1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/ip_arp.h> 76 #include <inet/mib2.h> 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_ire.h> 83 #include <inet/ip_ftable.h> 84 #include <inet/ip_rts.h> 85 #include <inet/ip_ndp.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_impl.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 #include <inet/ilb_ip.h> 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac_client.h> 96 #include <sys/dld.h> 97 98 #include <sys/systeminfo.h> 99 #include <sys/bootconf.h> 100 101 #include <sys/tsol/tndb.h> 102 #include <sys/tsol/tnet.h> 103 104 /* The character which tells where the ill_name ends */ 105 #define IPIF_SEPARATOR_CHAR ':' 106 107 /* IP ioctl function table entry */ 108 typedef struct ipft_s { 109 int ipft_cmd; 110 pfi_t ipft_pfi; 111 int ipft_min_size; 112 int ipft_flags; 113 } ipft_t; 114 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 115 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 116 117 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 118 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 119 char *value, caddr_t cp, cred_t *ioc_cr); 120 121 static boolean_t ill_is_quiescent(ill_t *); 122 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 123 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 124 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 125 mblk_t *mp, boolean_t need_up); 126 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 127 mblk_t *mp, boolean_t need_up); 128 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 129 queue_t *q, mblk_t *mp, boolean_t need_up); 130 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 131 mblk_t *mp); 132 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp); 134 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 135 queue_t *q, mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 137 int ioccmd, struct linkblk *li); 138 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 139 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 140 static void ipsq_flush(ill_t *ill); 141 142 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static void ipsq_delete(ipsq_t *); 145 146 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 147 boolean_t initialize, boolean_t insert); 148 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 149 static void ipif_delete_bcast_ires(ipif_t *ipif); 150 static int ipif_add_ires_v4(ipif_t *, boolean_t); 151 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 152 boolean_t isv6); 153 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 154 static void ipif_free(ipif_t *ipif); 155 static void ipif_free_tail(ipif_t *ipif); 156 static void ipif_set_default(ipif_t *ipif); 157 static int ipif_set_values(queue_t *q, mblk_t *mp, 158 char *interf_name, uint_t *ppa); 159 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 160 queue_t *q); 161 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 162 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 163 ip_stack_t *); 164 165 static int ill_alloc_ppa(ill_if_t *, ill_t *); 166 static void ill_delete_interface_type(ill_if_t *); 167 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 168 static void ill_dl_down(ill_t *ill); 169 static void ill_down(ill_t *ill); 170 static void ill_free_mib(ill_t *ill); 171 static void ill_glist_delete(ill_t *); 172 static void ill_phyint_reinit(ill_t *ill); 173 static void ill_set_nce_router_flags(ill_t *, boolean_t); 174 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 175 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 176 177 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 178 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 179 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 180 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 181 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 182 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 183 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 184 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 185 static ip_v4mapinfo_func_t ip_mbcast_mapping; 186 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 187 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 188 static void phyint_free(phyint_t *); 189 190 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 191 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 192 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 193 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 194 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 195 dl_capability_sub_t *); 196 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 197 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 198 static void ill_capability_dld_ack(ill_t *, mblk_t *, 199 dl_capability_sub_t *); 200 static void ill_capability_dld_enable(ill_t *); 201 static void ill_capability_ack_thr(void *); 202 static void ill_capability_lso_enable(ill_t *); 203 static void ill_capability_send(ill_t *, mblk_t *); 204 205 static ill_t *ill_prev_usesrc(ill_t *); 206 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 207 static void ill_disband_usesrc_group(ill_t *); 208 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 209 210 #ifdef DEBUG 211 static void ill_trace_cleanup(const ill_t *); 212 static void ipif_trace_cleanup(const ipif_t *); 213 #endif 214 215 /* 216 * if we go over the memory footprint limit more than once in this msec 217 * interval, we'll start pruning aggressively. 218 */ 219 int ip_min_frag_prune_time = 0; 220 221 static ipft_t ip_ioctl_ftbl[] = { 222 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 223 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 224 IPFT_F_NO_REPLY }, 225 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 226 { 0 } 227 }; 228 229 /* Simple ICMP IP Header Template */ 230 static ipha_t icmp_ipha = { 231 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 232 }; 233 234 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 235 236 static ip_m_t ip_m_tbl[] = { 237 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 238 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 239 ip_nodef_v6intfid }, 240 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 241 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 242 ip_nodef_v6intfid }, 243 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 244 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 245 ip_nodef_v6intfid }, 246 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 247 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 248 ip_nodef_v6intfid }, 249 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 250 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 251 ip_nodef_v6intfid }, 252 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 256 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 257 ip_ipv4_v6destintfid }, 258 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 259 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 260 ip_ipv6_v6destintfid }, 261 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 262 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 263 ip_nodef_v6intfid }, 264 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 265 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 266 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 267 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 268 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 269 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 270 ip_nodef_v6intfid } 271 }; 272 273 static ill_t ill_null; /* Empty ILL for init. */ 274 char ipif_loopback_name[] = "lo0"; 275 static char *ipv4_forward_suffix = ":ip_forwarding"; 276 static char *ipv6_forward_suffix = ":ip6_forwarding"; 277 static sin6_t sin6_null; /* Zero address for quick clears */ 278 static sin_t sin_null; /* Zero address for quick clears */ 279 280 /* When set search for unused ipif_seqid */ 281 static ipif_t ipif_zero; 282 283 /* 284 * ppa arena is created after these many 285 * interfaces have been plumbed. 286 */ 287 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 288 289 /* 290 * Allocate per-interface mibs. 291 * Returns true if ok. False otherwise. 292 * ipsq may not yet be allocated (loopback case ). 293 */ 294 static boolean_t 295 ill_allocate_mibs(ill_t *ill) 296 { 297 /* Already allocated? */ 298 if (ill->ill_ip_mib != NULL) { 299 if (ill->ill_isv6) 300 ASSERT(ill->ill_icmp6_mib != NULL); 301 return (B_TRUE); 302 } 303 304 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 305 KM_NOSLEEP); 306 if (ill->ill_ip_mib == NULL) { 307 return (B_FALSE); 308 } 309 310 /* Setup static information */ 311 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 312 sizeof (mib2_ipIfStatsEntry_t)); 313 if (ill->ill_isv6) { 314 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 315 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 316 sizeof (mib2_ipv6AddrEntry_t)); 317 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 318 sizeof (mib2_ipv6RouteEntry_t)); 319 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 320 sizeof (mib2_ipv6NetToMediaEntry_t)); 321 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 322 sizeof (ipv6_member_t)); 323 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 324 sizeof (ipv6_grpsrc_t)); 325 } else { 326 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 327 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 328 sizeof (mib2_ipAddrEntry_t)); 329 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 330 sizeof (mib2_ipRouteEntry_t)); 331 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 332 sizeof (mib2_ipNetToMediaEntry_t)); 333 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 334 sizeof (ip_member_t)); 335 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 336 sizeof (ip_grpsrc_t)); 337 338 /* 339 * For a v4 ill, we are done at this point, because per ill 340 * icmp mibs are only used for v6. 341 */ 342 return (B_TRUE); 343 } 344 345 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 346 KM_NOSLEEP); 347 if (ill->ill_icmp6_mib == NULL) { 348 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 349 ill->ill_ip_mib = NULL; 350 return (B_FALSE); 351 } 352 /* static icmp info */ 353 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 354 sizeof (mib2_ipv6IfIcmpEntry_t); 355 /* 356 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 357 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 358 * -> ill_phyint_reinit 359 */ 360 return (B_TRUE); 361 } 362 363 /* 364 * Completely vaporize a lower level tap and all associated interfaces. 365 * ill_delete is called only out of ip_close when the device control 366 * stream is being closed. 367 */ 368 void 369 ill_delete(ill_t *ill) 370 { 371 ipif_t *ipif; 372 ill_t *prev_ill; 373 ip_stack_t *ipst = ill->ill_ipst; 374 375 /* 376 * ill_delete may be forcibly entering the ipsq. The previous 377 * ioctl may not have completed and may need to be aborted. 378 * ipsq_flush takes care of it. If we don't need to enter the 379 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 380 * ill_delete_tail is sufficient. 381 */ 382 ipsq_flush(ill); 383 384 /* 385 * Nuke all interfaces. ipif_free will take down the interface, 386 * remove it from the list, and free the data structure. 387 * Walk down the ipif list and remove the logical interfaces 388 * first before removing the main ipif. We can't unplumb 389 * zeroth interface first in the case of IPv6 as update_conn_ill 390 * -> ip_ll_multireq de-references ill_ipif for checking 391 * POINTOPOINT. 392 * 393 * If ill_ipif was not properly initialized (i.e low on memory), 394 * then no interfaces to clean up. In this case just clean up the 395 * ill. 396 */ 397 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 398 ipif_free(ipif); 399 400 /* 401 * clean out all the nce_t entries that depend on this 402 * ill for the ill_phys_addr. 403 */ 404 nce_flush(ill, B_TRUE); 405 406 /* Clean up msgs on pending upcalls for mrouted */ 407 reset_mrt_ill(ill); 408 409 update_conn_ill(ill, ipst); 410 411 /* 412 * Remove multicast references added as a result of calls to 413 * ip_join_allmulti(). 414 */ 415 ip_purge_allmulti(ill); 416 417 /* 418 * If the ill being deleted is under IPMP, boot it out of the illgrp. 419 */ 420 if (IS_UNDER_IPMP(ill)) 421 ipmp_ill_leave_illgrp(ill); 422 423 /* 424 * ill_down will arrange to blow off any IRE's dependent on this 425 * ILL, and shut down fragmentation reassembly. 426 */ 427 ill_down(ill); 428 429 /* Let SCTP know, so that it can remove this from its list. */ 430 sctp_update_ill(ill, SCTP_ILL_REMOVE); 431 432 /* 433 * Walk all CONNs that can have a reference on an ire or nce for this 434 * ill (we actually walk all that now have stale references). 435 */ 436 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 437 438 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 439 if (ill->ill_isv6) 440 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 441 442 /* 443 * If an address on this ILL is being used as a source address then 444 * clear out the pointers in other ILLs that point to this ILL. 445 */ 446 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 447 if (ill->ill_usesrc_grp_next != NULL) { 448 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 449 ill_disband_usesrc_group(ill); 450 } else { /* consumer of the usesrc ILL */ 451 prev_ill = ill_prev_usesrc(ill); 452 prev_ill->ill_usesrc_grp_next = 453 ill->ill_usesrc_grp_next; 454 } 455 } 456 rw_exit(&ipst->ips_ill_g_usesrc_lock); 457 } 458 459 static void 460 ipif_non_duplicate(ipif_t *ipif) 461 { 462 ill_t *ill = ipif->ipif_ill; 463 mutex_enter(&ill->ill_lock); 464 if (ipif->ipif_flags & IPIF_DUPLICATE) { 465 ipif->ipif_flags &= ~IPIF_DUPLICATE; 466 ASSERT(ill->ill_ipif_dup_count > 0); 467 ill->ill_ipif_dup_count--; 468 } 469 mutex_exit(&ill->ill_lock); 470 } 471 472 /* 473 * ill_delete_tail is called from ip_modclose after all references 474 * to the closing ill are gone. The wait is done in ip_modclose 475 */ 476 void 477 ill_delete_tail(ill_t *ill) 478 { 479 mblk_t **mpp; 480 ipif_t *ipif; 481 ip_stack_t *ipst = ill->ill_ipst; 482 483 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 484 ipif_non_duplicate(ipif); 485 (void) ipif_down_tail(ipif); 486 } 487 488 ASSERT(ill->ill_ipif_dup_count == 0); 489 490 /* 491 * If polling capability is enabled (which signifies direct 492 * upcall into IP and driver has ill saved as a handle), 493 * we need to make sure that unbind has completed before we 494 * let the ill disappear and driver no longer has any reference 495 * to this ill. 496 */ 497 mutex_enter(&ill->ill_lock); 498 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 499 cv_wait(&ill->ill_cv, &ill->ill_lock); 500 mutex_exit(&ill->ill_lock); 501 ASSERT(!(ill->ill_capabilities & 502 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 503 504 if (ill->ill_net_type != IRE_LOOPBACK) 505 qprocsoff(ill->ill_rq); 506 507 /* 508 * We do an ipsq_flush once again now. New messages could have 509 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 510 * could also have landed up if an ioctl thread had looked up 511 * the ill before we set the ILL_CONDEMNED flag, but not yet 512 * enqueued the ioctl when we did the ipsq_flush last time. 513 */ 514 ipsq_flush(ill); 515 516 /* 517 * Free capabilities. 518 */ 519 if (ill->ill_hcksum_capab != NULL) { 520 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 521 ill->ill_hcksum_capab = NULL; 522 } 523 524 if (ill->ill_zerocopy_capab != NULL) { 525 kmem_free(ill->ill_zerocopy_capab, 526 sizeof (ill_zerocopy_capab_t)); 527 ill->ill_zerocopy_capab = NULL; 528 } 529 530 if (ill->ill_lso_capab != NULL) { 531 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 532 ill->ill_lso_capab = NULL; 533 } 534 535 if (ill->ill_dld_capab != NULL) { 536 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 537 ill->ill_dld_capab = NULL; 538 } 539 540 while (ill->ill_ipif != NULL) 541 ipif_free_tail(ill->ill_ipif); 542 543 /* 544 * We have removed all references to ilm from conn and the ones joined 545 * within the kernel. 546 * 547 * We don't walk conns, mrts and ires because 548 * 549 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 550 * 2) ill_down ->ill_downi walks all the ires and cleans up 551 * ill references. 552 */ 553 554 /* 555 * If this ill is an IPMP meta-interface, blow away the illgrp. This 556 * is safe to do because the illgrp has already been unlinked from the 557 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 558 */ 559 if (IS_IPMP(ill)) { 560 ipmp_illgrp_destroy(ill->ill_grp); 561 ill->ill_grp = NULL; 562 } 563 564 /* 565 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 566 * could free the phyint. No more reference to the phyint after this 567 * point. 568 */ 569 (void) ill_glist_delete(ill); 570 571 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 572 if (ill->ill_ndd_name != NULL) 573 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 574 rw_exit(&ipst->ips_ip_g_nd_lock); 575 576 if (ill->ill_frag_ptr != NULL) { 577 uint_t count; 578 579 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 580 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 581 } 582 mi_free(ill->ill_frag_ptr); 583 ill->ill_frag_ptr = NULL; 584 ill->ill_frag_hash_tbl = NULL; 585 } 586 587 freemsg(ill->ill_nd_lla_mp); 588 /* Free all retained control messages. */ 589 mpp = &ill->ill_first_mp_to_free; 590 do { 591 while (mpp[0]) { 592 mblk_t *mp; 593 mblk_t *mp1; 594 595 mp = mpp[0]; 596 mpp[0] = mp->b_next; 597 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 598 mp1->b_next = NULL; 599 mp1->b_prev = NULL; 600 } 601 freemsg(mp); 602 } 603 } while (mpp++ != &ill->ill_last_mp_to_free); 604 605 ill_free_mib(ill); 606 607 #ifdef DEBUG 608 ill_trace_cleanup(ill); 609 #endif 610 611 /* The default multicast interface might have changed */ 612 ire_increment_multicast_generation(ipst, ill->ill_isv6); 613 614 /* Drop refcnt here */ 615 netstack_rele(ill->ill_ipst->ips_netstack); 616 ill->ill_ipst = NULL; 617 } 618 619 static void 620 ill_free_mib(ill_t *ill) 621 { 622 ip_stack_t *ipst = ill->ill_ipst; 623 624 /* 625 * MIB statistics must not be lost, so when an interface 626 * goes away the counter values will be added to the global 627 * MIBs. 628 */ 629 if (ill->ill_ip_mib != NULL) { 630 if (ill->ill_isv6) { 631 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 632 ill->ill_ip_mib); 633 } else { 634 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 635 ill->ill_ip_mib); 636 } 637 638 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 639 ill->ill_ip_mib = NULL; 640 } 641 if (ill->ill_icmp6_mib != NULL) { 642 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 643 ill->ill_icmp6_mib); 644 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 645 ill->ill_icmp6_mib = NULL; 646 } 647 } 648 649 /* 650 * Concatenate together a physical address and a sap. 651 * 652 * Sap_lengths are interpreted as follows: 653 * sap_length == 0 ==> no sap 654 * sap_length > 0 ==> sap is at the head of the dlpi address 655 * sap_length < 0 ==> sap is at the tail of the dlpi address 656 */ 657 static void 658 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 659 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 660 { 661 uint16_t sap_addr = (uint16_t)sap_src; 662 663 if (sap_length == 0) { 664 if (phys_src == NULL) 665 bzero(dst, phys_length); 666 else 667 bcopy(phys_src, dst, phys_length); 668 } else if (sap_length < 0) { 669 if (phys_src == NULL) 670 bzero(dst, phys_length); 671 else 672 bcopy(phys_src, dst, phys_length); 673 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 674 } else { 675 bcopy(&sap_addr, dst, sizeof (sap_addr)); 676 if (phys_src == NULL) 677 bzero((char *)dst + sap_length, phys_length); 678 else 679 bcopy(phys_src, (char *)dst + sap_length, phys_length); 680 } 681 } 682 683 /* 684 * Generate a dl_unitdata_req mblk for the device and address given. 685 * addr_length is the length of the physical portion of the address. 686 * If addr is NULL include an all zero address of the specified length. 687 * TRUE? In any case, addr_length is taken to be the entire length of the 688 * dlpi address, including the absolute value of sap_length. 689 */ 690 mblk_t * 691 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 692 t_scalar_t sap_length) 693 { 694 dl_unitdata_req_t *dlur; 695 mblk_t *mp; 696 t_scalar_t abs_sap_length; /* absolute value */ 697 698 abs_sap_length = ABS(sap_length); 699 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 700 DL_UNITDATA_REQ); 701 if (mp == NULL) 702 return (NULL); 703 dlur = (dl_unitdata_req_t *)mp->b_rptr; 704 /* HACK: accomodate incompatible DLPI drivers */ 705 if (addr_length == 8) 706 addr_length = 6; 707 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 708 dlur->dl_dest_addr_offset = sizeof (*dlur); 709 dlur->dl_priority.dl_min = 0; 710 dlur->dl_priority.dl_max = 0; 711 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 712 (uchar_t *)&dlur[1]); 713 return (mp); 714 } 715 716 /* 717 * Add the pending mp to the list. There can be only 1 pending mp 718 * in the list. Any exclusive ioctl that needs to wait for a response 719 * from another module or driver needs to use this function to set 720 * the ipx_pending_mp to the ioctl mblk and wait for the response from 721 * the other module/driver. This is also used while waiting for the 722 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 723 */ 724 boolean_t 725 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 726 int waitfor) 727 { 728 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 729 730 ASSERT(IAM_WRITER_IPIF(ipif)); 731 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 732 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 733 ASSERT(ipx->ipx_pending_mp == NULL); 734 /* 735 * The caller may be using a different ipif than the one passed into 736 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 737 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 738 * that `ipx_current_ipif == ipif'. 739 */ 740 ASSERT(ipx->ipx_current_ipif != NULL); 741 742 /* 743 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 744 * driver. 745 */ 746 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 747 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 748 (DB_TYPE(add_mp) == M_PCPROTO)); 749 750 if (connp != NULL) { 751 ASSERT(MUTEX_HELD(&connp->conn_lock)); 752 /* 753 * Return error if the conn has started closing. The conn 754 * could have finished cleaning up the pending mp list, 755 * If so we should not add another mp to the list negating 756 * the cleanup. 757 */ 758 if (connp->conn_state_flags & CONN_CLOSING) 759 return (B_FALSE); 760 } 761 mutex_enter(&ipx->ipx_lock); 762 ipx->ipx_pending_ipif = ipif; 763 /* 764 * Note down the queue in b_queue. This will be returned by 765 * ipsq_pending_mp_get. Caller will then use these values to restart 766 * the processing 767 */ 768 add_mp->b_next = NULL; 769 add_mp->b_queue = q; 770 ipx->ipx_pending_mp = add_mp; 771 ipx->ipx_waitfor = waitfor; 772 mutex_exit(&ipx->ipx_lock); 773 774 if (connp != NULL) 775 connp->conn_oper_pending_ill = ipif->ipif_ill; 776 777 return (B_TRUE); 778 } 779 780 /* 781 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 782 * queued in the list. 783 */ 784 mblk_t * 785 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 786 { 787 mblk_t *curr = NULL; 788 ipxop_t *ipx = ipsq->ipsq_xop; 789 790 *connpp = NULL; 791 mutex_enter(&ipx->ipx_lock); 792 if (ipx->ipx_pending_mp == NULL) { 793 mutex_exit(&ipx->ipx_lock); 794 return (NULL); 795 } 796 797 /* There can be only 1 such excl message */ 798 curr = ipx->ipx_pending_mp; 799 ASSERT(curr->b_next == NULL); 800 ipx->ipx_pending_ipif = NULL; 801 ipx->ipx_pending_mp = NULL; 802 ipx->ipx_waitfor = 0; 803 mutex_exit(&ipx->ipx_lock); 804 805 if (CONN_Q(curr->b_queue)) { 806 /* 807 * This mp did a refhold on the conn, at the start of the ioctl. 808 * So we can safely return a pointer to the conn to the caller. 809 */ 810 *connpp = Q_TO_CONN(curr->b_queue); 811 } else { 812 *connpp = NULL; 813 } 814 curr->b_next = NULL; 815 curr->b_prev = NULL; 816 return (curr); 817 } 818 819 /* 820 * Cleanup the ioctl mp queued in ipx_pending_mp 821 * - Called in the ill_delete path 822 * - Called in the M_ERROR or M_HANGUP path on the ill. 823 * - Called in the conn close path. 824 */ 825 boolean_t 826 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 827 { 828 mblk_t *mp; 829 ipxop_t *ipx; 830 queue_t *q; 831 ipif_t *ipif; 832 int cmd; 833 834 ASSERT(IAM_WRITER_ILL(ill)); 835 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 836 837 /* 838 * If connp is null, unconditionally clean up the ipx_pending_mp. 839 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 840 * even if it is meant for another ill, since we have to enqueue 841 * a new mp now in ipx_pending_mp to complete the ipif_down. 842 * If connp is non-null we are called from the conn close path. 843 */ 844 mutex_enter(&ipx->ipx_lock); 845 mp = ipx->ipx_pending_mp; 846 if (mp == NULL || (connp != NULL && 847 mp->b_queue != CONNP_TO_WQ(connp))) { 848 mutex_exit(&ipx->ipx_lock); 849 return (B_FALSE); 850 } 851 /* Now remove from the ipx_pending_mp */ 852 ipx->ipx_pending_mp = NULL; 853 q = mp->b_queue; 854 mp->b_next = NULL; 855 mp->b_prev = NULL; 856 mp->b_queue = NULL; 857 858 ipif = ipx->ipx_pending_ipif; 859 ipx->ipx_pending_ipif = NULL; 860 ipx->ipx_waitfor = 0; 861 ipx->ipx_current_ipif = NULL; 862 cmd = ipx->ipx_current_ioctl; 863 ipx->ipx_current_ioctl = 0; 864 ipx->ipx_current_done = B_TRUE; 865 mutex_exit(&ipx->ipx_lock); 866 867 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 868 DTRACE_PROBE4(ipif__ioctl, 869 char *, "ipsq_pending_mp_cleanup", 870 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 871 ipif_t *, ipif); 872 if (connp == NULL) { 873 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 874 } else { 875 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 876 mutex_enter(&ipif->ipif_ill->ill_lock); 877 ipif->ipif_state_flags &= ~IPIF_CHANGING; 878 mutex_exit(&ipif->ipif_ill->ill_lock); 879 } 880 } else { 881 /* 882 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 883 * be just inet_freemsg. we have to restart it 884 * otherwise the thread will be stuck. 885 */ 886 inet_freemsg(mp); 887 } 888 return (B_TRUE); 889 } 890 891 /* 892 * Called in the conn close path and ill delete path 893 */ 894 static void 895 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 896 { 897 ipsq_t *ipsq; 898 mblk_t *prev; 899 mblk_t *curr; 900 mblk_t *next; 901 queue_t *q; 902 mblk_t *tmp_list = NULL; 903 904 ASSERT(IAM_WRITER_ILL(ill)); 905 if (connp != NULL) 906 q = CONNP_TO_WQ(connp); 907 else 908 q = ill->ill_wq; 909 910 ipsq = ill->ill_phyint->phyint_ipsq; 911 /* 912 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 913 * In the case of ioctl from a conn, there can be only 1 mp 914 * queued on the ipsq. If an ill is being unplumbed, only messages 915 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 916 * ioctls meant for this ill form conn's are not flushed. They will 917 * be processed during ipsq_exit and will not find the ill and will 918 * return error. 919 */ 920 mutex_enter(&ipsq->ipsq_lock); 921 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 922 curr = next) { 923 next = curr->b_next; 924 if (curr->b_queue == q || curr->b_queue == RD(q)) { 925 /* Unlink the mblk from the pending mp list */ 926 if (prev != NULL) { 927 prev->b_next = curr->b_next; 928 } else { 929 ASSERT(ipsq->ipsq_xopq_mphead == curr); 930 ipsq->ipsq_xopq_mphead = curr->b_next; 931 } 932 if (ipsq->ipsq_xopq_mptail == curr) 933 ipsq->ipsq_xopq_mptail = prev; 934 /* 935 * Create a temporary list and release the ipsq lock 936 * New elements are added to the head of the tmp_list 937 */ 938 curr->b_next = tmp_list; 939 tmp_list = curr; 940 } else { 941 prev = curr; 942 } 943 } 944 mutex_exit(&ipsq->ipsq_lock); 945 946 while (tmp_list != NULL) { 947 curr = tmp_list; 948 tmp_list = curr->b_next; 949 curr->b_next = NULL; 950 curr->b_prev = NULL; 951 curr->b_queue = NULL; 952 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 953 DTRACE_PROBE4(ipif__ioctl, 954 char *, "ipsq_xopq_mp_cleanup", 955 int, 0, ill_t *, NULL, ipif_t *, NULL); 956 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 957 CONN_CLOSE : NO_COPYOUT, NULL); 958 } else { 959 /* 960 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 961 * this can't be just inet_freemsg. we have to 962 * restart it otherwise the thread will be stuck. 963 */ 964 inet_freemsg(curr); 965 } 966 } 967 } 968 969 /* 970 * This conn has started closing. Cleanup any pending ioctl from this conn. 971 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 972 */ 973 void 974 conn_ioctl_cleanup(conn_t *connp) 975 { 976 ipsq_t *ipsq; 977 ill_t *ill; 978 boolean_t refheld; 979 980 /* 981 * Is any exclusive ioctl pending ? If so clean it up. If the 982 * ioctl has not yet started, the mp is pending in the list headed by 983 * ipsq_xopq_head. If the ioctl has started the mp could be present in 984 * ipx_pending_mp. If the ioctl timed out in the streamhead but 985 * is currently executing now the mp is not queued anywhere but 986 * conn_oper_pending_ill is null. The conn close will wait 987 * till the conn_ref drops to zero. 988 */ 989 mutex_enter(&connp->conn_lock); 990 ill = connp->conn_oper_pending_ill; 991 if (ill == NULL) { 992 mutex_exit(&connp->conn_lock); 993 return; 994 } 995 996 /* 997 * We may not be able to refhold the ill if the ill/ipif 998 * is changing. But we need to make sure that the ill will 999 * not vanish. So we just bump up the ill_waiter count. 1000 */ 1001 refheld = ill_waiter_inc(ill); 1002 mutex_exit(&connp->conn_lock); 1003 if (refheld) { 1004 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1005 ill_waiter_dcr(ill); 1006 /* 1007 * Check whether this ioctl has started and is 1008 * pending. If it is not found there then check 1009 * whether this ioctl has not even started and is in 1010 * the ipsq_xopq list. 1011 */ 1012 if (!ipsq_pending_mp_cleanup(ill, connp)) 1013 ipsq_xopq_mp_cleanup(ill, connp); 1014 ipsq = ill->ill_phyint->phyint_ipsq; 1015 ipsq_exit(ipsq); 1016 return; 1017 } 1018 } 1019 1020 /* 1021 * The ill is also closing and we could not bump up the 1022 * ill_waiter_count or we could not enter the ipsq. Leave 1023 * the cleanup to ill_delete 1024 */ 1025 mutex_enter(&connp->conn_lock); 1026 while (connp->conn_oper_pending_ill != NULL) 1027 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1028 mutex_exit(&connp->conn_lock); 1029 if (refheld) 1030 ill_waiter_dcr(ill); 1031 } 1032 1033 /* 1034 * ipcl_walk function for cleaning up conn_*_ill fields. 1035 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1036 * conn_bound_if in place. We prefer dropping 1037 * packets instead of sending them out the wrong interface, or accepting 1038 * packets from the wrong ifindex. 1039 */ 1040 static void 1041 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1042 { 1043 ill_t *ill = (ill_t *)arg; 1044 1045 mutex_enter(&connp->conn_lock); 1046 if (connp->conn_dhcpinit_ill == ill) { 1047 connp->conn_dhcpinit_ill = NULL; 1048 ASSERT(ill->ill_dhcpinit != 0); 1049 atomic_dec_32(&ill->ill_dhcpinit); 1050 ill_set_inputfn(ill); 1051 } 1052 mutex_exit(&connp->conn_lock); 1053 } 1054 1055 static int 1056 ill_down_ipifs_tail(ill_t *ill) 1057 { 1058 ipif_t *ipif; 1059 int err; 1060 1061 ASSERT(IAM_WRITER_ILL(ill)); 1062 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1063 ipif_non_duplicate(ipif); 1064 /* 1065 * ipif_down_tail will call arp_ll_down on the last ipif 1066 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1067 */ 1068 if ((err = ipif_down_tail(ipif)) != 0) 1069 return (err); 1070 } 1071 return (0); 1072 } 1073 1074 /* ARGSUSED */ 1075 void 1076 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1077 { 1078 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1079 (void) ill_down_ipifs_tail(q->q_ptr); 1080 freemsg(mp); 1081 ipsq_current_finish(ipsq); 1082 } 1083 1084 /* 1085 * ill_down_start is called when we want to down this ill and bring it up again 1086 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1087 * all interfaces, but don't tear down any plumbing. 1088 */ 1089 boolean_t 1090 ill_down_start(queue_t *q, mblk_t *mp) 1091 { 1092 ill_t *ill = q->q_ptr; 1093 ipif_t *ipif; 1094 1095 ASSERT(IAM_WRITER_ILL(ill)); 1096 mutex_enter(&ill->ill_lock); 1097 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 1098 /* no more nce addition allowed */ 1099 mutex_exit(&ill->ill_lock); 1100 1101 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1102 (void) ipif_down(ipif, NULL, NULL); 1103 1104 ill_down(ill); 1105 1106 /* 1107 * Walk all CONNs that can have a reference on an ire or nce for this 1108 * ill (we actually walk all that now have stale references). 1109 */ 1110 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1111 1112 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1113 if (ill->ill_isv6) 1114 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1115 1116 1117 (void) ipsq_pending_mp_cleanup(ill, NULL); 1118 1119 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1120 1121 /* 1122 * Atomically test and add the pending mp if references are active. 1123 */ 1124 mutex_enter(&ill->ill_lock); 1125 if (!ill_is_quiescent(ill)) { 1126 /* call cannot fail since `conn_t *' argument is NULL */ 1127 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1128 mp, ILL_DOWN); 1129 mutex_exit(&ill->ill_lock); 1130 return (B_FALSE); 1131 } 1132 mutex_exit(&ill->ill_lock); 1133 return (B_TRUE); 1134 } 1135 1136 static void 1137 ill_down(ill_t *ill) 1138 { 1139 mblk_t *mp; 1140 ip_stack_t *ipst = ill->ill_ipst; 1141 1142 /* 1143 * Blow off any IREs dependent on this ILL. 1144 * The caller needs to handle conn_ixa_cleanup 1145 */ 1146 ill_delete_ires(ill); 1147 1148 ire_walk_ill(0, 0, ill_downi, ill, ill); 1149 1150 /* Remove any conn_*_ill depending on this ill */ 1151 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1152 1153 /* 1154 * Free state for additional IREs. 1155 */ 1156 mutex_enter(&ill->ill_saved_ire_lock); 1157 mp = ill->ill_saved_ire_mp; 1158 ill->ill_saved_ire_mp = NULL; 1159 ill->ill_saved_ire_cnt = 0; 1160 mutex_exit(&ill->ill_saved_ire_lock); 1161 freemsg(mp); 1162 } 1163 1164 /* 1165 * ire_walk routine used to delete every IRE that depends on 1166 * 'ill'. (Always called as writer.) 1167 * 1168 * Note: since the routes added by the kernel are deleted separately, 1169 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1170 * 1171 * We also remove references on ire_nce_cache entries that refer to the ill. 1172 */ 1173 void 1174 ill_downi(ire_t *ire, char *ill_arg) 1175 { 1176 ill_t *ill = (ill_t *)ill_arg; 1177 nce_t *nce; 1178 1179 mutex_enter(&ire->ire_lock); 1180 nce = ire->ire_nce_cache; 1181 if (nce != NULL && nce->nce_ill == ill) 1182 ire->ire_nce_cache = NULL; 1183 else 1184 nce = NULL; 1185 mutex_exit(&ire->ire_lock); 1186 if (nce != NULL) 1187 nce_refrele(nce); 1188 if (ire->ire_ill == ill) 1189 ire_delete(ire); 1190 } 1191 1192 /* Remove IRE_IF_CLONE on this ill */ 1193 void 1194 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1195 { 1196 ill_t *ill = (ill_t *)ill_arg; 1197 1198 ASSERT(ire->ire_type & IRE_IF_CLONE); 1199 if (ire->ire_ill == ill) 1200 ire_delete(ire); 1201 } 1202 1203 /* Consume an M_IOCACK of the fastpath probe. */ 1204 void 1205 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1206 { 1207 mblk_t *mp1 = mp; 1208 1209 /* 1210 * If this was the first attempt turn on the fastpath probing. 1211 */ 1212 mutex_enter(&ill->ill_lock); 1213 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1214 ill->ill_dlpi_fastpath_state = IDS_OK; 1215 mutex_exit(&ill->ill_lock); 1216 1217 /* Free the M_IOCACK mblk, hold on to the data */ 1218 mp = mp->b_cont; 1219 freeb(mp1); 1220 if (mp == NULL) 1221 return; 1222 if (mp->b_cont != NULL) 1223 nce_fastpath_update(ill, mp); 1224 else 1225 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1226 freemsg(mp); 1227 } 1228 1229 /* 1230 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1231 * The data portion of the request is a dl_unitdata_req_t template for 1232 * what we would send downstream in the absence of a fastpath confirmation. 1233 */ 1234 int 1235 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1236 { 1237 struct iocblk *ioc; 1238 mblk_t *mp; 1239 1240 if (dlur_mp == NULL) 1241 return (EINVAL); 1242 1243 mutex_enter(&ill->ill_lock); 1244 switch (ill->ill_dlpi_fastpath_state) { 1245 case IDS_FAILED: 1246 /* 1247 * Driver NAKed the first fastpath ioctl - assume it doesn't 1248 * support it. 1249 */ 1250 mutex_exit(&ill->ill_lock); 1251 return (ENOTSUP); 1252 case IDS_UNKNOWN: 1253 /* This is the first probe */ 1254 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1255 break; 1256 default: 1257 break; 1258 } 1259 mutex_exit(&ill->ill_lock); 1260 1261 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1262 return (EAGAIN); 1263 1264 mp->b_cont = copyb(dlur_mp); 1265 if (mp->b_cont == NULL) { 1266 freeb(mp); 1267 return (EAGAIN); 1268 } 1269 1270 ioc = (struct iocblk *)mp->b_rptr; 1271 ioc->ioc_count = msgdsize(mp->b_cont); 1272 1273 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1274 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1275 putnext(ill->ill_wq, mp); 1276 return (0); 1277 } 1278 1279 void 1280 ill_capability_probe(ill_t *ill) 1281 { 1282 mblk_t *mp; 1283 1284 ASSERT(IAM_WRITER_ILL(ill)); 1285 1286 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1287 ill->ill_dlpi_capab_state != IDCS_FAILED) 1288 return; 1289 1290 /* 1291 * We are starting a new cycle of capability negotiation. 1292 * Free up the capab reset messages of any previous incarnation. 1293 * We will do a fresh allocation when we get the response to our probe 1294 */ 1295 if (ill->ill_capab_reset_mp != NULL) { 1296 freemsg(ill->ill_capab_reset_mp); 1297 ill->ill_capab_reset_mp = NULL; 1298 } 1299 1300 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1301 1302 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1303 if (mp == NULL) 1304 return; 1305 1306 ill_capability_send(ill, mp); 1307 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1308 } 1309 1310 void 1311 ill_capability_reset(ill_t *ill, boolean_t reneg) 1312 { 1313 ASSERT(IAM_WRITER_ILL(ill)); 1314 1315 if (ill->ill_dlpi_capab_state != IDCS_OK) 1316 return; 1317 1318 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1319 1320 ill_capability_send(ill, ill->ill_capab_reset_mp); 1321 ill->ill_capab_reset_mp = NULL; 1322 /* 1323 * We turn off all capabilities except those pertaining to 1324 * direct function call capabilities viz. ILL_CAPAB_DLD* 1325 * which will be turned off by the corresponding reset functions. 1326 */ 1327 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1328 } 1329 1330 static void 1331 ill_capability_reset_alloc(ill_t *ill) 1332 { 1333 mblk_t *mp; 1334 size_t size = 0; 1335 int err; 1336 dl_capability_req_t *capb; 1337 1338 ASSERT(IAM_WRITER_ILL(ill)); 1339 ASSERT(ill->ill_capab_reset_mp == NULL); 1340 1341 if (ILL_HCKSUM_CAPABLE(ill)) { 1342 size += sizeof (dl_capability_sub_t) + 1343 sizeof (dl_capab_hcksum_t); 1344 } 1345 1346 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1347 size += sizeof (dl_capability_sub_t) + 1348 sizeof (dl_capab_zerocopy_t); 1349 } 1350 1351 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1352 size += sizeof (dl_capability_sub_t) + 1353 sizeof (dl_capab_dld_t); 1354 } 1355 1356 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1357 STR_NOSIG, &err); 1358 1359 mp->b_datap->db_type = M_PROTO; 1360 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1361 1362 capb = (dl_capability_req_t *)mp->b_rptr; 1363 capb->dl_primitive = DL_CAPABILITY_REQ; 1364 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1365 capb->dl_sub_length = size; 1366 1367 mp->b_wptr += sizeof (dl_capability_req_t); 1368 1369 /* 1370 * Each handler fills in the corresponding dl_capability_sub_t 1371 * inside the mblk, 1372 */ 1373 ill_capability_hcksum_reset_fill(ill, mp); 1374 ill_capability_zerocopy_reset_fill(ill, mp); 1375 ill_capability_dld_reset_fill(ill, mp); 1376 1377 ill->ill_capab_reset_mp = mp; 1378 } 1379 1380 static void 1381 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1382 { 1383 dl_capab_id_t *id_ic; 1384 uint_t sub_dl_cap = outers->dl_cap; 1385 dl_capability_sub_t *inners; 1386 uint8_t *capend; 1387 1388 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1389 1390 /* 1391 * Note: range checks here are not absolutely sufficient to 1392 * make us robust against malformed messages sent by drivers; 1393 * this is in keeping with the rest of IP's dlpi handling. 1394 * (Remember, it's coming from something else in the kernel 1395 * address space) 1396 */ 1397 1398 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1399 if (capend > mp->b_wptr) { 1400 cmn_err(CE_WARN, "ill_capability_id_ack: " 1401 "malformed sub-capability too long for mblk"); 1402 return; 1403 } 1404 1405 id_ic = (dl_capab_id_t *)(outers + 1); 1406 1407 if (outers->dl_length < sizeof (*id_ic) || 1408 (inners = &id_ic->id_subcap, 1409 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1410 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1411 "encapsulated capab type %d too long for mblk", 1412 inners->dl_cap); 1413 return; 1414 } 1415 1416 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1417 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1418 "isn't as expected; pass-thru module(s) detected, " 1419 "discarding capability\n", inners->dl_cap)); 1420 return; 1421 } 1422 1423 /* Process the encapsulated sub-capability */ 1424 ill_capability_dispatch(ill, mp, inners); 1425 } 1426 1427 static void 1428 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1429 { 1430 dl_capability_sub_t *dl_subcap; 1431 1432 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1433 return; 1434 1435 /* 1436 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1437 * initialized below since it is not used by DLD. 1438 */ 1439 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1440 dl_subcap->dl_cap = DL_CAPAB_DLD; 1441 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1442 1443 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1444 } 1445 1446 static void 1447 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1448 { 1449 switch (subp->dl_cap) { 1450 case DL_CAPAB_HCKSUM: 1451 ill_capability_hcksum_ack(ill, mp, subp); 1452 break; 1453 case DL_CAPAB_ZEROCOPY: 1454 ill_capability_zerocopy_ack(ill, mp, subp); 1455 break; 1456 case DL_CAPAB_DLD: 1457 ill_capability_dld_ack(ill, mp, subp); 1458 break; 1459 default: 1460 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1461 subp->dl_cap)); 1462 } 1463 } 1464 1465 /* 1466 * Process a hardware checksum offload capability negotiation ack received 1467 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1468 * of a DL_CAPABILITY_ACK message. 1469 */ 1470 static void 1471 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1472 { 1473 dl_capability_req_t *ocap; 1474 dl_capab_hcksum_t *ihck, *ohck; 1475 ill_hcksum_capab_t **ill_hcksum; 1476 mblk_t *nmp = NULL; 1477 uint_t sub_dl_cap = isub->dl_cap; 1478 uint8_t *capend; 1479 1480 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1481 1482 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1483 1484 /* 1485 * Note: range checks here are not absolutely sufficient to 1486 * make us robust against malformed messages sent by drivers; 1487 * this is in keeping with the rest of IP's dlpi handling. 1488 * (Remember, it's coming from something else in the kernel 1489 * address space) 1490 */ 1491 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1492 if (capend > mp->b_wptr) { 1493 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1494 "malformed sub-capability too long for mblk"); 1495 return; 1496 } 1497 1498 /* 1499 * There are two types of acks we process here: 1500 * 1. acks in reply to a (first form) generic capability req 1501 * (no ENABLE flag set) 1502 * 2. acks in reply to a ENABLE capability req. 1503 * (ENABLE flag set) 1504 */ 1505 ihck = (dl_capab_hcksum_t *)(isub + 1); 1506 1507 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1508 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1509 "unsupported hardware checksum " 1510 "sub-capability (version %d, expected %d)", 1511 ihck->hcksum_version, HCKSUM_VERSION_1); 1512 return; 1513 } 1514 1515 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1516 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1517 "checksum capability isn't as expected; pass-thru " 1518 "module(s) detected, discarding capability\n")); 1519 return; 1520 } 1521 1522 #define CURR_HCKSUM_CAPAB \ 1523 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1524 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1525 1526 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1527 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1528 /* do ENABLE processing */ 1529 if (*ill_hcksum == NULL) { 1530 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1531 KM_NOSLEEP); 1532 1533 if (*ill_hcksum == NULL) { 1534 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1535 "could not enable hcksum version %d " 1536 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1537 ill->ill_name); 1538 return; 1539 } 1540 } 1541 1542 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1543 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1544 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1545 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1546 "has enabled hardware checksumming\n ", 1547 ill->ill_name)); 1548 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1549 /* 1550 * Enabling hardware checksum offload 1551 * Currently IP supports {TCP,UDP}/IPv4 1552 * partial and full cksum offload and 1553 * IPv4 header checksum offload. 1554 * Allocate new mblk which will 1555 * contain a new capability request 1556 * to enable hardware checksum offload. 1557 */ 1558 uint_t size; 1559 uchar_t *rptr; 1560 1561 size = sizeof (dl_capability_req_t) + 1562 sizeof (dl_capability_sub_t) + isub->dl_length; 1563 1564 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1565 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1566 "could not enable hardware cksum for %s (ENOMEM)\n", 1567 ill->ill_name); 1568 return; 1569 } 1570 1571 rptr = nmp->b_rptr; 1572 /* initialize dl_capability_req_t */ 1573 ocap = (dl_capability_req_t *)nmp->b_rptr; 1574 ocap->dl_sub_offset = 1575 sizeof (dl_capability_req_t); 1576 ocap->dl_sub_length = 1577 sizeof (dl_capability_sub_t) + 1578 isub->dl_length; 1579 nmp->b_rptr += sizeof (dl_capability_req_t); 1580 1581 /* initialize dl_capability_sub_t */ 1582 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1583 nmp->b_rptr += sizeof (*isub); 1584 1585 /* initialize dl_capab_hcksum_t */ 1586 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1587 bcopy(ihck, ohck, sizeof (*ihck)); 1588 1589 nmp->b_rptr = rptr; 1590 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1591 1592 /* Set ENABLE flag */ 1593 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1594 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1595 1596 /* 1597 * nmp points to a DL_CAPABILITY_REQ message to enable 1598 * hardware checksum acceleration. 1599 */ 1600 ill_capability_send(ill, nmp); 1601 } else { 1602 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1603 "advertised %x hardware checksum capability flags\n", 1604 ill->ill_name, ihck->hcksum_txflags)); 1605 } 1606 } 1607 1608 static void 1609 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1610 { 1611 dl_capab_hcksum_t *hck_subcap; 1612 dl_capability_sub_t *dl_subcap; 1613 1614 if (!ILL_HCKSUM_CAPABLE(ill)) 1615 return; 1616 1617 ASSERT(ill->ill_hcksum_capab != NULL); 1618 1619 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1620 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1621 dl_subcap->dl_length = sizeof (*hck_subcap); 1622 1623 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1624 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1625 hck_subcap->hcksum_txflags = 0; 1626 1627 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1628 } 1629 1630 static void 1631 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1632 { 1633 mblk_t *nmp = NULL; 1634 dl_capability_req_t *oc; 1635 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1636 ill_zerocopy_capab_t **ill_zerocopy_capab; 1637 uint_t sub_dl_cap = isub->dl_cap; 1638 uint8_t *capend; 1639 1640 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1641 1642 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1643 1644 /* 1645 * Note: range checks here are not absolutely sufficient to 1646 * make us robust against malformed messages sent by drivers; 1647 * this is in keeping with the rest of IP's dlpi handling. 1648 * (Remember, it's coming from something else in the kernel 1649 * address space) 1650 */ 1651 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1652 if (capend > mp->b_wptr) { 1653 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1654 "malformed sub-capability too long for mblk"); 1655 return; 1656 } 1657 1658 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1659 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1660 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1661 "unsupported ZEROCOPY sub-capability (version %d, " 1662 "expected %d)", zc_ic->zerocopy_version, 1663 ZEROCOPY_VERSION_1); 1664 return; 1665 } 1666 1667 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1668 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1669 "capability isn't as expected; pass-thru module(s) " 1670 "detected, discarding capability\n")); 1671 return; 1672 } 1673 1674 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1675 if (*ill_zerocopy_capab == NULL) { 1676 *ill_zerocopy_capab = 1677 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1678 KM_NOSLEEP); 1679 1680 if (*ill_zerocopy_capab == NULL) { 1681 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1682 "could not enable Zero-copy version %d " 1683 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1684 ill->ill_name); 1685 return; 1686 } 1687 } 1688 1689 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1690 "supports Zero-copy version %d\n", ill->ill_name, 1691 ZEROCOPY_VERSION_1)); 1692 1693 (*ill_zerocopy_capab)->ill_zerocopy_version = 1694 zc_ic->zerocopy_version; 1695 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1696 zc_ic->zerocopy_flags; 1697 1698 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1699 } else { 1700 uint_t size; 1701 uchar_t *rptr; 1702 1703 size = sizeof (dl_capability_req_t) + 1704 sizeof (dl_capability_sub_t) + 1705 sizeof (dl_capab_zerocopy_t); 1706 1707 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1708 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1709 "could not enable zerocopy for %s (ENOMEM)\n", 1710 ill->ill_name); 1711 return; 1712 } 1713 1714 rptr = nmp->b_rptr; 1715 /* initialize dl_capability_req_t */ 1716 oc = (dl_capability_req_t *)rptr; 1717 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1718 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1719 sizeof (dl_capab_zerocopy_t); 1720 rptr += sizeof (dl_capability_req_t); 1721 1722 /* initialize dl_capability_sub_t */ 1723 bcopy(isub, rptr, sizeof (*isub)); 1724 rptr += sizeof (*isub); 1725 1726 /* initialize dl_capab_zerocopy_t */ 1727 zc_oc = (dl_capab_zerocopy_t *)rptr; 1728 *zc_oc = *zc_ic; 1729 1730 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1731 "to enable zero-copy version %d\n", ill->ill_name, 1732 ZEROCOPY_VERSION_1)); 1733 1734 /* set VMSAFE_MEM flag */ 1735 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1736 1737 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1738 ill_capability_send(ill, nmp); 1739 } 1740 } 1741 1742 static void 1743 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1744 { 1745 dl_capab_zerocopy_t *zerocopy_subcap; 1746 dl_capability_sub_t *dl_subcap; 1747 1748 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1749 return; 1750 1751 ASSERT(ill->ill_zerocopy_capab != NULL); 1752 1753 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1754 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1755 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1756 1757 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1758 zerocopy_subcap->zerocopy_version = 1759 ill->ill_zerocopy_capab->ill_zerocopy_version; 1760 zerocopy_subcap->zerocopy_flags = 0; 1761 1762 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1763 } 1764 1765 /* 1766 * DLD capability 1767 * Refer to dld.h for more information regarding the purpose and usage 1768 * of this capability. 1769 */ 1770 static void 1771 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1772 { 1773 dl_capab_dld_t *dld_ic, dld; 1774 uint_t sub_dl_cap = isub->dl_cap; 1775 uint8_t *capend; 1776 ill_dld_capab_t *idc; 1777 1778 ASSERT(IAM_WRITER_ILL(ill)); 1779 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1780 1781 /* 1782 * Note: range checks here are not absolutely sufficient to 1783 * make us robust against malformed messages sent by drivers; 1784 * this is in keeping with the rest of IP's dlpi handling. 1785 * (Remember, it's coming from something else in the kernel 1786 * address space) 1787 */ 1788 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1789 if (capend > mp->b_wptr) { 1790 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1791 "malformed sub-capability too long for mblk"); 1792 return; 1793 } 1794 dld_ic = (dl_capab_dld_t *)(isub + 1); 1795 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1796 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1797 "unsupported DLD sub-capability (version %d, " 1798 "expected %d)", dld_ic->dld_version, 1799 DLD_CURRENT_VERSION); 1800 return; 1801 } 1802 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1803 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1804 "capability isn't as expected; pass-thru module(s) " 1805 "detected, discarding capability\n")); 1806 return; 1807 } 1808 1809 /* 1810 * Copy locally to ensure alignment. 1811 */ 1812 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1813 1814 if ((idc = ill->ill_dld_capab) == NULL) { 1815 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1816 if (idc == NULL) { 1817 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1818 "could not enable DLD version %d " 1819 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1820 ill->ill_name); 1821 return; 1822 } 1823 ill->ill_dld_capab = idc; 1824 } 1825 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1826 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1827 ip1dbg(("ill_capability_dld_ack: interface %s " 1828 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1829 1830 ill_capability_dld_enable(ill); 1831 } 1832 1833 /* 1834 * Typically capability negotiation between IP and the driver happens via 1835 * DLPI message exchange. However GLD also offers a direct function call 1836 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1837 * But arbitrary function calls into IP or GLD are not permitted, since both 1838 * of them are protected by their own perimeter mechanism. The perimeter can 1839 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1840 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1841 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1842 * to enter the mac perimeter and then do the direct function calls into 1843 * GLD to enable squeue polling. The ring related callbacks from the mac into 1844 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1845 * protected by the mac perimeter. 1846 */ 1847 static void 1848 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1849 { 1850 ill_dld_capab_t *idc = ill->ill_dld_capab; 1851 int err; 1852 1853 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1854 DLD_ENABLE); 1855 ASSERT(err == 0); 1856 } 1857 1858 static void 1859 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1860 { 1861 ill_dld_capab_t *idc = ill->ill_dld_capab; 1862 int err; 1863 1864 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1865 DLD_DISABLE); 1866 ASSERT(err == 0); 1867 } 1868 1869 boolean_t 1870 ill_mac_perim_held(ill_t *ill) 1871 { 1872 ill_dld_capab_t *idc = ill->ill_dld_capab; 1873 1874 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1875 DLD_QUERY)); 1876 } 1877 1878 static void 1879 ill_capability_direct_enable(ill_t *ill) 1880 { 1881 ill_dld_capab_t *idc = ill->ill_dld_capab; 1882 ill_dld_direct_t *idd = &idc->idc_direct; 1883 dld_capab_direct_t direct; 1884 int rc; 1885 1886 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1887 1888 bzero(&direct, sizeof (direct)); 1889 direct.di_rx_cf = (uintptr_t)ip_input; 1890 direct.di_rx_ch = ill; 1891 1892 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 1893 DLD_ENABLE); 1894 if (rc == 0) { 1895 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 1896 idd->idd_tx_dh = direct.di_tx_dh; 1897 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 1898 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 1899 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 1900 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 1901 ASSERT(idd->idd_tx_cb_df != NULL); 1902 ASSERT(idd->idd_tx_fctl_df != NULL); 1903 ASSERT(idd->idd_tx_df != NULL); 1904 /* 1905 * One time registration of flow enable callback function 1906 */ 1907 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 1908 ill_flow_enable, ill); 1909 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 1910 DTRACE_PROBE1(direct_on, (ill_t *), ill); 1911 } else { 1912 cmn_err(CE_WARN, "warning: could not enable DIRECT " 1913 "capability, rc = %d\n", rc); 1914 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 1915 } 1916 } 1917 1918 static void 1919 ill_capability_poll_enable(ill_t *ill) 1920 { 1921 ill_dld_capab_t *idc = ill->ill_dld_capab; 1922 dld_capab_poll_t poll; 1923 int rc; 1924 1925 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1926 1927 bzero(&poll, sizeof (poll)); 1928 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 1929 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 1930 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 1931 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 1932 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 1933 poll.poll_ring_ch = ill; 1934 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 1935 DLD_ENABLE); 1936 if (rc == 0) { 1937 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 1938 DTRACE_PROBE1(poll_on, (ill_t *), ill); 1939 } else { 1940 ip1dbg(("warning: could not enable POLL " 1941 "capability, rc = %d\n", rc)); 1942 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 1943 } 1944 } 1945 1946 /* 1947 * Enable the LSO capability. 1948 */ 1949 static void 1950 ill_capability_lso_enable(ill_t *ill) 1951 { 1952 ill_dld_capab_t *idc = ill->ill_dld_capab; 1953 dld_capab_lso_t lso; 1954 int rc; 1955 1956 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1957 1958 if (ill->ill_lso_capab == NULL) { 1959 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 1960 KM_NOSLEEP); 1961 if (ill->ill_lso_capab == NULL) { 1962 cmn_err(CE_WARN, "ill_capability_lso_enable: " 1963 "could not enable LSO for %s (ENOMEM)\n", 1964 ill->ill_name); 1965 return; 1966 } 1967 } 1968 1969 bzero(&lso, sizeof (lso)); 1970 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 1971 DLD_ENABLE)) == 0) { 1972 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 1973 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 1974 ill->ill_capabilities |= ILL_CAPAB_LSO; 1975 ip1dbg(("ill_capability_lso_enable: interface %s " 1976 "has enabled LSO\n ", ill->ill_name)); 1977 } else { 1978 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 1979 ill->ill_lso_capab = NULL; 1980 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 1981 } 1982 } 1983 1984 static void 1985 ill_capability_dld_enable(ill_t *ill) 1986 { 1987 mac_perim_handle_t mph; 1988 1989 ASSERT(IAM_WRITER_ILL(ill)); 1990 1991 if (ill->ill_isv6) 1992 return; 1993 1994 ill_mac_perim_enter(ill, &mph); 1995 if (!ill->ill_isv6) { 1996 ill_capability_direct_enable(ill); 1997 ill_capability_poll_enable(ill); 1998 ill_capability_lso_enable(ill); 1999 } 2000 ill->ill_capabilities |= ILL_CAPAB_DLD; 2001 ill_mac_perim_exit(ill, mph); 2002 } 2003 2004 static void 2005 ill_capability_dld_disable(ill_t *ill) 2006 { 2007 ill_dld_capab_t *idc; 2008 ill_dld_direct_t *idd; 2009 mac_perim_handle_t mph; 2010 2011 ASSERT(IAM_WRITER_ILL(ill)); 2012 2013 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2014 return; 2015 2016 ill_mac_perim_enter(ill, &mph); 2017 2018 idc = ill->ill_dld_capab; 2019 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2020 /* 2021 * For performance we avoid locks in the transmit data path 2022 * and don't maintain a count of the number of threads using 2023 * direct calls. Thus some threads could be using direct 2024 * transmit calls to GLD, even after the capability mechanism 2025 * turns it off. This is still safe since the handles used in 2026 * the direct calls continue to be valid until the unplumb is 2027 * completed. Remove the callback that was added (1-time) at 2028 * capab enable time. 2029 */ 2030 mutex_enter(&ill->ill_lock); 2031 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2032 mutex_exit(&ill->ill_lock); 2033 if (ill->ill_flownotify_mh != NULL) { 2034 idd = &idc->idc_direct; 2035 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2036 ill->ill_flownotify_mh); 2037 ill->ill_flownotify_mh = NULL; 2038 } 2039 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2040 NULL, DLD_DISABLE); 2041 } 2042 2043 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2044 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2045 ip_squeue_clean_all(ill); 2046 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2047 NULL, DLD_DISABLE); 2048 } 2049 2050 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2051 ASSERT(ill->ill_lso_capab != NULL); 2052 /* 2053 * Clear the capability flag for LSO but retain the 2054 * ill_lso_capab structure since it's possible that another 2055 * thread is still referring to it. The structure only gets 2056 * deallocated when we destroy the ill. 2057 */ 2058 2059 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2060 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2061 NULL, DLD_DISABLE); 2062 } 2063 2064 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2065 ill_mac_perim_exit(ill, mph); 2066 } 2067 2068 /* 2069 * Capability Negotiation protocol 2070 * 2071 * We don't wait for DLPI capability operations to finish during interface 2072 * bringup or teardown. Doing so would introduce more asynchrony and the 2073 * interface up/down operations will need multiple return and restarts. 2074 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2075 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2076 * exclusive operation won't start until the DLPI operations of the previous 2077 * exclusive operation complete. 2078 * 2079 * The capability state machine is shown below. 2080 * 2081 * state next state event, action 2082 * 2083 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2084 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2085 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2086 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2087 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2088 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2089 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2090 * ill_capability_probe. 2091 */ 2092 2093 /* 2094 * Dedicated thread started from ip_stack_init that handles capability 2095 * disable. This thread ensures the taskq dispatch does not fail by waiting 2096 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2097 * that direct calls to DLD are done in a cv_waitable context. 2098 */ 2099 void 2100 ill_taskq_dispatch(ip_stack_t *ipst) 2101 { 2102 callb_cpr_t cprinfo; 2103 char name[64]; 2104 mblk_t *mp; 2105 2106 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2107 ipst->ips_netstack->netstack_stackid); 2108 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2109 name); 2110 mutex_enter(&ipst->ips_capab_taskq_lock); 2111 2112 for (;;) { 2113 mp = ipst->ips_capab_taskq_head; 2114 while (mp != NULL) { 2115 ipst->ips_capab_taskq_head = mp->b_next; 2116 if (ipst->ips_capab_taskq_head == NULL) 2117 ipst->ips_capab_taskq_tail = NULL; 2118 mutex_exit(&ipst->ips_capab_taskq_lock); 2119 mp->b_next = NULL; 2120 2121 VERIFY(taskq_dispatch(system_taskq, 2122 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2123 mutex_enter(&ipst->ips_capab_taskq_lock); 2124 mp = ipst->ips_capab_taskq_head; 2125 } 2126 2127 if (ipst->ips_capab_taskq_quit) 2128 break; 2129 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2130 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2131 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2132 } 2133 VERIFY(ipst->ips_capab_taskq_head == NULL); 2134 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2135 CALLB_CPR_EXIT(&cprinfo); 2136 thread_exit(); 2137 } 2138 2139 /* 2140 * Consume a new-style hardware capabilities negotiation ack. 2141 * Called via taskq on receipt of DL_CAPABBILITY_ACK. 2142 */ 2143 static void 2144 ill_capability_ack_thr(void *arg) 2145 { 2146 mblk_t *mp = arg; 2147 dl_capability_ack_t *capp; 2148 dl_capability_sub_t *subp, *endp; 2149 ill_t *ill; 2150 boolean_t reneg; 2151 2152 ill = (ill_t *)mp->b_prev; 2153 mp->b_prev = NULL; 2154 2155 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2156 2157 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2158 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2159 /* 2160 * We have received the ack for our DL_CAPAB reset request. 2161 * There isnt' anything in the message that needs processing. 2162 * All message based capabilities have been disabled, now 2163 * do the function call based capability disable. 2164 */ 2165 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2166 ill_capability_dld_disable(ill); 2167 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2168 if (reneg) 2169 ill_capability_probe(ill); 2170 goto done; 2171 } 2172 2173 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2174 ill->ill_dlpi_capab_state = IDCS_OK; 2175 2176 capp = (dl_capability_ack_t *)mp->b_rptr; 2177 2178 if (capp->dl_sub_length == 0) { 2179 /* no new-style capabilities */ 2180 goto done; 2181 } 2182 2183 /* make sure the driver supplied correct dl_sub_length */ 2184 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2185 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2186 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2187 goto done; 2188 } 2189 2190 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2191 /* 2192 * There are sub-capabilities. Process the ones we know about. 2193 * Loop until we don't have room for another sub-cap header.. 2194 */ 2195 for (subp = SC(capp, capp->dl_sub_offset), 2196 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2197 subp <= endp; 2198 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2199 2200 switch (subp->dl_cap) { 2201 case DL_CAPAB_ID_WRAPPER: 2202 ill_capability_id_ack(ill, mp, subp); 2203 break; 2204 default: 2205 ill_capability_dispatch(ill, mp, subp); 2206 break; 2207 } 2208 } 2209 #undef SC 2210 done: 2211 inet_freemsg(mp); 2212 ill_capability_done(ill); 2213 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2214 } 2215 2216 /* 2217 * This needs to be started in a taskq thread to provide a cv_waitable 2218 * context. 2219 */ 2220 void 2221 ill_capability_ack(ill_t *ill, mblk_t *mp) 2222 { 2223 ip_stack_t *ipst = ill->ill_ipst; 2224 2225 mp->b_prev = (mblk_t *)ill; 2226 ASSERT(mp->b_next == NULL); 2227 2228 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2229 TQ_NOSLEEP) != 0) 2230 return; 2231 2232 /* 2233 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2234 * which will do the dispatch using TQ_SLEEP to guarantee success. 2235 */ 2236 mutex_enter(&ipst->ips_capab_taskq_lock); 2237 if (ipst->ips_capab_taskq_head == NULL) { 2238 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2239 ipst->ips_capab_taskq_head = mp; 2240 } else { 2241 ipst->ips_capab_taskq_tail->b_next = mp; 2242 } 2243 ipst->ips_capab_taskq_tail = mp; 2244 2245 cv_signal(&ipst->ips_capab_taskq_cv); 2246 mutex_exit(&ipst->ips_capab_taskq_lock); 2247 } 2248 2249 /* 2250 * This routine is called to scan the fragmentation reassembly table for 2251 * the specified ILL for any packets that are starting to smell. 2252 * dead_interval is the maximum time in seconds that will be tolerated. It 2253 * will either be the value specified in ip_g_frag_timeout, or zero if the 2254 * ILL is shutting down and it is time to blow everything off. 2255 * 2256 * It returns the number of seconds (as a time_t) that the next frag timer 2257 * should be scheduled for, 0 meaning that the timer doesn't need to be 2258 * re-started. Note that the method of calculating next_timeout isn't 2259 * entirely accurate since time will flow between the time we grab 2260 * current_time and the time we schedule the next timeout. This isn't a 2261 * big problem since this is the timer for sending an ICMP reassembly time 2262 * exceeded messages, and it doesn't have to be exactly accurate. 2263 * 2264 * This function is 2265 * sometimes called as writer, although this is not required. 2266 */ 2267 time_t 2268 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2269 { 2270 ipfb_t *ipfb; 2271 ipfb_t *endp; 2272 ipf_t *ipf; 2273 ipf_t *ipfnext; 2274 mblk_t *mp; 2275 time_t current_time = gethrestime_sec(); 2276 time_t next_timeout = 0; 2277 uint32_t hdr_length; 2278 mblk_t *send_icmp_head; 2279 mblk_t *send_icmp_head_v6; 2280 ip_stack_t *ipst = ill->ill_ipst; 2281 ip_recv_attr_t iras; 2282 2283 bzero(&iras, sizeof (iras)); 2284 iras.ira_flags = 0; 2285 iras.ira_ill = iras.ira_rill = ill; 2286 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2287 iras.ira_rifindex = iras.ira_ruifindex; 2288 2289 ipfb = ill->ill_frag_hash_tbl; 2290 if (ipfb == NULL) 2291 return (B_FALSE); 2292 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2293 /* Walk the frag hash table. */ 2294 for (; ipfb < endp; ipfb++) { 2295 send_icmp_head = NULL; 2296 send_icmp_head_v6 = NULL; 2297 mutex_enter(&ipfb->ipfb_lock); 2298 while ((ipf = ipfb->ipfb_ipf) != 0) { 2299 time_t frag_time = current_time - ipf->ipf_timestamp; 2300 time_t frag_timeout; 2301 2302 if (frag_time < dead_interval) { 2303 /* 2304 * There are some outstanding fragments 2305 * that will timeout later. Make note of 2306 * the time so that we can reschedule the 2307 * next timeout appropriately. 