1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 #include <sys/bitmap.h> 49 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_ftable.h> 81 #include <inet/ip_rts.h> 82 #include <inet/ip_ndp.h> 83 #include <inet/ip_if.h> 84 #include <inet/ip_impl.h> 85 #include <inet/tun.h> 86 #include <inet/sctp_ip.h> 87 #include <inet/ip_netinfo.h> 88 #include <inet/mib2.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 typedef struct ip_sock_ar_s { 122 union { 123 area_t ip_sock_area; 124 ared_t ip_sock_ared; 125 areq_t ip_sock_areq; 126 } ip_sock_ar_u; 127 queue_t *ip_sock_ar_q; 128 } ip_sock_ar_t; 129 130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 132 char *value, caddr_t cp, cred_t *ioc_cr); 133 134 static boolean_t ill_is_quiescent(ill_t *); 135 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 136 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 137 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 144 mblk_t *mp, boolean_t need_up); 145 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 146 mblk_t *mp); 147 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 148 queue_t *q, mblk_t *mp, boolean_t need_up); 149 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 150 int ioccmd, struct linkblk *li, boolean_t doconsist); 151 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 152 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 153 static void ipsq_flush(ill_t *ill); 154 155 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 156 queue_t *q, mblk_t *mp, boolean_t need_up); 157 static void ipsq_delete(ipsq_t *); 158 159 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 160 boolean_t initialize); 161 static void ipif_check_bcast_ires(ipif_t *test_ipif); 162 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 163 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 164 boolean_t isv6); 165 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 166 static void ipif_delete_cache_ire(ire_t *, char *); 167 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 168 static void ipif_free(ipif_t *ipif); 169 static void ipif_free_tail(ipif_t *ipif); 170 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 171 static void ipif_multicast_down(ipif_t *ipif); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 182 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 183 184 static int ill_alloc_ppa(ill_if_t *, ill_t *); 185 static int ill_arp_off(ill_t *ill); 186 static int ill_arp_on(ill_t *ill); 187 static void ill_delete_interface_type(ill_if_t *); 188 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 189 static void ill_dl_down(ill_t *ill); 190 static void ill_down(ill_t *ill); 191 static void ill_downi(ire_t *ire, char *ill_arg); 192 static void ill_free_mib(ill_t *ill); 193 static void ill_glist_delete(ill_t *); 194 static boolean_t ill_has_usable_ipif(ill_t *); 195 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 196 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 197 static void ill_phyint_free(ill_t *ill); 198 static void ill_phyint_reinit(ill_t *ill); 199 static void ill_set_nce_router_flags(ill_t *, boolean_t); 200 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 201 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 202 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 203 static void ill_stq_cache_delete(ire_t *, char *); 204 205 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 207 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 in6_addr_t *); 209 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 210 ipaddr_t *); 211 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 212 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 in6_addr_t *); 214 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 215 ipaddr_t *); 216 217 static void ipif_save_ire(ipif_t *, ire_t *); 218 static void ipif_remove_ire(ipif_t *, ire_t *); 219 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 220 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 221 222 /* 223 * Per-ill IPsec capabilities management. 224 */ 225 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 226 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 227 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 228 static void ill_ipsec_capab_delete(ill_t *, uint_t); 229 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 230 static void ill_capability_proto(ill_t *, int, mblk_t *); 231 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 232 boolean_t); 233 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 236 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 238 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 240 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 241 dl_capability_sub_t *); 242 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 243 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static void ill_capability_lso_reset(ill_t *, mblk_t **); 245 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 246 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 247 static void ill_capability_dls_reset(ill_t *, mblk_t **); 248 static void ill_capability_dls_disable(ill_t *); 249 250 static void illgrp_cache_delete(ire_t *, char *); 251 static void illgrp_delete(ill_t *ill); 252 static void illgrp_reset_schednext(ill_t *ill); 253 254 static ill_t *ill_prev_usesrc(ill_t *); 255 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 256 static void ill_disband_usesrc_group(ill_t *); 257 258 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 259 260 #ifdef DEBUG 261 static void ill_trace_cleanup(const ill_t *); 262 static void ipif_trace_cleanup(const ipif_t *); 263 #endif 264 265 /* 266 * if we go over the memory footprint limit more than once in this msec 267 * interval, we'll start pruning aggressively. 268 */ 269 int ip_min_frag_prune_time = 0; 270 271 /* 272 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 273 * and the IPsec DOI 274 */ 275 #define MAX_IPSEC_ALGS 256 276 277 #define BITSPERBYTE 8 278 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 279 280 #define IPSEC_ALG_ENABLE(algs, algid) \ 281 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 282 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 283 284 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 285 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 286 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 287 288 typedef uint8_t ipsec_capab_elem_t; 289 290 /* 291 * Per-algorithm parameters. Note that at present, only encryption 292 * algorithms have variable keysize (IKE does not provide a way to negotiate 293 * auth algorithm keysize). 294 * 295 * All sizes here are in bits. 296 */ 297 typedef struct 298 { 299 uint16_t minkeylen; 300 uint16_t maxkeylen; 301 } ipsec_capab_algparm_t; 302 303 /* 304 * Per-ill capabilities. 305 */ 306 struct ill_ipsec_capab_s { 307 ipsec_capab_elem_t *encr_hw_algs; 308 ipsec_capab_elem_t *auth_hw_algs; 309 uint32_t algs_size; /* size of _hw_algs in bytes */ 310 /* algorithm key lengths */ 311 ipsec_capab_algparm_t *encr_algparm; 312 uint32_t encr_algparm_size; 313 uint32_t encr_algparm_end; 314 }; 315 316 /* 317 * The field values are larger than strictly necessary for simple 318 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 319 */ 320 static area_t ip_area_template = { 321 AR_ENTRY_ADD, /* area_cmd */ 322 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 323 /* area_name_offset */ 324 /* area_name_length temporarily holds this structure length */ 325 sizeof (area_t), /* area_name_length */ 326 IP_ARP_PROTO_TYPE, /* area_proto */ 327 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 328 IP_ADDR_LEN, /* area_proto_addr_length */ 329 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 330 /* area_proto_mask_offset */ 331 0, /* area_flags */ 332 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 333 /* area_hw_addr_offset */ 334 /* Zero length hw_addr_length means 'use your idea of the address' */ 335 0 /* area_hw_addr_length */ 336 }; 337 338 /* 339 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 340 * support 341 */ 342 static area_t ip6_area_template = { 343 AR_ENTRY_ADD, /* area_cmd */ 344 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 345 /* area_name_offset */ 346 /* area_name_length temporarily holds this structure length */ 347 sizeof (area_t), /* area_name_length */ 348 IP_ARP_PROTO_TYPE, /* area_proto */ 349 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 350 IPV6_ADDR_LEN, /* area_proto_addr_length */ 351 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 352 /* area_proto_mask_offset */ 353 0, /* area_flags */ 354 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 355 /* area_hw_addr_offset */ 356 /* Zero length hw_addr_length means 'use your idea of the address' */ 357 0 /* area_hw_addr_length */ 358 }; 359 360 static ared_t ip_ared_template = { 361 AR_ENTRY_DELETE, 362 sizeof (ared_t) + IP_ADDR_LEN, 363 sizeof (ared_t), 364 IP_ARP_PROTO_TYPE, 365 sizeof (ared_t), 366 IP_ADDR_LEN 367 }; 368 369 static ared_t ip6_ared_template = { 370 AR_ENTRY_DELETE, 371 sizeof (ared_t) + IPV6_ADDR_LEN, 372 sizeof (ared_t), 373 IP_ARP_PROTO_TYPE, 374 sizeof (ared_t), 375 IPV6_ADDR_LEN 376 }; 377 378 /* 379 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 380 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 381 * areq is used). 382 */ 383 static areq_t ip_areq_template = { 384 AR_ENTRY_QUERY, /* cmd */ 385 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 386 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 387 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 388 sizeof (areq_t), /* target addr offset */ 389 IP_ADDR_LEN, /* target addr_length */ 390 0, /* flags */ 391 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 392 IP_ADDR_LEN, /* sender addr length */ 393 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 394 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 395 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 396 /* anything else filled in by the code */ 397 }; 398 399 static arc_t ip_aru_template = { 400 AR_INTERFACE_UP, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_ard_template = { 406 AR_INTERFACE_DOWN, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aron_template = { 412 AR_INTERFACE_ON, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 static arc_t ip_aroff_template = { 418 AR_INTERFACE_OFF, 419 sizeof (arc_t), /* Name offset */ 420 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 421 }; 422 423 424 static arma_t ip_arma_multi_template = { 425 AR_MAPPING_ADD, 426 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 427 /* Name offset */ 428 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 429 IP_ARP_PROTO_TYPE, 430 sizeof (arma_t), /* proto_addr_offset */ 431 IP_ADDR_LEN, /* proto_addr_length */ 432 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 433 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 434 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 435 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 436 IP_MAX_HW_LEN, /* hw_addr_length */ 437 0, /* hw_mapping_start */ 438 }; 439 440 static ipft_t ip_ioctl_ftbl[] = { 441 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 442 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 443 IPFT_F_NO_REPLY }, 444 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 445 IPFT_F_NO_REPLY }, 446 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 447 { 0 } 448 }; 449 450 /* Simple ICMP IP Header Template */ 451 static ipha_t icmp_ipha = { 452 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 453 }; 454 455 /* Flag descriptors for ip_ipif_report */ 456 static nv_t ipif_nv_tbl[] = { 457 { IPIF_UP, "UP" }, 458 { IPIF_BROADCAST, "BROADCAST" }, 459 { ILLF_DEBUG, "DEBUG" }, 460 { PHYI_LOOPBACK, "LOOPBACK" }, 461 { IPIF_POINTOPOINT, "POINTOPOINT" }, 462 { ILLF_NOTRAILERS, "NOTRAILERS" }, 463 { PHYI_RUNNING, "RUNNING" }, 464 { ILLF_NOARP, "NOARP" }, 465 { PHYI_PROMISC, "PROMISC" }, 466 { PHYI_ALLMULTI, "ALLMULTI" }, 467 { PHYI_INTELLIGENT, "INTELLIGENT" }, 468 { ILLF_MULTICAST, "MULTICAST" }, 469 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 470 { IPIF_UNNUMBERED, "UNNUMBERED" }, 471 { IPIF_DHCPRUNNING, "DHCP" }, 472 { IPIF_PRIVATE, "PRIVATE" }, 473 { IPIF_NOXMIT, "NOXMIT" }, 474 { IPIF_NOLOCAL, "NOLOCAL" }, 475 { IPIF_DEPRECATED, "DEPRECATED" }, 476 { IPIF_PREFERRED, "PREFERRED" }, 477 { IPIF_TEMPORARY, "TEMPORARY" }, 478 { IPIF_ADDRCONF, "ADDRCONF" }, 479 { PHYI_VIRTUAL, "VIRTUAL" }, 480 { ILLF_ROUTER, "ROUTER" }, 481 { ILLF_NONUD, "NONUD" }, 482 { IPIF_ANYCAST, "ANYCAST" }, 483 { ILLF_NORTEXCH, "NORTEXCH" }, 484 { ILLF_IPV4, "IPV4" }, 485 { ILLF_IPV6, "IPV6" }, 486 { IPIF_NOFAILOVER, "NOFAILOVER" }, 487 { PHYI_FAILED, "FAILED" }, 488 { PHYI_STANDBY, "STANDBY" }, 489 { PHYI_INACTIVE, "INACTIVE" }, 490 { PHYI_OFFLINE, "OFFLINE" }, 491 }; 492 493 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 494 495 static ip_m_t ip_m_tbl[] = { 496 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 497 ip_ether_v6intfid }, 498 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_nodef_v6intfid }, 500 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 501 ip_nodef_v6intfid }, 502 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 503 ip_nodef_v6intfid }, 504 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 505 ip_ether_v6intfid }, 506 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 507 ip_ib_v6intfid }, 508 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 509 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 510 ip_nodef_v6intfid } 511 }; 512 513 static ill_t ill_null; /* Empty ILL for init. */ 514 char ipif_loopback_name[] = "lo0"; 515 static char *ipv4_forward_suffix = ":ip_forwarding"; 516 static char *ipv6_forward_suffix = ":ip6_forwarding"; 517 static sin6_t sin6_null; /* Zero address for quick clears */ 518 static sin_t sin_null; /* Zero address for quick clears */ 519 520 /* When set search for unused ipif_seqid */ 521 static ipif_t ipif_zero; 522 523 /* 524 * ppa arena is created after these many 525 * interfaces have been plumbed. 526 */ 527 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 528 529 /* 530 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 531 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 532 * set through platform specific code (Niagara/Ontario). 533 */ 534 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 535 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 536 537 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 538 539 static uint_t 540 ipif_rand(ip_stack_t *ipst) 541 { 542 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 543 12345; 544 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 545 } 546 547 /* 548 * Allocate per-interface mibs. 549 * Returns true if ok. False otherwise. 550 * ipsq may not yet be allocated (loopback case ). 551 */ 552 static boolean_t 553 ill_allocate_mibs(ill_t *ill) 554 { 555 /* Already allocated? */ 556 if (ill->ill_ip_mib != NULL) { 557 if (ill->ill_isv6) 558 ASSERT(ill->ill_icmp6_mib != NULL); 559 return (B_TRUE); 560 } 561 562 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 563 KM_NOSLEEP); 564 if (ill->ill_ip_mib == NULL) { 565 return (B_FALSE); 566 } 567 568 /* Setup static information */ 569 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 570 sizeof (mib2_ipIfStatsEntry_t)); 571 if (ill->ill_isv6) { 572 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 573 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 574 sizeof (mib2_ipv6AddrEntry_t)); 575 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 576 sizeof (mib2_ipv6RouteEntry_t)); 577 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 578 sizeof (mib2_ipv6NetToMediaEntry_t)); 579 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 580 sizeof (ipv6_member_t)); 581 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 582 sizeof (ipv6_grpsrc_t)); 583 } else { 584 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 585 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 586 sizeof (mib2_ipAddrEntry_t)); 587 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 588 sizeof (mib2_ipRouteEntry_t)); 589 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 590 sizeof (mib2_ipNetToMediaEntry_t)); 591 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 592 sizeof (ip_member_t)); 593 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 594 sizeof (ip_grpsrc_t)); 595 596 /* 597 * For a v4 ill, we are done at this point, because per ill 598 * icmp mibs are only used for v6. 599 */ 600 return (B_TRUE); 601 } 602 603 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 604 KM_NOSLEEP); 605 if (ill->ill_icmp6_mib == NULL) { 606 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 607 ill->ill_ip_mib = NULL; 608 return (B_FALSE); 609 } 610 /* static icmp info */ 611 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 612 sizeof (mib2_ipv6IfIcmpEntry_t); 613 /* 614 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 615 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 616 * -> ill_phyint_reinit 617 */ 618 return (B_TRUE); 619 } 620 621 /* 622 * Common code for preparation of ARP commands. Two points to remember: 623 * 1) The ill_name is tacked on at the end of the allocated space so 624 * the templates name_offset field must contain the total space 625 * to allocate less the name length. 626 * 627 * 2) The templates name_length field should contain the *template* 628 * length. We use it as a parameter to bcopy() and then write 629 * the real ill_name_length into the name_length field of the copy. 630 * (Always called as writer.) 631 */ 632 mblk_t * 633 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 634 { 635 arc_t *arc = (arc_t *)template; 636 char *cp; 637 int len; 638 mblk_t *mp; 639 uint_t name_length = ill->ill_name_length; 640 uint_t template_len = arc->arc_name_length; 641 642 len = arc->arc_name_offset + name_length; 643 mp = allocb(len, BPRI_HI); 644 if (mp == NULL) 645 return (NULL); 646 cp = (char *)mp->b_rptr; 647 mp->b_wptr = (uchar_t *)&cp[len]; 648 if (template_len) 649 bcopy(template, cp, template_len); 650 if (len > template_len) 651 bzero(&cp[template_len], len - template_len); 652 mp->b_datap->db_type = M_PROTO; 653 654 arc = (arc_t *)cp; 655 arc->arc_name_length = name_length; 656 cp = (char *)arc + arc->arc_name_offset; 657 bcopy(ill->ill_name, cp, name_length); 658 659 if (addr) { 660 area_t *area = (area_t *)mp->b_rptr; 661 662 cp = (char *)area + area->area_proto_addr_offset; 663 bcopy(addr, cp, area->area_proto_addr_length); 664 if (area->area_cmd == AR_ENTRY_ADD) { 665 cp = (char *)area; 666 len = area->area_proto_addr_length; 667 if (area->area_proto_mask_offset) 668 cp += area->area_proto_mask_offset; 669 else 670 cp += area->area_proto_addr_offset + len; 671 while (len-- > 0) 672 *cp++ = (char)~0; 673 } 674 } 675 return (mp); 676 } 677 678 mblk_t * 679 ipif_area_alloc(ipif_t *ipif) 680 { 681 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 682 (char *)&ipif->ipif_lcl_addr)); 683 } 684 685 mblk_t * 686 ipif_ared_alloc(ipif_t *ipif) 687 { 688 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 689 (char *)&ipif->ipif_lcl_addr)); 690 } 691 692 mblk_t * 693 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 694 { 695 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 696 (char *)&addr)); 697 } 698 699 /* 700 * Completely vaporize a lower level tap and all associated interfaces. 701 * ill_delete is called only out of ip_close when the device control 702 * stream is being closed. 703 */ 704 void 705 ill_delete(ill_t *ill) 706 { 707 ipif_t *ipif; 708 ill_t *prev_ill; 709 ip_stack_t *ipst = ill->ill_ipst; 710 711 /* 712 * ill_delete may be forcibly entering the ipsq. The previous 713 * ioctl may not have completed and may need to be aborted. 714 * ipsq_flush takes care of it. If we don't need to enter the 715 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 716 * ill_delete_tail is sufficient. 717 */ 718 ipsq_flush(ill); 719 720 /* 721 * Nuke all interfaces. ipif_free will take down the interface, 722 * remove it from the list, and free the data structure. 723 * Walk down the ipif list and remove the logical interfaces 724 * first before removing the main ipif. We can't unplumb 725 * zeroth interface first in the case of IPv6 as reset_conn_ill 726 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 727 * POINTOPOINT. 728 * 729 * If ill_ipif was not properly initialized (i.e low on memory), 730 * then no interfaces to clean up. In this case just clean up the 731 * ill. 732 */ 733 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 734 ipif_free(ipif); 735 736 /* 737 * Used only by ill_arp_on and ill_arp_off, which are writers. 738 * So nobody can be using this mp now. Free the mp allocated for 739 * honoring ILLF_NOARP 740 */ 741 freemsg(ill->ill_arp_on_mp); 742 ill->ill_arp_on_mp = NULL; 743 744 /* Clean up msgs on pending upcalls for mrouted */ 745 reset_mrt_ill(ill); 746 747 /* 748 * ipif_free -> reset_conn_ipif will remove all multicast 749 * references for IPv4. For IPv6, we need to do it here as 750 * it points only at ills. 751 */ 752 reset_conn_ill(ill); 753 754 /* 755 * ill_down will arrange to blow off any IRE's dependent on this 756 * ILL, and shut down fragmentation reassembly. 757 */ 758 ill_down(ill); 759 760 /* Let SCTP know, so that it can remove this from its list. */ 761 sctp_update_ill(ill, SCTP_ILL_REMOVE); 762 763 /* 764 * If an address on this ILL is being used as a source address then 765 * clear out the pointers in other ILLs that point to this ILL. 766 */ 767 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 768 if (ill->ill_usesrc_grp_next != NULL) { 769 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 770 ill_disband_usesrc_group(ill); 771 } else { /* consumer of the usesrc ILL */ 772 prev_ill = ill_prev_usesrc(ill); 773 prev_ill->ill_usesrc_grp_next = 774 ill->ill_usesrc_grp_next; 775 } 776 } 777 rw_exit(&ipst->ips_ill_g_usesrc_lock); 778 } 779 780 static void 781 ipif_non_duplicate(ipif_t *ipif) 782 { 783 ill_t *ill = ipif->ipif_ill; 784 mutex_enter(&ill->ill_lock); 785 if (ipif->ipif_flags & IPIF_DUPLICATE) { 786 ipif->ipif_flags &= ~IPIF_DUPLICATE; 787 ASSERT(ill->ill_ipif_dup_count > 0); 788 ill->ill_ipif_dup_count--; 789 } 790 mutex_exit(&ill->ill_lock); 791 } 792 793 /* 794 * ill_delete_tail is called from ip_modclose after all references 795 * to the closing ill are gone. The wait is done in ip_modclose 796 */ 797 void 798 ill_delete_tail(ill_t *ill) 799 { 800 mblk_t **mpp; 801 ipif_t *ipif; 802 ip_stack_t *ipst = ill->ill_ipst; 803 804 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 805 ipif_non_duplicate(ipif); 806 ipif_down_tail(ipif); 807 } 808 809 ASSERT(ill->ill_ipif_dup_count == 0 && 810 ill->ill_arp_down_mp == NULL && 811 ill->ill_arp_del_mapping_mp == NULL); 812 813 /* 814 * If polling capability is enabled (which signifies direct 815 * upcall into IP and driver has ill saved as a handle), 816 * we need to make sure that unbind has completed before we 817 * let the ill disappear and driver no longer has any reference 818 * to this ill. 819 */ 820 mutex_enter(&ill->ill_lock); 821 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 822 cv_wait(&ill->ill_cv, &ill->ill_lock); 823 mutex_exit(&ill->ill_lock); 824 825 /* 826 * Clean up polling and soft ring capabilities 827 */ 828 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 829 ill_capability_dls_disable(ill); 830 831 if (ill->ill_net_type != IRE_LOOPBACK) 832 qprocsoff(ill->ill_rq); 833 834 /* 835 * We do an ipsq_flush once again now. New messages could have 836 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 837 * could also have landed up if an ioctl thread had looked up 838 * the ill before we set the ILL_CONDEMNED flag, but not yet 839 * enqueued the ioctl when we did the ipsq_flush last time. 840 */ 841 ipsq_flush(ill); 842 843 /* 844 * Free capabilities. 845 */ 846 if (ill->ill_ipsec_capab_ah != NULL) { 847 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 848 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 849 ill->ill_ipsec_capab_ah = NULL; 850 } 851 852 if (ill->ill_ipsec_capab_esp != NULL) { 853 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 854 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 855 ill->ill_ipsec_capab_esp = NULL; 856 } 857 858 if (ill->ill_mdt_capab != NULL) { 859 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 860 ill->ill_mdt_capab = NULL; 861 } 862 863 if (ill->ill_hcksum_capab != NULL) { 864 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 865 ill->ill_hcksum_capab = NULL; 866 } 867 868 if (ill->ill_zerocopy_capab != NULL) { 869 kmem_free(ill->ill_zerocopy_capab, 870 sizeof (ill_zerocopy_capab_t)); 871 ill->ill_zerocopy_capab = NULL; 872 } 873 874 if (ill->ill_lso_capab != NULL) { 875 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 876 ill->ill_lso_capab = NULL; 877 } 878 879 if (ill->ill_dls_capab != NULL) { 880 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 881 ill->ill_dls_capab->ill_unbind_conn = NULL; 882 kmem_free(ill->ill_dls_capab, 883 sizeof (ill_dls_capab_t) + 884 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 885 ill->ill_dls_capab = NULL; 886 } 887 888 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 889 890 while (ill->ill_ipif != NULL) 891 ipif_free_tail(ill->ill_ipif); 892 893 /* 894 * We have removed all references to ilm from conn and the ones joined 895 * within the kernel. 896 * 897 * We don't walk conns, mrts and ires because 898 * 899 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 900 * 2) ill_down ->ill_downi walks all the ires and cleans up 901 * ill references. 902 */ 903 ASSERT(ilm_walk_ill(ill) == 0); 904 /* 905 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 906 * could free the phyint. No more reference to the phyint after this 907 * point. 908 */ 909 (void) ill_glist_delete(ill); 910 911 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 912 if (ill->ill_ndd_name != NULL) 913 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 914 rw_exit(&ipst->ips_ip_g_nd_lock); 915 916 917 if (ill->ill_frag_ptr != NULL) { 918 uint_t count; 919 920 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 921 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 922 } 923 mi_free(ill->ill_frag_ptr); 924 ill->ill_frag_ptr = NULL; 925 ill->ill_frag_hash_tbl = NULL; 926 } 927 928 freemsg(ill->ill_nd_lla_mp); 929 /* Free all retained control messages. */ 930 mpp = &ill->ill_first_mp_to_free; 931 do { 932 while (mpp[0]) { 933 mblk_t *mp; 934 mblk_t *mp1; 935 936 mp = mpp[0]; 937 mpp[0] = mp->b_next; 938 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 939 mp1->b_next = NULL; 940 mp1->b_prev = NULL; 941 } 942 freemsg(mp); 943 } 944 } while (mpp++ != &ill->ill_last_mp_to_free); 945 946 ill_free_mib(ill); 947 948 #ifdef DEBUG 949 ill_trace_cleanup(ill); 950 #endif 951 952 /* Drop refcnt here */ 953 netstack_rele(ill->ill_ipst->ips_netstack); 954 ill->ill_ipst = NULL; 955 } 956 957 static void 958 ill_free_mib(ill_t *ill) 959 { 960 ip_stack_t *ipst = ill->ill_ipst; 961 962 /* 963 * MIB statistics must not be lost, so when an interface 964 * goes away the counter values will be added to the global 965 * MIBs. 966 */ 967 if (ill->ill_ip_mib != NULL) { 968 if (ill->ill_isv6) { 969 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 970 ill->ill_ip_mib); 971 } else { 972 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 973 ill->ill_ip_mib); 974 } 975 976 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 977 ill->ill_ip_mib = NULL; 978 } 979 if (ill->ill_icmp6_mib != NULL) { 980 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 981 ill->ill_icmp6_mib); 982 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 983 ill->ill_icmp6_mib = NULL; 984 } 985 } 986 987 /* 988 * Concatenate together a physical address and a sap. 989 * 990 * Sap_lengths are interpreted as follows: 991 * sap_length == 0 ==> no sap 992 * sap_length > 0 ==> sap is at the head of the dlpi address 993 * sap_length < 0 ==> sap is at the tail of the dlpi address 994 */ 995 static void 996 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 997 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 998 { 999 uint16_t sap_addr = (uint16_t)sap_src; 1000 1001 if (sap_length == 0) { 1002 if (phys_src == NULL) 1003 bzero(dst, phys_length); 1004 else 1005 bcopy(phys_src, dst, phys_length); 1006 } else if (sap_length < 0) { 1007 if (phys_src == NULL) 1008 bzero(dst, phys_length); 1009 else 1010 bcopy(phys_src, dst, phys_length); 1011 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1012 } else { 1013 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1014 if (phys_src == NULL) 1015 bzero((char *)dst + sap_length, phys_length); 1016 else 1017 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1018 } 1019 } 1020 1021 /* 1022 * Generate a dl_unitdata_req mblk for the device and address given. 1023 * addr_length is the length of the physical portion of the address. 1024 * If addr is NULL include an all zero address of the specified length. 1025 * TRUE? In any case, addr_length is taken to be the entire length of the 1026 * dlpi address, including the absolute value of sap_length. 1027 */ 1028 mblk_t * 1029 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1030 t_scalar_t sap_length) 1031 { 1032 dl_unitdata_req_t *dlur; 1033 mblk_t *mp; 1034 t_scalar_t abs_sap_length; /* absolute value */ 1035 1036 abs_sap_length = ABS(sap_length); 1037 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1038 DL_UNITDATA_REQ); 1039 if (mp == NULL) 1040 return (NULL); 1041 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1042 /* HACK: accomodate incompatible DLPI drivers */ 1043 if (addr_length == 8) 1044 addr_length = 6; 1045 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1046 dlur->dl_dest_addr_offset = sizeof (*dlur); 1047 dlur->dl_priority.dl_min = 0; 1048 dlur->dl_priority.dl_max = 0; 1049 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1050 (uchar_t *)&dlur[1]); 1051 return (mp); 1052 } 1053 1054 /* 1055 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1056 * Return an error if we already have 1 or more ioctls in progress. 1057 * This is used only for non-exclusive ioctls. Currently this is used 1058 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1059 * and thus need to use ipsq_pending_mp_add. 1060 */ 1061 boolean_t 1062 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1063 { 1064 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1065 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1066 /* 1067 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1068 */ 1069 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1070 (add_mp->b_datap->db_type == M_IOCTL)); 1071 1072 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1073 /* 1074 * Return error if the conn has started closing. The conn 1075 * could have finished cleaning up the pending mp list, 1076 * If so we should not add another mp to the list negating 1077 * the cleanup. 1078 */ 1079 if (connp->conn_state_flags & CONN_CLOSING) 1080 return (B_FALSE); 1081 /* 1082 * Add the pending mp to the head of the list, chained by b_next. 1083 * Note down the conn on which the ioctl request came, in b_prev. 1084 * This will be used to later get the conn, when we get a response 1085 * on the ill queue, from some other module (typically arp) 1086 */ 1087 add_mp->b_next = (void *)ill->ill_pending_mp; 1088 add_mp->b_queue = CONNP_TO_WQ(connp); 1089 ill->ill_pending_mp = add_mp; 1090 if (connp != NULL) 1091 connp->conn_oper_pending_ill = ill; 1092 return (B_TRUE); 1093 } 1094 1095 /* 1096 * Retrieve the ill_pending_mp and return it. We have to walk the list 1097 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1098 */ 1099 mblk_t * 1100 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1101 { 1102 mblk_t *prev = NULL; 1103 mblk_t *curr = NULL; 1104 uint_t id; 1105 conn_t *connp; 1106 1107 /* 1108 * When the conn closes, conn_ioctl_cleanup needs to clean 1109 * up the pending mp, but it does not know the ioc_id and 1110 * passes in a zero for it. 1111 */ 1112 mutex_enter(&ill->ill_lock); 1113 if (ioc_id != 0) 1114 *connpp = NULL; 1115 1116 /* Search the list for the appropriate ioctl based on ioc_id */ 1117 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1118 prev = curr, curr = curr->b_next) { 1119 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1120 connp = Q_TO_CONN(curr->b_queue); 1121 /* Match based on the ioc_id or based on the conn */ 1122 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1123 break; 1124 } 1125 1126 if (curr != NULL) { 1127 /* Unlink the mblk from the pending mp list */ 1128 if (prev != NULL) { 1129 prev->b_next = curr->b_next; 1130 } else { 1131 ASSERT(ill->ill_pending_mp == curr); 1132 ill->ill_pending_mp = curr->b_next; 1133 } 1134 1135 /* 1136 * conn refcnt must have been bumped up at the start of 1137 * the ioctl. So we can safely access the conn. 1138 */ 1139 ASSERT(CONN_Q(curr->b_queue)); 1140 *connpp = Q_TO_CONN(curr->b_queue); 1141 curr->b_next = NULL; 1142 curr->b_queue = NULL; 1143 } 1144 1145 mutex_exit(&ill->ill_lock); 1146 1147 return (curr); 1148 } 1149 1150 /* 1151 * Add the pending mp to the list. There can be only 1 pending mp 1152 * in the list. Any exclusive ioctl that needs to wait for a response 1153 * from another module or driver needs to use this function to set 1154 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1155 * the other module/driver. This is also used while waiting for the 1156 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1157 */ 1158 boolean_t 1159 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1160 int waitfor) 1161 { 1162 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1163 1164 ASSERT(IAM_WRITER_IPIF(ipif)); 1165 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1166 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1167 ASSERT(ipsq->ipsq_pending_mp == NULL); 1168 /* 1169 * The caller may be using a different ipif than the one passed into 1170 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1171 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1172 * that `ipsq_current_ipif == ipif'. 1173 */ 1174 ASSERT(ipsq->ipsq_current_ipif != NULL); 1175 1176 /* 1177 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1178 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1179 */ 1180 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1181 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1182 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1183 1184 if (connp != NULL) { 1185 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1186 /* 1187 * Return error if the conn has started closing. The conn 1188 * could have finished cleaning up the pending mp list, 1189 * If so we should not add another mp to the list negating 1190 * the cleanup. 1191 */ 1192 if (connp->conn_state_flags & CONN_CLOSING) 1193 return (B_FALSE); 1194 } 1195 mutex_enter(&ipsq->ipsq_lock); 1196 ipsq->ipsq_pending_ipif = ipif; 1197 /* 1198 * Note down the queue in b_queue. This will be returned by 1199 * ipsq_pending_mp_get. Caller will then use these values to restart 1200 * the processing 1201 */ 1202 add_mp->b_next = NULL; 1203 add_mp->b_queue = q; 1204 ipsq->ipsq_pending_mp = add_mp; 1205 ipsq->ipsq_waitfor = waitfor; 1206 1207 if (connp != NULL) 1208 connp->conn_oper_pending_ill = ipif->ipif_ill; 1209 mutex_exit(&ipsq->ipsq_lock); 1210 return (B_TRUE); 1211 } 1212 1213 /* 1214 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1215 * queued in the list. 1216 */ 1217 mblk_t * 1218 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1219 { 1220 mblk_t *curr = NULL; 1221 1222 mutex_enter(&ipsq->ipsq_lock); 1223 *connpp = NULL; 1224 if (ipsq->ipsq_pending_mp == NULL) { 1225 mutex_exit(&ipsq->ipsq_lock); 1226 return (NULL); 1227 } 1228 1229 /* There can be only 1 such excl message */ 1230 curr = ipsq->ipsq_pending_mp; 1231 ASSERT(curr != NULL && curr->b_next == NULL); 1232 ipsq->ipsq_pending_ipif = NULL; 1233 ipsq->ipsq_pending_mp = NULL; 1234 ipsq->ipsq_waitfor = 0; 1235 mutex_exit(&ipsq->ipsq_lock); 1236 1237 if (CONN_Q(curr->b_queue)) { 1238 /* 1239 * This mp did a refhold on the conn, at the start of the ioctl. 1240 * So we can safely return a pointer to the conn to the caller. 1241 */ 1242 *connpp = Q_TO_CONN(curr->b_queue); 1243 } else { 1244 *connpp = NULL; 1245 } 1246 curr->b_next = NULL; 1247 curr->b_prev = NULL; 1248 return (curr); 1249 } 1250 1251 /* 1252 * Cleanup the ioctl mp queued in ipsq_pending_mp 1253 * - Called in the ill_delete path 1254 * - Called in the M_ERROR or M_HANGUP path on the ill. 1255 * - Called in the conn close path. 1256 */ 1257 boolean_t 1258 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1259 { 1260 mblk_t *mp; 1261 ipsq_t *ipsq; 1262 queue_t *q; 1263 ipif_t *ipif; 1264 1265 ASSERT(IAM_WRITER_ILL(ill)); 1266 ipsq = ill->ill_phyint->phyint_ipsq; 1267 mutex_enter(&ipsq->ipsq_lock); 1268 /* 1269 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1270 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1271 * even if it is meant for another ill, since we have to enqueue 1272 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1273 * If connp is non-null we are called from the conn close path. 1274 */ 1275 mp = ipsq->ipsq_pending_mp; 1276 if (mp == NULL || (connp != NULL && 1277 mp->b_queue != CONNP_TO_WQ(connp))) { 1278 mutex_exit(&ipsq->ipsq_lock); 1279 return (B_FALSE); 1280 } 1281 /* Now remove from the ipsq_pending_mp */ 1282 ipsq->ipsq_pending_mp = NULL; 1283 q = mp->b_queue; 1284 mp->b_next = NULL; 1285 mp->b_prev = NULL; 1286 mp->b_queue = NULL; 1287 1288 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1289 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1290 if (ill->ill_move_in_progress) { 1291 ILL_CLEAR_MOVE(ill); 1292 } else if (ill->ill_up_ipifs) { 1293 ill_group_cleanup(ill); 1294 } 1295 1296 ipif = ipsq->ipsq_pending_ipif; 1297 ipsq->ipsq_pending_ipif = NULL; 1298 ipsq->ipsq_waitfor = 0; 1299 ipsq->ipsq_current_ipif = NULL; 1300 ipsq->ipsq_current_ioctl = 0; 1301 mutex_exit(&ipsq->ipsq_lock); 1302 1303 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1304 if (connp == NULL) { 1305 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1306 } else { 1307 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1308 mutex_enter(&ipif->ipif_ill->ill_lock); 1309 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1310 mutex_exit(&ipif->ipif_ill->ill_lock); 1311 } 1312 } else { 1313 /* 1314 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1315 * be just inet_freemsg. we have to restart it 1316 * otherwise the thread will be stuck. 1317 */ 1318 inet_freemsg(mp); 1319 } 1320 return (B_TRUE); 1321 } 1322 1323 /* 1324 * The ill is closing. Cleanup all the pending mps. Called exclusively 1325 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1326 * knows this ill, and hence nobody can add an mp to this list 1327 */ 1328 static void 1329 ill_pending_mp_cleanup(ill_t *ill) 1330 { 1331 mblk_t *mp; 1332 queue_t *q; 1333 1334 ASSERT(IAM_WRITER_ILL(ill)); 1335 1336 mutex_enter(&ill->ill_lock); 1337 /* 1338 * Every mp on the pending mp list originating from an ioctl 1339 * added 1 to the conn refcnt, at the start of the ioctl. 1340 * So bump it down now. See comments in ip_wput_nondata() 1341 */ 1342 while (ill->ill_pending_mp != NULL) { 1343 mp = ill->ill_pending_mp; 1344 ill->ill_pending_mp = mp->b_next; 1345 mutex_exit(&ill->ill_lock); 1346 1347 q = mp->b_queue; 1348 ASSERT(CONN_Q(q)); 1349 mp->b_next = NULL; 1350 mp->b_prev = NULL; 1351 mp->b_queue = NULL; 1352 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1353 mutex_enter(&ill->ill_lock); 1354 } 1355 ill->ill_pending_ipif = NULL; 1356 1357 mutex_exit(&ill->ill_lock); 1358 } 1359 1360 /* 1361 * Called in the conn close path and ill delete path 1362 */ 1363 static void 1364 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1365 { 1366 ipsq_t *ipsq; 1367 mblk_t *prev; 1368 mblk_t *curr; 1369 mblk_t *next; 1370 queue_t *q; 1371 mblk_t *tmp_list = NULL; 1372 1373 ASSERT(IAM_WRITER_ILL(ill)); 1374 if (connp != NULL) 1375 q = CONNP_TO_WQ(connp); 1376 else 1377 q = ill->ill_wq; 1378 1379 ipsq = ill->ill_phyint->phyint_ipsq; 1380 /* 1381 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1382 * In the case of ioctl from a conn, there can be only 1 mp 1383 * queued on the ipsq. If an ill is being unplumbed, only messages 1384 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1385 * ioctls meant for this ill form conn's are not flushed. They will 1386 * be processed during ipsq_exit and will not find the ill and will 1387 * return error. 1388 */ 1389 mutex_enter(&ipsq->ipsq_lock); 1390 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1391 curr = next) { 1392 next = curr->b_next; 1393 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1394 /* Unlink the mblk from the pending mp list */ 1395 if (prev != NULL) { 1396 prev->b_next = curr->b_next; 1397 } else { 1398 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1399 ipsq->ipsq_xopq_mphead = curr->b_next; 1400 } 1401 if (ipsq->ipsq_xopq_mptail == curr) 1402 ipsq->ipsq_xopq_mptail = prev; 1403 /* 1404 * Create a temporary list and release the ipsq lock 1405 * New elements are added to the head of the tmp_list 1406 */ 1407 curr->b_next = tmp_list; 1408 tmp_list = curr; 1409 } else { 1410 prev = curr; 1411 } 1412 } 1413 mutex_exit(&ipsq->ipsq_lock); 1414 1415 while (tmp_list != NULL) { 1416 curr = tmp_list; 1417 tmp_list = curr->b_next; 1418 curr->b_next = NULL; 1419 curr->b_prev = NULL; 1420 curr->b_queue = NULL; 1421 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1422 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1423 CONN_CLOSE : NO_COPYOUT, NULL); 1424 } else { 1425 /* 1426 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1427 * this can't be just inet_freemsg. we have to 1428 * restart it otherwise the thread will be stuck. 1429 */ 1430 inet_freemsg(curr); 1431 } 1432 } 1433 } 1434 1435 /* 1436 * This conn has started closing. Cleanup any pending ioctl from this conn. 1437 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1438 */ 1439 void 1440 conn_ioctl_cleanup(conn_t *connp) 1441 { 1442 mblk_t *curr; 1443 ipsq_t *ipsq; 1444 ill_t *ill; 1445 boolean_t refheld; 1446 1447 /* 1448 * Is any exclusive ioctl pending ? If so clean it up. If the 1449 * ioctl has not yet started, the mp is pending in the list headed by 1450 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1451 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1452 * is currently executing now the mp is not queued anywhere but 1453 * conn_oper_pending_ill is null. The conn close will wait 1454 * till the conn_ref drops to zero. 1455 */ 1456 mutex_enter(&connp->conn_lock); 1457 ill = connp->conn_oper_pending_ill; 1458 if (ill == NULL) { 1459 mutex_exit(&connp->conn_lock); 1460 return; 1461 } 1462 1463 curr = ill_pending_mp_get(ill, &connp, 0); 1464 if (curr != NULL) { 1465 mutex_exit(&connp->conn_lock); 1466 CONN_DEC_REF(connp); 1467 inet_freemsg(curr); 1468 return; 1469 } 1470 /* 1471 * We may not be able to refhold the ill if the ill/ipif 1472 * is changing. But we need to make sure that the ill will 1473 * not vanish. So we just bump up the ill_waiter count. 1474 */ 1475 refheld = ill_waiter_inc(ill); 1476 mutex_exit(&connp->conn_lock); 1477 if (refheld) { 1478 if (ipsq_enter(ill, B_TRUE)) { 1479 ill_waiter_dcr(ill); 1480 /* 1481 * Check whether this ioctl has started and is 1482 * pending now in ipsq_pending_mp. If it is not 1483 * found there then check whether this ioctl has 1484 * not even started and is in the ipsq_xopq list. 1485 */ 1486 if (!ipsq_pending_mp_cleanup(ill, connp)) 1487 ipsq_xopq_mp_cleanup(ill, connp); 1488 ipsq = ill->ill_phyint->phyint_ipsq; 1489 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1490 return; 1491 } 1492 } 1493 1494 /* 1495 * The ill is also closing and we could not bump up the 1496 * ill_waiter_count or we could not enter the ipsq. Leave 1497 * the cleanup to ill_delete 1498 */ 1499 mutex_enter(&connp->conn_lock); 1500 while (connp->conn_oper_pending_ill != NULL) 1501 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1502 mutex_exit(&connp->conn_lock); 1503 if (refheld) 1504 ill_waiter_dcr(ill); 1505 } 1506 1507 /* 1508 * ipcl_walk function for cleaning up conn_*_ill fields. 1509 */ 1510 static void 1511 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1512 { 1513 ill_t *ill = (ill_t *)arg; 1514 ire_t *ire; 1515 1516 mutex_enter(&connp->conn_lock); 1517 if (connp->conn_multicast_ill == ill) { 1518 /* Revert to late binding */ 1519 connp->conn_multicast_ill = NULL; 1520 connp->conn_orig_multicast_ifindex = 0; 1521 } 1522 if (connp->conn_incoming_ill == ill) 1523 connp->conn_incoming_ill = NULL; 1524 if (connp->conn_outgoing_ill == ill) 1525 connp->conn_outgoing_ill = NULL; 1526 if (connp->conn_outgoing_pill == ill) 1527 connp->conn_outgoing_pill = NULL; 1528 if (connp->conn_nofailover_ill == ill) 1529 connp->conn_nofailover_ill = NULL; 1530 if (connp->conn_dhcpinit_ill == ill) { 1531 connp->conn_dhcpinit_ill = NULL; 1532 ASSERT(ill->ill_dhcpinit != 0); 1533 atomic_dec_32(&ill->ill_dhcpinit); 1534 } 1535 if (connp->conn_ire_cache != NULL) { 1536 ire = connp->conn_ire_cache; 1537 /* 1538 * ip_newroute creates IRE_CACHE with ire_stq coming from 1539 * interface X and ipif coming from interface Y, if interface 1540 * X and Y are part of the same IPMPgroup. Thus whenever 1541 * interface X goes down, remove all references to it by 1542 * checking both on ire_ipif and ire_stq. 1543 */ 1544 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1545 (ire->ire_type == IRE_CACHE && 1546 ire->ire_stq == ill->ill_wq)) { 1547 connp->conn_ire_cache = NULL; 1548 mutex_exit(&connp->conn_lock); 1549 ire_refrele_notr(ire); 1550 return; 1551 } 1552 } 1553 mutex_exit(&connp->conn_lock); 1554 1555 } 1556 1557 /* ARGSUSED */ 1558 void 1559 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1560 { 1561 ill_t *ill = q->q_ptr; 1562 ipif_t *ipif; 1563 1564 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1565 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1566 ipif_non_duplicate(ipif); 1567 ipif_down_tail(ipif); 1568 } 1569 freemsg(mp); 1570 ipsq_current_finish(ipsq); 1571 } 1572 1573 /* 1574 * ill_down_start is called when we want to down this ill and bring it up again 1575 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1576 * all interfaces, but don't tear down any plumbing. 1577 */ 1578 boolean_t 1579 ill_down_start(queue_t *q, mblk_t *mp) 1580 { 1581 ill_t *ill = q->q_ptr; 1582 ipif_t *ipif; 1583 1584 ASSERT(IAM_WRITER_ILL(ill)); 1585 1586 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1587 (void) ipif_down(ipif, NULL, NULL); 1588 1589 ill_down(ill); 1590 1591 (void) ipsq_pending_mp_cleanup(ill, NULL); 1592 1593 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1594 1595 /* 1596 * Atomically test and add the pending mp if references are active. 1597 */ 1598 mutex_enter(&ill->ill_lock); 1599 if (!ill_is_quiescent(ill)) { 1600 /* call cannot fail since `conn_t *' argument is NULL */ 1601 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1602 mp, ILL_DOWN); 1603 mutex_exit(&ill->ill_lock); 1604 return (B_FALSE); 1605 } 1606 mutex_exit(&ill->ill_lock); 1607 return (B_TRUE); 1608 } 1609 1610 static void 1611 ill_down(ill_t *ill) 1612 { 1613 ip_stack_t *ipst = ill->ill_ipst; 1614 1615 /* Blow off any IREs dependent on this ILL. */ 1616 ire_walk(ill_downi, (char *)ill, ipst); 1617 1618 /* Remove any conn_*_ill depending on this ill */ 1619 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1620 1621 if (ill->ill_group != NULL) { 1622 illgrp_delete(ill); 1623 } 1624 } 1625 1626 /* 1627 * ire_walk routine used to delete every IRE that depends on queues 1628 * associated with 'ill'. (Always called as writer.) 1629 */ 1630 static void 1631 ill_downi(ire_t *ire, char *ill_arg) 1632 { 1633 ill_t *ill = (ill_t *)ill_arg; 1634 1635 /* 1636 * ip_newroute creates IRE_CACHE with ire_stq coming from 1637 * interface X and ipif coming from interface Y, if interface 1638 * X and Y are part of the same IPMP group. Thus whenever interface 1639 * X goes down, remove all references to it by checking both 1640 * on ire_ipif and ire_stq. 1641 */ 1642 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1643 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1644 ire_delete(ire); 1645 } 1646 } 1647 1648 /* 1649 * Remove ire/nce from the fastpath list. 1650 */ 1651 void 1652 ill_fastpath_nack(ill_t *ill) 1653 { 1654 nce_fastpath_list_dispatch(ill, NULL, NULL); 1655 } 1656 1657 /* Consume an M_IOCACK of the fastpath probe. */ 1658 void 1659 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1660 { 1661 mblk_t *mp1 = mp; 1662 1663 /* 1664 * If this was the first attempt turn on the fastpath probing. 1665 */ 1666 mutex_enter(&ill->ill_lock); 1667 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1668 ill->ill_dlpi_fastpath_state = IDS_OK; 1669 mutex_exit(&ill->ill_lock); 1670 1671 /* Free the M_IOCACK mblk, hold on to the data */ 1672 mp = mp->b_cont; 1673 freeb(mp1); 1674 if (mp == NULL) 1675 return; 1676 if (mp->b_cont != NULL) { 1677 /* 1678 * Update all IRE's or NCE's that are waiting for 1679 * fastpath update. 1680 */ 1681 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1682 mp1 = mp->b_cont; 1683 freeb(mp); 1684 mp = mp1; 1685 } else { 1686 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1687 } 1688 1689 freeb(mp); 1690 } 1691 1692 /* 1693 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1694 * The data portion of the request is a dl_unitdata_req_t template for 1695 * what we would send downstream in the absence of a fastpath confirmation. 1696 */ 1697 int 1698 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1699 { 1700 struct iocblk *ioc; 1701 mblk_t *mp; 1702 1703 if (dlur_mp == NULL) 1704 return (EINVAL); 1705 1706 mutex_enter(&ill->ill_lock); 1707 switch (ill->ill_dlpi_fastpath_state) { 1708 case IDS_FAILED: 1709 /* 1710 * Driver NAKed the first fastpath ioctl - assume it doesn't 1711 * support it. 1712 */ 1713 mutex_exit(&ill->ill_lock); 1714 return (ENOTSUP); 1715 case IDS_UNKNOWN: 1716 /* This is the first probe */ 1717 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1718 break; 1719 default: 1720 break; 1721 } 1722 mutex_exit(&ill->ill_lock); 1723 1724 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1725 return (EAGAIN); 1726 1727 mp->b_cont = copyb(dlur_mp); 1728 if (mp->b_cont == NULL) { 1729 freeb(mp); 1730 return (EAGAIN); 1731 } 1732 1733 ioc = (struct iocblk *)mp->b_rptr; 1734 ioc->ioc_count = msgdsize(mp->b_cont); 1735 1736 putnext(ill->ill_wq, mp); 1737 return (0); 1738 } 1739 1740 void 1741 ill_capability_probe(ill_t *ill) 1742 { 1743 /* 1744 * Do so only if capabilities are still unknown. 1745 */ 1746 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 1747 return; 1748 1749 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1750 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1751 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1752 } 1753 1754 void 1755 ill_capability_reset(ill_t *ill) 1756 { 1757 mblk_t *sc_mp = NULL; 1758 mblk_t *tmp; 1759 1760 /* 1761 * Note here that we reset the state to UNKNOWN, and later send 1762 * down the DL_CAPABILITY_REQ without first setting the state to 1763 * INPROGRESS. We do this in order to distinguish the 1764 * DL_CAPABILITY_ACK response which may come back in response to 1765 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1766 * also handle the case where the driver doesn't send us back 1767 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1768 * requires the state to be in UNKNOWN anyway. In any case, all 1769 * features are turned off until the state reaches IDS_OK. 1770 */ 1771 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1772 ill->ill_capab_reneg = B_FALSE; 1773 1774 /* 1775 * Disable sub-capabilities and request a list of sub-capability 1776 * messages which will be sent down to the driver. Each handler 1777 * allocates the corresponding dl_capability_sub_t inside an 1778 * mblk, and links it to the existing sc_mp mblk, or return it 1779 * as sc_mp if it's the first sub-capability (the passed in 1780 * sc_mp is NULL). Upon returning from all capability handlers, 1781 * sc_mp will be pulled-up, before passing it downstream. 1782 */ 1783 ill_capability_mdt_reset(ill, &sc_mp); 1784 ill_capability_hcksum_reset(ill, &sc_mp); 1785 ill_capability_zerocopy_reset(ill, &sc_mp); 1786 ill_capability_ipsec_reset(ill, &sc_mp); 1787 ill_capability_dls_reset(ill, &sc_mp); 1788 ill_capability_lso_reset(ill, &sc_mp); 1789 1790 /* Nothing to send down in order to disable the capabilities? */ 1791 if (sc_mp == NULL) 1792 return; 1793 1794 tmp = msgpullup(sc_mp, -1); 1795 freemsg(sc_mp); 1796 if ((sc_mp = tmp) == NULL) { 1797 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1798 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1799 return; 1800 } 1801 1802 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1803 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1804 } 1805 1806 /* 1807 * Request or set new-style hardware capabilities supported by DLS provider. 1808 */ 1809 static void 1810 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1811 { 1812 mblk_t *mp; 1813 dl_capability_req_t *capb; 1814 size_t size = 0; 1815 uint8_t *ptr; 1816 1817 if (reqp != NULL) 1818 size = MBLKL(reqp); 1819 1820 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1821 if (mp == NULL) { 1822 freemsg(reqp); 1823 return; 1824 } 1825 ptr = mp->b_rptr; 1826 1827 capb = (dl_capability_req_t *)ptr; 1828 ptr += sizeof (dl_capability_req_t); 1829 1830 if (reqp != NULL) { 1831 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1832 capb->dl_sub_length = size; 1833 bcopy(reqp->b_rptr, ptr, size); 1834 ptr += size; 1835 mp->b_cont = reqp->b_cont; 1836 freeb(reqp); 1837 } 1838 ASSERT(ptr == mp->b_wptr); 1839 1840 ill_dlpi_send(ill, mp); 1841 } 1842 1843 static void 1844 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1845 { 1846 dl_capab_id_t *id_ic; 1847 uint_t sub_dl_cap = outers->dl_cap; 1848 dl_capability_sub_t *inners; 1849 uint8_t *capend; 1850 1851 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1852 1853 /* 1854 * Note: range checks here are not absolutely sufficient to 1855 * make us robust against malformed messages sent by drivers; 1856 * this is in keeping with the rest of IP's dlpi handling. 1857 * (Remember, it's coming from something else in the kernel 1858 * address space) 1859 */ 1860 1861 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1862 if (capend > mp->b_wptr) { 1863 cmn_err(CE_WARN, "ill_capability_id_ack: " 1864 "malformed sub-capability too long for mblk"); 1865 return; 1866 } 1867 1868 id_ic = (dl_capab_id_t *)(outers + 1); 1869 1870 if (outers->dl_length < sizeof (*id_ic) || 1871 (inners = &id_ic->id_subcap, 1872 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1873 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1874 "encapsulated capab type %d too long for mblk", 1875 inners->dl_cap); 1876 return; 1877 } 1878 1879 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1880 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1881 "isn't as expected; pass-thru module(s) detected, " 1882 "discarding capability\n", inners->dl_cap)); 1883 return; 1884 } 1885 1886 /* Process the encapsulated sub-capability */ 1887 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1888 } 1889 1890 /* 1891 * Process Multidata Transmit capability negotiation ack received from a 1892 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1893 * DL_CAPABILITY_ACK message. 1894 */ 1895 static void 1896 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1897 { 1898 mblk_t *nmp = NULL; 1899 dl_capability_req_t *oc; 1900 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1901 ill_mdt_capab_t **ill_mdt_capab; 1902 uint_t sub_dl_cap = isub->dl_cap; 1903 uint8_t *capend; 1904 1905 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1906 1907 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1908 1909 /* 1910 * Note: range checks here are not absolutely sufficient to 1911 * make us robust against malformed messages sent by drivers; 1912 * this is in keeping with the rest of IP's dlpi handling. 1913 * (Remember, it's coming from something else in the kernel 1914 * address space) 1915 */ 1916 1917 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1918 if (capend > mp->b_wptr) { 1919 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1920 "malformed sub-capability too long for mblk"); 1921 return; 1922 } 1923 1924 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1925 1926 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1927 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1928 "unsupported MDT sub-capability (version %d, expected %d)", 1929 mdt_ic->mdt_version, MDT_VERSION_2); 1930 return; 1931 } 1932 1933 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1934 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1935 "capability isn't as expected; pass-thru module(s) " 1936 "detected, discarding capability\n")); 1937 return; 1938 } 1939 1940 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1941 1942 if (*ill_mdt_capab == NULL) { 1943 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1944 KM_NOSLEEP); 1945 1946 if (*ill_mdt_capab == NULL) { 1947 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1948 "could not enable MDT version %d " 1949 "for %s (ENOMEM)\n", MDT_VERSION_2, 1950 ill->ill_name); 1951 return; 1952 } 1953 } 1954 1955 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1956 "MDT version %d (%d bytes leading, %d bytes trailing " 1957 "header spaces, %d max pld bufs, %d span limit)\n", 1958 ill->ill_name, MDT_VERSION_2, 1959 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1960 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1961 1962 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1963 (*ill_mdt_capab)->ill_mdt_on = 1; 1964 /* 1965 * Round the following values to the nearest 32-bit; ULP 1966 * may further adjust them to accomodate for additional 1967 * protocol headers. We pass these values to ULP during 1968 * bind time. 1969 */ 1970 (*ill_mdt_capab)->ill_mdt_hdr_head = 1971 roundup(mdt_ic->mdt_hdr_head, 4); 1972 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1973 roundup(mdt_ic->mdt_hdr_tail, 4); 1974 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1975 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1976 1977 ill->ill_capabilities |= ILL_CAPAB_MDT; 1978 } else { 1979 uint_t size; 1980 uchar_t *rptr; 1981 1982 size = sizeof (dl_capability_req_t) + 1983 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1984 1985 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1986 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1987 "could not enable MDT for %s (ENOMEM)\n", 1988 ill->ill_name); 1989 return; 1990 } 1991 1992 rptr = nmp->b_rptr; 1993 /* initialize dl_capability_req_t */ 1994 oc = (dl_capability_req_t *)nmp->b_rptr; 1995 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1996 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1997 sizeof (dl_capab_mdt_t); 1998 nmp->b_rptr += sizeof (dl_capability_req_t); 1999 2000 /* initialize dl_capability_sub_t */ 2001 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2002 nmp->b_rptr += sizeof (*isub); 2003 2004 /* initialize dl_capab_mdt_t */ 2005 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2006 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2007 2008 nmp->b_rptr = rptr; 2009 2010 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2011 "to enable MDT version %d\n", ill->ill_name, 2012 MDT_VERSION_2)); 2013 2014 /* set ENABLE flag */ 2015 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2016 2017 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2018 ill_dlpi_send(ill, nmp); 2019 } 2020 } 2021 2022 static void 2023 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2024 { 2025 mblk_t *mp; 2026 dl_capab_mdt_t *mdt_subcap; 2027 dl_capability_sub_t *dl_subcap; 2028 int size; 2029 2030 if (!ILL_MDT_CAPABLE(ill)) 2031 return; 2032 2033 ASSERT(ill->ill_mdt_capab != NULL); 2034 /* 2035 * Clear the capability flag for MDT but retain the ill_mdt_capab 2036 * structure since it's possible that another thread is still 2037 * referring to it. The structure only gets deallocated when 2038 * we destroy the ill. 2039 */ 2040 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2041 2042 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2043 2044 mp = allocb(size, BPRI_HI); 2045 if (mp == NULL) { 2046 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2047 "request to disable MDT\n")); 2048 return; 2049 } 2050 2051 mp->b_wptr = mp->b_rptr + size; 2052 2053 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2054 dl_subcap->dl_cap = DL_CAPAB_MDT; 2055 dl_subcap->dl_length = sizeof (*mdt_subcap); 2056 2057 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2058 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2059 mdt_subcap->mdt_flags = 0; 2060 mdt_subcap->mdt_hdr_head = 0; 2061 mdt_subcap->mdt_hdr_tail = 0; 2062 2063 if (*sc_mp != NULL) 2064 linkb(*sc_mp, mp); 2065 else 2066 *sc_mp = mp; 2067 } 2068 2069 /* 2070 * Send a DL_NOTIFY_REQ to the specified ill to enable 2071 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2072 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2073 * acceleration. 2074 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2075 */ 2076 static boolean_t 2077 ill_enable_promisc_notify(ill_t *ill) 2078 { 2079 mblk_t *mp; 2080 dl_notify_req_t *req; 2081 2082 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2083 2084 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2085 if (mp == NULL) 2086 return (B_FALSE); 2087 2088 req = (dl_notify_req_t *)mp->b_rptr; 2089 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2090 DL_NOTE_PROMISC_OFF_PHYS; 2091 2092 ill_dlpi_send(ill, mp); 2093 2094 return (B_TRUE); 2095 } 2096 2097 2098 /* 2099 * Allocate an IPsec capability request which will be filled by our 2100 * caller to turn on support for one or more algorithms. 2101 */ 2102 static mblk_t * 2103 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2104 { 2105 mblk_t *nmp; 2106 dl_capability_req_t *ocap; 2107 dl_capab_ipsec_t *ocip; 2108 dl_capab_ipsec_t *icip; 2109 uint8_t *ptr; 2110 icip = (dl_capab_ipsec_t *)(isub + 1); 2111 2112 /* 2113 * The first time around, we send a DL_NOTIFY_REQ to enable 2114 * PROMISC_ON/OFF notification from the provider. We need to 2115 * do this before enabling the algorithms to avoid leakage of 2116 * cleartext packets. 2117 */ 2118 2119 if (!ill_enable_promisc_notify(ill)) 2120 return (NULL); 2121 2122 /* 2123 * Allocate new mblk which will contain a new capability 2124 * request to enable the capabilities. 2125 */ 2126 2127 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2128 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2129 if (nmp == NULL) 2130 return (NULL); 2131 2132 ptr = nmp->b_rptr; 2133 2134 /* initialize dl_capability_req_t */ 2135 ocap = (dl_capability_req_t *)ptr; 2136 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2137 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2138 ptr += sizeof (dl_capability_req_t); 2139 2140 /* initialize dl_capability_sub_t */ 2141 bcopy(isub, ptr, sizeof (*isub)); 2142 ptr += sizeof (*isub); 2143 2144 /* initialize dl_capab_ipsec_t */ 2145 ocip = (dl_capab_ipsec_t *)ptr; 2146 bcopy(icip, ocip, sizeof (*icip)); 2147 2148 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2149 return (nmp); 2150 } 2151 2152 /* 2153 * Process an IPsec capability negotiation ack received from a DLS Provider. 2154 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2155 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2156 */ 2157 static void 2158 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2159 { 2160 dl_capab_ipsec_t *icip; 2161 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2162 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2163 uint_t cipher, nciphers; 2164 mblk_t *nmp; 2165 uint_t alg_len; 2166 boolean_t need_sadb_dump; 2167 uint_t sub_dl_cap = isub->dl_cap; 2168 ill_ipsec_capab_t **ill_capab; 2169 uint64_t ill_capab_flag; 2170 uint8_t *capend, *ciphend; 2171 boolean_t sadb_resync; 2172 2173 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2174 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2175 2176 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2177 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2178 ill_capab_flag = ILL_CAPAB_AH; 2179 } else { 2180 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2181 ill_capab_flag = ILL_CAPAB_ESP; 2182 } 2183 2184 /* 2185 * If the ill capability structure exists, then this incoming 2186 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2187 * If this is so, then we'd need to resynchronize the SADB 2188 * after re-enabling the offloaded ciphers. 2189 */ 2190 sadb_resync = (*ill_capab != NULL); 2191 2192 /* 2193 * Note: range checks here are not absolutely sufficient to 2194 * make us robust against malformed messages sent by drivers; 2195 * this is in keeping with the rest of IP's dlpi handling. 2196 * (Remember, it's coming from something else in the kernel 2197 * address space) 2198 */ 2199 2200 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2201 if (capend > mp->b_wptr) { 2202 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2203 "malformed sub-capability too long for mblk"); 2204 return; 2205 } 2206 2207 /* 2208 * There are two types of acks we process here: 2209 * 1. acks in reply to a (first form) generic capability req 2210 * (no ENABLE flag set) 2211 * 2. acks in reply to a ENABLE capability req. 2212 * (ENABLE flag set) 2213 * 2214 * We process the subcapability passed as argument as follows: 2215 * 1 do initializations 2216 * 1.1 initialize nmp = NULL 2217 * 1.2 set need_sadb_dump to B_FALSE 2218 * 2 for each cipher in subcapability: 2219 * 2.1 if ENABLE flag is set: 2220 * 2.1.1 update per-ill ipsec capabilities info 2221 * 2.1.2 set need_sadb_dump to B_TRUE 2222 * 2.2 if ENABLE flag is not set: 2223 * 2.2.1 if nmp is NULL: 2224 * 2.2.1.1 allocate and initialize nmp 2225 * 2.2.1.2 init current pos in nmp 2226 * 2.2.2 copy current cipher to current pos in nmp 2227 * 2.2.3 set ENABLE flag in nmp 2228 * 2.2.4 update current pos 2229 * 3 if nmp is not equal to NULL, send enable request 2230 * 3.1 send capability request 2231 * 4 if need_sadb_dump is B_TRUE 2232 * 4.1 enable promiscuous on/off notifications 2233 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2234 * AH or ESP SA's to interface. 2235 */ 2236 2237 nmp = NULL; 2238 oalg = NULL; 2239 need_sadb_dump = B_FALSE; 2240 icip = (dl_capab_ipsec_t *)(isub + 1); 2241 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2242 2243 nciphers = icip->cip_nciphers; 2244 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2245 2246 if (ciphend > capend) { 2247 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2248 "too many ciphers for sub-capability len"); 2249 return; 2250 } 2251 2252 for (cipher = 0; cipher < nciphers; cipher++) { 2253 alg_len = sizeof (dl_capab_ipsec_alg_t); 2254 2255 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2256 /* 2257 * TBD: when we provide a way to disable capabilities 2258 * from above, need to manage the request-pending state 2259 * and fail if we were not expecting this ACK. 2260 */ 2261 IPSECHW_DEBUG(IPSECHW_CAPAB, 2262 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2263 2264 /* 2265 * Update IPsec capabilities for this ill 2266 */ 2267 2268 if (*ill_capab == NULL) { 2269 IPSECHW_DEBUG(IPSECHW_CAPAB, 2270 ("ill_capability_ipsec_ack: " 2271 "allocating ipsec_capab for ill\n")); 2272 *ill_capab = ill_ipsec_capab_alloc(); 2273 2274 if (*ill_capab == NULL) { 2275 cmn_err(CE_WARN, 2276 "ill_capability_ipsec_ack: " 2277 "could not enable IPsec Hardware " 2278 "acceleration for %s (ENOMEM)\n", 2279 ill->ill_name); 2280 return; 2281 } 2282 } 2283 2284 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2285 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2286 2287 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2288 cmn_err(CE_WARN, 2289 "ill_capability_ipsec_ack: " 2290 "malformed IPsec algorithm id %d", 2291 ialg->alg_prim); 2292 continue; 2293 } 2294 2295 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2296 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2297 ialg->alg_prim); 2298 } else { 2299 ipsec_capab_algparm_t *alp; 2300 2301 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2302 ialg->alg_prim); 2303 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2304 ialg->alg_prim)) { 2305 cmn_err(CE_WARN, 2306 "ill_capability_ipsec_ack: " 2307 "no space for IPsec alg id %d", 2308 ialg->alg_prim); 2309 continue; 2310 } 2311 alp = &((*ill_capab)->encr_algparm[ 2312 ialg->alg_prim]); 2313 alp->minkeylen = ialg->alg_minbits; 2314 alp->maxkeylen = ialg->alg_maxbits; 2315 } 2316 ill->ill_capabilities |= ill_capab_flag; 2317 /* 2318 * indicate that a capability was enabled, which 2319 * will be used below to kick off a SADB dump 2320 * to the ill. 2321 */ 2322 need_sadb_dump = B_TRUE; 2323 } else { 2324 IPSECHW_DEBUG(IPSECHW_CAPAB, 2325 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2326 ialg->alg_prim)); 2327 2328 if (nmp == NULL) { 2329 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2330 if (nmp == NULL) { 2331 /* 2332 * Sending the PROMISC_ON/OFF 2333 * notification request failed. 2334 * We cannot enable the algorithms 2335 * since the Provider will not 2336 * notify IP of promiscous mode 2337 * changes, which could lead 2338 * to leakage of packets. 2339 */ 2340 cmn_err(CE_WARN, 2341 "ill_capability_ipsec_ack: " 2342 "could not enable IPsec Hardware " 2343 "acceleration for %s (ENOMEM)\n", 2344 ill->ill_name); 2345 return; 2346 } 2347 /* ptr to current output alg specifier */ 2348 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2349 } 2350 2351 /* 2352 * Copy current alg specifier, set ENABLE 2353 * flag, and advance to next output alg. 2354 * For now we enable all IPsec capabilities. 2355 */ 2356 ASSERT(oalg != NULL); 2357 bcopy(ialg, oalg, alg_len); 2358 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2359 nmp->b_wptr += alg_len; 2360 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2361 } 2362 2363 /* move to next input algorithm specifier */ 2364 ialg = (dl_capab_ipsec_alg_t *) 2365 ((char *)ialg + alg_len); 2366 } 2367 2368 if (nmp != NULL) 2369 /* 2370 * nmp points to a DL_CAPABILITY_REQ message to enable 2371 * IPsec hardware acceleration. 2372 */ 2373 ill_dlpi_send(ill, nmp); 2374 2375 if (need_sadb_dump) 2376 /* 2377 * An acknowledgement corresponding to a request to 2378 * enable acceleration was received, notify SADB. 2379 */ 2380 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2381 } 2382 2383 /* 2384 * Given an mblk with enough space in it, create sub-capability entries for 2385 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2386 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2387 * in preparation for the reset the DL_CAPABILITY_REQ message. 2388 */ 2389 static void 2390 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2391 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2392 { 2393 dl_capab_ipsec_t *oipsec; 2394 dl_capab_ipsec_alg_t *oalg; 2395 dl_capability_sub_t *dl_subcap; 2396 int i, k; 2397 2398 ASSERT(nciphers > 0); 2399 ASSERT(ill_cap != NULL); 2400 ASSERT(mp != NULL); 2401 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2402 2403 /* dl_capability_sub_t for "stype" */ 2404 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2405 dl_subcap->dl_cap = stype; 2406 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2407 mp->b_wptr += sizeof (dl_capability_sub_t); 2408 2409 /* dl_capab_ipsec_t for "stype" */ 2410 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2411 oipsec->cip_version = 1; 2412 oipsec->cip_nciphers = nciphers; 2413 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2414 2415 /* create entries for "stype" AUTH ciphers */ 2416 for (i = 0; i < ill_cap->algs_size; i++) { 2417 for (k = 0; k < BITSPERBYTE; k++) { 2418 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2419 continue; 2420 2421 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2422 bzero((void *)oalg, sizeof (*oalg)); 2423 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2424 oalg->alg_prim = k + (BITSPERBYTE * i); 2425 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2426 } 2427 } 2428 /* create entries for "stype" ENCR ciphers */ 2429 for (i = 0; i < ill_cap->algs_size; i++) { 2430 for (k = 0; k < BITSPERBYTE; k++) { 2431 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2432 continue; 2433 2434 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2435 bzero((void *)oalg, sizeof (*oalg)); 2436 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2437 oalg->alg_prim = k + (BITSPERBYTE * i); 2438 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2439 } 2440 } 2441 } 2442 2443 /* 2444 * Macro to count number of 1s in a byte (8-bit word). The total count is 2445 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2446 * POPC instruction, but our macro is more flexible for an arbitrary length 2447 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2448 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2449 * stays that way, we can reduce the number of iterations required. 2450 */ 2451 #define COUNT_1S(val, sum) { \ 2452 uint8_t x = val & 0xff; \ 2453 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2454 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2455 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2456 } 2457 2458 /* ARGSUSED */ 2459 static void 2460 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2461 { 2462 mblk_t *mp; 2463 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2464 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2465 uint64_t ill_capabilities = ill->ill_capabilities; 2466 int ah_cnt = 0, esp_cnt = 0; 2467 int ah_len = 0, esp_len = 0; 2468 int i, size = 0; 2469 2470 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2471 return; 2472 2473 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2474 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2475 2476 /* Find out the number of ciphers for AH */ 2477 if (cap_ah != NULL) { 2478 for (i = 0; i < cap_ah->algs_size; i++) { 2479 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2480 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2481 } 2482 if (ah_cnt > 0) { 2483 size += sizeof (dl_capability_sub_t) + 2484 sizeof (dl_capab_ipsec_t); 2485 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2486 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2487 size += ah_len; 2488 } 2489 } 2490 2491 /* Find out the number of ciphers for ESP */ 2492 if (cap_esp != NULL) { 2493 for (i = 0; i < cap_esp->algs_size; i++) { 2494 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2495 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2496 } 2497 if (esp_cnt > 0) { 2498 size += sizeof (dl_capability_sub_t) + 2499 sizeof (dl_capab_ipsec_t); 2500 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2501 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2502 size += esp_len; 2503 } 2504 } 2505 2506 if (size == 0) { 2507 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2508 "there's nothing to reset\n")); 2509 return; 2510 } 2511 2512 mp = allocb(size, BPRI_HI); 2513 if (mp == NULL) { 2514 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2515 "request to disable IPSEC Hardware Acceleration\n")); 2516 return; 2517 } 2518 2519 /* 2520 * Clear the capability flags for IPsec HA but retain the ill 2521 * capability structures since it's possible that another thread 2522 * is still referring to them. The structures only get deallocated 2523 * when we destroy the ill. 2524 * 2525 * Various places check the flags to see if the ill is capable of 2526 * hardware acceleration, and by clearing them we ensure that new 2527 * outbound IPsec packets are sent down encrypted. 2528 */ 2529 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2530 2531 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2532 if (ah_cnt > 0) { 2533 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2534 cap_ah, mp); 2535 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2536 } 2537 2538 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2539 if (esp_cnt > 0) { 2540 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2541 cap_esp, mp); 2542 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2543 } 2544 2545 /* 2546 * At this point we've composed a bunch of sub-capabilities to be 2547 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2548 * by the caller. Upon receiving this reset message, the driver 2549 * must stop inbound decryption (by destroying all inbound SAs) 2550 * and let the corresponding packets come in encrypted. 2551 */ 2552 2553 if (*sc_mp != NULL) 2554 linkb(*sc_mp, mp); 2555 else 2556 *sc_mp = mp; 2557 } 2558 2559 static void 2560 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2561 boolean_t encapsulated) 2562 { 2563 boolean_t legacy = B_FALSE; 2564 2565 /* 2566 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2567 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2568 * instructed the driver to disable its advertised capabilities, 2569 * so there's no point in accepting any response at this moment. 2570 */ 2571 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2572 return; 2573 2574 /* 2575 * Note that only the following two sub-capabilities may be 2576 * considered as "legacy", since their original definitions 2577 * do not incorporate the dl_mid_t module ID token, and hence 2578 * may require the use of the wrapper sub-capability. 2579 */ 2580 switch (subp->dl_cap) { 2581 case DL_CAPAB_IPSEC_AH: 2582 case DL_CAPAB_IPSEC_ESP: 2583 legacy = B_TRUE; 2584 break; 2585 } 2586 2587 /* 2588 * For legacy sub-capabilities which don't incorporate a queue_t 2589 * pointer in their structures, discard them if we detect that 2590 * there are intermediate modules in between IP and the driver. 2591 */ 2592 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2593 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2594 "%d discarded; %d module(s) present below IP\n", 2595 subp->dl_cap, ill->ill_lmod_cnt)); 2596 return; 2597 } 2598 2599 switch (subp->dl_cap) { 2600 case DL_CAPAB_IPSEC_AH: 2601 case DL_CAPAB_IPSEC_ESP: 2602 ill_capability_ipsec_ack(ill, mp, subp); 2603 break; 2604 case DL_CAPAB_MDT: 2605 ill_capability_mdt_ack(ill, mp, subp); 2606 break; 2607 case DL_CAPAB_HCKSUM: 2608 ill_capability_hcksum_ack(ill, mp, subp); 2609 break; 2610 case DL_CAPAB_ZEROCOPY: 2611 ill_capability_zerocopy_ack(ill, mp, subp); 2612 break; 2613 case DL_CAPAB_POLL: 2614 if (!SOFT_RINGS_ENABLED()) 2615 ill_capability_dls_ack(ill, mp, subp); 2616 break; 2617 case DL_CAPAB_SOFT_RING: 2618 if (SOFT_RINGS_ENABLED()) 2619 ill_capability_dls_ack(ill, mp, subp); 2620 break; 2621 case DL_CAPAB_LSO: 2622 ill_capability_lso_ack(ill, mp, subp); 2623 break; 2624 default: 2625 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2626 subp->dl_cap)); 2627 } 2628 } 2629 2630 /* 2631 * As part of negotiating polling capability, the driver tells us 2632 * the default (or normal) blanking interval and packet threshold 2633 * (the receive timer fires if blanking interval is reached or 2634 * the packet threshold is reached). 2635 * 2636 * As part of manipulating the polling interval, we always use our 2637 * estimated interval (avg service time * number of packets queued 2638 * on the squeue) but we try to blank for a minimum of 2639 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2640 * packet threshold during this time. When we are not in polling mode 2641 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2642 * rr_min_blank_ratio but up the packet cnt by a ratio of 2643 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2644 * possible although for a shorter interval. 2645 */ 2646 #define RR_MAX_BLANK_RATIO 20 2647 #define RR_MIN_BLANK_RATIO 10 2648 #define RR_MAX_PKT_CNT_RATIO 3 2649 #define RR_MIN_PKT_CNT_RATIO 3 2650 2651 /* 2652 * These can be tuned via /etc/system. 2653 */ 2654 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2655 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2656 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2657 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2658 2659 static mac_resource_handle_t 2660 ill_ring_add(void *arg, mac_resource_t *mrp) 2661 { 2662 ill_t *ill = (ill_t *)arg; 2663 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2664 ill_rx_ring_t *rx_ring; 2665 int ip_rx_index; 2666 2667 ASSERT(mrp != NULL); 2668 if (mrp->mr_type != MAC_RX_FIFO) { 2669 return (NULL); 2670 } 2671 ASSERT(ill != NULL); 2672 ASSERT(ill->ill_dls_capab != NULL); 2673 2674 mutex_enter(&ill->ill_lock); 2675 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2676 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2677 ASSERT(rx_ring != NULL); 2678 2679 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2680 time_t normal_blank_time = 2681 mrfp->mrf_normal_blank_time; 2682 uint_t normal_pkt_cnt = 2683 mrfp->mrf_normal_pkt_count; 2684 2685 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2686 2687 rx_ring->rr_blank = mrfp->mrf_blank; 2688 rx_ring->rr_handle = mrfp->mrf_arg; 2689 rx_ring->rr_ill = ill; 2690 rx_ring->rr_normal_blank_time = normal_blank_time; 2691 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2692 2693 rx_ring->rr_max_blank_time = 2694 normal_blank_time * rr_max_blank_ratio; 2695 rx_ring->rr_min_blank_time = 2696 normal_blank_time * rr_min_blank_ratio; 2697 rx_ring->rr_max_pkt_cnt = 2698 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2699 rx_ring->rr_min_pkt_cnt = 2700 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2701 2702 rx_ring->rr_ring_state = ILL_RING_INUSE; 2703 mutex_exit(&ill->ill_lock); 2704 2705 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2706 (int), ip_rx_index); 2707 return ((mac_resource_handle_t)rx_ring); 2708 } 2709 } 2710 2711 /* 2712 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2713 * we have devices which can overwhelm this limit, ILL_MAX_RING 2714 * should be made configurable. Meanwhile it cause no panic because 2715 * driver will pass ip_input a NULL handle which will make 2716 * IP allocate the default squeue and Polling mode will not 2717 * be used for this ring. 2718 */ 2719 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2720 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2721 2722 mutex_exit(&ill->ill_lock); 2723 return (NULL); 2724 } 2725 2726 static boolean_t 2727 ill_capability_dls_init(ill_t *ill) 2728 { 2729 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2730 conn_t *connp; 2731 size_t sz; 2732 ip_stack_t *ipst = ill->ill_ipst; 2733 2734 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2735 if (ill_dls == NULL) { 2736 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2737 "soft_ring enabled for ill=%s (%p) but data " 2738 "structs uninitialized\n", ill->ill_name, 2739 (void *)ill); 2740 } 2741 return (B_TRUE); 2742 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2743 if (ill_dls == NULL) { 2744 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2745 "polling enabled for ill=%s (%p) but data " 2746 "structs uninitialized\n", ill->ill_name, 2747 (void *)ill); 2748 } 2749 return (B_TRUE); 2750 } 2751 2752 if (ill_dls != NULL) { 2753 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2754 /* Soft_Ring or polling is being re-enabled */ 2755 2756 connp = ill_dls->ill_unbind_conn; 2757 ASSERT(rx_ring != NULL); 2758 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2759 bzero((void *)rx_ring, 2760 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2761 ill_dls->ill_ring_tbl = rx_ring; 2762 ill_dls->ill_unbind_conn = connp; 2763 return (B_TRUE); 2764 } 2765 2766 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2767 ipst->ips_netstack)) == NULL) 2768 return (B_FALSE); 2769 2770 sz = sizeof (ill_dls_capab_t); 2771 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2772 2773 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2774 if (ill_dls == NULL) { 2775 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2776 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2777 (void *)ill); 2778 CONN_DEC_REF(connp); 2779 return (B_FALSE); 2780 } 2781 2782 /* Allocate space to hold ring table */ 2783 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2784 ill->ill_dls_capab = ill_dls; 2785 ill_dls->ill_unbind_conn = connp; 2786 return (B_TRUE); 2787 } 2788 2789 /* 2790 * ill_capability_dls_disable: disable soft_ring and/or polling 2791 * capability. Since any of the rings might already be in use, need 2792 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2793 * direct calls if necessary. 2794 */ 2795 static void 2796 ill_capability_dls_disable(ill_t *ill) 2797 { 2798 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2799 2800 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2801 ip_squeue_clean_all(ill); 2802 ill_dls->ill_tx = NULL; 2803 ill_dls->ill_tx_handle = NULL; 2804 ill_dls->ill_dls_change_status = NULL; 2805 ill_dls->ill_dls_bind = NULL; 2806 ill_dls->ill_dls_unbind = NULL; 2807 } 2808 2809 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2810 } 2811 2812 static void 2813 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2814 dl_capability_sub_t *isub) 2815 { 2816 uint_t size; 2817 uchar_t *rptr; 2818 dl_capab_dls_t dls, *odls; 2819 ill_dls_capab_t *ill_dls; 2820 mblk_t *nmp = NULL; 2821 dl_capability_req_t *ocap; 2822 uint_t sub_dl_cap = isub->dl_cap; 2823 2824 if (!ill_capability_dls_init(ill)) 2825 return; 2826 ill_dls = ill->ill_dls_capab; 2827 2828 /* Copy locally to get the members aligned */ 2829 bcopy((void *)idls, (void *)&dls, 2830 sizeof (dl_capab_dls_t)); 2831 2832 /* Get the tx function and handle from dld */ 2833 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2834 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2835 2836 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2837 ill_dls->ill_dls_change_status = 2838 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2839 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2840 ill_dls->ill_dls_unbind = 2841 (ip_dls_unbind_t)dls.dls_ring_unbind; 2842 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2843 } 2844 2845 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2846 isub->dl_length; 2847 2848 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2849 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2850 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2851 ill->ill_name, (void *)ill); 2852 return; 2853 } 2854 2855 /* initialize dl_capability_req_t */ 2856 rptr = nmp->b_rptr; 2857 ocap = (dl_capability_req_t *)rptr; 2858 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2859 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2860 rptr += sizeof (dl_capability_req_t); 2861 2862 /* initialize dl_capability_sub_t */ 2863 bcopy(isub, rptr, sizeof (*isub)); 2864 rptr += sizeof (*isub); 2865 2866 odls = (dl_capab_dls_t *)rptr; 2867 rptr += sizeof (dl_capab_dls_t); 2868 2869 /* initialize dl_capab_dls_t to be sent down */ 2870 dls.dls_rx_handle = (uintptr_t)ill; 2871 dls.dls_rx = (uintptr_t)ip_input; 2872 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2873 2874 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2875 dls.dls_ring_cnt = ip_soft_rings_cnt; 2876 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2877 dls.dls_flags = SOFT_RING_ENABLE; 2878 } else { 2879 dls.dls_flags = POLL_ENABLE; 2880 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2881 "to enable polling\n", ill->ill_name)); 2882 } 2883 bcopy((void *)&dls, (void *)odls, 2884 sizeof (dl_capab_dls_t)); 2885 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2886 /* 2887 * nmp points to a DL_CAPABILITY_REQ message to 2888 * enable either soft_ring or polling 2889 */ 2890 ill_dlpi_send(ill, nmp); 2891 } 2892 2893 static void 2894 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2895 { 2896 mblk_t *mp; 2897 dl_capab_dls_t *idls; 2898 dl_capability_sub_t *dl_subcap; 2899 int size; 2900 2901 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2902 return; 2903 2904 ASSERT(ill->ill_dls_capab != NULL); 2905 2906 size = sizeof (*dl_subcap) + sizeof (*idls); 2907 2908 mp = allocb(size, BPRI_HI); 2909 if (mp == NULL) { 2910 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2911 "request to disable soft_ring\n")); 2912 return; 2913 } 2914 2915 mp->b_wptr = mp->b_rptr + size; 2916 2917 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2918 dl_subcap->dl_length = sizeof (*idls); 2919 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2920 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2921 else 2922 dl_subcap->dl_cap = DL_CAPAB_POLL; 2923 2924 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2925 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2926 idls->dls_flags = SOFT_RING_DISABLE; 2927 else 2928 idls->dls_flags = POLL_DISABLE; 2929 2930 if (*sc_mp != NULL) 2931 linkb(*sc_mp, mp); 2932 else 2933 *sc_mp = mp; 2934 } 2935 2936 /* 2937 * Process a soft_ring/poll capability negotiation ack received 2938 * from a DLS Provider.isub must point to the sub-capability 2939 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2940 */ 2941 static void 2942 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2943 { 2944 dl_capab_dls_t *idls; 2945 uint_t sub_dl_cap = isub->dl_cap; 2946 uint8_t *capend; 2947 2948 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2949 sub_dl_cap == DL_CAPAB_POLL); 2950 2951 if (ill->ill_isv6) 2952 return; 2953 2954 /* 2955 * Note: range checks here are not absolutely sufficient to 2956 * make us robust against malformed messages sent by drivers; 2957 * this is in keeping with the rest of IP's dlpi handling. 2958 * (Remember, it's coming from something else in the kernel 2959 * address space) 2960 */ 2961 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2962 if (capend > mp->b_wptr) { 2963 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2964 "malformed sub-capability too long for mblk"); 2965 return; 2966 } 2967 2968 /* 2969 * There are two types of acks we process here: 2970 * 1. acks in reply to a (first form) generic capability req 2971 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2972 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2973 * capability req. 2974 */ 2975 idls = (dl_capab_dls_t *)(isub + 1); 2976 2977 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2978 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2979 "capability isn't as expected; pass-thru " 2980 "module(s) detected, discarding capability\n")); 2981 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2982 /* 2983 * This is a capability renegotitation case. 2984 * The interface better be unusable at this 2985 * point other wise bad things will happen 2986 * if we disable direct calls on a running 2987 * and up interface. 2988 */ 2989 ill_capability_dls_disable(ill); 2990 } 2991 return; 2992 } 2993 2994 switch (idls->dls_flags) { 2995 default: 2996 /* Disable if unknown flag */ 2997 case SOFT_RING_DISABLE: 2998 case POLL_DISABLE: 2999 ill_capability_dls_disable(ill); 3000 break; 3001 case SOFT_RING_CAPABLE: 3002 case POLL_CAPABLE: 3003 /* 3004 * If the capability was already enabled, its safe 3005 * to disable it first to get rid of stale information 3006 * and then start enabling it again. 3007 */ 3008 ill_capability_dls_disable(ill); 3009 ill_capability_dls_capable(ill, idls, isub); 3010 break; 3011 case SOFT_RING_ENABLE: 3012 case POLL_ENABLE: 3013 mutex_enter(&ill->ill_lock); 3014 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3015 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3016 ASSERT(ill->ill_dls_capab != NULL); 3017 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3018 } 3019 if (sub_dl_cap == DL_CAPAB_POLL && 3020 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3021 ASSERT(ill->ill_dls_capab != NULL); 3022 ill->ill_capabilities |= ILL_CAPAB_POLL; 3023 ip1dbg(("ill_capability_dls_ack: interface %s " 3024 "has enabled polling\n", ill->ill_name)); 3025 } 3026 mutex_exit(&ill->ill_lock); 3027 break; 3028 } 3029 } 3030 3031 /* 3032 * Process a hardware checksum offload capability negotiation ack received 3033 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3034 * of a DL_CAPABILITY_ACK message. 3035 */ 3036 static void 3037 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3038 { 3039 dl_capability_req_t *ocap; 3040 dl_capab_hcksum_t *ihck, *ohck; 3041 ill_hcksum_capab_t **ill_hcksum; 3042 mblk_t *nmp = NULL; 3043 uint_t sub_dl_cap = isub->dl_cap; 3044 uint8_t *capend; 3045 3046 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3047 3048 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3049 3050 /* 3051 * Note: range checks here are not absolutely sufficient to 3052 * make us robust against malformed messages sent by drivers; 3053 * this is in keeping with the rest of IP's dlpi handling. 3054 * (Remember, it's coming from something else in the kernel 3055 * address space) 3056 */ 3057 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3058 if (capend > mp->b_wptr) { 3059 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3060 "malformed sub-capability too long for mblk"); 3061 return; 3062 } 3063 3064 /* 3065 * There are two types of acks we process here: 3066 * 1. acks in reply to a (first form) generic capability req 3067 * (no ENABLE flag set) 3068 * 2. acks in reply to a ENABLE capability req. 3069 * (ENABLE flag set) 3070 */ 3071 ihck = (dl_capab_hcksum_t *)(isub + 1); 3072 3073 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3074 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3075 "unsupported hardware checksum " 3076 "sub-capability (version %d, expected %d)", 3077 ihck->hcksum_version, HCKSUM_VERSION_1); 3078 return; 3079 } 3080 3081 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3082 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3083 "checksum capability isn't as expected; pass-thru " 3084 "module(s) detected, discarding capability\n")); 3085 return; 3086 } 3087 3088 #define CURR_HCKSUM_CAPAB \ 3089 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3090 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3091 3092 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3093 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3094 /* do ENABLE processing */ 3095 if (*ill_hcksum == NULL) { 3096 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3097 KM_NOSLEEP); 3098 3099 if (*ill_hcksum == NULL) { 3100 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3101 "could not enable hcksum version %d " 3102 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3103 ill->ill_name); 3104 return; 3105 } 3106 } 3107 3108 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3109 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3110 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3111 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3112 "has enabled hardware checksumming\n ", 3113 ill->ill_name)); 3114 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3115 /* 3116 * Enabling hardware checksum offload 3117 * Currently IP supports {TCP,UDP}/IPv4 3118 * partial and full cksum offload and 3119 * IPv4 header checksum offload. 3120 * Allocate new mblk which will 3121 * contain a new capability request 3122 * to enable hardware checksum offload. 