1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains routines that manipulate Internet Routing Entries (IREs). 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/stropts.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/ddi.h> 37 #include <sys/cmn_err.h> 38 #include <sys/policy.h> 39 40 #include <sys/systm.h> 41 #include <sys/kmem.h> 42 #include <sys/param.h> 43 #include <sys/socket.h> 44 #include <net/if.h> 45 #include <net/route.h> 46 #include <netinet/in.h> 47 #include <net/if_dl.h> 48 #include <netinet/ip6.h> 49 #include <netinet/icmp6.h> 50 51 #include <inet/common.h> 52 #include <inet/mi.h> 53 #include <inet/ip.h> 54 #include <inet/ip6.h> 55 #include <inet/ip_ndp.h> 56 #include <inet/arp.h> 57 #include <inet/ip_if.h> 58 #include <inet/ip_ire.h> 59 #include <inet/ip_ftable.h> 60 #include <inet/ip_rts.h> 61 #include <inet/nd.h> 62 #include <inet/tunables.h> 63 64 #include <inet/tcp.h> 65 #include <inet/ipclassifier.h> 66 #include <sys/zone.h> 67 #include <sys/cpuvar.h> 68 69 #include <sys/tsol/label.h> 70 #include <sys/tsol/tnet.h> 71 72 struct kmem_cache *rt_entry_cache; 73 74 typedef struct nce_clookup_s { 75 ipaddr_t ncecl_addr; 76 boolean_t ncecl_found; 77 } nce_clookup_t; 78 79 /* 80 * Synchronization notes: 81 * 82 * The fields of the ire_t struct are protected in the following way : 83 * 84 * ire_next/ire_ptpn 85 * 86 * - bucket lock of the forwarding table in which is ire stored. 87 * 88 * ire_ill, ire_u *except* ire_gateway_addr[v6], ire_mask, 89 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, 90 * ire_bucket 91 * 92 * - Set in ire_create_v4/v6 and never changes after that. Thus, 93 * we don't need a lock whenever these fields are accessed. 94 * 95 * - ire_bucket and ire_masklen (also set in ire_create) is set in 96 * ire_add before inserting in the bucket and never 97 * changes after that. Thus we don't need a lock whenever these 98 * fields are accessed. 99 * 100 * ire_gateway_addr_v4[v6] 101 * 102 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 103 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 104 * it assumed to be atomic and hence the other parts of the code 105 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 106 * and hence any access to it uses ire_lock to get/set the right value. 107 * 108 * ire_refcnt, ire_identical_ref 109 * 110 * - Updated atomically using atomic_add_32 111 * 112 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 113 * 114 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 115 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 116 * 117 * ire_generation 118 * - Under ire_lock 119 * 120 * ire_nce_cache 121 * - Under ire_lock 122 * 123 * ire_dep_parent (To next IRE in recursive lookup chain) 124 * - Under ips_ire_dep_lock. Write held when modifying. Read held when 125 * walking. We also hold ire_lock when modifying to allow the data path 126 * to only acquire ire_lock. 127 * 128 * ire_dep_parent_generation (Generation number from ire_dep_parent) 129 * - Under ips_ire_dep_lock and/or ire_lock. (A read claim on the dep_lock 130 * and ire_lock held when modifying) 131 * 132 * ire_dep_children (From parent to first child) 133 * ire_dep_sib_next (linked list of siblings) 134 * ire_dep_sib_ptpn (linked list of siblings) 135 * - Under ips_ire_dep_lock. Write held when modifying. Read held when 136 * walking. 137 * 138 * As we always hold the bucket locks in all the places while accessing 139 * the above values, it is natural to use them for protecting them. 140 * 141 * We have a forwarding table for IPv4 and IPv6. The IPv6 forwarding table 142 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t 143 * structures. ip_forwarding_table_v6 is allocated dynamically in 144 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 145 * initializing the same bucket. Once a bucket is initialized, it is never 146 * de-alloacted. This assumption enables us to access 147 * ip_forwarding_table_v6[i] without any locks. 148 * 149 * The forwarding table for IPv4 is a radix tree whose leaves 150 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t 151 * for IPv4 is dynamically allocated and freed. 152 * 153 * Each irb_t - ire bucket structure has a lock to protect 154 * a bucket and the ires residing in the bucket have a back pointer to 155 * the bucket structure. It also has a reference count for the number 156 * of threads walking the bucket - irb_refcnt which is bumped up 157 * using the irb_refhold function. The flags irb_marks can be 158 * set to IRB_MARK_CONDEMNED indicating that there are some ires 159 * in this bucket that are IRE_IS_CONDEMNED and the 160 * last thread to leave the bucket should delete the ires. Usually 161 * this is done by the irb_refrele function which is used to decrement 162 * the reference count on a bucket. See comments above irb_t structure 163 * definition in ip.h for further details. 164 * 165 * The ire_refhold/ire_refrele functions operate on the ire which increments/ 166 * decrements the reference count, ire_refcnt, atomically on the ire. 167 * ire_refcnt is modified only using those functions. Operations on the IRE 168 * could be described as follows : 169 * 170 * CREATE an ire with reference count initialized to 1. 171 * 172 * ADDITION of an ire holds the bucket lock, checks for duplicates 173 * and then adds the ire. ire_add returns the ire after 174 * bumping up once more i.e the reference count is 2. This is to avoid 175 * an extra lookup in the functions calling ire_add which wants to 176 * work with the ire after adding. 177 * 178 * LOOKUP of an ire bumps up the reference count using ire_refhold 179 * function. It is valid to bump up the referece count of the IRE, 180 * after the lookup has returned an ire. Following are the lookup 181 * functions that return an HELD ire : 182 * 183 * ire_ftable_lookup[_v6], ire_lookup_multi_ill[_v6] 184 * 185 * DELETION of an ire holds the bucket lock, removes it from the list 186 * and then decrements the reference count for having removed from the list 187 * by using the ire_refrele function. If some other thread has looked up 188 * the ire, the reference count would have been bumped up and hence 189 * this ire will not be freed once deleted. It will be freed once the 190 * reference count drops to zero. 191 * 192 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 193 * lookups acquire the bucket lock as RW_READER. 194 * 195 * The general rule is to do the ire_refrele in the function 196 * that is passing the ire as an argument. 197 * 198 * In trying to locate ires the following points are to be noted. 199 * 200 * IRE_IS_CONDEMNED signifies that the ire has been logically deleted and is 201 * to be ignored when walking the ires using ire_next. 202 * 203 * Zones note: 204 * Walking IREs within a given zone also walks certain ires in other 205 * zones. This is done intentionally. IRE walks with a specified 206 * zoneid are used only when doing informational reports, and 207 * zone users want to see things that they can access. See block 208 * comment in ire_walk_ill_match(). 209 */ 210 211 /* 212 * The size of the forwarding table. We will make sure that it is a 213 * power of 2 in ip_ire_init(). 214 * Setable in /etc/system 215 */ 216 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 217 218 struct kmem_cache *ire_cache; 219 struct kmem_cache *ncec_cache; 220 struct kmem_cache *nce_cache; 221 222 static ire_t ire_null; 223 224 static ire_t *ire_add_v4(ire_t *ire); 225 static void ire_delete_v4(ire_t *ire); 226 static void ire_dep_invalidate_children(ire_t *child); 227 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 228 zoneid_t zoneid, ip_stack_t *); 229 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 230 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 231 #ifdef DEBUG 232 static void ire_trace_cleanup(const ire_t *); 233 #endif 234 static void ire_dep_incr_generation_locked(ire_t *); 235 236 /* 237 * Following are the functions to increment/decrement the reference 238 * count of the IREs and IRBs (ire bucket). 239 * 240 * 1) We bump up the reference count of an IRE to make sure that 241 * it does not get deleted and freed while we are using it. 242 * Typically all the lookup functions hold the bucket lock, 243 * and look for the IRE. If it finds an IRE, it bumps up the 244 * reference count before dropping the lock. Sometimes we *may* want 245 * to bump up the reference count after we *looked* up i.e without 246 * holding the bucket lock. So, the ire_refhold function does not assert 247 * on the bucket lock being held. Any thread trying to delete from 248 * the hash bucket can still do so but cannot free the IRE if 249 * ire_refcnt is not 0. 250 * 251 * 2) We bump up the reference count on the bucket where the IRE resides 252 * (IRB), when we want to prevent the IREs getting deleted from a given 253 * hash bucket. This makes life easier for ire_walk type functions which 254 * wants to walk the IRE list, call a function, but needs to drop 255 * the bucket lock to prevent recursive rw_enters. While the 256 * lock is dropped, the list could be changed by other threads or 257 * the same thread could end up deleting the ire or the ire pointed by 258 * ire_next. ire_refholding the ire or ire_next is not sufficient as 259 * a delete will still remove the ire from the bucket while we have 260 * dropped the lock and hence the ire_next would be NULL. Thus, we 261 * need a mechanism to prevent deletions from a given bucket. 262 * 263 * To prevent deletions, we bump up the reference count on the 264 * bucket. If the bucket is held, ire_delete just marks both 265 * the ire and irb as CONDEMNED. When the 266 * reference count on the bucket drops to zero, all the CONDEMNED ires 267 * are deleted. We don't have to bump up the reference count on the 268 * bucket if we are walking the bucket and never have to drop the bucket 269 * lock. Note that irb_refhold does not prevent addition of new ires 270 * in the list. It is okay because addition of new ires will not cause 271 * ire_next to point to freed memory. We do irb_refhold only when 272 * all of the 3 conditions are true : 273 * 274 * 1) The code needs to walk the IRE bucket from start to end. 275 * 2) It may have to drop the bucket lock sometimes while doing (1) 276 * 3) It does not want any ires to be deleted meanwhile. 277 */ 278 279 /* 280 * Bump up the reference count on the hash bucket - IRB to 281 * prevent ires from being deleted in this bucket. 282 */ 283 void 284 irb_refhold(irb_t *irb) 285 { 286 rw_enter(&irb->irb_lock, RW_WRITER); 287 irb->irb_refcnt++; 288 ASSERT(irb->irb_refcnt != 0); 289 rw_exit(&irb->irb_lock); 290 } 291 292 void 293 irb_refhold_locked(irb_t *irb) 294 { 295 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 296 irb->irb_refcnt++; 297 ASSERT(irb->irb_refcnt != 0); 298 } 299 300 /* 301 * Note: when IRB_MARK_DYNAMIC is not set the irb_t 302 * is statically allocated, so that when the irb_refcnt goes to 0, 303 * we simply clean up the ire list and continue. 304 */ 305 void 306 irb_refrele(irb_t *irb) 307 { 308 if (irb->irb_marks & IRB_MARK_DYNAMIC) { 309 irb_refrele_ftable(irb); 310 } else { 311 rw_enter(&irb->irb_lock, RW_WRITER); 312 ASSERT(irb->irb_refcnt != 0); 313 if (--irb->irb_refcnt == 0 && 314 (irb->irb_marks & IRB_MARK_CONDEMNED)) { 315 ire_t *ire_list; 316 317 ire_list = ire_unlink(irb); 318 rw_exit(&irb->irb_lock); 319 ASSERT(ire_list != NULL); 320 ire_cleanup(ire_list); 321 } else { 322 rw_exit(&irb->irb_lock); 323 } 324 } 325 } 326 327 328 /* 329 * Bump up the reference count on the IRE. We cannot assert that the 330 * bucket lock is being held as it is legal to bump up the reference 331 * count after the first lookup has returned the IRE without 332 * holding the lock. 333 */ 334 void 335 ire_refhold(ire_t *ire) 336 { 337 atomic_add_32(&(ire)->ire_refcnt, 1); 338 ASSERT((ire)->ire_refcnt != 0); 339 #ifdef DEBUG 340 ire_trace_ref(ire); 341 #endif 342 } 343 344 void 345 ire_refhold_notr(ire_t *ire) 346 { 347 atomic_add_32(&(ire)->ire_refcnt, 1); 348 ASSERT((ire)->ire_refcnt != 0); 349 } 350 351 void 352 ire_refhold_locked(ire_t *ire) 353 { 354 #ifdef DEBUG 355 ire_trace_ref(ire); 356 #endif 357 ire->ire_refcnt++; 358 } 359 360 /* 361 * Release a ref on an IRE. 362 * 363 * Must not be called while holding any locks. Otherwise if this is 364 * the last reference to be released there is a chance of recursive mutex 365 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 366 * to restart an ioctl. The one exception is when the caller is sure that 367 * this is not the last reference to be released. Eg. if the caller is 368 * sure that the ire has not been deleted and won't be deleted. 369 * 370 * In architectures e.g sun4u, where atomic_add_32_nv is just 371 * a cas, we need to maintain the right memory barrier semantics 372 * as that of mutex_exit i.e all the loads and stores should complete 373 * before the cas is executed. membar_exit() does that here. 374 */ 375 void 376 ire_refrele(ire_t *ire) 377 { 378 #ifdef DEBUG 379 ire_untrace_ref(ire); 380 #endif 381 ASSERT((ire)->ire_refcnt != 0); 382 membar_exit(); 383 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) 384 ire_inactive(ire); 385 } 386 387 void 388 ire_refrele_notr(ire_t *ire) 389 { 390 ASSERT((ire)->ire_refcnt != 0); 391 membar_exit(); 392 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) 393 ire_inactive(ire); 394 } 395 396 /* 397 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 398 * IOCTL[s]. The NO_REPLY form is used by TCP to tell IP that it is 399 * having problems reaching a particular destination. 400 * This will make IP consider alternate routes (e.g., when there are 401 * muliple default routes), and it will also make IP discard any (potentially) 402 * stale redirect. 403 * Management processes may want to use the version that generates a reply. 