xref: /titanic_41/usr/src/uts/common/inet/ip/ip_ire.c (revision 0a05e7057ae5537db2da83492d375e6524599463)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 
30 /*
31  * This file contains routines that manipulate Internet Routing Entries (IREs).
32  */
33 
34 #include <sys/types.h>
35 #include <sys/stream.h>
36 #include <sys/stropts.h>
37 #include <sys/ddi.h>
38 #include <sys/cmn_err.h>
39 #include <sys/policy.h>
40 
41 #include <sys/systm.h>
42 #include <sys/kmem.h>
43 #include <sys/param.h>
44 #include <sys/socket.h>
45 #include <net/if.h>
46 #include <net/route.h>
47 #include <netinet/in.h>
48 #include <net/if_dl.h>
49 #include <netinet/ip6.h>
50 #include <netinet/icmp6.h>
51 
52 #include <inet/common.h>
53 #include <inet/mi.h>
54 #include <inet/ip.h>
55 #include <inet/ip6.h>
56 #include <inet/ip_ndp.h>
57 #include <inet/arp.h>
58 #include <inet/ip_if.h>
59 #include <inet/ip_ire.h>
60 #include <inet/ip_ftable.h>
61 #include <inet/ip_rts.h>
62 #include <inet/nd.h>
63 
64 #include <net/pfkeyv2.h>
65 #include <inet/ipsec_info.h>
66 #include <inet/sadb.h>
67 #include <sys/kmem.h>
68 #include <inet/tcp.h>
69 #include <inet/ipclassifier.h>
70 #include <sys/zone.h>
71 #include <sys/cpuvar.h>
72 
73 #include <sys/tsol/label.h>
74 #include <sys/tsol/tnet.h>
75 
76 struct kmem_cache *rt_entry_cache;
77 
78 /*
79  * Synchronization notes:
80  *
81  * The fields of the ire_t struct are protected in the following way :
82  *
83  * ire_next/ire_ptpn
84  *
85  *	- bucket lock of the respective tables (cache or forwarding tables).
86  *
87  * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask,
88  * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif,
89  * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr
90  *
91  *	- Set in ire_create_v4/v6 and never changes after that. Thus,
92  *	  we don't need a lock whenever these fields are accessed.
93  *
94  *	- ire_bucket and ire_masklen (also set in ire_create) is set in
95  *        ire_add_v4/ire_add_v6 before inserting in the bucket and never
96  *        changes after that. Thus we don't need a lock whenever these
97  *	  fields are accessed.
98  *
99  * ire_gateway_addr_v4[v6]
100  *
101  *	- ire_gateway_addr_v4[v6] is set during ire_create and later modified
102  *	  by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
103  *	  it assumed to be atomic and hence the other parts of the code
104  *	  does not use any locks. ire_gateway_addr_v6 updates are not atomic
105  *	  and hence any access to it uses ire_lock to get/set the right value.
106  *
107  * ire_ident, ire_refcnt
108  *
109  *	- Updated atomically using atomic_add_32
110  *
111  * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
112  *
113  *	- Assumes that 32 bit writes are atomic. No locks. ire_lock is
114  *	  used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
115  *
116  * ire_max_frag, ire_frag_flag
117  *
118  *	- ire_lock is used to set/read both of them together.
119  *
120  * ire_tire_mark
121  *
122  *	- Set in ire_create and updated in ire_expire, which is called
123  *	  by only one function namely ip_trash_timer_expire. Thus only
124  *	  one function updates and examines the value.
125  *
126  * ire_marks
127  *	- bucket lock protects this.
128  *
129  * ire_ipsec_overhead/ire_ll_hdr_length
130  *
131  *	- Place holder for returning the information to the upper layers
132  *	  when IRE_DB_REQ comes down.
133  *
134  *
135  * ipv6_ire_default_count is protected by the bucket lock of
136  * ip_forwarding_table_v6[0][0].
137  *
138  * ipv6_ire_default_index is not protected as it  is just a hint
139  * at which default gateway to use. There is nothing
140  * wrong in using the same gateway for two different connections.
141  *
142  * As we always hold the bucket locks in all the places while accessing
143  * the above values, it is natural to use them for protecting them.
144  *
145  * We have a separate cache table and forwarding table for IPv4 and IPv6.
146  * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an
147  * array of irb_t structures. The IPv6 forwarding table
148  * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t
149  *  structure. ip_forwarding_table_v6 is allocated dynamically in
150  * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads
151  * initializing the same bucket. Once a bucket is initialized, it is never
152  * de-alloacted. This assumption enables us to access
153  * ip_forwarding_table_v6[i] without any locks.
154  *
155  * The forwarding table for IPv4 is a radix tree whose leaves
156  * are rt_entry structures containing the irb_t for the rt_dst. The irb_t
157  * for IPv4 is dynamically allocated and freed.
158  *
159  * Each irb_t - ire bucket structure has a lock to protect
160  * a bucket and the ires residing in the bucket have a back pointer to
161  * the bucket structure. It also has a reference count for the number
162  * of threads walking the bucket - irb_refcnt which is bumped up
163  * using the macro IRB_REFHOLD macro. The flags irb_flags can be
164  * set to IRE_MARK_CONDEMNED indicating that there are some ires
165  * in this bucket that are marked with IRE_MARK_CONDEMNED and the
166  * last thread to leave the bucket should delete the ires. Usually
167  * this is done by the IRB_REFRELE macro which is used to decrement
168  * the reference count on a bucket. See comments above irb_t structure
169  * definition in ip.h for further details.
170  *
171  * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/
172  * decrements the reference count, ire_refcnt, atomically on the ire.
173  * ire_refcnt is modified only using this macro. Operations on the IRE
174  * could be described as follows :
175  *
176  * CREATE an ire with reference count initialized to 1.
177  *
178  * ADDITION of an ire holds the bucket lock, checks for duplicates
179  * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after
180  * bumping up once more i.e the reference count is 2. This is to avoid
181  * an extra lookup in the functions calling ire_add which wants to
182  * work with the ire after adding.
183  *
184  * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD
185  * macro. It is valid to bump up the referece count of the IRE,
186  * after the lookup has returned an ire. Following are the lookup
187  * functions that return an HELD ire :
188  *
189  * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6],
190  * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6],
191  * ipif_to_ire[_v6].
192  *
193  * DELETION of an ire holds the bucket lock, removes it from the list
194  * and then decrements the reference count for having removed from the list
195  * by using the IRE_REFRELE macro. If some other thread has looked up
196  * the ire, the reference count would have been bumped up and hence
197  * this ire will not be freed once deleted. It will be freed once the
198  * reference count drops to zero.
199  *
200  * Add and Delete acquires the bucket lock as RW_WRITER, while all the
201  * lookups acquire the bucket lock as RW_READER.
202  *
203  * NOTE : The only functions that does the IRE_REFRELE when an ire is
204  *	  passed as an argument are :
205  *
206  *	  1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the
207  *			   broadcast ires it looks up internally within
208  *			   the function. Currently, for simplicity it does
209  *			   not differentiate the one that is passed in and
210  *			   the ones it looks up internally. It always
211  *			   IRE_REFRELEs.
212  *	  2) ire_send
213  *	     ire_send_v6 : As ire_send calls ip_wput_ire and other functions
214  *			   that take ire as an argument, it has to selectively
215  *			   IRE_REFRELE the ire. To maintain symmetry,
216  *			   ire_send_v6 does the same.
217  *
218  * Otherwise, the general rule is to do the IRE_REFRELE in the function
219  * that is passing the ire as an argument.
220  *
221  * In trying to locate ires the following points are to be noted.
222  *
223  * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is
224  * to be ignored when walking the ires using ire_next.
225  *
226  * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the
227  * benefit of in.mpathd which needs to probe interfaces for failures. Normal
228  * applications should not be seeing this ire and hence this ire is ignored
229  * in most cases in the search using ire_next.
230  *
231  * Zones note:
232  *	Walking IREs within a given zone also walks certain ires in other
233  *	zones.  This is done intentionally.  IRE walks with a specified
234  *	zoneid are used only when doing informational reports, and
235  *	zone users want to see things that they can access. See block
236  *	comment in ire_walk_ill_match().
237  */
238 
239 /*
240  * The minimum size of IRE cache table.  It will be recalcuated in
241  * ip_ire_init().
242  * Setable in /etc/system
243  */
244 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE;
245 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE;
246 
247 /*
248  * The size of the forwarding table.  We will make sure that it is a
249  * power of 2 in ip_ire_init().
250  * Setable in /etc/system
251  */
252 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE;
253 
254 struct	kmem_cache	*ire_cache;
255 static ire_t	ire_null;
256 
257 /*
258  * The threshold number of IRE in a bucket when the IREs are
259  * cleaned up.  This threshold is calculated later in ip_open()
260  * based on the speed of CPU and available memory.  This default
261  * value is the maximum.
262  *
263  * We have two kinds of cached IRE, temporary and
264  * non-temporary.  Temporary IREs are marked with
265  * IRE_MARK_TEMPORARY.  They are IREs created for non
266  * TCP traffic and for forwarding purposes.  All others
267  * are non-temporary IREs.  We don't mark IRE created for
268  * TCP as temporary because TCP is stateful and there are
269  * info stored in the IRE which can be shared by other TCP
270  * connections to the same destination.  For connected
271  * endpoint, we also don't want to mark the IRE used as
272  * temporary because the same IRE will be used frequently,
273  * otherwise, the app should not do a connect().  We change
274  * the marking at ip_bind_connected_*() if necessary.
275  *
276  * We want to keep the cache IRE hash bucket length reasonably
277  * short, otherwise IRE lookup functions will take "forever."
278  * We use the "crude" function that the IRE bucket
279  * length should be based on the CPU speed, which is 1 entry
280  * per x MHz, depending on the shift factor ip_ire_cpu_ratio
281  * (n).  This means that with a 750MHz CPU, the max bucket
282  * length can be (750 >> n) entries.
283  *
284  * Note that this threshold is separate for temp and non-temp
285  * IREs.  This means that the actual bucket length can be
286  * twice as that.  And while we try to keep temporary IRE
287  * length at most at the threshold value, we do not attempt to
288  * make the length for non-temporary IREs fixed, for the
289  * reason stated above.  Instead, we start trying to find
290  * "unused" non-temporary IREs when the bucket length reaches
291  * this threshold and clean them up.
292  *
293  * We also want to limit the amount of memory used by
294  * IREs.  So if we are allowed to use ~3% of memory (M)
295  * for those IREs, each bucket should not have more than
296  *
297  * 	M / num of cache bucket / sizeof (ire_t)
298  *
299  * Again the above memory uses are separate for temp and
300  * non-temp cached IREs.
301  *
302  * We may also want the limit to be a function of the number
303  * of interfaces and number of CPUs.  Doing the initialization
304  * in ip_open() means that every time an interface is plumbed,
305  * the max is re-calculated.  Right now, we don't do anything
306  * different.  In future, when we have more experience, we
307  * may want to change this behavior.
308  */
309 uint32_t ip_ire_max_bucket_cnt = 10;	/* Setable in /etc/system */
310 uint32_t ip6_ire_max_bucket_cnt = 10;
311 uint32_t ip_ire_cleanup_cnt = 2;
312 
313 /*
314  * The minimum of the temporary IRE bucket count.  We do not want
315  * the length of each bucket to be too short.  This may hurt
316  * performance of some apps as the temporary IREs are removed too
317  * often.
318  */
319 uint32_t ip_ire_min_bucket_cnt = 3;	/* /etc/system - not used */
320 uint32_t ip6_ire_min_bucket_cnt = 3;
321 
322 /*
323  * The ratio of memory consumed by IRE used for temporary to available
324  * memory.  This is a shift factor, so 6 means the ratio 1 to 64.  This
325  * value can be changed in /etc/system.  6 is a reasonable number.
326  */
327 uint32_t ip_ire_mem_ratio = 6;	/* /etc/system */
328 /* The shift factor for CPU speed to calculate the max IRE bucket length. */
329 uint32_t ip_ire_cpu_ratio = 7;	/* /etc/system */
330 
331 typedef struct nce_clookup_s {
332 	ipaddr_t ncecl_addr;
333 	boolean_t ncecl_found;
334 } nce_clookup_t;
335 
336 /*
337  * The maximum number of buckets in IRE cache table.  In future, we may
338  * want to make it a dynamic hash table.  For the moment, we fix the
339  * size and allocate the table in ip_ire_init() when IP is first loaded.
340  * We take into account the amount of memory a system has.
341  */
342 #define	IP_MAX_CACHE_TABLE_SIZE	4096
343 
344 /* Setable in /etc/system */
345 static uint32_t	ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
346 static uint32_t	ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
347 
348 #define	NUM_ILLS	2	/* To build the ILL list to unlock */
349 
350 /* Zero iulp_t for initialization. */
351 const iulp_t	ire_uinfo_null = { 0 };
352 
353 static int	ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
354     ipsq_func_t func, boolean_t);
355 static void	ire_delete_v4(ire_t *ire);
356 static void	ire_report_ctable(ire_t *ire, char *mp);
357 static void	ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers,
358     zoneid_t zoneid, ip_stack_t *);
359 static void	ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type,
360     pfv_t func, void *arg, uchar_t vers, ill_t *ill);
361 static void	ire_cache_cleanup(irb_t *irb, uint32_t threshold,
362     ire_t *ref_ire);
363 static	void	ip_nce_clookup_and_delete(nce_t *nce, void *arg);
364 #ifdef DEBUG
365 static void	ire_trace_cleanup(const ire_t *);
366 #endif
367 
368 /*
369  * To avoid bloating the code, we call this function instead of
370  * using the macro IRE_REFRELE. Use macro only in performance
371  * critical paths.
372  *
373  * Must not be called while holding any locks. Otherwise if this is
374  * the last reference to be released there is a chance of recursive mutex
375  * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
376  * to restart an ioctl. The one exception is when the caller is sure that
377  * this is not the last reference to be released. Eg. if the caller is
378  * sure that the ire has not been deleted and won't be deleted.
379  */
380 void
381 ire_refrele(ire_t *ire)
382 {
383 	IRE_REFRELE(ire);
384 }
385 
386 void
387 ire_refrele_notr(ire_t *ire)
388 {
389 	IRE_REFRELE_NOTR(ire);
390 }
391 
392 /*
393  * kmem_cache_alloc constructor for IRE in kma space.
394  * Note that when ire_mp is set the IRE is stored in that mblk and
395  * not in this cache.
396  */
397 /* ARGSUSED */
398 static int
399 ip_ire_constructor(void *buf, void *cdrarg, int kmflags)
400 {
401 	ire_t	*ire = buf;
402 
403 	ire->ire_nce = NULL;
404 
405 	return (0);
406 }
407 
408 /* ARGSUSED1 */
409 static void
410 ip_ire_destructor(void *buf, void *cdrarg)
411 {
412 	ire_t	*ire = buf;
413 
414 	ASSERT(ire->ire_nce == NULL);
415 }
416 
417 /*
418  * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY
419  * IOCTL.  It is used by TCP (or other ULPs) to supply revised information
420  * for an existing CACHED IRE.
421  */
422 /* ARGSUSED */
423 int
424 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
425 {
426 	uchar_t	*addr_ucp;
427 	ipic_t	*ipic;
428 	ire_t	*ire;
429 	ipaddr_t	addr;
430 	in6_addr_t	v6addr;
431 	irb_t	*irb;
432 	zoneid_t	zoneid;
433 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
434 
435 	ASSERT(q->q_next == NULL);
436 	zoneid = Q_TO_CONN(q)->conn_zoneid;
437 
438 	/*
439 	 * Check privilege using the ioctl credential; if it is NULL
440 	 * then this is a kernel message and therefor privileged.
441 	 */
442 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
443 		return (EPERM);
444 
445 	ipic = (ipic_t *)mp->b_rptr;
446 	if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset,
447 	    ipic->ipic_addr_length))) {
448 		return (EINVAL);
449 	}
450 	if (!OK_32PTR(addr_ucp))
451 		return (EINVAL);
452 	switch (ipic->ipic_addr_length) {
453 	case IP_ADDR_LEN: {
454 		/* Extract the destination address. */
455 		addr = *(ipaddr_t *)addr_ucp;
456 		/* Find the corresponding IRE. */
457 		ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
458 		break;
459 	}
460 	case IPV6_ADDR_LEN: {
461 		/* Extract the destination address. */
462 		v6addr = *(in6_addr_t *)addr_ucp;
463 		/* Find the corresponding IRE. */
464 		ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst);
465 		break;
466 	}
467 	default:
468 		return (EINVAL);
469 	}
470 
471 	if (ire == NULL)
472 		return (ENOENT);
473 	/*
474 	 * Update the round trip time estimate and/or the max frag size
475 	 * and/or the slow start threshold.
476 	 *
477 	 * We serialize multiple advises using ire_lock.
478 	 */
479 	mutex_enter(&ire->ire_lock);
480 	if (ipic->ipic_rtt) {
481 		/*
482 		 * If there is no old cached values, initialize them
483 		 * conservatively.  Set them to be (1.5 * new value).
484 		 */
485 		if (ire->ire_uinfo.iulp_rtt != 0) {
486 			ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt +
487 			    ipic->ipic_rtt) >> 1;
488 		} else {
489 			ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt +
490 			    (ipic->ipic_rtt >> 1);
491 		}
492 		if (ire->ire_uinfo.iulp_rtt_sd != 0) {
493 			ire->ire_uinfo.iulp_rtt_sd =
494 			    (ire->ire_uinfo.iulp_rtt_sd +
495 			    ipic->ipic_rtt_sd) >> 1;
496 		} else {
497 			ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd +
498 			    (ipic->ipic_rtt_sd >> 1);
499 		}
500 	}
501 	if (ipic->ipic_max_frag)
502 		ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET);
503 	if (ipic->ipic_ssthresh != 0) {
504 		if (ire->ire_uinfo.iulp_ssthresh != 0)
505 			ire->ire_uinfo.iulp_ssthresh =
506 			    (ipic->ipic_ssthresh +
507 			    ire->ire_uinfo.iulp_ssthresh) >> 1;
508 		else
509 			ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh;
510 	}
511 	/*
512 	 * Don't need the ire_lock below this. ire_type does not change
513 	 * after initialization. ire_marks is protected by irb_lock.
514 	 */
515 	mutex_exit(&ire->ire_lock);
516 
517 	if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) {
518 		/*
519 		 * Only increment the temporary IRE count if the original
520 		 * IRE is not already marked temporary.
521 		 */
522 		irb = ire->ire_bucket;
523 		rw_enter(&irb->irb_lock, RW_WRITER);
524 		if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) &&
525 		    !(ire->ire_marks & IRE_MARK_TEMPORARY)) {
526 			irb->irb_tmp_ire_cnt++;
527 		}
528 		ire->ire_marks |= ipic->ipic_ire_marks;
529 		rw_exit(&irb->irb_lock);
530 	}
531 
532 	ire_refrele(ire);
533 	return (0);
534 }
535 
536 /*
537  * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
538  * IOCTL[s].  The NO_REPLY form is used by TCP to delete a route IRE
539  * for a host that is not responding.  This will force an attempt to
540  * establish a new route, if available, and flush out the ARP entry so
541  * it will re-resolve.  Management processes may want to use the
542  * version that generates a reply.
543  *
544  * This function does not support IPv6 since Neighbor Unreachability Detection
545  * means that negative advise like this is useless.
546  */
547 /* ARGSUSED */
548 int
549 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
550 {
551 	uchar_t		*addr_ucp;
552 	ipaddr_t	addr;
553 	ire_t		*ire;
554 	ipid_t		*ipid;
555 	boolean_t	routing_sock_info = B_FALSE;	/* Sent info? */
556 	zoneid_t	zoneid;
557 	ire_t		*gire = NULL;
558 	ill_t		*ill;
559 	mblk_t		*arp_mp;
560 	ip_stack_t	*ipst;
561 
562 	ASSERT(q->q_next == NULL);
563 	zoneid = Q_TO_CONN(q)->conn_zoneid;
564 	ipst = CONNQ_TO_IPST(q);
565 
566 	/*
567 	 * Check privilege using the ioctl credential; if it is NULL
568 	 * then this is a kernel message and therefor privileged.
569 	 */
570 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
571 		return (EPERM);
572 
573 	ipid = (ipid_t *)mp->b_rptr;
574 
575 	/* Only actions on IRE_CACHEs are acceptable at present. */
576 	if (ipid->ipid_ire_type != IRE_CACHE)
577 		return (EINVAL);
578 
579 	addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset,
580 	    ipid->ipid_addr_length);
581 	if (addr_ucp == NULL || !OK_32PTR(addr_ucp))
582 		return (EINVAL);
583 	switch (ipid->ipid_addr_length) {
584 	case IP_ADDR_LEN:
585 		/* addr_ucp points at IP addr */
586 		break;
587 	case sizeof (sin_t): {
588 		sin_t	*sin;
589 		/*
590 		 * got complete (sockaddr) address - increment addr_ucp to point
591 		 * at the ip_addr field.
592 		 */
593 		sin = (sin_t *)addr_ucp;
594 		addr_ucp = (uchar_t *)&sin->sin_addr.s_addr;
595 		break;
596 	}
597 	default:
598 		return (EINVAL);
599 	}
600 	/* Extract the destination address. */
601 	bcopy(addr_ucp, &addr, IP_ADDR_LEN);
602 
603 	/* Try to find the CACHED IRE. */
604 	ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
605 
606 	/* Nail it. */
607 	if (ire) {
608 		/* Allow delete only on CACHE entries */
609 		if (ire->ire_type != IRE_CACHE) {
610 			ire_refrele(ire);
611 			return (EINVAL);
612 		}
613 
614 		/*
615 		 * Verify that the IRE has been around for a while.
616 		 * This is to protect against transport protocols
617 		 * that are too eager in sending delete messages.
618 		 */
619 		if (gethrestime_sec() <
620 		    ire->ire_create_time + ipst->ips_ip_ignore_delete_time) {
621 			ire_refrele(ire);
622 			return (EINVAL);
623 		}
624 		/*
625 		 * Now we have a potentially dead cache entry. We need
626 		 * to remove it.
627 		 * If this cache entry is generated from a
628 		 * default route (i.e., ire_cmask == 0),
629 		 * search the default list and mark it dead and some
630 		 * background process will try to activate it.
631 		 */
632 		if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) {
633 			/*
634 			 * Make sure that we pick a different
635 			 * IRE_DEFAULT next time.
636 			 */
637 			ire_t *gw_ire;
638 			irb_t *irb = NULL;
639 			uint_t match_flags;
640 
641 			match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE);
642 
643 			gire = ire_ftable_lookup(ire->ire_addr,
644 			    ire->ire_cmask, 0, 0,
645 			    ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags,
646 			    ipst);
647 
648 			ip3dbg(("ire_ftable_lookup() returned gire %p\n",
649 			    (void *)gire));
650 
651 			if (gire != NULL) {
652 				irb = gire->ire_bucket;
653 
654 				/*
655 				 * We grab it as writer just to serialize
656 				 * multiple threads trying to bump up
657 				 * irb_rr_origin
658 				 */
659 				rw_enter(&irb->irb_lock, RW_WRITER);
660 				if ((gw_ire = irb->irb_rr_origin) == NULL) {
661 					rw_exit(&irb->irb_lock);
662 					goto done;
663 				}
664 
665 				DTRACE_PROBE1(ip__ire__del__origin,
666 				    (ire_t *), gw_ire);
667 
668 				/* Skip past the potentially bad gateway */
669 				if (ire->ire_gateway_addr ==
670 				    gw_ire->ire_gateway_addr) {
671 					ire_t *next = gw_ire->ire_next;
672 
673 					DTRACE_PROBE2(ip__ire__del,
674 					    (ire_t *), gw_ire, (irb_t *), irb);
675 					IRE_FIND_NEXT_ORIGIN(next);
676 					irb->irb_rr_origin = next;
677 				}
678 				rw_exit(&irb->irb_lock);
679 			}
680 		}
681 done:
682 		if (gire != NULL)
683 			IRE_REFRELE(gire);
684 		/* report the bad route to routing sockets */
685 		ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr,
686 		    ire->ire_mask, ire->ire_src_addr, 0, 0, 0,
687 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst);
688 		routing_sock_info = B_TRUE;
689 
690 		/*
691 		 * TCP is really telling us to start over completely, and it
692 		 * expects that we'll resend the ARP query.  Tell ARP to
693 		 * discard the entry, if this is a local destination.
694 		 */
695 		ill = ire->ire_stq->q_ptr;
696 		if (ire->ire_gateway_addr == 0 &&
697 		    (arp_mp = ill_ared_alloc(ill, addr)) != NULL) {
698 			putnext(ill->ill_rq, arp_mp);
699 		}
700 
701 		ire_delete(ire);
702 		ire_refrele(ire);
703 	}
704 	/*
705 	 * Also look for an IRE_HOST type redirect ire and
706 	 * remove it if present.
707 	 */
708 	ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL,
709 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
710 
711 	/* Nail it. */
712 	if (ire != NULL) {
713 		if (ire->ire_flags & RTF_DYNAMIC) {
714 			if (!routing_sock_info) {
715 				ip_rts_change(RTM_LOSING, ire->ire_addr,
716 				    ire->ire_gateway_addr, ire->ire_mask,
717 				    ire->ire_src_addr, 0, 0, 0,
718 				    (RTA_DST | RTA_GATEWAY |
719 				    RTA_NETMASK | RTA_IFA),
720 				    ipst);
721 			}
722 			ire_delete(ire);
723 		}
724 		ire_refrele(ire);
725 	}
726 	return (0);
727 }
728 
729 /*
730  * Named Dispatch routine to produce a formatted report on all IREs.
731  * This report is accessed by using the ndd utility to "get" ND variable
732  * "ipv4_ire_status".
733  */
734 /* ARGSUSED */
735 int
736 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
737 {
738 	zoneid_t zoneid;
739 	ip_stack_t	*ipst;
740 
741 	if (CONN_Q(q))
742 		ipst = CONNQ_TO_IPST(q);
743 	else
744 		ipst = ILLQ_TO_IPST(q);
745 
746 	(void) mi_mpprintf(mp,
747 	    "IRE      " MI_COL_HDRPAD_STR
748 	/*   01234567[89ABCDEF] */
749 	    "rfq      " MI_COL_HDRPAD_STR
750 	/*   01234567[89ABCDEF] */
751 	    "stq      " MI_COL_HDRPAD_STR
752 	/*   01234567[89ABCDEF] */
753 	    " zone "
754 	/*   12345 */
755 	    "addr            mask            "
756 	/*   123.123.123.123 123.123.123.123 */
757 	    "src             gateway         mxfrg rtt   rtt_sd ssthresh ref "
758 	/*   123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */
759 	    "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe "
760 	/*   123456 123456789 123456789 123456 12345678 1234 12345678 */
761 	    "recvpipe in/out/forward type");
762 	/*   12345678 in/out/forward xxxxxxxxxx */
763 
764 	/*
765 	 * Because of the ndd constraint, at most we can have 64K buffer
766 	 * to put in all IRE info.  So to be more efficient, just
767 	 * allocate a 64K buffer here, assuming we need that large buffer.
768 	 * This should be OK as only root can do ndd /dev/ip.
