1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 /* 31 * This file contains the interface control functions for IP. 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/dlpi.h> 37 #include <sys/stropts.h> 38 #include <sys/strsun.h> 39 #include <sys/sysmacros.h> 40 #include <sys/strlog.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/kstat.h> 45 #include <sys/debug.h> 46 #include <sys/zone.h> 47 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/param.h> 51 #include <sys/socket.h> 52 #define _SUN_TPI_VERSION 2 53 #include <sys/tihdr.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_impl.h> 84 #include <inet/tun.h> 85 #include <inet/sctp_ip.h> 86 87 #include <net/pfkeyv2.h> 88 #include <inet/ipsec_info.h> 89 #include <inet/sadb.h> 90 #include <inet/ipsec_impl.h> 91 #include <sys/iphada.h> 92 93 94 #include <netinet/igmp.h> 95 #include <inet/ip_listutils.h> 96 #include <netinet/ip_mroute.h> 97 #include <inet/ipclassifier.h> 98 #include <sys/mac.h> 99 100 #include <sys/systeminfo.h> 101 #include <sys/bootconf.h> 102 103 /* The character which tells where the ill_name ends */ 104 #define IPIF_SEPARATOR_CHAR ':' 105 106 /* IP ioctl function table entry */ 107 typedef struct ipft_s { 108 int ipft_cmd; 109 pfi_t ipft_pfi; 110 int ipft_min_size; 111 int ipft_flags; 112 } ipft_t; 113 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 114 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 115 116 typedef struct ip_sock_ar_s { 117 union { 118 area_t ip_sock_area; 119 ared_t ip_sock_ared; 120 areq_t ip_sock_areq; 121 } ip_sock_ar_u; 122 queue_t *ip_sock_ar_q; 123 } ip_sock_ar_t; 124 125 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 126 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 127 char *value, caddr_t cp, cred_t *ioc_cr); 128 129 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 130 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 131 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 132 mblk_t *mp, boolean_t need_up); 133 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 134 mblk_t *mp, boolean_t need_up); 135 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 136 queue_t *q, mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp); 141 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 144 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 145 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 146 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 147 static void ipsq_flush(ill_t *ill); 148 static void ipsq_clean_all(ill_t *ill); 149 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 150 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 151 queue_t *q, mblk_t *mp, boolean_t need_up); 152 static void ipsq_delete(ipsq_t *); 153 154 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 155 boolean_t initialize); 156 static void ipif_check_bcast_ires(ipif_t *test_ipif); 157 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 158 static void ipif_delete_cache_ire(ire_t *, char *); 159 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 160 static void ipif_down_tail(ipif_t *ipif); 161 static void ipif_free(ipif_t *ipif); 162 static void ipif_free_tail(ipif_t *ipif); 163 static void ipif_mask_reply(ipif_t *); 164 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 165 static void ipif_multicast_down(ipif_t *ipif); 166 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 167 static void ipif_set_default(ipif_t *ipif); 168 static int ipif_set_values(queue_t *q, mblk_t *mp, 169 char *interf_name, uint_t *ppa); 170 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 171 queue_t *q); 172 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 173 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 174 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 175 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 176 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 177 178 static int ill_alloc_ppa(ill_if_t *, ill_t *); 179 static int ill_arp_off(ill_t *ill); 180 static int ill_arp_on(ill_t *ill); 181 static void ill_delete_interface_type(ill_if_t *); 182 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 183 static void ill_down(ill_t *ill); 184 static void ill_downi(ire_t *ire, char *ill_arg); 185 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 186 static void ill_down_tail(ill_t *ill); 187 static void ill_free_mib(ill_t *ill); 188 static void ill_glist_delete(ill_t *); 189 static boolean_t ill_has_usable_ipif(ill_t *); 190 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 191 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 192 static void ill_phyint_free(ill_t *ill); 193 static void ill_phyint_reinit(ill_t *ill); 194 static void ill_set_nce_router_flags(ill_t *, boolean_t); 195 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 196 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 197 static void ill_stq_cache_delete(ire_t *, char *); 198 199 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 200 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 201 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 202 in6_addr_t *); 203 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 204 ipaddr_t *); 205 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 207 in6_addr_t *); 208 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 ipaddr_t *); 210 211 static void ipif_save_ire(ipif_t *, ire_t *); 212 static void ipif_remove_ire(ipif_t *, ire_t *); 213 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 214 static void ip_cgtp_bcast_delete(ire_t *); 215 216 /* 217 * Per-ill IPsec capabilities management. 218 */ 219 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 220 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 221 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 222 static void ill_ipsec_capab_delete(ill_t *, uint_t); 223 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 224 static void ill_capability_proto(ill_t *, int, mblk_t *); 225 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 226 boolean_t); 227 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 228 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 229 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 230 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 231 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 232 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 234 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 235 dl_capability_sub_t *); 236 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 237 238 static void ill_capability_poll_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 240 static void ill_capability_poll_reset(ill_t *, mblk_t **); 241 242 static void illgrp_cache_delete(ire_t *, char *); 243 static void illgrp_delete(ill_t *ill); 244 static void illgrp_reset_schednext(ill_t *ill); 245 246 static ill_t *ill_prev_usesrc(ill_t *); 247 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 248 static void ill_disband_usesrc_group(ill_t *); 249 250 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 251 252 /* 253 * if we go over the memory footprint limit more than once in this msec 254 * interval, we'll start pruning aggressively. 255 */ 256 int ip_min_frag_prune_time = 0; 257 258 /* 259 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 260 * and the IPsec DOI 261 */ 262 #define MAX_IPSEC_ALGS 256 263 264 #define BITSPERBYTE 8 265 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 266 267 #define IPSEC_ALG_ENABLE(algs, algid) \ 268 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 269 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 270 271 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 272 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 273 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 274 275 typedef uint8_t ipsec_capab_elem_t; 276 277 /* 278 * Per-algorithm parameters. Note that at present, only encryption 279 * algorithms have variable keysize (IKE does not provide a way to negotiate 280 * auth algorithm keysize). 281 * 282 * All sizes here are in bits. 283 */ 284 typedef struct 285 { 286 uint16_t minkeylen; 287 uint16_t maxkeylen; 288 } ipsec_capab_algparm_t; 289 290 /* 291 * Per-ill capabilities. 292 */ 293 struct ill_ipsec_capab_s { 294 ipsec_capab_elem_t *encr_hw_algs; 295 ipsec_capab_elem_t *auth_hw_algs; 296 uint32_t algs_size; /* size of _hw_algs in bytes */ 297 /* algorithm key lengths */ 298 ipsec_capab_algparm_t *encr_algparm; 299 uint32_t encr_algparm_size; 300 uint32_t encr_algparm_end; 301 }; 302 303 /* 304 * List of AH and ESP IPsec acceleration capable ills 305 */ 306 typedef struct ipsec_capab_ill_s { 307 uint_t ill_index; 308 boolean_t ill_isv6; 309 struct ipsec_capab_ill_s *next; 310 } ipsec_capab_ill_t; 311 312 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 313 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 314 krwlock_t ipsec_capab_ills_lock; 315 316 /* 317 * The field values are larger than strictly necessary for simple 318 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 319 */ 320 static area_t ip_area_template = { 321 AR_ENTRY_ADD, /* area_cmd */ 322 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 323 /* area_name_offset */ 324 /* area_name_length temporarily holds this structure length */ 325 sizeof (area_t), /* area_name_length */ 326 IP_ARP_PROTO_TYPE, /* area_proto */ 327 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 328 IP_ADDR_LEN, /* area_proto_addr_length */ 329 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 330 /* area_proto_mask_offset */ 331 0, /* area_flags */ 332 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 333 /* area_hw_addr_offset */ 334 /* Zero length hw_addr_length means 'use your idea of the address' */ 335 0 /* area_hw_addr_length */ 336 }; 337 338 /* 339 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 340 * support 341 */ 342 static area_t ip6_area_template = { 343 AR_ENTRY_ADD, /* area_cmd */ 344 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 345 /* area_name_offset */ 346 /* area_name_length temporarily holds this structure length */ 347 sizeof (area_t), /* area_name_length */ 348 IP_ARP_PROTO_TYPE, /* area_proto */ 349 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 350 IPV6_ADDR_LEN, /* area_proto_addr_length */ 351 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 352 /* area_proto_mask_offset */ 353 0, /* area_flags */ 354 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 355 /* area_hw_addr_offset */ 356 /* Zero length hw_addr_length means 'use your idea of the address' */ 357 0 /* area_hw_addr_length */ 358 }; 359 360 static ared_t ip_ared_template = { 361 AR_ENTRY_DELETE, 362 sizeof (ared_t) + IP_ADDR_LEN, 363 sizeof (ared_t), 364 IP_ARP_PROTO_TYPE, 365 sizeof (ared_t), 366 IP_ADDR_LEN 367 }; 368 369 static ared_t ip6_ared_template = { 370 AR_ENTRY_DELETE, 371 sizeof (ared_t) + IPV6_ADDR_LEN, 372 sizeof (ared_t), 373 IP_ARP_PROTO_TYPE, 374 sizeof (ared_t), 375 IPV6_ADDR_LEN 376 }; 377 378 /* 379 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 380 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 381 * areq is used). 382 */ 383 static areq_t ip_areq_template = { 384 AR_ENTRY_QUERY, /* cmd */ 385 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 386 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 387 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 388 sizeof (areq_t), /* target addr offset */ 389 IP_ADDR_LEN, /* target addr_length */ 390 0, /* flags */ 391 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 392 IP_ADDR_LEN, /* sender addr length */ 393 6, /* xmit_count */ 394 1000, /* (re)xmit_interval in milliseconds */ 395 4 /* max # of requests to buffer */ 396 /* anything else filled in by the code */ 397 }; 398 399 static arc_t ip_aru_template = { 400 AR_INTERFACE_UP, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_ard_template = { 406 AR_INTERFACE_DOWN, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aron_template = { 412 AR_INTERFACE_ON, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 static arc_t ip_aroff_template = { 418 AR_INTERFACE_OFF, 419 sizeof (arc_t), /* Name offset */ 420 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 421 }; 422 423 424 static arma_t ip_arma_multi_template = { 425 AR_MAPPING_ADD, 426 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 427 /* Name offset */ 428 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 429 IP_ARP_PROTO_TYPE, 430 sizeof (arma_t), /* proto_addr_offset */ 431 IP_ADDR_LEN, /* proto_addr_length */ 432 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 433 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 434 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 435 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 436 IP_MAX_HW_LEN, /* hw_addr_length */ 437 0, /* hw_mapping_start */ 438 }; 439 440 static ipft_t ip_ioctl_ftbl[] = { 441 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 442 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 443 IPFT_F_NO_REPLY }, 444 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 445 IPFT_F_NO_REPLY }, 446 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 447 { 0 } 448 }; 449 450 /* Simple ICMP IP Header Template */ 451 static ipha_t icmp_ipha = { 452 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 453 }; 454 455 /* Flag descriptors for ip_ipif_report */ 456 static nv_t ipif_nv_tbl[] = { 457 { IPIF_UP, "UP" }, 458 { IPIF_BROADCAST, "BROADCAST" }, 459 { ILLF_DEBUG, "DEBUG" }, 460 { PHYI_LOOPBACK, "LOOPBACK" }, 461 { IPIF_POINTOPOINT, "POINTOPOINT" }, 462 { ILLF_NOTRAILERS, "NOTRAILERS" }, 463 { PHYI_RUNNING, "RUNNING" }, 464 { ILLF_NOARP, "NOARP" }, 465 { PHYI_PROMISC, "PROMISC" }, 466 { PHYI_ALLMULTI, "ALLMULTI" }, 467 { PHYI_INTELLIGENT, "INTELLIGENT" }, 468 { ILLF_MULTICAST, "MULTICAST" }, 469 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 470 { IPIF_UNNUMBERED, "UNNUMBERED" }, 471 { IPIF_DHCPRUNNING, "DHCP" }, 472 { IPIF_PRIVATE, "PRIVATE" }, 473 { IPIF_NOXMIT, "NOXMIT" }, 474 { IPIF_NOLOCAL, "NOLOCAL" }, 475 { IPIF_DEPRECATED, "DEPRECATED" }, 476 { IPIF_PREFERRED, "PREFERRED" }, 477 { IPIF_TEMPORARY, "TEMPORARY" }, 478 { IPIF_ADDRCONF, "ADDRCONF" }, 479 { PHYI_VIRTUAL, "VIRTUAL" }, 480 { ILLF_ROUTER, "ROUTER" }, 481 { ILLF_NONUD, "NONUD" }, 482 { IPIF_ANYCAST, "ANYCAST" }, 483 { ILLF_NORTEXCH, "NORTEXCH" }, 484 { ILLF_IPV4, "IPV4" }, 485 { ILLF_IPV6, "IPV6" }, 486 { IPIF_MIPRUNNING, "MIP" }, 487 { IPIF_NOFAILOVER, "NOFAILOVER" }, 488 { PHYI_FAILED, "FAILED" }, 489 { PHYI_STANDBY, "STANDBY" }, 490 { PHYI_INACTIVE, "INACTIVE" }, 491 { PHYI_OFFLINE, "OFFLINE" }, 492 }; 493 494 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 495 496 static ip_m_t ip_m_tbl[] = { 497 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_ether_v6intfid }, 499 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid }, 505 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 506 ip_ether_v6intfid }, 507 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 508 ip_ib_v6intfid }, 509 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 510 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 511 ip_nodef_v6intfid } 512 }; 513 514 static ill_t ill_null; /* Empty ILL for init. */ 515 char ipif_loopback_name[] = "lo0"; 516 static char *ipv4_forward_suffix = ":ip_forwarding"; 517 static char *ipv6_forward_suffix = ":ip6_forwarding"; 518 static kstat_t *loopback_ksp = NULL; 519 static sin6_t sin6_null; /* Zero address for quick clears */ 520 static sin_t sin_null; /* Zero address for quick clears */ 521 static uint_t ill_index = 1; /* Used to assign interface indicies */ 522 /* When set search for unused index */ 523 static boolean_t ill_index_wrap = B_FALSE; 524 /* When set search for unused ipif_seqid */ 525 static ipif_t ipif_zero; 526 uint_t ipif_src_random; 527 528 /* 529 * For details on the protection offered by these locks please refer 530 * to the notes under the Synchronization section at the start of ip.c 531 */ 532 krwlock_t ill_g_lock; /* The global ill_g_lock */ 533 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 534 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 535 536 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 537 538 /* 539 * illgrp_head/ifgrp_head is protected by IP's perimeter. 540 */ 541 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 542 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 543 544 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 545 546 /* 547 * ppa arena is created after these many 548 * interfaces have been plumbed. 549 */ 550 uint_t ill_no_arena = 12; 551 552 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 553 static phyint_list_t phyint_g_list; /* start of phyint list */ 554 555 /* 556 * Reflects value of FAILBACK variable in IPMP config file 557 * /etc/default/mpathd. Default value is B_TRUE. 558 * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no" 559 * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel. 560 */ 561 static boolean_t ipmp_enable_failback = B_TRUE; 562 563 static uint_t 564 ipif_rand(void) 565 { 566 ipif_src_random = ipif_src_random * 1103515245 + 12345; 567 return ((ipif_src_random >> 16) & 0x7fff); 568 } 569 570 /* 571 * Allocate per-interface mibs. Only used for ipv6. 572 * Returns true if ok. False otherwise. 573 * ipsq may not yet be allocated (loopback case ). 574 */ 575 static boolean_t 576 ill_allocate_mibs(ill_t *ill) 577 { 578 ASSERT(ill->ill_isv6); 579 580 /* Already allocated? */ 581 if (ill->ill_ip6_mib != NULL) { 582 ASSERT(ill->ill_icmp6_mib != NULL); 583 return (B_TRUE); 584 } 585 586 ill->ill_ip6_mib = kmem_zalloc(sizeof (*ill->ill_ip6_mib), 587 KM_NOSLEEP); 588 if (ill->ill_ip6_mib == NULL) { 589 return (B_FALSE); 590 } 591 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 592 KM_NOSLEEP); 593 if (ill->ill_icmp6_mib == NULL) { 594 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 595 ill->ill_ip6_mib = NULL; 596 return (B_FALSE); 597 } 598 /* 599 * The ipv6Ifindex and ipv6IfIcmpIndex will be assigned later 600 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 601 * -> ill_phyint_reinit 602 */ 603 return (B_TRUE); 604 } 605 606 /* 607 * Common code for preparation of ARP commands. Two points to remember: 608 * 1) The ill_name is tacked on at the end of the allocated space so 609 * the templates name_offset field must contain the total space 610 * to allocate less the name length. 611 * 612 * 2) The templates name_length field should contain the *template* 613 * length. We use it as a parameter to bcopy() and then write 614 * the real ill_name_length into the name_length field of the copy. 615 * (Always called as writer.) 616 */ 617 mblk_t * 618 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 619 { 620 arc_t *arc = (arc_t *)template; 621 char *cp; 622 int len; 623 mblk_t *mp; 624 uint_t name_length = ill->ill_name_length; 625 uint_t template_len = arc->arc_name_length; 626 627 len = arc->arc_name_offset + name_length; 628 mp = allocb(len, BPRI_HI); 629 if (mp == NULL) 630 return (NULL); 631 cp = (char *)mp->b_rptr; 632 mp->b_wptr = (uchar_t *)&cp[len]; 633 if (template_len) 634 bcopy(template, cp, template_len); 635 if (len > template_len) 636 bzero(&cp[template_len], len - template_len); 637 mp->b_datap->db_type = M_PROTO; 638 639 arc = (arc_t *)cp; 640 arc->arc_name_length = name_length; 641 cp = (char *)arc + arc->arc_name_offset; 642 bcopy(ill->ill_name, cp, name_length); 643 644 if (addr) { 645 area_t *area = (area_t *)mp->b_rptr; 646 647 cp = (char *)area + area->area_proto_addr_offset; 648 bcopy(addr, cp, area->area_proto_addr_length); 649 if (area->area_cmd == AR_ENTRY_ADD) { 650 cp = (char *)area; 651 len = area->area_proto_addr_length; 652 if (area->area_proto_mask_offset) 653 cp += area->area_proto_mask_offset; 654 else 655 cp += area->area_proto_addr_offset + len; 656 while (len-- > 0) 657 *cp++ = (char)~0; 658 } 659 } 660 return (mp); 661 } 662 663 /* 664 * Completely vaporize a lower level tap and all associated interfaces. 665 * ill_delete is called only out of ip_close when the device control 666 * stream is being closed. 667 */ 668 void 669 ill_delete(ill_t *ill) 670 { 671 ipif_t *ipif; 672 ill_t *prev_ill; 673 674 /* 675 * ill_delete may be forcibly entering the ipsq. The previous 676 * ioctl may not have completed and may need to be aborted. 677 * ipsq_flush takes care of it. If we don't need to enter the 678 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 679 * ill_delete_tail is sufficient. 680 */ 681 ipsq_flush(ill); 682 683 /* 684 * Nuke all interfaces. ipif_free will take down the interface, 685 * remove it from the list, and free the data structure. 686 * Walk down the ipif list and remove the logical interfaces 687 * first before removing the main ipif. We can't unplumb 688 * zeroth interface first in the case of IPv6 as reset_conn_ill 689 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 690 * POINTOPOINT. 691 * 692 * If ill_ipif was not properly initialized (i.e low on memory), 693 * then no interfaces to clean up. In this case just clean up the 694 * ill. 695 */ 696 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 697 ipif_free(ipif); 698 699 /* 700 * Used only by ill_arp_on and ill_arp_off, which are writers. 701 * So nobody can be using this mp now. Free the mp allocated for 702 * honoring ILLF_NOARP 703 */ 704 freemsg(ill->ill_arp_on_mp); 705 ill->ill_arp_on_mp = NULL; 706 707 /* Clean up msgs on pending upcalls for mrouted */ 708 reset_mrt_ill(ill); 709 710 /* 711 * ipif_free -> reset_conn_ipif will remove all multicast 712 * references for IPv4. For IPv6, we need to do it here as 713 * it points only at ills. 714 */ 715 reset_conn_ill(ill); 716 717 /* 718 * ill_down will arrange to blow off any IRE's dependent on this 719 * ILL, and shut down fragmentation reassembly. 720 */ 721 ill_down(ill); 722 723 /* Let SCTP know, so that it can remove this from its list. */ 724 sctp_update_ill(ill, SCTP_ILL_REMOVE); 725 726 /* 727 * If an address on this ILL is being used as a source address then 728 * clear out the pointers in other ILLs that point to this ILL. 729 */ 730 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 731 if (ill->ill_usesrc_grp_next != NULL) { 732 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 733 ill_disband_usesrc_group(ill); 734 } else { /* consumer of the usesrc ILL */ 735 prev_ill = ill_prev_usesrc(ill); 736 prev_ill->ill_usesrc_grp_next = 737 ill->ill_usesrc_grp_next; 738 } 739 } 740 rw_exit(&ill_g_usesrc_lock); 741 } 742 743 /* 744 * ill_delete_tail is called from ip_modclose after all references 745 * to the closing ill are gone. The wait is done in ip_modclose 746 */ 747 void 748 ill_delete_tail(ill_t *ill) 749 { 750 mblk_t **mpp; 751 ipif_t *ipif; 752 753 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 754 ipif_down_tail(ipif); 755 756 /* 757 * Send the detach if there's one to send (i.e., if we're above a 758 * style 2 DLPI driver). 759 */ 760 if (ill->ill_detach_mp != NULL) { 761 ill_dlpi_send(ill, ill->ill_detach_mp); 762 ill->ill_detach_mp = NULL; 763 } 764 765 /* 766 * If polling capability is enabled (which signifies direct 767 * upcall into IP and driver has ill saved as a handle), 768 * we need to make sure that unbind has completed before we 769 * let the ill disappear and driver no longer has any reference 770 * to this ill. 771 */ 772 mutex_enter(&ill->ill_lock); 773 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 774 while (!(ill->ill_state_flags & ILL_DL_UNBIND_DONE)) 775 cv_wait(&ill->ill_cv, &ill->ill_lock); 776 } 777 mutex_exit(&ill->ill_lock); 778 779 if (ill->ill_net_type != IRE_LOOPBACK) 780 qprocsoff(ill->ill_rq); 781 782 /* 783 * We do an ipsq_flush once again now. New messages could have 784 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 785 * could also have landed up if an ioctl thread had looked up 786 * the ill before we set the ILL_CONDEMNED flag, but not yet 787 * enqueued the ioctl when we did the ipsq_flush last time. 788 */ 789 ipsq_flush(ill); 790 791 /* 792 * Free capabilities. 793 */ 794 if (ill->ill_ipsec_capab_ah != NULL) { 795 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 796 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 797 ill->ill_ipsec_capab_ah = NULL; 798 } 799 800 if (ill->ill_ipsec_capab_esp != NULL) { 801 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 802 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 803 ill->ill_ipsec_capab_esp = NULL; 804 } 805 806 if (ill->ill_mdt_capab != NULL) { 807 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 808 ill->ill_mdt_capab = NULL; 809 } 810 811 if (ill->ill_hcksum_capab != NULL) { 812 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 813 ill->ill_hcksum_capab = NULL; 814 } 815 816 if (ill->ill_zerocopy_capab != NULL) { 817 kmem_free(ill->ill_zerocopy_capab, 818 sizeof (ill_zerocopy_capab_t)); 819 ill->ill_zerocopy_capab = NULL; 820 } 821 822 /* 823 * Clean up polling capabilities 824 */ 825 if (ill->ill_capabilities & ILL_CAPAB_POLL) 826 ipsq_clean_all(ill); 827 828 if (ill->ill_poll_capab != NULL) { 829 CONN_DEC_REF(ill->ill_poll_capab->ill_unbind_conn); 830 ill->ill_poll_capab->ill_unbind_conn = NULL; 831 kmem_free(ill->ill_poll_capab, 832 sizeof (ill_poll_capab_t) + 833 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 834 ill->ill_poll_capab = NULL; 835 } 836 837 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 838 839 while (ill->ill_ipif != NULL) 840 ipif_free_tail(ill->ill_ipif); 841 842 ill_down_tail(ill); 843 844 /* 845 * We have removed all references to ilm from conn and the ones joined 846 * within the kernel. 847 * 848 * We don't walk conns, mrts and ires because 849 * 850 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 851 * 2) ill_down ->ill_downi walks all the ires and cleans up 852 * ill references. 853 */ 854 ASSERT(ilm_walk_ill(ill) == 0); 855 /* 856 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 857 * could free the phyint. No more reference to the phyint after this 858 * point. 859 */ 860 (void) ill_glist_delete(ill); 861 862 rw_enter(&ip_g_nd_lock, RW_WRITER); 863 if (ill->ill_ndd_name != NULL) 864 nd_unload(&ip_g_nd, ill->ill_ndd_name); 865 rw_exit(&ip_g_nd_lock); 866 867 868 if (ill->ill_frag_ptr != NULL) { 869 uint_t count; 870 871 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 872 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 873 } 874 mi_free(ill->ill_frag_ptr); 875 ill->ill_frag_ptr = NULL; 876 ill->ill_frag_hash_tbl = NULL; 877 } 878 if (ill->ill_nd_lla_mp != NULL) 879 freemsg(ill->ill_nd_lla_mp); 880 /* Free all retained control messages. */ 881 mpp = &ill->ill_first_mp_to_free; 882 do { 883 while (mpp[0]) { 884 mblk_t *mp; 885 mblk_t *mp1; 886 887 mp = mpp[0]; 888 mpp[0] = mp->b_next; 889 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 890 mp1->b_next = NULL; 891 mp1->b_prev = NULL; 892 } 893 freemsg(mp); 894 } 895 } while (mpp++ != &ill->ill_last_mp_to_free); 896 897 ill_free_mib(ill); 898 ILL_TRACE_CLEANUP(ill); 899 } 900 901 static void 902 ill_free_mib(ill_t *ill) 903 { 904 if (ill->ill_ip6_mib != NULL) { 905 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 906 ill->ill_ip6_mib = NULL; 907 } 908 if (ill->ill_icmp6_mib != NULL) { 909 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 910 ill->ill_icmp6_mib = NULL; 911 } 912 } 913 914 /* 915 * Concatenate together a physical address and a sap. 916 * 917 * Sap_lengths are interpreted as follows: 918 * sap_length == 0 ==> no sap 919 * sap_length > 0 ==> sap is at the head of the dlpi address 920 * sap_length < 0 ==> sap is at the tail of the dlpi address 921 */ 922 static void 923 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 924 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 925 { 926 uint16_t sap_addr = (uint16_t)sap_src; 927 928 if (sap_length == 0) { 929 if (phys_src == NULL) 930 bzero(dst, phys_length); 931 else 932 bcopy(phys_src, dst, phys_length); 933 } else if (sap_length < 0) { 934 if (phys_src == NULL) 935 bzero(dst, phys_length); 936 else 937 bcopy(phys_src, dst, phys_length); 938 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 939 } else { 940 bcopy(&sap_addr, dst, sizeof (sap_addr)); 941 if (phys_src == NULL) 942 bzero((char *)dst + sap_length, phys_length); 943 else 944 bcopy(phys_src, (char *)dst + sap_length, phys_length); 945 } 946 } 947 948 /* 949 * Generate a dl_unitdata_req mblk for the device and address given. 950 * addr_length is the length of the physical portion of the address. 951 * If addr is NULL include an all zero address of the specified length. 952 * TRUE? In any case, addr_length is taken to be the entire length of the 953 * dlpi address, including the absolute value of sap_length. 954 */ 955 mblk_t * 956 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 957 t_scalar_t sap_length) 958 { 959 dl_unitdata_req_t *dlur; 960 mblk_t *mp; 961 t_scalar_t abs_sap_length; /* absolute value */ 962 963 abs_sap_length = ABS(sap_length); 964 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 965 DL_UNITDATA_REQ); 966 if (mp == NULL) 967 return (NULL); 968 dlur = (dl_unitdata_req_t *)mp->b_rptr; 969 /* HACK: accomodate incompatible DLPI drivers */ 970 if (addr_length == 8) 971 addr_length = 6; 972 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 973 dlur->dl_dest_addr_offset = sizeof (*dlur); 974 dlur->dl_priority.dl_min = 0; 975 dlur->dl_priority.dl_max = 0; 976 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 977 (uchar_t *)&dlur[1]); 978 return (mp); 979 } 980 981 /* 982 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 983 * Return an error if we already have 1 or more ioctls in progress. 984 * This is used only for non-exclusive ioctls. Currently this is used 985 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 986 * and thus need to use ipsq_pending_mp_add. 987 */ 988 boolean_t 989 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 990 { 991 ASSERT(MUTEX_HELD(&ill->ill_lock)); 992 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 993 /* 994 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 995 */ 996 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 997 (add_mp->b_datap->db_type == M_IOCTL)); 998 999 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1000 /* 1001 * Return error if the conn has started closing. The conn 1002 * could have finished cleaning up the pending mp list, 1003 * If so we should not add another mp to the list negating 1004 * the cleanup. 1005 */ 1006 if (connp->conn_state_flags & CONN_CLOSING) 1007 return (B_FALSE); 1008 /* 1009 * Add the pending mp to the head of the list, chained by b_next. 1010 * Note down the conn on which the ioctl request came, in b_prev. 1011 * This will be used to later get the conn, when we get a response 1012 * on the ill queue, from some other module (typically arp) 1013 */ 1014 add_mp->b_next = (void *)ill->ill_pending_mp; 1015 add_mp->b_queue = CONNP_TO_WQ(connp); 1016 ill->ill_pending_mp = add_mp; 1017 if (connp != NULL) 1018 connp->conn_oper_pending_ill = ill; 1019 return (B_TRUE); 1020 } 1021 1022 /* 1023 * Retrieve the ill_pending_mp and return it. We have to walk the list 1024 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1025 */ 1026 mblk_t * 1027 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1028 { 1029 mblk_t *prev = NULL; 1030 mblk_t *curr = NULL; 1031 uint_t id; 1032 conn_t *connp; 1033 1034 /* 1035 * When the conn closes, conn_ioctl_cleanup needs to clean 1036 * up the pending mp, but it does not know the ioc_id and 1037 * passes in a zero for it. 1038 */ 1039 mutex_enter(&ill->ill_lock); 1040 if (ioc_id != 0) 1041 *connpp = NULL; 1042 1043 /* Search the list for the appropriate ioctl based on ioc_id */ 1044 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1045 prev = curr, curr = curr->b_next) { 1046 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1047 connp = Q_TO_CONN(curr->b_queue); 1048 /* Match based on the ioc_id or based on the conn */ 1049 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1050 break; 1051 } 1052 1053 if (curr != NULL) { 1054 /* Unlink the mblk from the pending mp list */ 1055 if (prev != NULL) { 1056 prev->b_next = curr->b_next; 1057 } else { 1058 ASSERT(ill->ill_pending_mp == curr); 1059 ill->ill_pending_mp = curr->b_next; 1060 } 1061 1062 /* 1063 * conn refcnt must have been bumped up at the start of 1064 * the ioctl. So we can safely access the conn. 1065 */ 1066 ASSERT(CONN_Q(curr->b_queue)); 1067 *connpp = Q_TO_CONN(curr->b_queue); 1068 curr->b_next = NULL; 1069 curr->b_queue = NULL; 1070 } 1071 1072 mutex_exit(&ill->ill_lock); 1073 1074 return (curr); 1075 } 1076 1077 /* 1078 * Add the pending mp to the list. There can be only 1 pending mp 1079 * in the list. Any exclusive ioctl that needs to wait for a response 1080 * from another module or driver needs to use this function to set 1081 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1082 * the other module/driver. This is also used while waiting for the 1083 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1084 */ 1085 boolean_t 1086 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1087 int waitfor) 1088 { 1089 ipsq_t *ipsq; 1090 1091 ASSERT(IAM_WRITER_IPIF(ipif)); 1092 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1093 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1094 /* 1095 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1096 * M_ERROR/M_HANGUP from driver 1097 */ 1098 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1099 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP)); 1100 1101 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1102 if (connp != NULL) { 1103 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1104 /* 1105 * Return error if the conn has started closing. The conn 1106 * could have finished cleaning up the pending mp list, 1107 * If so we should not add another mp to the list negating 1108 * the cleanup. 1109 */ 1110 if (connp->conn_state_flags & CONN_CLOSING) 1111 return (B_FALSE); 1112 } 1113 mutex_enter(&ipsq->ipsq_lock); 1114 ipsq->ipsq_pending_ipif = ipif; 1115 /* 1116 * Note down the queue in b_queue. This will be returned by 1117 * ipsq_pending_mp_get. Caller will then use these values to restart 1118 * the processing 1119 */ 1120 add_mp->b_next = NULL; 1121 add_mp->b_queue = q; 1122 ipsq->ipsq_pending_mp = add_mp; 1123 ipsq->ipsq_waitfor = waitfor; 1124 /* 1125 * ipsq_current_ipif is needed to restart the operation from 1126 * ipif_ill_refrele_tail when the last reference to the ipi/ill 1127 * is gone. Since this is not an ioctl ipsq_current_ipif has not 1128 * been set until now. 1129 */ 1130 if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) { 1131 ASSERT(ipsq->ipsq_current_ipif == NULL); 1132 ipsq->ipsq_current_ipif = ipif; 1133 ipsq->ipsq_last_cmd = DB_TYPE(add_mp); 1134 } 1135 if (connp != NULL) 1136 connp->conn_oper_pending_ill = ipif->ipif_ill; 1137 mutex_exit(&ipsq->ipsq_lock); 1138 return (B_TRUE); 1139 } 1140 1141 /* 1142 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1143 * queued in the list. 1144 */ 1145 mblk_t * 1146 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1147 { 1148 mblk_t *curr = NULL; 1149 1150 mutex_enter(&ipsq->ipsq_lock); 1151 *connpp = NULL; 1152 if (ipsq->ipsq_pending_mp == NULL) { 1153 mutex_exit(&ipsq->ipsq_lock); 1154 return (NULL); 1155 } 1156 1157 /* There can be only 1 such excl message */ 1158 curr = ipsq->ipsq_pending_mp; 1159 ASSERT(curr != NULL && curr->b_next == NULL); 1160 ipsq->ipsq_pending_ipif = NULL; 1161 ipsq->ipsq_pending_mp = NULL; 1162 ipsq->ipsq_waitfor = 0; 1163 mutex_exit(&ipsq->ipsq_lock); 1164 1165 if (CONN_Q(curr->b_queue)) { 1166 /* 1167 * This mp did a refhold on the conn, at the start of the ioctl. 1168 * So we can safely return a pointer to the conn to the caller. 1169 */ 1170 *connpp = Q_TO_CONN(curr->b_queue); 1171 } else { 1172 *connpp = NULL; 1173 } 1174 curr->b_next = NULL; 1175 curr->b_prev = NULL; 1176 return (curr); 1177 } 1178 1179 /* 1180 * Cleanup the ioctl mp queued in ipsq_pending_mp 1181 * - Called in the ill_delete path 1182 * - Called in the M_ERROR or M_HANGUP path on the ill. 1183 * - Called in the conn close path. 1184 */ 1185 boolean_t 1186 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1187 { 1188 mblk_t *mp; 1189 ipsq_t *ipsq; 1190 queue_t *q; 1191 ipif_t *ipif; 1192 1193 ASSERT(IAM_WRITER_ILL(ill)); 1194 ipsq = ill->ill_phyint->phyint_ipsq; 1195 mutex_enter(&ipsq->ipsq_lock); 1196 /* 1197 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1198 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1199 * even if it is meant for another ill, since we have to enqueue 1200 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1201 * If connp is non-null we are called from the conn close path. 1202 */ 1203 mp = ipsq->ipsq_pending_mp; 1204 if (mp == NULL || (connp != NULL && 1205 mp->b_queue != CONNP_TO_WQ(connp))) { 1206 mutex_exit(&ipsq->ipsq_lock); 1207 return (B_FALSE); 1208 } 1209 /* Now remove from the ipsq_pending_mp */ 1210 ipsq->ipsq_pending_mp = NULL; 1211 q = mp->b_queue; 1212 mp->b_next = NULL; 1213 mp->b_prev = NULL; 1214 mp->b_queue = NULL; 1215 1216 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1217 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1218 if (ill->ill_move_in_progress) { 1219 ILL_CLEAR_MOVE(ill); 1220 } else if (ill->ill_up_ipifs) { 1221 ill_group_cleanup(ill); 1222 } 1223 1224 ipif = ipsq->ipsq_pending_ipif; 1225 ipsq->ipsq_pending_ipif = NULL; 1226 ipsq->ipsq_waitfor = 0; 1227 ipsq->ipsq_current_ipif = NULL; 1228 mutex_exit(&ipsq->ipsq_lock); 1229 1230 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1231 ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE : 1232 NO_COPYOUT, connp != NULL ? ipif : NULL, NULL); 1233 } else { 1234 /* 1235 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1236 * be just inet_freemsg. we have to restart it 1237 * otherwise the thread will be stuck. 1238 */ 1239 inet_freemsg(mp); 1240 } 1241 return (B_TRUE); 1242 } 1243 1244 /* 1245 * The ill is closing. Cleanup all the pending mps. Called exclusively 1246 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1247 * knows this ill, and hence nobody can add an mp to this list 1248 */ 1249 static void 1250 ill_pending_mp_cleanup(ill_t *ill) 1251 { 1252 mblk_t *mp; 1253 queue_t *q; 1254 1255 ASSERT(IAM_WRITER_ILL(ill)); 1256 1257 mutex_enter(&ill->ill_lock); 1258 /* 1259 * Every mp on the pending mp list originating from an ioctl 1260 * added 1 to the conn refcnt, at the start of the ioctl. 1261 * So bump it down now. See comments in ip_wput_nondata() 1262 */ 1263 while (ill->ill_pending_mp != NULL) { 1264 mp = ill->ill_pending_mp; 1265 ill->ill_pending_mp = mp->b_next; 1266 mutex_exit(&ill->ill_lock); 1267 1268 q = mp->b_queue; 1269 ASSERT(CONN_Q(q)); 1270 mp->b_next = NULL; 1271 mp->b_prev = NULL; 1272 mp->b_queue = NULL; 1273 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL); 1274 mutex_enter(&ill->ill_lock); 1275 } 1276 ill->ill_pending_ipif = NULL; 1277 1278 mutex_exit(&ill->ill_lock); 1279 } 1280 1281 /* 1282 * Called in the conn close path and ill delete path 1283 */ 1284 static void 1285 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1286 { 1287 ipsq_t *ipsq; 1288 mblk_t *prev; 1289 mblk_t *curr; 1290 mblk_t *next; 1291 queue_t *q; 1292 mblk_t *tmp_list = NULL; 1293 1294 ASSERT(IAM_WRITER_ILL(ill)); 1295 if (connp != NULL) 1296 q = CONNP_TO_WQ(connp); 1297 else 1298 q = ill->ill_wq; 1299 1300 ipsq = ill->ill_phyint->phyint_ipsq; 1301 /* 1302 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1303 * In the case of ioctl from a conn, there can be only 1 mp 1304 * queued on the ipsq. If an ill is being unplumbed, only messages 1305 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1306 * ioctls meant for this ill form conn's are not flushed. They will 1307 * be processed during ipsq_exit and will not find the ill and will 1308 * return error. 1309 */ 1310 mutex_enter(&ipsq->ipsq_lock); 1311 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1312 curr = next) { 1313 next = curr->b_next; 1314 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1315 /* Unlink the mblk from the pending mp list */ 1316 if (prev != NULL) { 1317 prev->b_next = curr->b_next; 1318 } else { 1319 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1320 ipsq->ipsq_xopq_mphead = curr->b_next; 1321 } 1322 if (ipsq->ipsq_xopq_mptail == curr) 1323 ipsq->ipsq_xopq_mptail = prev; 1324 /* 1325 * Create a temporary list and release the ipsq lock 1326 * New elements are added to the head of the tmp_list 1327 */ 1328 curr->b_next = tmp_list; 1329 tmp_list = curr; 1330 } else { 1331 prev = curr; 1332 } 1333 } 1334 mutex_exit(&ipsq->ipsq_lock); 1335 1336 while (tmp_list != NULL) { 1337 curr = tmp_list; 1338 tmp_list = curr->b_next; 1339 curr->b_next = NULL; 1340 curr->b_prev = NULL; 1341 curr->b_queue = NULL; 1342 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1343 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1344 CONN_CLOSE : NO_COPYOUT, NULL, NULL); 1345 } else { 1346 /* 1347 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1348 * this can't be just inet_freemsg. we have to 1349 * restart it otherwise the thread will be stuck. 1350 */ 1351 inet_freemsg(curr); 1352 } 1353 } 1354 } 1355 1356 /* 1357 * This conn has started closing. Cleanup any pending ioctl from this conn. 1358 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1359 */ 1360 void 1361 conn_ioctl_cleanup(conn_t *connp) 1362 { 1363 mblk_t *curr; 1364 ipsq_t *ipsq; 1365 ill_t *ill; 1366 boolean_t refheld; 1367 1368 /* 1369 * Is any exclusive ioctl pending ? If so clean it up. If the 1370 * ioctl has not yet started, the mp is pending in the list headed by 1371 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1372 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1373 * is currently executing now the mp is not queued anywhere but 1374 * conn_oper_pending_ill is null. The conn close will wait 1375 * till the conn_ref drops to zero. 1376 */ 1377 mutex_enter(&connp->conn_lock); 1378 ill = connp->conn_oper_pending_ill; 1379 if (ill == NULL) { 1380 mutex_exit(&connp->conn_lock); 1381 return; 1382 } 1383 1384 curr = ill_pending_mp_get(ill, &connp, 0); 1385 if (curr != NULL) { 1386 mutex_exit(&connp->conn_lock); 1387 CONN_DEC_REF(connp); 1388 inet_freemsg(curr); 1389 return; 1390 } 1391 /* 1392 * We may not be able to refhold the ill if the ill/ipif 1393 * is changing. But we need to make sure that the ill will 1394 * not vanish. So we just bump up the ill_waiter count. 1395 */ 1396 refheld = ill_waiter_inc(ill); 1397 mutex_exit(&connp->conn_lock); 1398 if (refheld) { 1399 if (ipsq_enter(ill, B_TRUE)) { 1400 ill_waiter_dcr(ill); 1401 /* 1402 * Check whether this ioctl has started and is 1403 * pending now in ipsq_pending_mp. If it is not 1404 * found there then check whether this ioctl has 1405 * not even started and is in the ipsq_xopq list. 1406 */ 1407 if (!ipsq_pending_mp_cleanup(ill, connp)) 1408 ipsq_xopq_mp_cleanup(ill, connp); 1409 ipsq = ill->ill_phyint->phyint_ipsq; 1410 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1411 return; 1412 } 1413 } 1414 1415 /* 1416 * The ill is also closing and we could not bump up the 1417 * ill_waiter_count or we could not enter the ipsq. Leave 1418 * the cleanup to ill_delete 1419 */ 1420 mutex_enter(&connp->conn_lock); 1421 while (connp->conn_oper_pending_ill != NULL) 1422 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1423 mutex_exit(&connp->conn_lock); 1424 if (refheld) 1425 ill_waiter_dcr(ill); 1426 } 1427 1428 /* 1429 * ipcl_walk function for cleaning up conn_*_ill fields. 1430 */ 1431 static void 1432 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1433 { 1434 ill_t *ill = (ill_t *)arg; 1435 ire_t *ire; 1436 1437 mutex_enter(&connp->conn_lock); 1438 if (connp->conn_multicast_ill == ill) { 1439 /* Revert to late binding */ 1440 connp->conn_multicast_ill = NULL; 1441 connp->conn_orig_multicast_ifindex = 0; 1442 } 1443 if (connp->conn_incoming_ill == ill) 1444 connp->conn_incoming_ill = NULL; 1445 if (connp->conn_outgoing_ill == ill) 1446 connp->conn_outgoing_ill = NULL; 1447 if (connp->conn_outgoing_pill == ill) 1448 connp->conn_outgoing_pill = NULL; 1449 if (connp->conn_nofailover_ill == ill) 1450 connp->conn_nofailover_ill = NULL; 1451 if (connp->conn_xmit_if_ill == ill) 1452 connp->conn_xmit_if_ill = NULL; 1453 if (connp->conn_ire_cache != NULL) { 1454 ire = connp->conn_ire_cache; 1455 /* 1456 * ip_newroute creates IRE_CACHE with ire_stq coming from 1457 * interface X and ipif coming from interface Y, if interface 1458 * X and Y are part of the same IPMPgroup. Thus whenever 1459 * interface X goes down, remove all references to it by 1460 * checking both on ire_ipif and ire_stq. 1461 */ 1462 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1463 (ire->ire_type == IRE_CACHE && 1464 ire->ire_stq == ill->ill_wq)) { 1465 connp->conn_ire_cache = NULL; 1466 mutex_exit(&connp->conn_lock); 1467 ire_refrele_notr(ire); 1468 return; 1469 } 1470 } 1471 mutex_exit(&connp->conn_lock); 1472 1473 } 1474 1475 /* ARGSUSED */ 1476 void 1477 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1478 { 1479 ill_t *ill = q->q_ptr; 1480 ipif_t *ipif; 1481 1482 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1483 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1484 ipif_down_tail(ipif); 1485 ill_down_tail(ill); 1486 freemsg(mp); 1487 ipsq->ipsq_current_ipif = NULL; 1488 } 1489 1490 /* 1491 * ill_down_start is called when we want to down this ill and bring it up again 1492 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1493 * all interfaces, but don't tear down any plumbing. 1494 */ 1495 boolean_t 1496 ill_down_start(queue_t *q, mblk_t *mp) 1497 { 1498 ill_t *ill; 1499 ipif_t *ipif; 1500 1501 ill = q->q_ptr; 1502 1503 ASSERT(IAM_WRITER_ILL(ill)); 1504 1505 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1506 (void) ipif_down(ipif, NULL, NULL); 1507 1508 ill_down(ill); 1509 1510 (void) ipsq_pending_mp_cleanup(ill, NULL); 1511 mutex_enter(&ill->ill_lock); 1512 /* 1513 * Atomically test and add the pending mp if references are 1514 * still active. 1515 */ 1516 if (!ill_is_quiescent(ill)) { 1517 /* 1518 * Get rid of any pending mps and cleanup. Call will 1519 * not fail since we are passing a null connp. 1520 */ 1521 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1522 mp, ILL_DOWN); 1523 mutex_exit(&ill->ill_lock); 1524 return (B_FALSE); 1525 } 1526 mutex_exit(&ill->ill_lock); 1527 return (B_TRUE); 1528 } 1529 1530 static void 1531 ill_down(ill_t *ill) 1532 { 1533 /* Blow off any IREs dependent on this ILL. */ 1534 ire_walk(ill_downi, (char *)ill); 1535 1536 mutex_enter(&ire_mrtun_lock); 1537 if (ire_mrtun_count != 0) { 1538 mutex_exit(&ire_mrtun_lock); 1539 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1540 (char *)ill, NULL); 1541 } else { 1542 mutex_exit(&ire_mrtun_lock); 1543 } 1544 1545 /* 1546 * If any interface based forwarding table exists 1547 * Blow off the ires there dependent on this ill 1548 */ 1549 mutex_enter(&ire_srcif_table_lock); 1550 if (ire_srcif_table_count > 0) { 1551 mutex_exit(&ire_srcif_table_lock); 1552 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1553 } else { 1554 mutex_exit(&ire_srcif_table_lock); 1555 } 1556 1557 /* Remove any conn_*_ill depending on this ill */ 1558 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1559 1560 if (ill->ill_group != NULL) { 1561 illgrp_delete(ill); 1562 } 1563 1564 } 1565 1566 static void 1567 ill_down_tail(ill_t *ill) 1568 { 1569 int i; 1570 1571 /* Destroy ill_srcif_table if it exists */ 1572 /* Lock not reqd really because nobody should be able to access */ 1573 mutex_enter(&ill->ill_lock); 1574 if (ill->ill_srcif_table != NULL) { 1575 ill->ill_srcif_refcnt = 0; 1576 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1577 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1578 } 1579 kmem_free(ill->ill_srcif_table, 1580 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1581 ill->ill_srcif_table = NULL; 1582 ill->ill_srcif_refcnt = 0; 1583 ill->ill_mrtun_refcnt = 0; 1584 } 1585 mutex_exit(&ill->ill_lock); 1586 } 1587 1588 /* 1589 * ire_walk routine used to delete every IRE that depends on queues 1590 * associated with 'ill'. (Always called as writer.) 1591 */ 1592 static void 1593 ill_downi(ire_t *ire, char *ill_arg) 1594 { 1595 ill_t *ill = (ill_t *)ill_arg; 1596 1597 /* 1598 * ip_newroute creates IRE_CACHE with ire_stq coming from 1599 * interface X and ipif coming from interface Y, if interface 1600 * X and Y are part of the same IPMP group. Thus whenever interface 1601 * X goes down, remove all references to it by checking both 1602 * on ire_ipif and ire_stq. 1603 */ 1604 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1605 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1606 ire_delete(ire); 1607 } 1608 } 1609 1610 /* 1611 * A seperate routine for deleting revtun and srcif based routes 1612 * are needed because the ires only deleted when the interface 1613 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1614 * we want to keep mobile IP specific code separate. 1615 */ 1616 static void 1617 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1618 { 1619 ill_t *ill = (ill_t *)ill_arg; 1620 1621 ASSERT(ire->ire_in_ill != NULL); 1622 1623 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1624 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1625 ire_delete(ire); 1626 } 1627 } 1628 1629 /* 1630 * Remove ire/nce from the fastpath list. 1631 */ 1632 void 1633 ill_fastpath_nack(ill_t *ill) 1634 { 1635 if (ill->ill_isv6) { 1636 nce_fastpath_list_dispatch(ill, NULL, NULL); 1637 } else { 1638 ire_fastpath_list_dispatch(ill, NULL, NULL); 1639 } 1640 } 1641 1642 /* Consume an M_IOCACK of the fastpath probe. */ 1643 void 1644 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1645 { 1646 mblk_t *mp1 = mp; 1647 1648 /* 1649 * If this was the first attempt turn on the fastpath probing. 1650 */ 1651 mutex_enter(&ill->ill_lock); 1652 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) 1653 ill->ill_dlpi_fastpath_state = IDMS_OK; 1654 mutex_exit(&ill->ill_lock); 1655 1656 /* Free the M_IOCACK mblk, hold on to the data */ 1657 mp = mp->b_cont; 1658 freeb(mp1); 1659 if (mp == NULL) 1660 return; 1661 if (mp->b_cont != NULL) { 1662 /* 1663 * Update all IRE's or NCE's that are waiting for 1664 * fastpath update. 1665 */ 1666 if (ill->ill_isv6) { 1667 /* 1668 * update nce's in the fastpath list. 1669 */ 1670 nce_fastpath_list_dispatch(ill, 1671 ndp_fastpath_update, mp); 1672 } else { 1673 1674 /* 1675 * update ire's in the fastpath list. 1676 */ 1677 ire_fastpath_list_dispatch(ill, 1678 ire_fastpath_update, mp); 1679 /* 1680 * Check if we need to traverse reverse tunnel table. 1681 * Since there is only single ire_type (IRE_MIPRTUN) 1682 * in the table, we don't need to match on ire_type. 1683 * We have to check ire_mrtun_count and not the 1684 * ill_mrtun_refcnt since ill_mrtun_refcnt is set 1685 * on the incoming ill and here we are dealing with 1686 * outgoing ill. 1687 */ 1688 mutex_enter(&ire_mrtun_lock); 1689 if (ire_mrtun_count != 0) { 1690 mutex_exit(&ire_mrtun_lock); 1691 ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN, 1692 (void (*)(ire_t *, void *)) 1693 ire_fastpath_update, mp, ill); 1694 } else { 1695 mutex_exit(&ire_mrtun_lock); 1696 } 1697 } 1698 mp1 = mp->b_cont; 1699 freeb(mp); 1700 mp = mp1; 1701 } else { 1702 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1703 } 1704 1705 freeb(mp); 1706 } 1707 1708 /* 1709 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1710 * The data portion of the request is a dl_unitdata_req_t template for 1711 * what we would send downstream in the absence of a fastpath confirmation. 1712 */ 1713 int 1714 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1715 { 1716 struct iocblk *ioc; 1717 mblk_t *mp; 1718 1719 if (dlur_mp == NULL) 1720 return (EINVAL); 1721 1722 mutex_enter(&ill->ill_lock); 1723 switch (ill->ill_dlpi_fastpath_state) { 1724 case IDMS_FAILED: 1725 /* 1726 * Driver NAKed the first fastpath ioctl - assume it doesn't 1727 * support it. 1728 */ 1729 mutex_exit(&ill->ill_lock); 1730 return (ENOTSUP); 1731 case IDMS_UNKNOWN: 1732 /* This is the first probe */ 1733 ill->ill_dlpi_fastpath_state = IDMS_INPROGRESS; 1734 break; 1735 default: 1736 break; 1737 } 1738 mutex_exit(&ill->ill_lock); 1739 1740 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1741 return (EAGAIN); 1742 1743 mp->b_cont = copyb(dlur_mp); 1744 if (mp->b_cont == NULL) { 1745 freeb(mp); 1746 return (EAGAIN); 1747 } 1748 1749 ioc = (struct iocblk *)mp->b_rptr; 1750 ioc->ioc_count = msgdsize(mp->b_cont); 1751 1752 putnext(ill->ill_wq, mp); 1753 return (0); 1754 } 1755 1756 void 1757 ill_capability_probe(ill_t *ill) 1758 { 1759 /* 1760 * Do so only if negotiation is enabled, capabilities are unknown, 1761 * and a capability negotiation is not already in progress. 1762 */ 1763 if (ill->ill_capab_state != IDMS_UNKNOWN && 1764 ill->ill_capab_state != IDMS_RENEG) 1765 return; 1766 1767 ill->ill_capab_state = IDMS_INPROGRESS; 1768 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1769 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1770 } 1771 1772 void 1773 ill_capability_reset(ill_t *ill) 1774 { 1775 mblk_t *sc_mp = NULL; 1776 mblk_t *tmp; 1777 1778 /* 1779 * Note here that we reset the state to UNKNOWN, and later send 1780 * down the DL_CAPABILITY_REQ without first setting the state to 1781 * INPROGRESS. We do this in order to distinguish the 1782 * DL_CAPABILITY_ACK response which may come back in response to 1783 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1784 * also handle the case where the driver doesn't send us back 1785 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1786 * requires the state to be in UNKNOWN anyway. In any case, all 1787 * features are turned off until the state reaches IDMS_OK. 1788 */ 1789 ill->ill_capab_state = IDMS_UNKNOWN; 1790 1791 /* 1792 * Disable sub-capabilities and request a list of sub-capability 1793 * messages which will be sent down to the driver. Each handler 1794 * allocates the corresponding dl_capability_sub_t inside an 1795 * mblk, and links it to the existing sc_mp mblk, or return it 1796 * as sc_mp if it's the first sub-capability (the passed in 1797 * sc_mp is NULL). Upon returning from all capability handlers, 1798 * sc_mp will be pulled-up, before passing it downstream. 1799 */ 1800 ill_capability_mdt_reset(ill, &sc_mp); 1801 ill_capability_hcksum_reset(ill, &sc_mp); 1802 ill_capability_zerocopy_reset(ill, &sc_mp); 1803 ill_capability_ipsec_reset(ill, &sc_mp); 1804 ill_capability_poll_reset(ill, &sc_mp); 1805 1806 /* Nothing to send down in order to disable the capabilities? */ 1807 if (sc_mp == NULL) 1808 return; 1809 1810 tmp = msgpullup(sc_mp, -1); 1811 freemsg(sc_mp); 1812 if ((sc_mp = tmp) == NULL) { 1813 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1814 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1815 return; 1816 } 1817 1818 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1819 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1820 } 1821 1822 /* 1823 * Request or set new-style hardware capabilities supported by DLS provider. 1824 */ 1825 static void 1826 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1827 { 1828 mblk_t *mp; 1829 dl_capability_req_t *capb; 1830 size_t size = 0; 1831 uint8_t *ptr; 1832 1833 if (reqp != NULL) 1834 size = MBLKL(reqp); 1835 1836 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1837 if (mp == NULL) { 1838 freemsg(reqp); 1839 return; 1840 } 1841 ptr = mp->b_rptr; 1842 1843 capb = (dl_capability_req_t *)ptr; 1844 ptr += sizeof (dl_capability_req_t); 1845 1846 if (reqp != NULL) { 1847 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1848 capb->dl_sub_length = size; 1849 bcopy(reqp->b_rptr, ptr, size); 1850 ptr += size; 1851 mp->b_cont = reqp->b_cont; 1852 freeb(reqp); 1853 } 1854 ASSERT(ptr == mp->b_wptr); 1855 1856 ill_dlpi_send(ill, mp); 1857 } 1858 1859 static void 1860 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1861 { 1862 dl_capab_id_t *id_ic; 1863 uint_t sub_dl_cap = outers->dl_cap; 1864 dl_capability_sub_t *inners; 1865 uint8_t *capend; 1866 1867 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1868 1869 /* 1870 * Note: range checks here are not absolutely sufficient to 1871 * make us robust against malformed messages sent by drivers; 1872 * this is in keeping with the rest of IP's dlpi handling. 1873 * (Remember, it's coming from something else in the kernel 1874 * address space) 1875 */ 1876 1877 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1878 if (capend > mp->b_wptr) { 1879 cmn_err(CE_WARN, "ill_capability_id_ack: " 1880 "malformed sub-capability too long for mblk"); 1881 return; 1882 } 1883 1884 id_ic = (dl_capab_id_t *)(outers + 1); 1885 1886 if (outers->dl_length < sizeof (*id_ic) || 1887 (inners = &id_ic->id_subcap, 1888 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1889 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1890 "encapsulated capab type %d too long for mblk", 1891 inners->dl_cap); 1892 return; 1893 } 1894 1895 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1896 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1897 "isn't as expected; pass-thru module(s) detected, " 1898 "discarding capability\n", inners->dl_cap)); 1899 return; 1900 } 1901 1902 /* Process the encapsulated sub-capability */ 1903 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1904 } 1905 1906 /* 1907 * Process Multidata Transmit capability negotiation ack received from a 1908 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1909 * DL_CAPABILITY_ACK message. 1910 */ 1911 static void 1912 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1913 { 1914 mblk_t *nmp = NULL; 1915 dl_capability_req_t *oc; 1916 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1917 ill_mdt_capab_t **ill_mdt_capab; 1918 uint_t sub_dl_cap = isub->dl_cap; 1919 uint8_t *capend; 1920 1921 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1922 1923 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1924 1925 /* 1926 * Note: range checks here are not absolutely sufficient to 1927 * make us robust against malformed messages sent by drivers; 1928 * this is in keeping with the rest of IP's dlpi handling. 1929 * (Remember, it's coming from something else in the kernel 1930 * address space) 1931 */ 1932 1933 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1934 if (capend > mp->b_wptr) { 1935 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1936 "malformed sub-capability too long for mblk"); 1937 return; 1938 } 1939 1940 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1941 1942 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1943 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1944 "unsupported MDT sub-capability (version %d, expected %d)", 1945 mdt_ic->mdt_version, MDT_VERSION_2); 1946 return; 1947 } 1948 1949 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1950 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1951 "capability isn't as expected; pass-thru module(s) " 1952 "detected, discarding capability\n")); 1953 return; 1954 } 1955 1956 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1957 1958 if (*ill_mdt_capab == NULL) { 1959 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1960 KM_NOSLEEP); 1961 1962 if (*ill_mdt_capab == NULL) { 1963 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1964 "could not enable MDT version %d " 1965 "for %s (ENOMEM)\n", MDT_VERSION_2, 1966 ill->ill_name); 1967 return; 1968 } 1969 } 1970 1971 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1972 "MDT version %d (%d bytes leading, %d bytes trailing " 1973 "header spaces, %d max pld bufs, %d span limit)\n", 1974 ill->ill_name, MDT_VERSION_2, 1975 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1976 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1977 1978 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1979 (*ill_mdt_capab)->ill_mdt_on = 1; 1980 /* 1981 * Round the following values to the nearest 32-bit; ULP 1982 * may further adjust them to accomodate for additional 1983 * protocol headers. We pass these values to ULP during 1984 * bind time. 1985 */ 1986 (*ill_mdt_capab)->ill_mdt_hdr_head = 1987 roundup(mdt_ic->mdt_hdr_head, 4); 1988 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1989 roundup(mdt_ic->mdt_hdr_tail, 4); 1990 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1991 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1992 1993 ill->ill_capabilities |= ILL_CAPAB_MDT; 1994 } else { 1995 uint_t size; 1996 uchar_t *rptr; 1997 1998 size = sizeof (dl_capability_req_t) + 1999 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2000 2001 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2002 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2003 "could not enable MDT for %s (ENOMEM)\n", 2004 ill->ill_name); 2005 return; 2006 } 2007 2008 rptr = nmp->b_rptr; 2009 /* initialize dl_capability_req_t */ 2010 oc = (dl_capability_req_t *)nmp->b_rptr; 2011 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2012 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2013 sizeof (dl_capab_mdt_t); 2014 nmp->b_rptr += sizeof (dl_capability_req_t); 2015 2016 /* initialize dl_capability_sub_t */ 2017 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2018 nmp->b_rptr += sizeof (*isub); 2019 2020 /* initialize dl_capab_mdt_t */ 2021 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2022 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2023 2024 nmp->b_rptr = rptr; 2025 2026 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2027 "to enable MDT version %d\n", ill->ill_name, 2028 MDT_VERSION_2)); 2029 2030 /* set ENABLE flag */ 2031 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2032 2033 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2034 ill_dlpi_send(ill, nmp); 2035 } 2036 } 2037 2038 static void 2039 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2040 { 2041 mblk_t *mp; 2042 dl_capab_mdt_t *mdt_subcap; 2043 dl_capability_sub_t *dl_subcap; 2044 int size; 2045 2046 if (!ILL_MDT_CAPABLE(ill)) 2047 return; 2048 2049 ASSERT(ill->ill_mdt_capab != NULL); 2050 /* 2051 * Clear the capability flag for MDT but retain the ill_mdt_capab 2052 * structure since it's possible that another thread is still 2053 * referring to it. The structure only gets deallocated when 2054 * we destroy the ill. 2055 */ 2056 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2057 2058 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2059 2060 mp = allocb(size, BPRI_HI); 2061 if (mp == NULL) { 2062 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2063 "request to disable MDT\n")); 2064 return; 2065 } 2066 2067 mp->b_wptr = mp->b_rptr + size; 2068 2069 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2070 dl_subcap->dl_cap = DL_CAPAB_MDT; 2071 dl_subcap->dl_length = sizeof (*mdt_subcap); 2072 2073 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2074 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2075 mdt_subcap->mdt_flags = 0; 2076 mdt_subcap->mdt_hdr_head = 0; 2077 mdt_subcap->mdt_hdr_tail = 0; 2078 2079 if (*sc_mp != NULL) 2080 linkb(*sc_mp, mp); 2081 else 2082 *sc_mp = mp; 2083 } 2084 2085 /* 2086 * Send a DL_NOTIFY_REQ to the specified ill to enable 2087 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2088 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2089 * acceleration. 2090 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2091 */ 2092 static boolean_t 2093 ill_enable_promisc_notify(ill_t *ill) 2094 { 2095 mblk_t *mp; 2096 dl_notify_req_t *req; 2097 2098 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2099 2100 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2101 if (mp == NULL) 2102 return (B_FALSE); 2103 2104 req = (dl_notify_req_t *)mp->b_rptr; 2105 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2106 DL_NOTE_PROMISC_OFF_PHYS; 2107 2108 ill_dlpi_send(ill, mp); 2109 2110 return (B_TRUE); 2111 } 2112 2113 2114 /* 2115 * Allocate an IPsec capability request which will be filled by our 2116 * caller to turn on support for one or more algorithms. 2117 */ 2118 static mblk_t * 2119 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2120 { 2121 mblk_t *nmp; 2122 dl_capability_req_t *ocap; 2123 dl_capab_ipsec_t *ocip; 2124 dl_capab_ipsec_t *icip; 2125 uint8_t *ptr; 2126 icip = (dl_capab_ipsec_t *)(isub + 1); 2127 2128 /* 2129 * The first time around, we send a DL_NOTIFY_REQ to enable 2130 * PROMISC_ON/OFF notification from the provider. We need to 2131 * do this before enabling the algorithms to avoid leakage of 2132 * cleartext packets. 2133 */ 2134 2135 if (!ill_enable_promisc_notify(ill)) 2136 return (NULL); 2137 2138 /* 2139 * Allocate new mblk which will contain a new capability 2140 * request to enable the capabilities. 2141 */ 2142 2143 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2144 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2145 if (nmp == NULL) 2146 return (NULL); 2147 2148 ptr = nmp->b_rptr; 2149 2150 /* initialize dl_capability_req_t */ 2151 ocap = (dl_capability_req_t *)ptr; 2152 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2153 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2154 ptr += sizeof (dl_capability_req_t); 2155 2156 /* initialize dl_capability_sub_t */ 2157 bcopy(isub, ptr, sizeof (*isub)); 2158 ptr += sizeof (*isub); 2159 2160 /* initialize dl_capab_ipsec_t */ 2161 ocip = (dl_capab_ipsec_t *)ptr; 2162 bcopy(icip, ocip, sizeof (*icip)); 2163 2164 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2165 return (nmp); 2166 } 2167 2168 /* 2169 * Process an IPsec capability negotiation ack received from a DLS Provider. 2170 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2171 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2172 */ 2173 static void 2174 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2175 { 2176 dl_capab_ipsec_t *icip; 2177 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2178 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2179 uint_t cipher, nciphers; 2180 mblk_t *nmp; 2181 uint_t alg_len; 2182 boolean_t need_sadb_dump; 2183 uint_t sub_dl_cap = isub->dl_cap; 2184 ill_ipsec_capab_t **ill_capab; 2185 uint64_t ill_capab_flag; 2186 uint8_t *capend, *ciphend; 2187 boolean_t sadb_resync; 2188 2189 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2190 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2191 2192 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2193 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2194 ill_capab_flag = ILL_CAPAB_AH; 2195 } else { 2196 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2197 ill_capab_flag = ILL_CAPAB_ESP; 2198 } 2199 2200 /* 2201 * If the ill capability structure exists, then this incoming 2202 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2203 * If this is so, then we'd need to resynchronize the SADB 2204 * after re-enabling the offloaded ciphers. 2205 */ 2206 sadb_resync = (*ill_capab != NULL); 2207 2208 /* 2209 * Note: range checks here are not absolutely sufficient to 2210 * make us robust against malformed messages sent by drivers; 2211 * this is in keeping with the rest of IP's dlpi handling. 2212 * (Remember, it's coming from something else in the kernel 2213 * address space) 2214 */ 2215 2216 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2217 if (capend > mp->b_wptr) { 2218 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2219 "malformed sub-capability too long for mblk"); 2220 return; 2221 } 2222 2223 /* 2224 * There are two types of acks we process here: 2225 * 1. acks in reply to a (first form) generic capability req 2226 * (no ENABLE flag set) 2227 * 2. acks in reply to a ENABLE capability req. 2228 * (ENABLE flag set) 2229 * 2230 * We process the subcapability passed as argument as follows: 2231 * 1 do initializations 2232 * 1.1 initialize nmp = NULL 2233 * 1.2 set need_sadb_dump to B_FALSE 2234 * 2 for each cipher in subcapability: 2235 * 2.1 if ENABLE flag is set: 2236 * 2.1.1 update per-ill ipsec capabilities info 2237 * 2.1.2 set need_sadb_dump to B_TRUE 2238 * 2.2 if ENABLE flag is not set: 2239 * 2.2.1 if nmp is NULL: 2240 * 2.2.1.1 allocate and initialize nmp 2241 * 2.2.1.2 init current pos in nmp 2242 * 2.2.2 copy current cipher to current pos in nmp 2243 * 2.2.3 set ENABLE flag in nmp 2244 * 2.2.4 update current pos 2245 * 3 if nmp is not equal to NULL, send enable request 2246 * 3.1 send capability request 2247 * 4 if need_sadb_dump is B_TRUE 2248 * 4.1 enable promiscuous on/off notifications 2249 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2250 * AH or ESP SA's to interface. 2251 */ 2252 2253 nmp = NULL; 2254 oalg = NULL; 2255 need_sadb_dump = B_FALSE; 2256 icip = (dl_capab_ipsec_t *)(isub + 1); 2257 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2258 2259 nciphers = icip->cip_nciphers; 2260 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2261 2262 if (ciphend > capend) { 2263 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2264 "too many ciphers for sub-capability len"); 2265 return; 2266 } 2267 2268 for (cipher = 0; cipher < nciphers; cipher++) { 2269 alg_len = sizeof (dl_capab_ipsec_alg_t); 2270 2271 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2272 /* 2273 * TBD: when we provide a way to disable capabilities 2274 * from above, need to manage the request-pending state 2275 * and fail if we were not expecting this ACK. 2276 */ 2277 IPSECHW_DEBUG(IPSECHW_CAPAB, 2278 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2279 2280 /* 2281 * Update IPsec capabilities for this ill 2282 */ 2283 2284 if (*ill_capab == NULL) { 2285 IPSECHW_DEBUG(IPSECHW_CAPAB, 2286 ("ill_capability_ipsec_ack: " 2287 "allocating ipsec_capab for ill\n")); 2288 *ill_capab = ill_ipsec_capab_alloc(); 2289 2290 if (*ill_capab == NULL) { 2291 cmn_err(CE_WARN, 2292 "ill_capability_ipsec_ack: " 2293 "could not enable IPsec Hardware " 2294 "acceleration for %s (ENOMEM)\n", 2295 ill->ill_name); 2296 return; 2297 } 2298 } 2299 2300 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2301 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2302 2303 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2304 cmn_err(CE_WARN, 2305 "ill_capability_ipsec_ack: " 2306 "malformed IPsec algorithm id %d", 2307 ialg->alg_prim); 2308 continue; 2309 } 2310 2311 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2312 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2313 ialg->alg_prim); 2314 } else { 2315 ipsec_capab_algparm_t *alp; 2316 2317 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2318 ialg->alg_prim); 2319 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2320 ialg->alg_prim)) { 2321 cmn_err(CE_WARN, 2322 "ill_capability_ipsec_ack: " 2323 "no space for IPsec alg id %d", 2324 ialg->alg_prim); 2325 continue; 2326 } 2327 alp = &((*ill_capab)->encr_algparm[ 2328 ialg->alg_prim]); 2329 alp->minkeylen = ialg->alg_minbits; 2330 alp->maxkeylen = ialg->alg_maxbits; 2331 } 2332 ill->ill_capabilities |= ill_capab_flag; 2333 /* 2334 * indicate that a capability was enabled, which 2335 * will be used below to kick off a SADB dump 2336 * to the ill. 2337 */ 2338 need_sadb_dump = B_TRUE; 2339 } else { 2340 IPSECHW_DEBUG(IPSECHW_CAPAB, 2341 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2342 ialg->alg_prim)); 2343 2344 if (nmp == NULL) { 2345 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2346 if (nmp == NULL) { 2347 /* 2348 * Sending the PROMISC_ON/OFF 2349 * notification request failed. 2350 * We cannot enable the algorithms 2351 * since the Provider will not 2352 * notify IP of promiscous mode 2353 * changes, which could lead 2354 * to leakage of packets. 2355 */ 2356 cmn_err(CE_WARN, 2357 "ill_capability_ipsec_ack: " 2358 "could not enable IPsec Hardware " 2359 "acceleration for %s (ENOMEM)\n", 2360 ill->ill_name); 2361 return; 2362 } 2363 /* ptr to current output alg specifier */ 2364 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2365 } 2366 2367 /* 2368 * Copy current alg specifier, set ENABLE 2369 * flag, and advance to next output alg. 2370 * For now we enable all IPsec capabilities. 2371 */ 2372 ASSERT(oalg != NULL); 2373 bcopy(ialg, oalg, alg_len); 2374 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2375 nmp->b_wptr += alg_len; 2376 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2377 } 2378 2379 /* move to next input algorithm specifier */ 2380 ialg = (dl_capab_ipsec_alg_t *) 2381 ((char *)ialg + alg_len); 2382 } 2383 2384 if (nmp != NULL) 2385 /* 2386 * nmp points to a DL_CAPABILITY_REQ message to enable 2387 * IPsec hardware acceleration. 2388 */ 2389 ill_dlpi_send(ill, nmp); 2390 2391 if (need_sadb_dump) 2392 /* 2393 * An acknowledgement corresponding to a request to 2394 * enable acceleration was received, notify SADB. 2395 */ 2396 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2397 } 2398 2399 /* 2400 * Given an mblk with enough space in it, create sub-capability entries for 2401 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2402 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2403 * in preparation for the reset the DL_CAPABILITY_REQ message. 2404 */ 2405 static void 2406 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2407 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2408 { 2409 dl_capab_ipsec_t *oipsec; 2410 dl_capab_ipsec_alg_t *oalg; 2411 dl_capability_sub_t *dl_subcap; 2412 int i, k; 2413 2414 ASSERT(nciphers > 0); 2415 ASSERT(ill_cap != NULL); 2416 ASSERT(mp != NULL); 2417 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2418 2419 /* dl_capability_sub_t for "stype" */ 2420 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2421 dl_subcap->dl_cap = stype; 2422 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2423 mp->b_wptr += sizeof (dl_capability_sub_t); 2424 2425 /* dl_capab_ipsec_t for "stype" */ 2426 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2427 oipsec->cip_version = 1; 2428 oipsec->cip_nciphers = nciphers; 2429 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2430 2431 /* create entries for "stype" AUTH ciphers */ 2432 for (i = 0; i < ill_cap->algs_size; i++) { 2433 for (k = 0; k < BITSPERBYTE; k++) { 2434 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2435 continue; 2436 2437 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2438 bzero((void *)oalg, sizeof (*oalg)); 2439 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2440 oalg->alg_prim = k + (BITSPERBYTE * i); 2441 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2442 } 2443 } 2444 /* create entries for "stype" ENCR ciphers */ 2445 for (i = 0; i < ill_cap->algs_size; i++) { 2446 for (k = 0; k < BITSPERBYTE; k++) { 2447 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2448 continue; 2449 2450 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2451 bzero((void *)oalg, sizeof (*oalg)); 2452 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2453 oalg->alg_prim = k + (BITSPERBYTE * i); 2454 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2455 } 2456 } 2457 } 2458 2459 /* 2460 * Macro to count number of 1s in a byte (8-bit word). The total count is 2461 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2462 * POPC instruction, but our macro is more flexible for an arbitrary length 2463 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2464 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2465 * stays that way, we can reduce the number of iterations required. 2466 */ 2467 #define COUNT_1S(val, sum) { \ 2468 uint8_t x = val & 0xff; \ 2469 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2470 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2471 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2472 } 2473 2474 /* ARGSUSED */ 2475 static void 2476 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2477 { 2478 mblk_t *mp; 2479 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2480 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2481 uint64_t ill_capabilities = ill->ill_capabilities; 2482 int ah_cnt = 0, esp_cnt = 0; 2483 int ah_len = 0, esp_len = 0; 2484 int i, size = 0; 2485 2486 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2487 return; 2488 2489 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2490 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2491 2492 /* Find out the number of ciphers for AH */ 2493 if (cap_ah != NULL) { 2494 for (i = 0; i < cap_ah->algs_size; i++) { 2495 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2496 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2497 } 2498 if (ah_cnt > 0) { 2499 size += sizeof (dl_capability_sub_t) + 2500 sizeof (dl_capab_ipsec_t); 2501 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2502 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2503 size += ah_len; 2504 } 2505 } 2506 2507 /* Find out the number of ciphers for ESP */ 2508 if (cap_esp != NULL) { 2509 for (i = 0; i < cap_esp->algs_size; i++) { 2510 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2511 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2512 } 2513 if (esp_cnt > 0) { 2514 size += sizeof (dl_capability_sub_t) + 2515 sizeof (dl_capab_ipsec_t); 2516 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2517 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2518 size += esp_len; 2519 } 2520 } 2521 2522 if (size == 0) { 2523 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2524 "there's nothing to reset\n")); 2525 return; 2526 } 2527 2528 mp = allocb(size, BPRI_HI); 2529 if (mp == NULL) { 2530 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2531 "request to disable IPSEC Hardware Acceleration\n")); 2532 return; 2533 } 2534 2535 /* 2536 * Clear the capability flags for IPSec HA but retain the ill 2537 * capability structures since it's possible that another thread 2538 * is still referring to them. The structures only get deallocated 2539 * when we destroy the ill. 2540 * 2541 * Various places check the flags to see if the ill is capable of 2542 * hardware acceleration, and by clearing them we ensure that new 2543 * outbound IPSec packets are sent down encrypted. 2544 */ 2545 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2546 2547 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2548 if (ah_cnt > 0) { 2549 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2550 cap_ah, mp); 2551 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2552 } 2553 2554 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2555 if (esp_cnt > 0) { 2556 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2557 cap_esp, mp); 2558 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2559 } 2560 2561 /* 2562 * At this point we've composed a bunch of sub-capabilities to be 2563 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2564 * by the caller. Upon receiving this reset message, the driver 2565 * must stop inbound decryption (by destroying all inbound SAs) 2566 * and let the corresponding packets come in encrypted. 2567 */ 2568 2569 if (*sc_mp != NULL) 2570 linkb(*sc_mp, mp); 2571 else 2572 *sc_mp = mp; 2573 } 2574 2575 static void 2576 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2577 boolean_t encapsulated) 2578 { 2579 boolean_t legacy = B_FALSE; 2580 2581 /* 2582 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2583 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2584 * instructed the driver to disable its advertised capabilities, 2585 * so there's no point in accepting any response at this moment. 2586 */ 2587 if (ill->ill_capab_state == IDMS_UNKNOWN) 2588 return; 2589 2590 /* 2591 * Note that only the following two sub-capabilities may be 2592 * considered as "legacy", since their original definitions 2593 * do not incorporate the dl_mid_t module ID token, and hence 2594 * may require the use of the wrapper sub-capability. 2595 */ 2596 switch (subp->dl_cap) { 2597 case DL_CAPAB_IPSEC_AH: 2598 case DL_CAPAB_IPSEC_ESP: 2599 legacy = B_TRUE; 2600 break; 2601 } 2602 2603 /* 2604 * For legacy sub-capabilities which don't incorporate a queue_t 2605 * pointer in their structures, discard them if we detect that 2606 * there are intermediate modules in between IP and the driver. 2607 */ 2608 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2609 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2610 "%d discarded; %d module(s) present below IP\n", 2611 subp->dl_cap, ill->ill_lmod_cnt)); 2612 return; 2613 } 2614 2615 switch (subp->dl_cap) { 2616 case DL_CAPAB_IPSEC_AH: 2617 case DL_CAPAB_IPSEC_ESP: 2618 ill_capability_ipsec_ack(ill, mp, subp); 2619 break; 2620 case DL_CAPAB_MDT: 2621 ill_capability_mdt_ack(ill, mp, subp); 2622 break; 2623 case DL_CAPAB_HCKSUM: 2624 ill_capability_hcksum_ack(ill, mp, subp); 2625 break; 2626 case DL_CAPAB_ZEROCOPY: 2627 ill_capability_zerocopy_ack(ill, mp, subp); 2628 break; 2629 case DL_CAPAB_POLL: 2630 ill_capability_poll_ack(ill, mp, subp); 2631 break; 2632 default: 2633 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2634 subp->dl_cap)); 2635 } 2636 } 2637 2638 /* 2639 * As part of negotiating polling capability, the driver tells us 2640 * the default (or normal) blanking interval and packet threshold 2641 * (the receive timer fires if blanking interval is reached or 2642 * the packet threshold is reached). 2643 * 2644 * As part of manipulating the polling interval, we always use our 2645 * estimated interval (avg service time * number of packets queued 2646 * on the squeue) but we try to blank for a minimum of 2647 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2648 * packet threshold during this time. When we are not in polling mode 2649 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2650 * rr_min_blank_ratio but up the packet cnt by a ratio of 2651 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2652 * possible although for a shorter interval. 2653 */ 2654 #define RR_MAX_BLANK_RATIO 20 2655 #define RR_MIN_BLANK_RATIO 10 2656 #define RR_MAX_PKT_CNT_RATIO 3 2657 #define RR_MIN_PKT_CNT_RATIO 3 2658 2659 /* 2660 * These can be tuned via /etc/system. 2661 */ 2662 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2663 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2664 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2665 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2666 2667 static mac_resource_handle_t 2668 ill_ring_add(void *arg, mac_resource_t *mrp) 2669 { 2670 ill_t *ill = (ill_t *)arg; 2671 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2672 ill_rx_ring_t *rx_ring; 2673 int ip_rx_index; 2674 2675 if (mrp->mr_type != MAC_RX_FIFO) { 2676 return (NULL); 2677 } 2678 ASSERT(ill != NULL); 2679 ASSERT(ill->ill_poll_capab != NULL); 2680 ASSERT(mrp != NULL); 2681 2682 mutex_enter(&ill->ill_lock); 2683 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2684 rx_ring = &ill->ill_poll_capab->ill_ring_tbl[ip_rx_index]; 2685 ASSERT(rx_ring != NULL); 2686 2687 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2688 time_t normal_blank_time = 2689 mrfp->mrf_normal_blank_time; 2690 uint_t normal_pkt_cnt = 2691 mrfp->mrf_normal_pkt_count; 2692 2693 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2694 2695 rx_ring->rr_blank = mrfp->mrf_blank; 2696 rx_ring->rr_handle = mrfp->mrf_arg; 2697 rx_ring->rr_ill = ill; 2698 rx_ring->rr_normal_blank_time = normal_blank_time; 2699 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2700 2701 rx_ring->rr_max_blank_time = 2702 normal_blank_time * rr_max_blank_ratio; 2703 rx_ring->rr_min_blank_time = 2704 normal_blank_time * rr_min_blank_ratio; 2705 rx_ring->rr_max_pkt_cnt = 2706 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2707 rx_ring->rr_min_pkt_cnt = 2708 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2709 2710 rx_ring->rr_ring_state = ILL_RING_INUSE; 2711 mutex_exit(&ill->ill_lock); 2712 2713 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2714 (int), ip_rx_index); 2715 return ((mac_resource_handle_t)rx_ring); 2716 } 2717 } 2718 2719 /* 2720 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2721 * we have devices which can overwhelm this limit, ILL_MAX_RING 2722 * should be made configurable. Meanwhile it cause no panic because 2723 * driver will pass ip_input a NULL handle which will make 2724 * IP allocate the default squeue and Polling mode will not 2725 * be used for this ring. 2726 */ 2727 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2728 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2729 2730 mutex_exit(&ill->ill_lock); 2731 return (NULL); 2732 } 2733 2734 static boolean_t 2735 ill_capability_poll_init(ill_t *ill) 2736 { 2737 ill_poll_capab_t *ill_poll = ill->ill_poll_capab; 2738 conn_t *connp; 2739 size_t sz; 2740 2741 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2742 if (ill_poll == NULL) { 2743 cmn_err(CE_PANIC, "ill_capability_poll_init: " 2744 "polling enabled for ill=%s (%p) but data " 2745 "structs uninitialized\n", ill->ill_name, 2746 (void *)ill); 2747 } 2748 return (B_TRUE); 2749 } 2750 2751 if (ill_poll != NULL) { 2752 ill_rx_ring_t *rx_ring = ill_poll->ill_ring_tbl; 2753 /* Polling is being re-enabled */ 2754 2755 connp = ill_poll->ill_unbind_conn; 2756 ASSERT(rx_ring != NULL); 2757 bzero((void *)ill_poll, sizeof (ill_poll_capab_t)); 2758 bzero((void *)rx_ring, 2759 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2760 ill_poll->ill_ring_tbl = rx_ring; 2761 ill_poll->ill_unbind_conn = connp; 2762 return (B_TRUE); 2763 } 2764 2765 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2766 return (B_FALSE); 2767 2768 sz = sizeof (ill_poll_capab_t); 2769 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2770 2771 ill_poll = kmem_zalloc(sz, KM_NOSLEEP); 2772 if (ill_poll == NULL) { 2773 cmn_err(CE_WARN, "ill_capability_poll_init: could not " 2774 "allocate poll_capab for %s (%p)\n", ill->ill_name, 2775 (void *)ill); 2776 CONN_DEC_REF(connp); 2777 return (B_FALSE); 2778 } 2779 2780 /* Allocate space to hold ring table */ 2781 ill_poll->ill_ring_tbl = (ill_rx_ring_t *)&ill_poll[1]; 2782 ill->ill_poll_capab = ill_poll; 2783 ill_poll->ill_unbind_conn = connp; 2784 return (B_TRUE); 2785 } 2786 2787 /* 2788 * ill_capability_poll_disable: disable polling capability. Since 2789 * any of the rings might already be in use, need to call ipsq_clean_all() 2790 * which gets behind the squeue to disable direct calls if necessary. 2791 * Clean up the direct tx function pointers as well. 2792 */ 2793 static void 2794 ill_capability_poll_disable(ill_t *ill) 2795 { 2796 ill_poll_capab_t *ill_poll = ill->ill_poll_capab; 2797 2798 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2799 ipsq_clean_all(ill); 2800 ill_poll->ill_tx = NULL; 2801 ill_poll->ill_tx_handle = NULL; 2802 } 2803 2804 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 2805 } 2806 2807 static void 2808 ill_capability_poll_capable(ill_t *ill, dl_capab_poll_t *ipoll, 2809 dl_capability_sub_t *isub) 2810 { 2811 uint_t size; 2812 uchar_t *rptr; 2813 dl_capab_poll_t poll, *opoll; 2814 ill_poll_capab_t *ill_poll; 2815 mblk_t *nmp = NULL; 2816 dl_capability_req_t *ocap; 2817 2818 if (!ill_capability_poll_init(ill)) 2819 return; 2820 ill_poll = ill->ill_poll_capab; 2821 2822 /* Copy locally to get the members aligned */ 2823 bcopy((void *)ipoll, (void *)&poll, sizeof (dl_capab_poll_t)); 2824 2825 /* Get the tx function and handle from dld */ 2826 ill_poll->ill_tx = (ip_dld_tx_t)poll.poll_tx; 2827 ill_poll->ill_tx_handle = (void *)poll.poll_tx_handle; 2828 2829 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2830 isub->dl_length; 2831 2832 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2833 cmn_err(CE_WARN, "ill_capability_poll_ack: could not allocate " 2834 "memory for CAPAB_REQ for %s (%p)\n", ill->ill_name, 2835 (void *)ill); 2836 return; 2837 } 2838 2839 /* initialize dl_capability_req_t */ 2840 rptr = nmp->b_rptr; 2841 ocap = (dl_capability_req_t *)rptr; 2842 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2843 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2844 rptr += sizeof (dl_capability_req_t); 2845 2846 /* initialize dl_capability_sub_t */ 2847 bcopy(isub, rptr, sizeof (*isub)); 2848 rptr += sizeof (*isub); 2849 2850 opoll = (dl_capab_poll_t *)rptr; 2851 rptr += sizeof (dl_capab_poll_t); 2852 2853 /* initialize dl_capab_poll_t to be sent down */ 2854 poll.poll_rx_handle = (uintptr_t)ill; 2855 poll.poll_rx = (uintptr_t)ip_input; 2856 poll.poll_ring_add = (uintptr_t)ill_ring_add; 2857 poll.poll_flags = POLL_ENABLE; 2858 bcopy((void *)&poll, (void *)opoll, sizeof (dl_capab_poll_t)); 2859 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2860 2861 ip1dbg(("ill_capability_poll_capable: asking interface %s " 2862 "to enable polling\n", ill->ill_name)); 2863 2864 /* nmp points to a DL_CAPABILITY_REQ message to enable polling */ 2865 ill_dlpi_send(ill, nmp); 2866 } 2867 2868 2869 /* 2870 * Process a polling capability negotiation ack received 2871 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_POLL) 2872 * of a DL_CAPABILITY_ACK message. 2873 */ 2874 static void 2875 ill_capability_poll_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2876 { 2877 dl_capab_poll_t *ipoll; 2878 uint_t sub_dl_cap = isub->dl_cap; 2879 uint8_t *capend; 2880 2881 2882 ASSERT(sub_dl_cap == DL_CAPAB_POLL); 2883 2884 /* 2885 * Don't enable polling for ipv6 ill's 2886 */ 2887 if (ill->ill_isv6) { 2888 return; 2889 } 2890 2891 /* 2892 * Note: range checks here are not absolutely sufficient to 2893 * make us robust against malformed messages sent by drivers; 2894 * this is in keeping with the rest of IP's dlpi handling. 