1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains routines that manipulate Internet Routing Entries (IREs). 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/stropts.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/ddi.h> 37 #include <sys/cmn_err.h> 38 #include <sys/policy.h> 39 40 #include <sys/systm.h> 41 #include <sys/kmem.h> 42 #include <sys/param.h> 43 #include <sys/socket.h> 44 #include <net/if.h> 45 #include <net/route.h> 46 #include <netinet/in.h> 47 #include <net/if_dl.h> 48 #include <netinet/ip6.h> 49 #include <netinet/icmp6.h> 50 51 #include <inet/common.h> 52 #include <inet/mi.h> 53 #include <inet/ip.h> 54 #include <inet/ip6.h> 55 #include <inet/ip_ndp.h> 56 #include <inet/arp.h> 57 #include <inet/ip_if.h> 58 #include <inet/ip_ire.h> 59 #include <inet/ip_ftable.h> 60 #include <inet/ip_rts.h> 61 #include <inet/nd.h> 62 63 #include <inet/tcp.h> 64 #include <inet/ipclassifier.h> 65 #include <sys/zone.h> 66 #include <sys/cpuvar.h> 67 68 #include <sys/tsol/label.h> 69 #include <sys/tsol/tnet.h> 70 71 struct kmem_cache *rt_entry_cache; 72 73 typedef struct nce_clookup_s { 74 ipaddr_t ncecl_addr; 75 boolean_t ncecl_found; 76 } nce_clookup_t; 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the forwarding table in which is ire stored. 86 * 87 * ire_ill, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, 89 * ire_bucket 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_refcnt, ire_identical_ref 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_generation 117 * - Under ire_lock 118 * 119 * ire_nce_cache 120 * - Under ire_lock 121 * 122 * ire_dep_parent (To next IRE in recursive lookup chain) 123 * - Under ips_ire_dep_lock. Write held when modifying. Read held when 124 * walking. We also hold ire_lock when modifying to allow the data path 125 * to only acquire ire_lock. 126 * 127 * ire_dep_parent_generation (Generation number from ire_dep_parent) 128 * - Under ips_ire_dep_lock and/or ire_lock. (A read claim on the dep_lock 129 * and ire_lock held when modifying) 130 * 131 * ire_dep_children (From parent to first child) 132 * ire_dep_sib_next (linked list of siblings) 133 * ire_dep_sib_ptpn (linked list of siblings) 134 * - Under ips_ire_dep_lock. Write held when modifying. Read held when 135 * walking. 136 * 137 * As we always hold the bucket locks in all the places while accessing 138 * the above values, it is natural to use them for protecting them. 139 * 140 * We have a forwarding table for IPv4 and IPv6. The IPv6 forwarding table 141 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t 142 * structures. ip_forwarding_table_v6 is allocated dynamically in 143 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 144 * initializing the same bucket. Once a bucket is initialized, it is never 145 * de-alloacted. This assumption enables us to access 146 * ip_forwarding_table_v6[i] without any locks. 147 * 148 * The forwarding table for IPv4 is a radix tree whose leaves 149 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t 150 * for IPv4 is dynamically allocated and freed. 151 * 152 * Each irb_t - ire bucket structure has a lock to protect 153 * a bucket and the ires residing in the bucket have a back pointer to 154 * the bucket structure. It also has a reference count for the number 155 * of threads walking the bucket - irb_refcnt which is bumped up 156 * using the irb_refhold function. The flags irb_marks can be 157 * set to IRB_MARK_CONDEMNED indicating that there are some ires 158 * in this bucket that are IRE_IS_CONDEMNED and the 159 * last thread to leave the bucket should delete the ires. Usually 160 * this is done by the irb_refrele function which is used to decrement 161 * the reference count on a bucket. See comments above irb_t structure 162 * definition in ip.h for further details. 163 * 164 * The ire_refhold/ire_refrele functions operate on the ire which increments/ 165 * decrements the reference count, ire_refcnt, atomically on the ire. 166 * ire_refcnt is modified only using those functions. Operations on the IRE 167 * could be described as follows : 168 * 169 * CREATE an ire with reference count initialized to 1. 170 * 171 * ADDITION of an ire holds the bucket lock, checks for duplicates 172 * and then adds the ire. ire_add returns the ire after 173 * bumping up once more i.e the reference count is 2. This is to avoid 174 * an extra lookup in the functions calling ire_add which wants to 175 * work with the ire after adding. 176 * 177 * LOOKUP of an ire bumps up the reference count using ire_refhold 178 * function. It is valid to bump up the referece count of the IRE, 179 * after the lookup has returned an ire. Following are the lookup 180 * functions that return an HELD ire : 181 * 182 * ire_ftable_lookup[_v6], ire_lookup_multi_ill[_v6] 183 * 184 * DELETION of an ire holds the bucket lock, removes it from the list 185 * and then decrements the reference count for having removed from the list 186 * by using the ire_refrele function. If some other thread has looked up 187 * the ire, the reference count would have been bumped up and hence 188 * this ire will not be freed once deleted. It will be freed once the 189 * reference count drops to zero. 190 * 191 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 192 * lookups acquire the bucket lock as RW_READER. 193 * 194 * The general rule is to do the ire_refrele in the function 195 * that is passing the ire as an argument. 196 * 197 * In trying to locate ires the following points are to be noted. 198 * 199 * IRE_IS_CONDEMNED signifies that the ire has been logically deleted and is 200 * to be ignored when walking the ires using ire_next. 201 * 202 * Zones note: 203 * Walking IREs within a given zone also walks certain ires in other 204 * zones. This is done intentionally. IRE walks with a specified 205 * zoneid are used only when doing informational reports, and 206 * zone users want to see things that they can access. See block 207 * comment in ire_walk_ill_match(). 208 */ 209 210 /* 211 * The size of the forwarding table. We will make sure that it is a 212 * power of 2 in ip_ire_init(). 213 * Setable in /etc/system 214 */ 215 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 216 217 struct kmem_cache *ire_cache; 218 struct kmem_cache *ncec_cache; 219 struct kmem_cache *nce_cache; 220 221 static ire_t ire_null; 222 223 static ire_t *ire_add_v4(ire_t *ire); 224 static void ire_delete_v4(ire_t *ire); 225 static void ire_dep_invalidate_children(ire_t *child); 226 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 227 zoneid_t zoneid, ip_stack_t *); 228 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 229 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 230 #ifdef DEBUG 231 static void ire_trace_cleanup(const ire_t *); 232 #endif 233 static void ire_dep_incr_generation_locked(ire_t *); 234 235 /* 236 * Following are the functions to increment/decrement the reference 237 * count of the IREs and IRBs (ire bucket). 238 * 239 * 1) We bump up the reference count of an IRE to make sure that 240 * it does not get deleted and freed while we are using it. 241 * Typically all the lookup functions hold the bucket lock, 242 * and look for the IRE. If it finds an IRE, it bumps up the 243 * reference count before dropping the lock. Sometimes we *may* want 244 * to bump up the reference count after we *looked* up i.e without 245 * holding the bucket lock. So, the ire_refhold function does not assert 246 * on the bucket lock being held. Any thread trying to delete from 247 * the hash bucket can still do so but cannot free the IRE if 248 * ire_refcnt is not 0. 249 * 250 * 2) We bump up the reference count on the bucket where the IRE resides 251 * (IRB), when we want to prevent the IREs getting deleted from a given 252 * hash bucket. This makes life easier for ire_walk type functions which 253 * wants to walk the IRE list, call a function, but needs to drop 254 * the bucket lock to prevent recursive rw_enters. While the 255 * lock is dropped, the list could be changed by other threads or 256 * the same thread could end up deleting the ire or the ire pointed by 257 * ire_next. ire_refholding the ire or ire_next is not sufficient as 258 * a delete will still remove the ire from the bucket while we have 259 * dropped the lock and hence the ire_next would be NULL. Thus, we 260 * need a mechanism to prevent deletions from a given bucket. 261 * 262 * To prevent deletions, we bump up the reference count on the 263 * bucket. If the bucket is held, ire_delete just marks both 264 * the ire and irb as CONDEMNED. When the 265 * reference count on the bucket drops to zero, all the CONDEMNED ires 266 * are deleted. We don't have to bump up the reference count on the 267 * bucket if we are walking the bucket and never have to drop the bucket 268 * lock. Note that irb_refhold does not prevent addition of new ires 269 * in the list. It is okay because addition of new ires will not cause 270 * ire_next to point to freed memory. We do irb_refhold only when 271 * all of the 3 conditions are true : 272 * 273 * 1) The code needs to walk the IRE bucket from start to end. 274 * 2) It may have to drop the bucket lock sometimes while doing (1) 275 * 3) It does not want any ires to be deleted meanwhile. 276 */ 277 278 /* 279 * Bump up the reference count on the hash bucket - IRB to 280 * prevent ires from being deleted in this bucket. 281 */ 282 void 283 irb_refhold(irb_t *irb) 284 { 285 rw_enter(&irb->irb_lock, RW_WRITER); 286 irb->irb_refcnt++; 287 ASSERT(irb->irb_refcnt != 0); 288 rw_exit(&irb->irb_lock); 289 } 290 291 void 292 irb_refhold_locked(irb_t *irb) 293 { 294 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 295 irb->irb_refcnt++; 296 ASSERT(irb->irb_refcnt != 0); 297 } 298 299 /* 300 * Note: when IRB_MARK_DYNAMIC is not set the irb_t 301 * is statically allocated, so that when the irb_refcnt goes to 0, 302 * we simply clean up the ire list and continue. 303 */ 304 void 305 irb_refrele(irb_t *irb) 306 { 307 if (irb->irb_marks & IRB_MARK_DYNAMIC) { 308 irb_refrele_ftable(irb); 309 } else { 310 rw_enter(&irb->irb_lock, RW_WRITER); 311 ASSERT(irb->irb_refcnt != 0); 312 if (--irb->irb_refcnt == 0 && 313 (irb->irb_marks & IRB_MARK_CONDEMNED)) { 314 ire_t *ire_list; 315 316 ire_list = ire_unlink(irb); 317 rw_exit(&irb->irb_lock); 318 ASSERT(ire_list != NULL); 319 ire_cleanup(ire_list); 320 } else { 321 rw_exit(&irb->irb_lock); 322 } 323 } 324 } 325 326 327 /* 328 * Bump up the reference count on the IRE. We cannot assert that the 329 * bucket lock is being held as it is legal to bump up the reference 330 * count after the first lookup has returned the IRE without 331 * holding the lock. 332 */ 333 void 334 ire_refhold(ire_t *ire) 335 { 336 atomic_add_32(&(ire)->ire_refcnt, 1); 337 ASSERT((ire)->ire_refcnt != 0); 338 #ifdef DEBUG 339 ire_trace_ref(ire); 340 #endif 341 } 342 343 void 344 ire_refhold_notr(ire_t *ire) 345 { 346 atomic_add_32(&(ire)->ire_refcnt, 1); 347 ASSERT((ire)->ire_refcnt != 0); 348 } 349 350 void 351 ire_refhold_locked(ire_t *ire) 352 { 353 #ifdef DEBUG 354 ire_trace_ref(ire); 355 #endif 356 ire->ire_refcnt++; 357 } 358 359 /* 360 * Release a ref on an IRE. 361 * 362 * Must not be called while holding any locks. Otherwise if this is 363 * the last reference to be released there is a chance of recursive mutex 364 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 365 * to restart an ioctl. The one exception is when the caller is sure that 366 * this is not the last reference to be released. Eg. if the caller is 367 * sure that the ire has not been deleted and won't be deleted. 368 * 369 * In architectures e.g sun4u, where atomic_add_32_nv is just 370 * a cas, we need to maintain the right memory barrier semantics 371 * as that of mutex_exit i.e all the loads and stores should complete 372 * before the cas is executed. membar_exit() does that here. 373 */ 374 void 375 ire_refrele(ire_t *ire) 376 { 377 #ifdef DEBUG 378 ire_untrace_ref(ire); 379 #endif 380 ASSERT((ire)->ire_refcnt != 0); 381 membar_exit(); 382 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) 383 ire_inactive(ire); 384 } 385 386 void 387 ire_refrele_notr(ire_t *ire) 388 { 389 ASSERT((ire)->ire_refcnt != 0); 390 membar_exit(); 391 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) 392 ire_inactive(ire); 393 } 394 395 /* 396 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 397 * IOCTL[s]. The NO_REPLY form is used by TCP to tell IP that it is 398 * having problems reaching a particular destination. 399 * This will make IP consider alternate routes (e.g., when there are 400 * muliple default routes), and it will also make IP discard any (potentially) 401 * stale redirect. 402 * Management processes may want to use the version that generates a reply. 403 * 404 * With the use of NUD like behavior for IPv4/ARP in addition to IPv6 405 * this function shouldn't be necessary for IP to recover from a bad redirect, 406 * a bad default router (when there are multiple default routers), or 407 * a stale ND/ARP entry. But we retain it in any case. 408 * For instance, this is helpful when TCP suspects a failure before NUD does. 409 */ 410 int 411 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 412 { 413 uchar_t *addr_ucp; 414 uint_t ipversion; 415 sin_t *sin; 416 sin6_t *sin6; 417 ipaddr_t v4addr; 418 in6_addr_t v6addr; 419 ire_t *ire; 420 ipid_t *ipid; 421 zoneid_t zoneid; 422 ip_stack_t *ipst; 423 424 ASSERT(q->q_next == NULL); 425 zoneid = IPCL_ZONEID(Q_TO_CONN(q)); 426 ipst = CONNQ_TO_IPST(q); 427 428 /* 429 * Check privilege using the ioctl credential; if it is NULL 430 * then this is a kernel message and therefor privileged. 