404 * 405 * With the use of NUD like behavior for IPv4/ARP in addition to IPv6 406 * this function shouldn't be necessary for IP to recover from a bad redirect, 407 * a bad default router (when there are multiple default routers), or 408 * a stale ND/ARP entry. But we retain it in any case. 409 * For instance, this is helpful when TCP suspects a failure before NUD does. 410 */ 411 int 412 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 413 { 414 uchar_t *addr_ucp; 415 uint_t ipversion; 416 sin_t *sin; 417 sin6_t *sin6; 418 ipaddr_t v4addr; 419 in6_addr_t v6addr; 420 ire_t *ire; 421 ipid_t *ipid; 422 zoneid_t zoneid; 423 ip_stack_t *ipst; 424 425 ASSERT(q->q_next == NULL); 426 zoneid = IPCL_ZONEID(Q_TO_CONN(q)); 427 ipst = CONNQ_TO_IPST(q); 428 429 /* 430 * Check privilege using the ioctl credential; if it is NULL 431 * then this is a kernel message and therefor privileged. 432 */ 433 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 434 return (EPERM); 435 436 ipid = (ipid_t *)mp->b_rptr; 437 438 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 439 ipid->ipid_addr_length); 440 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 441 return (EINVAL); 442 switch (ipid->ipid_addr_length) { 443 case sizeof (sin_t): 444 /* 445 * got complete (sockaddr) address - increment addr_ucp to point 446 * at the ip_addr field. 447 */ 448 sin = (sin_t *)addr_ucp; 449 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 450 ipversion = IPV4_VERSION; 451 break; 452 case sizeof (sin6_t): 453 /* 454 * got complete (sockaddr) address - increment addr_ucp to point 455 * at the ip_addr field. 456 */ 457 sin6 = (sin6_t *)addr_ucp; 458 addr_ucp = (uchar_t *)&sin6->sin6_addr; 459 ipversion = IPV6_VERSION; 460 break; 461 default: 462 return (EINVAL); 463 } 464 if (ipversion == IPV4_VERSION) { 465 /* Extract the destination address. */ 466 bcopy(addr_ucp, &v4addr, IP_ADDR_LEN); 467 468 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 469 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 470 } else { 471 /* Extract the destination address. */ 472 bcopy(addr_ucp, &v6addr, IPV6_ADDR_LEN); 473 474 ire = ire_ftable_lookup_v6(&v6addr, NULL, NULL, 0, NULL, 475 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 476 } 477 if (ire != NULL) { 478 if (ipversion == IPV4_VERSION) { 479 ip_rts_change(RTM_LOSING, ire->ire_addr, 480 ire->ire_gateway_addr, ire->ire_mask, 481 (Q_TO_CONN(q))->conn_laddr_v4, 0, 0, 0, 482 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 483 ire->ire_ipst); 484 } 485 (void) ire_no_good(ire); 486 ire_refrele(ire); 487 } 488 return (0); 489 } 490 491 /* 492 * Initialize the ire that is specific to IPv4 part and call 493 * ire_init_common to finish it. 494 * Returns zero or errno. 495 */ 496 int 497 ire_init_v4(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *gateway, 498 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, 499 tsol_gc_t *gc, ip_stack_t *ipst) 500 { 501 int error; 502 503 /* 504 * Reject IRE security attribute creation/initialization 505 * if system is not running in Trusted mode. 506 */ 507 if (gc != NULL && !is_system_labeled()) 508 return (EINVAL); 509 510 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 511 512 if (addr != NULL) 513 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 514 if (gateway != NULL) 515 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 516 517 /* Make sure we don't have stray values in some fields */ 518 switch (type) { 519 case IRE_LOOPBACK: 520 case IRE_HOST: 521 case IRE_BROADCAST: 522 case IRE_LOCAL: 523 case IRE_IF_CLONE: 524 ire->ire_mask = IP_HOST_MASK; 525 ire->ire_masklen = IPV4_ABITS; 526 break; 527 case IRE_PREFIX: 528 case IRE_DEFAULT: 529 case IRE_IF_RESOLVER: 530 case IRE_IF_NORESOLVER: 531 if (mask != NULL) { 532 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 533 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 534 } 535 break; 536 case IRE_MULTICAST: 537 case IRE_NOROUTE: 538 ASSERT(mask == NULL); 539 break; 540 default: 541 ASSERT(0); 542 return (EINVAL); 543 } 544 545 error = ire_init_common(ire, type, ill, zoneid, flags, IPV4_VERSION, 546 gc, ipst); 547 if (error != NULL) 548 return (error); 549 550 /* Determine which function pointers to use */ 551 ire->ire_postfragfn = ip_xmit; /* Common case */ 552 553 switch (ire->ire_type) { 554 case IRE_LOCAL: 555 ire->ire_sendfn = ire_send_local_v4; 556 ire->ire_recvfn = ire_recv_local_v4; 557 ASSERT(ire->ire_ill != NULL); 558 if (ire->ire_ill->ill_flags & ILLF_NOACCEPT) 559 ire->ire_recvfn = ire_recv_noaccept_v6; 560 break; 561 case IRE_LOOPBACK: 562 ire->ire_sendfn = ire_send_local_v4; 563 ire->ire_recvfn = ire_recv_loopback_v4; 564 break; 565 case IRE_BROADCAST: 566 ire->ire_postfragfn = ip_postfrag_loopcheck; 567 ire->ire_sendfn = ire_send_broadcast_v4; 568 ire->ire_recvfn = ire_recv_broadcast_v4; 569 break; 570 case IRE_MULTICAST: 571 ire->ire_postfragfn = ip_postfrag_loopcheck; 572 ire->ire_sendfn = ire_send_multicast_v4; 573 ire->ire_recvfn = ire_recv_multicast_v4; 574 break; 575 default: 576 /* 577 * For IRE_IF_ALL and IRE_OFFLINK we forward received 578 * packets by default. 579 */ 580 ire->ire_sendfn = ire_send_wire_v4; 581 ire->ire_recvfn = ire_recv_forward_v4; 582 break; 583 } 584 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 585 ire->ire_sendfn = ire_send_noroute_v4; 586 ire->ire_recvfn = ire_recv_noroute_v4; 587 } else if (ire->ire_flags & RTF_MULTIRT) { 588 ire->ire_postfragfn = ip_postfrag_multirt_v4; 589 ire->ire_sendfn = ire_send_multirt_v4; 590 /* Multirt receive of broadcast uses ire_recv_broadcast_v4 */ 591 if (ire->ire_type != IRE_BROADCAST) 592 ire->ire_recvfn = ire_recv_multirt_v4; 593 } 594 ire->ire_nce_capable = ire_determine_nce_capable(ire); 595 return (0); 596 } 597 598 /* 599 * Determine ire_nce_capable 600 */ 601 boolean_t 602 ire_determine_nce_capable(ire_t *ire) 603 { 604 int max_masklen; 605 606 if ((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 607 (ire->ire_type & IRE_MULTICAST)) 608 return (B_TRUE); 609 610 if (ire->ire_ipversion == IPV4_VERSION) 611 max_masklen = IPV4_ABITS; 612 else 613 max_masklen = IPV6_ABITS; 614 615 if ((ire->ire_type & IRE_ONLINK) && ire->ire_masklen == max_masklen) 616 return (B_TRUE); 617 return (B_FALSE); 618 } 619 620 /* 621 * ire_create is called to allocate and initialize a new IRE. 622 * 623 * NOTE : This is called as writer sometimes though not required 624 * by this function. 625 */ 626 ire_t * 627 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *gateway, 628 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, 629 ip_stack_t *ipst) 630 { 631 ire_t *ire; 632 int error; 633 634 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 635 if (ire == NULL) { 636 DTRACE_PROBE(kmem__cache__alloc); 637 return (NULL); 638 } 639 *ire = ire_null; 640 641 error = ire_init_v4(ire, addr, mask, gateway, type, ill, zoneid, flags, 642 gc, ipst); 643 if (error != 0) { 644 DTRACE_PROBE2(ire__init, ire_t *, ire, int, error); 645 kmem_cache_free(ire_cache, ire); 646 return (NULL); 647 } 648 return (ire); 649 } 650 651 /* 652 * Common to IPv4 and IPv6 653 * Returns zero or errno. 654 */ 655 int 656 ire_init_common(ire_t *ire, ushort_t type, ill_t *ill, zoneid_t zoneid, 657 uint_t flags, uchar_t ipversion, tsol_gc_t *gc, ip_stack_t *ipst) 658 { 659 int error; 660 661 #ifdef DEBUG 662 if (ill != NULL) { 663 if (ill->ill_isv6) 664 ASSERT(ipversion == IPV6_VERSION); 665 else 666 ASSERT(ipversion == IPV4_VERSION); 667 } 668 #endif /* DEBUG */ 669 670 /* 671 * Create/initialize IRE security attribute only in Trusted mode; 672 * if the passed in gc is non-NULL, we expect that the caller 673 * has held a reference to it and will release it when this routine 674 * returns a failure, otherwise we own the reference. We do this 675 * prior to initializing the rest IRE fields. 676 */ 677 if (is_system_labeled()) { 678 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 679 IRE_IF_ALL | IRE_MULTICAST | IRE_NOROUTE)) != 0) { 680 /* release references on behalf of caller */ 681 if (gc != NULL) 682 GC_REFRELE(gc); 683 } else { 684 error = tsol_ire_init_gwattr(ire, ipversion, gc); 685 if (error != 0) 686 return (error); 687 } 688 } 689 690 ire->ire_type = type; 691 ire->ire_flags = RTF_UP | flags; 692 ire->ire_create_time = (uint32_t)gethrestime_sec(); 693 ire->ire_generation = IRE_GENERATION_INITIAL; 694 695 /* 696 * The ill_ire_cnt isn't increased until 697 * the IRE is added to ensure that a walker will find 698 * all IREs that hold a reference on an ill. 699 * 700 * Note that ill_ire_multicast doesn't hold a ref on the ill since 701 * ire_add() is not called for the IRE_MULTICAST. 702 */ 703 ire->ire_ill = ill; 704 ire->ire_zoneid = zoneid; 705 ire->ire_ipversion = ipversion; 706 707 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 708 ire->ire_refcnt = 1; 709 ire->ire_identical_ref = 1; /* Number of ire_delete's needed */ 710 ire->ire_ipst = ipst; /* No netstack_hold */ 711 ire->ire_trace_disable = B_FALSE; 712 713 return (0); 714 } 715 716 /* 717 * This creates an IRE_BROADCAST based on the arguments. 718 * A mirror is ire_lookup_bcast(). 719 * 720 * Any supression of unneeded ones is done in ire_add_v4. 721 * We add one IRE_BROADCAST per address. ire_send_broadcast_v4() 722 * takes care of generating a loopback copy of the packet. 723 */ 724 ire_t ** 725 ire_create_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid, ire_t **irep) 726 { 727 ip_stack_t *ipst = ill->ill_ipst; 728 729 ASSERT(IAM_WRITER_ILL(ill)); 730 731 *irep++ = ire_create( 732 (uchar_t *)&addr, /* dest addr */ 733 (uchar_t *)&ip_g_all_ones, /* mask */ 734 NULL, /* no gateway */ 735 IRE_BROADCAST, 736 ill, 737 zoneid, 738 RTF_KERNEL, 739 NULL, 740 ipst); 741 742 return (irep); 743 } 744 745 /* 746 * This looks up an IRE_BROADCAST based on the arguments. 747 * Mirrors ire_create_bcast(). 748 */ 749 ire_t * 750 ire_lookup_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 751 { 752 ire_t *ire; 753 int match_args; 754 755 match_args = MATCH_IRE_TYPE | MATCH_IRE_ILL | MATCH_IRE_GW | 756 MATCH_IRE_MASK | MATCH_IRE_ZONEONLY; 757 758 if (IS_UNDER_IPMP(ill)) 759 match_args |= MATCH_IRE_TESTHIDDEN; 760 761 ire = ire_ftable_lookup_v4( 762 addr, /* dest addr */ 763 ip_g_all_ones, /* mask */ 764 0, /* no gateway */ 765 IRE_BROADCAST, 766 ill, 767 zoneid, 768 NULL, 769 match_args, 770 0, 771 ill->ill_ipst, 772 NULL); 773 return (ire); 774 } 775 776 /* Arrange to call the specified function for every IRE in the world. */ 777 void 778 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 779 { 780 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 781 } 782 783 void 784 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 785 { 786 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 787 } 788 789 void 790 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 791 { 792 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 793 } 794 795 /* 796 * Walk a particular version. version == 0 means both v4 and v6. 797 */ 798 static void 799 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 800 ip_stack_t *ipst) 801 { 802 if (vers != IPV6_VERSION) { 803 /* 804 * ip_forwarding_table variable doesn't matter for IPv4 since 805 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 806 */ 807 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 808 0, NULL, 809 NULL, zoneid, ipst); 810 } 811 if (vers != IPV4_VERSION) { 812 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 813 ipst->ips_ip6_ftable_hash_size, 814 ipst->ips_ip_forwarding_table_v6, 815 NULL, zoneid, ipst); 816 } 817 } 818 819 /* 820 * Arrange to call the specified function for every IRE that matches the ill. 821 */ 822 void 823 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 824 ill_t *ill) 825 { 826 uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION); 827 828 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill); 829 } 830 831 /* 832 * Walk a particular ill and version. 833 */ 834 static void 835 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 836 void *arg, uchar_t vers, ill_t *ill) 837 { 838 ip_stack_t *ipst = ill->ill_ipst; 839 840 if (vers == IPV4_VERSION) { 841 ire_walk_ill_tables(match_flags, ire_type, func, arg, 842 IP_MASK_TABLE_SIZE, 843 0, NULL, 844 ill, ALL_ZONES, ipst); 845 } 846 if (vers != IPV4_VERSION) { 847 ire_walk_ill_tables(match_flags, ire_type, func, arg, 848 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 849 ipst->ips_ip_forwarding_table_v6, 850 ill, ALL_ZONES, ipst); 851 } 852 } 853 854 /* 855 * Do the specific matching of IREs to shared-IP zones. 856 * 857 * We have the same logic as in ire_match_args but implemented slightly 858 * differently. 859 */ 860 boolean_t 861 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 862 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 863 { 864 ill_t *dst_ill = ire->ire_ill; 865 866 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 867 868 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 869 ire->ire_zoneid != ALL_ZONES) { 870 /* 871 * We're walking the IREs for a specific zone. The only relevant 872 * IREs are: 873 * - all IREs with a matching ire_zoneid 874 * - IRE_IF_ALL IREs for interfaces with a usable source addr 875 * with a matching zone 876 * - IRE_OFFLINK with a gateway reachable from the zone 877 * Note that ealier we only did the IRE_OFFLINK check for 878 * IRE_DEFAULT (and only when we had multiple IRE_DEFAULTs). 879 */ 880 if (ire->ire_type & IRE_ONLINK) { 881 uint_t ifindex; 882 883 /* 884 * Note there is no IRE_INTERFACE on vniN thus 885 * can't do an IRE lookup for a matching route. 