1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 */ 25 26 /* 27 * This file contains routines that manipulate Internet Routing Entries (IREs). 28 */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/stropts.h> 33 #include <sys/strsun.h> 34 #include <sys/strsubr.h> 35 #include <sys/ddi.h> 36 #include <sys/cmn_err.h> 37 #include <sys/policy.h> 38 39 #include <sys/systm.h> 40 #include <sys/kmem.h> 41 #include <sys/param.h> 42 #include <sys/socket.h> 43 #include <net/if.h> 44 #include <net/route.h> 45 #include <netinet/in.h> 46 #include <net/if_dl.h> 47 #include <netinet/ip6.h> 48 #include <netinet/icmp6.h> 49 50 #include <inet/common.h> 51 #include <inet/mi.h> 52 #include <inet/ip.h> 53 #include <inet/ip6.h> 54 #include <inet/ip_ndp.h> 55 #include <inet/arp.h> 56 #include <inet/ip_if.h> 57 #include <inet/ip_ire.h> 58 #include <inet/ip_ftable.h> 59 #include <inet/ip_rts.h> 60 #include <inet/nd.h> 61 #include <inet/tunables.h> 62 63 #include <inet/tcp.h> 64 #include <inet/ipclassifier.h> 65 #include <sys/zone.h> 66 #include <sys/cpuvar.h> 67 68 #include <sys/tsol/label.h> 69 #include <sys/tsol/tnet.h> 70 71 struct kmem_cache *rt_entry_cache; 72 73 typedef struct nce_clookup_s { 74 ipaddr_t ncecl_addr; 75 boolean_t ncecl_found; 76 } nce_clookup_t; 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the forwarding table in which is ire stored. 86 * 87 * ire_ill, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, 89 * ire_bucket 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_refcnt, ire_identical_ref 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_generation 117 * - Under ire_lock 118 * 119 * ire_nce_cache 120 * - Under ire_lock 121 * 122 * ire_dep_parent (To next IRE in recursive lookup chain) 123 * - Under ips_ire_dep_lock. Write held when modifying. Read held when 124 * walking. We also hold ire_lock when modifying to allow the data path 125 * to only acquire ire_lock. 126 * 127 * ire_dep_parent_generation (Generation number from ire_dep_parent) 128 * - Under ips_ire_dep_lock and/or ire_lock. (A read claim on the dep_lock 129 * and ire_lock held when modifying) 130 * 131 * ire_dep_children (From parent to first child) 132 * ire_dep_sib_next (linked list of siblings) 133 * ire_dep_sib_ptpn (linked list of siblings) 134 * - Under ips_ire_dep_lock. Write held when modifying. Read held when 135 * walking. 136 * 137 * As we always hold the bucket locks in all the places while accessing 138 * the above values, it is natural to use them for protecting them. 139 * 140 * We have a forwarding table for IPv4 and IPv6. The IPv6 forwarding table 141 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t 142 * structures. ip_forwarding_table_v6 is allocated dynamically in 143 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 144 * initializing the same bucket. Once a bucket is initialized, it is never 145 * de-alloacted. This assumption enables us to access 146 * ip_forwarding_table_v6[i] without any locks. 147 * 148 * The forwarding table for IPv4 is a radix tree whose leaves 149 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t 150 * for IPv4 is dynamically allocated and freed. 151 * 152 * Each irb_t - ire bucket structure has a lock to protect 153 * a bucket and the ires residing in the bucket have a back pointer to 154 * the bucket structure. It also has a reference count for the number 155 * of threads walking the bucket - irb_refcnt which is bumped up 156 * using the irb_refhold function. The flags irb_marks can be 157 * set to IRB_MARK_CONDEMNED indicating that there are some ires 158 * in this bucket that are IRE_IS_CONDEMNED and the 159 * last thread to leave the bucket should delete the ires. Usually 160 * this is done by the irb_refrele function which is used to decrement 161 * the reference count on a bucket. See comments above irb_t structure 162 * definition in ip.h for further details. 163 * 164 * The ire_refhold/ire_refrele functions operate on the ire which increments/ 165 * decrements the reference count, ire_refcnt, atomically on the ire. 166 * ire_refcnt is modified only using those functions. Operations on the IRE 167 * could be described as follows : 168 * 169 * CREATE an ire with reference count initialized to 1. 170 * 171 * ADDITION of an ire holds the bucket lock, checks for duplicates 172 * and then adds the ire. ire_add returns the ire after 173 * bumping up once more i.e the reference count is 2. This is to avoid 174 * an extra lookup in the functions calling ire_add which wants to 175 * work with the ire after adding. 176 * 177 * LOOKUP of an ire bumps up the reference count using ire_refhold 178 * function. It is valid to bump up the referece count of the IRE, 179 * after the lookup has returned an ire. Following are the lookup 180 * functions that return an HELD ire : 181 * 182 * ire_ftable_lookup[_v6], ire_lookup_multi_ill[_v6] 183 * 184 * DELETION of an ire holds the bucket lock, removes it from the list 185 * and then decrements the reference count for having removed from the list 186 * by using the ire_refrele function. If some other thread has looked up 187 * the ire, the reference count would have been bumped up and hence 188 * this ire will not be freed once deleted. It will be freed once the 189 * reference count drops to zero. 190 * 191 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 192 * lookups acquire the bucket lock as RW_READER. 193 * 194 * The general rule is to do the ire_refrele in the function 195 * that is passing the ire as an argument. 196 * 197 * In trying to locate ires the following points are to be noted. 198 * 199 * IRE_IS_CONDEMNED signifies that the ire has been logically deleted and is 200 * to be ignored when walking the ires using ire_next. 201 * 202 * Zones note: 203 * Walking IREs within a given zone also walks certain ires in other 204 * zones. This is done intentionally. IRE walks with a specified 205 * zoneid are used only when doing informational reports, and 206 * zone users want to see things that they can access. See block 207 * comment in ire_walk_ill_match(). 208 */ 209 210 /* 211 * The size of the forwarding table. We will make sure that it is a 212 * power of 2 in ip_ire_init(). 213 * Setable in /etc/system 214 */ 215 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 216 217 struct kmem_cache *ire_cache; 218 struct kmem_cache *ncec_cache; 219 struct kmem_cache *nce_cache; 220 221 static ire_t ire_null; 222 223 static ire_t *ire_add_v4(ire_t *ire); 224 static void ire_delete_v4(ire_t *ire); 225 static void ire_dep_invalidate_children(ire_t *child); 226 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 227 zoneid_t zoneid, ip_stack_t *); 228 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 229 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 230 #ifdef DEBUG 231 static void ire_trace_cleanup(const ire_t *); 232 #endif 233 static void ire_dep_incr_generation_locked(ire_t *); 234 235 /* 236 * Following are the functions to increment/decrement the reference 237 * count of the IREs and IRBs (ire bucket). 238 * 239 * 1) We bump up the reference count of an IRE to make sure that 240 * it does not get deleted and freed while we are using it. 241 * Typically all the lookup functions hold the bucket lock, 242 * and look for the IRE. If it finds an IRE, it bumps up the 243 * reference count before dropping the lock. Sometimes we *may* want 244 * to bump up the reference count after we *looked* up i.e without 245 * holding the bucket lock. So, the ire_refhold function does not assert 246 * on the bucket lock being held. Any thread trying to delete from 247 * the hash bucket can still do so but cannot free the IRE if 248 * ire_refcnt is not 0. 249 * 250 * 2) We bump up the reference count on the bucket where the IRE resides 251 * (IRB), when we want to prevent the IREs getting deleted from a given 252 * hash bucket. This makes life easier for ire_walk type functions which 253 * wants to walk the IRE list, call a function, but needs to drop 254 * the bucket lock to prevent recursive rw_enters. While the 255 * lock is dropped, the list could be changed by other threads or 256 * the same thread could end up deleting the ire or the ire pointed by 257 * ire_next. ire_refholding the ire or ire_next is not sufficient as 258 * a delete will still remove the ire from the bucket while we have 259 * dropped the lock and hence the ire_next would be NULL. Thus, we 260 * need a mechanism to prevent deletions from a given bucket. 261 * 262 * To prevent deletions, we bump up the reference count on the 263 * bucket. If the bucket is held, ire_delete just marks both 264 * the ire and irb as CONDEMNED. When the 265 * reference count on the bucket drops to zero, all the CONDEMNED ires 266 * are deleted. We don't have to bump up the reference count on the 267 * bucket if we are walking the bucket and never have to drop the bucket 268 * lock. Note that irb_refhold does not prevent addition of new ires 269 * in the list. It is okay because addition of new ires will not cause 270 * ire_next to point to freed memory. We do irb_refhold only when 271 * all of the 3 conditions are true : 272 * 273 * 1) The code needs to walk the IRE bucket from start to end. 274 * 2) It may have to drop the bucket lock sometimes while doing (1) 275 * 3) It does not want any ires to be deleted meanwhile. 276 */ 277 278 /* 279 * Bump up the reference count on the hash bucket - IRB to 280 * prevent ires from being deleted in this bucket. 281 */ 282 void 283 irb_refhold(irb_t *irb) 284 { 285 rw_enter(&irb->irb_lock, RW_WRITER); 286 irb->irb_refcnt++; 287 ASSERT(irb->irb_refcnt != 0); 288 rw_exit(&irb->irb_lock); 289 } 290 291 void 292 irb_refhold_locked(irb_t *irb) 293 { 294 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 295 irb->irb_refcnt++; 296 ASSERT(irb->irb_refcnt != 0); 297 } 298 299 /* 300 * Note: when IRB_MARK_DYNAMIC is not set the irb_t 301 * is statically allocated, so that when the irb_refcnt goes to 0, 302 * we simply clean up the ire list and continue. 303 */ 304 void 305 irb_refrele(irb_t *irb) 306 { 307 if (irb->irb_marks & IRB_MARK_DYNAMIC) { 308 irb_refrele_ftable(irb); 309 } else { 310 rw_enter(&irb->irb_lock, RW_WRITER); 311 ASSERT(irb->irb_refcnt != 0); 312 if (--irb->irb_refcnt == 0 && 313 (irb->irb_marks & IRB_MARK_CONDEMNED)) { 314 ire_t *ire_list; 315 316 ire_list = ire_unlink(irb); 317 rw_exit(&irb->irb_lock); 318 ASSERT(ire_list != NULL); 319 ire_cleanup(ire_list); 320 } else { 321 rw_exit(&irb->irb_lock); 322 } 323 } 324 } 325 326 327 /* 328 * Bump up the reference count on the IRE. We cannot assert that the 329 * bucket lock is being held as it is legal to bump up the reference 330 * count after the first lookup has returned the IRE without 331 * holding the lock. 332 */ 333 void 334 ire_refhold(ire_t *ire) 335 { 336 atomic_add_32(&(ire)->ire_refcnt, 1); 337 ASSERT((ire)->ire_refcnt != 0); 338 #ifdef DEBUG 339 ire_trace_ref(ire); 340 #endif 341 } 342 343 void 344 ire_refhold_notr(ire_t *ire) 345 { 346 atomic_add_32(&(ire)->ire_refcnt, 1); 347 ASSERT((ire)->ire_refcnt != 0); 348 } 349 350 void 351 ire_refhold_locked(ire_t *ire) 352 { 353 #ifdef DEBUG 354 ire_trace_ref(ire); 355 #endif 356 ire->ire_refcnt++; 357 } 358 359 /* 360 * Release a ref on an IRE. 361 * 362 * Must not be called while holding any locks. Otherwise if this is 363 * the last reference to be released there is a chance of recursive mutex 364 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 365 * to restart an ioctl. The one exception is when the caller is sure that 366 * this is not the last reference to be released. Eg. if the caller is 367 * sure that the ire has not been deleted and won't be deleted. 368 * 369 * In architectures e.g sun4u, where atomic_add_32_nv is just 370 * a cas, we need to maintain the right memory barrier semantics 371 * as that of mutex_exit i.e all the loads and stores should complete 372 * before the cas is executed. membar_exit() does that here. 373 */ 374 void 375 ire_refrele(ire_t *ire) 376 { 377 #ifdef DEBUG 378 ire_untrace_ref(ire); 379 #endif 380 ASSERT((ire)->ire_refcnt != 0); 381 membar_exit(); 382 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) 383 ire_inactive(ire); 384 } 385 386 void 387 ire_refrele_notr(ire_t *ire) 388 { 389 ASSERT((ire)->ire_refcnt != 0); 390 membar_exit(); 391 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) 392 ire_inactive(ire); 393 } 394 395 /* 396 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 397 * IOCTL[s]. The NO_REPLY form is used by TCP to tell IP that it is 398 * having problems reaching a particular destination. 399 * This will make IP consider alternate routes (e.g., when there are 400 * muliple default routes), and it will also make IP discard any (potentially) 401 * stale redirect. 402 * Management processes may want to use the version that generates a reply. 403 * 404 * With the use of NUD like behavior for IPv4/ARP in addition to IPv6 405 * this function shouldn't be necessary for IP to recover from a bad redirect, 406 * a bad default router (when there are multiple default routers), or 407 * a stale ND/ARP entry. But we retain it in any case. 408 * For instance, this is helpful when TCP suspects a failure before NUD does. 409 */ 410 int 411 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 412 { 413 uchar_t *addr_ucp; 414 uint_t ipversion; 415 sin_t *sin; 416 sin6_t *sin6; 417 ipaddr_t v4addr; 418 in6_addr_t v6addr; 419 ire_t *ire; 420 ipid_t *ipid; 421 zoneid_t zoneid; 422 ip_stack_t *ipst; 423 424 ASSERT(q->q_next == NULL); 425 zoneid = IPCL_ZONEID(Q_TO_CONN(q)); 426 ipst = CONNQ_TO_IPST(q); 427 428 /* 429 * Check privilege using the ioctl credential; if it is NULL 430 * then this is a kernel message and therefor privileged. 