2308 */ 2309 frag_timeout = dead_interval - frag_time; 2310 if (next_timeout == 0 || 2311 frag_timeout < next_timeout) { 2312 next_timeout = frag_timeout; 2313 } 2314 break; 2315 } 2316 /* Time's up. Get it out of here. */ 2317 hdr_length = ipf->ipf_nf_hdr_len; 2318 ipfnext = ipf->ipf_hash_next; 2319 if (ipfnext) 2320 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2321 *ipf->ipf_ptphn = ipfnext; 2322 mp = ipf->ipf_mp->b_cont; 2323 for (; mp; mp = mp->b_cont) { 2324 /* Extra points for neatness. */ 2325 IP_REASS_SET_START(mp, 0); 2326 IP_REASS_SET_END(mp, 0); 2327 } 2328 mp = ipf->ipf_mp->b_cont; 2329 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2330 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2331 ipfb->ipfb_count -= ipf->ipf_count; 2332 ASSERT(ipfb->ipfb_frag_pkts > 0); 2333 ipfb->ipfb_frag_pkts--; 2334 /* 2335 * We do not send any icmp message from here because 2336 * we currently are holding the ipfb_lock for this 2337 * hash chain. If we try and send any icmp messages 2338 * from here we may end up via a put back into ip 2339 * trying to get the same lock, causing a recursive 2340 * mutex panic. Instead we build a list and send all 2341 * the icmp messages after we have dropped the lock. 2342 */ 2343 if (ill->ill_isv6) { 2344 if (hdr_length != 0) { 2345 mp->b_next = send_icmp_head_v6; 2346 send_icmp_head_v6 = mp; 2347 } else { 2348 freemsg(mp); 2349 } 2350 } else { 2351 if (hdr_length != 0) { 2352 mp->b_next = send_icmp_head; 2353 send_icmp_head = mp; 2354 } else { 2355 freemsg(mp); 2356 } 2357 } 2358 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2359 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2360 freeb(ipf->ipf_mp); 2361 } 2362 mutex_exit(&ipfb->ipfb_lock); 2363 /* 2364 * Now need to send any icmp messages that we delayed from 2365 * above. 2366 */ 2367 while (send_icmp_head_v6 != NULL) { 2368 ip6_t *ip6h; 2369 2370 mp = send_icmp_head_v6; 2371 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2372 mp->b_next = NULL; 2373 ip6h = (ip6_t *)mp->b_rptr; 2374 iras.ira_flags = 0; 2375 /* 2376 * This will result in an incorrect ALL_ZONES zoneid 2377 * for multicast packets, but we 2378 * don't send ICMP errors for those in any case. 2379 */ 2380 iras.ira_zoneid = 2381 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2382 ill, ipst); 2383 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2384 icmp_time_exceeded_v6(mp, 2385 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2386 &iras); 2387 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2388 } 2389 while (send_icmp_head != NULL) { 2390 ipaddr_t dst; 2391 2392 mp = send_icmp_head; 2393 send_icmp_head = send_icmp_head->b_next; 2394 mp->b_next = NULL; 2395 2396 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2397 2398 iras.ira_flags = IRAF_IS_IPV4; 2399 /* 2400 * This will result in an incorrect ALL_ZONES zoneid 2401 * for broadcast and multicast packets, but we 2402 * don't send ICMP errors for those in any case. 2403 */ 2404 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2405 ill, ipst); 2406 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2407 icmp_time_exceeded(mp, 2408 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2409 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2410 } 2411 } 2412 /* 2413 * A non-dying ILL will use the return value to decide whether to 2414 * restart the frag timer, and for how long. 2415 */ 2416 return (next_timeout); 2417 } 2418 2419 /* 2420 * This routine is called when the approximate count of mblk memory used 2421 * for the specified ILL has exceeded max_count. 2422 */ 2423 void 2424 ill_frag_prune(ill_t *ill, uint_t max_count) 2425 { 2426 ipfb_t *ipfb; 2427 ipf_t *ipf; 2428 size_t count; 2429 clock_t now; 2430 2431 /* 2432 * If we are here within ip_min_frag_prune_time msecs remove 2433 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2434 * ill_frag_free_num_pkts. 2435 */ 2436 mutex_enter(&ill->ill_lock); 2437 now = ddi_get_lbolt(); 2438 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2439 (ip_min_frag_prune_time != 0 ? 2440 ip_min_frag_prune_time : msec_per_tick)) { 2441 2442 ill->ill_frag_free_num_pkts++; 2443 2444 } else { 2445 ill->ill_frag_free_num_pkts = 0; 2446 } 2447 ill->ill_last_frag_clean_time = now; 2448 mutex_exit(&ill->ill_lock); 2449 2450 /* 2451 * free ill_frag_free_num_pkts oldest packets from each bucket. 2452 */ 2453 if (ill->ill_frag_free_num_pkts != 0) { 2454 int ix; 2455 2456 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2457 ipfb = &ill->ill_frag_hash_tbl[ix]; 2458 mutex_enter(&ipfb->ipfb_lock); 2459 if (ipfb->ipfb_ipf != NULL) { 2460 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2461 ill->ill_frag_free_num_pkts); 2462 } 2463 mutex_exit(&ipfb->ipfb_lock); 2464 } 2465 } 2466 /* 2467 * While the reassembly list for this ILL is too big, prune a fragment 2468 * queue by age, oldest first. 2469 */ 2470 while (ill->ill_frag_count > max_count) { 2471 int ix; 2472 ipfb_t *oipfb = NULL; 2473 uint_t oldest = UINT_MAX; 2474 2475 count = 0; 2476 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2477 ipfb = &ill->ill_frag_hash_tbl[ix]; 2478 mutex_enter(&ipfb->ipfb_lock); 2479 ipf = ipfb->ipfb_ipf; 2480 if (ipf != NULL && ipf->ipf_gen < oldest) { 2481 oldest = ipf->ipf_gen; 2482 oipfb = ipfb; 2483 } 2484 count += ipfb->ipfb_count; 2485 mutex_exit(&ipfb->ipfb_lock); 2486 } 2487 if (oipfb == NULL) 2488 break; 2489 2490 if (count <= max_count) 2491 return; /* Somebody beat us to it, nothing to do */ 2492 mutex_enter(&oipfb->ipfb_lock); 2493 ipf = oipfb->ipfb_ipf; 2494 if (ipf != NULL) { 2495 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2496 } 2497 mutex_exit(&oipfb->ipfb_lock); 2498 } 2499 } 2500 2501 /* 2502 * free 'free_cnt' fragmented packets starting at ipf. 2503 */ 2504 void 2505 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2506 { 2507 size_t count; 2508 mblk_t *mp; 2509 mblk_t *tmp; 2510 ipf_t **ipfp = ipf->ipf_ptphn; 2511 2512 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2513 ASSERT(ipfp != NULL); 2514 ASSERT(ipf != NULL); 2515 2516 while (ipf != NULL && free_cnt-- > 0) { 2517 count = ipf->ipf_count; 2518 mp = ipf->ipf_mp; 2519 ipf = ipf->ipf_hash_next; 2520 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2521 IP_REASS_SET_START(tmp, 0); 2522 IP_REASS_SET_END(tmp, 0); 2523 } 2524 atomic_add_32(&ill->ill_frag_count, -count); 2525 ASSERT(ipfb->ipfb_count >= count); 2526 ipfb->ipfb_count -= count; 2527 ASSERT(ipfb->ipfb_frag_pkts > 0); 2528 ipfb->ipfb_frag_pkts--; 2529 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2530 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2531 freemsg(mp); 2532 } 2533 2534 if (ipf) 2535 ipf->ipf_ptphn = ipfp; 2536 ipfp[0] = ipf; 2537 } 2538 2539 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 2540 "obsolete and may be removed in a future release of Solaris. Use " \ 2541 "ifconfig(1M) to manipulate the forwarding status of an interface." 2542 2543 /* 2544 * For obsolete per-interface forwarding configuration; 2545 * called in response to ND_GET. 2546 */ 2547 /* ARGSUSED */ 2548 static int 2549 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 2550 { 2551 ill_t *ill = (ill_t *)cp; 2552 2553 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2554 2555 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 2556 return (0); 2557 } 2558 2559 /* 2560 * For obsolete per-interface forwarding configuration; 2561 * called in response to ND_SET. 2562 */ 2563 /* ARGSUSED */ 2564 static int 2565 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 2566 cred_t *ioc_cr) 2567 { 2568 long value; 2569 int retval; 2570 ip_stack_t *ipst = CONNQ_TO_IPST(q); 2571 2572 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2573 2574 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 2575 value < 0 || value > 1) { 2576 return (EINVAL); 2577 } 2578 2579 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2580 retval = ill_forward_set((ill_t *)cp, (value != 0)); 2581 rw_exit(&ipst->ips_ill_g_lock); 2582 return (retval); 2583 } 2584 2585 /* 2586 * Helper function for ill_forward_set(). 2587 */ 2588 static void 2589 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2590 { 2591 ip_stack_t *ipst = ill->ill_ipst; 2592 2593 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2594 2595 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2596 (enable ? "Enabling" : "Disabling"), 2597 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2598 mutex_enter(&ill->ill_lock); 2599 if (enable) 2600 ill->ill_flags |= ILLF_ROUTER; 2601 else 2602 ill->ill_flags &= ~ILLF_ROUTER; 2603 mutex_exit(&ill->ill_lock); 2604 if (ill->ill_isv6) 2605 ill_set_nce_router_flags(ill, enable); 2606 /* Notify routing socket listeners of this change. */ 2607 if (ill->ill_ipif != NULL) 2608 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2609 } 2610 2611 /* 2612 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2613 * socket messages for each interface whose flags we change. 2614 */ 2615 int 2616 ill_forward_set(ill_t *ill, boolean_t enable) 2617 { 2618 ipmp_illgrp_t *illg; 2619 ip_stack_t *ipst = ill->ill_ipst; 2620 2621 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2622 2623 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2624 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2625 return (0); 2626 2627 if (IS_LOOPBACK(ill)) 2628 return (EINVAL); 2629 2630 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2631 /* 2632 * Update all of the interfaces in the group. 2633 */ 2634 illg = ill->ill_grp; 2635 ill = list_head(&illg->ig_if); 2636 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2637 ill_forward_set_on_ill(ill, enable); 2638 2639 /* 2640 * Update the IPMP meta-interface. 2641 */ 2642 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2643 return (0); 2644 } 2645 2646 ill_forward_set_on_ill(ill, enable); 2647 return (0); 2648 } 2649 2650 /* 2651 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2652 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2653 * set or clear. 2654 */ 2655 static void 2656 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2657 { 2658 ipif_t *ipif; 2659 ncec_t *ncec; 2660 nce_t *nce; 2661 2662 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2663 /* 2664 * NOTE: we match across the illgrp because nce's for 2665 * addresses on IPMP interfaces have an nce_ill that points to 2666 * the bound underlying ill. 2667 */ 2668 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2669 if (nce != NULL) { 2670 ncec = nce->nce_common; 2671 mutex_enter(&ncec->ncec_lock); 2672 if (enable) 2673 ncec->ncec_flags |= NCE_F_ISROUTER; 2674 else 2675 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2676 mutex_exit(&ncec->ncec_lock); 2677 nce_refrele(nce); 2678 } 2679 } 2680 } 2681 2682 /* 2683 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 2684 * for this ill. Make sure the v6/v4 question has been answered about this 2685 * ill. The creation of this ndd variable is only for backwards compatibility. 2686 * The preferred way to control per-interface IP forwarding is through the 2687 * ILLF_ROUTER interface flag. 2688 */ 2689 static int 2690 ill_set_ndd_name(ill_t *ill) 2691 { 2692 char *suffix; 2693 ip_stack_t *ipst = ill->ill_ipst; 2694 2695 ASSERT(IAM_WRITER_ILL(ill)); 2696 2697 if (ill->ill_isv6) 2698 suffix = ipv6_forward_suffix; 2699 else 2700 suffix = ipv4_forward_suffix; 2701 2702 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 2703 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 2704 /* 2705 * Copies over the '\0'. 2706 * Note that strlen(suffix) is always bounded. 2707 */ 2708 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 2709 strlen(suffix) + 1); 2710 2711 /* 2712 * Use of the nd table requires holding the reader lock. 2713 * Modifying the nd table thru nd_load/nd_unload requires 2714 * the writer lock. 2715 */ 2716 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 2717 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 2718 nd_ill_forward_set, (caddr_t)ill)) { 2719 /* 2720 * If the nd_load failed, it only meant that it could not 2721 * allocate a new bunch of room for further NDD expansion. 2722 * Because of that, the ill_ndd_name will be set to 0, and 2723 * this interface is at the mercy of the global ip_forwarding 2724 * variable. 2725 */ 2726 rw_exit(&ipst->ips_ip_g_nd_lock); 2727 ill->ill_ndd_name = NULL; 2728 return (ENOMEM); 2729 } 2730 rw_exit(&ipst->ips_ip_g_nd_lock); 2731 return (0); 2732 } 2733 2734 /* 2735 * Intializes the context structure and returns the first ill in the list 2736 * cuurently start_list and end_list can have values: 2737 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2738 * IP_V4_G_HEAD Traverse IPV4 list only. 2739 * IP_V6_G_HEAD Traverse IPV6 list only. 2740 */ 2741 2742 /* 2743 * We don't check for CONDEMNED ills here. Caller must do that if 2744 * necessary under the ill lock. 2745 */ 2746 ill_t * 2747 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2748 ip_stack_t *ipst) 2749 { 2750 ill_if_t *ifp; 2751 ill_t *ill; 2752 avl_tree_t *avl_tree; 2753 2754 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2755 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2756 2757 /* 2758 * setup the lists to search 2759 */ 2760 if (end_list != MAX_G_HEADS) { 2761 ctx->ctx_current_list = start_list; 2762 ctx->ctx_last_list = end_list; 2763 } else { 2764 ctx->ctx_last_list = MAX_G_HEADS - 1; 2765 ctx->ctx_current_list = 0; 2766 } 2767 2768 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2769 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2770 if (ifp != (ill_if_t *) 2771 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2772 avl_tree = &ifp->illif_avl_by_ppa; 2773 ill = avl_first(avl_tree); 2774 /* 2775 * ill is guaranteed to be non NULL or ifp should have 2776 * not existed. 2777 */ 2778 ASSERT(ill != NULL); 2779 return (ill); 2780 } 2781 ctx->ctx_current_list++; 2782 } 2783 2784 return (NULL); 2785 } 2786 2787 /* 2788 * returns the next ill in the list. ill_first() must have been called 2789 * before calling ill_next() or bad things will happen. 2790 */ 2791 2792 /* 2793 * We don't check for CONDEMNED ills here. Caller must do that if 2794 * necessary under the ill lock. 2795 */ 2796 ill_t * 2797 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2798 { 2799 ill_if_t *ifp; 2800 ill_t *ill; 2801 ip_stack_t *ipst = lastill->ill_ipst; 2802 2803 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2804 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2805 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2806 AVL_AFTER)) != NULL) { 2807 return (ill); 2808 } 2809 2810 /* goto next ill_ifp in the list. */ 2811 ifp = lastill->ill_ifptr->illif_next; 2812 2813 /* make sure not at end of circular list */ 2814 while (ifp == 2815 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2816 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2817 return (NULL); 2818 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2819 } 2820 2821 return (avl_first(&ifp->illif_avl_by_ppa)); 2822 } 2823 2824 /* 2825 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2826 * The final number (PPA) must not have any leading zeros. Upon success, a 2827 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2828 */ 2829 static char * 2830 ill_get_ppa_ptr(char *name) 2831 { 2832 int namelen = strlen(name); 2833 int end_ndx = namelen - 1; 2834 int ppa_ndx, i; 2835 2836 /* 2837 * Check that the first character is [a-zA-Z], and that the last 2838 * character is [0-9]. 2839 */ 2840 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2841 return (NULL); 2842 2843 /* 2844 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2845 */ 2846 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2847 if (!isdigit(name[ppa_ndx - 1])) 2848 break; 2849 2850 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2851 return (NULL); 2852 2853 /* 2854 * Check that the intermediate characters are [a-z0-9.] 2855 */ 2856 for (i = 1; i < ppa_ndx; i++) { 2857 if (!isalpha(name[i]) && !isdigit(name[i]) && 2858 name[i] != '.' && name[i] != '_') { 2859 return (NULL); 2860 } 2861 } 2862 2863 return (name + ppa_ndx); 2864 } 2865 2866 /* 2867 * use avl tree to locate the ill. 2868 */ 2869 static ill_t * 2870 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2871 { 2872 char *ppa_ptr = NULL; 2873 int len; 2874 uint_t ppa; 2875 ill_t *ill = NULL; 2876 ill_if_t *ifp; 2877 int list; 2878 2879 /* 2880 * get ppa ptr 2881 */ 2882 if (isv6) 2883 list = IP_V6_G_HEAD; 2884 else 2885 list = IP_V4_G_HEAD; 2886 2887 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2888 return (NULL); 2889 } 2890 2891 len = ppa_ptr - name + 1; 2892 2893 ppa = stoi(&ppa_ptr); 2894 2895 ifp = IP_VX_ILL_G_LIST(list, ipst); 2896 2897 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2898 /* 2899 * match is done on len - 1 as the name is not null 2900 * terminated it contains ppa in addition to the interface 2901 * name. 2902 */ 2903 if ((ifp->illif_name_len == len) && 2904 bcmp(ifp->illif_name, name, len - 1) == 0) { 2905 break; 2906 } else { 2907 ifp = ifp->illif_next; 2908 } 2909 } 2910 2911 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2912 /* 2913 * Even the interface type does not exist. 2914 */ 2915 return (NULL); 2916 } 2917 2918 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2919 if (ill != NULL) { 2920 mutex_enter(&ill->ill_lock); 2921 if (ILL_CAN_LOOKUP(ill)) { 2922 ill_refhold_locked(ill); 2923 mutex_exit(&ill->ill_lock); 2924 return (ill); 2925 } 2926 mutex_exit(&ill->ill_lock); 2927 } 2928 return (NULL); 2929 } 2930 2931 /* 2932 * comparison function for use with avl. 2933 */ 2934 static int 2935 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2936 { 2937 uint_t ppa; 2938 uint_t ill_ppa; 2939 2940 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2941 2942 ppa = *((uint_t *)ppa_ptr); 2943 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2944 /* 2945 * We want the ill with the lowest ppa to be on the 2946 * top. 2947 */ 2948 if (ill_ppa < ppa) 2949 return (1); 2950 if (ill_ppa > ppa) 2951 return (-1); 2952 return (0); 2953 } 2954 2955 /* 2956 * remove an interface type from the global list. 2957 */ 2958 static void 2959 ill_delete_interface_type(ill_if_t *interface) 2960 { 2961 ASSERT(interface != NULL); 2962 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2963 2964 avl_destroy(&interface->illif_avl_by_ppa); 2965 if (interface->illif_ppa_arena != NULL) 2966 vmem_destroy(interface->illif_ppa_arena); 2967 2968 remque(interface); 2969 2970 mi_free(interface); 2971 } 2972 2973 /* 2974 * remove ill from the global list. 2975 */ 2976 static void 2977 ill_glist_delete(ill_t *ill) 2978 { 2979 ip_stack_t *ipst; 2980 phyint_t *phyi; 2981 2982 if (ill == NULL) 2983 return; 2984 ipst = ill->ill_ipst; 2985 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 2986 2987 /* 2988 * If the ill was never inserted into the AVL tree 2989 * we skip the if branch. 2990 */ 2991 if (ill->ill_ifptr != NULL) { 2992 /* 2993 * remove from AVL tree and free ppa number 2994 */ 2995 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 2996 2997 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 2998 vmem_free(ill->ill_ifptr->illif_ppa_arena, 2999 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3000 } 3001 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3002 ill_delete_interface_type(ill->ill_ifptr); 3003 } 3004 3005 /* 3006 * Indicate ill is no longer in the list. 3007 */ 3008 ill->ill_ifptr = NULL; 3009 ill->ill_name_length = 0; 3010 ill->ill_name[0] = '\0'; 3011 ill->ill_ppa = UINT_MAX; 3012 } 3013 3014 /* Generate one last event for this ill. */ 3015 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3016 ill->ill_name_length); 3017 3018 ASSERT(ill->ill_phyint != NULL); 3019 phyi = ill->ill_phyint; 3020 ill->ill_phyint = NULL; 3021 3022 /* 3023 * ill_init allocates a phyint always to store the copy 3024 * of flags relevant to phyint. At that point in time, we could 3025 * not assign the name and hence phyint_illv4/v6 could not be 3026 * initialized. Later in ipif_set_values, we assign the name to 3027 * the ill, at which point in time we assign phyint_illv4/v6. 3028 * Thus we don't rely on phyint_illv6 to be initialized always. 3029 */ 3030 if (ill->ill_flags & ILLF_IPV6) 3031 phyi->phyint_illv6 = NULL; 3032 else 3033 phyi->phyint_illv4 = NULL; 3034 3035 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3036 rw_exit(&ipst->ips_ill_g_lock); 3037 return; 3038 } 3039 3040 /* 3041 * There are no ills left on this phyint; pull it out of the phyint 3042 * avl trees, and free it. 3043 */ 3044 if (phyi->phyint_ifindex > 0) { 3045 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3046 phyi); 3047 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3048 phyi); 3049 } 3050 rw_exit(&ipst->ips_ill_g_lock); 3051 3052 phyint_free(phyi); 3053 } 3054 3055 /* 3056 * allocate a ppa, if the number of plumbed interfaces of this type are 3057 * less than ill_no_arena do a linear search to find a unused ppa. 3058 * When the number goes beyond ill_no_arena switch to using an arena. 3059 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3060 * is the return value for an error condition, so allocation starts at one 3061 * and is decremented by one. 3062 */ 3063 static int 3064 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3065 { 3066 ill_t *tmp_ill; 3067 uint_t start, end; 3068 int ppa; 3069 3070 if (ifp->illif_ppa_arena == NULL && 3071 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3072 /* 3073 * Create an arena. 3074 */ 3075 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3076 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3077 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3078 /* allocate what has already been assigned */ 3079 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3080 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3081 tmp_ill, AVL_AFTER)) { 3082 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3083 1, /* size */ 3084 1, /* align/quantum */ 3085 0, /* phase */ 3086 0, /* nocross */ 3087 /* minaddr */ 3088 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3089 /* maxaddr */ 3090 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3091 VM_NOSLEEP|VM_FIRSTFIT); 3092 if (ppa == 0) { 3093 ip1dbg(("ill_alloc_ppa: ppa allocation" 3094 " failed while switching")); 3095 vmem_destroy(ifp->illif_ppa_arena); 3096 ifp->illif_ppa_arena = NULL; 3097 break; 3098 } 3099 } 3100 } 3101 3102 if (ifp->illif_ppa_arena != NULL) { 3103 if (ill->ill_ppa == UINT_MAX) { 3104 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3105 1, VM_NOSLEEP|VM_FIRSTFIT); 3106 if (ppa == 0) 3107 return (EAGAIN); 3108 ill->ill_ppa = --ppa; 3109 } else { 3110 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3111 1, /* size */ 3112 1, /* align/quantum */ 3113 0, /* phase */ 3114 0, /* nocross */ 3115 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3116 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3117 VM_NOSLEEP|VM_FIRSTFIT); 3118 /* 3119 * Most likely the allocation failed because 3120 * the requested ppa was in use. 3121 */ 3122 if (ppa == 0) 3123 return (EEXIST); 3124 } 3125 return (0); 3126 } 3127 3128 /* 3129 * No arena is in use and not enough (>ill_no_arena) interfaces have 3130 * been plumbed to create one. Do a linear search to get a unused ppa. 3131 */ 3132 if (ill->ill_ppa == UINT_MAX) { 3133 end = UINT_MAX - 1; 3134 start = 0; 3135 } else { 3136 end = start = ill->ill_ppa; 3137 } 3138 3139 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3140 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3141 if (start++ >= end) { 3142 if (ill->ill_ppa == UINT_MAX) 3143 return (EAGAIN); 3144 else 3145 return (EEXIST); 3146 } 3147 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3148 } 3149 ill->ill_ppa = start; 3150 return (0); 3151 } 3152 3153 /* 3154 * Insert ill into the list of configured ill's. Once this function completes, 3155 * the ill is globally visible and is available through lookups. More precisely 3156 * this happens after the caller drops the ill_g_lock. 3157 */ 3158 static int 3159 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3160 { 3161 ill_if_t *ill_interface; 3162 avl_index_t where = 0; 3163 int error; 3164 int name_length; 3165 int index; 3166 boolean_t check_length = B_FALSE; 3167 ip_stack_t *ipst = ill->ill_ipst; 3168 3169 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3170 3171 name_length = mi_strlen(name) + 1; 3172 3173 if (isv6) 3174 index = IP_V6_G_HEAD; 3175 else 3176 index = IP_V4_G_HEAD; 3177 3178 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3179 /* 3180 * Search for interface type based on name 3181 */ 3182 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3183 if ((ill_interface->illif_name_len == name_length) && 3184 (strcmp(ill_interface->illif_name, name) == 0)) { 3185 break; 3186 } 3187 ill_interface = ill_interface->illif_next; 3188 } 3189 3190 /* 3191 * Interface type not found, create one. 3192 */ 3193 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3194 ill_g_head_t ghead; 3195 3196 /* 3197 * allocate ill_if_t structure 3198 */ 3199 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3200 if (ill_interface == NULL) { 3201 return (ENOMEM); 3202 } 3203 3204 (void) strcpy(ill_interface->illif_name, name); 3205 ill_interface->illif_name_len = name_length; 3206 3207 avl_create(&ill_interface->illif_avl_by_ppa, 3208 ill_compare_ppa, sizeof (ill_t), 3209 offsetof(struct ill_s, ill_avl_byppa)); 3210 3211 /* 3212 * link the structure in the back to maintain order 3213 * of configuration for ifconfig output. 3214 */ 3215 ghead = ipst->ips_ill_g_heads[index]; 3216 insque(ill_interface, ghead.ill_g_list_tail); 3217 } 3218 3219 if (ill->ill_ppa == UINT_MAX) 3220 check_length = B_TRUE; 3221 3222 error = ill_alloc_ppa(ill_interface, ill); 3223 if (error != 0) { 3224 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3225 ill_delete_interface_type(ill->ill_ifptr); 3226 return (error); 3227 } 3228 3229 /* 3230 * When the ppa is choosen by the system, check that there is 3231 * enough space to insert ppa. if a specific ppa was passed in this 3232 * check is not required as the interface name passed in will have 3233 * the right ppa in it. 3234 */ 3235 if (check_length) { 3236 /* 3237 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3238 */ 3239 char buf[sizeof (uint_t) * 3]; 3240 3241 /* 3242 * convert ppa to string to calculate the amount of space 3243 * required for it in the name. 3244 */ 3245 numtos(ill->ill_ppa, buf); 3246 3247 /* Do we have enough space to insert ppa ? */ 3248 3249 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3250 /* Free ppa and interface type struct */ 3251 if (ill_interface->illif_ppa_arena != NULL) { 3252 vmem_free(ill_interface->illif_ppa_arena, 3253 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3254 } 3255 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3256 ill_delete_interface_type(ill->ill_ifptr); 3257 3258 return (EINVAL); 3259 } 3260 } 3261 3262 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3263 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3264 3265 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3266 &where); 3267 ill->ill_ifptr = ill_interface; 3268 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3269 3270 ill_phyint_reinit(ill); 3271 return (0); 3272 } 3273 3274 /* Initialize the per phyint ipsq used for serialization */ 3275 static boolean_t 3276 ipsq_init(ill_t *ill, boolean_t enter) 3277 { 3278 ipsq_t *ipsq; 3279 ipxop_t *ipx; 3280 3281 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3282 return (B_FALSE); 3283 3284 ill->ill_phyint->phyint_ipsq = ipsq; 3285 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3286 ipx->ipx_ipsq = ipsq; 3287 ipsq->ipsq_next = ipsq; 3288 ipsq->ipsq_phyint = ill->ill_phyint; 3289 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3290 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3291 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3292 if (enter) { 3293 ipx->ipx_writer = curthread; 3294 ipx->ipx_forced = B_FALSE; 3295 ipx->ipx_reentry_cnt = 1; 3296 #ifdef DEBUG 3297 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3298 #endif 3299 } 3300 return (B_TRUE); 3301 } 3302 3303 /* 3304 * ill_init is called by ip_open when a device control stream is opened. 3305 * It does a few initializations, and shoots a DL_INFO_REQ message down 3306 * to the driver. The response is later picked up in ip_rput_dlpi and 3307 * used to set up default mechanisms for talking to the driver. (Always 3308 * called as writer.) 3309 * 3310 * If this function returns error, ip_open will call ip_close which in 3311 * turn will call ill_delete to clean up any memory allocated here that 3312 * is not yet freed. 3313 */ 3314 int 3315 ill_init(queue_t *q, ill_t *ill) 3316 { 3317 int count; 3318 dl_info_req_t *dlir; 3319 mblk_t *info_mp; 3320 uchar_t *frag_ptr; 3321 3322 /* 3323 * The ill is initialized to zero by mi_alloc*(). In addition 3324 * some fields already contain valid values, initialized in 3325 * ip_open(), before we reach here. 3326 */ 3327 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3328 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3329 ill->ill_saved_ire_cnt = 0; 3330 3331 ill->ill_rq = q; 3332 ill->ill_wq = WR(q); 3333 3334 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3335 BPRI_HI); 3336 if (info_mp == NULL) 3337 return (ENOMEM); 3338 3339 /* 3340 * Allocate sufficient space to contain our fragment hash table and 3341 * the device name. 3342 */ 3343 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 3344 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 3345 if (frag_ptr == NULL) { 3346 freemsg(info_mp); 3347 return (ENOMEM); 3348 } 3349 ill->ill_frag_ptr = frag_ptr; 3350 ill->ill_frag_free_num_pkts = 0; 3351 ill->ill_last_frag_clean_time = 0; 3352 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3353 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3354 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3355 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3356 NULL, MUTEX_DEFAULT, NULL); 3357 } 3358 3359 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3360 if (ill->ill_phyint == NULL) { 3361 freemsg(info_mp); 3362 mi_free(frag_ptr); 3363 return (ENOMEM); 3364 } 3365 3366 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3367 /* 3368 * For now pretend this is a v4 ill. We need to set phyint_ill* 3369 * at this point because of the following reason. If we can't 3370 * enter the ipsq at some point and cv_wait, the writer that 3371 * wakes us up tries to locate us using the list of all phyints 3372 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3373 * If we don't set it now, we risk a missed wakeup. 3374 */ 3375 ill->ill_phyint->phyint_illv4 = ill; 3376 ill->ill_ppa = UINT_MAX; 3377 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3378 3379 ill_set_inputfn(ill); 3380 3381 if (!ipsq_init(ill, B_TRUE)) { 3382 freemsg(info_mp); 3383 mi_free(frag_ptr); 3384 mi_free(ill->ill_phyint); 3385 return (ENOMEM); 3386 } 3387 3388 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3389 3390 /* Frag queue limit stuff */ 3391 ill->ill_frag_count = 0; 3392 ill->ill_ipf_gen = 0; 3393 3394 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3395 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3396 ill->ill_global_timer = INFINITY; 3397 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3398 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3399 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3400 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3401 3402 /* 3403 * Initialize IPv6 configuration variables. The IP module is always 3404 * opened as an IPv4 module. Instead tracking down the cases where 3405 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3406 * here for convenience, this has no effect until the ill is set to do 3407 * IPv6. 3408 */ 3409 ill->ill_reachable_time = ND_REACHABLE_TIME; 3410 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3411 ill->ill_max_buf = ND_MAX_Q; 3412 ill->ill_refcnt = 0; 3413 3414 /* Send down the Info Request to the driver. */ 3415 info_mp->b_datap->db_type = M_PCPROTO; 3416 dlir = (dl_info_req_t *)info_mp->b_rptr; 3417 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3418 dlir->dl_primitive = DL_INFO_REQ; 3419 3420 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3421 3422 qprocson(q); 3423 ill_dlpi_send(ill, info_mp); 3424 3425 return (0); 3426 } 3427 3428 /* 3429 * ill_dls_info 3430 * creates datalink socket info from the device. 3431 */ 3432 int 3433 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3434 { 3435 size_t len; 3436 3437 sdl->sdl_family = AF_LINK; 3438 sdl->sdl_index = ill_get_upper_ifindex(ill); 3439 sdl->sdl_type = ill->ill_type; 3440 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3441 len = strlen(sdl->sdl_data); 3442 ASSERT(len < 256); 3443 sdl->sdl_nlen = (uchar_t)len; 3444 sdl->sdl_alen = ill->ill_phys_addr_length; 3445 sdl->sdl_slen = 0; 3446 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3447 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3448 3449 return (sizeof (struct sockaddr_dl)); 3450 } 3451 3452 /* 3453 * ill_xarp_info 3454 * creates xarp info from the device. 3455 */ 3456 static int 3457 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3458 { 3459 sdl->sdl_family = AF_LINK; 3460 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3461 sdl->sdl_type = ill->ill_type; 3462 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3463 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3464 sdl->sdl_alen = ill->ill_phys_addr_length; 3465 sdl->sdl_slen = 0; 3466 return (sdl->sdl_nlen); 3467 } 3468 3469 static int 3470 loopback_kstat_update(kstat_t *ksp, int rw) 3471 { 3472 kstat_named_t *kn; 3473 netstackid_t stackid; 3474 netstack_t *ns; 3475 ip_stack_t *ipst; 3476 3477 if (ksp == NULL || ksp->ks_data == NULL) 3478 return (EIO); 3479 3480 if (rw == KSTAT_WRITE) 3481 return (EACCES); 3482 3483 kn = KSTAT_NAMED_PTR(ksp); 3484 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3485 3486 ns = netstack_find_by_stackid(stackid); 3487 if (ns == NULL) 3488 return (-1); 3489 3490 ipst = ns->netstack_ip; 3491 if (ipst == NULL) { 3492 netstack_rele(ns); 3493 return (-1); 3494 } 3495 kn[0].value.ui32 = ipst->ips_loopback_packets; 3496 kn[1].value.ui32 = ipst->ips_loopback_packets; 3497 netstack_rele(ns); 3498 return (0); 3499 } 3500 3501 /* 3502 * Has ifindex been plumbed already? 3503 */ 3504 static boolean_t 3505 phyint_exists(uint_t index, ip_stack_t *ipst) 3506 { 3507 ASSERT(index != 0); 3508 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3509 3510 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3511 &index, NULL) != NULL); 3512 } 3513 3514 /* Pick a unique ifindex */ 3515 boolean_t 3516 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3517 { 3518 uint_t starting_index; 3519 3520 if (!ipst->ips_ill_index_wrap) { 3521 *indexp = ipst->ips_ill_index++; 3522 if (ipst->ips_ill_index == 0) { 3523 /* Reached the uint_t limit Next time wrap */ 3524 ipst->ips_ill_index_wrap = B_TRUE; 3525 } 3526 return (B_TRUE); 3527 } 3528 3529 /* 3530 * Start reusing unused indexes. Note that we hold the ill_g_lock 3531 * at this point and don't want to call any function that attempts 3532 * to get the lock again. 3533 */ 3534 starting_index = ipst->ips_ill_index++; 3535 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 3536 if (ipst->ips_ill_index != 0 && 3537 !phyint_exists(ipst->ips_ill_index, ipst)) { 3538 /* found unused index - use it */ 3539 *indexp = ipst->ips_ill_index; 3540 return (B_TRUE); 3541 } 3542 } 3543 3544 /* 3545 * all interface indicies are inuse. 3546 */ 3547 return (B_FALSE); 3548 } 3549 3550 /* 3551 * Assign a unique interface index for the phyint. 3552 */ 3553 static boolean_t 3554 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3555 { 3556 ASSERT(phyi->phyint_ifindex == 0); 3557 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3558 } 3559 3560 /* 3561 * Initialize the flags on `phyi' as per the provided mactype. 3562 */ 3563 static void 3564 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3565 { 3566 uint64_t flags = 0; 3567 3568 /* 3569 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3570 * we always presume the underlying hardware is working and set 3571 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3572 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3573 * there are no active interfaces in the group so we set PHYI_FAILED. 3574 */ 3575 if (mactype == SUNW_DL_IPMP) 3576 flags |= PHYI_FAILED; 3577 else 3578 flags |= PHYI_RUNNING; 3579 3580 switch (mactype) { 3581 case SUNW_DL_VNI: 3582 flags |= PHYI_VIRTUAL; 3583 break; 3584 case SUNW_DL_IPMP: 3585 flags |= PHYI_IPMP; 3586 break; 3587 case DL_LOOP: 3588 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3589 break; 3590 } 3591 3592 mutex_enter(&phyi->phyint_lock); 3593 phyi->phyint_flags |= flags; 3594 mutex_exit(&phyi->phyint_lock); 3595 } 3596 3597 /* 3598 * Return a pointer to the ill which matches the supplied name. Note that 3599 * the ill name length includes the null termination character. (May be 3600 * called as writer.) 3601 * If do_alloc and the interface is "lo0" it will be automatically created. 3602 * Cannot bump up reference on condemned ills. So dup detect can't be done 3603 * using this func. 3604 */ 3605 ill_t * 3606 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3607 boolean_t *did_alloc, ip_stack_t *ipst) 3608 { 3609 ill_t *ill; 3610 ipif_t *ipif; 3611 ipsq_t *ipsq; 3612 kstat_named_t *kn; 3613 boolean_t isloopback; 3614 in6_addr_t ov6addr; 3615 3616 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3617 3618 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3619 ill = ill_find_by_name(name, isv6, ipst); 3620 rw_exit(&ipst->ips_ill_g_lock); 3621 if (ill != NULL) 3622 return (ill); 3623 3624 /* 3625 * Couldn't find it. Does this happen to be a lookup for the 3626 * loopback device and are we allowed to allocate it? 3627 */ 3628 if (!isloopback || !do_alloc) 3629 return (NULL); 3630 3631 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3632 ill = ill_find_by_name(name, isv6, ipst); 3633 if (ill != NULL) { 3634 rw_exit(&ipst->ips_ill_g_lock); 3635 return (ill); 3636 } 3637 3638 /* Create the loopback device on demand */ 3639 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3640 sizeof (ipif_loopback_name), BPRI_MED)); 3641 if (ill == NULL) 3642 goto done; 3643 3644 *ill = ill_null; 3645 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3646 ill->ill_ipst = ipst; 3647 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3648 netstack_hold(ipst->ips_netstack); 3649 /* 3650 * For exclusive stacks we set the zoneid to zero 3651 * to make IP operate as if in the global zone. 3652 */ 3653 ill->ill_zoneid = GLOBAL_ZONEID; 3654 3655 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3656 if (ill->ill_phyint == NULL) 3657 goto done; 3658 3659 if (isv6) 3660 ill->ill_phyint->phyint_illv6 = ill; 3661 else 3662 ill->ill_phyint->phyint_illv4 = ill; 3663 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3664 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3665 3666 if (isv6) { 3667 ill->ill_isv6 = B_TRUE; 3668 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3669 } else { 3670 ill->ill_max_frag = ip_loopback_mtuplus; 3671 } 3672 if (!ill_allocate_mibs(ill)) 3673 goto done; 3674 ill->ill_current_frag = ill->ill_max_frag; 3675 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3676 /* 3677 * ipif_loopback_name can't be pointed at directly because its used 3678 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3679 * from the glist, ill_glist_delete() sets the first character of 3680 * ill_name to '\0'. 3681 */ 3682 ill->ill_name = (char *)ill + sizeof (*ill); 3683 (void) strcpy(ill->ill_name, ipif_loopback_name); 3684 ill->ill_name_length = sizeof (ipif_loopback_name); 3685 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3686 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3687 3688 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3689 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3690 ill->ill_global_timer = INFINITY; 3691 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3692 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3693 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3694 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3695 3696 /* No resolver here. */ 3697 ill->ill_net_type = IRE_LOOPBACK; 3698 3699 /* Initialize the ipsq */ 3700 if (!ipsq_init(ill, B_FALSE)) 3701 goto done; 3702 3703 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE); 3704 if (ipif == NULL) 3705 goto done; 3706 3707 ill->ill_flags = ILLF_MULTICAST; 3708 3709 ov6addr = ipif->ipif_v6lcl_addr; 3710 /* Set up default loopback address and mask. */ 3711 if (!isv6) { 3712 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3713 3714 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3715 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3716 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3717 ipif->ipif_v6subnet); 3718 ill->ill_flags |= ILLF_IPV4; 3719 } else { 3720 ipif->ipif_v6lcl_addr = ipv6_loopback; 3721 ipif->ipif_v6net_mask = ipv6_all_ones; 3722 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3723 ipif->ipif_v6subnet); 3724 ill->ill_flags |= ILLF_IPV6; 3725 } 3726 3727 /* 3728 * Chain us in at the end of the ill list. hold the ill 3729 * before we make it globally visible. 1 for the lookup. 3730 */ 3731 ill->ill_refcnt = 0; 3732 ill_refhold(ill); 3733 3734 ill->ill_frag_count = 0; 3735 ill->ill_frag_free_num_pkts = 0; 3736 ill->ill_last_frag_clean_time = 0; 3737 3738 ipsq = ill->ill_phyint->phyint_ipsq; 3739 3740 ill_set_inputfn(ill); 3741 3742 if (ill_glist_insert(ill, "lo", isv6) != 0) 3743 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3744 3745 /* Let SCTP know so that it can add this to its list */ 3746 sctp_update_ill(ill, SCTP_ILL_INSERT); 3747 3748 /* 3749 * We have already assigned ipif_v6lcl_addr above, but we need to 3750 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3751 * requires to be after ill_glist_insert() since we need the 3752 * ill_index set. Pass on ipv6_loopback as the old address. 3753 */ 3754 sctp_update_ipif_addr(ipif, ov6addr); 3755 3756 /* 3757 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3758 * If so, free our original one. 3759 */ 3760 if (ipsq != ill->ill_phyint->phyint_ipsq) 3761 ipsq_delete(ipsq); 3762 3763 if (ipst->ips_loopback_ksp == NULL) { 3764 /* Export loopback interface statistics */ 3765 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3766 ipif_loopback_name, "net", 3767 KSTAT_TYPE_NAMED, 2, 0, 3768 ipst->ips_netstack->netstack_stackid); 3769 if (ipst->ips_loopback_ksp != NULL) { 3770 ipst->ips_loopback_ksp->ks_update = 3771 loopback_kstat_update; 3772 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3773 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3774 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3775 ipst->ips_loopback_ksp->ks_private = 3776 (void *)(uintptr_t)ipst->ips_netstack-> 3777 netstack_stackid; 3778 kstat_install(ipst->ips_loopback_ksp); 3779 } 3780 } 3781 3782 *did_alloc = B_TRUE; 3783 rw_exit(&ipst->ips_ill_g_lock); 3784 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3785 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3786 return (ill); 3787 done: 3788 if (ill != NULL) { 3789 if (ill->ill_phyint != NULL) { 3790 ipsq = ill->ill_phyint->phyint_ipsq; 3791 if (ipsq != NULL) { 3792 ipsq->ipsq_phyint = NULL; 3793 ipsq_delete(ipsq); 3794 } 3795 mi_free(ill->ill_phyint); 3796 } 3797 ill_free_mib(ill); 3798 if (ill->ill_ipst != NULL) 3799 netstack_rele(ill->ill_ipst->ips_netstack); 3800 mi_free(ill); 3801 } 3802 rw_exit(&ipst->ips_ill_g_lock); 3803 return (NULL); 3804 } 3805 3806 /* 3807 * For IPP calls - use the ip_stack_t for global stack. 3808 */ 3809 ill_t * 3810 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3811 { 3812 ip_stack_t *ipst; 3813 ill_t *ill; 3814 3815 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3816 if (ipst == NULL) { 3817 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3818 return (NULL); 3819 } 3820 3821 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3822 netstack_rele(ipst->ips_netstack); 3823 return (ill); 3824 } 3825 3826 /* 3827 * Return a pointer to the ill which matches the index and IP version type. 3828 */ 3829 ill_t * 3830 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3831 { 3832 ill_t *ill; 3833 phyint_t *phyi; 3834 3835 /* 3836 * Indexes are stored in the phyint - a common structure 3837 * to both IPv4 and IPv6. 3838 */ 3839 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3840 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3841 (void *) &index, NULL); 3842 if (phyi != NULL) { 3843 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3844 if (ill != NULL) { 3845 mutex_enter(&ill->ill_lock); 3846 if (!ILL_IS_CONDEMNED(ill)) { 3847 ill_refhold_locked(ill); 3848 mutex_exit(&ill->ill_lock); 3849 rw_exit(&ipst->ips_ill_g_lock); 3850 return (ill); 3851 } 3852 mutex_exit(&ill->ill_lock); 3853 } 3854 } 3855 rw_exit(&ipst->ips_ill_g_lock); 3856 return (NULL); 3857 } 3858 3859 /* 3860 * Verify whether or not an interface index is valid. 3861 * It can be zero (meaning "reset") or an interface index assigned 3862 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3863 */ 3864 boolean_t 3865 ip_ifindex_valid(uint_t ifindex, boolean_t isv6, ip_stack_t *ipst) 3866 { 3867 ill_t *ill; 3868 3869 if (ifindex == 0) 3870 return (B_TRUE); 3871 3872 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 3873 if (ill == NULL) 3874 return (B_FALSE); 3875 if (IS_VNI(ill)) { 3876 ill_refrele(ill); 3877 return (B_FALSE); 3878 } 3879 ill_refrele(ill); 3880 return (B_TRUE); 3881 } 3882 3883 /* 3884 * Return the ifindex next in sequence after the passed in ifindex. 3885 * If there is no next ifindex for the given protocol, return 0. 3886 */ 3887 uint_t 3888 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3889 { 3890 phyint_t *phyi; 3891 phyint_t *phyi_initial; 3892 uint_t ifindex; 3893 3894 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3895 3896 if (index == 0) { 3897 phyi = avl_first( 3898 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3899 } else { 3900 phyi = phyi_initial = avl_find( 3901 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3902 (void *) &index, NULL); 3903 } 3904 3905 for (; phyi != NULL; 3906 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3907 phyi, AVL_AFTER)) { 3908 /* 3909 * If we're not returning the first interface in the tree 3910 * and we still haven't moved past the phyint_t that 3911 * corresponds to index, avl_walk needs to be called again 3912 */ 3913 if (!((index != 0) && (phyi == phyi_initial))) { 3914 if (isv6) { 3915 if ((phyi->phyint_illv6) && 3916 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3917 (phyi->phyint_illv6->ill_isv6 == 1)) 3918 break; 3919 } else { 3920 if ((phyi->phyint_illv4) && 3921 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3922 (phyi->phyint_illv4->ill_isv6 == 0)) 3923 break; 3924 } 3925 } 3926 } 3927 3928 rw_exit(&ipst->ips_ill_g_lock); 3929 3930 if (phyi != NULL) 3931 ifindex = phyi->phyint_ifindex; 3932 else 3933 ifindex = 0; 3934 3935 return (ifindex); 3936 } 3937 3938 /* 3939 * Return the ifindex for the named interface. 3940 * If there is no next ifindex for the interface, return 0. 3941 */ 3942 uint_t 3943 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3944 { 3945 phyint_t *phyi; 3946 avl_index_t where = 0; 3947 uint_t ifindex; 3948 3949 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3950 3951 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3952 name, &where)) == NULL) { 3953 rw_exit(&ipst->ips_ill_g_lock); 3954 return (0); 3955 } 3956 3957 ifindex = phyi->phyint_ifindex; 3958 3959 rw_exit(&ipst->ips_ill_g_lock); 3960 3961 return (ifindex); 3962 } 3963 3964 /* 3965 * Return the ifindex to be used by upper layer protocols for instance 3966 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 3967 */ 3968 uint_t 3969 ill_get_upper_ifindex(const ill_t *ill) 3970 { 3971 if (IS_UNDER_IPMP(ill)) 3972 return (ipmp_ill_get_ipmp_ifindex(ill)); 3973 else 3974 return (ill->ill_phyint->phyint_ifindex); 3975 } 3976 3977 3978 /* 3979 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 3980 * that gives a running thread a reference to the ill. This reference must be 3981 * released by the thread when it is done accessing the ill and related 3982 * objects. ill_refcnt can not be used to account for static references 3983 * such as other structures pointing to an ill. Callers must generally 3984 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 3985 * or be sure that the ill is not being deleted or changing state before 3986 * calling the refhold functions. A non-zero ill_refcnt ensures that the 3987 * ill won't change any of its critical state such as address, netmask etc. 3988 */ 3989 void 3990 ill_refhold(ill_t *ill) 3991 { 3992 mutex_enter(&ill->ill_lock); 3993 ill->ill_refcnt++; 3994 ILL_TRACE_REF(ill); 3995 mutex_exit(&ill->ill_lock); 3996 } 3997 3998 void 3999 ill_refhold_locked(ill_t *ill) 4000 { 4001 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4002 ill->ill_refcnt++; 4003 ILL_TRACE_REF(ill); 4004 } 4005 4006 /* Returns true if we managed to get a refhold */ 4007 boolean_t 4008 ill_check_and_refhold(ill_t *ill) 4009 { 4010 mutex_enter(&ill->ill_lock); 4011 if (!ILL_IS_CONDEMNED(ill)) { 4012 ill_refhold_locked(ill); 4013 mutex_exit(&ill->ill_lock); 4014 return (B_TRUE); 4015 } 4016 mutex_exit(&ill->ill_lock); 4017 return (B_FALSE); 4018 } 4019 4020 /* 4021 * Must not be called while holding any locks. Otherwise if this is 4022 * the last reference to be released, there is a chance of recursive mutex 4023 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4024 * to restart an ioctl. 4025 */ 4026 void 4027 ill_refrele(ill_t *ill) 4028 { 4029 mutex_enter(&ill->ill_lock); 4030 ASSERT(ill->ill_refcnt != 0); 4031 ill->ill_refcnt--; 4032 ILL_UNTRACE_REF(ill); 4033 if (ill->ill_refcnt != 0) { 4034 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4035 mutex_exit(&ill->ill_lock); 4036 return; 4037 } 4038 4039 /* Drops the ill_lock */ 4040 ipif_ill_refrele_tail(ill); 4041 } 4042 4043 /* 4044 * Obtain a weak reference count on the ill. This reference ensures the 4045 * ill won't be freed, but the ill may change any of its critical state 4046 * such as netmask, address etc. Returns an error if the ill has started 4047 * closing. 4048 */ 4049 boolean_t 4050 ill_waiter_inc(ill_t *ill) 4051 { 4052 mutex_enter(&ill->ill_lock); 4053 if (ill->ill_state_flags & ILL_CONDEMNED) { 4054 mutex_exit(&ill->ill_lock); 4055 return (B_FALSE); 4056 } 4057 ill->ill_waiters++; 4058 mutex_exit(&ill->ill_lock); 4059 return (B_TRUE); 4060 } 4061 4062 void 4063 ill_waiter_dcr(ill_t *ill) 4064 { 4065 mutex_enter(&ill->ill_lock); 4066 ill->ill_waiters--; 4067 if (ill->ill_waiters == 0) 4068 cv_broadcast(&ill->ill_cv); 4069 mutex_exit(&ill->ill_lock); 4070 } 4071 4072 /* 4073 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4074 * driver. We construct best guess defaults for lower level information that 4075 * we need. If an interface is brought up without injection of any overriding 4076 * information from outside, we have to be ready to go with these defaults. 4077 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4078 * we primarely want the dl_provider_style. 4079 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4080 * at which point we assume the other part of the information is valid. 4081 */ 4082 void 4083 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4084 { 4085 uchar_t *brdcst_addr; 4086 uint_t brdcst_addr_length, phys_addr_length; 4087 t_scalar_t sap_length; 4088 dl_info_ack_t *dlia; 4089 ip_m_t *ipm; 4090 dl_qos_cl_sel1_t *sel1; 4091 int min_mtu; 4092 4093 ASSERT(IAM_WRITER_ILL(ill)); 4094 4095 /* 4096 * Till the ill is fully up the ill is not globally visible. 4097 * So no need for a lock. 4098 */ 4099 dlia = (dl_info_ack_t *)mp->b_rptr; 4100 ill->ill_mactype = dlia->dl_mac_type; 4101 4102 ipm = ip_m_lookup(dlia->dl_mac_type); 4103 if (ipm == NULL) { 4104 ipm = ip_m_lookup(DL_OTHER); 4105 ASSERT(ipm != NULL); 4106 } 4107 ill->ill_media = ipm; 4108 4109 /* 4110 * When the new DLPI stuff is ready we'll pull lengths 4111 * from dlia. 4112 */ 4113 if (dlia->dl_version == DL_VERSION_2) { 4114 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4115 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4116 brdcst_addr_length); 4117 if (brdcst_addr == NULL) { 4118 brdcst_addr_length = 0; 4119 } 4120 sap_length = dlia->dl_sap_length; 4121 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4122 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4123 brdcst_addr_length, sap_length, phys_addr_length)); 4124 } else { 4125 brdcst_addr_length = 6; 4126 brdcst_addr = ip_six_byte_all_ones; 4127 sap_length = -2; 4128 phys_addr_length = brdcst_addr_length; 4129 } 4130 4131 ill->ill_bcast_addr_length = brdcst_addr_length; 4132 ill->ill_phys_addr_length = phys_addr_length; 4133 ill->ill_sap_length = sap_length; 4134 4135 /* 4136 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4137 * but we must ensure a minimum IP MTU is used since other bits of 4138 * IP will fly apart otherwise. 4139 */ 4140 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4141 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4142 ill->ill_current_frag = ill->ill_max_frag; 4143 ill->ill_mtu = ill->ill_max_frag; 4144 4145 ill->ill_type = ipm->ip_m_type; 4146 4147 if (!ill->ill_dlpi_style_set) { 4148 if (dlia->dl_provider_style == DL_STYLE2) 4149 ill->ill_needs_attach = 1; 4150 4151 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4152 4153 /* 4154 * Allocate the first ipif on this ill. We don't delay it 4155 * further as ioctl handling assumes at least one ipif exists. 4156 * 4157 * At this point we don't know whether the ill is v4 or v6. 4158 * We will know this whan the SIOCSLIFNAME happens and 4159 * the correct value for ill_isv6 will be assigned in 4160 * ipif_set_values(). We need to hold the ill lock and 4161 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4162 * the wakeup. 4163 */ 4164 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4165 dlia->dl_provider_style != DL_STYLE2, B_TRUE); 4166 mutex_enter(&ill->ill_lock); 4167 ASSERT(ill->ill_dlpi_style_set == 0); 4168 ill->ill_dlpi_style_set = 1; 4169 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4170 cv_broadcast(&ill->ill_cv); 4171 mutex_exit(&ill->ill_lock); 4172 freemsg(mp); 4173 return; 4174 } 4175 ASSERT(ill->ill_ipif != NULL); 4176 /* 4177 * We know whether it is IPv4 or IPv6 now, as this is the 4178 * second DL_INFO_ACK we are recieving in response to the 4179 * DL_INFO_REQ sent in ipif_set_values. 4180 */ 4181 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4182 /* 4183 * Clear all the flags that were set based on ill_bcast_addr_length 4184 * and ill_phys_addr_length (in ipif_set_values) as these could have 4185 * changed now and we need to re-evaluate. 4186 */ 4187 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4188 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4189 4190 /* 4191 * Free ill_bcast_mp as things could have changed now. 4192 * 4193 * NOTE: The IPMP meta-interface is special-cased because it starts 4194 * with no underlying interfaces (and thus an unknown broadcast 4195 * address length), but we enforce that an interface is broadcast- 4196 * capable as part of allowing it to join a group. 4197 */ 4198 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4199 if (ill->ill_bcast_mp != NULL) 4200 freemsg(ill->ill_bcast_mp); 4201 ill->ill_net_type = IRE_IF_NORESOLVER; 4202 4203 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4204 ill->ill_phys_addr_length, 4205 ill->ill_sap, 4206 ill->ill_sap_length); 4207 4208 if (ill->ill_isv6) 4209 /* 4210 * Note: xresolv interfaces will eventually need NOARP 4211 * set here as well, but that will require those 4212 * external resolvers to have some knowledge of 4213 * that flag and act appropriately. Not to be changed 4214 * at present. 4215 */ 4216 ill->ill_flags |= ILLF_NONUD; 4217 else 4218 ill->ill_flags |= ILLF_NOARP; 4219 4220 if (ill->ill_mactype == SUNW_DL_VNI) { 4221 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4222 } else if (ill->ill_phys_addr_length == 0 || 4223 ill->ill_mactype == DL_IPV4 || 4224 ill->ill_mactype == DL_IPV6) { 4225 /* 4226 * The underying link is point-to-point, so mark the 4227 * interface as such. We can do IP multicast over 4228 * such a link since it transmits all network-layer 4229 * packets to the remote side the same way. 4230 */ 4231 ill->ill_flags |= ILLF_MULTICAST; 4232 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4233 } 4234 } else { 4235 ill->ill_net_type = IRE_IF_RESOLVER; 4236 if (ill->ill_bcast_mp != NULL) 4237 freemsg(ill->ill_bcast_mp); 4238 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4239 ill->ill_bcast_addr_length, ill->ill_sap, 4240 ill->ill_sap_length); 4241 /* 4242 * Later detect lack of DLPI driver multicast 4243 * capability by catching DL_ENABMULTI errors in 4244 * ip_rput_dlpi. 4245 */ 4246 ill->ill_flags |= ILLF_MULTICAST; 4247 if (!ill->ill_isv6) 4248 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4249 } 4250 4251 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4252 if (ill->ill_mactype == SUNW_DL_IPMP) 4253 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4254 4255 /* By default an interface does not support any CoS marking */ 4256 ill->ill_flags &= ~ILLF_COS_ENABLED; 4257 4258 /* 4259 * If we get QoS information in DL_INFO_ACK, the device supports 4260 * some form of CoS marking, set ILLF_COS_ENABLED. 4261 */ 4262 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4263 dlia->dl_qos_length); 4264 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4265 ill->ill_flags |= ILLF_COS_ENABLED; 4266 } 4267 4268 /* Clear any previous error indication. */ 4269 ill->ill_error = 0; 4270 freemsg(mp); 4271 } 4272 4273 /* 4274 * Perform various checks to verify that an address would make sense as a 4275 * local, remote, or subnet interface address. 4276 */ 4277 static boolean_t 4278 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4279 { 4280 ipaddr_t net_mask; 4281 4282 /* 4283 * Don't allow all zeroes, or all ones, but allow 4284 * all ones netmask. 4285 */ 4286 if ((net_mask = ip_net_mask(addr)) == 0) 4287 return (B_FALSE); 4288 /* A given netmask overrides the "guess" netmask */ 4289 if (subnet_mask != 0) 4290 net_mask = subnet_mask; 4291 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4292 (addr == (addr | ~net_mask)))) { 4293 return (B_FALSE); 4294 } 4295 4296 /* 4297 * Even if the netmask is all ones, we do not allow address to be 4298 * 255.255.255.255 4299 */ 4300 if (addr == INADDR_BROADCAST) 4301 return (B_FALSE); 4302 4303 if (CLASSD(addr)) 4304 return (B_FALSE); 4305 4306 return (B_TRUE); 4307 } 4308 4309 #define V6_IPIF_LINKLOCAL(p) \ 4310 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4311 4312 /* 4313 * Compare two given ipifs and check if the second one is better than 4314 * the first one using the order of preference (not taking deprecated 4315 * into acount) specified in ipif_lookup_multicast(). 4316 */ 4317 static boolean_t 4318 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4319 { 4320 /* Check the least preferred first. */ 4321 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4322 /* If both ipifs are the same, use the first one. */ 4323 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4324 return (B_FALSE); 4325 else 4326 return (B_TRUE); 4327 } 4328 4329 /* For IPv6, check for link local address. */ 4330 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4331 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4332 V6_IPIF_LINKLOCAL(new_ipif)) { 4333 /* The second one is equal or less preferred. */ 4334 return (B_FALSE); 4335 } else { 4336 return (B_TRUE); 4337 } 4338 } 4339 4340 /* Then check for point to point interface. */ 4341 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4342 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4343 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4344 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4345 return (B_FALSE); 4346 } else { 4347 return (B_TRUE); 4348 } 4349 } 4350 4351 /* old_ipif is a normal interface, so no need to use the new one. */ 4352 return (B_FALSE); 4353 } 4354 4355 /* 4356 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4357 * The ipif must be up, and its ill must multicast-capable, not 4358 * condemned, not an underlying interface in an IPMP group, and 4359 * not a VNI interface. Order of preference: 4360 * 4361 * 1a. normal 4362 * 1b. normal, but deprecated 4363 * 2a. point to point 4364 * 2b. point to point, but deprecated 4365 * 3a. link local 4366 * 3b. link local, but deprecated 4367 * 4. loopback. 4368 */ 4369 static ipif_t * 4370 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4371 { 4372 ill_t *ill; 4373 ill_walk_context_t ctx; 4374 ipif_t *ipif; 4375 ipif_t *saved_ipif = NULL; 4376 ipif_t *dep_ipif = NULL; 4377 4378 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4379 if (isv6) 4380 ill = ILL_START_WALK_V6(&ctx, ipst); 4381 else 4382 ill = ILL_START_WALK_V4(&ctx, ipst); 4383 4384 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4385 mutex_enter(&ill->ill_lock); 4386 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4387 ILL_IS_CONDEMNED(ill) || 4388 !(ill->ill_flags & ILLF_MULTICAST)) { 4389 mutex_exit(&ill->ill_lock); 4390 continue; 4391 } 4392 for (ipif = ill->ill_ipif; ipif != NULL; 4393 ipif = ipif->ipif_next) { 4394 if (zoneid != ipif->ipif_zoneid && 4395 zoneid != ALL_ZONES && 4396 ipif->ipif_zoneid != ALL_ZONES) { 4397 continue; 4398 } 4399 if (!(ipif->ipif_flags & IPIF_UP) || 4400 IPIF_IS_CONDEMNED(ipif)) { 4401 continue; 4402 } 4403 4404 /* 4405 * Found one candidate. If it is deprecated, 4406 * remember it in dep_ipif. If it is not deprecated, 4407 * remember it in saved_ipif. 4408 */ 4409 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4410 if (dep_ipif == NULL) { 4411 dep_ipif = ipif; 4412 } else if (ipif_comp_multi(dep_ipif, ipif, 4413 isv6)) { 4414 /* 4415 * If the previous dep_ipif does not 4416 * belong to the same ill, we've done 4417 * a ipif_refhold() on it. So we need 4418 * to release it. 4419 */ 4420 if (dep_ipif->ipif_ill != ill) 4421 ipif_refrele(dep_ipif); 4422 dep_ipif = ipif; 4423 } 4424 continue; 4425 } 4426 if (saved_ipif == NULL) { 4427 saved_ipif = ipif; 4428 } else { 4429 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4430 if (saved_ipif->ipif_ill != ill) 4431 ipif_refrele(saved_ipif); 4432 saved_ipif = ipif; 4433 } 4434 } 4435 } 4436 /* 4437 * Before going to the next ill, do a ipif_refhold() on the 4438 * saved ones. 4439 */ 4440 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4441 ipif_refhold_locked(saved_ipif); 4442 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4443 ipif_refhold_locked(dep_ipif); 4444 mutex_exit(&ill->ill_lock); 4445 } 4446 rw_exit(&ipst->ips_ill_g_lock); 4447 4448 /* 4449 * If we have only the saved_ipif, return it. But if we have both 4450 * saved_ipif and dep_ipif, check to see which one is better. 4451 */ 4452 if (saved_ipif != NULL) { 4453 if (dep_ipif != NULL) { 4454 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4455 ipif_refrele(saved_ipif); 4456 return (dep_ipif); 4457 } else { 4458 ipif_refrele(dep_ipif); 4459 return (saved_ipif); 4460 } 4461 } 4462 return (saved_ipif); 4463 } else { 4464 return (dep_ipif); 4465 } 4466 } 4467 4468 ill_t * 4469 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4470 { 4471 ipif_t *ipif; 4472 ill_t *ill; 4473 4474 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4475 if (ipif == NULL) 4476 return (NULL); 4477 4478 ill = ipif->ipif_ill; 4479 ill_refhold(ill); 4480 ipif_refrele(ipif); 4481 return (ill); 4482 } 4483 4484 /* 4485 * This function is called when an application does not specify an interface 4486 * to be used for multicast traffic (joining a group/sending data). It 4487 * calls ire_lookup_multi() to look for an interface route for the 4488 * specified multicast group. Doing this allows the administrator to add 4489 * prefix routes for multicast to indicate which interface to be used for 4490 * multicast traffic in the above scenario. The route could be for all 4491 * multicast (224.0/4), for a single multicast group (a /32 route) or 4492 * anything in between. If there is no such multicast route, we just find 4493 * any multicast capable interface and return it. The returned ipif 4494 * is refhold'ed. 4495 * 4496 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4497 * unicast table. This is used by CGTP. 4498 */ 4499 ill_t * 4500 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4501 boolean_t *multirtp, ipaddr_t *setsrcp) 4502 { 4503 ill_t *ill; 4504 4505 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4506 if (ill != NULL) 4507 return (ill); 4508 4509 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4510 } 4511 4512 /* 4513 * Look for an ipif with the specified interface address and destination. 4514 * The destination address is used only for matching point-to-point interfaces. 4515 */ 4516 ipif_t * 4517 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4518 { 4519 ipif_t *ipif; 4520 ill_t *ill; 4521 ill_walk_context_t ctx; 4522 4523 /* 4524 * First match all the point-to-point interfaces 4525 * before looking at non-point-to-point interfaces. 4526 * This is done to avoid returning non-point-to-point 4527 * ipif instead of unnumbered point-to-point ipif. 4528 */ 4529 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4530 ill = ILL_START_WALK_V4(&ctx, ipst); 4531 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4532 mutex_enter(&ill->ill_lock); 4533 for (ipif = ill->ill_ipif; ipif != NULL; 4534 ipif = ipif->ipif_next) { 4535 /* Allow the ipif to be down */ 4536 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4537 (ipif->ipif_lcl_addr == if_addr) && 4538 (ipif->ipif_pp_dst_addr == dst)) { 4539 if (!IPIF_IS_CONDEMNED(ipif)) { 4540 ipif_refhold_locked(ipif); 4541 mutex_exit(&ill->ill_lock); 4542 rw_exit(&ipst->ips_ill_g_lock); 4543 return (ipif); 4544 } 4545 } 4546 } 4547 mutex_exit(&ill->ill_lock); 4548 } 4549 rw_exit(&ipst->ips_ill_g_lock); 4550 4551 /* lookup the ipif based on interface address */ 4552 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4553 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4554 return (ipif); 4555 } 4556 4557 /* 4558 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4559 */ 4560 static ipif_t * 4561 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4562 zoneid_t zoneid, ip_stack_t *ipst) 4563 { 4564 ipif_t *ipif; 4565 ill_t *ill; 4566 boolean_t ptp = B_FALSE; 4567 ill_walk_context_t ctx; 4568 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4569 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4570 4571 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4572 /* 4573 * Repeat twice, first based on local addresses and 4574 * next time for pointopoint. 4575 */ 4576 repeat: 4577 ill = ILL_START_WALK_V4(&ctx, ipst); 4578 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4579 if (match_ill != NULL && ill != match_ill && 4580 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4581 continue; 4582 } 4583 mutex_enter(&ill->ill_lock); 4584 for (ipif = ill->ill_ipif; ipif != NULL; 4585 ipif = ipif->ipif_next) { 4586 if (zoneid != ALL_ZONES && 4587 zoneid != ipif->ipif_zoneid && 4588 ipif->ipif_zoneid != ALL_ZONES) 4589 continue; 4590 4591 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4592 continue; 4593 4594 /* Allow the ipif to be down */ 4595 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4596 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4597 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4598 (ipif->ipif_pp_dst_addr == addr))) { 4599 if (!IPIF_IS_CONDEMNED(ipif)) { 4600 ipif_refhold_locked(ipif); 4601 mutex_exit(&ill->ill_lock); 4602 rw_exit(&ipst->ips_ill_g_lock); 4603 return (ipif); 4604 } 4605 } 4606 } 4607 mutex_exit(&ill->ill_lock); 4608 } 4609 4610 /* If we already did the ptp case, then we are done */ 4611 if (ptp) { 4612 rw_exit(&ipst->ips_ill_g_lock); 4613 return (NULL); 4614 } 4615 ptp = B_TRUE; 4616 goto repeat; 4617 } 4618 4619 /* 4620 * Lookup an ipif with the specified address. For point-to-point links we 4621 * look for matches on either the destination address or the local address, 4622 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4623 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4624 * (or illgrp if `match_ill' is in an IPMP group). 4625 */ 4626 ipif_t * 4627 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4628 ip_stack_t *ipst) 4629 { 4630 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4631 zoneid, ipst)); 4632 } 4633 4634 /* 4635 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4636 * except that we will only return an address if it is not marked as 4637 * IPIF_DUPLICATE 4638 */ 4639 ipif_t * 4640 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4641 ip_stack_t *ipst) 4642 { 4643 return (ipif_lookup_addr_common(addr, match_ill, 4644 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4645 zoneid, ipst)); 4646 } 4647 4648 /* 4649 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4650 * `match_ill' across the IPMP group. This function is only needed in some 4651 * corner-cases; almost everything should use ipif_lookup_addr(). 4652 */ 4653 ipif_t * 4654 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4655 { 4656 ASSERT(match_ill != NULL); 4657 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4658 ipst)); 4659 } 4660 4661 /* 4662 * Look for an ipif with the specified address. For point-point links 4663 * we look for matches on either the destination address and the local 4664 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4665 * is set. 4666 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4667 * ill (or illgrp if `match_ill' is in an IPMP group). 4668 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4669 */ 4670 zoneid_t 4671 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4672 { 4673 zoneid_t zoneid; 4674 ipif_t *ipif; 4675 ill_t *ill; 4676 boolean_t ptp = B_FALSE; 4677 ill_walk_context_t ctx; 4678 4679 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4680 /* 4681 * Repeat twice, first based on local addresses and 4682 * next time for pointopoint. 