * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE), 1780 * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE). 1781 */ 1782 void 1783 ire_flush_cache_v4(ire_t *ire, int flag) 1784 { 1785 irb_t *irb = ire->ire_bucket; 1786 struct rt_entry *rt = IRB2RT(irb); 1787 ip_stack_t *ipst = ire->ire_ipst; 1788 1789 /* 1790 * IRE_IF_CLONE ire's don't provide any new information 1791 * than the parent from which they are cloned, so don't 1792 * perturb the generation numbers. 1793 */ 1794 if (ire->ire_type & IRE_IF_CLONE) 1795 return; 1796 1797 /* 1798 * Ensure that an ire_add during a lookup serializes the updates of the 1799 * generation numbers under the radix head lock so that the lookup gets 1800 * either the old ire and old generation number, or a new ire and new 1801 * generation number. 1802 */ 1803 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1804 1805 /* 1806 * If a route was just added, we need to notify everybody that 1807 * has cached an IRE_NOROUTE since there might now be a better 1808 * route for them. 1809 */ 1810 if (flag == IRE_FLUSH_ADD) { 1811 ire_increment_generation(ipst->ips_ire_reject_v4); 1812 ire_increment_generation(ipst->ips_ire_blackhole_v4); 1813 } 1814 1815 /* Adding a default can't otherwise provide a better route */ 1816 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) { 1817 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1818 return; 1819 } 1820 1821 switch (flag) { 1822 case IRE_FLUSH_DELETE: 1823 case IRE_FLUSH_GWCHANGE: 1824 /* 1825 * Update ire_generation for all ire_dep_children chains 1826 * starting with this IRE 1827 */ 1828 ire_dep_incr_generation(ire); 1829 break; 1830 case IRE_FLUSH_ADD: 1831 /* 1832 * Update the generation numbers of all shorter matching routes. 1833 * ire_update_generation takes care of the dependants by 1834 * using ire_dep_incr_generation. 1835 */ 1836 (void) ipst->ips_ip_ftable->rnh_matchaddr_args(&rt->rt_dst, 1837 ipst->ips_ip_ftable, ire_update_generation, NULL); 1838 break; 1839 } 1840 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1841 } 1842 1843 /* 1844 * Matches the arguments passed with the values in the ire. 1845 * 1846 * Note: for match types that match using "ill" passed in, ill 1847 * must be checked for non-NULL before calling this routine. 1848 */ 1849 boolean_t 1850 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 1851 int type, const ill_t *ill, zoneid_t zoneid, 1852 const ts_label_t *tsl, int match_flags) 1853 { 1854 ill_t *ire_ill = NULL, *dst_ill; 1855 ip_stack_t *ipst = ire->ire_ipst; 1856 1857 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1858 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 1859 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_SRC_ILL))) || 1860 (ill != NULL && !ill->ill_isv6)); 1861 1862 /* 1863 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it is 1864 * in fact hidden, to ensure the caller gets the right one. 1865 */ 1866 if (ire->ire_testhidden) { 1867 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) 1868 return (B_FALSE); 1869 } 1870 1871 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 1872 ire->ire_zoneid != ALL_ZONES) { 1873 /* 1874 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid 1875 * does not match that of ire_zoneid, a failure to 1876 * match is reported at this point. Otherwise, since some IREs 1877 * that are available in the global zone can be used in local 1878 * zones, additional checks need to be performed: 1879 * 1880 * IRE_LOOPBACK 1881 * entries should never be matched in this situation. 1882 * Each zone has its own IRE_LOOPBACK. 1883 * 1884 * IRE_LOCAL 1885 * We allow them for any zoneid. ire_route_recursive 1886 * does additional checks when 1887 * ip_restrict_interzone_loopback is set. 1888 * 1889 * If ill_usesrc_ifindex is set 1890 * Then we check if the zone has a valid source address 1891 * on the usesrc ill. 1892 * 1893 * If ire_ill is set, then check that the zone has an ipif 1894 * on that ill. 1895 * 1896 * Outside of this function (in ire_round_robin) we check 1897 * that any IRE_OFFLINK has a gateway that reachable from the 1898 * zone when we have multiple choices (ECMP). 1899 */ 1900 if (match_flags & MATCH_IRE_ZONEONLY) 1901 return (B_FALSE); 1902 if (ire->ire_type & IRE_LOOPBACK) 1903 return (B_FALSE); 1904 1905 if (ire->ire_type & IRE_LOCAL) 1906 goto matchit; 1907 1908 /* 1909 * The normal case of IRE_ONLINK has a matching zoneid. 1910 * Here we handle the case when shared-IP zones have been 1911 * configured with IP addresses on vniN. In that case it 1912 * is ok for traffic from a zone to use IRE_ONLINK routes 1913 * if the ill has a usesrc pointing at vniN 1914 */ 1915 dst_ill = ire->ire_ill; 1916 if (ire->ire_type & IRE_ONLINK) { 1917 uint_t ifindex; 1918 1919 /* 1920 * Note there is no IRE_INTERFACE on vniN thus 1921 * can't do an IRE lookup for a matching route. 1922 */ 1923 ifindex = dst_ill->ill_usesrc_ifindex; 1924 if (ifindex == 0) 1925 return (B_FALSE); 1926 1927 /* 1928 * If there is a usable source address in the 1929 * zone, then it's ok to return this IRE_INTERFACE 1930 */ 1931 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 1932 zoneid, ipst)) { 1933 ip3dbg(("ire_match_args: no usrsrc for zone" 1934 " dst_ill %p\n", (void *)dst_ill)); 1935 return (B_FALSE); 1936 } 1937 } 1938 /* 1939 * For example, with 1940 * route add 11.0.0.0 gw1 -ifp bge0 1941 * route add 11.0.0.0 gw2 -ifp bge1 1942 * this code would differentiate based on 1943 * where the sending zone has addresses. 1944 * Only if the zone has an address on bge0 can it use the first 1945 * route. It isn't clear if this behavior is documented 1946 * anywhere. 1947 */ 1948 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 1949 ipif_t *tipif; 1950 1951 mutex_enter(&dst_ill->ill_lock); 1952 for (tipif = dst_ill->ill_ipif; 1953 tipif != NULL; tipif = tipif->ipif_next) { 1954 if (!IPIF_IS_CONDEMNED(tipif) && 1955 (tipif->ipif_flags & IPIF_UP) && 1956 (tipif->ipif_zoneid == zoneid || 1957 tipif->ipif_zoneid == ALL_ZONES)) 1958 break; 1959 } 1960 mutex_exit(&dst_ill->ill_lock); 1961 if (tipif == NULL) { 1962 return (B_FALSE); 1963 } 1964 } 1965 } 1966 1967 matchit: 1968 ire_ill = ire->ire_ill; 1969 if (match_flags & MATCH_IRE_ILL) { 1970 1971 /* 1972 * If asked to match an ill, we *must* match 1973 * on the ire_ill for ipmp test addresses, or 1974 * any of the ill in the group for data addresses. 1975 * If we don't, we may as well fail. 1976 * However, we need an exception for IRE_LOCALs to ensure 1977 * we loopback packets even sent to test addresses on different 1978 * interfaces in the group. 1979 */ 1980 if ((match_flags & MATCH_IRE_TESTHIDDEN) && 1981 !(ire->ire_type & IRE_LOCAL)) { 1982 if (ire->ire_ill != ill) 1983 return (B_FALSE); 1984 } else { 1985 match_flags &= ~MATCH_IRE_TESTHIDDEN; 1986 /* 1987 * We know that ill is not NULL, but ire_ill could be 1988 * NULL 1989 */ 1990 if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill)) 1991 return (B_FALSE); 1992 } 1993 } 1994 if (match_flags & MATCH_IRE_SRC_ILL) { 1995 if (ire_ill == NULL) 1996 return (B_FALSE); 1997 if (!IS_ON_SAME_LAN(ill, ire_ill)) { 1998 if (ire_ill->ill_usesrc_ifindex == 0 || 1999 (ire_ill->ill_usesrc_ifindex != 2000 ill->ill_phyint->phyint_ifindex)) 2001 return (B_FALSE); 2002 } 2003 } 2004 2005 if ((ire->ire_addr == (addr & mask)) && 2006 ((!