2895 * (Remember, it's coming from something else in the kernel 2896 * address space) 2897 */ 2898 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2899 if (capend > mp->b_wptr) { 2900 cmn_err(CE_WARN, "ill_capability_poll_ack: " 2901 "malformed sub-capability too long for mblk"); 2902 return; 2903 } 2904 2905 /* 2906 * There are two types of acks we process here: 2907 * 1. acks in reply to a (first form) generic capability req 2908 * (poll_flag will be set to POLL_CAPABLE) 2909 * 2. acks in reply to a POLL_ENABLE capability req. 2910 * (POLL_ENABLE flag set) 2911 */ 2912 ipoll = (dl_capab_poll_t *)(isub + 1); 2913 2914 if (!dlcapabcheckqid(&ipoll->poll_mid, ill->ill_lmod_rq)) { 2915 ip1dbg(("ill_capability_poll_ack: mid token for polling " 2916 "capability isn't as expected; pass-thru " 2917 "module(s) detected, discarding capability\n")); 2918 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2919 /* 2920 * This is a capability renegotitation case. 2921 * The interface better be unusable at this 2922 * point other wise bad things will happen 2923 * if we disable direct calls on a running 2924 * and up interface. 2925 */ 2926 ill_capability_poll_disable(ill); 2927 } 2928 return; 2929 } 2930 2931 switch (ipoll->poll_flags) { 2932 default: 2933 /* Disable if unknown flag */ 2934 case POLL_DISABLE: 2935 ill_capability_poll_disable(ill); 2936 break; 2937 case POLL_CAPABLE: 2938 /* 2939 * If the capability was already enabled, its safe 2940 * to disable it first to get rid of stale information 2941 * and then start enabling it again. 2942 */ 2943 ill_capability_poll_disable(ill); 2944 ill_capability_poll_capable(ill, ipoll, isub); 2945 break; 2946 case POLL_ENABLE: 2947 if (!(ill->ill_capabilities & ILL_CAPAB_POLL)) { 2948 ASSERT(ill->ill_poll_capab != NULL); 2949 ill->ill_capabilities |= ILL_CAPAB_POLL; 2950 } 2951 ip1dbg(("ill_capability_poll_ack: interface %s " 2952 "has enabled polling\n", ill->ill_name)); 2953 break; 2954 } 2955 } 2956 2957 static void 2958 ill_capability_poll_reset(ill_t *ill, mblk_t **sc_mp) 2959 { 2960 mblk_t *mp; 2961 dl_capab_poll_t *ipoll; 2962 dl_capability_sub_t *dl_subcap; 2963 int size; 2964 2965 if (!(ill->ill_capabilities & ILL_CAPAB_POLL)) 2966 return; 2967 2968 ASSERT(ill->ill_poll_capab != NULL); 2969 2970 /* 2971 * Disable polling capability 2972 */ 2973 ill_capability_poll_disable(ill); 2974 2975 size = sizeof (*dl_subcap) + sizeof (*ipoll); 2976 2977 mp = allocb(size, BPRI_HI); 2978 if (mp == NULL) { 2979 ip1dbg(("ill_capability_poll_reset: unable to allocate " 2980 "request to disable polling\n")); 2981 return; 2982 } 2983 2984 mp->b_wptr = mp->b_rptr + size; 2985 2986 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2987 dl_subcap->dl_cap = DL_CAPAB_POLL; 2988 dl_subcap->dl_length = sizeof (*ipoll); 2989 2990 ipoll = (dl_capab_poll_t *)(dl_subcap + 1); 2991 ipoll->poll_flags = POLL_DISABLE; 2992 2993 if (*sc_mp != NULL) 2994 linkb(*sc_mp, mp); 2995 else 2996 *sc_mp = mp; 2997 } 2998 2999 3000 /* 3001 * Process a hardware checksum offload capability negotiation ack received 3002 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3003 * of a DL_CAPABILITY_ACK message. 3004 */ 3005 static void 3006 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3007 { 3008 dl_capability_req_t *ocap; 3009 dl_capab_hcksum_t *ihck, *ohck; 3010 ill_hcksum_capab_t **ill_hcksum; 3011 mblk_t *nmp = NULL; 3012 uint_t sub_dl_cap = isub->dl_cap; 3013 uint8_t *capend; 3014 3015 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3016 3017 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3018 3019 /* 3020 * Note: range checks here are not absolutely sufficient to 3021 * make us robust against malformed messages sent by drivers; 3022 * this is in keeping with the rest of IP's dlpi handling. 3023 * (Remember, it's coming from something else in the kernel 3024 * address space) 3025 */ 3026 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3027 if (capend > mp->b_wptr) { 3028 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3029 "malformed sub-capability too long for mblk"); 3030 return; 3031 } 3032 3033 /* 3034 * There are two types of acks we process here: 3035 * 1. acks in reply to a (first form) generic capability req 3036 * (no ENABLE flag set) 3037 * 2. acks in reply to a ENABLE capability req. 3038 * (ENABLE flag set) 3039 */ 3040 ihck = (dl_capab_hcksum_t *)(isub + 1); 3041 3042 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3043 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3044 "unsupported hardware checksum " 3045 "sub-capability (version %d, expected %d)", 3046 ihck->hcksum_version, HCKSUM_VERSION_1); 3047 return; 3048 } 3049 3050 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3051 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3052 "checksum capability isn't as expected; pass-thru " 3053 "module(s) detected, discarding capability\n")); 3054 return; 3055 } 3056 3057 #define CURR_HCKSUM_CAPAB \ 3058 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3059 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3060 3061 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3062 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3063 /* do ENABLE processing */ 3064 if (*ill_hcksum == NULL) { 3065 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3066 KM_NOSLEEP); 3067 3068 if (*ill_hcksum == NULL) { 3069 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3070 "could not enable hcksum version %d " 3071 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3072 ill->ill_name); 3073 return; 3074 } 3075 } 3076 3077 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3078 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3079 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3080 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3081 "has enabled hardware checksumming\n ", 3082 ill->ill_name)); 3083 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3084 /* 3085 * Enabling hardware checksum offload 3086 * Currently IP supports {TCP,UDP}/IPv4 3087 * partial and full cksum offload and 3088 * IPv4 header checksum offload. 3089 * Allocate new mblk which will 3090 * contain a new capability request 3091 * to enable hardware checksum offload. 3092 */ 3093 uint_t size; 3094 uchar_t *rptr; 3095 3096 size = sizeof (dl_capability_req_t) + 3097 sizeof (dl_capability_sub_t) + isub->dl_length; 3098 3099 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3100 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3101 "could not enable hardware cksum for %s (ENOMEM)\n", 3102 ill->ill_name); 3103 return; 3104 } 3105 3106 rptr = nmp->b_rptr; 3107 /* initialize dl_capability_req_t */ 3108 ocap = (dl_capability_req_t *)nmp->b_rptr; 3109 ocap->dl_sub_offset = 3110 sizeof (dl_capability_req_t); 3111 ocap->dl_sub_length = 3112 sizeof (dl_capability_sub_t) + 3113 isub->dl_length; 3114 nmp->b_rptr += sizeof (dl_capability_req_t); 3115 3116 /* initialize dl_capability_sub_t */ 3117 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3118 nmp->b_rptr += sizeof (*isub); 3119 3120 /* initialize dl_capab_hcksum_t */ 3121 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3122 bcopy(ihck, ohck, sizeof (*ihck)); 3123 3124 nmp->b_rptr = rptr; 3125 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3126 3127 /* Set ENABLE flag */ 3128 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3129 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3130 3131 /* 3132 * nmp points to a DL_CAPABILITY_REQ message to enable 3133 * hardware checksum acceleration. 3134 */ 3135 ill_dlpi_send(ill, nmp); 3136 } else { 3137 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3138 "advertised %x hardware checksum capability flags\n", 3139 ill->ill_name, ihck->hcksum_txflags)); 3140 } 3141 } 3142 3143 static void 3144 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3145 { 3146 mblk_t *mp; 3147 dl_capab_hcksum_t *hck_subcap; 3148 dl_capability_sub_t *dl_subcap; 3149 int size; 3150 3151 if (!ILL_HCKSUM_CAPABLE(ill)) 3152 return; 3153 3154 ASSERT(ill->ill_hcksum_capab != NULL); 3155 /* 3156 * Clear the capability flag for hardware checksum offload but 3157 * retain the ill_hcksum_capab structure since it's possible that 3158 * another thread is still referring to it. The structure only 3159 * gets deallocated when we destroy the ill. 3160 */ 3161 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3162 3163 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3164 3165 mp = allocb(size, BPRI_HI); 3166 if (mp == NULL) { 3167 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3168 "request to disable hardware checksum offload\n")); 3169 return; 3170 } 3171 3172 mp->b_wptr = mp->b_rptr + size; 3173 3174 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3175 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3176 dl_subcap->dl_length = sizeof (*hck_subcap); 3177 3178 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3179 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3180 hck_subcap->hcksum_txflags = 0; 3181 3182 if (*sc_mp != NULL) 3183 linkb(*sc_mp, mp); 3184 else 3185 *sc_mp = mp; 3186 } 3187 3188 static void 3189 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3190 { 3191 mblk_t *nmp = NULL; 3192 dl_capability_req_t *oc; 3193 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3194 ill_zerocopy_capab_t **ill_zerocopy_capab; 3195 uint_t sub_dl_cap = isub->dl_cap; 3196 uint8_t *capend; 3197 3198 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3199 3200 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3201 3202 /* 3203 * Note: range checks here are not absolutely sufficient to 3204 * make us robust against malformed messages sent by drivers; 3205 * this is in keeping with the rest of IP's dlpi handling. 3206 * (Remember, it's coming from something else in the kernel 3207 * address space) 3208 */ 3209 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3210 if (capend > mp->b_wptr) { 3211 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3212 "malformed sub-capability too long for mblk"); 3213 return; 3214 } 3215 3216 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3217 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3218 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3219 "unsupported ZEROCOPY sub-capability (version %d, " 3220 "expected %d)", zc_ic->zerocopy_version, 3221 ZEROCOPY_VERSION_1); 3222 return; 3223 } 3224 3225 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3226 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3227 "capability isn't as expected; pass-thru module(s) " 3228 "detected, discarding capability\n")); 3229 return; 3230 } 3231 3232 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3233 if (*ill_zerocopy_capab == NULL) { 3234 *ill_zerocopy_capab = 3235 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3236 KM_NOSLEEP); 3237 3238 if (*ill_zerocopy_capab == NULL) { 3239 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3240 "could not enable Zero-copy version %d " 3241 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3242 ill->ill_name); 3243 return; 3244 } 3245 } 3246 3247 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3248 "supports Zero-copy version %d\n", ill->ill_name, 3249 ZEROCOPY_VERSION_1)); 3250 3251 (*ill_zerocopy_capab)->ill_zerocopy_version = 3252 zc_ic->zerocopy_version; 3253 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3254 zc_ic->zerocopy_flags; 3255 3256 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3257 } else { 3258 uint_t size; 3259 uchar_t *rptr; 3260 3261 size = sizeof (dl_capability_req_t) + 3262 sizeof (dl_capability_sub_t) + 3263 sizeof (dl_capab_zerocopy_t); 3264 3265 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3266 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3267 "could not enable zerocopy for %s (ENOMEM)\n", 3268 ill->ill_name); 3269 return; 3270 } 3271 3272 rptr = nmp->b_rptr; 3273 /* initialize dl_capability_req_t */ 3274 oc = (dl_capability_req_t *)rptr; 3275 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3276 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3277 sizeof (dl_capab_zerocopy_t); 3278 rptr += sizeof (dl_capability_req_t); 3279 3280 /* initialize dl_capability_sub_t */ 3281 bcopy(isub, rptr, sizeof (*isub)); 3282 rptr += sizeof (*isub); 3283 3284 /* initialize dl_capab_zerocopy_t */ 3285 zc_oc = (dl_capab_zerocopy_t *)rptr; 3286 *zc_oc = *zc_ic; 3287 3288 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3289 "to enable zero-copy version %d\n", ill->ill_name, 3290 ZEROCOPY_VERSION_1)); 3291 3292 /* set VMSAFE_MEM flag */ 3293 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3294 3295 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3296 ill_dlpi_send(ill, nmp); 3297 } 3298 } 3299 3300 static void 3301 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3302 { 3303 mblk_t *mp; 3304 dl_capab_zerocopy_t *zerocopy_subcap; 3305 dl_capability_sub_t *dl_subcap; 3306 int size; 3307 3308 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3309 return; 3310 3311 ASSERT(ill->ill_zerocopy_capab != NULL); 3312 /* 3313 * Clear the capability flag for Zero-copy but retain the 3314 * ill_zerocopy_capab structure since it's possible that another 3315 * thread is still referring to it. The structure only gets 3316 * deallocated when we destroy the ill. 3317 */ 3318 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3319 3320 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3321 3322 mp = allocb(size, BPRI_HI); 3323 if (mp == NULL) { 3324 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3325 "request to disable Zero-copy\n")); 3326 return; 3327 } 3328 3329 mp->b_wptr = mp->b_rptr + size; 3330 3331 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3332 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3333 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3334 3335 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3336 zerocopy_subcap->zerocopy_version = 3337 ill->ill_zerocopy_capab->ill_zerocopy_version; 3338 zerocopy_subcap->zerocopy_flags = 0; 3339 3340 if (*sc_mp != NULL) 3341 linkb(*sc_mp, mp); 3342 else 3343 *sc_mp = mp; 3344 } 3345 3346 /* 3347 * Consume a new-style hardware capabilities negotiation ack. 3348 * Called from ip_rput_dlpi_writer(). 3349 */ 3350 void 3351 ill_capability_ack(ill_t *ill, mblk_t *mp) 3352 { 3353 dl_capability_ack_t *capp; 3354 dl_capability_sub_t *subp, *endp; 3355 3356 if (ill->ill_capab_state == IDMS_INPROGRESS) 3357 ill->ill_capab_state = IDMS_OK; 3358 3359 capp = (dl_capability_ack_t *)mp->b_rptr; 3360 3361 if (capp->dl_sub_length == 0) 3362 /* no new-style capabilities */ 3363 return; 3364 3365 /* make sure the driver supplied correct dl_sub_length */ 3366 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3367 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3368 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3369 return; 3370 } 3371 3372 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3373 /* 3374 * There are sub-capabilities. Process the ones we know about. 3375 * Loop until we don't have room for another sub-cap header.. 3376 */ 3377 for (subp = SC(capp, capp->dl_sub_offset), 3378 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3379 subp <= endp; 3380 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3381 3382 switch (subp->dl_cap) { 3383 case DL_CAPAB_ID_WRAPPER: 3384 ill_capability_id_ack(ill, mp, subp); 3385 break; 3386 default: 3387 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3388 break; 3389 } 3390 } 3391 #undef SC 3392 } 3393 3394 /* 3395 * This routine is called to scan the fragmentation reassembly table for 3396 * the specified ILL for any packets that are starting to smell. 3397 * dead_interval is the maximum time in seconds that will be tolerated. It 3398 * will either be the value specified in ip_g_frag_timeout, or zero if the 3399 * ILL is shutting down and it is time to blow everything off. 3400 * 3401 * It returns the number of seconds (as a time_t) that the next frag timer 3402 * should be scheduled for, 0 meaning that the timer doesn't need to be 3403 * re-started. Note that the method of calculating next_timeout isn't 3404 * entirely accurate since time will flow between the time we grab 3405 * current_time and the time we schedule the next timeout. This isn't a 3406 * big problem since this is the timer for sending an ICMP reassembly time 3407 * exceeded messages, and it doesn't have to be exactly accurate. 3408 * 3409 * This function is 3410 * sometimes called as writer, although this is not required. 3411 */ 3412 time_t 3413 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3414 { 3415 ipfb_t *ipfb; 3416 ipfb_t *endp; 3417 ipf_t *ipf; 3418 ipf_t *ipfnext; 3419 mblk_t *mp; 3420 time_t current_time = gethrestime_sec(); 3421 time_t next_timeout = 0; 3422 uint32_t hdr_length; 3423 mblk_t *send_icmp_head; 3424 mblk_t *send_icmp_head_v6; 3425 3426 ipfb = ill->ill_frag_hash_tbl; 3427 if (ipfb == NULL) 3428 return (B_FALSE); 3429 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3430 /* Walk the frag hash table. */ 3431 for (; ipfb < endp; ipfb++) { 3432 send_icmp_head = NULL; 3433 send_icmp_head_v6 = NULL; 3434 mutex_enter(&ipfb->ipfb_lock); 3435 while ((ipf = ipfb->ipfb_ipf) != 0) { 3436 time_t frag_time = current_time - ipf->ipf_timestamp; 3437 time_t frag_timeout; 3438 3439 if (frag_time < dead_interval) { 3440 /* 3441 * There are some outstanding fragments 3442 * that will timeout later. Make note of 3443 * the time so that we can reschedule the 3444 * next timeout appropriately. 3445 */ 3446 frag_timeout = dead_interval - frag_time; 3447 if (next_timeout == 0 || 3448 frag_timeout < next_timeout) { 3449 next_timeout = frag_timeout; 3450 } 3451 break; 3452 } 3453 /* Time's up. Get it out of here. */ 3454 hdr_length = ipf->ipf_nf_hdr_len; 3455 ipfnext = ipf->ipf_hash_next; 3456 if (ipfnext) 3457 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3458 *ipf->ipf_ptphn = ipfnext; 3459 mp = ipf->ipf_mp->b_cont; 3460 for (; mp; mp = mp->b_cont) { 3461 /* Extra points for neatness. */ 3462 IP_REASS_SET_START(mp, 0); 3463 IP_REASS_SET_END(mp, 0); 3464 } 3465 mp = ipf->ipf_mp->b_cont; 3466 ill->ill_frag_count -= ipf->ipf_count; 3467 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3468 ipfb->ipfb_count -= ipf->ipf_count; 3469 ASSERT(ipfb->ipfb_frag_pkts > 0); 3470 ipfb->ipfb_frag_pkts--; 3471 /* 3472 * We do not send any icmp message from here because 3473 * we currently are holding the ipfb_lock for this 3474 * hash chain. If we try and send any icmp messages 3475 * from here we may end up via a put back into ip 3476 * trying to get the same lock, causing a recursive 3477 * mutex panic. Instead we build a list and send all 3478 * the icmp messages after we have dropped the lock. 3479 */ 3480 if (ill->ill_isv6) { 3481 BUMP_MIB(ill->ill_ip6_mib, ipv6ReasmFails); 3482 if (hdr_length != 0) { 3483 mp->b_next = send_icmp_head_v6; 3484 send_icmp_head_v6 = mp; 3485 } else { 3486 freemsg(mp); 3487 } 3488 } else { 3489 BUMP_MIB(&ip_mib, ipReasmFails); 3490 if (hdr_length != 0) { 3491 mp->b_next = send_icmp_head; 3492 send_icmp_head = mp; 3493 } else { 3494 freemsg(mp); 3495 } 3496 } 3497 freeb(ipf->ipf_mp); 3498 } 3499 mutex_exit(&ipfb->ipfb_lock); 3500 /* 3501 * Now need to send any icmp messages that we delayed from 3502 * above. 3503 */ 3504 while (send_icmp_head_v6 != NULL) { 3505 mp = send_icmp_head_v6; 3506 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3507 mp->b_next = NULL; 3508 icmp_time_exceeded_v6(ill->ill_wq, mp, 3509 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, B_FALSE); 3510 } 3511 while (send_icmp_head != NULL) { 3512 mp = send_icmp_head; 3513 send_icmp_head = send_icmp_head->b_next; 3514 mp->b_next = NULL; 3515 icmp_time_exceeded(ill->ill_wq, mp, 3516 ICMP_REASSEMBLY_TIME_EXCEEDED); 3517 } 3518 } 3519 /* 3520 * A non-dying ILL will use the return value to decide whether to 3521 * restart the frag timer, and for how long. 3522 */ 3523 return (next_timeout); 3524 } 3525 3526 /* 3527 * This routine is called when the approximate count of mblk memory used 3528 * for the specified ILL has exceeded max_count. 3529 */ 3530 void 3531 ill_frag_prune(ill_t *ill, uint_t max_count) 3532 { 3533 ipfb_t *ipfb; 3534 ipf_t *ipf; 3535 size_t count; 3536 3537 /* 3538 * If we are here within ip_min_frag_prune_time msecs remove 3539 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3540 * ill_frag_free_num_pkts. 3541 */ 3542 mutex_enter(&ill->ill_lock); 3543 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3544 (ip_min_frag_prune_time != 0 ? 3545 ip_min_frag_prune_time : msec_per_tick)) { 3546 3547 ill->ill_frag_free_num_pkts++; 3548 3549 } else { 3550 ill->ill_frag_free_num_pkts = 0; 3551 } 3552 ill->ill_last_frag_clean_time = lbolt; 3553 mutex_exit(&ill->ill_lock); 3554 3555 /* 3556 * free ill_frag_free_num_pkts oldest packets from each bucket. 3557 */ 3558 if (ill->ill_frag_free_num_pkts != 0) { 3559 int ix; 3560 3561 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3562 ipfb = &ill->ill_frag_hash_tbl[ix]; 3563 mutex_enter(&ipfb->ipfb_lock); 3564 if (ipfb->ipfb_ipf != NULL) { 3565 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3566 ill->ill_frag_free_num_pkts); 3567 } 3568 mutex_exit(&ipfb->ipfb_lock); 3569 } 3570 } 3571 /* 3572 * While the reassembly list for this ILL is too big, prune a fragment 3573 * queue by age, oldest first. Note that the per ILL count is 3574 * approximate, while the per frag hash bucket counts are accurate. 3575 */ 3576 while (ill->ill_frag_count > max_count) { 3577 int ix; 3578 ipfb_t *oipfb = NULL; 3579 uint_t oldest = UINT_MAX; 3580 3581 count = 0; 3582 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3583 ipfb = &ill->ill_frag_hash_tbl[ix]; 3584 mutex_enter(&ipfb->ipfb_lock); 3585 ipf = ipfb->ipfb_ipf; 3586 if (ipf != NULL && ipf->ipf_gen < oldest) { 3587 oldest = ipf->ipf_gen; 3588 oipfb = ipfb; 3589 } 3590 count += ipfb->ipfb_count; 3591 mutex_exit(&ipfb->ipfb_lock); 3592 } 3593 /* Refresh the per ILL count */ 3594 ill->ill_frag_count = count; 3595 if (oipfb == NULL) { 3596 ill->ill_frag_count = 0; 3597 break; 3598 } 3599 if (count <= max_count) 3600 return; /* Somebody beat us to it, nothing to do */ 3601 mutex_enter(&oipfb->ipfb_lock); 3602 ipf = oipfb->ipfb_ipf; 3603 if (ipf != NULL) { 3604 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3605 } 3606 mutex_exit(&oipfb->ipfb_lock); 3607 } 3608 } 3609 3610 /* 3611 * free 'free_cnt' fragmented packets starting at ipf. 3612 */ 3613 void 3614 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3615 { 3616 size_t count; 3617 mblk_t *mp; 3618 mblk_t *tmp; 3619 ipf_t **ipfp = ipf->ipf_ptphn; 3620 3621 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3622 ASSERT(ipfp != NULL); 3623 ASSERT(ipf != NULL); 3624 3625 while (ipf != NULL && free_cnt-- > 0) { 3626 count = ipf->ipf_count; 3627 mp = ipf->ipf_mp; 3628 ipf = ipf->ipf_hash_next; 3629 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3630 IP_REASS_SET_START(tmp, 0); 3631 IP_REASS_SET_END(tmp, 0); 3632 } 3633 ill->ill_frag_count -= count; 3634 ASSERT(ipfb->ipfb_count >= count); 3635 ipfb->ipfb_count -= count; 3636 ASSERT(ipfb->ipfb_frag_pkts > 0); 3637 ipfb->ipfb_frag_pkts--; 3638 freemsg(mp); 3639 BUMP_MIB(&ip_mib, ipReasmFails); 3640 } 3641 3642 if (ipf) 3643 ipf->ipf_ptphn = ipfp; 3644 ipfp[0] = ipf; 3645 } 3646 3647 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3648 "obsolete and may be removed in a future release of Solaris. Use " \ 3649 "ifconfig(1M) to manipulate the forwarding status of an interface." 3650 3651 /* 3652 * For obsolete per-interface forwarding configuration; 3653 * called in response to ND_GET. 3654 */ 3655 /* ARGSUSED */ 3656 static int 3657 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3658 { 3659 ill_t *ill = (ill_t *)cp; 3660 3661 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3662 3663 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3664 return (0); 3665 } 3666 3667 /* 3668 * For obsolete per-interface forwarding configuration; 3669 * called in response to ND_SET. 3670 */ 3671 /* ARGSUSED */ 3672 static int 3673 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3674 cred_t *ioc_cr) 3675 { 3676 long value; 3677 int retval; 3678 3679 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3680 3681 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3682 value < 0 || value > 1) { 3683 return (EINVAL); 3684 } 3685 3686 rw_enter(&ill_g_lock, RW_READER); 3687 retval = ill_forward_set(q, mp, (value != 0), cp); 3688 rw_exit(&ill_g_lock); 3689 return (retval); 3690 } 3691 3692 /* 3693 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3694 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3695 * up RTS_IFINFO routing socket messages for each interface whose flags we 3696 * change. 3697 */ 3698 /* ARGSUSED */ 3699 int 3700 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 3701 { 3702 ill_t *ill = (ill_t *)cp; 3703 ill_group_t *illgrp; 3704 3705 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 3706 3707 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3708 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 3709 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 3710 return (EINVAL); 3711 3712 /* 3713 * If the ill is in an IPMP group, set the forwarding policy on all 3714 * members of the group to the same value. 3715 */ 3716 illgrp = ill->ill_group; 3717 if (illgrp != NULL) { 3718 ill_t *tmp_ill; 3719 3720 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3721 tmp_ill = tmp_ill->ill_group_next) { 3722 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3723 (enable ? "Enabling" : "Disabling"), 3724 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3725 tmp_ill->ill_name)); 3726 mutex_enter(&tmp_ill->ill_lock); 3727 if (enable) 3728 tmp_ill->ill_flags |= ILLF_ROUTER; 3729 else 3730 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3731 mutex_exit(&tmp_ill->ill_lock); 3732 if (tmp_ill->ill_isv6) 3733 ill_set_nce_router_flags(tmp_ill, enable); 3734 /* Notify routing socket listeners of this change. */ 3735 ip_rts_ifmsg(tmp_ill->ill_ipif); 3736 } 3737 } else { 3738 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3739 (enable ? "Enabling" : "Disabling"), 3740 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3741 mutex_enter(&ill->ill_lock); 3742 if (enable) 3743 ill->ill_flags |= ILLF_ROUTER; 3744 else 3745 ill->ill_flags &= ~ILLF_ROUTER; 3746 mutex_exit(&ill->ill_lock); 3747 if (ill->ill_isv6) 3748 ill_set_nce_router_flags(ill, enable); 3749 /* Notify routing socket listeners of this change. */ 3750 ip_rts_ifmsg(ill->ill_ipif); 3751 } 3752 3753 return (0); 3754 } 3755 3756 /* 3757 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3758 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3759 * set or clear. 3760 */ 3761 static void 3762 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3763 { 3764 ipif_t *ipif; 3765 nce_t *nce; 3766 3767 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3768 nce = ndp_lookup(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3769 if (nce != NULL) { 3770 mutex_enter(&nce->nce_lock); 3771 if (enable) 3772 nce->nce_flags |= NCE_F_ISROUTER; 3773 else 3774 nce->nce_flags &= ~NCE_F_ISROUTER; 3775 mutex_exit(&nce->nce_lock); 3776 NCE_REFRELE(nce); 3777 } 3778 } 3779 } 3780 3781 /* 3782 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3783 * for this ill. Make sure the v6/v4 question has been answered about this 3784 * ill. The creation of this ndd variable is only for backwards compatibility. 3785 * The preferred way to control per-interface IP forwarding is through the 3786 * ILLF_ROUTER interface flag. 3787 */ 3788 static int 3789 ill_set_ndd_name(ill_t *ill) 3790 { 3791 char *suffix; 3792 3793 ASSERT(IAM_WRITER_ILL(ill)); 3794 3795 if (ill->ill_isv6) 3796 suffix = ipv6_forward_suffix; 3797 else 3798 suffix = ipv4_forward_suffix; 3799 3800 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3801 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3802 /* 3803 * Copies over the '\0'. 3804 * Note that strlen(suffix) is always bounded. 3805 */ 3806 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3807 strlen(suffix) + 1); 3808 3809 /* 3810 * Use of the nd table requires holding the reader lock. 3811 * Modifying the nd table thru nd_load/nd_unload requires 3812 * the writer lock. 3813 */ 3814 rw_enter(&ip_g_nd_lock, RW_WRITER); 3815 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3816 nd_ill_forward_set, (caddr_t)ill)) { 3817 /* 3818 * If the nd_load failed, it only meant that it could not 3819 * allocate a new bunch of room for further NDD expansion. 3820 * Because of that, the ill_ndd_name will be set to 0, and 3821 * this interface is at the mercy of the global ip_forwarding 3822 * variable. 3823 */ 3824 rw_exit(&ip_g_nd_lock); 3825 ill->ill_ndd_name = NULL; 3826 return (ENOMEM); 3827 } 3828 rw_exit(&ip_g_nd_lock); 3829 return (0); 3830 } 3831 3832 /* 3833 * Intializes the context structure and returns the first ill in the list 3834 * cuurently start_list and end_list can have values: 3835 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3836 * IP_V4_G_HEAD Traverse IPV4 list only. 3837 * IP_V6_G_HEAD Traverse IPV6 list only. 3838 */ 3839 3840 /* 3841 * We don't check for CONDEMNED ills here. Caller must do that if 3842 * necessary under the ill lock. 3843 */ 3844 ill_t * 3845 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 3846 { 3847 ill_if_t *ifp; 3848 ill_t *ill; 3849 avl_tree_t *avl_tree; 3850 3851 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3852 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3853 3854 /* 3855 * setup the lists to search 3856 */ 3857 if (end_list != MAX_G_HEADS) { 3858 ctx->ctx_current_list = start_list; 3859 ctx->ctx_last_list = end_list; 3860 } else { 3861 ctx->ctx_last_list = MAX_G_HEADS - 1; 3862 ctx->ctx_current_list = 0; 3863 } 3864 3865 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3866 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3867 if (ifp != (ill_if_t *) 3868 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3869 avl_tree = &ifp->illif_avl_by_ppa; 3870 ill = avl_first(avl_tree); 3871 /* 3872 * ill is guaranteed to be non NULL or ifp should have 3873 * not existed. 3874 */ 3875 ASSERT(ill != NULL); 3876 return (ill); 3877 } 3878 ctx->ctx_current_list++; 3879 } 3880 3881 return (NULL); 3882 } 3883 3884 /* 3885 * returns the next ill in the list. ill_first() must have been called 3886 * before calling ill_next() or bad things will happen. 3887 */ 3888 3889 /* 3890 * We don't check for CONDEMNED ills here. Caller must do that if 3891 * necessary under the ill lock. 3892 */ 3893 ill_t * 3894 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3895 { 3896 ill_if_t *ifp; 3897 ill_t *ill; 3898 3899 3900 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3901 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3902 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 3903 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3904 AVL_AFTER)) != NULL) { 3905 return (ill); 3906 } 3907 3908 /* goto next ill_ifp in the list. */ 3909 ifp = lastill->ill_ifptr->illif_next; 3910 3911 /* make sure not at end of circular list */ 3912 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3913 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3914 return (NULL); 3915 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3916 } 3917 3918 return (avl_first(&ifp->illif_avl_by_ppa)); 3919 } 3920 3921 /* 3922 * Check interface name for correct format which is name+ppa. 3923 * name can contain characters and digits, the right most digits 3924 * make up the ppa number. use of octal is not allowed, name must contain 3925 * a ppa, return pointer to the start of ppa. 3926 * In case of error return NULL. 3927 */ 3928 static char * 3929 ill_get_ppa_ptr(char *name) 3930 { 3931 int namelen = mi_strlen(name); 3932 3933 int len = namelen; 3934 3935 name += len; 3936 while (len > 0) { 3937 name--; 3938 if (*name < '0' || *name > '9') 3939 break; 3940 len--; 3941 } 3942 3943 /* empty string, all digits, or no trailing digits */ 3944 if (len == 0 || len == (int)namelen) 3945 return (NULL); 3946 3947 name++; 3948 /* check for attempted use of octal */ 3949 if (*name == '0' && len != (int)namelen - 1) 3950 return (NULL); 3951 return (name); 3952 } 3953 3954 /* 3955 * use avl tree to locate the ill. 3956 */ 3957 static ill_t * 3958 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 3959 ipsq_func_t func, int *error) 3960 { 3961 char *ppa_ptr = NULL; 3962 int len; 3963 uint_t ppa; 3964 ill_t *ill = NULL; 3965 ill_if_t *ifp; 3966 int list; 3967 ipsq_t *ipsq; 3968 3969 if (error != NULL) 3970 *error = 0; 3971 3972 /* 3973 * get ppa ptr 3974 */ 3975 if (isv6) 3976 list = IP_V6_G_HEAD; 3977 else 3978 list = IP_V4_G_HEAD; 3979 3980 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 3981 if (error != NULL) 3982 *error = ENXIO; 3983 return (NULL); 3984 } 3985 3986 len = ppa_ptr - name + 1; 3987 3988 ppa = stoi(&ppa_ptr); 3989 3990 ifp = IP_VX_ILL_G_LIST(list); 3991 3992 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 3993 /* 3994 * match is done on len - 1 as the name is not null 3995 * terminated it contains ppa in addition to the interface 3996 * name. 3997 */ 3998 if ((ifp->illif_name_len == len) && 3999 bcmp(ifp->illif_name, name, len - 1) == 0) { 4000 break; 4001 } else { 4002 ifp = ifp->illif_next; 4003 } 4004 } 4005 4006 4007 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4008 /* 4009 * Even the interface type does not exist. 4010 */ 4011 if (error != NULL) 4012 *error = ENXIO; 4013 return (NULL); 4014 } 4015 4016 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4017 if (ill != NULL) { 4018 /* 4019 * The block comment at the start of ipif_down 4020 * explains the use of the macros used below 4021 */ 4022 GRAB_CONN_LOCK(q); 4023 mutex_enter(&ill->ill_lock); 4024 if (ILL_CAN_LOOKUP(ill)) { 4025 ill_refhold_locked(ill); 4026 mutex_exit(&ill->ill_lock); 4027 RELEASE_CONN_LOCK(q); 4028 return (ill); 4029 } else if (ILL_CAN_WAIT(ill, q)) { 4030 ipsq = ill->ill_phyint->phyint_ipsq; 4031 mutex_enter(&ipsq->ipsq_lock); 4032 mutex_exit(&ill->ill_lock); 4033 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4034 mutex_exit(&ipsq->ipsq_lock); 4035 RELEASE_CONN_LOCK(q); 4036 *error = EINPROGRESS; 4037 return (NULL); 4038 } 4039 mutex_exit(&ill->ill_lock); 4040 RELEASE_CONN_LOCK(q); 4041 } 4042 if (error != NULL) 4043 *error = ENXIO; 4044 return (NULL); 4045 } 4046 4047 /* 4048 * comparison function for use with avl. 4049 */ 4050 static int 4051 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4052 { 4053 uint_t ppa; 4054 uint_t ill_ppa; 4055 4056 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4057 4058 ppa = *((uint_t *)ppa_ptr); 4059 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4060 /* 4061 * We want the ill with the lowest ppa to be on the 4062 * top. 4063 */ 4064 if (ill_ppa < ppa) 4065 return (1); 4066 if (ill_ppa > ppa) 4067 return (-1); 4068 return (0); 4069 } 4070 4071 /* 4072 * remove an interface type from the global list. 4073 */ 4074 static void 4075 ill_delete_interface_type(ill_if_t *interface) 4076 { 4077 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4078 4079 ASSERT(interface != NULL); 4080 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4081 4082 avl_destroy(&interface->illif_avl_by_ppa); 4083 if (interface->illif_ppa_arena != NULL) 4084 vmem_destroy(interface->illif_ppa_arena); 4085 4086 remque(interface); 4087 4088 mi_free(interface); 4089 } 4090 4091 /* 4092 * remove ill from the global list. 4093 */ 4094 static void 4095 ill_glist_delete(ill_t *ill) 4096 { 4097 if (ill == NULL) 4098 return; 4099 4100 rw_enter(&ill_g_lock, RW_WRITER); 4101 /* 4102 * If the ill was never inserted into the AVL tree 4103 * we skip the if branch. 4104 */ 4105 if (ill->ill_ifptr != NULL) { 4106 /* 4107 * remove from AVL tree and free ppa number 4108 */ 4109 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4110 4111 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4112 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4113 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4114 } 4115 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4116 ill_delete_interface_type(ill->ill_ifptr); 4117 } 4118 4119 /* 4120 * Indicate ill is no longer in the list. 4121 */ 4122 ill->ill_ifptr = NULL; 4123 ill->ill_name_length = 0; 4124 ill->ill_name[0] = '\0'; 4125 ill->ill_ppa = UINT_MAX; 4126 } 4127 ill_phyint_free(ill); 4128 rw_exit(&ill_g_lock); 4129 } 4130 4131 /* 4132 * allocate a ppa, if the number of plumbed interfaces of this type are 4133 * less than ill_no_arena do a linear search to find a unused ppa. 4134 * When the number goes beyond ill_no_arena switch to using an arena. 4135 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4136 * is the return value for an error condition, so allocation starts at one 4137 * and is decremented by one. 4138 */ 4139 static int 4140 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4141 { 4142 ill_t *tmp_ill; 4143 uint_t start, end; 4144 int ppa; 4145 4146 if (ifp->illif_ppa_arena == NULL && 4147 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4148 /* 4149 * Create an arena. 4150 */ 4151 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4152 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4153 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4154 /* allocate what has already been assigned */ 4155 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4156 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4157 tmp_ill, AVL_AFTER)) { 4158 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4159 1, /* size */ 4160 1, /* align/quantum */ 4161 0, /* phase */ 4162 0, /* nocross */ 4163 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4164 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4165 VM_NOSLEEP|VM_FIRSTFIT); 4166 if (ppa == 0) { 4167 ip1dbg(("ill_alloc_ppa: ppa allocation" 4168 " failed while switching")); 4169 vmem_destroy(ifp->illif_ppa_arena); 4170 ifp->illif_ppa_arena = NULL; 4171 break; 4172 } 4173 } 4174 } 4175 4176 if (ifp->illif_ppa_arena != NULL) { 4177 if (ill->ill_ppa == UINT_MAX) { 4178 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4179 1, VM_NOSLEEP|VM_FIRSTFIT); 4180 if (ppa == 0) 4181 return (EAGAIN); 4182 ill->ill_ppa = --ppa; 4183 } else { 4184 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4185 1, /* size */ 4186 1, /* align/quantum */ 4187 0, /* phase */ 4188 0, /* nocross */ 4189 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4190 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4191 VM_NOSLEEP|VM_FIRSTFIT); 4192 /* 4193 * Most likely the allocation failed because 4194 * the requested ppa was in use. 4195 */ 4196 if (ppa == 0) 4197 return (EEXIST); 4198 } 4199 return (0); 4200 } 4201 4202 /* 4203 * No arena is in use and not enough (>ill_no_arena) interfaces have 4204 * been plumbed to create one. Do a linear search to get a unused ppa. 4205 */ 4206 if (ill->ill_ppa == UINT_MAX) { 4207 end = UINT_MAX - 1; 4208 start = 0; 4209 } else { 4210 end = start = ill->ill_ppa; 4211 } 4212 4213 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4214 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4215 if (start++ >= end) { 4216 if (ill->ill_ppa == UINT_MAX) 4217 return (EAGAIN); 4218 else 4219 return (EEXIST); 4220 } 4221 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4222 } 4223 ill->ill_ppa = start; 4224 return (0); 4225 } 4226 4227 /* 4228 * Insert ill into the list of configured ill's. Once this function completes, 4229 * the ill is globally visible and is available through lookups. More precisely 4230 * this happens after the caller drops the ill_g_lock. 4231 */ 4232 static int 4233 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4234 { 4235 ill_if_t *ill_interface; 4236 avl_index_t where = 0; 4237 int error; 4238 int name_length; 4239 int index; 4240 boolean_t check_length = B_FALSE; 4241 4242 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4243 4244 name_length = mi_strlen(name) + 1; 4245 4246 if (isv6) 4247 index = IP_V6_G_HEAD; 4248 else 4249 index = IP_V4_G_HEAD; 4250 4251 ill_interface = IP_VX_ILL_G_LIST(index); 4252 /* 4253 * Search for interface type based on name 4254 */ 4255 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4256 if ((ill_interface->illif_name_len == name_length) && 4257 (strcmp(ill_interface->illif_name, name) == 0)) { 4258 break; 4259 } 4260 ill_interface = ill_interface->illif_next; 4261 } 4262 4263 /* 4264 * Interface type not found, create one. 4265 */ 4266 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4267 4268 ill_g_head_t ghead; 4269 4270 /* 4271 * allocate ill_if_t structure 4272 */ 4273 4274 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4275 if (ill_interface == NULL) { 4276 return (ENOMEM); 4277 } 4278 4279 4280 4281 (void) strcpy(ill_interface->illif_name, name); 4282 ill_interface->illif_name_len = name_length; 4283 4284 avl_create(&ill_interface->illif_avl_by_ppa, 4285 ill_compare_ppa, sizeof (ill_t), 4286 offsetof(struct ill_s, ill_avl_byppa)); 4287 4288 /* 4289 * link the structure in the back to maintain order 4290 * of configuration for ifconfig output. 4291 */ 4292 ghead = ill_g_heads[index]; 4293 insque(ill_interface, ghead.ill_g_list_tail); 4294 4295 } 4296 4297 if (ill->ill_ppa == UINT_MAX) 4298 check_length = B_TRUE; 4299 4300 error = ill_alloc_ppa(ill_interface, ill); 4301 if (error != 0) { 4302 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4303 ill_delete_interface_type(ill->ill_ifptr); 4304 return (error); 4305 } 4306 4307 /* 4308 * When the ppa is choosen by the system, check that there is 4309 * enough space to insert ppa. if a specific ppa was passed in this 4310 * check is not required as the interface name passed in will have 4311 * the right ppa in it. 4312 */ 4313 if (check_length) { 4314 /* 4315 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4316 */ 4317 char buf[sizeof (uint_t) * 3]; 4318 4319 /* 4320 * convert ppa to string to calculate the amount of space 4321 * required for it in the name. 4322 */ 4323 numtos(ill->ill_ppa, buf); 4324 4325 /* Do we have enough space to insert ppa ? */ 4326 4327 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4328 /* Free ppa and interface type struct */ 4329 if (ill_interface->illif_ppa_arena != NULL) { 4330 vmem_free(ill_interface->illif_ppa_arena, 4331 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4332 } 4333 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4334 0) { 4335 ill_delete_interface_type(ill->ill_ifptr); 4336 } 4337 4338 return (EINVAL); 4339 } 4340 } 4341 4342 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4343 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4344 4345 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4346 &where); 4347 ill->ill_ifptr = ill_interface; 4348 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4349 4350 ill_phyint_reinit(ill); 4351 return (0); 4352 } 4353 4354 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4355 static boolean_t 4356 ipsq_init(ill_t *ill) 4357 { 4358 ipsq_t *ipsq; 4359 4360 /* Init the ipsq and impicitly enter as writer */ 4361 ill->ill_phyint->phyint_ipsq = 4362 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4363 if (ill->ill_phyint->phyint_ipsq == NULL) 4364 return (B_FALSE); 4365 ipsq = ill->ill_phyint->phyint_ipsq; 4366 ipsq->ipsq_phyint_list = ill->ill_phyint; 4367 ill->ill_phyint->phyint_ipsq_next = NULL; 4368 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4369 ipsq->ipsq_refs = 1; 4370 ipsq->ipsq_writer = curthread; 4371 ipsq->ipsq_reentry_cnt = 1; 4372 #ifdef ILL_DEBUG 4373 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4374 #endif 4375 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4376 return (B_TRUE); 4377 } 4378 4379 /* 4380 * ill_init is called by ip_open when a device control stream is opened. 4381 * It does a few initializations, and shoots a DL_INFO_REQ message down 4382 * to the driver. The response is later picked up in ip_rput_dlpi and 4383 * used to set up default mechanisms for talking to the driver. (Always 4384 * called as writer.) 4385 * 4386 * If this function returns error, ip_open will call ip_close which in 4387 * turn will call ill_delete to clean up any memory allocated here that 4388 * is not yet freed. 4389 */ 4390 int 4391 ill_init(queue_t *q, ill_t *ill) 4392 { 4393 int count; 4394 dl_info_req_t *dlir; 4395 mblk_t *info_mp; 4396 uchar_t *frag_ptr; 4397 4398 /* 4399 * The ill is initialized to zero by mi_alloc*(). In addition 4400 * some fields already contain valid values, initialized in 4401 * ip_open(), before we reach here. 4402 */ 4403 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4404 4405 ill->ill_rq = q; 4406 ill->ill_wq = WR(q); 4407 4408 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4409 BPRI_HI); 4410 if (info_mp == NULL) 4411 return (ENOMEM); 4412 4413 /* 4414 * Allocate sufficient space to contain our fragment hash table and 4415 * the device name. 4416 */ 4417 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4418 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4419 if (frag_ptr == NULL) { 4420 freemsg(info_mp); 4421 return (ENOMEM); 4422 } 4423 ill->ill_frag_ptr = frag_ptr; 4424 ill->ill_frag_free_num_pkts = 0; 4425 ill->ill_last_frag_clean_time = 0; 4426 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4427 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4428 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4429 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4430 NULL, MUTEX_DEFAULT, NULL); 4431 } 4432 4433 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4434 if (ill->ill_phyint == NULL) { 4435 freemsg(info_mp); 4436 mi_free(frag_ptr); 4437 return (ENOMEM); 4438 } 4439 4440 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4441 /* 4442 * For now pretend this is a v4 ill. We need to set phyint_ill* 4443 * at this point because of the following reason. If we can't 4444 * enter the ipsq at some point and cv_wait, the writer that 4445 * wakes us up tries to locate us using the list of all phyints 4446 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4447 * If we don't set it now, we risk a missed wakeup. 4448 */ 4449 ill->ill_phyint->phyint_illv4 = ill; 4450 ill->ill_ppa = UINT_MAX; 4451 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4452 4453 if (!ipsq_init(ill)) { 4454 freemsg(info_mp); 4455 mi_free(frag_ptr); 4456 mi_free(ill->ill_phyint); 4457 return (ENOMEM); 4458 } 4459 4460 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4461 4462 4463 /* Frag queue limit stuff */ 4464 ill->ill_frag_count = 0; 4465 ill->ill_ipf_gen = 0; 4466 4467 ill->ill_global_timer = INFINITY; 4468 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4469 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4470 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4471 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4472 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4473 4474 /* 4475 * Initialize IPv6 configuration variables. The IP module is always 4476 * opened as an IPv4 module. Instead tracking down the cases where 4477 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4478 * here for convenience, this has no effect until the ill is set to do 4479 * IPv6. 4480 */ 4481 ill->ill_reachable_time = ND_REACHABLE_TIME; 4482 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4483 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4484 ill->ill_max_buf = ND_MAX_Q; 4485 ill->ill_refcnt = 0; 4486 4487 /* Send down the Info Request to the driver. */ 4488 info_mp->b_datap->db_type = M_PCPROTO; 4489 dlir = (dl_info_req_t *)info_mp->b_rptr; 4490 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4491 dlir->dl_primitive = DL_INFO_REQ; 4492 4493 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4494 4495 qprocson(q); 4496 ill_dlpi_send(ill, info_mp); 4497 4498 return (0); 4499 } 4500 4501 /* 4502 * ill_dls_info 4503 * creates datalink socket info from the device. 4504 */ 4505 int 4506 ill_dls_info(struct sockaddr_dl *sdl, ipif_t *ipif) 4507 { 4508 size_t length; 4509 ill_t *ill = ipif->ipif_ill; 4510 4511 sdl->sdl_family = AF_LINK; 4512 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4513 sdl->sdl_type = ipif->ipif_type; 4514 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4515 length = mi_strlen(sdl->sdl_data); 4516 ASSERT(length < 256); 4517 sdl->sdl_nlen = (uchar_t)length; 4518 sdl->sdl_alen = ill->ill_phys_addr_length; 4519 mutex_enter(&ill->ill_lock); 4520 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) { 4521 bcopy(ill->ill_phys_addr, &sdl->sdl_data[length], 4522 ill->ill_phys_addr_length); 4523 } 4524 mutex_exit(&ill->ill_lock); 4525 sdl->sdl_slen = 0; 4526 return (sizeof (struct sockaddr_dl)); 4527 } 4528 4529 /* 4530 * ill_xarp_info 4531 * creates xarp info from the device. 4532 */ 4533 static int 4534 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4535 { 4536 sdl->sdl_family = AF_LINK; 4537 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4538 sdl->sdl_type = ill->ill_type; 4539 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4540 sizeof (sdl->sdl_data)); 4541 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4542 sdl->sdl_alen = ill->ill_phys_addr_length; 4543 sdl->sdl_slen = 0; 4544 return (sdl->sdl_nlen); 4545 } 4546 4547 static int 4548 loopback_kstat_update(kstat_t *ksp, int rw) 4549 { 4550 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4551 4552 if (rw == KSTAT_WRITE) 4553 return (EACCES); 4554 kn[0].value.ui32 = loopback_packets; 4555 kn[1].value.ui32 = loopback_packets; 4556 return (0); 4557 } 4558 4559 4560 /* 4561 * Has ifindex been plumbed already. 4562 */ 4563 static boolean_t 4564 phyint_exists(uint_t index) 4565 { 4566 phyint_t *phyi; 4567 4568 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4569 /* 4570 * Indexes are stored in the phyint - a common structure 4571 * to both IPv4 and IPv6. 4572 */ 4573 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4574 (void *) &index, NULL); 4575 return (phyi != NULL); 4576 } 4577 4578 /* 4579 * Assign a unique interface index for the phyint. 4580 */ 4581 static boolean_t 4582 phyint_assign_ifindex(phyint_t *phyi) 4583 { 4584 uint_t starting_index; 4585 4586 ASSERT(phyi->phyint_ifindex == 0); 4587 if (!ill_index_wrap) { 4588 phyi->phyint_ifindex = ill_index++; 4589 if (ill_index == 0) { 4590 /* Reached the uint_t limit Next time wrap */ 4591 ill_index_wrap = B_TRUE; 4592 } 4593 return (B_TRUE); 4594 } 4595 4596 /* 4597 * Start reusing unused indexes. Note that we hold the ill_g_lock 4598 * at this point and don't want to call any function that attempts 4599 * to get the lock again. 4600 */ 4601 starting_index = ill_index++; 4602 for (; ill_index != starting_index; ill_index++) { 4603 if (ill_index != 0 && !phyint_exists(ill_index)) { 4604 /* found unused index - use it */ 4605 phyi->phyint_ifindex = ill_index; 4606 return (B_TRUE); 4607 } 4608 } 4609 4610 /* 4611 * all interface indicies are inuse. 4612 */ 4613 return (B_FALSE); 4614 } 4615 4616 /* 4617 * Return a pointer to the ill which matches the supplied name. Note that 4618 * the ill name length includes the null termination character. (May be 4619 * called as writer.) 4620 * If do_alloc and the interface is "lo0" it will be automatically created. 4621 * Cannot bump up reference on condemned ills. So dup detect can't be done 4622 * using this func. 4623 */ 4624 ill_t * 4625 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4626 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 4627 { 4628 ill_t *ill; 4629 ipif_t *ipif; 4630 kstat_named_t *kn; 4631 boolean_t isloopback; 4632 ipsq_t *old_ipsq; 4633 4634 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4635 4636 rw_enter(&ill_g_lock, RW_READER); 4637 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4638 rw_exit(&ill_g_lock); 4639 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4640 return (ill); 4641 4642 /* 4643 * Couldn't find it. Does this happen to be a lookup for the 4644 * loopback device and are we allowed to allocate it? 4645 */ 4646 if (!isloopback || !do_alloc) 4647 return (NULL); 4648 4649 rw_enter(&ill_g_lock, RW_WRITER); 4650 4651 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4652 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4653 rw_exit(&ill_g_lock); 4654 return (ill); 4655 } 4656 4657 /* Create the loopback device on demand */ 4658 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4659 sizeof (ipif_loopback_name), BPRI_MED)); 4660 if (ill == NULL) 4661 goto done; 4662 4663 *ill = ill_null; 4664 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4665 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4666 if (ill->ill_phyint == NULL) 4667 goto done; 4668 4669 if (isv6) 4670 ill->ill_phyint->phyint_illv6 = ill; 4671 else 4672 ill->ill_phyint->phyint_illv4 = ill; 4673 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4674 ill->ill_max_frag = IP_LOOPBACK_MTU; 4675 /* Add room for tcp+ip headers */ 4676 if (isv6) { 4677 ill->ill_isv6 = B_TRUE; 4678 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4679 if (!ill_allocate_mibs(ill)) 4680 goto done; 4681 } else { 4682 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4683 } 4684 ill->ill_max_mtu = ill->ill_max_frag; 4685 /* 4686 * ipif_loopback_name can't be pointed at directly because its used 4687 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4688 * from the glist, ill_glist_delete() sets the first character of 4689 * ill_name to '\0'. 4690 */ 4691 ill->ill_name = (char *)ill + sizeof (*ill); 4692 (void) strcpy(ill->ill_name, ipif_loopback_name); 4693 ill->ill_name_length = sizeof (ipif_loopback_name); 4694 /* Set ill_name_set for ill_phyint_reinit to work properly */ 4695 4696 ill->ill_global_timer = INFINITY; 4697 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4698 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4699 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4700 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4701 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4702 4703 /* No resolver here. */ 4704 ill->ill_net_type = IRE_LOOPBACK; 4705 4706 /* Initialize the ipsq */ 4707 if (!ipsq_init(ill)) 4708 goto done; 4709 4710 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4711 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4712 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4713 #ifdef ILL_DEBUG 4714 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4715 #endif 4716 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4717 if (ipif == NULL) 4718 goto done; 4719 4720 ill->ill_flags = ILLF_MULTICAST; 4721 4722 /* Set up default loopback address and mask. */ 4723 if (!isv6) { 4724 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4725 4726 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4727 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4728 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4729 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4730 ipif->ipif_v6subnet); 4731 ill->ill_flags |= ILLF_IPV4; 4732 } else { 4733 ipif->ipif_v6lcl_addr = ipv6_loopback; 4734 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4735 ipif->ipif_v6net_mask = ipv6_all_ones; 4736 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4737 ipif->ipif_v6subnet); 4738 ill->ill_flags |= ILLF_IPV6; 4739 } 4740 4741 /* 4742 * Chain us in at the end of the ill list. hold the ill 4743 * before we make it globally visible. 1 for the lookup. 4744 */ 4745 ill->ill_refcnt = 0; 4746 ill_refhold(ill); 4747 4748 ill->ill_frag_count = 0; 4749 ill->ill_frag_free_num_pkts = 0; 4750 ill->ill_last_frag_clean_time = 0; 4751 4752 old_ipsq = ill->ill_phyint->phyint_ipsq; 4753 4754 if (ill_glist_insert(ill, "lo", isv6) != 0) 4755 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4756 4757 /* Let SCTP know so that it can add this to its list */ 4758 sctp_update_ill(ill, SCTP_ILL_INSERT); 4759 4760 /* Let SCTP know about this IPIF, so that it can add it to its list */ 4761 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 4762 4763 /* 4764 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 4765 */ 4766 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 4767 /* Loopback ills aren't in any IPMP group */ 4768 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 4769 ipsq_delete(old_ipsq); 4770 } 4771 4772 /* 4773 * Delay this till the ipif is allocated as ipif_allocate 4774 * de-references ill_phyint for getting the ifindex. We 4775 * can't do this before ipif_allocate because ill_phyint_reinit 4776 * -> phyint_assign_ifindex expects ipif to be present. 4777 */ 4778 mutex_enter(&ill->ill_phyint->phyint_lock); 4779 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4780 mutex_exit(&ill->ill_phyint->phyint_lock); 4781 4782 if (loopback_ksp == NULL) { 4783 /* Export loopback interface statistics */ 4784 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 4785 KSTAT_TYPE_NAMED, 2, 0); 4786 if (loopback_ksp != NULL) { 4787 loopback_ksp->ks_update = loopback_kstat_update; 4788 kn = KSTAT_NAMED_PTR(loopback_ksp); 4789 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4790 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4791 kstat_install(loopback_ksp); 4792 } 4793 } 4794 4795 if (error != NULL) 4796 *error = 0; 4797 *did_alloc = B_TRUE; 4798 rw_exit(&ill_g_lock); 4799 return (ill); 4800 done: 4801 if (ill != NULL) { 4802 if (ill->ill_phyint != NULL) { 4803 ipsq_t *ipsq; 4804 4805 ipsq = ill->ill_phyint->phyint_ipsq; 4806 if (ipsq != NULL) 4807 kmem_free(ipsq, sizeof (ipsq_t)); 4808 mi_free(ill->ill_phyint); 4809 } 4810 ill_free_mib(ill); 4811 mi_free(ill); 4812 } 4813 rw_exit(&ill_g_lock); 4814 if (error != NULL) 4815 *error = ENOMEM; 4816 return (NULL); 4817 } 4818 4819 /* 4820 * Return a pointer to the ill which matches the index and IP version type. 4821 */ 4822 ill_t * 4823 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4824 ipsq_func_t func, int *err) 4825 { 4826 ill_t *ill; 4827 ipsq_t *ipsq; 4828 phyint_t *phyi; 4829 4830 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4831 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4832 4833 if (err != NULL) 4834 *err = 0; 4835 4836 /* 4837 * Indexes are stored in the phyint - a common structure 4838 * to both IPv4 and IPv6. 4839 */ 4840 rw_enter(&ill_g_lock, RW_READER); 4841 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4842 (void *) &index, NULL); 4843 if (phyi != NULL) { 4844 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 4845 if (ill != NULL) { 4846 /* 4847 * The block comment at the start of ipif_down 4848 * explains the use of the macros used below 4849 */ 4850 GRAB_CONN_LOCK(q); 4851 mutex_enter(&ill->ill_lock); 4852 if (ILL_CAN_LOOKUP(ill)) { 4853 ill_refhold_locked(ill); 4854 mutex_exit(&ill->ill_lock); 4855 RELEASE_CONN_LOCK(q); 4856 rw_exit(&ill_g_lock); 4857 return (ill); 4858 } else if (ILL_CAN_WAIT(ill, q)) { 4859 ipsq = ill->ill_phyint->phyint_ipsq; 4860 mutex_enter(&ipsq->ipsq_lock); 4861 rw_exit(&ill_g_lock); 4862 mutex_exit(&ill->ill_lock); 4863 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4864 mutex_exit(&ipsq->ipsq_lock); 4865 RELEASE_CONN_LOCK(q); 4866 *err = EINPROGRESS; 4867 return (NULL); 4868 } 4869 RELEASE_CONN_LOCK(q); 4870 mutex_exit(&ill->ill_lock); 4871 } 4872 } 4873 rw_exit(&ill_g_lock); 4874 if (err != NULL) 4875 *err = ENXIO; 4876 return (NULL); 4877 } 4878 4879 /* 4880 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4881 * that gives a running thread a reference to the ill. This reference must be 4882 * released by the thread when it is done accessing the ill and related 4883 * objects. ill_refcnt can not be used to account for static references 4884 * such as other structures pointing to an ill. Callers must generally 4885 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4886 * or be sure that the ill is not being deleted or changing state before 4887 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4888 * ill won't change any of its critical state such as address, netmask etc. 4889 */ 4890 void 4891 ill_refhold(ill_t *ill) 4892 { 4893 mutex_enter(&ill->ill_lock); 4894 ill->ill_refcnt++; 4895 ILL_TRACE_REF(ill); 4896 mutex_exit(&ill->ill_lock); 4897 } 4898 4899 void 4900 ill_refhold_locked(ill_t *ill) 4901 { 4902 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4903 ill->ill_refcnt++; 4904 ILL_TRACE_REF(ill); 4905 } 4906 4907 int 4908 ill_check_and_refhold(ill_t *ill) 4909 { 4910 mutex_enter(&ill->ill_lock); 4911 if (ILL_CAN_LOOKUP(ill)) { 4912 ill_refhold_locked(ill); 4913 mutex_exit(&ill->ill_lock); 4914 return (0); 4915 } 4916 mutex_exit(&ill->ill_lock); 4917 return (ILL_LOOKUP_FAILED); 4918 } 4919 4920 /* 4921 * Must not be called while holding any locks. Otherwise if this is 4922 * the last reference to be released, there is a chance of recursive mutex 4923 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4924 * to restart an ioctl. 4925 */ 4926 void 4927 ill_refrele(ill_t *ill) 4928 { 4929 mutex_enter(&ill->ill_lock); 4930 ASSERT(ill->ill_refcnt != 0); 4931 ill->ill_refcnt--; 4932 ILL_UNTRACE_REF(ill); 4933 if (ill->ill_refcnt != 0) { 4934 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4935 mutex_exit(&ill->ill_lock); 4936 return; 4937 } 4938 4939 /* Drops the ill_lock */ 4940 ipif_ill_refrele_tail(ill); 4941 } 4942 4943 /* 4944 * Obtain a weak reference count on the ill. This reference ensures the 4945 * ill won't be freed, but the ill may change any of its critical state 4946 * such as netmask, address etc. Returns an error if the ill has started 4947 * closing. 4948 */ 4949 boolean_t 4950 ill_waiter_inc(ill_t *ill) 4951 { 4952 mutex_enter(&ill->ill_lock); 4953 if (ill->ill_state_flags & ILL_CONDEMNED) { 4954 mutex_exit(&ill->ill_lock); 4955 return (B_FALSE); 4956 } 4957 ill->ill_waiters++; 4958 mutex_exit(&ill->ill_lock); 4959 return (B_TRUE); 4960 } 4961 4962 void 4963 ill_waiter_dcr(ill_t *ill) 4964 { 4965 mutex_enter(&ill->ill_lock); 4966 ill->ill_waiters--; 4967 if (ill->ill_waiters == 0) 4968 cv_broadcast(&ill->ill_cv); 4969 mutex_exit(&ill->ill_lock); 4970 } 4971 4972 /* 4973 * Named Dispatch routine to produce a formatted report on all ILLs. 4974 * This report is accessed by using the ndd utility to "get" ND variable 4975 * "ip_ill_status". 4976 */ 4977 /* ARGSUSED */ 4978 int 4979 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 4980 { 4981 ill_t *ill; 4982 ill_walk_context_t ctx; 4983 4984 (void) mi_mpprintf(mp, 4985 "ILL " MI_COL_HDRPAD_STR 4986 /* 01234567[89ABCDEF] */ 4987 "rq " MI_COL_HDRPAD_STR 4988 /* 01234567[89ABCDEF] */ 4989 "wq " MI_COL_HDRPAD_STR 4990 /* 01234567[89ABCDEF] */ 4991 "upcnt mxfrg err name"); 4992 /* 12345 12345 123 xxxxxxxx */ 4993 4994 rw_enter(&ill_g_lock, RW_READER); 4995 ill = ILL_START_WALK_ALL(&ctx); 4996 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4997 (void) mi_mpprintf(mp, 4998 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 4999 "%05u %05u %03d %s", 5000 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5001 ill->ill_ipif_up_count, 5002 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5003 } 5004 rw_exit(&ill_g_lock); 5005 5006 return (0); 5007 } 5008 5009 /* 5010 * Named Dispatch routine to produce a formatted report on all IPIFs. 5011 * This report is accessed by using the ndd utility to "get" ND variable 5012 * "ip_ipif_status". 5013 */ 5014 /* ARGSUSED */ 5015 int 5016 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5017 { 5018 char buf1[INET6_ADDRSTRLEN]; 5019 char buf2[INET6_ADDRSTRLEN]; 5020 char buf3[INET6_ADDRSTRLEN]; 5021 char buf4[INET6_ADDRSTRLEN]; 5022 char buf5[INET6_ADDRSTRLEN]; 5023 char buf6[INET6_ADDRSTRLEN]; 5024 char buf[LIFNAMSIZ]; 5025 ill_t *ill; 5026 ipif_t *ipif; 5027 nv_t *nvp; 5028 uint64_t flags; 5029 zoneid_t zoneid; 5030 ill_walk_context_t ctx; 5031 5032 (void) mi_mpprintf(mp, 5033 "IPIF metric mtu in/out/forward name zone flags...\n" 5034 "\tlocal address\n" 5035 "\tsrc address\n" 5036 "\tsubnet\n" 5037 "\tmask\n" 5038 "\tbroadcast\n" 5039 "\tp-p-dst"); 5040 5041 ASSERT(q->q_next == NULL); 5042 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5043 5044 rw_enter(&ill_g_lock, RW_READER); 5045 ill = ILL_START_WALK_ALL(&ctx); 5046 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5047 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 5048 if (zoneid != GLOBAL_ZONEID && 5049 zoneid != ipif->ipif_zoneid) 5050 continue; 5051 (void) mi_mpprintf(mp, 5052 MI_COL_PTRFMT_STR 5053 "%04u %05u %u/%u/%u %s %d", 5054 (void *)ipif, 5055 ipif->ipif_metric, ipif->ipif_mtu, 5056 ipif->ipif_ib_pkt_count, 5057 ipif->ipif_ob_pkt_count, 5058 ipif->ipif_fo_pkt_count, 5059 ipif_get_name(ipif, buf, sizeof (buf)), 5060 ipif->ipif_zoneid); 5061 5062 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5063 ipif->ipif_ill->ill_phyint->phyint_flags; 5064 5065 /* Tack on text strings for any flags. */ 5066 nvp = ipif_nv_tbl; 5067 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5068 if (nvp->nv_value & flags) 5069 (void) mi_mpprintf_nr(mp, " %s", 5070 nvp->nv_name); 5071 } 5072 (void) mi_mpprintf(mp, 5073 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5074 inet_ntop(AF_INET6, 5075 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5076 inet_ntop(AF_INET6, 5077 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5078 inet_ntop(AF_INET6, 5079 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5080 inet_ntop(AF_INET6, 5081 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5082 inet_ntop(AF_INET6, 5083 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5084 inet_ntop(AF_INET6, 5085 &ipif->ipif_v6pp_dst_addr, 5086 buf6, sizeof (buf6))); 5087 } 5088 } 5089 rw_exit(&ill_g_lock); 5090 return (0); 5091 } 5092 5093 /* 5094 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5095 * driver. We construct best guess defaults for lower level information that 5096 * we need. If an interface is brought up without injection of any overriding 5097 * information from outside, we have to be ready to go with these defaults. 5098 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5099 * we primarely want the dl_provider_style. 5100 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5101 * at which point we assume the other part of the information is valid. 5102 */ 5103 void 5104 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5105 { 5106 uchar_t *brdcst_addr; 5107 uint_t brdcst_addr_length, phys_addr_length; 5108 t_scalar_t sap_length; 5109 dl_info_ack_t *dlia; 5110 ip_m_t *ipm; 5111 dl_qos_cl_sel1_t *sel1; 5112 5113 ASSERT(IAM_WRITER_ILL(ill)); 5114 5115 /* 5116 * Till the ill is fully up ILL_CHANGING will be set and 5117 * the ill is not globally visible. So no need for a lock. 5118 */ 5119 dlia = (dl_info_ack_t *)mp->b_rptr; 5120 ill->ill_mactype = dlia->dl_mac_type; 5121 5122 ipm = ip_m_lookup(dlia->dl_mac_type); 5123 if (ipm == NULL) { 5124 ipm = ip_m_lookup(DL_OTHER); 5125 ASSERT(ipm != NULL); 5126 } 5127 ill->ill_media = ipm; 5128 5129 /* 5130 * When the new DLPI stuff is ready we'll pull lengths 5131 * from dlia. 5132 */ 5133 if (dlia->dl_version == DL_VERSION_2) { 5134 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5135 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5136 brdcst_addr_length); 5137 if (brdcst_addr == NULL) { 5138 brdcst_addr_length = 0; 5139 } 5140 sap_length = dlia->dl_sap_length; 5141 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5142 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5143 brdcst_addr_length, sap_length, phys_addr_length)); 5144 } else { 5145 brdcst_addr_length = 6; 5146 brdcst_addr = ip_six_byte_all_ones; 5147 sap_length = -2; 5148 phys_addr_length = brdcst_addr_length; 5149 } 5150 5151 ill->ill_bcast_addr_length = brdcst_addr_length; 5152 ill->ill_phys_addr_length = phys_addr_length; 5153 ill->ill_sap_length = sap_length; 5154 ill->ill_max_frag = dlia->dl_max_sdu; 5155 ill->ill_max_mtu = ill->ill_max_frag; 5156 5157 ill->ill_type = ipm->ip_m_type; 5158 5159 if (!ill->ill_dlpi_style_set) { 5160 if (dlia->dl_provider_style == DL_STYLE2) 5161 ill->ill_needs_attach = 1; 5162 5163 /* 5164 * Allocate the first ipif on this ill. We don't delay it 5165 * further as ioctl handling assumes atleast one ipif to 5166 * be present. 5167 * 5168 * At this point we don't know whether the ill is v4 or v6. 5169 * We will know this whan the SIOCSLIFNAME happens and 5170 * the correct value for ill_isv6 will be assigned in 5171 * ipif_set_values(). We need to hold the ill lock and 5172 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5173 * the wakeup. 5174 */ 5175 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5176 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5177 mutex_enter(&ill->ill_lock); 5178 ASSERT(ill->ill_dlpi_style_set == 0); 5179 ill->ill_dlpi_style_set = 1; 5180 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5181 cv_broadcast(&ill->ill_cv); 5182 mutex_exit(&ill->ill_lock); 5183 freemsg(mp); 5184 return; 5185 } 5186 ASSERT(ill->ill_ipif != NULL); 5187 /* 5188 * We know whether it is IPv4 or IPv6 now, as this is the 5189 * second DL_INFO_ACK we are recieving in response to the 5190 * DL_INFO_REQ sent in ipif_set_values. 5191 */ 5192 if (ill->ill_isv6) 5193 ill->ill_sap = IP6_DL_SAP; 5194 else 5195 ill->ill_sap = IP_DL_SAP; 5196 /* 5197 * Set ipif_mtu which is used to set the IRE's 5198 * ire_max_frag value. The driver could have sent 5199 * a different mtu from what it sent last time. No 5200 * need to call ipif_mtu_change because IREs have 5201 * not yet been created. 5202 */ 5203 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5204 /* 5205 * Clear all the flags that were set based on ill_bcast_addr_length 5206 * and ill_phys_addr_length (in ipif_set_values) as these could have 5207 * changed now and we need to re-evaluate. 5208 */ 5209 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5210 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5211 5212 /* 5213 * Free ill_resolver_mp and ill_bcast_mp as things could have 5214 * changed now. 5215 */ 5216 if (ill->ill_bcast_addr_length == 0) { 5217 if (ill->ill_resolver_mp != NULL) 5218 freemsg(ill->ill_resolver_mp); 5219 if (ill->ill_bcast_mp != NULL) 5220 freemsg(ill->ill_bcast_mp); 5221 if (ill->ill_flags & ILLF_XRESOLV) 5222 ill->ill_net_type = IRE_IF_RESOLVER; 5223 else 5224 ill->ill_net_type = IRE_IF_NORESOLVER; 5225 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5226 ill->ill_phys_addr_length, 5227 ill->ill_sap, 5228 ill->ill_sap_length); 5229 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5230 5231 if (ill->ill_isv6) 5232 /* 5233 * Note: xresolv interfaces will eventually need NOARP 5234 * set here as well, but that will require those 5235 * external resolvers to have some knowledge of 5236 * that flag and act appropriately. Not to be changed 5237 * at present. 5238 */ 5239 ill->ill_flags |= ILLF_NONUD; 5240 else 5241 ill->ill_flags |= ILLF_NOARP; 5242 5243 if (ill->ill_phys_addr_length == 0) { 5244 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5245 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5246 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5247 } else { 5248 /* pt-pt supports multicast. */ 5249 ill->ill_flags |= ILLF_MULTICAST; 5250 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5251 } 5252 } 5253 } else { 5254 ill->ill_net_type = IRE_IF_RESOLVER; 5255 if (ill->ill_bcast_mp != NULL) 5256 freemsg(ill->ill_bcast_mp); 5257 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5258 ill->ill_bcast_addr_length, ill->ill_sap, 5259 ill->ill_sap_length); 5260 /* 5261 * Later detect lack of DLPI driver multicast 5262 * capability by catching DL_ENABMULTI errors in 5263 * ip_rput_dlpi. 5264 */ 5265 ill->ill_flags |= ILLF_MULTICAST; 5266 if (!ill->ill_isv6) 5267 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5268 } 5269 /* By default an interface does not support any CoS marking */ 5270 ill->ill_flags &= ~ILLF_COS_ENABLED; 5271 5272 /* 5273 * If we get QoS information in DL_INFO_ACK, the device supports 5274 * some form of CoS marking, set ILLF_COS_ENABLED. 5275 */ 5276 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5277 dlia->dl_qos_length); 5278 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5279 ill->ill_flags |= ILLF_COS_ENABLED; 5280 } 5281 5282 /* Clear any previous error indication. */ 5283 ill->ill_error = 0; 5284 freemsg(mp); 5285 } 5286 5287 /* 5288 * Perform various checks to verify that an address would make sense as a 5289 * local, remote, or subnet interface address. 5290 */ 5291 static boolean_t 5292 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5293 { 5294 ipaddr_t net_mask; 5295 5296 /* 5297 * Don't allow all zeroes, all ones or experimental address, but allow 5298 * all ones netmask. 5299 */ 5300 if ((net_mask = ip_net_mask(addr)) == 0) 5301 return (B_FALSE); 5302 /* A given netmask overrides the "guess" netmask */ 5303 if (subnet_mask != 0) 5304 net_mask = subnet_mask; 5305 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5306 (addr == (addr | ~net_mask)))) { 5307 return (B_FALSE); 5308 } 5309 if (CLASSD(addr)) 5310 return (B_FALSE); 5311 5312 return (B_TRUE); 5313 } 5314 5315 /* 5316 * ipif_lookup_group 5317 * Returns held ipif 5318 */ 5319 ipif_t * 5320 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5321 { 5322 ire_t *ire; 5323 ipif_t *ipif; 5324 5325 ire = ire_lookup_multi(group, zoneid); 5326 if (ire == NULL) 5327 return (NULL); 5328 ipif = ire->ire_ipif; 5329 ipif_refhold(ipif); 5330 ire_refrele(ire); 5331 return (ipif); 5332 } 5333 5334 /* 5335 * Look for an ipif with the specified interface address and destination. 5336 * The destination address is used only for matching point-to-point interfaces. 5337 */ 5338 ipif_t * 5339 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5340 ipsq_func_t func, int *error) 5341 { 5342 ipif_t *ipif; 5343 ill_t *ill; 5344 ill_walk_context_t ctx; 5345 ipsq_t *ipsq; 5346 5347 if (error != NULL) 5348 *error = 0; 5349 5350 /* 5351 * First match all the point-to-point interfaces 5352 * before looking at non-point-to-point interfaces. 5353 * This is done to avoid returning non-point-to-point 5354 * ipif instead of unnumbered point-to-point ipif. 5355 */ 5356 rw_enter(&ill_g_lock, RW_READER); 5357 ill = ILL_START_WALK_V4(&ctx); 5358 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5359 GRAB_CONN_LOCK(q); 5360 mutex_enter(&ill->ill_lock); 5361 for (ipif = ill->ill_ipif; ipif != NULL; 5362 ipif = ipif->ipif_next) { 5363 /* Allow the ipif to be down */ 5364 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5365 (ipif->ipif_lcl_addr == if_addr) && 5366 (ipif->ipif_pp_dst_addr == dst)) { 5367 /* 5368 * The block comment at the start of ipif_down 5369 * explains the use of the macros used below 5370 */ 5371 if (IPIF_CAN_LOOKUP(ipif)) { 5372 ipif_refhold_locked(ipif); 5373 mutex_exit(&ill->ill_lock); 5374 RELEASE_CONN_LOCK(q); 5375 rw_exit(&ill_g_lock); 5376 return (ipif); 5377 } else if (IPIF_CAN_WAIT(ipif, q)) { 5378 ipsq = ill->ill_phyint->phyint_ipsq; 5379 mutex_enter(&ipsq->ipsq_lock); 5380 mutex_exit(&ill->ill_lock); 5381 rw_exit(&ill_g_lock); 5382 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5383 ill); 5384 mutex_exit(&ipsq->ipsq_lock); 5385 RELEASE_CONN_LOCK(q); 5386 *error = EINPROGRESS; 5387 return (NULL); 5388 } 5389 } 5390 } 5391 mutex_exit(&ill->ill_lock); 5392 RELEASE_CONN_LOCK(q); 5393 } 5394 rw_exit(&ill_g_lock); 5395 5396 /* lookup the ipif based on interface address */ 5397 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5398 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5399 return (ipif); 5400 } 5401 5402 /* 5403 * Look for an ipif with the specified address. For point-point links 5404 * we look for matches on either the destination address and the local 5405 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5406 * is set. 5407 * Matches on a specific ill if match_ill is set. 5408 */ 5409 ipif_t * 5410 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5411 mblk_t *mp, ipsq_func_t func, int *error) 5412 { 5413 ipif_t *ipif; 5414 ill_t *ill; 5415 boolean_t ptp = B_FALSE; 5416 ipsq_t *ipsq; 5417 ill_walk_context_t ctx; 5418 5419 if (error != NULL) 5420 *error = 0; 5421 5422 rw_enter(&ill_g_lock, RW_READER); 5423 /* 5424 * Repeat twice, first based on local addresses and 5425 * next time for pointopoint. 5426 */ 5427 repeat: 5428 ill = ILL_START_WALK_V4(&ctx); 5429 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5430 if (match_ill != NULL && ill != match_ill) { 5431 continue; 5432 } 5433 GRAB_CONN_LOCK(q); 5434 mutex_enter(&ill->ill_lock); 5435 for (ipif = ill->ill_ipif; ipif != NULL; 5436 ipif = ipif->ipif_next) { 5437 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid) 5438 continue; 5439 /* Allow the ipif to be down */ 5440 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5441 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5442 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5443 (ipif->ipif_pp_dst_addr == addr))) { 5444 /* 5445 * The block comment at the start of ipif_down 5446 * explains the use of the macros used below 5447 */ 5448 if (IPIF_CAN_LOOKUP(ipif)) { 5449 ipif_refhold_locked(ipif); 5450 mutex_exit(&ill->ill_lock); 5451 RELEASE_CONN_LOCK(q); 5452 rw_exit(&ill_g_lock); 5453 return (ipif); 5454 } else if (IPIF_CAN_WAIT(ipif, q)) { 5455 ipsq = ill->ill_phyint->phyint_ipsq; 5456 mutex_enter(&ipsq->ipsq_lock); 5457 mutex_exit(&ill->ill_lock); 5458 rw_exit(&ill_g_lock); 5459 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5460 ill); 5461 mutex_exit(&ipsq->ipsq_lock); 5462 RELEASE_CONN_LOCK(q); 5463 *error = EINPROGRESS; 5464 return (NULL); 5465 } 5466 } 5467 } 5468 mutex_exit(&ill->ill_lock); 5469 RELEASE_CONN_LOCK(q); 5470 } 5471 5472 /* Now try the ptp case */ 5473 if (ptp) { 5474 rw_exit(&ill_g_lock); 5475 if (error != NULL) 5476 *error = ENXIO; 5477 return (NULL); 5478 } 5479 ptp = B_TRUE; 5480 goto repeat; 5481 } 5482 5483 /* 5484 * Look for an ipif that matches the specified remote address i.e. the 5485 * ipif that would receive the specified packet. 5486 * First look for directly connected interfaces and then do a recursive 5487 * IRE lookup and pick the first ipif corresponding to the source address in the 5488 * ire. 5489 * Returns: held ipif 5490 */ 5491 ipif_t * 5492 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5493 { 5494 ipif_t *ipif; 5495 ire_t *ire; 5496 5497 ASSERT(!ill->ill_isv6); 5498 5499 /* 5500 * Someone could be changing this ipif currently or change it 5501 * after we return this. Thus a few packets could use the old 5502 * old values. However structure updates/creates (ire, ilg, ilm etc) 5503 * will atomically be updated or cleaned up with the new value 5504 * Thus we don't need a lock to check the flags or other attrs below. 5505 */ 5506 mutex_enter(&ill->ill_lock); 5507 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5508 if (!IPIF_CAN_LOOKUP(ipif)) 5509 continue; 5510 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid) 5511 continue; 5512 /* Allow the ipif to be down */ 5513 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5514 if ((ipif->ipif_pp_dst_addr == addr) || 5515 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5516 ipif->ipif_lcl_addr == addr)) { 5517 ipif_refhold_locked(ipif); 5518 mutex_exit(&ill->ill_lock); 5519 return (ipif); 5520 } 5521 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5522 ipif_refhold_locked(ipif); 5523 mutex_exit(&ill->ill_lock); 5524 return (ipif); 5525 } 5526 } 5527 mutex_exit(&ill->ill_lock); 5528 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5529 MATCH_IRE_RECURSIVE); 5530 if (ire != NULL) { 5531 /* 5532 * The callers of this function wants to know the 5533 * interface on which they have to send the replies 5534 * back. For IRE_CACHES that have ire_stq and ire_ipif 5535 * derived from different ills, we really don't care 5536 * what we return here. 5537 */ 5538 ipif = ire->ire_ipif; 5539 if (ipif != NULL) { 5540 ipif_refhold(ipif); 5541 ire_refrele(ire); 5542 return (ipif); 5543 } 5544 ire_refrele(ire); 5545 } 5546 /* Pick the first interface */ 5547 ipif = ipif_get_next_ipif(NULL, ill); 5548 return (ipif); 5549 } 5550 5551 /* 5552 * This func does not prevent refcnt from increasing. But if 5553 * the caller has taken steps to that effect, then this func 5554 * can be used to determine whether the ill has become quiescent 5555 */ 5556 boolean_t 5557 ill_is_quiescent(ill_t *ill) 5558 { 5559 ipif_t *ipif; 5560 5561 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5562 5563 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5564 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5565 return (B_FALSE); 5566 } 5567 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 5568 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 5569 ill->ill_mrtun_refcnt != 0) 5570 return (B_FALSE); 5571 return (B_TRUE); 5572 } 5573 5574 /* 5575 * This func does not prevent refcnt from increasing. But if 5576 * the caller has taken steps to that effect, then this func 5577 * can be used to determine whether the ipif has become quiescent 5578 */ 5579 static boolean_t 5580 ipif_is_quiescent(ipif_t *ipif) 5581 { 5582 ill_t *ill; 5583 5584 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5585 5586 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5587 return (B_FALSE); 5588 5589 ill = ipif->ipif_ill; 5590 if (ill->ill_ipif_up_count != 0 || ill->ill_logical_down) 5591 return (B_TRUE); 5592 5593 /* This is the last ipif going down or being deleted on this ill */ 5594 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) 5595 return (B_FALSE); 5596 5597 return (B_TRUE); 5598 } 5599 5600 /* 5601 * This func does not prevent refcnt from increasing. But if 5602 * the caller has taken steps to that effect, then this func 5603 * can be used to determine whether the ipifs marked with IPIF_MOVING 5604 * have become quiescent and can be moved in a failover/failback. 5605 */ 5606 static ipif_t * 5607 ill_quiescent_to_move(ill_t *ill) 5608 { 5609 ipif_t *ipif; 5610 5611 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5612 5613 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5614 if (ipif->ipif_state_flags & IPIF_MOVING) { 5615 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5616 return (ipif); 5617 } 5618 } 5619 } 5620 return (NULL); 5621 } 5622 5623 /* 5624 * The ipif/ill/ire has been refreled. Do the tail processing. 5625 * Determine if the ipif or ill in question has become quiescent and if so 5626 * wakeup close and/or restart any queued pending ioctl that is waiting 5627 * for the ipif_down (or ill_down) 5628 */ 5629 void 5630 ipif_ill_refrele_tail(ill_t *ill) 5631 { 5632 mblk_t *mp; 5633 conn_t *connp; 5634 ipsq_t *ipsq; 5635 ipif_t *ipif; 5636 5637 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5638 5639 if ((ill->ill_state_flags & ILL_CONDEMNED) && 5640 ill_is_quiescent(ill)) { 5641 /* ill_close may be waiting */ 5642 cv_broadcast(&ill->ill_cv); 5643 } 5644 5645 /* ipsq can't change because ill_lock is held */ 5646 ipsq = ill->ill_phyint->phyint_ipsq; 5647 if (ipsq->ipsq_waitfor == 0) { 5648 /* Not waiting for anything, just return. */ 5649 mutex_exit(&ill->ill_lock); 5650 return; 5651 } 5652 ASSERT(ipsq->ipsq_pending_mp != NULL && 5653 ipsq->ipsq_pending_ipif != NULL); 5654 /* 5655 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 5656 * Last ipif going down needs to down the ill, so ill_ire_cnt must 5657 * be zero for restarting an ioctl that ends up downing the ill. 5658 */ 5659 ipif = ipsq->ipsq_pending_ipif; 5660 if (ipif->ipif_ill != ill) { 5661 /* The ioctl is pending on some other ill. */ 5662 mutex_exit(&ill->ill_lock); 5663 return; 5664 } 5665 5666 switch (ipsq->ipsq_waitfor) { 5667 case IPIF_DOWN: 5668 case IPIF_FREE: 5669 if (!ipif_is_quiescent(ipif)) { 5670 mutex_exit(&ill->ill_lock); 5671 return; 5672 } 5673 break; 5674 5675 case ILL_DOWN: 5676 case ILL_FREE: 5677 /* 5678 * case ILL_FREE arises only for loopback. otherwise ill_delete 5679 * waits synchronously in ip_close, and no message is queued in 5680 * ipsq_pending_mp at all in this case 5681 */ 5682 if (!ill_is_quiescent(ill)) { 5683 mutex_exit(&ill->ill_lock); 5684 return; 5685 } 5686 5687 break; 5688 5689 case ILL_MOVE_OK: 5690 if (ill_quiescent_to_move(ill) != NULL) { 5691 mutex_exit(&ill->ill_lock); 5692 return; 5693 } 5694 5695 break; 5696 default: 5697 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 5698 (void *)ipsq, ipsq->ipsq_waitfor); 5699 } 5700 5701 /* 5702 * Incr refcnt for the qwriter_ip call below which 5703 * does a refrele 5704 */ 5705 ill_refhold_locked(ill); 5706 mutex_exit(&ill->ill_lock); 5707 5708 mp = ipsq_pending_mp_get(ipsq, &connp); 5709 ASSERT(mp != NULL); 5710 5711 switch (mp->b_datap->db_type) { 5712 case M_ERROR: 5713 case M_HANGUP: 5714 (void) qwriter_ip(NULL, ill, ill->ill_rq, mp, 5715 ipif_all_down_tail, CUR_OP, B_TRUE); 5716 return; 5717 5718 case M_IOCTL: 5719 case M_IOCDATA: 5720 (void) qwriter_ip(NULL, ill, 5721 (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, 5722 ip_reprocess_ioctl, CUR_OP, B_TRUE); 5723 return; 5724 5725 default: 5726 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5727 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5728 } 5729 } 5730 5731 #ifdef ILL_DEBUG 5732 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5733 void 5734 th_trace_rrecord(th_trace_t *th_trace) 5735 { 5736 tr_buf_t *tr_buf; 5737 uint_t lastref; 5738 5739 lastref = th_trace->th_trace_lastref; 5740 lastref++; 5741 if (lastref == TR_BUF_MAX) 5742 lastref = 0; 5743 th_trace->th_trace_lastref = lastref; 5744 tr_buf = &th_trace->th_trbuf[lastref]; 5745 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 5746 } 5747 5748 th_trace_t * 5749 th_trace_ipif_lookup(ipif_t *ipif) 5750 { 5751 int bucket_id; 5752 th_trace_t *th_trace; 5753 5754 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5755 5756 bucket_id = IP_TR_HASH(curthread); 5757 ASSERT(bucket_id < IP_TR_HASH_MAX); 5758 5759 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 5760 th_trace = th_trace->th_next) { 5761 if (th_trace->th_id == curthread) 5762 return (th_trace); 5763 } 5764 return (NULL); 5765 } 5766 5767 void 5768 ipif_trace_ref(ipif_t *ipif) 5769 { 5770 int bucket_id; 5771 th_trace_t *th_trace; 5772 5773 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5774 5775 if (ipif->ipif_trace_disable) 5776 return; 5777 5778 /* 5779 * Attempt to locate the trace buffer for the curthread. 5780 * If it does not exist, then allocate a new trace buffer 5781 * and link it in list of trace bufs for this ipif, at the head 5782 */ 5783 th_trace = th_trace_ipif_lookup(ipif); 5784 if (th_trace == NULL) { 5785 bucket_id = IP_TR_HASH(curthread); 5786 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5787 KM_NOSLEEP); 5788 if (th_trace == NULL) { 5789 ipif->ipif_trace_disable = B_TRUE; 5790 ipif_trace_cleanup(ipif); 5791 return; 5792 } 5793 th_trace->th_id = curthread; 5794 th_trace->th_next = ipif->ipif_trace[bucket_id]; 5795 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 5796 if (th_trace->th_next != NULL) 5797 th_trace->th_next->th_prev = &th_trace->th_next; 5798 ipif->ipif_trace[bucket_id] = th_trace; 5799 } 5800 ASSERT(th_trace->th_refcnt >= 0 && 5801 th_trace->th_refcnt < TR_BUF_MAX -1); 5802 th_trace->th_refcnt++; 5803 th_trace_rrecord(th_trace); 5804 } 5805 5806 void 5807 ipif_untrace_ref(ipif_t *ipif) 5808 { 5809 th_trace_t *th_trace; 5810 5811 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5812 5813 if (ipif->ipif_trace_disable) 5814 return; 5815 th_trace = th_trace_ipif_lookup(ipif); 5816 ASSERT(th_trace != NULL); 5817 ASSERT(th_trace->th_refcnt > 0); 5818 5819 th_trace->th_refcnt--; 5820 th_trace_rrecord(th_trace); 5821 } 5822 5823 th_trace_t * 5824 th_trace_ill_lookup(ill_t *ill) 5825 { 5826 th_trace_t *th_trace; 5827 int bucket_id; 5828 5829 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5830 5831 bucket_id = IP_TR_HASH(curthread); 5832 ASSERT(bucket_id < IP_TR_HASH_MAX); 5833 5834 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 5835 th_trace = th_trace->th_next) { 5836 if (th_trace->th_id == curthread) 5837 return (th_trace); 5838 } 5839 return (NULL); 5840 } 5841 5842 void 5843 ill_trace_ref(ill_t *ill) 5844 { 5845 int bucket_id; 5846 th_trace_t *th_trace; 5847 5848 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5849 if (ill->ill_trace_disable) 5850 return; 5851 /* 5852 * Attempt to locate the trace buffer for the curthread. 