431 */ 432 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 433 return (EPERM); 434 435 ipid = (ipid_t *)mp->b_rptr; 436 437 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 438 ipid->ipid_addr_length); 439 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 440 return (EINVAL); 441 switch (ipid->ipid_addr_length) { 442 case sizeof (sin_t): 443 /* 444 * got complete (sockaddr) address - increment addr_ucp to point 445 * at the ip_addr field. 446 */ 447 sin = (sin_t *)addr_ucp; 448 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 449 ipversion = IPV4_VERSION; 450 break; 451 case sizeof (sin6_t): 452 /* 453 * got complete (sockaddr) address - increment addr_ucp to point 454 * at the ip_addr field. 455 */ 456 sin6 = (sin6_t *)addr_ucp; 457 addr_ucp = (uchar_t *)&sin6->sin6_addr; 458 ipversion = IPV6_VERSION; 459 break; 460 default: 461 return (EINVAL); 462 } 463 if (ipversion == IPV4_VERSION) { 464 /* Extract the destination address. */ 465 bcopy(addr_ucp, &v4addr, IP_ADDR_LEN); 466 467 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 468 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 469 } else { 470 /* Extract the destination address. */ 471 bcopy(addr_ucp, &v6addr, IPV6_ADDR_LEN); 472 473 ire = ire_ftable_lookup_v6(&v6addr, NULL, NULL, 0, NULL, 474 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 475 } 476 if (ire != NULL) { 477 if (ipversion == IPV4_VERSION) { 478 ip_rts_change(RTM_LOSING, ire->ire_addr, 479 ire->ire_gateway_addr, ire->ire_mask, 480 (Q_TO_CONN(q))->conn_laddr_v4, 0, 0, 0, 481 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 482 ire->ire_ipst); 483 } 484 (void) ire_no_good(ire); 485 ire_refrele(ire); 486 } 487 return (0); 488 } 489 490 /* 491 * Initialize the ire that is specific to IPv4 part and call 492 * ire_init_common to finish it. 493 * Returns zero or errno. 494 */ 495 int 496 ire_init_v4(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *gateway, 497 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, 498 tsol_gc_t *gc, ip_stack_t *ipst) 499 { 500 int error; 501 502 /* 503 * Reject IRE security attribute creation/initialization 504 * if system is not running in Trusted mode. 505 */ 506 if (gc != NULL && !is_system_labeled()) 507 return (EINVAL); 508 509 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 510 511 if (addr != NULL) 512 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 513 if (gateway != NULL) 514 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 515 516 /* Make sure we don't have stray values in some fields */ 517 switch (type) { 518 case IRE_LOOPBACK: 519 bcopy(&ire->ire_addr, &ire->ire_gateway_addr, IP_ADDR_LEN); 520 /* FALLTHRU */ 521 case IRE_HOST: 522 case IRE_BROADCAST: 523 case IRE_LOCAL: 524 case IRE_IF_CLONE: 525 ire->ire_mask = IP_HOST_MASK; 526 ire->ire_masklen = IPV4_ABITS; 527 break; 528 case IRE_PREFIX: 529 case IRE_DEFAULT: 530 case IRE_IF_RESOLVER: 531 case IRE_IF_NORESOLVER: 532 if (mask != NULL) { 533 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 534 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 535 } 536 break; 537 case IRE_MULTICAST: 538 case IRE_NOROUTE: 539 ASSERT(mask == NULL); 540 break; 541 default: 542 ASSERT(0); 543 return (EINVAL); 544 } 545 546 error = ire_init_common(ire, type, ill, zoneid, flags, IPV4_VERSION, 547 gc, ipst); 548 if (error != NULL) 549 return (error); 550 551 /* Determine which function pointers to use */ 552 ire->ire_postfragfn = ip_xmit; /* Common case */ 553 554 switch (ire->ire_type) { 555 case IRE_LOCAL: 556 ire->ire_sendfn = ire_send_local_v4; 557 ire->ire_recvfn = ire_recv_local_v4; 558 ASSERT(ire->ire_ill != NULL); 559 if (ire->ire_ill->ill_flags & ILLF_NOACCEPT) 560 ire->ire_recvfn = ire_recv_noaccept_v6; 561 break; 562 case IRE_LOOPBACK: 563 ire->ire_sendfn = ire_send_local_v4; 564 ire->ire_recvfn = ire_recv_loopback_v4; 565 break; 566 case IRE_BROADCAST: 567 ire->ire_postfragfn = ip_postfrag_loopcheck; 568 ire->ire_sendfn = ire_send_broadcast_v4; 569 ire->ire_recvfn = ire_recv_broadcast_v4; 570 break; 571 case IRE_MULTICAST: 572 ire->ire_postfragfn = ip_postfrag_loopcheck; 573 ire->ire_sendfn = ire_send_multicast_v4; 574 ire->ire_recvfn = ire_recv_multicast_v4; 575 break; 576 default: 577 /* 578 * For IRE_IF_ALL and IRE_OFFLINK we forward received 579 * packets by default. 580 */ 581 ire->ire_sendfn = ire_send_wire_v4; 582 ire->ire_recvfn = ire_recv_forward_v4; 583 break; 584 } 585 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 586 ire->ire_sendfn = ire_send_noroute_v4; 587 ire->ire_recvfn = ire_recv_noroute_v4; 588 } else if (ire->ire_flags & RTF_MULTIRT) { 589 ire->ire_postfragfn = ip_postfrag_multirt_v4; 590 ire->ire_sendfn = ire_send_multirt_v4; 591 /* Multirt receive of broadcast uses ire_recv_broadcast_v4 */ 592 if (ire->ire_type != IRE_BROADCAST) 593 ire->ire_recvfn = ire_recv_multirt_v4; 594 } 595 ire->ire_nce_capable = ire_determine_nce_capable(ire); 596 return (0); 597 } 598 599 /* 600 * Determine ire_nce_capable 601 */ 602 boolean_t 603 ire_determine_nce_capable(ire_t *ire) 604 { 605 int max_masklen; 606 607 if ((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 608 (ire->ire_type & IRE_MULTICAST)) 609 return (B_TRUE); 610 611 if (ire->ire_ipversion == IPV4_VERSION) 612 max_masklen = IPV4_ABITS; 613 else 614 max_masklen = IPV6_ABITS; 615 616 if ((ire->ire_type & IRE_ONLINK) && ire->ire_masklen == max_masklen) 617 return (B_TRUE); 618 return (B_FALSE); 619 } 620 621 /* 622 * ire_create is called to allocate and initialize a new IRE. 623 * 624 * NOTE : This is called as writer sometimes though not required 625 * by this function. 626 */ 627 ire_t * 628 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *gateway, 629 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, 630 ip_stack_t *ipst) 631 { 632 ire_t *ire; 633 int error; 634 635 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 636 if (ire == NULL) { 637 DTRACE_PROBE(kmem__cache__alloc); 638 return (NULL); 639 } 640 *ire = ire_null; 641 642 error = ire_init_v4(ire, addr, mask, gateway, type, ill, zoneid, flags, 643 gc, ipst); 644 if (error != 0) { 645 DTRACE_PROBE2(ire__init, ire_t *, ire, int, error); 646 kmem_cache_free(ire_cache, ire); 647 return (NULL); 648 } 649 return (ire); 650 } 651 652 /* 653 * Common to IPv4 and IPv6 654 * Returns zero or errno. 655 */ 656 int 657 ire_init_common(ire_t *ire, ushort_t type, ill_t *ill, zoneid_t zoneid, 658 uint_t flags, uchar_t ipversion, tsol_gc_t *gc, ip_stack_t *ipst) 659 { 660 int error; 661 662 #ifdef DEBUG 663 if (ill != NULL) { 664 if (ill->ill_isv6) 665 ASSERT(ipversion == IPV6_VERSION); 666 else 667 ASSERT(ipversion == IPV4_VERSION); 668 } 669 #endif /* DEBUG */ 670 671 /* 672 * Create/initialize IRE security attribute only in Trusted mode; 673 * if the passed in gc is non-NULL, we expect that the caller 674 * has held a reference to it and will release it when this routine 675 * returns a failure, otherwise we own the reference. We do this 676 * prior to initializing the rest IRE fields. 677 */ 678 if (is_system_labeled()) { 679 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 680 IRE_IF_ALL | IRE_MULTICAST | IRE_NOROUTE)) != 0) { 681 /* release references on behalf of caller */ 682 if (gc != NULL) 683 GC_REFRELE(gc); 684 } else { 685 error = tsol_ire_init_gwattr(ire, ipversion, gc); 686 if (error != 0) 687 return (error); 688 } 689 } 690 691 ire->ire_type = type; 692 ire->ire_flags = RTF_UP | flags; 693 ire->ire_create_time = (uint32_t)gethrestime_sec(); 694 ire->ire_generation = IRE_GENERATION_INITIAL; 695 696 /* 697 * The ill_ire_cnt isn't increased until 698 * the IRE is added to ensure that a walker will find 699 * all IREs that hold a reference on an ill. 700 * 701 * Note that ill_ire_multicast doesn't hold a ref on the ill since 702 * ire_add() is not called for the IRE_MULTICAST. 703 */ 704 ire->ire_ill = ill; 705 ire->ire_zoneid = zoneid; 706 ire->ire_ipversion = ipversion; 707 708 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 709 ire->ire_refcnt = 1; 710 ire->ire_identical_ref = 1; /* Number of ire_delete's needed */ 711 ire->ire_ipst = ipst; /* No netstack_hold */ 712 ire->ire_trace_disable = B_FALSE; 713 714 return (0); 715 } 716 717 /* 718 * This creates an IRE_BROADCAST based on the arguments. 719 * A mirror is ire_lookup_bcast(). 720 * 721 * Any supression of unneeded ones is done in ire_add_v4. 722 * We add one IRE_BROADCAST per address. ire_send_broadcast_v4() 723 * takes care of generating a loopback copy of the packet. 724 */ 725 ire_t ** 726 ire_create_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid, ire_t **irep) 727 { 728 ip_stack_t *ipst = ill->ill_ipst; 729 730 ASSERT(IAM_WRITER_ILL(ill)); 731 732 *irep++ = ire_create( 733 (uchar_t *)&addr, /* dest addr */ 734 (uchar_t *)&ip_g_all_ones, /* mask */ 735 NULL, /* no gateway */ 736 IRE_BROADCAST, 737 ill, 738 zoneid, 739 RTF_KERNEL, 740 NULL, 741 ipst); 742 743 return (irep); 744 } 745 746 /* 747 * This looks up an IRE_BROADCAST based on the arguments. 748 * Mirrors ire_create_bcast(). 749 */ 750 ire_t * 751 ire_lookup_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 752 { 753 ire_t *ire; 754 int match_args; 755 756 match_args = MATCH_IRE_TYPE | MATCH_IRE_ILL | MATCH_IRE_GW | 757 MATCH_IRE_MASK | MATCH_IRE_ZONEONLY; 758 759 if (IS_UNDER_IPMP(ill)) 760 match_args |= MATCH_IRE_TESTHIDDEN; 761 762 ire = ire_ftable_lookup_v4( 763 addr, /* dest addr */ 764 ip_g_all_ones, /* mask */ 765 0, /* no gateway */ 766 IRE_BROADCAST, 767 ill, 768 zoneid, 769 NULL, 770 match_args, 771 0, 772 ill->ill_ipst, 773 NULL); 774 return (ire); 775 } 776 777 /* Arrange to call the specified function for every IRE in the world. */ 778 void 779 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 780 { 781 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 782 } 783 784 void 785 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 786 { 787 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 788 } 789 790 void 791 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 792 { 793 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 794 } 795 796 /* 797 * Walk a particular version. version == 0 means both v4 and v6. 798 */ 799 static void 800 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 801 ip_stack_t *ipst) 802 { 803 if (vers != IPV6_VERSION) { 804 /* 805 * ip_forwarding_table variable doesn't matter for IPv4 since 806 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 807 */ 808 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 809 0, NULL, 810 NULL, zoneid, ipst); 811 } 812 if (vers != IPV4_VERSION) { 813 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 814 ipst->ips_ip6_ftable_hash_size, 815 ipst->ips_ip_forwarding_table_v6, 816 NULL, zoneid, ipst); 817 } 818 } 819 820 /* 821 * Arrange to call the specified function for every IRE that matches the ill. 822 */ 823 void 824 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 825 ill_t *ill) 826 { 827 uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION); 828 829 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill); 830 } 831 832 /* 833 * Walk a particular ill and version. 834 */ 835 static void 836 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 837 void *arg, uchar_t vers, ill_t *ill) 838 { 839 ip_stack_t *ipst = ill->ill_ipst; 840 841 if (vers == IPV4_VERSION) { 842 ire_walk_ill_tables(match_flags, ire_type, func, arg, 843 IP_MASK_TABLE_SIZE, 844 0, NULL, 845 ill, ALL_ZONES, ipst); 846 } 847 if (vers != IPV4_VERSION) { 848 ire_walk_ill_tables(match_flags, ire_type, func, arg, 849 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 850 ipst->ips_ip_forwarding_table_v6, 851 ill, ALL_ZONES, ipst); 852 } 853 } 854 855 /* 856 * Do the specific matching of IREs to shared-IP zones. 857 * 858 * We have the same logic as in ire_match_args but implemented slightly 859 * differently. 860 */ 861 boolean_t 862 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 863 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 864 { 865 ill_t *dst_ill = ire->ire_ill; 866 867 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 868 869 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 870 ire->ire_zoneid != ALL_ZONES) { 871 /* 872 * We're walking the IREs for a specific zone. The only relevant 873 * IREs are: 874 * - all IREs with a matching ire_zoneid 875 * - IRE_IF_ALL IREs for interfaces with a usable source addr 876 * with a matching zone 877 * - IRE_OFFLINK with a gateway reachable from the zone 878 * Note that ealier we only did the IRE_OFFLINK check for 879 * IRE_DEFAULT (and only when we had multiple IRE_DEFAULTs). 880 */ 881 if (ire->ire_type & IRE_ONLINK) { 882 uint_t ifindex; 883 884 /* 885 * Note there is no IRE_INTERFACE on vniN thus 886 * can't do an IRE lookup for a matching route. 887 */ 888 ifindex = dst_ill->ill_usesrc_ifindex; 889 if (ifindex == 0) 890 return (B_FALSE); 891 892 /* 893 * If there is a usable source address in the 894 * zone, then it's ok to return an 895 * IRE_INTERFACE 896 */ 897 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 898 zoneid, ipst)) { 899 return (B_FALSE); 900 } 901 } 902 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 903 ipif_t *tipif; 904 905 mutex_enter(&dst_ill->ill_lock); 906 for (tipif = dst_ill->ill_ipif; 907 tipif != NULL; tipif = tipif->ipif_next) { 908 if (!IPIF_IS_CONDEMNED(tipif) && 909 (tipif->ipif_flags & IPIF_UP) && 910 (tipif->ipif_zoneid == zoneid || 911 tipif->ipif_zoneid == ALL_ZONES)) 912 break; 913 } 914 mutex_exit(&dst_ill->ill_lock); 915 if (tipif == NULL) { 916 return (B_FALSE); 917 } 918 } 919 } 920 /* 921 * Except for ALL_ZONES, we only match the offlink routes 922 * where ire_gateway_addr has an IRE_INTERFACE for the zoneid. 