(match_flags & MATCH_IRE_GW)) || 2007 (ire->ire_gateway_addr == gateway)) && 2008 ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) && 2009 ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) && 2010 ((!(match_flags & MATCH_IRE_MASK)) || (ire->ire_mask == mask)) && 2011 ((!(match_flags & MATCH_IRE_SECATTR)) || 2012 (!is_system_labeled()) || 2013 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 2014 /* We found the matched IRE */ 2015 return (B_TRUE); 2016 } 2017 return (B_FALSE); 2018 } 2019 2020 /* 2021 * Check if the IRE_LOCAL uses the same ill as another route would use. 2022 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 2023 * then we don't allow this IRE_LOCAL to be used. 2024 * We always return an IRE; will be RTF_REJECT if no route available. 2025 */ 2026 ire_t * 2027 ire_alt_local(ire_t *ire, zoneid_t zoneid, const ts_label_t *tsl, 2028 const ill_t *ill, uint_t *generationp) 2029 { 2030 ip_stack_t *ipst = ire->ire_ipst; 2031 ire_t *alt_ire; 2032 uint_t ire_type; 2033 uint_t generation; 2034 uint_t match_flags; 2035 2036 ASSERT(ire->ire_type & IRE_LOCAL); 2037 ASSERT(ire->ire_ill != NULL); 2038 2039 /* 2040 * Need to match on everything but local. 2041 * This might result in the creation of a IRE_IF_CLONE for the 2042 * same address as the IRE_LOCAL when restrict_interzone_loopback is 2043 * set. ire_add_*() ensures that the IRE_IF_CLONE are tail inserted 2044 * to make sure the IRE_LOCAL is always found first. 2045 */ 2046 ire_type = (IRE_ONLINK | IRE_OFFLINK) & ~(IRE_LOCAL|IRE_LOOPBACK); 2047 match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR; 2048 if (ill != NULL) 2049 match_flags |= MATCH_IRE_ILL; 2050 2051 if (ire->ire_ipversion == IPV4_VERSION) { 2052 alt_ire = ire_route_recursive_v4(ire->ire_addr, ire_type, 2053 ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL, 2054 NULL, &generation); 2055 } else { 2056 alt_ire = ire_route_recursive_v6(&ire->ire_addr_v6, ire_type, 2057 ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL, 2058 NULL, &generation); 2059 } 2060 ASSERT(alt_ire != NULL); 2061 2062 if (alt_ire->ire_ill == ire->ire_ill) { 2063 /* Going out the same ILL - ok to send to IRE_LOCAL */ 2064 ire_refrele(alt_ire); 2065 } else { 2066 /* Different ill - ignore IRE_LOCAL */ 2067 ire_refrele(ire); 2068 ire = alt_ire; 2069 if (generationp != NULL) 2070 *generationp = generation; 2071 } 2072 return (ire); 2073 } 2074 2075 boolean_t 2076 ire_find_zoneid(struct radix_node *rn, void *arg) 2077 { 2078 struct rt_entry *rt = (struct rt_entry *)rn; 2079 irb_t *irb; 2080 ire_t *ire; 2081 ire_ftable_args_t *margs = arg; 2082 2083 ASSERT(rt != NULL); 2084 2085 irb = &rt->rt_irb; 2086 2087 if (irb->irb_ire_cnt == 0) 2088 return (B_FALSE); 2089 2090 rw_enter(&irb->irb_lock, RW_READER); 2091 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2092 if (IRE_IS_CONDEMNED(ire)) 2093 continue; 2094 2095 if (!(ire->ire_type & IRE_INTERFACE)) 2096 continue; 2097 2098 if (ire->ire_zoneid != ALL_ZONES && 2099 ire->ire_zoneid != margs->ift_zoneid) 2100 continue; 2101 2102 if (margs->ift_ill != NULL && margs->ift_ill != ire->ire_ill) 2103 continue; 2104 2105 if (is_system_labeled() && 2106 tsol_ire_match_gwattr(ire, margs->ift_tsl) != 0) 2107 continue; 2108 2109 rw_exit(&irb->irb_lock); 2110 return (B_TRUE); 2111 } 2112 rw_exit(&irb->irb_lock); 2113 return (B_FALSE); 2114 } 2115 2116 /* 2117 * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified 2118 * gateway address. If ill is non-NULL we also match on it. 2119 * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set. 2120 */ 2121 boolean_t 2122 ire_gateway_ok_zone_v4(ipaddr_t gateway, zoneid_t zoneid, ill_t *ill, 2123 const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held) 2124 { 2125 struct rt_sockaddr rdst; 2126 struct rt_entry *rt; 2127 ire_ftable_args_t margs; 2128 2129 ASSERT(ill == NULL || !ill->ill_isv6); 2130 if (lock_held) 2131 ASSERT(RW_READ_HELD(&ipst->ips_ip_ftable->rnh_lock)); 2132 else 2133 RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable); 2134 2135 bzero(&rdst, sizeof (rdst)); 2136 rdst.rt_sin_len = sizeof (rdst); 2137 rdst.rt_sin_family = AF_INET; 2138 rdst.rt_sin_addr.s_addr = gateway; 2139 2140 /* 2141 * We only use margs for ill, zoneid, and tsl matching in 2142 * ire_find_zoneid 2143 */ 2144 bzero(&margs, sizeof (margs)); 2145 margs.ift_ill = ill; 2146 margs.ift_zoneid = zoneid; 2147 margs.ift_tsl = tsl; 2148 rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst, 2149 ipst->ips_ip_ftable, ire_find_zoneid, (void *)&margs); 2150 2151 if (!lock_held) 2152 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 2153 2154 return (rt != NULL); 2155 } 2156 2157 /* 2158 * ire_walk routine to delete a fraction of redirect IREs and IRE_CLONE_IF IREs. 2159 * The fraction argument tells us what fraction of the IREs to delete. 2160 * Common for IPv4 and IPv6. 2161 * Used when memory backpressure. 2162 */ 2163 static void 2164 ire_delete_reclaim(ire_t *ire, char *arg) 2165 { 2166 ip_stack_t *ipst = ire->ire_ipst; 2167 uint_t fraction = *(uint_t *)arg; 2168 uint_t rand; 2169 2170 if ((ire->ire_flags & RTF_DYNAMIC) || 2171 (ire->ire_type & IRE_IF_CLONE)) { 2172 2173 /* Pick a random number */ 2174 rand = (uint_t)ddi_get_lbolt() + 2175 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 256); 2176 2177 /* Use truncation */ 2178 if ((rand/fraction)*fraction == rand) { 2179 IP_STAT(ipst, ip_ire_reclaim_deleted); 2180 ire_delete(ire); 2181 } 2182 } 2183 2184 } 2185 2186 /* 2187 * kmem_cache callback to free up memory. 2188 * 2189 * Free a fraction (ips_ip_ire_reclaim_fraction) of things IP added dynamically 2190 * (RTF_DYNAMIC and IRE_IF_CLONE). 2191 */ 2192 static void 2193 ip_ire_reclaim_stack(ip_stack_t *ipst) 2194 { 2195 uint_t fraction = ipst->ips_ip_ire_reclaim_fraction; 2196 2197 IP_STAT(ipst, ip_ire_reclaim_calls); 2198 2199 ire_walk(ire_delete_reclaim, &fraction, ipst); 2200 2201 /* 2202 * Walk all CONNs that can have a reference on an ire, nce or dce. 2203 * Get them to update any stale references to drop any refholds they 2204 * have. 2205 */ 2206 ipcl_walk(conn_ixa_cleanup, (void *)B_FALSE, ipst); 2207 } 2208 2209 /* 2210 * Called by the memory allocator subsystem directly, when the system 2211 * is running low on memory. 2212 */ 2213 /* ARGSUSED */ 2214 void 2215 ip_ire_reclaim(void *args) 2216 { 2217 netstack_handle_t nh; 2218 netstack_t *ns; 2219 ip_stack_t *ipst; 2220 2221 netstack_next_init(&nh); 2222 while ((ns = netstack_next(&nh)) != NULL) { 2223 /* 2224 * netstack_next() can return a netstack_t with a NULL 2225 * netstack_ip at boot time. 2226 */ 2227 if ((ipst = ns->netstack_ip) == NULL) { 2228 netstack_rele(ns); 2229 continue; 2230 } 2231 ip_ire_reclaim_stack(ipst); 2232 netstack_rele(ns); 2233 } 2234 netstack_next_fini(&nh); 2235 } 2236 2237 static void 2238 power2_roundup(uint32_t *value) 2239 { 2240 int i; 2241 2242 for (i = 1; i < 31; i++) { 2243 if (*value <= (1 << i)) 2244 break; 2245 } 2246 *value = (1 << i); 2247 } 2248 2249 /* Global init for all zones */ 2250 void 2251 ip_ire_g_init() 2252 { 2253 /* 2254 * Create kmem_caches. ip_ire_reclaim() and ip_nce_reclaim() 2255 * will give disposable IREs back to system when needed. 