1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/ip_arp.h> 76 #include <inet/mib2.h> 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_ire.h> 83 #include <inet/ip_ftable.h> 84 #include <inet/ip_rts.h> 85 #include <inet/ip_ndp.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_impl.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 #include <inet/ilb_ip.h> 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac_client.h> 96 #include <sys/dld.h> 97 98 #include <sys/systeminfo.h> 99 #include <sys/bootconf.h> 100 101 #include <sys/tsol/tndb.h> 102 #include <sys/tsol/tnet.h> 103 104 /* The character which tells where the ill_name ends */ 105 #define IPIF_SEPARATOR_CHAR ':' 106 107 /* IP ioctl function table entry */ 108 typedef struct ipft_s { 109 int ipft_cmd; 110 pfi_t ipft_pfi; 111 int ipft_min_size; 112 int ipft_flags; 113 } ipft_t; 114 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 115 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 116 117 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 118 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 119 char *value, caddr_t cp, cred_t *ioc_cr); 120 121 static boolean_t ill_is_quiescent(ill_t *); 122 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 123 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 124 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 125 mblk_t *mp, boolean_t need_up); 126 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 127 mblk_t *mp, boolean_t need_up); 128 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 129 queue_t *q, mblk_t *mp, boolean_t need_up); 130 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 131 mblk_t *mp); 132 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp); 134 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 135 queue_t *q, mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 137 int ioccmd, struct linkblk *li); 138 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 139 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 140 static void ipsq_flush(ill_t *ill); 141 142 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static void ipsq_delete(ipsq_t *); 145 146 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 147 boolean_t initialize, boolean_t insert, int *errorp); 148 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 149 static void ipif_delete_bcast_ires(ipif_t *ipif); 150 static int ipif_add_ires_v4(ipif_t *, boolean_t); 151 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 152 boolean_t isv6); 153 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 154 static void ipif_free(ipif_t *ipif); 155 static void ipif_free_tail(ipif_t *ipif); 156 static void ipif_set_default(ipif_t *ipif); 157 static int ipif_set_values(queue_t *q, mblk_t *mp, 158 char *interf_name, uint_t *ppa); 159 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 160 queue_t *q); 161 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 162 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 163 ip_stack_t *); 164 165 static int ill_alloc_ppa(ill_if_t *, ill_t *); 166 static void ill_delete_interface_type(ill_if_t *); 167 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 168 static void ill_dl_down(ill_t *ill); 169 static void ill_down(ill_t *ill); 170 static void ill_down_ipifs(ill_t *, boolean_t); 171 static void ill_free_mib(ill_t *ill); 172 static void ill_glist_delete(ill_t *); 173 static void ill_phyint_reinit(ill_t *ill); 174 static void ill_set_nce_router_flags(ill_t *, boolean_t); 175 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 176 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 177 178 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 179 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 180 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 181 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 182 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 183 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 184 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 185 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 186 static ip_v4mapinfo_func_t ip_mbcast_mapping; 187 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 188 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 189 static void phyint_free(phyint_t *); 190 191 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 192 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 193 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 194 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 195 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 196 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 197 dl_capability_sub_t *); 198 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 199 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 200 static void ill_capability_dld_ack(ill_t *, mblk_t *, 201 dl_capability_sub_t *); 202 static void ill_capability_dld_enable(ill_t *); 203 static void ill_capability_ack_thr(void *); 204 static void ill_capability_lso_enable(ill_t *); 205 206 static ill_t *ill_prev_usesrc(ill_t *); 207 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 208 static void ill_disband_usesrc_group(ill_t *); 209 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 210 211 #ifdef DEBUG 212 static void ill_trace_cleanup(const ill_t *); 213 static void ipif_trace_cleanup(const ipif_t *); 214 #endif 215 216 static void ill_dlpi_clear_deferred(ill_t *ill); 217 218 /* 219 * if we go over the memory footprint limit more than once in this msec 220 * interval, we'll start pruning aggressively. 221 */ 222 int ip_min_frag_prune_time = 0; 223 224 static ipft_t ip_ioctl_ftbl[] = { 225 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 226 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 227 IPFT_F_NO_REPLY }, 228 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 229 { 0 } 230 }; 231 232 /* Simple ICMP IP Header Template */ 233 static ipha_t icmp_ipha = { 234 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 235 }; 236 237 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 238 239 static ip_m_t ip_m_tbl[] = { 240 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 241 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 242 ip_nodef_v6intfid }, 243 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 244 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 245 ip_nodef_v6intfid }, 246 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 247 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 248 ip_nodef_v6intfid }, 249 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 250 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 251 ip_nodef_v6intfid }, 252 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 256 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 257 ip_nodef_v6intfid }, 258 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 259 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 260 ip_ipv4_v6destintfid }, 261 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 262 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 263 ip_ipv6_v6destintfid }, 264 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 265 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 266 ip_nodef_v6intfid }, 267 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 268 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 269 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 270 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 271 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 272 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 273 ip_nodef_v6intfid } 274 }; 275 276 static ill_t ill_null; /* Empty ILL for init. */ 277 char ipif_loopback_name[] = "lo0"; 278 static char *ipv4_forward_suffix = ":ip_forwarding"; 279 static char *ipv6_forward_suffix = ":ip6_forwarding"; 280 281 /* These are used by all IP network modules. */ 282 sin6_t sin6_null; /* Zero address for quick clears */ 283 sin_t sin_null; /* Zero address for quick clears */ 284 285 /* When set search for unused ipif_seqid */ 286 static ipif_t ipif_zero; 287 288 /* 289 * ppa arena is created after these many 290 * interfaces have been plumbed. 291 */ 292 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 293 294 /* 295 * Allocate per-interface mibs. 296 * Returns true if ok. False otherwise. 297 * ipsq may not yet be allocated (loopback case ). 298 */ 299 static boolean_t 300 ill_allocate_mibs(ill_t *ill) 301 { 302 /* Already allocated? */ 303 if (ill->ill_ip_mib != NULL) { 304 if (ill->ill_isv6) 305 ASSERT(ill->ill_icmp6_mib != NULL); 306 return (B_TRUE); 307 } 308 309 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 310 KM_NOSLEEP); 311 if (ill->ill_ip_mib == NULL) { 312 return (B_FALSE); 313 } 314 315 /* Setup static information */ 316 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 317 sizeof (mib2_ipIfStatsEntry_t)); 318 if (ill->ill_isv6) { 319 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 320 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 321 sizeof (mib2_ipv6AddrEntry_t)); 322 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 323 sizeof (mib2_ipv6RouteEntry_t)); 324 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 325 sizeof (mib2_ipv6NetToMediaEntry_t)); 326 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 327 sizeof (ipv6_member_t)); 328 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 329 sizeof (ipv6_grpsrc_t)); 330 } else { 331 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 332 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 333 sizeof (mib2_ipAddrEntry_t)); 334 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 335 sizeof (mib2_ipRouteEntry_t)); 336 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 337 sizeof (mib2_ipNetToMediaEntry_t)); 338 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 339 sizeof (ip_member_t)); 340 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 341 sizeof (ip_grpsrc_t)); 342 343 /* 344 * For a v4 ill, we are done at this point, because per ill 345 * icmp mibs are only used for v6. 346 */ 347 return (B_TRUE); 348 } 349 350 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 351 KM_NOSLEEP); 352 if (ill->ill_icmp6_mib == NULL) { 353 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 354 ill->ill_ip_mib = NULL; 355 return (B_FALSE); 356 } 357 /* static icmp info */ 358 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 359 sizeof (mib2_ipv6IfIcmpEntry_t); 360 /* 361 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 362 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 363 * -> ill_phyint_reinit 364 */ 365 return (B_TRUE); 366 } 367 368 /* 369 * Completely vaporize a lower level tap and all associated interfaces. 370 * ill_delete is called only out of ip_close when the device control 371 * stream is being closed. 372 */ 373 void 374 ill_delete(ill_t *ill) 375 { 376 ipif_t *ipif; 377 ill_t *prev_ill; 378 ip_stack_t *ipst = ill->ill_ipst; 379 380 /* 381 * ill_delete may be forcibly entering the ipsq. The previous 382 * ioctl may not have completed and may need to be aborted. 383 * ipsq_flush takes care of it. If we don't need to enter the 384 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 385 * ill_delete_tail is sufficient. 386 */ 387 ipsq_flush(ill); 388 389 /* 390 * Nuke all interfaces. ipif_free will take down the interface, 391 * remove it from the list, and free the data structure. 392 * Walk down the ipif list and remove the logical interfaces 393 * first before removing the main ipif. We can't unplumb 394 * zeroth interface first in the case of IPv6 as update_conn_ill 395 * -> ip_ll_multireq de-references ill_ipif for checking 396 * POINTOPOINT. 397 * 398 * If ill_ipif was not properly initialized (i.e low on memory), 399 * then no interfaces to clean up. In this case just clean up the 400 * ill. 401 */ 402 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 403 ipif_free(ipif); 404 405 /* 406 * clean out all the nce_t entries that depend on this 407 * ill for the ill_phys_addr. 408 */ 409 nce_flush(ill, B_TRUE); 410 411 /* Clean up msgs on pending upcalls for mrouted */ 412 reset_mrt_ill(ill); 413 414 update_conn_ill(ill, ipst); 415 416 /* 417 * Remove multicast references added as a result of calls to 418 * ip_join_allmulti(). 419 */ 420 ip_purge_allmulti(ill); 421 422 /* 423 * If the ill being deleted is under IPMP, boot it out of the illgrp. 424 */ 425 if (IS_UNDER_IPMP(ill)) 426 ipmp_ill_leave_illgrp(ill); 427 428 /* 429 * ill_down will arrange to blow off any IRE's dependent on this 430 * ILL, and shut down fragmentation reassembly. 431 */ 432 ill_down(ill); 433 434 /* Let SCTP know, so that it can remove this from its list. */ 435 sctp_update_ill(ill, SCTP_ILL_REMOVE); 436 437 /* 438 * Walk all CONNs that can have a reference on an ire or nce for this 439 * ill (we actually walk all that now have stale references). 440 */ 441 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 442 443 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 444 if (ill->ill_isv6) 445 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 446 447 /* 448 * If an address on this ILL is being used as a source address then 449 * clear out the pointers in other ILLs that point to this ILL. 450 */ 451 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 452 if (ill->ill_usesrc_grp_next != NULL) { 453 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 454 ill_disband_usesrc_group(ill); 455 } else { /* consumer of the usesrc ILL */ 456 prev_ill = ill_prev_usesrc(ill); 457 prev_ill->ill_usesrc_grp_next = 458 ill->ill_usesrc_grp_next; 459 } 460 } 461 rw_exit(&ipst->ips_ill_g_usesrc_lock); 462 } 463 464 static void 465 ipif_non_duplicate(ipif_t *ipif) 466 { 467 ill_t *ill = ipif->ipif_ill; 468 mutex_enter(&ill->ill_lock); 469 if (ipif->ipif_flags & IPIF_DUPLICATE) { 470 ipif->ipif_flags &= ~IPIF_DUPLICATE; 471 ASSERT(ill->ill_ipif_dup_count > 0); 472 ill->ill_ipif_dup_count--; 473 } 474 mutex_exit(&ill->ill_lock); 475 } 476 477 /* 478 * ill_delete_tail is called from ip_modclose after all references 479 * to the closing ill are gone. The wait is done in ip_modclose 480 */ 481 void 482 ill_delete_tail(ill_t *ill) 483 { 484 mblk_t **mpp; 485 ipif_t *ipif; 486 ip_stack_t *ipst = ill->ill_ipst; 487 488 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 489 ipif_non_duplicate(ipif); 490 (void) ipif_down_tail(ipif); 491 } 492 493 ASSERT(ill->ill_ipif_dup_count == 0); 494 495 /* 496 * If polling capability is enabled (which signifies direct 497 * upcall into IP and driver has ill saved as a handle), 498 * we need to make sure that unbind has completed before we 499 * let the ill disappear and driver no longer has any reference 500 * to this ill. 501 */ 502 mutex_enter(&ill->ill_lock); 503 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 504 cv_wait(&ill->ill_cv, &ill->ill_lock); 505 mutex_exit(&ill->ill_lock); 506 ASSERT(!(ill->ill_capabilities & 507 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 508 509 if (ill->ill_net_type != IRE_LOOPBACK) 510 qprocsoff(ill->ill_rq); 511 512 /* 513 * We do an ipsq_flush once again now. New messages could have 514 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 515 * could also have landed up if an ioctl thread had looked up 516 * the ill before we set the ILL_CONDEMNED flag, but not yet 517 * enqueued the ioctl when we did the ipsq_flush last time. 518 */ 519 ipsq_flush(ill); 520 521 /* 522 * Free capabilities. 523 */ 524 if (ill->ill_hcksum_capab != NULL) { 525 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 526 ill->ill_hcksum_capab = NULL; 527 } 528 529 if (ill->ill_zerocopy_capab != NULL) { 530 kmem_free(ill->ill_zerocopy_capab, 531 sizeof (ill_zerocopy_capab_t)); 532 ill->ill_zerocopy_capab = NULL; 533 } 534 535 if (ill->ill_lso_capab != NULL) { 536 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 537 ill->ill_lso_capab = NULL; 538 } 539 540 if (ill->ill_dld_capab != NULL) { 541 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 542 ill->ill_dld_capab = NULL; 543 } 544 545 while (ill->ill_ipif != NULL) 546 ipif_free_tail(ill->ill_ipif); 547 548 /* 549 * We have removed all references to ilm from conn and the ones joined 550 * within the kernel. 551 * 552 * We don't walk conns, mrts and ires because 553 * 554 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 555 * 2) ill_down ->ill_downi walks all the ires and cleans up 556 * ill references. 557 */ 558 559 /* 560 * If this ill is an IPMP meta-interface, blow away the illgrp. This 561 * is safe to do because the illgrp has already been unlinked from the 562 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 563 */ 564 if (IS_IPMP(ill)) { 565 ipmp_illgrp_destroy(ill->ill_grp); 566 ill->ill_grp = NULL; 567 } 568 569 /* 570 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 571 * could free the phyint. No more reference to the phyint after this 572 * point. 573 */ 574 (void) ill_glist_delete(ill); 575 576 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 577 if (ill->ill_ndd_name != NULL) 578 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 579 rw_exit(&ipst->ips_ip_g_nd_lock); 580 581 if (ill->ill_frag_ptr != NULL) { 582 uint_t count; 583 584 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 585 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 586 } 587 mi_free(ill->ill_frag_ptr); 588 ill->ill_frag_ptr = NULL; 589 ill->ill_frag_hash_tbl = NULL; 590 } 591 592 freemsg(ill->ill_nd_lla_mp); 593 /* Free all retained control messages. */ 594 mpp = &ill->ill_first_mp_to_free; 595 do { 596 while (mpp[0]) { 597 mblk_t *mp; 598 mblk_t *mp1; 599 600 mp = mpp[0]; 601 mpp[0] = mp->b_next; 602 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 603 mp1->b_next = NULL; 604 mp1->b_prev = NULL; 605 } 606 freemsg(mp); 607 } 608 } while (mpp++ != &ill->ill_last_mp_to_free); 609 610 ill_free_mib(ill); 611 612 #ifdef DEBUG 613 ill_trace_cleanup(ill); 614 #endif 615 616 /* The default multicast interface might have changed */ 617 ire_increment_multicast_generation(ipst, ill->ill_isv6); 618 619 /* Drop refcnt here */ 620 netstack_rele(ill->ill_ipst->ips_netstack); 621 ill->ill_ipst = NULL; 622 } 623 624 static void 625 ill_free_mib(ill_t *ill) 626 { 627 ip_stack_t *ipst = ill->ill_ipst; 628 629 /* 630 * MIB statistics must not be lost, so when an interface 631 * goes away the counter values will be added to the global 632 * MIBs. 633 */ 634 if (ill->ill_ip_mib != NULL) { 635 if (ill->ill_isv6) { 636 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 637 ill->ill_ip_mib); 638 } else { 639 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 640 ill->ill_ip_mib); 641 } 642 643 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 644 ill->ill_ip_mib = NULL; 645 } 646 if (ill->ill_icmp6_mib != NULL) { 647 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 648 ill->ill_icmp6_mib); 649 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 650 ill->ill_icmp6_mib = NULL; 651 } 652 } 653 654 /* 655 * Concatenate together a physical address and a sap. 656 * 657 * Sap_lengths are interpreted as follows: 658 * sap_length == 0 ==> no sap 659 * sap_length > 0 ==> sap is at the head of the dlpi address 660 * sap_length < 0 ==> sap is at the tail of the dlpi address 661 */ 662 static void 663 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 664 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 665 { 666 uint16_t sap_addr = (uint16_t)sap_src; 667 668 if (sap_length == 0) { 669 if (phys_src == NULL) 670 bzero(dst, phys_length); 671 else 672 bcopy(phys_src, dst, phys_length); 673 } else if (sap_length < 0) { 674 if (phys_src == NULL) 675 bzero(dst, phys_length); 676 else 677 bcopy(phys_src, dst, phys_length); 678 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 679 } else { 680 bcopy(&sap_addr, dst, sizeof (sap_addr)); 681 if (phys_src == NULL) 682 bzero((char *)dst + sap_length, phys_length); 683 else 684 bcopy(phys_src, (char *)dst + sap_length, phys_length); 685 } 686 } 687 688 /* 689 * Generate a dl_unitdata_req mblk for the device and address given. 690 * addr_length is the length of the physical portion of the address. 691 * If addr is NULL include an all zero address of the specified length. 692 * TRUE? In any case, addr_length is taken to be the entire length of the 693 * dlpi address, including the absolute value of sap_length. 694 */ 695 mblk_t * 696 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 697 t_scalar_t sap_length) 698 { 699 dl_unitdata_req_t *dlur; 700 mblk_t *mp; 701 t_scalar_t abs_sap_length; /* absolute value */ 702 703 abs_sap_length = ABS(sap_length); 704 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 705 DL_UNITDATA_REQ); 706 if (mp == NULL) 707 return (NULL); 708 dlur = (dl_unitdata_req_t *)mp->b_rptr; 709 /* HACK: accomodate incompatible DLPI drivers */ 710 if (addr_length == 8) 711 addr_length = 6; 712 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 713 dlur->dl_dest_addr_offset = sizeof (*dlur); 714 dlur->dl_priority.dl_min = 0; 715 dlur->dl_priority.dl_max = 0; 716 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 717 (uchar_t *)&dlur[1]); 718 return (mp); 719 } 720 721 /* 722 * Add the pending mp to the list. There can be only 1 pending mp 723 * in the list. Any exclusive ioctl that needs to wait for a response 724 * from another module or driver needs to use this function to set 725 * the ipx_pending_mp to the ioctl mblk and wait for the response from 726 * the other module/driver. This is also used while waiting for the 727 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 728 */ 729 boolean_t 730 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 731 int waitfor) 732 { 733 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 734 735 ASSERT(IAM_WRITER_IPIF(ipif)); 736 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 737 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 738 ASSERT(ipx->ipx_pending_mp == NULL); 739 /* 740 * The caller may be using a different ipif than the one passed into 741 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 742 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 743 * that `ipx_current_ipif == ipif'. 744 */ 745 ASSERT(ipx->ipx_current_ipif != NULL); 746 747 /* 748 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 749 * driver. 750 */ 751 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 752 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 753 (DB_TYPE(add_mp) == M_PCPROTO)); 754 755 if (connp != NULL) { 756 ASSERT(MUTEX_HELD(&connp->conn_lock)); 757 /* 758 * Return error if the conn has started closing. The conn 759 * could have finished cleaning up the pending mp list, 760 * If so we should not add another mp to the list negating 761 * the cleanup. 762 */ 763 if (connp->conn_state_flags & CONN_CLOSING) 764 return (B_FALSE); 765 } 766 mutex_enter(&ipx->ipx_lock); 767 ipx->ipx_pending_ipif = ipif; 768 /* 769 * Note down the queue in b_queue. This will be returned by 770 * ipsq_pending_mp_get. Caller will then use these values to restart 771 * the processing 772 */ 773 add_mp->b_next = NULL; 774 add_mp->b_queue = q; 775 ipx->ipx_pending_mp = add_mp; 776 ipx->ipx_waitfor = waitfor; 777 mutex_exit(&ipx->ipx_lock); 778 779 if (connp != NULL) 780 connp->conn_oper_pending_ill = ipif->ipif_ill; 781 782 return (B_TRUE); 783 } 784 785 /* 786 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 787 * queued in the list. 788 */ 789 mblk_t * 790 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 791 { 792 mblk_t *curr = NULL; 793 ipxop_t *ipx = ipsq->ipsq_xop; 794 795 *connpp = NULL; 796 mutex_enter(&ipx->ipx_lock); 797 if (ipx->ipx_pending_mp == NULL) { 798 mutex_exit(&ipx->ipx_lock); 799 return (NULL); 800 } 801 802 /* There can be only 1 such excl message */ 803 curr = ipx->ipx_pending_mp; 804 ASSERT(curr->b_next == NULL); 805 ipx->ipx_pending_ipif = NULL; 806 ipx->ipx_pending_mp = NULL; 807 ipx->ipx_waitfor = 0; 808 mutex_exit(&ipx->ipx_lock); 809 810 if (CONN_Q(curr->b_queue)) { 811 /* 812 * This mp did a refhold on the conn, at the start of the ioctl. 813 * So we can safely return a pointer to the conn to the caller. 814 */ 815 *connpp = Q_TO_CONN(curr->b_queue); 816 } else { 817 *connpp = NULL; 818 } 819 curr->b_next = NULL; 820 curr->b_prev = NULL; 821 return (curr); 822 } 823 824 /* 825 * Cleanup the ioctl mp queued in ipx_pending_mp 826 * - Called in the ill_delete path 827 * - Called in the M_ERROR or M_HANGUP path on the ill. 828 * - Called in the conn close path. 829 * 830 * Returns success on finding the pending mblk associated with the ioctl or 831 * exclusive operation in progress, failure otherwise. 832 */ 833 boolean_t 834 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 835 { 836 mblk_t *mp; 837 ipxop_t *ipx; 838 queue_t *q; 839 ipif_t *ipif; 840 int cmd; 841 842 ASSERT(IAM_WRITER_ILL(ill)); 843 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 844 845 mutex_enter(&ipx->ipx_lock); 846 mp = ipx->ipx_pending_mp; 847 if (connp != NULL) { 848 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 849 /* 850 * Nothing to clean since the conn that is closing 851 * does not have a matching pending mblk in 852 * ipx_pending_mp. 853 */ 854 mutex_exit(&ipx->ipx_lock); 855 return (B_FALSE); 856 } 857 } else { 858 /* 859 * A non-zero ill_error signifies we are called in the 860 * M_ERROR or M_HANGUP path and we need to unconditionally 861 * abort any current ioctl and do the corresponding cleanup. 862 * A zero ill_error means we are in the ill_delete path and 863 * we do the cleanup only if there is a pending mp. 864 */ 865 if (mp == NULL && ill->ill_error == 0) { 866 mutex_exit(&ipx->ipx_lock); 867 return (B_FALSE); 868 } 869 } 870 871 /* Now remove from the ipx_pending_mp */ 872 ipx->ipx_pending_mp = NULL; 873 ipif = ipx->ipx_pending_ipif; 874 ipx->ipx_pending_ipif = NULL; 875 ipx->ipx_waitfor = 0; 876 ipx->ipx_current_ipif = NULL; 877 cmd = ipx->ipx_current_ioctl; 878 ipx->ipx_current_ioctl = 0; 879 ipx->ipx_current_done = B_TRUE; 880 mutex_exit(&ipx->ipx_lock); 881 882 if (mp == NULL) 883 return (B_FALSE); 884 885 q = mp->b_queue; 886 mp->b_next = NULL; 887 mp->b_prev = NULL; 888 mp->b_queue = NULL; 889 890 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 891 DTRACE_PROBE4(ipif__ioctl, 892 char *, "ipsq_pending_mp_cleanup", 893 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 894 ipif_t *, ipif); 895 if (connp == NULL) { 896 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 897 } else { 898 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 899 mutex_enter(&ipif->ipif_ill->ill_lock); 900 ipif->ipif_state_flags &= ~IPIF_CHANGING; 901 mutex_exit(&ipif->ipif_ill->ill_lock); 902 } 903 } else { 904 inet_freemsg(mp); 905 } 906 return (B_TRUE); 907 } 908 909 /* 910 * Called in the conn close path and ill delete path 911 */ 912 static void 913 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 914 { 915 ipsq_t *ipsq; 916 mblk_t *prev; 917 mblk_t *curr; 918 mblk_t *next; 919 queue_t *wq, *rq = NULL; 920 mblk_t *tmp_list = NULL; 921 922 ASSERT(IAM_WRITER_ILL(ill)); 923 if (connp != NULL) 924 wq = CONNP_TO_WQ(connp); 925 else 926 wq = ill->ill_wq; 927 928 /* 929 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 930 * against this here. 931 */ 932 if (wq != NULL) 933 rq = RD(wq); 934 935 ipsq = ill->ill_phyint->phyint_ipsq; 936 /* 937 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 938 * In the case of ioctl from a conn, there can be only 1 mp 939 * queued on the ipsq. If an ill is being unplumbed flush all 940 * the messages. 941 */ 942 mutex_enter(&ipsq->ipsq_lock); 943 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 944 curr = next) { 945 next = curr->b_next; 946 if (connp == NULL || 947 (curr->b_queue == wq || curr->b_queue == rq)) { 948 /* Unlink the mblk from the pending mp list */ 949 if (prev != NULL) { 950 prev->b_next = curr->b_next; 951 } else { 952 ASSERT(ipsq->ipsq_xopq_mphead == curr); 953 ipsq->ipsq_xopq_mphead = curr->b_next; 954 } 955 if (ipsq->ipsq_xopq_mptail == curr) 956 ipsq->ipsq_xopq_mptail = prev; 957 /* 958 * Create a temporary list and release the ipsq lock 959 * New elements are added to the head of the tmp_list 960 */ 961 curr->b_next = tmp_list; 962 tmp_list = curr; 963 } else { 964 prev = curr; 965 } 966 } 967 mutex_exit(&ipsq->ipsq_lock); 968 969 while (tmp_list != NULL) { 970 curr = tmp_list; 971 tmp_list = curr->b_next; 972 curr->b_next = NULL; 973 curr->b_prev = NULL; 974 curr->b_queue = NULL; 975 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 976 DTRACE_PROBE4(ipif__ioctl, 977 char *, "ipsq_xopq_mp_cleanup", 978 int, 0, ill_t *, NULL, ipif_t *, NULL); 979 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 980 CONN_CLOSE : NO_COPYOUT, NULL); 981 } else { 982 /* 983 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 984 * this can't be just inet_freemsg. we have to 985 * restart it otherwise the thread will be stuck. 986 */ 987 inet_freemsg(curr); 988 } 989 } 990 } 991 992 /* 993 * This conn has started closing. Cleanup any pending ioctl from this conn. 994 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 995 */ 996 void 997 conn_ioctl_cleanup(conn_t *connp) 998 { 999 ipsq_t *ipsq; 1000 ill_t *ill; 1001 boolean_t refheld; 1002 1003 /* 1004 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1005 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1006 * started the mp could be present in ipx_pending_mp. Note that if 1007 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1008 * not yet queued anywhere. In this case, the conn close code will wait 1009 * until the conn_ref is dropped. If the stream was a tcp stream, then 1010 * tcp_close will wait first until all ioctls have completed for this 1011 * conn. 1012 */ 1013 mutex_enter(&connp->conn_lock); 1014 ill = connp->conn_oper_pending_ill; 1015 if (ill == NULL) { 1016 mutex_exit(&connp->conn_lock); 1017 return; 1018 } 1019 1020 /* 1021 * We may not be able to refhold the ill if the ill/ipif 1022 * is changing. But we need to make sure that the ill will 1023 * not vanish. So we just bump up the ill_waiter count. 1024 */ 1025 refheld = ill_waiter_inc(ill); 1026 mutex_exit(&connp->conn_lock); 1027 if (refheld) { 1028 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1029 ill_waiter_dcr(ill); 1030 /* 1031 * Check whether this ioctl has started and is 1032 * pending. If it is not found there then check 1033 * whether this ioctl has not even started and is in 1034 * the ipsq_xopq list. 1035 */ 1036 if (!ipsq_pending_mp_cleanup(ill, connp)) 1037 ipsq_xopq_mp_cleanup(ill, connp); 1038 ipsq = ill->ill_phyint->phyint_ipsq; 1039 ipsq_exit(ipsq); 1040 return; 1041 } 1042 } 1043 1044 /* 1045 * The ill is also closing and we could not bump up the 1046 * ill_waiter_count or we could not enter the ipsq. Leave 1047 * the cleanup to ill_delete 1048 */ 1049 mutex_enter(&connp->conn_lock); 1050 while (connp->conn_oper_pending_ill != NULL) 1051 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1052 mutex_exit(&connp->conn_lock); 1053 if (refheld) 1054 ill_waiter_dcr(ill); 1055 } 1056 1057 /* 1058 * ipcl_walk function for cleaning up conn_*_ill fields. 1059 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1060 * conn_bound_if in place. We prefer dropping 1061 * packets instead of sending them out the wrong interface, or accepting 1062 * packets from the wrong ifindex. 1063 */ 1064 static void 1065 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1066 { 1067 ill_t *ill = (ill_t *)arg; 1068 1069 mutex_enter(&connp->conn_lock); 1070 if (connp->conn_dhcpinit_ill == ill) { 1071 connp->conn_dhcpinit_ill = NULL; 1072 ASSERT(ill->ill_dhcpinit != 0); 1073 atomic_dec_32(&ill->ill_dhcpinit); 1074 ill_set_inputfn(ill); 1075 } 1076 mutex_exit(&connp->conn_lock); 1077 } 1078 1079 static int 1080 ill_down_ipifs_tail(ill_t *ill) 1081 { 1082 ipif_t *ipif; 1083 int err; 1084 1085 ASSERT(IAM_WRITER_ILL(ill)); 1086 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1087 ipif_non_duplicate(ipif); 1088 /* 1089 * ipif_down_tail will call arp_ll_down on the last ipif 1090 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1091 */ 1092 if ((err = ipif_down_tail(ipif)) != 0) 1093 return (err); 1094 } 1095 return (0); 1096 } 1097 1098 /* ARGSUSED */ 1099 void 1100 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1101 { 1102 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1103 (void) ill_down_ipifs_tail(q->q_ptr); 1104 freemsg(mp); 1105 ipsq_current_finish(ipsq); 1106 } 1107 1108 /* 1109 * ill_down_start is called when we want to down this ill and bring it up again 1110 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1111 * all interfaces, but don't tear down any plumbing. 1112 */ 1113 boolean_t 1114 ill_down_start(queue_t *q, mblk_t *mp) 1115 { 1116 ill_t *ill = q->q_ptr; 1117 ipif_t *ipif; 1118 1119 ASSERT(IAM_WRITER_ILL(ill)); 1120 mutex_enter(&ill->ill_lock); 1121 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 1122 /* no more nce addition allowed */ 1123 mutex_exit(&ill->ill_lock); 1124 1125 /* 1126 * It is possible that some ioctl is already in progress while we 1127 * received the M_ERROR / M_HANGUP in which case, we need to abort 1128 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1129 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1130 * the in progress ioctl from ever completing. 1131 * 1132 * The thread that started the ioctl (if any) must have returned, 1133 * since we are now executing as writer. After the 2 calls below, 1134 * the state of the ipsq and the ill would reflect no trace of any 1135 * pending operation. Subsequently if there is any response to the 1136 * original ioctl from the driver, it would be discarded as an 1137 * unsolicited message from the driver. 1138 */ 1139 (void) ipsq_pending_mp_cleanup(ill, NULL); 1140 ill_dlpi_clear_deferred(ill); 1141 1142 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1143 (void) ipif_down(ipif, NULL, NULL); 1144 1145 ill_down(ill); 1146 1147 /* 1148 * Walk all CONNs that can have a reference on an ire or nce for this 1149 * ill (we actually walk all that now have stale references). 1150 */ 1151 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1152 1153 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1154 if (ill->ill_isv6) 1155 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1156 1157 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1158 1159 /* 1160 * Atomically test and add the pending mp if references are active. 