4683 */ 4684 repeat: 4685 ill = ILL_START_WALK_V4(&ctx, ipst); 4686 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4687 if (match_ill != NULL && ill != match_ill && 4688 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4689 continue; 4690 } 4691 mutex_enter(&ill->ill_lock); 4692 for (ipif = ill->ill_ipif; ipif != NULL; 4693 ipif = ipif->ipif_next) { 4694 /* Allow the ipif to be down */ 4695 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4696 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4697 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4698 (ipif->ipif_pp_dst_addr == addr)) && 4699 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4700 zoneid = ipif->ipif_zoneid; 4701 mutex_exit(&ill->ill_lock); 4702 rw_exit(&ipst->ips_ill_g_lock); 4703 /* 4704 * If ipif_zoneid was ALL_ZONES then we have 4705 * a trusted extensions shared IP address. 4706 * In that case GLOBAL_ZONEID works to send. 4707 */ 4708 if (zoneid == ALL_ZONES) 4709 zoneid = GLOBAL_ZONEID; 4710 return (zoneid); 4711 } 4712 } 4713 mutex_exit(&ill->ill_lock); 4714 } 4715 4716 /* If we already did the ptp case, then we are done */ 4717 if (ptp) { 4718 rw_exit(&ipst->ips_ill_g_lock); 4719 return (ALL_ZONES); 4720 } 4721 ptp = B_TRUE; 4722 goto repeat; 4723 } 4724 4725 /* 4726 * Look for an ipif that matches the specified remote address i.e. the 4727 * ipif that would receive the specified packet. 4728 * First look for directly connected interfaces and then do a recursive 4729 * IRE lookup and pick the first ipif corresponding to the source address in the 4730 * ire. 4731 * Returns: held ipif 4732 * 4733 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4734 */ 4735 ipif_t * 4736 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4737 { 4738 ipif_t *ipif; 4739 4740 ASSERT(!ill->ill_isv6); 4741 4742 /* 4743 * Someone could be changing this ipif currently or change it 4744 * after we return this. Thus a few packets could use the old 4745 * old values. However structure updates/creates (ire, ilg, ilm etc) 4746 * will atomically be updated or cleaned up with the new value 4747 * Thus we don't need a lock to check the flags or other attrs below. 4748 */ 4749 mutex_enter(&ill->ill_lock); 4750 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4751 if (IPIF_IS_CONDEMNED(ipif)) 4752 continue; 4753 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4754 ipif->ipif_zoneid != ALL_ZONES) 4755 continue; 4756 /* Allow the ipif to be down */ 4757 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4758 if ((ipif->ipif_pp_dst_addr == addr) || 4759 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4760 ipif->ipif_lcl_addr == addr)) { 4761 ipif_refhold_locked(ipif); 4762 mutex_exit(&ill->ill_lock); 4763 return (ipif); 4764 } 4765 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4766 ipif_refhold_locked(ipif); 4767 mutex_exit(&ill->ill_lock); 4768 return (ipif); 4769 } 4770 } 4771 mutex_exit(&ill->ill_lock); 4772 /* 4773 * For a remote destination it isn't possible to nail down a particular 4774 * ipif. 4775 */ 4776 4777 /* Pick the first interface */ 4778 ipif = ipif_get_next_ipif(NULL, ill); 4779 return (ipif); 4780 } 4781 4782 /* 4783 * This func does not prevent refcnt from increasing. But if 4784 * the caller has taken steps to that effect, then this func 4785 * can be used to determine whether the ill has become quiescent 4786 */ 4787 static boolean_t 4788 ill_is_quiescent(ill_t *ill) 4789 { 4790 ipif_t *ipif; 4791 4792 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4793 4794 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4795 if (ipif->ipif_refcnt != 0) 4796 return (B_FALSE); 4797 } 4798 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4799 return (B_FALSE); 4800 } 4801 return (B_TRUE); 4802 } 4803 4804 boolean_t 4805 ill_is_freeable(ill_t *ill) 4806 { 4807 ipif_t *ipif; 4808 4809 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4810 4811 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4812 if (ipif->ipif_refcnt != 0) { 4813 return (B_FALSE); 4814 } 4815 } 4816 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4817 return (B_FALSE); 4818 } 4819 return (B_TRUE); 4820 } 4821 4822 /* 4823 * This func does not prevent refcnt from increasing. But if 4824 * the caller has taken steps to that effect, then this func 4825 * can be used to determine whether the ipif has become quiescent 4826 */ 4827 static boolean_t 4828 ipif_is_quiescent(ipif_t *ipif) 4829 { 4830 ill_t *ill; 4831 4832 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4833 4834 if (ipif->ipif_refcnt != 0) 4835 return (B_FALSE); 4836 4837 ill = ipif->ipif_ill; 4838 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4839 ill->ill_logical_down) { 4840 return (B_TRUE); 4841 } 4842 4843 /* This is the last ipif going down or being deleted on this ill */ 4844 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4845 return (B_FALSE); 4846 } 4847 4848 return (B_TRUE); 4849 } 4850 4851 /* 4852 * return true if the ipif can be destroyed: the ipif has to be quiescent 4853 * with zero references from ire/ilm to it. 4854 */ 4855 static boolean_t 4856 ipif_is_freeable(ipif_t *ipif) 4857 { 4858 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4859 ASSERT(ipif->ipif_id != 0); 4860 return (ipif->ipif_refcnt == 0); 4861 } 4862 4863 /* 4864 * The ipif/ill/ire has been refreled. Do the tail processing. 4865 * Determine if the ipif or ill in question has become quiescent and if so 4866 * wakeup close and/or restart any queued pending ioctl that is waiting 4867 * for the ipif_down (or ill_down) 4868 */ 4869 void 4870 ipif_ill_refrele_tail(ill_t *ill) 4871 { 4872 mblk_t *mp; 4873 conn_t *connp; 4874 ipsq_t *ipsq; 4875 ipxop_t *ipx; 4876 ipif_t *ipif; 4877 dl_notify_ind_t *dlindp; 4878 4879 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4880 4881 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4882 /* ip_modclose() may be waiting */ 4883 cv_broadcast(&ill->ill_cv); 4884 } 4885 4886 ipsq = ill->ill_phyint->phyint_ipsq; 4887 mutex_enter(&ipsq->ipsq_lock); 4888 ipx = ipsq->ipsq_xop; 4889 mutex_enter(&ipx->ipx_lock); 4890 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4891 goto unlock; 4892 4893 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4894 4895 ipif = ipx->ipx_pending_ipif; 4896 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4897 goto unlock; 4898 4899 switch (ipx->ipx_waitfor) { 4900 case IPIF_DOWN: 4901 if (!ipif_is_quiescent(ipif)) 4902 goto unlock; 4903 break; 4904 case IPIF_FREE: 4905 if (!ipif_is_freeable(ipif)) 4906 goto unlock; 4907 break; 4908 case ILL_DOWN: 4909 if (!ill_is_quiescent(ill)) 4910 goto unlock; 4911 break; 4912 case ILL_FREE: 4913 /* 4914 * ILL_FREE is only for loopback; normal ill teardown waits 4915 * synchronously in ip_modclose() without using ipx_waitfor, 4916 * handled by the cv_broadcast() at the top of this function. 4917 */ 4918 if (!ill_is_freeable(ill)) 4919 goto unlock; 4920 break; 4921 default: 4922 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4923 (void *)ipsq, ipx->ipx_waitfor); 4924 } 4925 4926 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4927 mutex_exit(&ipx->ipx_lock); 4928 mp = ipsq_pending_mp_get(ipsq, &connp); 4929 mutex_exit(&ipsq->ipsq_lock); 4930 mutex_exit(&ill->ill_lock); 4931 4932 ASSERT(mp != NULL); 4933 /* 4934 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4935 * we can only get here when the current operation decides it 4936 * it needs to quiesce via ipsq_pending_mp_add(). 4937 */ 4938 switch (mp->b_datap->db_type) { 4939 case M_PCPROTO: 4940 case M_PROTO: 4941 /* 4942 * For now, only DL_NOTIFY_IND messages can use this facility. 4943 */ 4944 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4945 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4946 4947 switch (dlindp->dl_notification) { 4948 case DL_NOTE_PHYS_ADDR: 4949 qwriter_ip(ill, ill->ill_rq, mp, 4950 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 4951 return; 4952 case DL_NOTE_REPLUMB: 4953 qwriter_ip(ill, ill->ill_rq, mp, 4954 ill_replumb_tail, CUR_OP, B_TRUE); 4955 return; 4956 default: 4957 ASSERT(0); 4958 ill_refrele(ill); 4959 } 4960 break; 4961 4962 case M_ERROR: 4963 case M_HANGUP: 4964 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 4965 B_TRUE); 4966 return; 4967 4968 case M_IOCTL: 4969 case M_IOCDATA: 4970 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 4971 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 4972 return; 4973 4974 default: 4975 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 4976 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 4977 } 4978 return; 4979 unlock: 4980 mutex_exit(&ipsq->ipsq_lock); 4981 mutex_exit(&ipx->ipx_lock); 4982 mutex_exit(&ill->ill_lock); 4983 } 4984 4985 #ifdef DEBUG 4986 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 4987 static void 4988 th_trace_rrecord(th_trace_t *th_trace) 4989 { 4990 tr_buf_t *tr_buf; 4991 uint_t lastref; 4992 4993 lastref = th_trace->th_trace_lastref; 4994 lastref++; 4995 if (lastref == TR_BUF_MAX) 4996 lastref = 0; 4997 th_trace->th_trace_lastref = lastref; 4998 tr_buf = &th_trace->th_trbuf[lastref]; 4999 tr_buf->tr_time = ddi_get_lbolt(); 5000 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5001 } 5002 5003 static void 5004 th_trace_free(void *value) 5005 { 5006 th_trace_t *th_trace = value; 5007 5008 ASSERT(th_trace->th_refcnt == 0); 5009 kmem_free(th_trace, sizeof (*th_trace)); 5010 } 5011 5012 /* 5013 * Find or create the per-thread hash table used to track object references. 5014 * The ipst argument is NULL if we shouldn't allocate. 5015 * 5016 * Accesses per-thread data, so there's no need to lock here. 5017 */ 5018 static mod_hash_t * 5019 th_trace_gethash(ip_stack_t *ipst) 5020 { 5021 th_hash_t *thh; 5022 5023 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5024 mod_hash_t *mh; 5025 char name[256]; 5026 size_t objsize, rshift; 5027 int retv; 5028 5029 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5030 return (NULL); 5031 (void) snprintf(name, sizeof (name), "th_trace_%p", 5032 (void *)curthread); 5033 5034 /* 5035 * We use mod_hash_create_extended here rather than the more 5036 * obvious mod_hash_create_ptrhash because the latter has a 5037 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5038 * block. 5039 */ 5040 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5041 MAX(sizeof (ire_t), sizeof (ncec_t))); 5042 rshift = highbit(objsize); 5043 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5044 th_trace_free, mod_hash_byptr, (void *)rshift, 5045 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5046 if (mh == NULL) { 5047 kmem_free(thh, sizeof (*thh)); 5048 return (NULL); 5049 } 5050 thh->thh_hash = mh; 5051 thh->thh_ipst = ipst; 5052 /* 5053 * We trace ills, ipifs, ires, and nces. All of these are 5054 * per-IP-stack, so the lock on the thread list is as well. 5055 */ 5056 rw_enter(&ip_thread_rwlock, RW_WRITER); 5057 list_insert_tail(&ip_thread_list, thh); 5058 rw_exit(&ip_thread_rwlock); 5059 retv = tsd_set(ip_thread_data, thh); 5060 ASSERT(retv == 0); 5061 } 5062 return (thh != NULL ? thh->thh_hash : NULL); 5063 } 5064 5065 boolean_t 5066 th_trace_ref(const void *obj, ip_stack_t *ipst) 5067 { 5068 th_trace_t *th_trace; 5069 mod_hash_t *mh; 5070 mod_hash_val_t val; 5071 5072 if ((mh = th_trace_gethash(ipst)) == NULL) 5073 return (B_FALSE); 5074 5075 /* 5076 * Attempt to locate the trace buffer for this obj and thread. 5077 * If it does not exist, then allocate a new trace buffer and 5078 * insert into the hash. 5079 */ 5080 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5081 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5082 if (th_trace == NULL) 5083 return (B_FALSE); 5084 5085 th_trace->th_id = curthread; 5086 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5087 (mod_hash_val_t)th_trace) != 0) { 5088 kmem_free(th_trace, sizeof (th_trace_t)); 5089 return (B_FALSE); 5090 } 5091 } else { 5092 th_trace = (th_trace_t *)val; 5093 } 5094 5095 ASSERT(th_trace->th_refcnt >= 0 && 5096 th_trace->th_refcnt < TR_BUF_MAX - 1); 5097 5098 th_trace->th_refcnt++; 5099 th_trace_rrecord(th_trace); 5100 return (B_TRUE); 5101 } 5102 5103 /* 5104 * For the purpose of tracing a reference release, we assume that global 5105 * tracing is always on and that the same thread initiated the reference hold 5106 * is releasing. 5107 */ 5108 void 5109 th_trace_unref(const void *obj) 5110 { 5111 int retv; 5112 mod_hash_t *mh; 5113 th_trace_t *th_trace; 5114 mod_hash_val_t val; 5115 5116 mh = th_trace_gethash(NULL); 5117 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5118 ASSERT(retv == 0); 5119 th_trace = (th_trace_t *)val; 5120 5121 ASSERT(th_trace->th_refcnt > 0); 5122 th_trace->th_refcnt--; 5123 th_trace_rrecord(th_trace); 5124 } 5125 5126 /* 5127 * If tracing has been disabled, then we assume that the reference counts are 5128 * now useless, and we clear them out before destroying the entries. 5129 */ 5130 void 5131 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5132 { 5133 th_hash_t *thh; 5134 mod_hash_t *mh; 5135 mod_hash_val_t val; 5136 th_trace_t *th_trace; 5137 int retv; 5138 5139 rw_enter(&ip_thread_rwlock, RW_READER); 5140 for (thh = list_head(&ip_thread_list); thh != NULL; 5141 thh = list_next(&ip_thread_list, thh)) { 5142 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5143 &val) == 0) { 5144 th_trace = (th_trace_t *)val; 5145 if (trace_disable) 5146 th_trace->th_refcnt = 0; 5147 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5148 ASSERT(retv == 0); 5149 } 5150 } 5151 rw_exit(&ip_thread_rwlock); 5152 } 5153 5154 void 5155 ipif_trace_ref(ipif_t *ipif) 5156 { 5157 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5158 5159 if (ipif->ipif_trace_disable) 5160 return; 5161 5162 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5163 ipif->ipif_trace_disable = B_TRUE; 5164 ipif_trace_cleanup(ipif); 5165 } 5166 } 5167 5168 void 5169 ipif_untrace_ref(ipif_t *ipif) 5170 { 5171 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5172 5173 if (!ipif->ipif_trace_disable) 5174 th_trace_unref(ipif); 5175 } 5176 5177 void 5178 ill_trace_ref(ill_t *ill) 5179 { 5180 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5181 5182 if (ill->ill_trace_disable) 5183 return; 5184 5185 if (!th_trace_ref(ill, ill->ill_ipst)) { 5186 ill->ill_trace_disable = B_TRUE; 5187 ill_trace_cleanup(ill); 5188 } 5189 } 5190 5191 void 5192 ill_untrace_ref(ill_t *ill) 5193 { 5194 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5195 5196 if (!ill->ill_trace_disable) 5197 th_trace_unref(ill); 5198 } 5199 5200 /* 5201 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5202 * failure, ipif_trace_disable is set. 5203 */ 5204 static void 5205 ipif_trace_cleanup(const ipif_t *ipif) 5206 { 5207 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5208 } 5209 5210 /* 5211 * Called when ill is unplumbed or when memory alloc fails. Note that on 5212 * failure, ill_trace_disable is set. 5213 */ 5214 static void 5215 ill_trace_cleanup(const ill_t *ill) 5216 { 5217 th_trace_cleanup(ill, ill->ill_trace_disable); 5218 } 5219 #endif /* DEBUG */ 5220 5221 void 5222 ipif_refhold_locked(ipif_t *ipif) 5223 { 5224 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5225 ipif->ipif_refcnt++; 5226 IPIF_TRACE_REF(ipif); 5227 } 5228 5229 void 5230 ipif_refhold(ipif_t *ipif) 5231 { 5232 ill_t *ill; 5233 5234 ill = ipif->ipif_ill; 5235 mutex_enter(&ill->ill_lock); 5236 ipif->ipif_refcnt++; 5237 IPIF_TRACE_REF(ipif); 5238 mutex_exit(&ill->ill_lock); 5239 } 5240 5241 /* 5242 * Must not be called while holding any locks. Otherwise if this is 5243 * the last reference to be released there is a chance of recursive mutex 5244 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5245 * to restart an ioctl. 5246 */ 5247 void 5248 ipif_refrele(ipif_t *ipif) 5249 { 5250 ill_t *ill; 5251 5252 ill = ipif->ipif_ill; 5253 5254 mutex_enter(&ill->ill_lock); 5255 ASSERT(ipif->ipif_refcnt != 0); 5256 ipif->ipif_refcnt--; 5257 IPIF_UNTRACE_REF(ipif); 5258 if (ipif->ipif_refcnt != 0) { 5259 mutex_exit(&ill->ill_lock); 5260 return; 5261 } 5262 5263 /* Drops the ill_lock */ 5264 ipif_ill_refrele_tail(ill); 5265 } 5266 5267 ipif_t * 5268 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5269 { 5270 ipif_t *ipif; 5271 5272 mutex_enter(&ill->ill_lock); 5273 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5274 ipif != NULL; ipif = ipif->ipif_next) { 5275 if (IPIF_IS_CONDEMNED(ipif)) 5276 continue; 5277 ipif_refhold_locked(ipif); 5278 mutex_exit(&ill->ill_lock); 5279 return (ipif); 5280 } 5281 mutex_exit(&ill->ill_lock); 5282 return (NULL); 5283 } 5284 5285 /* 5286 * TODO: make this table extendible at run time 5287 * Return a pointer to the mac type info for 'mac_type' 5288 */ 5289 static ip_m_t * 5290 ip_m_lookup(t_uscalar_t mac_type) 5291 { 5292 ip_m_t *ipm; 5293 5294 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5295 if (ipm->ip_m_mac_type == mac_type) 5296 return (ipm); 5297 return (NULL); 5298 } 5299 5300 /* 5301 * Make a link layer address from the multicast IP address *addr. 5302 * To form the link layer address, invoke the ip_m_v*mapping function 5303 * associated with the link-layer type. 5304 */ 5305 void 5306 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5307 { 5308 ip_m_t *ipm; 5309 5310 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5311 return; 5312 5313 ASSERT(addr != NULL); 5314 5315 ipm = ip_m_lookup(ill->ill_mactype); 5316 if (ipm == NULL || 5317 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5318 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5319 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5320 ill->ill_name, ill->ill_mactype)); 5321 return; 5322 } 5323 if (ill->ill_isv6) 5324 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5325 else 5326 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5327 } 5328 5329 /* 5330 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5331 * ill is passed in to associate it with the correct interface. 5332 * If ire_arg is set, then we return the held IRE in that location. 5333 */ 5334 int 5335 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5336 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5337 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5338 { 5339 ire_t *ire, *nire; 5340 ire_t *gw_ire = NULL; 5341 ipif_t *ipif = NULL; 5342 uint_t type; 5343 int match_flags = MATCH_IRE_TYPE; 5344 tsol_gc_t *gc = NULL; 5345 tsol_gcgrp_t *gcgrp = NULL; 5346 boolean_t gcgrp_xtraref = B_FALSE; 5347 boolean_t cgtp_broadcast; 5348 5349 ip1dbg(("ip_rt_add:")); 5350 5351 if (ire_arg != NULL) 5352 *ire_arg = NULL; 5353 5354 /* 5355 * If this is the case of RTF_HOST being set, then we set the netmask 5356 * to all ones (regardless if one was supplied). 5357 */ 5358 if (flags & RTF_HOST) 5359 mask = IP_HOST_MASK; 5360 5361 /* 5362 * Prevent routes with a zero gateway from being created (since 5363 * interfaces can currently be plumbed and brought up no assigned 5364 * address). 5365 */ 5366 if (gw_addr == 0) 5367 return (ENETUNREACH); 5368 /* 5369 * Get the ipif, if any, corresponding to the gw_addr 5370 * If -ifp was specified we restrict ourselves to the ill, otherwise 5371 * we match on the gatway and destination to handle unnumbered pt-pt 5372 * interfaces. 5373 */ 5374 if (ill != NULL) 5375 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5376 else 5377 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5378 if (ipif != NULL) { 5379 if (IS_VNI(ipif->ipif_ill)) { 5380 ipif_refrele(ipif); 5381 return (EINVAL); 5382 } 5383 } 5384 5385 /* 5386 * GateD will attempt to create routes with a loopback interface 5387 * address as the gateway and with RTF_GATEWAY set. We allow 5388 * these routes to be added, but create them as interface routes 5389 * since the gateway is an interface address. 5390 */ 5391 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5392 flags &= ~RTF_GATEWAY; 5393 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5394 mask == IP_HOST_MASK) { 5395 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5396 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5397 NULL); 5398 if (ire != NULL) { 5399 ire_refrele(ire); 5400 ipif_refrele(ipif); 5401 return (EEXIST); 5402 } 5403 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5404 "for 0x%x\n", (void *)ipif, 5405 ipif->ipif_ire_type, 5406 ntohl(ipif->ipif_lcl_addr))); 5407 ire = ire_create( 5408 (uchar_t *)&dst_addr, /* dest address */ 5409 (uchar_t *)&mask, /* mask */ 5410 NULL, /* no gateway */ 5411 ipif->ipif_ire_type, /* LOOPBACK */ 5412 ipif->ipif_ill, 5413 zoneid, 5414 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5415 NULL, 5416 ipst); 5417 5418 if (ire == NULL) { 5419 ipif_refrele(ipif); 5420 return (ENOMEM); 5421 } 5422 /* src address assigned by the caller? */ 5423 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5424 ire->ire_setsrc_addr = src_addr; 5425 5426 nire = ire_add(ire); 5427 if (nire == NULL) { 5428 /* 5429 * In the result of failure, ire_add() will have 5430 * already deleted the ire in question, so there 5431 * is no need to do that here. 5432 */ 5433 ipif_refrele(ipif); 5434 return (ENOMEM); 5435 } 5436 /* 5437 * Check if it was a duplicate entry. This handles 5438 * the case of two racing route adds for the same route 5439 */ 5440 if (nire != ire) { 5441 ASSERT(nire->ire_identical_ref > 1); 5442 ire_delete(nire); 5443 ire_refrele(nire); 5444 ipif_refrele(ipif); 5445 return (EEXIST); 5446 } 5447 ire = nire; 5448 goto save_ire; 5449 } 5450 } 5451 5452 /* 5453 * The routes for multicast with CGTP are quite special in that 5454 * the gateway is the local interface address, yet RTF_GATEWAY 5455 * is set. We turn off RTF_GATEWAY to provide compatibility with 5456 * this undocumented and unusual use of multicast routes. 5457 */ 5458 if ((flags & RTF_MULTIRT) && ipif != NULL) 5459 flags &= ~RTF_GATEWAY; 5460 5461 /* 5462 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5463 * and the gateway address provided is one of the system's interface 5464 * addresses. By using the routing socket interface and supplying an 5465 * RTA_IFP sockaddr with an interface index, an alternate method of 5466 * specifying an interface route to be created is available which uses 5467 * the interface index that specifies the outgoing interface rather than 5468 * the address of an outgoing interface (which may not be able to 5469 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5470 * flag, routes can be specified which not only specify the next-hop to 5471 * be used when routing to a certain prefix, but also which outgoing 5472 * interface should be used. 5473 * 5474 * Previously, interfaces would have unique addresses assigned to them 5475 * and so the address assigned to a particular interface could be used 5476 * to identify a particular interface. One exception to this was the 5477 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5478 * 5479 * With the advent of IPv6 and its link-local addresses, this 5480 * restriction was relaxed and interfaces could share addresses between 5481 * themselves. In fact, typically all of the link-local interfaces on 5482 * an IPv6 node or router will have the same link-local address. In 5483 * order to differentiate between these interfaces, the use of an 5484 * interface index is necessary and this index can be carried inside a 5485 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5486 * of using the interface index, however, is that all of the ipif's that 5487 * are part of an ill have the same index and so the RTA_IFP sockaddr 5488 * cannot be used to differentiate between ipif's (or logical 5489 * interfaces) that belong to the same ill (physical interface). 5490 * 5491 * For example, in the following case involving IPv4 interfaces and 5492 * logical interfaces 5493 * 5494 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5495 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5496 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5497 * 5498 * the ipif's corresponding to each of these interface routes can be 5499 * uniquely identified by the "gateway" (actually interface address). 5500 * 5501 * In this case involving multiple IPv6 default routes to a particular 5502 * link-local gateway, the use of RTA_IFP is necessary to specify which 5503 * default route is of interest: 5504 * 5505 * default fe80::123:4567:89ab:cdef U if0 5506 * default fe80::123:4567:89ab:cdef U if1 5507 */ 5508 5509 /* RTF_GATEWAY not set */ 5510 if (!(flags & RTF_GATEWAY)) { 5511 if (sp != NULL) { 5512 ip2dbg(("ip_rt_add: gateway security attributes " 5513 "cannot be set with interface route\n")); 5514 if (ipif != NULL) 5515 ipif_refrele(ipif); 5516 return (EINVAL); 5517 } 5518 5519 /* 5520 * Whether or not ill (RTA_IFP) is set, we require that 5521 * the gateway is one of our local addresses. 5522 */ 5523 if (ipif == NULL) 5524 return (ENETUNREACH); 5525 5526 /* 5527 * We use MATCH_IRE_ILL here. If the caller specified an 5528 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5529 * we use the ill derived from the gateway address. 5530 * We can always match the gateway address since we record it 5531 * in ire_gateway_addr. 5532 * We don't allow RTA_IFP to specify a different ill than the 5533 * one matching the ipif to make sure we can delete the route. 5534 */ 5535 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5536 if (ill == NULL) { 5537 ill = ipif->ipif_ill; 5538 } else if (ill != ipif->ipif_ill) { 5539 ipif_refrele(ipif); 5540 return (EINVAL); 5541 } 5542 5543 /* 5544 * We check for an existing entry at this point. 5545 * 5546 * Since a netmask isn't passed in via the ioctl interface 5547 * (SIOCADDRT), we don't check for a matching netmask in that 5548 * case. 5549 */ 5550 if (!ioctl_msg) 5551 match_flags |= MATCH_IRE_MASK; 5552 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5553 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5554 NULL); 5555 if (ire != NULL) { 5556 ire_refrele(ire); 5557 ipif_refrele(ipif); 5558 return (EEXIST); 5559 } 5560 5561 /* 5562 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or 5563 * IRE_IF_RESOLVER with the modified address, netmask, and 5564 * gateway. 5565 */ 5566 ire = ire_create( 5567 (uchar_t *)&dst_addr, 5568 (uint8_t *)&mask, 5569 (uint8_t *)&gw_addr, 5570 ill->ill_net_type, 5571 ill, 5572 zoneid, 5573 flags, 5574 NULL, 5575 ipst); 5576 if (ire == NULL) { 5577 ipif_refrele(ipif); 5578 return (ENOMEM); 5579 } 5580 5581 /* 5582 * Some software (for example, GateD and Sun Cluster) attempts 5583 * to create (what amount to) IRE_PREFIX routes with the 5584 * loopback address as the gateway. This is primarily done to 5585 * set up prefixes with the RTF_REJECT flag set (for example, 5586 * when generating aggregate routes.) 5587 * 5588 * If the IRE type (as defined by ill->ill_net_type) is 5589 * IRE_LOOPBACK, then we map the request into a 5590 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5591 * these interface routes, by definition, can only be that. 5592 * 5593 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5594 * routine, but rather using ire_create() directly. 5595 * 5596 */ 5597 if (ill->ill_net_type == IRE_LOOPBACK) { 5598 ire->ire_type = IRE_IF_NORESOLVER; 5599 ire->ire_flags |= RTF_BLACKHOLE; 5600 } 5601 5602 /* src address assigned by the caller? */ 5603 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5604 ire->ire_setsrc_addr = src_addr; 5605 5606 nire = ire_add(ire); 5607 if (nire == NULL) { 5608 /* 5609 * In the result of failure, ire_add() will have 5610 * already deleted the ire in question, so there 5611 * is no need to do that here. 5612 */ 5613 ipif_refrele(ipif); 5614 return (ENOMEM); 5615 } 5616 /* 5617 * Check if it was a duplicate entry. This handles 5618 * the case of two racing route adds for the same route 5619 */ 5620 if (nire != ire) { 5621 ire_delete(nire); 5622 ire_refrele(nire); 5623 ipif_refrele(ipif); 5624 return (EEXIST); 5625 } 5626 ire = nire; 5627 goto save_ire; 5628 } 5629 5630 /* 5631 * Get an interface IRE for the specified gateway. 5632 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5633 * gateway, it is currently unreachable and we fail the request 5634 * accordingly. 5635 * If RTA_IFP was specified we look on that particular ill. 5636 */ 5637 if (ill != NULL) 5638 match_flags |= MATCH_IRE_ILL; 5639 5640 /* Check whether the gateway is reachable. */ 5641 again: 5642 type = IRE_INTERFACE; 5643 if (flags & RTF_INDIRECT) 5644 type |= IRE_OFFLINK; 5645 5646 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5647 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5648 if (gw_ire == NULL) { 5649 /* 5650 * With IPMP, we allow host routes to influence in.mpathd's 5651 * target selection. However, if the test addresses are on 5652 * their own network, the above lookup will fail since the 5653 * underlying IRE_INTERFACEs are marked hidden. So allow 5654 * hidden test IREs to be found and try again. 5655 */ 5656 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5657 match_flags |= MATCH_IRE_TESTHIDDEN; 5658 goto again; 5659 } 5660 5661 if (ipif != NULL) 5662 ipif_refrele(ipif); 5663 return (ENETUNREACH); 5664 } 5665 5666 /* 5667 * We create one of three types of IREs as a result of this request 5668 * based on the netmask. A netmask of all ones (which is automatically 5669 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5670 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5671 * created. Otherwise, an IRE_PREFIX route is created for the 5672 * destination prefix. 5673 */ 5674 if (mask == IP_HOST_MASK) 5675 type = IRE_HOST; 5676 else if (mask == 0) 5677 type = IRE_DEFAULT; 5678 else 5679 type = IRE_PREFIX; 5680 5681 /* check for a duplicate entry */ 5682 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5683 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5684 0, ipst, NULL); 5685 if (ire != NULL) { 5686 if (ipif != NULL) 5687 ipif_refrele(ipif); 5688 ire_refrele(gw_ire); 5689 ire_refrele(ire); 5690 return (EEXIST); 5691 } 5692 5693 /* Security attribute exists */ 5694 if (sp != NULL) { 5695 tsol_gcgrp_addr_t ga; 5696 5697 /* find or create the gateway credentials group */ 5698 ga.ga_af = AF_INET; 5699 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5700 5701 /* we hold reference to it upon success */ 5702 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5703 if (gcgrp == NULL) { 5704 if (ipif != NULL) 5705 ipif_refrele(ipif); 5706 ire_refrele(gw_ire); 5707 return (ENOMEM); 5708 } 5709 5710 /* 5711 * Create and add the security attribute to the group; a 5712 * reference to the group is made upon allocating a new 5713 * entry successfully. If it finds an already-existing 5714 * entry for the security attribute in the group, it simply 5715 * returns it and no new reference is made to the group. 5716 */ 5717 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5718 if (gc == NULL) { 5719 if (ipif != NULL) 5720 ipif_refrele(ipif); 5721 /* release reference held by gcgrp_lookup */ 5722 GCGRP_REFRELE(gcgrp); 5723 ire_refrele(gw_ire); 5724 return (ENOMEM); 5725 } 5726 } 5727 5728 /* Create the IRE. */ 5729 ire = ire_create( 5730 (uchar_t *)&dst_addr, /* dest address */ 5731 (uchar_t *)&mask, /* mask */ 5732 (uchar_t *)&gw_addr, /* gateway address */ 5733 (ushort_t)type, /* IRE type */ 5734 ill, 5735 zoneid, 5736 flags, 5737 gc, /* security attribute */ 5738 ipst); 5739 5740 /* 5741 * The ire holds a reference to the 'gc' and the 'gc' holds a 5742 * reference to the 'gcgrp'. We can now release the extra reference 5743 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5744 */ 5745 if (gcgrp_xtraref) 5746 GCGRP_REFRELE(gcgrp); 5747 if (ire == NULL) { 5748 if (gc != NULL) 5749 GC_REFRELE(gc); 5750 if (ipif != NULL) 5751 ipif_refrele(ipif); 5752 ire_refrele(gw_ire); 5753 return (ENOMEM); 5754 } 5755 5756 /* Before we add, check if an extra CGTP broadcast is needed */ 5757 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5758 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5759 5760 /* src address assigned by the caller? */ 5761 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5762 ire->ire_setsrc_addr = src_addr; 5763 5764 /* 5765 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5766 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5767 */ 5768 5769 /* Add the new IRE. */ 5770 nire = ire_add(ire); 5771 if (nire == NULL) { 5772 /* 5773 * In the result of failure, ire_add() will have 5774 * already deleted the ire in question, so there 5775 * is no need to do that here. 5776 */ 5777 if (ipif != NULL) 5778 ipif_refrele(ipif); 5779 ire_refrele(gw_ire); 5780 return (ENOMEM); 5781 } 5782 /* 5783 * Check if it was a duplicate entry. This handles 5784 * the case of two racing route adds for the same route 5785 */ 5786 if (nire != ire) { 5787 ire_delete(nire); 5788 ire_refrele(nire); 5789 if (ipif != NULL) 5790 ipif_refrele(ipif); 5791 ire_refrele(gw_ire); 5792 return (EEXIST); 5793 } 5794 ire = nire; 5795 5796 if (flags & RTF_MULTIRT) { 5797 /* 5798 * Invoke the CGTP (multirouting) filtering module 5799 * to add the dst address in the filtering database. 5800 * Replicated inbound packets coming from that address 5801 * will be filtered to discard the duplicates. 5802 * It is not necessary to call the CGTP filter hook 5803 * when the dst address is a broadcast or multicast, 5804 * because an IP source address cannot be a broadcast 5805 * or a multicast. 5806 */ 5807 if (cgtp_broadcast) { 5808 ip_cgtp_bcast_add(ire, ipst); 5809 goto save_ire; 5810 } 5811 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5812 !CLASSD(ire->ire_addr)) { 5813 int res; 5814 ipif_t *src_ipif; 5815 5816 /* Find the source address corresponding to gw_ire */ 5817 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5818 NULL, zoneid, ipst); 5819 if (src_ipif != NULL) { 5820 res = ipst->ips_ip_cgtp_filter_ops-> 5821 cfo_add_dest_v4( 5822 ipst->ips_netstack->netstack_stackid, 5823 ire->ire_addr, 5824 ire->ire_gateway_addr, 5825 ire->ire_setsrc_addr, 5826 src_ipif->ipif_lcl_addr); 5827 ipif_refrele(src_ipif); 5828 } else { 5829 res = EADDRNOTAVAIL; 5830 } 5831 if (res != 0) { 5832 if (ipif != NULL) 5833 ipif_refrele(ipif); 5834 ire_refrele(gw_ire); 5835 ire_delete(ire); 5836 ire_refrele(ire); /* Held in ire_add */ 5837 return (res); 5838 } 5839 } 5840 } 5841 5842 save_ire: 5843 if (gw_ire != NULL) { 5844 ire_refrele(gw_ire); 5845 gw_ire = NULL; 5846 } 5847 if (ill != NULL) { 5848 /* 5849 * Save enough information so that we can recreate the IRE if 5850 * the interface goes down and then up. The metrics associated 5851 * with the route will be saved as well when rts_setmetrics() is 5852 * called after the IRE has been created. In the case where 5853 * memory cannot be allocated, none of this information will be 5854 * saved. 5855 */ 5856 ill_save_ire(ill, ire); 5857 } 5858 if (ioctl_msg) 5859 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5860 if (ire_arg != NULL) { 5861 /* 5862 * Store the ire that was successfully added into where ire_arg 5863 * points to so that callers don't have to look it up 5864 * themselves (but they are responsible for ire_refrele()ing 5865 * the ire when they are finished with it). 5866 */ 5867 *ire_arg = ire; 5868 } else { 5869 ire_refrele(ire); /* Held in ire_add */ 5870 } 5871 if (ipif != NULL) 5872 ipif_refrele(ipif); 5873 return (0); 5874 } 5875 5876 /* 5877 * ip_rt_delete is called to delete an IPv4 route. 5878 * ill is passed in to associate it with the correct interface. 5879 */ 5880 /* ARGSUSED4 */ 5881 int 5882 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5883 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5884 ip_stack_t *ipst, zoneid_t zoneid) 5885 { 5886 ire_t *ire = NULL; 5887 ipif_t *ipif; 5888 uint_t type; 5889 uint_t match_flags = MATCH_IRE_TYPE; 5890 int err = 0; 5891 5892 ip1dbg(("ip_rt_delete:")); 5893 /* 5894 * If this is the case of RTF_HOST being set, then we set the netmask 5895 * to all ones. Otherwise, we use the netmask if one was supplied. 5896 */ 5897 if (flags & RTF_HOST) { 5898 mask = IP_HOST_MASK; 5899 match_flags |= MATCH_IRE_MASK; 5900 } else if (rtm_addrs & RTA_NETMASK) { 5901 match_flags |= MATCH_IRE_MASK; 5902 } 5903 5904 /* 5905 * Note that RTF_GATEWAY is never set on a delete, therefore 5906 * we check if the gateway address is one of our interfaces first, 5907 * and fall back on RTF_GATEWAY routes. 5908 * 5909 * This makes it possible to delete an original 5910 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 5911 * However, we have RTF_KERNEL set on the ones created by ipif_up 5912 * and those can not be deleted here. 5913 * 5914 * We use MATCH_IRE_ILL if we know the interface. If the caller 5915 * specified an interface (from the RTA_IFP sockaddr) we use it, 5916 * otherwise we use the ill derived from the gateway address. 5917 * We can always match the gateway address since we record it 5918 * in ire_gateway_addr. 5919 * 5920 * For more detail on specifying routes by gateway address and by 5921 * interface index, see the comments in ip_rt_add(). 5922 */ 5923 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5924 if (ipif != NULL) { 5925 ill_t *ill_match; 5926 5927 if (ill != NULL) 5928 ill_match = ill; 5929 else 5930 ill_match = ipif->ipif_ill; 5931 5932 match_flags |= MATCH_IRE_ILL; 5933 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 5934 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5935 ill_match, ALL_ZONES, NULL, match_flags, 0, ipst, 5936 NULL); 5937 } 5938 if (ire == NULL) { 5939 match_flags |= MATCH_IRE_GW; 5940 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5941 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 5942 match_flags, 0, ipst, NULL); 5943 } 5944 /* Avoid deleting routes created by kernel from an ipif */ 5945 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 5946 ire_refrele(ire); 5947 ire = NULL; 5948 } 5949 5950 /* Restore in case we didn't find a match */ 5951 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 5952 } 5953 5954 if (ire == NULL) { 5955 /* 5956 * At this point, the gateway address is not one of our own 5957 * addresses or a matching interface route was not found. We 5958 * set the IRE type to lookup based on whether 5959 * this is a host route, a default route or just a prefix. 5960 * 5961 * If an ill was passed in, then the lookup is based on an 5962 * interface index so MATCH_IRE_ILL is added to match_flags. 5963 */ 5964 match_flags |= MATCH_IRE_GW; 5965 if (ill != NULL) 5966 match_flags |= MATCH_IRE_ILL; 5967 if (mask == IP_HOST_MASK) 5968 type = IRE_HOST; 5969 else if (mask == 0) 5970 type = IRE_DEFAULT; 5971 else 5972 type = IRE_PREFIX; 5973 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5974 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5975 } 5976 5977 if (ipif != NULL) { 5978 ipif_refrele(ipif); 5979 ipif = NULL; 5980 } 5981 5982 if (ire == NULL) 5983 return (ESRCH); 5984 5985 if (ire->ire_flags & RTF_MULTIRT) { 5986 /* 5987 * Invoke the CGTP (multirouting) filtering module 5988 * to remove the dst address from the filtering database. 5989 * Packets coming from that address will no longer be 5990 * filtered to remove duplicates. 5991 */ 5992 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 5993 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 5994 ipst->ips_netstack->netstack_stackid, 5995 ire->ire_addr, ire->ire_gateway_addr); 5996 } 5997 ip_cgtp_bcast_delete(ire, ipst); 5998 } 5999 6000 ill = ire->ire_ill; 6001 if (ill != NULL) 6002 ill_remove_saved_ire(ill, ire); 6003 if (ioctl_msg) 6004 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6005 ire_delete(ire); 6006 ire_refrele(ire); 6007 return (err); 6008 } 6009 6010 /* 6011 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6012 */ 6013 /* ARGSUSED */ 6014 int 6015 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6016 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6017 { 6018 ipaddr_t dst_addr; 6019 ipaddr_t gw_addr; 6020 ipaddr_t mask; 6021 int error = 0; 6022 mblk_t *mp1; 6023 struct rtentry *rt; 6024 ipif_t *ipif = NULL; 6025 ip_stack_t *ipst; 6026 6027 ASSERT(q->q_next == NULL); 6028 ipst = CONNQ_TO_IPST(q); 6029 6030 ip1dbg(("ip_siocaddrt:")); 6031 /* Existence of mp1 verified in ip_wput_nondata */ 6032 mp1 = mp->b_cont->b_cont; 6033 rt = (struct rtentry *)mp1->b_rptr; 6034 6035 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6036 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6037 6038 /* 6039 * If the RTF_HOST flag is on, this is a request to assign a gateway 6040 * to a particular host address. In this case, we set the netmask to 6041 * all ones for the particular destination address. Otherwise, 6042 * determine the netmask to be used based on dst_addr and the interfaces 6043 * in use. 6044 */ 6045 if (rt->rt_flags & RTF_HOST) { 6046 mask = IP_HOST_MASK; 6047 } else { 6048 /* 6049 * Note that ip_subnet_mask returns a zero mask in the case of 6050 * default (an all-zeroes address). 6051 */ 6052 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6053 } 6054 6055 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6056 B_TRUE, NULL, ipst, ALL_ZONES); 6057 if (ipif != NULL) 6058 ipif_refrele(ipif); 6059 return (error); 6060 } 6061 6062 /* 6063 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6064 */ 6065 /* ARGSUSED */ 6066 int 6067 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6068 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6069 { 6070 ipaddr_t dst_addr; 6071 ipaddr_t gw_addr; 6072 ipaddr_t mask; 6073 int error; 6074 mblk_t *mp1; 6075 struct rtentry *rt; 6076 ipif_t *ipif = NULL; 6077 ip_stack_t *ipst; 6078 6079 ASSERT(q->q_next == NULL); 6080 ipst = CONNQ_TO_IPST(q); 6081 6082 ip1dbg(("ip_siocdelrt:")); 6083 /* Existence of mp1 verified in ip_wput_nondata */ 6084 mp1 = mp->b_cont->b_cont; 6085 rt = (struct rtentry *)mp1->b_rptr; 6086 6087 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6088 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6089 6090 /* 6091 * If the RTF_HOST flag is on, this is a request to delete a gateway 6092 * to a particular host address. In this case, we set the netmask to 6093 * all ones for the particular destination address. Otherwise, 6094 * determine the netmask to be used based on dst_addr and the interfaces 6095 * in use. 6096 */ 6097 if (rt->rt_flags & RTF_HOST) { 6098 mask = IP_HOST_MASK; 6099 } else { 6100 /* 6101 * Note that ip_subnet_mask returns a zero mask in the case of 6102 * default (an all-zeroes address). 6103 */ 6104 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6105 } 6106 6107 error = ip_rt_delete(dst_addr, mask, gw_addr, 6108 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6109 ipst, ALL_ZONES); 6110 if (ipif != NULL) 6111 ipif_refrele(ipif); 6112 return (error); 6113 } 6114 6115 /* 6116 * Enqueue the mp onto the ipsq, chained by b_next. 6117 * b_prev stores the function to be executed later, and b_queue the queue 6118 * where this mp originated. 6119 */ 6120 void 6121 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6122 ill_t *pending_ill) 6123 { 6124 conn_t *connp; 6125 ipxop_t *ipx = ipsq->ipsq_xop; 6126 6127 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6128 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6129 ASSERT(func != NULL); 6130 6131 mp->b_queue = q; 6132 mp->b_prev = (void *)func; 6133 mp->b_next = NULL; 6134 6135 switch (type) { 6136 case CUR_OP: 6137 if (ipx->ipx_mptail != NULL) { 6138 ASSERT(ipx->ipx_mphead != NULL); 6139 ipx->ipx_mptail->b_next = mp; 6140 } else { 6141 ASSERT(ipx->ipx_mphead == NULL); 6142 ipx->ipx_mphead = mp; 6143 } 6144 ipx->ipx_mptail = mp; 6145 break; 6146 6147 case NEW_OP: 6148 if (ipsq->ipsq_xopq_mptail != NULL) { 6149 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6150 ipsq->ipsq_xopq_mptail->b_next = mp; 6151 } else { 6152 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6153 ipsq->ipsq_xopq_mphead = mp; 6154 } 6155 ipsq->ipsq_xopq_mptail = mp; 6156 ipx->ipx_ipsq_queued = B_TRUE; 6157 break; 6158 6159 case SWITCH_OP: 6160 ASSERT(ipsq->ipsq_swxop != NULL); 6161 /* only one switch operation is currently allowed */ 6162 ASSERT(ipsq->ipsq_switch_mp == NULL); 6163 ipsq->ipsq_switch_mp = mp; 6164 ipx->ipx_ipsq_queued = B_TRUE; 6165 break; 6166 default: 6167 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6168 } 6169 6170 if (CONN_Q(q) && pending_ill != NULL) { 6171 connp = Q_TO_CONN(q); 6172 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6173 connp->conn_oper_pending_ill = pending_ill; 6174 } 6175 } 6176 6177 /* 6178 * Dequeue the next message that requested exclusive access to this IPSQ's 6179 * xop. Specifically: 6180 * 6181 * 1. If we're still processing the current operation on `ipsq', then 6182 * dequeue the next message for the operation (from ipx_mphead), or 6183 * return NULL if there are no queued messages for the operation. 6184 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6185 * 6186 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6187 * not set) see if the ipsq has requested an xop switch. If so, switch 6188 * `ipsq' to a different xop. Xop switches only happen when joining or 6189 * leaving IPMP groups and require a careful dance -- see the comments 6190 * in-line below for details. If we're leaving a group xop or if we're 6191 * joining a group xop and become writer on it, then we proceed to (3). 6192 * Otherwise, we return NULL and exit the xop. 6193 * 6194 * 3. For each IPSQ in the xop, return any switch operation stored on 6195 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6196 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6197 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6198 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6199 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6200 * each phyint in the group, including the IPMP meta-interface phyint. 6201 */ 6202 static mblk_t * 6203 ipsq_dq(ipsq_t *ipsq) 6204 { 6205 ill_t *illv4, *illv6; 6206 mblk_t *mp; 6207 ipsq_t *xopipsq; 6208 ipsq_t *leftipsq = NULL; 6209 ipxop_t *ipx; 6210 phyint_t *phyi = ipsq->ipsq_phyint; 6211 ip_stack_t *ipst = ipsq->ipsq_ipst; 6212 boolean_t emptied = B_FALSE; 6213 6214 /* 6215 * Grab all the locks we need in the defined order (ill_g_lock -> 6216 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6217 */ 6218 rw_enter(&ipst->ips_ill_g_lock, 6219 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6220 mutex_enter(&ipsq->ipsq_lock); 6221 ipx = ipsq->ipsq_xop; 6222 mutex_enter(&ipx->ipx_lock); 6223 6224 /* 6225 * Dequeue the next message associated with the current exclusive 6226 * operation, if any. 6227 */ 6228 if ((mp = ipx->ipx_mphead) != NULL) { 6229 ipx->ipx_mphead = mp->b_next; 6230 if (ipx->ipx_mphead == NULL) 6231 ipx->ipx_mptail = NULL; 6232 mp->b_next = (void *)ipsq; 6233 goto out; 6234 } 6235 6236 if (ipx->ipx_current_ipif != NULL) 6237 goto empty; 6238 6239 if (ipsq->ipsq_swxop != NULL) { 6240 /* 6241 * The exclusive operation that is now being completed has 6242 * requested a switch to a different xop. This happens 6243 * when an interface joins or leaves an IPMP group. Joins 6244 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6245 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6246 * (phyint_free()), or interface plumb for an ill type 6247 * not in the IPMP group (ip_rput_dlpi_writer()). 6248 * 6249 * Xop switches are not allowed on the IPMP meta-interface. 6250 */ 6251 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6252 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6253 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6254 6255 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6256 /* 6257 * We're switching back to our own xop, so we have two 6258 * xop's to drain/exit: our own, and the group xop 6259 * that we are leaving. 6260 * 6261 * First, pull ourselves out of the group ipsq list. 6262 * This is safe since we're writer on ill_g_lock. 6263 */ 6264 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6265 6266 xopipsq = ipx->ipx_ipsq; 6267 while (xopipsq->ipsq_next != ipsq) 6268 xopipsq = xopipsq->ipsq_next; 6269 6270 xopipsq->ipsq_next = ipsq->ipsq_next; 6271 ipsq->ipsq_next = ipsq; 6272 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6273 ipsq->ipsq_swxop = NULL; 6274 6275 /* 6276 * Second, prepare to exit the group xop. The actual 6277 * ipsq_exit() is done at the end of this function 6278 * since we cannot hold any locks across ipsq_exit(). 6279 * Note that although we drop the group's ipx_lock, no 6280 * threads can proceed since we're still ipx_writer. 6281 */ 6282 leftipsq = xopipsq; 6283 mutex_exit(&ipx->ipx_lock); 6284 6285 /* 6286 * Third, set ipx to point to our own xop (which was 6287 * inactive and therefore can be entered). 6288 */ 6289 ipx = ipsq->ipsq_xop; 6290 mutex_enter(&ipx->ipx_lock); 6291 ASSERT(ipx->ipx_writer == NULL); 6292 ASSERT(ipx->ipx_current_ipif == NULL); 6293 } else { 6294 /* 6295 * We're switching from our own xop to a group xop. 6296 * The requestor of the switch must ensure that the 6297 * group xop cannot go away (e.g. by ensuring the 6298 * phyint associated with the xop cannot go away). 6299 * 6300 * If we can become writer on our new xop, then we'll 6301 * do the drain. Otherwise, the current writer of our 6302 * new xop will do the drain when it exits. 6303 * 6304 * First, splice ourselves into the group IPSQ list. 6305 * This is safe since we're writer on ill_g_lock. 6306 */ 6307 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6308 6309 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6310 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6311 xopipsq = xopipsq->ipsq_next; 6312 6313 xopipsq->ipsq_next = ipsq; 6314 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6315 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6316 ipsq->ipsq_swxop = NULL; 6317 6318 /* 6319 * Second, exit our own xop, since it's now unused. 6320 * This is safe since we've got the only reference. 6321 */ 6322 ASSERT(ipx->ipx_writer == curthread); 6323 ipx->ipx_writer = NULL; 6324 VERIFY(--ipx->ipx_reentry_cnt == 0); 6325 ipx->ipx_ipsq_queued = B_FALSE; 6326 mutex_exit(&ipx->ipx_lock); 6327 6328 /* 6329 * Third, set ipx to point to our new xop, and check 6330 * if we can become writer on it. If we cannot, then 6331 * the current writer will drain the IPSQ group when 6332 * it exits. Our ipsq_xop is guaranteed to be stable 6333 * because we're still holding ipsq_lock. 6334 */ 6335 ipx = ipsq->ipsq_xop; 6336 mutex_enter(&ipx->ipx_lock); 6337 if (ipx->ipx_writer != NULL || 6338 ipx->ipx_current_ipif != NULL) { 6339 goto out; 6340 } 6341 } 6342 6343 /* 6344 * Fourth, become writer on our new ipx before we continue 6345 * with the drain. Note that we never dropped ipsq_lock 6346 * above, so no other thread could've raced with us to 6347 * become writer first. Also, we're holding ipx_lock, so 6348 * no other thread can examine the ipx right now. 6349 */ 6350 ASSERT(ipx->ipx_current_ipif == NULL); 6351 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6352 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6353 ipx->ipx_writer = curthread; 6354 ipx->ipx_forced = B_FALSE; 6355 #ifdef DEBUG 6356 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6357 #endif 6358 } 6359 6360 xopipsq = ipsq; 6361 do { 6362 /* 6363 * So that other operations operate on a consistent and 6364 * complete phyint, a switch message on an IPSQ must be 6365 * handled prior to any other operations on that IPSQ. 6366 */ 6367 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6368 xopipsq->ipsq_switch_mp = NULL; 6369 ASSERT(mp->b_next == NULL); 6370 mp->b_next = (void *)xopipsq; 6371 goto out; 6372 } 6373 6374 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6375 xopipsq->ipsq_xopq_mphead = mp->b_next; 6376 if (xopipsq->ipsq_xopq_mphead == NULL) 6377 xopipsq->ipsq_xopq_mptail = NULL; 6378 mp->b_next = (void *)xopipsq; 6379 goto out; 6380 } 6381 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6382 empty: 6383 /* 6384 * There are no messages. Further, we are holding ipx_lock, hence no 6385 * new messages can end up on any IPSQ in the xop. 6386 */ 6387 ipx->ipx_writer = NULL; 6388 ipx->ipx_forced = B_FALSE; 6389 VERIFY(--ipx->ipx_reentry_cnt == 0); 6390 ipx->ipx_ipsq_queued = B_FALSE; 6391 emptied = B_TRUE; 6392 #ifdef DEBUG 6393 ipx->ipx_depth = 0; 6394 #endif 6395 out: 6396 mutex_exit(&ipx->ipx_lock); 6397 mutex_exit(&ipsq->ipsq_lock); 6398 6399 /* 6400 * If we completely emptied the xop, then wake up any threads waiting 6401 * to enter any of the IPSQ's associated with it. 6402 */ 6403 if (emptied) { 6404 xopipsq = ipsq; 6405 do { 6406 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6407 continue; 6408 6409 illv4 = phyi->phyint_illv4; 6410 illv6 = phyi->phyint_illv6; 6411 6412 GRAB_ILL_LOCKS(illv4, illv6); 6413 if (illv4 != NULL) 6414 cv_broadcast(&illv4->ill_cv); 6415 if (illv6 != NULL) 6416 cv_broadcast(&illv6->ill_cv); 6417 RELEASE_ILL_LOCKS(illv4, illv6); 6418 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6419 } 6420 rw_exit(&ipst->ips_ill_g_lock); 6421 6422 /* 6423 * Now that all locks are dropped, exit the IPSQ we left. 6424 */ 6425 if (leftipsq != NULL) 6426 ipsq_exit(leftipsq); 6427 6428 return (mp); 6429 } 6430 6431 /* 6432 * Return completion status of previously initiated DLPI operations on 6433 * ills in the purview of an ipsq. 6434 */ 6435 static boolean_t 6436 ipsq_dlpi_done(ipsq_t *ipsq) 6437 { 6438 ipsq_t *ipsq_start; 6439 phyint_t *phyi; 6440 ill_t *ill; 6441 6442 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6443 ipsq_start = ipsq; 6444 6445 do { 6446 /* 6447 * The only current users of this function are ipsq_try_enter 6448 * and ipsq_enter which have made sure that ipsq_writer is 6449 * NULL before we reach here. ill_dlpi_pending is modified 6450 * only by an ipsq writer 6451 */ 6452 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6453 phyi = ipsq->ipsq_phyint; 6454 /* 6455 * phyi could be NULL if a phyint that is part of an 6456 * IPMP group is being unplumbed. A more detailed 6457 * comment is in ipmp_grp_update_kstats() 6458 */ 6459 if (phyi != NULL) { 6460 ill = phyi->phyint_illv4; 6461 if (ill != NULL && 6462 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6463 ill->ill_arl_dlpi_pending)) 6464 return (B_FALSE); 6465 6466 ill = phyi->phyint_illv6; 6467 if (ill != NULL && 6468 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6469 return (B_FALSE); 6470 } 6471 6472 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6473 6474 return (B_TRUE); 6475 } 6476 6477 /* 6478 * Enter the ipsq corresponding to ill, by waiting synchronously till 6479 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6480 * will have to drain completely before ipsq_enter returns success. 6481 * ipx_current_ipif will be set if some exclusive op is in progress, 6482 * and the ipsq_exit logic will start the next enqueued op after 6483 * completion of the current op. If 'force' is used, we don't wait 6484 * for the enqueued ops. This is needed when a conn_close wants to 6485 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6486 * of an ill can also use this option. But we dont' use it currently. 6487 */ 6488 #define ENTER_SQ_WAIT_TICKS 100 6489 boolean_t 6490 ipsq_enter(ill_t *ill, boolean_t force, int type) 6491 { 6492 ipsq_t *ipsq; 6493 ipxop_t *ipx; 6494 boolean_t waited_enough = B_FALSE; 6495 ip_stack_t *ipst = ill->ill_ipst; 6496 6497 /* 6498 * Note that the relationship between ill and ipsq is fixed as long as 6499 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6500 * relationship between the IPSQ and xop cannot change. However, 6501 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6502 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6503 * waking up all ills in the xop when it becomes available. 6504 */ 6505 for (;;) { 6506 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6507 mutex_enter(&ill->ill_lock); 6508 if (ill->ill_state_flags & ILL_CONDEMNED) { 6509 mutex_exit(&ill->ill_lock); 6510 rw_exit(&ipst->ips_ill_g_lock); 6511 return (B_FALSE); 6512 } 6513 6514 ipsq = ill->ill_phyint->phyint_ipsq; 6515 mutex_enter(&ipsq->ipsq_lock); 6516 ipx = ipsq->ipsq_xop; 6517 mutex_enter(&ipx->ipx_lock); 6518 6519 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6520 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6521 waited_enough)) 6522 break; 6523 6524 rw_exit(&ipst->ips_ill_g_lock); 6525 6526 if (!force || ipx->ipx_writer != NULL) { 6527 mutex_exit(&ipx->ipx_lock); 6528 mutex_exit(&ipsq->ipsq_lock); 6529 cv_wait(&ill->ill_cv, &ill->ill_lock); 6530 } else { 6531 mutex_exit(&ipx->ipx_lock); 6532 mutex_exit(&ipsq->ipsq_lock); 6533 (void) cv_reltimedwait(&ill->ill_cv, 6534 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6535 waited_enough = B_TRUE; 6536 } 6537 mutex_exit(&ill->ill_lock); 6538 } 6539 6540 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6541 ASSERT(ipx->ipx_reentry_cnt == 0); 6542 ipx->ipx_writer = curthread; 6543 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6544 ipx->ipx_reentry_cnt++; 6545 #ifdef DEBUG 6546 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6547 #endif 6548 mutex_exit(&ipx->ipx_lock); 6549 mutex_exit(&ipsq->ipsq_lock); 6550 mutex_exit(&ill->ill_lock); 6551 rw_exit(&ipst->ips_ill_g_lock); 6552 6553 return (B_TRUE); 6554 } 6555 6556 /* 6557 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6558 * across the call to the core interface ipsq_try_enter() and hence calls this 6559 * function directly. This is explained more fully in ipif_set_values(). 6560 * In order to support the above constraint, ipsq_try_enter is implemented as 6561 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6562 */ 6563 static ipsq_t * 6564 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6565 int type, boolean_t reentry_ok) 6566 { 6567 ipsq_t *ipsq; 6568 ipxop_t *ipx; 6569 ip_stack_t *ipst = ill->ill_ipst; 6570 6571 /* 6572 * lock ordering: 6573 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6574 * 6575 * ipx of an ipsq can't change when ipsq_lock is held. 6576 */ 6577 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6578 GRAB_CONN_LOCK(q); 6579 mutex_enter(&ill->ill_lock); 6580 ipsq = ill->ill_phyint->phyint_ipsq; 6581 mutex_enter(&ipsq->ipsq_lock); 6582 ipx = ipsq->ipsq_xop; 6583 mutex_enter(&ipx->ipx_lock); 6584 6585 /* 6586 * 1. Enter the ipsq if we are already writer and reentry is ok. 6587 * (Note: If the caller does not specify reentry_ok then neither 6588 * 'func' nor any of its callees must ever attempt to enter the ipsq 6589 * again. Otherwise it can lead to an infinite loop 6590 * 2. Enter the ipsq if there is no current writer and this attempted 6591 * entry is part of the current operation 6592 * 3. Enter the ipsq if there is no current writer and this is a new 6593 * operation and the operation queue is empty and there is no 6594 * operation currently in progress and if all previously initiated 6595 * DLPI operations have completed. 6596 */ 6597 if ((ipx->ipx_writer == curthread && reentry_ok) || 6598 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6599 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6600 ipsq_dlpi_done(ipsq))))) { 6601 /* Success. */ 6602 ipx->ipx_reentry_cnt++; 6603 ipx->ipx_writer = curthread; 6604 ipx->ipx_forced = B_FALSE; 6605 mutex_exit(&ipx->ipx_lock); 6606 mutex_exit(&ipsq->ipsq_lock); 6607 mutex_exit(&ill->ill_lock); 6608 RELEASE_CONN_LOCK(q); 6609 #ifdef DEBUG 6610 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6611 #endif 6612 return (ipsq); 6613 } 6614 6615 if (func != NULL) 6616 ipsq_enq(ipsq, q, mp, func, type, ill); 6617 6618 mutex_exit(&ipx->ipx_lock); 6619 mutex_exit(&ipsq->ipsq_lock); 6620 mutex_exit(&ill->ill_lock); 6621 RELEASE_CONN_LOCK(q); 6622 return (NULL); 6623 } 6624 6625 /* 6626 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6627 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6628 * There is one ipsq per phyint. The ipsq 6629 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6630 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6631 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6632 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6633 * up the interface) and are enqueued in ipx_mphead. 6634 * 6635 * If a thread does not want to reenter the ipsq when it is already writer, 6636 * it must make sure that the specified reentry point to be called later 6637 * when the ipsq is empty, nor any code path starting from the specified reentry 6638 * point must never ever try to enter the ipsq again. Otherwise it can lead 6639 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6640 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6641 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6642 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6643 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6644 * ioctl if the current ioctl has completed. If the current ioctl is still 6645 * in progress it simply returns. The current ioctl could be waiting for 6646 * a response from another module (the driver or could be waiting for 6647 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6648 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6649 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6650 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6651 * all associated DLPI operations have completed. 6652 */ 6653 6654 /* 6655 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6656 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6657 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6658 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6659 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6660 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6661 */ 6662 ipsq_t * 6663 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6664 ipsq_func_t func, int type, boolean_t reentry_ok) 6665 { 6666 ip_stack_t *ipst; 6667 ipsq_t *ipsq; 6668 6669 /* Only 1 of ipif or ill can be specified */ 6670 ASSERT((ipif != NULL) ^ (ill != NULL)); 6671 6672 if (ipif != NULL) 6673 ill = ipif->ipif_ill; 6674 ipst = ill->ill_ipst; 6675 6676 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6677 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6678 rw_exit(&ipst->ips_ill_g_lock); 6679 6680 return (ipsq); 6681 } 6682 6683 /* 6684 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6685 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6686 * cannot be entered, the mp is queued for completion. 6687 */ 6688 void 6689 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6690 boolean_t reentry_ok) 6691 { 6692 ipsq_t *ipsq; 6693 6694 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6695 6696 /* 6697 * Drop the caller's refhold on the ill. This is safe since we either 6698 * entered the IPSQ (and thus are exclusive), or failed to enter the 6699 * IPSQ, in which case we return without accessing ill anymore. This 6700 * is needed because func needs to see the correct refcount. 6701 * e.g. removeif can work only then. 6702 */ 6703 ill_refrele(ill); 6704 if (ipsq != NULL) { 6705 (*func)(ipsq, q, mp, NULL); 6706 ipsq_exit(ipsq); 6707 } 6708 } 6709 6710 /* 6711 * Exit the specified IPSQ. If this is the final exit on it then drain it 6712 * prior to exiting. Caller must be writer on the specified IPSQ. 6713 */ 6714 void 6715 ipsq_exit(ipsq_t *ipsq) 6716 { 6717 mblk_t *mp; 6718 ipsq_t *mp_ipsq; 6719 queue_t *q; 6720 phyint_t *phyi; 6721 ipsq_func_t func; 6722 6723 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6724 6725 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6726 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6727 ipsq->ipsq_xop->ipx_reentry_cnt--; 6728 return; 6729 } 6730 6731 for (;;) { 6732 phyi = ipsq->ipsq_phyint; 6733 mp = ipsq_dq(ipsq); 6734 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6735 6736 /* 6737 * If we've changed to a new IPSQ, and the phyint associated 6738 * with the old one has gone away, free the old IPSQ. Note 6739 * that this cannot happen while the IPSQ is in a group. 6740 */ 6741 if (mp_ipsq != ipsq && phyi == NULL) { 6742 ASSERT(ipsq->ipsq_next == ipsq); 6743 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6744 ipsq_delete(ipsq); 6745 } 6746 6747 if (mp == NULL) 6748 break; 6749 6750 q = mp->b_queue; 6751 func = (ipsq_func_t)mp->b_prev; 6752 ipsq = mp_ipsq; 6753 mp->b_next = mp->b_prev = NULL; 6754 mp->b_queue = NULL; 6755 6756 /* 6757 * If 'q' is an conn queue, it is valid, since we did a 6758 * a refhold on the conn at the start of the ioctl. 6759 * If 'q' is an ill queue, it is valid, since close of an 6760 * ill will clean up its IPSQ. 6761 */ 6762 (*func)(ipsq, q, mp, NULL); 6763 } 6764 } 6765 6766 /* 6767 * Used to start any igmp or mld timers that could not be started 6768 * while holding ill_mcast_lock. The timers can't be started while holding 6769 * the lock, since mld/igmp_start_timers may need to call untimeout() 6770 * which can't be done while holding the lock which the timeout handler 6771 * acquires. Otherwise 6772 * there could be a deadlock since the timeout handlers 6773 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6774 * ill_mcast_lock. 6775 */ 6776 void 6777 ill_mcast_timer_start(ip_stack_t *ipst) 6778 { 6779 int next; 6780 6781 mutex_enter(&ipst->ips_igmp_timer_lock); 6782 next = ipst->ips_igmp_deferred_next; 6783 ipst->ips_igmp_deferred_next = INFINITY; 6784 mutex_exit(&ipst->ips_igmp_timer_lock); 6785 6786 if (next != INFINITY) 6787 igmp_start_timers(next, ipst); 6788 6789 mutex_enter(&ipst->ips_mld_timer_lock); 6790 next = ipst->ips_mld_deferred_next; 6791 ipst->ips_mld_deferred_next = INFINITY; 6792 mutex_exit(&ipst->ips_mld_timer_lock); 6793 6794 if (next != INFINITY) 6795 mld_start_timers(next, ipst); 6796 } 6797 6798 /* 6799 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6800 * and `ioccmd'. 6801 */ 6802 void 6803 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6804 { 6805 ill_t *ill = ipif->ipif_ill; 6806 ipxop_t *ipx = ipsq->ipsq_xop; 6807 6808 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6809 ASSERT(ipx->ipx_current_ipif == NULL); 6810 ASSERT(ipx->ipx_current_ioctl == 0); 6811 6812 ipx->ipx_current_done = B_FALSE; 6813 ipx->ipx_current_ioctl = ioccmd; 6814 mutex_enter(&ipx->ipx_lock); 6815 ipx->ipx_current_ipif = ipif; 6816 mutex_exit(&ipx->ipx_lock); 6817 6818 /* 6819 * Set IPIF_CHANGING on one or more ipifs associated with the 6820 * current exclusive operation. IPIF_CHANGING prevents any new 6821 * references to the ipif (so that the references will eventually 6822 * drop to zero) and also prevents any "get" operations (e.g., 6823 * SIOCGLIFFLAGS) from being able to access the ipif until the 6824 * operation has completed and the ipif is again in a stable state. 6825 * 6826 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6827 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6828 * on the ill are marked with IPIF_CHANGING since it's unclear which 6829 * ipifs will be affected. 6830 * 6831 * Note that SIOCLIFREMOVEIF is a special case as it sets 6832 * IPIF_CONDEMNED internally after identifying the right ipif to 6833 * operate on. 6834 */ 6835 switch (ioccmd) { 6836 case SIOCLIFREMOVEIF: 6837 break; 6838 case 0: 6839 mutex_enter(&ill->ill_lock); 6840 ipif = ipif->ipif_ill->ill_ipif; 6841 for (; ipif != NULL; ipif = ipif->ipif_next) 6842 ipif->ipif_state_flags |= IPIF_CHANGING; 6843 mutex_exit(&ill->ill_lock); 6844 break; 6845 default: 6846 mutex_enter(&ill->ill_lock); 6847 ipif->ipif_state_flags |= IPIF_CHANGING; 6848 mutex_exit(&ill->ill_lock); 6849 } 6850 } 6851 6852 /* 6853 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6854 * the next exclusive operation to begin once we ipsq_exit(). However, if 6855 * pending DLPI operations remain, then we will wait for the queue to drain 6856 * before allowing the next exclusive operation to begin. This ensures that 6857 * DLPI operations from one exclusive operation are never improperly processed 6858 * as part of a subsequent exclusive operation. 6859 */ 6860 void 6861 ipsq_current_finish(ipsq_t *ipsq) 6862 { 6863 ipxop_t *ipx = ipsq->ipsq_xop; 6864 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6865 ipif_t *ipif = ipx->ipx_current_ipif; 6866 6867 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6868 6869 /* 6870 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6871 * (but in that case, IPIF_CHANGING will already be clear and no 6872 * pending DLPI messages can remain). 6873 */ 6874 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6875 ill_t *ill = ipif->ipif_ill; 6876 6877 mutex_enter(&ill->ill_lock); 6878 dlpi_pending = ill->ill_dlpi_pending; 6879 if (ipx->ipx_current_ioctl == 0) { 6880 ipif = ill->ill_ipif; 6881 for (; ipif != NULL; ipif = ipif->ipif_next) 6882 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6883 } else { 6884 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6885 } 6886 mutex_exit(&ill->ill_lock); 6887 } 6888 6889 ASSERT(!ipx->ipx_current_done); 6890 ipx->ipx_current_done = B_TRUE; 6891 ipx->ipx_current_ioctl = 0; 6892 if (dlpi_pending == DL_PRIM_INVAL) { 6893 mutex_enter(&ipx->ipx_lock); 6894 ipx->ipx_current_ipif = NULL; 6895 mutex_exit(&ipx->ipx_lock); 6896 } 6897 } 6898 6899 /* 6900 * The ill is closing. Flush all messages on the ipsq that originated 6901 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6902 * for this ill since ipsq_enter could not have entered until then. 6903 * New messages can't be queued since the CONDEMNED flag is set. 6904 */ 6905 static void 6906 ipsq_flush(ill_t *ill) 6907 { 6908 queue_t *q; 6909 mblk_t *prev; 6910 mblk_t *mp; 6911 mblk_t *mp_next; 6912 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 6913 6914 ASSERT(IAM_WRITER_ILL(ill)); 6915 6916 /* 6917 * Flush any messages sent up by the driver. 