2256 * This needs to be done here before anything else, since 2257 * ire_add() expects the cache to be created. 2258 */ 2259 ire_cache = kmem_cache_create("ire_cache", 2260 sizeof (ire_t), 0, NULL, NULL, 2261 ip_ire_reclaim, NULL, NULL, 0); 2262 2263 ncec_cache = kmem_cache_create("ncec_cache", 2264 sizeof (ncec_t), 0, NULL, NULL, 2265 ip_nce_reclaim, NULL, NULL, 0); 2266 nce_cache = kmem_cache_create("nce_cache", 2267 sizeof (nce_t), 0, NULL, NULL, 2268 NULL, NULL, NULL, 0); 2269 2270 rt_entry_cache = kmem_cache_create("rt_entry", 2271 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 2272 2273 /* 2274 * Have radix code setup kmem caches etc. 2275 */ 2276 rn_init(); 2277 } 2278 2279 void 2280 ip_ire_init(ip_stack_t *ipst) 2281 { 2282 ire_t *ire; 2283 int error; 2284 2285 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 2286 2287 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 2288 2289 /* 2290 * Make sure that the forwarding table size is a power of 2. 2291 * The IRE*_ADDR_HASH() macroes depend on that. 2292 */ 2293 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 2294 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 2295 2296 /* 2297 * Allocate/initialize a pair of IRE_NOROUTEs for each of IPv4 and IPv6. 2298 * The ire_reject_v* has RTF_REJECT set, and the ire_blackhole_v* has 2299 * RTF_BLACKHOLE set. We use the latter for transient errors such 2300 * as memory allocation failures and tripping on IRE_IS_CONDEMNED 2301 * entries. 2302 */ 2303 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2304 *ire = ire_null; 2305 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2306 RTF_REJECT|RTF_UP, NULL, ipst); 2307 ASSERT(error == 0); 2308 ipst->ips_ire_reject_v4 = ire; 2309 2310 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2311 *ire = ire_null; 2312 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2313 RTF_REJECT|RTF_UP, NULL, ipst); 2314 ASSERT(error == 0); 2315 ipst->ips_ire_reject_v6 = ire; 2316 2317 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2318 *ire = ire_null; 2319 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2320 RTF_BLACKHOLE|RTF_UP, NULL, ipst); 2321 ASSERT(error == 0); 2322 ipst->ips_ire_blackhole_v4 = ire; 2323 2324 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2325 *ire = ire_null; 2326 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2327 RTF_BLACKHOLE|RTF_UP, NULL, ipst); 2328 ASSERT(error == 0); 2329 ipst->ips_ire_blackhole_v6 = ire; 2330 2331 rw_init(&ipst->ips_ip6_ire_head_lock, NULL, RW_DEFAULT, NULL); 2332 rw_init(&ipst->ips_ire_dep_lock, NULL, RW_DEFAULT, NULL); 2333 } 2334 2335 void 2336 ip_ire_g_fini(void) 2337 { 2338 kmem_cache_destroy(ire_cache); 2339 kmem_cache_destroy(ncec_cache); 2340 kmem_cache_destroy(nce_cache); 2341 kmem_cache_destroy(rt_entry_cache); 2342 2343 rn_fini(); 2344 } 2345 2346 void 2347 ip_ire_fini(ip_stack_t *ipst) 2348 { 2349 int i; 2350 2351 rw_destroy(&ipst->ips_ire_dep_lock); 2352 rw_destroy(&ipst->ips_ip6_ire_head_lock); 2353 2354 ire_make_condemned(ipst->ips_ire_reject_v6); 2355 ire_refrele_notr(ipst->ips_ire_reject_v6); 2356 ipst->ips_ire_reject_v6 = NULL; 2357 2358 ire_make_condemned(ipst->ips_ire_reject_v4); 2359 ire_refrele_notr(ipst->ips_ire_reject_v4); 2360 ipst->ips_ire_reject_v4 = NULL; 2361 2362 ire_make_condemned(ipst->ips_ire_blackhole_v6); 2363 ire_refrele_notr(ipst->ips_ire_blackhole_v6); 2364 ipst->ips_ire_blackhole_v6 = NULL; 2365 2366 ire_make_condemned(ipst->ips_ire_blackhole_v4); 2367 ire_refrele_notr(ipst->ips_ire_blackhole_v4); 2368 ipst->ips_ire_blackhole_v4 = NULL; 2369 2370 /* 2371 * Delete all IREs - assumes that the ill/ipifs have 2372 * been removed so what remains are just the ftable to handle. 2373 */ 2374 ire_walk(ire_delete, NULL, ipst); 2375 2376 rn_freehead(ipst->ips_ip_ftable); 2377 ipst->ips_ip_ftable = NULL; 2378 2379 mutex_destroy(&ipst->ips_ire_ft_init_lock); 2380 2381 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 2382 irb_t *ptr; 2383 int j; 2384 2385 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 2386 continue; 2387 2388 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 2389 ASSERT(ptr[j].irb_ire == NULL); 2390 rw_destroy(&ptr[j].irb_lock); 2391 } 2392 mi_free(ptr); 2393 ipst->ips_ip_forwarding_table_v6[i] = NULL; 2394 } 2395 } 2396 2397 #ifdef DEBUG 2398 void 2399 ire_trace_ref(ire_t *ire) 2400 { 2401 mutex_enter(&ire->ire_lock); 2402 if (ire->ire_trace_disable) { 2403 mutex_exit(&ire->ire_lock); 2404 return; 2405 } 2406 2407 if (th_trace_ref(ire, ire->ire_ipst)) { 2408 mutex_exit(&ire->ire_lock); 2409 } else { 2410 ire->ire_trace_disable = B_TRUE; 2411 mutex_exit(&ire->ire_lock); 2412 ire_trace_cleanup(ire); 2413 } 2414 } 2415 2416 void 2417 ire_untrace_ref(ire_t *ire) 2418 { 2419 mutex_enter(&ire->ire_lock); 2420 if (!ire->ire_trace_disable) 2421 th_trace_unref(ire); 2422 mutex_exit(&ire->ire_lock); 2423 } 2424 2425 static void 2426 ire_trace_cleanup(const ire_t *ire) 2427 { 2428 th_trace_cleanup(ire, ire->ire_trace_disable); 2429 } 2430 #endif /* DEBUG */ 2431 2432 /* 2433 * Find, or create if needed, the nce_t pointer to the neighbor cache 2434 * entry ncec_t for an IPv4 address. The nce_t will be created on the ill_t 2435 * in the non-IPMP case, or on the cast-ill in the IPMP bcast/mcast case, or 2436 * on the next available under-ill (selected by the IPMP rotor) in the 2437 * unicast IPMP case. 2438 * 2439 * If a neighbor-cache entry has to be created (i.e., one does not already 2440 * exist in the nce list) the ncec_lladdr and ncec_state of the neighbor cache 2441 * entry are initialized in nce_add_v4(). The broadcast, multicast, and 2442 * link-layer type determine the contents of {ncec_state, ncec_lladdr} of 2443 * the ncec_t created. The ncec_lladdr is non-null for all link types with 2444 * non-zero ill_phys_addr_length, though the contents may be zero in cases 2445 * where the link-layer type is not known at the time of creation 2446 * (e.g., IRE_IFRESOLVER links) 2447 * 2448 * All IRE_BROADCAST entries have ncec_state = ND_REACHABLE, and the nce_lladr 2449 * has the physical broadcast address of the outgoing interface. 2450 * For unicast ire entries, 2451 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 2452 * ncec_t with 0 nce_lladr contents, and will be in the ND_INITIAL state. 2453 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 2454 * layer resolution is necessary, so that the ncec_t will be in the 2455 * ND_REACHABLE state 2456 * 2457 * The link layer information needed for broadcast addresses, and for 2458 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 2459 * never needs re-verification for the lifetime of the ncec_t. These are 2460 * therefore marked NCE_F_NONUD. 2461 * 2462 * The nce returned will be created such that the nce_ill == ill that 2463 * is passed in. Note that the nce itself may not have ncec_ill == ill 2464 * where IPMP links are involved. 