1161 */ 1162 mutex_enter(&ill->ill_lock); 1163 if (!ill_is_quiescent(ill)) { 1164 /* call cannot fail since `conn_t *' argument is NULL */ 1165 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1166 mp, ILL_DOWN); 1167 mutex_exit(&ill->ill_lock); 1168 return (B_FALSE); 1169 } 1170 mutex_exit(&ill->ill_lock); 1171 return (B_TRUE); 1172 } 1173 1174 static void 1175 ill_down(ill_t *ill) 1176 { 1177 mblk_t *mp; 1178 ip_stack_t *ipst = ill->ill_ipst; 1179 1180 /* 1181 * Blow off any IREs dependent on this ILL. 1182 * The caller needs to handle conn_ixa_cleanup 1183 */ 1184 ill_delete_ires(ill); 1185 1186 ire_walk_ill(0, 0, ill_downi, ill, ill); 1187 1188 /* Remove any conn_*_ill depending on this ill */ 1189 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1190 1191 /* 1192 * Free state for additional IREs. 1193 */ 1194 mutex_enter(&ill->ill_saved_ire_lock); 1195 mp = ill->ill_saved_ire_mp; 1196 ill->ill_saved_ire_mp = NULL; 1197 ill->ill_saved_ire_cnt = 0; 1198 mutex_exit(&ill->ill_saved_ire_lock); 1199 freemsg(mp); 1200 } 1201 1202 /* 1203 * ire_walk routine used to delete every IRE that depends on 1204 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1205 * 1206 * Note: since the routes added by the kernel are deleted separately, 1207 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1208 * 1209 * We also remove references on ire_nce_cache entries that refer to the ill. 1210 */ 1211 void 1212 ill_downi(ire_t *ire, char *ill_arg) 1213 { 1214 ill_t *ill = (ill_t *)ill_arg; 1215 nce_t *nce; 1216 1217 mutex_enter(&ire->ire_lock); 1218 nce = ire->ire_nce_cache; 1219 if (nce != NULL && nce->nce_ill == ill) 1220 ire->ire_nce_cache = NULL; 1221 else 1222 nce = NULL; 1223 mutex_exit(&ire->ire_lock); 1224 if (nce != NULL) 1225 nce_refrele(nce); 1226 if (ire->ire_ill == ill) { 1227 /* 1228 * The existing interface binding for ire must be 1229 * deleted before trying to bind the route to another 1230 * interface. However, since we are using the contents of the 1231 * ire after ire_delete, the caller has to ensure that 1232 * CONDEMNED (deleted) ire's are not removed from the list 1233 * when ire_delete() returns. Currently ill_downi() is 1234 * only called as part of ire_walk*() routines, so that 1235 * the irb_refhold() done by ire_walk*() will ensure that 1236 * ire_delete() does not lead to ire_inactive(). 1237 */ 1238 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1239 ire_delete(ire); 1240 if (ire->ire_unbound) 1241 ire_rebind(ire); 1242 } 1243 } 1244 1245 /* Remove IRE_IF_CLONE on this ill */ 1246 void 1247 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1248 { 1249 ill_t *ill = (ill_t *)ill_arg; 1250 1251 ASSERT(ire->ire_type & IRE_IF_CLONE); 1252 if (ire->ire_ill == ill) 1253 ire_delete(ire); 1254 } 1255 1256 /* Consume an M_IOCACK of the fastpath probe. */ 1257 void 1258 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1259 { 1260 mblk_t *mp1 = mp; 1261 1262 /* 1263 * If this was the first attempt turn on the fastpath probing. 1264 */ 1265 mutex_enter(&ill->ill_lock); 1266 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1267 ill->ill_dlpi_fastpath_state = IDS_OK; 1268 mutex_exit(&ill->ill_lock); 1269 1270 /* Free the M_IOCACK mblk, hold on to the data */ 1271 mp = mp->b_cont; 1272 freeb(mp1); 1273 if (mp == NULL) 1274 return; 1275 if (mp->b_cont != NULL) 1276 nce_fastpath_update(ill, mp); 1277 else 1278 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1279 freemsg(mp); 1280 } 1281 1282 /* 1283 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1284 * The data portion of the request is a dl_unitdata_req_t template for 1285 * what we would send downstream in the absence of a fastpath confirmation. 1286 */ 1287 int 1288 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1289 { 1290 struct iocblk *ioc; 1291 mblk_t *mp; 1292 1293 if (dlur_mp == NULL) 1294 return (EINVAL); 1295 1296 mutex_enter(&ill->ill_lock); 1297 switch (ill->ill_dlpi_fastpath_state) { 1298 case IDS_FAILED: 1299 /* 1300 * Driver NAKed the first fastpath ioctl - assume it doesn't 1301 * support it. 1302 */ 1303 mutex_exit(&ill->ill_lock); 1304 return (ENOTSUP); 1305 case IDS_UNKNOWN: 1306 /* This is the first probe */ 1307 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1308 break; 1309 default: 1310 break; 1311 } 1312 mutex_exit(&ill->ill_lock); 1313 1314 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1315 return (EAGAIN); 1316 1317 mp->b_cont = copyb(dlur_mp); 1318 if (mp->b_cont == NULL) { 1319 freeb(mp); 1320 return (EAGAIN); 1321 } 1322 1323 ioc = (struct iocblk *)mp->b_rptr; 1324 ioc->ioc_count = msgdsize(mp->b_cont); 1325 1326 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1327 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1328 putnext(ill->ill_wq, mp); 1329 return (0); 1330 } 1331 1332 void 1333 ill_capability_probe(ill_t *ill) 1334 { 1335 mblk_t *mp; 1336 1337 ASSERT(IAM_WRITER_ILL(ill)); 1338 1339 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1340 ill->ill_dlpi_capab_state != IDCS_FAILED) 1341 return; 1342 1343 /* 1344 * We are starting a new cycle of capability negotiation. 1345 * Free up the capab reset messages of any previous incarnation. 1346 * We will do a fresh allocation when we get the response to our probe 1347 */ 1348 if (ill->ill_capab_reset_mp != NULL) { 1349 freemsg(ill->ill_capab_reset_mp); 1350 ill->ill_capab_reset_mp = NULL; 1351 } 1352 1353 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1354 1355 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1356 if (mp == NULL) 1357 return; 1358 1359 ill_capability_send(ill, mp); 1360 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1361 } 1362 1363 void 1364 ill_capability_reset(ill_t *ill, boolean_t reneg) 1365 { 1366 ASSERT(IAM_WRITER_ILL(ill)); 1367 1368 if (ill->ill_dlpi_capab_state != IDCS_OK) 1369 return; 1370 1371 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1372 1373 ill_capability_send(ill, ill->ill_capab_reset_mp); 1374 ill->ill_capab_reset_mp = NULL; 1375 /* 1376 * We turn off all capabilities except those pertaining to 1377 * direct function call capabilities viz. ILL_CAPAB_DLD* 1378 * which will be turned off by the corresponding reset functions. 1379 */ 1380 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1381 } 1382 1383 static void 1384 ill_capability_reset_alloc(ill_t *ill) 1385 { 1386 mblk_t *mp; 1387 size_t size = 0; 1388 int err; 1389 dl_capability_req_t *capb; 1390 1391 ASSERT(IAM_WRITER_ILL(ill)); 1392 ASSERT(ill->ill_capab_reset_mp == NULL); 1393 1394 if (ILL_HCKSUM_CAPABLE(ill)) { 1395 size += sizeof (dl_capability_sub_t) + 1396 sizeof (dl_capab_hcksum_t); 1397 } 1398 1399 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1400 size += sizeof (dl_capability_sub_t) + 1401 sizeof (dl_capab_zerocopy_t); 1402 } 1403 1404 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1405 size += sizeof (dl_capability_sub_t) + 1406 sizeof (dl_capab_dld_t); 1407 } 1408 1409 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1410 STR_NOSIG, &err); 1411 1412 mp->b_datap->db_type = M_PROTO; 1413 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1414 1415 capb = (dl_capability_req_t *)mp->b_rptr; 1416 capb->dl_primitive = DL_CAPABILITY_REQ; 1417 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1418 capb->dl_sub_length = size; 1419 1420 mp->b_wptr += sizeof (dl_capability_req_t); 1421 1422 /* 1423 * Each handler fills in the corresponding dl_capability_sub_t 1424 * inside the mblk, 1425 */ 1426 ill_capability_hcksum_reset_fill(ill, mp); 1427 ill_capability_zerocopy_reset_fill(ill, mp); 1428 ill_capability_dld_reset_fill(ill, mp); 1429 1430 ill->ill_capab_reset_mp = mp; 1431 } 1432 1433 static void 1434 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1435 { 1436 dl_capab_id_t *id_ic; 1437 uint_t sub_dl_cap = outers->dl_cap; 1438 dl_capability_sub_t *inners; 1439 uint8_t *capend; 1440 1441 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1442 1443 /* 1444 * Note: range checks here are not absolutely sufficient to 1445 * make us robust against malformed messages sent by drivers; 1446 * this is in keeping with the rest of IP's dlpi handling. 1447 * (Remember, it's coming from something else in the kernel 1448 * address space) 1449 */ 1450 1451 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1452 if (capend > mp->b_wptr) { 1453 cmn_err(CE_WARN, "ill_capability_id_ack: " 1454 "malformed sub-capability too long for mblk"); 1455 return; 1456 } 1457 1458 id_ic = (dl_capab_id_t *)(outers + 1); 1459 1460 if (outers->dl_length < sizeof (*id_ic) || 1461 (inners = &id_ic->id_subcap, 1462 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1463 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1464 "encapsulated capab type %d too long for mblk", 1465 inners->dl_cap); 1466 return; 1467 } 1468 1469 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1470 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1471 "isn't as expected; pass-thru module(s) detected, " 1472 "discarding capability\n", inners->dl_cap)); 1473 return; 1474 } 1475 1476 /* Process the encapsulated sub-capability */ 1477 ill_capability_dispatch(ill, mp, inners); 1478 } 1479 1480 static void 1481 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1482 { 1483 dl_capability_sub_t *dl_subcap; 1484 1485 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1486 return; 1487 1488 /* 1489 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1490 * initialized below since it is not used by DLD. 1491 */ 1492 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1493 dl_subcap->dl_cap = DL_CAPAB_DLD; 1494 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1495 1496 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1497 } 1498 1499 static void 1500 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1501 { 1502 /* 1503 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1504 * is only to get the VRRP capability. 1505 * 1506 * Note that we cannot check ill_ipif_up_count here since 1507 * ill_ipif_up_count is only incremented when the resolver is setup. 1508 * That is done asynchronously, and can race with this function. 1509 */ 1510 if (!ill->ill_dl_up) { 1511 if (subp->dl_cap == DL_CAPAB_VRRP) 1512 ill_capability_vrrp_ack(ill, mp, subp); 1513 return; 1514 } 1515 1516 switch (subp->dl_cap) { 1517 case DL_CAPAB_HCKSUM: 1518 ill_capability_hcksum_ack(ill, mp, subp); 1519 break; 1520 case DL_CAPAB_ZEROCOPY: 1521 ill_capability_zerocopy_ack(ill, mp, subp); 1522 break; 1523 case DL_CAPAB_DLD: 1524 ill_capability_dld_ack(ill, mp, subp); 1525 break; 1526 case DL_CAPAB_VRRP: 1527 break; 1528 default: 1529 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1530 subp->dl_cap)); 1531 } 1532 } 1533 1534 /* 1535 * Process the vrrp capability received from a DLS Provider. isub must point 1536 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1537 */ 1538 static void 1539 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1540 { 1541 dl_capab_vrrp_t *vrrp; 1542 uint_t sub_dl_cap = isub->dl_cap; 1543 uint8_t *capend; 1544 1545 ASSERT(IAM_WRITER_ILL(ill)); 1546 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1547 1548 /* 1549 * Note: range checks here are not absolutely sufficient to 1550 * make us robust against malformed messages sent by drivers; 1551 * this is in keeping with the rest of IP's dlpi handling. 1552 * (Remember, it's coming from something else in the kernel 1553 * address space) 1554 */ 1555 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1556 if (capend > mp->b_wptr) { 1557 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1558 "malformed sub-capability too long for mblk"); 1559 return; 1560 } 1561 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1562 1563 /* 1564 * Compare the IP address family and set ILLF_VRRP for the right ill. 1565 */ 1566 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1567 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1568 ill->ill_flags |= ILLF_VRRP; 1569 } 1570 } 1571 1572 /* 1573 * Process a hardware checksum offload capability negotiation ack received 1574 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1575 * of a DL_CAPABILITY_ACK message. 1576 */ 1577 static void 1578 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1579 { 1580 dl_capability_req_t *ocap; 1581 dl_capab_hcksum_t *ihck, *ohck; 1582 ill_hcksum_capab_t **ill_hcksum; 1583 mblk_t *nmp = NULL; 1584 uint_t sub_dl_cap = isub->dl_cap; 1585 uint8_t *capend; 1586 1587 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1588 1589 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1590 1591 /* 1592 * Note: range checks here are not absolutely sufficient to 1593 * make us robust against malformed messages sent by drivers; 1594 * this is in keeping with the rest of IP's dlpi handling. 1595 * (Remember, it's coming from something else in the kernel 1596 * address space) 1597 */ 1598 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1599 if (capend > mp->b_wptr) { 1600 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1601 "malformed sub-capability too long for mblk"); 1602 return; 1603 } 1604 1605 /* 1606 * There are two types of acks we process here: 1607 * 1. acks in reply to a (first form) generic capability req 1608 * (no ENABLE flag set) 1609 * 2. acks in reply to a ENABLE capability req. 1610 * (ENABLE flag set) 1611 */ 1612 ihck = (dl_capab_hcksum_t *)(isub + 1); 1613 1614 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1615 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1616 "unsupported hardware checksum " 1617 "sub-capability (version %d, expected %d)", 1618 ihck->hcksum_version, HCKSUM_VERSION_1); 1619 return; 1620 } 1621 1622 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1623 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1624 "checksum capability isn't as expected; pass-thru " 1625 "module(s) detected, discarding capability\n")); 1626 return; 1627 } 1628 1629 #define CURR_HCKSUM_CAPAB \ 1630 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1631 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1632 1633 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1634 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1635 /* do ENABLE processing */ 1636 if (*ill_hcksum == NULL) { 1637 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1638 KM_NOSLEEP); 1639 1640 if (*ill_hcksum == NULL) { 1641 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1642 "could not enable hcksum version %d " 1643 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1644 ill->ill_name); 1645 return; 1646 } 1647 } 1648 1649 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1650 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1651 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1652 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1653 "has enabled hardware checksumming\n ", 1654 ill->ill_name)); 1655 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1656 /* 1657 * Enabling hardware checksum offload 1658 * Currently IP supports {TCP,UDP}/IPv4 1659 * partial and full cksum offload and 1660 * IPv4 header checksum offload. 1661 * Allocate new mblk which will 1662 * contain a new capability request 1663 * to enable hardware checksum offload. 1664 */ 1665 uint_t size; 1666 uchar_t *rptr; 1667 1668 size = sizeof (dl_capability_req_t) + 1669 sizeof (dl_capability_sub_t) + isub->dl_length; 1670 1671 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1672 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1673 "could not enable hardware cksum for %s (ENOMEM)\n", 1674 ill->ill_name); 1675 return; 1676 } 1677 1678 rptr = nmp->b_rptr; 1679 /* initialize dl_capability_req_t */ 1680 ocap = (dl_capability_req_t *)nmp->b_rptr; 1681 ocap->dl_sub_offset = 1682 sizeof (dl_capability_req_t); 1683 ocap->dl_sub_length = 1684 sizeof (dl_capability_sub_t) + 1685 isub->dl_length; 1686 nmp->b_rptr += sizeof (dl_capability_req_t); 1687 1688 /* initialize dl_capability_sub_t */ 1689 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1690 nmp->b_rptr += sizeof (*isub); 1691 1692 /* initialize dl_capab_hcksum_t */ 1693 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1694 bcopy(ihck, ohck, sizeof (*ihck)); 1695 1696 nmp->b_rptr = rptr; 1697 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1698 1699 /* Set ENABLE flag */ 1700 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1701 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1702 1703 /* 1704 * nmp points to a DL_CAPABILITY_REQ message to enable 1705 * hardware checksum acceleration. 1706 */ 1707 ill_capability_send(ill, nmp); 1708 } else { 1709 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1710 "advertised %x hardware checksum capability flags\n", 1711 ill->ill_name, ihck->hcksum_txflags)); 1712 } 1713 } 1714 1715 static void 1716 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1717 { 1718 dl_capab_hcksum_t *hck_subcap; 1719 dl_capability_sub_t *dl_subcap; 1720 1721 if (!ILL_HCKSUM_CAPABLE(ill)) 1722 return; 1723 1724 ASSERT(ill->ill_hcksum_capab != NULL); 1725 1726 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1727 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1728 dl_subcap->dl_length = sizeof (*hck_subcap); 1729 1730 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1731 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1732 hck_subcap->hcksum_txflags = 0; 1733 1734 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1735 } 1736 1737 static void 1738 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1739 { 1740 mblk_t *nmp = NULL; 1741 dl_capability_req_t *oc; 1742 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1743 ill_zerocopy_capab_t **ill_zerocopy_capab; 1744 uint_t sub_dl_cap = isub->dl_cap; 1745 uint8_t *capend; 1746 1747 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1748 1749 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1750 1751 /* 1752 * Note: range checks here are not absolutely sufficient to 1753 * make us robust against malformed messages sent by drivers; 1754 * this is in keeping with the rest of IP's dlpi handling. 1755 * (Remember, it's coming from something else in the kernel 1756 * address space) 1757 */ 1758 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1759 if (capend > mp->b_wptr) { 1760 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1761 "malformed sub-capability too long for mblk"); 1762 return; 1763 } 1764 1765 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1766 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1767 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1768 "unsupported ZEROCOPY sub-capability (version %d, " 1769 "expected %d)", zc_ic->zerocopy_version, 1770 ZEROCOPY_VERSION_1); 1771 return; 1772 } 1773 1774 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1775 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1776 "capability isn't as expected; pass-thru module(s) " 1777 "detected, discarding capability\n")); 1778 return; 1779 } 1780 1781 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1782 if (*ill_zerocopy_capab == NULL) { 1783 *ill_zerocopy_capab = 1784 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1785 KM_NOSLEEP); 1786 1787 if (*ill_zerocopy_capab == NULL) { 1788 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1789 "could not enable Zero-copy version %d " 1790 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1791 ill->ill_name); 1792 return; 1793 } 1794 } 1795 1796 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1797 "supports Zero-copy version %d\n", ill->ill_name, 1798 ZEROCOPY_VERSION_1)); 1799 1800 (*ill_zerocopy_capab)->ill_zerocopy_version = 1801 zc_ic->zerocopy_version; 1802 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1803 zc_ic->zerocopy_flags; 1804 1805 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1806 } else { 1807 uint_t size; 1808 uchar_t *rptr; 1809 1810 size = sizeof (dl_capability_req_t) + 1811 sizeof (dl_capability_sub_t) + 1812 sizeof (dl_capab_zerocopy_t); 1813 1814 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1815 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1816 "could not enable zerocopy for %s (ENOMEM)\n", 1817 ill->ill_name); 1818 return; 1819 } 1820 1821 rptr = nmp->b_rptr; 1822 /* initialize dl_capability_req_t */ 1823 oc = (dl_capability_req_t *)rptr; 1824 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1825 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1826 sizeof (dl_capab_zerocopy_t); 1827 rptr += sizeof (dl_capability_req_t); 1828 1829 /* initialize dl_capability_sub_t */ 1830 bcopy(isub, rptr, sizeof (*isub)); 1831 rptr += sizeof (*isub); 1832 1833 /* initialize dl_capab_zerocopy_t */ 1834 zc_oc = (dl_capab_zerocopy_t *)rptr; 1835 *zc_oc = *zc_ic; 1836 1837 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1838 "to enable zero-copy version %d\n", ill->ill_name, 1839 ZEROCOPY_VERSION_1)); 1840 1841 /* set VMSAFE_MEM flag */ 1842 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1843 1844 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1845 ill_capability_send(ill, nmp); 1846 } 1847 } 1848 1849 static void 1850 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1851 { 1852 dl_capab_zerocopy_t *zerocopy_subcap; 1853 dl_capability_sub_t *dl_subcap; 1854 1855 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1856 return; 1857 1858 ASSERT(ill->ill_zerocopy_capab != NULL); 1859 1860 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1861 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1862 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1863 1864 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1865 zerocopy_subcap->zerocopy_version = 1866 ill->ill_zerocopy_capab->ill_zerocopy_version; 1867 zerocopy_subcap->zerocopy_flags = 0; 1868 1869 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1870 } 1871 1872 /* 1873 * DLD capability 1874 * Refer to dld.h for more information regarding the purpose and usage 1875 * of this capability. 1876 */ 1877 static void 1878 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1879 { 1880 dl_capab_dld_t *dld_ic, dld; 1881 uint_t sub_dl_cap = isub->dl_cap; 1882 uint8_t *capend; 1883 ill_dld_capab_t *idc; 1884 1885 ASSERT(IAM_WRITER_ILL(ill)); 1886 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1887 1888 /* 1889 * Note: range checks here are not absolutely sufficient to 1890 * make us robust against malformed messages sent by drivers; 1891 * this is in keeping with the rest of IP's dlpi handling. 1892 * (Remember, it's coming from something else in the kernel 1893 * address space) 1894 */ 1895 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1896 if (capend > mp->b_wptr) { 1897 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1898 "malformed sub-capability too long for mblk"); 1899 return; 1900 } 1901 dld_ic = (dl_capab_dld_t *)(isub + 1); 1902 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1903 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1904 "unsupported DLD sub-capability (version %d, " 1905 "expected %d)", dld_ic->dld_version, 1906 DLD_CURRENT_VERSION); 1907 return; 1908 } 1909 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1910 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1911 "capability isn't as expected; pass-thru module(s) " 1912 "detected, discarding capability\n")); 1913 return; 1914 } 1915 1916 /* 1917 * Copy locally to ensure alignment. 1918 */ 1919 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1920 1921 if ((idc = ill->ill_dld_capab) == NULL) { 1922 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1923 if (idc == NULL) { 1924 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1925 "could not enable DLD version %d " 1926 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1927 ill->ill_name); 1928 return; 1929 } 1930 ill->ill_dld_capab = idc; 1931 } 1932 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1933 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1934 ip1dbg(("ill_capability_dld_ack: interface %s " 1935 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1936 1937 ill_capability_dld_enable(ill); 1938 } 1939 1940 /* 1941 * Typically capability negotiation between IP and the driver happens via 1942 * DLPI message exchange. However GLD also offers a direct function call 1943 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1944 * But arbitrary function calls into IP or GLD are not permitted, since both 1945 * of them are protected by their own perimeter mechanism. The perimeter can 1946 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1947 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1948 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1949 * to enter the mac perimeter and then do the direct function calls into 1950 * GLD to enable squeue polling. The ring related callbacks from the mac into 1951 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1952 * protected by the mac perimeter. 1953 */ 1954 static void 1955 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1956 { 1957 ill_dld_capab_t *idc = ill->ill_dld_capab; 1958 int err; 1959 1960 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1961 DLD_ENABLE); 1962 ASSERT(err == 0); 1963 } 1964 1965 static void 1966 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1967 { 1968 ill_dld_capab_t *idc = ill->ill_dld_capab; 1969 int err; 1970 1971 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1972 DLD_DISABLE); 1973 ASSERT(err == 0); 1974 } 1975 1976 boolean_t 1977 ill_mac_perim_held(ill_t *ill) 1978 { 1979 ill_dld_capab_t *idc = ill->ill_dld_capab; 1980 1981 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1982 DLD_QUERY)); 1983 } 1984 1985 static void 1986 ill_capability_direct_enable(ill_t *ill) 1987 { 1988 ill_dld_capab_t *idc = ill->ill_dld_capab; 1989 ill_dld_direct_t *idd = &idc->idc_direct; 1990 dld_capab_direct_t direct; 1991 int rc; 1992 1993 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1994 1995 bzero(&direct, sizeof (direct)); 1996 direct.di_rx_cf = (uintptr_t)ip_input; 1997 direct.di_rx_ch = ill; 1998 1999 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 2000 DLD_ENABLE); 2001 if (rc == 0) { 2002 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2003 idd->idd_tx_dh = direct.di_tx_dh; 2004 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2005 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2006 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2007 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2008 ASSERT(idd->idd_tx_cb_df != NULL); 2009 ASSERT(idd->idd_tx_fctl_df != NULL); 2010 ASSERT(idd->idd_tx_df != NULL); 2011 /* 2012 * One time registration of flow enable callback function 2013 */ 2014 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2015 ill_flow_enable, ill); 2016 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2017 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2018 } else { 2019 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2020 "capability, rc = %d\n", rc); 2021 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2022 } 2023 } 2024 2025 static void 2026 ill_capability_poll_enable(ill_t *ill) 2027 { 2028 ill_dld_capab_t *idc = ill->ill_dld_capab; 2029 dld_capab_poll_t poll; 2030 int rc; 2031 2032 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2033 2034 bzero(&poll, sizeof (poll)); 2035 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2036 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2037 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2038 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2039 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2040 poll.poll_ring_ch = ill; 2041 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2042 DLD_ENABLE); 2043 if (rc == 0) { 2044 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2045 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2046 } else { 2047 ip1dbg(("warning: could not enable POLL " 2048 "capability, rc = %d\n", rc)); 2049 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2050 } 2051 } 2052 2053 /* 2054 * Enable the LSO capability. 2055 */ 2056 static void 2057 ill_capability_lso_enable(ill_t *ill) 2058 { 2059 ill_dld_capab_t *idc = ill->ill_dld_capab; 2060 dld_capab_lso_t lso; 2061 int rc; 2062 2063 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2064 2065 if (ill->ill_lso_capab == NULL) { 2066 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2067 KM_NOSLEEP); 2068 if (ill->ill_lso_capab == NULL) { 2069 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2070 "could not enable LSO for %s (ENOMEM)\n", 2071 ill->ill_name); 2072 return; 2073 } 2074 } 2075 2076 bzero(&lso, sizeof (lso)); 2077 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2078 DLD_ENABLE)) == 0) { 2079 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2080 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2081 ill->ill_capabilities |= ILL_CAPAB_LSO; 2082 ip1dbg(("ill_capability_lso_enable: interface %s " 2083 "has enabled LSO\n ", ill->ill_name)); 2084 } else { 2085 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2086 ill->ill_lso_capab = NULL; 2087 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2088 } 2089 } 2090 2091 static void 2092 ill_capability_dld_enable(ill_t *ill) 2093 { 2094 mac_perim_handle_t mph; 2095 2096 ASSERT(IAM_WRITER_ILL(ill)); 2097 2098 if (ill->ill_isv6) 2099 return; 2100 2101 ill_mac_perim_enter(ill, &mph); 2102 if (!ill->ill_isv6) { 2103 ill_capability_direct_enable(ill); 2104 ill_capability_poll_enable(ill); 2105 ill_capability_lso_enable(ill); 2106 } 2107 ill->ill_capabilities |= ILL_CAPAB_DLD; 2108 ill_mac_perim_exit(ill, mph); 2109 } 2110 2111 static void 2112 ill_capability_dld_disable(ill_t *ill) 2113 { 2114 ill_dld_capab_t *idc; 2115 ill_dld_direct_t *idd; 2116 mac_perim_handle_t mph; 2117 2118 ASSERT(IAM_WRITER_ILL(ill)); 2119 2120 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2121 return; 2122 2123 ill_mac_perim_enter(ill, &mph); 2124 2125 idc = ill->ill_dld_capab; 2126 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2127 /* 2128 * For performance we avoid locks in the transmit data path 2129 * and don't maintain a count of the number of threads using 2130 * direct calls. Thus some threads could be using direct 2131 * transmit calls to GLD, even after the capability mechanism 2132 * turns it off. This is still safe since the handles used in 2133 * the direct calls continue to be valid until the unplumb is 2134 * completed. Remove the callback that was added (1-time) at 2135 * capab enable time. 2136 */ 2137 mutex_enter(&ill->ill_lock); 2138 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2139 mutex_exit(&ill->ill_lock); 2140 if (ill->ill_flownotify_mh != NULL) { 2141 idd = &idc->idc_direct; 2142 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2143 ill->ill_flownotify_mh); 2144 ill->ill_flownotify_mh = NULL; 2145 } 2146 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2147 NULL, DLD_DISABLE); 2148 } 2149 2150 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2151 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2152 ip_squeue_clean_all(ill); 2153 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2154 NULL, DLD_DISABLE); 2155 } 2156 2157 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2158 ASSERT(ill->ill_lso_capab != NULL); 2159 /* 2160 * Clear the capability flag for LSO but retain the 2161 * ill_lso_capab structure since it's possible that another 2162 * thread is still referring to it. The structure only gets 2163 * deallocated when we destroy the ill. 2164 */ 2165 2166 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2167 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2168 NULL, DLD_DISABLE); 2169 } 2170 2171 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2172 ill_mac_perim_exit(ill, mph); 2173 } 2174 2175 /* 2176 * Capability Negotiation protocol 2177 * 2178 * We don't wait for DLPI capability operations to finish during interface 2179 * bringup or teardown. Doing so would introduce more asynchrony and the 2180 * interface up/down operations will need multiple return and restarts. 2181 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2182 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2183 * exclusive operation won't start until the DLPI operations of the previous 2184 * exclusive operation complete. 2185 * 2186 * The capability state machine is shown below. 2187 * 2188 * state next state event, action 2189 * 2190 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2191 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2192 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2193 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2194 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2195 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2196 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2197 * ill_capability_probe. 2198 */ 2199 2200 /* 2201 * Dedicated thread started from ip_stack_init that handles capability 2202 * disable. This thread ensures the taskq dispatch does not fail by waiting 2203 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2204 * that direct calls to DLD are done in a cv_waitable context. 2205 */ 2206 void 2207 ill_taskq_dispatch(ip_stack_t *ipst) 2208 { 2209 callb_cpr_t cprinfo; 2210 char name[64]; 2211 mblk_t *mp; 2212 2213 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2214 ipst->ips_netstack->netstack_stackid); 2215 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2216 name); 2217 mutex_enter(&ipst->ips_capab_taskq_lock); 2218 2219 for (;;) { 2220 mp = ipst->ips_capab_taskq_head; 2221 while (mp != NULL) { 2222 ipst->ips_capab_taskq_head = mp->b_next; 2223 if (ipst->ips_capab_taskq_head == NULL) 2224 ipst->ips_capab_taskq_tail = NULL; 2225 mutex_exit(&ipst->ips_capab_taskq_lock); 2226 mp->b_next = NULL; 2227 2228 VERIFY(taskq_dispatch(system_taskq, 2229 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2230 mutex_enter(&ipst->ips_capab_taskq_lock); 2231 mp = ipst->ips_capab_taskq_head; 2232 } 2233 2234 if (ipst->ips_capab_taskq_quit) 2235 break; 2236 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2237 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2238 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2239 } 2240 VERIFY(ipst->ips_capab_taskq_head == NULL); 2241 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2242 CALLB_CPR_EXIT(&cprinfo); 2243 thread_exit(); 2244 } 2245 2246 /* 2247 * Consume a new-style hardware capabilities negotiation ack. 2248 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2249 */ 2250 static void 2251 ill_capability_ack_thr(void *arg) 2252 { 2253 mblk_t *mp = arg; 2254 dl_capability_ack_t *capp; 2255 dl_capability_sub_t *subp, *endp; 2256 ill_t *ill; 2257 boolean_t reneg; 2258 2259 ill = (ill_t *)mp->b_prev; 2260 mp->b_prev = NULL; 2261 2262 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2263 2264 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2265 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2266 /* 2267 * We have received the ack for our DL_CAPAB reset request. 