769 	 */
770 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
771 		/* The following may work even if we cannot get a large buf. */
772 		(void) mi_mpprintf(mp, "<< Out of buffer >>\n");
773 		return (0);
774 	}
775 
776 	zoneid = Q_TO_CONN(q)->conn_zoneid;
777 	if (zoneid == GLOBAL_ZONEID)
778 		zoneid = ALL_ZONES;
779 
780 	ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid, ipst);
781 	ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid, ipst);
782 
783 	return (0);
784 }
785 
786 
787 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */
788 static void
789 ire_report_ctable(ire_t *ire, char *mp)
790 {
791 	char	buf1[16];
792 	char	buf2[16];
793 	char	buf3[16];
794 	char	buf4[16];
795 	uint_t	fo_pkt_count;
796 	uint_t	ib_pkt_count;
797 	int	ref;
798 	uint_t	print_len, buf_len;
799 
800 	if ((ire->ire_type & IRE_CACHETABLE) == 0)
801 		return;
802 	buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr;
803 	if (buf_len <= 0)
804 		return;
805 
806 	/* Number of active references of this ire */
807 	ref = ire->ire_refcnt;
808 	/* "inbound" to a non local address is a forward */
809 	ib_pkt_count = ire->ire_ib_pkt_count;
810 	fo_pkt_count = 0;
811 	if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) {
812 		fo_pkt_count = ib_pkt_count;
813 		ib_pkt_count = 0;
814 	}
815 	print_len =  snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len,
816 	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d "
817 	    "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d "
818 	    "%04d %08d %08d %d/%d/%d %s\n",
819 	    (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq,
820 	    (int)ire->ire_zoneid,
821 	    ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2),
822 	    ip_dot_addr(ire->ire_src_addr, buf3),
823 	    ip_dot_addr(ire->ire_gateway_addr, buf4),
824 	    ire->ire_max_frag, ire->ire_uinfo.iulp_rtt,
825 	    ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref,
826 	    ire->ire_uinfo.iulp_rtomax,
827 	    (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0),
828 	    (ire->ire_uinfo.iulp_wscale_ok ? 1: 0),
829 	    (ire->ire_uinfo.iulp_ecn_ok ? 1: 0),
830 	    (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0),
831 	    ire->ire_uinfo.iulp_sack,
832 	    ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe,
833 	    ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count,
834 	    ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type));
835 	if (print_len < buf_len) {
836 		((mblk_t *)mp)->b_wptr += print_len;
837 	} else {
838 		((mblk_t *)mp)->b_wptr += buf_len;
839 	}
840 }
841 
842 /*
843  * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed
844  * down from the Upper Level Protocol to request a copy of the IRE (to check
845  * its type or to extract information like round-trip time estimates or the
846  * MTU.)
847  * The address is assumed to be in the ire_addr field. If no IRE is found
848  * an IRE is returned with ire_type being zero.
849  * Note that the upper lavel protocol has to check for broadcast
850  * (IRE_BROADCAST) and multicast (CLASSD(addr)).
851  * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the
852  * end of the returned message.
853  *
854  * TCP sends down a message of this type with a connection request packet
855  * chained on. UDP and ICMP send it down to verify that a route exists for
856  * the destination address when they get connected.
857  */
858 void
859 ip_ire_req(queue_t *q, mblk_t *mp)
860 {
861 	ire_t	*inire;
862 	ire_t	*ire;
863 	mblk_t	*mp1;
864 	ire_t	*sire = NULL;
865 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
866 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
867 
868 	ASSERT(q->q_next == NULL);
869 
870 	if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) ||
871 	    !OK_32PTR(mp->b_rptr)) {
872 		freemsg(mp);
873 		return;
874 	}
875 	inire = (ire_t *)mp->b_rptr;
876 	/*
877 	 * Got it, now take our best shot at an IRE.
878 	 */
879 	if (inire->ire_ipversion == IPV6_VERSION) {
880 		ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0,
881 		    NULL, &sire, zoneid, NULL,
882 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
883 	} else {
884 		ASSERT(inire->ire_ipversion == IPV4_VERSION);
885 		ire = ire_route_lookup(inire->ire_addr, 0, 0, 0,
886 		    NULL, &sire, zoneid, NULL,
887 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
888 	}
889 
890 	/*
891 	 * We prevent returning IRES with source address INADDR_ANY
892 	 * as these were temporarily created for sending packets
893 	 * from endpoints that have conn_unspec_src set.
894 	 */
895 	if (ire == NULL ||
896 	    (ire->ire_ipversion == IPV4_VERSION &&
897 	    ire->ire_src_addr == INADDR_ANY) ||
898 	    (ire->ire_ipversion == IPV6_VERSION &&
899 	    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) {
900 		inire->ire_type = 0;
901 	} else {
902 		bcopy(ire, inire, sizeof (ire_t));
903 		/* Copy the route metrics from the parent. */
904 		if (sire != NULL) {
905 			bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo),
906 			    sizeof (iulp_t));
907 		}
908 
909 		/*
910 		 * As we don't lookup global policy here, we may not
911 		 * pass the right size if per-socket policy is not
912 		 * present. For these cases, path mtu discovery will
913 		 * do the right thing.
914 		 */
915 		inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q));
916 
917 		/* Pass the latest setting of the ip_path_mtu_discovery */
918 		inire->ire_frag_flag |=
919 		    (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
920 	}
921 	if (ire != NULL)
922 		ire_refrele(ire);
923 	if (sire != NULL)
924 		ire_refrele(sire);
925 	mp->b_wptr = &mp->b_rptr[sizeof (ire_t)];
926 	mp->b_datap->db_type = IRE_DB_TYPE;
927 
928 	/* Put the IRE_DB_TYPE mblk last in the chain */
929 	mp1 = mp->b_cont;
930 	if (mp1 != NULL) {
931 		mp->b_cont = NULL;
932 		linkb(mp1, mp);
933 		mp = mp1;
934 	}
935 	qreply(q, mp);
936 }
937 
938 /*
939  * Send a packet using the specified IRE.
940  * If ire_src_addr_v6 is all zero then discard the IRE after
941  * the packet has been sent.
942  */
943 static void
944 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire)
945 {
946 	mblk_t *ipsec_mp;
947 	boolean_t is_secure;
948 	uint_t ifindex;
949 	ill_t	*ill;
950 	zoneid_t zoneid = ire->ire_zoneid;
951 	ip_stack_t	*ipst = ire->ire_ipst;
952 
953 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
954 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
955 	ipsec_mp = pkt;
956 	is_secure = (pkt->b_datap->db_type == M_CTL);
957 	if (is_secure) {
958 		ipsec_out_t *io;
959 
960 		pkt = pkt->b_cont;
961 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
962 		if (io->ipsec_out_type == IPSEC_OUT)
963 			zoneid = io->ipsec_out_zoneid;
964 	}
965 
966 	/* If the packet originated externally then */
967 	if (pkt->b_prev) {
968 		ire_refrele(ire);
969 		/*
970 		 * Extract the ifindex from b_prev (set in ip_rput_noire).
971 		 * Look up interface to see if it still exists (it could have
972 		 * been unplumbed by the time the reply came back from ARP)
973 		 */
974 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
975 		ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
976 		    NULL, NULL, NULL, NULL, ipst);
977 		if (ill == NULL) {
978 			pkt->b_prev = NULL;
979 			pkt->b_next = NULL;
980 			freemsg(ipsec_mp);
981 			return;
982 		}
983 		q = ill->ill_rq;
984 		pkt->b_prev = NULL;
985 		/*
986 		 * This packet has not gone through IPSEC processing
987 		 * and hence we should not have any IPSEC message
988 		 * prepended.
989 		 */
990 		ASSERT(ipsec_mp == pkt);
991 		put(q, pkt);
992 		ill_refrele(ill);
993 	} else if (pkt->b_next) {
994 		/* Packets from multicast router */
995 		pkt->b_next = NULL;
996 		/*
997 		 * We never get the IPSEC_OUT while forwarding the
998 		 * packet for multicast router.
999 		 */
1000 		ASSERT(ipsec_mp == pkt);
1001 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL);
1002 		ire_refrele(ire);
1003 	} else {
1004 		/* Locally originated packets */
1005 		boolean_t is_inaddr_any;
1006 		ipha_t *ipha = (ipha_t *)pkt->b_rptr;
1007 
1008 		/*
1009 		 * We need to do an ire_delete below for which
1010 		 * we need to make sure that the IRE will be
1011 		 * around even after calling ip_wput_ire -
1012 		 * which does ire_refrele. Otherwise somebody
1013 		 * could potentially delete this ire and hence
1014 		 * free this ire and we will be calling ire_delete
1015 		 * on a freed ire below.
1016 		 */
1017 		is_inaddr_any = (ire->ire_src_addr == INADDR_ANY);
1018 		if (is_inaddr_any) {
1019 			IRE_REFHOLD(ire);
1020 		}
1021 		/*
1022 		 * If we were resolving a router we can not use the
1023 		 * routers IRE for sending the packet (since it would
1024 		 * violate the uniqness of the IP idents) thus we
1025 		 * make another pass through ip_wput to create the IRE_CACHE
1026 		 * for the destination.
1027 		 * When IRE_MARK_NOADD is set, ire_add() is not called.
1028 		 * Thus ip_wput() will never find a ire and result in an
1029 		 * infinite loop. Thus we check whether IRE_MARK_NOADD is
1030 		 * is set. This also implies that IRE_MARK_NOADD can only be
1031 		 * used to send packets to directly connected hosts.
1032 		 */
1033 		if (ipha->ipha_dst != ire->ire_addr &&
1034 		    !(ire->ire_marks & IRE_MARK_NOADD)) {
1035 			ire_refrele(ire);	/* Held in ire_add */
1036 			if (CONN_Q(q)) {
1037 				(void) ip_output(Q_TO_CONN(q), ipsec_mp, q,
1038 				    IRE_SEND);
1039 			} else {
1040 				(void) ip_output((void *)(uintptr_t)zoneid,
1041 				    ipsec_mp, q, IRE_SEND);
1042 			}
1043 		} else {
1044 			if (is_secure) {
1045 				ipsec_out_t *oi;
1046 				ipha_t *ipha;
1047 
1048 				oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1049 				ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
1050 				if (oi->ipsec_out_proc_begin) {
1051 					/*
1052 					 * This is the case where
1053 					 * ip_wput_ipsec_out could not find
1054 					 * the IRE and recreated a new one.
1055 					 * As ip_wput_ipsec_out does ire
1056 					 * lookups, ire_refrele for the extra
1057 					 * bump in ire_add.
1058 					 */
1059 					ire_refrele(ire);
1060 					ip_wput_ipsec_out(q, ipsec_mp, ipha,
1061 					    NULL, NULL);
1062 				} else {
1063 					/*
1064 					 * IRE_REFRELE will be done in
1065 					 * ip_wput_ire.
1066 					 */
1067 					ip_wput_ire(q, ipsec_mp, ire, NULL,
1068 					    IRE_SEND, zoneid);
1069 				}
1070 			} else {
1071 				/*
1072 				 * IRE_REFRELE will be done in ip_wput_ire.
1073 				 */
1074 				ip_wput_ire(q, ipsec_mp, ire, NULL,
1075 				    IRE_SEND, zoneid);
1076 			}
1077 		}
1078 		/*
1079 		 * Special code to support sending a single packet with
1080 		 * conn_unspec_src using an IRE which has no source address.
1081 		 * The IRE is deleted here after sending the packet to avoid
1082 		 * having other code trip on it. But before we delete the
1083 		 * ire, somebody could have looked up this ire.
1084 		 * We prevent returning/using this IRE by the upper layers
1085 		 * by making checks to NULL source address in other places
1086 		 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected.
1087 		 * Though, this does not completely prevent other threads
1088 		 * from using this ire, this should not cause any problems.
1089 		 *
1090 		 * NOTE : We use is_inaddr_any instead of using ire_src_addr
1091 		 * because for the normal case i.e !is_inaddr_any, ire_refrele
1092 		 * above could have potentially freed the ire.
1093 		 */
1094 		if (is_inaddr_any) {
1095 			/*
1096 			 * If this IRE has been deleted by another thread, then
1097 			 * ire_bucket won't be NULL, but ire_ptpn will be NULL.
1098 			 * Thus, ire_delete will do nothing.  This check
1099 			 * guards against calling ire_delete when the IRE was
1100 			 * never inserted in the table, which is handled by
1101 			 * ire_delete as dropping another reference.
1102 			 */
1103 			if (ire->ire_bucket != NULL) {
1104 				ip1dbg(("ire_send: delete IRE\n"));
1105 				ire_delete(ire);
1106 			}
1107 			ire_refrele(ire);	/* Held above */
1108 		}
1109 	}
1110 }
1111 
1112 /*
1113  * Send a packet using the specified IRE.
1114  * If ire_src_addr_v6 is all zero then discard the IRE after
1115  * the packet has been sent.
1116  */
1117 static void
1118 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire)
1119 {
1120 	mblk_t *ipsec_mp;
1121 	boolean_t secure;
1122 	uint_t ifindex;
1123 	zoneid_t zoneid = ire->ire_zoneid;
1124 	ip_stack_t	*ipst = ire->ire_ipst;
1125 
1126 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
1127 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
1128 	if (pkt->b_datap->db_type == M_CTL) {
1129 		ipsec_out_t *io;
1130 
1131 		ipsec_mp = pkt;
1132 		pkt = pkt->b_cont;
1133 		secure = B_TRUE;
1134 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
1135 		if (io->ipsec_out_type == IPSEC_OUT)
1136 			zoneid = io->ipsec_out_zoneid;
1137 	} else {
1138 		ipsec_mp = pkt;
1139 		secure = B_FALSE;
1140 	}
1141 
1142 	/* If the packet originated externally then */
1143 	if (pkt->b_prev) {
1144 		ill_t	*ill;
1145 		/*
1146 		 * Extract the ifindex from b_prev (set in ip_rput_data_v6).
1147 		 * Look up interface to see if it still exists (it could have
1148 		 * been unplumbed by the time the reply came back from the
1149 		 * resolver).
1150 		 */
1151 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
1152 		ill = ill_lookup_on_ifindex(ifindex, B_TRUE,
1153 		    NULL, NULL, NULL, NULL, ipst);
1154 		if (ill == NULL) {
1155 			pkt->b_prev = NULL;
1156 			pkt->b_next = NULL;
1157 			freemsg(ipsec_mp);
1158 			ire_refrele(ire);	/* Held in ire_add */
1159 			return;
1160 		}
1161 		q = ill->ill_rq;
1162 		pkt->b_prev = NULL;
1163 		/*
1164 		 * This packet has not gone through IPSEC processing
1165 		 * and hence we should not have any IPSEC message
1166 		 * prepended.
1167 		 */
1168 		ASSERT(ipsec_mp == pkt);
1169 		put(q, pkt);
1170 		ill_refrele(ill);
1171 	} else if (pkt->b_next) {
1172 		/* Packets from multicast router */
1173 		pkt->b_next = NULL;
1174 		/*
1175 		 * We never get the IPSEC_OUT while forwarding the
1176 		 * packet for multicast router.
1177 		 */
1178 		ASSERT(ipsec_mp == pkt);
1179 		/*
1180 		 * XXX TODO IPv6.
1181 		 */
1182 		freemsg(pkt);
1183 #ifdef XXX
1184 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL);
1185 #endif
1186 	} else {
1187 		if (secure) {
1188 			ipsec_out_t *oi;
1189 			ip6_t *ip6h;
1190 
1191 			oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1192 			ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr;
1193 			if (oi->ipsec_out_proc_begin) {
1194 				/*
1195 				 * This is the case where
1196 				 * ip_wput_ipsec_out could not find
1197 				 * the IRE and recreated a new one.
1198 				 */
1199 				ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h,
1200 				    NULL, NULL);
1201 			} else {
1202 				if (CONN_Q(q)) {
1203 					(void) ip_output_v6(Q_TO_CONN(q),
1204 					    ipsec_mp, q, IRE_SEND);
1205 				} else {
1206 					(void) ip_output_v6(
1207 					    (void *)(uintptr_t)zoneid,
1208 					    ipsec_mp, q, IRE_SEND);
1209 				}
1210 			}
1211 		} else {
1212 			/*
1213 			 * Send packets through ip_output_v6 so that any
1214 			 * ip6_info header can be processed again.
1215 			 */
1216 			if (CONN_Q(q)) {
1217 				(void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q,
1218 				    IRE_SEND);
1219 			} else {
1220 				(void) ip_output_v6((void *)(uintptr_t)zoneid,
1221 				    ipsec_mp, q, IRE_SEND);
1222 			}
1223 		}
1224 		/*
1225 		 * Special code to support sending a single packet with
1226 		 * conn_unspec_src using an IRE which has no source address.
1227 		 * The IRE is deleted here after sending the packet to avoid
1228 		 * having other code trip on it. But before we delete the
1229 		 * ire, somebody could have looked up this ire.
1230 		 * We prevent returning/using this IRE by the upper layers
1231 		 * by making checks to NULL source address in other places
1232 		 * like e.g ip_ire_append_v6, ip_ire_req and
1233 		 * ip_bind_connected_v6. Though, this does not completely
1234 		 * prevent other threads from using this ire, this should
1235 		 * not cause any problems.
1236 		 */
1237 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) {
1238 			ip1dbg(("ire_send_v6: delete IRE\n"));
1239 			ire_delete(ire);
1240 		}
1241 	}
1242 	ire_refrele(ire);	/* Held in ire_add */
1243 }
1244 
1245 /*
1246  * Make sure that IRE bucket does not get too long.
1247  * This can cause lock up because ire_cache_lookup()
1248  * may take "forever" to finish.
1249  *
1250  * We only remove a maximum of cnt IREs each time.  This
1251  * should keep the bucket length approximately constant,
1252  * depending on cnt.  This should be enough to defend
1253  * against DoS attack based on creating temporary IREs
1254  * (for forwarding and non-TCP traffic).
1255  *
1256  * We also pass in the address of the newly created IRE
1257  * as we do not want to remove this straight after adding
1258  * it. New IREs are normally added at the tail of the
1259  * bucket.  This means that we are removing the "oldest"
1260  * temporary IREs added.  Only if there are IREs with
1261  * the same ire_addr, do we not add it at the tail.  Refer
1262  * to ire_add_v*().  It should be OK for our purpose.
1263  *
1264  * For non-temporary cached IREs, we make sure that they
1265  * have not been used for some time (defined below), they
1266  * are non-local destinations, and there is no one using
1267  * them at the moment (refcnt == 1).
1268  *
1269  * The above means that the IRE bucket length may become
1270  * very long, consisting of mostly non-temporary IREs.
1271  * This can happen when the hash function does a bad job
1272  * so that most TCP connections cluster to a specific bucket.
1273  * This "hopefully" should never happen.  It can also
1274  * happen if most TCP connections have very long lives.
1275  * Even with the minimal hash table size of 256, there
1276  * has to be a lot of such connections to make the bucket
1277  * length unreasonably long.  This should probably not
1278  * happen either.  The third can when this can happen is
1279  * when the machine is under attack, such as SYN flooding.
1280  * TCP should already have the proper mechanism to protect
1281  * that.  So we should be safe.
1282  *
1283  * This function is called by ire_add_then_send() after
1284  * a new IRE is added and the packet is sent.
1285  *
1286  * The idle cutoff interval is set to 60s.  It can be
1287  * changed using /etc/system.
1288  */
1289 uint32_t ire_idle_cutoff_interval = 60000;
1290 
1291 static void
1292 ire_cache_cleanup(irb_t *irb, uint32_t threshold, ire_t *ref_ire)
1293 {
1294 	ire_t *ire;
1295 	clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000);
1296 	int cnt = ip_ire_cleanup_cnt;
1297 
1298 	/*
1299 	 * Try to remove cnt temporary IREs first.
1300 	 */
1301 	for (ire = irb->irb_ire; cnt > 0 && ire != NULL; ire = ire->ire_next) {
1302 		if (ire == ref_ire)
1303 			continue;
1304 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
1305 			continue;
1306 		if (ire->ire_marks & IRE_MARK_TEMPORARY) {
1307 			ASSERT(ire->ire_type == IRE_CACHE);
1308 			ire_delete(ire);
1309 			cnt--;
1310 		}
1311 	}
1312 	if (cnt == 0)
1313 		return;
1314 
1315 	/*
1316 	 * If we didn't satisfy our removal target from temporary IREs
1317 	 * we see how many non-temporary IREs are currently in the bucket.
1318 	 * If this quantity is above the threshold then we see if there are any
1319 	 * candidates for removal. We are still limited to removing a maximum
1320 	 * of cnt IREs.
1321 	 */
1322 	if ((irb->irb_ire_cnt - irb->irb_tmp_ire_cnt) > threshold) {
1323 		for (ire = irb->irb_ire; cnt > 0 && ire != NULL;
1324 		    ire = ire->ire_next) {
1325 			if (ire == ref_ire)
1326 				continue;
1327 			if (ire->ire_type != IRE_CACHE)
1328 				continue;
1329 			if (ire->ire_marks & IRE_MARK_CONDEMNED)
1330 				continue;
1331 			if ((ire->ire_refcnt == 1) &&
1332 			    (lbolt - ire->ire_last_used_time > cut_off)) {
1333 				ire_delete(ire);
1334 				cnt--;
1335 			}
1336 		}
1337 	}
1338 }
1339 
1340 /*
1341  * ire_add_then_send is called when a new IRE has been created in order to
1342  * route an outgoing packet.  Typically, it is called from ip_wput when
1343  * a response comes back down from a resolver.  We add the IRE, and then
1344  * possibly run the packet through ip_wput or ip_rput, as appropriate.
1345  * However, we do not add the newly created IRE in the cache when
1346  * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at
1347  * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by
1348  * ip_wput_ire() and get deleted.
1349  * Multirouting support: the packet is silently discarded when the new IRE
1350  * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the
1351  * RTF_MULTIRT flag for the same destination address.
1352  * In this case, we just want to register this additional ire without
1353  * sending the packet, as it has already been replicated through
1354  * existing multirt routes in ip_wput().
1355  */
1356 void
1357 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp)
1358 {
1359 	irb_t *irb;
1360 	boolean_t drop = B_FALSE;
1361 	/* LINTED : set but not used in function */
1362 	boolean_t mctl_present;
1363 	mblk_t *first_mp = NULL;
1364 	mblk_t *save_mp = NULL;
1365 	ire_t *dst_ire;
1366 	ipha_t *ipha;
1367 	ip6_t *ip6h;
1368 	ip_stack_t	*ipst = ire->ire_ipst;
1369 	int		ire_limit;
1370 
1371 	if (mp != NULL) {
1372 		/*
1373 		 * We first have to retrieve the destination address carried
1374 		 * by the packet.
1375 		 * We can't rely on ire as it can be related to a gateway.
1376 		 * The destination address will help in determining if
1377 		 * other RTF_MULTIRT ires are already registered.
1378 		 *
1379 		 * We first need to know where we are going : v4 or V6.
1380 		 * the ire version is enough, as there is no risk that
1381 		 * we resolve an IPv6 address with an IPv4 ire
1382 		 * or vice versa.
1383 		 */
1384 		if (ire->ire_ipversion == IPV4_VERSION) {
1385 			EXTRACT_PKT_MP(mp, first_mp, mctl_present);
1386 			ipha = (ipha_t *)mp->b_rptr;
1387 			save_mp = mp;
1388 			mp = first_mp;
1389 
1390 			dst_ire = ire_cache_lookup(ipha->ipha_dst,
1391 			    ire->ire_zoneid, MBLK_GETLABEL(mp), ipst);
1392 		} else {
1393 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
1394 			/*
1395 			 * Get a pointer to the beginning of the IPv6 header.
1396 			 * Ignore leading IPsec control mblks.
1397 			 */
1398 			first_mp = mp;
1399 			if (mp->b_datap->db_type == M_CTL) {
1400 				mp = mp->b_cont;
1401 			}
1402 			ip6h = (ip6_t *)mp->b_rptr;
1403 			save_mp = mp;
1404 			mp = first_mp;
1405 			dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst,
1406 			    ire->ire_zoneid, MBLK_GETLABEL(mp), ipst);
1407 		}
1408 		if (dst_ire != NULL) {
1409 			if (dst_ire->ire_flags & RTF_MULTIRT) {
1410 				/*
1411 				 * At least one resolved multirt route
1412 				 * already exists for the destination,
1413 				 * don't sent this packet: either drop it
1414 				 * or complete the pending resolution,
1415 				 * depending on the ire.
1416 				 */
1417 				drop = B_TRUE;
1418 			}
1419 			ip1dbg(("ire_add_then_send: dst_ire %p "
1420 			    "[dst %08x, gw %08x], drop %d\n",
1421 			    (void *)dst_ire,
1422 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1423 			    ntohl(dst_ire->ire_addr) : \
1424 			    ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)),
1425 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1426 			    ntohl(dst_ire->ire_gateway_addr) : \
1427 			    ntohl(V4_PART_OF_V6(
1428 			    dst_ire->ire_gateway_addr_v6)),
1429 			    drop));
1430 			ire_refrele(dst_ire);
1431 		}
1432 	}
1433 
1434 	if (!(ire->ire_marks & IRE_MARK_NOADD)) {
1435 		/* Regular packets with cache bound ires are here. */
1436 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
1437 
1438 		if (ire == NULL) {
1439 			mp->b_prev = NULL;
1440 			mp->b_next = NULL;
1441 			MULTIRT_DEBUG_UNTAG(mp);
1442 			freemsg(mp);
1443 			return;
1444 		}
1445 		if (mp == NULL) {
1446 			ire_refrele(ire);	/* Held in ire_add_v4/v6 */
1447 			return;
1448 		}
1449 	}
1450 	if (drop) {
1451 		/*
1452 		 * If we're adding an RTF_MULTIRT ire, the resolution
1453 		 * is over: we just drop the packet.
1454 		 */
1455 		if (ire->ire_flags & RTF_MULTIRT) {
1456 			if (save_mp) {
1457 				save_mp->b_prev = NULL;
1458 				save_mp->b_next = NULL;
1459 			}
1460 			MULTIRT_DEBUG_UNTAG(mp);
1461 			freemsg(mp);
1462 		} else {
1463 			/*
1464 			 * Otherwise, we're adding the ire to a gateway
1465 			 * for a multirt route.
1466 			 * Invoke ip_newroute() to complete the resolution
1467 			 * of the route. We will then come back here and
1468 			 * finally drop this packet in the above code.
1469 			 */
1470 			if (ire->ire_ipversion == IPV4_VERSION) {
1471 				/*
1472 				 * TODO: in order for CGTP to work in non-global
1473 				 * zones, ip_newroute() must create the IRE
1474 				 * cache in the zone indicated by
1475 				 * ire->ire_zoneid.
1476 				 */
1477 				ip_newroute(q, mp, ipha->ipha_dst,
1478 				    (CONN_Q(q) ? Q_TO_CONN(q) : NULL),
1479 				    ire->ire_zoneid, ipst);
1480 			} else {
1481 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
1482 				ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL,
1483 				    NULL, ire->ire_zoneid, ipst);
1484 			}
1485 		}
1486 
1487 		ire_refrele(ire); /* As done by ire_send(). */
1488 		return;
1489 	}
1490 	/*
1491 	 * Need to remember ire_bucket here as ire_send*() may delete
1492 	 * the ire so we cannot reference it after that.