886 */ 887 ifindex = dst_ill->ill_usesrc_ifindex; 888 if (ifindex == 0) 889 return (B_FALSE); 890 891 /* 892 * If there is a usable source address in the 893 * zone, then it's ok to return an 894 * IRE_INTERFACE 895 */ 896 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 897 zoneid, ipst)) { 898 return (B_FALSE); 899 } 900 } 901 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 902 ipif_t *tipif; 903 904 mutex_enter(&dst_ill->ill_lock); 905 for (tipif = dst_ill->ill_ipif; 906 tipif != NULL; tipif = tipif->ipif_next) { 907 if (!IPIF_IS_CONDEMNED(tipif) && 908 (tipif->ipif_flags & IPIF_UP) && 909 (tipif->ipif_zoneid == zoneid || 910 tipif->ipif_zoneid == ALL_ZONES)) 911 break; 912 } 913 mutex_exit(&dst_ill->ill_lock); 914 if (tipif == NULL) { 915 return (B_FALSE); 916 } 917 } 918 } 919 /* 920 * Except for ALL_ZONES, we only match the offlink routes 921 * where ire_gateway_addr has an IRE_INTERFACE for the zoneid. 922 * Since we can have leftover routes after the IP addresses have 923 * changed, the global zone will also match offlink routes where the 924 * gateway is unreachable from any zone. 925 */ 926 if ((ire->ire_type & IRE_OFFLINK) && zoneid != ALL_ZONES) { 927 in6_addr_t gw_addr_v6; 928 boolean_t reach; 929 930 if (ire->ire_ipversion == IPV4_VERSION) { 931 reach = ire_gateway_ok_zone_v4(ire->ire_gateway_addr, 932 zoneid, dst_ill, NULL, ipst, B_FALSE); 933 } else { 934 ASSERT(ire->ire_ipversion == IPV6_VERSION); 935 mutex_enter(&ire->ire_lock); 936 gw_addr_v6 = ire->ire_gateway_addr_v6; 937 mutex_exit(&ire->ire_lock); 938 939 reach = ire_gateway_ok_zone_v6(&gw_addr_v6, zoneid, 940 dst_ill, NULL, ipst, B_FALSE); 941 } 942 if (!reach) { 943 if (zoneid != GLOBAL_ZONEID) 944 return (B_FALSE); 945 946 /* 947 * Check if ALL_ZONES reachable - if not then let the 948 * global zone see it. 949 */ 950 if (ire->ire_ipversion == IPV4_VERSION) { 951 reach = ire_gateway_ok_zone_v4( 952 ire->ire_gateway_addr, ALL_ZONES, 953 dst_ill, NULL, ipst, B_FALSE); 954 } else { 955 reach = ire_gateway_ok_zone_v6(&gw_addr_v6, 956 ALL_ZONES, dst_ill, NULL, ipst, B_FALSE); 957 } 958 if (reach) { 959 /* 960 * Some other zone could see it, hence hide it 961 * in the global zone. 962 */ 963 return (B_FALSE); 964 } 965 } 966 } 967 968 if (((!(match_flags & MATCH_IRE_TYPE)) || 969 (ire->ire_type & ire_type)) && 970 ((!(match_flags & MATCH_IRE_ILL)) || 971 (dst_ill == ill || 972 dst_ill != NULL && IS_IN_SAME_ILLGRP(dst_ill, ill)))) { 973 return (B_TRUE); 974 } 975 return (B_FALSE); 976 } 977 978 int 979 rtfunc(struct radix_node *rn, void *arg) 980 { 981 struct rtfuncarg *rtf = arg; 982 struct rt_entry *rt; 983 irb_t *irb; 984 ire_t *ire; 985 boolean_t ret; 986 987 rt = (struct rt_entry *)rn; 988 ASSERT(rt != NULL); 989 irb = &rt->rt_irb; 990 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 991 if ((rtf->rt_match_flags != 0) || 992 (rtf->rt_zoneid != ALL_ZONES)) { 993 ret = ire_walk_ill_match(rtf->rt_match_flags, 994 rtf->rt_ire_type, ire, 995 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 996 } else { 997 ret = B_TRUE; 998 } 999 if (ret) 1000 (*rtf->rt_func)(ire, rtf->rt_arg); 1001 } 1002 return (0); 1003 } 1004 1005 /* 1006 * Walk the ftable entries that match the ill. 1007 */ 1008 void 1009 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 1010 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 1011 ill_t *ill, zoneid_t zoneid, 1012 ip_stack_t *ipst) 1013 { 1014 irb_t *irb_ptr; 1015 irb_t *irb; 1016 ire_t *ire; 1017 int i, j; 1018 boolean_t ret; 1019 struct rtfuncarg rtfarg; 1020 1021 ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL)); 1022 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 1023 1024 /* knobs such that routine is called only for v6 case */ 1025 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 1026 for (i = (ftbl_sz - 1); i >= 0; i--) { 1027 if ((irb_ptr = ipftbl[i]) == NULL) 1028 continue; 1029 for (j = 0; j < htbl_sz; j++) { 1030 irb = &irb_ptr[j]; 1031 if (irb->irb_ire == NULL) 1032 continue; 1033 1034 irb_refhold(irb); 1035 for (ire = irb->irb_ire; ire != NULL; 1036 ire = ire->ire_next) { 1037 if (match_flags == 0 && 1038 zoneid == ALL_ZONES) { 1039 ret = B_TRUE; 1040 } else { 1041 ret = 1042 ire_walk_ill_match( 1043 match_flags, 1044 ire_type, ire, ill, 1045 zoneid, ipst); 1046 } 1047 if (ret) 1048 (*func)(ire, arg); 1049 } 1050 irb_refrele(irb); 1051 } 1052 } 1053 } else { 1054 bzero(&rtfarg, sizeof (rtfarg)); 1055 rtfarg.rt_func = func; 1056 rtfarg.rt_arg = arg; 1057 if (match_flags != 0) { 1058 rtfarg.rt_match_flags = match_flags; 1059 } 1060 rtfarg.rt_ire_type = ire_type; 1061 rtfarg.rt_ill = ill; 1062 rtfarg.rt_zoneid = zoneid; 1063 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 1064 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 1065 ipst->ips_ip_ftable, 1066 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 1067 } 1068 } 1069 1070 /* 1071 * This function takes a mask and returns 1072 * number of bits set in the mask. If no 1073 * bit is set it returns 0. 1074 * Assumes a contiguous mask. 1075 */ 1076 int 1077 ip_mask_to_plen(ipaddr_t mask) 1078 { 1079 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 1080 } 1081 1082 /* 1083 * Convert length for a mask to the mask. 1084 */ 1085 ipaddr_t 1086 ip_plen_to_mask(uint_t masklen) 1087 { 1088 if (masklen == 0) 1089 return (0); 1090 1091 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 1092 } 1093 1094 void 1095 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 1096 { 1097 ill_t *ill; 1098 1099 ill = ire->ire_ill; 1100 if (ill != NULL) 1101 mutex_exit(&ill->ill_lock); 1102 rw_exit(&irb_ptr->irb_lock); 1103 } 1104 1105 /* 1106 * ire_add_v[46] atomically make sure that the ill associated 1107 * with the new ire is not going away i.e., we check ILL_CONDEMNED. 1108 */ 1109 int 1110 ire_atomic_start(irb_t *irb_ptr, ire_t *ire) 1111 { 1112 ill_t *ill; 1113 1114 ill = ire->ire_ill; 1115 1116 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 1117 if (ill != NULL) { 1118 mutex_enter(&ill->ill_lock); 1119 1120 /* 1121 * Don't allow IRE's to be created on dying ills. 1122 */ 1123 if (ill->ill_state_flags & ILL_CONDEMNED) { 1124 ire_atomic_end(irb_ptr, ire); 1125 return (ENXIO); 1126 } 1127 1128 if (IS_UNDER_IPMP(ill)) { 1129 int error = 0; 1130 mutex_enter(&ill->ill_phyint->phyint_lock); 1131 if (!ipmp_ill_is_active(ill) && 1132 IRE_HIDDEN_TYPE(ire->ire_type) && 1133 !ire->ire_testhidden) { 1134 error = EINVAL; 1135 } 1136 mutex_exit(&ill->ill_phyint->phyint_lock); 1137 if (error != 0) { 1138 ire_atomic_end(irb_ptr, ire); 1139 return (error); 1140 } 1141 } 1142 1143 } 1144 return (0); 1145 } 1146 1147 /* 1148 * Add a fully initialized IRE to the forwarding table. 1149 * This returns NULL on failure, or a held IRE on success. 1150 * Normally the returned IRE is the same as the argument. But a different 1151 * IRE will be returned if the added IRE is deemed identical to an existing 1152 * one. In that case ire_identical_ref will be increased. 1153 * The caller always needs to do an ire_refrele() on the returned IRE. 1154 */ 1155 ire_t * 1156 ire_add(ire_t *ire) 1157 { 1158 if (IRE_HIDDEN_TYPE(ire->ire_type) && 1159 ire->ire_ill != NULL && IS_UNDER_IPMP(ire->ire_ill)) { 1160 /* 1161 * IREs hosted on interfaces that are under IPMP 1162 * should be hidden so that applications don't 1163 * accidentally end up sending packets with test 1164 * addresses as their source addresses, or 1165 * sending out interfaces that are e.g. IFF_INACTIVE. 1166 * Hide them here. 1167 */ 1168 ire->ire_testhidden = B_TRUE; 1169 } 1170 1171 if (ire->ire_ipversion == IPV6_VERSION) 1172 return (ire_add_v6(ire)); 1173 else 1174 return (ire_add_v4(ire)); 1175 } 1176 1177 /* 1178 * Add a fully initialized IPv4 IRE to the forwarding table. 1179 * This returns NULL on failure, or a held IRE on success. 1180 * Normally the returned IRE is the same as the argument. But a different 1181 * IRE will be returned if the added IRE is deemed identical to an existing 1182 * one. In that case ire_identical_ref will be increased. 1183 * The caller always needs to do an ire_refrele() on the returned IRE. 1184 */ 1185 static ire_t * 1186 ire_add_v4(ire_t *ire) 1187 { 1188 ire_t *ire1; 1189 irb_t *irb_ptr; 1190 ire_t **irep; 1191 int match_flags; 1192 int error; 1193 ip_stack_t *ipst = ire->ire_ipst; 1194 1195 if (ire->ire_ill != NULL) 1196 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); 1197 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1198 1199 /* Make sure the address is properly masked. */ 1200 ire->ire_addr &= ire->ire_mask; 1201 1202 match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 1203 1204 if (ire->ire_ill != NULL) { 1205 match_flags |= MATCH_IRE_ILL; 1206 } 1207 irb_ptr = ire_get_bucket(ire); 1208 if (irb_ptr == NULL) { 1209 printf("no bucket for %p\n", (void *)ire); 1210 ire_delete(ire); 1211 return (NULL); 1212 } 1213 1214 /* 1215 * Start the atomic add of the ire. Grab the ill lock, 1216 * the bucket lock. Check for condemned. 1217 */ 1218 error = ire_atomic_start(irb_ptr, ire); 1219 if (error != 0) { 1220 printf("no ire_atomic_start for %p\n", (void *)ire); 1221 ire_delete(ire); 1222 irb_refrele(irb_ptr); 1223 return (NULL); 1224 } 1225 /* 1226 * If we are creating a hidden IRE, make sure we search for 1227 * hidden IREs when searching for duplicates below. 1228 * Otherwise, we might find an IRE on some other interface 1229 * that's not marked hidden. 1230 */ 1231 if (ire->ire_testhidden) 1232 match_flags |= MATCH_IRE_TESTHIDDEN; 1233 1234 /* 1235 * Atomically check for duplicate and insert in the table. 1236 */ 1237 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 1238 if (IRE_IS_CONDEMNED(ire1)) 1239 continue; 1240 /* 1241 * Here we need an exact match on zoneid, i.e., 1242 * ire_match_args doesn't fit. 1243 */ 1244 if (ire1->ire_zoneid != ire->ire_zoneid) 1245 continue; 1246 1247 if (ire1->ire_type != ire->ire_type) 1248 continue; 1249 1250 /* 1251 * Note: We do not allow multiple routes that differ only 1252 * in the gateway security attributes; such routes are 1253 * considered duplicates. 1254 * To change that we explicitly have to treat them as 1255 * different here. 1256 */ 1257 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 1258 ire->ire_gateway_addr, ire->ire_type, ire->ire_ill, 1259 ire->ire_zoneid, NULL, match_flags)) { 1260 /* 1261 * Return the old ire after doing a REFHOLD. 1262 * As most of the callers continue to use the IRE 1263 * after adding, we return a held ire. This will 1264 * avoid a lookup in the caller again. If the callers 1265 * don't want to use it, they need to do a REFRELE. 1266 */ 1267 atomic_add_32(&ire1->ire_identical_ref, 1); 1268 DTRACE_PROBE2(ire__add__exist, ire_t *, ire1, 1269 ire_t *, ire); 1270 ire_refhold(ire1); 1271 ire_atomic_end(irb_ptr, ire); 1272 ire_delete(ire); 1273 irb_refrele(irb_ptr); 1274 return (ire1); 1275 } 1276 } 1277 1278 /* 1279 * Normally we do head insertion since most things do not care about 1280 * the order of the IREs in the bucket. Note that ip_cgtp_bcast_add 1281 * assumes we at least do head insertion so that its IRE_BROADCAST 1282 * arrive ahead of existing IRE_HOST for the same address. 1283 * However, due to shared-IP zones (and restrict_interzone_loopback) 1284 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same 1285 * address. For that reason we do tail insertion for IRE_IF_CLONE. 1286 * Due to the IRE_BROADCAST on cgtp0, which must be last in the bucket, 1287 * we do tail insertion of IRE_BROADCASTs that do not have RTF_MULTIRT 1288 * set. 1289 */ 1290 irep = (ire_t **)irb_ptr; 1291 if ((ire->ire_type & IRE_IF_CLONE) || 1292 ((ire->ire_type & IRE_BROADCAST) && 1293 !(ire->ire_flags & RTF_MULTIRT))) { 1294 while ((ire1 = *irep) != NULL) 1295 irep = &ire1->ire_next; 1296 } 1297 /* Insert at *irep */ 1298 ire1 = *irep; 1299 if (ire1 != NULL) 1300 ire1->ire_ptpn = &ire->ire_next; 1301 ire->ire_next = ire1; 1302 /* Link the new one in. */ 1303 ire->ire_ptpn = irep; 1304 1305 /* 1306 * ire_walk routines de-reference ire_next without holding 1307 * a lock. Before we point to the new ire, we want to make 1308 * sure the store that sets the ire_next of the new ire 1309 * reaches global visibility, so that ire_walk routines 1310 * don't see a truncated list of ires i.e if the ire_next 1311 * of the new ire gets set after we do "*irep = ire" due 1312 * to re-ordering, the ire_walk thread will see a NULL 1313 * once it accesses the ire_next of the new ire. 1314 * membar_producer() makes sure that the following store 1315 * happens *after* all of the above stores. 1316 */ 1317 membar_producer(); 1318 *irep = ire; 1319 ire->ire_bucket = irb_ptr; 1320 /* 1321 * We return a bumped up IRE above. Keep it symmetrical 1322 * so that the callers will always have to release. This 1323 * helps the callers of this function because they continue 1324 * to use the IRE after adding and hence they don't have to 1325 * lookup again after we return the IRE. 1326 * 1327 * NOTE : We don't have to use atomics as this is appearing 1328 * in the list for the first time and no one else can bump 1329 * up the reference count on this yet. 1330 */ 1331 ire_refhold_locked(ire); 1332 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 1333 1334 irb_ptr->irb_ire_cnt++; 1335 if (irb_ptr->irb_marks & IRB_MARK_DYNAMIC) 1336 irb_ptr->irb_nire++; 1337 1338 if (ire->ire_ill != NULL) { 1339 ire->ire_ill->ill_ire_cnt++; 1340 ASSERT(ire->ire_ill->ill_ire_cnt != 0); /* Wraparound */ 1341 } 1342 1343 ire_atomic_end(irb_ptr, ire); 1344 1345 /* Make any caching of the IREs be notified or updated */ 1346 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 1347 1348 if (ire->ire_ill != NULL) 1349 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); 1350 irb_refrele(irb_ptr); 1351 return (ire); 1352 } 1353 1354 /* 1355 * irb_refrele is the only caller of the function. ire_unlink calls to 1356 * do the final cleanup for this ire. 1357 */ 1358 void 1359 ire_cleanup(ire_t *ire) 1360 { 1361 ire_t *ire_next; 1362 ip_stack_t *ipst = ire->ire_ipst; 1363 1364 ASSERT(ire != NULL); 1365 1366 while (ire != NULL) { 1367 ire_next = ire->ire_next; 1368 if (ire->ire_ipversion == IPV4_VERSION) { 1369 ire_delete_v4(ire); 1370 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 1371 ire_stats_deleted); 1372 } else { 1373 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1374 ire_delete_v6(ire); 1375 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 1376 ire_stats_deleted); 1377 } 1378 /* 1379 * Now it's really out of the list. Before doing the 1380 * REFRELE, set ire_next to NULL as ire_inactive asserts 1381 * so. 1382 */ 1383 ire->ire_next = NULL; 1384 ire_refrele_notr(ire); 1385 ire = ire_next; 1386 } 1387 } 1388 1389 /* 1390 * irb_refrele is the only caller of the function. It calls to unlink 1391 * all the CONDEMNED ires from this bucket. 