2268 * There isnt' anything in the message that needs processing. 2269 * All message based capabilities have been disabled, now 2270 * do the function call based capability disable. 2271 */ 2272 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2273 ill_capability_dld_disable(ill); 2274 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2275 if (reneg) 2276 ill_capability_probe(ill); 2277 goto done; 2278 } 2279 2280 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2281 ill->ill_dlpi_capab_state = IDCS_OK; 2282 2283 capp = (dl_capability_ack_t *)mp->b_rptr; 2284 2285 if (capp->dl_sub_length == 0) { 2286 /* no new-style capabilities */ 2287 goto done; 2288 } 2289 2290 /* make sure the driver supplied correct dl_sub_length */ 2291 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2292 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2293 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2294 goto done; 2295 } 2296 2297 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2298 /* 2299 * There are sub-capabilities. Process the ones we know about. 2300 * Loop until we don't have room for another sub-cap header.. 2301 */ 2302 for (subp = SC(capp, capp->dl_sub_offset), 2303 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2304 subp <= endp; 2305 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2306 2307 switch (subp->dl_cap) { 2308 case DL_CAPAB_ID_WRAPPER: 2309 ill_capability_id_ack(ill, mp, subp); 2310 break; 2311 default: 2312 ill_capability_dispatch(ill, mp, subp); 2313 break; 2314 } 2315 } 2316 #undef SC 2317 done: 2318 inet_freemsg(mp); 2319 ill_capability_done(ill); 2320 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2321 } 2322 2323 /* 2324 * This needs to be started in a taskq thread to provide a cv_waitable 2325 * context. 2326 */ 2327 void 2328 ill_capability_ack(ill_t *ill, mblk_t *mp) 2329 { 2330 ip_stack_t *ipst = ill->ill_ipst; 2331 2332 mp->b_prev = (mblk_t *)ill; 2333 ASSERT(mp->b_next == NULL); 2334 2335 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2336 TQ_NOSLEEP) != 0) 2337 return; 2338 2339 /* 2340 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2341 * which will do the dispatch using TQ_SLEEP to guarantee success. 2342 */ 2343 mutex_enter(&ipst->ips_capab_taskq_lock); 2344 if (ipst->ips_capab_taskq_head == NULL) { 2345 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2346 ipst->ips_capab_taskq_head = mp; 2347 } else { 2348 ipst->ips_capab_taskq_tail->b_next = mp; 2349 } 2350 ipst->ips_capab_taskq_tail = mp; 2351 2352 cv_signal(&ipst->ips_capab_taskq_cv); 2353 mutex_exit(&ipst->ips_capab_taskq_lock); 2354 } 2355 2356 /* 2357 * This routine is called to scan the fragmentation reassembly table for 2358 * the specified ILL for any packets that are starting to smell. 2359 * dead_interval is the maximum time in seconds that will be tolerated. It 2360 * will either be the value specified in ip_g_frag_timeout, or zero if the 2361 * ILL is shutting down and it is time to blow everything off. 2362 * 2363 * It returns the number of seconds (as a time_t) that the next frag timer 2364 * should be scheduled for, 0 meaning that the timer doesn't need to be 2365 * re-started. Note that the method of calculating next_timeout isn't 2366 * entirely accurate since time will flow between the time we grab 2367 * current_time and the time we schedule the next timeout. This isn't a 2368 * big problem since this is the timer for sending an ICMP reassembly time 2369 * exceeded messages, and it doesn't have to be exactly accurate. 2370 * 2371 * This function is 2372 * sometimes called as writer, although this is not required. 2373 */ 2374 time_t 2375 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2376 { 2377 ipfb_t *ipfb; 2378 ipfb_t *endp; 2379 ipf_t *ipf; 2380 ipf_t *ipfnext; 2381 mblk_t *mp; 2382 time_t current_time = gethrestime_sec(); 2383 time_t next_timeout = 0; 2384 uint32_t hdr_length; 2385 mblk_t *send_icmp_head; 2386 mblk_t *send_icmp_head_v6; 2387 ip_stack_t *ipst = ill->ill_ipst; 2388 ip_recv_attr_t iras; 2389 2390 bzero(&iras, sizeof (iras)); 2391 iras.ira_flags = 0; 2392 iras.ira_ill = iras.ira_rill = ill; 2393 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2394 iras.ira_rifindex = iras.ira_ruifindex; 2395 2396 ipfb = ill->ill_frag_hash_tbl; 2397 if (ipfb == NULL) 2398 return (B_FALSE); 2399 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2400 /* Walk the frag hash table. */ 2401 for (; ipfb < endp; ipfb++) { 2402 send_icmp_head = NULL; 2403 send_icmp_head_v6 = NULL; 2404 mutex_enter(&ipfb->ipfb_lock); 2405 while ((ipf = ipfb->ipfb_ipf) != 0) { 2406 time_t frag_time = current_time - ipf->ipf_timestamp; 2407 time_t frag_timeout; 2408 2409 if (frag_time < dead_interval) { 2410 /* 2411 * There are some outstanding fragments 2412 * that will timeout later. Make note of 2413 * the time so that we can reschedule the 2414 * next timeout appropriately. 2415 */ 2416 frag_timeout = dead_interval - frag_time; 2417 if (next_timeout == 0 || 2418 frag_timeout < next_timeout) { 2419 next_timeout = frag_timeout; 2420 } 2421 break; 2422 } 2423 /* Time's up. Get it out of here. */ 2424 hdr_length = ipf->ipf_nf_hdr_len; 2425 ipfnext = ipf->ipf_hash_next; 2426 if (ipfnext) 2427 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2428 *ipf->ipf_ptphn = ipfnext; 2429 mp = ipf->ipf_mp->b_cont; 2430 for (; mp; mp = mp->b_cont) { 2431 /* Extra points for neatness. */ 2432 IP_REASS_SET_START(mp, 0); 2433 IP_REASS_SET_END(mp, 0); 2434 } 2435 mp = ipf->ipf_mp->b_cont; 2436 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2437 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2438 ipfb->ipfb_count -= ipf->ipf_count; 2439 ASSERT(ipfb->ipfb_frag_pkts > 0); 2440 ipfb->ipfb_frag_pkts--; 2441 /* 2442 * We do not send any icmp message from here because 2443 * we currently are holding the ipfb_lock for this 2444 * hash chain. If we try and send any icmp messages 2445 * from here we may end up via a put back into ip 2446 * trying to get the same lock, causing a recursive 2447 * mutex panic. Instead we build a list and send all 2448 * the icmp messages after we have dropped the lock. 2449 */ 2450 if (ill->ill_isv6) { 2451 if (hdr_length != 0) { 2452 mp->b_next = send_icmp_head_v6; 2453 send_icmp_head_v6 = mp; 2454 } else { 2455 freemsg(mp); 2456 } 2457 } else { 2458 if (hdr_length != 0) { 2459 mp->b_next = send_icmp_head; 2460 send_icmp_head = mp; 2461 } else { 2462 freemsg(mp); 2463 } 2464 } 2465 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2466 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2467 freeb(ipf->ipf_mp); 2468 } 2469 mutex_exit(&ipfb->ipfb_lock); 2470 /* 2471 * Now need to send any icmp messages that we delayed from 2472 * above. 2473 */ 2474 while (send_icmp_head_v6 != NULL) { 2475 ip6_t *ip6h; 2476 2477 mp = send_icmp_head_v6; 2478 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2479 mp->b_next = NULL; 2480 ip6h = (ip6_t *)mp->b_rptr; 2481 iras.ira_flags = 0; 2482 /* 2483 * This will result in an incorrect ALL_ZONES zoneid 2484 * for multicast packets, but we 2485 * don't send ICMP errors for those in any case. 2486 */ 2487 iras.ira_zoneid = 2488 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2489 ill, ipst); 2490 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2491 icmp_time_exceeded_v6(mp, 2492 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2493 &iras); 2494 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2495 } 2496 while (send_icmp_head != NULL) { 2497 ipaddr_t dst; 2498 2499 mp = send_icmp_head; 2500 send_icmp_head = send_icmp_head->b_next; 2501 mp->b_next = NULL; 2502 2503 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2504 2505 iras.ira_flags = IRAF_IS_IPV4; 2506 /* 2507 * This will result in an incorrect ALL_ZONES zoneid 2508 * for broadcast and multicast packets, but we 2509 * don't send ICMP errors for those in any case. 2510 */ 2511 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2512 ill, ipst); 2513 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2514 icmp_time_exceeded(mp, 2515 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2516 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2517 } 2518 } 2519 /* 2520 * A non-dying ILL will use the return value to decide whether to 2521 * restart the frag timer, and for how long. 2522 */ 2523 return (next_timeout); 2524 } 2525 2526 /* 2527 * This routine is called when the approximate count of mblk memory used 2528 * for the specified ILL has exceeded max_count. 2529 */ 2530 void 2531 ill_frag_prune(ill_t *ill, uint_t max_count) 2532 { 2533 ipfb_t *ipfb; 2534 ipf_t *ipf; 2535 size_t count; 2536 clock_t now; 2537 2538 /* 2539 * If we are here within ip_min_frag_prune_time msecs remove 2540 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2541 * ill_frag_free_num_pkts. 2542 */ 2543 mutex_enter(&ill->ill_lock); 2544 now = ddi_get_lbolt(); 2545 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2546 (ip_min_frag_prune_time != 0 ? 2547 ip_min_frag_prune_time : msec_per_tick)) { 2548 2549 ill->ill_frag_free_num_pkts++; 2550 2551 } else { 2552 ill->ill_frag_free_num_pkts = 0; 2553 } 2554 ill->ill_last_frag_clean_time = now; 2555 mutex_exit(&ill->ill_lock); 2556 2557 /* 2558 * free ill_frag_free_num_pkts oldest packets from each bucket. 2559 */ 2560 if (ill->ill_frag_free_num_pkts != 0) { 2561 int ix; 2562 2563 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2564 ipfb = &ill->ill_frag_hash_tbl[ix]; 2565 mutex_enter(&ipfb->ipfb_lock); 2566 if (ipfb->ipfb_ipf != NULL) { 2567 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2568 ill->ill_frag_free_num_pkts); 2569 } 2570 mutex_exit(&ipfb->ipfb_lock); 2571 } 2572 } 2573 /* 2574 * While the reassembly list for this ILL is too big, prune a fragment 2575 * queue by age, oldest first. 2576 */ 2577 while (ill->ill_frag_count > max_count) { 2578 int ix; 2579 ipfb_t *oipfb = NULL; 2580 uint_t oldest = UINT_MAX; 2581 2582 count = 0; 2583 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2584 ipfb = &ill->ill_frag_hash_tbl[ix]; 2585 mutex_enter(&ipfb->ipfb_lock); 2586 ipf = ipfb->ipfb_ipf; 2587 if (ipf != NULL && ipf->ipf_gen < oldest) { 2588 oldest = ipf->ipf_gen; 2589 oipfb = ipfb; 2590 } 2591 count += ipfb->ipfb_count; 2592 mutex_exit(&ipfb->ipfb_lock); 2593 } 2594 if (oipfb == NULL) 2595 break; 2596 2597 if (count <= max_count) 2598 return; /* Somebody beat us to it, nothing to do */ 2599 mutex_enter(&oipfb->ipfb_lock); 2600 ipf = oipfb->ipfb_ipf; 2601 if (ipf != NULL) { 2602 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2603 } 2604 mutex_exit(&oipfb->ipfb_lock); 2605 } 2606 } 2607 2608 /* 2609 * free 'free_cnt' fragmented packets starting at ipf. 2610 */ 2611 void 2612 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2613 { 2614 size_t count; 2615 mblk_t *mp; 2616 mblk_t *tmp; 2617 ipf_t **ipfp = ipf->ipf_ptphn; 2618 2619 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2620 ASSERT(ipfp != NULL); 2621 ASSERT(ipf != NULL); 2622 2623 while (ipf != NULL && free_cnt-- > 0) { 2624 count = ipf->ipf_count; 2625 mp = ipf->ipf_mp; 2626 ipf = ipf->ipf_hash_next; 2627 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2628 IP_REASS_SET_START(tmp, 0); 2629 IP_REASS_SET_END(tmp, 0); 2630 } 2631 atomic_add_32(&ill->ill_frag_count, -count); 2632 ASSERT(ipfb->ipfb_count >= count); 2633 ipfb->ipfb_count -= count; 2634 ASSERT(ipfb->ipfb_frag_pkts > 0); 2635 ipfb->ipfb_frag_pkts--; 2636 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2637 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2638 freemsg(mp); 2639 } 2640 2641 if (ipf) 2642 ipf->ipf_ptphn = ipfp; 2643 ipfp[0] = ipf; 2644 } 2645 2646 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 2647 "obsolete and may be removed in a future release of Solaris. Use " \ 2648 "ifconfig(1M) to manipulate the forwarding status of an interface." 2649 2650 /* 2651 * For obsolete per-interface forwarding configuration; 2652 * called in response to ND_GET. 2653 */ 2654 /* ARGSUSED */ 2655 static int 2656 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 2657 { 2658 ill_t *ill = (ill_t *)cp; 2659 2660 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2661 2662 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 2663 return (0); 2664 } 2665 2666 /* 2667 * For obsolete per-interface forwarding configuration; 2668 * called in response to ND_SET. 2669 */ 2670 /* ARGSUSED */ 2671 static int 2672 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 2673 cred_t *ioc_cr) 2674 { 2675 long value; 2676 int retval; 2677 ip_stack_t *ipst = CONNQ_TO_IPST(q); 2678 2679 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2680 2681 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 2682 value < 0 || value > 1) { 2683 return (EINVAL); 2684 } 2685 2686 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2687 retval = ill_forward_set((ill_t *)cp, (value != 0)); 2688 rw_exit(&ipst->ips_ill_g_lock); 2689 return (retval); 2690 } 2691 2692 /* 2693 * Helper function for ill_forward_set(). 2694 */ 2695 static void 2696 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2697 { 2698 ip_stack_t *ipst = ill->ill_ipst; 2699 2700 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2701 2702 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2703 (enable ? "Enabling" : "Disabling"), 2704 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2705 mutex_enter(&ill->ill_lock); 2706 if (enable) 2707 ill->ill_flags |= ILLF_ROUTER; 2708 else 2709 ill->ill_flags &= ~ILLF_ROUTER; 2710 mutex_exit(&ill->ill_lock); 2711 if (ill->ill_isv6) 2712 ill_set_nce_router_flags(ill, enable); 2713 /* Notify routing socket listeners of this change. */ 2714 if (ill->ill_ipif != NULL) 2715 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2716 } 2717 2718 /* 2719 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2720 * socket messages for each interface whose flags we change. 2721 */ 2722 int 2723 ill_forward_set(ill_t *ill, boolean_t enable) 2724 { 2725 ipmp_illgrp_t *illg; 2726 ip_stack_t *ipst = ill->ill_ipst; 2727 2728 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2729 2730 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2731 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2732 return (0); 2733 2734 if (IS_LOOPBACK(ill)) 2735 return (EINVAL); 2736 2737 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2738 /* 2739 * Update all of the interfaces in the group. 2740 */ 2741 illg = ill->ill_grp; 2742 ill = list_head(&illg->ig_if); 2743 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2744 ill_forward_set_on_ill(ill, enable); 2745 2746 /* 2747 * Update the IPMP meta-interface. 2748 */ 2749 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2750 return (0); 2751 } 2752 2753 ill_forward_set_on_ill(ill, enable); 2754 return (0); 2755 } 2756 2757 /* 2758 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2759 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2760 * set or clear. 2761 */ 2762 static void 2763 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2764 { 2765 ipif_t *ipif; 2766 ncec_t *ncec; 2767 nce_t *nce; 2768 2769 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2770 /* 2771 * NOTE: we match across the illgrp because nce's for 2772 * addresses on IPMP interfaces have an nce_ill that points to 2773 * the bound underlying ill. 2774 */ 2775 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2776 if (nce != NULL) { 2777 ncec = nce->nce_common; 2778 mutex_enter(&ncec->ncec_lock); 2779 if (enable) 2780 ncec->ncec_flags |= NCE_F_ISROUTER; 2781 else 2782 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2783 mutex_exit(&ncec->ncec_lock); 2784 nce_refrele(nce); 2785 } 2786 } 2787 } 2788 2789 /* 2790 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 2791 * for this ill. Make sure the v6/v4 question has been answered about this 2792 * ill. The creation of this ndd variable is only for backwards compatibility. 2793 * The preferred way to control per-interface IP forwarding is through the 2794 * ILLF_ROUTER interface flag. 2795 */ 2796 static int 2797 ill_set_ndd_name(ill_t *ill) 2798 { 2799 char *suffix; 2800 ip_stack_t *ipst = ill->ill_ipst; 2801 2802 ASSERT(IAM_WRITER_ILL(ill)); 2803 2804 if (ill->ill_isv6) 2805 suffix = ipv6_forward_suffix; 2806 else 2807 suffix = ipv4_forward_suffix; 2808 2809 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 2810 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 2811 /* 2812 * Copies over the '\0'. 2813 * Note that strlen(suffix) is always bounded. 2814 */ 2815 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 2816 strlen(suffix) + 1); 2817 2818 /* 2819 * Use of the nd table requires holding the reader lock. 2820 * Modifying the nd table thru nd_load/nd_unload requires 2821 * the writer lock. 2822 */ 2823 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 2824 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 2825 nd_ill_forward_set, (caddr_t)ill)) { 2826 /* 2827 * If the nd_load failed, it only meant that it could not 2828 * allocate a new bunch of room for further NDD expansion. 2829 * Because of that, the ill_ndd_name will be set to 0, and 2830 * this interface is at the mercy of the global ip_forwarding 2831 * variable. 2832 */ 2833 rw_exit(&ipst->ips_ip_g_nd_lock); 2834 ill->ill_ndd_name = NULL; 2835 return (ENOMEM); 2836 } 2837 rw_exit(&ipst->ips_ip_g_nd_lock); 2838 return (0); 2839 } 2840 2841 /* 2842 * Intializes the context structure and returns the first ill in the list 2843 * cuurently start_list and end_list can have values: 2844 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2845 * IP_V4_G_HEAD Traverse IPV4 list only. 2846 * IP_V6_G_HEAD Traverse IPV6 list only. 2847 */ 2848 2849 /* 2850 * We don't check for CONDEMNED ills here. Caller must do that if 2851 * necessary under the ill lock. 2852 */ 2853 ill_t * 2854 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2855 ip_stack_t *ipst) 2856 { 2857 ill_if_t *ifp; 2858 ill_t *ill; 2859 avl_tree_t *avl_tree; 2860 2861 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2862 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2863 2864 /* 2865 * setup the lists to search 2866 */ 2867 if (end_list != MAX_G_HEADS) { 2868 ctx->ctx_current_list = start_list; 2869 ctx->ctx_last_list = end_list; 2870 } else { 2871 ctx->ctx_last_list = MAX_G_HEADS - 1; 2872 ctx->ctx_current_list = 0; 2873 } 2874 2875 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2876 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2877 if (ifp != (ill_if_t *) 2878 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2879 avl_tree = &ifp->illif_avl_by_ppa; 2880 ill = avl_first(avl_tree); 2881 /* 2882 * ill is guaranteed to be non NULL or ifp should have 2883 * not existed. 2884 */ 2885 ASSERT(ill != NULL); 2886 return (ill); 2887 } 2888 ctx->ctx_current_list++; 2889 } 2890 2891 return (NULL); 2892 } 2893 2894 /* 2895 * returns the next ill in the list. ill_first() must have been called 2896 * before calling ill_next() or bad things will happen. 2897 */ 2898 2899 /* 2900 * We don't check for CONDEMNED ills here. Caller must do that if 2901 * necessary under the ill lock. 2902 */ 2903 ill_t * 2904 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2905 { 2906 ill_if_t *ifp; 2907 ill_t *ill; 2908 ip_stack_t *ipst = lastill->ill_ipst; 2909 2910 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2911 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2912 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2913 AVL_AFTER)) != NULL) { 2914 return (ill); 2915 } 2916 2917 /* goto next ill_ifp in the list. */ 2918 ifp = lastill->ill_ifptr->illif_next; 2919 2920 /* make sure not at end of circular list */ 2921 while (ifp == 2922 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2923 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2924 return (NULL); 2925 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2926 } 2927 2928 return (avl_first(&ifp->illif_avl_by_ppa)); 2929 } 2930 2931 /* 2932 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2933 * The final number (PPA) must not have any leading zeros. Upon success, a 2934 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2935 */ 2936 static char * 2937 ill_get_ppa_ptr(char *name) 2938 { 2939 int namelen = strlen(name); 2940 int end_ndx = namelen - 1; 2941 int ppa_ndx, i; 2942 2943 /* 2944 * Check that the first character is [a-zA-Z], and that the last 2945 * character is [0-9]. 2946 */ 2947 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2948 return (NULL); 2949 2950 /* 2951 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2952 */ 2953 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2954 if (!isdigit(name[ppa_ndx - 1])) 2955 break; 2956 2957 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2958 return (NULL); 2959 2960 /* 2961 * Check that the intermediate characters are [a-z0-9.] 2962 */ 2963 for (i = 1; i < ppa_ndx; i++) { 2964 if (!isalpha(name[i]) && !isdigit(name[i]) && 2965 name[i] != '.' && name[i] != '_') { 2966 return (NULL); 2967 } 2968 } 2969 2970 return (name + ppa_ndx); 2971 } 2972 2973 /* 2974 * use avl tree to locate the ill. 2975 */ 2976 static ill_t * 2977 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2978 { 2979 char *ppa_ptr = NULL; 2980 int len; 2981 uint_t ppa; 2982 ill_t *ill = NULL; 2983 ill_if_t *ifp; 2984 int list; 2985 2986 /* 2987 * get ppa ptr 2988 */ 2989 if (isv6) 2990 list = IP_V6_G_HEAD; 2991 else 2992 list = IP_V4_G_HEAD; 2993 2994 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2995 return (NULL); 2996 } 2997 2998 len = ppa_ptr - name + 1; 2999 3000 ppa = stoi(&ppa_ptr); 3001 3002 ifp = IP_VX_ILL_G_LIST(list, ipst); 3003 3004 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 3005 /* 3006 * match is done on len - 1 as the name is not null 3007 * terminated it contains ppa in addition to the interface 3008 * name. 3009 */ 3010 if ((ifp->illif_name_len == len) && 3011 bcmp(ifp->illif_name, name, len - 1) == 0) { 3012 break; 3013 } else { 3014 ifp = ifp->illif_next; 3015 } 3016 } 3017 3018 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 3019 /* 3020 * Even the interface type does not exist. 3021 */ 3022 return (NULL); 3023 } 3024 3025 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 3026 if (ill != NULL) { 3027 mutex_enter(&ill->ill_lock); 3028 if (ILL_CAN_LOOKUP(ill)) { 3029 ill_refhold_locked(ill); 3030 mutex_exit(&ill->ill_lock); 3031 return (ill); 3032 } 3033 mutex_exit(&ill->ill_lock); 3034 } 3035 return (NULL); 3036 } 3037 3038 /* 3039 * comparison function for use with avl. 3040 */ 3041 static int 3042 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 3043 { 3044 uint_t ppa; 3045 uint_t ill_ppa; 3046 3047 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 3048 3049 ppa = *((uint_t *)ppa_ptr); 3050 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 3051 /* 3052 * We want the ill with the lowest ppa to be on the 3053 * top. 3054 */ 3055 if (ill_ppa < ppa) 3056 return (1); 3057 if (ill_ppa > ppa) 3058 return (-1); 3059 return (0); 3060 } 3061 3062 /* 3063 * remove an interface type from the global list. 3064 */ 3065 static void 3066 ill_delete_interface_type(ill_if_t *interface) 3067 { 3068 ASSERT(interface != NULL); 3069 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 3070 3071 avl_destroy(&interface->illif_avl_by_ppa); 3072 if (interface->illif_ppa_arena != NULL) 3073 vmem_destroy(interface->illif_ppa_arena); 3074 3075 remque(interface); 3076 3077 mi_free(interface); 3078 } 3079 3080 /* 3081 * remove ill from the global list. 3082 */ 3083 static void 3084 ill_glist_delete(ill_t *ill) 3085 { 3086 ip_stack_t *ipst; 3087 phyint_t *phyi; 3088 3089 if (ill == NULL) 3090 return; 3091 ipst = ill->ill_ipst; 3092 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3093 3094 /* 3095 * If the ill was never inserted into the AVL tree 3096 * we skip the if branch. 3097 */ 3098 if (ill->ill_ifptr != NULL) { 3099 /* 3100 * remove from AVL tree and free ppa number 3101 */ 3102 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3103 3104 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3105 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3106 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3107 } 3108 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3109 ill_delete_interface_type(ill->ill_ifptr); 3110 } 3111 3112 /* 3113 * Indicate ill is no longer in the list. 3114 */ 3115 ill->ill_ifptr = NULL; 3116 ill->ill_name_length = 0; 3117 ill->ill_name[0] = '\0'; 3118 ill->ill_ppa = UINT_MAX; 3119 } 3120 3121 /* Generate one last event for this ill. */ 3122 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3123 ill->ill_name_length); 3124 3125 ASSERT(ill->ill_phyint != NULL); 3126 phyi = ill->ill_phyint; 3127 ill->ill_phyint = NULL; 3128 3129 /* 3130 * ill_init allocates a phyint always to store the copy 3131 * of flags relevant to phyint. At that point in time, we could 3132 * not assign the name and hence phyint_illv4/v6 could not be 3133 * initialized. Later in ipif_set_values, we assign the name to 3134 * the ill, at which point in time we assign phyint_illv4/v6. 3135 * Thus we don't rely on phyint_illv6 to be initialized always. 3136 */ 3137 if (ill->ill_flags & ILLF_IPV6) 3138 phyi->phyint_illv6 = NULL; 3139 else 3140 phyi->phyint_illv4 = NULL; 3141 3142 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3143 rw_exit(&ipst->ips_ill_g_lock); 3144 return; 3145 } 3146 3147 /* 3148 * There are no ills left on this phyint; pull it out of the phyint 3149 * avl trees, and free it. 3150 */ 3151 if (phyi->phyint_ifindex > 0) { 3152 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3153 phyi); 3154 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3155 phyi); 3156 } 3157 rw_exit(&ipst->ips_ill_g_lock); 3158 3159 phyint_free(phyi); 3160 } 3161 3162 /* 3163 * allocate a ppa, if the number of plumbed interfaces of this type are 3164 * less than ill_no_arena do a linear search to find a unused ppa. 3165 * When the number goes beyond ill_no_arena switch to using an arena. 3166 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3167 * is the return value for an error condition, so allocation starts at one 3168 * and is decremented by one. 3169 */ 3170 static int 3171 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3172 { 3173 ill_t *tmp_ill; 3174 uint_t start, end; 3175 int ppa; 3176 3177 if (ifp->illif_ppa_arena == NULL && 3178 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3179 /* 3180 * Create an arena. 3181 */ 3182 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3183 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3184 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3185 /* allocate what has already been assigned */ 3186 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3187 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3188 tmp_ill, AVL_AFTER)) { 3189 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3190 1, /* size */ 3191 1, /* align/quantum */ 3192 0, /* phase */ 3193 0, /* nocross */ 3194 /* minaddr */ 3195 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3196 /* maxaddr */ 3197 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3198 VM_NOSLEEP|VM_FIRSTFIT); 3199 if (ppa == 0) { 3200 ip1dbg(("ill_alloc_ppa: ppa allocation" 3201 " failed while switching")); 3202 vmem_destroy(ifp->illif_ppa_arena); 3203 ifp->illif_ppa_arena = NULL; 3204 break; 3205 } 3206 } 3207 } 3208 3209 if (ifp->illif_ppa_arena != NULL) { 3210 if (ill->ill_ppa == UINT_MAX) { 3211 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3212 1, VM_NOSLEEP|VM_FIRSTFIT); 3213 if (ppa == 0) 3214 return (EAGAIN); 3215 ill->ill_ppa = --ppa; 3216 } else { 3217 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3218 1, /* size */ 3219 1, /* align/quantum */ 3220 0, /* phase */ 3221 0, /* nocross */ 3222 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3223 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3224 VM_NOSLEEP|VM_FIRSTFIT); 3225 /* 3226 * Most likely the allocation failed because 3227 * the requested ppa was in use. 3228 */ 3229 if (ppa == 0) 3230 return (EEXIST); 3231 } 3232 return (0); 3233 } 3234 3235 /* 3236 * No arena is in use and not enough (>ill_no_arena) interfaces have 3237 * been plumbed to create one. Do a linear search to get a unused ppa. 3238 */ 3239 if (ill->ill_ppa == UINT_MAX) { 3240 end = UINT_MAX - 1; 3241 start = 0; 3242 } else { 3243 end = start = ill->ill_ppa; 3244 } 3245 3246 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3247 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3248 if (start++ >= end) { 3249 if (ill->ill_ppa == UINT_MAX) 3250 return (EAGAIN); 3251 else 3252 return (EEXIST); 3253 } 3254 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3255 } 3256 ill->ill_ppa = start; 3257 return (0); 3258 } 3259 3260 /* 3261 * Insert ill into the list of configured ill's. Once this function completes, 3262 * the ill is globally visible and is available through lookups. More precisely 3263 * this happens after the caller drops the ill_g_lock. 3264 */ 3265 static int 3266 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3267 { 3268 ill_if_t *ill_interface; 3269 avl_index_t where = 0; 3270 int error; 3271 int name_length; 3272 int index; 3273 boolean_t check_length = B_FALSE; 3274 ip_stack_t *ipst = ill->ill_ipst; 3275 3276 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3277 3278 name_length = mi_strlen(name) + 1; 3279 3280 if (isv6) 3281 index = IP_V6_G_HEAD; 3282 else 3283 index = IP_V4_G_HEAD; 3284 3285 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3286 /* 3287 * Search for interface type based on name 3288 */ 3289 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3290 if ((ill_interface->illif_name_len == name_length) && 3291 (strcmp(ill_interface->illif_name, name) == 0)) { 3292 break; 3293 } 3294 ill_interface = ill_interface->illif_next; 3295 } 3296 3297 /* 3298 * Interface type not found, create one. 3299 */ 3300 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3301 ill_g_head_t ghead; 3302 3303 /* 3304 * allocate ill_if_t structure 3305 */ 3306 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3307 if (ill_interface == NULL) { 3308 return (ENOMEM); 3309 } 3310 3311 (void) strcpy(ill_interface->illif_name, name); 3312 ill_interface->illif_name_len = name_length; 3313 3314 avl_create(&ill_interface->illif_avl_by_ppa, 3315 ill_compare_ppa, sizeof (ill_t), 3316 offsetof(struct ill_s, ill_avl_byppa)); 3317 3318 /* 3319 * link the structure in the back to maintain order 3320 * of configuration for ifconfig output. 3321 */ 3322 ghead = ipst->ips_ill_g_heads[index]; 3323 insque(ill_interface, ghead.ill_g_list_tail); 3324 } 3325 3326 if (ill->ill_ppa == UINT_MAX) 3327 check_length = B_TRUE; 3328 3329 error = ill_alloc_ppa(ill_interface, ill); 3330 if (error != 0) { 3331 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3332 ill_delete_interface_type(ill->ill_ifptr); 3333 return (error); 3334 } 3335 3336 /* 3337 * When the ppa is choosen by the system, check that there is 3338 * enough space to insert ppa. if a specific ppa was passed in this 3339 * check is not required as the interface name passed in will have 3340 * the right ppa in it. 3341 */ 3342 if (check_length) { 3343 /* 3344 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3345 */ 3346 char buf[sizeof (uint_t) * 3]; 3347 3348 /* 3349 * convert ppa to string to calculate the amount of space 3350 * required for it in the name. 3351 */ 3352 numtos(ill->ill_ppa, buf); 3353 3354 /* Do we have enough space to insert ppa ? */ 3355 3356 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3357 /* Free ppa and interface type struct */ 3358 if (ill_interface->illif_ppa_arena != NULL) { 3359 vmem_free(ill_interface->illif_ppa_arena, 3360 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3361 } 3362 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3363 ill_delete_interface_type(ill->ill_ifptr); 3364 3365 return (EINVAL); 3366 } 3367 } 3368 3369 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3370 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3371 3372 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3373 &where); 3374 ill->ill_ifptr = ill_interface; 3375 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3376 3377 ill_phyint_reinit(ill); 3378 return (0); 3379 } 3380 3381 /* Initialize the per phyint ipsq used for serialization */ 3382 static boolean_t 3383 ipsq_init(ill_t *ill, boolean_t enter) 3384 { 3385 ipsq_t *ipsq; 3386 ipxop_t *ipx; 3387 3388 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3389 return (B_FALSE); 3390 3391 ill->ill_phyint->phyint_ipsq = ipsq; 3392 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3393 ipx->ipx_ipsq = ipsq; 3394 ipsq->ipsq_next = ipsq; 3395 ipsq->ipsq_phyint = ill->ill_phyint; 3396 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3397 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3398 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3399 if (enter) { 3400 ipx->ipx_writer = curthread; 3401 ipx->ipx_forced = B_FALSE; 3402 ipx->ipx_reentry_cnt = 1; 3403 #ifdef DEBUG 3404 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3405 #endif 3406 } 3407 return (B_TRUE); 3408 } 3409 3410 /* 3411 * ill_init is called by ip_open when a device control stream is opened. 3412 * It does a few initializations, and shoots a DL_INFO_REQ message down 3413 * to the driver. The response is later picked up in ip_rput_dlpi and 3414 * used to set up default mechanisms for talking to the driver. (Always 3415 * called as writer.) 