2465 */ 2466 static nce_t * 2467 ire_nce_init(ill_t *ill, const void *addr, int ire_type) 2468 { 2469 int err; 2470 nce_t *nce = NULL; 2471 uint16_t ncec_flags; 2472 uchar_t *hwaddr; 2473 boolean_t need_refrele = B_FALSE; 2474 ill_t *in_ill = ill; 2475 boolean_t is_unicast; 2476 uint_t hwaddr_len; 2477 2478 is_unicast = ((ire_type & (IRE_MULTICAST|IRE_BROADCAST)) == 0); 2479 if (IS_IPMP(ill) || 2480 ((ire_type & IRE_BROADCAST) && IS_UNDER_IPMP(ill))) { 2481 if ((ill = ipmp_ill_get_xmit_ill(ill, is_unicast)) == NULL) 2482 return (NULL); 2483 need_refrele = B_TRUE; 2484 } 2485 ncec_flags = (ill->ill_flags & ILLF_NONUD) ? NCE_F_NONUD : 0; 2486 2487 switch (ire_type) { 2488 case IRE_BROADCAST: 2489 ASSERT(!ill->ill_isv6); 2490 ncec_flags |= (NCE_F_BCAST|NCE_F_NONUD); 2491 break; 2492 case IRE_MULTICAST: 2493 ncec_flags |= (NCE_F_MCAST|NCE_F_NONUD); 2494 break; 2495 } 2496 2497 if (ill->ill_net_type == IRE_IF_NORESOLVER && is_unicast) { 2498 hwaddr = ill->ill_dest_addr; 2499 } else { 2500 hwaddr = NULL; 2501 } 2502 hwaddr_len = ill->ill_phys_addr_length; 2503 2504 retry: 2505 /* nce_state will be computed by nce_add_common() */ 2506 if (!ill->ill_isv6) { 2507 err = nce_lookup_then_add_v4(ill, hwaddr, hwaddr_len, addr, 2508 ncec_flags, ND_UNCHANGED, &nce); 2509 } else { 2510 err = nce_lookup_then_add_v6(ill, hwaddr, hwaddr_len, addr, 2511 ncec_flags, ND_UNCHANGED, &nce); 2512 } 2513 2514 switch (err) { 2515 case 0: 2516 break; 2517 case EEXIST: 2518 /* 2519 * When subnets change or partially overlap what was once 2520 * a broadcast address could now be a unicast, or vice versa. 2521 */ 2522 if (((ncec_flags ^ nce->nce_common->ncec_flags) & 2523 NCE_F_BCAST) != 0) { 2524 ASSERT(!ill->ill_isv6); 2525 ncec_delete(nce->nce_common); 2526 nce_refrele(nce); 2527 goto retry; 2528 } 2529 break; 2530 default: 2531 DTRACE_PROBE2(nce__init__fail, ill_t *, ill, int, err); 2532 if (need_refrele) 2533 ill_refrele(ill); 2534 return (NULL); 2535 } 2536 /* 2537 * If the ill was an under-ill of an IPMP group, we need to verify 2538 * that it is still active so that we select an active interface in 2539 * the group. However, since ipmp_ill_is_active ASSERTs for 2540 * IS_UNDER_IPMP(), we first need to verify that the ill is an 2541 * under-ill, and since this is being done in the data path, the 2542 * only way to ascertain this is by holding the ill_g_lock. 2543 */ 2544 rw_enter(&ill->ill_ipst->ips_ill_g_lock, RW_READER); 2545 mutex_enter(&ill->ill_lock); 2546 mutex_enter(&ill->ill_phyint->phyint_lock); 2547 if (need_refrele && IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 2548 /* 2549 * need_refrele implies that the under ill was selected by 2550 * ipmp_ill_get_xmit_ill() because either the in_ill was an 2551 * ipmp_ill, or we are sending a non-unicast packet on 2552 * an under_ill. However, when we get here, the ill selected by 2553 * ipmp_ill_get_xmit_ill was pulled out of the active set 2554 * (for unicast) or cast_ill nomination (for 2555 * !unicast) after it was picked as the outgoing ill. 2556 * We have to pick an active interface and/or cast_ill in the 2557 * group. 2558 */ 2559 mutex_exit(&ill->ill_phyint->phyint_lock); 2560 nce_delete(nce); 2561 mutex_exit(&ill->ill_lock); 2562 rw_exit(&ill->ill_ipst->ips_ill_g_lock); 2563 nce_refrele(nce); 2564 ill_refrele(ill); 2565 if ((ill = ipmp_ill_get_xmit_ill(in_ill, is_unicast)) == NULL) 2566 return (NULL); 2567 goto retry; 2568 } else { 2569 mutex_exit(&ill->ill_phyint->phyint_lock); 2570 mutex_exit(&ill->ill_lock); 2571 rw_exit(&ill->ill_ipst->ips_ill_g_lock); 2572 } 2573 done: 2574 ASSERT(nce->nce_ill == ill); 2575 if (need_refrele) 2576 ill_refrele(ill); 2577 return (nce); 2578 } 2579 2580 nce_t * 2581 arp_nce_init(ill_t *ill, in_addr_t addr4, int ire_type) 2582 { 2583 return (ire_nce_init(ill, &addr4, ire_type)); 2584 } 2585 2586 nce_t * 2587 ndp_nce_init(ill_t *ill, const in6_addr_t *addr6, int ire_type) 2588 { 2589 ASSERT((ire_type & IRE_BROADCAST) == 0); 2590 return (ire_nce_init(ill, addr6, ire_type)); 2591 } 2592 2593 /* 2594 * The caller should hold irb_lock as a writer if the ire is in a bucket. 2595 * This routine will clear ire_nce_cache, and we make sure that we can never 2596 * set ire_nce_cache after the ire is marked condemned. 2597 */ 2598 void 2599 ire_make_condemned(ire_t *ire) 2600 { 2601 ip_stack_t *ipst = ire->ire_ipst; 2602 nce_t *nce; 2603 2604 mutex_enter(&ire->ire_lock); 2605 ASSERT(ire->ire_bucket == NULL || 2606 RW_WRITE_HELD(&ire->ire_bucket->irb_lock)); 2607 ASSERT(!IRE_IS_CONDEMNED(ire)); 2608 ire->ire_generation = IRE_GENERATION_CONDEMNED; 2609 /* Count how many condemned ires for kmem_cache callback */ 2610 atomic_add_32(&ipst->ips_num_ire_condemned, 1); 2611 nce = ire->ire_nce_cache; 2612 ire->ire_nce_cache = NULL; 2613 mutex_exit(&ire->ire_lock); 2614 if (nce != NULL) 2615 nce_refrele(nce); 2616 } 2617 2618 /* 2619 * Increment the generation avoiding the special condemned value 2620 */ 2621 void 2622 ire_increment_generation(ire_t *ire) 2623 { 2624 uint_t generation; 2625 2626 mutex_enter(&ire->ire_lock); 2627 /* 2628 * Even though the caller has a hold it can't prevent a concurrent 2629 * ire_delete marking the IRE condemned 2630 */ 2631 if (!IRE_IS_CONDEMNED(ire)) { 2632 generation = ire->ire_generation + 1; 2633 if (generation == IRE_GENERATION_CONDEMNED) 2634 generation = IRE_GENERATION_INITIAL; 2635 ASSERT(generation != IRE_GENERATION_VERIFY); 2636 ire->ire_generation = generation; 2637 } 2638 mutex_exit(&ire->ire_lock); 2639 } 2640 2641 /* 2642 * Increment ire_generation on all the IRE_MULTICASTs 2643 * Used when the default multicast interface (as determined by 2644 * ill_lookup_multicast) might have changed. 2645 * 2646 * That includes the zoneid, IFF_ flags, the IPv6 scope of the address, and 2647 * ill unplumb. 2648 */ 2649 void 2650 ire_increment_multicast_generation(ip_stack_t *ipst, boolean_t isv6) 2651 { 2652 ill_t *ill; 2653 ill_walk_context_t ctx; 2654 2655 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2656 if (isv6) 2657 ill = ILL_START_WALK_V6(&ctx, ipst); 2658 else 2659 ill = ILL_START_WALK_V4(&ctx, ipst); 2660 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2661 if (ILL_IS_CONDEMNED(ill)) 2662 continue; 2663 if (ill->ill_ire_multicast != NULL) 2664 ire_increment_generation(ill->ill_ire_multicast); 2665 } 2666 rw_exit(&ipst->ips_ill_g_lock); 2667 } 2668 2669 /* 2670 * Return a held IRE_NOROUTE with RTF_REJECT set 2671 */ 2672 ire_t * 2673 ire_reject(ip_stack_t *ipst, boolean_t isv6) 2674 { 2675 ire_t *ire; 2676 2677 if (isv6) 2678 ire = ipst->ips_ire_reject_v6; 2679 else 2680 ire = ipst->ips_ire_reject_v4; 2681 2682 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); 2683 ire_refhold(ire); 2684 return (ire); 2685 } 2686 2687 /* 2688 * Return a held IRE_NOROUTE with RTF_BLACKHOLE set 2689 */ 2690 ire_t * 2691 ire_blackhole(ip_stack_t *ipst, boolean_t isv6) 2692 { 2693 ire_t *ire; 2694 2695 if (isv6) 2696 ire = ipst->ips_ire_blackhole_v6; 2697 else 2698 ire = ipst->ips_ire_blackhole_v4; 2699 2700 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); 2701 ire_refhold(ire); 2702 return (ire); 2703 } 2704 2705 /* 2706 * Return a held IRE_MULTICAST. 2707 */ 2708 ire_t * 2709 ire_multicast(ill_t *ill) 2710 { 2711 ire_t *ire = ill->ill_ire_multicast; 2712 2713 ASSERT(ire == NULL || ire->ire_generation != IRE_GENERATION_CONDEMNED); 2714 if (ire == NULL) 2715 ire = ire_blackhole(ill->ill_ipst, ill->ill_isv6); 2716 else 2717 ire_refhold(ire); 2718 return (ire); 2719 } 2720 2721 /* 2722 * Given an IRE return its nexthop IRE. The nexthop IRE is an IRE_ONLINK 2723 * that is an exact match (i.e., a /32 for IPv4 and /128 for IPv6). 