431 */ 432 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 433 return (EPERM); 434 435 ipid = (ipid_t *)mp->b_rptr; 436 437 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 438 ipid->ipid_addr_length); 439 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 440 return (EINVAL); 441 switch (ipid->ipid_addr_length) { 442 case sizeof (sin_t): 443 /* 444 * got complete (sockaddr) address - increment addr_ucp to point 445 * at the ip_addr field. 446 */ 447 sin = (sin_t *)addr_ucp; 448 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 449 ipversion = IPV4_VERSION; 450 break; 451 case sizeof (sin6_t): 452 /* 453 * got complete (sockaddr) address - increment addr_ucp to point 454 * at the ip_addr field. 455 */ 456 sin6 = (sin6_t *)addr_ucp; 457 addr_ucp = (uchar_t *)&sin6->sin6_addr; 458 ipversion = IPV6_VERSION; 459 break; 460 default: 461 return (EINVAL); 462 } 463 if (ipversion == IPV4_VERSION) { 464 /* Extract the destination address. */ 465 bcopy(addr_ucp, &v4addr, IP_ADDR_LEN); 466 467 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 468 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 469 } else { 470 /* Extract the destination address. */ 471 bcopy(addr_ucp, &v6addr, IPV6_ADDR_LEN); 472 473 ire = ire_ftable_lookup_v6(&v6addr, NULL, NULL, 0, NULL, 474 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 475 } 476 if (ire != NULL) { 477 if (ipversion == IPV4_VERSION) { 478 ip_rts_change(RTM_LOSING, ire->ire_addr, 479 ire->ire_gateway_addr, ire->ire_mask, 480 (Q_TO_CONN(q))->conn_laddr_v4, 0, 0, 0, 481 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 482 ire->ire_ipst); 483 } 484 (void) ire_no_good(ire); 485 ire_refrele(ire); 486 } 487 return (0); 488 } 489 490 /* 491 * Initialize the ire that is specific to IPv4 part and call 492 * ire_init_common to finish it. 493 * Returns zero or errno. 494 */ 495 int 496 ire_init_v4(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *gateway, 497 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, 498 tsol_gc_t *gc, ip_stack_t *ipst) 499 { 500 int error; 501 502 /* 503 * Reject IRE security attribute creation/initialization 504 * if system is not running in Trusted mode. 505 */ 506 if (gc != NULL && !is_system_labeled()) 507 return (EINVAL); 508 509 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 510 511 if (addr != NULL) 512 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 513 if (gateway != NULL) 514 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 515 516 /* Make sure we don't have stray values in some fields */ 517 switch (type) { 518 case IRE_LOOPBACK: 519 case IRE_HOST: 520 case IRE_BROADCAST: 521 case IRE_LOCAL: 522 case IRE_IF_CLONE: 523 ire->ire_mask = IP_HOST_MASK; 524 ire->ire_masklen = IPV4_ABITS; 525 break; 526 case IRE_PREFIX: 527 case IRE_DEFAULT: 528 case IRE_IF_RESOLVER: 529 case IRE_IF_NORESOLVER: 530 if (mask != NULL) { 531 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 532 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 533 } 534 break; 535 case IRE_MULTICAST: 536 case IRE_NOROUTE: 537 ASSERT(mask == NULL); 538 break; 539 default: 540 ASSERT(0); 541 return (EINVAL); 542 } 543 544 error = ire_init_common(ire, type, ill, zoneid, flags, IPV4_VERSION, 545 gc, ipst); 546 if (error != NULL) 547 return (error); 548 549 /* Determine which function pointers to use */ 550 ire->ire_postfragfn = ip_xmit; /* Common case */ 551 552 switch (ire->ire_type) { 553 case IRE_LOCAL: 554 ire->ire_sendfn = ire_send_local_v4; 555 ire->ire_recvfn = ire_recv_local_v4; 556 ASSERT(ire->ire_ill != NULL); 557 if (ire->ire_ill->ill_flags & ILLF_NOACCEPT) 558 ire->ire_recvfn = ire_recv_noaccept_v6; 559 break; 560 case IRE_LOOPBACK: 561 ire->ire_sendfn = ire_send_local_v4; 562 ire->ire_recvfn = ire_recv_loopback_v4; 563 break; 564 case IRE_BROADCAST: 565 ire->ire_postfragfn = ip_postfrag_loopcheck; 566 ire->ire_sendfn = ire_send_broadcast_v4; 567 ire->ire_recvfn = ire_recv_broadcast_v4; 568 break; 569 case IRE_MULTICAST: 570 ire->ire_postfragfn = ip_postfrag_loopcheck; 571 ire->ire_sendfn = ire_send_multicast_v4; 572 ire->ire_recvfn = ire_recv_multicast_v4; 573 break; 574 default: 575 /* 576 * For IRE_IF_ALL and IRE_OFFLINK we forward received 577 * packets by default. 578 */ 579 ire->ire_sendfn = ire_send_wire_v4; 580 ire->ire_recvfn = ire_recv_forward_v4; 581 break; 582 } 583 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 584 ire->ire_sendfn = ire_send_noroute_v4; 585 ire->ire_recvfn = ire_recv_noroute_v4; 586 } else if (ire->ire_flags & RTF_MULTIRT) { 587 ire->ire_postfragfn = ip_postfrag_multirt_v4; 588 ire->ire_sendfn = ire_send_multirt_v4; 589 /* Multirt receive of broadcast uses ire_recv_broadcast_v4 */ 590 if (ire->ire_type != IRE_BROADCAST) 591 ire->ire_recvfn = ire_recv_multirt_v4; 592 } 593 ire->ire_nce_capable = ire_determine_nce_capable(ire); 594 return (0); 595 } 596 597 /* 598 * Determine ire_nce_capable 599 */ 600 boolean_t 601 ire_determine_nce_capable(ire_t *ire) 602 { 603 int max_masklen; 604 605 if ((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 606 (ire->ire_type & IRE_MULTICAST)) 607 return (B_TRUE); 608 609 if (ire->ire_ipversion == IPV4_VERSION) 610 max_masklen = IPV4_ABITS; 611 else 612 max_masklen = IPV6_ABITS; 613 614 if ((ire->ire_type & IRE_ONLINK) && ire->ire_masklen == max_masklen) 615 return (B_TRUE); 616 return (B_FALSE); 617 } 618 619 /* 620 * ire_create is called to allocate and initialize a new IRE. 621 * 622 * NOTE : This is called as writer sometimes though not required 623 * by this function. 624 */ 625 ire_t * 626 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *gateway, 627 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, 628 ip_stack_t *ipst) 629 { 630 ire_t *ire; 631 int error; 632 633 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 634 if (ire == NULL) { 635 DTRACE_PROBE(kmem__cache__alloc); 636 return (NULL); 637 } 638 *ire = ire_null; 639 640 error = ire_init_v4(ire, addr, mask, gateway, type, ill, zoneid, flags, 641 gc, ipst); 642 if (error != 0) { 643 DTRACE_PROBE2(ire__init, ire_t *, ire, int, error); 644 kmem_cache_free(ire_cache, ire); 645 return (NULL); 646 } 647 return (ire); 648 } 649 650 /* 651 * Common to IPv4 and IPv6 652 * Returns zero or errno. 653 */ 654 int 655 ire_init_common(ire_t *ire, ushort_t type, ill_t *ill, zoneid_t zoneid, 656 uint_t flags, uchar_t ipversion, tsol_gc_t *gc, ip_stack_t *ipst) 657 { 658 int error; 659 660 #ifdef DEBUG 661 if (ill != NULL) { 662 if (ill->ill_isv6) 663 ASSERT(ipversion == IPV6_VERSION); 664 else 665 ASSERT(ipversion == IPV4_VERSION); 666 } 667 #endif /* DEBUG */ 668 669 /* 670 * Create/initialize IRE security attribute only in Trusted mode; 671 * if the passed in gc is non-NULL, we expect that the caller 672 * has held a reference to it and will release it when this routine 673 * returns a failure, otherwise we own the reference. We do this 674 * prior to initializing the rest IRE fields. 675 */ 676 if (is_system_labeled()) { 677 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 678 IRE_IF_ALL | IRE_MULTICAST | IRE_NOROUTE)) != 0) { 679 /* release references on behalf of caller */ 680 if (gc != NULL) 681 GC_REFRELE(gc); 682 } else { 683 error = tsol_ire_init_gwattr(ire, ipversion, gc); 684 if (error != 0) 685 return (error); 686 } 687 } 688 689 ire->ire_type = type; 690 ire->ire_flags = RTF_UP | flags; 691 ire->ire_create_time = (uint32_t)gethrestime_sec(); 692 ire->ire_generation = IRE_GENERATION_INITIAL; 693 694 /* 695 * The ill_ire_cnt isn't increased until 696 * the IRE is added to ensure that a walker will find 697 * all IREs that hold a reference on an ill. 698 * 699 * Note that ill_ire_multicast doesn't hold a ref on the ill since 700 * ire_add() is not called for the IRE_MULTICAST. 701 */ 702 ire->ire_ill = ill; 703 ire->ire_zoneid = zoneid; 704 ire->ire_ipversion = ipversion; 705 706 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 707 ire->ire_refcnt = 1; 708 ire->ire_identical_ref = 1; /* Number of ire_delete's needed */ 709 ire->ire_ipst = ipst; /* No netstack_hold */ 710 ire->ire_trace_disable = B_FALSE; 711 712 return (0); 713 } 714 715 /* 716 * This creates an IRE_BROADCAST based on the arguments. 717 * A mirror is ire_lookup_bcast(). 718 * 719 * Any supression of unneeded ones is done in ire_add_v4. 720 * We add one IRE_BROADCAST per address. ire_send_broadcast_v4() 721 * takes care of generating a loopback copy of the packet. 722 */ 723 ire_t ** 724 ire_create_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid, ire_t **irep) 725 { 726 ip_stack_t *ipst = ill->ill_ipst; 727 728 ASSERT(IAM_WRITER_ILL(ill)); 729 730 *irep++ = ire_create( 731 (uchar_t *)&addr, /* dest addr */ 732 (uchar_t *)&ip_g_all_ones, /* mask */ 733 NULL, /* no gateway */ 734 IRE_BROADCAST, 735 ill, 736 zoneid, 737 RTF_KERNEL, 738 NULL, 739 ipst); 740 741 return (irep); 742 } 743 744 /* 745 * This looks up an IRE_BROADCAST based on the arguments. 746 * Mirrors ire_create_bcast(). 747 */ 748 ire_t * 749 ire_lookup_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 750 { 751 ire_t *ire; 752 int match_args; 753 754 match_args = MATCH_IRE_TYPE | MATCH_IRE_ILL | MATCH_IRE_GW | 755 MATCH_IRE_MASK | MATCH_IRE_ZONEONLY; 756 757 if (IS_UNDER_IPMP(ill)) 758 match_args |= MATCH_IRE_TESTHIDDEN; 759 760 ire = ire_ftable_lookup_v4( 761 addr, /* dest addr */ 762 ip_g_all_ones, /* mask */ 763 0, /* no gateway */ 764 IRE_BROADCAST, 765 ill, 766 zoneid, 767 NULL, 768 match_args, 769 0, 770 ill->ill_ipst, 771 NULL); 772 return (ire); 773 } 774 775 /* Arrange to call the specified function for every IRE in the world. */ 776 void 777 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 778 { 779 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 780 } 781 782 void 783 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 784 { 785 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 786 } 787 788 void 789 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 790 { 791 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 792 } 793 794 /* 795 * Walk a particular version. version == 0 means both v4 and v6. 796 */ 797 static void 798 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 799 ip_stack_t *ipst) 800 { 801 if (vers != IPV6_VERSION) { 802 /* 803 * ip_forwarding_table variable doesn't matter for IPv4 since 804 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 805 */ 806 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 807 0, NULL, 808 NULL, zoneid, ipst); 809 } 810 if (vers != IPV4_VERSION) { 811 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 812 ipst->ips_ip6_ftable_hash_size, 813 ipst->ips_ip_forwarding_table_v6, 814 NULL, zoneid, ipst); 815 } 816 } 817 818 /* 819 * Arrange to call the specified function for every IRE that matches the ill. 820 */ 821 void 822 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 823 ill_t *ill) 824 { 825 uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION); 826 827 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill); 828 } 829 830 /* 831 * Walk a particular ill and version. 832 */ 833 static void 834 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 835 void *arg, uchar_t vers, ill_t *ill) 836 { 837 ip_stack_t *ipst = ill->ill_ipst; 838 839 if (vers == IPV4_VERSION) { 840 ire_walk_ill_tables(match_flags, ire_type, func, arg, 841 IP_MASK_TABLE_SIZE, 842 0, NULL, 843 ill, ALL_ZONES, ipst); 844 } 845 if (vers != IPV4_VERSION) { 846 ire_walk_ill_tables(match_flags, ire_type, func, arg, 847 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 848 ipst->ips_ip_forwarding_table_v6, 849 ill, ALL_ZONES, ipst); 850 } 851 } 852 853 /* 854 * Do the specific matching of IREs to shared-IP zones. 855 * 856 * We have the same logic as in ire_match_args but implemented slightly 857 * differently. 858 */ 859 boolean_t 860 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 861 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 862 { 863 ill_t *dst_ill = ire->ire_ill; 864 865 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 866 867 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 868 ire->ire_zoneid != ALL_ZONES) { 869 /* 870 * We're walking the IREs for a specific zone. The only relevant 871 * IREs are: 872 * - all IREs with a matching ire_zoneid 873 * - IRE_IF_ALL IREs for interfaces with a usable source addr 874 * with a matching zone 875 * - IRE_OFFLINK with a gateway reachable from the zone 876 * Note that ealier we only did the IRE_OFFLINK check for 877 * IRE_DEFAULT (and only when we had multiple IRE_DEFAULTs). 878 */ 879 if (ire->ire_type & IRE_ONLINK) { 880 uint_t ifindex; 881 882 /* 883 * Note there is no IRE_INTERFACE on vniN thus 884 * can't do an IRE lookup for a matching route. 885 */ 886 ifindex = dst_ill->ill_usesrc_ifindex; 887 if (ifindex == 0) 888 return (B_FALSE); 889 890 /* 891 * If there is a usable source address in the 892 * zone, then it's ok to return an 893 * IRE_INTERFACE 894 */ 895 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 896 zoneid, ipst)) { 897 return (B_FALSE); 898 } 899 } 900 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 901 ipif_t *tipif; 902 903 mutex_enter(&dst_ill->ill_lock); 904 for (tipif = dst_ill->ill_ipif; 905 tipif != NULL; tipif = tipif->ipif_next) { 906 if (!IPIF_IS_CONDEMNED(tipif) && 907 (tipif->ipif_flags & IPIF_UP) && 908 (tipif->ipif_zoneid == zoneid || 909 tipif->ipif_zoneid == ALL_ZONES)) 910 break; 911 } 912 mutex_exit(&dst_ill->ill_lock); 913 if (tipif == NULL) { 914 return (B_FALSE); 915 } 916 } 917 } 918 /* 919 * Except for ALL_ZONES, we only match the offlink routes 920 * where ire_gateway_addr has an IRE_INTERFACE for the zoneid. 