3416 * 3417 * If this function returns error, ip_open will call ip_close which in 3418 * turn will call ill_delete to clean up any memory allocated here that 3419 * is not yet freed. 3420 */ 3421 int 3422 ill_init(queue_t *q, ill_t *ill) 3423 { 3424 int count; 3425 dl_info_req_t *dlir; 3426 mblk_t *info_mp; 3427 uchar_t *frag_ptr; 3428 3429 /* 3430 * The ill is initialized to zero by mi_alloc*(). In addition 3431 * some fields already contain valid values, initialized in 3432 * ip_open(), before we reach here. 3433 */ 3434 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3435 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3436 ill->ill_saved_ire_cnt = 0; 3437 3438 ill->ill_rq = q; 3439 ill->ill_wq = WR(q); 3440 3441 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3442 BPRI_HI); 3443 if (info_mp == NULL) 3444 return (ENOMEM); 3445 3446 /* 3447 * Allocate sufficient space to contain our fragment hash table and 3448 * the device name. 3449 */ 3450 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 3451 2 * LIFNAMSIZ + strlen(ipv6_forward_suffix)); 3452 if (frag_ptr == NULL) { 3453 freemsg(info_mp); 3454 return (ENOMEM); 3455 } 3456 ill->ill_frag_ptr = frag_ptr; 3457 ill->ill_frag_free_num_pkts = 0; 3458 ill->ill_last_frag_clean_time = 0; 3459 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3460 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3461 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3462 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3463 NULL, MUTEX_DEFAULT, NULL); 3464 } 3465 3466 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3467 if (ill->ill_phyint == NULL) { 3468 freemsg(info_mp); 3469 mi_free(frag_ptr); 3470 return (ENOMEM); 3471 } 3472 3473 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3474 /* 3475 * For now pretend this is a v4 ill. We need to set phyint_ill* 3476 * at this point because of the following reason. If we can't 3477 * enter the ipsq at some point and cv_wait, the writer that 3478 * wakes us up tries to locate us using the list of all phyints 3479 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3480 * If we don't set it now, we risk a missed wakeup. 3481 */ 3482 ill->ill_phyint->phyint_illv4 = ill; 3483 ill->ill_ppa = UINT_MAX; 3484 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3485 3486 ill_set_inputfn(ill); 3487 3488 if (!ipsq_init(ill, B_TRUE)) { 3489 freemsg(info_mp); 3490 mi_free(frag_ptr); 3491 mi_free(ill->ill_phyint); 3492 return (ENOMEM); 3493 } 3494 3495 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3496 3497 /* Frag queue limit stuff */ 3498 ill->ill_frag_count = 0; 3499 ill->ill_ipf_gen = 0; 3500 3501 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3502 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3503 ill->ill_global_timer = INFINITY; 3504 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3505 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3506 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3507 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3508 3509 /* 3510 * Initialize IPv6 configuration variables. The IP module is always 3511 * opened as an IPv4 module. Instead tracking down the cases where 3512 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3513 * here for convenience, this has no effect until the ill is set to do 3514 * IPv6. 3515 */ 3516 ill->ill_reachable_time = ND_REACHABLE_TIME; 3517 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3518 ill->ill_max_buf = ND_MAX_Q; 3519 ill->ill_refcnt = 0; 3520 3521 /* Send down the Info Request to the driver. */ 3522 info_mp->b_datap->db_type = M_PCPROTO; 3523 dlir = (dl_info_req_t *)info_mp->b_rptr; 3524 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3525 dlir->dl_primitive = DL_INFO_REQ; 3526 3527 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3528 3529 qprocson(q); 3530 ill_dlpi_send(ill, info_mp); 3531 3532 return (0); 3533 } 3534 3535 /* 3536 * ill_dls_info 3537 * creates datalink socket info from the device. 3538 */ 3539 int 3540 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3541 { 3542 size_t len; 3543 3544 sdl->sdl_family = AF_LINK; 3545 sdl->sdl_index = ill_get_upper_ifindex(ill); 3546 sdl->sdl_type = ill->ill_type; 3547 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3548 len = strlen(sdl->sdl_data); 3549 ASSERT(len < 256); 3550 sdl->sdl_nlen = (uchar_t)len; 3551 sdl->sdl_alen = ill->ill_phys_addr_length; 3552 sdl->sdl_slen = 0; 3553 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3554 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3555 3556 return (sizeof (struct sockaddr_dl)); 3557 } 3558 3559 /* 3560 * ill_xarp_info 3561 * creates xarp info from the device. 3562 */ 3563 static int 3564 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3565 { 3566 sdl->sdl_family = AF_LINK; 3567 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3568 sdl->sdl_type = ill->ill_type; 3569 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3570 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3571 sdl->sdl_alen = ill->ill_phys_addr_length; 3572 sdl->sdl_slen = 0; 3573 return (sdl->sdl_nlen); 3574 } 3575 3576 static int 3577 loopback_kstat_update(kstat_t *ksp, int rw) 3578 { 3579 kstat_named_t *kn; 3580 netstackid_t stackid; 3581 netstack_t *ns; 3582 ip_stack_t *ipst; 3583 3584 if (ksp == NULL || ksp->ks_data == NULL) 3585 return (EIO); 3586 3587 if (rw == KSTAT_WRITE) 3588 return (EACCES); 3589 3590 kn = KSTAT_NAMED_PTR(ksp); 3591 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3592 3593 ns = netstack_find_by_stackid(stackid); 3594 if (ns == NULL) 3595 return (-1); 3596 3597 ipst = ns->netstack_ip; 3598 if (ipst == NULL) { 3599 netstack_rele(ns); 3600 return (-1); 3601 } 3602 kn[0].value.ui32 = ipst->ips_loopback_packets; 3603 kn[1].value.ui32 = ipst->ips_loopback_packets; 3604 netstack_rele(ns); 3605 return (0); 3606 } 3607 3608 /* 3609 * Has ifindex been plumbed already? 3610 */ 3611 static boolean_t 3612 phyint_exists(uint_t index, ip_stack_t *ipst) 3613 { 3614 ASSERT(index != 0); 3615 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3616 3617 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3618 &index, NULL) != NULL); 3619 } 3620 3621 /* Pick a unique ifindex */ 3622 boolean_t 3623 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3624 { 3625 uint_t starting_index; 3626 3627 if (!ipst->ips_ill_index_wrap) { 3628 *indexp = ipst->ips_ill_index++; 3629 if (ipst->ips_ill_index == 0) { 3630 /* Reached the uint_t limit Next time wrap */ 3631 ipst->ips_ill_index_wrap = B_TRUE; 3632 } 3633 return (B_TRUE); 3634 } 3635 3636 /* 3637 * Start reusing unused indexes. Note that we hold the ill_g_lock 3638 * at this point and don't want to call any function that attempts 3639 * to get the lock again. 3640 */ 3641 starting_index = ipst->ips_ill_index++; 3642 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 3643 if (ipst->ips_ill_index != 0 && 3644 !phyint_exists(ipst->ips_ill_index, ipst)) { 3645 /* found unused index - use it */ 3646 *indexp = ipst->ips_ill_index; 3647 return (B_TRUE); 3648 } 3649 } 3650 3651 /* 3652 * all interface indicies are inuse. 3653 */ 3654 return (B_FALSE); 3655 } 3656 3657 /* 3658 * Assign a unique interface index for the phyint. 3659 */ 3660 static boolean_t 3661 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3662 { 3663 ASSERT(phyi->phyint_ifindex == 0); 3664 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3665 } 3666 3667 /* 3668 * Initialize the flags on `phyi' as per the provided mactype. 3669 */ 3670 static void 3671 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3672 { 3673 uint64_t flags = 0; 3674 3675 /* 3676 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3677 * we always presume the underlying hardware is working and set 3678 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3679 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3680 * there are no active interfaces in the group so we set PHYI_FAILED. 3681 */ 3682 if (mactype == SUNW_DL_IPMP) 3683 flags |= PHYI_FAILED; 3684 else 3685 flags |= PHYI_RUNNING; 3686 3687 switch (mactype) { 3688 case SUNW_DL_VNI: 3689 flags |= PHYI_VIRTUAL; 3690 break; 3691 case SUNW_DL_IPMP: 3692 flags |= PHYI_IPMP; 3693 break; 3694 case DL_LOOP: 3695 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3696 break; 3697 } 3698 3699 mutex_enter(&phyi->phyint_lock); 3700 phyi->phyint_flags |= flags; 3701 mutex_exit(&phyi->phyint_lock); 3702 } 3703 3704 /* 3705 * Return a pointer to the ill which matches the supplied name. Note that 3706 * the ill name length includes the null termination character. (May be 3707 * called as writer.) 3708 * If do_alloc and the interface is "lo0" it will be automatically created. 3709 * Cannot bump up reference on condemned ills. So dup detect can't be done 3710 * using this func. 3711 */ 3712 ill_t * 3713 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3714 boolean_t *did_alloc, ip_stack_t *ipst) 3715 { 3716 ill_t *ill; 3717 ipif_t *ipif; 3718 ipsq_t *ipsq; 3719 kstat_named_t *kn; 3720 boolean_t isloopback; 3721 in6_addr_t ov6addr; 3722 3723 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3724 3725 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3726 ill = ill_find_by_name(name, isv6, ipst); 3727 rw_exit(&ipst->ips_ill_g_lock); 3728 if (ill != NULL) 3729 return (ill); 3730 3731 /* 3732 * Couldn't find it. Does this happen to be a lookup for the 3733 * loopback device and are we allowed to allocate it? 3734 */ 3735 if (!isloopback || !do_alloc) 3736 return (NULL); 3737 3738 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3739 ill = ill_find_by_name(name, isv6, ipst); 3740 if (ill != NULL) { 3741 rw_exit(&ipst->ips_ill_g_lock); 3742 return (ill); 3743 } 3744 3745 /* Create the loopback device on demand */ 3746 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3747 sizeof (ipif_loopback_name), BPRI_MED)); 3748 if (ill == NULL) 3749 goto done; 3750 3751 *ill = ill_null; 3752 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3753 ill->ill_ipst = ipst; 3754 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3755 netstack_hold(ipst->ips_netstack); 3756 /* 3757 * For exclusive stacks we set the zoneid to zero 3758 * to make IP operate as if in the global zone. 3759 */ 3760 ill->ill_zoneid = GLOBAL_ZONEID; 3761 3762 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3763 if (ill->ill_phyint == NULL) 3764 goto done; 3765 3766 if (isv6) 3767 ill->ill_phyint->phyint_illv6 = ill; 3768 else 3769 ill->ill_phyint->phyint_illv4 = ill; 3770 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3771 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3772 3773 if (isv6) { 3774 ill->ill_isv6 = B_TRUE; 3775 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3776 } else { 3777 ill->ill_max_frag = ip_loopback_mtuplus; 3778 } 3779 if (!ill_allocate_mibs(ill)) 3780 goto done; 3781 ill->ill_current_frag = ill->ill_max_frag; 3782 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3783 /* 3784 * ipif_loopback_name can't be pointed at directly because its used 3785 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3786 * from the glist, ill_glist_delete() sets the first character of 3787 * ill_name to '\0'. 3788 */ 3789 ill->ill_name = (char *)ill + sizeof (*ill); 3790 (void) strcpy(ill->ill_name, ipif_loopback_name); 3791 ill->ill_name_length = sizeof (ipif_loopback_name); 3792 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3793 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3794 3795 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3796 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3797 ill->ill_global_timer = INFINITY; 3798 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3799 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3800 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3801 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3802 3803 /* No resolver here. */ 3804 ill->ill_net_type = IRE_LOOPBACK; 3805 3806 /* Initialize the ipsq */ 3807 if (!ipsq_init(ill, B_FALSE)) 3808 goto done; 3809 3810 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3811 if (ipif == NULL) 3812 goto done; 3813 3814 ill->ill_flags = ILLF_MULTICAST; 3815 3816 ov6addr = ipif->ipif_v6lcl_addr; 3817 /* Set up default loopback address and mask. */ 3818 if (!isv6) { 3819 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3820 3821 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3822 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3823 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3824 ipif->ipif_v6subnet); 3825 ill->ill_flags |= ILLF_IPV4; 3826 } else { 3827 ipif->ipif_v6lcl_addr = ipv6_loopback; 3828 ipif->ipif_v6net_mask = ipv6_all_ones; 3829 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3830 ipif->ipif_v6subnet); 3831 ill->ill_flags |= ILLF_IPV6; 3832 } 3833 3834 /* 3835 * Chain us in at the end of the ill list. hold the ill 3836 * before we make it globally visible. 1 for the lookup. 3837 */ 3838 ill->ill_refcnt = 0; 3839 ill_refhold(ill); 3840 3841 ill->ill_frag_count = 0; 3842 ill->ill_frag_free_num_pkts = 0; 3843 ill->ill_last_frag_clean_time = 0; 3844 3845 ipsq = ill->ill_phyint->phyint_ipsq; 3846 3847 ill_set_inputfn(ill); 3848 3849 if (ill_glist_insert(ill, "lo", isv6) != 0) 3850 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3851 3852 /* Let SCTP know so that it can add this to its list */ 3853 sctp_update_ill(ill, SCTP_ILL_INSERT); 3854 3855 /* 3856 * We have already assigned ipif_v6lcl_addr above, but we need to 3857 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3858 * requires to be after ill_glist_insert() since we need the 3859 * ill_index set. Pass on ipv6_loopback as the old address. 3860 */ 3861 sctp_update_ipif_addr(ipif, ov6addr); 3862 3863 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3864 3865 /* 3866 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3867 * If so, free our original one. 3868 */ 3869 if (ipsq != ill->ill_phyint->phyint_ipsq) 3870 ipsq_delete(ipsq); 3871 3872 if (ipst->ips_loopback_ksp == NULL) { 3873 /* Export loopback interface statistics */ 3874 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3875 ipif_loopback_name, "net", 3876 KSTAT_TYPE_NAMED, 2, 0, 3877 ipst->ips_netstack->netstack_stackid); 3878 if (ipst->ips_loopback_ksp != NULL) { 3879 ipst->ips_loopback_ksp->ks_update = 3880 loopback_kstat_update; 3881 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3882 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3883 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3884 ipst->ips_loopback_ksp->ks_private = 3885 (void *)(uintptr_t)ipst->ips_netstack-> 3886 netstack_stackid; 3887 kstat_install(ipst->ips_loopback_ksp); 3888 } 3889 } 3890 3891 *did_alloc = B_TRUE; 3892 rw_exit(&ipst->ips_ill_g_lock); 3893 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3894 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3895 return (ill); 3896 done: 3897 if (ill != NULL) { 3898 if (ill->ill_phyint != NULL) { 3899 ipsq = ill->ill_phyint->phyint_ipsq; 3900 if (ipsq != NULL) { 3901 ipsq->ipsq_phyint = NULL; 3902 ipsq_delete(ipsq); 3903 } 3904 mi_free(ill->ill_phyint); 3905 } 3906 ill_free_mib(ill); 3907 if (ill->ill_ipst != NULL) 3908 netstack_rele(ill->ill_ipst->ips_netstack); 3909 mi_free(ill); 3910 } 3911 rw_exit(&ipst->ips_ill_g_lock); 3912 return (NULL); 3913 } 3914 3915 /* 3916 * For IPP calls - use the ip_stack_t for global stack. 3917 */ 3918 ill_t * 3919 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3920 { 3921 ip_stack_t *ipst; 3922 ill_t *ill; 3923 3924 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3925 if (ipst == NULL) { 3926 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3927 return (NULL); 3928 } 3929 3930 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3931 netstack_rele(ipst->ips_netstack); 3932 return (ill); 3933 } 3934 3935 /* 3936 * Return a pointer to the ill which matches the index and IP version type. 3937 */ 3938 ill_t * 3939 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3940 { 3941 ill_t *ill; 3942 phyint_t *phyi; 3943 3944 /* 3945 * Indexes are stored in the phyint - a common structure 3946 * to both IPv4 and IPv6. 3947 */ 3948 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3949 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3950 (void *) &index, NULL); 3951 if (phyi != NULL) { 3952 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3953 if (ill != NULL) { 3954 mutex_enter(&ill->ill_lock); 3955 if (!ILL_IS_CONDEMNED(ill)) { 3956 ill_refhold_locked(ill); 3957 mutex_exit(&ill->ill_lock); 3958 rw_exit(&ipst->ips_ill_g_lock); 3959 return (ill); 3960 } 3961 mutex_exit(&ill->ill_lock); 3962 } 3963 } 3964 rw_exit(&ipst->ips_ill_g_lock); 3965 return (NULL); 3966 } 3967 3968 /* 3969 * Verify whether or not an interface index is valid for the specified zoneid 3970 * to transmit packets. 3971 * It can be zero (meaning "reset") or an interface index assigned 3972 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3973 */ 3974 boolean_t 3975 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3976 ip_stack_t *ipst) 3977 { 3978 ill_t *ill; 3979 3980 if (ifindex == 0) 3981 return (B_TRUE); 3982 3983 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3984 if (ill == NULL) 3985 return (B_FALSE); 3986 if (IS_VNI(ill)) { 3987 ill_refrele(ill); 3988 return (B_FALSE); 3989 } 3990 ill_refrele(ill); 3991 return (B_TRUE); 3992 } 3993 3994 /* 3995 * Return the ifindex next in sequence after the passed in ifindex. 3996 * If there is no next ifindex for the given protocol, return 0. 3997 */ 3998 uint_t 3999 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 4000 { 4001 phyint_t *phyi; 4002 phyint_t *phyi_initial; 4003 uint_t ifindex; 4004 4005 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4006 4007 if (index == 0) { 4008 phyi = avl_first( 4009 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4010 } else { 4011 phyi = phyi_initial = avl_find( 4012 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4013 (void *) &index, NULL); 4014 } 4015 4016 for (; phyi != NULL; 4017 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4018 phyi, AVL_AFTER)) { 4019 /* 4020 * If we're not returning the first interface in the tree 4021 * and we still haven't moved past the phyint_t that 4022 * corresponds to index, avl_walk needs to be called again 4023 */ 4024 if (!((index != 0) && (phyi == phyi_initial))) { 4025 if (isv6) { 4026 if ((phyi->phyint_illv6) && 4027 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 4028 (phyi->phyint_illv6->ill_isv6 == 1)) 4029 break; 4030 } else { 4031 if ((phyi->phyint_illv4) && 4032 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 4033 (phyi->phyint_illv4->ill_isv6 == 0)) 4034 break; 4035 } 4036 } 4037 } 4038 4039 rw_exit(&ipst->ips_ill_g_lock); 4040 4041 if (phyi != NULL) 4042 ifindex = phyi->phyint_ifindex; 4043 else 4044 ifindex = 0; 4045 4046 return (ifindex); 4047 } 4048 4049 /* 4050 * Return the ifindex for the named interface. 4051 * If there is no next ifindex for the interface, return 0. 4052 */ 4053 uint_t 4054 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 4055 { 4056 phyint_t *phyi; 4057 avl_index_t where = 0; 4058 uint_t ifindex; 4059 4060 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4061 4062 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4063 name, &where)) == NULL) { 4064 rw_exit(&ipst->ips_ill_g_lock); 4065 return (0); 4066 } 4067 4068 ifindex = phyi->phyint_ifindex; 4069 4070 rw_exit(&ipst->ips_ill_g_lock); 4071 4072 return (ifindex); 4073 } 4074 4075 /* 4076 * Return the ifindex to be used by upper layer protocols for instance 4077 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4078 */ 4079 uint_t 4080 ill_get_upper_ifindex(const ill_t *ill) 4081 { 4082 if (IS_UNDER_IPMP(ill)) 4083 return (ipmp_ill_get_ipmp_ifindex(ill)); 4084 else 4085 return (ill->ill_phyint->phyint_ifindex); 4086 } 4087 4088 4089 /* 4090 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4091 * that gives a running thread a reference to the ill. This reference must be 4092 * released by the thread when it is done accessing the ill and related 4093 * objects. ill_refcnt can not be used to account for static references 4094 * such as other structures pointing to an ill. Callers must generally 4095 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4096 * or be sure that the ill is not being deleted or changing state before 4097 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4098 * ill won't change any of its critical state such as address, netmask etc. 4099 */ 4100 void 4101 ill_refhold(ill_t *ill) 4102 { 4103 mutex_enter(&ill->ill_lock); 4104 ill->ill_refcnt++; 4105 ILL_TRACE_REF(ill); 4106 mutex_exit(&ill->ill_lock); 4107 } 4108 4109 void 4110 ill_refhold_locked(ill_t *ill) 4111 { 4112 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4113 ill->ill_refcnt++; 4114 ILL_TRACE_REF(ill); 4115 } 4116 4117 /* Returns true if we managed to get a refhold */ 4118 boolean_t 4119 ill_check_and_refhold(ill_t *ill) 4120 { 4121 mutex_enter(&ill->ill_lock); 4122 if (!ILL_IS_CONDEMNED(ill)) { 4123 ill_refhold_locked(ill); 4124 mutex_exit(&ill->ill_lock); 4125 return (B_TRUE); 4126 } 4127 mutex_exit(&ill->ill_lock); 4128 return (B_FALSE); 4129 } 4130 4131 /* 4132 * Must not be called while holding any locks. Otherwise if this is 4133 * the last reference to be released, there is a chance of recursive mutex 4134 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4135 * to restart an ioctl. 4136 */ 4137 void 4138 ill_refrele(ill_t *ill) 4139 { 4140 mutex_enter(&ill->ill_lock); 4141 ASSERT(ill->ill_refcnt != 0); 4142 ill->ill_refcnt--; 4143 ILL_UNTRACE_REF(ill); 4144 if (ill->ill_refcnt != 0) { 4145 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4146 mutex_exit(&ill->ill_lock); 4147 return; 4148 } 4149 4150 /* Drops the ill_lock */ 4151 ipif_ill_refrele_tail(ill); 4152 } 4153 4154 /* 4155 * Obtain a weak reference count on the ill. This reference ensures the 4156 * ill won't be freed, but the ill may change any of its critical state 4157 * such as netmask, address etc. Returns an error if the ill has started 4158 * closing. 4159 */ 4160 boolean_t 4161 ill_waiter_inc(ill_t *ill) 4162 { 4163 mutex_enter(&ill->ill_lock); 4164 if (ill->ill_state_flags & ILL_CONDEMNED) { 4165 mutex_exit(&ill->ill_lock); 4166 return (B_FALSE); 4167 } 4168 ill->ill_waiters++; 4169 mutex_exit(&ill->ill_lock); 4170 return (B_TRUE); 4171 } 4172 4173 void 4174 ill_waiter_dcr(ill_t *ill) 4175 { 4176 mutex_enter(&ill->ill_lock); 4177 ill->ill_waiters--; 4178 if (ill->ill_waiters == 0) 4179 cv_broadcast(&ill->ill_cv); 4180 mutex_exit(&ill->ill_lock); 4181 } 4182 4183 /* 4184 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4185 * driver. We construct best guess defaults for lower level information that 4186 * we need. If an interface is brought up without injection of any overriding 4187 * information from outside, we have to be ready to go with these defaults. 4188 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4189 * we primarely want the dl_provider_style. 4190 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4191 * at which point we assume the other part of the information is valid. 4192 */ 4193 void 4194 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4195 { 4196 uchar_t *brdcst_addr; 4197 uint_t brdcst_addr_length, phys_addr_length; 4198 t_scalar_t sap_length; 4199 dl_info_ack_t *dlia; 4200 ip_m_t *ipm; 4201 dl_qos_cl_sel1_t *sel1; 4202 int min_mtu; 4203 4204 ASSERT(IAM_WRITER_ILL(ill)); 4205 4206 /* 4207 * Till the ill is fully up the ill is not globally visible. 4208 * So no need for a lock. 4209 */ 4210 dlia = (dl_info_ack_t *)mp->b_rptr; 4211 ill->ill_mactype = dlia->dl_mac_type; 4212 4213 ipm = ip_m_lookup(dlia->dl_mac_type); 4214 if (ipm == NULL) { 4215 ipm = ip_m_lookup(DL_OTHER); 4216 ASSERT(ipm != NULL); 4217 } 4218 ill->ill_media = ipm; 4219 4220 /* 4221 * When the new DLPI stuff is ready we'll pull lengths 4222 * from dlia. 4223 */ 4224 if (dlia->dl_version == DL_VERSION_2) { 4225 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4226 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4227 brdcst_addr_length); 4228 if (brdcst_addr == NULL) { 4229 brdcst_addr_length = 0; 4230 } 4231 sap_length = dlia->dl_sap_length; 4232 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4233 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4234 brdcst_addr_length, sap_length, phys_addr_length)); 4235 } else { 4236 brdcst_addr_length = 6; 4237 brdcst_addr = ip_six_byte_all_ones; 4238 sap_length = -2; 4239 phys_addr_length = brdcst_addr_length; 4240 } 4241 4242 ill->ill_bcast_addr_length = brdcst_addr_length; 4243 ill->ill_phys_addr_length = phys_addr_length; 4244 ill->ill_sap_length = sap_length; 4245 4246 /* 4247 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4248 * but we must ensure a minimum IP MTU is used since other bits of 4249 * IP will fly apart otherwise. 4250 */ 4251 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4252 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4253 ill->ill_current_frag = ill->ill_max_frag; 4254 ill->ill_mtu = ill->ill_max_frag; 4255 4256 ill->ill_type = ipm->ip_m_type; 4257 4258 if (!ill->ill_dlpi_style_set) { 4259 if (dlia->dl_provider_style == DL_STYLE2) 4260 ill->ill_needs_attach = 1; 4261 4262 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4263 4264 /* 4265 * Allocate the first ipif on this ill. We don't delay it 4266 * further as ioctl handling assumes at least one ipif exists. 4267 * 4268 * At this point we don't know whether the ill is v4 or v6. 4269 * We will know this whan the SIOCSLIFNAME happens and 4270 * the correct value for ill_isv6 will be assigned in 4271 * ipif_set_values(). We need to hold the ill lock and 4272 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4273 * the wakeup. 4274 */ 4275 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4276 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4277 mutex_enter(&ill->ill_lock); 4278 ASSERT(ill->ill_dlpi_style_set == 0); 4279 ill->ill_dlpi_style_set = 1; 4280 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4281 cv_broadcast(&ill->ill_cv); 4282 mutex_exit(&ill->ill_lock); 4283 freemsg(mp); 4284 return; 4285 } 4286 ASSERT(ill->ill_ipif != NULL); 4287 /* 4288 * We know whether it is IPv4 or IPv6 now, as this is the 4289 * second DL_INFO_ACK we are recieving in response to the 4290 * DL_INFO_REQ sent in ipif_set_values. 4291 */ 4292 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4293 /* 4294 * Clear all the flags that were set based on ill_bcast_addr_length 4295 * and ill_phys_addr_length (in ipif_set_values) as these could have 4296 * changed now and we need to re-evaluate. 4297 */ 4298 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4299 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4300 4301 /* 4302 * Free ill_bcast_mp as things could have changed now. 4303 * 4304 * NOTE: The IPMP meta-interface is special-cased because it starts 4305 * with no underlying interfaces (and thus an unknown broadcast 4306 * address length), but we enforce that an interface is broadcast- 4307 * capable as part of allowing it to join a group. 4308 */ 4309 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4310 if (ill->ill_bcast_mp != NULL) 4311 freemsg(ill->ill_bcast_mp); 4312 ill->ill_net_type = IRE_IF_NORESOLVER; 4313 4314 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4315 ill->ill_phys_addr_length, 4316 ill->ill_sap, 4317 ill->ill_sap_length); 4318 4319 if (ill->ill_isv6) 4320 /* 4321 * Note: xresolv interfaces will eventually need NOARP 4322 * set here as well, but that will require those 4323 * external resolvers to have some knowledge of 4324 * that flag and act appropriately. Not to be changed 4325 * at present. 4326 */ 4327 ill->ill_flags |= ILLF_NONUD; 4328 else 4329 ill->ill_flags |= ILLF_NOARP; 4330 4331 if (ill->ill_mactype == SUNW_DL_VNI) { 4332 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4333 } else if (ill->ill_phys_addr_length == 0 || 4334 ill->ill_mactype == DL_IPV4 || 4335 ill->ill_mactype == DL_IPV6) { 4336 /* 4337 * The underying link is point-to-point, so mark the 4338 * interface as such. We can do IP multicast over 4339 * such a link since it transmits all network-layer 4340 * packets to the remote side the same way. 4341 */ 4342 ill->ill_flags |= ILLF_MULTICAST; 4343 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4344 } 4345 } else { 4346 ill->ill_net_type = IRE_IF_RESOLVER; 4347 if (ill->ill_bcast_mp != NULL) 4348 freemsg(ill->ill_bcast_mp); 4349 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4350 ill->ill_bcast_addr_length, ill->ill_sap, 4351 ill->ill_sap_length); 4352 /* 4353 * Later detect lack of DLPI driver multicast 4354 * capability by catching DL_ENABMULTI errors in 4355 * ip_rput_dlpi. 4356 */ 4357 ill->ill_flags |= ILLF_MULTICAST; 4358 if (!ill->ill_isv6) 4359 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4360 } 4361 4362 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4363 if (ill->ill_mactype == SUNW_DL_IPMP) 4364 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4365 4366 /* By default an interface does not support any CoS marking */ 4367 ill->ill_flags &= ~ILLF_COS_ENABLED; 4368 4369 /* 4370 * If we get QoS information in DL_INFO_ACK, the device supports 4371 * some form of CoS marking, set ILLF_COS_ENABLED. 4372 */ 4373 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4374 dlia->dl_qos_length); 4375 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4376 ill->ill_flags |= ILLF_COS_ENABLED; 4377 } 4378 4379 /* Clear any previous error indication. */ 4380 ill->ill_error = 0; 4381 freemsg(mp); 4382 } 4383 4384 /* 4385 * Perform various checks to verify that an address would make sense as a 4386 * local, remote, or subnet interface address. 4387 */ 4388 static boolean_t 4389 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4390 { 4391 ipaddr_t net_mask; 4392 4393 /* 4394 * Don't allow all zeroes, or all ones, but allow 4395 * all ones netmask. 4396 */ 4397 if ((net_mask = ip_net_mask(addr)) == 0) 4398 return (B_FALSE); 4399 /* A given netmask overrides the "guess" netmask */ 4400 if (subnet_mask != 0) 4401 net_mask = subnet_mask; 4402 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4403 (addr == (addr | ~net_mask)))) { 4404 return (B_FALSE); 4405 } 4406 4407 /* 4408 * Even if the netmask is all ones, we do not allow address to be 4409 * 255.255.255.255 4410 */ 4411 if (addr == INADDR_BROADCAST) 4412 return (B_FALSE); 4413 4414 if (CLASSD(addr)) 4415 return (B_FALSE); 4416 4417 return (B_TRUE); 4418 } 4419 4420 #define V6_IPIF_LINKLOCAL(p) \ 4421 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4422 4423 /* 4424 * Compare two given ipifs and check if the second one is better than 4425 * the first one using the order of preference (not taking deprecated 4426 * into acount) specified in ipif_lookup_multicast(). 4427 */ 4428 static boolean_t 4429 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4430 { 4431 /* Check the least preferred first. */ 4432 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4433 /* If both ipifs are the same, use the first one. */ 4434 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4435 return (B_FALSE); 4436 else 4437 return (B_TRUE); 4438 } 4439 4440 /* For IPv6, check for link local address. */ 4441 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4442 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4443 V6_IPIF_LINKLOCAL(new_ipif)) { 4444 /* The second one is equal or less preferred. */ 4445 return (B_FALSE); 4446 } else { 4447 return (B_TRUE); 4448 } 4449 } 4450 4451 /* Then check for point to point interface. */ 4452 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4453 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4454 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4455 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4456 return (B_FALSE); 4457 } else { 4458 return (B_TRUE); 4459 } 4460 } 4461 4462 /* old_ipif is a normal interface, so no need to use the new one. */ 4463 return (B_FALSE); 4464 } 4465 4466 /* 4467 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4468 * The ipif must be up, and its ill must multicast-capable, not 4469 * condemned, not an underlying interface in an IPMP group, and 4470 * not a VNI interface. Order of preference: 4471 * 4472 * 1a. normal 4473 * 1b. normal, but deprecated 4474 * 2a. point to point 4475 * 2b. point to point, but deprecated 4476 * 3a. link local 4477 * 3b. link local, but deprecated 4478 * 4. loopback. 4479 */ 4480 static ipif_t * 4481 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4482 { 4483 ill_t *ill; 4484 ill_walk_context_t ctx; 4485 ipif_t *ipif; 4486 ipif_t *saved_ipif = NULL; 4487 ipif_t *dep_ipif = NULL; 4488 4489 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4490 if (isv6) 4491 ill = ILL_START_WALK_V6(&ctx, ipst); 4492 else 4493 ill = ILL_START_WALK_V4(&ctx, ipst); 4494 4495 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4496 mutex_enter(&ill->ill_lock); 4497 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4498 ILL_IS_CONDEMNED(ill) || 4499 !(ill->ill_flags & ILLF_MULTICAST)) { 4500 mutex_exit(&ill->ill_lock); 4501 continue; 4502 } 4503 for (ipif = ill->ill_ipif; ipif != NULL; 4504 ipif = ipif->ipif_next) { 4505 if (zoneid != ipif->ipif_zoneid && 4506 zoneid != ALL_ZONES && 4507 ipif->ipif_zoneid != ALL_ZONES) { 4508 continue; 4509 } 4510 if (!(ipif->ipif_flags & IPIF_UP) || 4511 IPIF_IS_CONDEMNED(ipif)) { 4512 continue; 4513 } 4514 4515 /* 4516 * Found one candidate. If it is deprecated, 4517 * remember it in dep_ipif. If it is not deprecated, 4518 * remember it in saved_ipif. 4519 */ 4520 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4521 if (dep_ipif == NULL) { 4522 dep_ipif = ipif; 4523 } else if (ipif_comp_multi(dep_ipif, ipif, 4524 isv6)) { 4525 /* 4526 * If the previous dep_ipif does not 4527 * belong to the same ill, we've done 4528 * a ipif_refhold() on it. So we need 4529 * to release it. 4530 */ 4531 if (dep_ipif->ipif_ill != ill) 4532 ipif_refrele(dep_ipif); 4533 dep_ipif = ipif; 4534 } 4535 continue; 4536 } 4537 if (saved_ipif == NULL) { 4538 saved_ipif = ipif; 4539 } else { 4540 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4541 if (saved_ipif->ipif_ill != ill) 4542 ipif_refrele(saved_ipif); 4543 saved_ipif = ipif; 4544 } 4545 } 4546 } 4547 /* 4548 * Before going to the next ill, do a ipif_refhold() on the 4549 * saved ones. 4550 */ 4551 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4552 ipif_refhold_locked(saved_ipif); 4553 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4554 ipif_refhold_locked(dep_ipif); 4555 mutex_exit(&ill->ill_lock); 4556 } 4557 rw_exit(&ipst->ips_ill_g_lock); 4558 4559 /* 4560 * If we have only the saved_ipif, return it. But if we have both 4561 * saved_ipif and dep_ipif, check to see which one is better. 