3123 */ 3124 uint_t size; 3125 uchar_t *rptr; 3126 3127 size = sizeof (dl_capability_req_t) + 3128 sizeof (dl_capability_sub_t) + isub->dl_length; 3129 3130 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3131 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3132 "could not enable hardware cksum for %s (ENOMEM)\n", 3133 ill->ill_name); 3134 return; 3135 } 3136 3137 rptr = nmp->b_rptr; 3138 /* initialize dl_capability_req_t */ 3139 ocap = (dl_capability_req_t *)nmp->b_rptr; 3140 ocap->dl_sub_offset = 3141 sizeof (dl_capability_req_t); 3142 ocap->dl_sub_length = 3143 sizeof (dl_capability_sub_t) + 3144 isub->dl_length; 3145 nmp->b_rptr += sizeof (dl_capability_req_t); 3146 3147 /* initialize dl_capability_sub_t */ 3148 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3149 nmp->b_rptr += sizeof (*isub); 3150 3151 /* initialize dl_capab_hcksum_t */ 3152 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3153 bcopy(ihck, ohck, sizeof (*ihck)); 3154 3155 nmp->b_rptr = rptr; 3156 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3157 3158 /* Set ENABLE flag */ 3159 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3160 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3161 3162 /* 3163 * nmp points to a DL_CAPABILITY_REQ message to enable 3164 * hardware checksum acceleration. 3165 */ 3166 ill_dlpi_send(ill, nmp); 3167 } else { 3168 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3169 "advertised %x hardware checksum capability flags\n", 3170 ill->ill_name, ihck->hcksum_txflags)); 3171 } 3172 } 3173 3174 static void 3175 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3176 { 3177 mblk_t *mp; 3178 dl_capab_hcksum_t *hck_subcap; 3179 dl_capability_sub_t *dl_subcap; 3180 int size; 3181 3182 if (!ILL_HCKSUM_CAPABLE(ill)) 3183 return; 3184 3185 ASSERT(ill->ill_hcksum_capab != NULL); 3186 /* 3187 * Clear the capability flag for hardware checksum offload but 3188 * retain the ill_hcksum_capab structure since it's possible that 3189 * another thread is still referring to it. The structure only 3190 * gets deallocated when we destroy the ill. 3191 */ 3192 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3193 3194 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3195 3196 mp = allocb(size, BPRI_HI); 3197 if (mp == NULL) { 3198 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3199 "request to disable hardware checksum offload\n")); 3200 return; 3201 } 3202 3203 mp->b_wptr = mp->b_rptr + size; 3204 3205 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3206 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3207 dl_subcap->dl_length = sizeof (*hck_subcap); 3208 3209 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3210 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3211 hck_subcap->hcksum_txflags = 0; 3212 3213 if (*sc_mp != NULL) 3214 linkb(*sc_mp, mp); 3215 else 3216 *sc_mp = mp; 3217 } 3218 3219 static void 3220 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3221 { 3222 mblk_t *nmp = NULL; 3223 dl_capability_req_t *oc; 3224 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3225 ill_zerocopy_capab_t **ill_zerocopy_capab; 3226 uint_t sub_dl_cap = isub->dl_cap; 3227 uint8_t *capend; 3228 3229 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3230 3231 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3232 3233 /* 3234 * Note: range checks here are not absolutely sufficient to 3235 * make us robust against malformed messages sent by drivers; 3236 * this is in keeping with the rest of IP's dlpi handling. 3237 * (Remember, it's coming from something else in the kernel 3238 * address space) 3239 */ 3240 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3241 if (capend > mp->b_wptr) { 3242 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3243 "malformed sub-capability too long for mblk"); 3244 return; 3245 } 3246 3247 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3248 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3249 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3250 "unsupported ZEROCOPY sub-capability (version %d, " 3251 "expected %d)", zc_ic->zerocopy_version, 3252 ZEROCOPY_VERSION_1); 3253 return; 3254 } 3255 3256 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3257 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3258 "capability isn't as expected; pass-thru module(s) " 3259 "detected, discarding capability\n")); 3260 return; 3261 } 3262 3263 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3264 if (*ill_zerocopy_capab == NULL) { 3265 *ill_zerocopy_capab = 3266 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3267 KM_NOSLEEP); 3268 3269 if (*ill_zerocopy_capab == NULL) { 3270 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3271 "could not enable Zero-copy version %d " 3272 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3273 ill->ill_name); 3274 return; 3275 } 3276 } 3277 3278 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3279 "supports Zero-copy version %d\n", ill->ill_name, 3280 ZEROCOPY_VERSION_1)); 3281 3282 (*ill_zerocopy_capab)->ill_zerocopy_version = 3283 zc_ic->zerocopy_version; 3284 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3285 zc_ic->zerocopy_flags; 3286 3287 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3288 } else { 3289 uint_t size; 3290 uchar_t *rptr; 3291 3292 size = sizeof (dl_capability_req_t) + 3293 sizeof (dl_capability_sub_t) + 3294 sizeof (dl_capab_zerocopy_t); 3295 3296 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3297 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3298 "could not enable zerocopy for %s (ENOMEM)\n", 3299 ill->ill_name); 3300 return; 3301 } 3302 3303 rptr = nmp->b_rptr; 3304 /* initialize dl_capability_req_t */ 3305 oc = (dl_capability_req_t *)rptr; 3306 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3307 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3308 sizeof (dl_capab_zerocopy_t); 3309 rptr += sizeof (dl_capability_req_t); 3310 3311 /* initialize dl_capability_sub_t */ 3312 bcopy(isub, rptr, sizeof (*isub)); 3313 rptr += sizeof (*isub); 3314 3315 /* initialize dl_capab_zerocopy_t */ 3316 zc_oc = (dl_capab_zerocopy_t *)rptr; 3317 *zc_oc = *zc_ic; 3318 3319 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3320 "to enable zero-copy version %d\n", ill->ill_name, 3321 ZEROCOPY_VERSION_1)); 3322 3323 /* set VMSAFE_MEM flag */ 3324 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3325 3326 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3327 ill_dlpi_send(ill, nmp); 3328 } 3329 } 3330 3331 static void 3332 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3333 { 3334 mblk_t *mp; 3335 dl_capab_zerocopy_t *zerocopy_subcap; 3336 dl_capability_sub_t *dl_subcap; 3337 int size; 3338 3339 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3340 return; 3341 3342 ASSERT(ill->ill_zerocopy_capab != NULL); 3343 /* 3344 * Clear the capability flag for Zero-copy but retain the 3345 * ill_zerocopy_capab structure since it's possible that another 3346 * thread is still referring to it. The structure only gets 3347 * deallocated when we destroy the ill. 3348 */ 3349 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3350 3351 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3352 3353 mp = allocb(size, BPRI_HI); 3354 if (mp == NULL) { 3355 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3356 "request to disable Zero-copy\n")); 3357 return; 3358 } 3359 3360 mp->b_wptr = mp->b_rptr + size; 3361 3362 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3363 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3364 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3365 3366 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3367 zerocopy_subcap->zerocopy_version = 3368 ill->ill_zerocopy_capab->ill_zerocopy_version; 3369 zerocopy_subcap->zerocopy_flags = 0; 3370 3371 if (*sc_mp != NULL) 3372 linkb(*sc_mp, mp); 3373 else 3374 *sc_mp = mp; 3375 } 3376 3377 /* 3378 * Process Large Segment Offload capability negotiation ack received from a 3379 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3380 * DL_CAPABILITY_ACK message. 3381 */ 3382 static void 3383 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3384 { 3385 mblk_t *nmp = NULL; 3386 dl_capability_req_t *oc; 3387 dl_capab_lso_t *lso_ic, *lso_oc; 3388 ill_lso_capab_t **ill_lso_capab; 3389 uint_t sub_dl_cap = isub->dl_cap; 3390 uint8_t *capend; 3391 3392 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3393 3394 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3395 3396 /* 3397 * Note: range checks here are not absolutely sufficient to 3398 * make us robust against malformed messages sent by drivers; 3399 * this is in keeping with the rest of IP's dlpi handling. 3400 * (Remember, it's coming from something else in the kernel 3401 * address space) 3402 */ 3403 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3404 if (capend > mp->b_wptr) { 3405 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3406 "malformed sub-capability too long for mblk"); 3407 return; 3408 } 3409 3410 lso_ic = (dl_capab_lso_t *)(isub + 1); 3411 3412 if (lso_ic->lso_version != LSO_VERSION_1) { 3413 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3414 "unsupported LSO sub-capability (version %d, expected %d)", 3415 lso_ic->lso_version, LSO_VERSION_1); 3416 return; 3417 } 3418 3419 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3420 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3421 "capability isn't as expected; pass-thru module(s) " 3422 "detected, discarding capability\n")); 3423 return; 3424 } 3425 3426 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3427 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3428 if (*ill_lso_capab == NULL) { 3429 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3430 KM_NOSLEEP); 3431 3432 if (*ill_lso_capab == NULL) { 3433 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3434 "could not enable LSO version %d " 3435 "for %s (ENOMEM)\n", LSO_VERSION_1, 3436 ill->ill_name); 3437 return; 3438 } 3439 } 3440 3441 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3442 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3443 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3444 ill->ill_capabilities |= ILL_CAPAB_LSO; 3445 3446 ip1dbg(("ill_capability_lso_ack: interface %s " 3447 "has enabled LSO\n ", ill->ill_name)); 3448 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3449 uint_t size; 3450 uchar_t *rptr; 3451 3452 size = sizeof (dl_capability_req_t) + 3453 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3454 3455 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3456 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3457 "could not enable LSO for %s (ENOMEM)\n", 3458 ill->ill_name); 3459 return; 3460 } 3461 3462 rptr = nmp->b_rptr; 3463 /* initialize dl_capability_req_t */ 3464 oc = (dl_capability_req_t *)nmp->b_rptr; 3465 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3466 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3467 sizeof (dl_capab_lso_t); 3468 nmp->b_rptr += sizeof (dl_capability_req_t); 3469 3470 /* initialize dl_capability_sub_t */ 3471 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3472 nmp->b_rptr += sizeof (*isub); 3473 3474 /* initialize dl_capab_lso_t */ 3475 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3476 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3477 3478 nmp->b_rptr = rptr; 3479 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3480 3481 /* set ENABLE flag */ 3482 lso_oc->lso_flags |= LSO_TX_ENABLE; 3483 3484 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3485 ill_dlpi_send(ill, nmp); 3486 } else { 3487 ip1dbg(("ill_capability_lso_ack: interface %s has " 3488 "advertised %x LSO capability flags\n", 3489 ill->ill_name, lso_ic->lso_flags)); 3490 } 3491 } 3492 3493 3494 static void 3495 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3496 { 3497 mblk_t *mp; 3498 dl_capab_lso_t *lso_subcap; 3499 dl_capability_sub_t *dl_subcap; 3500 int size; 3501 3502 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3503 return; 3504 3505 ASSERT(ill->ill_lso_capab != NULL); 3506 /* 3507 * Clear the capability flag for LSO but retain the 3508 * ill_lso_capab structure since it's possible that another 3509 * thread is still referring to it. The structure only gets 3510 * deallocated when we destroy the ill. 3511 */ 3512 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3513 3514 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3515 3516 mp = allocb(size, BPRI_HI); 3517 if (mp == NULL) { 3518 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3519 "request to disable LSO\n")); 3520 return; 3521 } 3522 3523 mp->b_wptr = mp->b_rptr + size; 3524 3525 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3526 dl_subcap->dl_cap = DL_CAPAB_LSO; 3527 dl_subcap->dl_length = sizeof (*lso_subcap); 3528 3529 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3530 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3531 lso_subcap->lso_flags = 0; 3532 3533 if (*sc_mp != NULL) 3534 linkb(*sc_mp, mp); 3535 else 3536 *sc_mp = mp; 3537 } 3538 3539 /* 3540 * Consume a new-style hardware capabilities negotiation ack. 3541 * Called from ip_rput_dlpi_writer(). 3542 */ 3543 void 3544 ill_capability_ack(ill_t *ill, mblk_t *mp) 3545 { 3546 dl_capability_ack_t *capp; 3547 dl_capability_sub_t *subp, *endp; 3548 3549 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3550 ill->ill_dlpi_capab_state = IDS_OK; 3551 3552 capp = (dl_capability_ack_t *)mp->b_rptr; 3553 3554 if (capp->dl_sub_length == 0) 3555 /* no new-style capabilities */ 3556 return; 3557 3558 /* make sure the driver supplied correct dl_sub_length */ 3559 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3560 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3561 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3562 return; 3563 } 3564 3565 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3566 /* 3567 * There are sub-capabilities. Process the ones we know about. 3568 * Loop until we don't have room for another sub-cap header.. 3569 */ 3570 for (subp = SC(capp, capp->dl_sub_offset), 3571 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3572 subp <= endp; 3573 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3574 3575 switch (subp->dl_cap) { 3576 case DL_CAPAB_ID_WRAPPER: 3577 ill_capability_id_ack(ill, mp, subp); 3578 break; 3579 default: 3580 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3581 break; 3582 } 3583 } 3584 #undef SC 3585 } 3586 3587 /* 3588 * This routine is called to scan the fragmentation reassembly table for 3589 * the specified ILL for any packets that are starting to smell. 3590 * dead_interval is the maximum time in seconds that will be tolerated. It 3591 * will either be the value specified in ip_g_frag_timeout, or zero if the 3592 * ILL is shutting down and it is time to blow everything off. 3593 * 3594 * It returns the number of seconds (as a time_t) that the next frag timer 3595 * should be scheduled for, 0 meaning that the timer doesn't need to be 3596 * re-started. Note that the method of calculating next_timeout isn't 3597 * entirely accurate since time will flow between the time we grab 3598 * current_time and the time we schedule the next timeout. This isn't a 3599 * big problem since this is the timer for sending an ICMP reassembly time 3600 * exceeded messages, and it doesn't have to be exactly accurate. 3601 * 3602 * This function is 3603 * sometimes called as writer, although this is not required. 3604 */ 3605 time_t 3606 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3607 { 3608 ipfb_t *ipfb; 3609 ipfb_t *endp; 3610 ipf_t *ipf; 3611 ipf_t *ipfnext; 3612 mblk_t *mp; 3613 time_t current_time = gethrestime_sec(); 3614 time_t next_timeout = 0; 3615 uint32_t hdr_length; 3616 mblk_t *send_icmp_head; 3617 mblk_t *send_icmp_head_v6; 3618 zoneid_t zoneid; 3619 ip_stack_t *ipst = ill->ill_ipst; 3620 3621 ipfb = ill->ill_frag_hash_tbl; 3622 if (ipfb == NULL) 3623 return (B_FALSE); 3624 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3625 /* Walk the frag hash table. */ 3626 for (; ipfb < endp; ipfb++) { 3627 send_icmp_head = NULL; 3628 send_icmp_head_v6 = NULL; 3629 mutex_enter(&ipfb->ipfb_lock); 3630 while ((ipf = ipfb->ipfb_ipf) != 0) { 3631 time_t frag_time = current_time - ipf->ipf_timestamp; 3632 time_t frag_timeout; 3633 3634 if (frag_time < dead_interval) { 3635 /* 3636 * There are some outstanding fragments 3637 * that will timeout later. Make note of 3638 * the time so that we can reschedule the 3639 * next timeout appropriately. 3640 */ 3641 frag_timeout = dead_interval - frag_time; 3642 if (next_timeout == 0 || 3643 frag_timeout < next_timeout) { 3644 next_timeout = frag_timeout; 3645 } 3646 break; 3647 } 3648 /* Time's up. Get it out of here. */ 3649 hdr_length = ipf->ipf_nf_hdr_len; 3650 ipfnext = ipf->ipf_hash_next; 3651 if (ipfnext) 3652 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3653 *ipf->ipf_ptphn = ipfnext; 3654 mp = ipf->ipf_mp->b_cont; 3655 for (; mp; mp = mp->b_cont) { 3656 /* Extra points for neatness. */ 3657 IP_REASS_SET_START(mp, 0); 3658 IP_REASS_SET_END(mp, 0); 3659 } 3660 mp = ipf->ipf_mp->b_cont; 3661 ill->ill_frag_count -= ipf->ipf_count; 3662 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3663 ipfb->ipfb_count -= ipf->ipf_count; 3664 ASSERT(ipfb->ipfb_frag_pkts > 0); 3665 ipfb->ipfb_frag_pkts--; 3666 /* 3667 * We do not send any icmp message from here because 3668 * we currently are holding the ipfb_lock for this 3669 * hash chain. If we try and send any icmp messages 3670 * from here we may end up via a put back into ip 3671 * trying to get the same lock, causing a recursive 3672 * mutex panic. Instead we build a list and send all 3673 * the icmp messages after we have dropped the lock. 3674 */ 3675 if (ill->ill_isv6) { 3676 if (hdr_length != 0) { 3677 mp->b_next = send_icmp_head_v6; 3678 send_icmp_head_v6 = mp; 3679 } else { 3680 freemsg(mp); 3681 } 3682 } else { 3683 if (hdr_length != 0) { 3684 mp->b_next = send_icmp_head; 3685 send_icmp_head = mp; 3686 } else { 3687 freemsg(mp); 3688 } 3689 } 3690 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3691 freeb(ipf->ipf_mp); 3692 } 3693 mutex_exit(&ipfb->ipfb_lock); 3694 /* 3695 * Now need to send any icmp messages that we delayed from 3696 * above. 3697 */ 3698 while (send_icmp_head_v6 != NULL) { 3699 ip6_t *ip6h; 3700 3701 mp = send_icmp_head_v6; 3702 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3703 mp->b_next = NULL; 3704 if (mp->b_datap->db_type == M_CTL) 3705 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3706 else 3707 ip6h = (ip6_t *)mp->b_rptr; 3708 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3709 ill, ipst); 3710 if (zoneid == ALL_ZONES) { 3711 freemsg(mp); 3712 } else { 3713 icmp_time_exceeded_v6(ill->ill_wq, mp, 3714 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3715 B_FALSE, zoneid, ipst); 3716 } 3717 } 3718 while (send_icmp_head != NULL) { 3719 ipaddr_t dst; 3720 3721 mp = send_icmp_head; 3722 send_icmp_head = send_icmp_head->b_next; 3723 mp->b_next = NULL; 3724 3725 if (mp->b_datap->db_type == M_CTL) 3726 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3727 else 3728 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3729 3730 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3731 if (zoneid == ALL_ZONES) { 3732 freemsg(mp); 3733 } else { 3734 icmp_time_exceeded(ill->ill_wq, mp, 3735 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3736 ipst); 3737 } 3738 } 3739 } 3740 /* 3741 * A non-dying ILL will use the return value to decide whether to 3742 * restart the frag timer, and for how long. 3743 */ 3744 return (next_timeout); 3745 } 3746 3747 /* 3748 * This routine is called when the approximate count of mblk memory used 3749 * for the specified ILL has exceeded max_count. 3750 */ 3751 void 3752 ill_frag_prune(ill_t *ill, uint_t max_count) 3753 { 3754 ipfb_t *ipfb; 3755 ipf_t *ipf; 3756 size_t count; 3757 3758 /* 3759 * If we are here within ip_min_frag_prune_time msecs remove 3760 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3761 * ill_frag_free_num_pkts. 3762 */ 3763 mutex_enter(&ill->ill_lock); 3764 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3765 (ip_min_frag_prune_time != 0 ? 3766 ip_min_frag_prune_time : msec_per_tick)) { 3767 3768 ill->ill_frag_free_num_pkts++; 3769 3770 } else { 3771 ill->ill_frag_free_num_pkts = 0; 3772 } 3773 ill->ill_last_frag_clean_time = lbolt; 3774 mutex_exit(&ill->ill_lock); 3775 3776 /* 3777 * free ill_frag_free_num_pkts oldest packets from each bucket. 3778 */ 3779 if (ill->ill_frag_free_num_pkts != 0) { 3780 int ix; 3781 3782 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3783 ipfb = &ill->ill_frag_hash_tbl[ix]; 3784 mutex_enter(&ipfb->ipfb_lock); 3785 if (ipfb->ipfb_ipf != NULL) { 3786 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3787 ill->ill_frag_free_num_pkts); 3788 } 3789 mutex_exit(&ipfb->ipfb_lock); 3790 } 3791 } 3792 /* 3793 * While the reassembly list for this ILL is too big, prune a fragment 3794 * queue by age, oldest first. Note that the per ILL count is 3795 * approximate, while the per frag hash bucket counts are accurate. 3796 */ 3797 while (ill->ill_frag_count > max_count) { 3798 int ix; 3799 ipfb_t *oipfb = NULL; 3800 uint_t oldest = UINT_MAX; 3801 3802 count = 0; 3803 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3804 ipfb = &ill->ill_frag_hash_tbl[ix]; 3805 mutex_enter(&ipfb->ipfb_lock); 3806 ipf = ipfb->ipfb_ipf; 3807 if (ipf != NULL && ipf->ipf_gen < oldest) { 3808 oldest = ipf->ipf_gen; 3809 oipfb = ipfb; 3810 } 3811 count += ipfb->ipfb_count; 3812 mutex_exit(&ipfb->ipfb_lock); 3813 } 3814 /* Refresh the per ILL count */ 3815 ill->ill_frag_count = count; 3816 if (oipfb == NULL) { 3817 ill->ill_frag_count = 0; 3818 break; 3819 } 3820 if (count <= max_count) 3821 return; /* Somebody beat us to it, nothing to do */ 3822 mutex_enter(&oipfb->ipfb_lock); 3823 ipf = oipfb->ipfb_ipf; 3824 if (ipf != NULL) { 3825 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3826 } 3827 mutex_exit(&oipfb->ipfb_lock); 3828 } 3829 } 3830 3831 /* 3832 * free 'free_cnt' fragmented packets starting at ipf. 3833 */ 3834 void 3835 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3836 { 3837 size_t count; 3838 mblk_t *mp; 3839 mblk_t *tmp; 3840 ipf_t **ipfp = ipf->ipf_ptphn; 3841 3842 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3843 ASSERT(ipfp != NULL); 3844 ASSERT(ipf != NULL); 3845 3846 while (ipf != NULL && free_cnt-- > 0) { 3847 count = ipf->ipf_count; 3848 mp = ipf->ipf_mp; 3849 ipf = ipf->ipf_hash_next; 3850 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3851 IP_REASS_SET_START(tmp, 0); 3852 IP_REASS_SET_END(tmp, 0); 3853 } 3854 ill->ill_frag_count -= count; 3855 ASSERT(ipfb->ipfb_count >= count); 3856 ipfb->ipfb_count -= count; 3857 ASSERT(ipfb->ipfb_frag_pkts > 0); 3858 ipfb->ipfb_frag_pkts--; 3859 freemsg(mp); 3860 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3861 } 3862 3863 if (ipf) 3864 ipf->ipf_ptphn = ipfp; 3865 ipfp[0] = ipf; 3866 } 3867 3868 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3869 "obsolete and may be removed in a future release of Solaris. Use " \ 3870 "ifconfig(1M) to manipulate the forwarding status of an interface." 3871 3872 /* 3873 * For obsolete per-interface forwarding configuration; 3874 * called in response to ND_GET. 3875 */ 3876 /* ARGSUSED */ 3877 static int 3878 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3879 { 3880 ill_t *ill = (ill_t *)cp; 3881 3882 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3883 3884 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3885 return (0); 3886 } 3887 3888 /* 3889 * For obsolete per-interface forwarding configuration; 3890 * called in response to ND_SET. 3891 */ 3892 /* ARGSUSED */ 3893 static int 3894 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3895 cred_t *ioc_cr) 3896 { 3897 long value; 3898 int retval; 3899 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3900 3901 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3902 3903 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3904 value < 0 || value > 1) { 3905 return (EINVAL); 3906 } 3907 3908 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3909 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3910 rw_exit(&ipst->ips_ill_g_lock); 3911 return (retval); 3912 } 3913 3914 /* 3915 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3916 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3917 * up RTS_IFINFO routing socket messages for each interface whose flags we 3918 * change. 3919 */ 3920 int 3921 ill_forward_set(ill_t *ill, boolean_t enable) 3922 { 3923 ill_group_t *illgrp; 3924 ip_stack_t *ipst = ill->ill_ipst; 3925 3926 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3927 3928 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3929 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3930 return (0); 3931 3932 if (IS_LOOPBACK(ill)) 3933 return (EINVAL); 3934 3935 /* 3936 * If the ill is in an IPMP group, set the forwarding policy on all 3937 * members of the group to the same value. 3938 */ 3939 illgrp = ill->ill_group; 3940 if (illgrp != NULL) { 3941 ill_t *tmp_ill; 3942 3943 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3944 tmp_ill = tmp_ill->ill_group_next) { 3945 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3946 (enable ? "Enabling" : "Disabling"), 3947 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3948 tmp_ill->ill_name)); 3949 mutex_enter(&tmp_ill->ill_lock); 3950 if (enable) 3951 tmp_ill->ill_flags |= ILLF_ROUTER; 3952 else 3953 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3954 mutex_exit(&tmp_ill->ill_lock); 3955 if (tmp_ill->ill_isv6) 3956 ill_set_nce_router_flags(tmp_ill, enable); 3957 /* Notify routing socket listeners of this change. */ 3958 ip_rts_ifmsg(tmp_ill->ill_ipif); 3959 } 3960 } else { 3961 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3962 (enable ? "Enabling" : "Disabling"), 3963 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3964 mutex_enter(&ill->ill_lock); 3965 if (enable) 3966 ill->ill_flags |= ILLF_ROUTER; 3967 else 3968 ill->ill_flags &= ~ILLF_ROUTER; 3969 mutex_exit(&ill->ill_lock); 3970 if (ill->ill_isv6) 3971 ill_set_nce_router_flags(ill, enable); 3972 /* Notify routing socket listeners of this change. */ 3973 ip_rts_ifmsg(ill->ill_ipif); 3974 } 3975 3976 return (0); 3977 } 3978 3979 /* 3980 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3981 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3982 * set or clear. 3983 */ 3984 static void 3985 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3986 { 3987 ipif_t *ipif; 3988 nce_t *nce; 3989 3990 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3991 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3992 if (nce != NULL) { 3993 mutex_enter(&nce->nce_lock); 3994 if (enable) 3995 nce->nce_flags |= NCE_F_ISROUTER; 3996 else 3997 nce->nce_flags &= ~NCE_F_ISROUTER; 3998 mutex_exit(&nce->nce_lock); 3999 NCE_REFRELE(nce); 4000 } 4001 } 4002 } 4003 4004 /* 4005 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4006 * for this ill. Make sure the v6/v4 question has been answered about this 4007 * ill. The creation of this ndd variable is only for backwards compatibility. 4008 * The preferred way to control per-interface IP forwarding is through the 4009 * ILLF_ROUTER interface flag. 4010 */ 4011 static int 4012 ill_set_ndd_name(ill_t *ill) 4013 { 4014 char *suffix; 4015 ip_stack_t *ipst = ill->ill_ipst; 4016 4017 ASSERT(IAM_WRITER_ILL(ill)); 4018 4019 if (ill->ill_isv6) 4020 suffix = ipv6_forward_suffix; 4021 else 4022 suffix = ipv4_forward_suffix; 4023 4024 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4025 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4026 /* 4027 * Copies over the '\0'. 4028 * Note that strlen(suffix) is always bounded. 4029 */ 4030 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4031 strlen(suffix) + 1); 4032 4033 /* 4034 * Use of the nd table requires holding the reader lock. 4035 * Modifying the nd table thru nd_load/nd_unload requires 4036 * the writer lock. 4037 */ 4038 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4039 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4040 nd_ill_forward_set, (caddr_t)ill)) { 4041 /* 4042 * If the nd_load failed, it only meant that it could not 4043 * allocate a new bunch of room for further NDD expansion. 4044 * Because of that, the ill_ndd_name will be set to 0, and 4045 * this interface is at the mercy of the global ip_forwarding 4046 * variable. 4047 */ 4048 rw_exit(&ipst->ips_ip_g_nd_lock); 4049 ill->ill_ndd_name = NULL; 4050 return (ENOMEM); 4051 } 4052 rw_exit(&ipst->ips_ip_g_nd_lock); 4053 return (0); 4054 } 4055 4056 /* 4057 * Intializes the context structure and returns the first ill in the list 4058 * cuurently start_list and end_list can have values: 4059 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4060 * IP_V4_G_HEAD Traverse IPV4 list only. 4061 * IP_V6_G_HEAD Traverse IPV6 list only. 4062 */ 4063 4064 /* 4065 * We don't check for CONDEMNED ills here. Caller must do that if 4066 * necessary under the ill lock. 4067 */ 4068 ill_t * 4069 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4070 ip_stack_t *ipst) 4071 { 4072 ill_if_t *ifp; 4073 ill_t *ill; 4074 avl_tree_t *avl_tree; 4075 4076 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4077 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4078 4079 /* 4080 * setup the lists to search 4081 */ 4082 if (end_list != MAX_G_HEADS) { 4083 ctx->ctx_current_list = start_list; 4084 ctx->ctx_last_list = end_list; 4085 } else { 4086 ctx->ctx_last_list = MAX_G_HEADS - 1; 4087 ctx->ctx_current_list = 0; 4088 } 4089 4090 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4091 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4092 if (ifp != (ill_if_t *) 4093 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4094 avl_tree = &ifp->illif_avl_by_ppa; 4095 ill = avl_first(avl_tree); 4096 /* 4097 * ill is guaranteed to be non NULL or ifp should have 4098 * not existed. 4099 */ 4100 ASSERT(ill != NULL); 4101 return (ill); 4102 } 4103 ctx->ctx_current_list++; 4104 } 4105 4106 return (NULL); 4107 } 4108 4109 /* 4110 * returns the next ill in the list. ill_first() must have been called 4111 * before calling ill_next() or bad things will happen. 4112 */ 4113 4114 /* 4115 * We don't check for CONDEMNED ills here. Caller must do that if 4116 * necessary under the ill lock. 4117 */ 4118 ill_t * 4119 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4120 { 4121 ill_if_t *ifp; 4122 ill_t *ill; 4123 ip_stack_t *ipst = lastill->ill_ipst; 4124 4125 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4126 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4127 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4128 AVL_AFTER)) != NULL) { 4129 return (ill); 4130 } 4131 4132 /* goto next ill_ifp in the list. */ 4133 ifp = lastill->ill_ifptr->illif_next; 4134 4135 /* make sure not at end of circular list */ 4136 while (ifp == 4137 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4138 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4139 return (NULL); 4140 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4141 } 4142 4143 return (avl_first(&ifp->illif_avl_by_ppa)); 4144 } 4145 4146 /* 4147 * Check interface name for correct format which is name+ppa. 4148 * name can contain characters and digits, the right most digits 4149 * make up the ppa number. use of octal is not allowed, name must contain 4150 * a ppa, return pointer to the start of ppa. 4151 * In case of error return NULL. 4152 */ 4153 static char * 4154 ill_get_ppa_ptr(char *name) 4155 { 4156 int namelen = mi_strlen(name); 4157 4158 int len = namelen; 4159 4160 name += len; 4161 while (len > 0) { 4162 name--; 4163 if (*name < '0' || *name > '9') 4164 break; 4165 len--; 4166 } 4167 4168 /* empty string, all digits, or no trailing digits */ 4169 if (len == 0 || len == (int)namelen) 4170 return (NULL); 4171 4172 name++; 4173 /* check for attempted use of octal */ 4174 if (*name == '0' && len != (int)namelen - 1) 4175 return (NULL); 4176 return (name); 4177 } 4178 4179 /* 4180 * use avl tree to locate the ill. 4181 */ 4182 static ill_t * 4183 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4184 ipsq_func_t func, int *error, ip_stack_t *ipst) 4185 { 4186 char *ppa_ptr = NULL; 4187 int len; 4188 uint_t ppa; 4189 ill_t *ill = NULL; 4190 ill_if_t *ifp; 4191 int list; 4192 ipsq_t *ipsq; 4193 4194 if (error != NULL) 4195 *error = 0; 4196 4197 /* 4198 * get ppa ptr 4199 */ 4200 if (isv6) 4201 list = IP_V6_G_HEAD; 4202 else 4203 list = IP_V4_G_HEAD; 4204 4205 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4206 if (error != NULL) 4207 *error = ENXIO; 4208 return (NULL); 4209 } 4210 4211 len = ppa_ptr - name + 1; 4212 4213 ppa = stoi(&ppa_ptr); 4214 4215 ifp = IP_VX_ILL_G_LIST(list, ipst); 4216 4217 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4218 /* 4219 * match is done on len - 1 as the name is not null 4220 * terminated it contains ppa in addition to the interface 4221 * name. 4222 */ 4223 if ((ifp->illif_name_len == len) && 4224 bcmp(ifp->illif_name, name, len - 1) == 0) { 4225 break; 4226 } else { 4227 ifp = ifp->illif_next; 4228 } 4229 } 4230 4231 4232 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4233 /* 4234 * Even the interface type does not exist. 4235 */ 4236 if (error != NULL) 4237 *error = ENXIO; 4238 return (NULL); 4239 } 4240 4241 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4242 if (ill != NULL) { 4243 /* 4244 * The block comment at the start of ipif_down 4245 * explains the use of the macros used below 4246 */ 4247 GRAB_CONN_LOCK(q); 4248 mutex_enter(&ill->ill_lock); 4249 if (ILL_CAN_LOOKUP(ill)) { 4250 ill_refhold_locked(ill); 4251 mutex_exit(&ill->ill_lock); 4252 RELEASE_CONN_LOCK(q); 4253 return (ill); 4254 } else if (ILL_CAN_WAIT(ill, q)) { 4255 ipsq = ill->ill_phyint->phyint_ipsq; 4256 mutex_enter(&ipsq->ipsq_lock); 4257 mutex_exit(&ill->ill_lock); 4258 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4259 mutex_exit(&ipsq->ipsq_lock); 4260 RELEASE_CONN_LOCK(q); 4261 if (error != NULL) 4262 *error = EINPROGRESS; 4263 return (NULL); 4264 } 4265 mutex_exit(&ill->ill_lock); 4266 RELEASE_CONN_LOCK(q); 4267 } 4268 if (error != NULL) 4269 *error = ENXIO; 4270 return (NULL); 4271 } 4272 4273 /* 4274 * comparison function for use with avl. 4275 */ 4276 static int 4277 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4278 { 4279 uint_t ppa; 4280 uint_t ill_ppa; 4281 4282 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4283 4284 ppa = *((uint_t *)ppa_ptr); 4285 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4286 /* 4287 * We want the ill with the lowest ppa to be on the 4288 * top. 4289 */ 4290 if (ill_ppa < ppa) 4291 return (1); 4292 if (ill_ppa > ppa) 4293 return (-1); 4294 return (0); 4295 } 4296 4297 /* 4298 * remove an interface type from the global list. 4299 */ 4300 static void 4301 ill_delete_interface_type(ill_if_t *interface) 4302 { 4303 ASSERT(interface != NULL); 4304 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4305 4306 avl_destroy(&interface->illif_avl_by_ppa); 4307 if (interface->illif_ppa_arena != NULL) 4308 vmem_destroy(interface->illif_ppa_arena); 4309 4310 remque(interface); 4311 4312 mi_free(interface); 4313 } 4314 4315 /* 4316 * remove ill from the global list. 4317 */ 4318 static void 4319 ill_glist_delete(ill_t *ill) 4320 { 4321 hook_nic_event_t *info; 4322 ip_stack_t *ipst; 4323 4324 if (ill == NULL) 4325 return; 4326 ipst = ill->ill_ipst; 4327 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4328 4329 /* 4330 * If the ill was never inserted into the AVL tree 4331 * we skip the if branch. 4332 */ 4333 if (ill->ill_ifptr != NULL) { 4334 /* 4335 * remove from AVL tree and free ppa number 4336 */ 4337 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4338 4339 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4340 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4341 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4342 } 4343 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4344 ill_delete_interface_type(ill->ill_ifptr); 4345 } 4346 4347 /* 4348 * Indicate ill is no longer in the list. 4349 */ 4350 ill->ill_ifptr = NULL; 4351 ill->ill_name_length = 0; 4352 ill->ill_name[0] = '\0'; 4353 ill->ill_ppa = UINT_MAX; 4354 } 4355 4356 /* 4357 * Run the unplumb hook after the NIC has disappeared from being 4358 * visible so that attempts to revalidate its existance will fail. 4359 * 4360 * This needs to be run inside the ill_g_lock perimeter to ensure 4361 * that the ordering of delivered events to listeners matches the 4362 * order of them in the kernel. 4363 */ 4364 info = ill->ill_nic_event_info; 4365 if (info != NULL && info->hne_event == NE_DOWN) { 4366 mutex_enter(&ill->ill_lock); 4367 ill_nic_info_dispatch(ill); 4368 mutex_exit(&ill->ill_lock); 4369 } 4370 4371 /* Generate NE_UNPLUMB event for ill_name. */ 4372 (void) ill_hook_event_create(ill, 0, NE_UNPLUMB, ill->ill_name, 4373 ill->ill_name_length); 4374 4375 ill_phyint_free(ill); 4376 rw_exit(&ipst->ips_ill_g_lock); 4377 } 4378 4379 /* 4380 * allocate a ppa, if the number of plumbed interfaces of this type are 4381 * less than ill_no_arena do a linear search to find a unused ppa. 4382 * When the number goes beyond ill_no_arena switch to using an arena. 4383 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4384 * is the return value for an error condition, so allocation starts at one 4385 * and is decremented by one. 4386 */ 4387 static int 4388 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4389 { 4390 ill_t *tmp_ill; 4391 uint_t start, end; 4392 int ppa; 4393 4394 if (ifp->illif_ppa_arena == NULL && 4395 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4396 /* 4397 * Create an arena. 4398 */ 4399 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4400 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4401 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4402 /* allocate what has already been assigned */ 4403 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4404 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4405 tmp_ill, AVL_AFTER)) { 4406 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4407 1, /* size */ 4408 1, /* align/quantum */ 4409 0, /* phase */ 4410 0, /* nocross */ 4411 /* minaddr */ 4412 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4413 /* maxaddr */ 4414 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4415 VM_NOSLEEP|VM_FIRSTFIT); 4416 if (ppa == 0) { 4417 ip1dbg(("ill_alloc_ppa: ppa allocation" 4418 " failed while switching")); 4419 vmem_destroy(ifp->illif_ppa_arena); 4420 ifp->illif_ppa_arena = NULL; 4421 break; 4422 } 4423 } 4424 } 4425 4426 if (ifp->illif_ppa_arena != NULL) { 4427 if (ill->ill_ppa == UINT_MAX) { 4428 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4429 1, VM_NOSLEEP|VM_FIRSTFIT); 4430 if (ppa == 0) 4431 return (EAGAIN); 4432 ill->ill_ppa = --ppa; 4433 } else { 4434 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4435 1, /* size */ 4436 1, /* align/quantum */ 4437 0, /* phase */ 4438 0, /* nocross */ 4439 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4440 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4441 VM_NOSLEEP|VM_FIRSTFIT); 4442 /* 4443 * Most likely the allocation failed because 4444 * the requested ppa was in use. 4445 */ 4446 if (ppa == 0) 4447 return (EEXIST); 4448 } 4449 return (0); 4450 } 4451 4452 /* 4453 * No arena is in use and not enough (>ill_no_arena) interfaces have 4454 * been plumbed to create one. Do a linear search to get a unused ppa. 4455 */ 4456 if (ill->ill_ppa == UINT_MAX) { 4457 end = UINT_MAX - 1; 4458 start = 0; 4459 } else { 4460 end = start = ill->ill_ppa; 4461 } 4462 4463 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4464 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4465 if (start++ >= end) { 4466 if (ill->ill_ppa == UINT_MAX) 4467 return (EAGAIN); 4468 else 4469 return (EEXIST); 4470 } 4471 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4472 } 4473 ill->ill_ppa = start; 4474 return (0); 4475 } 4476 4477 /* 4478 * Insert ill into the list of configured ill's. Once this function completes, 4479 * the ill is globally visible and is available through lookups. More precisely 4480 * this happens after the caller drops the ill_g_lock. 4481 */ 4482 static int 4483 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4484 { 4485 ill_if_t *ill_interface; 4486 avl_index_t where = 0; 4487 int error; 4488 int name_length; 4489 int index; 4490 boolean_t check_length = B_FALSE; 4491 ip_stack_t *ipst = ill->ill_ipst; 4492 4493 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4494 4495 name_length = mi_strlen(name) + 1; 4496 4497 if (isv6) 4498 index = IP_V6_G_HEAD; 4499 else 4500 index = IP_V4_G_HEAD; 4501 4502 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4503 /* 4504 * Search for interface type based on name 4505 */ 4506 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4507 if ((ill_interface->illif_name_len == name_length) && 4508 (strcmp(ill_interface->illif_name, name) == 0)) { 4509 break; 4510 } 4511 ill_interface = ill_interface->illif_next; 4512 } 4513 4514 /* 4515 * Interface type not found, create one. 4516 */ 4517 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4518 4519 ill_g_head_t ghead; 4520 4521 /* 4522 * allocate ill_if_t structure 4523 */ 4524 4525 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4526 if (ill_interface == NULL) { 4527 return (ENOMEM); 4528 } 4529 4530 4531 4532 (void) strcpy(ill_interface->illif_name, name); 4533 ill_interface->illif_name_len = name_length; 4534 4535 avl_create(&ill_interface->illif_avl_by_ppa, 4536 ill_compare_ppa, sizeof (ill_t), 4537 offsetof(struct ill_s, ill_avl_byppa)); 4538 4539 /* 4540 * link the structure in the back to maintain order 4541 * of configuration for ifconfig output. 4542 */ 4543 ghead = ipst->ips_ill_g_heads[index]; 4544 insque(ill_interface, ghead.ill_g_list_tail); 4545 4546 } 4547 4548 if (ill->ill_ppa == UINT_MAX) 4549 check_length = B_TRUE; 4550 4551 error = ill_alloc_ppa(ill_interface, ill); 4552 if (error != 0) { 4553 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4554 ill_delete_interface_type(ill->ill_ifptr); 4555 return (error); 4556 } 4557 4558 /* 4559 * When the ppa is choosen by the system, check that there is 4560 * enough space to insert ppa. if a specific ppa was passed in this 4561 * check is not required as the interface name passed in will have 4562 * the right ppa in it. 4563 */ 4564 if (check_length) { 4565 /* 4566 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4567 */ 4568 char buf[sizeof (uint_t) * 3]; 4569 4570 /* 4571 * convert ppa to string to calculate the amount of space 4572 * required for it in the name. 4573 */ 4574 numtos(ill->ill_ppa, buf); 4575 4576 /* Do we have enough space to insert ppa ? */ 4577 4578 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4579 /* Free ppa and interface type struct */ 4580 if (ill_interface->illif_ppa_arena != NULL) { 4581 vmem_free(ill_interface->illif_ppa_arena, 4582 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4583 } 4584 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4585 0) { 4586 ill_delete_interface_type(ill->ill_ifptr); 4587 } 4588 4589 return (EINVAL); 4590 } 4591 } 4592 4593 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4594 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4595 4596 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4597 &where); 4598 ill->ill_ifptr = ill_interface; 4599 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4600 4601 ill_phyint_reinit(ill); 4602 return (0); 4603 } 4604 4605 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4606 static boolean_t 4607 ipsq_init(ill_t *ill) 4608 { 4609 ipsq_t *ipsq; 4610 4611 /* Init the ipsq and impicitly enter as writer */ 4612 ill->ill_phyint->phyint_ipsq = 4613 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4614 if (ill->ill_phyint->phyint_ipsq == NULL) 4615 return (B_FALSE); 4616 ipsq = ill->ill_phyint->phyint_ipsq; 4617 ipsq->ipsq_phyint_list = ill->ill_phyint; 4618 ill->ill_phyint->phyint_ipsq_next = NULL; 4619 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4620 ipsq->ipsq_refs = 1; 4621 ipsq->ipsq_writer = curthread; 4622 ipsq->ipsq_reentry_cnt = 1; 4623 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4624 #ifdef DEBUG 4625 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4626 IPSQ_STACK_DEPTH); 4627 #endif 4628 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4629 return (B_TRUE); 4630 } 4631 4632 /* 4633 * ill_init is called by ip_open when a device control stream is opened. 4634 * It does a few initializations, and shoots a DL_INFO_REQ message down 4635 * to the driver. The response is later picked up in ip_rput_dlpi and 4636 * used to set up default mechanisms for talking to the driver. (Always 4637 * called as writer.) 4638 * 4639 * If this function returns error, ip_open will call ip_close which in 4640 * turn will call ill_delete to clean up any memory allocated here that 4641 * is not yet freed. 4642 */ 4643 int 4644 ill_init(queue_t *q, ill_t *ill) 4645 { 4646 int count; 4647 dl_info_req_t *dlir; 4648 mblk_t *info_mp; 4649 uchar_t *frag_ptr; 4650 4651 /* 4652 * The ill is initialized to zero by mi_alloc*(). In addition 4653 * some fields already contain valid values, initialized in 4654 * ip_open(), before we reach here. 4655 */ 4656 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4657 4658 ill->ill_rq = q; 4659 ill->ill_wq = WR(q); 4660 4661 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4662 BPRI_HI); 4663 if (info_mp == NULL) 4664 return (ENOMEM); 4665 4666 /* 4667 * Allocate sufficient space to contain our fragment hash table and 4668 * the device name. 4669 */ 4670 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4671 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4672 if (frag_ptr == NULL) { 4673 freemsg(info_mp); 4674 return (ENOMEM); 4675 } 4676 ill->ill_frag_ptr = frag_ptr; 4677 ill->ill_frag_free_num_pkts = 0; 4678 ill->ill_last_frag_clean_time = 0; 4679 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4680 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4681 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4682 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4683 NULL, MUTEX_DEFAULT, NULL); 4684 } 4685 4686 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4687 if (ill->ill_phyint == NULL) { 4688 freemsg(info_mp); 4689 mi_free(frag_ptr); 4690 return (ENOMEM); 4691 } 4692 4693 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4694 /* 4695 * For now pretend this is a v4 ill. We need to set phyint_ill* 4696 * at this point because of the following reason. If we can't 4697 * enter the ipsq at some point and cv_wait, the writer that 4698 * wakes us up tries to locate us using the list of all phyints 4699 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4700 * If we don't set it now, we risk a missed wakeup. 4701 */ 4702 ill->ill_phyint->phyint_illv4 = ill; 4703 ill->ill_ppa = UINT_MAX; 4704 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4705 4706 if (!ipsq_init(ill)) { 4707 freemsg(info_mp); 4708 mi_free(frag_ptr); 4709 mi_free(ill->ill_phyint); 4710 return (ENOMEM); 4711 } 4712 4713 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4714 4715 4716 /* Frag queue limit stuff */ 4717 ill->ill_frag_count = 0; 4718 ill->ill_ipf_gen = 0; 4719 4720 ill->ill_global_timer = INFINITY; 4721 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4722 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4723 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4724 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4725 4726 /* 4727 * Initialize IPv6 configuration variables. The IP module is always 4728 * opened as an IPv4 module. Instead tracking down the cases where 4729 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4730 * here for convenience, this has no effect until the ill is set to do 4731 * IPv6. 4732 */ 4733 ill->ill_reachable_time = ND_REACHABLE_TIME; 4734 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4735 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4736 ill->ill_max_buf = ND_MAX_Q; 4737 ill->ill_refcnt = 0; 4738 4739 /* Send down the Info Request to the driver. */ 4740 info_mp->b_datap->db_type = M_PCPROTO; 4741 dlir = (dl_info_req_t *)info_mp->b_rptr; 4742 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4743 dlir->dl_primitive = DL_INFO_REQ; 4744 4745 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4746 4747 qprocson(q); 4748 ill_dlpi_send(ill, info_mp); 4749 4750 return (0); 4751 } 4752 4753 /* 4754 * ill_dls_info 4755 * creates datalink socket info from the device. 4756 */ 4757 int 4758 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4759 { 4760 size_t len; 4761 ill_t *ill = ipif->ipif_ill; 4762 4763 sdl->sdl_family = AF_LINK; 4764 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4765 sdl->sdl_type = ill->ill_type; 4766 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4767 len = strlen(sdl->sdl_data); 4768 ASSERT(len < 256); 4769 sdl->sdl_nlen = (uchar_t)len; 4770 sdl->sdl_alen = ill->ill_phys_addr_length; 4771 sdl->sdl_slen = 0; 4772 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4773 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4774 4775 return (sizeof (struct sockaddr_dl)); 4776 } 4777 4778 /* 4779 * ill_xarp_info 4780 * creates xarp info from the device. 4781 */ 4782 static int 4783 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4784 { 4785 sdl->sdl_family = AF_LINK; 4786 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4787 sdl->sdl_type = ill->ill_type; 4788 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4789 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4790 sdl->sdl_alen = ill->ill_phys_addr_length; 4791 sdl->sdl_slen = 0; 4792 return (sdl->sdl_nlen); 4793 } 4794 4795 static int 4796 loopback_kstat_update(kstat_t *ksp, int rw) 4797 { 4798 kstat_named_t *kn; 4799 netstackid_t stackid; 4800 netstack_t *ns; 4801 ip_stack_t *ipst; 4802 4803 if (ksp == NULL || ksp->ks_data == NULL) 4804 return (EIO); 4805 4806 if (rw == KSTAT_WRITE) 4807 return (EACCES); 4808 4809 kn = KSTAT_NAMED_PTR(ksp); 4810 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4811 4812 ns = netstack_find_by_stackid(stackid); 4813 if (ns == NULL) 4814 return (-1); 4815 4816 ipst = ns->netstack_ip; 4817 if (ipst == NULL) { 4818 netstack_rele(ns); 4819 return (-1); 4820 } 4821 kn[0].value.ui32 = ipst->ips_loopback_packets; 4822 kn[1].value.ui32 = ipst->ips_loopback_packets; 4823 netstack_rele(ns); 4824 return (0); 4825 } 4826 4827 4828 /* 4829 * Has ifindex been plumbed already. 4830 * Compares both phyint_ifindex and phyint_group_ifindex. 4831 */ 4832 static boolean_t 4833 phyint_exists(uint_t index, ip_stack_t *ipst) 4834 { 4835 phyint_t *phyi; 4836 4837 ASSERT(index != 0); 4838 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4839 /* 4840 * Indexes are stored in the phyint - a common structure 4841 * to both IPv4 and IPv6. 4842 */ 4843 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4844 for (; phyi != NULL; 4845 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4846 phyi, AVL_AFTER)) { 4847 if (phyi->phyint_ifindex == index || 4848 phyi->phyint_group_ifindex == index) 4849 return (B_TRUE); 4850 } 4851 return (B_FALSE); 4852 } 4853 4854 /* Pick a unique ifindex */ 4855 boolean_t 4856 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4857 { 4858 uint_t starting_index; 4859 4860 if (!ipst->ips_ill_index_wrap) { 4861 *indexp = ipst->ips_ill_index++; 4862 if (ipst->ips_ill_index == 0) { 4863 /* Reached the uint_t limit Next time wrap */ 4864 ipst->ips_ill_index_wrap = B_TRUE; 4865 } 4866 return (B_TRUE); 4867 } 4868 4869 /* 4870 * Start reusing unused indexes. Note that we hold the ill_g_lock 4871 * at this point and don't want to call any function that attempts 4872 * to get the lock again. 4873 */ 4874 starting_index = ipst->ips_ill_index++; 4875 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4876 if (ipst->ips_ill_index != 0 && 4877 !phyint_exists(ipst->ips_ill_index, ipst)) { 4878 /* found unused index - use it */ 4879 *indexp = ipst->ips_ill_index; 4880 return (B_TRUE); 4881 } 4882 } 4883 4884 /* 4885 * all interface indicies are inuse. 4886 */ 4887 return (B_FALSE); 4888 } 4889 4890 /* 4891 * Assign a unique interface index for the phyint. 4892 */ 4893 static boolean_t 4894 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4895 { 4896 ASSERT(phyi->phyint_ifindex == 0); 4897 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4898 } 4899 4900 /* 4901 * Return a pointer to the ill which matches the supplied name. Note that 4902 * the ill name length includes the null termination character. (May be 4903 * called as writer.) 4904 * If do_alloc and the interface is "lo0" it will be automatically created. 4905 * Cannot bump up reference on condemned ills. So dup detect can't be done 4906 * using this func. 4907 */ 4908 ill_t * 4909 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4910 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4911 ip_stack_t *ipst) 4912 { 4913 ill_t *ill; 4914 ipif_t *ipif; 4915 kstat_named_t *kn; 4916 boolean_t isloopback; 4917 ipsq_t *old_ipsq; 4918 in6_addr_t ov6addr; 4919 4920 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4921 4922 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4923 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4924 rw_exit(&ipst->ips_ill_g_lock); 4925 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4926 return (ill); 4927 4928 /* 4929 * Couldn't find it. Does this happen to be a lookup for the 4930 * loopback device and are we allowed to allocate it? 4931 */ 4932 if (!isloopback || !do_alloc) 4933 return (NULL); 4934 4935 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4936 4937 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4938 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4939 rw_exit(&ipst->ips_ill_g_lock); 4940 return (ill); 4941 } 4942 4943 /* Create the loopback device on demand */ 4944 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4945 sizeof (ipif_loopback_name), BPRI_MED)); 4946 if (ill == NULL) 4947 goto done; 4948 4949 *ill = ill_null; 4950 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4951 ill->ill_ipst = ipst; 4952 netstack_hold(ipst->ips_netstack); 4953 /* 4954 * For exclusive stacks we set the zoneid to zero 4955 * to make IP operate as if in the global zone. 4956 */ 4957 ill->ill_zoneid = GLOBAL_ZONEID; 4958 4959 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4960 if (ill->ill_phyint == NULL) 4961 goto done; 4962 4963 if (isv6) 4964 ill->ill_phyint->phyint_illv6 = ill; 4965 else 4966 ill->ill_phyint->phyint_illv4 = ill; 4967 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4968 ill->ill_max_frag = IP_LOOPBACK_MTU; 4969 /* Add room for tcp+ip headers */ 4970 if (isv6) { 4971 ill->ill_isv6 = B_TRUE; 4972 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4973 } else { 4974 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4975 } 4976 if (!ill_allocate_mibs(ill)) 4977 goto done; 4978 ill->ill_max_mtu = ill->ill_max_frag; 4979 /* 4980 * ipif_loopback_name can't be pointed at directly because its used 4981 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4982 * from the glist, ill_glist_delete() sets the first character of 4983 * ill_name to '\0'. 4984 */ 4985 ill->ill_name = (char *)ill + sizeof (*ill); 4986 (void) strcpy(ill->ill_name, ipif_loopback_name); 4987 ill->ill_name_length = sizeof (ipif_loopback_name); 4988 /* Set ill_name_set for ill_phyint_reinit to work properly */ 4989 4990 ill->ill_global_timer = INFINITY; 4991 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4992 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4993 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4994 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4995 4996 /* No resolver here. */ 4997 ill->ill_net_type = IRE_LOOPBACK; 4998 4999 /* Initialize the ipsq */ 5000 if (!ipsq_init(ill)) 5001 goto done; 5002 5003 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5004 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5005 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5006 #ifdef DEBUG 5007 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5008 #endif 5009 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5010 if (ipif == NULL) 5011 goto done; 5012 5013 ill->ill_flags = ILLF_MULTICAST; 5014 5015 ov6addr = ipif->ipif_v6lcl_addr; 5016 /* Set up default loopback address and mask. */ 5017 if (!isv6) { 5018 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5019 5020 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5021 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5022 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5023 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5024 ipif->ipif_v6subnet); 5025 ill->ill_flags |= ILLF_IPV4; 5026 } else { 5027 ipif->ipif_v6lcl_addr = ipv6_loopback; 5028 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5029 ipif->ipif_v6net_mask = ipv6_all_ones; 5030 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5031 ipif->ipif_v6subnet); 5032 ill->ill_flags |= ILLF_IPV6; 5033 } 5034 5035 /* 5036 * Chain us in at the end of the ill list. hold the ill 5037 * before we make it globally visible. 1 for the lookup. 5038 */ 5039 ill->ill_refcnt = 0; 5040 ill_refhold(ill); 5041 5042 ill->ill_frag_count = 0; 5043 ill->ill_frag_free_num_pkts = 0; 5044 ill->ill_last_frag_clean_time = 0; 5045 5046 old_ipsq = ill->ill_phyint->phyint_ipsq; 5047 5048 if (ill_glist_insert(ill, "lo", isv6) != 0) 5049 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5050 5051 /* Let SCTP know so that it can add this to its list */ 5052 sctp_update_ill(ill, SCTP_ILL_INSERT); 5053 5054 /* 5055 * We have already assigned ipif_v6lcl_addr above, but we need to 5056 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5057 * requires to be after ill_glist_insert() since we need the 5058 * ill_index set. Pass on ipv6_loopback as the old address. 5059 */ 5060 sctp_update_ipif_addr(ipif, ov6addr); 5061 5062 /* 5063 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5064 */ 5065 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5066 /* Loopback ills aren't in any IPMP group */ 5067 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5068 ipsq_delete(old_ipsq); 5069 } 5070 5071 /* 5072 * Delay this till the ipif is allocated as ipif_allocate 5073 * de-references ill_phyint for getting the ifindex. We 5074 * can't do this before ipif_allocate because ill_phyint_reinit 5075 * -> phyint_assign_ifindex expects ipif to be present. 5076 */ 5077 mutex_enter(&ill->ill_phyint->phyint_lock); 5078 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5079 mutex_exit(&ill->ill_phyint->phyint_lock); 5080 5081 if (ipst->ips_loopback_ksp == NULL) { 5082 /* Export loopback interface statistics */ 5083 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5084 ipif_loopback_name, "net", 5085 KSTAT_TYPE_NAMED, 2, 0, 5086 ipst->ips_netstack->netstack_stackid); 5087 if (ipst->ips_loopback_ksp != NULL) { 5088 ipst->ips_loopback_ksp->ks_update = 5089 loopback_kstat_update; 5090 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5091 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5092 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5093 ipst->ips_loopback_ksp->ks_private = 5094 (void *)(uintptr_t)ipst->ips_netstack-> 5095 netstack_stackid; 5096 kstat_install(ipst->ips_loopback_ksp); 5097 } 5098 } 5099 5100 if (error != NULL) 5101 *error = 0; 5102 *did_alloc = B_TRUE; 5103 rw_exit(&ipst->ips_ill_g_lock); 5104 return (ill); 5105 done: 5106 if (ill != NULL) { 5107 if (ill->ill_phyint != NULL) { 5108 ipsq_t *ipsq; 5109 5110 ipsq = ill->ill_phyint->phyint_ipsq; 5111 if (ipsq != NULL) { 5112 ipsq->ipsq_ipst = NULL; 5113 kmem_free(ipsq, sizeof (ipsq_t)); 5114 } 5115 mi_free(ill->ill_phyint); 5116 } 5117 ill_free_mib(ill); 5118 if (ill->ill_ipst != NULL) 5119 netstack_rele(ill->ill_ipst->ips_netstack); 5120 mi_free(ill); 5121 } 5122 rw_exit(&ipst->ips_ill_g_lock); 5123 if (error != NULL) 5124 *error = ENOMEM; 5125 return (NULL); 5126 } 5127 5128 /* 5129 * For IPP calls - use the ip_stack_t for global stack. 5130 */ 5131 ill_t * 5132 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5133 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5134 { 5135 ip_stack_t *ipst; 5136 ill_t *ill; 5137 5138 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5139 if (ipst == NULL) { 5140 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5141 return (NULL); 5142 } 5143 5144 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5145 netstack_rele(ipst->ips_netstack); 5146 return (ill); 5147 } 5148 5149 /* 5150 * Return a pointer to the ill which matches the index and IP version type. 5151 */ 5152 ill_t * 5153 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5154 ipsq_func_t func, int *err, ip_stack_t *ipst) 5155 { 5156 ill_t *ill; 5157 ipsq_t *ipsq; 5158 phyint_t *phyi; 5159 5160 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5161 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5162 5163 if (err != NULL) 5164 *err = 0; 5165 5166 /* 5167 * Indexes are stored in the phyint - a common structure 5168 * to both IPv4 and IPv6. 5169 */ 5170 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5171 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5172 (void *) &index, NULL); 5173 if (phyi != NULL) { 5174 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5175 if (ill != NULL) { 5176 /* 5177 * The block comment at the start of ipif_down 5178 * explains the use of the macros used below 5179 */ 5180 GRAB_CONN_LOCK(q); 5181 mutex_enter(&ill->ill_lock); 5182 if (ILL_CAN_LOOKUP(ill)) { 5183 ill_refhold_locked(ill); 5184 mutex_exit(&ill->ill_lock); 5185 RELEASE_CONN_LOCK(q); 5186 rw_exit(&ipst->ips_ill_g_lock); 5187 return (ill); 5188 } else if (ILL_CAN_WAIT(ill, q)) { 5189 ipsq = ill->ill_phyint->phyint_ipsq; 5190 mutex_enter(&ipsq->ipsq_lock); 5191 rw_exit(&ipst->ips_ill_g_lock); 5192 mutex_exit(&ill->ill_lock); 5193 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5194 mutex_exit(&ipsq->ipsq_lock); 5195 RELEASE_CONN_LOCK(q); 5196 if (err != NULL) 5197 *err = EINPROGRESS; 5198 return (NULL); 5199 } 5200 RELEASE_CONN_LOCK(q); 5201 mutex_exit(&ill->ill_lock); 5202 } 5203 } 5204 rw_exit(&ipst->ips_ill_g_lock); 5205 if (err != NULL) 5206 *err = ENXIO; 5207 return (NULL); 5208 } 5209 5210 /* 5211 * Return the ifindex next in sequence after the passed in ifindex. 5212 * If there is no next ifindex for the given protocol, return 0. 5213 */ 5214 uint_t 5215 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5216 { 5217 phyint_t *phyi; 5218 phyint_t *phyi_initial; 5219 uint_t ifindex; 5220 5221 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5222 5223 if (index == 0) { 5224 phyi = avl_first( 5225 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5226 } else { 5227 phyi = phyi_initial = avl_find( 5228 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5229 (void *) &index, NULL); 5230 } 5231 5232 for (; phyi != NULL; 5233 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5234 phyi, AVL_AFTER)) { 5235 /* 5236 * If we're not returning the first interface in the tree 5237 * and we still haven't moved past the phyint_t that 5238 * corresponds to index, avl_walk needs to be called again 5239 */ 5240 if (!((index != 0) && (phyi == phyi_initial))) { 5241 if (isv6) { 5242 if ((phyi->phyint_illv6) && 5243 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5244 (phyi->phyint_illv6->ill_isv6 == 1)) 5245 break; 5246 } else { 5247 if ((phyi->phyint_illv4) && 5248 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5249 (phyi->phyint_illv4->ill_isv6 == 0)) 5250 break; 5251 } 5252 } 5253 } 5254 5255 rw_exit(&ipst->ips_ill_g_lock); 5256 5257 if (phyi != NULL) 5258 ifindex = phyi->phyint_ifindex; 5259 else 5260 ifindex = 0; 5261 5262 return (ifindex); 5263 } 5264 5265 5266 /* 5267 * Return the ifindex for the named interface. 5268 * If there is no next ifindex for the interface, return 0. 5269 */ 5270 uint_t 5271 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5272 { 5273 phyint_t *phyi; 5274 avl_index_t where = 0; 5275 uint_t ifindex; 5276 5277 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5278 5279 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5280 name, &where)) == NULL) { 5281 rw_exit(&ipst->ips_ill_g_lock); 5282 return (0); 5283 } 5284 5285 ifindex = phyi->phyint_ifindex; 5286 5287 rw_exit(&ipst->ips_ill_g_lock); 5288 5289 return (ifindex); 5290 } 5291 5292 5293 /* 5294 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5295 * that gives a running thread a reference to the ill. This reference must be 5296 * released by the thread when it is done accessing the ill and related 5297 * objects. ill_refcnt can not be used to account for static references 5298 * such as other structures pointing to an ill. Callers must generally 5299 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5300 * or be sure that the ill is not being deleted or changing state before 5301 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5302 * ill won't change any of its critical state such as address, netmask etc. 5303 */ 5304 void 5305 ill_refhold(ill_t *ill) 5306 { 5307 mutex_enter(&ill->ill_lock); 5308 ill->ill_refcnt++; 5309 ILL_TRACE_REF(ill); 5310 mutex_exit(&ill->ill_lock); 5311 } 5312 5313 void 5314 ill_refhold_locked(ill_t *ill) 5315 { 5316 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5317 ill->ill_refcnt++; 5318 ILL_TRACE_REF(ill); 5319 } 5320 5321 int 5322 ill_check_and_refhold(ill_t *ill) 5323 { 5324 mutex_enter(&ill->ill_lock); 5325 if (ILL_CAN_LOOKUP(ill)) { 5326 ill_refhold_locked(ill); 5327 mutex_exit(&ill->ill_lock); 5328 return (0); 5329 } 5330 mutex_exit(&ill->ill_lock); 5331 return (ILL_LOOKUP_FAILED); 5332 } 5333 5334 /* 5335 * Must not be called while holding any locks. Otherwise if this is 5336 * the last reference to be released, there is a chance of recursive mutex 5337 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5338 * to restart an ioctl. 5339 */ 5340 void 5341 ill_refrele(ill_t *ill) 5342 { 5343 mutex_enter(&ill->ill_lock); 5344 ASSERT(ill->ill_refcnt != 0); 5345 ill->ill_refcnt--; 5346 ILL_UNTRACE_REF(ill); 5347 if (ill->ill_refcnt != 0) { 5348 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5349 mutex_exit(&ill->ill_lock); 5350 return; 5351 } 5352 5353 /* Drops the ill_lock */ 5354 ipif_ill_refrele_tail(ill); 5355 } 5356 5357 /* 5358 * Obtain a weak reference count on the ill. This reference ensures the 5359 * ill won't be freed, but the ill may change any of its critical state 5360 * such as netmask, address etc. Returns an error if the ill has started 5361 * closing. 5362 */ 5363 boolean_t 5364 ill_waiter_inc(ill_t *ill) 5365 { 5366 mutex_enter(&ill->ill_lock); 5367 if (ill->ill_state_flags & ILL_CONDEMNED) { 5368 mutex_exit(&ill->ill_lock); 5369 return (B_FALSE); 5370 } 5371 ill->ill_waiters++; 5372 mutex_exit(&ill->ill_lock); 5373 return (B_TRUE); 5374 } 5375 5376 void 5377 ill_waiter_dcr(ill_t *ill) 5378 { 5379 mutex_enter(&ill->ill_lock); 5380 ill->ill_waiters--; 5381 if (ill->ill_waiters == 0) 5382 cv_broadcast(&ill->ill_cv); 5383 mutex_exit(&ill->ill_lock); 5384 } 5385 5386 /* 5387 * Named Dispatch routine to produce a formatted report on all ILLs. 5388 * This report is accessed by using the ndd utility to "get" ND variable 5389 * "ip_ill_status". 5390 */ 5391 /* ARGSUSED */ 5392 int 5393 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5394 { 5395 ill_t *ill; 5396 ill_walk_context_t ctx; 5397 ip_stack_t *ipst; 5398 5399 ipst = CONNQ_TO_IPST(q); 5400 5401 (void) mi_mpprintf(mp, 5402 "ILL " MI_COL_HDRPAD_STR 5403 /* 01234567[89ABCDEF] */ 5404 "rq " MI_COL_HDRPAD_STR 5405 /* 01234567[89ABCDEF] */ 5406 "wq " MI_COL_HDRPAD_STR 5407 /* 01234567[89ABCDEF] */ 5408 "upcnt mxfrg err name"); 5409 /* 12345 12345 123 xxxxxxxx */ 5410 5411 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5412 ill = ILL_START_WALK_ALL(&ctx, ipst); 5413 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5414 (void) mi_mpprintf(mp, 5415 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5416 "%05u %05u %03d %s", 5417 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5418 ill->ill_ipif_up_count, 5419 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5420 } 5421 rw_exit(&ipst->ips_ill_g_lock); 5422 5423 return (0); 5424 } 5425 5426 /* 5427 * Named Dispatch routine to produce a formatted report on all IPIFs. 5428 * This report is accessed by using the ndd utility to "get" ND variable 5429 * "ip_ipif_status". 5430 */ 5431 /* ARGSUSED */ 5432 int 5433 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5434 { 5435 char buf1[INET6_ADDRSTRLEN]; 5436 char buf2[INET6_ADDRSTRLEN]; 5437 char buf3[INET6_ADDRSTRLEN]; 5438 char buf4[INET6_ADDRSTRLEN]; 5439 char buf5[INET6_ADDRSTRLEN]; 5440 char buf6[INET6_ADDRSTRLEN]; 5441 char buf[LIFNAMSIZ]; 5442 ill_t *ill; 5443 ipif_t *ipif; 5444 nv_t *nvp; 5445 uint64_t flags; 5446 zoneid_t zoneid; 5447 ill_walk_context_t ctx; 5448 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5449 5450 (void) mi_mpprintf(mp, 5451 "IPIF metric mtu in/out/forward name zone flags...\n" 5452 "\tlocal address\n" 5453 "\tsrc address\n" 5454 "\tsubnet\n" 5455 "\tmask\n" 5456 "\tbroadcast\n" 5457 "\tp-p-dst"); 5458 5459 ASSERT(q->q_next == NULL); 5460 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5461 5462 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5463 ill = ILL_START_WALK_ALL(&ctx, ipst); 5464 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5465 for (ipif = ill->ill_ipif; ipif != NULL; 5466 ipif = ipif->ipif_next) { 5467 if (zoneid != GLOBAL_ZONEID && 5468 zoneid != ipif->ipif_zoneid && 5469 ipif->ipif_zoneid != ALL_ZONES) 5470 continue; 5471 5472 ipif_get_name(ipif, buf, sizeof (buf)); 5473 (void) mi_mpprintf(mp, 5474 MI_COL_PTRFMT_STR 5475 "%04u %05u %u/%u/%u %s %d", 5476 (void *)ipif, 5477 ipif->ipif_metric, ipif->ipif_mtu, 5478 ipif->ipif_ib_pkt_count, 5479 ipif->ipif_ob_pkt_count, 5480 ipif->ipif_fo_pkt_count, 5481 buf, 5482 ipif->ipif_zoneid); 5483 5484 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5485 ipif->ipif_ill->ill_phyint->phyint_flags; 5486 5487 /* Tack on text strings for any flags. */ 5488 nvp = ipif_nv_tbl; 5489 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5490 if (nvp->nv_value & flags) 5491 (void) mi_mpprintf_nr(mp, " %s", 5492 nvp->nv_name); 5493 } 5494 (void) mi_mpprintf(mp, 5495 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5496 inet_ntop(AF_INET6, 5497 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5498 inet_ntop(AF_INET6, 5499 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5500 inet_ntop(AF_INET6, 5501 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5502 inet_ntop(AF_INET6, 5503 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5504 inet_ntop(AF_INET6, 5505 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5506 inet_ntop(AF_INET6, 5507 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5508 } 5509 } 5510 rw_exit(&ipst->ips_ill_g_lock); 5511 return (0); 5512 } 5513 5514 /* 5515 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5516 * driver. We construct best guess defaults for lower level information that 5517 * we need. If an interface is brought up without injection of any overriding 5518 * information from outside, we have to be ready to go with these defaults. 5519 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5520 * we primarely want the dl_provider_style. 5521 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5522 * at which point we assume the other part of the information is valid. 5523 */ 5524 void 5525 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5526 { 5527 uchar_t *brdcst_addr; 5528 uint_t brdcst_addr_length, phys_addr_length; 5529 t_scalar_t sap_length; 5530 dl_info_ack_t *dlia; 5531 ip_m_t *ipm; 5532 dl_qos_cl_sel1_t *sel1; 5533 5534 ASSERT(IAM_WRITER_ILL(ill)); 5535 5536 /* 5537 * Till the ill is fully up ILL_CHANGING will be set and 5538 * the ill is not globally visible. So no need for a lock. 5539 */ 5540 dlia = (dl_info_ack_t *)mp->b_rptr; 5541 ill->ill_mactype = dlia->dl_mac_type; 5542 5543 ipm = ip_m_lookup(dlia->dl_mac_type); 5544 if (ipm == NULL) { 5545 ipm = ip_m_lookup(DL_OTHER); 5546 ASSERT(ipm != NULL); 5547 } 5548 ill->ill_media = ipm; 5549 5550 /* 5551 * When the new DLPI stuff is ready we'll pull lengths 5552 * from dlia. 5553 */ 5554 if (dlia->dl_version == DL_VERSION_2) { 5555 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5556 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5557 brdcst_addr_length); 5558 if (brdcst_addr == NULL) { 5559 brdcst_addr_length = 0; 5560 } 5561 sap_length = dlia->dl_sap_length; 5562 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5563 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5564 brdcst_addr_length, sap_length, phys_addr_length)); 5565 } else { 5566 brdcst_addr_length = 6; 5567 brdcst_addr = ip_six_byte_all_ones; 5568 sap_length = -2; 5569 phys_addr_length = brdcst_addr_length; 5570 } 5571 5572 ill->ill_bcast_addr_length = brdcst_addr_length; 5573 ill->ill_phys_addr_length = phys_addr_length; 5574 ill->ill_sap_length = sap_length; 5575 ill->ill_max_frag = dlia->dl_max_sdu; 5576 ill->ill_max_mtu = ill->ill_max_frag; 5577 5578 ill->ill_type = ipm->ip_m_type; 5579 5580 if (!ill->ill_dlpi_style_set) { 5581 if (dlia->dl_provider_style == DL_STYLE2) 5582 ill->ill_needs_attach = 1; 5583 5584 /* 5585 * Allocate the first ipif on this ill. We don't delay it 5586 * further as ioctl handling assumes atleast one ipif to 5587 * be present. 5588 * 5589 * At this point we don't know whether the ill is v4 or v6. 5590 * We will know this whan the SIOCSLIFNAME happens and 5591 * the correct value for ill_isv6 will be assigned in 5592 * ipif_set_values(). We need to hold the ill lock and 5593 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5594 * the wakeup. 5595 */ 5596 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5597 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5598 mutex_enter(&ill->ill_lock); 5599 ASSERT(ill->ill_dlpi_style_set == 0); 5600 ill->ill_dlpi_style_set = 1; 5601 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5602 cv_broadcast(&ill->ill_cv); 5603 mutex_exit(&ill->ill_lock); 5604 freemsg(mp); 5605 return; 5606 } 5607 ASSERT(ill->ill_ipif != NULL); 5608 /* 5609 * We know whether it is IPv4 or IPv6 now, as this is the 5610 * second DL_INFO_ACK we are recieving in response to the 5611 * DL_INFO_REQ sent in ipif_set_values. 5612 */ 5613 if (ill->ill_isv6) 5614 ill->ill_sap = IP6_DL_SAP; 5615 else 5616 ill->ill_sap = IP_DL_SAP; 5617 /* 5618 * Set ipif_mtu which is used to set the IRE's 5619 * ire_max_frag value. The driver could have sent 5620 * a different mtu from what it sent last time. No 5621 * need to call ipif_mtu_change because IREs have 5622 * not yet been created. 5623 */ 5624 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5625 /* 5626 * Clear all the flags that were set based on ill_bcast_addr_length 5627 * and ill_phys_addr_length (in ipif_set_values) as these could have 5628 * changed now and we need to re-evaluate. 5629 */ 5630 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5631 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5632 5633 /* 5634 * Free ill_resolver_mp and ill_bcast_mp as things could have 5635 * changed now. 5636 */ 5637 if (ill->ill_bcast_addr_length == 0) { 5638 if (ill->ill_resolver_mp != NULL) 5639 freemsg(ill->ill_resolver_mp); 5640 if (ill->ill_bcast_mp != NULL) 5641 freemsg(ill->ill_bcast_mp); 5642 if (ill->ill_flags & ILLF_XRESOLV) 5643 ill->ill_net_type = IRE_IF_RESOLVER; 5644 else 5645 ill->ill_net_type = IRE_IF_NORESOLVER; 5646 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5647 ill->ill_phys_addr_length, 5648 ill->ill_sap, 5649 ill->ill_sap_length); 5650 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5651 5652 if (ill->ill_isv6) 5653 /* 5654 * Note: xresolv interfaces will eventually need NOARP 5655 * set here as well, but that will require those 5656 * external resolvers to have some knowledge of 5657 * that flag and act appropriately. Not to be changed 5658 * at present. 5659 */ 5660 ill->ill_flags |= ILLF_NONUD; 5661 else 5662 ill->ill_flags |= ILLF_NOARP; 5663 5664 if (ill->ill_phys_addr_length == 0) { 5665 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5666 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5667 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5668 } else { 5669 /* pt-pt supports multicast. */ 5670 ill->ill_flags |= ILLF_MULTICAST; 5671 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5672 } 5673 } 5674 } else { 5675 ill->ill_net_type = IRE_IF_RESOLVER; 5676 if (ill->ill_bcast_mp != NULL) 5677 freemsg(ill->ill_bcast_mp); 5678 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5679 ill->ill_bcast_addr_length, ill->ill_sap, 5680 ill->ill_sap_length); 5681 /* 5682 * Later detect lack of DLPI driver multicast 5683 * capability by catching DL_ENABMULTI errors in 5684 * ip_rput_dlpi. 5685 */ 5686 ill->ill_flags |= ILLF_MULTICAST; 5687 if (!ill->ill_isv6) 5688 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5689 } 5690 /* By default an interface does not support any CoS marking */ 5691 ill->ill_flags &= ~ILLF_COS_ENABLED; 5692 5693 /* 5694 * If we get QoS information in DL_INFO_ACK, the device supports 5695 * some form of CoS marking, set ILLF_COS_ENABLED. 5696 */ 5697 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5698 dlia->dl_qos_length); 5699 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5700 ill->ill_flags |= ILLF_COS_ENABLED; 5701 } 5702 5703 /* Clear any previous error indication. */ 5704 ill->ill_error = 0; 5705 freemsg(mp); 5706 } 5707 5708 /* 5709 * Perform various checks to verify that an address would make sense as a 5710 * local, remote, or subnet interface address. 5711 */ 5712 static boolean_t 5713 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5714 { 5715 ipaddr_t net_mask; 5716 5717 /* 5718 * Don't allow all zeroes, or all ones, but allow 5719 * all ones netmask. 5720 */ 5721 if ((net_mask = ip_net_mask(addr)) == 0) 5722 return (B_FALSE); 5723 /* A given netmask overrides the "guess" netmask */ 5724 if (subnet_mask != 0) 5725 net_mask = subnet_mask; 5726 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5727 (addr == (addr | ~net_mask)))) { 5728 return (B_FALSE); 5729 } 5730 5731 /* 5732 * Even if the netmask is all ones, we do not allow address to be 5733 * 255.255.255.255 5734 */ 5735 if (addr == INADDR_BROADCAST) 5736 return (B_FALSE); 5737 5738 if (CLASSD(addr)) 5739 return (B_FALSE); 5740 5741 return (B_TRUE); 5742 } 5743 5744 #define V6_IPIF_LINKLOCAL(p) \ 5745 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5746 5747 /* 5748 * Compare two given ipifs and check if the second one is better than 5749 * the first one using the order of preference (not taking deprecated 5750 * into acount) specified in ipif_lookup_multicast(). 5751 */ 5752 static boolean_t 5753 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5754 { 5755 /* Check the least preferred first. */ 5756 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5757 /* If both ipifs are the same, use the first one. */ 5758 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5759 return (B_FALSE); 5760 else 5761 return (B_TRUE); 5762 } 5763 5764 /* For IPv6, check for link local address. */ 5765 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5766 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5767 V6_IPIF_LINKLOCAL(new_ipif)) { 5768 /* The second one is equal or less preferred. */ 5769 return (B_FALSE); 5770 } else { 5771 return (B_TRUE); 5772 } 5773 } 5774 5775 /* Then check for point to point interface. */ 5776 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5777 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5778 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5779 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5780 return (B_FALSE); 5781 } else { 5782 return (B_TRUE); 5783 } 5784 } 5785 5786 /* old_ipif is a normal interface, so no need to use the new one. */ 5787 return (B_FALSE); 5788 } 5789 5790 /* 5791 * Find any non-virtual, not condemned, and up multicast capable interface 5792 * given an IP instance and zoneid. Order of preference is: 5793 * 5794 * 1. normal 5795 * 1.1 normal, but deprecated 5796 * 2. point to point 5797 * 2.1 point to point, but deprecated 5798 * 3. link local 5799 * 3.1 link local, but deprecated 5800 * 4. loopback. 5801 */ 5802 ipif_t * 5803 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5804 { 5805 ill_t *ill; 5806 ill_walk_context_t ctx; 5807 ipif_t *ipif; 5808 ipif_t *saved_ipif = NULL; 5809 ipif_t *dep_ipif = NULL; 5810 5811 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5812 if (isv6) 5813 ill = ILL_START_WALK_V6(&ctx, ipst); 5814 else 5815 ill = ILL_START_WALK_V4(&ctx, ipst); 5816 5817 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5818 mutex_enter(&ill->ill_lock); 5819 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5820 !(ill->ill_flags & ILLF_MULTICAST)) { 5821 mutex_exit(&ill->ill_lock); 5822 continue; 5823 } 5824 for (ipif = ill->ill_ipif; ipif != NULL; 5825 ipif = ipif->ipif_next) { 5826 if (zoneid != ipif->ipif_zoneid && 5827 zoneid != ALL_ZONES && 5828 ipif->ipif_zoneid != ALL_ZONES) { 5829 continue; 5830 } 5831 if (!(ipif->ipif_flags & IPIF_UP) || 5832 !IPIF_CAN_LOOKUP(ipif)) { 5833 continue; 5834 } 5835 5836 /* 5837 * Found one candidate. If it is deprecated, 5838 * remember it in dep_ipif. If it is not deprecated, 5839 * remember it in saved_ipif. 5840 */ 5841 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5842 if (dep_ipif == NULL) { 5843 dep_ipif = ipif; 5844 } else if (ipif_comp_multi(dep_ipif, ipif, 5845 isv6)) { 5846 /* 5847 * If the previous dep_ipif does not 5848 * belong to the same ill, we've done 5849 * a ipif_refhold() on it. So we need 5850 * to release it. 5851 */ 5852 if (dep_ipif->ipif_ill != ill) 5853 ipif_refrele(dep_ipif); 5854 dep_ipif = ipif; 5855 } 5856 continue; 5857 } 5858 if (saved_ipif == NULL) { 5859 saved_ipif = ipif; 5860 } else { 5861 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5862 if (saved_ipif->ipif_ill != ill) 5863 ipif_refrele(saved_ipif); 5864 saved_ipif = ipif; 5865 } 5866 } 5867 } 5868 /* 5869 * Before going to the next ill, do a ipif_refhold() on the 5870 * saved ones. 5871 */ 5872 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5873 ipif_refhold_locked(saved_ipif); 5874 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5875 ipif_refhold_locked(dep_ipif); 5876 mutex_exit(&ill->ill_lock); 5877 } 5878 rw_exit(&ipst->ips_ill_g_lock); 5879 5880 /* 5881 * If we have only the saved_ipif, return it. But if we have both 5882 * saved_ipif and dep_ipif, check to see which one is better. 5883 */ 5884 if (saved_ipif != NULL) { 5885 if (dep_ipif != NULL) { 5886 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5887 ipif_refrele(saved_ipif); 5888 return (dep_ipif); 5889 } else { 5890 ipif_refrele(dep_ipif); 5891 return (saved_ipif); 5892 } 5893 } 5894 return (saved_ipif); 5895 } else { 5896 return (dep_ipif); 5897 } 5898 } 5899 5900 /* 5901 * This function is called when an application does not specify an interface 5902 * to be used for multicast traffic (joining a group/sending data). It 5903 * calls ire_lookup_multi() to look for an interface route for the 5904 * specified multicast group. Doing this allows the administrator to add 5905 * prefix routes for multicast to indicate which interface to be used for 5906 * multicast traffic in the above scenario. The route could be for all 5907 * multicast (224.0/4), for a single multicast group (a /32 route) or 5908 * anything in between. If there is no such multicast route, we just find 5909 * any multicast capable interface and return it. The returned ipif 5910 * is refhold'ed. 5911 */ 5912 ipif_t * 5913 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5914 { 5915 ire_t *ire; 5916 ipif_t *ipif; 5917 5918 ire = ire_lookup_multi(group, zoneid, ipst); 5919 if (ire != NULL) { 5920 ipif = ire->ire_ipif; 5921 ipif_refhold(ipif); 5922 ire_refrele(ire); 5923 return (ipif); 5924 } 5925 5926 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5927 } 5928 5929 /* 5930 * Look for an ipif with the specified interface address and destination. 5931 * The destination address is used only for matching point-to-point interfaces. 5932 */ 5933 ipif_t * 5934 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5935 ipsq_func_t func, int *error, ip_stack_t *ipst) 5936 { 5937 ipif_t *ipif; 5938 ill_t *ill; 5939 ill_walk_context_t ctx; 5940 ipsq_t *ipsq; 5941 5942 if (error != NULL) 5943 *error = 0; 5944 5945 /* 5946 * First match all the point-to-point interfaces 5947 * before looking at non-point-to-point interfaces. 5948 * This is done to avoid returning non-point-to-point 5949 * ipif instead of unnumbered point-to-point ipif. 5950 */ 5951 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5952 ill = ILL_START_WALK_V4(&ctx, ipst); 5953 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5954 GRAB_CONN_LOCK(q); 5955 mutex_enter(&ill->ill_lock); 5956 for (ipif = ill->ill_ipif; ipif != NULL; 5957 ipif = ipif->ipif_next) { 5958 /* Allow the ipif to be down */ 5959 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5960 (ipif->ipif_lcl_addr == if_addr) && 5961 (ipif->ipif_pp_dst_addr == dst)) { 5962 /* 5963 * The block comment at the start of ipif_down 5964 * explains the use of the macros used below 5965 */ 5966 if (IPIF_CAN_LOOKUP(ipif)) { 5967 ipif_refhold_locked(ipif); 5968 mutex_exit(&ill->ill_lock); 5969 RELEASE_CONN_LOCK(q); 5970 rw_exit(&ipst->ips_ill_g_lock); 5971 return (ipif); 5972 } else if (IPIF_CAN_WAIT(ipif, q)) { 5973 ipsq = ill->ill_phyint->phyint_ipsq; 5974 mutex_enter(&ipsq->ipsq_lock); 5975 mutex_exit(&ill->ill_lock); 5976 rw_exit(&ipst->ips_ill_g_lock); 5977 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5978 ill); 5979 mutex_exit(&ipsq->ipsq_lock); 5980 RELEASE_CONN_LOCK(q); 5981 if (error != NULL) 5982 *error = EINPROGRESS; 5983 return (NULL); 5984 } 5985 } 5986 } 5987 mutex_exit(&ill->ill_lock); 5988 RELEASE_CONN_LOCK(q); 5989 } 5990 rw_exit(&ipst->ips_ill_g_lock); 5991 5992 /* lookup the ipif based on interface address */ 5993 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5994 ipst); 5995 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5996 return (ipif); 5997 } 5998 5999 /* 6000 * Look for an ipif with the specified address. For point-point links 6001 * we look for matches on either the destination address and the local 6002 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6003 * is set. 6004 * Matches on a specific ill if match_ill is set. 6005 */ 6006 ipif_t * 6007 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6008 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6009 { 6010 ipif_t *ipif; 6011 ill_t *ill; 6012 boolean_t ptp = B_FALSE; 6013 ipsq_t *ipsq; 6014 ill_walk_context_t ctx; 6015 6016 if (error != NULL) 6017 *error = 0; 6018 6019 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6020 /* 6021 * Repeat twice, first based on local addresses and 6022 * next time for pointopoint. 6023 */ 6024 repeat: 6025 ill = ILL_START_WALK_V4(&ctx, ipst); 6026 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6027 if (match_ill != NULL && ill != match_ill) { 6028 continue; 6029 } 6030 GRAB_CONN_LOCK(q); 6031 mutex_enter(&ill->ill_lock); 6032 for (ipif = ill->ill_ipif; ipif != NULL; 6033 ipif = ipif->ipif_next) { 6034 if (zoneid != ALL_ZONES && 6035 zoneid != ipif->ipif_zoneid && 6036 ipif->ipif_zoneid != ALL_ZONES) 6037 continue; 6038 /* Allow the ipif to be down */ 6039 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6040 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6041 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6042 (ipif->ipif_pp_dst_addr == addr))) { 6043 /* 6044 * The block comment at the start of ipif_down 6045 * explains the use of the macros used below 6046 */ 6047 if (IPIF_CAN_LOOKUP(ipif)) { 6048 ipif_refhold_locked(ipif); 6049 mutex_exit(&ill->ill_lock); 6050 RELEASE_CONN_LOCK(q); 6051 rw_exit(&ipst->ips_ill_g_lock); 6052 return (ipif); 6053 } else if (IPIF_CAN_WAIT(ipif, q)) { 6054 ipsq = ill->ill_phyint->phyint_ipsq; 6055 mutex_enter(&ipsq->ipsq_lock); 6056 mutex_exit(&ill->ill_lock); 6057 rw_exit(&ipst->ips_ill_g_lock); 6058 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6059 ill); 6060 mutex_exit(&ipsq->ipsq_lock); 6061 RELEASE_CONN_LOCK(q); 6062 if (error != NULL) 6063 *error = EINPROGRESS; 6064 return (NULL); 6065 } 6066 } 6067 } 6068 mutex_exit(&ill->ill_lock); 6069 RELEASE_CONN_LOCK(q); 6070 } 6071 6072 /* If we already did the ptp case, then we are done */ 6073 if (ptp) { 6074 rw_exit(&ipst->ips_ill_g_lock); 6075 if (error != NULL) 6076 *error = ENXIO; 6077 return (NULL); 6078 } 6079 ptp = B_TRUE; 6080 goto repeat; 6081 } 6082 6083 /* 6084 * Look for an ipif with the specified address. For point-point links 6085 * we look for matches on either the destination address and the local 6086 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6087 * is set. 6088 * Matches on a specific ill if match_ill is set. 6089 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6090 */ 6091 zoneid_t 6092 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6093 { 6094 zoneid_t zoneid; 6095 ipif_t *ipif; 6096 ill_t *ill; 6097 boolean_t ptp = B_FALSE; 6098 ill_walk_context_t ctx; 6099 6100 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6101 /* 6102 * Repeat twice, first based on local addresses and 6103 * next time for pointopoint. 6104 */ 6105 repeat: 6106 ill = ILL_START_WALK_V4(&ctx, ipst); 6107 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6108 if (match_ill != NULL && ill != match_ill) { 6109 continue; 6110 } 6111 mutex_enter(&ill->ill_lock); 6112 for (ipif = ill->ill_ipif; ipif != NULL; 6113 ipif = ipif->ipif_next) { 6114 /* Allow the ipif to be down */ 6115 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6116 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6117 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6118 (ipif->ipif_pp_dst_addr == addr)) && 6119 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6120 zoneid = ipif->ipif_zoneid; 6121 mutex_exit(&ill->ill_lock); 6122 rw_exit(&ipst->ips_ill_g_lock); 6123 /* 6124 * If ipif_zoneid was ALL_ZONES then we have 6125 * a trusted extensions shared IP address. 6126 * In that case GLOBAL_ZONEID works to send. 6127 */ 6128 if (zoneid == ALL_ZONES) 6129 zoneid = GLOBAL_ZONEID; 6130 return (zoneid); 6131 } 6132 } 6133 mutex_exit(&ill->ill_lock); 6134 } 6135 6136 /* If we already did the ptp case, then we are done */ 6137 if (ptp) { 6138 rw_exit(&ipst->ips_ill_g_lock); 6139 return (ALL_ZONES); 6140 } 6141 ptp = B_TRUE; 6142 goto repeat; 6143 } 6144 6145 /* 6146 * Look for an ipif that matches the specified remote address i.e. the 6147 * ipif that would receive the specified packet. 6148 * First look for directly connected interfaces and then do a recursive 6149 * IRE lookup and pick the first ipif corresponding to the source address in the 6150 * ire. 6151 * Returns: held ipif 6152 */ 6153 ipif_t * 6154 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6155 { 6156 ipif_t *ipif; 6157 ire_t *ire; 6158 ip_stack_t *ipst = ill->ill_ipst; 6159 6160 ASSERT(!ill->ill_isv6); 6161 6162 /* 6163 * Someone could be changing this ipif currently or change it 6164 * after we return this. Thus a few packets could use the old 6165 * old values. However structure updates/creates (ire, ilg, ilm etc) 6166 * will atomically be updated or cleaned up with the new value 6167 * Thus we don't need a lock to check the flags or other attrs below. 6168 */ 6169 mutex_enter(&ill->ill_lock); 6170 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6171 if (!IPIF_CAN_LOOKUP(ipif)) 6172 continue; 6173 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6174 ipif->ipif_zoneid != ALL_ZONES) 6175 continue; 6176 /* Allow the ipif to be down */ 6177 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6178 if ((ipif->ipif_pp_dst_addr == addr) || 6179 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6180 ipif->ipif_lcl_addr == addr)) { 6181 ipif_refhold_locked(ipif); 6182 mutex_exit(&ill->ill_lock); 6183 return (ipif); 6184 } 6185 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6186 ipif_refhold_locked(ipif); 6187 mutex_exit(&ill->ill_lock); 6188 return (ipif); 6189 } 6190 } 6191 mutex_exit(&ill->ill_lock); 6192 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6193 NULL, MATCH_IRE_RECURSIVE, ipst); 6194 if (ire != NULL) { 6195 /* 6196 * The callers of this function wants to know the 6197 * interface on which they have to send the replies 6198 * back. For IRE_CACHES that have ire_stq and ire_ipif 6199 * derived from different ills, we really don't care 6200 * what we return here. 6201 */ 6202 ipif = ire->ire_ipif; 6203 if (ipif != NULL) { 6204 ipif_refhold(ipif); 6205 ire_refrele(ire); 6206 return (ipif); 6207 } 6208 ire_refrele(ire); 6209 } 6210 /* Pick the first interface */ 6211 ipif = ipif_get_next_ipif(NULL, ill); 6212 return (ipif); 6213 } 6214 6215 /* 6216 * This func does not prevent refcnt from increasing. But if 6217 * the caller has taken steps to that effect, then this func 6218 * can be used to determine whether the ill has become quiescent 6219 */ 6220 static boolean_t 6221 ill_is_quiescent(ill_t *ill) 6222 { 6223 ipif_t *ipif; 6224 6225 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6226 6227 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6228 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6229 return (B_FALSE); 6230 } 6231 } 6232 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6233 return (B_FALSE); 6234 } 6235 return (B_TRUE); 6236 } 6237 6238 boolean_t 6239 ill_is_freeable(ill_t *ill) 6240 { 6241 ipif_t *ipif; 6242 6243 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6244 6245 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6246 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6247 return (B_FALSE); 6248 } 6249 } 6250 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6251 return (B_FALSE); 6252 } 6253 return (B_TRUE); 6254 } 6255 6256 /* 6257 * This func does not prevent refcnt from increasing. But if 6258 * the caller has taken steps to that effect, then this func 6259 * can be used to determine whether the ipif has become quiescent 6260 */ 6261 static boolean_t 6262 ipif_is_quiescent(ipif_t *ipif) 6263 { 6264 ill_t *ill; 6265 6266 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6267 6268 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6269 return (B_FALSE); 6270 } 6271 6272 ill = ipif->ipif_ill; 6273 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6274 ill->ill_logical_down) { 6275 return (B_TRUE); 6276 } 6277 6278 /* This is the last ipif going down or being deleted on this ill */ 6279 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6280 return (B_FALSE); 6281 } 6282 6283 return (B_TRUE); 6284 } 6285 6286 /* 6287 * return true if the ipif can be destroyed: the ipif has to be quiescent 6288 * with zero references from ire/nce/ilm to it. 6289 */ 6290 static boolean_t 6291 ipif_is_freeable(ipif_t *ipif) 6292 { 6293 6294 ill_t *ill; 6295 6296 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6297 6298 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6299 return (B_FALSE); 6300 } 6301 6302 ill = ipif->ipif_ill; 6303 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6304 ill->ill_logical_down) { 6305 return (B_TRUE); 6306 } 6307 6308 /* This is the last ipif going down or being deleted on this ill */ 6309 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6310 return (B_FALSE); 6311 } 6312 6313 return (B_TRUE); 6314 } 6315 6316 /* 6317 * This func does not prevent refcnt from increasing. But if 6318 * the caller has taken steps to that effect, then this func 6319 * can be used to determine whether the ipifs marked with IPIF_MOVING 6320 * have become quiescent and can be moved in a failover/failback. 