921 * Since we can have leftover routes after the IP addresses have 922 * changed, the global zone will also match offlink routes where the 923 * gateway is unreachable from any zone. 924 */ 925 if ((ire->ire_type & IRE_OFFLINK) && zoneid != ALL_ZONES) { 926 in6_addr_t gw_addr_v6; 927 boolean_t reach; 928 929 if (ire->ire_ipversion == IPV4_VERSION) { 930 reach = ire_gateway_ok_zone_v4(ire->ire_gateway_addr, 931 zoneid, dst_ill, NULL, ipst, B_FALSE); 932 } else { 933 ASSERT(ire->ire_ipversion == IPV6_VERSION); 934 mutex_enter(&ire->ire_lock); 935 gw_addr_v6 = ire->ire_gateway_addr_v6; 936 mutex_exit(&ire->ire_lock); 937 938 reach = ire_gateway_ok_zone_v6(&gw_addr_v6, zoneid, 939 dst_ill, NULL, ipst, B_FALSE); 940 } 941 if (!reach) { 942 if (zoneid != GLOBAL_ZONEID) 943 return (B_FALSE); 944 945 /* 946 * Check if ALL_ZONES reachable - if not then let the 947 * global zone see it. 948 */ 949 if (ire->ire_ipversion == IPV4_VERSION) { 950 reach = ire_gateway_ok_zone_v4( 951 ire->ire_gateway_addr, ALL_ZONES, 952 dst_ill, NULL, ipst, B_FALSE); 953 } else { 954 reach = ire_gateway_ok_zone_v6(&gw_addr_v6, 955 ALL_ZONES, dst_ill, NULL, ipst, B_FALSE); 956 } 957 if (reach) { 958 /* 959 * Some other zone could see it, hence hide it 960 * in the global zone. 961 */ 962 return (B_FALSE); 963 } 964 } 965 } 966 967 if (((!(match_flags & MATCH_IRE_TYPE)) || 968 (ire->ire_type & ire_type)) && 969 ((!(match_flags & MATCH_IRE_ILL)) || 970 (dst_ill == ill || 971 dst_ill != NULL && IS_IN_SAME_ILLGRP(dst_ill, ill)))) { 972 return (B_TRUE); 973 } 974 return (B_FALSE); 975 } 976 977 int 978 rtfunc(struct radix_node *rn, void *arg) 979 { 980 struct rtfuncarg *rtf = arg; 981 struct rt_entry *rt; 982 irb_t *irb; 983 ire_t *ire; 984 boolean_t ret; 985 986 rt = (struct rt_entry *)rn; 987 ASSERT(rt != NULL); 988 irb = &rt->rt_irb; 989 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 990 if ((rtf->rt_match_flags != 0) || 991 (rtf->rt_zoneid != ALL_ZONES)) { 992 ret = ire_walk_ill_match(rtf->rt_match_flags, 993 rtf->rt_ire_type, ire, 994 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 995 } else { 996 ret = B_TRUE; 997 } 998 if (ret) 999 (*rtf->rt_func)(ire, rtf->rt_arg); 1000 } 1001 return (0); 1002 } 1003 1004 /* 1005 * Walk the ftable entries that match the ill. 1006 */ 1007 void 1008 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 1009 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 1010 ill_t *ill, zoneid_t zoneid, 1011 ip_stack_t *ipst) 1012 { 1013 irb_t *irb_ptr; 1014 irb_t *irb; 1015 ire_t *ire; 1016 int i, j; 1017 boolean_t ret; 1018 struct rtfuncarg rtfarg; 1019 1020 ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL)); 1021 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 1022 1023 /* knobs such that routine is called only for v6 case */ 1024 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 1025 for (i = (ftbl_sz - 1); i >= 0; i--) { 1026 if ((irb_ptr = ipftbl[i]) == NULL) 1027 continue; 1028 for (j = 0; j < htbl_sz; j++) { 1029 irb = &irb_ptr[j]; 1030 if (irb->irb_ire == NULL) 1031 continue; 1032 1033 irb_refhold(irb); 1034 for (ire = irb->irb_ire; ire != NULL; 1035 ire = ire->ire_next) { 1036 if (match_flags == 0 && 1037 zoneid == ALL_ZONES) { 1038 ret = B_TRUE; 1039 } else { 1040 ret = 1041 ire_walk_ill_match( 1042 match_flags, 1043 ire_type, ire, ill, 1044 zoneid, ipst); 1045 } 1046 if (ret) 1047 (*func)(ire, arg); 1048 } 1049 irb_refrele(irb); 1050 } 1051 } 1052 } else { 1053 bzero(&rtfarg, sizeof (rtfarg)); 1054 rtfarg.rt_func = func; 1055 rtfarg.rt_arg = arg; 1056 if (match_flags != 0) { 1057 rtfarg.rt_match_flags = match_flags; 1058 } 1059 rtfarg.rt_ire_type = ire_type; 1060 rtfarg.rt_ill = ill; 1061 rtfarg.rt_zoneid = zoneid; 1062 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 1063 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 1064 ipst->ips_ip_ftable, 1065 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 1066 } 1067 } 1068 1069 /* 1070 * This function takes a mask and returns 1071 * number of bits set in the mask. If no 1072 * bit is set it returns 0. 1073 * Assumes a contiguous mask. 1074 */ 1075 int 1076 ip_mask_to_plen(ipaddr_t mask) 1077 { 1078 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 1079 } 1080 1081 /* 1082 * Convert length for a mask to the mask. 1083 */ 1084 ipaddr_t 1085 ip_plen_to_mask(uint_t masklen) 1086 { 1087 if (masklen == 0) 1088 return (0); 1089 1090 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 1091 } 1092 1093 void 1094 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 1095 { 1096 ill_t *ill; 1097 1098 ill = ire->ire_ill; 1099 if (ill != NULL) 1100 mutex_exit(&ill->ill_lock); 1101 rw_exit(&irb_ptr->irb_lock); 1102 } 1103 1104 /* 1105 * ire_add_v[46] atomically make sure that the ill associated 1106 * with the new ire is not going away i.e., we check ILL_CONDEMNED. 1107 */ 1108 int 1109 ire_atomic_start(irb_t *irb_ptr, ire_t *ire) 1110 { 1111 ill_t *ill; 1112 1113 ill = ire->ire_ill; 1114 1115 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 1116 if (ill != NULL) { 1117 mutex_enter(&ill->ill_lock); 1118 1119 /* 1120 * Don't allow IRE's to be created on dying ills. 1121 */ 1122 if (ill->ill_state_flags & ILL_CONDEMNED) { 1123 ire_atomic_end(irb_ptr, ire); 1124 return (ENXIO); 1125 } 1126 1127 if (IS_UNDER_IPMP(ill)) { 1128 int error = 0; 1129 mutex_enter(&ill->ill_phyint->phyint_lock); 1130 if (!ipmp_ill_is_active(ill) && 1131 IRE_HIDDEN_TYPE(ire->ire_type) && 1132 !ire->ire_testhidden) { 1133 error = EINVAL; 1134 } 1135 mutex_exit(&ill->ill_phyint->phyint_lock); 1136 if (error != 0) { 1137 ire_atomic_end(irb_ptr, ire); 1138 return (error); 1139 } 1140 } 1141 1142 } 1143 return (0); 1144 } 1145 1146 /* 1147 * Add a fully initialized IRE to the forwarding table. 1148 * This returns NULL on failure, or a held IRE on success. 1149 * Normally the returned IRE is the same as the argument. But a different 1150 * IRE will be returned if the added IRE is deemed identical to an existing 1151 * one. In that case ire_identical_ref will be increased. 1152 * The caller always needs to do an ire_refrele() on the returned IRE. 1153 */ 1154 ire_t * 1155 ire_add(ire_t *ire) 1156 { 1157 if (IRE_HIDDEN_TYPE(ire->ire_type) && 1158 ire->ire_ill != NULL && IS_UNDER_IPMP(ire->ire_ill)) { 1159 /* 1160 * IREs hosted on interfaces that are under IPMP 1161 * should be hidden so that applications don't 1162 * accidentally end up sending packets with test 1163 * addresses as their source addresses, or 1164 * sending out interfaces that are e.g. IFF_INACTIVE. 1165 * Hide them here. 1166 */ 1167 ire->ire_testhidden = B_TRUE; 1168 } 1169 1170 if (ire->ire_ipversion == IPV6_VERSION) 1171 return (ire_add_v6(ire)); 1172 else 1173 return (ire_add_v4(ire)); 1174 } 1175 1176 /* 1177 * Add a fully initialized IPv4 IRE to the forwarding table. 1178 * This returns NULL on failure, or a held IRE on success. 1179 * Normally the returned IRE is the same as the argument. But a different 1180 * IRE will be returned if the added IRE is deemed identical to an existing 1181 * one. In that case ire_identical_ref will be increased. 1182 * The caller always needs to do an ire_refrele() on the returned IRE. 1183 */ 1184 static ire_t * 1185 ire_add_v4(ire_t *ire) 1186 { 1187 ire_t *ire1; 1188 irb_t *irb_ptr; 1189 ire_t **irep; 1190 int match_flags; 1191 int error; 1192 ip_stack_t *ipst = ire->ire_ipst; 1193 1194 if (ire->ire_ill != NULL) 1195 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); 1196 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1197 1198 /* Make sure the address is properly masked. */ 1199 ire->ire_addr &= ire->ire_mask; 1200 1201 match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 1202 1203 if (ire->ire_ill != NULL) { 1204 match_flags |= MATCH_IRE_ILL; 1205 } 1206 irb_ptr = ire_get_bucket(ire); 1207 if (irb_ptr == NULL) { 1208 printf("no bucket for %p\n", (void *)ire); 1209 ire_delete(ire); 1210 return (NULL); 1211 } 1212 1213 /* 1214 * Start the atomic add of the ire. Grab the ill lock, 1215 * the bucket lock. Check for condemned. 1216 */ 1217 error = ire_atomic_start(irb_ptr, ire); 1218 if (error != 0) { 1219 printf("no ire_atomic_start for %p\n", (void *)ire); 1220 ire_delete(ire); 1221 irb_refrele(irb_ptr); 1222 return (NULL); 1223 } 1224 /* 1225 * If we are creating a hidden IRE, make sure we search for 1226 * hidden IREs when searching for duplicates below. 1227 * Otherwise, we might find an IRE on some other interface 1228 * that's not marked hidden. 1229 */ 1230 if (ire->ire_testhidden) 1231 match_flags |= MATCH_IRE_TESTHIDDEN; 1232 1233 /* 1234 * Atomically check for duplicate and insert in the table. 1235 */ 1236 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 1237 if (IRE_IS_CONDEMNED(ire1)) 1238 continue; 1239 /* 1240 * Here we need an exact match on zoneid, i.e., 1241 * ire_match_args doesn't fit. 1242 */ 1243 if (ire1->ire_zoneid != ire->ire_zoneid) 1244 continue; 1245 1246 if (ire1->ire_type != ire->ire_type) 1247 continue; 1248 1249 /* 1250 * Note: We do not allow multiple routes that differ only 1251 * in the gateway security attributes; such routes are 1252 * considered duplicates. 1253 * To change that we explicitly have to treat them as 1254 * different here. 1255 */ 1256 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 1257 ire->ire_gateway_addr, ire->ire_type, ire->ire_ill, 1258 ire->ire_zoneid, NULL, match_flags)) { 1259 /* 1260 * Return the old ire after doing a REFHOLD. 1261 * As most of the callers continue to use the IRE 1262 * after adding, we return a held ire. This will 1263 * avoid a lookup in the caller again. If the callers 1264 * don't want to use it, they need to do a REFRELE. 1265 * 1266 * We only allow exactly one IRE_IF_CLONE for any dst, 1267 * so, if the is an IF_CLONE, return the ire without 1268 * an identical_ref, but with an ire_ref held. 1269 */ 1270 if (ire->ire_type != IRE_IF_CLONE) { 1271 atomic_add_32(&ire1->ire_identical_ref, 1); 1272 DTRACE_PROBE2(ire__add__exist, ire_t *, ire1, 1273 ire_t *, ire); 1274 } 1275 ire_refhold(ire1); 1276 ire_atomic_end(irb_ptr, ire); 1277 ire_delete(ire); 1278 irb_refrele(irb_ptr); 1279 return (ire1); 1280 } 1281 } 1282 1283 /* 1284 * Normally we do head insertion since most things do not care about 1285 * the order of the IREs in the bucket. Note that ip_cgtp_bcast_add 1286 * assumes we at least do head insertion so that its IRE_BROADCAST 1287 * arrive ahead of existing IRE_HOST for the same address. 1288 * However, due to shared-IP zones (and restrict_interzone_loopback) 1289 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same 1290 * address. For that reason we do tail insertion for IRE_IF_CLONE. 1291 * Due to the IRE_BROADCAST on cgtp0, which must be last in the bucket, 1292 * we do tail insertion of IRE_BROADCASTs that do not have RTF_MULTIRT 1293 * set. 1294 */ 1295 irep = (ire_t **)irb_ptr; 1296 if ((ire->ire_type & IRE_IF_CLONE) || 1297 ((ire->ire_type & IRE_BROADCAST) && 1298 !(ire->ire_flags & RTF_MULTIRT))) { 1299 while ((ire1 = *irep) != NULL) 1300 irep = &ire1->ire_next; 1301 } 1302 /* Insert at *irep */ 1303 ire1 = *irep; 1304 if (ire1 != NULL) 1305 ire1->ire_ptpn = &ire->ire_next; 1306 ire->ire_next = ire1; 1307 /* Link the new one in. */ 1308 ire->ire_ptpn = irep; 1309 1310 /* 1311 * ire_walk routines de-reference ire_next without holding 1312 * a lock. Before we point to the new ire, we want to make 1313 * sure the store that sets the ire_next of the new ire 1314 * reaches global visibility, so that ire_walk routines 1315 * don't see a truncated list of ires i.e if the ire_next 1316 * of the new ire gets set after we do "*irep = ire" due 1317 * to re-ordering, the ire_walk thread will see a NULL 1318 * once it accesses the ire_next of the new ire. 1319 * membar_producer() makes sure that the following store 1320 * happens *after* all of the above stores. 1321 */ 1322 membar_producer(); 1323 *irep = ire; 1324 ire->ire_bucket = irb_ptr; 1325 /* 1326 * We return a bumped up IRE above. Keep it symmetrical 1327 * so that the callers will always have to release. This 1328 * helps the callers of this function because they continue 1329 * to use the IRE after adding and hence they don't have to 1330 * lookup again after we return the IRE. 1331 * 1332 * NOTE : We don't have to use atomics as this is appearing 1333 * in the list for the first time and no one else can bump 1334 * up the reference count on this yet. 1335 */ 1336 ire_refhold_locked(ire); 1337 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 1338 1339 irb_ptr->irb_ire_cnt++; 1340 if (irb_ptr->irb_marks & IRB_MARK_DYNAMIC) 1341 irb_ptr->irb_nire++; 1342 1343 if (ire->ire_ill != NULL) { 1344 ire->ire_ill->ill_ire_cnt++; 1345 ASSERT(ire->ire_ill->ill_ire_cnt != 0); /* Wraparound */ 1346 } 1347 1348 ire_atomic_end(irb_ptr, ire); 1349 1350 /* Make any caching of the IREs be notified or updated */ 1351 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 1352 1353 if (ire->ire_ill != NULL) 1354 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); 1355 irb_refrele(irb_ptr); 1356 return (ire); 1357 } 1358 1359 /* 1360 * irb_refrele is the only caller of the function. ire_unlink calls to 1361 * do the final cleanup for this ire. 1362 */ 1363 void 1364 ire_cleanup(ire_t *ire) 1365 { 1366 ire_t *ire_next; 1367 ip_stack_t *ipst = ire->ire_ipst; 1368 1369 ASSERT(ire != NULL); 1370 1371 while (ire != NULL) { 1372 ire_next = ire->ire_next; 1373 if (ire->ire_ipversion == IPV4_VERSION) { 1374 ire_delete_v4(ire); 1375 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 1376 ire_stats_deleted); 1377 } else { 1378 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1379 ire_delete_v6(ire); 1380 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 1381 ire_stats_deleted); 1382 } 1383 /* 1384 * Now it's really out of the list. Before doing the 1385 * REFRELE, set ire_next to NULL as ire_inactive asserts 1386 * so. 1387 */ 1388 ire->ire_next = NULL; 1389 ire_refrele_notr(ire); 1390 ire = ire_next; 1391 } 1392 } 1393 1394 /* 1395 * irb_refrele is the only caller of the function. It calls to unlink 1396 * all the CONDEMNED ires from this bucket. 