4562 */ 4563 if (saved_ipif != NULL) { 4564 if (dep_ipif != NULL) { 4565 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4566 ipif_refrele(saved_ipif); 4567 return (dep_ipif); 4568 } else { 4569 ipif_refrele(dep_ipif); 4570 return (saved_ipif); 4571 } 4572 } 4573 return (saved_ipif); 4574 } else { 4575 return (dep_ipif); 4576 } 4577 } 4578 4579 ill_t * 4580 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4581 { 4582 ipif_t *ipif; 4583 ill_t *ill; 4584 4585 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4586 if (ipif == NULL) 4587 return (NULL); 4588 4589 ill = ipif->ipif_ill; 4590 ill_refhold(ill); 4591 ipif_refrele(ipif); 4592 return (ill); 4593 } 4594 4595 /* 4596 * This function is called when an application does not specify an interface 4597 * to be used for multicast traffic (joining a group/sending data). It 4598 * calls ire_lookup_multi() to look for an interface route for the 4599 * specified multicast group. Doing this allows the administrator to add 4600 * prefix routes for multicast to indicate which interface to be used for 4601 * multicast traffic in the above scenario. The route could be for all 4602 * multicast (224.0/4), for a single multicast group (a /32 route) or 4603 * anything in between. If there is no such multicast route, we just find 4604 * any multicast capable interface and return it. The returned ipif 4605 * is refhold'ed. 4606 * 4607 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4608 * unicast table. This is used by CGTP. 4609 */ 4610 ill_t * 4611 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4612 boolean_t *multirtp, ipaddr_t *setsrcp) 4613 { 4614 ill_t *ill; 4615 4616 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4617 if (ill != NULL) 4618 return (ill); 4619 4620 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4621 } 4622 4623 /* 4624 * Look for an ipif with the specified interface address and destination. 4625 * The destination address is used only for matching point-to-point interfaces. 4626 */ 4627 ipif_t * 4628 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4629 { 4630 ipif_t *ipif; 4631 ill_t *ill; 4632 ill_walk_context_t ctx; 4633 4634 /* 4635 * First match all the point-to-point interfaces 4636 * before looking at non-point-to-point interfaces. 4637 * This is done to avoid returning non-point-to-point 4638 * ipif instead of unnumbered point-to-point ipif. 4639 */ 4640 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4641 ill = ILL_START_WALK_V4(&ctx, ipst); 4642 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4643 mutex_enter(&ill->ill_lock); 4644 for (ipif = ill->ill_ipif; ipif != NULL; 4645 ipif = ipif->ipif_next) { 4646 /* Allow the ipif to be down */ 4647 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4648 (ipif->ipif_lcl_addr == if_addr) && 4649 (ipif->ipif_pp_dst_addr == dst)) { 4650 if (!IPIF_IS_CONDEMNED(ipif)) { 4651 ipif_refhold_locked(ipif); 4652 mutex_exit(&ill->ill_lock); 4653 rw_exit(&ipst->ips_ill_g_lock); 4654 return (ipif); 4655 } 4656 } 4657 } 4658 mutex_exit(&ill->ill_lock); 4659 } 4660 rw_exit(&ipst->ips_ill_g_lock); 4661 4662 /* lookup the ipif based on interface address */ 4663 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4664 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4665 return (ipif); 4666 } 4667 4668 /* 4669 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4670 */ 4671 static ipif_t * 4672 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4673 zoneid_t zoneid, ip_stack_t *ipst) 4674 { 4675 ipif_t *ipif; 4676 ill_t *ill; 4677 boolean_t ptp = B_FALSE; 4678 ill_walk_context_t ctx; 4679 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4680 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4681 4682 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4683 /* 4684 * Repeat twice, first based on local addresses and 4685 * next time for pointopoint. 4686 */ 4687 repeat: 4688 ill = ILL_START_WALK_V4(&ctx, ipst); 4689 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4690 if (match_ill != NULL && ill != match_ill && 4691 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4692 continue; 4693 } 4694 mutex_enter(&ill->ill_lock); 4695 for (ipif = ill->ill_ipif; ipif != NULL; 4696 ipif = ipif->ipif_next) { 4697 if (zoneid != ALL_ZONES && 4698 zoneid != ipif->ipif_zoneid && 4699 ipif->ipif_zoneid != ALL_ZONES) 4700 continue; 4701 4702 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4703 continue; 4704 4705 /* Allow the ipif to be down */ 4706 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4707 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4708 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4709 (ipif->ipif_pp_dst_addr == addr))) { 4710 if (!IPIF_IS_CONDEMNED(ipif)) { 4711 ipif_refhold_locked(ipif); 4712 mutex_exit(&ill->ill_lock); 4713 rw_exit(&ipst->ips_ill_g_lock); 4714 return (ipif); 4715 } 4716 } 4717 } 4718 mutex_exit(&ill->ill_lock); 4719 } 4720 4721 /* If we already did the ptp case, then we are done */ 4722 if (ptp) { 4723 rw_exit(&ipst->ips_ill_g_lock); 4724 return (NULL); 4725 } 4726 ptp = B_TRUE; 4727 goto repeat; 4728 } 4729 4730 /* 4731 * Lookup an ipif with the specified address. For point-to-point links we 4732 * look for matches on either the destination address or the local address, 4733 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4734 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4735 * (or illgrp if `match_ill' is in an IPMP group). 4736 */ 4737 ipif_t * 4738 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4739 ip_stack_t *ipst) 4740 { 4741 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4742 zoneid, ipst)); 4743 } 4744 4745 /* 4746 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4747 * except that we will only return an address if it is not marked as 4748 * IPIF_DUPLICATE 4749 */ 4750 ipif_t * 4751 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4752 ip_stack_t *ipst) 4753 { 4754 return (ipif_lookup_addr_common(addr, match_ill, 4755 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4756 zoneid, ipst)); 4757 } 4758 4759 /* 4760 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4761 * `match_ill' across the IPMP group. This function is only needed in some 4762 * corner-cases; almost everything should use ipif_lookup_addr(). 4763 */ 4764 ipif_t * 4765 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4766 { 4767 ASSERT(match_ill != NULL); 4768 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4769 ipst)); 4770 } 4771 4772 /* 4773 * Look for an ipif with the specified address. For point-point links 4774 * we look for matches on either the destination address and the local 4775 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4776 * is set. 4777 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4778 * ill (or illgrp if `match_ill' is in an IPMP group). 4779 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4780 */ 4781 zoneid_t 4782 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4783 { 4784 zoneid_t zoneid; 4785 ipif_t *ipif; 4786 ill_t *ill; 4787 boolean_t ptp = B_FALSE; 4788 ill_walk_context_t ctx; 4789 4790 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4791 /* 4792 * Repeat twice, first based on local addresses and 4793 * next time for pointopoint. 4794 */ 4795 repeat: 4796 ill = ILL_START_WALK_V4(&ctx, ipst); 4797 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4798 if (match_ill != NULL && ill != match_ill && 4799 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4800 continue; 4801 } 4802 mutex_enter(&ill->ill_lock); 4803 for (ipif = ill->ill_ipif; ipif != NULL; 4804 ipif = ipif->ipif_next) { 4805 /* Allow the ipif to be down */ 4806 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4807 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4808 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4809 (ipif->ipif_pp_dst_addr == addr)) && 4810 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4811 zoneid = ipif->ipif_zoneid; 4812 mutex_exit(&ill->ill_lock); 4813 rw_exit(&ipst->ips_ill_g_lock); 4814 /* 4815 * If ipif_zoneid was ALL_ZONES then we have 4816 * a trusted extensions shared IP address. 4817 * In that case GLOBAL_ZONEID works to send. 4818 */ 4819 if (zoneid == ALL_ZONES) 4820 zoneid = GLOBAL_ZONEID; 4821 return (zoneid); 4822 } 4823 } 4824 mutex_exit(&ill->ill_lock); 4825 } 4826 4827 /* If we already did the ptp case, then we are done */ 4828 if (ptp) { 4829 rw_exit(&ipst->ips_ill_g_lock); 4830 return (ALL_ZONES); 4831 } 4832 ptp = B_TRUE; 4833 goto repeat; 4834 } 4835 4836 /* 4837 * Look for an ipif that matches the specified remote address i.e. the 4838 * ipif that would receive the specified packet. 4839 * First look for directly connected interfaces and then do a recursive 4840 * IRE lookup and pick the first ipif corresponding to the source address in the 4841 * ire. 4842 * Returns: held ipif 4843 * 4844 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4845 */ 4846 ipif_t * 4847 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4848 { 4849 ipif_t *ipif; 4850 4851 ASSERT(!ill->ill_isv6); 4852 4853 /* 4854 * Someone could be changing this ipif currently or change it 4855 * after we return this. Thus a few packets could use the old 4856 * old values. However structure updates/creates (ire, ilg, ilm etc) 4857 * will atomically be updated or cleaned up with the new value 4858 * Thus we don't need a lock to check the flags or other attrs below. 4859 */ 4860 mutex_enter(&ill->ill_lock); 4861 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4862 if (IPIF_IS_CONDEMNED(ipif)) 4863 continue; 4864 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4865 ipif->ipif_zoneid != ALL_ZONES) 4866 continue; 4867 /* Allow the ipif to be down */ 4868 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4869 if ((ipif->ipif_pp_dst_addr == addr) || 4870 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4871 ipif->ipif_lcl_addr == addr)) { 4872 ipif_refhold_locked(ipif); 4873 mutex_exit(&ill->ill_lock); 4874 return (ipif); 4875 } 4876 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4877 ipif_refhold_locked(ipif); 4878 mutex_exit(&ill->ill_lock); 4879 return (ipif); 4880 } 4881 } 4882 mutex_exit(&ill->ill_lock); 4883 /* 4884 * For a remote destination it isn't possible to nail down a particular 4885 * ipif. 4886 */ 4887 4888 /* Pick the first interface */ 4889 ipif = ipif_get_next_ipif(NULL, ill); 4890 return (ipif); 4891 } 4892 4893 /* 4894 * This func does not prevent refcnt from increasing. But if 4895 * the caller has taken steps to that effect, then this func 4896 * can be used to determine whether the ill has become quiescent 4897 */ 4898 static boolean_t 4899 ill_is_quiescent(ill_t *ill) 4900 { 4901 ipif_t *ipif; 4902 4903 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4904 4905 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4906 if (ipif->ipif_refcnt != 0) 4907 return (B_FALSE); 4908 } 4909 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4910 return (B_FALSE); 4911 } 4912 return (B_TRUE); 4913 } 4914 4915 boolean_t 4916 ill_is_freeable(ill_t *ill) 4917 { 4918 ipif_t *ipif; 4919 4920 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4921 4922 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4923 if (ipif->ipif_refcnt != 0) { 4924 return (B_FALSE); 4925 } 4926 } 4927 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4928 return (B_FALSE); 4929 } 4930 return (B_TRUE); 4931 } 4932 4933 /* 4934 * This func does not prevent refcnt from increasing. But if 4935 * the caller has taken steps to that effect, then this func 4936 * can be used to determine whether the ipif has become quiescent 4937 */ 4938 static boolean_t 4939 ipif_is_quiescent(ipif_t *ipif) 4940 { 4941 ill_t *ill; 4942 4943 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4944 4945 if (ipif->ipif_refcnt != 0) 4946 return (B_FALSE); 4947 4948 ill = ipif->ipif_ill; 4949 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4950 ill->ill_logical_down) { 4951 return (B_TRUE); 4952 } 4953 4954 /* This is the last ipif going down or being deleted on this ill */ 4955 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4956 return (B_FALSE); 4957 } 4958 4959 return (B_TRUE); 4960 } 4961 4962 /* 4963 * return true if the ipif can be destroyed: the ipif has to be quiescent 4964 * with zero references from ire/ilm to it. 4965 */ 4966 static boolean_t 4967 ipif_is_freeable(ipif_t *ipif) 4968 { 4969 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4970 ASSERT(ipif->ipif_id != 0); 4971 return (ipif->ipif_refcnt == 0); 4972 } 4973 4974 /* 4975 * The ipif/ill/ire has been refreled. Do the tail processing. 4976 * Determine if the ipif or ill in question has become quiescent and if so 4977 * wakeup close and/or restart any queued pending ioctl that is waiting 4978 * for the ipif_down (or ill_down) 4979 */ 4980 void 4981 ipif_ill_refrele_tail(ill_t *ill) 4982 { 4983 mblk_t *mp; 4984 conn_t *connp; 4985 ipsq_t *ipsq; 4986 ipxop_t *ipx; 4987 ipif_t *ipif; 4988 dl_notify_ind_t *dlindp; 4989 4990 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4991 4992 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4993 /* ip_modclose() may be waiting */ 4994 cv_broadcast(&ill->ill_cv); 4995 } 4996 4997 ipsq = ill->ill_phyint->phyint_ipsq; 4998 mutex_enter(&ipsq->ipsq_lock); 4999 ipx = ipsq->ipsq_xop; 5000 mutex_enter(&ipx->ipx_lock); 5001 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 5002 goto unlock; 5003 5004 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 5005 5006 ipif = ipx->ipx_pending_ipif; 5007 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 5008 goto unlock; 5009 5010 switch (ipx->ipx_waitfor) { 5011 case IPIF_DOWN: 5012 if (!ipif_is_quiescent(ipif)) 5013 goto unlock; 5014 break; 5015 case IPIF_FREE: 5016 if (!ipif_is_freeable(ipif)) 5017 goto unlock; 5018 break; 5019 case ILL_DOWN: 5020 if (!ill_is_quiescent(ill)) 5021 goto unlock; 5022 break; 5023 case ILL_FREE: 5024 /* 5025 * ILL_FREE is only for loopback; normal ill teardown waits 5026 * synchronously in ip_modclose() without using ipx_waitfor, 5027 * handled by the cv_broadcast() at the top of this function. 5028 */ 5029 if (!ill_is_freeable(ill)) 5030 goto unlock; 5031 break; 5032 default: 5033 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 5034 (void *)ipsq, ipx->ipx_waitfor); 5035 } 5036 5037 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 5038 mutex_exit(&ipx->ipx_lock); 5039 mp = ipsq_pending_mp_get(ipsq, &connp); 5040 mutex_exit(&ipsq->ipsq_lock); 5041 mutex_exit(&ill->ill_lock); 5042 5043 ASSERT(mp != NULL); 5044 /* 5045 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 5046 * we can only get here when the current operation decides it 5047 * it needs to quiesce via ipsq_pending_mp_add(). 5048 */ 5049 switch (mp->b_datap->db_type) { 5050 case M_PCPROTO: 5051 case M_PROTO: 5052 /* 5053 * For now, only DL_NOTIFY_IND messages can use this facility. 5054 */ 5055 dlindp = (dl_notify_ind_t *)mp->b_rptr; 5056 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 5057 5058 switch (dlindp->dl_notification) { 5059 case DL_NOTE_PHYS_ADDR: 5060 qwriter_ip(ill, ill->ill_rq, mp, 5061 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5062 return; 5063 case DL_NOTE_REPLUMB: 5064 qwriter_ip(ill, ill->ill_rq, mp, 5065 ill_replumb_tail, CUR_OP, B_TRUE); 5066 return; 5067 default: 5068 ASSERT(0); 5069 ill_refrele(ill); 5070 } 5071 break; 5072 5073 case M_ERROR: 5074 case M_HANGUP: 5075 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5076 B_TRUE); 5077 return; 5078 5079 case M_IOCTL: 5080 case M_IOCDATA: 5081 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5082 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5083 return; 5084 5085 default: 5086 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5087 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5088 } 5089 return; 5090 unlock: 5091 mutex_exit(&ipsq->ipsq_lock); 5092 mutex_exit(&ipx->ipx_lock); 5093 mutex_exit(&ill->ill_lock); 5094 } 5095 5096 #ifdef DEBUG 5097 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5098 static void 5099 th_trace_rrecord(th_trace_t *th_trace) 5100 { 5101 tr_buf_t *tr_buf; 5102 uint_t lastref; 5103 5104 lastref = th_trace->th_trace_lastref; 5105 lastref++; 5106 if (lastref == TR_BUF_MAX) 5107 lastref = 0; 5108 th_trace->th_trace_lastref = lastref; 5109 tr_buf = &th_trace->th_trbuf[lastref]; 5110 tr_buf->tr_time = ddi_get_lbolt(); 5111 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5112 } 5113 5114 static void 5115 th_trace_free(void *value) 5116 { 5117 th_trace_t *th_trace = value; 5118 5119 ASSERT(th_trace->th_refcnt == 0); 5120 kmem_free(th_trace, sizeof (*th_trace)); 5121 } 5122 5123 /* 5124 * Find or create the per-thread hash table used to track object references. 5125 * The ipst argument is NULL if we shouldn't allocate. 5126 * 5127 * Accesses per-thread data, so there's no need to lock here. 5128 */ 5129 static mod_hash_t * 5130 th_trace_gethash(ip_stack_t *ipst) 5131 { 5132 th_hash_t *thh; 5133 5134 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5135 mod_hash_t *mh; 5136 char name[256]; 5137 size_t objsize, rshift; 5138 int retv; 5139 5140 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5141 return (NULL); 5142 (void) snprintf(name, sizeof (name), "th_trace_%p", 5143 (void *)curthread); 5144 5145 /* 5146 * We use mod_hash_create_extended here rather than the more 5147 * obvious mod_hash_create_ptrhash because the latter has a 5148 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5149 * block. 5150 */ 5151 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5152 MAX(sizeof (ire_t), sizeof (ncec_t))); 5153 rshift = highbit(objsize); 5154 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5155 th_trace_free, mod_hash_byptr, (void *)rshift, 5156 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5157 if (mh == NULL) { 5158 kmem_free(thh, sizeof (*thh)); 5159 return (NULL); 5160 } 5161 thh->thh_hash = mh; 5162 thh->thh_ipst = ipst; 5163 /* 5164 * We trace ills, ipifs, ires, and nces. All of these are 5165 * per-IP-stack, so the lock on the thread list is as well. 5166 */ 5167 rw_enter(&ip_thread_rwlock, RW_WRITER); 5168 list_insert_tail(&ip_thread_list, thh); 5169 rw_exit(&ip_thread_rwlock); 5170 retv = tsd_set(ip_thread_data, thh); 5171 ASSERT(retv == 0); 5172 } 5173 return (thh != NULL ? thh->thh_hash : NULL); 5174 } 5175 5176 boolean_t 5177 th_trace_ref(const void *obj, ip_stack_t *ipst) 5178 { 5179 th_trace_t *th_trace; 5180 mod_hash_t *mh; 5181 mod_hash_val_t val; 5182 5183 if ((mh = th_trace_gethash(ipst)) == NULL) 5184 return (B_FALSE); 5185 5186 /* 5187 * Attempt to locate the trace buffer for this obj and thread. 5188 * If it does not exist, then allocate a new trace buffer and 5189 * insert into the hash. 5190 */ 5191 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5192 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5193 if (th_trace == NULL) 5194 return (B_FALSE); 5195 5196 th_trace->th_id = curthread; 5197 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5198 (mod_hash_val_t)th_trace) != 0) { 5199 kmem_free(th_trace, sizeof (th_trace_t)); 5200 return (B_FALSE); 5201 } 5202 } else { 5203 th_trace = (th_trace_t *)val; 5204 } 5205 5206 ASSERT(th_trace->th_refcnt >= 0 && 5207 th_trace->th_refcnt < TR_BUF_MAX - 1); 5208 5209 th_trace->th_refcnt++; 5210 th_trace_rrecord(th_trace); 5211 return (B_TRUE); 5212 } 5213 5214 /* 5215 * For the purpose of tracing a reference release, we assume that global 5216 * tracing is always on and that the same thread initiated the reference hold 5217 * is releasing. 5218 */ 5219 void 5220 th_trace_unref(const void *obj) 5221 { 5222 int retv; 5223 mod_hash_t *mh; 5224 th_trace_t *th_trace; 5225 mod_hash_val_t val; 5226 5227 mh = th_trace_gethash(NULL); 5228 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5229 ASSERT(retv == 0); 5230 th_trace = (th_trace_t *)val; 5231 5232 ASSERT(th_trace->th_refcnt > 0); 5233 th_trace->th_refcnt--; 5234 th_trace_rrecord(th_trace); 5235 } 5236 5237 /* 5238 * If tracing has been disabled, then we assume that the reference counts are 5239 * now useless, and we clear them out before destroying the entries. 5240 */ 5241 void 5242 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5243 { 5244 th_hash_t *thh; 5245 mod_hash_t *mh; 5246 mod_hash_val_t val; 5247 th_trace_t *th_trace; 5248 int retv; 5249 5250 rw_enter(&ip_thread_rwlock, RW_READER); 5251 for (thh = list_head(&ip_thread_list); thh != NULL; 5252 thh = list_next(&ip_thread_list, thh)) { 5253 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5254 &val) == 0) { 5255 th_trace = (th_trace_t *)val; 5256 if (trace_disable) 5257 th_trace->th_refcnt = 0; 5258 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5259 ASSERT(retv == 0); 5260 } 5261 } 5262 rw_exit(&ip_thread_rwlock); 5263 } 5264 5265 void 5266 ipif_trace_ref(ipif_t *ipif) 5267 { 5268 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5269 5270 if (ipif->ipif_trace_disable) 5271 return; 5272 5273 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5274 ipif->ipif_trace_disable = B_TRUE; 5275 ipif_trace_cleanup(ipif); 5276 } 5277 } 5278 5279 void 5280 ipif_untrace_ref(ipif_t *ipif) 5281 { 5282 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5283 5284 if (!ipif->ipif_trace_disable) 5285 th_trace_unref(ipif); 5286 } 5287 5288 void 5289 ill_trace_ref(ill_t *ill) 5290 { 5291 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5292 5293 if (ill->ill_trace_disable) 5294 return; 5295 5296 if (!th_trace_ref(ill, ill->ill_ipst)) { 5297 ill->ill_trace_disable = B_TRUE; 5298 ill_trace_cleanup(ill); 5299 } 5300 } 5301 5302 void 5303 ill_untrace_ref(ill_t *ill) 5304 { 5305 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5306 5307 if (!ill->ill_trace_disable) 5308 th_trace_unref(ill); 5309 } 5310 5311 /* 5312 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5313 * failure, ipif_trace_disable is set. 5314 */ 5315 static void 5316 ipif_trace_cleanup(const ipif_t *ipif) 5317 { 5318 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5319 } 5320 5321 /* 5322 * Called when ill is unplumbed or when memory alloc fails. Note that on 5323 * failure, ill_trace_disable is set. 5324 */ 5325 static void 5326 ill_trace_cleanup(const ill_t *ill) 5327 { 5328 th_trace_cleanup(ill, ill->ill_trace_disable); 5329 } 5330 #endif /* DEBUG */ 5331 5332 void 5333 ipif_refhold_locked(ipif_t *ipif) 5334 { 5335 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5336 ipif->ipif_refcnt++; 5337 IPIF_TRACE_REF(ipif); 5338 } 5339 5340 void 5341 ipif_refhold(ipif_t *ipif) 5342 { 5343 ill_t *ill; 5344 5345 ill = ipif->ipif_ill; 5346 mutex_enter(&ill->ill_lock); 5347 ipif->ipif_refcnt++; 5348 IPIF_TRACE_REF(ipif); 5349 mutex_exit(&ill->ill_lock); 5350 } 5351 5352 /* 5353 * Must not be called while holding any locks. Otherwise if this is 5354 * the last reference to be released there is a chance of recursive mutex 5355 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5356 * to restart an ioctl. 5357 */ 5358 void 5359 ipif_refrele(ipif_t *ipif) 5360 { 5361 ill_t *ill; 5362 5363 ill = ipif->ipif_ill; 5364 5365 mutex_enter(&ill->ill_lock); 5366 ASSERT(ipif->ipif_refcnt != 0); 5367 ipif->ipif_refcnt--; 5368 IPIF_UNTRACE_REF(ipif); 5369 if (ipif->ipif_refcnt != 0) { 5370 mutex_exit(&ill->ill_lock); 5371 return; 5372 } 5373 5374 /* Drops the ill_lock */ 5375 ipif_ill_refrele_tail(ill); 5376 } 5377 5378 ipif_t * 5379 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5380 { 5381 ipif_t *ipif; 5382 5383 mutex_enter(&ill->ill_lock); 5384 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5385 ipif != NULL; ipif = ipif->ipif_next) { 5386 if (IPIF_IS_CONDEMNED(ipif)) 5387 continue; 5388 ipif_refhold_locked(ipif); 5389 mutex_exit(&ill->ill_lock); 5390 return (ipif); 5391 } 5392 mutex_exit(&ill->ill_lock); 5393 return (NULL); 5394 } 5395 5396 /* 5397 * TODO: make this table extendible at run time 5398 * Return a pointer to the mac type info for 'mac_type' 5399 */ 5400 static ip_m_t * 5401 ip_m_lookup(t_uscalar_t mac_type) 5402 { 5403 ip_m_t *ipm; 5404 5405 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5406 if (ipm->ip_m_mac_type == mac_type) 5407 return (ipm); 5408 return (NULL); 5409 } 5410 5411 /* 5412 * Make a link layer address from the multicast IP address *addr. 5413 * To form the link layer address, invoke the ip_m_v*mapping function 5414 * associated with the link-layer type. 5415 */ 5416 void 5417 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5418 { 5419 ip_m_t *ipm; 5420 5421 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5422 return; 5423 5424 ASSERT(addr != NULL); 5425 5426 ipm = ip_m_lookup(ill->ill_mactype); 5427 if (ipm == NULL || 5428 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5429 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5430 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5431 ill->ill_name, ill->ill_mactype)); 5432 return; 5433 } 5434 if (ill->ill_isv6) 5435 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5436 else 5437 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5438 } 5439 5440 /* 5441 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5442 * ill is passed in to associate it with the correct interface. 5443 * If ire_arg is set, then we return the held IRE in that location. 5444 */ 5445 int 5446 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5447 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5448 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5449 { 5450 ire_t *ire, *nire; 5451 ire_t *gw_ire = NULL; 5452 ipif_t *ipif = NULL; 5453 uint_t type; 5454 int match_flags = MATCH_IRE_TYPE; 5455 tsol_gc_t *gc = NULL; 5456 tsol_gcgrp_t *gcgrp = NULL; 5457 boolean_t gcgrp_xtraref = B_FALSE; 5458 boolean_t cgtp_broadcast; 5459 boolean_t unbound = B_FALSE; 5460 5461 ip1dbg(("ip_rt_add:")); 5462 5463 if (ire_arg != NULL) 5464 *ire_arg = NULL; 5465 5466 /* 5467 * If this is the case of RTF_HOST being set, then we set the netmask 5468 * to all ones (regardless if one was supplied). 5469 */ 5470 if (flags & RTF_HOST) 5471 mask = IP_HOST_MASK; 5472 5473 /* 5474 * Prevent routes with a zero gateway from being created (since 5475 * interfaces can currently be plumbed and brought up no assigned 5476 * address). 5477 */ 5478 if (gw_addr == 0) 5479 return (ENETUNREACH); 5480 /* 5481 * Get the ipif, if any, corresponding to the gw_addr 5482 * If -ifp was specified we restrict ourselves to the ill, otherwise 5483 * we match on the gatway and destination to handle unnumbered pt-pt 5484 * interfaces. 5485 */ 5486 if (ill != NULL) 5487 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5488 else 5489 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5490 if (ipif != NULL) { 5491 if (IS_VNI(ipif->ipif_ill)) { 5492 ipif_refrele(ipif); 5493 return (EINVAL); 5494 } 5495 } 5496 5497 /* 5498 * GateD will attempt to create routes with a loopback interface 5499 * address as the gateway and with RTF_GATEWAY set. We allow 5500 * these routes to be added, but create them as interface routes 5501 * since the gateway is an interface address. 5502 */ 5503 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5504 flags &= ~RTF_GATEWAY; 5505 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5506 mask == IP_HOST_MASK) { 5507 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5508 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5509 NULL); 5510 if (ire != NULL) { 5511 ire_refrele(ire); 5512 ipif_refrele(ipif); 5513 return (EEXIST); 5514 } 5515 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5516 "for 0x%x\n", (void *)ipif, 5517 ipif->ipif_ire_type, 5518 ntohl(ipif->ipif_lcl_addr))); 5519 ire = ire_create( 5520 (uchar_t *)&dst_addr, /* dest address */ 5521 (uchar_t *)&mask, /* mask */ 5522 NULL, /* no gateway */ 5523 ipif->ipif_ire_type, /* LOOPBACK */ 5524 ipif->ipif_ill, 5525 zoneid, 5526 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5527 NULL, 5528 ipst); 5529 5530 if (ire == NULL) { 5531 ipif_refrele(ipif); 5532 return (ENOMEM); 5533 } 5534 /* src address assigned by the caller? */ 5535 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5536 ire->ire_setsrc_addr = src_addr; 5537 5538 nire = ire_add(ire); 5539 if (nire == NULL) { 5540 /* 5541 * In the result of failure, ire_add() will have 5542 * already deleted the ire in question, so there 5543 * is no need to do that here. 5544 */ 5545 ipif_refrele(ipif); 5546 return (ENOMEM); 5547 } 5548 /* 5549 * Check if it was a duplicate entry. This handles 5550 * the case of two racing route adds for the same route 5551 */ 5552 if (nire != ire) { 5553 ASSERT(nire->ire_identical_ref > 1); 5554 ire_delete(nire); 5555 ire_refrele(nire); 5556 ipif_refrele(ipif); 5557 return (EEXIST); 5558 } 5559 ire = nire; 5560 goto save_ire; 5561 } 5562 } 5563 5564 /* 5565 * The routes for multicast with CGTP are quite special in that 5566 * the gateway is the local interface address, yet RTF_GATEWAY 5567 * is set. We turn off RTF_GATEWAY to provide compatibility with 5568 * this undocumented and unusual use of multicast routes. 5569 */ 5570 if ((flags & RTF_MULTIRT) && ipif != NULL) 5571 flags &= ~RTF_GATEWAY; 5572 5573 /* 5574 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5575 * and the gateway address provided is one of the system's interface 5576 * addresses. By using the routing socket interface and supplying an 5577 * RTA_IFP sockaddr with an interface index, an alternate method of 5578 * specifying an interface route to be created is available which uses 5579 * the interface index that specifies the outgoing interface rather than 5580 * the address of an outgoing interface (which may not be able to 5581 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5582 * flag, routes can be specified which not only specify the next-hop to 5583 * be used when routing to a certain prefix, but also which outgoing 5584 * interface should be used. 5585 * 5586 * Previously, interfaces would have unique addresses assigned to them 5587 * and so the address assigned to a particular interface could be used 5588 * to identify a particular interface. One exception to this was the 5589 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5590 * 5591 * With the advent of IPv6 and its link-local addresses, this 5592 * restriction was relaxed and interfaces could share addresses between 5593 * themselves. In fact, typically all of the link-local interfaces on 5594 * an IPv6 node or router will have the same link-local address. In 5595 * order to differentiate between these interfaces, the use of an 5596 * interface index is necessary and this index can be carried inside a 5597 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5598 * of using the interface index, however, is that all of the ipif's that 5599 * are part of an ill have the same index and so the RTA_IFP sockaddr 5600 * cannot be used to differentiate between ipif's (or logical 5601 * interfaces) that belong to the same ill (physical interface). 5602 * 5603 * For example, in the following case involving IPv4 interfaces and 5604 * logical interfaces 5605 * 5606 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5607 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5608 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5609 * 5610 * the ipif's corresponding to each of these interface routes can be 5611 * uniquely identified by the "gateway" (actually interface address). 5612 * 5613 * In this case involving multiple IPv6 default routes to a particular 5614 * link-local gateway, the use of RTA_IFP is necessary to specify which 5615 * default route is of interest: 5616 * 5617 * default fe80::123:4567:89ab:cdef U if0 5618 * default fe80::123:4567:89ab:cdef U if1 5619 */ 5620 5621 /* RTF_GATEWAY not set */ 5622 if (!(flags & RTF_GATEWAY)) { 5623 if (sp != NULL) { 5624 ip2dbg(("ip_rt_add: gateway security attributes " 5625 "cannot be set with interface route\n")); 5626 if (ipif != NULL) 5627 ipif_refrele(ipif); 5628 return (EINVAL); 5629 } 5630 5631 /* 5632 * Whether or not ill (RTA_IFP) is set, we require that 5633 * the gateway is one of our local addresses. 5634 */ 5635 if (ipif == NULL) 5636 return (ENETUNREACH); 5637 5638 /* 5639 * We use MATCH_IRE_ILL here. If the caller specified an 5640 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5641 * we use the ill derived from the gateway address. 5642 * We can always match the gateway address since we record it 5643 * in ire_gateway_addr. 5644 * We don't allow RTA_IFP to specify a different ill than the 5645 * one matching the ipif to make sure we can delete the route. 5646 */ 5647 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5648 if (ill == NULL) { 5649 ill = ipif->ipif_ill; 5650 } else if (ill != ipif->ipif_ill) { 5651 ipif_refrele(ipif); 5652 return (EINVAL); 5653 } 5654 5655 /* 5656 * We check for an existing entry at this point. 5657 * 5658 * Since a netmask isn't passed in via the ioctl interface 5659 * (SIOCADDRT), we don't check for a matching netmask in that 5660 * case. 5661 */ 5662 if (!ioctl_msg) 5663 match_flags |= MATCH_IRE_MASK; 5664 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5665 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5666 NULL); 5667 if (ire != NULL) { 5668 ire_refrele(ire); 5669 ipif_refrele(ipif); 5670 return (EEXIST); 5671 } 5672 5673 /* 5674 * Some software (for example, GateD and Sun Cluster) attempts 5675 * to create (what amount to) IRE_PREFIX routes with the 5676 * loopback address as the gateway. This is primarily done to 5677 * set up prefixes with the RTF_REJECT flag set (for example, 5678 * when generating aggregate routes.) 5679 * 5680 * If the IRE type (as defined by ill->ill_net_type) would be 5681 * IRE_LOOPBACK, then we map the request into a 5682 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5683 * these interface routes, by definition, can only be that. 5684 * 5685 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5686 * routine, but rather using ire_create() directly. 