6321 */ 6322 static ipif_t * 6323 ill_quiescent_to_move(ill_t *ill) 6324 { 6325 ipif_t *ipif; 6326 6327 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6328 6329 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6330 if (ipif->ipif_state_flags & IPIF_MOVING) { 6331 if (ipif->ipif_refcnt != 0 || 6332 !IPIF_DOWN_OK(ipif)) { 6333 return (ipif); 6334 } 6335 } 6336 } 6337 return (NULL); 6338 } 6339 6340 /* 6341 * The ipif/ill/ire has been refreled. Do the tail processing. 6342 * Determine if the ipif or ill in question has become quiescent and if so 6343 * wakeup close and/or restart any queued pending ioctl that is waiting 6344 * for the ipif_down (or ill_down) 6345 */ 6346 void 6347 ipif_ill_refrele_tail(ill_t *ill) 6348 { 6349 mblk_t *mp; 6350 conn_t *connp; 6351 ipsq_t *ipsq; 6352 ipif_t *ipif; 6353 dl_notify_ind_t *dlindp; 6354 6355 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6356 6357 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6358 ill_is_freeable(ill)) { 6359 /* ill_close may be waiting */ 6360 cv_broadcast(&ill->ill_cv); 6361 } 6362 6363 /* ipsq can't change because ill_lock is held */ 6364 ipsq = ill->ill_phyint->phyint_ipsq; 6365 if (ipsq->ipsq_waitfor == 0) { 6366 /* Not waiting for anything, just return. */ 6367 mutex_exit(&ill->ill_lock); 6368 return; 6369 } 6370 ASSERT(ipsq->ipsq_pending_mp != NULL && 6371 ipsq->ipsq_pending_ipif != NULL); 6372 /* 6373 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6374 * Last ipif going down needs to down the ill, so ill_cnt_ire must 6375 * be zero for restarting an ioctl that ends up downing the ill. 6376 */ 6377 ipif = ipsq->ipsq_pending_ipif; 6378 if (ipif->ipif_ill != ill) { 6379 /* The ioctl is pending on some other ill. */ 6380 mutex_exit(&ill->ill_lock); 6381 return; 6382 } 6383 6384 switch (ipsq->ipsq_waitfor) { 6385 case IPIF_DOWN: 6386 if (!ipif_is_quiescent(ipif)) { 6387 mutex_exit(&ill->ill_lock); 6388 return; 6389 } 6390 break; 6391 case IPIF_FREE: 6392 if (!ipif_is_freeable(ipif)) { 6393 mutex_exit(&ill->ill_lock); 6394 return; 6395 } 6396 break; 6397 6398 case ILL_DOWN: 6399 if (!ill_is_quiescent(ill)) { 6400 mutex_exit(&ill->ill_lock); 6401 return; 6402 } 6403 break; 6404 case ILL_FREE: 6405 /* 6406 * case ILL_FREE arises only for loopback. otherwise ill_delete 6407 * waits synchronously in ip_close, and no message is queued in 6408 * ipsq_pending_mp at all in this case 6409 */ 6410 if (!ill_is_freeable(ill)) { 6411 mutex_exit(&ill->ill_lock); 6412 return; 6413 } 6414 break; 6415 6416 case ILL_MOVE_OK: 6417 if (ill_quiescent_to_move(ill) != NULL) { 6418 mutex_exit(&ill->ill_lock); 6419 return; 6420 } 6421 break; 6422 default: 6423 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6424 (void *)ipsq, ipsq->ipsq_waitfor); 6425 } 6426 6427 /* 6428 * Incr refcnt for the qwriter_ip call below which 6429 * does a refrele 6430 */ 6431 ill_refhold_locked(ill); 6432 mp = ipsq_pending_mp_get(ipsq, &connp); 6433 mutex_exit(&ill->ill_lock); 6434 6435 ASSERT(mp != NULL); 6436 /* 6437 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6438 * we can only get here when the current operation decides it 6439 * it needs to quiesce via ipsq_pending_mp_add(). 6440 */ 6441 switch (mp->b_datap->db_type) { 6442 case M_PCPROTO: 6443 case M_PROTO: 6444 /* 6445 * For now, only DL_NOTIFY_IND messages can use this facility. 6446 */ 6447 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6448 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6449 6450 switch (dlindp->dl_notification) { 6451 case DL_NOTE_PHYS_ADDR: 6452 qwriter_ip(ill, ill->ill_rq, mp, 6453 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6454 return; 6455 default: 6456 ASSERT(0); 6457 } 6458 break; 6459 6460 case M_ERROR: 6461 case M_HANGUP: 6462 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6463 B_TRUE); 6464 return; 6465 6466 case M_IOCTL: 6467 case M_IOCDATA: 6468 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6469 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6470 return; 6471 6472 default: 6473 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6474 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6475 } 6476 } 6477 6478 #ifdef DEBUG 6479 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6480 static void 6481 th_trace_rrecord(th_trace_t *th_trace) 6482 { 6483 tr_buf_t *tr_buf; 6484 uint_t lastref; 6485 6486 lastref = th_trace->th_trace_lastref; 6487 lastref++; 6488 if (lastref == TR_BUF_MAX) 6489 lastref = 0; 6490 th_trace->th_trace_lastref = lastref; 6491 tr_buf = &th_trace->th_trbuf[lastref]; 6492 tr_buf->tr_time = lbolt; 6493 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6494 } 6495 6496 static void 6497 th_trace_free(void *value) 6498 { 6499 th_trace_t *th_trace = value; 6500 6501 ASSERT(th_trace->th_refcnt == 0); 6502 kmem_free(th_trace, sizeof (*th_trace)); 6503 } 6504 6505 /* 6506 * Find or create the per-thread hash table used to track object references. 6507 * The ipst argument is NULL if we shouldn't allocate. 6508 * 6509 * Accesses per-thread data, so there's no need to lock here. 6510 */ 6511 static mod_hash_t * 6512 th_trace_gethash(ip_stack_t *ipst) 6513 { 6514 th_hash_t *thh; 6515 6516 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6517 mod_hash_t *mh; 6518 char name[256]; 6519 size_t objsize, rshift; 6520 int retv; 6521 6522 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6523 return (NULL); 6524 (void) snprintf(name, sizeof (name), "th_trace_%p", curthread); 6525 6526 /* 6527 * We use mod_hash_create_extended here rather than the more 6528 * obvious mod_hash_create_ptrhash because the latter has a 6529 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6530 * block. 6531 */ 6532 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6533 MAX(sizeof (ire_t), sizeof (nce_t))); 6534 rshift = highbit(objsize); 6535 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6536 th_trace_free, mod_hash_byptr, (void *)rshift, 6537 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6538 if (mh == NULL) { 6539 kmem_free(thh, sizeof (*thh)); 6540 return (NULL); 6541 } 6542 thh->thh_hash = mh; 6543 thh->thh_ipst = ipst; 6544 /* 6545 * We trace ills, ipifs, ires, and nces. All of these are 6546 * per-IP-stack, so the lock on the thread list is as well. 6547 */ 6548 rw_enter(&ip_thread_rwlock, RW_WRITER); 6549 list_insert_tail(&ip_thread_list, thh); 6550 rw_exit(&ip_thread_rwlock); 6551 retv = tsd_set(ip_thread_data, thh); 6552 ASSERT(retv == 0); 6553 } 6554 return (thh != NULL ? thh->thh_hash : NULL); 6555 } 6556 6557 boolean_t 6558 th_trace_ref(const void *obj, ip_stack_t *ipst) 6559 { 6560 th_trace_t *th_trace; 6561 mod_hash_t *mh; 6562 mod_hash_val_t val; 6563 6564 if ((mh = th_trace_gethash(ipst)) == NULL) 6565 return (B_FALSE); 6566 6567 /* 6568 * Attempt to locate the trace buffer for this obj and thread. 6569 * If it does not exist, then allocate a new trace buffer and 6570 * insert into the hash. 6571 */ 6572 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6573 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6574 if (th_trace == NULL) 6575 return (B_FALSE); 6576 6577 th_trace->th_id = curthread; 6578 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6579 (mod_hash_val_t)th_trace) != 0) { 6580 kmem_free(th_trace, sizeof (th_trace_t)); 6581 return (B_FALSE); 6582 } 6583 } else { 6584 th_trace = (th_trace_t *)val; 6585 } 6586 6587 ASSERT(th_trace->th_refcnt >= 0 && 6588 th_trace->th_refcnt < TR_BUF_MAX - 1); 6589 6590 th_trace->th_refcnt++; 6591 th_trace_rrecord(th_trace); 6592 return (B_TRUE); 6593 } 6594 6595 /* 6596 * For the purpose of tracing a reference release, we assume that global 6597 * tracing is always on and that the same thread initiated the reference hold 6598 * is releasing. 6599 */ 6600 void 6601 th_trace_unref(const void *obj) 6602 { 6603 int retv; 6604 mod_hash_t *mh; 6605 th_trace_t *th_trace; 6606 mod_hash_val_t val; 6607 6608 mh = th_trace_gethash(NULL); 6609 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6610 ASSERT(retv == 0); 6611 th_trace = (th_trace_t *)val; 6612 6613 ASSERT(th_trace->th_refcnt > 0); 6614 th_trace->th_refcnt--; 6615 th_trace_rrecord(th_trace); 6616 } 6617 6618 /* 6619 * If tracing has been disabled, then we assume that the reference counts are 6620 * now useless, and we clear them out before destroying the entries. 6621 */ 6622 void 6623 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6624 { 6625 th_hash_t *thh; 6626 mod_hash_t *mh; 6627 mod_hash_val_t val; 6628 th_trace_t *th_trace; 6629 int retv; 6630 6631 rw_enter(&ip_thread_rwlock, RW_READER); 6632 for (thh = list_head(&ip_thread_list); thh != NULL; 6633 thh = list_next(&ip_thread_list, thh)) { 6634 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6635 &val) == 0) { 6636 th_trace = (th_trace_t *)val; 6637 if (trace_disable) 6638 th_trace->th_refcnt = 0; 6639 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6640 ASSERT(retv == 0); 6641 } 6642 } 6643 rw_exit(&ip_thread_rwlock); 6644 } 6645 6646 void 6647 ipif_trace_ref(ipif_t *ipif) 6648 { 6649 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6650 6651 if (ipif->ipif_trace_disable) 6652 return; 6653 6654 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6655 ipif->ipif_trace_disable = B_TRUE; 6656 ipif_trace_cleanup(ipif); 6657 } 6658 } 6659 6660 void 6661 ipif_untrace_ref(ipif_t *ipif) 6662 { 6663 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6664 6665 if (!ipif->ipif_trace_disable) 6666 th_trace_unref(ipif); 6667 } 6668 6669 void 6670 ill_trace_ref(ill_t *ill) 6671 { 6672 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6673 6674 if (ill->ill_trace_disable) 6675 return; 6676 6677 if (!th_trace_ref(ill, ill->ill_ipst)) { 6678 ill->ill_trace_disable = B_TRUE; 6679 ill_trace_cleanup(ill); 6680 } 6681 } 6682 6683 void 6684 ill_untrace_ref(ill_t *ill) 6685 { 6686 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6687 6688 if (!ill->ill_trace_disable) 6689 th_trace_unref(ill); 6690 } 6691 6692 /* 6693 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6694 * failure, ipif_trace_disable is set. 6695 */ 6696 static void 6697 ipif_trace_cleanup(const ipif_t *ipif) 6698 { 6699 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6700 } 6701 6702 /* 6703 * Called when ill is unplumbed or when memory alloc fails. Note that on 6704 * failure, ill_trace_disable is set. 6705 */ 6706 static void 6707 ill_trace_cleanup(const ill_t *ill) 6708 { 6709 th_trace_cleanup(ill, ill->ill_trace_disable); 6710 } 6711 #endif /* DEBUG */ 6712 6713 void 6714 ipif_refhold_locked(ipif_t *ipif) 6715 { 6716 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6717 ipif->ipif_refcnt++; 6718 IPIF_TRACE_REF(ipif); 6719 } 6720 6721 void 6722 ipif_refhold(ipif_t *ipif) 6723 { 6724 ill_t *ill; 6725 6726 ill = ipif->ipif_ill; 6727 mutex_enter(&ill->ill_lock); 6728 ipif->ipif_refcnt++; 6729 IPIF_TRACE_REF(ipif); 6730 mutex_exit(&ill->ill_lock); 6731 } 6732 6733 /* 6734 * Must not be called while holding any locks. Otherwise if this is 6735 * the last reference to be released there is a chance of recursive mutex 6736 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6737 * to restart an ioctl. 6738 */ 6739 void 6740 ipif_refrele(ipif_t *ipif) 6741 { 6742 ill_t *ill; 6743 6744 ill = ipif->ipif_ill; 6745 6746 mutex_enter(&ill->ill_lock); 6747 ASSERT(ipif->ipif_refcnt != 0); 6748 ipif->ipif_refcnt--; 6749 IPIF_UNTRACE_REF(ipif); 6750 if (ipif->ipif_refcnt != 0) { 6751 mutex_exit(&ill->ill_lock); 6752 return; 6753 } 6754 6755 /* Drops the ill_lock */ 6756 ipif_ill_refrele_tail(ill); 6757 } 6758 6759 ipif_t * 6760 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6761 { 6762 ipif_t *ipif; 6763 6764 mutex_enter(&ill->ill_lock); 6765 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6766 ipif != NULL; ipif = ipif->ipif_next) { 6767 if (!IPIF_CAN_LOOKUP(ipif)) 6768 continue; 6769 ipif_refhold_locked(ipif); 6770 mutex_exit(&ill->ill_lock); 6771 return (ipif); 6772 } 6773 mutex_exit(&ill->ill_lock); 6774 return (NULL); 6775 } 6776 6777 /* 6778 * TODO: make this table extendible at run time 6779 * Return a pointer to the mac type info for 'mac_type' 6780 */ 6781 static ip_m_t * 6782 ip_m_lookup(t_uscalar_t mac_type) 6783 { 6784 ip_m_t *ipm; 6785 6786 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6787 if (ipm->ip_m_mac_type == mac_type) 6788 return (ipm); 6789 return (NULL); 6790 } 6791 6792 /* 6793 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6794 * ipif_arg is passed in to associate it with the correct interface. 6795 * We may need to restart this operation if the ipif cannot be looked up 6796 * due to an exclusive operation that is currently in progress. The restart 6797 * entry point is specified by 'func' 6798 */ 6799 int 6800 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6801 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6802 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6803 struct rtsa_s *sp, ip_stack_t *ipst) 6804 { 6805 ire_t *ire; 6806 ire_t *gw_ire = NULL; 6807 ipif_t *ipif = NULL; 6808 boolean_t ipif_refheld = B_FALSE; 6809 uint_t type; 6810 int match_flags = MATCH_IRE_TYPE; 6811 int error; 6812 tsol_gc_t *gc = NULL; 6813 tsol_gcgrp_t *gcgrp = NULL; 6814 boolean_t gcgrp_xtraref = B_FALSE; 6815 6816 ip1dbg(("ip_rt_add:")); 6817 6818 if (ire_arg != NULL) 6819 *ire_arg = NULL; 6820 6821 /* 6822 * If this is the case of RTF_HOST being set, then we set the netmask 6823 * to all ones (regardless if one was supplied). 6824 */ 6825 if (flags & RTF_HOST) 6826 mask = IP_HOST_MASK; 6827 6828 /* 6829 * Prevent routes with a zero gateway from being created (since 6830 * interfaces can currently be plumbed and brought up no assigned 6831 * address). 6832 */ 6833 if (gw_addr == 0) 6834 return (ENETUNREACH); 6835 /* 6836 * Get the ipif, if any, corresponding to the gw_addr 6837 */ 6838 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6839 ipst); 6840 if (ipif != NULL) { 6841 if (IS_VNI(ipif->ipif_ill)) { 6842 ipif_refrele(ipif); 6843 return (EINVAL); 6844 } 6845 ipif_refheld = B_TRUE; 6846 } else if (error == EINPROGRESS) { 6847 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6848 return (EINPROGRESS); 6849 } else { 6850 error = 0; 6851 } 6852 6853 if (ipif != NULL) { 6854 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6855 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6856 } else { 6857 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6858 } 6859 6860 /* 6861 * GateD will attempt to create routes with a loopback interface 6862 * address as the gateway and with RTF_GATEWAY set. We allow 6863 * these routes to be added, but create them as interface routes 6864 * since the gateway is an interface address. 6865 */ 6866 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6867 flags &= ~RTF_GATEWAY; 6868 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6869 mask == IP_HOST_MASK) { 6870 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6871 ALL_ZONES, NULL, match_flags, ipst); 6872 if (ire != NULL) { 6873 ire_refrele(ire); 6874 if (ipif_refheld) 6875 ipif_refrele(ipif); 6876 return (EEXIST); 6877 } 6878 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6879 "for 0x%x\n", (void *)ipif, 6880 ipif->ipif_ire_type, 6881 ntohl(ipif->ipif_lcl_addr))); 6882 ire = ire_create( 6883 (uchar_t *)&dst_addr, /* dest address */ 6884 (uchar_t *)&mask, /* mask */ 6885 (uchar_t *)&ipif->ipif_src_addr, 6886 NULL, /* no gateway */ 6887 &ipif->ipif_mtu, 6888 NULL, 6889 ipif->ipif_rq, /* recv-from queue */ 6890 NULL, /* no send-to queue */ 6891 ipif->ipif_ire_type, /* LOOPBACK */ 6892 ipif, 6893 0, 6894 0, 6895 0, 6896 (ipif->ipif_flags & IPIF_PRIVATE) ? 6897 RTF_PRIVATE : 0, 6898 &ire_uinfo_null, 6899 NULL, 6900 NULL, 6901 ipst); 6902 6903 if (ire == NULL) { 6904 if (ipif_refheld) 6905 ipif_refrele(ipif); 6906 return (ENOMEM); 6907 } 6908 error = ire_add(&ire, q, mp, func, B_FALSE); 6909 if (error == 0) 6910 goto save_ire; 6911 if (ipif_refheld) 6912 ipif_refrele(ipif); 6913 return (error); 6914 6915 } 6916 } 6917 6918 /* 6919 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6920 * and the gateway address provided is one of the system's interface 6921 * addresses. By using the routing socket interface and supplying an 6922 * RTA_IFP sockaddr with an interface index, an alternate method of 6923 * specifying an interface route to be created is available which uses 6924 * the interface index that specifies the outgoing interface rather than 6925 * the address of an outgoing interface (which may not be able to 6926 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6927 * flag, routes can be specified which not only specify the next-hop to 6928 * be used when routing to a certain prefix, but also which outgoing 6929 * interface should be used. 6930 * 6931 * Previously, interfaces would have unique addresses assigned to them 6932 * and so the address assigned to a particular interface could be used 6933 * to identify a particular interface. One exception to this was the 6934 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6935 * 6936 * With the advent of IPv6 and its link-local addresses, this 6937 * restriction was relaxed and interfaces could share addresses between 6938 * themselves. In fact, typically all of the link-local interfaces on 6939 * an IPv6 node or router will have the same link-local address. In 6940 * order to differentiate between these interfaces, the use of an 6941 * interface index is necessary and this index can be carried inside a 6942 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6943 * of using the interface index, however, is that all of the ipif's that 6944 * are part of an ill have the same index and so the RTA_IFP sockaddr 6945 * cannot be used to differentiate between ipif's (or logical 6946 * interfaces) that belong to the same ill (physical interface). 6947 * 6948 * For example, in the following case involving IPv4 interfaces and 6949 * logical interfaces 6950 * 6951 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6952 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6953 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6954 * 6955 * the ipif's corresponding to each of these interface routes can be 6956 * uniquely identified by the "gateway" (actually interface address). 6957 * 6958 * In this case involving multiple IPv6 default routes to a particular 6959 * link-local gateway, the use of RTA_IFP is necessary to specify which 6960 * default route is of interest: 6961 * 6962 * default fe80::123:4567:89ab:cdef U if0 6963 * default fe80::123:4567:89ab:cdef U if1 6964 */ 6965 6966 /* RTF_GATEWAY not set */ 6967 if (!(flags & RTF_GATEWAY)) { 6968 queue_t *stq; 6969 6970 if (sp != NULL) { 6971 ip2dbg(("ip_rt_add: gateway security attributes " 6972 "cannot be set with interface route\n")); 6973 if (ipif_refheld) 6974 ipif_refrele(ipif); 6975 return (EINVAL); 6976 } 6977 6978 /* 6979 * As the interface index specified with the RTA_IFP sockaddr is 6980 * the same for all ipif's off of an ill, the matching logic 6981 * below uses MATCH_IRE_ILL if such an index was specified. 6982 * This means that routes sharing the same prefix when added 6983 * using a RTA_IFP sockaddr must have distinct interface 6984 * indices (namely, they must be on distinct ill's). 6985 * 6986 * On the other hand, since the gateway address will usually be 6987 * different for each ipif on the system, the matching logic 6988 * uses MATCH_IRE_IPIF in the case of a traditional interface 6989 * route. This means that interface routes for the same prefix 6990 * can be created if they belong to distinct ipif's and if a 6991 * RTA_IFP sockaddr is not present. 6992 */ 6993 if (ipif_arg != NULL) { 6994 if (ipif_refheld) { 6995 ipif_refrele(ipif); 6996 ipif_refheld = B_FALSE; 6997 } 6998 ipif = ipif_arg; 6999 match_flags |= MATCH_IRE_ILL; 7000 } else { 7001 /* 7002 * Check the ipif corresponding to the gw_addr 7003 */ 7004 if (ipif == NULL) 7005 return (ENETUNREACH); 7006 match_flags |= MATCH_IRE_IPIF; 7007 } 7008 ASSERT(ipif != NULL); 7009 7010 /* 7011 * We check for an existing entry at this point. 7012 * 7013 * Since a netmask isn't passed in via the ioctl interface 7014 * (SIOCADDRT), we don't check for a matching netmask in that 7015 * case. 7016 */ 7017 if (!ioctl_msg) 7018 match_flags |= MATCH_IRE_MASK; 7019 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 7020 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7021 if (ire != NULL) { 7022 ire_refrele(ire); 7023 if (ipif_refheld) 7024 ipif_refrele(ipif); 7025 return (EEXIST); 7026 } 7027 7028 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7029 ? ipif->ipif_rq : ipif->ipif_wq; 7030 7031 /* 7032 * Create a copy of the IRE_LOOPBACK, 7033 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7034 * the modified address and netmask. 7035 */ 7036 ire = ire_create( 7037 (uchar_t *)&dst_addr, 7038 (uint8_t *)&mask, 7039 (uint8_t *)&ipif->ipif_src_addr, 7040 NULL, 7041 &ipif->ipif_mtu, 7042 NULL, 7043 NULL, 7044 stq, 7045 ipif->ipif_net_type, 7046 ipif, 7047 0, 7048 0, 7049 0, 7050 flags, 7051 &ire_uinfo_null, 7052 NULL, 7053 NULL, 7054 ipst); 7055 if (ire == NULL) { 7056 if (ipif_refheld) 7057 ipif_refrele(ipif); 7058 return (ENOMEM); 7059 } 7060 7061 /* 7062 * Some software (for example, GateD and Sun Cluster) attempts 7063 * to create (what amount to) IRE_PREFIX routes with the 7064 * loopback address as the gateway. This is primarily done to 7065 * set up prefixes with the RTF_REJECT flag set (for example, 7066 * when generating aggregate routes.) 7067 * 7068 * If the IRE type (as defined by ipif->ipif_net_type) is 7069 * IRE_LOOPBACK, then we map the request into a 7070 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 7071 * these interface routes, by definition, can only be that. 7072 * 7073 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7074 * routine, but rather using ire_create() directly. 7075 * 7076 */ 7077 if (ipif->ipif_net_type == IRE_LOOPBACK) { 7078 ire->ire_type = IRE_IF_NORESOLVER; 7079 ire->ire_flags |= RTF_BLACKHOLE; 7080 } 7081 7082 error = ire_add(&ire, q, mp, func, B_FALSE); 7083 if (error == 0) 7084 goto save_ire; 7085 7086 /* 7087 * In the result of failure, ire_add() will have already 7088 * deleted the ire in question, so there is no need to 7089 * do that here. 7090 */ 7091 if (ipif_refheld) 7092 ipif_refrele(ipif); 7093 return (error); 7094 } 7095 if (ipif_refheld) { 7096 ipif_refrele(ipif); 7097 ipif_refheld = B_FALSE; 7098 } 7099 7100 /* 7101 * Get an interface IRE for the specified gateway. 7102 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7103 * gateway, it is currently unreachable and we fail the request 7104 * accordingly. 7105 */ 7106 ipif = ipif_arg; 7107 if (ipif_arg != NULL) 7108 match_flags |= MATCH_IRE_ILL; 7109 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7110 ALL_ZONES, 0, NULL, match_flags, ipst); 7111 if (gw_ire == NULL) 7112 return (ENETUNREACH); 7113 7114 /* 7115 * We create one of three types of IREs as a result of this request 7116 * based on the netmask. A netmask of all ones (which is automatically 7117 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7118 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7119 * created. Otherwise, an IRE_PREFIX route is created for the 7120 * destination prefix. 7121 */ 7122 if (mask == IP_HOST_MASK) 7123 type = IRE_HOST; 7124 else if (mask == 0) 7125 type = IRE_DEFAULT; 7126 else 7127 type = IRE_PREFIX; 7128 7129 /* check for a duplicate entry */ 7130 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7131 NULL, ALL_ZONES, 0, NULL, 7132 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7133 if (ire != NULL) { 7134 ire_refrele(gw_ire); 7135 ire_refrele(ire); 7136 return (EEXIST); 7137 } 7138 7139 /* Security attribute exists */ 7140 if (sp != NULL) { 7141 tsol_gcgrp_addr_t ga; 7142 7143 /* find or create the gateway credentials group */ 7144 ga.ga_af = AF_INET; 7145 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7146 7147 /* we hold reference to it upon success */ 7148 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7149 if (gcgrp == NULL) { 7150 ire_refrele(gw_ire); 7151 return (ENOMEM); 7152 } 7153 7154 /* 7155 * Create and add the security attribute to the group; a 7156 * reference to the group is made upon allocating a new 7157 * entry successfully. If it finds an already-existing 7158 * entry for the security attribute in the group, it simply 7159 * returns it and no new reference is made to the group. 7160 */ 7161 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7162 if (gc == NULL) { 7163 /* release reference held by gcgrp_lookup */ 7164 GCGRP_REFRELE(gcgrp); 7165 ire_refrele(gw_ire); 7166 return (ENOMEM); 7167 } 7168 } 7169 7170 /* Create the IRE. */ 7171 ire = ire_create( 7172 (uchar_t *)&dst_addr, /* dest address */ 7173 (uchar_t *)&mask, /* mask */ 7174 /* src address assigned by the caller? */ 7175 (uchar_t *)(((src_addr != INADDR_ANY) && 7176 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7177 (uchar_t *)&gw_addr, /* gateway address */ 7178 &gw_ire->ire_max_frag, 7179 NULL, /* no src nce */ 7180 NULL, /* no recv-from queue */ 7181 NULL, /* no send-to queue */ 7182 (ushort_t)type, /* IRE type */ 7183 ipif_arg, 7184 0, 7185 0, 7186 0, 7187 flags, 7188 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7189 gc, /* security attribute */ 7190 NULL, 7191 ipst); 7192 7193 /* 7194 * The ire holds a reference to the 'gc' and the 'gc' holds a 7195 * reference to the 'gcgrp'. We can now release the extra reference 7196 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7197 */ 7198 if (gcgrp_xtraref) 7199 GCGRP_REFRELE(gcgrp); 7200 if (ire == NULL) { 7201 if (gc != NULL) 7202 GC_REFRELE(gc); 7203 ire_refrele(gw_ire); 7204 return (ENOMEM); 7205 } 7206 7207 /* 7208 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7209 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7210 */ 7211 7212 /* Add the new IRE. */ 7213 error = ire_add(&ire, q, mp, func, B_FALSE); 7214 if (error != 0) { 7215 /* 7216 * In the result of failure, ire_add() will have already 7217 * deleted the ire in question, so there is no need to 7218 * do that here. 7219 */ 7220 ire_refrele(gw_ire); 7221 return (error); 7222 } 7223 7224 if (flags & RTF_MULTIRT) { 7225 /* 7226 * Invoke the CGTP (multirouting) filtering module 7227 * to add the dst address in the filtering database. 7228 * Replicated inbound packets coming from that address 7229 * will be filtered to discard the duplicates. 7230 * It is not necessary to call the CGTP filter hook 7231 * when the dst address is a broadcast or multicast, 7232 * because an IP source address cannot be a broadcast 7233 * or a multicast. 7234 */ 7235 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7236 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7237 if (ire_dst != NULL) { 7238 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7239 ire_refrele(ire_dst); 7240 goto save_ire; 7241 } 7242 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7243 !CLASSD(ire->ire_addr)) { 7244 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7245 ipst->ips_netstack->netstack_stackid, 7246 ire->ire_addr, 7247 ire->ire_gateway_addr, 7248 ire->ire_src_addr, 7249 gw_ire->ire_src_addr); 7250 if (res != 0) { 7251 ire_refrele(gw_ire); 7252 ire_delete(ire); 7253 return (res); 7254 } 7255 } 7256 } 7257 7258 /* 7259 * Now that the prefix IRE entry has been created, delete any 7260 * existing gateway IRE cache entries as well as any IRE caches 7261 * using the gateway, and force them to be created through 7262 * ip_newroute. 7263 */ 7264 if (gc != NULL) { 7265 ASSERT(gcgrp != NULL); 7266 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7267 } 7268 7269 save_ire: 7270 if (gw_ire != NULL) { 7271 ire_refrele(gw_ire); 7272 } 7273 if (ipif != NULL) { 7274 /* 7275 * Save enough information so that we can recreate the IRE if 7276 * the interface goes down and then up. The metrics associated 7277 * with the route will be saved as well when rts_setmetrics() is 7278 * called after the IRE has been created. In the case where 7279 * memory cannot be allocated, none of this information will be 7280 * saved. 7281 */ 7282 ipif_save_ire(ipif, ire); 7283 } 7284 if (ioctl_msg) 7285 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7286 if (ire_arg != NULL) { 7287 /* 7288 * Store the ire that was successfully added into where ire_arg 7289 * points to so that callers don't have to look it up 7290 * themselves (but they are responsible for ire_refrele()ing 7291 * the ire when they are finished with it). 7292 */ 7293 *ire_arg = ire; 7294 } else { 7295 ire_refrele(ire); /* Held in ire_add */ 7296 } 7297 if (ipif_refheld) 7298 ipif_refrele(ipif); 7299 return (0); 7300 } 7301 7302 /* 7303 * ip_rt_delete is called to delete an IPv4 route. 7304 * ipif_arg is passed in to associate it with the correct interface. 7305 * We may need to restart this operation if the ipif cannot be looked up 7306 * due to an exclusive operation that is currently in progress. The restart 7307 * entry point is specified by 'func' 7308 */ 7309 /* ARGSUSED4 */ 7310 int 7311 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7312 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7313 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7314 { 7315 ire_t *ire = NULL; 7316 ipif_t *ipif; 7317 boolean_t ipif_refheld = B_FALSE; 7318 uint_t type; 7319 uint_t match_flags = MATCH_IRE_TYPE; 7320 int err = 0; 7321 7322 ip1dbg(("ip_rt_delete:")); 7323 /* 7324 * If this is the case of RTF_HOST being set, then we set the netmask 7325 * to all ones. Otherwise, we use the netmask if one was supplied. 7326 */ 7327 if (flags & RTF_HOST) { 7328 mask = IP_HOST_MASK; 7329 match_flags |= MATCH_IRE_MASK; 7330 } else if (rtm_addrs & RTA_NETMASK) { 7331 match_flags |= MATCH_IRE_MASK; 7332 } 7333 7334 /* 7335 * Note that RTF_GATEWAY is never set on a delete, therefore 7336 * we check if the gateway address is one of our interfaces first, 7337 * and fall back on RTF_GATEWAY routes. 7338 * 7339 * This makes it possible to delete an original 7340 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7341 * 7342 * As the interface index specified with the RTA_IFP sockaddr is the 7343 * same for all ipif's off of an ill, the matching logic below uses 7344 * MATCH_IRE_ILL if such an index was specified. This means a route 7345 * sharing the same prefix and interface index as the the route 7346 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7347 * is specified in the request. 7348 * 7349 * On the other hand, since the gateway address will usually be 7350 * different for each ipif on the system, the matching logic 7351 * uses MATCH_IRE_IPIF in the case of a traditional interface 7352 * route. This means that interface routes for the same prefix can be 7353 * uniquely identified if they belong to distinct ipif's and if a 7354 * RTA_IFP sockaddr is not present. 7355 * 7356 * For more detail on specifying routes by gateway address and by 7357 * interface index, see the comments in ip_rt_add(). 7358 */ 7359 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7360 ipst); 7361 if (ipif != NULL) 7362 ipif_refheld = B_TRUE; 7363 else if (err == EINPROGRESS) 7364 return (err); 7365 else 7366 err = 0; 7367 if (ipif != NULL) { 7368 if (ipif_arg != NULL) { 7369 if (ipif_refheld) { 7370 ipif_refrele(ipif); 7371 ipif_refheld = B_FALSE; 7372 } 7373 ipif = ipif_arg; 7374 match_flags |= MATCH_IRE_ILL; 7375 } else { 7376 match_flags |= MATCH_IRE_IPIF; 7377 } 7378 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7379 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7380 ALL_ZONES, NULL, match_flags, ipst); 7381 } 7382 if (ire == NULL) { 7383 ire = ire_ftable_lookup(dst_addr, mask, 0, 7384 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7385 match_flags, ipst); 7386 } 7387 } 7388 7389 if (ire == NULL) { 7390 /* 7391 * At this point, the gateway address is not one of our own 7392 * addresses or a matching interface route was not found. We 7393 * set the IRE type to lookup based on whether 7394 * this is a host route, a default route or just a prefix. 7395 * 7396 * If an ipif_arg was passed in, then the lookup is based on an 7397 * interface index so MATCH_IRE_ILL is added to match_flags. 7398 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7399 * set as the route being looked up is not a traditional 7400 * interface route. 7401 */ 7402 match_flags &= ~MATCH_IRE_IPIF; 7403 match_flags |= MATCH_IRE_GW; 7404 if (ipif_arg != NULL) 7405 match_flags |= MATCH_IRE_ILL; 7406 if (mask == IP_HOST_MASK) 7407 type = IRE_HOST; 7408 else if (mask == 0) 7409 type = IRE_DEFAULT; 7410 else 7411 type = IRE_PREFIX; 7412 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7413 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7414 } 7415 7416 if (ipif_refheld) 7417 ipif_refrele(ipif); 7418 7419 /* ipif is not refheld anymore */ 7420 if (ire == NULL) 7421 return (ESRCH); 7422 7423 if (ire->ire_flags & RTF_MULTIRT) { 7424 /* 7425 * Invoke the CGTP (multirouting) filtering module 7426 * to remove the dst address from the filtering database. 7427 * Packets coming from that address will no longer be 7428 * filtered to remove duplicates. 7429 */ 7430 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7431 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7432 ipst->ips_netstack->netstack_stackid, 7433 ire->ire_addr, ire->ire_gateway_addr); 7434 } 7435 ip_cgtp_bcast_delete(ire, ipst); 7436 } 7437 7438 ipif = ire->ire_ipif; 7439 if (ipif != NULL) 7440 ipif_remove_ire(ipif, ire); 7441 if (ioctl_msg) 7442 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7443 ire_delete(ire); 7444 ire_refrele(ire); 7445 return (err); 7446 } 7447 7448 /* 7449 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7450 */ 7451 /* ARGSUSED */ 7452 int 7453 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7454 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7455 { 7456 ipaddr_t dst_addr; 7457 ipaddr_t gw_addr; 7458 ipaddr_t mask; 7459 int error = 0; 7460 mblk_t *mp1; 7461 struct rtentry *rt; 7462 ipif_t *ipif = NULL; 7463 ip_stack_t *ipst; 7464 7465 ASSERT(q->q_next == NULL); 7466 ipst = CONNQ_TO_IPST(q); 7467 7468 ip1dbg(("ip_siocaddrt:")); 7469 /* Existence of mp1 verified in ip_wput_nondata */ 7470 mp1 = mp->b_cont->b_cont; 7471 rt = (struct rtentry *)mp1->b_rptr; 7472 7473 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7474 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7475 7476 /* 7477 * If the RTF_HOST flag is on, this is a request to assign a gateway 7478 * to a particular host address. In this case, we set the netmask to 7479 * all ones for the particular destination address. Otherwise, 7480 * determine the netmask to be used based on dst_addr and the interfaces 7481 * in use. 7482 */ 7483 if (rt->rt_flags & RTF_HOST) { 7484 mask = IP_HOST_MASK; 7485 } else { 7486 /* 7487 * Note that ip_subnet_mask returns a zero mask in the case of 7488 * default (an all-zeroes address). 7489 */ 7490 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7491 } 7492 7493 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7494 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7495 if (ipif != NULL) 7496 ipif_refrele(ipif); 7497 return (error); 7498 } 7499 7500 /* 7501 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7502 */ 7503 /* ARGSUSED */ 7504 int 7505 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7506 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7507 { 7508 ipaddr_t dst_addr; 7509 ipaddr_t gw_addr; 7510 ipaddr_t mask; 7511 int error; 7512 mblk_t *mp1; 7513 struct rtentry *rt; 7514 ipif_t *ipif = NULL; 7515 ip_stack_t *ipst; 7516 7517 ASSERT(q->q_next == NULL); 7518 ipst = CONNQ_TO_IPST(q); 7519 7520 ip1dbg(("ip_siocdelrt:")); 7521 /* Existence of mp1 verified in ip_wput_nondata */ 7522 mp1 = mp->b_cont->b_cont; 7523 rt = (struct rtentry *)mp1->b_rptr; 7524 7525 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7526 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7527 7528 /* 7529 * If the RTF_HOST flag is on, this is a request to delete a gateway 7530 * to a particular host address. In this case, we set the netmask to 7531 * all ones for the particular destination address. Otherwise, 7532 * determine the netmask to be used based on dst_addr and the interfaces 7533 * in use. 7534 */ 7535 if (rt->rt_flags & RTF_HOST) { 7536 mask = IP_HOST_MASK; 7537 } else { 7538 /* 7539 * Note that ip_subnet_mask returns a zero mask in the case of 7540 * default (an all-zeroes address). 7541 */ 7542 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7543 } 7544 7545 error = ip_rt_delete(dst_addr, mask, gw_addr, 7546 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7547 mp, ip_process_ioctl, ipst); 7548 if (ipif != NULL) 7549 ipif_refrele(ipif); 7550 return (error); 7551 } 7552 7553 /* 7554 * Enqueue the mp onto the ipsq, chained by b_next. 7555 * b_prev stores the function to be executed later, and b_queue the queue 7556 * where this mp originated. 7557 */ 7558 void 7559 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7560 ill_t *pending_ill) 7561 { 7562 conn_t *connp = NULL; 7563 7564 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7565 ASSERT(func != NULL); 7566 7567 mp->b_queue = q; 7568 mp->b_prev = (void *)func; 7569 mp->b_next = NULL; 7570 7571 switch (type) { 7572 case CUR_OP: 7573 if (ipsq->ipsq_mptail != NULL) { 7574 ASSERT(ipsq->ipsq_mphead != NULL); 7575 ipsq->ipsq_mptail->b_next = mp; 7576 } else { 7577 ASSERT(ipsq->ipsq_mphead == NULL); 7578 ipsq->ipsq_mphead = mp; 7579 } 7580 ipsq->ipsq_mptail = mp; 7581 break; 7582 7583 case NEW_OP: 7584 if (ipsq->ipsq_xopq_mptail != NULL) { 7585 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7586 ipsq->ipsq_xopq_mptail->b_next = mp; 7587 } else { 7588 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7589 ipsq->ipsq_xopq_mphead = mp; 7590 } 7591 ipsq->ipsq_xopq_mptail = mp; 7592 break; 7593 default: 7594 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7595 } 7596 7597 if (CONN_Q(q) && pending_ill != NULL) { 7598 connp = Q_TO_CONN(q); 7599 7600 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7601 connp->conn_oper_pending_ill = pending_ill; 7602 } 7603 } 7604 7605 /* 7606 * Return the mp at the head of the ipsq. After emptying the ipsq 7607 * look at the next ioctl, if this ioctl is complete. Otherwise 7608 * return, we will resume when we complete the current ioctl. 7609 * The current ioctl will wait till it gets a response from the 7610 * driver below. 7611 */ 7612 static mblk_t * 7613 ipsq_dq(ipsq_t *ipsq) 7614 { 7615 mblk_t *mp; 7616 7617 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7618 7619 mp = ipsq->ipsq_mphead; 7620 if (mp != NULL) { 7621 ipsq->ipsq_mphead = mp->b_next; 7622 if (ipsq->ipsq_mphead == NULL) 7623 ipsq->ipsq_mptail = NULL; 7624 mp->b_next = NULL; 7625 return (mp); 7626 } 7627 if (ipsq->ipsq_current_ipif != NULL) 7628 return (NULL); 7629 mp = ipsq->ipsq_xopq_mphead; 7630 if (mp != NULL) { 7631 ipsq->ipsq_xopq_mphead = mp->b_next; 7632 if (ipsq->ipsq_xopq_mphead == NULL) 7633 ipsq->ipsq_xopq_mptail = NULL; 7634 mp->b_next = NULL; 7635 return (mp); 7636 } 7637 return (NULL); 7638 } 7639 7640 /* 7641 * Enter the ipsq corresponding to ill, by waiting synchronously till 7642 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7643 * will have to drain completely before ipsq_enter returns success. 7644 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7645 * and the ipsq_exit logic will start the next enqueued ioctl after 7646 * completion of the current ioctl. If 'force' is used, we don't wait 7647 * for the enqueued ioctls. This is needed when a conn_close wants to 7648 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7649 * of an ill can also use this option. But we dont' use it currently. 7650 */ 7651 #define ENTER_SQ_WAIT_TICKS 100 7652 boolean_t 7653 ipsq_enter(ill_t *ill, boolean_t force) 7654 { 7655 ipsq_t *ipsq; 7656 boolean_t waited_enough = B_FALSE; 7657 7658 /* 7659 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7660 * Since the <ill-ipsq> assocs could change while we wait for the 7661 * writer, it is easier to wait on a fixed global rather than try to 7662 * cv_wait on a changing ipsq. 7663 */ 7664 mutex_enter(&ill->ill_lock); 7665 for (;;) { 7666 if (ill->ill_state_flags & ILL_CONDEMNED) { 7667 mutex_exit(&ill->ill_lock); 7668 return (B_FALSE); 7669 } 7670 7671 ipsq = ill->ill_phyint->phyint_ipsq; 7672 mutex_enter(&ipsq->ipsq_lock); 7673 if (ipsq->ipsq_writer == NULL && 7674 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7675 break; 7676 } else if (ipsq->ipsq_writer != NULL) { 7677 mutex_exit(&ipsq->ipsq_lock); 7678 cv_wait(&ill->ill_cv, &ill->ill_lock); 7679 } else { 7680 mutex_exit(&ipsq->ipsq_lock); 7681 if (force) { 7682 (void) cv_timedwait(&ill->ill_cv, 7683 &ill->ill_lock, 7684 lbolt + ENTER_SQ_WAIT_TICKS); 7685 waited_enough = B_TRUE; 7686 continue; 7687 } else { 7688 cv_wait(&ill->ill_cv, &ill->ill_lock); 7689 } 7690 } 7691 } 7692 7693 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7694 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7695 ipsq->ipsq_writer = curthread; 7696 ipsq->ipsq_reentry_cnt++; 7697 #ifdef DEBUG 7698 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7699 #endif 7700 mutex_exit(&ipsq->ipsq_lock); 7701 mutex_exit(&ill->ill_lock); 7702 return (B_TRUE); 7703 } 7704 7705 /* 7706 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7707 * certain critical operations like plumbing (i.e. most set ioctls), 7708 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7709 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7710 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7711 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7712 * threads executing in the ipsq. Responses from the driver pertain to the 7713 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7714 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7715 * 7716 * If a thread does not want to reenter the ipsq when it is already writer, 7717 * it must make sure that the specified reentry point to be called later 7718 * when the ipsq is empty, nor any code path starting from the specified reentry 7719 * point must never ever try to enter the ipsq again. Otherwise it can lead 7720 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7721 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7722 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7723 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7724 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7725 * ioctl if the current ioctl has completed. If the current ioctl is still 7726 * in progress it simply returns. The current ioctl could be waiting for 7727 * a response from another module (arp_ or the driver or could be waiting for 7728 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7729 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7730 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7731 * ipsq_current_ipif is clear which happens only on ioctl completion. 7732 */ 7733 7734 /* 7735 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7736 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7737 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7738 * completion. 7739 */ 7740 ipsq_t * 7741 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7742 ipsq_func_t func, int type, boolean_t reentry_ok) 7743 { 7744 ipsq_t *ipsq; 7745 7746 /* Only 1 of ipif or ill can be specified */ 7747 ASSERT((ipif != NULL) ^ (ill != NULL)); 7748 if (ipif != NULL) 7749 ill = ipif->ipif_ill; 7750 7751 /* 7752 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7753 * ipsq of an ill can't change when ill_lock is held. 7754 */ 7755 GRAB_CONN_LOCK(q); 7756 mutex_enter(&ill->ill_lock); 7757 ipsq = ill->ill_phyint->phyint_ipsq; 7758 mutex_enter(&ipsq->ipsq_lock); 7759 7760 /* 7761 * 1. Enter the ipsq if we are already writer and reentry is ok. 7762 * (Note: If the caller does not specify reentry_ok then neither 7763 * 'func' nor any of its callees must ever attempt to enter the ipsq 7764 * again. Otherwise it can lead to an infinite loop 7765 * 2. Enter the ipsq if there is no current writer and this attempted 7766 * entry is part of the current ioctl or operation 7767 * 3. Enter the ipsq if there is no current writer and this is a new 7768 * ioctl (or operation) and the ioctl (or operation) queue is 7769 * empty and there is no ioctl (or operation) currently in progress 7770 */ 7771 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7772 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7773 ipsq->ipsq_current_ipif == NULL))) || 7774 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7775 /* Success. */ 7776 ipsq->ipsq_reentry_cnt++; 7777 ipsq->ipsq_writer = curthread; 7778 mutex_exit(&ipsq->ipsq_lock); 7779 mutex_exit(&ill->ill_lock); 7780 RELEASE_CONN_LOCK(q); 7781 #ifdef DEBUG 7782 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7783 IPSQ_STACK_DEPTH); 7784 #endif 7785 return (ipsq); 7786 } 7787 7788 ipsq_enq(ipsq, q, mp, func, type, ill); 7789 7790 mutex_exit(&ipsq->ipsq_lock); 7791 mutex_exit(&ill->ill_lock); 7792 RELEASE_CONN_LOCK(q); 7793 return (NULL); 7794 } 7795 7796 /* 7797 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7798 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7799 * cannot be entered, the mp is queued for completion. 7800 */ 7801 void 7802 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7803 boolean_t reentry_ok) 7804 { 7805 ipsq_t *ipsq; 7806 7807 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7808 7809 /* 7810 * Drop the caller's refhold on the ill. This is safe since we either 7811 * entered the IPSQ (and thus are exclusive), or failed to enter the 7812 * IPSQ, in which case we return without accessing ill anymore. This 7813 * is needed because func needs to see the correct refcount. 7814 * e.g. removeif can work only then. 7815 */ 7816 ill_refrele(ill); 7817 if (ipsq != NULL) { 7818 (*func)(ipsq, q, mp, NULL); 7819 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7820 } 7821 } 7822 7823 /* 7824 * If there are more than ILL_GRP_CNT ills in a group, 7825 * we use kmem alloc'd buffers, else use the stack 7826 */ 7827 #define ILL_GRP_CNT 14 7828 /* 7829 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7830 * Called by a thread that is currently exclusive on this ipsq. 7831 */ 7832 void 7833 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7834 { 7835 queue_t *q; 7836 mblk_t *mp; 7837 ipsq_func_t func; 7838 int next; 7839 ill_t **ill_list = NULL; 7840 size_t ill_list_size = 0; 7841 int cnt = 0; 7842 boolean_t need_ipsq_free = B_FALSE; 7843 ip_stack_t *ipst = ipsq->ipsq_ipst; 7844 7845 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7846 mutex_enter(&ipsq->ipsq_lock); 7847 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7848 if (ipsq->ipsq_reentry_cnt != 1) { 7849 ipsq->ipsq_reentry_cnt--; 7850 mutex_exit(&ipsq->ipsq_lock); 7851 return; 7852 } 7853 7854 mp = ipsq_dq(ipsq); 7855 while (mp != NULL) { 7856 again: 7857 mutex_exit(&ipsq->ipsq_lock); 7858 func = (ipsq_func_t)mp->b_prev; 7859 q = (queue_t *)mp->b_queue; 7860 mp->b_prev = NULL; 7861 mp->b_queue = NULL; 7862 7863 /* 7864 * If 'q' is an conn queue, it is valid, since we did a 7865 * a refhold on the connp, at the start of the ioctl. 7866 * If 'q' is an ill queue, it is valid, since close of an 7867 * ill will clean up the 'ipsq'. 7868 */ 7869 (*func)(ipsq, q, mp, NULL); 7870 7871 mutex_enter(&ipsq->ipsq_lock); 7872 mp = ipsq_dq(ipsq); 7873 } 7874 7875 mutex_exit(&ipsq->ipsq_lock); 7876 7877 /* 7878 * Need to grab the locks in the right order. Need to 7879 * atomically check (under ipsq_lock) that there are no 7880 * messages before relinquishing the ipsq. Also need to 7881 * atomically wakeup waiters on ill_cv while holding ill_lock. 7882 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7883 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7884 * to grab ill_g_lock as writer. 7885 */ 7886 rw_enter(&ipst->ips_ill_g_lock, 7887 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7888 7889 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7890 if (ipsq->ipsq_refs != 0) { 7891 /* At most 2 ills v4/v6 per phyint */ 7892 cnt = ipsq->ipsq_refs << 1; 7893 ill_list_size = cnt * sizeof (ill_t *); 7894 /* 7895 * If memory allocation fails, we will do the split 7896 * the next time ipsq_exit is called for whatever reason. 7897 * As long as the ipsq_split flag is set the need to 7898 * split is remembered. 7899 */ 7900 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7901 if (ill_list != NULL) 7902 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7903 } 7904 mutex_enter(&ipsq->ipsq_lock); 7905 mp = ipsq_dq(ipsq); 7906 if (mp != NULL) { 7907 /* oops, some message has landed up, we can't get out */ 7908 if (ill_list != NULL) 7909 ill_unlock_ills(ill_list, cnt); 7910 rw_exit(&ipst->ips_ill_g_lock); 7911 if (ill_list != NULL) 7912 kmem_free(ill_list, ill_list_size); 7913 ill_list = NULL; 7914 ill_list_size = 0; 7915 cnt = 0; 7916 goto again; 7917 } 7918 7919 /* 7920 * Split only if no ioctl is pending and if memory alloc succeeded 7921 * above. 7922 */ 7923 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7924 ill_list != NULL) { 7925 /* 7926 * No new ill can join this ipsq since we are holding the 7927 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7928 * ipsq. ill_split_ipsq may fail due to memory shortage. 7929 * If so we will retry on the next ipsq_exit. 7930 */ 7931 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7932 } 7933 7934 /* 7935 * We are holding the ipsq lock, hence no new messages can 7936 * land up on the ipsq, and there are no messages currently. 7937 * Now safe to get out. Wake up waiters and relinquish ipsq 7938 * atomically while holding ill locks. 7939 */ 7940 ipsq->ipsq_writer = NULL; 7941 ipsq->ipsq_reentry_cnt--; 7942 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7943 #ifdef DEBUG 7944 ipsq->ipsq_depth = 0; 7945 #endif 7946 mutex_exit(&ipsq->ipsq_lock); 7947 /* 7948 * For IPMP this should wake up all ills in this ipsq. 7949 * We need to hold the ill_lock while waking up waiters to 7950 * avoid missed wakeups. But there is no need to acquire all 7951 * the ill locks and then wakeup. If we have not acquired all 7952 * the locks (due to memory failure above) ill_signal_ipsq_ills 7953 * wakes up ills one at a time after getting the right ill_lock 7954 */ 7955 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7956 if (ill_list != NULL) 7957 ill_unlock_ills(ill_list, cnt); 7958 if (ipsq->ipsq_refs == 0) 7959 need_ipsq_free = B_TRUE; 7960 rw_exit(&ipst->ips_ill_g_lock); 7961 if (ill_list != 0) 7962 kmem_free(ill_list, ill_list_size); 7963 7964 if (need_ipsq_free) { 7965 /* 7966 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7967 * looked up. ipsq can be looked up only thru ill or phyint 7968 * and there are no ills/phyint on this ipsq. 7969 */ 7970 ipsq_delete(ipsq); 7971 } 7972 /* 7973 * Now start any igmp or mld timers that could not be started 7974 * while inside the ipsq. The timers can't be started while inside 7975 * the ipsq, since igmp_start_timers may need to call untimeout() 7976 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7977 * there could be a deadlock since the timeout handlers 7978 * mld_timeout_handler / igmp_timeout_handler also synchronously 7979 * wait in ipsq_enter() trying to get the ipsq. 7980 * 7981 * However there is one exception to the above. If this thread is 7982 * itself the igmp/mld timeout handler thread, then we don't want 7983 * to start any new timer until the current handler is done. The 7984 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7985 * all others pass B_TRUE. 7986 */ 7987 if (start_igmp_timer) { 7988 mutex_enter(&ipst->ips_igmp_timer_lock); 7989 next = ipst->ips_igmp_deferred_next; 7990 ipst->ips_igmp_deferred_next = INFINITY; 7991 mutex_exit(&ipst->ips_igmp_timer_lock); 7992 7993 if (next != INFINITY) 7994 igmp_start_timers(next, ipst); 7995 } 7996 7997 if (start_mld_timer) { 7998 mutex_enter(&ipst->ips_mld_timer_lock); 7999 next = ipst->ips_mld_deferred_next; 8000 ipst->ips_mld_deferred_next = INFINITY; 8001 mutex_exit(&ipst->ips_mld_timer_lock); 8002 8003 if (next != INFINITY) 8004 mld_start_timers(next, ipst); 8005 } 8006 } 8007 8008 /* 8009 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8010 * and `ioccmd'. 8011 */ 8012 void 8013 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8014 { 8015 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8016 8017 mutex_enter(&ipsq->ipsq_lock); 8018 ASSERT(ipsq->ipsq_current_ipif == NULL); 8019 ASSERT(ipsq->ipsq_current_ioctl == 0); 8020 ipsq->ipsq_current_ipif = ipif; 8021 ipsq->ipsq_current_ioctl = ioccmd; 8022 mutex_exit(&ipsq->ipsq_lock); 8023 } 8024 8025 /* 8026 * Finish the current exclusive operation on `ipsq'. Note that other 8027 * operations will not be able to proceed until an ipsq_exit() is done. 8028 */ 8029 void 8030 ipsq_current_finish(ipsq_t *ipsq) 8031 { 8032 ipif_t *ipif = ipsq->ipsq_current_ipif; 8033 8034 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8035 8036 /* 8037 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8038 * (but we're careful to never set IPIF_CHANGING in that case). 8039 */ 8040 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8041 mutex_enter(&ipif->ipif_ill->ill_lock); 8042 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8043 8044 /* Send any queued event */ 8045 ill_nic_info_dispatch(ipif->ipif_ill); 8046 mutex_exit(&ipif->ipif_ill->ill_lock); 8047 } 8048 8049 mutex_enter(&ipsq->ipsq_lock); 8050 ASSERT(ipsq->ipsq_current_ipif != NULL); 8051 ipsq->ipsq_current_ipif = NULL; 8052 ipsq->ipsq_current_ioctl = 0; 8053 mutex_exit(&ipsq->ipsq_lock); 8054 } 8055 8056 /* 8057 * The ill is closing. Flush all messages on the ipsq that originated 8058 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8059 * for this ill since ipsq_enter could not have entered until then. 8060 * New messages can't be queued since the CONDEMNED flag is set. 8061 */ 8062 static void 8063 ipsq_flush(ill_t *ill) 8064 { 8065 queue_t *q; 8066 mblk_t *prev; 8067 mblk_t *mp; 8068 mblk_t *mp_next; 8069 ipsq_t *ipsq; 8070 8071 ASSERT(IAM_WRITER_ILL(ill)); 8072 ipsq = ill->ill_phyint->phyint_ipsq; 8073 /* 8074 * Flush any messages sent up by the driver. 8075 */ 8076 mutex_enter(&ipsq->ipsq_lock); 8077 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8078 mp_next = mp->b_next; 8079 q = mp->b_queue; 8080 if (q == ill->ill_rq || q == ill->ill_wq) { 8081 /* Remove the mp from the ipsq */ 8082 if (prev == NULL) 8083 ipsq->ipsq_mphead = mp->b_next; 8084 else 8085 prev->b_next = mp->b_next; 8086 if (ipsq->ipsq_mptail == mp) { 8087 ASSERT(mp_next == NULL); 8088 ipsq->ipsq_mptail = prev; 8089 } 8090 inet_freemsg(mp); 8091 } else { 8092 prev = mp; 8093 } 8094 } 8095 mutex_exit(&ipsq->ipsq_lock); 8096 (void) ipsq_pending_mp_cleanup(ill, NULL); 8097 ipsq_xopq_mp_cleanup(ill, NULL); 8098 ill_pending_mp_cleanup(ill); 8099 } 8100 8101 /* ARGSUSED */ 8102 int 8103 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8104 ip_ioctl_cmd_t *ipip, void *ifreq) 8105 { 8106 ill_t *ill; 8107 struct lifreq *lifr = (struct lifreq *)ifreq; 8108 boolean_t isv6; 8109 conn_t *connp; 8110 ip_stack_t *ipst; 8111 8112 connp = Q_TO_CONN(q); 8113 ipst = connp->conn_netstack->netstack_ip; 8114 isv6 = connp->conn_af_isv6; 8115 /* 8116 * Set original index. 8117 * Failover and failback move logical interfaces 8118 * from one physical interface to another. The 8119 * original index indicates the parent of a logical 8120 * interface, in other words, the physical interface 8121 * the logical interface will be moved back to on 8122 * failback. 8123 */ 8124 8125 /* 8126 * Don't allow the original index to be changed 8127 * for non-failover addresses, autoconfigured 8128 * addresses, or IPv6 link local addresses. 8129 */ 8130 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8131 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8132 return (EINVAL); 8133 } 8134 /* 8135 * The new original index must be in use by some 8136 * physical interface. 8137 */ 8138 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8139 NULL, NULL, ipst); 8140 if (ill == NULL) 8141 return (ENXIO); 8142 ill_refrele(ill); 8143 8144 ipif->ipif_orig_ifindex = lifr->lifr_index; 8145 /* 8146 * When this ipif gets failed back, don't 8147 * preserve the original id, as it is no 8148 * longer applicable. 8149 */ 8150 ipif->ipif_orig_ipifid = 0; 8151 /* 8152 * For IPv4, change the original index of any 8153 * multicast addresses associated with the 8154 * ipif to the new value. 8155 */ 8156 if (!isv6) { 8157 ilm_t *ilm; 8158 8159 mutex_enter(&ipif->ipif_ill->ill_lock); 8160 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8161 ilm = ilm->ilm_next) { 8162 if (ilm->ilm_ipif == ipif) { 8163 ilm->ilm_orig_ifindex = lifr->lifr_index; 8164 } 8165 } 8166 mutex_exit(&ipif->ipif_ill->ill_lock); 8167 } 8168 return (0); 8169 } 8170 8171 /* ARGSUSED */ 8172 int 8173 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8174 ip_ioctl_cmd_t *ipip, void *ifreq) 8175 { 8176 struct lifreq *lifr = (struct lifreq *)ifreq; 8177 8178 /* 8179 * Get the original interface index i.e the one 8180 * before FAILOVER if it ever happened. 8181 */ 8182 lifr->lifr_index = ipif->ipif_orig_ifindex; 8183 return (0); 8184 } 8185 8186 /* 8187 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8188 * refhold and return the associated ipif 8189 */ 8190 /* ARGSUSED */ 8191 int 8192 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8193 cmd_info_t *ci, ipsq_func_t func) 8194 { 8195 boolean_t exists; 8196 struct iftun_req *ta; 8197 ipif_t *ipif; 8198 ill_t *ill; 8199 boolean_t isv6; 8200 mblk_t *mp1; 8201 int error; 8202 conn_t *connp; 8203 ip_stack_t *ipst; 8204 8205 /* Existence verified in ip_wput_nondata */ 8206 mp1 = mp->b_cont->b_cont; 8207 ta = (struct iftun_req *)mp1->b_rptr; 8208 /* 8209 * Null terminate the string to protect against buffer 8210 * overrun. String was generated by user code and may not 8211 * be trusted. 8212 */ 8213 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8214 8215 connp = Q_TO_CONN(q); 8216 isv6 = connp->conn_af_isv6; 8217 ipst = connp->conn_netstack->netstack_ip; 8218 8219 /* Disallows implicit create */ 8220 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8221 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8222 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8223 if (ipif == NULL) 8224 return (error); 8225 8226 if (ipif->ipif_id != 0) { 8227 /* 8228 * We really don't want to set/get tunnel parameters 8229 * on virtual tunnel interfaces. Only allow the 8230 * base tunnel to do these. 8231 */ 8232 ipif_refrele(ipif); 8233 return (EINVAL); 8234 } 8235 8236 /* 8237 * Send down to tunnel mod for ioctl processing. 8238 * Will finish ioctl in ip_rput_other(). 8239 */ 8240 ill = ipif->ipif_ill; 8241 if (ill->ill_net_type == IRE_LOOPBACK) { 8242 ipif_refrele(ipif); 8243 return (EOPNOTSUPP); 8244 } 8245 8246 if (ill->ill_wq == NULL) { 8247 ipif_refrele(ipif); 8248 return (ENXIO); 8249 } 8250 /* 8251 * Mark the ioctl as coming from an IPv6 interface for 8252 * tun's convenience. 8253 */ 8254 if (ill->ill_isv6) 8255 ta->ifta_flags |= 0x80000000; 8256 ci->ci_ipif = ipif; 8257 return (0); 8258 } 8259 8260 /* 8261 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8262 * and return the associated ipif. 8263 * Return value: 8264 * Non zero: An error has occurred. ci may not be filled out. 8265 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8266 * a held ipif in ci.ci_ipif. 8267 */ 8268 int 8269 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8270 cmd_info_t *ci, ipsq_func_t func) 8271 { 8272 sin_t *sin; 8273 sin6_t *sin6; 8274 char *name; 8275 struct ifreq *ifr; 8276 struct lifreq *lifr; 8277 ipif_t *ipif = NULL; 8278 ill_t *ill; 8279 conn_t *connp; 8280 boolean_t isv6; 8281 boolean_t exists; 8282 int err; 8283 mblk_t *mp1; 8284 zoneid_t zoneid; 8285 ip_stack_t *ipst; 8286 8287 if (q->q_next != NULL) { 8288 ill = (ill_t *)q->q_ptr; 8289 isv6 = ill->ill_isv6; 8290 connp = NULL; 8291 zoneid = ALL_ZONES; 8292 ipst = ill->ill_ipst; 8293 } else { 8294 ill = NULL; 8295 connp = Q_TO_CONN(q); 8296 isv6 = connp->conn_af_isv6; 8297 zoneid = connp->conn_zoneid; 8298 if (zoneid == GLOBAL_ZONEID) { 8299 /* global zone can access ipifs in all zones */ 8300 zoneid = ALL_ZONES; 8301 } 8302 ipst = connp->conn_netstack->netstack_ip; 8303 } 8304 8305 /* Has been checked in ip_wput_nondata */ 8306 mp1 = mp->b_cont->b_cont; 8307 8308 if (ipip->ipi_cmd_type == IF_CMD) { 8309 /* This a old style SIOC[GS]IF* command */ 8310 ifr = (struct ifreq *)mp1->b_rptr; 8311 /* 8312 * Null terminate the string to protect against buffer 8313 * overrun. String was generated by user code and may not 8314 * be trusted. 8315 */ 8316 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8317 sin = (sin_t *)&ifr->ifr_addr; 8318 name = ifr->ifr_name; 8319 ci->ci_sin = sin; 8320 ci->ci_sin6 = NULL; 8321 ci->ci_lifr = (struct lifreq *)ifr; 8322 } else { 8323 /* This a new style SIOC[GS]LIF* command */ 8324 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8325 lifr = (struct lifreq *)mp1->b_rptr; 8326 /* 8327 * Null terminate the string to protect against buffer 8328 * overrun. String was generated by user code and may not 8329 * be trusted. 8330 */ 8331 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8332 name = lifr->lifr_name; 8333 sin = (sin_t *)&lifr->lifr_addr; 8334 sin6 = (sin6_t *)&lifr->lifr_addr; 8335 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8336 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8337 LIFNAMSIZ); 8338 } 8339 ci->ci_sin = sin; 8340 ci->ci_sin6 = sin6; 8341 ci->ci_lifr = lifr; 8342 } 8343 8344 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8345 /* 8346 * The ioctl will be failed if the ioctl comes down 8347 * an conn stream 8348 */ 8349 if (ill == NULL) { 8350 /* 8351 * Not an ill queue, return EINVAL same as the 8352 * old error code. 8353 */ 8354 return (ENXIO); 8355 } 8356 ipif = ill->ill_ipif; 8357 ipif_refhold(ipif); 8358 } else { 8359 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8360 &exists, isv6, zoneid, 8361 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8362 ipst); 8363 if (ipif == NULL) { 8364 if (err == EINPROGRESS) 8365 return (err); 8366 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8367 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8368 /* 8369 * Need to try both v4 and v6 since this 8370 * ioctl can come down either v4 or v6 8371 * socket. The lifreq.lifr_family passed 8372 * down by this ioctl is AF_UNSPEC. 8373 */ 8374 ipif = ipif_lookup_on_name(name, 8375 mi_strlen(name), B_FALSE, &exists, !isv6, 8376 zoneid, (connp == NULL) ? q : 8377 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8378 if (err == EINPROGRESS) 8379 return (err); 8380 } 8381 err = 0; /* Ensure we don't use it below */ 8382 } 8383 } 8384 8385 /* 8386 * Old style [GS]IFCMD does not admit IPv6 ipif 8387 */ 8388 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8389 ipif_refrele(ipif); 8390 return (ENXIO); 8391 } 8392 8393 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8394 name[0] == '\0') { 8395 /* 8396 * Handle a or a SIOC?IF* with a null name 8397 * during plumb (on the ill queue before the I_PLINK). 8398 */ 8399 ipif = ill->ill_ipif; 8400 ipif_refhold(ipif); 8401 } 8402 8403 if (ipif == NULL) 8404 return (ENXIO); 8405 8406 /* 8407 * Allow only GET operations if this ipif has been created 8408 * temporarily due to a MOVE operation. 8409 */ 8410 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8411 ipif_refrele(ipif); 8412 return (EINVAL); 8413 } 8414 8415 ci->ci_ipif = ipif; 8416 return (0); 8417 } 8418 8419 /* 8420 * Return the total number of ipifs. 8421 */ 8422 static uint_t 8423 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8424 { 8425 uint_t numifs = 0; 8426 ill_t *ill; 8427 ill_walk_context_t ctx; 8428 ipif_t *ipif; 8429 8430 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8431 ill = ILL_START_WALK_V4(&ctx, ipst); 8432 8433 while (ill != NULL) { 8434 for (ipif = ill->ill_ipif; ipif != NULL; 8435 ipif = ipif->ipif_next) { 8436 if (ipif->ipif_zoneid == zoneid || 8437 ipif->ipif_zoneid == ALL_ZONES) 8438 numifs++; 8439 } 8440 ill = ill_next(&ctx, ill); 8441 } 8442 rw_exit(&ipst->ips_ill_g_lock); 8443 return (numifs); 8444 } 8445 8446 /* 8447 * Return the total number of ipifs. 8448 */ 8449 static uint_t 8450 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8451 { 8452 uint_t numifs = 0; 8453 ill_t *ill; 8454 ipif_t *ipif; 8455 ill_walk_context_t ctx; 8456 8457 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8458 8459 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8460 if (family == AF_INET) 8461 ill = ILL_START_WALK_V4(&ctx, ipst); 8462 else if (family == AF_INET6) 8463 ill = ILL_START_WALK_V6(&ctx, ipst); 8464 else 8465 ill = ILL_START_WALK_ALL(&ctx, ipst); 8466 8467 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8468 for (ipif = ill->ill_ipif; ipif != NULL; 8469 ipif = ipif->ipif_next) { 8470 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8471 !(lifn_flags & LIFC_NOXMIT)) 8472 continue; 8473 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8474 !(lifn_flags & LIFC_TEMPORARY)) 8475 continue; 8476 if (((ipif->ipif_flags & 8477 (IPIF_NOXMIT|IPIF_NOLOCAL| 8478 IPIF_DEPRECATED)) || 8479 IS_LOOPBACK(ill) || 8480 !(ipif->ipif_flags & IPIF_UP)) && 8481 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8482 continue; 8483 8484 if (zoneid != ipif->ipif_zoneid && 8485 ipif->ipif_zoneid != ALL_ZONES && 8486 (zoneid != GLOBAL_ZONEID || 8487 !(lifn_flags & LIFC_ALLZONES))) 8488 continue; 8489 8490 numifs++; 8491 } 8492 } 8493 rw_exit(&ipst->ips_ill_g_lock); 8494 return (numifs); 8495 } 8496 8497 uint_t 8498 ip_get_lifsrcofnum(ill_t *ill) 8499 { 8500 uint_t numifs = 0; 8501 ill_t *ill_head = ill; 8502 ip_stack_t *ipst = ill->ill_ipst; 8503 8504 /* 8505 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8506 * other thread may be trying to relink the ILLs in this usesrc group 8507 * and adjusting the ill_usesrc_grp_next pointers 8508 */ 8509 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8510 if ((ill->ill_usesrc_ifindex == 0) && 8511 (ill->ill_usesrc_grp_next != NULL)) { 8512 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8513 ill = ill->ill_usesrc_grp_next) 8514 numifs++; 8515 } 8516 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8517 8518 return (numifs); 8519 } 8520 8521 /* Null values are passed in for ipif, sin, and ifreq */ 8522 /* ARGSUSED */ 8523 int 8524 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8525 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8526 { 8527 int *nump; 8528 conn_t *connp = Q_TO_CONN(q); 8529 8530 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8531 8532 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8533 nump = (int *)mp->b_cont->b_cont->b_rptr; 8534 8535 *nump = ip_get_numifs(connp->conn_zoneid, 8536 connp->conn_netstack->netstack_ip); 8537 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8538 return (0); 8539 } 8540 8541 /* Null values are passed in for ipif, sin, and ifreq */ 8542 /* ARGSUSED */ 8543 int 8544 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8545 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8546 { 8547 struct lifnum *lifn; 8548 mblk_t *mp1; 8549 conn_t *connp = Q_TO_CONN(q); 8550 8551 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8552 8553 /* Existence checked in ip_wput_nondata */ 8554 mp1 = mp->b_cont->b_cont; 8555 8556 lifn = (struct lifnum *)mp1->b_rptr; 8557 switch (lifn->lifn_family) { 8558 case AF_UNSPEC: 8559 case AF_INET: 8560 case AF_INET6: 8561 break; 8562 default: 8563 return (EAFNOSUPPORT); 8564 } 8565 8566 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8567 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8568 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8569 return (0); 8570 } 8571 8572 /* ARGSUSED */ 8573 int 8574 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8575 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8576 { 8577 STRUCT_HANDLE(ifconf, ifc); 8578 mblk_t *mp1; 8579 struct iocblk *iocp; 8580 struct ifreq *ifr; 8581 ill_walk_context_t ctx; 8582 ill_t *ill; 8583 ipif_t *ipif; 8584 struct sockaddr_in *sin; 8585 int32_t ifclen; 8586 zoneid_t zoneid; 8587 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8588 8589 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8590 8591 ip1dbg(("ip_sioctl_get_ifconf")); 8592 /* Existence verified in ip_wput_nondata */ 8593 mp1 = mp->b_cont->b_cont; 8594 iocp = (struct iocblk *)mp->b_rptr; 8595 zoneid = Q_TO_CONN(q)->conn_zoneid; 8596 8597 /* 8598 * The original SIOCGIFCONF passed in a struct ifconf which specified 8599 * the user buffer address and length into which the list of struct 8600 * ifreqs was to be copied. Since AT&T Streams does not seem to 8601 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8602 * the SIOCGIFCONF operation was redefined to simply provide 8603 * a large output buffer into which we are supposed to jam the ifreq 8604 * array. The same ioctl command code was used, despite the fact that 8605 * both the applications and the kernel code had to change, thus making 8606 * it impossible to support both interfaces. 8607 * 8608 * For reasons not good enough to try to explain, the following 8609 * algorithm is used for deciding what to do with one of these: 8610 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8611 * form with the output buffer coming down as the continuation message. 8612 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8613 * and we have to copy in the ifconf structure to find out how big the 8614 * output buffer is and where to copy out to. Sure no problem... 8615 * 8616 */ 8617 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8618 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8619 int numifs = 0; 8620 size_t ifc_bufsize; 8621 8622 /* 8623 * Must be (better be!) continuation of a TRANSPARENT 8624 * IOCTL. We just copied in the ifconf structure. 8625 */ 8626 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8627 (struct ifconf *)mp1->b_rptr); 8628 8629 /* 8630 * Allocate a buffer to hold requested information. 8631 * 8632 * If ifc_len is larger than what is needed, we only 8633 * allocate what we will use. 8634 * 8635 * If ifc_len is smaller than what is needed, return 8636 * EINVAL. 8637 * 8638 * XXX: the ill_t structure can hava 2 counters, for 8639 * v4 and v6 (not just ill_ipif_up_count) to store the 8640 * number of interfaces for a device, so we don't need 8641 * to count them here... 8642 */ 8643 numifs = ip_get_numifs(zoneid, ipst); 8644 8645 ifclen = STRUCT_FGET(ifc, ifc_len); 8646 ifc_bufsize = numifs * sizeof (struct ifreq); 8647 if (ifc_bufsize > ifclen) { 8648 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8649 /* old behaviour */ 8650 return (EINVAL); 8651 } else { 8652 ifc_bufsize = ifclen; 8653 } 8654 } 8655 8656 mp1 = mi_copyout_alloc(q, mp, 8657 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8658 if (mp1 == NULL) 8659 return (ENOMEM); 8660 8661 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8662 } 8663 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8664 /* 8665 * the SIOCGIFCONF ioctl only knows about 8666 * IPv4 addresses, so don't try to tell 8667 * it about interfaces with IPv6-only 8668 * addresses. (Last parm 'isv6' is B_FALSE) 8669 */ 8670 8671 ifr = (struct ifreq *)mp1->b_rptr; 8672 8673 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8674 ill = ILL_START_WALK_V4(&ctx, ipst); 8675 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8676 for (ipif = ill->ill_ipif; ipif != NULL; 8677 ipif = ipif->ipif_next) { 8678 if (zoneid != ipif->ipif_zoneid && 8679 ipif->ipif_zoneid != ALL_ZONES) 8680 continue; 8681 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8682 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8683 /* old behaviour */ 8684 rw_exit(&ipst->ips_ill_g_lock); 8685 return (EINVAL); 8686 } else { 8687 goto if_copydone; 8688 } 8689 } 8690 ipif_get_name(ipif, ifr->ifr_name, 8691 sizeof (ifr->ifr_name)); 8692 sin = (sin_t *)&ifr->ifr_addr; 8693 *sin = sin_null; 8694 sin->sin_family = AF_INET; 8695 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8696 ifr++; 8697 } 8698 } 8699 if_copydone: 8700 rw_exit(&ipst->ips_ill_g_lock); 8701 mp1->b_wptr = (uchar_t *)ifr; 8702 8703 if (STRUCT_BUF(ifc) != NULL) { 8704 STRUCT_FSET(ifc, ifc_len, 8705 (int)((uchar_t *)ifr - mp1->b_rptr)); 8706 } 8707 return (0); 8708 } 8709 8710 /* 8711 * Get the interfaces using the address hosted on the interface passed in, 8712 * as a source adddress 8713 */ 8714 /* ARGSUSED */ 8715 int 8716 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8717 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8718 { 8719 mblk_t *mp1; 8720 ill_t *ill, *ill_head; 8721 ipif_t *ipif, *orig_ipif; 8722 int numlifs = 0; 8723 size_t lifs_bufsize, lifsmaxlen; 8724 struct lifreq *lifr; 8725 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8726 uint_t ifindex; 8727 zoneid_t zoneid; 8728 int err = 0; 8729 boolean_t isv6 = B_FALSE; 8730 struct sockaddr_in *sin; 8731 struct sockaddr_in6 *sin6; 8732 STRUCT_HANDLE(lifsrcof, lifs); 8733 ip_stack_t *ipst; 8734 8735 ipst = CONNQ_TO_IPST(q); 8736 8737 ASSERT(q->q_next == NULL); 8738 8739 zoneid = Q_TO_CONN(q)->conn_zoneid; 8740 8741 /* Existence verified in ip_wput_nondata */ 8742 mp1 = mp->b_cont->b_cont; 8743 8744 /* 8745 * Must be (better be!) continuation of a TRANSPARENT 8746 * IOCTL. We just copied in the lifsrcof structure. 8747 */ 8748 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8749 (struct lifsrcof *)mp1->b_rptr); 8750 8751 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8752 return (EINVAL); 8753 8754 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8755 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8756 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8757 ip_process_ioctl, &err, ipst); 8758 if (ipif == NULL) { 8759 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8760 ifindex)); 8761 return (err); 8762 } 8763 8764 8765 /* Allocate a buffer to hold requested information */ 8766 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8767 lifs_bufsize = numlifs * sizeof (struct lifreq); 8768 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8769 /* The actual size needed is always returned in lifs_len */ 8770 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8771 8772 /* If the amount we need is more than what is passed in, abort */ 8773 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8774 ipif_refrele(ipif); 8775 return (0); 8776 } 8777 8778 mp1 = mi_copyout_alloc(q, mp, 8779 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8780 if (mp1 == NULL) { 8781 ipif_refrele(ipif); 8782 return (ENOMEM); 8783 } 8784 8785 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8786 bzero(mp1->b_rptr, lifs_bufsize); 8787 8788 lifr = (struct lifreq *)mp1->b_rptr; 8789 8790 ill = ill_head = ipif->ipif_ill; 8791 orig_ipif = ipif; 8792 8793 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8794 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8795 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8796 8797 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8798 for (; (ill != NULL) && (ill != ill_head); 8799 ill = ill->ill_usesrc_grp_next) { 8800 8801 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8802 break; 8803 8804 ipif = ill->ill_ipif; 8805 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8806 if (ipif->ipif_isv6) { 8807 sin6 = (sin6_t *)&lifr->lifr_addr; 8808 *sin6 = sin6_null; 8809 sin6->sin6_family = AF_INET6; 8810 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8811 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8812 &ipif->ipif_v6net_mask); 8813 } else { 8814 sin = (sin_t *)&lifr->lifr_addr; 8815 *sin = sin_null; 8816 sin->sin_family = AF_INET; 8817 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8818 lifr->lifr_addrlen = ip_mask_to_plen( 8819 ipif->ipif_net_mask); 8820 } 8821 lifr++; 8822 } 8823 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8824 rw_exit(&ipst->ips_ill_g_lock); 8825 ipif_refrele(orig_ipif); 8826 mp1->b_wptr = (uchar_t *)lifr; 8827 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8828 8829 return (0); 8830 } 8831 8832 /* ARGSUSED */ 8833 int 8834 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8835 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8836 { 8837 mblk_t *mp1; 8838 int list; 8839 ill_t *ill; 8840 ipif_t *ipif; 8841 int flags; 8842 int numlifs = 0; 8843 size_t lifc_bufsize; 8844 struct lifreq *lifr; 8845 sa_family_t family; 8846 struct sockaddr_in *sin; 8847 struct sockaddr_in6 *sin6; 8848 ill_walk_context_t ctx; 8849 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8850 int32_t lifclen; 8851 zoneid_t zoneid; 8852 STRUCT_HANDLE(lifconf, lifc); 8853 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8854 8855 ip1dbg(("ip_sioctl_get_lifconf")); 8856 8857 ASSERT(q->q_next == NULL); 8858 8859 zoneid = Q_TO_CONN(q)->conn_zoneid; 8860 8861 /* Existence verified in ip_wput_nondata */ 8862 mp1 = mp->b_cont->b_cont; 8863 8864 /* 8865 * An extended version of SIOCGIFCONF that takes an 8866 * additional address family and flags field. 8867 * AF_UNSPEC retrieve both IPv4 and IPv6. 8868 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8869 * interfaces are omitted. 8870 * Similarly, IPIF_TEMPORARY interfaces are omitted 8871 * unless LIFC_TEMPORARY is specified. 8872 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8873 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8874 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8875 * has priority over LIFC_NOXMIT. 8876 */ 8877 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8878 8879 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8880 return (EINVAL); 8881 8882 /* 8883 * Must be (better be!) continuation of a TRANSPARENT 8884 * IOCTL. We just copied in the lifconf structure. 8885 */ 8886 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8887 8888 family = STRUCT_FGET(lifc, lifc_family); 8889 flags = STRUCT_FGET(lifc, lifc_flags); 8890 8891 switch (family) { 8892 case AF_UNSPEC: 8893 /* 8894 * walk all ILL's. 8895 */ 8896 list = MAX_G_HEADS; 8897 break; 8898 case AF_INET: 8899 /* 8900 * walk only IPV4 ILL's. 8901 */ 8902 list = IP_V4_G_HEAD; 8903 break; 8904 case AF_INET6: 8905 /* 8906 * walk only IPV6 ILL's. 8907 */ 8908 list = IP_V6_G_HEAD; 8909 break; 8910 default: 8911 return (EAFNOSUPPORT); 8912 } 8913 8914 /* 8915 * Allocate a buffer to hold requested information. 8916 * 8917 * If lifc_len is larger than what is needed, we only 8918 * allocate what we will use. 8919 * 8920 * If lifc_len is smaller than what is needed, return 8921 * EINVAL. 8922 */ 8923 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8924 lifc_bufsize = numlifs * sizeof (struct lifreq); 8925 lifclen = STRUCT_FGET(lifc, lifc_len); 8926 if (lifc_bufsize > lifclen) { 8927 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8928 return (EINVAL); 8929 else 8930 lifc_bufsize = lifclen; 8931 } 8932 8933 mp1 = mi_copyout_alloc(q, mp, 8934 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8935 if (mp1 == NULL) 8936 return (ENOMEM); 8937 8938 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8939 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8940 8941 lifr = (struct lifreq *)mp1->b_rptr; 8942 8943 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8944 ill = ill_first(list, list, &ctx, ipst); 8945 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8946 for (ipif = ill->ill_ipif; ipif != NULL; 8947 ipif = ipif->ipif_next) { 8948 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8949 !(flags & LIFC_NOXMIT)) 8950 continue; 8951 8952 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8953 !(flags & LIFC_TEMPORARY)) 8954 continue; 8955 8956 if (((ipif->ipif_flags & 8957 (IPIF_NOXMIT|IPIF_NOLOCAL| 8958 IPIF_DEPRECATED)) || 8959 IS_LOOPBACK(ill) || 8960 !(ipif->ipif_flags & IPIF_UP)) && 8961 (flags & LIFC_EXTERNAL_SOURCE)) 8962 continue; 8963 8964 if (zoneid != ipif->ipif_zoneid && 8965 ipif->ipif_zoneid != ALL_ZONES && 8966 (zoneid != GLOBAL_ZONEID || 8967 !(flags & LIFC_ALLZONES))) 8968 continue; 8969 8970 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8971 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8972 rw_exit(&ipst->ips_ill_g_lock); 8973 return (EINVAL); 8974 } else { 8975 goto lif_copydone; 8976 } 8977 } 8978 8979 ipif_get_name(ipif, lifr->lifr_name, 8980 sizeof (lifr->lifr_name)); 8981 if (ipif->ipif_isv6) { 8982 sin6 = (sin6_t *)&lifr->lifr_addr; 8983 *sin6 = sin6_null; 8984 sin6->sin6_family = AF_INET6; 8985 sin6->sin6_addr = 8986 ipif->ipif_v6lcl_addr; 8987 lifr->lifr_addrlen = 8988 ip_mask_to_plen_v6( 8989 &ipif->ipif_v6net_mask); 8990 } else { 8991 sin = (sin_t *)&lifr->lifr_addr; 8992 *sin = sin_null; 8993 sin->sin_family = AF_INET; 8994 sin->sin_addr.s_addr = 8995 ipif->ipif_lcl_addr; 8996 lifr->lifr_addrlen = 8997 ip_mask_to_plen( 8998 ipif->ipif_net_mask); 8999 } 9000 lifr++; 9001 } 9002 } 9003 lif_copydone: 9004 rw_exit(&ipst->ips_ill_g_lock); 9005 9006 mp1->b_wptr = (uchar_t *)lifr; 9007 if (STRUCT_BUF(lifc) != NULL) { 9008 STRUCT_FSET(lifc, lifc_len, 9009 (int)((uchar_t *)lifr - mp1->b_rptr)); 9010 } 9011 return (0); 9012 } 9013 9014 /* ARGSUSED */ 9015 int 9016 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9017 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9018 { 9019 ip_stack_t *ipst; 9020 9021 if (q->q_next == NULL) 9022 ipst = CONNQ_TO_IPST(q); 9023 else 9024 ipst = ILLQ_TO_IPST(q); 9025 9026 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9027 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9028 return (0); 9029 } 9030 9031 static void 9032 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9033 { 9034 ip6_asp_t *table; 9035 size_t table_size; 9036 mblk_t *data_mp; 9037 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9038 ip_stack_t *ipst; 9039 9040 if (q->q_next == NULL) 9041 ipst = CONNQ_TO_IPST(q); 9042 else 9043 ipst = ILLQ_TO_IPST(q); 9044 9045 /* These two ioctls are I_STR only */ 9046 if (iocp->ioc_count == TRANSPARENT) { 9047 miocnak(q, mp, 0, EINVAL); 9048 return; 9049 } 9050 9051 data_mp = mp->b_cont; 9052 if (data_mp == NULL) { 9053 /* The user passed us a NULL argument */ 9054 table = NULL; 9055 table_size = iocp->ioc_count; 9056 } else { 9057 /* 9058 * The user provided a table. The stream head 9059 * may have copied in the user data in chunks, 9060 * so make sure everything is pulled up 9061 * properly. 9062 */ 9063 if (MBLKL(data_mp) < iocp->ioc_count) { 9064 mblk_t *new_data_mp; 9065 if ((new_data_mp = msgpullup(data_mp, -1)) == 9066 NULL) { 9067 miocnak(q, mp, 0, ENOMEM); 9068 return; 9069 } 9070 freemsg(data_mp); 9071 data_mp = new_data_mp; 9072 mp->b_cont = data_mp; 9073 } 9074 table = (ip6_asp_t *)data_mp->b_rptr; 9075 table_size = iocp->ioc_count; 9076 } 9077 9078 switch (iocp->ioc_cmd) { 9079 case SIOCGIP6ADDRPOLICY: 9080 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9081 if (iocp->ioc_rval == -1) 9082 iocp->ioc_error = EINVAL; 9083 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9084 else if (table != NULL && 9085 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9086 ip6_asp_t *src = table; 9087 ip6_asp32_t *dst = (void *)table; 9088 int count = table_size / sizeof (ip6_asp_t); 9089 int i; 9090 9091 /* 9092 * We need to do an in-place shrink of the array 9093 * to match the alignment attributes of the 9094 * 32-bit ABI looking at it. 9095 */ 9096 /* LINTED: logical expression always true: op "||" */ 9097 ASSERT(sizeof (*src) > sizeof (*dst)); 9098 for (i = 1; i < count; i++) 9099 bcopy(src + i, dst + i, sizeof (*dst)); 9100 } 9101 #endif 9102 break; 9103 9104 case SIOCSIP6ADDRPOLICY: 9105 ASSERT(mp->b_prev == NULL); 9106 mp->b_prev = (void *)q; 9107 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9108 /* 9109 * We pass in the datamodel here so that the ip6_asp_replace() 9110 * routine can handle converting from 32-bit to native formats 9111 * where necessary. 9112 * 9113 * A better way to handle this might be to convert the inbound 9114 * data structure here, and hang it off a new 'mp'; thus the 9115 * ip6_asp_replace() logic would always be dealing with native 9116 * format data structures.. 9117 * 9118 * (An even simpler way to handle these ioctls is to just 9119 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9120 * and just recompile everything that depends on it.) 9121 */ 9122 #endif 9123 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9124 iocp->ioc_flag & IOC_MODELS); 9125 return; 9126 } 9127 9128 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9129 qreply(q, mp); 9130 } 9131 9132 static void 9133 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9134 { 9135 mblk_t *data_mp; 9136 struct dstinforeq *dir; 9137 uint8_t *end, *cur; 9138 in6_addr_t *daddr, *saddr; 9139 ipaddr_t v4daddr; 9140 ire_t *ire; 9141 char *slabel, *dlabel; 9142 boolean_t isipv4; 9143 int match_ire; 9144 ill_t *dst_ill; 9145 ipif_t *src_ipif, *ire_ipif; 9146 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9147 zoneid_t zoneid; 9148 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9149 9150 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9151 zoneid = Q_TO_CONN(q)->conn_zoneid; 9152 9153 /* 9154 * This ioctl is I_STR only, and must have a 9155 * data mblk following the M_IOCTL mblk. 9156 */ 9157 data_mp = mp->b_cont; 9158 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9159 miocnak(q, mp, 0, EINVAL); 9160 return; 9161 } 9162 9163 if (MBLKL(data_mp) < iocp->ioc_count) { 9164 mblk_t *new_data_mp; 9165 9166 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9167 miocnak(q, mp, 0, ENOMEM); 9168 return; 9169 } 9170 freemsg(data_mp); 9171 data_mp = new_data_mp; 9172 mp->b_cont = data_mp; 9173 } 9174 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9175 9176 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9177 end - cur >= sizeof (struct dstinforeq); 9178 cur += sizeof (struct dstinforeq)) { 9179 dir = (struct dstinforeq *)cur; 9180 daddr = &dir->dir_daddr; 9181 saddr = &dir->dir_saddr; 9182 9183 /* 9184 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9185 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9186 * and ipif_select_source[_v6]() do not. 9187 */ 9188 dir->dir_dscope = ip_addr_scope_v6(daddr); 9189 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9190 9191 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9192 if (isipv4) { 9193 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9194 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9195 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9196 } else { 9197 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9198 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9199 } 9200 if (ire == NULL) { 9201 dir->dir_dreachable = 0; 9202 9203 /* move on to next dst addr */ 9204 continue; 9205 } 9206 dir->dir_dreachable = 1; 9207 9208 ire_ipif = ire->ire_ipif; 9209 if (ire_ipif == NULL) 9210 goto next_dst; 9211 9212 /* 9213 * We expect to get back an interface ire or a 9214 * gateway ire cache entry. For both types, the 9215 * output interface is ire_ipif->ipif_ill. 9216 */ 9217 dst_ill = ire_ipif->ipif_ill; 9218 dir->dir_dmactype = dst_ill->ill_mactype; 9219 9220 if (isipv4) { 9221 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9222 } else { 9223 src_ipif = ipif_select_source_v6(dst_ill, 9224 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9225 zoneid); 9226 } 9227 if (src_ipif == NULL) 9228 goto next_dst; 9229 9230 *saddr = src_ipif->ipif_v6lcl_addr; 9231 dir->dir_sscope = ip_addr_scope_v6(saddr); 9232 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9233 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9234 dir->dir_sdeprecated = 9235 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9236 ipif_refrele(src_ipif); 9237 next_dst: 9238 ire_refrele(ire); 9239 } 9240 miocack(q, mp, iocp->ioc_count, 0); 9241 } 9242 9243 9244 /* 9245 * Check if this is an address assigned to this machine. 9246 * Skips interfaces that are down by using ire checks. 9247 * Translates mapped addresses to v4 addresses and then 9248 * treats them as such, returning true if the v4 address 9249 * associated with this mapped address is configured. 9250 * Note: Applications will have to be careful what they do 9251 * with the response; use of mapped addresses limits 9252 * what can be done with the socket, especially with 9253 * respect to socket options and ioctls - neither IPv4 9254 * options nor IPv6 sticky options/ancillary data options 9255 * may be used. 9256 */ 9257 /* ARGSUSED */ 9258 int 9259 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9260 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9261 { 9262 struct sioc_addrreq *sia; 9263 sin_t *sin; 9264 ire_t *ire; 9265 mblk_t *mp1; 9266 zoneid_t zoneid; 9267 ip_stack_t *ipst; 9268 9269 ip1dbg(("ip_sioctl_tmyaddr")); 9270 9271 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9272 zoneid = Q_TO_CONN(q)->conn_zoneid; 9273 ipst = CONNQ_TO_IPST(q); 9274 9275 /* Existence verified in ip_wput_nondata */ 9276 mp1 = mp->b_cont->b_cont; 9277 sia = (struct sioc_addrreq *)mp1->b_rptr; 9278 sin = (sin_t *)&sia->sa_addr; 9279 switch (sin->sin_family) { 9280 case AF_INET6: { 9281 sin6_t *sin6 = (sin6_t *)sin; 9282 9283 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9284 ipaddr_t v4_addr; 9285 9286 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9287 v4_addr); 9288 ire = ire_ctable_lookup(v4_addr, 0, 9289 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9290 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9291 } else { 9292 in6_addr_t v6addr; 9293 9294 v6addr = sin6->sin6_addr; 9295 ire = ire_ctable_lookup_v6(&v6addr, 0, 9296 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9297 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9298 } 9299 break; 9300 } 9301 case AF_INET: { 9302 ipaddr_t v4addr; 9303 9304 v4addr = sin->sin_addr.s_addr; 9305 ire = ire_ctable_lookup(v4addr, 0, 9306 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9307 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9308 break; 9309 } 9310 default: 9311 return (EAFNOSUPPORT); 9312 } 9313 if (ire != NULL) { 9314 sia->sa_res = 1; 9315 ire_refrele(ire); 9316 } else { 9317 sia->sa_res = 0; 9318 } 9319 return (0); 9320 } 9321 9322 /* 9323 * Check if this is an address assigned on-link i.e. neighbor, 9324 * and makes sure it's reachable from the current zone. 9325 * Returns true for my addresses as well. 9326 * Translates mapped addresses to v4 addresses and then 9327 * treats them as such, returning true if the v4 address 9328 * associated with this mapped address is configured. 9329 * Note: Applications will have to be careful what they do 9330 * with the response; use of mapped addresses limits 9331 * what can be done with the socket, especially with 9332 * respect to socket options and ioctls - neither IPv4 9333 * options nor IPv6 sticky options/ancillary data options 9334 * may be used. 9335 */ 9336 /* ARGSUSED */ 9337 int 9338 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9339 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9340 { 9341 struct sioc_addrreq *sia; 9342 sin_t *sin; 9343 mblk_t *mp1; 9344 ire_t *ire = NULL; 9345 zoneid_t zoneid; 9346 ip_stack_t *ipst; 9347 9348 ip1dbg(("ip_sioctl_tonlink")); 9349 9350 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9351 zoneid = Q_TO_CONN(q)->conn_zoneid; 9352 ipst = CONNQ_TO_IPST(q); 9353 9354 /* Existence verified in ip_wput_nondata */ 9355 mp1 = mp->b_cont->b_cont; 9356 sia = (struct sioc_addrreq *)mp1->b_rptr; 9357 sin = (sin_t *)&sia->sa_addr; 9358 9359 /* 9360 * Match addresses with a zero gateway field to avoid 9361 * routes going through a router. 9362 * Exclude broadcast and multicast addresses. 9363 */ 9364 switch (sin->sin_family) { 9365 case AF_INET6: { 9366 sin6_t *sin6 = (sin6_t *)sin; 9367 9368 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9369 ipaddr_t v4_addr; 9370 9371 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9372 v4_addr); 9373 if (!CLASSD(v4_addr)) { 9374 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9375 NULL, NULL, zoneid, NULL, 9376 MATCH_IRE_GW, ipst); 9377 } 9378 } else { 9379 in6_addr_t v6addr; 9380 in6_addr_t v6gw; 9381 9382 v6addr = sin6->sin6_addr; 9383 v6gw = ipv6_all_zeros; 9384 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9385 ire = ire_route_lookup_v6(&v6addr, 0, 9386 &v6gw, 0, NULL, NULL, zoneid, 9387 NULL, MATCH_IRE_GW, ipst); 9388 } 9389 } 9390 break; 9391 } 9392 case AF_INET: { 9393 ipaddr_t v4addr; 9394 9395 v4addr = sin->sin_addr.s_addr; 9396 if (!CLASSD(v4addr)) { 9397 ire = ire_route_lookup(v4addr, 0, 0, 0, 9398 NULL, NULL, zoneid, NULL, 9399 MATCH_IRE_GW, ipst); 9400 } 9401 break; 9402 } 9403 default: 9404 return (EAFNOSUPPORT); 9405 } 9406 sia->sa_res = 0; 9407 if (ire != NULL) { 9408 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9409 IRE_LOCAL|IRE_LOOPBACK)) { 9410 sia->sa_res = 1; 9411 } 9412 ire_refrele(ire); 9413 } 9414 return (0); 9415 } 9416 9417 /* 9418 * TBD: implement when kernel maintaines a list of site prefixes. 9419 */ 9420 /* ARGSUSED */ 9421 int 9422 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9423 ip_ioctl_cmd_t *ipip, void *ifreq) 9424 { 9425 return (ENXIO); 9426 } 9427 9428 /* ARGSUSED */ 9429 int 9430 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9431 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9432 { 9433 ill_t *ill; 9434 mblk_t *mp1; 9435 conn_t *connp; 9436 boolean_t success; 9437 9438 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9439 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9440 /* ioctl comes down on an conn */ 9441 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9442 connp = Q_TO_CONN(q); 9443 9444 mp->b_datap->db_type = M_IOCTL; 9445 9446 /* 9447 * Send down a copy. (copymsg does not copy b_next/b_prev). 9448 * The original mp contains contaminated b_next values due to 'mi', 9449 * which is needed to do the mi_copy_done. Unfortunately if we 9450 * send down the original mblk itself and if we are popped due to an 9451 * an unplumb before the response comes back from tunnel, 9452 * the streamhead (which does a freemsg) will see this contaminated 9453 * message and the assertion in freemsg about non-null b_next/b_prev 9454 * will panic a DEBUG kernel. 9455 */ 9456 mp1 = copymsg(mp); 9457 if (mp1 == NULL) 9458 return (ENOMEM); 9459 9460 ill = ipif->ipif_ill; 9461 mutex_enter(&connp->conn_lock); 9462 mutex_enter(&ill->ill_lock); 9463 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9464 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9465 mp, 0); 9466 } else { 9467 success = ill_pending_mp_add(ill, connp, mp); 9468 } 9469 mutex_exit(&ill->ill_lock); 9470 mutex_exit(&connp->conn_lock); 9471 9472 if (success) { 9473 ip1dbg(("sending down tunparam request ")); 9474 putnext(ill->ill_wq, mp1); 9475 return (EINPROGRESS); 9476 } else { 9477 /* The conn has started closing */ 9478 freemsg(mp1); 9479 return (EINTR); 9480 } 9481 } 9482 9483 /* 9484 * ARP IOCTLs. 9485 * How does IP get in the business of fronting ARP configuration/queries? 9486 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9487 * are by tradition passed in through a datagram socket. That lands in IP. 9488 * As it happens, this is just as well since the interface is quite crude in 9489 * that it passes in no information about protocol or hardware types, or 9490 * interface association. After making the protocol assumption, IP is in 9491 * the position to look up the name of the ILL, which ARP will need, and 9492 * format a request that can be handled by ARP. The request is passed up 9493 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9494 * back a response. ARP supports its own set of more general IOCTLs, in 9495 * case anyone is interested. 