1397 */ 1398 ire_t * 1399 ire_unlink(irb_t *irb) 1400 { 1401 ire_t *ire; 1402 ire_t *ire1; 1403 ire_t **ptpn; 1404 ire_t *ire_list = NULL; 1405 1406 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 1407 ASSERT(((irb->irb_marks & IRB_MARK_DYNAMIC) && irb->irb_refcnt == 1) || 1408 (irb->irb_refcnt == 0)); 1409 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 1410 ASSERT(irb->irb_ire != NULL); 1411 1412 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 1413 ire1 = ire->ire_next; 1414 if (IRE_IS_CONDEMNED(ire)) { 1415 ptpn = ire->ire_ptpn; 1416 ire1 = ire->ire_next; 1417 if (ire1) 1418 ire1->ire_ptpn = ptpn; 1419 *ptpn = ire1; 1420 ire->ire_ptpn = NULL; 1421 ire->ire_next = NULL; 1422 1423 /* 1424 * We need to call ire_delete_v4 or ire_delete_v6 to 1425 * clean up dependents and the redirects pointing at 1426 * the default gateway. We need to drop the lock 1427 * as ire_flush_cache/ire_delete_host_redircts require 1428 * so. But we can't drop the lock, as ire_unlink needs 1429 * to atomically remove the ires from the list. 1430 * So, create a temporary list of CONDEMNED ires 1431 * for doing ire_delete_v4/ire_delete_v6 operations 1432 * later on. 1433 */ 1434 ire->ire_next = ire_list; 1435 ire_list = ire; 1436 } 1437 } 1438 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 1439 return (ire_list); 1440 } 1441 1442 /* 1443 * Clean up the radix node for this ire. Must be called by irb_refrele 1444 * when there are no ire's left in the bucket. Returns TRUE if the bucket 1445 * is deleted and freed. 1446 */ 1447 boolean_t 1448 irb_inactive(irb_t *irb) 1449 { 1450 struct rt_entry *rt; 1451 struct radix_node *rn; 1452 ip_stack_t *ipst = irb->irb_ipst; 1453 1454 ASSERT(irb->irb_ipst != NULL); 1455 1456 rt = IRB2RT(irb); 1457 rn = (struct radix_node *)rt; 1458 1459 /* first remove it from the radix tree. */ 1460 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1461 rw_enter(&irb->irb_lock, RW_WRITER); 1462 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 1463 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 1464 ipst->ips_ip_ftable); 1465 DTRACE_PROBE1(irb__free, rt_t *, rt); 1466 ASSERT((void *)rn == (void *)rt); 1467 Free(rt, rt_entry_cache); 1468 /* irb_lock is freed */ 1469 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1470 return (B_TRUE); 1471 } 1472 rw_exit(&irb->irb_lock); 1473 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1474 return (B_FALSE); 1475 } 1476 1477 /* 1478 * Delete the specified IRE. 1479 * We assume that if ire_bucket is not set then ire_ill->ill_ire_cnt was 1480 * not incremented i.e., that the insertion in the bucket and the increment 1481 * of that counter is done atomically. 1482 */ 1483 void 1484 ire_delete(ire_t *ire) 1485 { 1486 ire_t *ire1; 1487 ire_t **ptpn; 1488 irb_t *irb; 1489 ip_stack_t *ipst = ire->ire_ipst; 1490 1491 if ((irb = ire->ire_bucket) == NULL) { 1492 /* 1493 * It was never inserted in the list. Should call REFRELE 1494 * to free this IRE. 1495 */ 1496 ire_make_condemned(ire); 1497 ire_refrele_notr(ire); 1498 return; 1499 } 1500 1501 /* 1502 * Move the use counts from an IRE_IF_CLONE to its parent 1503 * IRE_INTERFACE. 1504 * We need to do this before acquiring irb_lock. 1505 */ 1506 if (ire->ire_type & IRE_IF_CLONE) { 1507 ire_t *parent; 1508 1509 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 1510 if ((parent = ire->ire_dep_parent) != NULL) { 1511 parent->ire_ob_pkt_count += ire->ire_ob_pkt_count; 1512 parent->ire_ib_pkt_count += ire->ire_ib_pkt_count; 1513 ire->ire_ob_pkt_count = 0; 1514 ire->ire_ib_pkt_count = 0; 1515 } 1516 rw_exit(&ipst->ips_ire_dep_lock); 1517 } 1518 1519 rw_enter(&irb->irb_lock, RW_WRITER); 1520 if (ire->ire_ptpn == NULL) { 1521 /* 1522 * Some other thread has removed us from the list. 1523 * It should have done the REFRELE for us. 1524 */ 1525 rw_exit(&irb->irb_lock); 1526 return; 1527 } 1528 1529 if (!IRE_IS_CONDEMNED(ire)) { 1530 /* Is this an IRE representing multiple duplicate entries? */ 1531 ASSERT(ire->ire_identical_ref >= 1); 1532 if (atomic_add_32_nv(&ire->ire_identical_ref, -1) != 0) { 1533 /* Removed one of the identical parties */ 1534 rw_exit(&irb->irb_lock); 1535 return; 1536 } 1537 1538 irb->irb_ire_cnt--; 1539 ire_make_condemned(ire); 1540 } 1541 1542 if (irb->irb_refcnt != 0) { 1543 /* 1544 * The last thread to leave this bucket will 1545 * delete this ire. 1546 */ 1547 irb->irb_marks |= IRB_MARK_CONDEMNED; 1548 rw_exit(&irb->irb_lock); 1549 return; 1550 } 1551 1552 /* 1553 * Normally to delete an ire, we walk the bucket. While we 1554 * walk the bucket, we normally bump up irb_refcnt and hence 1555 * we return from above where we mark CONDEMNED and the ire 1556 * gets deleted from ire_unlink. This case is where somebody 1557 * knows the ire e.g by doing a lookup, and wants to delete the 1558 * IRE. irb_refcnt would be 0 in this case if nobody is walking 1559 * the bucket. 1560 */ 1561 ptpn = ire->ire_ptpn; 1562 ire1 = ire->ire_next; 1563 if (ire1 != NULL) 1564 ire1->ire_ptpn = ptpn; 1565 ASSERT(ptpn != NULL); 1566 *ptpn = ire1; 1567 ire->ire_ptpn = NULL; 1568 ire->ire_next = NULL; 1569 if (ire->ire_ipversion == IPV6_VERSION) { 1570 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 1571 } else { 1572 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 1573 } 1574 rw_exit(&irb->irb_lock); 1575 1576 /* Cleanup dependents and related stuff */ 1577 if (ire->ire_ipversion == IPV6_VERSION) { 1578 ire_delete_v6(ire); 1579 } else { 1580 ire_delete_v4(ire); 1581 } 1582 /* 1583 * We removed it from the list. Decrement the 1584 * reference count. 1585 */ 1586 ire_refrele_notr(ire); 1587 } 1588 1589 /* 1590 * Delete the specified IRE. 1591 * All calls should use ire_delete(). 1592 * Sometimes called as writer though not required by this function. 1593 * 1594 * NOTE : This function is called only if the ire was added 1595 * in the list. 1596 */ 1597 static void 1598 ire_delete_v4(ire_t *ire) 1599 { 1600 ip_stack_t *ipst = ire->ire_ipst; 1601 1602 ASSERT(ire->ire_refcnt >= 1); 1603 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1604 1605 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 1606 if (ire->ire_type == IRE_DEFAULT) { 1607 /* 1608 * when a default gateway is going away 1609 * delete all the host redirects pointing at that 1610 * gateway. 1611 */ 1612 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 1613 } 1614 1615 /* 1616 * If we are deleting an IRE_INTERFACE then we make sure we also 1617 * delete any IRE_IF_CLONE that has been created from it. 1618 * Those are always in ire_dep_children. 1619 */ 1620 if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != NULL) 1621 ire_dep_delete_if_clone(ire); 1622 1623 /* Remove from parent dependencies and child */ 1624 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 1625 if (ire->ire_dep_parent != NULL) 1626 ire_dep_remove(ire); 1627 1628 while (ire->ire_dep_children != NULL) 1629 ire_dep_remove(ire->ire_dep_children); 1630 rw_exit(&ipst->ips_ire_dep_lock); 1631 } 1632 1633 /* 1634 * ire_refrele is the only caller of the function. It calls 1635 * to free the ire when the reference count goes to zero. 1636 */ 1637 void 1638 ire_inactive(ire_t *ire) 1639 { 1640 ill_t *ill; 1641 irb_t *irb; 1642 ip_stack_t *ipst = ire->ire_ipst; 1643 1644 ASSERT(ire->ire_refcnt == 0); 1645 ASSERT(ire->ire_ptpn == NULL); 1646 ASSERT(ire->ire_next == NULL); 1647 1648 /* Count how many condemned ires for kmem_cache callback */ 1649 ASSERT(IRE_IS_CONDEMNED(ire)); 1650 atomic_add_32(&ipst->ips_num_ire_condemned, -1); 1651 1652 if (ire->ire_gw_secattr != NULL) { 1653 ire_gw_secattr_free(ire->ire_gw_secattr); 1654 ire->ire_gw_secattr = NULL; 1655 } 1656 1657 /* 1658 * ire_nce_cache is cleared in ire_delete, and we make sure we don't 1659 * set it once the ire is marked condemned. 1660 */ 1661 ASSERT(ire->ire_nce_cache == NULL); 1662 1663 /* 1664 * Since any parent would have a refhold on us they would already 1665 * have been removed. 1666 */ 1667 ASSERT(ire->ire_dep_parent == NULL); 1668 ASSERT(ire->ire_dep_sib_next == NULL); 1669 ASSERT(ire->ire_dep_sib_ptpn == NULL); 1670 1671 /* 1672 * Since any children would have a refhold on us they should have 1673 * already been removed. 1674 */ 1675 ASSERT(ire->ire_dep_children == NULL); 1676 1677 /* 1678 * ill_ire_ref is increased when the IRE is inserted in the 1679 * bucket - not when the IRE is created. 1680 */ 1681 irb = ire->ire_bucket; 1682 ill = ire->ire_ill; 1683 if (irb != NULL && ill != NULL) { 1684 mutex_enter(&ill->ill_lock); 1685 ASSERT(ill->ill_ire_cnt != 0); 1686 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), ill, 1687 (char *), "ire", (void *), ire); 1688 ill->ill_ire_cnt--; 1689 if (ILL_DOWN_OK(ill)) { 1690 /* Drops the ill lock */ 1691 ipif_ill_refrele_tail(ill); 1692 } else { 1693 mutex_exit(&ill->ill_lock); 1694 } 1695 } 1696 ire->ire_ill = NULL; 1697 1698 /* This should be true for both V4 and V6 */ 1699 if (irb != NULL && (irb->irb_marks & IRB_MARK_DYNAMIC)) { 1700 rw_enter(&irb->irb_lock, RW_WRITER); 1701 irb->irb_nire--; 1702 /* 1703 * Instead of examining the conditions for freeing 1704 * the radix node here, we do it by calling 1705 * irb_refrele which is a single point in the code 1706 * that embeds that logic. Bump up the refcnt to 1707 * be able to call irb_refrele 1708 */ 1709 irb_refhold_locked(irb); 1710 rw_exit(&irb->irb_lock); 1711 irb_refrele(irb); 1712 } 1713 1714 #ifdef DEBUG 1715 ire_trace_cleanup(ire); 1716 #endif 1717 mutex_destroy(&ire->ire_lock); 1718 if (ire->ire_ipversion == IPV6_VERSION) { 1719 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 1720 } else { 1721 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 1722 } 1723 kmem_cache_free(ire_cache, ire); 1724 } 1725 1726 /* 1727 * ire_update_generation is the callback function provided by 1728 * ire_get_bucket() to update the generation number of any 1729 * matching shorter route when a new route is added. 1730 * 1731 * This fucntion always returns a failure return (B_FALSE) 1732 * to force the caller (rn_matchaddr_args) 1733 * to back-track up the tree looking for shorter matches. 1734 */ 1735 /* ARGSUSED */ 1736 static boolean_t 1737 ire_update_generation(struct radix_node *rn, void *arg) 1738 { 1739 struct rt_entry *rt = (struct rt_entry *)rn; 1740 1741 /* We need to handle all in the same bucket */ 1742 irb_increment_generation(&rt->rt_irb); 1743 return (B_FALSE); 1744 } 1745 1746 /* 1747 * Take care of all the generation numbers in the bucket. 1748 */ 1749 void 1750 irb_increment_generation(irb_t *irb) 1751 { 1752 ire_t *ire; 1753 ip_stack_t *ipst; 1754 1755 if (irb == NULL || irb->irb_ire_cnt == 0) 1756 return; 1757 1758 ipst = irb->irb_ipst; 1759 /* 1760 * we cannot do an irb_refhold/irb_refrele here as the caller 1761 * already has the global RADIX_NODE_HEAD_WLOCK, and the irb_refrele 1762 * may result in an attempt to free the irb_t, which also needs 1763 * the RADIX_NODE_HEAD lock. However, since we want to traverse the 1764 * irb_ire list without fear of having a condemned ire removed from 1765 * the list, we acquire the irb_lock as WRITER. Moreover, since 1766 * the ire_generation increments are done under the ire_dep_lock, 1767 * acquire the locks in the prescribed lock order first. 1768 */ 1769 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 1770 rw_enter(&irb->irb_lock, RW_WRITER); 1771 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1772 if (!IRE_IS_CONDEMNED(ire)) 1773 ire_increment_generation(ire); /* Ourselves */ 1774 ire_dep_incr_generation_locked(ire); /* Dependants */ 1775 } 1776 rw_exit(&irb->irb_lock); 1777 rw_exit(&ipst->ips_ire_dep_lock); 1778 } 1779 1780 /* 1781 * When an IRE is added or deleted this routine is called to make sure 1782 * any caching of IRE information is notified or updated. 1783 * 1784 * The flag argument indicates if the flush request is due to addition 1785 * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE), 1786 * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE). 1787 */ 1788 void 1789 ire_flush_cache_v4(ire_t *ire, int flag) 1790 { 1791 irb_t *irb = ire->ire_bucket; 1792 struct rt_entry *rt = IRB2RT(irb); 1793 ip_stack_t *ipst = ire->ire_ipst; 1794 1795 /* 1796 * IRE_IF_CLONE ire's don't provide any new information 1797 * than the parent from which they are cloned, so don't 1798 * perturb the generation numbers. 1799 */ 1800 if (ire->ire_type & IRE_IF_CLONE) 1801 return; 1802 1803 /* 1804 * Ensure that an ire_add during a lookup serializes the updates of the 1805 * generation numbers under the radix head lock so that the lookup gets 1806 * either the old ire and old generation number, or a new ire and new 1807 * generation number. 1808 */ 1809 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1810 1811 /* 1812 * If a route was just added, we need to notify everybody that 1813 * has cached an IRE_NOROUTE since there might now be a better 1814 * route for them. 1815 */ 1816 if (flag == IRE_FLUSH_ADD) { 1817 ire_increment_generation(ipst->ips_ire_reject_v4); 1818 ire_increment_generation(ipst->ips_ire_blackhole_v4); 1819 } 1820 1821 /* Adding a default can't otherwise provide a better route */ 1822 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) { 1823 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1824 return; 1825 } 1826 1827 switch (flag) { 1828 case IRE_FLUSH_DELETE: 1829 case IRE_FLUSH_GWCHANGE: 1830 /* 1831 * Update ire_generation for all ire_dep_children chains 1832 * starting with this IRE 1833 */ 1834 ire_dep_incr_generation(ire); 1835 break; 1836 case IRE_FLUSH_ADD: 1837 /* 1838 * Update the generation numbers of all shorter matching routes. 1839 * ire_update_generation takes care of the dependants by 1840 * using ire_dep_incr_generation. 1841 */ 1842 (void) ipst->ips_ip_ftable->rnh_matchaddr_args(&rt->rt_dst, 1843 ipst->ips_ip_ftable, ire_update_generation, NULL); 1844 break; 1845 } 1846 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1847 } 1848 1849 /* 1850 * Matches the arguments passed with the values in the ire. 1851 * 1852 * Note: for match types that match using "ill" passed in, ill 1853 * must be checked for non-NULL before calling this routine. 