5687 * 5688 */ 5689 type = ill->ill_net_type; 5690 if (type == IRE_LOOPBACK) { 5691 type = IRE_IF_NORESOLVER; 5692 flags |= RTF_BLACKHOLE; 5693 } 5694 5695 /* 5696 * Create a copy of the IRE_IF_NORESOLVER or 5697 * IRE_IF_RESOLVER with the modified address, netmask, and 5698 * gateway. 5699 */ 5700 ire = ire_create( 5701 (uchar_t *)&dst_addr, 5702 (uint8_t *)&mask, 5703 (uint8_t *)&gw_addr, 5704 type, 5705 ill, 5706 zoneid, 5707 flags, 5708 NULL, 5709 ipst); 5710 if (ire == NULL) { 5711 ipif_refrele(ipif); 5712 return (ENOMEM); 5713 } 5714 5715 /* src address assigned by the caller? */ 5716 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5717 ire->ire_setsrc_addr = src_addr; 5718 5719 nire = ire_add(ire); 5720 if (nire == NULL) { 5721 /* 5722 * In the result of failure, ire_add() will have 5723 * already deleted the ire in question, so there 5724 * is no need to do that here. 5725 */ 5726 ipif_refrele(ipif); 5727 return (ENOMEM); 5728 } 5729 /* 5730 * Check if it was a duplicate entry. This handles 5731 * the case of two racing route adds for the same route 5732 */ 5733 if (nire != ire) { 5734 ire_delete(nire); 5735 ire_refrele(nire); 5736 ipif_refrele(ipif); 5737 return (EEXIST); 5738 } 5739 ire = nire; 5740 goto save_ire; 5741 } 5742 5743 /* 5744 * Get an interface IRE for the specified gateway. 5745 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5746 * gateway, it is currently unreachable and we fail the request 5747 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5748 * is an IRE_LOCAL or IRE_LOOPBACK. 5749 * If RTA_IFP was specified we look on that particular ill. 5750 */ 5751 if (ill != NULL) 5752 match_flags |= MATCH_IRE_ILL; 5753 5754 /* Check whether the gateway is reachable. */ 5755 again: 5756 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5757 if (flags & RTF_INDIRECT) 5758 type |= IRE_OFFLINK; 5759 5760 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5761 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5762 if (gw_ire == NULL) { 5763 /* 5764 * With IPMP, we allow host routes to influence in.mpathd's 5765 * target selection. However, if the test addresses are on 5766 * their own network, the above lookup will fail since the 5767 * underlying IRE_INTERFACEs are marked hidden. So allow 5768 * hidden test IREs to be found and try again. 5769 */ 5770 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5771 match_flags |= MATCH_IRE_TESTHIDDEN; 5772 goto again; 5773 } 5774 if (ipif != NULL) 5775 ipif_refrele(ipif); 5776 return (ENETUNREACH); 5777 } 5778 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5779 ire_refrele(gw_ire); 5780 if (ipif != NULL) 5781 ipif_refrele(ipif); 5782 return (ENETUNREACH); 5783 } 5784 5785 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5786 unbound = B_TRUE; 5787 if (ipst->ips_ip_strict_src_multihoming > 0) 5788 ill = gw_ire->ire_ill; 5789 } 5790 5791 /* 5792 * We create one of three types of IREs as a result of this request 5793 * based on the netmask. A netmask of all ones (which is automatically 5794 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5795 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5796 * created. Otherwise, an IRE_PREFIX route is created for the 5797 * destination prefix. 5798 */ 5799 if (mask == IP_HOST_MASK) 5800 type = IRE_HOST; 5801 else if (mask == 0) 5802 type = IRE_DEFAULT; 5803 else 5804 type = IRE_PREFIX; 5805 5806 /* check for a duplicate entry */ 5807 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5808 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5809 0, ipst, NULL); 5810 if (ire != NULL) { 5811 if (ipif != NULL) 5812 ipif_refrele(ipif); 5813 ire_refrele(gw_ire); 5814 ire_refrele(ire); 5815 return (EEXIST); 5816 } 5817 5818 /* Security attribute exists */ 5819 if (sp != NULL) { 5820 tsol_gcgrp_addr_t ga; 5821 5822 /* find or create the gateway credentials group */ 5823 ga.ga_af = AF_INET; 5824 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5825 5826 /* we hold reference to it upon success */ 5827 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5828 if (gcgrp == NULL) { 5829 if (ipif != NULL) 5830 ipif_refrele(ipif); 5831 ire_refrele(gw_ire); 5832 return (ENOMEM); 5833 } 5834 5835 /* 5836 * Create and add the security attribute to the group; a 5837 * reference to the group is made upon allocating a new 5838 * entry successfully. If it finds an already-existing 5839 * entry for the security attribute in the group, it simply 5840 * returns it and no new reference is made to the group. 5841 */ 5842 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5843 if (gc == NULL) { 5844 if (ipif != NULL) 5845 ipif_refrele(ipif); 5846 /* release reference held by gcgrp_lookup */ 5847 GCGRP_REFRELE(gcgrp); 5848 ire_refrele(gw_ire); 5849 return (ENOMEM); 5850 } 5851 } 5852 5853 /* Create the IRE. */ 5854 ire = ire_create( 5855 (uchar_t *)&dst_addr, /* dest address */ 5856 (uchar_t *)&mask, /* mask */ 5857 (uchar_t *)&gw_addr, /* gateway address */ 5858 (ushort_t)type, /* IRE type */ 5859 ill, 5860 zoneid, 5861 flags, 5862 gc, /* security attribute */ 5863 ipst); 5864 5865 /* 5866 * The ire holds a reference to the 'gc' and the 'gc' holds a 5867 * reference to the 'gcgrp'. We can now release the extra reference 5868 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5869 */ 5870 if (gcgrp_xtraref) 5871 GCGRP_REFRELE(gcgrp); 5872 if (ire == NULL) { 5873 if (gc != NULL) 5874 GC_REFRELE(gc); 5875 if (ipif != NULL) 5876 ipif_refrele(ipif); 5877 ire_refrele(gw_ire); 5878 return (ENOMEM); 5879 } 5880 5881 /* Before we add, check if an extra CGTP broadcast is needed */ 5882 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5883 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5884 5885 /* src address assigned by the caller? */ 5886 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5887 ire->ire_setsrc_addr = src_addr; 5888 5889 ire->ire_unbound = unbound; 5890 5891 /* 5892 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5893 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5894 */ 5895 5896 /* Add the new IRE. */ 5897 nire = ire_add(ire); 5898 if (nire == NULL) { 5899 /* 5900 * In the result of failure, ire_add() will have 5901 * already deleted the ire in question, so there 5902 * is no need to do that here. 5903 */ 5904 if (ipif != NULL) 5905 ipif_refrele(ipif); 5906 ire_refrele(gw_ire); 5907 return (ENOMEM); 5908 } 5909 /* 5910 * Check if it was a duplicate entry. This handles 5911 * the case of two racing route adds for the same route 5912 */ 5913 if (nire != ire) { 5914 ire_delete(nire); 5915 ire_refrele(nire); 5916 if (ipif != NULL) 5917 ipif_refrele(ipif); 5918 ire_refrele(gw_ire); 5919 return (EEXIST); 5920 } 5921 ire = nire; 5922 5923 if (flags & RTF_MULTIRT) { 5924 /* 5925 * Invoke the CGTP (multirouting) filtering module 5926 * to add the dst address in the filtering database. 5927 * Replicated inbound packets coming from that address 5928 * will be filtered to discard the duplicates. 5929 * It is not necessary to call the CGTP filter hook 5930 * when the dst address is a broadcast or multicast, 5931 * because an IP source address cannot be a broadcast 5932 * or a multicast. 5933 */ 5934 if (cgtp_broadcast) { 5935 ip_cgtp_bcast_add(ire, ipst); 5936 goto save_ire; 5937 } 5938 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5939 !CLASSD(ire->ire_addr)) { 5940 int res; 5941 ipif_t *src_ipif; 5942 5943 /* Find the source address corresponding to gw_ire */ 5944 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5945 NULL, zoneid, ipst); 5946 if (src_ipif != NULL) { 5947 res = ipst->ips_ip_cgtp_filter_ops-> 5948 cfo_add_dest_v4( 5949 ipst->ips_netstack->netstack_stackid, 5950 ire->ire_addr, 5951 ire->ire_gateway_addr, 5952 ire->ire_setsrc_addr, 5953 src_ipif->ipif_lcl_addr); 5954 ipif_refrele(src_ipif); 5955 } else { 5956 res = EADDRNOTAVAIL; 5957 } 5958 if (res != 0) { 5959 if (ipif != NULL) 5960 ipif_refrele(ipif); 5961 ire_refrele(gw_ire); 5962 ire_delete(ire); 5963 ire_refrele(ire); /* Held in ire_add */ 5964 return (res); 5965 } 5966 } 5967 } 5968 5969 save_ire: 5970 if (gw_ire != NULL) { 5971 ire_refrele(gw_ire); 5972 gw_ire = NULL; 5973 } 5974 if (ill != NULL) { 5975 /* 5976 * Save enough information so that we can recreate the IRE if 5977 * the interface goes down and then up. The metrics associated 5978 * with the route will be saved as well when rts_setmetrics() is 5979 * called after the IRE has been created. In the case where 5980 * memory cannot be allocated, none of this information will be 5981 * saved. 5982 */ 5983 ill_save_ire(ill, ire); 5984 } 5985 if (ioctl_msg) 5986 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5987 if (ire_arg != NULL) { 5988 /* 5989 * Store the ire that was successfully added into where ire_arg 5990 * points to so that callers don't have to look it up 5991 * themselves (but they are responsible for ire_refrele()ing 5992 * the ire when they are finished with it). 5993 */ 5994 *ire_arg = ire; 5995 } else { 5996 ire_refrele(ire); /* Held in ire_add */ 5997 } 5998 if (ipif != NULL) 5999 ipif_refrele(ipif); 6000 return (0); 6001 } 6002 6003 /* 6004 * ip_rt_delete is called to delete an IPv4 route. 6005 * ill is passed in to associate it with the correct interface. 6006 */ 6007 /* ARGSUSED4 */ 6008 int 6009 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6010 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 6011 ip_stack_t *ipst, zoneid_t zoneid) 6012 { 6013 ire_t *ire = NULL; 6014 ipif_t *ipif; 6015 uint_t type; 6016 uint_t match_flags = MATCH_IRE_TYPE; 6017 int err = 0; 6018 6019 ip1dbg(("ip_rt_delete:")); 6020 /* 6021 * If this is the case of RTF_HOST being set, then we set the netmask 6022 * to all ones. Otherwise, we use the netmask if one was supplied. 6023 */ 6024 if (flags & RTF_HOST) { 6025 mask = IP_HOST_MASK; 6026 match_flags |= MATCH_IRE_MASK; 6027 } else if (rtm_addrs & RTA_NETMASK) { 6028 match_flags |= MATCH_IRE_MASK; 6029 } 6030 6031 /* 6032 * Note that RTF_GATEWAY is never set on a delete, therefore 6033 * we check if the gateway address is one of our interfaces first, 6034 * and fall back on RTF_GATEWAY routes. 6035 * 6036 * This makes it possible to delete an original 6037 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6038 * However, we have RTF_KERNEL set on the ones created by ipif_up 6039 * and those can not be deleted here. 6040 * 6041 * We use MATCH_IRE_ILL if we know the interface. If the caller 6042 * specified an interface (from the RTA_IFP sockaddr) we use it, 6043 * otherwise we use the ill derived from the gateway address. 6044 * We can always match the gateway address since we record it 6045 * in ire_gateway_addr. 6046 * 6047 * For more detail on specifying routes by gateway address and by 6048 * interface index, see the comments in ip_rt_add(). 6049 */ 6050 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6051 if (ipif != NULL) { 6052 ill_t *ill_match; 6053 6054 if (ill != NULL) 6055 ill_match = ill; 6056 else 6057 ill_match = ipif->ipif_ill; 6058 6059 match_flags |= MATCH_IRE_ILL; 6060 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6061 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 6062 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 6063 match_flags, 0, ipst, NULL); 6064 } 6065 if (ire == NULL) { 6066 match_flags |= MATCH_IRE_GW; 6067 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6068 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6069 match_flags, 0, ipst, NULL); 6070 } 6071 /* Avoid deleting routes created by kernel from an ipif */ 6072 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6073 ire_refrele(ire); 6074 ire = NULL; 6075 } 6076 6077 /* Restore in case we didn't find a match */ 6078 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6079 } 6080 6081 if (ire == NULL) { 6082 /* 6083 * At this point, the gateway address is not one of our own 6084 * addresses or a matching interface route was not found. We 6085 * set the IRE type to lookup based on whether 6086 * this is a host route, a default route or just a prefix. 6087 * 6088 * If an ill was passed in, then the lookup is based on an 6089 * interface index so MATCH_IRE_ILL is added to match_flags. 6090 */ 6091 match_flags |= MATCH_IRE_GW; 6092 if (ill != NULL) 6093 match_flags |= MATCH_IRE_ILL; 6094 if (mask == IP_HOST_MASK) 6095 type = IRE_HOST; 6096 else if (mask == 0) 6097 type = IRE_DEFAULT; 6098 else 6099 type = IRE_PREFIX; 6100 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6101 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6102 } 6103 6104 if (ipif != NULL) { 6105 ipif_refrele(ipif); 6106 ipif = NULL; 6107 } 6108 6109 if (ire == NULL) 6110 return (ESRCH); 6111 6112 if (ire->ire_flags & RTF_MULTIRT) { 6113 /* 6114 * Invoke the CGTP (multirouting) filtering module 6115 * to remove the dst address from the filtering database. 6116 * Packets coming from that address will no longer be 6117 * filtered to remove duplicates. 6118 */ 6119 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6120 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6121 ipst->ips_netstack->netstack_stackid, 6122 ire->ire_addr, ire->ire_gateway_addr); 6123 } 6124 ip_cgtp_bcast_delete(ire, ipst); 6125 } 6126 6127 ill = ire->ire_ill; 6128 if (ill != NULL) 6129 ill_remove_saved_ire(ill, ire); 6130 if (ioctl_msg) 6131 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6132 ire_delete(ire); 6133 ire_refrele(ire); 6134 return (err); 6135 } 6136 6137 /* 6138 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6139 */ 6140 /* ARGSUSED */ 6141 int 6142 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6143 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6144 { 6145 ipaddr_t dst_addr; 6146 ipaddr_t gw_addr; 6147 ipaddr_t mask; 6148 int error = 0; 6149 mblk_t *mp1; 6150 struct rtentry *rt; 6151 ipif_t *ipif = NULL; 6152 ip_stack_t *ipst; 6153 6154 ASSERT(q->q_next == NULL); 6155 ipst = CONNQ_TO_IPST(q); 6156 6157 ip1dbg(("ip_siocaddrt:")); 6158 /* Existence of mp1 verified in ip_wput_nondata */ 6159 mp1 = mp->b_cont->b_cont; 6160 rt = (struct rtentry *)mp1->b_rptr; 6161 6162 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6163 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6164 6165 /* 6166 * If the RTF_HOST flag is on, this is a request to assign a gateway 6167 * to a particular host address. In this case, we set the netmask to 6168 * all ones for the particular destination address. Otherwise, 6169 * determine the netmask to be used based on dst_addr and the interfaces 6170 * in use. 6171 */ 6172 if (rt->rt_flags & RTF_HOST) { 6173 mask = IP_HOST_MASK; 6174 } else { 6175 /* 6176 * Note that ip_subnet_mask returns a zero mask in the case of 6177 * default (an all-zeroes address). 6178 */ 6179 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6180 } 6181 6182 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6183 B_TRUE, NULL, ipst, ALL_ZONES); 6184 if (ipif != NULL) 6185 ipif_refrele(ipif); 6186 return (error); 6187 } 6188 6189 /* 6190 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6191 */ 6192 /* ARGSUSED */ 6193 int 6194 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6195 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6196 { 6197 ipaddr_t dst_addr; 6198 ipaddr_t gw_addr; 6199 ipaddr_t mask; 6200 int error; 6201 mblk_t *mp1; 6202 struct rtentry *rt; 6203 ipif_t *ipif = NULL; 6204 ip_stack_t *ipst; 6205 6206 ASSERT(q->q_next == NULL); 6207 ipst = CONNQ_TO_IPST(q); 6208 6209 ip1dbg(("ip_siocdelrt:")); 6210 /* Existence of mp1 verified in ip_wput_nondata */ 6211 mp1 = mp->b_cont->b_cont; 6212 rt = (struct rtentry *)mp1->b_rptr; 6213 6214 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6215 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6216 6217 /* 6218 * If the RTF_HOST flag is on, this is a request to delete a gateway 6219 * to a particular host address. In this case, we set the netmask to 6220 * all ones for the particular destination address. Otherwise, 6221 * determine the netmask to be used based on dst_addr and the interfaces 6222 * in use. 6223 */ 6224 if (rt->rt_flags & RTF_HOST) { 6225 mask = IP_HOST_MASK; 6226 } else { 6227 /* 6228 * Note that ip_subnet_mask returns a zero mask in the case of 6229 * default (an all-zeroes address). 6230 */ 6231 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6232 } 6233 6234 error = ip_rt_delete(dst_addr, mask, gw_addr, 6235 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6236 ipst, ALL_ZONES); 6237 if (ipif != NULL) 6238 ipif_refrele(ipif); 6239 return (error); 6240 } 6241 6242 /* 6243 * Enqueue the mp onto the ipsq, chained by b_next. 6244 * b_prev stores the function to be executed later, and b_queue the queue 6245 * where this mp originated. 6246 */ 6247 void 6248 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6249 ill_t *pending_ill) 6250 { 6251 conn_t *connp; 6252 ipxop_t *ipx = ipsq->ipsq_xop; 6253 6254 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6255 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6256 ASSERT(func != NULL); 6257 6258 mp->b_queue = q; 6259 mp->b_prev = (void *)func; 6260 mp->b_next = NULL; 6261 6262 switch (type) { 6263 case CUR_OP: 6264 if (ipx->ipx_mptail != NULL) { 6265 ASSERT(ipx->ipx_mphead != NULL); 6266 ipx->ipx_mptail->b_next = mp; 6267 } else { 6268 ASSERT(ipx->ipx_mphead == NULL); 6269 ipx->ipx_mphead = mp; 6270 } 6271 ipx->ipx_mptail = mp; 6272 break; 6273 6274 case NEW_OP: 6275 if (ipsq->ipsq_xopq_mptail != NULL) { 6276 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6277 ipsq->ipsq_xopq_mptail->b_next = mp; 6278 } else { 6279 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6280 ipsq->ipsq_xopq_mphead = mp; 6281 } 6282 ipsq->ipsq_xopq_mptail = mp; 6283 ipx->ipx_ipsq_queued = B_TRUE; 6284 break; 6285 6286 case SWITCH_OP: 6287 ASSERT(ipsq->ipsq_swxop != NULL); 6288 /* only one switch operation is currently allowed */ 6289 ASSERT(ipsq->ipsq_switch_mp == NULL); 6290 ipsq->ipsq_switch_mp = mp; 6291 ipx->ipx_ipsq_queued = B_TRUE; 6292 break; 6293 default: 6294 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6295 } 6296 6297 if (CONN_Q(q) && pending_ill != NULL) { 6298 connp = Q_TO_CONN(q); 6299 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6300 connp->conn_oper_pending_ill = pending_ill; 6301 } 6302 } 6303 6304 /* 6305 * Dequeue the next message that requested exclusive access to this IPSQ's 6306 * xop. Specifically: 6307 * 6308 * 1. If we're still processing the current operation on `ipsq', then 6309 * dequeue the next message for the operation (from ipx_mphead), or 6310 * return NULL if there are no queued messages for the operation. 6311 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6312 * 6313 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6314 * not set) see if the ipsq has requested an xop switch. If so, switch 6315 * `ipsq' to a different xop. Xop switches only happen when joining or 6316 * leaving IPMP groups and require a careful dance -- see the comments 6317 * in-line below for details. If we're leaving a group xop or if we're 6318 * joining a group xop and become writer on it, then we proceed to (3). 6319 * Otherwise, we return NULL and exit the xop. 6320 * 6321 * 3. For each IPSQ in the xop, return any switch operation stored on 6322 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6323 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6324 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6325 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6326 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6327 * each phyint in the group, including the IPMP meta-interface phyint. 6328 */ 6329 static mblk_t * 6330 ipsq_dq(ipsq_t *ipsq) 6331 { 6332 ill_t *illv4, *illv6; 6333 mblk_t *mp; 6334 ipsq_t *xopipsq; 6335 ipsq_t *leftipsq = NULL; 6336 ipxop_t *ipx; 6337 phyint_t *phyi = ipsq->ipsq_phyint; 6338 ip_stack_t *ipst = ipsq->ipsq_ipst; 6339 boolean_t emptied = B_FALSE; 6340 6341 /* 6342 * Grab all the locks we need in the defined order (ill_g_lock -> 6343 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6344 */ 6345 rw_enter(&ipst->ips_ill_g_lock, 6346 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6347 mutex_enter(&ipsq->ipsq_lock); 6348 ipx = ipsq->ipsq_xop; 6349 mutex_enter(&ipx->ipx_lock); 6350 6351 /* 6352 * Dequeue the next message associated with the current exclusive 6353 * operation, if any. 6354 */ 6355 if ((mp = ipx->ipx_mphead) != NULL) { 6356 ipx->ipx_mphead = mp->b_next; 6357 if (ipx->ipx_mphead == NULL) 6358 ipx->ipx_mptail = NULL; 6359 mp->b_next = (void *)ipsq; 6360 goto out; 6361 } 6362 6363 if (ipx->ipx_current_ipif != NULL) 6364 goto empty; 6365 6366 if (ipsq->ipsq_swxop != NULL) { 6367 /* 6368 * The exclusive operation that is now being completed has 6369 * requested a switch to a different xop. This happens 6370 * when an interface joins or leaves an IPMP group. Joins 6371 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6372 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6373 * (phyint_free()), or interface plumb for an ill type 6374 * not in the IPMP group (ip_rput_dlpi_writer()). 6375 * 6376 * Xop switches are not allowed on the IPMP meta-interface. 6377 */ 6378 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6379 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6380 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6381 6382 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6383 /* 6384 * We're switching back to our own xop, so we have two 6385 * xop's to drain/exit: our own, and the group xop 6386 * that we are leaving. 6387 * 6388 * First, pull ourselves out of the group ipsq list. 6389 * This is safe since we're writer on ill_g_lock. 6390 */ 6391 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6392 6393 xopipsq = ipx->ipx_ipsq; 6394 while (xopipsq->ipsq_next != ipsq) 6395 xopipsq = xopipsq->ipsq_next; 6396 6397 xopipsq->ipsq_next = ipsq->ipsq_next; 6398 ipsq->ipsq_next = ipsq; 6399 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6400 ipsq->ipsq_swxop = NULL; 6401 6402 /* 6403 * Second, prepare to exit the group xop. The actual 6404 * ipsq_exit() is done at the end of this function 6405 * since we cannot hold any locks across ipsq_exit(). 6406 * Note that although we drop the group's ipx_lock, no 6407 * threads can proceed since we're still ipx_writer. 6408 */ 6409 leftipsq = xopipsq; 6410 mutex_exit(&ipx->ipx_lock); 6411 6412 /* 6413 * Third, set ipx to point to our own xop (which was 6414 * inactive and therefore can be entered). 6415 */ 6416 ipx = ipsq->ipsq_xop; 6417 mutex_enter(&ipx->ipx_lock); 6418 ASSERT(ipx->ipx_writer == NULL); 6419 ASSERT(ipx->ipx_current_ipif == NULL); 6420 } else { 6421 /* 6422 * We're switching from our own xop to a group xop. 6423 * The requestor of the switch must ensure that the 6424 * group xop cannot go away (e.g. by ensuring the 6425 * phyint associated with the xop cannot go away). 6426 * 6427 * If we can become writer on our new xop, then we'll 6428 * do the drain. Otherwise, the current writer of our 6429 * new xop will do the drain when it exits. 6430 * 6431 * First, splice ourselves into the group IPSQ list. 6432 * This is safe since we're writer on ill_g_lock. 6433 */ 6434 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6435 6436 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6437 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6438 xopipsq = xopipsq->ipsq_next; 6439 6440 xopipsq->ipsq_next = ipsq; 6441 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6442 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6443 ipsq->ipsq_swxop = NULL; 6444 6445 /* 6446 * Second, exit our own xop, since it's now unused. 6447 * This is safe since we've got the only reference. 6448 */ 6449 ASSERT(ipx->ipx_writer == curthread); 6450 ipx->ipx_writer = NULL; 6451 VERIFY(--ipx->ipx_reentry_cnt == 0); 6452 ipx->ipx_ipsq_queued = B_FALSE; 6453 mutex_exit(&ipx->ipx_lock); 6454 6455 /* 6456 * Third, set ipx to point to our new xop, and check 6457 * if we can become writer on it. If we cannot, then 6458 * the current writer will drain the IPSQ group when 6459 * it exits. Our ipsq_xop is guaranteed to be stable 6460 * because we're still holding ipsq_lock. 6461 */ 6462 ipx = ipsq->ipsq_xop; 6463 mutex_enter(&ipx->ipx_lock); 6464 if (ipx->ipx_writer != NULL || 6465 ipx->ipx_current_ipif != NULL) { 6466 goto out; 6467 } 6468 } 6469 6470 /* 6471 * Fourth, become writer on our new ipx before we continue 6472 * with the drain. Note that we never dropped ipsq_lock 6473 * above, so no other thread could've raced with us to 6474 * become writer first. Also, we're holding ipx_lock, so 6475 * no other thread can examine the ipx right now. 6476 */ 6477 ASSERT(ipx->ipx_current_ipif == NULL); 6478 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6479 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6480 ipx->ipx_writer = curthread; 6481 ipx->ipx_forced = B_FALSE; 6482 #ifdef DEBUG 6483 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6484 #endif 6485 } 6486 6487 xopipsq = ipsq; 6488 do { 6489 /* 6490 * So that other operations operate on a consistent and 6491 * complete phyint, a switch message on an IPSQ must be 6492 * handled prior to any other operations on that IPSQ. 6493 */ 6494 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6495 xopipsq->ipsq_switch_mp = NULL; 6496 ASSERT(mp->b_next == NULL); 6497 mp->b_next = (void *)xopipsq; 6498 goto out; 6499 } 6500 6501 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6502 xopipsq->ipsq_xopq_mphead = mp->b_next; 6503 if (xopipsq->ipsq_xopq_mphead == NULL) 6504 xopipsq->ipsq_xopq_mptail = NULL; 6505 mp->b_next = (void *)xopipsq; 6506 goto out; 6507 } 6508 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6509 empty: 6510 /* 6511 * There are no messages. Further, we are holding ipx_lock, hence no 6512 * new messages can end up on any IPSQ in the xop. 6513 */ 6514 ipx->ipx_writer = NULL; 6515 ipx->ipx_forced = B_FALSE; 6516 VERIFY(--ipx->ipx_reentry_cnt == 0); 6517 ipx->ipx_ipsq_queued = B_FALSE; 6518 emptied = B_TRUE; 6519 #ifdef DEBUG 6520 ipx->ipx_depth = 0; 6521 #endif 6522 out: 6523 mutex_exit(&ipx->ipx_lock); 6524 mutex_exit(&ipsq->ipsq_lock); 6525 6526 /* 6527 * If we completely emptied the xop, then wake up any threads waiting 6528 * to enter any of the IPSQ's associated with it. 6529 */ 6530 if (emptied) { 6531 xopipsq = ipsq; 6532 do { 6533 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6534 continue; 6535 6536 illv4 = phyi->phyint_illv4; 6537 illv6 = phyi->phyint_illv6; 6538 6539 GRAB_ILL_LOCKS(illv4, illv6); 6540 if (illv4 != NULL) 6541 cv_broadcast(&illv4->ill_cv); 6542 if (illv6 != NULL) 6543 cv_broadcast(&illv6->ill_cv); 6544 RELEASE_ILL_LOCKS(illv4, illv6); 6545 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6546 } 6547 rw_exit(&ipst->ips_ill_g_lock); 6548 6549 /* 6550 * Now that all locks are dropped, exit the IPSQ we left. 6551 */ 6552 if (leftipsq != NULL) 6553 ipsq_exit(leftipsq); 6554 6555 return (mp); 6556 } 6557 6558 /* 6559 * Return completion status of previously initiated DLPI operations on 6560 * ills in the purview of an ipsq. 6561 */ 6562 static boolean_t 6563 ipsq_dlpi_done(ipsq_t *ipsq) 6564 { 6565 ipsq_t *ipsq_start; 6566 phyint_t *phyi; 6567 ill_t *ill; 6568 6569 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6570 ipsq_start = ipsq; 6571 6572 do { 6573 /* 6574 * The only current users of this function are ipsq_try_enter 6575 * and ipsq_enter which have made sure that ipsq_writer is 6576 * NULL before we reach here. ill_dlpi_pending is modified 6577 * only by an ipsq writer 6578 */ 6579 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6580 phyi = ipsq->ipsq_phyint; 6581 /* 6582 * phyi could be NULL if a phyint that is part of an 6583 * IPMP group is being unplumbed. A more detailed 6584 * comment is in ipmp_grp_update_kstats() 6585 */ 6586 if (phyi != NULL) { 6587 ill = phyi->phyint_illv4; 6588 if (ill != NULL && 6589 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6590 ill->ill_arl_dlpi_pending)) 6591 return (B_FALSE); 6592 6593 ill = phyi->phyint_illv6; 6594 if (ill != NULL && 6595 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6596 return (B_FALSE); 6597 } 6598 6599 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6600 6601 return (B_TRUE); 6602 } 6603 6604 /* 6605 * Enter the ipsq corresponding to ill, by waiting synchronously till 6606 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6607 * will have to drain completely before ipsq_enter returns success. 6608 * ipx_current_ipif will be set if some exclusive op is in progress, 6609 * and the ipsq_exit logic will start the next enqueued op after 6610 * completion of the current op. If 'force' is used, we don't wait 6611 * for the enqueued ops. This is needed when a conn_close wants to 6612 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6613 * of an ill can also use this option. But we dont' use it currently. 6614 */ 6615 #define ENTER_SQ_WAIT_TICKS 100 6616 boolean_t 6617 ipsq_enter(ill_t *ill, boolean_t force, int type) 6618 { 6619 ipsq_t *ipsq; 6620 ipxop_t *ipx; 6621 boolean_t waited_enough = B_FALSE; 6622 ip_stack_t *ipst = ill->ill_ipst; 6623 6624 /* 6625 * Note that the relationship between ill and ipsq is fixed as long as 6626 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6627 * relationship between the IPSQ and xop cannot change. However, 6628 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6629 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6630 * waking up all ills in the xop when it becomes available. 6631 */ 6632 for (;;) { 6633 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6634 mutex_enter(&ill->ill_lock); 6635 if (ill->ill_state_flags & ILL_CONDEMNED) { 6636 mutex_exit(&ill->ill_lock); 6637 rw_exit(&ipst->ips_ill_g_lock); 6638 return (B_FALSE); 6639 } 6640 6641 ipsq = ill->ill_phyint->phyint_ipsq; 6642 mutex_enter(&ipsq->ipsq_lock); 6643 ipx = ipsq->ipsq_xop; 6644 mutex_enter(&ipx->ipx_lock); 6645 6646 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6647 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6648 waited_enough)) 6649 break; 6650 6651 rw_exit(&ipst->ips_ill_g_lock); 6652 6653 if (!force || ipx->ipx_writer != NULL) { 6654 mutex_exit(&ipx->ipx_lock); 6655 mutex_exit(&ipsq->ipsq_lock); 6656 cv_wait(&ill->ill_cv, &ill->ill_lock); 6657 } else { 6658 mutex_exit(&ipx->ipx_lock); 6659 mutex_exit(&ipsq->ipsq_lock); 6660 (void) cv_reltimedwait(&ill->ill_cv, 6661 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6662 waited_enough = B_TRUE; 6663 } 6664 mutex_exit(&ill->ill_lock); 6665 } 6666 6667 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6668 ASSERT(ipx->ipx_reentry_cnt == 0); 6669 ipx->ipx_writer = curthread; 6670 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6671 ipx->ipx_reentry_cnt++; 6672 #ifdef DEBUG 6673 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6674 #endif 6675 mutex_exit(&ipx->ipx_lock); 6676 mutex_exit(&ipsq->ipsq_lock); 6677 mutex_exit(&ill->ill_lock); 6678 rw_exit(&ipst->ips_ill_g_lock); 6679 6680 return (B_TRUE); 6681 } 6682 6683 /* 6684 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6685 * across the call to the core interface ipsq_try_enter() and hence calls this 6686 * function directly. This is explained more fully in ipif_set_values(). 6687 * In order to support the above constraint, ipsq_try_enter is implemented as 6688 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6689 */ 6690 static ipsq_t * 6691 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6692 int type, boolean_t reentry_ok) 6693 { 6694 ipsq_t *ipsq; 6695 ipxop_t *ipx; 6696 ip_stack_t *ipst = ill->ill_ipst; 6697 6698 /* 6699 * lock ordering: 6700 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6701 * 6702 * ipx of an ipsq can't change when ipsq_lock is held. 6703 */ 6704 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6705 GRAB_CONN_LOCK(q); 6706 mutex_enter(&ill->ill_lock); 6707 ipsq = ill->ill_phyint->phyint_ipsq; 6708 mutex_enter(&ipsq->ipsq_lock); 6709 ipx = ipsq->ipsq_xop; 6710 mutex_enter(&ipx->ipx_lock); 6711 6712 /* 6713 * 1. Enter the ipsq if we are already writer and reentry is ok. 6714 * (Note: If the caller does not specify reentry_ok then neither 6715 * 'func' nor any of its callees must ever attempt to enter the ipsq 6716 * again. Otherwise it can lead to an infinite loop 6717 * 2. Enter the ipsq if there is no current writer and this attempted 6718 * entry is part of the current operation 6719 * 3. Enter the ipsq if there is no current writer and this is a new 6720 * operation and the operation queue is empty and there is no 6721 * operation currently in progress and if all previously initiated 6722 * DLPI operations have completed. 6723 */ 6724 if ((ipx->ipx_writer == curthread && reentry_ok) || 6725 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6726 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6727 ipsq_dlpi_done(ipsq))))) { 6728 /* Success. */ 6729 ipx->ipx_reentry_cnt++; 6730 ipx->ipx_writer = curthread; 6731 ipx->ipx_forced = B_FALSE; 6732 mutex_exit(&ipx->ipx_lock); 6733 mutex_exit(&ipsq->ipsq_lock); 6734 mutex_exit(&ill->ill_lock); 6735 RELEASE_CONN_LOCK(q); 6736 #ifdef DEBUG 6737 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6738 #endif 6739 return (ipsq); 6740 } 6741 6742 if (func != NULL) 6743 ipsq_enq(ipsq, q, mp, func, type, ill); 6744 6745 mutex_exit(&ipx->ipx_lock); 6746 mutex_exit(&ipsq->ipsq_lock); 6747 mutex_exit(&ill->ill_lock); 6748 RELEASE_CONN_LOCK(q); 6749 return (NULL); 6750 } 6751 6752 /* 6753 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6754 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6755 * There is one ipsq per phyint. The ipsq 6756 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6757 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6758 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6759 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6760 * up the interface) and are enqueued in ipx_mphead. 