5853 * If it does not exist, then allocate a new trace buffer 5854 * and link it in list of trace bufs for this ill, at the head 5855 */ 5856 th_trace = th_trace_ill_lookup(ill); 5857 if (th_trace == NULL) { 5858 bucket_id = IP_TR_HASH(curthread); 5859 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5860 KM_NOSLEEP); 5861 if (th_trace == NULL) { 5862 ill->ill_trace_disable = B_TRUE; 5863 ill_trace_cleanup(ill); 5864 return; 5865 } 5866 th_trace->th_id = curthread; 5867 th_trace->th_next = ill->ill_trace[bucket_id]; 5868 th_trace->th_prev = &ill->ill_trace[bucket_id]; 5869 if (th_trace->th_next != NULL) 5870 th_trace->th_next->th_prev = &th_trace->th_next; 5871 ill->ill_trace[bucket_id] = th_trace; 5872 } 5873 ASSERT(th_trace->th_refcnt >= 0 && 5874 th_trace->th_refcnt < TR_BUF_MAX - 1); 5875 5876 th_trace->th_refcnt++; 5877 th_trace_rrecord(th_trace); 5878 } 5879 5880 void 5881 ill_untrace_ref(ill_t *ill) 5882 { 5883 th_trace_t *th_trace; 5884 5885 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5886 5887 if (ill->ill_trace_disable) 5888 return; 5889 th_trace = th_trace_ill_lookup(ill); 5890 ASSERT(th_trace != NULL); 5891 ASSERT(th_trace->th_refcnt > 0); 5892 5893 th_trace->th_refcnt--; 5894 th_trace_rrecord(th_trace); 5895 } 5896 5897 /* 5898 * Verify that this thread has no refs to the ipif and free 5899 * the trace buffers 5900 */ 5901 /* ARGSUSED */ 5902 void 5903 ipif_thread_exit(ipif_t *ipif, void *dummy) 5904 { 5905 th_trace_t *th_trace; 5906 5907 mutex_enter(&ipif->ipif_ill->ill_lock); 5908 5909 th_trace = th_trace_ipif_lookup(ipif); 5910 if (th_trace == NULL) { 5911 mutex_exit(&ipif->ipif_ill->ill_lock); 5912 return; 5913 } 5914 ASSERT(th_trace->th_refcnt == 0); 5915 /* unlink th_trace and free it */ 5916 *th_trace->th_prev = th_trace->th_next; 5917 if (th_trace->th_next != NULL) 5918 th_trace->th_next->th_prev = th_trace->th_prev; 5919 th_trace->th_next = NULL; 5920 th_trace->th_prev = NULL; 5921 kmem_free(th_trace, sizeof (th_trace_t)); 5922 5923 mutex_exit(&ipif->ipif_ill->ill_lock); 5924 } 5925 5926 /* 5927 * Verify that this thread has no refs to the ill and free 5928 * the trace buffers 5929 */ 5930 /* ARGSUSED */ 5931 void 5932 ill_thread_exit(ill_t *ill, void *dummy) 5933 { 5934 th_trace_t *th_trace; 5935 5936 mutex_enter(&ill->ill_lock); 5937 5938 th_trace = th_trace_ill_lookup(ill); 5939 if (th_trace == NULL) { 5940 mutex_exit(&ill->ill_lock); 5941 return; 5942 } 5943 ASSERT(th_trace->th_refcnt == 0); 5944 /* unlink th_trace and free it */ 5945 *th_trace->th_prev = th_trace->th_next; 5946 if (th_trace->th_next != NULL) 5947 th_trace->th_next->th_prev = th_trace->th_prev; 5948 th_trace->th_next = NULL; 5949 th_trace->th_prev = NULL; 5950 kmem_free(th_trace, sizeof (th_trace_t)); 5951 5952 mutex_exit(&ill->ill_lock); 5953 } 5954 #endif 5955 5956 #ifdef ILL_DEBUG 5957 void 5958 ip_thread_exit(void) 5959 { 5960 ill_t *ill; 5961 ipif_t *ipif; 5962 ill_walk_context_t ctx; 5963 5964 rw_enter(&ill_g_lock, RW_READER); 5965 ill = ILL_START_WALK_ALL(&ctx); 5966 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5967 for (ipif = ill->ill_ipif; ipif != NULL; 5968 ipif = ipif->ipif_next) { 5969 ipif_thread_exit(ipif, NULL); 5970 } 5971 ill_thread_exit(ill, NULL); 5972 } 5973 rw_exit(&ill_g_lock); 5974 5975 ire_walk(ire_thread_exit, NULL); 5976 ndp_walk_impl(NULL, nce_thread_exit, NULL, B_FALSE); 5977 } 5978 5979 /* 5980 * Called when ipif is unplumbed or when memory alloc fails 5981 */ 5982 void 5983 ipif_trace_cleanup(ipif_t *ipif) 5984 { 5985 int i; 5986 th_trace_t *th_trace; 5987 th_trace_t *th_trace_next; 5988 5989 for (i = 0; i < IP_TR_HASH_MAX; i++) { 5990 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 5991 th_trace = th_trace_next) { 5992 th_trace_next = th_trace->th_next; 5993 kmem_free(th_trace, sizeof (th_trace_t)); 5994 } 5995 ipif->ipif_trace[i] = NULL; 5996 } 5997 } 5998 5999 /* 6000 * Called when ill is unplumbed or when memory alloc fails 6001 */ 6002 void 6003 ill_trace_cleanup(ill_t *ill) 6004 { 6005 int i; 6006 th_trace_t *th_trace; 6007 th_trace_t *th_trace_next; 6008 6009 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6010 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6011 th_trace = th_trace_next) { 6012 th_trace_next = th_trace->th_next; 6013 kmem_free(th_trace, sizeof (th_trace_t)); 6014 } 6015 ill->ill_trace[i] = NULL; 6016 } 6017 } 6018 6019 #else 6020 void ip_thread_exit(void) {} 6021 #endif 6022 6023 void 6024 ipif_refhold_locked(ipif_t *ipif) 6025 { 6026 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6027 ipif->ipif_refcnt++; 6028 IPIF_TRACE_REF(ipif); 6029 } 6030 6031 void 6032 ipif_refhold(ipif_t *ipif) 6033 { 6034 ill_t *ill; 6035 6036 ill = ipif->ipif_ill; 6037 mutex_enter(&ill->ill_lock); 6038 ipif->ipif_refcnt++; 6039 IPIF_TRACE_REF(ipif); 6040 mutex_exit(&ill->ill_lock); 6041 } 6042 6043 /* 6044 * Must not be called while holding any locks. Otherwise if this is 6045 * the last reference to be released there is a chance of recursive mutex 6046 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6047 * to restart an ioctl. 6048 */ 6049 void 6050 ipif_refrele(ipif_t *ipif) 6051 { 6052 ill_t *ill; 6053 6054 ill = ipif->ipif_ill; 6055 6056 mutex_enter(&ill->ill_lock); 6057 ASSERT(ipif->ipif_refcnt != 0); 6058 ipif->ipif_refcnt--; 6059 IPIF_UNTRACE_REF(ipif); 6060 if (ipif->ipif_refcnt != 0) { 6061 mutex_exit(&ill->ill_lock); 6062 return; 6063 } 6064 6065 /* Drops the ill_lock */ 6066 ipif_ill_refrele_tail(ill); 6067 } 6068 6069 ipif_t * 6070 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6071 { 6072 ipif_t *ipif; 6073 6074 mutex_enter(&ill->ill_lock); 6075 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6076 ipif != NULL; ipif = ipif->ipif_next) { 6077 if (!IPIF_CAN_LOOKUP(ipif)) 6078 continue; 6079 ipif_refhold_locked(ipif); 6080 mutex_exit(&ill->ill_lock); 6081 return (ipif); 6082 } 6083 mutex_exit(&ill->ill_lock); 6084 return (NULL); 6085 } 6086 6087 /* 6088 * TODO: make this table extendible at run time 6089 * Return a pointer to the mac type info for 'mac_type' 6090 */ 6091 static ip_m_t * 6092 ip_m_lookup(t_uscalar_t mac_type) 6093 { 6094 ip_m_t *ipm; 6095 6096 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6097 if (ipm->ip_m_mac_type == mac_type) 6098 return (ipm); 6099 return (NULL); 6100 } 6101 6102 /* 6103 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6104 * ipif_arg is passed in to associate it with the correct interface. 6105 * We may need to restart this operation if the ipif cannot be looked up 6106 * due to an exclusive operation that is currently in progress. The restart 6107 * entry point is specified by 'func' 6108 */ 6109 int 6110 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6111 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6112 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6113 ipsq_func_t func) 6114 { 6115 ire_t *ire; 6116 ire_t *gw_ire = NULL; 6117 ipif_t *ipif = NULL; 6118 boolean_t ipif_refheld = B_FALSE; 6119 uint_t type; 6120 int match_flags = MATCH_IRE_TYPE; 6121 int error; 6122 6123 ip1dbg(("ip_rt_add:")); 6124 6125 if (ire_arg != NULL) 6126 *ire_arg = NULL; 6127 6128 /* 6129 * If this is the case of RTF_HOST being set, then we set the netmask 6130 * to all ones (regardless if one was supplied). 6131 */ 6132 if (flags & RTF_HOST) 6133 mask = IP_HOST_MASK; 6134 6135 /* 6136 * Prevent routes with a zero gateway from being created (since 6137 * interfaces can currently be plumbed and brought up no assigned 6138 * address). 6139 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6140 */ 6141 if (gw_addr == 0 && src_ipif == NULL) 6142 return (ENETUNREACH); 6143 /* 6144 * Get the ipif, if any, corresponding to the gw_addr 6145 */ 6146 if (gw_addr != 0) { 6147 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6148 &error); 6149 if (ipif != NULL) { 6150 if (IS_VNI(ipif->ipif_ill)) { 6151 ipif_refrele(ipif); 6152 return (EINVAL); 6153 } 6154 ipif_refheld = B_TRUE; 6155 } else if (error == EINPROGRESS) { 6156 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6157 return (EINPROGRESS); 6158 } else { 6159 error = 0; 6160 } 6161 } 6162 6163 if (ipif != NULL) { 6164 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6165 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6166 } else { 6167 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6168 } 6169 6170 /* 6171 * GateD will attempt to create routes with a loopback interface 6172 * address as the gateway and with RTF_GATEWAY set. We allow 6173 * these routes to be added, but create them as interface routes 6174 * since the gateway is an interface address. 6175 */ 6176 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) 6177 flags &= ~RTF_GATEWAY; 6178 6179 /* 6180 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6181 * and the gateway address provided is one of the system's interface 6182 * addresses. By using the routing socket interface and supplying an 6183 * RTA_IFP sockaddr with an interface index, an alternate method of 6184 * specifying an interface route to be created is available which uses 6185 * the interface index that specifies the outgoing interface rather than 6186 * the address of an outgoing interface (which may not be able to 6187 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6188 * flag, routes can be specified which not only specify the next-hop to 6189 * be used when routing to a certain prefix, but also which outgoing 6190 * interface should be used. 6191 * 6192 * Previously, interfaces would have unique addresses assigned to them 6193 * and so the address assigned to a particular interface could be used 6194 * to identify a particular interface. One exception to this was the 6195 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6196 * 6197 * With the advent of IPv6 and its link-local addresses, this 6198 * restriction was relaxed and interfaces could share addresses between 6199 * themselves. In fact, typically all of the link-local interfaces on 6200 * an IPv6 node or router will have the same link-local address. In 6201 * order to differentiate between these interfaces, the use of an 6202 * interface index is necessary and this index can be carried inside a 6203 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6204 * of using the interface index, however, is that all of the ipif's that 6205 * are part of an ill have the same index and so the RTA_IFP sockaddr 6206 * cannot be used to differentiate between ipif's (or logical 6207 * interfaces) that belong to the same ill (physical interface). 6208 * 6209 * For example, in the following case involving IPv4 interfaces and 6210 * logical interfaces 6211 * 6212 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6213 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6214 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6215 * 6216 * the ipif's corresponding to each of these interface routes can be 6217 * uniquely identified by the "gateway" (actually interface address). 6218 * 6219 * In this case involving multiple IPv6 default routes to a particular 6220 * link-local gateway, the use of RTA_IFP is necessary to specify which 6221 * default route is of interest: 6222 * 6223 * default fe80::123:4567:89ab:cdef U if0 6224 * default fe80::123:4567:89ab:cdef U if1 6225 */ 6226 6227 /* RTF_GATEWAY not set */ 6228 if (!(flags & RTF_GATEWAY)) { 6229 queue_t *stq; 6230 queue_t *rfq = NULL; 6231 ill_t *in_ill = NULL; 6232 6233 /* 6234 * As the interface index specified with the RTA_IFP sockaddr is 6235 * the same for all ipif's off of an ill, the matching logic 6236 * below uses MATCH_IRE_ILL if such an index was specified. 6237 * This means that routes sharing the same prefix when added 6238 * using a RTA_IFP sockaddr must have distinct interface 6239 * indices (namely, they must be on distinct ill's). 6240 * 6241 * On the other hand, since the gateway address will usually be 6242 * different for each ipif on the system, the matching logic 6243 * uses MATCH_IRE_IPIF in the case of a traditional interface 6244 * route. This means that interface routes for the same prefix 6245 * can be created if they belong to distinct ipif's and if a 6246 * RTA_IFP sockaddr is not present. 6247 */ 6248 if (ipif_arg != NULL) { 6249 if (ipif_refheld) { 6250 ipif_refrele(ipif); 6251 ipif_refheld = B_FALSE; 6252 } 6253 ipif = ipif_arg; 6254 match_flags |= MATCH_IRE_ILL; 6255 } else { 6256 /* 6257 * Check the ipif corresponding to the gw_addr 6258 */ 6259 if (ipif == NULL) 6260 return (ENETUNREACH); 6261 match_flags |= MATCH_IRE_IPIF; 6262 } 6263 ASSERT(ipif != NULL); 6264 /* 6265 * If src_ipif is not NULL, we have to create 6266 * an ire with non-null ire_in_ill value 6267 */ 6268 if (src_ipif != NULL) { 6269 in_ill = src_ipif->ipif_ill; 6270 } 6271 6272 /* 6273 * We check for an existing entry at this point. 6274 * 6275 * Since a netmask isn't passed in via the ioctl interface 6276 * (SIOCADDRT), we don't check for a matching netmask in that 6277 * case. 6278 */ 6279 if (!ioctl_msg) 6280 match_flags |= MATCH_IRE_MASK; 6281 if (src_ipif != NULL) { 6282 /* Look up in the special table */ 6283 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6284 ipif, src_ipif->ipif_ill, match_flags); 6285 } else { 6286 ire = ire_ftable_lookup(dst_addr, mask, 0, 6287 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6288 match_flags); 6289 } 6290 if (ire != NULL) { 6291 ire_refrele(ire); 6292 if (ipif_refheld) 6293 ipif_refrele(ipif); 6294 return (EEXIST); 6295 } 6296 6297 if (src_ipif != NULL) { 6298 /* 6299 * Create the special ire for the IRE table 6300 * which hangs out of ire_in_ill. This ire 6301 * is in-between IRE_CACHE and IRE_INTERFACE. 6302 * Thus rfq is non-NULL. 6303 */ 6304 rfq = ipif->ipif_rq; 6305 } 6306 /* Create the usual interface ires */ 6307 6308 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6309 ? ipif->ipif_rq : ipif->ipif_wq; 6310 6311 /* 6312 * Create a copy of the IRE_LOOPBACK, 6313 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6314 * the modified address and netmask. 6315 */ 6316 ire = ire_create( 6317 (uchar_t *)&dst_addr, 6318 (uint8_t *)&mask, 6319 (uint8_t *)&ipif->ipif_src_addr, 6320 NULL, 6321 NULL, 6322 &ipif->ipif_mtu, 6323 NULL, 6324 rfq, 6325 stq, 6326 ipif->ipif_net_type, 6327 ipif->ipif_resolver_mp, 6328 ipif, 6329 in_ill, 6330 0, 6331 0, 6332 0, 6333 flags, 6334 &ire_uinfo_null); 6335 if (ire == NULL) { 6336 if (ipif_refheld) 6337 ipif_refrele(ipif); 6338 return (ENOMEM); 6339 } 6340 6341 /* 6342 * Some software (for example, GateD and Sun Cluster) attempts 6343 * to create (what amount to) IRE_PREFIX routes with the 6344 * loopback address as the gateway. This is primarily done to 6345 * set up prefixes with the RTF_REJECT flag set (for example, 6346 * when generating aggregate routes.) 6347 * 6348 * If the IRE type (as defined by ipif->ipif_net_type) is 6349 * IRE_LOOPBACK, then we map the request into a 6350 * IRE_IF_NORESOLVER. 6351 * 6352 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6353 * routine, but rather using ire_create() directly. 6354 */ 6355 if (ipif->ipif_net_type == IRE_LOOPBACK) 6356 ire->ire_type = IRE_IF_NORESOLVER; 6357 error = ire_add(&ire, q, mp, func); 6358 if (error == 0) 6359 goto save_ire; 6360 6361 /* 6362 * In the result of failure, ire_add() will have already 6363 * deleted the ire in question, so there is no need to 6364 * do that here. 6365 */ 6366 if (ipif_refheld) 6367 ipif_refrele(ipif); 6368 return (error); 6369 } 6370 if (ipif_refheld) { 6371 ipif_refrele(ipif); 6372 ipif_refheld = B_FALSE; 6373 } 6374 6375 if (src_ipif != NULL) { 6376 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 6377 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 6378 return (EINVAL); 6379 } 6380 /* 6381 * Get an interface IRE for the specified gateway. 6382 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6383 * gateway, it is currently unreachable and we fail the request 6384 * accordingly. 6385 */ 6386 ipif = ipif_arg; 6387 if (ipif_arg != NULL) 6388 match_flags |= MATCH_IRE_ILL; 6389 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6390 ALL_ZONES, 0, match_flags); 6391 if (gw_ire == NULL) 6392 return (ENETUNREACH); 6393 6394 /* 6395 * We create one of three types of IREs as a result of this request 6396 * based on the netmask. A netmask of all ones (which is automatically 6397 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6398 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6399 * created. Otherwise, an IRE_PREFIX route is created for the 6400 * destination prefix. 6401 */ 6402 if (mask == IP_HOST_MASK) 6403 type = IRE_HOST; 6404 else if (mask == 0) 6405 type = IRE_DEFAULT; 6406 else 6407 type = IRE_PREFIX; 6408 6409 /* check for a duplicate entry */ 6410 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6411 NULL, ALL_ZONES, 0, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 6412 if (ire != NULL) { 6413 ire_refrele(gw_ire); 6414 ire_refrele(ire); 6415 return (EEXIST); 6416 } 6417 6418 /* Create the IRE. */ 6419 ire = ire_create( 6420 (uchar_t *)&dst_addr, /* dest address */ 6421 (uchar_t *)&mask, /* mask */ 6422 /* src address assigned by the caller? */ 6423 (uchar_t *)(((src_addr != INADDR_ANY) && 6424 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6425 (uchar_t *)&gw_addr, /* gateway address */ 6426 NULL, /* no in-srcaddress */ 6427 &gw_ire->ire_max_frag, 6428 NULL, /* no Fast Path header */ 6429 NULL, /* no recv-from queue */ 6430 NULL, /* no send-to queue */ 6431 (ushort_t)type, /* IRE type */ 6432 NULL, 6433 ipif_arg, 6434 NULL, 6435 0, 6436 0, 6437 0, 6438 flags, 6439 &gw_ire->ire_uinfo); /* Inherit ULP info from gw */ 6440 if (ire == NULL) { 6441 ire_refrele(gw_ire); 6442 return (ENOMEM); 6443 } 6444 6445 /* 6446 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6447 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6448 */ 6449 6450 /* Add the new IRE. */ 6451 error = ire_add(&ire, q, mp, func); 6452 if (error != 0) { 6453 /* 6454 * In the result of failure, ire_add() will have already 6455 * deleted the ire in question, so there is no need to 6456 * do that here. 6457 */ 6458 ire_refrele(gw_ire); 6459 return (error); 6460 } 6461 6462 if (flags & RTF_MULTIRT) { 6463 /* 6464 * Invoke the CGTP (multirouting) filtering module 6465 * to add the dst address in the filtering database. 6466 * Replicated inbound packets coming from that address 6467 * will be filtered to discard the duplicates. 6468 * It is not necessary to call the CGTP filter hook 6469 * when the dst address is a broadcast or multicast, 6470 * because an IP source address cannot be a broadcast 6471 * or a multicast. 6472 */ 6473 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6474 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 6475 if (ire_dst != NULL) { 6476 ip_cgtp_bcast_add(ire, ire_dst); 6477 ire_refrele(ire_dst); 6478 goto save_ire; 6479 } 6480 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 6481 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 6482 ire->ire_addr, 6483 ire->ire_gateway_addr, 6484 ire->ire_src_addr, 6485 gw_ire->ire_src_addr); 6486 if (res != 0) { 6487 ire_refrele(gw_ire); 6488 ire_delete(ire); 6489 return (res); 6490 } 6491 } 6492 } 6493 6494 save_ire: 6495 if (gw_ire != NULL) { 6496 ire_refrele(gw_ire); 6497 } 6498 /* 6499 * We do not do save_ire for the routes added with RTA_SRCIFP 6500 * flag. This route is only added and deleted by mipagent. 6501 * So, for simplicity of design, we refrain from saving 6502 * ires that are created with srcif value. This may change 6503 * in future if we find more usage of srcifp feature. 6504 */ 6505 if (ipif != NULL && src_ipif == NULL) { 6506 /* 6507 * Save enough information so that we can recreate the IRE if 6508 * the interface goes down and then up. The metrics associated 6509 * with the route will be saved as well when rts_setmetrics() is 6510 * called after the IRE has been created. In the case where 6511 * memory cannot be allocated, none of this information will be 6512 * saved. 6513 */ 6514 ipif_save_ire(ipif, ire); 6515 } 6516 if (ioctl_msg) 6517 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 6518 if (ire_arg != NULL) { 6519 /* 6520 * Store the ire that was successfully added into where ire_arg 6521 * points to so that callers don't have to look it up 6522 * themselves (but they are responsible for ire_refrele()ing 6523 * the ire when they are finished with it). 6524 */ 6525 *ire_arg = ire; 6526 } else { 6527 ire_refrele(ire); /* Held in ire_add */ 6528 } 6529 if (ipif_refheld) 6530 ipif_refrele(ipif); 6531 return (0); 6532 } 6533 6534 /* 6535 * ip_rt_delete is called to delete an IPv4 route. 6536 * ipif_arg is passed in to associate it with the correct interface. 6537 * src_ipif is passed to associate the incoming interface of the packet. 6538 * We may need to restart this operation if the ipif cannot be looked up 6539 * due to an exclusive operation that is currently in progress. The restart 6540 * entry point is specified by 'func' 6541 */ 6542 /* ARGSUSED4 */ 6543 int 6544 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6545 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6546 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 6547 { 6548 ire_t *ire = NULL; 6549 ipif_t *ipif; 6550 boolean_t ipif_refheld = B_FALSE; 6551 uint_t type; 6552 uint_t match_flags = MATCH_IRE_TYPE; 6553 int err = 0; 6554 6555 ip1dbg(("ip_rt_delete:")); 6556 /* 6557 * If this is the case of RTF_HOST being set, then we set the netmask 6558 * to all ones. Otherwise, we use the netmask if one was supplied. 6559 */ 6560 if (flags & RTF_HOST) { 6561 mask = IP_HOST_MASK; 6562 match_flags |= MATCH_IRE_MASK; 6563 } else if (rtm_addrs & RTA_NETMASK) { 6564 match_flags |= MATCH_IRE_MASK; 6565 } 6566 6567 /* 6568 * Note that RTF_GATEWAY is never set on a delete, therefore 6569 * we check if the gateway address is one of our interfaces first, 6570 * and fall back on RTF_GATEWAY routes. 6571 * 6572 * This makes it possible to delete an original 6573 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6574 * 6575 * As the interface index specified with the RTA_IFP sockaddr is the 6576 * same for all ipif's off of an ill, the matching logic below uses 6577 * MATCH_IRE_ILL if such an index was specified. This means a route 6578 * sharing the same prefix and interface index as the the route 6579 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 6580 * is specified in the request. 6581 * 6582 * On the other hand, since the gateway address will usually be 6583 * different for each ipif on the system, the matching logic 6584 * uses MATCH_IRE_IPIF in the case of a traditional interface 6585 * route. This means that interface routes for the same prefix can be 6586 * uniquely identified if they belong to distinct ipif's and if a 6587 * RTA_IFP sockaddr is not present. 6588 * 6589 * For more detail on specifying routes by gateway address and by 6590 * interface index, see the comments in ip_rt_add(). 6591 * gw_addr could be zero in some cases when both RTA_SRCIFP and 6592 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 6593 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 6594 * succeed. 6595 */ 6596 if (src_ipif != NULL) { 6597 if (ipif_arg == NULL && gw_addr != 0) { 6598 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 6599 q, mp, func, &err); 6600 if (ipif_arg != NULL) 6601 ipif_refheld = B_TRUE; 6602 } 6603 if (ipif_arg == NULL) { 6604 err = (err == EINPROGRESS) ? err : ESRCH; 6605 return (err); 6606 } 6607 ipif = ipif_arg; 6608 } else { 6609 ipif = ipif_lookup_interface(gw_addr, dst_addr, 6610 q, mp, func, &err); 6611 if (ipif != NULL) 6612 ipif_refheld = B_TRUE; 6613 else if (err == EINPROGRESS) 6614 return (err); 6615 else 6616 err = 0; 6617 } 6618 if (ipif != NULL) { 6619 if (ipif_arg != NULL) { 6620 if (ipif_refheld) { 6621 ipif_refrele(ipif); 6622 ipif_refheld = B_FALSE; 6623 } 6624 ipif = ipif_arg; 6625 match_flags |= MATCH_IRE_ILL; 6626 } else { 6627 match_flags |= MATCH_IRE_IPIF; 6628 } 6629 if (src_ipif != NULL) { 6630 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6631 ipif, src_ipif->ipif_ill, match_flags); 6632 } else { 6633 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6634 ire = ire_ctable_lookup(dst_addr, 0, 6635 IRE_LOOPBACK, ipif, ALL_ZONES, match_flags); 6636 } 6637 if (ire == NULL) { 6638 ire = ire_ftable_lookup(dst_addr, mask, 0, 6639 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6640 match_flags); 6641 } 6642 } 6643 } 6644 6645 if (ire == NULL) { 6646 /* 6647 * At this point, the gateway address is not one of our own 6648 * addresses or a matching interface route was not found. We 6649 * set the IRE type to lookup based on whether 6650 * this is a host route, a default route or just a prefix. 6651 * 6652 * If an ipif_arg was passed in, then the lookup is based on an 6653 * interface index so MATCH_IRE_ILL is added to match_flags. 6654 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 6655 * set as the route being looked up is not a traditional 6656 * interface route. 6657 * Since we do not add gateway route with srcipif, we don't 6658 * expect to find it either. 6659 */ 6660 if (src_ipif != NULL) { 6661 if (ipif_refheld) 6662 ipif_refrele(ipif); 6663 return (ESRCH); 6664 } else { 6665 match_flags &= ~MATCH_IRE_IPIF; 6666 match_flags |= MATCH_IRE_GW; 6667 if (ipif_arg != NULL) 6668 match_flags |= MATCH_IRE_ILL; 6669 if (mask == IP_HOST_MASK) 6670 type = IRE_HOST; 6671 else if (mask == 0) 6672 type = IRE_DEFAULT; 6673 else 6674 type = IRE_PREFIX; 6675 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 6676 ipif_arg, NULL, ALL_ZONES, 0, match_flags); 6677 if (ire == NULL && type == IRE_HOST) { 6678 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, 6679 IRE_HOST_REDIRECT, ipif_arg, NULL, 6680 ALL_ZONES, 0, match_flags); 6681 } 6682 } 6683 } 6684 6685 if (ipif_refheld) 6686 ipif_refrele(ipif); 6687 6688 /* ipif is not refheld anymore */ 6689 if (ire == NULL) 6690 return (ESRCH); 6691 6692 if (ire->ire_flags & RTF_MULTIRT) { 6693 /* 6694 * Invoke the CGTP (multirouting) filtering module 6695 * to remove the dst address from the filtering database. 6696 * Packets coming from that address will no longer be 6697 * filtered to remove duplicates. 6698 */ 6699 if (ip_cgtp_filter_ops != NULL) { 6700 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 6701 ire->ire_gateway_addr); 6702 } 6703 ip_cgtp_bcast_delete(ire); 6704 } 6705 6706 ipif = ire->ire_ipif; 6707 /* 6708 * Removing from ipif_saved_ire_mp is not necessary 6709 * when src_ipif being non-NULL. ip_rt_add does not 6710 * save the ires which src_ipif being non-NULL. 6711 */ 6712 if (ipif != NULL && src_ipif == NULL) { 6713 ipif_remove_ire(ipif, ire); 6714 } 6715 if (ioctl_msg) 6716 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 6717 ire_delete(ire); 6718 ire_refrele(ire); 6719 return (err); 6720 } 6721 6722 /* 6723 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6724 */ 6725 /* ARGSUSED */ 6726 int 6727 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6728 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6729 { 6730 ipaddr_t dst_addr; 6731 ipaddr_t gw_addr; 6732 ipaddr_t mask; 6733 int error = 0; 6734 mblk_t *mp1; 6735 struct rtentry *rt; 6736 ipif_t *ipif = NULL; 6737 6738 ip1dbg(("ip_siocaddrt:")); 6739 /* Existence of mp1 verified in ip_wput_nondata */ 6740 mp1 = mp->b_cont->b_cont; 6741 rt = (struct rtentry *)mp1->b_rptr; 6742 6743 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6744 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6745 6746 /* 6747 * If the RTF_HOST flag is on, this is a request to assign a gateway 6748 * to a particular host address. In this case, we set the netmask to 6749 * all ones for the particular destination address. Otherwise, 6750 * determine the netmask to be used based on dst_addr and the interfaces 6751 * in use. 6752 */ 6753 if (rt->rt_flags & RTF_HOST) { 6754 mask = IP_HOST_MASK; 6755 } else { 6756 /* 6757 * Note that ip_subnet_mask returns a zero mask in the case of 6758 * default (an all-zeroes address). 6759 */ 6760 mask = ip_subnet_mask(dst_addr, &ipif); 6761 } 6762 6763 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, 6764 NULL, NULL, NULL, B_TRUE, q, mp, ip_process_ioctl); 6765 if (ipif != NULL) 6766 ipif_refrele(ipif); 6767 return (error); 6768 } 6769 6770 /* 6771 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6772 */ 6773 /* ARGSUSED */ 6774 int 6775 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6776 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6777 { 6778 ipaddr_t dst_addr; 6779 ipaddr_t gw_addr; 6780 ipaddr_t mask; 6781 int error; 6782 mblk_t *mp1; 6783 struct rtentry *rt; 6784 ipif_t *ipif = NULL; 6785 6786 ip1dbg(("ip_siocdelrt:")); 6787 /* Existence of mp1 verified in ip_wput_nondata */ 6788 mp1 = mp->b_cont->b_cont; 6789 rt = (struct rtentry *)mp1->b_rptr; 6790 6791 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6792 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6793 6794 /* 6795 * If the RTF_HOST flag is on, this is a request to delete a gateway 6796 * to a particular host address. In this case, we set the netmask to 6797 * all ones for the particular destination address. Otherwise, 6798 * determine the netmask to be used based on dst_addr and the interfaces 6799 * in use. 6800 */ 6801 if (rt->rt_flags & RTF_HOST) { 6802 mask = IP_HOST_MASK; 6803 } else { 6804 /* 6805 * Note that ip_subnet_mask returns a zero mask in the case of 6806 * default (an all-zeroes address). 6807 */ 6808 mask = ip_subnet_mask(dst_addr, &ipif); 6809 } 6810 6811 error = ip_rt_delete(dst_addr, mask, gw_addr, 6812 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 6813 B_TRUE, q, mp, ip_process_ioctl); 6814 if (ipif != NULL) 6815 ipif_refrele(ipif); 6816 return (error); 6817 } 6818 6819 /* 6820 * Enqueue the mp onto the ipsq, chained by b_next. 6821 * b_prev stores the function to be executed later, and b_queue the queue 6822 * where this mp originated. 6823 */ 6824 void 6825 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6826 ill_t *pending_ill) 6827 { 6828 conn_t *connp = NULL; 6829 6830 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6831 ASSERT(func != NULL); 6832 6833 mp->b_queue = q; 6834 mp->b_prev = (void *)func; 6835 mp->b_next = NULL; 6836 6837 switch (type) { 6838 case CUR_OP: 6839 if (ipsq->ipsq_mptail != NULL) { 6840 ASSERT(ipsq->ipsq_mphead != NULL); 6841 ipsq->ipsq_mptail->b_next = mp; 6842 } else { 6843 ASSERT(ipsq->ipsq_mphead == NULL); 6844 ipsq->ipsq_mphead = mp; 6845 } 6846 ipsq->ipsq_mptail = mp; 6847 break; 6848 6849 case NEW_OP: 6850 if (ipsq->ipsq_xopq_mptail != NULL) { 6851 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6852 ipsq->ipsq_xopq_mptail->b_next = mp; 6853 } else { 6854 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6855 ipsq->ipsq_xopq_mphead = mp; 6856 } 6857 ipsq->ipsq_xopq_mptail = mp; 6858 break; 6859 default: 6860 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6861 } 6862 6863 if (CONN_Q(q) && pending_ill != NULL) { 6864 connp = Q_TO_CONN(q); 6865 6866 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6867 connp->conn_oper_pending_ill = pending_ill; 6868 } 6869 } 6870 6871 /* 6872 * Return the mp at the head of the ipsq. After emptying the ipsq 6873 * look at the next ioctl, if this ioctl is complete. Otherwise 6874 * return, we will resume when we complete the current ioctl. 6875 * The current ioctl will wait till it gets a response from the 6876 * driver below. 6877 */ 6878 static mblk_t * 6879 ipsq_dq(ipsq_t *ipsq) 6880 { 6881 mblk_t *mp; 6882 6883 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6884 6885 mp = ipsq->ipsq_mphead; 6886 if (mp != NULL) { 6887 ipsq->ipsq_mphead = mp->b_next; 6888 if (ipsq->ipsq_mphead == NULL) 6889 ipsq->ipsq_mptail = NULL; 6890 mp->b_next = NULL; 6891 return (mp); 6892 } 6893 if (ipsq->ipsq_current_ipif != NULL) 6894 return (NULL); 6895 mp = ipsq->ipsq_xopq_mphead; 6896 if (mp != NULL) { 6897 ipsq->ipsq_xopq_mphead = mp->b_next; 6898 if (ipsq->ipsq_xopq_mphead == NULL) 6899 ipsq->ipsq_xopq_mptail = NULL; 6900 mp->b_next = NULL; 6901 return (mp); 6902 } 6903 return (NULL); 6904 } 6905 6906 /* 6907 * Enter the ipsq corresponding to ill, by waiting synchronously till 6908 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6909 * will have to drain completely before ipsq_enter returns success. 6910 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 6911 * and the ipsq_exit logic will start the next enqueued ioctl after 6912 * completion of the current ioctl. If 'force' is used, we don't wait 6913 * for the enqueued ioctls. This is needed when a conn_close wants to 6914 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6915 * of an ill can also use this option. But we dont' use it currently. 6916 */ 6917 #define ENTER_SQ_WAIT_TICKS 100 6918 boolean_t 6919 ipsq_enter(ill_t *ill, boolean_t force) 6920 { 6921 ipsq_t *ipsq; 6922 boolean_t waited_enough = B_FALSE; 6923 6924 /* 6925 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 6926 * Since the <ill-ipsq> assocs could change while we wait for the 6927 * writer, it is easier to wait on a fixed global rather than try to 6928 * cv_wait on a changing ipsq. 6929 */ 6930 mutex_enter(&ill->ill_lock); 6931 for (;;) { 6932 if (ill->ill_state_flags & ILL_CONDEMNED) { 6933 mutex_exit(&ill->ill_lock); 6934 return (B_FALSE); 6935 } 6936 6937 ipsq = ill->ill_phyint->phyint_ipsq; 6938 mutex_enter(&ipsq->ipsq_lock); 6939 if (ipsq->ipsq_writer == NULL && 6940 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 6941 break; 6942 } else if (ipsq->ipsq_writer != NULL) { 6943 mutex_exit(&ipsq->ipsq_lock); 6944 cv_wait(&ill->ill_cv, &ill->ill_lock); 6945 } else { 6946 mutex_exit(&ipsq->ipsq_lock); 6947 if (force) { 6948 (void) cv_timedwait(&ill->ill_cv, 6949 &ill->ill_lock, 6950 lbolt + ENTER_SQ_WAIT_TICKS); 6951 waited_enough = B_TRUE; 6952 continue; 6953 } else { 6954 cv_wait(&ill->ill_cv, &ill->ill_lock); 6955 } 6956 } 6957 } 6958 6959 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 6960 ASSERT(ipsq->ipsq_reentry_cnt == 0); 6961 ipsq->ipsq_writer = curthread; 6962 ipsq->ipsq_reentry_cnt++; 6963 #ifdef ILL_DEBUG 6964 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 6965 #endif 6966 mutex_exit(&ipsq->ipsq_lock); 6967 mutex_exit(&ill->ill_lock); 6968 return (B_TRUE); 6969 } 6970 6971 /* 6972 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6973 * certain critical operations like plumbing (i.e. most set ioctls), 6974 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 6975 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 6976 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 6977 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 6978 * threads executing in the ipsq. Responses from the driver pertain to the 6979 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 6980 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 6981 * 6982 * If a thread does not want to reenter the ipsq when it is already writer, 6983 * it must make sure that the specified reentry point to be called later 6984 * when the ipsq is empty, nor any code path starting from the specified reentry 6985 * point must never ever try to enter the ipsq again. Otherwise it can lead 6986 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6987 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6988 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 6989 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 6990 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6991 * ioctl if the current ioctl has completed. If the current ioctl is still 6992 * in progress it simply returns. The current ioctl could be waiting for 6993 * a response from another module (arp_ or the driver or could be waiting for 6994 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 6995 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 6996 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6997 * ipsq_current_ipif is clear which happens only on ioctl completion. 6998 */ 6999 7000 /* 7001 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7002 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7003 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7004 * completion. 7005 */ 7006 ipsq_t * 7007 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7008 ipsq_func_t func, int type, boolean_t reentry_ok) 7009 { 7010 ipsq_t *ipsq; 7011 7012 /* Only 1 of ipif or ill can be specified */ 7013 ASSERT((ipif != NULL) ^ (ill != NULL)); 7014 if (ipif != NULL) 7015 ill = ipif->ipif_ill; 7016 7017 /* 7018 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7019 * ipsq of an ill can't change when ill_lock is held. 7020 */ 7021 GRAB_CONN_LOCK(q); 7022 mutex_enter(&ill->ill_lock); 7023 ipsq = ill->ill_phyint->phyint_ipsq; 7024 mutex_enter(&ipsq->ipsq_lock); 7025 7026 /* 7027 * 1. Enter the ipsq if we are already writer and reentry is ok. 7028 * (Note: If the caller does not specify reentry_ok then neither 7029 * 'func' nor any of its callees must ever attempt to enter the ipsq 7030 * again. Otherwise it can lead to an infinite loop 7031 * 2. Enter the ipsq if there is no current writer and this attempted 7032 * entry is part of the current ioctl or operation 7033 * 3. Enter the ipsq if there is no current writer and this is a new 7034 * ioctl (or operation) and the ioctl (or operation) queue is 7035 * empty and there is no ioctl (or operation) currently in progress 7036 */ 7037 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7038 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7039 ipsq->ipsq_current_ipif == NULL))) || 7040 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7041 /* Success. */ 7042 ipsq->ipsq_reentry_cnt++; 7043 ipsq->ipsq_writer = curthread; 7044 mutex_exit(&ipsq->ipsq_lock); 7045 mutex_exit(&ill->ill_lock); 7046 RELEASE_CONN_LOCK(q); 7047 #ifdef ILL_DEBUG 7048 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7049 #endif 7050 return (ipsq); 7051 } 7052 7053 ipsq_enq(ipsq, q, mp, func, type, ill); 7054 7055 mutex_exit(&ipsq->ipsq_lock); 7056 mutex_exit(&ill->ill_lock); 7057 RELEASE_CONN_LOCK(q); 7058 return (NULL); 7059 } 7060 7061 /* 7062 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7063 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7064 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7065 * completion. 7066 * 7067 * This function does a refrele on the ipif/ill. 7068 */ 7069 void 7070 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7071 ipsq_func_t func, int type, boolean_t reentry_ok) 7072 { 7073 ipsq_t *ipsq; 7074 7075 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7076 /* 7077 * Caller must have done a refhold on the ipif. ipif_refrele 7078 * happens on the passed ipif. We can do this since we are 7079 * already exclusive, or we won't access ipif henceforth, Both 7080 * this func and caller will just return if we ipsq_try_enter 7081 * fails above. This is needed because func needs to 7082 * see the correct refcount. Eg. removeif can work only then. 7083 */ 7084 if (ipif != NULL) 7085 ipif_refrele(ipif); 7086 else 7087 ill_refrele(ill); 7088 if (ipsq != NULL) { 7089 (*func)(ipsq, q, mp, NULL); 7090 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7091 } 7092 } 7093 7094 /* 7095 * If there are more than ILL_GRP_CNT ills in a group, 7096 * we use kmem alloc'd buffers, else use the stack 7097 */ 7098 #define ILL_GRP_CNT 14 7099 /* 7100 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7101 * Called by a thread that is currently exclusive on this ipsq. 7102 */ 7103 void 7104 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7105 { 7106 queue_t *q; 7107 mblk_t *mp; 7108 ipsq_func_t func; 7109 int next; 7110 ill_t **ill_list = NULL; 7111 size_t ill_list_size = 0; 7112 int cnt = 0; 7113 boolean_t need_ipsq_free = B_FALSE; 7114 7115 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7116 mutex_enter(&ipsq->ipsq_lock); 7117 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7118 if (ipsq->ipsq_reentry_cnt != 1) { 7119 ipsq->ipsq_reentry_cnt--; 7120 mutex_exit(&ipsq->ipsq_lock); 7121 return; 7122 } 7123 7124 mp = ipsq_dq(ipsq); 7125 while (mp != NULL) { 7126 again: 7127 mutex_exit(&ipsq->ipsq_lock); 7128 func = (ipsq_func_t)mp->b_prev; 7129 q = (queue_t *)mp->b_queue; 7130 mp->b_prev = NULL; 7131 mp->b_queue = NULL; 7132 7133 /* 7134 * If 'q' is an conn queue, it is valid, since we did a 7135 * a refhold on the connp, at the start of the ioctl. 7136 * If 'q' is an ill queue, it is valid, since close of an 7137 * ill will clean up the 'ipsq'. 7138 */ 7139 (*func)(ipsq, q, mp, NULL); 7140 7141 mutex_enter(&ipsq->ipsq_lock); 7142 mp = ipsq_dq(ipsq); 7143 } 7144 7145 mutex_exit(&ipsq->ipsq_lock); 7146 7147 /* 7148 * Need to grab the locks in the right order. Need to 7149 * atomically check (under ipsq_lock) that there are no 7150 * messages before relinquishing the ipsq. Also need to 7151 * atomically wakeup waiters on ill_cv while holding ill_lock. 7152 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7153 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7154 * to grab ill_g_lock as writer. 7155 */ 7156 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7157 7158 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7159 if (ipsq->ipsq_refs != 0) { 7160 /* At most 2 ills v4/v6 per phyint */ 7161 cnt = ipsq->ipsq_refs << 1; 7162 ill_list_size = cnt * sizeof (ill_t *); 7163 /* 7164 * If memory allocation fails, we will do the split 7165 * the next time ipsq_exit is called for whatever reason. 7166 * As long as the ipsq_split flag is set the need to 7167 * split is remembered. 7168 */ 7169 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7170 if (ill_list != NULL) 7171 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7172 } 7173 mutex_enter(&ipsq->ipsq_lock); 7174 mp = ipsq_dq(ipsq); 7175 if (mp != NULL) { 7176 /* oops, some message has landed up, we can't get out */ 7177 if (ill_list != NULL) 7178 ill_unlock_ills(ill_list, cnt); 7179 rw_exit(&ill_g_lock); 7180 if (ill_list != NULL) 7181 kmem_free(ill_list, ill_list_size); 7182 ill_list = NULL; 7183 ill_list_size = 0; 7184 cnt = 0; 7185 goto again; 7186 } 7187 7188 /* 7189 * Split only if no ioctl is pending and if memory alloc succeeded 7190 * above. 7191 */ 7192 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7193 ill_list != NULL) { 7194 /* 7195 * No new ill can join this ipsq since we are holding the 7196 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7197 * ipsq. ill_split_ipsq may fail due to memory shortage. 7198 * If so we will retry on the next ipsq_exit. 7199 */ 7200 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7201 } 7202 7203 /* 7204 * We are holding the ipsq lock, hence no new messages can 7205 * land up on the ipsq, and there are no messages currently. 7206 * Now safe to get out. Wake up waiters and relinquish ipsq 7207 * atomically while holding ill locks. 7208 */ 7209 ipsq->ipsq_writer = NULL; 7210 ipsq->ipsq_reentry_cnt--; 7211 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7212 #ifdef ILL_DEBUG 7213 ipsq->ipsq_depth = 0; 7214 #endif 7215 mutex_exit(&ipsq->ipsq_lock); 7216 /* 7217 * For IPMP this should wake up all ills in this ipsq. 7218 * We need to hold the ill_lock while waking up waiters to 7219 * avoid missed wakeups. But there is no need to acquire all 7220 * the ill locks and then wakeup. If we have not acquired all 7221 * the locks (due to memory failure above) ill_signal_ipsq_ills 7222 * wakes up ills one at a time after getting the right ill_lock 7223 */ 7224 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7225 if (ill_list != NULL) 7226 ill_unlock_ills(ill_list, cnt); 7227 if (ipsq->ipsq_refs == 0) 7228 need_ipsq_free = B_TRUE; 7229 rw_exit(&ill_g_lock); 7230 if (ill_list != 0) 7231 kmem_free(ill_list, ill_list_size); 7232 7233 if (need_ipsq_free) { 7234 /* 7235 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7236 * looked up. ipsq can be looked up only thru ill or phyint 7237 * and there are no ills/phyint on this ipsq. 7238 */ 7239 ipsq_delete(ipsq); 7240 } 7241 /* 7242 * Now start any igmp or mld timers that could not be started 7243 * while inside the ipsq. The timers can't be started while inside 7244 * the ipsq, since igmp_start_timers may need to call untimeout() 7245 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7246 * there could be a deadlock since the timeout handlers 7247 * mld_timeout_handler / igmp_timeout_handler also synchronously 7248 * wait in ipsq_enter() trying to get the ipsq. 7249 * 7250 * However there is one exception to the above. If this thread is 7251 * itself the igmp/mld timeout handler thread, then we don't want 7252 * to start any new timer until the current handler is done. The 7253 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7254 * all others pass B_TRUE. 7255 */ 7256 if (start_igmp_timer) { 7257 mutex_enter(&igmp_timer_lock); 7258 next = igmp_deferred_next; 7259 igmp_deferred_next = INFINITY; 7260 mutex_exit(&igmp_timer_lock); 7261 7262 if (next != INFINITY) 7263 igmp_start_timers(next); 7264 } 7265 7266 if (start_mld_timer) { 7267 mutex_enter(&mld_timer_lock); 7268 next = mld_deferred_next; 7269 mld_deferred_next = INFINITY; 7270 mutex_exit(&mld_timer_lock); 7271 7272 if (next != INFINITY) 7273 mld_start_timers(next); 7274 } 7275 } 7276 7277 /* 7278 * The ill is closing. Flush all messages on the ipsq that originated 7279 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7280 * for this ill since ipsq_enter could not have entered until then. 7281 * New messages can't be queued since the CONDEMNED flag is set. 7282 */ 7283 static void 7284 ipsq_flush(ill_t *ill) 7285 { 7286 queue_t *q; 7287 mblk_t *prev; 7288 mblk_t *mp; 7289 mblk_t *mp_next; 7290 ipsq_t *ipsq; 7291 7292 ASSERT(IAM_WRITER_ILL(ill)); 7293 ipsq = ill->ill_phyint->phyint_ipsq; 7294 /* 7295 * Flush any messages sent up by the driver. 7296 */ 7297 mutex_enter(&ipsq->ipsq_lock); 7298 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7299 mp_next = mp->b_next; 7300 q = mp->b_queue; 7301 if (q == ill->ill_rq || q == ill->ill_wq) { 7302 /* Remove the mp from the ipsq */ 7303 if (prev == NULL) 7304 ipsq->ipsq_mphead = mp->b_next; 7305 else 7306 prev->b_next = mp->b_next; 7307 if (ipsq->ipsq_mptail == mp) { 7308 ASSERT(mp_next == NULL); 7309 ipsq->ipsq_mptail = prev; 7310 } 7311 inet_freemsg(mp); 7312 } else { 7313 prev = mp; 7314 } 7315 } 7316 mutex_exit(&ipsq->ipsq_lock); 7317 (void) ipsq_pending_mp_cleanup(ill, NULL); 7318 ipsq_xopq_mp_cleanup(ill, NULL); 7319 ill_pending_mp_cleanup(ill); 7320 } 7321 7322 /* 7323 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 7324 * The real cleanup happens behind the squeue via ip_squeue_clean function but 7325 * we need to protect ourselfs from 2 threads trying to cleanup at the same 7326 * time (possible with one port going down for aggr and someone tearing down the 7327 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 7328 * to indicate when the cleanup has started (1 ref) and when the cleanup 7329 * is done (0 ref). When a new ring gets assigned to squeue, we start by 7330 * putting 2 ref on ill_inuse_ref. 7331 */ 7332 static void 7333 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 7334 { 7335 conn_t *connp; 7336 squeue_t *sqp; 7337 mblk_t *mp; 7338 7339 ASSERT(rx_ring != NULL); 7340 7341 /* Just clean one squeue */ 7342 mutex_enter(&ill->ill_lock); 7343 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 7344 /* Some operations pending on the ring. Wait */ 7345 cv_wait(&ill->ill_cv, &ill->ill_lock); 7346 7347 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 7348 /* 7349 * Someone already trying to clean 7350 * this squeue or its already been cleaned. 7351 */ 7352 mutex_exit(&ill->ill_lock); 7353 return; 7354 } 7355 sqp = rx_ring->rr_sqp; 7356 7357 if (sqp == NULL) { 7358 /* 7359 * The rx_ring never had a squeue assigned to it. 7360 * We are under ill_lock so we can clean it up 7361 * here itself since no one can get to it. 7362 */ 7363 rx_ring->rr_blank = NULL; 7364 rx_ring->rr_handle = NULL; 7365 rx_ring->rr_sqp = NULL; 7366 rx_ring->rr_ring_state = ILL_RING_FREE; 7367 mutex_exit(&ill->ill_lock); 7368 return; 7369 } 7370 7371 /* Set the state that its being cleaned */ 7372 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 7373 ASSERT(sqp != NULL); 7374 mutex_exit(&ill->ill_lock); 7375 7376 /* 7377 * Use the preallocated ill_unbind_conn for this purpose 7378 */ 7379 connp = ill->ill_poll_capab->ill_unbind_conn; 7380 mp = &connp->conn_tcp->tcp_closemp; 7381 CONN_INC_REF(connp); 7382 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 7383 7384 mutex_enter(&ill->ill_lock); 7385 while (rx_ring->rr_ring_state != ILL_RING_FREE) 7386 cv_wait(&ill->ill_cv, &ill->ill_lock); 7387 7388 mutex_exit(&ill->ill_lock); 7389 } 7390 7391 static void 7392 ipsq_clean_all(ill_t *ill) 7393 { 7394 int idx; 7395 7396 /* 7397 * No need to clean if poll_capab isn't set for this ill 7398 */ 7399 if (!(ill->ill_capabilities & ILL_CAPAB_POLL)) 7400 return; 7401 7402 ill->ill_capabilities &= ~ILL_CAPAB_POLL; 7403 7404 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 7405 ill_rx_ring_t *ipr = &ill->ill_poll_capab->ill_ring_tbl[idx]; 7406 ipsq_clean_ring(ill, ipr); 7407 } 7408 } 7409 7410 /* ARGSUSED */ 7411 int 7412 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7413 ip_ioctl_cmd_t *ipip, void *ifreq) 7414 { 7415 ill_t *ill; 7416 struct lifreq *lifr = (struct lifreq *)ifreq; 7417 boolean_t isv6; 7418 conn_t *connp; 7419 7420 connp = Q_TO_CONN(q); 7421 isv6 = connp->conn_af_isv6; 7422 /* 7423 * Set original index. 7424 * Failover and failback move logical interfaces 7425 * from one physical interface to another. The 7426 * original index indicates the parent of a logical 7427 * interface, in other words, the physical interface 7428 * the logical interface will be moved back to on 7429 * failback. 7430 */ 7431 7432 /* 7433 * Don't allow the original index to be changed 7434 * for non-failover addresses, autoconfigured 7435 * addresses, or IPv6 link local addresses. 7436 */ 7437 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 7438 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 7439 return (EINVAL); 7440 } 7441 /* 7442 * The new original index must be in use by some 7443 * physical interface. 7444 */ 7445 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 7446 NULL, NULL); 7447 if (ill == NULL) 7448 return (ENXIO); 7449 ill_refrele(ill); 7450 7451 ipif->ipif_orig_ifindex = lifr->lifr_index; 7452 /* 7453 * When this ipif gets failed back, don't 7454 * preserve the original id, as it is no 7455 * longer applicable. 7456 */ 7457 ipif->ipif_orig_ipifid = 0; 7458 /* 7459 * For IPv4, change the original index of any 7460 * multicast addresses associated with the 7461 * ipif to the new value. 7462 */ 7463 if (!isv6) { 7464 ilm_t *ilm; 7465 7466 mutex_enter(&ipif->ipif_ill->ill_lock); 7467 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 7468 ilm = ilm->ilm_next) { 7469 if (ilm->ilm_ipif == ipif) { 7470 ilm->ilm_orig_ifindex = lifr->lifr_index; 7471 } 7472 } 7473 mutex_exit(&ipif->ipif_ill->ill_lock); 7474 } 7475 return (0); 7476 } 7477 7478 /* ARGSUSED */ 7479 int 7480 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7481 ip_ioctl_cmd_t *ipip, void *ifreq) 7482 { 7483 struct lifreq *lifr = (struct lifreq *)ifreq; 7484 7485 /* 7486 * Get the original interface index i.e the one 7487 * before FAILOVER if it ever happened. 7488 */ 7489 lifr->lifr_index = ipif->ipif_orig_ifindex; 7490 return (0); 7491 } 7492 7493 /* 7494 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 7495 * refhold and return the associated ipif 7496 */ 7497 int 7498 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 7499 { 7500 boolean_t exists; 7501 struct iftun_req *ta; 7502 ipif_t *ipif; 7503 ill_t *ill; 7504 boolean_t isv6; 7505 mblk_t *mp1; 7506 int error; 7507 conn_t *connp; 7508 7509 /* Existence verified in ip_wput_nondata */ 7510 mp1 = mp->b_cont->b_cont; 7511 ta = (struct iftun_req *)mp1->b_rptr; 7512 /* 7513 * Null terminate the string to protect against buffer 7514 * overrun. String was generated by user code and may not 7515 * be trusted. 7516 */ 7517 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 7518 7519 connp = Q_TO_CONN(q); 7520 isv6 = connp->conn_af_isv6; 7521 7522 /* Disallows implicit create */ 7523 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 7524 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 7525 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 7526 if (ipif == NULL) 7527 return (error); 7528 7529 if (ipif->ipif_id != 0) { 7530 /* 7531 * We really don't want to set/get tunnel parameters 7532 * on virtual tunnel interfaces. Only allow the 7533 * base tunnel to do these. 7534 */ 7535 ipif_refrele(ipif); 7536 return (EINVAL); 7537 } 7538 7539 /* 7540 * Send down to tunnel mod for ioctl processing. 7541 * Will finish ioctl in ip_rput_other(). 7542 */ 7543 ill = ipif->ipif_ill; 7544 if (ill->ill_net_type == IRE_LOOPBACK) { 7545 ipif_refrele(ipif); 7546 return (EOPNOTSUPP); 7547 } 7548 7549 if (ill->ill_wq == NULL) { 7550 ipif_refrele(ipif); 7551 return (ENXIO); 7552 } 7553 /* 7554 * Mark the ioctl as coming from an IPv6 interface for 7555 * tun's convenience. 7556 */ 7557 if (ill->ill_isv6) 7558 ta->ifta_flags |= 0x80000000; 7559 *ipifp = ipif; 7560 return (0); 7561 } 7562 7563 /* 7564 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7565 * and return the associated ipif. 7566 * Return value: 7567 * Non zero: An error has occurred. ci may not be filled out. 7568 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7569 * a held ipif in ci.ci_ipif. 7570 */ 7571 int 7572 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 7573 cmd_info_t *ci, ipsq_func_t func) 7574 { 7575 sin_t *sin; 7576 sin6_t *sin6; 7577 char *name; 7578 struct ifreq *ifr; 7579 struct lifreq *lifr; 7580 ipif_t *ipif = NULL; 7581 ill_t *ill; 7582 conn_t *connp; 7583 boolean_t isv6; 7584 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7585 boolean_t exists; 7586 int err; 7587 mblk_t *mp1; 7588 zoneid_t zoneid; 7589 7590 if (q->q_next != NULL) { 7591 ill = (ill_t *)q->q_ptr; 7592 isv6 = ill->ill_isv6; 7593 connp = NULL; 7594 zoneid = ALL_ZONES; 7595 } else { 7596 ill = NULL; 7597 connp = Q_TO_CONN(q); 7598 isv6 = connp->conn_af_isv6; 7599 zoneid = connp->conn_zoneid; 7600 if (zoneid == GLOBAL_ZONEID) { 7601 /* global zone can access ipifs in all zones */ 7602 zoneid = ALL_ZONES; 7603 } 7604 } 7605 7606 /* Has been checked in ip_wput_nondata */ 7607 mp1 = mp->b_cont->b_cont; 7608 7609 7610 if (cmd_type == IF_CMD) { 7611 /* This a old style SIOC[GS]IF* command */ 7612 ifr = (struct ifreq *)mp1->b_rptr; 7613 /* 7614 * Null terminate the string to protect against buffer 7615 * overrun. String was generated by user code and may not 7616 * be trusted. 7617 */ 7618 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7619 sin = (sin_t *)&ifr->ifr_addr; 7620 name = ifr->ifr_name; 7621 ci->ci_sin = sin; 7622 ci->ci_sin6 = NULL; 7623 ci->ci_lifr = (struct lifreq *)ifr; 7624 } else { 7625 /* This a new style SIOC[GS]LIF* command */ 7626 ASSERT(cmd_type == LIF_CMD); 7627 lifr = (struct lifreq *)mp1->b_rptr; 7628 /* 7629 * Null terminate the string to protect against buffer 7630 * overrun. String was generated by user code and may not 7631 * be trusted. 7632 */ 7633 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7634 name = lifr->lifr_name; 7635 sin = (sin_t *)&lifr->lifr_addr; 7636 sin6 = (sin6_t *)&lifr->lifr_addr; 7637 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 7638 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 7639 LIFNAMSIZ); 7640 } 7641 ci->ci_sin = sin; 7642 ci->ci_sin6 = sin6; 7643 ci->ci_lifr = lifr; 7644 } 7645 7646 7647 if (iocp->ioc_cmd == SIOCSLIFNAME) { 7648 /* 7649 * The ioctl will be failed if the ioctl comes down 7650 * an conn stream 7651 */ 7652 if (ill == NULL) { 7653 /* 7654 * Not an ill queue, return EINVAL same as the 7655 * old error code. 7656 */ 7657 return (ENXIO); 7658 } 7659 ipif = ill->ill_ipif; 7660 ipif_refhold(ipif); 7661 } else { 7662 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7663 &exists, isv6, zoneid, 7664 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 7665 if (ipif == NULL) { 7666 if (err == EINPROGRESS) 7667 return (err); 7668 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 7669 iocp->ioc_cmd == SIOCLIFFAILBACK) { 7670 /* 7671 * Need to try both v4 and v6 since this 7672 * ioctl can come down either v4 or v6 7673 * socket. The lifreq.lifr_family passed 7674 * down by this ioctl is AF_UNSPEC. 7675 */ 7676 ipif = ipif_lookup_on_name(name, 7677 mi_strlen(name), B_FALSE, &exists, !isv6, 7678 zoneid, (connp == NULL) ? q : 7679 CONNP_TO_WQ(connp), mp, func, &err); 7680 if (err == EINPROGRESS) 7681 return (err); 7682 } 7683 err = 0; /* Ensure we don't use it below */ 7684 } 7685 } 7686 7687 /* 7688 * Old style [GS]IFCMD does not admit IPv6 ipif 7689 */ 7690 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 7691 ipif_refrele(ipif); 7692 return (ENXIO); 7693 } 7694 7695 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7696 name[0] == '\0') { 7697 /* 7698 * Handle a or a SIOC?IF* with a null name 7699 * during plumb (on the ill queue before the I_PLINK). 7700 */ 7701 ipif = ill->ill_ipif; 7702 ipif_refhold(ipif); 7703 } 7704 7705 if (ipif == NULL) 7706 return (ENXIO); 7707 7708 /* 7709 * Allow only GET operations if this ipif has been created 7710 * temporarily due to a MOVE operation. 7711 */ 7712 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 7713 ipif_refrele(ipif); 7714 return (EINVAL); 7715 } 7716 7717 ci->ci_ipif = ipif; 7718 return (0); 7719 } 7720 7721 /* 7722 * Return the total number of ipifs. 7723 */ 7724 static uint_t 7725 ip_get_numifs(zoneid_t zoneid) 7726 { 7727 uint_t numifs = 0; 7728 ill_t *ill; 7729 ill_walk_context_t ctx; 7730 ipif_t *ipif; 7731 7732 rw_enter(&ill_g_lock, RW_READER); 7733 ill = ILL_START_WALK_V4(&ctx); 7734 7735 while (ill != NULL) { 7736 for (ipif = ill->ill_ipif; ipif != NULL; 7737 ipif = ipif->ipif_next) { 7738 if (ipif->ipif_zoneid == zoneid) 7739 numifs++; 7740 } 7741 ill = ill_next(&ctx, ill); 7742 } 7743 rw_exit(&ill_g_lock); 7744 return (numifs); 7745 } 7746 7747 /* 7748 * Return the total number of ipifs. 7749 */ 7750 static uint_t 7751 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 7752 { 7753 uint_t numifs = 0; 7754 ill_t *ill; 7755 ipif_t *ipif; 7756 ill_walk_context_t ctx; 7757 7758 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7759 7760 rw_enter(&ill_g_lock, RW_READER); 7761 if (family == AF_INET) 7762 ill = ILL_START_WALK_V4(&ctx); 7763 else if (family == AF_INET6) 7764 ill = ILL_START_WALK_V6(&ctx); 7765 else 7766 ill = ILL_START_WALK_ALL(&ctx); 7767 7768 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7769 for (ipif = ill->ill_ipif; ipif != NULL; 7770 ipif = ipif->ipif_next) { 7771 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7772 !(lifn_flags & LIFC_NOXMIT)) 7773 continue; 7774 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7775 !(lifn_flags & LIFC_TEMPORARY)) 7776 continue; 7777 if (((ipif->ipif_flags & 7778 (IPIF_NOXMIT|IPIF_NOLOCAL| 7779 IPIF_DEPRECATED)) || 7780 (ill->ill_phyint->phyint_flags & 7781 PHYI_LOOPBACK) || 7782 !(ipif->ipif_flags & IPIF_UP)) && 7783 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7784 continue; 7785 7786 if (zoneid != ipif->ipif_zoneid && 7787 (zoneid != GLOBAL_ZONEID || 7788 !(lifn_flags & LIFC_ALLZONES))) 7789 continue; 7790 7791 numifs++; 7792 } 7793 } 7794 rw_exit(&ill_g_lock); 7795 return (numifs); 7796 } 7797 7798 uint_t 7799 ip_get_lifsrcofnum(ill_t *ill) 7800 { 7801 uint_t numifs = 0; 7802 ill_t *ill_head = ill; 7803 7804 /* 7805 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7806 * other thread may be trying to relink the ILLs in this usesrc group 7807 * and adjusting the ill_usesrc_grp_next pointers 7808 */ 7809 rw_enter(&ill_g_usesrc_lock, RW_READER); 7810 if ((ill->ill_usesrc_ifindex == 0) && 7811 (ill->ill_usesrc_grp_next != NULL)) { 7812 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7813 ill = ill->ill_usesrc_grp_next) 7814 numifs++; 7815 } 7816 rw_exit(&ill_g_usesrc_lock); 7817 7818 return (numifs); 7819 } 7820 7821 /* Null values are passed in for ipif, sin, and ifreq */ 7822 /* ARGSUSED */ 7823 int 7824 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7825 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7826 { 7827 int *nump; 7828 7829 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7830 7831 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7832 nump = (int *)mp->b_cont->b_cont->b_rptr; 7833 7834 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 7835 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7836 return (0); 7837 } 7838 7839 /* Null values are passed in for ipif, sin, and ifreq */ 7840 /* ARGSUSED */ 7841 int 7842 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7843 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7844 { 7845 struct lifnum *lifn; 7846 mblk_t *mp1; 7847 7848 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7849 7850 /* Existence checked in ip_wput_nondata */ 7851 mp1 = mp->b_cont->b_cont; 7852 7853 lifn = (struct lifnum *)mp1->b_rptr; 7854 switch (lifn->lifn_family) { 7855 case AF_UNSPEC: 7856 case AF_INET: 7857 case AF_INET6: 7858 break; 7859 default: 7860 return (EAFNOSUPPORT); 7861 } 7862 7863 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7864 Q_TO_CONN(q)->conn_zoneid); 7865 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7866 return (0); 7867 } 7868 7869 /* ARGSUSED */ 7870 int 7871 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7872 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7873 { 7874 STRUCT_HANDLE(ifconf, ifc); 7875 mblk_t *mp1; 7876 struct iocblk *iocp; 7877 struct ifreq *ifr; 7878 ill_walk_context_t ctx; 7879 ill_t *ill; 7880 ipif_t *ipif; 7881 struct sockaddr_in *sin; 7882 int32_t ifclen; 7883 zoneid_t zoneid; 7884 7885 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7886 7887 ip1dbg(("ip_sioctl_get_ifconf")); 7888 /* Existence verified in ip_wput_nondata */ 7889 mp1 = mp->b_cont->b_cont; 7890 iocp = (struct iocblk *)mp->b_rptr; 7891 zoneid = Q_TO_CONN(q)->conn_zoneid; 7892 7893 /* 7894 * The original SIOCGIFCONF passed in a struct ifconf which specified 7895 * the user buffer address and length into which the list of struct 7896 * ifreqs was to be copied. Since AT&T Streams does not seem to 7897 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7898 * the SIOCGIFCONF operation was redefined to simply provide 7899 * a large output buffer into which we are supposed to jam the ifreq 7900 * array. The same ioctl command code was used, despite the fact that 7901 * both the applications and the kernel code had to change, thus making 7902 * it impossible to support both interfaces. 7903 * 7904 * For reasons not good enough to try to explain, the following 7905 * algorithm is used for deciding what to do with one of these: 7906 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7907 * form with the output buffer coming down as the continuation message. 7908 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7909 * and we have to copy in the ifconf structure to find out how big the 7910 * output buffer is and where to copy out to. Sure no problem... 7911 * 7912 */ 7913 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7914 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7915 int numifs = 0; 7916 size_t ifc_bufsize; 7917 7918 /* 7919 * Must be (better be!) continuation of a TRANSPARENT 7920 * IOCTL. We just copied in the ifconf structure. 7921 */ 7922 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7923 (struct ifconf *)mp1->b_rptr); 7924 7925 /* 7926 * Allocate a buffer to hold requested information. 7927 * 7928 * If ifc_len is larger than what is needed, we only 7929 * allocate what we will use. 7930 * 7931 * If ifc_len is smaller than what is needed, return 7932 * EINVAL. 7933 * 7934 * XXX: the ill_t structure can hava 2 counters, for 7935 * v4 and v6 (not just ill_ipif_up_count) to store the 7936 * number of interfaces for a device, so we don't need 7937 * to count them here... 7938 */ 7939 numifs = ip_get_numifs(zoneid); 7940 7941 ifclen = STRUCT_FGET(ifc, ifc_len); 7942 ifc_bufsize = numifs * sizeof (struct ifreq); 7943 if (ifc_bufsize > ifclen) { 7944 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7945 /* old behaviour */ 7946 return (EINVAL); 7947 } else { 7948 ifc_bufsize = ifclen; 7949 } 7950 } 7951 7952 mp1 = mi_copyout_alloc(q, mp, 7953 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7954 if (mp1 == NULL) 7955 return (ENOMEM); 7956 7957 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7958 } 7959 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7960 /* 7961 * the SIOCGIFCONF ioctl only knows about 7962 * IPv4 addresses, so don't try to tell 7963 * it about interfaces with IPv6-only 7964 * addresses. (Last parm 'isv6' is B_FALSE) 7965 */ 7966 7967 ifr = (struct ifreq *)mp1->b_rptr; 7968 7969 rw_enter(&ill_g_lock, RW_READER); 7970 ill = ILL_START_WALK_V4(&ctx); 7971 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7972 for (ipif = ill->ill_ipif; ipif; 7973 ipif = ipif->ipif_next) { 7974 if (zoneid != ipif->ipif_zoneid) 7975 continue; 7976 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7977 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7978 /* old behaviour */ 7979 rw_exit(&ill_g_lock); 7980 return (EINVAL); 7981 } else { 7982 goto if_copydone; 7983 } 7984 } 7985 (void) ipif_get_name(ipif, 7986 ifr->ifr_name, 7987 sizeof (ifr->ifr_name)); 7988 sin = (sin_t *)&ifr->ifr_addr; 7989 *sin = sin_null; 7990 sin->sin_family = AF_INET; 7991 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7992 ifr++; 7993 } 7994 } 7995 if_copydone: 7996 rw_exit(&ill_g_lock); 7997 mp1->b_wptr = (uchar_t *)ifr; 7998 7999 if (STRUCT_BUF(ifc) != NULL) { 8000 STRUCT_FSET(ifc, ifc_len, 8001 (int)((uchar_t *)ifr - mp1->b_rptr)); 8002 } 8003 return (0); 8004 } 8005 8006 /* 8007 * Get the interfaces using the address hosted on the interface passed in, 8008 * as a source adddress 8009 */ 8010 /* ARGSUSED */ 8011 int 8012 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8013 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8014 { 8015 mblk_t *mp1; 8016 ill_t *ill, *ill_head; 8017 ipif_t *ipif, *orig_ipif; 8018 int numlifs = 0; 8019 size_t lifs_bufsize, lifsmaxlen; 8020 struct lifreq *lifr; 8021 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8022 uint_t ifindex; 8023 zoneid_t zoneid; 8024 int err = 0; 8025 boolean_t isv6 = B_FALSE; 8026 struct sockaddr_in *sin; 8027 struct sockaddr_in6 *sin6; 8028 8029 STRUCT_HANDLE(lifsrcof, lifs); 8030 8031 ASSERT(q->q_next == NULL); 8032 8033 zoneid = Q_TO_CONN(q)->conn_zoneid; 8034 8035 /* Existence verified in ip_wput_nondata */ 8036 mp1 = mp->b_cont->b_cont; 8037 8038 /* 8039 * Must be (better be!) continuation of a TRANSPARENT 8040 * IOCTL. We just copied in the lifsrcof structure. 8041 */ 8042 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8043 (struct lifsrcof *)mp1->b_rptr); 8044 8045 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8046 return (EINVAL); 8047 8048 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8049 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8050 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8051 ip_process_ioctl, &err); 8052 if (ipif == NULL) { 8053 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8054 ifindex)); 8055 return (err); 8056 } 8057 8058 8059 /* Allocate a buffer to hold requested information */ 8060 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8061 lifs_bufsize = numlifs * sizeof (struct lifreq); 8062 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8063 /* The actual size needed is always returned in lifs_len */ 8064 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8065 8066 /* If the amount we need is more than what is passed in, abort */ 8067 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8068 ipif_refrele(ipif); 8069 return (0); 8070 } 8071 8072 mp1 = mi_copyout_alloc(q, mp, 8073 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8074 if (mp1 == NULL) { 8075 ipif_refrele(ipif); 8076 return (ENOMEM); 8077 } 8078 8079 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8080 bzero(mp1->b_rptr, lifs_bufsize); 8081 8082 lifr = (struct lifreq *)mp1->b_rptr; 8083 8084 ill = ill_head = ipif->ipif_ill; 8085 orig_ipif = ipif; 8086 8087 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8088 rw_enter(&ill_g_usesrc_lock, RW_READER); 8089 rw_enter(&ill_g_lock, RW_READER); 8090 8091 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8092 for (; (ill != NULL) && (ill != ill_head); 8093 ill = ill->ill_usesrc_grp_next) { 8094 8095 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8096 break; 8097 8098 ipif = ill->ill_ipif; 8099 (void) ipif_get_name(ipif, 8100 lifr->lifr_name, sizeof (lifr->lifr_name)); 8101 if (ipif->ipif_isv6) { 8102 sin6 = (sin6_t *)&lifr->lifr_addr; 8103 *sin6 = sin6_null; 8104 sin6->sin6_family = AF_INET6; 8105 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8106 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8107 &ipif->ipif_v6net_mask); 8108 } else { 8109 sin = (sin_t *)&lifr->lifr_addr; 8110 *sin = sin_null; 8111 sin->sin_family = AF_INET; 8112 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8113 lifr->lifr_addrlen = ip_mask_to_plen( 8114 ipif->ipif_net_mask); 8115 } 8116 lifr++; 8117 } 8118 rw_exit(&ill_g_usesrc_lock); 8119 rw_exit(&ill_g_lock); 8120 ipif_refrele(orig_ipif); 8121 mp1->b_wptr = (uchar_t *)lifr; 8122 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8123 8124 return (0); 8125 } 8126 8127 /* ARGSUSED */ 8128 int 8129 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8130 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8131 { 8132 mblk_t *mp1; 8133 int list; 8134 ill_t *ill; 8135 ipif_t *ipif; 8136 int flags; 8137 int numlifs = 0; 8138 size_t lifc_bufsize; 8139 struct lifreq *lifr; 8140 sa_family_t family; 8141 struct sockaddr_in *sin; 8142 struct sockaddr_in6 *sin6; 8143 ill_walk_context_t ctx; 8144 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8145 int32_t lifclen; 8146 zoneid_t zoneid; 8147 STRUCT_HANDLE(lifconf, lifc); 8148 8149 ip1dbg(("ip_sioctl_get_lifconf")); 8150 8151 ASSERT(q->q_next == NULL); 8152 8153 zoneid = Q_TO_CONN(q)->conn_zoneid; 8154 8155 /* Existence verified in ip_wput_nondata */ 8156 mp1 = mp->b_cont->b_cont; 8157 8158 /* 8159 * An extended version of SIOCGIFCONF that takes an 8160 * additional address family and flags field. 8161 * AF_UNSPEC retrieve both IPv4 and IPv6. 8162 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8163 * interfaces are omitted. 8164 * Similarly, IPIF_TEMPORARY interfaces are omitted 8165 * unless LIFC_TEMPORARY is specified. 8166 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8167 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8168 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8169 * has priority over LIFC_NOXMIT. 8170 */ 8171 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8172 8173 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8174 return (EINVAL); 8175 8176 /* 8177 * Must be (better be!) continuation of a TRANSPARENT 8178 * IOCTL. We just copied in the lifconf structure. 8179 */ 8180 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8181 8182 family = STRUCT_FGET(lifc, lifc_family); 8183 flags = STRUCT_FGET(lifc, lifc_flags); 8184 8185 switch (family) { 8186 case AF_UNSPEC: 8187 /* 8188 * walk all ILL's. 8189 */ 8190 list = MAX_G_HEADS; 8191 break; 8192 case AF_INET: 8193 /* 8194 * walk only IPV4 ILL's. 8195 */ 8196 list = IP_V4_G_HEAD; 8197 break; 8198 case AF_INET6: 8199 /* 8200 * walk only IPV6 ILL's. 8201 */ 8202 list = IP_V6_G_HEAD; 8203 break; 8204 default: 8205 return (EAFNOSUPPORT); 8206 } 8207 8208 /* 8209 * Allocate a buffer to hold requested information. 8210 * 8211 * If lifc_len is larger than what is needed, we only 8212 * allocate what we will use. 8213 * 8214 * If lifc_len is smaller than what is needed, return 8215 * EINVAL. 8216 */ 8217 numlifs = ip_get_numlifs(family, flags, zoneid); 8218 lifc_bufsize = numlifs * sizeof (struct lifreq); 8219 lifclen = STRUCT_FGET(lifc, lifc_len); 8220 if (lifc_bufsize > lifclen) { 8221 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8222 return (EINVAL); 8223 else 8224 lifc_bufsize = lifclen; 8225 } 8226 8227 mp1 = mi_copyout_alloc(q, mp, 8228 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8229 if (mp1 == NULL) 8230 return (ENOMEM); 8231 8232 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8233 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8234 8235 lifr = (struct lifreq *)mp1->b_rptr; 8236 8237 rw_enter(&ill_g_lock, RW_READER); 8238 ill = ill_first(list, list, &ctx); 8239 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8240 for (ipif = ill->ill_ipif; ipif != NULL; 8241 ipif = ipif->ipif_next) { 8242 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8243 !(flags & LIFC_NOXMIT)) 8244 continue; 8245 8246 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8247 !(flags & LIFC_TEMPORARY)) 8248 continue; 8249 8250 if (((ipif->ipif_flags & 8251 (IPIF_NOXMIT|IPIF_NOLOCAL| 8252 IPIF_DEPRECATED)) || 8253 (ill->ill_phyint->phyint_flags & 8254 PHYI_LOOPBACK) || 8255 !(ipif->ipif_flags & IPIF_UP)) && 8256 (flags & LIFC_EXTERNAL_SOURCE)) 8257 continue; 8258 8259 if (zoneid != ipif->ipif_zoneid && 8260 (zoneid != GLOBAL_ZONEID || 8261 !(flags & LIFC_ALLZONES))) 8262 continue; 8263 8264 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8265 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8266 rw_exit(&ill_g_lock); 8267 return (EINVAL); 8268 } else { 8269 goto lif_copydone; 8270 } 8271 } 8272 8273 (void) ipif_get_name(ipif, 8274 lifr->lifr_name, 8275 sizeof (lifr->lifr_name)); 8276 if (ipif->ipif_isv6) { 8277 sin6 = (sin6_t *)&lifr->lifr_addr; 8278 *sin6 = sin6_null; 8279 sin6->sin6_family = AF_INET6; 8280 sin6->sin6_addr = 8281 ipif->ipif_v6lcl_addr; 8282 lifr->lifr_addrlen = 8283 ip_mask_to_plen_v6( 8284 &ipif->ipif_v6net_mask); 8285 } else { 8286 sin = (sin_t *)&lifr->lifr_addr; 8287 *sin = sin_null; 8288 sin->sin_family = AF_INET; 8289 sin->sin_addr.s_addr = 8290 ipif->ipif_lcl_addr; 8291 lifr->lifr_addrlen = 8292 ip_mask_to_plen( 8293 ipif->ipif_net_mask); 8294 } 8295 lifr++; 8296 } 8297 } 8298 lif_copydone: 8299 rw_exit(&ill_g_lock); 8300 8301 mp1->b_wptr = (uchar_t *)lifr; 8302 if (STRUCT_BUF(lifc) != NULL) { 8303 STRUCT_FSET(lifc, lifc_len, 8304 (int)((uchar_t *)lifr - mp1->b_rptr)); 8305 } 8306 return (0); 8307 } 8308 8309 /* ARGSUSED */ 8310 int 8311 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8312 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8313 { 8314 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8315 ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8316 return (0); 8317 } 8318 8319 static void 8320 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8321 { 8322 ip6_asp_t *table; 8323 size_t table_size; 8324 mblk_t *data_mp; 8325 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8326 8327 /* These two ioctls are I_STR only */ 8328 if (iocp->ioc_count == TRANSPARENT) { 8329 miocnak(q, mp, 0, EINVAL); 8330 return; 8331 } 8332 8333 data_mp = mp->b_cont; 8334 if (data_mp == NULL) { 8335 /* The user passed us a NULL argument */ 8336 table = NULL; 8337 table_size = iocp->ioc_count; 8338 } else { 8339 /* 8340 * The user provided a table. The stream head 8341 * may have copied in the user data in chunks, 8342 * so make sure everything is pulled up 8343 * properly. 8344 */ 8345 if (MBLKL(data_mp) < iocp->ioc_count) { 8346 mblk_t *new_data_mp; 8347 if ((new_data_mp = msgpullup(data_mp, -1)) == 8348 NULL) { 8349 miocnak(q, mp, 0, ENOMEM); 8350 return; 8351 } 8352 freemsg(data_mp); 8353 data_mp = new_data_mp; 8354 mp->b_cont = data_mp; 8355 } 8356 table = (ip6_asp_t *)data_mp->b_rptr; 8357 table_size = iocp->ioc_count; 8358 } 8359 8360 switch (iocp->ioc_cmd) { 8361 case SIOCGIP6ADDRPOLICY: 8362 iocp->ioc_rval = ip6_asp_get(table, table_size); 8363 if (iocp->ioc_rval == -1) 8364 iocp->ioc_error = EINVAL; 8365 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8366 else if (table != NULL && 8367 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8368 ip6_asp_t *src = table; 8369 ip6_asp32_t *dst = (void *)table; 8370 int count = table_size / sizeof (ip6_asp_t); 8371 int i; 8372 8373 /* 8374 * We need to do an in-place shrink of the array 8375 * to match the alignment attributes of the 8376 * 32-bit ABI looking at it. 8377 */ 8378 /* LINTED: logical expression always true: op "||" */ 8379 ASSERT(sizeof (*src) > sizeof (*dst)); 8380 for (i = 1; i < count; i++) 8381 bcopy(src + i, dst + i, sizeof (*dst)); 8382 } 8383 #endif 8384 break; 8385 8386 case SIOCSIP6ADDRPOLICY: 8387 ASSERT(mp->b_prev == NULL); 8388 mp->b_prev = (void *)q; 8389 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8390 /* 8391 * We pass in the datamodel here so that the ip6_asp_replace() 8392 * routine can handle converting from 32-bit to native formats 8393 * where necessary. 8394 * 8395 * A better way to handle this might be to convert the inbound 8396 * data structure here, and hang it off a new 'mp'; thus the 8397 * ip6_asp_replace() logic would always be dealing with native 8398 * format data structures.. 8399 * 8400 * (An even simpler way to handle these ioctls is to just 8401 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8402 * and just recompile everything that depends on it.) 8403 */ 8404 #endif 8405 ip6_asp_replace(mp, table, table_size, B_FALSE, 8406 iocp->ioc_flag & IOC_MODELS); 8407 return; 8408 } 8409 8410 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8411 qreply(q, mp); 8412 } 8413 8414 static void 8415 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8416 { 8417 mblk_t *data_mp; 8418 struct dstinforeq *dir; 8419 uint8_t *end, *cur; 8420 in6_addr_t *daddr, *saddr; 8421 ipaddr_t v4daddr; 8422 ire_t *ire; 8423 char *slabel, *dlabel; 8424 boolean_t isipv4; 8425 int match_ire; 8426 ill_t *dst_ill; 8427 ipif_t *src_ipif, *ire_ipif; 8428 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8429 zoneid_t zoneid; 8430 8431 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8432 zoneid = Q_TO_CONN(q)->conn_zoneid; 8433 8434 /* 8435 * This ioctl is I_STR only, and must have a 8436 * data mblk following the M_IOCTL mblk. 8437 */ 8438 data_mp = mp->b_cont; 8439 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8440 miocnak(q, mp, 0, EINVAL); 8441 return; 8442 } 8443 8444 if (MBLKL(data_mp) < iocp->ioc_count) { 8445 mblk_t *new_data_mp; 8446 8447 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8448 miocnak(q, mp, 0, ENOMEM); 8449 return; 8450 } 8451 freemsg(data_mp); 8452 data_mp = new_data_mp; 8453 mp->b_cont = data_mp; 8454 } 8455 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8456 8457 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8458 end - cur >= sizeof (struct dstinforeq); 8459 cur += sizeof (struct dstinforeq)) { 8460 dir = (struct dstinforeq *)cur; 8461 daddr = &dir->dir_daddr; 8462 saddr = &dir->dir_saddr; 8463 8464 /* 8465 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8466 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8467 * and ipif_select_source[_v6]() do not. 8468 */ 8469 dir->dir_dscope = ip_addr_scope_v6(daddr); 8470 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 8471 8472 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 8473 if (isipv4) { 8474 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 8475 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 8476 0, NULL, NULL, zoneid, 0, match_ire); 8477 } else { 8478 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 8479 0, NULL, NULL, zoneid, 0, match_ire); 8480 } 8481 if (ire == NULL) { 8482 dir->dir_dreachable = 0; 8483 8484 /* move on to next dst addr */ 8485 continue; 8486 } 8487 dir->dir_dreachable = 1; 8488 8489 ire_ipif = ire->ire_ipif; 8490 if (ire_ipif == NULL) 8491 goto next_dst; 8492 8493 /* 8494 * We expect to get back an interface ire or a 8495 * gateway ire cache entry. For both types, the 8496 * output interface is ire_ipif->ipif_ill. 8497 */ 8498 dst_ill = ire_ipif->ipif_ill; 8499 dir->dir_dmactype = dst_ill->ill_mactype; 8500 8501 if (isipv4) { 8502 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 8503 } else { 8504 src_ipif = ipif_select_source_v6(dst_ill, 8505 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 8506 zoneid); 8507 } 8508 if (src_ipif == NULL) 8509 goto next_dst; 8510 8511 *saddr = src_ipif->ipif_v6lcl_addr; 8512 dir->dir_sscope = ip_addr_scope_v6(saddr); 8513 slabel = ip6_asp_lookup(saddr, NULL); 8514 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8515 dir->dir_sdeprecated = 8516 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8517 ipif_refrele(src_ipif); 8518 next_dst: 8519 ire_refrele(ire); 8520 } 8521 miocack(q, mp, iocp->ioc_count, 0); 8522 } 8523 8524 8525 /* 8526 * Check if this is an address assigned to this machine. 8527 * Skips interfaces that are down by using ire checks. 8528 * Translates mapped addresses to v4 addresses and then 8529 * treats them as such, returning true if the v4 address 8530 * associated with this mapped address is configured. 8531 * Note: Applications will have to be careful what they do 8532 * with the response; use of mapped addresses limits 8533 * what can be done with the socket, especially with 8534 * respect to socket options and ioctls - neither IPv4 8535 * options nor IPv6 sticky options/ancillary data options 8536 * may be used. 8537 */ 8538 /* ARGSUSED */ 8539 int 8540 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8541 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8542 { 8543 struct sioc_addrreq *sia; 8544 sin_t *sin; 8545 ire_t *ire; 8546 mblk_t *mp1; 8547 zoneid_t zoneid; 8548 8549 ip1dbg(("ip_sioctl_tmyaddr")); 8550 8551 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8552 zoneid = Q_TO_CONN(q)->conn_zoneid; 8553 8554 /* Existence verified in ip_wput_nondata */ 8555 mp1 = mp->b_cont->b_cont; 8556 sia = (struct sioc_addrreq *)mp1->b_rptr; 8557 sin = (sin_t *)&sia->sa_addr; 8558 switch (sin->sin_family) { 8559 case AF_INET6: { 8560 sin6_t *sin6 = (sin6_t *)sin; 8561 8562 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8563 ipaddr_t v4_addr; 8564 8565 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8566 v4_addr); 8567 ire = ire_ctable_lookup(v4_addr, 0, 8568 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8569 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8570 } else { 8571 in6_addr_t v6addr; 8572 8573 v6addr = sin6->sin6_addr; 8574 ire = ire_ctable_lookup_v6(&v6addr, 0, 8575 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8576 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8577 } 8578 break; 8579 } 8580 case AF_INET: { 8581 ipaddr_t v4addr; 8582 8583 v4addr = sin->sin_addr.s_addr; 8584 ire = ire_ctable_lookup(v4addr, 0, 8585 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8586 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8587 break; 8588 } 8589 default: 8590 return (EAFNOSUPPORT); 8591 } 8592 if (ire != NULL) { 8593 sia->sa_res = 1; 8594 ire_refrele(ire); 8595 } else { 8596 sia->sa_res = 0; 8597 } 8598 return (0); 8599 } 8600 8601 /* 8602 * Check if this is an address assigned on-link i.e. neighbor, 8603 * and makes sure it's reachable from the current zone. 8604 * Returns true for my addresses as well. 8605 * Translates mapped addresses to v4 addresses and then 8606 * treats them as such, returning true if the v4 address 8607 * associated with this mapped address is configured. 8608 * Note: Applications will have to be careful what they do 8609 * with the response; use of mapped addresses limits 8610 * what can be done with the socket, especially with 8611 * respect to socket options and ioctls - neither IPv4 8612 * options nor IPv6 sticky options/ancillary data options 8613 * may be used. 8614 */ 8615 /* ARGSUSED */ 8616 int 8617 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8618 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8619 { 8620 struct sioc_addrreq *sia; 8621 sin_t *sin; 8622 mblk_t *mp1; 8623 ire_t *ire = NULL; 8624 zoneid_t zoneid; 8625 8626 ip1dbg(("ip_sioctl_tonlink")); 8627 8628 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8629 zoneid = Q_TO_CONN(q)->conn_zoneid; 8630 8631 /* Existence verified in ip_wput_nondata */ 8632 mp1 = mp->b_cont->b_cont; 8633 sia = (struct sioc_addrreq *)mp1->b_rptr; 8634 sin = (sin_t *)&sia->sa_addr; 8635 8636 /* 8637 * Match addresses with a zero gateway field to avoid 8638 * routes going through a router. 8639 * Exclude broadcast and multicast addresses. 8640 */ 8641 switch (sin->sin_family) { 8642 case AF_INET6: { 8643 sin6_t *sin6 = (sin6_t *)sin; 8644 8645 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8646 ipaddr_t v4_addr; 8647 8648 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8649 v4_addr); 8650 if (!CLASSD(v4_addr)) { 8651 ire = ire_route_lookup(v4_addr, 0, 0, 0, 8652 NULL, NULL, zoneid, MATCH_IRE_GW); 8653 } 8654 } else { 8655 in6_addr_t v6addr; 8656 in6_addr_t v6gw; 8657 8658 v6addr = sin6->sin6_addr; 8659 v6gw = ipv6_all_zeros; 8660 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8661 ire = ire_route_lookup_v6(&v6addr, 0, 8662 &v6gw, 0, NULL, NULL, zoneid, 8663 MATCH_IRE_GW); 8664 } 8665 } 8666 break; 8667 } 8668 case AF_INET: { 8669 ipaddr_t v4addr; 8670 8671 v4addr = sin->sin_addr.s_addr; 8672 if (!CLASSD(v4addr)) { 8673 ire = ire_route_lookup(v4addr, 0, 0, 0, 8674 NULL, NULL, zoneid, MATCH_IRE_GW); 8675 } 8676 break; 8677 } 8678 default: 8679 return (EAFNOSUPPORT); 8680 } 8681 sia->sa_res = 0; 8682 if (ire != NULL) { 8683 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 8684 IRE_LOCAL|IRE_LOOPBACK)) { 8685 sia->sa_res = 1; 8686 } 8687 ire_refrele(ire); 8688 } 8689 return (0); 8690 } 8691 8692 /* 8693 * TBD: implement when kernel maintaines a list of site prefixes. 8694 */ 8695 /* ARGSUSED */ 8696 int 8697 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8698 ip_ioctl_cmd_t *ipip, void *ifreq) 8699 { 8700 return (ENXIO); 8701 } 8702 8703 /* ARGSUSED */ 8704 int 8705 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8706 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8707 { 8708 ill_t *ill; 8709 mblk_t *mp1; 8710 conn_t *connp; 8711 boolean_t success; 8712 8713 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 8714 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 8715 /* ioctl comes down on an conn */ 8716 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8717 connp = Q_TO_CONN(q); 8718 8719 mp->b_datap->db_type = M_IOCTL; 8720 8721 /* 8722 * Send down a copy. (copymsg does not copy b_next/b_prev). 8723 * The original mp contains contaminated b_next values due to 'mi', 8724 * which is needed to do the mi_copy_done. Unfortunately if we 8725 * send down the original mblk itself and if we are popped due to an 8726 * an unplumb before the response comes back from tunnel, 8727 * the streamhead (which does a freemsg) will see this contaminated 8728 * message and the assertion in freemsg about non-null b_next/b_prev 8729 * will panic a DEBUG kernel. 8730 */ 8731 mp1 = copymsg(mp); 8732 if (mp1 == NULL) 8733 return (ENOMEM); 8734 8735 ill = ipif->ipif_ill; 8736 mutex_enter(&connp->conn_lock); 8737 mutex_enter(&ill->ill_lock); 8738 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 8739 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 8740 mp, 0); 8741 } else { 8742 success = ill_pending_mp_add(ill, connp, mp); 8743 } 8744 mutex_exit(&ill->ill_lock); 8745 mutex_exit(&connp->conn_lock); 8746 8747 if (success) { 8748 ip1dbg(("sending down tunparam request ")); 8749 putnext(ill->ill_wq, mp1); 8750 return (EINPROGRESS); 8751 } else { 8752 /* The conn has started closing */ 8753 freemsg(mp1); 8754 return (EINTR); 8755 } 8756 } 8757 8758 static int 8759 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 8760 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 8761 { 8762 mblk_t *mp1; 8763 mblk_t *mp2; 8764 mblk_t *pending_mp; 8765 ipaddr_t ipaddr; 8766 area_t *area; 8767 struct iocblk *iocp; 8768 conn_t *connp; 8769 struct arpreq *ar; 8770 struct xarpreq *xar; 8771 boolean_t success; 8772 int flags, alength; 8773 char *lladdr; 8774 8775 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8776 connp = Q_TO_CONN(q); 8777 8778 iocp = (struct iocblk *)mp->b_rptr; 8779 /* 8780 * ill has already been set depending on whether 8781 * bsd style or interface style ioctl. 8782 */ 8783 ASSERT(ill != NULL); 8784 8785 /* 8786 * Is this one of the new SIOC*XARP ioctls? 8787 */ 8788 if (x_arp_ioctl) { 8789 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8790 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8791 ar = NULL; 8792 8793 flags = xar->xarp_flags; 8794 lladdr = LLADDR(&xar->xarp_ha); 8795 /* 8796 * Validate against user's link layer address length 8797 * input and name and addr length limits. 8798 */ 8799 alength = ill->ill_phys_addr_length; 8800 if (iocp->ioc_cmd == SIOCSXARP) { 8801 if (alength != xar->xarp_ha.sdl_alen || 8802 (alength + xar->xarp_ha.sdl_nlen > 8803 sizeof (xar->xarp_ha.sdl_data))) 8804 return (EINVAL); 8805 } 8806 } else { 8807 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8808 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8809 xar = NULL; 8810 8811 flags = ar->arp_flags; 8812 lladdr = ar->arp_ha.sa_data; 8813 /* 8814 * Theoretically, the sa_family could tell us what link 8815 * layer type this operation is trying to deal with. By 8816 * common usage AF_UNSPEC means ethernet. We'll assume 8817 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8818 * for now. Our new SIOC*XARP ioctls can be used more 8819 * generally. 8820 * 8821 * If the underlying media happens to have a non 6 byte 8822 * address, arp module will fail set/get, but the del 8823 * operation will succeed. 8824 */ 8825 alength = 6; 8826 if ((iocp->ioc_cmd != SIOCDARP) && 8827 (alength != ill->ill_phys_addr_length)) { 8828 return (EINVAL); 8829 } 8830 } 8831 8832 /* 8833 * We are going to pass up to ARP a packet chain that looks 8834 * like: 8835 * 8836 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 8837 * 8838 * Get a copy of the original IOCTL mblk to head the chain, 8839 * to be sent up (in mp1). Also get another copy to store 8840 * in the ill_pending_mp list, for matching the response 8841 * when it comes back from ARP. 8842 */ 8843 mp1 = copyb(mp); 8844 pending_mp = copymsg(mp); 8845 if (mp1 == NULL || pending_mp == NULL) { 8846 if (mp1 != NULL) 8847 freeb(mp1); 8848 if (pending_mp != NULL) 8849 inet_freemsg(pending_mp); 8850 return (ENOMEM); 8851 } 8852 8853 ipaddr = sin->sin_addr.s_addr; 8854 8855 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 8856 (caddr_t)&ipaddr); 8857 if (mp2 == NULL) { 8858 freeb(mp1); 8859 inet_freemsg(pending_mp); 8860 return (ENOMEM); 8861 } 8862 /* Put together the chain. */ 8863 mp1->b_cont = mp2; 8864 mp1->b_datap->db_type = M_IOCTL; 8865 mp2->b_cont = mp; 8866 mp2->b_datap->db_type = M_DATA; 8867 8868 iocp = (struct iocblk *)mp1->b_rptr; 8869 8870 /* 8871 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 8872 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 8873 * cp_private field (or cp_rval on 32-bit systems) in place of the 8874 * ioc_count field; set ioc_count to be correct. 