1392 */ 1393 ire_t * 1394 ire_unlink(irb_t *irb) 1395 { 1396 ire_t *ire; 1397 ire_t *ire1; 1398 ire_t **ptpn; 1399 ire_t *ire_list = NULL; 1400 1401 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 1402 ASSERT(((irb->irb_marks & IRB_MARK_DYNAMIC) && irb->irb_refcnt == 1) || 1403 (irb->irb_refcnt == 0)); 1404 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 1405 ASSERT(irb->irb_ire != NULL); 1406 1407 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 1408 ire1 = ire->ire_next; 1409 if (IRE_IS_CONDEMNED(ire)) { 1410 ptpn = ire->ire_ptpn; 1411 ire1 = ire->ire_next; 1412 if (ire1) 1413 ire1->ire_ptpn = ptpn; 1414 *ptpn = ire1; 1415 ire->ire_ptpn = NULL; 1416 ire->ire_next = NULL; 1417 1418 /* 1419 * We need to call ire_delete_v4 or ire_delete_v6 to 1420 * clean up dependents and the redirects pointing at 1421 * the default gateway. We need to drop the lock 1422 * as ire_flush_cache/ire_delete_host_redircts require 1423 * so. But we can't drop the lock, as ire_unlink needs 1424 * to atomically remove the ires from the list. 1425 * So, create a temporary list of CONDEMNED ires 1426 * for doing ire_delete_v4/ire_delete_v6 operations 1427 * later on. 1428 */ 1429 ire->ire_next = ire_list; 1430 ire_list = ire; 1431 } 1432 } 1433 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 1434 return (ire_list); 1435 } 1436 1437 /* 1438 * Clean up the radix node for this ire. Must be called by irb_refrele 1439 * when there are no ire's left in the bucket. Returns TRUE if the bucket 1440 * is deleted and freed. 1441 */ 1442 boolean_t 1443 irb_inactive(irb_t *irb) 1444 { 1445 struct rt_entry *rt; 1446 struct radix_node *rn; 1447 ip_stack_t *ipst = irb->irb_ipst; 1448 1449 ASSERT(irb->irb_ipst != NULL); 1450 1451 rt = IRB2RT(irb); 1452 rn = (struct radix_node *)rt; 1453 1454 /* first remove it from the radix tree. */ 1455 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1456 rw_enter(&irb->irb_lock, RW_WRITER); 1457 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 1458 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 1459 ipst->ips_ip_ftable); 1460 DTRACE_PROBE1(irb__free, rt_t *, rt); 1461 ASSERT((void *)rn == (void *)rt); 1462 Free(rt, rt_entry_cache); 1463 /* irb_lock is freed */ 1464 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1465 return (B_TRUE); 1466 } 1467 rw_exit(&irb->irb_lock); 1468 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1469 return (B_FALSE); 1470 } 1471 1472 /* 1473 * Delete the specified IRE. 1474 * We assume that if ire_bucket is not set then ire_ill->ill_ire_cnt was 1475 * not incremented i.e., that the insertion in the bucket and the increment 1476 * of that counter is done atomically. 1477 */ 1478 void 1479 ire_delete(ire_t *ire) 1480 { 1481 ire_t *ire1; 1482 ire_t **ptpn; 1483 irb_t *irb; 1484 ip_stack_t *ipst = ire->ire_ipst; 1485 1486 if ((irb = ire->ire_bucket) == NULL) { 1487 /* 1488 * It was never inserted in the list. Should call REFRELE 1489 * to free this IRE. 1490 */ 1491 ire_make_condemned(ire); 1492 ire_refrele_notr(ire); 1493 return; 1494 } 1495 1496 /* 1497 * Move the use counts from an IRE_IF_CLONE to its parent 1498 * IRE_INTERFACE. 1499 * We need to do this before acquiring irb_lock. 1500 */ 1501 if (ire->ire_type & IRE_IF_CLONE) { 1502 ire_t *parent; 1503 1504 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 1505 if ((parent = ire->ire_dep_parent) != NULL) { 1506 parent->ire_ob_pkt_count += ire->ire_ob_pkt_count; 1507 parent->ire_ib_pkt_count += ire->ire_ib_pkt_count; 1508 ire->ire_ob_pkt_count = 0; 1509 ire->ire_ib_pkt_count = 0; 1510 } 1511 rw_exit(&ipst->ips_ire_dep_lock); 1512 } 1513 1514 rw_enter(&irb->irb_lock, RW_WRITER); 1515 if (ire->ire_ptpn == NULL) { 1516 /* 1517 * Some other thread has removed us from the list. 1518 * It should have done the REFRELE for us. 1519 */ 1520 rw_exit(&irb->irb_lock); 1521 return; 1522 } 1523 1524 if (!IRE_IS_CONDEMNED(ire)) { 1525 /* Is this an IRE representing multiple duplicate entries? */ 1526 ASSERT(ire->ire_identical_ref >= 1); 1527 if (atomic_add_32_nv(&ire->ire_identical_ref, -1) != 0) { 1528 /* Removed one of the identical parties */ 1529 rw_exit(&irb->irb_lock); 1530 return; 1531 } 1532 1533 irb->irb_ire_cnt--; 1534 ire_make_condemned(ire); 1535 } 1536 1537 if (irb->irb_refcnt != 0) { 1538 /* 1539 * The last thread to leave this bucket will 1540 * delete this ire. 1541 */ 1542 irb->irb_marks |= IRB_MARK_CONDEMNED; 1543 rw_exit(&irb->irb_lock); 1544 return; 1545 } 1546 1547 /* 1548 * Normally to delete an ire, we walk the bucket. While we 1549 * walk the bucket, we normally bump up irb_refcnt and hence 1550 * we return from above where we mark CONDEMNED and the ire 1551 * gets deleted from ire_unlink. This case is where somebody 1552 * knows the ire e.g by doing a lookup, and wants to delete the 1553 * IRE. irb_refcnt would be 0 in this case if nobody is walking 1554 * the bucket. 1555 */ 1556 ptpn = ire->ire_ptpn; 1557 ire1 = ire->ire_next; 1558 if (ire1 != NULL) 1559 ire1->ire_ptpn = ptpn; 1560 ASSERT(ptpn != NULL); 1561 *ptpn = ire1; 1562 ire->ire_ptpn = NULL; 1563 ire->ire_next = NULL; 1564 if (ire->ire_ipversion == IPV6_VERSION) { 1565 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 1566 } else { 1567 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 1568 } 1569 rw_exit(&irb->irb_lock); 1570 1571 /* Cleanup dependents and related stuff */ 1572 if (ire->ire_ipversion == IPV6_VERSION) { 1573 ire_delete_v6(ire); 1574 } else { 1575 ire_delete_v4(ire); 1576 } 1577 /* 1578 * We removed it from the list. Decrement the 1579 * reference count. 1580 */ 1581 ire_refrele_notr(ire); 1582 } 1583 1584 /* 1585 * Delete the specified IRE. 1586 * All calls should use ire_delete(). 1587 * Sometimes called as writer though not required by this function. 1588 * 1589 * NOTE : This function is called only if the ire was added 1590 * in the list. 1591 */ 1592 static void 1593 ire_delete_v4(ire_t *ire) 1594 { 1595 ip_stack_t *ipst = ire->ire_ipst; 1596 1597 ASSERT(ire->ire_refcnt >= 1); 1598 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1599 1600 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 1601 if (ire->ire_type == IRE_DEFAULT) { 1602 /* 1603 * when a default gateway is going away 1604 * delete all the host redirects pointing at that 1605 * gateway. 1606 */ 1607 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 1608 } 1609 1610 /* 1611 * If we are deleting an IRE_INTERFACE then we make sure we also 1612 * delete any IRE_IF_CLONE that has been created from it. 1613 * Those are always in ire_dep_children. 1614 */ 1615 if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != NULL) 1616 ire_dep_delete_if_clone(ire); 1617 1618 /* Remove from parent dependencies and child */ 1619 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 1620 if (ire->ire_dep_parent != NULL) 1621 ire_dep_remove(ire); 1622 1623 while (ire->ire_dep_children != NULL) 1624 ire_dep_remove(ire->ire_dep_children); 1625 rw_exit(&ipst->ips_ire_dep_lock); 1626 } 1627 1628 /* 1629 * ire_refrele is the only caller of the function. It calls 1630 * to free the ire when the reference count goes to zero. 1631 */ 1632 void 1633 ire_inactive(ire_t *ire) 1634 { 1635 ill_t *ill; 1636 irb_t *irb; 1637 ip_stack_t *ipst = ire->ire_ipst; 1638 1639 ASSERT(ire->ire_refcnt == 0); 1640 ASSERT(ire->ire_ptpn == NULL); 1641 ASSERT(ire->ire_next == NULL); 1642 1643 /* Count how many condemned ires for kmem_cache callback */ 1644 ASSERT(IRE_IS_CONDEMNED(ire)); 1645 atomic_add_32(&ipst->ips_num_ire_condemned, -1); 1646 1647 if (ire->ire_gw_secattr != NULL) { 1648 ire_gw_secattr_free(ire->ire_gw_secattr); 1649 ire->ire_gw_secattr = NULL; 1650 } 1651 1652 /* 1653 * ire_nce_cache is cleared in ire_delete, and we make sure we don't 1654 * set it once the ire is marked condemned. 1655 */ 1656 ASSERT(ire->ire_nce_cache == NULL); 1657 1658 /* 1659 * Since any parent would have a refhold on us they would already 1660 * have been removed. 1661 */ 1662 ASSERT(ire->ire_dep_parent == NULL); 1663 ASSERT(ire->ire_dep_sib_next == NULL); 1664 ASSERT(ire->ire_dep_sib_ptpn == NULL); 1665 1666 /* 1667 * Since any children would have a refhold on us they should have 1668 * already been removed. 1669 */ 1670 ASSERT(ire->ire_dep_children == NULL); 1671 1672 /* 1673 * ill_ire_ref is increased when the IRE is inserted in the 1674 * bucket - not when the IRE is created. 1675 */ 1676 irb = ire->ire_bucket; 1677 ill = ire->ire_ill; 1678 if (irb != NULL && ill != NULL) { 1679 mutex_enter(&ill->ill_lock); 1680 ASSERT(ill->ill_ire_cnt != 0); 1681 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), ill, 1682 (char *), "ire", (void *), ire); 1683 ill->ill_ire_cnt--; 1684 if (ILL_DOWN_OK(ill)) { 1685 /* Drops the ill lock */ 1686 ipif_ill_refrele_tail(ill); 1687 } else { 1688 mutex_exit(&ill->ill_lock); 1689 } 1690 } 1691 ire->ire_ill = NULL; 1692 1693 /* This should be true for both V4 and V6 */ 1694 if (irb != NULL && (irb->irb_marks & IRB_MARK_DYNAMIC)) { 1695 rw_enter(&irb->irb_lock, RW_WRITER); 1696 irb->irb_nire--; 1697 /* 1698 * Instead of examining the conditions for freeing 1699 * the radix node here, we do it by calling 1700 * irb_refrele which is a single point in the code 1701 * that embeds that logic. Bump up the refcnt to 1702 * be able to call irb_refrele 1703 */ 1704 irb_refhold_locked(irb); 1705 rw_exit(&irb->irb_lock); 1706 irb_refrele(irb); 1707 } 1708 1709 #ifdef DEBUG 1710 ire_trace_cleanup(ire); 1711 #endif 1712 mutex_destroy(&ire->ire_lock); 1713 if (ire->ire_ipversion == IPV6_VERSION) { 1714 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 1715 } else { 1716 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 1717 } 1718 kmem_cache_free(ire_cache, ire); 1719 } 1720 1721 /* 1722 * ire_update_generation is the callback function provided by 1723 * ire_get_bucket() to update the generation number of any 1724 * matching shorter route when a new route is added. 1725 * 1726 * This fucntion always returns a failure return (B_FALSE) 1727 * to force the caller (rn_matchaddr_args) 1728 * to back-track up the tree looking for shorter matches. 1729 */ 1730 /* ARGSUSED */ 1731 static boolean_t 1732 ire_update_generation(struct radix_node *rn, void *arg) 1733 { 1734 struct rt_entry *rt = (struct rt_entry *)rn; 1735 1736 /* We need to handle all in the same bucket */ 1737 irb_increment_generation(&rt->rt_irb); 1738 return (B_FALSE); 1739 } 1740 1741 /* 1742 * Take care of all the generation numbers in the bucket. 1743 */ 1744 void 1745 irb_increment_generation(irb_t *irb) 1746 { 1747 ire_t *ire; 1748 ip_stack_t *ipst; 1749 1750 if (irb == NULL || irb->irb_ire_cnt == 0) 1751 return; 1752 1753 ipst = irb->irb_ipst; 1754 /* 1755 * we cannot do an irb_refhold/irb_refrele here as the caller 1756 * already has the global RADIX_NODE_HEAD_WLOCK, and the irb_refrele 1757 * may result in an attempt to free the irb_t, which also needs 1758 * the RADIX_NODE_HEAD lock. However, since we want to traverse the 1759 * irb_ire list without fear of having a condemned ire removed from 1760 * the list, we acquire the irb_lock as WRITER. Moreover, since 1761 * the ire_generation increments are done under the ire_dep_lock, 1762 * acquire the locks in the prescribed lock order first. 1763 */ 1764 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 1765 rw_enter(&irb->irb_lock, RW_WRITER); 1766 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1767 if (!IRE_IS_CONDEMNED(ire)) 1768 ire_increment_generation(ire); /* Ourselves */ 1769 ire_dep_incr_generation_locked(ire); /* Dependants */ 1770 } 1771 rw_exit(&irb->irb_lock); 1772 rw_exit(&ipst->ips_ire_dep_lock); 1773 } 1774 1775 /* 1776 * When an IRE is added or deleted this routine is called to make sure 1777 * any caching of IRE information is notified or updated. 1778 * 1779 * The flag argument indicates if the flush request is due to addition 1780 * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE), 1781 * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE). 1782 */ 1783 void 1784 ire_flush_cache_v4(ire_t *ire, int flag) 1785 { 1786 irb_t *irb = ire->ire_bucket; 1787 struct rt_entry *rt = IRB2RT(irb); 1788 ip_stack_t *ipst = ire->ire_ipst; 1789 1790 /* 1791 * IRE_IF_CLONE ire's don't provide any new information 1792 * than the parent from which they are cloned, so don't 1793 * perturb the generation numbers. 1794 */ 1795 if (ire->ire_type & IRE_IF_CLONE) 1796 return; 1797 1798 /* 1799 * Ensure that an ire_add during a lookup serializes the updates of the 1800 * generation numbers under the radix head lock so that the lookup gets 1801 * either the old ire and old generation number, or a new ire and new 1802 * generation number. 1803 */ 1804 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1805 1806 /* 1807 * If a route was just added, we need to notify everybody that 1808 * has cached an IRE_NOROUTE since there might now be a better 1809 * route for them. 1810 */ 1811 if (flag == IRE_FLUSH_ADD) { 1812 ire_increment_generation(ipst->ips_ire_reject_v4); 1813 ire_increment_generation(ipst->ips_ire_blackhole_v4); 1814 } 1815 1816 /* Adding a default can't otherwise provide a better route */ 1817 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) { 1818 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1819 return; 1820 } 1821 1822 switch (flag) { 1823 case IRE_FLUSH_DELETE: 1824 case IRE_FLUSH_GWCHANGE: 1825 /* 1826 * Update ire_generation for all ire_dep_children chains 1827 * starting with this IRE 1828 */ 1829 ire_dep_incr_generation(ire); 1830 break; 1831 case IRE_FLUSH_ADD: 1832 /* 1833 * Update the generation numbers of all shorter matching routes. 