9496 */ 9497 /* ARGSUSED */ 9498 int 9499 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9500 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9501 { 9502 mblk_t *mp1; 9503 mblk_t *mp2; 9504 mblk_t *pending_mp; 9505 ipaddr_t ipaddr; 9506 area_t *area; 9507 struct iocblk *iocp; 9508 conn_t *connp; 9509 struct arpreq *ar; 9510 struct xarpreq *xar; 9511 int flags, alength; 9512 char *lladdr; 9513 ip_stack_t *ipst; 9514 ill_t *ill = ipif->ipif_ill; 9515 boolean_t if_arp_ioctl = B_FALSE; 9516 9517 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9518 connp = Q_TO_CONN(q); 9519 ipst = connp->conn_netstack->netstack_ip; 9520 9521 if (ipip->ipi_cmd_type == XARP_CMD) { 9522 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9523 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9524 ar = NULL; 9525 9526 flags = xar->xarp_flags; 9527 lladdr = LLADDR(&xar->xarp_ha); 9528 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9529 /* 9530 * Validate against user's link layer address length 9531 * input and name and addr length limits. 9532 */ 9533 alength = ill->ill_phys_addr_length; 9534 if (ipip->ipi_cmd == SIOCSXARP) { 9535 if (alength != xar->xarp_ha.sdl_alen || 9536 (alength + xar->xarp_ha.sdl_nlen > 9537 sizeof (xar->xarp_ha.sdl_data))) 9538 return (EINVAL); 9539 } 9540 } else { 9541 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9542 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9543 xar = NULL; 9544 9545 flags = ar->arp_flags; 9546 lladdr = ar->arp_ha.sa_data; 9547 /* 9548 * Theoretically, the sa_family could tell us what link 9549 * layer type this operation is trying to deal with. By 9550 * common usage AF_UNSPEC means ethernet. We'll assume 9551 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9552 * for now. Our new SIOC*XARP ioctls can be used more 9553 * generally. 9554 * 9555 * If the underlying media happens to have a non 6 byte 9556 * address, arp module will fail set/get, but the del 9557 * operation will succeed. 9558 */ 9559 alength = 6; 9560 if ((ipip->ipi_cmd != SIOCDARP) && 9561 (alength != ill->ill_phys_addr_length)) { 9562 return (EINVAL); 9563 } 9564 } 9565 9566 /* 9567 * We are going to pass up to ARP a packet chain that looks 9568 * like: 9569 * 9570 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9571 * 9572 * Get a copy of the original IOCTL mblk to head the chain, 9573 * to be sent up (in mp1). Also get another copy to store 9574 * in the ill_pending_mp list, for matching the response 9575 * when it comes back from ARP. 9576 */ 9577 mp1 = copyb(mp); 9578 pending_mp = copymsg(mp); 9579 if (mp1 == NULL || pending_mp == NULL) { 9580 if (mp1 != NULL) 9581 freeb(mp1); 9582 if (pending_mp != NULL) 9583 inet_freemsg(pending_mp); 9584 return (ENOMEM); 9585 } 9586 9587 ipaddr = sin->sin_addr.s_addr; 9588 9589 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9590 (caddr_t)&ipaddr); 9591 if (mp2 == NULL) { 9592 freeb(mp1); 9593 inet_freemsg(pending_mp); 9594 return (ENOMEM); 9595 } 9596 /* Put together the chain. */ 9597 mp1->b_cont = mp2; 9598 mp1->b_datap->db_type = M_IOCTL; 9599 mp2->b_cont = mp; 9600 mp2->b_datap->db_type = M_DATA; 9601 9602 iocp = (struct iocblk *)mp1->b_rptr; 9603 9604 /* 9605 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9606 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9607 * cp_private field (or cp_rval on 32-bit systems) in place of the 9608 * ioc_count field; set ioc_count to be correct. 9609 */ 9610 iocp->ioc_count = MBLKL(mp1->b_cont); 9611 9612 /* 9613 * Set the proper command in the ARP message. 9614 * Convert the SIOC{G|S|D}ARP calls into our 9615 * AR_ENTRY_xxx calls. 9616 */ 9617 area = (area_t *)mp2->b_rptr; 9618 switch (iocp->ioc_cmd) { 9619 case SIOCDARP: 9620 case SIOCDXARP: 9621 /* 9622 * We defer deleting the corresponding IRE until 9623 * we return from arp. 9624 */ 9625 area->area_cmd = AR_ENTRY_DELETE; 9626 area->area_proto_mask_offset = 0; 9627 break; 9628 case SIOCGARP: 9629 case SIOCGXARP: 9630 area->area_cmd = AR_ENTRY_SQUERY; 9631 area->area_proto_mask_offset = 0; 9632 break; 9633 case SIOCSARP: 9634 case SIOCSXARP: 9635 /* 9636 * Delete the corresponding ire to make sure IP will 9637 * pick up any change from arp. 9638 */ 9639 if (!if_arp_ioctl) { 9640 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9641 } else { 9642 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9643 if (ipif != NULL) { 9644 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9645 ipst); 9646 ipif_refrele(ipif); 9647 } 9648 } 9649 break; 9650 } 9651 iocp->ioc_cmd = area->area_cmd; 9652 9653 /* 9654 * Fill in the rest of the ARP operation fields. 9655 */ 9656 area->area_hw_addr_length = alength; 9657 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9658 9659 /* Translate the flags. */ 9660 if (flags & ATF_PERM) 9661 area->area_flags |= ACE_F_PERMANENT; 9662 if (flags & ATF_PUBL) 9663 area->area_flags |= ACE_F_PUBLISH; 9664 if (flags & ATF_AUTHORITY) 9665 area->area_flags |= ACE_F_AUTHORITY; 9666 9667 /* 9668 * Before sending 'mp' to ARP, we have to clear the b_next 9669 * and b_prev. Otherwise if STREAMS encounters such a message 9670 * in freemsg(), (because ARP can close any time) it can cause 9671 * a panic. But mi code needs the b_next and b_prev values of 9672 * mp->b_cont, to complete the ioctl. So we store it here 9673 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9674 * when the response comes down from ARP. 9675 */ 9676 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9677 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9678 mp->b_cont->b_next = NULL; 9679 mp->b_cont->b_prev = NULL; 9680 9681 mutex_enter(&connp->conn_lock); 9682 mutex_enter(&ill->ill_lock); 9683 /* conn has not yet started closing, hence this can't fail */ 9684 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9685 mutex_exit(&ill->ill_lock); 9686 mutex_exit(&connp->conn_lock); 9687 9688 /* 9689 * Up to ARP it goes. The response will come back in ip_wput() as an 9690 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9691 */ 9692 putnext(ill->ill_rq, mp1); 9693 return (EINPROGRESS); 9694 } 9695 9696 /* 9697 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9698 * the associated sin and refhold and return the associated ipif via `ci'. 9699 */ 9700 int 9701 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9702 cmd_info_t *ci, ipsq_func_t func) 9703 { 9704 mblk_t *mp1; 9705 int err; 9706 sin_t *sin; 9707 conn_t *connp; 9708 ipif_t *ipif; 9709 ire_t *ire = NULL; 9710 ill_t *ill = NULL; 9711 boolean_t exists; 9712 ip_stack_t *ipst; 9713 struct arpreq *ar; 9714 struct xarpreq *xar; 9715 struct sockaddr_dl *sdl; 9716 9717 /* ioctl comes down on a conn */ 9718 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9719 connp = Q_TO_CONN(q); 9720 if (connp->conn_af_isv6) 9721 return (ENXIO); 9722 9723 ipst = connp->conn_netstack->netstack_ip; 9724 9725 /* Verified in ip_wput_nondata */ 9726 mp1 = mp->b_cont->b_cont; 9727 9728 if (ipip->ipi_cmd_type == XARP_CMD) { 9729 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9730 xar = (struct xarpreq *)mp1->b_rptr; 9731 sin = (sin_t *)&xar->xarp_pa; 9732 sdl = &xar->xarp_ha; 9733 9734 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9735 return (ENXIO); 9736 if (sdl->sdl_nlen >= LIFNAMSIZ) 9737 return (EINVAL); 9738 } else { 9739 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9740 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9741 ar = (struct arpreq *)mp1->b_rptr; 9742 sin = (sin_t *)&ar->arp_pa; 9743 } 9744 9745 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9746 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9747 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9748 mp, func, &err, ipst); 9749 if (ipif == NULL) 9750 return (err); 9751 if (ipif->ipif_id != 0 || 9752 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9753 ipif_refrele(ipif); 9754 return (ENXIO); 9755 } 9756 } else { 9757 /* 9758 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9759 * 0: use the IP address to figure out the ill. In the IPMP 9760 * case, a simple forwarding table lookup will return the 9761 * IRE_IF_RESOLVER for the first interface in the group, which 9762 * might not be the interface on which the requested IP 9763 * address was resolved due to the ill selection algorithm 9764 * (see ip_newroute_get_dst_ill()). So we do a cache table 9765 * lookup first: if the IRE cache entry for the IP address is 9766 * still there, it will contain the ill pointer for the right 9767 * interface, so we use that. If the cache entry has been 9768 * flushed, we fall back to the forwarding table lookup. This 9769 * should be rare enough since IRE cache entries have a longer 9770 * life expectancy than ARP cache entries. 9771 */ 9772 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9773 ipst); 9774 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9775 ((ill = ire_to_ill(ire)) == NULL) || 9776 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9777 if (ire != NULL) 9778 ire_refrele(ire); 9779 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9780 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9781 NULL, MATCH_IRE_TYPE, ipst); 9782 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9783 9784 if (ire != NULL) 9785 ire_refrele(ire); 9786 return (ENXIO); 9787 } 9788 } 9789 ASSERT(ire != NULL && ill != NULL); 9790 ipif = ill->ill_ipif; 9791 ipif_refhold(ipif); 9792 ire_refrele(ire); 9793 } 9794 ci->ci_sin = sin; 9795 ci->ci_ipif = ipif; 9796 return (0); 9797 } 9798 9799 /* 9800 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9801 * atomically set/clear the muxids. Also complete the ioctl by acking or 9802 * naking it. Note that the code is structured such that the link type, 9803 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9804 * its clones use the persistent link, while pppd(1M) and perhaps many 9805 * other daemons may use non-persistent link. When combined with some 9806 * ill_t states, linking and unlinking lower streams may be used as 9807 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9808 */ 9809 /* ARGSUSED */ 9810 void 9811 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9812 { 9813 mblk_t *mp1, *mp2; 9814 struct linkblk *li; 9815 struct ipmx_s *ipmxp; 9816 ill_t *ill; 9817 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9818 int err = 0; 9819 boolean_t entered_ipsq = B_FALSE; 9820 boolean_t islink; 9821 ip_stack_t *ipst; 9822 9823 if (CONN_Q(q)) 9824 ipst = CONNQ_TO_IPST(q); 9825 else 9826 ipst = ILLQ_TO_IPST(q); 9827 9828 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9829 ioccmd == I_LINK || ioccmd == I_UNLINK); 9830 9831 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9832 9833 mp1 = mp->b_cont; /* This is the linkblk info */ 9834 li = (struct linkblk *)mp1->b_rptr; 9835 9836 /* 9837 * ARP has added this special mblk, and the utility is asking us 9838 * to perform consistency checks, and also atomically set the 9839 * muxid. Ifconfig is an example. It achieves this by using 9840 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9841 * to /dev/udp[6] stream for use as the mux when plinking the IP 9842 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9843 * and other comments in this routine for more details. 9844 */ 9845 mp2 = mp1->b_cont; /* This is added by ARP */ 9846 9847 /* 9848 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9849 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9850 * get the special mblk above. For backward compatibility, we 9851 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9852 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9853 * not atomic, and can leave the streams unplumbable if the utility 9854 * is interrupted before it does the SIOCSLIFMUXID. 9855 */ 9856 if (mp2 == NULL) { 9857 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9858 if (err == EINPROGRESS) 9859 return; 9860 goto done; 9861 } 9862 9863 /* 9864 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9865 * ARP has appended this last mblk to tell us whether the lower stream 9866 * is an arp-dev stream or an IP module stream. 9867 */ 9868 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9869 if (ipmxp->ipmx_arpdev_stream) { 9870 /* 9871 * The lower stream is the arp-dev stream. 9872 */ 9873 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9874 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9875 if (ill == NULL) { 9876 if (err == EINPROGRESS) 9877 return; 9878 err = EINVAL; 9879 goto done; 9880 } 9881 9882 if (ipsq == NULL) { 9883 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9884 NEW_OP, B_TRUE); 9885 if (ipsq == NULL) { 9886 ill_refrele(ill); 9887 return; 9888 } 9889 entered_ipsq = B_TRUE; 9890 } 9891 ASSERT(IAM_WRITER_ILL(ill)); 9892 ill_refrele(ill); 9893 9894 /* 9895 * To ensure consistency between IP and ARP, the following 9896 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9897 * This is because the muxid's are stored in the IP stream on 9898 * the ill. 9899 * 9900 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9901 * the ARP stream. On an arp-dev stream, IP checks that it is 9902 * not yet plinked, and it also checks that the corresponding 9903 * IP stream is already plinked. 9904 * 9905 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9906 * punlinking the IP stream. IP does not allow punlink of the 9907 * IP stream unless the arp stream has been punlinked. 9908 */ 9909 if ((islink && 9910 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9911 (!islink && ill->ill_arp_muxid != li->l_index)) { 9912 err = EINVAL; 9913 goto done; 9914 } 9915 ill->ill_arp_muxid = islink ? li->l_index : 0; 9916 } else { 9917 /* 9918 * The lower stream is probably an IP module stream. Do 9919 * consistency checking. 9920 */ 9921 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9922 if (err == EINPROGRESS) 9923 return; 9924 } 9925 done: 9926 if (err == 0) 9927 miocack(q, mp, 0, 0); 9928 else 9929 miocnak(q, mp, 0, err); 9930 9931 /* Conn was refheld in ip_sioctl_copyin_setup */ 9932 if (CONN_Q(q)) 9933 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9934 if (entered_ipsq) 9935 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9936 } 9937 9938 /* 9939 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9940 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9941 * module stream). If `doconsist' is set, then do the extended consistency 9942 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9943 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9944 * an error code on failure. 9945 */ 9946 static int 9947 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9948 struct linkblk *li, boolean_t doconsist) 9949 { 9950 ill_t *ill; 9951 queue_t *ipwq, *dwq; 9952 const char *name; 9953 struct qinit *qinfo; 9954 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9955 boolean_t entered_ipsq = B_FALSE; 9956 9957 /* 9958 * Walk the lower stream to verify it's the IP module stream. 9959 * The IP module is identified by its name, wput function, 9960 * and non-NULL q_next. STREAMS ensures that the lower stream 9961 * (li->l_qbot) will not vanish until this ioctl completes. 9962 */ 9963 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9964 qinfo = ipwq->q_qinfo; 9965 name = qinfo->qi_minfo->mi_idname; 9966 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9967 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9968 break; 9969 } 9970 } 9971 9972 /* 9973 * If this isn't an IP module stream, bail. 9974 */ 9975 if (ipwq == NULL) 9976 return (0); 9977 9978 ill = ipwq->q_ptr; 9979 ASSERT(ill != NULL); 9980 9981 if (ipsq == NULL) { 9982 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9983 NEW_OP, B_TRUE); 9984 if (ipsq == NULL) 9985 return (EINPROGRESS); 9986 entered_ipsq = B_TRUE; 9987 } 9988 ASSERT(IAM_WRITER_ILL(ill)); 9989 9990 if (doconsist) { 9991 /* 9992 * Consistency checking requires that I_{P}LINK occurs 9993 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9994 * occurs prior to clearing ill_arp_muxid. 9995 */ 9996 if ((islink && ill->ill_ip_muxid != 0) || 9997 (!islink && ill->ill_arp_muxid != 0)) { 9998 if (entered_ipsq) 9999 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10000 return (EINVAL); 10001 } 10002 } 10003 10004 /* 10005 * As part of I_{P}LINKing, stash the number of downstream modules and 10006 * the read queue of the module immediately below IP in the ill. 10007 * These are used during the capability negotiation below. 10008 */ 10009 ill->ill_lmod_rq = NULL; 10010 ill->ill_lmod_cnt = 0; 10011 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10012 ill->ill_lmod_rq = RD(dwq); 10013 for (; dwq != NULL; dwq = dwq->q_next) 10014 ill->ill_lmod_cnt++; 10015 } 10016 10017 if (doconsist) 10018 ill->ill_ip_muxid = islink ? li->l_index : 0; 10019 10020 /* 10021 * If there's at least one up ipif on this ill, then we're bound to 10022 * the underlying driver via DLPI. In that case, renegotiate 10023 * capabilities to account for any possible change in modules 10024 * interposed between IP and the driver. 10025 */ 10026 if (ill->ill_ipif_up_count > 0) { 10027 if (islink) 10028 ill_capability_probe(ill); 10029 else 10030 ill_capability_reset(ill); 10031 } 10032 10033 if (entered_ipsq) 10034 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10035 10036 return (0); 10037 } 10038 10039 /* 10040 * Search the ioctl command in the ioctl tables and return a pointer 10041 * to the ioctl command information. The ioctl command tables are 10042 * static and fully populated at compile time. 10043 */ 10044 ip_ioctl_cmd_t * 10045 ip_sioctl_lookup(int ioc_cmd) 10046 { 10047 int index; 10048 ip_ioctl_cmd_t *ipip; 10049 ip_ioctl_cmd_t *ipip_end; 10050 10051 if (ioc_cmd == IPI_DONTCARE) 10052 return (NULL); 10053 10054 /* 10055 * Do a 2 step search. First search the indexed table 10056 * based on the least significant byte of the ioctl cmd. 10057 * If we don't find a match, then search the misc table 10058 * serially. 10059 */ 10060 index = ioc_cmd & 0xFF; 10061 if (index < ip_ndx_ioctl_count) { 10062 ipip = &ip_ndx_ioctl_table[index]; 10063 if (ipip->ipi_cmd == ioc_cmd) { 10064 /* Found a match in the ndx table */ 10065 return (ipip); 10066 } 10067 } 10068 10069 /* Search the misc table */ 10070 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10071 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10072 if (ipip->ipi_cmd == ioc_cmd) 10073 /* Found a match in the misc table */ 10074 return (ipip); 10075 } 10076 10077 return (NULL); 10078 } 10079 10080 /* 10081 * Wrapper function for resuming deferred ioctl processing 10082 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10083 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10084 */ 10085 /* ARGSUSED */ 10086 void 10087 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10088 void *dummy_arg) 10089 { 10090 ip_sioctl_copyin_setup(q, mp); 10091 } 10092 10093 /* 10094 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10095 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10096 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10097 * We establish here the size of the block to be copied in. mi_copyin 10098 * arranges for this to happen, an processing continues in ip_wput with 10099 * an M_IOCDATA message. 10100 */ 10101 void 10102 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10103 { 10104 int copyin_size; 10105 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10106 ip_ioctl_cmd_t *ipip; 10107 cred_t *cr; 10108 ip_stack_t *ipst; 10109 10110 if (CONN_Q(q)) 10111 ipst = CONNQ_TO_IPST(q); 10112 else 10113 ipst = ILLQ_TO_IPST(q); 10114 10115 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10116 if (ipip == NULL) { 10117 /* 10118 * The ioctl is not one we understand or own. 10119 * Pass it along to be processed down stream, 10120 * if this is a module instance of IP, else nak 10121 * the ioctl. 10122 */ 10123 if (q->q_next == NULL) { 10124 goto nak; 10125 } else { 10126 putnext(q, mp); 10127 return; 10128 } 10129 } 10130 10131 /* 10132 * If this is deferred, then we will do all the checks when we 10133 * come back. 10134 */ 10135 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10136 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10137 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10138 return; 10139 } 10140 10141 /* 10142 * Only allow a very small subset of IP ioctls on this stream if 10143 * IP is a module and not a driver. Allowing ioctls to be processed 10144 * in this case may cause assert failures or data corruption. 10145 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10146 * ioctls allowed on an IP module stream, after which this stream 10147 * normally becomes a multiplexor (at which time the stream head 10148 * will fail all ioctls). 10149 */ 10150 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10151 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10152 /* 10153 * Pass common Streams ioctls which the IP 10154 * module does not own or consume along to 10155 * be processed down stream. 10156 */ 10157 putnext(q, mp); 10158 return; 10159 } else { 10160 goto nak; 10161 } 10162 } 10163 10164 /* Make sure we have ioctl data to process. */ 10165 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10166 goto nak; 10167 10168 /* 10169 * Prefer dblk credential over ioctl credential; some synthesized 10170 * ioctls have kcred set because there's no way to crhold() 10171 * a credential in some contexts. (ioc_cr is not crfree() by 10172 * the framework; the caller of ioctl needs to hold the reference 10173 * for the duration of the call). 10174 */ 10175 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10176 10177 /* Make sure normal users don't send down privileged ioctls */ 10178 if ((ipip->ipi_flags & IPI_PRIV) && 10179 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10180 /* We checked the privilege earlier but log it here */ 10181 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10182 return; 10183 } 10184 10185 /* 10186 * The ioctl command tables can only encode fixed length 10187 * ioctl data. If the length is variable, the table will 10188 * encode the length as zero. Such special cases are handled 10189 * below in the switch. 10190 */ 10191 if (ipip->ipi_copyin_size != 0) { 10192 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10193 return; 10194 } 10195 10196 switch (iocp->ioc_cmd) { 10197 case O_SIOCGIFCONF: 10198 case SIOCGIFCONF: 10199 /* 10200 * This IOCTL is hilarious. See comments in 10201 * ip_sioctl_get_ifconf for the story. 10202 */ 10203 if (iocp->ioc_count == TRANSPARENT) 10204 copyin_size = SIZEOF_STRUCT(ifconf, 10205 iocp->ioc_flag); 10206 else 10207 copyin_size = iocp->ioc_count; 10208 mi_copyin(q, mp, NULL, copyin_size); 10209 return; 10210 10211 case O_SIOCGLIFCONF: 10212 case SIOCGLIFCONF: 10213 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10214 mi_copyin(q, mp, NULL, copyin_size); 10215 return; 10216 10217 case SIOCGLIFSRCOF: 10218 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10219 mi_copyin(q, mp, NULL, copyin_size); 10220 return; 10221 case SIOCGIP6ADDRPOLICY: 10222 ip_sioctl_ip6addrpolicy(q, mp); 10223 ip6_asp_table_refrele(ipst); 10224 return; 10225 10226 case SIOCSIP6ADDRPOLICY: 10227 ip_sioctl_ip6addrpolicy(q, mp); 10228 return; 10229 10230 case SIOCGDSTINFO: 10231 ip_sioctl_dstinfo(q, mp); 10232 ip6_asp_table_refrele(ipst); 10233 return; 10234 10235 case I_PLINK: 10236 case I_PUNLINK: 10237 case I_LINK: 10238 case I_UNLINK: 10239 /* 10240 * We treat non-persistent link similarly as the persistent 10241 * link case, in terms of plumbing/unplumbing, as well as 10242 * dynamic re-plumbing events indicator. See comments 10243 * in ip_sioctl_plink() for more. 10244 * 10245 * Request can be enqueued in the 'ipsq' while waiting 10246 * to become exclusive. So bump up the conn ref. 10247 */ 10248 if (CONN_Q(q)) 10249 CONN_INC_REF(Q_TO_CONN(q)); 10250 ip_sioctl_plink(NULL, q, mp, NULL); 10251 return; 10252 10253 case ND_GET: 10254 case ND_SET: 10255 /* 10256 * Use of the nd table requires holding the reader lock. 10257 * Modifying the nd table thru nd_load/nd_unload requires 10258 * the writer lock. 10259 */ 10260 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10261 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10262 rw_exit(&ipst->ips_ip_g_nd_lock); 10263 10264 if (iocp->ioc_error) 10265 iocp->ioc_count = 0; 10266 mp->b_datap->db_type = M_IOCACK; 10267 qreply(q, mp); 10268 return; 10269 } 10270 rw_exit(&ipst->ips_ip_g_nd_lock); 10271 /* 10272 * We don't understand this subioctl of ND_GET / ND_SET. 10273 * Maybe intended for some driver / module below us 10274 */ 10275 if (q->q_next) { 10276 putnext(q, mp); 10277 } else { 10278 iocp->ioc_error = ENOENT; 10279 mp->b_datap->db_type = M_IOCNAK; 10280 iocp->ioc_count = 0; 10281 qreply(q, mp); 10282 } 10283 return; 10284 10285 case IP_IOCTL: 10286 ip_wput_ioctl(q, mp); 10287 return; 10288 default: 10289 cmn_err(CE_PANIC, "should not happen "); 10290 } 10291 nak: 10292 if (mp->b_cont != NULL) { 10293 freemsg(mp->b_cont); 10294 mp->b_cont = NULL; 10295 } 10296 iocp->ioc_error = EINVAL; 10297 mp->b_datap->db_type = M_IOCNAK; 10298 iocp->ioc_count = 0; 10299 qreply(q, mp); 10300 } 10301 10302 /* ip_wput hands off ARP IOCTL responses to us */ 10303 void 10304 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10305 { 10306 struct arpreq *ar; 10307 struct xarpreq *xar; 10308 area_t *area; 10309 mblk_t *area_mp; 10310 struct iocblk *iocp; 10311 mblk_t *orig_ioc_mp, *tmp; 10312 struct iocblk *orig_iocp; 10313 ill_t *ill; 10314 conn_t *connp = NULL; 10315 uint_t ioc_id; 10316 mblk_t *pending_mp; 10317 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10318 int *flagsp; 10319 char *storage = NULL; 10320 sin_t *sin; 10321 ipaddr_t addr; 10322 int err; 10323 ip_stack_t *ipst; 10324 10325 ill = q->q_ptr; 10326 ASSERT(ill != NULL); 10327 ipst = ill->ill_ipst; 10328 10329 /* 10330 * We should get back from ARP a packet chain that looks like: 10331 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10332 */ 10333 if (!(area_mp = mp->b_cont) || 10334 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10335 !(orig_ioc_mp = area_mp->b_cont) || 10336 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10337 freemsg(mp); 10338 return; 10339 } 10340 10341 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10342 10343 tmp = (orig_ioc_mp->b_cont)->b_cont; 10344 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10345 (orig_iocp->ioc_cmd == SIOCSXARP) || 10346 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10347 x_arp_ioctl = B_TRUE; 10348 xar = (struct xarpreq *)tmp->b_rptr; 10349 sin = (sin_t *)&xar->xarp_pa; 10350 flagsp = &xar->xarp_flags; 10351 storage = xar->xarp_ha.sdl_data; 10352 if (xar->xarp_ha.sdl_nlen != 0) 10353 ifx_arp_ioctl = B_TRUE; 10354 } else { 10355 ar = (struct arpreq *)tmp->b_rptr; 10356 sin = (sin_t *)&ar->arp_pa; 10357 flagsp = &ar->arp_flags; 10358 storage = ar->arp_ha.sa_data; 10359 } 10360 10361 iocp = (struct iocblk *)mp->b_rptr; 10362 10363 /* 10364 * Pick out the originating queue based on the ioc_id. 10365 */ 10366 ioc_id = iocp->ioc_id; 10367 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10368 if (pending_mp == NULL) { 10369 ASSERT(connp == NULL); 10370 inet_freemsg(mp); 10371 return; 10372 } 10373 ASSERT(connp != NULL); 10374 q = CONNP_TO_WQ(connp); 10375 10376 /* Uncouple the internally generated IOCTL from the original one */ 10377 area = (area_t *)area_mp->b_rptr; 10378 area_mp->b_cont = NULL; 10379 10380 /* 10381 * Restore the b_next and b_prev used by mi code. This is needed 10382 * to complete the ioctl using mi* functions. We stored them in 10383 * the pending mp prior to sending the request to ARP. 10384 */ 10385 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10386 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10387 inet_freemsg(pending_mp); 10388 10389 /* 10390 * We're done if there was an error or if this is not an SIOCG{X}ARP 10391 * Catch the case where there is an IRE_CACHE by no entry in the 10392 * arp table. 10393 */ 10394 addr = sin->sin_addr.s_addr; 10395 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10396 ire_t *ire; 10397 dl_unitdata_req_t *dlup; 10398 mblk_t *llmp; 10399 int addr_len; 10400 ill_t *ipsqill = NULL; 10401 10402 if (ifx_arp_ioctl) { 10403 /* 10404 * There's no need to lookup the ill, since 10405 * we've already done that when we started 10406 * processing the ioctl and sent the message 10407 * to ARP on that ill. So use the ill that 10408 * is stored in q->q_ptr. 10409 */ 10410 ipsqill = ill; 10411 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10412 ipsqill->ill_ipif, ALL_ZONES, 10413 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10414 } else { 10415 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10416 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10417 if (ire != NULL) 10418 ipsqill = ire_to_ill(ire); 10419 } 10420 10421 if ((x_arp_ioctl) && (ipsqill != NULL)) 10422 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10423 10424 if (ire != NULL) { 10425 /* 10426 * Since the ire obtained from cachetable is used for 10427 * mac addr copying below, treat an incomplete ire as if 10428 * as if we never found it. 10429 */ 10430 if (ire->ire_nce != NULL && 10431 ire->ire_nce->nce_state != ND_REACHABLE) { 10432 ire_refrele(ire); 10433 ire = NULL; 10434 ipsqill = NULL; 10435 goto errack; 10436 } 10437 *flagsp = ATF_INUSE; 10438 llmp = (ire->ire_nce != NULL ? 10439 ire->ire_nce->nce_res_mp : NULL); 10440 if (llmp != NULL && ipsqill != NULL) { 10441 uchar_t *macaddr; 10442 10443 addr_len = ipsqill->ill_phys_addr_length; 10444 if (x_arp_ioctl && ((addr_len + 10445 ipsqill->ill_name_length) > 10446 sizeof (xar->xarp_ha.sdl_data))) { 10447 ire_refrele(ire); 10448 freemsg(mp); 10449 ip_ioctl_finish(q, orig_ioc_mp, 10450 EINVAL, NO_COPYOUT, NULL); 10451 return; 10452 } 10453 *flagsp |= ATF_COM; 10454 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10455 if (ipsqill->ill_sap_length < 0) 10456 macaddr = llmp->b_rptr + 10457 dlup->dl_dest_addr_offset; 10458 else 10459 macaddr = llmp->b_rptr + 10460 dlup->dl_dest_addr_offset + 10461 ipsqill->ill_sap_length; 10462 /* 10463 * For SIOCGARP, MAC address length 10464 * validation has already been done 10465 * before the ioctl was issued to ARP to 10466 * allow it to progress only on 6 byte 10467 * addressable (ethernet like) media. Thus 10468 * the mac address copying can not overwrite 10469 * the sa_data area below. 10470 */ 10471 bcopy(macaddr, storage, addr_len); 10472 } 10473 /* Ditch the internal IOCTL. */ 10474 freemsg(mp); 10475 ire_refrele(ire); 10476 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10477 return; 10478 } 10479 } 10480 10481 /* 10482 * Delete the coresponding IRE_CACHE if any. 10483 * Reset the error if there was one (in case there was no entry 10484 * in arp.) 10485 */ 10486 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10487 ipif_t *ipintf = NULL; 10488 10489 if (ifx_arp_ioctl) { 10490 /* 10491 * There's no need to lookup the ill, since 10492 * we've already done that when we started 10493 * processing the ioctl and sent the message 10494 * to ARP on that ill. So use the ill that 10495 * is stored in q->q_ptr. 10496 */ 10497 ipintf = ill->ill_ipif; 10498 } 10499 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10500 /* 10501 * The address in "addr" may be an entry for a 10502 * router. If that's true, then any off-net 10503 * IRE_CACHE entries that go through the router 10504 * with address "addr" must be clobbered. Use 10505 * ire_walk to achieve this goal. 10506 */ 10507 if (ifx_arp_ioctl) 10508 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10509 ire_delete_cache_gw, (char *)&addr, ill); 10510 else 10511 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10512 ALL_ZONES, ipst); 10513 iocp->ioc_error = 0; 10514 } 10515 } 10516 errack: 10517 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10518 err = iocp->ioc_error; 10519 freemsg(mp); 10520 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10521 return; 10522 } 10523 10524 /* 10525 * Completion of an SIOCG{X}ARP. Translate the information from 10526 * the area_t into the struct {x}arpreq. 10527 */ 10528 if (x_arp_ioctl) { 10529 storage += ill_xarp_info(&xar->xarp_ha, ill); 10530 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10531 sizeof (xar->xarp_ha.sdl_data)) { 10532 freemsg(mp); 10533 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10534 NULL); 10535 return; 10536 } 10537 } 10538 *flagsp = ATF_INUSE; 10539 if (area->area_flags & ACE_F_PERMANENT) 10540 *flagsp |= ATF_PERM; 10541 if (area->area_flags & ACE_F_PUBLISH) 10542 *flagsp |= ATF_PUBL; 10543 if (area->area_flags & ACE_F_AUTHORITY) 10544 *flagsp |= ATF_AUTHORITY; 10545 if (area->area_hw_addr_length != 0) { 10546 *flagsp |= ATF_COM; 10547 /* 10548 * For SIOCGARP, MAC address length validation has 10549 * already been done before the ioctl was issued to ARP 10550 * to allow it to progress only on 6 byte addressable 10551 * (ethernet like) media. Thus the mac address copying 10552 * can not overwrite the sa_data area below. 10553 */ 10554 bcopy((char *)area + area->area_hw_addr_offset, 10555 storage, area->area_hw_addr_length); 10556 } 10557 10558 /* Ditch the internal IOCTL. */ 10559 freemsg(mp); 10560 /* Complete the original. */ 10561 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10562 } 10563 10564 /* 10565 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10566 * interface) create the next available logical interface for this 10567 * physical interface. 10568 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10569 * ipif with the specified name. 10570 * 10571 * If the address family is not AF_UNSPEC then set the address as well. 10572 * 10573 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10574 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10575 * 10576 * Executed as a writer on the ill or ill group. 10577 * So no lock is needed to traverse the ipif chain, or examine the 10578 * phyint flags. 10579 */ 10580 /* ARGSUSED */ 10581 int 10582 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10583 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10584 { 10585 mblk_t *mp1; 10586 struct lifreq *lifr; 10587 boolean_t isv6; 10588 boolean_t exists; 10589 char *name; 10590 char *endp; 10591 char *cp; 10592 int namelen; 10593 ipif_t *ipif; 10594 long id; 10595 ipsq_t *ipsq; 10596 ill_t *ill; 10597 sin_t *sin; 10598 int err = 0; 10599 boolean_t found_sep = B_FALSE; 10600 conn_t *connp; 10601 zoneid_t zoneid; 10602 int orig_ifindex = 0; 10603 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10604 10605 ASSERT(q->q_next == NULL); 10606 ip1dbg(("ip_sioctl_addif\n")); 10607 /* Existence of mp1 has been checked in ip_wput_nondata */ 10608 mp1 = mp->b_cont->b_cont; 10609 /* 10610 * Null terminate the string to protect against buffer 10611 * overrun. String was generated by user code and may not 10612 * be trusted. 10613 */ 10614 lifr = (struct lifreq *)mp1->b_rptr; 10615 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10616 name = lifr->lifr_name; 10617 ASSERT(CONN_Q(q)); 10618 connp = Q_TO_CONN(q); 10619 isv6 = connp->conn_af_isv6; 10620 zoneid = connp->conn_zoneid; 10621 namelen = mi_strlen(name); 10622 if (namelen == 0) 10623 return (EINVAL); 10624 10625 exists = B_FALSE; 10626 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10627 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10628 /* 10629 * Allow creating lo0 using SIOCLIFADDIF. 10630 * can't be any other writer thread. So can pass null below 10631 * for the last 4 args to ipif_lookup_name. 10632 */ 10633 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10634 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10635 /* Prevent any further action */ 10636 if (ipif == NULL) { 10637 return (ENOBUFS); 10638 } else if (!exists) { 10639 /* We created the ipif now and as writer */ 10640 ipif_refrele(ipif); 10641 return (0); 10642 } else { 10643 ill = ipif->ipif_ill; 10644 ill_refhold(ill); 10645 ipif_refrele(ipif); 10646 } 10647 } else { 10648 /* Look for a colon in the name. */ 10649 endp = &name[namelen]; 10650 for (cp = endp; --cp > name; ) { 10651 if (*cp == IPIF_SEPARATOR_CHAR) { 10652 found_sep = B_TRUE; 10653 /* 10654 * Reject any non-decimal aliases for plumbing 10655 * of logical interfaces. Aliases with leading 10656 * zeroes are also rejected as they introduce 10657 * ambiguity in the naming of the interfaces. 10658 * Comparing with "0" takes care of all such 10659 * cases. 10660 */ 10661 if ((strncmp("0", cp+1, 1)) == 0) 10662 return (EINVAL); 10663 10664 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10665 id <= 0 || *endp != '\0') { 10666 return (EINVAL); 10667 } 10668 *cp = '\0'; 10669 break; 10670 } 10671 } 10672 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10673 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10674 if (found_sep) 10675 *cp = IPIF_SEPARATOR_CHAR; 10676 if (ill == NULL) 10677 return (err); 10678 } 10679 10680 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10681 B_TRUE); 10682 10683 /* 10684 * Release the refhold due to the lookup, now that we are excl 10685 * or we are just returning 10686 */ 10687 ill_refrele(ill); 10688 10689 if (ipsq == NULL) 10690 return (EINPROGRESS); 10691 10692 /* 10693 * If the interface is failed, inactive or offlined, look for a working 10694 * interface in the ill group and create the ipif there. If we can't 10695 * find a good interface, create the ipif anyway so that in.mpathd can 10696 * move it to the first repaired interface. 10697 */ 10698 if ((ill->ill_phyint->phyint_flags & 10699 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10700 ill->ill_phyint->phyint_groupname_len != 0) { 10701 phyint_t *phyi; 10702 char *groupname = ill->ill_phyint->phyint_groupname; 10703 10704 /* 10705 * We're looking for a working interface, but it doesn't matter 10706 * if it's up or down; so instead of following the group lists, 10707 * we look at each physical interface and compare the groupname. 10708 * We're only interested in interfaces with IPv4 (resp. IPv6) 10709 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10710 * Otherwise we create the ipif on the failed interface. 10711 */ 10712 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10713 phyi = avl_first(&ipst->ips_phyint_g_list-> 10714 phyint_list_avl_by_index); 10715 for (; phyi != NULL; 10716 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10717 phyint_list_avl_by_index, 10718 phyi, AVL_AFTER)) { 10719 if (phyi->phyint_groupname_len == 0) 10720 continue; 10721 ASSERT(phyi->phyint_groupname != NULL); 10722 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10723 !(phyi->phyint_flags & 10724 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10725 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10726 (phyi->phyint_illv4 != NULL))) { 10727 break; 10728 } 10729 } 10730 rw_exit(&ipst->ips_ill_g_lock); 10731 10732 if (phyi != NULL) { 10733 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10734 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10735 phyi->phyint_illv4); 10736 } 10737 } 10738 10739 /* 10740 * We are now exclusive on the ipsq, so an ill move will be serialized 10741 * before or after us. 10742 */ 10743 ASSERT(IAM_WRITER_ILL(ill)); 10744 ASSERT(ill->ill_move_in_progress == B_FALSE); 10745 10746 if (found_sep && orig_ifindex == 0) { 10747 /* Now see if there is an IPIF with this unit number. */ 10748 for (ipif = ill->ill_ipif; ipif != NULL; 10749 ipif = ipif->ipif_next) { 10750 if (ipif->ipif_id == id) { 10751 err = EEXIST; 10752 goto done; 10753 } 10754 } 10755 } 10756 10757 /* 10758 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10759 * of lo0. We never come here when we plumb lo0:0. It 10760 * happens in ipif_lookup_on_name. 10761 * The specified unit number is ignored when we create the ipif on a 10762 * different interface. However, we save it in ipif_orig_ipifid below so 10763 * that the ipif fails back to the right position. 10764 */ 10765 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10766 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10767 err = ENOBUFS; 10768 goto done; 10769 } 10770 10771 /* Return created name with ioctl */ 10772 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10773 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10774 ip1dbg(("created %s\n", lifr->lifr_name)); 10775 10776 /* Set address */ 10777 sin = (sin_t *)&lifr->lifr_addr; 10778 if (sin->sin_family != AF_UNSPEC) { 10779 err = ip_sioctl_addr(ipif, sin, q, mp, 10780 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10781 } 10782 10783 /* Set ifindex and unit number for failback */ 10784 if (err == 0 && orig_ifindex != 0) { 10785 ipif->ipif_orig_ifindex = orig_ifindex; 10786 if (found_sep) { 10787 ipif->ipif_orig_ipifid = id; 10788 } 10789 } 10790 10791 done: 10792 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10793 return (err); 10794 } 10795 10796 /* 10797 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10798 * interface) delete it based on the IP address (on this physical interface). 10799 * Otherwise delete it based on the ipif_id. 10800 * Also, special handling to allow a removeif of lo0. 10801 */ 10802 /* ARGSUSED */ 10803 int 10804 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10805 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10806 { 10807 conn_t *connp; 10808 ill_t *ill = ipif->ipif_ill; 10809 boolean_t success; 10810 ip_stack_t *ipst; 10811 10812 ipst = CONNQ_TO_IPST(q); 10813 10814 ASSERT(q->q_next == NULL); 10815 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10816 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10817 ASSERT(IAM_WRITER_IPIF(ipif)); 10818 10819 connp = Q_TO_CONN(q); 10820 /* 10821 * Special case for unplumbing lo0 (the loopback physical interface). 10822 * If unplumbing lo0, the incoming address structure has been 10823 * initialized to all zeros. When unplumbing lo0, all its logical 10824 * interfaces must be removed too. 10825 * 10826 * Note that this interface may be called to remove a specific 10827 * loopback logical interface (eg, lo0:1). But in that case 10828 * ipif->ipif_id != 0 so that the code path for that case is the 10829 * same as any other interface (meaning it skips the code directly 10830 * below). 10831 */ 10832 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10833 if (sin->sin_family == AF_UNSPEC && 10834 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10835 /* 10836 * Mark it condemned. No new ref. will be made to ill. 10837 */ 10838 mutex_enter(&ill->ill_lock); 10839 ill->ill_state_flags |= ILL_CONDEMNED; 10840 for (ipif = ill->ill_ipif; ipif != NULL; 10841 ipif = ipif->ipif_next) { 10842 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10843 } 10844 mutex_exit(&ill->ill_lock); 10845 10846 ipif = ill->ill_ipif; 10847 /* unplumb the loopback interface */ 10848 ill_delete(ill); 10849 mutex_enter(&connp->conn_lock); 10850 mutex_enter(&ill->ill_lock); 10851 ASSERT(ill->ill_group == NULL); 10852 10853 /* Are any references to this ill active */ 10854 if (ill_is_freeable(ill)) { 10855 mutex_exit(&ill->ill_lock); 10856 mutex_exit(&connp->conn_lock); 10857 ill_delete_tail(ill); 10858 mutex_enter(&ill->ill_lock); 10859 ill_nic_info_dispatch(ill); 10860 mutex_exit(&ill->ill_lock); 10861 mi_free(ill); 10862 return (0); 10863 } 10864 success = ipsq_pending_mp_add(connp, ipif, 10865 CONNP_TO_WQ(connp), mp, ILL_FREE); 10866 mutex_exit(&connp->conn_lock); 10867 mutex_exit(&ill->ill_lock); 10868 if (success) 10869 return (EINPROGRESS); 10870 else 10871 return (EINTR); 10872 } 10873 } 10874 10875 /* 10876 * We are exclusive on the ipsq, so an ill move will be serialized 10877 * before or after us. 10878 */ 10879 ASSERT(ill->ill_move_in_progress == B_FALSE); 10880 10881 if (ipif->ipif_id == 0) { 10882 /* Find based on address */ 10883 if (ipif->ipif_isv6) { 10884 sin6_t *sin6; 10885 10886 if (sin->sin_family != AF_INET6) 10887 return (EAFNOSUPPORT); 10888 10889 sin6 = (sin6_t *)sin; 10890 /* We are a writer, so we should be able to lookup */ 10891 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10892 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10893 if (ipif == NULL) { 10894 /* 10895 * Maybe the address in on another interface in 10896 * the same IPMP group? We check this below. 10897 */ 10898 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10899 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10900 ipst); 10901 } 10902 } else { 10903 ipaddr_t addr; 10904 10905 if (sin->sin_family != AF_INET) 10906 return (EAFNOSUPPORT); 10907 10908 addr = sin->sin_addr.s_addr; 10909 /* We are a writer, so we should be able to lookup */ 10910 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10911 NULL, NULL, NULL, ipst); 10912 if (ipif == NULL) { 10913 /* 10914 * Maybe the address in on another interface in 10915 * the same IPMP group? We check this below. 10916 */ 10917 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10918 NULL, NULL, NULL, NULL, ipst); 10919 } 10920 } 10921 if (ipif == NULL) { 10922 return (EADDRNOTAVAIL); 10923 } 10924 /* 10925 * When the address to be removed is hosted on a different 10926 * interface, we check if the interface is in the same IPMP 10927 * group as the specified one; if so we proceed with the 10928 * removal. 10929 * ill->ill_group is NULL when the ill is down, so we have to 10930 * compare the group names instead. 10931 */ 10932 if (ipif->ipif_ill != ill && 10933 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10934 ill->ill_phyint->phyint_groupname_len == 0 || 10935 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10936 ill->ill_phyint->phyint_groupname) != 0)) { 10937 ipif_refrele(ipif); 10938 return (EADDRNOTAVAIL); 10939 } 10940 10941 /* This is a writer */ 10942 ipif_refrele(ipif); 10943 } 10944 10945 /* 10946 * Can not delete instance zero since it is tied to the ill. 10947 */ 10948 if (ipif->ipif_id == 0) 10949 return (EBUSY); 10950 10951 mutex_enter(&ill->ill_lock); 10952 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10953 mutex_exit(&ill->ill_lock); 10954 10955 ipif_free(ipif); 10956 10957 mutex_enter(&connp->conn_lock); 10958 mutex_enter(&ill->ill_lock); 10959 10960 10961 /* Are any references to this ipif active */ 10962 if (ipif_is_freeable(ipif)) { 10963 mutex_exit(&ill->ill_lock); 10964 mutex_exit(&connp->conn_lock); 10965 ipif_non_duplicate(ipif); 10966 ipif_down_tail(ipif); 10967 ipif_free_tail(ipif); /* frees ipif */ 10968 return (0); 10969 } 10970 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10971 IPIF_FREE); 10972 mutex_exit(&ill->ill_lock); 10973 mutex_exit(&connp->conn_lock); 10974 if (success) 10975 return (EINPROGRESS); 10976 else 10977 return (EINTR); 10978 } 10979 10980 /* 10981 * Restart the removeif ioctl. The refcnt has gone down to 0. 10982 * The ipif is already condemned. So can't find it thru lookups. 10983 */ 10984 /* ARGSUSED */ 10985 int 10986 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10987 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10988 { 10989 ill_t *ill = ipif->ipif_ill; 10990 10991 ASSERT(IAM_WRITER_IPIF(ipif)); 10992 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10993 10994 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10995 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10996 10997 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10998 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10999 ill_delete_tail(ill); 11000 mutex_enter(&ill->ill_lock); 11001 ill_nic_info_dispatch(ill); 11002 mutex_exit(&ill->ill_lock); 11003 mi_free(ill); 11004 return (0); 11005 } 11006 11007 ipif_non_duplicate(ipif); 11008 ipif_down_tail(ipif); 11009 ipif_free_tail(ipif); 11010 11011 ILL_UNMARK_CHANGING(ill); 11012 return (0); 11013 } 11014 11015 /* 11016 * Set the local interface address. 11017 * Allow an address of all zero when the interface is down. 11018 */ 11019 /* ARGSUSED */ 11020 int 11021 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11022 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11023 { 11024 int err = 0; 11025 in6_addr_t v6addr; 11026 boolean_t need_up = B_FALSE; 11027 11028 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11029 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11030 11031 ASSERT(IAM_WRITER_IPIF(ipif)); 11032 11033 if (ipif->ipif_isv6) { 11034 sin6_t *sin6; 11035 ill_t *ill; 11036 phyint_t *phyi; 11037 11038 if (sin->sin_family != AF_INET6) 11039 return (EAFNOSUPPORT); 11040 11041 sin6 = (sin6_t *)sin; 11042 v6addr = sin6->sin6_addr; 11043 ill = ipif->ipif_ill; 11044 phyi = ill->ill_phyint; 11045 11046 /* 11047 * Enforce that true multicast interfaces have a link-local 11048 * address for logical unit 0. 11049 */ 11050 if (ipif->ipif_id == 0 && 11051 (ill->ill_flags & ILLF_MULTICAST) && 11052 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11053 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11054 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11055 return (EADDRNOTAVAIL); 11056 } 11057 11058 /* 11059 * up interfaces shouldn't have the unspecified address 11060 * unless they also have the IPIF_NOLOCAL flags set and 11061 * have a subnet assigned. 11062 */ 11063 if ((ipif->ipif_flags & IPIF_UP) && 11064 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11065 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11066 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11067 return (EADDRNOTAVAIL); 11068 } 11069 11070 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11071 return (EADDRNOTAVAIL); 11072 } else { 11073 ipaddr_t addr; 11074 11075 if (sin->sin_family != AF_INET) 11076 return (EAFNOSUPPORT); 11077 11078 addr = sin->sin_addr.s_addr; 11079 11080 /* Allow 0 as the local address. */ 11081 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11082 return (EADDRNOTAVAIL); 11083 11084 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11085 } 11086 11087 11088 /* 11089 * Even if there is no change we redo things just to rerun 11090 * ipif_set_default. 11091 */ 11092 if (ipif->ipif_flags & IPIF_UP) { 11093 /* 11094 * Setting a new local address, make sure 11095 * we have net and subnet bcast ire's for 11096 * the old address if we need them. 11097 */ 11098 if (!ipif->ipif_isv6) 11099 ipif_check_bcast_ires(ipif); 11100 /* 11101 * If the interface is already marked up, 11102 * we call ipif_down which will take care 11103 * of ditching any IREs that have been set 11104 * up based on the old interface address. 11105 */ 11106 err = ipif_logical_down(ipif, q, mp); 11107 if (err == EINPROGRESS) 11108 return (err); 11109 ipif_down_tail(ipif); 11110 need_up = 1; 11111 } 11112 11113 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11114 return (err); 11115 } 11116 11117 int 11118 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11119 boolean_t need_up) 11120 { 11121 in6_addr_t v6addr; 11122 in6_addr_t ov6addr; 11123 ipaddr_t addr; 11124 sin6_t *sin6; 11125 int sinlen; 11126 int err = 0; 11127 ill_t *ill = ipif->ipif_ill; 11128 boolean_t need_dl_down; 11129 boolean_t need_arp_down; 11130 struct iocblk *iocp; 11131 11132 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11133 11134 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11135 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11136 ASSERT(IAM_WRITER_IPIF(ipif)); 11137 11138 /* Must cancel any pending timer before taking the ill_lock */ 11139 if (ipif->ipif_recovery_id != 0) 11140 (void) untimeout(ipif->ipif_recovery_id); 11141 ipif->ipif_recovery_id = 0; 11142 11143 if (ipif->ipif_isv6) { 11144 sin6 = (sin6_t *)sin; 11145 v6addr = sin6->sin6_addr; 11146 sinlen = sizeof (struct sockaddr_in6); 11147 } else { 11148 addr = sin->sin_addr.s_addr; 11149 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11150 sinlen = sizeof (struct sockaddr_in); 11151 } 11152 mutex_enter(&ill->ill_lock); 11153 ov6addr = ipif->ipif_v6lcl_addr; 11154 ipif->ipif_v6lcl_addr = v6addr; 11155 sctp_update_ipif_addr(ipif, ov6addr); 11156 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11157 ipif->ipif_v6src_addr = ipv6_all_zeros; 11158 } else { 11159 ipif->ipif_v6src_addr = v6addr; 11160 } 11161 ipif->ipif_addr_ready = 0; 11162 11163 /* 11164 * If the interface was previously marked as a duplicate, then since 11165 * we've now got a "new" address, it should no longer be considered a 11166 * duplicate -- even if the "new" address is the same as the old one. 11167 * Note that if all ipifs are down, we may have a pending ARP down 11168 * event to handle. This is because we want to recover from duplicates 11169 * and thus delay tearing down ARP until the duplicates have been 11170 * removed or disabled. 11171 */ 11172 need_dl_down = need_arp_down = B_FALSE; 11173 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11174 need_arp_down = !need_up; 11175 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11176 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11177 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11178 need_dl_down = B_TRUE; 11179 } 11180 } 11181 11182 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11183 !ill->ill_is_6to4tun) { 11184 queue_t *wqp = ill->ill_wq; 11185 11186 /* 11187 * The local address of this interface is a 6to4 address, 11188 * check if this interface is in fact a 6to4 tunnel or just 11189 * an interface configured with a 6to4 address. We are only 11190 * interested in the former. 11191 */ 11192 if (wqp != NULL) { 11193 while ((wqp->q_next != NULL) && 11194 (wqp->q_next->q_qinfo != NULL) && 11195 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11196 11197 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11198 == TUN6TO4_MODID) { 11199 /* set for use in IP */ 11200 ill->ill_is_6to4tun = 1; 11201 break; 11202 } 11203 wqp = wqp->q_next; 11204 } 11205 } 11206 } 11207 11208 ipif_set_default(ipif); 11209 11210 /* 11211 * When publishing an interface address change event, we only notify 11212 * the event listeners of the new address. It is assumed that if they 11213 * actively care about the addresses assigned that they will have 11214 * already discovered the previous address assigned (if there was one.) 11215 * 11216 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11217 */ 11218 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11219 (void) ill_hook_event_create(ill, MAP_IPIF_ID(ipif->ipif_id), 11220 NE_ADDRESS_CHANGE, sin, sinlen); 11221 } 11222 11223 mutex_exit(&ill->ill_lock); 11224 11225 if (need_up) { 11226 /* 11227 * Now bring the interface back up. If this 11228 * is the only IPIF for the ILL, ipif_up 11229 * will have to re-bind to the device, so 11230 * we may get back EINPROGRESS, in which 11231 * case, this IOCTL will get completed in 11232 * ip_rput_dlpi when we see the DL_BIND_ACK. 11233 */ 11234 err = ipif_up(ipif, q, mp); 11235 } 11236 11237 if (need_dl_down) 11238 ill_dl_down(ill); 11239 if (need_arp_down) 11240 ipif_arp_down(ipif); 11241 11242 return (err); 11243 } 11244 11245 11246 /* 11247 * Restart entry point to restart the address set operation after the 11248 * refcounts have dropped to zero. 11249 */ 11250 /* ARGSUSED */ 11251 int 11252 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11253 ip_ioctl_cmd_t *ipip, void *ifreq) 11254 { 11255 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11256 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11257 ASSERT(IAM_WRITER_IPIF(ipif)); 11258 ipif_down_tail(ipif); 11259 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11260 } 11261 11262 /* ARGSUSED */ 11263 int 11264 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11265 ip_ioctl_cmd_t *ipip, void *if_req) 11266 { 11267 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11268 struct lifreq *lifr = (struct lifreq *)if_req; 11269 11270 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11271 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11272 /* 11273 * The net mask and address can't change since we have a 11274 * reference to the ipif. So no lock is necessary. 11275 */ 11276 if (ipif->ipif_isv6) { 11277 *sin6 = sin6_null; 11278 sin6->sin6_family = AF_INET6; 11279 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11280 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11281 lifr->lifr_addrlen = 11282 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11283 } else { 11284 *sin = sin_null; 11285 sin->sin_family = AF_INET; 11286 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11287 if (ipip->ipi_cmd_type == LIF_CMD) { 11288 lifr->lifr_addrlen = 11289 ip_mask_to_plen(ipif->ipif_net_mask); 11290 } 11291 } 11292 return (0); 11293 } 11294 11295 /* 11296 * Set the destination address for a pt-pt interface. 11297 */ 11298 /* ARGSUSED */ 11299 int 11300 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11301 ip_ioctl_cmd_t *ipip, void *if_req) 11302 { 11303 int err = 0; 11304 in6_addr_t v6addr; 11305 boolean_t need_up = B_FALSE; 11306 11307 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11308 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11309 ASSERT(IAM_WRITER_IPIF(ipif)); 11310 11311 if (ipif->ipif_isv6) { 11312 sin6_t *sin6; 11313 11314 if (sin->sin_family != AF_INET6) 11315 return (EAFNOSUPPORT); 11316 11317 sin6 = (sin6_t *)sin; 11318 v6addr = sin6->sin6_addr; 11319 11320 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11321 return (EADDRNOTAVAIL); 11322 } else { 11323 ipaddr_t addr; 11324 11325 if (sin->sin_family != AF_INET) 11326 return (EAFNOSUPPORT); 11327 11328 addr = sin->sin_addr.s_addr; 11329 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11330 return (EADDRNOTAVAIL); 11331 11332 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11333 } 11334 11335 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11336 return (0); /* No change */ 11337 11338 if (ipif->ipif_flags & IPIF_UP) { 11339 /* 11340 * If the interface is already marked up, 11341 * we call ipif_down which will take care 11342 * of ditching any IREs that have been set 11343 * up based on the old pp dst address. 11344 */ 11345 err = ipif_logical_down(ipif, q, mp); 11346 if (err == EINPROGRESS) 11347 return (err); 11348 ipif_down_tail(ipif); 11349 need_up = B_TRUE; 11350 } 11351 /* 11352 * could return EINPROGRESS. If so ioctl will complete in 11353 * ip_rput_dlpi_writer 11354 */ 11355 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11356 return (err); 11357 } 11358 11359 static int 11360 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11361 boolean_t need_up) 11362 { 11363 in6_addr_t v6addr; 11364 ill_t *ill = ipif->ipif_ill; 11365 int err = 0; 11366 boolean_t need_dl_down; 11367 boolean_t need_arp_down; 11368 11369 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11370 ipif->ipif_id, (void *)ipif)); 11371 11372 /* Must cancel any pending timer before taking the ill_lock */ 11373 if (ipif->ipif_recovery_id != 0) 11374 (void) untimeout(ipif->ipif_recovery_id); 11375 ipif->ipif_recovery_id = 0; 11376 11377 if (ipif->ipif_isv6) { 11378 sin6_t *sin6; 11379 11380 sin6 = (sin6_t *)sin; 11381 v6addr = sin6->sin6_addr; 11382 } else { 11383 ipaddr_t addr; 11384 11385 addr = sin->sin_addr.s_addr; 11386 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11387 } 11388 mutex_enter(&ill->ill_lock); 11389 /* Set point to point destination address. */ 11390 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11391 /* 11392 * Allow this as a means of creating logical 11393 * pt-pt interfaces on top of e.g. an Ethernet. 11394 * XXX Undocumented HACK for testing. 11395 * pt-pt interfaces are created with NUD disabled. 11396 */ 11397 ipif->ipif_flags |= IPIF_POINTOPOINT; 11398 ipif->ipif_flags &= ~IPIF_BROADCAST; 11399 if (ipif->ipif_isv6) 11400 ill->ill_flags |= ILLF_NONUD; 11401 } 11402 11403 /* 11404 * If the interface was previously marked as a duplicate, then since 11405 * we've now got a "new" address, it should no longer be considered a 11406 * duplicate -- even if the "new" address is the same as the old one. 11407 * Note that if all ipifs are down, we may have a pending ARP down 11408 * event to handle. 11409 */ 11410 need_dl_down = need_arp_down = B_FALSE; 11411 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11412 need_arp_down = !need_up; 11413 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11414 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11415 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11416 need_dl_down = B_TRUE; 11417 } 11418 } 11419 11420 /* Set the new address. */ 11421 ipif->ipif_v6pp_dst_addr = v6addr; 11422 /* Make sure subnet tracks pp_dst */ 11423 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11424 mutex_exit(&ill->ill_lock); 11425 11426 if (need_up) { 11427 /* 11428 * Now bring the interface back up. If this 11429 * is the only IPIF for the ILL, ipif_up 11430 * will have to re-bind to the device, so 11431 * we may get back EINPROGRESS, in which 11432 * case, this IOCTL will get completed in 11433 * ip_rput_dlpi when we see the DL_BIND_ACK. 11434 */ 11435 err = ipif_up(ipif, q, mp); 11436 } 11437 11438 if (need_dl_down) 11439 ill_dl_down(ill); 11440 11441 if (need_arp_down) 11442 ipif_arp_down(ipif); 11443 return (err); 11444 } 11445 11446 /* 11447 * Restart entry point to restart the dstaddress set operation after the 11448 * refcounts have dropped to zero. 11449 */ 11450 /* ARGSUSED */ 11451 int 11452 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11453 ip_ioctl_cmd_t *ipip, void *ifreq) 11454 { 11455 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11456 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11457 ipif_down_tail(ipif); 11458 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11459 } 11460 11461 /* ARGSUSED */ 11462 int 11463 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11464 ip_ioctl_cmd_t *ipip, void *if_req) 11465 { 11466 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11467 11468 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11469 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11470 /* 11471 * Get point to point destination address. The addresses can't 11472 * change since we hold a reference to the ipif. 11473 */ 11474 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11475 return (EADDRNOTAVAIL); 11476 11477 if (ipif->ipif_isv6) { 11478 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11479 *sin6 = sin6_null; 11480 sin6->sin6_family = AF_INET6; 11481 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11482 } else { 11483 *sin = sin_null; 11484 sin->sin_family = AF_INET; 11485 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11486 } 11487 return (0); 11488 } 11489 11490 /* 11491 * part of ipmp, make this func return the active/inactive state and 11492 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11493 */ 11494 /* 11495 * This function either sets or clears the IFF_INACTIVE flag. 11496 * 11497 * As long as there are some addresses or multicast memberships on the 11498 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11499 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11500 * will be used for outbound packets. 11501 * 11502 * Caller needs to verify the validity of setting IFF_INACTIVE. 11503 */ 11504 static void 11505 phyint_inactive(phyint_t *phyi) 11506 { 11507 ill_t *ill_v4; 11508 ill_t *ill_v6; 11509 ipif_t *ipif; 11510 ilm_t *ilm; 11511 11512 ill_v4 = phyi->phyint_illv4; 11513 ill_v6 = phyi->phyint_illv6; 11514 11515 /* 11516 * No need for a lock while traversing the list since iam 11517 * a writer 11518 */ 11519 if (ill_v4 != NULL) { 11520 ASSERT(IAM_WRITER_ILL(ill_v4)); 11521 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11522 ipif = ipif->ipif_next) { 11523 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11524 mutex_enter(&phyi->phyint_lock); 11525 phyi->phyint_flags &= ~PHYI_INACTIVE; 11526 mutex_exit(&phyi->phyint_lock); 11527 return; 11528 } 11529 } 11530 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11531 ilm = ilm->ilm_next) { 11532 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11533 mutex_enter(&phyi->phyint_lock); 11534 phyi->phyint_flags &= ~PHYI_INACTIVE; 11535 mutex_exit(&phyi->phyint_lock); 11536 return; 11537 } 11538 } 11539 } 11540 if (ill_v6 != NULL) { 11541 ill_v6 = phyi->phyint_illv6; 11542 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11543 ipif = ipif->ipif_next) { 11544 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11545 mutex_enter(&phyi->phyint_lock); 11546 phyi->phyint_flags &= ~PHYI_INACTIVE; 11547 mutex_exit(&phyi->phyint_lock); 11548 return; 11549 } 11550 } 11551 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11552 ilm = ilm->ilm_next) { 11553 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11554 mutex_enter(&phyi->phyint_lock); 11555 phyi->phyint_flags &= ~PHYI_INACTIVE; 11556 mutex_exit(&phyi->phyint_lock); 11557 return; 11558 } 11559 } 11560 } 11561 mutex_enter(&phyi->phyint_lock); 11562 phyi->phyint_flags |= PHYI_INACTIVE; 11563 mutex_exit(&phyi->phyint_lock); 11564 } 11565 11566 /* 11567 * This function is called only when the phyint flags change. Currently 11568 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11569 * that we can select a good ill. 11570 */ 11571 static void 11572 ip_redo_nomination(phyint_t *phyi) 11573 { 11574 ill_t *ill_v4; 11575 11576 ill_v4 = phyi->phyint_illv4; 11577 11578 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11579 ASSERT(IAM_WRITER_ILL(ill_v4)); 11580 if (ill_v4->ill_group->illgrp_ill_count > 1) 11581 ill_nominate_bcast_rcv(ill_v4->ill_group); 11582 } 11583 } 11584 11585 /* 11586 * Heuristic to check if ill is INACTIVE. 11587 * Checks if ill has an ipif with an usable ip address. 11588 * 11589 * Return values: 11590 * B_TRUE - ill is INACTIVE; has no usable ipif 11591 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11592 */ 11593 static boolean_t 11594 ill_is_inactive(ill_t *ill) 11595 { 11596 ipif_t *ipif; 11597 11598 /* Check whether it is in an IPMP group */ 11599 if (ill->ill_phyint->phyint_groupname == NULL) 11600 return (B_FALSE); 11601 11602 if (ill->ill_ipif_up_count == 0) 11603 return (B_TRUE); 11604 11605 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11606 uint64_t flags = ipif->ipif_flags; 11607 11608 /* 11609 * This ipif is usable if it is IPIF_UP and not a 11610 * dedicated test address. A dedicated test address 11611 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11612 * (note in particular that V6 test addresses are 11613 * link-local data addresses and thus are marked 11614 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11615 */ 11616 if ((flags & IPIF_UP) && 11617 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11618 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11619 return (B_FALSE); 11620 } 11621 return (B_TRUE); 11622 } 11623 11624 /* 11625 * Set interface flags. 11626 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11627 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11628 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11629 * 11630 * NOTE : We really don't enforce that ipif_id zero should be used 11631 * for setting any flags other than IFF_LOGINT_FLAGS. This 11632 * is because applications generally does SICGLIFFLAGS and 11633 * ORs in the new flags (that affects the logical) and does a 11634 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11635 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11636 * flags that will be turned on is correct with respect to 11637 * ipif_id 0. For backward compatibility reasons, it is not done. 11638 */ 11639 /* ARGSUSED */ 11640 int 11641 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11642 ip_ioctl_cmd_t *ipip, void *if_req) 11643 { 11644 uint64_t turn_on; 11645 uint64_t turn_off; 11646 int err; 11647 boolean_t need_up = B_FALSE; 11648 phyint_t *phyi; 11649 ill_t *ill; 11650 uint64_t intf_flags; 11651 boolean_t phyint_flags_modified = B_FALSE; 11652 uint64_t flags; 11653 struct ifreq *ifr; 11654 struct lifreq *lifr; 11655 boolean_t set_linklocal = B_FALSE; 11656 boolean_t zero_source = B_FALSE; 11657 ip_stack_t *ipst; 11658 11659 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11660 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11661 11662 ASSERT(IAM_WRITER_IPIF(ipif)); 11663 11664 ill = ipif->ipif_ill; 11665 phyi = ill->ill_phyint; 11666 ipst = ill->ill_ipst; 11667 11668 if (ipip->ipi_cmd_type == IF_CMD) { 11669 ifr = (struct ifreq *)if_req; 11670 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11671 } else { 11672 lifr = (struct lifreq *)if_req; 11673 flags = lifr->lifr_flags; 11674 } 11675 11676 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11677 11678 /* 11679 * Has the flags been set correctly till now ? 11680 */ 11681 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11682 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11683 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11684 /* 11685 * Compare the new flags to the old, and partition 11686 * into those coming on and those going off. 11687 * For the 16 bit command keep the bits above bit 16 unchanged. 11688 */ 11689 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11690 flags |= intf_flags & ~0xFFFF; 11691 11692 /* 11693 * First check which bits will change and then which will 11694 * go on and off 11695 */ 11696 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11697 if (!turn_on) 11698 return (0); /* No change */ 11699 11700 turn_off = intf_flags & turn_on; 11701 turn_on ^= turn_off; 11702 err = 0; 11703 11704 /* 11705 * Don't allow any bits belonging to the logical interface 11706 * to be set or cleared on the replacement ipif that was 11707 * created temporarily during a MOVE. 11708 */ 11709 if (ipif->ipif_replace_zero && 11710 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11711 return (EINVAL); 11712 } 11713 11714 /* 11715 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11716 * IPv6 interfaces. 11717 */ 11718 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11719 return (EINVAL); 11720 11721 /* 11722 * cannot turn off IFF_NOXMIT on VNI interfaces. 11723 */ 11724 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11725 return (EINVAL); 11726 11727 /* 11728 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11729 * interfaces. It makes no sense in that context. 11730 */ 11731 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11732 return (EINVAL); 11733 11734 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11735 zero_source = B_TRUE; 11736 11737 /* 11738 * For IPv6 ipif_id 0, don't allow the interface to be up without 11739 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11740 * If the link local address isn't set, and can be set, it will get 11741 * set later on in this function. 11742 */ 11743 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11744 (flags & IFF_UP) && !zero_source && 11745 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11746 if (ipif_cant_setlinklocal(ipif)) 11747 return (EINVAL); 11748 set_linklocal = B_TRUE; 11749 } 11750 11751 /* 11752 * ILL cannot be part of a usesrc group and and IPMP group at the 11753 * same time. No need to grab ill_g_usesrc_lock here, see 11754 * synchronization notes in ip.c 11755 */ 11756 if (turn_on & PHYI_STANDBY && 11757 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11758 return (EINVAL); 11759 } 11760 11761 /* 11762 * If we modify physical interface flags, we'll potentially need to 11763 * send up two routing socket messages for the changes (one for the 11764 * IPv4 ill, and another for the IPv6 ill). Note that here. 11765 */ 11766 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11767 phyint_flags_modified = B_TRUE; 11768 11769 /* 11770 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11771 * we need to flush the IRE_CACHES belonging to this ill. 11772 * We handle this case here without doing the DOWN/UP dance 11773 * like it is done for other flags. If some other flags are 11774 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11775 * below will handle it by bringing it down and then 11776 * bringing it UP. 11777 */ 11778 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11779 ill_t *ill_v4, *ill_v6; 11780 11781 ill_v4 = phyi->phyint_illv4; 11782 ill_v6 = phyi->phyint_illv6; 11783 11784 /* 11785 * First set the INACTIVE flag if needed. Then delete the ires. 11786 * ire_add will atomically prevent creating new IRE_CACHEs 11787 * unless hidden flag is set. 11788 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11789 */ 11790 if ((turn_on & PHYI_FAILED) && 11791 ((intf_flags & PHYI_STANDBY) || 11792 !ipst->ips_ipmp_enable_failback)) { 11793 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11794 phyi->phyint_flags &= ~PHYI_INACTIVE; 11795 } 11796 if ((turn_off & PHYI_FAILED) && 11797 ((intf_flags & PHYI_STANDBY) || 11798 (!ipst->ips_ipmp_enable_failback && 11799 ill_is_inactive(ill)))) { 11800 phyint_inactive(phyi); 11801 } 11802 11803 if (turn_on & PHYI_STANDBY) { 11804 /* 11805 * We implicitly set INACTIVE only when STANDBY is set. 11806 * INACTIVE is also set on non-STANDBY phyint when user 11807 * disables FAILBACK using configuration file. 11808 * Do not allow STANDBY to be set on such INACTIVE 11809 * phyint 11810 */ 11811 if (phyi->phyint_flags & PHYI_INACTIVE) 11812 return (EINVAL); 11813 if (!(phyi->phyint_flags & PHYI_FAILED)) 11814 phyint_inactive(phyi); 11815 } 11816 if (turn_off & PHYI_STANDBY) { 11817 if (ipst->ips_ipmp_enable_failback) { 11818 /* 11819 * Reset PHYI_INACTIVE. 11820 */ 11821 phyi->phyint_flags &= ~PHYI_INACTIVE; 11822 } else if (ill_is_inactive(ill) && 11823 !(phyi->phyint_flags & PHYI_FAILED)) { 11824 /* 11825 * Need to set INACTIVE, when user sets 11826 * STANDBY on a non-STANDBY phyint and 11827 * later resets STANDBY 11828 */ 11829 phyint_inactive(phyi); 11830 } 11831 } 11832 /* 11833 * We should always send up a message so that the 11834 * daemons come to know of it. Note that the zeroth 11835 * interface can be down and the check below for IPIF_UP 11836 * will not make sense as we are actually setting 11837 * a phyint flag here. We assume that the ipif used 11838 * is always the zeroth ipif. (ip_rts_ifmsg does not 11839 * send up any message for non-zero ipifs). 11840 */ 11841 phyint_flags_modified = B_TRUE; 11842 11843 if (ill_v4 != NULL) { 11844 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11845 IRE_CACHE, ill_stq_cache_delete, 11846 (char *)ill_v4, ill_v4); 11847 illgrp_reset_schednext(ill_v4); 11848 } 11849 if (ill_v6 != NULL) { 11850 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11851 IRE_CACHE, ill_stq_cache_delete, 11852 (char *)ill_v6, ill_v6); 11853 illgrp_reset_schednext(ill_v6); 11854 } 11855 } 11856 11857 /* 11858 * If ILLF_ROUTER changes, we need to change the ip forwarding 11859 * status of the interface and, if the interface is part of an IPMP 11860 * group, all other interfaces that are part of the same IPMP 11861 * group. 11862 */ 11863 if ((turn_on | turn_off) & ILLF_ROUTER) 11864 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11865 11866 /* 11867 * If the interface is not UP and we are not going to 11868 * bring it UP, record the flags and return. When the 11869 * interface comes UP later, the right actions will be 11870 * taken. 11871 */ 11872 if (!(ipif->ipif_flags & IPIF_UP) && 11873 !(turn_on & IPIF_UP)) { 11874 /* Record new flags in their respective places. */ 11875 mutex_enter(&ill->ill_lock); 11876 mutex_enter(&ill->ill_phyint->phyint_lock); 11877 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11878 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11879 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11880 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11881 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11882 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11883 mutex_exit(&ill->ill_lock); 11884 mutex_exit(&ill->ill_phyint->phyint_lock); 11885 11886 /* 11887 * We do the broadcast and nomination here rather 11888 * than waiting for a FAILOVER/FAILBACK to happen. In 11889 * the case of FAILBACK from INACTIVE standby to the 11890 * interface that has been repaired, PHYI_FAILED has not 11891 * been cleared yet. If there are only two interfaces in 11892 * that group, all we have is a FAILED and INACTIVE 11893 * interface. If we do the nomination soon after a failback, 11894 * the broadcast nomination code would select the 11895 * INACTIVE interface for receiving broadcasts as FAILED is 11896 * not yet cleared. As we don't want STANDBY/INACTIVE to 11897 * receive broadcast packets, we need to redo nomination 11898 * when the FAILED is cleared here. Thus, in general we 11899 * always do the nomination here for FAILED, STANDBY 11900 * and OFFLINE. 11901 */ 11902 if (((turn_on | turn_off) & 11903 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11904 ip_redo_nomination(phyi); 11905 } 11906 if (phyint_flags_modified) { 11907 if (phyi->phyint_illv4 != NULL) { 11908 ip_rts_ifmsg(phyi->phyint_illv4-> 11909 ill_ipif); 11910 } 11911 if (phyi->phyint_illv6 != NULL) { 11912 ip_rts_ifmsg(phyi->phyint_illv6-> 11913 ill_ipif); 11914 } 11915 } 11916 return (0); 11917 } else if (set_linklocal || zero_source) { 11918 mutex_enter(&ill->ill_lock); 11919 if (set_linklocal) 11920 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11921 if (zero_source) 11922 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11923 mutex_exit(&ill->ill_lock); 11924 } 11925 11926 /* 11927 * Disallow IPv6 interfaces coming up that have the unspecified address, 11928 * or point-to-point interfaces with an unspecified destination. We do 11929 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11930 * have a subnet assigned, which is how in.ndpd currently manages its 11931 * onlink prefix list when no addresses are configured with those 11932 * prefixes. 11933 */ 11934 if (ipif->ipif_isv6 && 11935 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11936 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11937 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11938 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11939 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11940 return (EINVAL); 11941 } 11942 11943 /* 11944 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11945 * from being brought up. 11946 */ 11947 if (!ipif->ipif_isv6 && 11948 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11949 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11950 return (EINVAL); 11951 } 11952 11953 /* 11954 * The only flag changes that we currently take specific action on 11955 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11956 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11957 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11958 * the flags and bringing it back up again. 11959 */ 11960 if ((turn_on|turn_off) & 11961 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11962 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11963 /* 11964 * Taking this ipif down, make sure we have 11965 * valid net and subnet bcast ire's for other 11966 * logical interfaces, if we need them. 11967 */ 11968 if (!ipif->ipif_isv6) 11969 ipif_check_bcast_ires(ipif); 11970 11971 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11972 !(turn_off & IPIF_UP)) { 11973 need_up = B_TRUE; 11974 if (ipif->ipif_flags & IPIF_UP) 11975 ill->ill_logical_down = 1; 11976 turn_on &= ~IPIF_UP; 11977 } 11978 err = ipif_down(ipif, q, mp); 11979 ip1dbg(("ipif_down returns %d err ", err)); 11980 if (err == EINPROGRESS) 11981 return (err); 11982 ipif_down_tail(ipif); 11983 } 11984 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11985 } 11986 11987 static int 11988 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11989 boolean_t need_up) 11990 { 11991 ill_t *ill; 11992 phyint_t *phyi; 11993 uint64_t turn_on; 11994 uint64_t turn_off; 11995 uint64_t intf_flags; 11996 boolean_t phyint_flags_modified = B_FALSE; 11997 int err = 0; 11998 boolean_t set_linklocal = B_FALSE; 11999 boolean_t zero_source = B_FALSE; 12000 12001 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12002 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12003 12004 ASSERT(IAM_WRITER_IPIF(ipif)); 12005 12006 ill = ipif->ipif_ill; 12007 phyi = ill->ill_phyint; 12008 12009 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12010 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12011 12012 turn_off = intf_flags & turn_on; 12013 turn_on ^= turn_off; 12014 12015 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12016 phyint_flags_modified = B_TRUE; 12017 12018 /* 12019 * Now we change the flags. Track current value of 12020 * other flags in their respective places. 12021 */ 12022 mutex_enter(&ill->ill_lock); 12023 mutex_enter(&phyi->phyint_lock); 12024 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12025 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12026 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12027 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12028 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12029 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12030 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12031 set_linklocal = B_TRUE; 12032 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12033 } 12034 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12035 zero_source = B_TRUE; 12036 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12037 } 12038 mutex_exit(&ill->ill_lock); 12039 mutex_exit(&phyi->phyint_lock); 12040 12041 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12042 ip_redo_nomination(phyi); 12043 12044 if (set_linklocal) 12045 (void) ipif_setlinklocal(ipif); 12046 12047 if (zero_source) 12048 ipif->ipif_v6src_addr = ipv6_all_zeros; 12049 else 12050 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12051 12052 if (need_up) { 12053 /* 12054 * XXX ipif_up really does not know whether a phyint flags 12055 * was modified or not. So, it sends up information on 12056 * only one routing sockets message. As we don't bring up 12057 * the interface and also set STANDBY/FAILED simultaneously 12058 * it should be okay. 12059 */ 12060 err = ipif_up(ipif, q, mp); 12061 } else { 12062 /* 12063 * Make sure routing socket sees all changes to the flags. 12064 * ipif_up_done* handles this when we use ipif_up. 12065 */ 12066 if (phyint_flags_modified) { 12067 if (phyi->phyint_illv4 != NULL) { 12068 ip_rts_ifmsg(phyi->phyint_illv4-> 12069 ill_ipif); 12070 } 12071 if (phyi->phyint_illv6 != NULL) { 12072 ip_rts_ifmsg(phyi->phyint_illv6-> 12073 ill_ipif); 12074 } 12075 } else { 12076 ip_rts_ifmsg(ipif); 12077 } 12078 /* 12079 * Update the flags in SCTP's IPIF list, ipif_up() will do 12080 * this in need_up case. 12081 */ 12082 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12083 } 12084 return (err); 12085 } 12086 12087 /* 12088 * Restart entry point to restart the flags restart operation after the 12089 * refcounts have dropped to zero. 12090 */ 12091 /* ARGSUSED */ 12092 int 12093 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12094 ip_ioctl_cmd_t *ipip, void *if_req) 12095 { 12096 int err; 12097 struct ifreq *ifr = (struct ifreq *)if_req; 12098 struct lifreq *lifr = (struct lifreq *)if_req; 12099 12100 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12101 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12102 12103 ipif_down_tail(ipif); 12104 if (ipip->ipi_cmd_type == IF_CMD) { 12105 /* 12106 * Since ip_sioctl_flags expects an int and ifr_flags 12107 * is a short we need to cast ifr_flags into an int 12108 * to avoid having sign extension cause bits to get 12109 * set that should not be. 12110 */ 12111 err = ip_sioctl_flags_tail(ipif, 12112 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12113 q, mp, B_TRUE); 12114 } else { 12115 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12116 q, mp, B_TRUE); 12117 } 12118 return (err); 12119 } 12120 12121 /* 12122 * Can operate on either a module or a driver queue. 12123 */ 12124 /* ARGSUSED */ 12125 int 12126 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12127 ip_ioctl_cmd_t *ipip, void *if_req) 12128 { 12129 /* 12130 * Has the flags been set correctly till now ? 12131 */ 12132 ill_t *ill = ipif->ipif_ill; 12133 phyint_t *phyi = ill->ill_phyint; 12134 12135 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12136 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12137 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12138 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12139 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12140 12141 /* 12142 * Need a lock since some flags can be set even when there are 12143 * references to the ipif. 12144 */ 12145 mutex_enter(&ill->ill_lock); 12146 if (ipip->ipi_cmd_type == IF_CMD) { 12147 struct ifreq *ifr = (struct ifreq *)if_req; 12148 12149 /* Get interface flags (low 16 only). */ 12150 ifr->ifr_flags = ((ipif->ipif_flags | 12151 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12152 } else { 12153 struct lifreq *lifr = (struct lifreq *)if_req; 12154 12155 /* Get interface flags. */ 12156 lifr->lifr_flags = ipif->ipif_flags | 12157 ill->ill_flags | phyi->phyint_flags; 12158 } 12159 mutex_exit(&ill->ill_lock); 12160 return (0); 12161 } 12162 12163 /* ARGSUSED */ 12164 int 12165 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12166 ip_ioctl_cmd_t *ipip, void *if_req) 12167 { 12168 int mtu; 12169 int ip_min_mtu; 12170 struct ifreq *ifr; 12171 struct lifreq *lifr; 12172 ire_t *ire; 12173 ip_stack_t *ipst; 12174 12175 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12176 ipif->ipif_id, (void *)ipif)); 12177 if (ipip->ipi_cmd_type == IF_CMD) { 12178 ifr = (struct ifreq *)if_req; 12179 mtu = ifr->ifr_metric; 12180 } else { 12181 lifr = (struct lifreq *)if_req; 12182 mtu = lifr->lifr_mtu; 12183 } 12184 12185 if (ipif->ipif_isv6) 12186 ip_min_mtu = IPV6_MIN_MTU; 12187 else 12188 ip_min_mtu = IP_MIN_MTU; 12189 12190 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12191 return (EINVAL); 12192 12193 /* 12194 * Change the MTU size in all relevant ire's. 12195 * Mtu change Vs. new ire creation - protocol below. 12196 * First change ipif_mtu and the ire_max_frag of the 12197 * interface ire. Then do an ire walk and change the 12198 * ire_max_frag of all affected ires. During ire_add 12199 * under the bucket lock, set the ire_max_frag of the 12200 * new ire being created from the ipif/ire from which 12201 * it is being derived. If an mtu change happens after 12202 * the ire is added, the new ire will be cleaned up. 12203 * Conversely if the mtu change happens before the ire 12204 * is added, ire_add will see the new value of the mtu. 12205 */ 12206 ipif->ipif_mtu = mtu; 12207 ipif->ipif_flags |= IPIF_FIXEDMTU; 12208 12209 if (ipif->ipif_isv6) 12210 ire = ipif_to_ire_v6(ipif); 12211 else 12212 ire = ipif_to_ire(ipif); 12213 if (ire != NULL) { 12214 ire->ire_max_frag = ipif->ipif_mtu; 12215 ire_refrele(ire); 12216 } 12217 ipst = ipif->ipif_ill->ill_ipst; 12218 if (ipif->ipif_flags & IPIF_UP) { 12219 if (ipif->ipif_isv6) 12220 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12221 ipst); 12222 else 12223 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12224 ipst); 12225 } 12226 /* Update the MTU in SCTP's list */ 12227 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12228 return (0); 12229 } 12230 12231 /* Get interface MTU. */ 12232 /* ARGSUSED */ 12233 int 12234 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12235 ip_ioctl_cmd_t *ipip, void *if_req) 12236 { 12237 struct ifreq *ifr; 12238 struct lifreq *lifr; 12239 12240 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12241 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12242 if (ipip->ipi_cmd_type == IF_CMD) { 12243 ifr = (struct ifreq *)if_req; 12244 ifr->ifr_metric = ipif->ipif_mtu; 12245 } else { 12246 lifr = (struct lifreq *)if_req; 12247 lifr->lifr_mtu = ipif->ipif_mtu; 12248 } 12249 return (0); 12250 } 12251 12252 /* Set interface broadcast address. */ 12253 /* ARGSUSED2 */ 12254 int 12255 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12256 ip_ioctl_cmd_t *ipip, void *if_req) 12257 { 12258 ipaddr_t addr; 12259 ire_t *ire; 12260 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12261 12262 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12263 ipif->ipif_id)); 12264 12265 ASSERT(IAM_WRITER_IPIF(ipif)); 12266 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12267 return (EADDRNOTAVAIL); 12268 12269 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12270 12271 if (sin->sin_family != AF_INET) 12272 return (EAFNOSUPPORT); 12273 12274 addr = sin->sin_addr.s_addr; 12275 if (ipif->ipif_flags & IPIF_UP) { 12276 /* 12277 * If we are already up, make sure the new 12278 * broadcast address makes sense. If it does, 12279 * there should be an IRE for it already. 12280 * Don't match on ipif, only on the ill 12281 * since we are sharing these now. Don't use 12282 * MATCH_IRE_ILL_GROUP as we are looking for 12283 * the broadcast ire on this ill and each ill 12284 * in the group has its own broadcast ire. 12285 */ 12286 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12287 ipif, ALL_ZONES, NULL, 12288 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12289 if (ire == NULL) { 12290 return (EINVAL); 12291 } else { 12292 ire_refrele(ire); 12293 } 12294 } 12295 /* 12296 * Changing the broadcast addr for this ipif. 12297 * Make sure we have valid net and subnet bcast 12298 * ire's for other logical interfaces, if needed. 12299 */ 12300 if (addr != ipif->ipif_brd_addr) 12301 ipif_check_bcast_ires(ipif); 12302 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12303 return (0); 12304 } 12305 12306 /* Get interface broadcast address. */ 12307 /* ARGSUSED */ 12308 int 12309 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12310 ip_ioctl_cmd_t *ipip, void *if_req) 12311 { 12312 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12313 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12314 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12315 return (EADDRNOTAVAIL); 12316 12317 /* IPIF_BROADCAST not possible with IPv6 */ 12318 ASSERT(!ipif->ipif_isv6); 12319 *sin = sin_null; 12320 sin->sin_family = AF_INET; 12321 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12322 return (0); 12323 } 12324 12325 /* 12326 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12327 */ 12328 /* ARGSUSED */ 12329 int 12330 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12331 ip_ioctl_cmd_t *ipip, void *if_req) 12332 { 12333 int err = 0; 12334 in6_addr_t v6mask; 12335 12336 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12337 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12338 12339 ASSERT(IAM_WRITER_IPIF(ipif)); 12340 12341 if (ipif->ipif_isv6) { 12342 sin6_t *sin6; 12343 12344 if (sin->sin_family != AF_INET6) 12345 return (EAFNOSUPPORT); 12346 12347 sin6 = (sin6_t *)sin; 12348 v6mask = sin6->sin6_addr; 12349 } else { 12350 ipaddr_t mask; 12351 12352 if (sin->sin_family != AF_INET) 12353 return (EAFNOSUPPORT); 12354 12355 mask = sin->sin_addr.s_addr; 12356 V4MASK_TO_V6(mask, v6mask); 12357 } 12358 12359 /* 12360 * No big deal if the interface isn't already up, or the mask 12361 * isn't really changing, or this is pt-pt. 12362 */ 12363 if (!(ipif->ipif_flags & IPIF_UP) || 12364 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12365 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12366 ipif->ipif_v6net_mask = v6mask; 12367 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12368 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12369 ipif->ipif_v6net_mask, 12370 ipif->ipif_v6subnet); 12371 } 12372 return (0); 12373 } 12374 /* 12375 * Make sure we have valid net and subnet broadcast ire's 12376 * for the old netmask, if needed by other logical interfaces. 12377 */ 12378 if (!ipif->ipif_isv6) 12379 ipif_check_bcast_ires(ipif); 12380 12381 err = ipif_logical_down(ipif, q, mp); 12382 if (err == EINPROGRESS) 12383 return (err); 12384 ipif_down_tail(ipif); 12385 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12386 return (err); 12387 } 12388 12389 static int 12390 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12391 { 12392 in6_addr_t v6mask; 12393 int err = 0; 12394 12395 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12396 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12397 12398 if (ipif->ipif_isv6) { 12399 sin6_t *sin6; 12400 12401 sin6 = (sin6_t *)sin; 12402 v6mask = sin6->sin6_addr; 12403 } else { 12404 ipaddr_t mask; 12405 12406 mask = sin->sin_addr.s_addr; 12407 V4MASK_TO_V6(mask, v6mask); 12408 } 12409 12410 ipif->ipif_v6net_mask = v6mask; 12411 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12412 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12413 ipif->ipif_v6subnet); 12414 } 12415 err = ipif_up(ipif, q, mp); 12416 12417 if (err == 0 || err == EINPROGRESS) { 12418 /* 12419 * The interface must be DL_BOUND if this packet has to 12420 * go out on the wire. Since we only go through a logical 12421 * down and are bound with the driver during an internal 12422 * down/up that is satisfied. 12423 */ 12424 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12425 /* Potentially broadcast an address mask reply. */ 12426 ipif_mask_reply(ipif); 12427 } 12428 } 12429 return (err); 12430 } 12431 12432 /* ARGSUSED */ 12433 int 12434 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12435 ip_ioctl_cmd_t *ipip, void *if_req) 12436 { 12437 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12438 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12439 ipif_down_tail(ipif); 12440 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12441 } 12442 12443 /* Get interface net mask. */ 12444 /* ARGSUSED */ 12445 int 12446 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12447 ip_ioctl_cmd_t *ipip, void *if_req) 12448 { 12449 struct lifreq *lifr = (struct lifreq *)if_req; 12450 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12451 12452 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12453 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12454 12455 /* 12456 * net mask can't change since we have a reference to the ipif. 12457 */ 12458 if (ipif->ipif_isv6) { 12459 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12460 *sin6 = sin6_null; 12461 sin6->sin6_family = AF_INET6; 12462 sin6->sin6_addr = ipif->ipif_v6net_mask; 12463 lifr->lifr_addrlen = 12464 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12465 } else { 12466 *sin = sin_null; 12467 sin->sin_family = AF_INET; 12468 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12469 if (ipip->ipi_cmd_type == LIF_CMD) { 12470 lifr->lifr_addrlen = 12471 ip_mask_to_plen(ipif->ipif_net_mask); 12472 } 12473 } 12474 return (0); 12475 } 12476 12477 /* ARGSUSED */ 12478 int 12479 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12480 ip_ioctl_cmd_t *ipip, void *if_req) 12481 { 12482 12483 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12484 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12485 /* 12486 * Set interface metric. We don't use this for 12487 * anything but we keep track of it in case it is 12488 * important to routing applications or such. 12489 */ 12490 if (ipip->ipi_cmd_type == IF_CMD) { 12491 struct ifreq *ifr; 12492 12493 ifr = (struct ifreq *)if_req; 12494 ipif->ipif_metric = ifr->ifr_metric; 12495 } else { 12496 struct lifreq *lifr; 12497 12498 lifr = (struct lifreq *)if_req; 12499 ipif->ipif_metric = lifr->lifr_metric; 12500 } 12501 return (0); 12502 } 12503 12504 12505 /* ARGSUSED */ 12506 int 12507 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12508 ip_ioctl_cmd_t *ipip, void *if_req) 12509 { 12510 12511 /* Get interface metric. */ 12512 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12513 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12514 if (ipip->ipi_cmd_type == IF_CMD) { 12515 struct ifreq *ifr; 12516 12517 ifr = (struct ifreq *)if_req; 12518 ifr->ifr_metric = ipif->ipif_metric; 12519 } else { 12520 struct lifreq *lifr; 12521 12522 lifr = (struct lifreq *)if_req; 12523 lifr->lifr_metric = ipif->ipif_metric; 12524 } 12525 12526 return (0); 12527 } 12528 12529 /* ARGSUSED */ 12530 int 12531 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12532 ip_ioctl_cmd_t *ipip, void *if_req) 12533 { 12534 12535 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12536 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12537 /* 12538 * Set the muxid returned from I_PLINK. 