2724 * This can return an RTF_REJECT|RTF_BLACKHOLE. 2725 * The returned IRE is held. 2726 * The assumption is that ip_select_route() has been called and returned the 2727 * IRE (thus ip_select_route would have set up the ire_dep* information.) 2728 * If some IRE is deleteted then ire_dep_remove() will have been called and 2729 * we might not find a nexthop IRE, in which case we return NULL. 2730 */ 2731 ire_t * 2732 ire_nexthop(ire_t *ire) 2733 { 2734 ip_stack_t *ipst = ire->ire_ipst; 2735 2736 /* Acquire lock to walk ire_dep_parent */ 2737 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 2738 while (ire != NULL) { 2739 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 2740 goto done; 2741 } 2742 /* 2743 * If we find an IRE_ONLINK we are done. This includes 2744 * the case of IRE_MULTICAST. 2745 * Note that in order to send packets we need a host-specific 2746 * IRE_IF_ALL first in the ire_dep_parent chain. Normally this 2747 * is done by inserting an IRE_IF_CLONE if the IRE_INTERFACE 2748 * was not host specific. 2749 * However, ip_rts_request doesn't want to send packets 2750 * hence doesn't want to allocate an IRE_IF_CLONE. Yet 2751 * it needs an IRE_IF_ALL to get to the ill. Thus 2752 * we return IRE_IF_ALL that are not host specific here. 2753 */ 2754 if (ire->ire_type & IRE_ONLINK) 2755 goto done; 2756 ire = ire->ire_dep_parent; 2757 } 2758 rw_exit(&ipst->ips_ire_dep_lock); 2759 return (NULL); 2760 2761 done: 2762 ire_refhold(ire); 2763 rw_exit(&ipst->ips_ire_dep_lock); 2764 return (ire); 2765 } 2766 2767 /* 2768 * Find the ill used to send packets. This will be NULL in case 2769 * of a reject or blackhole. 2770 * The returned ill is held; caller needs to do ill_refrele when done. 2771 */ 2772 ill_t * 2773 ire_nexthop_ill(ire_t *ire) 2774 { 2775 ill_t *ill; 2776 2777 ire = ire_nexthop(ire); 2778 if (ire == NULL) 2779 return (NULL); 2780 2781 /* ire_ill can not change for an existing ire */ 2782 ill = ire->ire_ill; 2783 if (ill != NULL) 2784 ill_refhold(ill); 2785 ire_refrele(ire); 2786 return (ill); 2787 } 2788 2789 #ifdef DEBUG 2790 static boolean_t 2791 parent_has_child(ire_t *parent, ire_t *child) 2792 { 2793 ire_t *ire; 2794 ire_t *prev; 2795 2796 ire = parent->ire_dep_children; 2797 prev = NULL; 2798 while (ire != NULL) { 2799 if (prev == NULL) { 2800 ASSERT(ire->ire_dep_sib_ptpn == 2801 &(parent->ire_dep_children)); 2802 } else { 2803 ASSERT(ire->ire_dep_sib_ptpn == 2804 &(prev->ire_dep_sib_next)); 2805 } 2806 if (ire == child) 2807 return (B_TRUE); 2808 prev = ire; 2809 ire = ire->ire_dep_sib_next; 2810 } 2811 return (B_FALSE); 2812 } 2813 2814 static void 2815 ire_dep_verify(ire_t *ire) 2816 { 2817 ire_t *parent = ire->ire_dep_parent; 2818 ire_t *child = ire->ire_dep_children; 2819 2820 ASSERT(ire->ire_ipversion == IPV4_VERSION || 2821 ire->ire_ipversion == IPV6_VERSION); 2822 if (parent != NULL) { 2823 ASSERT(parent->ire_ipversion == IPV4_VERSION || 2824 parent->ire_ipversion == IPV6_VERSION); 2825 ASSERT(parent->ire_refcnt >= 1); 2826 ASSERT(parent_has_child(parent, ire)); 2827 } 2828 if (child != NULL) { 2829 ASSERT(child->ire_ipversion == IPV4_VERSION || 2830 child->ire_ipversion == IPV6_VERSION); 2831 ASSERT(child->ire_dep_parent == ire); 2832 ASSERT(child->ire_dep_sib_ptpn != NULL); 2833 ASSERT(parent_has_child(ire, child)); 2834 } 2835 } 2836 #endif /* DEBUG */ 2837 2838 /* 2839 * Assumes ire_dep_parent is set. Remove this child from its parent's linkage. 2840 */ 2841 void 2842 ire_dep_remove(ire_t *ire) 2843 { 2844 ip_stack_t *ipst = ire->ire_ipst; 2845 ire_t *parent = ire->ire_dep_parent; 2846 ire_t *next; 2847 nce_t *nce; 2848 2849 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 2850 ASSERT(ire->ire_dep_parent != NULL); 2851 ASSERT(ire->ire_dep_sib_ptpn != NULL); 2852 2853 #ifdef DEBUG 2854 ire_dep_verify(ire); 2855 ire_dep_verify(parent); 2856 #endif 2857 2858 next = ire->ire_dep_sib_next; 2859 if (next != NULL) 2860 next->ire_dep_sib_ptpn = ire->ire_dep_sib_ptpn; 2861 2862 ASSERT(*(ire->ire_dep_sib_ptpn) == ire); 2863 *(ire->ire_dep_sib_ptpn) = ire->ire_dep_sib_next; 2864 2865 ire->ire_dep_sib_ptpn = NULL; 2866 ire->ire_dep_sib_next = NULL; 2867 2868 mutex_enter(&ire->ire_lock); 2869 parent = ire->ire_dep_parent; 2870 ire->ire_dep_parent = NULL; 2871 mutex_exit(&ire->ire_lock); 2872 2873 /* 2874 * Make sure all our children, grandchildren, etc set 2875 * ire_dep_parent_generation to IRE_GENERATION_VERIFY since 2876 * we can no longer guarantee than the children have a current 2877 * ire_nce_cache and ire_nexthop_ill(). 2878 */ 2879 if (ire->ire_dep_children != NULL) 2880 ire_dep_invalidate_children(ire->ire_dep_children); 2881 2882 /* 2883 * Since the parent is gone we make sure we clear ire_nce_cache. 2884 * We can clear it under ire_lock even if the IRE is used 2885 */ 2886 mutex_enter(&ire->ire_lock); 2887 nce = ire->ire_nce_cache; 2888 ire->ire_nce_cache = NULL; 2889 mutex_exit(&ire->ire_lock); 2890 if (nce != NULL) 2891 nce_refrele(nce); 2892 2893 #ifdef DEBUG 2894 ire_dep_verify(ire); 2895 ire_dep_verify(parent); 2896 #endif 2897 2898 ire_refrele_notr(parent); 2899 ire_refrele_notr(ire); 2900 } 2901 2902 /* 2903 * Insert the child in the linkage of the parent 2904 */ 2905 static void 2906 ire_dep_parent_insert(ire_t *child, ire_t *parent) 2907 { 2908 ip_stack_t *ipst = child->ire_ipst; 2909 ire_t *next; 2910 2911 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 2912 ASSERT(child->ire_dep_parent == NULL); 2913 2914 #ifdef DEBUG 2915 ire_dep_verify(child); 2916 ire_dep_verify(parent); 2917 #endif 2918 /* No parents => no siblings */ 2919 ASSERT(child->ire_dep_sib_ptpn == NULL); 2920 ASSERT(child->ire_dep_sib_next == NULL); 2921 2922 ire_refhold_notr(parent); 2923 ire_refhold_notr(child); 2924 2925 /* Head insertion */ 2926 next = parent->ire_dep_children; 2927 if (next != NULL) { 2928 ASSERT(next->ire_dep_sib_ptpn == &(parent->ire_dep_children)); 2929 child->ire_dep_sib_next = next; 2930 next->ire_dep_sib_ptpn = &(child->ire_dep_sib_next); 2931 } 2932 parent->ire_dep_children = child; 2933 child->ire_dep_sib_ptpn = &(parent->ire_dep_children); 2934 2935 mutex_enter(&child->ire_lock); 2936 child->ire_dep_parent = parent; 2937 mutex_exit(&child->ire_lock); 2938 2939 #ifdef DEBUG 2940 ire_dep_verify(child); 2941 ire_dep_verify(parent); 2942 #endif 2943 } 2944 2945 2946 /* 2947 * Given count worth of ires and generations, build ire_dep_* relationships 2948 * from ires[0] to ires[count-1]. Record generations[i+1] in 2949 * ire_dep_parent_generation for ires[i]. 2950 * We graft onto an existing parent chain by making sure that we don't 2951 * touch ire_dep_parent for ires[count-1]. 2952 * 2953 * We check for any condemned ire_generation count and return B_FALSE in 2954 * that case so that the caller can tear it apart. 2955 * 2956 * Note that generations[0] is not used. Caller handles that. 2957 */ 2958 boolean_t 2959 ire_dep_build(ire_t *ires[], uint_t generations[], uint_t count) 2960 { 2961 ire_t *ire = ires[0]; 2962 ip_stack_t *ipst; 2963 uint_t i; 2964 2965 ASSERT(count > 0); 2966 if (count == 1) { 2967 /* No work to do */ 2968 return (B_TRUE); 2969 } 2970 ipst = ire->ire_ipst; 2971 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 2972 /* 2973 * Do not remove the linkage for any existing parent chain i.e., 2974 * ires[count-1] is left alone. 