923 * Since we can have leftover routes after the IP addresses have 924 * changed, the global zone will also match offlink routes where the 925 * gateway is unreachable from any zone. 926 */ 927 if ((ire->ire_type & IRE_OFFLINK) && zoneid != ALL_ZONES) { 928 in6_addr_t gw_addr_v6; 929 boolean_t reach; 930 931 if (ire->ire_ipversion == IPV4_VERSION) { 932 reach = ire_gateway_ok_zone_v4(ire->ire_gateway_addr, 933 zoneid, dst_ill, NULL, ipst, B_FALSE); 934 } else { 935 ASSERT(ire->ire_ipversion == IPV6_VERSION); 936 mutex_enter(&ire->ire_lock); 937 gw_addr_v6 = ire->ire_gateway_addr_v6; 938 mutex_exit(&ire->ire_lock); 939 940 reach = ire_gateway_ok_zone_v6(&gw_addr_v6, zoneid, 941 dst_ill, NULL, ipst, B_FALSE); 942 } 943 if (!reach) { 944 if (zoneid != GLOBAL_ZONEID) 945 return (B_FALSE); 946 947 /* 948 * Check if ALL_ZONES reachable - if not then let the 949 * global zone see it. 950 */ 951 if (ire->ire_ipversion == IPV4_VERSION) { 952 reach = ire_gateway_ok_zone_v4( 953 ire->ire_gateway_addr, ALL_ZONES, 954 dst_ill, NULL, ipst, B_FALSE); 955 } else { 956 reach = ire_gateway_ok_zone_v6(&gw_addr_v6, 957 ALL_ZONES, dst_ill, NULL, ipst, B_FALSE); 958 } 959 if (reach) { 960 /* 961 * Some other zone could see it, hence hide it 962 * in the global zone. 963 */ 964 return (B_FALSE); 965 } 966 } 967 } 968 969 if (((!(match_flags & MATCH_IRE_TYPE)) || 970 (ire->ire_type & ire_type)) && 971 ((!(match_flags & MATCH_IRE_ILL)) || 972 (dst_ill == ill || 973 dst_ill != NULL && IS_IN_SAME_ILLGRP(dst_ill, ill)))) { 974 return (B_TRUE); 975 } 976 return (B_FALSE); 977 } 978 979 int 980 rtfunc(struct radix_node *rn, void *arg) 981 { 982 struct rtfuncarg *rtf = arg; 983 struct rt_entry *rt; 984 irb_t *irb; 985 ire_t *ire; 986 boolean_t ret; 987 988 rt = (struct rt_entry *)rn; 989 ASSERT(rt != NULL); 990 irb = &rt->rt_irb; 991 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 992 if ((rtf->rt_match_flags != 0) || 993 (rtf->rt_zoneid != ALL_ZONES)) { 994 ret = ire_walk_ill_match(rtf->rt_match_flags, 995 rtf->rt_ire_type, ire, 996 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 997 } else { 998 ret = B_TRUE; 999 } 1000 if (ret) 1001 (*rtf->rt_func)(ire, rtf->rt_arg); 1002 } 1003 return (0); 1004 } 1005 1006 /* 1007 * Walk the ftable entries that match the ill. 1008 */ 1009 void 1010 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 1011 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 1012 ill_t *ill, zoneid_t zoneid, 1013 ip_stack_t *ipst) 1014 { 1015 irb_t *irb_ptr; 1016 irb_t *irb; 1017 ire_t *ire; 1018 int i, j; 1019 boolean_t ret; 1020 struct rtfuncarg rtfarg; 1021 1022 ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL)); 1023 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 1024 1025 /* knobs such that routine is called only for v6 case */ 1026 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 1027 for (i = (ftbl_sz - 1); i >= 0; i--) { 1028 if ((irb_ptr = ipftbl[i]) == NULL) 1029 continue; 1030 for (j = 0; j < htbl_sz; j++) { 1031 irb = &irb_ptr[j]; 1032 if (irb->irb_ire == NULL) 1033 continue; 1034 1035 irb_refhold(irb); 1036 for (ire = irb->irb_ire; ire != NULL; 1037 ire = ire->ire_next) { 1038 if (match_flags == 0 && 1039 zoneid == ALL_ZONES) { 1040 ret = B_TRUE; 1041 } else { 1042 ret = 1043 ire_walk_ill_match( 1044 match_flags, 1045 ire_type, ire, ill, 1046 zoneid, ipst); 1047 } 1048 if (ret) 1049 (*func)(ire, arg); 1050 } 1051 irb_refrele(irb); 1052 } 1053 } 1054 } else { 1055 bzero(&rtfarg, sizeof (rtfarg)); 1056 rtfarg.rt_func = func; 1057 rtfarg.rt_arg = arg; 1058 if (match_flags != 0) { 1059 rtfarg.rt_match_flags = match_flags; 1060 } 1061 rtfarg.rt_ire_type = ire_type; 1062 rtfarg.rt_ill = ill; 1063 rtfarg.rt_zoneid = zoneid; 1064 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 1065 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 1066 ipst->ips_ip_ftable, 1067 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 1068 } 1069 } 1070 1071 /* 1072 * This function takes a mask and returns 1073 * number of bits set in the mask. If no 1074 * bit is set it returns 0. 1075 * Assumes a contiguous mask. 1076 */ 1077 int 1078 ip_mask_to_plen(ipaddr_t mask) 1079 { 1080 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 1081 } 1082 1083 /* 1084 * Convert length for a mask to the mask. 1085 */ 1086 ipaddr_t 1087 ip_plen_to_mask(uint_t masklen) 1088 { 1089 if (masklen == 0) 1090 return (0); 1091 1092 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 1093 } 1094 1095 void 1096 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 1097 { 1098 ill_t *ill; 1099 1100 ill = ire->ire_ill; 1101 if (ill != NULL) 1102 mutex_exit(&ill->ill_lock); 1103 rw_exit(&irb_ptr->irb_lock); 1104 } 1105 1106 /* 1107 * ire_add_v[46] atomically make sure that the ill associated 1108 * with the new ire is not going away i.e., we check ILL_CONDEMNED. 1109 */ 1110 int 1111 ire_atomic_start(irb_t *irb_ptr, ire_t *ire) 1112 { 1113 ill_t *ill; 1114 1115 ill = ire->ire_ill; 1116 1117 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 1118 if (ill != NULL) { 1119 mutex_enter(&ill->ill_lock); 1120 1121 /* 1122 * Don't allow IRE's to be created on dying ills. 1123 */ 1124 if (ill->ill_state_flags & ILL_CONDEMNED) { 1125 ire_atomic_end(irb_ptr, ire); 1126 return (ENXIO); 1127 } 1128 1129 if (IS_UNDER_IPMP(ill)) { 1130 int error = 0; 1131 mutex_enter(&ill->ill_phyint->phyint_lock); 1132 if (!ipmp_ill_is_active(ill) && 1133 IRE_HIDDEN_TYPE(ire->ire_type) && 1134 !ire->ire_testhidden) { 1135 error = EINVAL; 1136 } 1137 mutex_exit(&ill->ill_phyint->phyint_lock); 1138 if (error != 0) { 1139 ire_atomic_end(irb_ptr, ire); 1140 return (error); 1141 } 1142 } 1143 1144 } 1145 return (0); 1146 } 1147 1148 /* 1149 * Add a fully initialized IRE to the forwarding table. 1150 * This returns NULL on failure, or a held IRE on success. 1151 * Normally the returned IRE is the same as the argument. But a different 1152 * IRE will be returned if the added IRE is deemed identical to an existing 1153 * one. In that case ire_identical_ref will be increased. 1154 * The caller always needs to do an ire_refrele() on the returned IRE. 1155 */ 1156 ire_t * 1157 ire_add(ire_t *ire) 1158 { 1159 if (IRE_HIDDEN_TYPE(ire->ire_type) && 1160 ire->ire_ill != NULL && IS_UNDER_IPMP(ire->ire_ill)) { 1161 /* 1162 * IREs hosted on interfaces that are under IPMP 1163 * should be hidden so that applications don't 1164 * accidentally end up sending packets with test 1165 * addresses as their source addresses, or 1166 * sending out interfaces that are e.g. IFF_INACTIVE. 1167 * Hide them here. 1168 */ 1169 ire->ire_testhidden = B_TRUE; 1170 } 1171 1172 if (ire->ire_ipversion == IPV6_VERSION) 1173 return (ire_add_v6(ire)); 1174 else 1175 return (ire_add_v4(ire)); 1176 } 1177 1178 /* 1179 * Add a fully initialized IPv4 IRE to the forwarding table. 1180 * This returns NULL on failure, or a held IRE on success. 1181 * Normally the returned IRE is the same as the argument. But a different 1182 * IRE will be returned if the added IRE is deemed identical to an existing 1183 * one. In that case ire_identical_ref will be increased. 1184 * The caller always needs to do an ire_refrele() on the returned IRE. 1185 */ 1186 static ire_t * 1187 ire_add_v4(ire_t *ire) 1188 { 1189 ire_t *ire1; 1190 irb_t *irb_ptr; 1191 ire_t **irep; 1192 int match_flags; 1193 int error; 1194 ip_stack_t *ipst = ire->ire_ipst; 1195 1196 if (ire->ire_ill != NULL) 1197 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); 1198 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1199 1200 /* Make sure the address is properly masked. */ 1201 ire->ire_addr &= ire->ire_mask; 1202 1203 match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 1204 1205 if (ire->ire_ill != NULL) { 1206 match_flags |= MATCH_IRE_ILL; 1207 } 1208 irb_ptr = ire_get_bucket(ire); 1209 if (irb_ptr == NULL) { 1210 printf("no bucket for %p\n", (void *)ire); 1211 ire_delete(ire); 1212 return (NULL); 1213 } 1214 1215 /* 1216 * Start the atomic add of the ire. Grab the ill lock, 1217 * the bucket lock. Check for condemned. 1218 */ 1219 error = ire_atomic_start(irb_ptr, ire); 1220 if (error != 0) { 1221 printf("no ire_atomic_start for %p\n", (void *)ire); 1222 ire_delete(ire); 1223 irb_refrele(irb_ptr); 1224 return (NULL); 1225 } 1226 /* 1227 * If we are creating a hidden IRE, make sure we search for 1228 * hidden IREs when searching for duplicates below. 1229 * Otherwise, we might find an IRE on some other interface 1230 * that's not marked hidden. 1231 */ 1232 if (ire->ire_testhidden) 1233 match_flags |= MATCH_IRE_TESTHIDDEN; 1234 1235 /* 1236 * Atomically check for duplicate and insert in the table. 1237 */ 1238 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 1239 if (IRE_IS_CONDEMNED(ire1)) 1240 continue; 1241 /* 1242 * Here we need an exact match on zoneid, i.e., 1243 * ire_match_args doesn't fit. 1244 */ 1245 if (ire1->ire_zoneid != ire->ire_zoneid) 1246 continue; 1247 1248 if (ire1->ire_type != ire->ire_type) 1249 continue; 1250 1251 /* 1252 * Note: We do not allow multiple routes that differ only 1253 * in the gateway security attributes; such routes are 1254 * considered duplicates. 1255 * To change that we explicitly have to treat them as 1256 * different here. 1257 */ 1258 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 1259 ire->ire_gateway_addr, ire->ire_type, ire->ire_ill, 1260 ire->ire_zoneid, NULL, match_flags)) { 1261 /* 1262 * Return the old ire after doing a REFHOLD. 1263 * As most of the callers continue to use the IRE 1264 * after adding, we return a held ire. This will 1265 * avoid a lookup in the caller again. If the callers 1266 * don't want to use it, they need to do a REFRELE. 1267 */ 1268 atomic_add_32(&ire1->ire_identical_ref, 1); 1269 DTRACE_PROBE2(ire__add__exist, ire_t *, ire1, 1270 ire_t *, ire); 1271 ire_refhold(ire1); 1272 ire_atomic_end(irb_ptr, ire); 1273 ire_delete(ire); 1274 irb_refrele(irb_ptr); 1275 return (ire1); 1276 } 1277 } 1278 1279 /* 1280 * Normally we do head insertion since most things do not care about 1281 * the order of the IREs in the bucket. Note that ip_cgtp_bcast_add 1282 * assumes we at least do head insertion so that its IRE_BROADCAST 1283 * arrive ahead of existing IRE_HOST for the same address. 1284 * However, due to shared-IP zones (and restrict_interzone_loopback) 1285 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same 1286 * address. For that reason we do tail insertion for IRE_IF_CLONE. 1287 * Due to the IRE_BROADCAST on cgtp0, which must be last in the bucket, 1288 * we do tail insertion of IRE_BROADCASTs that do not have RTF_MULTIRT 1289 * set. 1290 */ 1291 irep = (ire_t **)irb_ptr; 1292 if ((ire->ire_type & IRE_IF_CLONE) || 1293 ((ire->ire_type & IRE_BROADCAST) && 1294 !(ire->ire_flags & RTF_MULTIRT))) { 1295 while ((ire1 = *irep) != NULL) 1296 irep = &ire1->ire_next; 1297 } 1298 /* Insert at *irep */ 1299 ire1 = *irep; 1300 if (ire1 != NULL) 1301 ire1->ire_ptpn = &ire->ire_next; 1302 ire->ire_next = ire1; 1303 /* Link the new one in. */ 1304 ire->ire_ptpn = irep; 1305 1306 /* 1307 * ire_walk routines de-reference ire_next without holding 1308 * a lock. Before we point to the new ire, we want to make 1309 * sure the store that sets the ire_next of the new ire 1310 * reaches global visibility, so that ire_walk routines 1311 * don't see a truncated list of ires i.e if the ire_next 1312 * of the new ire gets set after we do "*irep = ire" due 1313 * to re-ordering, the ire_walk thread will see a NULL 1314 * once it accesses the ire_next of the new ire. 1315 * membar_producer() makes sure that the following store 1316 * happens *after* all of the above stores. 1317 */ 1318 membar_producer(); 1319 *irep = ire; 1320 ire->ire_bucket = irb_ptr; 1321 /* 1322 * We return a bumped up IRE above. Keep it symmetrical 1323 * so that the callers will always have to release. This 1324 * helps the callers of this function because they continue 1325 * to use the IRE after adding and hence they don't have to 1326 * lookup again after we return the IRE. 1327 * 1328 * NOTE : We don't have to use atomics as this is appearing 1329 * in the list for the first time and no one else can bump 1330 * up the reference count on this yet. 1331 */ 1332 ire_refhold_locked(ire); 1333 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 1334 1335 irb_ptr->irb_ire_cnt++; 1336 if (irb_ptr->irb_marks & IRB_MARK_DYNAMIC) 1337 irb_ptr->irb_nire++; 1338 1339 if (ire->ire_ill != NULL) { 1340 ire->ire_ill->ill_ire_cnt++; 1341 ASSERT(ire->ire_ill->ill_ire_cnt != 0); /* Wraparound */ 1342 } 1343 1344 ire_atomic_end(irb_ptr, ire); 1345 1346 /* Make any caching of the IREs be notified or updated */ 1347 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 1348 1349 if (ire->ire_ill != NULL) 1350 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); 1351 irb_refrele(irb_ptr); 1352 return (ire); 1353 } 1354 1355 /* 1356 * irb_refrele is the only caller of the function. ire_unlink calls to 1357 * do the final cleanup for this ire. 1358 */ 1359 void 1360 ire_cleanup(ire_t *ire) 1361 { 1362 ire_t *ire_next; 1363 ip_stack_t *ipst = ire->ire_ipst; 1364 1365 ASSERT(ire != NULL); 1366 1367 while (ire != NULL) { 1368 ire_next = ire->ire_next; 1369 if (ire->ire_ipversion == IPV4_VERSION) { 1370 ire_delete_v4(ire); 1371 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 1372 ire_stats_deleted); 1373 } else { 1374 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1375 ire_delete_v6(ire); 1376 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 1377 ire_stats_deleted); 1378 } 1379 /* 1380 * Now it's really out of the list. Before doing the 1381 * REFRELE, set ire_next to NULL as ire_inactive asserts 1382 * so. 1383 */ 1384 ire->ire_next = NULL; 1385 ire_refrele_notr(ire); 1386 ire = ire_next; 1387 } 1388 } 1389 1390 /* 1391 * irb_refrele is the only caller of the function. It calls to unlink 1392 * all the CONDEMNED ires from this bucket. 