8875 */ 8876 iocp->ioc_count = MBLKL(mp1->b_cont); 8877 8878 /* 8879 * Set the proper command in the ARP message. 8880 * Convert the SIOC{G|S|D}ARP calls into our 8881 * AR_ENTRY_xxx calls. 8882 */ 8883 area = (area_t *)mp2->b_rptr; 8884 switch (iocp->ioc_cmd) { 8885 case SIOCDARP: 8886 case SIOCDXARP: 8887 /* 8888 * We defer deleting the corresponding IRE until 8889 * we return from arp. 8890 */ 8891 area->area_cmd = AR_ENTRY_DELETE; 8892 area->area_proto_mask_offset = 0; 8893 break; 8894 case SIOCGARP: 8895 case SIOCGXARP: 8896 area->area_cmd = AR_ENTRY_SQUERY; 8897 area->area_proto_mask_offset = 0; 8898 break; 8899 case SIOCSARP: 8900 case SIOCSXARP: { 8901 /* 8902 * Delete the corresponding ire to make sure IP will 8903 * pick up any change from arp. 8904 */ 8905 if (!if_arp_ioctl) { 8906 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 8907 break; 8908 } else { 8909 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8910 if (ipif != NULL) { 8911 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 8912 ipif_refrele(ipif); 8913 } 8914 break; 8915 } 8916 } 8917 } 8918 iocp->ioc_cmd = area->area_cmd; 8919 8920 /* 8921 * Before sending 'mp' to ARP, we have to clear the b_next 8922 * and b_prev. Otherwise if STREAMS encounters such a message 8923 * in freemsg(), (because ARP can close any time) it can cause 8924 * a panic. But mi code needs the b_next and b_prev values of 8925 * mp->b_cont, to complete the ioctl. So we store it here 8926 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 8927 * when the response comes down from ARP. 8928 */ 8929 pending_mp->b_cont->b_next = mp->b_cont->b_next; 8930 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 8931 mp->b_cont->b_next = NULL; 8932 mp->b_cont->b_prev = NULL; 8933 8934 mutex_enter(&connp->conn_lock); 8935 mutex_enter(&ill->ill_lock); 8936 /* conn has not yet started closing, hence this can't fail */ 8937 success = ill_pending_mp_add(ill, connp, pending_mp); 8938 ASSERT(success); 8939 mutex_exit(&ill->ill_lock); 8940 mutex_exit(&connp->conn_lock); 8941 8942 /* 8943 * Fill in the rest of the ARP operation fields. 8944 */ 8945 area->area_hw_addr_length = alength; 8946 bcopy(lladdr, 8947 (char *)area + area->area_hw_addr_offset, 8948 area->area_hw_addr_length); 8949 /* Translate the flags. */ 8950 if (flags & ATF_PERM) 8951 area->area_flags |= ACE_F_PERMANENT; 8952 if (flags & ATF_PUBL) 8953 area->area_flags |= ACE_F_PUBLISH; 8954 8955 /* 8956 * Up to ARP it goes. The response will come 8957 * back in ip_wput as an M_IOCACK message, and 8958 * will be handed to ip_sioctl_iocack for 8959 * completion. 8960 */ 8961 putnext(ill->ill_rq, mp1); 8962 return (EINPROGRESS); 8963 } 8964 8965 /* ARGSUSED */ 8966 int 8967 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8968 ip_ioctl_cmd_t *ipip, void *ifreq) 8969 { 8970 struct xarpreq *xar; 8971 boolean_t isv6; 8972 mblk_t *mp1; 8973 int err; 8974 conn_t *connp; 8975 int ifnamelen; 8976 ire_t *ire = NULL; 8977 ill_t *ill = NULL; 8978 struct sockaddr_in *sin; 8979 boolean_t if_arp_ioctl = B_FALSE; 8980 8981 /* ioctl comes down on an conn */ 8982 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8983 connp = Q_TO_CONN(q); 8984 isv6 = connp->conn_af_isv6; 8985 8986 /* Existance verified in ip_wput_nondata */ 8987 mp1 = mp->b_cont->b_cont; 8988 8989 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 8990 xar = (struct xarpreq *)mp1->b_rptr; 8991 sin = (sin_t *)&xar->xarp_pa; 8992 8993 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 8994 (xar->xarp_pa.ss_family != AF_INET)) 8995 return (ENXIO); 8996 8997 ifnamelen = xar->xarp_ha.sdl_nlen; 8998 if (ifnamelen != 0) { 8999 char *cptr, cval; 9000 9001 if (ifnamelen >= LIFNAMSIZ) 9002 return (EINVAL); 9003 9004 /* 9005 * Instead of bcopying a bunch of bytes, 9006 * null-terminate the string in-situ. 9007 */ 9008 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9009 cval = *cptr; 9010 *cptr = '\0'; 9011 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9012 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9013 &err, NULL); 9014 *cptr = cval; 9015 if (ill == NULL) 9016 return (err); 9017 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9018 ill_refrele(ill); 9019 return (ENXIO); 9020 } 9021 9022 if_arp_ioctl = B_TRUE; 9023 } else { 9024 /* 9025 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9026 * as an extended BSD ioctl. The kernel uses the IP address 9027 * to figure out the network interface. 9028 */ 9029 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES); 9030 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9031 ((ill = ire_to_ill(ire)) == NULL)) { 9032 if (ire != NULL) 9033 ire_refrele(ire); 9034 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9035 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9036 MATCH_IRE_TYPE); 9037 if ((ire == NULL) || 9038 ((ill = ire_to_ill(ire)) == NULL)) { 9039 if (ire != NULL) 9040 ire_refrele(ire); 9041 return (ENXIO); 9042 } 9043 } 9044 ASSERT(ire != NULL && ill != NULL); 9045 } 9046 9047 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9048 if (if_arp_ioctl) 9049 ill_refrele(ill); 9050 if (ire != NULL) 9051 ire_refrele(ire); 9052 9053 return (err); 9054 } 9055 9056 /* 9057 * ARP IOCTLs. 9058 * How does IP get in the business of fronting ARP configuration/queries? 9059 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9060 * are by tradition passed in through a datagram socket. That lands in IP. 9061 * As it happens, this is just as well since the interface is quite crude in 9062 * that it passes in no information about protocol or hardware types, or 9063 * interface association. After making the protocol assumption, IP is in 9064 * the position to look up the name of the ILL, which ARP will need, and 9065 * format a request that can be handled by ARP. The request is passed up 9066 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9067 * back a response. ARP supports its own set of more general IOCTLs, in 9068 * case anyone is interested. 9069 */ 9070 /* ARGSUSED */ 9071 int 9072 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9073 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9074 { 9075 struct arpreq *ar; 9076 struct sockaddr_in *sin; 9077 ire_t *ire; 9078 boolean_t isv6; 9079 mblk_t *mp1; 9080 int err; 9081 conn_t *connp; 9082 ill_t *ill; 9083 9084 /* ioctl comes down on an conn */ 9085 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9086 connp = Q_TO_CONN(q); 9087 isv6 = connp->conn_af_isv6; 9088 if (isv6) 9089 return (ENXIO); 9090 9091 /* Existance verified in ip_wput_nondata */ 9092 mp1 = mp->b_cont->b_cont; 9093 9094 ar = (struct arpreq *)mp1->b_rptr; 9095 sin = (sin_t *)&ar->arp_pa; 9096 9097 /* 9098 * We need to let ARP know on which interface the IP 9099 * address has an ARP mapping. In the IPMP case, a 9100 * simple forwarding table lookup will return the 9101 * IRE_IF_RESOLVER for the first interface in the group, 9102 * which might not be the interface on which the 9103 * requested IP address was resolved due to the ill 9104 * selection algorithm (see ip_newroute_get_dst_ill()). 9105 * So we do a cache table lookup first: if the IRE cache 9106 * entry for the IP address is still there, it will 9107 * contain the ill pointer for the right interface, so 9108 * we use that. If the cache entry has been flushed, we 9109 * fall back to the forwarding table lookup. This should 9110 * be rare enough since IRE cache entries have a longer 9111 * life expectancy than ARP cache entries. 9112 */ 9113 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES); 9114 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9115 ((ill = ire_to_ill(ire)) == NULL)) { 9116 if (ire != NULL) 9117 ire_refrele(ire); 9118 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9119 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9120 MATCH_IRE_TYPE); 9121 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9122 if (ire != NULL) 9123 ire_refrele(ire); 9124 return (ENXIO); 9125 } 9126 } 9127 ASSERT(ire != NULL && ill != NULL); 9128 9129 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9130 ire_refrele(ire); 9131 return (err); 9132 } 9133 9134 /* 9135 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9136 * atomically set/clear the muxids. Also complete the ioctl by acking or 9137 * naking it. Note that the code is structured such that the link type, 9138 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9139 * its clones use the persistent link, while pppd(1M) and perhaps many 9140 * other daemons may use non-persistent link. When combined with some 9141 * ill_t states, linking and unlinking lower streams may be used as 9142 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9143 */ 9144 /* ARGSUSED */ 9145 void 9146 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9147 { 9148 mblk_t *mp1; 9149 mblk_t *mp2; 9150 struct linkblk *li; 9151 queue_t *ipwq; 9152 char *name; 9153 struct qinit *qinfo; 9154 struct ipmx_s *ipmxp; 9155 ill_t *ill = NULL; 9156 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9157 int err = 0; 9158 boolean_t entered_ipsq = B_FALSE; 9159 boolean_t islink; 9160 queue_t *dwq = NULL; 9161 9162 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9163 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9164 9165 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9166 B_TRUE : B_FALSE; 9167 9168 mp1 = mp->b_cont; /* This is the linkblk info */ 9169 li = (struct linkblk *)mp1->b_rptr; 9170 9171 /* 9172 * ARP has added this special mblk, and the utility is asking us 9173 * to perform consistency checks, and also atomically set the 9174 * muxid. Ifconfig is an example. It achieves this by using 9175 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9176 * to /dev/udp[6] stream for use as the mux when plinking the IP 9177 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9178 * and other comments in this routine for more details. 9179 */ 9180 mp2 = mp1->b_cont; /* This is added by ARP */ 9181 9182 /* 9183 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9184 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9185 * get the special mblk above. For backward compatibility, we just 9186 * return success. The utility will use SIOCSLIFMUXID to store 9187 * the muxids. This is not atomic, and can leave the streams 9188 * unplumbable if the utility is interrrupted, before it does the 9189 * SIOCSLIFMUXID. 9190 */ 9191 if (mp2 == NULL) { 9192 /* 9193 * At this point we don't know whether or not this is the 9194 * IP module stream or the ARP device stream. We need to 9195 * walk the lower stream in order to find this out, since 9196 * the capability negotiation is done only on the IP module 9197 * stream. IP module instance is identified by the module 9198 * name IP, non-null q_next, and it's wput not being ip_lwput. 9199 * STREAMS ensures that the lower stream (l_qbot) will not 9200 * vanish until this ioctl completes. So we can safely walk 9201 * the stream or refer to the q_ptr. 9202 */ 9203 ipwq = li->l_qbot; 9204 while (ipwq != NULL) { 9205 qinfo = ipwq->q_qinfo; 9206 name = qinfo->qi_minfo->mi_idname; 9207 if (name != NULL && name[0] != NULL && 9208 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9209 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9210 (ipwq->q_next != NULL)) { 9211 break; 9212 } 9213 ipwq = ipwq->q_next; 9214 } 9215 /* 9216 * This looks like an IP module stream, so trigger 9217 * the capability reset or re-negotiation if necessary. 9218 */ 9219 if (ipwq != NULL) { 9220 ill = ipwq->q_ptr; 9221 ASSERT(ill != NULL); 9222 9223 if (ipsq == NULL) { 9224 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9225 ip_sioctl_plink, NEW_OP, B_TRUE); 9226 if (ipsq == NULL) 9227 return; 9228 entered_ipsq = B_TRUE; 9229 } 9230 ASSERT(IAM_WRITER_ILL(ill)); 9231 /* 9232 * Store the upper read queue of the module 9233 * immediately below IP, and count the total 9234 * number of lower modules. Do this only 9235 * for I_PLINK or I_LINK event. 9236 */ 9237 ill->ill_lmod_rq = NULL; 9238 ill->ill_lmod_cnt = 0; 9239 if (islink && (dwq = ipwq->q_next) != NULL) { 9240 ill->ill_lmod_rq = RD(dwq); 9241 9242 while (dwq != NULL) { 9243 ill->ill_lmod_cnt++; 9244 dwq = dwq->q_next; 9245 } 9246 } 9247 /* 9248 * There's no point in resetting or re-negotiating if 9249 * we are not bound to the driver, so only do this if 9250 * the DLPI state is idle (up); we assume such state 9251 * since ill_ipif_up_count gets incremented in 9252 * ipif_up_done(), which is after we are bound to the 9253 * driver. Note that in the case of logical 9254 * interfaces, IP won't rebind to the driver unless 9255 * the ill_ipif_up_count is 0, meaning that all other 9256 * IP interfaces (including the main ipif) are in the 9257 * down state. Because of this, we use such counter 9258 * as an indicator, instead of relying on the IPIF_UP 9259 * flag, which is per ipif instance. 9260 */ 9261 if (ill->ill_ipif_up_count > 0) { 9262 if (islink) 9263 ill_capability_probe(ill); 9264 else 9265 ill_capability_reset(ill); 9266 } 9267 } 9268 goto done; 9269 } 9270 9271 /* 9272 * This is an I_{P}LINK sent down by ifconfig on 9273 * /dev/arp. ARP has appended this last (3rd) mblk, 9274 * giving more info. STREAMS ensures that the lower 9275 * stream (l_qbot) will not vanish until this ioctl 9276 * completes. So we can safely walk the stream or refer 9277 * to the q_ptr. 9278 */ 9279 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9280 if (ipmxp->ipmx_arpdev_stream) { 9281 /* 9282 * The operation is occuring on the arp-device 9283 * stream. 9284 */ 9285 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9286 q, mp, ip_sioctl_plink, &err, NULL); 9287 if (ill == NULL) { 9288 if (err == EINPROGRESS) { 9289 return; 9290 } else { 9291 err = EINVAL; 9292 goto done; 9293 } 9294 } 9295 9296 if (ipsq == NULL) { 9297 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9298 NEW_OP, B_TRUE); 9299 if (ipsq == NULL) { 9300 ill_refrele(ill); 9301 return; 9302 } 9303 entered_ipsq = B_TRUE; 9304 } 9305 ASSERT(IAM_WRITER_ILL(ill)); 9306 ill_refrele(ill); 9307 /* 9308 * To ensure consistency between IP and ARP, 9309 * the following LIFO scheme is used in 9310 * plink/punlink. (IP first, ARP last). 9311 * This is because the muxid's are stored 9312 * in the IP stream on the ill. 9313 * 9314 * I_{P}LINK: ifconfig plinks the IP stream before 9315 * plinking the ARP stream. On an arp-dev 9316 * stream, IP checks that it is not yet 9317 * plinked, and it also checks that the 9318 * corresponding IP stream is already plinked. 9319 * 9320 * I_{P}UNLINK: ifconfig punlinks the ARP stream 9321 * before punlinking the IP stream. IP does 9322 * not allow punlink of the IP stream unless 9323 * the arp stream has been punlinked. 9324 * 9325 */ 9326 if ((islink && 9327 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9328 (!islink && 9329 ill->ill_arp_muxid != li->l_index)) { 9330 err = EINVAL; 9331 goto done; 9332 } 9333 if (islink) { 9334 ill->ill_arp_muxid = li->l_index; 9335 } else { 9336 ill->ill_arp_muxid = 0; 9337 } 9338 } else { 9339 /* 9340 * This must be the IP module stream with or 9341 * without arp. Walk the stream and locate the 9342 * IP module. An IP module instance is 9343 * identified by the module name IP, non-null 9344 * q_next, and it's wput not being ip_lwput. 9345 */ 9346 ipwq = li->l_qbot; 9347 while (ipwq != NULL) { 9348 qinfo = ipwq->q_qinfo; 9349 name = qinfo->qi_minfo->mi_idname; 9350 if (name != NULL && name[0] != NULL && 9351 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9352 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9353 (ipwq->q_next != NULL)) { 9354 break; 9355 } 9356 ipwq = ipwq->q_next; 9357 } 9358 if (ipwq != NULL) { 9359 ill = ipwq->q_ptr; 9360 ASSERT(ill != NULL); 9361 9362 if (ipsq == NULL) { 9363 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9364 ip_sioctl_plink, NEW_OP, B_TRUE); 9365 if (ipsq == NULL) 9366 return; 9367 entered_ipsq = B_TRUE; 9368 } 9369 ASSERT(IAM_WRITER_ILL(ill)); 9370 /* 9371 * Return error if the ip_mux_id is 9372 * non-zero and command is I_{P}LINK. 9373 * If command is I_{P}UNLINK, return 9374 * error if the arp-devstr is not 9375 * yet punlinked. 9376 */ 9377 if ((islink && ill->ill_ip_muxid != 0) || 9378 (!islink && ill->ill_arp_muxid != 0)) { 9379 err = EINVAL; 9380 goto done; 9381 } 9382 ill->ill_lmod_rq = NULL; 9383 ill->ill_lmod_cnt = 0; 9384 if (islink) { 9385 /* 9386 * Store the upper read queue of the module 9387 * immediately below IP, and count the total 9388 * number of lower modules. 9389 */ 9390 if ((dwq = ipwq->q_next) != NULL) { 9391 ill->ill_lmod_rq = RD(dwq); 9392 9393 while (dwq != NULL) { 9394 ill->ill_lmod_cnt++; 9395 dwq = dwq->q_next; 9396 } 9397 } 9398 ill->ill_ip_muxid = li->l_index; 9399 } else { 9400 ill->ill_ip_muxid = 0; 9401 } 9402 9403 /* 9404 * See comments above about resetting/re- 9405 * negotiating driver sub-capabilities. 9406 */ 9407 if (ill->ill_ipif_up_count > 0) { 9408 if (islink) 9409 ill_capability_probe(ill); 9410 else 9411 ill_capability_reset(ill); 9412 } 9413 } 9414 } 9415 done: 9416 iocp->ioc_count = 0; 9417 iocp->ioc_error = err; 9418 if (err == 0) 9419 mp->b_datap->db_type = M_IOCACK; 9420 else 9421 mp->b_datap->db_type = M_IOCNAK; 9422 qreply(q, mp); 9423 9424 /* Conn was refheld in ip_sioctl_copyin_setup */ 9425 if (CONN_Q(q)) 9426 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9427 if (entered_ipsq) 9428 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9429 } 9430 9431 /* 9432 * Search the ioctl command in the ioctl tables and return a pointer 9433 * to the ioctl command information. The ioctl command tables are 9434 * static and fully populated at compile time. 9435 */ 9436 ip_ioctl_cmd_t * 9437 ip_sioctl_lookup(int ioc_cmd) 9438 { 9439 int index; 9440 ip_ioctl_cmd_t *ipip; 9441 ip_ioctl_cmd_t *ipip_end; 9442 9443 if (ioc_cmd == IPI_DONTCARE) 9444 return (NULL); 9445 9446 /* 9447 * Do a 2 step search. First search the indexed table 9448 * based on the least significant byte of the ioctl cmd. 9449 * If we don't find a match, then search the misc table 9450 * serially. 9451 */ 9452 index = ioc_cmd & 0xFF; 9453 if (index < ip_ndx_ioctl_count) { 9454 ipip = &ip_ndx_ioctl_table[index]; 9455 if (ipip->ipi_cmd == ioc_cmd) { 9456 /* Found a match in the ndx table */ 9457 return (ipip); 9458 } 9459 } 9460 9461 /* Search the misc table */ 9462 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 9463 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 9464 if (ipip->ipi_cmd == ioc_cmd) 9465 /* Found a match in the misc table */ 9466 return (ipip); 9467 } 9468 9469 return (NULL); 9470 } 9471 9472 /* 9473 * Wrapper function for resuming deferred ioctl processing 9474 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9475 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9476 */ 9477 /* ARGSUSED */ 9478 void 9479 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9480 void *dummy_arg) 9481 { 9482 ip_sioctl_copyin_setup(q, mp); 9483 } 9484 9485 /* 9486 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 9487 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9488 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9489 * We establish here the size of the block to be copied in. mi_copyin 9490 * arranges for this to happen, an processing continues in ip_wput with 9491 * an M_IOCDATA message. 9492 */ 9493 void 9494 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9495 { 9496 int copyin_size; 9497 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9498 ip_ioctl_cmd_t *ipip; 9499 cred_t *cr; 9500 9501 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9502 if (ipip == NULL) { 9503 /* 9504 * The ioctl is not one we understand or own. 9505 * Pass it along to be processed down stream, 9506 * if this is a module instance of IP, else nak 9507 * the ioctl. 9508 */ 9509 if (q->q_next == NULL) { 9510 goto nak; 9511 } else { 9512 putnext(q, mp); 9513 return; 9514 } 9515 } 9516 9517 /* 9518 * If this is deferred, then we will do all the checks when we 9519 * come back. 9520 */ 9521 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9522 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 9523 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9524 return; 9525 } 9526 9527 /* 9528 * Only allow a very small subset of IP ioctls on this stream if 9529 * IP is a module and not a driver. Allowing ioctls to be processed 9530 * in this case may cause assert failures or data corruption. 9531 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9532 * ioctls allowed on an IP module stream, after which this stream 9533 * normally becomes a multiplexor (at which time the stream head 9534 * will fail all ioctls). 9535 */ 9536 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9537 if (ipip->ipi_flags & IPI_PASS_DOWN) { 9538 /* 9539 * Pass common Streams ioctls which the IP 9540 * module does not own or consume along to 9541 * be processed down stream. 9542 */ 9543 putnext(q, mp); 9544 return; 9545 } else { 9546 goto nak; 9547 } 9548 } 9549 9550 /* Make sure we have ioctl data to process. */ 9551 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9552 goto nak; 9553 9554 /* 9555 * Prefer dblk credential over ioctl credential; some synthesized 9556 * ioctls have kcred set because there's no way to crhold() 9557 * a credential in some contexts. (ioc_cr is not crfree() by 9558 * the framework; the caller of ioctl needs to hold the reference 9559 * for the duration of the call). 9560 */ 9561 cr = DB_CREDDEF(mp, iocp->ioc_cr); 9562 9563 /* Make sure normal users don't send down privileged ioctls */ 9564 if ((ipip->ipi_flags & IPI_PRIV) && 9565 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 9566 /* We checked the privilege earlier but log it here */ 9567 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 9568 return; 9569 } 9570 9571 /* 9572 * The ioctl command tables can only encode fixed length 9573 * ioctl data. If the length is variable, the table will 9574 * encode the length as zero. Such special cases are handled 9575 * below in the switch. 9576 */ 9577 if (ipip->ipi_copyin_size != 0) { 9578 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9579 return; 9580 } 9581 9582 switch (iocp->ioc_cmd) { 9583 case O_SIOCGIFCONF: 9584 case SIOCGIFCONF: 9585 /* 9586 * This IOCTL is hilarious. See comments in 9587 * ip_sioctl_get_ifconf for the story. 9588 */ 9589 if (iocp->ioc_count == TRANSPARENT) 9590 copyin_size = SIZEOF_STRUCT(ifconf, 9591 iocp->ioc_flag); 9592 else 9593 copyin_size = iocp->ioc_count; 9594 mi_copyin(q, mp, NULL, copyin_size); 9595 return; 9596 9597 case O_SIOCGLIFCONF: 9598 case SIOCGLIFCONF: 9599 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9600 mi_copyin(q, mp, NULL, copyin_size); 9601 return; 9602 9603 case SIOCGLIFSRCOF: 9604 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9605 mi_copyin(q, mp, NULL, copyin_size); 9606 return; 9607 case SIOCGIP6ADDRPOLICY: 9608 ip_sioctl_ip6addrpolicy(q, mp); 9609 ip6_asp_table_refrele(); 9610 return; 9611 9612 case SIOCSIP6ADDRPOLICY: 9613 ip_sioctl_ip6addrpolicy(q, mp); 9614 return; 9615 9616 case SIOCGDSTINFO: 9617 ip_sioctl_dstinfo(q, mp); 9618 ip6_asp_table_refrele(); 9619 return; 9620 9621 case I_PLINK: 9622 case I_PUNLINK: 9623 case I_LINK: 9624 case I_UNLINK: 9625 /* 9626 * We treat non-persistent link similarly as the persistent 9627 * link case, in terms of plumbing/unplumbing, as well as 9628 * dynamic re-plumbing events indicator. See comments 9629 * in ip_sioctl_plink() for more. 9630 * 9631 * Request can be enqueued in the 'ipsq' while waiting 9632 * to become exclusive. So bump up the conn ref. 9633 */ 9634 if (CONN_Q(q)) 9635 CONN_INC_REF(Q_TO_CONN(q)); 9636 ip_sioctl_plink(NULL, q, mp, NULL); 9637 return; 9638 9639 case ND_GET: 9640 case ND_SET: 9641 /* 9642 * Use of the nd table requires holding the reader lock. 9643 * Modifying the nd table thru nd_load/nd_unload requires 9644 * the writer lock. 9645 */ 9646 rw_enter(&ip_g_nd_lock, RW_READER); 9647 if (nd_getset(q, ip_g_nd, mp)) { 9648 rw_exit(&ip_g_nd_lock); 9649 9650 if (iocp->ioc_error) 9651 iocp->ioc_count = 0; 9652 mp->b_datap->db_type = M_IOCACK; 9653 qreply(q, mp); 9654 return; 9655 } 9656 rw_exit(&ip_g_nd_lock); 9657 /* 9658 * We don't understand this subioctl of ND_GET / ND_SET. 9659 * Maybe intended for some driver / module below us 9660 */ 9661 if (q->q_next) { 9662 putnext(q, mp); 9663 } else { 9664 iocp->ioc_error = ENOENT; 9665 mp->b_datap->db_type = M_IOCNAK; 9666 iocp->ioc_count = 0; 9667 qreply(q, mp); 9668 } 9669 return; 9670 9671 case IP_IOCTL: 9672 ip_wput_ioctl(q, mp); 9673 return; 9674 default: 9675 cmn_err(CE_PANIC, "should not happen "); 9676 } 9677 nak: 9678 if (mp->b_cont != NULL) { 9679 freemsg(mp->b_cont); 9680 mp->b_cont = NULL; 9681 } 9682 iocp->ioc_error = EINVAL; 9683 mp->b_datap->db_type = M_IOCNAK; 9684 iocp->ioc_count = 0; 9685 qreply(q, mp); 9686 } 9687 9688 /* ip_wput hands off ARP IOCTL responses to us */ 9689 void 9690 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 9691 { 9692 struct arpreq *ar; 9693 struct xarpreq *xar; 9694 area_t *area; 9695 mblk_t *area_mp; 9696 struct iocblk *iocp; 9697 mblk_t *orig_ioc_mp, *tmp; 9698 struct iocblk *orig_iocp; 9699 ill_t *ill; 9700 conn_t *connp = NULL; 9701 uint_t ioc_id; 9702 mblk_t *pending_mp; 9703 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 9704 int *flagsp; 9705 char *storage = NULL; 9706 sin_t *sin; 9707 ipaddr_t addr; 9708 int err; 9709 9710 ill = q->q_ptr; 9711 ASSERT(ill != NULL); 9712 9713 /* 9714 * We should get back from ARP a packet chain that looks like: 9715 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9716 */ 9717 if (!(area_mp = mp->b_cont) || 9718 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 9719 !(orig_ioc_mp = area_mp->b_cont) || 9720 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 9721 freemsg(mp); 9722 return; 9723 } 9724 9725 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 9726 9727 tmp = (orig_ioc_mp->b_cont)->b_cont; 9728 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 9729 (orig_iocp->ioc_cmd == SIOCSXARP) || 9730 (orig_iocp->ioc_cmd == SIOCDXARP)) { 9731 x_arp_ioctl = B_TRUE; 9732 xar = (struct xarpreq *)tmp->b_rptr; 9733 sin = (sin_t *)&xar->xarp_pa; 9734 flagsp = &xar->xarp_flags; 9735 storage = xar->xarp_ha.sdl_data; 9736 if (xar->xarp_ha.sdl_nlen != 0) 9737 ifx_arp_ioctl = B_TRUE; 9738 } else { 9739 ar = (struct arpreq *)tmp->b_rptr; 9740 sin = (sin_t *)&ar->arp_pa; 9741 flagsp = &ar->arp_flags; 9742 storage = ar->arp_ha.sa_data; 9743 } 9744 9745 iocp = (struct iocblk *)mp->b_rptr; 9746 9747 /* 9748 * Pick out the originating queue based on the ioc_id. 9749 */ 9750 ioc_id = iocp->ioc_id; 9751 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 9752 if (pending_mp == NULL) { 9753 ASSERT(connp == NULL); 9754 inet_freemsg(mp); 9755 return; 9756 } 9757 ASSERT(connp != NULL); 9758 q = CONNP_TO_WQ(connp); 9759 9760 /* Uncouple the internally generated IOCTL from the original one */ 9761 area = (area_t *)area_mp->b_rptr; 9762 area_mp->b_cont = NULL; 9763 9764 /* 9765 * Restore the b_next and b_prev used by mi code. This is needed 9766 * to complete the ioctl using mi* functions. We stored them in 9767 * the pending mp prior to sending the request to ARP. 9768 */ 9769 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 9770 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 9771 inet_freemsg(pending_mp); 9772 9773 /* 9774 * We're done if there was an error or if this is not an SIOCG{X}ARP 9775 * Catch the case where there is an IRE_CACHE by no entry in the 9776 * arp table. 9777 */ 9778 addr = sin->sin_addr.s_addr; 9779 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 9780 ire_t *ire; 9781 dl_unitdata_req_t *dlup; 9782 mblk_t *llmp; 9783 int addr_len; 9784 ill_t *ipsqill = NULL; 9785 9786 if (ifx_arp_ioctl) { 9787 /* 9788 * There's no need to lookup the ill, since 9789 * we've already done that when we started 9790 * processing the ioctl and sent the message 9791 * to ARP on that ill. So use the ill that 9792 * is stored in q->q_ptr. 9793 */ 9794 ipsqill = ill; 9795 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9796 ipsqill->ill_ipif, ALL_ZONES, 9797 MATCH_IRE_TYPE | MATCH_IRE_ILL); 9798 } else { 9799 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9800 NULL, ALL_ZONES, MATCH_IRE_TYPE); 9801 if (ire != NULL) 9802 ipsqill = ire_to_ill(ire); 9803 } 9804 9805 if ((x_arp_ioctl) && (ipsqill != NULL)) 9806 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 9807 9808 if (ire != NULL) { 9809 *flagsp = ATF_INUSE; 9810 llmp = ire->ire_dlureq_mp; 9811 if (llmp != NULL && ipsqill != NULL) { 9812 uchar_t *macaddr; 9813 9814 addr_len = ipsqill->ill_phys_addr_length; 9815 if (x_arp_ioctl && ((addr_len + 9816 ipsqill->ill_name_length) > 9817 sizeof (xar->xarp_ha.sdl_data))) { 9818 ire_refrele(ire); 9819 freemsg(mp); 9820 ip_ioctl_finish(q, orig_ioc_mp, 9821 EINVAL, NO_COPYOUT, NULL, NULL); 9822 return; 9823 } 9824 *flagsp |= ATF_COM; 9825 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 9826 if (ipsqill->ill_sap_length < 0) 9827 macaddr = llmp->b_rptr + 9828 dlup->dl_dest_addr_offset; 9829 else 9830 macaddr = llmp->b_rptr + 9831 dlup->dl_dest_addr_offset + 9832 ipsqill->ill_sap_length; 9833 /* 9834 * For SIOCGARP, MAC address length 9835 * validation has already been done 9836 * before the ioctl was issued to ARP to 9837 * allow it to progress only on 6 byte 9838 * addressable (ethernet like) media. Thus 9839 * the mac address copying can not overwrite 9840 * the sa_data area below. 9841 */ 9842 bcopy(macaddr, storage, addr_len); 9843 } 9844 /* Ditch the internal IOCTL. */ 9845 freemsg(mp); 9846 ire_refrele(ire); 9847 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 9848 return; 9849 } 9850 } 9851 9852 /* 9853 * Delete the coresponding IRE_CACHE if any. 9854 * Reset the error if there was one (in case there was no entry 9855 * in arp.) 9856 */ 9857 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 9858 ipif_t *ipintf = NULL; 9859 9860 if (ifx_arp_ioctl) { 9861 /* 9862 * There's no need to lookup the ill, since 9863 * we've already done that when we started 9864 * processing the ioctl and sent the message 9865 * to ARP on that ill. So use the ill that 9866 * is stored in q->q_ptr. 9867 */ 9868 ipintf = ill->ill_ipif; 9869 } 9870 if (ip_ire_clookup_and_delete(addr, ipintf)) { 9871 /* 9872 * The address in "addr" may be an entry for a 9873 * router. If that's true, then any off-net 9874 * IRE_CACHE entries that go through the router 9875 * with address "addr" must be clobbered. Use 9876 * ire_walk to achieve this goal. 9877 */ 9878 if (ifx_arp_ioctl) 9879 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 9880 ire_delete_cache_gw, (char *)&addr, ill); 9881 else 9882 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 9883 ALL_ZONES); 9884 iocp->ioc_error = 0; 9885 } 9886 } 9887 9888 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 9889 err = iocp->ioc_error; 9890 freemsg(mp); 9891 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL); 9892 return; 9893 } 9894 9895 /* 9896 * Completion of an SIOCG{X}ARP. Translate the information from 9897 * the area_t into the struct {x}arpreq. 9898 */ 9899 if (x_arp_ioctl) { 9900 storage += ill_xarp_info(&xar->xarp_ha, ill); 9901 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9902 sizeof (xar->xarp_ha.sdl_data)) { 9903 freemsg(mp); 9904 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, 9905 NO_COPYOUT, NULL, NULL); 9906 return; 9907 } 9908 } 9909 *flagsp = ATF_INUSE; 9910 if (area->area_flags & ACE_F_PERMANENT) 9911 *flagsp |= ATF_PERM; 9912 if (area->area_flags & ACE_F_PUBLISH) 9913 *flagsp |= ATF_PUBL; 9914 if (area->area_hw_addr_length != 0) { 9915 *flagsp |= ATF_COM; 9916 /* 9917 * For SIOCGARP, MAC address length validation has 9918 * already been done before the ioctl was issued to ARP 9919 * to allow it to progress only on 6 byte addressable 9920 * (ethernet like) media. Thus the mac address copying 9921 * can not overwrite the sa_data area below. 9922 */ 9923 bcopy((char *)area + area->area_hw_addr_offset, 9924 storage, area->area_hw_addr_length); 9925 } 9926 9927 /* Ditch the internal IOCTL. */ 9928 freemsg(mp); 9929 /* Complete the original. */ 9930 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 9931 } 9932 9933 /* 9934 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9935 * interface) create the next available logical interface for this 9936 * physical interface. 9937 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9938 * ipif with the specified name. 9939 * 9940 * If the address family is not AF_UNSPEC then set the address as well. 9941 * 9942 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9943 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9944 * 9945 * Executed as a writer on the ill or ill group. 9946 * So no lock is needed to traverse the ipif chain, or examine the 9947 * phyint flags. 9948 */ 9949 /* ARGSUSED */ 9950 int 9951 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9952 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9953 { 9954 mblk_t *mp1; 9955 struct lifreq *lifr; 9956 boolean_t isv6; 9957 boolean_t exists; 9958 char *name; 9959 char *endp; 9960 char *cp; 9961 int namelen; 9962 ipif_t *ipif; 9963 long id; 9964 ipsq_t *ipsq; 9965 ill_t *ill; 9966 sin_t *sin; 9967 int err = 0; 9968 boolean_t found_sep = B_FALSE; 9969 conn_t *connp; 9970 zoneid_t zoneid; 9971 int orig_ifindex = 0; 9972 9973 ip1dbg(("ip_sioctl_addif\n")); 9974 /* Existence of mp1 has been checked in ip_wput_nondata */ 9975 mp1 = mp->b_cont->b_cont; 9976 /* 9977 * Null terminate the string to protect against buffer 9978 * overrun. String was generated by user code and may not 9979 * be trusted. 9980 */ 9981 lifr = (struct lifreq *)mp1->b_rptr; 9982 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9983 name = lifr->lifr_name; 9984 ASSERT(CONN_Q(q)); 9985 connp = Q_TO_CONN(q); 9986 isv6 = connp->conn_af_isv6; 9987 zoneid = connp->conn_zoneid; 9988 namelen = mi_strlen(name); 9989 if (namelen == 0) 9990 return (EINVAL); 9991 9992 exists = B_FALSE; 9993 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9994 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9995 /* 9996 * Allow creating lo0 using SIOCLIFADDIF. 9997 * can't be any other writer thread. So can pass null below 9998 * for the last 4 args to ipif_lookup_name. 9999 */ 10000 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 10001 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 10002 /* Prevent any further action */ 10003 if (ipif == NULL) { 10004 return (ENOBUFS); 10005 } else if (!exists) { 10006 /* We created the ipif now and as writer */ 10007 ipif_refrele(ipif); 10008 return (0); 10009 } else { 10010 ill = ipif->ipif_ill; 10011 ill_refhold(ill); 10012 ipif_refrele(ipif); 10013 } 10014 } else { 10015 /* Look for a colon in the name. */ 10016 endp = &name[namelen]; 10017 for (cp = endp; --cp > name; ) { 10018 if (*cp == IPIF_SEPARATOR_CHAR) { 10019 found_sep = B_TRUE; 10020 /* 10021 * Reject any non-decimal aliases for plumbing 10022 * of logical interfaces. Aliases with leading 10023 * zeroes are also rejected as they introduce 10024 * ambiguity in the naming of the interfaces. 10025 * Comparing with "0" takes care of all such 10026 * cases. 10027 */ 10028 if ((strncmp("0", cp+1, 1)) == 0) 10029 return (EINVAL); 10030 10031 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10032 id <= 0 || *endp != '\0') { 10033 return (EINVAL); 10034 } 10035 *cp = '\0'; 10036 break; 10037 } 10038 } 10039 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10040 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10041 if (found_sep) 10042 *cp = IPIF_SEPARATOR_CHAR; 10043 if (ill == NULL) 10044 return (err); 10045 } 10046 10047 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10048 B_TRUE); 10049 10050 /* 10051 * Release the refhold due to the lookup, now that we are excl 10052 * or we are just returning 10053 */ 10054 ill_refrele(ill); 10055 10056 if (ipsq == NULL) 10057 return (EINPROGRESS); 10058 10059 /* 10060 * If the interface is failed, inactive or offlined, look for a working 10061 * interface in the ill group and create the ipif there. If we can't 10062 * find a good interface, create the ipif anyway so that in.mpathd can 10063 * move it to the first repaired interface. 10064 */ 10065 if ((ill->ill_phyint->phyint_flags & 10066 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10067 ill->ill_phyint->phyint_groupname_len != 0) { 10068 phyint_t *phyi; 10069 char *groupname = ill->ill_phyint->phyint_groupname; 10070 10071 /* 10072 * We're looking for a working interface, but it doesn't matter 10073 * if it's up or down; so instead of following the group lists, 10074 * we look at each physical interface and compare the groupname. 10075 * We're only interested in interfaces with IPv4 (resp. IPv6) 10076 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10077 * Otherwise we create the ipif on the failed interface. 10078 */ 10079 rw_enter(&ill_g_lock, RW_READER); 10080 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10081 for (; phyi != NULL; 10082 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10083 phyi, AVL_AFTER)) { 10084 if (phyi->phyint_groupname_len == 0) 10085 continue; 10086 ASSERT(phyi->phyint_groupname != NULL); 10087 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10088 !(phyi->phyint_flags & 10089 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10090 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10091 (phyi->phyint_illv4 != NULL))) { 10092 break; 10093 } 10094 } 10095 rw_exit(&ill_g_lock); 10096 10097 if (phyi != NULL) { 10098 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10099 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10100 phyi->phyint_illv4); 10101 } 10102 } 10103 10104 /* 10105 * We are now exclusive on the ipsq, so an ill move will be serialized 10106 * before or after us. 10107 */ 10108 ASSERT(IAM_WRITER_ILL(ill)); 10109 ASSERT(ill->ill_move_in_progress == B_FALSE); 10110 10111 if (found_sep && orig_ifindex == 0) { 10112 /* Now see if there is an IPIF with this unit number. */ 10113 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 10114 if (ipif->ipif_id == id) { 10115 err = EEXIST; 10116 goto done; 10117 } 10118 } 10119 } 10120 10121 /* 10122 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10123 * of lo0. We never come here when we plumb lo0:0. It 10124 * happens in ipif_lookup_on_name. 10125 * The specified unit number is ignored when we create the ipif on a 10126 * different interface. However, we save it in ipif_orig_ipifid below so 10127 * that the ipif fails back to the right position. 10128 */ 10129 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10130 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10131 err = ENOBUFS; 10132 goto done; 10133 } 10134 10135 /* Return created name with ioctl */ 10136 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10137 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10138 ip1dbg(("created %s\n", lifr->lifr_name)); 10139 10140 /* Set address */ 10141 sin = (sin_t *)&lifr->lifr_addr; 10142 if (sin->sin_family != AF_UNSPEC) { 10143 err = ip_sioctl_addr(ipif, sin, q, mp, 10144 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10145 } 10146 10147 /* Set ifindex and unit number for failback */ 10148 if (err == 0 && orig_ifindex != 0) { 10149 ipif->ipif_orig_ifindex = orig_ifindex; 10150 if (found_sep) { 10151 ipif->ipif_orig_ipifid = id; 10152 } 10153 } 10154 10155 done: 10156 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10157 return (err); 10158 } 10159 10160 /* 10161 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10162 * interface) delete it based on the IP address (on this physical interface). 10163 * Otherwise delete it based on the ipif_id. 10164 * Also, special handling to allow a removeif of lo0. 10165 */ 10166 /* ARGSUSED */ 10167 int 10168 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10169 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10170 { 10171 conn_t *connp; 10172 ill_t *ill = ipif->ipif_ill; 10173 boolean_t success; 10174 10175 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10176 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10177 ASSERT(IAM_WRITER_IPIF(ipif)); 10178 10179 connp = Q_TO_CONN(q); 10180 /* 10181 * Special case for unplumbing lo0 (the loopback physical interface). 10182 * If unplumbing lo0, the incoming address structure has been 10183 * initialized to all zeros. When unplumbing lo0, all its logical 10184 * interfaces must be removed too. 10185 * 10186 * Note that this interface may be called to remove a specific 10187 * loopback logical interface (eg, lo0:1). But in that case 10188 * ipif->ipif_id != 0 so that the code path for that case is the 10189 * same as any other interface (meaning it skips the code directly 10190 * below). 10191 */ 10192 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10193 if (sin->sin_family == AF_UNSPEC && 10194 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10195 /* 10196 * Mark it condemned. No new ref. will be made to ill. 10197 */ 10198 mutex_enter(&ill->ill_lock); 10199 ill->ill_state_flags |= ILL_CONDEMNED; 10200 for (ipif = ill->ill_ipif; ipif != NULL; 10201 ipif = ipif->ipif_next) { 10202 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10203 } 10204 mutex_exit(&ill->ill_lock); 10205 10206 ipif = ill->ill_ipif; 10207 /* unplumb the loopback interface */ 10208 ill_delete(ill); 10209 mutex_enter(&connp->conn_lock); 10210 mutex_enter(&ill->ill_lock); 10211 ASSERT(ill->ill_group == NULL); 10212 10213 /* Are any references to this ill active */ 10214 if (ill_is_quiescent(ill)) { 10215 mutex_exit(&ill->ill_lock); 10216 mutex_exit(&connp->conn_lock); 10217 ill_delete_tail(ill); 10218 return (0); 10219 } 10220 success = ipsq_pending_mp_add(connp, ipif, 10221 CONNP_TO_WQ(connp), mp, ILL_FREE); 10222 mutex_exit(&connp->conn_lock); 10223 mutex_exit(&ill->ill_lock); 10224 if (success) 10225 return (EINPROGRESS); 10226 else 10227 return (EINTR); 10228 } 10229 } 10230 10231 /* 10232 * We are exclusive on the ipsq, so an ill move will be serialized 10233 * before or after us. 10234 */ 10235 ASSERT(ill->ill_move_in_progress == B_FALSE); 10236 10237 if (ipif->ipif_id == 0) { 10238 /* Find based on address */ 10239 if (ipif->ipif_isv6) { 10240 sin6_t *sin6; 10241 10242 if (sin->sin_family != AF_INET6) 10243 return (EAFNOSUPPORT); 10244 10245 sin6 = (sin6_t *)sin; 10246 /* We are a writer, so we should be able to lookup */ 10247 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10248 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 10249 if (ipif == NULL) { 10250 /* 10251 * Maybe the address in on another interface in 10252 * the same IPMP group? We check this below. 10253 */ 10254 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10255 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 10256 } 10257 } else { 10258 ipaddr_t addr; 10259 10260 if (sin->sin_family != AF_INET) 10261 return (EAFNOSUPPORT); 10262 10263 addr = sin->sin_addr.s_addr; 10264 /* We are a writer, so we should be able to lookup */ 10265 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10266 NULL, NULL, NULL); 10267 if (ipif == NULL) { 10268 /* 10269 * Maybe the address in on another interface in 10270 * the same IPMP group? We check this below. 10271 */ 10272 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10273 NULL, NULL, NULL, NULL); 10274 } 10275 } 10276 if (ipif == NULL) { 10277 return (EADDRNOTAVAIL); 10278 } 10279 /* 10280 * When the address to be removed is hosted on a different 10281 * interface, we check if the interface is in the same IPMP 10282 * group as the specified one; if so we proceed with the 10283 * removal. 10284 * ill->ill_group is NULL when the ill is down, so we have to 10285 * compare the group names instead. 10286 */ 10287 if (ipif->ipif_ill != ill && 10288 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10289 ill->ill_phyint->phyint_groupname_len == 0 || 10290 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10291 ill->ill_phyint->phyint_groupname) != 0)) { 10292 ipif_refrele(ipif); 10293 return (EADDRNOTAVAIL); 10294 } 10295 10296 /* This is a writer */ 10297 ipif_refrele(ipif); 10298 } 10299 10300 /* 10301 * Can not delete instance zero since it is tied to the ill. 10302 */ 10303 if (ipif->ipif_id == 0) 10304 return (EBUSY); 10305 10306 mutex_enter(&ill->ill_lock); 10307 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10308 mutex_exit(&ill->ill_lock); 10309 10310 ipif_free(ipif); 10311 10312 mutex_enter(&connp->conn_lock); 10313 mutex_enter(&ill->ill_lock); 10314 10315 /* Are any references to this ipif active */ 10316 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10317 mutex_exit(&ill->ill_lock); 10318 mutex_exit(&connp->conn_lock); 10319 ipif_down_tail(ipif); 10320 ipif_free_tail(ipif); 10321 return (0); 10322 } 10323 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10324 IPIF_FREE); 10325 mutex_exit(&ill->ill_lock); 10326 mutex_exit(&connp->conn_lock); 10327 if (success) 10328 return (EINPROGRESS); 10329 else 10330 return (EINTR); 10331 } 10332 10333 /* 10334 * Restart the removeif ioctl. The refcnt has gone down to 0. 10335 * The ipif is already condemned. So can't find it thru lookups. 10336 */ 10337 /* ARGSUSED */ 10338 int 10339 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10340 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10341 { 10342 ill_t *ill; 10343 10344 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10345 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10346 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10347 ill = ipif->ipif_ill; 10348 ASSERT(IAM_WRITER_ILL(ill)); 10349 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 10350 (ill->ill_state_flags & IPIF_CONDEMNED)); 10351 ill_delete_tail(ill); 10352 return (0); 10353 } 10354 10355 ill = ipif->ipif_ill; 10356 ASSERT(IAM_WRITER_IPIF(ipif)); 10357 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10358 10359 ipif_down_tail(ipif); 10360 ipif_free_tail(ipif); 10361 10362 ILL_UNMARK_CHANGING(ill); 10363 return (0); 10364 } 10365 10366 /* 10367 * Set the local interface address. 10368 * Allow an address of all zero when the interface is down. 10369 */ 10370 /* ARGSUSED */ 10371 int 10372 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10373 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10374 { 10375 int err = 0; 10376 in6_addr_t v6addr; 10377 boolean_t need_up = B_FALSE; 10378 10379 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10380 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10381 10382 ASSERT(IAM_WRITER_IPIF(ipif)); 10383 10384 if (ipif->ipif_isv6) { 10385 sin6_t *sin6; 10386 ill_t *ill; 10387 phyint_t *phyi; 10388 10389 if (sin->sin_family != AF_INET6) 10390 return (EAFNOSUPPORT); 10391 10392 sin6 = (sin6_t *)sin; 10393 v6addr = sin6->sin6_addr; 10394 ill = ipif->ipif_ill; 10395 phyi = ill->ill_phyint; 10396 10397 /* 10398 * Enforce that true multicast interfaces have a link-local 10399 * address for logical unit 0. 10400 */ 10401 if (ipif->ipif_id == 0 && 10402 (ill->ill_flags & ILLF_MULTICAST) && 10403 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10404 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10405 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10406 return (EADDRNOTAVAIL); 10407 } 10408 10409 /* 10410 * up interfaces shouldn't have the unspecified address 10411 * unless they also have the IPIF_NOLOCAL flags set and 10412 * have a subnet assigned. 10413 */ 10414 if ((ipif->ipif_flags & IPIF_UP) && 10415 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10416 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10417 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10418 return (EADDRNOTAVAIL); 10419 } 10420 10421 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10422 return (EADDRNOTAVAIL); 10423 } else { 10424 ipaddr_t addr; 10425 10426 if (sin->sin_family != AF_INET) 10427 return (EAFNOSUPPORT); 10428 10429 addr = sin->sin_addr.s_addr; 10430 10431 /* Allow 0 as the local address. */ 10432 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10433 return (EADDRNOTAVAIL); 10434 10435 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10436 } 10437 10438 10439 /* 10440 * Even if there is no change we redo things just to rerun 10441 * ipif_set_default. 10442 */ 10443 if (ipif->ipif_flags & IPIF_UP) { 10444 /* 10445 * Setting a new local address, make sure 10446 * we have net and subnet bcast ire's for 10447 * the old address if we need them. 10448 */ 10449 if (!ipif->ipif_isv6) 10450 ipif_check_bcast_ires(ipif); 10451 /* 10452 * If the interface is already marked up, 10453 * we call ipif_down which will take care 10454 * of ditching any IREs that have been set 10455 * up based on the old interface address. 10456 */ 10457 err = ipif_logical_down(ipif, q, mp); 10458 if (err == EINPROGRESS) 10459 return (err); 10460 ipif_down_tail(ipif); 10461 need_up = 1; 10462 } 10463 10464 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10465 return (err); 10466 } 10467 10468 int 10469 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10470 boolean_t need_up) 10471 { 10472 in6_addr_t v6addr; 10473 ipaddr_t addr; 10474 sin6_t *sin6; 10475 int err = 0; 10476 10477 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 10478 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10479 ASSERT(IAM_WRITER_IPIF(ipif)); 10480 if (ipif->ipif_isv6) { 10481 sin6 = (sin6_t *)sin; 10482 v6addr = sin6->sin6_addr; 10483 } else { 10484 addr = sin->sin_addr.s_addr; 10485 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10486 } 10487 mutex_enter(&ipif->ipif_ill->ill_lock); 10488 ipif->ipif_v6lcl_addr = v6addr; 10489 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 10490 ipif->ipif_v6src_addr = ipv6_all_zeros; 10491 } else { 10492 ipif->ipif_v6src_addr = v6addr; 10493 } 10494 10495 if ((ipif->ipif_isv6) && IN6_IS_ADDR_6TO4(&v6addr) && 10496 (!ipif->ipif_ill->ill_is_6to4tun)) { 10497 queue_t *wqp = ipif->ipif_ill->ill_wq; 10498 10499 /* 10500 * The local address of this interface is a 6to4 address, 10501 * check if this interface is in fact a 6to4 tunnel or just 10502 * an interface configured with a 6to4 address. We are only 10503 * interested in the former. 10504 */ 10505 if (wqp != NULL) { 10506 while ((wqp->q_next != NULL) && 10507 (wqp->q_next->q_qinfo != NULL) && 10508 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 10509 10510 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 10511 == TUN6TO4_MODID) { 10512 /* set for use in IP */ 10513 ipif->ipif_ill->ill_is_6to4tun = 1; 10514 break; 10515 } 10516 wqp = wqp->q_next; 10517 } 10518 } 10519 } 10520 10521 ipif_set_default(ipif); 10522 mutex_exit(&ipif->ipif_ill->ill_lock); 10523 10524 if (need_up) { 10525 /* 10526 * Now bring the interface back up. If this 10527 * is the only IPIF for the ILL, ipif_up 10528 * will have to re-bind to the device, so 10529 * we may get back EINPROGRESS, in which 10530 * case, this IOCTL will get completed in 10531 * ip_rput_dlpi when we see the DL_BIND_ACK. 10532 */ 10533 err = ipif_up(ipif, q, mp); 10534 } else { 10535 /* 10536 * Update the IPIF list in SCTP, ipif_up_done() will do it 10537 * if need_up is true. 10538 */ 10539 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10540 } 10541 10542 return (err); 10543 } 10544 10545 10546 /* 10547 * Restart entry point to restart the address set operation after the 10548 * refcounts have dropped to zero. 10549 */ 10550 /* ARGSUSED */ 10551 int 10552 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10553 ip_ioctl_cmd_t *ipip, void *ifreq) 10554 { 10555 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 10556 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10557 ASSERT(IAM_WRITER_IPIF(ipif)); 10558 ipif_down_tail(ipif); 10559 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 10560 } 10561 10562 /* ARGSUSED */ 10563 int 10564 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10565 ip_ioctl_cmd_t *ipip, void *if_req) 10566 { 10567 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10568 struct lifreq *lifr = (struct lifreq *)if_req; 10569 10570 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 10571 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10572 /* 10573 * The net mask and address can't change since we have a 10574 * reference to the ipif. So no lock is necessary. 10575 */ 10576 if (ipif->ipif_isv6) { 10577 *sin6 = sin6_null; 10578 sin6->sin6_family = AF_INET6; 10579 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 10580 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10581 lifr->lifr_addrlen = 10582 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10583 } else { 10584 *sin = sin_null; 10585 sin->sin_family = AF_INET; 10586 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 10587 if (ipip->ipi_cmd_type == LIF_CMD) { 10588 lifr->lifr_addrlen = 10589 ip_mask_to_plen(ipif->ipif_net_mask); 10590 } 10591 } 10592 return (0); 10593 } 10594 10595 /* 10596 * Set the destination address for a pt-pt interface. 10597 */ 10598 /* ARGSUSED */ 10599 int 10600 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10601 ip_ioctl_cmd_t *ipip, void *if_req) 10602 { 10603 int err = 0; 10604 in6_addr_t v6addr; 10605 boolean_t need_up = B_FALSE; 10606 10607 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 10608 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10609 ASSERT(IAM_WRITER_IPIF(ipif)); 10610 10611 if (ipif->ipif_isv6) { 10612 sin6_t *sin6; 10613 10614 if (sin->sin_family != AF_INET6) 10615 return (EAFNOSUPPORT); 10616 10617 sin6 = (sin6_t *)sin; 10618 v6addr = sin6->sin6_addr; 10619 10620 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10621 return (EADDRNOTAVAIL); 10622 } else { 10623 ipaddr_t addr; 10624 10625 if (sin->sin_family != AF_INET) 10626 return (EAFNOSUPPORT); 10627 10628 addr = sin->sin_addr.s_addr; 10629 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10630 return (EADDRNOTAVAIL); 10631 10632 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10633 } 10634 10635 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10636 return (0); /* No change */ 10637 10638 if (ipif->ipif_flags & IPIF_UP) { 10639 /* 10640 * If the interface is already marked up, 10641 * we call ipif_down which will take care 10642 * of ditching any IREs that have been set 10643 * up based on the old pp dst address. 10644 */ 10645 err = ipif_logical_down(ipif, q, mp); 10646 if (err == EINPROGRESS) 10647 return (err); 10648 ipif_down_tail(ipif); 10649 need_up = B_TRUE; 10650 } 10651 /* 10652 * could return EINPROGRESS. If so ioctl will complete in 10653 * ip_rput_dlpi_writer 10654 */ 10655 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10656 return (err); 10657 } 10658 10659 static int 10660 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10661 boolean_t need_up) 10662 { 10663 in6_addr_t v6addr; 10664 ill_t *ill = ipif->ipif_ill; 10665 int err = 0; 10666 10667 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", 10668 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10669 if (ipif->ipif_isv6) { 10670 sin6_t *sin6; 10671 10672 sin6 = (sin6_t *)sin; 10673 v6addr = sin6->sin6_addr; 10674 } else { 10675 ipaddr_t addr; 10676 10677 addr = sin->sin_addr.s_addr; 10678 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10679 } 10680 mutex_enter(&ill->ill_lock); 10681 /* Set point to point destination address. */ 10682 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10683 /* 10684 * Allow this as a means of creating logical 10685 * pt-pt interfaces on top of e.g. an Ethernet. 10686 * XXX Undocumented HACK for testing. 10687 * pt-pt interfaces are created with NUD disabled. 10688 */ 10689 ipif->ipif_flags |= IPIF_POINTOPOINT; 10690 ipif->ipif_flags &= ~IPIF_BROADCAST; 10691 if (ipif->ipif_isv6) 10692 ipif->ipif_ill->ill_flags |= ILLF_NONUD; 10693 } 10694 10695 /* Set the new address. */ 10696 ipif->ipif_v6pp_dst_addr = v6addr; 10697 /* Make sure subnet tracks pp_dst */ 10698 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10699 mutex_exit(&ill->ill_lock); 10700 10701 if (need_up) { 10702 /* 10703 * Now bring the interface back up. If this 10704 * is the only IPIF for the ILL, ipif_up 10705 * will have to re-bind to the device, so 10706 * we may get back EINPROGRESS, in which 10707 * case, this IOCTL will get completed in 10708 * ip_rput_dlpi when we see the DL_BIND_ACK. 10709 */ 10710 err = ipif_up(ipif, q, mp); 10711 } 10712 return (err); 10713 } 10714 10715 /* 10716 * Restart entry point to restart the dstaddress set operation after the 10717 * refcounts have dropped to zero. 10718 */ 10719 /* ARGSUSED */ 10720 int 10721 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10722 ip_ioctl_cmd_t *ipip, void *ifreq) 10723 { 10724 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10725 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10726 ipif_down_tail(ipif); 10727 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10728 } 10729 10730 /* ARGSUSED */ 10731 int 10732 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10733 ip_ioctl_cmd_t *ipip, void *if_req) 10734 { 10735 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10736 10737 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10738 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10739 /* 10740 * Get point to point destination address. The addresses can't 10741 * change since we hold a reference to the ipif. 10742 */ 10743 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10744 return (EADDRNOTAVAIL); 10745 10746 if (ipif->ipif_isv6) { 10747 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10748 *sin6 = sin6_null; 10749 sin6->sin6_family = AF_INET6; 10750 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10751 } else { 10752 *sin = sin_null; 10753 sin->sin_family = AF_INET; 10754 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10755 } 10756 return (0); 10757 } 10758 10759 /* 10760 * part of ipmp, make this func return the active/inactive state and 10761 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 10762 */ 10763 /* 10764 * This function either sets or clears the IFF_INACTIVE flag. 10765 * 10766 * As long as there are some addresses or multicast memberships on the 10767 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 10768 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 10769 * will be used for outbound packets. 10770 * 10771 * Caller needs to verify the validity of setting IFF_INACTIVE. 10772 */ 10773 static void 10774 phyint_inactive(phyint_t *phyi) 10775 { 10776 ill_t *ill_v4; 10777 ill_t *ill_v6; 10778 ipif_t *ipif; 10779 ilm_t *ilm; 10780 10781 ill_v4 = phyi->phyint_illv4; 10782 ill_v6 = phyi->phyint_illv6; 10783 10784 /* 10785 * No need for a lock while traversing the list since iam 10786 * a writer 10787 */ 10788 if (ill_v4 != NULL) { 10789 ASSERT(IAM_WRITER_ILL(ill_v4)); 10790 for (ipif = ill_v4->ill_ipif; ipif != NULL; 10791 ipif = ipif->ipif_next) { 10792 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10793 mutex_enter(&phyi->phyint_lock); 10794 phyi->phyint_flags &= ~PHYI_INACTIVE; 10795 mutex_exit(&phyi->phyint_lock); 10796 return; 10797 } 10798 } 10799 for (ilm = ill_v4->ill_ilm; ilm != NULL; 10800 ilm = ilm->ilm_next) { 10801 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10802 mutex_enter(&phyi->phyint_lock); 10803 phyi->phyint_flags &= ~PHYI_INACTIVE; 10804 mutex_exit(&phyi->phyint_lock); 10805 return; 10806 } 10807 } 10808 } 10809 if (ill_v6 != NULL) { 10810 ill_v6 = phyi->phyint_illv6; 10811 for (ipif = ill_v6->ill_ipif; ipif != NULL; 10812 ipif = ipif->ipif_next) { 10813 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10814 mutex_enter(&phyi->phyint_lock); 10815 phyi->phyint_flags &= ~PHYI_INACTIVE; 10816 mutex_exit(&phyi->phyint_lock); 10817 return; 10818 } 10819 } 10820 for (ilm = ill_v6->ill_ilm; ilm != NULL; 10821 ilm = ilm->ilm_next) { 10822 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10823 mutex_enter(&phyi->phyint_lock); 10824 phyi->phyint_flags &= ~PHYI_INACTIVE; 10825 mutex_exit(&phyi->phyint_lock); 10826 return; 10827 } 10828 } 10829 } 10830 mutex_enter(&phyi->phyint_lock); 10831 phyi->phyint_flags |= PHYI_INACTIVE; 10832 mutex_exit(&phyi->phyint_lock); 10833 } 10834 10835 /* 10836 * This function is called only when the phyint flags change. Currently 10837 * called from ip_sioctl_flags. We re-do the broadcast nomination so 10838 * that we can select a good ill. 10839 */ 10840 static void 10841 ip_redo_nomination(phyint_t *phyi) 10842 { 10843 ill_t *ill_v4; 10844 10845 ill_v4 = phyi->phyint_illv4; 10846 10847 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 10848 ASSERT(IAM_WRITER_ILL(ill_v4)); 10849 if (ill_v4->ill_group->illgrp_ill_count > 1) 10850 ill_nominate_bcast_rcv(ill_v4->ill_group); 10851 } 10852 } 10853 10854 /* 10855 * Heuristic to check if ill is INACTIVE. 10856 * Checks if ill has an ipif with an usable ip address. 10857 * 10858 * Return values: 10859 * B_TRUE - ill is INACTIVE; has no usable ipif 10860 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 10861 */ 10862 static boolean_t 10863 ill_is_inactive(ill_t *ill) 10864 { 10865 ipif_t *ipif; 10866 10867 /* Check whether it is in an IPMP group */ 10868 if (ill->ill_phyint->phyint_groupname == NULL) 10869 return (B_FALSE); 10870 10871 if (ill->ill_ipif_up_count == 0) 10872 return (B_TRUE); 10873 10874 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 10875 uint64_t flags = ipif->ipif_flags; 10876 10877 /* 10878 * This ipif is usable if it is IPIF_UP and not a 10879 * dedicated test address. A dedicated test address 10880 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 10881 * (note in particular that V6 test addresses are 10882 * link-local data addresses and thus are marked 10883 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 10884 */ 10885 if ((flags & IPIF_UP) && 10886 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 10887 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 10888 return (B_FALSE); 10889 } 10890 return (B_TRUE); 10891 } 10892 10893 /* 10894 * Set interface flags. 10895 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 10896 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 10897 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 10898 * 10899 * NOTE : We really don't enforce that ipif_id zero should be used 10900 * for setting any flags other than IFF_LOGINT_FLAGS. This 10901 * is because applications generally does SICGLIFFLAGS and 10902 * ORs in the new flags (that affects the logical) and does a 10903 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10904 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10905 * flags that will be turned on is correct with respect to 10906 * ipif_id 0. For backward compatibility reasons, it is not done. 10907 */ 10908 /* ARGSUSED */ 10909 int 10910 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10911 ip_ioctl_cmd_t *ipip, void *if_req) 10912 { 10913 uint64_t turn_on; 10914 uint64_t turn_off; 10915 int err; 10916 boolean_t need_up = B_FALSE; 10917 phyint_t *phyi; 10918 ill_t *ill; 10919 uint64_t intf_flags; 10920 boolean_t phyint_flags_modified = B_FALSE; 10921 uint64_t flags; 10922 struct ifreq *ifr; 10923 struct lifreq *lifr; 10924 boolean_t set_linklocal = B_FALSE; 10925 boolean_t zero_source = B_FALSE; 10926 10927 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10928 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10929 10930 ASSERT(IAM_WRITER_IPIF(ipif)); 10931 10932 ill = ipif->ipif_ill; 10933 phyi = ill->ill_phyint; 10934 10935 if (ipip->ipi_cmd_type == IF_CMD) { 10936 ifr = (struct ifreq *)if_req; 10937 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10938 } else { 10939 lifr = (struct lifreq *)if_req; 10940 flags = lifr->lifr_flags; 10941 } 10942 10943 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10944 10945 /* 10946 * Has the flags been set correctly till now ? 10947 */ 10948 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10949 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10950 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10951 /* 10952 * Compare the new flags to the old, and partition 10953 * into those coming on and those going off. 10954 * For the 16 bit command keep the bits above bit 16 unchanged. 10955 */ 10956 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10957 flags |= intf_flags & ~0xFFFF; 10958 10959 /* 10960 * First check which bits will change and then which will 10961 * go on and off 10962 */ 10963 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 10964 if (!turn_on) 10965 return (0); /* No change */ 10966 10967 turn_off = intf_flags & turn_on; 10968 turn_on ^= turn_off; 10969 err = 0; 10970 10971 /* 10972 * Don't allow any bits belonging to the logical interface 10973 * to be set or cleared on the replacement ipif that was 10974 * created temporarily during a MOVE. 10975 */ 10976 if (ipif->ipif_replace_zero && 10977 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 10978 return (EINVAL); 10979 } 10980 10981 /* 10982 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 10983 * IPv6 interfaces. 10984 */ 10985 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 10986 return (EINVAL); 10987 10988 /* 10989 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10990 * interfaces. It makes no sense in that context. 10991 */ 10992 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10993 return (EINVAL); 10994 10995 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 10996 zero_source = B_TRUE; 10997 10998 /* 10999 * For IPv6 ipif_id 0, don't allow the interface to be up without 11000 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11001 * If the link local address isn't set, and can be set, it will get 11002 * set later on in this function. 11003 */ 11004 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11005 (flags & IFF_UP) && !zero_source && 11006 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11007 if (ipif_cant_setlinklocal(ipif)) 11008 return (EINVAL); 11009 set_linklocal = B_TRUE; 11010 } 11011 11012 /* 11013 * ILL cannot be part of a usesrc group and and IPMP group at the 11014 * same time. No need to grab ill_g_usesrc_lock here, see 11015 * synchronization notes in ip.c 11016 */ 11017 if (turn_on & PHYI_STANDBY && 11018 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11019 return (EINVAL); 11020 } 11021 11022 /* 11023 * If we modify physical interface flags, we'll potentially need to 11024 * send up two routing socket messages for the changes (one for the 11025 * IPv4 ill, and another for the IPv6 ill). Note that here. 11026 */ 11027 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11028 phyint_flags_modified = B_TRUE; 11029 11030 /* 11031 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11032 * we need to flush the IRE_CACHES belonging to this ill. 11033 * We handle this case here without doing the DOWN/UP dance 11034 * like it is done for other flags. If some other flags are 11035 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11036 * below will handle it by bringing it down and then 11037 * bringing it UP. 11038 */ 11039 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11040 ill_t *ill_v4, *ill_v6; 11041 11042 ill_v4 = phyi->phyint_illv4; 11043 ill_v6 = phyi->phyint_illv6; 11044 11045 /* 11046 * First set the INACTIVE flag if needed. Then delete the ires. 11047 * ire_add will atomically prevent creating new IRE_CACHEs 11048 * unless hidden flag is set. 11049 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11050 */ 11051 if ((turn_on & PHYI_FAILED) && 11052 ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) { 11053 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11054 phyi->phyint_flags &= ~PHYI_INACTIVE; 11055 } 11056 if ((turn_off & PHYI_FAILED) && 11057 ((intf_flags & PHYI_STANDBY) || 11058 (!ipmp_enable_failback && ill_is_inactive(ill)))) { 11059 phyint_inactive(phyi); 11060 } 11061 11062 if (turn_on & PHYI_STANDBY) { 11063 /* 11064 * We implicitly set INACTIVE only when STANDBY is set. 11065 * INACTIVE is also set on non-STANDBY phyint when user 11066 * disables FAILBACK using configuration file. 11067 * Do not allow STANDBY to be set on such INACTIVE 11068 * phyint 11069 */ 11070 if (phyi->phyint_flags & PHYI_INACTIVE) 11071 return (EINVAL); 11072 if (!(phyi->phyint_flags & PHYI_FAILED)) 11073 phyint_inactive(phyi); 11074 } 11075 if (turn_off & PHYI_STANDBY) { 11076 if (ipmp_enable_failback) { 11077 /* 11078 * Reset PHYI_INACTIVE. 11079 */ 11080 phyi->phyint_flags &= ~PHYI_INACTIVE; 11081 } else if (ill_is_inactive(ill) && 11082 !(phyi->phyint_flags & PHYI_FAILED)) { 11083 /* 11084 * Need to set INACTIVE, when user sets 11085 * STANDBY on a non-STANDBY phyint and 11086 * later resets STANDBY 11087 */ 11088 phyint_inactive(phyi); 11089 } 11090 } 11091 /* 11092 * We should always send up a message so that the 11093 * daemons come to know of it. Note that the zeroth 11094 * interface can be down and the check below for IPIF_UP 11095 * will not make sense as we are actually setting 11096 * a phyint flag here. We assume that the ipif used 11097 * is always the zeroth ipif. (ip_rts_ifmsg does not 11098 * send up any message for non-zero ipifs). 11099 */ 11100 phyint_flags_modified = B_TRUE; 11101 11102 if (ill_v4 != NULL) { 11103 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11104 IRE_CACHE, ill_stq_cache_delete, 11105 (char *)ill_v4, ill_v4); 11106 illgrp_reset_schednext(ill_v4); 11107 } 11108 if (ill_v6 != NULL) { 11109 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11110 IRE_CACHE, ill_stq_cache_delete, 11111 (char *)ill_v6, ill_v6); 11112 illgrp_reset_schednext(ill_v6); 11113 } 11114 } 11115 11116 /* 11117 * If ILLF_ROUTER changes, we need to change the ip forwarding 11118 * status of the interface and, if the interface is part of an IPMP 11119 * group, all other interfaces that are part of the same IPMP 11120 * group. 11121 */ 11122 if ((turn_on | turn_off) & ILLF_ROUTER) { 11123 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 11124 (caddr_t)ill); 11125 } 11126 11127 /* 11128 * If the interface is not UP and we are not going to 11129 * bring it UP, record the flags and return. When the 11130 * interface comes UP later, the right actions will be 11131 * taken. 11132 */ 11133 if (!(ipif->ipif_flags & IPIF_UP) && 11134 !(turn_on & IPIF_UP)) { 11135 /* Record new flags in their respective places. */ 11136 mutex_enter(&ill->ill_lock); 11137 mutex_enter(&ill->ill_phyint->phyint_lock); 11138 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11139 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11140 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11141 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11142 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11143 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11144 mutex_exit(&ill->ill_lock); 11145 mutex_exit(&ill->ill_phyint->phyint_lock); 11146 11147 /* 11148 * We do the broadcast and nomination here rather 11149 * than waiting for a FAILOVER/FAILBACK to happen. In 11150 * the case of FAILBACK from INACTIVE standby to the 11151 * interface that has been repaired, PHYI_FAILED has not 11152 * been cleared yet. If there are only two interfaces in 11153 * that group, all we have is a FAILED and INACTIVE 11154 * interface. If we do the nomination soon after a failback, 11155 * the broadcast nomination code would select the 11156 * INACTIVE interface for receiving broadcasts as FAILED is 11157 * not yet cleared. As we don't want STANDBY/INACTIVE to 11158 * receive broadcast packets, we need to redo nomination 11159 * when the FAILED is cleared here. Thus, in general we 11160 * always do the nomination here for FAILED, STANDBY 11161 * and OFFLINE. 11162 */ 11163 if (((turn_on | turn_off) & 11164 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11165 ip_redo_nomination(phyi); 11166 } 11167 if (phyint_flags_modified) { 11168 if (phyi->phyint_illv4 != NULL) { 11169 ip_rts_ifmsg(phyi->phyint_illv4-> 11170 ill_ipif); 11171 } 11172 if (phyi->phyint_illv6 != NULL) { 11173 ip_rts_ifmsg(phyi->phyint_illv6-> 11174 ill_ipif); 11175 } 11176 } 11177 return (0); 11178 } else if (set_linklocal || zero_source) { 11179 mutex_enter(&ill->ill_lock); 11180 if (set_linklocal) 11181 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11182 if (zero_source) 11183 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11184 mutex_exit(&ill->ill_lock); 11185 } 11186 11187 /* 11188 * Disallow IPv6 interfaces coming up that have the unspecified address, 11189 * or point-to-point interfaces with an unspecified destination. We do 11190 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11191 * have a subnet assigned, which is how in.ndpd currently manages its 11192 * onlink prefix list when no addresses are configured with those 11193 * prefixes. 11194 */ 11195 if (ipif->ipif_isv6 && 11196 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11197 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11198 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11199 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11200 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11201 return (EINVAL); 11202 } 11203 11204 /* 11205 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11206 * from being brought up. 11207 */ 11208 if (!ipif->ipif_isv6 && 11209 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11210 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11211 return (EINVAL); 11212 } 11213 11214 /* 11215 * The only flag changes that we currently take specific action on 11216 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11217 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11218 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11219 * the flags and bringing it back up again. 11220 */ 11221 if ((turn_on|turn_off) & 11222 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11223 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11224 /* 11225 * Taking this ipif down, make sure we have 11226 * valid net and subnet bcast ire's for other 11227 * logical interfaces, if we need them. 11228 */ 11229 if (!ipif->ipif_isv6) 11230 ipif_check_bcast_ires(ipif); 11231 11232 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11233 !(turn_off & IPIF_UP)) { 11234 need_up = B_TRUE; 11235 if (ipif->ipif_flags & IPIF_UP) 11236 ill->ill_logical_down = 1; 11237 turn_on &= ~IPIF_UP; 11238 } 11239 err = ipif_down(ipif, q, mp); 11240 ip1dbg(("ipif_down returns %d err ", err)); 11241 if (err == EINPROGRESS) 11242 return (err); 11243 ipif_down_tail(ipif); 11244 } 11245 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11246 } 11247 11248 static int 11249 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11250 boolean_t need_up) 11251 { 11252 ill_t *ill; 11253 phyint_t *phyi; 11254 uint64_t turn_on; 11255 uint64_t turn_off; 11256 uint64_t intf_flags; 11257 boolean_t phyint_flags_modified = B_FALSE; 11258 int err = 0; 11259 boolean_t set_linklocal = B_FALSE; 11260 boolean_t zero_source = B_FALSE; 11261 11262 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11263 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11264 11265 ASSERT(IAM_WRITER_IPIF(ipif)); 11266 11267 ill = ipif->ipif_ill; 11268 phyi = ill->ill_phyint; 11269 11270 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11271 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11272 11273 turn_off = intf_flags & turn_on; 11274 turn_on ^= turn_off; 11275 11276 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11277 phyint_flags_modified = B_TRUE; 11278 11279 /* 11280 * Now we change the flags. Track current value of 11281 * other flags in their respective places. 11282 */ 11283 mutex_enter(&ill->ill_lock); 11284 mutex_enter(&phyi->phyint_lock); 11285 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11286 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11287 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11288 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11289 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11290 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11291 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11292 set_linklocal = B_TRUE; 11293 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11294 } 11295 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11296 zero_source = B_TRUE; 11297 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11298 } 11299 mutex_exit(&ill->ill_lock); 11300 mutex_exit(&phyi->phyint_lock); 11301 11302 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 11303 ip_redo_nomination(phyi); 11304 11305 if (set_linklocal) 11306 (void) ipif_setlinklocal(ipif); 11307 11308 if (zero_source) 11309 ipif->ipif_v6src_addr = ipv6_all_zeros; 11310 else 11311 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11312 11313 if (need_up) { 11314 /* 11315 * XXX ipif_up really does not know whether a phyint flags 11316 * was modified or not. So, it sends up information on 11317 * only one routing sockets message. As we don't bring up 11318 * the interface and also set STANDBY/FAILED simultaneously 11319 * it should be okay. 11320 */ 11321 err = ipif_up(ipif, q, mp); 11322 } else { 11323 /* 11324 * Make sure routing socket sees all changes to the flags. 11325 * ipif_up_done* handles this when we use ipif_up. 11326 */ 11327 if (phyint_flags_modified) { 11328 if (phyi->phyint_illv4 != NULL) { 11329 ip_rts_ifmsg(phyi->phyint_illv4-> 11330 ill_ipif); 11331 } 11332 if (phyi->phyint_illv6 != NULL) { 11333 ip_rts_ifmsg(phyi->phyint_illv6-> 11334 ill_ipif); 11335 } 11336 } else { 11337 ip_rts_ifmsg(ipif); 11338 } 11339 } 11340 return (err); 11341 } 11342 11343 /* 11344 * Restart entry point to restart the flags restart operation after the 11345 * refcounts have dropped to zero. 11346 */ 11347 /* ARGSUSED */ 11348 int 11349 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11350 ip_ioctl_cmd_t *ipip, void *if_req) 11351 { 11352 int err; 11353 struct ifreq *ifr = (struct ifreq *)if_req; 11354 struct lifreq *lifr = (struct lifreq *)if_req; 11355 11356 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11357 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11358 11359 ipif_down_tail(ipif); 11360 if (ipip->ipi_cmd_type == IF_CMD) { 11361 /* 11362 * Since ip_sioctl_flags expects an int and ifr_flags 11363 * is a short we need to cast ifr_flags into an int 11364 * to avoid having sign extension cause bits to get 11365 * set that should not be. 11366 */ 11367 err = ip_sioctl_flags_tail(ipif, 11368 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 11369 q, mp, B_TRUE); 11370 } else { 11371 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 11372 q, mp, B_TRUE); 11373 } 11374 return (err); 11375 } 11376 11377 /* ARGSUSED */ 11378 int 11379 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11380 ip_ioctl_cmd_t *ipip, void *if_req) 11381 { 11382 /* 11383 * Has the flags been set correctly till now ? 11384 */ 11385 ill_t *ill = ipif->ipif_ill; 11386 phyint_t *phyi = ill->ill_phyint; 11387 11388 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11389 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11390 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11391 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11392 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11393 11394 /* 11395 * Need a lock since some flags can be set even when there are 11396 * references to the ipif. 11397 */ 11398 mutex_enter(&ill->ill_lock); 11399 if (ipip->ipi_cmd_type == IF_CMD) { 11400 struct ifreq *ifr = (struct ifreq *)if_req; 11401 11402 /* Get interface flags (low 16 only). */ 11403 ifr->ifr_flags = ((ipif->ipif_flags | 11404 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11405 } else { 11406 struct lifreq *lifr = (struct lifreq *)if_req; 11407 11408 /* Get interface flags. */ 11409 lifr->lifr_flags = ipif->ipif_flags | 11410 ill->ill_flags | phyi->phyint_flags; 11411 } 11412 mutex_exit(&ill->ill_lock); 11413 return (0); 11414 } 11415 11416 /* ARGSUSED */ 11417 int 11418 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11419 ip_ioctl_cmd_t *ipip, void *if_req) 11420 { 11421 int mtu; 11422 int ip_min_mtu; 11423 struct ifreq *ifr; 11424 struct lifreq *lifr; 11425 ire_t *ire; 11426 11427 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11428 ipif->ipif_id, (void *)ipif)); 11429 if (ipip->ipi_cmd_type == IF_CMD) { 11430 ifr = (struct ifreq *)if_req; 11431 mtu = ifr->ifr_metric; 11432 } else { 11433 lifr = (struct lifreq *)if_req; 11434 mtu = lifr->lifr_mtu; 11435 } 11436 11437 if (ipif->ipif_isv6) 11438 ip_min_mtu = IPV6_MIN_MTU; 11439 else 11440 ip_min_mtu = IP_MIN_MTU; 11441 11442 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11443 return (EINVAL); 11444 11445 /* 11446 * Change the MTU size in all relevant ire's. 11447 * Mtu change Vs. new ire creation - protocol below. 11448 * First change ipif_mtu and the ire_max_frag of the 11449 * interface ire. Then do an ire walk and change the 11450 * ire_max_frag of all affected ires. During ire_add 11451 * under the bucket lock, set the ire_max_frag of the 11452 * new ire being created from the ipif/ire from which 11453 * it is being derived. If an mtu change happens after 11454 * the ire is added, the new ire will be cleaned up. 11455 * Conversely if the mtu change happens before the ire 11456 * is added, ire_add will see the new value of the mtu. 11457 */ 11458 ipif->ipif_mtu = mtu; 11459 ipif->ipif_flags |= IPIF_FIXEDMTU; 11460 11461 if (ipif->ipif_isv6) 11462 ire = ipif_to_ire_v6(ipif); 11463 else 11464 ire = ipif_to_ire(ipif); 11465 if (ire != NULL) { 11466 ire->ire_max_frag = ipif->ipif_mtu; 11467 ire_refrele(ire); 11468 } 11469 if (ipif->ipif_flags & IPIF_UP) { 11470 if (ipif->ipif_isv6) 11471 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11472 else 11473 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11474 } 11475 /* Update the MTU in SCTP's list */ 11476 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11477 return (0); 11478 } 11479 11480 /* Get interface MTU. */ 11481 /* ARGSUSED */ 11482 int 11483 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11484 ip_ioctl_cmd_t *ipip, void *if_req) 11485 { 11486 struct ifreq *ifr; 11487 struct lifreq *lifr; 11488 11489 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 11490 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11491 if (ipip->ipi_cmd_type == IF_CMD) { 11492 ifr = (struct ifreq *)if_req; 11493 ifr->ifr_metric = ipif->ipif_mtu; 11494 } else { 11495 lifr = (struct lifreq *)if_req; 11496 lifr->lifr_mtu = ipif->ipif_mtu; 11497 } 11498 return (0); 11499 } 11500 11501 /* Set interface broadcast address. */ 11502 /* ARGSUSED2 */ 11503 int 11504 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11505 ip_ioctl_cmd_t *ipip, void *if_req) 11506 { 11507 ipaddr_t addr; 11508 ire_t *ire; 11509 11510 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 11511 ipif->ipif_id)); 11512 11513 ASSERT(IAM_WRITER_IPIF(ipif)); 11514 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11515 return (EADDRNOTAVAIL); 11516 11517 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 11518 11519 if (sin->sin_family != AF_INET) 11520 return (EAFNOSUPPORT); 11521 11522 addr = sin->sin_addr.s_addr; 11523 if (ipif->ipif_flags & IPIF_UP) { 11524 /* 11525 * If we are already up, make sure the new 11526 * broadcast address makes sense. If it does, 11527 * there should be an IRE for it already. 11528 * Don't match on ipif, only on the ill 11529 * since we are sharing these now. Don't use 11530 * MATCH_IRE_ILL_GROUP as we are looking for 11531 * the broadcast ire on this ill and each ill 11532 * in the group has its own broadcast ire. 11533 */ 11534 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 11535 ipif, ALL_ZONES, (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 11536 if (ire == NULL) { 11537 return (EINVAL); 11538 } else { 11539 ire_refrele(ire); 11540 } 11541 } 11542 /* 11543 * Changing the broadcast addr for this ipif. 11544 * Make sure we have valid net and subnet bcast 11545 * ire's for other logical interfaces, if needed. 11546 */ 11547 if (addr != ipif->ipif_brd_addr) 11548 ipif_check_bcast_ires(ipif); 11549 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 11550 return (0); 11551 } 11552 11553 /* Get interface broadcast address. */ 11554 /* ARGSUSED */ 11555 int 11556 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11557 ip_ioctl_cmd_t *ipip, void *if_req) 11558 { 11559 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 11560 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11561 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11562 return (EADDRNOTAVAIL); 11563 11564 /* IPIF_BROADCAST not possible with IPv6 */ 11565 ASSERT(!ipif->ipif_isv6); 11566 *sin = sin_null; 11567 sin->sin_family = AF_INET; 11568 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 11569 return (0); 11570 } 11571 11572 /* 11573 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 11574 */ 11575 /* ARGSUSED */ 11576 int 11577 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11578 ip_ioctl_cmd_t *ipip, void *if_req) 11579 { 11580 int err = 0; 11581 in6_addr_t v6mask; 11582 11583 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 11584 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11585 11586 ASSERT(IAM_WRITER_IPIF(ipif)); 11587 11588 if (ipif->ipif_isv6) { 11589 sin6_t *sin6; 11590 11591 if (sin->sin_family != AF_INET6) 11592 return (EAFNOSUPPORT); 11593 11594 sin6 = (sin6_t *)sin; 11595 v6mask = sin6->sin6_addr; 11596 } else { 11597 ipaddr_t mask; 11598 11599 if (sin->sin_family != AF_INET) 11600 return (EAFNOSUPPORT); 11601 11602 mask = sin->sin_addr.s_addr; 11603 V4MASK_TO_V6(mask, v6mask); 11604 } 11605 11606 /* 11607 * No big deal if the interface isn't already up, or the mask 11608 * isn't really changing, or this is pt-pt. 11609 */ 11610 if (!(ipif->ipif_flags & IPIF_UP) || 11611 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 11612 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 11613 ipif->ipif_v6net_mask = v6mask; 11614 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11615 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 11616 ipif->ipif_v6net_mask, 11617 ipif->ipif_v6subnet); 11618 } 11619 return (0); 11620 } 11621 /* 11622 * Make sure we have valid net and subnet broadcast ire's 11623 * for the old netmask, if needed by other logical interfaces. 11624 */ 11625 if (!ipif->ipif_isv6) 11626 ipif_check_bcast_ires(ipif); 11627 11628 err = ipif_logical_down(ipif, q, mp); 11629 if (err == EINPROGRESS) 11630 return (err); 11631 ipif_down_tail(ipif); 11632 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 11633 return (err); 11634 } 11635 11636 static int 11637 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 11638 { 11639 in6_addr_t v6mask; 11640 int err = 0; 11641 11642 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 11643 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11644 11645 if (ipif->ipif_isv6) { 11646 sin6_t *sin6; 11647 11648 sin6 = (sin6_t *)sin; 11649 v6mask = sin6->sin6_addr; 11650 } else { 11651 ipaddr_t mask; 11652 11653 mask = sin->sin_addr.s_addr; 11654 V4MASK_TO_V6(mask, v6mask); 11655 } 11656 11657 ipif->ipif_v6net_mask = v6mask; 11658 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11659 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11660 ipif->ipif_v6subnet); 11661 } 11662 err = ipif_up(ipif, q, mp); 11663 11664 if (err == 0 || err == EINPROGRESS) { 11665 /* 11666 * The interface must be DL_BOUND if this packet has to 11667 * go out on the wire. Since we only go through a logical 11668 * down and are bound with the driver during an internal 11669 * down/up that is satisfied. 11670 */ 11671 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11672 /* Potentially broadcast an address mask reply. */ 11673 ipif_mask_reply(ipif); 11674 } 11675 } 11676 return (err); 11677 } 11678 11679 /* ARGSUSED */ 11680 int 11681 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11682 ip_ioctl_cmd_t *ipip, void *if_req) 11683 { 11684 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11685 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11686 ipif_down_tail(ipif); 11687 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11688 } 11689 11690 /* Get interface net mask. */ 11691 /* ARGSUSED */ 11692 int 11693 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11694 ip_ioctl_cmd_t *ipip, void *if_req) 11695 { 11696 struct lifreq *lifr = (struct lifreq *)if_req; 11697 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11698 11699 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11700 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11701 11702 /* 11703 * net mask can't change since we have a reference to the ipif. 11704 */ 11705 if (ipif->ipif_isv6) { 11706 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11707 *sin6 = sin6_null; 11708 sin6->sin6_family = AF_INET6; 11709 sin6->sin6_addr = ipif->ipif_v6net_mask; 11710 lifr->lifr_addrlen = 11711 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11712 } else { 11713 *sin = sin_null; 11714 sin->sin_family = AF_INET; 11715 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11716 if (ipip->ipi_cmd_type == LIF_CMD) { 11717 lifr->lifr_addrlen = 11718 ip_mask_to_plen(ipif->ipif_net_mask); 11719 } 11720 } 11721 return (0); 11722 } 11723 11724 /* ARGSUSED */ 11725 int 11726 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11727 ip_ioctl_cmd_t *ipip, void *if_req) 11728 { 11729 11730 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11731 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11732 /* 11733 * Set interface metric. We don't use this for 11734 * anything but we keep track of it in case it is 11735 * important to routing applications or such. 11736 */ 11737 if (ipip->ipi_cmd_type == IF_CMD) { 11738 struct ifreq *ifr; 11739 11740 ifr = (struct ifreq *)if_req; 11741 ipif->ipif_metric = ifr->ifr_metric; 11742 } else { 11743 struct lifreq *lifr; 11744 11745 lifr = (struct lifreq *)if_req; 11746 ipif->ipif_metric = lifr->lifr_metric; 11747 } 11748 return (0); 11749 } 11750 11751 11752 /* ARGSUSED */ 11753 int 11754 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11755 ip_ioctl_cmd_t *ipip, void *if_req) 11756 { 11757 11758 /* Get interface metric. */ 11759 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11760 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11761 if (ipip->ipi_cmd_type == IF_CMD) { 11762 struct ifreq *ifr; 11763 11764 ifr = (struct ifreq *)if_req; 11765 ifr->ifr_metric = ipif->ipif_metric; 11766 } else { 11767 struct lifreq *lifr; 11768 11769 lifr = (struct lifreq *)if_req; 11770 lifr->lifr_metric = ipif->ipif_metric; 11771 } 11772 11773 return (0); 11774 } 11775 11776 /* ARGSUSED */ 11777 int 11778 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11779 ip_ioctl_cmd_t *ipip, void *if_req) 11780 { 11781 11782 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11783 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11784 /* 11785 * Set the muxid returned from I_PLINK. 