1834 * ire_update_generation takes care of the dependants by 1835 * using ire_dep_incr_generation. 1836 */ 1837 (void) ipst->ips_ip_ftable->rnh_matchaddr_args(&rt->rt_dst, 1838 ipst->ips_ip_ftable, ire_update_generation, NULL); 1839 break; 1840 } 1841 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1842 } 1843 1844 /* 1845 * Matches the arguments passed with the values in the ire. 1846 * 1847 * Note: for match types that match using "ill" passed in, ill 1848 * must be checked for non-NULL before calling this routine. 1849 */ 1850 boolean_t 1851 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 1852 int type, const ill_t *ill, zoneid_t zoneid, 1853 const ts_label_t *tsl, int match_flags) 1854 { 1855 ill_t *ire_ill = NULL, *dst_ill; 1856 ip_stack_t *ipst = ire->ire_ipst; 1857 1858 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1859 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 1860 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_SRC_ILL))) || 1861 (ill != NULL && !ill->ill_isv6)); 1862 1863 /* 1864 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it is 1865 * in fact hidden, to ensure the caller gets the right one. 1866 */ 1867 if (ire->ire_testhidden) { 1868 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) 1869 return (B_FALSE); 1870 } 1871 1872 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 1873 ire->ire_zoneid != ALL_ZONES) { 1874 /* 1875 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid 1876 * does not match that of ire_zoneid, a failure to 1877 * match is reported at this point. Otherwise, since some IREs 1878 * that are available in the global zone can be used in local 1879 * zones, additional checks need to be performed: 1880 * 1881 * IRE_LOOPBACK 1882 * entries should never be matched in this situation. 1883 * Each zone has its own IRE_LOOPBACK. 1884 * 1885 * IRE_LOCAL 1886 * We allow them for any zoneid. ire_route_recursive 1887 * does additional checks when 1888 * ip_restrict_interzone_loopback is set. 1889 * 1890 * If ill_usesrc_ifindex is set 1891 * Then we check if the zone has a valid source address 1892 * on the usesrc ill. 1893 * 1894 * If ire_ill is set, then check that the zone has an ipif 1895 * on that ill. 1896 * 1897 * Outside of this function (in ire_round_robin) we check 1898 * that any IRE_OFFLINK has a gateway that reachable from the 1899 * zone when we have multiple choices (ECMP). 1900 */ 1901 if (match_flags & MATCH_IRE_ZONEONLY) 1902 return (B_FALSE); 1903 if (ire->ire_type & IRE_LOOPBACK) 1904 return (B_FALSE); 1905 1906 if (ire->ire_type & IRE_LOCAL) 1907 goto matchit; 1908 1909 /* 1910 * The normal case of IRE_ONLINK has a matching zoneid. 1911 * Here we handle the case when shared-IP zones have been 1912 * configured with IP addresses on vniN. In that case it 1913 * is ok for traffic from a zone to use IRE_ONLINK routes 1914 * if the ill has a usesrc pointing at vniN 1915 */ 1916 dst_ill = ire->ire_ill; 1917 if (ire->ire_type & IRE_ONLINK) { 1918 uint_t ifindex; 1919 1920 /* 1921 * Note there is no IRE_INTERFACE on vniN thus 1922 * can't do an IRE lookup for a matching route. 1923 */ 1924 ifindex = dst_ill->ill_usesrc_ifindex; 1925 if (ifindex == 0) 1926 return (B_FALSE); 1927 1928 /* 1929 * If there is a usable source address in the 1930 * zone, then it's ok to return this IRE_INTERFACE 1931 */ 1932 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 1933 zoneid, ipst)) { 1934 ip3dbg(("ire_match_args: no usrsrc for zone" 1935 " dst_ill %p\n", (void *)dst_ill)); 1936 return (B_FALSE); 1937 } 1938 } 1939 /* 1940 * For example, with 1941 * route add 11.0.0.0 gw1 -ifp bge0 1942 * route add 11.0.0.0 gw2 -ifp bge1 1943 * this code would differentiate based on 1944 * where the sending zone has addresses. 1945 * Only if the zone has an address on bge0 can it use the first 1946 * route. It isn't clear if this behavior is documented 1947 * anywhere. 1948 */ 1949 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 1950 ipif_t *tipif; 1951 1952 mutex_enter(&dst_ill->ill_lock); 1953 for (tipif = dst_ill->ill_ipif; 1954 tipif != NULL; tipif = tipif->ipif_next) { 1955 if (!IPIF_IS_CONDEMNED(tipif) && 1956 (tipif->ipif_flags & IPIF_UP) && 1957 (tipif->ipif_zoneid == zoneid || 1958 tipif->ipif_zoneid == ALL_ZONES)) 1959 break; 1960 } 1961 mutex_exit(&dst_ill->ill_lock); 1962 if (tipif == NULL) { 1963 return (B_FALSE); 1964 } 1965 } 1966 } 1967 1968 matchit: 1969 ire_ill = ire->ire_ill; 1970 if (match_flags & MATCH_IRE_ILL) { 1971 1972 /* 1973 * If asked to match an ill, we *must* match 1974 * on the ire_ill for ipmp test addresses, or 1975 * any of the ill in the group for data addresses. 1976 * If we don't, we may as well fail. 1977 * However, we need an exception for IRE_LOCALs to ensure 1978 * we loopback packets even sent to test addresses on different 1979 * interfaces in the group. 1980 */ 1981 if ((match_flags & MATCH_IRE_TESTHIDDEN) && 1982 !(ire->ire_type & IRE_LOCAL)) { 1983 if (ire->ire_ill != ill) 1984 return (B_FALSE); 1985 } else { 1986 match_flags &= ~MATCH_IRE_TESTHIDDEN; 1987 /* 1988 * We know that ill is not NULL, but ire_ill could be 1989 * NULL 1990 */ 1991 if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill)) 1992 return (B_FALSE); 1993 } 1994 } 1995 if (match_flags & MATCH_IRE_SRC_ILL) { 1996 if (ire_ill == NULL) 1997 return (B_FALSE); 1998 if (!IS_ON_SAME_LAN(ill, ire_ill)) { 1999 if (ire_ill->ill_usesrc_ifindex == 0 || 2000 (ire_ill->ill_usesrc_ifindex != 2001 ill->ill_phyint->phyint_ifindex)) 2002 return (B_FALSE); 2003 } 2004 } 2005 2006 if ((ire->ire_addr == (addr & mask)) && 2007 ((!(match_flags & MATCH_IRE_GW)) || 2008 (ire->ire_gateway_addr == gateway)) && 2009 ((!(match_flags & MATCH_IRE_DIRECT)) || 2010 !(ire->ire_flags & RTF_INDIRECT)) && 2011 ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) && 2012 ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) && 2013 ((!(match_flags & MATCH_IRE_MASK)) || (ire->ire_mask == mask)) && 2014 ((!(match_flags & MATCH_IRE_SECATTR)) || 2015 (!is_system_labeled()) || 2016 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 2017 /* We found the matched IRE */ 2018 return (B_TRUE); 2019 } 2020 return (B_FALSE); 2021 } 2022 2023 /* 2024 * Check if the IRE_LOCAL uses the same ill as another route would use. 2025 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 2026 * then we don't allow this IRE_LOCAL to be used. 2027 * We always return an IRE; will be RTF_REJECT if no route available. 2028 */ 2029 ire_t * 2030 ire_alt_local(ire_t *ire, zoneid_t zoneid, const ts_label_t *tsl, 2031 const ill_t *ill, uint_t *generationp) 2032 { 2033 ip_stack_t *ipst = ire->ire_ipst; 2034 ire_t *alt_ire; 2035 uint_t ire_type; 2036 uint_t generation; 2037 uint_t match_flags; 2038 2039 ASSERT(ire->ire_type & IRE_LOCAL); 2040 ASSERT(ire->ire_ill != NULL); 2041 2042 /* 2043 * Need to match on everything but local. 2044 * This might result in the creation of a IRE_IF_CLONE for the 2045 * same address as the IRE_LOCAL when restrict_interzone_loopback is 2046 * set. ire_add_*() ensures that the IRE_IF_CLONE are tail inserted 2047 * to make sure the IRE_LOCAL is always found first. 2048 */ 2049 ire_type = (IRE_ONLINK | IRE_OFFLINK) & ~(IRE_LOCAL|IRE_LOOPBACK); 2050 match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR; 2051 if (ill != NULL) 2052 match_flags |= MATCH_IRE_ILL; 2053 2054 if (ire->ire_ipversion == IPV4_VERSION) { 2055 alt_ire = ire_route_recursive_v4(ire->ire_addr, ire_type, 2056 ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL, 2057 NULL, &generation); 2058 } else { 2059 alt_ire = ire_route_recursive_v6(&ire->ire_addr_v6, ire_type, 2060 ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL, 2061 NULL, &generation); 2062 } 2063 ASSERT(alt_ire != NULL); 2064 2065 if (alt_ire->ire_ill == ire->ire_ill) { 2066 /* Going out the same ILL - ok to send to IRE_LOCAL */ 2067 ire_refrele(alt_ire); 2068 } else { 2069 /* Different ill - ignore IRE_LOCAL */ 2070 ire_refrele(ire); 2071 ire = alt_ire; 2072 if (generationp != NULL) 2073 *generationp = generation; 2074 } 2075 return (ire); 2076 } 2077 2078 boolean_t 2079 ire_find_zoneid(struct radix_node *rn, void *arg) 2080 { 2081 struct rt_entry *rt = (struct rt_entry *)rn; 2082 irb_t *irb; 2083 ire_t *ire; 2084 ire_ftable_args_t *margs = arg; 2085 2086 ASSERT(rt != NULL); 2087 2088 irb = &rt->rt_irb; 2089 2090 if (irb->irb_ire_cnt == 0) 2091 return (B_FALSE); 2092 2093 rw_enter(&irb->irb_lock, RW_READER); 2094 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2095 if (IRE_IS_CONDEMNED(ire)) 2096 continue; 2097 2098 if (!(ire->ire_type & IRE_INTERFACE)) 2099 continue; 2100 2101 if (ire->ire_zoneid != ALL_ZONES && 2102 ire->ire_zoneid != margs->ift_zoneid) 2103 continue; 2104 2105 if (margs->ift_ill != NULL && margs->ift_ill != ire->ire_ill) 2106 continue; 2107 2108 if (is_system_labeled() && 2109 tsol_ire_match_gwattr(ire, margs->ift_tsl) != 0) 2110 continue; 2111 2112 rw_exit(&irb->irb_lock); 2113 return (B_TRUE); 2114 } 2115 rw_exit(&irb->irb_lock); 2116 return (B_FALSE); 2117 } 2118 2119 /* 2120 * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified 2121 * gateway address. If ill is non-NULL we also match on it. 2122 * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set. 2123 */ 2124 boolean_t 2125 ire_gateway_ok_zone_v4(ipaddr_t gateway, zoneid_t zoneid, ill_t *ill, 2126 const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held) 2127 { 2128 struct rt_sockaddr rdst; 2129 struct rt_entry *rt; 2130 ire_ftable_args_t margs; 2131 2132 ASSERT(ill == NULL || !ill->ill_isv6); 2133 if (lock_held) 2134 ASSERT(RW_READ_HELD(&ipst->ips_ip_ftable->rnh_lock)); 2135 else 2136 RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable); 2137 2138 bzero(&rdst, sizeof (rdst)); 2139 rdst.rt_sin_len = sizeof (rdst); 2140 rdst.rt_sin_family = AF_INET; 2141 rdst.rt_sin_addr.s_addr = gateway; 2142 2143 /* 2144 * We only use margs for ill, zoneid, and tsl matching in 2145 * ire_find_zoneid 2146 */ 2147 bzero(&margs, sizeof (margs)); 2148 margs.ift_ill = ill; 2149 margs.ift_zoneid = zoneid; 2150 margs.ift_tsl = tsl; 2151 rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst, 2152 ipst->ips_ip_ftable, ire_find_zoneid, (void *)&margs); 2153 2154 if (!lock_held) 2155 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 2156 2157 return (rt != NULL); 2158 } 2159 2160 /* 2161 * ire_walk routine to delete a fraction of redirect IREs and IRE_CLONE_IF IREs. 2162 * The fraction argument tells us what fraction of the IREs to delete. 2163 * Common for IPv4 and IPv6. 2164 * Used when memory backpressure. 2165 */ 2166 static void 2167 ire_delete_reclaim(ire_t *ire, char *arg) 2168 { 2169 ip_stack_t *ipst = ire->ire_ipst; 2170 uint_t fraction = *(uint_t *)arg; 2171 uint_t rand; 2172 2173 if ((ire->ire_flags & RTF_DYNAMIC) || 2174 (ire->ire_type & IRE_IF_CLONE)) { 2175 2176 /* Pick a random number */ 2177 rand = (uint_t)ddi_get_lbolt() + 2178 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 256); 2179 2180 /* Use truncation */ 2181 if ((rand/fraction)*fraction == rand) { 2182 IP_STAT(ipst, ip_ire_reclaim_deleted); 2183 ire_delete(ire); 2184 } 2185 } 2186 2187 } 2188 2189 /* 2190 * kmem_cache callback to free up memory. 2191 * 2192 * Free a fraction (ips_ip_ire_reclaim_fraction) of things IP added dynamically 2193 * (RTF_DYNAMIC and IRE_IF_CLONE). 2194 */ 2195 static void 2196 ip_ire_reclaim_stack(ip_stack_t *ipst) 2197 { 2198 uint_t fraction = ipst->ips_ip_ire_reclaim_fraction; 2199 2200 IP_STAT(ipst, ip_ire_reclaim_calls); 2201 2202 ire_walk(ire_delete_reclaim, &fraction, ipst); 2203 2204 /* 2205 * Walk all CONNs that can have a reference on an ire, nce or dce. 2206 * Get them to update any stale references to drop any refholds they 2207 * have. 2208 */ 2209 ipcl_walk(conn_ixa_cleanup, (void *)B_FALSE, ipst); 2210 } 2211 2212 /* 2213 * Called by the memory allocator subsystem directly, when the system 2214 * is running low on memory. 2215 */ 2216 /* ARGSUSED */ 2217 void 2218 ip_ire_reclaim(void *args) 2219 { 2220 netstack_handle_t nh; 2221 netstack_t *ns; 2222 ip_stack_t *ipst; 2223 2224 netstack_next_init(&nh); 2225 while ((ns = netstack_next(&nh)) != NULL) { 2226 /* 2227 * netstack_next() can return a netstack_t with a NULL 2228 * netstack_ip at boot time. 2229 */ 2230 if ((ipst = ns->netstack_ip) == NULL) { 2231 netstack_rele(ns); 2232 continue; 2233 } 2234 ip_ire_reclaim_stack(ipst); 2235 netstack_rele(ns); 2236 } 2237 netstack_next_fini(&nh); 2238 } 2239 2240 static void 2241 power2_roundup(uint32_t *value) 2242 { 2243 int i; 2244 2245 for (i = 1; i < 31; i++) { 2246 if (*value <= (1 << i)) 2247 break; 2248 } 2249 *value = (1 << i); 2250 } 2251 2252 /* Global init for all zones */ 2253 void 2254 ip_ire_g_init() 2255 { 2256 /* 2257 * Create kmem_caches. ip_ire_reclaim() and ip_nce_reclaim() 2258 * will give disposable IREs back to system when needed. 2259 * This needs to be done here before anything else, since 2260 * ire_add() expects the cache to be created. 2261 */ 2262 ire_cache = kmem_cache_create("ire_cache", 2263 sizeof (ire_t), 0, NULL, NULL, 2264 ip_ire_reclaim, NULL, NULL, 0); 2265 2266 ncec_cache = kmem_cache_create("ncec_cache", 2267 sizeof (ncec_t), 0, NULL, NULL, 2268 ip_nce_reclaim, NULL, NULL, 0); 2269 nce_cache = kmem_cache_create("nce_cache", 2270 sizeof (nce_t), 0, NULL, NULL, 2271 NULL, NULL, NULL, 0); 2272 2273 rt_entry_cache = kmem_cache_create("rt_entry", 2274 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 2275 2276 /* 2277 * Have radix code setup kmem caches etc. 2278 */ 2279 rn_init(); 2280 } 2281 2282 void 2283 ip_ire_init(ip_stack_t *ipst) 2284 { 2285 ire_t *ire; 2286 int error; 2287 2288 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 2289 2290 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 2291 2292 /* 2293 * Make sure that the forwarding table size is a power of 2. 