1393 */ 1394 ire_t * 1395 ire_unlink(irb_t *irb) 1396 { 1397 ire_t *ire; 1398 ire_t *ire1; 1399 ire_t **ptpn; 1400 ire_t *ire_list = NULL; 1401 1402 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 1403 ASSERT(((irb->irb_marks & IRB_MARK_DYNAMIC) && irb->irb_refcnt == 1) || 1404 (irb->irb_refcnt == 0)); 1405 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 1406 ASSERT(irb->irb_ire != NULL); 1407 1408 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 1409 ire1 = ire->ire_next; 1410 if (IRE_IS_CONDEMNED(ire)) { 1411 ptpn = ire->ire_ptpn; 1412 ire1 = ire->ire_next; 1413 if (ire1) 1414 ire1->ire_ptpn = ptpn; 1415 *ptpn = ire1; 1416 ire->ire_ptpn = NULL; 1417 ire->ire_next = NULL; 1418 1419 /* 1420 * We need to call ire_delete_v4 or ire_delete_v6 to 1421 * clean up dependents and the redirects pointing at 1422 * the default gateway. We need to drop the lock 1423 * as ire_flush_cache/ire_delete_host_redircts require 1424 * so. But we can't drop the lock, as ire_unlink needs 1425 * to atomically remove the ires from the list. 1426 * So, create a temporary list of CONDEMNED ires 1427 * for doing ire_delete_v4/ire_delete_v6 operations 1428 * later on. 1429 */ 1430 ire->ire_next = ire_list; 1431 ire_list = ire; 1432 } 1433 } 1434 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 1435 return (ire_list); 1436 } 1437 1438 /* 1439 * Clean up the radix node for this ire. Must be called by irb_refrele 1440 * when there are no ire's left in the bucket. Returns TRUE if the bucket 1441 * is deleted and freed. 1442 */ 1443 boolean_t 1444 irb_inactive(irb_t *irb) 1445 { 1446 struct rt_entry *rt; 1447 struct radix_node *rn; 1448 ip_stack_t *ipst = irb->irb_ipst; 1449 1450 ASSERT(irb->irb_ipst != NULL); 1451 1452 rt = IRB2RT(irb); 1453 rn = (struct radix_node *)rt; 1454 1455 /* first remove it from the radix tree. */ 1456 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1457 rw_enter(&irb->irb_lock, RW_WRITER); 1458 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 1459 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 1460 ipst->ips_ip_ftable); 1461 DTRACE_PROBE1(irb__free, rt_t *, rt); 1462 ASSERT((void *)rn == (void *)rt); 1463 Free(rt, rt_entry_cache); 1464 /* irb_lock is freed */ 1465 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1466 return (B_TRUE); 1467 } 1468 rw_exit(&irb->irb_lock); 1469 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1470 return (B_FALSE); 1471 } 1472 1473 /* 1474 * Delete the specified IRE. 1475 * We assume that if ire_bucket is not set then ire_ill->ill_ire_cnt was 1476 * not incremented i.e., that the insertion in the bucket and the increment 1477 * of that counter is done atomically. 1478 */ 1479 void 1480 ire_delete(ire_t *ire) 1481 { 1482 ire_t *ire1; 1483 ire_t **ptpn; 1484 irb_t *irb; 1485 ip_stack_t *ipst = ire->ire_ipst; 1486 1487 if ((irb = ire->ire_bucket) == NULL) { 1488 /* 1489 * It was never inserted in the list. Should call REFRELE 1490 * to free this IRE. 1491 */ 1492 ire_make_condemned(ire); 1493 ire_refrele_notr(ire); 1494 return; 1495 } 1496 1497 /* 1498 * Move the use counts from an IRE_IF_CLONE to its parent 1499 * IRE_INTERFACE. 1500 * We need to do this before acquiring irb_lock. 1501 */ 1502 if (ire->ire_type & IRE_IF_CLONE) { 1503 ire_t *parent; 1504 1505 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 1506 if ((parent = ire->ire_dep_parent) != NULL) { 1507 parent->ire_ob_pkt_count += ire->ire_ob_pkt_count; 1508 parent->ire_ib_pkt_count += ire->ire_ib_pkt_count; 1509 ire->ire_ob_pkt_count = 0; 1510 ire->ire_ib_pkt_count = 0; 1511 } 1512 rw_exit(&ipst->ips_ire_dep_lock); 1513 } 1514 1515 rw_enter(&irb->irb_lock, RW_WRITER); 1516 if (ire->ire_ptpn == NULL) { 1517 /* 1518 * Some other thread has removed us from the list. 1519 * It should have done the REFRELE for us. 1520 */ 1521 rw_exit(&irb->irb_lock); 1522 return; 1523 } 1524 1525 if (!IRE_IS_CONDEMNED(ire)) { 1526 /* Is this an IRE representing multiple duplicate entries? */ 1527 ASSERT(ire->ire_identical_ref >= 1); 1528 if (atomic_add_32_nv(&ire->ire_identical_ref, -1) != 0) { 1529 /* Removed one of the identical parties */ 1530 rw_exit(&irb->irb_lock); 1531 return; 1532 } 1533 1534 irb->irb_ire_cnt--; 1535 ire_make_condemned(ire); 1536 } 1537 1538 if (irb->irb_refcnt != 0) { 1539 /* 1540 * The last thread to leave this bucket will 1541 * delete this ire. 1542 */ 1543 irb->irb_marks |= IRB_MARK_CONDEMNED; 1544 rw_exit(&irb->irb_lock); 1545 return; 1546 } 1547 1548 /* 1549 * Normally to delete an ire, we walk the bucket. While we 1550 * walk the bucket, we normally bump up irb_refcnt and hence 1551 * we return from above where we mark CONDEMNED and the ire 1552 * gets deleted from ire_unlink. This case is where somebody 1553 * knows the ire e.g by doing a lookup, and wants to delete the 1554 * IRE. irb_refcnt would be 0 in this case if nobody is walking 1555 * the bucket. 1556 */ 1557 ptpn = ire->ire_ptpn; 1558 ire1 = ire->ire_next; 1559 if (ire1 != NULL) 1560 ire1->ire_ptpn = ptpn; 1561 ASSERT(ptpn != NULL); 1562 *ptpn = ire1; 1563 ire->ire_ptpn = NULL; 1564 ire->ire_next = NULL; 1565 if (ire->ire_ipversion == IPV6_VERSION) { 1566 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 1567 } else { 1568 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 1569 } 1570 rw_exit(&irb->irb_lock); 1571 1572 /* Cleanup dependents and related stuff */ 1573 if (ire->ire_ipversion == IPV6_VERSION) { 1574 ire_delete_v6(ire); 1575 } else { 1576 ire_delete_v4(ire); 1577 } 1578 /* 1579 * We removed it from the list. Decrement the 1580 * reference count. 1581 */ 1582 ire_refrele_notr(ire); 1583 } 1584 1585 /* 1586 * Delete the specified IRE. 1587 * All calls should use ire_delete(). 1588 * Sometimes called as writer though not required by this function. 1589 * 1590 * NOTE : This function is called only if the ire was added 1591 * in the list. 1592 */ 1593 static void 1594 ire_delete_v4(ire_t *ire) 1595 { 1596 ip_stack_t *ipst = ire->ire_ipst; 1597 1598 ASSERT(ire->ire_refcnt >= 1); 1599 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1600 1601 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 1602 if (ire->ire_type == IRE_DEFAULT) { 1603 /* 1604 * when a default gateway is going away 1605 * delete all the host redirects pointing at that 1606 * gateway. 1607 */ 1608 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 1609 } 1610 1611 /* 1612 * If we are deleting an IRE_INTERFACE then we make sure we also 1613 * delete any IRE_IF_CLONE that has been created from it. 1614 * Those are always in ire_dep_children. 1615 */ 1616 if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != NULL) 1617 ire_dep_delete_if_clone(ire); 1618 1619 /* Remove from parent dependencies and child */ 1620 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 1621 if (ire->ire_dep_parent != NULL) 1622 ire_dep_remove(ire); 1623 1624 while (ire->ire_dep_children != NULL) 1625 ire_dep_remove(ire->ire_dep_children); 1626 rw_exit(&ipst->ips_ire_dep_lock); 1627 } 1628 1629 /* 1630 * ire_refrele is the only caller of the function. It calls 1631 * to free the ire when the reference count goes to zero. 1632 */ 1633 void 1634 ire_inactive(ire_t *ire) 1635 { 1636 ill_t *ill; 1637 irb_t *irb; 1638 ip_stack_t *ipst = ire->ire_ipst; 1639 1640 ASSERT(ire->ire_refcnt == 0); 1641 ASSERT(ire->ire_ptpn == NULL); 1642 ASSERT(ire->ire_next == NULL); 1643 1644 /* Count how many condemned ires for kmem_cache callback */ 1645 ASSERT(IRE_IS_CONDEMNED(ire)); 1646 atomic_add_32(&ipst->ips_num_ire_condemned, -1); 1647 1648 if (ire->ire_gw_secattr != NULL) { 1649 ire_gw_secattr_free(ire->ire_gw_secattr); 1650 ire->ire_gw_secattr = NULL; 1651 } 1652 1653 /* 1654 * ire_nce_cache is cleared in ire_delete, and we make sure we don't 1655 * set it once the ire is marked condemned. 1656 */ 1657 ASSERT(ire->ire_nce_cache == NULL); 1658 1659 /* 1660 * Since any parent would have a refhold on us they would already 1661 * have been removed. 1662 */ 1663 ASSERT(ire->ire_dep_parent == NULL); 1664 ASSERT(ire->ire_dep_sib_next == NULL); 1665 ASSERT(ire->ire_dep_sib_ptpn == NULL); 1666 1667 /* 1668 * Since any children would have a refhold on us they should have 1669 * already been removed. 1670 */ 1671 ASSERT(ire->ire_dep_children == NULL); 1672 1673 /* 1674 * ill_ire_ref is increased when the IRE is inserted in the 1675 * bucket - not when the IRE is created. 1676 */ 1677 irb = ire->ire_bucket; 1678 ill = ire->ire_ill; 1679 if (irb != NULL && ill != NULL) { 1680 mutex_enter(&ill->ill_lock); 1681 ASSERT(ill->ill_ire_cnt != 0); 1682 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), ill, 1683 (char *), "ire", (void *), ire); 1684 ill->ill_ire_cnt--; 1685 if (ILL_DOWN_OK(ill)) { 1686 /* Drops the ill lock */ 1687 ipif_ill_refrele_tail(ill); 1688 } else { 1689 mutex_exit(&ill->ill_lock); 1690 } 1691 } 1692 ire->ire_ill = NULL; 1693 1694 /* This should be true for both V4 and V6 */ 1695 if (irb != NULL && (irb->irb_marks & IRB_MARK_DYNAMIC)) { 1696 rw_enter(&irb->irb_lock, RW_WRITER); 1697 irb->irb_nire--; 1698 /* 1699 * Instead of examining the conditions for freeing 1700 * the radix node here, we do it by calling 1701 * irb_refrele which is a single point in the code 1702 * that embeds that logic. Bump up the refcnt to 1703 * be able to call irb_refrele 1704 */ 1705 irb_refhold_locked(irb); 1706 rw_exit(&irb->irb_lock); 1707 irb_refrele(irb); 1708 } 1709 1710 #ifdef DEBUG 1711 ire_trace_cleanup(ire); 1712 #endif 1713 mutex_destroy(&ire->ire_lock); 1714 if (ire->ire_ipversion == IPV6_VERSION) { 1715 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 1716 } else { 1717 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 1718 } 1719 kmem_cache_free(ire_cache, ire); 1720 } 1721 1722 /* 1723 * ire_update_generation is the callback function provided by 1724 * ire_get_bucket() to update the generation number of any 1725 * matching shorter route when a new route is added. 1726 * 1727 * This fucntion always returns a failure return (B_FALSE) 1728 * to force the caller (rn_matchaddr_args) 1729 * to back-track up the tree looking for shorter matches. 1730 */ 1731 /* ARGSUSED */ 1732 static boolean_t 1733 ire_update_generation(struct radix_node *rn, void *arg) 1734 { 1735 struct rt_entry *rt = (struct rt_entry *)rn; 1736 1737 /* We need to handle all in the same bucket */ 1738 irb_increment_generation(&rt->rt_irb); 1739 return (B_FALSE); 1740 } 1741 1742 /* 1743 * Take care of all the generation numbers in the bucket. 1744 */ 1745 void 1746 irb_increment_generation(irb_t *irb) 1747 { 1748 ire_t *ire; 1749 ip_stack_t *ipst; 1750 1751 if (irb == NULL || irb->irb_ire_cnt == 0) 1752 return; 1753 1754 ipst = irb->irb_ipst; 1755 /* 1756 * we cannot do an irb_refhold/irb_refrele here as the caller 1757 * already has the global RADIX_NODE_HEAD_WLOCK, and the irb_refrele 1758 * may result in an attempt to free the irb_t, which also needs 1759 * the RADIX_NODE_HEAD lock. However, since we want to traverse the 1760 * irb_ire list without fear of having a condemned ire removed from 1761 * the list, we acquire the irb_lock as WRITER. Moreover, since 1762 * the ire_generation increments are done under the ire_dep_lock, 1763 * acquire the locks in the prescribed lock order first. 1764 */ 1765 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 1766 rw_enter(&irb->irb_lock, RW_WRITER); 1767 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1768 if (!IRE_IS_CONDEMNED(ire)) 1769 ire_increment_generation(ire); /* Ourselves */ 1770 ire_dep_incr_generation_locked(ire); /* Dependants */ 1771 } 1772 rw_exit(&irb->irb_lock); 1773 rw_exit(&ipst->ips_ire_dep_lock); 1774 } 1775 1776 /* 1777 * When an IRE is added or deleted this routine is called to make sure 1778 * any caching of IRE information is notified or updated. 1779 * 1780 * The flag argument indicates if the flush request is due to addition 1781 * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE), 1782 * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE). 1783 */ 1784 void 1785 ire_flush_cache_v4(ire_t *ire, int flag) 1786 { 1787 irb_t *irb = ire->ire_bucket; 1788 struct rt_entry *rt = IRB2RT(irb); 1789 ip_stack_t *ipst = ire->ire_ipst; 1790 1791 /* 1792 * IRE_IF_CLONE ire's don't provide any new information 1793 * than the parent from which they are cloned, so don't 1794 * perturb the generation numbers. 1795 */ 1796 if (ire->ire_type & IRE_IF_CLONE) 1797 return; 1798 1799 /* 1800 * Ensure that an ire_add during a lookup serializes the updates of the 1801 * generation numbers under the radix head lock so that the lookup gets 1802 * either the old ire and old generation number, or a new ire and new 1803 * generation number. 