6918 */ 6919 mutex_enter(&ipx->ipx_lock); 6920 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 6921 mp_next = mp->b_next; 6922 q = mp->b_queue; 6923 if (q == ill->ill_rq || q == ill->ill_wq) { 6924 /* dequeue mp */ 6925 if (prev == NULL) 6926 ipx->ipx_mphead = mp->b_next; 6927 else 6928 prev->b_next = mp->b_next; 6929 if (ipx->ipx_mptail == mp) { 6930 ASSERT(mp_next == NULL); 6931 ipx->ipx_mptail = prev; 6932 } 6933 inet_freemsg(mp); 6934 } else { 6935 prev = mp; 6936 } 6937 } 6938 mutex_exit(&ipx->ipx_lock); 6939 (void) ipsq_pending_mp_cleanup(ill, NULL); 6940 ipsq_xopq_mp_cleanup(ill, NULL); 6941 } 6942 6943 /* 6944 * Parse an ifreq or lifreq struct coming down ioctls and refhold 6945 * and return the associated ipif. 6946 * Return value: 6947 * Non zero: An error has occurred. ci may not be filled out. 6948 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 6949 * a held ipif in ci.ci_ipif. 6950 */ 6951 int 6952 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 6953 cmd_info_t *ci) 6954 { 6955 char *name; 6956 struct ifreq *ifr; 6957 struct lifreq *lifr; 6958 ipif_t *ipif = NULL; 6959 ill_t *ill; 6960 conn_t *connp; 6961 boolean_t isv6; 6962 boolean_t exists; 6963 mblk_t *mp1; 6964 zoneid_t zoneid; 6965 ip_stack_t *ipst; 6966 6967 if (q->q_next != NULL) { 6968 ill = (ill_t *)q->q_ptr; 6969 isv6 = ill->ill_isv6; 6970 connp = NULL; 6971 zoneid = ALL_ZONES; 6972 ipst = ill->ill_ipst; 6973 } else { 6974 ill = NULL; 6975 connp = Q_TO_CONN(q); 6976 isv6 = (connp->conn_family == AF_INET6); 6977 zoneid = connp->conn_zoneid; 6978 if (zoneid == GLOBAL_ZONEID) { 6979 /* global zone can access ipifs in all zones */ 6980 zoneid = ALL_ZONES; 6981 } 6982 ipst = connp->conn_netstack->netstack_ip; 6983 } 6984 6985 /* Has been checked in ip_wput_nondata */ 6986 mp1 = mp->b_cont->b_cont; 6987 6988 if (ipip->ipi_cmd_type == IF_CMD) { 6989 /* This a old style SIOC[GS]IF* command */ 6990 ifr = (struct ifreq *)mp1->b_rptr; 6991 /* 6992 * Null terminate the string to protect against buffer 6993 * overrun. String was generated by user code and may not 6994 * be trusted. 6995 */ 6996 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 6997 name = ifr->ifr_name; 6998 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 6999 ci->ci_sin6 = NULL; 7000 ci->ci_lifr = (struct lifreq *)ifr; 7001 } else { 7002 /* This a new style SIOC[GS]LIF* command */ 7003 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7004 lifr = (struct lifreq *)mp1->b_rptr; 7005 /* 7006 * Null terminate the string to protect against buffer 7007 * overrun. String was generated by user code and may not 7008 * be trusted. 7009 */ 7010 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7011 name = lifr->lifr_name; 7012 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7013 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7014 ci->ci_lifr = lifr; 7015 } 7016 7017 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7018 /* 7019 * The ioctl will be failed if the ioctl comes down 7020 * an conn stream 7021 */ 7022 if (ill == NULL) { 7023 /* 7024 * Not an ill queue, return EINVAL same as the 7025 * old error code. 7026 */ 7027 return (ENXIO); 7028 } 7029 ipif = ill->ill_ipif; 7030 ipif_refhold(ipif); 7031 } else { 7032 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7033 &exists, isv6, zoneid, ipst); 7034 7035 /* 7036 * Ensure that get ioctls don't see any internal state changes 7037 * caused by set ioctls by deferring them if IPIF_CHANGING is 7038 * set. 7039 */ 7040 if (ipif != NULL && !(ipip->ipi_flags & IPI_WR) && 7041 !IAM_WRITER_IPIF(ipif)) { 7042 ipsq_t *ipsq; 7043 7044 if (connp != NULL) 7045 mutex_enter(&connp->conn_lock); 7046 mutex_enter(&ipif->ipif_ill->ill_lock); 7047 if (IPIF_IS_CHANGING(ipif) && 7048 !IPIF_IS_CONDEMNED(ipif)) { 7049 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 7050 mutex_enter(&ipsq->ipsq_lock); 7051 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 7052 mutex_exit(&ipif->ipif_ill->ill_lock); 7053 ipsq_enq(ipsq, q, mp, ip_process_ioctl, 7054 NEW_OP, ipif->ipif_ill); 7055 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 7056 mutex_exit(&ipsq->ipsq_lock); 7057 if (connp != NULL) 7058 mutex_exit(&connp->conn_lock); 7059 ipif_refrele(ipif); 7060 return (EINPROGRESS); 7061 } 7062 mutex_exit(&ipif->ipif_ill->ill_lock); 7063 if (connp != NULL) 7064 mutex_exit(&connp->conn_lock); 7065 } 7066 } 7067 7068 /* 7069 * Old style [GS]IFCMD does not admit IPv6 ipif 7070 */ 7071 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7072 ipif_refrele(ipif); 7073 return (ENXIO); 7074 } 7075 7076 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7077 name[0] == '\0') { 7078 /* 7079 * Handle a or a SIOC?IF* with a null name 7080 * during plumb (on the ill queue before the I_PLINK). 7081 */ 7082 ipif = ill->ill_ipif; 7083 ipif_refhold(ipif); 7084 } 7085 7086 if (ipif == NULL) 7087 return (ENXIO); 7088 7089 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7090 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7091 7092 ci->ci_ipif = ipif; 7093 return (0); 7094 } 7095 7096 /* 7097 * Return the total number of ipifs. 7098 */ 7099 static uint_t 7100 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7101 { 7102 uint_t numifs = 0; 7103 ill_t *ill; 7104 ill_walk_context_t ctx; 7105 ipif_t *ipif; 7106 7107 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7108 ill = ILL_START_WALK_V4(&ctx, ipst); 7109 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7110 if (IS_UNDER_IPMP(ill)) 7111 continue; 7112 for (ipif = ill->ill_ipif; ipif != NULL; 7113 ipif = ipif->ipif_next) { 7114 if (ipif->ipif_zoneid == zoneid || 7115 ipif->ipif_zoneid == ALL_ZONES) 7116 numifs++; 7117 } 7118 } 7119 rw_exit(&ipst->ips_ill_g_lock); 7120 return (numifs); 7121 } 7122 7123 /* 7124 * Return the total number of ipifs. 7125 */ 7126 static uint_t 7127 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7128 { 7129 uint_t numifs = 0; 7130 ill_t *ill; 7131 ipif_t *ipif; 7132 ill_walk_context_t ctx; 7133 7134 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7135 7136 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7137 if (family == AF_INET) 7138 ill = ILL_START_WALK_V4(&ctx, ipst); 7139 else if (family == AF_INET6) 7140 ill = ILL_START_WALK_V6(&ctx, ipst); 7141 else 7142 ill = ILL_START_WALK_ALL(&ctx, ipst); 7143 7144 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7145 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7146 continue; 7147 7148 for (ipif = ill->ill_ipif; ipif != NULL; 7149 ipif = ipif->ipif_next) { 7150 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7151 !(lifn_flags & LIFC_NOXMIT)) 7152 continue; 7153 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7154 !(lifn_flags & LIFC_TEMPORARY)) 7155 continue; 7156 if (((ipif->ipif_flags & 7157 (IPIF_NOXMIT|IPIF_NOLOCAL| 7158 IPIF_DEPRECATED)) || 7159 IS_LOOPBACK(ill) || 7160 !(ipif->ipif_flags & IPIF_UP)) && 7161 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7162 continue; 7163 7164 if (zoneid != ipif->ipif_zoneid && 7165 ipif->ipif_zoneid != ALL_ZONES && 7166 (zoneid != GLOBAL_ZONEID || 7167 !(lifn_flags & LIFC_ALLZONES))) 7168 continue; 7169 7170 numifs++; 7171 } 7172 } 7173 rw_exit(&ipst->ips_ill_g_lock); 7174 return (numifs); 7175 } 7176 7177 uint_t 7178 ip_get_lifsrcofnum(ill_t *ill) 7179 { 7180 uint_t numifs = 0; 7181 ill_t *ill_head = ill; 7182 ip_stack_t *ipst = ill->ill_ipst; 7183 7184 /* 7185 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7186 * other thread may be trying to relink the ILLs in this usesrc group 7187 * and adjusting the ill_usesrc_grp_next pointers 7188 */ 7189 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7190 if ((ill->ill_usesrc_ifindex == 0) && 7191 (ill->ill_usesrc_grp_next != NULL)) { 7192 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7193 ill = ill->ill_usesrc_grp_next) 7194 numifs++; 7195 } 7196 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7197 7198 return (numifs); 7199 } 7200 7201 /* Null values are passed in for ipif, sin, and ifreq */ 7202 /* ARGSUSED */ 7203 int 7204 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7205 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7206 { 7207 int *nump; 7208 conn_t *connp = Q_TO_CONN(q); 7209 7210 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7211 7212 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7213 nump = (int *)mp->b_cont->b_cont->b_rptr; 7214 7215 *nump = ip_get_numifs(connp->conn_zoneid, 7216 connp->conn_netstack->netstack_ip); 7217 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7218 return (0); 7219 } 7220 7221 /* Null values are passed in for ipif, sin, and ifreq */ 7222 /* ARGSUSED */ 7223 int 7224 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7225 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7226 { 7227 struct lifnum *lifn; 7228 mblk_t *mp1; 7229 conn_t *connp = Q_TO_CONN(q); 7230 7231 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7232 7233 /* Existence checked in ip_wput_nondata */ 7234 mp1 = mp->b_cont->b_cont; 7235 7236 lifn = (struct lifnum *)mp1->b_rptr; 7237 switch (lifn->lifn_family) { 7238 case AF_UNSPEC: 7239 case AF_INET: 7240 case AF_INET6: 7241 break; 7242 default: 7243 return (EAFNOSUPPORT); 7244 } 7245 7246 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7247 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7248 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7249 return (0); 7250 } 7251 7252 /* ARGSUSED */ 7253 int 7254 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7255 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7256 { 7257 STRUCT_HANDLE(ifconf, ifc); 7258 mblk_t *mp1; 7259 struct iocblk *iocp; 7260 struct ifreq *ifr; 7261 ill_walk_context_t ctx; 7262 ill_t *ill; 7263 ipif_t *ipif; 7264 struct sockaddr_in *sin; 7265 int32_t ifclen; 7266 zoneid_t zoneid; 7267 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7268 7269 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7270 7271 ip1dbg(("ip_sioctl_get_ifconf")); 7272 /* Existence verified in ip_wput_nondata */ 7273 mp1 = mp->b_cont->b_cont; 7274 iocp = (struct iocblk *)mp->b_rptr; 7275 zoneid = Q_TO_CONN(q)->conn_zoneid; 7276 7277 /* 7278 * The original SIOCGIFCONF passed in a struct ifconf which specified 7279 * the user buffer address and length into which the list of struct 7280 * ifreqs was to be copied. Since AT&T Streams does not seem to 7281 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7282 * the SIOCGIFCONF operation was redefined to simply provide 7283 * a large output buffer into which we are supposed to jam the ifreq 7284 * array. The same ioctl command code was used, despite the fact that 7285 * both the applications and the kernel code had to change, thus making 7286 * it impossible to support both interfaces. 7287 * 7288 * For reasons not good enough to try to explain, the following 7289 * algorithm is used for deciding what to do with one of these: 7290 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7291 * form with the output buffer coming down as the continuation message. 7292 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7293 * and we have to copy in the ifconf structure to find out how big the 7294 * output buffer is and where to copy out to. Sure no problem... 7295 * 7296 */ 7297 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7298 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7299 int numifs = 0; 7300 size_t ifc_bufsize; 7301 7302 /* 7303 * Must be (better be!) continuation of a TRANSPARENT 7304 * IOCTL. We just copied in the ifconf structure. 7305 */ 7306 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7307 (struct ifconf *)mp1->b_rptr); 7308 7309 /* 7310 * Allocate a buffer to hold requested information. 7311 * 7312 * If ifc_len is larger than what is needed, we only 7313 * allocate what we will use. 7314 * 7315 * If ifc_len is smaller than what is needed, return 7316 * EINVAL. 7317 * 7318 * XXX: the ill_t structure can hava 2 counters, for 7319 * v4 and v6 (not just ill_ipif_up_count) to store the 7320 * number of interfaces for a device, so we don't need 7321 * to count them here... 7322 */ 7323 numifs = ip_get_numifs(zoneid, ipst); 7324 7325 ifclen = STRUCT_FGET(ifc, ifc_len); 7326 ifc_bufsize = numifs * sizeof (struct ifreq); 7327 if (ifc_bufsize > ifclen) { 7328 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7329 /* old behaviour */ 7330 return (EINVAL); 7331 } else { 7332 ifc_bufsize = ifclen; 7333 } 7334 } 7335 7336 mp1 = mi_copyout_alloc(q, mp, 7337 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7338 if (mp1 == NULL) 7339 return (ENOMEM); 7340 7341 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7342 } 7343 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7344 /* 7345 * the SIOCGIFCONF ioctl only knows about 7346 * IPv4 addresses, so don't try to tell 7347 * it about interfaces with IPv6-only 7348 * addresses. (Last parm 'isv6' is B_FALSE) 7349 */ 7350 7351 ifr = (struct ifreq *)mp1->b_rptr; 7352 7353 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7354 ill = ILL_START_WALK_V4(&ctx, ipst); 7355 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7356 if (IS_UNDER_IPMP(ill)) 7357 continue; 7358 for (ipif = ill->ill_ipif; ipif != NULL; 7359 ipif = ipif->ipif_next) { 7360 if (zoneid != ipif->ipif_zoneid && 7361 ipif->ipif_zoneid != ALL_ZONES) 7362 continue; 7363 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7364 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7365 /* old behaviour */ 7366 rw_exit(&ipst->ips_ill_g_lock); 7367 return (EINVAL); 7368 } else { 7369 goto if_copydone; 7370 } 7371 } 7372 ipif_get_name(ipif, ifr->ifr_name, 7373 sizeof (ifr->ifr_name)); 7374 sin = (sin_t *)&ifr->ifr_addr; 7375 *sin = sin_null; 7376 sin->sin_family = AF_INET; 7377 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7378 ifr++; 7379 } 7380 } 7381 if_copydone: 7382 rw_exit(&ipst->ips_ill_g_lock); 7383 mp1->b_wptr = (uchar_t *)ifr; 7384 7385 if (STRUCT_BUF(ifc) != NULL) { 7386 STRUCT_FSET(ifc, ifc_len, 7387 (int)((uchar_t *)ifr - mp1->b_rptr)); 7388 } 7389 return (0); 7390 } 7391 7392 /* 7393 * Get the interfaces using the address hosted on the interface passed in, 7394 * as a source adddress 7395 */ 7396 /* ARGSUSED */ 7397 int 7398 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7399 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7400 { 7401 mblk_t *mp1; 7402 ill_t *ill, *ill_head; 7403 ipif_t *ipif, *orig_ipif; 7404 int numlifs = 0; 7405 size_t lifs_bufsize, lifsmaxlen; 7406 struct lifreq *lifr; 7407 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7408 uint_t ifindex; 7409 zoneid_t zoneid; 7410 boolean_t isv6 = B_FALSE; 7411 struct sockaddr_in *sin; 7412 struct sockaddr_in6 *sin6; 7413 STRUCT_HANDLE(lifsrcof, lifs); 7414 ip_stack_t *ipst; 7415 7416 ipst = CONNQ_TO_IPST(q); 7417 7418 ASSERT(q->q_next == NULL); 7419 7420 zoneid = Q_TO_CONN(q)->conn_zoneid; 7421 7422 /* Existence verified in ip_wput_nondata */ 7423 mp1 = mp->b_cont->b_cont; 7424 7425 /* 7426 * Must be (better be!) continuation of a TRANSPARENT 7427 * IOCTL. We just copied in the lifsrcof structure. 7428 */ 7429 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7430 (struct lifsrcof *)mp1->b_rptr); 7431 7432 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7433 return (EINVAL); 7434 7435 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7436 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7437 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7438 if (ipif == NULL) { 7439 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7440 ifindex)); 7441 return (ENXIO); 7442 } 7443 7444 /* Allocate a buffer to hold requested information */ 7445 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7446 lifs_bufsize = numlifs * sizeof (struct lifreq); 7447 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7448 /* The actual size needed is always returned in lifs_len */ 7449 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7450 7451 /* If the amount we need is more than what is passed in, abort */ 7452 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7453 ipif_refrele(ipif); 7454 return (0); 7455 } 7456 7457 mp1 = mi_copyout_alloc(q, mp, 7458 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7459 if (mp1 == NULL) { 7460 ipif_refrele(ipif); 7461 return (ENOMEM); 7462 } 7463 7464 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7465 bzero(mp1->b_rptr, lifs_bufsize); 7466 7467 lifr = (struct lifreq *)mp1->b_rptr; 7468 7469 ill = ill_head = ipif->ipif_ill; 7470 orig_ipif = ipif; 7471 7472 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7473 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7474 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7475 7476 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7477 for (; (ill != NULL) && (ill != ill_head); 7478 ill = ill->ill_usesrc_grp_next) { 7479 7480 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7481 break; 7482 7483 ipif = ill->ill_ipif; 7484 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7485 if (ipif->ipif_isv6) { 7486 sin6 = (sin6_t *)&lifr->lifr_addr; 7487 *sin6 = sin6_null; 7488 sin6->sin6_family = AF_INET6; 7489 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7490 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7491 &ipif->ipif_v6net_mask); 7492 } else { 7493 sin = (sin_t *)&lifr->lifr_addr; 7494 *sin = sin_null; 7495 sin->sin_family = AF_INET; 7496 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7497 lifr->lifr_addrlen = ip_mask_to_plen( 7498 ipif->ipif_net_mask); 7499 } 7500 lifr++; 7501 } 7502 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7503 rw_exit(&ipst->ips_ill_g_lock); 7504 ipif_refrele(orig_ipif); 7505 mp1->b_wptr = (uchar_t *)lifr; 7506 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7507 7508 return (0); 7509 } 7510 7511 /* ARGSUSED */ 7512 int 7513 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7514 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7515 { 7516 mblk_t *mp1; 7517 int list; 7518 ill_t *ill; 7519 ipif_t *ipif; 7520 int flags; 7521 int numlifs = 0; 7522 size_t lifc_bufsize; 7523 struct lifreq *lifr; 7524 sa_family_t family; 7525 struct sockaddr_in *sin; 7526 struct sockaddr_in6 *sin6; 7527 ill_walk_context_t ctx; 7528 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7529 int32_t lifclen; 7530 zoneid_t zoneid; 7531 STRUCT_HANDLE(lifconf, lifc); 7532 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7533 7534 ip1dbg(("ip_sioctl_get_lifconf")); 7535 7536 ASSERT(q->q_next == NULL); 7537 7538 zoneid = Q_TO_CONN(q)->conn_zoneid; 7539 7540 /* Existence verified in ip_wput_nondata */ 7541 mp1 = mp->b_cont->b_cont; 7542 7543 /* 7544 * An extended version of SIOCGIFCONF that takes an 7545 * additional address family and flags field. 7546 * AF_UNSPEC retrieve both IPv4 and IPv6. 7547 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7548 * interfaces are omitted. 7549 * Similarly, IPIF_TEMPORARY interfaces are omitted 7550 * unless LIFC_TEMPORARY is specified. 7551 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7552 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7553 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7554 * has priority over LIFC_NOXMIT. 7555 */ 7556 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7557 7558 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7559 return (EINVAL); 7560 7561 /* 7562 * Must be (better be!) continuation of a TRANSPARENT 7563 * IOCTL. We just copied in the lifconf structure. 7564 */ 7565 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7566 7567 family = STRUCT_FGET(lifc, lifc_family); 7568 flags = STRUCT_FGET(lifc, lifc_flags); 7569 7570 switch (family) { 7571 case AF_UNSPEC: 7572 /* 7573 * walk all ILL's. 7574 */ 7575 list = MAX_G_HEADS; 7576 break; 7577 case AF_INET: 7578 /* 7579 * walk only IPV4 ILL's. 7580 */ 7581 list = IP_V4_G_HEAD; 7582 break; 7583 case AF_INET6: 7584 /* 7585 * walk only IPV6 ILL's. 7586 */ 7587 list = IP_V6_G_HEAD; 7588 break; 7589 default: 7590 return (EAFNOSUPPORT); 7591 } 7592 7593 /* 7594 * Allocate a buffer to hold requested information. 7595 * 7596 * If lifc_len is larger than what is needed, we only 7597 * allocate what we will use. 7598 * 7599 * If lifc_len is smaller than what is needed, return 7600 * EINVAL. 7601 */ 7602 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7603 lifc_bufsize = numlifs * sizeof (struct lifreq); 7604 lifclen = STRUCT_FGET(lifc, lifc_len); 7605 if (lifc_bufsize > lifclen) { 7606 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7607 return (EINVAL); 7608 else 7609 lifc_bufsize = lifclen; 7610 } 7611 7612 mp1 = mi_copyout_alloc(q, mp, 7613 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7614 if (mp1 == NULL) 7615 return (ENOMEM); 7616 7617 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7618 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7619 7620 lifr = (struct lifreq *)mp1->b_rptr; 7621 7622 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7623 ill = ill_first(list, list, &ctx, ipst); 7624 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7625 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7626 continue; 7627 7628 for (ipif = ill->ill_ipif; ipif != NULL; 7629 ipif = ipif->ipif_next) { 7630 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7631 !(flags & LIFC_NOXMIT)) 7632 continue; 7633 7634 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7635 !(flags & LIFC_TEMPORARY)) 7636 continue; 7637 7638 if (((ipif->ipif_flags & 7639 (IPIF_NOXMIT|IPIF_NOLOCAL| 7640 IPIF_DEPRECATED)) || 7641 IS_LOOPBACK(ill) || 7642 !(ipif->ipif_flags & IPIF_UP)) && 7643 (flags & LIFC_EXTERNAL_SOURCE)) 7644 continue; 7645 7646 if (zoneid != ipif->ipif_zoneid && 7647 ipif->ipif_zoneid != ALL_ZONES && 7648 (zoneid != GLOBAL_ZONEID || 7649 !(flags & LIFC_ALLZONES))) 7650 continue; 7651 7652 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7653 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7654 rw_exit(&ipst->ips_ill_g_lock); 7655 return (EINVAL); 7656 } else { 7657 goto lif_copydone; 7658 } 7659 } 7660 7661 ipif_get_name(ipif, lifr->lifr_name, 7662 sizeof (lifr->lifr_name)); 7663 lifr->lifr_type = ill->ill_type; 7664 if (ipif->ipif_isv6) { 7665 sin6 = (sin6_t *)&lifr->lifr_addr; 7666 *sin6 = sin6_null; 7667 sin6->sin6_family = AF_INET6; 7668 sin6->sin6_addr = 7669 ipif->ipif_v6lcl_addr; 7670 lifr->lifr_addrlen = 7671 ip_mask_to_plen_v6( 7672 &ipif->ipif_v6net_mask); 7673 } else { 7674 sin = (sin_t *)&lifr->lifr_addr; 7675 *sin = sin_null; 7676 sin->sin_family = AF_INET; 7677 sin->sin_addr.s_addr = 7678 ipif->ipif_lcl_addr; 7679 lifr->lifr_addrlen = 7680 ip_mask_to_plen( 7681 ipif->ipif_net_mask); 7682 } 7683 lifr++; 7684 } 7685 } 7686 lif_copydone: 7687 rw_exit(&ipst->ips_ill_g_lock); 7688 7689 mp1->b_wptr = (uchar_t *)lifr; 7690 if (STRUCT_BUF(lifc) != NULL) { 7691 STRUCT_FSET(lifc, lifc_len, 7692 (int)((uchar_t *)lifr - mp1->b_rptr)); 7693 } 7694 return (0); 7695 } 7696 7697 static void 7698 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7699 { 7700 ip6_asp_t *table; 7701 size_t table_size; 7702 mblk_t *data_mp; 7703 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7704 ip_stack_t *ipst; 7705 7706 if (q->q_next == NULL) 7707 ipst = CONNQ_TO_IPST(q); 7708 else 7709 ipst = ILLQ_TO_IPST(q); 7710 7711 /* These two ioctls are I_STR only */ 7712 if (iocp->ioc_count == TRANSPARENT) { 7713 miocnak(q, mp, 0, EINVAL); 7714 return; 7715 } 7716 7717 data_mp = mp->b_cont; 7718 if (data_mp == NULL) { 7719 /* The user passed us a NULL argument */ 7720 table = NULL; 7721 table_size = iocp->ioc_count; 7722 } else { 7723 /* 7724 * The user provided a table. The stream head 7725 * may have copied in the user data in chunks, 7726 * so make sure everything is pulled up 7727 * properly. 7728 */ 7729 if (MBLKL(data_mp) < iocp->ioc_count) { 7730 mblk_t *new_data_mp; 7731 if ((new_data_mp = msgpullup(data_mp, -1)) == 7732 NULL) { 7733 miocnak(q, mp, 0, ENOMEM); 7734 return; 7735 } 7736 freemsg(data_mp); 7737 data_mp = new_data_mp; 7738 mp->b_cont = data_mp; 7739 } 7740 table = (ip6_asp_t *)data_mp->b_rptr; 7741 table_size = iocp->ioc_count; 7742 } 7743 7744 switch (iocp->ioc_cmd) { 7745 case SIOCGIP6ADDRPOLICY: 7746 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7747 if (iocp->ioc_rval == -1) 7748 iocp->ioc_error = EINVAL; 7749 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7750 else if (table != NULL && 7751 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7752 ip6_asp_t *src = table; 7753 ip6_asp32_t *dst = (void *)table; 7754 int count = table_size / sizeof (ip6_asp_t); 7755 int i; 7756 7757 /* 7758 * We need to do an in-place shrink of the array 7759 * to match the alignment attributes of the 7760 * 32-bit ABI looking at it. 7761 */ 7762 /* LINTED: logical expression always true: op "||" */ 7763 ASSERT(sizeof (*src) > sizeof (*dst)); 7764 for (i = 1; i < count; i++) 7765 bcopy(src + i, dst + i, sizeof (*dst)); 7766 } 7767 #endif 7768 break; 7769 7770 case SIOCSIP6ADDRPOLICY: 7771 ASSERT(mp->b_prev == NULL); 7772 mp->b_prev = (void *)q; 7773 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7774 /* 7775 * We pass in the datamodel here so that the ip6_asp_replace() 7776 * routine can handle converting from 32-bit to native formats 7777 * where necessary. 7778 * 7779 * A better way to handle this might be to convert the inbound 7780 * data structure here, and hang it off a new 'mp'; thus the 7781 * ip6_asp_replace() logic would always be dealing with native 7782 * format data structures.. 7783 * 7784 * (An even simpler way to handle these ioctls is to just 7785 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7786 * and just recompile everything that depends on it.) 7787 */ 7788 #endif 7789 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7790 iocp->ioc_flag & IOC_MODELS); 7791 return; 7792 } 7793 7794 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7795 qreply(q, mp); 7796 } 7797 7798 static void 7799 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7800 { 7801 mblk_t *data_mp; 7802 struct dstinforeq *dir; 7803 uint8_t *end, *cur; 7804 in6_addr_t *daddr, *saddr; 7805 ipaddr_t v4daddr; 7806 ire_t *ire; 7807 ipaddr_t v4setsrc; 7808 in6_addr_t v6setsrc; 7809 char *slabel, *dlabel; 7810 boolean_t isipv4; 7811 int match_ire; 7812 ill_t *dst_ill; 7813 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7814 conn_t *connp = Q_TO_CONN(q); 7815 zoneid_t zoneid = IPCL_ZONEID(connp); 7816 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7817 uint64_t ipif_flags; 7818 7819 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7820 7821 /* 7822 * This ioctl is I_STR only, and must have a 7823 * data mblk following the M_IOCTL mblk. 7824 */ 7825 data_mp = mp->b_cont; 7826 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7827 miocnak(q, mp, 0, EINVAL); 7828 return; 7829 } 7830 7831 if (MBLKL(data_mp) < iocp->ioc_count) { 7832 mblk_t *new_data_mp; 7833 7834 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7835 miocnak(q, mp, 0, ENOMEM); 7836 return; 7837 } 7838 freemsg(data_mp); 7839 data_mp = new_data_mp; 7840 mp->b_cont = data_mp; 7841 } 7842 match_ire = MATCH_IRE_DSTONLY; 7843 7844 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7845 end - cur >= sizeof (struct dstinforeq); 7846 cur += sizeof (struct dstinforeq)) { 7847 dir = (struct dstinforeq *)cur; 7848 daddr = &dir->dir_daddr; 7849 saddr = &dir->dir_saddr; 7850 7851 /* 7852 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7853 * v4 mapped addresses; ire_ftable_lookup_v6() 7854 * and ip_select_source_v6() do not. 7855 */ 7856 dir->dir_dscope = ip_addr_scope_v6(daddr); 7857 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7858 7859 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7860 if (isipv4) { 7861 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7862 v4setsrc = INADDR_ANY; 7863 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7864 NULL, match_ire, B_TRUE, 0, ipst, &v4setsrc, NULL, 7865 NULL); 7866 } else { 7867 v6setsrc = ipv6_all_zeros; 7868 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7869 NULL, match_ire, B_TRUE, 0, ipst, &v6setsrc, NULL, 7870 NULL); 7871 } 7872 ASSERT(ire != NULL); 7873 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7874 ire_refrele(ire); 7875 dir->dir_dreachable = 0; 7876 7877 /* move on to next dst addr */ 7878 continue; 7879 } 7880 dir->dir_dreachable = 1; 7881 7882 dst_ill = ire_nexthop_ill(ire); 7883 if (dst_ill == NULL) { 7884 ire_refrele(ire); 7885 continue; 7886 } 7887 7888 /* With ipmp we most likely look at the ipmp ill here */ 7889 dir->dir_dmactype = dst_ill->ill_mactype; 7890 7891 if (isipv4) { 7892 ipaddr_t v4saddr; 7893 7894 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7895 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7896 &v4saddr, NULL, &ipif_flags) != 0) { 7897 v4saddr = INADDR_ANY; 7898 ipif_flags = 0; 7899 } 7900 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7901 } else { 7902 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7903 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7904 saddr, NULL, &ipif_flags) != 0) { 7905 *saddr = ipv6_all_zeros; 7906 ipif_flags = 0; 7907 } 7908 } 7909 7910 dir->dir_sscope = ip_addr_scope_v6(saddr); 7911 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7912 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7913 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7914 ire_refrele(ire); 7915 ill_refrele(dst_ill); 7916 } 7917 miocack(q, mp, iocp->ioc_count, 0); 7918 } 7919 7920 /* 7921 * Check if this is an address assigned to this machine. 7922 * Skips interfaces that are down by using ire checks. 7923 * Translates mapped addresses to v4 addresses and then 7924 * treats them as such, returning true if the v4 address 7925 * associated with this mapped address is configured. 7926 * Note: Applications will have to be careful what they do 7927 * with the response; use of mapped addresses limits 7928 * what can be done with the socket, especially with 7929 * respect to socket options and ioctls - neither IPv4 7930 * options nor IPv6 sticky options/ancillary data options 7931 * may be used. 7932 */ 7933 /* ARGSUSED */ 7934 int 7935 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7936 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 7937 { 7938 struct sioc_addrreq *sia; 7939 sin_t *sin; 7940 ire_t *ire; 7941 mblk_t *mp1; 7942 zoneid_t zoneid; 7943 ip_stack_t *ipst; 7944 7945 ip1dbg(("ip_sioctl_tmyaddr")); 7946 7947 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7948 zoneid = Q_TO_CONN(q)->conn_zoneid; 7949 ipst = CONNQ_TO_IPST(q); 7950 7951 /* Existence verified in ip_wput_nondata */ 7952 mp1 = mp->b_cont->b_cont; 7953 sia = (struct sioc_addrreq *)mp1->b_rptr; 7954 sin = (sin_t *)&sia->sa_addr; 7955 switch (sin->sin_family) { 7956 case AF_INET6: { 7957 sin6_t *sin6 = (sin6_t *)sin; 7958 7959 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 7960 ipaddr_t v4_addr; 7961 7962 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 7963 v4_addr); 7964 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 7965 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 7966 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 7967 } else { 7968 in6_addr_t v6addr; 7969 7970 v6addr = sin6->sin6_addr; 7971 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 7972 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 7973 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 7974 } 7975 break; 7976 } 7977 case AF_INET: { 7978 ipaddr_t v4addr; 7979 7980 v4addr = sin->sin_addr.s_addr; 7981 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 7982 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 7983 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 7984 break; 7985 } 7986 default: 7987 return (EAFNOSUPPORT); 7988 } 7989 if (ire != NULL) { 7990 sia->sa_res = 1; 7991 ire_refrele(ire); 7992 } else { 7993 sia->sa_res = 0; 7994 } 7995 return (0); 7996 } 7997 7998 /* 7999 * Check if this is an address assigned on-link i.e. neighbor, 8000 * and makes sure it's reachable from the current zone. 8001 * Returns true for my addresses as well. 8002 * Translates mapped addresses to v4 addresses and then 8003 * treats them as such, returning true if the v4 address 8004 * associated with this mapped address is configured. 8005 * Note: Applications will have to be careful what they do 8006 * with the response; use of mapped addresses limits 8007 * what can be done with the socket, especially with 8008 * respect to socket options and ioctls - neither IPv4 8009 * options nor IPv6 sticky options/ancillary data options 8010 * may be used. 8011 */ 8012 /* ARGSUSED */ 8013 int 8014 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8015 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8016 { 8017 struct sioc_addrreq *sia; 8018 sin_t *sin; 8019 mblk_t *mp1; 8020 ire_t *ire = NULL; 8021 zoneid_t zoneid; 8022 ip_stack_t *ipst; 8023 8024 ip1dbg(("ip_sioctl_tonlink")); 8025 8026 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8027 zoneid = Q_TO_CONN(q)->conn_zoneid; 8028 ipst = CONNQ_TO_IPST(q); 8029 8030 /* Existence verified in ip_wput_nondata */ 8031 mp1 = mp->b_cont->b_cont; 8032 sia = (struct sioc_addrreq *)mp1->b_rptr; 8033 sin = (sin_t *)&sia->sa_addr; 8034 8035 /* 8036 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8037 * to make sure we only look at on-link unicast address. 8038 */ 8039 switch (sin->sin_family) { 8040 case AF_INET6: { 8041 sin6_t *sin6 = (sin6_t *)sin; 8042 8043 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8044 ipaddr_t v4_addr; 8045 8046 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8047 v4_addr); 8048 if (!CLASSD(v4_addr)) { 8049 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8050 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8051 0, ipst, NULL); 8052 } 8053 } else { 8054 in6_addr_t v6addr; 8055 8056 v6addr = sin6->sin6_addr; 8057 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8058 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8059 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8060 ipst, NULL); 8061 } 8062 } 8063 break; 8064 } 8065 case AF_INET: { 8066 ipaddr_t v4addr; 8067 8068 v4addr = sin->sin_addr.s_addr; 8069 if (!CLASSD(v4addr)) { 8070 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8071 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8072 } 8073 break; 8074 } 8075 default: 8076 return (EAFNOSUPPORT); 8077 } 8078 sia->sa_res = 0; 8079 if (ire != NULL) { 8080 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8081 8082 if ((ire->ire_type & IRE_ONLINK) && 8083 !(ire->ire_type & IRE_BROADCAST)) 8084 sia->sa_res = 1; 8085 ire_refrele(ire); 8086 } 8087 return (0); 8088 } 8089 8090 /* 8091 * TBD: implement when kernel maintaines a list of site prefixes. 8092 */ 8093 /* ARGSUSED */ 8094 int 8095 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8096 ip_ioctl_cmd_t *ipip, void *ifreq) 8097 { 8098 return (ENXIO); 8099 } 8100 8101 /* ARP IOCTLs. */ 8102 /* ARGSUSED */ 8103 int 8104 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8105 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8106 { 8107 int err; 8108 ipaddr_t ipaddr; 8109 struct iocblk *iocp; 8110 conn_t *connp; 8111 struct arpreq *ar; 8112 struct xarpreq *xar; 8113 int arp_flags, flags, alength; 8114 uchar_t *lladdr; 8115 ip_stack_t *ipst; 8116 ill_t *ill = ipif->ipif_ill; 8117 ill_t *proxy_ill = NULL; 8118 ipmp_arpent_t *entp = NULL; 8119 boolean_t proxyarp = B_FALSE; 8120 boolean_t if_arp_ioctl = B_FALSE; 8121 ncec_t *ncec = NULL; 8122 nce_t *nce; 8123 8124 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8125 connp = Q_TO_CONN(q); 8126 ipst = connp->conn_netstack->netstack_ip; 8127 iocp = (struct iocblk *)mp->b_rptr; 8128 8129 if (ipip->ipi_cmd_type == XARP_CMD) { 8130 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8131 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8132 ar = NULL; 8133 8134 arp_flags = xar->xarp_flags; 8135 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8136 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8137 /* 8138 * Validate against user's link layer address length 8139 * input and name and addr length limits. 8140 */ 8141 alength = ill->ill_phys_addr_length; 8142 if (ipip->ipi_cmd == SIOCSXARP) { 8143 if (alength != xar->xarp_ha.sdl_alen || 8144 (alength + xar->xarp_ha.sdl_nlen > 8145 sizeof (xar->xarp_ha.sdl_data))) 8146 return (EINVAL); 8147 } 8148 } else { 8149 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8150 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8151 xar = NULL; 8152 8153 arp_flags = ar->arp_flags; 8154 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8155 /* 8156 * Theoretically, the sa_family could tell us what link 8157 * layer type this operation is trying to deal with. By 8158 * common usage AF_UNSPEC means ethernet. We'll assume 8159 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8160 * for now. Our new SIOC*XARP ioctls can be used more 8161 * generally. 8162 * 8163 * If the underlying media happens to have a non 6 byte 8164 * address, arp module will fail set/get, but the del 8165 * operation will succeed. 8166 */ 8167 alength = 6; 8168 if ((ipip->ipi_cmd != SIOCDARP) && 8169 (alength != ill->ill_phys_addr_length)) { 8170 return (EINVAL); 8171 } 8172 } 8173 8174 /* Translate ATF* flags to NCE* flags */ 8175 flags = 0; 8176 if (arp_flags & ATF_AUTHORITY) 8177 flags |= NCE_F_AUTHORITY; 8178 if (arp_flags & ATF_PERM) 8179 flags |= NCE_F_NONUD; /* not subject to aging */ 8180 if (arp_flags & ATF_PUBL) 8181 flags |= NCE_F_PUBLISH; 8182 8183 /* 8184 * IPMP ARP special handling: 8185 * 8186 * 1. Since ARP mappings must appear consistent across the group, 8187 * prohibit changing ARP mappings on the underlying interfaces. 8188 * 8189 * 2. Since ARP mappings for IPMP data addresses are maintained by 8190 * IP itself, prohibit changing them. 8191 * 8192 * 3. For proxy ARP, use a functioning hardware address in the group, 8193 * provided one exists. If one doesn't, just add the entry as-is; 8194 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8195 */ 8196 if (IS_UNDER_IPMP(ill)) { 8197 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8198 return (EPERM); 8199 } 8200 if (IS_IPMP(ill)) { 8201 ipmp_illgrp_t *illg = ill->ill_grp; 8202 8203 switch (ipip->ipi_cmd) { 8204 case SIOCSARP: 8205 case SIOCSXARP: 8206 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8207 if (proxy_ill != NULL) { 8208 proxyarp = B_TRUE; 8209 if (!ipmp_ill_is_active(proxy_ill)) 8210 proxy_ill = ipmp_illgrp_next_ill(illg); 8211 if (proxy_ill != NULL) 8212 lladdr = proxy_ill->ill_phys_addr; 8213 } 8214 /* FALLTHRU */ 8215 } 8216 } 8217 8218 ipaddr = sin->sin_addr.s_addr; 8219 /* 8220 * don't match across illgrp per case (1) and (2). 8221 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8222 */ 8223 nce = nce_lookup_v4(ill, &ipaddr); 8224 if (nce != NULL) 8225 ncec = nce->nce_common; 8226 8227 switch (iocp->ioc_cmd) { 8228 case SIOCDARP: 8229 case SIOCDXARP: { 8230 /* 8231 * Delete the NCE if any. 8232 */ 8233 if (ncec == NULL) { 8234 iocp->ioc_error = ENXIO; 8235 break; 8236 } 8237 /* Don't allow changes to arp mappings of local addresses. */ 8238 if (NCE_MYADDR(ncec)) { 8239 nce_refrele(nce); 8240 return (ENOTSUP); 8241 } 8242 iocp->ioc_error = 0; 8243 8244 /* 8245 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8246 * This will delete all the nce entries on the under_ills. 8247 */ 8248 ncec_delete(ncec); 8249 /* 8250 * Once the NCE has been deleted, then the ire_dep* consistency 8251 * mechanism will find any IRE which depended on the now 8252 * condemned NCE (as part of sending packets). 8253 * That mechanism handles redirects by deleting redirects 8254 * that refer to UNREACHABLE nces. 8255 */ 8256 break; 8257 } 8258 case SIOCGARP: 8259 case SIOCGXARP: 8260 if (ncec != NULL) { 8261 lladdr = ncec->ncec_lladdr; 8262 flags = ncec->ncec_flags; 8263 iocp->ioc_error = 0; 8264 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8265 } else { 8266 iocp->ioc_error = ENXIO; 8267 } 8268 break; 8269 case SIOCSARP: 8270 case SIOCSXARP: 8271 /* Don't allow changes to arp mappings of local addresses. */ 8272 if (ncec != NULL && NCE_MYADDR(ncec)) { 8273 nce_refrele(nce); 8274 return (ENOTSUP); 8275 } 8276 8277 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8278 flags |= NCE_F_STATIC; 8279 if (!if_arp_ioctl) { 8280 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8281 lladdr, alength, flags); 8282 } else { 8283 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8284 if (ipif != NULL) { 8285 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8286 lladdr, alength, flags); 8287 ipif_refrele(ipif); 8288 } 8289 } 8290 if (nce != NULL) { 8291 nce_refrele(nce); 8292 nce = NULL; 8293 } 8294 /* 8295 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8296 * by nce_add_common() 8297 */ 8298 err = nce_lookup_then_add_v4(ill, lladdr, 8299 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8300 &nce); 8301 if (err == EEXIST) { 8302 ncec = nce->nce_common; 8303 mutex_enter(&ncec->ncec_lock); 8304 ncec->ncec_state = ND_REACHABLE; 8305 ncec->ncec_flags = flags; 8306 nce_update(ncec, ND_UNCHANGED, lladdr); 8307 mutex_exit(&ncec->ncec_lock); 8308 err = 0; 8309 } 8310 if (nce != NULL) { 8311 nce_refrele(nce); 8312 nce = NULL; 8313 } 8314 if (IS_IPMP(ill) && err == 0) { 8315 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8316 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8317 flags); 8318 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8319 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8320 break; 8321 } 8322 } 8323 iocp->ioc_error = err; 8324 } 8325 8326 if (nce != NULL) { 8327 nce_refrele(nce); 8328 } 8329 8330 /* 8331 * If we created an IPMP ARP entry, mark that we've notified ARP. 8332 */ 8333 if (entp != NULL) 8334 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8335 8336 return (iocp->ioc_error); 8337 } 8338 8339 /* 8340 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8341 * the associated sin and refhold and return the associated ipif via `ci'. 8342 */ 8343 int 8344 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8345 cmd_info_t *ci) 8346 { 8347 mblk_t *mp1; 8348 sin_t *sin; 8349 conn_t *connp; 8350 ipif_t *ipif; 8351 ire_t *ire = NULL; 8352 ill_t *ill = NULL; 8353 boolean_t exists; 8354 ip_stack_t *ipst; 8355 struct arpreq *ar; 8356 struct xarpreq *xar; 8357 struct sockaddr_dl *sdl; 8358 8359 /* ioctl comes down on a conn */ 8360 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8361 connp = Q_TO_CONN(q); 8362 if (connp->conn_family == AF_INET6) 8363 return (ENXIO); 8364 8365 ipst = connp->conn_netstack->netstack_ip; 8366 8367 /* Verified in ip_wput_nondata */ 8368 mp1 = mp->b_cont->b_cont; 8369 8370 if (ipip->ipi_cmd_type == XARP_CMD) { 8371 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8372 xar = (struct xarpreq *)mp1->b_rptr; 8373 sin = (sin_t *)&xar->xarp_pa; 8374 sdl = &xar->xarp_ha; 8375 8376 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8377 return (ENXIO); 8378 if (sdl->sdl_nlen >= LIFNAMSIZ) 8379 return (EINVAL); 8380 } else { 8381 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8382 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8383 ar = (struct arpreq *)mp1->b_rptr; 8384 sin = (sin_t *)&ar->arp_pa; 8385 } 8386 8387 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8388 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8389 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8390 if (ipif == NULL) 8391 return (ENXIO); 8392 if (ipif->ipif_id != 0) { 8393 ipif_refrele(ipif); 8394 return (ENXIO); 8395 } 8396 } else { 8397 /* 8398 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8399 * of 0: use the IP address to find the ipif. If the IP 8400 * address is an IPMP test address, ire_ftable_lookup() will 8401 * find the wrong ill, so we first do an ipif_lookup_addr(). 8402 */ 8403 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8404 ipst); 8405 if (ipif == NULL) { 8406 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8407 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8408 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8409 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8410 if (ire != NULL) 8411 ire_refrele(ire); 8412 return (ENXIO); 8413 } 8414 ASSERT(ire != NULL && ill != NULL); 8415 ipif = ill->ill_ipif; 8416 ipif_refhold(ipif); 8417 ire_refrele(ire); 8418 } 8419 } 8420 8421 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8422 ipif_refrele(ipif); 8423 return (ENXIO); 8424 } 8425 8426 ci->ci_sin = sin; 8427 ci->ci_ipif = ipif; 8428 return (0); 8429 } 8430 8431 /* 8432 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8433 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8434 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8435 * up and thus an ill can join that illgrp. 8436 * 8437 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8438 * open()/close() primarily because close() is not allowed to fail or block 8439 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8440 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8441 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8442 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8443 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8444 * state if I_UNLINK didn't occur. 8445 * 8446 * Note that for each plumb/unplumb operation, we may end up here more than 8447 * once because of the way ifconfig works. However, it's OK to link the same 8448 * illgrp more than once, or unlink an illgrp that's already unlinked. 8449 */ 8450 static int 8451 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8452 { 8453 int err; 8454 ip_stack_t *ipst = ill->ill_ipst; 8455 8456 ASSERT(IS_IPMP(ill)); 8457 ASSERT(IAM_WRITER_ILL(ill)); 8458 8459 switch (ioccmd) { 8460 case I_LINK: 8461 return (ENOTSUP); 8462 8463 case I_PLINK: 8464 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8465 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8466 rw_exit(&ipst->ips_ipmp_lock); 8467 break; 8468 8469 case I_PUNLINK: 8470 /* 8471 * Require all UP ipifs be brought down prior to unlinking the 8472 * illgrp so any associated IREs (and other state) is torched. 8473 */ 8474 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8475 return (EBUSY); 8476 8477 /* 8478 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8479 * with an SIOCSLIFGROUPNAME request from an ill trying to 8480 * join this group. Specifically: ills trying to join grab 8481 * ipmp_lock and bump a "pending join" counter checked by 8482 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8483 * joins can occur (since we have ipmp_lock). Once we drop 8484 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8485 * find the illgrp (since we unlinked it) and will return 8486 * EAFNOSUPPORT. This will then take them back through the 8487 * IPMP meta-interface plumbing logic in ifconfig, and thus 8488 * back through I_PLINK above. 8489 */ 8490 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8491 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8492 rw_exit(&ipst->ips_ipmp_lock); 8493 return (err); 8494 default: 8495 break; 8496 } 8497 return (0); 8498 } 8499 8500 /* 8501 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8502 * atomically set/clear the muxids. Also complete the ioctl by acking or 8503 * naking it. Note that the code is structured such that the link type, 8504 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8505 * its clones use the persistent link, while pppd(1M) and perhaps many 8506 * other daemons may use non-persistent link. When combined with some 8507 * ill_t states, linking and unlinking lower streams may be used as 8508 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8509 */ 8510 /* ARGSUSED */ 8511 void 8512 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8513 { 8514 mblk_t *mp1; 8515 struct linkblk *li; 8516 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8517 int err = 0; 8518 8519 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8520 ioccmd == I_LINK || ioccmd == I_UNLINK); 8521 8522 mp1 = mp->b_cont; /* This is the linkblk info */ 8523 li = (struct linkblk *)mp1->b_rptr; 8524 8525 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8526 if (err == EINPROGRESS) 8527 return; 8528 done: 8529 if (err == 0) 8530 miocack(q, mp, 0, 0); 8531 else 8532 miocnak(q, mp, 0, err); 8533 8534 /* Conn was refheld in ip_sioctl_copyin_setup */ 8535 if (CONN_Q(q)) 8536 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8537 } 8538 8539 /* 8540 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8541 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8542 * module stream). If `doconsist' is set, then do the extended consistency 8543 * checks requested by ifconfig(1M) and (atomically) set ill_muxid here. 8544 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8545 * an error code on failure. 8546 */ 8547 static int 8548 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8549 struct linkblk *li) 8550 { 8551 int err = 0; 8552 ill_t *ill; 8553 queue_t *ipwq, *dwq; 8554 const char *name; 8555 struct qinit *qinfo; 8556 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8557 boolean_t entered_ipsq = B_FALSE; 8558 boolean_t is_ip = B_FALSE; 8559 arl_t *arl; 8560 8561 /* 8562 * Walk the lower stream to verify it's the IP module stream. 8563 * The IP module is identified by its name, wput function, 8564 * and non-NULL q_next. STREAMS ensures that the lower stream 8565 * (li->l_qbot) will not vanish until this ioctl completes. 8566 */ 8567 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8568 qinfo = ipwq->q_qinfo; 8569 name = qinfo->qi_minfo->mi_idname; 8570 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8571 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8572 is_ip = B_TRUE; 8573 break; 8574 } 8575 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8576 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8577 break; 8578 } 8579 } 8580 8581 /* 8582 * If this isn't an IP module stream, bail. 8583 */ 8584 if (ipwq == NULL) 8585 return (0); 8586 8587 if (!is_ip) { 8588 arl = (arl_t *)ipwq->q_ptr; 8589 ill = arl_to_ill(arl); 8590 if (ill == NULL) 8591 return (0); 8592 } else { 8593 ill = ipwq->q_ptr; 8594 } 8595 ASSERT(ill != NULL); 8596 8597 if (ipsq == NULL) { 8598 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8599 NEW_OP, B_FALSE); 8600 if (ipsq == NULL) { 8601 if (!is_ip) 8602 ill_refrele(ill); 8603 return (EINPROGRESS); 8604 } 8605 entered_ipsq = B_TRUE; 8606 } 8607 ASSERT(IAM_WRITER_ILL(ill)); 8608 mutex_enter(&ill->ill_lock); 8609 if (!is_ip) { 8610 if (islink && ill->ill_muxid == 0) { 8611 /* 8612 * Plumbing has to be done with IP plumbed first, arp 8613 * second, but here we have arp being plumbed first. 8614 */ 8615 mutex_exit(&ill->ill_lock); 8616 ipsq_exit(ipsq); 8617 ill_refrele(ill); 8618 return (EINVAL); 8619 } 8620 } 8621 mutex_exit(&ill->ill_lock); 8622 if (!is_ip) { 8623 arl->arl_muxid = islink ? li->l_index : 0; 8624 ill_refrele(ill); 8625 goto done; 8626 } 8627 8628 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8629 goto done; 8630 8631 /* 8632 * As part of I_{P}LINKing, stash the number of downstream modules and 8633 * the read queue of the module immediately below IP in the ill. 8634 * These are used during the capability negotiation below. 8635 */ 8636 ill->ill_lmod_rq = NULL; 8637 ill->ill_lmod_cnt = 0; 8638 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8639 ill->ill_lmod_rq = RD(dwq); 8640 for (; dwq != NULL; dwq = dwq->q_next) 8641 ill->ill_lmod_cnt++; 8642 } 8643 8644 ill->ill_muxid = islink ? li->l_index : 0; 8645 8646 /* 8647 * Mark the ipsq busy until the capability operations initiated below 8648 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8649 * returns, but the capability operation may complete asynchronously 8650 * much later. 8651 */ 8652 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8653 /* 8654 * If there's at least one up ipif on this ill, then we're bound to 8655 * the underlying driver via DLPI. In that case, renegotiate 8656 * capabilities to account for any possible change in modules 8657 * interposed between IP and the driver. 8658 */ 8659 if (ill->ill_ipif_up_count > 0) { 8660 if (islink) 8661 ill_capability_probe(ill); 8662 else 8663 ill_capability_reset(ill, B_FALSE); 8664 } 8665 ipsq_current_finish(ipsq); 8666 done: 8667 if (entered_ipsq) 8668 ipsq_exit(ipsq); 8669 8670 return (err); 8671 } 8672 8673 /* 8674 * Search the ioctl command in the ioctl tables and return a pointer 8675 * to the ioctl command information. The ioctl command tables are 8676 * static and fully populated at compile time. 8677 */ 8678 ip_ioctl_cmd_t * 8679 ip_sioctl_lookup(int ioc_cmd) 8680 { 8681 int index; 8682 ip_ioctl_cmd_t *ipip; 8683 ip_ioctl_cmd_t *ipip_end; 8684 8685 if (ioc_cmd == IPI_DONTCARE) 8686 return (NULL); 8687 8688 /* 8689 * Do a 2 step search. First search the indexed table 8690 * based on the least significant byte of the ioctl cmd. 8691 * If we don't find a match, then search the misc table 8692 * serially. 8693 */ 8694 index = ioc_cmd & 0xFF; 8695 if (index < ip_ndx_ioctl_count) { 8696 ipip = &ip_ndx_ioctl_table[index]; 8697 if (ipip->ipi_cmd == ioc_cmd) { 8698 /* Found a match in the ndx table */ 8699 return (ipip); 8700 } 8701 } 8702 8703 /* Search the misc table */ 8704 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8705 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8706 if (ipip->ipi_cmd == ioc_cmd) 8707 /* Found a match in the misc table */ 8708 return (ipip); 8709 } 8710 8711 return (NULL); 8712 } 8713 8714 /* 8715 * Wrapper function for resuming deferred ioctl processing 8716 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 8717 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 8718 */ 8719 /* ARGSUSED */ 8720 void 8721 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 8722 void *dummy_arg) 8723 { 8724 ip_sioctl_copyin_setup(q, mp); 8725 } 8726 8727 /* 8728 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 8729 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 8730 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 8731 * We establish here the size of the block to be copied in. mi_copyin 8732 * arranges for this to happen, an processing continues in ip_wput_nondata with 8733 * an M_IOCDATA message. 8734 */ 8735 void 8736 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 8737 { 8738 int copyin_size; 8739 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8740 ip_ioctl_cmd_t *ipip; 8741 cred_t *cr; 8742 ip_stack_t *ipst; 8743 8744 if (CONN_Q(q)) 8745 ipst = CONNQ_TO_IPST(q); 8746 else 8747 ipst = ILLQ_TO_IPST(q); 8748 8749 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 8750 if (ipip == NULL) { 8751 /* 8752 * The ioctl is not one we understand or own. 8753 * Pass it along to be processed down stream, 8754 * if this is a module instance of IP, else nak 8755 * the ioctl. 8756 */ 8757 if (q->q_next == NULL) { 8758 goto nak; 8759 } else { 8760 putnext(q, mp); 8761 return; 8762 } 8763 } 8764 8765 /* 8766 * If this is deferred, then we will do all the checks when we 8767 * come back. 8768 */ 8769 if ((iocp->ioc_cmd == SIOCGDSTINFO || 8770 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 8771 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 8772 return; 8773 } 8774 8775 /* 8776 * Only allow a very small subset of IP ioctls on this stream if 8777 * IP is a module and not a driver. Allowing ioctls to be processed 8778 * in this case may cause assert failures or data corruption. 8779 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 8780 * ioctls allowed on an IP module stream, after which this stream 8781 * normally becomes a multiplexor (at which time the stream head 8782 * will fail all ioctls). 8783 */ 8784 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 8785 goto nak; 8786 } 8787 8788 /* Make sure we have ioctl data to process. */ 8789 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 8790 goto nak; 8791 8792 /* 8793 * Prefer dblk credential over ioctl credential; some synthesized 8794 * ioctls have kcred set because there's no way to crhold() 8795 * a credential in some contexts. (ioc_cr is not crfree() by 8796 * the framework; the caller of ioctl needs to hold the reference 8797 * for the duration of the call). 8798 */ 8799 cr = msg_getcred(mp, NULL); 8800 if (cr == NULL) 8801 cr = iocp->ioc_cr; 8802 8803 /* Make sure normal users don't send down privileged ioctls */ 8804 if ((ipip->ipi_flags & IPI_PRIV) && 8805 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 8806 /* We checked the privilege earlier but log it here */ 8807 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 8808 return; 8809 } 8810 8811 /* 8812 * The ioctl command tables can only encode fixed length 8813 * ioctl data. If the length is variable, the table will 8814 * encode the length as zero. Such special cases are handled 8815 * below in the switch. 8816 */ 8817 if (ipip->ipi_copyin_size != 0) { 8818 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 8819 return; 8820 } 8821 8822 switch (iocp->ioc_cmd) { 8823 case O_SIOCGIFCONF: 8824 case SIOCGIFCONF: 8825 /* 8826 * This IOCTL is hilarious. See comments in 8827 * ip_sioctl_get_ifconf for the story. 8828 */ 8829 if (iocp->ioc_count == TRANSPARENT) 8830 copyin_size = SIZEOF_STRUCT(ifconf, 8831 iocp->ioc_flag); 8832 else 8833 copyin_size = iocp->ioc_count; 8834 mi_copyin(q, mp, NULL, copyin_size); 8835 return; 8836 8837 case O_SIOCGLIFCONF: 8838 case SIOCGLIFCONF: 8839 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 8840 mi_copyin(q, mp, NULL, copyin_size); 8841 return; 8842 8843 case SIOCGLIFSRCOF: 8844 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 8845 mi_copyin(q, mp, NULL, copyin_size); 8846 return; 8847 case SIOCGIP6ADDRPOLICY: 8848 ip_sioctl_ip6addrpolicy(q, mp); 8849 ip6_asp_table_refrele(ipst); 8850 return; 8851 8852 case SIOCSIP6ADDRPOLICY: 8853 ip_sioctl_ip6addrpolicy(q, mp); 8854 return; 8855 8856 case SIOCGDSTINFO: 8857 ip_sioctl_dstinfo(q, mp); 8858 ip6_asp_table_refrele(ipst); 8859 return; 8860 8861 case I_PLINK: 8862 case I_PUNLINK: 8863 case I_LINK: 8864 case I_UNLINK: 8865 /* 8866 * We treat non-persistent link similarly as the persistent 8867 * link case, in terms of plumbing/unplumbing, as well as 8868 * dynamic re-plumbing events indicator. See comments 8869 * in ip_sioctl_plink() for more. 8870 * 8871 * Request can be enqueued in the 'ipsq' while waiting 8872 * to become exclusive. So bump up the conn ref. 8873 */ 8874 if (CONN_Q(q)) 8875 CONN_INC_REF(Q_TO_CONN(q)); 8876 ip_sioctl_plink(NULL, q, mp, NULL); 8877 return; 8878 8879 case ND_GET: 8880 case ND_SET: 8881 /* 8882 * Use of the nd table requires holding the reader lock. 8883 * Modifying the nd table thru nd_load/nd_unload requires 8884 * the writer lock. 8885 */ 8886 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 8887 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 8888 rw_exit(&ipst->ips_ip_g_nd_lock); 8889 8890 if (iocp->ioc_error) 8891 iocp->ioc_count = 0; 8892 mp->b_datap->db_type = M_IOCACK; 8893 qreply(q, mp); 8894 return; 8895 } 8896 rw_exit(&ipst->ips_ip_g_nd_lock); 8897 /* 8898 * We don't understand this subioctl of ND_GET / ND_SET. 8899 * Maybe intended for some driver / module below us 8900 */ 8901 if (q->q_next) { 8902 putnext(q, mp); 8903 } else { 8904 iocp->ioc_error = ENOENT; 8905 mp->b_datap->db_type = M_IOCNAK; 8906 iocp->ioc_count = 0; 8907 qreply(q, mp); 8908 } 8909 return; 8910 8911 case IP_IOCTL: 8912 ip_wput_ioctl(q, mp); 8913 return; 8914 8915 case SIOCILB: 8916 /* The ioctl length varies depending on the ILB command. */ 8917 copyin_size = iocp->ioc_count; 8918 if (copyin_size < sizeof (ilb_cmd_t)) 8919 goto nak; 8920 mi_copyin(q, mp, NULL, copyin_size); 8921 return; 8922 8923 default: 8924 cmn_err(CE_PANIC, "should not happen "); 8925 } 8926 nak: 8927 if (mp->b_cont != NULL) { 8928 freemsg(mp->b_cont); 8929 mp->b_cont = NULL; 8930 } 8931 iocp->ioc_error = EINVAL; 8932 mp->b_datap->db_type = M_IOCNAK; 8933 iocp->ioc_count = 0; 8934 qreply(q, mp); 8935 } 8936 8937 static void 8938 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 8939 { 8940 struct arpreq *ar; 8941 struct xarpreq *xar; 8942 mblk_t *tmp; 8943 struct iocblk *iocp; 8944 int x_arp_ioctl = B_FALSE; 8945 int *flagsp; 8946 char *storage = NULL; 8947 8948 ASSERT(ill != NULL); 8949 8950 iocp = (struct iocblk *)mp->b_rptr; 8951 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 8952 8953 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 8954 if ((iocp->ioc_cmd == SIOCGXARP) || 8955 (iocp->ioc_cmd == SIOCSXARP)) { 8956 x_arp_ioctl = B_TRUE; 8957 xar = (struct xarpreq *)tmp->b_rptr; 8958 flagsp = &xar->xarp_flags; 8959 storage = xar->xarp_ha.sdl_data; 8960 } else { 8961 ar = (struct arpreq *)tmp->b_rptr; 8962 flagsp = &ar->arp_flags; 8963 storage = ar->arp_ha.sa_data; 8964 } 8965 8966 /* 8967 * We're done if this is not an SIOCG{X}ARP 8968 */ 8969 if (x_arp_ioctl) { 8970 storage += ill_xarp_info(&xar->xarp_ha, ill); 8971 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 8972 sizeof (xar->xarp_ha.sdl_data)) { 8973 iocp->ioc_error = EINVAL; 8974 return; 8975 } 8976 } 8977 *flagsp = ATF_INUSE; 8978 /* 8979 * If /sbin/arp told us we are the authority using the "permanent" 8980 * flag, or if this is one of my addresses print "permanent" 8981 * in the /sbin/arp output. 8982 */ 8983 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 8984 *flagsp |= ATF_AUTHORITY; 8985 if (flags & NCE_F_NONUD) 8986 *flagsp |= ATF_PERM; /* not subject to aging */ 8987 if (flags & NCE_F_PUBLISH) 8988 *flagsp |= ATF_PUBL; 8989 if (hwaddr != NULL) { 8990 *flagsp |= ATF_COM; 8991 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 8992 } 8993 } 8994 8995 /* 8996 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 8997 * interface) create the next available logical interface for this 8998 * physical interface. 8999 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9000 * ipif with the specified name. 9001 * 9002 * If the address family is not AF_UNSPEC then set the address as well. 9003 * 9004 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9005 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9006 * 9007 * Executed as a writer on the ill. 9008 * So no lock is needed to traverse the ipif chain, or examine the 9009 * phyint flags. 9010 */ 9011 /* ARGSUSED */ 9012 int 9013 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9014 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9015 { 9016 mblk_t *mp1; 9017 struct lifreq *lifr; 9018 boolean_t isv6; 9019 boolean_t exists; 9020 char *name; 9021 char *endp; 9022 char *cp; 9023 int namelen; 9024 ipif_t *ipif; 9025 long id; 9026 ipsq_t *ipsq; 9027 ill_t *ill; 9028 sin_t *sin; 9029 int err = 0; 9030 boolean_t found_sep = B_FALSE; 9031 conn_t *connp; 9032 zoneid_t zoneid; 9033 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9034 9035 ASSERT(q->q_next == NULL); 9036 ip1dbg(("ip_sioctl_addif\n")); 9037 /* Existence of mp1 has been checked in ip_wput_nondata */ 9038 mp1 = mp->b_cont->b_cont; 9039 /* 9040 * Null terminate the string to protect against buffer 9041 * overrun. String was generated by user code and may not 9042 * be trusted. 9043 */ 9044 lifr = (struct lifreq *)mp1->b_rptr; 9045 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9046 name = lifr->lifr_name; 9047 ASSERT(CONN_Q(q)); 9048 connp = Q_TO_CONN(q); 9049 isv6 = (connp->conn_family == AF_INET6); 9050 zoneid = connp->conn_zoneid; 9051 namelen = mi_strlen(name); 9052 if (namelen == 0) 9053 return (EINVAL); 9054 9055 exists = B_FALSE; 9056 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9057 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9058 /* 9059 * Allow creating lo0 using SIOCLIFADDIF. 9060 * can't be any other writer thread. So can pass null below 9061 * for the last 4 args to ipif_lookup_name. 9062 */ 9063 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9064 &exists, isv6, zoneid, ipst); 9065 /* Prevent any further action */ 9066 if (ipif == NULL) { 9067 return (ENOBUFS); 9068 } else if (!exists) { 9069 /* We created the ipif now and as writer */ 9070 ipif_refrele(ipif); 9071 return (0); 9072 } else { 9073 ill = ipif->ipif_ill; 9074 ill_refhold(ill); 9075 ipif_refrele(ipif); 9076 } 9077 } else { 9078 /* Look for a colon in the name. */ 9079 endp = &name[namelen]; 9080 for (cp = endp; --cp > name; ) { 9081 if (*cp == IPIF_SEPARATOR_CHAR) { 9082 found_sep = B_TRUE; 9083 /* 9084 * Reject any non-decimal aliases for plumbing 9085 * of logical interfaces. Aliases with leading 9086 * zeroes are also rejected as they introduce 9087 * ambiguity in the naming of the interfaces. 9088 * Comparing with "0" takes care of all such 9089 * cases. 9090 */ 9091 if ((strncmp("0", cp+1, 1)) == 0) 9092 return (EINVAL); 9093 9094 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9095 id <= 0 || *endp != '\0') { 9096 return (EINVAL); 9097 } 9098 *cp = '\0'; 9099 break; 9100 } 9101 } 9102 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9103 if (found_sep) 9104 *cp = IPIF_SEPARATOR_CHAR; 9105 if (ill == NULL) 9106 return (ENXIO); 9107 } 9108 9109 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9110 B_TRUE); 9111 9112 /* 9113 * Release the refhold due to the lookup, now that we are excl 9114 * or we are just returning 9115 */ 9116 ill_refrele(ill); 9117 9118 if (ipsq == NULL) 9119 return (EINPROGRESS); 9120 9121 /* We are now exclusive on the IPSQ */ 9122 ASSERT(IAM_WRITER_ILL(ill)); 9123 9124 if (found_sep) { 9125 /* Now see if there is an IPIF with this unit number. */ 9126 for (ipif = ill->ill_ipif; ipif != NULL; 9127 ipif = ipif->ipif_next) { 9128 if (ipif->ipif_id == id) { 9129 err = EEXIST; 9130 goto done; 9131 } 9132 } 9133 } 9134 9135 /* 9136 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9137 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9138 * instead. 9139 */ 9140 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9141 B_TRUE, B_TRUE)) == NULL) { 9142 err = ENOBUFS; 9143 goto done; 9144 } 9145 9146 /* Return created name with ioctl */ 9147 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9148 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9149 ip1dbg(("created %s\n", lifr->lifr_name)); 9150 9151 /* Set address */ 9152 sin = (sin_t *)&lifr->lifr_addr; 9153 if (sin->sin_family != AF_UNSPEC) { 9154 err = ip_sioctl_addr(ipif, sin, q, mp, 9155 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9156 } 9157 9158 done: 9159 ipsq_exit(ipsq); 9160 return (err); 9161 } 9162 9163 /* 9164 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9165 * interface) delete it based on the IP address (on this physical interface). 9166 * Otherwise delete it based on the ipif_id. 9167 * Also, special handling to allow a removeif of lo0. 9168 */ 9169 /* ARGSUSED */ 9170 int 9171 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9172 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9173 { 9174 conn_t *connp; 9175 ill_t *ill = ipif->ipif_ill; 9176 boolean_t success; 9177 ip_stack_t *ipst; 9178 9179 ipst = CONNQ_TO_IPST(q); 9180 9181 ASSERT(q->q_next == NULL); 9182 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9183 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9184 ASSERT(IAM_WRITER_IPIF(ipif)); 9185 9186 connp = Q_TO_CONN(q); 9187 /* 9188 * Special case for unplumbing lo0 (the loopback physical interface). 9189 * If unplumbing lo0, the incoming address structure has been 9190 * initialized to all zeros. When unplumbing lo0, all its logical 9191 * interfaces must be removed too. 9192 * 9193 * Note that this interface may be called to remove a specific 9194 * loopback logical interface (eg, lo0:1). But in that case 9195 * ipif->ipif_id != 0 so that the code path for that case is the 9196 * same as any other interface (meaning it skips the code directly 9197 * below). 9198 */ 9199 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9200 if (sin->sin_family == AF_UNSPEC && 9201 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9202 /* 9203 * Mark it condemned. No new ref. will be made to ill. 9204 */ 9205 mutex_enter(&ill->ill_lock); 9206 ill->ill_state_flags |= ILL_CONDEMNED; 9207 for (ipif = ill->ill_ipif; ipif != NULL; 9208 ipif = ipif->ipif_next) { 9209 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9210 } 9211 mutex_exit(&ill->ill_lock); 9212 9213 ipif = ill->ill_ipif; 9214 /* unplumb the loopback interface */ 9215 ill_delete(ill); 9216 mutex_enter(&connp->conn_lock); 9217 mutex_enter(&ill->ill_lock); 9218 9219 /* Are any references to this ill active */ 9220 if (ill_is_freeable(ill)) { 9221 mutex_exit(&ill->ill_lock); 9222 mutex_exit(&connp->conn_lock); 9223 ill_delete_tail(ill); 9224 mi_free(ill); 9225 return (0); 9226 } 9227 success = ipsq_pending_mp_add(connp, ipif, 9228 CONNP_TO_WQ(connp), mp, ILL_FREE); 9229 mutex_exit(&connp->conn_lock); 9230 mutex_exit(&ill->ill_lock); 9231 if (success) 9232 return (EINPROGRESS); 9233 else 9234 return (EINTR); 9235 } 9236 } 9237 9238 if (ipif->ipif_id == 0) { 9239 ipsq_t *ipsq; 9240 9241 /* Find based on address */ 9242 if (ipif->ipif_isv6) { 9243 sin6_t *sin6; 9244 9245 if (sin->sin_family != AF_INET6) 9246 return (EAFNOSUPPORT); 9247 9248 sin6 = (sin6_t *)sin; 9249 /* We are a writer, so we should be able to lookup */ 9250 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9251 ipst); 9252 } else { 9253 if (sin->sin_family != AF_INET) 9254 return (EAFNOSUPPORT); 9255 9256 /* We are a writer, so we should be able to lookup */ 9257 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9258 ipst); 9259 } 9260 if (ipif == NULL) { 9261 return (EADDRNOTAVAIL); 9262 } 9263 9264 /* 9265 * It is possible for a user to send an SIOCLIFREMOVEIF with 9266 * lifr_name of the physical interface but with an ip address 9267 * lifr_addr of a logical interface plumbed over it. 9268 * So update ipx_current_ipif now that ipif points to the 9269 * correct one. 9270 */ 9271 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9272 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9273 9274 /* This is a writer */ 9275 ipif_refrele(ipif); 9276 } 9277 9278 /* 9279 * Can not delete instance zero since it is tied to the ill. 9280 */ 9281 if (ipif->ipif_id == 0) 9282 return (EBUSY); 9283 9284 mutex_enter(&ill->ill_lock); 9285 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9286 mutex_exit(&ill->ill_lock); 9287 9288 ipif_free(ipif); 9289 9290 mutex_enter(&connp->conn_lock); 9291 mutex_enter(&ill->ill_lock); 9292 9293 /* Are any references to this ipif active */ 9294 if (ipif_is_freeable(ipif)) { 9295 mutex_exit(&ill->ill_lock); 9296 mutex_exit(&connp->conn_lock); 9297 ipif_non_duplicate(ipif); 9298 (void) ipif_down_tail(ipif); 9299 ipif_free_tail(ipif); /* frees ipif */ 9300 return (0); 9301 } 9302 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9303 IPIF_FREE); 9304 mutex_exit(&ill->ill_lock); 9305 mutex_exit(&connp->conn_lock); 9306 if (success) 9307 return (EINPROGRESS); 9308 else 9309 return (EINTR); 9310 } 9311 9312 /* 9313 * Restart the removeif ioctl. The refcnt has gone down to 0. 9314 * The ipif is already condemned. So can't find it thru lookups. 