2294 * The IRE*_ADDR_HASH() macroes depend on that. 2295 */ 2296 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 2297 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 2298 2299 /* 2300 * Allocate/initialize a pair of IRE_NOROUTEs for each of IPv4 and IPv6. 2301 * The ire_reject_v* has RTF_REJECT set, and the ire_blackhole_v* has 2302 * RTF_BLACKHOLE set. We use the latter for transient errors such 2303 * as memory allocation failures and tripping on IRE_IS_CONDEMNED 2304 * entries. 2305 */ 2306 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2307 *ire = ire_null; 2308 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2309 RTF_REJECT|RTF_UP, NULL, ipst); 2310 ASSERT(error == 0); 2311 ipst->ips_ire_reject_v4 = ire; 2312 2313 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2314 *ire = ire_null; 2315 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2316 RTF_REJECT|RTF_UP, NULL, ipst); 2317 ASSERT(error == 0); 2318 ipst->ips_ire_reject_v6 = ire; 2319 2320 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2321 *ire = ire_null; 2322 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2323 RTF_BLACKHOLE|RTF_UP, NULL, ipst); 2324 ASSERT(error == 0); 2325 ipst->ips_ire_blackhole_v4 = ire; 2326 2327 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2328 *ire = ire_null; 2329 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2330 RTF_BLACKHOLE|RTF_UP, NULL, ipst); 2331 ASSERT(error == 0); 2332 ipst->ips_ire_blackhole_v6 = ire; 2333 2334 rw_init(&ipst->ips_ip6_ire_head_lock, NULL, RW_DEFAULT, NULL); 2335 rw_init(&ipst->ips_ire_dep_lock, NULL, RW_DEFAULT, NULL); 2336 } 2337 2338 void 2339 ip_ire_g_fini(void) 2340 { 2341 kmem_cache_destroy(ire_cache); 2342 kmem_cache_destroy(ncec_cache); 2343 kmem_cache_destroy(nce_cache); 2344 kmem_cache_destroy(rt_entry_cache); 2345 2346 rn_fini(); 2347 } 2348 2349 void 2350 ip_ire_fini(ip_stack_t *ipst) 2351 { 2352 int i; 2353 2354 rw_destroy(&ipst->ips_ire_dep_lock); 2355 rw_destroy(&ipst->ips_ip6_ire_head_lock); 2356 2357 ire_make_condemned(ipst->ips_ire_reject_v6); 2358 ire_refrele_notr(ipst->ips_ire_reject_v6); 2359 ipst->ips_ire_reject_v6 = NULL; 2360 2361 ire_make_condemned(ipst->ips_ire_reject_v4); 2362 ire_refrele_notr(ipst->ips_ire_reject_v4); 2363 ipst->ips_ire_reject_v4 = NULL; 2364 2365 ire_make_condemned(ipst->ips_ire_blackhole_v6); 2366 ire_refrele_notr(ipst->ips_ire_blackhole_v6); 2367 ipst->ips_ire_blackhole_v6 = NULL; 2368 2369 ire_make_condemned(ipst->ips_ire_blackhole_v4); 2370 ire_refrele_notr(ipst->ips_ire_blackhole_v4); 2371 ipst->ips_ire_blackhole_v4 = NULL; 2372 2373 /* 2374 * Delete all IREs - assumes that the ill/ipifs have 2375 * been removed so what remains are just the ftable to handle. 2376 */ 2377 ire_walk(ire_delete, NULL, ipst); 2378 2379 rn_freehead(ipst->ips_ip_ftable); 2380 ipst->ips_ip_ftable = NULL; 2381 2382 mutex_destroy(&ipst->ips_ire_ft_init_lock); 2383 2384 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 2385 irb_t *ptr; 2386 int j; 2387 2388 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 2389 continue; 2390 2391 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 2392 ASSERT(ptr[j].irb_ire == NULL); 2393 rw_destroy(&ptr[j].irb_lock); 2394 } 2395 mi_free(ptr); 2396 ipst->ips_ip_forwarding_table_v6[i] = NULL; 2397 } 2398 } 2399 2400 #ifdef DEBUG 2401 void 2402 ire_trace_ref(ire_t *ire) 2403 { 2404 mutex_enter(&ire->ire_lock); 2405 if (ire->ire_trace_disable) { 2406 mutex_exit(&ire->ire_lock); 2407 return; 2408 } 2409 2410 if (th_trace_ref(ire, ire->ire_ipst)) { 2411 mutex_exit(&ire->ire_lock); 2412 } else { 2413 ire->ire_trace_disable = B_TRUE; 2414 mutex_exit(&ire->ire_lock); 2415 ire_trace_cleanup(ire); 2416 } 2417 } 2418 2419 void 2420 ire_untrace_ref(ire_t *ire) 2421 { 2422 mutex_enter(&ire->ire_lock); 2423 if (!ire->ire_trace_disable) 2424 th_trace_unref(ire); 2425 mutex_exit(&ire->ire_lock); 2426 } 2427 2428 static void 2429 ire_trace_cleanup(const ire_t *ire) 2430 { 2431 th_trace_cleanup(ire, ire->ire_trace_disable); 2432 } 2433 #endif /* DEBUG */ 2434 2435 /* 2436 * Find, or create if needed, the nce_t pointer to the neighbor cache 2437 * entry ncec_t for an IPv4 address. The nce_t will be created on the ill_t 2438 * in the non-IPMP case, or on the cast-ill in the IPMP bcast/mcast case, or 2439 * on the next available under-ill (selected by the IPMP rotor) in the 2440 * unicast IPMP case. 2441 * 2442 * If a neighbor-cache entry has to be created (i.e., one does not already 2443 * exist in the nce list) the ncec_lladdr and ncec_state of the neighbor cache 2444 * entry are initialized in nce_add_v4(). The broadcast, multicast, and 2445 * link-layer type determine the contents of {ncec_state, ncec_lladdr} of 2446 * the ncec_t created. The ncec_lladdr is non-null for all link types with 2447 * non-zero ill_phys_addr_length, though the contents may be zero in cases 2448 * where the link-layer type is not known at the time of creation 2449 * (e.g., IRE_IFRESOLVER links) 2450 * 2451 * All IRE_BROADCAST entries have ncec_state = ND_REACHABLE, and the nce_lladr 2452 * has the physical broadcast address of the outgoing interface. 2453 * For unicast ire entries, 2454 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 2455 * ncec_t with 0 nce_lladr contents, and will be in the ND_INITIAL state. 2456 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 2457 * layer resolution is necessary, so that the ncec_t will be in the 2458 * ND_REACHABLE state 2459 * 2460 * The link layer information needed for broadcast addresses, and for 2461 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 2462 * never needs re-verification for the lifetime of the ncec_t. These are 2463 * therefore marked NCE_F_NONUD. 2464 * 2465 * The nce returned will be created such that the nce_ill == ill that 2466 * is passed in. Note that the nce itself may not have ncec_ill == ill 2467 * where IPMP links are involved. 2468 */ 2469 static nce_t * 2470 ire_nce_init(ill_t *ill, const void *addr, int ire_type) 2471 { 2472 int err; 2473 nce_t *nce = NULL; 2474 uint16_t ncec_flags; 2475 uchar_t *hwaddr; 2476 boolean_t need_refrele = B_FALSE; 2477 ill_t *in_ill = ill; 2478 boolean_t is_unicast; 2479 uint_t hwaddr_len; 2480 2481 is_unicast = ((ire_type & (IRE_MULTICAST|IRE_BROADCAST)) == 0); 2482 if (IS_IPMP(ill) || 2483 ((ire_type & IRE_BROADCAST) && IS_UNDER_IPMP(ill))) { 2484 if ((ill = ipmp_ill_get_xmit_ill(ill, is_unicast)) == NULL) 2485 return (NULL); 2486 need_refrele = B_TRUE; 2487 } 2488 ncec_flags = (ill->ill_flags & ILLF_NONUD) ? NCE_F_NONUD : 0; 2489 2490 switch (ire_type) { 2491 case IRE_BROADCAST: 2492 ASSERT(!ill->ill_isv6); 2493 ncec_flags |= (NCE_F_BCAST|NCE_F_NONUD); 2494 break; 2495 case IRE_MULTICAST: 2496 ncec_flags |= (NCE_F_MCAST|NCE_F_NONUD); 2497 break; 2498 } 2499 2500 if (ill->ill_net_type == IRE_IF_NORESOLVER && is_unicast) { 2501 hwaddr = ill->ill_dest_addr; 2502 } else { 2503 hwaddr = NULL; 2504 } 2505 hwaddr_len = ill->ill_phys_addr_length; 2506 2507 retry: 2508 /* nce_state will be computed by nce_add_common() */ 2509 if (!ill->ill_isv6) { 2510 err = nce_lookup_then_add_v4(ill, hwaddr, hwaddr_len, addr, 2511 ncec_flags, ND_UNCHANGED, &nce); 2512 } else { 2513 err = nce_lookup_then_add_v6(ill, hwaddr, hwaddr_len, addr, 2514 ncec_flags, ND_UNCHANGED, &nce); 2515 } 2516 2517 switch (err) { 2518 case 0: 2519 break; 2520 case EEXIST: 2521 /* 2522 * When subnets change or partially overlap what was once 2523 * a broadcast address could now be a unicast, or vice versa. 2524 */ 2525 if (((ncec_flags ^ nce->nce_common->ncec_flags) & 2526 NCE_F_BCAST) != 0) { 2527 ASSERT(!ill->ill_isv6); 2528 ncec_delete(nce->nce_common); 2529 nce_refrele(nce); 2530 goto retry; 2531 } 2532 break; 2533 default: 2534 DTRACE_PROBE2(nce__init__fail, ill_t *, ill, int, err); 2535 if (need_refrele) 2536 ill_refrele(ill); 2537 return (NULL); 2538 } 2539 /* 2540 * If the ill was an under-ill of an IPMP group, we need to verify 2541 * that it is still active so that we select an active interface in 2542 * the group. However, since ipmp_ill_is_active ASSERTs for 2543 * IS_UNDER_IPMP(), we first need to verify that the ill is an 2544 * under-ill, and since this is being done in the data path, the 2545 * only way to ascertain this is by holding the ill_g_lock. 2546 */ 2547 rw_enter(&ill->ill_ipst->ips_ill_g_lock, RW_READER); 2548 mutex_enter(&ill->ill_lock); 2549 mutex_enter(&ill->ill_phyint->phyint_lock); 2550 if (need_refrele && IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 2551 /* 2552 * need_refrele implies that the under ill was selected by 2553 * ipmp_ill_get_xmit_ill() because either the in_ill was an 2554 * ipmp_ill, or we are sending a non-unicast packet on 2555 * an under_ill. However, when we get here, the ill selected by 2556 * ipmp_ill_get_xmit_ill was pulled out of the active set 2557 * (for unicast) or cast_ill nomination (for 2558 * !unicast) after it was picked as the outgoing ill. 2559 * We have to pick an active interface and/or cast_ill in the 2560 * group. 2561 */ 2562 mutex_exit(&ill->ill_phyint->phyint_lock); 2563 nce_delete(nce); 2564 mutex_exit(&ill->ill_lock); 2565 rw_exit(&ill->ill_ipst->ips_ill_g_lock); 2566 nce_refrele(nce); 2567 ill_refrele(ill); 2568 if ((ill = ipmp_ill_get_xmit_ill(in_ill, is_unicast)) == NULL) 2569 return (NULL); 2570 goto retry; 2571 } else { 2572 mutex_exit(&ill->ill_phyint->phyint_lock); 2573 mutex_exit(&ill->ill_lock); 2574 rw_exit(&ill->ill_ipst->ips_ill_g_lock); 2575 } 2576 done: 2577 ASSERT(nce->nce_ill == ill); 2578 if (need_refrele) 2579 ill_refrele(ill); 2580 return (nce); 2581 } 2582 2583 nce_t * 2584 arp_nce_init(ill_t *ill, in_addr_t addr4, int ire_type) 2585 { 2586 return (ire_nce_init(ill, &addr4, ire_type)); 2587 } 2588 2589 nce_t * 2590 ndp_nce_init(ill_t *ill, const in6_addr_t *addr6, int ire_type) 2591 { 2592 ASSERT((ire_type & IRE_BROADCAST) == 0); 2593 return (ire_nce_init(ill, addr6, ire_type)); 2594 } 2595 2596 /* 2597 * The caller should hold irb_lock as a writer if the ire is in a bucket. 2598 * This routine will clear ire_nce_cache, and we make sure that we can never 2599 * set ire_nce_cache after the ire is marked condemned. 2600 */ 2601 void 2602 ire_make_condemned(ire_t *ire) 2603 { 2604 ip_stack_t *ipst = ire->ire_ipst; 2605 nce_t *nce; 2606 2607 mutex_enter(&ire->ire_lock); 2608 ASSERT(ire->ire_bucket == NULL || 2609 RW_WRITE_HELD(&ire->ire_bucket->irb_lock)); 2610 ASSERT(!IRE_IS_CONDEMNED(ire)); 2611 ire->ire_generation = IRE_GENERATION_CONDEMNED; 2612 /* Count how many condemned ires for kmem_cache callback */ 2613 atomic_add_32(&ipst->ips_num_ire_condemned, 1); 2614 nce = ire->ire_nce_cache; 2615 ire->ire_nce_cache = NULL; 2616 mutex_exit(&ire->ire_lock); 2617 if (nce != NULL) 2618 nce_refrele(nce); 2619 } 2620 2621 /* 2622 * Increment the generation avoiding the special condemned value 2623 */ 2624 void 2625 ire_increment_generation(ire_t *ire) 2626 { 2627 uint_t generation; 2628 2629 mutex_enter(&ire->ire_lock); 2630 /* 2631 * Even though the caller has a hold it can't prevent a concurrent 2632 * ire_delete marking the IRE condemned 2633 */ 2634 if (!IRE_IS_CONDEMNED(ire)) { 2635 generation = ire->ire_generation + 1; 2636 if (generation == IRE_GENERATION_CONDEMNED) 2637 generation = IRE_GENERATION_INITIAL; 2638 ASSERT(generation != IRE_GENERATION_VERIFY); 2639 ire->ire_generation = generation; 2640 } 2641 mutex_exit(&ire->ire_lock); 2642 } 2643 2644 /* 2645 * Increment ire_generation on all the IRE_MULTICASTs 2646 * Used when the default multicast interface (as determined by 2647 * ill_lookup_multicast) might have changed. 2648 * 2649 * That includes the zoneid, IFF_ flags, the IPv6 scope of the address, and 2650 * ill unplumb. 2651 */ 2652 void 2653 ire_increment_multicast_generation(ip_stack_t *ipst, boolean_t isv6) 2654 { 2655 ill_t *ill; 2656 ill_walk_context_t ctx; 2657 2658 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2659 if (isv6) 2660 ill = ILL_START_WALK_V6(&ctx, ipst); 2661 else 2662 ill = ILL_START_WALK_V4(&ctx, ipst); 2663 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2664 if (ILL_IS_CONDEMNED(ill)) 2665 continue; 2666 if (ill->ill_ire_multicast != NULL) 2667 ire_increment_generation(ill->ill_ire_multicast); 2668 } 2669 rw_exit(&ipst->ips_ill_g_lock); 2670 } 2671 2672 /* 2673 * Return a held IRE_NOROUTE with RTF_REJECT set 2674 */ 2675 ire_t * 2676 ire_reject(ip_stack_t *ipst, boolean_t isv6) 2677 { 2678 ire_t *ire; 2679 2680 if (isv6) 2681 ire = ipst->ips_ire_reject_v6; 2682 else 2683 ire = ipst->ips_ire_reject_v4; 2684 2685 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); 2686 ire_refhold(ire); 2687 return (ire); 2688 } 2689 2690 /* 2691 * Return a held IRE_NOROUTE with RTF_BLACKHOLE set 2692 */ 2693 ire_t * 2694 ire_blackhole(ip_stack_t *ipst, boolean_t isv6) 2695 { 2696 ire_t *ire; 2697 2698 if (isv6) 2699 ire = ipst->ips_ire_blackhole_v6; 2700 else 2701 ire = ipst->ips_ire_blackhole_v4; 2702 2703 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); 2704 ire_refhold(ire); 2705 return (ire); 2706 } 2707 2708 /* 2709 * Return a held IRE_MULTICAST. 2710 */ 2711 ire_t * 2712 ire_multicast(ill_t *ill) 2713 { 2714 ire_t *ire = ill->ill_ire_multicast; 2715 2716 ASSERT(ire == NULL || ire->ire_generation != IRE_GENERATION_CONDEMNED); 2717 if (ire == NULL) 2718 ire = ire_blackhole(ill->ill_ipst, ill->ill_isv6); 2719 else 2720 ire_refhold(ire); 2721 return (ire); 2722 } 2723 2724 /* 2725 * Given an IRE return its nexthop IRE. The nexthop IRE is an IRE_ONLINK 2726 * that is an exact match (i.e., a /32 for IPv4 and /128 for IPv6). 2727 * This can return an RTF_REJECT|RTF_BLACKHOLE. 2728 * The returned IRE is held. 2729 * The assumption is that ip_select_route() has been called and returned the 2730 * IRE (thus ip_select_route would have set up the ire_dep* information.) 