2975 */ 2976 for (i = 0; i < count-1; i++) { 2977 /* Remove existing parent if we need to change it */ 2978 if (ires[i]->ire_dep_parent != NULL && 2979 ires[i]->ire_dep_parent != ires[i+1]) 2980 ire_dep_remove(ires[i]); 2981 } 2982 2983 for (i = 0; i < count - 1; i++) { 2984 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || 2985 ires[i]->ire_ipversion == IPV6_VERSION); 2986 /* Does it need to change? */ 2987 if (ires[i]->ire_dep_parent != ires[i+1]) 2988 ire_dep_parent_insert(ires[i], ires[i+1]); 2989 2990 mutex_enter(&ires[i+1]->ire_lock); 2991 if (IRE_IS_CONDEMNED(ires[i+1])) { 2992 mutex_exit(&ires[i+1]->ire_lock); 2993 rw_exit(&ipst->ips_ire_dep_lock); 2994 return (B_FALSE); 2995 } 2996 mutex_exit(&ires[i+1]->ire_lock); 2997 2998 mutex_enter(&ires[i]->ire_lock); 2999 ires[i]->ire_dep_parent_generation = generations[i+1]; 3000 mutex_exit(&ires[i]->ire_lock); 3001 } 3002 rw_exit(&ipst->ips_ire_dep_lock); 3003 return (B_TRUE); 3004 } 3005 3006 /* 3007 * Given count worth of ires, unbuild ire_dep_* relationships 3008 * from ires[0] to ires[count-1]. 3009 */ 3010 void 3011 ire_dep_unbuild(ire_t *ires[], uint_t count) 3012 { 3013 ip_stack_t *ipst; 3014 uint_t i; 3015 3016 if (count == 0) { 3017 /* No work to do */ 3018 return; 3019 } 3020 ipst = ires[0]->ire_ipst; 3021 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 3022 for (i = 0; i < count; i++) { 3023 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || 3024 ires[i]->ire_ipversion == IPV6_VERSION); 3025 if (ires[i]->ire_dep_parent != NULL) 3026 ire_dep_remove(ires[i]); 3027 mutex_enter(&ires[i]->ire_lock); 3028 ires[i]->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3029 mutex_exit(&ires[i]->ire_lock); 3030 } 3031 rw_exit(&ipst->ips_ire_dep_lock); 3032 } 3033 3034 /* 3035 * Both the forwarding and the outbound code paths can trip on 3036 * a condemned NCE, in which case we call this function. 3037 * We have two different behaviors: if the NCE was UNREACHABLE 3038 * it is an indication that something failed. In that case 3039 * we see if we should look for a different IRE (for example, 3040 * delete any matching redirect IRE, or try a different 3041 * IRE_DEFAULT (ECMP)). We mark the ire as bad so a hopefully 3042 * different IRE will be picked next time we send/forward. 3043 * 3044 * If we are called by the output path then fail_if_better is set 3045 * and we return NULL if there could be a better IRE. This is because the 3046 * output path retries the IRE lookup. (The input/forward path can not retry.) 3047 * 3048 * If the NCE was not unreachable then we pick/allocate a 3049 * new (most likely ND_INITIAL) NCE and proceed with it. 3050 * 3051 * ipha/ip6h are needed for multicast packets; ipha needs to be 3052 * set for IPv4 and ip6h needs to be set for IPv6 packets. 3053 */ 3054 nce_t * 3055 ire_handle_condemned_nce(nce_t *nce, ire_t *ire, ipha_t *ipha, ip6_t *ip6h, 3056 boolean_t fail_if_better) 3057 { 3058 if (nce->nce_common->ncec_state == ND_UNREACHABLE) { 3059 if (ire_no_good(ire) && fail_if_better) { 3060 /* 3061 * Did some changes, or ECMP likely to exist. 3062 * Make ip_output look for a different IRE 3063 */ 3064 return (NULL); 3065 } 3066 } 3067 if (ire_revalidate_nce(ire) == ENETUNREACH) { 3068 /* The ire_dep_parent chain went bad, or no memory? */ 3069 (void) ire_no_good(ire); 3070 return (NULL); 3071 } 3072 if (ire->ire_ipversion == IPV4_VERSION) { 3073 ASSERT(ipha != NULL); 3074 nce = ire_to_nce(ire, ipha->ipha_dst, NULL); 3075 } else { 3076 ASSERT(ip6h != NULL); 3077 nce = ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst); 3078 } 3079 3080 if (nce == NULL) 3081 return (NULL); 3082 if (nce->nce_is_condemned) { 3083 nce_refrele(nce); 3084 return (NULL); 3085 } 3086 return (nce); 3087 } 3088 3089 /* 3090 * The caller has found that the ire is bad, either due to a reference to an NCE 3091 * in ND_UNREACHABLE state, or a MULTIRT route whose gateway can't be resolved. 3092 * We update things so a subsequent attempt to send to the destination 3093 * is likely to find different IRE, or that a new NCE would be created. 3094 * 3095 * Returns B_TRUE if it is likely that a subsequent ire_ftable_lookup would 3096 * find a different route (either due to having deleted a redirect, or there 3097 * being ECMP routes.) 3098 * 3099 * If we have a redirect (RTF_DYNAMIC) we delete it. 3100 * Otherwise we increment ire_badcnt and increment the generation number so 3101 * that a cached ixa_ire will redo the route selection. ire_badcnt is taken 3102 * into account in the route selection when we have multiple choices (multiple 3103 * default routes or ECMP in general). 3104 * Any time ip_select_route find an ire with a condemned ire_nce_cache 3105 * (e.g., if no equal cost route to the bad one) ip_select_route will make 3106 * sure the NCE is revalidated to avoid getting stuck on a 3107 * NCE_F_CONDMNED ncec that caused ire_no_good to be called. 3108 */ 3109 boolean_t 3110 ire_no_good(ire_t *ire) 3111 { 3112 ip_stack_t *ipst = ire->ire_ipst; 3113 ire_t *ire2; 3114 nce_t *nce; 3115 3116 if (ire->ire_flags & RTF_DYNAMIC) { 3117 ire_delete(ire); 3118 return (B_TRUE); 3119 } 3120 if (ire->ire_flags & RTF_INDIRECT) { 3121 /* Check if next IRE is a redirect */ 3122 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3123 if (ire->ire_dep_parent != NULL && 3124 (ire->ire_dep_parent->ire_flags & RTF_DYNAMIC)) { 3125 ire2 = ire->ire_dep_parent; 3126 ire_refhold(ire2); 3127 } else { 3128 ire2 = NULL; 3129 } 3130 rw_exit(&ipst->ips_ire_dep_lock); 3131 if (ire2 != NULL) { 3132 ire_delete(ire2); 3133 ire_refrele(ire2); 3134 return (B_TRUE); 3135 } 3136 } 3137 /* 3138 * No redirect involved. Increment badcnt so that if we have ECMP 3139 * routes we are likely to pick a different one for the next packet. 3140 * 3141 * If the NCE is unreachable and condemned we should drop the reference 3142 * to it so that a new NCE can be created. 3143 * 3144 * Finally we increment the generation number so that any ixa_ire 3145 * cache will be revalidated. 3146 */ 3147 mutex_enter(&ire->ire_lock); 3148 ire->ire_badcnt++; 3149 ire->ire_last_badcnt = TICK_TO_SEC(ddi_get_lbolt64()); 3150 nce = ire->ire_nce_cache; 3151 if (nce != NULL && nce->nce_is_condemned && 3152 nce->nce_common->ncec_state == ND_UNREACHABLE) 3153 ire->ire_nce_cache = NULL; 3154 else 3155 nce = NULL; 3156 mutex_exit(&ire->ire_lock); 3157 if (nce != NULL) 3158 nce_refrele(nce); 3159 3160 ire_increment_generation(ire); 3161 ire_dep_incr_generation(ire); 3162 3163 return (ire->ire_bucket->irb_ire_cnt > 1); 3164 } 3165 3166 /* 3167 * Walk ire_dep_parent chain and validate that ire_dep_parent->ire_generation == 3168 * ire_dep_parent_generation. 3169 * If they all match we just return ire_generation from the topmost IRE. 3170 * Otherwise we propagate the mismatch by setting all ire_dep_parent_generation 3171 * above the mismatch to IRE_GENERATION_VERIFY and also returning 3172 * IRE_GENERATION_VERIFY. 