1854 */ 1855 boolean_t 1856 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 1857 int type, const ill_t *ill, zoneid_t zoneid, 1858 const ts_label_t *tsl, int match_flags) 1859 { 1860 ill_t *ire_ill = NULL, *dst_ill; 1861 ip_stack_t *ipst = ire->ire_ipst; 1862 1863 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1864 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 1865 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_SRC_ILL))) || 1866 (ill != NULL && !ill->ill_isv6)); 1867 1868 /* 1869 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it is 1870 * in fact hidden, to ensure the caller gets the right one. 1871 */ 1872 if (ire->ire_testhidden) { 1873 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) 1874 return (B_FALSE); 1875 } 1876 1877 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 1878 ire->ire_zoneid != ALL_ZONES) { 1879 /* 1880 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid 1881 * does not match that of ire_zoneid, a failure to 1882 * match is reported at this point. Otherwise, since some IREs 1883 * that are available in the global zone can be used in local 1884 * zones, additional checks need to be performed: 1885 * 1886 * IRE_LOOPBACK 1887 * entries should never be matched in this situation. 1888 * Each zone has its own IRE_LOOPBACK. 1889 * 1890 * IRE_LOCAL 1891 * We allow them for any zoneid. ire_route_recursive 1892 * does additional checks when 1893 * ip_restrict_interzone_loopback is set. 1894 * 1895 * If ill_usesrc_ifindex is set 1896 * Then we check if the zone has a valid source address 1897 * on the usesrc ill. 1898 * 1899 * If ire_ill is set, then check that the zone has an ipif 1900 * on that ill. 1901 * 1902 * Outside of this function (in ire_round_robin) we check 1903 * that any IRE_OFFLINK has a gateway that reachable from the 1904 * zone when we have multiple choices (ECMP). 1905 */ 1906 if (match_flags & MATCH_IRE_ZONEONLY) 1907 return (B_FALSE); 1908 if (ire->ire_type & IRE_LOOPBACK) 1909 return (B_FALSE); 1910 1911 if (ire->ire_type & IRE_LOCAL) 1912 goto matchit; 1913 1914 /* 1915 * The normal case of IRE_ONLINK has a matching zoneid. 1916 * Here we handle the case when shared-IP zones have been 1917 * configured with IP addresses on vniN. In that case it 1918 * is ok for traffic from a zone to use IRE_ONLINK routes 1919 * if the ill has a usesrc pointing at vniN 1920 */ 1921 dst_ill = ire->ire_ill; 1922 if (ire->ire_type & IRE_ONLINK) { 1923 uint_t ifindex; 1924 1925 /* 1926 * Note there is no IRE_INTERFACE on vniN thus 1927 * can't do an IRE lookup for a matching route. 1928 */ 1929 ifindex = dst_ill->ill_usesrc_ifindex; 1930 if (ifindex == 0) 1931 return (B_FALSE); 1932 1933 /* 1934 * If there is a usable source address in the 1935 * zone, then it's ok to return this IRE_INTERFACE 1936 */ 1937 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 1938 zoneid, ipst)) { 1939 ip3dbg(("ire_match_args: no usrsrc for zone" 1940 " dst_ill %p\n", (void *)dst_ill)); 1941 return (B_FALSE); 1942 } 1943 } 1944 /* 1945 * For example, with 1946 * route add 11.0.0.0 gw1 -ifp bge0 1947 * route add 11.0.0.0 gw2 -ifp bge1 1948 * this code would differentiate based on 1949 * where the sending zone has addresses. 1950 * Only if the zone has an address on bge0 can it use the first 1951 * route. It isn't clear if this behavior is documented 1952 * anywhere. 1953 */ 1954 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 1955 ipif_t *tipif; 1956 1957 mutex_enter(&dst_ill->ill_lock); 1958 for (tipif = dst_ill->ill_ipif; 1959 tipif != NULL; tipif = tipif->ipif_next) { 1960 if (!IPIF_IS_CONDEMNED(tipif) && 1961 (tipif->ipif_flags & IPIF_UP) && 1962 (tipif->ipif_zoneid == zoneid || 1963 tipif->ipif_zoneid == ALL_ZONES)) 1964 break; 1965 } 1966 mutex_exit(&dst_ill->ill_lock); 1967 if (tipif == NULL) { 1968 return (B_FALSE); 1969 } 1970 } 1971 } 1972 1973 matchit: 1974 ire_ill = ire->ire_ill; 1975 if (match_flags & MATCH_IRE_ILL) { 1976 1977 /* 1978 * If asked to match an ill, we *must* match 1979 * on the ire_ill for ipmp test addresses, or 1980 * any of the ill in the group for data addresses. 1981 * If we don't, we may as well fail. 1982 * However, we need an exception for IRE_LOCALs to ensure 1983 * we loopback packets even sent to test addresses on different 1984 * interfaces in the group. 1985 */ 1986 if ((match_flags & MATCH_IRE_TESTHIDDEN) && 1987 !(ire->ire_type & IRE_LOCAL)) { 1988 if (ire->ire_ill != ill) 1989 return (B_FALSE); 1990 } else { 1991 match_flags &= ~MATCH_IRE_TESTHIDDEN; 1992 /* 1993 * We know that ill is not NULL, but ire_ill could be 1994 * NULL 1995 */ 1996 if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill)) 1997 return (B_FALSE); 1998 } 1999 } 2000 if (match_flags & MATCH_IRE_SRC_ILL) { 2001 if (ire_ill == NULL) 2002 return (B_FALSE); 2003 if (!IS_ON_SAME_LAN(ill, ire_ill)) { 2004 if (ire_ill->ill_usesrc_ifindex == 0 || 2005 (ire_ill->ill_usesrc_ifindex != 2006 ill->ill_phyint->phyint_ifindex)) 2007 return (B_FALSE); 2008 } 2009 } 2010 2011 if ((ire->ire_addr == (addr & mask)) && 2012 ((!(match_flags & MATCH_IRE_GW)) || 2013 (ire->ire_gateway_addr == gateway)) && 2014 ((!(match_flags & MATCH_IRE_DIRECT)) || 2015 !(ire->ire_flags & RTF_INDIRECT)) && 2016 ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) && 2017 ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) && 2018 ((!(match_flags & MATCH_IRE_MASK)) || (ire->ire_mask == mask)) && 2019 ((!(match_flags & MATCH_IRE_SECATTR)) || 2020 (!is_system_labeled()) || 2021 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 2022 /* We found the matched IRE */ 2023 return (B_TRUE); 2024 } 2025 return (B_FALSE); 2026 } 2027 2028 /* 2029 * Check if the IRE_LOCAL uses the same ill as another route would use. 2030 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 2031 * then we don't allow this IRE_LOCAL to be used. 2032 * We always return an IRE; will be RTF_REJECT if no route available. 2033 */ 2034 ire_t * 2035 ire_alt_local(ire_t *ire, zoneid_t zoneid, const ts_label_t *tsl, 2036 const ill_t *ill, uint_t *generationp) 2037 { 2038 ip_stack_t *ipst = ire->ire_ipst; 2039 ire_t *alt_ire; 2040 uint_t ire_type; 2041 uint_t generation; 2042 uint_t match_flags; 2043 2044 ASSERT(ire->ire_type & IRE_LOCAL); 2045 ASSERT(ire->ire_ill != NULL); 2046 2047 /* 2048 * Need to match on everything but local. 2049 * This might result in the creation of a IRE_IF_CLONE for the 2050 * same address as the IRE_LOCAL when restrict_interzone_loopback is 2051 * set. ire_add_*() ensures that the IRE_IF_CLONE are tail inserted 2052 * to make sure the IRE_LOCAL is always found first. 2053 */ 2054 ire_type = (IRE_ONLINK | IRE_OFFLINK) & ~(IRE_LOCAL|IRE_LOOPBACK); 2055 match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR; 2056 if (ill != NULL) 2057 match_flags |= MATCH_IRE_ILL; 2058 2059 if (ire->ire_ipversion == IPV4_VERSION) { 2060 alt_ire = ire_route_recursive_v4(ire->ire_addr, ire_type, 2061 ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL, 2062 NULL, &generation); 2063 } else { 2064 alt_ire = ire_route_recursive_v6(&ire->ire_addr_v6, ire_type, 2065 ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL, 2066 NULL, &generation); 2067 } 2068 ASSERT(alt_ire != NULL); 2069 2070 if (alt_ire->ire_ill == ire->ire_ill) { 2071 /* Going out the same ILL - ok to send to IRE_LOCAL */ 2072 ire_refrele(alt_ire); 2073 } else { 2074 /* Different ill - ignore IRE_LOCAL */ 2075 ire_refrele(ire); 2076 ire = alt_ire; 2077 if (generationp != NULL) 2078 *generationp = generation; 2079 } 2080 return (ire); 2081 } 2082 2083 boolean_t 2084 ire_find_zoneid(struct radix_node *rn, void *arg) 2085 { 2086 struct rt_entry *rt = (struct rt_entry *)rn; 2087 irb_t *irb; 2088 ire_t *ire; 2089 ire_ftable_args_t *margs = arg; 2090 2091 ASSERT(rt != NULL); 2092 2093 irb = &rt->rt_irb; 2094 2095 if (irb->irb_ire_cnt == 0) 2096 return (B_FALSE); 2097 2098 rw_enter(&irb->irb_lock, RW_READER); 2099 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2100 if (IRE_IS_CONDEMNED(ire)) 2101 continue; 2102 2103 if (!(ire->ire_type & IRE_INTERFACE)) 2104 continue; 2105 2106 if (ire->ire_zoneid != ALL_ZONES && 2107 ire->ire_zoneid != margs->ift_zoneid) 2108 continue; 2109 2110 if (margs->ift_ill != NULL && margs->ift_ill != ire->ire_ill) 2111 continue; 2112 2113 if (is_system_labeled() && 2114 tsol_ire_match_gwattr(ire, margs->ift_tsl) != 0) 2115 continue; 2116 2117 rw_exit(&irb->irb_lock); 2118 return (B_TRUE); 2119 } 2120 rw_exit(&irb->irb_lock); 2121 return (B_FALSE); 2122 } 2123 2124 /* 2125 * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified 2126 * gateway address. If ill is non-NULL we also match on it. 2127 * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set. 2128 */ 2129 boolean_t 2130 ire_gateway_ok_zone_v4(ipaddr_t gateway, zoneid_t zoneid, ill_t *ill, 2131 const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held) 2132 { 2133 struct rt_sockaddr rdst; 2134 struct rt_entry *rt; 2135 ire_ftable_args_t margs; 2136 2137 ASSERT(ill == NULL || !ill->ill_isv6); 2138 if (lock_held) 2139 ASSERT(RW_READ_HELD(&ipst->ips_ip_ftable->rnh_lock)); 2140 else 2141 RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable); 2142 2143 bzero(&rdst, sizeof (rdst)); 2144 rdst.rt_sin_len = sizeof (rdst); 2145 rdst.rt_sin_family = AF_INET; 2146 rdst.rt_sin_addr.s_addr = gateway; 2147 2148 /* 2149 * We only use margs for ill, zoneid, and tsl matching in 2150 * ire_find_zoneid 2151 */ 2152 bzero(&margs, sizeof (margs)); 2153 margs.ift_ill = ill; 2154 margs.ift_zoneid = zoneid; 2155 margs.ift_tsl = tsl; 2156 rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst, 2157 ipst->ips_ip_ftable, ire_find_zoneid, (void *)&margs); 2158 2159 if (!lock_held) 2160 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 2161 2162 return (rt != NULL); 2163 } 2164 2165 /* 2166 * ire_walk routine to delete a fraction of redirect IREs and IRE_CLONE_IF IREs. 2167 * The fraction argument tells us what fraction of the IREs to delete. 2168 * Common for IPv4 and IPv6. 2169 * Used when memory backpressure. 2170 */ 2171 static void 2172 ire_delete_reclaim(ire_t *ire, char *arg) 2173 { 2174 ip_stack_t *ipst = ire->ire_ipst; 2175 uint_t fraction = *(uint_t *)arg; 2176 uint_t rand; 2177 2178 if ((ire->ire_flags & RTF_DYNAMIC) || 2179 (ire->ire_type & IRE_IF_CLONE)) { 2180 2181 /* Pick a random number */ 2182 rand = (uint_t)ddi_get_lbolt() + 2183 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 256); 2184 2185 /* Use truncation */ 2186 if ((rand/fraction)*fraction == rand) { 2187 IP_STAT(ipst, ip_ire_reclaim_deleted); 2188 ire_delete(ire); 2189 } 2190 } 2191 2192 } 2193 2194 /* 2195 * kmem_cache callback to free up memory. 2196 * 2197 * Free a fraction (ips_ip_ire_reclaim_fraction) of things IP added dynamically 2198 * (RTF_DYNAMIC and IRE_IF_CLONE). 2199 */ 2200 static void 2201 ip_ire_reclaim_stack(ip_stack_t *ipst) 2202 { 2203 uint_t fraction = ipst->ips_ip_ire_reclaim_fraction; 2204 2205 IP_STAT(ipst, ip_ire_reclaim_calls); 2206 2207 ire_walk(ire_delete_reclaim, &fraction, ipst); 2208 2209 /* 2210 * Walk all CONNs that can have a reference on an ire, nce or dce. 2211 * Get them to update any stale references to drop any refholds they 2212 * have. 2213 */ 2214 ipcl_walk(conn_ixa_cleanup, (void *)B_FALSE, ipst); 2215 } 2216 2217 /* 2218 * Called by the memory allocator subsystem directly, when the system 2219 * is running low on memory. 2220 */ 2221 /* ARGSUSED */ 2222 void 2223 ip_ire_reclaim(void *args) 2224 { 2225 netstack_handle_t nh; 2226 netstack_t *ns; 2227 ip_stack_t *ipst; 2228 2229 netstack_next_init(&nh); 2230 while ((ns = netstack_next(&nh)) != NULL) { 2231 /* 2232 * netstack_next() can return a netstack_t with a NULL 2233 * netstack_ip at boot time. 2234 */ 2235 if ((ipst = ns->netstack_ip) == NULL) { 2236 netstack_rele(ns); 2237 continue; 2238 } 2239 ip_ire_reclaim_stack(ipst); 2240 netstack_rele(ns); 2241 } 2242 netstack_next_fini(&nh); 2243 } 2244 2245 static void 2246 power2_roundup(uint32_t *value) 2247 { 2248 int i; 2249 2250 for (i = 1; i < 31; i++) { 2251 if (*value <= (1 << i)) 2252 break; 2253 } 2254 *value = (1 << i); 2255 } 2256 2257 /* Global init for all zones */ 2258 void 2259 ip_ire_g_init() 2260 { 2261 /* 2262 * Create kmem_caches. ip_ire_reclaim() and ip_nce_reclaim() 2263 * will give disposable IREs back to system when needed. 2264 * This needs to be done here before anything else, since 2265 * ire_add() expects the cache to be created. 2266 */ 2267 ire_cache = kmem_cache_create("ire_cache", 2268 sizeof (ire_t), 0, NULL, NULL, 2269 ip_ire_reclaim, NULL, NULL, 0); 2270 2271 ncec_cache = kmem_cache_create("ncec_cache", 2272 sizeof (ncec_t), 0, NULL, NULL, 2273 ip_nce_reclaim, NULL, NULL, 0); 2274 nce_cache = kmem_cache_create("nce_cache", 2275 sizeof (nce_t), 0, NULL, NULL, 2276 NULL, NULL, NULL, 0); 2277 2278 rt_entry_cache = kmem_cache_create("rt_entry", 2279 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 2280 2281 /* 2282 * Have radix code setup kmem caches etc. 2283 */ 2284 rn_init(); 2285 } 2286 2287 void 2288 ip_ire_init(ip_stack_t *ipst) 2289 { 2290 ire_t *ire; 2291 int error; 2292 2293 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 2294 2295 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 2296 2297 /* 2298 * Make sure that the forwarding table size is a power of 2. 2299 * The IRE*_ADDR_HASH() macroes depend on that. 2300 */ 2301 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 2302 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 2303 2304 /* 2305 * Allocate/initialize a pair of IRE_NOROUTEs for each of IPv4 and IPv6. 2306 * The ire_reject_v* has RTF_REJECT set, and the ire_blackhole_v* has 2307 * RTF_BLACKHOLE set. We use the latter for transient errors such 2308 * as memory allocation failures and tripping on IRE_IS_CONDEMNED 2309 * entries. 