1804 */ 1805 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1806 1807 /* 1808 * If a route was just added, we need to notify everybody that 1809 * has cached an IRE_NOROUTE since there might now be a better 1810 * route for them. 1811 */ 1812 if (flag == IRE_FLUSH_ADD) { 1813 ire_increment_generation(ipst->ips_ire_reject_v4); 1814 ire_increment_generation(ipst->ips_ire_blackhole_v4); 1815 } 1816 1817 /* Adding a default can't otherwise provide a better route */ 1818 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) { 1819 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1820 return; 1821 } 1822 1823 switch (flag) { 1824 case IRE_FLUSH_DELETE: 1825 case IRE_FLUSH_GWCHANGE: 1826 /* 1827 * Update ire_generation for all ire_dep_children chains 1828 * starting with this IRE 1829 */ 1830 ire_dep_incr_generation(ire); 1831 break; 1832 case IRE_FLUSH_ADD: 1833 /* 1834 * Update the generation numbers of all shorter matching routes. 1835 * ire_update_generation takes care of the dependants by 1836 * using ire_dep_incr_generation. 1837 */ 1838 (void) ipst->ips_ip_ftable->rnh_matchaddr_args(&rt->rt_dst, 1839 ipst->ips_ip_ftable, ire_update_generation, NULL); 1840 break; 1841 } 1842 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1843 } 1844 1845 /* 1846 * Matches the arguments passed with the values in the ire. 1847 * 1848 * Note: for match types that match using "ill" passed in, ill 1849 * must be checked for non-NULL before calling this routine. 1850 */ 1851 boolean_t 1852 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 1853 int type, const ill_t *ill, zoneid_t zoneid, 1854 const ts_label_t *tsl, int match_flags) 1855 { 1856 ill_t *ire_ill = NULL, *dst_ill; 1857 ip_stack_t *ipst = ire->ire_ipst; 1858 1859 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1860 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 1861 ASSERT((!(match_flags & MATCH_IRE_ILL)) || 1862 (ill != NULL && !ill->ill_isv6)); 1863 1864 /* 1865 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it is 1866 * in fact hidden, to ensure the caller gets the right one. 1867 */ 1868 if (ire->ire_testhidden) { 1869 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) 1870 return (B_FALSE); 1871 } 1872 1873 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 1874 ire->ire_zoneid != ALL_ZONES) { 1875 /* 1876 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid 1877 * does not match that of ire_zoneid, a failure to 1878 * match is reported at this point. Otherwise, since some IREs 1879 * that are available in the global zone can be used in local 1880 * zones, additional checks need to be performed: 1881 * 1882 * IRE_LOOPBACK 1883 * entries should never be matched in this situation. 1884 * Each zone has its own IRE_LOOPBACK. 1885 * 1886 * IRE_LOCAL 1887 * We allow them for any zoneid. ire_route_recursive 1888 * does additional checks when 1889 * ip_restrict_interzone_loopback is set. 1890 * 1891 * If ill_usesrc_ifindex is set 1892 * Then we check if the zone has a valid source address 1893 * on the usesrc ill. 1894 * 1895 * If ire_ill is set, then check that the zone has an ipif 1896 * on that ill. 1897 * 1898 * Outside of this function (in ire_round_robin) we check 1899 * that any IRE_OFFLINK has a gateway that reachable from the 1900 * zone when we have multiple choices (ECMP). 1901 */ 1902 if (match_flags & MATCH_IRE_ZONEONLY) 1903 return (B_FALSE); 1904 if (ire->ire_type & IRE_LOOPBACK) 1905 return (B_FALSE); 1906 1907 if (ire->ire_type & IRE_LOCAL) 1908 goto matchit; 1909 1910 /* 1911 * The normal case of IRE_ONLINK has a matching zoneid. 1912 * Here we handle the case when shared-IP zones have been 1913 * configured with IP addresses on vniN. In that case it 1914 * is ok for traffic from a zone to use IRE_ONLINK routes 1915 * if the ill has a usesrc pointing at vniN 1916 */ 1917 dst_ill = ire->ire_ill; 1918 if (ire->ire_type & IRE_ONLINK) { 1919 uint_t ifindex; 1920 1921 /* 1922 * Note there is no IRE_INTERFACE on vniN thus 1923 * can't do an IRE lookup for a matching route. 1924 */ 1925 ifindex = dst_ill->ill_usesrc_ifindex; 1926 if (ifindex == 0) 1927 return (B_FALSE); 1928 1929 /* 1930 * If there is a usable source address in the 1931 * zone, then it's ok to return this IRE_INTERFACE 1932 */ 1933 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 1934 zoneid, ipst)) { 1935 ip3dbg(("ire_match_args: no usrsrc for zone" 1936 " dst_ill %p\n", (void *)dst_ill)); 1937 return (B_FALSE); 1938 } 1939 } 1940 /* 1941 * For exampe, with 1942 * route add 11.0.0.0 gw1 -ifp bge0 1943 * route add 11.0.0.0 gw2 -ifp bge1 1944 * this code would differentiate based on 1945 * where the sending zone has addresses. 1946 * Only if the zone has an address on bge0 can it use the first 1947 * route. It isn't clear if this behavior is documented 1948 * anywhere. 1949 */ 1950 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 1951 ipif_t *tipif; 1952 1953 mutex_enter(&dst_ill->ill_lock); 1954 for (tipif = dst_ill->ill_ipif; 1955 tipif != NULL; tipif = tipif->ipif_next) { 1956 if (!IPIF_IS_CONDEMNED(tipif) && 1957 (tipif->ipif_flags & IPIF_UP) && 1958 (tipif->ipif_zoneid == zoneid || 1959 tipif->ipif_zoneid == ALL_ZONES)) 1960 break; 1961 } 1962 mutex_exit(&dst_ill->ill_lock); 1963 if (tipif == NULL) { 1964 return (B_FALSE); 1965 } 1966 } 1967 } 1968 1969 matchit: 1970 if (match_flags & MATCH_IRE_ILL) { 1971 ire_ill = ire->ire_ill; 1972 1973 /* 1974 * If asked to match an ill, we *must* match 1975 * on the ire_ill for ipmp test addresses, or 1976 * any of the ill in the group for data addresses. 1977 * If we don't, we may as well fail. 1978 * However, we need an exception for IRE_LOCALs to ensure 1979 * we loopback packets even sent to test addresses on different 1980 * interfaces in the group. 1981 */ 1982 if ((match_flags & MATCH_IRE_TESTHIDDEN) && 1983 !(ire->ire_type & IRE_LOCAL)) { 1984 if (ire->ire_ill != ill) 1985 return (B_FALSE); 1986 } else { 1987 match_flags &= ~MATCH_IRE_TESTHIDDEN; 1988 /* 1989 * We know that ill is not NULL, but ire_ill could be 1990 * NULL 1991 */ 1992 if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill)) 1993 return (B_FALSE); 1994 } 1995 } 1996 1997 if ((ire->ire_addr == (addr & mask)) && 1998 ((!(match_flags & MATCH_IRE_GW)) || 1999 (ire->ire_gateway_addr == gateway)) && 2000 ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) && 2001 ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) && 2002 ((!(match_flags & MATCH_IRE_MASK)) || (ire->ire_mask == mask)) && 2003 ((!(match_flags & MATCH_IRE_SECATTR)) || 2004 (!is_system_labeled()) || 2005 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 2006 /* We found the matched IRE */ 2007 return (B_TRUE); 2008 } 2009 return (B_FALSE); 2010 } 2011 2012 /* 2013 * Check if the IRE_LOCAL uses the same ill as another route would use. 2014 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 2015 * then we don't allow this IRE_LOCAL to be used. 2016 * We always return an IRE; will be RTF_REJECT if no route available. 2017 */ 2018 ire_t * 2019 ire_alt_local(ire_t *ire, zoneid_t zoneid, const ts_label_t *tsl, 2020 const ill_t *ill, uint_t *generationp) 2021 { 2022 ip_stack_t *ipst = ire->ire_ipst; 2023 ire_t *alt_ire; 2024 uint_t ire_type; 2025 uint_t generation; 2026 uint_t match_flags; 2027 2028 ASSERT(ire->ire_type & IRE_LOCAL); 2029 ASSERT(ire->ire_ill != NULL); 2030 2031 /* 2032 * Need to match on everything but local. 2033 * This might result in the creation of a IRE_IF_CLONE for the 2034 * same address as the IRE_LOCAL when restrict_interzone_loopback is 2035 * set. ire_add_*() ensures that the IRE_IF_CLONE are tail inserted 2036 * to make sure the IRE_LOCAL is always found first. 2037 */ 2038 ire_type = (IRE_ONLINK | IRE_OFFLINK) & ~(IRE_LOCAL|IRE_LOOPBACK); 2039 match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR; 2040 if (ill != NULL) 2041 match_flags |= MATCH_IRE_ILL; 2042 2043 if (ire->ire_ipversion == IPV4_VERSION) { 2044 alt_ire = ire_route_recursive_v4(ire->ire_addr, ire_type, 2045 ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL, 2046 NULL, &generation); 2047 } else { 2048 alt_ire = ire_route_recursive_v6(&ire->ire_addr_v6, ire_type, 2049 ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL, 2050 NULL, &generation); 2051 } 2052 ASSERT(alt_ire != NULL); 2053 2054 if (alt_ire->ire_ill == ire->ire_ill) { 2055 /* Going out the same ILL - ok to send to IRE_LOCAL */ 2056 ire_refrele(alt_ire); 2057 } else { 2058 /* Different ill - ignore IRE_LOCAL */ 2059 ire_refrele(ire); 2060 ire = alt_ire; 2061 if (generationp != NULL) 2062 *generationp = generation; 2063 } 2064 return (ire); 2065 } 2066 2067 boolean_t 2068 ire_find_zoneid(struct radix_node *rn, void *arg) 2069 { 2070 struct rt_entry *rt = (struct rt_entry *)rn; 2071 irb_t *irb; 2072 ire_t *ire; 2073 ire_ftable_args_t *margs = arg; 2074 2075 ASSERT(rt != NULL); 2076 2077 irb = &rt->rt_irb; 2078 2079 if (irb->irb_ire_cnt == 0) 2080 return (B_FALSE); 2081 2082 rw_enter(&irb->irb_lock, RW_READER); 2083 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2084 if (IRE_IS_CONDEMNED(ire)) 2085 continue; 2086 2087 if (!(ire->ire_type & IRE_INTERFACE)) 2088 continue; 2089 2090 if (ire->ire_zoneid != ALL_ZONES && 2091 ire->ire_zoneid != margs->ift_zoneid) 2092 continue; 2093 2094 if (margs->ift_ill != NULL && margs->ift_ill != ire->ire_ill) 2095 continue; 2096 2097 if (is_system_labeled() && 2098 tsol_ire_match_gwattr(ire, margs->ift_tsl) != 0) 2099 continue; 2100 2101 rw_exit(&irb->irb_lock); 2102 return (B_TRUE); 2103 } 2104 rw_exit(&irb->irb_lock); 2105 return (B_FALSE); 2106 } 2107 2108 /* 2109 * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified 2110 * gateway address. If ill is non-NULL we also match on it. 2111 * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set. 2112 */ 2113 boolean_t 2114 ire_gateway_ok_zone_v4(ipaddr_t gateway, zoneid_t zoneid, ill_t *ill, 2115 const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held) 2116 { 2117 struct rt_sockaddr rdst; 2118 struct rt_entry *rt; 2119 ire_ftable_args_t margs; 2120 2121 ASSERT(ill == NULL || !ill->ill_isv6); 2122 if (lock_held) 2123 ASSERT(RW_READ_HELD(&ipst->ips_ip_ftable->rnh_lock)); 2124 else 2125 RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable); 2126 2127 bzero(&rdst, sizeof (rdst)); 2128 rdst.rt_sin_len = sizeof (rdst); 2129 rdst.rt_sin_family = AF_INET; 2130 rdst.rt_sin_addr.s_addr = gateway; 2131 2132 /* 2133 * We only use margs for ill, zoneid, and tsl matching in 2134 * ire_find_zoneid 2135 */ 2136 bzero(&margs, sizeof (margs)); 2137 margs.ift_ill = ill; 2138 margs.ift_zoneid = zoneid; 2139 margs.ift_tsl = tsl; 2140 rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst, 2141 ipst->ips_ip_ftable, ire_find_zoneid, (void *)&margs); 2142 2143 if (!lock_held) 2144 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 2145 2146 return (rt != NULL); 2147 } 2148 2149 /* 2150 * ire_walk routine to delete a fraction of redirect IREs and IRE_CLONE_IF IREs. 2151 * The fraction argument tells us what fraction of the IREs to delete. 2152 * Common for IPv4 and IPv6. 2153 * Used when memory backpressure. 2154 */ 2155 static void 2156 ire_delete_reclaim(ire_t *ire, char *arg) 2157 { 2158 ip_stack_t *ipst = ire->ire_ipst; 2159 uint_t fraction = *(uint_t *)arg; 2160 uint_t rand; 2161 2162 if ((ire->ire_flags & RTF_DYNAMIC) || 2163 (ire->ire_type & IRE_IF_CLONE)) { 2164 2165 /* Pick a random number */ 2166 rand = (uint_t)ddi_get_lbolt() + 2167 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 256); 2168 2169 /* Use truncation */ 2170 if ((rand/fraction)*fraction == rand) { 2171 IP_STAT(ipst, ip_ire_reclaim_deleted); 2172 ire_delete(ire); 2173 } 2174 } 2175 2176 } 2177 2178 /* 2179 * kmem_cache callback to free up memory. 2180 * 2181 * Free a fraction (ips_ip_ire_reclaim_fraction) of things IP added dynamically 2182 * (RTF_DYNAMIC and IRE_IF_CLONE). 2183 */ 2184 static void 2185 ip_ire_reclaim_stack(ip_stack_t *ipst) 2186 { 2187 uint_t fraction = ipst->ips_ip_ire_reclaim_fraction; 2188 2189 IP_STAT(ipst, ip_ire_reclaim_calls); 2190 2191 ire_walk(ire_delete_reclaim, &fraction, ipst); 2192 2193 /* 2194 * Walk all CONNs that can have a reference on an ire, nce or dce. 2195 * Get them to update any stale references to drop any refholds they 2196 * have. 2197 */ 2198 ipcl_walk(conn_ixa_cleanup, (void *)B_FALSE, ipst); 2199 } 2200 2201 /* 2202 * Called by the memory allocator subsystem directly, when the system 2203 * is running low on memory. 2204 */ 2205 /* ARGSUSED */ 2206 void 2207 ip_ire_reclaim(void *args) 2208 { 2209 netstack_handle_t nh; 2210 netstack_t *ns; 2211 2212 netstack_next_init(&nh); 2213 while ((ns = netstack_next(&nh)) != NULL) { 2214 ip_ire_reclaim_stack(ns->netstack_ip); 2215 netstack_rele(ns); 2216 } 2217 netstack_next_fini(&nh); 2218 } 2219 2220 static void 2221 power2_roundup(uint32_t *value) 2222 { 2223 int i; 2224 2225 for (i = 1; i < 31; i++) { 2226 if (*value <= (1 << i)) 2227 break; 2228 } 2229 *value = (1 << i); 2230 } 2231 2232 /* Global init for all zones */ 2233 void 2234 ip_ire_g_init() 2235 { 2236 /* 2237 * Create kmem_caches. ip_ire_reclaim() and ip_nce_reclaim() 2238 * will give disposable IREs back to system when needed. 2239 * This needs to be done here before anything else, since 2240 * ire_add() expects the cache to be created. 2241 */ 2242 ire_cache = kmem_cache_create("ire_cache", 2243 sizeof (ire_t), 0, NULL, NULL, 2244 ip_ire_reclaim, NULL, NULL, 0); 2245 2246 ncec_cache = kmem_cache_create("ncec_cache", 2247 sizeof (ncec_t), 0, NULL, NULL, 2248 ip_nce_reclaim, NULL, NULL, 0); 2249 nce_cache = kmem_cache_create("nce_cache", 2250 sizeof (nce_t), 0, NULL, NULL, 2251 NULL, NULL, NULL, 0); 2252 2253 rt_entry_cache = kmem_cache_create("rt_entry", 2254 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 2255 2256 /* 2257 * Have radix code setup kmem caches etc. 2258 */ 2259 rn_init(); 2260 } 2261 2262 void 2263 ip_ire_init(ip_stack_t *ipst) 2264 { 2265 ire_t *ire; 2266 int error; 2267 2268 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 2269 2270 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 2271 2272 /* 2273 * Make sure that the forwarding table size is a power of 2. 