6761 * 6762 * If a thread does not want to reenter the ipsq when it is already writer, 6763 * it must make sure that the specified reentry point to be called later 6764 * when the ipsq is empty, nor any code path starting from the specified reentry 6765 * point must never ever try to enter the ipsq again. Otherwise it can lead 6766 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6767 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6768 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6769 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6770 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6771 * ioctl if the current ioctl has completed. If the current ioctl is still 6772 * in progress it simply returns. The current ioctl could be waiting for 6773 * a response from another module (the driver or could be waiting for 6774 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6775 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6776 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6777 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6778 * all associated DLPI operations have completed. 6779 */ 6780 6781 /* 6782 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6783 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6784 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6785 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6786 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6787 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6788 */ 6789 ipsq_t * 6790 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6791 ipsq_func_t func, int type, boolean_t reentry_ok) 6792 { 6793 ip_stack_t *ipst; 6794 ipsq_t *ipsq; 6795 6796 /* Only 1 of ipif or ill can be specified */ 6797 ASSERT((ipif != NULL) ^ (ill != NULL)); 6798 6799 if (ipif != NULL) 6800 ill = ipif->ipif_ill; 6801 ipst = ill->ill_ipst; 6802 6803 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6804 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6805 rw_exit(&ipst->ips_ill_g_lock); 6806 6807 return (ipsq); 6808 } 6809 6810 /* 6811 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6812 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6813 * cannot be entered, the mp is queued for completion. 6814 */ 6815 void 6816 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6817 boolean_t reentry_ok) 6818 { 6819 ipsq_t *ipsq; 6820 6821 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6822 6823 /* 6824 * Drop the caller's refhold on the ill. This is safe since we either 6825 * entered the IPSQ (and thus are exclusive), or failed to enter the 6826 * IPSQ, in which case we return without accessing ill anymore. This 6827 * is needed because func needs to see the correct refcount. 6828 * e.g. removeif can work only then. 6829 */ 6830 ill_refrele(ill); 6831 if (ipsq != NULL) { 6832 (*func)(ipsq, q, mp, NULL); 6833 ipsq_exit(ipsq); 6834 } 6835 } 6836 6837 /* 6838 * Exit the specified IPSQ. If this is the final exit on it then drain it 6839 * prior to exiting. Caller must be writer on the specified IPSQ. 6840 */ 6841 void 6842 ipsq_exit(ipsq_t *ipsq) 6843 { 6844 mblk_t *mp; 6845 ipsq_t *mp_ipsq; 6846 queue_t *q; 6847 phyint_t *phyi; 6848 ipsq_func_t func; 6849 6850 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6851 6852 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6853 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6854 ipsq->ipsq_xop->ipx_reentry_cnt--; 6855 return; 6856 } 6857 6858 for (;;) { 6859 phyi = ipsq->ipsq_phyint; 6860 mp = ipsq_dq(ipsq); 6861 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6862 6863 /* 6864 * If we've changed to a new IPSQ, and the phyint associated 6865 * with the old one has gone away, free the old IPSQ. Note 6866 * that this cannot happen while the IPSQ is in a group. 6867 */ 6868 if (mp_ipsq != ipsq && phyi == NULL) { 6869 ASSERT(ipsq->ipsq_next == ipsq); 6870 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6871 ipsq_delete(ipsq); 6872 } 6873 6874 if (mp == NULL) 6875 break; 6876 6877 q = mp->b_queue; 6878 func = (ipsq_func_t)mp->b_prev; 6879 ipsq = mp_ipsq; 6880 mp->b_next = mp->b_prev = NULL; 6881 mp->b_queue = NULL; 6882 6883 /* 6884 * If 'q' is an conn queue, it is valid, since we did a 6885 * a refhold on the conn at the start of the ioctl. 6886 * If 'q' is an ill queue, it is valid, since close of an 6887 * ill will clean up its IPSQ. 6888 */ 6889 (*func)(ipsq, q, mp, NULL); 6890 } 6891 } 6892 6893 /* 6894 * Used to start any igmp or mld timers that could not be started 6895 * while holding ill_mcast_lock. The timers can't be started while holding 6896 * the lock, since mld/igmp_start_timers may need to call untimeout() 6897 * which can't be done while holding the lock which the timeout handler 6898 * acquires. Otherwise 6899 * there could be a deadlock since the timeout handlers 6900 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6901 * ill_mcast_lock. 6902 */ 6903 void 6904 ill_mcast_timer_start(ip_stack_t *ipst) 6905 { 6906 int next; 6907 6908 mutex_enter(&ipst->ips_igmp_timer_lock); 6909 next = ipst->ips_igmp_deferred_next; 6910 ipst->ips_igmp_deferred_next = INFINITY; 6911 mutex_exit(&ipst->ips_igmp_timer_lock); 6912 6913 if (next != INFINITY) 6914 igmp_start_timers(next, ipst); 6915 6916 mutex_enter(&ipst->ips_mld_timer_lock); 6917 next = ipst->ips_mld_deferred_next; 6918 ipst->ips_mld_deferred_next = INFINITY; 6919 mutex_exit(&ipst->ips_mld_timer_lock); 6920 6921 if (next != INFINITY) 6922 mld_start_timers(next, ipst); 6923 } 6924 6925 /* 6926 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6927 * and `ioccmd'. 6928 */ 6929 void 6930 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6931 { 6932 ill_t *ill = ipif->ipif_ill; 6933 ipxop_t *ipx = ipsq->ipsq_xop; 6934 6935 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6936 ASSERT(ipx->ipx_current_ipif == NULL); 6937 ASSERT(ipx->ipx_current_ioctl == 0); 6938 6939 ipx->ipx_current_done = B_FALSE; 6940 ipx->ipx_current_ioctl = ioccmd; 6941 mutex_enter(&ipx->ipx_lock); 6942 ipx->ipx_current_ipif = ipif; 6943 mutex_exit(&ipx->ipx_lock); 6944 6945 /* 6946 * Set IPIF_CHANGING on one or more ipifs associated with the 6947 * current exclusive operation. IPIF_CHANGING prevents any new 6948 * references to the ipif (so that the references will eventually 6949 * drop to zero) and also prevents any "get" operations (e.g., 6950 * SIOCGLIFFLAGS) from being able to access the ipif until the 6951 * operation has completed and the ipif is again in a stable state. 6952 * 6953 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6954 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6955 * on the ill are marked with IPIF_CHANGING since it's unclear which 6956 * ipifs will be affected. 6957 * 6958 * Note that SIOCLIFREMOVEIF is a special case as it sets 6959 * IPIF_CONDEMNED internally after identifying the right ipif to 6960 * operate on. 6961 */ 6962 switch (ioccmd) { 6963 case SIOCLIFREMOVEIF: 6964 break; 6965 case 0: 6966 mutex_enter(&ill->ill_lock); 6967 ipif = ipif->ipif_ill->ill_ipif; 6968 for (; ipif != NULL; ipif = ipif->ipif_next) 6969 ipif->ipif_state_flags |= IPIF_CHANGING; 6970 mutex_exit(&ill->ill_lock); 6971 break; 6972 default: 6973 mutex_enter(&ill->ill_lock); 6974 ipif->ipif_state_flags |= IPIF_CHANGING; 6975 mutex_exit(&ill->ill_lock); 6976 } 6977 } 6978 6979 /* 6980 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6981 * the next exclusive operation to begin once we ipsq_exit(). However, if 6982 * pending DLPI operations remain, then we will wait for the queue to drain 6983 * before allowing the next exclusive operation to begin. This ensures that 6984 * DLPI operations from one exclusive operation are never improperly processed 6985 * as part of a subsequent exclusive operation. 6986 */ 6987 void 6988 ipsq_current_finish(ipsq_t *ipsq) 6989 { 6990 ipxop_t *ipx = ipsq->ipsq_xop; 6991 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6992 ipif_t *ipif = ipx->ipx_current_ipif; 6993 6994 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6995 6996 /* 6997 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6998 * (but in that case, IPIF_CHANGING will already be clear and no 6999 * pending DLPI messages can remain). 7000 */ 7001 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 7002 ill_t *ill = ipif->ipif_ill; 7003 7004 mutex_enter(&ill->ill_lock); 7005 dlpi_pending = ill->ill_dlpi_pending; 7006 if (ipx->ipx_current_ioctl == 0) { 7007 ipif = ill->ill_ipif; 7008 for (; ipif != NULL; ipif = ipif->ipif_next) 7009 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7010 } else { 7011 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7012 } 7013 mutex_exit(&ill->ill_lock); 7014 } 7015 7016 ASSERT(!ipx->ipx_current_done); 7017 ipx->ipx_current_done = B_TRUE; 7018 ipx->ipx_current_ioctl = 0; 7019 if (dlpi_pending == DL_PRIM_INVAL) { 7020 mutex_enter(&ipx->ipx_lock); 7021 ipx->ipx_current_ipif = NULL; 7022 mutex_exit(&ipx->ipx_lock); 7023 } 7024 } 7025 7026 /* 7027 * The ill is closing. Flush all messages on the ipsq that originated 7028 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7029 * for this ill since ipsq_enter could not have entered until then. 7030 * New messages can't be queued since the CONDEMNED flag is set. 7031 */ 7032 static void 7033 ipsq_flush(ill_t *ill) 7034 { 7035 queue_t *q; 7036 mblk_t *prev; 7037 mblk_t *mp; 7038 mblk_t *mp_next; 7039 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7040 7041 ASSERT(IAM_WRITER_ILL(ill)); 7042 7043 /* 7044 * Flush any messages sent up by the driver. 7045 */ 7046 mutex_enter(&ipx->ipx_lock); 7047 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7048 mp_next = mp->b_next; 7049 q = mp->b_queue; 7050 if (q == ill->ill_rq || q == ill->ill_wq) { 7051 /* dequeue mp */ 7052 if (prev == NULL) 7053 ipx->ipx_mphead = mp->b_next; 7054 else 7055 prev->b_next = mp->b_next; 7056 if (ipx->ipx_mptail == mp) { 7057 ASSERT(mp_next == NULL); 7058 ipx->ipx_mptail = prev; 7059 } 7060 inet_freemsg(mp); 7061 } else { 7062 prev = mp; 7063 } 7064 } 7065 mutex_exit(&ipx->ipx_lock); 7066 (void) ipsq_pending_mp_cleanup(ill, NULL); 7067 ipsq_xopq_mp_cleanup(ill, NULL); 7068 } 7069 7070 /* 7071 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7072 * and return the associated ipif. 7073 * Return value: 7074 * Non zero: An error has occurred. ci may not be filled out. 7075 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7076 * a held ipif in ci.ci_ipif. 7077 */ 7078 int 7079 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7080 cmd_info_t *ci) 7081 { 7082 char *name; 7083 struct ifreq *ifr; 7084 struct lifreq *lifr; 7085 ipif_t *ipif = NULL; 7086 ill_t *ill; 7087 conn_t *connp; 7088 boolean_t isv6; 7089 boolean_t exists; 7090 mblk_t *mp1; 7091 zoneid_t zoneid; 7092 ip_stack_t *ipst; 7093 7094 if (q->q_next != NULL) { 7095 ill = (ill_t *)q->q_ptr; 7096 isv6 = ill->ill_isv6; 7097 connp = NULL; 7098 zoneid = ALL_ZONES; 7099 ipst = ill->ill_ipst; 7100 } else { 7101 ill = NULL; 7102 connp = Q_TO_CONN(q); 7103 isv6 = (connp->conn_family == AF_INET6); 7104 zoneid = connp->conn_zoneid; 7105 if (zoneid == GLOBAL_ZONEID) { 7106 /* global zone can access ipifs in all zones */ 7107 zoneid = ALL_ZONES; 7108 } 7109 ipst = connp->conn_netstack->netstack_ip; 7110 } 7111 7112 /* Has been checked in ip_wput_nondata */ 7113 mp1 = mp->b_cont->b_cont; 7114 7115 if (ipip->ipi_cmd_type == IF_CMD) { 7116 /* This a old style SIOC[GS]IF* command */ 7117 ifr = (struct ifreq *)mp1->b_rptr; 7118 /* 7119 * Null terminate the string to protect against buffer 7120 * overrun. String was generated by user code and may not 7121 * be trusted. 7122 */ 7123 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7124 name = ifr->ifr_name; 7125 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7126 ci->ci_sin6 = NULL; 7127 ci->ci_lifr = (struct lifreq *)ifr; 7128 } else { 7129 /* This a new style SIOC[GS]LIF* command */ 7130 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7131 lifr = (struct lifreq *)mp1->b_rptr; 7132 /* 7133 * Null terminate the string to protect against buffer 7134 * overrun. String was generated by user code and may not 7135 * be trusted. 7136 */ 7137 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7138 name = lifr->lifr_name; 7139 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7140 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7141 ci->ci_lifr = lifr; 7142 } 7143 7144 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7145 /* 7146 * The ioctl will be failed if the ioctl comes down 7147 * an conn stream 7148 */ 7149 if (ill == NULL) { 7150 /* 7151 * Not an ill queue, return EINVAL same as the 7152 * old error code. 7153 */ 7154 return (ENXIO); 7155 } 7156 ipif = ill->ill_ipif; 7157 ipif_refhold(ipif); 7158 } else { 7159 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7160 &exists, isv6, zoneid, ipst); 7161 7162 /* 7163 * Ensure that get ioctls don't see any internal state changes 7164 * caused by set ioctls by deferring them if IPIF_CHANGING is 7165 * set. 7166 */ 7167 if (ipif != NULL && !(ipip->ipi_flags & IPI_WR) && 7168 !IAM_WRITER_IPIF(ipif)) { 7169 ipsq_t *ipsq; 7170 7171 if (connp != NULL) 7172 mutex_enter(&connp->conn_lock); 7173 mutex_enter(&ipif->ipif_ill->ill_lock); 7174 if (IPIF_IS_CHANGING(ipif) && 7175 !IPIF_IS_CONDEMNED(ipif)) { 7176 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 7177 mutex_enter(&ipsq->ipsq_lock); 7178 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 7179 mutex_exit(&ipif->ipif_ill->ill_lock); 7180 ipsq_enq(ipsq, q, mp, ip_process_ioctl, 7181 NEW_OP, ipif->ipif_ill); 7182 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 7183 mutex_exit(&ipsq->ipsq_lock); 7184 if (connp != NULL) 7185 mutex_exit(&connp->conn_lock); 7186 ipif_refrele(ipif); 7187 return (EINPROGRESS); 7188 } 7189 mutex_exit(&ipif->ipif_ill->ill_lock); 7190 if (connp != NULL) 7191 mutex_exit(&connp->conn_lock); 7192 } 7193 } 7194 7195 /* 7196 * Old style [GS]IFCMD does not admit IPv6 ipif 7197 */ 7198 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7199 ipif_refrele(ipif); 7200 return (ENXIO); 7201 } 7202 7203 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7204 name[0] == '\0') { 7205 /* 7206 * Handle a or a SIOC?IF* with a null name 7207 * during plumb (on the ill queue before the I_PLINK). 7208 */ 7209 ipif = ill->ill_ipif; 7210 ipif_refhold(ipif); 7211 } 7212 7213 if (ipif == NULL) 7214 return (ENXIO); 7215 7216 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7217 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7218 7219 ci->ci_ipif = ipif; 7220 return (0); 7221 } 7222 7223 /* 7224 * Return the total number of ipifs. 7225 */ 7226 static uint_t 7227 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7228 { 7229 uint_t numifs = 0; 7230 ill_t *ill; 7231 ill_walk_context_t ctx; 7232 ipif_t *ipif; 7233 7234 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7235 ill = ILL_START_WALK_V4(&ctx, ipst); 7236 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7237 if (IS_UNDER_IPMP(ill)) 7238 continue; 7239 for (ipif = ill->ill_ipif; ipif != NULL; 7240 ipif = ipif->ipif_next) { 7241 if (ipif->ipif_zoneid == zoneid || 7242 ipif->ipif_zoneid == ALL_ZONES) 7243 numifs++; 7244 } 7245 } 7246 rw_exit(&ipst->ips_ill_g_lock); 7247 return (numifs); 7248 } 7249 7250 /* 7251 * Return the total number of ipifs. 7252 */ 7253 static uint_t 7254 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7255 { 7256 uint_t numifs = 0; 7257 ill_t *ill; 7258 ipif_t *ipif; 7259 ill_walk_context_t ctx; 7260 7261 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7262 7263 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7264 if (family == AF_INET) 7265 ill = ILL_START_WALK_V4(&ctx, ipst); 7266 else if (family == AF_INET6) 7267 ill = ILL_START_WALK_V6(&ctx, ipst); 7268 else 7269 ill = ILL_START_WALK_ALL(&ctx, ipst); 7270 7271 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7272 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7273 continue; 7274 7275 for (ipif = ill->ill_ipif; ipif != NULL; 7276 ipif = ipif->ipif_next) { 7277 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7278 !(lifn_flags & LIFC_NOXMIT)) 7279 continue; 7280 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7281 !(lifn_flags & LIFC_TEMPORARY)) 7282 continue; 7283 if (((ipif->ipif_flags & 7284 (IPIF_NOXMIT|IPIF_NOLOCAL| 7285 IPIF_DEPRECATED)) || 7286 IS_LOOPBACK(ill) || 7287 !(ipif->ipif_flags & IPIF_UP)) && 7288 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7289 continue; 7290 7291 if (zoneid != ipif->ipif_zoneid && 7292 ipif->ipif_zoneid != ALL_ZONES && 7293 (zoneid != GLOBAL_ZONEID || 7294 !(lifn_flags & LIFC_ALLZONES))) 7295 continue; 7296 7297 numifs++; 7298 } 7299 } 7300 rw_exit(&ipst->ips_ill_g_lock); 7301 return (numifs); 7302 } 7303 7304 uint_t 7305 ip_get_lifsrcofnum(ill_t *ill) 7306 { 7307 uint_t numifs = 0; 7308 ill_t *ill_head = ill; 7309 ip_stack_t *ipst = ill->ill_ipst; 7310 7311 /* 7312 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7313 * other thread may be trying to relink the ILLs in this usesrc group 7314 * and adjusting the ill_usesrc_grp_next pointers 7315 */ 7316 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7317 if ((ill->ill_usesrc_ifindex == 0) && 7318 (ill->ill_usesrc_grp_next != NULL)) { 7319 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7320 ill = ill->ill_usesrc_grp_next) 7321 numifs++; 7322 } 7323 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7324 7325 return (numifs); 7326 } 7327 7328 /* Null values are passed in for ipif, sin, and ifreq */ 7329 /* ARGSUSED */ 7330 int 7331 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7332 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7333 { 7334 int *nump; 7335 conn_t *connp = Q_TO_CONN(q); 7336 7337 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7338 7339 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7340 nump = (int *)mp->b_cont->b_cont->b_rptr; 7341 7342 *nump = ip_get_numifs(connp->conn_zoneid, 7343 connp->conn_netstack->netstack_ip); 7344 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7345 return (0); 7346 } 7347 7348 /* Null values are passed in for ipif, sin, and ifreq */ 7349 /* ARGSUSED */ 7350 int 7351 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7352 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7353 { 7354 struct lifnum *lifn; 7355 mblk_t *mp1; 7356 conn_t *connp = Q_TO_CONN(q); 7357 7358 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7359 7360 /* Existence checked in ip_wput_nondata */ 7361 mp1 = mp->b_cont->b_cont; 7362 7363 lifn = (struct lifnum *)mp1->b_rptr; 7364 switch (lifn->lifn_family) { 7365 case AF_UNSPEC: 7366 case AF_INET: 7367 case AF_INET6: 7368 break; 7369 default: 7370 return (EAFNOSUPPORT); 7371 } 7372 7373 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7374 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7375 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7376 return (0); 7377 } 7378 7379 /* ARGSUSED */ 7380 int 7381 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7382 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7383 { 7384 STRUCT_HANDLE(ifconf, ifc); 7385 mblk_t *mp1; 7386 struct iocblk *iocp; 7387 struct ifreq *ifr; 7388 ill_walk_context_t ctx; 7389 ill_t *ill; 7390 ipif_t *ipif; 7391 struct sockaddr_in *sin; 7392 int32_t ifclen; 7393 zoneid_t zoneid; 7394 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7395 7396 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7397 7398 ip1dbg(("ip_sioctl_get_ifconf")); 7399 /* Existence verified in ip_wput_nondata */ 7400 mp1 = mp->b_cont->b_cont; 7401 iocp = (struct iocblk *)mp->b_rptr; 7402 zoneid = Q_TO_CONN(q)->conn_zoneid; 7403 7404 /* 7405 * The original SIOCGIFCONF passed in a struct ifconf which specified 7406 * the user buffer address and length into which the list of struct 7407 * ifreqs was to be copied. Since AT&T Streams does not seem to 7408 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7409 * the SIOCGIFCONF operation was redefined to simply provide 7410 * a large output buffer into which we are supposed to jam the ifreq 7411 * array. The same ioctl command code was used, despite the fact that 7412 * both the applications and the kernel code had to change, thus making 7413 * it impossible to support both interfaces. 7414 * 7415 * For reasons not good enough to try to explain, the following 7416 * algorithm is used for deciding what to do with one of these: 7417 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7418 * form with the output buffer coming down as the continuation message. 7419 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7420 * and we have to copy in the ifconf structure to find out how big the 7421 * output buffer is and where to copy out to. Sure no problem... 7422 * 7423 */ 7424 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7425 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7426 int numifs = 0; 7427 size_t ifc_bufsize; 7428 7429 /* 7430 * Must be (better be!) continuation of a TRANSPARENT 7431 * IOCTL. We just copied in the ifconf structure. 7432 */ 7433 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7434 (struct ifconf *)mp1->b_rptr); 7435 7436 /* 7437 * Allocate a buffer to hold requested information. 7438 * 7439 * If ifc_len is larger than what is needed, we only 7440 * allocate what we will use. 7441 * 7442 * If ifc_len is smaller than what is needed, return 7443 * EINVAL. 7444 * 7445 * XXX: the ill_t structure can hava 2 counters, for 7446 * v4 and v6 (not just ill_ipif_up_count) to store the 7447 * number of interfaces for a device, so we don't need 7448 * to count them here... 7449 */ 7450 numifs = ip_get_numifs(zoneid, ipst); 7451 7452 ifclen = STRUCT_FGET(ifc, ifc_len); 7453 ifc_bufsize = numifs * sizeof (struct ifreq); 7454 if (ifc_bufsize > ifclen) { 7455 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7456 /* old behaviour */ 7457 return (EINVAL); 7458 } else { 7459 ifc_bufsize = ifclen; 7460 } 7461 } 7462 7463 mp1 = mi_copyout_alloc(q, mp, 7464 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7465 if (mp1 == NULL) 7466 return (ENOMEM); 7467 7468 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7469 } 7470 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7471 /* 7472 * the SIOCGIFCONF ioctl only knows about 7473 * IPv4 addresses, so don't try to tell 7474 * it about interfaces with IPv6-only 7475 * addresses. (Last parm 'isv6' is B_FALSE) 7476 */ 7477 7478 ifr = (struct ifreq *)mp1->b_rptr; 7479 7480 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7481 ill = ILL_START_WALK_V4(&ctx, ipst); 7482 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7483 if (IS_UNDER_IPMP(ill)) 7484 continue; 7485 for (ipif = ill->ill_ipif; ipif != NULL; 7486 ipif = ipif->ipif_next) { 7487 if (zoneid != ipif->ipif_zoneid && 7488 ipif->ipif_zoneid != ALL_ZONES) 7489 continue; 7490 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7491 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7492 /* old behaviour */ 7493 rw_exit(&ipst->ips_ill_g_lock); 7494 return (EINVAL); 7495 } else { 7496 goto if_copydone; 7497 } 7498 } 7499 ipif_get_name(ipif, ifr->ifr_name, 7500 sizeof (ifr->ifr_name)); 7501 sin = (sin_t *)&ifr->ifr_addr; 7502 *sin = sin_null; 7503 sin->sin_family = AF_INET; 7504 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7505 ifr++; 7506 } 7507 } 7508 if_copydone: 7509 rw_exit(&ipst->ips_ill_g_lock); 7510 mp1->b_wptr = (uchar_t *)ifr; 7511 7512 if (STRUCT_BUF(ifc) != NULL) { 7513 STRUCT_FSET(ifc, ifc_len, 7514 (int)((uchar_t *)ifr - mp1->b_rptr)); 7515 } 7516 return (0); 7517 } 7518 7519 /* 7520 * Get the interfaces using the address hosted on the interface passed in, 7521 * as a source adddress 7522 */ 7523 /* ARGSUSED */ 7524 int 7525 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7526 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7527 { 7528 mblk_t *mp1; 7529 ill_t *ill, *ill_head; 7530 ipif_t *ipif, *orig_ipif; 7531 int numlifs = 0; 7532 size_t lifs_bufsize, lifsmaxlen; 7533 struct lifreq *lifr; 7534 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7535 uint_t ifindex; 7536 zoneid_t zoneid; 7537 boolean_t isv6 = B_FALSE; 7538 struct sockaddr_in *sin; 7539 struct sockaddr_in6 *sin6; 7540 STRUCT_HANDLE(lifsrcof, lifs); 7541 ip_stack_t *ipst; 7542 7543 ipst = CONNQ_TO_IPST(q); 7544 7545 ASSERT(q->q_next == NULL); 7546 7547 zoneid = Q_TO_CONN(q)->conn_zoneid; 7548 7549 /* Existence verified in ip_wput_nondata */ 7550 mp1 = mp->b_cont->b_cont; 7551 7552 /* 7553 * Must be (better be!) continuation of a TRANSPARENT 7554 * IOCTL. We just copied in the lifsrcof structure. 7555 */ 7556 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7557 (struct lifsrcof *)mp1->b_rptr); 7558 7559 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7560 return (EINVAL); 7561 7562 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7563 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7564 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7565 if (ipif == NULL) { 7566 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7567 ifindex)); 7568 return (ENXIO); 7569 } 7570 7571 /* Allocate a buffer to hold requested information */ 7572 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7573 lifs_bufsize = numlifs * sizeof (struct lifreq); 7574 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7575 /* The actual size needed is always returned in lifs_len */ 7576 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7577 7578 /* If the amount we need is more than what is passed in, abort */ 7579 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7580 ipif_refrele(ipif); 7581 return (0); 7582 } 7583 7584 mp1 = mi_copyout_alloc(q, mp, 7585 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7586 if (mp1 == NULL) { 7587 ipif_refrele(ipif); 7588 return (ENOMEM); 7589 } 7590 7591 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7592 bzero(mp1->b_rptr, lifs_bufsize); 7593 7594 lifr = (struct lifreq *)mp1->b_rptr; 7595 7596 ill = ill_head = ipif->ipif_ill; 7597 orig_ipif = ipif; 7598 7599 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7600 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7601 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7602 7603 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7604 for (; (ill != NULL) && (ill != ill_head); 7605 ill = ill->ill_usesrc_grp_next) { 7606 7607 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7608 break; 7609 7610 ipif = ill->ill_ipif; 7611 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7612 if (ipif->ipif_isv6) { 7613 sin6 = (sin6_t *)&lifr->lifr_addr; 7614 *sin6 = sin6_null; 7615 sin6->sin6_family = AF_INET6; 7616 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7617 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7618 &ipif->ipif_v6net_mask); 7619 } else { 7620 sin = (sin_t *)&lifr->lifr_addr; 7621 *sin = sin_null; 7622 sin->sin_family = AF_INET; 7623 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7624 lifr->lifr_addrlen = ip_mask_to_plen( 7625 ipif->ipif_net_mask); 7626 } 7627 lifr++; 7628 } 7629 rw_exit(&ipst->ips_ill_g_lock); 7630 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7631 ipif_refrele(orig_ipif); 7632 mp1->b_wptr = (uchar_t *)lifr; 7633 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7634 7635 return (0); 7636 } 7637 7638 /* ARGSUSED */ 7639 int 7640 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7641 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7642 { 7643 mblk_t *mp1; 7644 int list; 7645 ill_t *ill; 7646 ipif_t *ipif; 7647 int flags; 7648 int numlifs = 0; 7649 size_t lifc_bufsize; 7650 struct lifreq *lifr; 7651 sa_family_t family; 7652 struct sockaddr_in *sin; 7653 struct sockaddr_in6 *sin6; 7654 ill_walk_context_t ctx; 7655 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7656 int32_t lifclen; 7657 zoneid_t zoneid; 7658 STRUCT_HANDLE(lifconf, lifc); 7659 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7660 7661 ip1dbg(("ip_sioctl_get_lifconf")); 7662 7663 ASSERT(q->q_next == NULL); 7664 7665 zoneid = Q_TO_CONN(q)->conn_zoneid; 7666 7667 /* Existence verified in ip_wput_nondata */ 7668 mp1 = mp->b_cont->b_cont; 7669 7670 /* 7671 * An extended version of SIOCGIFCONF that takes an 7672 * additional address family and flags field. 7673 * AF_UNSPEC retrieve both IPv4 and IPv6. 7674 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7675 * interfaces are omitted. 7676 * Similarly, IPIF_TEMPORARY interfaces are omitted 7677 * unless LIFC_TEMPORARY is specified. 7678 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7679 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7680 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7681 * has priority over LIFC_NOXMIT. 7682 */ 7683 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7684 7685 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7686 return (EINVAL); 7687 7688 /* 7689 * Must be (better be!) continuation of a TRANSPARENT 7690 * IOCTL. We just copied in the lifconf structure. 7691 */ 7692 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7693 7694 family = STRUCT_FGET(lifc, lifc_family); 7695 flags = STRUCT_FGET(lifc, lifc_flags); 7696 7697 switch (family) { 7698 case AF_UNSPEC: 7699 /* 7700 * walk all ILL's. 7701 */ 7702 list = MAX_G_HEADS; 7703 break; 7704 case AF_INET: 7705 /* 7706 * walk only IPV4 ILL's. 7707 */ 7708 list = IP_V4_G_HEAD; 7709 break; 7710 case AF_INET6: 7711 /* 7712 * walk only IPV6 ILL's. 7713 */ 7714 list = IP_V6_G_HEAD; 7715 break; 7716 default: 7717 return (EAFNOSUPPORT); 7718 } 7719 7720 /* 7721 * Allocate a buffer to hold requested information. 7722 * 7723 * If lifc_len is larger than what is needed, we only 7724 * allocate what we will use. 7725 * 7726 * If lifc_len is smaller than what is needed, return 7727 * EINVAL. 7728 */ 7729 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7730 lifc_bufsize = numlifs * sizeof (struct lifreq); 7731 lifclen = STRUCT_FGET(lifc, lifc_len); 7732 if (lifc_bufsize > lifclen) { 7733 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7734 return (EINVAL); 7735 else 7736 lifc_bufsize = lifclen; 7737 } 7738 7739 mp1 = mi_copyout_alloc(q, mp, 7740 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7741 if (mp1 == NULL) 7742 return (ENOMEM); 7743 7744 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7745 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7746 7747 lifr = (struct lifreq *)mp1->b_rptr; 7748 7749 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7750 ill = ill_first(list, list, &ctx, ipst); 7751 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7752 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7753 continue; 7754 7755 for (ipif = ill->ill_ipif; ipif != NULL; 7756 ipif = ipif->ipif_next) { 7757 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7758 !(flags & LIFC_NOXMIT)) 7759 continue; 7760 7761 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7762 !(flags & LIFC_TEMPORARY)) 7763 continue; 7764 7765 if (((ipif->ipif_flags & 7766 (IPIF_NOXMIT|IPIF_NOLOCAL| 7767 IPIF_DEPRECATED)) || 7768 IS_LOOPBACK(ill) || 7769 !(ipif->ipif_flags & IPIF_UP)) && 7770 (flags & LIFC_EXTERNAL_SOURCE)) 7771 continue; 7772 7773 if (zoneid != ipif->ipif_zoneid && 7774 ipif->ipif_zoneid != ALL_ZONES && 7775 (zoneid != GLOBAL_ZONEID || 7776 !(flags & LIFC_ALLZONES))) 7777 continue; 7778 7779 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7780 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7781 rw_exit(&ipst->ips_ill_g_lock); 7782 return (EINVAL); 7783 } else { 7784 goto lif_copydone; 7785 } 7786 } 7787 7788 ipif_get_name(ipif, lifr->lifr_name, 7789 sizeof (lifr->lifr_name)); 7790 lifr->lifr_type = ill->ill_type; 7791 if (ipif->ipif_isv6) { 7792 sin6 = (sin6_t *)&lifr->lifr_addr; 7793 *sin6 = sin6_null; 7794 sin6->sin6_family = AF_INET6; 7795 sin6->sin6_addr = 7796 ipif->ipif_v6lcl_addr; 7797 lifr->lifr_addrlen = 7798 ip_mask_to_plen_v6( 7799 &ipif->ipif_v6net_mask); 7800 } else { 7801 sin = (sin_t *)&lifr->lifr_addr; 7802 *sin = sin_null; 7803 sin->sin_family = AF_INET; 7804 sin->sin_addr.s_addr = 7805 ipif->ipif_lcl_addr; 7806 lifr->lifr_addrlen = 7807 ip_mask_to_plen( 7808 ipif->ipif_net_mask); 7809 } 7810 lifr++; 7811 } 7812 } 7813 lif_copydone: 7814 rw_exit(&ipst->ips_ill_g_lock); 7815 7816 mp1->b_wptr = (uchar_t *)lifr; 7817 if (STRUCT_BUF(lifc) != NULL) { 7818 STRUCT_FSET(lifc, lifc_len, 7819 (int)((uchar_t *)lifr - mp1->b_rptr)); 7820 } 7821 return (0); 7822 } 7823 7824 static void 7825 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7826 { 7827 ip6_asp_t *table; 7828 size_t table_size; 7829 mblk_t *data_mp; 7830 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7831 ip_stack_t *ipst; 7832 7833 if (q->q_next == NULL) 7834 ipst = CONNQ_TO_IPST(q); 7835 else 7836 ipst = ILLQ_TO_IPST(q); 7837 7838 /* These two ioctls are I_STR only */ 7839 if (iocp->ioc_count == TRANSPARENT) { 7840 miocnak(q, mp, 0, EINVAL); 7841 return; 7842 } 7843 7844 data_mp = mp->b_cont; 7845 if (data_mp == NULL) { 7846 /* The user passed us a NULL argument */ 7847 table = NULL; 7848 table_size = iocp->ioc_count; 7849 } else { 7850 /* 7851 * The user provided a table. The stream head 7852 * may have copied in the user data in chunks, 7853 * so make sure everything is pulled up 7854 * properly. 7855 */ 7856 if (MBLKL(data_mp) < iocp->ioc_count) { 7857 mblk_t *new_data_mp; 7858 if ((new_data_mp = msgpullup(data_mp, -1)) == 7859 NULL) { 7860 miocnak(q, mp, 0, ENOMEM); 7861 return; 7862 } 7863 freemsg(data_mp); 7864 data_mp = new_data_mp; 7865 mp->b_cont = data_mp; 7866 } 7867 table = (ip6_asp_t *)data_mp->b_rptr; 7868 table_size = iocp->ioc_count; 7869 } 7870 7871 switch (iocp->ioc_cmd) { 7872 case SIOCGIP6ADDRPOLICY: 7873 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7874 if (iocp->ioc_rval == -1) 7875 iocp->ioc_error = EINVAL; 7876 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7877 else if (table != NULL && 7878 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7879 ip6_asp_t *src = table; 7880 ip6_asp32_t *dst = (void *)table; 7881 int count = table_size / sizeof (ip6_asp_t); 7882 int i; 7883 7884 /* 7885 * We need to do an in-place shrink of the array 7886 * to match the alignment attributes of the 7887 * 32-bit ABI looking at it. 7888 */ 7889 /* LINTED: logical expression always true: op "||" */ 7890 ASSERT(sizeof (*src) > sizeof (*dst)); 7891 for (i = 1; i < count; i++) 7892 bcopy(src + i, dst + i, sizeof (*dst)); 7893 } 7894 #endif 7895 break; 7896 7897 case SIOCSIP6ADDRPOLICY: 7898 ASSERT(mp->b_prev == NULL); 7899 mp->b_prev = (void *)q; 7900 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7901 /* 7902 * We pass in the datamodel here so that the ip6_asp_replace() 7903 * routine can handle converting from 32-bit to native formats 7904 * where necessary. 