1493 	 */
1494 	irb = ire->ire_bucket;
1495 	if (ire->ire_ipversion == IPV4_VERSION) {
1496 		ire_send(q, mp, ire);
1497 		ire_limit = ip_ire_max_bucket_cnt;
1498 	} else {
1499 		ire_send_v6(q, mp, ire);
1500 		ire_limit = ip6_ire_max_bucket_cnt;
1501 	}
1502 
1503 	/*
1504 	 * irb is NULL if the IRE was not added to the hash. This happens
1505 	 * when IRE_MARK_NOADD is set and when IREs are returned from
1506 	 * ire_update_srcif_v4().
1507 	 */
1508 	if (irb != NULL) {
1509 		IRB_REFHOLD(irb);
1510 		if (irb->irb_ire_cnt > ire_limit)
1511 			ire_cache_cleanup(irb, ire_limit, ire);
1512 		IRB_REFRELE(irb);
1513 	}
1514 }
1515 
1516 /*
1517  * Initialize the ire that is specific to IPv4 part and call
1518  * ire_init_common to finish it.
1519  */
1520 ire_t *
1521 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr,
1522     uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq,
1523     queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle,
1524     uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc,
1525     tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1526 {
1527 	/*
1528 	 * Reject IRE security attribute creation/initialization
1529 	 * if system is not running in Trusted mode.
1530 	 */
1531 	if ((gc != NULL || gcgrp != NULL) && !is_system_labeled())
1532 		return (NULL);
1533 
1534 
1535 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced);
1536 
1537 	if (addr != NULL)
1538 		bcopy(addr, &ire->ire_addr, IP_ADDR_LEN);
1539 	if (src_addr != NULL)
1540 		bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN);
1541 	if (mask != NULL) {
1542 		bcopy(mask, &ire->ire_mask, IP_ADDR_LEN);
1543 		ire->ire_masklen = ip_mask_to_plen(ire->ire_mask);
1544 	}
1545 	if (gateway != NULL) {
1546 		bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN);
1547 	}
1548 
1549 	if (type == IRE_CACHE)
1550 		ire->ire_cmask = cmask;
1551 
1552 	/* ire_init_common will free the mblks upon encountering any failure */
1553 	if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif,
1554 	    phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst))
1555 		return (NULL);
1556 
1557 	return (ire);
1558 }
1559 
1560 /*
1561  * Similar to ire_create except that it is called only when
1562  * we want to allocate ire as an mblk e.g. we have an external
1563  * resolver ARP.
1564  */
1565 ire_t *
1566 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1567     uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type,
1568     ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle,
1569     uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1570     ip_stack_t *ipst)
1571 {
1572 	ire_t	*ire, *buf;
1573 	ire_t	*ret_ire;
1574 	mblk_t	*mp;
1575 	size_t	bufsize;
1576 	frtn_t	*frtnp;
1577 	ill_t	*ill;
1578 
1579 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
1580 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
1581 	if (buf == NULL) {
1582 		ip1dbg(("ire_create_mp: alloc failed\n"));
1583 		return (NULL);
1584 	}
1585 	frtnp = (frtn_t *)(buf + 1);
1586 	frtnp->free_arg = (caddr_t)buf;
1587 	frtnp->free_func = ire_freemblk;
1588 
1589 	/*
1590 	 * Allocate the new IRE. The ire created will hold a ref on
1591 	 * an nce_t after ire_nce_init, and this ref must either be
1592 	 * (a)  transferred to the ire_cache entry created when ire_add_v4
1593 	 *	is called after successful arp resolution, or,
1594 	 * (b)  released, when arp resolution fails
1595 	 * Case (b) is handled in ire_freemblk() which will be called
1596 	 * when mp is freed as a result of failed arp.
1597 	 */
1598 	mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
1599 	if (mp == NULL) {
1600 		ip1dbg(("ire_create_mp: alloc failed\n"));
1601 		kmem_free(buf, bufsize);
1602 		return (NULL);
1603 	}
1604 	ire = (ire_t *)mp->b_rptr;
1605 	mp->b_wptr = (uchar_t *)&ire[1];
1606 
1607 	/* Start clean. */
1608 	*ire = ire_null;
1609 	ire->ire_mp = mp;
1610 	mp->b_datap->db_type = IRE_DB_TYPE;
1611 	ire->ire_marks |= IRE_MARK_UNCACHED;
1612 
1613 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce,
1614 	    rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc,
1615 	    gcgrp, ipst);
1616 
1617 	ill = (ill_t *)(stq->q_ptr);
1618 	if (ret_ire == NULL) {
1619 		/* ire_freemblk needs these set */
1620 		ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1621 		ire->ire_ipst = ipst;
1622 		freeb(ire->ire_mp);
1623 		return (NULL);
1624 	}
1625 	ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1626 	ASSERT(ret_ire == ire);
1627 	/*
1628 	 * ire_max_frag is normally zero here and is atomically set
1629 	 * under the irebucket lock in ire_add_v[46] except for the
1630 	 * case of IRE_MARK_NOADD. In that event the the ire_max_frag
1631 	 * is non-zero here.
1632 	 */
1633 	ire->ire_max_frag = max_frag;
1634 	return (ire);
1635 }
1636 
1637 /*
1638  * ire_create is called to allocate and initialize a new IRE.
1639  *
1640  * NOTE : This is called as writer sometimes though not required
1641  * by this function.
1642  */
1643 ire_t *
1644 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1645     uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq,
1646     ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle,
1647     uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc,
1648     tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1649 {
1650 	ire_t	*ire;
1651 	ire_t	*ret_ire;
1652 
1653 	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
1654 	if (ire == NULL) {
1655 		ip1dbg(("ire_create: alloc failed\n"));
1656 		return (NULL);
1657 	}
1658 	*ire = ire_null;
1659 
1660 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp,
1661 	    src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags,
1662 	    ulp_info, gc, gcgrp, ipst);
1663 
1664 	if (ret_ire == NULL) {
1665 		kmem_cache_free(ire_cache, ire);
1666 		return (NULL);
1667 	}
1668 	ASSERT(ret_ire == ire);
1669 	return (ire);
1670 }
1671 
1672 
1673 /*
1674  * Common to IPv4 and IPv6
1675  */
1676 boolean_t
1677 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq,
1678     queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle,
1679     uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info,
1680     tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1681 {
1682 	ire->ire_max_fragp = max_fragp;
1683 	ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
1684 
1685 #ifdef DEBUG
1686 	if (ipif != NULL) {
1687 		if (ipif->ipif_isv6)
1688 			ASSERT(ipversion == IPV6_VERSION);
1689 		else
1690 			ASSERT(ipversion == IPV4_VERSION);
1691 	}
1692 #endif /* DEBUG */
1693 
1694 	/*
1695 	 * Create/initialize IRE security attribute only in Trusted mode;
1696 	 * if the passed in gc/gcgrp is non-NULL, we expect that the caller
1697 	 * has held a reference to it and will release it when this routine
1698 	 * returns a failure, otherwise we own the reference.  We do this
1699 	 * prior to initializing the rest IRE fields.
1700 	 *
1701 	 * Don't allocate ire_gw_secattr for the resolver case to prevent
1702 	 * memory leak (in case of external resolution failure). We'll
1703 	 * allocate it after a successful external resolution, in ire_add().
1704 	 * Note that ire->ire_mp != NULL here means this ire is headed
1705 	 * to an external resolver.
1706 	 */
1707 	if (is_system_labeled()) {
1708 		if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST |
1709 		    IRE_INTERFACE)) != 0) {
1710 			/* release references on behalf of caller */
1711 			if (gc != NULL)
1712 				GC_REFRELE(gc);
1713 			if (gcgrp != NULL)
1714 				GCGRP_REFRELE(gcgrp);
1715 		} else if ((ire->ire_mp == NULL) &&
1716 		    tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) {
1717 			return (B_FALSE);
1718 		}
1719 	}
1720 
1721 	ire->ire_stq = stq;
1722 	ire->ire_rfq = rfq;
1723 	ire->ire_type = type;
1724 	ire->ire_flags = RTF_UP | flags;
1725 	ire->ire_ident = TICK_TO_MSEC(lbolt);
1726 	bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t));
1727 
1728 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
1729 	ire->ire_last_used_time = lbolt;
1730 	ire->ire_create_time = (uint32_t)gethrestime_sec();
1731 
1732 	/*
1733 	 * If this IRE is an IRE_CACHE, inherit the handles from the
1734 	 * parent IREs. For others in the forwarding table, assign appropriate
1735 	 * new ones.
1736 	 *
1737 	 * The mutex protecting ire_handle is because ire_create is not always
1738 	 * called as a writer.
1739 	 */
1740 	if (ire->ire_type & IRE_OFFSUBNET) {
1741 		mutex_enter(&ipst->ips_ire_handle_lock);
1742 		ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++;
1743 		mutex_exit(&ipst->ips_ire_handle_lock);
1744 	} else if (ire->ire_type & IRE_INTERFACE) {
1745 		mutex_enter(&ipst->ips_ire_handle_lock);
1746 		ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++;
1747 		mutex_exit(&ipst->ips_ire_handle_lock);
1748 	} else if (ire->ire_type == IRE_CACHE) {
1749 		ire->ire_phandle = phandle;
1750 		ire->ire_ihandle = ihandle;
1751 	}
1752 	ire->ire_ipif = ipif;
1753 	if (ipif != NULL) {
1754 		ire->ire_ipif_seqid = ipif->ipif_seqid;
1755 		ire->ire_zoneid = ipif->ipif_zoneid;
1756 	} else {
1757 		ire->ire_zoneid = GLOBAL_ZONEID;
1758 	}
1759 	ire->ire_ipversion = ipversion;
1760 	mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL);
1761 	if (ipversion == IPV4_VERSION) {
1762 		/*
1763 		 * IPv6 initializes the ire_nce in ire_add_v6, which expects
1764 		 * to find the ire_nce to be null when it is called.
1765 		 */
1766 		if (ire_nce_init(ire, src_nce) != 0) {
1767 			/* some failure occurred. propagate error back */
1768 			return (B_FALSE);
1769 		}
1770 	}
1771 	ire->ire_refcnt = 1;
1772 	ire->ire_ipst = ipst;	/* No netstack_hold */
1773 	ire->ire_trace_disable = B_FALSE;
1774 
1775 	return (B_TRUE);
1776 }
1777 
1778 /*
1779  * This routine is called repeatedly by ipif_up to create broadcast IREs.
1780  * It is passed a pointer to a slot in an IRE pointer array into which to
1781  * place the pointer to the new IRE, if indeed we create one.  If the
1782  * IRE corresponding to the address passed in would be a duplicate of an
1783  * existing one, we don't create the new one.  irep is incremented before
1784  * return only if we do create a new IRE.  (Always called as writer.)
1785  *
1786  * Note that with the "match_flags" parameter, we can match on either
1787  * a particular logical interface (MATCH_IRE_IPIF) or for all logical
1788  * interfaces for a given physical interface (MATCH_IRE_ILL).  Currently,
1789  * we only create broadcast ire's on a per physical interface basis. If
1790  * someone is going to be mucking with logical interfaces, it is important
1791  * to call "ipif_check_bcast_ires()" to make sure that any change to a
1792  * logical interface will not cause critical broadcast IRE's to be deleted.
1793  */
1794 ire_t **
1795 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep,
1796     int match_flags)
1797 {
1798 	ire_t *ire;
1799 	uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
1800 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
1801 
1802 	/*
1803 	 * No broadcast IREs for the LOOPBACK interface
1804 	 * or others such as point to point and IPIF_NOXMIT.
1805 	 */
1806 	if (!(ipif->ipif_flags & IPIF_BROADCAST) ||
1807 	    (ipif->ipif_flags & IPIF_NOXMIT))
1808 		return (irep);
1809 
1810 	/* If this would be a duplicate, don't bother. */
1811 	if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif,
1812 	    ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) {
1813 		/*
1814 		 * We look for non-deprecated (and non-anycast, non-nolocal)
1815 		 * ipifs as the best choice. ipifs with check_flags matching
1816 		 * (deprecated, etc) are used only if non-deprecated ipifs
1817 		 * are not available. if the existing ire's ipif is deprecated
1818 		 * and the new ipif is non-deprecated, switch to the new ipif
1819 		 */
1820 		if ((!(ire->ire_ipif->ipif_flags & check_flags)) ||
1821 		    (ipif->ipif_flags & check_flags)) {
1822 			ire_refrele(ire);
1823 			return (irep);
1824 		}
1825 		/*
1826 		 * Bcast ires exist in pairs. Both have to be deleted,
1827 		 * Since we are exclusive we can make the above assertion.
1828 		 * The 1st has to be refrele'd since it was ctable_lookup'd.
1829 		 */
1830 		ASSERT(IAM_WRITER_IPIF(ipif));
1831 		ASSERT(ire->ire_next->ire_addr == ire->ire_addr);
1832 		ire_delete(ire->ire_next);
1833 		ire_delete(ire);
1834 		ire_refrele(ire);
1835 	}
1836 
1837 	irep = ire_create_bcast(ipif, addr, irep);
1838 
1839 	return (irep);
1840 }
1841 
1842 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU;
1843 
1844 /*
1845  * This routine is called from ipif_check_bcast_ires and ire_check_bcast.
1846  * It leaves all the verifying and deleting to those routines. So it always
1847  * creates 2 bcast ires and chains them into the ire array passed in.
1848  */
1849 ire_t **
1850 ire_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep)
1851 {
1852 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
1853 
1854 	*irep++ = ire_create(
1855 	    (uchar_t *)&addr,			/* dest addr */
1856 	    (uchar_t *)&ip_g_all_ones,		/* mask */
1857 	    (uchar_t *)&ipif->ipif_src_addr,	/* source addr */
1858 	    NULL,				/* no gateway */
1859 	    &ipif->ipif_mtu,			/* max frag */
1860 	    NULL,				/* no src nce */
1861 	    ipif->ipif_rq,			/* recv-from queue */
1862 	    ipif->ipif_wq,			/* send-to queue */
1863 	    IRE_BROADCAST,
1864 	    ipif,
1865 	    0,
1866 	    0,
1867 	    0,
1868 	    0,
1869 	    &ire_uinfo_null,
1870 	    NULL,
1871 	    NULL,
1872 	    ipst);
1873 
1874 	*irep++ = ire_create(
1875 	    (uchar_t *)&addr,			/* dest address */
1876 	    (uchar_t *)&ip_g_all_ones,		/* mask */
1877 	    (uchar_t *)&ipif->ipif_src_addr,	/* source address */
1878 	    NULL,				/* no gateway */
1879 	    &ip_loopback_mtu,			/* max frag size */
1880 	    NULL,				/* no src_nce */
1881 	    ipif->ipif_rq,			/* recv-from queue */
1882 	    NULL,				/* no send-to queue */
1883 	    IRE_BROADCAST,			/* Needed for fanout in wput */
1884 	    ipif,
1885 	    0,
1886 	    0,
1887 	    0,
1888 	    0,
1889 	    &ire_uinfo_null,
1890 	    NULL,
1891 	    NULL,
1892 	    ipst);
1893 
1894 	return (irep);
1895 }
1896 
1897 /*
1898  * ire_walk routine to delete or update any IRE_CACHE that might contain
1899  * stale information.
1900  * The flags state which entries to delete or update.
1901  * Garbage collection is done separately using kmem alloc callbacks to
1902  * ip_trash_ire_reclaim.
1903  * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME
1904  * since other stale information is cleaned up using NUD.
1905  */
1906 void
1907 ire_expire(ire_t *ire, char *arg)
1908 {
1909 	ire_expire_arg_t	*ieap = (ire_expire_arg_t *)(uintptr_t)arg;
1910 	ill_t			*stq_ill;
1911 	int			flush_flags = ieap->iea_flush_flag;
1912 	ip_stack_t		*ipst = ieap->iea_ipst;
1913 
1914 	if ((flush_flags & FLUSH_REDIRECT_TIME) &&
1915 	    (ire->ire_flags & RTF_DYNAMIC)) {
1916 		/* Make sure we delete the corresponding IRE_CACHE */
1917 		ip1dbg(("ire_expire: all redirects\n"));
1918 		ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst);
1919 		ire_delete(ire);
1920 		atomic_dec_32(&ipst->ips_ip_redirect_cnt);
1921 		return;
1922 	}
1923 	if (ire->ire_type != IRE_CACHE)
1924 		return;
1925 
1926 	if (flush_flags & FLUSH_ARP_TIME) {
1927 		/*
1928 		 * Remove all IRE_CACHE.
1929 		 * Verify that create time is more than
1930 		 * ip_ire_arp_interval milliseconds ago.
1931 		 */
1932 		if (NCE_EXPIRED(ire->ire_nce, ipst)) {
1933 			ire_delete(ire);
1934 			return;
1935 		}
1936 	}
1937 
1938 	if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) &&
1939 	    (ire->ire_ipif != NULL)) {
1940 		/* Increase pmtu if it is less than the interface mtu */
1941 		mutex_enter(&ire->ire_lock);
1942 		/*
1943 		 * If the ipif is a vni (whose mtu is 0, since it's virtual)
1944 		 * get the mtu from the sending interfaces' ipif
1945 		 */
1946 		if (IS_VNI(ire->ire_ipif->ipif_ill)) {
1947 			stq_ill = ire->ire_stq->q_ptr;
1948 			ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu,
1949 			    IP_MAXPACKET);
1950 		} else {
1951 			ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu,
1952 			    IP_MAXPACKET);
1953 		}
1954 		ire->ire_frag_flag |= IPH_DF;
1955 		mutex_exit(&ire->ire_lock);
1956 	}
1957 }
1958 
1959 /*
1960  * Return any local address.  We use this to target ourselves
1961  * when the src address was specified as 'default'.
1962  * Preference for IRE_LOCAL entries.
1963  */
1964 ire_t *
1965 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst)
1966 {
1967 	ire_t	*ire;
1968 	irb_t	*irb;
1969 	ire_t	*maybe = NULL;
1970 	int i;
1971 
1972 	for (i = 0; i < ipst->ips_ip_cache_table_size;  i++) {
1973 		irb = &ipst->ips_ip_cache_table[i];
1974 		if (irb->irb_ire == NULL)
1975 			continue;
1976 		rw_enter(&irb->irb_lock, RW_READER);
1977 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
1978 			if ((ire->ire_marks & IRE_MARK_CONDEMNED) ||
1979 			    (ire->ire_zoneid != zoneid &&
1980 			    ire->ire_zoneid != ALL_ZONES))
1981 				continue;
1982 			switch (ire->ire_type) {
1983 			case IRE_LOOPBACK:
1984 				if (maybe == NULL) {
1985 					IRE_REFHOLD(ire);
1986 					maybe = ire;
1987 				}
1988 				break;
1989 			case IRE_LOCAL:
1990 				if (maybe != NULL) {
1991 					ire_refrele(maybe);
1992 				}
1993 				IRE_REFHOLD(ire);
1994 				rw_exit(&irb->irb_lock);
1995 				return (ire);
1996 			}
1997 		}
1998 		rw_exit(&irb->irb_lock);
1999 	}
2000 	return (maybe);
2001 }
2002 
2003 /*
2004  * If the specified IRE is associated with a particular ILL, return
2005  * that ILL pointer (May be called as writer.).
2006  *
2007  * NOTE : This is not a generic function that can be used always.
2008  * This function always returns the ill of the outgoing packets
2009  * if this ire is used.
2010  */
2011 ill_t *
2012 ire_to_ill(const ire_t *ire)
2013 {
2014 	ill_t *ill = NULL;
2015 
2016 	/*
2017 	 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained
2018 	 *    the source address from. ire_stq is the one where the
2019 	 *    packets will be sent out on. We return that here.
2020 	 *
2021 	 * 2) IRE_BROADCAST normally has a loopback and a non-loopback
2022 	 *    copy and they always exist next to each other with loopback
2023 	 *    copy being the first one. If we are called on the non-loopback
2024 	 *    copy, return the one pointed by ire_stq. If it was called on
2025 	 *    a loopback copy, we still return the one pointed by the next
2026 	 *    ire's ire_stq pointer i.e the one pointed by the non-loopback
2027 	 *    copy. We don't want use ire_ipif as it might represent the
2028 	 *    source address (if we borrow source addresses for
2029 	 *    IRE_BROADCASTS in the future).
2030 	 *    However if an interface is currently coming up, the above
2031 	 *    condition may not hold during that period since the ires
2032 	 *    are added one at a time. Thus one of the pair could have been
2033 	 *    added and the other not yet added.
2034 	 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill.
2035 	 * 4) For all others return the ones pointed by ire_ipif->ipif_ill.
2036 	 *    That handles IRE_LOOPBACK.
2037 	 */
2038 
2039 	if (ire->ire_type == IRE_CACHE) {
2040 		ill = (ill_t *)ire->ire_stq->q_ptr;
2041 	} else if (ire->ire_type == IRE_BROADCAST) {
2042 		if (ire->ire_stq != NULL) {
2043 			ill = (ill_t *)ire->ire_stq->q_ptr;
2044 		} else {
2045 			ire_t  *ire_next;
2046 
2047 			ire_next = ire->ire_next;
2048 			if (ire_next != NULL &&
2049 			    ire_next->ire_type == IRE_BROADCAST &&
2050 			    ire_next->ire_addr == ire->ire_addr &&
2051 			    ire_next->ire_ipif == ire->ire_ipif) {
2052 				ill = (ill_t *)ire_next->ire_stq->q_ptr;
2053 			}
2054 		}
2055 	} else if (ire->ire_rfq != NULL) {
2056 		ill = ire->ire_rfq->q_ptr;
2057 	} else if (ire->ire_ipif != NULL) {
2058 		ill = ire->ire_ipif->ipif_ill;
2059 	}
2060 	return (ill);
2061 }
2062 
2063 /* Arrange to call the specified function for every IRE in the world. */
2064 void
2065 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst)
2066 {
2067 	ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst);
2068 }
2069 
2070 void
2071 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
2072 {
2073 	ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst);
2074 }
2075 
2076 void
2077 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
2078 {
2079 	ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst);
2080 }
2081 
2082 /*
2083  * Walk a particular version. version == 0 means both v4 and v6.
2084  */
2085 static void
2086 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid,
2087     ip_stack_t *ipst)
2088 {
2089 	if (vers != IPV6_VERSION) {
2090 		/*
2091 		 * ip_forwarding_table variable doesn't matter for IPv4 since
2092 		 * ire_walk_ill_tables uses ips_ip_ftable for IPv4.
2093 		 */
2094 		ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE,
2095 		    0, NULL,
2096 		    ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table,
2097 		    NULL, zoneid, ipst);
2098 	}
2099 	if (vers != IPV4_VERSION) {
2100 		ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE,
2101 		    ipst->ips_ip6_ftable_hash_size,
2102 		    ipst->ips_ip_forwarding_table_v6,
2103 		    ipst->ips_ip6_cache_table_size,
2104 		    ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst);
2105 	}
2106 }
2107 
2108 /*
2109  * Arrange to call the specified
2110  * function for every IRE that matches the ill.
2111  */
2112 void
2113 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2114     ill_t *ill)
2115 {
2116 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill);
2117 }
2118 
2119 void
2120 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2121     ill_t *ill)
2122 {
2123 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION,
2124 	    ill);
2125 }
2126 
2127 void
2128 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2129     ill_t *ill)
2130 {
2131 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION,
2132 	    ill);
2133 }
2134 
2135 /*
2136  * Walk a particular ill and version. version == 0 means both v4 and v6.
2137  */
2138 static void
2139 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func,
2140     void *arg, uchar_t vers, ill_t *ill)
2141 {
2142 	ip_stack_t	*ipst = ill->ill_ipst;
2143 
2144 	if (vers != IPV6_VERSION) {
2145 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2146 		    IP_MASK_TABLE_SIZE, 0,
2147 		    NULL, ipst->ips_ip_cache_table_size,
2148 		    ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst);
2149 	}
2150 	if (vers != IPV4_VERSION) {
2151 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2152 		    IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size,
2153 		    ipst->ips_ip_forwarding_table_v6,
2154 		    ipst->ips_ip6_cache_table_size,
2155 		    ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst);
2156 	}
2157 }
2158 
2159 boolean_t
2160 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire,
2161     ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst)
2162 {
2163 	ill_t *ire_stq_ill = NULL;
2164 	ill_t *ire_ipif_ill = NULL;
2165 	ill_group_t *ire_ill_group = NULL;
2166 
2167 	ASSERT(match_flags != 0 || zoneid != ALL_ZONES);
2168 	/*
2169 	 * MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill
2170 	 *    pointed by ire_stq and ire_ipif. Only in the case of
2171 	 *    IRE_CACHEs can ire_stq and ire_ipif be pointing to
2172 	 *    different ills. But we want to keep this function generic
2173 	 *    enough for future use. So, we always try to match on both.
2174 	 *    The only caller of this function ire_walk_ill_tables, will
2175 	 *    call "func" after we return from this function. We expect
2176 	 *    "func" to do the right filtering of ires in this case.
2177 	 *
2178 	 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups
2179 	 * pointed by ire_stq and ire_ipif should always be the same.
2180 	 * So, we just match on only one of them.
2181 	 */
2182 	if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
2183 		if (ire->ire_stq != NULL)
2184 			ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2185 		if (ire->ire_ipif != NULL)
2186 			ire_ipif_ill = ire->ire_ipif->ipif_ill;
2187 		if (ire_stq_ill != NULL)
2188 			ire_ill_group = ire_stq_ill->ill_group;
2189 		if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL))
2190 			ire_ill_group = ire_ipif_ill->ill_group;
2191 	}
2192 
2193 	if (zoneid != ALL_ZONES) {
2194 		/*
2195 		 * We're walking the IREs for a specific zone. The only relevant
2196 		 * IREs are:
2197 		 * - all IREs with a matching ire_zoneid
2198 		 * - all IRE_OFFSUBNETs as they're shared across all zones
2199 		 * - IRE_INTERFACE IREs for interfaces with a usable source addr
2200 		 *   with a matching zone
2201 		 * - IRE_DEFAULTs with a gateway reachable from the zone
2202 		 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs
2203 		 * using the same rule; but the above rules are consistent with
2204 		 * the behavior of ire_ftable_lookup[_v6]() so that all the
2205 		 * routes that can be matched during lookup are also matched
2206 		 * here.
2207 		 */
2208 		if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) {
2209 			/*
2210 			 * Note, IRE_INTERFACE can have the stq as NULL. For
2211 			 * example, if the default multicast route is tied to
2212 			 * the loopback address.