3173 */ 3174 uint_t 3175 ire_dep_validate_generations(ire_t *ire) 3176 { 3177 ip_stack_t *ipst = ire->ire_ipst; 3178 uint_t generation; 3179 ire_t *ire1; 3180 3181 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3182 generation = ire->ire_generation; /* Assuming things match */ 3183 for (ire1 = ire; ire1 != NULL; ire1 = ire1->ire_dep_parent) { 3184 ASSERT(ire1->ire_ipversion == IPV4_VERSION || 3185 ire1->ire_ipversion == IPV6_VERSION); 3186 if (ire1->ire_dep_parent == NULL) 3187 break; 3188 if (ire1->ire_dep_parent_generation != 3189 ire1->ire_dep_parent->ire_generation) 3190 goto mismatch; 3191 } 3192 rw_exit(&ipst->ips_ire_dep_lock); 3193 return (generation); 3194 3195 mismatch: 3196 generation = IRE_GENERATION_VERIFY; 3197 /* Fill from top down to the mismatch with _VERIFY */ 3198 while (ire != ire1) { 3199 ASSERT(ire->ire_ipversion == IPV4_VERSION || 3200 ire->ire_ipversion == IPV6_VERSION); 3201 mutex_enter(&ire->ire_lock); 3202 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3203 mutex_exit(&ire->ire_lock); 3204 ire = ire->ire_dep_parent; 3205 } 3206 rw_exit(&ipst->ips_ire_dep_lock); 3207 return (generation); 3208 } 3209 3210 /* 3211 * Used when we need to return an ire with ire_dep_parent, but we 3212 * know the chain is invalid for instance we didn't create an IRE_IF_CLONE 3213 * Using IRE_GENERATION_VERIFY means that next time we'll redo the 3214 * recursive lookup. 3215 */ 3216 void 3217 ire_dep_invalidate_generations(ire_t *ire) 3218 { 3219 ip_stack_t *ipst = ire->ire_ipst; 3220 3221 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3222 while (ire != NULL) { 3223 ASSERT(ire->ire_ipversion == IPV4_VERSION || 3224 ire->ire_ipversion == IPV6_VERSION); 3225 mutex_enter(&ire->ire_lock); 3226 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3227 mutex_exit(&ire->ire_lock); 3228 ire = ire->ire_dep_parent; 3229 } 3230 rw_exit(&ipst->ips_ire_dep_lock); 3231 } 3232 3233 /* Set _VERIFY ire_dep_parent_generation for all children recursively */ 3234 static void 3235 ire_dep_invalidate_children(ire_t *child) 3236 { 3237 ip_stack_t *ipst = child->ire_ipst; 3238 3239 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 3240 /* Depth first */ 3241 if (child->ire_dep_children != NULL) 3242 ire_dep_invalidate_children(child->ire_dep_children); 3243 3244 while (child != NULL) { 3245 mutex_enter(&child->ire_lock); 3246 child->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3247 mutex_exit(&child->ire_lock); 3248 child = child->ire_dep_sib_next; 3249 } 3250 } 3251 3252 static void 3253 ire_dep_increment_children(ire_t *child) 3254 { 3255 ip_stack_t *ipst = child->ire_ipst; 3256 3257 ASSERT(RW_READ_HELD(&ipst->ips_ire_dep_lock)); 3258 /* Depth first */ 3259 if (child->ire_dep_children != NULL) 3260 ire_dep_increment_children(child->ire_dep_children); 3261 3262 while (child != NULL) { 3263 if (!IRE_IS_CONDEMNED(child)) 3264 ire_increment_generation(child); 3265 child = child->ire_dep_sib_next; 3266 } 3267 } 3268 3269 /* 3270 * Walk all the children of this ire recursively and increment their 3271 * generation number. 3272 */ 3273 static void 3274 ire_dep_incr_generation_locked(ire_t *parent) 3275 { 3276 ASSERT(RW_READ_HELD(&parent->ire_ipst->ips_ire_dep_lock)); 3277 if (parent->ire_dep_children != NULL) 3278 ire_dep_increment_children(parent->ire_dep_children); 3279 } 3280 3281 void 3282 ire_dep_incr_generation(ire_t *parent) 3283 { 3284 ip_stack_t *ipst = parent->ire_ipst; 3285 3286 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3287 ire_dep_incr_generation_locked(parent); 3288 rw_exit(&ipst->ips_ire_dep_lock); 3289 } 3290 3291 /* 3292 * Get a new ire_nce_cache for this IRE as well as its nexthop. 3293 * Returns zero if it succeeds. Can fail due to lack of memory or when 3294 * the route has become unreachable. Returns ENOMEM and ENETUNREACH in those 3295 * cases. 3296 * 3297 * In the in.mpathd case, the ire will have ire_testhidden 3298 * set; so we should create the ncec for the underlying ill. 3299 * 3300 * Note that the error returned by ire_revalidate_nce() is ignored by most 3301 * callers except ire_handle_condemned_nce(), which handles the ENETUNREACH 3302 * error to mark potentially bad ire's. For all the other callers, an 3303 * error return could indicate a transient condition like ENOMEM, or could 3304 * be the result of an interface that is going down/unplumbing. In the former 3305 * case (transient error), we would leave the old stale ire/ire_nce_cache 3306 * in place, and possibly use incorrect link-layer information to send packets 3307 * but would eventually recover. In the latter case (ill down/replumb), 3308 * ire_revalidate_nce() might return a condemned nce back, but we would then 3309 * recover in the packet output path. 3310 */ 3311 int 3312 ire_revalidate_nce(ire_t *ire) 3313 { 3314 nce_t *nce, *old_nce; 3315 ire_t *nexthop; 3316 3317 /* 3318 * For multicast we conceptually have an NCE but we don't store it 3319 * in ire_nce_cache; when ire_to_nce is called we allocate the nce. 3320 */ 3321 if (ire->ire_type & IRE_MULTICAST) 3322 return (0); 3323 3324 /* ire_testhidden should only be set on under-interfaces */ 3325 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); 3326 3327 nexthop = ire_nexthop(ire); 3328 if (nexthop == NULL) { 3329 /* The route is potentially bad */ 3330 (void) ire_no_good(ire); 3331 return (ENETUNREACH); 3332 } 3333 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3334 ASSERT(ire->ire_ill != NULL); 3335 3336 if (ire->ire_ipversion == IPV4_VERSION) 3337 nce = nce_lookup_v4(ire->ire_ill, &ire->ire_addr); 3338 else 3339 nce = nce_lookup_v6(ire->ire_ill, &ire->ire_addr_v6); 3340 } else { 3341 ASSERT(nexthop->ire_type & IRE_ONLINK); 3342 if (ire->ire_ipversion == IPV4_VERSION) { 3343 nce = arp_nce_init(nexthop->ire_ill, nexthop->ire_addr, 3344 nexthop->ire_type); 3345 } else { 3346 nce = ndp_nce_init(nexthop->ire_ill, 3347 &nexthop->ire_addr_v6, nexthop->ire_type); 3348 } 3349 } 3350 if (nce == NULL) { 3351 /* 3352 * Leave the old stale one in place to avoid a NULL 3353 * ire_nce_cache. 3354 */ 3355 ire_refrele(nexthop); 3356 return (ENOMEM); 3357 } 3358 3359 if (nexthop != ire) { 3360 /* Update the nexthop ire */ 3361 mutex_enter(&nexthop->ire_lock); 3362 old_nce = nexthop->ire_nce_cache; 3363 if (!IRE_IS_CONDEMNED(nexthop)) { 3364 nce_refhold(nce); 3365 nexthop->ire_nce_cache = nce; 3366 } else { 3367 nexthop->ire_nce_cache = NULL; 3368 } 3369 mutex_exit(&nexthop->ire_lock); 3370 if (old_nce != NULL) 3371 nce_refrele(old_nce); 3372 } 3373 ire_refrele(nexthop); 3374 3375 mutex_enter(&ire->ire_lock); 3376 old_nce = ire->ire_nce_cache; 3377 if (!IRE_IS_CONDEMNED(ire)) { 3378 nce_refhold(nce); 3379 ire->ire_nce_cache = nce; 3380 } else { 3381 ire->ire_nce_cache = NULL; 3382 } 3383 mutex_exit(&ire->ire_lock); 3384 if (old_nce != NULL) 3385 nce_refrele(old_nce); 3386 3387 nce_refrele(nce); 3388 return (0); 3389 } 3390 3391 /* 3392 * Get a held nce for a given ire. 3393 * In the common case this is just from ire_nce_cache. 3394 * For IRE_MULTICAST this needs to do an explicit lookup since we do not 3395 * have an IRE_MULTICAST per address. 3396 * Note that this explicitly returns CONDEMNED NCEs. The caller needs those 3397 * so they can check whether the NCE went unreachable (as opposed to was 3398 * condemned for some other reason). 