2274 * The IRE*_ADDR_HASH() macroes depend on that. 2275 */ 2276 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 2277 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 2278 2279 /* 2280 * Allocate/initialize a pair of IRE_NOROUTEs for each of IPv4 and IPv6. 2281 * The ire_reject_v* has RTF_REJECT set, and the ire_blackhole_v* has 2282 * RTF_BLACKHOLE set. We use the latter for transient errors such 2283 * as memory allocation failures and tripping on IRE_IS_CONDEMNED 2284 * entries. 2285 */ 2286 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2287 *ire = ire_null; 2288 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2289 RTF_REJECT|RTF_UP, NULL, ipst); 2290 ASSERT(error == 0); 2291 ipst->ips_ire_reject_v4 = ire; 2292 2293 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2294 *ire = ire_null; 2295 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2296 RTF_REJECT|RTF_UP, NULL, ipst); 2297 ASSERT(error == 0); 2298 ipst->ips_ire_reject_v6 = ire; 2299 2300 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2301 *ire = ire_null; 2302 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2303 RTF_BLACKHOLE|RTF_UP, NULL, ipst); 2304 ASSERT(error == 0); 2305 ipst->ips_ire_blackhole_v4 = ire; 2306 2307 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2308 *ire = ire_null; 2309 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2310 RTF_BLACKHOLE|RTF_UP, NULL, ipst); 2311 ASSERT(error == 0); 2312 ipst->ips_ire_blackhole_v6 = ire; 2313 2314 rw_init(&ipst->ips_ip6_ire_head_lock, NULL, RW_DEFAULT, NULL); 2315 rw_init(&ipst->ips_ire_dep_lock, NULL, RW_DEFAULT, NULL); 2316 } 2317 2318 void 2319 ip_ire_g_fini(void) 2320 { 2321 kmem_cache_destroy(ire_cache); 2322 kmem_cache_destroy(ncec_cache); 2323 kmem_cache_destroy(nce_cache); 2324 kmem_cache_destroy(rt_entry_cache); 2325 2326 rn_fini(); 2327 } 2328 2329 void 2330 ip_ire_fini(ip_stack_t *ipst) 2331 { 2332 int i; 2333 2334 rw_destroy(&ipst->ips_ire_dep_lock); 2335 rw_destroy(&ipst->ips_ip6_ire_head_lock); 2336 2337 ire_make_condemned(ipst->ips_ire_reject_v6); 2338 ire_refrele_notr(ipst->ips_ire_reject_v6); 2339 ipst->ips_ire_reject_v6 = NULL; 2340 2341 ire_make_condemned(ipst->ips_ire_reject_v4); 2342 ire_refrele_notr(ipst->ips_ire_reject_v4); 2343 ipst->ips_ire_reject_v4 = NULL; 2344 2345 ire_make_condemned(ipst->ips_ire_blackhole_v6); 2346 ire_refrele_notr(ipst->ips_ire_blackhole_v6); 2347 ipst->ips_ire_blackhole_v6 = NULL; 2348 2349 ire_make_condemned(ipst->ips_ire_blackhole_v4); 2350 ire_refrele_notr(ipst->ips_ire_blackhole_v4); 2351 ipst->ips_ire_blackhole_v4 = NULL; 2352 2353 /* 2354 * Delete all IREs - assumes that the ill/ipifs have 2355 * been removed so what remains are just the ftable to handle. 2356 */ 2357 ire_walk(ire_delete, NULL, ipst); 2358 2359 rn_freehead(ipst->ips_ip_ftable); 2360 ipst->ips_ip_ftable = NULL; 2361 2362 mutex_destroy(&ipst->ips_ire_ft_init_lock); 2363 2364 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 2365 irb_t *ptr; 2366 int j; 2367 2368 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 2369 continue; 2370 2371 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 2372 ASSERT(ptr[j].irb_ire == NULL); 2373 rw_destroy(&ptr[j].irb_lock); 2374 } 2375 mi_free(ptr); 2376 ipst->ips_ip_forwarding_table_v6[i] = NULL; 2377 } 2378 } 2379 2380 #ifdef DEBUG 2381 void 2382 ire_trace_ref(ire_t *ire) 2383 { 2384 mutex_enter(&ire->ire_lock); 2385 if (ire->ire_trace_disable) { 2386 mutex_exit(&ire->ire_lock); 2387 return; 2388 } 2389 2390 if (th_trace_ref(ire, ire->ire_ipst)) { 2391 mutex_exit(&ire->ire_lock); 2392 } else { 2393 ire->ire_trace_disable = B_TRUE; 2394 mutex_exit(&ire->ire_lock); 2395 ire_trace_cleanup(ire); 2396 } 2397 } 2398 2399 void 2400 ire_untrace_ref(ire_t *ire) 2401 { 2402 mutex_enter(&ire->ire_lock); 2403 if (!ire->ire_trace_disable) 2404 th_trace_unref(ire); 2405 mutex_exit(&ire->ire_lock); 2406 } 2407 2408 static void 2409 ire_trace_cleanup(const ire_t *ire) 2410 { 2411 th_trace_cleanup(ire, ire->ire_trace_disable); 2412 } 2413 #endif /* DEBUG */ 2414 2415 /* 2416 * Find, or create if needed, the nce_t pointer to the neighbor cache 2417 * entry ncec_t for an IPv4 address. The nce_t will be created on the ill_t 2418 * in the non-IPMP case, or on the cast-ill in the IPMP bcast/mcast case, or 2419 * on the next available under-ill (selected by the IPMP rotor) in the 2420 * unicast IPMP case. 2421 * 2422 * If a neighbor-cache entry has to be created (i.e., one does not already 2423 * exist in the nce list) the ncec_lladdr and ncec_state of the neighbor cache 2424 * entry are initialized in nce_add_v4(). The broadcast, multicast, and 2425 * link-layer type determine the contents of {ncec_state, ncec_lladdr} of 2426 * the ncec_t created. The ncec_lladdr is non-null for all link types with 2427 * non-zero ill_phys_addr_length, though the contents may be zero in cases 2428 * where the link-layer type is not known at the time of creation 2429 * (e.g., IRE_IFRESOLVER links) 2430 * 2431 * All IRE_BROADCAST entries have ncec_state = ND_REACHABLE, and the nce_lladr 2432 * has the physical broadcast address of the outgoing interface. 2433 * For unicast ire entries, 2434 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 2435 * ncec_t with 0 nce_lladr contents, and will be in the ND_INITIAL state. 2436 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 2437 * layer resolution is necessary, so that the ncec_t will be in the 2438 * ND_REACHABLE state 2439 * 2440 * The link layer information needed for broadcast addresses, and for 2441 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 2442 * never needs re-verification for the lifetime of the ncec_t. These are 2443 * therefore marked NCE_F_NONUD. 2444 * 2445 * The nce returned will be created such that the nce_ill == ill that 2446 * is passed in. Note that the nce itself may not have ncec_ill == ill 2447 * where IPMP links are involved. 2448 */ 2449 static nce_t * 2450 ire_nce_init(ill_t *ill, const void *addr, int ire_type) 2451 { 2452 int err; 2453 nce_t *nce = NULL; 2454 uint16_t ncec_flags; 2455 uchar_t *hwaddr; 2456 boolean_t need_refrele = B_FALSE; 2457 ill_t *in_ill = ill; 2458 boolean_t is_unicast; 2459 uint_t hwaddr_len; 2460 2461 is_unicast = ((ire_type & (IRE_MULTICAST|IRE_BROADCAST)) == 0); 2462 if (IS_IPMP(ill) || 2463 ((ire_type & IRE_BROADCAST) && IS_UNDER_IPMP(ill))) { 2464 if ((ill = ipmp_ill_get_xmit_ill(ill, is_unicast)) == NULL) 2465 return (NULL); 2466 need_refrele = B_TRUE; 2467 } 2468 ncec_flags = (ill->ill_flags & ILLF_NONUD) ? NCE_F_NONUD : 0; 2469 2470 switch (ire_type) { 2471 case IRE_BROADCAST: 2472 ASSERT(!ill->ill_isv6); 2473 ncec_flags |= (NCE_F_BCAST|NCE_F_NONUD); 2474 break; 2475 case IRE_MULTICAST: 2476 ncec_flags |= (NCE_F_MCAST|NCE_F_NONUD); 2477 break; 2478 } 2479 2480 if (ill->ill_net_type == IRE_IF_NORESOLVER && is_unicast) { 2481 hwaddr = ill->ill_dest_addr; 2482 } else { 2483 hwaddr = NULL; 2484 } 2485 hwaddr_len = ill->ill_phys_addr_length; 2486 2487 retry: 2488 /* nce_state will be computed by nce_add_common() */ 2489 if (!ill->ill_isv6) { 2490 err = nce_lookup_then_add_v4(ill, hwaddr, hwaddr_len, addr, 2491 ncec_flags, ND_UNCHANGED, &nce); 2492 } else { 2493 err = nce_lookup_then_add_v6(ill, hwaddr, hwaddr_len, addr, 2494 ncec_flags, ND_UNCHANGED, &nce); 2495 } 2496 2497 switch (err) { 2498 case 0: 2499 break; 2500 case EEXIST: 2501 /* 2502 * When subnets change or partially overlap what was once 2503 * a broadcast address could now be a unicast, or vice versa. 2504 */ 2505 if (((ncec_flags ^ nce->nce_common->ncec_flags) & 2506 NCE_F_BCAST) != 0) { 2507 ASSERT(!ill->ill_isv6); 2508 ncec_delete(nce->nce_common); 2509 nce_refrele(nce); 2510 goto retry; 2511 } 2512 break; 2513 default: 2514 DTRACE_PROBE2(nce__init__fail, ill_t *, ill, int, err); 2515 if (need_refrele) 2516 ill_refrele(ill); 2517 return (NULL); 2518 } 2519 /* 2520 * If the ill was an under-ill of an IPMP group, we need to verify 2521 * that it is still active so that we select an active interface in 2522 * the group. However, since ipmp_ill_is_active ASSERTs for 2523 * IS_UNDER_IPMP(), we first need to verify that the ill is an 2524 * under-ill, and since this is being done in the data path, the 2525 * only way to ascertain this is by holding the ill_g_lock. 2526 */ 2527 rw_enter(&ill->ill_ipst->ips_ill_g_lock, RW_READER); 2528 mutex_enter(&ill->ill_lock); 2529 mutex_enter(&ill->ill_phyint->phyint_lock); 2530 if (need_refrele && IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 2531 /* 2532 * need_refrele implies that the under ill was selected by 2533 * ipmp_ill_get_xmit_ill() because either the in_ill was an 2534 * ipmp_ill, or we are sending a non-unicast packet on 2535 * an under_ill. However, when we get here, the ill selected by 2536 * ipmp_ill_get_xmit_ill was pulled out of the active set 2537 * (for unicast) or cast_ill nomination (for 2538 * !unicast) after it was picked as the outgoing ill. 2539 * We have to pick an active interface and/or cast_ill in the 2540 * group. 2541 */ 2542 mutex_exit(&ill->ill_phyint->phyint_lock); 2543 nce_delete(nce); 2544 mutex_exit(&ill->ill_lock); 2545 rw_exit(&ill->ill_ipst->ips_ill_g_lock); 2546 nce_refrele(nce); 2547 ill_refrele(ill); 2548 if ((ill = ipmp_ill_get_xmit_ill(in_ill, is_unicast)) == NULL) 2549 return (NULL); 2550 goto retry; 2551 } else { 2552 mutex_exit(&ill->ill_phyint->phyint_lock); 2553 mutex_exit(&ill->ill_lock); 2554 rw_exit(&ill->ill_ipst->ips_ill_g_lock); 2555 } 2556 done: 2557 ASSERT(nce->nce_ill == ill); 2558 if (need_refrele) 2559 ill_refrele(ill); 2560 return (nce); 2561 } 2562 2563 nce_t * 2564 arp_nce_init(ill_t *ill, in_addr_t addr4, int ire_type) 2565 { 2566 return (ire_nce_init(ill, &addr4, ire_type)); 2567 } 2568 2569 nce_t * 2570 ndp_nce_init(ill_t *ill, const in6_addr_t *addr6, int ire_type) 2571 { 2572 ASSERT((ire_type & IRE_BROADCAST) == 0); 2573 return (ire_nce_init(ill, addr6, ire_type)); 2574 } 2575 2576 /* 2577 * The caller should hold irb_lock as a writer if the ire is in a bucket. 2578 * This routine will clear ire_nce_cache, and we make sure that we can never 2579 * set ire_nce_cache after the ire is marked condemned. 2580 */ 2581 void 2582 ire_make_condemned(ire_t *ire) 2583 { 2584 ip_stack_t *ipst = ire->ire_ipst; 2585 nce_t *nce; 2586 2587 mutex_enter(&ire->ire_lock); 2588 ASSERT(ire->ire_bucket == NULL || 2589 RW_WRITE_HELD(&ire->ire_bucket->irb_lock)); 2590 ASSERT(!IRE_IS_CONDEMNED(ire)); 2591 ire->ire_generation = IRE_GENERATION_CONDEMNED; 2592 /* Count how many condemned ires for kmem_cache callback */ 2593 atomic_add_32(&ipst->ips_num_ire_condemned, 1); 2594 nce = ire->ire_nce_cache; 2595 ire->ire_nce_cache = NULL; 2596 mutex_exit(&ire->ire_lock); 2597 if (nce != NULL) 2598 nce_refrele(nce); 2599 } 2600 2601 /* 2602 * Increment the generation avoiding the special condemned value 2603 */ 2604 void 2605 ire_increment_generation(ire_t *ire) 2606 { 2607 uint_t generation; 2608 2609 mutex_enter(&ire->ire_lock); 2610 /* 2611 * Even though the caller has a hold it can't prevent a concurrent 2612 * ire_delete marking the IRE condemned 2613 */ 2614 if (!IRE_IS_CONDEMNED(ire)) { 2615 generation = ire->ire_generation + 1; 2616 if (generation == IRE_GENERATION_CONDEMNED) 2617 generation = IRE_GENERATION_INITIAL; 2618 ASSERT(generation != IRE_GENERATION_VERIFY); 2619 ire->ire_generation = generation; 2620 } 2621 mutex_exit(&ire->ire_lock); 2622 } 2623 2624 /* 2625 * Increment ire_generation on all the IRE_MULTICASTs 2626 * Used when the default multicast interface (as determined by 2627 * ill_lookup_multicast) might have changed. 2628 * 2629 * That includes the zoneid, IFF_ flags, the IPv6 scope of the address, and 2630 * ill unplumb. 2631 */ 2632 void 2633 ire_increment_multicast_generation(ip_stack_t *ipst, boolean_t isv6) 2634 { 2635 ill_t *ill; 2636 ill_walk_context_t ctx; 2637 2638 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2639 if (isv6) 2640 ill = ILL_START_WALK_V6(&ctx, ipst); 2641 else 2642 ill = ILL_START_WALK_V4(&ctx, ipst); 2643 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2644 if (ILL_IS_CONDEMNED(ill)) 2645 continue; 2646 if (ill->ill_ire_multicast != NULL) 2647 ire_increment_generation(ill->ill_ire_multicast); 2648 } 2649 rw_exit(&ipst->ips_ill_g_lock); 2650 } 2651 2652 /* 2653 * Return a held IRE_NOROUTE with RTF_REJECT set 2654 */ 2655 ire_t * 2656 ire_reject(ip_stack_t *ipst, boolean_t isv6) 2657 { 2658 ire_t *ire; 2659 2660 if (isv6) 2661 ire = ipst->ips_ire_reject_v6; 2662 else 2663 ire = ipst->ips_ire_reject_v4; 2664 2665 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); 2666 ire_refhold(ire); 2667 return (ire); 2668 } 2669 2670 /* 2671 * Return a held IRE_NOROUTE with RTF_BLACKHOLE set 2672 */ 2673 ire_t * 2674 ire_blackhole(ip_stack_t *ipst, boolean_t isv6) 2675 { 2676 ire_t *ire; 2677 2678 if (isv6) 2679 ire = ipst->ips_ire_blackhole_v6; 2680 else 2681 ire = ipst->ips_ire_blackhole_v4; 2682 2683 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); 2684 ire_refhold(ire); 2685 return (ire); 2686 } 2687 2688 /* 2689 * Return a held IRE_MULTICAST. 2690 */ 2691 ire_t * 2692 ire_multicast(ill_t *ill) 2693 { 2694 ire_t *ire = ill->ill_ire_multicast; 2695 2696 ASSERT(ire == NULL || ire->ire_generation != IRE_GENERATION_CONDEMNED); 2697 if (ire == NULL) 2698 ire = ire_blackhole(ill->ill_ipst, ill->ill_isv6); 2699 else 2700 ire_refhold(ire); 2701 return (ire); 2702 } 2703 2704 /* 2705 * Given an IRE return its nexthop IRE. The nexthop IRE is an IRE_ONLINK 2706 * that is an exact match (i.e., a /32 for IPv4 and /128 for IPv6). 