2213 			 */
2214 			if ((ire->ire_type & IRE_INTERFACE) &&
2215 			    (ire->ire_stq != NULL)) {
2216 				ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2217 				if (ire->ire_ipversion == IPV4_VERSION) {
2218 					if (!ipif_usesrc_avail(ire_stq_ill,
2219 					    zoneid))
2220 						/* No usable src addr in zone */
2221 						return (B_FALSE);
2222 				} else if (ire_stq_ill->ill_usesrc_ifindex
2223 				    != 0) {
2224 					/*
2225 					 * For IPv6 use ipif_select_source_v6()
2226 					 * so the right scope selection is done
2227 					 */
2228 					ipif_t *src_ipif;
2229 					src_ipif =
2230 					    ipif_select_source_v6(ire_stq_ill,
2231 					    &ire->ire_addr_v6, RESTRICT_TO_NONE,
2232 					    IPV6_PREFER_SRC_DEFAULT,
2233 					    zoneid);
2234 					if (src_ipif != NULL) {
2235 						ipif_refrele(src_ipif);
2236 					} else {
2237 						return (B_FALSE);
2238 					}
2239 				} else {
2240 					return (B_FALSE);
2241 				}
2242 
2243 			} else if (!(ire->ire_type & IRE_OFFSUBNET)) {
2244 				return (B_FALSE);
2245 			}
2246 		}
2247 
2248 		/*
2249 		 * Match all default routes from the global zone, irrespective
2250 		 * of reachability. For a non-global zone only match those
2251 		 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid.
2252 		 */
2253 		if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) {
2254 			int ire_match_flags = 0;
2255 			in6_addr_t gw_addr_v6;
2256 			ire_t *rire;
2257 
2258 			ire_match_flags |= MATCH_IRE_TYPE;
2259 			if (ire->ire_ipif != NULL) {
2260 				ire_match_flags |= MATCH_IRE_ILL_GROUP;
2261 			}
2262 			if (ire->ire_ipversion == IPV4_VERSION) {
2263 				rire = ire_route_lookup(ire->ire_gateway_addr,
2264 				    0, 0, IRE_INTERFACE, ire->ire_ipif, NULL,
2265 				    zoneid, NULL, ire_match_flags, ipst);
2266 			} else {
2267 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
2268 				mutex_enter(&ire->ire_lock);
2269 				gw_addr_v6 = ire->ire_gateway_addr_v6;
2270 				mutex_exit(&ire->ire_lock);
2271 				rire = ire_route_lookup_v6(&gw_addr_v6,
2272 				    NULL, NULL, IRE_INTERFACE, ire->ire_ipif,
2273 				    NULL, zoneid, NULL, ire_match_flags, ipst);
2274 			}
2275 			if (rire == NULL) {
2276 				return (B_FALSE);
2277 			}
2278 			ire_refrele(rire);
2279 		}
2280 	}
2281 
2282 	if (((!(match_flags & MATCH_IRE_TYPE)) ||
2283 	    (ire->ire_type & ire_type)) &&
2284 	    ((!(match_flags & MATCH_IRE_ILL)) ||
2285 	    (ire_stq_ill == ill || ire_ipif_ill == ill)) &&
2286 	    ((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
2287 	    (ire_stq_ill == ill) || (ire_ipif_ill == ill) ||
2288 	    (ire_ill_group != NULL &&
2289 	    ire_ill_group == ill->ill_group))) {
2290 		return (B_TRUE);
2291 	}
2292 	return (B_FALSE);
2293 }
2294 
2295 int
2296 rtfunc(struct radix_node *rn, void *arg)
2297 {
2298 	struct rtfuncarg *rtf = arg;
2299 	struct rt_entry *rt;
2300 	irb_t *irb;
2301 	ire_t *ire;
2302 	boolean_t ret;
2303 
2304 	rt = (struct rt_entry *)rn;
2305 	ASSERT(rt != NULL);
2306 	irb = &rt->rt_irb;
2307 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2308 		if ((rtf->rt_match_flags != 0) ||
2309 		    (rtf->rt_zoneid != ALL_ZONES)) {
2310 			ret = ire_walk_ill_match(rtf->rt_match_flags,
2311 			    rtf->rt_ire_type, ire,
2312 			    rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst);
2313 		} else
2314 			ret = B_TRUE;
2315 		if (ret)
2316 			(*rtf->rt_func)(ire, rtf->rt_arg);
2317 	}
2318 	return (0);
2319 }
2320 
2321 /*
2322  * Walk the ftable and the ctable entries that match the ill.
2323  */
2324 void
2325 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func,
2326     void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
2327     size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid,
2328     ip_stack_t *ipst)
2329 {
2330 	irb_t	*irb_ptr;
2331 	irb_t	*irb;
2332 	ire_t	*ire;
2333 	int i, j;
2334 	boolean_t ret;
2335 	struct rtfuncarg rtfarg;
2336 
2337 	ASSERT((!(match_flags & (MATCH_IRE_ILL |
2338 	    MATCH_IRE_ILL_GROUP))) || (ill != NULL));
2339 	ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0));
2340 	/*
2341 	 * Optimize by not looking at the forwarding table if there
2342 	 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE
2343 	 * specified in ire_type.
2344 	 */
2345 	if (!(match_flags & MATCH_IRE_TYPE) ||
2346 	    ((ire_type & IRE_FORWARDTABLE) != 0)) {
2347 		/* knobs such that routine is called only for v6 case */
2348 		if (ipftbl == ipst->ips_ip_forwarding_table_v6) {
2349 			for (i = (ftbl_sz - 1);  i >= 0; i--) {
2350 				if ((irb_ptr = ipftbl[i]) == NULL)
2351 					continue;
2352 				for (j = 0; j < htbl_sz; j++) {
2353 					irb = &irb_ptr[j];
2354 					if (irb->irb_ire == NULL)
2355 						continue;
2356 
2357 					IRB_REFHOLD(irb);
2358 					for (ire = irb->irb_ire; ire != NULL;
2359 					    ire = ire->ire_next) {
2360 						if (match_flags == 0 &&
2361 						    zoneid == ALL_ZONES) {
2362 							ret = B_TRUE;
2363 						} else {
2364 							ret =
2365 							    ire_walk_ill_match(
2366 							    match_flags,
2367 							    ire_type, ire, ill,
2368 							    zoneid, ipst);
2369 						}
2370 						if (ret)
2371 							(*func)(ire, arg);
2372 					}
2373 					IRB_REFRELE(irb);
2374 				}
2375 			}
2376 		} else {
2377 			(void) memset(&rtfarg, 0, sizeof (rtfarg));
2378 			rtfarg.rt_func = func;
2379 			rtfarg.rt_arg = arg;
2380 			if (match_flags != 0) {
2381 				rtfarg.rt_match_flags = match_flags;
2382 			}
2383 			rtfarg.rt_ire_type = ire_type;
2384 			rtfarg.rt_ill = ill;
2385 			rtfarg.rt_zoneid = zoneid;
2386 			rtfarg.rt_ipst = ipst;	/* No netstack_hold */
2387 			(void) ipst->ips_ip_ftable->rnh_walktree_mt(
2388 			    ipst->ips_ip_ftable,
2389 			    rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
2390 		}
2391 	}
2392 
2393 	/*
2394 	 * Optimize by not looking at the cache table if there
2395 	 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE
2396 	 * specified in ire_type.
2397 	 */
2398 	if (!(match_flags & MATCH_IRE_TYPE) ||
2399 	    ((ire_type & IRE_CACHETABLE) != 0)) {
2400 		for (i = 0; i < ctbl_sz;  i++) {
2401 			irb = &ipctbl[i];
2402 			if (irb->irb_ire == NULL)
2403 				continue;
2404 			IRB_REFHOLD(irb);
2405 			for (ire = irb->irb_ire; ire != NULL;
2406 			    ire = ire->ire_next) {
2407 				if (match_flags == 0 && zoneid == ALL_ZONES) {
2408 					ret = B_TRUE;
2409 				} else {
2410 					ret = ire_walk_ill_match(
2411 					    match_flags, ire_type,
2412 					    ire, ill, zoneid, ipst);
2413 				}
2414 				if (ret)
2415 					(*func)(ire, arg);
2416 			}
2417 			IRB_REFRELE(irb);
2418 		}
2419 	}
2420 }
2421 
2422 /*
2423  * This function takes a mask and returns
2424  * number of bits set in the mask. If no
2425  * bit is set it returns 0.
2426  * Assumes a contiguous mask.
2427  */
2428 int
2429 ip_mask_to_plen(ipaddr_t mask)
2430 {
2431 	return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1));
2432 }
2433 
2434 /*
2435  * Convert length for a mask to the mask.
2436  */
2437 ipaddr_t
2438 ip_plen_to_mask(uint_t masklen)
2439 {
2440 	return (htonl(IP_HOST_MASK << (IP_ABITS - masklen)));
2441 }
2442 
2443 void
2444 ire_atomic_end(irb_t *irb_ptr, ire_t *ire)
2445 {
2446 	ill_t	*ill_list[NUM_ILLS];
2447 	ip_stack_t	*ipst = ire->ire_ipst;
2448 
2449 	ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL;
2450 	ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL;
2451 	ill_unlock_ills(ill_list, NUM_ILLS);
2452 	rw_exit(&irb_ptr->irb_lock);
2453 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
2454 }
2455 
2456 /*
2457  * ire_add_v[46] atomically make sure that the ipif or ill associated
2458  * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING
2459  * before adding the ire to the table. This ensures that we don't create
2460  * new IRE_CACHEs with stale values for parameters that are passed to
2461  * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer
2462  * to the ipif_mtu, and not the value. The actual value is derived from the
2463  * parent ire or ipif under the bucket lock.
2464  */
2465 int
2466 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp,
2467     ipsq_func_t func)
2468 {
2469 	ill_t	*stq_ill;
2470 	ill_t	*ipif_ill;
2471 	ill_t	*ill_list[NUM_ILLS];
2472 	int	cnt = NUM_ILLS;
2473 	int	error = 0;
2474 	ill_t	*ill = NULL;
2475 	ip_stack_t	*ipst = ire->ire_ipst;
2476 
2477 	ill_list[0] = stq_ill = ire->ire_stq !=
2478 	    NULL ? ire->ire_stq->q_ptr : NULL;
2479 	ill_list[1] = ipif_ill = ire->ire_ipif !=
2480 	    NULL ? ire->ire_ipif->ipif_ill : NULL;
2481 
2482 	ASSERT((q != NULL && mp != NULL && func != NULL) ||
2483 	    (q == NULL && mp == NULL && func == NULL));
2484 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
2485 	GRAB_CONN_LOCK(q);
2486 	rw_enter(&irb_ptr->irb_lock, RW_WRITER);
2487 	ill_lock_ills(ill_list, cnt);
2488 
2489 	/*
2490 	 * While the IRE is in the process of being added, a user may have
2491 	 * invoked the ifconfig usesrc option on the stq_ill to make it a
2492 	 * usesrc client ILL. Check for this possibility here, if it is true
2493 	 * then we fail adding the IRE_CACHE. Another check is to make sure
2494 	 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc
2495 	 * group. The ill_g_usesrc_lock is released in ire_atomic_end
2496 	 */
2497 	if ((ire->ire_type & IRE_CACHE) &&
2498 	    (ire->ire_marks & IRE_MARK_USESRC_CHECK)) {
2499 		if (stq_ill->ill_usesrc_ifindex != 0) {
2500 			ASSERT(stq_ill->ill_usesrc_grp_next != NULL);
2501 			if ((ipif_ill->ill_phyint->phyint_ifindex !=
2502 			    stq_ill->ill_usesrc_ifindex) ||
2503 			    (ipif_ill->ill_usesrc_grp_next == NULL) ||
2504 			    (ipif_ill->ill_usesrc_ifindex != 0)) {
2505 				error = EINVAL;
2506 				goto done;
2507 			}
2508 		} else if (ipif_ill->ill_usesrc_grp_next != NULL) {
2509 			error = EINVAL;
2510 			goto done;
2511 		}
2512 	}
2513 
2514 	/*
2515 	 * IPMP flag settings happen without taking the exclusive route
2516 	 * in ip_sioctl_flags. So we need to make an atomic check here
2517 	 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the
2518 	 * FAILBACK=no case.
2519 	 */
2520 	if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) {
2521 		if (stq_ill->ill_state_flags & ILL_CHANGING) {
2522 			ill = stq_ill;
2523 			error = EAGAIN;
2524 		} else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) ||
2525 		    (ill_is_probeonly(stq_ill) &&
2526 		    !(ire->ire_marks & IRE_MARK_HIDDEN))) {
2527 			error = EINVAL;
2528 		}
2529 		goto done;
2530 	}
2531 
2532 	/*
2533 	 * We don't check for OFFLINE/FAILED in this case because
2534 	 * the source address selection logic (ipif_select_source)
2535 	 * may still select a source address from such an ill. The
2536 	 * assumption is that these addresses will be moved by in.mpathd
2537 	 * soon. (i.e. this is a race). However link local addresses
2538 	 * will not move and hence ipif_select_source_v6 tries to avoid
2539 	 * FAILED ills. Please see ipif_select_source_v6 for more info
2540 	 */
2541 	if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) &&
2542 	    (ipif_ill->ill_state_flags & ILL_CHANGING)) {
2543 		ill = ipif_ill;
2544 		error = EAGAIN;
2545 		goto done;
2546 	}
2547 
2548 	if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) &&
2549 	    (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) {
2550 		ill = ire->ire_ipif->ipif_ill;
2551 		ASSERT(ill != NULL);
2552 		error = EAGAIN;
2553 		goto done;
2554 	}
2555 
2556 done:
2557 	if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) {
2558 		ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
2559 		mutex_enter(&ipsq->ipsq_lock);
2560 		ire_atomic_end(irb_ptr, ire);
2561 		ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
2562 		mutex_exit(&ipsq->ipsq_lock);
2563 		error = EINPROGRESS;
2564 	} else if (error != 0) {
2565 		ire_atomic_end(irb_ptr, ire);
2566 	}
2567 
2568 	RELEASE_CONN_LOCK(q);
2569 	return (error);
2570 }
2571 
2572 /*
2573  * Add a fully initialized IRE to an appropriate table based on
2574  * ire_type.
2575  *
2576  * allow_unresolved == B_FALSE indicates a legacy code-path call
2577  * that has prohibited the addition of incomplete ire's. If this
2578  * parameter is set, and we find an nce that is in a state other
2579  * than ND_REACHABLE, we fail the add. Note that nce_state could be
2580  * something other than ND_REACHABLE if the nce had just expired and
2581  * the ire_create preceding the ire_add added a new ND_INITIAL nce.
2582  */
2583 int
2584 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func,
2585     boolean_t allow_unresolved)
2586 {
2587 	ire_t	*ire1;
2588 	ill_t	*stq_ill = NULL;
2589 	ill_t	*ill;
2590 	ipif_t	*ipif = NULL;
2591 	ill_walk_context_t ctx;
2592 	ire_t	*ire = *irep;
2593 	int	error;
2594 	boolean_t ire_is_mblk = B_FALSE;
2595 	tsol_gcgrp_t *gcgrp = NULL;
2596 	tsol_gcgrp_addr_t ga;
2597 	ip_stack_t	*ipst = ire->ire_ipst;
2598 
2599 	/* get ready for the day when original ire is not created as mblk */
2600 	if (ire->ire_mp != NULL) {
2601 		ire_is_mblk = B_TRUE;
2602 		/* Copy the ire to a kmem_alloc'ed area */
2603 		ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
2604 		if (ire1 == NULL) {
2605 			ip1dbg(("ire_add: alloc failed\n"));
2606 			ire_delete(ire);
2607 			*irep = NULL;
2608 			return (ENOMEM);
2609 		}
2610 		ire->ire_marks &= ~IRE_MARK_UNCACHED;
2611 		*ire1 = *ire;
2612 		ire1->ire_mp = NULL;
2613 		ire1->ire_stq_ifindex = 0;
2614 		freeb(ire->ire_mp);
2615 		ire = ire1;
2616 	}
2617 	if (ire->ire_stq != NULL)
2618 		stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2619 
2620 	if (ire->ire_type == IRE_CACHE) {
2621 		/*
2622 		 * If this interface is FAILED, or INACTIVE or has hit
2623 		 * the FAILBACK=no case, we create IRE_CACHES marked
2624 		 * HIDDEN for some special cases e.g. bind to
2625 		 * IPIF_NOFAILOVER address etc. So, if this interface
2626 		 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are
2627 		 * not creating hidden ires, we should not allow that.
2628 		 * This happens because the state of the interface
2629 		 * changed while we were waiting in ARP. If this is the
2630 		 * daemon sending probes, the next probe will create
2631 		 * HIDDEN ires and we will create an ire then. This
2632 		 * cannot happen with NDP currently because IRE is
2633 		 * never queued in NDP. But it can happen in the
2634 		 * future when we have external resolvers with IPv6.
2635 		 * If the interface gets marked with OFFLINE while we
2636 		 * are waiting in ARP, don't add the ire.
2637 		 */
2638 		if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) ||
2639 		    (ill_is_probeonly(stq_ill) &&
2640 		    !(ire->ire_marks & IRE_MARK_HIDDEN))) {
2641 			/*
2642 			 * We don't know whether it is a valid ipif or not.
2643 			 * unless we do the check below. So, set it to NULL.
2644 			 */
2645 			ire->ire_ipif = NULL;
2646 			ire_delete(ire);
2647 			*irep = NULL;
2648 			return (EINVAL);
2649 		}
2650 	}
2651 
2652 	if (stq_ill != NULL && ire->ire_type == IRE_CACHE &&
2653 	    stq_ill->ill_net_type == IRE_IF_RESOLVER) {
2654 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2655 		ill = ILL_START_WALK_ALL(&ctx, ipst);
2656 		for (; ill != NULL; ill = ill_next(&ctx, ill)) {
2657 			mutex_enter(&ill->ill_lock);
2658 			if (ill->ill_state_flags & ILL_CONDEMNED) {
2659 				mutex_exit(&ill->ill_lock);
2660 				continue;
2661 			}
2662 			/*
2663 			 * We need to make sure that the ipif is a valid one
2664 			 * before adding the IRE_CACHE. This happens only
2665 			 * with IRE_CACHE when there is an external resolver.
2666 			 *
2667 			 * We can unplumb a logical interface while the
2668 			 * packet is waiting in ARP with the IRE. Then,
2669 			 * later on when we feed the IRE back, the ipif
2670 			 * has to be re-checked. This can't happen with
2671 			 * NDP currently, as we never queue the IRE with
2672 			 * the packet. We always try to recreate the IRE
2673 			 * when the resolution is completed. But, we do
2674 			 * it for IPv6 also here so that in future if
2675 			 * we have external resolvers, it will work without
2676 			 * any change.
2677 			 */
2678 			ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid);
2679 			if (ipif != NULL) {
2680 				ipif_refhold_locked(ipif);
2681 				mutex_exit(&ill->ill_lock);
2682 				break;
2683 			}
2684 			mutex_exit(&ill->ill_lock);
2685 		}
2686 		rw_exit(&ipst->ips_ill_g_lock);
2687 		if (ipif == NULL ||
2688 		    (ipif->ipif_isv6 &&
2689 		    !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
2690 		    &ipif->ipif_v6src_addr)) ||
2691 		    (!ipif->ipif_isv6 &&
2692 		    ire->ire_src_addr != ipif->ipif_src_addr) ||
2693 		    ire->ire_zoneid != ipif->ipif_zoneid) {
2694 
2695 			if (ipif != NULL)
2696 				ipif_refrele(ipif);
2697 			ire->ire_ipif = NULL;
2698 			ire_delete(ire);
2699 			*irep = NULL;
2700 			return (EINVAL);
2701 		}
2702 
2703 
2704 		ASSERT(ill != NULL);
2705 		/*
2706 		 * If this group was dismantled while this packets was
2707 		 * queued in ARP, don't add it here.
2708 		 */
2709 		if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) {
2710 			/* We don't want ire_inactive bump stats for this */
2711 			ipif_refrele(ipif);
2712 			ire->ire_ipif = NULL;
2713 			ire_delete(ire);
2714 			*irep = NULL;
2715 			return (EINVAL);
2716 		}
2717 
2718 		/*
2719 		 * Since we didn't attach label security attributes to the
2720 		 * ire for the resolver case, we need to add it now. (only
2721 		 * for v4 resolver and v6 xresolv case).
2722 		 */
2723 		if (is_system_labeled() && ire_is_mblk) {
2724 			if (ire->ire_ipversion == IPV4_VERSION) {
2725 				ga.ga_af = AF_INET;
2726 				IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr !=
2727 				    INADDR_ANY ? ire->ire_gateway_addr :
2728 				    ire->ire_addr, &ga.ga_addr);
2729 			} else {
2730 				ga.ga_af = AF_INET6;
2731 				ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED(
2732 				    &ire->ire_gateway_addr_v6) ?
2733 				    ire->ire_addr_v6 :
2734 				    ire->ire_gateway_addr_v6;
2735 			}
2736 			gcgrp = gcgrp_lookup(&ga, B_FALSE);
2737 			error = tsol_ire_init_gwattr(ire, ire->ire_ipversion,
2738 			    NULL, gcgrp);
2739 			if (error != 0) {
2740 				if (gcgrp != NULL) {
2741 					GCGRP_REFRELE(gcgrp);
2742 					gcgrp = NULL;
2743 				}
2744 				ipif_refrele(ipif);
2745 				ire->ire_ipif = NULL;
2746 				ire_delete(ire);
2747 				*irep = NULL;
2748 				return (error);
2749 			}
2750 		}
2751 	}
2752 
2753 	/*
2754 	 * In case ire was changed
2755 	 */
2756 	*irep = ire;
2757 	if (ire->ire_ipversion == IPV6_VERSION)
2758 		error = ire_add_v6(irep, q, mp, func);
2759 	else
2760 		error = ire_add_v4(irep, q, mp, func, allow_unresolved);
2761 	if (ipif != NULL)
2762 		ipif_refrele(ipif);
2763 	return (error);
2764 }
2765 
2766 /*
2767  * Add an initialized IRE to an appropriate table based on ire_type.
2768  *
2769  * The forward table contains IRE_PREFIX/IRE_HOST and
2770  * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT.
2771  *
2772  * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK
2773  * and IRE_CACHE.
2774  *
2775  * NOTE : This function is called as writer though not required
2776  * by this function.
2777  */
2778 static int
2779 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func,
2780     boolean_t allow_unresolved)
2781 {
2782 	ire_t	*ire1;
2783 	irb_t	*irb_ptr;
2784 	ire_t	**irep;
2785 	int	flags;
2786 	ire_t	*pire = NULL;
2787 	ill_t	*stq_ill;
2788 	ire_t	*ire = *ire_p;
2789 	int	error;
2790 	boolean_t need_refrele = B_FALSE;
2791 	nce_t	*nce;
2792 	ip_stack_t	*ipst = ire->ire_ipst;
2793 
2794 	if (ire->ire_ipif != NULL)
2795 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
2796 	if (ire->ire_stq != NULL)
2797 		ASSERT(!MUTEX_HELD(
2798 		    &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock));
2799 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
2800 	ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */
2801 
2802 	/* Find the appropriate list head. */
2803 	switch (ire->ire_type) {
2804 	case IRE_HOST:
2805 		ire->ire_mask = IP_HOST_MASK;
2806 		ire->ire_masklen = IP_ABITS;
2807 		if ((ire->ire_flags & RTF_SETSRC) == 0)
2808 			ire->ire_src_addr = 0;
2809 		break;
2810 	case IRE_CACHE:
2811 	case IRE_BROADCAST:
2812 	case IRE_LOCAL:
2813 	case IRE_LOOPBACK:
2814 		ire->ire_mask = IP_HOST_MASK;
2815 		ire->ire_masklen = IP_ABITS;
2816 		break;
2817 	case IRE_PREFIX:
2818 		if ((ire->ire_flags & RTF_SETSRC) == 0)
2819 			ire->ire_src_addr = 0;
2820 		break;
2821 	case IRE_DEFAULT:
2822 		if ((ire->ire_flags & RTF_SETSRC) == 0)
2823 			ire->ire_src_addr = 0;
2824 		break;
2825 	case IRE_IF_RESOLVER:
2826 	case IRE_IF_NORESOLVER:
2827 		break;
2828 	default:
2829 		ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n",
2830 		    (void *)ire, ire->ire_type));
2831 		ire_delete(ire);
2832 		*ire_p = NULL;
2833 		return (EINVAL);
2834 	}
2835 
2836 	/* Make sure the address is properly masked. */
2837 	ire->ire_addr &= ire->ire_mask;
2838 
2839 	/*
2840 	 * ip_newroute/ip_newroute_multi are unable to prevent the deletion
2841 	 * of the interface route while adding an IRE_CACHE for an on-link
2842 	 * destination in the IRE_IF_RESOLVER case, since the ire has to
2843 	 * go to ARP and return. We can't do a REFHOLD on the
2844 	 * associated interface ire for fear of ARP freeing the message.
2845 	 * Here we look up the interface ire in the forwarding table and
2846 	 * make sure that the interface route has not been deleted.
2847 	 */
2848 	if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 &&
2849 	    ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) {
2850 
2851 		ASSERT(ire->ire_max_fragp == NULL);
2852 		if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) {
2853 			/*
2854 			 * The ihandle that we used in ip_newroute_multi
2855 			 * comes from the interface route corresponding
2856 			 * to ire_ipif. Lookup here to see if it exists
2857 			 * still.
2858 			 * If the ire has a source address assigned using
2859 			 * RTF_SETSRC, ire_ipif is the logical interface holding
2860 			 * this source address, so we can't use it to check for
2861 			 * the existence of the interface route. Instead we rely
2862 			 * on the brute force ihandle search in
2863 			 * ire_ihandle_lookup_onlink() below.
2864 			 */
2865 			pire = ipif_to_ire(ire->ire_ipif);
2866 			if (pire == NULL) {
2867 				ire_delete(ire);
2868 				*ire_p = NULL;
2869 				return (EINVAL);
2870 			} else if (pire->ire_ihandle != ire->ire_ihandle) {
2871 				ire_refrele(pire);
2872 				ire_delete(ire);
2873 				*ire_p = NULL;
2874 				return (EINVAL);
2875 			}
2876 		} else {
2877 			pire = ire_ihandle_lookup_onlink(ire);
2878 			if (pire == NULL) {
2879 				ire_delete(ire);
2880 				*ire_p = NULL;
2881 				return (EINVAL);
2882 			}
2883 		}
2884 		/* Prevent pire from getting deleted */
2885 		IRB_REFHOLD(pire->ire_bucket);
2886 		/* Has it been removed already ? */
2887 		if (pire->ire_marks & IRE_MARK_CONDEMNED) {
2888 			IRB_REFRELE(pire->ire_bucket);
2889 			ire_refrele(pire);
2890 			ire_delete(ire);
2891 			*ire_p = NULL;
2892 			return (EINVAL);
2893 		}
2894 	} else {
2895 		ASSERT(ire->ire_max_fragp != NULL);
2896 	}
2897 	flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
2898 
2899 	if (ire->ire_ipif != NULL) {
2900 		/*
2901 		 * We use MATCH_IRE_IPIF while adding IRE_CACHES only
2902 		 * for historic reasons and to maintain symmetry with
2903 		 * IPv6 code path. Historically this was used by
2904 		 * multicast code to create multiple IRE_CACHES on
2905 		 * a single ill with different ipifs. This was used
2906 		 * so that multicast packets leaving the node had the
2907 		 * right source address. This is no longer needed as
2908 		 * ip_wput initializes the address correctly.