12539 */ 12540 if (ipip->ipi_cmd_type == IF_CMD) { 12541 struct ifreq *ifr = (struct ifreq *)if_req; 12542 12543 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12544 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12545 } else { 12546 struct lifreq *lifr = (struct lifreq *)if_req; 12547 12548 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12549 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12550 } 12551 return (0); 12552 } 12553 12554 /* ARGSUSED */ 12555 int 12556 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12557 ip_ioctl_cmd_t *ipip, void *if_req) 12558 { 12559 12560 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12561 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12562 /* 12563 * Get the muxid saved in ill for I_PUNLINK. 12564 */ 12565 if (ipip->ipi_cmd_type == IF_CMD) { 12566 struct ifreq *ifr = (struct ifreq *)if_req; 12567 12568 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12569 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12570 } else { 12571 struct lifreq *lifr = (struct lifreq *)if_req; 12572 12573 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12574 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12575 } 12576 return (0); 12577 } 12578 12579 /* 12580 * Set the subnet prefix. Does not modify the broadcast address. 12581 */ 12582 /* ARGSUSED */ 12583 int 12584 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12585 ip_ioctl_cmd_t *ipip, void *if_req) 12586 { 12587 int err = 0; 12588 in6_addr_t v6addr; 12589 in6_addr_t v6mask; 12590 boolean_t need_up = B_FALSE; 12591 int addrlen; 12592 12593 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12594 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12595 12596 ASSERT(IAM_WRITER_IPIF(ipif)); 12597 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12598 12599 if (ipif->ipif_isv6) { 12600 sin6_t *sin6; 12601 12602 if (sin->sin_family != AF_INET6) 12603 return (EAFNOSUPPORT); 12604 12605 sin6 = (sin6_t *)sin; 12606 v6addr = sin6->sin6_addr; 12607 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12608 return (EADDRNOTAVAIL); 12609 } else { 12610 ipaddr_t addr; 12611 12612 if (sin->sin_family != AF_INET) 12613 return (EAFNOSUPPORT); 12614 12615 addr = sin->sin_addr.s_addr; 12616 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12617 return (EADDRNOTAVAIL); 12618 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12619 /* Add 96 bits */ 12620 addrlen += IPV6_ABITS - IP_ABITS; 12621 } 12622 12623 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12624 return (EINVAL); 12625 12626 /* Check if bits in the address is set past the mask */ 12627 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12628 return (EINVAL); 12629 12630 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12631 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12632 return (0); /* No change */ 12633 12634 if (ipif->ipif_flags & IPIF_UP) { 12635 /* 12636 * If the interface is already marked up, 12637 * we call ipif_down which will take care 12638 * of ditching any IREs that have been set 12639 * up based on the old interface address. 12640 */ 12641 err = ipif_logical_down(ipif, q, mp); 12642 if (err == EINPROGRESS) 12643 return (err); 12644 ipif_down_tail(ipif); 12645 need_up = B_TRUE; 12646 } 12647 12648 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12649 return (err); 12650 } 12651 12652 static int 12653 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12654 queue_t *q, mblk_t *mp, boolean_t need_up) 12655 { 12656 ill_t *ill = ipif->ipif_ill; 12657 int err = 0; 12658 12659 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12660 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12661 12662 /* Set the new address. */ 12663 mutex_enter(&ill->ill_lock); 12664 ipif->ipif_v6net_mask = v6mask; 12665 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12666 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12667 ipif->ipif_v6subnet); 12668 } 12669 mutex_exit(&ill->ill_lock); 12670 12671 if (need_up) { 12672 /* 12673 * Now bring the interface back up. If this 12674 * is the only IPIF for the ILL, ipif_up 12675 * will have to re-bind to the device, so 12676 * we may get back EINPROGRESS, in which 12677 * case, this IOCTL will get completed in 12678 * ip_rput_dlpi when we see the DL_BIND_ACK. 12679 */ 12680 err = ipif_up(ipif, q, mp); 12681 if (err == EINPROGRESS) 12682 return (err); 12683 } 12684 return (err); 12685 } 12686 12687 /* ARGSUSED */ 12688 int 12689 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12690 ip_ioctl_cmd_t *ipip, void *if_req) 12691 { 12692 int addrlen; 12693 in6_addr_t v6addr; 12694 in6_addr_t v6mask; 12695 struct lifreq *lifr = (struct lifreq *)if_req; 12696 12697 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12698 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12699 ipif_down_tail(ipif); 12700 12701 addrlen = lifr->lifr_addrlen; 12702 if (ipif->ipif_isv6) { 12703 sin6_t *sin6; 12704 12705 sin6 = (sin6_t *)sin; 12706 v6addr = sin6->sin6_addr; 12707 } else { 12708 ipaddr_t addr; 12709 12710 addr = sin->sin_addr.s_addr; 12711 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12712 addrlen += IPV6_ABITS - IP_ABITS; 12713 } 12714 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12715 12716 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12717 } 12718 12719 /* ARGSUSED */ 12720 int 12721 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12722 ip_ioctl_cmd_t *ipip, void *if_req) 12723 { 12724 struct lifreq *lifr = (struct lifreq *)if_req; 12725 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12726 12727 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12728 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12729 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12730 12731 if (ipif->ipif_isv6) { 12732 *sin6 = sin6_null; 12733 sin6->sin6_family = AF_INET6; 12734 sin6->sin6_addr = ipif->ipif_v6subnet; 12735 lifr->lifr_addrlen = 12736 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12737 } else { 12738 *sin = sin_null; 12739 sin->sin_family = AF_INET; 12740 sin->sin_addr.s_addr = ipif->ipif_subnet; 12741 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12742 } 12743 return (0); 12744 } 12745 12746 /* 12747 * Set the IPv6 address token. 12748 */ 12749 /* ARGSUSED */ 12750 int 12751 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12752 ip_ioctl_cmd_t *ipi, void *if_req) 12753 { 12754 ill_t *ill = ipif->ipif_ill; 12755 int err; 12756 in6_addr_t v6addr; 12757 in6_addr_t v6mask; 12758 boolean_t need_up = B_FALSE; 12759 int i; 12760 sin6_t *sin6 = (sin6_t *)sin; 12761 struct lifreq *lifr = (struct lifreq *)if_req; 12762 int addrlen; 12763 12764 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12765 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12766 ASSERT(IAM_WRITER_IPIF(ipif)); 12767 12768 addrlen = lifr->lifr_addrlen; 12769 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12770 if (ipif->ipif_id != 0) 12771 return (EINVAL); 12772 12773 if (!ipif->ipif_isv6) 12774 return (EINVAL); 12775 12776 if (addrlen > IPV6_ABITS) 12777 return (EINVAL); 12778 12779 v6addr = sin6->sin6_addr; 12780 12781 /* 12782 * The length of the token is the length from the end. To get 12783 * the proper mask for this, compute the mask of the bits not 12784 * in the token; ie. the prefix, and then xor to get the mask. 12785 */ 12786 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12787 return (EINVAL); 12788 for (i = 0; i < 4; i++) { 12789 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12790 } 12791 12792 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12793 ill->ill_token_length == addrlen) 12794 return (0); /* No change */ 12795 12796 if (ipif->ipif_flags & IPIF_UP) { 12797 err = ipif_logical_down(ipif, q, mp); 12798 if (err == EINPROGRESS) 12799 return (err); 12800 ipif_down_tail(ipif); 12801 need_up = B_TRUE; 12802 } 12803 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12804 return (err); 12805 } 12806 12807 static int 12808 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12809 mblk_t *mp, boolean_t need_up) 12810 { 12811 in6_addr_t v6addr; 12812 in6_addr_t v6mask; 12813 ill_t *ill = ipif->ipif_ill; 12814 int i; 12815 int err = 0; 12816 12817 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12818 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12819 v6addr = sin6->sin6_addr; 12820 /* 12821 * The length of the token is the length from the end. To get 12822 * the proper mask for this, compute the mask of the bits not 12823 * in the token; ie. the prefix, and then xor to get the mask. 12824 */ 12825 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12826 for (i = 0; i < 4; i++) 12827 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12828 12829 mutex_enter(&ill->ill_lock); 12830 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12831 ill->ill_token_length = addrlen; 12832 mutex_exit(&ill->ill_lock); 12833 12834 if (need_up) { 12835 /* 12836 * Now bring the interface back up. If this 12837 * is the only IPIF for the ILL, ipif_up 12838 * will have to re-bind to the device, so 12839 * we may get back EINPROGRESS, in which 12840 * case, this IOCTL will get completed in 12841 * ip_rput_dlpi when we see the DL_BIND_ACK. 12842 */ 12843 err = ipif_up(ipif, q, mp); 12844 if (err == EINPROGRESS) 12845 return (err); 12846 } 12847 return (err); 12848 } 12849 12850 /* ARGSUSED */ 12851 int 12852 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12853 ip_ioctl_cmd_t *ipi, void *if_req) 12854 { 12855 ill_t *ill; 12856 sin6_t *sin6 = (sin6_t *)sin; 12857 struct lifreq *lifr = (struct lifreq *)if_req; 12858 12859 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12860 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12861 if (ipif->ipif_id != 0) 12862 return (EINVAL); 12863 12864 ill = ipif->ipif_ill; 12865 if (!ill->ill_isv6) 12866 return (ENXIO); 12867 12868 *sin6 = sin6_null; 12869 sin6->sin6_family = AF_INET6; 12870 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12871 sin6->sin6_addr = ill->ill_token; 12872 lifr->lifr_addrlen = ill->ill_token_length; 12873 return (0); 12874 } 12875 12876 /* 12877 * Set (hardware) link specific information that might override 12878 * what was acquired through the DL_INFO_ACK. 12879 * The logic is as follows. 12880 * 12881 * become exclusive 12882 * set CHANGING flag 12883 * change mtu on affected IREs 12884 * clear CHANGING flag 12885 * 12886 * An ire add that occurs before the CHANGING flag is set will have its mtu 12887 * changed by the ip_sioctl_lnkinfo. 12888 * 12889 * During the time the CHANGING flag is set, no new ires will be added to the 12890 * bucket, and ire add will fail (due the CHANGING flag). 12891 * 12892 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12893 * before it is added to the bucket. 12894 * 12895 * Obviously only 1 thread can set the CHANGING flag and we need to become 12896 * exclusive to set the flag. 12897 */ 12898 /* ARGSUSED */ 12899 int 12900 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12901 ip_ioctl_cmd_t *ipi, void *if_req) 12902 { 12903 ill_t *ill = ipif->ipif_ill; 12904 ipif_t *nipif; 12905 int ip_min_mtu; 12906 boolean_t mtu_walk = B_FALSE; 12907 struct lifreq *lifr = (struct lifreq *)if_req; 12908 lif_ifinfo_req_t *lir; 12909 ire_t *ire; 12910 12911 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12912 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12913 lir = &lifr->lifr_ifinfo; 12914 ASSERT(IAM_WRITER_IPIF(ipif)); 12915 12916 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12917 if (ipif->ipif_id != 0) 12918 return (EINVAL); 12919 12920 /* Set interface MTU. */ 12921 if (ipif->ipif_isv6) 12922 ip_min_mtu = IPV6_MIN_MTU; 12923 else 12924 ip_min_mtu = IP_MIN_MTU; 12925 12926 /* 12927 * Verify values before we set anything. Allow zero to 12928 * mean unspecified. 12929 */ 12930 if (lir->lir_maxmtu != 0 && 12931 (lir->lir_maxmtu > ill->ill_max_frag || 12932 lir->lir_maxmtu < ip_min_mtu)) 12933 return (EINVAL); 12934 if (lir->lir_reachtime != 0 && 12935 lir->lir_reachtime > ND_MAX_REACHTIME) 12936 return (EINVAL); 12937 if (lir->lir_reachretrans != 0 && 12938 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12939 return (EINVAL); 12940 12941 mutex_enter(&ill->ill_lock); 12942 ill->ill_state_flags |= ILL_CHANGING; 12943 for (nipif = ill->ill_ipif; nipif != NULL; 12944 nipif = nipif->ipif_next) { 12945 nipif->ipif_state_flags |= IPIF_CHANGING; 12946 } 12947 12948 mutex_exit(&ill->ill_lock); 12949 12950 if (lir->lir_maxmtu != 0) { 12951 ill->ill_max_mtu = lir->lir_maxmtu; 12952 ill->ill_mtu_userspecified = 1; 12953 mtu_walk = B_TRUE; 12954 } 12955 12956 if (lir->lir_reachtime != 0) 12957 ill->ill_reachable_time = lir->lir_reachtime; 12958 12959 if (lir->lir_reachretrans != 0) 12960 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12961 12962 ill->ill_max_hops = lir->lir_maxhops; 12963 12964 ill->ill_max_buf = ND_MAX_Q; 12965 12966 if (mtu_walk) { 12967 /* 12968 * Set the MTU on all ipifs associated with this ill except 12969 * for those whose MTU was fixed via SIOCSLIFMTU. 12970 */ 12971 for (nipif = ill->ill_ipif; nipif != NULL; 12972 nipif = nipif->ipif_next) { 12973 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12974 continue; 12975 12976 nipif->ipif_mtu = ill->ill_max_mtu; 12977 12978 if (!(nipif->ipif_flags & IPIF_UP)) 12979 continue; 12980 12981 if (nipif->ipif_isv6) 12982 ire = ipif_to_ire_v6(nipif); 12983 else 12984 ire = ipif_to_ire(nipif); 12985 if (ire != NULL) { 12986 ire->ire_max_frag = ipif->ipif_mtu; 12987 ire_refrele(ire); 12988 } 12989 if (ill->ill_isv6) { 12990 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12991 ipif_mtu_change, (char *)nipif, 12992 ill); 12993 } else { 12994 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12995 ipif_mtu_change, (char *)nipif, 12996 ill); 12997 } 12998 } 12999 } 13000 13001 mutex_enter(&ill->ill_lock); 13002 for (nipif = ill->ill_ipif; nipif != NULL; 13003 nipif = nipif->ipif_next) { 13004 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13005 } 13006 ILL_UNMARK_CHANGING(ill); 13007 mutex_exit(&ill->ill_lock); 13008 13009 return (0); 13010 } 13011 13012 /* ARGSUSED */ 13013 int 13014 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13015 ip_ioctl_cmd_t *ipi, void *if_req) 13016 { 13017 struct lif_ifinfo_req *lir; 13018 ill_t *ill = ipif->ipif_ill; 13019 13020 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13021 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13022 if (ipif->ipif_id != 0) 13023 return (EINVAL); 13024 13025 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13026 lir->lir_maxhops = ill->ill_max_hops; 13027 lir->lir_reachtime = ill->ill_reachable_time; 13028 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13029 lir->lir_maxmtu = ill->ill_max_mtu; 13030 13031 return (0); 13032 } 13033 13034 /* 13035 * Return best guess as to the subnet mask for the specified address. 13036 * Based on the subnet masks for all the configured interfaces. 13037 * 13038 * We end up returning a zero mask in the case of default, multicast or 13039 * experimental. 13040 */ 13041 static ipaddr_t 13042 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13043 { 13044 ipaddr_t net_mask; 13045 ill_t *ill; 13046 ipif_t *ipif; 13047 ill_walk_context_t ctx; 13048 ipif_t *fallback_ipif = NULL; 13049 13050 net_mask = ip_net_mask(addr); 13051 if (net_mask == 0) { 13052 *ipifp = NULL; 13053 return (0); 13054 } 13055 13056 /* Let's check to see if this is maybe a local subnet route. */ 13057 /* this function only applies to IPv4 interfaces */ 13058 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13059 ill = ILL_START_WALK_V4(&ctx, ipst); 13060 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13061 mutex_enter(&ill->ill_lock); 13062 for (ipif = ill->ill_ipif; ipif != NULL; 13063 ipif = ipif->ipif_next) { 13064 if (!IPIF_CAN_LOOKUP(ipif)) 13065 continue; 13066 if (!(ipif->ipif_flags & IPIF_UP)) 13067 continue; 13068 if ((ipif->ipif_subnet & net_mask) == 13069 (addr & net_mask)) { 13070 /* 13071 * Don't trust pt-pt interfaces if there are 13072 * other interfaces. 13073 */ 13074 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13075 if (fallback_ipif == NULL) { 13076 ipif_refhold_locked(ipif); 13077 fallback_ipif = ipif; 13078 } 13079 continue; 13080 } 13081 13082 /* 13083 * Fine. Just assume the same net mask as the 13084 * directly attached subnet interface is using. 13085 */ 13086 ipif_refhold_locked(ipif); 13087 mutex_exit(&ill->ill_lock); 13088 rw_exit(&ipst->ips_ill_g_lock); 13089 if (fallback_ipif != NULL) 13090 ipif_refrele(fallback_ipif); 13091 *ipifp = ipif; 13092 return (ipif->ipif_net_mask); 13093 } 13094 } 13095 mutex_exit(&ill->ill_lock); 13096 } 13097 rw_exit(&ipst->ips_ill_g_lock); 13098 13099 *ipifp = fallback_ipif; 13100 return ((fallback_ipif != NULL) ? 13101 fallback_ipif->ipif_net_mask : net_mask); 13102 } 13103 13104 /* 13105 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13106 */ 13107 static void 13108 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13109 { 13110 IOCP iocp; 13111 ipft_t *ipft; 13112 ipllc_t *ipllc; 13113 mblk_t *mp1; 13114 cred_t *cr; 13115 int error = 0; 13116 conn_t *connp; 13117 13118 ip1dbg(("ip_wput_ioctl")); 13119 iocp = (IOCP)mp->b_rptr; 13120 mp1 = mp->b_cont; 13121 if (mp1 == NULL) { 13122 iocp->ioc_error = EINVAL; 13123 mp->b_datap->db_type = M_IOCNAK; 13124 iocp->ioc_count = 0; 13125 qreply(q, mp); 13126 return; 13127 } 13128 13129 /* 13130 * These IOCTLs provide various control capabilities to 13131 * upstream agents such as ULPs and processes. There 13132 * are currently two such IOCTLs implemented. They 13133 * are used by TCP to provide update information for 13134 * existing IREs and to forcibly delete an IRE for a 13135 * host that is not responding, thereby forcing an 13136 * attempt at a new route. 13137 */ 13138 iocp->ioc_error = EINVAL; 13139 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13140 goto done; 13141 13142 ipllc = (ipllc_t *)mp1->b_rptr; 13143 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13144 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13145 break; 13146 } 13147 /* 13148 * prefer credential from mblk over ioctl; 13149 * see ip_sioctl_copyin_setup 13150 */ 13151 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13152 13153 /* 13154 * Refhold the conn in case the request gets queued up in some lookup 13155 */ 13156 ASSERT(CONN_Q(q)); 13157 connp = Q_TO_CONN(q); 13158 CONN_INC_REF(connp); 13159 if (ipft->ipft_pfi && 13160 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13161 pullupmsg(mp1, ipft->ipft_min_size))) { 13162 error = (*ipft->ipft_pfi)(q, 13163 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13164 } 13165 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13166 /* 13167 * CONN_OPER_PENDING_DONE happens in the function called 13168 * through ipft_pfi above. 13169 */ 13170 return; 13171 } 13172 13173 CONN_OPER_PENDING_DONE(connp); 13174 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13175 freemsg(mp); 13176 return; 13177 } 13178 iocp->ioc_error = error; 13179 13180 done: 13181 mp->b_datap->db_type = M_IOCACK; 13182 if (iocp->ioc_error) 13183 iocp->ioc_count = 0; 13184 qreply(q, mp); 13185 } 13186 13187 /* 13188 * Lookup an ipif using the sequence id (ipif_seqid) 13189 */ 13190 ipif_t * 13191 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13192 { 13193 ipif_t *ipif; 13194 13195 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13196 13197 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13198 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13199 return (ipif); 13200 } 13201 return (NULL); 13202 } 13203 13204 /* 13205 * Assign a unique id for the ipif. This is used later when we send 13206 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13207 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13208 * IRE is added, we verify that ipif has not disappeared. 13209 */ 13210 13211 static void 13212 ipif_assign_seqid(ipif_t *ipif) 13213 { 13214 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13215 13216 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13217 } 13218 13219 /* 13220 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13221 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13222 * be inserted into the first space available in the list. The value of 13223 * ipif_id will then be set to the appropriate value for its position. 13224 */ 13225 static int 13226 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13227 { 13228 ill_t *ill; 13229 ipif_t *tipif; 13230 ipif_t **tipifp; 13231 int id; 13232 ip_stack_t *ipst; 13233 13234 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13235 IAM_WRITER_IPIF(ipif)); 13236 13237 ill = ipif->ipif_ill; 13238 ASSERT(ill != NULL); 13239 ipst = ill->ill_ipst; 13240 13241 /* 13242 * In the case of lo0:0 we already hold the ill_g_lock. 13243 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13244 * ipif_insert. Another such caller is ipif_move. 13245 */ 13246 if (acquire_g_lock) 13247 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13248 if (acquire_ill_lock) 13249 mutex_enter(&ill->ill_lock); 13250 id = ipif->ipif_id; 13251 tipifp = &(ill->ill_ipif); 13252 if (id == -1) { /* need to find a real id */ 13253 id = 0; 13254 while ((tipif = *tipifp) != NULL) { 13255 ASSERT(tipif->ipif_id >= id); 13256 if (tipif->ipif_id != id) 13257 break; /* non-consecutive id */ 13258 id++; 13259 tipifp = &(tipif->ipif_next); 13260 } 13261 /* limit number of logical interfaces */ 13262 if (id >= ipst->ips_ip_addrs_per_if) { 13263 if (acquire_ill_lock) 13264 mutex_exit(&ill->ill_lock); 13265 if (acquire_g_lock) 13266 rw_exit(&ipst->ips_ill_g_lock); 13267 return (-1); 13268 } 13269 ipif->ipif_id = id; /* assign new id */ 13270 } else if (id < ipst->ips_ip_addrs_per_if) { 13271 /* we have a real id; insert ipif in the right place */ 13272 while ((tipif = *tipifp) != NULL) { 13273 ASSERT(tipif->ipif_id != id); 13274 if (tipif->ipif_id > id) 13275 break; /* found correct location */ 13276 tipifp = &(tipif->ipif_next); 13277 } 13278 } else { 13279 if (acquire_ill_lock) 13280 mutex_exit(&ill->ill_lock); 13281 if (acquire_g_lock) 13282 rw_exit(&ipst->ips_ill_g_lock); 13283 return (-1); 13284 } 13285 13286 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13287 13288 ipif->ipif_next = tipif; 13289 *tipifp = ipif; 13290 if (acquire_ill_lock) 13291 mutex_exit(&ill->ill_lock); 13292 if (acquire_g_lock) 13293 rw_exit(&ipst->ips_ill_g_lock); 13294 return (0); 13295 } 13296 13297 static void 13298 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13299 { 13300 ipif_t **ipifp; 13301 ill_t *ill = ipif->ipif_ill; 13302 13303 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13304 if (acquire_ill_lock) 13305 mutex_enter(&ill->ill_lock); 13306 else 13307 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13308 13309 ipifp = &ill->ill_ipif; 13310 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13311 if (*ipifp == ipif) { 13312 *ipifp = ipif->ipif_next; 13313 break; 13314 } 13315 } 13316 13317 if (acquire_ill_lock) 13318 mutex_exit(&ill->ill_lock); 13319 } 13320 13321 /* 13322 * Allocate and initialize a new interface control structure. (Always 13323 * called as writer.) 13324 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13325 * is not part of the global linked list of ills. ipif_seqid is unique 13326 * in the system and to preserve the uniqueness, it is assigned only 13327 * when ill becomes part of the global list. At that point ill will 13328 * have a name. If it doesn't get assigned here, it will get assigned 13329 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13330 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13331 * the interface flags or any other information from the DL_INFO_ACK for 13332 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13333 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13334 * second DL_INFO_ACK comes in from the driver. 13335 */ 13336 static ipif_t * 13337 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13338 { 13339 ipif_t *ipif; 13340 phyint_t *phyi; 13341 13342 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13343 ill->ill_name, id, (void *)ill)); 13344 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13345 13346 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13347 return (NULL); 13348 *ipif = ipif_zero; /* start clean */ 13349 13350 ipif->ipif_ill = ill; 13351 ipif->ipif_id = id; /* could be -1 */ 13352 /* 13353 * Inherit the zoneid from the ill; for the shared stack instance 13354 * this is always the global zone 13355 */ 13356 ipif->ipif_zoneid = ill->ill_zoneid; 13357 13358 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13359 13360 ipif->ipif_refcnt = 0; 13361 ipif->ipif_saved_ire_cnt = 0; 13362 13363 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13364 mi_free(ipif); 13365 return (NULL); 13366 } 13367 /* -1 id should have been replaced by real id */ 13368 id = ipif->ipif_id; 13369 ASSERT(id >= 0); 13370 13371 if (ill->ill_name[0] != '\0') 13372 ipif_assign_seqid(ipif); 13373 13374 /* 13375 * Keep a copy of original id in ipif_orig_ipifid. Failback 13376 * will attempt to restore the original id. The SIOCSLIFOINDEX 13377 * ioctl sets ipif_orig_ipifid to zero. 13378 */ 13379 ipif->ipif_orig_ipifid = id; 13380 13381 /* 13382 * We grab the ill_lock and phyint_lock to protect the flag changes. 13383 * The ipif is still not up and can't be looked up until the 13384 * ioctl completes and the IPIF_CHANGING flag is cleared. 13385 */ 13386 mutex_enter(&ill->ill_lock); 13387 mutex_enter(&ill->ill_phyint->phyint_lock); 13388 /* 13389 * Set the running flag when logical interface zero is created. 13390 * For subsequent logical interfaces, a DLPI link down 13391 * notification message may have cleared the running flag to 13392 * indicate the link is down, so we shouldn't just blindly set it. 13393 */ 13394 if (id == 0) 13395 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13396 ipif->ipif_ire_type = ire_type; 13397 phyi = ill->ill_phyint; 13398 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13399 13400 if (ipif->ipif_isv6) { 13401 ill->ill_flags |= ILLF_IPV6; 13402 } else { 13403 ipaddr_t inaddr_any = INADDR_ANY; 13404 13405 ill->ill_flags |= ILLF_IPV4; 13406 13407 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13408 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13409 &ipif->ipif_v6lcl_addr); 13410 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13411 &ipif->ipif_v6src_addr); 13412 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13413 &ipif->ipif_v6subnet); 13414 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13415 &ipif->ipif_v6net_mask); 13416 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13417 &ipif->ipif_v6brd_addr); 13418 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13419 &ipif->ipif_v6pp_dst_addr); 13420 } 13421 13422 /* 13423 * Don't set the interface flags etc. now, will do it in 13424 * ip_ll_subnet_defaults. 13425 */ 13426 if (!initialize) { 13427 mutex_exit(&ill->ill_lock); 13428 mutex_exit(&ill->ill_phyint->phyint_lock); 13429 return (ipif); 13430 } 13431 ipif->ipif_mtu = ill->ill_max_mtu; 13432 13433 if (ill->ill_bcast_addr_length != 0) { 13434 /* 13435 * Later detect lack of DLPI driver multicast 13436 * capability by catching DL_ENABMULTI errors in 13437 * ip_rput_dlpi. 13438 */ 13439 ill->ill_flags |= ILLF_MULTICAST; 13440 if (!ipif->ipif_isv6) 13441 ipif->ipif_flags |= IPIF_BROADCAST; 13442 } else { 13443 if (ill->ill_net_type != IRE_LOOPBACK) { 13444 if (ipif->ipif_isv6) 13445 /* 13446 * Note: xresolv interfaces will eventually need 13447 * NOARP set here as well, but that will require 13448 * those external resolvers to have some 13449 * knowledge of that flag and act appropriately. 13450 * Not to be changed at present. 13451 */ 13452 ill->ill_flags |= ILLF_NONUD; 13453 else 13454 ill->ill_flags |= ILLF_NOARP; 13455 } 13456 if (ill->ill_phys_addr_length == 0) { 13457 if (ill->ill_media && 13458 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13459 ipif->ipif_flags |= IPIF_NOXMIT; 13460 phyi->phyint_flags |= PHYI_VIRTUAL; 13461 } else { 13462 /* pt-pt supports multicast. */ 13463 ill->ill_flags |= ILLF_MULTICAST; 13464 if (ill->ill_net_type == IRE_LOOPBACK) { 13465 phyi->phyint_flags |= 13466 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13467 } else { 13468 ipif->ipif_flags |= IPIF_POINTOPOINT; 13469 } 13470 } 13471 } 13472 } 13473 mutex_exit(&ill->ill_lock); 13474 mutex_exit(&ill->ill_phyint->phyint_lock); 13475 return (ipif); 13476 } 13477 13478 /* 13479 * If appropriate, send a message up to the resolver delete the entry 13480 * for the address of this interface which is going out of business. 13481 * (Always called as writer). 13482 * 13483 * NOTE : We need to check for NULL mps as some of the fields are 13484 * initialized only for some interface types. See ipif_resolver_up() 13485 * for details. 13486 */ 13487 void 13488 ipif_arp_down(ipif_t *ipif) 13489 { 13490 mblk_t *mp; 13491 ill_t *ill = ipif->ipif_ill; 13492 13493 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13494 ASSERT(IAM_WRITER_IPIF(ipif)); 13495 13496 /* Delete the mapping for the local address */ 13497 mp = ipif->ipif_arp_del_mp; 13498 if (mp != NULL) { 13499 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13500 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13501 putnext(ill->ill_rq, mp); 13502 ipif->ipif_arp_del_mp = NULL; 13503 } 13504 13505 /* 13506 * If this is the last ipif that is going down and there are no 13507 * duplicate addresses we may yet attempt to re-probe, then we need to 13508 * clean up ARP completely. 13509 */ 13510 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13511 13512 /* Send up AR_INTERFACE_DOWN message */ 13513 mp = ill->ill_arp_down_mp; 13514 if (mp != NULL) { 13515 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13516 *(unsigned *)mp->b_rptr, ill->ill_name, 13517 ipif->ipif_id)); 13518 putnext(ill->ill_rq, mp); 13519 ill->ill_arp_down_mp = NULL; 13520 } 13521 13522 /* Tell ARP to delete the multicast mappings */ 13523 mp = ill->ill_arp_del_mapping_mp; 13524 if (mp != NULL) { 13525 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13526 *(unsigned *)mp->b_rptr, ill->ill_name, 13527 ipif->ipif_id)); 13528 putnext(ill->ill_rq, mp); 13529 ill->ill_arp_del_mapping_mp = NULL; 13530 } 13531 } 13532 } 13533 13534 /* 13535 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13536 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13537 * that it wants the add_mp allocated in this function to be returned 13538 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13539 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13540 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13541 * as it does a ipif_arp_down after calling this function - which will 13542 * remove what we add here. 13543 * 13544 * Returns -1 on failures and 0 on success. 13545 */ 13546 int 13547 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13548 { 13549 mblk_t *del_mp = NULL; 13550 mblk_t *add_mp = NULL; 13551 mblk_t *mp; 13552 ill_t *ill = ipif->ipif_ill; 13553 phyint_t *phyi = ill->ill_phyint; 13554 ipaddr_t addr, mask, extract_mask = 0; 13555 arma_t *arma; 13556 uint8_t *maddr, *bphys_addr; 13557 uint32_t hw_start; 13558 dl_unitdata_req_t *dlur; 13559 13560 ASSERT(IAM_WRITER_IPIF(ipif)); 13561 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13562 return (0); 13563 13564 /* 13565 * Delete the existing mapping from ARP. Normally ipif_down 13566 * -> ipif_arp_down should send this up to ARP. The only 13567 * reason we would find this when we are switching from 13568 * Multicast to Broadcast where we did not do a down. 13569 */ 13570 mp = ill->ill_arp_del_mapping_mp; 13571 if (mp != NULL) { 13572 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13573 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13574 putnext(ill->ill_rq, mp); 13575 ill->ill_arp_del_mapping_mp = NULL; 13576 } 13577 13578 if (arp_add_mapping_mp != NULL) 13579 *arp_add_mapping_mp = NULL; 13580 13581 /* 13582 * Check that the address is not to long for the constant 13583 * length reserved in the template arma_t. 13584 */ 13585 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13586 return (-1); 13587 13588 /* Add mapping mblk */ 13589 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13590 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13591 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13592 (caddr_t)&addr); 13593 if (add_mp == NULL) 13594 return (-1); 13595 arma = (arma_t *)add_mp->b_rptr; 13596 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13597 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13598 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13599 13600 /* 13601 * Determine the broadcast address. 13602 */ 13603 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13604 if (ill->ill_sap_length < 0) 13605 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13606 else 13607 bphys_addr = (uchar_t *)dlur + 13608 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13609 /* 13610 * Check PHYI_MULTI_BCAST and length of physical 13611 * address to determine if we use the mapping or the 13612 * broadcast address. 13613 */ 13614 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13615 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13616 bphys_addr, maddr, &hw_start, &extract_mask)) 13617 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13618 13619 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13620 (ill->ill_flags & ILLF_MULTICAST)) { 13621 /* Make sure this will not match the "exact" entry. */ 13622 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13623 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13624 (caddr_t)&addr); 13625 if (del_mp == NULL) { 13626 freemsg(add_mp); 13627 return (-1); 13628 } 13629 bcopy(&extract_mask, (char *)arma + 13630 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13631 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13632 /* Use link-layer broadcast address for MULTI_BCAST */ 13633 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13634 ip2dbg(("ipif_arp_setup_multicast: adding" 13635 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13636 } else { 13637 arma->arma_hw_mapping_start = hw_start; 13638 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13639 " ARP setup for %s\n", ill->ill_name)); 13640 } 13641 } else { 13642 freemsg(add_mp); 13643 ASSERT(del_mp == NULL); 13644 /* It is neither MULTICAST nor MULTI_BCAST */ 13645 return (0); 13646 } 13647 ASSERT(add_mp != NULL && del_mp != NULL); 13648 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13649 ill->ill_arp_del_mapping_mp = del_mp; 13650 if (arp_add_mapping_mp != NULL) { 13651 /* The caller just wants the mblks allocated */ 13652 *arp_add_mapping_mp = add_mp; 13653 } else { 13654 /* The caller wants us to send it to arp */ 13655 putnext(ill->ill_rq, add_mp); 13656 } 13657 return (0); 13658 } 13659 13660 /* 13661 * Get the resolver set up for a new interface address. 13662 * (Always called as writer.) 13663 * Called both for IPv4 and IPv6 interfaces, 13664 * though it only sets up the resolver for v6 13665 * if it's an xresolv interface (one using an external resolver). 13666 * Honors ILLF_NOARP. 13667 * The enumerated value res_act is used to tune the behavior. 13668 * If set to Res_act_initial, then we set up all the resolver 13669 * structures for a new interface. If set to Res_act_move, then 13670 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13671 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13672 * asynchronous hardware address change notification. If set to 13673 * Res_act_defend, then we tell ARP that it needs to send a single 13674 * gratuitous message in defense of the address. 13675 * Returns error on failure. 13676 */ 13677 int 13678 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13679 { 13680 caddr_t addr; 13681 mblk_t *arp_up_mp = NULL; 13682 mblk_t *arp_down_mp = NULL; 13683 mblk_t *arp_add_mp = NULL; 13684 mblk_t *arp_del_mp = NULL; 13685 mblk_t *arp_add_mapping_mp = NULL; 13686 mblk_t *arp_del_mapping_mp = NULL; 13687 ill_t *ill = ipif->ipif_ill; 13688 uchar_t *area_p = NULL; 13689 uchar_t *ared_p = NULL; 13690 int err = ENOMEM; 13691 boolean_t was_dup; 13692 13693 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13694 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13695 ASSERT(IAM_WRITER_IPIF(ipif)); 13696 13697 was_dup = B_FALSE; 13698 if (res_act == Res_act_initial) { 13699 ipif->ipif_addr_ready = 0; 13700 /* 13701 * We're bringing an interface up here. There's no way that we 13702 * should need to shut down ARP now. 13703 */ 13704 mutex_enter(&ill->ill_lock); 13705 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13706 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13707 ill->ill_ipif_dup_count--; 13708 was_dup = B_TRUE; 13709 } 13710 mutex_exit(&ill->ill_lock); 13711 } 13712 if (ipif->ipif_recovery_id != 0) 13713 (void) untimeout(ipif->ipif_recovery_id); 13714 ipif->ipif_recovery_id = 0; 13715 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13716 ipif->ipif_addr_ready = 1; 13717 return (0); 13718 } 13719 /* NDP will set the ipif_addr_ready flag when it's ready */ 13720 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13721 return (0); 13722 13723 if (ill->ill_isv6) { 13724 /* 13725 * External resolver for IPv6 13726 */ 13727 ASSERT(res_act == Res_act_initial); 13728 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13729 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13730 area_p = (uchar_t *)&ip6_area_template; 13731 ared_p = (uchar_t *)&ip6_ared_template; 13732 } 13733 } else { 13734 /* 13735 * IPv4 arp case. If the ARP stream has already started 13736 * closing, fail this request for ARP bringup. Else 13737 * record the fact that an ARP bringup is pending. 13738 */ 13739 mutex_enter(&ill->ill_lock); 13740 if (ill->ill_arp_closing) { 13741 mutex_exit(&ill->ill_lock); 13742 err = EINVAL; 13743 goto failed; 13744 } else { 13745 if (ill->ill_ipif_up_count == 0 && 13746 ill->ill_ipif_dup_count == 0 && !was_dup) 13747 ill->ill_arp_bringup_pending = 1; 13748 mutex_exit(&ill->ill_lock); 13749 } 13750 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13751 addr = (caddr_t)&ipif->ipif_lcl_addr; 13752 area_p = (uchar_t *)&ip_area_template; 13753 ared_p = (uchar_t *)&ip_ared_template; 13754 } 13755 } 13756 13757 /* 13758 * Add an entry for the local address in ARP only if it 13759 * is not UNNUMBERED and the address is not INADDR_ANY. 13760 */ 13761 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13762 area_t *area; 13763 13764 /* Now ask ARP to publish our address. */ 13765 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13766 if (arp_add_mp == NULL) 13767 goto failed; 13768 area = (area_t *)arp_add_mp->b_rptr; 13769 if (res_act != Res_act_initial) { 13770 /* 13771 * Copy the new hardware address and length into 13772 * arp_add_mp to be sent to ARP. 13773 */ 13774 area->area_hw_addr_length = ill->ill_phys_addr_length; 13775 bcopy(ill->ill_phys_addr, 13776 ((char *)area + area->area_hw_addr_offset), 13777 area->area_hw_addr_length); 13778 } 13779 13780 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13781 ACE_F_MYADDR; 13782 13783 if (res_act == Res_act_defend) { 13784 area->area_flags |= ACE_F_DEFEND; 13785 /* 13786 * If we're just defending our address now, then 13787 * there's no need to set up ARP multicast mappings. 13788 * The publish command is enough. 13789 */ 13790 goto done; 13791 } 13792 13793 if (res_act != Res_act_initial) 13794 goto arp_setup_multicast; 13795 13796 /* 13797 * Allocate an ARP deletion message so we know we can tell ARP 13798 * when the interface goes down. 13799 */ 13800 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13801 if (arp_del_mp == NULL) 13802 goto failed; 13803 13804 } else { 13805 if (res_act != Res_act_initial) 13806 goto done; 13807 } 13808 /* 13809 * Need to bring up ARP or setup multicast mapping only 13810 * when the first interface is coming UP. 13811 */ 13812 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13813 was_dup) { 13814 goto done; 13815 } 13816 13817 /* 13818 * Allocate an ARP down message (to be saved) and an ARP up 13819 * message. 13820 */ 13821 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13822 if (arp_down_mp == NULL) 13823 goto failed; 13824 13825 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13826 if (arp_up_mp == NULL) 13827 goto failed; 13828 13829 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13830 goto done; 13831 13832 arp_setup_multicast: 13833 /* 13834 * Setup the multicast mappings. This function initializes 13835 * ill_arp_del_mapping_mp also. This does not need to be done for 13836 * IPv6. 13837 */ 13838 if (!ill->ill_isv6) { 13839 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13840 if (err != 0) 13841 goto failed; 13842 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13843 ASSERT(arp_add_mapping_mp != NULL); 13844 } 13845 13846 done: 13847 if (arp_del_mp != NULL) { 13848 ASSERT(ipif->ipif_arp_del_mp == NULL); 13849 ipif->ipif_arp_del_mp = arp_del_mp; 13850 } 13851 if (arp_down_mp != NULL) { 13852 ASSERT(ill->ill_arp_down_mp == NULL); 13853 ill->ill_arp_down_mp = arp_down_mp; 13854 } 13855 if (arp_del_mapping_mp != NULL) { 13856 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13857 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13858 } 13859 if (arp_up_mp != NULL) { 13860 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13861 ill->ill_name, ipif->ipif_id)); 13862 putnext(ill->ill_rq, arp_up_mp); 13863 } 13864 if (arp_add_mp != NULL) { 13865 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13866 ill->ill_name, ipif->ipif_id)); 13867 /* 13868 * If it's an extended ARP implementation, then we'll wait to 13869 * hear that DAD has finished before using the interface. 13870 */ 13871 if (!ill->ill_arp_extend) 13872 ipif->ipif_addr_ready = 1; 13873 putnext(ill->ill_rq, arp_add_mp); 13874 } else { 13875 ipif->ipif_addr_ready = 1; 13876 } 13877 if (arp_add_mapping_mp != NULL) { 13878 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13879 ill->ill_name, ipif->ipif_id)); 13880 putnext(ill->ill_rq, arp_add_mapping_mp); 13881 } 13882 if (res_act != Res_act_initial) 13883 return (0); 13884 13885 if (ill->ill_flags & ILLF_NOARP) 13886 err = ill_arp_off(ill); 13887 else 13888 err = ill_arp_on(ill); 13889 if (err != 0) { 13890 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13891 freemsg(ipif->ipif_arp_del_mp); 13892 freemsg(ill->ill_arp_down_mp); 13893 freemsg(ill->ill_arp_del_mapping_mp); 13894 ipif->ipif_arp_del_mp = NULL; 13895 ill->ill_arp_down_mp = NULL; 13896 ill->ill_arp_del_mapping_mp = NULL; 13897 return (err); 13898 } 13899 return ((ill->ill_ipif_up_count != 0 || was_dup || 13900 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13901 13902 failed: 13903 ip1dbg(("ipif_resolver_up: FAILED\n")); 13904 freemsg(arp_add_mp); 13905 freemsg(arp_del_mp); 13906 freemsg(arp_add_mapping_mp); 13907 freemsg(arp_up_mp); 13908 freemsg(arp_down_mp); 13909 ill->ill_arp_bringup_pending = 0; 13910 return (err); 13911 } 13912 13913 /* 13914 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13915 * just gone back up. 13916 */ 13917 static void 13918 ipif_arp_start_dad(ipif_t *ipif) 13919 { 13920 ill_t *ill = ipif->ipif_ill; 13921 mblk_t *arp_add_mp; 13922 area_t *area; 13923 13924 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13925 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13926 ipif->ipif_lcl_addr == INADDR_ANY || 13927 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13928 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13929 /* 13930 * If we can't contact ARP for some reason, that's not really a 13931 * problem. Just send out the routing socket notification that 13932 * DAD completion would have done, and continue. 13933 */ 13934 ipif_mask_reply(ipif); 13935 ip_rts_ifmsg(ipif); 13936 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13937 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13938 ipif->ipif_addr_ready = 1; 13939 return; 13940 } 13941 13942 /* Setting the 'unverified' flag restarts DAD */ 13943 area = (area_t *)arp_add_mp->b_rptr; 13944 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13945 ACE_F_UNVERIFIED; 13946 putnext(ill->ill_rq, arp_add_mp); 13947 } 13948 13949 static void 13950 ipif_ndp_start_dad(ipif_t *ipif) 13951 { 13952 nce_t *nce; 13953 13954 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13955 if (nce == NULL) 13956 return; 13957 13958 if (!ndp_restart_dad(nce)) { 13959 /* 13960 * If we can't restart DAD for some reason, that's not really a 13961 * problem. Just send out the routing socket notification that 13962 * DAD completion would have done, and continue. 13963 */ 13964 ip_rts_ifmsg(ipif); 13965 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13966 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13967 ipif->ipif_addr_ready = 1; 13968 } 13969 NCE_REFRELE(nce); 13970 } 13971 13972 /* 13973 * Restart duplicate address detection on all interfaces on the given ill. 13974 * 13975 * This is called when an interface transitions from down to up 13976 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13977 * 13978 * Note that since the underlying physical link has transitioned, we must cause 13979 * at least one routing socket message to be sent here, either via DAD 13980 * completion or just by default on the first ipif. (If we don't do this, then 13981 * in.mpathd will see long delays when doing link-based failure recovery.) 13982 */ 13983 void 13984 ill_restart_dad(ill_t *ill, boolean_t went_up) 13985 { 13986 ipif_t *ipif; 13987 13988 if (ill == NULL) 13989 return; 13990 13991 /* 13992 * If layer two doesn't support duplicate address detection, then just 13993 * send the routing socket message now and be done with it. 13994 */ 13995 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13996 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13997 ip_rts_ifmsg(ill->ill_ipif); 13998 return; 13999 } 14000 14001 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14002 if (went_up) { 14003 if (ipif->ipif_flags & IPIF_UP) { 14004 if (ill->ill_isv6) 14005 ipif_ndp_start_dad(ipif); 14006 else 14007 ipif_arp_start_dad(ipif); 14008 } else if (ill->ill_isv6 && 14009 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14010 /* 14011 * For IPv4, the ARP module itself will 14012 * automatically start the DAD process when it 14013 * sees DL_NOTE_LINK_UP. We respond to the 14014 * AR_CN_READY at the completion of that task. 14015 * For IPv6, we must kick off the bring-up 14016 * process now. 14017 */ 14018 ndp_do_recovery(ipif); 14019 } else { 14020 /* 14021 * Unfortunately, the first ipif is "special" 14022 * and represents the underlying ill in the 14023 * routing socket messages. Thus, when this 14024 * one ipif is down, we must still notify so 14025 * that the user knows the IFF_RUNNING status 14026 * change. (If the first ipif is up, then 14027 * we'll handle eventual routing socket 14028 * notification via DAD completion.) 14029 */ 14030 if (ipif == ill->ill_ipif) 14031 ip_rts_ifmsg(ill->ill_ipif); 14032 } 14033 } else { 14034 /* 14035 * After link down, we'll need to send a new routing 14036 * message when the link comes back, so clear 14037 * ipif_addr_ready. 14038 */ 14039 ipif->ipif_addr_ready = 0; 14040 } 14041 } 14042 14043 /* 14044 * If we've torn down links, then notify the user right away. 14045 */ 14046 if (!went_up) 14047 ip_rts_ifmsg(ill->ill_ipif); 14048 } 14049 14050 /* 14051 * Wakeup all threads waiting to enter the ipsq, and sleeping 14052 * on any of the ills in this ipsq. The ill_lock of the ill 14053 * must be held so that waiters don't miss wakeups 14054 */ 14055 static void 14056 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14057 { 14058 phyint_t *phyint; 14059 14060 phyint = ipsq->ipsq_phyint_list; 14061 while (phyint != NULL) { 14062 if (phyint->phyint_illv4) { 14063 if (!caller_holds_lock) 14064 mutex_enter(&phyint->phyint_illv4->ill_lock); 14065 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14066 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14067 if (!caller_holds_lock) 14068 mutex_exit(&phyint->phyint_illv4->ill_lock); 14069 } 14070 if (phyint->phyint_illv6) { 14071 if (!caller_holds_lock) 14072 mutex_enter(&phyint->phyint_illv6->ill_lock); 14073 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14074 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14075 if (!caller_holds_lock) 14076 mutex_exit(&phyint->phyint_illv6->ill_lock); 14077 } 14078 phyint = phyint->phyint_ipsq_next; 14079 } 14080 } 14081 14082 static ipsq_t * 14083 ipsq_create(char *groupname, ip_stack_t *ipst) 14084 { 14085 ipsq_t *ipsq; 14086 14087 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14088 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14089 if (ipsq == NULL) { 14090 return (NULL); 14091 } 14092 14093 if (groupname != NULL) 14094 (void) strcpy(ipsq->ipsq_name, groupname); 14095 else 14096 ipsq->ipsq_name[0] = '\0'; 14097 14098 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14099 ipsq->ipsq_flags |= IPSQ_GROUP; 14100 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14101 ipst->ips_ipsq_g_head = ipsq; 14102 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14103 return (ipsq); 14104 } 14105 14106 /* 14107 * Return an ipsq correspoding to the groupname. If 'create' is true 14108 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14109 * uniquely with an IPMP group. However during IPMP groupname operations, 14110 * multiple IPMP groups may be associated with a single ipsq. But no 14111 * IPMP group can be associated with more than 1 ipsq at any time. 14112 * For example 14113 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14114 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14115 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14116 * 14117 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14118 * status shown below during the execution of the above command. 14119 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14120 * 14121 * After the completion of the above groupname command we return to the stable 14122 * state shown below. 14123 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14124 * hme4 mpk17-85 ipsq2 mpk17-85 1 14125 * 14126 * Because of the above, we don't search based on the ipsq_name since that 14127 * would miss the correct ipsq during certain windows as shown above. 14128 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14129 * natural state. 14130 */ 14131 static ipsq_t * 14132 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14133 ip_stack_t *ipst) 14134 { 14135 ipsq_t *ipsq; 14136 int group_len; 14137 phyint_t *phyint; 14138 14139 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14140 14141 group_len = strlen(groupname); 14142 ASSERT(group_len != 0); 14143 group_len++; 14144 14145 for (ipsq = ipst->ips_ipsq_g_head; 14146 ipsq != NULL; 14147 ipsq = ipsq->ipsq_next) { 14148 /* 14149 * When an ipsq is being split, and ill_split_ipsq 14150 * calls this function, we exclude it from being considered. 14151 */ 14152 if (ipsq == exclude_ipsq) 14153 continue; 14154 14155 /* 14156 * Compare against the ipsq_name. The groupname change happens 14157 * in 2 phases. The 1st phase merges the from group into 14158 * the to group's ipsq, by calling ill_merge_groups and restarts 14159 * the ioctl. The 2nd phase then locates the ipsq again thru 14160 * ipsq_name. At this point the phyint_groupname has not been 14161 * updated. 14162 */ 14163 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14164 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14165 /* 14166 * Verify that an ipmp groupname is exactly 14167 * part of 1 ipsq and is not found in any other 14168 * ipsq. 14169 */ 14170 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14171 NULL); 14172 return (ipsq); 14173 } 14174 14175 /* 14176 * Comparison against ipsq_name alone is not sufficient. 14177 * In the case when groups are currently being 14178 * merged, the ipsq could hold other IPMP groups temporarily. 14179 * so we walk the phyint list and compare against the 14180 * phyint_groupname as well. 14181 */ 14182 phyint = ipsq->ipsq_phyint_list; 14183 while (phyint != NULL) { 14184 if ((group_len == phyint->phyint_groupname_len) && 14185 (bcmp(phyint->phyint_groupname, groupname, 14186 group_len) == 0)) { 14187 /* 14188 * Verify that an ipmp groupname is exactly 14189 * part of 1 ipsq and is not found in any other 14190 * ipsq. 14191 */ 14192 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14193 ipst) == NULL); 14194 return (ipsq); 14195 } 14196 phyint = phyint->phyint_ipsq_next; 14197 } 14198 } 14199 if (create) 14200 ipsq = ipsq_create(groupname, ipst); 14201 return (ipsq); 14202 } 14203 14204 static void 14205 ipsq_delete(ipsq_t *ipsq) 14206 { 14207 ipsq_t *nipsq; 14208 ipsq_t *pipsq = NULL; 14209 ip_stack_t *ipst = ipsq->ipsq_ipst; 14210 14211 /* 14212 * We don't hold the ipsq lock, but we are sure no new 14213 * messages can land up, since the ipsq_refs is zero. 14214 * i.e. this ipsq is unnamed and no phyint or phyint group 14215 * is associated with this ipsq. (Lookups are based on ill_name 14216 * or phyint_groupname) 14217 */ 14218 ASSERT(ipsq->ipsq_refs == 0); 14219 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14220 ASSERT(ipsq->ipsq_pending_mp == NULL); 14221 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14222 /* 14223 * This is not the ipsq of an IPMP group. 14224 */ 14225 ipsq->ipsq_ipst = NULL; 14226 kmem_free(ipsq, sizeof (ipsq_t)); 14227 return; 14228 } 14229 14230 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14231 14232 /* 14233 * Locate the ipsq before we can remove it from 14234 * the singly linked list of ipsq's. 14235 */ 14236 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14237 nipsq = nipsq->ipsq_next) { 14238 if (nipsq == ipsq) { 14239 break; 14240 } 14241 pipsq = nipsq; 14242 } 14243 14244 ASSERT(nipsq == ipsq); 14245 14246 /* unlink ipsq from the list */ 14247 if (pipsq != NULL) 14248 pipsq->ipsq_next = ipsq->ipsq_next; 14249 else 14250 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14251 ipsq->ipsq_ipst = NULL; 14252 kmem_free(ipsq, sizeof (ipsq_t)); 14253 rw_exit(&ipst->ips_ill_g_lock); 14254 } 14255 14256 static void 14257 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14258 queue_t *q) 14259 { 14260 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14261 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14262 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14263 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14264 ASSERT(current_mp != NULL); 14265 14266 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14267 NEW_OP, NULL); 14268 14269 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14270 new_ipsq->ipsq_xopq_mphead != NULL); 14271 14272 /* 14273 * move from old ipsq to the new ipsq. 14274 */ 14275 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14276 if (old_ipsq->ipsq_xopq_mphead != NULL) 14277 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14278 14279 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14280 } 14281 14282 void 14283 ill_group_cleanup(ill_t *ill) 14284 { 14285 ill_t *ill_v4; 14286 ill_t *ill_v6; 14287 ipif_t *ipif; 14288 14289 ill_v4 = ill->ill_phyint->phyint_illv4; 14290 ill_v6 = ill->ill_phyint->phyint_illv6; 14291 14292 if (ill_v4 != NULL) { 14293 mutex_enter(&ill_v4->ill_lock); 14294 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14295 ipif = ipif->ipif_next) { 14296 IPIF_UNMARK_MOVING(ipif); 14297 } 14298 ill_v4->ill_up_ipifs = B_FALSE; 14299 mutex_exit(&ill_v4->ill_lock); 14300 } 14301 14302 if (ill_v6 != NULL) { 14303 mutex_enter(&ill_v6->ill_lock); 14304 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14305 ipif = ipif->ipif_next) { 14306 IPIF_UNMARK_MOVING(ipif); 14307 } 14308 ill_v6->ill_up_ipifs = B_FALSE; 14309 mutex_exit(&ill_v6->ill_lock); 14310 } 14311 } 14312 /* 14313 * This function is called when an ill has had a change in its group status 14314 * to bring up all the ipifs that were up before the change. 14315 */ 14316 int 14317 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14318 { 14319 ipif_t *ipif; 14320 ill_t *ill_v4; 14321 ill_t *ill_v6; 14322 ill_t *from_ill; 14323 int err = 0; 14324 14325 14326 ASSERT(IAM_WRITER_ILL(ill)); 14327 14328 /* 14329 * Except for ipif_state_flags and ill_state_flags the other 14330 * fields of the ipif/ill that are modified below are protected 14331 * implicitly since we are a writer. We would have tried to down 14332 * even an ipif that was already down, in ill_down_ipifs. So we 14333 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14334 */ 14335 ill_v4 = ill->ill_phyint->phyint_illv4; 14336 ill_v6 = ill->ill_phyint->phyint_illv6; 14337 if (ill_v4 != NULL) { 14338 ill_v4->ill_up_ipifs = B_TRUE; 14339 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14340 ipif = ipif->ipif_next) { 14341 mutex_enter(&ill_v4->ill_lock); 14342 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14343 IPIF_UNMARK_MOVING(ipif); 14344 mutex_exit(&ill_v4->ill_lock); 14345 if (ipif->ipif_was_up) { 14346 if (!(ipif->ipif_flags & IPIF_UP)) 14347 err = ipif_up(ipif, q, mp); 14348 ipif->ipif_was_up = B_FALSE; 14349 if (err != 0) { 14350 /* 14351 * Can there be any other error ? 14352 */ 14353 ASSERT(err == EINPROGRESS); 14354 return (err); 14355 } 14356 } 14357 } 14358 mutex_enter(&ill_v4->ill_lock); 14359 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14360 mutex_exit(&ill_v4->ill_lock); 14361 ill_v4->ill_up_ipifs = B_FALSE; 14362 if (ill_v4->ill_move_in_progress) { 14363 ASSERT(ill_v4->ill_move_peer != NULL); 14364 ill_v4->ill_move_in_progress = B_FALSE; 14365 from_ill = ill_v4->ill_move_peer; 14366 from_ill->ill_move_in_progress = B_FALSE; 14367 from_ill->ill_move_peer = NULL; 14368 mutex_enter(&from_ill->ill_lock); 14369 from_ill->ill_state_flags &= ~ILL_CHANGING; 14370 mutex_exit(&from_ill->ill_lock); 14371 if (ill_v6 == NULL) { 14372 if (from_ill->ill_phyint->phyint_flags & 14373 PHYI_STANDBY) { 14374 phyint_inactive(from_ill->ill_phyint); 14375 } 14376 if (ill_v4->ill_phyint->phyint_flags & 14377 PHYI_STANDBY) { 14378 phyint_inactive(ill_v4->ill_phyint); 14379 } 14380 } 14381 ill_v4->ill_move_peer = NULL; 14382 } 14383 } 14384 14385 if (ill_v6 != NULL) { 14386 ill_v6->ill_up_ipifs = B_TRUE; 14387 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14388 ipif = ipif->ipif_next) { 14389 mutex_enter(&ill_v6->ill_lock); 14390 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14391 IPIF_UNMARK_MOVING(ipif); 14392 mutex_exit(&ill_v6->ill_lock); 14393 if (ipif->ipif_was_up) { 14394 if (!(ipif->ipif_flags & IPIF_UP)) 14395 err = ipif_up(ipif, q, mp); 14396 ipif->ipif_was_up = B_FALSE; 14397 if (err != 0) { 14398 /* 14399 * Can there be any other error ? 14400 */ 14401 ASSERT(err == EINPROGRESS); 14402 return (err); 14403 } 14404 } 14405 } 14406 mutex_enter(&ill_v6->ill_lock); 14407 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14408 mutex_exit(&ill_v6->ill_lock); 14409 ill_v6->ill_up_ipifs = B_FALSE; 14410 if (ill_v6->ill_move_in_progress) { 14411 ASSERT(ill_v6->ill_move_peer != NULL); 14412 ill_v6->ill_move_in_progress = B_FALSE; 14413 from_ill = ill_v6->ill_move_peer; 14414 from_ill->ill_move_in_progress = B_FALSE; 14415 from_ill->ill_move_peer = NULL; 14416 mutex_enter(&from_ill->ill_lock); 14417 from_ill->ill_state_flags &= ~ILL_CHANGING; 14418 mutex_exit(&from_ill->ill_lock); 14419 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14420 phyint_inactive(from_ill->ill_phyint); 14421 } 14422 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14423 phyint_inactive(ill_v6->ill_phyint); 14424 } 14425 ill_v6->ill_move_peer = NULL; 14426 } 14427 } 14428 return (0); 14429 } 14430 14431 /* 14432 * bring down all the approriate ipifs. 14433 */ 14434 /* ARGSUSED */ 14435 static void 14436 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14437 { 14438 ipif_t *ipif; 14439 14440 ASSERT(IAM_WRITER_ILL(ill)); 14441 14442 /* 14443 * Except for ipif_state_flags the other fields of the ipif/ill that 14444 * are modified below are protected implicitly since we are a writer 14445 */ 14446 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14447 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14448 continue; 14449 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14450 /* 14451 * We go through the ipif_down logic even if the ipif 14452 * is already down, since routes can be added based 14453 * on down ipifs. Going through ipif_down once again 14454 * will delete any IREs created based on these routes. 14455 */ 14456 if (ipif->ipif_flags & IPIF_UP) 14457 ipif->ipif_was_up = B_TRUE; 14458 /* 14459 * If called with chk_nofailover true ipif is moving. 14460 */ 14461 mutex_enter(&ill->ill_lock); 14462 if (chk_nofailover) { 14463 ipif->ipif_state_flags |= 14464 IPIF_MOVING | IPIF_CHANGING; 14465 } else { 14466 ipif->ipif_state_flags |= IPIF_CHANGING; 14467 } 14468 mutex_exit(&ill->ill_lock); 14469 /* 14470 * Need to re-create net/subnet bcast ires if 14471 * they are dependent on ipif. 14472 */ 14473 if (!ipif->ipif_isv6) 14474 ipif_check_bcast_ires(ipif); 14475 (void) ipif_logical_down(ipif, NULL, NULL); 14476 ipif_non_duplicate(ipif); 14477 ipif_down_tail(ipif); 14478 } 14479 } 14480 } 14481 14482 #define IPSQ_INC_REF(ipsq, ipst) { \ 14483 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14484 (ipsq)->ipsq_refs++; \ 14485 } 14486 14487 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14488 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14489 (ipsq)->ipsq_refs--; \ 14490 if ((ipsq)->ipsq_refs == 0) \ 14491 (ipsq)->ipsq_name[0] = '\0'; \ 14492 } 14493 14494 /* 14495 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14496 * new_ipsq. 14497 */ 14498 static void 14499 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14500 { 14501 phyint_t *phyint; 14502 phyint_t *next_phyint; 14503 14504 /* 14505 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14506 * writer and the ill_lock of the ill in question. Also the dest 14507 * ipsq can't vanish while we hold the ill_g_lock as writer. 14508 */ 14509 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14510 14511 phyint = cur_ipsq->ipsq_phyint_list; 14512 cur_ipsq->ipsq_phyint_list = NULL; 14513 while (phyint != NULL) { 14514 next_phyint = phyint->phyint_ipsq_next; 14515 IPSQ_DEC_REF(cur_ipsq, ipst); 14516 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14517 new_ipsq->ipsq_phyint_list = phyint; 14518 IPSQ_INC_REF(new_ipsq, ipst); 14519 phyint->phyint_ipsq = new_ipsq; 14520 phyint = next_phyint; 14521 } 14522 } 14523 14524 #define SPLIT_SUCCESS 0 14525 #define SPLIT_NOT_NEEDED 1 14526 #define SPLIT_FAILED 2 14527 14528 int 14529 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14530 ip_stack_t *ipst) 14531 { 14532 ipsq_t *newipsq = NULL; 14533 14534 /* 14535 * Assertions denote pre-requisites for changing the ipsq of 14536 * a phyint 14537 */ 14538 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14539 /* 14540 * <ill-phyint> assocs can't change while ill_g_lock 14541 * is held as writer. See ill_phyint_reinit() 14542 */ 14543 ASSERT(phyint->phyint_illv4 == NULL || 14544 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14545 ASSERT(phyint->phyint_illv6 == NULL || 14546 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14547 14548 if ((phyint->phyint_groupname_len != 14549 (strlen(cur_ipsq->ipsq_name) + 1) || 14550 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14551 phyint->phyint_groupname_len) != 0)) { 14552 /* 14553 * Once we fail in creating a new ipsq due to memory shortage, 14554 * don't attempt to create new ipsq again, based on another 14555 * phyint, since we want all phyints belonging to an IPMP group 14556 * to be in the same ipsq even in the event of mem alloc fails. 14557 */ 14558 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14559 cur_ipsq, ipst); 14560 if (newipsq == NULL) { 14561 /* Memory allocation failure */ 14562 return (SPLIT_FAILED); 14563 } else { 14564 /* ipsq_refs protected by ill_g_lock (writer) */ 14565 IPSQ_DEC_REF(cur_ipsq, ipst); 14566 phyint->phyint_ipsq = newipsq; 14567 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14568 newipsq->ipsq_phyint_list = phyint; 14569 IPSQ_INC_REF(newipsq, ipst); 14570 return (SPLIT_SUCCESS); 14571 } 14572 } 14573 return (SPLIT_NOT_NEEDED); 14574 } 14575 14576 /* 14577 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14578 * to do this split 14579 */ 14580 static int 14581 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14582 { 14583 ipsq_t *newipsq; 14584 14585 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14586 /* 14587 * <ill-phyint> assocs can't change while ill_g_lock 14588 * is held as writer. See ill_phyint_reinit() 14589 */ 14590 14591 ASSERT(phyint->phyint_illv4 == NULL || 14592 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14593 ASSERT(phyint->phyint_illv6 == NULL || 14594 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14595 14596 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14597 phyint->phyint_illv4: phyint->phyint_illv6)) { 14598 /* 14599 * ipsq_init failed due to no memory 14600 * caller will use the same ipsq 14601 */ 14602 return (SPLIT_FAILED); 14603 } 14604 14605 /* ipsq_ref is protected by ill_g_lock (writer) */ 14606 IPSQ_DEC_REF(cur_ipsq, ipst); 14607 14608 /* 14609 * This is a new ipsq that is unknown to the world. 14610 * So we don't need to hold ipsq_lock, 14611 */ 14612 newipsq = phyint->phyint_ipsq; 14613 newipsq->ipsq_writer = NULL; 14614 newipsq->ipsq_reentry_cnt--; 14615 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14616 #ifdef DEBUG 14617 newipsq->ipsq_depth = 0; 14618 #endif 14619 14620 return (SPLIT_SUCCESS); 14621 } 14622 14623 /* 14624 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14625 * ipsq's representing their individual groups or themselves. Return 14626 * whether split needs to be retried again later. 14627 */ 14628 static boolean_t 14629 ill_split_ipsq(ipsq_t *cur_ipsq) 14630 { 14631 phyint_t *phyint; 14632 phyint_t *next_phyint; 14633 int error; 14634 boolean_t need_retry = B_FALSE; 14635 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14636 14637 phyint = cur_ipsq->ipsq_phyint_list; 14638 cur_ipsq->ipsq_phyint_list = NULL; 14639 while (phyint != NULL) { 14640 next_phyint = phyint->phyint_ipsq_next; 14641 /* 14642 * 'created' will tell us whether the callee actually 14643 * created an ipsq. Lack of memory may force the callee 14644 * to return without creating an ipsq. 14645 */ 14646 if (phyint->phyint_groupname == NULL) { 14647 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14648 } else { 14649 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14650 need_retry, ipst); 14651 } 14652 14653 switch (error) { 14654 case SPLIT_FAILED: 14655 need_retry = B_TRUE; 14656 /* FALLTHRU */ 14657 case SPLIT_NOT_NEEDED: 14658 /* 14659 * Keep it on the list. 14660 */ 14661 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14662 cur_ipsq->ipsq_phyint_list = phyint; 14663 break; 14664 case SPLIT_SUCCESS: 14665 break; 14666 default: 14667 ASSERT(0); 14668 } 14669 14670 phyint = next_phyint; 14671 } 14672 return (need_retry); 14673 } 14674 14675 /* 14676 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14677 * and return the ills in the list. This list will be 14678 * needed to unlock all the ills later on by the caller. 14679 * The <ill-ipsq> associations could change between the 14680 * lock and unlock. Hence the unlock can't traverse the 14681 * ipsq to get the list of ills. 14682 */ 14683 static int 14684 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14685 { 14686 int cnt = 0; 14687 phyint_t *phyint; 14688 ip_stack_t *ipst = ipsq->ipsq_ipst; 14689 14690 /* 14691 * The caller holds ill_g_lock to ensure that the ill memberships 14692 * of the ipsq don't change 14693 */ 14694 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14695 14696 phyint = ipsq->ipsq_phyint_list; 14697 while (phyint != NULL) { 14698 if (phyint->phyint_illv4 != NULL) { 14699 ASSERT(cnt < list_max); 14700 list[cnt++] = phyint->phyint_illv4; 14701 } 14702 if (phyint->phyint_illv6 != NULL) { 14703 ASSERT(cnt < list_max); 14704 list[cnt++] = phyint->phyint_illv6; 14705 } 14706 phyint = phyint->phyint_ipsq_next; 14707 } 14708 ill_lock_ills(list, cnt); 14709 return (cnt); 14710 } 14711 14712 void 14713 ill_lock_ills(ill_t **list, int cnt) 14714 { 14715 int i; 14716 14717 if (cnt > 1) { 14718 boolean_t try_again; 14719 do { 14720 try_again = B_FALSE; 14721 for (i = 0; i < cnt - 1; i++) { 14722 if (list[i] < list[i + 1]) { 14723 ill_t *tmp; 14724 14725 /* swap the elements */ 14726 tmp = list[i]; 14727 list[i] = list[i + 1]; 14728 list[i + 1] = tmp; 14729 try_again = B_TRUE; 14730 } 14731 } 14732 } while (try_again); 14733 } 14734 14735 for (i = 0; i < cnt; i++) { 14736 if (i == 0) { 14737 if (list[i] != NULL) 14738 mutex_enter(&list[i]->ill_lock); 14739 else 14740 return; 14741 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14742 mutex_enter(&list[i]->ill_lock); 14743 } 14744 } 14745 } 14746 14747 void 14748 ill_unlock_ills(ill_t **list, int cnt) 14749 { 14750 int i; 14751 14752 for (i = 0; i < cnt; i++) { 14753 if ((i == 0) && (list[i] != NULL)) { 14754 mutex_exit(&list[i]->ill_lock); 14755 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14756 mutex_exit(&list[i]->ill_lock); 14757 } 14758 } 14759 } 14760 14761 /* 14762 * Merge all the ills from 1 ipsq group into another ipsq group. 14763 * The source ipsq group is specified by the ipsq associated with 14764 * 'from_ill'. The destination ipsq group is specified by the ipsq 14765 * associated with 'to_ill' or 'groupname' respectively. 14766 * Note that ipsq itself does not have a reference count mechanism 14767 * and functions don't look up an ipsq and pass it around. Instead 14768 * functions pass around an ill or groupname, and the ipsq is looked 14769 * up from the ill or groupname and the required operation performed 14770 * atomically with the lookup on the ipsq. 14771 */ 14772 static int 14773 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14774 queue_t *q) 14775 { 14776 ipsq_t *old_ipsq; 14777 ipsq_t *new_ipsq; 14778 ill_t **ill_list; 14779 int cnt; 14780 size_t ill_list_size; 14781 boolean_t became_writer_on_new_sq = B_FALSE; 14782 ip_stack_t *ipst = from_ill->ill_ipst; 14783 14784 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14785 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14786 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14787 14788 /* 14789 * Need to hold ill_g_lock as writer and also the ill_lock to 14790 * change the <ill-ipsq> assoc of an ill. Need to hold the 14791 * ipsq_lock to prevent new messages from landing on an ipsq. 14792 */ 14793 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14794 14795 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14796 if (groupname != NULL) 14797 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14798 else { 14799 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14800 } 14801 14802 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14803 14804 /* 14805 * both groups are on the same ipsq. 14806 */ 14807 if (old_ipsq == new_ipsq) { 14808 rw_exit(&ipst->ips_ill_g_lock); 14809 return (0); 14810 } 14811 14812 cnt = old_ipsq->ipsq_refs << 1; 14813 ill_list_size = cnt * sizeof (ill_t *); 14814 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14815 if (ill_list == NULL) { 14816 rw_exit(&ipst->ips_ill_g_lock); 14817 return (ENOMEM); 14818 } 14819 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14820 14821 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14822 mutex_enter(&new_ipsq->ipsq_lock); 14823 if ((new_ipsq->ipsq_writer == NULL && 14824 new_ipsq->ipsq_current_ipif == NULL) || 14825 (new_ipsq->ipsq_writer == curthread)) { 14826 new_ipsq->ipsq_writer = curthread; 14827 new_ipsq->ipsq_reentry_cnt++; 14828 became_writer_on_new_sq = B_TRUE; 14829 } 14830 14831 /* 14832 * We are holding ill_g_lock as writer and all the ill locks of 14833 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14834 * message can land up on the old ipsq even though we don't hold the 14835 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14836 */ 14837 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14838 14839 /* 14840 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14841 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14842 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14843 */ 14844 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14845 14846 /* 14847 * Mark the new ipsq as needing a split since it is currently 14848 * being shared by more than 1 IPMP group. The split will 14849 * occur at the end of ipsq_exit 14850 */ 14851 new_ipsq->ipsq_split = B_TRUE; 14852 14853 /* Now release all the locks */ 14854 mutex_exit(&new_ipsq->ipsq_lock); 14855 ill_unlock_ills(ill_list, cnt); 14856 rw_exit(&ipst->ips_ill_g_lock); 14857 14858 kmem_free(ill_list, ill_list_size); 14859 14860 /* 14861 * If we succeeded in becoming writer on the new ipsq, then 14862 * drain the new ipsq and start processing all enqueued messages 14863 * including the current ioctl we are processing which is either 14864 * a set groupname or failover/failback. 14865 */ 14866 if (became_writer_on_new_sq) 14867 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14868 14869 /* 14870 * syncq has been changed and all the messages have been moved. 14871 */ 14872 mutex_enter(&old_ipsq->ipsq_lock); 14873 old_ipsq->ipsq_current_ipif = NULL; 14874 old_ipsq->ipsq_current_ioctl = 0; 14875 mutex_exit(&old_ipsq->ipsq_lock); 14876 return (EINPROGRESS); 14877 } 14878 14879 /* 14880 * Delete and add the loopback copy and non-loopback copy of 14881 * the BROADCAST ire corresponding to ill and addr. Used to 14882 * group broadcast ires together when ill becomes part of 14883 * a group. 14884 * 14885 * This function is also called when ill is leaving the group 14886 * so that the ires belonging to the group gets re-grouped. 14887 */ 14888 static void 14889 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14890 { 14891 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14892 ire_t **ire_ptpn = &ire_head; 14893 ip_stack_t *ipst = ill->ill_ipst; 14894 14895 /* 14896 * The loopback and non-loopback IREs are inserted in the order in which 14897 * they're found, on the basis that they are correctly ordered (loopback 14898 * first). 14899 */ 14900 for (;;) { 14901 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14902 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14903 if (ire == NULL) 14904 break; 14905 14906 /* 14907 * we are passing in KM_SLEEP because it is not easy to 14908 * go back to a sane state in case of memory failure. 14909 */ 14910 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14911 ASSERT(nire != NULL); 14912 bzero(nire, sizeof (ire_t)); 14913 /* 14914 * Don't use ire_max_frag directly since we don't 14915 * hold on to 'ire' until we add the new ire 'nire' and 14916 * we don't want the new ire to have a dangling reference 14917 * to 'ire'. The ire_max_frag of a broadcast ire must 14918 * be in sync with the ipif_mtu of the associate ipif. 14919 * For eg. this happens as a result of SIOCSLIFNAME, 14920 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14921 * the driver. A change in ire_max_frag triggered as 14922 * as a result of path mtu discovery, or due to an 14923 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14924 * route change -mtu command does not apply to broadcast ires. 14925 * 14926 * XXX We need a recovery strategy here if ire_init fails 14927 */ 14928 if (ire_init(nire, 14929 (uchar_t *)&ire->ire_addr, 14930 (uchar_t *)&ire->ire_mask, 14931 (uchar_t *)&ire->ire_src_addr, 14932 (uchar_t *)&ire->ire_gateway_addr, 14933 ire->ire_stq == NULL ? &ip_loopback_mtu : 14934 &ire->ire_ipif->ipif_mtu, 14935 ire->ire_nce, 14936 ire->ire_rfq, 14937 ire->ire_stq, 14938 ire->ire_type, 14939 ire->ire_ipif, 14940 ire->ire_cmask, 14941 ire->ire_phandle, 14942 ire->ire_ihandle, 14943 ire->ire_flags, 14944 &ire->ire_uinfo, 14945 NULL, 14946 NULL, 14947 ipst) == NULL) { 14948 cmn_err(CE_PANIC, "ire_init() failed"); 14949 } 14950 ire_delete(ire); 14951 ire_refrele(ire); 14952 14953 /* 14954 * The newly created IREs are inserted at the tail of the list 14955 * starting with ire_head. As we've just allocated them no one 14956 * knows about them so it's safe. 14957 */ 14958 *ire_ptpn = nire; 14959 ire_ptpn = &nire->ire_next; 14960 } 14961 14962 for (nire = ire_head; nire != NULL; nire = nire_next) { 14963 int error; 14964 ire_t *oire; 14965 /* unlink the IRE from our list before calling ire_add() */ 14966 nire_next = nire->ire_next; 14967 nire->ire_next = NULL; 14968 14969 /* ire_add adds the ire at the right place in the list */ 14970 oire = nire; 14971 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14972 ASSERT(error == 0); 14973 ASSERT(oire == nire); 14974 ire_refrele(nire); /* Held in ire_add */ 14975 } 14976 } 14977 14978 /* 14979 * This function is usually called when an ill is inserted in 14980 * a group and all the ipifs are already UP. As all the ipifs 14981 * are already UP, the broadcast ires have already been created 14982 * and been inserted. But, ire_add_v4 would not have grouped properly. 14983 * We need to re-group for the benefit of ip_wput_ire which 14984 * expects BROADCAST ires to be grouped properly to avoid sending 14985 * more than one copy of the broadcast packet per group. 14986 * 14987 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14988 * because when ipif_up_done ends up calling this, ires have 14989 * already been added before illgrp_insert i.e before ill_group 14990 * has been initialized. 14991 */ 14992 static void 14993 ill_group_bcast_for_xmit(ill_t *ill) 14994 { 14995 ill_group_t *illgrp; 14996 ipif_t *ipif; 14997 ipaddr_t addr; 14998 ipaddr_t net_mask; 14999 ipaddr_t subnet_netmask; 15000 15001 illgrp = ill->ill_group; 15002 15003 /* 15004 * This function is called even when an ill is deleted from 15005 * the group. Hence, illgrp could be null. 15006 */ 15007 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15008 return; 15009 15010 /* 15011 * Delete all the BROADCAST ires matching this ill and add 15012 * them back. This time, ire_add_v4 should take care of 15013 * grouping them with others because ill is part of the 15014 * group. 15015 */ 15016 ill_bcast_delete_and_add(ill, 0); 15017 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15018 15019 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15020 15021 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15022 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15023 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15024 } else { 15025 net_mask = htonl(IN_CLASSA_NET); 15026 } 15027 addr = net_mask & ipif->ipif_subnet; 15028 ill_bcast_delete_and_add(ill, addr); 15029 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15030 15031 subnet_netmask = ipif->ipif_net_mask; 15032 addr = ipif->ipif_subnet; 15033 ill_bcast_delete_and_add(ill, addr); 15034 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15035 } 15036 } 15037 15038 /* 15039 * This function is called from illgrp_delete when ill is being deleted 15040 * from the group. 15041 * 15042 * As ill is not there in the group anymore, any address belonging 15043 * to this ill should be cleared of IRE_MARK_NORECV. 15044 */ 15045 static void 15046 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15047 { 15048 ire_t *ire; 15049 irb_t *irb; 15050 ip_stack_t *ipst = ill->ill_ipst; 15051 15052 ASSERT(ill->ill_group == NULL); 15053 15054 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15055 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15056 15057 if (ire != NULL) { 15058 /* 15059 * IPMP and plumbing operations are serialized on the ipsq, so 15060 * no one will insert or delete a broadcast ire under our feet. 15061 */ 15062 irb = ire->ire_bucket; 15063 rw_enter(&irb->irb_lock, RW_READER); 15064 ire_refrele(ire); 15065 15066 for (; ire != NULL; ire = ire->ire_next) { 15067 if (ire->ire_addr != addr) 15068 break; 15069 if (ire_to_ill(ire) != ill) 15070 continue; 15071 15072 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15073 ire->ire_marks &= ~IRE_MARK_NORECV; 15074 } 15075 rw_exit(&irb->irb_lock); 15076 } 15077 } 15078 15079 /* 15080 * This function must be called only after the broadcast ires 15081 * have been grouped together. For a given address addr, nominate 15082 * only one of the ires whose interface is not FAILED or OFFLINE. 15083 * 15084 * This is also called when an ipif goes down, so that we can nominate 15085 * a different ire with the same address for receiving. 15086 */ 15087 static void 15088 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15089 { 15090 irb_t *irb; 15091 ire_t *ire; 15092 ire_t *ire1; 15093 ire_t *save_ire; 15094 ire_t **irep = NULL; 15095 boolean_t first = B_TRUE; 15096 ire_t *clear_ire = NULL; 15097 ire_t *start_ire = NULL; 15098 ire_t *new_lb_ire; 15099 ire_t *new_nlb_ire; 15100 boolean_t new_lb_ire_used = B_FALSE; 15101 boolean_t new_nlb_ire_used = B_FALSE; 15102 uint64_t match_flags; 15103 uint64_t phyi_flags; 15104 boolean_t fallback = B_FALSE; 15105 uint_t max_frag; 15106 15107 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15108 NULL, MATCH_IRE_TYPE, ipst); 15109 /* 15110 * We may not be able to find some ires if a previous 15111 * ire_create failed. This happens when an ipif goes 15112 * down and we are unable to create BROADCAST ires due 15113 * to memory failure. Thus, we have to check for NULL 15114 * below. This should handle the case for LOOPBACK, 15115 * POINTOPOINT and interfaces with some POINTOPOINT 15116 * logicals for which there are no BROADCAST ires. 15117 */ 15118 if (ire == NULL) 15119 return; 15120 /* 15121 * Currently IRE_BROADCASTS are deleted when an ipif 15122 * goes down which runs exclusively. Thus, setting 15123 * IRE_MARK_RCVD should not race with ire_delete marking 15124 * IRE_MARK_CONDEMNED. We grab the lock below just to 15125 * be consistent with other parts of the code that walks 15126 * a given bucket. 15127 */ 15128 save_ire = ire; 15129 irb = ire->ire_bucket; 15130 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15131 if (new_lb_ire == NULL) { 15132 ire_refrele(ire); 15133 return; 15134 } 15135 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15136 if (new_nlb_ire == NULL) { 15137 ire_refrele(ire); 15138 kmem_cache_free(ire_cache, new_lb_ire); 15139 return; 15140 } 15141 IRB_REFHOLD(irb); 15142 rw_enter(&irb->irb_lock, RW_WRITER); 15143 /* 15144 * Get to the first ire matching the address and the 15145 * group. If the address does not match we are done 15146 * as we could not find the IRE. If the address matches 15147 * we should get to the first one matching the group. 15148 */ 15149 while (ire != NULL) { 15150 if (ire->ire_addr != addr || 15151 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15152 break; 15153 } 15154 ire = ire->ire_next; 15155 } 15156 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15157 start_ire = ire; 15158 redo: 15159 while (ire != NULL && ire->ire_addr == addr && 15160 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15161 /* 15162 * The first ire for any address within a group 15163 * should always be the one with IRE_MARK_NORECV cleared 15164 * so that ip_wput_ire can avoid searching for one. 15165 * Note down the insertion point which will be used 15166 * later. 15167 */ 15168 if (first && (irep == NULL)) 15169 irep = ire->ire_ptpn; 15170 /* 15171 * PHYI_FAILED is set when the interface fails. 15172 * This interface might have become good, but the 15173 * daemon has not yet detected. We should still 15174 * not receive on this. PHYI_OFFLINE should never 15175 * be picked as this has been offlined and soon 15176 * be removed. 15177 */ 15178 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15179 if (phyi_flags & PHYI_OFFLINE) { 15180 ire->ire_marks |= IRE_MARK_NORECV; 15181 ire = ire->ire_next; 15182 continue; 15183 } 15184 if (phyi_flags & match_flags) { 15185 ire->ire_marks |= IRE_MARK_NORECV; 15186 ire = ire->ire_next; 15187 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15188 PHYI_INACTIVE) { 15189 fallback = B_TRUE; 15190 } 15191 continue; 15192 } 15193 if (first) { 15194 /* 15195 * We will move this to the front of the list later 15196 * on. 15197 */ 15198 clear_ire = ire; 15199 ire->ire_marks &= ~IRE_MARK_NORECV; 15200 } else { 15201 ire->ire_marks |= IRE_MARK_NORECV; 15202 } 15203 first = B_FALSE; 15204 ire = ire->ire_next; 15205 } 15206 /* 15207 * If we never nominated anybody, try nominating at least 15208 * an INACTIVE, if we found one. Do it only once though. 15209 */ 15210 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15211 fallback) { 15212 match_flags = PHYI_FAILED; 15213 ire = start_ire; 15214 irep = NULL; 15215 goto redo; 15216 } 15217 ire_refrele(save_ire); 15218 15219 /* 15220 * irep non-NULL indicates that we entered the while loop 15221 * above. If clear_ire is at the insertion point, we don't 15222 * have to do anything. clear_ire will be NULL if all the 15223 * interfaces are failed. 15224 * 15225 * We cannot unlink and reinsert the ire at the right place 15226 * in the list since there can be other walkers of this bucket. 15227 * Instead we delete and recreate the ire 15228 */ 15229 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15230 ire_t *clear_ire_stq = NULL; 15231 15232 bzero(new_lb_ire, sizeof (ire_t)); 15233 /* XXX We need a recovery strategy here. */ 15234 if (ire_init(new_lb_ire, 15235 (uchar_t *)&clear_ire->ire_addr, 15236 (uchar_t *)&clear_ire->ire_mask, 15237 (uchar_t *)&clear_ire->ire_src_addr, 15238 (uchar_t *)&clear_ire->ire_gateway_addr, 15239 &clear_ire->ire_max_frag, 15240 NULL, /* let ire_nce_init derive the resolver info */ 15241 clear_ire->ire_rfq, 15242 clear_ire->ire_stq, 15243 clear_ire->ire_type, 15244 clear_ire->ire_ipif, 15245 clear_ire->ire_cmask, 15246 clear_ire->ire_phandle, 15247 clear_ire->ire_ihandle, 15248 clear_ire->ire_flags, 15249 &clear_ire->ire_uinfo, 15250 NULL, 15251 NULL, 15252 ipst) == NULL) 15253 cmn_err(CE_PANIC, "ire_init() failed"); 15254 if (clear_ire->ire_stq == NULL) { 15255 ire_t *ire_next = clear_ire->ire_next; 15256 if (ire_next != NULL && 15257 ire_next->ire_stq != NULL && 15258 ire_next->ire_addr == clear_ire->ire_addr && 15259 ire_next->ire_ipif->ipif_ill == 15260 clear_ire->ire_ipif->ipif_ill) { 15261 clear_ire_stq = ire_next; 15262 15263 bzero(new_nlb_ire, sizeof (ire_t)); 15264 /* XXX We need a recovery strategy here. */ 15265 if (ire_init(new_nlb_ire, 15266 (uchar_t *)&clear_ire_stq->ire_addr, 15267 (uchar_t *)&clear_ire_stq->ire_mask, 15268 (uchar_t *)&clear_ire_stq->ire_src_addr, 15269 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15270 &clear_ire_stq->ire_max_frag, 15271 NULL, 15272 clear_ire_stq->ire_rfq, 15273 clear_ire_stq->ire_stq, 15274 clear_ire_stq->ire_type, 15275 clear_ire_stq->ire_ipif, 15276 clear_ire_stq->ire_cmask, 15277 clear_ire_stq->ire_phandle, 15278 clear_ire_stq->ire_ihandle, 15279 clear_ire_stq->ire_flags, 15280 &clear_ire_stq->ire_uinfo, 15281 NULL, 15282 NULL, 15283 ipst) == NULL) 15284 cmn_err(CE_PANIC, "ire_init() failed"); 15285 } 15286 } 15287 15288 /* 15289 * Delete the ire. We can't call ire_delete() since 15290 * we are holding the bucket lock. We can't release the 15291 * bucket lock since we can't allow irep to change. So just 15292 * mark it CONDEMNED. The IRB_REFRELE will delete the 15293 * ire from the list and do the refrele. 15294 */ 15295 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15296 irb->irb_marks |= IRB_MARK_CONDEMNED; 15297 15298 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15299 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15300 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15301 } 15302 15303 /* 15304 * Also take care of otherfields like ib/ob pkt count 15305 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15306 */ 15307 15308 /* Set the max_frag before adding the ire */ 15309 max_frag = *new_lb_ire->ire_max_fragp; 15310 new_lb_ire->ire_max_fragp = NULL; 15311 new_lb_ire->ire_max_frag = max_frag; 15312 15313 /* Add the new ire's. Insert at *irep */ 15314 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15315 ire1 = *irep; 15316 if (ire1 != NULL) 15317 ire1->ire_ptpn = &new_lb_ire->ire_next; 15318 new_lb_ire->ire_next = ire1; 15319 /* Link the new one in. */ 15320 new_lb_ire->ire_ptpn = irep; 15321 membar_producer(); 15322 *irep = new_lb_ire; 15323 new_lb_ire_used = B_TRUE; 15324 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15325 new_lb_ire->ire_bucket->irb_ire_cnt++; 15326 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), new_lb_ire->ire_ipif, 15327 (char *), "ire", (void *), new_lb_ire); 15328 new_lb_ire->ire_ipif->ipif_cnt_ire++; 15329 15330 if (clear_ire_stq != NULL) { 15331 /* Set the max_frag before adding the ire */ 15332 max_frag = *new_nlb_ire->ire_max_fragp; 15333 new_nlb_ire->ire_max_fragp = NULL; 15334 new_nlb_ire->ire_max_frag = max_frag; 15335 15336 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15337 irep = &new_lb_ire->ire_next; 15338 /* Add the new ire. Insert at *irep */ 15339 ire1 = *irep; 15340 if (ire1 != NULL) 15341 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15342 new_nlb_ire->ire_next = ire1; 15343 /* Link the new one in. */ 15344 new_nlb_ire->ire_ptpn = irep; 15345 membar_producer(); 15346 *irep = new_nlb_ire; 15347 new_nlb_ire_used = B_TRUE; 15348 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15349 ire_stats_inserted); 15350 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15351 DTRACE_PROBE3(ipif__incr__cnt, 15352 (ipif_t *), new_nlb_ire->ire_ipif, 15353 (char *), "ire", (void *), new_nlb_ire); 15354 new_nlb_ire->ire_ipif->ipif_cnt_ire++; 15355 DTRACE_PROBE3(ill__incr__cnt, 15356 (ill_t *), new_nlb_ire->ire_stq->q_ptr, 15357 (char *), "ire", (void *), new_nlb_ire); 15358 ((ill_t *)(new_nlb_ire->ire_stq->q_ptr))->ill_cnt_ire++; 15359 } 15360 } 15361 rw_exit(&irb->irb_lock); 15362 if (!new_lb_ire_used) 15363 kmem_cache_free(ire_cache, new_lb_ire); 15364 if (!new_nlb_ire_used) 15365 kmem_cache_free(ire_cache, new_nlb_ire); 15366 IRB_REFRELE(irb); 15367 } 15368 15369 /* 15370 * Whenever an ipif goes down we have to renominate a different 15371 * broadcast ire to receive. Whenever an ipif comes up, we need 15372 * to make sure that we have only one nominated to receive. 15373 */ 15374 static void 15375 ipif_renominate_bcast(ipif_t *ipif) 15376 { 15377 ill_t *ill = ipif->ipif_ill; 15378 ipaddr_t subnet_addr; 15379 ipaddr_t net_addr; 15380 ipaddr_t net_mask = 0; 15381 ipaddr_t subnet_netmask; 15382 ipaddr_t addr; 15383 ill_group_t *illgrp; 15384 ip_stack_t *ipst = ill->ill_ipst; 15385 15386 illgrp = ill->ill_group; 15387 /* 15388 * If this is the last ipif going down, it might take 15389 * the ill out of the group. In that case ipif_down -> 15390 * illgrp_delete takes care of doing the nomination. 15391 * ipif_down does not call for this case. 15392 */ 15393 ASSERT(illgrp != NULL); 15394 15395 /* There could not have been any ires associated with this */ 15396 if (ipif->ipif_subnet == 0) 15397 return; 15398 15399 ill_mark_bcast(illgrp, 0, ipst); 15400 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15401 15402 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15403 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15404 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15405 } else { 15406 net_mask = htonl(IN_CLASSA_NET); 15407 } 15408 addr = net_mask & ipif->ipif_subnet; 15409 ill_mark_bcast(illgrp, addr, ipst); 15410 15411 net_addr = ~net_mask | addr; 15412 ill_mark_bcast(illgrp, net_addr, ipst); 15413 15414 subnet_netmask = ipif->ipif_net_mask; 15415 addr = ipif->ipif_subnet; 15416 ill_mark_bcast(illgrp, addr, ipst); 15417 15418 subnet_addr = ~subnet_netmask | addr; 15419 ill_mark_bcast(illgrp, subnet_addr, ipst); 15420 } 15421 15422 /* 15423 * Whenever we form or delete ill groups, we need to nominate one set of 15424 * BROADCAST ires for receiving in the group. 15425 * 15426 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15427 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15428 * for ill_ipif_up_count to be non-zero. This is the only case where 15429 * ill_ipif_up_count is zero and we would still find the ires. 15430 * 15431 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15432 * ipif is UP and we just have to do the nomination. 15433 * 15434 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15435 * from the group. So, we have to do the nomination. 15436 * 15437 * Because of (3), there could be just one ill in the group. But we have 15438 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15439 * Thus, this function does not optimize when there is only one ill as 15440 * it is not correct for (3). 15441 */ 15442 static void 15443 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15444 { 15445 ill_t *ill; 15446 ipif_t *ipif; 15447 ipaddr_t subnet_addr; 15448 ipaddr_t prev_subnet_addr = 0; 15449 ipaddr_t net_addr; 15450 ipaddr_t prev_net_addr = 0; 15451 ipaddr_t net_mask = 0; 15452 ipaddr_t subnet_netmask; 15453 ipaddr_t addr; 15454 ip_stack_t *ipst; 15455 15456 /* 15457 * When the last memeber is leaving, there is nothing to 15458 * nominate. 15459 */ 15460 if (illgrp->illgrp_ill_count == 0) { 15461 ASSERT(illgrp->illgrp_ill == NULL); 15462 return; 15463 } 15464 15465 ill = illgrp->illgrp_ill; 15466 ASSERT(!ill->ill_isv6); 15467 ipst = ill->ill_ipst; 15468 /* 15469 * We assume that ires with same address and belonging to the 15470 * same group, has been grouped together. Nominating a *single* 15471 * ill in the group for sending and receiving broadcast is done 15472 * by making sure that the first BROADCAST ire (which will be 15473 * the one returned by ire_ctable_lookup for ip_rput and the 15474 * one that will be used in ip_wput_ire) will be the one that 15475 * will not have IRE_MARK_NORECV set. 15476 * 15477 * 1) ip_rput checks and discards packets received on ires marked 15478 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15479 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15480 * first ire in the group for every broadcast address in the group. 15481 * ip_rput will accept packets only on the first ire i.e only 15482 * one copy of the ill. 15483 * 15484 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15485 * packet for the whole group. It needs to send out on the ill 15486 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15487 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15488 * the copy echoed back on other port where the ire is not marked 15489 * with IRE_MARK_NORECV. 