2731 * If some IRE is deleteted then ire_dep_remove() will have been called and 2732 * we might not find a nexthop IRE, in which case we return NULL. 2733 */ 2734 ire_t * 2735 ire_nexthop(ire_t *ire) 2736 { 2737 ip_stack_t *ipst = ire->ire_ipst; 2738 2739 /* Acquire lock to walk ire_dep_parent */ 2740 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 2741 while (ire != NULL) { 2742 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 2743 goto done; 2744 } 2745 /* 2746 * If we find an IRE_ONLINK we are done. This includes 2747 * the case of IRE_MULTICAST. 2748 * Note that in order to send packets we need a host-specific 2749 * IRE_IF_ALL first in the ire_dep_parent chain. Normally this 2750 * is done by inserting an IRE_IF_CLONE if the IRE_INTERFACE 2751 * was not host specific. 2752 * However, ip_rts_request doesn't want to send packets 2753 * hence doesn't want to allocate an IRE_IF_CLONE. Yet 2754 * it needs an IRE_IF_ALL to get to the ill. Thus 2755 * we return IRE_IF_ALL that are not host specific here. 2756 */ 2757 if (ire->ire_type & IRE_ONLINK) 2758 goto done; 2759 ire = ire->ire_dep_parent; 2760 } 2761 rw_exit(&ipst->ips_ire_dep_lock); 2762 return (NULL); 2763 2764 done: 2765 ire_refhold(ire); 2766 rw_exit(&ipst->ips_ire_dep_lock); 2767 return (ire); 2768 } 2769 2770 /* 2771 * Find the ill used to send packets. This will be NULL in case 2772 * of a reject or blackhole. 2773 * The returned ill is held; caller needs to do ill_refrele when done. 2774 */ 2775 ill_t * 2776 ire_nexthop_ill(ire_t *ire) 2777 { 2778 ill_t *ill; 2779 2780 ire = ire_nexthop(ire); 2781 if (ire == NULL) 2782 return (NULL); 2783 2784 /* ire_ill can not change for an existing ire */ 2785 ill = ire->ire_ill; 2786 if (ill != NULL) 2787 ill_refhold(ill); 2788 ire_refrele(ire); 2789 return (ill); 2790 } 2791 2792 #ifdef DEBUG 2793 static boolean_t 2794 parent_has_child(ire_t *parent, ire_t *child) 2795 { 2796 ire_t *ire; 2797 ire_t *prev; 2798 2799 ire = parent->ire_dep_children; 2800 prev = NULL; 2801 while (ire != NULL) { 2802 if (prev == NULL) { 2803 ASSERT(ire->ire_dep_sib_ptpn == 2804 &(parent->ire_dep_children)); 2805 } else { 2806 ASSERT(ire->ire_dep_sib_ptpn == 2807 &(prev->ire_dep_sib_next)); 2808 } 2809 if (ire == child) 2810 return (B_TRUE); 2811 prev = ire; 2812 ire = ire->ire_dep_sib_next; 2813 } 2814 return (B_FALSE); 2815 } 2816 2817 static void 2818 ire_dep_verify(ire_t *ire) 2819 { 2820 ire_t *parent = ire->ire_dep_parent; 2821 ire_t *child = ire->ire_dep_children; 2822 2823 ASSERT(ire->ire_ipversion == IPV4_VERSION || 2824 ire->ire_ipversion == IPV6_VERSION); 2825 if (parent != NULL) { 2826 ASSERT(parent->ire_ipversion == IPV4_VERSION || 2827 parent->ire_ipversion == IPV6_VERSION); 2828 ASSERT(parent->ire_refcnt >= 1); 2829 ASSERT(parent_has_child(parent, ire)); 2830 } 2831 if (child != NULL) { 2832 ASSERT(child->ire_ipversion == IPV4_VERSION || 2833 child->ire_ipversion == IPV6_VERSION); 2834 ASSERT(child->ire_dep_parent == ire); 2835 ASSERT(child->ire_dep_sib_ptpn != NULL); 2836 ASSERT(parent_has_child(ire, child)); 2837 } 2838 } 2839 #endif /* DEBUG */ 2840 2841 /* 2842 * Assumes ire_dep_parent is set. Remove this child from its parent's linkage. 2843 */ 2844 void 2845 ire_dep_remove(ire_t *ire) 2846 { 2847 ip_stack_t *ipst = ire->ire_ipst; 2848 ire_t *parent = ire->ire_dep_parent; 2849 ire_t *next; 2850 nce_t *nce; 2851 2852 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 2853 ASSERT(ire->ire_dep_parent != NULL); 2854 ASSERT(ire->ire_dep_sib_ptpn != NULL); 2855 2856 #ifdef DEBUG 2857 ire_dep_verify(ire); 2858 ire_dep_verify(parent); 2859 #endif 2860 2861 next = ire->ire_dep_sib_next; 2862 if (next != NULL) 2863 next->ire_dep_sib_ptpn = ire->ire_dep_sib_ptpn; 2864 2865 ASSERT(*(ire->ire_dep_sib_ptpn) == ire); 2866 *(ire->ire_dep_sib_ptpn) = ire->ire_dep_sib_next; 2867 2868 ire->ire_dep_sib_ptpn = NULL; 2869 ire->ire_dep_sib_next = NULL; 2870 2871 mutex_enter(&ire->ire_lock); 2872 parent = ire->ire_dep_parent; 2873 ire->ire_dep_parent = NULL; 2874 mutex_exit(&ire->ire_lock); 2875 2876 /* 2877 * Make sure all our children, grandchildren, etc set 2878 * ire_dep_parent_generation to IRE_GENERATION_VERIFY since 2879 * we can no longer guarantee than the children have a current 2880 * ire_nce_cache and ire_nexthop_ill(). 2881 */ 2882 if (ire->ire_dep_children != NULL) 2883 ire_dep_invalidate_children(ire->ire_dep_children); 2884 2885 /* 2886 * Since the parent is gone we make sure we clear ire_nce_cache. 2887 * We can clear it under ire_lock even if the IRE is used 2888 */ 2889 mutex_enter(&ire->ire_lock); 2890 nce = ire->ire_nce_cache; 2891 ire->ire_nce_cache = NULL; 2892 mutex_exit(&ire->ire_lock); 2893 if (nce != NULL) 2894 nce_refrele(nce); 2895 2896 #ifdef DEBUG 2897 ire_dep_verify(ire); 2898 ire_dep_verify(parent); 2899 #endif 2900 2901 ire_refrele_notr(parent); 2902 ire_refrele_notr(ire); 2903 } 2904 2905 /* 2906 * Insert the child in the linkage of the parent 2907 */ 2908 static void 2909 ire_dep_parent_insert(ire_t *child, ire_t *parent) 2910 { 2911 ip_stack_t *ipst = child->ire_ipst; 2912 ire_t *next; 2913 2914 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 2915 ASSERT(child->ire_dep_parent == NULL); 2916 2917 #ifdef DEBUG 2918 ire_dep_verify(child); 2919 ire_dep_verify(parent); 2920 #endif 2921 /* No parents => no siblings */ 2922 ASSERT(child->ire_dep_sib_ptpn == NULL); 2923 ASSERT(child->ire_dep_sib_next == NULL); 2924 2925 ire_refhold_notr(parent); 2926 ire_refhold_notr(child); 2927 2928 /* Head insertion */ 2929 next = parent->ire_dep_children; 2930 if (next != NULL) { 2931 ASSERT(next->ire_dep_sib_ptpn == &(parent->ire_dep_children)); 2932 child->ire_dep_sib_next = next; 2933 next->ire_dep_sib_ptpn = &(child->ire_dep_sib_next); 2934 } 2935 parent->ire_dep_children = child; 2936 child->ire_dep_sib_ptpn = &(parent->ire_dep_children); 2937 2938 mutex_enter(&child->ire_lock); 2939 child->ire_dep_parent = parent; 2940 mutex_exit(&child->ire_lock); 2941 2942 #ifdef DEBUG 2943 ire_dep_verify(child); 2944 ire_dep_verify(parent); 2945 #endif 2946 } 2947 2948 2949 /* 2950 * Given count worth of ires and generations, build ire_dep_* relationships 2951 * from ires[0] to ires[count-1]. Record generations[i+1] in 2952 * ire_dep_parent_generation for ires[i]. 2953 * We graft onto an existing parent chain by making sure that we don't 2954 * touch ire_dep_parent for ires[count-1]. 2955 * 2956 * We check for any condemned ire_generation count and return B_FALSE in 2957 * that case so that the caller can tear it apart. 2958 * 2959 * Note that generations[0] is not used. Caller handles that. 2960 */ 2961 boolean_t 2962 ire_dep_build(ire_t *ires[], uint_t generations[], uint_t count) 2963 { 2964 ire_t *ire = ires[0]; 2965 ip_stack_t *ipst; 2966 uint_t i; 2967 2968 ASSERT(count > 0); 2969 if (count == 1) { 2970 /* No work to do */ 2971 return (B_TRUE); 2972 } 2973 ipst = ire->ire_ipst; 2974 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 2975 /* 2976 * Do not remove the linkage for any existing parent chain i.e., 2977 * ires[count-1] is left alone. 2978 */ 2979 for (i = 0; i < count-1; i++) { 2980 /* Remove existing parent if we need to change it */ 2981 if (ires[i]->ire_dep_parent != NULL && 2982 ires[i]->ire_dep_parent != ires[i+1]) 2983 ire_dep_remove(ires[i]); 2984 } 2985 2986 for (i = 0; i < count - 1; i++) { 2987 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || 2988 ires[i]->ire_ipversion == IPV6_VERSION); 2989 /* Does it need to change? */ 2990 if (ires[i]->ire_dep_parent != ires[i+1]) 2991 ire_dep_parent_insert(ires[i], ires[i+1]); 2992 2993 mutex_enter(&ires[i+1]->ire_lock); 2994 if (IRE_IS_CONDEMNED(ires[i+1])) { 2995 mutex_exit(&ires[i+1]->ire_lock); 2996 rw_exit(&ipst->ips_ire_dep_lock); 2997 return (B_FALSE); 2998 } 2999 mutex_exit(&ires[i+1]->ire_lock); 3000 3001 mutex_enter(&ires[i]->ire_lock); 3002 ires[i]->ire_dep_parent_generation = generations[i+1]; 3003 mutex_exit(&ires[i]->ire_lock); 3004 } 3005 rw_exit(&ipst->ips_ire_dep_lock); 3006 return (B_TRUE); 3007 } 3008 3009 /* 3010 * Given count worth of ires, unbuild ire_dep_* relationships 3011 * from ires[0] to ires[count-1]. 3012 */ 3013 void 3014 ire_dep_unbuild(ire_t *ires[], uint_t count) 3015 { 3016 ip_stack_t *ipst; 3017 uint_t i; 3018 3019 if (count == 0) { 3020 /* No work to do */ 3021 return; 3022 } 3023 ipst = ires[0]->ire_ipst; 3024 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 3025 for (i = 0; i < count; i++) { 3026 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || 3027 ires[i]->ire_ipversion == IPV6_VERSION); 3028 if (ires[i]->ire_dep_parent != NULL) 3029 ire_dep_remove(ires[i]); 3030 mutex_enter(&ires[i]->ire_lock); 3031 ires[i]->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3032 mutex_exit(&ires[i]->ire_lock); 3033 } 3034 rw_exit(&ipst->ips_ire_dep_lock); 3035 } 3036 3037 /* 3038 * Both the forwarding and the outbound code paths can trip on 3039 * a condemned NCE, in which case we call this function. 3040 * We have two different behaviors: if the NCE was UNREACHABLE 3041 * it is an indication that something failed. In that case 3042 * we see if we should look for a different IRE (for example, 3043 * delete any matching redirect IRE, or try a different 3044 * IRE_DEFAULT (ECMP)). We mark the ire as bad so a hopefully 3045 * different IRE will be picked next time we send/forward. 3046 * 3047 * If we are called by the output path then fail_if_better is set 3048 * and we return NULL if there could be a better IRE. This is because the 3049 * output path retries the IRE lookup. (The input/forward path can not retry.) 3050 * 3051 * If the NCE was not unreachable then we pick/allocate a 3052 * new (most likely ND_INITIAL) NCE and proceed with it. 3053 * 3054 * ipha/ip6h are needed for multicast packets; ipha needs to be 3055 * set for IPv4 and ip6h needs to be set for IPv6 packets. 3056 */ 3057 nce_t * 3058 ire_handle_condemned_nce(nce_t *nce, ire_t *ire, ipha_t *ipha, ip6_t *ip6h, 3059 boolean_t fail_if_better) 3060 { 3061 if (nce->nce_common->ncec_state == ND_UNREACHABLE) { 3062 if (ire_no_good(ire) && fail_if_better) { 3063 /* 3064 * Did some changes, or ECMP likely to exist. 3065 * Make ip_output look for a different IRE 3066 */ 3067 return (NULL); 3068 } 3069 } 3070 if (ire_revalidate_nce(ire) == ENETUNREACH) { 3071 /* The ire_dep_parent chain went bad, or no memory? */ 3072 (void) ire_no_good(ire); 3073 return (NULL); 3074 } 3075 if (ire->ire_ipversion == IPV4_VERSION) { 3076 ASSERT(ipha != NULL); 3077 nce = ire_to_nce(ire, ipha->ipha_dst, NULL); 3078 } else { 3079 ASSERT(ip6h != NULL); 3080 nce = ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst); 3081 } 3082 3083 if (nce == NULL) 3084 return (NULL); 3085 if (nce->nce_is_condemned) { 3086 nce_refrele(nce); 3087 return (NULL); 3088 } 3089 return (nce); 3090 } 3091 3092 /* 3093 * The caller has found that the ire is bad, either due to a reference to an NCE 3094 * in ND_UNREACHABLE state, or a MULTIRT route whose gateway can't be resolved. 3095 * We update things so a subsequent attempt to send to the destination 3096 * is likely to find different IRE, or that a new NCE would be created. 3097 * 3098 * Returns B_TRUE if it is likely that a subsequent ire_ftable_lookup would 3099 * find a different route (either due to having deleted a redirect, or there 3100 * being ECMP routes.) 3101 * 3102 * If we have a redirect (RTF_DYNAMIC) we delete it. 3103 * Otherwise we increment ire_badcnt and increment the generation number so 3104 * that a cached ixa_ire will redo the route selection. ire_badcnt is taken 3105 * into account in the route selection when we have multiple choices (multiple 3106 * default routes or ECMP in general). 3107 * Any time ip_select_route find an ire with a condemned ire_nce_cache 3108 * (e.g., if no equal cost route to the bad one) ip_select_route will make 3109 * sure the NCE is revalidated to avoid getting stuck on a 3110 * NCE_F_CONDMNED ncec that caused ire_no_good to be called. 3111 */ 3112 boolean_t 3113 ire_no_good(ire_t *ire) 3114 { 3115 ip_stack_t *ipst = ire->ire_ipst; 3116 ire_t *ire2; 3117 nce_t *nce; 3118 3119 if (ire->ire_flags & RTF_DYNAMIC) { 3120 ire_delete(ire); 3121 return (B_TRUE); 3122 } 3123 if (ire->ire_flags & RTF_INDIRECT) { 3124 /* Check if next IRE is a redirect */ 3125 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3126 if (ire->ire_dep_parent != NULL && 3127 (ire->ire_dep_parent->ire_flags & RTF_DYNAMIC)) { 3128 ire2 = ire->ire_dep_parent; 3129 ire_refhold(ire2); 3130 } else { 3131 ire2 = NULL; 3132 } 3133 rw_exit(&ipst->ips_ire_dep_lock); 3134 if (ire2 != NULL) { 3135 ire_delete(ire2); 3136 ire_refrele(ire2); 3137 return (B_TRUE); 3138 } 3139 } 3140 /* 3141 * No redirect involved. Increment badcnt so that if we have ECMP 3142 * routes we are likely to pick a different one for the next packet. 3143 * 3144 * If the NCE is unreachable and condemned we should drop the reference 3145 * to it so that a new NCE can be created. 3146 * 3147 * Finally we increment the generation number so that any ixa_ire 3148 * cache will be revalidated. 3149 */ 3150 mutex_enter(&ire->ire_lock); 3151 ire->ire_badcnt++; 3152 ire->ire_last_badcnt = TICK_TO_SEC(ddi_get_lbolt64()); 3153 nce = ire->ire_nce_cache; 3154 if (nce != NULL && nce->nce_is_condemned && 3155 nce->nce_common->ncec_state == ND_UNREACHABLE) 3156 ire->ire_nce_cache = NULL; 3157 else 3158 nce = NULL; 3159 mutex_exit(&ire->ire_lock); 3160 if (nce != NULL) 3161 nce_refrele(nce); 3162 3163 ire_increment_generation(ire); 3164 ire_dep_incr_generation(ire); 3165 3166 return (ire->ire_bucket->irb_ire_cnt > 1); 3167 } 3168 3169 /* 3170 * Walk ire_dep_parent chain and validate that ire_dep_parent->ire_generation == 3171 * ire_dep_parent_generation. 3172 * If they all match we just return ire_generation from the topmost IRE. 3173 * Otherwise we propagate the mismatch by setting all ire_dep_parent_generation 3174 * above the mismatch to IRE_GENERATION_VERIFY and also returning 3175 * IRE_GENERATION_VERIFY. 