2310 */ 2311 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2312 *ire = ire_null; 2313 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2314 RTF_REJECT|RTF_UP, NULL, ipst); 2315 ASSERT(error == 0); 2316 ipst->ips_ire_reject_v4 = ire; 2317 2318 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2319 *ire = ire_null; 2320 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2321 RTF_REJECT|RTF_UP, NULL, ipst); 2322 ASSERT(error == 0); 2323 ipst->ips_ire_reject_v6 = ire; 2324 2325 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2326 *ire = ire_null; 2327 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2328 RTF_BLACKHOLE|RTF_UP, NULL, ipst); 2329 ASSERT(error == 0); 2330 ipst->ips_ire_blackhole_v4 = ire; 2331 2332 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2333 *ire = ire_null; 2334 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2335 RTF_BLACKHOLE|RTF_UP, NULL, ipst); 2336 ASSERT(error == 0); 2337 ipst->ips_ire_blackhole_v6 = ire; 2338 2339 rw_init(&ipst->ips_ip6_ire_head_lock, NULL, RW_DEFAULT, NULL); 2340 rw_init(&ipst->ips_ire_dep_lock, NULL, RW_DEFAULT, NULL); 2341 } 2342 2343 void 2344 ip_ire_g_fini(void) 2345 { 2346 kmem_cache_destroy(ire_cache); 2347 kmem_cache_destroy(ncec_cache); 2348 kmem_cache_destroy(nce_cache); 2349 kmem_cache_destroy(rt_entry_cache); 2350 2351 rn_fini(); 2352 } 2353 2354 void 2355 ip_ire_fini(ip_stack_t *ipst) 2356 { 2357 int i; 2358 2359 rw_destroy(&ipst->ips_ire_dep_lock); 2360 rw_destroy(&ipst->ips_ip6_ire_head_lock); 2361 2362 ire_make_condemned(ipst->ips_ire_reject_v6); 2363 ire_refrele_notr(ipst->ips_ire_reject_v6); 2364 ipst->ips_ire_reject_v6 = NULL; 2365 2366 ire_make_condemned(ipst->ips_ire_reject_v4); 2367 ire_refrele_notr(ipst->ips_ire_reject_v4); 2368 ipst->ips_ire_reject_v4 = NULL; 2369 2370 ire_make_condemned(ipst->ips_ire_blackhole_v6); 2371 ire_refrele_notr(ipst->ips_ire_blackhole_v6); 2372 ipst->ips_ire_blackhole_v6 = NULL; 2373 2374 ire_make_condemned(ipst->ips_ire_blackhole_v4); 2375 ire_refrele_notr(ipst->ips_ire_blackhole_v4); 2376 ipst->ips_ire_blackhole_v4 = NULL; 2377 2378 /* 2379 * Delete all IREs - assumes that the ill/ipifs have 2380 * been removed so what remains are just the ftable to handle. 2381 */ 2382 ire_walk(ire_delete, NULL, ipst); 2383 2384 rn_freehead(ipst->ips_ip_ftable); 2385 ipst->ips_ip_ftable = NULL; 2386 2387 mutex_destroy(&ipst->ips_ire_ft_init_lock); 2388 2389 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 2390 irb_t *ptr; 2391 int j; 2392 2393 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 2394 continue; 2395 2396 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 2397 ASSERT(ptr[j].irb_ire == NULL); 2398 rw_destroy(&ptr[j].irb_lock); 2399 } 2400 mi_free(ptr); 2401 ipst->ips_ip_forwarding_table_v6[i] = NULL; 2402 } 2403 } 2404 2405 #ifdef DEBUG 2406 void 2407 ire_trace_ref(ire_t *ire) 2408 { 2409 mutex_enter(&ire->ire_lock); 2410 if (ire->ire_trace_disable) { 2411 mutex_exit(&ire->ire_lock); 2412 return; 2413 } 2414 2415 if (th_trace_ref(ire, ire->ire_ipst)) { 2416 mutex_exit(&ire->ire_lock); 2417 } else { 2418 ire->ire_trace_disable = B_TRUE; 2419 mutex_exit(&ire->ire_lock); 2420 ire_trace_cleanup(ire); 2421 } 2422 } 2423 2424 void 2425 ire_untrace_ref(ire_t *ire) 2426 { 2427 mutex_enter(&ire->ire_lock); 2428 if (!ire->ire_trace_disable) 2429 th_trace_unref(ire); 2430 mutex_exit(&ire->ire_lock); 2431 } 2432 2433 static void 2434 ire_trace_cleanup(const ire_t *ire) 2435 { 2436 th_trace_cleanup(ire, ire->ire_trace_disable); 2437 } 2438 #endif /* DEBUG */ 2439 2440 /* 2441 * Find, or create if needed, the nce_t pointer to the neighbor cache 2442 * entry ncec_t for an IPv4 address. The nce_t will be created on the ill_t 2443 * in the non-IPMP case, or on the cast-ill in the IPMP bcast/mcast case, or 2444 * on the next available under-ill (selected by the IPMP rotor) in the 2445 * unicast IPMP case. 2446 * 2447 * If a neighbor-cache entry has to be created (i.e., one does not already 2448 * exist in the nce list) the ncec_lladdr and ncec_state of the neighbor cache 2449 * entry are initialized in nce_add_v4(). The broadcast, multicast, and 2450 * link-layer type determine the contents of {ncec_state, ncec_lladdr} of 2451 * the ncec_t created. The ncec_lladdr is non-null for all link types with 2452 * non-zero ill_phys_addr_length, though the contents may be zero in cases 2453 * where the link-layer type is not known at the time of creation 2454 * (e.g., IRE_IFRESOLVER links) 2455 * 2456 * All IRE_BROADCAST entries have ncec_state = ND_REACHABLE, and the nce_lladr 2457 * has the physical broadcast address of the outgoing interface. 2458 * For unicast ire entries, 2459 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 2460 * ncec_t with 0 nce_lladr contents, and will be in the ND_INITIAL state. 2461 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 2462 * layer resolution is necessary, so that the ncec_t will be in the 2463 * ND_REACHABLE state 2464 * 2465 * The link layer information needed for broadcast addresses, and for 2466 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 2467 * never needs re-verification for the lifetime of the ncec_t. These are 2468 * therefore marked NCE_F_NONUD. 2469 * 2470 * The nce returned will be created such that the nce_ill == ill that 2471 * is passed in. Note that the nce itself may not have ncec_ill == ill 2472 * where IPMP links are involved. 2473 */ 2474 static nce_t * 2475 ire_nce_init(ill_t *ill, const void *addr, int ire_type) 2476 { 2477 int err; 2478 nce_t *nce = NULL; 2479 uint16_t ncec_flags; 2480 uchar_t *hwaddr; 2481 boolean_t need_refrele = B_FALSE; 2482 ill_t *in_ill = ill; 2483 boolean_t is_unicast; 2484 uint_t hwaddr_len; 2485 2486 is_unicast = ((ire_type & (IRE_MULTICAST|IRE_BROADCAST)) == 0); 2487 if (IS_IPMP(ill) || 2488 ((ire_type & IRE_BROADCAST) && IS_UNDER_IPMP(ill))) { 2489 if ((ill = ipmp_ill_hold_xmit_ill(ill, is_unicast)) == NULL) 2490 return (NULL); 2491 need_refrele = B_TRUE; 2492 } 2493 ncec_flags = (ill->ill_flags & ILLF_NONUD) ? NCE_F_NONUD : 0; 2494 2495 switch (ire_type) { 2496 case IRE_BROADCAST: 2497 ASSERT(!ill->ill_isv6); 2498 ncec_flags |= (NCE_F_BCAST|NCE_F_NONUD); 2499 break; 2500 case IRE_MULTICAST: 2501 ncec_flags |= (NCE_F_MCAST|NCE_F_NONUD); 2502 break; 2503 } 2504 2505 if (ill->ill_net_type == IRE_IF_NORESOLVER && is_unicast) { 2506 hwaddr = ill->ill_dest_addr; 2507 } else { 2508 hwaddr = NULL; 2509 } 2510 hwaddr_len = ill->ill_phys_addr_length; 2511 2512 retry: 2513 /* nce_state will be computed by nce_add_common() */ 2514 if (!ill->ill_isv6) { 2515 err = nce_lookup_then_add_v4(ill, hwaddr, hwaddr_len, addr, 2516 ncec_flags, ND_UNCHANGED, &nce); 2517 } else { 2518 err = nce_lookup_then_add_v6(ill, hwaddr, hwaddr_len, addr, 2519 ncec_flags, ND_UNCHANGED, &nce); 2520 } 2521 2522 switch (err) { 2523 case 0: 2524 break; 2525 case EEXIST: 2526 /* 2527 * When subnets change or partially overlap what was once 2528 * a broadcast address could now be a unicast, or vice versa. 2529 */ 2530 if (((ncec_flags ^ nce->nce_common->ncec_flags) & 2531 NCE_F_BCAST) != 0) { 2532 ASSERT(!ill->ill_isv6); 2533 ncec_delete(nce->nce_common); 2534 nce_refrele(nce); 2535 goto retry; 2536 } 2537 break; 2538 default: 2539 DTRACE_PROBE2(nce__init__fail, ill_t *, ill, int, err); 2540 if (need_refrele) 2541 ill_refrele(ill); 2542 return (NULL); 2543 } 2544 /* 2545 * If the ill was an under-ill of an IPMP group, we need to verify 2546 * that it is still active so that we select an active interface in 2547 * the group. However, since ipmp_ill_is_active ASSERTs for 2548 * IS_UNDER_IPMP(), we first need to verify that the ill is an 2549 * under-ill, and since this is being done in the data path, the 2550 * only way to ascertain this is by holding the ill_g_lock. 2551 */ 2552 rw_enter(&ill->ill_ipst->ips_ill_g_lock, RW_READER); 2553 mutex_enter(&ill->ill_lock); 2554 mutex_enter(&ill->ill_phyint->phyint_lock); 2555 if (need_refrele && IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 2556 /* 2557 * need_refrele implies that the under ill was selected by 2558 * ipmp_ill_hold_xmit_ill() because either the in_ill was an 2559 * ipmp_ill, or we are sending a non-unicast packet on an 2560 * under_ill. However, when we get here, the ill selected by 2561 * ipmp_ill_hold_xmit_ill was pulled out of the active set 2562 * (for unicast) or cast_ill nomination (for !unicast) after 2563 * it was picked as the outgoing ill. We have to pick an 2564 * active interface and/or cast_ill in the group. 2565 */ 2566 mutex_exit(&ill->ill_phyint->phyint_lock); 2567 nce_delete(nce); 2568 mutex_exit(&ill->ill_lock); 2569 rw_exit(&ill->ill_ipst->ips_ill_g_lock); 2570 nce_refrele(nce); 2571 ill_refrele(ill); 2572 if ((ill = ipmp_ill_hold_xmit_ill(in_ill, is_unicast)) == NULL) 2573 return (NULL); 2574 goto retry; 2575 } else { 2576 mutex_exit(&ill->ill_phyint->phyint_lock); 2577 mutex_exit(&ill->ill_lock); 2578 rw_exit(&ill->ill_ipst->ips_ill_g_lock); 2579 } 2580 done: 2581 ASSERT(nce->nce_ill == ill); 2582 if (need_refrele) 2583 ill_refrele(ill); 2584 return (nce); 2585 } 2586 2587 nce_t * 2588 arp_nce_init(ill_t *ill, in_addr_t addr4, int ire_type) 2589 { 2590 return (ire_nce_init(ill, &addr4, ire_type)); 2591 } 2592 2593 nce_t * 2594 ndp_nce_init(ill_t *ill, const in6_addr_t *addr6, int ire_type) 2595 { 2596 ASSERT((ire_type & IRE_BROADCAST) == 0); 2597 return (ire_nce_init(ill, addr6, ire_type)); 2598 } 2599 2600 /* 2601 * The caller should hold irb_lock as a writer if the ire is in a bucket. 2602 * This routine will clear ire_nce_cache, and we make sure that we can never 2603 * set ire_nce_cache after the ire is marked condemned. 2604 */ 2605 void 2606 ire_make_condemned(ire_t *ire) 2607 { 2608 ip_stack_t *ipst = ire->ire_ipst; 2609 nce_t *nce; 2610 2611 mutex_enter(&ire->ire_lock); 2612 ASSERT(ire->ire_bucket == NULL || 2613 RW_WRITE_HELD(&ire->ire_bucket->irb_lock)); 2614 ASSERT(!IRE_IS_CONDEMNED(ire)); 2615 ire->ire_generation = IRE_GENERATION_CONDEMNED; 2616 /* Count how many condemned ires for kmem_cache callback */ 2617 atomic_add_32(&ipst->ips_num_ire_condemned, 1); 2618 nce = ire->ire_nce_cache; 2619 ire->ire_nce_cache = NULL; 2620 mutex_exit(&ire->ire_lock); 2621 if (nce != NULL) 2622 nce_refrele(nce); 2623 } 2624 2625 /* 2626 * Increment the generation avoiding the special condemned value 2627 */ 2628 void 2629 ire_increment_generation(ire_t *ire) 2630 { 2631 uint_t generation; 2632 2633 mutex_enter(&ire->ire_lock); 2634 /* 2635 * Even though the caller has a hold it can't prevent a concurrent 2636 * ire_delete marking the IRE condemned 2637 */ 2638 if (!IRE_IS_CONDEMNED(ire)) { 2639 generation = ire->ire_generation + 1; 2640 if (generation == IRE_GENERATION_CONDEMNED) 2641 generation = IRE_GENERATION_INITIAL; 2642 ASSERT(generation != IRE_GENERATION_VERIFY); 2643 ire->ire_generation = generation; 2644 } 2645 mutex_exit(&ire->ire_lock); 2646 } 2647 2648 /* 2649 * Increment ire_generation on all the IRE_MULTICASTs 2650 * Used when the default multicast interface (as determined by 2651 * ill_lookup_multicast) might have changed. 2652 * 2653 * That includes the zoneid, IFF_ flags, the IPv6 scope of the address, and 2654 * ill unplumb. 2655 */ 2656 void 2657 ire_increment_multicast_generation(ip_stack_t *ipst, boolean_t isv6) 2658 { 2659 ill_t *ill; 2660 ill_walk_context_t ctx; 2661 2662 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2663 if (isv6) 2664 ill = ILL_START_WALK_V6(&ctx, ipst); 2665 else 2666 ill = ILL_START_WALK_V4(&ctx, ipst); 2667 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2668 if (ILL_IS_CONDEMNED(ill)) 2669 continue; 2670 if (ill->ill_ire_multicast != NULL) 2671 ire_increment_generation(ill->ill_ire_multicast); 2672 } 2673 rw_exit(&ipst->ips_ill_g_lock); 2674 } 2675 2676 /* 2677 * Return a held IRE_NOROUTE with RTF_REJECT set 2678 */ 2679 ire_t * 2680 ire_reject(ip_stack_t *ipst, boolean_t isv6) 2681 { 2682 ire_t *ire; 2683 2684 if (isv6) 2685 ire = ipst->ips_ire_reject_v6; 2686 else 2687 ire = ipst->ips_ire_reject_v4; 2688 2689 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); 2690 ire_refhold(ire); 2691 return (ire); 2692 } 2693 2694 /* 2695 * Return a held IRE_NOROUTE with RTF_BLACKHOLE set 2696 */ 2697 ire_t * 2698 ire_blackhole(ip_stack_t *ipst, boolean_t isv6) 2699 { 2700 ire_t *ire; 2701 2702 if (isv6) 2703 ire = ipst->ips_ire_blackhole_v6; 2704 else 2705 ire = ipst->ips_ire_blackhole_v4; 2706 2707 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); 2708 ire_refhold(ire); 2709 return (ire); 2710 } 2711 2712 /* 2713 * Return a held IRE_MULTICAST. 2714 */ 2715 ire_t * 2716 ire_multicast(ill_t *ill) 2717 { 2718 ire_t *ire = ill->ill_ire_multicast; 2719 2720 ASSERT(ire == NULL || ire->ire_generation != IRE_GENERATION_CONDEMNED); 2721 if (ire == NULL) 2722 ire = ire_blackhole(ill->ill_ipst, ill->ill_isv6); 2723 else 2724 ire_refhold(ire); 2725 return (ire); 2726 } 2727 2728 /* 2729 * Given an IRE return its nexthop IRE. The nexthop IRE is an IRE_ONLINK 2730 * that is an exact match (i.e., a /32 for IPv4 and /128 for IPv6). 2731 * This can return an RTF_REJECT|RTF_BLACKHOLE. 2732 * The returned IRE is held. 2733 * The assumption is that ip_select_route() has been called and returned the 2734 * IRE (thus ip_select_route would have set up the ire_dep* information.) 2735 * If some IRE is deleteted then ire_dep_remove() will have been called and 2736 * we might not find a nexthop IRE, in which case we return NULL. 2737 */ 2738 ire_t * 2739 ire_nexthop(ire_t *ire) 2740 { 2741 ip_stack_t *ipst = ire->ire_ipst; 2742 2743 /* Acquire lock to walk ire_dep_parent */ 2744 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 2745 while (ire != NULL) { 2746 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 2747 goto done; 2748 } 2749 /* 2750 * If we find an IRE_ONLINK we are done. This includes 2751 * the case of IRE_MULTICAST. 