11786 */ 11787 if (ipip->ipi_cmd_type == IF_CMD) { 11788 struct ifreq *ifr = (struct ifreq *)if_req; 11789 11790 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 11791 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 11792 } else { 11793 struct lifreq *lifr = (struct lifreq *)if_req; 11794 11795 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 11796 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 11797 } 11798 return (0); 11799 } 11800 11801 /* ARGSUSED */ 11802 int 11803 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11804 ip_ioctl_cmd_t *ipip, void *if_req) 11805 { 11806 11807 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11808 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11809 /* 11810 * Get the muxid saved in ill for I_PUNLINK. 11811 */ 11812 if (ipip->ipi_cmd_type == IF_CMD) { 11813 struct ifreq *ifr = (struct ifreq *)if_req; 11814 11815 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 11816 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 11817 } else { 11818 struct lifreq *lifr = (struct lifreq *)if_req; 11819 11820 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 11821 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 11822 } 11823 return (0); 11824 } 11825 11826 /* 11827 * Set the subnet prefix. Does not modify the broadcast address. 11828 */ 11829 /* ARGSUSED */ 11830 int 11831 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11832 ip_ioctl_cmd_t *ipip, void *if_req) 11833 { 11834 int err = 0; 11835 in6_addr_t v6addr; 11836 in6_addr_t v6mask; 11837 boolean_t need_up = B_FALSE; 11838 int addrlen; 11839 11840 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11841 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11842 11843 ASSERT(IAM_WRITER_IPIF(ipif)); 11844 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11845 11846 if (ipif->ipif_isv6) { 11847 sin6_t *sin6; 11848 11849 if (sin->sin_family != AF_INET6) 11850 return (EAFNOSUPPORT); 11851 11852 sin6 = (sin6_t *)sin; 11853 v6addr = sin6->sin6_addr; 11854 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11855 return (EADDRNOTAVAIL); 11856 } else { 11857 ipaddr_t addr; 11858 11859 if (sin->sin_family != AF_INET) 11860 return (EAFNOSUPPORT); 11861 11862 addr = sin->sin_addr.s_addr; 11863 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11864 return (EADDRNOTAVAIL); 11865 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11866 /* Add 96 bits */ 11867 addrlen += IPV6_ABITS - IP_ABITS; 11868 } 11869 11870 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11871 return (EINVAL); 11872 11873 /* Check if bits in the address is set past the mask */ 11874 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11875 return (EINVAL); 11876 11877 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11878 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11879 return (0); /* No change */ 11880 11881 if (ipif->ipif_flags & IPIF_UP) { 11882 /* 11883 * If the interface is already marked up, 11884 * we call ipif_down which will take care 11885 * of ditching any IREs that have been set 11886 * up based on the old interface address. 11887 */ 11888 err = ipif_logical_down(ipif, q, mp); 11889 if (err == EINPROGRESS) 11890 return (err); 11891 ipif_down_tail(ipif); 11892 need_up = B_TRUE; 11893 } 11894 11895 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11896 return (err); 11897 } 11898 11899 static int 11900 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11901 queue_t *q, mblk_t *mp, boolean_t need_up) 11902 { 11903 ill_t *ill = ipif->ipif_ill; 11904 int err = 0; 11905 11906 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11907 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11908 11909 /* Set the new address. */ 11910 mutex_enter(&ill->ill_lock); 11911 ipif->ipif_v6net_mask = v6mask; 11912 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11913 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11914 ipif->ipif_v6subnet); 11915 } 11916 mutex_exit(&ill->ill_lock); 11917 11918 if (need_up) { 11919 /* 11920 * Now bring the interface back up. If this 11921 * is the only IPIF for the ILL, ipif_up 11922 * will have to re-bind to the device, so 11923 * we may get back EINPROGRESS, in which 11924 * case, this IOCTL will get completed in 11925 * ip_rput_dlpi when we see the DL_BIND_ACK. 11926 */ 11927 err = ipif_up(ipif, q, mp); 11928 if (err == EINPROGRESS) 11929 return (err); 11930 } 11931 return (err); 11932 } 11933 11934 /* ARGSUSED */ 11935 int 11936 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11937 ip_ioctl_cmd_t *ipip, void *if_req) 11938 { 11939 int addrlen; 11940 in6_addr_t v6addr; 11941 in6_addr_t v6mask; 11942 struct lifreq *lifr = (struct lifreq *)if_req; 11943 11944 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11945 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11946 ipif_down_tail(ipif); 11947 11948 addrlen = lifr->lifr_addrlen; 11949 if (ipif->ipif_isv6) { 11950 sin6_t *sin6; 11951 11952 sin6 = (sin6_t *)sin; 11953 v6addr = sin6->sin6_addr; 11954 } else { 11955 ipaddr_t addr; 11956 11957 addr = sin->sin_addr.s_addr; 11958 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11959 addrlen += IPV6_ABITS - IP_ABITS; 11960 } 11961 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11962 11963 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11964 } 11965 11966 /* ARGSUSED */ 11967 int 11968 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11969 ip_ioctl_cmd_t *ipip, void *if_req) 11970 { 11971 struct lifreq *lifr = (struct lifreq *)if_req; 11972 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11973 11974 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11975 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11976 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11977 11978 if (ipif->ipif_isv6) { 11979 *sin6 = sin6_null; 11980 sin6->sin6_family = AF_INET6; 11981 sin6->sin6_addr = ipif->ipif_v6subnet; 11982 lifr->lifr_addrlen = 11983 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11984 } else { 11985 *sin = sin_null; 11986 sin->sin_family = AF_INET; 11987 sin->sin_addr.s_addr = ipif->ipif_subnet; 11988 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11989 } 11990 return (0); 11991 } 11992 11993 /* 11994 * Set the IPv6 address token. 11995 */ 11996 /* ARGSUSED */ 11997 int 11998 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11999 ip_ioctl_cmd_t *ipi, void *if_req) 12000 { 12001 ill_t *ill = ipif->ipif_ill; 12002 int err; 12003 in6_addr_t v6addr; 12004 in6_addr_t v6mask; 12005 boolean_t need_up = B_FALSE; 12006 int i; 12007 sin6_t *sin6 = (sin6_t *)sin; 12008 struct lifreq *lifr = (struct lifreq *)if_req; 12009 int addrlen; 12010 12011 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12012 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12013 ASSERT(IAM_WRITER_IPIF(ipif)); 12014 12015 addrlen = lifr->lifr_addrlen; 12016 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12017 if (ipif->ipif_id != 0) 12018 return (EINVAL); 12019 12020 if (!ipif->ipif_isv6) 12021 return (EINVAL); 12022 12023 if (addrlen > IPV6_ABITS) 12024 return (EINVAL); 12025 12026 v6addr = sin6->sin6_addr; 12027 12028 /* 12029 * The length of the token is the length from the end. To get 12030 * the proper mask for this, compute the mask of the bits not 12031 * in the token; ie. the prefix, and then xor to get the mask. 12032 */ 12033 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12034 return (EINVAL); 12035 for (i = 0; i < 4; i++) { 12036 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12037 } 12038 12039 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12040 ill->ill_token_length == addrlen) 12041 return (0); /* No change */ 12042 12043 if (ipif->ipif_flags & IPIF_UP) { 12044 err = ipif_logical_down(ipif, q, mp); 12045 if (err == EINPROGRESS) 12046 return (err); 12047 ipif_down_tail(ipif); 12048 need_up = B_TRUE; 12049 } 12050 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12051 return (err); 12052 } 12053 12054 static int 12055 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12056 mblk_t *mp, boolean_t need_up) 12057 { 12058 in6_addr_t v6addr; 12059 in6_addr_t v6mask; 12060 ill_t *ill = ipif->ipif_ill; 12061 int i; 12062 int err = 0; 12063 12064 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12065 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12066 v6addr = sin6->sin6_addr; 12067 /* 12068 * The length of the token is the length from the end. To get 12069 * the proper mask for this, compute the mask of the bits not 12070 * in the token; ie. the prefix, and then xor to get the mask. 12071 */ 12072 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12073 for (i = 0; i < 4; i++) 12074 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12075 12076 mutex_enter(&ill->ill_lock); 12077 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12078 ill->ill_token_length = addrlen; 12079 mutex_exit(&ill->ill_lock); 12080 12081 if (need_up) { 12082 /* 12083 * Now bring the interface back up. If this 12084 * is the only IPIF for the ILL, ipif_up 12085 * will have to re-bind to the device, so 12086 * we may get back EINPROGRESS, in which 12087 * case, this IOCTL will get completed in 12088 * ip_rput_dlpi when we see the DL_BIND_ACK. 12089 */ 12090 err = ipif_up(ipif, q, mp); 12091 if (err == EINPROGRESS) 12092 return (err); 12093 } 12094 return (err); 12095 } 12096 12097 /* ARGSUSED */ 12098 int 12099 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12100 ip_ioctl_cmd_t *ipi, void *if_req) 12101 { 12102 ill_t *ill; 12103 sin6_t *sin6 = (sin6_t *)sin; 12104 struct lifreq *lifr = (struct lifreq *)if_req; 12105 12106 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12107 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12108 if (ipif->ipif_id != 0) 12109 return (EINVAL); 12110 12111 ill = ipif->ipif_ill; 12112 if (!ill->ill_isv6) 12113 return (ENXIO); 12114 12115 *sin6 = sin6_null; 12116 sin6->sin6_family = AF_INET6; 12117 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12118 sin6->sin6_addr = ill->ill_token; 12119 lifr->lifr_addrlen = ill->ill_token_length; 12120 return (0); 12121 } 12122 12123 /* 12124 * Set (hardware) link specific information that might override 12125 * what was acquired through the DL_INFO_ACK. 12126 * The logic is as follows. 12127 * 12128 * become exclusive 12129 * set CHANGING flag 12130 * change mtu on affected IREs 12131 * clear CHANGING flag 12132 * 12133 * An ire add that occurs before the CHANGING flag is set will have its mtu 12134 * changed by the ip_sioctl_lnkinfo. 12135 * 12136 * During the time the CHANGING flag is set, no new ires will be added to the 12137 * bucket, and ire add will fail (due the CHANGING flag). 12138 * 12139 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12140 * before it is added to the bucket. 12141 * 12142 * Obviously only 1 thread can set the CHANGING flag and we need to become 12143 * exclusive to set the flag. 12144 */ 12145 /* ARGSUSED */ 12146 int 12147 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12148 ip_ioctl_cmd_t *ipi, void *if_req) 12149 { 12150 ill_t *ill = ipif->ipif_ill; 12151 ipif_t *nipif; 12152 int ip_min_mtu; 12153 boolean_t mtu_walk = B_FALSE; 12154 struct lifreq *lifr = (struct lifreq *)if_req; 12155 lif_ifinfo_req_t *lir; 12156 ire_t *ire; 12157 12158 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12159 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12160 lir = &lifr->lifr_ifinfo; 12161 ASSERT(IAM_WRITER_IPIF(ipif)); 12162 12163 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12164 if (ipif->ipif_id != 0) 12165 return (EINVAL); 12166 12167 /* Set interface MTU. */ 12168 if (ipif->ipif_isv6) 12169 ip_min_mtu = IPV6_MIN_MTU; 12170 else 12171 ip_min_mtu = IP_MIN_MTU; 12172 12173 /* 12174 * Verify values before we set anything. Allow zero to 12175 * mean unspecified. 12176 */ 12177 if (lir->lir_maxmtu != 0 && 12178 (lir->lir_maxmtu > ill->ill_max_frag || 12179 lir->lir_maxmtu < ip_min_mtu)) 12180 return (EINVAL); 12181 if (lir->lir_reachtime != 0 && 12182 lir->lir_reachtime > ND_MAX_REACHTIME) 12183 return (EINVAL); 12184 if (lir->lir_reachretrans != 0 && 12185 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12186 return (EINVAL); 12187 12188 mutex_enter(&ill->ill_lock); 12189 ill->ill_state_flags |= ILL_CHANGING; 12190 for (nipif = ill->ill_ipif; nipif != NULL; 12191 nipif = nipif->ipif_next) { 12192 nipif->ipif_state_flags |= IPIF_CHANGING; 12193 } 12194 12195 mutex_exit(&ill->ill_lock); 12196 12197 if (lir->lir_maxmtu != 0) { 12198 ill->ill_max_mtu = lir->lir_maxmtu; 12199 ill->ill_mtu_userspecified = 1; 12200 mtu_walk = B_TRUE; 12201 } 12202 12203 if (lir->lir_reachtime != 0) 12204 ill->ill_reachable_time = lir->lir_reachtime; 12205 12206 if (lir->lir_reachretrans != 0) 12207 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12208 12209 ill->ill_max_hops = lir->lir_maxhops; 12210 12211 ill->ill_max_buf = ND_MAX_Q; 12212 12213 if (mtu_walk) { 12214 /* 12215 * Set the MTU on all ipifs associated with this ill except 12216 * for those whose MTU was fixed via SIOCSLIFMTU. 12217 */ 12218 for (nipif = ill->ill_ipif; nipif != NULL; 12219 nipif = nipif->ipif_next) { 12220 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12221 continue; 12222 12223 nipif->ipif_mtu = ill->ill_max_mtu; 12224 12225 if (!(nipif->ipif_flags & IPIF_UP)) 12226 continue; 12227 12228 if (nipif->ipif_isv6) 12229 ire = ipif_to_ire_v6(nipif); 12230 else 12231 ire = ipif_to_ire(nipif); 12232 if (ire != NULL) { 12233 ire->ire_max_frag = ipif->ipif_mtu; 12234 ire_refrele(ire); 12235 } 12236 if (ill->ill_isv6) { 12237 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12238 ipif_mtu_change, (char *)nipif, 12239 ill); 12240 } else { 12241 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12242 ipif_mtu_change, (char *)nipif, 12243 ill); 12244 } 12245 } 12246 } 12247 12248 mutex_enter(&ill->ill_lock); 12249 for (nipif = ill->ill_ipif; nipif != NULL; 12250 nipif = nipif->ipif_next) { 12251 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12252 } 12253 ILL_UNMARK_CHANGING(ill); 12254 mutex_exit(&ill->ill_lock); 12255 12256 return (0); 12257 } 12258 12259 /* ARGSUSED */ 12260 int 12261 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12262 ip_ioctl_cmd_t *ipi, void *if_req) 12263 { 12264 struct lif_ifinfo_req *lir; 12265 ill_t *ill = ipif->ipif_ill; 12266 12267 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12268 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12269 if (ipif->ipif_id != 0) 12270 return (EINVAL); 12271 12272 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12273 lir->lir_maxhops = ill->ill_max_hops; 12274 lir->lir_reachtime = ill->ill_reachable_time; 12275 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12276 lir->lir_maxmtu = ill->ill_max_mtu; 12277 12278 return (0); 12279 } 12280 12281 /* 12282 * Return best guess as to the subnet mask for the specified address. 12283 * Based on the subnet masks for all the configured interfaces. 12284 * 12285 * We end up returning a zero mask in the case of default, multicast or 12286 * experimental. 12287 */ 12288 static ipaddr_t 12289 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 12290 { 12291 ipaddr_t net_mask; 12292 ill_t *ill; 12293 ipif_t *ipif; 12294 ill_walk_context_t ctx; 12295 ipif_t *fallback_ipif = NULL; 12296 12297 net_mask = ip_net_mask(addr); 12298 if (net_mask == 0) { 12299 *ipifp = NULL; 12300 return (0); 12301 } 12302 12303 /* Let's check to see if this is maybe a local subnet route. */ 12304 /* this function only applies to IPv4 interfaces */ 12305 rw_enter(&ill_g_lock, RW_READER); 12306 ill = ILL_START_WALK_V4(&ctx); 12307 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12308 mutex_enter(&ill->ill_lock); 12309 for (ipif = ill->ill_ipif; ipif != NULL; 12310 ipif = ipif->ipif_next) { 12311 if (!IPIF_CAN_LOOKUP(ipif)) 12312 continue; 12313 if (!(ipif->ipif_flags & IPIF_UP)) 12314 continue; 12315 if ((ipif->ipif_subnet & net_mask) == 12316 (addr & net_mask)) { 12317 /* 12318 * Don't trust pt-pt interfaces if there are 12319 * other interfaces. 12320 */ 12321 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12322 if (fallback_ipif == NULL) { 12323 ipif_refhold_locked(ipif); 12324 fallback_ipif = ipif; 12325 } 12326 continue; 12327 } 12328 12329 /* 12330 * Fine. Just assume the same net mask as the 12331 * directly attached subnet interface is using. 12332 */ 12333 ipif_refhold_locked(ipif); 12334 mutex_exit(&ill->ill_lock); 12335 rw_exit(&ill_g_lock); 12336 if (fallback_ipif != NULL) 12337 ipif_refrele(fallback_ipif); 12338 *ipifp = ipif; 12339 return (ipif->ipif_net_mask); 12340 } 12341 } 12342 mutex_exit(&ill->ill_lock); 12343 } 12344 rw_exit(&ill_g_lock); 12345 12346 *ipifp = fallback_ipif; 12347 return ((fallback_ipif != NULL) ? 12348 fallback_ipif->ipif_net_mask : net_mask); 12349 } 12350 12351 /* 12352 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12353 */ 12354 static void 12355 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12356 { 12357 IOCP iocp; 12358 ipft_t *ipft; 12359 ipllc_t *ipllc; 12360 mblk_t *mp1; 12361 cred_t *cr; 12362 int error = 0; 12363 conn_t *connp; 12364 12365 ip1dbg(("ip_wput_ioctl")); 12366 iocp = (IOCP)mp->b_rptr; 12367 mp1 = mp->b_cont; 12368 if (mp1 == NULL) { 12369 iocp->ioc_error = EINVAL; 12370 mp->b_datap->db_type = M_IOCNAK; 12371 iocp->ioc_count = 0; 12372 qreply(q, mp); 12373 return; 12374 } 12375 12376 /* 12377 * These IOCTLs provide various control capabilities to 12378 * upstream agents such as ULPs and processes. There 12379 * are currently two such IOCTLs implemented. They 12380 * are used by TCP to provide update information for 12381 * existing IREs and to forcibly delete an IRE for a 12382 * host that is not responding, thereby forcing an 12383 * attempt at a new route. 12384 */ 12385 iocp->ioc_error = EINVAL; 12386 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12387 goto done; 12388 12389 ipllc = (ipllc_t *)mp1->b_rptr; 12390 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12391 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12392 break; 12393 } 12394 /* 12395 * prefer credential from mblk over ioctl; 12396 * see ip_sioctl_copyin_setup 12397 */ 12398 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12399 12400 /* 12401 * Refhold the conn in case the request gets queued up in some lookup 12402 */ 12403 ASSERT(CONN_Q(q)); 12404 connp = Q_TO_CONN(q); 12405 CONN_INC_REF(connp); 12406 if (ipft->ipft_pfi && 12407 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12408 pullupmsg(mp1, ipft->ipft_min_size))) { 12409 error = (*ipft->ipft_pfi)(q, 12410 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12411 } 12412 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12413 /* 12414 * CONN_OPER_PENDING_DONE happens in the function called 12415 * through ipft_pfi above. 12416 */ 12417 return; 12418 } 12419 12420 CONN_OPER_PENDING_DONE(connp); 12421 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12422 freemsg(mp); 12423 return; 12424 } 12425 iocp->ioc_error = error; 12426 12427 done: 12428 mp->b_datap->db_type = M_IOCACK; 12429 if (iocp->ioc_error) 12430 iocp->ioc_count = 0; 12431 qreply(q, mp); 12432 } 12433 12434 /* 12435 * Lookup an ipif using the sequence id (ipif_seqid) 12436 */ 12437 ipif_t * 12438 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12439 { 12440 ipif_t *ipif; 12441 12442 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12443 12444 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12445 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12446 return (ipif); 12447 } 12448 return (NULL); 12449 } 12450 12451 uint64_t ipif_g_seqid; 12452 12453 /* 12454 * Assign a unique id for the ipif. This is used later when we send 12455 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12456 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12457 * IRE is added, we verify that ipif has not disappeared. 12458 */ 12459 12460 static void 12461 ipif_assign_seqid(ipif_t *ipif) 12462 { 12463 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 12464 } 12465 12466 /* 12467 * Insert the ipif, so that the list of ipifs on the ill will be sorted 12468 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 12469 * be inserted into the first space available in the list. The value of 12470 * ipif_id will then be set to the appropriate value for its position. 12471 */ 12472 static int 12473 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 12474 { 12475 ill_t *ill; 12476 ipif_t *tipif; 12477 ipif_t **tipifp; 12478 int id; 12479 12480 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 12481 IAM_WRITER_IPIF(ipif)); 12482 12483 ill = ipif->ipif_ill; 12484 ASSERT(ill != NULL); 12485 12486 /* 12487 * In the case of lo0:0 we already hold the ill_g_lock. 12488 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 12489 * ipif_insert. Another such caller is ipif_move. 12490 */ 12491 if (acquire_g_lock) 12492 rw_enter(&ill_g_lock, RW_WRITER); 12493 if (acquire_ill_lock) 12494 mutex_enter(&ill->ill_lock); 12495 id = ipif->ipif_id; 12496 tipifp = &(ill->ill_ipif); 12497 if (id == -1) { /* need to find a real id */ 12498 id = 0; 12499 while ((tipif = *tipifp) != NULL) { 12500 ASSERT(tipif->ipif_id >= id); 12501 if (tipif->ipif_id != id) 12502 break; /* non-consecutive id */ 12503 id++; 12504 tipifp = &(tipif->ipif_next); 12505 } 12506 /* limit number of logical interfaces */ 12507 if (id >= ip_addrs_per_if) { 12508 if (acquire_ill_lock) 12509 mutex_exit(&ill->ill_lock); 12510 if (acquire_g_lock) 12511 rw_exit(&ill_g_lock); 12512 return (-1); 12513 } 12514 ipif->ipif_id = id; /* assign new id */ 12515 } else if (id < ip_addrs_per_if) { 12516 /* we have a real id; insert ipif in the right place */ 12517 while ((tipif = *tipifp) != NULL) { 12518 ASSERT(tipif->ipif_id != id); 12519 if (tipif->ipif_id > id) 12520 break; /* found correct location */ 12521 tipifp = &(tipif->ipif_next); 12522 } 12523 } else { 12524 if (acquire_ill_lock) 12525 mutex_exit(&ill->ill_lock); 12526 if (acquire_g_lock) 12527 rw_exit(&ill_g_lock); 12528 return (-1); 12529 } 12530 12531 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 12532 12533 ipif->ipif_next = tipif; 12534 *tipifp = ipif; 12535 if (acquire_ill_lock) 12536 mutex_exit(&ill->ill_lock); 12537 if (acquire_g_lock) 12538 rw_exit(&ill_g_lock); 12539 return (0); 12540 } 12541 12542 /* 12543 * Allocate and initialize a new interface control structure. (Always 12544 * called as writer.) 12545 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 12546 * is not part of the global linked list of ills. ipif_seqid is unique 12547 * in the system and to preserve the uniqueness, it is assigned only 12548 * when ill becomes part of the global list. At that point ill will 12549 * have a name. If it doesn't get assigned here, it will get assigned 12550 * in ipif_set_values() as part of SIOCSLIFNAME processing. 12551 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 12552 * the interface flags or any other information from the DL_INFO_ACK for 12553 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 12554 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 12555 * second DL_INFO_ACK comes in from the driver. 12556 */ 12557 static ipif_t * 12558 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 12559 { 12560 ipif_t *ipif; 12561 phyint_t *phyi; 12562 12563 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 12564 ill->ill_name, id, (void *)ill)); 12565 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 12566 12567 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 12568 return (NULL); 12569 *ipif = ipif_zero; /* start clean */ 12570 12571 ipif->ipif_ill = ill; 12572 ipif->ipif_id = id; /* could be -1 */ 12573 ipif->ipif_zoneid = GLOBAL_ZONEID; 12574 12575 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 12576 12577 ipif->ipif_refcnt = 0; 12578 ipif->ipif_saved_ire_cnt = 0; 12579 12580 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 12581 mi_free(ipif); 12582 return (NULL); 12583 } 12584 /* -1 id should have been replaced by real id */ 12585 id = ipif->ipif_id; 12586 ASSERT(id >= 0); 12587 12588 if (ill->ill_name[0] != '\0') { 12589 ipif_assign_seqid(ipif); 12590 if (ill->ill_phyint->phyint_ifindex != 0) 12591 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 12592 } 12593 /* 12594 * Keep a copy of original id in ipif_orig_ipifid. Failback 12595 * will attempt to restore the original id. The SIOCSLIFOINDEX 12596 * ioctl sets ipif_orig_ipifid to zero. 12597 */ 12598 ipif->ipif_orig_ipifid = id; 12599 12600 /* 12601 * We grab the ill_lock and phyint_lock to protect the flag changes. 12602 * The ipif is still not up and can't be looked up until the 12603 * ioctl completes and the IPIF_CHANGING flag is cleared. 12604 */ 12605 mutex_enter(&ill->ill_lock); 12606 mutex_enter(&ill->ill_phyint->phyint_lock); 12607 /* 12608 * Set the running flag when logical interface zero is created. 12609 * For subsequent logical interfaces, a DLPI link down 12610 * notification message may have cleared the running flag to 12611 * indicate the link is down, so we shouldn't just blindly set it. 12612 */ 12613 if (id == 0) 12614 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 12615 ipif->ipif_ire_type = ire_type; 12616 phyi = ill->ill_phyint; 12617 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 12618 12619 if (ipif->ipif_isv6) { 12620 ill->ill_flags |= ILLF_IPV6; 12621 } else { 12622 ipaddr_t inaddr_any = INADDR_ANY; 12623 12624 ill->ill_flags |= ILLF_IPV4; 12625 12626 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12627 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12628 &ipif->ipif_v6lcl_addr); 12629 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12630 &ipif->ipif_v6src_addr); 12631 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12632 &ipif->ipif_v6subnet); 12633 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12634 &ipif->ipif_v6net_mask); 12635 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12636 &ipif->ipif_v6brd_addr); 12637 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12638 &ipif->ipif_v6pp_dst_addr); 12639 } 12640 12641 /* 12642 * Don't set the interface flags etc. now, will do it in 12643 * ip_ll_subnet_defaults. 12644 */ 12645 if (!initialize) { 12646 mutex_exit(&ill->ill_lock); 12647 mutex_exit(&ill->ill_phyint->phyint_lock); 12648 return (ipif); 12649 } 12650 ipif->ipif_mtu = ill->ill_max_mtu; 12651 12652 if (ill->ill_bcast_addr_length != 0) { 12653 /* 12654 * Later detect lack of DLPI driver multicast 12655 * capability by catching DL_ENABMULTI errors in 12656 * ip_rput_dlpi. 12657 */ 12658 ill->ill_flags |= ILLF_MULTICAST; 12659 if (!ipif->ipif_isv6) 12660 ipif->ipif_flags |= IPIF_BROADCAST; 12661 } else { 12662 if (ill->ill_net_type != IRE_LOOPBACK) { 12663 if (ipif->ipif_isv6) 12664 /* 12665 * Note: xresolv interfaces will eventually need 12666 * NOARP set here as well, but that will require 12667 * those external resolvers to have some 12668 * knowledge of that flag and act appropriately. 12669 * Not to be changed at present. 12670 */ 12671 ill->ill_flags |= ILLF_NONUD; 12672 else 12673 ill->ill_flags |= ILLF_NOARP; 12674 } 12675 if (ill->ill_phys_addr_length == 0) { 12676 if (ill->ill_media && 12677 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 12678 ipif->ipif_flags |= IPIF_NOXMIT; 12679 phyi->phyint_flags |= PHYI_VIRTUAL; 12680 } else { 12681 /* pt-pt supports multicast. */ 12682 ill->ill_flags |= ILLF_MULTICAST; 12683 if (ill->ill_net_type == IRE_LOOPBACK) { 12684 phyi->phyint_flags |= 12685 (PHYI_LOOPBACK | PHYI_VIRTUAL); 12686 } else { 12687 ipif->ipif_flags |= IPIF_POINTOPOINT; 12688 } 12689 } 12690 } 12691 } 12692 mutex_exit(&ill->ill_lock); 12693 mutex_exit(&ill->ill_phyint->phyint_lock); 12694 return (ipif); 12695 } 12696 12697 /* 12698 * If appropriate, send a message up to the resolver delete the entry 12699 * for the address of this interface which is going out of business. 12700 * (Always called as writer). 12701 * 12702 * NOTE : We need to check for NULL mps as some of the fields are 12703 * initialized only for some interface types. See ipif_resolver_up() 12704 * for details. 12705 */ 12706 void 12707 ipif_arp_down(ipif_t *ipif) 12708 { 12709 mblk_t *mp; 12710 12711 ip1dbg(("ipif_arp_down(%s:%u)\n", 12712 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12713 ASSERT(IAM_WRITER_IPIF(ipif)); 12714 12715 /* Delete the mapping for the local address */ 12716 mp = ipif->ipif_arp_del_mp; 12717 if (mp != NULL) { 12718 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12719 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12720 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12721 putnext(ipif->ipif_ill->ill_rq, mp); 12722 ipif->ipif_arp_del_mp = NULL; 12723 } 12724 12725 /* 12726 * If this is the last ipif that is going down, we need 12727 * to clean up ARP completely. 12728 */ 12729 if (ipif->ipif_ill->ill_ipif_up_count == 0) { 12730 12731 /* Send up AR_INTERFACE_DOWN message */ 12732 mp = ipif->ipif_ill->ill_arp_down_mp; 12733 if (mp != NULL) { 12734 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12735 dlpi_prim_str(*(int *)mp->b_rptr), 12736 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12737 ipif->ipif_id)); 12738 putnext(ipif->ipif_ill->ill_rq, mp); 12739 ipif->ipif_ill->ill_arp_down_mp = NULL; 12740 } 12741 12742 /* Tell ARP to delete the multicast mappings */ 12743 mp = ipif->ipif_ill->ill_arp_del_mapping_mp; 12744 if (mp != NULL) { 12745 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12746 dlpi_prim_str(*(int *)mp->b_rptr), 12747 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12748 ipif->ipif_id)); 12749 putnext(ipif->ipif_ill->ill_rq, mp); 12750 ipif->ipif_ill->ill_arp_del_mapping_mp = NULL; 12751 } 12752 } 12753 } 12754 12755 /* 12756 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 12757 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 12758 * that it wants the add_mp allocated in this function to be returned 12759 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 12760 * just re-do the multicast, it wants us to send the add_mp to ARP also. 12761 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 12762 * as it does a ipif_arp_down after calling this function - which will 12763 * remove what we add here. 12764 * 12765 * Returns -1 on failures and 0 on success. 12766 */ 12767 int 12768 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 12769 { 12770 mblk_t *del_mp = NULL; 12771 mblk_t *add_mp = NULL; 12772 mblk_t *mp; 12773 ill_t *ill = ipif->ipif_ill; 12774 phyint_t *phyi = ill->ill_phyint; 12775 ipaddr_t addr, mask, extract_mask = 0; 12776 arma_t *arma; 12777 uint8_t *maddr, *bphys_addr; 12778 uint32_t hw_start; 12779 dl_unitdata_req_t *dlur; 12780 12781 ASSERT(IAM_WRITER_IPIF(ipif)); 12782 if (ipif->ipif_flags & IPIF_POINTOPOINT) 12783 return (0); 12784 12785 /* 12786 * Delete the existing mapping from ARP. Normally ipif_down 12787 * -> ipif_arp_down should send this up to ARP. The only 12788 * reason we would find this when we are switching from 12789 * Multicast to Broadcast where we did not do a down. 12790 */ 12791 mp = ill->ill_arp_del_mapping_mp; 12792 if (mp != NULL) { 12793 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12794 dlpi_prim_str(*(int *)mp->b_rptr), 12795 *(int *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 12796 putnext(ill->ill_rq, mp); 12797 ill->ill_arp_del_mapping_mp = NULL; 12798 } 12799 12800 if (arp_add_mapping_mp != NULL) 12801 *arp_add_mapping_mp = NULL; 12802 12803 /* 12804 * Check that the address is not to long for the constant 12805 * length reserved in the template arma_t. 12806 */ 12807 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 12808 return (-1); 12809 12810 /* Add mapping mblk */ 12811 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 12812 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 12813 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 12814 (caddr_t)&addr); 12815 if (add_mp == NULL) 12816 return (-1); 12817 arma = (arma_t *)add_mp->b_rptr; 12818 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 12819 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 12820 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 12821 12822 /* 12823 * Determine the broadcast address. 12824 */ 12825 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 12826 if (ill->ill_sap_length < 0) 12827 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 12828 else 12829 bphys_addr = (uchar_t *)dlur + 12830 dlur->dl_dest_addr_offset + ill->ill_sap_length; 12831 /* 12832 * Check PHYI_MULTI_BCAST and length of physical 12833 * address to determine if we use the mapping or the 12834 * broadcast address. 12835 */ 12836 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 12837 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 12838 bphys_addr, maddr, &hw_start, &extract_mask)) 12839 phyi->phyint_flags |= PHYI_MULTI_BCAST; 12840 12841 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 12842 (ill->ill_flags & ILLF_MULTICAST)) { 12843 /* Make sure this will not match the "exact" entry. */ 12844 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 12845 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 12846 (caddr_t)&addr); 12847 if (del_mp == NULL) { 12848 freemsg(add_mp); 12849 return (-1); 12850 } 12851 bcopy(&extract_mask, (char *)arma + 12852 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 12853 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 12854 /* Use link-layer broadcast address for MULTI_BCAST */ 12855 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 12856 ip2dbg(("ipif_arp_setup_multicast: adding" 12857 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 12858 } else { 12859 arma->arma_hw_mapping_start = hw_start; 12860 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 12861 " ARP setup for %s\n", ill->ill_name)); 12862 } 12863 } else { 12864 freemsg(add_mp); 12865 ASSERT(del_mp == NULL); 12866 /* It is neither MULTICAST nor MULTI_BCAST */ 12867 return (0); 12868 } 12869 ASSERT(add_mp != NULL && del_mp != NULL); 12870 ill->ill_arp_del_mapping_mp = del_mp; 12871 if (arp_add_mapping_mp != NULL) { 12872 /* The caller just wants the mblks allocated */ 12873 *arp_add_mapping_mp = add_mp; 12874 } else { 12875 /* The caller wants us to send it to arp */ 12876 putnext(ill->ill_rq, add_mp); 12877 } 12878 return (0); 12879 } 12880 12881 /* 12882 * Get the resolver set up for a new interface address. 12883 * (Always called as writer.) 12884 * Called both for IPv4 and IPv6 interfaces, 12885 * though it only sets up the resolver for v6 12886 * if it's an xresolv interface (one using an external resolver). 12887 * Honors ILLF_NOARP. 12888 * The boolean value arp_just_publish, if B_TRUE, indicates that 12889 * it only needs to send an AR_ENTRY_ADD message up to ARP for 12890 * IPv4 interfaces. Currently, B_TRUE is only set when this 12891 * function is called by ip_rput_dlpi_writer() to handle 12892 * asynchronous hardware address change notification. 12893 * Returns error on failure. 12894 */ 12895 int 12896 ipif_resolver_up(ipif_t *ipif, boolean_t arp_just_publish) 12897 { 12898 caddr_t addr; 12899 mblk_t *arp_up_mp = NULL; 12900 mblk_t *arp_down_mp = NULL; 12901 mblk_t *arp_add_mp = NULL; 12902 mblk_t *arp_del_mp = NULL; 12903 mblk_t *arp_add_mapping_mp = NULL; 12904 mblk_t *arp_del_mapping_mp = NULL; 12905 ill_t *ill = ipif->ipif_ill; 12906 uchar_t *area_p = NULL; 12907 uchar_t *ared_p = NULL; 12908 int err = ENOMEM; 12909 12910 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12911 ipif->ipif_ill->ill_name, ipif->ipif_id, 12912 (uint_t)ipif->ipif_flags)); 12913 ASSERT(IAM_WRITER_IPIF(ipif)); 12914 12915 if ((ill->ill_net_type != IRE_IF_RESOLVER) || 12916 (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))) { 12917 return (0); 12918 } 12919 12920 if (ill->ill_isv6) { 12921 /* 12922 * External resolver for IPv6 12923 */ 12924 ASSERT(!arp_just_publish); 12925 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 12926 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 12927 area_p = (uchar_t *)&ip6_area_template; 12928 ared_p = (uchar_t *)&ip6_ared_template; 12929 } 12930 } else { 12931 /* 12932 * IPv4 arp case. If the ARP stream has already started 12933 * closing, fail this request for ARP bringup. Else 12934 * record the fact that an ARP bringup is pending. 12935 */ 12936 mutex_enter(&ill->ill_lock); 12937 if (ill->ill_arp_closing) { 12938 mutex_exit(&ill->ill_lock); 12939 err = EINVAL; 12940 goto failed; 12941 } else { 12942 if (ill->ill_ipif_up_count == 0) 12943 ill->ill_arp_bringup_pending = 1; 12944 mutex_exit(&ill->ill_lock); 12945 } 12946 if (ipif->ipif_lcl_addr != INADDR_ANY) { 12947 addr = (caddr_t)&ipif->ipif_lcl_addr; 12948 area_p = (uchar_t *)&ip_area_template; 12949 ared_p = (uchar_t *)&ip_ared_template; 12950 } 12951 } 12952 12953 /* 12954 * Add an entry for the local address in ARP only if it 12955 * is not UNNUMBERED and the address is not INADDR_ANY. 12956 */ 12957 if (((ipif->ipif_flags & IPIF_UNNUMBERED) == 0) && area_p != NULL) { 12958 /* Now ask ARP to publish our address. */ 12959 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 12960 if (arp_add_mp == NULL) 12961 goto failed; 12962 if (arp_just_publish) { 12963 /* 12964 * Copy the new hardware address and length into 12965 * arp_add_mp to be sent to ARP. 12966 */ 12967 area_t *area = (area_t *)arp_add_mp->b_rptr; 12968 area->area_hw_addr_length = 12969 ill->ill_phys_addr_length; 12970 bcopy((char *)ill->ill_phys_addr, 12971 ((char *)area + area->area_hw_addr_offset), 12972 area->area_hw_addr_length); 12973 } 12974 12975 ((area_t *)arp_add_mp->b_rptr)->area_flags = 12976 ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 12977 12978 if (arp_just_publish) 12979 goto arp_setup_multicast; 12980 12981 /* 12982 * Allocate an ARP deletion message so we know we can tell ARP 12983 * when the interface goes down. 12984 */ 12985 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 12986 if (arp_del_mp == NULL) 12987 goto failed; 12988 12989 } else { 12990 if (arp_just_publish) 12991 goto done; 12992 } 12993 /* 12994 * Need to bring up ARP or setup multicast mapping only 12995 * when the first interface is coming UP. 12996 */ 12997 if (ill->ill_ipif_up_count != 0) 12998 goto done; 12999 13000 /* 13001 * Allocate an ARP down message (to be saved) and an ARP up 13002 * message. 13003 */ 13004 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13005 if (arp_down_mp == NULL) 13006 goto failed; 13007 13008 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13009 if (arp_up_mp == NULL) 13010 goto failed; 13011 13012 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13013 goto done; 13014 13015 arp_setup_multicast: 13016 /* 13017 * Setup the multicast mappings. This function initializes 13018 * ill_arp_del_mapping_mp also. This does not need to be done for 13019 * IPv6. 13020 */ 13021 if (!ill->ill_isv6) { 13022 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13023 if (err != 0) 13024 goto failed; 13025 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13026 ASSERT(arp_add_mapping_mp != NULL); 13027 } 13028 13029 done:; 13030 if (arp_del_mp != NULL) { 13031 ASSERT(ipif->ipif_arp_del_mp == NULL); 13032 ipif->ipif_arp_del_mp = arp_del_mp; 13033 } 13034 if (arp_down_mp != NULL) { 13035 ASSERT(ill->ill_arp_down_mp == NULL); 13036 ill->ill_arp_down_mp = arp_down_mp; 13037 } 13038 if (arp_del_mapping_mp != NULL) { 13039 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13040 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13041 } 13042 if (arp_up_mp != NULL) { 13043 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13044 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13045 putnext(ill->ill_rq, arp_up_mp); 13046 } 13047 if (arp_add_mp != NULL) { 13048 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13049 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13050 putnext(ill->ill_rq, arp_add_mp); 13051 } 13052 if (arp_add_mapping_mp != NULL) { 13053 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13054 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13055 putnext(ill->ill_rq, arp_add_mapping_mp); 13056 } 13057 if (arp_just_publish) 13058 return (0); 13059 13060 if (ill->ill_flags & ILLF_NOARP) 13061 err = ill_arp_off(ill); 13062 else 13063 err = ill_arp_on(ill); 13064 if (err) { 13065 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13066 freemsg(ipif->ipif_arp_del_mp); 13067 if (arp_down_mp != NULL) 13068 freemsg(ill->ill_arp_down_mp); 13069 if (ill->ill_arp_del_mapping_mp != NULL) 13070 freemsg(ill->ill_arp_del_mapping_mp); 13071 ipif->ipif_arp_del_mp = NULL; 13072 ill->ill_arp_down_mp = NULL; 13073 ill->ill_arp_del_mapping_mp = NULL; 13074 return (err); 13075 } 13076 return (ill->ill_ipif_up_count != 0 ? 0 : EINPROGRESS); 13077 13078 failed:; 13079 ip1dbg(("ipif_resolver_up: FAILED\n")); 13080 freemsg(arp_add_mp); 13081 freemsg(arp_del_mp); 13082 freemsg(arp_add_mapping_mp); 13083 freemsg(arp_up_mp); 13084 freemsg(arp_down_mp); 13085 ill->ill_arp_bringup_pending = 0; 13086 return (err); 13087 } 13088 13089 /* 13090 * Wakeup all threads waiting to enter the ipsq, and sleeping 13091 * on any of the ills in this ipsq. The ill_lock of the ill 13092 * must be held so that waiters don't miss wakeups 13093 */ 13094 static void 13095 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 13096 { 13097 phyint_t *phyint; 13098 13099 phyint = ipsq->ipsq_phyint_list; 13100 while (phyint != NULL) { 13101 if (phyint->phyint_illv4) { 13102 if (!caller_holds_lock) 13103 mutex_enter(&phyint->phyint_illv4->ill_lock); 13104 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13105 cv_broadcast(&phyint->phyint_illv4->ill_cv); 13106 if (!caller_holds_lock) 13107 mutex_exit(&phyint->phyint_illv4->ill_lock); 13108 } 13109 if (phyint->phyint_illv6) { 13110 if (!caller_holds_lock) 13111 mutex_enter(&phyint->phyint_illv6->ill_lock); 13112 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13113 cv_broadcast(&phyint->phyint_illv6->ill_cv); 13114 if (!caller_holds_lock) 13115 mutex_exit(&phyint->phyint_illv6->ill_lock); 13116 } 13117 phyint = phyint->phyint_ipsq_next; 13118 } 13119 } 13120 13121 static ipsq_t * 13122 ipsq_create(char *groupname) 13123 { 13124 ipsq_t *ipsq; 13125 13126 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13127 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 13128 if (ipsq == NULL) { 13129 return (NULL); 13130 } 13131 13132 if (groupname != NULL) 13133 (void) strcpy(ipsq->ipsq_name, groupname); 13134 else 13135 ipsq->ipsq_name[0] = '\0'; 13136 13137 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 13138 ipsq->ipsq_flags |= IPSQ_GROUP; 13139 ipsq->ipsq_next = ipsq_g_head; 13140 ipsq_g_head = ipsq; 13141 return (ipsq); 13142 } 13143 13144 /* 13145 * Return an ipsq correspoding to the groupname. If 'create' is true 13146 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 13147 * uniquely with an IPMP group. However during IPMP groupname operations, 13148 * multiple IPMP groups may be associated with a single ipsq. But no 13149 * IPMP group can be associated with more than 1 ipsq at any time. 13150 * For example 13151 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 13152 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 13153 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 13154 * 13155 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 13156 * status shown below during the execution of the above command. 13157 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 13158 * 13159 * After the completion of the above groupname command we return to the stable 13160 * state shown below. 13161 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 13162 * hme4 mpk17-85 ipsq2 mpk17-85 1 13163 * 13164 * Because of the above, we don't search based on the ipsq_name since that 13165 * would miss the correct ipsq during certain windows as shown above. 13166 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 13167 * natural state. 13168 */ 13169 static ipsq_t * 13170 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 13171 { 13172 ipsq_t *ipsq; 13173 int group_len; 13174 phyint_t *phyint; 13175 13176 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13177 13178 group_len = strlen(groupname); 13179 ASSERT(group_len != 0); 13180 group_len++; 13181 13182 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 13183 /* 13184 * When an ipsq is being split, and ill_split_ipsq 13185 * calls this function, we exclude it from being considered. 13186 */ 13187 if (ipsq == exclude_ipsq) 13188 continue; 13189 13190 /* 13191 * Compare against the ipsq_name. The groupname change happens 13192 * in 2 phases. The 1st phase merges the from group into 13193 * the to group's ipsq, by calling ill_merge_groups and restarts 13194 * the ioctl. The 2nd phase then locates the ipsq again thru 13195 * ipsq_name. At this point the phyint_groupname has not been 13196 * updated. 13197 */ 13198 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 13199 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 13200 /* 13201 * Verify that an ipmp groupname is exactly 13202 * part of 1 ipsq and is not found in any other 13203 * ipsq. 13204 */ 13205 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 13206 NULL); 13207 return (ipsq); 13208 } 13209 13210 /* 13211 * Comparison against ipsq_name alone is not sufficient. 13212 * In the case when groups are currently being 13213 * merged, the ipsq could hold other IPMP groups temporarily. 13214 * so we walk the phyint list and compare against the 13215 * phyint_groupname as well. 13216 */ 13217 phyint = ipsq->ipsq_phyint_list; 13218 while (phyint != NULL) { 13219 if ((group_len == phyint->phyint_groupname_len) && 13220 (bcmp(phyint->phyint_groupname, groupname, 13221 group_len) == 0)) { 13222 /* 13223 * Verify that an ipmp groupname is exactly 13224 * part of 1 ipsq and is not found in any other 13225 * ipsq. 13226 */ 13227 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 13228 == NULL); 13229 return (ipsq); 13230 } 13231 phyint = phyint->phyint_ipsq_next; 13232 } 13233 } 13234 if (create) 13235 ipsq = ipsq_create(groupname); 13236 return (ipsq); 13237 } 13238 13239 static void 13240 ipsq_delete(ipsq_t *ipsq) 13241 { 13242 ipsq_t *nipsq; 13243 ipsq_t *pipsq = NULL; 13244 13245 /* 13246 * We don't hold the ipsq lock, but we are sure no new 13247 * messages can land up, since the ipsq_refs is zero. 13248 * i.e. this ipsq is unnamed and no phyint or phyint group 13249 * is associated with this ipsq. (Lookups are based on ill_name 13250 * or phyint_group_name) 13251 */ 13252 ASSERT(ipsq->ipsq_refs == 0); 13253 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 13254 ASSERT(ipsq->ipsq_pending_mp == NULL); 13255 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 13256 /* 13257 * This is not the ipsq of an IPMP group. 13258 */ 13259 kmem_free(ipsq, sizeof (ipsq_t)); 13260 return; 13261 } 13262 13263 rw_enter(&ill_g_lock, RW_WRITER); 13264 13265 /* 13266 * Locate the ipsq before we can remove it from 13267 * the singly linked list of ipsq's. 13268 */ 13269 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 13270 if (nipsq == ipsq) { 13271 break; 13272 } 13273 pipsq = nipsq; 13274 } 13275 13276 ASSERT(nipsq == ipsq); 13277 13278 /* unlink ipsq from the list */ 13279 if (pipsq != NULL) 13280 pipsq->ipsq_next = ipsq->ipsq_next; 13281 else 13282 ipsq_g_head = ipsq->ipsq_next; 13283 kmem_free(ipsq, sizeof (ipsq_t)); 13284 rw_exit(&ill_g_lock); 13285 } 13286 13287 static void 13288 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 13289 queue_t *q) 13290 13291 { 13292 13293 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 13294 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 13295 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 13296 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 13297 ASSERT(current_mp != NULL); 13298 13299 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 13300 NEW_OP, NULL); 13301 13302 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 13303 new_ipsq->ipsq_xopq_mphead != NULL); 13304 13305 /* 13306 * move from old ipsq to the new ipsq. 13307 */ 13308 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 13309 if (old_ipsq->ipsq_xopq_mphead != NULL) 13310 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 13311 13312 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 13313 } 13314 13315 void 13316 ill_group_cleanup(ill_t *ill) 13317 { 13318 ill_t *ill_v4; 13319 ill_t *ill_v6; 13320 ipif_t *ipif; 13321 13322 ill_v4 = ill->ill_phyint->phyint_illv4; 13323 ill_v6 = ill->ill_phyint->phyint_illv6; 13324 13325 if (ill_v4 != NULL) { 13326 mutex_enter(&ill_v4->ill_lock); 13327 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13328 ipif = ipif->ipif_next) { 13329 IPIF_UNMARK_MOVING(ipif); 13330 } 13331 ill_v4->ill_up_ipifs = B_FALSE; 13332 mutex_exit(&ill_v4->ill_lock); 13333 } 13334 13335 if (ill_v6 != NULL) { 13336 mutex_enter(&ill_v6->ill_lock); 13337 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13338 ipif = ipif->ipif_next) { 13339 IPIF_UNMARK_MOVING(ipif); 13340 } 13341 ill_v6->ill_up_ipifs = B_FALSE; 13342 mutex_exit(&ill_v6->ill_lock); 13343 } 13344 } 13345 /* 13346 * This function is called when an ill has had a change in its group status 13347 * to bring up all the ipifs that were up before the change. 13348 */ 13349 int 13350 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 13351 { 13352 ipif_t *ipif; 13353 ill_t *ill_v4; 13354 ill_t *ill_v6; 13355 ill_t *from_ill; 13356 int err = 0; 13357 13358 13359 ASSERT(IAM_WRITER_ILL(ill)); 13360 13361 /* 13362 * Except for ipif_state_flags and ill_state_flags the other 13363 * fields of the ipif/ill that are modified below are protected 13364 * implicitly since we are a writer. We would have tried to down 13365 * even an ipif that was already down, in ill_down_ipifs. So we 13366 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 13367 */ 13368 ill_v4 = ill->ill_phyint->phyint_illv4; 13369 ill_v6 = ill->ill_phyint->phyint_illv6; 13370 if (ill_v4 != NULL) { 13371 ill_v4->ill_up_ipifs = B_TRUE; 13372 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13373 ipif = ipif->ipif_next) { 13374 mutex_enter(&ill_v4->ill_lock); 13375 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13376 IPIF_UNMARK_MOVING(ipif); 13377 mutex_exit(&ill_v4->ill_lock); 13378 if (ipif->ipif_was_up) { 13379 if (!(ipif->ipif_flags & IPIF_UP)) 13380 err = ipif_up(ipif, q, mp); 13381 ipif->ipif_was_up = B_FALSE; 13382 if (err != 0) { 13383 /* 13384 * Can there be any other error ? 13385 */ 13386 ASSERT(err == EINPROGRESS); 13387 return (err); 13388 } 13389 } 13390 } 13391 mutex_enter(&ill_v4->ill_lock); 13392 ill_v4->ill_state_flags &= ~ILL_CHANGING; 13393 mutex_exit(&ill_v4->ill_lock); 13394 ill_v4->ill_up_ipifs = B_FALSE; 13395 if (ill_v4->ill_move_in_progress) { 13396 ASSERT(ill_v4->ill_move_peer != NULL); 13397 ill_v4->ill_move_in_progress = B_FALSE; 13398 from_ill = ill_v4->ill_move_peer; 13399 from_ill->ill_move_in_progress = B_FALSE; 13400 from_ill->ill_move_peer = NULL; 13401 mutex_enter(&from_ill->ill_lock); 13402 from_ill->ill_state_flags &= ~ILL_CHANGING; 13403 mutex_exit(&from_ill->ill_lock); 13404 if (ill_v6 == NULL) { 13405 if (from_ill->ill_phyint->phyint_flags & 13406 PHYI_STANDBY) { 13407 phyint_inactive(from_ill->ill_phyint); 13408 } 13409 if (ill_v4->ill_phyint->phyint_flags & 13410 PHYI_STANDBY) { 13411 phyint_inactive(ill_v4->ill_phyint); 13412 } 13413 } 13414 ill_v4->ill_move_peer = NULL; 13415 } 13416 } 13417 13418 if (ill_v6 != NULL) { 13419 ill_v6->ill_up_ipifs = B_TRUE; 13420 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13421 ipif = ipif->ipif_next) { 13422 mutex_enter(&ill_v6->ill_lock); 13423 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13424 IPIF_UNMARK_MOVING(ipif); 13425 mutex_exit(&ill_v6->ill_lock); 13426 if (ipif->ipif_was_up) { 13427 if (!(ipif->ipif_flags & IPIF_UP)) 13428 err = ipif_up(ipif, q, mp); 13429 ipif->ipif_was_up = B_FALSE; 13430 if (err != 0) { 13431 /* 13432 * Can there be any other error ? 13433 */ 13434 ASSERT(err == EINPROGRESS); 13435 return (err); 13436 } 13437 } 13438 } 13439 mutex_enter(&ill_v6->ill_lock); 13440 ill_v6->ill_state_flags &= ~ILL_CHANGING; 13441 mutex_exit(&ill_v6->ill_lock); 13442 ill_v6->ill_up_ipifs = B_FALSE; 13443 if (ill_v6->ill_move_in_progress) { 13444 ASSERT(ill_v6->ill_move_peer != NULL); 13445 ill_v6->ill_move_in_progress = B_FALSE; 13446 from_ill = ill_v6->ill_move_peer; 13447 from_ill->ill_move_in_progress = B_FALSE; 13448 from_ill->ill_move_peer = NULL; 13449 mutex_enter(&from_ill->ill_lock); 13450 from_ill->ill_state_flags &= ~ILL_CHANGING; 13451 mutex_exit(&from_ill->ill_lock); 13452 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 13453 phyint_inactive(from_ill->ill_phyint); 13454 } 13455 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 13456 phyint_inactive(ill_v6->ill_phyint); 13457 } 13458 ill_v6->ill_move_peer = NULL; 13459 } 13460 } 13461 return (0); 13462 } 13463 13464 /* 13465 * bring down all the approriate ipifs. 13466 */ 13467 /* ARGSUSED */ 13468 static void 13469 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 13470 { 13471 ipif_t *ipif; 13472 13473 ASSERT(IAM_WRITER_ILL(ill)); 13474 13475 /* 13476 * Except for ipif_state_flags the other fields of the ipif/ill that 13477 * are modified below are protected implicitly since we are a writer 13478 */ 13479 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13480 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 13481 continue; 13482 if (index == 0 || index == ipif->ipif_orig_ifindex) { 13483 /* 13484 * We go through the ipif_down logic even if the ipif 13485 * is already down, since routes can be added based 13486 * on down ipifs. Going through ipif_down once again 13487 * will delete any IREs created based on these routes. 13488 */ 13489 if (ipif->ipif_flags & IPIF_UP) 13490 ipif->ipif_was_up = B_TRUE; 13491 /* 13492 * If called with chk_nofailover true ipif is moving. 13493 */ 13494 mutex_enter(&ill->ill_lock); 13495 if (chk_nofailover) { 13496 ipif->ipif_state_flags |= 13497 IPIF_MOVING | IPIF_CHANGING; 13498 } else { 13499 ipif->ipif_state_flags |= IPIF_CHANGING; 13500 } 13501 mutex_exit(&ill->ill_lock); 13502 /* 13503 * Need to re-create net/subnet bcast ires if 13504 * they are dependent on ipif. 13505 */ 13506 if (!ipif->ipif_isv6) 13507 ipif_check_bcast_ires(ipif); 13508 (void) ipif_logical_down(ipif, NULL, NULL); 13509 ipif_down_tail(ipif); 13510 /* 13511 * We don't do ipif_multicast_down for IPv4 in 13512 * ipif_down. We need to set this so that 13513 * ipif_multicast_up will join the 13514 * ALLHOSTS_GROUP on to_ill. 13515 */ 13516 ipif->ipif_multicast_up = B_FALSE; 13517 } 13518 } 13519 } 13520 13521 #define IPSQ_INC_REF(ipsq) { \ 13522 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13523 (ipsq)->ipsq_refs++; \ 13524 } 13525 13526 #define IPSQ_DEC_REF(ipsq) { \ 13527 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13528 (ipsq)->ipsq_refs--; \ 13529 if ((ipsq)->ipsq_refs == 0) \ 13530 (ipsq)->ipsq_name[0] = '\0'; \ 13531 } 13532 13533 /* 13534 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13535 * new_ipsq. 13536 */ 13537 static void 13538 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 13539 { 13540 phyint_t *phyint; 13541 phyint_t *next_phyint; 13542 13543 /* 13544 * To change the ipsq of an ill, we need to hold the ill_g_lock as 13545 * writer and the ill_lock of the ill in question. Also the dest 13546 * ipsq can't vanish while we hold the ill_g_lock as writer. 13547 */ 13548 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13549 13550 phyint = cur_ipsq->ipsq_phyint_list; 13551 cur_ipsq->ipsq_phyint_list = NULL; 13552 while (phyint != NULL) { 13553 next_phyint = phyint->phyint_ipsq_next; 13554 IPSQ_DEC_REF(cur_ipsq); 13555 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 13556 new_ipsq->ipsq_phyint_list = phyint; 13557 IPSQ_INC_REF(new_ipsq); 13558 phyint->phyint_ipsq = new_ipsq; 13559 phyint = next_phyint; 13560 } 13561 } 13562 13563 #define SPLIT_SUCCESS 0 13564 #define SPLIT_NOT_NEEDED 1 13565 #define SPLIT_FAILED 2 13566 13567 int 13568 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 13569 { 13570 ipsq_t *newipsq = NULL; 13571 13572 /* 13573 * Assertions denote pre-requisites for changing the ipsq of 13574 * a phyint 13575 */ 13576 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13577 /* 13578 * <ill-phyint> assocs can't change while ill_g_lock 13579 * is held as writer. See ill_phyint_reinit() 13580 */ 13581 ASSERT(phyint->phyint_illv4 == NULL || 13582 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13583 ASSERT(phyint->phyint_illv6 == NULL || 13584 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13585 13586 if ((phyint->phyint_groupname_len != 13587 (strlen(cur_ipsq->ipsq_name) + 1) || 13588 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 13589 phyint->phyint_groupname_len) != 0)) { 13590 /* 13591 * Once we fail in creating a new ipsq due to memory shortage, 13592 * don't attempt to create new ipsq again, based on another 13593 * phyint, since we want all phyints belonging to an IPMP group 13594 * to be in the same ipsq even in the event of mem alloc fails. 13595 */ 13596 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 13597 cur_ipsq); 13598 if (newipsq == NULL) { 13599 /* Memory allocation failure */ 13600 return (SPLIT_FAILED); 13601 } else { 13602 /* ipsq_refs protected by ill_g_lock (writer) */ 13603 IPSQ_DEC_REF(cur_ipsq); 13604 phyint->phyint_ipsq = newipsq; 13605 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 13606 newipsq->ipsq_phyint_list = phyint; 13607 IPSQ_INC_REF(newipsq); 13608 return (SPLIT_SUCCESS); 13609 } 13610 } 13611 return (SPLIT_NOT_NEEDED); 13612 } 13613 13614 /* 13615 * The ill locks of the phyint and the ill_g_lock (writer) must be held 13616 * to do this split 13617 */ 13618 static int 13619 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 13620 { 13621 ipsq_t *newipsq; 13622 13623 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13624 /* 13625 * <ill-phyint> assocs can't change while ill_g_lock 13626 * is held as writer. See ill_phyint_reinit() 13627 */ 13628 13629 ASSERT(phyint->phyint_illv4 == NULL || 13630 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13631 ASSERT(phyint->phyint_illv6 == NULL || 13632 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13633 13634 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 13635 phyint->phyint_illv4: phyint->phyint_illv6)) { 13636 /* 13637 * ipsq_init failed due to no memory 13638 * caller will use the same ipsq 13639 */ 13640 return (SPLIT_FAILED); 13641 } 13642 13643 /* ipsq_ref is protected by ill_g_lock (writer) */ 13644 IPSQ_DEC_REF(cur_ipsq); 13645 13646 /* 13647 * This is a new ipsq that is unknown to the world. 13648 * So we don't need to hold ipsq_lock, 13649 */ 13650 newipsq = phyint->phyint_ipsq; 13651 newipsq->ipsq_writer = NULL; 13652 newipsq->ipsq_reentry_cnt--; 13653 ASSERT(newipsq->ipsq_reentry_cnt == 0); 13654 #ifdef ILL_DEBUG 13655 newipsq->ipsq_depth = 0; 13656 #endif 13657 13658 return (SPLIT_SUCCESS); 13659 } 13660 13661 /* 13662 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13663 * ipsq's representing their individual groups or themselves. Return 13664 * whether split needs to be retried again later. 13665 */ 13666 static boolean_t 13667 ill_split_ipsq(ipsq_t *cur_ipsq) 13668 { 13669 phyint_t *phyint; 13670 phyint_t *next_phyint; 13671 int error; 13672 boolean_t need_retry = B_FALSE; 13673 13674 phyint = cur_ipsq->ipsq_phyint_list; 13675 cur_ipsq->ipsq_phyint_list = NULL; 13676 while (phyint != NULL) { 13677 next_phyint = phyint->phyint_ipsq_next; 13678 /* 13679 * 'created' will tell us whether the callee actually 13680 * created an ipsq. Lack of memory may force the callee 13681 * to return without creating an ipsq. 13682 */ 13683 if (phyint->phyint_groupname == NULL) { 13684 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 13685 } else { 13686 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 13687 need_retry); 13688 } 13689 13690 switch (error) { 13691 case SPLIT_FAILED: 13692 need_retry = B_TRUE; 13693 /* FALLTHRU */ 13694 case SPLIT_NOT_NEEDED: 13695 /* 13696 * Keep it on the list. 13697 */ 13698 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 13699 cur_ipsq->ipsq_phyint_list = phyint; 13700 break; 13701 case SPLIT_SUCCESS: 13702 break; 13703 default: 13704 ASSERT(0); 13705 } 13706 13707 phyint = next_phyint; 13708 } 13709 return (need_retry); 13710 } 13711 13712 /* 13713 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 13714 * and return the ills in the list. This list will be 13715 * needed to unlock all the ills later on by the caller. 13716 * The <ill-ipsq> associations could change between the 13717 * lock and unlock. Hence the unlock can't traverse the 13718 * ipsq to get the list of ills. 13719 */ 13720 static int 13721 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 13722 { 13723 int cnt = 0; 13724 phyint_t *phyint; 13725 13726 /* 13727 * The caller holds ill_g_lock to ensure that the ill memberships 13728 * of the ipsq don't change 13729 */ 13730 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13731 13732 phyint = ipsq->ipsq_phyint_list; 13733 while (phyint != NULL) { 13734 if (phyint->phyint_illv4 != NULL) { 13735 ASSERT(cnt < list_max); 13736 list[cnt++] = phyint->phyint_illv4; 13737 } 13738 if (phyint->phyint_illv6 != NULL) { 13739 ASSERT(cnt < list_max); 13740 list[cnt++] = phyint->phyint_illv6; 13741 } 13742 phyint = phyint->phyint_ipsq_next; 13743 } 13744 ill_lock_ills(list, cnt); 13745 return (cnt); 13746 } 13747 13748 void 13749 ill_lock_ills(ill_t **list, int cnt) 13750 { 13751 int i; 13752 13753 if (cnt > 1) { 13754 boolean_t try_again; 13755 do { 13756 try_again = B_FALSE; 13757 for (i = 0; i < cnt - 1; i++) { 13758 if (list[i] < list[i + 1]) { 13759 ill_t *tmp; 13760 13761 /* swap the elements */ 13762 tmp = list[i]; 13763 list[i] = list[i + 1]; 13764 list[i + 1] = tmp; 13765 try_again = B_TRUE; 13766 } 13767 } 13768 } while (try_again); 13769 } 13770 13771 for (i = 0; i < cnt; i++) { 13772 if (i == 0) { 13773 if (list[i] != NULL) 13774 mutex_enter(&list[i]->ill_lock); 13775 else 13776 return; 13777 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13778 mutex_enter(&list[i]->ill_lock); 13779 } 13780 } 13781 } 13782 13783 void 13784 ill_unlock_ills(ill_t **list, int cnt) 13785 { 13786 int i; 13787 13788 for (i = 0; i < cnt; i++) { 13789 if ((i == 0) && (list[i] != NULL)) { 13790 mutex_exit(&list[i]->ill_lock); 13791 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13792 mutex_exit(&list[i]->ill_lock); 13793 } 13794 } 13795 } 13796 13797 /* 13798 * Merge all the ills from 1 ipsq group into another ipsq group. 13799 * The source ipsq group is specified by the ipsq associated with 13800 * 'from_ill'. The destination ipsq group is specified by the ipsq 13801 * associated with 'to_ill' or 'groupname' respectively. 13802 * Note that ipsq itself does not have a reference count mechanism 13803 * and functions don't look up an ipsq and pass it around. Instead 13804 * functions pass around an ill or groupname, and the ipsq is looked 13805 * up from the ill or groupname and the required operation performed 13806 * atomically with the lookup on the ipsq. 13807 */ 13808 static int 13809 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 13810 queue_t *q) 13811 { 13812 ipsq_t *old_ipsq; 13813 ipsq_t *new_ipsq; 13814 ill_t **ill_list; 13815 int cnt; 13816 size_t ill_list_size; 13817 boolean_t became_writer_on_new_sq = B_FALSE; 13818 13819 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 13820 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 13821 13822 /* 13823 * Need to hold ill_g_lock as writer and also the ill_lock to 13824 * change the <ill-ipsq> assoc of an ill. Need to hold the 13825 * ipsq_lock to prevent new messages from landing on an ipsq. 13826 */ 13827 rw_enter(&ill_g_lock, RW_WRITER); 13828 13829 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 13830 if (groupname != NULL) 13831 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 13832 else { 13833 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 13834 } 13835 13836 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 13837 13838 /* 13839 * both groups are on the same ipsq. 13840 */ 13841 if (old_ipsq == new_ipsq) { 13842 rw_exit(&ill_g_lock); 13843 return (0); 13844 } 13845 13846 cnt = old_ipsq->ipsq_refs << 1; 13847 ill_list_size = cnt * sizeof (ill_t *); 13848 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 13849 if (ill_list == NULL) { 13850 rw_exit(&ill_g_lock); 13851 return (ENOMEM); 13852 } 13853 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 13854 13855 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 13856 mutex_enter(&new_ipsq->ipsq_lock); 13857 if ((new_ipsq->ipsq_writer == NULL && 13858 new_ipsq->ipsq_current_ipif == NULL) || 13859 (new_ipsq->ipsq_writer == curthread)) { 13860 new_ipsq->ipsq_writer = curthread; 13861 new_ipsq->ipsq_reentry_cnt++; 13862 became_writer_on_new_sq = B_TRUE; 13863 } 13864 13865 /* 13866 * We are holding ill_g_lock as writer and all the ill locks of 13867 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 13868 * message can land up on the old ipsq even though we don't hold the 13869 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 13870 */ 13871 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 13872 13873 /* 13874 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 13875 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 13876 * assocs. till we release the ill_g_lock, and hence it can't vanish. 13877 */ 13878 ill_merge_ipsq(old_ipsq, new_ipsq); 13879 13880 /* 13881 * Mark the new ipsq as needing a split since it is currently 13882 * being shared by more than 1 IPMP group. The split will 13883 * occur at the end of ipsq_exit 13884 */ 13885 new_ipsq->ipsq_split = B_TRUE; 13886 13887 /* Now release all the locks */ 13888 mutex_exit(&new_ipsq->ipsq_lock); 13889 ill_unlock_ills(ill_list, cnt); 13890 rw_exit(&ill_g_lock); 13891 13892 kmem_free(ill_list, ill_list_size); 13893 13894 /* 13895 * If we succeeded in becoming writer on the new ipsq, then 13896 * drain the new ipsq and start processing all enqueued messages 13897 * including the current ioctl we are processing which is either 13898 * a set groupname or failover/failback. 13899 */ 13900 if (became_writer_on_new_sq) 13901 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 13902 13903 /* 13904 * syncq has been changed and all the messages have been moved. 13905 */ 13906 mutex_enter(&old_ipsq->ipsq_lock); 13907 old_ipsq->ipsq_current_ipif = NULL; 13908 mutex_exit(&old_ipsq->ipsq_lock); 13909 return (EINPROGRESS); 13910 } 13911 13912 /* 13913 * Delete and add the loopback copy and non-loopback copy of 13914 * the BROADCAST ire corresponding to ill and addr. Used to 13915 * group broadcast ires together when ill becomes part of 13916 * a group. 13917 * 13918 * This function is also called when ill is leaving the group 13919 * so that the ires belonging to the group gets re-grouped. 13920 */ 13921 static void 13922 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 13923 { 13924 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 13925 ire_t **ire_ptpn = &ire_head; 13926 13927 /* 13928 * The loopback and non-loopback IREs are inserted in the order in which 13929 * they're found, on the basis that they are correctly ordered (loopback 13930 * first). 13931 */ 13932 for (;;) { 13933 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 13934 ALL_ZONES, MATCH_IRE_TYPE | MATCH_IRE_ILL); 13935 if (ire == NULL) 13936 break; 13937 13938 /* 13939 * we are passing in KM_SLEEP because it is not easy to 13940 * go back to a sane state in case of memory failure. 13941 */ 13942 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 13943 ASSERT(nire != NULL); 13944 bzero(nire, sizeof (ire_t)); 13945 /* 13946 * Don't use ire_max_frag directly since we don't 13947 * hold on to 'ire' until we add the new ire 'nire' and 13948 * we don't want the new ire to have a dangling reference 13949 * to 'ire'. The ire_max_frag of a broadcast ire must 13950 * be in sync with the ipif_mtu of the associate ipif. 13951 * For eg. this happens as a result of SIOCSLIFNAME, 13952 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 13953 * the driver. A change in ire_max_frag triggered as 13954 * as a result of path mtu discovery, or due to an 13955 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 13956 * route change -mtu command does not apply to broadcast ires. 13957 * 13958 * XXX We need a recovery strategy here if ire_init fails 13959 */ 13960 if (ire_init(nire, 13961 (uchar_t *)&ire->ire_addr, 13962 (uchar_t *)&ire->ire_mask, 13963 (uchar_t *)&ire->ire_src_addr, 13964 (uchar_t *)&ire->ire_gateway_addr, 13965 (uchar_t *)&ire->ire_in_src_addr, 13966 ire->ire_stq == NULL ? &ip_loopback_mtu : 13967 &ire->ire_ipif->ipif_mtu, 13968 ire->ire_fp_mp, 13969 ire->ire_rfq, 13970 ire->ire_stq, 13971 ire->ire_type, 13972 ire->ire_dlureq_mp, 13973 ire->ire_ipif, 13974 ire->ire_in_ill, 13975 ire->ire_cmask, 13976 ire->ire_phandle, 13977 ire->ire_ihandle, 13978 ire->ire_flags, 13979 &ire->ire_uinfo) == NULL) { 13980 cmn_err(CE_PANIC, "ire_init() failed"); 13981 } 13982 ire_delete(ire); 13983 ire_refrele(ire); 13984 13985 /* 13986 * The newly created IREs are inserted at the tail of the list 13987 * starting with ire_head. As we've just allocated them no one 13988 * knows about them so it's safe. 13989 */ 13990 *ire_ptpn = nire; 13991 ire_ptpn = &nire->ire_next; 13992 } 13993 13994 for (nire = ire_head; nire != NULL; nire = nire_next) { 13995 int error; 13996 ire_t *oire; 13997 /* unlink the IRE from our list before calling ire_add() */ 13998 nire_next = nire->ire_next; 13999 nire->ire_next = NULL; 14000 14001 /* ire_add adds the ire at the right place in the list */ 14002 oire = nire; 14003 error = ire_add(&nire, NULL, NULL, NULL); 14004 ASSERT(error == 0); 14005 ASSERT(oire == nire); 14006 ire_refrele(nire); /* Held in ire_add */ 14007 } 14008 } 14009 14010 /* 14011 * This function is usually called when an ill is inserted in 14012 * a group and all the ipifs are already UP. As all the ipifs 14013 * are already UP, the broadcast ires have already been created 14014 * and been inserted. But, ire_add_v4 would not have grouped properly. 14015 * We need to re-group for the benefit of ip_wput_ire which 14016 * expects BROADCAST ires to be grouped properly to avoid sending 14017 * more than one copy of the broadcast packet per group. 14018 * 14019 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14020 * because when ipif_up_done ends up calling this, ires have 14021 * already been added before illgrp_insert i.e before ill_group 14022 * has been initialized. 14023 */ 14024 static void 14025 ill_group_bcast_for_xmit(ill_t *ill) 14026 { 14027 ill_group_t *illgrp; 14028 ipif_t *ipif; 14029 ipaddr_t addr; 14030 ipaddr_t net_mask; 14031 ipaddr_t subnet_netmask; 14032 14033 illgrp = ill->ill_group; 14034 14035 /* 14036 * This function is called even when an ill is deleted from 14037 * the group. Hence, illgrp could be null. 14038 */ 14039 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 14040 return; 14041 14042 /* 14043 * Delete all the BROADCAST ires matching this ill and add 14044 * them back. This time, ire_add_v4 should take care of 14045 * grouping them with others because ill is part of the 14046 * group. 14047 */ 14048 ill_bcast_delete_and_add(ill, 0); 14049 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 14050 14051 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14052 14053 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14054 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14055 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14056 } else { 14057 net_mask = htonl(IN_CLASSA_NET); 14058 } 14059 addr = net_mask & ipif->ipif_subnet; 14060 ill_bcast_delete_and_add(ill, addr); 14061 ill_bcast_delete_and_add(ill, ~net_mask | addr); 14062 14063 subnet_netmask = ipif->ipif_net_mask; 14064 addr = ipif->ipif_subnet; 14065 ill_bcast_delete_and_add(ill, addr); 14066 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 14067 } 14068 } 14069 14070 /* 14071 * This function is called from illgrp_delete when ill is being deleted 14072 * from the group. 14073 * 14074 * As ill is not there in the group anymore, any address belonging 14075 * to this ill should be cleared of IRE_MARK_NORECV. 14076 */ 14077 static void 14078 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 14079 { 14080 ire_t *ire; 14081 irb_t *irb; 14082 14083 ASSERT(ill->ill_group == NULL); 14084 14085 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14086 ALL_ZONES, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14087 14088 if (ire != NULL) { 14089 /* 14090 * IPMP and plumbing operations are serialized on the ipsq, so 14091 * no one will insert or delete a broadcast ire under our feet. 14092 */ 14093 irb = ire->ire_bucket; 14094 rw_enter(&irb->irb_lock, RW_READER); 14095 ire_refrele(ire); 14096 14097 for (; ire != NULL; ire = ire->ire_next) { 14098 if (ire->ire_addr != addr) 14099 break; 14100 if (ire_to_ill(ire) != ill) 14101 continue; 14102 14103 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 14104 ire->ire_marks &= ~IRE_MARK_NORECV; 14105 } 14106 rw_exit(&irb->irb_lock); 14107 } 14108 } 14109 14110 /* 14111 * This function must be called only after the broadcast ires 14112 * have been grouped together. For a given address addr, nominate 14113 * only one of the ires whose interface is not FAILED or OFFLINE. 14114 * 14115 * This is also called when an ipif goes down, so that we can nominate 14116 * a different ire with the same address for receiving. 14117 */ 14118 static void 14119 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 14120 { 14121 irb_t *irb; 14122 ire_t *ire; 14123 ire_t *ire1; 14124 ire_t *save_ire; 14125 ire_t **irep = NULL; 14126 boolean_t first = B_TRUE; 14127 ire_t *clear_ire = NULL; 14128 ire_t *start_ire = NULL; 14129 ire_t *new_lb_ire; 14130 ire_t *new_nlb_ire; 14131 boolean_t new_lb_ire_used = B_FALSE; 14132 boolean_t new_nlb_ire_used = B_FALSE; 14133 uint64_t match_flags; 14134 uint64_t phyi_flags; 14135 boolean_t fallback = B_FALSE; 14136 14137 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 14138 MATCH_IRE_TYPE); 14139 /* 14140 * We may not be able to find some ires if a previous 14141 * ire_create failed. This happens when an ipif goes 14142 * down and we are unable to create BROADCAST ires due 14143 * to memory failure. Thus, we have to check for NULL 14144 * below. This should handle the case for LOOPBACK, 14145 * POINTOPOINT and interfaces with some POINTOPOINT 14146 * logicals for which there are no BROADCAST ires. 14147 */ 14148 if (ire == NULL) 14149 return; 14150 /* 14151 * Currently IRE_BROADCASTS are deleted when an ipif 14152 * goes down which runs exclusively. Thus, setting 14153 * IRE_MARK_RCVD should not race with ire_delete marking 14154 * IRE_MARK_CONDEMNED. We grab the lock below just to 14155 * be consistent with other parts of the code that walks 14156 * a given bucket. 14157 */ 14158 save_ire = ire; 14159 irb = ire->ire_bucket; 14160 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14161 if (new_lb_ire == NULL) { 14162 ire_refrele(ire); 14163 return; 14164 } 14165 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14166 if (new_nlb_ire == NULL) { 14167 ire_refrele(ire); 14168 kmem_cache_free(ire_cache, new_lb_ire); 14169 return; 14170 } 14171 IRB_REFHOLD(irb); 14172 rw_enter(&irb->irb_lock, RW_WRITER); 14173 /* 14174 * Get to the first ire matching the address and the 14175 * group. If the address does not match we are done 14176 * as we could not find the IRE. If the address matches 14177 * we should get to the first one matching the group. 14178 */ 14179 while (ire != NULL) { 14180 if (ire->ire_addr != addr || 14181 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14182 break; 14183 } 14184 ire = ire->ire_next; 14185 } 14186 match_flags = PHYI_FAILED | PHYI_INACTIVE; 14187 start_ire = ire; 14188 redo: 14189 while (ire != NULL && ire->ire_addr == addr && 14190 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14191 /* 14192 * The first ire for any address within a group 14193 * should always be the one with IRE_MARK_NORECV cleared 14194 * so that ip_wput_ire can avoid searching for one. 14195 * Note down the insertion point which will be used 14196 * later. 14197 */ 14198 if (first && (irep == NULL)) 14199 irep = ire->ire_ptpn; 14200 /* 14201 * PHYI_FAILED is set when the interface fails. 14202 * This interface might have become good, but the 14203 * daemon has not yet detected. We should still 14204 * not receive on this. PHYI_OFFLINE should never 14205 * be picked as this has been offlined and soon 14206 * be removed. 14207 */ 14208 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 14209 if (phyi_flags & PHYI_OFFLINE) { 14210 ire->ire_marks |= IRE_MARK_NORECV; 14211 ire = ire->ire_next; 14212 continue; 14213 } 14214 if (phyi_flags & match_flags) { 14215 ire->ire_marks |= IRE_MARK_NORECV; 14216 ire = ire->ire_next; 14217 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 14218 PHYI_INACTIVE) { 14219 fallback = B_TRUE; 14220 } 14221 continue; 14222 } 14223 if (first) { 14224 /* 14225 * We will move this to the front of the list later 14226 * on. 14227 */ 14228 clear_ire = ire; 14229 ire->ire_marks &= ~IRE_MARK_NORECV; 14230 } else { 14231 ire->ire_marks |= IRE_MARK_NORECV; 14232 } 14233 first = B_FALSE; 14234 ire = ire->ire_next; 14235 } 14236 /* 14237 * If we never nominated anybody, try nominating at least 14238 * an INACTIVE, if we found one. Do it only once though. 14239 */ 14240 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 14241 fallback) { 14242 match_flags = PHYI_FAILED; 14243 ire = start_ire; 14244 irep = NULL; 14245 goto redo; 14246 } 14247 ire_refrele(save_ire); 14248 14249 /* 14250 * irep non-NULL indicates that we entered the while loop 14251 * above. If clear_ire is at the insertion point, we don't 14252 * have to do anything. clear_ire will be NULL if all the 14253 * interfaces are failed. 14254 * 14255 * We cannot unlink and reinsert the ire at the right place 14256 * in the list since there can be other walkers of this bucket. 14257 * Instead we delete and recreate the ire 14258 */ 14259 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 14260 ire_t *clear_ire_stq = NULL; 14261 bzero(new_lb_ire, sizeof (ire_t)); 14262 /* XXX We need a recovery strategy here. */ 14263 if (ire_init(new_lb_ire, 14264 (uchar_t *)&clear_ire->ire_addr, 14265 (uchar_t *)&clear_ire->ire_mask, 14266 (uchar_t *)&clear_ire->ire_src_addr, 14267 (uchar_t *)&clear_ire->ire_gateway_addr, 14268 (uchar_t *)&clear_ire->ire_in_src_addr, 14269 &clear_ire->ire_max_frag, 14270 clear_ire->ire_fp_mp, 14271 clear_ire->ire_rfq, 14272 clear_ire->ire_stq, 14273 clear_ire->ire_type, 14274 clear_ire->ire_dlureq_mp, 14275 clear_ire->ire_ipif, 14276 clear_ire->ire_in_ill, 14277 clear_ire->ire_cmask, 14278 clear_ire->ire_phandle, 14279 clear_ire->ire_ihandle, 14280 clear_ire->ire_flags, 14281 &clear_ire->ire_uinfo) == NULL) 14282 cmn_err(CE_PANIC, "ire_init() failed"); 14283 if (clear_ire->ire_stq == NULL) { 14284 ire_t *ire_next = clear_ire->ire_next; 14285 if (ire_next != NULL && 14286 ire_next->ire_stq != NULL && 14287 ire_next->ire_addr == clear_ire->ire_addr && 14288 ire_next->ire_ipif->ipif_ill == 14289 clear_ire->ire_ipif->ipif_ill) { 14290 clear_ire_stq = ire_next; 14291 14292 bzero(new_nlb_ire, sizeof (ire_t)); 14293 /* XXX We need a recovery strategy here. */ 14294 if (ire_init(new_nlb_ire, 14295 (uchar_t *)&clear_ire_stq->ire_addr, 14296 (uchar_t *)&clear_ire_stq->ire_mask, 14297 (uchar_t *)&clear_ire_stq->ire_src_addr, 14298 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 14299 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 14300 &clear_ire_stq->ire_max_frag, 14301 clear_ire_stq->ire_fp_mp, 14302 clear_ire_stq->ire_rfq, 14303 clear_ire_stq->ire_stq, 14304 clear_ire_stq->ire_type, 14305 clear_ire_stq->ire_dlureq_mp, 14306 clear_ire_stq->ire_ipif, 14307 clear_ire_stq->ire_in_ill, 14308 clear_ire_stq->ire_cmask, 14309 clear_ire_stq->ire_phandle, 14310 clear_ire_stq->ire_ihandle, 14311 clear_ire_stq->ire_flags, 14312 &clear_ire_stq->ire_uinfo) == NULL) 14313 cmn_err(CE_PANIC, "ire_init() failed"); 14314 } 14315 } 14316 14317 /* 14318 * Delete the ire. We can't call ire_delete() since 14319 * we are holding the bucket lock. We can't release the 14320 * bucket lock since we can't allow irep to change. So just 14321 * mark it CONDEMNED. The IRB_REFRELE will delete the 14322 * ire from the list and do the refrele. 14323 */ 14324 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 14325 irb->irb_marks |= IRE_MARK_CONDEMNED; 14326 14327 if (clear_ire_stq != NULL) { 14328 ire_fastpath_list_delete( 14329 (ill_t *)clear_ire_stq->ire_stq->q_ptr, 14330 clear_ire_stq); 14331 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 14332 } 14333 14334 /* 14335 * Also take care of otherfields like ib/ob pkt count 14336 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 14337 */ 14338 14339 /* Add the new ire's. Insert at *irep */ 14340 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 14341 ire1 = *irep; 14342 if (ire1 != NULL) 14343 ire1->ire_ptpn = &new_lb_ire->ire_next; 14344 new_lb_ire->ire_next = ire1; 14345 /* Link the new one in. */ 14346 new_lb_ire->ire_ptpn = irep; 14347 membar_producer(); 14348 *irep = new_lb_ire; 14349 new_lb_ire_used = B_TRUE; 14350 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14351 new_lb_ire->ire_bucket->irb_ire_cnt++; 14352 new_lb_ire->ire_ipif->ipif_ire_cnt++; 14353 14354 if (clear_ire_stq != NULL) { 14355 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 14356 irep = &new_lb_ire->ire_next; 14357 /* Add the new ire. Insert at *irep */ 14358 ire1 = *irep; 14359 if (ire1 != NULL) 14360 ire1->ire_ptpn = &new_nlb_ire->ire_next; 14361 new_nlb_ire->ire_next = ire1; 14362 /* Link the new one in. */ 14363 new_nlb_ire->ire_ptpn = irep; 14364 membar_producer(); 14365 *irep = new_nlb_ire; 14366 new_nlb_ire_used = B_TRUE; 14367 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14368 new_nlb_ire->ire_bucket->irb_ire_cnt++; 14369 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 14370 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 14371 } 14372 } 14373 rw_exit(&irb->irb_lock); 14374 if (!new_lb_ire_used) 14375 kmem_cache_free(ire_cache, new_lb_ire); 14376 if (!new_nlb_ire_used) 14377 kmem_cache_free(ire_cache, new_nlb_ire); 14378 IRB_REFRELE(irb); 14379 } 14380 14381 /* 14382 * Whenever an ipif goes down we have to renominate a different 14383 * broadcast ire to receive. Whenever an ipif comes up, we need 14384 * to make sure that we have only one nominated to receive. 14385 */ 14386 static void 14387 ipif_renominate_bcast(ipif_t *ipif) 14388 { 14389 ill_t *ill = ipif->ipif_ill; 14390 ipaddr_t subnet_addr; 14391 ipaddr_t net_addr; 14392 ipaddr_t net_mask = 0; 14393 ipaddr_t subnet_netmask; 14394 ipaddr_t addr; 14395 ill_group_t *illgrp; 14396 14397 illgrp = ill->ill_group; 14398 /* 14399 * If this is the last ipif going down, it might take 14400 * the ill out of the group. In that case ipif_down -> 14401 * illgrp_delete takes care of doing the nomination. 14402 * ipif_down does not call for this case. 14403 */ 14404 ASSERT(illgrp != NULL); 14405 14406 /* There could not have been any ires associated with this */ 14407 if (ipif->ipif_subnet == 0) 14408 return; 14409 14410 ill_mark_bcast(illgrp, 0); 14411 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14412 14413 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14414 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14415 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14416 } else { 14417 net_mask = htonl(IN_CLASSA_NET); 14418 } 14419 addr = net_mask & ipif->ipif_subnet; 14420 ill_mark_bcast(illgrp, addr); 14421 14422 net_addr = ~net_mask | addr; 14423 ill_mark_bcast(illgrp, net_addr); 14424 14425 subnet_netmask = ipif->ipif_net_mask; 14426 addr = ipif->ipif_subnet; 14427 ill_mark_bcast(illgrp, addr); 14428 14429 subnet_addr = ~subnet_netmask | addr; 14430 ill_mark_bcast(illgrp, subnet_addr); 14431 } 14432 14433 /* 14434 * Whenever we form or delete ill groups, we need to nominate one set of 14435 * BROADCAST ires for receiving in the group. 14436 * 14437 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 14438 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 14439 * for ill_ipif_up_count to be non-zero. This is the only case where 14440 * ill_ipif_up_count is zero and we would still find the ires. 14441 * 14442 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 14443 * ipif is UP and we just have to do the nomination. 14444 * 14445 * 3) When ill_handoff_responsibility calls us, some ill has been removed 14446 * from the group. So, we have to do the nomination. 14447 * 14448 * Because of (3), there could be just one ill in the group. But we have 14449 * to nominate still as IRE_MARK_NORCV may have been marked on this. 14450 * Thus, this function does not optimize when there is only one ill as 14451 * it is not correct for (3). 14452 */ 14453 static void 14454 ill_nominate_bcast_rcv(ill_group_t *illgrp) 14455 { 14456 ill_t *ill; 14457 ipif_t *ipif; 14458 ipaddr_t subnet_addr; 14459 ipaddr_t prev_subnet_addr = 0; 14460 ipaddr_t net_addr; 14461 ipaddr_t prev_net_addr = 0; 14462 ipaddr_t net_mask = 0; 14463 ipaddr_t subnet_netmask; 14464 ipaddr_t addr; 14465 14466 /* 14467 * When the last memeber is leaving, there is nothing to 14468 * nominate. 14469 */ 14470 if (illgrp->illgrp_ill_count == 0) { 14471 ASSERT(illgrp->illgrp_ill == NULL); 14472 return; 14473 } 14474 14475 ill = illgrp->illgrp_ill; 14476 ASSERT(!ill->ill_isv6); 14477 /* 14478 * We assume that ires with same address and belonging to the 14479 * same group, has been grouped together. Nominating a *single* 14480 * ill in the group for sending and receiving broadcast is done 14481 * by making sure that the first BROADCAST ire (which will be 14482 * the one returned by ire_ctable_lookup for ip_rput and the 14483 * one that will be used in ip_wput_ire) will be the one that 14484 * will not have IRE_MARK_NORECV set. 14485 * 14486 * 1) ip_rput checks and discards packets received on ires marked 14487 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 14488 * broadcast packets. We need to clear IRE_MARK_NORECV on the 14489 * first ire in the group for every broadcast address in the group. 14490 * ip_rput will accept packets only on the first ire i.e only 14491 * one copy of the ill. 14492 * 14493 * 2) ip_wput_ire needs to send out just one copy of the broadcast 14494 * packet for the whole group. It needs to send out on the ill 14495 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 14496 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 14497 * the copy echoed back on other port where the ire is not marked 14498 * with IRE_MARK_NORECV. 14499 * 14500 * Note that we just need to have the first IRE either loopback or 14501 * non-loopback (either of them may not exist if ire_create failed 14502 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 14503 * always hit the first one and hence will always accept one copy. 14504 * 14505 * We have a broadcast ire per ill for all the unique prefixes 14506 * hosted on that ill. As we don't have a way of knowing the 14507 * unique prefixes on a given ill and hence in the whole group, 14508 * we just call ill_mark_bcast on all the prefixes that exist 14509 * in the group. For the common case of one prefix, the code 14510 * below optimizes by remebering the last address used for 14511 * markng. In the case of multiple prefixes, this will still 14512 * optimize depending the order of prefixes. 14513 * 14514 * The only unique address across the whole group is 0.0.0.0 and 14515 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 14516 * the first ire in the bucket for receiving and disables the 14517 * others. 