9315 */ 9316 /* ARGSUSED */ 9317 int 9318 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9319 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9320 { 9321 ill_t *ill = ipif->ipif_ill; 9322 9323 ASSERT(IAM_WRITER_IPIF(ipif)); 9324 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9325 9326 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9327 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9328 9329 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9330 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9331 ill_delete_tail(ill); 9332 mi_free(ill); 9333 return (0); 9334 } 9335 9336 ipif_non_duplicate(ipif); 9337 (void) ipif_down_tail(ipif); 9338 ipif_free_tail(ipif); 9339 9340 return (0); 9341 } 9342 9343 /* 9344 * Set the local interface address. 9345 * Allow an address of all zero when the interface is down. 9346 */ 9347 /* ARGSUSED */ 9348 int 9349 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9350 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9351 { 9352 int err = 0; 9353 in6_addr_t v6addr; 9354 boolean_t need_up = B_FALSE; 9355 9356 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9357 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9358 9359 ASSERT(IAM_WRITER_IPIF(ipif)); 9360 9361 if (ipif->ipif_isv6) { 9362 sin6_t *sin6; 9363 ill_t *ill; 9364 phyint_t *phyi; 9365 9366 if (sin->sin_family != AF_INET6) 9367 return (EAFNOSUPPORT); 9368 9369 sin6 = (sin6_t *)sin; 9370 v6addr = sin6->sin6_addr; 9371 ill = ipif->ipif_ill; 9372 phyi = ill->ill_phyint; 9373 9374 /* 9375 * Enforce that true multicast interfaces have a link-local 9376 * address for logical unit 0. 9377 */ 9378 if (ipif->ipif_id == 0 && 9379 (ill->ill_flags & ILLF_MULTICAST) && 9380 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9381 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9382 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9383 return (EADDRNOTAVAIL); 9384 } 9385 9386 /* 9387 * up interfaces shouldn't have the unspecified address 9388 * unless they also have the IPIF_NOLOCAL flags set and 9389 * have a subnet assigned. 9390 */ 9391 if ((ipif->ipif_flags & IPIF_UP) && 9392 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9393 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9394 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9395 return (EADDRNOTAVAIL); 9396 } 9397 9398 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9399 return (EADDRNOTAVAIL); 9400 } else { 9401 ipaddr_t addr; 9402 9403 if (sin->sin_family != AF_INET) 9404 return (EAFNOSUPPORT); 9405 9406 addr = sin->sin_addr.s_addr; 9407 9408 /* Allow 0 as the local address. */ 9409 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9410 return (EADDRNOTAVAIL); 9411 9412 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9413 } 9414 9415 /* 9416 * Even if there is no change we redo things just to rerun 9417 * ipif_set_default. 9418 */ 9419 if (ipif->ipif_flags & IPIF_UP) { 9420 /* 9421 * Setting a new local address, make sure 9422 * we have net and subnet bcast ire's for 9423 * the old address if we need them. 9424 */ 9425 /* 9426 * If the interface is already marked up, 9427 * we call ipif_down which will take care 9428 * of ditching any IREs that have been set 9429 * up based on the old interface address. 9430 */ 9431 err = ipif_logical_down(ipif, q, mp); 9432 if (err == EINPROGRESS) 9433 return (err); 9434 (void) ipif_down_tail(ipif); 9435 need_up = 1; 9436 } 9437 9438 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9439 return (err); 9440 } 9441 9442 int 9443 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9444 boolean_t need_up) 9445 { 9446 in6_addr_t v6addr; 9447 in6_addr_t ov6addr; 9448 ipaddr_t addr; 9449 sin6_t *sin6; 9450 int sinlen; 9451 int err = 0; 9452 ill_t *ill = ipif->ipif_ill; 9453 boolean_t need_dl_down; 9454 boolean_t need_arp_down; 9455 struct iocblk *iocp; 9456 9457 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9458 9459 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9460 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9461 ASSERT(IAM_WRITER_IPIF(ipif)); 9462 9463 /* Must cancel any pending timer before taking the ill_lock */ 9464 if (ipif->ipif_recovery_id != 0) 9465 (void) untimeout(ipif->ipif_recovery_id); 9466 ipif->ipif_recovery_id = 0; 9467 9468 if (ipif->ipif_isv6) { 9469 sin6 = (sin6_t *)sin; 9470 v6addr = sin6->sin6_addr; 9471 sinlen = sizeof (struct sockaddr_in6); 9472 } else { 9473 addr = sin->sin_addr.s_addr; 9474 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9475 sinlen = sizeof (struct sockaddr_in); 9476 } 9477 mutex_enter(&ill->ill_lock); 9478 ov6addr = ipif->ipif_v6lcl_addr; 9479 ipif->ipif_v6lcl_addr = v6addr; 9480 sctp_update_ipif_addr(ipif, ov6addr); 9481 ipif->ipif_addr_ready = 0; 9482 9483 /* 9484 * If the interface was previously marked as a duplicate, then since 9485 * we've now got a "new" address, it should no longer be considered a 9486 * duplicate -- even if the "new" address is the same as the old one. 9487 * Note that if all ipifs are down, we may have a pending ARP down 9488 * event to handle. This is because we want to recover from duplicates 9489 * and thus delay tearing down ARP until the duplicates have been 9490 * removed or disabled. 9491 */ 9492 need_dl_down = need_arp_down = B_FALSE; 9493 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9494 need_arp_down = !need_up; 9495 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9496 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9497 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9498 need_dl_down = B_TRUE; 9499 } 9500 } 9501 9502 ipif_set_default(ipif); 9503 9504 /* 9505 * If we've just manually set the IPv6 link-local address (0th ipif), 9506 * tag the ill so that future updates to the interface ID don't result 9507 * in this address getting automatically reconfigured from under the 9508 * administrator. 9509 */ 9510 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 9511 ill->ill_manual_linklocal = 1; 9512 9513 /* 9514 * When publishing an interface address change event, we only notify 9515 * the event listeners of the new address. It is assumed that if they 9516 * actively care about the addresses assigned that they will have 9517 * already discovered the previous address assigned (if there was one.) 9518 * 9519 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9520 */ 9521 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9522 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9523 NE_ADDRESS_CHANGE, sin, sinlen); 9524 } 9525 9526 mutex_exit(&ill->ill_lock); 9527 9528 if (need_up) { 9529 /* 9530 * Now bring the interface back up. If this 9531 * is the only IPIF for the ILL, ipif_up 9532 * will have to re-bind to the device, so 9533 * we may get back EINPROGRESS, in which 9534 * case, this IOCTL will get completed in 9535 * ip_rput_dlpi when we see the DL_BIND_ACK. 9536 */ 9537 err = ipif_up(ipif, q, mp); 9538 } else { 9539 /* Perhaps ilgs should use this ill */ 9540 update_conn_ill(NULL, ill->ill_ipst); 9541 } 9542 9543 if (need_dl_down) 9544 ill_dl_down(ill); 9545 9546 if (need_arp_down && !ill->ill_isv6) 9547 (void) ipif_arp_down(ipif); 9548 9549 /* 9550 * The default multicast interface might have changed (for 9551 * instance if the IPv6 scope of the address changed) 9552 */ 9553 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9554 9555 return (err); 9556 } 9557 9558 /* 9559 * Restart entry point to restart the address set operation after the 9560 * refcounts have dropped to zero. 9561 */ 9562 /* ARGSUSED */ 9563 int 9564 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9565 ip_ioctl_cmd_t *ipip, void *ifreq) 9566 { 9567 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9568 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9569 ASSERT(IAM_WRITER_IPIF(ipif)); 9570 (void) ipif_down_tail(ipif); 9571 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9572 } 9573 9574 /* ARGSUSED */ 9575 int 9576 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9577 ip_ioctl_cmd_t *ipip, void *if_req) 9578 { 9579 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9580 struct lifreq *lifr = (struct lifreq *)if_req; 9581 9582 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9583 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9584 /* 9585 * The net mask and address can't change since we have a 9586 * reference to the ipif. So no lock is necessary. 9587 */ 9588 if (ipif->ipif_isv6) { 9589 *sin6 = sin6_null; 9590 sin6->sin6_family = AF_INET6; 9591 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9592 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9593 lifr->lifr_addrlen = 9594 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9595 } else { 9596 *sin = sin_null; 9597 sin->sin_family = AF_INET; 9598 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9599 if (ipip->ipi_cmd_type == LIF_CMD) { 9600 lifr->lifr_addrlen = 9601 ip_mask_to_plen(ipif->ipif_net_mask); 9602 } 9603 } 9604 return (0); 9605 } 9606 9607 /* 9608 * Set the destination address for a pt-pt interface. 9609 */ 9610 /* ARGSUSED */ 9611 int 9612 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9613 ip_ioctl_cmd_t *ipip, void *if_req) 9614 { 9615 int err = 0; 9616 in6_addr_t v6addr; 9617 boolean_t need_up = B_FALSE; 9618 9619 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9620 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9621 ASSERT(IAM_WRITER_IPIF(ipif)); 9622 9623 if (ipif->ipif_isv6) { 9624 sin6_t *sin6; 9625 9626 if (sin->sin_family != AF_INET6) 9627 return (EAFNOSUPPORT); 9628 9629 sin6 = (sin6_t *)sin; 9630 v6addr = sin6->sin6_addr; 9631 9632 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9633 return (EADDRNOTAVAIL); 9634 } else { 9635 ipaddr_t addr; 9636 9637 if (sin->sin_family != AF_INET) 9638 return (EAFNOSUPPORT); 9639 9640 addr = sin->sin_addr.s_addr; 9641 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9642 return (EADDRNOTAVAIL); 9643 9644 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9645 } 9646 9647 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 9648 return (0); /* No change */ 9649 9650 if (ipif->ipif_flags & IPIF_UP) { 9651 /* 9652 * If the interface is already marked up, 9653 * we call ipif_down which will take care 9654 * of ditching any IREs that have been set 9655 * up based on the old pp dst address. 9656 */ 9657 err = ipif_logical_down(ipif, q, mp); 9658 if (err == EINPROGRESS) 9659 return (err); 9660 (void) ipif_down_tail(ipif); 9661 need_up = B_TRUE; 9662 } 9663 /* 9664 * could return EINPROGRESS. If so ioctl will complete in 9665 * ip_rput_dlpi_writer 9666 */ 9667 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 9668 return (err); 9669 } 9670 9671 static int 9672 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9673 boolean_t need_up) 9674 { 9675 in6_addr_t v6addr; 9676 ill_t *ill = ipif->ipif_ill; 9677 int err = 0; 9678 boolean_t need_dl_down; 9679 boolean_t need_arp_down; 9680 9681 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 9682 ipif->ipif_id, (void *)ipif)); 9683 9684 /* Must cancel any pending timer before taking the ill_lock */ 9685 if (ipif->ipif_recovery_id != 0) 9686 (void) untimeout(ipif->ipif_recovery_id); 9687 ipif->ipif_recovery_id = 0; 9688 9689 if (ipif->ipif_isv6) { 9690 sin6_t *sin6; 9691 9692 sin6 = (sin6_t *)sin; 9693 v6addr = sin6->sin6_addr; 9694 } else { 9695 ipaddr_t addr; 9696 9697 addr = sin->sin_addr.s_addr; 9698 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9699 } 9700 mutex_enter(&ill->ill_lock); 9701 /* Set point to point destination address. */ 9702 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 9703 /* 9704 * Allow this as a means of creating logical 9705 * pt-pt interfaces on top of e.g. an Ethernet. 9706 * XXX Undocumented HACK for testing. 9707 * pt-pt interfaces are created with NUD disabled. 9708 */ 9709 ipif->ipif_flags |= IPIF_POINTOPOINT; 9710 ipif->ipif_flags &= ~IPIF_BROADCAST; 9711 if (ipif->ipif_isv6) 9712 ill->ill_flags |= ILLF_NONUD; 9713 } 9714 9715 /* 9716 * If the interface was previously marked as a duplicate, then since 9717 * we've now got a "new" address, it should no longer be considered a 9718 * duplicate -- even if the "new" address is the same as the old one. 9719 * Note that if all ipifs are down, we may have a pending ARP down 9720 * event to handle. 9721 */ 9722 need_dl_down = need_arp_down = B_FALSE; 9723 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9724 need_arp_down = !need_up; 9725 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9726 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9727 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9728 need_dl_down = B_TRUE; 9729 } 9730 } 9731 9732 /* Set the new address. */ 9733 ipif->ipif_v6pp_dst_addr = v6addr; 9734 /* Make sure subnet tracks pp_dst */ 9735 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 9736 mutex_exit(&ill->ill_lock); 9737 9738 if (need_up) { 9739 /* 9740 * Now bring the interface back up. If this 9741 * is the only IPIF for the ILL, ipif_up 9742 * will have to re-bind to the device, so 9743 * we may get back EINPROGRESS, in which 9744 * case, this IOCTL will get completed in 9745 * ip_rput_dlpi when we see the DL_BIND_ACK. 9746 */ 9747 err = ipif_up(ipif, q, mp); 9748 } 9749 9750 if (need_dl_down) 9751 ill_dl_down(ill); 9752 if (need_arp_down && !ipif->ipif_isv6) 9753 (void) ipif_arp_down(ipif); 9754 9755 return (err); 9756 } 9757 9758 /* 9759 * Restart entry point to restart the dstaddress set operation after the 9760 * refcounts have dropped to zero. 9761 */ 9762 /* ARGSUSED */ 9763 int 9764 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9765 ip_ioctl_cmd_t *ipip, void *ifreq) 9766 { 9767 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 9768 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9769 (void) ipif_down_tail(ipif); 9770 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 9771 } 9772 9773 /* ARGSUSED */ 9774 int 9775 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9776 ip_ioctl_cmd_t *ipip, void *if_req) 9777 { 9778 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9779 9780 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 9781 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9782 /* 9783 * Get point to point destination address. The addresses can't 9784 * change since we hold a reference to the ipif. 9785 */ 9786 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 9787 return (EADDRNOTAVAIL); 9788 9789 if (ipif->ipif_isv6) { 9790 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9791 *sin6 = sin6_null; 9792 sin6->sin6_family = AF_INET6; 9793 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 9794 } else { 9795 *sin = sin_null; 9796 sin->sin_family = AF_INET; 9797 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 9798 } 9799 return (0); 9800 } 9801 9802 /* 9803 * Set interface flags. Many flags require special handling (e.g., 9804 * bringing the interface down); see below for details. 9805 * 9806 * NOTE : We really don't enforce that ipif_id zero should be used 9807 * for setting any flags other than IFF_LOGINT_FLAGS. This 9808 * is because applications generally does SICGLIFFLAGS and 9809 * ORs in the new flags (that affects the logical) and does a 9810 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 9811 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 9812 * flags that will be turned on is correct with respect to 9813 * ipif_id 0. For backward compatibility reasons, it is not done. 9814 */ 9815 /* ARGSUSED */ 9816 int 9817 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9818 ip_ioctl_cmd_t *ipip, void *if_req) 9819 { 9820 uint64_t turn_on; 9821 uint64_t turn_off; 9822 int err = 0; 9823 phyint_t *phyi; 9824 ill_t *ill; 9825 uint64_t intf_flags, cantchange_flags; 9826 boolean_t phyint_flags_modified = B_FALSE; 9827 uint64_t flags; 9828 struct ifreq *ifr; 9829 struct lifreq *lifr; 9830 boolean_t set_linklocal = B_FALSE; 9831 9832 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 9833 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9834 9835 ASSERT(IAM_WRITER_IPIF(ipif)); 9836 9837 ill = ipif->ipif_ill; 9838 phyi = ill->ill_phyint; 9839 9840 if (ipip->ipi_cmd_type == IF_CMD) { 9841 ifr = (struct ifreq *)if_req; 9842 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 9843 } else { 9844 lifr = (struct lifreq *)if_req; 9845 flags = lifr->lifr_flags; 9846 } 9847 9848 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 9849 9850 /* 9851 * Have the flags been set correctly until now? 9852 */ 9853 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 9854 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 9855 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 9856 /* 9857 * Compare the new flags to the old, and partition 9858 * into those coming on and those going off. 9859 * For the 16 bit command keep the bits above bit 16 unchanged. 9860 */ 9861 if (ipip->ipi_cmd == SIOCSIFFLAGS) 9862 flags |= intf_flags & ~0xFFFF; 9863 9864 /* 9865 * Explicitly fail attempts to change flags that are always invalid on 9866 * an IPMP meta-interface. 9867 */ 9868 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 9869 return (EINVAL); 9870 9871 /* 9872 * Check which flags will change; silently ignore flags which userland 9873 * is not allowed to control. (Because these flags may change between 9874 * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's 9875 * control, we need to silently ignore them rather than fail.) 9876 */ 9877 cantchange_flags = IFF_CANTCHANGE; 9878 if (IS_IPMP(ill)) 9879 cantchange_flags |= IFF_IPMP_CANTCHANGE; 9880 9881 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 9882 if (turn_on == 0) 9883 return (0); /* No change */ 9884 9885 turn_off = intf_flags & turn_on; 9886 turn_on ^= turn_off; 9887 9888 /* 9889 * All test addresses must be IFF_DEPRECATED (to ensure source address 9890 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 9891 * allow it to be turned off. 9892 */ 9893 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 9894 (turn_on|intf_flags) & IFF_NOFAILOVER) 9895 return (EINVAL); 9896 9897 if (turn_on & IFF_NOFAILOVER) { 9898 turn_on |= IFF_DEPRECATED; 9899 flags |= IFF_DEPRECATED; 9900 } 9901 9902 /* 9903 * On underlying interfaces, only allow applications to manage test 9904 * addresses -- otherwise, they may get confused when the address 9905 * moves as part of being brought up. Likewise, prevent an 9906 * application-managed test address from being converted to a data 9907 * address. To prevent migration of administratively up addresses in 9908 * the kernel, we don't allow them to be converted either. 9909 */ 9910 if (IS_UNDER_IPMP(ill)) { 9911 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 9912 9913 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 9914 return (EINVAL); 9915 9916 if ((turn_off & IFF_NOFAILOVER) && 9917 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 9918 return (EINVAL); 9919 } 9920 9921 /* 9922 * Only allow IFF_TEMPORARY flag to be set on 9923 * IPv6 interfaces. 9924 */ 9925 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 9926 return (EINVAL); 9927 9928 /* 9929 * cannot turn off IFF_NOXMIT on VNI interfaces. 9930 */ 9931 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 9932 return (EINVAL); 9933 9934 /* 9935 * Don't allow the IFF_ROUTER flag to be turned on on loopback 9936 * interfaces. It makes no sense in that context. 9937 */ 9938 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 9939 return (EINVAL); 9940 9941 /* 9942 * For IPv6 ipif_id 0, don't allow the interface to be up without 9943 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 9944 * If the link local address isn't set, and can be set, it will get 9945 * set later on in this function. 9946 */ 9947 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 9948 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 9949 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 9950 if (ipif_cant_setlinklocal(ipif)) 9951 return (EINVAL); 9952 set_linklocal = B_TRUE; 9953 } 9954 9955 /* 9956 * If we modify physical interface flags, we'll potentially need to 9957 * send up two routing socket messages for the changes (one for the 9958 * IPv4 ill, and another for the IPv6 ill). Note that here. 9959 */ 9960 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 9961 phyint_flags_modified = B_TRUE; 9962 9963 /* 9964 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 9965 * (otherwise, we'd immediately use them, defeating standby). Also, 9966 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 9967 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 9968 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 9969 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 9970 * will not be honored. 9971 */ 9972 if (turn_on & PHYI_STANDBY) { 9973 /* 9974 * No need to grab ill_g_usesrc_lock here; see the 9975 * synchronization notes in ip.c. 9976 */ 9977 if (ill->ill_usesrc_grp_next != NULL || 9978 intf_flags & PHYI_INACTIVE) 9979 return (EINVAL); 9980 if (!(flags & PHYI_FAILED)) { 9981 flags |= PHYI_INACTIVE; 9982 turn_on |= PHYI_INACTIVE; 9983 } 9984 } 9985 9986 if (turn_off & PHYI_STANDBY) { 9987 flags &= ~PHYI_INACTIVE; 9988 turn_off |= PHYI_INACTIVE; 9989 } 9990 9991 /* 9992 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 9993 * would end up on. 9994 */ 9995 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 9996 (PHYI_FAILED | PHYI_INACTIVE)) 9997 return (EINVAL); 9998 9999 /* 10000 * If ILLF_ROUTER changes, we need to change the ip forwarding 10001 * status of the interface. 10002 */ 10003 if ((turn_on | turn_off) & ILLF_ROUTER) 10004 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10005 10006 /* 10007 * If the interface is not UP and we are not going to 10008 * bring it UP, record the flags and return. When the 10009 * interface comes UP later, the right actions will be 10010 * taken. 10011 */ 10012 if (!(ipif->ipif_flags & IPIF_UP) && 10013 !(turn_on & IPIF_UP)) { 10014 /* Record new flags in their respective places. */ 10015 mutex_enter(&ill->ill_lock); 10016 mutex_enter(&ill->ill_phyint->phyint_lock); 10017 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10018 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10019 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10020 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10021 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10022 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10023 mutex_exit(&ill->ill_lock); 10024 mutex_exit(&ill->ill_phyint->phyint_lock); 10025 10026 /* 10027 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10028 * same to the kernel: if any of them has been set by 10029 * userland, the interface cannot be used for data traffic. 10030 */ 10031 if ((turn_on|turn_off) & 10032 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10033 ASSERT(!IS_IPMP(ill)); 10034 /* 10035 * It's possible the ill is part of an "anonymous" 10036 * IPMP group rather than a real group. In that case, 10037 * there are no other interfaces in the group and thus 10038 * no need to call ipmp_phyint_refresh_active(). 10039 */ 10040 if (IS_UNDER_IPMP(ill)) 10041 ipmp_phyint_refresh_active(phyi); 10042 } 10043 10044 if (phyint_flags_modified) { 10045 if (phyi->phyint_illv4 != NULL) { 10046 ip_rts_ifmsg(phyi->phyint_illv4-> 10047 ill_ipif, RTSQ_DEFAULT); 10048 } 10049 if (phyi->phyint_illv6 != NULL) { 10050 ip_rts_ifmsg(phyi->phyint_illv6-> 10051 ill_ipif, RTSQ_DEFAULT); 10052 } 10053 } 10054 /* The default multicast interface might have changed */ 10055 ire_increment_multicast_generation(ill->ill_ipst, 10056 ill->ill_isv6); 10057 10058 return (0); 10059 } else if (set_linklocal) { 10060 mutex_enter(&ill->ill_lock); 10061 if (set_linklocal) 10062 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10063 mutex_exit(&ill->ill_lock); 10064 } 10065 10066 /* 10067 * Disallow IPv6 interfaces coming up that have the unspecified address, 10068 * or point-to-point interfaces with an unspecified destination. We do 10069 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10070 * have a subnet assigned, which is how in.ndpd currently manages its 10071 * onlink prefix list when no addresses are configured with those 10072 * prefixes. 10073 */ 10074 if (ipif->ipif_isv6 && 10075 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10076 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10077 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10078 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10079 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10080 return (EINVAL); 10081 } 10082 10083 /* 10084 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10085 * from being brought up. 10086 */ 10087 if (!ipif->ipif_isv6 && 10088 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10089 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10090 return (EINVAL); 10091 } 10092 10093 /* 10094 * The only flag changes that we currently take specific action on are 10095 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10096 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10097 * IPIF_NOFAILOVER. This is done by bring the ipif down, changing the 10098 * flags and bringing it back up again. For IPIF_NOFAILOVER, the act 10099 * of bringing it back up will trigger the address to be moved. 10100 */ 10101 if ((turn_on|turn_off) & 10102 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10103 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10104 IPIF_NOFAILOVER)) { 10105 /* 10106 * ipif_down() will ire_delete bcast ire's for the subnet, 10107 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10108 * entries shared between multiple ipifs on the same subnet. 10109 */ 10110 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10111 !(turn_off & IPIF_UP)) { 10112 if (ipif->ipif_flags & IPIF_UP) 10113 ill->ill_logical_down = 1; 10114 turn_on &= ~IPIF_UP; 10115 } 10116 err = ipif_down(ipif, q, mp); 10117 ip1dbg(("ipif_down returns %d err ", err)); 10118 if (err == EINPROGRESS) 10119 return (err); 10120 (void) ipif_down_tail(ipif); 10121 } 10122 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10123 } 10124 10125 static int 10126 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10127 { 10128 ill_t *ill; 10129 phyint_t *phyi; 10130 uint64_t turn_on, turn_off; 10131 uint64_t intf_flags, cantchange_flags; 10132 boolean_t phyint_flags_modified = B_FALSE; 10133 int err = 0; 10134 boolean_t set_linklocal = B_FALSE; 10135 10136 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10137 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10138 10139 ASSERT(IAM_WRITER_IPIF(ipif)); 10140 10141 ill = ipif->ipif_ill; 10142 phyi = ill->ill_phyint; 10143 10144 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10145 cantchange_flags = IFF_CANTCHANGE | IFF_UP; 10146 if (IS_IPMP(ill)) 10147 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10148 10149 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10150 turn_off = intf_flags & turn_on; 10151 turn_on ^= turn_off; 10152 10153 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10154 phyint_flags_modified = B_TRUE; 10155 10156 /* 10157 * Now we change the flags. Track current value of 10158 * other flags in their respective places. 10159 */ 10160 mutex_enter(&ill->ill_lock); 10161 mutex_enter(&phyi->phyint_lock); 10162 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10163 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10164 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10165 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10166 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10167 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10168 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10169 set_linklocal = B_TRUE; 10170 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10171 } 10172 10173 mutex_exit(&ill->ill_lock); 10174 mutex_exit(&phyi->phyint_lock); 10175 10176 if (set_linklocal) 10177 (void) ipif_setlinklocal(ipif); 10178 10179 /* 10180 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10181 * the kernel: if any of them has been set by userland, the interface 10182 * cannot be used for data traffic. 10183 */ 10184 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10185 ASSERT(!IS_IPMP(ill)); 10186 /* 10187 * It's possible the ill is part of an "anonymous" IPMP group 10188 * rather than a real group. In that case, there are no other 10189 * interfaces in the group and thus no need for us to call 10190 * ipmp_phyint_refresh_active(). 10191 */ 10192 if (IS_UNDER_IPMP(ill)) 10193 ipmp_phyint_refresh_active(phyi); 10194 } 10195 10196 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10197 /* 10198 * XXX ipif_up really does not know whether a phyint flags 10199 * was modified or not. So, it sends up information on 10200 * only one routing sockets message. As we don't bring up 10201 * the interface and also set PHYI_ flags simultaneously 10202 * it should be okay. 10203 */ 10204 err = ipif_up(ipif, q, mp); 10205 } else { 10206 /* 10207 * Make sure routing socket sees all changes to the flags. 10208 * ipif_up_done* handles this when we use ipif_up. 10209 */ 10210 if (phyint_flags_modified) { 10211 if (phyi->phyint_illv4 != NULL) { 10212 ip_rts_ifmsg(phyi->phyint_illv4-> 10213 ill_ipif, RTSQ_DEFAULT); 10214 } 10215 if (phyi->phyint_illv6 != NULL) { 10216 ip_rts_ifmsg(phyi->phyint_illv6-> 10217 ill_ipif, RTSQ_DEFAULT); 10218 } 10219 } else { 10220 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10221 } 10222 /* 10223 * Update the flags in SCTP's IPIF list, ipif_up() will do 10224 * this in need_up case. 10225 */ 10226 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10227 } 10228 10229 /* The default multicast interface might have changed */ 10230 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10231 return (err); 10232 } 10233 10234 /* 10235 * Restart the flags operation now that the refcounts have dropped to zero. 10236 */ 10237 /* ARGSUSED */ 10238 int 10239 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10240 ip_ioctl_cmd_t *ipip, void *if_req) 10241 { 10242 uint64_t flags; 10243 struct ifreq *ifr = if_req; 10244 struct lifreq *lifr = if_req; 10245 10246 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10247 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10248 10249 (void) ipif_down_tail(ipif); 10250 if (ipip->ipi_cmd_type == IF_CMD) { 10251 /* cast to uint16_t prevents unwanted sign extension */ 10252 flags = (uint16_t)ifr->ifr_flags; 10253 } else { 10254 flags = lifr->lifr_flags; 10255 } 10256 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10257 } 10258 10259 /* 10260 * Can operate on either a module or a driver queue. 10261 */ 10262 /* ARGSUSED */ 10263 int 10264 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10265 ip_ioctl_cmd_t *ipip, void *if_req) 10266 { 10267 /* 10268 * Has the flags been set correctly till now ? 10269 */ 10270 ill_t *ill = ipif->ipif_ill; 10271 phyint_t *phyi = ill->ill_phyint; 10272 10273 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10274 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10275 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10276 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10277 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10278 10279 /* 10280 * Need a lock since some flags can be set even when there are 10281 * references to the ipif. 10282 */ 10283 mutex_enter(&ill->ill_lock); 10284 if (ipip->ipi_cmd_type == IF_CMD) { 10285 struct ifreq *ifr = (struct ifreq *)if_req; 10286 10287 /* Get interface flags (low 16 only). */ 10288 ifr->ifr_flags = ((ipif->ipif_flags | 10289 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10290 } else { 10291 struct lifreq *lifr = (struct lifreq *)if_req; 10292 10293 /* Get interface flags. */ 10294 lifr->lifr_flags = ipif->ipif_flags | 10295 ill->ill_flags | phyi->phyint_flags; 10296 } 10297 mutex_exit(&ill->ill_lock); 10298 return (0); 10299 } 10300 10301 /* 10302 * We allow the MTU to be set on an ILL, but not have it be different 10303 * for different IPIFs since we don't actually send packets on IPIFs. 10304 */ 10305 /* ARGSUSED */ 10306 int 10307 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10308 ip_ioctl_cmd_t *ipip, void *if_req) 10309 { 10310 int mtu; 10311 int ip_min_mtu; 10312 struct ifreq *ifr; 10313 struct lifreq *lifr; 10314 ill_t *ill; 10315 10316 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10317 ipif->ipif_id, (void *)ipif)); 10318 if (ipip->ipi_cmd_type == IF_CMD) { 10319 ifr = (struct ifreq *)if_req; 10320 mtu = ifr->ifr_metric; 10321 } else { 10322 lifr = (struct lifreq *)if_req; 10323 mtu = lifr->lifr_mtu; 10324 } 10325 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10326 if (ipif->ipif_id != 0) 10327 return (EINVAL); 10328 10329 ill = ipif->ipif_ill; 10330 if (ipif->ipif_isv6) 10331 ip_min_mtu = IPV6_MIN_MTU; 10332 else 10333 ip_min_mtu = IP_MIN_MTU; 10334 10335 mutex_enter(&ill->ill_lock); 10336 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10337 mutex_exit(&ill->ill_lock); 10338 return (EINVAL); 10339 } 10340 /* 10341 * The dce and fragmentation code can handle changes to ill_mtu 10342 * concurrent with sending/fragmenting packets. 10343 */ 10344 ill->ill_mtu = mtu; 10345 ill->ill_flags |= ILLF_FIXEDMTU; 10346 mutex_exit(&ill->ill_lock); 10347 10348 /* 10349 * Make sure all dce_generation checks find out 10350 * that ill_mtu has changed. 10351 */ 10352 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10353 10354 /* Update the MTU in SCTP's list */ 10355 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10356 return (0); 10357 } 10358 10359 /* Get interface MTU. */ 10360 /* ARGSUSED */ 10361 int 10362 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10363 ip_ioctl_cmd_t *ipip, void *if_req) 10364 { 10365 struct ifreq *ifr; 10366 struct lifreq *lifr; 10367 10368 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10369 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10370 10371 /* 10372 * We allow a get on any logical interface even though the set 10373 * can only be done on logical unit 0. 10374 */ 10375 if (ipip->ipi_cmd_type == IF_CMD) { 10376 ifr = (struct ifreq *)if_req; 10377 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10378 } else { 10379 lifr = (struct lifreq *)if_req; 10380 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10381 } 10382 return (0); 10383 } 10384 10385 /* Set interface broadcast address. */ 10386 /* ARGSUSED2 */ 10387 int 10388 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10389 ip_ioctl_cmd_t *ipip, void *if_req) 10390 { 10391 ipaddr_t addr; 10392 ire_t *ire; 10393 ill_t *ill = ipif->ipif_ill; 10394 ip_stack_t *ipst = ill->ill_ipst; 10395 10396 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10397 ipif->ipif_id)); 10398 10399 ASSERT(IAM_WRITER_IPIF(ipif)); 10400 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10401 return (EADDRNOTAVAIL); 10402 10403 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10404 10405 if (sin->sin_family != AF_INET) 10406 return (EAFNOSUPPORT); 10407 10408 addr = sin->sin_addr.s_addr; 10409 if (ipif->ipif_flags & IPIF_UP) { 10410 /* 10411 * If we are already up, make sure the new 10412 * broadcast address makes sense. If it does, 10413 * there should be an IRE for it already. 10414 */ 10415 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10416 ill, ipif->ipif_zoneid, NULL, 10417 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10418 if (ire == NULL) { 10419 return (EINVAL); 10420 } else { 10421 ire_refrele(ire); 10422 } 10423 } 10424 /* 10425 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10426 * needs to already exist we never need to change the set of 10427 * IRE_BROADCASTs when we are UP. 10428 */ 10429 if (addr != ipif->ipif_brd_addr) 10430 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10431 10432 return (0); 10433 } 10434 10435 /* Get interface broadcast address. */ 10436 /* ARGSUSED */ 10437 int 10438 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10439 ip_ioctl_cmd_t *ipip, void *if_req) 10440 { 10441 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10442 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10443 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10444 return (EADDRNOTAVAIL); 10445 10446 /* IPIF_BROADCAST not possible with IPv6 */ 10447 ASSERT(!ipif->ipif_isv6); 10448 *sin = sin_null; 10449 sin->sin_family = AF_INET; 10450 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10451 return (0); 10452 } 10453 10454 /* 10455 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10456 */ 10457 /* ARGSUSED */ 10458 int 10459 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10460 ip_ioctl_cmd_t *ipip, void *if_req) 10461 { 10462 int err = 0; 10463 in6_addr_t v6mask; 10464 10465 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10466 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10467 10468 ASSERT(IAM_WRITER_IPIF(ipif)); 10469 10470 if (ipif->ipif_isv6) { 10471 sin6_t *sin6; 10472 10473 if (sin->sin_family != AF_INET6) 10474 return (EAFNOSUPPORT); 10475 10476 sin6 = (sin6_t *)sin; 10477 v6mask = sin6->sin6_addr; 10478 } else { 10479 ipaddr_t mask; 10480 10481 if (sin->sin_family != AF_INET) 10482 return (EAFNOSUPPORT); 10483 10484 mask = sin->sin_addr.s_addr; 10485 V4MASK_TO_V6(mask, v6mask); 10486 } 10487 10488 /* 10489 * No big deal if the interface isn't already up, or the mask 10490 * isn't really changing, or this is pt-pt. 10491 */ 10492 if (!(ipif->ipif_flags & IPIF_UP) || 10493 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10494 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10495 ipif->ipif_v6net_mask = v6mask; 10496 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10497 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10498 ipif->ipif_v6net_mask, 10499 ipif->ipif_v6subnet); 10500 } 10501 return (0); 10502 } 10503 /* 10504 * Make sure we have valid net and subnet broadcast ire's 10505 * for the old netmask, if needed by other logical interfaces. 10506 */ 10507 err = ipif_logical_down(ipif, q, mp); 10508 if (err == EINPROGRESS) 10509 return (err); 10510 (void) ipif_down_tail(ipif); 10511 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10512 return (err); 10513 } 10514 10515 static int 10516 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10517 { 10518 in6_addr_t v6mask; 10519 int err = 0; 10520 10521 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10522 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10523 10524 if (ipif->ipif_isv6) { 10525 sin6_t *sin6; 10526 10527 sin6 = (sin6_t *)sin; 10528 v6mask = sin6->sin6_addr; 10529 } else { 10530 ipaddr_t mask; 10531 10532 mask = sin->sin_addr.s_addr; 10533 V4MASK_TO_V6(mask, v6mask); 10534 } 10535 10536 ipif->ipif_v6net_mask = v6mask; 10537 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10538 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 10539 ipif->ipif_v6subnet); 10540 } 10541 err = ipif_up(ipif, q, mp); 10542 10543 if (err == 0 || err == EINPROGRESS) { 10544 /* 10545 * The interface must be DL_BOUND if this packet has to 10546 * go out on the wire. Since we only go through a logical 10547 * down and are bound with the driver during an internal 10548 * down/up that is satisfied. 10549 */ 10550 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 10551 /* Potentially broadcast an address mask reply. */ 10552 ipif_mask_reply(ipif); 10553 } 10554 } 10555 return (err); 10556 } 10557 10558 /* ARGSUSED */ 10559 int 10560 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10561 ip_ioctl_cmd_t *ipip, void *if_req) 10562 { 10563 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 10564 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10565 (void) ipif_down_tail(ipif); 10566 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 10567 } 10568 10569 /* Get interface net mask. */ 10570 /* ARGSUSED */ 10571 int 10572 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10573 ip_ioctl_cmd_t *ipip, void *if_req) 10574 { 10575 struct lifreq *lifr = (struct lifreq *)if_req; 10576 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 10577 10578 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 10579 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10580 10581 /* 10582 * net mask can't change since we have a reference to the ipif. 10583 */ 10584 if (ipif->ipif_isv6) { 10585 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10586 *sin6 = sin6_null; 10587 sin6->sin6_family = AF_INET6; 10588 sin6->sin6_addr = ipif->ipif_v6net_mask; 10589 lifr->lifr_addrlen = 10590 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10591 } else { 10592 *sin = sin_null; 10593 sin->sin_family = AF_INET; 10594 sin->sin_addr.s_addr = ipif->ipif_net_mask; 10595 if (ipip->ipi_cmd_type == LIF_CMD) { 10596 lifr->lifr_addrlen = 10597 ip_mask_to_plen(ipif->ipif_net_mask); 10598 } 10599 } 10600 return (0); 10601 } 10602 10603 /* ARGSUSED */ 10604 int 10605 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10606 ip_ioctl_cmd_t *ipip, void *if_req) 10607 { 10608 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 10609 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10610 10611 /* 10612 * Since no applications should ever be setting metrics on underlying 10613 * interfaces, we explicitly fail to smoke 'em out. 10614 */ 10615 if (IS_UNDER_IPMP(ipif->ipif_ill)) 10616 return (EINVAL); 10617 10618 /* 10619 * Set interface metric. We don't use this for 10620 * anything but we keep track of it in case it is 10621 * important to routing applications or such. 10622 */ 10623 if (ipip->ipi_cmd_type == IF_CMD) { 10624 struct ifreq *ifr; 10625 10626 ifr = (struct ifreq *)if_req; 10627 ipif->ipif_metric = ifr->ifr_metric; 10628 } else { 10629 struct lifreq *lifr; 10630 10631 lifr = (struct lifreq *)if_req; 10632 ipif->ipif_metric = lifr->lifr_metric; 10633 } 10634 return (0); 10635 } 10636 10637 /* ARGSUSED */ 10638 int 10639 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10640 ip_ioctl_cmd_t *ipip, void *if_req) 10641 { 10642 /* Get interface metric. */ 10643 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 10644 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10645 10646 if (ipip->ipi_cmd_type == IF_CMD) { 10647 struct ifreq *ifr; 10648 10649 ifr = (struct ifreq *)if_req; 10650 ifr->ifr_metric = ipif->ipif_metric; 10651 } else { 10652 struct lifreq *lifr; 10653 10654 lifr = (struct lifreq *)if_req; 10655 lifr->lifr_metric = ipif->ipif_metric; 10656 } 10657 10658 return (0); 10659 } 10660 10661 /* ARGSUSED */ 10662 int 10663 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10664 ip_ioctl_cmd_t *ipip, void *if_req) 10665 { 10666 int arp_muxid; 10667 10668 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 10669 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10670 /* 10671 * Set the muxid returned from I_PLINK. 10672 */ 10673 if (ipip->ipi_cmd_type == IF_CMD) { 10674 struct ifreq *ifr = (struct ifreq *)if_req; 10675 10676 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 10677 arp_muxid = ifr->ifr_arp_muxid; 10678 } else { 10679 struct lifreq *lifr = (struct lifreq *)if_req; 10680 10681 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 10682 arp_muxid = lifr->lifr_arp_muxid; 10683 } 10684 arl_set_muxid(ipif->ipif_ill, arp_muxid); 10685 return (0); 10686 } 10687 10688 /* ARGSUSED */ 10689 int 10690 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10691 ip_ioctl_cmd_t *ipip, void *if_req) 10692 { 10693 int arp_muxid = 0; 10694 10695 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 10696 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10697 /* 10698 * Get the muxid saved in ill for I_PUNLINK. 10699 */ 10700 arp_muxid = arl_get_muxid(ipif->ipif_ill); 10701 if (ipip->ipi_cmd_type == IF_CMD) { 10702 struct ifreq *ifr = (struct ifreq *)if_req; 10703 10704 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10705 ifr->ifr_arp_muxid = arp_muxid; 10706 } else { 10707 struct lifreq *lifr = (struct lifreq *)if_req; 10708 10709 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10710 lifr->lifr_arp_muxid = arp_muxid; 10711 } 10712 return (0); 10713 } 10714 10715 /* 10716 * Set the subnet prefix. Does not modify the broadcast address. 10717 */ 10718 /* ARGSUSED */ 10719 int 10720 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10721 ip_ioctl_cmd_t *ipip, void *if_req) 10722 { 10723 int err = 0; 10724 in6_addr_t v6addr; 10725 in6_addr_t v6mask; 10726 boolean_t need_up = B_FALSE; 10727 int addrlen; 10728 10729 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 10730 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10731 10732 ASSERT(IAM_WRITER_IPIF(ipif)); 10733 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 10734 10735 if (ipif->ipif_isv6) { 10736 sin6_t *sin6; 10737 10738 if (sin->sin_family != AF_INET6) 10739 return (EAFNOSUPPORT); 10740 10741 sin6 = (sin6_t *)sin; 10742 v6addr = sin6->sin6_addr; 10743 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 10744 return (EADDRNOTAVAIL); 10745 } else { 10746 ipaddr_t addr; 10747 10748 if (sin->sin_family != AF_INET) 10749 return (EAFNOSUPPORT); 10750 10751 addr = sin->sin_addr.s_addr; 10752 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 10753 return (EADDRNOTAVAIL); 10754 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10755 /* Add 96 bits */ 10756 addrlen += IPV6_ABITS - IP_ABITS; 10757 } 10758 10759 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 10760 return (EINVAL); 10761 10762 /* Check if bits in the address is set past the mask */ 10763 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 10764 return (EINVAL); 10765 10766 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 10767 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 10768 return (0); /* No change */ 10769 10770 if (ipif->ipif_flags & IPIF_UP) { 10771 /* 10772 * If the interface is already marked up, 10773 * we call ipif_down which will take care 10774 * of ditching any IREs that have been set 10775 * up based on the old interface address. 10776 */ 10777 err = ipif_logical_down(ipif, q, mp); 10778 if (err == EINPROGRESS) 10779 return (err); 10780 (void) ipif_down_tail(ipif); 10781 need_up = B_TRUE; 10782 } 10783 10784 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 10785 return (err); 10786 } 10787 10788 static int 10789 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 10790 queue_t *q, mblk_t *mp, boolean_t need_up) 10791 { 10792 ill_t *ill = ipif->ipif_ill; 10793 int err = 0; 10794 10795 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 10796 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10797 10798 /* Set the new address. */ 10799 mutex_enter(&ill->ill_lock); 10800 ipif->ipif_v6net_mask = v6mask; 10801 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10802 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 10803 ipif->ipif_v6subnet); 10804 } 10805 mutex_exit(&ill->ill_lock); 10806 10807 if (need_up) { 10808 /* 10809 * Now bring the interface back up. If this 10810 * is the only IPIF for the ILL, ipif_up 10811 * will have to re-bind to the device, so 10812 * we may get back EINPROGRESS, in which 10813 * case, this IOCTL will get completed in 10814 * ip_rput_dlpi when we see the DL_BIND_ACK. 10815 */ 10816 err = ipif_up(ipif, q, mp); 10817 if (err == EINPROGRESS) 10818 return (err); 10819 } 10820 return (err); 10821 } 10822 10823 /* ARGSUSED */ 10824 int 10825 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10826 ip_ioctl_cmd_t *ipip, void *if_req) 10827 { 10828 int addrlen; 10829 in6_addr_t v6addr; 10830 in6_addr_t v6mask; 10831 struct lifreq *lifr = (struct lifreq *)if_req; 10832 10833 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 10834 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10835 (void) ipif_down_tail(ipif); 10836 10837 addrlen = lifr->lifr_addrlen; 10838 if (ipif->ipif_isv6) { 10839 sin6_t *sin6; 10840 10841 sin6 = (sin6_t *)sin; 10842 v6addr = sin6->sin6_addr; 10843 } else { 10844 ipaddr_t addr; 10845 10846 addr = sin->sin_addr.s_addr; 10847 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10848 addrlen += IPV6_ABITS - IP_ABITS; 10849 } 10850 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 10851 10852 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 10853 } 10854 10855 /* ARGSUSED */ 10856 int 10857 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10858 ip_ioctl_cmd_t *ipip, void *if_req) 10859 { 10860 struct lifreq *lifr = (struct lifreq *)if_req; 10861 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 10862 10863 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 10864 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10865 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10866 10867 if (ipif->ipif_isv6) { 10868 *sin6 = sin6_null; 10869 sin6->sin6_family = AF_INET6; 10870 sin6->sin6_addr = ipif->ipif_v6subnet; 10871 lifr->lifr_addrlen = 10872 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10873 } else { 10874 *sin = sin_null; 10875 sin->sin_family = AF_INET; 10876 sin->sin_addr.s_addr = ipif->ipif_subnet; 10877 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 10878 } 10879 return (0); 10880 } 10881 10882 /* 10883 * Set the IPv6 address token. 10884 */ 10885 /* ARGSUSED */ 10886 int 10887 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10888 ip_ioctl_cmd_t *ipi, void *if_req) 10889 { 10890 ill_t *ill = ipif->ipif_ill; 10891 int err; 10892 in6_addr_t v6addr; 10893 in6_addr_t v6mask; 10894 boolean_t need_up = B_FALSE; 10895 int i; 10896 sin6_t *sin6 = (sin6_t *)sin; 10897 struct lifreq *lifr = (struct lifreq *)if_req; 10898 int addrlen; 10899 10900 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 10901 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10902 ASSERT(IAM_WRITER_IPIF(ipif)); 10903 10904 addrlen = lifr->lifr_addrlen; 10905 /* Only allow for logical unit zero i.e. not on "le0:17" */ 10906 if (ipif->ipif_id != 0) 10907 return (EINVAL); 10908 10909 if (!ipif->ipif_isv6) 10910 return (EINVAL); 10911 10912 if (addrlen > IPV6_ABITS) 10913 return (EINVAL); 10914 10915 v6addr = sin6->sin6_addr; 10916 10917 /* 10918 * The length of the token is the length from the end. To get 10919 * the proper mask for this, compute the mask of the bits not 10920 * in the token; ie. the prefix, and then xor to get the mask. 10921 */ 10922 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 10923 return (EINVAL); 10924 for (i = 0; i < 4; i++) { 10925 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 10926 } 10927 10928 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 10929 ill->ill_token_length == addrlen) 10930 return (0); /* No change */ 10931 10932 if (ipif->ipif_flags & IPIF_UP) { 10933 err = ipif_logical_down(ipif, q, mp); 10934 if (err == EINPROGRESS) 10935 return (err); 10936 (void) ipif_down_tail(ipif); 10937 need_up = B_TRUE; 10938 } 10939 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 10940 return (err); 10941 } 10942 10943 static int 10944 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 10945 mblk_t *mp, boolean_t need_up) 10946 { 10947 in6_addr_t v6addr; 10948 in6_addr_t v6mask; 10949 ill_t *ill = ipif->ipif_ill; 10950 int i; 10951 int err = 0; 10952 10953 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 10954 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10955 v6addr = sin6->sin6_addr; 10956 /* 10957 * The length of the token is the length from the end. To get 10958 * the proper mask for this, compute the mask of the bits not 10959 * in the token; ie. the prefix, and then xor to get the mask. 10960 */ 10961 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 10962 for (i = 0; i < 4; i++) 10963 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 10964 10965 mutex_enter(&ill->ill_lock); 10966 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 10967 ill->ill_token_length = addrlen; 10968 ill->ill_manual_token = 1; 10969 10970 /* Reconfigure the link-local address based on this new token */ 10971 ipif_setlinklocal(ill->ill_ipif); 10972 10973 mutex_exit(&ill->ill_lock); 10974 10975 if (need_up) { 10976 /* 10977 * Now bring the interface back up. If this 10978 * is the only IPIF for the ILL, ipif_up 10979 * will have to re-bind to the device, so 10980 * we may get back EINPROGRESS, in which 10981 * case, this IOCTL will get completed in 10982 * ip_rput_dlpi when we see the DL_BIND_ACK. 10983 */ 10984 err = ipif_up(ipif, q, mp); 10985 if (err == EINPROGRESS) 10986 return (err); 10987 } 10988 return (err); 10989 } 10990 10991 /* ARGSUSED */ 10992 int 10993 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10994 ip_ioctl_cmd_t *ipi, void *if_req) 10995 { 10996 ill_t *ill; 10997 sin6_t *sin6 = (sin6_t *)sin; 10998 struct lifreq *lifr = (struct lifreq *)if_req; 10999 11000 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11001 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11002 if (ipif->ipif_id != 0) 11003 return (EINVAL); 11004 11005 ill = ipif->ipif_ill; 11006 if (!ill->ill_isv6) 11007 return (ENXIO); 11008 11009 *sin6 = sin6_null; 11010 sin6->sin6_family = AF_INET6; 11011 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11012 sin6->sin6_addr = ill->ill_token; 11013 lifr->lifr_addrlen = ill->ill_token_length; 11014 return (0); 11015 } 11016 11017 /* 11018 * Set (hardware) link specific information that might override 11019 * what was acquired through the DL_INFO_ACK. 11020 */ 11021 /* ARGSUSED */ 11022 int 11023 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11024 ip_ioctl_cmd_t *ipi, void *if_req) 11025 { 11026 ill_t *ill = ipif->ipif_ill; 11027 int ip_min_mtu; 11028 struct lifreq *lifr = (struct lifreq *)if_req; 11029 lif_ifinfo_req_t *lir; 11030 11031 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11032 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11033 lir = &lifr->lifr_ifinfo; 11034 ASSERT(IAM_WRITER_IPIF(ipif)); 11035 11036 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11037 if (ipif->ipif_id != 0) 11038 return (EINVAL); 11039 11040 /* Set interface MTU. */ 11041 if (ipif->ipif_isv6) 11042 ip_min_mtu = IPV6_MIN_MTU; 11043 else 11044 ip_min_mtu = IP_MIN_MTU; 11045 11046 /* 11047 * Verify values before we set anything. Allow zero to 11048 * mean unspecified. 11049 * 11050 * XXX We should be able to set the user-defined lir_mtu to some value 11051 * that is greater than ill_current_frag but less than ill_max_frag- the 11052 * ill_max_frag value tells us the max MTU that can be handled by the 11053 * datalink, whereas the ill_current_frag is dynamically computed for 11054 * some link-types like tunnels, based on the tunnel PMTU. However, 11055 * since there is currently no way of distinguishing between 11056 * administratively fixed link mtu values (e.g., those set via 11057 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11058 * for tunnels) we conservatively choose the ill_current_frag as the 11059 * upper-bound. 11060 */ 11061 if (lir->lir_maxmtu != 0 && 11062 (lir->lir_maxmtu > ill->ill_current_frag || 11063 lir->lir_maxmtu < ip_min_mtu)) 11064 return (EINVAL); 11065 if (lir->lir_reachtime != 0 && 11066 lir->lir_reachtime > ND_MAX_REACHTIME) 11067 return (EINVAL); 11068 if (lir->lir_reachretrans != 0 && 11069 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11070 return (EINVAL); 11071 11072 mutex_enter(&ill->ill_lock); 11073 /* 11074 * The dce and fragmentation code can handle changes to ill_mtu 11075 * concurrent with sending/fragmenting packets. 11076 */ 11077 if (lir->lir_maxmtu != 0) 11078 ill->ill_user_mtu = lir->lir_maxmtu; 11079 11080 if (lir->lir_reachtime != 0) 11081 ill->ill_reachable_time = lir->lir_reachtime; 11082 11083 if (lir->lir_reachretrans != 0) 11084 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11085 11086 ill->ill_max_hops = lir->lir_maxhops; 11087 ill->ill_max_buf = ND_MAX_Q; 11088 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11089 /* 11090 * ill_mtu is the actual interface MTU, obtained as the min 11091 * of user-configured mtu and the value announced by the 11092 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11093 * we have already made the choice of requiring 11094 * ill_user_mtu < ill_current_frag by the time we get here, 11095 * the ill_mtu effectively gets assigned to the ill_user_mtu 11096 * here. 11097 */ 11098 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11099 } 11100 mutex_exit(&ill->ill_lock); 11101 11102 /* 11103 * Make sure all dce_generation checks find out 11104 * that ill_mtu has changed. 11105 */ 11106 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11107 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11108 11109 /* 11110 * Refresh IPMP meta-interface MTU if necessary. 11111 */ 11112 if (IS_UNDER_IPMP(ill)) 11113 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11114 11115 return (0); 11116 } 11117 11118 /* ARGSUSED */ 11119 int 11120 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11121 ip_ioctl_cmd_t *ipi, void *if_req) 11122 { 11123 struct lif_ifinfo_req *lir; 11124 ill_t *ill = ipif->ipif_ill; 11125 11126 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11127 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11128 if (ipif->ipif_id != 0) 11129 return (EINVAL); 11130 11131 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11132 lir->lir_maxhops = ill->ill_max_hops; 11133 lir->lir_reachtime = ill->ill_reachable_time; 11134 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11135 lir->lir_maxmtu = ill->ill_mtu; 11136 11137 return (0); 11138 } 11139 11140 /* 11141 * Return best guess as to the subnet mask for the specified address. 11142 * Based on the subnet masks for all the configured interfaces. 11143 * 11144 * We end up returning a zero mask in the case of default, multicast or 11145 * experimental. 11146 */ 11147 static ipaddr_t 11148 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11149 { 11150 ipaddr_t net_mask; 11151 ill_t *ill; 11152 ipif_t *ipif; 11153 ill_walk_context_t ctx; 11154 ipif_t *fallback_ipif = NULL; 11155 11156 net_mask = ip_net_mask(addr); 11157 if (net_mask == 0) { 11158 *ipifp = NULL; 11159 return (0); 11160 } 11161 11162 /* Let's check to see if this is maybe a local subnet route. */ 11163 /* this function only applies to IPv4 interfaces */ 11164 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11165 ill = ILL_START_WALK_V4(&ctx, ipst); 11166 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11167 mutex_enter(&ill->ill_lock); 11168 for (ipif = ill->ill_ipif; ipif != NULL; 11169 ipif = ipif->ipif_next) { 11170 if (IPIF_IS_CONDEMNED(ipif)) 11171 continue; 11172 if (!(ipif->ipif_flags & IPIF_UP)) 11173 continue; 11174 if ((ipif->ipif_subnet & net_mask) == 11175 (addr & net_mask)) { 11176 /* 11177 * Don't trust pt-pt interfaces if there are 11178 * other interfaces. 11179 */ 11180 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11181 if (fallback_ipif == NULL) { 11182 ipif_refhold_locked(ipif); 11183 fallback_ipif = ipif; 11184 } 11185 continue; 11186 } 11187 11188 /* 11189 * Fine. Just assume the same net mask as the 11190 * directly attached subnet interface is using. 11191 */ 11192 ipif_refhold_locked(ipif); 11193 mutex_exit(&ill->ill_lock); 11194 rw_exit(&ipst->ips_ill_g_lock); 11195 if (fallback_ipif != NULL) 11196 ipif_refrele(fallback_ipif); 11197 *ipifp = ipif; 11198 return (ipif->ipif_net_mask); 11199 } 11200 } 11201 mutex_exit(&ill->ill_lock); 11202 } 11203 rw_exit(&ipst->ips_ill_g_lock); 11204 11205 *ipifp = fallback_ipif; 11206 return ((fallback_ipif != NULL) ? 11207 fallback_ipif->ipif_net_mask : net_mask); 11208 } 11209 11210 /* 11211 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11212 */ 11213 static void 11214 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11215 { 11216 IOCP iocp; 11217 ipft_t *ipft; 11218 ipllc_t *ipllc; 11219 mblk_t *mp1; 11220 cred_t *cr; 11221 int error = 0; 11222 conn_t *connp; 11223 11224 ip1dbg(("ip_wput_ioctl")); 11225 iocp = (IOCP)mp->b_rptr; 11226 mp1 = mp->b_cont; 11227 if (mp1 == NULL) { 11228 iocp->ioc_error = EINVAL; 11229 mp->b_datap->db_type = M_IOCNAK; 11230 iocp->ioc_count = 0; 11231 qreply(q, mp); 11232 return; 11233 } 11234 11235 /* 11236 * These IOCTLs provide various control capabilities to 11237 * upstream agents such as ULPs and processes. There 11238 * are currently two such IOCTLs implemented. They 11239 * are used by TCP to provide update information for 11240 * existing IREs and to forcibly delete an IRE for a 11241 * host that is not responding, thereby forcing an 11242 * attempt at a new route. 11243 */ 11244 iocp->ioc_error = EINVAL; 11245 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11246 goto done; 11247 11248 ipllc = (ipllc_t *)mp1->b_rptr; 11249 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11250 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11251 break; 11252 } 11253 /* 11254 * prefer credential from mblk over ioctl; 11255 * see ip_sioctl_copyin_setup 11256 */ 11257 cr = msg_getcred(mp, NULL); 11258 if (cr == NULL) 11259 cr = iocp->ioc_cr; 11260 11261 /* 11262 * Refhold the conn in case the request gets queued up in some lookup 11263 */ 11264 ASSERT(CONN_Q(q)); 11265 connp = Q_TO_CONN(q); 11266 CONN_INC_REF(connp); 11267 if (ipft->ipft_pfi && 11268 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11269 pullupmsg(mp1, ipft->ipft_min_size))) { 11270 error = (*ipft->ipft_pfi)(q, 11271 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11272 } 11273 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11274 /* 11275 * CONN_OPER_PENDING_DONE happens in the function called 11276 * through ipft_pfi above. 11277 */ 11278 return; 11279 } 11280 11281 CONN_OPER_PENDING_DONE(connp); 11282 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11283 freemsg(mp); 11284 return; 11285 } 11286 iocp->ioc_error = error; 11287 11288 done: 11289 mp->b_datap->db_type = M_IOCACK; 11290 if (iocp->ioc_error) 11291 iocp->ioc_count = 0; 11292 qreply(q, mp); 11293 } 11294 11295 /* 11296 * Assign a unique id for the ipif. This is used by sctp_addr.c 11297 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11298 */ 11299 static void 11300 ipif_assign_seqid(ipif_t *ipif) 11301 { 11302 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11303 11304 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11305 } 11306 11307 /* 11308 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11309 * administratively down (i.e., no DAD), of the same type, and locked. Note 11310 * that the clone is complete -- including the seqid -- and the expectation is 11311 * that the caller will either free or overwrite `sipif' before it's unlocked. 11312 */ 11313 static void 11314 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11315 { 11316 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11317 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11318 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11319 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11320 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11321 11322 dipif->ipif_flags = sipif->ipif_flags; 11323 dipif->ipif_metric = sipif->ipif_metric; 11324 dipif->ipif_zoneid = sipif->ipif_zoneid; 11325 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11326 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11327 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11328 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11329 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11330 11331 /* 11332 * As per the comment atop the function, we assume that these sipif 11333 * fields will be changed before sipif is unlocked. 11334 */ 11335 dipif->ipif_seqid = sipif->ipif_seqid; 11336 dipif->ipif_state_flags = sipif->ipif_state_flags; 11337 } 11338 11339 /* 11340 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11341 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11342 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11343 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11344 * down (i.e., no DAD), of the same type, and unlocked. 11345 */ 11346 static void 11347 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11348 { 11349 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11350 ipxop_t *ipx = ipsq->ipsq_xop; 11351 11352 ASSERT(sipif != dipif); 11353 ASSERT(sipif != virgipif); 11354 11355 /* 11356 * Grab all of the locks that protect the ipif in a defined order. 11357 */ 11358 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11359 11360 ipif_clone(sipif, dipif); 11361 if (virgipif != NULL) { 11362 ipif_clone(virgipif, sipif); 11363 mi_free(virgipif); 11364 } 11365 11366 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11367 11368 /* 11369 * Transfer ownership of the current xop, if necessary. 11370 */ 11371 if (ipx->ipx_current_ipif == sipif) { 11372 ASSERT(ipx->ipx_pending_ipif == NULL); 11373 mutex_enter(&ipx->ipx_lock); 11374 ipx->ipx_current_ipif = dipif; 11375 mutex_exit(&ipx->ipx_lock); 11376 } 11377 11378 if (virgipif == NULL) 11379 mi_free(sipif); 11380 } 11381 11382 /* 11383 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11384 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11385 * be inserted into the first space available in the list. The value of 11386 * ipif_id will then be set to the appropriate value for its position. 11387 */ 11388 static int 11389 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11390 { 11391 ill_t *ill; 11392 ipif_t *tipif; 11393 ipif_t **tipifp; 11394 int id; 11395 ip_stack_t *ipst; 11396 11397 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11398 IAM_WRITER_IPIF(ipif)); 11399 11400 ill = ipif->ipif_ill; 11401 ASSERT(ill != NULL); 11402 ipst = ill->ill_ipst; 11403 11404 /* 11405 * In the case of lo0:0 we already hold the ill_g_lock. 11406 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11407 * ipif_insert. 11408 */ 11409 if (acquire_g_lock) 11410 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11411 mutex_enter(&ill->ill_lock); 11412 id = ipif->ipif_id; 11413 tipifp = &(ill->ill_ipif); 11414 if (id == -1) { /* need to find a real id */ 11415 id = 0; 11416 while ((tipif = *tipifp) != NULL) { 11417 ASSERT(tipif->ipif_id >= id); 11418 if (tipif->ipif_id != id) 11419 break; /* non-consecutive id */ 11420 id++; 11421 tipifp = &(tipif->ipif_next); 11422 } 11423 /* limit number of logical interfaces */ 11424 if (id >= ipst->ips_ip_addrs_per_if) { 11425 mutex_exit(&ill->ill_lock); 11426 if (acquire_g_lock) 11427 rw_exit(&ipst->ips_ill_g_lock); 11428 return (-1); 11429 } 11430 ipif->ipif_id = id; /* assign new id */ 11431 } else if (id < ipst->ips_ip_addrs_per_if) { 11432 /* we have a real id; insert ipif in the right place */ 11433 while ((tipif = *tipifp) != NULL) { 11434 ASSERT(tipif->ipif_id != id); 11435 if (tipif->ipif_id > id) 11436 break; /* found correct location */ 11437 tipifp = &(tipif->ipif_next); 11438 } 11439 } else { 11440 mutex_exit(&ill->ill_lock); 11441 if (acquire_g_lock) 11442 rw_exit(&ipst->ips_ill_g_lock); 11443 return (-1); 11444 } 11445 11446 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11447 11448 ipif->ipif_next = tipif; 11449 *tipifp = ipif; 11450 mutex_exit(&ill->ill_lock); 11451 if (acquire_g_lock) 11452 rw_exit(&ipst->ips_ill_g_lock); 11453 11454 return (0); 11455 } 11456 11457 static void 11458 ipif_remove(ipif_t *ipif) 11459 { 11460 ipif_t **ipifp; 11461 ill_t *ill = ipif->ipif_ill; 11462 11463 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11464 11465 mutex_enter(&ill->ill_lock); 11466 ipifp = &ill->ill_ipif; 11467 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11468 if (*ipifp == ipif) { 11469 *ipifp = ipif->ipif_next; 11470 break; 11471 } 11472 } 11473 mutex_exit(&ill->ill_lock); 11474 } 11475 11476 /* 11477 * Allocate and initialize a new interface control structure. (Always 11478 * called as writer.) 11479 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11480 * is not part of the global linked list of ills. ipif_seqid is unique 11481 * in the system and to preserve the uniqueness, it is assigned only 11482 * when ill becomes part of the global list. At that point ill will 11483 * have a name. If it doesn't get assigned here, it will get assigned 11484 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11485 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11486 * the interface flags or any other information from the DL_INFO_ACK for 11487 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11488 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11489 * second DL_INFO_ACK comes in from the driver. 11490 */ 11491 static ipif_t * 11492 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11493 boolean_t insert) 11494 { 11495 ipif_t *ipif; 11496 ip_stack_t *ipst = ill->ill_ipst; 11497 11498 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11499 ill->ill_name, id, (void *)ill)); 11500 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11501 11502 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 11503 return (NULL); 11504 *ipif = ipif_zero; /* start clean */ 11505 11506 ipif->ipif_ill = ill; 11507 ipif->ipif_id = id; /* could be -1 */ 11508 /* 11509 * Inherit the zoneid from the ill; for the shared stack instance 11510 * this is always the global zone 11511 */ 11512 ipif->ipif_zoneid = ill->ill_zoneid; 11513 11514 ipif->ipif_refcnt = 0; 11515 11516 if (insert) { 11517 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) { 11518 mi_free(ipif); 11519 return (NULL); 11520 } 11521 /* -1 id should have been replaced by real id */ 11522 id = ipif->ipif_id; 11523 ASSERT(id >= 0); 11524 } 11525 11526 if (ill->ill_name[0] != '\0') 11527 ipif_assign_seqid(ipif); 11528 11529 /* 11530 * If this is the zeroth ipif on the IPMP ill, create the illgrp 11531 * (which must not exist yet because the zeroth ipif is created once 11532 * per ill). However, do not not link it to the ipmp_grp_t until 11533 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 11534 */ 11535 if (id == 0 && IS_IPMP(ill)) { 11536 if (ipmp_illgrp_create(ill) == NULL) { 11537 if (insert) { 11538 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11539 ipif_remove(ipif); 11540 rw_exit(&ipst->ips_ill_g_lock); 11541 } 11542 mi_free(ipif); 11543 return (NULL); 11544 } 11545 } 11546 11547 /* 11548 * We grab ill_lock to protect the flag changes. The ipif is still 11549 * not up and can't be looked up until the ioctl completes and the 11550 * IPIF_CHANGING flag is cleared. 11551 */ 11552 mutex_enter(&ill->ill_lock); 11553 11554 ipif->ipif_ire_type = ire_type; 11555 11556 if (ipif->ipif_isv6) { 11557 ill->ill_flags |= ILLF_IPV6; 11558 } else { 11559 ipaddr_t inaddr_any = INADDR_ANY; 11560 11561 ill->ill_flags |= ILLF_IPV4; 11562 11563 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 11564 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11565 &ipif->ipif_v6lcl_addr); 11566 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11567 &ipif->ipif_v6subnet); 11568 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11569 &ipif->ipif_v6net_mask); 11570 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11571 &ipif->ipif_v6brd_addr); 11572 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11573 &ipif->ipif_v6pp_dst_addr); 11574 } 11575 11576 /* 11577 * Don't set the interface flags etc. now, will do it in 11578 * ip_ll_subnet_defaults. 