2752 * Note that in order to send packets we need a host-specific 2753 * IRE_IF_ALL first in the ire_dep_parent chain. Normally this 2754 * is done by inserting an IRE_IF_CLONE if the IRE_INTERFACE 2755 * was not host specific. 2756 * However, ip_rts_request doesn't want to send packets 2757 * hence doesn't want to allocate an IRE_IF_CLONE. Yet 2758 * it needs an IRE_IF_ALL to get to the ill. Thus 2759 * we return IRE_IF_ALL that are not host specific here. 2760 */ 2761 if (ire->ire_type & IRE_ONLINK) 2762 goto done; 2763 ire = ire->ire_dep_parent; 2764 } 2765 rw_exit(&ipst->ips_ire_dep_lock); 2766 return (NULL); 2767 2768 done: 2769 ire_refhold(ire); 2770 rw_exit(&ipst->ips_ire_dep_lock); 2771 return (ire); 2772 } 2773 2774 /* 2775 * Find the ill used to send packets. This will be NULL in case 2776 * of a reject or blackhole. 2777 * The returned ill is held; caller needs to do ill_refrele when done. 2778 */ 2779 ill_t * 2780 ire_nexthop_ill(ire_t *ire) 2781 { 2782 ill_t *ill; 2783 2784 ire = ire_nexthop(ire); 2785 if (ire == NULL) 2786 return (NULL); 2787 2788 /* ire_ill can not change for an existing ire */ 2789 ill = ire->ire_ill; 2790 if (ill != NULL) 2791 ill_refhold(ill); 2792 ire_refrele(ire); 2793 return (ill); 2794 } 2795 2796 #ifdef DEBUG 2797 static boolean_t 2798 parent_has_child(ire_t *parent, ire_t *child) 2799 { 2800 ire_t *ire; 2801 ire_t *prev; 2802 2803 ire = parent->ire_dep_children; 2804 prev = NULL; 2805 while (ire != NULL) { 2806 if (prev == NULL) { 2807 ASSERT(ire->ire_dep_sib_ptpn == 2808 &(parent->ire_dep_children)); 2809 } else { 2810 ASSERT(ire->ire_dep_sib_ptpn == 2811 &(prev->ire_dep_sib_next)); 2812 } 2813 if (ire == child) 2814 return (B_TRUE); 2815 prev = ire; 2816 ire = ire->ire_dep_sib_next; 2817 } 2818 return (B_FALSE); 2819 } 2820 2821 static void 2822 ire_dep_verify(ire_t *ire) 2823 { 2824 ire_t *parent = ire->ire_dep_parent; 2825 ire_t *child = ire->ire_dep_children; 2826 2827 ASSERT(ire->ire_ipversion == IPV4_VERSION || 2828 ire->ire_ipversion == IPV6_VERSION); 2829 if (parent != NULL) { 2830 ASSERT(parent->ire_ipversion == IPV4_VERSION || 2831 parent->ire_ipversion == IPV6_VERSION); 2832 ASSERT(parent->ire_refcnt >= 1); 2833 ASSERT(parent_has_child(parent, ire)); 2834 } 2835 if (child != NULL) { 2836 ASSERT(child->ire_ipversion == IPV4_VERSION || 2837 child->ire_ipversion == IPV6_VERSION); 2838 ASSERT(child->ire_dep_parent == ire); 2839 ASSERT(child->ire_dep_sib_ptpn != NULL); 2840 ASSERT(parent_has_child(ire, child)); 2841 } 2842 } 2843 #endif /* DEBUG */ 2844 2845 /* 2846 * Assumes ire_dep_parent is set. Remove this child from its parent's linkage. 2847 */ 2848 void 2849 ire_dep_remove(ire_t *ire) 2850 { 2851 ip_stack_t *ipst = ire->ire_ipst; 2852 ire_t *parent = ire->ire_dep_parent; 2853 ire_t *next; 2854 nce_t *nce; 2855 2856 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 2857 ASSERT(ire->ire_dep_parent != NULL); 2858 ASSERT(ire->ire_dep_sib_ptpn != NULL); 2859 2860 #ifdef DEBUG 2861 ire_dep_verify(ire); 2862 ire_dep_verify(parent); 2863 #endif 2864 2865 next = ire->ire_dep_sib_next; 2866 if (next != NULL) 2867 next->ire_dep_sib_ptpn = ire->ire_dep_sib_ptpn; 2868 2869 ASSERT(*(ire->ire_dep_sib_ptpn) == ire); 2870 *(ire->ire_dep_sib_ptpn) = ire->ire_dep_sib_next; 2871 2872 ire->ire_dep_sib_ptpn = NULL; 2873 ire->ire_dep_sib_next = NULL; 2874 2875 mutex_enter(&ire->ire_lock); 2876 parent = ire->ire_dep_parent; 2877 ire->ire_dep_parent = NULL; 2878 mutex_exit(&ire->ire_lock); 2879 2880 /* 2881 * Make sure all our children, grandchildren, etc set 2882 * ire_dep_parent_generation to IRE_GENERATION_VERIFY since 2883 * we can no longer guarantee than the children have a current 2884 * ire_nce_cache and ire_nexthop_ill(). 2885 */ 2886 if (ire->ire_dep_children != NULL) 2887 ire_dep_invalidate_children(ire->ire_dep_children); 2888 2889 /* 2890 * Since the parent is gone we make sure we clear ire_nce_cache. 2891 * We can clear it under ire_lock even if the IRE is used 2892 */ 2893 mutex_enter(&ire->ire_lock); 2894 nce = ire->ire_nce_cache; 2895 ire->ire_nce_cache = NULL; 2896 mutex_exit(&ire->ire_lock); 2897 if (nce != NULL) 2898 nce_refrele(nce); 2899 2900 #ifdef DEBUG 2901 ire_dep_verify(ire); 2902 ire_dep_verify(parent); 2903 #endif 2904 2905 ire_refrele_notr(parent); 2906 ire_refrele_notr(ire); 2907 } 2908 2909 /* 2910 * Insert the child in the linkage of the parent 2911 */ 2912 static void 2913 ire_dep_parent_insert(ire_t *child, ire_t *parent) 2914 { 2915 ip_stack_t *ipst = child->ire_ipst; 2916 ire_t *next; 2917 2918 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 2919 ASSERT(child->ire_dep_parent == NULL); 2920 2921 #ifdef DEBUG 2922 ire_dep_verify(child); 2923 ire_dep_verify(parent); 2924 #endif 2925 /* No parents => no siblings */ 2926 ASSERT(child->ire_dep_sib_ptpn == NULL); 2927 ASSERT(child->ire_dep_sib_next == NULL); 2928 2929 ire_refhold_notr(parent); 2930 ire_refhold_notr(child); 2931 2932 /* Head insertion */ 2933 next = parent->ire_dep_children; 2934 if (next != NULL) { 2935 ASSERT(next->ire_dep_sib_ptpn == &(parent->ire_dep_children)); 2936 child->ire_dep_sib_next = next; 2937 next->ire_dep_sib_ptpn = &(child->ire_dep_sib_next); 2938 } 2939 parent->ire_dep_children = child; 2940 child->ire_dep_sib_ptpn = &(parent->ire_dep_children); 2941 2942 mutex_enter(&child->ire_lock); 2943 child->ire_dep_parent = parent; 2944 mutex_exit(&child->ire_lock); 2945 2946 #ifdef DEBUG 2947 ire_dep_verify(child); 2948 ire_dep_verify(parent); 2949 #endif 2950 } 2951 2952 2953 /* 2954 * Given count worth of ires and generations, build ire_dep_* relationships 2955 * from ires[0] to ires[count-1]. Record generations[i+1] in 2956 * ire_dep_parent_generation for ires[i]. 2957 * We graft onto an existing parent chain by making sure that we don't 2958 * touch ire_dep_parent for ires[count-1]. 2959 * 2960 * We check for any condemned ire_generation count and return B_FALSE in 2961 * that case so that the caller can tear it apart. 2962 * 2963 * Note that generations[0] is not used. Caller handles that. 2964 */ 2965 boolean_t 2966 ire_dep_build(ire_t *ires[], uint_t generations[], uint_t count) 2967 { 2968 ire_t *ire = ires[0]; 2969 ip_stack_t *ipst; 2970 uint_t i; 2971 2972 ASSERT(count > 0); 2973 if (count == 1) { 2974 /* No work to do */ 2975 return (B_TRUE); 2976 } 2977 ipst = ire->ire_ipst; 2978 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 2979 /* 2980 * Do not remove the linkage for any existing parent chain i.e., 2981 * ires[count-1] is left alone. 2982 */ 2983 for (i = 0; i < count-1; i++) { 2984 /* Remove existing parent if we need to change it */ 2985 if (ires[i]->ire_dep_parent != NULL && 2986 ires[i]->ire_dep_parent != ires[i+1]) 2987 ire_dep_remove(ires[i]); 2988 } 2989 2990 for (i = 0; i < count - 1; i++) { 2991 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || 2992 ires[i]->ire_ipversion == IPV6_VERSION); 2993 /* Does it need to change? */ 2994 if (ires[i]->ire_dep_parent != ires[i+1]) 2995 ire_dep_parent_insert(ires[i], ires[i+1]); 2996 2997 mutex_enter(&ires[i+1]->ire_lock); 2998 if (IRE_IS_CONDEMNED(ires[i+1])) { 2999 mutex_exit(&ires[i+1]->ire_lock); 3000 rw_exit(&ipst->ips_ire_dep_lock); 3001 return (B_FALSE); 3002 } 3003 mutex_exit(&ires[i+1]->ire_lock); 3004 3005 mutex_enter(&ires[i]->ire_lock); 3006 ires[i]->ire_dep_parent_generation = generations[i+1]; 3007 mutex_exit(&ires[i]->ire_lock); 3008 } 3009 rw_exit(&ipst->ips_ire_dep_lock); 3010 return (B_TRUE); 3011 } 3012 3013 /* 3014 * Given count worth of ires, unbuild ire_dep_* relationships 3015 * from ires[0] to ires[count-1]. 3016 */ 3017 void 3018 ire_dep_unbuild(ire_t *ires[], uint_t count) 3019 { 3020 ip_stack_t *ipst; 3021 uint_t i; 3022 3023 if (count == 0) { 3024 /* No work to do */ 3025 return; 3026 } 3027 ipst = ires[0]->ire_ipst; 3028 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 3029 for (i = 0; i < count; i++) { 3030 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || 3031 ires[i]->ire_ipversion == IPV6_VERSION); 3032 if (ires[i]->ire_dep_parent != NULL) 3033 ire_dep_remove(ires[i]); 3034 mutex_enter(&ires[i]->ire_lock); 3035 ires[i]->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3036 mutex_exit(&ires[i]->ire_lock); 3037 } 3038 rw_exit(&ipst->ips_ire_dep_lock); 3039 } 3040 3041 /* 3042 * Both the forwarding and the outbound code paths can trip on 3043 * a condemned NCE, in which case we call this function. 3044 * We have two different behaviors: if the NCE was UNREACHABLE 3045 * it is an indication that something failed. In that case 3046 * we see if we should look for a different IRE (for example, 3047 * delete any matching redirect IRE, or try a different 3048 * IRE_DEFAULT (ECMP)). We mark the ire as bad so a hopefully 3049 * different IRE will be picked next time we send/forward. 3050 * 3051 * If we are called by the output path then fail_if_better is set 3052 * and we return NULL if there could be a better IRE. This is because the 3053 * output path retries the IRE lookup. (The input/forward path can not retry.) 3054 * 3055 * If the NCE was not unreachable then we pick/allocate a 3056 * new (most likely ND_INITIAL) NCE and proceed with it. 3057 * 3058 * ipha/ip6h are needed for multicast packets; ipha needs to be 3059 * set for IPv4 and ip6h needs to be set for IPv6 packets. 3060 */ 3061 nce_t * 3062 ire_handle_condemned_nce(nce_t *nce, ire_t *ire, ipha_t *ipha, ip6_t *ip6h, 3063 boolean_t fail_if_better) 3064 { 3065 if (nce->nce_common->ncec_state == ND_UNREACHABLE) { 3066 if (ire_no_good(ire) && fail_if_better) { 3067 /* 3068 * Did some changes, or ECMP likely to exist. 3069 * Make ip_output look for a different IRE 3070 */ 3071 return (NULL); 3072 } 3073 } 3074 if (ire_revalidate_nce(ire) == ENETUNREACH) { 3075 /* The ire_dep_parent chain went bad, or no memory? */ 3076 (void) ire_no_good(ire); 3077 return (NULL); 3078 } 3079 if (ire->ire_ipversion == IPV4_VERSION) { 3080 ASSERT(ipha != NULL); 3081 nce = ire_to_nce(ire, ipha->ipha_dst, NULL); 3082 } else { 3083 ASSERT(ip6h != NULL); 3084 nce = ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst); 3085 } 3086 3087 if (nce == NULL) 3088 return (NULL); 3089 if (nce->nce_is_condemned) { 3090 nce_refrele(nce); 3091 return (NULL); 3092 } 3093 return (nce); 3094 } 3095 3096 /* 3097 * The caller has found that the ire is bad, either due to a reference to an NCE 3098 * in ND_UNREACHABLE state, or a MULTIRT route whose gateway can't be resolved. 3099 * We update things so a subsequent attempt to send to the destination 3100 * is likely to find different IRE, or that a new NCE would be created. 3101 * 3102 * Returns B_TRUE if it is likely that a subsequent ire_ftable_lookup would 3103 * find a different route (either due to having deleted a redirect, or there 3104 * being ECMP routes.) 3105 * 3106 * If we have a redirect (RTF_DYNAMIC) we delete it. 3107 * Otherwise we increment ire_badcnt and increment the generation number so 3108 * that a cached ixa_ire will redo the route selection. ire_badcnt is taken 3109 * into account in the route selection when we have multiple choices (multiple 3110 * default routes or ECMP in general). 3111 * Any time ip_select_route find an ire with a condemned ire_nce_cache 3112 * (e.g., if no equal cost route to the bad one) ip_select_route will make 3113 * sure the NCE is revalidated to avoid getting stuck on a 3114 * NCE_F_CONDMNED ncec that caused ire_no_good to be called. 3115 */ 3116 boolean_t 3117 ire_no_good(ire_t *ire) 3118 { 3119 ip_stack_t *ipst = ire->ire_ipst; 3120 ire_t *ire2; 3121 nce_t *nce; 3122 3123 if (ire->ire_flags & RTF_DYNAMIC) { 3124 ire_delete(ire); 3125 return (B_TRUE); 3126 } 3127 if (ire->ire_flags & RTF_INDIRECT) { 3128 /* Check if next IRE is a redirect */ 3129 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3130 if (ire->ire_dep_parent != NULL && 3131 (ire->ire_dep_parent->ire_flags & RTF_DYNAMIC)) { 3132 ire2 = ire->ire_dep_parent; 3133 ire_refhold(ire2); 3134 } else { 3135 ire2 = NULL; 3136 } 3137 rw_exit(&ipst->ips_ire_dep_lock); 3138 if (ire2 != NULL) { 3139 ire_delete(ire2); 3140 ire_refrele(ire2); 3141 return (B_TRUE); 3142 } 3143 } 3144 /* 3145 * No redirect involved. Increment badcnt so that if we have ECMP 3146 * routes we are likely to pick a different one for the next packet. 3147 * 3148 * If the NCE is unreachable and condemned we should drop the reference 3149 * to it so that a new NCE can be created. 3150 * 3151 * Finally we increment the generation number so that any ixa_ire 3152 * cache will be revalidated. 3153 */ 3154 mutex_enter(&ire->ire_lock); 3155 ire->ire_badcnt++; 3156 ire->ire_last_badcnt = TICK_TO_SEC(ddi_get_lbolt64()); 3157 nce = ire->ire_nce_cache; 3158 if (nce != NULL && nce->nce_is_condemned && 3159 nce->nce_common->ncec_state == ND_UNREACHABLE) 3160 ire->ire_nce_cache = NULL; 3161 else 3162 nce = NULL; 3163 mutex_exit(&ire->ire_lock); 3164 if (nce != NULL) 3165 nce_refrele(nce); 3166 3167 ire_increment_generation(ire); 3168 ire_dep_incr_generation(ire); 3169 3170 return (ire->ire_bucket->irb_ire_cnt > 1); 3171 } 3172 3173 /* 3174 * Walk ire_dep_parent chain and validate that ire_dep_parent->ire_generation == 3175 * ire_dep_parent_generation. 3176 * If they all match we just return ire_generation from the topmost IRE. 3177 * Otherwise we propagate the mismatch by setting all ire_dep_parent_generation 3178 * above the mismatch to IRE_GENERATION_VERIFY and also returning 3179 * IRE_GENERATION_VERIFY. 