14518 */ 14519 ill_mark_bcast(illgrp, 0); 14520 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14521 for (; ill != NULL; ill = ill->ill_group_next) { 14522 14523 for (ipif = ill->ill_ipif; ipif != NULL; 14524 ipif = ipif->ipif_next) { 14525 14526 if (!(ipif->ipif_flags & IPIF_UP) || 14527 ipif->ipif_subnet == 0) { 14528 continue; 14529 } 14530 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14531 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14532 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14533 } else { 14534 net_mask = htonl(IN_CLASSA_NET); 14535 } 14536 addr = net_mask & ipif->ipif_subnet; 14537 if (prev_net_addr == 0 || prev_net_addr != addr) { 14538 ill_mark_bcast(illgrp, addr); 14539 net_addr = ~net_mask | addr; 14540 ill_mark_bcast(illgrp, net_addr); 14541 } 14542 prev_net_addr = addr; 14543 14544 subnet_netmask = ipif->ipif_net_mask; 14545 addr = ipif->ipif_subnet; 14546 if (prev_subnet_addr == 0 || 14547 prev_subnet_addr != addr) { 14548 ill_mark_bcast(illgrp, addr); 14549 subnet_addr = ~subnet_netmask | addr; 14550 ill_mark_bcast(illgrp, subnet_addr); 14551 } 14552 prev_subnet_addr = addr; 14553 } 14554 } 14555 } 14556 14557 /* 14558 * This function is called while forming ill groups. 14559 * 14560 * Currently, we handle only allmulti groups. We want to join 14561 * allmulti on only one of the ills in the groups. In future, 14562 * when we have link aggregation, we may have to join normal 14563 * multicast groups on multiple ills as switch does inbound load 14564 * balancing. Following are the functions that calls this 14565 * function : 14566 * 14567 * 1) ill_recover_multicast : Interface is coming back UP. 14568 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 14569 * will call ill_recover_multicast to recover all the multicast 14570 * groups. We need to make sure that only one member is joined 14571 * in the ill group. 14572 * 14573 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 14574 * Somebody is joining allmulti. We need to make sure that only one 14575 * member is joined in the group. 14576 * 14577 * 3) illgrp_insert : If allmulti has already joined, we need to make 14578 * sure that only one member is joined in the group. 14579 * 14580 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 14581 * allmulti who we have nominated. We need to pick someother ill. 14582 * 14583 * 5) illgrp_delete : The ill we nominated is leaving the group, 14584 * we need to pick a new ill to join the group. 14585 * 14586 * For (1), (2), (5) - we just have to check whether there is 14587 * a good ill joined in the group. If we could not find any ills 14588 * joined the group, we should join. 14589 * 14590 * For (4), the one that was nominated to receive, left the group. 14591 * There could be nobody joined in the group when this function is 14592 * called. 14593 * 14594 * For (3) - we need to explicitly check whether there are multiple 14595 * ills joined in the group. 14596 * 14597 * For simplicity, we don't differentiate any of the above cases. We 14598 * just leave the group if it is joined on any of them and join on 14599 * the first good ill. 14600 */ 14601 int 14602 ill_nominate_mcast_rcv(ill_group_t *illgrp) 14603 { 14604 ilm_t *ilm; 14605 ill_t *ill; 14606 ill_t *fallback_inactive_ill = NULL; 14607 ill_t *fallback_failed_ill = NULL; 14608 int ret = 0; 14609 14610 /* 14611 * Leave the allmulti on all the ills and start fresh. 14612 */ 14613 for (ill = illgrp->illgrp_ill; ill != NULL; 14614 ill = ill->ill_group_next) { 14615 if (ill->ill_join_allmulti) 14616 (void) ip_leave_allmulti(ill->ill_ipif); 14617 } 14618 14619 /* 14620 * Choose a good ill. Fallback to inactive or failed if 14621 * none available. We need to fallback to FAILED in the 14622 * case where we have 2 interfaces in a group - where 14623 * one of them is failed and another is a good one and 14624 * the good one (not marked inactive) is leaving the group. 14625 */ 14626 ret = 0; 14627 for (ill = illgrp->illgrp_ill; ill != NULL; 14628 ill = ill->ill_group_next) { 14629 /* Never pick an offline interface */ 14630 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 14631 continue; 14632 14633 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 14634 fallback_failed_ill = ill; 14635 continue; 14636 } 14637 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 14638 fallback_inactive_ill = ill; 14639 continue; 14640 } 14641 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14642 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14643 ret = ip_join_allmulti(ill->ill_ipif); 14644 /* 14645 * ip_join_allmulti can fail because of memory 14646 * failures. So, make sure we join at least 14647 * on one ill. 14648 */ 14649 if (ill->ill_join_allmulti) 14650 return (0); 14651 } 14652 } 14653 } 14654 if (ret != 0) { 14655 /* 14656 * If we tried nominating above and failed to do so, 14657 * return error. We might have tried multiple times. 14658 * But, return the latest error. 14659 */ 14660 return (ret); 14661 } 14662 if ((ill = fallback_inactive_ill) != NULL) { 14663 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14664 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14665 ret = ip_join_allmulti(ill->ill_ipif); 14666 return (ret); 14667 } 14668 } 14669 } else if ((ill = fallback_failed_ill) != NULL) { 14670 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14671 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14672 ret = ip_join_allmulti(ill->ill_ipif); 14673 return (ret); 14674 } 14675 } 14676 } 14677 return (0); 14678 } 14679 14680 /* 14681 * This function is called from illgrp_delete after it is 14682 * deleted from the group to reschedule responsibilities 14683 * to a different ill. 14684 */ 14685 static void 14686 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 14687 { 14688 ilm_t *ilm; 14689 ipif_t *ipif; 14690 ipaddr_t subnet_addr; 14691 ipaddr_t net_addr; 14692 ipaddr_t net_mask = 0; 14693 ipaddr_t subnet_netmask; 14694 ipaddr_t addr; 14695 14696 ASSERT(ill->ill_group == NULL); 14697 /* 14698 * Broadcast Responsibility: 14699 * 14700 * 1. If this ill has been nominated for receiving broadcast 14701 * packets, we need to find a new one. Before we find a new 14702 * one, we need to re-group the ires that are part of this new 14703 * group (assumed by ill_nominate_bcast_rcv). We do this by 14704 * calling ill_group_bcast_for_xmit(ill) which will do the right 14705 * thing for us. 14706 * 14707 * 2. If this ill was not nominated for receiving broadcast 14708 * packets, we need to clear the IRE_MARK_NORECV flag 14709 * so that we continue to send up broadcast packets. 14710 */ 14711 if (!ill->ill_isv6) { 14712 /* 14713 * Case 1 above : No optimization here. Just redo the 14714 * nomination. 14715 */ 14716 ill_group_bcast_for_xmit(ill); 14717 ill_nominate_bcast_rcv(illgrp); 14718 14719 /* 14720 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 14721 */ 14722 ill_clear_bcast_mark(ill, 0); 14723 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 14724 14725 for (ipif = ill->ill_ipif; ipif != NULL; 14726 ipif = ipif->ipif_next) { 14727 14728 if (!(ipif->ipif_flags & IPIF_UP) || 14729 ipif->ipif_subnet == 0) { 14730 continue; 14731 } 14732 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14733 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14734 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14735 } else { 14736 net_mask = htonl(IN_CLASSA_NET); 14737 } 14738 addr = net_mask & ipif->ipif_subnet; 14739 ill_clear_bcast_mark(ill, addr); 14740 14741 net_addr = ~net_mask | addr; 14742 ill_clear_bcast_mark(ill, net_addr); 14743 14744 subnet_netmask = ipif->ipif_net_mask; 14745 addr = ipif->ipif_subnet; 14746 ill_clear_bcast_mark(ill, addr); 14747 14748 subnet_addr = ~subnet_netmask | addr; 14749 ill_clear_bcast_mark(ill, subnet_addr); 14750 } 14751 } 14752 14753 /* 14754 * Multicast Responsibility. 14755 * 14756 * If we have joined allmulti on this one, find a new member 14757 * in the group to join allmulti. As this ill is already part 14758 * of allmulti, we don't have to join on this one. 14759 * 14760 * If we have not joined allmulti on this one, there is no 14761 * responsibility to handoff. But we need to take new 14762 * responsibility i.e, join allmulti on this one if we need 14763 * to. 14764 */ 14765 if (ill->ill_join_allmulti) { 14766 (void) ill_nominate_mcast_rcv(illgrp); 14767 } else { 14768 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14769 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14770 (void) ip_join_allmulti(ill->ill_ipif); 14771 break; 14772 } 14773 } 14774 } 14775 14776 /* 14777 * We intentionally do the flushing of IRE_CACHES only matching 14778 * on the ill and not on groups. Note that we are already deleted 14779 * from the group. 14780 * 14781 * This will make sure that all IRE_CACHES whose stq is pointing 14782 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 14783 * deleted and IRE_CACHES that are not pointing at this ill will 14784 * be left alone. 14785 */ 14786 if (ill->ill_isv6) { 14787 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14788 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14789 } else { 14790 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14791 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14792 } 14793 14794 /* 14795 * Some conn may have cached one of the IREs deleted above. By removing 14796 * the ire reference, we clean up the extra reference to the ill held in 14797 * ire->ire_stq. 14798 */ 14799 ipcl_walk(conn_cleanup_stale_ire, NULL); 14800 14801 /* 14802 * Re-do source address selection for all the members in the 14803 * group, if they borrowed source address from one of the ipifs 14804 * in this ill. 14805 */ 14806 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14807 if (ill->ill_isv6) { 14808 ipif_update_other_ipifs_v6(ipif, illgrp); 14809 } else { 14810 ipif_update_other_ipifs(ipif, illgrp); 14811 } 14812 } 14813 } 14814 14815 /* 14816 * Delete the ill from the group. The caller makes sure that it is 14817 * in a group and it okay to delete from the group. So, we always 14818 * delete here. 14819 */ 14820 static void 14821 illgrp_delete(ill_t *ill) 14822 { 14823 ill_group_t *illgrp; 14824 ill_group_t *tmpg; 14825 ill_t *tmp_ill; 14826 14827 /* 14828 * Reset illgrp_ill_schednext if it was pointing at us. 14829 * We need to do this before we set ill_group to NULL. 14830 */ 14831 rw_enter(&ill_g_lock, RW_WRITER); 14832 mutex_enter(&ill->ill_lock); 14833 14834 illgrp_reset_schednext(ill); 14835 14836 illgrp = ill->ill_group; 14837 14838 /* Delete the ill from illgrp. */ 14839 if (illgrp->illgrp_ill == ill) { 14840 illgrp->illgrp_ill = ill->ill_group_next; 14841 } else { 14842 tmp_ill = illgrp->illgrp_ill; 14843 while (tmp_ill->ill_group_next != ill) { 14844 tmp_ill = tmp_ill->ill_group_next; 14845 ASSERT(tmp_ill != NULL); 14846 } 14847 tmp_ill->ill_group_next = ill->ill_group_next; 14848 } 14849 ill->ill_group = NULL; 14850 ill->ill_group_next = NULL; 14851 14852 illgrp->illgrp_ill_count--; 14853 mutex_exit(&ill->ill_lock); 14854 rw_exit(&ill_g_lock); 14855 14856 /* 14857 * As this ill is leaving the group, we need to hand off 14858 * the responsibilities to the other ills in the group, if 14859 * this ill had some responsibilities. 14860 */ 14861 14862 ill_handoff_responsibility(ill, illgrp); 14863 14864 rw_enter(&ill_g_lock, RW_WRITER); 14865 14866 if (illgrp->illgrp_ill_count == 0) { 14867 14868 ASSERT(illgrp->illgrp_ill == NULL); 14869 if (ill->ill_isv6) { 14870 if (illgrp == illgrp_head_v6) { 14871 illgrp_head_v6 = illgrp->illgrp_next; 14872 } else { 14873 tmpg = illgrp_head_v6; 14874 while (tmpg->illgrp_next != illgrp) { 14875 tmpg = tmpg->illgrp_next; 14876 ASSERT(tmpg != NULL); 14877 } 14878 tmpg->illgrp_next = illgrp->illgrp_next; 14879 } 14880 } else { 14881 if (illgrp == illgrp_head_v4) { 14882 illgrp_head_v4 = illgrp->illgrp_next; 14883 } else { 14884 tmpg = illgrp_head_v4; 14885 while (tmpg->illgrp_next != illgrp) { 14886 tmpg = tmpg->illgrp_next; 14887 ASSERT(tmpg != NULL); 14888 } 14889 tmpg->illgrp_next = illgrp->illgrp_next; 14890 } 14891 } 14892 mutex_destroy(&illgrp->illgrp_lock); 14893 mi_free(illgrp); 14894 } 14895 rw_exit(&ill_g_lock); 14896 14897 /* 14898 * Even though the ill is out of the group its not necessary 14899 * to set ipsq_split as TRUE as the ipifs could be down temporarily 14900 * We will split the ipsq when phyint_groupname is set to NULL. 14901 */ 14902 14903 /* 14904 * Send a routing sockets message if we are deleting from 14905 * groups with names. 14906 */ 14907 if (ill->ill_phyint->phyint_groupname_len != 0) 14908 ip_rts_ifmsg(ill->ill_ipif); 14909 } 14910 14911 /* 14912 * Re-do source address selection. This is normally called when 14913 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 14914 * ipif comes up. 14915 */ 14916 void 14917 ill_update_source_selection(ill_t *ill) 14918 { 14919 ipif_t *ipif; 14920 14921 ASSERT(IAM_WRITER_ILL(ill)); 14922 14923 if (ill->ill_group != NULL) 14924 ill = ill->ill_group->illgrp_ill; 14925 14926 for (; ill != NULL; ill = ill->ill_group_next) { 14927 for (ipif = ill->ill_ipif; ipif != NULL; 14928 ipif = ipif->ipif_next) { 14929 if (ill->ill_isv6) 14930 ipif_recreate_interface_routes_v6(NULL, ipif); 14931 else 14932 ipif_recreate_interface_routes(NULL, ipif); 14933 } 14934 } 14935 } 14936 14937 /* 14938 * Insert ill in a group headed by illgrp_head. The caller can either 14939 * pass a groupname in which case we search for a group with the 14940 * same name to insert in or pass a group to insert in. This function 14941 * would only search groups with names. 14942 * 14943 * NOTE : The caller should make sure that there is at least one ipif 14944 * UP on this ill so that illgrp_scheduler can pick this ill 14945 * for outbound packets. If ill_ipif_up_count is zero, we have 14946 * already sent a DL_UNBIND to the driver and we don't want to 14947 * send anymore packets. We don't assert for ipif_up_count 14948 * to be greater than zero, because ipif_up_done wants to call 14949 * this function before bumping up the ipif_up_count. See 14950 * ipif_up_done() for details. 14951 */ 14952 int 14953 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 14954 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 14955 { 14956 ill_group_t *illgrp; 14957 ill_t *prev_ill; 14958 phyint_t *phyi; 14959 14960 ASSERT(ill->ill_group == NULL); 14961 14962 rw_enter(&ill_g_lock, RW_WRITER); 14963 mutex_enter(&ill->ill_lock); 14964 14965 if (groupname != NULL) { 14966 /* 14967 * Look for a group with a matching groupname to insert. 14968 */ 14969 for (illgrp = *illgrp_head; illgrp != NULL; 14970 illgrp = illgrp->illgrp_next) { 14971 14972 ill_t *tmp_ill; 14973 14974 tmp_ill = illgrp->illgrp_ill; 14975 ASSERT(tmp_ill != NULL && tmp_ill->ill_phyint != NULL); 14976 phyi = tmp_ill->ill_phyint; 14977 /* 14978 * Look at groups which has names only. 14979 */ 14980 if (phyi->phyint_groupname_len == 0) 14981 continue; 14982 /* 14983 * Names are stored in the phyint common to both 14984 * IPv4 and IPv6. 14985 */ 14986 if (mi_strcmp(phyi->phyint_groupname, 14987 groupname) == 0) { 14988 break; 14989 } 14990 } 14991 } else { 14992 /* 14993 * If the caller passes in a NULL "grp_to_insert", we 14994 * allocate one below and insert this singleton. 14995 */ 14996 illgrp = grp_to_insert; 14997 } 14998 14999 ill->ill_group_next = NULL; 15000 15001 if (illgrp == NULL) { 15002 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 15003 if (illgrp == NULL) { 15004 return (ENOMEM); 15005 } 15006 illgrp->illgrp_next = *illgrp_head; 15007 *illgrp_head = illgrp; 15008 illgrp->illgrp_ill = ill; 15009 illgrp->illgrp_ill_count = 1; 15010 ill->ill_group = illgrp; 15011 /* 15012 * Used in illgrp_scheduler to protect multiple threads 15013 * from traversing the list. 15014 */ 15015 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 15016 } else { 15017 ASSERT(ill->ill_net_type == 15018 illgrp->illgrp_ill->ill_net_type); 15019 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 15020 15021 /* Insert ill at tail of this group */ 15022 prev_ill = illgrp->illgrp_ill; 15023 while (prev_ill->ill_group_next != NULL) 15024 prev_ill = prev_ill->ill_group_next; 15025 prev_ill->ill_group_next = ill; 15026 ill->ill_group = illgrp; 15027 illgrp->illgrp_ill_count++; 15028 /* 15029 * Inherit group properties. Currently only forwarding 15030 * is the property we try to keep the same with all the 15031 * ills. When there are more, we will abstract this into 15032 * a function. 15033 */ 15034 ill->ill_flags &= ~ILLF_ROUTER; 15035 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 15036 } 15037 mutex_exit(&ill->ill_lock); 15038 rw_exit(&ill_g_lock); 15039 15040 /* 15041 * 1) When ipif_up_done() calls this function, ipif_up_count 15042 * may be zero as it has not yet been bumped. But the ires 15043 * have already been added. So, we do the nomination here 15044 * itself. But, when ip_sioctl_groupname calls this, it checks 15045 * for ill_ipif_up_count != 0. Thus we don't check for 15046 * ill_ipif_up_count here while nominating broadcast ires for 15047 * receive. 15048 * 15049 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 15050 * to group them properly as ire_add() has already happened 15051 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 15052 * case, we need to do it here anyway. 15053 */ 15054 if (!ill->ill_isv6) { 15055 ill_group_bcast_for_xmit(ill); 15056 ill_nominate_bcast_rcv(illgrp); 15057 } 15058 15059 if (!ipif_is_coming_up) { 15060 /* 15061 * When ipif_up_done() calls this function, the multicast 15062 * groups have not been joined yet. So, there is no point in 15063 * nomination. ip_join_allmulti will handle groups when 15064 * ill_recover_multicast is called from ipif_up_done() later. 15065 */ 15066 (void) ill_nominate_mcast_rcv(illgrp); 15067 /* 15068 * ipif_up_done calls ill_update_source_selection 15069 * anyway. Moreover, we don't want to re-create 15070 * interface routes while ipif_up_done() still has reference 15071 * to them. Refer to ipif_up_done() for more details. 15072 */ 15073 ill_update_source_selection(ill); 15074 } 15075 15076 /* 15077 * Send a routing sockets message if we are inserting into 15078 * groups with names. 15079 */ 15080 if (groupname != NULL) 15081 ip_rts_ifmsg(ill->ill_ipif); 15082 return (0); 15083 } 15084 15085 /* 15086 * Return the first phyint matching the groupname. There could 15087 * be more than one when there are ill groups. 15088 * 15089 * Needs work: called only from ip_sioctl_groupname 15090 */ 15091 static phyint_t * 15092 phyint_lookup_group(char *groupname) 15093 { 15094 phyint_t *phyi; 15095 15096 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 15097 /* 15098 * Group names are stored in the phyint - a common structure 15099 * to both IPv4 and IPv6. 15100 */ 15101 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 15102 for (; phyi != NULL; 15103 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 15104 phyi, AVL_AFTER)) { 15105 if (phyi->phyint_groupname_len == 0) 15106 continue; 15107 ASSERT(phyi->phyint_groupname != NULL); 15108 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 15109 return (phyi); 15110 } 15111 return (NULL); 15112 } 15113 15114 15115 15116 /* 15117 * MT notes on creation and deletion of IPMP groups 15118 * 15119 * Creation and deletion of IPMP groups introduce the need to merge or 15120 * split the associated serialization objects i.e the ipsq's. Normally all 15121 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 15122 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 15123 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 15124 * is a need to change the <ill-ipsq> association and we have to operate on both 15125 * the source and destination IPMP groups. For eg. attempting to set the 15126 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 15127 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 15128 * source or destination IPMP group are mapped to a single ipsq for executing 15129 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 15130 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 15131 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 15132 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 15133 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 15134 * ipsq has to be examined for redoing the <ill-ipsq> associations. 15135 * 15136 * In the above example the ioctl handling code locates the current ipsq of hme0 15137 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 15138 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 15139 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 15140 * the destination ipsq. If the destination ipsq is not busy, it also enters 15141 * the destination ipsq exclusively. Now the actual groupname setting operation 15142 * can proceed. If the destination ipsq is busy, the operation is enqueued 15143 * on the destination (merged) ipsq and will be handled in the unwind from 15144 * ipsq_exit. 15145 * 15146 * To prevent other threads accessing the ill while the group name change is 15147 * in progres, we bring down the ipifs which also removes the ill from the 15148 * group. The group is changed in phyint and when the first ipif on the ill 15149 * is brought up, the ill is inserted into the right IPMP group by 15150 * illgrp_insert. 15151 */ 15152 /* ARGSUSED */ 15153 int 15154 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15155 ip_ioctl_cmd_t *ipip, void *ifreq) 15156 { 15157 int i; 15158 char *tmp; 15159 int namelen; 15160 ill_t *ill = ipif->ipif_ill; 15161 ill_t *ill_v4, *ill_v6; 15162 int err = 0; 15163 phyint_t *phyi; 15164 phyint_t *phyi_tmp; 15165 struct lifreq *lifr; 15166 mblk_t *mp1; 15167 char *groupname; 15168 ipsq_t *ipsq; 15169 15170 ASSERT(IAM_WRITER_IPIF(ipif)); 15171 15172 /* Existance verified in ip_wput_nondata */ 15173 mp1 = mp->b_cont->b_cont; 15174 lifr = (struct lifreq *)mp1->b_rptr; 15175 groupname = lifr->lifr_groupname; 15176 15177 if (ipif->ipif_id != 0) 15178 return (EINVAL); 15179 15180 phyi = ill->ill_phyint; 15181 ASSERT(phyi != NULL); 15182 15183 if (phyi->phyint_flags & PHYI_VIRTUAL) 15184 return (EINVAL); 15185 15186 tmp = groupname; 15187 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 15188 ; 15189 15190 if (i == LIFNAMSIZ) { 15191 /* no null termination */ 15192 return (EINVAL); 15193 } 15194 15195 /* 15196 * Calculate the namelen exclusive of the null 15197 * termination character. 15198 */ 15199 namelen = tmp - groupname; 15200 15201 ill_v4 = phyi->phyint_illv4; 15202 ill_v6 = phyi->phyint_illv6; 15203 15204 /* 15205 * ILL cannot be part of a usesrc group and and IPMP group at the 15206 * same time. No need to grab the ill_g_usesrc_lock here, see 15207 * synchronization notes in ip.c 15208 */ 15209 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 15210 return (EINVAL); 15211 } 15212 15213 /* 15214 * mark the ill as changing. 15215 * this should queue all new requests on the syncq. 15216 */ 15217 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15218 15219 if (ill_v4 != NULL) 15220 ill_v4->ill_state_flags |= ILL_CHANGING; 15221 if (ill_v6 != NULL) 15222 ill_v6->ill_state_flags |= ILL_CHANGING; 15223 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15224 15225 if (namelen == 0) { 15226 /* 15227 * Null string means remove this interface from the 15228 * existing group. 15229 */ 15230 if (phyi->phyint_groupname_len == 0) { 15231 /* 15232 * Never was in a group. 15233 */ 15234 err = 0; 15235 goto done; 15236 } 15237 15238 /* 15239 * IPv4 or IPv6 may be temporarily out of the group when all 15240 * the ipifs are down. Thus, we need to check for ill_group to 15241 * be non-NULL. 15242 */ 15243 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 15244 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15245 mutex_enter(&ill_v4->ill_lock); 15246 if (!ill_is_quiescent(ill_v4)) { 15247 /* 15248 * ipsq_pending_mp_add will not fail since 15249 * connp is NULL 15250 */ 15251 (void) ipsq_pending_mp_add(NULL, 15252 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15253 mutex_exit(&ill_v4->ill_lock); 15254 err = EINPROGRESS; 15255 goto done; 15256 } 15257 mutex_exit(&ill_v4->ill_lock); 15258 } 15259 15260 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 15261 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15262 mutex_enter(&ill_v6->ill_lock); 15263 if (!ill_is_quiescent(ill_v6)) { 15264 (void) ipsq_pending_mp_add(NULL, 15265 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15266 mutex_exit(&ill_v6->ill_lock); 15267 err = EINPROGRESS; 15268 goto done; 15269 } 15270 mutex_exit(&ill_v6->ill_lock); 15271 } 15272 15273 rw_enter(&ill_g_lock, RW_WRITER); 15274 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15275 mutex_enter(&phyi->phyint_lock); 15276 ASSERT(phyi->phyint_groupname != NULL); 15277 mi_free(phyi->phyint_groupname); 15278 phyi->phyint_groupname = NULL; 15279 phyi->phyint_groupname_len = 0; 15280 mutex_exit(&phyi->phyint_lock); 15281 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15282 rw_exit(&ill_g_lock); 15283 err = ill_up_ipifs(ill, q, mp); 15284 15285 /* 15286 * set the split flag so that the ipsq can be split 15287 */ 15288 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15289 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15290 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15291 15292 } else { 15293 if (phyi->phyint_groupname_len != 0) { 15294 ASSERT(phyi->phyint_groupname != NULL); 15295 /* Are we inserting in the same group ? */ 15296 if (mi_strcmp(groupname, 15297 phyi->phyint_groupname) == 0) { 15298 err = 0; 15299 goto done; 15300 } 15301 } 15302 15303 rw_enter(&ill_g_lock, RW_READER); 15304 /* 15305 * Merge ipsq for the group's. 15306 * This check is here as multiple groups/ills might be 15307 * sharing the same ipsq. 15308 * If we have to merege than the operation is restarted 15309 * on the new ipsq. 15310 */ 15311 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 15312 if (phyi->phyint_ipsq != ipsq) { 15313 rw_exit(&ill_g_lock); 15314 err = ill_merge_groups(ill, NULL, groupname, mp, q); 15315 goto done; 15316 } 15317 /* 15318 * Running exclusive on new ipsq. 15319 */ 15320 15321 ASSERT(ipsq != NULL); 15322 ASSERT(ipsq->ipsq_writer == curthread); 15323 15324 /* 15325 * Check whether the ill_type and ill_net_type matches before 15326 * we allocate any memory so that the cleanup is easier. 15327 * 15328 * We can't group dissimilar ones as we can't load spread 15329 * packets across the group because of potential link-level 15330 * header differences. 15331 */ 15332 phyi_tmp = phyint_lookup_group(groupname); 15333 if (phyi_tmp != NULL) { 15334 if ((ill_v4 != NULL && 15335 phyi_tmp->phyint_illv4 != NULL) && 15336 ((ill_v4->ill_net_type != 15337 phyi_tmp->phyint_illv4->ill_net_type) || 15338 (ill_v4->ill_type != 15339 phyi_tmp->phyint_illv4->ill_type))) { 15340 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15341 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15342 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15343 rw_exit(&ill_g_lock); 15344 return (EINVAL); 15345 } 15346 if ((ill_v6 != NULL && 15347 phyi_tmp->phyint_illv6 != NULL) && 15348 ((ill_v6->ill_net_type != 15349 phyi_tmp->phyint_illv6->ill_net_type) || 15350 (ill_v6->ill_type != 15351 phyi_tmp->phyint_illv6->ill_type))) { 15352 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15353 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15354 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15355 rw_exit(&ill_g_lock); 15356 return (EINVAL); 15357 } 15358 } 15359 15360 rw_exit(&ill_g_lock); 15361 15362 /* 15363 * bring down all v4 ipifs. 15364 */ 15365 if (ill_v4 != NULL) { 15366 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15367 } 15368 15369 /* 15370 * bring down all v6 ipifs. 15371 */ 15372 if (ill_v6 != NULL) { 15373 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15374 } 15375 15376 /* 15377 * make sure all ipifs are down and there are no active 15378 * references. Call to ipsq_pending_mp_add will not fail 15379 * since connp is NULL. 15380 */ 15381 if (ill_v4 != NULL) { 15382 mutex_enter(&ill_v4->ill_lock); 15383 if (!ill_is_quiescent(ill_v4)) { 15384 (void) ipsq_pending_mp_add(NULL, 15385 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15386 mutex_exit(&ill_v4->ill_lock); 15387 err = EINPROGRESS; 15388 goto done; 15389 } 15390 mutex_exit(&ill_v4->ill_lock); 15391 } 15392 15393 if (ill_v6 != NULL) { 15394 mutex_enter(&ill_v6->ill_lock); 15395 if (!ill_is_quiescent(ill_v6)) { 15396 (void) ipsq_pending_mp_add(NULL, 15397 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15398 mutex_exit(&ill_v6->ill_lock); 15399 err = EINPROGRESS; 15400 goto done; 15401 } 15402 mutex_exit(&ill_v6->ill_lock); 15403 } 15404 15405 /* 15406 * allocate including space for null terminator 15407 * before we insert. 15408 */ 15409 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 15410 if (tmp == NULL) 15411 return (ENOMEM); 15412 15413 rw_enter(&ill_g_lock, RW_WRITER); 15414 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15415 mutex_enter(&phyi->phyint_lock); 15416 if (phyi->phyint_groupname_len != 0) { 15417 ASSERT(phyi->phyint_groupname != NULL); 15418 mi_free(phyi->phyint_groupname); 15419 } 15420 15421 /* 15422 * setup the new group name. 15423 */ 15424 phyi->phyint_groupname = tmp; 15425 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 15426 phyi->phyint_groupname_len = namelen + 1; 15427 mutex_exit(&phyi->phyint_lock); 15428 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15429 rw_exit(&ill_g_lock); 15430 15431 err = ill_up_ipifs(ill, q, mp); 15432 } 15433 15434 done: 15435 /* 15436 * normally ILL_CHANGING is cleared in ill_up_ipifs. 15437 */ 15438 if (err != EINPROGRESS) { 15439 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15440 if (ill_v4 != NULL) 15441 ill_v4->ill_state_flags &= ~ILL_CHANGING; 15442 if (ill_v6 != NULL) 15443 ill_v6->ill_state_flags &= ~ILL_CHANGING; 15444 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15445 } 15446 return (err); 15447 } 15448 15449 /* ARGSUSED */ 15450 int 15451 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 15452 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15453 { 15454 ill_t *ill; 15455 phyint_t *phyi; 15456 struct lifreq *lifr; 15457 mblk_t *mp1; 15458 15459 /* Existence verified in ip_wput_nondata */ 15460 mp1 = mp->b_cont->b_cont; 15461 lifr = (struct lifreq *)mp1->b_rptr; 15462 ill = ipif->ipif_ill; 15463 phyi = ill->ill_phyint; 15464 15465 lifr->lifr_groupname[0] = '\0'; 15466 /* 15467 * ill_group may be null if all the interfaces 15468 * are down. But still, the phyint should always 15469 * hold the name. 15470 */ 15471 if (phyi->phyint_groupname_len != 0) { 15472 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 15473 phyi->phyint_groupname_len); 15474 } 15475 15476 return (0); 15477 } 15478 15479 15480 typedef struct conn_move_s { 15481 ill_t *cm_from_ill; 15482 ill_t *cm_to_ill; 15483 int cm_ifindex; 15484 } conn_move_t; 15485 15486 /* 15487 * ipcl_walk function for moving conn_multicast_ill for a given ill. 15488 */ 15489 static void 15490 conn_move(conn_t *connp, caddr_t arg) 15491 { 15492 conn_move_t *connm; 15493 int ifindex; 15494 int i; 15495 ill_t *from_ill; 15496 ill_t *to_ill; 15497 ilg_t *ilg; 15498 ilm_t *ret_ilm; 15499 15500 connm = (conn_move_t *)arg; 15501 ifindex = connm->cm_ifindex; 15502 from_ill = connm->cm_from_ill; 15503 to_ill = connm->cm_to_ill; 15504 15505 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 15506 15507 /* All multicast fields protected by conn_lock */ 15508 mutex_enter(&connp->conn_lock); 15509 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 15510 if ((connp->conn_outgoing_ill == from_ill) && 15511 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 15512 connp->conn_outgoing_ill = to_ill; 15513 connp->conn_incoming_ill = to_ill; 15514 } 15515 15516 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 15517 15518 if ((connp->conn_multicast_ill == from_ill) && 15519 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 15520 connp->conn_multicast_ill = connm->cm_to_ill; 15521 } 15522 15523 /* Change IP_XMIT_IF associations */ 15524 if ((connp->conn_xmit_if_ill == from_ill) && 15525 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 15526 connp->conn_xmit_if_ill = to_ill; 15527 } 15528 /* 15529 * Change the ilg_ill to point to the new one. This assumes 15530 * ilm_move_v6 has moved the ilms to new_ill and the driver 15531 * has been told to receive packets on this interface. 15532 * ilm_move_v6 FAILBACKS all the ilms successfully always. 15533 * But when doing a FAILOVER, it might fail with ENOMEM and so 15534 * some ilms may not have moved. We check to see whether 15535 * the ilms have moved to to_ill. We can't check on from_ill 15536 * as in the process of moving, we could have split an ilm 15537 * in to two - which has the same orig_ifindex and v6group. 15538 * 15539 * For IPv4, ilg_ipif moves implicitly. The code below really 15540 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 15541 */ 15542 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 15543 ilg = &connp->conn_ilg[i]; 15544 if ((ilg->ilg_ill == from_ill) && 15545 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 15546 /* ifindex != 0 indicates failback */ 15547 if (ifindex != 0) { 15548 connp->conn_ilg[i].ilg_ill = to_ill; 15549 continue; 15550 } 15551 15552 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 15553 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 15554 connp->conn_zoneid); 15555 15556 if (ret_ilm != NULL) 15557 connp->conn_ilg[i].ilg_ill = to_ill; 15558 } 15559 } 15560 mutex_exit(&connp->conn_lock); 15561 } 15562 15563 static void 15564 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 15565 { 15566 conn_move_t connm; 15567 15568 connm.cm_from_ill = from_ill; 15569 connm.cm_to_ill = to_ill; 15570 connm.cm_ifindex = ifindex; 15571 15572 ipcl_walk(conn_move, (caddr_t)&connm); 15573 } 15574 15575 /* 15576 * ilm has been moved from from_ill to to_ill. 15577 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 15578 * appropriately. 15579 * 15580 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 15581 * the code there de-references ipif_ill to get the ill to 15582 * send multicast requests. It does not work as ipif is on its 15583 * move and already moved when this function is called. 15584 * Thus, we need to use from_ill and to_ill send down multicast 15585 * requests. 15586 */ 15587 static void 15588 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 15589 { 15590 ipif_t *ipif; 15591 ilm_t *ilm; 15592 15593 /* 15594 * See whether we need to send down DL_ENABMULTI_REQ on 15595 * to_ill as ilm has just been added. 15596 */ 15597 ASSERT(IAM_WRITER_ILL(to_ill)); 15598 ASSERT(IAM_WRITER_ILL(from_ill)); 15599 15600 ILM_WALKER_HOLD(to_ill); 15601 for (ilm = to_ill->ill_ilm; ilm != NULL && ilm->ilm_is_new && 15602 !(ilm->ilm_flags & ILM_DELETED); ilm = ilm->ilm_next) { 15603 15604 /* 15605 * no locks held, ill/ipif cannot dissappear as long 15606 * as we are writer. 15607 */ 15608 ipif = to_ill->ill_ipif; 15609 /* 15610 * No need to hold any lock as we are the writer and this 15611 * can only be changed by a writer. 15612 */ 15613 ilm->ilm_is_new = B_FALSE; 15614 15615 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 15616 ipif->ipif_flags & IPIF_POINTOPOINT) { 15617 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 15618 "resolver\n")); 15619 continue; /* Must be IRE_IF_NORESOLVER */ 15620 } 15621 15622 15623 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15624 ip1dbg(("ilm_send_multicast_reqs: " 15625 "to_ill MULTI_BCAST\n")); 15626 ilm->ilm_join_mld = B_FALSE; 15627 goto from; 15628 } 15629 15630 if (ilm->ilm_join_mld) { 15631 ASSERT(to_ill->ill_isv6); 15632 mld_joingroup(ilm); 15633 } 15634 15635 ilm->ilm_join_mld = B_FALSE; 15636 15637 if (to_ill->ill_ipif_up_count == 0) { 15638 /* 15639 * Nobody there. All multicast addresses will be 15640 * re-joined when we get the DL_BIND_ACK bringing the 15641 * interface up. 15642 */ 15643 ilm->ilm_notify_driver = B_FALSE; 15644 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 15645 goto from; 15646 } 15647 15648 /* 15649 * For allmulti address, we want to join on only one interface. 15650 * Checking for ilm_numentries_v6 is not correct as you may 15651 * find an ilm with zero address on to_ill, but we may not 15652 * have nominated to_ill for receiving. Thus, if we have 15653 * nominated from_ill (ill_join_allmulti is set), nominate 15654 * only if to_ill is not already nominated (to_ill normally 15655 * should not have been nominated if "from_ill" has already 15656 * been nominated. As we don't prevent failovers from happening 15657 * across groups, we don't assert). 15658 */ 15659 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15660 /* 15661 * There is no need to hold ill locks as we are 15662 * writer on both ills and when ill_join_allmulti 15663 * is changed the thread is always a writer. 15664 */ 15665 if (from_ill->ill_join_allmulti && 15666 !to_ill->ill_join_allmulti) { 15667 (void) ip_join_allmulti(to_ill->ill_ipif); 15668 } 15669 } else if (ilm->ilm_notify_driver) { 15670 15671 /* 15672 * This is a newly moved ilm so we need to tell the 15673 * driver about the new group. There can be more than 15674 * one ilm's for the same group in the list each with a 15675 * different orig_ifindex. We have to inform the driver 15676 * once. In ilm_move_v[4,6] we only set the flag 15677 * ilm_notify_driver for the first ilm. 15678 */ 15679 15680 (void) ip_ll_send_enabmulti_req(to_ill, 15681 &ilm->ilm_v6addr); 15682 } 15683 15684 ilm->ilm_notify_driver = B_FALSE; 15685 15686 /* 15687 * See whether we need to send down DL_DISABMULTI_REQ on 15688 * from_ill as ilm has just been removed. 15689 */ 15690 from: 15691 ipif = from_ill->ill_ipif; 15692 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 15693 ipif->ipif_flags & IPIF_POINTOPOINT) { 15694 ip1dbg(("ilm_send_multicast_reqs: " 15695 "from_ill not resolver\n")); 15696 continue; /* Must be IRE_IF_NORESOLVER */ 15697 } 15698 15699 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15700 ip1dbg(("ilm_send_multicast_reqs: " 15701 "from_ill MULTI_BCAST\n")); 15702 continue; 15703 } 15704 15705 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15706 if (from_ill->ill_join_allmulti) 15707 (void) ip_leave_allmulti(from_ill->ill_ipif); 15708 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 15709 (void) ip_ll_send_disabmulti_req(from_ill, 15710 &ilm->ilm_v6addr); 15711 } 15712 } 15713 ILM_WALKER_RELE(to_ill); 15714 } 15715 15716 /* 15717 * This function is called when all multicast memberships needs 15718 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 15719 * called only once unlike the IPv4 counterpart where it is called after 15720 * every logical interface is moved. The reason is due to multicast 15721 * memberships are joined using an interface address in IPv4 while in 15722 * IPv6, interface index is used. 15723 */ 15724 static void 15725 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 15726 { 15727 ilm_t *ilm; 15728 ilm_t *ilm_next; 15729 ilm_t *new_ilm; 15730 ilm_t **ilmp; 15731 int count; 15732 char buf[INET6_ADDRSTRLEN]; 15733 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 15734 15735 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 15736 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 15737 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 15738 15739 if (ifindex == 0) { 15740 /* 15741 * Form the solicited node mcast address which is used later. 15742 */ 15743 ipif_t *ipif; 15744 15745 ipif = from_ill->ill_ipif; 15746 ASSERT(ipif->ipif_id == 0); 15747 15748 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15749 } 15750 15751 ilmp = &from_ill->ill_ilm; 15752 for (ilm = from_ill->ill_ilm; ilm != NULL && 15753 !(ilm->ilm_flags & ILM_DELETED); ilm = ilm_next) { 15754 ilm_next = ilm->ilm_next; 15755 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 15756 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 15757 ASSERT(ilm->ilm_orig_ifindex != 0); 15758 if (ilm->ilm_orig_ifindex == ifindex) { 15759 /* 15760 * We are failing back multicast memberships. 15761 * If the same ilm exists in to_ill, it means somebody 15762 * has joined the same group there e.g. ff02::1 15763 * is joined within the kernel when the interfaces 15764 * came UP. 15765 */ 15766 ASSERT(ilm->ilm_ipif == NULL); 15767 if (new_ilm != NULL) { 15768 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 15769 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15770 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15771 new_ilm->ilm_join_mld = B_TRUE; 15772 } 15773 } else { 15774 /* 15775 * check if we can just move the ilm 15776 */ 15777 if (from_ill->ill_ilm_walker_cnt != 0) { 15778 /* 15779 * We have walkers we cannot move 15780 * the ilm, so allocate a new ilm, 15781 * this (old) ilm will be marked 15782 * ILM_DELETED at the end of the loop 15783 * and will be freed when the 15784 * last walker exits. 15785 */ 15786 new_ilm = (ilm_t *)mi_zalloc 15787 (sizeof (ilm_t)); 15788 if (new_ilm == NULL) { 15789 ip0dbg(("ilm_move_v6: " 15790 "FAILBACK of IPv6" 15791 " multicast address %s : " 15792 "from %s to" 15793 " %s failed : ENOMEM \n", 15794 inet_ntop(AF_INET6, 15795 &ilm->ilm_v6addr, buf, 15796 sizeof (buf)), 15797 from_ill->ill_name, 15798 to_ill->ill_name)); 15799 15800 ilmp = &ilm->ilm_next; 15801 continue; 15802 } 15803 *new_ilm = *ilm; 15804 /* 15805 * we don't want new_ilm linked to 15806 * ilm's filter list. 15807 */ 15808 new_ilm->ilm_filter = NULL; 15809 } else { 15810 /* 15811 * No walkers we can move the ilm. 15812 * lets take it out of the list. 15813 */ 15814 *ilmp = ilm->ilm_next; 15815 ilm->ilm_next = NULL; 15816 new_ilm = ilm; 15817 } 15818 15819 new_ilm->ilm_ill = to_ill; 15820 /* Add to the to_ill's list */ 15821 new_ilm->ilm_next = to_ill->ill_ilm; 15822 to_ill->ill_ilm = new_ilm; 15823 /* 15824 * set the flag so that mld_joingroup is 15825 * called in ilm_send_multicast_reqs(). 15826 */ 15827 new_ilm->ilm_join_mld = B_TRUE; 15828 /* 15829 * if this is the first ilm for the group 15830 * set ilm_notify_driver so that we notify the 15831 * driver in ilm_send_multicast_reqs. 15832 */ 15833 if (ilm_lookup_ill_v6(to_ill, 15834 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 15835 new_ilm->ilm_notify_driver = B_TRUE; 15836 } 15837 goto bottom; 15838 } else if (ifindex != 0) { 15839 /* 15840 * If this is FAILBACK (ifindex != 0) and the ifindex 15841 * has not matched above, look at the next ilm. 15842 */ 15843 ilmp = &ilm->ilm_next; 15844 continue; 15845 } 15846 /* 15847 * If we are here, it means ifindex is 0. Failover 15848 * everything. 15849 * 15850 * We need to handle solicited node mcast address 15851 * and all_nodes mcast address differently as they 15852 * are joined witin the kenrel (ipif_multicast_up) 15853 * and potentially from the userland. We are called 15854 * after the ipifs of from_ill has been moved. 15855 * If we still find ilms on ill with solicited node 15856 * mcast address or all_nodes mcast address, it must 15857 * belong to the UP interface that has not moved e.g. 15858 * ipif_id 0 with the link local prefix does not move. 15859 * We join this on the new ill accounting for all the 15860 * userland memberships so that applications don't 15861 * see any failure. 15862 * 15863 * We need to make sure that we account only for the 15864 * solicited node and all node multicast addresses 15865 * that was brought UP on these. In the case of 15866 * a failover from A to B, we might have ilms belonging 15867 * to A (ilm_orig_ifindex pointing at A) on B accounting 15868 * for the membership from the userland. If we are failing 15869 * over from B to C now, we will find the ones belonging 15870 * to A on B. These don't account for the ill_ipif_up_count. 15871 * They just move from B to C. The check below on 15872 * ilm_orig_ifindex ensures that. 15873 */ 15874 if ((ilm->ilm_orig_ifindex == 15875 from_ill->ill_phyint->phyint_ifindex) && 15876 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 15877 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 15878 &ilm->ilm_v6addr))) { 15879 ASSERT(ilm->ilm_refcnt > 0); 15880 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 15881 /* 15882 * For indentation reasons, we are not using a 15883 * "else" here. 15884 */ 15885 if (count == 0) { 15886 ilmp = &ilm->ilm_next; 15887 continue; 15888 } 15889 ilm->ilm_refcnt -= count; 15890 if (new_ilm != NULL) { 15891 /* 15892 * Can find one with the same 15893 * ilm_orig_ifindex, if we are failing 15894 * over to a STANDBY. This happens 15895 * when somebody wants to join a group 15896 * on a STANDBY interface and we 15897 * internally join on a different one. 15898 * If we had joined on from_ill then, a 15899 * failover now will find a new ilm 15900 * with this index. 15901 */ 15902 ip1dbg(("ilm_move_v6: FAILOVER, found" 15903 " new ilm on %s, group address %s\n", 15904 to_ill->ill_name, 15905 inet_ntop(AF_INET6, 15906 &ilm->ilm_v6addr, buf, 15907 sizeof (buf)))); 15908 new_ilm->ilm_refcnt += count; 15909 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15910 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15911 new_ilm->ilm_join_mld = B_TRUE; 15912 } 15913 } else { 15914 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 15915 if (new_ilm == NULL) { 15916 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 15917 " multicast address %s : from %s to" 15918 " %s failed : ENOMEM \n", 15919 inet_ntop(AF_INET6, 15920 &ilm->ilm_v6addr, buf, 15921 sizeof (buf)), from_ill->ill_name, 15922 to_ill->ill_name)); 15923 ilmp = &ilm->ilm_next; 15924 continue; 15925 } 15926 *new_ilm = *ilm; 15927 new_ilm->ilm_filter = NULL; 15928 new_ilm->ilm_refcnt = count; 15929 new_ilm->ilm_ill = to_ill; 15930 new_ilm->ilm_timer = INFINITY; 15931 new_ilm->ilm_rtx.rtx_timer = INFINITY; 15932 new_ilm->ilm_join_mld = B_TRUE; 15933 /* Add to the to_ill's list */ 15934 new_ilm->ilm_next = to_ill->ill_ilm; 15935 to_ill->ill_ilm = new_ilm; 15936 /* 15937 * If the to_ill has not joined this 15938 * group we need to tell the driver in 15939 * ill_send_multicast_reqs. 15940 */ 15941 if (ilm_lookup_ill_v6(to_ill, 15942 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 15943 new_ilm->ilm_notify_driver = B_TRUE; 15944 ASSERT(new_ilm->ilm_ipif == NULL); 15945 } 15946 if (ilm->ilm_refcnt == 0) { 15947 goto bottom; 15948 } else { 15949 new_ilm->ilm_is_new = B_TRUE; 15950 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 15951 CLEAR_SLIST(new_ilm->ilm_filter); 15952 ilmp = &ilm->ilm_next; 15953 } 15954 continue; 15955 } else { 15956 /* 15957 * ifindex = 0 means, move everything pointing at 15958 * from_ill. We are doing this becuase ill has 15959 * either FAILED or became INACTIVE. 15960 * 15961 * As we would like to move things later back to 15962 * from_ill, we want to retain the identity of this 15963 * ilm. Thus, we don't blindly increment the reference 15964 * count on the ilms matching the address alone. We 15965 * need to match on the ilm_orig_index also. new_ilm 15966 * was obtained by matching ilm_orig_index also. 15967 */ 15968 if (new_ilm != NULL) { 15969 /* 15970 * This is possible only if a previous restore 15971 * was incomplete i.e restore to 15972 * ilm_orig_ifindex left some ilms because 15973 * of some failures. Thus when we are failing 15974 * again, we might find our old friends there. 15975 */ 15976 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 15977 " on %s, group address %s\n", 15978 to_ill->ill_name, 15979 inet_ntop(AF_INET6, 15980 &ilm->ilm_v6addr, buf, 15981 sizeof (buf)))); 15982 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 15983 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15984 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15985 new_ilm->ilm_join_mld = B_TRUE; 15986 } 15987 } else { 15988 if (from_ill->ill_ilm_walker_cnt != 0) { 15989 new_ilm = (ilm_t *) 15990 mi_zalloc(sizeof (ilm_t)); 15991 if (new_ilm == NULL) { 15992 ip0dbg(("ilm_move_v6: " 15993 "FAILOVER of IPv6" 15994 " multicast address %s : " 15995 "from %s to" 15996 " %s failed : ENOMEM \n", 15997 inet_ntop(AF_INET6, 15998 &ilm->ilm_v6addr, buf, 15999 sizeof (buf)), 16000 from_ill->ill_name, 16001 to_ill->ill_name)); 16002 16003 ilmp = &ilm->ilm_next; 16004 continue; 16005 } 16006 *new_ilm = *ilm; 16007 new_ilm->ilm_filter = NULL; 16008 } else { 16009 *ilmp = ilm->ilm_next; 16010 new_ilm = ilm; 16011 } 16012 /* Add to the to_ill's list */ 16013 new_ilm->ilm_next = to_ill->ill_ilm; 16014 to_ill->ill_ilm = new_ilm; 16015 ASSERT(ilm->ilm_ipif == NULL); 16016 new_ilm->ilm_ill = to_ill; 16017 new_ilm->ilm_join_mld = B_TRUE; 16018 /* 16019 * If the to_ill has not joined this 16020 * group we need to tell the driver in 16021 * ill_send_multicast_reqs. 16022 */ 16023 if (ilm_lookup_ill_v6(to_ill, 16024 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16025 new_ilm->ilm_notify_driver = B_TRUE; 16026 } 16027 16028 } 16029 16030 bottom: 16031 /* 16032 * set ilm_send_multicast_reqs so that we inform the 16033 * driver about the multicast group. 16034 */ 16035 new_ilm->ilm_is_new = B_TRUE; 16036 /* 16037 * Revert multicast filter state to (EXCLUDE, NULL). 16038 * new_ilm->ilm_join_mld should already be set if needed. 16039 */ 16040 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16041 CLEAR_SLIST(new_ilm->ilm_filter); 16042 /* 16043 * We allocated/got a new ilm, free the old one. 16044 */ 16045 if (new_ilm != ilm) { 16046 if (from_ill->ill_ilm_walker_cnt == 0) { 16047 *ilmp = ilm->ilm_next; 16048 ilm->ilm_next = NULL; 16049 FREE_SLIST(ilm->ilm_filter); 16050 FREE_SLIST(ilm->ilm_pendsrcs); 16051 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16052 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16053 mi_free((char *)ilm); 16054 } else { 16055 ilm->ilm_flags |= ILM_DELETED; 16056 from_ill->ill_ilm_cleanup_reqd = 1; 16057 ilmp = &ilm->ilm_next; 16058 } 16059 } 16060 } 16061 } 16062 16063 /* 16064 * Move all the multicast memberships to to_ill. Called when 16065 * an ipif moves from "from_ill" to "to_ill". This function is slightly 16066 * different from IPv6 counterpart as multicast memberships are associated 16067 * with ills in IPv6. This function is called after every ipif is moved 16068 * unlike IPv6, where it is moved only once. 16069 */ 16070 static void 16071 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 16072 { 16073 ilm_t *ilm; 16074 ilm_t *ilm_next; 16075 ilm_t *new_ilm; 16076 ilm_t **ilmp; 16077 16078 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16079 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16080 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16081 16082 ilmp = &from_ill->ill_ilm; 16083 for (ilm = from_ill->ill_ilm; ilm != NULL && 16084 !(ilm->ilm_flags & ILM_DELETED); ilm = ilm_next) { 16085 ilm_next = ilm->ilm_next; 16086 ASSERT(ilm->ilm_ipif != NULL); 16087 16088 if (ilm->ilm_ipif != ipif) { 16089 ilmp = &ilm->ilm_next; 16090 continue; 16091 } 16092 16093 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 16094 htonl(INADDR_ALLHOSTS_GROUP)) { 16095 /* 16096 * We joined this in ipif_multicast_up 16097 * and we never did an ipif_multicast_down 16098 * for IPv4. If nobody else from the userland 16099 * has reference, we free the ilm, and later 16100 * when this ipif comes up on the new ill, 16101 * we will join this again. 16102 */ 16103 if (--ilm->ilm_refcnt == 0) 16104 goto delete_ilm; 16105 16106 new_ilm = ilm_lookup_ipif(ipif, 16107 V4_PART_OF_V6(ilm->ilm_v6addr)); 16108 if (new_ilm != NULL) { 16109 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16110 /* 16111 * We still need to deal with the from_ill. 16112 */ 16113 new_ilm->ilm_is_new = B_TRUE; 16114 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16115 CLEAR_SLIST(new_ilm->ilm_filter); 16116 goto delete_ilm; 16117 } 16118 /* 16119 * If we could not find one e.g. ipif is 16120 * still down on to_ill, we add this ilm 16121 * on ill_new to preserve the reference 16122 * count. 16123 */ 16124 } 16125 /* 16126 * When ipifs move, ilms always move with it 16127 * to the NEW ill. Thus we should never be 16128 * able to find ilm till we really move it here. 16129 */ 16130 ASSERT(ilm_lookup_ipif(ipif, 16131 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 16132 16133 if (from_ill->ill_ilm_walker_cnt != 0) { 16134 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16135 if (new_ilm == NULL) { 16136 char buf[INET6_ADDRSTRLEN]; 16137 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 16138 " multicast address %s : " 16139 "from %s to" 16140 " %s failed : ENOMEM \n", 16141 inet_ntop(AF_INET, 16142 &ilm->ilm_v6addr, buf, 16143 sizeof (buf)), 16144 from_ill->ill_name, 16145 to_ill->ill_name)); 16146 16147 ilmp = &ilm->ilm_next; 16148 continue; 16149 } 16150 *new_ilm = *ilm; 16151 /* We don't want new_ilm linked to ilm's filter list */ 16152 new_ilm->ilm_filter = NULL; 16153 } else { 16154 /* Remove from the list */ 16155 *ilmp = ilm->ilm_next; 16156 new_ilm = ilm; 16157 } 16158 16159 /* 16160 * If we have never joined this group on the to_ill 16161 * make sure we tell the driver. 16162 */ 16163 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 16164 ALL_ZONES) == NULL) 16165 new_ilm->ilm_notify_driver = B_TRUE; 16166 16167 /* Add to the to_ill's list */ 16168 new_ilm->ilm_next = to_ill->ill_ilm; 16169 to_ill->ill_ilm = new_ilm; 16170 new_ilm->ilm_is_new = B_TRUE; 16171 16172 /* 16173 * Revert multicast filter state to (EXCLUDE, NULL) 16174 */ 16175 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16176 CLEAR_SLIST(new_ilm->ilm_filter); 16177 16178 /* 16179 * Delete only if we have allocated a new ilm. 16180 */ 16181 if (new_ilm != ilm) { 16182 delete_ilm: 16183 if (from_ill->ill_ilm_walker_cnt == 0) { 16184 /* Remove from the list */ 16185 *ilmp = ilm->ilm_next; 16186 ilm->ilm_next = NULL; 16187 FREE_SLIST(ilm->ilm_filter); 16188 FREE_SLIST(ilm->ilm_pendsrcs); 16189 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16190 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16191 mi_free((char *)ilm); 16192 } else { 16193 ilm->ilm_flags |= ILM_DELETED; 16194 from_ill->ill_ilm_cleanup_reqd = 1; 16195 ilmp = &ilm->ilm_next; 16196 } 16197 } 16198 } 16199 } 16200 16201 static uint_t 16202 ipif_get_id(ill_t *ill, uint_t id) 16203 { 16204 uint_t unit; 16205 ipif_t *tipif; 16206 boolean_t found = B_FALSE; 16207 16208 /* 16209 * During failback, we want to go back to the same id 16210 * instead of the smallest id so that the original 16211 * configuration is maintained. id is non-zero in that 16212 * case. 16213 */ 16214 if (id != 0) { 16215 /* 16216 * While failing back, if we still have an ipif with 16217 * MAX_ADDRS_PER_IF, it means this will be replaced 16218 * as soon as we return from this function. It was 16219 * to set to MAX_ADDRS_PER_IF by the caller so that 16220 * we can choose the smallest id. Thus we return zero 16221 * in that case ignoring the hint. 16222 */ 16223 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 16224 return (0); 16225 for (tipif = ill->ill_ipif; tipif != NULL; 16226 tipif = tipif->ipif_next) { 16227 if (tipif->ipif_id == id) { 16228 found = B_TRUE; 16229 break; 16230 } 16231 } 16232 /* 16233 * If somebody already plumbed another logical 16234 * with the same id, we won't be able to find it. 16235 */ 16236 if (!found) 16237 return (id); 16238 } 16239 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 16240 found = B_FALSE; 16241 for (tipif = ill->ill_ipif; tipif != NULL; 16242 tipif = tipif->ipif_next) { 16243 if (tipif->ipif_id == unit) { 16244 found = B_TRUE; 16245 break; 16246 } 16247 } 16248 if (!found) 16249 break; 16250 } 16251 return (unit); 16252 } 16253 16254 /* ARGSUSED */ 16255 static int 16256 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 16257 ipif_t **rep_ipif_ptr) 16258 { 16259 ill_t *from_ill; 16260 ipif_t *rep_ipif; 16261 ipif_t **ipifp; 16262 uint_t unit; 16263 int err = 0; 16264 ipif_t *to_ipif; 16265 struct iocblk *iocp; 16266 boolean_t failback_cmd; 16267 boolean_t remove_ipif; 16268 int rc; 16269 16270 ASSERT(IAM_WRITER_ILL(to_ill)); 16271 ASSERT(IAM_WRITER_IPIF(ipif)); 16272 16273 iocp = (struct iocblk *)mp->b_rptr; 16274 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 16275 remove_ipif = B_FALSE; 16276 16277 from_ill = ipif->ipif_ill; 16278 16279 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16280 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16281 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16282 16283 /* 16284 * Don't move LINK LOCAL addresses as they are tied to 16285 * physical interface. 16286 */ 16287 if (from_ill->ill_isv6 && 16288 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 16289 ipif->ipif_was_up = B_FALSE; 16290 IPIF_UNMARK_MOVING(ipif); 16291 return (0); 16292 } 16293 16294 /* 16295 * We set the ipif_id to maximum so that the search for 16296 * ipif_id will pick the lowest number i.e 0 in the 16297 * following 2 cases : 16298 * 16299 * 1) We have a replacement ipif at the head of to_ill. 16300 * We can't remove it yet as we can exceed ip_addrs_per_if 16301 * on to_ill and hence the MOVE might fail. We want to 16302 * remove it only if we could move the ipif. Thus, by 16303 * setting it to the MAX value, we make the search in 16304 * ipif_get_id return the zeroth id. 16305 * 16306 * 2) When DR pulls out the NIC and re-plumbs the interface, 16307 * we might just have a zero address plumbed on the ipif 16308 * with zero id in the case of IPv4. We remove that while 16309 * doing the failback. We want to remove it only if we 16310 * could move the ipif. Thus, by setting it to the MAX 16311 * value, we make the search in ipif_get_id return the 16312 * zeroth id. 16313 * 16314 * Both (1) and (2) are done only when when we are moving 16315 * an ipif (either due to failover/failback) which originally 16316 * belonged to this interface i.e the ipif_orig_ifindex is 16317 * the same as to_ill's ifindex. This is needed so that 16318 * FAILOVER from A -> B ( A failed) followed by FAILOVER 16319 * from B -> A (B is being removed from the group) and 16320 * FAILBACK from A -> B restores the original configuration. 16321 * Without the check for orig_ifindex, the second FAILOVER 16322 * could make the ipif belonging to B replace the A's zeroth 16323 * ipif and the subsequent failback re-creating the replacement 16324 * ipif again. 16325 * 16326 * NOTE : We created the replacement ipif when we did a 16327 * FAILOVER (See below). We could check for FAILBACK and 16328 * then look for replacement ipif to be removed. But we don't 16329 * want to do that because we wan't to allow the possibility 16330 * of a FAILOVER from A -> B (which creates the replacement ipif), 16331 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 16332 * from B -> A. 16333 */ 16334 to_ipif = to_ill->ill_ipif; 16335 if ((to_ill->ill_phyint->phyint_ifindex == 16336 ipif->ipif_orig_ifindex) && 16337 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 16338 ASSERT(to_ipif->ipif_id == 0); 16339 remove_ipif = B_TRUE; 16340 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 16341 } 16342 /* 16343 * Find the lowest logical unit number on the to_ill. 16344 * If we are failing back, try to get the original id 16345 * rather than the lowest one so that the original 16346 * configuration is maintained. 16347 * 16348 * XXX need a better scheme for this. 16349 */ 16350 if (failback_cmd) { 16351 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 16352 } else { 16353 unit = ipif_get_id(to_ill, 0); 16354 } 16355 16356 /* Reset back to zero in case we fail below */ 16357 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 16358 to_ipif->ipif_id = 0; 16359 16360 if (unit == ip_addrs_per_if) { 16361 ipif->ipif_was_up = B_FALSE; 16362 IPIF_UNMARK_MOVING(ipif); 16363 return (EINVAL); 16364 } 16365 16366 /* 16367 * ipif is ready to move from "from_ill" to "to_ill". 16368 * 16369 * 1) If we are moving ipif with id zero, create a 16370 * replacement ipif for this ipif on from_ill. If this fails 16371 * fail the MOVE operation. 16372 * 16373 * 2) Remove the replacement ipif on to_ill if any. 16374 * We could remove the replacement ipif when we are moving 16375 * the ipif with id zero. But what if somebody already 16376 * unplumbed it ? Thus we always remove it if it is present. 16377 * We want to do it only if we are sure we are going to 16378 * move the ipif to to_ill which is why there are no 16379 * returns due to error till ipif is linked to to_ill. 16380 * Note that the first ipif that we failback will always 16381 * be zero if it is present. 16382 */ 16383 if (ipif->ipif_id == 0) { 16384 ipaddr_t inaddr_any = INADDR_ANY; 16385 16386 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 16387 if (rep_ipif == NULL) { 16388 ipif->ipif_was_up = B_FALSE; 16389 IPIF_UNMARK_MOVING(ipif); 16390 return (ENOMEM); 16391 } 16392 *rep_ipif = ipif_zero; 16393 /* 16394 * Before we put the ipif on the list, store the addresses 16395 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 16396 * assumes so. This logic is not any different from what 16397 * ipif_allocate does. 16398 */ 16399 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16400 &rep_ipif->ipif_v6lcl_addr); 16401 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16402 &rep_ipif->ipif_v6src_addr); 16403 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16404 &rep_ipif->ipif_v6subnet); 16405 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16406 &rep_ipif->ipif_v6net_mask); 16407 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16408 &rep_ipif->ipif_v6brd_addr); 16409 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16410 &rep_ipif->ipif_v6pp_dst_addr); 16411 /* 16412 * We mark IPIF_NOFAILOVER so that this can never 16413 * move. 16414 */ 16415 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 16416 rep_ipif->ipif_flags &= ~IPIF_UP; 16417 rep_ipif->ipif_replace_zero = B_TRUE; 16418 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 16419 MUTEX_DEFAULT, NULL); 16420 rep_ipif->ipif_id = 0; 16421 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 16422 rep_ipif->ipif_ill = from_ill; 16423 rep_ipif->ipif_orig_ifindex = 16424 from_ill->ill_phyint->phyint_ifindex; 16425 /* Insert at head */ 16426 rep_ipif->ipif_next = from_ill->ill_ipif; 16427 from_ill->ill_ipif = rep_ipif; 16428 /* 16429 * We don't really care to let apps know about 16430 * this interface. 16431 */ 16432 } 16433 16434 if (remove_ipif) { 16435 /* 16436 * We set to a max value above for this case to get 16437 * id zero. ASSERT that we did get one. 16438 */ 16439 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 16440 rep_ipif = to_ipif; 16441 to_ill->ill_ipif = rep_ipif->ipif_next; 16442 rep_ipif->ipif_next = NULL; 16443 /* 16444 * If some apps scanned and find this interface, 16445 * it is time to let them know, so that they can 16446 * delete it. 16447 */ 16448 16449 *rep_ipif_ptr = rep_ipif; 16450 } 16451 16452 /* Get it out of the ILL interface list. */ 16453 ipifp = &ipif->ipif_ill->ill_ipif; 16454 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 16455 if (*ipifp == ipif) { 16456 *ipifp = ipif->ipif_next; 16457 break; 16458 } 16459 } 16460 16461 /* Assign the new ill */ 16462 ipif->ipif_ill = to_ill; 16463 ipif->ipif_id = unit; 16464 /* id has already been checked */ 16465 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 16466 ASSERT(rc == 0); 16467 /* Let SCTP update its list */ 16468 sctp_move_ipif(ipif, from_ill, to_ill); 16469 /* 16470 * Handle the failover and failback of ipif_t between 16471 * ill_t that have differing maximum mtu values. 16472 */ 16473 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 16474 if (ipif->ipif_saved_mtu == 0) { 16475 /* 16476 * As this ipif_t is moving to an ill_t 16477 * that has a lower ill_max_mtu, its 16478 * ipif_mtu needs to be saved so it can 16479 * be restored during failback or during 16480 * failover to an ill_t which has a 16481 * higher ill_max_mtu. 16482 */ 16483 ipif->ipif_saved_mtu = ipif->ipif_mtu; 16484 ipif->ipif_mtu = to_ill->ill_max_mtu; 16485 } else { 16486 /* 16487 * The ipif_t is, once again, moving to 16488 * an ill_t that has a lower maximum mtu 16489 * value. 16490 */ 16491 ipif->ipif_mtu = to_ill->ill_max_mtu; 16492 } 16493 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 16494 ipif->ipif_saved_mtu != 0) { 16495 /* 16496 * The mtu of this ipif_t had to be reduced 16497 * during an earlier failover; this is an 16498 * opportunity for it to be increased (either as 16499 * part of another failover or a failback). 16500 */ 16501 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 16502 ipif->ipif_mtu = ipif->ipif_saved_mtu; 16503 ipif->ipif_saved_mtu = 0; 16504 } else { 16505 ipif->ipif_mtu = to_ill->ill_max_mtu; 16506 } 16507 } 16508 16509 /* 16510 * We preserve all the other fields of the ipif including 16511 * ipif_saved_ire_mp. The routes that are saved here will 16512 * be recreated on the new interface and back on the old 16513 * interface when we move back. 16514 */ 16515 ASSERT(ipif->ipif_arp_del_mp == NULL); 16516 16517 return (err); 16518 } 16519 16520 static int 16521 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 16522 int ifindex, ipif_t **rep_ipif_ptr) 16523 { 16524 ipif_t *mipif; 16525 ipif_t *ipif_next; 16526 int err; 16527 16528 /* 16529 * We don't really try to MOVE back things if some of the 16530 * operations fail. The daemon will take care of moving again 16531 * later on. 16532 */ 16533 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 16534 ipif_next = mipif->ipif_next; 16535 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 16536 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 16537 16538 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 16539 16540 /* 16541 * When the MOVE fails, it is the job of the 16542 * application to take care of this properly 16543 * i.e try again if it is ENOMEM. 16544 */ 16545 if (mipif->ipif_ill != from_ill) { 16546 /* 16547 * ipif has moved. 16548 * 16549 * Move the multicast memberships associated 16550 * with this ipif to the new ill. For IPv6, we 16551 * do it once after all the ipifs are moved 16552 * (in ill_move) as they are not associated 16553 * with ipifs. 16554 * 16555 * We need to move the ilms as the ipif has 16556 * already been moved to a new ill even 16557 * in the case of errors. Neither 16558 * ilm_free(ipif) will find the ilm 16559 * when somebody unplumbs this ipif nor 16560 * ilm_delete(ilm) will be able to find the 16561 * ilm, if we don't move now. 16562 */ 16563 if (!from_ill->ill_isv6) 16564 ilm_move_v4(from_ill, to_ill, mipif); 16565 } 16566 16567 if (err != 0) 16568 return (err); 16569 } 16570 } 16571 return (0); 16572 } 16573 16574 static int 16575 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 16576 { 16577 int ifindex; 16578 int err; 16579 struct iocblk *iocp; 16580 ipif_t *ipif; 16581 ipif_t *rep_ipif_ptr = NULL; 16582 ipif_t *from_ipif = NULL; 16583 boolean_t check_rep_if = B_FALSE; 16584 16585 iocp = (struct iocblk *)mp->b_rptr; 16586 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 16587 /* 16588 * Move everything pointing at from_ill to to_ill. 16589 * We acheive this by passing in 0 as ifindex. 16590 */ 16591 ifindex = 0; 16592 } else { 16593 /* 16594 * Move everything pointing at from_ill whose original 16595 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 16596 * We acheive this by passing in ifindex rather than 0. 16597 * Multicast vifs, ilgs move implicitly because ipifs move. 16598 */ 16599 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 16600 ifindex = to_ill->ill_phyint->phyint_ifindex; 16601 } 16602 16603 /* 16604 * Determine if there is at least one ipif that would move from 16605 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 16606 * ipif (if it exists) on the to_ill would be consumed as a result of 16607 * the move, in which case we need to quiesce the replacement ipif also. 16608 */ 16609 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 16610 from_ipif = from_ipif->ipif_next) { 16611 if (((ifindex == 0) || 16612 (ifindex == from_ipif->ipif_orig_ifindex)) && 16613 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 16614 check_rep_if = B_TRUE; 16615 break; 16616 } 16617 } 16618 16619 16620 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 16621 16622 GRAB_ILL_LOCKS(from_ill, to_ill); 16623 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 16624 (void) ipsq_pending_mp_add(NULL, ipif, q, 16625 mp, ILL_MOVE_OK); 16626 RELEASE_ILL_LOCKS(from_ill, to_ill); 16627 return (EINPROGRESS); 16628 } 16629 16630 /* Check if the replacement ipif is quiescent to delete */ 16631 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 16632 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 16633 to_ill->ill_ipif->ipif_state_flags |= 16634 IPIF_MOVING | IPIF_CHANGING; 16635 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 16636 (void) ipsq_pending_mp_add(NULL, ipif, q, 16637 mp, ILL_MOVE_OK); 16638 RELEASE_ILL_LOCKS(from_ill, to_ill); 16639 return (EINPROGRESS); 16640 } 16641 } 16642 RELEASE_ILL_LOCKS(from_ill, to_ill); 16643 16644 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 16645 rw_enter(&ill_g_lock, RW_WRITER); 16646 GRAB_ILL_LOCKS(from_ill, to_ill); 16647 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 16648 16649 /* ilm_move is done inside ipif_move for IPv4 */ 16650 if (err == 0 && from_ill->ill_isv6) 16651 ilm_move_v6(from_ill, to_ill, ifindex); 16652 16653 RELEASE_ILL_LOCKS(from_ill, to_ill); 16654 rw_exit(&ill_g_lock); 16655 16656 /* 16657 * send rts messages and multicast messages. 16658 */ 16659 if (rep_ipif_ptr != NULL) { 16660 ip_rts_ifmsg(rep_ipif_ptr); 16661 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 16662 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 16663 mi_free(rep_ipif_ptr); 16664 } 16665 16666 ilm_send_multicast_reqs(from_ill, to_ill); 16667 16668 conn_move_ill(from_ill, to_ill, ifindex); 16669 16670 return (err); 16671 } 16672 16673 /* 16674 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 16675 * Also checks for the validity of the arguments. 16676 * Note: We are already exclusive inside the from group. 16677 * It is upto the caller to release refcnt on the to_ill's. 16678 */ 16679 static int 16680 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 16681 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 16682 { 16683 int dst_index; 16684 ipif_t *ipif_v4, *ipif_v6; 16685 struct lifreq *lifr; 16686 mblk_t *mp1; 16687 boolean_t exists; 16688 sin_t *sin; 16689 int err = 0; 16690 16691 if ((mp1 = mp->b_cont) == NULL) 16692 return (EPROTO); 16693 16694 if ((mp1 = mp1->b_cont) == NULL) 16695 return (EPROTO); 16696 16697 lifr = (struct lifreq *)mp1->b_rptr; 16698 sin = (sin_t *)&lifr->lifr_addr; 16699 16700 /* 16701 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 16702 * specific operations. 16703 */ 16704 if (sin->sin_family != AF_UNSPEC) 16705 return (EINVAL); 16706 16707 /* 16708 * Get ipif with id 0. We are writer on the from ill. So we can pass 16709 * NULLs for the last 4 args and we know the lookup won't fail 16710 * with EINPROGRESS. 16711 */ 16712 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 16713 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 16714 ALL_ZONES, NULL, NULL, NULL, NULL); 16715 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 16716 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 16717 ALL_ZONES, NULL, NULL, NULL, NULL); 16718 16719 if (ipif_v4 == NULL && ipif_v6 == NULL) 16720 return (ENXIO); 16721 16722 if (ipif_v4 != NULL) { 16723 ASSERT(ipif_v4->ipif_refcnt != 0); 16724 if (ipif_v4->ipif_id != 0) { 16725 err = EINVAL; 16726 goto done; 16727 } 16728 16729 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 16730 *ill_from_v4 = ipif_v4->ipif_ill; 16731 } 16732 16733 if (ipif_v6 != NULL) { 16734 ASSERT(ipif_v6->ipif_refcnt != 0); 16735 if (ipif_v6->ipif_id != 0) { 16736 err = EINVAL; 16737 goto done; 16738 } 16739 16740 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 16741 *ill_from_v6 = ipif_v6->ipif_ill; 16742 } 16743 16744 err = 0; 16745 dst_index = lifr->lifr_movetoindex; 16746 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 16747 q, mp, ip_process_ioctl, &err); 16748 if (err != 0) { 16749 /* 16750 * There could be only v6. 16751 */ 16752 if (err != ENXIO) 16753 goto done; 16754 err = 0; 16755 } 16756 16757 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 16758 q, mp, ip_process_ioctl, &err); 16759 if (err != 0) { 16760 if (err != ENXIO) 16761 goto done; 16762 if (*ill_to_v4 == NULL) { 16763 err = ENXIO; 16764 goto done; 16765 } 16766 err = 0; 16767 } 16768 16769 /* 16770 * If we have something to MOVE i.e "from" not NULL, 16771 * "to" should be non-NULL. 16772 */ 16773 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 16774 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 16775 err = EINVAL; 16776 } 16777 16778 done: 16779 if (ipif_v4 != NULL) 16780 ipif_refrele(ipif_v4); 16781 if (ipif_v6 != NULL) 16782 ipif_refrele(ipif_v6); 16783 return (err); 16784 } 16785 16786 /* 16787 * FAILOVER and FAILBACK are modelled as MOVE operations. 16788 * 16789 * We don't check whether the MOVE is within the same group or 16790 * not, because this ioctl can be used as a generic mechanism 16791 * to failover from interface A to B, though things will function 16792 * only if they are really part of the same group. Moreover, 16793 * all ipifs may be down and hence temporarily out of the group. 16794 * 16795 * ipif's that need to be moved are first brought down; V4 ipifs are brought 16796 * down first and then V6. For each we wait for the ipif's to become quiescent. 16797 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 16798 * have been deleted and there are no active references. Once quiescent the 16799 * ipif's are moved and brought up on the new ill. 16800 * 16801 * Normally the source ill and destination ill belong to the same IPMP group 16802 * and hence the same ipsq_t. In the event they don't belong to the same 16803 * same group the two ipsq's are first merged into one ipsq - that of the 16804 * to_ill. The multicast memberships on the source and destination ill cannot 16805 * change during the move operation since multicast joins/leaves also have to 16806 * execute on the same ipsq and are hence serialized. 16807 */ 16808 /* ARGSUSED */ 16809 int 16810 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16811 ip_ioctl_cmd_t *ipip, void *ifreq) 16812 { 16813 ill_t *ill_to_v4 = NULL; 16814 ill_t *ill_to_v6 = NULL; 16815 ill_t *ill_from_v4 = NULL; 16816 ill_t *ill_from_v6 = NULL; 16817 int err = 0; 16818 16819 /* 16820 * setup from and to ill's, we can get EINPROGRESS only for 16821 * to_ill's. 16822 */ 16823 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 16824 &ill_to_v4, &ill_to_v6); 16825 16826 if (err != 0) { 16827 ip0dbg(("ip_sioctl_move: extract args failed\n")); 16828 goto done; 16829 } 16830 16831 /* 16832 * nothing to do. 16833 */ 16834 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 16835 goto done; 16836 } 16837 16838 /* 16839 * nothing to do. 16840 */ 16841 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 16842 goto done; 16843 } 16844 16845 /* 16846 * Mark the ill as changing. 16847 * ILL_CHANGING flag is cleared when the ipif's are brought up 16848 * in ill_up_ipifs in case of error they are cleared below. 16849 */ 16850 16851 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 16852 if (ill_from_v4 != NULL) 16853 ill_from_v4->ill_state_flags |= ILL_CHANGING; 16854 if (ill_from_v6 != NULL) 16855 ill_from_v6->ill_state_flags |= ILL_CHANGING; 16856 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 16857 16858 /* 16859 * Make sure that both src and dst are 16860 * in the same syncq group. If not make it happen. 16861 * We are not holding any locks because we are the writer 16862 * on the from_ipsq and we will hold locks in ill_merge_groups 16863 * to protect to_ipsq against changing. 16864 */ 16865 if (ill_from_v4 != NULL) { 16866 if (ill_from_v4->ill_phyint->phyint_ipsq != 16867 ill_to_v4->ill_phyint->phyint_ipsq) { 16868 err = ill_merge_groups(ill_from_v4, ill_to_v4, 16869 NULL, mp, q); 16870 goto err_ret; 16871 16872 } 16873 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 16874 } else { 16875 16876 if (ill_from_v6->ill_phyint->phyint_ipsq != 16877 ill_to_v6->ill_phyint->phyint_ipsq) { 16878 err = ill_merge_groups(ill_from_v6, ill_to_v6, 16879 NULL, mp, q); 16880 goto err_ret; 16881 16882 } 16883 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 16884 } 16885 16886 /* 16887 * Now that the ipsq's have been merged and we are the writer 16888 * lets mark to_ill as changing as well. 16889 */ 16890 16891 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 16892 if (ill_to_v4 != NULL) 16893 ill_to_v4->ill_state_flags |= ILL_CHANGING; 16894 if (ill_to_v6 != NULL) 16895 ill_to_v6->ill_state_flags |= ILL_CHANGING; 16896 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 16897 16898 /* 16899 * Its ok for us to proceed with the move even if 16900 * ill_pending_mp is non null on one of the from ill's as the reply 16901 * should not be looking at the ipif, it should only care about the 16902 * ill itself. 16903 */ 16904 16905 /* 16906 * lets move ipv4 first. 16907 */ 16908 if (ill_from_v4 != NULL) { 16909 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 16910 ill_from_v4->ill_move_in_progress = B_TRUE; 16911 ill_to_v4->ill_move_in_progress = B_TRUE; 16912 ill_to_v4->ill_move_peer = ill_from_v4; 16913 ill_from_v4->ill_move_peer = ill_to_v4; 16914 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 16915 } 16916 16917 /* 16918 * Now lets move ipv6. 16919 */ 16920 if (err == 0 && ill_from_v6 != NULL) { 16921 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 16922 ill_from_v6->ill_move_in_progress = B_TRUE; 16923 ill_to_v6->ill_move_in_progress = B_TRUE; 16924 ill_to_v6->ill_move_peer = ill_from_v6; 16925 ill_from_v6->ill_move_peer = ill_to_v6; 16926 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 16927 } 16928 16929 err_ret: 16930 /* 16931 * EINPROGRESS means we are waiting for the ipif's that need to be 16932 * moved to become quiescent. 16933 */ 16934 if (err == EINPROGRESS) { 16935 goto done; 16936 } 16937 16938 /* 16939 * if err is set ill_up_ipifs will not be called 16940 * lets clear the flags. 16941 */ 16942 16943 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 16944 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 16945 /* 16946 * Some of the clearing may be redundant. But it is simple 16947 * not making any extra checks. 16948 */ 16949 if (ill_from_v6 != NULL) { 16950 ill_from_v6->ill_move_in_progress = B_FALSE; 16951 ill_from_v6->ill_move_peer = NULL; 16952 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 16953 } 16954 if (ill_from_v4 != NULL) { 16955 ill_from_v4->ill_move_in_progress = B_FALSE; 16956 ill_from_v4->ill_move_peer = NULL; 16957 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 16958 } 16959 if (ill_to_v6 != NULL) { 16960 ill_to_v6->ill_move_in_progress = B_FALSE; 16961 ill_to_v6->ill_move_peer = NULL; 16962 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 16963 } 16964 if (ill_to_v4 != NULL) { 16965 ill_to_v4->ill_move_in_progress = B_FALSE; 16966 ill_to_v4->ill_move_peer = NULL; 16967 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 16968 } 16969 16970 /* 16971 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 16972 * Do this always to maintain proper state i.e even in case of errors. 16973 * As phyint_inactive looks at both v4 and v6 interfaces, 16974 * we need not call on both v4 and v6 interfaces. 16975 */ 16976 if (ill_from_v4 != NULL) { 16977 if ((ill_from_v4->ill_phyint->phyint_flags & 16978 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 16979 phyint_inactive(ill_from_v4->ill_phyint); 16980 } 16981 } else if (ill_from_v6 != NULL) { 16982 if ((ill_from_v6->ill_phyint->phyint_flags & 16983 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 16984 phyint_inactive(ill_from_v6->ill_phyint); 16985 } 16986 } 16987 16988 if (ill_to_v4 != NULL) { 16989 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 16990 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 16991 } 16992 } else if (ill_to_v6 != NULL) { 16993 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 16994 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 16995 } 16996 } 16997 16998 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 16999 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17000 17001 no_err: 17002 /* 17003 * lets bring the interfaces up on the to_ill. 17004 */ 17005 if (err == 0) { 17006 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 17007 q, mp); 17008 } 17009 done: 17010 17011 if (ill_to_v4 != NULL) { 17012 ill_refrele(ill_to_v4); 17013 } 17014 if (ill_to_v6 != NULL) { 17015 ill_refrele(ill_to_v6); 17016 } 17017 17018 return (err); 17019 } 17020 17021 static void 17022 ill_dl_down(ill_t *ill) 17023 { 17024 /* 17025 * The ill is down; unbind but stay attached since we're still 17026 * associated with a PPA. 17027 */ 17028 mblk_t *mp = ill->ill_unbind_mp; 17029 17030 ill->ill_unbind_mp = NULL; 17031 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 17032 if (mp != NULL) { 17033 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 17034 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 17035 ill->ill_name)); 17036 ill_dlpi_send(ill, mp); 17037 } 17038 17039 /* 17040 * Toss all of our multicast memberships. We could keep them, but 17041 * then we'd have to do bookkeeping of any joins and leaves performed 17042 * by the application while the the interface is down (we can't just 17043 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 17044 * on a downed interface). 17045 */ 17046 ill_leave_multicast(ill); 17047 17048 mutex_enter(&ill->ill_lock); 17049 ill->ill_dl_up = 0; 17050 mutex_exit(&ill->ill_lock); 17051 } 17052 17053 void 17054 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 17055 { 17056 union DL_primitives *dlp; 17057 t_uscalar_t prim; 17058 17059 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17060 17061 dlp = (union DL_primitives *)mp->b_rptr; 17062 prim = dlp->dl_primitive; 17063 17064 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 17065 dlpi_prim_str(prim), prim, ill->ill_name)); 17066 17067 switch (prim) { 17068 case DL_PHYS_ADDR_REQ: 17069 { 17070 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 17071 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 17072 break; 17073 } 17074 case DL_BIND_REQ: 17075 mutex_enter(&ill->ill_lock); 17076 ill->ill_state_flags &= ~ILL_DL_UNBIND_DONE; 17077 mutex_exit(&ill->ill_lock); 17078 break; 17079 } 17080 17081 ill->ill_dlpi_pending = prim; 17082 17083 /* 17084 * Some drivers send M_FLUSH up to IP as part of unbind 17085 * request. When this M_FLUSH is sent back to the driver, 17086 * this can go after we send the detach request if the 17087 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 17088 * to the M_FLUSH in ip_rput and locally generate another 17089 * M_FLUSH for the correctness. This will get freed in 17090 * ip_wput_nondata. 17091 */ 17092 if (prim == DL_UNBIND_REQ) 17093 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 17094 17095 putnext(ill->ill_wq, mp); 17096 } 17097 17098 /* 17099 * Send a DLPI control message to the driver but make sure there 17100 * is only one outstanding message. Uses ill_dlpi_pending to tell 17101 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 17102 * when an ACK or a NAK is received to process the next queued message. 17103 * 17104 * We don't protect ill_dlpi_pending with any lock. This is okay as 17105 * every place where its accessed, ip is exclusive while accessing 17106 * ill_dlpi_pending except when this function is called from ill_init() 17107 */ 17108 void 17109 ill_dlpi_send(ill_t *ill, mblk_t *mp) 17110 { 17111 mblk_t **mpp; 17112 17113 ASSERT(IAM_WRITER_ILL(ill)); 17114 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17115 17116 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 17117 /* Must queue message. Tail insertion */ 17118 mpp = &ill->ill_dlpi_deferred; 17119 while (*mpp != NULL) 17120 mpp = &((*mpp)->b_next); 17121 17122 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 17123 ill->ill_name)); 17124 17125 *mpp = mp; 17126 return; 17127 } 17128 17129 ill_dlpi_dispatch(ill, mp); 17130 } 17131 17132 /* 17133 * Called when an DLPI control message has been acked or nacked to 17134 * send down the next queued message (if any). 17135 */ 17136 void 17137 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 17138 { 17139 mblk_t *mp; 17140 17141 ASSERT(IAM_WRITER_ILL(ill)); 17142 17143 ASSERT(prim != DL_PRIM_INVAL); 17144 if (ill->ill_dlpi_pending != prim) { 17145 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 17146 (void) mi_strlog(ill->ill_rq, 1, 17147 SL_CONSOLE|SL_ERROR|SL_TRACE, 17148 "ill_dlpi_done: unsolicited ack for %s from %s\n", 17149 dlpi_prim_str(prim), ill->ill_name); 17150 } else { 17151 (void) mi_strlog(ill->ill_rq, 1, 17152 SL_CONSOLE|SL_ERROR|SL_TRACE, 17153 "ill_dlpi_done: unexpected ack for %s from %s " 17154 "(expecting ack for %s)\n", 17155 dlpi_prim_str(prim), ill->ill_name, 17156 dlpi_prim_str(ill->ill_dlpi_pending)); 17157 } 17158 return; 17159 } 17160 17161 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 17162 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 17163 17164 if ((mp = ill->ill_dlpi_deferred) == NULL) { 17165 ill->ill_dlpi_pending = DL_PRIM_INVAL; 17166 return; 17167 } 17168 17169 ill->ill_dlpi_deferred = mp->b_next; 17170 mp->b_next = NULL; 17171 17172 ill_dlpi_dispatch(ill, mp); 17173 } 17174 17175 void 17176 conn_delete_ire(conn_t *connp, caddr_t arg) 17177 { 17178 ipif_t *ipif = (ipif_t *)arg; 17179 ire_t *ire; 17180 17181 /* 17182 * Look at the cached ires on conns which has pointers to ipifs. 17183 * We just call ire_refrele which clears up the reference 17184 * to ire. Called when a conn closes. Also called from ipif_free 17185 * to cleanup indirect references to the stale ipif via the cached ire. 17186 */ 17187 mutex_enter(&connp->conn_lock); 17188 ire = connp->conn_ire_cache; 17189 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 17190 connp->conn_ire_cache = NULL; 17191 mutex_exit(&connp->conn_lock); 17192 IRE_REFRELE_NOTR(ire); 17193 return; 17194 } 17195 mutex_exit(&connp->conn_lock); 17196 17197 } 17198 17199 /* 17200 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 17201 * of IREs. Those IREs may have been previously cached in the conn structure. 17202 * This ipcl_walk() walker function releases all references to such IREs based 17203 * on the condemned flag. 17204 */ 17205 /* ARGSUSED */ 17206 void 17207 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 17208 { 17209 ire_t *ire; 17210 17211 mutex_enter(&connp->conn_lock); 17212 ire = connp->conn_ire_cache; 17213 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 17214 connp->conn_ire_cache = NULL; 17215 mutex_exit(&connp->conn_lock); 17216 IRE_REFRELE_NOTR(ire); 17217 return; 17218 } 17219 mutex_exit(&connp->conn_lock); 17220 } 17221 17222 /* 17223 * Take down a specific interface, but don't lose any information about it. 17224 * Also delete interface from its interface group (ifgrp). 17225 * (Always called as writer.) 17226 * This function goes through the down sequence even if the interface is 17227 * already down. There are 2 reasons. 17228 * a. Currently we permit interface routes that depend on down interfaces 17229 * to be added. This behaviour itself is questionable. However it appears 17230 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 17231 * time. We go thru the cleanup in order to remove these routes. 17232 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 17233 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 17234 * down, but we need to cleanup i.e. do ill_dl_down and 17235 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 17236 * 17237 * IP-MT notes: 17238 * 17239 * Model of reference to interfaces. 17240 * 17241 * The following members in ipif_t track references to the ipif. 17242 * int ipif_refcnt; Active reference count 17243 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 17244 * The following members in ill_t track references to the ill. 17245 * int ill_refcnt; active refcnt 17246 * uint_t ill_ire_cnt; Number of ires referencing ill 17247 * uint_t ill_nce_cnt; Number of nces referencing ill 17248 * 17249 * Reference to an ipif or ill can be obtained in any of the following ways. 17250 * 17251 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 17252 * Pointers to ipif / ill from other data structures viz ire and conn. 17253 * Implicit reference to the ipif / ill by holding a reference to the ire. 17254 * 17255 * The ipif/ill lookup functions return a reference held ipif / ill. 17256 * ipif_refcnt and ill_refcnt track the reference counts respectively. 17257 * This is a purely dynamic reference count associated with threads holding 17258 * references to the ipif / ill. Pointers from other structures do not 17259 * count towards this reference count. 17260 * 17261 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 17262 * ipif/ill. This is incremented whenever a new ire is created referencing the 17263 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 17264 * actually added to the ire hash table. The count is decremented in 17265 * ire_inactive where the ire is destroyed. 17266 * 17267 * nce's reference ill's thru nce_ill and the count of nce's associated with 17268 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 17269 * ndp_add() where the nce is actually added to the table. Similarly it is 17270 * decremented in ndp_inactive where the nce is destroyed. 