2909 		 */
2910 		flags |= MATCH_IRE_IPIF;
2911 		/*
2912 		 * If we are creating hidden ires, make sure we search on
2913 		 * this ill (MATCH_IRE_ILL) and a hidden ire,
2914 		 * while we are searching for duplicates below. Otherwise we
2915 		 * could potentially find an IRE on some other interface
2916 		 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We
2917 		 * shouldn't do this as this will lead to an infinite loop
2918 		 * (if we get to ip_wput again) eventually we need an hidden
2919 		 * ire for this packet to go out. MATCH_IRE_ILL is explicitly
2920 		 * done below.
2921 		 */
2922 		if (ire->ire_type == IRE_CACHE &&
2923 		    (ire->ire_marks & IRE_MARK_HIDDEN))
2924 			flags |= (MATCH_IRE_MARK_HIDDEN);
2925 	}
2926 	if ((ire->ire_type & IRE_CACHETABLE) == 0) {
2927 		irb_ptr = ire_get_bucket(ire);
2928 		need_refrele = B_TRUE;
2929 		if (irb_ptr == NULL) {
2930 			/*
2931 			 * This assumes that the ire has not added
2932 			 * a reference to the ipif.
2933 			 */
2934 			ire->ire_ipif = NULL;
2935 			ire_delete(ire);
2936 			if (pire != NULL) {
2937 				IRB_REFRELE(pire->ire_bucket);
2938 				ire_refrele(pire);
2939 			}
2940 			*ire_p = NULL;
2941 			return (EINVAL);
2942 		}
2943 	} else {
2944 		irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH(
2945 		    ire->ire_addr, ipst->ips_ip_cache_table_size)]);
2946 	}
2947 
2948 	/*
2949 	 * Start the atomic add of the ire. Grab the ill locks,
2950 	 * ill_g_usesrc_lock and the bucket lock. Check for condemned
2951 	 *
2952 	 * If ipif or ill is changing ire_atomic_start() may queue the
2953 	 * request and return EINPROGRESS.
2954 	 * To avoid lock order problems, get the ndp4->ndp_g_lock.
2955 	 */
2956 	mutex_enter(&ipst->ips_ndp4->ndp_g_lock);
2957 	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
2958 	if (error != 0) {
2959 		mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
2960 		/*
2961 		 * We don't know whether it is a valid ipif or not.
2962 		 * So, set it to NULL. This assumes that the ire has not added
2963 		 * a reference to the ipif.
2964 		 */
2965 		ire->ire_ipif = NULL;
2966 		ire_delete(ire);
2967 		if (pire != NULL) {
2968 			IRB_REFRELE(pire->ire_bucket);
2969 			ire_refrele(pire);
2970 		}
2971 		*ire_p = NULL;
2972 		if (need_refrele)
2973 			IRB_REFRELE(irb_ptr);
2974 		return (error);
2975 	}
2976 	/*
2977 	 * To avoid creating ires having stale values for the ire_max_frag
2978 	 * we get the latest value atomically here. For more details
2979 	 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE
2980 	 * in ip_rput_dlpi_writer
2981 	 */
2982 	if (ire->ire_max_fragp == NULL) {
2983 		if (CLASSD(ire->ire_addr))
2984 			ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
2985 		else
2986 			ire->ire_max_frag = pire->ire_max_frag;
2987 	} else {
2988 		uint_t	max_frag;
2989 
2990 		max_frag = *ire->ire_max_fragp;
2991 		ire->ire_max_fragp = NULL;
2992 		ire->ire_max_frag = max_frag;
2993 	}
2994 	/*
2995 	 * Atomically check for duplicate and insert in the table.
2996 	 */
2997 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
2998 		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
2999 			continue;
3000 		if (ire->ire_ipif != NULL) {
3001 			/*
3002 			 * We do MATCH_IRE_ILL implicitly here for IREs
3003 			 * with a non-null ire_ipif, including IRE_CACHEs.
3004 			 * As ire_ipif and ire_stq could point to two
3005 			 * different ills, we can't pass just ire_ipif to
3006 			 * ire_match_args and get a match on both ills.
3007 			 * This is just needed for duplicate checks here and
3008 			 * so we don't add an extra argument to
3009 			 * ire_match_args for this. Do it locally.
3010 			 *
3011 			 * NOTE : Currently there is no part of the code
3012 			 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL
3013 			 * match for IRE_CACHEs. Thus we don't want to
3014 			 * extend the arguments to ire_match_args.
3015 			 */
3016 			if (ire1->ire_stq != ire->ire_stq)
3017 				continue;
3018 			/*
3019 			 * Multiroute IRE_CACHEs for a given destination can
3020 			 * have the same ire_ipif, typically if their source
3021 			 * address is forced using RTF_SETSRC, and the same
3022 			 * send-to queue. We differentiate them using the parent
3023 			 * handle.
3024 			 */
3025 			if (ire->ire_type == IRE_CACHE &&
3026 			    (ire1->ire_flags & RTF_MULTIRT) &&
3027 			    (ire->ire_flags & RTF_MULTIRT) &&
3028 			    (ire1->ire_phandle != ire->ire_phandle))
3029 				continue;
3030 		}
3031 		if (ire1->ire_zoneid != ire->ire_zoneid)
3032 			continue;
3033 		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask,
3034 		    ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif,
3035 		    ire->ire_zoneid, 0, NULL, flags)) {
3036 			/*
3037 			 * Return the old ire after doing a REFHOLD.
3038 			 * As most of the callers continue to use the IRE
3039 			 * after adding, we return a held ire. This will
3040 			 * avoid a lookup in the caller again. If the callers
3041 			 * don't want to use it, they need to do a REFRELE.
3042 			 */
3043 			ip1dbg(("found dup ire existing %p new %p",
3044 			    (void *)ire1, (void *)ire));
3045 			IRE_REFHOLD(ire1);
3046 			ire_atomic_end(irb_ptr, ire);
3047 			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3048 			ire_delete(ire);
3049 			if (pire != NULL) {
3050 				/*
3051 				 * Assert that it is not removed from the
3052 				 * list yet.
3053 				 */
3054 				ASSERT(pire->ire_ptpn != NULL);
3055 				IRB_REFRELE(pire->ire_bucket);
3056 				ire_refrele(pire);
3057 			}
3058 			*ire_p = ire1;
3059 			if (need_refrele)
3060 				IRB_REFRELE(irb_ptr);
3061 			return (0);
3062 		}
3063 	}
3064 	if (ire->ire_type & IRE_CACHE) {
3065 		ASSERT(ire->ire_stq != NULL);
3066 		nce = ndp_lookup_v4(ire_to_ill(ire),
3067 		    ((ire->ire_gateway_addr != INADDR_ANY) ?
3068 		    &ire->ire_gateway_addr : &ire->ire_addr),
3069 		    B_TRUE);
3070 		if (nce != NULL)
3071 			mutex_enter(&nce->nce_lock);
3072 		/*
3073 		 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE
3074 		 * and the caller has prohibited the addition of incomplete
3075 		 * ire's, we fail the add. Note that nce_state could be
3076 		 * something other than ND_REACHABLE if the nce had
3077 		 * just expired and the ire_create preceding the
3078 		 * ire_add added a new ND_INITIAL nce.
3079 		 */
3080 		if ((nce == NULL) ||
3081 		    (nce->nce_flags & NCE_F_CONDEMNED) ||
3082 		    (!allow_unresolved &&
3083 		    (nce->nce_state != ND_REACHABLE))) {
3084 			if (nce != NULL) {
3085 				DTRACE_PROBE1(ire__bad__nce, nce_t *, nce);
3086 				mutex_exit(&nce->nce_lock);
3087 			}
3088 			ire_atomic_end(irb_ptr, ire);
3089 			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3090 			if (nce != NULL)
3091 				NCE_REFRELE(nce);
3092 			DTRACE_PROBE1(ire__no__nce, ire_t *, ire);
3093 			ire_delete(ire);
3094 			if (pire != NULL) {
3095 				IRB_REFRELE(pire->ire_bucket);
3096 				ire_refrele(pire);
3097 			}
3098 			*ire_p = NULL;
3099 			if (need_refrele)
3100 				IRB_REFRELE(irb_ptr);
3101 			return (EINVAL);
3102 		} else {
3103 			ire->ire_nce = nce;
3104 			mutex_exit(&nce->nce_lock);
3105 			/*
3106 			 * We are associating this nce to the ire, so
3107 			 * change the nce ref taken in ndp_lookup_v4() from
3108 			 * NCE_REFHOLD to NCE_REFHOLD_NOTR
3109 			 */
3110 			NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
3111 		}
3112 	}
3113 	/*
3114 	 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by
3115 	 * grouping identical addresses together on the hash chain. We also
3116 	 * don't want to send multiple copies out if there are two ills part
3117 	 * of the same group. Thus we group the ires with same addr and same
3118 	 * ill group together so that ip_wput_ire can easily skip all the
3119 	 * ires with same addr and same group after sending the first copy.
3120 	 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently
3121 	 * interested in such groupings only for broadcasts.
3122 	 *
3123 	 * NOTE : If the interfaces are brought up first and then grouped,
3124 	 * illgrp_insert will handle it. We come here when the interfaces
3125 	 * are already in group and we are bringing them UP.
3126 	 *
3127 	 * Find the first entry that matches ire_addr. *irep will be null
3128 	 * if no match.
3129 	 *
3130 	 * Note: the loopback and non-loopback broadcast entries for an
3131 	 * interface MUST be added before any MULTIRT entries.
3132 	 */
3133 	irep = (ire_t **)irb_ptr;
3134 	while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr)
3135 		irep = &ire1->ire_next;
3136 	if (ire->ire_type == IRE_BROADCAST && *irep != NULL) {
3137 		/*
3138 		 * We found some ire (i.e *irep) with a matching addr. We
3139 		 * want to group ires with same addr and same ill group
3140 		 * together.
3141 		 *
3142 		 * First get to the entry that matches our address and
3143 		 * ill group i.e stop as soon as we find the first ire
3144 		 * matching the ill group and address. If there is only
3145 		 * an address match, we should walk and look for some
3146 		 * group match. These are some of the possible scenarios :
3147 		 *
3148 		 * 1) There are no groups at all i.e all ire's ill_group
3149 		 *    are NULL. In that case we will essentially group
3150 		 *    all the ires with the same addr together. Same as
3151 		 *    the "else" block of this "if".
3152 		 *
3153 		 * 2) There are some groups and this ire's ill_group is
3154 		 *    NULL. In this case, we will first find the group
3155 		 *    that matches the address and a NULL group. Then
3156 		 *    we will insert the ire at the end of that group.
3157 		 *
3158 		 * 3) There are some groups and this ires's ill_group is
3159 		 *    non-NULL. In this case we will first find the group
3160 		 *    that matches the address and the ill_group. Then
3161 		 *    we will insert the ire at the end of that group.
3162 		 */
3163 		for (;;) {
3164 			ire1 = *irep;
3165 			if ((ire1->ire_next == NULL) ||
3166 			    (ire1->ire_next->ire_addr != ire->ire_addr) ||
3167 			    (ire1->ire_type != IRE_BROADCAST) ||
3168 			    (ire1->ire_flags & RTF_MULTIRT) ||
3169 			    (ire1->ire_ipif->ipif_ill->ill_group ==
3170 			    ire->ire_ipif->ipif_ill->ill_group))
3171 				break;
3172 			irep = &ire1->ire_next;
3173 		}
3174 		ASSERT(*irep != NULL);
3175 		/*
3176 		 * The ire will be added before *irep, so
3177 		 * if irep is a MULTIRT ire, just break to
3178 		 * ire insertion code.
3179 		 */
3180 		if (((*irep)->ire_flags & RTF_MULTIRT) != 0)
3181 			goto insert_ire;
3182 
3183 		irep = &((*irep)->ire_next);
3184 
3185 		/*
3186 		 * Either we have hit the end of the list or the address
3187 		 * did not match or the group *matched*. If we found
3188 		 * a match on the group, skip to the end of the group.
3189 		 */
3190 		while (*irep != NULL) {
3191 			ire1 = *irep;
3192 			if ((ire1->ire_addr != ire->ire_addr) ||
3193 			    (ire1->ire_type != IRE_BROADCAST) ||
3194 			    (ire1->ire_ipif->ipif_ill->ill_group !=
3195 			    ire->ire_ipif->ipif_ill->ill_group))
3196 				break;
3197 			if (ire1->ire_ipif->ipif_ill->ill_group == NULL &&
3198 			    ire1->ire_ipif == ire->ire_ipif) {
3199 				irep = &ire1->ire_next;
3200 				break;
3201 			}
3202 			irep = &ire1->ire_next;
3203 		}
3204 	} else if (*irep != NULL) {
3205 		/*
3206 		 * Find the last ire which matches ire_addr.
3207 		 * Needed to do tail insertion among entries with the same
3208 		 * ire_addr.
3209 		 */
3210 		while (ire->ire_addr == ire1->ire_addr) {
3211 			irep = &ire1->ire_next;
3212 			ire1 = *irep;
3213 			if (ire1 == NULL)
3214 				break;
3215 		}
3216 	}
3217 
3218 insert_ire:
3219 	/* Insert at *irep */
3220 	ire1 = *irep;
3221 	if (ire1 != NULL)
3222 		ire1->ire_ptpn = &ire->ire_next;
3223 	ire->ire_next = ire1;
3224 	/* Link the new one in. */
3225 	ire->ire_ptpn = irep;
3226 
3227 	/*
3228 	 * ire_walk routines de-reference ire_next without holding
3229 	 * a lock. Before we point to the new ire, we want to make
3230 	 * sure the store that sets the ire_next of the new ire
3231 	 * reaches global visibility, so that ire_walk routines
3232 	 * don't see a truncated list of ires i.e if the ire_next
3233 	 * of the new ire gets set after we do "*irep = ire" due
3234 	 * to re-ordering, the ire_walk thread will see a NULL
3235 	 * once it accesses the ire_next of the new ire.
3236 	 * membar_producer() makes sure that the following store
3237 	 * happens *after* all of the above stores.
3238 	 */
3239 	membar_producer();
3240 	*irep = ire;
3241 	ire->ire_bucket = irb_ptr;
3242 	/*
3243 	 * We return a bumped up IRE above. Keep it symmetrical
3244 	 * so that the callers will always have to release. This
3245 	 * helps the callers of this function because they continue
3246 	 * to use the IRE after adding and hence they don't have to
3247 	 * lookup again after we return the IRE.
3248 	 *
3249 	 * NOTE : We don't have to use atomics as this is appearing
3250 	 * in the list for the first time and no one else can bump
3251 	 * up the reference count on this yet.
3252 	 */
3253 	IRE_REFHOLD_LOCKED(ire);
3254 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
3255 
3256 	irb_ptr->irb_ire_cnt++;
3257 	if (irb_ptr->irb_marks & IRB_MARK_FTABLE)
3258 		irb_ptr->irb_nire++;
3259 
3260 	if (ire->ire_marks & IRE_MARK_TEMPORARY)
3261 		irb_ptr->irb_tmp_ire_cnt++;
3262 
3263 	if (ire->ire_ipif != NULL) {
3264 		ire->ire_ipif->ipif_ire_cnt++;
3265 		if (ire->ire_stq != NULL) {
3266 			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
3267 			stq_ill->ill_ire_cnt++;
3268 		}
3269 	} else {
3270 		ASSERT(ire->ire_stq == NULL);
3271 	}
3272 
3273 	ire_atomic_end(irb_ptr, ire);
3274 	mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3275 
3276 	if (pire != NULL) {
3277 		/* Assert that it is not removed from the list yet */
3278 		ASSERT(pire->ire_ptpn != NULL);
3279 		IRB_REFRELE(pire->ire_bucket);
3280 		ire_refrele(pire);
3281 	}
3282 
3283 	if (ire->ire_type != IRE_CACHE) {
3284 		/*
3285 		 * For ire's with host mask see if there is an entry
3286 		 * in the cache. If there is one flush the whole cache as
3287 		 * there might be multiple entries due to RTF_MULTIRT (CGTP).
3288 		 * If no entry is found than there is no need to flush the
3289 		 * cache.
3290 		 */
3291 		if (ire->ire_mask == IP_HOST_MASK) {
3292 			ire_t *lire;
3293 			lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE,
3294 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
3295 			if (lire != NULL) {
3296 				ire_refrele(lire);
3297 				ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3298 			}
3299 		} else {
3300 			ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3301 		}
3302 	}
3303 	/*
3304 	 * We had to delay the fast path probe until the ire is inserted
3305 	 * in the list. Otherwise the fast path ack won't find the ire in
3306 	 * the table.
3307 	 */
3308 	if (ire->ire_type == IRE_CACHE ||
3309 	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) {
3310 		ASSERT(ire->ire_nce != NULL);
3311 		if (ire->ire_nce->nce_state == ND_REACHABLE)
3312 			nce_fastpath(ire->ire_nce);
3313 	}
3314 	if (ire->ire_ipif != NULL)
3315 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
3316 	*ire_p = ire;
3317 	if (need_refrele) {
3318 		IRB_REFRELE(irb_ptr);
3319 	}
3320 	return (0);
3321 }
3322 
3323 /*
3324  * IRB_REFRELE is the only caller of the function. ire_unlink calls to
3325  * do the final cleanup for this ire.
3326  */
3327 void
3328 ire_cleanup(ire_t *ire)
3329 {
3330 	ire_t *ire_next;
3331 	ip_stack_t *ipst = ire->ire_ipst;
3332 
3333 	ASSERT(ire != NULL);
3334 
3335 	while (ire != NULL) {
3336 		ire_next = ire->ire_next;
3337 		if (ire->ire_ipversion == IPV4_VERSION) {
3338 			ire_delete_v4(ire);
3339 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
3340 			    ire_stats_deleted);
3341 		} else {
3342 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
3343 			ire_delete_v6(ire);
3344 			BUMP_IRE_STATS(ipst->ips_ire_stats_v6,
3345 			    ire_stats_deleted);
3346 		}
3347 		/*
3348 		 * Now it's really out of the list. Before doing the
3349 		 * REFRELE, set ire_next to NULL as ire_inactive asserts
3350 		 * so.
3351 		 */
3352 		ire->ire_next = NULL;
3353 		IRE_REFRELE_NOTR(ire);
3354 		ire = ire_next;
3355 	}
3356 }
3357 
3358 /*
3359  * IRB_REFRELE is the only caller of the function. It calls to unlink
3360  * all the CONDEMNED ires from this bucket.
3361  */
3362 ire_t *
3363 ire_unlink(irb_t *irb)
3364 {
3365 	ire_t *ire;
3366 	ire_t *ire1;
3367 	ire_t **ptpn;
3368 	ire_t *ire_list = NULL;
3369 
3370 	ASSERT(RW_WRITE_HELD(&irb->irb_lock));
3371 	ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) ||
3372 	    (irb->irb_refcnt == 0));
3373 	ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED);
3374 	ASSERT(irb->irb_ire != NULL);
3375 
3376 	for (ire = irb->irb_ire; ire != NULL; ire = ire1) {
3377 		ip_stack_t	*ipst = ire->ire_ipst;
3378 
3379 		ire1 = ire->ire_next;
3380 		if (ire->ire_marks & IRE_MARK_CONDEMNED) {
3381 			ptpn = ire->ire_ptpn;
3382 			ire1 = ire->ire_next;
3383 			if (ire1)
3384 				ire1->ire_ptpn = ptpn;
3385 			*ptpn = ire1;
3386 			ire->ire_ptpn = NULL;
3387 			ire->ire_next = NULL;
3388 			if (ire->ire_type == IRE_DEFAULT) {
3389 				/*
3390 				 * IRE is out of the list. We need to adjust
3391 				 * the accounting before the caller drops
3392 				 * the lock.
3393 				 */
3394 				if (ire->ire_ipversion == IPV6_VERSION) {
3395 					ASSERT(ipst->
3396 					    ips_ipv6_ire_default_count !=
3397 					    0);
3398 					ipst->ips_ipv6_ire_default_count--;
3399 				}
3400 			}
3401 			/*
3402 			 * We need to call ire_delete_v4 or ire_delete_v6
3403 			 * to clean up the cache or the redirects pointing at
3404 			 * the default gateway. We need to drop the lock
3405 			 * as ire_flush_cache/ire_delete_host_redircts require
3406 			 * so. But we can't drop the lock, as ire_unlink needs
3407 			 * to atomically remove the ires from the list.
3408 			 * So, create a temporary list of CONDEMNED ires
3409 			 * for doing ire_delete_v4/ire_delete_v6 operations
3410 			 * later on.
3411 			 */
3412 			ire->ire_next = ire_list;
3413 			ire_list = ire;
3414 		}
3415 	}
3416 	irb->irb_marks &= ~IRB_MARK_CONDEMNED;
3417 	return (ire_list);
3418 }
3419 
3420 /*
3421  * Delete all the cache entries with this 'addr'.  When IP gets a gratuitous
3422  * ARP message on any of its interface queue, it scans the nce table and
3423  * deletes and calls ndp_delete() for the appropriate nce. This action
3424  * also deletes all the neighbor/ire cache entries for that address.
3425  * This function is called from ip_arp_news in ip.c and also for
3426  * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns
3427  * true if it finds a nce entry which is used by ip_arp_news to determine if
3428  * it needs to do an ire_walk_v4. The return value is also  used for the
3429  * same purpose by ARP IOCTL processing * in ip_if.c when deleting
3430  * ARP entries. For SIOC*IFARP ioctls in addition to the address,
3431  * ip_if->ipif_ill also needs to be matched.
3432  */
3433 boolean_t
3434 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst)
3435 {
3436 	ill_t	*ill;
3437 	nce_t	*nce;
3438 
3439 	ill = (ipif ? ipif->ipif_ill : NULL);
3440 
3441 	if (ill != NULL) {
3442 		/*
3443 		 * clean up the nce (and any relevant ire's) that matches
3444 		 * on addr and ill.
3445 		 */
3446 		nce = ndp_lookup_v4(ill, &addr, B_FALSE);
3447 		if (nce != NULL) {
3448 			ndp_delete(nce);
3449 			return (B_TRUE);
3450 		}
3451 	} else {
3452 		/*
3453 		 * ill is wildcard. clean up all nce's and
3454 		 * ire's that match on addr
3455 		 */
3456 		nce_clookup_t cl;
3457 
3458 		cl.ncecl_addr = addr;
3459 		cl.ncecl_found = B_FALSE;
3460 
3461 		ndp_walk_common(ipst->ips_ndp4, NULL,
3462 		    (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE);
3463 
3464 		/*
3465 		 *  ncecl_found would be set by ip_nce_clookup_and_delete if
3466 		 *  we found a matching nce.
3467 		 */
3468 		return (cl.ncecl_found);
3469 	}
3470 	return (B_FALSE);
3471 
3472 }
3473 
3474 /* Delete the supplied nce if its nce_addr matches the supplied address */
3475 static void
3476 ip_nce_clookup_and_delete(nce_t *nce, void *arg)
3477 {
3478 	nce_clookup_t *cl = (nce_clookup_t *)arg;
3479 	ipaddr_t nce_addr;
3480 
3481 	IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr);
3482 	if (nce_addr == cl->ncecl_addr) {
3483 		cl->ncecl_found = B_TRUE;
3484 		/* clean up the nce (and any relevant ire's) */
3485 		ndp_delete(nce);
3486 	}
3487 }
3488 
3489 /*
3490  * Clean up the radix node for this ire. Must be called by IRB_REFRELE
3491  * when there are no ire's left in the bucket. Returns TRUE if the bucket
3492  * is deleted and freed.
3493  */
3494 boolean_t
3495 irb_inactive(irb_t *irb)
3496 {
3497 	struct rt_entry *rt;
3498 	struct radix_node *rn;
3499 	ip_stack_t *ipst = irb->irb_ipst;
3500 
3501 	ASSERT(irb->irb_ipst != NULL);
3502 
3503 	rt = IRB2RT(irb);
3504 	rn = (struct radix_node *)rt;
3505 
3506 	/* first remove it from the radix tree. */
3507 	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
3508 	rw_enter(&irb->irb_lock, RW_WRITER);
3509 	if (irb->irb_refcnt == 1 && irb->irb_nire == 0) {
3510 		rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask,
3511 		    ipst->ips_ip_ftable);
3512 		DTRACE_PROBE1(irb__free, rt_t *,  rt);
3513 		ASSERT((void *)rn == (void *)rt);
3514 		Free(rt, rt_entry_cache);
3515 		/* irb_lock is freed */
3516 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3517 		return (B_TRUE);
3518 	}
3519 	rw_exit(&irb->irb_lock);
3520 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3521 	return (B_FALSE);
3522 }
3523 
3524 /*
3525  * Delete the specified IRE.
3526  */
3527 void
3528 ire_delete(ire_t *ire)
3529 {
3530 	ire_t	*ire1;
3531 	ire_t	**ptpn;
3532 	irb_t *irb;
3533 	ip_stack_t	*ipst = ire->ire_ipst;
3534 
3535 	if ((irb = ire->ire_bucket) == NULL) {
3536 		/*
3537 		 * It was never inserted in the list. Should call REFRELE
3538 		 * to free this IRE.
3539 		 */
3540 		IRE_REFRELE_NOTR(ire);
3541 		return;
3542 	}
3543 
3544 	rw_enter(&irb->irb_lock, RW_WRITER);
3545 
3546 	if (irb->irb_rr_origin == ire) {
3547 		irb->irb_rr_origin = NULL;
3548 	}
3549 
3550 	/*
3551 	 * In case of V4 we might still be waiting for fastpath ack.
3552 	 */
3553 	if (ire->ire_ipversion == IPV4_VERSION &&
3554 	    (ire->ire_type == IRE_CACHE ||
3555 	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) {
3556 		ASSERT(ire->ire_nce != NULL);
3557 		nce_fastpath_list_delete(ire->ire_nce);
3558 	}
3559 
3560 	if (ire->ire_ptpn == NULL) {
3561 		/*
3562 		 * Some other thread has removed us from the list.
3563 		 * It should have done the REFRELE for us.
3564 		 */
3565 		rw_exit(&irb->irb_lock);
3566 		return;
3567 	}
3568 
3569 	if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3570 		irb->irb_ire_cnt--;
3571 		ire->ire_marks |= IRE_MARK_CONDEMNED;
3572 		if (ire->ire_marks & IRE_MARK_TEMPORARY) {
3573 			irb->irb_tmp_ire_cnt--;
3574 			ire->ire_marks &= ~IRE_MARK_TEMPORARY;
3575 		}
3576 	}
3577 
3578 	if (irb->irb_refcnt != 0) {
3579 		/*
3580 		 * The last thread to leave this bucket will
3581 		 * delete this ire.
3582 		 */
3583 		irb->irb_marks |= IRB_MARK_CONDEMNED;
3584 		rw_exit(&irb->irb_lock);
3585 		return;
3586 	}
3587 
3588 	/*
3589 	 * Normally to delete an ire, we walk the bucket. While we
3590 	 * walk the bucket, we normally bump up irb_refcnt and hence
3591 	 * we return from above where we mark CONDEMNED and the ire
3592 	 * gets deleted from ire_unlink. This case is where somebody
3593 	 * knows the ire e.g by doing a lookup, and wants to delete the
3594 	 * IRE. irb_refcnt would be 0 in this case if nobody is walking
3595 	 * the bucket.