2707 * This can return an RTF_REJECT|RTF_BLACKHOLE. 2708 * The returned IRE is held. 2709 * The assumption is that ip_select_route() has been called and returned the 2710 * IRE (thus ip_select_route would have set up the ire_dep* information.) 2711 * If some IRE is deleteted then ire_dep_remove() will have been called and 2712 * we might not find a nexthop IRE, in which case we return NULL. 2713 */ 2714 ire_t * 2715 ire_nexthop(ire_t *ire) 2716 { 2717 ip_stack_t *ipst = ire->ire_ipst; 2718 2719 /* Acquire lock to walk ire_dep_parent */ 2720 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 2721 while (ire != NULL) { 2722 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 2723 goto done; 2724 } 2725 /* 2726 * If we find an IRE_ONLINK we are done. This includes 2727 * the case of IRE_MULTICAST. 2728 * Note that in order to send packets we need a host-specific 2729 * IRE_IF_ALL first in the ire_dep_parent chain. Normally this 2730 * is done by inserting an IRE_IF_CLONE if the IRE_INTERFACE 2731 * was not host specific. 2732 * However, ip_rts_request doesn't want to send packets 2733 * hence doesn't want to allocate an IRE_IF_CLONE. Yet 2734 * it needs an IRE_IF_ALL to get to the ill. Thus 2735 * we return IRE_IF_ALL that are not host specific here. 2736 */ 2737 if (ire->ire_type & IRE_ONLINK) 2738 goto done; 2739 ire = ire->ire_dep_parent; 2740 } 2741 rw_exit(&ipst->ips_ire_dep_lock); 2742 return (NULL); 2743 2744 done: 2745 ire_refhold(ire); 2746 rw_exit(&ipst->ips_ire_dep_lock); 2747 return (ire); 2748 } 2749 2750 /* 2751 * Find the ill used to send packets. This will be NULL in case 2752 * of a reject or blackhole. 2753 * The returned ill is held; caller needs to do ill_refrele when done. 2754 */ 2755 ill_t * 2756 ire_nexthop_ill(ire_t *ire) 2757 { 2758 ill_t *ill; 2759 2760 ire = ire_nexthop(ire); 2761 if (ire == NULL) 2762 return (NULL); 2763 2764 /* ire_ill can not change for an existing ire */ 2765 ill = ire->ire_ill; 2766 if (ill != NULL) 2767 ill_refhold(ill); 2768 ire_refrele(ire); 2769 return (ill); 2770 } 2771 2772 #ifdef DEBUG 2773 static boolean_t 2774 parent_has_child(ire_t *parent, ire_t *child) 2775 { 2776 ire_t *ire; 2777 ire_t *prev; 2778 2779 ire = parent->ire_dep_children; 2780 prev = NULL; 2781 while (ire != NULL) { 2782 if (prev == NULL) { 2783 ASSERT(ire->ire_dep_sib_ptpn == 2784 &(parent->ire_dep_children)); 2785 } else { 2786 ASSERT(ire->ire_dep_sib_ptpn == 2787 &(prev->ire_dep_sib_next)); 2788 } 2789 if (ire == child) 2790 return (B_TRUE); 2791 prev = ire; 2792 ire = ire->ire_dep_sib_next; 2793 } 2794 return (B_FALSE); 2795 } 2796 2797 static void 2798 ire_dep_verify(ire_t *ire) 2799 { 2800 ire_t *parent = ire->ire_dep_parent; 2801 ire_t *child = ire->ire_dep_children; 2802 2803 ASSERT(ire->ire_ipversion == IPV4_VERSION || 2804 ire->ire_ipversion == IPV6_VERSION); 2805 if (parent != NULL) { 2806 ASSERT(parent->ire_ipversion == IPV4_VERSION || 2807 parent->ire_ipversion == IPV6_VERSION); 2808 ASSERT(parent->ire_refcnt >= 1); 2809 ASSERT(parent_has_child(parent, ire)); 2810 } 2811 if (child != NULL) { 2812 ASSERT(child->ire_ipversion == IPV4_VERSION || 2813 child->ire_ipversion == IPV6_VERSION); 2814 ASSERT(child->ire_dep_parent == ire); 2815 ASSERT(child->ire_dep_sib_ptpn != NULL); 2816 ASSERT(parent_has_child(ire, child)); 2817 } 2818 } 2819 #endif /* DEBUG */ 2820 2821 /* 2822 * Assumes ire_dep_parent is set. Remove this child from its parent's linkage. 2823 */ 2824 void 2825 ire_dep_remove(ire_t *ire) 2826 { 2827 ip_stack_t *ipst = ire->ire_ipst; 2828 ire_t *parent = ire->ire_dep_parent; 2829 ire_t *next; 2830 nce_t *nce; 2831 2832 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 2833 ASSERT(ire->ire_dep_parent != NULL); 2834 ASSERT(ire->ire_dep_sib_ptpn != NULL); 2835 2836 #ifdef DEBUG 2837 ire_dep_verify(ire); 2838 ire_dep_verify(parent); 2839 #endif 2840 2841 next = ire->ire_dep_sib_next; 2842 if (next != NULL) 2843 next->ire_dep_sib_ptpn = ire->ire_dep_sib_ptpn; 2844 2845 ASSERT(*(ire->ire_dep_sib_ptpn) == ire); 2846 *(ire->ire_dep_sib_ptpn) = ire->ire_dep_sib_next; 2847 2848 ire->ire_dep_sib_ptpn = NULL; 2849 ire->ire_dep_sib_next = NULL; 2850 2851 mutex_enter(&ire->ire_lock); 2852 parent = ire->ire_dep_parent; 2853 ire->ire_dep_parent = NULL; 2854 mutex_exit(&ire->ire_lock); 2855 2856 /* 2857 * Make sure all our children, grandchildren, etc set 2858 * ire_dep_parent_generation to IRE_GENERATION_VERIFY since 2859 * we can no longer guarantee than the children have a current 2860 * ire_nce_cache and ire_nexthop_ill(). 2861 */ 2862 if (ire->ire_dep_children != NULL) 2863 ire_dep_invalidate_children(ire->ire_dep_children); 2864 2865 /* 2866 * Since the parent is gone we make sure we clear ire_nce_cache. 2867 * We can clear it under ire_lock even if the IRE is used 2868 */ 2869 mutex_enter(&ire->ire_lock); 2870 nce = ire->ire_nce_cache; 2871 ire->ire_nce_cache = NULL; 2872 mutex_exit(&ire->ire_lock); 2873 if (nce != NULL) 2874 nce_refrele(nce); 2875 2876 #ifdef DEBUG 2877 ire_dep_verify(ire); 2878 ire_dep_verify(parent); 2879 #endif 2880 2881 ire_refrele_notr(parent); 2882 ire_refrele_notr(ire); 2883 } 2884 2885 /* 2886 * Insert the child in the linkage of the parent 2887 */ 2888 static void 2889 ire_dep_parent_insert(ire_t *child, ire_t *parent) 2890 { 2891 ip_stack_t *ipst = child->ire_ipst; 2892 ire_t *next; 2893 2894 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 2895 ASSERT(child->ire_dep_parent == NULL); 2896 2897 #ifdef DEBUG 2898 ire_dep_verify(child); 2899 ire_dep_verify(parent); 2900 #endif 2901 /* No parents => no siblings */ 2902 ASSERT(child->ire_dep_sib_ptpn == NULL); 2903 ASSERT(child->ire_dep_sib_next == NULL); 2904 2905 ire_refhold_notr(parent); 2906 ire_refhold_notr(child); 2907 2908 /* Head insertion */ 2909 next = parent->ire_dep_children; 2910 if (next != NULL) { 2911 ASSERT(next->ire_dep_sib_ptpn == &(parent->ire_dep_children)); 2912 child->ire_dep_sib_next = next; 2913 next->ire_dep_sib_ptpn = &(child->ire_dep_sib_next); 2914 } 2915 parent->ire_dep_children = child; 2916 child->ire_dep_sib_ptpn = &(parent->ire_dep_children); 2917 2918 mutex_enter(&child->ire_lock); 2919 child->ire_dep_parent = parent; 2920 mutex_exit(&child->ire_lock); 2921 2922 #ifdef DEBUG 2923 ire_dep_verify(child); 2924 ire_dep_verify(parent); 2925 #endif 2926 } 2927 2928 2929 /* 2930 * Given count worth of ires and generations, build ire_dep_* relationships 2931 * from ires[0] to ires[count-1]. Record generations[i+1] in 2932 * ire_dep_parent_generation for ires[i]. 2933 * We graft onto an existing parent chain by making sure that we don't 2934 * touch ire_dep_parent for ires[count-1]. 2935 * 2936 * We check for any condemned ire_generation count and return B_FALSE in 2937 * that case so that the caller can tear it apart. 2938 * 2939 * Note that generations[0] is not used. Caller handles that. 2940 */ 2941 boolean_t 2942 ire_dep_build(ire_t *ires[], uint_t generations[], uint_t count) 2943 { 2944 ire_t *ire = ires[0]; 2945 ip_stack_t *ipst; 2946 uint_t i; 2947 2948 ASSERT(count > 0); 2949 if (count == 1) { 2950 /* No work to do */ 2951 return (B_TRUE); 2952 } 2953 ipst = ire->ire_ipst; 2954 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 2955 /* 2956 * Do not remove the linkage for any existing parent chain i.e., 2957 * ires[count-1] is left alone. 2958 */ 2959 for (i = 0; i < count-1; i++) { 2960 /* Remove existing parent if we need to change it */ 2961 if (ires[i]->ire_dep_parent != NULL && 2962 ires[i]->ire_dep_parent != ires[i+1]) 2963 ire_dep_remove(ires[i]); 2964 } 2965 2966 for (i = 0; i < count - 1; i++) { 2967 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || 2968 ires[i]->ire_ipversion == IPV6_VERSION); 2969 /* Does it need to change? */ 2970 if (ires[i]->ire_dep_parent != ires[i+1]) 2971 ire_dep_parent_insert(ires[i], ires[i+1]); 2972 2973 mutex_enter(&ires[i+1]->ire_lock); 2974 if (IRE_IS_CONDEMNED(ires[i+1])) { 2975 mutex_exit(&ires[i+1]->ire_lock); 2976 rw_exit(&ipst->ips_ire_dep_lock); 2977 return (B_FALSE); 2978 } 2979 mutex_exit(&ires[i+1]->ire_lock); 2980 2981 mutex_enter(&ires[i]->ire_lock); 2982 ires[i]->ire_dep_parent_generation = generations[i+1]; 2983 mutex_exit(&ires[i]->ire_lock); 2984 } 2985 rw_exit(&ipst->ips_ire_dep_lock); 2986 return (B_TRUE); 2987 } 2988 2989 /* 2990 * Given count worth of ires, unbuild ire_dep_* relationships 2991 * from ires[0] to ires[count-1]. 2992 */ 2993 void 2994 ire_dep_unbuild(ire_t *ires[], uint_t count) 2995 { 2996 ip_stack_t *ipst; 2997 uint_t i; 2998 2999 if (count == 0) { 3000 /* No work to do */ 3001 return; 3002 } 3003 ipst = ires[0]->ire_ipst; 3004 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 3005 for (i = 0; i < count; i++) { 3006 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || 3007 ires[i]->ire_ipversion == IPV6_VERSION); 3008 if (ires[i]->ire_dep_parent != NULL) 3009 ire_dep_remove(ires[i]); 3010 mutex_enter(&ires[i]->ire_lock); 3011 ires[i]->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3012 mutex_exit(&ires[i]->ire_lock); 3013 } 3014 rw_exit(&ipst->ips_ire_dep_lock); 3015 } 3016 3017 /* 3018 * Both the forwarding and the outbound code paths can trip on 3019 * a condemned NCE, in which case we call this function. 3020 * We have two different behaviors: if the NCE was UNREACHABLE 3021 * it is an indication that something failed. In that case 3022 * we see if we should look for a different IRE (for example, 3023 * delete any matching redirect IRE, or try a different 3024 * IRE_DEFAULT (ECMP)). We mark the ire as bad so a hopefully 3025 * different IRE will be picked next time we send/forward. 3026 * 3027 * If we are called by the output path then fail_if_better is set 3028 * and we return NULL if there could be a better IRE. This is because the 3029 * output path retries the IRE lookup. (The input/forward path can not retry.) 3030 * 3031 * If the NCE was not unreachable then we pick/allocate a 3032 * new (most likely ND_INITIAL) NCE and proceed with it. 3033 * 3034 * ipha/ip6h are needed for multicast packets; ipha needs to be 3035 * set for IPv4 and ip6h needs to be set for IPv6 packets. 3036 */ 3037 nce_t * 3038 ire_handle_condemned_nce(nce_t *nce, ire_t *ire, ipha_t *ipha, ip6_t *ip6h, 3039 boolean_t fail_if_better) 3040 { 3041 if (nce->nce_common->ncec_state == ND_UNREACHABLE) { 3042 if (ire_no_good(ire) && fail_if_better) { 3043 /* 3044 * Did some changes, or ECMP likely to exist. 3045 * Make ip_output look for a different IRE 3046 */ 3047 return (NULL); 3048 } 3049 } 3050 if (ire_revalidate_nce(ire) == ENETUNREACH) { 3051 /* The ire_dep_parent chain went bad, or no memory? */ 3052 (void) ire_no_good(ire); 3053 return (NULL); 3054 } 3055 if (ire->ire_ipversion == IPV4_VERSION) { 3056 ASSERT(ipha != NULL); 3057 nce = ire_to_nce(ire, ipha->ipha_dst, NULL); 3058 } else { 3059 ASSERT(ip6h != NULL); 3060 nce = ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst); 3061 } 3062 3063 if (nce == NULL) 3064 return (NULL); 3065 if (nce->nce_is_condemned) { 3066 nce_refrele(nce); 3067 return (NULL); 3068 } 3069 return (nce); 3070 } 3071 3072 /* 3073 * The caller has found that the ire is bad, either due to a reference to an NCE 3074 * in ND_UNREACHABLE state, or a MULTIRT route whose gateway can't be resolved. 3075 * We update things so a subsequent attempt to send to the destination 3076 * is likely to find different IRE, or that a new NCE would be created. 3077 * 3078 * Returns B_TRUE if it is likely that a subsequent ire_ftable_lookup would 3079 * find a different route (either due to having deleted a redirect, or there 3080 * being ECMP routes.) 3081 * 3082 * If we have a redirect (RTF_DYNAMIC) we delete it. 3083 * Otherwise we increment ire_badcnt and increment the generation number so 3084 * that a cached ixa_ire will redo the route selection. ire_badcnt is taken 3085 * into account in the route selection when we have multiple choices (multiple 3086 * default routes or ECMP in general). 3087 * Any time ip_select_route find an ire with a condemned ire_nce_cache 3088 * (e.g., if no equal cost route to the bad one) ip_select_route will make 3089 * sure the NCE is revalidated to avoid getting stuck on a 3090 * NCE_F_CONDMNED ncec that caused ire_no_good to be called. 3091 */ 3092 boolean_t 3093 ire_no_good(ire_t *ire) 3094 { 3095 ip_stack_t *ipst = ire->ire_ipst; 3096 ire_t *ire2; 3097 nce_t *nce; 3098 3099 if (ire->ire_flags & RTF_DYNAMIC) { 3100 ire_delete(ire); 3101 return (B_TRUE); 3102 } 3103 if (ire->ire_flags & RTF_INDIRECT) { 3104 /* Check if next IRE is a redirect */ 3105 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3106 if (ire->ire_dep_parent != NULL && 3107 (ire->ire_dep_parent->ire_flags & RTF_DYNAMIC)) { 3108 ire2 = ire->ire_dep_parent; 3109 ire_refhold(ire2); 3110 } else { 3111 ire2 = NULL; 3112 } 3113 rw_exit(&ipst->ips_ire_dep_lock); 3114 if (ire2 != NULL) { 3115 ire_delete(ire2); 3116 ire_refrele(ire2); 3117 return (B_TRUE); 3118 } 3119 } 3120 /* 3121 * No redirect involved. Increment badcnt so that if we have ECMP 3122 * routes we are likely to pick a different one for the next packet. 3123 * 3124 * If the NCE is unreachable and condemned we should drop the reference 3125 * to it so that a new NCE can be created. 3126 * 3127 * Finally we increment the generation number so that any ixa_ire 3128 * cache will be revalidated. 