17271 * 17272 * Flow of ioctls involving interface down/up 17273 * 17274 * The following is the sequence of an attempt to set some critical flags on an 17275 * up interface. 17276 * ip_sioctl_flags 17277 * ipif_down 17278 * wait for ipif to be quiescent 17279 * ipif_down_tail 17280 * ip_sioctl_flags_tail 17281 * 17282 * All set ioctls that involve down/up sequence would have a skeleton similar 17283 * to the above. All the *tail functions are called after the refcounts have 17284 * dropped to the appropriate values. 17285 * 17286 * The mechanism to quiesce an ipif is as follows. 17287 * 17288 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 17289 * on the ipif. Callers either pass a flag requesting wait or the lookup 17290 * functions will return NULL. 17291 * 17292 * Delete all ires referencing this ipif 17293 * 17294 * Any thread attempting to do an ipif_refhold on an ipif that has been 17295 * obtained thru a cached pointer will first make sure that 17296 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 17297 * increment the refcount. 17298 * 17299 * The above guarantees that the ipif refcount will eventually come down to 17300 * zero and the ipif will quiesce, once all threads that currently hold a 17301 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 17302 * ipif_refcount has dropped to zero and all ire's associated with this ipif 17303 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 17304 * drop to zero. 17305 * 17306 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 17307 * 17308 * Threads trying to lookup an ipif or ill can pass a flag requesting 17309 * wait and restart if the ipif / ill cannot be looked up currently. 17310 * For eg. bind, and route operations (Eg. route add / delete) cannot return 17311 * failure if the ipif is currently undergoing an exclusive operation, and 17312 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 17313 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 17314 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 17315 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 17316 * change while the ill_lock is held. Before dropping the ill_lock we acquire 17317 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 17318 * until we release the ipsq_lock, even though the the ill/ipif state flags 17319 * can change after we drop the ill_lock. 17320 * 17321 * An attempt to send out a packet using an ipif that is currently 17322 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 17323 * operation and restart it later when the exclusive condition on the ipif ends. 17324 * This is an example of not passing the wait flag to the lookup functions. For 17325 * example an attempt to refhold and use conn->conn_multicast_ipif and send 17326 * out a multicast packet on that ipif will fail while the ipif is 17327 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 17328 * currently IPIF_CHANGING will also fail. 17329 */ 17330 int 17331 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17332 { 17333 ill_t *ill = ipif->ipif_ill; 17334 phyint_t *phyi; 17335 conn_t *connp; 17336 boolean_t success; 17337 boolean_t ipif_was_up = B_FALSE; 17338 17339 ASSERT(IAM_WRITER_IPIF(ipif)); 17340 17341 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 17342 17343 if (ipif->ipif_flags & IPIF_UP) { 17344 mutex_enter(&ill->ill_lock); 17345 ipif->ipif_flags &= ~IPIF_UP; 17346 ASSERT(ill->ill_ipif_up_count > 0); 17347 --ill->ill_ipif_up_count; 17348 mutex_exit(&ill->ill_lock); 17349 ipif_was_up = B_TRUE; 17350 /* Update status in SCTP's list */ 17351 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 17352 } 17353 17354 /* 17355 * Blow away v6 memberships we established in ipif_multicast_up(); the 17356 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 17357 * know not to rejoin when the interface is brought back up). 17358 */ 17359 if (ipif->ipif_isv6) 17360 ipif_multicast_down(ipif); 17361 /* 17362 * Remove from the mapping for __sin6_src_id. We insert only 17363 * when the address is not INADDR_ANY. As IPv4 addresses are 17364 * stored as mapped addresses, we need to check for mapped 17365 * INADDR_ANY also. 17366 */ 17367 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 17368 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 17369 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 17370 int err; 17371 17372 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 17373 ipif->ipif_zoneid); 17374 if (err != 0) { 17375 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 17376 } 17377 } 17378 17379 /* 17380 * Before we delete the ill from the group (if any), we need 17381 * to make sure that we delete all the routes dependent on 17382 * this and also any ipifs dependent on this ipif for 17383 * source address. We need to do before we delete from 17384 * the group because 17385 * 17386 * 1) ipif_down_delete_ire de-references ill->ill_group. 17387 * 17388 * 2) ipif_update_other_ipifs needs to walk the whole group 17389 * for re-doing source address selection. Note that 17390 * ipif_select_source[_v6] called from 17391 * ipif_update_other_ipifs[_v6] will not pick this ipif 17392 * because we have already marked down here i.e cleared 17393 * IPIF_UP. 17394 */ 17395 if (ipif->ipif_isv6) 17396 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17397 else 17398 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17399 17400 /* 17401 * Need to add these also to be saved and restored when the 17402 * ipif is brought down and up 17403 */ 17404 mutex_enter(&ire_mrtun_lock); 17405 if (ire_mrtun_count != 0) { 17406 mutex_exit(&ire_mrtun_lock); 17407 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 17408 (char *)ipif, NULL); 17409 } else { 17410 mutex_exit(&ire_mrtun_lock); 17411 } 17412 17413 mutex_enter(&ire_srcif_table_lock); 17414 if (ire_srcif_table_count > 0) { 17415 mutex_exit(&ire_srcif_table_lock); 17416 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 17417 } else { 17418 mutex_exit(&ire_srcif_table_lock); 17419 } 17420 17421 /* 17422 * Cleaning up the conn_ire_cache or conns must be done only after the 17423 * ires have been deleted above. Otherwise a thread could end up 17424 * caching an ire in a conn after we have finished the cleanup of the 17425 * conn. The caching is done after making sure that the ire is not yet 17426 * condemned. Also documented in the block comment above ip_output 17427 */ 17428 ipcl_walk(conn_cleanup_stale_ire, NULL); 17429 /* Also, delete the ires cached in SCTP */ 17430 sctp_ire_cache_flush(ipif); 17431 17432 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 17433 nattymod_clean_ipif(ipif); 17434 17435 /* 17436 * Update any other ipifs which have used "our" local address as 17437 * a source address. This entails removing and recreating IRE_INTERFACE 17438 * entries for such ipifs. 17439 */ 17440 if (ipif->ipif_isv6) 17441 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 17442 else 17443 ipif_update_other_ipifs(ipif, ill->ill_group); 17444 17445 if (ipif_was_up) { 17446 /* 17447 * Check whether it is last ipif to leave this group. 17448 * If this is the last ipif to leave, we should remove 17449 * this ill from the group as ipif_select_source will not 17450 * be able to find any useful ipifs if this ill is selected 17451 * for load balancing. 17452 * 17453 * For nameless groups, we should call ifgrp_delete if this 17454 * belongs to some group. As this ipif is going down, we may 17455 * need to reconstruct groups. 17456 */ 17457 phyi = ill->ill_phyint; 17458 /* 17459 * If the phyint_groupname_len is 0, it may or may not 17460 * be in the nameless group. If the phyint_groupname_len is 17461 * not 0, then this ill should be part of some group. 17462 * As we always insert this ill in the group if 17463 * phyint_groupname_len is not zero when the first ipif 17464 * comes up (in ipif_up_done), it should be in a group 17465 * when the namelen is not 0. 17466 * 17467 * NOTE : When we delete the ill from the group,it will 17468 * blow away all the IRE_CACHES pointing either at this ipif or 17469 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 17470 * should be pointing at this ill. 17471 */ 17472 ASSERT(phyi->phyint_groupname_len == 0 || 17473 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 17474 17475 if (phyi->phyint_groupname_len != 0) { 17476 if (ill->ill_ipif_up_count == 0) 17477 illgrp_delete(ill); 17478 } 17479 17480 /* 17481 * If we have deleted some of the broadcast ires associated 17482 * with this ipif, we need to re-nominate somebody else if 17483 * the ires that we deleted were the nominated ones. 17484 */ 17485 if (ill->ill_group != NULL && !ill->ill_isv6) 17486 ipif_renominate_bcast(ipif); 17487 } 17488 17489 if (ipif->ipif_isv6) 17490 ipif_ndp_down(ipif); 17491 17492 /* 17493 * If mp is NULL the caller will wait for the appropriate refcnt. 17494 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 17495 * and ill_delete -> ipif_free -> ipif_down 17496 */ 17497 if (mp == NULL) { 17498 ASSERT(q == NULL); 17499 return (0); 17500 } 17501 17502 if (CONN_Q(q)) { 17503 connp = Q_TO_CONN(q); 17504 mutex_enter(&connp->conn_lock); 17505 } else { 17506 connp = NULL; 17507 } 17508 mutex_enter(&ill->ill_lock); 17509 /* 17510 * Are there any ire's pointing to this ipif that are still active ? 17511 * If this is the last ipif going down, are there any ire's pointing 17512 * to this ill that are still active ? 17513 */ 17514 if (ipif_is_quiescent(ipif)) { 17515 mutex_exit(&ill->ill_lock); 17516 if (connp != NULL) 17517 mutex_exit(&connp->conn_lock); 17518 return (0); 17519 } 17520 17521 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 17522 ill->ill_name, (void *)ill)); 17523 /* 17524 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 17525 * drops down, the operation will be restarted by ipif_ill_refrele_tail 17526 * which in turn is called by the last refrele on the ipif/ill/ire. 17527 */ 17528 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 17529 if (!success) { 17530 /* The conn is closing. So just return */ 17531 ASSERT(connp != NULL); 17532 mutex_exit(&ill->ill_lock); 17533 mutex_exit(&connp->conn_lock); 17534 return (EINTR); 17535 } 17536 17537 mutex_exit(&ill->ill_lock); 17538 if (connp != NULL) 17539 mutex_exit(&connp->conn_lock); 17540 return (EINPROGRESS); 17541 } 17542 17543 static void 17544 ipif_down_tail(ipif_t *ipif) 17545 { 17546 ill_t *ill = ipif->ipif_ill; 17547 17548 /* 17549 * Skip any loopback interface (null wq). 17550 * If this is the last logical interface on the ill 17551 * have ill_dl_down tell the driver we are gone (unbind) 17552 * Note that lun 0 can ipif_down even though 17553 * there are other logical units that are up. 17554 * This occurs e.g. when we change a "significant" IFF_ flag. 17555 */ 17556 if (ipif->ipif_ill->ill_wq != NULL) { 17557 if (!ill->ill_logical_down && (ill->ill_ipif_up_count == 0) && 17558 ill->ill_dl_up) { 17559 ill_dl_down(ill); 17560 } 17561 } 17562 ill->ill_logical_down = 0; 17563 17564 /* 17565 * Have to be after removing the routes in ipif_down_delete_ire. 17566 */ 17567 if (ipif->ipif_isv6) { 17568 if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV) 17569 ipif_arp_down(ipif); 17570 } else { 17571 ipif_arp_down(ipif); 17572 } 17573 17574 ip_rts_ifmsg(ipif); 17575 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 17576 } 17577 17578 /* 17579 * Bring interface logically down without bringing the physical interface 17580 * down e.g. when the netmask is changed. This avoids long lasting link 17581 * negotiations between an ethernet interface and a certain switches. 17582 */ 17583 static int 17584 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17585 { 17586 /* 17587 * The ill_logical_down flag is a transient flag. It is set here 17588 * and is cleared once the down has completed in ipif_down_tail. 17589 * This flag does not indicate whether the ill stream is in the 17590 * DL_BOUND state with the driver. Instead this flag is used by 17591 * ipif_down_tail to determine whether to DL_UNBIND the stream with 17592 * the driver. The state of the ill stream i.e. whether it is 17593 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 17594 */ 17595 ipif->ipif_ill->ill_logical_down = 1; 17596 return (ipif_down(ipif, q, mp)); 17597 } 17598 17599 /* 17600 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 17601 * If the usesrc client ILL is already part of a usesrc group or not, 17602 * in either case a ire_stq with the matching usesrc client ILL will 17603 * locate the IRE's that need to be deleted. We want IREs to be created 17604 * with the new source address. 17605 */ 17606 static void 17607 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 17608 { 17609 ill_t *ucill = (ill_t *)ill_arg; 17610 17611 ASSERT(IAM_WRITER_ILL(ucill)); 17612 17613 if (ire->ire_stq == NULL) 17614 return; 17615 17616 if ((ire->ire_type == IRE_CACHE) && 17617 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 17618 ire_delete(ire); 17619 } 17620 17621 /* 17622 * ire_walk routine to delete every IRE dependent on the interface 17623 * address that is going down. (Always called as writer.) 17624 * Works for both v4 and v6. 17625 * In addition for checking for ire_ipif matches it also checks for 17626 * IRE_CACHE entries which have the same source address as the 17627 * disappearing ipif since ipif_select_source might have picked 17628 * that source. Note that ipif_down/ipif_update_other_ipifs takes 17629 * care of any IRE_INTERFACE with the disappearing source address. 17630 */ 17631 static void 17632 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 17633 { 17634 ipif_t *ipif = (ipif_t *)ipif_arg; 17635 ill_t *ire_ill; 17636 ill_t *ipif_ill; 17637 17638 ASSERT(IAM_WRITER_IPIF(ipif)); 17639 if (ire->ire_ipif == NULL) 17640 return; 17641 17642 /* 17643 * For IPv4, we derive source addresses for an IRE from ipif's 17644 * belonging to the same IPMP group as the IRE's outgoing 17645 * interface. If an IRE's outgoing interface isn't in the 17646 * same IPMP group as a particular ipif, then that ipif 17647 * couldn't have been used as a source address for this IRE. 17648 * 17649 * For IPv6, source addresses are only restricted to the IPMP group 17650 * if the IRE is for a link-local address or a multicast address. 17651 * Otherwise, source addresses for an IRE can be chosen from 17652 * interfaces other than the the outgoing interface for that IRE. 17653 * 17654 * For source address selection details, see ipif_select_source() 17655 * and ipif_select_source_v6(). 17656 */ 17657 if (ire->ire_ipversion == IPV4_VERSION || 17658 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 17659 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 17660 ire_ill = ire->ire_ipif->ipif_ill; 17661 ipif_ill = ipif->ipif_ill; 17662 17663 if (ire_ill->ill_group != ipif_ill->ill_group) { 17664 return; 17665 } 17666 } 17667 17668 17669 if (ire->ire_ipif != ipif) { 17670 /* 17671 * Look for a matching source address. 17672 */ 17673 if (ire->ire_type != IRE_CACHE) 17674 return; 17675 if (ipif->ipif_flags & IPIF_NOLOCAL) 17676 return; 17677 17678 if (ire->ire_ipversion == IPV4_VERSION) { 17679 if (ire->ire_src_addr != ipif->ipif_src_addr) 17680 return; 17681 } else { 17682 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 17683 &ipif->ipif_v6lcl_addr)) 17684 return; 17685 } 17686 ire_delete(ire); 17687 return; 17688 } 17689 /* 17690 * ire_delete() will do an ire_flush_cache which will delete 17691 * all ire_ipif matches 17692 */ 17693 ire_delete(ire); 17694 } 17695 17696 /* 17697 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 17698 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 17699 * 2) when an interface is brought up or down (on that ill). 17700 * This ensures that the IRE_CACHE entries don't retain stale source 17701 * address selection results. 17702 */ 17703 void 17704 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 17705 { 17706 ill_t *ill = (ill_t *)ill_arg; 17707 ill_t *ipif_ill; 17708 17709 ASSERT(IAM_WRITER_ILL(ill)); 17710 /* 17711 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17712 * Hence this should be IRE_CACHE. 17713 */ 17714 ASSERT(ire->ire_type == IRE_CACHE); 17715 17716 /* 17717 * We are called for IRE_CACHES whose ire_ipif matches ill. 17718 * We are only interested in IRE_CACHES that has borrowed 17719 * the source address from ill_arg e.g. ipif_up_done[_v6] 17720 * for which we need to look at ire_ipif->ipif_ill match 17721 * with ill. 17722 */ 17723 ASSERT(ire->ire_ipif != NULL); 17724 ipif_ill = ire->ire_ipif->ipif_ill; 17725 if (ipif_ill == ill || (ill->ill_group != NULL && 17726 ipif_ill->ill_group == ill->ill_group)) { 17727 ire_delete(ire); 17728 } 17729 } 17730 17731 /* 17732 * Delete all the ire whose stq references ill_arg. 17733 */ 17734 static void 17735 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 17736 { 17737 ill_t *ill = (ill_t *)ill_arg; 17738 ill_t *ire_ill; 17739 17740 ASSERT(IAM_WRITER_ILL(ill)); 17741 /* 17742 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17743 * Hence this should be IRE_CACHE. 17744 */ 17745 ASSERT(ire->ire_type == IRE_CACHE); 17746 17747 /* 17748 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17749 * matches ill. We are only interested in IRE_CACHES that 17750 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 17751 * filtering here. 17752 */ 17753 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 17754 17755 if (ire_ill == ill) 17756 ire_delete(ire); 17757 } 17758 17759 /* 17760 * This is called when an ill leaves the group. We want to delete 17761 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 17762 * pointing at ill. 17763 */ 17764 static void 17765 illgrp_cache_delete(ire_t *ire, char *ill_arg) 17766 { 17767 ill_t *ill = (ill_t *)ill_arg; 17768 17769 ASSERT(IAM_WRITER_ILL(ill)); 17770 ASSERT(ill->ill_group == NULL); 17771 /* 17772 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17773 * Hence this should be IRE_CACHE. 17774 */ 17775 ASSERT(ire->ire_type == IRE_CACHE); 17776 /* 17777 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17778 * matches ill. We are interested in both. 17779 */ 17780 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 17781 (ire->ire_ipif->ipif_ill == ill)); 17782 17783 ire_delete(ire); 17784 } 17785 17786 /* 17787 * Initiate deallocate of an IPIF. Always called as writer. Called by 17788 * ill_delete or ip_sioctl_removeif. 17789 */ 17790 static void 17791 ipif_free(ipif_t *ipif) 17792 { 17793 ASSERT(IAM_WRITER_IPIF(ipif)); 17794 17795 /* Remove conn references */ 17796 reset_conn_ipif(ipif); 17797 17798 /* 17799 * Make sure we have valid net and subnet broadcast ire's for the 17800 * other ipif's which share them with this ipif. 17801 */ 17802 if (!ipif->ipif_isv6) 17803 ipif_check_bcast_ires(ipif); 17804 17805 /* 17806 * Take down the interface. We can be called either from ill_delete 17807 * or from ip_sioctl_removeif. 17808 */ 17809 (void) ipif_down(ipif, NULL, NULL); 17810 17811 rw_enter(&ill_g_lock, RW_WRITER); 17812 /* Remove pointers to this ill in the multicast routing tables */ 17813 reset_mrt_vif_ipif(ipif); 17814 rw_exit(&ill_g_lock); 17815 } 17816 17817 static void 17818 ipif_free_tail(ipif_t *ipif) 17819 { 17820 mblk_t *mp; 17821 ipif_t **ipifp; 17822 17823 /* 17824 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 17825 */ 17826 mutex_enter(&ipif->ipif_saved_ire_lock); 17827 mp = ipif->ipif_saved_ire_mp; 17828 ipif->ipif_saved_ire_mp = NULL; 17829 mutex_exit(&ipif->ipif_saved_ire_lock); 17830 freemsg(mp); 17831 17832 /* 17833 * Need to hold both ill_g_lock and ill_lock while 17834 * inserting or removing an ipif from the linked list 17835 * of ipifs hanging off the ill. 17836 */ 17837 rw_enter(&ill_g_lock, RW_WRITER); 17838 /* 17839 * Remove all multicast memberships on the interface now. 17840 * This removes IPv4 multicast memberships joined within 17841 * the kernel as ipif_down does not do ipif_multicast_down 17842 * for IPv4. IPv6 is not handled here as the multicast memberships 17843 * are based on ill and not on ipif. 17844 */ 17845 ilm_free(ipif); 17846 17847 /* 17848 * Since we held the ill_g_lock while doing the ilm_free above, 17849 * we can assert the ilms were really deleted and not just marked 17850 * ILM_DELETED. 17851 */ 17852 ASSERT(ilm_walk_ipif(ipif) == 0); 17853 17854 17855 IPIF_TRACE_CLEANUP(ipif); 17856 17857 /* Ask SCTP to take it out of it list */ 17858 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 17859 17860 mutex_enter(&ipif->ipif_ill->ill_lock); 17861 /* Get it out of the ILL interface list. */ 17862 ipifp = &ipif->ipif_ill->ill_ipif; 17863 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17864 if (*ipifp == ipif) { 17865 *ipifp = ipif->ipif_next; 17866 break; 17867 } 17868 } 17869 17870 mutex_exit(&ipif->ipif_ill->ill_lock); 17871 rw_exit(&ill_g_lock); 17872 17873 mutex_destroy(&ipif->ipif_saved_ire_lock); 17874 /* Free the memory. */ 17875 mi_free((char *)ipif); 17876 } 17877 17878 /* 17879 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 17880 * "ill_name" otherwise. 17881 */ 17882 char * 17883 ipif_get_name(ipif_t *ipif, char *buf, int len) 17884 { 17885 char lbuf[32]; 17886 char *name; 17887 size_t name_len; 17888 17889 buf[0] = '\0'; 17890 if (!ipif) 17891 return (buf); 17892 name = ipif->ipif_ill->ill_name; 17893 name_len = ipif->ipif_ill->ill_name_length; 17894 if (ipif->ipif_id != 0) { 17895 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 17896 ipif->ipif_id); 17897 name = lbuf; 17898 name_len = mi_strlen(name) + 1; 17899 } 17900 len -= 1; 17901 buf[len] = '\0'; 17902 len = MIN(len, name_len); 17903 bcopy(name, buf, len); 17904 return (buf); 17905 } 17906 17907 /* 17908 * Find an IPIF based on the name passed in. Names can be of the 17909 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 17910 * The <phys> string can have forms like <dev><#> (e.g., le0), 17911 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 17912 * When there is no colon, the implied unit id is zero. <phys> must 17913 * correspond to the name of an ILL. (May be called as writer.) 17914 */ 17915 static ipif_t * 17916 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 17917 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 17918 mblk_t *mp, ipsq_func_t func, int *error) 17919 { 17920 char *cp; 17921 char *endp; 17922 long id; 17923 ill_t *ill; 17924 ipif_t *ipif; 17925 uint_t ire_type; 17926 boolean_t did_alloc = B_FALSE; 17927 ipsq_t *ipsq; 17928 17929 if (error != NULL) 17930 *error = 0; 17931 17932 /* 17933 * If the caller wants to us to create the ipif, make sure we have a 17934 * valid zoneid 17935 */ 17936 ASSERT(!do_alloc || zoneid != ALL_ZONES); 17937 17938 if (namelen == 0) { 17939 if (error != NULL) 17940 *error = ENXIO; 17941 return (NULL); 17942 } 17943 17944 *exists = B_FALSE; 17945 /* Look for a colon in the name. */ 17946 endp = &name[namelen]; 17947 for (cp = endp; --cp > name; ) { 17948 if (*cp == IPIF_SEPARATOR_CHAR) 17949 break; 17950 } 17951 17952 if (*cp == IPIF_SEPARATOR_CHAR) { 17953 /* 17954 * Reject any non-decimal aliases for logical 17955 * interfaces. Aliases with leading zeroes 17956 * are also rejected as they introduce ambiguity 17957 * in the naming of the interfaces. 17958 * In order to confirm with existing semantics, 17959 * and to not break any programs/script relying 17960 * on that behaviour, if<0>:0 is considered to be 17961 * a valid interface. 17962 * 17963 * If alias has two or more digits and the first 17964 * is zero, fail. 17965 */ 17966 if (&cp[2] < endp && cp[1] == '0') 17967 return (NULL); 17968 } 17969 17970 if (cp <= name) { 17971 cp = endp; 17972 } else { 17973 *cp = '\0'; 17974 } 17975 17976 /* 17977 * Look up the ILL, based on the portion of the name 17978 * before the slash. ill_lookup_on_name returns a held ill. 17979 * Temporary to check whether ill exists already. If so 17980 * ill_lookup_on_name will clear it. 17981 */ 17982 ill = ill_lookup_on_name(name, do_alloc, isv6, 17983 q, mp, func, error, &did_alloc); 17984 if (cp != endp) 17985 *cp = IPIF_SEPARATOR_CHAR; 17986 if (ill == NULL) 17987 return (NULL); 17988 17989 /* Establish the unit number in the name. */ 17990 id = 0; 17991 if (cp < endp && *endp == '\0') { 17992 /* If there was a colon, the unit number follows. */ 17993 cp++; 17994 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 17995 ill_refrele(ill); 17996 if (error != NULL) 17997 *error = ENXIO; 17998 return (NULL); 17999 } 18000 } 18001 18002 GRAB_CONN_LOCK(q); 18003 mutex_enter(&ill->ill_lock); 18004 /* Now see if there is an IPIF with this unit number. */ 18005 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 18006 if (ipif->ipif_id == id) { 18007 if (zoneid != ALL_ZONES && 18008 zoneid != ipif->ipif_zoneid) { 18009 mutex_exit(&ill->ill_lock); 18010 RELEASE_CONN_LOCK(q); 18011 ill_refrele(ill); 18012 if (error != NULL) 18013 *error = ENXIO; 18014 return (NULL); 18015 } 18016 /* 18017 * The block comment at the start of ipif_down 18018 * explains the use of the macros used below 18019 */ 18020 if (IPIF_CAN_LOOKUP(ipif)) { 18021 ipif_refhold_locked(ipif); 18022 mutex_exit(&ill->ill_lock); 18023 if (!did_alloc) 18024 *exists = B_TRUE; 18025 /* 18026 * Drop locks before calling ill_refrele 18027 * since it can potentially call into 18028 * ipif_ill_refrele_tail which can end up 18029 * in trying to acquire any lock. 18030 */ 18031 RELEASE_CONN_LOCK(q); 18032 ill_refrele(ill); 18033 return (ipif); 18034 } else if (IPIF_CAN_WAIT(ipif, q)) { 18035 ipsq = ill->ill_phyint->phyint_ipsq; 18036 mutex_enter(&ipsq->ipsq_lock); 18037 mutex_exit(&ill->ill_lock); 18038 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 18039 mutex_exit(&ipsq->ipsq_lock); 18040 RELEASE_CONN_LOCK(q); 18041 ill_refrele(ill); 18042 *error = EINPROGRESS; 18043 return (NULL); 18044 } 18045 } 18046 } 18047 RELEASE_CONN_LOCK(q); 18048 18049 if (!do_alloc) { 18050 mutex_exit(&ill->ill_lock); 18051 ill_refrele(ill); 18052 if (error != NULL) 18053 *error = ENXIO; 18054 return (NULL); 18055 } 18056 18057 /* 18058 * If none found, atomically allocate and return a new one. 18059 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 18060 * to support "receive only" use of lo0:1 etc. as is still done 18061 * below as an initial guess. 18062 * However, this is now likely to be overriden later in ipif_up_done() 18063 * when we know for sure what address has been configured on the 18064 * interface, since we might have more than one loopback interface 18065 * with a loopback address, e.g. in the case of zones, and all the 18066 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 18067 */ 18068 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 18069 ire_type = IRE_LOOPBACK; 18070 else 18071 ire_type = IRE_LOCAL; 18072 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 18073 if (ipif != NULL) 18074 ipif_refhold_locked(ipif); 18075 else if (error != NULL) 18076 *error = ENOMEM; 18077 mutex_exit(&ill->ill_lock); 18078 ill_refrele(ill); 18079 return (ipif); 18080 } 18081 18082 /* 18083 * This routine is called whenever a new address comes up on an ipif. If 18084 * we are configured to respond to address mask requests, then we are supposed 18085 * to broadcast an address mask reply at this time. This routine is also 18086 * called if we are already up, but a netmask change is made. This is legal 18087 * but might not make the system manager very popular. (May be called 18088 * as writer.) 18089 */ 18090 static void 18091 ipif_mask_reply(ipif_t *ipif) 18092 { 18093 icmph_t *icmph; 18094 ipha_t *ipha; 18095 mblk_t *mp; 18096 18097 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 18098 18099 if (!ip_respond_to_address_mask_broadcast) 18100 return; 18101 18102 /* ICMP mask reply is IPv4 only */ 18103 ASSERT(!ipif->ipif_isv6); 18104 /* ICMP mask reply is not for a loopback interface */ 18105 ASSERT(ipif->ipif_ill->ill_wq != NULL); 18106 18107 mp = allocb(REPLY_LEN, BPRI_HI); 18108 if (mp == NULL) 18109 return; 18110 mp->b_wptr = mp->b_rptr + REPLY_LEN; 18111 18112 ipha = (ipha_t *)mp->b_rptr; 18113 bzero(ipha, REPLY_LEN); 18114 *ipha = icmp_ipha; 18115 ipha->ipha_ttl = ip_broadcast_ttl; 18116 ipha->ipha_src = ipif->ipif_src_addr; 18117 ipha->ipha_dst = ipif->ipif_brd_addr; 18118 ipha->ipha_length = htons(REPLY_LEN); 18119 ipha->ipha_ident = 0; 18120 18121 icmph = (icmph_t *)&ipha[1]; 18122 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 18123 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 18124 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 18125 if (icmph->icmph_checksum == 0) 18126 icmph->icmph_checksum = 0xffff; 18127 18128 put(ipif->ipif_wq, mp); 18129 18130 #undef REPLY_LEN 18131 } 18132 18133 /* 18134 * When the mtu in the ipif changes, we call this routine through ire_walk 18135 * to update all the relevant IREs. 18136 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18137 */ 18138 static void 18139 ipif_mtu_change(ire_t *ire, char *ipif_arg) 18140 { 18141 ipif_t *ipif = (ipif_t *)ipif_arg; 18142 18143 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 18144 return; 18145 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 18146 } 18147 18148 /* 18149 * When the mtu in the ill changes, we call this routine through ire_walk 18150 * to update all the relevant IREs. 18151 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18152 */ 18153 void 18154 ill_mtu_change(ire_t *ire, char *ill_arg) 18155 { 18156 ill_t *ill = (ill_t *)ill_arg; 18157 18158 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 18159 return; 18160 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 18161 } 18162 18163 /* 18164 * Join the ipif specific multicast groups. 18165 * Must be called after a mapping has been set up in the resolver. (Always 18166 * called as writer.) 18167 */ 18168 void 18169 ipif_multicast_up(ipif_t *ipif) 18170 { 18171 int err, index; 18172 ill_t *ill; 18173 18174 ASSERT(IAM_WRITER_IPIF(ipif)); 18175 18176 ill = ipif->ipif_ill; 18177 index = ill->ill_phyint->phyint_ifindex; 18178 18179 ip1dbg(("ipif_multicast_up\n")); 18180 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 18181 return; 18182 18183 if (ipif->ipif_isv6) { 18184 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 18185 return; 18186 18187 /* Join the all hosts multicast address */ 18188 ip1dbg(("ipif_multicast_up - addmulti\n")); 18189 /* 18190 * Passing B_TRUE means we have to join the multicast 18191 * membership on this interface even though this is 18192 * FAILED. If we join on a different one in the group, 18193 * we will not be able to delete the membership later 18194 * as we currently don't track where we join when we 18195 * join within the kernel unlike applications where 18196 * we have ilg/ilg_orig_index. See ip_addmulti_v6 18197 * for more on this. 18198 */ 18199 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 18200 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18201 if (err != 0) { 18202 ip0dbg(("ipif_multicast_up: " 18203 "all_hosts_mcast failed %d\n", 18204 err)); 18205 return; 18206 } 18207 /* 18208 * Enable multicast for the solicited node multicast address 18209 */ 18210 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18211 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18212 18213 ipv6_multi.s6_addr32[3] |= 18214 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18215 18216 err = ip_addmulti_v6(&ipv6_multi, ill, index, 18217 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 18218 NULL); 18219 if (err != 0) { 18220 ip0dbg(("ipif_multicast_up: solicited MC" 18221 " failed %d\n", err)); 18222 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 18223 ill, ill->ill_phyint->phyint_ifindex, 18224 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18225 return; 18226 } 18227 } 18228 } else { 18229 if (ipif->ipif_lcl_addr == INADDR_ANY) 18230 return; 18231 18232 /* Join the all hosts multicast address */ 18233 ip1dbg(("ipif_multicast_up - addmulti\n")); 18234 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 18235 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18236 if (err) { 18237 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 18238 return; 18239 } 18240 } 18241 ipif->ipif_multicast_up = 1; 18242 } 18243 18244 /* 18245 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 18246 * any explicit memberships are blown away in ill_leave_multicast() when the 18247 * ill is brought down. 18248 */ 18249 static void 18250 ipif_multicast_down(ipif_t *ipif) 18251 { 18252 int err; 18253 18254 ASSERT(IAM_WRITER_IPIF(ipif)); 18255 18256 ip1dbg(("ipif_multicast_down\n")); 18257 if (!ipif->ipif_multicast_up) 18258 return; 18259 18260 ASSERT(ipif->ipif_isv6); 18261 18262 ip1dbg(("ipif_multicast_down - delmulti\n")); 18263 18264 /* 18265 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 18266 * we should look for ilms on this ill rather than the ones that have 18267 * been failed over here. They are here temporarily. As 18268 * ipif_multicast_up has joined on this ill, we should delete only 18269 * from this ill. 18270 */ 18271 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 18272 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 18273 B_TRUE, B_TRUE); 18274 if (err != 0) { 18275 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 18276 err)); 18277 } 18278 /* 18279 * Disable multicast for the solicited node multicast address 18280 */ 18281 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18282 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18283 18284 ipv6_multi.s6_addr32[3] |= 18285 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18286 18287 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 18288 ipif->ipif_ill->ill_phyint->phyint_ifindex, 18289 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18290 18291 if (err != 0) { 18292 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 18293 err)); 18294 } 18295 } 18296 18297 ipif->ipif_multicast_up = 0; 18298 } 18299 18300 /* 18301 * Used when an interface comes up to recreate any extra routes on this 18302 * interface. 18303 */ 18304 static ire_t ** 18305 ipif_recover_ire(ipif_t *ipif) 18306 { 18307 mblk_t *mp; 18308 ire_t **ipif_saved_irep; 18309 ire_t **irep; 18310 18311 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 18312 ipif->ipif_id)); 18313 18314 mutex_enter(&ipif->ipif_saved_ire_lock); 18315 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 18316 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 18317 if (ipif_saved_irep == NULL) { 18318 mutex_exit(&ipif->ipif_saved_ire_lock); 18319 return (NULL); 18320 } 18321 18322 irep = ipif_saved_irep; 18323 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 18324 ire_t *ire; 18325 queue_t *rfq; 18326 queue_t *stq; 18327 ifrt_t *ifrt; 18328 uchar_t *src_addr; 18329 uchar_t *gateway_addr; 18330 mblk_t *resolver_mp; 18331 ushort_t type; 18332 18333 /* 18334 * When the ire was initially created and then added in 18335 * ip_rt_add(), it was created either using ipif->ipif_net_type 18336 * in the case of a traditional interface route, or as one of 18337 * the IRE_OFFSUBNET types (with the exception of 18338 * IRE_HOST_REDIRECT which is created by icmp_redirect() and 18339 * which we don't need to save or recover). In the case where 18340 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 18341 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 18342 * to satisfy software like GateD and Sun Cluster which creates 18343 * routes using the the loopback interface's address as a 18344 * gateway. 18345 * 18346 * As ifrt->ifrt_type reflects the already updated ire_type and 18347 * since ire_create() expects that IRE_IF_NORESOLVER will have 18348 * a valid ire_dlureq_mp field (which doesn't make sense for a 18349 * IRE_LOOPBACK), ire_create() will be called in the same way 18350 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 18351 * the route looks like a traditional interface route (where 18352 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 18353 * the saved ifrt->ifrt_type. This means that in the case where 18354 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 18355 * ire_create() will be an IRE_LOOPBACK, it will then be turned 18356 * into an IRE_IF_NORESOLVER and then added by ire_add(). 18357 */ 18358 ifrt = (ifrt_t *)mp->b_rptr; 18359 if (ifrt->ifrt_type & IRE_INTERFACE) { 18360 rfq = NULL; 18361 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 18362 ? ipif->ipif_rq : ipif->ipif_wq; 18363 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18364 ? (uint8_t *)&ifrt->ifrt_src_addr 18365 : (uint8_t *)&ipif->ipif_src_addr; 18366 gateway_addr = NULL; 18367 resolver_mp = ipif->ipif_resolver_mp; 18368 type = ipif->ipif_net_type; 18369 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 18370 /* Recover multiroute broadcast IRE. */ 18371 rfq = ipif->ipif_rq; 18372 stq = ipif->ipif_wq; 18373 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18374 ? (uint8_t *)&ifrt->ifrt_src_addr 18375 : (uint8_t *)&ipif->ipif_src_addr; 18376 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18377 resolver_mp = ipif->ipif_bcast_mp; 18378 type = ifrt->ifrt_type; 18379 } else { 18380 rfq = NULL; 18381 stq = NULL; 18382 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18383 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 18384 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18385 resolver_mp = NULL; 18386 type = ifrt->ifrt_type; 18387 } 18388 18389 /* 18390 * Create a copy of the IRE with the saved address and netmask. 18391 */ 18392 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 18393 "0x%x/0x%x\n", 18394 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 18395 ntohl(ifrt->ifrt_addr), 18396 ntohl(ifrt->ifrt_mask))); 18397 ire = ire_create( 18398 (uint8_t *)&ifrt->ifrt_addr, 18399 (uint8_t *)&ifrt->ifrt_mask, 18400 src_addr, 18401 gateway_addr, 18402 NULL, 18403 &ifrt->ifrt_max_frag, 18404 NULL, 18405 rfq, 18406 stq, 18407 type, 18408 resolver_mp, 18409 ipif, 18410 NULL, 18411 0, 18412 0, 18413 0, 18414 ifrt->ifrt_flags, 18415 &ifrt->ifrt_iulp_info); 18416 18417 if (ire == NULL) { 18418 mutex_exit(&ipif->ipif_saved_ire_lock); 18419 kmem_free(ipif_saved_irep, 18420 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 18421 return (NULL); 18422 } 18423 18424 /* 18425 * Some software (for example, GateD and Sun Cluster) attempts 18426 * to create (what amount to) IRE_PREFIX routes with the 18427 * loopback address as the gateway. This is primarily done to 18428 * set up prefixes with the RTF_REJECT flag set (for example, 18429 * when generating aggregate routes.) 18430 * 18431 * If the IRE type (as defined by ipif->ipif_net_type) is 18432 * IRE_LOOPBACK, then we map the request into a 18433 * IRE_IF_NORESOLVER. 18434 */ 18435 if (ipif->ipif_net_type == IRE_LOOPBACK) 18436 ire->ire_type = IRE_IF_NORESOLVER; 18437 /* 18438 * ire held by ire_add, will be refreled' towards the 18439 * the end of ipif_up_done 18440 */ 18441 (void) ire_add(&ire, NULL, NULL, NULL); 18442 *irep = ire; 18443 irep++; 18444 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 18445 } 18446 mutex_exit(&ipif->ipif_saved_ire_lock); 18447 return (ipif_saved_irep); 18448 } 18449 18450 /* 18451 * Used to set the netmask and broadcast address to default values when the 18452 * interface is brought up. (Always called as writer.) 18453 */ 18454 static void 18455 ipif_set_default(ipif_t *ipif) 18456 { 18457 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18458 18459 if (!ipif->ipif_isv6) { 18460 /* 18461 * Interface holds an IPv4 address. Default 18462 * mask is the natural netmask. 18463 */ 18464 if (!ipif->ipif_net_mask) { 18465 ipaddr_t v4mask; 18466 18467 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 18468 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 18469 } 18470 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18471 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18472 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18473 } else { 18474 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18475 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18476 } 18477 /* 18478 * NOTE: SunOS 4.X does this even if the broadcast address 18479 * has been already set thus we do the same here. 18480 */ 18481 if (ipif->ipif_flags & IPIF_BROADCAST) { 18482 ipaddr_t v4addr; 18483 18484 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 18485 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 18486 } 18487 } else { 18488 /* 18489 * Interface holds an IPv6-only address. Default 18490 * mask is all-ones. 18491 */ 18492 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 18493 ipif->ipif_v6net_mask = ipv6_all_ones; 18494 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18495 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18496 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18497 } else { 18498 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18499 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18500 } 18501 } 18502 } 18503 18504 /* 18505 * Return 0 if this address can be used as local address without causing 18506 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 18507 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 18508 * Special checks are needed to allow the same IPv6 link-local address 18509 * on different ills. 18510 * TODO: allowing the same site-local address on different ill's. 18511 */ 18512 int 18513 ip_addr_availability_check(ipif_t *new_ipif) 18514 { 18515 in6_addr_t our_v6addr; 18516 ill_t *ill; 18517 ipif_t *ipif; 18518 ill_walk_context_t ctx; 18519 18520 ASSERT(IAM_WRITER_IPIF(new_ipif)); 18521 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 18522 ASSERT(RW_READ_HELD(&ill_g_lock)); 18523 18524 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 18525 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 18526 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 18527 return (0); 18528 18529 our_v6addr = new_ipif->ipif_v6lcl_addr; 18530 18531 if (new_ipif->ipif_isv6) 18532 ill = ILL_START_WALK_V6(&ctx); 18533 else 18534 ill = ILL_START_WALK_V4(&ctx); 18535 18536 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18537 for (ipif = ill->ill_ipif; ipif != NULL; 18538 ipif = ipif->ipif_next) { 18539 if ((ipif == new_ipif) || 18540 !(ipif->ipif_flags & IPIF_UP) || 18541 (ipif->ipif_flags & IPIF_UNNUMBERED)) 18542 continue; 18543 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 18544 &our_v6addr)) { 18545 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 18546 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 18547 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 18548 ipif->ipif_flags |= IPIF_UNNUMBERED; 18549 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 18550 new_ipif->ipif_ill != ill) 18551 continue; 18552 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 18553 new_ipif->ipif_ill != ill) 18554 continue; 18555 else if (new_ipif->ipif_zoneid != 18556 ipif->ipif_zoneid && 18557 (ill->ill_phyint->phyint_flags & 18558 PHYI_LOOPBACK)) 18559 continue; 18560 else if (new_ipif->ipif_ill == ill) 18561 return (EADDRINUSE); 18562 else 18563 return (EADDRNOTAVAIL); 18564 } 18565 } 18566 } 18567 18568 return (0); 18569 } 18570 18571 /* 18572 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 18573 * IREs for the ipif. 18574 * When the routine returns EINPROGRESS then mp has been consumed and 18575 * the ioctl will be acked from ip_rput_dlpi. 18576 */ 18577 static int 18578 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 18579 { 18580 ill_t *ill = ipif->ipif_ill; 18581 boolean_t isv6 = ipif->ipif_isv6; 18582 int err = 0; 18583 boolean_t success; 18584 18585 ASSERT(IAM_WRITER_IPIF(ipif)); 18586 18587 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18588 18589 /* Shouldn't get here if it is already up. */ 18590 if (ipif->ipif_flags & IPIF_UP) 18591 return (EALREADY); 18592 18593 /* Skip arp/ndp for any loopback interface. */ 18594 if (ill->ill_wq != NULL) { 18595 conn_t *connp = Q_TO_CONN(q); 18596 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18597 18598 if (!ill->ill_dl_up) { 18599 /* 18600 * ill_dl_up is not yet set. i.e. we are yet to 18601 * DL_BIND with the driver and this is the first 18602 * logical interface on the ill to become "up". 18603 * Tell the driver to get going (via DL_BIND_REQ). 18604 * Note that changing "significant" IFF_ flags 18605 * address/netmask etc cause a down/up dance, but 18606 * does not cause an unbind (DL_UNBIND) with the driver 18607 */ 18608 return (ill_dl_up(ill, ipif, mp, q)); 18609 } 18610 18611 /* 18612 * ipif_resolver_up may end up sending an 18613 * AR_INTERFACE_UP message to ARP, which would, in 18614 * turn send a DLPI message to the driver. ioctls are 18615 * serialized and so we cannot send more than one 18616 * interface up message at a time. If ipif_resolver_up 18617 * does send an interface up message to ARP, we get 18618 * EINPROGRESS and we will complete in ip_arp_done. 18619 */ 18620 18621 ASSERT(connp != NULL); 18622 ASSERT(ipsq->ipsq_pending_mp == NULL); 18623 mutex_enter(&connp->conn_lock); 18624 mutex_enter(&ill->ill_lock); 18625 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18626 mutex_exit(&ill->ill_lock); 18627 mutex_exit(&connp->conn_lock); 18628 if (!success) 18629 return (EINTR); 18630 18631 /* 18632 * Crank up IPv6 neighbor discovery 18633 * Unlike ARP, this should complete when 18634 * ipif_ndp_up returns. However, for 18635 * ILLF_XRESOLV interfaces we also send a 18636 * AR_INTERFACE_UP to the external resolver. 18637 * That ioctl will complete in ip_rput. 18638 */ 18639 if (isv6) { 18640 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 18641 B_FALSE); 18642 if (err != 0) { 18643 mp = ipsq_pending_mp_get(ipsq, &connp); 18644 return (err); 18645 } 18646 } 18647 /* Now, ARP */ 18648 if ((err = ipif_resolver_up(ipif, B_FALSE)) == 18649 EINPROGRESS) { 18650 /* We will complete it in ip_arp_done */ 18651 return (err); 18652 } 18653 mp = ipsq_pending_mp_get(ipsq, &connp); 18654 ASSERT(mp != NULL); 18655 if (err != 0) 18656 return (err); 18657 } 18658 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 18659 } 18660 18661 /* 18662 * Perform a bind for the physical device. 18663 * When the routine returns EINPROGRESS then mp has been consumed and 18664 * the ioctl will be acked from ip_rput_dlpi. 18665 * Allocate an unbind message and save it until ipif_down. 18666 */ 18667 static int 18668 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18669 { 18670 mblk_t *areq_mp = NULL; 18671 mblk_t *bind_mp = NULL; 18672 mblk_t *unbind_mp = NULL; 18673 conn_t *connp; 18674 boolean_t success; 18675 18676 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 18677 ASSERT(IAM_WRITER_ILL(ill)); 18678 18679 ASSERT(mp != NULL); 18680 18681 /* Create a resolver cookie for ARP */ 18682 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 18683 areq_t *areq; 18684 uint16_t sap_addr; 18685 18686 areq_mp = ill_arp_alloc(ill, 18687 (uchar_t *)&ip_areq_template, 0); 18688 if (areq_mp == NULL) { 18689 return (ENOMEM); 18690 } 18691 freemsg(ill->ill_resolver_mp); 18692 ill->ill_resolver_mp = areq_mp; 18693 areq = (areq_t *)areq_mp->b_rptr; 18694 sap_addr = ill->ill_sap; 18695 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 18696 /* 18697 * Wait till we call ill_pending_mp_add to determine 18698 * the success before we free the ill_resolver_mp and 18699 * attach areq_mp in it's place. 18700 */ 18701 } 18702 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 18703 DL_BIND_REQ); 18704 if (bind_mp == NULL) 18705 goto bad; 18706 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 18707 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 18708 18709 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 18710 if (unbind_mp == NULL) 18711 goto bad; 18712 18713 /* 18714 * Record state needed to complete this operation when the 18715 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 18716 */ 18717 if (WR(q)->q_next == NULL) { 18718 connp = Q_TO_CONN(q); 18719 mutex_enter(&connp->conn_lock); 18720 } else { 18721 connp = NULL; 18722 } 18723 mutex_enter(&ipif->ipif_ill->ill_lock); 18724 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18725 mutex_exit(&ipif->ipif_ill->ill_lock); 18726 if (connp != NULL) 18727 mutex_exit(&connp->conn_lock); 18728 if (!success) 18729 goto bad; 18730 18731 /* 18732 * Save the unbind message for ill_dl_down(); it will be consumed when 18733 * the interface goes down. 18734 */ 18735 ASSERT(ill->ill_unbind_mp == NULL); 18736 ill->ill_unbind_mp = unbind_mp; 18737 18738 ill_dlpi_send(ill, bind_mp); 18739 /* Send down link-layer capabilities probe if not already done. */ 18740 ill_capability_probe(ill); 18741 18742 /* 18743 * Sysid used to rely on the fact that netboots set domainname 18744 * and the like. Now that miniroot boots aren't strictly netboots 18745 * and miniroot network configuration is driven from userland 18746 * these things still need to be set. This situation can be detected 18747 * by comparing the interface being configured here to the one 18748 * dhcack was set to reference by the boot loader. Once sysid is 18749 * converted to use dhcp_ipc_getinfo() this call can go away. 18750 */ 18751 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 18752 (strcmp(ill->ill_name, dhcack) == 0) && 18753 (strlen(srpc_domain) == 0)) { 18754 if (dhcpinit() != 0) 18755 cmn_err(CE_WARN, "no cached dhcp response"); 18756 } 18757 18758 /* 18759 * This operation will complete in ip_rput_dlpi with either 18760 * a DL_BIND_ACK or DL_ERROR_ACK. 18761 */ 18762 return (EINPROGRESS); 18763 bad: 18764 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 18765 /* 18766 * We don't have to check for possible removal from illgrp 18767 * as we have not yet inserted in illgrp. For groups 18768 * without names, this ipif is still not UP and hence 18769 * this could not have possibly had any influence in forming 18770 * groups. 18771 */ 18772 18773 if (bind_mp != NULL) 18774 freemsg(bind_mp); 18775 if (unbind_mp != NULL) 18776 freemsg(unbind_mp); 18777 return (ENOMEM); 18778 } 18779 18780 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 18781 18782 /* 18783 * DLPI and ARP is up. 18784 * Create all the IREs associated with an interface bring up multicast. 18785 * Set the interface flag and finish other initialization 18786 * that potentially had to be differed to after DL_BIND_ACK. 18787 */ 18788 int 18789 ipif_up_done(ipif_t *ipif) 18790 { 18791 ire_t *ire_array[20]; 18792 ire_t **irep = ire_array; 18793 ire_t **irep1; 18794 ipaddr_t net_mask = 0; 18795 ipaddr_t subnet_mask, route_mask; 18796 ill_t *ill = ipif->ipif_ill; 18797 queue_t *stq; 18798 ipif_t *src_ipif; 18799 ipif_t *tmp_ipif; 18800 boolean_t flush_ire_cache = B_TRUE; 18801 int err = 0; 18802 phyint_t *phyi; 18803 ire_t **ipif_saved_irep = NULL; 18804 int ipif_saved_ire_cnt; 18805 int cnt; 18806 boolean_t src_ipif_held = B_FALSE; 18807 boolean_t ire_added = B_FALSE; 18808 boolean_t loopback = B_FALSE; 18809 18810 ip1dbg(("ipif_up_done(%s:%u)\n", 18811 ipif->ipif_ill->ill_name, ipif->ipif_id)); 18812 /* Check if this is a loopback interface */ 18813 if (ipif->ipif_ill->ill_wq == NULL) 18814 loopback = B_TRUE; 18815 18816 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18817 /* 18818 * If all other interfaces for this ill are down or DEPRECATED, 18819 * or otherwise unsuitable for source address selection, remove 18820 * any IRE_CACHE entries for this ill to make sure source 18821 * address selection gets to take this new ipif into account. 18822 * No need to hold ill_lock while traversing the ipif list since 18823 * we are writer 18824 */ 18825 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 18826 tmp_ipif = tmp_ipif->ipif_next) { 18827 if (((tmp_ipif->ipif_flags & 18828 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 18829 !(tmp_ipif->ipif_flags & IPIF_UP)) || 18830 (tmp_ipif == ipif)) 18831 continue; 18832 /* first useable pre-existing interface */ 18833 flush_ire_cache = B_FALSE; 18834 break; 18835 } 18836 if (flush_ire_cache) 18837 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 18838 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 18839 18840 /* 18841 * Figure out which way the send-to queue should go. Only 18842 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 18843 * should show up here. 18844 */ 18845 switch (ill->ill_net_type) { 18846 case IRE_IF_RESOLVER: 18847 stq = ill->ill_rq; 18848 break; 18849 case IRE_IF_NORESOLVER: 18850 case IRE_LOOPBACK: 18851 stq = ill->ill_wq; 18852 break; 18853 default: 18854 return (EINVAL); 18855 } 18856 18857 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 18858 /* 18859 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 18860 * ipif_lookup_on_name(), but in the case of zones we can have 18861 * several loopback addresses on lo0. So all the interfaces with 18862 * loopback addresses need to be marked IRE_LOOPBACK. 18863 */ 18864 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 18865 htonl(INADDR_LOOPBACK)) 18866 ipif->ipif_ire_type = IRE_LOOPBACK; 18867 else 18868 ipif->ipif_ire_type = IRE_LOCAL; 18869 } 18870 18871 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 18872 /* 18873 * Can't use our source address. Select a different 18874 * source address for the IRE_INTERFACE and IRE_LOCAL 18875 */ 18876 src_ipif = ipif_select_source(ipif->ipif_ill, 18877 ipif->ipif_subnet, ipif->ipif_zoneid); 18878 if (src_ipif == NULL) 18879 src_ipif = ipif; /* Last resort */ 18880 else 18881 src_ipif_held = B_TRUE; 18882 } else { 18883 src_ipif = ipif; 18884 } 18885 18886 /* Create all the IREs associated with this interface */ 18887 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 18888 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18889 /* Register the source address for __sin6_src_id */ 18890 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 18891 ipif->ipif_zoneid); 18892 if (err != 0) { 18893 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 18894 return (err); 18895 } 18896 /* If the interface address is set, create the local IRE. */ 18897 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 18898 (void *)ipif, 18899 ipif->ipif_ire_type, 18900 ntohl(ipif->ipif_lcl_addr))); 18901 *irep++ = ire_create( 18902 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 18903 (uchar_t *)&ip_g_all_ones, /* mask */ 18904 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 18905 NULL, /* no gateway */ 18906 NULL, 18907 &ip_loopback_mtuplus, /* max frag size */ 18908 NULL, 18909 ipif->ipif_rq, /* recv-from queue */ 18910 NULL, /* no send-to queue */ 18911 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 18912 NULL, 18913 ipif, 18914 NULL, 18915 0, 18916 0, 18917 0, 18918 (ipif->ipif_flags & IPIF_PRIVATE) ? 18919 RTF_PRIVATE : 0, 18920 &ire_uinfo_null); 18921 } else { 18922 ip1dbg(( 18923 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 18924 ipif->ipif_ire_type, 18925 ntohl(ipif->ipif_lcl_addr), 18926 (uint_t)ipif->ipif_flags)); 18927 } 18928 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 18929 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18930 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 18931 } else { 18932 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 18933 } 18934 18935 subnet_mask = ipif->ipif_net_mask; 18936 18937 /* 18938 * If mask was not specified, use natural netmask of 18939 * interface address. Also, store this mask back into the 18940 * ipif struct. 18941 */ 18942 if (subnet_mask == 0) { 18943 subnet_mask = net_mask; 18944 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 18945 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 18946 ipif->ipif_v6subnet); 18947 } 18948 18949 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 18950 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 18951 ipif->ipif_subnet != INADDR_ANY) { 18952 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18953 18954 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18955 route_mask = IP_HOST_MASK; 18956 } else { 18957 route_mask = subnet_mask; 18958 } 18959 18960 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 18961 "creating if IRE ill_net_type 0x%x for 0x%x\n", 18962 (void *)ipif, (void *)ill, 18963 ill->ill_net_type, 18964 ntohl(ipif->ipif_subnet))); 18965 *irep++ = ire_create( 18966 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 18967 (uchar_t *)&route_mask, /* mask */ 18968 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 18969 NULL, /* no gateway */ 18970 NULL, 18971 &ipif->ipif_mtu, /* max frag */ 18972 NULL, 18973 NULL, /* no recv queue */ 18974 stq, /* send-to queue */ 18975 ill->ill_net_type, /* IF_[NO]RESOLVER */ 18976 ill->ill_resolver_mp, /* xmit header */ 18977 ipif, 18978 NULL, 18979 0, 18980 0, 18981 0, 18982 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 18983 &ire_uinfo_null); 18984 } 18985 18986 /* 18987 * If the interface address is set, create the broadcast IREs. 18988 * 18989 * ire_create_bcast checks if the proposed new IRE matches 18990 * any existing IRE's with the same physical interface (ILL). 18991 * This should get rid of duplicates. 18992 * ire_create_bcast also check IPIF_NOXMIT and does not create 18993 * any broadcast ires. 18994 */ 18995 if ((ipif->ipif_subnet != INADDR_ANY) && 18996 (ipif->ipif_flags & IPIF_BROADCAST)) { 18997 ipaddr_t addr; 18998 18999 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 19000 irep = ire_check_and_create_bcast(ipif, 0, irep, 19001 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19002 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 19003 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19004 19005 /* 19006 * For backward compatibility, we need to create net 19007 * broadcast ire's based on the old "IP address class 19008 * system." The reason is that some old machines only 19009 * respond to these class derived net broadcast. 19010 * 19011 * But we should not create these net broadcast ire's if 19012 * the subnet_mask is shorter than the IP address class based 19013 * derived netmask. Otherwise, we may create a net 19014 * broadcast address which is the same as an IP address 19015 * on the subnet. Then TCP will refuse to talk to that 19016 * address. 19017 * 19018 * Nor do we need IRE_BROADCAST ire's for the interface 19019 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 19020 * interface is already created. Creating these broadcast 19021 * ire's will only create confusion as the "addr" is going 19022 * to be same as that of the IP address of the interface. 19023 */ 19024 if (net_mask < subnet_mask) { 19025 addr = net_mask & ipif->ipif_subnet; 19026 irep = ire_check_and_create_bcast(ipif, addr, irep, 19027 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19028 irep = ire_check_and_create_bcast(ipif, 19029 ~net_mask | addr, irep, 19030 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19031 } 19032 19033 if (subnet_mask != 0xFFFFFFFF) { 19034 addr = ipif->ipif_subnet; 19035 irep = ire_check_and_create_bcast(ipif, addr, irep, 19036 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19037 irep = ire_check_and_create_bcast(ipif, 19038 ~subnet_mask|addr, irep, 19039 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19040 } 19041 } 19042 19043 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19044 19045 /* If an earlier ire_create failed, get out now */ 19046 for (irep1 = irep; irep1 > ire_array; ) { 19047 irep1--; 19048 if (*irep1 == NULL) { 19049 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 19050 err = ENOMEM; 19051 goto bad; 19052 } 19053 } 19054 19055 /* 19056 * Need to atomically check for ip_addr_availablity_check 19057 * under ip_addr_avail_lock, and if it fails got bad, and remove 19058 * from group also.The ill_g_lock is grabbed as reader 19059 * just to make sure no new ills or new ipifs are being added 19060 * to the system while we are checking the uniqueness of addresses. 19061 */ 19062 rw_enter(&ill_g_lock, RW_READER); 19063 mutex_enter(&ip_addr_avail_lock); 19064 /* Mark it up, and increment counters. */ 19065 ill->ill_ipif_up_count++; 19066 ipif->ipif_flags |= IPIF_UP; 19067 err = ip_addr_availability_check(ipif); 19068 mutex_exit(&ip_addr_avail_lock); 19069 rw_exit(&ill_g_lock); 19070 19071 if (err != 0) { 19072 /* 19073 * Our address may already be up on the same ill. In this case, 19074 * the ARP entry for our ipif replaced the one for the other 19075 * ipif. So we don't want to delete it (otherwise the other ipif 19076 * would be unable to send packets). 19077 * ip_addr_availability_check() identifies this case for us and 19078 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 19079 * which is the expected error code. 19080 */ 19081 if (err == EADDRINUSE) { 19082 freemsg(ipif->ipif_arp_del_mp); 19083 ipif->ipif_arp_del_mp = NULL; 19084 err = EADDRNOTAVAIL; 19085 } 19086 ill->ill_ipif_up_count--; 19087 ipif->ipif_flags &= ~IPIF_UP; 19088 goto bad; 19089 } 19090 19091 /* 19092 * Add in all newly created IREs. ire_create_bcast() has 19093 * already checked for duplicates of the IRE_BROADCAST type. 19094 * We want to add before we call ifgrp_insert which wants 19095 * to know whether IRE_IF_RESOLVER exists or not. 19096 * 19097 * NOTE : We refrele the ire though we may branch to "bad" 19098 * later on where we do ire_delete. This is okay 19099 * because nobody can delete it as we are running 19100 * exclusively. 19101 */ 19102 for (irep1 = irep; irep1 > ire_array; ) { 19103 irep1--; 19104 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 19105 /* 19106 * refheld by ire_add. refele towards the end of the func 19107 */ 19108 (void) ire_add(irep1, NULL, NULL, NULL); 19109 } 19110 ire_added = B_TRUE; 19111 /* 19112 * Form groups if possible. 19113 * 19114 * If we are supposed to be in a ill_group with a name, insert it 19115 * now as we know that at least one ipif is UP. Otherwise form 19116 * nameless groups. 19117 * 19118 * If ip_enable_group_ifs is set and ipif address is not 0, insert 19119 * this ipif into the appropriate interface group, or create a 19120 * new one. If this is already in a nameless group, we try to form 19121 * a bigger group looking at other ills potentially sharing this 19122 * ipif's prefix. 19123 */ 19124 phyi = ill->ill_phyint; 19125 if (phyi->phyint_groupname_len != 0) { 19126 ASSERT(phyi->phyint_groupname != NULL); 19127 if (ill->ill_ipif_up_count == 1) { 19128 ASSERT(ill->ill_group == NULL); 19129 err = illgrp_insert(&illgrp_head_v4, ill, 19130 phyi->phyint_groupname, NULL, B_TRUE); 19131 if (err != 0) { 19132 ip1dbg(("ipif_up_done: illgrp allocation " 19133 "failed, error %d\n", err)); 19134 goto bad; 19135 } 19136 } 19137 ASSERT(ill->ill_group != NULL); 19138 } 19139 19140 /* 19141 * When this is part of group, we need to make sure that 19142 * any broadcast ires created because of this ipif coming 19143 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 19144 * so that we don't receive duplicate broadcast packets. 19145 */ 19146 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 19147 ipif_renominate_bcast(ipif); 19148 19149 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 19150 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 19151 ipif_saved_irep = ipif_recover_ire(ipif); 19152 19153 if (!loopback) { 19154 /* 19155 * If the broadcast address has been set, make sure it makes 19156 * sense based on the interface address. 19157 * Only match on ill since we are sharing broadcast addresses. 19158 */ 19159 if ((ipif->ipif_brd_addr != INADDR_ANY) && 19160 (ipif->ipif_flags & IPIF_BROADCAST)) { 19161 ire_t *ire; 19162 19163 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 19164 IRE_BROADCAST, ipif, ALL_ZONES, 19165 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19166 19167 if (ire == NULL) { 19168 /* 19169 * If there isn't a matching broadcast IRE, 19170 * revert to the default for this netmask. 19171 */ 19172 ipif->ipif_v6brd_addr = ipv6_all_zeros; 19173 mutex_enter(&ipif->ipif_ill->ill_lock); 19174 ipif_set_default(ipif); 19175 mutex_exit(&ipif->ipif_ill->ill_lock); 19176 } else { 19177 ire_refrele(ire); 19178 } 19179 } 19180 19181 } 19182 19183 19184 /* This is the first interface on this ill */ 19185 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 19186 /* 19187 * Need to recover all multicast memberships in the driver. 19188 * This had to be deferred until we had attached. 19189 */ 19190 ill_recover_multicast(ill); 19191 } 19192 /* Join the allhosts multicast address */ 19193 ipif_multicast_up(ipif); 19194 19195 if (!loopback) { 19196 /* 19197 * See whether anybody else would benefit from the 19198 * new ipif that we added. We call this always rather 19199 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 19200 * ipif is for the benefit of illgrp_insert (done above) 19201 * which does not do source address selection as it does 19202 * not want to re-create interface routes that we are 19203 * having reference to it here. 19204 */ 19205 ill_update_source_selection(ill); 19206 } 19207 19208 for (irep1 = irep; irep1 > ire_array; ) { 19209 irep1--; 19210 if (*irep1 != NULL) { 19211 /* was held in ire_add */ 19212 ire_refrele(*irep1); 19213 } 19214 } 19215 19216 cnt = ipif_saved_ire_cnt; 19217 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 19218 if (*irep1 != NULL) { 19219 /* was held in ire_add */ 19220 ire_refrele(*irep1); 19221 } 19222 } 19223 19224 /* 19225 * This had to be deferred until we had bound. 19226 * tell routing sockets that this interface is up 19227 */ 19228 ip_rts_ifmsg(ipif); 19229 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 19230 19231 if (!loopback) { 19232 /* Broadcast an address mask reply. */ 19233 ipif_mask_reply(ipif); 19234 } 19235 if (ipif_saved_irep != NULL) { 19236 kmem_free(ipif_saved_irep, 19237 ipif_saved_ire_cnt * sizeof (ire_t *)); 19238 } 19239 if (src_ipif_held) 19240 ipif_refrele(src_ipif); 19241 /* Let SCTP update the status for this ipif */ 19242 sctp_update_ipif(ipif, SCTP_IPIF_UP); 19243 return (0); 19244 19245 bad: 19246 ip1dbg(("ipif_up_done: FAILED \n")); 19247 /* 19248 * We don't have to bother removing from ill groups because 19249 * 19250 * 1) For groups with names, we insert only when the first ipif 19251 * comes up. In that case if it fails, it will not be in any 19252 * group. So, we need not try to remove for that case. 19253 * 19254 * 2) For groups without names, either we tried to insert ipif_ill 19255 * in a group as singleton or found some other group to become 19256 * a bigger group. For the former, if it fails we don't have 19257 * anything to do as ipif_ill is not in the group and for the 19258 * latter, there are no failures in illgrp_insert/illgrp_delete 19259 * (ENOMEM can't occur for this. Check ifgrp_insert). 19260 */ 19261 while (irep > ire_array) { 19262 irep--; 19263 if (*irep != NULL) { 19264 ire_delete(*irep); 19265 if (ire_added) 19266 ire_refrele(*irep); 19267 } 19268 } 19269 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 19270 19271 if (ipif_saved_irep != NULL) { 19272 kmem_free(ipif_saved_irep, 19273 ipif_saved_ire_cnt * sizeof (ire_t *)); 19274 } 19275 if (src_ipif_held) 19276 ipif_refrele(src_ipif); 19277 19278 ipif_arp_down(ipif); 19279 return (err); 19280 } 19281 19282 /* 19283 * Turn off the ARP with the ILLF_NOARP flag. 19284 */ 19285 static int 19286 ill_arp_off(ill_t *ill) 19287 { 19288 mblk_t *arp_off_mp = NULL; 19289 mblk_t *arp_on_mp = NULL; 19290 19291 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 19292 19293 ASSERT(IAM_WRITER_ILL(ill)); 19294 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19295 19296 /* 19297 * If the on message is still around we've already done 19298 * an arp_off without doing an arp_on thus there is no 19299 * work needed. 19300 */ 19301 if (ill->ill_arp_on_mp != NULL) 19302 return (0); 19303 19304 /* 19305 * Allocate an ARP on message (to be saved) and an ARP off message 19306 */ 19307 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 19308 if (!arp_off_mp) 19309 return (ENOMEM); 19310 19311 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 19312 if (!arp_on_mp) 19313 goto failed; 19314 19315 ASSERT(ill->ill_arp_on_mp == NULL); 19316 ill->ill_arp_on_mp = arp_on_mp; 19317 19318 /* Send an AR_INTERFACE_OFF request */ 19319 putnext(ill->ill_rq, arp_off_mp); 19320 return (0); 19321 failed: 19322 19323 if (arp_off_mp) 19324 freemsg(arp_off_mp); 19325 return (ENOMEM); 19326 } 19327 19328 /* 19329 * Turn on ARP by turning off the ILLF_NOARP flag. 19330 */ 19331 static int 19332 ill_arp_on(ill_t *ill) 19333 { 19334 mblk_t *mp; 19335 19336 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 19337 19338 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19339 19340 ASSERT(IAM_WRITER_ILL(ill)); 19341 /* 19342 * Send an AR_INTERFACE_ON request if we have already done 19343 * an arp_off (which allocated the message). 19344 */ 19345 if (ill->ill_arp_on_mp != NULL) { 19346 mp = ill->ill_arp_on_mp; 19347 ill->ill_arp_on_mp = NULL; 19348 putnext(ill->ill_rq, mp); 19349 } 19350 return (0); 19351 } 19352 19353 /* 19354 * Called after either deleting ill from the group or when setting 19355 * FAILED or STANDBY on the interface. 19356 */ 19357 static void 19358 illgrp_reset_schednext(ill_t *ill) 19359 { 19360 ill_group_t *illgrp; 19361 ill_t *save_ill; 19362 19363 ASSERT(IAM_WRITER_ILL(ill)); 19364 /* 19365 * When called from illgrp_delete, ill_group will be non-NULL. 19366 * But when called from ip_sioctl_flags, it could be NULL if 19367 * somebody is setting FAILED/INACTIVE on some interface which 19368 * is not part of a group. 19369 */ 19370 illgrp = ill->ill_group; 19371 if (illgrp == NULL) 19372 return; 19373 if (illgrp->illgrp_ill_schednext != ill) 19374 return; 19375 19376 illgrp->illgrp_ill_schednext = NULL; 19377 save_ill = ill; 19378 /* 19379 * Choose a good ill to be the next one for 19380 * outbound traffic. As the flags FAILED/STANDBY is 19381 * not yet marked when called from ip_sioctl_flags, 19382 * we check for ill separately. 19383 */ 19384 for (ill = illgrp->illgrp_ill; ill != NULL; 19385 ill = ill->ill_group_next) { 19386 if ((ill != save_ill) && 19387 !(ill->ill_phyint->phyint_flags & 19388 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 19389 illgrp->illgrp_ill_schednext = ill; 19390 return; 19391 } 19392 } 19393 } 19394 19395 /* 19396 * Given an ill, find the next ill in the group to be scheduled. 19397 * (This should be called by ip_newroute() before ire_create().) 19398 * The passed in ill may be pulled out of the group, after we have picked 19399 * up a different outgoing ill from the same group. However ire add will 19400 * atomically check this. 19401 */ 19402 ill_t * 19403 illgrp_scheduler(ill_t *ill) 19404 { 19405 ill_t *retill; 19406 ill_group_t *illgrp; 19407 int illcnt; 19408 int i; 19409 uint64_t flags; 19410 19411 /* 19412 * We don't use a lock to check for the ill_group. If this ill 19413 * is currently being inserted we may end up just returning this 19414 * ill itself. That is ok. 19415 */ 19416 if (ill->ill_group == NULL) { 19417 ill_refhold(ill); 19418 return (ill); 19419 } 19420 19421 /* 19422 * Grab the ill_g_lock as reader to make sure we are dealing with 19423 * a set of stable ills. No ill can be added or deleted or change 19424 * group while we hold the reader lock. 19425 */ 19426 rw_enter(&ill_g_lock, RW_READER); 19427 if ((illgrp = ill->ill_group) == NULL) { 19428 rw_exit(&ill_g_lock); 19429 ill_refhold(ill); 19430 return (ill); 19431 } 19432 19433 illcnt = illgrp->illgrp_ill_count; 19434 mutex_enter(&illgrp->illgrp_lock); 19435 retill = illgrp->illgrp_ill_schednext; 19436 19437 if (retill == NULL) 19438 retill = illgrp->illgrp_ill; 19439 19440 /* 19441 * We do a circular search beginning at illgrp_ill_schednext 19442 * or illgrp_ill. We don't check the flags against the ill lock 19443 * since it can change anytime. The ire creation will be atomic 19444 * and will fail if the ill is FAILED or OFFLINE. 19445 */ 19446 for (i = 0; i < illcnt; i++) { 19447 flags = retill->ill_phyint->phyint_flags; 19448 19449 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 19450 ILL_CAN_LOOKUP(retill)) { 19451 illgrp->illgrp_ill_schednext = retill->ill_group_next; 19452 ill_refhold(retill); 19453 break; 19454 } 19455 retill = retill->ill_group_next; 19456 if (retill == NULL) 19457 retill = illgrp->illgrp_ill; 19458 } 19459 mutex_exit(&illgrp->illgrp_lock); 19460 rw_exit(&ill_g_lock); 19461 19462 return (i == illcnt ? NULL : retill); 19463 } 19464 19465 /* 19466 * Checks for availbility of a usable source address (if there is one) when the 19467 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 19468 * this selection is done regardless of the destination. 19469 */ 19470 boolean_t 19471 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 19472 { 19473 uint_t ifindex; 19474 ipif_t *ipif = NULL; 19475 ill_t *uill; 19476 boolean_t isv6; 19477 19478 ASSERT(ill != NULL); 19479 19480 isv6 = ill->ill_isv6; 19481 ifindex = ill->ill_usesrc_ifindex; 19482 if (ifindex != 0) { 19483 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 19484 NULL); 19485 if (uill == NULL) 19486 return (NULL); 19487 mutex_enter(&uill->ill_lock); 19488 for (ipif = uill->ill_ipif; ipif != NULL; 19489 ipif = ipif->ipif_next) { 19490 if (!IPIF_CAN_LOOKUP(ipif)) 19491 continue; 19492 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19493 continue; 19494 if (!(ipif->ipif_flags & IPIF_UP)) 19495 continue; 19496 if (ipif->ipif_zoneid != zoneid) 19497 continue; 19498 if ((isv6 && 19499 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 19500 (ipif->ipif_lcl_addr == INADDR_ANY)) 19501 continue; 19502 mutex_exit(&uill->ill_lock); 19503 ill_refrele(uill); 19504 return (B_TRUE); 19505 } 19506 mutex_exit(&uill->ill_lock); 19507 ill_refrele(uill); 19508 } 19509 return (B_FALSE); 19510 } 19511 19512 /* 19513 * Determine the best source address given a destination address and an ill. 19514 * Prefers non-deprecated over deprecated but will return a deprecated 19515 * address if there is no other choice. If there is a usable source address 19516 * on the interface pointed to by ill_usesrc_ifindex then that is given 19517 * first preference. 19518 * 19519 * Returns NULL if there is no suitable source address for the ill. 19520 * This only occurs when there is no valid source address for the ill. 19521 */ 19522 ipif_t * 19523 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 19524 { 19525 ipif_t *ipif; 19526 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 19527 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 19528 int index = 0; 19529 boolean_t wrapped = B_FALSE; 19530 boolean_t same_subnet_only = B_FALSE; 19531 boolean_t ipif_same_found, ipif_other_found; 19532 ill_t *till, *usill = NULL; 19533 19534 if (ill->ill_usesrc_ifindex != 0) { 19535 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 19536 NULL, NULL, NULL, NULL); 19537 if (usill != NULL) 19538 ill = usill; /* Select source from usesrc ILL */ 19539 else 19540 return (NULL); 19541 } 19542 19543 /* 19544 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 19545 * can be deleted. But an ipif/ill can get CONDEMNED any time. 19546 * After selecting the right ipif, under ill_lock make sure ipif is 19547 * not condemned, and increment refcnt. If ipif is CONDEMNED, 19548 * we retry. Inside the loop we still need to check for CONDEMNED, 19549 * but not under a lock. 19550 */ 19551 rw_enter(&ill_g_lock, RW_READER); 19552 19553 retry: 19554 till = ill; 19555 ipif_arr[0] = NULL; 19556 19557 if (till->ill_group != NULL) 19558 till = till->ill_group->illgrp_ill; 19559 19560 /* 19561 * Choose one good source address from each ill across the group. 19562 * If possible choose a source address in the same subnet as 19563 * the destination address. 19564 * 19565 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 19566 * This is okay because of the following. 19567 * 19568 * If PHYI_FAILED is set and we still have non-deprecated 19569 * addresses, it means the addresses have not yet been 19570 * failed over to a different interface. We potentially 19571 * select them to create IRE_CACHES, which will be later 19572 * flushed when the addresses move over. 19573 * 19574 * If PHYI_INACTIVE is set and we still have non-deprecated 19575 * addresses, it means either the user has configured them 19576 * or PHYI_INACTIVE has not been cleared after the addresses 19577 * been moved over. For the former, in.mpathd does a failover 19578 * when the interface becomes INACTIVE and hence we should 19579 * not find them. Once INACTIVE is set, we don't allow them 19580 * to create logical interfaces anymore. For the latter, a 19581 * flush will happen when INACTIVE is cleared which will 19582 * flush the IRE_CACHES. 19583 * 19584 * If PHYI_OFFLINE is set, all the addresses will be failed 19585 * over soon. We potentially select them to create IRE_CACHEs, 19586 * which will be later flushed when the addresses move over. 19587 * 19588 * NOTE : As ipif_select_source is called to borrow source address 19589 * for an ipif that is part of a group, source address selection 19590 * will be re-done whenever the group changes i.e either an 19591 * insertion/deletion in the group. 19592 * 19593 * Fill ipif_arr[] with source addresses, using these rules: 19594 * 19595 * 1. At most one source address from a given ill ends up 19596 * in ipif_arr[] -- that is, at most one of the ipif's 19597 * associated with a given ill ends up in ipif_arr[]. 19598 * 19599 * 2. If there is at least one non-deprecated ipif in the 19600 * IPMP group with a source address on the same subnet as 19601 * our destination, then fill ipif_arr[] only with 19602 * source addresses on the same subnet as our destination. 19603 * Note that because of (1), only the first 19604 * non-deprecated ipif found with a source address 19605 * matching the destination ends up in ipif_arr[]. 19606 * 19607 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 19608 * addresses not in the same subnet as our destination. 19609 * Again, because of (1), only the first off-subnet source 19610 * address will be chosen. 19611 * 19612 * 4. If there are no non-deprecated ipifs, then just use 19613 * the source address associated with the last deprecated 19614 * one we find that happens to be on the same subnet, 19615 * otherwise the first one not in the same subnet. 19616 */ 19617 for (; till != NULL; till = till->ill_group_next) { 19618 ipif_same_found = B_FALSE; 19619 ipif_other_found = B_FALSE; 19620 for (ipif = till->ill_ipif; ipif != NULL; 19621 ipif = ipif->ipif_next) { 19622 if (!IPIF_CAN_LOOKUP(ipif)) 19623 continue; 19624 /* Always skip NOLOCAL and ANYCAST interfaces */ 19625 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19626 continue; 19627 if (!(ipif->ipif_flags & IPIF_UP)) 19628 continue; 19629 if (ipif->ipif_zoneid != zoneid) 19630 continue; 19631 /* 19632 * Interfaces with 0.0.0.0 address are allowed to be UP, 19633 * but are not valid as source addresses. 19634 */ 19635 if (ipif->ipif_lcl_addr == INADDR_ANY) 19636 continue; 19637 if (ipif->ipif_flags & IPIF_DEPRECATED) { 19638 if (ipif_dep == NULL || 19639 (ipif->ipif_net_mask & dst) == 19640 ipif->ipif_subnet) 19641 ipif_dep = ipif; 19642 continue; 19643 } 19644 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 19645 /* found a source address in the same subnet */ 19646 if (same_subnet_only == B_FALSE) { 19647 same_subnet_only = B_TRUE; 19648 index = 0; 19649 } 19650 ipif_same_found = B_TRUE; 19651 } else { 19652 if (same_subnet_only == B_TRUE || 19653 ipif_other_found == B_TRUE) 19654 continue; 19655 ipif_other_found = B_TRUE; 19656 } 19657 ipif_arr[index++] = ipif; 19658 if (index == MAX_IPIF_SELECT_SOURCE) { 19659 wrapped = B_TRUE; 19660 index = 0; 19661 } 19662 if (ipif_same_found == B_TRUE) 19663 break; 19664 } 19665 } 19666 19667 if (ipif_arr[0] == NULL) { 19668 ipif = ipif_dep; 19669 } else { 19670 if (wrapped) 19671 index = MAX_IPIF_SELECT_SOURCE; 19672 ipif = ipif_arr[ipif_rand() % index]; 19673 ASSERT(ipif != NULL); 19674 } 19675 19676 if (ipif != NULL) { 19677 mutex_enter(&ipif->ipif_ill->ill_lock); 19678 if (!IPIF_CAN_LOOKUP(ipif)) { 19679 mutex_exit(&ipif->ipif_ill->ill_lock); 19680 goto retry; 19681 } 19682 ipif_refhold_locked(ipif); 19683 mutex_exit(&ipif->ipif_ill->ill_lock); 19684 } 19685 19686 rw_exit(&ill_g_lock); 19687 if (usill != NULL) 19688 ill_refrele(usill); 19689 19690 #ifdef DEBUG 19691 if (ipif == NULL) { 19692 char buf1[INET6_ADDRSTRLEN]; 19693 19694 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 19695 ill->ill_name, 19696 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 19697 } else { 19698 char buf1[INET6_ADDRSTRLEN]; 19699 char buf2[INET6_ADDRSTRLEN]; 19700 19701 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 19702 ipif->ipif_ill->ill_name, 19703 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 19704 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 19705 buf2, sizeof (buf2)))); 19706 } 19707 #endif /* DEBUG */ 19708 return (ipif); 19709 } 19710 19711 19712 /* 19713 * If old_ipif is not NULL, see if ipif was derived from old 19714 * ipif and if so, recreate the interface route by re-doing 19715 * source address selection. This happens when ipif_down -> 19716 * ipif_update_other_ipifs calls us. 19717 * 19718 * If old_ipif is NULL, just redo the source address selection 19719 * if needed. This happens when illgrp_insert or ipif_up_done 19720 * calls us. 19721 */ 19722 static void 19723 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 19724 { 19725 ire_t *ire; 19726 ire_t *ipif_ire; 19727 queue_t *stq; 19728 ipif_t *nipif; 19729 ill_t *ill; 19730 boolean_t need_rele = B_FALSE; 19731 19732 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 19733 ASSERT(IAM_WRITER_IPIF(ipif)); 19734 19735 ill = ipif->ipif_ill; 19736 if (!(ipif->ipif_flags & 19737 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 19738 /* 19739 * Can't possibly have borrowed the source 19740 * from old_ipif. 19741 */ 19742 return; 19743 } 19744 19745 /* 19746 * Is there any work to be done? No work if the address 19747 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 19748 * ipif_select_source() does not borrow addresses from 19749 * NOLOCAL and ANYCAST interfaces). 19750 */ 19751 if ((old_ipif != NULL) && 19752 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 19753 (old_ipif->ipif_ill->ill_wq == NULL) || 19754 (old_ipif->ipif_flags & 19755 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 19756 return; 19757 } 19758 19759 /* 19760 * Perform the same checks as when creating the 19761 * IRE_INTERFACE in ipif_up_done. 19762 */ 19763 if (!(ipif->ipif_flags & IPIF_UP)) 19764 return; 19765 19766 if ((ipif->ipif_flags & IPIF_NOXMIT) || 19767 (ipif->ipif_subnet == INADDR_ANY)) 19768 return; 19769 19770 ipif_ire = ipif_to_ire(ipif); 19771 if (ipif_ire == NULL) 19772 return; 19773 19774 /* 19775 * We know that ipif uses some other source for its 19776 * IRE_INTERFACE. Is it using the source of this 19777 * old_ipif? 19778 */ 19779 if (old_ipif != NULL && 19780 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 19781 ire_refrele(ipif_ire); 19782 return; 19783 } 19784 if (ip_debug > 2) { 19785 /* ip1dbg */ 19786 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 19787 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 19788 } 19789 19790 stq = ipif_ire->ire_stq; 19791 19792 /* 19793 * Can't use our source address. Select a different 19794 * source address for the IRE_INTERFACE. 19795 */ 19796 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 19797 if (nipif == NULL) { 19798 /* Last resort - all ipif's have IPIF_NOLOCAL */ 19799 nipif = ipif; 19800 } else { 19801 need_rele = B_TRUE; 19802 } 19803 19804 ire = ire_create( 19805 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 19806 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 19807 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 19808 NULL, /* no gateway */ 19809 NULL, 19810 &ipif->ipif_mtu, /* max frag */ 19811 NULL, /* fast path header */ 19812 NULL, /* no recv from queue */ 19813 stq, /* send-to queue */ 19814 ill->ill_net_type, /* IF_[NO]RESOLVER */ 19815 ill->ill_resolver_mp, /* xmit header */ 19816 ipif, 19817 NULL, 19818 0, 19819 0, 19820 0, 19821 0, 19822 &ire_uinfo_null); 19823 19824 if (ire != NULL) { 19825 ire_t *ret_ire; 19826 int error; 19827 19828 /* 19829 * We don't need ipif_ire anymore. We need to delete 19830 * before we add so that ire_add does not detect 19831 * duplicates. 19832 */ 19833 ire_delete(ipif_ire); 19834 ret_ire = ire; 19835 error = ire_add(&ret_ire, NULL, NULL, NULL); 19836 ASSERT(error == 0); 19837 ASSERT(ire == ret_ire); 19838 /* Held in ire_add */ 19839 ire_refrele(ret_ire); 19840 } 19841 /* 19842 * Either we are falling through from above or could not 19843 * allocate a replacement. 19844 */ 19845 ire_refrele(ipif_ire); 19846 if (need_rele) 19847 ipif_refrele(nipif); 19848 } 19849 19850 /* 19851 * This old_ipif is going away. 19852 * 19853 * Determine if any other ipif's is using our address as 19854 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 19855 * IPIF_DEPRECATED). 19856 * Find the IRE_INTERFACE for such ipifs and recreate them 19857 * to use an different source address following the rules in 19858 * ipif_up_done. 19859 * 19860 * This function takes an illgrp as an argument so that illgrp_delete 19861 * can call this to update source address even after deleting the 19862 * old_ipif->ipif_ill from the ill group. 19863 */ 19864 static void 19865 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 19866 { 19867 ipif_t *ipif; 19868 ill_t *ill; 19869 char buf[INET6_ADDRSTRLEN]; 19870 19871 ASSERT(IAM_WRITER_IPIF(old_ipif)); 19872 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 19873 19874 ill = old_ipif->ipif_ill; 19875 19876 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 19877 ill->ill_name, 19878 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 19879 buf, sizeof (buf)))); 19880 /* 19881 * If this part of a group, look at all ills as ipif_select_source 19882 * borrows source address across all the ills in the group. 19883 */ 19884 if (illgrp != NULL) 19885 ill = illgrp->illgrp_ill; 19886 19887 for (; ill != NULL; ill = ill->ill_group_next) { 19888 for (ipif = ill->ill_ipif; ipif != NULL; 19889 ipif = ipif->ipif_next) { 19890 19891 if (ipif == old_ipif) 19892 continue; 19893 19894 ipif_recreate_interface_routes(old_ipif, ipif); 19895 } 19896 } 19897 } 19898 19899 /* ARGSUSED */ 19900 int 19901 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19902 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19903 { 19904 /* 19905 * ill_phyint_reinit merged the v4 and v6 into a single 19906 * ipsq. Could also have become part of a ipmp group in the 19907 * process, and we might not have been able to complete the 19908 * operation in ipif_set_values, if we could not become 19909 * exclusive. If so restart it here. 19910 */ 19911 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 19912 } 19913 19914 19915 /* ARGSUSED */ 19916 int 19917 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19918 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19919 { 19920 queue_t *q1 = q; 19921 char *cp; 19922 char interf_name[LIFNAMSIZ]; 19923 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 19924 19925 if (!q->q_next) { 19926 ip1dbg(( 19927 "if_unitsel: IF_UNITSEL: no q_next\n")); 19928 return (EINVAL); 19929 } 19930 19931 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 19932 return (EALREADY); 19933 19934 do { 19935 q1 = q1->q_next; 19936 } while (q1->q_next); 19937 cp = q1->q_qinfo->qi_minfo->mi_idname; 19938 (void) sprintf(interf_name, "%s%d", cp, ppa); 19939 19940 /* 19941 * Here we are not going to delay the ioack until after 19942 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 19943 * original ioctl message before sending the requests. 19944 */ 19945 return (ipif_set_values(q, mp, interf_name, &ppa)); 19946 } 19947 19948 /* ARGSUSED */ 19949 int 19950 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19951 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19952 { 19953 return (ENXIO); 19954 } 19955 19956 /* 19957 * Net and subnet broadcast ire's are now specific to the particular 19958 * physical interface (ill) and not to any one locigal interface (ipif). 19959 * However, if a particular logical interface is being taken down, it's 19960 * associated ire's will be taken down as well. Hence, when we go to 19961 * take down or change the local address, broadcast address or netmask 19962 * of a specific logical interface, we must check to make sure that we 19963 * have valid net and subnet broadcast ire's for the other logical 19964 * interfaces which may have been shared with the logical interface 19965 * being brought down or changed. 19966 * 19967 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 19968 * is tied to the first interface coming UP. If that ipif is going down, 19969 * we need to recreate them on the next valid ipif. 19970 * 19971 * Note: assume that the ipif passed in is still up so that it's IRE 19972 * entries are still valid. 