11579 */ 11580 if (!initialize) 11581 goto out; 11582 11583 /* 11584 * NOTE: The IPMP meta-interface is special-cased because it starts 11585 * with no underlying interfaces (and thus an unknown broadcast 11586 * address length), but all interfaces that can be placed into an IPMP 11587 * group are required to be broadcast-capable. 11588 */ 11589 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 11590 /* 11591 * Later detect lack of DLPI driver multicast capability by 11592 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 11593 */ 11594 ill->ill_flags |= ILLF_MULTICAST; 11595 if (!ipif->ipif_isv6) 11596 ipif->ipif_flags |= IPIF_BROADCAST; 11597 } else { 11598 if (ill->ill_net_type != IRE_LOOPBACK) { 11599 if (ipif->ipif_isv6) 11600 /* 11601 * Note: xresolv interfaces will eventually need 11602 * NOARP set here as well, but that will require 11603 * those external resolvers to have some 11604 * knowledge of that flag and act appropriately. 11605 * Not to be changed at present. 11606 */ 11607 ill->ill_flags |= ILLF_NONUD; 11608 else 11609 ill->ill_flags |= ILLF_NOARP; 11610 } 11611 if (ill->ill_phys_addr_length == 0) { 11612 if (IS_VNI(ill)) { 11613 ipif->ipif_flags |= IPIF_NOXMIT; 11614 } else { 11615 /* pt-pt supports multicast. */ 11616 ill->ill_flags |= ILLF_MULTICAST; 11617 if (ill->ill_net_type != IRE_LOOPBACK) 11618 ipif->ipif_flags |= IPIF_POINTOPOINT; 11619 } 11620 } 11621 } 11622 out: 11623 mutex_exit(&ill->ill_lock); 11624 return (ipif); 11625 } 11626 11627 /* 11628 * Remove the neighbor cache entries associated with this logical 11629 * interface. 11630 */ 11631 int 11632 ipif_arp_down(ipif_t *ipif) 11633 { 11634 ill_t *ill = ipif->ipif_ill; 11635 int err = 0; 11636 11637 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 11638 ASSERT(IAM_WRITER_IPIF(ipif)); 11639 11640 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 11641 ill_t *, ill, ipif_t *, ipif); 11642 ipif_nce_down(ipif); 11643 11644 /* 11645 * If this is the last ipif that is going down and there are no 11646 * duplicate addresses we may yet attempt to re-probe, then we need to 11647 * clean up ARP completely. 11648 */ 11649 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 11650 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 11651 /* 11652 * If this was the last ipif on an IPMP interface, purge any 11653 * static ARP entries associated with it. 11654 */ 11655 if (IS_IPMP(ill)) 11656 ipmp_illgrp_refresh_arpent(ill->ill_grp); 11657 11658 /* UNBIND, DETACH */ 11659 err = arp_ll_down(ill); 11660 } 11661 11662 return (err); 11663 } 11664 11665 /* 11666 * Get the resolver set up for a new IP address. (Always called as writer.) 11667 * Called both for IPv4 and IPv6 interfaces, though it only does some 11668 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 11669 * 11670 * The enumerated value res_act tunes the behavior: 11671 * * Res_act_initial: set up all the resolver structures for a new 11672 * IP address. 11673 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 11674 * ARP message in defense of the address. 11675 * * Res_act_rebind: tell ARP to change the hardware address for an IP 11676 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 11677 * 11678 * Returns zero on success, or an errno upon failure. 11679 */ 11680 int 11681 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 11682 { 11683 ill_t *ill = ipif->ipif_ill; 11684 int err; 11685 boolean_t was_dup; 11686 11687 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 11688 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 11689 ASSERT(IAM_WRITER_IPIF(ipif)); 11690 11691 was_dup = B_FALSE; 11692 if (res_act == Res_act_initial) { 11693 ipif->ipif_addr_ready = 0; 11694 /* 11695 * We're bringing an interface up here. There's no way that we 11696 * should need to shut down ARP now. 11697 */ 11698 mutex_enter(&ill->ill_lock); 11699 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11700 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11701 ill->ill_ipif_dup_count--; 11702 was_dup = B_TRUE; 11703 } 11704 mutex_exit(&ill->ill_lock); 11705 } 11706 if (ipif->ipif_recovery_id != 0) 11707 (void) untimeout(ipif->ipif_recovery_id); 11708 ipif->ipif_recovery_id = 0; 11709 if (ill->ill_net_type != IRE_IF_RESOLVER) { 11710 ipif->ipif_addr_ready = 1; 11711 return (0); 11712 } 11713 /* NDP will set the ipif_addr_ready flag when it's ready */ 11714 if (ill->ill_isv6) 11715 return (0); 11716 11717 err = ipif_arp_up(ipif, res_act, was_dup); 11718 return (err); 11719 } 11720 11721 /* 11722 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 11723 * when a link has just gone back up. 11724 */ 11725 static void 11726 ipif_nce_start_dad(ipif_t *ipif) 11727 { 11728 ncec_t *ncec; 11729 ill_t *ill = ipif->ipif_ill; 11730 boolean_t isv6 = ill->ill_isv6; 11731 11732 if (isv6) { 11733 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 11734 &ipif->ipif_v6lcl_addr); 11735 } else { 11736 ipaddr_t v4addr; 11737 11738 if (ill->ill_net_type != IRE_IF_RESOLVER || 11739 (ipif->ipif_flags & IPIF_UNNUMBERED) || 11740 ipif->ipif_lcl_addr == INADDR_ANY) { 11741 /* 11742 * If we can't contact ARP for some reason, 11743 * that's not really a problem. Just send 11744 * out the routing socket notification that 11745 * DAD completion would have done, and continue. 11746 */ 11747 ipif_mask_reply(ipif); 11748 ipif_up_notify(ipif); 11749 ipif->ipif_addr_ready = 1; 11750 return; 11751 } 11752 11753 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 11754 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 11755 } 11756 11757 if (ncec == NULL) { 11758 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 11759 (void *)ipif)); 11760 return; 11761 } 11762 if (!nce_restart_dad(ncec)) { 11763 /* 11764 * If we can't restart DAD for some reason, that's not really a 11765 * problem. Just send out the routing socket notification that 11766 * DAD completion would have done, and continue. 11767 */ 11768 ipif_up_notify(ipif); 11769 ipif->ipif_addr_ready = 1; 11770 } 11771 ncec_refrele(ncec); 11772 } 11773 11774 /* 11775 * Restart duplicate address detection on all interfaces on the given ill. 11776 * 11777 * This is called when an interface transitions from down to up 11778 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 11779 * 11780 * Note that since the underlying physical link has transitioned, we must cause 11781 * at least one routing socket message to be sent here, either via DAD 11782 * completion or just by default on the first ipif. (If we don't do this, then 11783 * in.mpathd will see long delays when doing link-based failure recovery.) 11784 */ 11785 void 11786 ill_restart_dad(ill_t *ill, boolean_t went_up) 11787 { 11788 ipif_t *ipif; 11789 11790 if (ill == NULL) 11791 return; 11792 11793 /* 11794 * If layer two doesn't support duplicate address detection, then just 11795 * send the routing socket message now and be done with it. 11796 */ 11797 if (!ill->ill_isv6 && arp_no_defense) { 11798 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 11799 return; 11800 } 11801 11802 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11803 if (went_up) { 11804 11805 if (ipif->ipif_flags & IPIF_UP) { 11806 ipif_nce_start_dad(ipif); 11807 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 11808 /* 11809 * kick off the bring-up process now. 11810 */ 11811 ipif_do_recovery(ipif); 11812 } else { 11813 /* 11814 * Unfortunately, the first ipif is "special" 11815 * and represents the underlying ill in the 11816 * routing socket messages. Thus, when this 11817 * one ipif is down, we must still notify so 11818 * that the user knows the IFF_RUNNING status 11819 * change. (If the first ipif is up, then 11820 * we'll handle eventual routing socket 11821 * notification via DAD completion.) 11822 */ 11823 if (ipif == ill->ill_ipif) { 11824 ip_rts_ifmsg(ill->ill_ipif, 11825 RTSQ_DEFAULT); 11826 } 11827 } 11828 } else { 11829 /* 11830 * After link down, we'll need to send a new routing 11831 * message when the link comes back, so clear 11832 * ipif_addr_ready. 11833 */ 11834 ipif->ipif_addr_ready = 0; 11835 } 11836 } 11837 11838 /* 11839 * If we've torn down links, then notify the user right away. 11840 */ 11841 if (!went_up) 11842 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 11843 } 11844 11845 static void 11846 ipsq_delete(ipsq_t *ipsq) 11847 { 11848 ipxop_t *ipx = ipsq->ipsq_xop; 11849 11850 ipsq->ipsq_ipst = NULL; 11851 ASSERT(ipsq->ipsq_phyint == NULL); 11852 ASSERT(ipsq->ipsq_xop != NULL); 11853 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 11854 ASSERT(ipx->ipx_pending_mp == NULL); 11855 kmem_free(ipsq, sizeof (ipsq_t)); 11856 } 11857 11858 static int 11859 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 11860 { 11861 int err = 0; 11862 ipif_t *ipif; 11863 11864 if (ill == NULL) 11865 return (0); 11866 11867 ASSERT(IAM_WRITER_ILL(ill)); 11868 ill->ill_up_ipifs = B_TRUE; 11869 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11870 if (ipif->ipif_was_up) { 11871 if (!(ipif->ipif_flags & IPIF_UP)) 11872 err = ipif_up(ipif, q, mp); 11873 ipif->ipif_was_up = B_FALSE; 11874 if (err != 0) { 11875 ASSERT(err == EINPROGRESS); 11876 return (err); 11877 } 11878 } 11879 } 11880 ill->ill_up_ipifs = B_FALSE; 11881 return (0); 11882 } 11883 11884 /* 11885 * This function is called to bring up all the ipifs that were up before 11886 * bringing the ill down via ill_down_ipifs(). 11887 */ 11888 int 11889 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 11890 { 11891 int err; 11892 11893 ASSERT(IAM_WRITER_ILL(ill)); 11894 11895 if (ill->ill_replumbing) { 11896 ill->ill_replumbing = 0; 11897 /* 11898 * Send down REPLUMB_DONE notification followed by the 11899 * BIND_REQ on the arp stream. 11900 */ 11901 if (!ill->ill_isv6) 11902 arp_send_replumb_conf(ill); 11903 } 11904 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 11905 if (err != 0) 11906 return (err); 11907 11908 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 11909 } 11910 11911 /* 11912 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 11913 * down the ipifs without sending DL_UNBIND_REQ to the driver. 11914 */ 11915 static void 11916 ill_down_ipifs(ill_t *ill, boolean_t logical) 11917 { 11918 ipif_t *ipif; 11919 11920 ASSERT(IAM_WRITER_ILL(ill)); 11921 11922 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11923 /* 11924 * We go through the ipif_down logic even if the ipif 11925 * is already down, since routes can be added based 11926 * on down ipifs. Going through ipif_down once again 11927 * will delete any IREs created based on these routes. 11928 */ 11929 if (ipif->ipif_flags & IPIF_UP) 11930 ipif->ipif_was_up = B_TRUE; 11931 11932 if (logical) { 11933 (void) ipif_logical_down(ipif, NULL, NULL); 11934 ipif_non_duplicate(ipif); 11935 (void) ipif_down_tail(ipif); 11936 } else { 11937 (void) ipif_down(ipif, NULL, NULL); 11938 } 11939 } 11940 } 11941 11942 /* 11943 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 11944 * a look again at valid source addresses. 11945 * This should be called each time after the set of source addresses has been 11946 * changed. 11947 */ 11948 void 11949 ip_update_source_selection(ip_stack_t *ipst) 11950 { 11951 /* We skip past SRC_GENERATION_VERIFY */ 11952 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 11953 SRC_GENERATION_VERIFY) 11954 atomic_add_32(&ipst->ips_src_generation, 1); 11955 } 11956 11957 /* 11958 * Finish the group join started in ip_sioctl_groupname(). 11959 */ 11960 /* ARGSUSED */ 11961 static void 11962 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 11963 { 11964 ill_t *ill = q->q_ptr; 11965 phyint_t *phyi = ill->ill_phyint; 11966 ipmp_grp_t *grp = phyi->phyint_grp; 11967 ip_stack_t *ipst = ill->ill_ipst; 11968 11969 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 11970 ASSERT(!IS_IPMP(ill) && grp != NULL); 11971 ASSERT(IAM_WRITER_IPSQ(ipsq)); 11972 11973 if (phyi->phyint_illv4 != NULL) { 11974 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 11975 VERIFY(grp->gr_pendv4-- > 0); 11976 rw_exit(&ipst->ips_ipmp_lock); 11977 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 11978 } 11979 if (phyi->phyint_illv6 != NULL) { 11980 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 11981 VERIFY(grp->gr_pendv6-- > 0); 11982 rw_exit(&ipst->ips_ipmp_lock); 11983 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 11984 } 11985 freemsg(mp); 11986 } 11987 11988 /* 11989 * Process an SIOCSLIFGROUPNAME request. 11990 */ 11991 /* ARGSUSED */ 11992 int 11993 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11994 ip_ioctl_cmd_t *ipip, void *ifreq) 11995 { 11996 struct lifreq *lifr = ifreq; 11997 ill_t *ill = ipif->ipif_ill; 11998 ip_stack_t *ipst = ill->ill_ipst; 11999 phyint_t *phyi = ill->ill_phyint; 12000 ipmp_grp_t *grp = phyi->phyint_grp; 12001 mblk_t *ipsq_mp; 12002 int err = 0; 12003 12004 /* 12005 * Note that phyint_grp can only change here, where we're exclusive. 12006 */ 12007 ASSERT(IAM_WRITER_ILL(ill)); 12008 12009 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12010 (phyi->phyint_flags & PHYI_VIRTUAL)) 12011 return (EINVAL); 12012 12013 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12014 12015 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12016 12017 /* 12018 * If the name hasn't changed, there's nothing to do. 12019 */ 12020 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12021 goto unlock; 12022 12023 /* 12024 * Handle requests to rename an IPMP meta-interface. 12025 * 12026 * Note that creation of the IPMP meta-interface is handled in 12027 * userland through the standard plumbing sequence. As part of the 12028 * plumbing the IPMP meta-interface, its initial groupname is set to 12029 * the name of the interface (see ipif_set_values_tail()). 12030 */ 12031 if (IS_IPMP(ill)) { 12032 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12033 goto unlock; 12034 } 12035 12036 /* 12037 * Handle requests to add or remove an IP interface from a group. 12038 */ 12039 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12040 /* 12041 * Moves are handled by first removing the interface from 12042 * its existing group, and then adding it to another group. 12043 * So, fail if it's already in a group. 12044 */ 12045 if (IS_UNDER_IPMP(ill)) { 12046 err = EALREADY; 12047 goto unlock; 12048 } 12049 12050 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12051 if (grp == NULL) { 12052 err = ENOENT; 12053 goto unlock; 12054 } 12055 12056 /* 12057 * Check if the phyint and its ills are suitable for 12058 * inclusion into the group. 12059 */ 12060 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12061 goto unlock; 12062 12063 /* 12064 * Checks pass; join the group, and enqueue the remaining 12065 * illgrp joins for when we've become part of the group xop 12066 * and are exclusive across its IPSQs. Since qwriter_ip() 12067 * requires an mblk_t to scribble on, and since `mp' will be 12068 * freed as part of completing the ioctl, allocate another. 12069 */ 12070 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12071 err = ENOMEM; 12072 goto unlock; 12073 } 12074 12075 /* 12076 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12077 * IPMP meta-interface ills needed by `phyi' cannot go away 12078 * before ip_join_illgrps() is called back. See the comments 12079 * in ip_sioctl_plink_ipmp() for more. 12080 */ 12081 if (phyi->phyint_illv4 != NULL) 12082 grp->gr_pendv4++; 12083 if (phyi->phyint_illv6 != NULL) 12084 grp->gr_pendv6++; 12085 12086 rw_exit(&ipst->ips_ipmp_lock); 12087 12088 ipmp_phyint_join_grp(phyi, grp); 12089 ill_refhold(ill); 12090 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12091 SWITCH_OP, B_FALSE); 12092 return (0); 12093 } else { 12094 /* 12095 * Request to remove the interface from a group. If the 12096 * interface is not in a group, this trivially succeeds. 12097 */ 12098 rw_exit(&ipst->ips_ipmp_lock); 12099 if (IS_UNDER_IPMP(ill)) 12100 ipmp_phyint_leave_grp(phyi); 12101 return (0); 12102 } 12103 unlock: 12104 rw_exit(&ipst->ips_ipmp_lock); 12105 return (err); 12106 } 12107 12108 /* 12109 * Process an SIOCGLIFBINDING request. 12110 */ 12111 /* ARGSUSED */ 12112 int 12113 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12114 ip_ioctl_cmd_t *ipip, void *ifreq) 12115 { 12116 ill_t *ill; 12117 struct lifreq *lifr = ifreq; 12118 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12119 12120 if (!IS_IPMP(ipif->ipif_ill)) 12121 return (EINVAL); 12122 12123 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12124 if ((ill = ipif->ipif_bound_ill) == NULL) 12125 lifr->lifr_binding[0] = '\0'; 12126 else 12127 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12128 rw_exit(&ipst->ips_ipmp_lock); 12129 return (0); 12130 } 12131 12132 /* 12133 * Process an SIOCGLIFGROUPNAME request. 12134 */ 12135 /* ARGSUSED */ 12136 int 12137 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12138 ip_ioctl_cmd_t *ipip, void *ifreq) 12139 { 12140 ipmp_grp_t *grp; 12141 struct lifreq *lifr = ifreq; 12142 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12143 12144 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12145 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12146 lifr->lifr_groupname[0] = '\0'; 12147 else 12148 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12149 rw_exit(&ipst->ips_ipmp_lock); 12150 return (0); 12151 } 12152 12153 /* 12154 * Process an SIOCGLIFGROUPINFO request. 12155 */ 12156 /* ARGSUSED */ 12157 int 12158 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12159 ip_ioctl_cmd_t *ipip, void *dummy) 12160 { 12161 ipmp_grp_t *grp; 12162 lifgroupinfo_t *lifgr; 12163 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12164 12165 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12166 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12167 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12168 12169 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12170 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12171 rw_exit(&ipst->ips_ipmp_lock); 12172 return (ENOENT); 12173 } 12174 ipmp_grp_info(grp, lifgr); 12175 rw_exit(&ipst->ips_ipmp_lock); 12176 return (0); 12177 } 12178 12179 static void 12180 ill_dl_down(ill_t *ill) 12181 { 12182 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12183 12184 /* 12185 * The ill is down; unbind but stay attached since we're still 12186 * associated with a PPA. If we have negotiated DLPI capabilites 12187 * with the data link service provider (IDS_OK) then reset them. 12188 * The interval between unbinding and rebinding is potentially 12189 * unbounded hence we cannot assume things will be the same. 12190 * The DLPI capabilities will be probed again when the data link 12191 * is brought up. 12192 */ 12193 mblk_t *mp = ill->ill_unbind_mp; 12194 12195 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12196 12197 if (!ill->ill_replumbing) { 12198 /* Free all ilms for this ill */ 12199 update_conn_ill(ill, ill->ill_ipst); 12200 } else { 12201 ill_leave_multicast(ill); 12202 } 12203 12204 ill->ill_unbind_mp = NULL; 12205 if (mp != NULL) { 12206 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12207 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12208 ill->ill_name)); 12209 mutex_enter(&ill->ill_lock); 12210 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12211 mutex_exit(&ill->ill_lock); 12212 /* 12213 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12214 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12215 * ill_capability_dld_disable disable rightaway. If this is not 12216 * an unplumb operation then the disable happens on receipt of 12217 * the capab ack via ip_rput_dlpi_writer -> 12218 * ill_capability_ack_thr. In both cases the order of 12219 * the operations seen by DLD is capability disable followed 12220 * by DL_UNBIND. Also the DLD capability disable needs a 12221 * cv_wait'able context. 12222 */ 12223 if (ill->ill_state_flags & ILL_CONDEMNED) 12224 ill_capability_dld_disable(ill); 12225 ill_capability_reset(ill, B_FALSE); 12226 ill_dlpi_send(ill, mp); 12227 } 12228 mutex_enter(&ill->ill_lock); 12229 ill->ill_dl_up = 0; 12230 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12231 mutex_exit(&ill->ill_lock); 12232 } 12233 12234 void 12235 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12236 { 12237 union DL_primitives *dlp; 12238 t_uscalar_t prim; 12239 boolean_t waitack = B_FALSE; 12240 12241 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12242 12243 dlp = (union DL_primitives *)mp->b_rptr; 12244 prim = dlp->dl_primitive; 12245 12246 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12247 dl_primstr(prim), prim, ill->ill_name)); 12248 12249 switch (prim) { 12250 case DL_PHYS_ADDR_REQ: 12251 { 12252 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12253 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12254 break; 12255 } 12256 case DL_BIND_REQ: 12257 mutex_enter(&ill->ill_lock); 12258 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12259 mutex_exit(&ill->ill_lock); 12260 break; 12261 } 12262 12263 /* 12264 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12265 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12266 * we only wait for the ACK of the DL_UNBIND_REQ. 12267 */ 12268 mutex_enter(&ill->ill_lock); 12269 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12270 (prim == DL_UNBIND_REQ)) { 12271 ill->ill_dlpi_pending = prim; 12272 waitack = B_TRUE; 12273 } 12274 12275 mutex_exit(&ill->ill_lock); 12276 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12277 char *, dl_primstr(prim), ill_t *, ill); 12278 putnext(ill->ill_wq, mp); 12279 12280 /* 12281 * There is no ack for DL_NOTIFY_CONF messages 12282 */ 12283 if (waitack && prim == DL_NOTIFY_CONF) 12284 ill_dlpi_done(ill, prim); 12285 } 12286 12287 /* 12288 * Helper function for ill_dlpi_send(). 12289 */ 12290 /* ARGSUSED */ 12291 static void 12292 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12293 { 12294 ill_dlpi_send(q->q_ptr, mp); 12295 } 12296 12297 /* 12298 * Send a DLPI control message to the driver but make sure there 12299 * is only one outstanding message. Uses ill_dlpi_pending to tell 12300 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12301 * when an ACK or a NAK is received to process the next queued message. 12302 */ 12303 void 12304 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12305 { 12306 mblk_t **mpp; 12307 12308 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12309 12310 /* 12311 * To ensure that any DLPI requests for current exclusive operation 12312 * are always completely sent before any DLPI messages for other 12313 * operations, require writer access before enqueuing. 12314 */ 12315 if (!IAM_WRITER_ILL(ill)) { 12316 ill_refhold(ill); 12317 /* qwriter_ip() does the ill_refrele() */ 12318 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12319 NEW_OP, B_TRUE); 12320 return; 12321 } 12322 12323 mutex_enter(&ill->ill_lock); 12324 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12325 /* Must queue message. Tail insertion */ 12326 mpp = &ill->ill_dlpi_deferred; 12327 while (*mpp != NULL) 12328 mpp = &((*mpp)->b_next); 12329 12330 ip1dbg(("ill_dlpi_send: deferring request for %s " 12331 "while %s pending\n", ill->ill_name, 12332 dl_primstr(ill->ill_dlpi_pending))); 12333 12334 *mpp = mp; 12335 mutex_exit(&ill->ill_lock); 12336 return; 12337 } 12338 mutex_exit(&ill->ill_lock); 12339 ill_dlpi_dispatch(ill, mp); 12340 } 12341 12342 static void 12343 ill_capability_send(ill_t *ill, mblk_t *mp) 12344 { 12345 ill->ill_capab_pending_cnt++; 12346 ill_dlpi_send(ill, mp); 12347 } 12348 12349 void 12350 ill_capability_done(ill_t *ill) 12351 { 12352 ASSERT(ill->ill_capab_pending_cnt != 0); 12353 12354 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12355 12356 ill->ill_capab_pending_cnt--; 12357 if (ill->ill_capab_pending_cnt == 0 && 12358 ill->ill_dlpi_capab_state == IDCS_OK) 12359 ill_capability_reset_alloc(ill); 12360 } 12361 12362 /* 12363 * Send all deferred DLPI messages without waiting for their ACKs. 12364 */ 12365 void 12366 ill_dlpi_send_deferred(ill_t *ill) 12367 { 12368 mblk_t *mp, *nextmp; 12369 12370 /* 12371 * Clear ill_dlpi_pending so that the message is not queued in 12372 * ill_dlpi_send(). 12373 */ 12374 mutex_enter(&ill->ill_lock); 12375 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12376 mp = ill->ill_dlpi_deferred; 12377 ill->ill_dlpi_deferred = NULL; 12378 mutex_exit(&ill->ill_lock); 12379 12380 for (; mp != NULL; mp = nextmp) { 12381 nextmp = mp->b_next; 12382 mp->b_next = NULL; 12383 ill_dlpi_send(ill, mp); 12384 } 12385 } 12386 12387 /* 12388 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12389 */ 12390 boolean_t 12391 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12392 { 12393 t_uscalar_t pending; 12394 12395 mutex_enter(&ill->ill_lock); 12396 if (ill->ill_dlpi_pending == prim) { 12397 mutex_exit(&ill->ill_lock); 12398 return (B_TRUE); 12399 } 12400 12401 /* 12402 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12403 * without waiting, so don't print any warnings in that case. 12404 */ 12405 if (ill->ill_state_flags & ILL_CONDEMNED) { 12406 mutex_exit(&ill->ill_lock); 12407 return (B_FALSE); 12408 } 12409 pending = ill->ill_dlpi_pending; 12410 mutex_exit(&ill->ill_lock); 12411 12412 if (pending == DL_PRIM_INVAL) { 12413 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12414 "received unsolicited ack for %s on %s\n", 12415 dl_primstr(prim), ill->ill_name); 12416 } else { 12417 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12418 "received unexpected ack for %s on %s (expecting %s)\n", 12419 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12420 } 12421 return (B_FALSE); 12422 } 12423 12424 /* 12425 * Complete the current DLPI operation associated with `prim' on `ill' and 12426 * start the next queued DLPI operation (if any). If there are no queued DLPI 12427 * operations and the ill's current exclusive IPSQ operation has finished 12428 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12429 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12430 * the comments above ipsq_current_finish() for details. 12431 */ 12432 void 12433 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12434 { 12435 mblk_t *mp; 12436 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12437 ipxop_t *ipx = ipsq->ipsq_xop; 12438 12439 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12440 mutex_enter(&ill->ill_lock); 12441 12442 ASSERT(prim != DL_PRIM_INVAL); 12443 ASSERT(ill->ill_dlpi_pending == prim); 12444 12445 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12446 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12447 12448 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12449 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12450 if (ipx->ipx_current_done) { 12451 mutex_enter(&ipx->ipx_lock); 12452 ipx->ipx_current_ipif = NULL; 12453 mutex_exit(&ipx->ipx_lock); 12454 } 12455 cv_signal(&ill->ill_cv); 12456 mutex_exit(&ill->ill_lock); 12457 return; 12458 } 12459 12460 ill->ill_dlpi_deferred = mp->b_next; 12461 mp->b_next = NULL; 12462 mutex_exit(&ill->ill_lock); 12463 12464 ill_dlpi_dispatch(ill, mp); 12465 } 12466 12467 /* 12468 * Queue a (multicast) DLPI control message to be sent to the driver by 12469 * later calling ill_dlpi_send_queued. 12470 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12471 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12472 * for the same group to race. 12473 * We send DLPI control messages in order using ill_lock. 12474 * For IPMP we should be called on the cast_ill. 12475 */ 12476 void 12477 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12478 { 12479 mblk_t **mpp; 12480 12481 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12482 12483 mutex_enter(&ill->ill_lock); 12484 /* Must queue message. Tail insertion */ 12485 mpp = &ill->ill_dlpi_deferred; 12486 while (*mpp != NULL) 12487 mpp = &((*mpp)->b_next); 12488 12489 *mpp = mp; 12490 mutex_exit(&ill->ill_lock); 12491 } 12492 12493 /* 12494 * Send the messages that were queued. Make sure there is only 12495 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 12496 * when an ACK or a NAK is received to process the next queued message. 12497 * For IPMP we are called on the upper ill, but when send what is queued 12498 * on the cast_ill. 12499 */ 12500 void 12501 ill_dlpi_send_queued(ill_t *ill) 12502 { 12503 mblk_t *mp; 12504 union DL_primitives *dlp; 12505 t_uscalar_t prim; 12506 ill_t *release_ill = NULL; 12507 12508 if (IS_IPMP(ill)) { 12509 /* On the upper IPMP ill. */ 12510 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12511 if (release_ill == NULL) { 12512 /* Avoid ever sending anything down to the ipmpstub */ 12513 return; 12514 } 12515 ill = release_ill; 12516 } 12517 mutex_enter(&ill->ill_lock); 12518 while ((mp = ill->ill_dlpi_deferred) != NULL) { 12519 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12520 /* Can't send. Somebody else will send it */ 12521 mutex_exit(&ill->ill_lock); 12522 goto done; 12523 } 12524 ill->ill_dlpi_deferred = mp->b_next; 12525 mp->b_next = NULL; 12526 if (!ill->ill_dl_up) { 12527 /* 12528 * Nobody there. All multicast addresses will be 12529 * re-joined when we get the DL_BIND_ACK bringing the 12530 * interface up. 12531 */ 12532 freemsg(mp); 12533 continue; 12534 } 12535 dlp = (union DL_primitives *)mp->b_rptr; 12536 prim = dlp->dl_primitive; 12537 12538 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12539 (prim == DL_UNBIND_REQ)) { 12540 ill->ill_dlpi_pending = prim; 12541 } 12542 mutex_exit(&ill->ill_lock); 12543 12544 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 12545 char *, dl_primstr(prim), ill_t *, ill); 12546 putnext(ill->ill_wq, mp); 12547 mutex_enter(&ill->ill_lock); 12548 } 12549 mutex_exit(&ill->ill_lock); 12550 done: 12551 if (release_ill != NULL) 12552 ill_refrele(release_ill); 12553 } 12554 12555 /* 12556 * Queue an IP (IGMP/MLD) message to be sent by IP from 12557 * ill_mcast_send_queued 12558 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12559 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 12560 * group to race. 12561 * We send them in order using ill_lock. 12562 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 12563 */ 12564 void 12565 ill_mcast_queue(ill_t *ill, mblk_t *mp) 12566 { 12567 mblk_t **mpp; 12568 ill_t *release_ill = NULL; 12569 12570 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 12571 12572 if (IS_IPMP(ill)) { 12573 /* On the upper IPMP ill. */ 12574 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12575 if (release_ill == NULL) { 12576 /* Discard instead of queuing for the ipmp interface */ 12577 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12578 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 12579 mp, ill); 12580 freemsg(mp); 12581 return; 12582 } 12583 ill = release_ill; 12584 } 12585 12586 mutex_enter(&ill->ill_lock); 12587 /* Must queue message. Tail insertion */ 12588 mpp = &ill->ill_mcast_deferred; 12589 while (*mpp != NULL) 12590 mpp = &((*mpp)->b_next); 12591 12592 *mpp = mp; 12593 mutex_exit(&ill->ill_lock); 12594 if (release_ill != NULL) 12595 ill_refrele(release_ill); 12596 } 12597 12598 /* 12599 * Send the IP packets that were queued by ill_mcast_queue. 12600 * These are IGMP/MLD packets. 12601 * 12602 * For IPMP we are called on the upper ill, but when send what is queued 12603 * on the cast_ill. 12604 * 12605 * Request loopback of the report if we are acting as a multicast 12606 * router, so that the process-level routing demon can hear it. 12607 * This will run multiple times for the same group if there are members 12608 * on the same group for multiple ipif's on the same ill. The 12609 * igmp_input/mld_input code will suppress this due to the loopback thus we 12610 * always loopback membership report. 12611 * 12612 * We also need to make sure that this does not get load balanced 12613 * by IPMP. We do this by passing an ill to ip_output_simple. 12614 */ 12615 void 12616 ill_mcast_send_queued(ill_t *ill) 12617 { 12618 mblk_t *mp; 12619 ip_xmit_attr_t ixas; 12620 ill_t *release_ill = NULL; 12621 12622 if (IS_IPMP(ill)) { 12623 /* On the upper IPMP ill. */ 12624 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12625 if (release_ill == NULL) { 12626 /* 12627 * We should have no messages on the ipmp interface 12628 * but no point in trying to send them. 12629 */ 12630 return; 12631 } 12632 ill = release_ill; 12633 } 12634 bzero(&ixas, sizeof (ixas)); 12635 ixas.ixa_zoneid = ALL_ZONES; 12636 ixas.ixa_cred = kcred; 12637 ixas.ixa_cpid = NOPID; 12638 ixas.ixa_tsl = NULL; 12639 /* 12640 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 12641 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 12642 * That is necessary to handle IGMP/MLD snooping switches. 12643 */ 12644 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 12645 ixas.ixa_ipst = ill->ill_ipst; 12646 12647 mutex_enter(&ill->ill_lock); 12648 while ((mp = ill->ill_mcast_deferred) != NULL) { 12649 ill->ill_mcast_deferred = mp->b_next; 12650 mp->b_next = NULL; 12651 if (!ill->ill_dl_up) { 12652 /* 12653 * Nobody there. Just drop the ip packets. 12654 * IGMP/MLD will resend later, if this is a replumb. 12655 */ 12656 freemsg(mp); 12657 continue; 12658 } 12659 mutex_enter(&ill->ill_phyint->phyint_lock); 12660 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 12661 /* 12662 * When the ill is getting deactivated, we only want to 12663 * send the DLPI messages, so drop IGMP/MLD packets. 12664 * DLPI messages are handled by ill_dlpi_send_queued() 12665 */ 12666 mutex_exit(&ill->ill_phyint->phyint_lock); 12667 freemsg(mp); 12668 continue; 12669 } 12670 mutex_exit(&ill->ill_phyint->phyint_lock); 12671 mutex_exit(&ill->ill_lock); 12672 12673 /* Check whether we are sending IPv4 or IPv6. */ 12674 if (ill->ill_isv6) { 12675 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12676 12677 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 12678 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 12679 } else { 12680 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12681 12682 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 12683 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 12684 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 12685 } 12686 12687 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 12688 (void) ip_output_simple(mp, &ixas); 12689 ixa_cleanup(&ixas); 12690 12691 mutex_enter(&ill->ill_lock); 12692 } 12693 mutex_exit(&ill->ill_lock); 12694 12695 done: 12696 if (release_ill != NULL) 12697 ill_refrele(release_ill); 12698 } 12699 12700 /* 12701 * Take down a specific interface, but don't lose any information about it. 12702 * (Always called as writer.) 12703 * This function goes through the down sequence even if the interface is 12704 * already down. There are 2 reasons. 12705 * a. Currently we permit interface routes that depend on down interfaces 12706 * to be added. This behaviour itself is questionable. However it appears 12707 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 12708 * time. We go thru the cleanup in order to remove these routes. 12709 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 12710 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 12711 * down, but we need to cleanup i.e. do ill_dl_down and 12712 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 12713 * 12714 * IP-MT notes: 12715 * 12716 * Model of reference to interfaces. 12717 * 12718 * The following members in ipif_t track references to the ipif. 12719 * int ipif_refcnt; Active reference count 12720 * 12721 * The following members in ill_t track references to the ill. 12722 * int ill_refcnt; active refcnt 12723 * uint_t ill_ire_cnt; Number of ires referencing ill 12724 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 12725 * uint_t ill_nce_cnt; Number of nces referencing ill 12726 * uint_t ill_ilm_cnt; Number of ilms referencing ill 12727 * 12728 * Reference to an ipif or ill can be obtained in any of the following ways. 12729 * 12730 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 12731 * Pointers to ipif / ill from other data structures viz ire and conn. 12732 * Implicit reference to the ipif / ill by holding a reference to the ire. 12733 * 12734 * The ipif/ill lookup functions return a reference held ipif / ill. 12735 * ipif_refcnt and ill_refcnt track the reference counts respectively. 12736 * This is a purely dynamic reference count associated with threads holding 12737 * references to the ipif / ill. Pointers from other structures do not 12738 * count towards this reference count. 12739 * 12740 * ill_ire_cnt is the number of ire's associated with the 12741 * ill. This is incremented whenever a new ire is created referencing the 12742 * ill. This is done atomically inside ire_add_v[46] where the ire is 12743 * actually added to the ire hash table. The count is decremented in 12744 * ire_inactive where the ire is destroyed. 12745 * 12746 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 12747 * This is incremented atomically in 12748 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 12749 * table. Similarly it is decremented in ncec_inactive() where the ncec 12750 * is destroyed. 12751 * 12752 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 12753 * incremented atomically in nce_add() where the nce is actually added to the 12754 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 12755 * is destroyed. 12756 * 12757 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 12758 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 12759 * 12760 * Flow of ioctls involving interface down/up 12761 * 12762 * The following is the sequence of an attempt to set some critical flags on an 12763 * up interface. 12764 * ip_sioctl_flags 12765 * ipif_down 12766 * wait for ipif to be quiescent 12767 * ipif_down_tail 12768 * ip_sioctl_flags_tail 12769 * 12770 * All set ioctls that involve down/up sequence would have a skeleton similar 12771 * to the above. All the *tail functions are called after the refcounts have 12772 * dropped to the appropriate values. 12773 * 12774 * SIOC ioctls during the IPIF_CHANGING interval. 12775 * 12776 * Threads handling SIOC set ioctls serialize on the squeue, but this 12777 * is not done for SIOC get ioctls. Since a set ioctl can cause several 12778 * steps of internal changes to the state, some of which are visible in 12779 * ipif_flags (such as IFF_UP being cleared and later set), and we want 12780 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 12781 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 12782 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 12783 * the current exclusive operation completes. The IPIF_CHANGING check 12784 * and enqueue is atomic using the ill_lock and ipsq_lock. The 12785 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 12786 * change while the ill_lock is held. Before dropping the ill_lock we acquire 12787 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 12788 * until we release the ipsq_lock, even though the ill/ipif state flags 12789 * can change after we drop the ill_lock. 12790 */ 12791 int 12792 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 12793 { 12794 ill_t *ill = ipif->ipif_ill; 12795 conn_t *connp; 12796 boolean_t success; 12797 boolean_t ipif_was_up = B_FALSE; 12798 ip_stack_t *ipst = ill->ill_ipst; 12799 12800 ASSERT(IAM_WRITER_IPIF(ipif)); 12801 12802 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12803 12804 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 12805 ill_t *, ill, ipif_t *, ipif); 12806 12807 if (ipif->ipif_flags & IPIF_UP) { 12808 mutex_enter(&ill->ill_lock); 12809 ipif->ipif_flags &= ~IPIF_UP; 12810 ASSERT(ill->ill_ipif_up_count > 0); 12811 --ill->ill_ipif_up_count; 12812 mutex_exit(&ill->ill_lock); 12813 ipif_was_up = B_TRUE; 12814 /* Update status in SCTP's list */ 12815 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 12816 ill_nic_event_dispatch(ipif->ipif_ill, 12817 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 12818 } 12819 12820 /* 12821 * Blow away memberships we established in ipif_multicast_up(). 12822 */ 12823 ipif_multicast_down(ipif); 12824 12825 /* 12826 * Remove from the mapping for __sin6_src_id. We insert only 12827 * when the address is not INADDR_ANY. As IPv4 addresses are 12828 * stored as mapped addresses, we need to check for mapped 12829 * INADDR_ANY also. 12830 */ 12831 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12832 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 12833 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 12834 int err; 12835 12836 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 12837 ipif->ipif_zoneid, ipst); 12838 if (err != 0) { 12839 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 12840 } 12841 } 12842 12843 if (ipif_was_up) { 12844 /* only delete if we'd added ire's before */ 12845 if (ipif->ipif_isv6) 12846 ipif_delete_ires_v6(ipif); 12847 else 12848 ipif_delete_ires_v4(ipif); 12849 } 12850 12851 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 12852 /* 12853 * Since the interface is now down, it may have just become 12854 * inactive. Note that this needs to be done even for a 12855 * lll_logical_down(), or ARP entries will not get correctly 12856 * restored when the interface comes back up. 12857 */ 12858 if (IS_UNDER_IPMP(ill)) 12859 ipmp_ill_refresh_active(ill); 12860 } 12861 12862 /* 12863 * neighbor-discovery or arp entries for this interface. The ipif 12864 * has to be quiesced, so we walk all the nce's and delete those 12865 * that point at the ipif->ipif_ill. At the same time, we also 12866 * update IPMP so that ipifs for data addresses are unbound. We dont 12867 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 12868 * that for ipif_down_tail() 12869 */ 12870 ipif_nce_down(ipif); 12871 12872 /* 12873 * If this is the last ipif on the ill, we also need to remove 12874 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 12875 * never succeed. 12876 */ 12877 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 12878 ire_walk_ill(0, 0, ill_downi, ill, ill); 12879 12880 /* 12881 * Walk all CONNs that can have a reference on an ire for this 12882 * ipif (we actually walk all that now have stale references). 12883 */ 12884 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 12885 12886 /* 12887 * If mp is NULL the caller will wait for the appropriate refcnt. 12888 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 12889 * and ill_delete -> ipif_free -> ipif_down 12890 */ 12891 if (mp == NULL) { 12892 ASSERT(q == NULL); 12893 return (0); 12894 } 12895 12896 if (CONN_Q(q)) { 12897 connp = Q_TO_CONN(q); 12898 mutex_enter(&connp->conn_lock); 12899 } else { 12900 connp = NULL; 12901 } 12902 mutex_enter(&ill->ill_lock); 12903 /* 12904 * Are there any ire's pointing to this ipif that are still active ? 12905 * If this is the last ipif going down, are there any ire's pointing 12906 * to this ill that are still active ? 12907 */ 12908 if (ipif_is_quiescent(ipif)) { 12909 mutex_exit(&ill->ill_lock); 12910 if (connp != NULL) 12911 mutex_exit(&connp->conn_lock); 12912 return (0); 12913 } 12914 12915 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 12916 ill->ill_name, (void *)ill)); 12917 /* 12918 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 12919 * drops down, the operation will be restarted by ipif_ill_refrele_tail 12920 * which in turn is called by the last refrele on the ipif/ill/ire. 12921 */ 12922 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 12923 if (!success) { 12924 /* The conn is closing. So just return */ 12925 ASSERT(connp != NULL); 12926 mutex_exit(&ill->ill_lock); 12927 mutex_exit(&connp->conn_lock); 12928 return (EINTR); 12929 } 12930 12931 mutex_exit(&ill->ill_lock); 12932 if (connp != NULL) 12933 mutex_exit(&connp->conn_lock); 12934 return (EINPROGRESS); 12935 } 12936 12937 int 12938 ipif_down_tail(ipif_t *ipif) 12939 { 12940 ill_t *ill = ipif->ipif_ill; 12941 int err = 0; 12942 12943 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 12944 ill_t *, ill, ipif_t *, ipif); 12945 12946 /* 12947 * Skip any loopback interface (null wq). 12948 * If this is the last logical interface on the ill 12949 * have ill_dl_down tell the driver we are gone (unbind) 12950 * Note that lun 0 can ipif_down even though 12951 * there are other logical units that are up. 12952 * This occurs e.g. when we change a "significant" IFF_ flag. 12953 */ 12954 if (ill->ill_wq != NULL && !ill->ill_logical_down && 12955 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12956 ill->ill_dl_up) { 12957 ill_dl_down(ill); 12958 } 12959 if (!ipif->ipif_isv6) 12960 err = ipif_arp_down(ipif); 12961 12962 ill->ill_logical_down = 0; 12963 12964 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 12965 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 12966 return (err); 12967 } 12968 12969 /* 12970 * Bring interface logically down without bringing the physical interface 12971 * down e.g. when the netmask is changed. This avoids long lasting link 12972 * negotiations between an ethernet interface and a certain switches. 12973 */ 12974 static int 12975 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 12976 { 12977 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 12978 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 12979 12980 /* 12981 * The ill_logical_down flag is a transient flag. It is set here 12982 * and is cleared once the down has completed in ipif_down_tail. 12983 * This flag does not indicate whether the ill stream is in the 12984 * DL_BOUND state with the driver. Instead this flag is used by 12985 * ipif_down_tail to determine whether to DL_UNBIND the stream with 12986 * the driver. The state of the ill stream i.e. whether it is 12987 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 12988 */ 12989 ipif->ipif_ill->ill_logical_down = 1; 12990 return (ipif_down(ipif, q, mp)); 12991 } 12992 12993 /* 12994 * Initiate deallocate of an IPIF. Always called as writer. Called by 12995 * ill_delete or ip_sioctl_removeif. 12996 */ 12997 static void 12998 ipif_free(ipif_t *ipif) 12999 { 13000 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13001 13002 ASSERT(IAM_WRITER_IPIF(ipif)); 13003 13004 if (ipif->ipif_recovery_id != 0) 13005 (void) untimeout(ipif->ipif_recovery_id); 13006 ipif->ipif_recovery_id = 0; 13007 13008 /* 13009 * Take down the interface. We can be called either from ill_delete 13010 * or from ip_sioctl_removeif. 13011 */ 13012 (void) ipif_down(ipif, NULL, NULL); 13013 13014 /* 13015 * Now that the interface is down, there's no chance it can still 13016 * become a duplicate. Cancel any timer that may have been set while 13017 * tearing down. 13018 */ 13019 if (ipif->ipif_recovery_id != 0) 13020 (void) untimeout(ipif->ipif_recovery_id); 13021 ipif->ipif_recovery_id = 0; 13022 13023 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13024 /* Remove pointers to this ill in the multicast routing tables */ 13025 reset_mrt_vif_ipif(ipif); 13026 /* If necessary, clear the cached source ipif rotor. */ 13027 if (ipif->ipif_ill->ill_src_ipif == ipif) 13028 ipif->ipif_ill->ill_src_ipif = NULL; 13029 rw_exit(&ipst->ips_ill_g_lock); 13030 } 13031 13032 static void 13033 ipif_free_tail(ipif_t *ipif) 13034 { 13035 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13036 13037 /* 13038 * Need to hold both ill_g_lock and ill_lock while 13039 * inserting or removing an ipif from the linked list 13040 * of ipifs hanging off the ill. 13041 */ 13042 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13043 13044 #ifdef DEBUG 13045 ipif_trace_cleanup(ipif); 13046 #endif 13047 13048 /* Ask SCTP to take it out of it list */ 13049 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13050 13051 /* Get it out of the ILL interface list. */ 13052 ipif_remove(ipif); 13053 rw_exit(&ipst->ips_ill_g_lock); 13054 13055 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13056 ASSERT(ipif->ipif_recovery_id == 0); 13057 ASSERT(ipif->ipif_ire_local == NULL); 13058 13059 /* Free the memory. */ 13060 mi_free(ipif); 13061 } 13062 13063 /* 13064 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13065 * is zero. 13066 */ 13067 void 13068 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13069 { 13070 char lbuf[LIFNAMSIZ]; 13071 char *name; 13072 size_t name_len; 13073 13074 buf[0] = '\0'; 13075 name = ipif->ipif_ill->ill_name; 13076 name_len = ipif->ipif_ill->ill_name_length; 13077 if (ipif->ipif_id != 0) { 13078 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13079 ipif->ipif_id); 13080 name = lbuf; 13081 name_len = mi_strlen(name) + 1; 13082 } 13083 len -= 1; 13084 buf[len] = '\0'; 13085 len = MIN(len, name_len); 13086 bcopy(name, buf, len); 13087 } 13088 13089 /* 13090 * Sets `buf' to an ill name. 13091 */ 13092 void 13093 ill_get_name(const ill_t *ill, char *buf, int len) 13094 { 13095 char *name; 13096 size_t name_len; 13097 13098 name = ill->ill_name; 13099 name_len = ill->ill_name_length; 13100 len -= 1; 13101 buf[len] = '\0'; 13102 len = MIN(len, name_len); 13103 bcopy(name, buf, len); 13104 } 13105 13106 /* 13107 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13108 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13109 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13110 * (May be called as writer.) 13111 */ 13112 static ipif_t * 13113 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13114 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13115 { 13116 char *cp; 13117 char *endp; 13118 long id; 13119 ill_t *ill; 13120 ipif_t *ipif; 13121 uint_t ire_type; 13122 boolean_t did_alloc = B_FALSE; 13123 13124 /* 13125 * If the caller wants to us to create the ipif, make sure we have a 13126 * valid zoneid 13127 */ 13128 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13129 13130 if (namelen == 0) { 13131 return (NULL); 13132 } 13133 13134 *exists = B_FALSE; 13135 /* Look for a colon in the name. */ 13136 endp = &name[namelen]; 13137 for (cp = endp; --cp > name; ) { 13138 if (*cp == IPIF_SEPARATOR_CHAR) 13139 break; 13140 } 13141 13142 if (*cp == IPIF_SEPARATOR_CHAR) { 13143 /* 13144 * Reject any non-decimal aliases for logical 13145 * interfaces. Aliases with leading zeroes 13146 * are also rejected as they introduce ambiguity 13147 * in the naming of the interfaces. 13148 * In order to confirm with existing semantics, 13149 * and to not break any programs/script relying 13150 * on that behaviour, if<0>:0 is considered to be 13151 * a valid interface. 13152 * 13153 * If alias has two or more digits and the first 13154 * is zero, fail. 13155 */ 13156 if (&cp[2] < endp && cp[1] == '0') { 13157 return (NULL); 13158 } 13159 } 13160 13161 if (cp <= name) { 13162 cp = endp; 13163 } else { 13164 *cp = '\0'; 13165 } 13166 13167 /* 13168 * Look up the ILL, based on the portion of the name 13169 * before the slash. ill_lookup_on_name returns a held ill. 13170 * Temporary to check whether ill exists already. If so 13171 * ill_lookup_on_name will clear it. 13172 */ 13173 ill = ill_lookup_on_name(name, do_alloc, isv6, 13174 &did_alloc, ipst); 13175 if (cp != endp) 13176 *cp = IPIF_SEPARATOR_CHAR; 13177 if (ill == NULL) 13178 return (NULL); 13179 13180 /* Establish the unit number in the name. */ 13181 id = 0; 13182 if (cp < endp && *endp == '\0') { 13183 /* If there was a colon, the unit number follows. */ 13184 cp++; 13185 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13186 ill_refrele(ill); 13187 return (NULL); 13188 } 13189 } 13190 13191 mutex_enter(&ill->ill_lock); 13192 /* Now see if there is an IPIF with this unit number. */ 13193 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13194 if (ipif->ipif_id == id) { 13195 if (zoneid != ALL_ZONES && 13196 zoneid != ipif->ipif_zoneid && 13197 ipif->ipif_zoneid != ALL_ZONES) { 13198 mutex_exit(&ill->ill_lock); 13199 ill_refrele(ill); 13200 return (NULL); 13201 } 13202 if (IPIF_CAN_LOOKUP(ipif)) { 13203 ipif_refhold_locked(ipif); 13204 mutex_exit(&ill->ill_lock); 13205 if (!did_alloc) 13206 *exists = B_TRUE; 13207 /* 13208 * Drop locks before calling ill_refrele 13209 * since it can potentially call into 13210 * ipif_ill_refrele_tail which can end up 13211 * in trying to acquire any lock. 13212 */ 13213 ill_refrele(ill); 13214 return (ipif); 13215 } 13216 } 13217 } 13218 13219 if (!do_alloc) { 13220 mutex_exit(&ill->ill_lock); 13221 ill_refrele(ill); 13222 return (NULL); 13223 } 13224 13225 /* 13226 * If none found, atomically allocate and return a new one. 13227 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13228 * to support "receive only" use of lo0:1 etc. as is still done 13229 * below as an initial guess. 13230 * However, this is now likely to be overriden later in ipif_up_done() 13231 * when we know for sure what address has been configured on the 13232 * interface, since we might have more than one loopback interface 13233 * with a loopback address, e.g. in the case of zones, and all the 13234 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13235 */ 13236 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13237 ire_type = IRE_LOOPBACK; 13238 else 13239 ire_type = IRE_LOCAL; 13240 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE); 13241 if (ipif != NULL) 13242 ipif_refhold_locked(ipif); 13243 mutex_exit(&ill->ill_lock); 13244 ill_refrele(ill); 13245 return (ipif); 13246 } 13247 13248 /* 13249 * This routine is called whenever a new address comes up on an ipif. If 13250 * we are configured to respond to address mask requests, then we are supposed 13251 * to broadcast an address mask reply at this time. This routine is also 13252 * called if we are already up, but a netmask change is made. This is legal 13253 * but might not make the system manager very popular. (May be called 13254 * as writer.) 13255 */ 13256 void 13257 ipif_mask_reply(ipif_t *ipif) 13258 { 13259 icmph_t *icmph; 13260 ipha_t *ipha; 13261 mblk_t *mp; 13262 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13263 ip_xmit_attr_t ixas; 13264 13265 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13266 13267 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13268 return; 13269 13270 /* ICMP mask reply is IPv4 only */ 13271 ASSERT(!ipif->ipif_isv6); 13272 /* ICMP mask reply is not for a loopback interface */ 13273 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13274 13275 if (ipif->ipif_lcl_addr == INADDR_ANY) 13276 return; 13277 13278 mp = allocb(REPLY_LEN, BPRI_HI); 13279 if (mp == NULL) 13280 return; 13281 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13282 13283 ipha = (ipha_t *)mp->b_rptr; 13284 bzero(ipha, REPLY_LEN); 13285 *ipha = icmp_ipha; 13286 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13287 ipha->ipha_src = ipif->ipif_lcl_addr; 13288 ipha->ipha_dst = ipif->ipif_brd_addr; 13289 ipha->ipha_length = htons(REPLY_LEN); 13290 ipha->ipha_ident = 0; 13291 13292 icmph = (icmph_t *)&ipha[1]; 13293 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13294 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13295 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13296 13297 bzero(&ixas, sizeof (ixas)); 13298 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13299 ixas.ixa_flags |= IXAF_SET_SOURCE; 13300 ixas.ixa_zoneid = ALL_ZONES; 13301 ixas.ixa_ifindex = 0; 13302 ixas.ixa_ipst = ipst; 13303 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13304 (void) ip_output_simple(mp, &ixas); 13305 ixa_cleanup(&ixas); 13306 #undef REPLY_LEN 13307 } 13308 13309 /* 13310 * Join the ipif specific multicast groups. 13311 * Must be called after a mapping has been set up in the resolver. (Always 13312 * called as writer.) 13313 */ 13314 void 13315 ipif_multicast_up(ipif_t *ipif) 13316 { 13317 int err; 13318 ill_t *ill; 13319 ilm_t *ilm; 13320 13321 ASSERT(IAM_WRITER_IPIF(ipif)); 13322 13323 ill = ipif->ipif_ill; 13324 13325 ip1dbg(("ipif_multicast_up\n")); 13326 if (!(ill->ill_flags & ILLF_MULTICAST) || 13327 ipif->ipif_allhosts_ilm != NULL) 13328 return; 13329 13330 if (ipif->ipif_isv6) { 13331 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 13332 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 13333 13334 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 13335 13336 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 13337 return; 13338 13339 ip1dbg(("ipif_multicast_up - addmulti\n")); 13340 13341 /* 13342 * Join the all hosts multicast address. We skip this for 13343 * underlying IPMP interfaces since they should be invisible. 13344 */ 13345 if (!IS_UNDER_IPMP(ill)) { 13346 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 13347 &err); 13348 if (ilm == NULL) { 13349 ASSERT(err != 0); 13350 ip0dbg(("ipif_multicast_up: " 13351 "all_hosts_mcast failed %d\n", err)); 13352 return; 13353 } 13354 ipif->ipif_allhosts_ilm = ilm; 13355 } 13356 13357 /* 13358 * Enable multicast for the solicited node multicast address. 13359 * If IPMP we need to put the membership on the upper ill. 13360 */ 13361 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 13362 ill_t *mcast_ill = NULL; 13363 boolean_t need_refrele; 13364 13365 if (IS_UNDER_IPMP(ill) && 13366 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 13367 need_refrele = B_TRUE; 13368 } else { 13369 mcast_ill = ill; 13370 need_refrele = B_FALSE; 13371 } 13372 13373 ilm = ip_addmulti(&v6solmc, mcast_ill, 13374 ipif->ipif_zoneid, &err); 13375 if (need_refrele) 13376 ill_refrele(mcast_ill); 13377 13378 if (ilm == NULL) { 13379 ASSERT(err != 0); 13380 ip0dbg(("ipif_multicast_up: solicited MC" 13381 " failed %d\n", err)); 13382 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 13383 ipif->ipif_allhosts_ilm = NULL; 13384 (void) ip_delmulti(ilm); 13385 } 13386 return; 13387 } 13388 ipif->ipif_solmulti_ilm = ilm; 13389 } 13390 } else { 13391 in6_addr_t v6group; 13392 13393 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 13394 return; 13395 13396 /* Join the all hosts multicast address */ 13397 ip1dbg(("ipif_multicast_up - addmulti\n")); 13398 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 13399 13400 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 13401 if (ilm == NULL) { 13402 ASSERT(err != 0); 13403 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 13404 return; 13405 } 13406 ipif->ipif_allhosts_ilm = ilm; 13407 } 13408 } 13409 13410 /* 13411 * Blow away any multicast groups that we joined in ipif_multicast_up(). 13412 * (ilms from explicit memberships are handled in conn_update_ill.) 13413 */ 13414 void 13415 ipif_multicast_down(ipif_t *ipif) 13416 { 13417 ASSERT(IAM_WRITER_IPIF(ipif)); 13418 13419 ip1dbg(("ipif_multicast_down\n")); 13420 13421 if (ipif->ipif_allhosts_ilm != NULL) { 13422 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 13423 ipif->ipif_allhosts_ilm = NULL; 13424 } 13425 if (ipif->ipif_solmulti_ilm != NULL) { 13426 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 13427 ipif->ipif_solmulti_ilm = NULL; 13428 } 13429 } 13430 13431 /* 13432 * Used when an interface comes up to recreate any extra routes on this 13433 * interface. 13434 */ 13435 int 13436 ill_recover_saved_ire(ill_t *ill) 13437 { 13438 mblk_t *mp; 13439 ip_stack_t *ipst = ill->ill_ipst; 13440 13441 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 13442 13443 mutex_enter(&ill->ill_saved_ire_lock); 13444 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 13445 ire_t *ire, *nire; 13446 ifrt_t *ifrt; 13447 13448 ifrt = (ifrt_t *)mp->b_rptr; 13449 /* 13450 * Create a copy of the IRE with the saved address and netmask. 13451 */ 13452 if (ill->ill_isv6) { 13453 ire = ire_create_v6( 13454 &ifrt->ifrt_v6addr, 13455 &ifrt->ifrt_v6mask, 13456 &ifrt->ifrt_v6gateway_addr, 13457 ifrt->ifrt_type, 13458 ill, 13459 ifrt->ifrt_zoneid, 13460 ifrt->ifrt_flags, 13461 NULL, 13462 ipst); 13463 } else { 13464 ire = ire_create( 13465 (uint8_t *)&ifrt->ifrt_addr, 13466 (uint8_t *)&ifrt->ifrt_mask, 13467 (uint8_t *)&ifrt->ifrt_gateway_addr, 13468 ifrt->ifrt_type, 13469 ill, 13470 ifrt->ifrt_zoneid, 13471 ifrt->ifrt_flags, 13472 NULL, 13473 ipst); 13474 } 13475 if (ire == NULL) { 13476 mutex_exit(&ill->ill_saved_ire_lock); 13477 return (ENOMEM); 13478 } 13479 13480 if (ifrt->ifrt_flags & RTF_SETSRC) { 13481 if (ill->ill_isv6) { 13482 ire->ire_setsrc_addr_v6 = 13483 ifrt->ifrt_v6setsrc_addr; 13484 } else { 13485 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 13486 } 13487 } 13488 13489 /* 13490 * Some software (for example, GateD and Sun Cluster) attempts 13491 * to create (what amount to) IRE_PREFIX routes with the 13492 * loopback address as the gateway. This is primarily done to 13493 * set up prefixes with the RTF_REJECT flag set (for example, 13494 * when generating aggregate routes.) 13495 * 13496 * If the IRE type (as defined by ill->ill_net_type) is 13497 * IRE_LOOPBACK, then we map the request into a 13498 * IRE_IF_NORESOLVER. 13499 */ 13500 if (ill->ill_net_type == IRE_LOOPBACK) 13501 ire->ire_type = IRE_IF_NORESOLVER; 13502 13503 /* 13504 * ire held by ire_add, will be refreled' towards the 13505 * the end of ipif_up_done 13506 */ 13507 nire = ire_add(ire); 13508 /* 13509 * Check if it was a duplicate entry. This handles 13510 * the case of two racing route adds for the same route 13511 */ 13512 if (nire == NULL) { 13513 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 13514 } else if (nire != ire) { 13515 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 13516 (void *)nire)); 13517 ire_delete(nire); 13518 } else { 13519 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 13520 (void *)nire)); 13521 } 13522 if (nire != NULL) 13523 ire_refrele(nire); 13524 } 13525 mutex_exit(&ill->ill_saved_ire_lock); 13526 return (0); 13527 } 13528 13529 /* 13530 * Used to set the netmask and broadcast address to default values when the 13531 * interface is brought up. (Always called as writer.) 13532 */ 13533 static void 13534 ipif_set_default(ipif_t *ipif) 13535 { 13536 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 13537 13538 if (!ipif->ipif_isv6) { 13539 /* 13540 * Interface holds an IPv4 address. Default 13541 * mask is the natural netmask. 13542 */ 13543 if (!ipif->ipif_net_mask) { 13544 ipaddr_t v4mask; 13545 13546 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 13547 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 13548 } 13549 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13550 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13551 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13552 } else { 13553 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13554 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13555 } 13556 /* 13557 * NOTE: SunOS 4.X does this even if the broadcast address 13558 * has been already set thus we do the same here. 13559 */ 13560 if (ipif->ipif_flags & IPIF_BROADCAST) { 13561 ipaddr_t v4addr; 13562 13563 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 13564 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 13565 } 13566 } else { 13567 /* 13568 * Interface holds an IPv6-only address. Default 13569 * mask is all-ones. 13570 */ 13571 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 13572 ipif->ipif_v6net_mask = ipv6_all_ones; 13573 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13574 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13575 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13576 } else { 13577 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13578 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13579 } 13580 } 13581 } 13582 13583 /* 13584 * Return 0 if this address can be used as local address without causing 13585 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 13586 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 13587 * Note that the same IPv6 link-local address is allowed as long as the ills 13588 * are not on the same link. 13589 */ 13590 int 13591 ip_addr_availability_check(ipif_t *new_ipif) 13592 { 13593 in6_addr_t our_v6addr; 13594 ill_t *ill; 13595 ipif_t *ipif; 13596 ill_walk_context_t ctx; 13597 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 13598 13599 ASSERT(IAM_WRITER_IPIF(new_ipif)); 13600 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 13601 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 13602 13603 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 13604 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 13605 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 13606 return (0); 13607 13608 our_v6addr = new_ipif->ipif_v6lcl_addr; 13609 13610 if (new_ipif->ipif_isv6) 13611 ill = ILL_START_WALK_V6(&ctx, ipst); 13612 else 13613 ill = ILL_START_WALK_V4(&ctx, ipst); 13614 13615 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13616 for (ipif = ill->ill_ipif; ipif != NULL; 13617 ipif = ipif->ipif_next) { 13618 if ((ipif == new_ipif) || 13619 !(ipif->ipif_flags & IPIF_UP) || 13620 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13621 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 13622 &our_v6addr)) 13623 continue; 13624 13625 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 13626 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 13627 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 13628 ipif->ipif_flags |= IPIF_UNNUMBERED; 13629 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 13630 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 13631 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 13632 continue; 13633 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 13634 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 13635 continue; 13636 else if (new_ipif->ipif_ill == ill) 13637 return (EADDRINUSE); 13638 else 13639 return (EADDRNOTAVAIL); 13640 } 13641 } 13642 13643 return (0); 13644 } 13645 13646 /* 13647 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 13648 * IREs for the ipif. 13649 * When the routine returns EINPROGRESS then mp has been consumed and 13650 * the ioctl will be acked from ip_rput_dlpi. 13651 */ 13652 int 13653 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 13654 { 13655 ill_t *ill = ipif->ipif_ill; 13656 boolean_t isv6 = ipif->ipif_isv6; 13657 int err = 0; 13658 boolean_t success; 13659 uint_t ipif_orig_id; 13660 ip_stack_t *ipst = ill->ill_ipst; 13661 13662 ASSERT(IAM_WRITER_IPIF(ipif)); 13663 13664 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13665 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 13666 ill_t *, ill, ipif_t *, ipif); 13667 13668 /* Shouldn't get here if it is already up. */ 13669 if (ipif->ipif_flags & IPIF_UP) 13670 return (EALREADY); 13671 13672 /* 13673 * If this is a request to bring up a data address on an interface 13674 * under IPMP, then move the address to its IPMP meta-interface and 13675 * try to bring it up. One complication is that the zeroth ipif for 13676 * an ill is special, in that every ill always has one, and that code 13677 * throughout IP deferences ill->ill_ipif without holding any locks. 13678 */ 13679 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 13680 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 13681 ipif_t *stubipif = NULL, *moveipif = NULL; 13682 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 13683 13684 /* 13685 * The ipif being brought up should be quiesced. If it's not, 13686 * something has gone amiss and we need to bail out. (If it's 13687 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 13688 */ 13689 mutex_enter(&ill->ill_lock); 13690 if (!ipif_is_quiescent(ipif)) { 13691 mutex_exit(&ill->ill_lock); 13692 return (EINVAL); 13693 } 13694 mutex_exit(&ill->ill_lock); 13695 13696 /* 13697 * If we're going to need to allocate ipifs, do it prior 13698 * to starting the move (and grabbing locks). 13699 */ 13700 if (ipif->ipif_id == 0) { 13701 moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13702 B_FALSE); 13703 stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13704 B_FALSE); 13705 if (moveipif == NULL || stubipif == NULL) { 13706 mi_free(moveipif); 13707 mi_free(stubipif); 13708 return (ENOMEM); 13709 } 13710 } 13711 13712 /* 13713 * Grab or transfer the ipif to move. During the move, keep 13714 * ill_g_lock held to prevent any ill walker threads from 13715 * seeing things in an inconsistent state. 13716 */ 13717 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13718 if (ipif->ipif_id != 0) { 13719 ipif_remove(ipif); 13720 } else { 13721 ipif_transfer(ipif, moveipif, stubipif); 13722 ipif = moveipif; 13723 } 13724 13725 /* 13726 * Place the ipif on the IPMP ill. If the zeroth ipif on 13727 * the IPMP ill is a stub (0.0.0.0 down address) then we 13728 * replace that one. Otherwise, pick the next available slot. 13729 */ 13730 ipif->ipif_ill = ipmp_ill; 13731 ipif_orig_id = ipif->ipif_id; 13732 13733 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 13734 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 13735 ipif = ipmp_ill->ill_ipif; 13736 } else { 13737 ipif->ipif_id = -1; 13738 if (ipif_insert(ipif, B_FALSE) != 0) { 13739 /* 13740 * No more available ipif_id's -- put it back 13741 * on the original ill and fail the operation. 13742 * Since we're writer on the ill, we can be 13743 * sure our old slot is still available. 13744 */ 13745 ipif->ipif_id = ipif_orig_id; 13746 ipif->ipif_ill = ill; 13747 if (ipif_orig_id == 0) { 13748 ipif_transfer(ipif, ill->ill_ipif, 13749 NULL); 13750 } else { 13751 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 13752 } 13753 rw_exit(&ipst->ips_ill_g_lock); 13754 return (ENOMEM); 13755 } 13756 } 13757 rw_exit(&ipst->ips_ill_g_lock); 13758 13759 /* 13760 * Tell SCTP that the ipif has moved. Note that even if we 13761 * had to allocate a new ipif, the original sequence id was 13762 * preserved and therefore SCTP won't know. 13763 */ 13764 sctp_move_ipif(ipif, ill, ipmp_ill); 13765 13766 /* 13767 * If the ipif being brought up was on slot zero, then we 13768 * first need to bring up the placeholder we stuck there. In 13769 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 13770 * call to ipif_up() itself, if we successfully bring up the 13771 * placeholder, we'll check ill_move_ipif and bring it up too. 13772 */ 13773 if (ipif_orig_id == 0) { 13774 ASSERT(ill->ill_move_ipif == NULL); 13775 ill->ill_move_ipif = ipif; 13776 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 13777 ASSERT(ill->ill_move_ipif == NULL); 13778 if (err != EINPROGRESS) 13779 ill->ill_move_ipif = NULL; 13780 return (err); 13781 } 13782 13783 /* 13784 * Bring it up on the IPMP ill. 13785 */ 13786 return (ipif_up(ipif, q, mp)); 13787 } 13788 13789 /* Skip arp/ndp for any loopback interface. */ 13790 if (ill->ill_wq != NULL) { 13791 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 13792 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 13793 13794 if (!ill->ill_dl_up) { 13795 /* 13796 * ill_dl_up is not yet set. i.e. we are yet to 13797 * DL_BIND with the driver and this is the first 13798 * logical interface on the ill to become "up". 