3180 */ 3181 uint_t 3182 ire_dep_validate_generations(ire_t *ire) 3183 { 3184 ip_stack_t *ipst = ire->ire_ipst; 3185 uint_t generation; 3186 ire_t *ire1; 3187 3188 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3189 generation = ire->ire_generation; /* Assuming things match */ 3190 for (ire1 = ire; ire1 != NULL; ire1 = ire1->ire_dep_parent) { 3191 ASSERT(ire1->ire_ipversion == IPV4_VERSION || 3192 ire1->ire_ipversion == IPV6_VERSION); 3193 if (ire1->ire_dep_parent == NULL) 3194 break; 3195 if (ire1->ire_dep_parent_generation != 3196 ire1->ire_dep_parent->ire_generation) 3197 goto mismatch; 3198 } 3199 rw_exit(&ipst->ips_ire_dep_lock); 3200 return (generation); 3201 3202 mismatch: 3203 generation = IRE_GENERATION_VERIFY; 3204 /* Fill from top down to the mismatch with _VERIFY */ 3205 while (ire != ire1) { 3206 ASSERT(ire->ire_ipversion == IPV4_VERSION || 3207 ire->ire_ipversion == IPV6_VERSION); 3208 mutex_enter(&ire->ire_lock); 3209 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3210 mutex_exit(&ire->ire_lock); 3211 ire = ire->ire_dep_parent; 3212 } 3213 rw_exit(&ipst->ips_ire_dep_lock); 3214 return (generation); 3215 } 3216 3217 /* 3218 * Used when we need to return an ire with ire_dep_parent, but we 3219 * know the chain is invalid for instance we didn't create an IRE_IF_CLONE 3220 * Using IRE_GENERATION_VERIFY means that next time we'll redo the 3221 * recursive lookup. 3222 */ 3223 void 3224 ire_dep_invalidate_generations(ire_t *ire) 3225 { 3226 ip_stack_t *ipst = ire->ire_ipst; 3227 3228 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3229 while (ire != NULL) { 3230 ASSERT(ire->ire_ipversion == IPV4_VERSION || 3231 ire->ire_ipversion == IPV6_VERSION); 3232 mutex_enter(&ire->ire_lock); 3233 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3234 mutex_exit(&ire->ire_lock); 3235 ire = ire->ire_dep_parent; 3236 } 3237 rw_exit(&ipst->ips_ire_dep_lock); 3238 } 3239 3240 /* Set _VERIFY ire_dep_parent_generation for all children recursively */ 3241 static void 3242 ire_dep_invalidate_children(ire_t *child) 3243 { 3244 ip_stack_t *ipst = child->ire_ipst; 3245 3246 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 3247 /* Depth first */ 3248 if (child->ire_dep_children != NULL) 3249 ire_dep_invalidate_children(child->ire_dep_children); 3250 3251 while (child != NULL) { 3252 mutex_enter(&child->ire_lock); 3253 child->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3254 mutex_exit(&child->ire_lock); 3255 child = child->ire_dep_sib_next; 3256 } 3257 } 3258 3259 static void 3260 ire_dep_increment_children(ire_t *child) 3261 { 3262 ip_stack_t *ipst = child->ire_ipst; 3263 3264 ASSERT(RW_READ_HELD(&ipst->ips_ire_dep_lock)); 3265 /* Depth first */ 3266 if (child->ire_dep_children != NULL) 3267 ire_dep_increment_children(child->ire_dep_children); 3268 3269 while (child != NULL) { 3270 if (!IRE_IS_CONDEMNED(child)) 3271 ire_increment_generation(child); 3272 child = child->ire_dep_sib_next; 3273 } 3274 } 3275 3276 /* 3277 * Walk all the children of this ire recursively and increment their 3278 * generation number. 3279 */ 3280 static void 3281 ire_dep_incr_generation_locked(ire_t *parent) 3282 { 3283 ASSERT(RW_READ_HELD(&parent->ire_ipst->ips_ire_dep_lock)); 3284 if (parent->ire_dep_children != NULL) 3285 ire_dep_increment_children(parent->ire_dep_children); 3286 } 3287 3288 void 3289 ire_dep_incr_generation(ire_t *parent) 3290 { 3291 ip_stack_t *ipst = parent->ire_ipst; 3292 3293 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3294 ire_dep_incr_generation_locked(parent); 3295 rw_exit(&ipst->ips_ire_dep_lock); 3296 } 3297 3298 /* 3299 * Get a new ire_nce_cache for this IRE as well as its nexthop. 3300 * Returns zero if it succeeds. Can fail due to lack of memory or when 3301 * the route has become unreachable. Returns ENOMEM and ENETUNREACH in those 3302 * cases. 3303 * 3304 * In the in.mpathd case, the ire will have ire_testhidden 3305 * set; so we should create the ncec for the underlying ill. 3306 * 3307 * Note that the error returned by ire_revalidate_nce() is ignored by most 3308 * callers except ire_handle_condemned_nce(), which handles the ENETUNREACH 3309 * error to mark potentially bad ire's. For all the other callers, an 3310 * error return could indicate a transient condition like ENOMEM, or could 3311 * be the result of an interface that is going down/unplumbing. In the former 3312 * case (transient error), we would leave the old stale ire/ire_nce_cache 3313 * in place, and possibly use incorrect link-layer information to send packets 3314 * but would eventually recover. In the latter case (ill down/replumb), 3315 * ire_revalidate_nce() might return a condemned nce back, but we would then 3316 * recover in the packet output path. 3317 */ 3318 int 3319 ire_revalidate_nce(ire_t *ire) 3320 { 3321 nce_t *nce, *old_nce; 3322 ire_t *nexthop; 3323 3324 /* 3325 * For multicast we conceptually have an NCE but we don't store it 3326 * in ire_nce_cache; when ire_to_nce is called we allocate the nce. 3327 */ 3328 if (ire->ire_type & IRE_MULTICAST) 3329 return (0); 3330 3331 /* ire_testhidden should only be set on under-interfaces */ 3332 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); 3333 3334 nexthop = ire_nexthop(ire); 3335 if (nexthop == NULL) { 3336 /* The route is potentially bad */ 3337 (void) ire_no_good(ire); 3338 return (ENETUNREACH); 3339 } 3340 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3341 ASSERT(ire->ire_ill != NULL); 3342 3343 if (ire->ire_ipversion == IPV4_VERSION) 3344 nce = nce_lookup_v4(ire->ire_ill, &ire->ire_addr); 3345 else 3346 nce = nce_lookup_v6(ire->ire_ill, &ire->ire_addr_v6); 3347 } else { 3348 ASSERT(nexthop->ire_type & IRE_ONLINK); 3349 if (ire->ire_ipversion == IPV4_VERSION) { 3350 nce = arp_nce_init(nexthop->ire_ill, nexthop->ire_addr, 3351 nexthop->ire_type); 3352 } else { 3353 nce = ndp_nce_init(nexthop->ire_ill, 3354 &nexthop->ire_addr_v6, nexthop->ire_type); 3355 } 3356 } 3357 if (nce == NULL) { 3358 /* 3359 * Leave the old stale one in place to avoid a NULL 3360 * ire_nce_cache. 3361 */ 3362 ire_refrele(nexthop); 3363 return (ENOMEM); 3364 } 3365 3366 if (nexthop != ire) { 3367 /* Update the nexthop ire */ 3368 mutex_enter(&nexthop->ire_lock); 3369 old_nce = nexthop->ire_nce_cache; 3370 if (!IRE_IS_CONDEMNED(nexthop)) { 3371 nce_refhold(nce); 3372 nexthop->ire_nce_cache = nce; 3373 } else { 3374 nexthop->ire_nce_cache = NULL; 3375 } 3376 mutex_exit(&nexthop->ire_lock); 3377 if (old_nce != NULL) 3378 nce_refrele(old_nce); 3379 } 3380 ire_refrele(nexthop); 3381 3382 mutex_enter(&ire->ire_lock); 3383 old_nce = ire->ire_nce_cache; 3384 if (!IRE_IS_CONDEMNED(ire)) { 3385 nce_refhold(nce); 3386 ire->ire_nce_cache = nce; 3387 } else { 3388 ire->ire_nce_cache = NULL; 3389 } 3390 mutex_exit(&ire->ire_lock); 3391 if (old_nce != NULL) 3392 nce_refrele(old_nce); 3393 3394 nce_refrele(nce); 3395 return (0); 3396 } 3397 3398 /* 3399 * Get a held nce for a given ire. 3400 * In the common case this is just from ire_nce_cache. 3401 * For IRE_MULTICAST this needs to do an explicit lookup since we do not 3402 * have an IRE_MULTICAST per address. 3403 * Note that this explicitly returns CONDEMNED NCEs. The caller needs those 3404 * so they can check whether the NCE went unreachable (as opposed to was 3405 * condemned for some other reason). 3406 */ 3407 nce_t * 3408 ire_to_nce(ire_t *ire, ipaddr_t v4nexthop, const in6_addr_t *v6nexthop) 3409 { 3410 nce_t *nce; 3411 3412 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 3413 return (NULL); 3414 3415 /* ire_testhidden should only be set on under-interfaces */ 3416 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); 3417 3418 mutex_enter(&ire->ire_lock); 3419 nce = ire->ire_nce_cache; 3420 if (nce != NULL) { 3421 nce_refhold(nce); 3422 mutex_exit(&ire->ire_lock); 3423 return (nce); 3424 } 3425 mutex_exit(&ire->ire_lock); 3426 3427 if (ire->ire_type & IRE_MULTICAST) { 3428 ASSERT(ire->ire_ill != NULL); 3429 3430 if (ire->ire_ipversion == IPV4_VERSION) { 3431 ASSERT(v6nexthop == NULL); 3432 3433 nce = arp_nce_init(ire->ire_ill, v4nexthop, 3434 ire->ire_type); 3435 } else { 3436 ASSERT(v6nexthop != NULL); 3437 ASSERT(v4nexthop == 0); 3438 nce = ndp_nce_init(ire->ire_ill, v6nexthop, 3439 ire->ire_type); 3440 } 3441 return (nce); 3442 } 3443 return (NULL); 3444 } 3445 3446 nce_t * 3447 ire_to_nce_pkt(ire_t *ire, mblk_t *mp) 3448 { 3449 ipha_t *ipha; 3450 ip6_t *ip6h; 3451 3452 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 3453 ipha = (ipha_t *)mp->b_rptr; 3454 return (ire_to_nce(ire, ipha->ipha_dst, NULL)); 3455 } else { 3456 ip6h = (ip6_t *)mp->b_rptr; 3457 return (ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst)); 3458 } 3459 } 3460 3461 /* 3462 * Given an IRE_INTERFACE (that matches more than one address) create 3463 * and return an IRE_IF_CLONE for the specific address. 3464 * Return the generation number. 3465 * Returns NULL is no memory for the IRE. 3466 * Handles both IPv4 and IPv6. 3467 * 3468 * IRE_IF_CLONE entries may only be created adn added by calling 3469 * ire_create_if_clone(), and we depend on the fact that ire_add will 3470 * atomically ensure that attempts to add multiple identical IRE_IF_CLONE 3471 * entries will not result in duplicate (i.e., ire_identical_ref > 1) 3472 * CLONE entries, so that a single ire_delete is sufficient to remove the 3473 * CLONE. 3474 */ 3475 ire_t * 3476 ire_create_if_clone(ire_t *ire_if, const in6_addr_t *addr, uint_t *generationp) 3477 { 3478 ire_t *ire; 3479 ire_t *nire; 3480 3481 if (ire_if->ire_ipversion == IPV4_VERSION) { 3482 ipaddr_t v4addr; 3483 ipaddr_t mask = IP_HOST_MASK; 3484 3485 ASSERT(IN6_IS_ADDR_V4MAPPED(addr)); 3486 IN6_V4MAPPED_TO_IPADDR(addr, v4addr); 3487 3488 ire = ire_create( 3489 (uchar_t *)&v4addr, /* dest address */ 3490 (uchar_t *)&mask, /* mask */ 3491 (uchar_t *)&ire_if->ire_gateway_addr, 3492 IRE_IF_CLONE, /* IRE type */ 3493 ire_if->ire_ill, 3494 ire_if->ire_zoneid, 3495 ire_if->ire_flags | RTF_HOST, 3496 NULL, /* No security attr for IRE_IF_ALL */ 3497 ire_if->ire_ipst); 3498 } else { 3499 ASSERT(!IN6_IS_ADDR_V4MAPPED(addr)); 3500 ire = ire_create_v6( 3501 addr, /* dest address */ 3502 &ipv6_all_ones, /* mask */ 3503 &ire_if->ire_gateway_addr_v6, /* gateway addr */ 3504 IRE_IF_CLONE, /* IRE type */ 3505 ire_if->ire_ill, 3506 ire_if->ire_zoneid, 3507 ire_if->ire_flags | RTF_HOST, 3508 NULL, /* No security attr for IRE_IF_ALL */ 3509 ire_if->ire_ipst); 3510 } 3511 if (ire == NULL) 3512 return (NULL); 3513 3514 /* Take the metrics, in particular the mtu, from the IRE_IF */ 3515 ire->ire_metrics = ire_if->ire_metrics; 3516 3517 nire = ire_add(ire); 3518 if (nire == NULL) /* Some failure */ 3519 return (NULL); 3520 3521 if (generationp != NULL) 3522 *generationp = nire->ire_generation; 3523 3524 return (nire); 3525 } 3526 3527 /* 3528 * The argument is an IRE_INTERFACE. Delete all of IRE_IF_CLONE in the 3529 * ire_dep_children (just walk the ire_dep_sib_next since they are all 3530 * immediate children.) 3531 * Since we hold a lock while we remove them we need to defer the actual 3532 * calls to ire_delete() until we have dropped the lock. This makes things 3533 * less efficient since we restart at the top after dropping the lock. But 3534 * we only run when an IRE_INTERFACE is deleted which is infrquent. 3535 * 3536 * Note that ire_dep_children can be any mixture of offlink routes and 3537 * IRE_IF_CLONE entries. 3538 */ 3539 void 3540 ire_dep_delete_if_clone(ire_t *parent) 3541 { 3542 ip_stack_t *ipst = parent->ire_ipst; 3543 ire_t *child, *next; 3544 3545 restart: 3546 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3547 if (parent->ire_dep_children == NULL) { 3548 rw_exit(&ipst->ips_ire_dep_lock); 3549 return; 3550 } 3551 child = parent->ire_dep_children; 3552 while (child != NULL) { 3553 next = child->ire_dep_sib_next; 3554 if ((child->ire_type & IRE_IF_CLONE) && 3555 !IRE_IS_CONDEMNED(child)) { 3556 ire_refhold(child); 3557 rw_exit(&ipst->ips_ire_dep_lock); 3558 ire_delete(child); 3559 ASSERT(IRE_IS_CONDEMNED(child)); 3560 ire_refrele(child); 3561 goto restart; 3562 } 3563 child = next; 3564 } 3565 rw_exit(&ipst->ips_ire_dep_lock); 3566 } 3567 3568 /* 3569 * In the preferred/strict src multihoming modes, unbound routes (i.e., 3570 * ire_t entries with ire_unbound set to B_TRUE) are bound to an interface 3571 * by selecting the first available interface that has an interface route for 3572 * the ire_gateway. If that interface is subsequently brought down, ill_downi() 3573 * will call ire_rebind() so that the unbound route can be bound to some other 3574 * matching interface thereby preserving the intended reachability information 3575 * from the original unbound route. 3576 */ 3577 void 3578 ire_rebind(ire_t *ire) 3579 { 3580 ire_t *gw_ire, *new_ire; 3581 int match_flags = MATCH_IRE_TYPE; 3582 ill_t *gw_ill; 3583 boolean_t isv6 = (ire->ire_ipversion == IPV6_VERSION); 3584 ip_stack_t *ipst = ire->ire_ipst; 3585 3586 ASSERT(ire->ire_unbound); 3587 again: 3588 if (isv6) { 3589 gw_ire = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 0, 0, 3590 IRE_INTERFACE, NULL, ALL_ZONES, NULL, match_flags, 0, 3591 ipst, NULL); 3592 } else { 3593 gw_ire = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 3594 IRE_INTERFACE, NULL, ALL_ZONES, NULL, match_flags, 0, 3595 ipst, NULL); 3596 } 3597 if (gw_ire == NULL) { 3598 /* see comments in ip_rt_add[_v6]() for IPMP */ 3599 if (match_flags & MATCH_IRE_TESTHIDDEN) 3600 return; 3601 3602 match_flags |= MATCH_IRE_TESTHIDDEN; 3603 goto again; 3604 } 3605 gw_ill = gw_ire->ire_ill; 3606 if (isv6) { 3607 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 3608 &ire->ire_gateway_addr_v6, ire->ire_type, gw_ill, 3609 ire->ire_zoneid, ire->ire_flags, NULL, ipst); 3610 } else { 3611 new_ire = ire_create((uchar_t *)&ire->ire_addr, 3612 (uchar_t *)&ire->ire_mask, 3613 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, gw_ill, 3614 ire->ire_zoneid, ire->ire_flags, NULL, ipst); 3615 } 3616 ire_refrele(gw_ire); 3617 if (new_ire == NULL) 3618 return; 3619 new_ire->ire_unbound = B_TRUE; 3620 new_ire = ire_add(new_ire); 3621 if (new_ire != NULL) 3622 ire_refrele(new_ire); 3623 } 3624