15490 * 15491 * Note that we just need to have the first IRE either loopback or 15492 * non-loopback (either of them may not exist if ire_create failed 15493 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15494 * always hit the first one and hence will always accept one copy. 15495 * 15496 * We have a broadcast ire per ill for all the unique prefixes 15497 * hosted on that ill. As we don't have a way of knowing the 15498 * unique prefixes on a given ill and hence in the whole group, 15499 * we just call ill_mark_bcast on all the prefixes that exist 15500 * in the group. For the common case of one prefix, the code 15501 * below optimizes by remebering the last address used for 15502 * markng. In the case of multiple prefixes, this will still 15503 * optimize depending the order of prefixes. 15504 * 15505 * The only unique address across the whole group is 0.0.0.0 and 15506 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15507 * the first ire in the bucket for receiving and disables the 15508 * others. 15509 */ 15510 ill_mark_bcast(illgrp, 0, ipst); 15511 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15512 for (; ill != NULL; ill = ill->ill_group_next) { 15513 15514 for (ipif = ill->ill_ipif; ipif != NULL; 15515 ipif = ipif->ipif_next) { 15516 15517 if (!(ipif->ipif_flags & IPIF_UP) || 15518 ipif->ipif_subnet == 0) { 15519 continue; 15520 } 15521 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15522 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15523 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15524 } else { 15525 net_mask = htonl(IN_CLASSA_NET); 15526 } 15527 addr = net_mask & ipif->ipif_subnet; 15528 if (prev_net_addr == 0 || prev_net_addr != addr) { 15529 ill_mark_bcast(illgrp, addr, ipst); 15530 net_addr = ~net_mask | addr; 15531 ill_mark_bcast(illgrp, net_addr, ipst); 15532 } 15533 prev_net_addr = addr; 15534 15535 subnet_netmask = ipif->ipif_net_mask; 15536 addr = ipif->ipif_subnet; 15537 if (prev_subnet_addr == 0 || 15538 prev_subnet_addr != addr) { 15539 ill_mark_bcast(illgrp, addr, ipst); 15540 subnet_addr = ~subnet_netmask | addr; 15541 ill_mark_bcast(illgrp, subnet_addr, ipst); 15542 } 15543 prev_subnet_addr = addr; 15544 } 15545 } 15546 } 15547 15548 /* 15549 * This function is called while forming ill groups. 15550 * 15551 * Currently, we handle only allmulti groups. We want to join 15552 * allmulti on only one of the ills in the groups. In future, 15553 * when we have link aggregation, we may have to join normal 15554 * multicast groups on multiple ills as switch does inbound load 15555 * balancing. Following are the functions that calls this 15556 * function : 15557 * 15558 * 1) ill_recover_multicast : Interface is coming back UP. 15559 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15560 * will call ill_recover_multicast to recover all the multicast 15561 * groups. We need to make sure that only one member is joined 15562 * in the ill group. 15563 * 15564 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15565 * Somebody is joining allmulti. We need to make sure that only one 15566 * member is joined in the group. 15567 * 15568 * 3) illgrp_insert : If allmulti has already joined, we need to make 15569 * sure that only one member is joined in the group. 15570 * 15571 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15572 * allmulti who we have nominated. We need to pick someother ill. 15573 * 15574 * 5) illgrp_delete : The ill we nominated is leaving the group, 15575 * we need to pick a new ill to join the group. 15576 * 15577 * For (1), (2), (5) - we just have to check whether there is 15578 * a good ill joined in the group. If we could not find any ills 15579 * joined the group, we should join. 15580 * 15581 * For (4), the one that was nominated to receive, left the group. 15582 * There could be nobody joined in the group when this function is 15583 * called. 15584 * 15585 * For (3) - we need to explicitly check whether there are multiple 15586 * ills joined in the group. 15587 * 15588 * For simplicity, we don't differentiate any of the above cases. We 15589 * just leave the group if it is joined on any of them and join on 15590 * the first good ill. 15591 */ 15592 int 15593 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15594 { 15595 ilm_t *ilm; 15596 ill_t *ill; 15597 ill_t *fallback_inactive_ill = NULL; 15598 ill_t *fallback_failed_ill = NULL; 15599 int ret = 0; 15600 15601 /* 15602 * Leave the allmulti on all the ills and start fresh. 15603 */ 15604 for (ill = illgrp->illgrp_ill; ill != NULL; 15605 ill = ill->ill_group_next) { 15606 if (ill->ill_join_allmulti) 15607 (void) ip_leave_allmulti(ill->ill_ipif); 15608 } 15609 15610 /* 15611 * Choose a good ill. Fallback to inactive or failed if 15612 * none available. We need to fallback to FAILED in the 15613 * case where we have 2 interfaces in a group - where 15614 * one of them is failed and another is a good one and 15615 * the good one (not marked inactive) is leaving the group. 15616 */ 15617 ret = 0; 15618 for (ill = illgrp->illgrp_ill; ill != NULL; 15619 ill = ill->ill_group_next) { 15620 /* Never pick an offline interface */ 15621 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15622 continue; 15623 15624 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15625 fallback_failed_ill = ill; 15626 continue; 15627 } 15628 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15629 fallback_inactive_ill = ill; 15630 continue; 15631 } 15632 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15633 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15634 ret = ip_join_allmulti(ill->ill_ipif); 15635 /* 15636 * ip_join_allmulti can fail because of memory 15637 * failures. So, make sure we join at least 15638 * on one ill. 15639 */ 15640 if (ill->ill_join_allmulti) 15641 return (0); 15642 } 15643 } 15644 } 15645 if (ret != 0) { 15646 /* 15647 * If we tried nominating above and failed to do so, 15648 * return error. We might have tried multiple times. 15649 * But, return the latest error. 15650 */ 15651 return (ret); 15652 } 15653 if ((ill = fallback_inactive_ill) != NULL) { 15654 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15655 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15656 ret = ip_join_allmulti(ill->ill_ipif); 15657 return (ret); 15658 } 15659 } 15660 } else if ((ill = fallback_failed_ill) != NULL) { 15661 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15662 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15663 ret = ip_join_allmulti(ill->ill_ipif); 15664 return (ret); 15665 } 15666 } 15667 } 15668 return (0); 15669 } 15670 15671 /* 15672 * This function is called from illgrp_delete after it is 15673 * deleted from the group to reschedule responsibilities 15674 * to a different ill. 15675 */ 15676 static void 15677 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15678 { 15679 ilm_t *ilm; 15680 ipif_t *ipif; 15681 ipaddr_t subnet_addr; 15682 ipaddr_t net_addr; 15683 ipaddr_t net_mask = 0; 15684 ipaddr_t subnet_netmask; 15685 ipaddr_t addr; 15686 ip_stack_t *ipst = ill->ill_ipst; 15687 15688 ASSERT(ill->ill_group == NULL); 15689 /* 15690 * Broadcast Responsibility: 15691 * 15692 * 1. If this ill has been nominated for receiving broadcast 15693 * packets, we need to find a new one. Before we find a new 15694 * one, we need to re-group the ires that are part of this new 15695 * group (assumed by ill_nominate_bcast_rcv). We do this by 15696 * calling ill_group_bcast_for_xmit(ill) which will do the right 15697 * thing for us. 15698 * 15699 * 2. If this ill was not nominated for receiving broadcast 15700 * packets, we need to clear the IRE_MARK_NORECV flag 15701 * so that we continue to send up broadcast packets. 15702 */ 15703 if (!ill->ill_isv6) { 15704 /* 15705 * Case 1 above : No optimization here. Just redo the 15706 * nomination. 15707 */ 15708 ill_group_bcast_for_xmit(ill); 15709 ill_nominate_bcast_rcv(illgrp); 15710 15711 /* 15712 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15713 */ 15714 ill_clear_bcast_mark(ill, 0); 15715 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15716 15717 for (ipif = ill->ill_ipif; ipif != NULL; 15718 ipif = ipif->ipif_next) { 15719 15720 if (!(ipif->ipif_flags & IPIF_UP) || 15721 ipif->ipif_subnet == 0) { 15722 continue; 15723 } 15724 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15725 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15726 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15727 } else { 15728 net_mask = htonl(IN_CLASSA_NET); 15729 } 15730 addr = net_mask & ipif->ipif_subnet; 15731 ill_clear_bcast_mark(ill, addr); 15732 15733 net_addr = ~net_mask | addr; 15734 ill_clear_bcast_mark(ill, net_addr); 15735 15736 subnet_netmask = ipif->ipif_net_mask; 15737 addr = ipif->ipif_subnet; 15738 ill_clear_bcast_mark(ill, addr); 15739 15740 subnet_addr = ~subnet_netmask | addr; 15741 ill_clear_bcast_mark(ill, subnet_addr); 15742 } 15743 } 15744 15745 /* 15746 * Multicast Responsibility. 15747 * 15748 * If we have joined allmulti on this one, find a new member 15749 * in the group to join allmulti. As this ill is already part 15750 * of allmulti, we don't have to join on this one. 15751 * 15752 * If we have not joined allmulti on this one, there is no 15753 * responsibility to handoff. But we need to take new 15754 * responsibility i.e, join allmulti on this one if we need 15755 * to. 15756 */ 15757 if (ill->ill_join_allmulti) { 15758 (void) ill_nominate_mcast_rcv(illgrp); 15759 } else { 15760 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15761 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15762 (void) ip_join_allmulti(ill->ill_ipif); 15763 break; 15764 } 15765 } 15766 } 15767 15768 /* 15769 * We intentionally do the flushing of IRE_CACHES only matching 15770 * on the ill and not on groups. Note that we are already deleted 15771 * from the group. 15772 * 15773 * This will make sure that all IRE_CACHES whose stq is pointing 15774 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15775 * deleted and IRE_CACHES that are not pointing at this ill will 15776 * be left alone. 15777 */ 15778 if (ill->ill_isv6) { 15779 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15780 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15781 } else { 15782 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15783 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15784 } 15785 15786 /* 15787 * Some conn may have cached one of the IREs deleted above. By removing 15788 * the ire reference, we clean up the extra reference to the ill held in 15789 * ire->ire_stq. 15790 */ 15791 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15792 15793 /* 15794 * Re-do source address selection for all the members in the 15795 * group, if they borrowed source address from one of the ipifs 15796 * in this ill. 15797 */ 15798 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15799 if (ill->ill_isv6) { 15800 ipif_update_other_ipifs_v6(ipif, illgrp); 15801 } else { 15802 ipif_update_other_ipifs(ipif, illgrp); 15803 } 15804 } 15805 } 15806 15807 /* 15808 * Delete the ill from the group. The caller makes sure that it is 15809 * in a group and it okay to delete from the group. So, we always 15810 * delete here. 15811 */ 15812 static void 15813 illgrp_delete(ill_t *ill) 15814 { 15815 ill_group_t *illgrp; 15816 ill_group_t *tmpg; 15817 ill_t *tmp_ill; 15818 ip_stack_t *ipst = ill->ill_ipst; 15819 15820 /* 15821 * Reset illgrp_ill_schednext if it was pointing at us. 15822 * We need to do this before we set ill_group to NULL. 15823 */ 15824 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15825 mutex_enter(&ill->ill_lock); 15826 15827 illgrp_reset_schednext(ill); 15828 15829 illgrp = ill->ill_group; 15830 15831 /* Delete the ill from illgrp. */ 15832 if (illgrp->illgrp_ill == ill) { 15833 illgrp->illgrp_ill = ill->ill_group_next; 15834 } else { 15835 tmp_ill = illgrp->illgrp_ill; 15836 while (tmp_ill->ill_group_next != ill) { 15837 tmp_ill = tmp_ill->ill_group_next; 15838 ASSERT(tmp_ill != NULL); 15839 } 15840 tmp_ill->ill_group_next = ill->ill_group_next; 15841 } 15842 ill->ill_group = NULL; 15843 ill->ill_group_next = NULL; 15844 15845 illgrp->illgrp_ill_count--; 15846 mutex_exit(&ill->ill_lock); 15847 rw_exit(&ipst->ips_ill_g_lock); 15848 15849 /* 15850 * As this ill is leaving the group, we need to hand off 15851 * the responsibilities to the other ills in the group, if 15852 * this ill had some responsibilities. 15853 */ 15854 15855 ill_handoff_responsibility(ill, illgrp); 15856 15857 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15858 15859 if (illgrp->illgrp_ill_count == 0) { 15860 15861 ASSERT(illgrp->illgrp_ill == NULL); 15862 if (ill->ill_isv6) { 15863 if (illgrp == ipst->ips_illgrp_head_v6) { 15864 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15865 } else { 15866 tmpg = ipst->ips_illgrp_head_v6; 15867 while (tmpg->illgrp_next != illgrp) { 15868 tmpg = tmpg->illgrp_next; 15869 ASSERT(tmpg != NULL); 15870 } 15871 tmpg->illgrp_next = illgrp->illgrp_next; 15872 } 15873 } else { 15874 if (illgrp == ipst->ips_illgrp_head_v4) { 15875 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15876 } else { 15877 tmpg = ipst->ips_illgrp_head_v4; 15878 while (tmpg->illgrp_next != illgrp) { 15879 tmpg = tmpg->illgrp_next; 15880 ASSERT(tmpg != NULL); 15881 } 15882 tmpg->illgrp_next = illgrp->illgrp_next; 15883 } 15884 } 15885 mutex_destroy(&illgrp->illgrp_lock); 15886 mi_free(illgrp); 15887 } 15888 rw_exit(&ipst->ips_ill_g_lock); 15889 15890 /* 15891 * Even though the ill is out of the group its not necessary 15892 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15893 * We will split the ipsq when phyint_groupname is set to NULL. 15894 */ 15895 15896 /* 15897 * Send a routing sockets message if we are deleting from 15898 * groups with names. 15899 */ 15900 if (ill->ill_phyint->phyint_groupname_len != 0) 15901 ip_rts_ifmsg(ill->ill_ipif); 15902 } 15903 15904 /* 15905 * Re-do source address selection. This is normally called when 15906 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15907 * ipif comes up. 15908 */ 15909 void 15910 ill_update_source_selection(ill_t *ill) 15911 { 15912 ipif_t *ipif; 15913 15914 ASSERT(IAM_WRITER_ILL(ill)); 15915 15916 if (ill->ill_group != NULL) 15917 ill = ill->ill_group->illgrp_ill; 15918 15919 for (; ill != NULL; ill = ill->ill_group_next) { 15920 for (ipif = ill->ill_ipif; ipif != NULL; 15921 ipif = ipif->ipif_next) { 15922 if (ill->ill_isv6) 15923 ipif_recreate_interface_routes_v6(NULL, ipif); 15924 else 15925 ipif_recreate_interface_routes(NULL, ipif); 15926 } 15927 } 15928 } 15929 15930 /* 15931 * Insert ill in a group headed by illgrp_head. The caller can either 15932 * pass a groupname in which case we search for a group with the 15933 * same name to insert in or pass a group to insert in. This function 15934 * would only search groups with names. 15935 * 15936 * NOTE : The caller should make sure that there is at least one ipif 15937 * UP on this ill so that illgrp_scheduler can pick this ill 15938 * for outbound packets. If ill_ipif_up_count is zero, we have 15939 * already sent a DL_UNBIND to the driver and we don't want to 15940 * send anymore packets. We don't assert for ipif_up_count 15941 * to be greater than zero, because ipif_up_done wants to call 15942 * this function before bumping up the ipif_up_count. See 15943 * ipif_up_done() for details. 15944 */ 15945 int 15946 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15947 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15948 { 15949 ill_group_t *illgrp; 15950 ill_t *prev_ill; 15951 phyint_t *phyi; 15952 ip_stack_t *ipst = ill->ill_ipst; 15953 15954 ASSERT(ill->ill_group == NULL); 15955 15956 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15957 mutex_enter(&ill->ill_lock); 15958 15959 if (groupname != NULL) { 15960 /* 15961 * Look for a group with a matching groupname to insert. 15962 */ 15963 for (illgrp = *illgrp_head; illgrp != NULL; 15964 illgrp = illgrp->illgrp_next) { 15965 15966 ill_t *tmp_ill; 15967 15968 /* 15969 * If we have an ill_group_t in the list which has 15970 * no ill_t assigned then we must be in the process of 15971 * removing this group. We skip this as illgrp_delete() 15972 * will remove it from the list. 15973 */ 15974 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15975 ASSERT(illgrp->illgrp_ill_count == 0); 15976 continue; 15977 } 15978 15979 ASSERT(tmp_ill->ill_phyint != NULL); 15980 phyi = tmp_ill->ill_phyint; 15981 /* 15982 * Look at groups which has names only. 15983 */ 15984 if (phyi->phyint_groupname_len == 0) 15985 continue; 15986 /* 15987 * Names are stored in the phyint common to both 15988 * IPv4 and IPv6. 15989 */ 15990 if (mi_strcmp(phyi->phyint_groupname, 15991 groupname) == 0) { 15992 break; 15993 } 15994 } 15995 } else { 15996 /* 15997 * If the caller passes in a NULL "grp_to_insert", we 15998 * allocate one below and insert this singleton. 15999 */ 16000 illgrp = grp_to_insert; 16001 } 16002 16003 ill->ill_group_next = NULL; 16004 16005 if (illgrp == NULL) { 16006 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16007 if (illgrp == NULL) { 16008 return (ENOMEM); 16009 } 16010 illgrp->illgrp_next = *illgrp_head; 16011 *illgrp_head = illgrp; 16012 illgrp->illgrp_ill = ill; 16013 illgrp->illgrp_ill_count = 1; 16014 ill->ill_group = illgrp; 16015 /* 16016 * Used in illgrp_scheduler to protect multiple threads 16017 * from traversing the list. 16018 */ 16019 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16020 } else { 16021 ASSERT(ill->ill_net_type == 16022 illgrp->illgrp_ill->ill_net_type); 16023 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16024 16025 /* Insert ill at tail of this group */ 16026 prev_ill = illgrp->illgrp_ill; 16027 while (prev_ill->ill_group_next != NULL) 16028 prev_ill = prev_ill->ill_group_next; 16029 prev_ill->ill_group_next = ill; 16030 ill->ill_group = illgrp; 16031 illgrp->illgrp_ill_count++; 16032 /* 16033 * Inherit group properties. Currently only forwarding 16034 * is the property we try to keep the same with all the 16035 * ills. When there are more, we will abstract this into 16036 * a function. 16037 */ 16038 ill->ill_flags &= ~ILLF_ROUTER; 16039 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16040 } 16041 mutex_exit(&ill->ill_lock); 16042 rw_exit(&ipst->ips_ill_g_lock); 16043 16044 /* 16045 * 1) When ipif_up_done() calls this function, ipif_up_count 16046 * may be zero as it has not yet been bumped. But the ires 16047 * have already been added. So, we do the nomination here 16048 * itself. But, when ip_sioctl_groupname calls this, it checks 16049 * for ill_ipif_up_count != 0. Thus we don't check for 16050 * ill_ipif_up_count here while nominating broadcast ires for 16051 * receive. 16052 * 16053 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16054 * to group them properly as ire_add() has already happened 16055 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16056 * case, we need to do it here anyway. 16057 */ 16058 if (!ill->ill_isv6) { 16059 ill_group_bcast_for_xmit(ill); 16060 ill_nominate_bcast_rcv(illgrp); 16061 } 16062 16063 if (!ipif_is_coming_up) { 16064 /* 16065 * When ipif_up_done() calls this function, the multicast 16066 * groups have not been joined yet. So, there is no point in 16067 * nomination. ip_join_allmulti will handle groups when 16068 * ill_recover_multicast is called from ipif_up_done() later. 16069 */ 16070 (void) ill_nominate_mcast_rcv(illgrp); 16071 /* 16072 * ipif_up_done calls ill_update_source_selection 16073 * anyway. Moreover, we don't want to re-create 16074 * interface routes while ipif_up_done() still has reference 16075 * to them. Refer to ipif_up_done() for more details. 16076 */ 16077 ill_update_source_selection(ill); 16078 } 16079 16080 /* 16081 * Send a routing sockets message if we are inserting into 16082 * groups with names. 16083 */ 16084 if (groupname != NULL) 16085 ip_rts_ifmsg(ill->ill_ipif); 16086 return (0); 16087 } 16088 16089 /* 16090 * Return the first phyint matching the groupname. There could 16091 * be more than one when there are ill groups. 16092 * 16093 * If 'usable' is set, then we exclude ones that are marked with any of 16094 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16095 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16096 * emulation of ipmp. 16097 */ 16098 phyint_t * 16099 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16100 { 16101 phyint_t *phyi; 16102 16103 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16104 /* 16105 * Group names are stored in the phyint - a common structure 16106 * to both IPv4 and IPv6. 16107 */ 16108 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16109 for (; phyi != NULL; 16110 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16111 phyi, AVL_AFTER)) { 16112 if (phyi->phyint_groupname_len == 0) 16113 continue; 16114 /* 16115 * Skip the ones that should not be used since the callers 16116 * sometime use this for sending packets. 16117 */ 16118 if (usable && (phyi->phyint_flags & 16119 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16120 continue; 16121 16122 ASSERT(phyi->phyint_groupname != NULL); 16123 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16124 return (phyi); 16125 } 16126 return (NULL); 16127 } 16128 16129 16130 /* 16131 * Return the first usable phyint matching the group index. By 'usable' 16132 * we exclude ones that are marked ununsable with any of 16133 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16134 * 16135 * Used only for the ipmp/netinfo emulation of ipmp. 16136 */ 16137 phyint_t * 16138 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16139 { 16140 phyint_t *phyi; 16141 16142 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16143 16144 if (!ipst->ips_ipmp_hook_emulation) 16145 return (NULL); 16146 16147 /* 16148 * Group indicies are stored in the phyint - a common structure 16149 * to both IPv4 and IPv6. 16150 */ 16151 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16152 for (; phyi != NULL; 16153 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16154 phyi, AVL_AFTER)) { 16155 /* Ignore the ones that do not have a group */ 16156 if (phyi->phyint_groupname_len == 0) 16157 continue; 16158 16159 ASSERT(phyi->phyint_group_ifindex != 0); 16160 /* 16161 * Skip the ones that should not be used since the callers 16162 * sometime use this for sending packets. 16163 */ 16164 if (phyi->phyint_flags & 16165 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16166 continue; 16167 if (phyi->phyint_group_ifindex == group_ifindex) 16168 return (phyi); 16169 } 16170 return (NULL); 16171 } 16172 16173 16174 /* 16175 * MT notes on creation and deletion of IPMP groups 16176 * 16177 * Creation and deletion of IPMP groups introduce the need to merge or 16178 * split the associated serialization objects i.e the ipsq's. Normally all 16179 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16180 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16181 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16182 * is a need to change the <ill-ipsq> association and we have to operate on both 16183 * the source and destination IPMP groups. For eg. attempting to set the 16184 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16185 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16186 * source or destination IPMP group are mapped to a single ipsq for executing 16187 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16188 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16189 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16190 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16191 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16192 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16193 * 16194 * In the above example the ioctl handling code locates the current ipsq of hme0 16195 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16196 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16197 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16198 * the destination ipsq. If the destination ipsq is not busy, it also enters 16199 * the destination ipsq exclusively. Now the actual groupname setting operation 16200 * can proceed. If the destination ipsq is busy, the operation is enqueued 16201 * on the destination (merged) ipsq and will be handled in the unwind from 16202 * ipsq_exit. 16203 * 16204 * To prevent other threads accessing the ill while the group name change is 16205 * in progres, we bring down the ipifs which also removes the ill from the 16206 * group. The group is changed in phyint and when the first ipif on the ill 16207 * is brought up, the ill is inserted into the right IPMP group by 16208 * illgrp_insert. 16209 */ 16210 /* ARGSUSED */ 16211 int 16212 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16213 ip_ioctl_cmd_t *ipip, void *ifreq) 16214 { 16215 int i; 16216 char *tmp; 16217 int namelen; 16218 ill_t *ill = ipif->ipif_ill; 16219 ill_t *ill_v4, *ill_v6; 16220 int err = 0; 16221 phyint_t *phyi; 16222 phyint_t *phyi_tmp; 16223 struct lifreq *lifr; 16224 mblk_t *mp1; 16225 char *groupname; 16226 ipsq_t *ipsq; 16227 ip_stack_t *ipst = ill->ill_ipst; 16228 16229 ASSERT(IAM_WRITER_IPIF(ipif)); 16230 16231 /* Existance verified in ip_wput_nondata */ 16232 mp1 = mp->b_cont->b_cont; 16233 lifr = (struct lifreq *)mp1->b_rptr; 16234 groupname = lifr->lifr_groupname; 16235 16236 if (ipif->ipif_id != 0) 16237 return (EINVAL); 16238 16239 phyi = ill->ill_phyint; 16240 ASSERT(phyi != NULL); 16241 16242 if (phyi->phyint_flags & PHYI_VIRTUAL) 16243 return (EINVAL); 16244 16245 tmp = groupname; 16246 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16247 ; 16248 16249 if (i == LIFNAMSIZ) { 16250 /* no null termination */ 16251 return (EINVAL); 16252 } 16253 16254 /* 16255 * Calculate the namelen exclusive of the null 16256 * termination character. 16257 */ 16258 namelen = tmp - groupname; 16259 16260 ill_v4 = phyi->phyint_illv4; 16261 ill_v6 = phyi->phyint_illv6; 16262 16263 /* 16264 * ILL cannot be part of a usesrc group and and IPMP group at the 16265 * same time. No need to grab the ill_g_usesrc_lock here, see 16266 * synchronization notes in ip.c 16267 */ 16268 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16269 return (EINVAL); 16270 } 16271 16272 /* 16273 * mark the ill as changing. 16274 * this should queue all new requests on the syncq. 16275 */ 16276 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16277 16278 if (ill_v4 != NULL) 16279 ill_v4->ill_state_flags |= ILL_CHANGING; 16280 if (ill_v6 != NULL) 16281 ill_v6->ill_state_flags |= ILL_CHANGING; 16282 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16283 16284 if (namelen == 0) { 16285 /* 16286 * Null string means remove this interface from the 16287 * existing group. 16288 */ 16289 if (phyi->phyint_groupname_len == 0) { 16290 /* 16291 * Never was in a group. 16292 */ 16293 err = 0; 16294 goto done; 16295 } 16296 16297 /* 16298 * IPv4 or IPv6 may be temporarily out of the group when all 16299 * the ipifs are down. Thus, we need to check for ill_group to 16300 * be non-NULL. 16301 */ 16302 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16303 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16304 mutex_enter(&ill_v4->ill_lock); 16305 if (!ill_is_quiescent(ill_v4)) { 16306 /* 16307 * ipsq_pending_mp_add will not fail since 16308 * connp is NULL 16309 */ 16310 (void) ipsq_pending_mp_add(NULL, 16311 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16312 mutex_exit(&ill_v4->ill_lock); 16313 err = EINPROGRESS; 16314 goto done; 16315 } 16316 mutex_exit(&ill_v4->ill_lock); 16317 } 16318 16319 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16320 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16321 mutex_enter(&ill_v6->ill_lock); 16322 if (!ill_is_quiescent(ill_v6)) { 16323 (void) ipsq_pending_mp_add(NULL, 16324 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16325 mutex_exit(&ill_v6->ill_lock); 16326 err = EINPROGRESS; 16327 goto done; 16328 } 16329 mutex_exit(&ill_v6->ill_lock); 16330 } 16331 16332 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16333 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16334 mutex_enter(&phyi->phyint_lock); 16335 ASSERT(phyi->phyint_groupname != NULL); 16336 mi_free(phyi->phyint_groupname); 16337 phyi->phyint_groupname = NULL; 16338 phyi->phyint_groupname_len = 0; 16339 16340 /* Restore the ifindex used to be the per interface one */ 16341 phyi->phyint_group_ifindex = 0; 16342 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16343 mutex_exit(&phyi->phyint_lock); 16344 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16345 rw_exit(&ipst->ips_ill_g_lock); 16346 err = ill_up_ipifs(ill, q, mp); 16347 16348 /* 16349 * set the split flag so that the ipsq can be split 16350 */ 16351 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16352 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16353 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16354 16355 } else { 16356 if (phyi->phyint_groupname_len != 0) { 16357 ASSERT(phyi->phyint_groupname != NULL); 16358 /* Are we inserting in the same group ? */ 16359 if (mi_strcmp(groupname, 16360 phyi->phyint_groupname) == 0) { 16361 err = 0; 16362 goto done; 16363 } 16364 } 16365 16366 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16367 /* 16368 * Merge ipsq for the group's. 16369 * This check is here as multiple groups/ills might be 16370 * sharing the same ipsq. 16371 * If we have to merege than the operation is restarted 16372 * on the new ipsq. 16373 */ 16374 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16375 if (phyi->phyint_ipsq != ipsq) { 16376 rw_exit(&ipst->ips_ill_g_lock); 16377 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16378 goto done; 16379 } 16380 /* 16381 * Running exclusive on new ipsq. 16382 */ 16383 16384 ASSERT(ipsq != NULL); 16385 ASSERT(ipsq->ipsq_writer == curthread); 16386 16387 /* 16388 * Check whether the ill_type and ill_net_type matches before 16389 * we allocate any memory so that the cleanup is easier. 16390 * 16391 * We can't group dissimilar ones as we can't load spread 16392 * packets across the group because of potential link-level 16393 * header differences. 16394 */ 16395 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16396 if (phyi_tmp != NULL) { 16397 if ((ill_v4 != NULL && 16398 phyi_tmp->phyint_illv4 != NULL) && 16399 ((ill_v4->ill_net_type != 16400 phyi_tmp->phyint_illv4->ill_net_type) || 16401 (ill_v4->ill_type != 16402 phyi_tmp->phyint_illv4->ill_type))) { 16403 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16404 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16405 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16406 rw_exit(&ipst->ips_ill_g_lock); 16407 return (EINVAL); 16408 } 16409 if ((ill_v6 != NULL && 16410 phyi_tmp->phyint_illv6 != NULL) && 16411 ((ill_v6->ill_net_type != 16412 phyi_tmp->phyint_illv6->ill_net_type) || 16413 (ill_v6->ill_type != 16414 phyi_tmp->phyint_illv6->ill_type))) { 16415 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16416 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16417 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16418 rw_exit(&ipst->ips_ill_g_lock); 16419 return (EINVAL); 16420 } 16421 } 16422 16423 rw_exit(&ipst->ips_ill_g_lock); 16424 16425 /* 16426 * bring down all v4 ipifs. 16427 */ 16428 if (ill_v4 != NULL) { 16429 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16430 } 16431 16432 /* 16433 * bring down all v6 ipifs. 16434 */ 16435 if (ill_v6 != NULL) { 16436 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16437 } 16438 16439 /* 16440 * make sure all ipifs are down and there are no active 16441 * references. Call to ipsq_pending_mp_add will not fail 16442 * since connp is NULL. 16443 */ 16444 if (ill_v4 != NULL) { 16445 mutex_enter(&ill_v4->ill_lock); 16446 if (!ill_is_quiescent(ill_v4)) { 16447 (void) ipsq_pending_mp_add(NULL, 16448 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16449 mutex_exit(&ill_v4->ill_lock); 16450 err = EINPROGRESS; 16451 goto done; 16452 } 16453 mutex_exit(&ill_v4->ill_lock); 16454 } 16455 16456 if (ill_v6 != NULL) { 16457 mutex_enter(&ill_v6->ill_lock); 16458 if (!ill_is_quiescent(ill_v6)) { 16459 (void) ipsq_pending_mp_add(NULL, 16460 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16461 mutex_exit(&ill_v6->ill_lock); 16462 err = EINPROGRESS; 16463 goto done; 16464 } 16465 mutex_exit(&ill_v6->ill_lock); 16466 } 16467 16468 /* 16469 * allocate including space for null terminator 16470 * before we insert. 16471 */ 16472 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16473 if (tmp == NULL) 16474 return (ENOMEM); 16475 16476 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16477 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16478 mutex_enter(&phyi->phyint_lock); 16479 if (phyi->phyint_groupname_len != 0) { 16480 ASSERT(phyi->phyint_groupname != NULL); 16481 mi_free(phyi->phyint_groupname); 16482 } 16483 16484 /* 16485 * setup the new group name. 16486 */ 16487 phyi->phyint_groupname = tmp; 16488 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16489 phyi->phyint_groupname_len = namelen + 1; 16490 16491 if (ipst->ips_ipmp_hook_emulation) { 16492 /* 16493 * If the group already exists we use the existing 16494 * group_ifindex, otherwise we pick a new index here. 16495 */ 16496 if (phyi_tmp != NULL) { 16497 phyi->phyint_group_ifindex = 16498 phyi_tmp->phyint_group_ifindex; 16499 } else { 16500 /* XXX We need a recovery strategy here. */ 16501 if (!ip_assign_ifindex( 16502 &phyi->phyint_group_ifindex, ipst)) 16503 cmn_err(CE_PANIC, 16504 "ip_assign_ifindex() failed"); 16505 } 16506 } 16507 /* 16508 * Select whether the netinfo and hook use the per-interface 16509 * or per-group ifindex. 16510 */ 16511 if (ipst->ips_ipmp_hook_emulation) 16512 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16513 else 16514 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16515 16516 if (ipst->ips_ipmp_hook_emulation && 16517 phyi_tmp != NULL) { 16518 /* First phyint in group - group PLUMB event */ 16519 ill_nic_info_plumb(ill, B_TRUE); 16520 } 16521 mutex_exit(&phyi->phyint_lock); 16522 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16523 rw_exit(&ipst->ips_ill_g_lock); 16524 16525 err = ill_up_ipifs(ill, q, mp); 16526 } 16527 16528 done: 16529 /* 16530 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16531 */ 16532 if (err != EINPROGRESS) { 16533 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16534 if (ill_v4 != NULL) 16535 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16536 if (ill_v6 != NULL) 16537 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16538 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16539 } 16540 return (err); 16541 } 16542 16543 /* ARGSUSED */ 16544 int 16545 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16546 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16547 { 16548 ill_t *ill; 16549 phyint_t *phyi; 16550 struct lifreq *lifr; 16551 mblk_t *mp1; 16552 16553 /* Existence verified in ip_wput_nondata */ 16554 mp1 = mp->b_cont->b_cont; 16555 lifr = (struct lifreq *)mp1->b_rptr; 16556 ill = ipif->ipif_ill; 16557 phyi = ill->ill_phyint; 16558 16559 lifr->lifr_groupname[0] = '\0'; 16560 /* 16561 * ill_group may be null if all the interfaces 16562 * are down. But still, the phyint should always 16563 * hold the name. 16564 */ 16565 if (phyi->phyint_groupname_len != 0) { 16566 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16567 phyi->phyint_groupname_len); 16568 } 16569 16570 return (0); 16571 } 16572 16573 16574 typedef struct conn_move_s { 16575 ill_t *cm_from_ill; 16576 ill_t *cm_to_ill; 16577 int cm_ifindex; 16578 } conn_move_t; 16579 16580 /* 16581 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16582 */ 16583 static void 16584 conn_move(conn_t *connp, caddr_t arg) 16585 { 16586 conn_move_t *connm; 16587 int ifindex; 16588 int i; 16589 ill_t *from_ill; 16590 ill_t *to_ill; 16591 ilg_t *ilg; 16592 ilm_t *ret_ilm; 16593 16594 connm = (conn_move_t *)arg; 16595 ifindex = connm->cm_ifindex; 16596 from_ill = connm->cm_from_ill; 16597 to_ill = connm->cm_to_ill; 16598 16599 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16600 16601 /* All multicast fields protected by conn_lock */ 16602 mutex_enter(&connp->conn_lock); 16603 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16604 if ((connp->conn_outgoing_ill == from_ill) && 16605 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16606 connp->conn_outgoing_ill = to_ill; 16607 connp->conn_incoming_ill = to_ill; 16608 } 16609 16610 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16611 16612 if ((connp->conn_multicast_ill == from_ill) && 16613 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16614 connp->conn_multicast_ill = connm->cm_to_ill; 16615 } 16616 16617 /* 16618 * Change the ilg_ill to point to the new one. This assumes 16619 * ilm_move_v6 has moved the ilms to new_ill and the driver 16620 * has been told to receive packets on this interface. 16621 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16622 * But when doing a FAILOVER, it might fail with ENOMEM and so 16623 * some ilms may not have moved. We check to see whether 16624 * the ilms have moved to to_ill. We can't check on from_ill 16625 * as in the process of moving, we could have split an ilm 16626 * in to two - which has the same orig_ifindex and v6group. 16627 * 16628 * For IPv4, ilg_ipif moves implicitly. The code below really 16629 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16630 */ 16631 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16632 ilg = &connp->conn_ilg[i]; 16633 if ((ilg->ilg_ill == from_ill) && 16634 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16635 /* ifindex != 0 indicates failback */ 16636 if (ifindex != 0) { 16637 connp->conn_ilg[i].ilg_ill = to_ill; 16638 continue; 16639 } 16640 16641 mutex_enter(&to_ill->ill_lock); 16642 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16643 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16644 connp->conn_zoneid); 16645 mutex_exit(&to_ill->ill_lock); 16646 16647 if (ret_ilm != NULL) 16648 connp->conn_ilg[i].ilg_ill = to_ill; 16649 } 16650 } 16651 mutex_exit(&connp->conn_lock); 16652 } 16653 16654 static void 16655 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16656 { 16657 conn_move_t connm; 16658 ip_stack_t *ipst = from_ill->ill_ipst; 16659 16660 connm.cm_from_ill = from_ill; 16661 connm.cm_to_ill = to_ill; 16662 connm.cm_ifindex = ifindex; 16663 16664 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16665 } 16666 16667 /* 16668 * ilm has been moved from from_ill to to_ill. 16669 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16670 * appropriately. 16671 * 16672 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16673 * the code there de-references ipif_ill to get the ill to 16674 * send multicast requests. It does not work as ipif is on its 16675 * move and already moved when this function is called. 16676 * Thus, we need to use from_ill and to_ill send down multicast 16677 * requests. 16678 */ 16679 static void 16680 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16681 { 16682 ipif_t *ipif; 16683 ilm_t *ilm; 16684 16685 /* 16686 * See whether we need to send down DL_ENABMULTI_REQ on 16687 * to_ill as ilm has just been added. 16688 */ 16689 ASSERT(IAM_WRITER_ILL(to_ill)); 16690 ASSERT(IAM_WRITER_ILL(from_ill)); 16691 16692 ILM_WALKER_HOLD(to_ill); 16693 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16694 16695 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16696 continue; 16697 /* 16698 * no locks held, ill/ipif cannot dissappear as long 16699 * as we are writer. 16700 */ 16701 ipif = to_ill->ill_ipif; 16702 /* 16703 * No need to hold any lock as we are the writer and this 16704 * can only be changed by a writer. 16705 */ 16706 ilm->ilm_is_new = B_FALSE; 16707 16708 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16709 ipif->ipif_flags & IPIF_POINTOPOINT) { 16710 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16711 "resolver\n")); 16712 continue; /* Must be IRE_IF_NORESOLVER */ 16713 } 16714 16715 16716 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16717 ip1dbg(("ilm_send_multicast_reqs: " 16718 "to_ill MULTI_BCAST\n")); 16719 goto from; 16720 } 16721 16722 if (to_ill->ill_isv6) 16723 mld_joingroup(ilm); 16724 else 16725 igmp_joingroup(ilm); 16726 16727 if (to_ill->ill_ipif_up_count == 0) { 16728 /* 16729 * Nobody there. All multicast addresses will be 16730 * re-joined when we get the DL_BIND_ACK bringing the 16731 * interface up. 16732 */ 16733 ilm->ilm_notify_driver = B_FALSE; 16734 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16735 goto from; 16736 } 16737 16738 /* 16739 * For allmulti address, we want to join on only one interface. 16740 * Checking for ilm_numentries_v6 is not correct as you may 16741 * find an ilm with zero address on to_ill, but we may not 16742 * have nominated to_ill for receiving. Thus, if we have 16743 * nominated from_ill (ill_join_allmulti is set), nominate 16744 * only if to_ill is not already nominated (to_ill normally 16745 * should not have been nominated if "from_ill" has already 16746 * been nominated. As we don't prevent failovers from happening 16747 * across groups, we don't assert). 16748 */ 16749 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16750 /* 16751 * There is no need to hold ill locks as we are 16752 * writer on both ills and when ill_join_allmulti 16753 * is changed the thread is always a writer. 16754 */ 16755 if (from_ill->ill_join_allmulti && 16756 !to_ill->ill_join_allmulti) { 16757 (void) ip_join_allmulti(to_ill->ill_ipif); 16758 } 16759 } else if (ilm->ilm_notify_driver) { 16760 16761 /* 16762 * This is a newly moved ilm so we need to tell the 16763 * driver about the new group. There can be more than 16764 * one ilm's for the same group in the list each with a 16765 * different orig_ifindex. We have to inform the driver 16766 * once. In ilm_move_v[4,6] we only set the flag 16767 * ilm_notify_driver for the first ilm. 16768 */ 16769 16770 (void) ip_ll_send_enabmulti_req(to_ill, 16771 &ilm->ilm_v6addr); 16772 } 16773 16774 ilm->ilm_notify_driver = B_FALSE; 16775 16776 /* 16777 * See whether we need to send down DL_DISABMULTI_REQ on 16778 * from_ill as ilm has just been removed. 16779 */ 16780 from: 16781 ipif = from_ill->ill_ipif; 16782 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16783 ipif->ipif_flags & IPIF_POINTOPOINT) { 16784 ip1dbg(("ilm_send_multicast_reqs: " 16785 "from_ill not resolver\n")); 16786 continue; /* Must be IRE_IF_NORESOLVER */ 16787 } 16788 16789 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16790 ip1dbg(("ilm_send_multicast_reqs: " 16791 "from_ill MULTI_BCAST\n")); 16792 continue; 16793 } 16794 16795 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16796 if (from_ill->ill_join_allmulti) 16797 (void) ip_leave_allmulti(from_ill->ill_ipif); 16798 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16799 (void) ip_ll_send_disabmulti_req(from_ill, 16800 &ilm->ilm_v6addr); 16801 } 16802 } 16803 ILM_WALKER_RELE(to_ill); 16804 } 16805 16806 /* 16807 * This function is called when all multicast memberships needs 16808 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16809 * called only once unlike the IPv4 counterpart where it is called after 16810 * every logical interface is moved. The reason is due to multicast 16811 * memberships are joined using an interface address in IPv4 while in 16812 * IPv6, interface index is used. 16813 */ 16814 static void 16815 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16816 { 16817 ilm_t *ilm; 16818 ilm_t *ilm_next; 16819 ilm_t *new_ilm; 16820 ilm_t **ilmp; 16821 int count; 16822 char buf[INET6_ADDRSTRLEN]; 16823 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16824 ip_stack_t *ipst = from_ill->ill_ipst; 16825 16826 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16827 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16828 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16829 16830 if (ifindex == 0) { 16831 /* 16832 * Form the solicited node mcast address which is used later. 16833 */ 16834 ipif_t *ipif; 16835 16836 ipif = from_ill->ill_ipif; 16837 ASSERT(ipif->ipif_id == 0); 16838 16839 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16840 } 16841 16842 ilmp = &from_ill->ill_ilm; 16843 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16844 ilm_next = ilm->ilm_next; 16845 16846 if (ilm->ilm_flags & ILM_DELETED) { 16847 ilmp = &ilm->ilm_next; 16848 continue; 16849 } 16850 16851 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16852 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16853 ASSERT(ilm->ilm_orig_ifindex != 0); 16854 if (ilm->ilm_orig_ifindex == ifindex) { 16855 /* 16856 * We are failing back multicast memberships. 16857 * If the same ilm exists in to_ill, it means somebody 16858 * has joined the same group there e.g. ff02::1 16859 * is joined within the kernel when the interfaces 16860 * came UP. 16861 */ 16862 ASSERT(ilm->ilm_ipif == NULL); 16863 if (new_ilm != NULL) { 16864 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16865 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16866 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16867 new_ilm->ilm_is_new = B_TRUE; 16868 } 16869 } else { 16870 /* 16871 * check if we can just move the ilm 16872 */ 16873 if (from_ill->ill_ilm_walker_cnt != 0) { 16874 /* 16875 * We have walkers we cannot move 16876 * the ilm, so allocate a new ilm, 16877 * this (old) ilm will be marked 16878 * ILM_DELETED at the end of the loop 16879 * and will be freed when the 16880 * last walker exits. 16881 */ 16882 new_ilm = (ilm_t *)mi_zalloc 16883 (sizeof (ilm_t)); 16884 if (new_ilm == NULL) { 16885 ip0dbg(("ilm_move_v6: " 16886 "FAILBACK of IPv6" 16887 " multicast address %s : " 16888 "from %s to" 16889 " %s failed : ENOMEM \n", 16890 inet_ntop(AF_INET6, 16891 &ilm->ilm_v6addr, buf, 16892 sizeof (buf)), 16893 from_ill->ill_name, 16894 to_ill->ill_name)); 16895 16896 ilmp = &ilm->ilm_next; 16897 continue; 16898 } 16899 *new_ilm = *ilm; 16900 /* 16901 * we don't want new_ilm linked to 16902 * ilm's filter list. 16903 */ 16904 new_ilm->ilm_filter = NULL; 16905 } else { 16906 /* 16907 * No walkers we can move the ilm. 16908 * lets take it out of the list. 16909 */ 16910 *ilmp = ilm->ilm_next; 16911 ilm->ilm_next = NULL; 16912 new_ilm = ilm; 16913 } 16914 16915 /* 16916 * if this is the first ilm for the group 16917 * set ilm_notify_driver so that we notify the 16918 * driver in ilm_send_multicast_reqs. 16919 */ 16920 if (ilm_lookup_ill_v6(to_ill, 16921 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16922 new_ilm->ilm_notify_driver = B_TRUE; 16923 16924 new_ilm->ilm_ill = to_ill; 16925 /* Add to the to_ill's list */ 16926 new_ilm->ilm_next = to_ill->ill_ilm; 16927 to_ill->ill_ilm = new_ilm; 16928 /* 16929 * set the flag so that mld_joingroup is 16930 * called in ilm_send_multicast_reqs(). 16931 */ 16932 new_ilm->ilm_is_new = B_TRUE; 16933 } 16934 goto bottom; 16935 } else if (ifindex != 0) { 16936 /* 16937 * If this is FAILBACK (ifindex != 0) and the ifindex 16938 * has not matched above, look at the next ilm. 16939 */ 16940 ilmp = &ilm->ilm_next; 16941 continue; 16942 } 16943 /* 16944 * If we are here, it means ifindex is 0. Failover 16945 * everything. 16946 * 16947 * We need to handle solicited node mcast address 16948 * and all_nodes mcast address differently as they 16949 * are joined witin the kenrel (ipif_multicast_up) 16950 * and potentially from the userland. We are called 16951 * after the ipifs of from_ill has been moved. 16952 * If we still find ilms on ill with solicited node 16953 * mcast address or all_nodes mcast address, it must 16954 * belong to the UP interface that has not moved e.g. 16955 * ipif_id 0 with the link local prefix does not move. 16956 * We join this on the new ill accounting for all the 16957 * userland memberships so that applications don't 16958 * see any failure. 16959 * 16960 * We need to make sure that we account only for the 16961 * solicited node and all node multicast addresses 16962 * that was brought UP on these. In the case of 16963 * a failover from A to B, we might have ilms belonging 16964 * to A (ilm_orig_ifindex pointing at A) on B accounting 16965 * for the membership from the userland. If we are failing 16966 * over from B to C now, we will find the ones belonging 16967 * to A on B. These don't account for the ill_ipif_up_count. 16968 * They just move from B to C. The check below on 16969 * ilm_orig_ifindex ensures that. 16970 */ 16971 if ((ilm->ilm_orig_ifindex == 16972 from_ill->ill_phyint->phyint_ifindex) && 16973 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16974 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16975 &ilm->ilm_v6addr))) { 16976 ASSERT(ilm->ilm_refcnt > 0); 16977 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16978 /* 16979 * For indentation reasons, we are not using a 16980 * "else" here. 16981 */ 16982 if (count == 0) { 16983 ilmp = &ilm->ilm_next; 16984 continue; 16985 } 16986 ilm->ilm_refcnt -= count; 16987 if (new_ilm != NULL) { 16988 /* 16989 * Can find one with the same 16990 * ilm_orig_ifindex, if we are failing 16991 * over to a STANDBY. This happens 16992 * when somebody wants to join a group 16993 * on a STANDBY interface and we 16994 * internally join on a different one. 16995 * If we had joined on from_ill then, a 16996 * failover now will find a new ilm 16997 * with this index. 16998 */ 16999 ip1dbg(("ilm_move_v6: FAILOVER, found" 17000 " new ilm on %s, group address %s\n", 17001 to_ill->ill_name, 17002 inet_ntop(AF_INET6, 17003 &ilm->ilm_v6addr, buf, 17004 sizeof (buf)))); 17005 new_ilm->ilm_refcnt += count; 17006 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17007 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17008 new_ilm->ilm_is_new = B_TRUE; 17009 } 17010 } else { 17011 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17012 if (new_ilm == NULL) { 17013 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17014 " multicast address %s : from %s to" 17015 " %s failed : ENOMEM \n", 17016 inet_ntop(AF_INET6, 17017 &ilm->ilm_v6addr, buf, 17018 sizeof (buf)), from_ill->ill_name, 17019 to_ill->ill_name)); 17020 ilmp = &ilm->ilm_next; 17021 continue; 17022 } 17023 *new_ilm = *ilm; 17024 new_ilm->ilm_filter = NULL; 17025 new_ilm->ilm_refcnt = count; 17026 new_ilm->ilm_timer = INFINITY; 17027 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17028 new_ilm->ilm_is_new = B_TRUE; 17029 /* 17030 * If the to_ill has not joined this 17031 * group we need to tell the driver in 17032 * ill_send_multicast_reqs. 17033 */ 17034 if (ilm_lookup_ill_v6(to_ill, 17035 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17036 new_ilm->ilm_notify_driver = B_TRUE; 17037 17038 new_ilm->ilm_ill = to_ill; 17039 /* Add to the to_ill's list */ 17040 new_ilm->ilm_next = to_ill->ill_ilm; 17041 to_ill->ill_ilm = new_ilm; 17042 ASSERT(new_ilm->ilm_ipif == NULL); 17043 } 17044 if (ilm->ilm_refcnt == 0) { 17045 goto bottom; 17046 } else { 17047 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17048 CLEAR_SLIST(new_ilm->ilm_filter); 17049 ilmp = &ilm->ilm_next; 17050 } 17051 continue; 17052 } else { 17053 /* 17054 * ifindex = 0 means, move everything pointing at 17055 * from_ill. We are doing this becuase ill has 17056 * either FAILED or became INACTIVE. 17057 * 17058 * As we would like to move things later back to 17059 * from_ill, we want to retain the identity of this 17060 * ilm. Thus, we don't blindly increment the reference 17061 * count on the ilms matching the address alone. We 17062 * need to match on the ilm_orig_index also. new_ilm 17063 * was obtained by matching ilm_orig_index also. 17064 */ 17065 if (new_ilm != NULL) { 17066 /* 17067 * This is possible only if a previous restore 17068 * was incomplete i.e restore to 17069 * ilm_orig_ifindex left some ilms because 17070 * of some failures. Thus when we are failing 17071 * again, we might find our old friends there. 17072 */ 17073 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17074 " on %s, group address %s\n", 17075 to_ill->ill_name, 17076 inet_ntop(AF_INET6, 17077 &ilm->ilm_v6addr, buf, 17078 sizeof (buf)))); 17079 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17080 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17081 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17082 new_ilm->ilm_is_new = B_TRUE; 17083 } 17084 } else { 17085 if (from_ill->ill_ilm_walker_cnt != 0) { 17086 new_ilm = (ilm_t *) 17087 mi_zalloc(sizeof (ilm_t)); 17088 if (new_ilm == NULL) { 17089 ip0dbg(("ilm_move_v6: " 17090 "FAILOVER of IPv6" 17091 " multicast address %s : " 17092 "from %s to" 17093 " %s failed : ENOMEM \n", 17094 inet_ntop(AF_INET6, 17095 &ilm->ilm_v6addr, buf, 17096 sizeof (buf)), 17097 from_ill->ill_name, 17098 to_ill->ill_name)); 17099 17100 ilmp = &ilm->ilm_next; 17101 continue; 17102 } 17103 *new_ilm = *ilm; 17104 new_ilm->ilm_filter = NULL; 17105 } else { 17106 *ilmp = ilm->ilm_next; 17107 new_ilm = ilm; 17108 } 17109 /* 17110 * If the to_ill has not joined this 17111 * group we need to tell the driver in 17112 * ill_send_multicast_reqs. 17113 */ 17114 if (ilm_lookup_ill_v6(to_ill, 17115 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17116 new_ilm->ilm_notify_driver = B_TRUE; 17117 17118 /* Add to the to_ill's list */ 17119 new_ilm->ilm_next = to_ill->ill_ilm; 17120 to_ill->ill_ilm = new_ilm; 17121 ASSERT(ilm->ilm_ipif == NULL); 17122 new_ilm->ilm_ill = to_ill; 17123 new_ilm->ilm_is_new = B_TRUE; 17124 } 17125 17126 } 17127 17128 bottom: 17129 /* 17130 * Revert multicast filter state to (EXCLUDE, NULL). 17131 * new_ilm->ilm_is_new should already be set if needed. 17132 */ 17133 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17134 CLEAR_SLIST(new_ilm->ilm_filter); 17135 /* 17136 * We allocated/got a new ilm, free the old one. 17137 */ 17138 if (new_ilm != ilm) { 17139 if (from_ill->ill_ilm_walker_cnt == 0) { 17140 *ilmp = ilm->ilm_next; 17141 ilm->ilm_next = NULL; 17142 FREE_SLIST(ilm->ilm_filter); 17143 FREE_SLIST(ilm->ilm_pendsrcs); 17144 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17145 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17146 mi_free((char *)ilm); 17147 } else { 17148 ilm->ilm_flags |= ILM_DELETED; 17149 from_ill->ill_ilm_cleanup_reqd = 1; 17150 ilmp = &ilm->ilm_next; 17151 } 17152 } 17153 } 17154 } 17155 17156 /* 17157 * Move all the multicast memberships to to_ill. Called when 17158 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17159 * different from IPv6 counterpart as multicast memberships are associated 17160 * with ills in IPv6. This function is called after every ipif is moved 17161 * unlike IPv6, where it is moved only once. 17162 */ 17163 static void 17164 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17165 { 17166 ilm_t *ilm; 17167 ilm_t *ilm_next; 17168 ilm_t *new_ilm; 17169 ilm_t **ilmp; 17170 ip_stack_t *ipst = from_ill->ill_ipst; 17171 17172 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17173 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17174 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17175 17176 ilmp = &from_ill->ill_ilm; 17177 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17178 ilm_next = ilm->ilm_next; 17179 17180 if (ilm->ilm_flags & ILM_DELETED) { 17181 ilmp = &ilm->ilm_next; 17182 continue; 17183 } 17184 17185 ASSERT(ilm->ilm_ipif != NULL); 17186 17187 if (ilm->ilm_ipif != ipif) { 17188 ilmp = &ilm->ilm_next; 17189 continue; 17190 } 17191 17192 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17193 htonl(INADDR_ALLHOSTS_GROUP)) { 17194 new_ilm = ilm_lookup_ipif(ipif, 17195 V4_PART_OF_V6(ilm->ilm_v6addr)); 17196 if (new_ilm != NULL) { 17197 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17198 /* 17199 * We still need to deal with the from_ill. 17200 */ 17201 new_ilm->ilm_is_new = B_TRUE; 17202 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17203 CLEAR_SLIST(new_ilm->ilm_filter); 17204 goto delete_ilm; 17205 } 17206 /* 17207 * If we could not find one e.g. ipif is 17208 * still down on to_ill, we add this ilm 17209 * on ill_new to preserve the reference 17210 * count. 17211 */ 17212 } 17213 /* 17214 * When ipifs move, ilms always move with it 17215 * to the NEW ill. Thus we should never be 17216 * able to find ilm till we really move it here. 17217 */ 17218 ASSERT(ilm_lookup_ipif(ipif, 17219 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17220 17221 if (from_ill->ill_ilm_walker_cnt != 0) { 17222 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17223 if (new_ilm == NULL) { 17224 char buf[INET6_ADDRSTRLEN]; 17225 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17226 " multicast address %s : " 17227 "from %s to" 17228 " %s failed : ENOMEM \n", 17229 inet_ntop(AF_INET, 17230 &ilm->ilm_v6addr, buf, 17231 sizeof (buf)), 17232 from_ill->ill_name, 17233 to_ill->ill_name)); 17234 17235 ilmp = &ilm->ilm_next; 17236 continue; 17237 } 17238 *new_ilm = *ilm; 17239 /* We don't want new_ilm linked to ilm's filter list */ 17240 new_ilm->ilm_filter = NULL; 17241 } else { 17242 /* Remove from the list */ 17243 *ilmp = ilm->ilm_next; 17244 new_ilm = ilm; 17245 } 17246 17247 /* 17248 * If we have never joined this group on the to_ill 17249 * make sure we tell the driver. 17250 */ 17251 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17252 ALL_ZONES) == NULL) 17253 new_ilm->ilm_notify_driver = B_TRUE; 17254 17255 /* Add to the to_ill's list */ 17256 new_ilm->ilm_next = to_ill->ill_ilm; 17257 to_ill->ill_ilm = new_ilm; 17258 new_ilm->ilm_is_new = B_TRUE; 17259 17260 /* 17261 * Revert multicast filter state to (EXCLUDE, NULL) 17262 */ 17263 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17264 CLEAR_SLIST(new_ilm->ilm_filter); 17265 17266 /* 17267 * Delete only if we have allocated a new ilm. 17268 */ 17269 if (new_ilm != ilm) { 17270 delete_ilm: 17271 if (from_ill->ill_ilm_walker_cnt == 0) { 17272 /* Remove from the list */ 17273 *ilmp = ilm->ilm_next; 17274 ilm->ilm_next = NULL; 17275 FREE_SLIST(ilm->ilm_filter); 17276 FREE_SLIST(ilm->ilm_pendsrcs); 17277 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17278 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17279 mi_free((char *)ilm); 17280 } else { 17281 ilm->ilm_flags |= ILM_DELETED; 17282 from_ill->ill_ilm_cleanup_reqd = 1; 17283 ilmp = &ilm->ilm_next; 17284 } 17285 } 17286 } 17287 } 17288 17289 static uint_t 17290 ipif_get_id(ill_t *ill, uint_t id) 17291 { 17292 uint_t unit; 17293 ipif_t *tipif; 17294 boolean_t found = B_FALSE; 17295 ip_stack_t *ipst = ill->ill_ipst; 17296 17297 /* 17298 * During failback, we want to go back to the same id 17299 * instead of the smallest id so that the original 17300 * configuration is maintained. id is non-zero in that 17301 * case. 17302 */ 17303 if (id != 0) { 17304 /* 17305 * While failing back, if we still have an ipif with 17306 * MAX_ADDRS_PER_IF, it means this will be replaced 17307 * as soon as we return from this function. It was 17308 * to set to MAX_ADDRS_PER_IF by the caller so that 17309 * we can choose the smallest id. Thus we return zero 17310 * in that case ignoring the hint. 17311 */ 17312 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17313 return (0); 17314 for (tipif = ill->ill_ipif; tipif != NULL; 17315 tipif = tipif->ipif_next) { 17316 if (tipif->ipif_id == id) { 17317 found = B_TRUE; 17318 break; 17319 } 17320 } 17321 /* 17322 * If somebody already plumbed another logical 17323 * with the same id, we won't be able to find it. 17324 */ 17325 if (!found) 17326 return (id); 17327 } 17328 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17329 found = B_FALSE; 17330 for (tipif = ill->ill_ipif; tipif != NULL; 17331 tipif = tipif->ipif_next) { 17332 if (tipif->ipif_id == unit) { 17333 found = B_TRUE; 17334 break; 17335 } 17336 } 17337 if (!found) 17338 break; 17339 } 17340 return (unit); 17341 } 17342 17343 /* ARGSUSED */ 17344 static int 17345 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17346 ipif_t **rep_ipif_ptr) 17347 { 17348 ill_t *from_ill; 17349 ipif_t *rep_ipif; 17350 uint_t unit; 17351 int err = 0; 17352 ipif_t *to_ipif; 17353 struct iocblk *iocp; 17354 boolean_t failback_cmd; 17355 boolean_t remove_ipif; 17356 int rc; 17357 ip_stack_t *ipst; 17358 17359 ASSERT(IAM_WRITER_ILL(to_ill)); 17360 ASSERT(IAM_WRITER_IPIF(ipif)); 17361 17362 iocp = (struct iocblk *)mp->b_rptr; 17363 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17364 remove_ipif = B_FALSE; 17365 17366 from_ill = ipif->ipif_ill; 17367 ipst = from_ill->ill_ipst; 17368 17369 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17370 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17371 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17372 17373 /* 17374 * Don't move LINK LOCAL addresses as they are tied to 17375 * physical interface. 17376 */ 17377 if (from_ill->ill_isv6 && 17378 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17379 ipif->ipif_was_up = B_FALSE; 17380 IPIF_UNMARK_MOVING(ipif); 17381 return (0); 17382 } 17383 17384 /* 17385 * We set the ipif_id to maximum so that the search for 17386 * ipif_id will pick the lowest number i.e 0 in the 17387 * following 2 cases : 17388 * 17389 * 1) We have a replacement ipif at the head of to_ill. 17390 * We can't remove it yet as we can exceed ip_addrs_per_if 17391 * on to_ill and hence the MOVE might fail. We want to 17392 * remove it only if we could move the ipif. Thus, by 17393 * setting it to the MAX value, we make the search in 17394 * ipif_get_id return the zeroth id. 17395 * 17396 * 2) When DR pulls out the NIC and re-plumbs the interface, 17397 * we might just have a zero address plumbed on the ipif 17398 * with zero id in the case of IPv4. We remove that while 17399 * doing the failback. We want to remove it only if we 17400 * could move the ipif. Thus, by setting it to the MAX 17401 * value, we make the search in ipif_get_id return the 17402 * zeroth id. 17403 * 17404 * Both (1) and (2) are done only when when we are moving 17405 * an ipif (either due to failover/failback) which originally 17406 * belonged to this interface i.e the ipif_orig_ifindex is 17407 * the same as to_ill's ifindex. This is needed so that 17408 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17409 * from B -> A (B is being removed from the group) and 17410 * FAILBACK from A -> B restores the original configuration. 17411 * Without the check for orig_ifindex, the second FAILOVER 17412 * could make the ipif belonging to B replace the A's zeroth 17413 * ipif and the subsequent failback re-creating the replacement 17414 * ipif again. 17415 * 17416 * NOTE : We created the replacement ipif when we did a 17417 * FAILOVER (See below). We could check for FAILBACK and 17418 * then look for replacement ipif to be removed. But we don't 17419 * want to do that because we wan't to allow the possibility 17420 * of a FAILOVER from A -> B (which creates the replacement ipif), 17421 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17422 * from B -> A. 17423 */ 17424 to_ipif = to_ill->ill_ipif; 17425 if ((to_ill->ill_phyint->phyint_ifindex == 17426 ipif->ipif_orig_ifindex) && 17427 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17428 ASSERT(to_ipif->ipif_id == 0); 17429 remove_ipif = B_TRUE; 17430 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17431 } 17432 /* 17433 * Find the lowest logical unit number on the to_ill. 17434 * If we are failing back, try to get the original id 17435 * rather than the lowest one so that the original 17436 * configuration is maintained. 17437 * 17438 * XXX need a better scheme for this. 17439 */ 17440 if (failback_cmd) { 17441 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17442 } else { 17443 unit = ipif_get_id(to_ill, 0); 17444 } 17445 17446 /* Reset back to zero in case we fail below */ 17447 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17448 to_ipif->ipif_id = 0; 17449 17450 if (unit == ipst->ips_ip_addrs_per_if) { 17451 ipif->ipif_was_up = B_FALSE; 17452 IPIF_UNMARK_MOVING(ipif); 17453 return (EINVAL); 17454 } 17455 17456 /* 17457 * ipif is ready to move from "from_ill" to "to_ill". 17458 * 17459 * 1) If we are moving ipif with id zero, create a 17460 * replacement ipif for this ipif on from_ill. If this fails 17461 * fail the MOVE operation. 17462 * 17463 * 2) Remove the replacement ipif on to_ill if any. 17464 * We could remove the replacement ipif when we are moving 17465 * the ipif with id zero. But what if somebody already 17466 * unplumbed it ? Thus we always remove it if it is present. 17467 * We want to do it only if we are sure we are going to 17468 * move the ipif to to_ill which is why there are no 17469 * returns due to error till ipif is linked to to_ill. 17470 * Note that the first ipif that we failback will always 17471 * be zero if it is present. 17472 */ 17473 if (ipif->ipif_id == 0) { 17474 ipaddr_t inaddr_any = INADDR_ANY; 17475 17476 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17477 if (rep_ipif == NULL) { 17478 ipif->ipif_was_up = B_FALSE; 17479 IPIF_UNMARK_MOVING(ipif); 17480 return (ENOMEM); 17481 } 17482 *rep_ipif = ipif_zero; 17483 /* 17484 * Before we put the ipif on the list, store the addresses 17485 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17486 * assumes so. This logic is not any different from what 17487 * ipif_allocate does. 17488 */ 17489 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17490 &rep_ipif->ipif_v6lcl_addr); 17491 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17492 &rep_ipif->ipif_v6src_addr); 17493 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17494 &rep_ipif->ipif_v6subnet); 17495 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17496 &rep_ipif->ipif_v6net_mask); 17497 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17498 &rep_ipif->ipif_v6brd_addr); 17499 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17500 &rep_ipif->ipif_v6pp_dst_addr); 17501 /* 17502 * We mark IPIF_NOFAILOVER so that this can never 17503 * move. 17504 */ 17505 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17506 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17507 rep_ipif->ipif_replace_zero = B_TRUE; 17508 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17509 MUTEX_DEFAULT, NULL); 17510 rep_ipif->ipif_id = 0; 17511 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17512 rep_ipif->ipif_ill = from_ill; 17513 rep_ipif->ipif_orig_ifindex = 17514 from_ill->ill_phyint->phyint_ifindex; 17515 /* Insert at head */ 17516 rep_ipif->ipif_next = from_ill->ill_ipif; 17517 from_ill->ill_ipif = rep_ipif; 17518 /* 17519 * We don't really care to let apps know about 17520 * this interface. 17521 */ 17522 } 17523 17524 if (remove_ipif) { 17525 /* 17526 * We set to a max value above for this case to get 17527 * id zero. ASSERT that we did get one. 17528 */ 17529 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17530 rep_ipif = to_ipif; 17531 to_ill->ill_ipif = rep_ipif->ipif_next; 17532 rep_ipif->ipif_next = NULL; 17533 /* 17534 * If some apps scanned and find this interface, 17535 * it is time to let them know, so that they can 17536 * delete it. 17537 */ 17538 17539 *rep_ipif_ptr = rep_ipif; 17540 } 17541 17542 /* Get it out of the ILL interface list. */ 17543 ipif_remove(ipif, B_FALSE); 17544 17545 /* Assign the new ill */ 17546 ipif->ipif_ill = to_ill; 17547 ipif->ipif_id = unit; 17548 /* id has already been checked */ 17549 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17550 ASSERT(rc == 0); 17551 /* Let SCTP update its list */ 17552 sctp_move_ipif(ipif, from_ill, to_ill); 17553 /* 17554 * Handle the failover and failback of ipif_t between 17555 * ill_t that have differing maximum mtu values. 17556 */ 17557 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17558 if (ipif->ipif_saved_mtu == 0) { 17559 /* 17560 * As this ipif_t is moving to an ill_t 17561 * that has a lower ill_max_mtu, its 17562 * ipif_mtu needs to be saved so it can 17563 * be restored during failback or during 17564 * failover to an ill_t which has a 17565 * higher ill_max_mtu. 17566 */ 17567 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17568 ipif->ipif_mtu = to_ill->ill_max_mtu; 17569 } else { 17570 /* 17571 * The ipif_t is, once again, moving to 17572 * an ill_t that has a lower maximum mtu 17573 * value. 17574 */ 17575 ipif->ipif_mtu = to_ill->ill_max_mtu; 17576 } 17577 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17578 ipif->ipif_saved_mtu != 0) { 17579 /* 17580 * The mtu of this ipif_t had to be reduced 17581 * during an earlier failover; this is an 17582 * opportunity for it to be increased (either as 17583 * part of another failover or a failback). 17584 */ 17585 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17586 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17587 ipif->ipif_saved_mtu = 0; 17588 } else { 17589 ipif->ipif_mtu = to_ill->ill_max_mtu; 17590 } 17591 } 17592 17593 /* 17594 * We preserve all the other fields of the ipif including 17595 * ipif_saved_ire_mp. The routes that are saved here will 17596 * be recreated on the new interface and back on the old 17597 * interface when we move back. 17598 */ 17599 ASSERT(ipif->ipif_arp_del_mp == NULL); 17600 17601 return (err); 17602 } 17603 17604 static int 17605 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17606 int ifindex, ipif_t **rep_ipif_ptr) 17607 { 17608 ipif_t *mipif; 17609 ipif_t *ipif_next; 17610 int err; 17611 17612 /* 17613 * We don't really try to MOVE back things if some of the 17614 * operations fail. The daemon will take care of moving again 17615 * later on. 17616 */ 17617 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17618 ipif_next = mipif->ipif_next; 17619 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17620 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17621 17622 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17623 17624 /* 17625 * When the MOVE fails, it is the job of the 17626 * application to take care of this properly 17627 * i.e try again if it is ENOMEM. 17628 */ 17629 if (mipif->ipif_ill != from_ill) { 17630 /* 17631 * ipif has moved. 17632 * 17633 * Move the multicast memberships associated 17634 * with this ipif to the new ill. For IPv6, we 17635 * do it once after all the ipifs are moved 17636 * (in ill_move) as they are not associated 17637 * with ipifs. 17638 * 17639 * We need to move the ilms as the ipif has 17640 * already been moved to a new ill even 17641 * in the case of errors. Neither 17642 * ilm_free(ipif) will find the ilm 17643 * when somebody unplumbs this ipif nor 17644 * ilm_delete(ilm) will be able to find the 17645 * ilm, if we don't move now. 17646 */ 17647 if (!from_ill->ill_isv6) 17648 ilm_move_v4(from_ill, to_ill, mipif); 17649 } 17650 17651 if (err != 0) 17652 return (err); 17653 } 17654 } 17655 return (0); 17656 } 17657 17658 static int 17659 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17660 { 17661 int ifindex; 17662 int err; 17663 struct iocblk *iocp; 17664 ipif_t *ipif; 17665 ipif_t *rep_ipif_ptr = NULL; 17666 ipif_t *from_ipif = NULL; 17667 boolean_t check_rep_if = B_FALSE; 17668 ip_stack_t *ipst = from_ill->ill_ipst; 17669 17670 iocp = (struct iocblk *)mp->b_rptr; 17671 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17672 /* 17673 * Move everything pointing at from_ill to to_ill. 17674 * We acheive this by passing in 0 as ifindex. 17675 */ 17676 ifindex = 0; 17677 } else { 17678 /* 17679 * Move everything pointing at from_ill whose original 17680 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17681 * We acheive this by passing in ifindex rather than 0. 17682 * Multicast vifs, ilgs move implicitly because ipifs move. 17683 */ 17684 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17685 ifindex = to_ill->ill_phyint->phyint_ifindex; 17686 } 17687 17688 /* 17689 * Determine if there is at least one ipif that would move from 17690 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17691 * ipif (if it exists) on the to_ill would be consumed as a result of 17692 * the move, in which case we need to quiesce the replacement ipif also. 17693 */ 17694 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17695 from_ipif = from_ipif->ipif_next) { 17696 if (((ifindex == 0) || 17697 (ifindex == from_ipif->ipif_orig_ifindex)) && 17698 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17699 check_rep_if = B_TRUE; 17700 break; 17701 } 17702 } 17703 17704 17705 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17706 17707 GRAB_ILL_LOCKS(from_ill, to_ill); 17708 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17709 (void) ipsq_pending_mp_add(NULL, ipif, q, 17710 mp, ILL_MOVE_OK); 17711 RELEASE_ILL_LOCKS(from_ill, to_ill); 17712 return (EINPROGRESS); 17713 } 17714 17715 /* Check if the replacement ipif is quiescent to delete */ 17716 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17717 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17718 to_ill->ill_ipif->ipif_state_flags |= 17719 IPIF_MOVING | IPIF_CHANGING; 17720 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17721 (void) ipsq_pending_mp_add(NULL, ipif, q, 17722 mp, ILL_MOVE_OK); 17723 RELEASE_ILL_LOCKS(from_ill, to_ill); 17724 return (EINPROGRESS); 17725 } 17726 } 17727 RELEASE_ILL_LOCKS(from_ill, to_ill); 17728 17729 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17730 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17731 GRAB_ILL_LOCKS(from_ill, to_ill); 17732 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17733 17734 /* ilm_move is done inside ipif_move for IPv4 */ 17735 if (err == 0 && from_ill->ill_isv6) 17736 ilm_move_v6(from_ill, to_ill, ifindex); 17737 17738 RELEASE_ILL_LOCKS(from_ill, to_ill); 17739 rw_exit(&ipst->ips_ill_g_lock); 17740 17741 /* 17742 * send rts messages and multicast messages. 17743 */ 17744 if (rep_ipif_ptr != NULL) { 17745 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17746 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17747 rep_ipif_ptr->ipif_recovery_id = 0; 17748 } 17749 ip_rts_ifmsg(rep_ipif_ptr); 17750 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17751 #ifdef DEBUG 17752 ipif_trace_cleanup(rep_ipif_ptr); 17753 #endif 17754 mi_free(rep_ipif_ptr); 17755 } 17756 17757 conn_move_ill(from_ill, to_ill, ifindex); 17758 17759 return (err); 17760 } 17761 17762 /* 17763 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17764 * Also checks for the validity of the arguments. 17765 * Note: We are already exclusive inside the from group. 17766 * It is upto the caller to release refcnt on the to_ill's. 17767 */ 17768 static int 17769 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17770 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17771 { 17772 int dst_index; 17773 ipif_t *ipif_v4, *ipif_v6; 17774 struct lifreq *lifr; 17775 mblk_t *mp1; 17776 boolean_t exists; 17777 sin_t *sin; 17778 int err = 0; 17779 ip_stack_t *ipst; 17780 17781 if (CONN_Q(q)) 17782 ipst = CONNQ_TO_IPST(q); 17783 else 17784 ipst = ILLQ_TO_IPST(q); 17785 17786 17787 if ((mp1 = mp->b_cont) == NULL) 17788 return (EPROTO); 17789 17790 if ((mp1 = mp1->b_cont) == NULL) 17791 return (EPROTO); 17792 17793 lifr = (struct lifreq *)mp1->b_rptr; 17794 sin = (sin_t *)&lifr->lifr_addr; 17795 17796 /* 17797 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17798 * specific operations. 17799 */ 17800 if (sin->sin_family != AF_UNSPEC) 17801 return (EINVAL); 17802 17803 /* 17804 * Get ipif with id 0. We are writer on the from ill. So we can pass 17805 * NULLs for the last 4 args and we know the lookup won't fail 17806 * with EINPROGRESS. 17807 */ 17808 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17809 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17810 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17811 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17812 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17813 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17814 17815 if (ipif_v4 == NULL && ipif_v6 == NULL) 17816 return (ENXIO); 17817 17818 if (ipif_v4 != NULL) { 17819 ASSERT(ipif_v4->ipif_refcnt != 0); 17820 if (ipif_v4->ipif_id != 0) { 17821 err = EINVAL; 17822 goto done; 17823 } 17824 17825 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17826 *ill_from_v4 = ipif_v4->ipif_ill; 17827 } 17828 17829 if (ipif_v6 != NULL) { 17830 ASSERT(ipif_v6->ipif_refcnt != 0); 17831 if (ipif_v6->ipif_id != 0) { 17832 err = EINVAL; 17833 goto done; 17834 } 17835 17836 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17837 *ill_from_v6 = ipif_v6->ipif_ill; 17838 } 17839 17840 err = 0; 17841 dst_index = lifr->lifr_movetoindex; 17842 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17843 q, mp, ip_process_ioctl, &err, ipst); 17844 if (err != 0) { 17845 /* 17846 * There could be only v6. 17847 */ 17848 if (err != ENXIO) 17849 goto done; 17850 err = 0; 17851 } 17852 17853 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17854 q, mp, ip_process_ioctl, &err, ipst); 17855 if (err != 0) { 17856 if (err != ENXIO) 17857 goto done; 17858 if (*ill_to_v4 == NULL) { 17859 err = ENXIO; 17860 goto done; 17861 } 17862 err = 0; 17863 } 17864 17865 /* 17866 * If we have something to MOVE i.e "from" not NULL, 17867 * "to" should be non-NULL. 17868 */ 17869 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17870 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17871 err = EINVAL; 17872 } 17873 17874 done: 17875 if (ipif_v4 != NULL) 17876 ipif_refrele(ipif_v4); 17877 if (ipif_v6 != NULL) 17878 ipif_refrele(ipif_v6); 17879 return (err); 17880 } 17881 17882 /* 17883 * FAILOVER and FAILBACK are modelled as MOVE operations. 17884 * 17885 * We don't check whether the MOVE is within the same group or 17886 * not, because this ioctl can be used as a generic mechanism 17887 * to failover from interface A to B, though things will function 17888 * only if they are really part of the same group. Moreover, 17889 * all ipifs may be down and hence temporarily out of the group. 17890 * 17891 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17892 * down first and then V6. For each we wait for the ipif's to become quiescent. 17893 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17894 * have been deleted and there are no active references. Once quiescent the 17895 * ipif's are moved and brought up on the new ill. 17896 * 17897 * Normally the source ill and destination ill belong to the same IPMP group 17898 * and hence the same ipsq_t. In the event they don't belong to the same 17899 * same group the two ipsq's are first merged into one ipsq - that of the 17900 * to_ill. The multicast memberships on the source and destination ill cannot 17901 * change during the move operation since multicast joins/leaves also have to 17902 * execute on the same ipsq and are hence serialized. 17903 */ 17904 /* ARGSUSED */ 17905 int 17906 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17907 ip_ioctl_cmd_t *ipip, void *ifreq) 17908 { 17909 ill_t *ill_to_v4 = NULL; 17910 ill_t *ill_to_v6 = NULL; 17911 ill_t *ill_from_v4 = NULL; 17912 ill_t *ill_from_v6 = NULL; 17913 int err = 0; 17914 17915 /* 17916 * setup from and to ill's, we can get EINPROGRESS only for 17917 * to_ill's. 17918 */ 17919 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17920 &ill_to_v4, &ill_to_v6); 17921 17922 if (err != 0) { 17923 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17924 goto done; 17925 } 17926 17927 /* 17928 * nothing to do. 17929 */ 17930 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17931 goto done; 17932 } 17933 17934 /* 17935 * nothing to do. 17936 */ 17937 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17938 goto done; 17939 } 17940 17941 /* 17942 * Mark the ill as changing. 17943 * ILL_CHANGING flag is cleared when the ipif's are brought up 17944 * in ill_up_ipifs in case of error they are cleared below. 17945 */ 17946 17947 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17948 if (ill_from_v4 != NULL) 17949 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17950 if (ill_from_v6 != NULL) 17951 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17952 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17953 17954 /* 17955 * Make sure that both src and dst are 17956 * in the same syncq group. If not make it happen. 17957 * We are not holding any locks because we are the writer 17958 * on the from_ipsq and we will hold locks in ill_merge_groups 17959 * to protect to_ipsq against changing. 17960 */ 17961 if (ill_from_v4 != NULL) { 17962 if (ill_from_v4->ill_phyint->phyint_ipsq != 17963 ill_to_v4->ill_phyint->phyint_ipsq) { 17964 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17965 NULL, mp, q); 17966 goto err_ret; 17967 17968 } 17969 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17970 } else { 17971 17972 if (ill_from_v6->ill_phyint->phyint_ipsq != 17973 ill_to_v6->ill_phyint->phyint_ipsq) { 17974 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17975 NULL, mp, q); 17976 goto err_ret; 17977 17978 } 17979 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17980 } 17981 17982 /* 17983 * Now that the ipsq's have been merged and we are the writer 17984 * lets mark to_ill as changing as well. 17985 */ 17986 17987 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17988 if (ill_to_v4 != NULL) 17989 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17990 if (ill_to_v6 != NULL) 17991 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17992 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17993 17994 /* 17995 * Its ok for us to proceed with the move even if 17996 * ill_pending_mp is non null on one of the from ill's as the reply 17997 * should not be looking at the ipif, it should only care about the 17998 * ill itself. 17999 */ 18000 18001 /* 18002 * lets move ipv4 first. 18003 */ 18004 if (ill_from_v4 != NULL) { 18005 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18006 ill_from_v4->ill_move_in_progress = B_TRUE; 18007 ill_to_v4->ill_move_in_progress = B_TRUE; 18008 ill_to_v4->ill_move_peer = ill_from_v4; 18009 ill_from_v4->ill_move_peer = ill_to_v4; 18010 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18011 } 18012 18013 /* 18014 * Now lets move ipv6. 18015 */ 18016 if (err == 0 && ill_from_v6 != NULL) { 18017 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18018 ill_from_v6->ill_move_in_progress = B_TRUE; 18019 ill_to_v6->ill_move_in_progress = B_TRUE; 18020 ill_to_v6->ill_move_peer = ill_from_v6; 18021 ill_from_v6->ill_move_peer = ill_to_v6; 18022 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18023 } 18024 18025 err_ret: 18026 /* 18027 * EINPROGRESS means we are waiting for the ipif's that need to be 18028 * moved to become quiescent. 18029 */ 18030 if (err == EINPROGRESS) { 18031 goto done; 18032 } 18033 18034 /* 18035 * if err is set ill_up_ipifs will not be called 18036 * lets clear the flags. 18037 */ 18038 18039 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18040 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18041 /* 18042 * Some of the clearing may be redundant. But it is simple 18043 * not making any extra checks. 18044 */ 18045 if (ill_from_v6 != NULL) { 18046 ill_from_v6->ill_move_in_progress = B_FALSE; 18047 ill_from_v6->ill_move_peer = NULL; 18048 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18049 } 18050 if (ill_from_v4 != NULL) { 18051 ill_from_v4->ill_move_in_progress = B_FALSE; 18052 ill_from_v4->ill_move_peer = NULL; 18053 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18054 } 18055 if (ill_to_v6 != NULL) { 18056 ill_to_v6->ill_move_in_progress = B_FALSE; 18057 ill_to_v6->ill_move_peer = NULL; 18058 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18059 } 18060 if (ill_to_v4 != NULL) { 18061 ill_to_v4->ill_move_in_progress = B_FALSE; 18062 ill_to_v4->ill_move_peer = NULL; 18063 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18064 } 18065 18066 /* 18067 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18068 * Do this always to maintain proper state i.e even in case of errors. 18069 * As phyint_inactive looks at both v4 and v6 interfaces, 18070 * we need not call on both v4 and v6 interfaces. 18071 */ 18072 if (ill_from_v4 != NULL) { 18073 if ((ill_from_v4->ill_phyint->phyint_flags & 18074 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18075 phyint_inactive(ill_from_v4->ill_phyint); 18076 } 18077 } else if (ill_from_v6 != NULL) { 18078 if ((ill_from_v6->ill_phyint->phyint_flags & 18079 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18080 phyint_inactive(ill_from_v6->ill_phyint); 18081 } 18082 } 18083 18084 if (ill_to_v4 != NULL) { 18085 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18086 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18087 } 18088 } else if (ill_to_v6 != NULL) { 18089 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18090 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18091 } 18092 } 18093 18094 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18095 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18096 18097 no_err: 18098 /* 18099 * lets bring the interfaces up on the to_ill. 18100 */ 18101 if (err == 0) { 18102 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18103 q, mp); 18104 } 18105 18106 if (err == 0) { 18107 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18108 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18109 18110 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18111 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18112 } 18113 done: 18114 18115 if (ill_to_v4 != NULL) { 18116 ill_refrele(ill_to_v4); 18117 } 18118 if (ill_to_v6 != NULL) { 18119 ill_refrele(ill_to_v6); 18120 } 18121 18122 return (err); 18123 } 18124 18125 static void 18126 ill_dl_down(ill_t *ill) 18127 { 18128 /* 18129 * The ill is down; unbind but stay attached since we're still 18130 * associated with a PPA. If we have negotiated DLPI capabilites 18131 * with the data link service provider (IDS_OK) then reset them. 18132 * The interval between unbinding and rebinding is potentially 18133 * unbounded hence we cannot assume things will be the same. 18134 * The DLPI capabilities will be probed again when the data link 18135 * is brought up. 18136 */ 18137 mblk_t *mp = ill->ill_unbind_mp; 18138 18139 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18140 18141 ill->ill_unbind_mp = NULL; 18142 if (mp != NULL) { 18143 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18144 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18145 ill->ill_name)); 18146 mutex_enter(&ill->ill_lock); 18147 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18148 mutex_exit(&ill->ill_lock); 18149 /* 18150 * Reset the capabilities if the negotiation is done or is 18151 * still in progress. Note that ill_capability_reset() will 18152 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent 18153 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored. 18154 * 18155 * Further, reset ill_capab_reneg to be B_FALSE so that the 18156 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent 18157 * the capabilities renegotiation from happening. 18158 */ 18159 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 18160 ill_capability_reset(ill); 18161 ill->ill_capab_reneg = B_FALSE; 18162 18163 ill_dlpi_send(ill, mp); 18164 } 18165 18166 /* 18167 * Toss all of our multicast memberships. We could keep them, but 18168 * then we'd have to do bookkeeping of any joins and leaves performed 18169 * by the application while the the interface is down (we can't just 18170 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18171 * on a downed interface). 18172 */ 18173 ill_leave_multicast(ill); 18174 18175 mutex_enter(&ill->ill_lock); 18176 ill->ill_dl_up = 0; 18177 (void) ill_hook_event_create(ill, 0, NE_DOWN, NULL, 0); 18178 mutex_exit(&ill->ill_lock); 18179 } 18180 18181 static void 18182 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18183 { 18184 union DL_primitives *dlp; 18185 t_uscalar_t prim; 18186 18187 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18188 18189 dlp = (union DL_primitives *)mp->b_rptr; 18190 prim = dlp->dl_primitive; 18191 18192 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18193 dl_primstr(prim), prim, ill->ill_name)); 18194 18195 switch (prim) { 18196 case DL_PHYS_ADDR_REQ: 18197 { 18198 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18199 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18200 break; 18201 } 18202 case DL_BIND_REQ: 18203 mutex_enter(&ill->ill_lock); 18204 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18205 mutex_exit(&ill->ill_lock); 18206 break; 18207 } 18208 18209 /* 18210 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18211 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18212 * we only wait for the ACK of the DL_UNBIND_REQ. 18213 */ 18214 mutex_enter(&ill->ill_lock); 18215 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18216 (prim == DL_UNBIND_REQ)) { 18217 ill->ill_dlpi_pending = prim; 18218 } 18219 mutex_exit(&ill->ill_lock); 18220 18221 putnext(ill->ill_wq, mp); 18222 } 18223 18224 /* 18225 * Helper function for ill_dlpi_send(). 18226 */ 18227 /* ARGSUSED */ 18228 static void 18229 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18230 { 18231 ill_dlpi_send((ill_t *)q->q_ptr, mp); 18232 } 18233 18234 /* 18235 * Send a DLPI control message to the driver but make sure there 18236 * is only one outstanding message. Uses ill_dlpi_pending to tell 18237 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18238 * when an ACK or a NAK is received to process the next queued message. 18239 */ 18240 void 18241 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18242 { 18243 mblk_t **mpp; 18244 18245 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18246 18247 /* 18248 * To ensure that any DLPI requests for current exclusive operation 18249 * are always completely sent before any DLPI messages for other 18250 * operations, require writer access before enqueuing. 18251 */ 18252 if (!IAM_WRITER_ILL(ill)) { 18253 ill_refhold(ill); 18254 /* qwriter_ip() does the ill_refrele() */ 18255 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18256 NEW_OP, B_TRUE); 18257 return; 18258 } 18259 18260 mutex_enter(&ill->ill_lock); 18261 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18262 /* Must queue message. Tail insertion */ 18263 mpp = &ill->ill_dlpi_deferred; 18264 while (*mpp != NULL) 18265 mpp = &((*mpp)->b_next); 18266 18267 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18268 ill->ill_name)); 18269 18270 *mpp = mp; 18271 mutex_exit(&ill->ill_lock); 18272 return; 18273 } 18274 mutex_exit(&ill->ill_lock); 18275 ill_dlpi_dispatch(ill, mp); 18276 } 18277 18278 /* 18279 * Send all deferred DLPI messages without waiting for their ACKs. 18280 */ 18281 void 18282 ill_dlpi_send_deferred(ill_t *ill) 18283 { 18284 mblk_t *mp, *nextmp; 18285 18286 /* 18287 * Clear ill_dlpi_pending so that the message is not queued in 18288 * ill_dlpi_send(). 18289 */ 18290 mutex_enter(&ill->ill_lock); 18291 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18292 mp = ill->ill_dlpi_deferred; 18293 ill->ill_dlpi_deferred = NULL; 18294 mutex_exit(&ill->ill_lock); 18295 18296 for (; mp != NULL; mp = nextmp) { 18297 nextmp = mp->b_next; 18298 mp->b_next = NULL; 18299 ill_dlpi_send(ill, mp); 18300 } 18301 } 18302 18303 /* 18304 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18305 */ 18306 boolean_t 18307 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18308 { 18309 t_uscalar_t pending; 18310 18311 mutex_enter(&ill->ill_lock); 18312 if (ill->ill_dlpi_pending == prim) { 18313 mutex_exit(&ill->ill_lock); 18314 return (B_TRUE); 18315 } 18316 18317 /* 18318 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18319 * without waiting, so don't print any warnings in that case. 18320 */ 18321 if (ill->ill_state_flags & ILL_CONDEMNED) { 18322 mutex_exit(&ill->ill_lock); 18323 return (B_FALSE); 18324 } 18325 pending = ill->ill_dlpi_pending; 18326 mutex_exit(&ill->ill_lock); 18327 18328 if (pending == DL_PRIM_INVAL) { 18329 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18330 "received unsolicited ack for %s on %s\n", 18331 dl_primstr(prim), ill->ill_name); 18332 } else { 18333 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18334 "received unexpected ack for %s on %s (expecting %s)\n", 18335 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 18336 } 18337 return (B_FALSE); 18338 } 18339 18340 /* 18341 * Called when an DLPI control message has been acked or nacked to 18342 * send down the next queued message (if any). 18343 */ 18344 void 18345 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18346 { 18347 mblk_t *mp; 18348 18349 ASSERT(IAM_WRITER_ILL(ill)); 18350 mutex_enter(&ill->ill_lock); 18351 18352 ASSERT(prim != DL_PRIM_INVAL); 18353 ASSERT(ill->ill_dlpi_pending == prim); 18354 18355 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18356 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18357 18358 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18359 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18360 cv_signal(&ill->ill_cv); 18361 mutex_exit(&ill->ill_lock); 18362 return; 18363 } 18364 18365 ill->ill_dlpi_deferred = mp->b_next; 18366 mp->b_next = NULL; 18367 mutex_exit(&ill->ill_lock); 18368 18369 ill_dlpi_dispatch(ill, mp); 18370 } 18371 18372 void 18373 conn_delete_ire(conn_t *connp, caddr_t arg) 18374 { 18375 ipif_t *ipif = (ipif_t *)arg; 18376 ire_t *ire; 18377 18378 /* 18379 * Look at the cached ires on conns which has pointers to ipifs. 18380 * We just call ire_refrele which clears up the reference 18381 * to ire. Called when a conn closes. Also called from ipif_free 18382 * to cleanup indirect references to the stale ipif via the cached ire. 18383 */ 18384 mutex_enter(&connp->conn_lock); 18385 ire = connp->conn_ire_cache; 18386 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18387 connp->conn_ire_cache = NULL; 18388 mutex_exit(&connp->conn_lock); 18389 IRE_REFRELE_NOTR(ire); 18390 return; 18391 } 18392 mutex_exit(&connp->conn_lock); 18393 18394 } 18395 18396 /* 18397 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18398 * of IREs. Those IREs may have been previously cached in the conn structure. 18399 * This ipcl_walk() walker function releases all references to such IREs based 18400 * on the condemned flag. 18401 */ 18402 /* ARGSUSED */ 18403 void 18404 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18405 { 18406 ire_t *ire; 18407 18408 mutex_enter(&connp->conn_lock); 18409 ire = connp->conn_ire_cache; 18410 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18411 connp->conn_ire_cache = NULL; 18412 mutex_exit(&connp->conn_lock); 18413 IRE_REFRELE_NOTR(ire); 18414 return; 18415 } 18416 mutex_exit(&connp->conn_lock); 18417 } 18418 18419 /* 18420 * Take down a specific interface, but don't lose any information about it. 18421 * Also delete interface from its interface group (ifgrp). 18422 * (Always called as writer.) 18423 * This function goes through the down sequence even if the interface is 18424 * already down. There are 2 reasons. 18425 * a. Currently we permit interface routes that depend on down interfaces 18426 * to be added. This behaviour itself is questionable. However it appears 18427 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18428 * time. We go thru the cleanup in order to remove these routes. 18429 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18430 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18431 * down, but we need to cleanup i.e. do ill_dl_down and 18432 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18433 * 18434 * IP-MT notes: 18435 * 18436 * Model of reference to interfaces. 