13799 * Tell the driver to get going (via DL_BIND_REQ). 13800 * Note that changing "significant" IFF_ flags 13801 * address/netmask etc cause a down/up dance, but 13802 * does not cause an unbind (DL_UNBIND) with the driver 13803 */ 13804 return (ill_dl_up(ill, ipif, mp, q)); 13805 } 13806 13807 /* 13808 * ipif_resolver_up may end up needeing to bind/attach 13809 * the ARP stream, which in turn necessitates a 13810 * DLPI message exchange with the driver. ioctls are 13811 * serialized and so we cannot send more than one 13812 * interface up message at a time. If ipif_resolver_up 13813 * does need to wait for the DLPI handshake for the ARP stream, 13814 * we get EINPROGRESS and we will complete in arp_bringup_done. 13815 */ 13816 13817 ASSERT(connp != NULL || !CONN_Q(q)); 13818 if (connp != NULL) 13819 mutex_enter(&connp->conn_lock); 13820 mutex_enter(&ill->ill_lock); 13821 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 13822 mutex_exit(&ill->ill_lock); 13823 if (connp != NULL) 13824 mutex_exit(&connp->conn_lock); 13825 if (!success) 13826 return (EINTR); 13827 13828 /* 13829 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 13830 * complete when ipif_ndp_up returns. 13831 */ 13832 err = ipif_resolver_up(ipif, Res_act_initial); 13833 if (err == EINPROGRESS) { 13834 /* We will complete it in arp_bringup_done() */ 13835 return (err); 13836 } 13837 13838 if (isv6 && err == 0) 13839 err = ipif_ndp_up(ipif, B_TRUE); 13840 13841 ASSERT(err != EINPROGRESS); 13842 mp = ipsq_pending_mp_get(ipsq, &connp); 13843 ASSERT(mp != NULL); 13844 if (err != 0) 13845 return (err); 13846 } else { 13847 /* 13848 * Interfaces without underlying hardware don't do duplicate 13849 * address detection. 13850 */ 13851 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 13852 ipif->ipif_addr_ready = 1; 13853 err = ill_add_ires(ill); 13854 /* allocation failure? */ 13855 if (err != 0) 13856 return (err); 13857 } 13858 13859 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 13860 if (err == 0 && ill->ill_move_ipif != NULL) { 13861 ipif = ill->ill_move_ipif; 13862 ill->ill_move_ipif = NULL; 13863 return (ipif_up(ipif, q, mp)); 13864 } 13865 return (err); 13866 } 13867 13868 /* 13869 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 13870 * The identical set of IREs need to be removed in ill_delete_ires(). 13871 */ 13872 int 13873 ill_add_ires(ill_t *ill) 13874 { 13875 ire_t *ire; 13876 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 13877 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 13878 13879 if (ill->ill_ire_multicast != NULL) 13880 return (0); 13881 13882 /* 13883 * provide some dummy ire_addr for creating the ire. 13884 */ 13885 if (ill->ill_isv6) { 13886 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 13887 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 13888 } else { 13889 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 13890 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 13891 } 13892 if (ire == NULL) 13893 return (ENOMEM); 13894 13895 ill->ill_ire_multicast = ire; 13896 return (0); 13897 } 13898 13899 void 13900 ill_delete_ires(ill_t *ill) 13901 { 13902 if (ill->ill_ire_multicast != NULL) { 13903 /* 13904 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 13905 * which was taken without any th_tracing enabled. 13906 * We also mark it as condemned (note that it was never added) 13907 * so that caching conn's can move off of it. 13908 */ 13909 ire_make_condemned(ill->ill_ire_multicast); 13910 ire_refrele_notr(ill->ill_ire_multicast); 13911 ill->ill_ire_multicast = NULL; 13912 } 13913 } 13914 13915 /* 13916 * Perform a bind for the physical device. 13917 * When the routine returns EINPROGRESS then mp has been consumed and 13918 * the ioctl will be acked from ip_rput_dlpi. 13919 * Allocate an unbind message and save it until ipif_down. 13920 */ 13921 static int 13922 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 13923 { 13924 mblk_t *bind_mp = NULL; 13925 mblk_t *unbind_mp = NULL; 13926 conn_t *connp; 13927 boolean_t success; 13928 int err; 13929 13930 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 13931 13932 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 13933 ASSERT(IAM_WRITER_ILL(ill)); 13934 ASSERT(mp != NULL); 13935 13936 /* 13937 * Make sure we have an IRE_MULTICAST in case we immediately 13938 * start receiving packets. 13939 */ 13940 err = ill_add_ires(ill); 13941 if (err != 0) 13942 goto bad; 13943 13944 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 13945 DL_BIND_REQ); 13946 if (bind_mp == NULL) 13947 goto bad; 13948 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 13949 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 13950 13951 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 13952 if (unbind_mp == NULL) 13953 goto bad; 13954 13955 /* 13956 * Record state needed to complete this operation when the 13957 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 13958 */ 13959 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 13960 ASSERT(connp != NULL || !CONN_Q(q)); 13961 GRAB_CONN_LOCK(q); 13962 mutex_enter(&ipif->ipif_ill->ill_lock); 13963 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 13964 mutex_exit(&ipif->ipif_ill->ill_lock); 13965 RELEASE_CONN_LOCK(q); 13966 if (!success) 13967 goto bad; 13968 13969 /* 13970 * Save the unbind message for ill_dl_down(); it will be consumed when 13971 * the interface goes down. 13972 */ 13973 ASSERT(ill->ill_unbind_mp == NULL); 13974 ill->ill_unbind_mp = unbind_mp; 13975 13976 ill_dlpi_send(ill, bind_mp); 13977 /* Send down link-layer capabilities probe if not already done. */ 13978 ill_capability_probe(ill); 13979 13980 /* 13981 * Sysid used to rely on the fact that netboots set domainname 13982 * and the like. Now that miniroot boots aren't strictly netboots 13983 * and miniroot network configuration is driven from userland 13984 * these things still need to be set. This situation can be detected 13985 * by comparing the interface being configured here to the one 13986 * dhcifname was set to reference by the boot loader. Once sysid is 13987 * converted to use dhcp_ipc_getinfo() this call can go away. 13988 */ 13989 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 13990 (strcmp(ill->ill_name, dhcifname) == 0) && 13991 (strlen(srpc_domain) == 0)) { 13992 if (dhcpinit() != 0) 13993 cmn_err(CE_WARN, "no cached dhcp response"); 13994 } 13995 13996 /* 13997 * This operation will complete in ip_rput_dlpi with either 13998 * a DL_BIND_ACK or DL_ERROR_ACK. 13999 */ 14000 return (EINPROGRESS); 14001 bad: 14002 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14003 14004 freemsg(bind_mp); 14005 freemsg(unbind_mp); 14006 return (ENOMEM); 14007 } 14008 14009 /* Add room for tcp+ip headers */ 14010 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14011 14012 /* 14013 * DLPI and ARP is up. 14014 * Create all the IREs associated with an interface. Bring up multicast. 14015 * Set the interface flag and finish other initialization 14016 * that potentially had to be deferred to after DL_BIND_ACK. 14017 */ 14018 int 14019 ipif_up_done(ipif_t *ipif) 14020 { 14021 ill_t *ill = ipif->ipif_ill; 14022 int err = 0; 14023 boolean_t loopback = B_FALSE; 14024 boolean_t update_src_selection = B_TRUE; 14025 ipif_t *tmp_ipif; 14026 14027 ip1dbg(("ipif_up_done(%s:%u)\n", 14028 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14029 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14030 ill_t *, ill, ipif_t *, ipif); 14031 14032 /* Check if this is a loopback interface */ 14033 if (ipif->ipif_ill->ill_wq == NULL) 14034 loopback = B_TRUE; 14035 14036 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14037 14038 /* 14039 * If all other interfaces for this ill are down or DEPRECATED, 14040 * or otherwise unsuitable for source address selection, 14041 * reset the src generation numbers to make sure source 14042 * address selection gets to take this new ipif into account. 14043 * No need to hold ill_lock while traversing the ipif list since 14044 * we are writer 14045 */ 14046 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14047 tmp_ipif = tmp_ipif->ipif_next) { 14048 if (((tmp_ipif->ipif_flags & 14049 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14050 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14051 (tmp_ipif == ipif)) 14052 continue; 14053 /* first useable pre-existing interface */ 14054 update_src_selection = B_FALSE; 14055 break; 14056 } 14057 if (update_src_selection) 14058 ip_update_source_selection(ill->ill_ipst); 14059 14060 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14061 nce_t *loop_nce = NULL; 14062 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14063 14064 /* 14065 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14066 * ipif_lookup_on_name(), but in the case of zones we can have 14067 * several loopback addresses on lo0. So all the interfaces with 14068 * loopback addresses need to be marked IRE_LOOPBACK. 14069 */ 14070 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14071 htonl(INADDR_LOOPBACK)) 14072 ipif->ipif_ire_type = IRE_LOOPBACK; 14073 else 14074 ipif->ipif_ire_type = IRE_LOCAL; 14075 if (ill->ill_net_type != IRE_LOOPBACK) 14076 flags |= NCE_F_PUBLISH; 14077 14078 /* add unicast nce for the local addr */ 14079 err = nce_lookup_then_add_v4(ill, NULL, 14080 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14081 ND_REACHABLE, &loop_nce); 14082 /* A shared-IP zone sees EEXIST for lo0:N */ 14083 if (err == 0 || err == EEXIST) { 14084 ipif->ipif_added_nce = 1; 14085 loop_nce->nce_ipif_cnt++; 14086 nce_refrele(loop_nce); 14087 err = 0; 14088 } else { 14089 ASSERT(loop_nce == NULL); 14090 return (err); 14091 } 14092 } 14093 14094 /* Create all the IREs associated with this interface */ 14095 err = ipif_add_ires_v4(ipif, loopback); 14096 if (err != 0) { 14097 /* 14098 * see comments about return value from 14099 * ip_addr_availability_check() in ipif_add_ires_v4(). 14100 */ 14101 if (err != EADDRINUSE) { 14102 (void) ipif_arp_down(ipif); 14103 } else { 14104 /* 14105 * Make IPMP aware of the deleted ipif so that 14106 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14107 * can be completed. Note that we do not want to 14108 * destroy the nce that was created on the ipmp_ill 14109 * for the active copy of the duplicate address in 14110 * use. 14111 */ 14112 if (IS_IPMP(ill)) 14113 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14114 err = EADDRNOTAVAIL; 14115 } 14116 return (err); 14117 } 14118 14119 if (ill->ill_ipif_up_count == 1 && !loopback) { 14120 /* Recover any additional IREs entries for this ill */ 14121 (void) ill_recover_saved_ire(ill); 14122 } 14123 14124 if (ill->ill_need_recover_multicast) { 14125 /* 14126 * Need to recover all multicast memberships in the driver. 14127 * This had to be deferred until we had attached. The same 14128 * code exists in ipif_up_done_v6() to recover IPv6 14129 * memberships. 14130 * 14131 * Note that it would be preferable to unconditionally do the 14132 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14133 * that since ill_join_allmulti() depends on ill_dl_up being 14134 * set, and it is not set until we receive a DL_BIND_ACK after 14135 * having called ill_dl_up(). 14136 */ 14137 ill_recover_multicast(ill); 14138 } 14139 14140 if (ill->ill_ipif_up_count == 1) { 14141 /* 14142 * Since the interface is now up, it may now be active. 14143 */ 14144 if (IS_UNDER_IPMP(ill)) 14145 ipmp_ill_refresh_active(ill); 14146 14147 /* 14148 * If this is an IPMP interface, we may now be able to 14149 * establish ARP entries. 14150 */ 14151 if (IS_IPMP(ill)) 14152 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14153 } 14154 14155 /* Join the allhosts multicast address */ 14156 ipif_multicast_up(ipif); 14157 14158 if (!loopback && !update_src_selection && 14159 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14160 ip_update_source_selection(ill->ill_ipst); 14161 14162 if (!loopback && ipif->ipif_addr_ready) { 14163 /* Broadcast an address mask reply. */ 14164 ipif_mask_reply(ipif); 14165 } 14166 /* Perhaps ilgs should use this ill */ 14167 update_conn_ill(NULL, ill->ill_ipst); 14168 14169 /* 14170 * This had to be deferred until we had bound. Tell routing sockets and 14171 * others that this interface is up if it looks like the address has 14172 * been validated. Otherwise, if it isn't ready yet, wait for 14173 * duplicate address detection to do its thing. 14174 */ 14175 if (ipif->ipif_addr_ready) 14176 ipif_up_notify(ipif); 14177 return (0); 14178 } 14179 14180 /* 14181 * Add the IREs associated with the ipif. 14182 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14183 */ 14184 static int 14185 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14186 { 14187 ill_t *ill = ipif->ipif_ill; 14188 ip_stack_t *ipst = ill->ill_ipst; 14189 ire_t *ire_array[20]; 14190 ire_t **irep = ire_array; 14191 ire_t **irep1; 14192 ipaddr_t net_mask = 0; 14193 ipaddr_t subnet_mask, route_mask; 14194 int err; 14195 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14196 14197 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14198 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14199 /* 14200 * If we're on a labeled system then make sure that zone- 14201 * private addresses have proper remote host database entries. 14202 */ 14203 if (is_system_labeled() && 14204 ipif->ipif_ire_type != IRE_LOOPBACK && 14205 !tsol_check_interface_address(ipif)) 14206 return (EINVAL); 14207 14208 /* Register the source address for __sin6_src_id */ 14209 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14210 ipif->ipif_zoneid, ipst); 14211 if (err != 0) { 14212 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14213 return (err); 14214 } 14215 14216 /* If the interface address is set, create the local IRE. */ 14217 ire_local = ire_create( 14218 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14219 (uchar_t *)&ip_g_all_ones, /* mask */ 14220 NULL, /* no gateway */ 14221 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14222 ipif->ipif_ill, 14223 ipif->ipif_zoneid, 14224 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14225 RTF_PRIVATE : 0) | RTF_KERNEL, 14226 NULL, 14227 ipst); 14228 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14229 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14230 ipif->ipif_ire_type, 14231 ntohl(ipif->ipif_lcl_addr))); 14232 if (ire_local == NULL) { 14233 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14234 err = ENOMEM; 14235 goto bad; 14236 } 14237 } else { 14238 ip1dbg(( 14239 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14240 ipif->ipif_ire_type, 14241 ntohl(ipif->ipif_lcl_addr), 14242 (uint_t)ipif->ipif_flags)); 14243 } 14244 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14245 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14246 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14247 } else { 14248 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14249 } 14250 14251 subnet_mask = ipif->ipif_net_mask; 14252 14253 /* 14254 * If mask was not specified, use natural netmask of 14255 * interface address. Also, store this mask back into the 14256 * ipif struct. 14257 */ 14258 if (subnet_mask == 0) { 14259 subnet_mask = net_mask; 14260 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14261 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14262 ipif->ipif_v6subnet); 14263 } 14264 14265 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14266 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14267 ipif->ipif_subnet != INADDR_ANY) { 14268 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14269 14270 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14271 route_mask = IP_HOST_MASK; 14272 } else { 14273 route_mask = subnet_mask; 14274 } 14275 14276 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14277 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14278 (void *)ipif, (void *)ill, 14279 ill->ill_net_type, 14280 ntohl(ipif->ipif_subnet))); 14281 *irep++ = ire_create( 14282 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 14283 (uchar_t *)&route_mask, /* mask */ 14284 (uchar_t *)&ipif->ipif_lcl_addr, /* gateway */ 14285 ill->ill_net_type, /* IF_[NO]RESOLVER */ 14286 ill, 14287 ipif->ipif_zoneid, 14288 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14289 RTF_PRIVATE: 0) | RTF_KERNEL, 14290 NULL, 14291 ipst); 14292 } 14293 14294 /* 14295 * Create any necessary broadcast IREs. 14296 */ 14297 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14298 !(ipif->ipif_flags & IPIF_NOXMIT)) 14299 irep = ipif_create_bcast_ires(ipif, irep); 14300 14301 /* If an earlier ire_create failed, get out now */ 14302 for (irep1 = irep; irep1 > ire_array; ) { 14303 irep1--; 14304 if (*irep1 == NULL) { 14305 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 14306 err = ENOMEM; 14307 goto bad; 14308 } 14309 } 14310 14311 /* 14312 * Need to atomically check for IP address availability under 14313 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 14314 * ills or new ipifs can be added while we are checking availability. 14315 */ 14316 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14317 mutex_enter(&ipst->ips_ip_addr_avail_lock); 14318 /* Mark it up, and increment counters. */ 14319 ipif->ipif_flags |= IPIF_UP; 14320 ill->ill_ipif_up_count++; 14321 err = ip_addr_availability_check(ipif); 14322 mutex_exit(&ipst->ips_ip_addr_avail_lock); 14323 rw_exit(&ipst->ips_ill_g_lock); 14324 14325 if (err != 0) { 14326 /* 14327 * Our address may already be up on the same ill. In this case, 14328 * the ARP entry for our ipif replaced the one for the other 14329 * ipif. So we don't want to delete it (otherwise the other ipif 14330 * would be unable to send packets). 14331 * ip_addr_availability_check() identifies this case for us and 14332 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 14333 * which is the expected error code. 14334 */ 14335 ill->ill_ipif_up_count--; 14336 ipif->ipif_flags &= ~IPIF_UP; 14337 goto bad; 14338 } 14339 14340 /* 14341 * Add in all newly created IREs. ire_create_bcast() has 14342 * already checked for duplicates of the IRE_BROADCAST type. 14343 */ 14344 if (ire_local != NULL) { 14345 ire_local = ire_add(ire_local); 14346 #ifdef DEBUG 14347 if (ire_local != NULL) { 14348 ire_refhold_notr(ire_local); 14349 ire_refrele(ire_local); 14350 } 14351 #endif 14352 } 14353 14354 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14355 if (ire_local != NULL) 14356 ipif->ipif_ire_local = ire_local; 14357 rw_exit(&ipst->ips_ill_g_lock); 14358 ire_local = NULL; 14359 14360 for (irep1 = irep; irep1 > ire_array; ) { 14361 irep1--; 14362 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 14363 /* refheld by ire_add. */ 14364 *irep1 = ire_add(*irep1); 14365 if (*irep1 != NULL) { 14366 ire_refrele(*irep1); 14367 *irep1 = NULL; 14368 } 14369 } 14370 14371 if (!loopback) { 14372 /* 14373 * If the broadcast address has been set, make sure it makes 14374 * sense based on the interface address. 14375 * Only match on ill since we are sharing broadcast addresses. 14376 */ 14377 if ((ipif->ipif_brd_addr != INADDR_ANY) && 14378 (ipif->ipif_flags & IPIF_BROADCAST)) { 14379 ire_t *ire; 14380 14381 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 14382 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 14383 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 14384 14385 if (ire == NULL) { 14386 /* 14387 * If there isn't a matching broadcast IRE, 14388 * revert to the default for this netmask. 14389 */ 14390 ipif->ipif_v6brd_addr = ipv6_all_zeros; 14391 mutex_enter(&ipif->ipif_ill->ill_lock); 14392 ipif_set_default(ipif); 14393 mutex_exit(&ipif->ipif_ill->ill_lock); 14394 } else { 14395 ire_refrele(ire); 14396 } 14397 } 14398 14399 } 14400 return (0); 14401 14402 bad: 14403 ip1dbg(("ipif_add_ires: FAILED \n")); 14404 if (ire_local != NULL) 14405 ire_delete(ire_local); 14406 while (irep > ire_array) { 14407 irep--; 14408 if (*irep != NULL) { 14409 ire_delete(*irep); 14410 } 14411 } 14412 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 14413 14414 return (err); 14415 } 14416 14417 /* Remove all the IREs created by ipif_add_ires_v4 */ 14418 void 14419 ipif_delete_ires_v4(ipif_t *ipif) 14420 { 14421 ill_t *ill = ipif->ipif_ill; 14422 ip_stack_t *ipst = ill->ill_ipst; 14423 ipaddr_t net_mask = 0; 14424 ipaddr_t subnet_mask, route_mask; 14425 int match_args; 14426 ire_t *ire; 14427 boolean_t loopback; 14428 14429 /* Check if this is a loopback interface */ 14430 loopback = (ipif->ipif_ill->ill_wq == NULL); 14431 14432 match_args = MATCH_IRE_TYPE | MATCH_IRE_ILL | MATCH_IRE_MASK | 14433 MATCH_IRE_ZONEONLY; 14434 14435 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14436 if ((ire = ipif->ipif_ire_local) != NULL) { 14437 ipif->ipif_ire_local = NULL; 14438 rw_exit(&ipst->ips_ill_g_lock); 14439 /* 14440 * Move count to ipif so we don't loose the count due to 14441 * a down/up dance. 14442 */ 14443 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 14444 14445 ire_delete(ire); 14446 ire_refrele_notr(ire); 14447 } else { 14448 rw_exit(&ipst->ips_ill_g_lock); 14449 } 14450 14451 match_args |= MATCH_IRE_GW; 14452 14453 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14454 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14455 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14456 } else { 14457 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14458 } 14459 14460 subnet_mask = ipif->ipif_net_mask; 14461 14462 /* 14463 * If mask was not specified, use natural netmask of 14464 * interface address. Also, store this mask back into the 14465 * ipif struct. 14466 */ 14467 if (subnet_mask == 0) 14468 subnet_mask = net_mask; 14469 14470 /* Delete the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14471 if (IS_UNDER_IPMP(ill)) 14472 match_args |= MATCH_IRE_TESTHIDDEN; 14473 14474 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14475 ipif->ipif_subnet != INADDR_ANY) { 14476 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14477 14478 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14479 route_mask = IP_HOST_MASK; 14480 } else { 14481 route_mask = subnet_mask; 14482 } 14483 14484 ire = ire_ftable_lookup_v4( 14485 ipif->ipif_subnet, /* dest address */ 14486 route_mask, /* mask */ 14487 ipif->ipif_lcl_addr, /* gateway */ 14488 ill->ill_net_type, /* IF_[NO]RESOLVER */ 14489 ill, 14490 ipif->ipif_zoneid, 14491 NULL, 14492 match_args, 14493 0, 14494 ipst, 14495 NULL); 14496 ASSERT(ire != NULL); 14497 ire_delete(ire); 14498 ire_refrele(ire); 14499 } 14500 14501 /* 14502 * Create any necessary broadcast IREs. 14503 */ 14504 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14505 !(ipif->ipif_flags & IPIF_NOXMIT)) 14506 ipif_delete_bcast_ires(ipif); 14507 } 14508 14509 /* 14510 * Checks for availbility of a usable source address (if there is one) when the 14511 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 14512 * this selection is done regardless of the destination. 14513 */ 14514 boolean_t 14515 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 14516 ip_stack_t *ipst) 14517 { 14518 ipif_t *ipif = NULL; 14519 ill_t *uill; 14520 14521 ASSERT(ifindex != 0); 14522 14523 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 14524 if (uill == NULL) 14525 return (B_FALSE); 14526 14527 mutex_enter(&uill->ill_lock); 14528 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14529 if (IPIF_IS_CONDEMNED(ipif)) 14530 continue; 14531 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14532 continue; 14533 if (!(ipif->ipif_flags & IPIF_UP)) 14534 continue; 14535 if (ipif->ipif_zoneid != zoneid) 14536 continue; 14537 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14538 ipif->ipif_lcl_addr == INADDR_ANY) 14539 continue; 14540 mutex_exit(&uill->ill_lock); 14541 ill_refrele(uill); 14542 return (B_TRUE); 14543 } 14544 mutex_exit(&uill->ill_lock); 14545 ill_refrele(uill); 14546 return (B_FALSE); 14547 } 14548 14549 /* 14550 * Find an ipif with a good local address on the ill+zoneid. 14551 */ 14552 ipif_t * 14553 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 14554 { 14555 ipif_t *ipif; 14556 14557 mutex_enter(&ill->ill_lock); 14558 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14559 if (IPIF_IS_CONDEMNED(ipif)) 14560 continue; 14561 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14562 continue; 14563 if (!(ipif->ipif_flags & IPIF_UP)) 14564 continue; 14565 if (ipif->ipif_zoneid != zoneid && 14566 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 14567 continue; 14568 if (ill->ill_isv6 ? 14569 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14570 ipif->ipif_lcl_addr == INADDR_ANY) 14571 continue; 14572 ipif_refhold_locked(ipif); 14573 mutex_exit(&ill->ill_lock); 14574 return (ipif); 14575 } 14576 mutex_exit(&ill->ill_lock); 14577 return (NULL); 14578 } 14579 14580 /* 14581 * IP source address type, sorted from worst to best. For a given type, 14582 * always prefer IP addresses on the same subnet. All-zones addresses are 14583 * suboptimal because they pose problems with unlabeled destinations. 14584 */ 14585 typedef enum { 14586 IPIF_NONE, 14587 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 14588 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 14589 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 14590 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 14591 IPIF_DIFFNET, /* normal and different subnet */ 14592 IPIF_SAMENET, /* normal and same subnet */ 14593 IPIF_LOCALADDR /* local loopback */ 14594 } ipif_type_t; 14595 14596 /* 14597 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 14598 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 14599 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 14600 * the first one, unless IPMP is used in which case we round-robin among them; 14601 * see below for more. 14602 * 14603 * Returns NULL if there is no suitable source address for the ill. 14604 * This only occurs when there is no valid source address for the ill. 14605 */ 14606 ipif_t * 14607 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 14608 boolean_t allow_usesrc, boolean_t *notreadyp) 14609 { 14610 ill_t *usill = NULL; 14611 ill_t *ipmp_ill = NULL; 14612 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 14613 ipif_type_t type, best_type; 14614 tsol_tpc_t *src_rhtp, *dst_rhtp; 14615 ip_stack_t *ipst = ill->ill_ipst; 14616 boolean_t samenet; 14617 14618 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 14619 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 14620 B_FALSE, ipst); 14621 if (usill != NULL) 14622 ill = usill; /* Select source from usesrc ILL */ 14623 else 14624 return (NULL); 14625 } 14626 14627 /* 14628 * Test addresses should never be used for source address selection, 14629 * so if we were passed one, switch to the IPMP meta-interface. 14630 */ 14631 if (IS_UNDER_IPMP(ill)) { 14632 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 14633 ill = ipmp_ill; /* Select source from IPMP ill */ 14634 else 14635 return (NULL); 14636 } 14637 14638 /* 14639 * If we're dealing with an unlabeled destination on a labeled system, 14640 * make sure that we ignore source addresses that are incompatible with 14641 * the destination's default label. That destination's default label 14642 * must dominate the minimum label on the source address. 14643 */ 14644 dst_rhtp = NULL; 14645 if (is_system_labeled()) { 14646 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 14647 if (dst_rhtp == NULL) 14648 return (NULL); 14649 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 14650 TPC_RELE(dst_rhtp); 14651 dst_rhtp = NULL; 14652 } 14653 } 14654 14655 /* 14656 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 14657 * can be deleted. But an ipif/ill can get CONDEMNED any time. 14658 * After selecting the right ipif, under ill_lock make sure ipif is 14659 * not condemned, and increment refcnt. If ipif is CONDEMNED, 14660 * we retry. Inside the loop we still need to check for CONDEMNED, 14661 * but not under a lock. 14662 */ 14663 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14664 retry: 14665 /* 14666 * For source address selection, we treat the ipif list as circular 14667 * and continue until we get back to where we started. This allows 14668 * IPMP to vary source address selection (which improves inbound load 14669 * spreading) by caching its last ending point and starting from 14670 * there. NOTE: we don't have to worry about ill_src_ipif changing 14671 * ills since that can't happen on the IPMP ill. 14672 */ 14673 start_ipif = ill->ill_ipif; 14674 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 14675 start_ipif = ill->ill_src_ipif; 14676 14677 ipif = start_ipif; 14678 best_ipif = NULL; 14679 best_type = IPIF_NONE; 14680 do { 14681 if ((next_ipif = ipif->ipif_next) == NULL) 14682 next_ipif = ill->ill_ipif; 14683 14684 if (IPIF_IS_CONDEMNED(ipif)) 14685 continue; 14686 /* Always skip NOLOCAL and ANYCAST interfaces */ 14687 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14688 continue; 14689 if (!(ipif->ipif_flags & IPIF_UP)) 14690 continue; 14691 14692 if (!ipif->ipif_addr_ready) { 14693 if (notreadyp != NULL) 14694 *notreadyp = B_TRUE; 14695 continue; 14696 } 14697 14698 if (zoneid != ALL_ZONES && 14699 ipif->ipif_zoneid != zoneid && 14700 ipif->ipif_zoneid != ALL_ZONES) 14701 continue; 14702 14703 /* 14704 * Interfaces with 0.0.0.0 address are allowed to be UP, but 14705 * are not valid as source addresses. 14706 */ 14707 if (ipif->ipif_lcl_addr == INADDR_ANY) 14708 continue; 14709 14710 /* 14711 * Check compatibility of local address for destination's 14712 * default label if we're on a labeled system. Incompatible 14713 * addresses can't be used at all. 14714 */ 14715 if (dst_rhtp != NULL) { 14716 boolean_t incompat; 14717 14718 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 14719 IPV4_VERSION, B_FALSE); 14720 if (src_rhtp == NULL) 14721 continue; 14722 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 14723 src_rhtp->tpc_tp.tp_doi != 14724 dst_rhtp->tpc_tp.tp_doi || 14725 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 14726 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 14727 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 14728 src_rhtp->tpc_tp.tp_sl_set_cipso)); 14729 TPC_RELE(src_rhtp); 14730 if (incompat) 14731 continue; 14732 } 14733 14734 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 14735 14736 if (ipif->ipif_lcl_addr == dst) { 14737 type = IPIF_LOCALADDR; 14738 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 14739 type = samenet ? IPIF_SAMENET_DEPRECATED : 14740 IPIF_DIFFNET_DEPRECATED; 14741 } else if (ipif->ipif_zoneid == ALL_ZONES) { 14742 type = samenet ? IPIF_SAMENET_ALLZONES : 14743 IPIF_DIFFNET_ALLZONES; 14744 } else { 14745 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 14746 } 14747 14748 if (type > best_type) { 14749 best_type = type; 14750 best_ipif = ipif; 14751 if (best_type == IPIF_LOCALADDR) 14752 break; /* can't get better */ 14753 } 14754 } while ((ipif = next_ipif) != start_ipif); 14755 14756 if ((ipif = best_ipif) != NULL) { 14757 mutex_enter(&ipif->ipif_ill->ill_lock); 14758 if (IPIF_IS_CONDEMNED(ipif)) { 14759 mutex_exit(&ipif->ipif_ill->ill_lock); 14760 goto retry; 14761 } 14762 ipif_refhold_locked(ipif); 14763 14764 /* 14765 * For IPMP, update the source ipif rotor to the next ipif, 14766 * provided we can look it up. (We must not use it if it's 14767 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 14768 * ipif_free() checked ill_src_ipif.) 14769 */ 14770 if (IS_IPMP(ill) && ipif != NULL) { 14771 next_ipif = ipif->ipif_next; 14772 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 14773 ill->ill_src_ipif = next_ipif; 14774 else 14775 ill->ill_src_ipif = NULL; 14776 } 14777 mutex_exit(&ipif->ipif_ill->ill_lock); 14778 } 14779 14780 rw_exit(&ipst->ips_ill_g_lock); 14781 if (usill != NULL) 14782 ill_refrele(usill); 14783 if (ipmp_ill != NULL) 14784 ill_refrele(ipmp_ill); 14785 if (dst_rhtp != NULL) 14786 TPC_RELE(dst_rhtp); 14787 14788 #ifdef DEBUG 14789 if (ipif == NULL) { 14790 char buf1[INET6_ADDRSTRLEN]; 14791 14792 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 14793 ill->ill_name, 14794 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 14795 } else { 14796 char buf1[INET6_ADDRSTRLEN]; 14797 char buf2[INET6_ADDRSTRLEN]; 14798 14799 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 14800 ipif->ipif_ill->ill_name, 14801 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 14802 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 14803 buf2, sizeof (buf2)))); 14804 } 14805 #endif /* DEBUG */ 14806 return (ipif); 14807 } 14808 14809 /* 14810 * Pick a source address based on the destination ill and an optional setsrc 14811 * address. 14812 * The result is stored in srcp. If generation is set, then put the source 14813 * generation number there before we look for the source address (to avoid 14814 * missing changes in the set of source addresses. 14815 * If flagsp is set, then us it to pass back ipif_flags. 14816 * 14817 * If the caller wants to cache the returned source address and detect when 14818 * that might be stale, the caller should pass in a generation argument, 14819 * which the caller can later compare against ips_src_generation 14820 * 14821 * The precedence order for selecting an IPv4 source address is: 14822 * - RTF_SETSRC on the offlink ire always wins. 14823 * - If usrsrc is set, swap the ill to be the usesrc one. 14824 * - If IPMP is used on the ill, select a random address from the most 14825 * preferred ones below: 14826 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 14827 * 2. Not deprecated, not ALL_ZONES 14828 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 14829 * 4. Not deprecated, ALL_ZONES 14830 * 5. If onlink destination, same subnet and deprecated 14831 * 6. Deprecated. 14832 * 14833 * We have lower preference for ALL_ZONES IP addresses, 14834 * as they pose problems with unlabeled destinations. 14835 * 14836 * Note that when multiple IP addresses match e.g., #1 we pick 14837 * the first one if IPMP is not in use. With IPMP we randomize. 14838 */ 14839 int 14840 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 14841 ipaddr_t multicast_ifaddr, 14842 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 14843 uint32_t *generation, uint64_t *flagsp) 14844 { 14845 ipif_t *ipif; 14846 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 14847 14848 if (flagsp != NULL) 14849 *flagsp = 0; 14850 14851 /* 14852 * Need to grab the generation number before we check to 14853 * avoid a race with a change to the set of local addresses. 14854 * No lock needed since the thread which updates the set of local 14855 * addresses use ipif/ill locks and exit those (hence a store memory 14856 * barrier) before doing the atomic increase of ips_src_generation. 14857 */ 14858 if (generation != NULL) { 14859 *generation = ipst->ips_src_generation; 14860 } 14861 14862 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 14863 *srcp = multicast_ifaddr; 14864 return (0); 14865 } 14866 14867 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 14868 if (setsrc != INADDR_ANY) { 14869 *srcp = setsrc; 14870 return (0); 14871 } 14872 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 14873 if (ipif == NULL) { 14874 if (notready) 14875 return (ENETDOWN); 14876 else 14877 return (EADDRNOTAVAIL); 14878 } 14879 *srcp = ipif->ipif_lcl_addr; 14880 if (flagsp != NULL) 14881 *flagsp = ipif->ipif_flags; 14882 ipif_refrele(ipif); 14883 return (0); 14884 } 14885 14886 /* ARGSUSED */ 14887 int 14888 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 14889 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 14890 { 14891 /* 14892 * ill_phyint_reinit merged the v4 and v6 into a single 14893 * ipsq. We might not have been able to complete the 14894 * operation in ipif_set_values, if we could not become 14895 * exclusive. If so restart it here. 14896 */ 14897 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 14898 } 14899 14900 /* 14901 * Can operate on either a module or a driver queue. 14902 * Returns an error if not a module queue. 14903 */ 14904 /* ARGSUSED */ 14905 int 14906 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 14907 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 14908 { 14909 queue_t *q1 = q; 14910 char *cp; 14911 char interf_name[LIFNAMSIZ]; 14912 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 14913 14914 if (q->q_next == NULL) { 14915 ip1dbg(( 14916 "if_unitsel: IF_UNITSEL: no q_next\n")); 14917 return (EINVAL); 14918 } 14919 14920 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 14921 return (EALREADY); 14922 14923 do { 14924 q1 = q1->q_next; 14925 } while (q1->q_next); 14926 cp = q1->q_qinfo->qi_minfo->mi_idname; 14927 (void) sprintf(interf_name, "%s%d", cp, ppa); 14928 14929 /* 14930 * Here we are not going to delay the ioack until after 14931 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 14932 * original ioctl message before sending the requests. 14933 */ 14934 return (ipif_set_values(q, mp, interf_name, &ppa)); 14935 } 14936 14937 /* ARGSUSED */ 14938 int 14939 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 14940 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 14941 { 14942 return (ENXIO); 14943 } 14944 14945 /* 14946 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 14947 * `irep'. Returns a pointer to the next free `irep' entry 14948 * A mirror exists in ipif_delete_bcast_ires(). 14949 * 14950 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 14951 * done in ire_add. 14952 */ 14953 static ire_t ** 14954 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 14955 { 14956 ipaddr_t addr; 14957 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 14958 ipaddr_t subnetmask = ipif->ipif_net_mask; 14959 ill_t *ill = ipif->ipif_ill; 14960 zoneid_t zoneid = ipif->ipif_zoneid; 14961 14962 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 14963 14964 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 14965 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 14966 14967 if (ipif->ipif_lcl_addr == INADDR_ANY || 14968 (ipif->ipif_flags & IPIF_NOLOCAL)) 14969 netmask = htonl(IN_CLASSA_NET); /* fallback */ 14970 14971 irep = ire_create_bcast(ill, 0, zoneid, irep); 14972 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 14973 14974 /* 14975 * For backward compatibility, we create net broadcast IREs based on 14976 * the old "IP address class system", since some old machines only 14977 * respond to these class derived net broadcast. However, we must not 14978 * create these net broadcast IREs if the subnetmask is shorter than 14979 * the IP address class based derived netmask. Otherwise, we may 14980 * create a net broadcast address which is the same as an IP address 14981 * on the subnet -- and then TCP will refuse to talk to that address. 14982 */ 14983 if (netmask < subnetmask) { 14984 addr = netmask & ipif->ipif_subnet; 14985 irep = ire_create_bcast(ill, addr, zoneid, irep); 14986 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 14987 } 14988 14989 /* 14990 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 14991 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 14992 * created. Creating these broadcast IREs will only create confusion 14993 * as `addr' will be the same as the IP address. 14994 */ 14995 if (subnetmask != 0xFFFFFFFF) { 14996 addr = ipif->ipif_subnet; 14997 irep = ire_create_bcast(ill, addr, zoneid, irep); 14998 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 14999 } 15000 15001 return (irep); 15002 } 15003 15004 /* 15005 * Mirror of ipif_create_bcast_ires() 15006 */ 15007 static void 15008 ipif_delete_bcast_ires(ipif_t *ipif) 15009 { 15010 ipaddr_t addr; 15011 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15012 ipaddr_t subnetmask = ipif->ipif_net_mask; 15013 ill_t *ill = ipif->ipif_ill; 15014 zoneid_t zoneid = ipif->ipif_zoneid; 15015 ire_t *ire; 15016 15017 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15018 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15019 15020 if (ipif->ipif_lcl_addr == INADDR_ANY || 15021 (ipif->ipif_flags & IPIF_NOLOCAL)) 15022 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15023 15024 ire = ire_lookup_bcast(ill, 0, zoneid); 15025 ASSERT(ire != NULL); 15026 ire_delete(ire); ire_refrele(ire); 15027 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15028 ASSERT(ire != NULL); 15029 ire_delete(ire); ire_refrele(ire); 15030 15031 /* 15032 * For backward compatibility, we create net broadcast IREs based on 15033 * the old "IP address class system", since some old machines only 15034 * respond to these class derived net broadcast. However, we must not 15035 * create these net broadcast IREs if the subnetmask is shorter than 15036 * the IP address class based derived netmask. Otherwise, we may 15037 * create a net broadcast address which is the same as an IP address 15038 * on the subnet -- and then TCP will refuse to talk to that address. 15039 */ 15040 if (netmask < subnetmask) { 15041 addr = netmask & ipif->ipif_subnet; 15042 ire = ire_lookup_bcast(ill, addr, zoneid); 15043 ASSERT(ire != NULL); 15044 ire_delete(ire); ire_refrele(ire); 15045 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15046 ASSERT(ire != NULL); 15047 ire_delete(ire); ire_refrele(ire); 15048 } 15049 15050 /* 15051 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15052 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15053 * created. Creating these broadcast IREs will only create confusion 15054 * as `addr' will be the same as the IP address. 15055 */ 15056 if (subnetmask != 0xFFFFFFFF) { 15057 addr = ipif->ipif_subnet; 15058 ire = ire_lookup_bcast(ill, addr, zoneid); 15059 ASSERT(ire != NULL); 15060 ire_delete(ire); ire_refrele(ire); 15061 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15062 ASSERT(ire != NULL); 15063 ire_delete(ire); ire_refrele(ire); 15064 } 15065 } 15066 15067 /* 15068 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15069 * from lifr_flags and the name from lifr_name. 15070 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15071 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15072 * Returns EINPROGRESS when mp has been consumed by queueing it on 15073 * ipx_pending_mp and the ioctl will complete in ip_rput. 15074 * 15075 * Can operate on either a module or a driver queue. 15076 * Returns an error if not a module queue. 15077 */ 15078 /* ARGSUSED */ 15079 int 15080 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15081 ip_ioctl_cmd_t *ipip, void *if_req) 15082 { 15083 ill_t *ill = q->q_ptr; 15084 phyint_t *phyi; 15085 ip_stack_t *ipst; 15086 struct lifreq *lifr = if_req; 15087 uint64_t new_flags; 15088 15089 ASSERT(ipif != NULL); 15090 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15091 15092 if (q->q_next == NULL) { 15093 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15094 return (EINVAL); 15095 } 15096 15097 /* 15098 * If we are not writer on 'q' then this interface exists already 15099 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15100 * so return EALREADY. 15101 */ 15102 if (ill != ipif->ipif_ill) 15103 return (EALREADY); 15104 15105 if (ill->ill_name[0] != '\0') 15106 return (EALREADY); 15107 15108 /* 15109 * If there's another ill already with the requested name, ensure 15110 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15111 * fuse together two unrelated ills, which will cause chaos. 15112 */ 15113 ipst = ill->ill_ipst; 15114 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15115 lifr->lifr_name, NULL); 15116 if (phyi != NULL) { 15117 ill_t *ill_mate = phyi->phyint_illv4; 15118 15119 if (ill_mate == NULL) 15120 ill_mate = phyi->phyint_illv6; 15121 ASSERT(ill_mate != NULL); 15122 15123 if (ill_mate->ill_media->ip_m_mac_type != 15124 ill->ill_media->ip_m_mac_type) { 15125 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15126 "use the same ill name on differing media\n")); 15127 return (EINVAL); 15128 } 15129 } 15130 15131 /* 15132 * We start off as IFF_IPV4 in ipif_allocate and become 15133 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15134 * The only flags that we read from user space are IFF_IPV4, 15135 * IFF_IPV6, and IFF_BROADCAST. 15136 * 15137 * This ill has not been inserted into the global list. 15138 * So we are still single threaded and don't need any lock 15139 * 15140 * Saniy check the flags. 15141 */ 15142 15143 if ((lifr->lifr_flags & IFF_BROADCAST) && 15144 ((lifr->lifr_flags & IFF_IPV6) || 15145 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15146 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15147 "or IPv6 i.e., no broadcast \n")); 15148 return (EINVAL); 15149 } 15150 15151 new_flags = 15152 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15153 15154 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15155 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15156 "IFF_IPV4 or IFF_IPV6\n")); 15157 return (EINVAL); 15158 } 15159 15160 /* 15161 * We always start off as IPv4, so only need to check for IPv6. 15162 */ 15163 if ((new_flags & IFF_IPV6) != 0) { 15164 ill->ill_flags |= ILLF_IPV6; 15165 ill->ill_flags &= ~ILLF_IPV4; 15166 } 15167 15168 if ((new_flags & IFF_BROADCAST) != 0) 15169 ipif->ipif_flags |= IPIF_BROADCAST; 15170 else 15171 ipif->ipif_flags &= ~IPIF_BROADCAST; 15172 15173 /* We started off as V4. */ 15174 if (ill->ill_flags & ILLF_IPV6) { 15175 ill->ill_phyint->phyint_illv6 = ill; 15176 ill->ill_phyint->phyint_illv4 = NULL; 15177 } 15178 15179 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15180 } 15181 15182 /* ARGSUSED */ 15183 int 15184 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15185 ip_ioctl_cmd_t *ipip, void *if_req) 15186 { 15187 /* 15188 * ill_phyint_reinit merged the v4 and v6 into a single 15189 * ipsq. We might not have been able to complete the 15190 * slifname in ipif_set_values, if we could not become 15191 * exclusive. If so restart it here 15192 */ 15193 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15194 } 15195 15196 /* 15197 * Return a pointer to the ipif which matches the index, IP version type and 15198 * zoneid. 15199 */ 15200 ipif_t * 15201 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15202 ip_stack_t *ipst) 15203 { 15204 ill_t *ill; 15205 ipif_t *ipif = NULL; 15206 15207 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15208 if (ill != NULL) { 15209 mutex_enter(&ill->ill_lock); 15210 for (ipif = ill->ill_ipif; ipif != NULL; 15211 ipif = ipif->ipif_next) { 15212 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15213 zoneid == ipif->ipif_zoneid || 15214 ipif->ipif_zoneid == ALL_ZONES)) { 15215 ipif_refhold_locked(ipif); 15216 break; 15217 } 15218 } 15219 mutex_exit(&ill->ill_lock); 15220 ill_refrele(ill); 15221 } 15222 return (ipif); 15223 } 15224 15225 /* 15226 * Change an existing physical interface's index. If the new index 15227 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15228 * Finally, we update other systems which may have a dependence on the 15229 * index value. 15230 */ 15231 /* ARGSUSED */ 15232 int 15233 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15234 ip_ioctl_cmd_t *ipip, void *ifreq) 15235 { 15236 ill_t *ill; 15237 phyint_t *phyi; 15238 struct ifreq *ifr = (struct ifreq *)ifreq; 15239 struct lifreq *lifr = (struct lifreq *)ifreq; 15240 uint_t old_index, index; 15241 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15242 avl_index_t where; 15243 15244 if (ipip->ipi_cmd_type == IF_CMD) 15245 index = ifr->ifr_index; 15246 else 15247 index = lifr->lifr_index; 15248 15249 /* 15250 * Only allow on physical interface. Also, index zero is illegal. 15251 */ 15252 ill = ipif->ipif_ill; 15253 phyi = ill->ill_phyint; 15254 if (ipif->ipif_id != 0 || index == 0) { 15255 return (EINVAL); 15256 } 15257 15258 /* If the index is not changing, no work to do */ 15259 if (phyi->phyint_ifindex == index) 15260 return (0); 15261 15262 /* 15263 * Use phyint_exists() to determine if the new interface index 15264 * is already in use. If the index is unused then we need to 15265 * change the phyint's position in the phyint_list_avl_by_index 15266 * tree. If we do not do this, subsequent lookups (using the new 15267 * index value) will not find the phyint. 15268 */ 15269 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15270 if (phyint_exists(index, ipst)) { 15271 rw_exit(&ipst->ips_ill_g_lock); 15272 return (EEXIST); 15273 } 15274 15275 /* 15276 * The new index is unused. Set it in the phyint. However we must not 15277 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15278 * changes. The event must be bound to old ifindex value. 15279 */ 15280 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15281 &index, sizeof (index)); 15282 15283 old_index = phyi->phyint_ifindex; 15284 phyi->phyint_ifindex = index; 15285 15286 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15287 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15288 &index, &where); 15289 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15290 phyi, where); 15291 rw_exit(&ipst->ips_ill_g_lock); 15292 15293 /* Update SCTP's ILL list */ 15294 sctp_ill_reindex(ill, old_index); 15295 15296 /* Send the routing sockets message */ 15297 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 15298 if (ILL_OTHER(ill)) 15299 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 15300 15301 /* Perhaps ilgs should use this ill */ 15302 update_conn_ill(NULL, ill->ill_ipst); 15303 return (0); 15304 } 15305 15306 /* ARGSUSED */ 15307 int 15308 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15309 ip_ioctl_cmd_t *ipip, void *ifreq) 15310 { 15311 struct ifreq *ifr = (struct ifreq *)ifreq; 15312 struct lifreq *lifr = (struct lifreq *)ifreq; 15313 15314 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 15315 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15316 /* Get the interface index */ 15317 if (ipip->ipi_cmd_type == IF_CMD) { 15318 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15319 } else { 15320 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15321 } 15322 return (0); 15323 } 15324 15325 /* ARGSUSED */ 15326 int 15327 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15328 ip_ioctl_cmd_t *ipip, void *ifreq) 15329 { 15330 struct lifreq *lifr = (struct lifreq *)ifreq; 15331 15332 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 15333 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15334 /* Get the interface zone */ 15335 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15336 lifr->lifr_zoneid = ipif->ipif_zoneid; 15337 return (0); 15338 } 15339 15340 /* 15341 * Set the zoneid of an interface. 15342 */ 15343 /* ARGSUSED */ 15344 int 15345 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15346 ip_ioctl_cmd_t *ipip, void *ifreq) 15347 { 15348 struct lifreq *lifr = (struct lifreq *)ifreq; 15349 int err = 0; 15350 boolean_t need_up = B_FALSE; 15351 zone_t *zptr; 15352 zone_status_t status; 15353 zoneid_t zoneid; 15354 15355 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15356 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 15357 if (!is_system_labeled()) 15358 return (ENOTSUP); 15359 zoneid = GLOBAL_ZONEID; 15360 } 15361 15362 /* cannot assign instance zero to a non-global zone */ 15363 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 15364 return (ENOTSUP); 15365 15366 /* 15367 * Cannot assign to a zone that doesn't exist or is shutting down. In 15368 * the event of a race with the zone shutdown processing, since IP 15369 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 15370 * interface will be cleaned up even if the zone is shut down 15371 * immediately after the status check. If the interface can't be brought 15372 * down right away, and the zone is shut down before the restart 15373 * function is called, we resolve the possible races by rechecking the 15374 * zone status in the restart function. 15375 */ 15376 if ((zptr = zone_find_by_id(zoneid)) == NULL) 15377 return (EINVAL); 15378 status = zone_status_get(zptr); 15379 zone_rele(zptr); 15380 15381 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 15382 return (EINVAL); 15383 15384 if (ipif->ipif_flags & IPIF_UP) { 15385 /* 15386 * If the interface is already marked up, 15387 * we call ipif_down which will take care 15388 * of ditching any IREs that have been set 15389 * up based on the old interface address. 15390 */ 15391 err = ipif_logical_down(ipif, q, mp); 15392 if (err == EINPROGRESS) 15393 return (err); 15394 (void) ipif_down_tail(ipif); 15395 need_up = B_TRUE; 15396 } 15397 15398 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 15399 return (err); 15400 } 15401 15402 static int 15403 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 15404 queue_t *q, mblk_t *mp, boolean_t need_up) 15405 { 15406 int err = 0; 15407 ip_stack_t *ipst; 15408 15409 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 15410 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15411 15412 if (CONN_Q(q)) 15413 ipst = CONNQ_TO_IPST(q); 15414 else 15415 ipst = ILLQ_TO_IPST(q); 15416 15417 /* 15418 * For exclusive stacks we don't allow a different zoneid than 15419 * global. 15420 */ 15421 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 15422 zoneid != GLOBAL_ZONEID) 15423 return (EINVAL); 15424 15425 /* Set the new zone id. */ 15426 ipif->ipif_zoneid = zoneid; 15427 15428 /* Update sctp list */ 15429 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 15430 15431 /* The default multicast interface might have changed */ 15432 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 15433 15434 if (need_up) { 15435 /* 15436 * Now bring the interface back up. If this 15437 * is the only IPIF for the ILL, ipif_up 15438 * will have to re-bind to the device, so 15439 * we may get back EINPROGRESS, in which 15440 * case, this IOCTL will get completed in 15441 * ip_rput_dlpi when we see the DL_BIND_ACK. 15442 */ 15443 err = ipif_up(ipif, q, mp); 15444 } 15445 return (err); 15446 } 15447 15448 /* ARGSUSED */ 15449 int 15450 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15451 ip_ioctl_cmd_t *ipip, void *if_req) 15452 { 15453 struct lifreq *lifr = (struct lifreq *)if_req; 15454 zoneid_t zoneid; 15455 zone_t *zptr; 15456 zone_status_t status; 15457 15458 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15459 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 15460 zoneid = GLOBAL_ZONEID; 15461 15462 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 15463 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15464 15465 /* 15466 * We recheck the zone status to resolve the following race condition: 15467 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 15468 * 2) hme0:1 is up and can't be brought down right away; 15469 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 15470 * 3) zone "myzone" is halted; the zone status switches to 15471 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 15472 * the interfaces to remove - hme0:1 is not returned because it's not 15473 * yet in "myzone", so it won't be removed; 15474 * 4) the restart function for SIOCSLIFZONE is called; without the 15475 * status check here, we would have hme0:1 in "myzone" after it's been 15476 * destroyed. 15477 * Note that if the status check fails, we need to bring the interface 15478 * back to its state prior to ip_sioctl_slifzone(), hence the call to 15479 * ipif_up_done[_v6](). 15480 */ 15481 status = ZONE_IS_UNINITIALIZED; 15482 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 15483 status = zone_status_get(zptr); 15484 zone_rele(zptr); 15485 } 15486 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 15487 if (ipif->ipif_isv6) { 15488 (void) ipif_up_done_v6(ipif); 15489 } else { 15490 (void) ipif_up_done(ipif); 15491 } 15492 return (EINVAL); 15493 } 15494 15495 (void) ipif_down_tail(ipif); 15496 15497 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 15498 B_TRUE)); 15499 } 15500 15501 /* 15502 * Return the number of addresses on `ill' with one or more of the values 15503 * in `set' set and all of the values in `clear' clear. 15504 */ 15505 static uint_t 15506 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 15507 { 15508 ipif_t *ipif; 15509 uint_t cnt = 0; 15510 15511 ASSERT(IAM_WRITER_ILL(ill)); 15512 15513 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 15514 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 15515 cnt++; 15516 15517 return (cnt); 15518 } 15519 15520 /* 15521 * Return the number of migratable addresses on `ill' that are under 15522 * application control. 15523 */ 15524 uint_t 15525 ill_appaddr_cnt(const ill_t *ill) 15526 { 15527 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 15528 IPIF_NOFAILOVER)); 15529 } 15530 15531 /* 15532 * Return the number of point-to-point addresses on `ill'. 15533 */ 15534 uint_t 15535 ill_ptpaddr_cnt(const ill_t *ill) 15536 { 15537 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 15538 } 15539 15540 /* ARGSUSED */ 15541 int 15542 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15543 ip_ioctl_cmd_t *ipip, void *ifreq) 15544 { 15545 struct lifreq *lifr = ifreq; 15546 15547 ASSERT(q->q_next == NULL); 15548 ASSERT(CONN_Q(q)); 15549 15550 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 15551 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15552 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 15553 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 15554 15555 return (0); 15556 } 15557 15558 /* Find the previous ILL in this usesrc group */ 15559 static ill_t * 15560 ill_prev_usesrc(ill_t *uill) 15561 { 15562 ill_t *ill; 15563 15564 for (ill = uill->ill_usesrc_grp_next; 15565 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 15566 ill = ill->ill_usesrc_grp_next) 15567 /* do nothing */; 15568 return (ill); 15569 } 15570 15571 /* 15572 * Release all members of the usesrc group. This routine is called 15573 * from ill_delete when the interface being unplumbed is the 15574 * group head. 15575 * 15576 * This silently clears the usesrc that ifconfig setup. 15577 * An alternative would be to keep that ifindex, and drop packets on the floor 15578 * since no source address can be selected. 15579 * Even if we keep the current semantics, don't need a lock and a linked list. 15580 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 15581 * the one that is being removed. Issue is how we return the usesrc users 15582 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 15583 * ill_usesrc_ifindex matching a target ill. We could also do that with an 15584 * ill walk, but the walker would need to insert in the ioctl response. 15585 */ 15586 static void 15587 ill_disband_usesrc_group(ill_t *uill) 15588 { 15589 ill_t *next_ill, *tmp_ill; 15590 ip_stack_t *ipst = uill->ill_ipst; 15591 15592 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15593 next_ill = uill->ill_usesrc_grp_next; 15594 15595 do { 15596 ASSERT(next_ill != NULL); 15597 tmp_ill = next_ill->ill_usesrc_grp_next; 15598 ASSERT(tmp_ill != NULL); 15599 next_ill->ill_usesrc_grp_next = NULL; 15600 next_ill->ill_usesrc_ifindex = 0; 15601 next_ill = tmp_ill; 15602 } while (next_ill->ill_usesrc_ifindex != 0); 15603 uill->ill_usesrc_grp_next = NULL; 15604 } 15605 15606 /* 15607 * Remove the client usesrc ILL from the list and relink to a new list 15608 */ 15609 int 15610 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 15611 { 15612 ill_t *ill, *tmp_ill; 15613 ip_stack_t *ipst = ucill->ill_ipst; 15614 15615 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 15616 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15617 15618 /* 15619 * Check if the usesrc client ILL passed in is not already 15620 * in use as a usesrc ILL i.e one whose source address is 15621 * in use OR a usesrc ILL is not already in use as a usesrc 15622 * client ILL 15623 */ 15624 if ((ucill->ill_usesrc_ifindex == 0) || 15625 (uill->ill_usesrc_ifindex != 0)) { 15626 return (-1); 15627 } 15628 15629 ill = ill_prev_usesrc(ucill); 15630 ASSERT(ill->ill_usesrc_grp_next != NULL); 15631 15632 /* Remove from the current list */ 15633 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 15634 /* Only two elements in the list */ 15635 ASSERT(ill->ill_usesrc_ifindex == 0); 15636 ill->ill_usesrc_grp_next = NULL; 15637 } else { 15638 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 15639 } 15640 15641 if (ifindex == 0) { 15642 ucill->ill_usesrc_ifindex = 0; 15643 ucill->ill_usesrc_grp_next = NULL; 15644 return (0); 15645 } 15646 15647 ucill->ill_usesrc_ifindex = ifindex; 15648 tmp_ill = uill->ill_usesrc_grp_next; 15649 uill->ill_usesrc_grp_next = ucill; 15650 ucill->ill_usesrc_grp_next = 15651 (tmp_ill != NULL) ? tmp_ill : uill; 15652 return (0); 15653 } 15654 15655 /* 15656 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 15657 * ip.c for locking details. 15658 */ 15659 /* ARGSUSED */ 15660 int 15661 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15662 ip_ioctl_cmd_t *ipip, void *ifreq) 15663 { 15664 struct lifreq *lifr = (struct lifreq *)ifreq; 15665 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 15666 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 15667 int err = 0, ret; 15668 uint_t ifindex; 15669 ipsq_t *ipsq = NULL; 15670 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15671 15672 ASSERT(IAM_WRITER_IPIF(ipif)); 15673 ASSERT(q->q_next == NULL); 15674 ASSERT(CONN_Q(q)); 15675 15676 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 15677 15678 ifindex = lifr->lifr_index; 15679 if (ifindex == 0) { 15680 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 15681 /* non usesrc group interface, nothing to reset */ 15682 return (0); 15683 } 15684 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 15685 /* valid reset request */ 15686 reset_flg = B_TRUE; 15687 } 15688 15689 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15690 if (usesrc_ill == NULL) { 15691 return (ENXIO); 15692 } 15693 15694 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 15695 NEW_OP, B_TRUE); 15696 if (ipsq == NULL) { 15697 err = EINPROGRESS; 15698 /* Operation enqueued on the ipsq of the usesrc ILL */ 15699 goto done; 15700 } 15701 15702 /* USESRC isn't currently supported with IPMP */ 15703 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 15704 err = ENOTSUP; 15705 goto done; 15706 } 15707 15708 /* 15709 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 15710 * used by IPMP underlying interfaces, but someone might think it's 15711 * more general and try to use it independently with VNI.) 15712 */ 15713 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 15714 err = ENOTSUP; 15715 goto done; 15716 } 15717 15718 /* 15719 * If the client is already in use as a usesrc_ill or a usesrc_ill is 15720 * already a client then return EINVAL 15721 */ 15722 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 15723 err = EINVAL; 15724 goto done; 15725 } 15726 15727 /* 15728 * If the ill_usesrc_ifindex field is already set to what it needs to 15729 * be then this is a duplicate operation. 15730 */ 15731 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 15732 err = 0; 15733 goto done; 15734 } 15735 15736 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 15737 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 15738 usesrc_ill->ill_isv6)); 15739 15740 /* 15741 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 15742 * and the ill_usesrc_ifindex fields 15743 */ 15744 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 15745 15746 if (reset_flg) { 15747 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 15748 if (ret != 0) { 15749 err = EINVAL; 15750 } 15751 rw_exit(&ipst->ips_ill_g_usesrc_lock); 15752 goto done; 15753 } 15754 15755 /* 15756 * Four possibilities to consider: 15757 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 15758 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 15759 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 15760 * 4. Both are part of their respective usesrc groups 15761 */ 15762 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 15763 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 15764 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 15765 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 15766 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 15767 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 15768 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 15769 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 15770 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 15771 /* Insert at head of list */ 15772 usesrc_cli_ill->ill_usesrc_grp_next = 15773 usesrc_ill->ill_usesrc_grp_next; 15774 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 15775 } else { 15776 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 15777 ifindex); 15778 if (ret != 0) 15779 err = EINVAL; 15780 } 15781 rw_exit(&ipst->ips_ill_g_usesrc_lock); 15782 15783 done: 15784 if (ipsq != NULL) 15785 ipsq_exit(ipsq); 15786 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 15787 ill_refrele(usesrc_ill); 15788 15789 /* Let conn_ixa caching know that source address selection changed */ 15790 ip_update_source_selection(ipst); 15791 15792 return (err); 15793 } 15794 15795 /* 15796 * comparison function used by avl. 15797 */ 15798 static int 15799 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 15800 { 15801 15802 uint_t index; 15803 15804 ASSERT(phyip != NULL && index_ptr != NULL); 15805 15806 index = *((uint_t *)index_ptr); 15807 /* 15808 * let the phyint with the lowest index be on top. 15809 */ 15810 if (((phyint_t *)phyip)->phyint_ifindex < index) 15811 return (1); 15812 if (((phyint_t *)phyip)->phyint_ifindex > index) 15813 return (-1); 15814 return (0); 15815 } 15816 15817 /* 15818 * comparison function used by avl. 15819 */ 15820 static int 15821 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 15822 { 15823 ill_t *ill; 15824 int res = 0; 15825 15826 ASSERT(phyip != NULL && name_ptr != NULL); 15827 15828 if (((phyint_t *)phyip)->phyint_illv4) 15829 ill = ((phyint_t *)phyip)->phyint_illv4; 15830 else 15831 ill = ((phyint_t *)phyip)->phyint_illv6; 15832 ASSERT(ill != NULL); 15833 15834 res = strcmp(ill->ill_name, (char *)name_ptr); 15835 if (res > 0) 15836 return (1); 15837 else if (res < 0) 15838 return (-1); 15839 return (0); 15840 } 15841 15842 /* 15843 * This function is called on the unplumb path via ill_glist_delete() when 15844 * there are no ills left on the phyint and thus the phyint can be freed. 15845 */ 15846 static void 15847 phyint_free(phyint_t *phyi) 15848 { 15849 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 15850 15851 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 15852 15853 /* 15854 * If this phyint was an IPMP meta-interface, blow away the group. 15855 * This is safe to do because all of the illgrps have already been 15856 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 15857 * If we're cleaning up as a result of failed initialization, 15858 * phyint_grp may be NULL. 15859 */ 15860 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 15861 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 15862 ipmp_grp_destroy(phyi->phyint_grp); 15863 phyi->phyint_grp = NULL; 15864 rw_exit(&ipst->ips_ipmp_lock); 15865 } 15866 15867 /* 15868 * If this interface was under IPMP, take it out of the group. 15869 */ 15870 if (phyi->phyint_grp != NULL) 15871 ipmp_phyint_leave_grp(phyi); 15872 15873 /* 15874 * Delete the phyint and disassociate its ipsq. The ipsq itself 15875 * will be freed in ipsq_exit(). 15876 */ 15877 phyi->phyint_ipsq->ipsq_phyint = NULL; 15878 phyi->phyint_name[0] = '\0'; 15879 15880 mi_free(phyi); 15881 } 15882 15883 /* 15884 * Attach the ill to the phyint structure which can be shared by both 15885 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 15886 * function is called from ipif_set_values and ill_lookup_on_name (for 15887 * loopback) where we know the name of the ill. We lookup the ill and if 15888 * there is one present already with the name use that phyint. Otherwise 15889 * reuse the one allocated by ill_init. 15890 */ 15891 static void 15892 ill_phyint_reinit(ill_t *ill) 15893 { 15894 boolean_t isv6 = ill->ill_isv6; 15895 phyint_t *phyi_old; 15896 phyint_t *phyi; 15897 avl_index_t where = 0; 15898 ill_t *ill_other = NULL; 15899 ip_stack_t *ipst = ill->ill_ipst; 15900 15901 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 15902 15903 phyi_old = ill->ill_phyint; 15904 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 15905 phyi_old->phyint_illv6 == NULL)); 15906 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 15907 phyi_old->phyint_illv4 == NULL)); 15908 ASSERT(phyi_old->phyint_ifindex == 0); 15909 15910 /* 15911 * Now that our ill has a name, set it in the phyint. 15912 */ 15913 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 15914 15915 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15916 ill->ill_name, &where); 15917 15918 /* 15919 * 1. We grabbed the ill_g_lock before inserting this ill into 15920 * the global list of ills. So no other thread could have located 15921 * this ill and hence the ipsq of this ill is guaranteed to be empty. 15922 * 2. Now locate the other protocol instance of this ill. 15923 * 3. Now grab both ill locks in the right order, and the phyint lock of 15924 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 15925 * of neither ill can change. 15926 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 15927 * other ill. 15928 * 5. Release all locks. 15929 */ 15930 15931 /* 15932 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 15933 * we are initializing IPv4. 15934 */ 15935 if (phyi != NULL) { 15936 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 15937 ASSERT(ill_other->ill_phyint != NULL); 15938 ASSERT((isv6 && !ill_other->ill_isv6) || 15939 (!isv6 && ill_other->ill_isv6)); 15940 GRAB_ILL_LOCKS(ill, ill_other); 15941 /* 15942 * We are potentially throwing away phyint_flags which 15943 * could be different from the one that we obtain from 15944 * ill_other->ill_phyint. But it is okay as we are assuming 15945 * that the state maintained within IP is correct. 