3596 	 */
3597 	ptpn = ire->ire_ptpn;
3598 	ire1 = ire->ire_next;
3599 	if (ire1 != NULL)
3600 		ire1->ire_ptpn = ptpn;
3601 	ASSERT(ptpn != NULL);
3602 	*ptpn = ire1;
3603 	ire->ire_ptpn = NULL;
3604 	ire->ire_next = NULL;
3605 	if (ire->ire_ipversion == IPV6_VERSION) {
3606 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted);
3607 	} else {
3608 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted);
3609 	}
3610 	/*
3611 	 * ip_wput/ip_wput_v6 checks this flag to see whether
3612 	 * it should still use the cached ire or not.
3613 	 */
3614 	if (ire->ire_type == IRE_DEFAULT) {
3615 		/*
3616 		 * IRE is out of the list. We need to adjust the
3617 		 * accounting before we drop the lock.
3618 		 */
3619 		if (ire->ire_ipversion == IPV6_VERSION) {
3620 			ASSERT(ipst->ips_ipv6_ire_default_count != 0);
3621 			ipst->ips_ipv6_ire_default_count--;
3622 		}
3623 	}
3624 	rw_exit(&irb->irb_lock);
3625 
3626 	if (ire->ire_ipversion == IPV6_VERSION) {
3627 		ire_delete_v6(ire);
3628 	} else {
3629 		ire_delete_v4(ire);
3630 	}
3631 	/*
3632 	 * We removed it from the list. Decrement the
3633 	 * reference count.
3634 	 */
3635 	IRE_REFRELE_NOTR(ire);
3636 }
3637 
3638 /*
3639  * Delete the specified IRE.
3640  * All calls should use ire_delete().
3641  * Sometimes called as writer though not required by this function.
3642  *
3643  * NOTE : This function is called only if the ire was added
3644  * in the list.
3645  */
3646 static void
3647 ire_delete_v4(ire_t *ire)
3648 {
3649 	ip_stack_t	*ipst = ire->ire_ipst;
3650 
3651 	ASSERT(ire->ire_refcnt >= 1);
3652 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3653 
3654 	if (ire->ire_type != IRE_CACHE)
3655 		ire_flush_cache_v4(ire, IRE_FLUSH_DELETE);
3656 	if (ire->ire_type == IRE_DEFAULT) {
3657 		/*
3658 		 * when a default gateway is going away
3659 		 * delete all the host redirects pointing at that
3660 		 * gateway.
3661 		 */
3662 		ire_delete_host_redirects(ire->ire_gateway_addr, ipst);
3663 	}
3664 }
3665 
3666 /*
3667  * IRE_REFRELE/ire_refrele are the only caller of the function. It calls
3668  * to free the ire when the reference count goes to zero.
3669  */
3670 void
3671 ire_inactive(ire_t *ire)
3672 {
3673 	nce_t	*nce;
3674 	ill_t	*ill = NULL;
3675 	ill_t	*stq_ill = NULL;
3676 	ipif_t	*ipif;
3677 	boolean_t	need_wakeup = B_FALSE;
3678 	irb_t 	*irb;
3679 	ip_stack_t	*ipst = ire->ire_ipst;
3680 
3681 	ASSERT(ire->ire_refcnt == 0);
3682 	ASSERT(ire->ire_ptpn == NULL);
3683 	ASSERT(ire->ire_next == NULL);
3684 
3685 	if (ire->ire_gw_secattr != NULL) {
3686 		ire_gw_secattr_free(ire->ire_gw_secattr);
3687 		ire->ire_gw_secattr = NULL;
3688 	}
3689 
3690 	if (ire->ire_mp != NULL) {
3691 		ASSERT(ire->ire_bucket == NULL);
3692 		mutex_destroy(&ire->ire_lock);
3693 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
3694 		if (ire->ire_nce != NULL)
3695 			NCE_REFRELE_NOTR(ire->ire_nce);
3696 		freeb(ire->ire_mp);
3697 		return;
3698 	}
3699 
3700 	if ((nce = ire->ire_nce) != NULL) {
3701 		NCE_REFRELE_NOTR(nce);
3702 		ire->ire_nce = NULL;
3703 	}
3704 
3705 	if (ire->ire_ipif == NULL)
3706 		goto end;
3707 
3708 	ipif = ire->ire_ipif;
3709 	ill = ipif->ipif_ill;
3710 
3711 	if (ire->ire_bucket == NULL) {
3712 		/* The ire was never inserted in the table. */
3713 		goto end;
3714 	}
3715 
3716 	/*
3717 	 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is
3718 	 * non-null ill_ire_count also goes down by 1.
3719 	 *
3720 	 * The ipif that is associated with an ire is ire->ire_ipif and
3721 	 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call
3722 	 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as
3723 	 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only
3724 	 * in the case of IRE_CACHES when IPMP is used, stq_ill can be
3725 	 * different. If this is different from ire->ire_ipif->ipif_ill and
3726 	 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call
3727 	 * ipif_ill_refrele_tail on the stq_ill.
3728 	 */
3729 
3730 	if (ire->ire_stq != NULL)
3731 		stq_ill = (ill_t *)ire->ire_stq->q_ptr;
3732 
3733 	if (stq_ill == NULL || stq_ill == ill) {
3734 		/* Optimize the most common case */
3735 		mutex_enter(&ill->ill_lock);
3736 		ASSERT(ipif->ipif_ire_cnt != 0);
3737 		ipif->ipif_ire_cnt--;
3738 		if (ipif->ipif_ire_cnt == 0)
3739 			need_wakeup = B_TRUE;
3740 		if (stq_ill != NULL) {
3741 			ASSERT(stq_ill->ill_ire_cnt != 0);
3742 			stq_ill->ill_ire_cnt--;
3743 			if (stq_ill->ill_ire_cnt == 0)
3744 				need_wakeup = B_TRUE;
3745 		}
3746 		if (need_wakeup) {
3747 			/* Drops the ill lock */
3748 			ipif_ill_refrele_tail(ill);
3749 		} else {
3750 			mutex_exit(&ill->ill_lock);
3751 		}
3752 	} else {
3753 		/*
3754 		 * We can't grab all the ill locks at the same time.
3755 		 * It can lead to recursive lock enter in the call to
3756 		 * ipif_ill_refrele_tail and later. Instead do it 1 at
3757 		 * a time.
3758 		 */
3759 		mutex_enter(&ill->ill_lock);
3760 		ASSERT(ipif->ipif_ire_cnt != 0);
3761 		ipif->ipif_ire_cnt--;
3762 		if (ipif->ipif_ire_cnt == 0) {
3763 			/* Drops the lock */
3764 			ipif_ill_refrele_tail(ill);
3765 		} else {
3766 			mutex_exit(&ill->ill_lock);
3767 		}
3768 		if (stq_ill != NULL) {
3769 			mutex_enter(&stq_ill->ill_lock);
3770 			ASSERT(stq_ill->ill_ire_cnt != 0);
3771 			stq_ill->ill_ire_cnt--;
3772 			if (stq_ill->ill_ire_cnt == 0)  {
3773 				/* Drops the ill lock */
3774 				ipif_ill_refrele_tail(stq_ill);
3775 			} else {
3776 				mutex_exit(&stq_ill->ill_lock);
3777 			}
3778 		}
3779 	}
3780 end:
3781 	/* This should be true for both V4 and V6 */
3782 
3783 	if ((ire->ire_type & IRE_FORWARDTABLE) &&
3784 	    (ire->ire_ipversion == IPV4_VERSION) &&
3785 	    ((irb = ire->ire_bucket) != NULL)) {
3786 		rw_enter(&irb->irb_lock, RW_WRITER);
3787 		irb->irb_nire--;
3788 		/*
3789 		 * Instead of examining the conditions for freeing
3790 		 * the radix node here, we do it by calling
3791 		 * IRB_REFRELE which is a single point in the code
3792 		 * that embeds that logic. Bump up the refcnt to
3793 		 * be able to call IRB_REFRELE
3794 		 */
3795 		IRB_REFHOLD_LOCKED(irb);
3796 		rw_exit(&irb->irb_lock);
3797 		IRB_REFRELE(irb);
3798 	}
3799 	ire->ire_ipif = NULL;
3800 
3801 #ifdef DEBUG
3802 	ire_trace_cleanup(ire);
3803 #endif
3804 	mutex_destroy(&ire->ire_lock);
3805 	if (ire->ire_ipversion == IPV6_VERSION) {
3806 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed);
3807 	} else {
3808 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
3809 	}
3810 	ASSERT(ire->ire_mp == NULL);
3811 	/* Has been allocated out of the cache */
3812 	kmem_cache_free(ire_cache, ire);
3813 }
3814 
3815 /*
3816  * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect
3817  * entries that have a given gateway address.
3818  */
3819 void
3820 ire_delete_cache_gw(ire_t *ire, char *cp)
3821 {
3822 	ipaddr_t	gw_addr;
3823 
3824 	if (!(ire->ire_type & IRE_CACHE) &&
3825 	    !(ire->ire_flags & RTF_DYNAMIC))
3826 		return;
3827 
3828 	bcopy(cp, &gw_addr, sizeof (gw_addr));
3829 	if (ire->ire_gateway_addr == gw_addr) {
3830 		ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n",
3831 		    (int)ntohl(ire->ire_addr), ire->ire_type,
3832 		    (int)ntohl(ire->ire_gateway_addr)));
3833 		ire_delete(ire);
3834 	}
3835 }
3836 
3837 /*
3838  * Remove all IRE_CACHE entries that match the ire specified.
3839  *
3840  * The flag argument indicates if the flush request is due to addition
3841  * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE).
3842  *
3843  * This routine takes only the IREs from the forwarding table and flushes
3844  * the corresponding entries from the cache table.
3845  *
3846  * When flushing due to the deletion of an old route, it
3847  * just checks the cache handles (ire_phandle and ire_ihandle) and
3848  * deletes the ones that match.
3849  *
3850  * When flushing due to the creation of a new route, it checks
3851  * if a cache entry's address matches the one in the IRE and
3852  * that the cache entry's parent has a less specific mask than the
3853  * one in IRE. The destination of such a cache entry could be the
3854  * gateway for other cache entries, so we need to flush those as
3855  * well by looking for gateway addresses matching the IRE's address.
3856  */
3857 void
3858 ire_flush_cache_v4(ire_t *ire, int flag)
3859 {
3860 	int i;
3861 	ire_t *cire;
3862 	irb_t *irb;
3863 	ip_stack_t	*ipst = ire->ire_ipst;
3864 
3865 	if (ire->ire_type & IRE_CACHE)
3866 		return;
3867 
3868 	/*
3869 	 * If a default is just created, there is no point
3870 	 * in going through the cache, as there will not be any
3871 	 * cached ires.
3872 	 */
3873 	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD)
3874 		return;
3875 	if (flag == IRE_FLUSH_ADD) {
3876 		/*
3877 		 * This selective flush is due to the addition of
3878 		 * new IRE.
3879 		 */
3880 		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
3881 			irb = &ipst->ips_ip_cache_table[i];
3882 			if ((cire = irb->irb_ire) == NULL)
3883 				continue;
3884 			IRB_REFHOLD(irb);
3885 			for (cire = irb->irb_ire; cire != NULL;
3886 			    cire = cire->ire_next) {
3887 				if (cire->ire_type != IRE_CACHE)
3888 					continue;
3889 				/*
3890 				 * If 'cire' belongs to the same subnet
3891 				 * as the new ire being added, and 'cire'
3892 				 * is derived from a prefix that is less
3893 				 * specific than the new ire being added,
3894 				 * we need to flush 'cire'; for instance,
3895 				 * when a new interface comes up.
3896 				 */
3897 				if (((cire->ire_addr & ire->ire_mask) ==
3898 				    (ire->ire_addr & ire->ire_mask)) &&
3899 				    (ip_mask_to_plen(cire->ire_cmask) <=
3900 				    ire->ire_masklen)) {
3901 					ire_delete(cire);
3902 					continue;
3903 				}
3904 				/*
3905 				 * This is the case when the ire_gateway_addr
3906 				 * of 'cire' belongs to the same subnet as
3907 				 * the new ire being added.
3908 				 * Flushing such ires is sometimes required to
3909 				 * avoid misrouting: say we have a machine with
3910 				 * two interfaces (I1 and I2), a default router
3911 				 * R on the I1 subnet, and a host route to an
3912 				 * off-link destination D with a gateway G on
3913 				 * the I2 subnet.
3914 				 * Under normal operation, we will have an
3915 				 * on-link cache entry for G and an off-link
3916 				 * cache entry for D with G as ire_gateway_addr,
3917 				 * traffic to D will reach its destination
3918 				 * through gateway G.
3919 				 * If the administrator does 'ifconfig I2 down',
3920 				 * the cache entries for D and G will be
3921 				 * flushed. However, G will now be resolved as
3922 				 * an off-link destination using R (the default
3923 				 * router) as gateway. Then D will also be
3924 				 * resolved as an off-link destination using G
3925 				 * as gateway - this behavior is due to
3926 				 * compatibility reasons, see comment in
3927 				 * ire_ihandle_lookup_offlink(). Traffic to D
3928 				 * will go to the router R and probably won't
3929 				 * reach the destination.
3930 				 * The administrator then does 'ifconfig I2 up'.
3931 				 * Since G is on the I2 subnet, this routine
3932 				 * will flush its cache entry. It must also
3933 				 * flush the cache entry for D, otherwise
3934 				 * traffic will stay misrouted until the IRE
3935 				 * times out.
3936 				 */
3937 				if ((cire->ire_gateway_addr & ire->ire_mask) ==
3938 				    (ire->ire_addr & ire->ire_mask)) {
3939 					ire_delete(cire);
3940 					continue;
3941 				}
3942 			}
3943 			IRB_REFRELE(irb);
3944 		}
3945 	} else {
3946 		/*
3947 		 * delete the cache entries based on
3948 		 * handle in the IRE as this IRE is
3949 		 * being deleted/changed.
3950 		 */
3951 		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
3952 			irb = &ipst->ips_ip_cache_table[i];
3953 			if ((cire = irb->irb_ire) == NULL)
3954 				continue;
3955 			IRB_REFHOLD(irb);
3956 			for (cire = irb->irb_ire; cire != NULL;
3957 			    cire = cire->ire_next) {
3958 				if (cire->ire_type != IRE_CACHE)
3959 					continue;
3960 				if ((cire->ire_phandle == 0 ||
3961 				    cire->ire_phandle != ire->ire_phandle) &&
3962 				    (cire->ire_ihandle == 0 ||
3963 				    cire->ire_ihandle != ire->ire_ihandle))
3964 					continue;
3965 				ire_delete(cire);
3966 			}
3967 			IRB_REFRELE(irb);
3968 		}
3969 	}
3970 }
3971 
3972 /*
3973  * Matches the arguments passed with the values in the ire.
3974  *
3975  * Note: for match types that match using "ipif" passed in, ipif
3976  * must be checked for non-NULL before calling this routine.
3977  */
3978 boolean_t
3979 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
3980     int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle,
3981     const ts_label_t *tsl, int match_flags)
3982 {
3983 	ill_t *ire_ill = NULL, *dst_ill;
3984 	ill_t *ipif_ill = NULL;
3985 	ill_group_t *ire_ill_group = NULL;
3986 	ill_group_t *ipif_ill_group = NULL;
3987 
3988 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3989 	ASSERT((ire->ire_addr & ~ire->ire_mask) == 0);
3990 	ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) ||
3991 	    (ipif != NULL && !ipif->ipif_isv6));
3992 
3993 	/*
3994 	 * HIDDEN cache entries have to be looked up specifically with
3995 	 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set
3996 	 * when the interface is FAILED or INACTIVE. In that case,
3997 	 * any IRE_CACHES that exists should be marked with
3998 	 * IRE_MARK_HIDDEN. So, we don't really need to match below
3999 	 * for IRE_MARK_HIDDEN. But we do so for consistency.
4000 	 */
4001 	if (!(match_flags & MATCH_IRE_MARK_HIDDEN) &&
4002 	    (ire->ire_marks & IRE_MARK_HIDDEN))
4003 		return (B_FALSE);
4004 
4005 	/*
4006 	 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option
4007 	 * is used. In that case the routing table is bypassed and the
4008 	 * packets are sent directly to the specified nexthop. The
4009 	 * IRE_CACHE entry representing this route should be marked
4010 	 * with IRE_MARK_PRIVATE_ADDR.
4011 	 */
4012 
4013 	if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) &&
4014 	    (ire->ire_marks & IRE_MARK_PRIVATE_ADDR))
4015 		return (B_FALSE);
4016 
4017 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
4018 	    ire->ire_zoneid != ALL_ZONES) {
4019 		/*
4020 		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is
4021 		 * valid and does not match that of ire_zoneid, a failure to
4022 		 * match is reported at this point. Otherwise, since some IREs
4023 		 * that are available in the global zone can be used in local
4024 		 * zones, additional checks need to be performed:
4025 		 *
4026 		 *	IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK
4027 		 *	entries should never be matched in this situation.
4028 		 *
4029 		 *	IRE entries that have an interface associated with them
4030 		 *	should in general not match unless they are an IRE_LOCAL
4031 		 *	or in the case when MATCH_IRE_DEFAULT has been set in
4032 		 *	the caller.  In the case of the former, checking of the
4033 		 *	other fields supplied should take place.
4034 		 *
4035 		 *	In the case where MATCH_IRE_DEFAULT has been set,
4036 		 *	all of the ipif's associated with the IRE's ill are
4037 		 *	checked to see if there is a matching zoneid.  If any
4038 		 *	one ipif has a matching zoneid, this IRE is a
4039 		 *	potential candidate so checking of the other fields
4040 		 *	takes place.
4041 		 *
4042 		 *	In the case where the IRE_INTERFACE has a usable source
4043 		 *	address (indicated by ill_usesrc_ifindex) in the
4044 		 *	correct zone then it's permitted to return this IRE
4045 		 */
4046 		if (match_flags & MATCH_IRE_ZONEONLY)
4047 			return (B_FALSE);
4048 		if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK))
4049 			return (B_FALSE);
4050 		/*
4051 		 * Note, IRE_INTERFACE can have the stq as NULL. For
4052 		 * example, if the default multicast route is tied to
4053 		 * the loopback address.
4054 		 */
4055 		if ((ire->ire_type & IRE_INTERFACE) &&
4056 		    (ire->ire_stq != NULL)) {
4057 			dst_ill = (ill_t *)ire->ire_stq->q_ptr;
4058 			/*
4059 			 * If there is a usable source address in the
4060 			 * zone, then it's ok to return an
4061 			 * IRE_INTERFACE
4062 			 */
4063 			if (ipif_usesrc_avail(dst_ill, zoneid)) {
4064 				ip3dbg(("ire_match_args: dst_ill %p match %d\n",
4065 				    (void *)dst_ill,
4066 				    (ire->ire_addr == (addr & mask))));
4067 			} else {
4068 				ip3dbg(("ire_match_args: src_ipif NULL"
4069 				    " dst_ill %p\n", (void *)dst_ill));
4070 				return (B_FALSE);
4071 			}
4072 		}
4073 		if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL &&
4074 		    !(ire->ire_type & IRE_INTERFACE)) {
4075 			ipif_t	*tipif;
4076 
4077 			if ((match_flags & MATCH_IRE_DEFAULT) == 0) {
4078 				return (B_FALSE);
4079 			}
4080 			mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock);
4081 			for (tipif = ire->ire_ipif->ipif_ill->ill_ipif;
4082 			    tipif != NULL; tipif = tipif->ipif_next) {
4083 				if (IPIF_CAN_LOOKUP(tipif) &&
4084 				    (tipif->ipif_flags & IPIF_UP) &&
4085 				    (tipif->ipif_zoneid == zoneid ||
4086 				    tipif->ipif_zoneid == ALL_ZONES))
4087 					break;
4088 			}
4089 			mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock);
4090 			if (tipif == NULL) {
4091 				return (B_FALSE);
4092 			}
4093 		}
4094 	}
4095 
4096 	/*
4097 	 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that
4098 	 * somebody wants to send out on a particular interface which
4099 	 * is given by ire_stq and hence use ire_stq to derive the ill
4100 	 * value. ire_ipif for IRE_CACHES is just the means of getting
4101 	 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr.
4102 	 * ire_to_ill does the right thing for this.
4103 	 */
4104 	if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
4105 		ire_ill = ire_to_ill(ire);
4106 		if (ire_ill != NULL)
4107 			ire_ill_group = ire_ill->ill_group;
4108 		ipif_ill = ipif->ipif_ill;
4109 		ipif_ill_group = ipif_ill->ill_group;
4110 	}
4111 
4112 	if ((ire->ire_addr == (addr & mask)) &&
4113 	    ((!(match_flags & MATCH_IRE_GW)) ||
4114 	    (ire->ire_gateway_addr == gateway)) &&
4115 	    ((!(match_flags & MATCH_IRE_TYPE)) ||
4116 	    (ire->ire_type & type)) &&
4117 	    ((!(match_flags & MATCH_IRE_SRC)) ||
4118 	    (ire->ire_src_addr == ipif->ipif_src_addr)) &&
4119 	    ((!(match_flags & MATCH_IRE_IPIF)) ||
4120 	    (ire->ire_ipif == ipif)) &&
4121 	    ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) ||
4122 	    (ire->ire_type != IRE_CACHE ||
4123 	    ire->ire_marks & IRE_MARK_HIDDEN)) &&
4124 	    ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) ||
4125 	    (ire->ire_type != IRE_CACHE ||
4126 	    ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) &&
4127 	    ((!(match_flags & MATCH_IRE_ILL)) ||
4128 	    (ire_ill == ipif_ill)) &&
4129 	    ((!(match_flags & MATCH_IRE_IHANDLE)) ||
4130 	    (ire->ire_ihandle == ihandle)) &&
4131 	    ((!(match_flags & MATCH_IRE_MASK)) ||
4132 	    (ire->ire_mask == mask)) &&
4133 	    ((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
4134 	    (ire_ill == ipif_ill) ||
4135 	    (ire_ill_group != NULL &&
4136 	    ire_ill_group == ipif_ill_group)) &&
4137 	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
4138 	    (!is_system_labeled()) ||
4139 	    (tsol_ire_match_gwattr(ire, tsl) == 0))) {
4140 		/* We found the matched IRE */
4141 		return (B_TRUE);
4142 	}
4143 	return (B_FALSE);
4144 }
4145 
4146 
4147 /*
4148  * Lookup for a route in all the tables
4149  */
4150 ire_t *
4151 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
4152     int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid,
4153     const ts_label_t *tsl, int flags, ip_stack_t *ipst)
4154 {
4155 	ire_t *ire = NULL;
4156 
4157 	/*
4158 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
4159 	 * MATCH_IRE_ILL is set.
4160 	 */
4161 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
4162 	    (ipif == NULL))
4163 		return (NULL);
4164 
4165 	/*
4166 	 * might be asking for a cache lookup,
4167 	 * This is not best way to lookup cache,
4168 	 * user should call ire_cache_lookup directly.
4169 	 *
4170 	 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then
4171 	 * in the forwarding table, if the applicable type flags were set.
4172 	 */
4173 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) {
4174 		ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid,
4175 		    tsl, flags, ipst);
4176 		if (ire != NULL)
4177 			return (ire);
4178 	}
4179 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) {
4180 		ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire,
4181 		    zoneid, 0, tsl, flags, ipst);
4182 	}
4183 	return (ire);
4184 }
4185 
4186 
4187 /*
4188  * Delete the IRE cache for the gateway and all IRE caches whose
4189  * ire_gateway_addr points to this gateway, and allow them to
4190  * be created on demand by ip_newroute.
4191  */
4192 void
4193 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
4194 {
4195 	irb_t *irb;
4196 	ire_t *ire;
4197 
4198 	irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4199 	    ipst->ips_ip_cache_table_size)];
4200 	IRB_REFHOLD(irb);
4201 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
4202 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4203 			continue;
4204 
4205 		ASSERT(ire->ire_mask == IP_HOST_MASK);
4206 		if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE,
4207 		    NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) {
4208 			ire_delete(ire);
4209 		}
4210 	}
4211 	IRB_REFRELE(irb);
4212 
4213 	ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst);
4214 }
4215 
4216 /*
4217  * Looks up cache table for a route.
4218  * specific lookup can be indicated by
4219  * passing the MATCH_* flags and the
4220  * necessary parameters.
4221  */
4222 ire_t *
4223 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif,
4224     zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst)
4225 {
4226 	irb_t *irb_ptr;
4227 	ire_t *ire;
4228 
4229 	/*
4230 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
4231 	 * MATCH_IRE_ILL is set.
4232 	 */
4233 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
4234 	    (ipif == NULL))
4235 		return (NULL);
4236 
4237 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4238 	    ipst->ips_ip_cache_table_size)];
4239 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4240 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4241 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4242 			continue;
4243 		ASSERT(ire->ire_mask == IP_HOST_MASK);
4244 		if (ire_match_args(ire, addr, ire->ire_mask, gateway, type,
4245 		    ipif, zoneid, 0, tsl, flags)) {
4246 			IRE_REFHOLD(ire);
4247 			rw_exit(&irb_ptr->irb_lock);
4248 			return (ire);
4249 		}
4250 	}
4251 	rw_exit(&irb_ptr->irb_lock);
4252 	return (NULL);
4253 }
4254 
4255 /*
4256  * Check whether the IRE_LOCAL and the IRE potentially used to transmit
4257  * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of
4258  * the same ill group.
4259  */
4260 boolean_t
4261 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire)
4262 {
4263 	ill_t		*recv_ill, *xmit_ill;
4264 	ill_group_t	*recv_group, *xmit_group;
4265 
4266 	ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK));
4267 	ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE));
4268 
4269 	recv_ill = ire_to_ill(ire_local);
4270 	xmit_ill = ire_to_ill(xmit_ire);
4271 
4272 	ASSERT(recv_ill != NULL);
4273 	ASSERT(xmit_ill != NULL);
4274 
4275 	if (recv_ill == xmit_ill)
4276 		return (B_TRUE);
4277 
4278 	recv_group = recv_ill->ill_group;
4279 	xmit_group = xmit_ill->ill_group;
4280 
4281 	if (recv_group != NULL && recv_group == xmit_group)
4282 		return (B_TRUE);
4283 
4284 	return (B_FALSE);
4285 }
4286 
4287 /*
4288  * Check if the IRE_LOCAL uses the same ill (group) as another route would use.
4289  * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE,
4290  * then we don't allow this IRE_LOCAL to be used.
4291  */
4292 boolean_t
4293 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr,
4294     const ts_label_t *tsl, ip_stack_t *ipst)
4295 {
4296 	ire_t		*alt_ire;
4297 	boolean_t	rval;
4298 
4299 	if (ire_local->ire_ipversion == IPV4_VERSION) {
4300 		alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL,
4301 		    NULL, zoneid, 0, tsl,
4302 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4303 		    MATCH_IRE_RJ_BHOLE, ipst);
4304 	} else {
4305 		alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
4306 		    0, NULL, NULL, zoneid, 0, tsl,
4307 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4308 		    MATCH_IRE_RJ_BHOLE, ipst);
4309 	}
4310 
4311 	if (alt_ire == NULL)
4312 		return (B_FALSE);
4313 
4314 	if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
4315 		ire_refrele(alt_ire);
4316 		return (B_FALSE);
4317 	}
4318 	rval = ire_local_same_ill_group(ire_local, alt_ire);
4319 
4320 	ire_refrele(alt_ire);
4321 	return (rval);
4322 }
4323 
4324 /*
4325  * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers
4326  * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get
4327  * to the hidden ones.