3176 */ 3177 uint_t 3178 ire_dep_validate_generations(ire_t *ire) 3179 { 3180 ip_stack_t *ipst = ire->ire_ipst; 3181 uint_t generation; 3182 ire_t *ire1; 3183 3184 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3185 generation = ire->ire_generation; /* Assuming things match */ 3186 for (ire1 = ire; ire1 != NULL; ire1 = ire1->ire_dep_parent) { 3187 ASSERT(ire1->ire_ipversion == IPV4_VERSION || 3188 ire1->ire_ipversion == IPV6_VERSION); 3189 if (ire1->ire_dep_parent == NULL) 3190 break; 3191 if (ire1->ire_dep_parent_generation != 3192 ire1->ire_dep_parent->ire_generation) 3193 goto mismatch; 3194 } 3195 rw_exit(&ipst->ips_ire_dep_lock); 3196 return (generation); 3197 3198 mismatch: 3199 generation = IRE_GENERATION_VERIFY; 3200 /* Fill from top down to the mismatch with _VERIFY */ 3201 while (ire != ire1) { 3202 ASSERT(ire->ire_ipversion == IPV4_VERSION || 3203 ire->ire_ipversion == IPV6_VERSION); 3204 mutex_enter(&ire->ire_lock); 3205 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3206 mutex_exit(&ire->ire_lock); 3207 ire = ire->ire_dep_parent; 3208 } 3209 rw_exit(&ipst->ips_ire_dep_lock); 3210 return (generation); 3211 } 3212 3213 /* 3214 * Used when we need to return an ire with ire_dep_parent, but we 3215 * know the chain is invalid for instance we didn't create an IRE_IF_CLONE 3216 * Using IRE_GENERATION_VERIFY means that next time we'll redo the 3217 * recursive lookup. 3218 */ 3219 void 3220 ire_dep_invalidate_generations(ire_t *ire) 3221 { 3222 ip_stack_t *ipst = ire->ire_ipst; 3223 3224 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3225 while (ire != NULL) { 3226 ASSERT(ire->ire_ipversion == IPV4_VERSION || 3227 ire->ire_ipversion == IPV6_VERSION); 3228 mutex_enter(&ire->ire_lock); 3229 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3230 mutex_exit(&ire->ire_lock); 3231 ire = ire->ire_dep_parent; 3232 } 3233 rw_exit(&ipst->ips_ire_dep_lock); 3234 } 3235 3236 /* Set _VERIFY ire_dep_parent_generation for all children recursively */ 3237 static void 3238 ire_dep_invalidate_children(ire_t *child) 3239 { 3240 ip_stack_t *ipst = child->ire_ipst; 3241 3242 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 3243 /* Depth first */ 3244 if (child->ire_dep_children != NULL) 3245 ire_dep_invalidate_children(child->ire_dep_children); 3246 3247 while (child != NULL) { 3248 mutex_enter(&child->ire_lock); 3249 child->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3250 mutex_exit(&child->ire_lock); 3251 child = child->ire_dep_sib_next; 3252 } 3253 } 3254 3255 static void 3256 ire_dep_increment_children(ire_t *child) 3257 { 3258 ip_stack_t *ipst = child->ire_ipst; 3259 3260 ASSERT(RW_READ_HELD(&ipst->ips_ire_dep_lock)); 3261 /* Depth first */ 3262 if (child->ire_dep_children != NULL) 3263 ire_dep_increment_children(child->ire_dep_children); 3264 3265 while (child != NULL) { 3266 if (!IRE_IS_CONDEMNED(child)) 3267 ire_increment_generation(child); 3268 child = child->ire_dep_sib_next; 3269 } 3270 } 3271 3272 /* 3273 * Walk all the children of this ire recursively and increment their 3274 * generation number. 3275 */ 3276 static void 3277 ire_dep_incr_generation_locked(ire_t *parent) 3278 { 3279 ASSERT(RW_READ_HELD(&parent->ire_ipst->ips_ire_dep_lock)); 3280 if (parent->ire_dep_children != NULL) 3281 ire_dep_increment_children(parent->ire_dep_children); 3282 } 3283 3284 void 3285 ire_dep_incr_generation(ire_t *parent) 3286 { 3287 ip_stack_t *ipst = parent->ire_ipst; 3288 3289 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3290 ire_dep_incr_generation_locked(parent); 3291 rw_exit(&ipst->ips_ire_dep_lock); 3292 } 3293 3294 /* 3295 * Get a new ire_nce_cache for this IRE as well as its nexthop. 3296 * Returns zero if it succeeds. Can fail due to lack of memory or when 3297 * the route has become unreachable. Returns ENOMEM and ENETUNREACH in those 3298 * cases. 3299 * 3300 * In the in.mpathd case, the ire will have ire_testhidden 3301 * set; so we should create the ncec for the underlying ill. 3302 * 3303 * Note that the error returned by ire_revalidate_nce() is ignored by most 3304 * callers except ire_handle_condemned_nce(), which handles the ENETUNREACH 3305 * error to mark potentially bad ire's. For all the other callers, an 3306 * error return could indicate a transient condition like ENOMEM, or could 3307 * be the result of an interface that is going down/unplumbing. In the former 3308 * case (transient error), we would leave the old stale ire/ire_nce_cache 3309 * in place, and possibly use incorrect link-layer information to send packets 3310 * but would eventually recover. In the latter case (ill down/replumb), 3311 * ire_revalidate_nce() might return a condemned nce back, but we would then 3312 * recover in the packet output path. 3313 */ 3314 int 3315 ire_revalidate_nce(ire_t *ire) 3316 { 3317 nce_t *nce, *old_nce; 3318 ire_t *nexthop; 3319 3320 /* 3321 * For multicast we conceptually have an NCE but we don't store it 3322 * in ire_nce_cache; when ire_to_nce is called we allocate the nce. 3323 */ 3324 if (ire->ire_type & IRE_MULTICAST) 3325 return (0); 3326 3327 /* ire_testhidden should only be set on under-interfaces */ 3328 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); 3329 3330 nexthop = ire_nexthop(ire); 3331 if (nexthop == NULL) { 3332 /* The route is potentially bad */ 3333 (void) ire_no_good(ire); 3334 return (ENETUNREACH); 3335 } 3336 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3337 ASSERT(ire->ire_ill != NULL); 3338 3339 if (ire->ire_ipversion == IPV4_VERSION) 3340 nce = nce_lookup_v4(ire->ire_ill, &ire->ire_addr); 3341 else 3342 nce = nce_lookup_v6(ire->ire_ill, &ire->ire_addr_v6); 3343 } else { 3344 ASSERT(nexthop->ire_type & IRE_ONLINK); 3345 if (ire->ire_ipversion == IPV4_VERSION) { 3346 nce = arp_nce_init(nexthop->ire_ill, nexthop->ire_addr, 3347 nexthop->ire_type); 3348 } else { 3349 nce = ndp_nce_init(nexthop->ire_ill, 3350 &nexthop->ire_addr_v6, nexthop->ire_type); 3351 } 3352 } 3353 if (nce == NULL) { 3354 /* 3355 * Leave the old stale one in place to avoid a NULL 3356 * ire_nce_cache. 3357 */ 3358 ire_refrele(nexthop); 3359 return (ENOMEM); 3360 } 3361 3362 if (nexthop != ire) { 3363 /* Update the nexthop ire */ 3364 mutex_enter(&nexthop->ire_lock); 3365 old_nce = nexthop->ire_nce_cache; 3366 if (!IRE_IS_CONDEMNED(nexthop)) { 3367 nce_refhold(nce); 3368 nexthop->ire_nce_cache = nce; 3369 } else { 3370 nexthop->ire_nce_cache = NULL; 3371 } 3372 mutex_exit(&nexthop->ire_lock); 3373 if (old_nce != NULL) 3374 nce_refrele(old_nce); 3375 } 3376 ire_refrele(nexthop); 3377 3378 mutex_enter(&ire->ire_lock); 3379 old_nce = ire->ire_nce_cache; 3380 if (!IRE_IS_CONDEMNED(ire)) { 3381 nce_refhold(nce); 3382 ire->ire_nce_cache = nce; 3383 } else { 3384 ire->ire_nce_cache = NULL; 3385 } 3386 mutex_exit(&ire->ire_lock); 3387 if (old_nce != NULL) 3388 nce_refrele(old_nce); 3389 3390 nce_refrele(nce); 3391 return (0); 3392 } 3393 3394 /* 3395 * Get a held nce for a given ire. 3396 * In the common case this is just from ire_nce_cache. 3397 * For IRE_MULTICAST this needs to do an explicit lookup since we do not 3398 * have an IRE_MULTICAST per address. 3399 * Note that this explicitly returns CONDEMNED NCEs. The caller needs those 3400 * so they can check whether the NCE went unreachable (as opposed to was 3401 * condemned for some other reason). 3402 */ 3403 nce_t * 3404 ire_to_nce(ire_t *ire, ipaddr_t v4nexthop, const in6_addr_t *v6nexthop) 3405 { 3406 nce_t *nce; 3407 3408 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 3409 return (NULL); 3410 3411 /* ire_testhidden should only be set on under-interfaces */ 3412 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); 3413 3414 mutex_enter(&ire->ire_lock); 3415 nce = ire->ire_nce_cache; 3416 if (nce != NULL) { 3417 nce_refhold(nce); 3418 mutex_exit(&ire->ire_lock); 3419 return (nce); 3420 } 3421 mutex_exit(&ire->ire_lock); 3422 3423 if (ire->ire_type & IRE_MULTICAST) { 3424 ASSERT(ire->ire_ill != NULL); 3425 3426 if (ire->ire_ipversion == IPV4_VERSION) { 3427 ASSERT(v6nexthop == NULL); 3428 3429 nce = arp_nce_init(ire->ire_ill, v4nexthop, 3430 ire->ire_type); 3431 } else { 3432 ASSERT(v6nexthop != NULL); 3433 ASSERT(v4nexthop == 0); 3434 nce = ndp_nce_init(ire->ire_ill, v6nexthop, 3435 ire->ire_type); 3436 } 3437 return (nce); 3438 } 3439 return (NULL); 3440 } 3441 3442 nce_t * 3443 ire_to_nce_pkt(ire_t *ire, mblk_t *mp) 3444 { 3445 ipha_t *ipha; 3446 ip6_t *ip6h; 3447 3448 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 3449 ipha = (ipha_t *)mp->b_rptr; 3450 return (ire_to_nce(ire, ipha->ipha_dst, NULL)); 3451 } else { 3452 ip6h = (ip6_t *)mp->b_rptr; 3453 return (ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst)); 3454 } 3455 } 3456 3457 /* 3458 * Given an IRE_INTERFACE (that matches more than one address) create 3459 * and return an IRE_IF_CLONE for the specific address. 3460 * Return the generation number. 3461 * Returns NULL is no memory for the IRE. 3462 * Handles both IPv4 and IPv6. 3463 */ 3464 ire_t * 3465 ire_create_if_clone(ire_t *ire_if, const in6_addr_t *addr, uint_t *generationp) 3466 { 3467 ire_t *ire; 3468 ire_t *nire; 3469 3470 if (ire_if->ire_ipversion == IPV4_VERSION) { 3471 ipaddr_t v4addr; 3472 ipaddr_t mask = IP_HOST_MASK; 3473 3474 ASSERT(IN6_IS_ADDR_V4MAPPED(addr)); 3475 IN6_V4MAPPED_TO_IPADDR(addr, v4addr); 3476 3477 ire = ire_create( 3478 (uchar_t *)&v4addr, /* dest address */ 3479 (uchar_t *)&mask, /* mask */ 3480 (uchar_t *)&ire_if->ire_gateway_addr, 3481 IRE_IF_CLONE, /* IRE type */ 3482 ire_if->ire_ill, 3483 ire_if->ire_zoneid, 3484 ire_if->ire_flags | RTF_HOST, 3485 NULL, /* No security attr for IRE_IF_ALL */ 3486 ire_if->ire_ipst); 3487 } else { 3488 ASSERT(!IN6_IS_ADDR_V4MAPPED(addr)); 3489 ire = ire_create_v6( 3490 addr, /* dest address */ 3491 &ipv6_all_ones, /* mask */ 3492 &ire_if->ire_gateway_addr_v6, /* gateway addr */ 3493 IRE_IF_CLONE, /* IRE type */ 3494 ire_if->ire_ill, 3495 ire_if->ire_zoneid, 3496 ire_if->ire_flags | RTF_HOST, 3497 NULL, /* No security attr for IRE_IF_ALL */ 3498 ire_if->ire_ipst); 3499 } 3500 if (ire == NULL) 3501 return (NULL); 3502 3503 /* Take the metrics, in particular the mtu, from the IRE_IF */ 3504 ire->ire_metrics = ire_if->ire_metrics; 3505 3506 nire = ire_add(ire); 3507 if (nire == NULL) /* Some failure */ 3508 return (NULL); 3509 3510 if (generationp != NULL) 3511 *generationp = nire->ire_generation; 3512 3513 /* 3514 * Make sure races don't add a duplicate by 3515 * catching the case when an identical was returned. 3516 */ 3517 if (nire != ire) { 3518 ASSERT(nire->ire_identical_ref > 1); 3519 ire_delete(nire); 3520 } 3521 return (nire); 3522 } 3523 3524 /* 3525 * The argument is an IRE_INTERFACE. Delete all of IRE_IF_CLONE in the 3526 * ire_dep_children (just walk the ire_dep_sib_next since they are all 3527 * immediate children.) 3528 * Since we hold a lock while we remove them we need to defer the actual 3529 * calls to ire_delete() until we have dropped the lock. This makes things 3530 * less efficient since we restart at the top after dropping the lock. But 3531 * we only run when an IRE_INTERFACE is deleted which is infrquent. 3532 * 3533 * Note that ire_dep_children can be any mixture of offlink routes and 3534 * IRE_IF_CLONE entries. 3535 */ 3536 void 3537 ire_dep_delete_if_clone(ire_t *parent) 3538 { 3539 ip_stack_t *ipst = parent->ire_ipst; 3540 ire_t *child, *next; 3541 3542 restart: 3543 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3544 if (parent->ire_dep_children == NULL) { 3545 rw_exit(&ipst->ips_ire_dep_lock); 3546 return; 3547 } 3548 child = parent->ire_dep_children; 3549 while (child != NULL) { 3550 next = child->ire_dep_sib_next; 3551 if ((child->ire_type & IRE_IF_CLONE) && 3552 !IRE_IS_CONDEMNED(child)) { 3553 ire_refhold(child); 3554 rw_exit(&ipst->ips_ire_dep_lock); 3555 ire_delete(child); 3556 ASSERT(IRE_IS_CONDEMNED(child)); 3557 ire_refrele(child); 3558 goto restart; 3559 } 3560 child = next; 3561 } 3562 rw_exit(&ipst->ips_ire_dep_lock); 3563 } 3564 3565 /* 3566 * In the preferred/strict src multihoming modes, unbound routes (i.e., 3567 * ire_t entries with ire_unbound set to B_TRUE) are bound to an interface 3568 * by selecting the first available interface that has an interface route for 3569 * the ire_gateway. If that interface is subsequently brought down, ill_downi() 3570 * will call ire_rebind() so that the unbound route can be bound to some other 3571 * matching interface thereby preserving the intended reachability information 3572 * from the original unbound route. 3573 */ 3574 void 3575 ire_rebind(ire_t *ire) 3576 { 3577 ire_t *gw_ire, *new_ire; 3578 int match_flags = MATCH_IRE_TYPE; 3579 ill_t *gw_ill; 3580 boolean_t isv6 = (ire->ire_ipversion == IPV6_VERSION); 3581 ip_stack_t *ipst = ire->ire_ipst; 3582 3583 ASSERT(ire->ire_unbound); 3584 again: 3585 if (isv6) { 3586 gw_ire = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 0, 0, 3587 IRE_INTERFACE, NULL, ALL_ZONES, NULL, match_flags, 0, 3588 ipst, NULL); 3589 } else { 3590 gw_ire = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 3591 IRE_INTERFACE, NULL, ALL_ZONES, NULL, match_flags, 0, 3592 ipst, NULL); 3593 } 3594 if (gw_ire == NULL) { 3595 /* see comments in ip_rt_add[_v6]() for IPMP */ 3596 if (match_flags & MATCH_IRE_TESTHIDDEN) 3597 return; 3598 3599 match_flags |= MATCH_IRE_TESTHIDDEN; 3600 goto again; 3601 } 3602 gw_ill = gw_ire->ire_ill; 3603 if (isv6) { 3604 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 3605 &ire->ire_gateway_addr_v6, ire->ire_type, gw_ill, 3606 ire->ire_zoneid, ire->ire_flags, NULL, ipst); 3607 } else { 3608 new_ire = ire_create((uchar_t *)&ire->ire_addr, 3609 (uchar_t *)&ire->ire_mask, 3610 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, gw_ill, 3611 ire->ire_zoneid, ire->ire_flags, NULL, ipst); 3612 } 3613 ire_refrele(gw_ire); 3614 if (new_ire == NULL) 3615 return; 3616 new_ire->ire_unbound = B_TRUE; 3617 new_ire = ire_add(new_ire); 3618 if (new_ire != NULL) 3619 ire_refrele(new_ire); 3620 } 3621