18437 * 18438 * The following members in ipif_t track references to the ipif. 18439 * int ipif_refcnt; Active reference count 18440 * uint_t ipif_cnt_ire; Number of ire's referencing this ipif 18441 * uint_t ipif_cnt_ilm; Number of ilms's references this ipif. 18442 * 18443 * The following members in ill_t track references to the ill. 18444 * int ill_refcnt; active refcnt 18445 * uint_t ill_cnt_ire; Number of ires referencing ill 18446 * uint_t ill_cnt_nce; Number of nces referencing ill 18447 * uint_t ill_cnt_ilm; Number of ilms referencing ill 18448 * 18449 * Reference to an ipif or ill can be obtained in any of the following ways. 18450 * 18451 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18452 * Pointers to ipif / ill from other data structures viz ire and conn. 18453 * Implicit reference to the ipif / ill by holding a reference to the ire. 18454 * 18455 * The ipif/ill lookup functions return a reference held ipif / ill. 18456 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18457 * This is a purely dynamic reference count associated with threads holding 18458 * references to the ipif / ill. Pointers from other structures do not 18459 * count towards this reference count. 18460 * 18461 * ipif_cnt_ire/ill_cnt_ire is the number of ire's 18462 * associated with the ipif/ill. This is incremented whenever a new 18463 * ire is created referencing the ipif/ill. This is done atomically inside 18464 * ire_add_v[46] where the ire is actually added to the ire hash table. 18465 * The count is decremented in ire_inactive where the ire is destroyed. 18466 * 18467 * nce's reference ill's thru nce_ill and the count of nce's associated with 18468 * an ill is recorded in ill_cnt_nce. This is incremented atomically in 18469 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18470 * table. Similarly it is decremented in ndp_inactive() where the nce 18471 * is destroyed. 18472 * 18473 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 18474 * is incremented in ilm_add_v6() and decremented before the ilm is freed 18475 * in ilm_walker_cleanup() or ilm_delete(). 18476 * 18477 * Flow of ioctls involving interface down/up 18478 * 18479 * The following is the sequence of an attempt to set some critical flags on an 18480 * up interface. 18481 * ip_sioctl_flags 18482 * ipif_down 18483 * wait for ipif to be quiescent 18484 * ipif_down_tail 18485 * ip_sioctl_flags_tail 18486 * 18487 * All set ioctls that involve down/up sequence would have a skeleton similar 18488 * to the above. All the *tail functions are called after the refcounts have 18489 * dropped to the appropriate values. 18490 * 18491 * The mechanism to quiesce an ipif is as follows. 18492 * 18493 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18494 * on the ipif. Callers either pass a flag requesting wait or the lookup 18495 * functions will return NULL. 18496 * 18497 * Delete all ires referencing this ipif 18498 * 18499 * Any thread attempting to do an ipif_refhold on an ipif that has been 18500 * obtained thru a cached pointer will first make sure that 18501 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18502 * increment the refcount. 18503 * 18504 * The above guarantees that the ipif refcount will eventually come down to 18505 * zero and the ipif will quiesce, once all threads that currently hold a 18506 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18507 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18508 * have also been ire_inactive'd. i.e. when ipif_cnt_{ire, ill} and 18509 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 18510 * in ip.h 18511 * 18512 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18513 * 18514 * Threads trying to lookup an ipif or ill can pass a flag requesting 18515 * wait and restart if the ipif / ill cannot be looked up currently. 18516 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18517 * failure if the ipif is currently undergoing an exclusive operation, and 18518 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18519 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18520 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18521 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18522 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18523 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18524 * until we release the ipsq_lock, even though the the ill/ipif state flags 18525 * can change after we drop the ill_lock. 18526 * 18527 * An attempt to send out a packet using an ipif that is currently 18528 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18529 * operation and restart it later when the exclusive condition on the ipif ends. 18530 * This is an example of not passing the wait flag to the lookup functions. For 18531 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18532 * out a multicast packet on that ipif will fail while the ipif is 18533 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18534 * currently IPIF_CHANGING will also fail. 18535 */ 18536 int 18537 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18538 { 18539 ill_t *ill = ipif->ipif_ill; 18540 phyint_t *phyi; 18541 conn_t *connp; 18542 boolean_t success; 18543 boolean_t ipif_was_up = B_FALSE; 18544 ip_stack_t *ipst = ill->ill_ipst; 18545 18546 ASSERT(IAM_WRITER_IPIF(ipif)); 18547 18548 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18549 18550 if (ipif->ipif_flags & IPIF_UP) { 18551 mutex_enter(&ill->ill_lock); 18552 ipif->ipif_flags &= ~IPIF_UP; 18553 ASSERT(ill->ill_ipif_up_count > 0); 18554 --ill->ill_ipif_up_count; 18555 mutex_exit(&ill->ill_lock); 18556 ipif_was_up = B_TRUE; 18557 /* Update status in SCTP's list */ 18558 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18559 } 18560 18561 /* 18562 * Blow away memberships we established in ipif_multicast_up(). 18563 */ 18564 ipif_multicast_down(ipif); 18565 18566 /* 18567 * Remove from the mapping for __sin6_src_id. We insert only 18568 * when the address is not INADDR_ANY. As IPv4 addresses are 18569 * stored as mapped addresses, we need to check for mapped 18570 * INADDR_ANY also. 18571 */ 18572 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18573 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18574 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18575 int err; 18576 18577 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18578 ipif->ipif_zoneid, ipst); 18579 if (err != 0) { 18580 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18581 } 18582 } 18583 18584 /* 18585 * Before we delete the ill from the group (if any), we need 18586 * to make sure that we delete all the routes dependent on 18587 * this and also any ipifs dependent on this ipif for 18588 * source address. We need to do before we delete from 18589 * the group because 18590 * 18591 * 1) ipif_down_delete_ire de-references ill->ill_group. 18592 * 18593 * 2) ipif_update_other_ipifs needs to walk the whole group 18594 * for re-doing source address selection. Note that 18595 * ipif_select_source[_v6] called from 18596 * ipif_update_other_ipifs[_v6] will not pick this ipif 18597 * because we have already marked down here i.e cleared 18598 * IPIF_UP. 18599 */ 18600 if (ipif->ipif_isv6) { 18601 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18602 ipst); 18603 } else { 18604 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18605 ipst); 18606 } 18607 18608 /* 18609 * Cleaning up the conn_ire_cache or conns must be done only after the 18610 * ires have been deleted above. Otherwise a thread could end up 18611 * caching an ire in a conn after we have finished the cleanup of the 18612 * conn. The caching is done after making sure that the ire is not yet 18613 * condemned. Also documented in the block comment above ip_output 18614 */ 18615 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18616 /* Also, delete the ires cached in SCTP */ 18617 sctp_ire_cache_flush(ipif); 18618 18619 /* 18620 * Update any other ipifs which have used "our" local address as 18621 * a source address. This entails removing and recreating IRE_INTERFACE 18622 * entries for such ipifs. 18623 */ 18624 if (ipif->ipif_isv6) 18625 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18626 else 18627 ipif_update_other_ipifs(ipif, ill->ill_group); 18628 18629 if (ipif_was_up) { 18630 /* 18631 * Check whether it is last ipif to leave this group. 18632 * If this is the last ipif to leave, we should remove 18633 * this ill from the group as ipif_select_source will not 18634 * be able to find any useful ipifs if this ill is selected 18635 * for load balancing. 18636 * 18637 * For nameless groups, we should call ifgrp_delete if this 18638 * belongs to some group. As this ipif is going down, we may 18639 * need to reconstruct groups. 18640 */ 18641 phyi = ill->ill_phyint; 18642 /* 18643 * If the phyint_groupname_len is 0, it may or may not 18644 * be in the nameless group. If the phyint_groupname_len is 18645 * not 0, then this ill should be part of some group. 18646 * As we always insert this ill in the group if 18647 * phyint_groupname_len is not zero when the first ipif 18648 * comes up (in ipif_up_done), it should be in a group 18649 * when the namelen is not 0. 18650 * 18651 * NOTE : When we delete the ill from the group,it will 18652 * blow away all the IRE_CACHES pointing either at this ipif or 18653 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18654 * should be pointing at this ill. 18655 */ 18656 ASSERT(phyi->phyint_groupname_len == 0 || 18657 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18658 18659 if (phyi->phyint_groupname_len != 0) { 18660 if (ill->ill_ipif_up_count == 0) 18661 illgrp_delete(ill); 18662 } 18663 18664 /* 18665 * If we have deleted some of the broadcast ires associated 18666 * with this ipif, we need to re-nominate somebody else if 18667 * the ires that we deleted were the nominated ones. 18668 */ 18669 if (ill->ill_group != NULL && !ill->ill_isv6) 18670 ipif_renominate_bcast(ipif); 18671 } 18672 18673 /* 18674 * neighbor-discovery or arp entries for this interface. 18675 */ 18676 ipif_ndp_down(ipif); 18677 18678 /* 18679 * If mp is NULL the caller will wait for the appropriate refcnt. 18680 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18681 * and ill_delete -> ipif_free -> ipif_down 18682 */ 18683 if (mp == NULL) { 18684 ASSERT(q == NULL); 18685 return (0); 18686 } 18687 18688 if (CONN_Q(q)) { 18689 connp = Q_TO_CONN(q); 18690 mutex_enter(&connp->conn_lock); 18691 } else { 18692 connp = NULL; 18693 } 18694 mutex_enter(&ill->ill_lock); 18695 /* 18696 * Are there any ire's pointing to this ipif that are still active ? 18697 * If this is the last ipif going down, are there any ire's pointing 18698 * to this ill that are still active ? 18699 */ 18700 if (ipif_is_quiescent(ipif)) { 18701 mutex_exit(&ill->ill_lock); 18702 if (connp != NULL) 18703 mutex_exit(&connp->conn_lock); 18704 return (0); 18705 } 18706 18707 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18708 ill->ill_name, (void *)ill)); 18709 /* 18710 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18711 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18712 * which in turn is called by the last refrele on the ipif/ill/ire. 18713 */ 18714 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18715 if (!success) { 18716 /* The conn is closing. So just return */ 18717 ASSERT(connp != NULL); 18718 mutex_exit(&ill->ill_lock); 18719 mutex_exit(&connp->conn_lock); 18720 return (EINTR); 18721 } 18722 18723 mutex_exit(&ill->ill_lock); 18724 if (connp != NULL) 18725 mutex_exit(&connp->conn_lock); 18726 return (EINPROGRESS); 18727 } 18728 18729 void 18730 ipif_down_tail(ipif_t *ipif) 18731 { 18732 ill_t *ill = ipif->ipif_ill; 18733 18734 /* 18735 * Skip any loopback interface (null wq). 18736 * If this is the last logical interface on the ill 18737 * have ill_dl_down tell the driver we are gone (unbind) 18738 * Note that lun 0 can ipif_down even though 18739 * there are other logical units that are up. 18740 * This occurs e.g. when we change a "significant" IFF_ flag. 18741 */ 18742 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18743 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18744 ill->ill_dl_up) { 18745 ill_dl_down(ill); 18746 } 18747 ill->ill_logical_down = 0; 18748 18749 /* 18750 * Have to be after removing the routes in ipif_down_delete_ire. 18751 */ 18752 if (ipif->ipif_isv6) { 18753 if (ill->ill_flags & ILLF_XRESOLV) 18754 ipif_arp_down(ipif); 18755 } else { 18756 ipif_arp_down(ipif); 18757 } 18758 18759 ip_rts_ifmsg(ipif); 18760 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18761 } 18762 18763 /* 18764 * Bring interface logically down without bringing the physical interface 18765 * down e.g. when the netmask is changed. This avoids long lasting link 18766 * negotiations between an ethernet interface and a certain switches. 18767 */ 18768 static int 18769 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18770 { 18771 /* 18772 * The ill_logical_down flag is a transient flag. It is set here 18773 * and is cleared once the down has completed in ipif_down_tail. 18774 * This flag does not indicate whether the ill stream is in the 18775 * DL_BOUND state with the driver. Instead this flag is used by 18776 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18777 * the driver. The state of the ill stream i.e. whether it is 18778 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18779 */ 18780 ipif->ipif_ill->ill_logical_down = 1; 18781 return (ipif_down(ipif, q, mp)); 18782 } 18783 18784 /* 18785 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18786 * If the usesrc client ILL is already part of a usesrc group or not, 18787 * in either case a ire_stq with the matching usesrc client ILL will 18788 * locate the IRE's that need to be deleted. We want IREs to be created 18789 * with the new source address. 18790 */ 18791 static void 18792 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18793 { 18794 ill_t *ucill = (ill_t *)ill_arg; 18795 18796 ASSERT(IAM_WRITER_ILL(ucill)); 18797 18798 if (ire->ire_stq == NULL) 18799 return; 18800 18801 if ((ire->ire_type == IRE_CACHE) && 18802 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18803 ire_delete(ire); 18804 } 18805 18806 /* 18807 * ire_walk routine to delete every IRE dependent on the interface 18808 * address that is going down. (Always called as writer.) 18809 * Works for both v4 and v6. 18810 * In addition for checking for ire_ipif matches it also checks for 18811 * IRE_CACHE entries which have the same source address as the 18812 * disappearing ipif since ipif_select_source might have picked 18813 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18814 * care of any IRE_INTERFACE with the disappearing source address. 18815 */ 18816 static void 18817 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18818 { 18819 ipif_t *ipif = (ipif_t *)ipif_arg; 18820 ill_t *ire_ill; 18821 ill_t *ipif_ill; 18822 18823 ASSERT(IAM_WRITER_IPIF(ipif)); 18824 if (ire->ire_ipif == NULL) 18825 return; 18826 18827 /* 18828 * For IPv4, we derive source addresses for an IRE from ipif's 18829 * belonging to the same IPMP group as the IRE's outgoing 18830 * interface. If an IRE's outgoing interface isn't in the 18831 * same IPMP group as a particular ipif, then that ipif 18832 * couldn't have been used as a source address for this IRE. 18833 * 18834 * For IPv6, source addresses are only restricted to the IPMP group 18835 * if the IRE is for a link-local address or a multicast address. 18836 * Otherwise, source addresses for an IRE can be chosen from 18837 * interfaces other than the the outgoing interface for that IRE. 18838 * 18839 * For source address selection details, see ipif_select_source() 18840 * and ipif_select_source_v6(). 18841 */ 18842 if (ire->ire_ipversion == IPV4_VERSION || 18843 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18844 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18845 ire_ill = ire->ire_ipif->ipif_ill; 18846 ipif_ill = ipif->ipif_ill; 18847 18848 if (ire_ill->ill_group != ipif_ill->ill_group) { 18849 return; 18850 } 18851 } 18852 18853 18854 if (ire->ire_ipif != ipif) { 18855 /* 18856 * Look for a matching source address. 18857 */ 18858 if (ire->ire_type != IRE_CACHE) 18859 return; 18860 if (ipif->ipif_flags & IPIF_NOLOCAL) 18861 return; 18862 18863 if (ire->ire_ipversion == IPV4_VERSION) { 18864 if (ire->ire_src_addr != ipif->ipif_src_addr) 18865 return; 18866 } else { 18867 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18868 &ipif->ipif_v6lcl_addr)) 18869 return; 18870 } 18871 ire_delete(ire); 18872 return; 18873 } 18874 /* 18875 * ire_delete() will do an ire_flush_cache which will delete 18876 * all ire_ipif matches 18877 */ 18878 ire_delete(ire); 18879 } 18880 18881 /* 18882 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18883 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18884 * 2) when an interface is brought up or down (on that ill). 18885 * This ensures that the IRE_CACHE entries don't retain stale source 18886 * address selection results. 18887 */ 18888 void 18889 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18890 { 18891 ill_t *ill = (ill_t *)ill_arg; 18892 ill_t *ipif_ill; 18893 18894 ASSERT(IAM_WRITER_ILL(ill)); 18895 /* 18896 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18897 * Hence this should be IRE_CACHE. 18898 */ 18899 ASSERT(ire->ire_type == IRE_CACHE); 18900 18901 /* 18902 * We are called for IRE_CACHES whose ire_ipif matches ill. 18903 * We are only interested in IRE_CACHES that has borrowed 18904 * the source address from ill_arg e.g. ipif_up_done[_v6] 18905 * for which we need to look at ire_ipif->ipif_ill match 18906 * with ill. 18907 */ 18908 ASSERT(ire->ire_ipif != NULL); 18909 ipif_ill = ire->ire_ipif->ipif_ill; 18910 if (ipif_ill == ill || (ill->ill_group != NULL && 18911 ipif_ill->ill_group == ill->ill_group)) { 18912 ire_delete(ire); 18913 } 18914 } 18915 18916 /* 18917 * Delete all the ire whose stq references ill_arg. 18918 */ 18919 static void 18920 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18921 { 18922 ill_t *ill = (ill_t *)ill_arg; 18923 ill_t *ire_ill; 18924 18925 ASSERT(IAM_WRITER_ILL(ill)); 18926 /* 18927 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18928 * Hence this should be IRE_CACHE. 18929 */ 18930 ASSERT(ire->ire_type == IRE_CACHE); 18931 18932 /* 18933 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18934 * matches ill. We are only interested in IRE_CACHES that 18935 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18936 * filtering here. 18937 */ 18938 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18939 18940 if (ire_ill == ill) 18941 ire_delete(ire); 18942 } 18943 18944 /* 18945 * This is called when an ill leaves the group. We want to delete 18946 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18947 * pointing at ill. 18948 */ 18949 static void 18950 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18951 { 18952 ill_t *ill = (ill_t *)ill_arg; 18953 18954 ASSERT(IAM_WRITER_ILL(ill)); 18955 ASSERT(ill->ill_group == NULL); 18956 /* 18957 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18958 * Hence this should be IRE_CACHE. 18959 */ 18960 ASSERT(ire->ire_type == IRE_CACHE); 18961 /* 18962 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18963 * matches ill. We are interested in both. 18964 */ 18965 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18966 (ire->ire_ipif->ipif_ill == ill)); 18967 18968 ire_delete(ire); 18969 } 18970 18971 /* 18972 * Initiate deallocate of an IPIF. Always called as writer. Called by 18973 * ill_delete or ip_sioctl_removeif. 18974 */ 18975 static void 18976 ipif_free(ipif_t *ipif) 18977 { 18978 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18979 18980 ASSERT(IAM_WRITER_IPIF(ipif)); 18981 18982 if (ipif->ipif_recovery_id != 0) 18983 (void) untimeout(ipif->ipif_recovery_id); 18984 ipif->ipif_recovery_id = 0; 18985 18986 /* Remove conn references */ 18987 reset_conn_ipif(ipif); 18988 18989 /* 18990 * Make sure we have valid net and subnet broadcast ire's for the 18991 * other ipif's which share them with this ipif. 18992 */ 18993 if (!ipif->ipif_isv6) 18994 ipif_check_bcast_ires(ipif); 18995 18996 /* 18997 * Take down the interface. We can be called either from ill_delete 18998 * or from ip_sioctl_removeif. 18999 */ 19000 (void) ipif_down(ipif, NULL, NULL); 19001 19002 /* 19003 * Now that the interface is down, there's no chance it can still 19004 * become a duplicate. Cancel any timer that may have been set while 19005 * tearing down. 19006 */ 19007 if (ipif->ipif_recovery_id != 0) 19008 (void) untimeout(ipif->ipif_recovery_id); 19009 ipif->ipif_recovery_id = 0; 19010 19011 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19012 /* Remove pointers to this ill in the multicast routing tables */ 19013 reset_mrt_vif_ipif(ipif); 19014 rw_exit(&ipst->ips_ill_g_lock); 19015 } 19016 19017 /* 19018 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19019 * also ill_move(). 19020 */ 19021 static void 19022 ipif_free_tail(ipif_t *ipif) 19023 { 19024 mblk_t *mp; 19025 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19026 19027 /* 19028 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19029 */ 19030 mutex_enter(&ipif->ipif_saved_ire_lock); 19031 mp = ipif->ipif_saved_ire_mp; 19032 ipif->ipif_saved_ire_mp = NULL; 19033 mutex_exit(&ipif->ipif_saved_ire_lock); 19034 freemsg(mp); 19035 19036 /* 19037 * Need to hold both ill_g_lock and ill_lock while 19038 * inserting or removing an ipif from the linked list 19039 * of ipifs hanging off the ill. 19040 */ 19041 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19042 19043 ASSERT(ilm_walk_ipif(ipif) == 0); 19044 19045 #ifdef DEBUG 19046 ipif_trace_cleanup(ipif); 19047 #endif 19048 19049 /* Ask SCTP to take it out of it list */ 19050 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19051 19052 /* Get it out of the ILL interface list. */ 19053 ipif_remove(ipif, B_TRUE); 19054 rw_exit(&ipst->ips_ill_g_lock); 19055 19056 mutex_destroy(&ipif->ipif_saved_ire_lock); 19057 19058 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19059 ASSERT(ipif->ipif_recovery_id == 0); 19060 19061 /* Free the memory. */ 19062 mi_free(ipif); 19063 } 19064 19065 /* 19066 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19067 * is zero. 19068 */ 19069 void 19070 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19071 { 19072 char lbuf[LIFNAMSIZ]; 19073 char *name; 19074 size_t name_len; 19075 19076 buf[0] = '\0'; 19077 name = ipif->ipif_ill->ill_name; 19078 name_len = ipif->ipif_ill->ill_name_length; 19079 if (ipif->ipif_id != 0) { 19080 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19081 ipif->ipif_id); 19082 name = lbuf; 19083 name_len = mi_strlen(name) + 1; 19084 } 19085 len -= 1; 19086 buf[len] = '\0'; 19087 len = MIN(len, name_len); 19088 bcopy(name, buf, len); 19089 } 19090 19091 /* 19092 * Find an IPIF based on the name passed in. Names can be of the 19093 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19094 * The <phys> string can have forms like <dev><#> (e.g., le0), 19095 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19096 * When there is no colon, the implied unit id is zero. <phys> must 19097 * correspond to the name of an ILL. (May be called as writer.) 19098 */ 19099 static ipif_t * 19100 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19101 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19102 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19103 { 19104 char *cp; 19105 char *endp; 19106 long id; 19107 ill_t *ill; 19108 ipif_t *ipif; 19109 uint_t ire_type; 19110 boolean_t did_alloc = B_FALSE; 19111 ipsq_t *ipsq; 19112 19113 if (error != NULL) 19114 *error = 0; 19115 19116 /* 19117 * If the caller wants to us to create the ipif, make sure we have a 19118 * valid zoneid 19119 */ 19120 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19121 19122 if (namelen == 0) { 19123 if (error != NULL) 19124 *error = ENXIO; 19125 return (NULL); 19126 } 19127 19128 *exists = B_FALSE; 19129 /* Look for a colon in the name. */ 19130 endp = &name[namelen]; 19131 for (cp = endp; --cp > name; ) { 19132 if (*cp == IPIF_SEPARATOR_CHAR) 19133 break; 19134 } 19135 19136 if (*cp == IPIF_SEPARATOR_CHAR) { 19137 /* 19138 * Reject any non-decimal aliases for logical 19139 * interfaces. Aliases with leading zeroes 19140 * are also rejected as they introduce ambiguity 19141 * in the naming of the interfaces. 19142 * In order to confirm with existing semantics, 19143 * and to not break any programs/script relying 19144 * on that behaviour, if<0>:0 is considered to be 19145 * a valid interface. 19146 * 19147 * If alias has two or more digits and the first 19148 * is zero, fail. 19149 */ 19150 if (&cp[2] < endp && cp[1] == '0') { 19151 if (error != NULL) 19152 *error = EINVAL; 19153 return (NULL); 19154 } 19155 } 19156 19157 if (cp <= name) { 19158 cp = endp; 19159 } else { 19160 *cp = '\0'; 19161 } 19162 19163 /* 19164 * Look up the ILL, based on the portion of the name 19165 * before the slash. ill_lookup_on_name returns a held ill. 19166 * Temporary to check whether ill exists already. If so 19167 * ill_lookup_on_name will clear it. 19168 */ 19169 ill = ill_lookup_on_name(name, do_alloc, isv6, 19170 q, mp, func, error, &did_alloc, ipst); 19171 if (cp != endp) 19172 *cp = IPIF_SEPARATOR_CHAR; 19173 if (ill == NULL) 19174 return (NULL); 19175 19176 /* Establish the unit number in the name. */ 19177 id = 0; 19178 if (cp < endp && *endp == '\0') { 19179 /* If there was a colon, the unit number follows. */ 19180 cp++; 19181 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19182 ill_refrele(ill); 19183 if (error != NULL) 19184 *error = ENXIO; 19185 return (NULL); 19186 } 19187 } 19188 19189 GRAB_CONN_LOCK(q); 19190 mutex_enter(&ill->ill_lock); 19191 /* Now see if there is an IPIF with this unit number. */ 19192 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19193 if (ipif->ipif_id == id) { 19194 if (zoneid != ALL_ZONES && 19195 zoneid != ipif->ipif_zoneid && 19196 ipif->ipif_zoneid != ALL_ZONES) { 19197 mutex_exit(&ill->ill_lock); 19198 RELEASE_CONN_LOCK(q); 19199 ill_refrele(ill); 19200 if (error != NULL) 19201 *error = ENXIO; 19202 return (NULL); 19203 } 19204 /* 19205 * The block comment at the start of ipif_down 19206 * explains the use of the macros used below 19207 */ 19208 if (IPIF_CAN_LOOKUP(ipif)) { 19209 ipif_refhold_locked(ipif); 19210 mutex_exit(&ill->ill_lock); 19211 if (!did_alloc) 19212 *exists = B_TRUE; 19213 /* 19214 * Drop locks before calling ill_refrele 19215 * since it can potentially call into 19216 * ipif_ill_refrele_tail which can end up 19217 * in trying to acquire any lock. 19218 */ 19219 RELEASE_CONN_LOCK(q); 19220 ill_refrele(ill); 19221 return (ipif); 19222 } else if (IPIF_CAN_WAIT(ipif, q)) { 19223 ipsq = ill->ill_phyint->phyint_ipsq; 19224 mutex_enter(&ipsq->ipsq_lock); 19225 mutex_exit(&ill->ill_lock); 19226 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19227 mutex_exit(&ipsq->ipsq_lock); 19228 RELEASE_CONN_LOCK(q); 19229 ill_refrele(ill); 19230 if (error != NULL) 19231 *error = EINPROGRESS; 19232 return (NULL); 19233 } 19234 } 19235 } 19236 RELEASE_CONN_LOCK(q); 19237 19238 if (!do_alloc) { 19239 mutex_exit(&ill->ill_lock); 19240 ill_refrele(ill); 19241 if (error != NULL) 19242 *error = ENXIO; 19243 return (NULL); 19244 } 19245 19246 /* 19247 * If none found, atomically allocate and return a new one. 19248 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19249 * to support "receive only" use of lo0:1 etc. as is still done 19250 * below as an initial guess. 19251 * However, this is now likely to be overriden later in ipif_up_done() 19252 * when we know for sure what address has been configured on the 19253 * interface, since we might have more than one loopback interface 19254 * with a loopback address, e.g. in the case of zones, and all the 19255 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19256 */ 19257 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19258 ire_type = IRE_LOOPBACK; 19259 else 19260 ire_type = IRE_LOCAL; 19261 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19262 if (ipif != NULL) 19263 ipif_refhold_locked(ipif); 19264 else if (error != NULL) 19265 *error = ENOMEM; 19266 mutex_exit(&ill->ill_lock); 19267 ill_refrele(ill); 19268 return (ipif); 19269 } 19270 19271 /* 19272 * This routine is called whenever a new address comes up on an ipif. If 19273 * we are configured to respond to address mask requests, then we are supposed 19274 * to broadcast an address mask reply at this time. This routine is also 19275 * called if we are already up, but a netmask change is made. This is legal 19276 * but might not make the system manager very popular. (May be called 19277 * as writer.) 19278 */ 19279 void 19280 ipif_mask_reply(ipif_t *ipif) 19281 { 19282 icmph_t *icmph; 19283 ipha_t *ipha; 19284 mblk_t *mp; 19285 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19286 19287 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19288 19289 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19290 return; 19291 19292 /* ICMP mask reply is IPv4 only */ 19293 ASSERT(!ipif->ipif_isv6); 19294 /* ICMP mask reply is not for a loopback interface */ 19295 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19296 19297 mp = allocb(REPLY_LEN, BPRI_HI); 19298 if (mp == NULL) 19299 return; 19300 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19301 19302 ipha = (ipha_t *)mp->b_rptr; 19303 bzero(ipha, REPLY_LEN); 19304 *ipha = icmp_ipha; 19305 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19306 ipha->ipha_src = ipif->ipif_src_addr; 19307 ipha->ipha_dst = ipif->ipif_brd_addr; 19308 ipha->ipha_length = htons(REPLY_LEN); 19309 ipha->ipha_ident = 0; 19310 19311 icmph = (icmph_t *)&ipha[1]; 19312 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19313 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19314 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19315 19316 put(ipif->ipif_wq, mp); 19317 19318 #undef REPLY_LEN 19319 } 19320 19321 /* 19322 * When the mtu in the ipif changes, we call this routine through ire_walk 19323 * to update all the relevant IREs. 19324 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19325 */ 19326 static void 19327 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19328 { 19329 ipif_t *ipif = (ipif_t *)ipif_arg; 19330 19331 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19332 return; 19333 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19334 } 19335 19336 /* 19337 * When the mtu in the ill changes, we call this routine through ire_walk 19338 * to update all the relevant IREs. 19339 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19340 */ 19341 void 19342 ill_mtu_change(ire_t *ire, char *ill_arg) 19343 { 19344 ill_t *ill = (ill_t *)ill_arg; 19345 19346 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19347 return; 19348 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19349 } 19350 19351 /* 19352 * Join the ipif specific multicast groups. 19353 * Must be called after a mapping has been set up in the resolver. (Always 19354 * called as writer.) 19355 */ 19356 void 19357 ipif_multicast_up(ipif_t *ipif) 19358 { 19359 int err, index; 19360 ill_t *ill; 19361 19362 ASSERT(IAM_WRITER_IPIF(ipif)); 19363 19364 ill = ipif->ipif_ill; 19365 index = ill->ill_phyint->phyint_ifindex; 19366 19367 ip1dbg(("ipif_multicast_up\n")); 19368 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19369 return; 19370 19371 if (ipif->ipif_isv6) { 19372 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19373 return; 19374 19375 /* Join the all hosts multicast address */ 19376 ip1dbg(("ipif_multicast_up - addmulti\n")); 19377 /* 19378 * Passing B_TRUE means we have to join the multicast 19379 * membership on this interface even though this is 19380 * FAILED. If we join on a different one in the group, 19381 * we will not be able to delete the membership later 19382 * as we currently don't track where we join when we 19383 * join within the kernel unlike applications where 19384 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19385 * for more on this. 19386 */ 19387 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19388 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19389 if (err != 0) { 19390 ip0dbg(("ipif_multicast_up: " 19391 "all_hosts_mcast failed %d\n", 19392 err)); 19393 return; 19394 } 19395 /* 19396 * Enable multicast for the solicited node multicast address 19397 */ 19398 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19399 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19400 19401 ipv6_multi.s6_addr32[3] |= 19402 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19403 19404 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19405 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19406 NULL); 19407 if (err != 0) { 19408 ip0dbg(("ipif_multicast_up: solicited MC" 19409 " failed %d\n", err)); 19410 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19411 ill, ill->ill_phyint->phyint_ifindex, 19412 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19413 return; 19414 } 19415 } 19416 } else { 19417 if (ipif->ipif_lcl_addr == INADDR_ANY) 19418 return; 19419 19420 /* Join the all hosts multicast address */ 19421 ip1dbg(("ipif_multicast_up - addmulti\n")); 19422 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19423 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19424 if (err) { 19425 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19426 return; 19427 } 19428 } 19429 ipif->ipif_multicast_up = 1; 19430 } 19431 19432 /* 19433 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19434 * (Explicit memberships are blown away in ill_leave_multicast() when the 19435 * ill is brought down.) 19436 */ 19437 static void 19438 ipif_multicast_down(ipif_t *ipif) 19439 { 19440 int err; 19441 19442 ASSERT(IAM_WRITER_IPIF(ipif)); 19443 19444 ip1dbg(("ipif_multicast_down\n")); 19445 if (!ipif->ipif_multicast_up) 19446 return; 19447 19448 ip1dbg(("ipif_multicast_down - delmulti\n")); 19449 19450 if (!ipif->ipif_isv6) { 19451 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19452 B_TRUE); 19453 if (err != 0) 19454 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19455 19456 ipif->ipif_multicast_up = 0; 19457 return; 19458 } 19459 19460 /* 19461 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19462 * we should look for ilms on this ill rather than the ones that have 19463 * been failed over here. They are here temporarily. As 19464 * ipif_multicast_up has joined on this ill, we should delete only 19465 * from this ill. 19466 */ 19467 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19468 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19469 B_TRUE, B_TRUE); 19470 if (err != 0) { 19471 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19472 err)); 19473 } 19474 /* 19475 * Disable multicast for the solicited node multicast address 19476 */ 19477 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19478 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19479 19480 ipv6_multi.s6_addr32[3] |= 19481 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19482 19483 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19484 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19485 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19486 19487 if (err != 0) { 19488 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19489 err)); 19490 } 19491 } 19492 19493 ipif->ipif_multicast_up = 0; 19494 } 19495 19496 /* 19497 * Used when an interface comes up to recreate any extra routes on this 19498 * interface. 19499 */ 19500 static ire_t ** 19501 ipif_recover_ire(ipif_t *ipif) 19502 { 19503 mblk_t *mp; 19504 ire_t **ipif_saved_irep; 19505 ire_t **irep; 19506 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19507 19508 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19509 ipif->ipif_id)); 19510 19511 mutex_enter(&ipif->ipif_saved_ire_lock); 19512 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19513 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19514 if (ipif_saved_irep == NULL) { 19515 mutex_exit(&ipif->ipif_saved_ire_lock); 19516 return (NULL); 19517 } 19518 19519 irep = ipif_saved_irep; 19520 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19521 ire_t *ire; 19522 queue_t *rfq; 19523 queue_t *stq; 19524 ifrt_t *ifrt; 19525 uchar_t *src_addr; 19526 uchar_t *gateway_addr; 19527 ushort_t type; 19528 19529 /* 19530 * When the ire was initially created and then added in 19531 * ip_rt_add(), it was created either using ipif->ipif_net_type 19532 * in the case of a traditional interface route, or as one of 19533 * the IRE_OFFSUBNET types (with the exception of 19534 * IRE_HOST types ire which is created by icmp_redirect() and 19535 * which we don't need to save or recover). In the case where 19536 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19537 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19538 * to satisfy software like GateD and Sun Cluster which creates 19539 * routes using the the loopback interface's address as a 19540 * gateway. 19541 * 19542 * As ifrt->ifrt_type reflects the already updated ire_type, 19543 * ire_create() will be called in the same way here as 19544 * in ip_rt_add(), namely using ipif->ipif_net_type when 19545 * the route looks like a traditional interface route (where 19546 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19547 * the saved ifrt->ifrt_type. This means that in the case where 19548 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19549 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19550 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19551 */ 19552 ifrt = (ifrt_t *)mp->b_rptr; 19553 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19554 if (ifrt->ifrt_type & IRE_INTERFACE) { 19555 rfq = NULL; 19556 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19557 ? ipif->ipif_rq : ipif->ipif_wq; 19558 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19559 ? (uint8_t *)&ifrt->ifrt_src_addr 19560 : (uint8_t *)&ipif->ipif_src_addr; 19561 gateway_addr = NULL; 19562 type = ipif->ipif_net_type; 19563 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19564 /* Recover multiroute broadcast IRE. */ 19565 rfq = ipif->ipif_rq; 19566 stq = ipif->ipif_wq; 19567 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19568 ? (uint8_t *)&ifrt->ifrt_src_addr 19569 : (uint8_t *)&ipif->ipif_src_addr; 19570 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19571 type = ifrt->ifrt_type; 19572 } else { 19573 rfq = NULL; 19574 stq = NULL; 19575 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19576 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19577 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19578 type = ifrt->ifrt_type; 19579 } 19580 19581 /* 19582 * Create a copy of the IRE with the saved address and netmask. 19583 */ 19584 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19585 "0x%x/0x%x\n", 19586 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19587 ntohl(ifrt->ifrt_addr), 19588 ntohl(ifrt->ifrt_mask))); 19589 ire = ire_create( 19590 (uint8_t *)&ifrt->ifrt_addr, 19591 (uint8_t *)&ifrt->ifrt_mask, 19592 src_addr, 19593 gateway_addr, 19594 &ifrt->ifrt_max_frag, 19595 NULL, 19596 rfq, 19597 stq, 19598 type, 19599 ipif, 19600 0, 19601 0, 19602 0, 19603 ifrt->ifrt_flags, 19604 &ifrt->ifrt_iulp_info, 19605 NULL, 19606 NULL, 19607 ipst); 19608 19609 if (ire == NULL) { 19610 mutex_exit(&ipif->ipif_saved_ire_lock); 19611 kmem_free(ipif_saved_irep, 19612 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19613 return (NULL); 19614 } 19615 19616 /* 19617 * Some software (for example, GateD and Sun Cluster) attempts 19618 * to create (what amount to) IRE_PREFIX routes with the 19619 * loopback address as the gateway. This is primarily done to 19620 * set up prefixes with the RTF_REJECT flag set (for example, 19621 * when generating aggregate routes.) 19622 * 19623 * If the IRE type (as defined by ipif->ipif_net_type) is 19624 * IRE_LOOPBACK, then we map the request into a 19625 * IRE_IF_NORESOLVER. 19626 */ 19627 if (ipif->ipif_net_type == IRE_LOOPBACK) 19628 ire->ire_type = IRE_IF_NORESOLVER; 19629 /* 19630 * ire held by ire_add, will be refreled' towards the 19631 * the end of ipif_up_done 19632 */ 19633 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19634 *irep = ire; 19635 irep++; 19636 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19637 } 19638 mutex_exit(&ipif->ipif_saved_ire_lock); 19639 return (ipif_saved_irep); 19640 } 19641 19642 /* 19643 * Used to set the netmask and broadcast address to default values when the 19644 * interface is brought up. (Always called as writer.) 19645 */ 19646 static void 19647 ipif_set_default(ipif_t *ipif) 19648 { 19649 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19650 19651 if (!ipif->ipif_isv6) { 19652 /* 19653 * Interface holds an IPv4 address. Default 19654 * mask is the natural netmask. 19655 */ 19656 if (!ipif->ipif_net_mask) { 19657 ipaddr_t v4mask; 19658 19659 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19660 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19661 } 19662 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19663 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19664 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19665 } else { 19666 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19667 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19668 } 19669 /* 19670 * NOTE: SunOS 4.X does this even if the broadcast address 19671 * has been already set thus we do the same here. 19672 */ 19673 if (ipif->ipif_flags & IPIF_BROADCAST) { 19674 ipaddr_t v4addr; 19675 19676 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19677 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19678 } 19679 } else { 19680 /* 19681 * Interface holds an IPv6-only address. Default 19682 * mask is all-ones. 19683 */ 19684 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19685 ipif->ipif_v6net_mask = ipv6_all_ones; 19686 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19687 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19688 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19689 } else { 19690 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19691 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19692 } 19693 } 19694 } 19695 19696 /* 19697 * Return 0 if this address can be used as local address without causing 19698 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19699 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19700 * Special checks are needed to allow the same IPv6 link-local address 19701 * on different ills. 19702 * TODO: allowing the same site-local address on different ill's. 19703 */ 19704 int 19705 ip_addr_availability_check(ipif_t *new_ipif) 19706 { 19707 in6_addr_t our_v6addr; 19708 ill_t *ill; 19709 ipif_t *ipif; 19710 ill_walk_context_t ctx; 19711 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19712 19713 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19714 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19715 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19716 19717 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19718 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19719 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19720 return (0); 19721 19722 our_v6addr = new_ipif->ipif_v6lcl_addr; 19723 19724 if (new_ipif->ipif_isv6) 19725 ill = ILL_START_WALK_V6(&ctx, ipst); 19726 else 19727 ill = ILL_START_WALK_V4(&ctx, ipst); 19728 19729 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19730 for (ipif = ill->ill_ipif; ipif != NULL; 19731 ipif = ipif->ipif_next) { 19732 if ((ipif == new_ipif) || 19733 !(ipif->ipif_flags & IPIF_UP) || 19734 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19735 continue; 19736 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19737 &our_v6addr)) { 19738 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19739 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19740 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19741 ipif->ipif_flags |= IPIF_UNNUMBERED; 19742 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19743 new_ipif->ipif_ill != ill) 19744 continue; 19745 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19746 new_ipif->ipif_ill != ill) 19747 continue; 19748 else if (new_ipif->ipif_zoneid != 19749 ipif->ipif_zoneid && 19750 ipif->ipif_zoneid != ALL_ZONES && 19751 IS_LOOPBACK(ill)) 19752 continue; 19753 else if (new_ipif->ipif_ill == ill) 19754 return (EADDRINUSE); 19755 else 19756 return (EADDRNOTAVAIL); 19757 } 19758 } 19759 } 19760 19761 return (0); 19762 } 19763 19764 /* 19765 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19766 * IREs for the ipif. 19767 * When the routine returns EINPROGRESS then mp has been consumed and 19768 * the ioctl will be acked from ip_rput_dlpi. 19769 */ 19770 static int 19771 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19772 { 19773 ill_t *ill = ipif->ipif_ill; 19774 boolean_t isv6 = ipif->ipif_isv6; 19775 int err = 0; 19776 boolean_t success; 19777 19778 ASSERT(IAM_WRITER_IPIF(ipif)); 19779 19780 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19781 19782 /* Shouldn't get here if it is already up. */ 19783 if (ipif->ipif_flags & IPIF_UP) 19784 return (EALREADY); 19785 19786 /* Skip arp/ndp for any loopback interface. */ 19787 if (ill->ill_wq != NULL) { 19788 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19789 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19790 19791 if (!ill->ill_dl_up) { 19792 /* 19793 * ill_dl_up is not yet set. i.e. we are yet to 19794 * DL_BIND with the driver and this is the first 19795 * logical interface on the ill to become "up". 19796 * Tell the driver to get going (via DL_BIND_REQ). 19797 * Note that changing "significant" IFF_ flags 19798 * address/netmask etc cause a down/up dance, but 19799 * does not cause an unbind (DL_UNBIND) with the driver 19800 */ 19801 return (ill_dl_up(ill, ipif, mp, q)); 19802 } 19803 19804 /* 19805 * ipif_resolver_up may end up sending an 19806 * AR_INTERFACE_UP message to ARP, which would, in 19807 * turn send a DLPI message to the driver. ioctls are 19808 * serialized and so we cannot send more than one 19809 * interface up message at a time. If ipif_resolver_up 19810 * does send an interface up message to ARP, we get 19811 * EINPROGRESS and we will complete in ip_arp_done. 19812 */ 19813 19814 ASSERT(connp != NULL || !CONN_Q(q)); 19815 ASSERT(ipsq->ipsq_pending_mp == NULL); 19816 if (connp != NULL) 19817 mutex_enter(&connp->conn_lock); 19818 mutex_enter(&ill->ill_lock); 19819 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19820 mutex_exit(&ill->ill_lock); 19821 if (connp != NULL) 19822 mutex_exit(&connp->conn_lock); 19823 if (!success) 19824 return (EINTR); 19825 19826 /* 19827 * Crank up IPv6 neighbor discovery 19828 * Unlike ARP, this should complete when 19829 * ipif_ndp_up returns. However, for 19830 * ILLF_XRESOLV interfaces we also send a 19831 * AR_INTERFACE_UP to the external resolver. 19832 * That ioctl will complete in ip_rput. 19833 */ 19834 if (isv6) { 19835 err = ipif_ndp_up(ipif); 19836 if (err != 0) { 19837 if (err != EINPROGRESS) 19838 mp = ipsq_pending_mp_get(ipsq, &connp); 19839 return (err); 19840 } 19841 } 19842 /* Now, ARP */ 19843 err = ipif_resolver_up(ipif, Res_act_initial); 19844 if (err == EINPROGRESS) { 19845 /* We will complete it in ip_arp_done */ 19846 return (err); 19847 } 19848 mp = ipsq_pending_mp_get(ipsq, &connp); 19849 ASSERT(mp != NULL); 19850 if (err != 0) 19851 return (err); 19852 } else { 19853 /* 19854 * Interfaces without underlying hardware don't do duplicate 19855 * address detection. 19856 */ 19857 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19858 ipif->ipif_addr_ready = 1; 19859 } 19860 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19861 } 19862 19863 /* 19864 * Perform a bind for the physical device. 19865 * When the routine returns EINPROGRESS then mp has been consumed and 19866 * the ioctl will be acked from ip_rput_dlpi. 19867 * Allocate an unbind message and save it until ipif_down. 19868 */ 19869 static int 19870 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19871 { 19872 areq_t *areq; 19873 mblk_t *areq_mp = NULL; 19874 mblk_t *bind_mp = NULL; 19875 mblk_t *unbind_mp = NULL; 19876 conn_t *connp; 19877 boolean_t success; 19878 uint16_t sap_addr; 19879 19880 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19881 ASSERT(IAM_WRITER_ILL(ill)); 19882 ASSERT(mp != NULL); 19883 19884 /* Create a resolver cookie for ARP */ 19885 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19886 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19887 if (areq_mp == NULL) 19888 return (ENOMEM); 19889 19890 freemsg(ill->ill_resolver_mp); 19891 ill->ill_resolver_mp = areq_mp; 19892 areq = (areq_t *)areq_mp->b_rptr; 19893 sap_addr = ill->ill_sap; 19894 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19895 } 19896 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19897 DL_BIND_REQ); 19898 if (bind_mp == NULL) 19899 goto bad; 19900 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19901 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19902 19903 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19904 if (unbind_mp == NULL) 19905 goto bad; 19906 19907 /* 19908 * Record state needed to complete this operation when the 19909 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19910 */ 19911 ASSERT(WR(q)->q_next == NULL); 19912 connp = Q_TO_CONN(q); 19913 19914 mutex_enter(&connp->conn_lock); 19915 mutex_enter(&ipif->ipif_ill->ill_lock); 19916 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19917 mutex_exit(&ipif->ipif_ill->ill_lock); 19918 mutex_exit(&connp->conn_lock); 19919 if (!success) 19920 goto bad; 19921 19922 /* 19923 * Save the unbind message for ill_dl_down(); it will be consumed when 19924 * the interface goes down. 19925 */ 19926 ASSERT(ill->ill_unbind_mp == NULL); 19927 ill->ill_unbind_mp = unbind_mp; 19928 19929 ill_dlpi_send(ill, bind_mp); 19930 /* Send down link-layer capabilities probe if not already done. */ 19931 ill_capability_probe(ill); 19932 19933 /* 19934 * Sysid used to rely on the fact that netboots set domainname 19935 * and the like. Now that miniroot boots aren't strictly netboots 19936 * and miniroot network configuration is driven from userland 19937 * these things still need to be set. This situation can be detected 19938 * by comparing the interface being configured here to the one 19939 * dhcifname was set to reference by the boot loader. Once sysid is 19940 * converted to use dhcp_ipc_getinfo() this call can go away. 19941 */ 19942 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 19943 (strcmp(ill->ill_name, dhcifname) == 0) && 19944 (strlen(srpc_domain) == 0)) { 19945 if (dhcpinit() != 0) 19946 cmn_err(CE_WARN, "no cached dhcp response"); 19947 } 19948 19949 /* 19950 * This operation will complete in ip_rput_dlpi with either 19951 * a DL_BIND_ACK or DL_ERROR_ACK. 19952 */ 19953 return (EINPROGRESS); 19954 bad: 19955 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19956 /* 19957 * We don't have to check for possible removal from illgrp 19958 * as we have not yet inserted in illgrp. For groups 19959 * without names, this ipif is still not UP and hence 19960 * this could not have possibly had any influence in forming 19961 * groups. 19962 */ 19963 19964 freemsg(bind_mp); 19965 freemsg(unbind_mp); 19966 return (ENOMEM); 19967 } 19968 19969 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19970 19971 /* 19972 * DLPI and ARP is up. 19973 * Create all the IREs associated with an interface bring up multicast. 19974 * Set the interface flag and finish other initialization 19975 * that potentially had to be differed to after DL_BIND_ACK. 19976 */ 19977 int 19978 ipif_up_done(ipif_t *ipif) 19979 { 19980 ire_t *ire_array[20]; 19981 ire_t **irep = ire_array; 19982 ire_t **irep1; 19983 ipaddr_t net_mask = 0; 19984 ipaddr_t subnet_mask, route_mask; 19985 ill_t *ill = ipif->ipif_ill; 19986 queue_t *stq; 19987 ipif_t *src_ipif; 19988 ipif_t *tmp_ipif; 19989 boolean_t flush_ire_cache = B_TRUE; 19990 int err = 0; 19991 phyint_t *phyi; 19992 ire_t **ipif_saved_irep = NULL; 19993 int ipif_saved_ire_cnt; 19994 int cnt; 19995 boolean_t src_ipif_held = B_FALSE; 19996 boolean_t ire_added = B_FALSE; 19997 boolean_t loopback = B_FALSE; 19998 ip_stack_t *ipst = ill->ill_ipst; 19999 20000 ip1dbg(("ipif_up_done(%s:%u)\n", 20001 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20002 /* Check if this is a loopback interface */ 20003 if (ipif->ipif_ill->ill_wq == NULL) 20004 loopback = B_TRUE; 20005 20006 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20007 /* 20008 * If all other interfaces for this ill are down or DEPRECATED, 20009 * or otherwise unsuitable for source address selection, remove 20010 * any IRE_CACHE entries for this ill to make sure source 20011 * address selection gets to take this new ipif into account. 20012 * No need to hold ill_lock while traversing the ipif list since 20013 * we are writer 20014 */ 20015 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20016 tmp_ipif = tmp_ipif->ipif_next) { 20017 if (((tmp_ipif->ipif_flags & 20018 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20019 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20020 (tmp_ipif == ipif)) 20021 continue; 20022 /* first useable pre-existing interface */ 20023 flush_ire_cache = B_FALSE; 20024 break; 20025 } 20026 if (flush_ire_cache) 20027 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20028 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20029 20030 /* 20031 * Figure out which way the send-to queue should go. Only 20032 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20033 * should show up here. 20034 */ 20035 switch (ill->ill_net_type) { 20036 case IRE_IF_RESOLVER: 20037 stq = ill->ill_rq; 20038 break; 20039 case IRE_IF_NORESOLVER: 20040 case IRE_LOOPBACK: 20041 stq = ill->ill_wq; 20042 break; 20043 default: 20044 return (EINVAL); 20045 } 20046 20047 if (IS_LOOPBACK(ill)) { 20048 /* 20049 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20050 * ipif_lookup_on_name(), but in the case of zones we can have 20051 * several loopback addresses on lo0. So all the interfaces with 20052 * loopback addresses need to be marked IRE_LOOPBACK. 20053 */ 20054 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20055 htonl(INADDR_LOOPBACK)) 20056 ipif->ipif_ire_type = IRE_LOOPBACK; 20057 else 20058 ipif->ipif_ire_type = IRE_LOCAL; 20059 } 20060 20061 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20062 /* 20063 * Can't use our source address. Select a different 20064 * source address for the IRE_INTERFACE and IRE_LOCAL 20065 */ 20066 src_ipif = ipif_select_source(ipif->ipif_ill, 20067 ipif->ipif_subnet, ipif->ipif_zoneid); 20068 if (src_ipif == NULL) 20069 src_ipif = ipif; /* Last resort */ 20070 else 20071 src_ipif_held = B_TRUE; 20072 } else { 20073 src_ipif = ipif; 20074 } 20075 20076 /* Create all the IREs associated with this interface */ 20077 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20078 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20079 20080 /* 20081 * If we're on a labeled system then make sure that zone- 20082 * private addresses have proper remote host database entries. 20083 */ 20084 if (is_system_labeled() && 20085 ipif->ipif_ire_type != IRE_LOOPBACK && 20086 !tsol_check_interface_address(ipif)) 20087 return (EINVAL); 20088 20089 /* Register the source address for __sin6_src_id */ 20090 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20091 ipif->ipif_zoneid, ipst); 20092 if (err != 0) { 20093 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20094 return (err); 20095 } 20096 20097 /* If the interface address is set, create the local IRE. */ 20098 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20099 (void *)ipif, 20100 ipif->ipif_ire_type, 20101 ntohl(ipif->ipif_lcl_addr))); 20102 *irep++ = ire_create( 20103 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20104 (uchar_t *)&ip_g_all_ones, /* mask */ 20105 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20106 NULL, /* no gateway */ 20107 &ip_loopback_mtuplus, /* max frag size */ 20108 NULL, 20109 ipif->ipif_rq, /* recv-from queue */ 20110 NULL, /* no send-to queue */ 20111 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20112 ipif, 20113 0, 20114 0, 20115 0, 20116 (ipif->ipif_flags & IPIF_PRIVATE) ? 20117 RTF_PRIVATE : 0, 20118 &ire_uinfo_null, 20119 NULL, 20120 NULL, 20121 ipst); 20122 } else { 20123 ip1dbg(( 20124 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20125 ipif->ipif_ire_type, 20126 ntohl(ipif->ipif_lcl_addr), 20127 (uint_t)ipif->ipif_flags)); 20128 } 20129 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20130 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20131 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20132 } else { 20133 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20134 } 20135 20136 subnet_mask = ipif->ipif_net_mask; 20137 20138 /* 20139 * If mask was not specified, use natural netmask of 20140 * interface address. Also, store this mask back into the 20141 * ipif struct. 20142 */ 20143 if (subnet_mask == 0) { 20144 subnet_mask = net_mask; 20145 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20146 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20147 ipif->ipif_v6subnet); 20148 } 20149 20150 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20151 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20152 ipif->ipif_subnet != INADDR_ANY) { 20153 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20154 20155 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20156 route_mask = IP_HOST_MASK; 20157 } else { 20158 route_mask = subnet_mask; 20159 } 20160 20161 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20162 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20163 (void *)ipif, (void *)ill, 20164 ill->ill_net_type, 20165 ntohl(ipif->ipif_subnet))); 20166 *irep++ = ire_create( 20167 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20168 (uchar_t *)&route_mask, /* mask */ 20169 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20170 NULL, /* no gateway */ 20171 &ipif->ipif_mtu, /* max frag */ 20172 NULL, 20173 NULL, /* no recv queue */ 20174 stq, /* send-to queue */ 20175 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20176 ipif, 20177 0, 20178 0, 20179 0, 20180 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20181 &ire_uinfo_null, 20182 NULL, 20183 NULL, 20184 ipst); 20185 } 20186 20187 /* 20188 * Create any necessary broadcast IREs. 20189 */ 20190 if (ipif->ipif_flags & IPIF_BROADCAST) 20191 irep = ipif_create_bcast_ires(ipif, irep); 20192 20193 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20194 20195 /* If an earlier ire_create failed, get out now */ 20196 for (irep1 = irep; irep1 > ire_array; ) { 20197 irep1--; 20198 if (*irep1 == NULL) { 20199 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20200 err = ENOMEM; 20201 goto bad; 20202 } 20203 } 20204 20205 /* 20206 * Need to atomically check for ip_addr_availablity_check 20207 * under ip_addr_avail_lock, and if it fails got bad, and remove 20208 * from group also.The ill_g_lock is grabbed as reader 20209 * just to make sure no new ills or new ipifs are being added 20210 * to the system while we are checking the uniqueness of addresses. 20211 */ 20212 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20213 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20214 /* Mark it up, and increment counters. */ 20215 ipif->ipif_flags |= IPIF_UP; 20216 ill->ill_ipif_up_count++; 20217 err = ip_addr_availability_check(ipif); 20218 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20219 rw_exit(&ipst->ips_ill_g_lock); 20220 20221 if (err != 0) { 20222 /* 20223 * Our address may already be up on the same ill. In this case, 20224 * the ARP entry for our ipif replaced the one for the other 20225 * ipif. So we don't want to delete it (otherwise the other ipif 20226 * would be unable to send packets). 20227 * ip_addr_availability_check() identifies this case for us and 20228 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20229 * which is the expected error code. 20230 */ 20231 if (err == EADDRINUSE) { 20232 freemsg(ipif->ipif_arp_del_mp); 20233 ipif->ipif_arp_del_mp = NULL; 20234 err = EADDRNOTAVAIL; 20235 } 20236 ill->ill_ipif_up_count--; 20237 ipif->ipif_flags &= ~IPIF_UP; 20238 goto bad; 20239 } 20240 20241 /* 20242 * Add in all newly created IREs. ire_create_bcast() has 20243 * already checked for duplicates of the IRE_BROADCAST type. 20244 * We want to add before we call ifgrp_insert which wants 20245 * to know whether IRE_IF_RESOLVER exists or not. 20246 * 20247 * NOTE : We refrele the ire though we may branch to "bad" 20248 * later on where we do ire_delete. This is okay 20249 * because nobody can delete it as we are running 20250 * exclusively. 20251 */ 20252 for (irep1 = irep; irep1 > ire_array; ) { 20253 irep1--; 20254 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20255 /* 20256 * refheld by ire_add. refele towards the end of the func 20257 */ 20258 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20259 } 20260 ire_added = B_TRUE; 20261 /* 20262 * Form groups if possible. 20263 * 20264 * If we are supposed to be in a ill_group with a name, insert it 20265 * now as we know that at least one ipif is UP. Otherwise form 20266 * nameless groups. 20267 * 20268 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20269 * this ipif into the appropriate interface group, or create a 20270 * new one. If this is already in a nameless group, we try to form 20271 * a bigger group looking at other ills potentially sharing this 20272 * ipif's prefix. 20273 */ 20274 phyi = ill->ill_phyint; 20275 if (phyi->phyint_groupname_len != 0) { 20276 ASSERT(phyi->phyint_groupname != NULL); 20277 if (ill->ill_ipif_up_count == 1) { 20278 ASSERT(ill->ill_group == NULL); 20279 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20280 phyi->phyint_groupname, NULL, B_TRUE); 20281 if (err != 0) { 20282 ip1dbg(("ipif_up_done: illgrp allocation " 20283 "failed, error %d\n", err)); 20284 goto bad; 20285 } 20286 } 20287 ASSERT(ill->ill_group != NULL); 20288 } 20289 20290 /* 20291 * When this is part of group, we need to make sure that 20292 * any broadcast ires created because of this ipif coming 20293 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20294 * so that we don't receive duplicate broadcast packets. 20295 */ 20296 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20297 ipif_renominate_bcast(ipif); 20298 20299 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20300 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20301 ipif_saved_irep = ipif_recover_ire(ipif); 20302 20303 if (!loopback) { 20304 /* 20305 * If the broadcast address has been set, make sure it makes 20306 * sense based on the interface address. 20307 * Only match on ill since we are sharing broadcast addresses. 20308 */ 20309 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20310 (ipif->ipif_flags & IPIF_BROADCAST)) { 20311 ire_t *ire; 20312 20313 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20314 IRE_BROADCAST, ipif, ALL_ZONES, 20315 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20316 20317 if (ire == NULL) { 20318 /* 20319 * If there isn't a matching broadcast IRE, 20320 * revert to the default for this netmask. 20321 */ 20322 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20323 mutex_enter(&ipif->ipif_ill->ill_lock); 20324 ipif_set_default(ipif); 20325 mutex_exit(&ipif->ipif_ill->ill_lock); 20326 } else { 20327 ire_refrele(ire); 20328 } 20329 } 20330 20331 } 20332 20333 /* This is the first interface on this ill */ 20334 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20335 /* 20336 * Need to recover all multicast memberships in the driver. 20337 * This had to be deferred until we had attached. 20338 */ 20339 ill_recover_multicast(ill); 20340 } 20341 /* Join the allhosts multicast address */ 20342 ipif_multicast_up(ipif); 20343 20344 if (!loopback) { 20345 /* 20346 * See whether anybody else would benefit from the 20347 * new ipif that we added. We call this always rather 20348 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20349 * ipif is for the benefit of illgrp_insert (done above) 20350 * which does not do source address selection as it does 20351 * not want to re-create interface routes that we are 20352 * having reference to it here. 20353 */ 20354 ill_update_source_selection(ill); 20355 } 20356 20357 for (irep1 = irep; irep1 > ire_array; ) { 20358 irep1--; 20359 if (*irep1 != NULL) { 20360 /* was held in ire_add */ 20361 ire_refrele(*irep1); 20362 } 20363 } 20364 20365 cnt = ipif_saved_ire_cnt; 20366 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20367 if (*irep1 != NULL) { 20368 /* was held in ire_add */ 20369 ire_refrele(*irep1); 20370 } 20371 } 20372 20373 if (!loopback && ipif->ipif_addr_ready) { 20374 /* Broadcast an address mask reply. */ 20375 ipif_mask_reply(ipif); 20376 } 20377 if (ipif_saved_irep != NULL) { 20378 kmem_free(ipif_saved_irep, 20379 ipif_saved_ire_cnt * sizeof (ire_t *)); 20380 } 20381 if (src_ipif_held) 20382 ipif_refrele(src_ipif); 20383 20384 /* 20385 * This had to be deferred until we had bound. Tell routing sockets and 20386 * others that this interface is up if it looks like the address has 20387 * been validated. Otherwise, if it isn't ready yet, wait for 20388 * duplicate address detection to do its thing. 20389 */ 20390 if (ipif->ipif_addr_ready) { 20391 ip_rts_ifmsg(ipif); 20392 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20393 /* Let SCTP update the status for this ipif */ 20394 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20395 } 20396 return (0); 20397 20398 bad: 20399 ip1dbg(("ipif_up_done: FAILED \n")); 20400 /* 20401 * We don't have to bother removing from ill groups because 20402 * 20403 * 1) For groups with names, we insert only when the first ipif 20404 * comes up. In that case if it fails, it will not be in any 20405 * group. So, we need not try to remove for that case. 20406 * 20407 * 2) For groups without names, either we tried to insert ipif_ill 20408 * in a group as singleton or found some other group to become 20409 * a bigger group. For the former, if it fails we don't have 20410 * anything to do as ipif_ill is not in the group and for the 20411 * latter, there are no failures in illgrp_insert/illgrp_delete 20412 * (ENOMEM can't occur for this. Check ifgrp_insert). 20413 */ 20414 while (irep > ire_array) { 20415 irep--; 20416 if (*irep != NULL) { 20417 ire_delete(*irep); 20418 if (ire_added) 20419 ire_refrele(*irep); 20420 } 20421 } 20422 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20423 20424 if (ipif_saved_irep != NULL) { 20425 kmem_free(ipif_saved_irep, 20426 ipif_saved_ire_cnt * sizeof (ire_t *)); 20427 } 20428 if (src_ipif_held) 20429 ipif_refrele(src_ipif); 20430 20431 ipif_arp_down(ipif); 20432 return (err); 20433 } 20434 20435 /* 20436 * Turn off the ARP with the ILLF_NOARP flag. 20437 */ 20438 static int 20439 ill_arp_off(ill_t *ill) 20440 { 20441 mblk_t *arp_off_mp = NULL; 20442 mblk_t *arp_on_mp = NULL; 20443 20444 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20445 20446 ASSERT(IAM_WRITER_ILL(ill)); 20447 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20448 20449 /* 20450 * If the on message is still around we've already done 20451 * an arp_off without doing an arp_on thus there is no 20452 * work needed. 20453 */ 20454 if (ill->ill_arp_on_mp != NULL) 20455 return (0); 20456 20457 /* 20458 * Allocate an ARP on message (to be saved) and an ARP off message 20459 */ 20460 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20461 if (!arp_off_mp) 20462 return (ENOMEM); 20463 20464 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20465 if (!arp_on_mp) 20466 goto failed; 20467 20468 ASSERT(ill->ill_arp_on_mp == NULL); 20469 ill->ill_arp_on_mp = arp_on_mp; 20470 20471 /* Send an AR_INTERFACE_OFF request */ 20472 putnext(ill->ill_rq, arp_off_mp); 20473 return (0); 20474 failed: 20475 20476 if (arp_off_mp) 20477 freemsg(arp_off_mp); 20478 return (ENOMEM); 20479 } 20480 20481 /* 20482 * Turn on ARP by turning off the ILLF_NOARP flag. 20483 */ 20484 static int 20485 ill_arp_on(ill_t *ill) 20486 { 20487 mblk_t *mp; 20488 20489 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20490 20491 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20492 20493 ASSERT(IAM_WRITER_ILL(ill)); 20494 /* 20495 * Send an AR_INTERFACE_ON request if we have already done 20496 * an arp_off (which allocated the message). 20497 */ 20498 if (ill->ill_arp_on_mp != NULL) { 20499 mp = ill->ill_arp_on_mp; 20500 ill->ill_arp_on_mp = NULL; 20501 putnext(ill->ill_rq, mp); 20502 } 20503 return (0); 20504 } 20505 20506 /* 20507 * Called after either deleting ill from the group or when setting 20508 * FAILED or STANDBY on the interface. 20509 */ 20510 static void 20511 illgrp_reset_schednext(ill_t *ill) 20512 { 20513 ill_group_t *illgrp; 20514 ill_t *save_ill; 20515 20516 ASSERT(IAM_WRITER_ILL(ill)); 20517 /* 20518 * When called from illgrp_delete, ill_group will be non-NULL. 20519 * But when called from ip_sioctl_flags, it could be NULL if 20520 * somebody is setting FAILED/INACTIVE on some interface which 20521 * is not part of a group. 20522 */ 20523 illgrp = ill->ill_group; 20524 if (illgrp == NULL) 20525 return; 20526 if (illgrp->illgrp_ill_schednext != ill) 20527 return; 20528 20529 illgrp->illgrp_ill_schednext = NULL; 20530 save_ill = ill; 20531 /* 20532 * Choose a good ill to be the next one for 20533 * outbound traffic. As the flags FAILED/STANDBY is 20534 * not yet marked when called from ip_sioctl_flags, 20535 * we check for ill separately. 20536 */ 20537 for (ill = illgrp->illgrp_ill; ill != NULL; 20538 ill = ill->ill_group_next) { 20539 if ((ill != save_ill) && 20540 !(ill->ill_phyint->phyint_flags & 20541 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20542 illgrp->illgrp_ill_schednext = ill; 20543 return; 20544 } 20545 } 20546 } 20547 20548 /* 20549 * Given an ill, find the next ill in the group to be scheduled. 20550 * (This should be called by ip_newroute() before ire_create().) 20551 * The passed in ill may be pulled out of the group, after we have picked 20552 * up a different outgoing ill from the same group. However ire add will 20553 * atomically check this. 20554 */ 20555 ill_t * 20556 illgrp_scheduler(ill_t *ill) 20557 { 20558 ill_t *retill; 20559 ill_group_t *illgrp; 20560 int illcnt; 20561 int i; 20562 uint64_t flags; 20563 ip_stack_t *ipst = ill->ill_ipst; 20564 20565 /* 20566 * We don't use a lock to check for the ill_group. If this ill 20567 * is currently being inserted we may end up just returning this 20568 * ill itself. That is ok. 20569 */ 20570 if (ill->ill_group == NULL) { 20571 ill_refhold(ill); 20572 return (ill); 20573 } 20574 20575 /* 20576 * Grab the ill_g_lock as reader to make sure we are dealing with 20577 * a set of stable ills. No ill can be added or deleted or change 20578 * group while we hold the reader lock. 20579 */ 20580 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20581 if ((illgrp = ill->ill_group) == NULL) { 20582 rw_exit(&ipst->ips_ill_g_lock); 20583 ill_refhold(ill); 20584 return (ill); 20585 } 20586 20587 illcnt = illgrp->illgrp_ill_count; 20588 mutex_enter(&illgrp->illgrp_lock); 20589 retill = illgrp->illgrp_ill_schednext; 20590 20591 if (retill == NULL) 20592 retill = illgrp->illgrp_ill; 20593 20594 /* 20595 * We do a circular search beginning at illgrp_ill_schednext 20596 * or illgrp_ill. We don't check the flags against the ill lock 20597 * since it can change anytime. The ire creation will be atomic 20598 * and will fail if the ill is FAILED or OFFLINE. 20599 */ 20600 for (i = 0; i < illcnt; i++) { 20601 flags = retill->ill_phyint->phyint_flags; 20602 20603 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20604 ILL_CAN_LOOKUP(retill)) { 20605 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20606 ill_refhold(retill); 20607 break; 20608 } 20609 retill = retill->ill_group_next; 20610 if (retill == NULL) 20611 retill = illgrp->illgrp_ill; 20612 } 20613 mutex_exit(&illgrp->illgrp_lock); 20614 rw_exit(&ipst->ips_ill_g_lock); 20615 20616 return (i == illcnt ? NULL : retill); 20617 } 20618 20619 /* 20620 * Checks for availbility of a usable source address (if there is one) when the 20621 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20622 * this selection is done regardless of the destination. 20623 */ 20624 boolean_t 20625 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20626 { 20627 uint_t ifindex; 20628 ipif_t *ipif = NULL; 20629 ill_t *uill; 20630 boolean_t isv6; 20631 ip_stack_t *ipst = ill->ill_ipst; 20632 20633 ASSERT(ill != NULL); 20634 20635 isv6 = ill->ill_isv6; 20636 ifindex = ill->ill_usesrc_ifindex; 20637 if (ifindex != 0) { 20638 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20639 NULL, ipst); 20640 if (uill == NULL) 20641 return (NULL); 20642 mutex_enter(&uill->ill_lock); 20643 for (ipif = uill->ill_ipif; ipif != NULL; 20644 ipif = ipif->ipif_next) { 20645 if (!IPIF_CAN_LOOKUP(ipif)) 20646 continue; 20647 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20648 continue; 20649 if (!(ipif->ipif_flags & IPIF_UP)) 20650 continue; 20651 if (ipif->ipif_zoneid != zoneid) 20652 continue; 20653 if ((isv6 && 20654 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20655 (ipif->ipif_lcl_addr == INADDR_ANY)) 20656 continue; 20657 mutex_exit(&uill->ill_lock); 20658 ill_refrele(uill); 20659 return (B_TRUE); 20660 } 20661 mutex_exit(&uill->ill_lock); 20662 ill_refrele(uill); 20663 } 20664 return (B_FALSE); 20665 } 20666 20667 /* 20668 * Determine the best source address given a destination address and an ill. 20669 * Prefers non-deprecated over deprecated but will return a deprecated 20670 * address if there is no other choice. If there is a usable source address 20671 * on the interface pointed to by ill_usesrc_ifindex then that is given 20672 * first preference. 20673 * 20674 * Returns NULL if there is no suitable source address for the ill. 20675 * This only occurs when there is no valid source address for the ill. 20676 */ 20677 ipif_t * 20678 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20679 { 20680 ipif_t *ipif; 20681 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20682 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20683 int index = 0; 20684 boolean_t wrapped = B_FALSE; 20685 boolean_t same_subnet_only = B_FALSE; 20686 boolean_t ipif_same_found, ipif_other_found; 20687 boolean_t specific_found; 20688 ill_t *till, *usill = NULL; 20689 tsol_tpc_t *src_rhtp, *dst_rhtp; 20690 ip_stack_t *ipst = ill->ill_ipst; 20691 20692 if (ill->ill_usesrc_ifindex != 0) { 20693 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20694 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20695 if (usill != NULL) 20696 ill = usill; /* Select source from usesrc ILL */ 20697 else 20698 return (NULL); 20699 } 20700 20701 /* 20702 * If we're dealing with an unlabeled destination on a labeled system, 20703 * make sure that we ignore source addresses that are incompatible with 20704 * the destination's default label. That destination's default label 20705 * must dominate the minimum label on the source address. 20706 */ 20707 dst_rhtp = NULL; 20708 if (is_system_labeled()) { 20709 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20710 if (dst_rhtp == NULL) 20711 return (NULL); 20712 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20713 TPC_RELE(dst_rhtp); 20714 dst_rhtp = NULL; 20715 } 20716 } 20717 20718 /* 20719 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20720 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20721 * After selecting the right ipif, under ill_lock make sure ipif is 20722 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20723 * we retry. Inside the loop we still need to check for CONDEMNED, 20724 * but not under a lock. 20725 */ 20726 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20727 20728 retry: 20729 till = ill; 20730 ipif_arr[0] = NULL; 20731 20732 if (till->ill_group != NULL) 20733 till = till->ill_group->illgrp_ill; 20734 20735 /* 20736 * Choose one good source address from each ill across the group. 20737 * If possible choose a source address in the same subnet as 20738 * the destination address. 20739 * 20740 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20741 * This is okay because of the following. 20742 * 20743 * If PHYI_FAILED is set and we still have non-deprecated 20744 * addresses, it means the addresses have not yet been 20745 * failed over to a different interface. We potentially 20746 * select them to create IRE_CACHES, which will be later 20747 * flushed when the addresses move over. 20748 * 20749 * If PHYI_INACTIVE is set and we still have non-deprecated 20750 * addresses, it means either the user has configured them 20751 * or PHYI_INACTIVE has not been cleared after the addresses 20752 * been moved over. For the former, in.mpathd does a failover 20753 * when the interface becomes INACTIVE and hence we should 20754 * not find them. Once INACTIVE is set, we don't allow them 20755 * to create logical interfaces anymore. For the latter, a 20756 * flush will happen when INACTIVE is cleared which will 20757 * flush the IRE_CACHES. 20758 * 20759 * If PHYI_OFFLINE is set, all the addresses will be failed 20760 * over soon. We potentially select them to create IRE_CACHEs, 20761 * which will be later flushed when the addresses move over. 20762 * 20763 * NOTE : As ipif_select_source is called to borrow source address 20764 * for an ipif that is part of a group, source address selection 20765 * will be re-done whenever the group changes i.e either an 20766 * insertion/deletion in the group. 20767 * 20768 * Fill ipif_arr[] with source addresses, using these rules: 20769 * 20770 * 1. At most one source address from a given ill ends up 20771 * in ipif_arr[] -- that is, at most one of the ipif's 20772 * associated with a given ill ends up in ipif_arr[]. 20773 * 20774 * 2. If there is at least one non-deprecated ipif in the 20775 * IPMP group with a source address on the same subnet as 20776 * our destination, then fill ipif_arr[] only with 20777 * source addresses on the same subnet as our destination. 20778 * Note that because of (1), only the first 20779 * non-deprecated ipif found with a source address 20780 * matching the destination ends up in ipif_arr[]. 20781 * 20782 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20783 * addresses not in the same subnet as our destination. 20784 * Again, because of (1), only the first off-subnet source 20785 * address will be chosen. 20786 * 20787 * 4. If there are no non-deprecated ipifs, then just use 20788 * the source address associated with the last deprecated 20789 * one we find that happens to be on the same subnet, 20790 * otherwise the first one not in the same subnet. 20791 */ 20792 specific_found = B_FALSE; 20793 for (; till != NULL; till = till->ill_group_next) { 20794 ipif_same_found = B_FALSE; 20795 ipif_other_found = B_FALSE; 20796 for (ipif = till->ill_ipif; ipif != NULL; 20797 ipif = ipif->ipif_next) { 20798 if (!IPIF_CAN_LOOKUP(ipif)) 20799 continue; 20800 /* Always skip NOLOCAL and ANYCAST interfaces */ 20801 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20802 continue; 20803 if (!(ipif->ipif_flags & IPIF_UP) || 20804 !ipif->ipif_addr_ready) 20805 continue; 20806 if (ipif->ipif_zoneid != zoneid && 20807 ipif->ipif_zoneid != ALL_ZONES) 20808 continue; 20809 /* 20810 * Interfaces with 0.0.0.0 address are allowed to be UP, 20811 * but are not valid as source addresses. 20812 */ 20813 if (ipif->ipif_lcl_addr == INADDR_ANY) 20814 continue; 20815 20816 /* 20817 * Check compatibility of local address for 20818 * destination's default label if we're on a labeled 20819 * system. Incompatible addresses can't be used at 20820 * all. 20821 */ 20822 if (dst_rhtp != NULL) { 20823 boolean_t incompat; 20824 20825 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20826 IPV4_VERSION, B_FALSE); 20827 if (src_rhtp == NULL) 20828 continue; 20829 incompat = 20830 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20831 src_rhtp->tpc_tp.tp_doi != 20832 dst_rhtp->tpc_tp.tp_doi || 20833 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20834 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20835 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20836 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20837 TPC_RELE(src_rhtp); 20838 if (incompat) 20839 continue; 20840 } 20841 20842 /* 20843 * We prefer not to use all all-zones addresses, if we 20844 * can avoid it, as they pose problems with unlabeled 20845 * destinations. 20846 */ 20847 if (ipif->ipif_zoneid != ALL_ZONES) { 20848 if (!specific_found && 20849 (!same_subnet_only || 20850 (ipif->ipif_net_mask & dst) == 20851 ipif->ipif_subnet)) { 20852 index = 0; 20853 specific_found = B_TRUE; 20854 ipif_other_found = B_FALSE; 20855 } 20856 } else { 20857 if (specific_found) 20858 continue; 20859 } 20860 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20861 if (ipif_dep == NULL || 20862 (ipif->ipif_net_mask & dst) == 20863 ipif->ipif_subnet) 20864 ipif_dep = ipif; 20865 continue; 20866 } 20867 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20868 /* found a source address in the same subnet */ 20869 if (!same_subnet_only) { 20870 same_subnet_only = B_TRUE; 20871 index = 0; 20872 } 20873 ipif_same_found = B_TRUE; 20874 } else { 20875 if (same_subnet_only || ipif_other_found) 20876 continue; 20877 ipif_other_found = B_TRUE; 20878 } 20879 ipif_arr[index++] = ipif; 20880 if (index == MAX_IPIF_SELECT_SOURCE) { 20881 wrapped = B_TRUE; 20882 index = 0; 20883 } 20884 if (ipif_same_found) 20885 break; 20886 } 20887 } 20888 20889 if (ipif_arr[0] == NULL) { 20890 ipif = ipif_dep; 20891 } else { 20892 if (wrapped) 20893 index = MAX_IPIF_SELECT_SOURCE; 20894 ipif = ipif_arr[ipif_rand(ipst) % index]; 20895 ASSERT(ipif != NULL); 20896 } 20897 20898 if (ipif != NULL) { 20899 mutex_enter(&ipif->ipif_ill->ill_lock); 20900 if (!IPIF_CAN_LOOKUP(ipif)) { 20901 mutex_exit(&ipif->ipif_ill->ill_lock); 20902 goto retry; 20903 } 20904 ipif_refhold_locked(ipif); 20905 mutex_exit(&ipif->ipif_ill->ill_lock); 20906 } 20907 20908 rw_exit(&ipst->ips_ill_g_lock); 20909 if (usill != NULL) 20910 ill_refrele(usill); 20911 if (dst_rhtp != NULL) 20912 TPC_RELE(dst_rhtp); 20913 20914 #ifdef DEBUG 20915 if (ipif == NULL) { 20916 char buf1[INET6_ADDRSTRLEN]; 20917 20918 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20919 ill->ill_name, 20920 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20921 } else { 20922 char buf1[INET6_ADDRSTRLEN]; 20923 char buf2[INET6_ADDRSTRLEN]; 20924 20925 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20926 ipif->ipif_ill->ill_name, 20927 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20928 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20929 buf2, sizeof (buf2)))); 20930 } 20931 #endif /* DEBUG */ 20932 return (ipif); 20933 } 20934 20935 20936 /* 20937 * If old_ipif is not NULL, see if ipif was derived from old 20938 * ipif and if so, recreate the interface route by re-doing 20939 * source address selection. This happens when ipif_down -> 20940 * ipif_update_other_ipifs calls us. 20941 * 20942 * If old_ipif is NULL, just redo the source address selection 20943 * if needed. This happens when illgrp_insert or ipif_up_done 20944 * calls us. 20945 */ 20946 static void 20947 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20948 { 20949 ire_t *ire; 20950 ire_t *ipif_ire; 20951 queue_t *stq; 20952 ipif_t *nipif; 20953 ill_t *ill; 20954 boolean_t need_rele = B_FALSE; 20955 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 20956 20957 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20958 ASSERT(IAM_WRITER_IPIF(ipif)); 20959 20960 ill = ipif->ipif_ill; 20961 if (!(ipif->ipif_flags & 20962 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20963 /* 20964 * Can't possibly have borrowed the source 20965 * from old_ipif. 20966 */ 20967 return; 20968 } 20969 20970 /* 20971 * Is there any work to be done? No work if the address 20972 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 20973 * ipif_select_source() does not borrow addresses from 20974 * NOLOCAL and ANYCAST interfaces). 20975 */ 20976 if ((old_ipif != NULL) && 20977 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 20978 (old_ipif->ipif_ill->ill_wq == NULL) || 20979 (old_ipif->ipif_flags & 20980 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 20981 return; 20982 } 20983 20984 /* 20985 * Perform the same checks as when creating the 20986 * IRE_INTERFACE in ipif_up_done. 20987 */ 20988 if (!(ipif->ipif_flags & IPIF_UP)) 20989 return; 20990 20991 if ((ipif->ipif_flags & IPIF_NOXMIT) || 20992 (ipif->ipif_subnet == INADDR_ANY)) 20993 return; 20994 20995 ipif_ire = ipif_to_ire(ipif); 20996 if (ipif_ire == NULL) 20997 return; 20998 20999 /* 21000 * We know that ipif uses some other source for its 21001 * IRE_INTERFACE. Is it using the source of this 21002 * old_ipif? 21003 */ 21004 if (old_ipif != NULL && 21005 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21006 ire_refrele(ipif_ire); 21007 return; 21008 } 21009 if (ip_debug > 2) { 21010 /* ip1dbg */ 21011 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21012 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21013 } 21014 21015 stq = ipif_ire->ire_stq; 21016 21017 /* 21018 * Can't use our source address. Select a different 21019 * source address for the IRE_INTERFACE. 21020 */ 21021 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21022 if (nipif == NULL) { 21023 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21024 nipif = ipif; 21025 } else { 21026 need_rele = B_TRUE; 21027 } 21028 21029 ire = ire_create( 21030 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21031 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21032 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21033 NULL, /* no gateway */ 21034 &ipif->ipif_mtu, /* max frag */ 21035 NULL, /* no src nce */ 21036 NULL, /* no recv from queue */ 21037 stq, /* send-to queue */ 21038 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21039 ipif, 21040 0, 21041 0, 21042 0, 21043 0, 21044 &ire_uinfo_null, 21045 NULL, 21046 NULL, 21047 ipst); 21048 21049 if (ire != NULL) { 21050 ire_t *ret_ire; 21051 int error; 21052 21053 /* 21054 * We don't need ipif_ire anymore. We need to delete 21055 * before we add so that ire_add does not detect 21056 * duplicates. 21057 */ 21058 ire_delete(ipif_ire); 21059 ret_ire = ire; 21060 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21061 ASSERT(error == 0); 21062 ASSERT(ire == ret_ire); 21063 /* Held in ire_add */ 21064 ire_refrele(ret_ire); 21065 } 21066 /* 21067 * Either we are falling through from above or could not 21068 * allocate a replacement. 21069 */ 21070 ire_refrele(ipif_ire); 21071 if (need_rele) 21072 ipif_refrele(nipif); 21073 } 21074 21075 /* 21076 * This old_ipif is going away. 21077 * 21078 * Determine if any other ipif's is using our address as 21079 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21080 * IPIF_DEPRECATED). 21081 * Find the IRE_INTERFACE for such ipifs and recreate them 21082 * to use an different source address following the rules in 21083 * ipif_up_done. 21084 * 21085 * This function takes an illgrp as an argument so that illgrp_delete 21086 * can call this to update source address even after deleting the 21087 * old_ipif->ipif_ill from the ill group. 21088 */ 21089 static void 21090 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21091 { 21092 ipif_t *ipif; 21093 ill_t *ill; 21094 char buf[INET6_ADDRSTRLEN]; 21095 21096 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21097 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21098 21099 ill = old_ipif->ipif_ill; 21100 21101 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21102 ill->ill_name, 21103 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21104 buf, sizeof (buf)))); 21105 /* 21106 * If this part of a group, look at all ills as ipif_select_source 21107 * borrows source address across all the ills in the group. 21108 */ 21109 if (illgrp != NULL) 21110 ill = illgrp->illgrp_ill; 21111 21112 for (; ill != NULL; ill = ill->ill_group_next) { 21113 for (ipif = ill->ill_ipif; ipif != NULL; 21114 ipif = ipif->ipif_next) { 21115 21116 if (ipif == old_ipif) 21117 continue; 21118 21119 ipif_recreate_interface_routes(old_ipif, ipif); 21120 } 21121 } 21122 } 21123 21124 /* ARGSUSED */ 21125 int 21126 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21127 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21128 { 21129 /* 21130 * ill_phyint_reinit merged the v4 and v6 into a single 21131 * ipsq. Could also have become part of a ipmp group in the 21132 * process, and we might not have been able to complete the 21133 * operation in ipif_set_values, if we could not become 21134 * exclusive. If so restart it here. 21135 */ 21136 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21137 } 21138 21139 21140 /* 21141 * Can operate on either a module or a driver queue. 21142 * Returns an error if not a module queue. 21143 */ 21144 /* ARGSUSED */ 21145 int 21146 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21147 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21148 { 21149 queue_t *q1 = q; 21150 char *cp; 21151 char interf_name[LIFNAMSIZ]; 21152 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21153 21154 if (q->q_next == NULL) { 21155 ip1dbg(( 21156 "if_unitsel: IF_UNITSEL: no q_next\n")); 21157 return (EINVAL); 21158 } 21159 21160 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21161 return (EALREADY); 21162 21163 do { 21164 q1 = q1->q_next; 21165 } while (q1->q_next); 21166 cp = q1->q_qinfo->qi_minfo->mi_idname; 21167 (void) sprintf(interf_name, "%s%d", cp, ppa); 21168 21169 /* 21170 * Here we are not going to delay the ioack until after 21171 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21172 * original ioctl message before sending the requests. 21173 */ 21174 return (ipif_set_values(q, mp, interf_name, &ppa)); 21175 } 21176 21177 /* ARGSUSED */ 21178 int 21179 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21180 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21181 { 21182 return (ENXIO); 21183 } 21184 21185 /* 21186 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21187 * `irep'. Returns a pointer to the next free `irep' entry (just like 21188 * ire_check_and_create_bcast()). 21189 */ 21190 static ire_t ** 21191 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21192 { 21193 ipaddr_t addr; 21194 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21195 ipaddr_t subnetmask = ipif->ipif_net_mask; 21196 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21197 21198 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21199 21200 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21201 21202 if (ipif->ipif_lcl_addr == INADDR_ANY || 21203 (ipif->ipif_flags & IPIF_NOLOCAL)) 21204 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21205 21206 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21207 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21208 21209 /* 21210 * For backward compatibility, we create net broadcast IREs based on 21211 * the old "IP address class system", since some old machines only 21212 * respond to these class derived net broadcast. However, we must not 21213 * create these net broadcast IREs if the subnetmask is shorter than 21214 * the IP address class based derived netmask. Otherwise, we may 21215 * create a net broadcast address which is the same as an IP address 21216 * on the subnet -- and then TCP will refuse to talk to that address. 21217 */ 21218 if (netmask < subnetmask) { 21219 addr = netmask & ipif->ipif_subnet; 21220 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21221 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21222 flags); 21223 } 21224 21225 /* 21226 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21227 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21228 * created. Creating these broadcast IREs will only create confusion 21229 * as `addr' will be the same as the IP address. 21230 */ 21231 if (subnetmask != 0xFFFFFFFF) { 21232 addr = ipif->ipif_subnet; 21233 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21234 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21235 irep, flags); 21236 } 21237 21238 return (irep); 21239 } 21240 21241 /* 21242 * Broadcast IRE info structure used in the functions below. Since we 21243 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21244 */ 21245 typedef struct bcast_ireinfo { 21246 uchar_t bi_type; /* BCAST_* value from below */ 21247 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21248 bi_needrep:1, /* do we need to replace it? */ 21249 bi_haverep:1, /* have we replaced it? */ 21250 bi_pad:5; 21251 ipaddr_t bi_addr; /* IRE address */ 21252 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21253 } bcast_ireinfo_t; 21254 21255 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21256 21257 /* 21258 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21259 * return B_TRUE if it should immediately be used to recreate the IRE. 21260 */ 21261 static boolean_t 21262 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21263 { 21264 ipaddr_t addr; 21265 21266 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21267 21268 switch (bireinfop->bi_type) { 21269 case BCAST_NET: 21270 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21271 if (addr != bireinfop->bi_addr) 21272 return (B_FALSE); 21273 break; 21274 case BCAST_SUBNET: 21275 if (ipif->ipif_subnet != bireinfop->bi_addr) 21276 return (B_FALSE); 21277 break; 21278 } 21279 21280 bireinfop->bi_needrep = 1; 21281 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21282 if (bireinfop->bi_backup == NULL) 21283 bireinfop->bi_backup = ipif; 21284 return (B_FALSE); 21285 } 21286 return (B_TRUE); 21287 } 21288 21289 /* 21290 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21291 * them ala ire_check_and_create_bcast(). 21292 */ 21293 static ire_t ** 21294 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21295 { 21296 ipaddr_t mask, addr; 21297 21298 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21299 21300 addr = bireinfop->bi_addr; 21301 irep = ire_create_bcast(ipif, addr, irep); 21302 21303 switch (bireinfop->bi_type) { 21304 case BCAST_NET: 21305 mask = ip_net_mask(ipif->ipif_subnet); 21306 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21307 break; 21308 case BCAST_SUBNET: 21309 mask = ipif->ipif_net_mask; 21310 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21311 break; 21312 } 21313 21314 bireinfop->bi_haverep = 1; 21315 return (irep); 21316 } 21317 21318 /* 21319 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21320 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21321 * that are going away are still needed. If so, have ipif_create_bcast() 21322 * recreate them (except for the deprecated case, as explained below). 21323 */ 21324 static ire_t ** 21325 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21326 ire_t **irep) 21327 { 21328 int i; 21329 ipif_t *ipif; 21330 21331 ASSERT(!ill->ill_isv6); 21332 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21333 /* 21334 * Skip this ipif if it's (a) the one being taken down, (b) 21335 * not in the same zone, or (c) has no valid local address. 21336 */ 21337 if (ipif == test_ipif || 21338 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21339 ipif->ipif_subnet == 0 || 21340 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21341 (IPIF_UP|IPIF_BROADCAST)) 21342 continue; 21343 21344 /* 21345 * For each dying IRE that hasn't yet been replaced, see if 21346 * `ipif' needs it and whether the IRE should be recreated on 21347 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21348 * will return B_FALSE even if `ipif' needs the IRE on the 21349 * hopes that we'll later find a needy non-deprecated ipif. 21350 * However, the ipif is recorded in bi_backup for possible 21351 * subsequent use by ipif_check_bcast_ires(). 