3399 */ 3400 nce_t * 3401 ire_to_nce(ire_t *ire, ipaddr_t v4nexthop, const in6_addr_t *v6nexthop) 3402 { 3403 nce_t *nce; 3404 3405 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 3406 return (NULL); 3407 3408 /* ire_testhidden should only be set on under-interfaces */ 3409 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); 3410 3411 mutex_enter(&ire->ire_lock); 3412 nce = ire->ire_nce_cache; 3413 if (nce != NULL) { 3414 nce_refhold(nce); 3415 mutex_exit(&ire->ire_lock); 3416 return (nce); 3417 } 3418 mutex_exit(&ire->ire_lock); 3419 3420 if (ire->ire_type & IRE_MULTICAST) { 3421 ASSERT(ire->ire_ill != NULL); 3422 3423 if (ire->ire_ipversion == IPV4_VERSION) { 3424 ASSERT(v6nexthop == NULL); 3425 3426 nce = arp_nce_init(ire->ire_ill, v4nexthop, 3427 ire->ire_type); 3428 } else { 3429 ASSERT(v6nexthop != NULL); 3430 ASSERT(v4nexthop == 0); 3431 nce = ndp_nce_init(ire->ire_ill, v6nexthop, 3432 ire->ire_type); 3433 } 3434 return (nce); 3435 } 3436 return (NULL); 3437 } 3438 3439 nce_t * 3440 ire_to_nce_pkt(ire_t *ire, mblk_t *mp) 3441 { 3442 ipha_t *ipha; 3443 ip6_t *ip6h; 3444 3445 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 3446 ipha = (ipha_t *)mp->b_rptr; 3447 return (ire_to_nce(ire, ipha->ipha_dst, NULL)); 3448 } else { 3449 ip6h = (ip6_t *)mp->b_rptr; 3450 return (ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst)); 3451 } 3452 } 3453 3454 /* 3455 * Given an IRE_INTERFACE (that matches more than one address) create 3456 * and return an IRE_IF_CLONE for the specific address. 3457 * Return the generation number. 3458 * Returns NULL is no memory for the IRE. 3459 * Handles both IPv4 and IPv6. 3460 */ 3461 ire_t * 3462 ire_create_if_clone(ire_t *ire_if, const in6_addr_t *addr, uint_t *generationp) 3463 { 3464 ire_t *ire; 3465 ire_t *nire; 3466 3467 if (ire_if->ire_ipversion == IPV4_VERSION) { 3468 ipaddr_t v4addr; 3469 ipaddr_t mask = IP_HOST_MASK; 3470 3471 ASSERT(IN6_IS_ADDR_V4MAPPED(addr)); 3472 IN6_V4MAPPED_TO_IPADDR(addr, v4addr); 3473 3474 ire = ire_create( 3475 (uchar_t *)&v4addr, /* dest address */ 3476 (uchar_t *)&mask, /* mask */ 3477 (uchar_t *)&ire_if->ire_gateway_addr, 3478 IRE_IF_CLONE, /* IRE type */ 3479 ire_if->ire_ill, 3480 ire_if->ire_zoneid, 3481 ire_if->ire_flags | RTF_HOST, 3482 NULL, /* No security attr for IRE_IF_ALL */ 3483 ire_if->ire_ipst); 3484 } else { 3485 ASSERT(!IN6_IS_ADDR_V4MAPPED(addr)); 3486 ire = ire_create_v6( 3487 addr, /* dest address */ 3488 &ipv6_all_ones, /* mask */ 3489 &ire_if->ire_gateway_addr_v6, /* gateway addr */ 3490 IRE_IF_CLONE, /* IRE type */ 3491 ire_if->ire_ill, 3492 ire_if->ire_zoneid, 3493 ire_if->ire_flags | RTF_HOST, 3494 NULL, /* No security attr for IRE_IF_ALL */ 3495 ire_if->ire_ipst); 3496 } 3497 if (ire == NULL) 3498 return (NULL); 3499 3500 /* Take the metrics, in particular the mtu, from the IRE_IF */ 3501 ire->ire_metrics = ire_if->ire_metrics; 3502 3503 nire = ire_add(ire); 3504 if (nire == NULL) /* Some failure */ 3505 return (NULL); 3506 3507 if (generationp != NULL) 3508 *generationp = nire->ire_generation; 3509 3510 /* 3511 * Make sure races don't add a duplicate by 3512 * catching the case when an identical was returned. 3513 */ 3514 if (nire != ire) { 3515 ASSERT(nire->ire_identical_ref > 1); 3516 ire_delete(nire); 3517 } 3518 return (nire); 3519 } 3520 3521 /* 3522 * The argument is an IRE_INTERFACE. Delete all of IRE_IF_CLONE in the 3523 * ire_dep_children (just walk the ire_dep_sib_next since they are all 3524 * immediate children.) 3525 * Since we hold a lock while we remove them we need to defer the actual 3526 * calls to ire_delete() until we have dropped the lock. This makes things 3527 * less efficient since we restart at the top after dropping the lock. But 3528 * we only run when an IRE_INTERFACE is deleted which is infrquent. 3529 * 3530 * Note that ire_dep_children can be any mixture of offlink routes and 3531 * IRE_IF_CLONE entries. 3532 */ 3533 void 3534 ire_dep_delete_if_clone(ire_t *parent) 3535 { 3536 ip_stack_t *ipst = parent->ire_ipst; 3537 ire_t *child, *next; 3538 3539 restart: 3540 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3541 if (parent->ire_dep_children == NULL) { 3542 rw_exit(&ipst->ips_ire_dep_lock); 3543 return; 3544 } 3545 child = parent->ire_dep_children; 3546 while (child != NULL) { 3547 next = child->ire_dep_sib_next; 3548 if ((child->ire_type & IRE_IF_CLONE) && 3549 !IRE_IS_CONDEMNED(child)) { 3550 ire_refhold(child); 3551 rw_exit(&ipst->ips_ire_dep_lock); 3552 ire_delete(child); 3553 ASSERT(IRE_IS_CONDEMNED(child)); 3554 ire_refrele(child); 3555 goto restart; 3556 } 3557 child = next; 3558 } 3559 rw_exit(&ipst->ips_ire_dep_lock); 3560 } 3561 3562 /* 3563 * ire_pref() is used in recursive route-resolution for a destination to 3564 * determine the preference of an ire, where "preference" is determined 3565 * based on the level of indirection to the destination of the ire. 3566 * A higher preference indicates that fewer lookups are needed to complete 3567 * recursive route lookup. Thus 3568 * ire_pref(RTF_INDIRECT) < ire_pref(IRE_IF_RESOLVER) < ire_pref(IRE_PREF_CLONE) 3569 */ 3570 int 3571 ire_pref(ire_t *ire) 3572 { 3573 if (ire->ire_flags & RTF_INDIRECT) 3574 return (1); 3575 if (ire->ire_type & IRE_OFFLINK) 3576 return (2); 3577 if (ire->ire_type & (IRE_IF_RESOLVER|IRE_IF_NORESOLVER)) 3578 return (3); 3579 if (ire->ire_type & IRE_IF_CLONE) 3580 return (4); 3581 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST)) 3582 return (5); 3583 return (-1); /* unknown ire_type */ 3584 } 3585 3586 /* 3587 * In the preferred/strict src multihoming modes, unbound routes (i.e., 3588 * ire_t entries with ire_unbound set to B_TRUE) are bound to an interface 3589 * by selecting the first available interface that has an interface route for 3590 * the ire_gateway. If that interface is subsequently brought down, ill_downi() 3591 * will call ire_rebind() so that the unbound route can be bound to some other 3592 * matching interface thereby preserving the intended reachability information 3593 * from the original unbound route. 3594 */ 3595 void 3596 ire_rebind(ire_t *ire) 3597 { 3598 ire_t *gw_ire, *new_ire; 3599 int match_flags = MATCH_IRE_TYPE; 3600 ill_t *gw_ill; 3601 boolean_t isv6 = (ire->ire_ipversion == IPV6_VERSION); 3602 ip_stack_t *ipst = ire->ire_ipst; 3603 3604 ASSERT(ire->ire_unbound); 3605 again: 3606 if (isv6) { 3607 gw_ire = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 0, 0, 3608 IRE_INTERFACE, NULL, ALL_ZONES, NULL, match_flags, 0, 3609 ipst, NULL); 3610 } else { 3611 gw_ire = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 3612 IRE_INTERFACE, NULL, ALL_ZONES, NULL, match_flags, 0, 3613 ipst, NULL); 3614 } 3615 if (gw_ire == NULL) { 3616 /* see comments in ip_rt_add[_v6]() for IPMP */ 3617 if (match_flags & MATCH_IRE_TESTHIDDEN) 3618 return; 3619 3620 match_flags |= MATCH_IRE_TESTHIDDEN; 3621 goto again; 3622 } 3623 gw_ill = gw_ire->ire_ill; 3624 if (isv6) { 3625 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 3626 &ire->ire_gateway_addr_v6, ire->ire_type, gw_ill, 3627 ire->ire_zoneid, ire->ire_flags, NULL, ipst); 3628 } else { 3629 new_ire = ire_create((uchar_t *)&ire->ire_addr, 3630 (uchar_t *)&ire->ire_mask, 3631 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, gw_ill, 3632 ire->ire_zoneid, ire->ire_flags, NULL, ipst); 3633 } 3634 ire_refrele(gw_ire); 3635 if (new_ire == NULL) 3636 return; 3637 new_ire->ire_unbound = B_TRUE; 3638 new_ire = ire_add(new_ire); 3639 if (new_ire != NULL) 3640 ire_refrele(new_ire); 3641 } 3642