4328  *
4329  * In general the zoneid has to match (where ALL_ZONES match all of them).
4330  * But for IRE_LOCAL we also need to handle the case where L2 should
4331  * conceptually loop back the packet. This is necessary since neither
4332  * Ethernet drivers nor Ethernet hardware loops back packets sent to their
4333  * own MAC address. This loopback is needed when the normal
4334  * routes (ignoring IREs with different zoneids) would send out the packet on
4335  * the same ill (or ill group) as the ill with which this IRE_LOCAL is
4336  * associated.
4337  *
4338  * Earlier versions of this code always matched an IRE_LOCAL independently of
4339  * the zoneid. We preserve that earlier behavior when
4340  * ip_restrict_interzone_loopback is turned off.
4341  */
4342 ire_t *
4343 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl,
4344     ip_stack_t *ipst)
4345 {
4346 	irb_t *irb_ptr;
4347 	ire_t *ire;
4348 
4349 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4350 	    ipst->ips_ip_cache_table_size)];
4351 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4352 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4353 		if (ire->ire_marks & (IRE_MARK_CONDEMNED |
4354 		    IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) {
4355 			continue;
4356 		}
4357 		if (ire->ire_addr == addr) {
4358 			/*
4359 			 * Finally, check if the security policy has any
4360 			 * restriction on using this route for the specified
4361 			 * message.
4362 			 */
4363 			if (tsl != NULL &&
4364 			    ire->ire_gw_secattr != NULL &&
4365 			    tsol_ire_match_gwattr(ire, tsl) != 0) {
4366 				continue;
4367 			}
4368 
4369 			if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid ||
4370 			    ire->ire_zoneid == ALL_ZONES) {
4371 				IRE_REFHOLD(ire);
4372 				rw_exit(&irb_ptr->irb_lock);
4373 				return (ire);
4374 			}
4375 
4376 			if (ire->ire_type == IRE_LOCAL) {
4377 				if (ipst->ips_ip_restrict_interzone_loopback &&
4378 				    !ire_local_ok_across_zones(ire, zoneid,
4379 				    &addr, tsl, ipst))
4380 					continue;
4381 
4382 				IRE_REFHOLD(ire);
4383 				rw_exit(&irb_ptr->irb_lock);
4384 				return (ire);
4385 			}
4386 		}
4387 	}
4388 	rw_exit(&irb_ptr->irb_lock);
4389 	return (NULL);
4390 }
4391 
4392 /*
4393  * Locate the interface ire that is tied to the cache ire 'cire' via
4394  * cire->ire_ihandle.
4395  *
4396  * We are trying to create the cache ire for an offlink destn based
4397  * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire
4398  * as found by ip_newroute(). We are called from ip_newroute() in
4399  * the IRE_CACHE case.
4400  */
4401 ire_t *
4402 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire)
4403 {
4404 	ire_t	*ire;
4405 	int	match_flags;
4406 	ipaddr_t gw_addr;
4407 	ipif_t	*gw_ipif;
4408 	ip_stack_t	*ipst = cire->ire_ipst;
4409 
4410 	ASSERT(cire != NULL && pire != NULL);
4411 
4412 	/*
4413 	 * We don't need to specify the zoneid to ire_ftable_lookup() below
4414 	 * because the ihandle refers to an ipif which can be in only one zone.
4415 	 */
4416 	match_flags =  MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK;
4417 	/*
4418 	 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only
4419 	 * for on-link hosts. We should never be here for onlink.
4420 	 * Thus, use MATCH_IRE_ILL_GROUP.
4421 	 */
4422 	if (pire->ire_ipif != NULL)
4423 		match_flags |= MATCH_IRE_ILL_GROUP;
4424 	/*
4425 	 * We know that the mask of the interface ire equals cire->ire_cmask.
4426 	 * (When ip_newroute() created 'cire' for the gateway it set its
4427 	 * cmask from the interface ire's mask)
4428 	 */
4429 	ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0,
4430 	    IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle,
4431 	    NULL, match_flags, ipst);
4432 	if (ire != NULL)
4433 		return (ire);
4434 	/*
4435 	 * If we didn't find an interface ire above, we can't declare failure.
4436 	 * For backwards compatibility, we need to support prefix routes
4437 	 * pointing to next hop gateways that are not on-link.
4438 	 *
4439 	 * Assume we are trying to ping some offlink destn, and we have the
4440 	 * routing table below.
4441 	 *
4442 	 * Eg.	default	- gw1		<--- pire	(line 1)
4443 	 *	gw1	- gw2				(line 2)
4444 	 *	gw2	- hme0				(line 3)
4445 	 *
4446 	 * If we already have a cache ire for gw1 in 'cire', the
4447 	 * ire_ftable_lookup above would have failed, since there is no
4448 	 * interface ire to reach gw1. We will fallthru below.
4449 	 *
4450 	 * Here we duplicate the steps that ire_ftable_lookup() did in
4451 	 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case.
4452 	 * The differences are the following
4453 	 * i.   We want the interface ire only, so we call ire_ftable_lookup()
4454 	 *	instead of ire_route_lookup()
4455 	 * ii.  We look for only prefix routes in the 1st call below.
4456 	 * ii.  We want to match on the ihandle in the 2nd call below.
4457 	 */
4458 	match_flags =  MATCH_IRE_TYPE;
4459 	if (pire->ire_ipif != NULL)
4460 		match_flags |= MATCH_IRE_ILL_GROUP;
4461 	ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET,
4462 	    pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
4463 	if (ire == NULL)
4464 		return (NULL);
4465 	/*
4466 	 * At this point 'ire' corresponds to the entry shown in line 2.
4467 	 * gw_addr is 'gw2' in the example above.
4468 	 */
4469 	gw_addr = ire->ire_gateway_addr;
4470 	gw_ipif = ire->ire_ipif;
4471 	ire_refrele(ire);
4472 
4473 	match_flags |= MATCH_IRE_IHANDLE;
4474 	ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE,
4475 	    gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags,
4476 	    ipst);
4477 	return (ire);
4478 }
4479 
4480 /*
4481  * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER
4482  * ire associated with the specified ipif.
4483  *
4484  * This might occasionally be called when IPIF_UP is not set since
4485  * the IP_MULTICAST_IF as well as creating interface routes
4486  * allows specifying a down ipif (ipif_lookup* match ipifs that are down).
4487  *
4488  * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on
4489  * the ipif, this routine might return NULL.
4490  */
4491 ire_t *
4492 ipif_to_ire(const ipif_t *ipif)
4493 {
4494 	ire_t	*ire;
4495 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
4496 
4497 	ASSERT(!ipif->ipif_isv6);
4498 	if (ipif->ipif_ire_type == IRE_LOOPBACK) {
4499 		ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK,
4500 		    ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
4501 		    ipst);
4502 	} else if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4503 		/* In this case we need to lookup destination address. */
4504 		ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0,
4505 		    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL,
4506 		    (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst);
4507 	} else {
4508 		ire = ire_ftable_lookup(ipif->ipif_subnet,
4509 		    ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL,
4510 		    ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF |
4511 		    MATCH_IRE_MASK), ipst);
4512 	}
4513 	return (ire);
4514 }
4515 
4516 /*
4517  * ire_walk function.
4518  * Count the number of IRE_CACHE entries in different categories.
4519  */
4520 void
4521 ire_cache_count(ire_t *ire, char *arg)
4522 {
4523 	ire_cache_count_t *icc = (ire_cache_count_t *)arg;
4524 
4525 	if (ire->ire_type != IRE_CACHE)
4526 		return;
4527 
4528 	icc->icc_total++;
4529 
4530 	if (ire->ire_ipversion == IPV6_VERSION) {
4531 		mutex_enter(&ire->ire_lock);
4532 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4533 			mutex_exit(&ire->ire_lock);
4534 			icc->icc_onlink++;
4535 			return;
4536 		}
4537 		mutex_exit(&ire->ire_lock);
4538 	} else {
4539 		if (ire->ire_gateway_addr == 0) {
4540 			icc->icc_onlink++;
4541 			return;
4542 		}
4543 	}
4544 
4545 	ASSERT(ire->ire_ipif != NULL);
4546 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu)
4547 		icc->icc_pmtu++;
4548 	else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
4549 	    ire->ire_ib_pkt_count)
4550 		icc->icc_offlink++;
4551 	else
4552 		icc->icc_unused++;
4553 }
4554 
4555 /*
4556  * ire_walk function called by ip_trash_ire_reclaim().
4557  * Free a fraction of the IRE_CACHE cache entries. The fractions are
4558  * different for different categories of IRE_CACHE entries.
4559  * A fraction of zero means to not free any in that category.
4560  * Use the hash bucket id plus lbolt as a random number. Thus if the fraction
4561  * is N then every Nth hash bucket chain will be freed.
4562  */
4563 void
4564 ire_cache_reclaim(ire_t *ire, char *arg)
4565 {
4566 	ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg;
4567 	uint_t rand;
4568 	ip_stack_t	*ipst = icr->icr_ipst;
4569 
4570 	if (ire->ire_type != IRE_CACHE)
4571 		return;
4572 
4573 	if (ire->ire_ipversion == IPV6_VERSION) {
4574 		rand = (uint_t)lbolt +
4575 		    IRE_ADDR_HASH_V6(ire->ire_addr_v6,
4576 		    ipst->ips_ip6_cache_table_size);
4577 		mutex_enter(&ire->ire_lock);
4578 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4579 			mutex_exit(&ire->ire_lock);
4580 			if (icr->icr_onlink != 0 &&
4581 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4582 				ire_delete(ire);
4583 				return;
4584 			}
4585 			goto done;
4586 		}
4587 		mutex_exit(&ire->ire_lock);
4588 	} else {
4589 		rand = (uint_t)lbolt +
4590 		    IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size);
4591 		if (ire->ire_gateway_addr == 0) {
4592 			if (icr->icr_onlink != 0 &&
4593 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4594 				ire_delete(ire);
4595 				return;
4596 			}
4597 			goto done;
4598 		}
4599 	}
4600 	/* Not onlink IRE */
4601 	ASSERT(ire->ire_ipif != NULL);
4602 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) {
4603 		/* Use ptmu fraction */
4604 		if (icr->icr_pmtu != 0 &&
4605 		    (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) {
4606 			ire_delete(ire);
4607 			return;
4608 		}
4609 	} else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
4610 	    ire->ire_ib_pkt_count) {
4611 		/* Use offlink fraction */
4612 		if (icr->icr_offlink != 0 &&
4613 		    (rand/icr->icr_offlink)*icr->icr_offlink == rand) {
4614 			ire_delete(ire);
4615 			return;
4616 		}
4617 	} else {
4618 		/* Use unused fraction */
4619 		if (icr->icr_unused != 0 &&
4620 		    (rand/icr->icr_unused)*icr->icr_unused == rand) {
4621 			ire_delete(ire);
4622 			return;
4623 		}
4624 	}
4625 done:
4626 	/*
4627 	 * Update tire_mark so that those that haven't been used since this
4628 	 * reclaim will be considered unused next time we reclaim.
4629 	 */
4630 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
4631 }
4632 
4633 static void
4634 power2_roundup(uint32_t *value)
4635 {
4636 	int i;
4637 
4638 	for (i = 1; i < 31; i++) {
4639 		if (*value <= (1 << i))
4640 			break;
4641 	}
4642 	*value = (1 << i);
4643 }
4644 
4645 /* Global init for all zones */
4646 void
4647 ip_ire_g_init()
4648 {
4649 	/*
4650 	 * Create ire caches, ire_reclaim()
4651 	 * will give IRE_CACHE back to system when needed.
4652 	 * This needs to be done here before anything else, since
4653 	 * ire_add() expects the cache to be created.
4654 	 */
4655 	ire_cache = kmem_cache_create("ire_cache",
4656 	    sizeof (ire_t), 0, ip_ire_constructor,
4657 	    ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0);
4658 
4659 	rt_entry_cache = kmem_cache_create("rt_entry",
4660 	    sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0);
4661 
4662 	/*
4663 	 * Have radix code setup kmem caches etc.
4664 	 */
4665 	rn_init();
4666 }
4667 
4668 void
4669 ip_ire_init(ip_stack_t *ipst)
4670 {
4671 	int i;
4672 	uint32_t mem_cnt;
4673 	uint32_t cpu_cnt;
4674 	uint32_t min_cnt;
4675 	pgcnt_t mem_avail;
4676 
4677 	/*
4678 	 * ip_ire_max_bucket_cnt is sized below based on the memory
4679 	 * size and the cpu speed of the machine. This is upper
4680 	 * bounded by the compile time value of ip_ire_max_bucket_cnt
4681 	 * and is lower bounded by the compile time value of
4682 	 * ip_ire_min_bucket_cnt.  Similar logic applies to
4683 	 * ip6_ire_max_bucket_cnt.
4684 	 *
4685 	 * We calculate this for each IP Instances in order to use
4686 	 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are
4687 	 * in effect when the zone is booted.
4688 	 */
4689 	mem_avail = kmem_avail();
4690 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
4691 	    ip_cache_table_size / sizeof (ire_t);
4692 	cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio;
4693 
4694 	min_cnt = MIN(cpu_cnt, mem_cnt);
4695 	if (min_cnt < ip_ire_min_bucket_cnt)
4696 		min_cnt = ip_ire_min_bucket_cnt;
4697 	if (ip_ire_max_bucket_cnt > min_cnt) {
4698 		ip_ire_max_bucket_cnt = min_cnt;
4699 	}
4700 
4701 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
4702 	    ip6_cache_table_size / sizeof (ire_t);
4703 	min_cnt = MIN(cpu_cnt, mem_cnt);
4704 	if (min_cnt < ip6_ire_min_bucket_cnt)
4705 		min_cnt = ip6_ire_min_bucket_cnt;
4706 	if (ip6_ire_max_bucket_cnt > min_cnt) {
4707 		ip6_ire_max_bucket_cnt = min_cnt;
4708 	}
4709 
4710 	mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0);
4711 	mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL);
4712 
4713 	(void) rn_inithead((void **)&ipst->ips_ip_ftable, 32);
4714 
4715 
4716 	/* Calculate the IPv4 cache table size. */
4717 	ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size,
4718 	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
4719 	    ip_ire_max_bucket_cnt));
4720 	if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size)
4721 		ipst->ips_ip_cache_table_size = ip_max_cache_table_size;
4722 	/*
4723 	 * Make sure that the table size is always a power of 2.  The
4724 	 * hash macro IRE_ADDR_HASH() depends on that.
4725 	 */
4726 	power2_roundup(&ipst->ips_ip_cache_table_size);
4727 
4728 	ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size *
4729 	    sizeof (irb_t), KM_SLEEP);
4730 
4731 	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4732 		rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL,
4733 		    RW_DEFAULT, NULL);
4734 	}
4735 
4736 	/* Calculate the IPv6 cache table size. */
4737 	ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size,
4738 	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
4739 	    ip6_ire_max_bucket_cnt));
4740 	if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size)
4741 		ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size;
4742 	/*
4743 	 * Make sure that the table size is always a power of 2.  The
4744 	 * hash macro IRE_ADDR_HASH_V6() depends on that.
4745 	 */
4746 	power2_roundup(&ipst->ips_ip6_cache_table_size);
4747 
4748 	ipst->ips_ip_cache_table_v6 = kmem_zalloc(
4749 	    ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP);
4750 
4751 	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
4752 		rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL,
4753 		    RW_DEFAULT, NULL);
4754 	}
4755 
4756 	/*
4757 	 * Make sure that the forwarding table size is a power of 2.
4758 	 * The IRE*_ADDR_HASH() macroes depend on that.
4759 	 */
4760 	ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size;
4761 	power2_roundup(&ipst->ips_ip6_ftable_hash_size);
4762 
4763 	ipst->ips_ire_handle = 1;
4764 }
4765 
4766 void
4767 ip_ire_g_fini(void)
4768 {
4769 	kmem_cache_destroy(ire_cache);
4770 	kmem_cache_destroy(rt_entry_cache);
4771 
4772 	rn_fini();
4773 }
4774 
4775 void
4776 ip_ire_fini(ip_stack_t *ipst)
4777 {
4778 	int i;
4779 
4780 	/*
4781 	 * Delete all IREs - assumes that the ill/ipifs have
4782 	 * been removed so what remains are just the ftable and IRE_CACHE.
4783 	 */
4784 	ire_walk(ire_delete, NULL, ipst);
4785 
4786 	rn_freehead(ipst->ips_ip_ftable);
4787 	ipst->ips_ip_ftable = NULL;
4788 
4789 	mutex_destroy(&ipst->ips_ire_ft_init_lock);
4790 	mutex_destroy(&ipst->ips_ire_handle_lock);
4791 
4792 	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4793 		ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL);
4794 		rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock);
4795 	}
4796 	kmem_free(ipst->ips_ip_cache_table,
4797 	    ipst->ips_ip_cache_table_size * sizeof (irb_t));
4798 	ipst->ips_ip_cache_table = NULL;
4799 
4800 	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
4801 		ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL);
4802 		rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock);
4803 	}
4804 	kmem_free(ipst->ips_ip_cache_table_v6,
4805 	    ipst->ips_ip6_cache_table_size * sizeof (irb_t));
4806 	ipst->ips_ip_cache_table_v6 = NULL;
4807 
4808 	for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) {
4809 		irb_t *ptr;
4810 		int j;
4811 
4812 		if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL)
4813 			continue;
4814 
4815 		for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) {
4816 			ASSERT(ptr[j].irb_ire == NULL);
4817 			rw_destroy(&ptr[j].irb_lock);
4818 		}
4819 		mi_free(ptr);
4820 		ipst->ips_ip_forwarding_table_v6[i] = NULL;
4821 	}
4822 }
4823 
4824 /*
4825  * Check if another multirt route resolution is needed.
4826  * B_TRUE is returned is there remain a resolvable route,
4827  * or if no route for that dst is resolved yet.
4828  * B_FALSE is returned if all routes for that dst are resolved
4829  * or if the remaining unresolved routes are actually not
4830  * resolvable.
4831  * This only works in the global zone.
4832  */
4833 boolean_t
4834 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst)
4835 {
4836 	ire_t	*first_fire;
4837 	ire_t	*first_cire;
4838 	ire_t	*fire;
4839 	ire_t	*cire;
4840 	irb_t	*firb;
4841 	irb_t	*cirb;
4842 	int	unres_cnt = 0;
4843 	boolean_t resolvable = B_FALSE;
4844 
4845 	/* Retrieve the first IRE_HOST that matches the destination */
4846 	first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL,
4847 	    NULL, ALL_ZONES, 0, tsl,
4848 	    MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst);
4849 
4850 	/* No route at all */
4851 	if (first_fire == NULL) {
4852 		return (B_TRUE);
4853 	}
4854 
4855 	firb = first_fire->ire_bucket;
4856 	ASSERT(firb != NULL);
4857 
4858 	/* Retrieve the first IRE_CACHE ire for that destination. */
4859 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
4860 
4861 	/* No resolved route. */
4862 	if (first_cire == NULL) {
4863 		ire_refrele(first_fire);
4864 		return (B_TRUE);
4865 	}
4866 
4867 	/*
4868 	 * At least one route is resolved. Here we look through the forward
4869 	 * and cache tables, to compare the number of declared routes
4870 	 * with the number of resolved routes. The search for a resolvable
4871 	 * route is performed only if at least one route remains
4872 	 * unresolved.
4873 	 */
4874 	cirb = first_cire->ire_bucket;
4875 	ASSERT(cirb != NULL);
4876 
4877 	/* Count the number of routes to that dest that are declared. */
4878 	IRB_REFHOLD(firb);
4879 	for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
4880 		if (!(fire->ire_flags & RTF_MULTIRT))
4881 			continue;
4882 		if (fire->ire_addr != dst)
4883 			continue;
4884 		unres_cnt++;
4885 	}
4886 	IRB_REFRELE(firb);
4887 
4888 	/* Then subtract the number of routes to that dst that are resolved */
4889 	IRB_REFHOLD(cirb);
4890 	for (cire = first_cire; cire != NULL; cire = cire->ire_next) {
4891 		if (!(cire->ire_flags & RTF_MULTIRT))
4892 			continue;
4893 		if (cire->ire_addr != dst)
4894 			continue;
4895 		if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
4896 			continue;
4897 		unres_cnt--;
4898 	}
4899 	IRB_REFRELE(cirb);
4900 
4901 	/* At least one route is unresolved; search for a resolvable route. */
4902 	if (unres_cnt > 0)
4903 		resolvable = ire_multirt_lookup(&first_cire, &first_fire,
4904 		    MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst);
4905 
4906 	if (first_fire != NULL)
4907 		ire_refrele(first_fire);
4908 
4909 	if (first_cire != NULL)
4910 		ire_refrele(first_cire);
4911 
4912 	return (resolvable);
4913 }
4914 
4915 
4916 /*
4917  * Explore a forward_table bucket, starting from fire_arg.
4918  * fire_arg MUST be an IRE_HOST entry.
4919  *
4920  * Return B_TRUE and update *ire_arg and *fire_arg
4921  * if at least one resolvable route is found. *ire_arg
4922  * is the IRE entry for *fire_arg's gateway.
4923  *
4924  * Return B_FALSE otherwise (all routes are resolved or
4925  * the remaining unresolved routes are all unresolvable).
4926  *
4927  * The IRE selection relies on a priority mechanism
4928  * driven by the flags passed in by the caller.
4929  * The caller, such as ip_newroute_ipif(), can get the most
4930  * relevant ire at each stage of a multiple route resolution.
4931  *
4932  * The rules are:
4933  *
4934  * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE
4935  *   ires are preferred for the gateway. This gives the highest
4936  *   priority to routes that can be resolved without using
4937  *   a resolver.
4938  *
4939  * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW
4940  *   is specified but no IRE_CACHETABLE ire entry for the gateway
4941  *   is found, the following rules apply.
4942  *
4943  * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE
4944  *   ires for the gateway, that have not been tried since
4945  *   a configurable amount of time, are preferred.
4946  *   This applies when a resolver must be invoked for
4947  *   a missing route, but we don't want to use the resolver
4948  *   upon each packet emission. If no such resolver is found,
4949  *   B_FALSE is returned.
4950  *   The MULTIRT_USESTAMP flag can be combined with
4951  *   MULTIRT_CACHEGW.
4952  *
4953  * - if MULTIRT_USESTAMP is not specified in flags, the first
4954  *   unresolved but resolvable route is selected.
4955  *
4956  * - Otherwise, there is no resolvalble route, and
4957  *   B_FALSE is returned.
4958  *
4959  * At last, MULTIRT_SETSTAMP can be specified in flags to
4960  * request the timestamp of unresolvable routes to
4961  * be refreshed. This prevents the useless exploration
4962  * of those routes for a while, when MULTIRT_USESTAMP is used.
4963  *
4964  * This only works in the global zone.
4965  */
4966 boolean_t
4967 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags,
4968     const ts_label_t *tsl, ip_stack_t *ipst)
4969 {
4970 	clock_t	delta;
4971 	ire_t	*best_fire = NULL;
4972 	ire_t	*best_cire = NULL;
4973 	ire_t	*first_fire;
4974 	ire_t	*first_cire;
4975 	ire_t	*fire;
4976 	ire_t	*cire;
4977 	irb_t	*firb = NULL;
4978 	irb_t	*cirb = NULL;
4979 	ire_t	*gw_ire;
4980 	boolean_t	already_resolved;
4981 	boolean_t	res;
4982 	ipaddr_t	dst;
4983 	ipaddr_t	gw;
4984 
4985 	ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n",
4986 	    (void *)*ire_arg, (void *)*fire_arg, flags));
4987 
4988 	ASSERT(ire_arg != NULL);
4989 	ASSERT(fire_arg != NULL);
4990 
4991 	/* Not an IRE_HOST ire; give up. */
4992 	if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) {
4993 		return (B_FALSE);
4994 	}
4995 
4996 	/* This is the first IRE_HOST ire for that destination. */
4997 	first_fire = *fire_arg;
4998 	firb = first_fire->ire_bucket;
4999 	ASSERT(firb != NULL);
5000 
5001 	dst = first_fire->ire_addr;
5002 
5003 	ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst)));
5004 
5005 	/*
5006 	 * Retrieve the first IRE_CACHE ire for that destination;
5007 	 * if we don't find one, no route for that dest is
5008 	 * resolved yet.
5009 	 */
5010 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
5011 	if (first_cire != NULL) {
5012 		cirb = first_cire->ire_bucket;
5013 	}
5014 
5015 	ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire));
5016 
5017 	/*
5018 	 * Search for a resolvable route, giving the top priority
5019 	 * to routes that can be resolved without any call to the resolver.
5020 	 */
5021 	IRB_REFHOLD(firb);
5022 
5023 	if (!CLASSD(dst)) {
5024 		/*
5025 		 * For all multiroute IRE_HOST ires for that destination,
5026 		 * check if the route via the IRE_HOST's gateway is
5027 		 * resolved yet.
5028 		 */
5029 		for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
5030 
5031 			if (!(fire->ire_flags & RTF_MULTIRT))
5032 				continue;
5033 			if (fire->ire_addr != dst)
5034 				continue;
5035 
5036 			if (fire->ire_gw_secattr != NULL &&
5037 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
5038 				continue;
5039 			}
5040 
5041 			gw = fire->ire_gateway_addr;
5042 
5043 			ip2dbg(("ire_multirt_lookup: fire %p, "
5044 			    "ire_addr %08x, ire_gateway_addr %08x\n",
5045 			    (void *)fire, ntohl(fire->ire_addr), ntohl(gw)));
5046 
5047 			already_resolved = B_FALSE;
5048 
5049 			if (first_cire != NULL) {
5050 				ASSERT(cirb != NULL);
5051 
5052 				IRB_REFHOLD(cirb);
5053 				/*
5054 				 * For all IRE_CACHE ires for that
5055 				 * destination.
5056 				 */
5057 				for (cire = first_cire;
5058 				    cire != NULL;
5059 				    cire = cire->ire_next) {
5060 
5061 					if (!(cire->ire_flags & RTF_MULTIRT))
5062 						continue;
5063 					if (cire->ire_addr != dst)
5064 						continue;
5065 					if (cire->ire_marks &
5066 					    (IRE_MARK_CONDEMNED |
5067 					    IRE_MARK_HIDDEN))
5068 						continue;
5069 
5070 					if (cire->ire_gw_secattr != NULL &&
5071 					    tsol_ire_match_gwattr(cire,
5072 					    tsl) != 0) {
5073 						continue;
5074 					}
5075 
5076 					/*
5077 					 * Check if the IRE_CACHE's gateway
5078 					 * matches the IRE_HOST's gateway.
5079 					 */
5080 					if (cire->ire_gateway_addr == gw) {
5081 						already_resolved = B_TRUE;
5082 						break;
5083 					}
5084 				}
5085 				IRB_REFRELE(cirb);
5086 			}
5087 
5088 			/*
5089 			 * This route is already resolved;
5090 			 * proceed with next one.