15946 */ 15947 mutex_enter(&phyi->phyint_lock); 15948 if (isv6) { 15949 ASSERT(phyi->phyint_illv6 == NULL); 15950 phyi->phyint_illv6 = ill; 15951 } else { 15952 ASSERT(phyi->phyint_illv4 == NULL); 15953 phyi->phyint_illv4 = ill; 15954 } 15955 15956 /* 15957 * Delete the old phyint and make its ipsq eligible 15958 * to be freed in ipsq_exit(). 15959 */ 15960 phyi_old->phyint_illv4 = NULL; 15961 phyi_old->phyint_illv6 = NULL; 15962 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 15963 phyi_old->phyint_name[0] = '\0'; 15964 mi_free(phyi_old); 15965 } else { 15966 mutex_enter(&ill->ill_lock); 15967 /* 15968 * We don't need to acquire any lock, since 15969 * the ill is not yet visible globally and we 15970 * have not yet released the ill_g_lock. 15971 */ 15972 phyi = phyi_old; 15973 mutex_enter(&phyi->phyint_lock); 15974 /* XXX We need a recovery strategy here. */ 15975 if (!phyint_assign_ifindex(phyi, ipst)) 15976 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 15977 15978 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15979 (void *)phyi, where); 15980 15981 (void) avl_find(&ipst->ips_phyint_g_list-> 15982 phyint_list_avl_by_index, 15983 &phyi->phyint_ifindex, &where); 15984 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15985 (void *)phyi, where); 15986 } 15987 15988 /* 15989 * Reassigning ill_phyint automatically reassigns the ipsq also. 15990 * pending mp is not affected because that is per ill basis. 15991 */ 15992 ill->ill_phyint = phyi; 15993 15994 /* 15995 * Now that the phyint's ifindex has been assigned, complete the 15996 * remaining 15997 */ 15998 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 15999 if (ill->ill_isv6) { 16000 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16001 ill->ill_phyint->phyint_ifindex; 16002 ill->ill_mcast_type = ipst->ips_mld_max_version; 16003 } else { 16004 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16005 } 16006 16007 /* 16008 * Generate an event within the hooks framework to indicate that 16009 * a new interface has just been added to IP. For this event to 16010 * be generated, the network interface must, at least, have an 16011 * ifindex assigned to it. (We don't generate the event for 16012 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16013 * 16014 * This needs to be run inside the ill_g_lock perimeter to ensure 16015 * that the ordering of delivered events to listeners matches the 16016 * order of them in the kernel. 16017 */ 16018 if (!IS_LOOPBACK(ill)) { 16019 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16020 ill->ill_name_length); 16021 } 16022 RELEASE_ILL_LOCKS(ill, ill_other); 16023 mutex_exit(&phyi->phyint_lock); 16024 } 16025 16026 /* 16027 * Notify any downstream modules of the name of this interface. 16028 * An M_IOCTL is used even though we don't expect a successful reply. 16029 * Any reply message from the driver (presumably an M_IOCNAK) will 16030 * eventually get discarded somewhere upstream. The message format is 16031 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16032 * to IP. 16033 */ 16034 static void 16035 ip_ifname_notify(ill_t *ill, queue_t *q) 16036 { 16037 mblk_t *mp1, *mp2; 16038 struct iocblk *iocp; 16039 struct lifreq *lifr; 16040 16041 mp1 = mkiocb(SIOCSLIFNAME); 16042 if (mp1 == NULL) 16043 return; 16044 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16045 if (mp2 == NULL) { 16046 freeb(mp1); 16047 return; 16048 } 16049 16050 mp1->b_cont = mp2; 16051 iocp = (struct iocblk *)mp1->b_rptr; 16052 iocp->ioc_count = sizeof (struct lifreq); 16053 16054 lifr = (struct lifreq *)mp2->b_rptr; 16055 mp2->b_wptr += sizeof (struct lifreq); 16056 bzero(lifr, sizeof (struct lifreq)); 16057 16058 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16059 lifr->lifr_ppa = ill->ill_ppa; 16060 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16061 16062 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16063 char *, "SIOCSLIFNAME", ill_t *, ill); 16064 putnext(q, mp1); 16065 } 16066 16067 static int 16068 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16069 { 16070 int err; 16071 ip_stack_t *ipst = ill->ill_ipst; 16072 phyint_t *phyi = ill->ill_phyint; 16073 16074 /* Set the obsolete NDD per-interface forwarding name. */ 16075 err = ill_set_ndd_name(ill); 16076 if (err != 0) { 16077 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 16078 err); 16079 } 16080 16081 /* 16082 * Now that ill_name is set, the configuration for the IPMP 16083 * meta-interface can be performed. 16084 */ 16085 if (IS_IPMP(ill)) { 16086 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16087 /* 16088 * If phyi->phyint_grp is NULL, then this is the first IPMP 16089 * meta-interface and we need to create the IPMP group. 16090 */ 16091 if (phyi->phyint_grp == NULL) { 16092 /* 16093 * If someone has renamed another IPMP group to have 16094 * the same name as our interface, bail. 16095 */ 16096 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16097 rw_exit(&ipst->ips_ipmp_lock); 16098 return (EEXIST); 16099 } 16100 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16101 if (phyi->phyint_grp == NULL) { 16102 rw_exit(&ipst->ips_ipmp_lock); 16103 return (ENOMEM); 16104 } 16105 } 16106 rw_exit(&ipst->ips_ipmp_lock); 16107 } 16108 16109 /* Tell downstream modules where they are. */ 16110 ip_ifname_notify(ill, q); 16111 16112 /* 16113 * ill_dl_phys returns EINPROGRESS in the usual case. 16114 * Error cases are ENOMEM ... 16115 */ 16116 err = ill_dl_phys(ill, ipif, mp, q); 16117 16118 if (ill->ill_isv6) { 16119 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16120 if (ipst->ips_mld_slowtimeout_id == 0) { 16121 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16122 (void *)ipst, 16123 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16124 } 16125 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16126 } else { 16127 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16128 if (ipst->ips_igmp_slowtimeout_id == 0) { 16129 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16130 (void *)ipst, 16131 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16132 } 16133 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16134 } 16135 16136 return (err); 16137 } 16138 16139 /* 16140 * Common routine for ppa and ifname setting. Should be called exclusive. 16141 * 16142 * Returns EINPROGRESS when mp has been consumed by queueing it on 16143 * ipx_pending_mp and the ioctl will complete in ip_rput. 16144 * 16145 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16146 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16147 * For SLIFNAME, we pass these values back to the userland. 16148 */ 16149 static int 16150 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16151 { 16152 ill_t *ill; 16153 ipif_t *ipif; 16154 ipsq_t *ipsq; 16155 char *ppa_ptr; 16156 char *old_ptr; 16157 char old_char; 16158 int error; 16159 ip_stack_t *ipst; 16160 16161 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16162 ASSERT(q->q_next != NULL); 16163 ASSERT(interf_name != NULL); 16164 16165 ill = (ill_t *)q->q_ptr; 16166 ipst = ill->ill_ipst; 16167 16168 ASSERT(ill->ill_ipst != NULL); 16169 ASSERT(ill->ill_name[0] == '\0'); 16170 ASSERT(IAM_WRITER_ILL(ill)); 16171 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16172 ASSERT(ill->ill_ppa == UINT_MAX); 16173 16174 ill->ill_defend_start = ill->ill_defend_count = 0; 16175 /* The ppa is sent down by ifconfig or is chosen */ 16176 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16177 return (EINVAL); 16178 } 16179 16180 /* 16181 * make sure ppa passed in is same as ppa in the name. 16182 * This check is not made when ppa == UINT_MAX in that case ppa 16183 * in the name could be anything. System will choose a ppa and 16184 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16185 */ 16186 if (*new_ppa_ptr != UINT_MAX) { 16187 /* stoi changes the pointer */ 16188 old_ptr = ppa_ptr; 16189 /* 16190 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16191 * (they don't have an externally visible ppa). We assign one 16192 * here so that we can manage the interface. Note that in 16193 * the past this value was always 0 for DLPI 1 drivers. 16194 */ 16195 if (*new_ppa_ptr == 0) 16196 *new_ppa_ptr = stoi(&old_ptr); 16197 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16198 return (EINVAL); 16199 } 16200 /* 16201 * terminate string before ppa 16202 * save char at that location. 16203 */ 16204 old_char = ppa_ptr[0]; 16205 ppa_ptr[0] = '\0'; 16206 16207 ill->ill_ppa = *new_ppa_ptr; 16208 /* 16209 * Finish as much work now as possible before calling ill_glist_insert 16210 * which makes the ill globally visible and also merges it with the 16211 * other protocol instance of this phyint. The remaining work is 16212 * done after entering the ipsq which may happen sometime later. 16213 * ill_set_ndd_name occurs after the ill has been made globally visible. 16214 */ 16215 ipif = ill->ill_ipif; 16216 16217 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16218 ipif_assign_seqid(ipif); 16219 16220 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16221 ill->ill_flags |= ILLF_IPV4; 16222 16223 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16224 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16225 16226 if (ill->ill_flags & ILLF_IPV6) { 16227 16228 ill->ill_isv6 = B_TRUE; 16229 ill_set_inputfn(ill); 16230 if (ill->ill_rq != NULL) { 16231 ill->ill_rq->q_qinfo = &iprinitv6; 16232 } 16233 16234 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16235 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16236 ipif->ipif_v6subnet = ipv6_all_zeros; 16237 ipif->ipif_v6net_mask = ipv6_all_zeros; 16238 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16239 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16240 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16241 /* 16242 * point-to-point or Non-mulicast capable 16243 * interfaces won't do NUD unless explicitly 16244 * configured to do so. 16245 */ 16246 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16247 !(ill->ill_flags & ILLF_MULTICAST)) { 16248 ill->ill_flags |= ILLF_NONUD; 16249 } 16250 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16251 if (ill->ill_flags & ILLF_NOARP) { 16252 /* 16253 * Note: xresolv interfaces will eventually need 16254 * NOARP set here as well, but that will require 16255 * those external resolvers to have some 16256 * knowledge of that flag and act appropriately. 16257 * Not to be changed at present. 16258 */ 16259 ill->ill_flags &= ~ILLF_NOARP; 16260 } 16261 /* 16262 * Set the ILLF_ROUTER flag according to the global 16263 * IPv6 forwarding policy. 16264 */ 16265 if (ipst->ips_ipv6_forward != 0) 16266 ill->ill_flags |= ILLF_ROUTER; 16267 } else if (ill->ill_flags & ILLF_IPV4) { 16268 ill->ill_isv6 = B_FALSE; 16269 ill_set_inputfn(ill); 16270 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16271 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16272 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16273 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16274 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16275 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 16276 /* 16277 * Set the ILLF_ROUTER flag according to the global 16278 * IPv4 forwarding policy. 16279 */ 16280 if (ipst->ips_ip_g_forward != 0) 16281 ill->ill_flags |= ILLF_ROUTER; 16282 } 16283 16284 ASSERT(ill->ill_phyint != NULL); 16285 16286 /* 16287 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 16288 * be completed in ill_glist_insert -> ill_phyint_reinit 16289 */ 16290 if (!ill_allocate_mibs(ill)) 16291 return (ENOMEM); 16292 16293 /* 16294 * Pick a default sap until we get the DL_INFO_ACK back from 16295 * the driver. 16296 */ 16297 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 16298 ill->ill_media->ip_m_ipv4sap; 16299 16300 ill->ill_ifname_pending = 1; 16301 ill->ill_ifname_pending_err = 0; 16302 16303 /* 16304 * When the first ipif comes up in ipif_up_done(), multicast groups 16305 * that were joined while this ill was not bound to the DLPI link need 16306 * to be recovered by ill_recover_multicast(). 16307 */ 16308 ill->ill_need_recover_multicast = 1; 16309 16310 ill_refhold(ill); 16311 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16312 if ((error = ill_glist_insert(ill, interf_name, 16313 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 16314 ill->ill_ppa = UINT_MAX; 16315 ill->ill_name[0] = '\0'; 16316 /* 16317 * undo null termination done above. 16318 */ 16319 ppa_ptr[0] = old_char; 16320 rw_exit(&ipst->ips_ill_g_lock); 16321 ill_refrele(ill); 16322 return (error); 16323 } 16324 16325 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 16326 16327 /* 16328 * When we return the buffer pointed to by interf_name should contain 16329 * the same name as in ill_name. 16330 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 16331 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 16332 * so copy full name and update the ppa ptr. 16333 * When ppa passed in != UINT_MAX all values are correct just undo 16334 * null termination, this saves a bcopy. 16335 */ 16336 if (*new_ppa_ptr == UINT_MAX) { 16337 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 16338 *new_ppa_ptr = ill->ill_ppa; 16339 } else { 16340 /* 16341 * undo null termination done above. 16342 */ 16343 ppa_ptr[0] = old_char; 16344 } 16345 16346 /* Let SCTP know about this ILL */ 16347 sctp_update_ill(ill, SCTP_ILL_INSERT); 16348 16349 /* 16350 * ill_glist_insert has made the ill visible globally, and 16351 * ill_phyint_reinit could have changed the ipsq. At this point, 16352 * we need to hold the ips_ill_g_lock across the call to enter the 16353 * ipsq to enforce atomicity and prevent reordering. In the event 16354 * the ipsq has changed, and if the new ipsq is currently busy, 16355 * we need to make sure that this half-completed ioctl is ahead of 16356 * any subsequent ioctl. We achieve this by not dropping the 16357 * ips_ill_g_lock which prevents any ill lookup itself thereby 16358 * ensuring that new ioctls can't start. 16359 */ 16360 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 16361 B_TRUE); 16362 16363 rw_exit(&ipst->ips_ill_g_lock); 16364 ill_refrele(ill); 16365 if (ipsq == NULL) 16366 return (EINPROGRESS); 16367 16368 /* 16369 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 16370 */ 16371 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 16372 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 16373 else 16374 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 16375 16376 error = ipif_set_values_tail(ill, ipif, mp, q); 16377 ipsq_exit(ipsq); 16378 if (error != 0 && error != EINPROGRESS) { 16379 /* 16380 * restore previous values 16381 */ 16382 ill->ill_isv6 = B_FALSE; 16383 ill_set_inputfn(ill); 16384 } 16385 return (error); 16386 } 16387 16388 void 16389 ipif_init(ip_stack_t *ipst) 16390 { 16391 int i; 16392 16393 for (i = 0; i < MAX_G_HEADS; i++) { 16394 ipst->ips_ill_g_heads[i].ill_g_list_head = 16395 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16396 ipst->ips_ill_g_heads[i].ill_g_list_tail = 16397 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16398 } 16399 16400 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16401 ill_phyint_compare_index, 16402 sizeof (phyint_t), 16403 offsetof(struct phyint, phyint_avl_by_index)); 16404 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16405 ill_phyint_compare_name, 16406 sizeof (phyint_t), 16407 offsetof(struct phyint, phyint_avl_by_name)); 16408 } 16409 16410 /* 16411 * Save enough information so that we can recreate the IRE if 16412 * the interface goes down and then up. 16413 */ 16414 void 16415 ill_save_ire(ill_t *ill, ire_t *ire) 16416 { 16417 mblk_t *save_mp; 16418 16419 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 16420 if (save_mp != NULL) { 16421 ifrt_t *ifrt; 16422 16423 save_mp->b_wptr += sizeof (ifrt_t); 16424 ifrt = (ifrt_t *)save_mp->b_rptr; 16425 bzero(ifrt, sizeof (ifrt_t)); 16426 ifrt->ifrt_type = ire->ire_type; 16427 if (ire->ire_ipversion == IPV4_VERSION) { 16428 ASSERT(!ill->ill_isv6); 16429 ifrt->ifrt_addr = ire->ire_addr; 16430 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 16431 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 16432 ifrt->ifrt_mask = ire->ire_mask; 16433 } else { 16434 ASSERT(ill->ill_isv6); 16435 ifrt->ifrt_v6addr = ire->ire_addr_v6; 16436 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 16437 mutex_enter(&ire->ire_lock); 16438 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 16439 mutex_exit(&ire->ire_lock); 16440 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 16441 ifrt->ifrt_v6mask = ire->ire_mask_v6; 16442 } 16443 ifrt->ifrt_flags = ire->ire_flags; 16444 ifrt->ifrt_zoneid = ire->ire_zoneid; 16445 mutex_enter(&ill->ill_saved_ire_lock); 16446 save_mp->b_cont = ill->ill_saved_ire_mp; 16447 ill->ill_saved_ire_mp = save_mp; 16448 ill->ill_saved_ire_cnt++; 16449 mutex_exit(&ill->ill_saved_ire_lock); 16450 } 16451 } 16452 16453 /* 16454 * Remove one entry from ill_saved_ire_mp. 16455 */ 16456 void 16457 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 16458 { 16459 mblk_t **mpp; 16460 mblk_t *mp; 16461 ifrt_t *ifrt; 16462 16463 /* Remove from ill_saved_ire_mp list if it is there */ 16464 mutex_enter(&ill->ill_saved_ire_lock); 16465 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 16466 mpp = &(*mpp)->b_cont) { 16467 in6_addr_t gw_addr_v6; 16468 16469 /* 16470 * On a given ill, the tuple of address, gateway, mask, 16471 * ire_type, and zoneid is unique for each saved IRE. 16472 */ 16473 mp = *mpp; 16474 ifrt = (ifrt_t *)mp->b_rptr; 16475 /* ire_gateway_addr_v6 can change - need lock */ 16476 mutex_enter(&ire->ire_lock); 16477 gw_addr_v6 = ire->ire_gateway_addr_v6; 16478 mutex_exit(&ire->ire_lock); 16479 16480 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 16481 ifrt->ifrt_type != ire->ire_type) 16482 continue; 16483 16484 if (ill->ill_isv6 ? 16485 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 16486 &ire->ire_addr_v6) && 16487 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 16488 &gw_addr_v6) && 16489 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 16490 &ire->ire_mask_v6)) : 16491 (ifrt->ifrt_addr == ire->ire_addr && 16492 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 16493 ifrt->ifrt_mask == ire->ire_mask)) { 16494 *mpp = mp->b_cont; 16495 ill->ill_saved_ire_cnt--; 16496 freeb(mp); 16497 break; 16498 } 16499 } 16500 mutex_exit(&ill->ill_saved_ire_lock); 16501 } 16502 16503 /* 16504 * IP multirouting broadcast routes handling 16505 * Append CGTP broadcast IREs to regular ones created 16506 * at ifconfig time. 16507 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 16508 * the destination and the gateway are broadcast addresses. 16509 * The caller has verified that the destination is an IRE_BROADCAST and that 16510 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 16511 * we create a MULTIRT IRE_BROADCAST. 16512 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 16513 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 16514 */ 16515 static void 16516 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 16517 { 16518 ire_t *ire_prim; 16519 16520 ASSERT(ire != NULL); 16521 16522 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16523 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 16524 NULL); 16525 if (ire_prim != NULL) { 16526 /* 16527 * We are in the special case of broadcasts for 16528 * CGTP. We add an IRE_BROADCAST that holds 16529 * the RTF_MULTIRT flag, the destination 16530 * address and the low level 16531 * info of ire_prim. In other words, CGTP 16532 * broadcast is added to the redundant ipif. 16533 */ 16534 ill_t *ill_prim; 16535 ire_t *bcast_ire; 16536 16537 ill_prim = ire_prim->ire_ill; 16538 16539 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 16540 (void *)ire_prim, (void *)ill_prim)); 16541 16542 bcast_ire = ire_create( 16543 (uchar_t *)&ire->ire_addr, 16544 (uchar_t *)&ip_g_all_ones, 16545 (uchar_t *)&ire->ire_gateway_addr, 16546 IRE_BROADCAST, 16547 ill_prim, 16548 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 16549 ire->ire_flags | RTF_KERNEL, 16550 NULL, 16551 ipst); 16552 16553 /* 16554 * Here we assume that ire_add does head insertion so that 16555 * the added IRE_BROADCAST comes before the existing IRE_HOST. 16556 */ 16557 if (bcast_ire != NULL) { 16558 if (ire->ire_flags & RTF_SETSRC) { 16559 bcast_ire->ire_setsrc_addr = 16560 ire->ire_setsrc_addr; 16561 } 16562 bcast_ire = ire_add(bcast_ire); 16563 if (bcast_ire != NULL) { 16564 ip2dbg(("ip_cgtp_filter_bcast_add: " 16565 "added bcast_ire %p\n", 16566 (void *)bcast_ire)); 16567 16568 ill_save_ire(ill_prim, bcast_ire); 16569 ire_refrele(bcast_ire); 16570 } 16571 } 16572 ire_refrele(ire_prim); 16573 } 16574 } 16575 16576 /* 16577 * IP multirouting broadcast routes handling 16578 * Remove the broadcast ire. 16579 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 16580 * the destination and the gateway are broadcast addresses. 16581 * The caller has only verified that RTF_MULTIRT was set. We check 16582 * that the destination is broadcast and that the gateway is a broadcast 16583 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 16584 */ 16585 static void 16586 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 16587 { 16588 ASSERT(ire != NULL); 16589 16590 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 16591 ire_t *ire_prim; 16592 16593 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16594 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 16595 ipst, NULL); 16596 if (ire_prim != NULL) { 16597 ill_t *ill_prim; 16598 ire_t *bcast_ire; 16599 16600 ill_prim = ire_prim->ire_ill; 16601 16602 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16603 "ire_prim %p, ill_prim %p\n", 16604 (void *)ire_prim, (void *)ill_prim)); 16605 16606 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 16607 ire->ire_gateway_addr, IRE_BROADCAST, 16608 ill_prim, ALL_ZONES, NULL, 16609 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 16610 MATCH_IRE_MASK, 0, ipst, NULL); 16611 16612 if (bcast_ire != NULL) { 16613 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16614 "looked up bcast_ire %p\n", 16615 (void *)bcast_ire)); 16616 ill_remove_saved_ire(bcast_ire->ire_ill, 16617 bcast_ire); 16618 ire_delete(bcast_ire); 16619 ire_refrele(bcast_ire); 16620 } 16621 ire_refrele(ire_prim); 16622 } 16623 } 16624 } 16625 16626 /* 16627 * Derive an interface id from the link layer address. 16628 * Knows about IEEE 802 and IEEE EUI-64 mappings. 16629 */ 16630 static void 16631 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16632 { 16633 char *addr; 16634 16635 /* 16636 * Note that some IPv6 interfaces get plumbed over links that claim to 16637 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 16638 * PPP links). The ETHERADDRL check here ensures that we only set the 16639 * interface ID on IPv6 interfaces above links that actually have real 16640 * Ethernet addresses. 16641 */ 16642 if (ill->ill_phys_addr_length == ETHERADDRL) { 16643 /* Form EUI-64 like address */ 16644 addr = (char *)&v6addr->s6_addr32[2]; 16645 bcopy(ill->ill_phys_addr, addr, 3); 16646 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 16647 addr[3] = (char)0xff; 16648 addr[4] = (char)0xfe; 16649 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 16650 } 16651 } 16652 16653 /* ARGSUSED */ 16654 static void 16655 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16656 { 16657 } 16658 16659 typedef struct ipmp_ifcookie { 16660 uint32_t ic_hostid; 16661 char ic_ifname[LIFNAMSIZ]; 16662 char ic_zonename[ZONENAME_MAX]; 16663 } ipmp_ifcookie_t; 16664 16665 /* 16666 * Construct a pseudo-random interface ID for the IPMP interface that's both 16667 * predictable and (almost) guaranteed to be unique. 16668 */ 16669 static void 16670 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16671 { 16672 zone_t *zp; 16673 uint8_t *addr; 16674 uchar_t hash[16]; 16675 ulong_t hostid; 16676 MD5_CTX ctx; 16677 ipmp_ifcookie_t ic = { 0 }; 16678 16679 ASSERT(IS_IPMP(ill)); 16680 16681 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 16682 ic.ic_hostid = htonl((uint32_t)hostid); 16683 16684 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 16685 16686 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 16687 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 16688 zone_rele(zp); 16689 } 16690 16691 MD5Init(&ctx); 16692 MD5Update(&ctx, &ic, sizeof (ic)); 16693 MD5Final(hash, &ctx); 16694 16695 /* 16696 * Map the hash to an interface ID per the basic approach in RFC3041. 16697 */ 16698 addr = &v6addr->s6_addr8[8]; 16699 bcopy(hash + 8, addr, sizeof (uint64_t)); 16700 addr[0] &= ~0x2; /* set local bit */ 16701 } 16702 16703 /* 16704 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 16705 */ 16706 static void 16707 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 16708 { 16709 phyint_t *phyi = ill->ill_phyint; 16710 16711 /* 16712 * Check PHYI_MULTI_BCAST and length of physical 16713 * address to determine if we use the mapping or the 16714 * broadcast address. 16715 */ 16716 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 16717 ill->ill_phys_addr_length != ETHERADDRL) { 16718 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 16719 return; 16720 } 16721 m_physaddr[0] = 0x33; 16722 m_physaddr[1] = 0x33; 16723 m_physaddr[2] = m_ip6addr[12]; 16724 m_physaddr[3] = m_ip6addr[13]; 16725 m_physaddr[4] = m_ip6addr[14]; 16726 m_physaddr[5] = m_ip6addr[15]; 16727 } 16728 16729 /* 16730 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 16731 */ 16732 static void 16733 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 16734 { 16735 phyint_t *phyi = ill->ill_phyint; 16736 16737 /* 16738 * Check PHYI_MULTI_BCAST and length of physical 16739 * address to determine if we use the mapping or the 16740 * broadcast address. 16741 */ 16742 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 16743 ill->ill_phys_addr_length != ETHERADDRL) { 16744 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 16745 return; 16746 } 16747 m_physaddr[0] = 0x01; 16748 m_physaddr[1] = 0x00; 16749 m_physaddr[2] = 0x5e; 16750 m_physaddr[3] = m_ipaddr[1] & 0x7f; 16751 m_physaddr[4] = m_ipaddr[2]; 16752 m_physaddr[5] = m_ipaddr[3]; 16753 } 16754 16755 /* ARGSUSED */ 16756 static void 16757 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 16758 { 16759 /* 16760 * for the MULTI_BCAST case and other cases when we want to 16761 * use the link-layer broadcast address for multicast. 16762 */ 16763 uint8_t *bphys_addr; 16764 dl_unitdata_req_t *dlur; 16765 16766 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 16767 if (ill->ill_sap_length < 0) { 16768 bphys_addr = (uchar_t *)dlur + 16769 dlur->dl_dest_addr_offset; 16770 } else { 16771 bphys_addr = (uchar_t *)dlur + 16772 dlur->dl_dest_addr_offset + ill->ill_sap_length; 16773 } 16774 16775 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 16776 } 16777 16778 /* 16779 * Derive IPoIB interface id from the link layer address. 16780 */ 16781 static void 16782 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16783 { 16784 char *addr; 16785 16786 ASSERT(ill->ill_phys_addr_length == 20); 16787 addr = (char *)&v6addr->s6_addr32[2]; 16788 bcopy(ill->ill_phys_addr + 12, addr, 8); 16789 /* 16790 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 16791 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 16792 * rules. In these cases, the IBA considers these GUIDs to be in 16793 * "Modified EUI-64" format, and thus toggling the u/l bit is not 16794 * required; vendors are required not to assign global EUI-64's 16795 * that differ only in u/l bit values, thus guaranteeing uniqueness 16796 * of the interface identifier. Whether the GUID is in modified 16797 * or proper EUI-64 format, the ipv6 identifier must have the u/l 16798 * bit set to 1. 16799 */ 16800 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 16801 } 16802 16803 /* 16804 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 16805 * Note on mapping from multicast IP addresses to IPoIB multicast link 16806 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 16807 * The format of an IPoIB multicast address is: 16808 * 16809 * 4 byte QPN Scope Sign. Pkey 16810 * +--------------------------------------------+ 16811 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 16812 * +--------------------------------------------+ 16813 * 16814 * The Scope and Pkey components are properties of the IBA port and 16815 * network interface. They can be ascertained from the broadcast address. 16816 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 16817 */ 16818 static void 16819 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 16820 { 16821 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 16822 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 16823 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 16824 uint8_t *bphys_addr; 16825 dl_unitdata_req_t *dlur; 16826 16827 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 16828 16829 /* 16830 * RFC 4391: IPv4 MGID is 28-bit long. 16831 */ 16832 m_physaddr[16] = m_ipaddr[0] & 0x0f; 16833 m_physaddr[17] = m_ipaddr[1]; 16834 m_physaddr[18] = m_ipaddr[2]; 16835 m_physaddr[19] = m_ipaddr[3]; 16836 16837 16838 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 16839 if (ill->ill_sap_length < 0) { 16840 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 16841 } else { 16842 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 16843 ill->ill_sap_length; 16844 } 16845 /* 16846 * Now fill in the IBA scope/Pkey values from the broadcast address. 16847 */ 16848 m_physaddr[5] = bphys_addr[5]; 16849 m_physaddr[8] = bphys_addr[8]; 16850 m_physaddr[9] = bphys_addr[9]; 16851 } 16852 16853 static void 16854 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 16855 { 16856 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 16857 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 16858 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 16859 uint8_t *bphys_addr; 16860 dl_unitdata_req_t *dlur; 16861 16862 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 16863 16864 /* 16865 * RFC 4391: IPv4 MGID is 80-bit long. 16866 */ 16867 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 16868 16869 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 16870 if (ill->ill_sap_length < 0) { 16871 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 16872 } else { 16873 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 16874 ill->ill_sap_length; 16875 } 16876 /* 16877 * Now fill in the IBA scope/Pkey values from the broadcast address. 16878 */ 16879 m_physaddr[5] = bphys_addr[5]; 16880 m_physaddr[8] = bphys_addr[8]; 16881 m_physaddr[9] = bphys_addr[9]; 16882 } 16883 16884 /* 16885 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 16886 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 16887 * IPv6 interface id. This is a suggested mechanism described in section 3.7 16888 * of RFC4213. 16889 */ 16890 static void 16891 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 16892 { 16893 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 16894 v6addr->s6_addr32[2] = 0; 16895 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 16896 } 16897 16898 /* 16899 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 16900 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 16901 * id. 16902 */ 16903 static void 16904 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 16905 { 16906 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 16907 16908 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 16909 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 16910 } 16911 16912 static void 16913 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16914 { 16915 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 16916 } 16917 16918 static void 16919 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 16920 { 16921 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 16922 } 16923 16924 static void 16925 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16926 { 16927 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 16928 } 16929 16930 static void 16931 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 16932 { 16933 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 16934 } 16935 16936 /* 16937 * Lookup an ill and verify that the zoneid has an ipif on that ill. 16938 * Returns an held ill, or NULL. 16939 */ 16940 ill_t * 16941 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 16942 ip_stack_t *ipst) 16943 { 16944 ill_t *ill; 16945 ipif_t *ipif; 16946 16947 ill = ill_lookup_on_ifindex(index, isv6, ipst); 16948 if (ill == NULL) 16949 return (NULL); 16950 16951 mutex_enter(&ill->ill_lock); 16952 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 16953 if (IPIF_IS_CONDEMNED(ipif)) 16954 continue; 16955 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 16956 ipif->ipif_zoneid != ALL_ZONES) 16957 continue; 16958 16959 mutex_exit(&ill->ill_lock); 16960 return (ill); 16961 } 16962 mutex_exit(&ill->ill_lock); 16963 ill_refrele(ill); 16964 return (NULL); 16965 } 16966 16967 /* 16968 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 16969 * If a pointer to an ipif_t is returned then the caller will need to do 16970 * an ill_refrele(). 16971 */ 16972 ipif_t * 16973 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 16974 ip_stack_t *ipst) 16975 { 16976 ipif_t *ipif; 16977 ill_t *ill; 16978 16979 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16980 if (ill == NULL) 16981 return (NULL); 16982 16983 mutex_enter(&ill->ill_lock); 16984 if (ill->ill_state_flags & ILL_CONDEMNED) { 16985 mutex_exit(&ill->ill_lock); 16986 ill_refrele(ill); 16987 return (NULL); 16988 } 16989 16990 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 16991 if (!IPIF_CAN_LOOKUP(ipif)) 16992 continue; 16993 if (lifidx == ipif->ipif_id) { 16994 ipif_refhold_locked(ipif); 16995 break; 16996 } 16997 } 16998 16999 mutex_exit(&ill->ill_lock); 17000 ill_refrele(ill); 17001 return (ipif); 17002 } 17003 17004 /* 17005 * Set ill_inputfn based on the current know state. 17006 * This needs to be called when any of the factors taken into 17007 * account changes. 17008 */ 17009 void 17010 ill_set_inputfn(ill_t *ill) 17011 { 17012 ip_stack_t *ipst = ill->ill_ipst; 17013 17014 if (ill->ill_isv6) { 17015 if (is_system_labeled()) 17016 ill->ill_inputfn = ill_input_full_v6; 17017 else 17018 ill->ill_inputfn = ill_input_short_v6; 17019 } else { 17020 if (is_system_labeled()) 17021 ill->ill_inputfn = ill_input_full_v4; 17022 else if (ill->ill_dhcpinit != 0) 17023 ill->ill_inputfn = ill_input_full_v4; 17024 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17025 != NULL) 17026 ill->ill_inputfn = ill_input_full_v4; 17027 else if (ipst->ips_ip_cgtp_filter && 17028 ipst->ips_ip_cgtp_filter_ops != NULL) 17029 ill->ill_inputfn = ill_input_full_v4; 17030 else 17031 ill->ill_inputfn = ill_input_short_v4; 17032 } 17033 } 17034 17035 /* 17036 * Re-evaluate ill_inputfn for all the IPv4 ills. 17037 * Used when RSVP and CGTP comes and goes. 17038 */ 17039 void 17040 ill_set_inputfn_all(ip_stack_t *ipst) 17041 { 17042 ill_walk_context_t ctx; 17043 ill_t *ill; 17044 17045 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17046 ill = ILL_START_WALK_V4(&ctx, ipst); 17047 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17048 ill_set_inputfn(ill); 17049 17050 rw_exit(&ipst->ips_ill_g_lock); 17051 } 17052 17053 /* 17054 * Set the physical address information for `ill' to the contents of the 17055 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17056 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17057 * EINPROGRESS will be returned. 17058 */ 17059 int 17060 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17061 { 17062 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17063 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17064 17065 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17066 17067 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17068 dlindp->dl_data != DL_CURR_DEST_ADDR && 17069 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17070 /* Changing DL_IPV6_TOKEN is not yet supported */ 17071 return (0); 17072 } 17073 17074 /* 17075 * We need to store up to two copies of `mp' in `ill'. Due to the 17076 * design of ipsq_pending_mp_add(), we can't pass them as separate 17077 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17078 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17079 */ 17080 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17081 freemsg(mp); 17082 return (ENOMEM); 17083 } 17084 17085 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17086 mutex_enter(&ill->ill_lock); 17087 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17088 /* no more nce addition allowed */ 17089 mutex_exit(&ill->ill_lock); 17090 17091 /* 17092 * If we can quiesce the ill, then set the address. If not, then 17093 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17094 */ 17095 ill_down_ipifs(ill, B_TRUE); 17096 mutex_enter(&ill->ill_lock); 17097 if (!ill_is_quiescent(ill)) { 17098 /* call cannot fail since `conn_t *' argument is NULL */ 17099 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17100 mp, ILL_DOWN); 17101 mutex_exit(&ill->ill_lock); 17102 return (EINPROGRESS); 17103 } 17104 mutex_exit(&ill->ill_lock); 17105 17106 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17107 return (0); 17108 } 17109 17110 /* 17111 * Once the ill associated with `q' has quiesced, set its physical address 17112 * information to the values in `addrmp'. Note that two copies of `addrmp' 17113 * are passed (linked by b_cont), since we sometimes need to save two distinct 17114 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17115 * failure (we'll free the other copy if it's not needed). Since the ill_t 17116 * is quiesced, we know any stale nce's with the old address information have 17117 * already been removed, so we don't need to call nce_flush(). 17118 */ 17119 /* ARGSUSED */ 17120 static void 17121 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17122 { 17123 ill_t *ill = q->q_ptr; 17124 mblk_t *addrmp2 = unlinkb(addrmp); 17125 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17126 uint_t addrlen, addroff; 17127 int status; 17128 17129 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17130 17131 addroff = dlindp->dl_addr_offset; 17132 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17133 17134 switch (dlindp->dl_data) { 17135 case DL_IPV6_LINK_LAYER_ADDR: 17136 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17137 freemsg(addrmp2); 17138 break; 17139 17140 case DL_CURR_DEST_ADDR: 17141 freemsg(ill->ill_dest_addr_mp); 17142 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17143 ill->ill_dest_addr_mp = addrmp; 17144 if (ill->ill_isv6) { 17145 ill_setdesttoken(ill); 17146 ipif_setdestlinklocal(ill->ill_ipif); 17147 } 17148 freemsg(addrmp2); 17149 break; 17150 17151 case DL_CURR_PHYS_ADDR: 17152 freemsg(ill->ill_phys_addr_mp); 17153 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17154 ill->ill_phys_addr_mp = addrmp; 17155 ill->ill_phys_addr_length = addrlen; 17156 if (ill->ill_isv6) 17157 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17158 else 17159 freemsg(addrmp2); 17160 if (ill->ill_isv6) { 17161 ill_setdefaulttoken(ill); 17162 ipif_setlinklocal(ill->ill_ipif); 17163 } 17164 break; 17165 default: 17166 ASSERT(0); 17167 } 17168 17169 /* 17170 * If there are ipifs to bring up, ill_up_ipifs() will return 17171 * EINPROGRESS, and ipsq_current_finish() will be called by 17172 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17173 * brought up. 17174 */ 17175 status = ill_up_ipifs(ill, q, addrmp); 17176 mutex_enter(&ill->ill_lock); 17177 if (ill->ill_dl_up) 17178 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17179 mutex_exit(&ill->ill_lock); 17180 if (status != EINPROGRESS) 17181 ipsq_current_finish(ipsq); 17182 } 17183 17184 /* 17185 * Helper routine for setting the ill_nd_lla fields. 17186 */ 17187 void 17188 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17189 { 17190 freemsg(ill->ill_nd_lla_mp); 17191 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17192 ill->ill_nd_lla_mp = ndmp; 17193 ill->ill_nd_lla_len = addrlen; 17194 } 17195 17196 /* 17197 * Replumb the ill. 17198 */ 17199 int 17200 ill_replumb(ill_t *ill, mblk_t *mp) 17201 { 17202 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17203 17204 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17205 17206 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17207 17208 mutex_enter(&ill->ill_lock); 17209 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17210 /* no more nce addition allowed */ 17211 mutex_exit(&ill->ill_lock); 17212 17213 /* 17214 * If we can quiesce the ill, then continue. If not, then 17215 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17216 */ 17217 ill_down_ipifs(ill, B_FALSE); 17218 17219 mutex_enter(&ill->ill_lock); 17220 if (!ill_is_quiescent(ill)) { 17221 /* call cannot fail since `conn_t *' argument is NULL */ 17222 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17223 mp, ILL_DOWN); 17224 mutex_exit(&ill->ill_lock); 17225 return (EINPROGRESS); 17226 } 17227 mutex_exit(&ill->ill_lock); 17228 17229 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 17230 return (0); 17231 } 17232 17233 /* ARGSUSED */ 17234 static void 17235 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 17236 { 17237 ill_t *ill = q->q_ptr; 17238 int err; 17239 conn_t *connp = NULL; 17240 17241 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17242 freemsg(ill->ill_replumb_mp); 17243 ill->ill_replumb_mp = copyb(mp); 17244 17245 if (ill->ill_replumb_mp == NULL) { 17246 /* out of memory */ 17247 ipsq_current_finish(ipsq); 17248 return; 17249 } 17250 17251 mutex_enter(&ill->ill_lock); 17252 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 17253 ill->ill_rq, ill->ill_replumb_mp, 0); 17254 mutex_exit(&ill->ill_lock); 17255 17256 if (!ill->ill_up_ipifs) { 17257 /* already closing */ 17258 ipsq_current_finish(ipsq); 17259 return; 17260 } 17261 ill->ill_replumbing = 1; 17262 err = ill_down_ipifs_tail(ill); 17263 17264 /* 17265 * Successfully quiesced and brought down the interface, now we send 17266 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 17267 * DL_NOTE_REPLUMB message. 17268 */ 17269 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 17270 DL_NOTIFY_CONF); 17271 ASSERT(mp != NULL); 17272 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 17273 DL_NOTE_REPLUMB_DONE; 17274 ill_dlpi_send(ill, mp); 17275 17276 /* 17277 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 17278 * streams have to be unbound. When all the DLPI exchanges are done, 17279 * ipsq_current_finish() will be called by arp_bringup_done(). The 17280 * remainder of ipif bringup via ill_up_ipifs() will also be done in 17281 * arp_bringup_done(). 17282 */ 17283 ASSERT(ill->ill_replumb_mp != NULL); 17284 if (err == EINPROGRESS) 17285 return; 17286 else 17287 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 17288 ASSERT(connp == NULL); 17289 if (err == 0 && ill->ill_replumb_mp != NULL && 17290 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 17291 return; 17292 } 17293 ipsq_current_finish(ipsq); 17294 } 17295 17296 /* 17297 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 17298 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 17299 * as per the ioctl. On failure, an errno is returned. 17300 */ 17301 static int 17302 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 17303 { 17304 int rval; 17305 struct strioctl iocb; 17306 17307 iocb.ic_cmd = cmd; 17308 iocb.ic_timout = 15; 17309 iocb.ic_len = bufsize; 17310 iocb.ic_dp = buf; 17311 17312 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 17313 } 17314 17315 /* 17316 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 17317 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 17318 */ 17319 static int 17320 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 17321 uint_t *bufsizep, cred_t *cr) 17322 { 17323 int err; 17324 struct lifnum lifn; 17325 17326 bzero(&lifn, sizeof (lifn)); 17327 lifn.lifn_family = af; 17328 lifn.lifn_flags = LIFC_UNDER_IPMP; 17329 17330 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 17331 return (err); 17332 17333 /* 17334 * Pad the interface count to account for additional interfaces that 17335 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 17336 */ 17337 lifn.lifn_count += 4; 17338 bzero(lifcp, sizeof (*lifcp)); 17339 lifcp->lifc_flags = LIFC_UNDER_IPMP; 17340 lifcp->lifc_family = af; 17341 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 17342 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 17343 17344 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 17345 if (err != 0) { 17346 kmem_free(lifcp->lifc_buf, *bufsizep); 17347 return (err); 17348 } 17349 17350 return (0); 17351 } 17352 17353 /* 17354 * Helper for ip_interface_cleanup() that removes the loopback interface. 17355 */ 17356 static void 17357 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17358 { 17359 int err; 17360 struct lifreq lifr; 17361 17362 bzero(&lifr, sizeof (lifr)); 17363 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 17364 17365 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 17366 if (err != 0) { 17367 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 17368 "error %d\n", isv6 ? "v6" : "v4", err)); 17369 } 17370 } 17371 17372 /* 17373 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 17374 * groups and that IPMP data addresses are down. These conditions must be met 17375 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 17376 */ 17377 static void 17378 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17379 { 17380 int af = isv6 ? AF_INET6 : AF_INET; 17381 int i, nifs; 17382 int err; 17383 uint_t bufsize; 17384 uint_t lifrsize = sizeof (struct lifreq); 17385 struct lifconf lifc; 17386 struct lifreq *lifrp; 17387 17388 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 17389 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 17390 "(error %d); any IPMP interfaces cannot be shutdown", err); 17391 return; 17392 } 17393 17394 nifs = lifc.lifc_len / lifrsize; 17395 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 17396 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17397 if (err != 0) { 17398 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 17399 "flags: error %d", lifrp->lifr_name, err); 17400 continue; 17401 } 17402 17403 if (lifrp->lifr_flags & IFF_IPMP) { 17404 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 17405 continue; 17406 17407 lifrp->lifr_flags &= ~IFF_UP; 17408 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 17409 if (err != 0) { 17410 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17411 "bring down (error %d); IPMP interface may " 17412 "not be shutdown", lifrp->lifr_name, err); 17413 } 17414 17415 /* 17416 * Check if IFF_DUPLICATE is still set -- and if so, 17417 * reset the address to clear it. 17418 */ 17419 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17420 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 17421 continue; 17422 17423 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 17424 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 17425 lifrp, lifrsize, cr)) != 0) { 17426 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17427 "reset DAD (error %d); IPMP interface may " 17428 "not be shutdown", lifrp->lifr_name, err); 17429 } 17430 continue; 17431 } 17432 17433 lifrp->lifr_groupname[0] = '\0'; 17434 err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr); 17435 if (err != 0) { 17436 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave " 17437 "IPMP group (error %d); associated IPMP interface " 17438 "may not be shutdown", lifrp->lifr_name, err); 17439 continue; 17440 } 17441 } 17442 17443 kmem_free(lifc.lifc_buf, bufsize); 17444 } 17445 17446 #define UDPDEV "/devices/pseudo/udp@0:udp" 17447 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 17448 17449 /* 17450 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 17451 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 17452 * when the user-level processes in the zone are killed and the latter are 17453 * cleaned up by str_stack_shutdown(). 17454 */ 17455 void 17456 ip_interface_cleanup(ip_stack_t *ipst) 17457 { 17458 ldi_handle_t lh; 17459 ldi_ident_t li; 17460 cred_t *cr; 17461 int err; 17462 int i; 17463 char *devs[] = { UDP6DEV, UDPDEV }; 17464 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 17465 17466 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 17467 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 17468 " error %d", err); 17469 return; 17470 } 17471 17472 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 17473 ASSERT(cr != NULL); 17474 17475 /* 17476 * NOTE: loop executes exactly twice and is hardcoded to know that the 17477 * first iteration is IPv6. (Unrolling yields repetitious code, hence 17478 * the loop.) 17479 */ 17480 for (i = 0; i < 2; i++) { 17481 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 17482 if (err != 0) { 17483 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 17484 " error %d", devs[i], err); 17485 continue; 17486 } 17487 17488 ip_loopback_removeif(lh, i == 0, cr); 17489 ip_ipmp_cleanup(lh, i == 0, cr); 17490 17491 (void) ldi_close(lh, FREAD|FWRITE, cr); 17492 } 17493 17494 ldi_ident_release(li); 17495 crfree(cr); 17496 } 17497 17498 /* 17499 * This needs to be in-sync with nic_event_t definition 17500 */ 17501 static const char * 17502 ill_hook_event2str(nic_event_t event) 17503 { 17504 switch (event) { 17505 case NE_PLUMB: 17506 return ("PLUMB"); 17507 case NE_UNPLUMB: 17508 return ("UNPLUMB"); 17509 case NE_UP: 17510 return ("UP"); 17511 case NE_DOWN: 17512 return ("DOWN"); 17513 case NE_ADDRESS_CHANGE: 17514 return ("ADDRESS_CHANGE"); 17515 case NE_LIF_UP: 17516 return ("LIF_UP"); 17517 case NE_LIF_DOWN: 17518 return ("LIF_DOWN"); 17519 case NE_IFINDEX_CHANGE: 17520 return ("IFINDEX_CHANGE"); 17521 default: 17522 return ("UNKNOWN"); 17523 } 17524 } 17525 17526 void 17527 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 17528 nic_event_data_t data, size_t datalen) 17529 { 17530 ip_stack_t *ipst = ill->ill_ipst; 17531 hook_nic_event_int_t *info; 17532 const char *str = NULL; 17533 17534 /* create a new nic event info */ 17535 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 17536 goto fail; 17537 17538 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 17539 info->hnei_event.hne_lif = lif; 17540 info->hnei_event.hne_event = event; 17541 info->hnei_event.hne_protocol = ill->ill_isv6 ? 17542 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 17543 info->hnei_event.hne_data = NULL; 17544 info->hnei_event.hne_datalen = 0; 17545 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 17546 17547 if (data != NULL && datalen != 0) { 17548 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 17549 if (info->hnei_event.hne_data == NULL) 17550 goto fail; 17551 bcopy(data, info->hnei_event.hne_data, datalen); 17552 info->hnei_event.hne_datalen = datalen; 17553 } 17554 17555 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 17556 DDI_NOSLEEP) == DDI_SUCCESS) 17557 return; 17558 17559 fail: 17560 if (info != NULL) { 17561 if (info->hnei_event.hne_data != NULL) { 17562 kmem_free(info->hnei_event.hne_data, 17563 info->hnei_event.hne_datalen); 17564 } 17565 kmem_free(info, sizeof (hook_nic_event_t)); 17566 } 17567 str = ill_hook_event2str(event); 17568 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 17569 "information for %s (ENOMEM)\n", str, ill->ill_name)); 17570 } 17571 17572 static int 17573 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 17574 { 17575 int err = 0; 17576 const in_addr_t *addr = NULL; 17577 nce_t *nce = NULL; 17578 ill_t *ill = ipif->ipif_ill; 17579 ill_t *bound_ill; 17580 boolean_t added_ipif = B_FALSE; 17581 uint16_t state; 17582 uint16_t flags; 17583 17584 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 17585 ill_t *, ill, ipif_t *, ipif); 17586 if (ipif->ipif_lcl_addr != INADDR_ANY) { 17587 addr = &ipif->ipif_lcl_addr; 17588 } 17589 17590 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 17591 if (res_act != Res_act_initial) 17592 return (EINVAL); 17593 } 17594 17595 if (addr != NULL) { 17596 ipmp_illgrp_t *illg = ill->ill_grp; 17597 17598 /* add unicast nce for the local addr */ 17599 17600 if (IS_IPMP(ill)) { 17601 /* 17602 * If we're here via ipif_up(), then the ipif 17603 * won't be bound yet -- add it to the group, 17604 * which will bind it if possible. (We would 17605 * add it in ipif_up(), but deleting on failure 17606 * there is gruesome.) If we're here via 17607 * ipmp_ill_bind_ipif(), then the ipif has 17608 * already been added to the group and we 17609 * just need to use the binding. 17610 */ 17611 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 17612 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 17613 if (bound_ill == NULL) { 17614 /* 17615 * We couldn't bind the ipif to an ill 17616 * yet, so we have nothing to publish. 17617 * Mark the address as ready and return. 17618 */ 17619 ipif->ipif_addr_ready = 1; 17620 return (0); 17621 } 17622 added_ipif = B_TRUE; 17623 } 17624 } else { 17625 bound_ill = ill; 17626 } 17627 17628 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 17629 NCE_F_NONUD); 17630 /* 17631 * If this is an initial bring-up (or the ipif was never 17632 * completely brought up), do DAD. Otherwise, we're here 17633 * because IPMP has rebound an address to this ill: send 17634 * unsolicited advertisements (ARP announcements) to 17635 * inform others. 17636 */ 17637 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 17638 state = ND_UNCHANGED; /* compute in nce_add_common() */ 17639 } else { 17640 state = ND_REACHABLE; 17641 flags |= NCE_F_UNSOL_ADV; 17642 } 17643 17644 retry: 17645 err = nce_lookup_then_add_v4(ill, 17646 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 17647 addr, flags, state, &nce); 17648 17649 /* 17650 * note that we may encounter EEXIST if we are moving 17651 * the nce as a result of a rebind operation. 17652 */ 17653 switch (err) { 17654 case 0: 17655 ipif->ipif_added_nce = 1; 17656 nce->nce_ipif_cnt++; 17657 break; 17658 case EEXIST: 17659 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 17660 ill->ill_name)); 17661 if (!NCE_MYADDR(nce->nce_common)) { 17662 /* 17663 * A leftover nce from before this address 17664 * existed 17665 */ 17666 ncec_delete(nce->nce_common); 17667 nce_refrele(nce); 17668 nce = NULL; 17669 goto retry; 17670 } 17671 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 17672 nce_refrele(nce); 17673 nce = NULL; 17674 ip1dbg(("ipif_arp_up: NCE already exists " 17675 "for %s:%u\n", ill->ill_name, 17676 ipif->ipif_id)); 17677 goto arp_up_done; 17678 } 17679 /* 17680 * Duplicate local addresses are permissible for 17681 * IPIF_POINTOPOINT interfaces which will get marked 17682 * IPIF_UNNUMBERED later in 17683 * ip_addr_availability_check(). 17684 * 17685 * The nce_ipif_cnt field tracks the number of 17686 * ipifs that have nce_addr as their local address. 17687 */ 17688 ipif->ipif_addr_ready = 1; 17689 ipif->ipif_added_nce = 1; 17690 nce->nce_ipif_cnt++; 17691 err = 0; 17692 break; 17693 default: 17694 ASSERT(nce == NULL); 17695 goto arp_up_done; 17696 } 17697 if (arp_no_defense) { 17698 if ((ipif->ipif_flags & IPIF_UP) && 17699 !ipif->ipif_addr_ready) 17700 ipif_up_notify(ipif); 17701 ipif->ipif_addr_ready = 1; 17702 } 17703 } else { 17704 /* zero address. nothing to publish */ 17705 ipif->ipif_addr_ready = 1; 17706 } 17707 if (nce != NULL) 17708 nce_refrele(nce); 17709 arp_up_done: 17710 if (added_ipif && err != 0) 17711 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 17712 return (err); 17713 } 17714 17715 int 17716 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 17717 { 17718 int err = 0; 17719 ill_t *ill = ipif->ipif_ill; 17720 boolean_t first_interface, wait_for_dlpi = B_FALSE; 17721 17722 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 17723 ill_t *, ill, ipif_t *, ipif); 17724 17725 /* 17726 * need to bring up ARP or setup mcast mapping only 17727 * when the first interface is coming UP. 17728 */ 17729 first_interface = (ill->ill_ipif_up_count == 0 && 17730 ill->ill_ipif_dup_count == 0 && !was_dup); 17731 17732 if (res_act == Res_act_initial && first_interface) { 17733 /* 17734 * Send ATTACH + BIND 17735 */ 17736 err = arp_ll_up(ill); 17737 if (err != EINPROGRESS && err != 0) 17738 return (err); 17739 17740 /* 17741 * Add NCE for local address. Start DAD. 17742 * we'll wait to hear that DAD has finished 17743 * before using the interface. 17744 */ 17745 if (err == EINPROGRESS) 17746 wait_for_dlpi = B_TRUE; 17747 } 17748 17749 if (!wait_for_dlpi) 17750 (void) ipif_arp_up_done_tail(ipif, res_act); 17751 17752 return (!wait_for_dlpi ? 0 : EINPROGRESS); 17753 } 17754 17755 /* 17756 * Finish processing of "arp_up" after all the DLPI message 17757 * exchanges have completed between arp and the driver. 17758 */ 17759 void 17760 arp_bringup_done(ill_t *ill, int err) 17761 { 17762 mblk_t *mp1; 17763 ipif_t *ipif; 17764 conn_t *connp = NULL; 17765 ipsq_t *ipsq; 17766 queue_t *q; 17767 17768 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 17769 17770 ASSERT(IAM_WRITER_ILL(ill)); 17771 17772 ipsq = ill->ill_phyint->phyint_ipsq; 17773 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 17774 mp1 = ipsq_pending_mp_get(ipsq, &connp); 17775 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 17776 if (mp1 == NULL) /* bringup was aborted by the user */ 17777 return; 17778 17779 /* 17780 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 17781 * must have an associated conn_t. Otherwise, we're bringing this 17782 * interface back up as part of handling an asynchronous event (e.g., 17783 * physical address change). 17784 */ 17785 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 17786 ASSERT(connp != NULL); 17787 q = CONNP_TO_WQ(connp); 17788 } else { 17789 ASSERT(connp == NULL); 17790 q = ill->ill_rq; 17791 } 17792 if (err == 0) { 17793 if (ipif->ipif_isv6) { 17794 if ((err = ipif_up_done_v6(ipif)) != 0) 17795 ip0dbg(("arp_bringup_done: init failed\n")); 17796 } else { 17797 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 17798 if (err != 0 || (err = ipif_up_done(ipif)) != 0) 17799 ip0dbg(("arp_bringup_done: init failed\n")); 17800 } 17801 } else { 17802 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 17803 } 17804 17805 if ((err == 0) && (ill->ill_up_ipifs)) { 17806 err = ill_up_ipifs(ill, q, mp1); 17807 if (err == EINPROGRESS) 17808 return; 17809 } 17810 17811 /* 17812 * If we have a moved ipif to bring up, and everything has succeeded 17813 * to this point, bring it up on the IPMP ill. Otherwise, leave it 17814 * down -- the admin can try to bring it up by hand if need be. 17815 */ 17816 if (ill->ill_move_ipif != NULL) { 17817 ipif = ill->ill_move_ipif; 17818 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 17819 ipif->ipif_ill->ill_name)); 17820 ill->ill_move_ipif = NULL; 17821 if (err == 0) { 17822 err = ipif_up(ipif, q, mp1); 17823 if (err == EINPROGRESS) 17824 return; 17825 } 17826 } 17827 17828 /* 17829 * The operation must complete without EINPROGRESS since 17830 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 17831 * Otherwise, the operation will be stuck forever in the ipsq. 17832 */ 17833 ASSERT(err != EINPROGRESS); 17834 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 17835 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 17836 int, ipsq->ipsq_xop->ipx_current_ioctl, 17837 ill_t *, ill, ipif_t *, ipif); 17838 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 17839 } else { 17840 ipsq_current_finish(ipsq); 17841 } 17842 } 17843 17844 /* 17845 * Finish processing of arp replumb after all the DLPI message 17846 * exchanges have completed between arp and the driver. 17847 */ 17848 void 17849 arp_replumb_done(ill_t *ill, int err) 17850 { 17851 mblk_t *mp1; 17852 ipif_t *ipif; 17853 conn_t *connp = NULL; 17854 ipsq_t *ipsq; 17855 queue_t *q; 17856 17857 ASSERT(IAM_WRITER_ILL(ill)); 17858 17859 ipsq = ill->ill_phyint->phyint_ipsq; 17860 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 17861 mp1 = ipsq_pending_mp_get(ipsq, &connp); 17862 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 17863 if (mp1 == NULL) { 17864 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 17865 ipsq->ipsq_xop->ipx_current_ioctl)); 17866 /* bringup was aborted by the user */ 17867 return; 17868 } 17869 /* 17870 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 17871 * must have an associated conn_t. Otherwise, we're bringing this 17872 * interface back up as part of handling an asynchronous event (e.g., 17873 * physical address change). 17874 */ 17875 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 17876 ASSERT(connp != NULL); 17877 q = CONNP_TO_WQ(connp); 17878 } else { 17879 ASSERT(connp == NULL); 17880 q = ill->ill_rq; 17881 } 17882 if ((err == 0) && (ill->ill_up_ipifs)) { 17883 err = ill_up_ipifs(ill, q, mp1); 17884 if (err == EINPROGRESS) 17885 return; 17886 } 17887 /* 17888 * The operation must complete without EINPROGRESS since 17889 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 17890 * Otherwise, the operation will be stuck forever in the ipsq. 17891 */ 17892 ASSERT(err != EINPROGRESS); 17893 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 17894 DTRACE_PROBE4(ipif__ioctl, char *, 17895 "arp_replumb_done finish", 17896 int, ipsq->ipsq_xop->ipx_current_ioctl, 17897 ill_t *, ill, ipif_t *, ipif); 17898 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 17899 } else { 17900 ipsq_current_finish(ipsq); 17901 } 17902 } 17903 17904 void 17905 ipif_up_notify(ipif_t *ipif) 17906 { 17907 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 17908 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 17909 sctp_update_ipif(ipif, SCTP_IPIF_UP); 17910 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 17911 NE_LIF_UP, NULL, 0); 17912 } 17913 17914 /* 17915 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 17916 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 17917 * TPI end points with STREAMS modules pushed above. This is assured by not 17918 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 17919 * never ends up on an ipsq, otherwise we may end up processing the ioctl 17920 * while unwinding from the ispq and that could be a thread from the bottom. 17921 */ 17922 /* ARGSUSED */ 17923 int 17924 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17925 ip_ioctl_cmd_t *ipip, void *arg) 17926 { 17927 mblk_t *cmd_mp = mp->b_cont->b_cont; 17928 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 17929 int ret = 0; 17930 int i; 17931 size_t size; 17932 ip_stack_t *ipst; 17933 zoneid_t zoneid; 17934 ilb_stack_t *ilbs; 17935 17936 ipst = CONNQ_TO_IPST(q); 17937 ilbs = ipst->ips_netstack->netstack_ilb; 17938 zoneid = Q_TO_CONN(q)->conn_zoneid; 17939 17940 switch (command) { 17941 case ILB_CREATE_RULE: { 17942 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 17943 17944 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 17945 ret = EINVAL; 17946 break; 17947 } 17948 17949 ret = ilb_rule_add(ilbs, zoneid, cmd); 17950 break; 17951 } 17952 case ILB_DESTROY_RULE: 17953 case ILB_ENABLE_RULE: 17954 case ILB_DISABLE_RULE: { 17955 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 17956 17957 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 17958 ret = EINVAL; 17959 break; 17960 } 17961 17962 if (cmd->flags & ILB_RULE_ALLRULES) { 17963 if (command == ILB_DESTROY_RULE) { 17964 ilb_rule_del_all(ilbs, zoneid); 17965 break; 17966 } else if (command == ILB_ENABLE_RULE) { 17967 ilb_rule_enable_all(ilbs, zoneid); 17968 break; 17969 } else if (command == ILB_DISABLE_RULE) { 17970 ilb_rule_disable_all(ilbs, zoneid); 17971 break; 17972 } 17973 } else { 17974 if (command == ILB_DESTROY_RULE) { 17975 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 17976 } else if (command == ILB_ENABLE_RULE) { 17977 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 17978 NULL); 17979 } else if (command == ILB_DISABLE_RULE) { 17980 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 17981 NULL); 17982 } 17983 } 17984 break; 17985 } 17986 case ILB_NUM_RULES: { 17987 ilb_num_rules_cmd_t *cmd; 17988 17989 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 17990 ret = EINVAL; 17991 break; 17992 } 17993 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 17994 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 17995 break; 17996 } 17997 case ILB_RULE_NAMES: { 17998 ilb_rule_names_cmd_t *cmd; 17999 18000 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18001 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18002 cmd->num_names == 0) { 18003 ret = EINVAL; 18004 break; 18005 } 18006 size = cmd->num_names * ILB_RULE_NAMESZ; 18007 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18008 size != cmd_mp->b_wptr) { 18009 ret = EINVAL; 18010 break; 18011 } 18012 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18013 break; 18014 } 18015 case ILB_NUM_SERVERS: { 18016 ilb_num_servers_cmd_t *cmd; 18017 18018 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18019 ret = EINVAL; 18020 break; 18021 } 18022 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18023 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18024 &(cmd->num)); 18025 break; 18026 } 18027 case ILB_LIST_RULE: { 18028 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18029 18030 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18031 ret = EINVAL; 18032 break; 18033 } 18034 ret = ilb_rule_list(ilbs, zoneid, cmd); 18035 break; 18036 } 18037 case ILB_LIST_SERVERS: { 18038 ilb_servers_info_cmd_t *cmd; 18039 18040 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18041 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18042 cmd->num_servers == 0) { 18043 ret = EINVAL; 18044 break; 18045 } 18046 size = cmd->num_servers * sizeof (ilb_server_info_t); 18047 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18048 size != cmd_mp->b_wptr) { 18049 ret = EINVAL; 18050 break; 18051 } 18052 18053 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18054 &cmd->num_servers); 18055 break; 18056 } 18057 case ILB_ADD_SERVERS: { 18058 ilb_servers_info_cmd_t *cmd; 18059 ilb_rule_t *rule; 18060 18061 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18062 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18063 ret = EINVAL; 18064 break; 18065 } 18066 size = cmd->num_servers * sizeof (ilb_server_info_t); 18067 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18068 size != cmd_mp->b_wptr) { 18069 ret = EINVAL; 18070 break; 18071 } 18072 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18073 if (rule == NULL) { 18074 ASSERT(ret != 0); 18075 break; 18076 } 18077 for (i = 0; i < cmd->num_servers; i++) { 18078 ilb_server_info_t *s; 18079 18080 s = &cmd->servers[i]; 18081 s->err = ilb_server_add(ilbs, rule, s); 18082 } 18083 ILB_RULE_REFRELE(rule); 18084 break; 18085 } 18086 case ILB_DEL_SERVERS: 18087 case ILB_ENABLE_SERVERS: 18088 case ILB_DISABLE_SERVERS: { 18089 ilb_servers_cmd_t *cmd; 18090 ilb_rule_t *rule; 18091 int (*f)(); 18092 18093 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18094 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18095 ret = EINVAL; 18096 break; 18097 } 18098 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18099 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18100 size != cmd_mp->b_wptr) { 18101 ret = EINVAL; 18102 break; 18103 } 18104 18105 if (command == ILB_DEL_SERVERS) 18106 f = ilb_server_del; 18107 else if (command == ILB_ENABLE_SERVERS) 18108 f = ilb_server_enable; 18109 else if (command == ILB_DISABLE_SERVERS) 18110 f = ilb_server_disable; 18111 18112 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18113 if (rule == NULL) { 18114 ASSERT(ret != 0); 18115 break; 18116 } 18117 18118 for (i = 0; i < cmd->num_servers; i++) { 18119 ilb_server_arg_t *s; 18120 18121 s = &cmd->servers[i]; 18122 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18123 } 18124 ILB_RULE_REFRELE(rule); 18125 break; 18126 } 18127 case ILB_LIST_NAT_TABLE: { 18128 ilb_list_nat_cmd_t *cmd; 18129 18130 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18131 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18132 ret = EINVAL; 18133 break; 18134 } 18135 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18136 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18137 size != cmd_mp->b_wptr) { 18138 ret = EINVAL; 18139 break; 18140 } 18141 18142 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18143 &cmd->flags); 18144 break; 18145 } 18146 case ILB_LIST_STICKY_TABLE: { 18147 ilb_list_sticky_cmd_t *cmd; 18148 18149 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18150 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18151 ret = EINVAL; 18152 break; 18153 } 18154 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18155 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18156 size != cmd_mp->b_wptr) { 18157 ret = EINVAL; 18158 break; 18159 } 18160 18161 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18162 &cmd->num_sticky, &cmd->flags); 18163 break; 18164 } 18165 default: 18166 ret = EINVAL; 18167 break; 18168 } 18169 done: 18170 return (ret); 18171 } 18172 18173 /* Remove all cache entries for this logical interface */ 18174 void 18175 ipif_nce_down(ipif_t *ipif) 18176 { 18177 ill_t *ill = ipif->ipif_ill; 18178 nce_t *nce; 18179 18180 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18181 ill_t *, ill, ipif_t *, ipif); 18182 if (ipif->ipif_added_nce) { 18183 if (ipif->ipif_isv6) 18184 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18185 else 18186 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18187 if (nce != NULL) { 18188 if (--nce->nce_ipif_cnt == 0) 18189 ncec_delete(nce->nce_common); 18190 ipif->ipif_added_nce = 0; 18191 nce_refrele(nce); 18192 } else { 18193 /* 18194 * nce may already be NULL because it was already 18195 * flushed, e.g., due to a call to nce_flush 18196 */ 18197 ipif->ipif_added_nce = 0; 18198 } 18199 } 18200 /* 18201 * Make IPMP aware of the deleted data address. 18202 */ 18203 if (IS_IPMP(ill)) 18204 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18205 18206 /* 18207 * Remove all other nces dependent on this ill when the last ipif 18208 * is going away. 18209 */ 18210 if (ill->ill_ipif_up_count == 0) { 18211 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18212 (uchar_t *)ill, ill->ill_ipst); 18213 if (IS_UNDER_IPMP(ill)) 18214 nce_flush(ill, B_TRUE); 18215 } 18216 } 18217