19973 */ 19974 static void 19975 ipif_check_bcast_ires(ipif_t *test_ipif) 19976 { 19977 ipif_t *ipif; 19978 ire_t *test_subnet_ire, *test_net_ire; 19979 ire_t *test_allzero_ire, *test_allone_ire; 19980 ire_t *ire_array[12]; 19981 ire_t **irep = &ire_array[0]; 19982 ire_t **irep1; 19983 19984 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 19985 ipaddr_t test_net_addr, test_subnet_addr; 19986 ipaddr_t test_net_mask, test_subnet_mask; 19987 boolean_t need_net_bcast_ire = B_FALSE; 19988 boolean_t need_subnet_bcast_ire = B_FALSE; 19989 boolean_t allzero_bcast_ire_created = B_FALSE; 19990 boolean_t allone_bcast_ire_created = B_FALSE; 19991 boolean_t net_bcast_ire_created = B_FALSE; 19992 boolean_t subnet_bcast_ire_created = B_FALSE; 19993 19994 ipif_t *backup_ipif_net = (ipif_t *)NULL; 19995 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 19996 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 19997 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 19998 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 19999 20000 ASSERT(!test_ipif->ipif_isv6); 20001 ASSERT(IAM_WRITER_IPIF(test_ipif)); 20002 20003 /* 20004 * No broadcast IREs for the LOOPBACK interface 20005 * or others such as point to point and IPIF_NOXMIT. 20006 */ 20007 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 20008 (test_ipif->ipif_flags & IPIF_NOXMIT)) 20009 return; 20010 20011 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 20012 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20013 20014 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 20015 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20016 20017 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 20018 test_subnet_mask = test_ipif->ipif_net_mask; 20019 20020 /* 20021 * If no net mask set, assume the default based on net class. 20022 */ 20023 if (test_subnet_mask == 0) 20024 test_subnet_mask = test_net_mask; 20025 20026 /* 20027 * Check if there is a network broadcast ire associated with this ipif 20028 */ 20029 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 20030 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 20031 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20032 20033 /* 20034 * Check if there is a subnet broadcast IRE associated with this ipif 20035 */ 20036 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 20037 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 20038 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20039 20040 /* 20041 * No broadcast ire's associated with this ipif. 20042 */ 20043 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 20044 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 20045 return; 20046 } 20047 20048 /* 20049 * We have established which bcast ires have to be replaced. 20050 * Next we try to locate ipifs that match there ires. 20051 * The rules are simple: If we find an ipif that matches on the subnet 20052 * address it will also match on the net address, the allzeros and 20053 * allones address. Any ipif that matches only on the net address will 20054 * also match the allzeros and allones addresses. 20055 * The other criterion is the ipif_flags. We look for non-deprecated 20056 * (and non-anycast and non-nolocal) ipifs as the best choice. 20057 * ipifs with check_flags matching (deprecated, etc) are used only 20058 * if good ipifs are not available. While looping, we save existing 20059 * deprecated ipifs as backup_ipif. 20060 * We loop through all the ipifs for this ill looking for ipifs 20061 * whose broadcast addr match the ipif passed in, but do not have 20062 * their own broadcast ires. For creating 0.0.0.0 and 20063 * 255.255.255.255 we just need an ipif on this ill to create. 20064 */ 20065 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 20066 ipif = ipif->ipif_next) { 20067 20068 ASSERT(!ipif->ipif_isv6); 20069 /* 20070 * Already checked the ipif passed in. 20071 */ 20072 if (ipif == test_ipif) { 20073 continue; 20074 } 20075 20076 /* 20077 * We only need to recreate broadcast ires if another ipif in 20078 * the same zone uses them. The new ires must be created in the 20079 * same zone. 20080 */ 20081 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 20082 continue; 20083 } 20084 20085 /* 20086 * Only interested in logical interfaces with valid local 20087 * addresses or with the ability to broadcast. 20088 */ 20089 if ((ipif->ipif_subnet == 0) || 20090 !(ipif->ipif_flags & IPIF_BROADCAST) || 20091 (ipif->ipif_flags & IPIF_NOXMIT) || 20092 !(ipif->ipif_flags & IPIF_UP)) { 20093 continue; 20094 } 20095 /* 20096 * Check if there is a net broadcast ire for this 20097 * net address. If it turns out that the ipif we are 20098 * about to take down owns this ire, we must make a 20099 * new one because it is potentially going away. 20100 */ 20101 if (test_net_ire && (!net_bcast_ire_created)) { 20102 net_mask = ip_net_mask(ipif->ipif_subnet); 20103 net_addr = net_mask & ipif->ipif_subnet; 20104 if (net_addr == test_net_addr) { 20105 need_net_bcast_ire = B_TRUE; 20106 /* 20107 * Use DEPRECATED ipif only if no good 20108 * ires are available. subnet_addr is 20109 * a better match than net_addr. 20110 */ 20111 if ((ipif->ipif_flags & check_flags) && 20112 (backup_ipif_net == NULL)) { 20113 backup_ipif_net = ipif; 20114 } 20115 } 20116 } 20117 /* 20118 * Check if there is a subnet broadcast ire for this 20119 * net address. If it turns out that the ipif we are 20120 * about to take down owns this ire, we must make a 20121 * new one because it is potentially going away. 20122 */ 20123 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 20124 subnet_mask = ipif->ipif_net_mask; 20125 subnet_addr = ipif->ipif_subnet; 20126 if (subnet_addr == test_subnet_addr) { 20127 need_subnet_bcast_ire = B_TRUE; 20128 if ((ipif->ipif_flags & check_flags) && 20129 (backup_ipif_subnet == NULL)) { 20130 backup_ipif_subnet = ipif; 20131 } 20132 } 20133 } 20134 20135 20136 /* Short circuit here if this ipif is deprecated */ 20137 if (ipif->ipif_flags & check_flags) { 20138 if ((test_allzero_ire != NULL) && 20139 (!allzero_bcast_ire_created) && 20140 (backup_ipif_allzeros == NULL)) { 20141 backup_ipif_allzeros = ipif; 20142 } 20143 if ((test_allone_ire != NULL) && 20144 (!allone_bcast_ire_created) && 20145 (backup_ipif_allones == NULL)) { 20146 backup_ipif_allones = ipif; 20147 } 20148 continue; 20149 } 20150 20151 /* 20152 * Found an ipif which has the same broadcast ire as the 20153 * ipif passed in and the ipif passed in "owns" the ire. 20154 * Create new broadcast ire's for this broadcast addr. 20155 */ 20156 if (need_net_bcast_ire && !net_bcast_ire_created) { 20157 irep = ire_create_bcast(ipif, net_addr, irep); 20158 irep = ire_create_bcast(ipif, 20159 ~net_mask | net_addr, irep); 20160 net_bcast_ire_created = B_TRUE; 20161 } 20162 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 20163 irep = ire_create_bcast(ipif, subnet_addr, irep); 20164 irep = ire_create_bcast(ipif, 20165 ~subnet_mask | subnet_addr, irep); 20166 subnet_bcast_ire_created = B_TRUE; 20167 } 20168 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 20169 irep = ire_create_bcast(ipif, 0, irep); 20170 allzero_bcast_ire_created = B_TRUE; 20171 } 20172 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 20173 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 20174 allone_bcast_ire_created = B_TRUE; 20175 } 20176 /* 20177 * Once we have created all the appropriate ires, we 20178 * just break out of this loop to add what we have created. 20179 * This has been indented similar to ire_match_args for 20180 * readability. 20181 */ 20182 if (((test_net_ire == NULL) || 20183 (net_bcast_ire_created)) && 20184 ((test_subnet_ire == NULL) || 20185 (subnet_bcast_ire_created)) && 20186 ((test_allzero_ire == NULL) || 20187 (allzero_bcast_ire_created)) && 20188 ((test_allone_ire == NULL) || 20189 (allone_bcast_ire_created))) { 20190 break; 20191 } 20192 } 20193 20194 /* 20195 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 20196 * exist. 6 pairs of bcast ires are needed. 20197 * Note - the old ires are deleted in ipif_down. 20198 */ 20199 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 20200 ipif = backup_ipif_net; 20201 irep = ire_create_bcast(ipif, net_addr, irep); 20202 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 20203 net_bcast_ire_created = B_TRUE; 20204 } 20205 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 20206 backup_ipif_subnet) { 20207 ipif = backup_ipif_subnet; 20208 irep = ire_create_bcast(ipif, subnet_addr, irep); 20209 irep = ire_create_bcast(ipif, 20210 ~subnet_mask | subnet_addr, irep); 20211 subnet_bcast_ire_created = B_TRUE; 20212 } 20213 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 20214 backup_ipif_allzeros) { 20215 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 20216 allzero_bcast_ire_created = B_TRUE; 20217 } 20218 if (test_allone_ire != NULL && !allone_bcast_ire_created && 20219 backup_ipif_allones) { 20220 irep = ire_create_bcast(backup_ipif_allones, 20221 INADDR_BROADCAST, irep); 20222 allone_bcast_ire_created = B_TRUE; 20223 } 20224 20225 /* 20226 * If we can't create all of them, don't add any of them. 20227 * Code in ip_wput_ire and ire_to_ill assumes that we 20228 * always have a non-loopback copy and loopback copy 20229 * for a given address. 20230 */ 20231 for (irep1 = irep; irep1 > ire_array; ) { 20232 irep1--; 20233 if (*irep1 == NULL) { 20234 ip0dbg(("ipif_check_bcast_ires: can't create " 20235 "IRE_BROADCAST, memory allocation failure\n")); 20236 while (irep > ire_array) { 20237 irep--; 20238 if (*irep != NULL) 20239 ire_delete(*irep); 20240 } 20241 goto bad; 20242 } 20243 } 20244 for (irep1 = irep; irep1 > ire_array; ) { 20245 int error; 20246 20247 irep1--; 20248 error = ire_add(irep1, NULL, NULL, NULL); 20249 if (error == 0) { 20250 ire_refrele(*irep1); /* Held in ire_add */ 20251 } 20252 } 20253 bad: 20254 if (test_allzero_ire != NULL) 20255 ire_refrele(test_allzero_ire); 20256 if (test_allone_ire != NULL) 20257 ire_refrele(test_allone_ire); 20258 if (test_net_ire != NULL) 20259 ire_refrele(test_net_ire); 20260 if (test_subnet_ire != NULL) 20261 ire_refrele(test_subnet_ire); 20262 } 20263 20264 /* 20265 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 20266 * from lifr_flags and the name from lifr_name. 20267 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 20268 * since ipif_lookup_on_name uses the _isv6 flags when matching. 20269 * Returns EINPROGRESS when mp has been consumed by queueing it on 20270 * ill_pending_mp and the ioctl will complete in ip_rput. 20271 */ 20272 /* ARGSUSED */ 20273 int 20274 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20275 ip_ioctl_cmd_t *ipip, void *if_req) 20276 { 20277 int err; 20278 ill_t *ill; 20279 struct lifreq *lifr = (struct lifreq *)if_req; 20280 20281 ASSERT(ipif != NULL); 20282 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 20283 ASSERT(q->q_next != NULL); 20284 20285 ill = (ill_t *)q->q_ptr; 20286 /* 20287 * If we are not writer on 'q' then this interface exists already 20288 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 20289 * So return EALREADY 20290 */ 20291 if (ill != ipif->ipif_ill) 20292 return (EALREADY); 20293 20294 if (ill->ill_name[0] != '\0') 20295 return (EALREADY); 20296 20297 /* 20298 * Set all the flags. Allows all kinds of override. Provide some 20299 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 20300 * unless there is either multicast/broadcast support in the driver 20301 * or it is a pt-pt link. 20302 */ 20303 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 20304 /* Meaningless to IP thus don't allow them to be set. */ 20305 ip1dbg(("ip_setname: EINVAL 1\n")); 20306 return (EINVAL); 20307 } 20308 /* 20309 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 20310 * ill_bcast_addr_length info. 20311 */ 20312 if (!ill->ill_needs_attach && 20313 ((lifr->lifr_flags & IFF_MULTICAST) && 20314 !(lifr->lifr_flags & IFF_POINTOPOINT) && 20315 ill->ill_bcast_addr_length == 0)) { 20316 /* Link not broadcast/pt-pt capable i.e. no multicast */ 20317 ip1dbg(("ip_setname: EINVAL 2\n")); 20318 return (EINVAL); 20319 } 20320 if ((lifr->lifr_flags & IFF_BROADCAST) && 20321 ((lifr->lifr_flags & IFF_IPV6) || 20322 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 20323 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 20324 ip1dbg(("ip_setname: EINVAL 3\n")); 20325 return (EINVAL); 20326 } 20327 if (lifr->lifr_flags & IFF_UP) { 20328 /* Can only be set with SIOCSLIFFLAGS */ 20329 ip1dbg(("ip_setname: EINVAL 4\n")); 20330 return (EINVAL); 20331 } 20332 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 20333 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 20334 ip1dbg(("ip_setname: EINVAL 5\n")); 20335 return (EINVAL); 20336 } 20337 /* 20338 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 20339 */ 20340 if ((lifr->lifr_flags & IFF_XRESOLV) && 20341 !(lifr->lifr_flags & IFF_IPV6) && 20342 !(ipif->ipif_isv6)) { 20343 ip1dbg(("ip_setname: EINVAL 6\n")); 20344 return (EINVAL); 20345 } 20346 20347 /* 20348 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 20349 * we have all the flags here. So, we assign rather than we OR. 20350 * We can't OR the flags here because we don't want to set 20351 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 20352 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 20353 * on lifr_flags value here. 20354 */ 20355 /* 20356 * This ill has not been inserted into the global list. 20357 * So we are still single threaded and don't need any lock 20358 */ 20359 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS; 20360 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 20361 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 20362 20363 /* We started off as V4. */ 20364 if (ill->ill_flags & ILLF_IPV6) { 20365 ill->ill_phyint->phyint_illv6 = ill; 20366 ill->ill_phyint->phyint_illv4 = NULL; 20367 } 20368 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 20369 return (err); 20370 } 20371 20372 /* ARGSUSED */ 20373 int 20374 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20375 ip_ioctl_cmd_t *ipip, void *if_req) 20376 { 20377 /* 20378 * ill_phyint_reinit merged the v4 and v6 into a single 20379 * ipsq. Could also have become part of a ipmp group in the 20380 * process, and we might not have been able to complete the 20381 * slifname in ipif_set_values, if we could not become 20382 * exclusive. If so restart it here 20383 */ 20384 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 20385 } 20386 20387 /* 20388 * Return a pointer to the ipif which matches the index, IP version type and 20389 * zoneid. 20390 */ 20391 ipif_t * 20392 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 20393 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 20394 { 20395 ill_t *ill; 20396 ipsq_t *ipsq; 20397 phyint_t *phyi; 20398 ipif_t *ipif; 20399 20400 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 20401 (q != NULL && mp != NULL && func != NULL && err != NULL)); 20402 20403 if (err != NULL) 20404 *err = 0; 20405 20406 /* 20407 * Indexes are stored in the phyint - a common structure 20408 * to both IPv4 and IPv6. 20409 */ 20410 20411 rw_enter(&ill_g_lock, RW_READER); 20412 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 20413 (void *) &index, NULL); 20414 if (phyi != NULL) { 20415 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 20416 if (ill == NULL) { 20417 rw_exit(&ill_g_lock); 20418 if (err != NULL) 20419 *err = ENXIO; 20420 return (NULL); 20421 } 20422 GRAB_CONN_LOCK(q); 20423 mutex_enter(&ill->ill_lock); 20424 if (ILL_CAN_LOOKUP(ill)) { 20425 for (ipif = ill->ill_ipif; ipif != NULL; 20426 ipif = ipif->ipif_next) { 20427 if (IPIF_CAN_LOOKUP(ipif) && 20428 (zoneid == ALL_ZONES || 20429 zoneid == ipif->ipif_zoneid)) { 20430 ipif_refhold_locked(ipif); 20431 mutex_exit(&ill->ill_lock); 20432 RELEASE_CONN_LOCK(q); 20433 rw_exit(&ill_g_lock); 20434 return (ipif); 20435 } 20436 } 20437 } else if (ILL_CAN_WAIT(ill, q)) { 20438 ipsq = ill->ill_phyint->phyint_ipsq; 20439 mutex_enter(&ipsq->ipsq_lock); 20440 rw_exit(&ill_g_lock); 20441 mutex_exit(&ill->ill_lock); 20442 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 20443 mutex_exit(&ipsq->ipsq_lock); 20444 RELEASE_CONN_LOCK(q); 20445 *err = EINPROGRESS; 20446 return (NULL); 20447 } 20448 mutex_exit(&ill->ill_lock); 20449 RELEASE_CONN_LOCK(q); 20450 } 20451 rw_exit(&ill_g_lock); 20452 if (err != NULL) 20453 *err = ENXIO; 20454 return (NULL); 20455 } 20456 20457 typedef struct conn_change_s { 20458 uint_t cc_old_ifindex; 20459 uint_t cc_new_ifindex; 20460 } conn_change_t; 20461 20462 /* 20463 * ipcl_walk function for changing interface index. 20464 */ 20465 static void 20466 conn_change_ifindex(conn_t *connp, caddr_t arg) 20467 { 20468 conn_change_t *connc; 20469 uint_t old_ifindex; 20470 uint_t new_ifindex; 20471 int i; 20472 ilg_t *ilg; 20473 20474 connc = (conn_change_t *)arg; 20475 old_ifindex = connc->cc_old_ifindex; 20476 new_ifindex = connc->cc_new_ifindex; 20477 20478 if (connp->conn_orig_bound_ifindex == old_ifindex) 20479 connp->conn_orig_bound_ifindex = new_ifindex; 20480 20481 if (connp->conn_orig_multicast_ifindex == old_ifindex) 20482 connp->conn_orig_multicast_ifindex = new_ifindex; 20483 20484 if (connp->conn_orig_xmit_ifindex == old_ifindex) 20485 connp->conn_orig_xmit_ifindex = new_ifindex; 20486 20487 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 20488 ilg = &connp->conn_ilg[i]; 20489 if (ilg->ilg_orig_ifindex == old_ifindex) 20490 ilg->ilg_orig_ifindex = new_ifindex; 20491 } 20492 } 20493 20494 /* 20495 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 20496 * to new_index if it matches the old_index. 20497 * 20498 * Failovers typically happen within a group of ills. But somebody 20499 * can remove an ill from the group after a failover happened. If 20500 * we are setting the ifindex after this, we potentially need to 20501 * look at all the ills rather than just the ones in the group. 20502 * We cut down the work by looking at matching ill_net_types 20503 * and ill_types as we could not possibly grouped them together. 20504 */ 20505 static void 20506 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 20507 { 20508 ill_t *ill; 20509 ipif_t *ipif; 20510 uint_t old_ifindex; 20511 uint_t new_ifindex; 20512 ilm_t *ilm; 20513 ill_walk_context_t ctx; 20514 20515 old_ifindex = connc->cc_old_ifindex; 20516 new_ifindex = connc->cc_new_ifindex; 20517 20518 rw_enter(&ill_g_lock, RW_READER); 20519 ill = ILL_START_WALK_ALL(&ctx); 20520 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 20521 if ((ill_orig->ill_net_type != ill->ill_net_type) || 20522 (ill_orig->ill_type != ill->ill_type)) { 20523 continue; 20524 } 20525 for (ipif = ill->ill_ipif; ipif != NULL; 20526 ipif = ipif->ipif_next) { 20527 if (ipif->ipif_orig_ifindex == old_ifindex) 20528 ipif->ipif_orig_ifindex = new_ifindex; 20529 } 20530 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 20531 if (ilm->ilm_orig_ifindex == old_ifindex) 20532 ilm->ilm_orig_ifindex = new_ifindex; 20533 } 20534 } 20535 rw_exit(&ill_g_lock); 20536 } 20537 20538 /* 20539 * We first need to ensure that the new index is unique, and 20540 * then carry the change across both v4 and v6 ill representation 20541 * of the physical interface. 20542 */ 20543 /* ARGSUSED */ 20544 int 20545 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20546 ip_ioctl_cmd_t *ipip, void *ifreq) 20547 { 20548 ill_t *ill; 20549 ill_t *ill_other; 20550 phyint_t *phyi; 20551 int old_index; 20552 conn_change_t connc; 20553 struct ifreq *ifr = (struct ifreq *)ifreq; 20554 struct lifreq *lifr = (struct lifreq *)ifreq; 20555 uint_t index; 20556 ill_t *ill_v4; 20557 ill_t *ill_v6; 20558 20559 if (ipip->ipi_cmd_type == IF_CMD) 20560 index = ifr->ifr_index; 20561 else 20562 index = lifr->lifr_index; 20563 20564 /* 20565 * Only allow on physical interface. Also, index zero is illegal. 20566 * 20567 * Need to check for PHYI_FAILED and PHYI_INACTIVE 20568 * 20569 * 1) If PHYI_FAILED is set, a failover could have happened which 20570 * implies a possible failback might have to happen. As failback 20571 * depends on the old index, we should fail setting the index. 20572 * 20573 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 20574 * any addresses or multicast memberships are failed over to 20575 * a non-STANDBY interface. As failback depends on the old 20576 * index, we should fail setting the index for this case also. 20577 * 20578 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 20579 * Be consistent with PHYI_FAILED and fail the ioctl. 20580 */ 20581 ill = ipif->ipif_ill; 20582 phyi = ill->ill_phyint; 20583 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 20584 ipif->ipif_id != 0 || index == 0) { 20585 return (EINVAL); 20586 } 20587 old_index = phyi->phyint_ifindex; 20588 20589 /* If the index is not changing, no work to do */ 20590 if (old_index == index) 20591 return (0); 20592 20593 /* 20594 * Use ill_lookup_on_ifindex to determine if the 20595 * new index is unused and if so allow the change. 20596 */ 20597 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 20598 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 20599 if (ill_v6 != NULL || ill_v4 != NULL) { 20600 if (ill_v4 != NULL) 20601 ill_refrele(ill_v4); 20602 if (ill_v6 != NULL) 20603 ill_refrele(ill_v6); 20604 return (EBUSY); 20605 } 20606 20607 /* 20608 * The new index is unused. Set it in the phyint. 20609 * Locate the other ill so that we can send a routing 20610 * sockets message. 20611 */ 20612 if (ill->ill_isv6) { 20613 ill_other = phyi->phyint_illv4; 20614 } else { 20615 ill_other = phyi->phyint_illv6; 20616 } 20617 20618 phyi->phyint_ifindex = index; 20619 20620 connc.cc_old_ifindex = old_index; 20621 connc.cc_new_ifindex = index; 20622 ip_change_ifindex(ill, &connc); 20623 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 20624 20625 /* Send the routing sockets message */ 20626 ip_rts_ifmsg(ipif); 20627 if (ill_other != NULL) 20628 ip_rts_ifmsg(ill_other->ill_ipif); 20629 20630 return (0); 20631 } 20632 20633 /* ARGSUSED */ 20634 int 20635 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20636 ip_ioctl_cmd_t *ipip, void *ifreq) 20637 { 20638 struct ifreq *ifr = (struct ifreq *)ifreq; 20639 struct lifreq *lifr = (struct lifreq *)ifreq; 20640 20641 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 20642 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20643 /* Get the interface index */ 20644 if (ipip->ipi_cmd_type == IF_CMD) { 20645 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20646 } else { 20647 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20648 } 20649 return (0); 20650 } 20651 20652 /* ARGSUSED */ 20653 int 20654 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20655 ip_ioctl_cmd_t *ipip, void *ifreq) 20656 { 20657 struct lifreq *lifr = (struct lifreq *)ifreq; 20658 20659 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 20660 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20661 /* Get the interface zone */ 20662 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20663 lifr->lifr_zoneid = ipif->ipif_zoneid; 20664 return (0); 20665 } 20666 20667 /* 20668 * Set the zoneid of an interface. 20669 */ 20670 /* ARGSUSED */ 20671 int 20672 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20673 ip_ioctl_cmd_t *ipip, void *ifreq) 20674 { 20675 struct lifreq *lifr = (struct lifreq *)ifreq; 20676 int err = 0; 20677 boolean_t need_up = B_FALSE; 20678 zone_t *zptr; 20679 zone_status_t status; 20680 zoneid_t zoneid; 20681 20682 /* cannot assign instance zero to a non-global zone */ 20683 if (ipif->ipif_id == 0) 20684 return (ENOTSUP); 20685 20686 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20687 zoneid = lifr->lifr_zoneid; 20688 20689 /* 20690 * Cannot assign to a zone that doesn't exist or is shutting down. In 20691 * the event of a race with the zone shutdown processing, since IP 20692 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 20693 * interface will be cleaned up even if the zone is shut down 20694 * immediately after the status check. If the interface can't be brought 20695 * down right away, and the zone is shut down before the restart 20696 * function is called, we resolve the possible races by rechecking the 20697 * zone status in the restart function. 20698 */ 20699 if ((zptr = zone_find_by_id(zoneid)) == NULL) 20700 return (EINVAL); 20701 status = zone_status_get(zptr); 20702 zone_rele(zptr); 20703 20704 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 20705 return (EINVAL); 20706 20707 if (ipif->ipif_flags & IPIF_UP) { 20708 /* 20709 * If the interface is already marked up, 20710 * we call ipif_down which will take care 20711 * of ditching any IREs that have been set 20712 * up based on the old interface address. 20713 */ 20714 err = ipif_logical_down(ipif, q, mp); 20715 if (err == EINPROGRESS) 20716 return (err); 20717 ipif_down_tail(ipif); 20718 need_up = B_TRUE; 20719 } 20720 20721 err = ip_sioctl_slifzone_tail(ipif, zoneid, q, mp, need_up); 20722 return (err); 20723 } 20724 20725 static int 20726 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 20727 queue_t *q, mblk_t *mp, boolean_t need_up) 20728 { 20729 int err = 0; 20730 20731 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 20732 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20733 20734 /* Set the new zone id. */ 20735 ipif->ipif_zoneid = zoneid; 20736 20737 /* Update sctp list */ 20738 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 20739 20740 if (need_up) { 20741 /* 20742 * Now bring the interface back up. If this 20743 * is the only IPIF for the ILL, ipif_up 20744 * will have to re-bind to the device, so 20745 * we may get back EINPROGRESS, in which 20746 * case, this IOCTL will get completed in 20747 * ip_rput_dlpi when we see the DL_BIND_ACK. 20748 */ 20749 err = ipif_up(ipif, q, mp); 20750 } 20751 return (err); 20752 } 20753 20754 /* ARGSUSED */ 20755 int 20756 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20757 ip_ioctl_cmd_t *ipip, void *if_req) 20758 { 20759 struct lifreq *lifr = (struct lifreq *)if_req; 20760 zoneid_t zoneid; 20761 zone_t *zptr; 20762 zone_status_t status; 20763 20764 ASSERT(ipif->ipif_id != 0); 20765 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20766 zoneid = lifr->lifr_zoneid; 20767 20768 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 20769 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20770 20771 /* 20772 * We recheck the zone status to resolve the following race condition: 20773 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 20774 * 2) hme0:1 is up and can't be brought down right away; 20775 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 20776 * 3) zone "myzone" is halted; the zone status switches to 20777 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 20778 * the interfaces to remove - hme0:1 is not returned because it's not 20779 * yet in "myzone", so it won't be removed; 20780 * 4) the restart function for SIOCSLIFZONE is called; without the 20781 * status check here, we would have hme0:1 in "myzone" after it's been 20782 * destroyed. 20783 * Note that if the status check fails, we need to bring the interface 20784 * back to its state prior to ip_sioctl_slifzone(), hence the call to 20785 * ipif_up_done[_v6](). 20786 */ 20787 status = ZONE_IS_UNINITIALIZED; 20788 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 20789 status = zone_status_get(zptr); 20790 zone_rele(zptr); 20791 } 20792 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 20793 if (ipif->ipif_isv6) { 20794 (void) ipif_up_done_v6(ipif); 20795 } else { 20796 (void) ipif_up_done(ipif); 20797 } 20798 return (EINVAL); 20799 } 20800 20801 ipif_down_tail(ipif); 20802 20803 return (ip_sioctl_slifzone_tail(ipif, zoneid, q, mp, B_TRUE)); 20804 } 20805 20806 /* ARGSUSED */ 20807 int 20808 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20809 ip_ioctl_cmd_t *ipip, void *ifreq) 20810 { 20811 struct lifreq *lifr = ifreq; 20812 20813 ASSERT(q->q_next == NULL); 20814 ASSERT(CONN_Q(q)); 20815 20816 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 20817 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20818 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 20819 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 20820 20821 return (0); 20822 } 20823 20824 20825 /* Find the previous ILL in this usesrc group */ 20826 static ill_t * 20827 ill_prev_usesrc(ill_t *uill) 20828 { 20829 ill_t *ill; 20830 20831 for (ill = uill->ill_usesrc_grp_next; 20832 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 20833 ill = ill->ill_usesrc_grp_next) 20834 /* do nothing */; 20835 return (ill); 20836 } 20837 20838 /* 20839 * Release all members of the usesrc group. This routine is called 20840 * from ill_delete when the interface being unplumbed is the 20841 * group head. 20842 */ 20843 static void 20844 ill_disband_usesrc_group(ill_t *uill) 20845 { 20846 ill_t *next_ill, *tmp_ill; 20847 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 20848 next_ill = uill->ill_usesrc_grp_next; 20849 20850 do { 20851 ASSERT(next_ill != NULL); 20852 tmp_ill = next_ill->ill_usesrc_grp_next; 20853 ASSERT(tmp_ill != NULL); 20854 next_ill->ill_usesrc_grp_next = NULL; 20855 next_ill->ill_usesrc_ifindex = 0; 20856 next_ill = tmp_ill; 20857 } while (next_ill->ill_usesrc_ifindex != 0); 20858 uill->ill_usesrc_grp_next = NULL; 20859 } 20860 20861 /* 20862 * Remove the client usesrc ILL from the list and relink to a new list 20863 */ 20864 int 20865 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 20866 { 20867 ill_t *ill, *tmp_ill; 20868 20869 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 20870 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 20871 20872 /* 20873 * Check if the usesrc client ILL passed in is not already 20874 * in use as a usesrc ILL i.e one whose source address is 20875 * in use OR a usesrc ILL is not already in use as a usesrc 20876 * client ILL 20877 */ 20878 if ((ucill->ill_usesrc_ifindex == 0) || 20879 (uill->ill_usesrc_ifindex != 0)) { 20880 return (-1); 20881 } 20882 20883 ill = ill_prev_usesrc(ucill); 20884 ASSERT(ill->ill_usesrc_grp_next != NULL); 20885 20886 /* Remove from the current list */ 20887 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 20888 /* Only two elements in the list */ 20889 ASSERT(ill->ill_usesrc_ifindex == 0); 20890 ill->ill_usesrc_grp_next = NULL; 20891 } else { 20892 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 20893 } 20894 20895 if (ifindex == 0) { 20896 ucill->ill_usesrc_ifindex = 0; 20897 ucill->ill_usesrc_grp_next = NULL; 20898 return (0); 20899 } 20900 20901 ucill->ill_usesrc_ifindex = ifindex; 20902 tmp_ill = uill->ill_usesrc_grp_next; 20903 uill->ill_usesrc_grp_next = ucill; 20904 ucill->ill_usesrc_grp_next = 20905 (tmp_ill != NULL) ? tmp_ill : uill; 20906 return (0); 20907 } 20908 20909 /* 20910 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 20911 * ip.c for locking details. 20912 */ 20913 /* ARGSUSED */ 20914 int 20915 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20916 ip_ioctl_cmd_t *ipip, void *ifreq) 20917 { 20918 struct lifreq *lifr = (struct lifreq *)ifreq; 20919 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 20920 ill_flag_changed = B_FALSE; 20921 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 20922 int err = 0, ret; 20923 uint_t ifindex; 20924 phyint_t *us_phyint, *us_cli_phyint; 20925 ipsq_t *ipsq = NULL; 20926 20927 ASSERT(IAM_WRITER_IPIF(ipif)); 20928 ASSERT(q->q_next == NULL); 20929 ASSERT(CONN_Q(q)); 20930 20931 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 20932 us_cli_phyint = usesrc_cli_ill->ill_phyint; 20933 20934 ASSERT(us_cli_phyint != NULL); 20935 20936 /* 20937 * If the client ILL is being used for IPMP, abort. 20938 * Note, this can be done before ipsq_try_enter since we are already 20939 * exclusive on this ILL 20940 */ 20941 if ((us_cli_phyint->phyint_groupname != NULL) || 20942 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 20943 return (EINVAL); 20944 } 20945 20946 ifindex = lifr->lifr_index; 20947 if (ifindex == 0) { 20948 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 20949 /* non usesrc group interface, nothing to reset */ 20950 return (0); 20951 } 20952 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 20953 /* valid reset request */ 20954 reset_flg = B_TRUE; 20955 } 20956 20957 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 20958 ip_process_ioctl, &err); 20959 20960 if (usesrc_ill == NULL) { 20961 return (err); 20962 } 20963 20964 /* 20965 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 20966 * group nor can either of the interfaces be used for standy. So 20967 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 20968 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 20969 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 20970 * We are already exlusive on this ipsq i.e ipsq corresponding to 20971 * the usesrc_cli_ill 20972 */ 20973 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 20974 NEW_OP, B_TRUE); 20975 if (ipsq == NULL) { 20976 err = EINPROGRESS; 20977 /* Operation enqueued on the ipsq of the usesrc ILL */ 20978 goto done; 20979 } 20980 20981 /* Check if the usesrc_ill is used for IPMP */ 20982 us_phyint = usesrc_ill->ill_phyint; 20983 if ((us_phyint->phyint_groupname != NULL) || 20984 (us_phyint->phyint_flags & PHYI_STANDBY)) { 20985 err = EINVAL; 20986 goto done; 20987 } 20988 20989 /* 20990 * If the client is already in use as a usesrc_ill or a usesrc_ill is 20991 * already a client then return EINVAL 20992 */ 20993 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 20994 err = EINVAL; 20995 goto done; 20996 } 20997 20998 /* 20999 * If the ill_usesrc_ifindex field is already set to what it needs to 21000 * be then this is a duplicate operation. 21001 */ 21002 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 21003 err = 0; 21004 goto done; 21005 } 21006 21007 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 21008 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 21009 usesrc_ill->ill_isv6)); 21010 21011 /* 21012 * The next step ensures that no new ires will be created referencing 21013 * the client ill, until the ILL_CHANGING flag is cleared. Then 21014 * we go through an ire walk deleting all ire caches that reference 21015 * the client ill. New ires referencing the client ill that are added 21016 * to the ire table before the ILL_CHANGING flag is set, will be 21017 * cleaned up by the ire walk below. Attempt to add new ires referencing 21018 * the client ill while the ILL_CHANGING flag is set will be failed 21019 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 21020 * checks (under the ill_g_usesrc_lock) that the ire being added 21021 * is not stale, i.e the ire_stq and ire_ipif are consistent and 21022 * belong to the same usesrc group. 21023 */ 21024 mutex_enter(&usesrc_cli_ill->ill_lock); 21025 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 21026 mutex_exit(&usesrc_cli_ill->ill_lock); 21027 ill_flag_changed = B_TRUE; 21028 21029 if (ipif->ipif_isv6) 21030 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21031 ALL_ZONES); 21032 else 21033 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21034 ALL_ZONES); 21035 21036 /* 21037 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 21038 * and the ill_usesrc_ifindex fields 21039 */ 21040 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 21041 21042 if (reset_flg) { 21043 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 21044 if (ret != 0) { 21045 err = EINVAL; 21046 } 21047 rw_exit(&ill_g_usesrc_lock); 21048 goto done; 21049 } 21050 21051 /* 21052 * Four possibilities to consider: 21053 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 21054 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 21055 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 21056 * 4. Both are part of their respective usesrc groups 21057 */ 21058 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 21059 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21060 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 21061 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21062 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21063 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 21064 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 21065 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21066 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21067 /* Insert at head of list */ 21068 usesrc_cli_ill->ill_usesrc_grp_next = 21069 usesrc_ill->ill_usesrc_grp_next; 21070 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21071 } else { 21072 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 21073 ifindex); 21074 if (ret != 0) 21075 err = EINVAL; 21076 } 21077 rw_exit(&ill_g_usesrc_lock); 21078 21079 done: 21080 if (ill_flag_changed) { 21081 mutex_enter(&usesrc_cli_ill->ill_lock); 21082 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 21083 mutex_exit(&usesrc_cli_ill->ill_lock); 21084 } 21085 if (ipsq != NULL) 21086 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21087 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 21088 ill_refrele(usesrc_ill); 21089 return (err); 21090 } 21091 21092 /* 21093 * comparison function used by avl. 21094 */ 21095 static int 21096 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 21097 { 21098 21099 uint_t index; 21100 21101 ASSERT(phyip != NULL && index_ptr != NULL); 21102 21103 index = *((uint_t *)index_ptr); 21104 /* 21105 * let the phyint with the lowest index be on top. 21106 */ 21107 if (((phyint_t *)phyip)->phyint_ifindex < index) 21108 return (1); 21109 if (((phyint_t *)phyip)->phyint_ifindex > index) 21110 return (-1); 21111 return (0); 21112 } 21113 21114 /* 21115 * comparison function used by avl. 21116 */ 21117 static int 21118 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 21119 { 21120 ill_t *ill; 21121 int res = 0; 21122 21123 ASSERT(phyip != NULL && name_ptr != NULL); 21124 21125 if (((phyint_t *)phyip)->phyint_illv4) 21126 ill = ((phyint_t *)phyip)->phyint_illv4; 21127 else 21128 ill = ((phyint_t *)phyip)->phyint_illv6; 21129 ASSERT(ill != NULL); 21130 21131 res = strcmp(ill->ill_name, (char *)name_ptr); 21132 if (res > 0) 21133 return (1); 21134 else if (res < 0) 21135 return (-1); 21136 return (0); 21137 } 21138 /* 21139 * This function is called from ill_delete when the ill is being 21140 * unplumbed. We remove the reference from the phyint and we also 21141 * free the phyint when there are no more references to it. 21142 */ 21143 static void 21144 ill_phyint_free(ill_t *ill) 21145 { 21146 phyint_t *phyi; 21147 phyint_t *next_phyint; 21148 ipsq_t *cur_ipsq; 21149 21150 ASSERT(ill->ill_phyint != NULL); 21151 21152 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21153 phyi = ill->ill_phyint; 21154 ill->ill_phyint = NULL; 21155 /* 21156 * ill_init allocates a phyint always to store the copy 21157 * of flags relevant to phyint. At that point in time, we could 21158 * not assign the name and hence phyint_illv4/v6 could not be 21159 * initialized. Later in ipif_set_values, we assign the name to 21160 * the ill, at which point in time we assign phyint_illv4/v6. 21161 * Thus we don't rely on phyint_illv6 to be initialized always. 21162 */ 21163 if (ill->ill_flags & ILLF_IPV6) { 21164 phyi->phyint_illv6 = NULL; 21165 } else { 21166 phyi->phyint_illv4 = NULL; 21167 } 21168 /* 21169 * ipif_down removes it from the group when the last ipif goes 21170 * down. 21171 */ 21172 ASSERT(ill->ill_group == NULL); 21173 21174 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 21175 return; 21176 21177 /* 21178 * Make sure this phyint was put in the list. 21179 */ 21180 if (phyi->phyint_ifindex > 0) { 21181 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 21182 phyi); 21183 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 21184 phyi); 21185 } 21186 /* 21187 * remove phyint from the ipsq list. 21188 */ 21189 cur_ipsq = phyi->phyint_ipsq; 21190 if (phyi == cur_ipsq->ipsq_phyint_list) { 21191 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 21192 } else { 21193 next_phyint = cur_ipsq->ipsq_phyint_list; 21194 while (next_phyint != NULL) { 21195 if (next_phyint->phyint_ipsq_next == phyi) { 21196 next_phyint->phyint_ipsq_next = 21197 phyi->phyint_ipsq_next; 21198 break; 21199 } 21200 next_phyint = next_phyint->phyint_ipsq_next; 21201 } 21202 ASSERT(next_phyint != NULL); 21203 } 21204 IPSQ_DEC_REF(cur_ipsq); 21205 21206 if (phyi->phyint_groupname_len != 0) { 21207 ASSERT(phyi->phyint_groupname != NULL); 21208 mi_free(phyi->phyint_groupname); 21209 } 21210 mi_free(phyi); 21211 } 21212 21213 /* 21214 * Attach the ill to the phyint structure which can be shared by both 21215 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 21216 * function is called from ipif_set_values and ill_lookup_on_name (for 21217 * loopback) where we know the name of the ill. We lookup the ill and if 21218 * there is one present already with the name use that phyint. Otherwise 21219 * reuse the one allocated by ill_init. 21220 */ 21221 static void 21222 ill_phyint_reinit(ill_t *ill) 21223 { 21224 boolean_t isv6 = ill->ill_isv6; 21225 phyint_t *phyi_old; 21226 phyint_t *phyi; 21227 avl_index_t where = 0; 21228 ill_t *ill_other = NULL; 21229 ipsq_t *ipsq; 21230 21231 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21232 21233 phyi_old = ill->ill_phyint; 21234 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 21235 phyi_old->phyint_illv6 == NULL)); 21236 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 21237 phyi_old->phyint_illv4 == NULL)); 21238 ASSERT(phyi_old->phyint_ifindex == 0); 21239 21240 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 21241 ill->ill_name, &where); 21242 21243 /* 21244 * 1. We grabbed the ill_g_lock before inserting this ill into 21245 * the global list of ills. So no other thread could have located 21246 * this ill and hence the ipsq of this ill is guaranteed to be empty. 21247 * 2. Now locate the other protocol instance of this ill. 21248 * 3. Now grab both ill locks in the right order, and the phyint lock of 21249 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 21250 * of neither ill can change. 21251 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 21252 * other ill. 21253 * 5. Release all locks. 21254 */ 21255 21256 /* 21257 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 21258 * we are initializing IPv4. 21259 */ 21260 if (phyi != NULL) { 21261 ill_other = (isv6) ? phyi->phyint_illv4 : 21262 phyi->phyint_illv6; 21263 ASSERT(ill_other->ill_phyint != NULL); 21264 ASSERT((isv6 && !ill_other->ill_isv6) || 21265 (!isv6 && ill_other->ill_isv6)); 21266 GRAB_ILL_LOCKS(ill, ill_other); 21267 /* 21268 * We are potentially throwing away phyint_flags which 21269 * could be different from the one that we obtain from 21270 * ill_other->ill_phyint. But it is okay as we are assuming 21271 * that the state maintained within IP is correct. 21272 */ 21273 mutex_enter(&phyi->phyint_lock); 21274 if (isv6) { 21275 ASSERT(phyi->phyint_illv6 == NULL); 21276 phyi->phyint_illv6 = ill; 21277 } else { 21278 ASSERT(phyi->phyint_illv4 == NULL); 21279 phyi->phyint_illv4 = ill; 21280 } 21281 /* 21282 * This is a new ill, currently undergoing SLIFNAME 21283 * So we could not have joined an IPMP group until now. 21284 */ 21285 ASSERT(phyi_old->phyint_ipsq_next == NULL && 21286 phyi_old->phyint_groupname == NULL); 21287 21288 /* 21289 * This phyi_old is going away. Decref ipsq_refs and 21290 * assert it is zero. The ipsq itself will be freed in 21291 * ipsq_exit 21292 */ 21293 ipsq = phyi_old->phyint_ipsq; 21294 IPSQ_DEC_REF(ipsq); 21295 ASSERT(ipsq->ipsq_refs == 0); 21296 /* Get the singleton phyint out of the ipsq list */ 21297 ASSERT(phyi_old->phyint_ipsq_next == NULL); 21298 ipsq->ipsq_phyint_list = NULL; 21299 phyi_old->phyint_illv4 = NULL; 21300 phyi_old->phyint_illv6 = NULL; 21301 mi_free(phyi_old); 21302 } else { 21303 mutex_enter(&ill->ill_lock); 21304 /* 21305 * We don't need to acquire any lock, since 21306 * the ill is not yet visible globally and we 21307 * have not yet released the ill_g_lock. 21308 */ 21309 phyi = phyi_old; 21310 mutex_enter(&phyi->phyint_lock); 21311 /* XXX We need a recovery strategy here. */ 21312 if (!phyint_assign_ifindex(phyi)) 21313 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 21314 21315 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 21316 (void *)phyi, where); 21317 21318 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 21319 &phyi->phyint_ifindex, &where); 21320 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 21321 (void *)phyi, where); 21322 } 21323 21324 /* 21325 * Reassigning ill_phyint automatically reassigns the ipsq also. 21326 * pending mp is not affected because that is per ill basis. 21327 */ 21328 ill->ill_phyint = phyi; 21329 21330 /* 21331 * Keep the index on ipif_orig_index to be used by FAILOVER. 21332 * We do this here as when the first ipif was allocated, 21333 * ipif_allocate does not know the right interface index. 21334 */ 21335 21336 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 21337 /* 21338 * Now that the phyint's ifindex has been assigned, complete the 21339 * remaining 21340 */ 21341 if (ill->ill_isv6) { 21342 ill->ill_ip6_mib->ipv6IfIndex = 21343 ill->ill_phyint->phyint_ifindex; 21344 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 21345 ill->ill_phyint->phyint_ifindex; 21346 } 21347 21348 RELEASE_ILL_LOCKS(ill, ill_other); 21349 mutex_exit(&phyi->phyint_lock); 21350 } 21351 21352 /* 21353 * Notify any downstream modules of the name of this interface. 21354 * An M_IOCTL is used even though we don't expect a successful reply. 21355 * Any reply message from the driver (presumably an M_IOCNAK) will 21356 * eventually get discarded somewhere upstream. The message format is 21357 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 21358 * to IP. 21359 */ 21360 static void 21361 ip_ifname_notify(ill_t *ill, queue_t *q) 21362 { 21363 mblk_t *mp1, *mp2; 21364 struct iocblk *iocp; 21365 struct lifreq *lifr; 21366 21367 mp1 = mkiocb(SIOCSLIFNAME); 21368 if (mp1 == NULL) 21369 return; 21370 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 21371 if (mp2 == NULL) { 21372 freeb(mp1); 21373 return; 21374 } 21375 21376 mp1->b_cont = mp2; 21377 iocp = (struct iocblk *)mp1->b_rptr; 21378 iocp->ioc_count = sizeof (struct lifreq); 21379 21380 lifr = (struct lifreq *)mp2->b_rptr; 21381 mp2->b_wptr += sizeof (struct lifreq); 21382 bzero(lifr, sizeof (struct lifreq)); 21383 21384 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 21385 lifr->lifr_ppa = ill->ill_ppa; 21386 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 21387 21388 putnext(q, mp1); 21389 } 21390 21391 static boolean_t ip_trash_timer_started = B_FALSE; 21392 21393 static int 21394 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 21395 { 21396 int err; 21397 21398 /* Set the obsolete NDD per-interface forwarding name. */ 21399 err = ill_set_ndd_name(ill); 21400 if (err != 0) { 21401 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 21402 err); 21403 } 21404 21405 /* Tell downstream modules where they are. */ 21406 ip_ifname_notify(ill, q); 21407 21408 /* 21409 * ill_dl_phys returns EINPROGRESS in the usual case. 21410 * Error cases are ENOMEM ... 21411 */ 21412 err = ill_dl_phys(ill, ipif, mp, q); 21413 21414 /* 21415 * If there is no IRE expiration timer running, get one started. 21416 * igmp and mld timers will be triggered by the first multicast 21417 */ 21418 if (!ip_trash_timer_started) { 21419 /* 21420 * acquire the lock and check again. 21421 */ 21422 mutex_enter(&ip_trash_timer_lock); 21423 if (!ip_trash_timer_started) { 21424 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 21425 MSEC_TO_TICK(ip_timer_interval)); 21426 ip_trash_timer_started = B_TRUE; 21427 } 21428 mutex_exit(&ip_trash_timer_lock); 21429 } 21430 21431 if (ill->ill_isv6) { 21432 mutex_enter(&mld_slowtimeout_lock); 21433 if (mld_slowtimeout_id == 0) { 21434 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 21435 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21436 } 21437 mutex_exit(&mld_slowtimeout_lock); 21438 } else { 21439 mutex_enter(&igmp_slowtimeout_lock); 21440 if (igmp_slowtimeout_id == 0) { 21441 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 21442 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21443 } 21444 mutex_exit(&igmp_slowtimeout_lock); 21445 } 21446 21447 return (err); 21448 } 21449 21450 /* 21451 * Common routine for ppa and ifname setting. Should be called exclusive. 21452 * 21453 * Returns EINPROGRESS when mp has been consumed by queueing it on 21454 * ill_pending_mp and the ioctl will complete in ip_rput. 21455 * 21456 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 21457 * the new name and new ppa in lifr_name and lifr_ppa respectively. 21458 * For SLIFNAME, we pass these values back to the userland. 21459 */ 21460 static int 21461 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 21462 { 21463 ill_t *ill; 21464 ipif_t *ipif; 21465 ipsq_t *ipsq; 21466 char *ppa_ptr; 21467 char *old_ptr; 21468 char old_char; 21469 int error; 21470 21471 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 21472 ASSERT(q->q_next != NULL); 21473 ASSERT(interf_name != NULL); 21474 21475 ill = (ill_t *)q->q_ptr; 21476 21477 ASSERT(ill->ill_name[0] == '\0'); 21478 ASSERT(IAM_WRITER_ILL(ill)); 21479 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 21480 ASSERT(ill->ill_ppa == UINT_MAX); 21481 21482 /* The ppa is sent down by ifconfig or is chosen */ 21483 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 21484 return (EINVAL); 21485 } 21486 21487 /* 21488 * make sure ppa passed in is same as ppa in the name. 21489 * This check is not made when ppa == UINT_MAX in that case ppa 21490 * in the name could be anything. System will choose a ppa and 21491 * update new_ppa_ptr and inter_name to contain the choosen ppa. 21492 */ 21493 if (*new_ppa_ptr != UINT_MAX) { 21494 /* stoi changes the pointer */ 21495 old_ptr = ppa_ptr; 21496 /* 21497 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 21498 * (they don't have an externally visible ppa). We assign one 21499 * here so that we can manage the interface. Note that in 21500 * the past this value was always 0 for DLPI 1 drivers. 21501 */ 21502 if (*new_ppa_ptr == 0) 21503 *new_ppa_ptr = stoi(&old_ptr); 21504 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 21505 return (EINVAL); 21506 } 21507 /* 21508 * terminate string before ppa 21509 * save char at that location. 21510 */ 21511 old_char = ppa_ptr[0]; 21512 ppa_ptr[0] = '\0'; 21513 21514 ill->ill_ppa = *new_ppa_ptr; 21515 /* 21516 * Finish as much work now as possible before calling ill_glist_insert 21517 * which makes the ill globally visible and also merges it with the 21518 * other protocol instance of this phyint. The remaining work is 21519 * done after entering the ipsq which may happen sometime later. 21520 * ill_set_ndd_name occurs after the ill has been made globally visible. 21521 */ 21522 ipif = ill->ill_ipif; 21523 21524 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 21525 ipif_assign_seqid(ipif); 21526 21527 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 21528 ill->ill_flags |= ILLF_IPV4; 21529 21530 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 21531 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 21532 21533 if (ill->ill_flags & ILLF_IPV6) { 21534 21535 ill->ill_isv6 = B_TRUE; 21536 if (ill->ill_rq != NULL) { 21537 ill->ill_rq->q_qinfo = &rinit_ipv6; 21538 ill->ill_wq->q_qinfo = &winit_ipv6; 21539 } 21540 21541 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 21542 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 21543 ipif->ipif_v6src_addr = ipv6_all_zeros; 21544 ipif->ipif_v6subnet = ipv6_all_zeros; 21545 ipif->ipif_v6net_mask = ipv6_all_zeros; 21546 ipif->ipif_v6brd_addr = ipv6_all_zeros; 21547 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 21548 /* 21549 * point-to-point or Non-mulicast capable 21550 * interfaces won't do NUD unless explicitly 21551 * configured to do so. 21552 */ 21553 if (ipif->ipif_flags & IPIF_POINTOPOINT || 21554 !(ill->ill_flags & ILLF_MULTICAST)) { 21555 ill->ill_flags |= ILLF_NONUD; 21556 } 21557 /* Make sure IPv4 specific flag is not set on IPv6 if */ 21558 if (ill->ill_flags & ILLF_NOARP) { 21559 /* 21560 * Note: xresolv interfaces will eventually need 21561 * NOARP set here as well, but that will require 21562 * those external resolvers to have some 21563 * knowledge of that flag and act appropriately. 21564 * Not to be changed at present. 21565 */ 21566 ill->ill_flags &= ~ILLF_NOARP; 21567 } 21568 /* 21569 * Set the ILLF_ROUTER flag according to the global 21570 * IPv6 forwarding policy. 21571 */ 21572 if (ipv6_forward != 0) 21573 ill->ill_flags |= ILLF_ROUTER; 21574 } else if (ill->ill_flags & ILLF_IPV4) { 21575 ill->ill_isv6 = B_FALSE; 21576 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 21577 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 21578 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 21579 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 21580 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 21581 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 21582 /* 21583 * Set the ILLF_ROUTER flag according to the global 21584 * IPv4 forwarding policy. 21585 */ 21586 if (ip_g_forward != 0) 21587 ill->ill_flags |= ILLF_ROUTER; 21588 } 21589 21590 ASSERT(ill->ill_phyint != NULL); 21591 21592 /* 21593 * The ipv6Ifindex and ipv6IfIcmpIfIndex assignments will 21594 * be completed in ill_glist_insert -> ill_phyint_reinit 21595 */ 21596 if (ill->ill_isv6) { 21597 /* allocate v6 mib */ 21598 if (!ill_allocate_mibs(ill)) 21599 return (ENOMEM); 21600 } 21601 21602 /* 21603 * Pick a default sap until we get the DL_INFO_ACK back from 21604 * the driver. 21605 */ 21606 if (ill->ill_sap == 0) { 21607 if (ill->ill_isv6) 21608 ill->ill_sap = IP6_DL_SAP; 21609 else 21610 ill->ill_sap = IP_DL_SAP; 21611 } 21612 21613 ill->ill_ifname_pending = 1; 21614 ill->ill_ifname_pending_err = 0; 21615 21616 ill_refhold(ill); 21617 rw_enter(&ill_g_lock, RW_WRITER); 21618 if ((error = ill_glist_insert(ill, interf_name, 21619 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 21620 ill->ill_ppa = UINT_MAX; 21621 ill->ill_name[0] = '\0'; 21622 /* 21623 * undo null termination done above. 21624 */ 21625 ppa_ptr[0] = old_char; 21626 rw_exit(&ill_g_lock); 21627 ill_refrele(ill); 21628 return (error); 21629 } 21630 21631 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 21632 21633 /* 21634 * When we return the buffer pointed to by interf_name should contain 21635 * the same name as in ill_name. 21636 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 21637 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 21638 * so copy full name and update the ppa ptr. 21639 * When ppa passed in != UINT_MAX all values are correct just undo 21640 * null termination, this saves a bcopy. 21641 */ 21642 if (*new_ppa_ptr == UINT_MAX) { 21643 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 21644 *new_ppa_ptr = ill->ill_ppa; 21645 } else { 21646 /* 21647 * undo null termination done above. 21648 */ 21649 ppa_ptr[0] = old_char; 21650 } 21651 21652 /* Let SCTP know about this ILL */ 21653 sctp_update_ill(ill, SCTP_ILL_INSERT); 21654 21655 /* and also about the first ipif */ 21656 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 21657 21658 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 21659 B_TRUE); 21660 21661 rw_exit(&ill_g_lock); 21662 ill_refrele(ill); 21663 if (ipsq == NULL) 21664 return (EINPROGRESS); 21665 21666 /* 21667 * Need to set the ipsq_current_ipif now, if we have changed ipsq 21668 * due to the phyint merge in ill_phyint_reinit. 21669 */ 21670 ASSERT(ipsq->ipsq_current_ipif == NULL || 21671 ipsq->ipsq_current_ipif == ipif); 21672 ipsq->ipsq_current_ipif = ipif; 21673 ipsq->ipsq_last_cmd = SIOCSLIFNAME; 21674 error = ipif_set_values_tail(ill, ipif, mp, q); 21675 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21676 if (error != 0 && error != EINPROGRESS) { 21677 /* 21678 * restore previous values 21679 */ 21680 ill->ill_isv6 = B_FALSE; 21681 } 21682 return (error); 21683 } 21684 21685 21686 extern void (*ip_cleanup_func)(void); 21687 21688 void 21689 ipif_init(void) 21690 { 21691 hrtime_t hrt; 21692 int i; 21693 21694 /* 21695 * Can't call drv_getparm here as it is too early in the boot. 21696 * As we use ipif_src_random just for picking a different 21697 * source address everytime, this need not be really random. 21698 */ 21699 hrt = gethrtime(); 21700 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 21701 21702 for (i = 0; i < MAX_G_HEADS; i++) { 21703 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 21704 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 21705 } 21706 21707 avl_create(&phyint_g_list.phyint_list_avl_by_index, 21708 ill_phyint_compare_index, 21709 sizeof (phyint_t), 21710 offsetof(struct phyint, phyint_avl_by_index)); 21711 avl_create(&phyint_g_list.phyint_list_avl_by_name, 21712 ill_phyint_compare_name, 21713 sizeof (phyint_t), 21714 offsetof(struct phyint, phyint_avl_by_name)); 21715 21716 ip_cleanup_func = ip_thread_exit; 21717 } 21718 21719 /* 21720 * This is called by ip_rt_add when src_addr value is other than zero. 21721 * src_addr signifies the source address of the incoming packet. For 21722 * reverse tunnel route we need to create a source addr based routing 21723 * table. This routine creates ip_mrtun_table if it's empty and then 21724 * it adds the route entry hashed by source address. It verifies that 21725 * the outgoing interface is always a non-resolver interface (tunnel). 21726 */ 21727 int 21728 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 21729 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 21730 { 21731 ire_t *ire; 21732 ire_t *save_ire; 21733 ipif_t *ipif; 21734 ill_t *in_ill = NULL; 21735 ill_t *out_ill; 21736 queue_t *stq; 21737 mblk_t *dlureq_mp; 21738 int error; 21739 21740 if (ire_arg != NULL) 21741 *ire_arg = NULL; 21742 ASSERT(in_src_addr != INADDR_ANY); 21743 21744 ipif = ipif_arg; 21745 if (ipif != NULL) { 21746 out_ill = ipif->ipif_ill; 21747 } else { 21748 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 21749 return (EINVAL); 21750 } 21751 21752 if (src_ipif == NULL) { 21753 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 21754 return (EINVAL); 21755 } 21756 in_ill = src_ipif->ipif_ill; 21757 21758 /* 21759 * Check for duplicates. We don't need to 21760 * match out_ill, because the uniqueness of 21761 * a route is only dependent on src_addr and 21762 * in_ill. 21763 */ 21764 ire = ire_mrtun_lookup(in_src_addr, in_ill); 21765 if (ire != NULL) { 21766 ire_refrele(ire); 21767 return (EEXIST); 21768 } 21769 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 21770 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 21771 ipif->ipif_net_type)); 21772 return (EINVAL); 21773 } 21774 21775 stq = ipif->ipif_wq; 21776 ASSERT(stq != NULL); 21777 21778 /* 21779 * The outgoing interface must be non-resolver 21780 * interface. 21781 */ 21782 dlureq_mp = ill_dlur_gen(NULL, 21783 out_ill->ill_phys_addr_length, out_ill->ill_sap, 21784 out_ill->ill_sap_length); 21785 21786 if (dlureq_mp == NULL) { 21787 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 21788 return (ENOMEM); 21789 } 21790 21791 /* Create the IRE. */ 21792 21793 ire = ire_create( 21794 NULL, /* Zero dst addr */ 21795 NULL, /* Zero mask */ 21796 NULL, /* Zero gateway addr */ 21797 NULL, /* Zero ipif_src addr */ 21798 (uint8_t *)&in_src_addr, /* in_src-addr */ 21799 &ipif->ipif_mtu, 21800 NULL, 21801 NULL, /* rfq */ 21802 stq, 21803 IRE_MIPRTUN, 21804 dlureq_mp, 21805 ipif, 21806 in_ill, 21807 0, 21808 0, 21809 0, 21810 flags, 21811 &ire_uinfo_null); 21812 21813 if (ire == NULL) 21814 return (ENOMEM); 21815 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 21816 ire->ire_type)); 21817 save_ire = ire; 21818 ASSERT(save_ire != NULL); 21819 error = ire_add_mrtun(&ire, q, mp, func); 21820 /* 21821 * If ire_add_mrtun() failed, the ire passed in was freed 21822 * so there is no need to do so here. 21823 */ 21824 if (error != 0) { 21825 return (error); 21826 } 21827 21828 /* Duplicate check */ 21829 if (ire != save_ire) { 21830 /* route already exists by now */ 21831 ire_refrele(ire); 21832 return (EEXIST); 21833 } 21834 21835 if (ire_arg != NULL) { 21836 /* 21837 * Store the ire that was just added. the caller 21838 * ip_rts_request responsible for doing ire_refrele() 21839 * on it. 21840 */ 21841 *ire_arg = ire; 21842 } else { 21843 ire_refrele(ire); /* held in ire_add_mrtun */ 21844 } 21845 21846 return (0); 21847 } 21848 21849 /* 21850 * It is called by ip_rt_delete() only when mipagent requests to delete 21851 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 21852 */ 21853 21854 int 21855 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 21856 { 21857 ire_t *ire = NULL; 21858 21859 if (in_src_addr == INADDR_ANY) 21860 return (EINVAL); 21861 if (src_ipif == NULL) 21862 return (EINVAL); 21863 21864 /* search if this route exists in the ip_mrtun_table */ 21865 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 21866 if (ire == NULL) { 21867 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 21868 return (ESRCH); 21869 } 21870 ire_delete(ire); 21871 ire_refrele(ire); 21872 return (0); 21873 } 21874 21875 /* 21876 * Lookup the ipif corresponding to the onlink destination address. For 21877 * point-to-point interfaces, it matches with remote endpoint destination 21878 * address. For point-to-multipoint interfaces it only tries to match the 21879 * destination with the interface's subnet address. The longest, most specific 21880 * match is found to take care of such rare network configurations like - 21881 * le0: 129.146.1.1/16 21882 * le1: 129.146.2.2/24 21883 * It is used only by SO_DONTROUTE at the moment. 21884 */ 21885 ipif_t * 21886 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 21887 { 21888 ipif_t *ipif, *best_ipif; 21889 ill_t *ill; 21890 ill_walk_context_t ctx; 21891 21892 ASSERT(zoneid != ALL_ZONES); 21893 best_ipif = NULL; 21894 21895 rw_enter(&ill_g_lock, RW_READER); 21896 ill = ILL_START_WALK_V4(&ctx); 21897 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21898 mutex_enter(&ill->ill_lock); 21899 for (ipif = ill->ill_ipif; ipif != NULL; 21900 ipif = ipif->ipif_next) { 21901 if (!IPIF_CAN_LOOKUP(ipif)) 21902 continue; 21903 if (ipif->ipif_zoneid != zoneid) 21904 continue; 21905 /* 21906 * Point-to-point case. Look for exact match with 21907 * destination address. 21908 */ 21909 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 21910 if (ipif->ipif_pp_dst_addr == addr) { 21911 ipif_refhold_locked(ipif); 21912 mutex_exit(&ill->ill_lock); 21913 rw_exit(&ill_g_lock); 21914 if (best_ipif != NULL) 21915 ipif_refrele(best_ipif); 21916 return (ipif); 21917 } 21918 } else if (ipif->ipif_subnet == (addr & 21919 ipif->ipif_net_mask)) { 21920 /* 21921 * Point-to-multipoint case. Looping through to 21922 * find the most specific match. If there are 21923 * multiple best match ipif's then prefer ipif's 21924 * that are UP. If there is only one best match 21925 * ipif and it is DOWN we must still return it. 21926 */ 21927 if ((best_ipif == NULL) || 21928 (ipif->ipif_net_mask > 21929 best_ipif->ipif_net_mask) || 21930 ((ipif->ipif_net_mask == 21931 best_ipif->ipif_net_mask) && 21932 ((ipif->ipif_flags & IPIF_UP) && 21933 (!(best_ipif->ipif_flags & IPIF_UP))))) { 21934 ipif_refhold_locked(ipif); 21935 mutex_exit(&ill->ill_lock); 21936 rw_exit(&ill_g_lock); 21937 if (best_ipif != NULL) 21938 ipif_refrele(best_ipif); 21939 best_ipif = ipif; 21940 rw_enter(&ill_g_lock, RW_READER); 21941 mutex_enter(&ill->ill_lock); 21942 } 21943 } 21944 } 21945 mutex_exit(&ill->ill_lock); 21946 } 21947 rw_exit(&ill_g_lock); 21948 return (best_ipif); 21949 } 21950 21951 21952 /* 21953 * Save enough information so that we can recreate the IRE if 21954 * the interface goes down and then up. 21955 */ 21956 static void 21957 ipif_save_ire(ipif_t *ipif, ire_t *ire) 21958 { 21959 mblk_t *save_mp; 21960 21961 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 21962 if (save_mp != NULL) { 21963 ifrt_t *ifrt; 21964 21965 save_mp->b_wptr += sizeof (ifrt_t); 21966 ifrt = (ifrt_t *)save_mp->b_rptr; 21967 bzero(ifrt, sizeof (ifrt_t)); 21968 ifrt->ifrt_type = ire->ire_type; 21969 ifrt->ifrt_addr = ire->ire_addr; 21970 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 21971 ifrt->ifrt_src_addr = ire->ire_src_addr; 21972 ifrt->ifrt_mask = ire->ire_mask; 21973 ifrt->ifrt_flags = ire->ire_flags; 21974 ifrt->ifrt_max_frag = ire->ire_max_frag; 21975 mutex_enter(&ipif->ipif_saved_ire_lock); 21976 save_mp->b_cont = ipif->ipif_saved_ire_mp; 21977 ipif->ipif_saved_ire_mp = save_mp; 21978 ipif->ipif_saved_ire_cnt++; 21979 mutex_exit(&ipif->ipif_saved_ire_lock); 21980 } 21981 } 21982 21983 21984 static void 21985 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 21986 { 21987 mblk_t **mpp; 21988 mblk_t *mp; 21989 ifrt_t *ifrt; 21990 21991 /* Remove from ipif_saved_ire_mp list if it is there */ 21992 mutex_enter(&ipif->ipif_saved_ire_lock); 21993 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 21994 mpp = &(*mpp)->b_cont) { 21995 /* 21996 * On a given ipif, the triple of address, gateway and 21997 * mask is unique for each saved IRE (in the case of 21998 * ordinary interface routes, the gateway address is 21999 * all-zeroes). 22000 */ 22001 mp = *mpp; 22002 ifrt = (ifrt_t *)mp->b_rptr; 22003 if (ifrt->ifrt_addr == ire->ire_addr && 22004 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 22005 ifrt->ifrt_mask == ire->ire_mask) { 22006 *mpp = mp->b_cont; 22007 ipif->ipif_saved_ire_cnt--; 22008 freeb(mp); 22009 break; 22010 } 22011 } 22012 mutex_exit(&ipif->ipif_saved_ire_lock); 22013 } 22014 22015 22016 /* 22017 * IP multirouting broadcast routes handling 22018 * Append CGTP broadcast IREs to regular ones created 22019 * at ifconfig time. 22020 */ 22021 static void 22022 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 22023 { 22024 ire_t *ire_prim; 22025 22026 ASSERT(ire != NULL); 22027 ASSERT(ire_dst != NULL); 22028 22029 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22030 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 22031 if (ire_prim != NULL) { 22032 /* 22033 * We are in the special case of broadcasts for 22034 * CGTP. We add an IRE_BROADCAST that holds 22035 * the RTF_MULTIRT flag, the destination 22036 * address of ire_dst and the low level 22037 * info of ire_prim. In other words, CGTP 22038 * broadcast is added to the redundant ipif. 22039 */ 22040 ipif_t *ipif_prim; 22041 ire_t *bcast_ire; 22042 22043 ipif_prim = ire_prim->ire_ipif; 22044 22045 ip2dbg(("ip_cgtp_filter_bcast_add: " 22046 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22047 (void *)ire_dst, (void *)ire_prim, 22048 (void *)ipif_prim)); 22049 22050 bcast_ire = ire_create( 22051 (uchar_t *)&ire->ire_addr, 22052 (uchar_t *)&ip_g_all_ones, 22053 (uchar_t *)&ire_dst->ire_src_addr, 22054 (uchar_t *)&ire->ire_gateway_addr, 22055 NULL, 22056 &ipif_prim->ipif_mtu, 22057 NULL, 22058 ipif_prim->ipif_rq, 22059 ipif_prim->ipif_wq, 22060 IRE_BROADCAST, 22061 ipif_prim->ipif_bcast_mp, 22062 ipif_prim, 22063 NULL, 22064 0, 22065 0, 22066 0, 22067 ire->ire_flags, 22068 &ire_uinfo_null); 22069 22070 if (bcast_ire != NULL) { 22071 22072 if (ire_add(&bcast_ire, NULL, NULL, NULL) == 0) { 22073 ip2dbg(("ip_cgtp_filter_bcast_add: " 22074 "added bcast_ire %p\n", 22075 (void *)bcast_ire)); 22076 22077 ipif_save_ire(bcast_ire->ire_ipif, 22078 bcast_ire); 22079 ire_refrele(bcast_ire); 22080 } 22081 } 22082 ire_refrele(ire_prim); 22083 } 22084 } 22085 22086 22087 /* 22088 * IP multirouting broadcast routes handling 22089 * Remove the broadcast ire 22090 */ 22091 static void 22092 ip_cgtp_bcast_delete(ire_t *ire) 22093 { 22094 ire_t *ire_dst; 22095 22096 ASSERT(ire != NULL); 22097 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 22098 NULL, NULL, MATCH_IRE_TYPE); 22099 if (ire_dst != NULL) { 22100 ire_t *ire_prim; 22101 22102 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22103 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 22104 if (ire_prim != NULL) { 22105 ipif_t *ipif_prim; 22106 ire_t *bcast_ire; 22107 22108 ipif_prim = ire_prim->ire_ipif; 22109 22110 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22111 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22112 (void *)ire_dst, (void *)ire_prim, 22113 (void *)ipif_prim)); 22114 22115 bcast_ire = ire_ctable_lookup(ire->ire_addr, 22116 ire->ire_gateway_addr, 22117 IRE_BROADCAST, 22118 ipif_prim, 22119 NULL, 22120 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 22121 MATCH_IRE_MASK); 22122 22123 if (bcast_ire != NULL) { 22124 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22125 "looked up bcast_ire %p\n", 22126 (void *)bcast_ire)); 22127 ipif_remove_ire(bcast_ire->ire_ipif, 22128 bcast_ire); 22129 ire_delete(bcast_ire); 22130 } 22131 ire_refrele(ire_prim); 22132 } 22133 ire_refrele(ire_dst); 22134 } 22135 } 22136 22137 /* 22138 * IPsec hardware acceleration capabilities related functions. 22139 */ 22140 22141 /* 22142 * Free a per-ill IPsec capabilities structure. 22143 */ 22144 static void 22145 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 22146 { 22147 if (capab->auth_hw_algs != NULL) 22148 kmem_free(capab->auth_hw_algs, capab->algs_size); 22149 if (capab->encr_hw_algs != NULL) 22150 kmem_free(capab->encr_hw_algs, capab->algs_size); 22151 if (capab->encr_algparm != NULL) 22152 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 22153 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 22154 } 22155 22156 /* 22157 * Allocate a new per-ill IPsec capabilities structure. This structure 22158 * is specific to an IPsec protocol (AH or ESP). It is implemented as 22159 * an array which specifies, for each algorithm, whether this algorithm 22160 * is supported by the ill or not. 22161 */ 22162 static ill_ipsec_capab_t * 22163 ill_ipsec_capab_alloc(void) 22164 { 22165 ill_ipsec_capab_t *capab; 22166 uint_t nelems; 22167 22168 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 22169 if (capab == NULL) 22170 return (NULL); 22171 22172 /* we need one bit per algorithm */ 22173 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 22174 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 22175 22176 /* allocate memory to store algorithm flags */ 22177 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22178 if (capab->encr_hw_algs == NULL) 22179 goto nomem; 22180 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22181 if (capab->auth_hw_algs == NULL) 22182 goto nomem; 22183 /* 22184 * Leave encr_algparm NULL for now since we won't need it half 22185 * the time 22186 */ 22187 return (capab); 22188 22189 nomem: 22190 ill_ipsec_capab_free(capab); 22191 return (NULL); 22192 } 22193 22194 /* 22195 * Resize capability array. Since we're exclusive, this is OK. 22196 */ 22197 static boolean_t 22198 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 22199 { 22200 ipsec_capab_algparm_t *nalp, *oalp; 22201 uint32_t olen, nlen; 22202 22203 oalp = capab->encr_algparm; 22204 olen = capab->encr_algparm_size; 22205 22206 if (oalp != NULL) { 22207 if (algid < capab->encr_algparm_end) 22208 return (B_TRUE); 22209 } 22210 22211 nlen = (algid + 1) * sizeof (*nalp); 22212 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 22213 if (nalp == NULL) 22214 return (B_FALSE); 22215 22216 if (oalp != NULL) { 22217 bcopy(oalp, nalp, olen); 22218 kmem_free(oalp, olen); 22219 } 22220 capab->encr_algparm = nalp; 22221 capab->encr_algparm_size = nlen; 22222 capab->encr_algparm_end = algid + 1; 22223 22224 return (B_TRUE); 22225 } 22226 22227 /* 22228 * Compare the capabilities of the specified ill with the protocol 22229 * and algorithms specified by the SA passed as argument. 22230 * If they match, returns B_TRUE, B_FALSE if they do not match. 22231 * 22232 * The ill can be passed as a pointer to it, or by specifying its index 22233 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 22234 * 22235 * Called by ipsec_out_is_accelerated() do decide whether an outbound 22236 * packet is eligible for hardware acceleration, and by 22237 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 22238 * to a particular ill. 22239 */ 22240 boolean_t 22241 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 22242 ipsa_t *sa) 22243 { 22244 boolean_t sa_isv6; 22245 uint_t algid; 22246 struct ill_ipsec_capab_s *cpp; 22247 boolean_t need_refrele = B_FALSE; 22248 22249 if (ill == NULL) { 22250 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 22251 NULL, NULL, NULL); 22252 if (ill == NULL) { 22253 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 22254 return (B_FALSE); 22255 } 22256 need_refrele = B_TRUE; 22257 } 22258 22259 /* 22260 * Use the address length specified by the SA to determine 22261 * if it corresponds to a IPv6 address, and fail the matching 22262 * if the isv6 flag passed as argument does not match. 22263 * Note: this check is used for SADB capability checking before 22264 * sending SA information to an ill. 22265 */ 22266 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 22267 if (sa_isv6 != ill_isv6) 22268 /* protocol mismatch */ 22269 goto done; 22270 22271 /* 22272 * Check if the ill supports the protocol, algorithm(s) and 22273 * key size(s) specified by the SA, and get the pointers to 22274 * the algorithms supported by the ill. 22275 */ 22276 switch (sa->ipsa_type) { 22277 22278 case SADB_SATYPE_ESP: 22279 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 22280 /* ill does not support ESP acceleration */ 22281 goto done; 22282 cpp = ill->ill_ipsec_capab_esp; 22283 algid = sa->ipsa_auth_alg; 22284 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 22285 goto done; 22286 algid = sa->ipsa_encr_alg; 22287 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 22288 goto done; 22289 if (algid < cpp->encr_algparm_end) { 22290 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 22291 if (sa->ipsa_encrkeybits < alp->minkeylen) 22292 goto done; 22293 if (sa->ipsa_encrkeybits > alp->maxkeylen) 22294 goto done; 22295 } 22296 break; 22297 22298 case SADB_SATYPE_AH: 22299 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 22300 /* ill does not support AH acceleration */ 22301 goto done; 22302 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 22303 ill->ill_ipsec_capab_ah->auth_hw_algs)) 22304 goto done; 22305 break; 22306 } 22307 22308 if (need_refrele) 22309 ill_refrele(ill); 22310 return (B_TRUE); 22311 done: 22312 if (need_refrele) 22313 ill_refrele(ill); 22314 return (B_FALSE); 22315 } 22316 22317 22318 /* 22319 * Add a new ill to the list of IPsec capable ills. 22320 * Called from ill_capability_ipsec_ack() when an ACK was received 22321 * indicating that IPsec hardware processing was enabled for an ill. 22322 * 22323 * ill must point to the ill for which acceleration was enabled. 22324 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 22325 */ 22326 static void 22327 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 22328 { 22329 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 22330 uint_t sa_type; 22331 uint_t ipproto; 22332 22333 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 22334 (dl_cap == DL_CAPAB_IPSEC_ESP)); 22335 22336 switch (dl_cap) { 22337 case DL_CAPAB_IPSEC_AH: 22338 sa_type = SADB_SATYPE_AH; 22339 ills = &ipsec_capab_ills_ah; 22340 ipproto = IPPROTO_AH; 22341 break; 22342 case DL_CAPAB_IPSEC_ESP: 22343 sa_type = SADB_SATYPE_ESP; 22344 ills = &ipsec_capab_ills_esp; 22345 ipproto = IPPROTO_ESP; 22346 break; 22347 } 22348 22349 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22350 22351 /* 22352 * Add ill index to list of hardware accelerators. If 22353 * already in list, do nothing. 22354 */ 22355 for (cur_ill = *ills; cur_ill != NULL && 22356 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 22357 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 22358 ; 22359 22360 if (cur_ill == NULL) { 22361 /* if this is a new entry for this ill */ 22362 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 22363 if (new_ill == NULL) { 22364 rw_exit(&ipsec_capab_ills_lock); 22365 return; 22366 } 22367 22368 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 22369 new_ill->ill_isv6 = ill->ill_isv6; 22370 new_ill->next = *ills; 22371 *ills = new_ill; 22372 } else if (!sadb_resync) { 22373 /* not resync'ing SADB and an entry exists for this ill */ 22374 rw_exit(&ipsec_capab_ills_lock); 22375 return; 22376 } 22377 22378 rw_exit(&ipsec_capab_ills_lock); 22379 22380 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 22381 /* 22382 * IPsec module for protocol loaded, initiate dump 22383 * of the SADB to this ill. 22384 */ 22385 sadb_ill_download(ill, sa_type); 22386 } 22387 22388 /* 22389 * Remove an ill from the list of IPsec capable ills. 22390 */ 22391 static void 22392 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 22393 { 22394 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 22395 22396 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 22397 dl_cap == DL_CAPAB_IPSEC_ESP); 22398 22399 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 22400 &ipsec_capab_ills_esp; 22401 22402 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22403 22404 prev_ill = NULL; 22405 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 22406 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 22407 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 22408 ; 22409 if (cur_ill == NULL) { 22410 /* entry not found */ 22411 rw_exit(&ipsec_capab_ills_lock); 22412 return; 22413 } 22414 if (prev_ill == NULL) { 22415 /* entry at front of list */ 22416 *ills = NULL; 22417 } else { 22418 prev_ill->next = cur_ill->next; 22419 } 22420 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 22421 rw_exit(&ipsec_capab_ills_lock); 22422 } 22423 22424 22425 /* 22426 * Handling of DL_CONTROL_REQ messages that must be sent down to 22427 * an ill while having exclusive access. 22428 */ 22429 /* ARGSUSED */ 22430 static void 22431 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 22432 { 22433 ill_t *ill = (ill_t *)q->q_ptr; 22434 22435 ill_dlpi_send(ill, mp); 22436 } 22437 22438 22439 /* 22440 * Called by SADB to send a DL_CONTROL_REQ message to every ill 22441 * supporting the specified IPsec protocol acceleration. 22442 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 22443 * We free the mblk and, if sa is non-null, release the held referece. 22444 */ 22445 void 22446 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 22447 { 22448 ipsec_capab_ill_t *ici, *cur_ici; 22449 ill_t *ill; 22450 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 22451 22452 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 22453 ipsec_capab_ills_esp; 22454 22455 rw_enter(&ipsec_capab_ills_lock, RW_READER); 22456 22457 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 22458 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 22459 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 22460 22461 /* 22462 * Handle the case where the ill goes away while the SADB is 22463 * attempting to send messages. If it's going away, it's 22464 * nuking its shadow SADB, so we don't care.. 22465 */ 22466 22467 if (ill == NULL) 22468 continue; 22469 22470 if (sa != NULL) { 22471 /* 22472 * Make sure capabilities match before 22473 * sending SA to ill. 22474 */ 22475 if (!ipsec_capab_match(ill, cur_ici->ill_index, 22476 cur_ici->ill_isv6, sa)) { 22477 ill_refrele(ill); 22478 continue; 22479 } 22480 22481 mutex_enter(&sa->ipsa_lock); 22482 sa->ipsa_flags |= IPSA_F_HW; 22483 mutex_exit(&sa->ipsa_lock); 22484 } 22485 22486 /* 22487 * Copy template message, and add it to the front 22488 * of the mblk ship list. We want to avoid holding 22489 * the ipsec_capab_ills_lock while sending the 22490 * message to the ills. 22491 * 22492 * The b_next and b_prev are temporarily used 22493 * to build a list of mblks to be sent down, and to 22494 * save the ill to which they must be sent. 22495 */ 22496 nmp = copymsg(mp); 22497 if (nmp == NULL) { 22498 ill_refrele(ill); 22499 continue; 22500 } 22501 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 22502 nmp->b_next = mp_ship_list; 22503 mp_ship_list = nmp; 22504 nmp->b_prev = (mblk_t *)ill; 22505 } 22506 22507 rw_exit(&ipsec_capab_ills_lock); 22508 22509 nmp = mp_ship_list; 22510 while (nmp != NULL) { 22511 /* restore the mblk to a sane state */ 22512 next_mp = nmp->b_next; 22513 nmp->b_next = NULL; 22514 ill = (ill_t *)nmp->b_prev; 22515 nmp->b_prev = NULL; 22516 22517 /* 22518 * Ship the mblk to the ill, must be exclusive. Keep the 22519 * reference to the ill as qwriter_ip() does a ill_referele(). 22520 */ 22521 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 22522 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 22523 22524 nmp = next_mp; 22525 } 22526 22527 if (sa != NULL) 22528 IPSA_REFRELE(sa); 22529 freemsg(mp); 22530 } 22531 22532 22533 /* 22534 * Derive an interface id from the link layer address. 22535 * Knows about IEEE 802 and IEEE EUI-64 mappings. 22536 */ 22537 static boolean_t 22538 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22539 { 22540 char *addr; 22541 22542 if (phys_length != ETHERADDRL) 22543 return (B_FALSE); 22544 22545 /* Form EUI-64 like address */ 22546 addr = (char *)&v6addr->s6_addr32[2]; 22547 bcopy((char *)phys_addr, addr, 3); 22548 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 22549 addr[3] = (char)0xff; 22550 addr[4] = (char)0xfe; 22551 bcopy((char *)phys_addr + 3, addr + 5, 3); 22552 return (B_TRUE); 22553 } 22554 22555 /* ARGSUSED */ 22556 static boolean_t 22557 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22558 { 22559 return (B_FALSE); 22560 } 22561 22562 /* ARGSUSED */ 22563 static boolean_t 22564 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22565 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22566 { 22567 /* 22568 * Multicast address mappings used over Ethernet/802.X. 22569 * This address is used as a base for mappings. 22570 */ 22571 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 22572 0x00, 0x00, 0x00}; 22573 22574 /* 22575 * Extract low order 32 bits from IPv6 multicast address. 22576 * Or that into the link layer address, starting from the 22577 * second byte. 22578 */ 22579 *hw_start = 2; 22580 v6_extract_mask->s6_addr32[0] = 0; 22581 v6_extract_mask->s6_addr32[1] = 0; 22582 v6_extract_mask->s6_addr32[2] = 0; 22583 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22584 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 22585 return (B_TRUE); 22586 } 22587 22588 /* 22589 * Indicate by return value whether multicast is supported. If not, 22590 * this code should not touch/change any parameters. 22591 */ 22592 /* ARGSUSED */ 22593 static boolean_t 22594 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22595 uint32_t *hw_start, ipaddr_t *extract_mask) 22596 { 22597 /* 22598 * Multicast address mappings used over Ethernet/802.X. 22599 * This address is used as a base for mappings. 22600 */ 22601 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 22602 0x00, 0x00, 0x00 }; 22603 22604 if (phys_length != ETHERADDRL) 22605 return (B_FALSE); 22606 22607 *extract_mask = htonl(0x007fffff); 22608 *hw_start = 2; 22609 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 22610 return (B_TRUE); 22611 } 22612 22613 /* 22614 * Derive IPoIB interface id from the link layer address. 22615 */ 22616 static boolean_t 22617 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22618 { 22619 char *addr; 22620 22621 if (phys_length != 20) 22622 return (B_FALSE); 22623 addr = (char *)&v6addr->s6_addr32[2]; 22624 bcopy(phys_addr + 12, addr, 8); 22625 /* 22626 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 22627 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 22628 * rules. In these cases, the IBA considers these GUIDs to be in 22629 * "Modified EUI-64" format, and thus toggling the u/l bit is not 22630 * required; vendors are required not to assign global EUI-64's 22631 * that differ only in u/l bit values, thus guaranteeing uniqueness 22632 * of the interface identifier. Whether the GUID is in modified 22633 * or proper EUI-64 format, the ipv6 identifier must have the u/l 22634 * bit set to 1. 22635 */ 22636 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 22637 return (B_TRUE); 22638 } 22639 22640 /* 22641 * Note on mapping from multicast IP addresses to IPoIB multicast link 22642 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 22643 * The format of an IPoIB multicast address is: 22644 * 22645 * 4 byte QPN Scope Sign. Pkey 22646 * +--------------------------------------------+ 22647 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 22648 * +--------------------------------------------+ 22649 * 22650 * The Scope and Pkey components are properties of the IBA port and 22651 * network interface. They can be ascertained from the broadcast address. 22652 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 22653 */ 22654 22655 static boolean_t 22656 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22657 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22658 { 22659 /* 22660 * Base IPoIB IPv6 multicast address used for mappings. 22661 * Does not contain the IBA scope/Pkey values. 22662 */ 22663 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22664 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 22665 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22666 22667 /* 22668 * Extract low order 80 bits from IPv6 multicast address. 22669 * Or that into the link layer address, starting from the 22670 * sixth byte. 22671 */ 22672 *hw_start = 6; 22673 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 22674 22675 /* 22676 * Now fill in the IBA scope/Pkey values from the broadcast address. 22677 */ 22678 *(maddr + 5) = *(bphys_addr + 5); 22679 *(maddr + 8) = *(bphys_addr + 8); 22680 *(maddr + 9) = *(bphys_addr + 9); 22681 22682 v6_extract_mask->s6_addr32[0] = 0; 22683 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 22684 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 22685 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22686 return (B_TRUE); 22687 } 22688 22689 static boolean_t 22690 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22691 uint32_t *hw_start, ipaddr_t *extract_mask) 22692 { 22693 /* 22694 * Base IPoIB IPv4 multicast address used for mappings. 22695 * Does not contain the IBA scope/Pkey values. 22696 */ 22697 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22698 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 22699 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22700 22701 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 22702 return (B_FALSE); 22703 22704 /* 22705 * Extract low order 28 bits from IPv4 multicast address. 22706 * Or that into the link layer address, starting from the 22707 * sixteenth byte. 22708 */ 22709 *extract_mask = htonl(0x0fffffff); 22710 *hw_start = 16; 22711 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 22712 22713 /* 22714 * Now fill in the IBA scope/Pkey values from the broadcast address. 22715 */ 22716 *(maddr + 5) = *(bphys_addr + 5); 22717 *(maddr + 8) = *(bphys_addr + 8); 22718 *(maddr + 9) = *(bphys_addr + 9); 22719 return (B_TRUE); 22720 } 22721 22722 /* 22723 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 22724 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 22725 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 22726 * the link-local address is preferred. 22727 */ 22728 boolean_t 22729 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 22730 { 22731 ipif_t *ipif; 22732 ipif_t *maybe_ipif = NULL; 22733 22734 mutex_enter(&ill->ill_lock); 22735 if (ill->ill_state_flags & ILL_CONDEMNED) { 22736 mutex_exit(&ill->ill_lock); 22737 if (ipifp != NULL) 22738 *ipifp = NULL; 22739 return (B_FALSE); 22740 } 22741 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 22742 if (!IPIF_CAN_LOOKUP(ipif)) 22743 continue; 22744 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid) 22745 continue; 22746 if ((ipif->ipif_flags & flags) != flags) 22747 continue; 22748 22749 if (ipifp == NULL) { 22750 mutex_exit(&ill->ill_lock); 22751 ASSERT(maybe_ipif == NULL); 22752 return (B_TRUE); 22753 } 22754 if (!ill->ill_isv6 || 22755 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 22756 ipif_refhold_locked(ipif); 22757 mutex_exit(&ill->ill_lock); 22758 *ipifp = ipif; 22759 return (B_TRUE); 22760 } 22761 if (maybe_ipif == NULL) 22762 maybe_ipif = ipif; 22763 } 22764 if (ipifp != NULL) { 22765 if (maybe_ipif != NULL) 22766 ipif_refhold_locked(maybe_ipif); 22767 *ipifp = maybe_ipif; 22768 } 22769 mutex_exit(&ill->ill_lock); 22770 return (maybe_ipif != NULL); 22771 } 22772 22773 /* 22774 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 22775 */ 22776 boolean_t 22777 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 22778 { 22779 ill_t *illg; 22780 22781 /* 22782 * We look at the passed-in ill first without grabbing ill_g_lock. 22783 */ 22784 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 22785 return (B_TRUE); 22786 } 22787 rw_enter(&ill_g_lock, RW_READER); 22788 if (ill->ill_group == NULL) { 22789 /* ill not in a group */ 22790 rw_exit(&ill_g_lock); 22791 return (B_FALSE); 22792 } 22793 22794 /* 22795 * There's no ipif in the zone on ill, however ill is part of an IPMP 22796 * group. We need to look for an ipif in the zone on all the ills in the 22797 * group. 22798 */ 22799 illg = ill->ill_group->illgrp_ill; 22800 do { 22801 /* 22802 * We don't call ipif_lookup_zoneid() on ill as we already know 22803 * that it's not there. 22804 */ 22805 if (illg != ill && 22806 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 22807 break; 22808 } 22809 } while ((illg = illg->ill_group_next) != NULL); 22810 rw_exit(&ill_g_lock); 22811 return (illg != NULL); 22812 } 22813 22814 /* 22815 * Check if this ill is only being used to send ICMP probes for IPMP 22816 */ 22817 boolean_t 22818 ill_is_probeonly(ill_t *ill) 22819 { 22820 /* 22821 * Check if the interface is FAILED, or INACTIVE 22822 */ 22823 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 22824 return (B_TRUE); 22825 22826 return (B_FALSE); 22827 } 22828