3129 */ 3130 mutex_enter(&ire->ire_lock); 3131 ire->ire_badcnt++; 3132 ire->ire_last_badcnt = TICK_TO_SEC(ddi_get_lbolt64()); 3133 nce = ire->ire_nce_cache; 3134 if (nce != NULL && nce->nce_is_condemned && 3135 nce->nce_common->ncec_state == ND_UNREACHABLE) 3136 ire->ire_nce_cache = NULL; 3137 else 3138 nce = NULL; 3139 mutex_exit(&ire->ire_lock); 3140 if (nce != NULL) 3141 nce_refrele(nce); 3142 3143 ire_increment_generation(ire); 3144 ire_dep_incr_generation(ire); 3145 3146 return (ire->ire_bucket->irb_ire_cnt > 1); 3147 } 3148 3149 /* 3150 * Walk ire_dep_parent chain and validate that ire_dep_parent->ire_generation == 3151 * ire_dep_parent_generation. 3152 * If they all match we just return ire_generation from the topmost IRE. 3153 * Otherwise we propagate the mismatch by setting all ire_dep_parent_generation 3154 * above the mismatch to IRE_GENERATION_VERIFY and also returning 3155 * IRE_GENERATION_VERIFY. 3156 */ 3157 uint_t 3158 ire_dep_validate_generations(ire_t *ire) 3159 { 3160 ip_stack_t *ipst = ire->ire_ipst; 3161 uint_t generation; 3162 ire_t *ire1; 3163 3164 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3165 generation = ire->ire_generation; /* Assuming things match */ 3166 for (ire1 = ire; ire1 != NULL; ire1 = ire1->ire_dep_parent) { 3167 ASSERT(ire1->ire_ipversion == IPV4_VERSION || 3168 ire1->ire_ipversion == IPV6_VERSION); 3169 if (ire1->ire_dep_parent == NULL) 3170 break; 3171 if (ire1->ire_dep_parent_generation != 3172 ire1->ire_dep_parent->ire_generation) 3173 goto mismatch; 3174 } 3175 rw_exit(&ipst->ips_ire_dep_lock); 3176 return (generation); 3177 3178 mismatch: 3179 generation = IRE_GENERATION_VERIFY; 3180 /* Fill from top down to the mismatch with _VERIFY */ 3181 while (ire != ire1) { 3182 ASSERT(ire->ire_ipversion == IPV4_VERSION || 3183 ire->ire_ipversion == IPV6_VERSION); 3184 mutex_enter(&ire->ire_lock); 3185 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3186 mutex_exit(&ire->ire_lock); 3187 ire = ire->ire_dep_parent; 3188 } 3189 rw_exit(&ipst->ips_ire_dep_lock); 3190 return (generation); 3191 } 3192 3193 /* 3194 * Used when we need to return an ire with ire_dep_parent, but we 3195 * know the chain is invalid for instance we didn't create an IRE_IF_CLONE 3196 * Using IRE_GENERATION_VERIFY means that next time we'll redo the 3197 * recursive lookup. 3198 */ 3199 void 3200 ire_dep_invalidate_generations(ire_t *ire) 3201 { 3202 ip_stack_t *ipst = ire->ire_ipst; 3203 3204 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3205 while (ire != NULL) { 3206 ASSERT(ire->ire_ipversion == IPV4_VERSION || 3207 ire->ire_ipversion == IPV6_VERSION); 3208 mutex_enter(&ire->ire_lock); 3209 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3210 mutex_exit(&ire->ire_lock); 3211 ire = ire->ire_dep_parent; 3212 } 3213 rw_exit(&ipst->ips_ire_dep_lock); 3214 } 3215 3216 /* Set _VERIFY ire_dep_parent_generation for all children recursively */ 3217 static void 3218 ire_dep_invalidate_children(ire_t *child) 3219 { 3220 ip_stack_t *ipst = child->ire_ipst; 3221 3222 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 3223 /* Depth first */ 3224 if (child->ire_dep_children != NULL) 3225 ire_dep_invalidate_children(child->ire_dep_children); 3226 3227 while (child != NULL) { 3228 mutex_enter(&child->ire_lock); 3229 child->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3230 mutex_exit(&child->ire_lock); 3231 child = child->ire_dep_sib_next; 3232 } 3233 } 3234 3235 static void 3236 ire_dep_increment_children(ire_t *child) 3237 { 3238 ip_stack_t *ipst = child->ire_ipst; 3239 3240 ASSERT(RW_READ_HELD(&ipst->ips_ire_dep_lock)); 3241 /* Depth first */ 3242 if (child->ire_dep_children != NULL) 3243 ire_dep_increment_children(child->ire_dep_children); 3244 3245 while (child != NULL) { 3246 if (!IRE_IS_CONDEMNED(child)) 3247 ire_increment_generation(child); 3248 child = child->ire_dep_sib_next; 3249 } 3250 } 3251 3252 /* 3253 * Walk all the children of this ire recursively and increment their 3254 * generation number. 3255 */ 3256 static void 3257 ire_dep_incr_generation_locked(ire_t *parent) 3258 { 3259 ASSERT(RW_READ_HELD(&parent->ire_ipst->ips_ire_dep_lock)); 3260 if (parent->ire_dep_children != NULL) 3261 ire_dep_increment_children(parent->ire_dep_children); 3262 } 3263 3264 void 3265 ire_dep_incr_generation(ire_t *parent) 3266 { 3267 ip_stack_t *ipst = parent->ire_ipst; 3268 3269 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3270 ire_dep_incr_generation_locked(parent); 3271 rw_exit(&ipst->ips_ire_dep_lock); 3272 } 3273 3274 /* 3275 * Get a new ire_nce_cache for this IRE as well as its nexthop. 3276 * Returns zero if it succeeds. Can fail due to lack of memory or when 3277 * the route has become unreachable. Returns ENOMEM and ENETUNREACH in those 3278 * cases. 3279 * 3280 * In the in.mpathd case, the ire will have ire_testhidden 3281 * set; so we should create the ncec for the underlying ill. 3282 * 3283 * Note that the error returned by ire_revalidate_nce() is ignored by most 3284 * callers except ire_handle_condemned_nce(), which handles the ENETUNREACH 3285 * error to mark potentially bad ire's. For all the other callers, an 3286 * error return could indicate a transient condition like ENOMEM, or could 3287 * be the result of an interface that is going down/unplumbing. In the former 3288 * case (transient error), we would leave the old stale ire/ire_nce_cache 3289 * in place, and possibly use incorrect link-layer information to send packets 3290 * but would eventually recover. In the latter case (ill down/replumb), 3291 * ire_revalidate_nce() might return a condemned nce back, but we would then 3292 * recover in the packet output path. 3293 */ 3294 int 3295 ire_revalidate_nce(ire_t *ire) 3296 { 3297 nce_t *nce, *old_nce; 3298 ire_t *nexthop; 3299 3300 /* 3301 * For multicast we conceptually have an NCE but we don't store it 3302 * in ire_nce_cache; when ire_to_nce is called we allocate the nce. 3303 */ 3304 if (ire->ire_type & IRE_MULTICAST) 3305 return (0); 3306 3307 /* ire_testhidden should only be set on under-interfaces */ 3308 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); 3309 3310 nexthop = ire_nexthop(ire); 3311 if (nexthop == NULL) { 3312 /* The route is potentially bad */ 3313 (void) ire_no_good(ire); 3314 return (ENETUNREACH); 3315 } 3316 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3317 ASSERT(ire->ire_ill != NULL); 3318 3319 if (ire->ire_ipversion == IPV4_VERSION) 3320 nce = nce_lookup_v4(ire->ire_ill, &ire->ire_addr); 3321 else 3322 nce = nce_lookup_v6(ire->ire_ill, &ire->ire_addr_v6); 3323 } else { 3324 ASSERT(nexthop->ire_type & IRE_ONLINK); 3325 if (ire->ire_ipversion == IPV4_VERSION) { 3326 nce = arp_nce_init(nexthop->ire_ill, nexthop->ire_addr, 3327 nexthop->ire_type); 3328 } else { 3329 nce = ndp_nce_init(nexthop->ire_ill, 3330 &nexthop->ire_addr_v6, nexthop->ire_type); 3331 } 3332 } 3333 if (nce == NULL) { 3334 /* 3335 * Leave the old stale one in place to avoid a NULL 3336 * ire_nce_cache. 3337 */ 3338 ire_refrele(nexthop); 3339 return (ENOMEM); 3340 } 3341 3342 if (nexthop != ire) { 3343 /* Update the nexthop ire */ 3344 mutex_enter(&nexthop->ire_lock); 3345 old_nce = nexthop->ire_nce_cache; 3346 if (!IRE_IS_CONDEMNED(nexthop)) { 3347 nce_refhold(nce); 3348 nexthop->ire_nce_cache = nce; 3349 } else { 3350 nexthop->ire_nce_cache = NULL; 3351 } 3352 mutex_exit(&nexthop->ire_lock); 3353 if (old_nce != NULL) 3354 nce_refrele(old_nce); 3355 } 3356 ire_refrele(nexthop); 3357 3358 mutex_enter(&ire->ire_lock); 3359 old_nce = ire->ire_nce_cache; 3360 if (!IRE_IS_CONDEMNED(ire)) { 3361 nce_refhold(nce); 3362 ire->ire_nce_cache = nce; 3363 } else { 3364 ire->ire_nce_cache = NULL; 3365 } 3366 mutex_exit(&ire->ire_lock); 3367 if (old_nce != NULL) 3368 nce_refrele(old_nce); 3369 3370 nce_refrele(nce); 3371 return (0); 3372 } 3373 3374 /* 3375 * Get a held nce for a given ire. 3376 * In the common case this is just from ire_nce_cache. 3377 * For IRE_MULTICAST this needs to do an explicit lookup since we do not 3378 * have an IRE_MULTICAST per address. 3379 * Note that this explicitly returns CONDEMNED NCEs. The caller needs those 3380 * so they can check whether the NCE went unreachable (as opposed to was 3381 * condemned for some other reason). 3382 */ 3383 nce_t * 3384 ire_to_nce(ire_t *ire, ipaddr_t v4nexthop, const in6_addr_t *v6nexthop) 3385 { 3386 nce_t *nce; 3387 3388 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 3389 return (NULL); 3390 3391 /* ire_testhidden should only be set on under-interfaces */ 3392 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); 3393 3394 mutex_enter(&ire->ire_lock); 3395 nce = ire->ire_nce_cache; 3396 if (nce != NULL) { 3397 nce_refhold(nce); 3398 mutex_exit(&ire->ire_lock); 3399 return (nce); 3400 } 3401 mutex_exit(&ire->ire_lock); 3402 3403 if (ire->ire_type & IRE_MULTICAST) { 3404 ASSERT(ire->ire_ill != NULL); 3405 3406 if (ire->ire_ipversion == IPV4_VERSION) { 3407 ASSERT(v6nexthop == NULL); 3408 3409 nce = arp_nce_init(ire->ire_ill, v4nexthop, 3410 ire->ire_type); 3411 } else { 3412 ASSERT(v6nexthop != NULL); 3413 ASSERT(v4nexthop == 0); 3414 nce = ndp_nce_init(ire->ire_ill, v6nexthop, 3415 ire->ire_type); 3416 } 3417 return (nce); 3418 } 3419 return (NULL); 3420 } 3421 3422 nce_t * 3423 ire_to_nce_pkt(ire_t *ire, mblk_t *mp) 3424 { 3425 ipha_t *ipha; 3426 ip6_t *ip6h; 3427 3428 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 3429 ipha = (ipha_t *)mp->b_rptr; 3430 return (ire_to_nce(ire, ipha->ipha_dst, NULL)); 3431 } else { 3432 ip6h = (ip6_t *)mp->b_rptr; 3433 return (ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst)); 3434 } 3435 } 3436 3437 /* 3438 * Given an IRE_INTERFACE (that matches more than one address) create 3439 * and return an IRE_IF_CLONE for the specific address. 3440 * Return the generation number. 3441 * Returns NULL is no memory for the IRE. 3442 * Handles both IPv4 and IPv6. 3443 */ 3444 ire_t * 3445 ire_create_if_clone(ire_t *ire_if, const in6_addr_t *addr, uint_t *generationp) 3446 { 3447 ire_t *ire; 3448 ire_t *nire; 3449 3450 if (ire_if->ire_ipversion == IPV4_VERSION) { 3451 ipaddr_t v4addr; 3452 ipaddr_t mask = IP_HOST_MASK; 3453 3454 ASSERT(IN6_IS_ADDR_V4MAPPED(addr)); 3455 IN6_V4MAPPED_TO_IPADDR(addr, v4addr); 3456 3457 ire = ire_create( 3458 (uchar_t *)&v4addr, /* dest address */ 3459 (uchar_t *)&mask, /* mask */ 3460 (uchar_t *)&ire_if->ire_gateway_addr, 3461 IRE_IF_CLONE, /* IRE type */ 3462 ire_if->ire_ill, 3463 ire_if->ire_zoneid, 3464 ire_if->ire_flags | RTF_HOST, 3465 NULL, /* No security attr for IRE_IF_ALL */ 3466 ire_if->ire_ipst); 3467 } else { 3468 ASSERT(!IN6_IS_ADDR_V4MAPPED(addr)); 3469 ire = ire_create_v6( 3470 addr, /* dest address */ 3471 &ipv6_all_ones, /* mask */ 3472 &ire_if->ire_gateway_addr_v6, /* gateway addr */ 3473 IRE_IF_CLONE, /* IRE type */ 3474 ire_if->ire_ill, 3475 ire_if->ire_zoneid, 3476 ire_if->ire_flags | RTF_HOST, 3477 NULL, /* No security attr for IRE_IF_ALL */ 3478 ire_if->ire_ipst); 3479 } 3480 if (ire == NULL) 3481 return (NULL); 3482 3483 /* Take the metrics, in particular the mtu, from the IRE_IF */ 3484 ire->ire_metrics = ire_if->ire_metrics; 3485 3486 nire = ire_add(ire); 3487 if (nire == NULL) /* Some failure */ 3488 return (NULL); 3489 3490 if (generationp != NULL) 3491 *generationp = nire->ire_generation; 3492 3493 /* 3494 * Make sure races don't add a duplicate by 3495 * catching the case when an identical was returned. 3496 */ 3497 if (nire != ire) { 3498 ASSERT(nire->ire_identical_ref > 1); 3499 ire_delete(nire); 3500 } 3501 return (nire); 3502 } 3503 3504 /* 3505 * The argument is an IRE_INTERFACE. Delete all of IRE_IF_CLONE in the 3506 * ire_dep_children (just walk the ire_dep_sib_next since they are all 3507 * immediate children.) 3508 * Since we hold a lock while we remove them we need to defer the actual 3509 * calls to ire_delete() until we have dropped the lock. This makes things 3510 * less efficient since we restart at the top after dropping the lock. But 3511 * we only run when an IRE_INTERFACE is deleted which is infrquent. 3512 * 3513 * Note that ire_dep_children can be any mixture of offlink routes and 3514 * IRE_IF_CLONE entries. 3515 */ 3516 void 3517 ire_dep_delete_if_clone(ire_t *parent) 3518 { 3519 ip_stack_t *ipst = parent->ire_ipst; 3520 ire_t *child, *next; 3521 3522 restart: 3523 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3524 if (parent->ire_dep_children == NULL) { 3525 rw_exit(&ipst->ips_ire_dep_lock); 3526 return; 3527 } 3528 child = parent->ire_dep_children; 3529 while (child != NULL) { 3530 next = child->ire_dep_sib_next; 3531 if ((child->ire_type & IRE_IF_CLONE) && 3532 !IRE_IS_CONDEMNED(child)) { 3533 ire_refhold(child); 3534 rw_exit(&ipst->ips_ire_dep_lock); 3535 ire_delete(child); 3536 ASSERT(IRE_IS_CONDEMNED(child)); 3537 ire_refrele(child); 3538 goto restart; 3539 } 3540 child = next; 3541 } 3542 rw_exit(&ipst->ips_ire_dep_lock); 3543 } 3544 3545 /* 3546 * ire_pref() is used in recursive route-resolution for a destination to 3547 * determine the preference of an ire, where "preference" is determined 3548 * based on the level of indirection to the destination of the ire. 3549 * A higher preference indicates that fewer lookups are needed to complete 3550 * recursive route lookup. Thus 3551 * ire_pref(RTF_INDIRECT) < ire_pref(IRE_IF_RESOLVER) < ire_pref(IRE_PREF_CLONE) 3552 */ 3553 int 3554 ire_pref(ire_t *ire) 3555 { 3556 if (ire->ire_flags & RTF_INDIRECT) 3557 return (1); 3558 if (ire->ire_type & IRE_OFFLINK) 3559 return (2); 3560 if (ire->ire_type & (IRE_IF_RESOLVER|IRE_IF_NORESOLVER)) 3561 return (3); 3562 if (ire->ire_type & IRE_IF_CLONE) 3563 return (4); 3564 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST)) 3565 return (5); 3566 return (-1); /* unknown ire_type */ 3567 } 3568