21352 */ 21353 for (i = 0; i < BCAST_COUNT; i++) { 21354 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21355 continue; 21356 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21357 continue; 21358 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21359 } 21360 21361 /* 21362 * If we've replaced all of the broadcast IREs that are going 21363 * to be taken down, we know we're done. 21364 */ 21365 for (i = 0; i < BCAST_COUNT; i++) { 21366 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21367 break; 21368 } 21369 if (i == BCAST_COUNT) 21370 break; 21371 } 21372 return (irep); 21373 } 21374 21375 /* 21376 * Check if `test_ipif' (which is going away) is associated with any existing 21377 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21378 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21379 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21380 * 21381 * This is necessary because broadcast IREs are shared. In particular, a 21382 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21383 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21384 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21385 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21386 * same zone, they will share the same set of broadcast IREs. 21387 * 21388 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21389 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21390 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21391 */ 21392 static void 21393 ipif_check_bcast_ires(ipif_t *test_ipif) 21394 { 21395 ill_t *ill = test_ipif->ipif_ill; 21396 ire_t *ire, *ire_array[12]; /* see note above */ 21397 ire_t **irep1, **irep = &ire_array[0]; 21398 uint_t i, willdie; 21399 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21400 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21401 21402 ASSERT(!test_ipif->ipif_isv6); 21403 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21404 21405 /* 21406 * No broadcast IREs for the LOOPBACK interface 21407 * or others such as point to point and IPIF_NOXMIT. 21408 */ 21409 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21410 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21411 return; 21412 21413 bzero(bireinfo, sizeof (bireinfo)); 21414 bireinfo[0].bi_type = BCAST_ALLZEROES; 21415 bireinfo[0].bi_addr = 0; 21416 21417 bireinfo[1].bi_type = BCAST_ALLONES; 21418 bireinfo[1].bi_addr = INADDR_BROADCAST; 21419 21420 bireinfo[2].bi_type = BCAST_NET; 21421 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21422 21423 if (test_ipif->ipif_net_mask != 0) 21424 mask = test_ipif->ipif_net_mask; 21425 bireinfo[3].bi_type = BCAST_SUBNET; 21426 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21427 21428 /* 21429 * Figure out what (if any) broadcast IREs will die as a result of 21430 * `test_ipif' going away. If none will die, we're done. 21431 */ 21432 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21433 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21434 test_ipif, ALL_ZONES, NULL, 21435 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21436 if (ire != NULL) { 21437 willdie++; 21438 bireinfo[i].bi_willdie = 1; 21439 ire_refrele(ire); 21440 } 21441 } 21442 21443 if (willdie == 0) 21444 return; 21445 21446 /* 21447 * Walk through all the ipifs that will be affected by the dying IREs, 21448 * and recreate the IREs as necessary. 21449 */ 21450 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21451 21452 /* 21453 * Scan through the set of broadcast IREs and see if there are any 21454 * that we need to replace that have not yet been replaced. If so, 21455 * replace them using the appropriate backup ipif. 21456 */ 21457 for (i = 0; i < BCAST_COUNT; i++) { 21458 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21459 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21460 &bireinfo[i], irep); 21461 } 21462 21463 /* 21464 * If we can't create all of them, don't add any of them. (Code in 21465 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21466 * non-loopback copy and loopback copy for a given address.) 21467 */ 21468 for (irep1 = irep; irep1 > ire_array; ) { 21469 irep1--; 21470 if (*irep1 == NULL) { 21471 ip0dbg(("ipif_check_bcast_ires: can't create " 21472 "IRE_BROADCAST, memory allocation failure\n")); 21473 while (irep > ire_array) { 21474 irep--; 21475 if (*irep != NULL) 21476 ire_delete(*irep); 21477 } 21478 return; 21479 } 21480 } 21481 21482 for (irep1 = irep; irep1 > ire_array; ) { 21483 irep1--; 21484 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21485 ire_refrele(*irep1); /* Held in ire_add */ 21486 } 21487 } 21488 21489 /* 21490 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21491 * from lifr_flags and the name from lifr_name. 21492 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21493 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21494 * Returns EINPROGRESS when mp has been consumed by queueing it on 21495 * ill_pending_mp and the ioctl will complete in ip_rput. 21496 * 21497 * Can operate on either a module or a driver queue. 21498 * Returns an error if not a module queue. 21499 */ 21500 /* ARGSUSED */ 21501 int 21502 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21503 ip_ioctl_cmd_t *ipip, void *if_req) 21504 { 21505 ill_t *ill = q->q_ptr; 21506 phyint_t *phyi; 21507 ip_stack_t *ipst; 21508 struct lifreq *lifr = if_req; 21509 21510 ASSERT(ipif != NULL); 21511 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21512 21513 if (q->q_next == NULL) { 21514 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21515 return (EINVAL); 21516 } 21517 21518 /* 21519 * If we are not writer on 'q' then this interface exists already 21520 * and previous lookups (ip_extract_lifreq()) found this ipif -- 21521 * so return EALREADY. 21522 */ 21523 if (ill != ipif->ipif_ill) 21524 return (EALREADY); 21525 21526 if (ill->ill_name[0] != '\0') 21527 return (EALREADY); 21528 21529 /* 21530 * Set all the flags. Allows all kinds of override. Provide some 21531 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21532 * unless there is either multicast/broadcast support in the driver 21533 * or it is a pt-pt link. 21534 */ 21535 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21536 /* Meaningless to IP thus don't allow them to be set. */ 21537 ip1dbg(("ip_setname: EINVAL 1\n")); 21538 return (EINVAL); 21539 } 21540 21541 /* 21542 * If there's another ill already with the requested name, ensure 21543 * that it's of the same type. Otherwise, ill_phyint_reinit() will 21544 * fuse together two unrelated ills, which will cause chaos. 21545 */ 21546 ipst = ill->ill_ipst; 21547 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 21548 lifr->lifr_name, NULL); 21549 if (phyi != NULL) { 21550 ill_t *ill_mate = phyi->phyint_illv4; 21551 21552 if (ill_mate == NULL) 21553 ill_mate = phyi->phyint_illv6; 21554 ASSERT(ill_mate != NULL); 21555 21556 if (ill_mate->ill_media->ip_m_mac_type != 21557 ill->ill_media->ip_m_mac_type) { 21558 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 21559 "use the same ill name on differing media\n")); 21560 return (EINVAL); 21561 } 21562 } 21563 21564 /* 21565 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21566 * ill_bcast_addr_length info. 21567 */ 21568 if (!ill->ill_needs_attach && 21569 ((lifr->lifr_flags & IFF_MULTICAST) && 21570 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21571 ill->ill_bcast_addr_length == 0)) { 21572 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21573 ip1dbg(("ip_setname: EINVAL 2\n")); 21574 return (EINVAL); 21575 } 21576 if ((lifr->lifr_flags & IFF_BROADCAST) && 21577 ((lifr->lifr_flags & IFF_IPV6) || 21578 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21579 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21580 ip1dbg(("ip_setname: EINVAL 3\n")); 21581 return (EINVAL); 21582 } 21583 if (lifr->lifr_flags & IFF_UP) { 21584 /* Can only be set with SIOCSLIFFLAGS */ 21585 ip1dbg(("ip_setname: EINVAL 4\n")); 21586 return (EINVAL); 21587 } 21588 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21589 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21590 ip1dbg(("ip_setname: EINVAL 5\n")); 21591 return (EINVAL); 21592 } 21593 /* 21594 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21595 */ 21596 if ((lifr->lifr_flags & IFF_XRESOLV) && 21597 !(lifr->lifr_flags & IFF_IPV6) && 21598 !(ipif->ipif_isv6)) { 21599 ip1dbg(("ip_setname: EINVAL 6\n")); 21600 return (EINVAL); 21601 } 21602 21603 /* 21604 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21605 * we have all the flags here. So, we assign rather than we OR. 21606 * We can't OR the flags here because we don't want to set 21607 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21608 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21609 * on lifr_flags value here. 21610 */ 21611 /* 21612 * This ill has not been inserted into the global list. 21613 * So we are still single threaded and don't need any lock 21614 */ 21615 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 21616 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21617 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21618 21619 /* We started off as V4. */ 21620 if (ill->ill_flags & ILLF_IPV6) { 21621 ill->ill_phyint->phyint_illv6 = ill; 21622 ill->ill_phyint->phyint_illv4 = NULL; 21623 } 21624 21625 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 21626 } 21627 21628 /* ARGSUSED */ 21629 int 21630 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21631 ip_ioctl_cmd_t *ipip, void *if_req) 21632 { 21633 /* 21634 * ill_phyint_reinit merged the v4 and v6 into a single 21635 * ipsq. Could also have become part of a ipmp group in the 21636 * process, and we might not have been able to complete the 21637 * slifname in ipif_set_values, if we could not become 21638 * exclusive. If so restart it here 21639 */ 21640 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21641 } 21642 21643 /* 21644 * Return a pointer to the ipif which matches the index, IP version type and 21645 * zoneid. 21646 */ 21647 ipif_t * 21648 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21649 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21650 { 21651 ill_t *ill; 21652 ipif_t *ipif = NULL; 21653 21654 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21655 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21656 21657 if (err != NULL) 21658 *err = 0; 21659 21660 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21661 if (ill != NULL) { 21662 mutex_enter(&ill->ill_lock); 21663 for (ipif = ill->ill_ipif; ipif != NULL; 21664 ipif = ipif->ipif_next) { 21665 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21666 zoneid == ipif->ipif_zoneid || 21667 ipif->ipif_zoneid == ALL_ZONES)) { 21668 ipif_refhold_locked(ipif); 21669 break; 21670 } 21671 } 21672 mutex_exit(&ill->ill_lock); 21673 ill_refrele(ill); 21674 if (ipif == NULL && err != NULL) 21675 *err = ENXIO; 21676 } 21677 return (ipif); 21678 } 21679 21680 typedef struct conn_change_s { 21681 uint_t cc_old_ifindex; 21682 uint_t cc_new_ifindex; 21683 } conn_change_t; 21684 21685 /* 21686 * ipcl_walk function for changing interface index. 21687 */ 21688 static void 21689 conn_change_ifindex(conn_t *connp, caddr_t arg) 21690 { 21691 conn_change_t *connc; 21692 uint_t old_ifindex; 21693 uint_t new_ifindex; 21694 int i; 21695 ilg_t *ilg; 21696 21697 connc = (conn_change_t *)arg; 21698 old_ifindex = connc->cc_old_ifindex; 21699 new_ifindex = connc->cc_new_ifindex; 21700 21701 if (connp->conn_orig_bound_ifindex == old_ifindex) 21702 connp->conn_orig_bound_ifindex = new_ifindex; 21703 21704 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21705 connp->conn_orig_multicast_ifindex = new_ifindex; 21706 21707 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21708 ilg = &connp->conn_ilg[i]; 21709 if (ilg->ilg_orig_ifindex == old_ifindex) 21710 ilg->ilg_orig_ifindex = new_ifindex; 21711 } 21712 } 21713 21714 /* 21715 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21716 * to new_index if it matches the old_index. 21717 * 21718 * Failovers typically happen within a group of ills. But somebody 21719 * can remove an ill from the group after a failover happened. If 21720 * we are setting the ifindex after this, we potentially need to 21721 * look at all the ills rather than just the ones in the group. 21722 * We cut down the work by looking at matching ill_net_types 21723 * and ill_types as we could not possibly grouped them together. 21724 */ 21725 static void 21726 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21727 { 21728 ill_t *ill; 21729 ipif_t *ipif; 21730 uint_t old_ifindex; 21731 uint_t new_ifindex; 21732 ilm_t *ilm; 21733 ill_walk_context_t ctx; 21734 ip_stack_t *ipst = ill_orig->ill_ipst; 21735 21736 old_ifindex = connc->cc_old_ifindex; 21737 new_ifindex = connc->cc_new_ifindex; 21738 21739 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21740 ill = ILL_START_WALK_ALL(&ctx, ipst); 21741 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21742 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21743 (ill_orig->ill_type != ill->ill_type)) { 21744 continue; 21745 } 21746 for (ipif = ill->ill_ipif; ipif != NULL; 21747 ipif = ipif->ipif_next) { 21748 if (ipif->ipif_orig_ifindex == old_ifindex) 21749 ipif->ipif_orig_ifindex = new_ifindex; 21750 } 21751 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21752 if (ilm->ilm_orig_ifindex == old_ifindex) 21753 ilm->ilm_orig_ifindex = new_ifindex; 21754 } 21755 } 21756 rw_exit(&ipst->ips_ill_g_lock); 21757 } 21758 21759 /* 21760 * We first need to ensure that the new index is unique, and 21761 * then carry the change across both v4 and v6 ill representation 21762 * of the physical interface. 21763 */ 21764 /* ARGSUSED */ 21765 int 21766 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21767 ip_ioctl_cmd_t *ipip, void *ifreq) 21768 { 21769 ill_t *ill; 21770 ill_t *ill_other; 21771 phyint_t *phyi; 21772 int old_index; 21773 conn_change_t connc; 21774 struct ifreq *ifr = (struct ifreq *)ifreq; 21775 struct lifreq *lifr = (struct lifreq *)ifreq; 21776 uint_t index; 21777 ill_t *ill_v4; 21778 ill_t *ill_v6; 21779 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21780 21781 if (ipip->ipi_cmd_type == IF_CMD) 21782 index = ifr->ifr_index; 21783 else 21784 index = lifr->lifr_index; 21785 21786 /* 21787 * Only allow on physical interface. Also, index zero is illegal. 21788 * 21789 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21790 * 21791 * 1) If PHYI_FAILED is set, a failover could have happened which 21792 * implies a possible failback might have to happen. As failback 21793 * depends on the old index, we should fail setting the index. 21794 * 21795 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21796 * any addresses or multicast memberships are failed over to 21797 * a non-STANDBY interface. As failback depends on the old 21798 * index, we should fail setting the index for this case also. 21799 * 21800 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21801 * Be consistent with PHYI_FAILED and fail the ioctl. 21802 */ 21803 ill = ipif->ipif_ill; 21804 phyi = ill->ill_phyint; 21805 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21806 ipif->ipif_id != 0 || index == 0) { 21807 return (EINVAL); 21808 } 21809 old_index = phyi->phyint_ifindex; 21810 21811 /* If the index is not changing, no work to do */ 21812 if (old_index == index) 21813 return (0); 21814 21815 /* 21816 * Use ill_lookup_on_ifindex to determine if the 21817 * new index is unused and if so allow the change. 21818 */ 21819 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21820 ipst); 21821 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21822 ipst); 21823 if (ill_v6 != NULL || ill_v4 != NULL) { 21824 if (ill_v4 != NULL) 21825 ill_refrele(ill_v4); 21826 if (ill_v6 != NULL) 21827 ill_refrele(ill_v6); 21828 return (EBUSY); 21829 } 21830 21831 /* 21832 * The new index is unused. Set it in the phyint. 21833 * Locate the other ill so that we can send a routing 21834 * sockets message. 21835 */ 21836 if (ill->ill_isv6) { 21837 ill_other = phyi->phyint_illv4; 21838 } else { 21839 ill_other = phyi->phyint_illv6; 21840 } 21841 21842 phyi->phyint_ifindex = index; 21843 21844 /* Update SCTP's ILL list */ 21845 sctp_ill_reindex(ill, old_index); 21846 21847 connc.cc_old_ifindex = old_index; 21848 connc.cc_new_ifindex = index; 21849 ip_change_ifindex(ill, &connc); 21850 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21851 21852 /* Send the routing sockets message */ 21853 ip_rts_ifmsg(ipif); 21854 if (ill_other != NULL) 21855 ip_rts_ifmsg(ill_other->ill_ipif); 21856 21857 return (0); 21858 } 21859 21860 /* ARGSUSED */ 21861 int 21862 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21863 ip_ioctl_cmd_t *ipip, void *ifreq) 21864 { 21865 struct ifreq *ifr = (struct ifreq *)ifreq; 21866 struct lifreq *lifr = (struct lifreq *)ifreq; 21867 21868 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21869 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21870 /* Get the interface index */ 21871 if (ipip->ipi_cmd_type == IF_CMD) { 21872 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21873 } else { 21874 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21875 } 21876 return (0); 21877 } 21878 21879 /* ARGSUSED */ 21880 int 21881 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21882 ip_ioctl_cmd_t *ipip, void *ifreq) 21883 { 21884 struct lifreq *lifr = (struct lifreq *)ifreq; 21885 21886 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21887 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21888 /* Get the interface zone */ 21889 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21890 lifr->lifr_zoneid = ipif->ipif_zoneid; 21891 return (0); 21892 } 21893 21894 /* 21895 * Set the zoneid of an interface. 21896 */ 21897 /* ARGSUSED */ 21898 int 21899 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21900 ip_ioctl_cmd_t *ipip, void *ifreq) 21901 { 21902 struct lifreq *lifr = (struct lifreq *)ifreq; 21903 int err = 0; 21904 boolean_t need_up = B_FALSE; 21905 zone_t *zptr; 21906 zone_status_t status; 21907 zoneid_t zoneid; 21908 21909 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21910 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21911 if (!is_system_labeled()) 21912 return (ENOTSUP); 21913 zoneid = GLOBAL_ZONEID; 21914 } 21915 21916 /* cannot assign instance zero to a non-global zone */ 21917 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21918 return (ENOTSUP); 21919 21920 /* 21921 * Cannot assign to a zone that doesn't exist or is shutting down. In 21922 * the event of a race with the zone shutdown processing, since IP 21923 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21924 * interface will be cleaned up even if the zone is shut down 21925 * immediately after the status check. If the interface can't be brought 21926 * down right away, and the zone is shut down before the restart 21927 * function is called, we resolve the possible races by rechecking the 21928 * zone status in the restart function. 21929 */ 21930 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21931 return (EINVAL); 21932 status = zone_status_get(zptr); 21933 zone_rele(zptr); 21934 21935 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21936 return (EINVAL); 21937 21938 if (ipif->ipif_flags & IPIF_UP) { 21939 /* 21940 * If the interface is already marked up, 21941 * we call ipif_down which will take care 21942 * of ditching any IREs that have been set 21943 * up based on the old interface address. 21944 */ 21945 err = ipif_logical_down(ipif, q, mp); 21946 if (err == EINPROGRESS) 21947 return (err); 21948 ipif_down_tail(ipif); 21949 need_up = B_TRUE; 21950 } 21951 21952 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21953 return (err); 21954 } 21955 21956 static int 21957 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21958 queue_t *q, mblk_t *mp, boolean_t need_up) 21959 { 21960 int err = 0; 21961 ip_stack_t *ipst; 21962 21963 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21964 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21965 21966 if (CONN_Q(q)) 21967 ipst = CONNQ_TO_IPST(q); 21968 else 21969 ipst = ILLQ_TO_IPST(q); 21970 21971 /* 21972 * For exclusive stacks we don't allow a different zoneid than 21973 * global. 21974 */ 21975 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 21976 zoneid != GLOBAL_ZONEID) 21977 return (EINVAL); 21978 21979 /* Set the new zone id. */ 21980 ipif->ipif_zoneid = zoneid; 21981 21982 /* Update sctp list */ 21983 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 21984 21985 if (need_up) { 21986 /* 21987 * Now bring the interface back up. If this 21988 * is the only IPIF for the ILL, ipif_up 21989 * will have to re-bind to the device, so 21990 * we may get back EINPROGRESS, in which 21991 * case, this IOCTL will get completed in 21992 * ip_rput_dlpi when we see the DL_BIND_ACK. 21993 */ 21994 err = ipif_up(ipif, q, mp); 21995 } 21996 return (err); 21997 } 21998 21999 /* ARGSUSED */ 22000 int 22001 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22002 ip_ioctl_cmd_t *ipip, void *if_req) 22003 { 22004 struct lifreq *lifr = (struct lifreq *)if_req; 22005 zoneid_t zoneid; 22006 zone_t *zptr; 22007 zone_status_t status; 22008 22009 ASSERT(ipif->ipif_id != 0); 22010 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22011 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22012 zoneid = GLOBAL_ZONEID; 22013 22014 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22015 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22016 22017 /* 22018 * We recheck the zone status to resolve the following race condition: 22019 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22020 * 2) hme0:1 is up and can't be brought down right away; 22021 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22022 * 3) zone "myzone" is halted; the zone status switches to 22023 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22024 * the interfaces to remove - hme0:1 is not returned because it's not 22025 * yet in "myzone", so it won't be removed; 22026 * 4) the restart function for SIOCSLIFZONE is called; without the 22027 * status check here, we would have hme0:1 in "myzone" after it's been 22028 * destroyed. 22029 * Note that if the status check fails, we need to bring the interface 22030 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22031 * ipif_up_done[_v6](). 22032 */ 22033 status = ZONE_IS_UNINITIALIZED; 22034 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22035 status = zone_status_get(zptr); 22036 zone_rele(zptr); 22037 } 22038 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22039 if (ipif->ipif_isv6) { 22040 (void) ipif_up_done_v6(ipif); 22041 } else { 22042 (void) ipif_up_done(ipif); 22043 } 22044 return (EINVAL); 22045 } 22046 22047 ipif_down_tail(ipif); 22048 22049 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22050 B_TRUE)); 22051 } 22052 22053 /* ARGSUSED */ 22054 int 22055 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22056 ip_ioctl_cmd_t *ipip, void *ifreq) 22057 { 22058 struct lifreq *lifr = ifreq; 22059 22060 ASSERT(q->q_next == NULL); 22061 ASSERT(CONN_Q(q)); 22062 22063 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22064 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22065 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22066 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22067 22068 return (0); 22069 } 22070 22071 22072 /* Find the previous ILL in this usesrc group */ 22073 static ill_t * 22074 ill_prev_usesrc(ill_t *uill) 22075 { 22076 ill_t *ill; 22077 22078 for (ill = uill->ill_usesrc_grp_next; 22079 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22080 ill = ill->ill_usesrc_grp_next) 22081 /* do nothing */; 22082 return (ill); 22083 } 22084 22085 /* 22086 * Release all members of the usesrc group. This routine is called 22087 * from ill_delete when the interface being unplumbed is the 22088 * group head. 22089 */ 22090 static void 22091 ill_disband_usesrc_group(ill_t *uill) 22092 { 22093 ill_t *next_ill, *tmp_ill; 22094 ip_stack_t *ipst = uill->ill_ipst; 22095 22096 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22097 next_ill = uill->ill_usesrc_grp_next; 22098 22099 do { 22100 ASSERT(next_ill != NULL); 22101 tmp_ill = next_ill->ill_usesrc_grp_next; 22102 ASSERT(tmp_ill != NULL); 22103 next_ill->ill_usesrc_grp_next = NULL; 22104 next_ill->ill_usesrc_ifindex = 0; 22105 next_ill = tmp_ill; 22106 } while (next_ill->ill_usesrc_ifindex != 0); 22107 uill->ill_usesrc_grp_next = NULL; 22108 } 22109 22110 /* 22111 * Remove the client usesrc ILL from the list and relink to a new list 22112 */ 22113 int 22114 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22115 { 22116 ill_t *ill, *tmp_ill; 22117 ip_stack_t *ipst = ucill->ill_ipst; 22118 22119 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22120 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22121 22122 /* 22123 * Check if the usesrc client ILL passed in is not already 22124 * in use as a usesrc ILL i.e one whose source address is 22125 * in use OR a usesrc ILL is not already in use as a usesrc 22126 * client ILL 22127 */ 22128 if ((ucill->ill_usesrc_ifindex == 0) || 22129 (uill->ill_usesrc_ifindex != 0)) { 22130 return (-1); 22131 } 22132 22133 ill = ill_prev_usesrc(ucill); 22134 ASSERT(ill->ill_usesrc_grp_next != NULL); 22135 22136 /* Remove from the current list */ 22137 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22138 /* Only two elements in the list */ 22139 ASSERT(ill->ill_usesrc_ifindex == 0); 22140 ill->ill_usesrc_grp_next = NULL; 22141 } else { 22142 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22143 } 22144 22145 if (ifindex == 0) { 22146 ucill->ill_usesrc_ifindex = 0; 22147 ucill->ill_usesrc_grp_next = NULL; 22148 return (0); 22149 } 22150 22151 ucill->ill_usesrc_ifindex = ifindex; 22152 tmp_ill = uill->ill_usesrc_grp_next; 22153 uill->ill_usesrc_grp_next = ucill; 22154 ucill->ill_usesrc_grp_next = 22155 (tmp_ill != NULL) ? tmp_ill : uill; 22156 return (0); 22157 } 22158 22159 /* 22160 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22161 * ip.c for locking details. 22162 */ 22163 /* ARGSUSED */ 22164 int 22165 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22166 ip_ioctl_cmd_t *ipip, void *ifreq) 22167 { 22168 struct lifreq *lifr = (struct lifreq *)ifreq; 22169 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22170 ill_flag_changed = B_FALSE; 22171 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22172 int err = 0, ret; 22173 uint_t ifindex; 22174 phyint_t *us_phyint, *us_cli_phyint; 22175 ipsq_t *ipsq = NULL; 22176 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22177 22178 ASSERT(IAM_WRITER_IPIF(ipif)); 22179 ASSERT(q->q_next == NULL); 22180 ASSERT(CONN_Q(q)); 22181 22182 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22183 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22184 22185 ASSERT(us_cli_phyint != NULL); 22186 22187 /* 22188 * If the client ILL is being used for IPMP, abort. 22189 * Note, this can be done before ipsq_try_enter since we are already 22190 * exclusive on this ILL 22191 */ 22192 if ((us_cli_phyint->phyint_groupname != NULL) || 22193 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22194 return (EINVAL); 22195 } 22196 22197 ifindex = lifr->lifr_index; 22198 if (ifindex == 0) { 22199 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22200 /* non usesrc group interface, nothing to reset */ 22201 return (0); 22202 } 22203 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22204 /* valid reset request */ 22205 reset_flg = B_TRUE; 22206 } 22207 22208 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22209 ip_process_ioctl, &err, ipst); 22210 22211 if (usesrc_ill == NULL) { 22212 return (err); 22213 } 22214 22215 /* 22216 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22217 * group nor can either of the interfaces be used for standy. So 22218 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22219 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22220 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22221 * We are already exlusive on this ipsq i.e ipsq corresponding to 22222 * the usesrc_cli_ill 22223 */ 22224 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22225 NEW_OP, B_TRUE); 22226 if (ipsq == NULL) { 22227 err = EINPROGRESS; 22228 /* Operation enqueued on the ipsq of the usesrc ILL */ 22229 goto done; 22230 } 22231 22232 /* Check if the usesrc_ill is used for IPMP */ 22233 us_phyint = usesrc_ill->ill_phyint; 22234 if ((us_phyint->phyint_groupname != NULL) || 22235 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22236 err = EINVAL; 22237 goto done; 22238 } 22239 22240 /* 22241 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22242 * already a client then return EINVAL 22243 */ 22244 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22245 err = EINVAL; 22246 goto done; 22247 } 22248 22249 /* 22250 * If the ill_usesrc_ifindex field is already set to what it needs to 22251 * be then this is a duplicate operation. 22252 */ 22253 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22254 err = 0; 22255 goto done; 22256 } 22257 22258 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22259 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22260 usesrc_ill->ill_isv6)); 22261 22262 /* 22263 * The next step ensures that no new ires will be created referencing 22264 * the client ill, until the ILL_CHANGING flag is cleared. Then 22265 * we go through an ire walk deleting all ire caches that reference 22266 * the client ill. New ires referencing the client ill that are added 22267 * to the ire table before the ILL_CHANGING flag is set, will be 22268 * cleaned up by the ire walk below. Attempt to add new ires referencing 22269 * the client ill while the ILL_CHANGING flag is set will be failed 22270 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22271 * checks (under the ill_g_usesrc_lock) that the ire being added 22272 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22273 * belong to the same usesrc group. 22274 */ 22275 mutex_enter(&usesrc_cli_ill->ill_lock); 22276 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22277 mutex_exit(&usesrc_cli_ill->ill_lock); 22278 ill_flag_changed = B_TRUE; 22279 22280 if (ipif->ipif_isv6) 22281 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22282 ALL_ZONES, ipst); 22283 else 22284 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22285 ALL_ZONES, ipst); 22286 22287 /* 22288 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22289 * and the ill_usesrc_ifindex fields 22290 */ 22291 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22292 22293 if (reset_flg) { 22294 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22295 if (ret != 0) { 22296 err = EINVAL; 22297 } 22298 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22299 goto done; 22300 } 22301 22302 /* 22303 * Four possibilities to consider: 22304 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22305 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22306 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22307 * 4. Both are part of their respective usesrc groups 22308 */ 22309 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22310 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22311 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22312 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22313 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22314 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22315 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22316 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22317 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22318 /* Insert at head of list */ 22319 usesrc_cli_ill->ill_usesrc_grp_next = 22320 usesrc_ill->ill_usesrc_grp_next; 22321 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22322 } else { 22323 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22324 ifindex); 22325 if (ret != 0) 22326 err = EINVAL; 22327 } 22328 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22329 22330 done: 22331 if (ill_flag_changed) { 22332 mutex_enter(&usesrc_cli_ill->ill_lock); 22333 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22334 mutex_exit(&usesrc_cli_ill->ill_lock); 22335 } 22336 if (ipsq != NULL) 22337 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22338 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22339 ill_refrele(usesrc_ill); 22340 return (err); 22341 } 22342 22343 /* 22344 * comparison function used by avl. 22345 */ 22346 static int 22347 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22348 { 22349 22350 uint_t index; 22351 22352 ASSERT(phyip != NULL && index_ptr != NULL); 22353 22354 index = *((uint_t *)index_ptr); 22355 /* 22356 * let the phyint with the lowest index be on top. 22357 */ 22358 if (((phyint_t *)phyip)->phyint_ifindex < index) 22359 return (1); 22360 if (((phyint_t *)phyip)->phyint_ifindex > index) 22361 return (-1); 22362 return (0); 22363 } 22364 22365 /* 22366 * comparison function used by avl. 22367 */ 22368 static int 22369 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22370 { 22371 ill_t *ill; 22372 int res = 0; 22373 22374 ASSERT(phyip != NULL && name_ptr != NULL); 22375 22376 if (((phyint_t *)phyip)->phyint_illv4) 22377 ill = ((phyint_t *)phyip)->phyint_illv4; 22378 else 22379 ill = ((phyint_t *)phyip)->phyint_illv6; 22380 ASSERT(ill != NULL); 22381 22382 res = strcmp(ill->ill_name, (char *)name_ptr); 22383 if (res > 0) 22384 return (1); 22385 else if (res < 0) 22386 return (-1); 22387 return (0); 22388 } 22389 /* 22390 * This function is called from ill_delete when the ill is being 22391 * unplumbed. We remove the reference from the phyint and we also 22392 * free the phyint when there are no more references to it. 22393 */ 22394 static void 22395 ill_phyint_free(ill_t *ill) 22396 { 22397 phyint_t *phyi; 22398 phyint_t *next_phyint; 22399 ipsq_t *cur_ipsq; 22400 ip_stack_t *ipst = ill->ill_ipst; 22401 22402 ASSERT(ill->ill_phyint != NULL); 22403 22404 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22405 phyi = ill->ill_phyint; 22406 ill->ill_phyint = NULL; 22407 /* 22408 * ill_init allocates a phyint always to store the copy 22409 * of flags relevant to phyint. At that point in time, we could 22410 * not assign the name and hence phyint_illv4/v6 could not be 22411 * initialized. Later in ipif_set_values, we assign the name to 22412 * the ill, at which point in time we assign phyint_illv4/v6. 22413 * Thus we don't rely on phyint_illv6 to be initialized always. 22414 */ 22415 if (ill->ill_flags & ILLF_IPV6) { 22416 phyi->phyint_illv6 = NULL; 22417 } else { 22418 phyi->phyint_illv4 = NULL; 22419 } 22420 /* 22421 * ipif_down removes it from the group when the last ipif goes 22422 * down. 22423 */ 22424 ASSERT(ill->ill_group == NULL); 22425 22426 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22427 return; 22428 22429 /* 22430 * Make sure this phyint was put in the list. 22431 */ 22432 if (phyi->phyint_ifindex > 0) { 22433 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22434 phyi); 22435 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22436 phyi); 22437 } 22438 /* 22439 * remove phyint from the ipsq list. 22440 */ 22441 cur_ipsq = phyi->phyint_ipsq; 22442 if (phyi == cur_ipsq->ipsq_phyint_list) { 22443 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22444 } else { 22445 next_phyint = cur_ipsq->ipsq_phyint_list; 22446 while (next_phyint != NULL) { 22447 if (next_phyint->phyint_ipsq_next == phyi) { 22448 next_phyint->phyint_ipsq_next = 22449 phyi->phyint_ipsq_next; 22450 break; 22451 } 22452 next_phyint = next_phyint->phyint_ipsq_next; 22453 } 22454 ASSERT(next_phyint != NULL); 22455 } 22456 IPSQ_DEC_REF(cur_ipsq, ipst); 22457 22458 if (phyi->phyint_groupname_len != 0) { 22459 ASSERT(phyi->phyint_groupname != NULL); 22460 mi_free(phyi->phyint_groupname); 22461 } 22462 mi_free(phyi); 22463 } 22464 22465 /* 22466 * Attach the ill to the phyint structure which can be shared by both 22467 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22468 * function is called from ipif_set_values and ill_lookup_on_name (for 22469 * loopback) where we know the name of the ill. We lookup the ill and if 22470 * there is one present already with the name use that phyint. Otherwise 22471 * reuse the one allocated by ill_init. 22472 */ 22473 static void 22474 ill_phyint_reinit(ill_t *ill) 22475 { 22476 boolean_t isv6 = ill->ill_isv6; 22477 phyint_t *phyi_old; 22478 phyint_t *phyi; 22479 avl_index_t where = 0; 22480 ill_t *ill_other = NULL; 22481 ipsq_t *ipsq; 22482 ip_stack_t *ipst = ill->ill_ipst; 22483 22484 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22485 22486 phyi_old = ill->ill_phyint; 22487 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22488 phyi_old->phyint_illv6 == NULL)); 22489 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22490 phyi_old->phyint_illv4 == NULL)); 22491 ASSERT(phyi_old->phyint_ifindex == 0); 22492 22493 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22494 ill->ill_name, &where); 22495 22496 /* 22497 * 1. We grabbed the ill_g_lock before inserting this ill into 22498 * the global list of ills. So no other thread could have located 22499 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22500 * 2. Now locate the other protocol instance of this ill. 22501 * 3. Now grab both ill locks in the right order, and the phyint lock of 22502 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22503 * of neither ill can change. 22504 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22505 * other ill. 22506 * 5. Release all locks. 22507 */ 22508 22509 /* 22510 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22511 * we are initializing IPv4. 22512 */ 22513 if (phyi != NULL) { 22514 ill_other = (isv6) ? phyi->phyint_illv4 : 22515 phyi->phyint_illv6; 22516 ASSERT(ill_other->ill_phyint != NULL); 22517 ASSERT((isv6 && !ill_other->ill_isv6) || 22518 (!isv6 && ill_other->ill_isv6)); 22519 GRAB_ILL_LOCKS(ill, ill_other); 22520 /* 22521 * We are potentially throwing away phyint_flags which 22522 * could be different from the one that we obtain from 22523 * ill_other->ill_phyint. But it is okay as we are assuming 22524 * that the state maintained within IP is correct. 22525 */ 22526 mutex_enter(&phyi->phyint_lock); 22527 if (isv6) { 22528 ASSERT(phyi->phyint_illv6 == NULL); 22529 phyi->phyint_illv6 = ill; 22530 } else { 22531 ASSERT(phyi->phyint_illv4 == NULL); 22532 phyi->phyint_illv4 = ill; 22533 } 22534 /* 22535 * This is a new ill, currently undergoing SLIFNAME 22536 * So we could not have joined an IPMP group until now. 22537 */ 22538 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22539 phyi_old->phyint_groupname == NULL); 22540 22541 /* 22542 * This phyi_old is going away. Decref ipsq_refs and 22543 * assert it is zero. The ipsq itself will be freed in 22544 * ipsq_exit 22545 */ 22546 ipsq = phyi_old->phyint_ipsq; 22547 IPSQ_DEC_REF(ipsq, ipst); 22548 ASSERT(ipsq->ipsq_refs == 0); 22549 /* Get the singleton phyint out of the ipsq list */ 22550 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22551 ipsq->ipsq_phyint_list = NULL; 22552 phyi_old->phyint_illv4 = NULL; 22553 phyi_old->phyint_illv6 = NULL; 22554 mi_free(phyi_old); 22555 } else { 22556 mutex_enter(&ill->ill_lock); 22557 /* 22558 * We don't need to acquire any lock, since 22559 * the ill is not yet visible globally and we 22560 * have not yet released the ill_g_lock. 22561 */ 22562 phyi = phyi_old; 22563 mutex_enter(&phyi->phyint_lock); 22564 /* XXX We need a recovery strategy here. */ 22565 if (!phyint_assign_ifindex(phyi, ipst)) 22566 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22567 22568 /* No IPMP group yet, thus the hook uses the ifindex */ 22569 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22570 22571 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22572 (void *)phyi, where); 22573 22574 (void) avl_find(&ipst->ips_phyint_g_list-> 22575 phyint_list_avl_by_index, 22576 &phyi->phyint_ifindex, &where); 22577 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22578 (void *)phyi, where); 22579 } 22580 22581 /* 22582 * Reassigning ill_phyint automatically reassigns the ipsq also. 22583 * pending mp is not affected because that is per ill basis. 22584 */ 22585 ill->ill_phyint = phyi; 22586 22587 /* 22588 * Keep the index on ipif_orig_index to be used by FAILOVER. 22589 * We do this here as when the first ipif was allocated, 22590 * ipif_allocate does not know the right interface index. 22591 */ 22592 22593 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22594 /* 22595 * Now that the phyint's ifindex has been assigned, complete the 22596 * remaining 22597 */ 22598 22599 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22600 if (ill->ill_isv6) { 22601 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22602 ill->ill_phyint->phyint_ifindex; 22603 ill->ill_mcast_type = ipst->ips_mld_max_version; 22604 } else { 22605 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22606 } 22607 22608 /* 22609 * Generate an event within the hooks framework to indicate that 22610 * a new interface has just been added to IP. For this event to 22611 * be generated, the network interface must, at least, have an 22612 * ifindex assigned to it. 22613 * 22614 * This needs to be run inside the ill_g_lock perimeter to ensure 22615 * that the ordering of delivered events to listeners matches the 22616 * order of them in the kernel. 22617 * 22618 * This function could be called from ill_lookup_on_name. In that case 22619 * the interface is loopback "lo", which will not generate a NIC event. 22620 */ 22621 if (ill->ill_name_length <= 2 || 22622 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22623 /* 22624 * Generate nic plumb event for ill_name even if 22625 * ipmp_hook_emulation is set. That avoids generating events 22626 * for the ill_names should ipmp_hook_emulation be turned on 22627 * later. 22628 */ 22629 ill_nic_info_plumb(ill, B_FALSE); 22630 } 22631 RELEASE_ILL_LOCKS(ill, ill_other); 22632 mutex_exit(&phyi->phyint_lock); 22633 } 22634 22635 /* 22636 * Allocate a NE_PLUMB nic info event and store in the ill. 22637 * If 'group' is set we do it for the group name, otherwise the ill name. 22638 * It will be sent when we leave the ipsq. 22639 */ 22640 void 22641 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22642 { 22643 phyint_t *phyi = ill->ill_phyint; 22644 char *name; 22645 int namelen; 22646 22647 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22648 22649 if (group) { 22650 ASSERT(phyi->phyint_groupname_len != 0); 22651 namelen = phyi->phyint_groupname_len; 22652 name = phyi->phyint_groupname; 22653 } else { 22654 namelen = ill->ill_name_length; 22655 name = ill->ill_name; 22656 } 22657 22658 (void) ill_hook_event_create(ill, 0, NE_PLUMB, name, namelen); 22659 } 22660 22661 /* 22662 * Unhook the nic event message from the ill and enqueue it 22663 * into the nic event taskq. 22664 */ 22665 void 22666 ill_nic_info_dispatch(ill_t *ill) 22667 { 22668 hook_nic_event_t *info; 22669 22670 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22671 22672 if ((info = ill->ill_nic_event_info) != NULL) { 22673 if (ddi_taskq_dispatch(eventq_queue_nic, 22674 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22675 ip2dbg(("ill_nic_info_dispatch: " 22676 "ddi_taskq_dispatch failed\n")); 22677 if (info->hne_data != NULL) 22678 kmem_free(info->hne_data, info->hne_datalen); 22679 kmem_free(info, sizeof (hook_nic_event_t)); 22680 } 22681 ill->ill_nic_event_info = NULL; 22682 } 22683 } 22684 22685 /* 22686 * Notify any downstream modules of the name of this interface. 22687 * An M_IOCTL is used even though we don't expect a successful reply. 22688 * Any reply message from the driver (presumably an M_IOCNAK) will 22689 * eventually get discarded somewhere upstream. The message format is 22690 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22691 * to IP. 22692 */ 22693 static void 22694 ip_ifname_notify(ill_t *ill, queue_t *q) 22695 { 22696 mblk_t *mp1, *mp2; 22697 struct iocblk *iocp; 22698 struct lifreq *lifr; 22699 22700 mp1 = mkiocb(SIOCSLIFNAME); 22701 if (mp1 == NULL) 22702 return; 22703 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22704 if (mp2 == NULL) { 22705 freeb(mp1); 22706 return; 22707 } 22708 22709 mp1->b_cont = mp2; 22710 iocp = (struct iocblk *)mp1->b_rptr; 22711 iocp->ioc_count = sizeof (struct lifreq); 22712 22713 lifr = (struct lifreq *)mp2->b_rptr; 22714 mp2->b_wptr += sizeof (struct lifreq); 22715 bzero(lifr, sizeof (struct lifreq)); 22716 22717 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22718 lifr->lifr_ppa = ill->ill_ppa; 22719 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22720 22721 putnext(q, mp1); 22722 } 22723 22724 static int 22725 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22726 { 22727 int err; 22728 ip_stack_t *ipst = ill->ill_ipst; 22729 22730 /* Set the obsolete NDD per-interface forwarding name. */ 22731 err = ill_set_ndd_name(ill); 22732 if (err != 0) { 22733 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22734 err); 22735 } 22736 22737 /* Tell downstream modules where they are. */ 22738 ip_ifname_notify(ill, q); 22739 22740 /* 22741 * ill_dl_phys returns EINPROGRESS in the usual case. 22742 * Error cases are ENOMEM ... 22743 */ 22744 err = ill_dl_phys(ill, ipif, mp, q); 22745 22746 /* 22747 * If there is no IRE expiration timer running, get one started. 22748 * igmp and mld timers will be triggered by the first multicast 22749 */ 22750 if (ipst->ips_ip_ire_expire_id == 0) { 22751 /* 22752 * acquire the lock and check again. 22753 */ 22754 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22755 if (ipst->ips_ip_ire_expire_id == 0) { 22756 ipst->ips_ip_ire_expire_id = timeout( 22757 ip_trash_timer_expire, ipst, 22758 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22759 } 22760 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22761 } 22762 22763 if (ill->ill_isv6) { 22764 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22765 if (ipst->ips_mld_slowtimeout_id == 0) { 22766 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22767 (void *)ipst, 22768 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22769 } 22770 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22771 } else { 22772 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22773 if (ipst->ips_igmp_slowtimeout_id == 0) { 22774 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22775 (void *)ipst, 22776 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22777 } 22778 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22779 } 22780 22781 return (err); 22782 } 22783 22784 /* 22785 * Common routine for ppa and ifname setting. Should be called exclusive. 22786 * 22787 * Returns EINPROGRESS when mp has been consumed by queueing it on 22788 * ill_pending_mp and the ioctl will complete in ip_rput. 22789 * 22790 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22791 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22792 * For SLIFNAME, we pass these values back to the userland. 22793 */ 22794 static int 22795 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22796 { 22797 ill_t *ill; 22798 ipif_t *ipif; 22799 ipsq_t *ipsq; 22800 char *ppa_ptr; 22801 char *old_ptr; 22802 char old_char; 22803 int error; 22804 ip_stack_t *ipst; 22805 22806 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22807 ASSERT(q->q_next != NULL); 22808 ASSERT(interf_name != NULL); 22809 22810 ill = (ill_t *)q->q_ptr; 22811 ipst = ill->ill_ipst; 22812 22813 ASSERT(ill->ill_ipst != NULL); 22814 ASSERT(ill->ill_name[0] == '\0'); 22815 ASSERT(IAM_WRITER_ILL(ill)); 22816 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22817 ASSERT(ill->ill_ppa == UINT_MAX); 22818 22819 /* The ppa is sent down by ifconfig or is chosen */ 22820 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22821 return (EINVAL); 22822 } 22823 22824 /* 22825 * make sure ppa passed in is same as ppa in the name. 22826 * This check is not made when ppa == UINT_MAX in that case ppa 22827 * in the name could be anything. System will choose a ppa and 22828 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22829 */ 22830 if (*new_ppa_ptr != UINT_MAX) { 22831 /* stoi changes the pointer */ 22832 old_ptr = ppa_ptr; 22833 /* 22834 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22835 * (they don't have an externally visible ppa). We assign one 22836 * here so that we can manage the interface. Note that in 22837 * the past this value was always 0 for DLPI 1 drivers. 22838 */ 22839 if (*new_ppa_ptr == 0) 22840 *new_ppa_ptr = stoi(&old_ptr); 22841 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22842 return (EINVAL); 22843 } 22844 /* 22845 * terminate string before ppa 22846 * save char at that location. 22847 */ 22848 old_char = ppa_ptr[0]; 22849 ppa_ptr[0] = '\0'; 22850 22851 ill->ill_ppa = *new_ppa_ptr; 22852 /* 22853 * Finish as much work now as possible before calling ill_glist_insert 22854 * which makes the ill globally visible and also merges it with the 22855 * other protocol instance of this phyint. The remaining work is 22856 * done after entering the ipsq which may happen sometime later. 22857 * ill_set_ndd_name occurs after the ill has been made globally visible. 22858 */ 22859 ipif = ill->ill_ipif; 22860 22861 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22862 ipif_assign_seqid(ipif); 22863 22864 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22865 ill->ill_flags |= ILLF_IPV4; 22866 22867 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22868 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22869 22870 if (ill->ill_flags & ILLF_IPV6) { 22871 22872 ill->ill_isv6 = B_TRUE; 22873 if (ill->ill_rq != NULL) { 22874 ill->ill_rq->q_qinfo = &iprinitv6; 22875 ill->ill_wq->q_qinfo = &ipwinitv6; 22876 } 22877 22878 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22879 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22880 ipif->ipif_v6src_addr = ipv6_all_zeros; 22881 ipif->ipif_v6subnet = ipv6_all_zeros; 22882 ipif->ipif_v6net_mask = ipv6_all_zeros; 22883 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22884 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22885 /* 22886 * point-to-point or Non-mulicast capable 22887 * interfaces won't do NUD unless explicitly 22888 * configured to do so. 22889 */ 22890 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22891 !(ill->ill_flags & ILLF_MULTICAST)) { 22892 ill->ill_flags |= ILLF_NONUD; 22893 } 22894 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22895 if (ill->ill_flags & ILLF_NOARP) { 22896 /* 22897 * Note: xresolv interfaces will eventually need 22898 * NOARP set here as well, but that will require 22899 * those external resolvers to have some 22900 * knowledge of that flag and act appropriately. 22901 * Not to be changed at present. 22902 */ 22903 ill->ill_flags &= ~ILLF_NOARP; 22904 } 22905 /* 22906 * Set the ILLF_ROUTER flag according to the global 22907 * IPv6 forwarding policy. 22908 */ 22909 if (ipst->ips_ipv6_forward != 0) 22910 ill->ill_flags |= ILLF_ROUTER; 22911 } else if (ill->ill_flags & ILLF_IPV4) { 22912 ill->ill_isv6 = B_FALSE; 22913 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22914 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22915 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22916 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22917 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22918 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22919 /* 22920 * Set the ILLF_ROUTER flag according to the global 22921 * IPv4 forwarding policy. 22922 */ 22923 if (ipst->ips_ip_g_forward != 0) 22924 ill->ill_flags |= ILLF_ROUTER; 22925 } 22926 22927 ASSERT(ill->ill_phyint != NULL); 22928 22929 /* 22930 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 22931 * be completed in ill_glist_insert -> ill_phyint_reinit 22932 */ 22933 if (!ill_allocate_mibs(ill)) 22934 return (ENOMEM); 22935 22936 /* 22937 * Pick a default sap until we get the DL_INFO_ACK back from 22938 * the driver. 22939 */ 22940 if (ill->ill_sap == 0) { 22941 if (ill->ill_isv6) 22942 ill->ill_sap = IP6_DL_SAP; 22943 else 22944 ill->ill_sap = IP_DL_SAP; 22945 } 22946 22947 ill->ill_ifname_pending = 1; 22948 ill->ill_ifname_pending_err = 0; 22949 22950 ill_refhold(ill); 22951 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 22952 if ((error = ill_glist_insert(ill, interf_name, 22953 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22954 ill->ill_ppa = UINT_MAX; 22955 ill->ill_name[0] = '\0'; 22956 /* 22957 * undo null termination done above. 22958 */ 22959 ppa_ptr[0] = old_char; 22960 rw_exit(&ipst->ips_ill_g_lock); 22961 ill_refrele(ill); 22962 return (error); 22963 } 22964 22965 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 22966 22967 /* 22968 * When we return the buffer pointed to by interf_name should contain 22969 * the same name as in ill_name. 22970 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 22971 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 22972 * so copy full name and update the ppa ptr. 22973 * When ppa passed in != UINT_MAX all values are correct just undo 22974 * null termination, this saves a bcopy. 22975 */ 22976 if (*new_ppa_ptr == UINT_MAX) { 22977 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 22978 *new_ppa_ptr = ill->ill_ppa; 22979 } else { 22980 /* 22981 * undo null termination done above. 22982 */ 22983 ppa_ptr[0] = old_char; 22984 } 22985 22986 /* Let SCTP know about this ILL */ 22987 sctp_update_ill(ill, SCTP_ILL_INSERT); 22988 22989 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 22990 B_TRUE); 22991 22992 rw_exit(&ipst->ips_ill_g_lock); 22993 ill_refrele(ill); 22994 if (ipsq == NULL) 22995 return (EINPROGRESS); 22996 22997 /* 22998 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 22999 */ 23000 if (ipsq->ipsq_current_ipif == NULL) 23001 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23002 else 23003 ASSERT(ipsq->ipsq_current_ipif == ipif); 23004 23005 error = ipif_set_values_tail(ill, ipif, mp, q); 23006 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23007 if (error != 0 && error != EINPROGRESS) { 23008 /* 23009 * restore previous values 23010 */ 23011 ill->ill_isv6 = B_FALSE; 23012 } 23013 return (error); 23014 } 23015 23016 23017 void 23018 ipif_init(ip_stack_t *ipst) 23019 { 23020 hrtime_t hrt; 23021 int i; 23022 23023 /* 23024 * Can't call drv_getparm here as it is too early in the boot. 23025 * As we use ipif_src_random just for picking a different 23026 * source address everytime, this need not be really random. 23027 */ 23028 hrt = gethrtime(); 23029 ipst->ips_ipif_src_random = 23030 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23031 23032 for (i = 0; i < MAX_G_HEADS; i++) { 23033 ipst->ips_ill_g_heads[i].ill_g_list_head = 23034 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23035 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23036 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23037 } 23038 23039 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23040 ill_phyint_compare_index, 23041 sizeof (phyint_t), 23042 offsetof(struct phyint, phyint_avl_by_index)); 23043 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23044 ill_phyint_compare_name, 23045 sizeof (phyint_t), 23046 offsetof(struct phyint, phyint_avl_by_name)); 23047 } 23048 23049 /* 23050 * Lookup the ipif corresponding to the onlink destination address. For 23051 * point-to-point interfaces, it matches with remote endpoint destination 23052 * address. For point-to-multipoint interfaces it only tries to match the 23053 * destination with the interface's subnet address. The longest, most specific 23054 * match is found to take care of such rare network configurations like - 23055 * le0: 129.146.1.1/16 23056 * le1: 129.146.2.2/24 23057 * It is used only by SO_DONTROUTE at the moment. 23058 */ 23059 ipif_t * 23060 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23061 { 23062 ipif_t *ipif, *best_ipif; 23063 ill_t *ill; 23064 ill_walk_context_t ctx; 23065 23066 ASSERT(zoneid != ALL_ZONES); 23067 best_ipif = NULL; 23068 23069 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23070 ill = ILL_START_WALK_V4(&ctx, ipst); 23071 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23072 mutex_enter(&ill->ill_lock); 23073 for (ipif = ill->ill_ipif; ipif != NULL; 23074 ipif = ipif->ipif_next) { 23075 if (!IPIF_CAN_LOOKUP(ipif)) 23076 continue; 23077 if (ipif->ipif_zoneid != zoneid && 23078 ipif->ipif_zoneid != ALL_ZONES) 23079 continue; 23080 /* 23081 * Point-to-point case. Look for exact match with 23082 * destination address. 23083 */ 23084 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23085 if (ipif->ipif_pp_dst_addr == addr) { 23086 ipif_refhold_locked(ipif); 23087 mutex_exit(&ill->ill_lock); 23088 rw_exit(&ipst->ips_ill_g_lock); 23089 if (best_ipif != NULL) 23090 ipif_refrele(best_ipif); 23091 return (ipif); 23092 } 23093 } else if (ipif->ipif_subnet == (addr & 23094 ipif->ipif_net_mask)) { 23095 /* 23096 * Point-to-multipoint case. Looping through to 23097 * find the most specific match. If there are 23098 * multiple best match ipif's then prefer ipif's 23099 * that are UP. If there is only one best match 23100 * ipif and it is DOWN we must still return it. 23101 */ 23102 if ((best_ipif == NULL) || 23103 (ipif->ipif_net_mask > 23104 best_ipif->ipif_net_mask) || 23105 ((ipif->ipif_net_mask == 23106 best_ipif->ipif_net_mask) && 23107 ((ipif->ipif_flags & IPIF_UP) && 23108 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23109 ipif_refhold_locked(ipif); 23110 mutex_exit(&ill->ill_lock); 23111 rw_exit(&ipst->ips_ill_g_lock); 23112 if (best_ipif != NULL) 23113 ipif_refrele(best_ipif); 23114 best_ipif = ipif; 23115 rw_enter(&ipst->ips_ill_g_lock, 23116 RW_READER); 23117 mutex_enter(&ill->ill_lock); 23118 } 23119 } 23120 } 23121 mutex_exit(&ill->ill_lock); 23122 } 23123 rw_exit(&ipst->ips_ill_g_lock); 23124 return (best_ipif); 23125 } 23126 23127 23128 /* 23129 * Save enough information so that we can recreate the IRE if 23130 * the interface goes down and then up. 23131 */ 23132 static void 23133 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23134 { 23135 mblk_t *save_mp; 23136 23137 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23138 if (save_mp != NULL) { 23139 ifrt_t *ifrt; 23140 23141 save_mp->b_wptr += sizeof (ifrt_t); 23142 ifrt = (ifrt_t *)save_mp->b_rptr; 23143 bzero(ifrt, sizeof (ifrt_t)); 23144 ifrt->ifrt_type = ire->ire_type; 23145 ifrt->ifrt_addr = ire->ire_addr; 23146 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23147 ifrt->ifrt_src_addr = ire->ire_src_addr; 23148 ifrt->ifrt_mask = ire->ire_mask; 23149 ifrt->ifrt_flags = ire->ire_flags; 23150 ifrt->ifrt_max_frag = ire->ire_max_frag; 23151 mutex_enter(&ipif->ipif_saved_ire_lock); 23152 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23153 ipif->ipif_saved_ire_mp = save_mp; 23154 ipif->ipif_saved_ire_cnt++; 23155 mutex_exit(&ipif->ipif_saved_ire_lock); 23156 } 23157 } 23158 23159 23160 static void 23161 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23162 { 23163 mblk_t **mpp; 23164 mblk_t *mp; 23165 ifrt_t *ifrt; 23166 23167 /* Remove from ipif_saved_ire_mp list if it is there */ 23168 mutex_enter(&ipif->ipif_saved_ire_lock); 23169 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23170 mpp = &(*mpp)->b_cont) { 23171 /* 23172 * On a given ipif, the triple of address, gateway and 23173 * mask is unique for each saved IRE (in the case of 23174 * ordinary interface routes, the gateway address is 23175 * all-zeroes). 23176 */ 23177 mp = *mpp; 23178 ifrt = (ifrt_t *)mp->b_rptr; 23179 if (ifrt->ifrt_addr == ire->ire_addr && 23180 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23181 ifrt->ifrt_mask == ire->ire_mask) { 23182 *mpp = mp->b_cont; 23183 ipif->ipif_saved_ire_cnt--; 23184 freeb(mp); 23185 break; 23186 } 23187 } 23188 mutex_exit(&ipif->ipif_saved_ire_lock); 23189 } 23190 23191 23192 /* 23193 * IP multirouting broadcast routes handling 23194 * Append CGTP broadcast IREs to regular ones created 23195 * at ifconfig time. 23196 */ 23197 static void 23198 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23199 { 23200 ire_t *ire_prim; 23201 23202 ASSERT(ire != NULL); 23203 ASSERT(ire_dst != NULL); 23204 23205 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23206 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23207 if (ire_prim != NULL) { 23208 /* 23209 * We are in the special case of broadcasts for 23210 * CGTP. We add an IRE_BROADCAST that holds 23211 * the RTF_MULTIRT flag, the destination 23212 * address of ire_dst and the low level 23213 * info of ire_prim. In other words, CGTP 23214 * broadcast is added to the redundant ipif. 23215 */ 23216 ipif_t *ipif_prim; 23217 ire_t *bcast_ire; 23218 23219 ipif_prim = ire_prim->ire_ipif; 23220 23221 ip2dbg(("ip_cgtp_filter_bcast_add: " 23222 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23223 (void *)ire_dst, (void *)ire_prim, 23224 (void *)ipif_prim)); 23225 23226 bcast_ire = ire_create( 23227 (uchar_t *)&ire->ire_addr, 23228 (uchar_t *)&ip_g_all_ones, 23229 (uchar_t *)&ire_dst->ire_src_addr, 23230 (uchar_t *)&ire->ire_gateway_addr, 23231 &ipif_prim->ipif_mtu, 23232 NULL, 23233 ipif_prim->ipif_rq, 23234 ipif_prim->ipif_wq, 23235 IRE_BROADCAST, 23236 ipif_prim, 23237 0, 23238 0, 23239 0, 23240 ire->ire_flags, 23241 &ire_uinfo_null, 23242 NULL, 23243 NULL, 23244 ipst); 23245 23246 if (bcast_ire != NULL) { 23247 23248 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23249 B_FALSE) == 0) { 23250 ip2dbg(("ip_cgtp_filter_bcast_add: " 23251 "added bcast_ire %p\n", 23252 (void *)bcast_ire)); 23253 23254 ipif_save_ire(bcast_ire->ire_ipif, 23255 bcast_ire); 23256 ire_refrele(bcast_ire); 23257 } 23258 } 23259 ire_refrele(ire_prim); 23260 } 23261 } 23262 23263 23264 /* 23265 * IP multirouting broadcast routes handling 23266 * Remove the broadcast ire 23267 */ 23268 static void 23269 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23270 { 23271 ire_t *ire_dst; 23272 23273 ASSERT(ire != NULL); 23274 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23275 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23276 if (ire_dst != NULL) { 23277 ire_t *ire_prim; 23278 23279 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23280 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23281 if (ire_prim != NULL) { 23282 ipif_t *ipif_prim; 23283 ire_t *bcast_ire; 23284 23285 ipif_prim = ire_prim->ire_ipif; 23286 23287 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23288 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23289 (void *)ire_dst, (void *)ire_prim, 23290 (void *)ipif_prim)); 23291 23292 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23293 ire->ire_gateway_addr, 23294 IRE_BROADCAST, 23295 ipif_prim, ALL_ZONES, 23296 NULL, 23297 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23298 MATCH_IRE_MASK, ipst); 23299 23300 if (bcast_ire != NULL) { 23301 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23302 "looked up bcast_ire %p\n", 23303 (void *)bcast_ire)); 23304 ipif_remove_ire(bcast_ire->ire_ipif, 23305 bcast_ire); 23306 ire_delete(bcast_ire); 23307 ire_refrele(bcast_ire); 23308 } 23309 ire_refrele(ire_prim); 23310 } 23311 ire_refrele(ire_dst); 23312 } 23313 } 23314 23315 /* 23316 * IPsec hardware acceleration capabilities related functions. 23317 */ 23318 23319 /* 23320 * Free a per-ill IPsec capabilities structure. 23321 */ 23322 static void 23323 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23324 { 23325 if (capab->auth_hw_algs != NULL) 23326 kmem_free(capab->auth_hw_algs, capab->algs_size); 23327 if (capab->encr_hw_algs != NULL) 23328 kmem_free(capab->encr_hw_algs, capab->algs_size); 23329 if (capab->encr_algparm != NULL) 23330 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23331 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23332 } 23333 23334 /* 23335 * Allocate a new per-ill IPsec capabilities structure. This structure 23336 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23337 * an array which specifies, for each algorithm, whether this algorithm 23338 * is supported by the ill or not. 23339 */ 23340 static ill_ipsec_capab_t * 23341 ill_ipsec_capab_alloc(void) 23342 { 23343 ill_ipsec_capab_t *capab; 23344 uint_t nelems; 23345 23346 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23347 if (capab == NULL) 23348 return (NULL); 23349 23350 /* we need one bit per algorithm */ 23351 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23352 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23353 23354 /* allocate memory to store algorithm flags */ 23355 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23356 if (capab->encr_hw_algs == NULL) 23357 goto nomem; 23358 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23359 if (capab->auth_hw_algs == NULL) 23360 goto nomem; 23361 /* 23362 * Leave encr_algparm NULL for now since we won't need it half 23363 * the time 23364 */ 23365 return (capab); 23366 23367 nomem: 23368 ill_ipsec_capab_free(capab); 23369 return (NULL); 23370 } 23371 23372 /* 23373 * Resize capability array. Since we're exclusive, this is OK. 23374 */ 23375 static boolean_t 23376 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23377 { 23378 ipsec_capab_algparm_t *nalp, *oalp; 23379 uint32_t olen, nlen; 23380 23381 oalp = capab->encr_algparm; 23382 olen = capab->encr_algparm_size; 23383 23384 if (oalp != NULL) { 23385 if (algid < capab->encr_algparm_end) 23386 return (B_TRUE); 23387 } 23388 23389 nlen = (algid + 1) * sizeof (*nalp); 23390 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23391 if (nalp == NULL) 23392 return (B_FALSE); 23393 23394 if (oalp != NULL) { 23395 bcopy(oalp, nalp, olen); 23396 kmem_free(oalp, olen); 23397 } 23398 capab->encr_algparm = nalp; 23399 capab->encr_algparm_size = nlen; 23400 capab->encr_algparm_end = algid + 1; 23401 23402 return (B_TRUE); 23403 } 23404 23405 /* 23406 * Compare the capabilities of the specified ill with the protocol 23407 * and algorithms specified by the SA passed as argument. 23408 * If they match, returns B_TRUE, B_FALSE if they do not match. 23409 * 23410 * The ill can be passed as a pointer to it, or by specifying its index 23411 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23412 * 23413 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23414 * packet is eligible for hardware acceleration, and by 23415 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23416 * to a particular ill. 23417 */ 23418 boolean_t 23419 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23420 ipsa_t *sa, netstack_t *ns) 23421 { 23422 boolean_t sa_isv6; 23423 uint_t algid; 23424 struct ill_ipsec_capab_s *cpp; 23425 boolean_t need_refrele = B_FALSE; 23426 ip_stack_t *ipst = ns->netstack_ip; 23427 23428 if (ill == NULL) { 23429 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23430 NULL, NULL, NULL, ipst); 23431 if (ill == NULL) { 23432 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23433 return (B_FALSE); 23434 } 23435 need_refrele = B_TRUE; 23436 } 23437 23438 /* 23439 * Use the address length specified by the SA to determine 23440 * if it corresponds to a IPv6 address, and fail the matching 23441 * if the isv6 flag passed as argument does not match. 23442 * Note: this check is used for SADB capability checking before 23443 * sending SA information to an ill. 23444 */ 23445 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23446 if (sa_isv6 != ill_isv6) 23447 /* protocol mismatch */ 23448 goto done; 23449 23450 /* 23451 * Check if the ill supports the protocol, algorithm(s) and 23452 * key size(s) specified by the SA, and get the pointers to 23453 * the algorithms supported by the ill. 23454 */ 23455 switch (sa->ipsa_type) { 23456 23457 case SADB_SATYPE_ESP: 23458 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23459 /* ill does not support ESP acceleration */ 23460 goto done; 23461 cpp = ill->ill_ipsec_capab_esp; 23462 algid = sa->ipsa_auth_alg; 23463 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23464 goto done; 23465 algid = sa->ipsa_encr_alg; 23466 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23467 goto done; 23468 if (algid < cpp->encr_algparm_end) { 23469 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23470 if (sa->ipsa_encrkeybits < alp->minkeylen) 23471 goto done; 23472 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23473 goto done; 23474 } 23475 break; 23476 23477 case SADB_SATYPE_AH: 23478 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23479 /* ill does not support AH acceleration */ 23480 goto done; 23481 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23482 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23483 goto done; 23484 break; 23485 } 23486 23487 if (need_refrele) 23488 ill_refrele(ill); 23489 return (B_TRUE); 23490 done: 23491 if (need_refrele) 23492 ill_refrele(ill); 23493 return (B_FALSE); 23494 } 23495 23496 23497 /* 23498 * Add a new ill to the list of IPsec capable ills. 23499 * Called from ill_capability_ipsec_ack() when an ACK was received 23500 * indicating that IPsec hardware processing was enabled for an ill. 23501 * 23502 * ill must point to the ill for which acceleration was enabled. 23503 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23504 */ 23505 static void 23506 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23507 { 23508 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23509 uint_t sa_type; 23510 uint_t ipproto; 23511 ip_stack_t *ipst = ill->ill_ipst; 23512 23513 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23514 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23515 23516 switch (dl_cap) { 23517 case DL_CAPAB_IPSEC_AH: 23518 sa_type = SADB_SATYPE_AH; 23519 ills = &ipst->ips_ipsec_capab_ills_ah; 23520 ipproto = IPPROTO_AH; 23521 break; 23522 case DL_CAPAB_IPSEC_ESP: 23523 sa_type = SADB_SATYPE_ESP; 23524 ills = &ipst->ips_ipsec_capab_ills_esp; 23525 ipproto = IPPROTO_ESP; 23526 break; 23527 } 23528 23529 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23530 23531 /* 23532 * Add ill index to list of hardware accelerators. If 23533 * already in list, do nothing. 23534 */ 23535 for (cur_ill = *ills; cur_ill != NULL && 23536 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23537 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23538 ; 23539 23540 if (cur_ill == NULL) { 23541 /* if this is a new entry for this ill */ 23542 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23543 if (new_ill == NULL) { 23544 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23545 return; 23546 } 23547 23548 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23549 new_ill->ill_isv6 = ill->ill_isv6; 23550 new_ill->next = *ills; 23551 *ills = new_ill; 23552 } else if (!sadb_resync) { 23553 /* not resync'ing SADB and an entry exists for this ill */ 23554 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23555 return; 23556 } 23557 23558 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23559 23560 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23561 /* 23562 * IPsec module for protocol loaded, initiate dump 23563 * of the SADB to this ill. 23564 */ 23565 sadb_ill_download(ill, sa_type); 23566 } 23567 23568 /* 23569 * Remove an ill from the list of IPsec capable ills. 23570 */ 23571 static void 23572 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23573 { 23574 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23575 ip_stack_t *ipst = ill->ill_ipst; 23576 23577 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23578 dl_cap == DL_CAPAB_IPSEC_ESP); 23579 23580 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23581 &ipst->ips_ipsec_capab_ills_esp; 23582 23583 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23584 23585 prev_ill = NULL; 23586 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23587 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23588 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23589 ; 23590 if (cur_ill == NULL) { 23591 /* entry not found */ 23592 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23593 return; 23594 } 23595 if (prev_ill == NULL) { 23596 /* entry at front of list */ 23597 *ills = NULL; 23598 } else { 23599 prev_ill->next = cur_ill->next; 23600 } 23601 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23602 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23603 } 23604 23605 /* 23606 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23607 * supporting the specified IPsec protocol acceleration. 23608 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23609 * We free the mblk and, if sa is non-null, release the held referece. 23610 */ 23611 void 23612 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23613 netstack_t *ns) 23614 { 23615 ipsec_capab_ill_t *ici, *cur_ici; 23616 ill_t *ill; 23617 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23618 ip_stack_t *ipst = ns->netstack_ip; 23619 23620 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23621 ipst->ips_ipsec_capab_ills_esp; 23622 23623 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23624 23625 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23626 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23627 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23628 23629 /* 23630 * Handle the case where the ill goes away while the SADB is 23631 * attempting to send messages. If it's going away, it's 23632 * nuking its shadow SADB, so we don't care.. 23633 */ 23634 23635 if (ill == NULL) 23636 continue; 23637 23638 if (sa != NULL) { 23639 /* 23640 * Make sure capabilities match before 23641 * sending SA to ill. 23642 */ 23643 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23644 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23645 ill_refrele(ill); 23646 continue; 23647 } 23648 23649 mutex_enter(&sa->ipsa_lock); 23650 sa->ipsa_flags |= IPSA_F_HW; 23651 mutex_exit(&sa->ipsa_lock); 23652 } 23653 23654 /* 23655 * Copy template message, and add it to the front 23656 * of the mblk ship list. We want to avoid holding 23657 * the ipsec_capab_ills_lock while sending the 23658 * message to the ills. 23659 * 23660 * The b_next and b_prev are temporarily used 23661 * to build a list of mblks to be sent down, and to 23662 * save the ill to which they must be sent. 23663 */ 23664 nmp = copymsg(mp); 23665 if (nmp == NULL) { 23666 ill_refrele(ill); 23667 continue; 23668 } 23669 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23670 nmp->b_next = mp_ship_list; 23671 mp_ship_list = nmp; 23672 nmp->b_prev = (mblk_t *)ill; 23673 } 23674 23675 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23676 23677 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23678 /* restore the mblk to a sane state */ 23679 next_mp = nmp->b_next; 23680 nmp->b_next = NULL; 23681 ill = (ill_t *)nmp->b_prev; 23682 nmp->b_prev = NULL; 23683 23684 ill_dlpi_send(ill, nmp); 23685 ill_refrele(ill); 23686 } 23687 23688 if (sa != NULL) 23689 IPSA_REFRELE(sa); 23690 freemsg(mp); 23691 } 23692 23693 /* 23694 * Derive an interface id from the link layer address. 23695 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23696 */ 23697 static boolean_t 23698 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23699 { 23700 char *addr; 23701 23702 if (phys_length != ETHERADDRL) 23703 return (B_FALSE); 23704 23705 /* Form EUI-64 like address */ 23706 addr = (char *)&v6addr->s6_addr32[2]; 23707 bcopy((char *)phys_addr, addr, 3); 23708 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23709 addr[3] = (char)0xff; 23710 addr[4] = (char)0xfe; 23711 bcopy((char *)phys_addr + 3, addr + 5, 3); 23712 return (B_TRUE); 23713 } 23714 23715 /* ARGSUSED */ 23716 static boolean_t 23717 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23718 { 23719 return (B_FALSE); 23720 } 23721 23722 /* ARGSUSED */ 23723 static boolean_t 23724 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23725 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23726 { 23727 /* 23728 * Multicast address mappings used over Ethernet/802.X. 23729 * This address is used as a base for mappings. 23730 */ 23731 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23732 0x00, 0x00, 0x00}; 23733 23734 /* 23735 * Extract low order 32 bits from IPv6 multicast address. 23736 * Or that into the link layer address, starting from the 23737 * second byte. 23738 */ 23739 *hw_start = 2; 23740 v6_extract_mask->s6_addr32[0] = 0; 23741 v6_extract_mask->s6_addr32[1] = 0; 23742 v6_extract_mask->s6_addr32[2] = 0; 23743 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23744 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23745 return (B_TRUE); 23746 } 23747 23748 /* 23749 * Indicate by return value whether multicast is supported. If not, 23750 * this code should not touch/change any parameters. 23751 */ 23752 /* ARGSUSED */ 23753 static boolean_t 23754 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23755 uint32_t *hw_start, ipaddr_t *extract_mask) 23756 { 23757 /* 23758 * Multicast address mappings used over Ethernet/802.X. 23759 * This address is used as a base for mappings. 23760 */ 23761 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23762 0x00, 0x00, 0x00 }; 23763 23764 if (phys_length != ETHERADDRL) 23765 return (B_FALSE); 23766 23767 *extract_mask = htonl(0x007fffff); 23768 *hw_start = 2; 23769 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23770 return (B_TRUE); 23771 } 23772 23773 /* 23774 * Derive IPoIB interface id from the link layer address. 23775 */ 23776 static boolean_t 23777 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23778 { 23779 char *addr; 23780 23781 if (phys_length != 20) 23782 return (B_FALSE); 23783 addr = (char *)&v6addr->s6_addr32[2]; 23784 bcopy(phys_addr + 12, addr, 8); 23785 /* 23786 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23787 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23788 * rules. In these cases, the IBA considers these GUIDs to be in 23789 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23790 * required; vendors are required not to assign global EUI-64's 23791 * that differ only in u/l bit values, thus guaranteeing uniqueness 23792 * of the interface identifier. Whether the GUID is in modified 23793 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23794 * bit set to 1. 23795 */ 23796 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23797 return (B_TRUE); 23798 } 23799 23800 /* 23801 * Note on mapping from multicast IP addresses to IPoIB multicast link 23802 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23803 * The format of an IPoIB multicast address is: 23804 * 23805 * 4 byte QPN Scope Sign. Pkey 23806 * +--------------------------------------------+ 23807 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23808 * +--------------------------------------------+ 23809 * 23810 * The Scope and Pkey components are properties of the IBA port and 23811 * network interface. They can be ascertained from the broadcast address. 23812 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23813 */ 23814 23815 static boolean_t 23816 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23817 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23818 { 23819 /* 23820 * Base IPoIB IPv6 multicast address used for mappings. 23821 * Does not contain the IBA scope/Pkey values. 23822 */ 23823 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23824 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23825 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23826 23827 /* 23828 * Extract low order 80 bits from IPv6 multicast address. 23829 * Or that into the link layer address, starting from the 23830 * sixth byte. 23831 */ 23832 *hw_start = 6; 23833 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23834 23835 /* 23836 * Now fill in the IBA scope/Pkey values from the broadcast address. 23837 */ 23838 *(maddr + 5) = *(bphys_addr + 5); 23839 *(maddr + 8) = *(bphys_addr + 8); 23840 *(maddr + 9) = *(bphys_addr + 9); 23841 23842 v6_extract_mask->s6_addr32[0] = 0; 23843 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23844 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23845 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23846 return (B_TRUE); 23847 } 23848 23849 static boolean_t 23850 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23851 uint32_t *hw_start, ipaddr_t *extract_mask) 23852 { 23853 /* 23854 * Base IPoIB IPv4 multicast address used for mappings. 23855 * Does not contain the IBA scope/Pkey values. 23856 */ 23857 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23858 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23859 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23860 23861 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23862 return (B_FALSE); 23863 23864 /* 23865 * Extract low order 28 bits from IPv4 multicast address. 23866 * Or that into the link layer address, starting from the 23867 * sixteenth byte. 23868 */ 23869 *extract_mask = htonl(0x0fffffff); 23870 *hw_start = 16; 23871 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23872 23873 /* 23874 * Now fill in the IBA scope/Pkey values from the broadcast address. 23875 */ 23876 *(maddr + 5) = *(bphys_addr + 5); 23877 *(maddr + 8) = *(bphys_addr + 8); 23878 *(maddr + 9) = *(bphys_addr + 9); 23879 return (B_TRUE); 23880 } 23881 23882 /* 23883 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23884 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23885 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23886 * the link-local address is preferred. 23887 */ 23888 boolean_t 23889 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23890 { 23891 ipif_t *ipif; 23892 ipif_t *maybe_ipif = NULL; 23893 23894 mutex_enter(&ill->ill_lock); 23895 if (ill->ill_state_flags & ILL_CONDEMNED) { 23896 mutex_exit(&ill->ill_lock); 23897 if (ipifp != NULL) 23898 *ipifp = NULL; 23899 return (B_FALSE); 23900 } 23901 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23902 if (!IPIF_CAN_LOOKUP(ipif)) 23903 continue; 23904 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23905 ipif->ipif_zoneid != ALL_ZONES) 23906 continue; 23907 if ((ipif->ipif_flags & flags) != flags) 23908 continue; 23909 23910 if (ipifp == NULL) { 23911 mutex_exit(&ill->ill_lock); 23912 ASSERT(maybe_ipif == NULL); 23913 return (B_TRUE); 23914 } 23915 if (!ill->ill_isv6 || 23916 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23917 ipif_refhold_locked(ipif); 23918 mutex_exit(&ill->ill_lock); 23919 *ipifp = ipif; 23920 return (B_TRUE); 23921 } 23922 if (maybe_ipif == NULL) 23923 maybe_ipif = ipif; 23924 } 23925 if (ipifp != NULL) { 23926 if (maybe_ipif != NULL) 23927 ipif_refhold_locked(maybe_ipif); 23928 *ipifp = maybe_ipif; 23929 } 23930 mutex_exit(&ill->ill_lock); 23931 return (maybe_ipif != NULL); 23932 } 23933 23934 /* 23935 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23936 */ 23937 boolean_t 23938 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23939 { 23940 ill_t *illg; 23941 ip_stack_t *ipst = ill->ill_ipst; 23942 23943 /* 23944 * We look at the passed-in ill first without grabbing ill_g_lock. 23945 */ 23946 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23947 return (B_TRUE); 23948 } 23949 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23950 if (ill->ill_group == NULL) { 23951 /* ill not in a group */ 23952 rw_exit(&ipst->ips_ill_g_lock); 23953 return (B_FALSE); 23954 } 23955 23956 /* 23957 * There's no ipif in the zone on ill, however ill is part of an IPMP 23958 * group. We need to look for an ipif in the zone on all the ills in the 23959 * group. 23960 */ 23961 illg = ill->ill_group->illgrp_ill; 23962 do { 23963 /* 23964 * We don't call ipif_lookup_zoneid() on ill as we already know 23965 * that it's not there. 23966 */ 23967 if (illg != ill && 23968 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 23969 break; 23970 } 23971 } while ((illg = illg->ill_group_next) != NULL); 23972 rw_exit(&ipst->ips_ill_g_lock); 23973 return (illg != NULL); 23974 } 23975 23976 /* 23977 * Check if this ill is only being used to send ICMP probes for IPMP 23978 */ 23979 boolean_t 23980 ill_is_probeonly(ill_t *ill) 23981 { 23982 /* 23983 * Check if the interface is FAILED, or INACTIVE 23984 */ 23985 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 23986 return (B_TRUE); 23987 23988 return (B_FALSE); 23989 } 23990 23991 /* 23992 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 23993 * If a pointer to an ipif_t is returned then the caller will need to do 23994 * an ill_refrele(). 23995 * 23996 * If there is no real interface which matches the ifindex, then it looks 23997 * for a group that has a matching index. In the case of a group match the 23998 * lifidx must be zero. We don't need emulate the logical interfaces 23999 * since IP Filter's use of netinfo doesn't use that. 24000 */ 24001 ipif_t * 24002 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24003 ip_stack_t *ipst) 24004 { 24005 ipif_t *ipif; 24006 ill_t *ill; 24007 24008 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24009 ipst); 24010 24011 if (ill == NULL) { 24012 /* Fallback to group names only if hook_emulation set */ 24013 if (!ipst->ips_ipmp_hook_emulation) 24014 return (NULL); 24015 24016 if (lifidx != 0) 24017 return (NULL); 24018 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24019 if (ill == NULL) 24020 return (NULL); 24021 } 24022 24023 mutex_enter(&ill->ill_lock); 24024 if (ill->ill_state_flags & ILL_CONDEMNED) { 24025 mutex_exit(&ill->ill_lock); 24026 ill_refrele(ill); 24027 return (NULL); 24028 } 24029 24030 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24031 if (!IPIF_CAN_LOOKUP(ipif)) 24032 continue; 24033 if (lifidx == ipif->ipif_id) { 24034 ipif_refhold_locked(ipif); 24035 break; 24036 } 24037 } 24038 24039 mutex_exit(&ill->ill_lock); 24040 ill_refrele(ill); 24041 return (ipif); 24042 } 24043 24044 /* 24045 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24046 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24047 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24048 * for details. 24049 */ 24050 void 24051 ill_fastpath_flush(ill_t *ill) 24052 { 24053 ip_stack_t *ipst = ill->ill_ipst; 24054 24055 nce_fastpath_list_dispatch(ill, NULL, NULL); 24056 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24057 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24058 } 24059 24060 /* 24061 * Set the physical address information for `ill' to the contents of the 24062 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24063 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24064 * EINPROGRESS will be returned. 24065 */ 24066 int 24067 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24068 { 24069 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24070 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24071 24072 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24073 24074 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24075 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24076 /* Changing DL_IPV6_TOKEN is not yet supported */ 24077 return (0); 24078 } 24079 24080 /* 24081 * We need to store up to two copies of `mp' in `ill'. Due to the 24082 * design of ipsq_pending_mp_add(), we can't pass them as separate 24083 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24084 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24085 */ 24086 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24087 freemsg(mp); 24088 return (ENOMEM); 24089 } 24090 24091 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24092 24093 /* 24094 * If we can quiesce the ill, then set the address. If not, then 24095 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24096 */ 24097 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24098 mutex_enter(&ill->ill_lock); 24099 if (!ill_is_quiescent(ill)) { 24100 /* call cannot fail since `conn_t *' argument is NULL */ 24101 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24102 mp, ILL_DOWN); 24103 mutex_exit(&ill->ill_lock); 24104 return (EINPROGRESS); 24105 } 24106 mutex_exit(&ill->ill_lock); 24107 24108 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24109 return (0); 24110 } 24111 24112 /* 24113 * Once the ill associated with `q' has quiesced, set its physical address 24114 * information to the values in `addrmp'. Note that two copies of `addrmp' 24115 * are passed (linked by b_cont), since we sometimes need to save two distinct 24116 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24117 * failure (we'll free the other copy if it's not needed). Since the ill_t 24118 * is quiesced, we know any stale IREs with the old address information have 24119 * already been removed, so we don't need to call ill_fastpath_flush(). 24120 */ 24121 /* ARGSUSED */ 24122 static void 24123 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24124 { 24125 ill_t *ill = q->q_ptr; 24126 mblk_t *addrmp2 = unlinkb(addrmp); 24127 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24128 uint_t addrlen, addroff; 24129 24130 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24131 24132 addroff = dlindp->dl_addr_offset; 24133 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24134 24135 switch (dlindp->dl_data) { 24136 case DL_IPV6_LINK_LAYER_ADDR: 24137 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24138 freemsg(addrmp2); 24139 break; 24140 24141 case DL_CURR_PHYS_ADDR: 24142 freemsg(ill->ill_phys_addr_mp); 24143 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24144 ill->ill_phys_addr_mp = addrmp; 24145 ill->ill_phys_addr_length = addrlen; 24146 24147 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24148 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24149 else 24150 freemsg(addrmp2); 24151 break; 24152 default: 24153 ASSERT(0); 24154 } 24155 24156 /* 24157 * If there are ipifs to bring up, ill_up_ipifs() will return 24158 * EINPROGRESS, and ipsq_current_finish() will be called by 24159 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24160 * brought up. 24161 */ 24162 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24163 ipsq_current_finish(ipsq); 24164 } 24165 24166 /* 24167 * Helper routine for setting the ill_nd_lla fields. 24168 */ 24169 void 24170 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24171 { 24172 freemsg(ill->ill_nd_lla_mp); 24173 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24174 ill->ill_nd_lla_mp = ndmp; 24175 ill->ill_nd_lla_len = addrlen; 24176 } 24177 24178 major_t IP_MAJ; 24179 #define IP "ip" 24180 24181 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24182 #define UDPDEV "/devices/pseudo/udp@0:udp" 24183 24184 /* 24185 * Issue REMOVEIF ioctls to have the loopback interfaces 24186 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24187 * the former going away when the user-level processes in the zone 24188 * are killed * and the latter are cleaned up by the stream head 24189 * str_stack_shutdown callback that undoes all I_PLINKs. 24190 */ 24191 void 24192 ip_loopback_cleanup(ip_stack_t *ipst) 24193 { 24194 int error; 24195 ldi_handle_t lh = NULL; 24196 ldi_ident_t li = NULL; 24197 int rval; 24198 cred_t *cr; 24199 struct strioctl iocb; 24200 struct lifreq lifreq; 24201 24202 IP_MAJ = ddi_name_to_major(IP); 24203 24204 #ifdef NS_DEBUG 24205 (void) printf("ip_loopback_cleanup() stackid %d\n", 24206 ipst->ips_netstack->netstack_stackid); 24207 #endif 24208 24209 bzero(&lifreq, sizeof (lifreq)); 24210 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24211 24212 error = ldi_ident_from_major(IP_MAJ, &li); 24213 if (error) { 24214 #ifdef DEBUG 24215 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24216 error); 24217 #endif 24218 return; 24219 } 24220 24221 cr = zone_get_kcred(netstackid_to_zoneid( 24222 ipst->ips_netstack->netstack_stackid)); 24223 ASSERT(cr != NULL); 24224 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24225 if (error) { 24226 #ifdef DEBUG 24227 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24228 error); 24229 #endif 24230 goto out; 24231 } 24232 iocb.ic_cmd = SIOCLIFREMOVEIF; 24233 iocb.ic_timout = 15; 24234 iocb.ic_len = sizeof (lifreq); 24235 iocb.ic_dp = (char *)&lifreq; 24236 24237 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24238 /* LINTED - statement has no consequent */ 24239 if (error) { 24240 #ifdef NS_DEBUG 24241 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24242 "UDP6 error %d\n", error); 24243 #endif 24244 } 24245 (void) ldi_close(lh, FREAD|FWRITE, cr); 24246 lh = NULL; 24247 24248 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24249 if (error) { 24250 #ifdef NS_DEBUG 24251 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24252 error); 24253 #endif 24254 goto out; 24255 } 24256 24257 iocb.ic_cmd = SIOCLIFREMOVEIF; 24258 iocb.ic_timout = 15; 24259 iocb.ic_len = sizeof (lifreq); 24260 iocb.ic_dp = (char *)&lifreq; 24261 24262 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24263 /* LINTED - statement has no consequent */ 24264 if (error) { 24265 #ifdef NS_DEBUG 24266 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24267 "UDP error %d\n", error); 24268 #endif 24269 } 24270 (void) ldi_close(lh, FREAD|FWRITE, cr); 24271 lh = NULL; 24272 24273 out: 24274 /* Close layered handles */ 24275 if (lh) 24276 (void) ldi_close(lh, FREAD|FWRITE, cr); 24277 if (li) 24278 ldi_ident_release(li); 24279 24280 crfree(cr); 24281 } 24282 24283 /* 24284 * This needs to be in-sync with nic_event_t definition 24285 */ 24286 static const char * 24287 ill_hook_event2str(nic_event_t event) 24288 { 24289 switch (event) { 24290 case NE_PLUMB: 24291 return ("PLUMB"); 24292 case NE_UNPLUMB: 24293 return ("UNPLUMB"); 24294 case NE_UP: 24295 return ("UP"); 24296 case NE_DOWN: 24297 return ("DOWN"); 24298 case NE_ADDRESS_CHANGE: 24299 return ("ADDRESS_CHANGE"); 24300 default: 24301 return ("UNKNOWN"); 24302 } 24303 } 24304 24305 static void 24306 ill_hook_event_destroy(ill_t *ill) 24307 { 24308 hook_nic_event_t *info; 24309 24310 if ((info = ill->ill_nic_event_info) != NULL) { 24311 if (info->hne_data != NULL) 24312 kmem_free(info->hne_data, info->hne_datalen); 24313 kmem_free(info, sizeof (hook_nic_event_t)); 24314 24315 ill->ill_nic_event_info = NULL; 24316 } 24317 24318 } 24319 24320 boolean_t 24321 ill_hook_event_create(ill_t *ill, lif_if_t lif, nic_event_t event, 24322 nic_event_data_t data, size_t datalen) 24323 { 24324 ip_stack_t *ipst = ill->ill_ipst; 24325 hook_nic_event_t *info; 24326 const char *str = NULL; 24327 24328 /* destroy nic event info if it exists */ 24329 if ((info = ill->ill_nic_event_info) != NULL) { 24330 str = ill_hook_event2str(info->hne_event); 24331 ip2dbg(("ill_hook_event_create: unexpected nic event %s " 24332 "attached for %s\n", str, ill->ill_name)); 24333 ill_hook_event_destroy(ill); 24334 } 24335 24336 /* create a new nic event info */ 24337 if ((info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP)) == NULL) 24338 goto fail; 24339 24340 ill->ill_nic_event_info = info; 24341 24342 if (event == NE_UNPLUMB) 24343 info->hne_nic = ill->ill_phyint->phyint_ifindex; 24344 else 24345 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 24346 info->hne_lif = lif; 24347 info->hne_event = event; 24348 info->hne_family = ill->ill_isv6 ? 24349 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 24350 info->hne_data = NULL; 24351 info->hne_datalen = 0; 24352 24353 if (data != NULL && datalen != 0) { 24354 info->hne_data = kmem_alloc(datalen, KM_NOSLEEP); 24355 if (info->hne_data != NULL) { 24356 bcopy(data, info->hne_data, datalen); 24357 info->hne_datalen = datalen; 24358 } else { 24359 ill_hook_event_destroy(ill); 24360 goto fail; 24361 } 24362 } 24363 24364 return (B_TRUE); 24365 fail: 24366 str = ill_hook_event2str(event); 24367 ip2dbg(("ill_hook_event_create: could not attach %s nic event " 24368 "information for %s (ENOMEM)\n", str, ill->ill_name)); 24369 return (B_FALSE); 24370 } 24371