5091 			 */
5092 			if (already_resolved) {
5093 				ip2dbg(("ire_multirt_lookup: found cire %p, "
5094 				    "already resolved\n", (void *)cire));
5095 				continue;
5096 			}
5097 
5098 			/*
5099 			 * The route is unresolved; is it actually
5100 			 * resolvable, i.e. is there a cache or a resolver
5101 			 * for the gateway?
5102 			 */
5103 			gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL,
5104 			    ALL_ZONES, tsl,
5105 			    MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst);
5106 
5107 			ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n",
5108 			    (void *)gw_ire));
5109 
5110 			/*
5111 			 * If gw_ire is typed IRE_CACHETABLE,
5112 			 * this route can be resolved without any call to the
5113 			 * resolver. If the MULTIRT_CACHEGW flag is set,
5114 			 * give the top priority to this ire and exit the
5115 			 * loop.
5116 			 * This is typically the case when an ARP reply
5117 			 * is processed through ip_wput_nondata().
5118 			 */
5119 			if ((flags & MULTIRT_CACHEGW) &&
5120 			    (gw_ire != NULL) &&
5121 			    (gw_ire->ire_type & IRE_CACHETABLE)) {
5122 				ASSERT(gw_ire->ire_nce == NULL ||
5123 				    gw_ire->ire_nce->nce_state == ND_REACHABLE);
5124 				/*
5125 				 * Release the resolver associated to the
5126 				 * previous candidate best ire, if any.
5127 				 */
5128 				if (best_cire != NULL) {
5129 					ire_refrele(best_cire);
5130 					ASSERT(best_fire != NULL);
5131 				}
5132 
5133 				best_fire = fire;
5134 				best_cire = gw_ire;
5135 
5136 				ip2dbg(("ire_multirt_lookup: found top prio "
5137 				    "best_fire %p, best_cire %p\n",
5138 				    (void *)best_fire, (void *)best_cire));
5139 				break;
5140 			}
5141 
5142 			/*
5143 			 * Compute the time elapsed since our preceding
5144 			 * attempt to  resolve that route.
5145 			 * If the MULTIRT_USESTAMP flag is set, we take that
5146 			 * route into account only if this time interval
5147 			 * exceeds ip_multirt_resolution_interval;
5148 			 * this prevents us from attempting to resolve a
5149 			 * broken route upon each sending of a packet.
5150 			 */
5151 			delta = lbolt - fire->ire_last_used_time;
5152 			delta = TICK_TO_MSEC(delta);
5153 
5154 			res = (boolean_t)((delta >
5155 			    ipst->ips_ip_multirt_resolution_interval) ||
5156 			    (!(flags & MULTIRT_USESTAMP)));
5157 
5158 			ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, "
5159 			    "res %d\n",
5160 			    (void *)fire, delta, res));
5161 
5162 			if (res) {
5163 				/*
5164 				 * We are here if MULTIRT_USESTAMP flag is set
5165 				 * and the resolver for fire's gateway
5166 				 * has not been tried since
5167 				 * ip_multirt_resolution_interval, or if
5168 				 * MULTIRT_USESTAMP is not set but gw_ire did
5169 				 * not fill the conditions for MULTIRT_CACHEGW,
5170 				 * or if neither MULTIRT_USESTAMP nor
5171 				 * MULTIRT_CACHEGW are set.
5172 				 */
5173 				if (gw_ire != NULL) {
5174 					if (best_fire == NULL) {
5175 						ASSERT(best_cire == NULL);
5176 
5177 						best_fire = fire;
5178 						best_cire = gw_ire;
5179 
5180 						ip2dbg(("ire_multirt_lookup:"
5181 						    "found candidate "
5182 						    "best_fire %p, "
5183 						    "best_cire %p\n",
5184 						    (void *)best_fire,
5185 						    (void *)best_cire));
5186 
5187 						/*
5188 						 * If MULTIRT_CACHEGW is not
5189 						 * set, we ignore the top
5190 						 * priority ires that can
5191 						 * be resolved without any
5192 						 * call to the resolver;
5193 						 * In that case, there is
5194 						 * actually no need
5195 						 * to continue the loop.
5196 						 */
5197 						if (!(flags &
5198 						    MULTIRT_CACHEGW)) {
5199 							break;
5200 						}
5201 						continue;
5202 					}
5203 				} else {
5204 					/*
5205 					 * No resolver for the gateway: the
5206 					 * route is not resolvable.
5207 					 * If the MULTIRT_SETSTAMP flag is
5208 					 * set, we stamp the IRE_HOST ire,
5209 					 * so we will not select it again
5210 					 * during this resolution interval.
5211 					 */
5212 					if (flags & MULTIRT_SETSTAMP)
5213 						fire->ire_last_used_time =
5214 						    lbolt;
5215 				}
5216 			}
5217 
5218 			if (gw_ire != NULL)
5219 				ire_refrele(gw_ire);
5220 		}
5221 	} else { /* CLASSD(dst) */
5222 
5223 		for (fire = first_fire;
5224 		    fire != NULL;
5225 		    fire = fire->ire_next) {
5226 
5227 			if (!(fire->ire_flags & RTF_MULTIRT))
5228 				continue;
5229 			if (fire->ire_addr != dst)
5230 				continue;
5231 
5232 			if (fire->ire_gw_secattr != NULL &&
5233 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
5234 				continue;
5235 			}
5236 
5237 			already_resolved = B_FALSE;
5238 
5239 			gw = fire->ire_gateway_addr;
5240 
5241 			gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE,
5242 			    NULL, NULL, ALL_ZONES, 0, tsl,
5243 			    MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE |
5244 			    MATCH_IRE_SECATTR, ipst);
5245 
5246 			/* No resolver for the gateway; we skip this ire. */
5247 			if (gw_ire == NULL) {
5248 				continue;
5249 			}
5250 			ASSERT(gw_ire->ire_nce == NULL ||
5251 			    gw_ire->ire_nce->nce_state == ND_REACHABLE);
5252 
5253 			if (first_cire != NULL) {
5254 
5255 				IRB_REFHOLD(cirb);
5256 				/*
5257 				 * For all IRE_CACHE ires for that
5258 				 * destination.
5259 				 */
5260 				for (cire = first_cire;
5261 				    cire != NULL;
5262 				    cire = cire->ire_next) {
5263 
5264 					if (!(cire->ire_flags & RTF_MULTIRT))
5265 						continue;
5266 					if (cire->ire_addr != dst)
5267 						continue;
5268 					if (cire->ire_marks &
5269 					    (IRE_MARK_CONDEMNED |
5270 					    IRE_MARK_HIDDEN))
5271 						continue;
5272 
5273 					if (cire->ire_gw_secattr != NULL &&
5274 					    tsol_ire_match_gwattr(cire,
5275 					    tsl) != 0) {
5276 						continue;
5277 					}
5278 
5279 					/*
5280 					 * Cache entries are linked to the
5281 					 * parent routes using the parent handle
5282 					 * (ire_phandle). If no cache entry has
5283 					 * the same handle as fire, fire is
5284 					 * still unresolved.
5285 					 */
5286 					ASSERT(cire->ire_phandle != 0);
5287 					if (cire->ire_phandle ==
5288 					    fire->ire_phandle) {
5289 						already_resolved = B_TRUE;
5290 						break;
5291 					}
5292 				}
5293 				IRB_REFRELE(cirb);
5294 			}
5295 
5296 			/*
5297 			 * This route is already resolved; proceed with
5298 			 * next one.
5299 			 */
5300 			if (already_resolved) {
5301 				ire_refrele(gw_ire);
5302 				continue;
5303 			}
5304 
5305 			/*
5306 			 * Compute the time elapsed since our preceding
5307 			 * attempt to resolve that route.
5308 			 * If the MULTIRT_USESTAMP flag is set, we take
5309 			 * that route into account only if this time
5310 			 * interval exceeds ip_multirt_resolution_interval;
5311 			 * this prevents us from attempting to resolve a
5312 			 * broken route upon each sending of a packet.
5313 			 */
5314 			delta = lbolt - fire->ire_last_used_time;
5315 			delta = TICK_TO_MSEC(delta);
5316 
5317 			res = (boolean_t)((delta >
5318 			    ipst->ips_ip_multirt_resolution_interval) ||
5319 			    (!(flags & MULTIRT_USESTAMP)));
5320 
5321 			ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, "
5322 			    "flags %04x, res %d\n",
5323 			    (void *)fire, delta, flags, res));
5324 
5325 			if (res) {
5326 				if (best_cire != NULL) {
5327 					/*
5328 					 * Release the resolver associated
5329 					 * to the preceding candidate best
5330 					 * ire, if any.
5331 					 */
5332 					ire_refrele(best_cire);
5333 					ASSERT(best_fire != NULL);
5334 				}
5335 				best_fire = fire;
5336 				best_cire = gw_ire;
5337 				continue;
5338 			}
5339 
5340 			ire_refrele(gw_ire);
5341 		}
5342 	}
5343 
5344 	if (best_fire != NULL) {
5345 		IRE_REFHOLD(best_fire);
5346 	}
5347 	IRB_REFRELE(firb);
5348 
5349 	/* Release the first IRE_CACHE we initially looked up, if any. */
5350 	if (first_cire != NULL)
5351 		ire_refrele(first_cire);
5352 
5353 	/* Found a resolvable route. */
5354 	if (best_fire != NULL) {
5355 		ASSERT(best_cire != NULL);
5356 
5357 		if (*fire_arg != NULL)
5358 			ire_refrele(*fire_arg);
5359 		if (*ire_arg != NULL)
5360 			ire_refrele(*ire_arg);
5361 
5362 		/*
5363 		 * Update the passed-in arguments with the
5364 		 * resolvable multirt route we found.
5365 		 */
5366 		*fire_arg = best_fire;
5367 		*ire_arg = best_cire;
5368 
5369 		ip2dbg(("ire_multirt_lookup: returning B_TRUE, "
5370 		    "*fire_arg %p, *ire_arg %p\n",
5371 		    (void *)best_fire, (void *)best_cire));
5372 
5373 		return (B_TRUE);
5374 	}
5375 
5376 	ASSERT(best_cire == NULL);
5377 
5378 	ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, "
5379 	    "*ire_arg %p\n",
5380 	    (void *)*fire_arg, (void *)*ire_arg));
5381 
5382 	/* No resolvable route. */
5383 	return (B_FALSE);
5384 }
5385 
5386 /*
5387  * IRE iterator for inbound and loopback broadcast processing.
5388  * Given an IRE_BROADCAST ire, walk the ires with the same destination
5389  * address, but skip over the passed-in ire. Returns the next ire without
5390  * a hold - assumes that the caller holds a reference on the IRE bucket.
5391  */
5392 ire_t *
5393 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire)
5394 {
5395 	ill_t *ill;
5396 
5397 	if (curr == NULL) {
5398 		for (curr = ire->ire_bucket->irb_ire; curr != NULL;
5399 		    curr = curr->ire_next) {
5400 			if (curr->ire_addr == ire->ire_addr)
5401 				break;
5402 		}
5403 	} else {
5404 		curr = curr->ire_next;
5405 	}
5406 	ill = ire_to_ill(ire);
5407 	for (; curr != NULL; curr = curr->ire_next) {
5408 		if (curr->ire_addr != ire->ire_addr) {
5409 			/*
5410 			 * All the IREs to a given destination are contiguous;
5411 			 * break out once the address doesn't match.
5412 			 */
5413 			break;
5414 		}
5415 		if (curr == ire) {
5416 			/* skip over the passed-in ire */
5417 			continue;
5418 		}
5419 		if ((curr->ire_stq != NULL && ire->ire_stq == NULL) ||
5420 		    (curr->ire_stq == NULL && ire->ire_stq != NULL)) {
5421 			/*
5422 			 * If the passed-in ire is loopback, skip over
5423 			 * non-loopback ires and vice versa.
5424 			 */
5425 			continue;
5426 		}
5427 		if (ire_to_ill(curr) != ill) {
5428 			/* skip over IREs going through a different interface */
5429 			continue;
5430 		}
5431 		if (curr->ire_marks & IRE_MARK_CONDEMNED) {
5432 			/* skip over deleted IREs */
5433 			continue;
5434 		}
5435 		return (curr);
5436 	}
5437 	return (NULL);
5438 }
5439 
5440 #ifdef DEBUG
5441 void
5442 ire_trace_ref(ire_t *ire)
5443 {
5444 	mutex_enter(&ire->ire_lock);
5445 	if (ire->ire_trace_disable) {
5446 		mutex_exit(&ire->ire_lock);
5447 		return;
5448 	}
5449 
5450 	if (th_trace_ref(ire, ire->ire_ipst)) {
5451 		mutex_exit(&ire->ire_lock);
5452 	} else {
5453 		ire->ire_trace_disable = B_TRUE;
5454 		mutex_exit(&ire->ire_lock);
5455 		ire_trace_cleanup(ire);
5456 	}
5457 }
5458 
5459 void
5460 ire_untrace_ref(ire_t *ire)
5461 {
5462 	mutex_enter(&ire->ire_lock);
5463 	if (!ire->ire_trace_disable)
5464 		th_trace_unref(ire);
5465 	mutex_exit(&ire->ire_lock);
5466 }
5467 
5468 static void
5469 ire_trace_cleanup(const ire_t *ire)
5470 {
5471 	th_trace_cleanup(ire, ire->ire_trace_disable);
5472 }
5473 #endif /* DEBUG */
5474 
5475 /*
5476  * Generate a message chain with an arp request to resolve the in_ire.
5477  * It is assumed that in_ire itself is currently in the ire cache table,
5478  * so we create a fake_ire filled with enough information about ire_addr etc.
5479  * to retrieve in_ire when the DL_UNITDATA response from the resolver
5480  * comes back. The fake_ire itself is created by calling esballoc with
5481  * the fr_rtnp (free routine) set to ire_freemblk. This routine will be
5482  * invoked when the mblk containing fake_ire is freed.
5483  */
5484 void
5485 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill)
5486 {
5487 	areq_t		*areq;
5488 	ipaddr_t	*addrp;
5489 	mblk_t 		*ire_mp, *areq_mp;
5490 	ire_t 		*ire, *buf;
5491 	size_t		bufsize;
5492 	frtn_t		*frtnp;
5493 	ill_t		*ill;
5494 	ip_stack_t	*ipst = dst_ill->ill_ipst;
5495 
5496 	/*
5497 	 * Construct message chain for the resolver
5498 	 * of the form:
5499 	 *	ARP_REQ_MBLK-->IRE_MBLK
5500 	 *
5501 	 * NOTE : If the response does not
5502 	 * come back, ARP frees the packet. For this reason,
5503 	 * we can't REFHOLD the bucket of save_ire to prevent
5504 	 * deletions. We may not be able to REFRELE the bucket
5505 	 * if the response never comes back. Thus, before
5506 	 * adding the ire, ire_add_v4 will make sure that the
5507 	 * interface route does not get deleted. This is the
5508 	 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6
5509 	 * where we can always prevent deletions because of
5510 	 * the synchronous nature of adding IRES i.e
5511 	 * ire_add_then_send is called after creating the IRE.
5512 	 */
5513 
5514 	/*
5515 	 * We use esballoc to allocate the second part(the ire_t size mblk)
5516 	 * of the message chain depicted above. THis mblk will be freed
5517 	 * by arp when there is a  timeout, and otherwise passed to IP
5518 	 * and IP will * free it after processing the ARP response.
5519 	 */
5520 
5521 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
5522 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
5523 	if (buf == NULL) {
5524 		ip1dbg(("ire_arpresolver:alloc buffer failed\n "));
5525 		return;
5526 	}
5527 	frtnp = (frtn_t *)(buf + 1);
5528 	frtnp->free_arg = (caddr_t)buf;
5529 	frtnp->free_func = ire_freemblk;
5530 
5531 	ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
5532 
5533 	if (ire_mp == NULL) {
5534 		ip1dbg(("ire_arpresolve: esballoc failed\n"));
5535 		kmem_free(buf, bufsize);
5536 		return;
5537 	}
5538 	ASSERT(in_ire->ire_nce != NULL);
5539 	areq_mp = copyb(dst_ill->ill_resolver_mp);
5540 	if (areq_mp == NULL) {
5541 		kmem_free(buf, bufsize);
5542 		return;
5543 	}
5544 
5545 	ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE;
5546 	ire = (ire_t *)buf;
5547 	/*
5548 	 * keep enough info in the fake ire so that we can pull up
5549 	 * the incomplete ire (in_ire) after result comes back from
5550 	 * arp and make it complete.
5551 	 */
5552 	*ire = ire_null;
5553 	ire->ire_u = in_ire->ire_u;
5554 	ire->ire_ipif_seqid = in_ire->ire_ipif_seqid;
5555 	ire->ire_ipif = in_ire->ire_ipif;
5556 	ire->ire_stq = in_ire->ire_stq;
5557 	ill = ire_to_ill(ire);
5558 	ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
5559 	ire->ire_zoneid = in_ire->ire_zoneid;
5560 	ire->ire_ipst = ipst;
5561 
5562 	/*
5563 	 * ire_freemblk will be called when ire_mp is freed, both for
5564 	 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set
5565 	 * when the arp resolution failed.
5566 	 */
5567 	ire->ire_marks |= IRE_MARK_UNCACHED;
5568 	ire->ire_mp = ire_mp;
5569 	ire_mp->b_wptr = (uchar_t *)&ire[1];
5570 	ire_mp->b_cont = NULL;
5571 	linkb(areq_mp, ire_mp);
5572 
5573 	/*
5574 	 * Fill in the source and dest addrs for the resolver.
5575 	 * NOTE: this depends on memory layouts imposed by
5576 	 * ill_init().
5577 	 */
5578 	areq = (areq_t *)areq_mp->b_rptr;
5579 	addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset);
5580 	*addrp = ire->ire_src_addr;
5581 
5582 	addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset);
5583 	if (ire->ire_gateway_addr != INADDR_ANY) {
5584 		*addrp = ire->ire_gateway_addr;
5585 	} else {
5586 		*addrp = ire->ire_addr;
5587 	}
5588 
5589 	/* Up to the resolver. */
5590 	if (canputnext(dst_ill->ill_rq)) {
5591 		putnext(dst_ill->ill_rq, areq_mp);
5592 	} else {
5593 		freemsg(areq_mp);
5594 	}
5595 }
5596 
5597 /*
5598  * Esballoc free function for AR_ENTRY_QUERY request to clean up any
5599  * unresolved ire_t and/or nce_t structures when ARP resolution fails.
5600  *
5601  * This function can be called by ARP via free routine for ire_mp or
5602  * by IPv4(both host and forwarding path) via ire_delete
5603  * in case ARP resolution fails.
5604  * NOTE: Since IP is MT, ARP can call into IP but not vice versa
5605  * (for IP to talk to ARP, it still has to send AR* messages).
5606  *
5607  * Note that the ARP/IP merge should replace the functioanlity by providing
5608  * direct function calls to clean up unresolved entries in ire/nce lists.
5609  */
5610 void
5611 ire_freemblk(ire_t *ire_mp)
5612 {
5613 	nce_t		*nce = NULL;
5614 	ill_t		*ill;
5615 	ip_stack_t	*ipst;
5616 
5617 	ASSERT(ire_mp != NULL);
5618 
5619 	if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) {
5620 		ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n",
5621 		    (void *)ire_mp));
5622 		goto cleanup;
5623 	}
5624 	if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) {
5625 		goto cleanup; /* everything succeeded. just free and return */
5626 	}
5627 
5628 	/*
5629 	 * the arp information corresponding to this ire_mp was not
5630 	 * transferred to  a ire_cache entry. Need
5631 	 * to clean up incomplete ire's and nce, if necessary.
5632 	 */
5633 	ASSERT(ire_mp->ire_stq != NULL);
5634 	ASSERT(ire_mp->ire_stq_ifindex != 0);
5635 	ASSERT(ire_mp->ire_ipst != NULL);
5636 
5637 	ipst = ire_mp->ire_ipst;
5638 
5639 	/*
5640 	 * Get any nce's corresponding to this ire_mp. We first have to
5641 	 * make sure that the ill is still around.
5642 	 */
5643 	ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex,
5644 	    B_FALSE, NULL, NULL, NULL, NULL, ipst);
5645 	if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) ||
5646 	    (ill->ill_state_flags & ILL_CONDEMNED)) {
5647 		/*
5648 		 * ill went away. no nce to clean up.
5649 		 * Note that the ill_state_flags could be set to
5650 		 * ILL_CONDEMNED after this point, but if we know
5651 		 * that it is CONDEMNED now, we just bail out quickly.
5652 		 */
5653 		if (ill != NULL)
5654 			ill_refrele(ill);
5655 		goto cleanup;
5656 	}
5657 	nce = ndp_lookup_v4(ill,
5658 	    ((ire_mp->ire_gateway_addr != INADDR_ANY) ?
5659 	    &ire_mp->ire_gateway_addr : &ire_mp->ire_addr),
5660 	    B_FALSE);
5661 	ill_refrele(ill);
5662 
5663 	if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) {
5664 		/*
5665 		 * some incomplete nce was found.
5666 		 */
5667 		DTRACE_PROBE2(ire__freemblk__arp__resolv__fail,
5668 		    nce_t *, nce, ire_t *, ire_mp);
5669 		/*
5670 		 * Send the icmp_unreachable messages for the queued mblks in
5671 		 * ire->ire_nce->nce_qd_mp, since ARP resolution failed
5672 		 * for this ire
5673 		 */
5674 		arp_resolv_failed(nce);
5675 		/*
5676 		 * Delete the nce and clean up all ire's pointing at this nce
5677 		 * in the cachetable
5678 		 */
5679 		ndp_delete(nce);
5680 	}
5681 	if (nce != NULL)
5682 		NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */
5683 
5684 cleanup:
5685 	/*
5686 	 * Get rid of the ire buffer
5687 	 * We call kmem_free here(instead of ire_delete()), since
5688 	 * this is the freeb's callback.
5689 	 */
5690 	kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t));
5691 }
5692 
5693 /*
5694  * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and
5695  * non-loopback IRE_BROADCAST ire's.
5696  *
5697  * If a neighbor-cache entry has to be created (i.e., one does not already
5698  * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache
5699  * entry are initialized in ndp_add_v4(). These values are picked from
5700  * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the
5701  * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values
5702  * determine the {nce_state, nce_res_mp} of the nce_t created. All
5703  * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp
5704  * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire
5705  * entries,
5706  *   - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created
5707  *     nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state.
5708  *   - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link
5709  *     layer resolution is necessary, so that the nce_t will be in the
5710  *     ND_REACHABLE state and the nce_res_mp will have a copy of the
5711  *     ill_resolver_mp of the outgoing interface.
5712  *
5713  * The link layer information needed for broadcast addresses, and for
5714  * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that
5715  * never needs re-verification for the lifetime of the nce_t. These are
5716  * therefore marked NCE_F_PERMANENT, and never allowed to expire via
5717  * NCE_EXPIRED.
5718  *
5719  * IRE_CACHE ire's contain the information for  the nexthop (ire_gateway_addr)
5720  * in the case of indirect routes, and for the dst itself (ire_addr) in the
5721  * case of direct routes, with the nce_res_mp containing a template
5722  * DL_UNITDATA request.
5723  *
5724  * The actual association of the ire_nce to the nce created here is
5725  * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions
5726  * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which
5727  * the ire_nce assignment is done in ire_add_then_send.
5728  */
5729 int
5730 ire_nce_init(ire_t *ire, nce_t *src_nce)
5731 {
5732 	in_addr_t	addr4;
5733 	int		err;
5734 	nce_t		*nce = NULL;
5735 	ill_t		*ire_ill;
5736 	uint16_t	nce_flags = 0;
5737 	ip_stack_t	*ipst;
5738 
5739 	if (ire->ire_stq == NULL)
5740 		return (0); /* no need to create nce for local/loopback */
5741 
5742 	switch (ire->ire_type) {
5743 	case IRE_CACHE:
5744 		if (ire->ire_gateway_addr != INADDR_ANY)
5745 			addr4 = ire->ire_gateway_addr; /* 'G' route */
5746 		else
5747 			addr4 = ire->ire_addr; /* direct route */
5748 		break;
5749 	case IRE_BROADCAST:
5750 		addr4 = ire->ire_addr;
5751 		nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST);
5752 		break;
5753 	default:
5754 		return (0);
5755 	}
5756 
5757 	/*
5758 	 * ire_ipif is picked based on RTF_SETSRC, usesrc etc.
5759 	 * rules in ire_forward_src_ipif. We want the dlureq_mp
5760 	 * for the outgoing interface, which we get from the ire_stq.
5761 	 */
5762 	ire_ill = ire_to_ill(ire);
5763 	ipst = ire_ill->ill_ipst;
5764 
5765 	/*
5766 	 * IRE_IF_NORESOLVER entries never need re-verification and
5767 	 * do not expire, so we mark them as NCE_F_PERMANENT.
5768 	 */
5769 	if (ire_ill->ill_net_type == IRE_IF_NORESOLVER)
5770 		nce_flags |= NCE_F_PERMANENT;
5771 
5772 retry_nce:
5773 	err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags,
5774 	    &nce, src_nce);
5775 
5776 	if (err == EEXIST && NCE_EXPIRED(nce, ipst)) {
5777 		/*
5778 		 * We looked up an expired nce.
5779 		 * Go back and try to create one again.
5780 		 */
5781 		ndp_delete(nce);
5782 		NCE_REFRELE(nce);
5783 		nce = NULL;
5784 		goto retry_nce;
5785 	}
5786 
5787 	ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n",
5788 	    (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err));
5789 
5790 	switch (err) {
5791 	case 0:
5792 	case EEXIST:
5793 		/*
5794 		 * return a pointer to a newly created or existing nce_t;
5795 		 * note that the ire-nce mapping is many-one, i.e.,
5796 		 * multiple ire's could point to the same nce_t.
5797 		 */
5798 		break;
5799 	default:
5800 		DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err);
5801 		return (EINVAL);
5802 	}
5803 	if (ire->ire_type == IRE_BROADCAST) {
5804 		/*
5805 		 * Two bcast ires are created for each interface;
5806 		 * 1. loopback copy (which does not  have an
5807 		 *    ire_stq, and therefore has no ire_nce), and,
5808 		 * 2. the non-loopback copy, which has the nce_res_mp
5809 		 *    initialized to a copy of the ill_bcast_mp, and
5810 		 *    is marked as ND_REACHABLE at this point.
5811 		 *    This nce does not undergo any further state changes,
5812 		 *    and exists as long as the interface is plumbed.
5813 		 * Note: we do the ire_nce assignment here for IRE_BROADCAST
5814 		 * because some functions like ill_mark_bcast() inline the
5815 		 * ire_add functionality.
5816 		 */
5817 		ire->ire_nce = nce;
5818 		/*
5819 		 * We are associating this nce to the ire,
5820 		 * so change the nce ref taken in
5821 		 * ndp_lookup_then_add_v4() from
5822 		 * NCE_REFHOLD to NCE_REFHOLD_NOTR
5823 		 */
5824 		NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
5825 	} else {
5826 		/*
5827 		 * We are not using this nce_t just yet so release
5828 		 * the ref taken in ndp_lookup_then_add_v4()
5829 		 */
5830 		NCE_REFRELE(nce);
5831 	}
5832 	return (0);
5833 }
5834