7905 * 7906 * A better way to handle this might be to convert the inbound 7907 * data structure here, and hang it off a new 'mp'; thus the 7908 * ip6_asp_replace() logic would always be dealing with native 7909 * format data structures.. 7910 * 7911 * (An even simpler way to handle these ioctls is to just 7912 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7913 * and just recompile everything that depends on it.) 7914 */ 7915 #endif 7916 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7917 iocp->ioc_flag & IOC_MODELS); 7918 return; 7919 } 7920 7921 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7922 qreply(q, mp); 7923 } 7924 7925 static void 7926 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7927 { 7928 mblk_t *data_mp; 7929 struct dstinforeq *dir; 7930 uint8_t *end, *cur; 7931 in6_addr_t *daddr, *saddr; 7932 ipaddr_t v4daddr; 7933 ire_t *ire; 7934 ipaddr_t v4setsrc; 7935 in6_addr_t v6setsrc; 7936 char *slabel, *dlabel; 7937 boolean_t isipv4; 7938 int match_ire; 7939 ill_t *dst_ill; 7940 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7941 conn_t *connp = Q_TO_CONN(q); 7942 zoneid_t zoneid = IPCL_ZONEID(connp); 7943 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7944 uint64_t ipif_flags; 7945 7946 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7947 7948 /* 7949 * This ioctl is I_STR only, and must have a 7950 * data mblk following the M_IOCTL mblk. 7951 */ 7952 data_mp = mp->b_cont; 7953 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7954 miocnak(q, mp, 0, EINVAL); 7955 return; 7956 } 7957 7958 if (MBLKL(data_mp) < iocp->ioc_count) { 7959 mblk_t *new_data_mp; 7960 7961 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7962 miocnak(q, mp, 0, ENOMEM); 7963 return; 7964 } 7965 freemsg(data_mp); 7966 data_mp = new_data_mp; 7967 mp->b_cont = data_mp; 7968 } 7969 match_ire = MATCH_IRE_DSTONLY; 7970 7971 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7972 end - cur >= sizeof (struct dstinforeq); 7973 cur += sizeof (struct dstinforeq)) { 7974 dir = (struct dstinforeq *)cur; 7975 daddr = &dir->dir_daddr; 7976 saddr = &dir->dir_saddr; 7977 7978 /* 7979 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7980 * v4 mapped addresses; ire_ftable_lookup_v6() 7981 * and ip_select_source_v6() do not. 7982 */ 7983 dir->dir_dscope = ip_addr_scope_v6(daddr); 7984 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7985 7986 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7987 if (isipv4) { 7988 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7989 v4setsrc = INADDR_ANY; 7990 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7991 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7992 NULL, NULL); 7993 } else { 7994 v6setsrc = ipv6_all_zeros; 7995 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7996 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7997 NULL, NULL); 7998 } 7999 ASSERT(ire != NULL); 8000 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 8001 ire_refrele(ire); 8002 dir->dir_dreachable = 0; 8003 8004 /* move on to next dst addr */ 8005 continue; 8006 } 8007 dir->dir_dreachable = 1; 8008 8009 dst_ill = ire_nexthop_ill(ire); 8010 if (dst_ill == NULL) { 8011 ire_refrele(ire); 8012 continue; 8013 } 8014 8015 /* With ipmp we most likely look at the ipmp ill here */ 8016 dir->dir_dmactype = dst_ill->ill_mactype; 8017 8018 if (isipv4) { 8019 ipaddr_t v4saddr; 8020 8021 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 8022 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 8023 &v4saddr, NULL, &ipif_flags) != 0) { 8024 v4saddr = INADDR_ANY; 8025 ipif_flags = 0; 8026 } 8027 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 8028 } else { 8029 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 8030 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 8031 saddr, NULL, &ipif_flags) != 0) { 8032 *saddr = ipv6_all_zeros; 8033 ipif_flags = 0; 8034 } 8035 } 8036 8037 dir->dir_sscope = ip_addr_scope_v6(saddr); 8038 slabel = ip6_asp_lookup(saddr, NULL, ipst); 8039 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8040 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8041 ire_refrele(ire); 8042 ill_refrele(dst_ill); 8043 } 8044 miocack(q, mp, iocp->ioc_count, 0); 8045 } 8046 8047 /* 8048 * Check if this is an address assigned to this machine. 8049 * Skips interfaces that are down by using ire checks. 8050 * Translates mapped addresses to v4 addresses and then 8051 * treats them as such, returning true if the v4 address 8052 * associated with this mapped address is configured. 8053 * Note: Applications will have to be careful what they do 8054 * with the response; use of mapped addresses limits 8055 * what can be done with the socket, especially with 8056 * respect to socket options and ioctls - neither IPv4 8057 * options nor IPv6 sticky options/ancillary data options 8058 * may be used. 8059 */ 8060 /* ARGSUSED */ 8061 int 8062 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8063 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8064 { 8065 struct sioc_addrreq *sia; 8066 sin_t *sin; 8067 ire_t *ire; 8068 mblk_t *mp1; 8069 zoneid_t zoneid; 8070 ip_stack_t *ipst; 8071 8072 ip1dbg(("ip_sioctl_tmyaddr")); 8073 8074 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8075 zoneid = Q_TO_CONN(q)->conn_zoneid; 8076 ipst = CONNQ_TO_IPST(q); 8077 8078 /* Existence verified in ip_wput_nondata */ 8079 mp1 = mp->b_cont->b_cont; 8080 sia = (struct sioc_addrreq *)mp1->b_rptr; 8081 sin = (sin_t *)&sia->sa_addr; 8082 switch (sin->sin_family) { 8083 case AF_INET6: { 8084 sin6_t *sin6 = (sin6_t *)sin; 8085 8086 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8087 ipaddr_t v4_addr; 8088 8089 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8090 v4_addr); 8091 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8092 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8093 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8094 } else { 8095 in6_addr_t v6addr; 8096 8097 v6addr = sin6->sin6_addr; 8098 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8099 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8100 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8101 } 8102 break; 8103 } 8104 case AF_INET: { 8105 ipaddr_t v4addr; 8106 8107 v4addr = sin->sin_addr.s_addr; 8108 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8109 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8110 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8111 break; 8112 } 8113 default: 8114 return (EAFNOSUPPORT); 8115 } 8116 if (ire != NULL) { 8117 sia->sa_res = 1; 8118 ire_refrele(ire); 8119 } else { 8120 sia->sa_res = 0; 8121 } 8122 return (0); 8123 } 8124 8125 /* 8126 * Check if this is an address assigned on-link i.e. neighbor, 8127 * and makes sure it's reachable from the current zone. 8128 * Returns true for my addresses as well. 8129 * Translates mapped addresses to v4 addresses and then 8130 * treats them as such, returning true if the v4 address 8131 * associated with this mapped address is configured. 8132 * Note: Applications will have to be careful what they do 8133 * with the response; use of mapped addresses limits 8134 * what can be done with the socket, especially with 8135 * respect to socket options and ioctls - neither IPv4 8136 * options nor IPv6 sticky options/ancillary data options 8137 * may be used. 8138 */ 8139 /* ARGSUSED */ 8140 int 8141 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8142 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8143 { 8144 struct sioc_addrreq *sia; 8145 sin_t *sin; 8146 mblk_t *mp1; 8147 ire_t *ire = NULL; 8148 zoneid_t zoneid; 8149 ip_stack_t *ipst; 8150 8151 ip1dbg(("ip_sioctl_tonlink")); 8152 8153 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8154 zoneid = Q_TO_CONN(q)->conn_zoneid; 8155 ipst = CONNQ_TO_IPST(q); 8156 8157 /* Existence verified in ip_wput_nondata */ 8158 mp1 = mp->b_cont->b_cont; 8159 sia = (struct sioc_addrreq *)mp1->b_rptr; 8160 sin = (sin_t *)&sia->sa_addr; 8161 8162 /* 8163 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8164 * to make sure we only look at on-link unicast address. 8165 */ 8166 switch (sin->sin_family) { 8167 case AF_INET6: { 8168 sin6_t *sin6 = (sin6_t *)sin; 8169 8170 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8171 ipaddr_t v4_addr; 8172 8173 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8174 v4_addr); 8175 if (!CLASSD(v4_addr)) { 8176 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8177 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8178 0, ipst, NULL); 8179 } 8180 } else { 8181 in6_addr_t v6addr; 8182 8183 v6addr = sin6->sin6_addr; 8184 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8185 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8186 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8187 ipst, NULL); 8188 } 8189 } 8190 break; 8191 } 8192 case AF_INET: { 8193 ipaddr_t v4addr; 8194 8195 v4addr = sin->sin_addr.s_addr; 8196 if (!CLASSD(v4addr)) { 8197 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8198 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8199 } 8200 break; 8201 } 8202 default: 8203 return (EAFNOSUPPORT); 8204 } 8205 sia->sa_res = 0; 8206 if (ire != NULL) { 8207 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8208 8209 if ((ire->ire_type & IRE_ONLINK) && 8210 !(ire->ire_type & IRE_BROADCAST)) 8211 sia->sa_res = 1; 8212 ire_refrele(ire); 8213 } 8214 return (0); 8215 } 8216 8217 /* 8218 * TBD: implement when kernel maintaines a list of site prefixes. 8219 */ 8220 /* ARGSUSED */ 8221 int 8222 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8223 ip_ioctl_cmd_t *ipip, void *ifreq) 8224 { 8225 return (ENXIO); 8226 } 8227 8228 /* ARP IOCTLs. */ 8229 /* ARGSUSED */ 8230 int 8231 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8232 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8233 { 8234 int err; 8235 ipaddr_t ipaddr; 8236 struct iocblk *iocp; 8237 conn_t *connp; 8238 struct arpreq *ar; 8239 struct xarpreq *xar; 8240 int arp_flags, flags, alength; 8241 uchar_t *lladdr; 8242 ip_stack_t *ipst; 8243 ill_t *ill = ipif->ipif_ill; 8244 ill_t *proxy_ill = NULL; 8245 ipmp_arpent_t *entp = NULL; 8246 boolean_t proxyarp = B_FALSE; 8247 boolean_t if_arp_ioctl = B_FALSE; 8248 ncec_t *ncec = NULL; 8249 nce_t *nce; 8250 8251 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8252 connp = Q_TO_CONN(q); 8253 ipst = connp->conn_netstack->netstack_ip; 8254 iocp = (struct iocblk *)mp->b_rptr; 8255 8256 if (ipip->ipi_cmd_type == XARP_CMD) { 8257 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8258 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8259 ar = NULL; 8260 8261 arp_flags = xar->xarp_flags; 8262 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8263 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8264 /* 8265 * Validate against user's link layer address length 8266 * input and name and addr length limits. 8267 */ 8268 alength = ill->ill_phys_addr_length; 8269 if (ipip->ipi_cmd == SIOCSXARP) { 8270 if (alength != xar->xarp_ha.sdl_alen || 8271 (alength + xar->xarp_ha.sdl_nlen > 8272 sizeof (xar->xarp_ha.sdl_data))) 8273 return (EINVAL); 8274 } 8275 } else { 8276 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8277 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8278 xar = NULL; 8279 8280 arp_flags = ar->arp_flags; 8281 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8282 /* 8283 * Theoretically, the sa_family could tell us what link 8284 * layer type this operation is trying to deal with. By 8285 * common usage AF_UNSPEC means ethernet. We'll assume 8286 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8287 * for now. Our new SIOC*XARP ioctls can be used more 8288 * generally. 8289 * 8290 * If the underlying media happens to have a non 6 byte 8291 * address, arp module will fail set/get, but the del 8292 * operation will succeed. 8293 */ 8294 alength = 6; 8295 if ((ipip->ipi_cmd != SIOCDARP) && 8296 (alength != ill->ill_phys_addr_length)) { 8297 return (EINVAL); 8298 } 8299 } 8300 8301 /* Translate ATF* flags to NCE* flags */ 8302 flags = 0; 8303 if (arp_flags & ATF_AUTHORITY) 8304 flags |= NCE_F_AUTHORITY; 8305 if (arp_flags & ATF_PERM) 8306 flags |= NCE_F_NONUD; /* not subject to aging */ 8307 if (arp_flags & ATF_PUBL) 8308 flags |= NCE_F_PUBLISH; 8309 8310 /* 8311 * IPMP ARP special handling: 8312 * 8313 * 1. Since ARP mappings must appear consistent across the group, 8314 * prohibit changing ARP mappings on the underlying interfaces. 8315 * 8316 * 2. Since ARP mappings for IPMP data addresses are maintained by 8317 * IP itself, prohibit changing them. 8318 * 8319 * 3. For proxy ARP, use a functioning hardware address in the group, 8320 * provided one exists. If one doesn't, just add the entry as-is; 8321 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8322 */ 8323 if (IS_UNDER_IPMP(ill)) { 8324 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8325 return (EPERM); 8326 } 8327 if (IS_IPMP(ill)) { 8328 ipmp_illgrp_t *illg = ill->ill_grp; 8329 8330 switch (ipip->ipi_cmd) { 8331 case SIOCSARP: 8332 case SIOCSXARP: 8333 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8334 if (proxy_ill != NULL) { 8335 proxyarp = B_TRUE; 8336 if (!ipmp_ill_is_active(proxy_ill)) 8337 proxy_ill = ipmp_illgrp_next_ill(illg); 8338 if (proxy_ill != NULL) 8339 lladdr = proxy_ill->ill_phys_addr; 8340 } 8341 /* FALLTHRU */ 8342 } 8343 } 8344 8345 ipaddr = sin->sin_addr.s_addr; 8346 /* 8347 * don't match across illgrp per case (1) and (2). 8348 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8349 */ 8350 nce = nce_lookup_v4(ill, &ipaddr); 8351 if (nce != NULL) 8352 ncec = nce->nce_common; 8353 8354 switch (iocp->ioc_cmd) { 8355 case SIOCDARP: 8356 case SIOCDXARP: { 8357 /* 8358 * Delete the NCE if any. 8359 */ 8360 if (ncec == NULL) { 8361 iocp->ioc_error = ENXIO; 8362 break; 8363 } 8364 /* Don't allow changes to arp mappings of local addresses. */ 8365 if (NCE_MYADDR(ncec)) { 8366 nce_refrele(nce); 8367 return (ENOTSUP); 8368 } 8369 iocp->ioc_error = 0; 8370 8371 /* 8372 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8373 * This will delete all the nce entries on the under_ills. 8374 */ 8375 ncec_delete(ncec); 8376 /* 8377 * Once the NCE has been deleted, then the ire_dep* consistency 8378 * mechanism will find any IRE which depended on the now 8379 * condemned NCE (as part of sending packets). 8380 * That mechanism handles redirects by deleting redirects 8381 * that refer to UNREACHABLE nces. 8382 */ 8383 break; 8384 } 8385 case SIOCGARP: 8386 case SIOCGXARP: 8387 if (ncec != NULL) { 8388 lladdr = ncec->ncec_lladdr; 8389 flags = ncec->ncec_flags; 8390 iocp->ioc_error = 0; 8391 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8392 } else { 8393 iocp->ioc_error = ENXIO; 8394 } 8395 break; 8396 case SIOCSARP: 8397 case SIOCSXARP: 8398 /* Don't allow changes to arp mappings of local addresses. */ 8399 if (ncec != NULL && NCE_MYADDR(ncec)) { 8400 nce_refrele(nce); 8401 return (ENOTSUP); 8402 } 8403 8404 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8405 flags |= NCE_F_STATIC; 8406 if (!if_arp_ioctl) { 8407 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8408 lladdr, alength, flags); 8409 } else { 8410 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8411 if (ipif != NULL) { 8412 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8413 lladdr, alength, flags); 8414 ipif_refrele(ipif); 8415 } 8416 } 8417 if (nce != NULL) { 8418 nce_refrele(nce); 8419 nce = NULL; 8420 } 8421 /* 8422 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8423 * by nce_add_common() 8424 */ 8425 err = nce_lookup_then_add_v4(ill, lladdr, 8426 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8427 &nce); 8428 if (err == EEXIST) { 8429 ncec = nce->nce_common; 8430 mutex_enter(&ncec->ncec_lock); 8431 ncec->ncec_state = ND_REACHABLE; 8432 ncec->ncec_flags = flags; 8433 nce_update(ncec, ND_UNCHANGED, lladdr); 8434 mutex_exit(&ncec->ncec_lock); 8435 err = 0; 8436 } 8437 if (nce != NULL) { 8438 nce_refrele(nce); 8439 nce = NULL; 8440 } 8441 if (IS_IPMP(ill) && err == 0) { 8442 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8443 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8444 flags); 8445 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8446 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8447 break; 8448 } 8449 } 8450 iocp->ioc_error = err; 8451 } 8452 8453 if (nce != NULL) { 8454 nce_refrele(nce); 8455 } 8456 8457 /* 8458 * If we created an IPMP ARP entry, mark that we've notified ARP. 8459 */ 8460 if (entp != NULL) 8461 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8462 8463 return (iocp->ioc_error); 8464 } 8465 8466 /* 8467 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8468 * the associated sin and refhold and return the associated ipif via `ci'. 8469 */ 8470 int 8471 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8472 cmd_info_t *ci) 8473 { 8474 mblk_t *mp1; 8475 sin_t *sin; 8476 conn_t *connp; 8477 ipif_t *ipif; 8478 ire_t *ire = NULL; 8479 ill_t *ill = NULL; 8480 boolean_t exists; 8481 ip_stack_t *ipst; 8482 struct arpreq *ar; 8483 struct xarpreq *xar; 8484 struct sockaddr_dl *sdl; 8485 8486 /* ioctl comes down on a conn */ 8487 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8488 connp = Q_TO_CONN(q); 8489 if (connp->conn_family == AF_INET6) 8490 return (ENXIO); 8491 8492 ipst = connp->conn_netstack->netstack_ip; 8493 8494 /* Verified in ip_wput_nondata */ 8495 mp1 = mp->b_cont->b_cont; 8496 8497 if (ipip->ipi_cmd_type == XARP_CMD) { 8498 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8499 xar = (struct xarpreq *)mp1->b_rptr; 8500 sin = (sin_t *)&xar->xarp_pa; 8501 sdl = &xar->xarp_ha; 8502 8503 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8504 return (ENXIO); 8505 if (sdl->sdl_nlen >= LIFNAMSIZ) 8506 return (EINVAL); 8507 } else { 8508 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8509 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8510 ar = (struct arpreq *)mp1->b_rptr; 8511 sin = (sin_t *)&ar->arp_pa; 8512 } 8513 8514 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8515 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8516 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8517 if (ipif == NULL) 8518 return (ENXIO); 8519 if (ipif->ipif_id != 0) { 8520 ipif_refrele(ipif); 8521 return (ENXIO); 8522 } 8523 } else { 8524 /* 8525 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8526 * of 0: use the IP address to find the ipif. If the IP 8527 * address is an IPMP test address, ire_ftable_lookup() will 8528 * find the wrong ill, so we first do an ipif_lookup_addr(). 8529 */ 8530 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8531 ipst); 8532 if (ipif == NULL) { 8533 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8534 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8535 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8536 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8537 if (ire != NULL) 8538 ire_refrele(ire); 8539 return (ENXIO); 8540 } 8541 ASSERT(ire != NULL && ill != NULL); 8542 ipif = ill->ill_ipif; 8543 ipif_refhold(ipif); 8544 ire_refrele(ire); 8545 } 8546 } 8547 8548 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8549 ipif_refrele(ipif); 8550 return (ENXIO); 8551 } 8552 8553 ci->ci_sin = sin; 8554 ci->ci_ipif = ipif; 8555 return (0); 8556 } 8557 8558 /* 8559 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8560 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8561 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8562 * up and thus an ill can join that illgrp. 8563 * 8564 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8565 * open()/close() primarily because close() is not allowed to fail or block 8566 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8567 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8568 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8569 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8570 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8571 * state if I_UNLINK didn't occur. 8572 * 8573 * Note that for each plumb/unplumb operation, we may end up here more than 8574 * once because of the way ifconfig works. However, it's OK to link the same 8575 * illgrp more than once, or unlink an illgrp that's already unlinked. 8576 */ 8577 static int 8578 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8579 { 8580 int err; 8581 ip_stack_t *ipst = ill->ill_ipst; 8582 8583 ASSERT(IS_IPMP(ill)); 8584 ASSERT(IAM_WRITER_ILL(ill)); 8585 8586 switch (ioccmd) { 8587 case I_LINK: 8588 return (ENOTSUP); 8589 8590 case I_PLINK: 8591 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8592 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8593 rw_exit(&ipst->ips_ipmp_lock); 8594 break; 8595 8596 case I_PUNLINK: 8597 /* 8598 * Require all UP ipifs be brought down prior to unlinking the 8599 * illgrp so any associated IREs (and other state) is torched. 8600 */ 8601 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8602 return (EBUSY); 8603 8604 /* 8605 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8606 * with an SIOCSLIFGROUPNAME request from an ill trying to 8607 * join this group. Specifically: ills trying to join grab 8608 * ipmp_lock and bump a "pending join" counter checked by 8609 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8610 * joins can occur (since we have ipmp_lock). Once we drop 8611 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8612 * find the illgrp (since we unlinked it) and will return 8613 * EAFNOSUPPORT. This will then take them back through the 8614 * IPMP meta-interface plumbing logic in ifconfig, and thus 8615 * back through I_PLINK above. 8616 */ 8617 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8618 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8619 rw_exit(&ipst->ips_ipmp_lock); 8620 return (err); 8621 default: 8622 break; 8623 } 8624 return (0); 8625 } 8626 8627 /* 8628 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8629 * atomically set/clear the muxids. Also complete the ioctl by acking or 8630 * naking it. Note that the code is structured such that the link type, 8631 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8632 * its clones use the persistent link, while pppd(1M) and perhaps many 8633 * other daemons may use non-persistent link. When combined with some 8634 * ill_t states, linking and unlinking lower streams may be used as 8635 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8636 */ 8637 /* ARGSUSED */ 8638 void 8639 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8640 { 8641 mblk_t *mp1; 8642 struct linkblk *li; 8643 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8644 int err = 0; 8645 8646 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8647 ioccmd == I_LINK || ioccmd == I_UNLINK); 8648 8649 mp1 = mp->b_cont; /* This is the linkblk info */ 8650 li = (struct linkblk *)mp1->b_rptr; 8651 8652 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8653 if (err == EINPROGRESS) 8654 return; 8655 done: 8656 if (err == 0) 8657 miocack(q, mp, 0, 0); 8658 else 8659 miocnak(q, mp, 0, err); 8660 8661 /* Conn was refheld in ip_sioctl_copyin_setup */ 8662 if (CONN_Q(q)) 8663 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8664 } 8665 8666 /* 8667 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8668 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8669 * module stream). If `doconsist' is set, then do the extended consistency 8670 * checks requested by ifconfig(1M) and (atomically) set ill_muxid here. 8671 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8672 * an error code on failure. 8673 */ 8674 static int 8675 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8676 struct linkblk *li) 8677 { 8678 int err = 0; 8679 ill_t *ill; 8680 queue_t *ipwq, *dwq; 8681 const char *name; 8682 struct qinit *qinfo; 8683 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8684 boolean_t entered_ipsq = B_FALSE; 8685 boolean_t is_ip = B_FALSE; 8686 arl_t *arl; 8687 8688 /* 8689 * Walk the lower stream to verify it's the IP module stream. 8690 * The IP module is identified by its name, wput function, 8691 * and non-NULL q_next. STREAMS ensures that the lower stream 8692 * (li->l_qbot) will not vanish until this ioctl completes. 8693 */ 8694 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8695 qinfo = ipwq->q_qinfo; 8696 name = qinfo->qi_minfo->mi_idname; 8697 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8698 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8699 is_ip = B_TRUE; 8700 break; 8701 } 8702 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8703 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8704 break; 8705 } 8706 } 8707 8708 /* 8709 * If this isn't an IP module stream, bail. 8710 */ 8711 if (ipwq == NULL) 8712 return (0); 8713 8714 if (!is_ip) { 8715 arl = (arl_t *)ipwq->q_ptr; 8716 ill = arl_to_ill(arl); 8717 if (ill == NULL) 8718 return (0); 8719 } else { 8720 ill = ipwq->q_ptr; 8721 } 8722 ASSERT(ill != NULL); 8723 8724 if (ipsq == NULL) { 8725 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8726 NEW_OP, B_FALSE); 8727 if (ipsq == NULL) { 8728 if (!is_ip) 8729 ill_refrele(ill); 8730 return (EINPROGRESS); 8731 } 8732 entered_ipsq = B_TRUE; 8733 } 8734 ASSERT(IAM_WRITER_ILL(ill)); 8735 mutex_enter(&ill->ill_lock); 8736 if (!is_ip) { 8737 if (islink && ill->ill_muxid == 0) { 8738 /* 8739 * Plumbing has to be done with IP plumbed first, arp 8740 * second, but here we have arp being plumbed first. 8741 */ 8742 mutex_exit(&ill->ill_lock); 8743 ipsq_exit(ipsq); 8744 ill_refrele(ill); 8745 return (EINVAL); 8746 } 8747 } 8748 mutex_exit(&ill->ill_lock); 8749 if (!is_ip) { 8750 arl->arl_muxid = islink ? li->l_index : 0; 8751 ill_refrele(ill); 8752 goto done; 8753 } 8754 8755 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8756 goto done; 8757 8758 /* 8759 * As part of I_{P}LINKing, stash the number of downstream modules and 8760 * the read queue of the module immediately below IP in the ill. 8761 * These are used during the capability negotiation below. 8762 */ 8763 ill->ill_lmod_rq = NULL; 8764 ill->ill_lmod_cnt = 0; 8765 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8766 ill->ill_lmod_rq = RD(dwq); 8767 for (; dwq != NULL; dwq = dwq->q_next) 8768 ill->ill_lmod_cnt++; 8769 } 8770 8771 ill->ill_muxid = islink ? li->l_index : 0; 8772 8773 /* 8774 * Mark the ipsq busy until the capability operations initiated below 8775 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8776 * returns, but the capability operation may complete asynchronously 8777 * much later. 8778 */ 8779 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8780 /* 8781 * If there's at least one up ipif on this ill, then we're bound to 8782 * the underlying driver via DLPI. In that case, renegotiate 8783 * capabilities to account for any possible change in modules 8784 * interposed between IP and the driver. 8785 */ 8786 if (ill->ill_ipif_up_count > 0) { 8787 if (islink) 8788 ill_capability_probe(ill); 8789 else 8790 ill_capability_reset(ill, B_FALSE); 8791 } 8792 ipsq_current_finish(ipsq); 8793 done: 8794 if (entered_ipsq) 8795 ipsq_exit(ipsq); 8796 8797 return (err); 8798 } 8799 8800 /* 8801 * Search the ioctl command in the ioctl tables and return a pointer 8802 * to the ioctl command information. The ioctl command tables are 8803 * static and fully populated at compile time. 8804 */ 8805 ip_ioctl_cmd_t * 8806 ip_sioctl_lookup(int ioc_cmd) 8807 { 8808 int index; 8809 ip_ioctl_cmd_t *ipip; 8810 ip_ioctl_cmd_t *ipip_end; 8811 8812 if (ioc_cmd == IPI_DONTCARE) 8813 return (NULL); 8814 8815 /* 8816 * Do a 2 step search. First search the indexed table 8817 * based on the least significant byte of the ioctl cmd. 8818 * If we don't find a match, then search the misc table 8819 * serially. 8820 */ 8821 index = ioc_cmd & 0xFF; 8822 if (index < ip_ndx_ioctl_count) { 8823 ipip = &ip_ndx_ioctl_table[index]; 8824 if (ipip->ipi_cmd == ioc_cmd) { 8825 /* Found a match in the ndx table */ 8826 return (ipip); 8827 } 8828 } 8829 8830 /* Search the misc table */ 8831 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8832 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8833 if (ipip->ipi_cmd == ioc_cmd) 8834 /* Found a match in the misc table */ 8835 return (ipip); 8836 } 8837 8838 return (NULL); 8839 } 8840 8841 /* 8842 * Wrapper function for resuming deferred ioctl processing 8843 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 8844 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 8845 */ 8846 /* ARGSUSED */ 8847 void 8848 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 8849 void *dummy_arg) 8850 { 8851 ip_sioctl_copyin_setup(q, mp); 8852 } 8853 8854 /* 8855 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 8856 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 8857 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 8858 * We establish here the size of the block to be copied in. mi_copyin 8859 * arranges for this to happen, an processing continues in ip_wput_nondata with 8860 * an M_IOCDATA message. 8861 */ 8862 void 8863 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 8864 { 8865 int copyin_size; 8866 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8867 ip_ioctl_cmd_t *ipip; 8868 cred_t *cr; 8869 ip_stack_t *ipst; 8870 8871 if (CONN_Q(q)) 8872 ipst = CONNQ_TO_IPST(q); 8873 else 8874 ipst = ILLQ_TO_IPST(q); 8875 8876 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 8877 if (ipip == NULL) { 8878 /* 8879 * The ioctl is not one we understand or own. 8880 * Pass it along to be processed down stream, 8881 * if this is a module instance of IP, else nak 8882 * the ioctl. 8883 */ 8884 if (q->q_next == NULL) { 8885 goto nak; 8886 } else { 8887 putnext(q, mp); 8888 return; 8889 } 8890 } 8891 8892 /* 8893 * If this is deferred, then we will do all the checks when we 8894 * come back. 8895 */ 8896 if ((iocp->ioc_cmd == SIOCGDSTINFO || 8897 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 8898 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 8899 return; 8900 } 8901 8902 /* 8903 * Only allow a very small subset of IP ioctls on this stream if 8904 * IP is a module and not a driver. Allowing ioctls to be processed 8905 * in this case may cause assert failures or data corruption. 8906 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 8907 * ioctls allowed on an IP module stream, after which this stream 8908 * normally becomes a multiplexor (at which time the stream head 8909 * will fail all ioctls). 8910 */ 8911 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 8912 goto nak; 8913 } 8914 8915 /* Make sure we have ioctl data to process. */ 8916 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 8917 goto nak; 8918 8919 /* 8920 * Prefer dblk credential over ioctl credential; some synthesized 8921 * ioctls have kcred set because there's no way to crhold() 8922 * a credential in some contexts. (ioc_cr is not crfree() by 8923 * the framework; the caller of ioctl needs to hold the reference 8924 * for the duration of the call). 8925 */ 8926 cr = msg_getcred(mp, NULL); 8927 if (cr == NULL) 8928 cr = iocp->ioc_cr; 8929 8930 /* Make sure normal users don't send down privileged ioctls */ 8931 if ((ipip->ipi_flags & IPI_PRIV) && 8932 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 8933 /* We checked the privilege earlier but log it here */ 8934 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 8935 return; 8936 } 8937 8938 /* 8939 * The ioctl command tables can only encode fixed length 8940 * ioctl data. If the length is variable, the table will 8941 * encode the length as zero. Such special cases are handled 8942 * below in the switch. 8943 */ 8944 if (ipip->ipi_copyin_size != 0) { 8945 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 8946 return; 8947 } 8948 8949 switch (iocp->ioc_cmd) { 8950 case O_SIOCGIFCONF: 8951 case SIOCGIFCONF: 8952 /* 8953 * This IOCTL is hilarious. See comments in 8954 * ip_sioctl_get_ifconf for the story. 8955 */ 8956 if (iocp->ioc_count == TRANSPARENT) 8957 copyin_size = SIZEOF_STRUCT(ifconf, 8958 iocp->ioc_flag); 8959 else 8960 copyin_size = iocp->ioc_count; 8961 mi_copyin(q, mp, NULL, copyin_size); 8962 return; 8963 8964 case O_SIOCGLIFCONF: 8965 case SIOCGLIFCONF: 8966 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 8967 mi_copyin(q, mp, NULL, copyin_size); 8968 return; 8969 8970 case SIOCGLIFSRCOF: 8971 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 8972 mi_copyin(q, mp, NULL, copyin_size); 8973 return; 8974 case SIOCGIP6ADDRPOLICY: 8975 ip_sioctl_ip6addrpolicy(q, mp); 8976 ip6_asp_table_refrele(ipst); 8977 return; 8978 8979 case SIOCSIP6ADDRPOLICY: 8980 ip_sioctl_ip6addrpolicy(q, mp); 8981 return; 8982 8983 case SIOCGDSTINFO: 8984 ip_sioctl_dstinfo(q, mp); 8985 ip6_asp_table_refrele(ipst); 8986 return; 8987 8988 case I_PLINK: 8989 case I_PUNLINK: 8990 case I_LINK: 8991 case I_UNLINK: 8992 /* 8993 * We treat non-persistent link similarly as the persistent 8994 * link case, in terms of plumbing/unplumbing, as well as 8995 * dynamic re-plumbing events indicator. See comments 8996 * in ip_sioctl_plink() for more. 8997 * 8998 * Request can be enqueued in the 'ipsq' while waiting 8999 * to become exclusive. So bump up the conn ref. 9000 */ 9001 if (CONN_Q(q)) 9002 CONN_INC_REF(Q_TO_CONN(q)); 9003 ip_sioctl_plink(NULL, q, mp, NULL); 9004 return; 9005 9006 case ND_GET: 9007 case ND_SET: 9008 /* 9009 * Use of the nd table requires holding the reader lock. 9010 * Modifying the nd table thru nd_load/nd_unload requires 9011 * the writer lock. 9012 */ 9013 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 9014 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 9015 rw_exit(&ipst->ips_ip_g_nd_lock); 9016 9017 if (iocp->ioc_error) 9018 iocp->ioc_count = 0; 9019 mp->b_datap->db_type = M_IOCACK; 9020 qreply(q, mp); 9021 return; 9022 } 9023 rw_exit(&ipst->ips_ip_g_nd_lock); 9024 /* 9025 * We don't understand this subioctl of ND_GET / ND_SET. 9026 * Maybe intended for some driver / module below us 9027 */ 9028 if (q->q_next) { 9029 putnext(q, mp); 9030 } else { 9031 iocp->ioc_error = ENOENT; 9032 mp->b_datap->db_type = M_IOCNAK; 9033 iocp->ioc_count = 0; 9034 qreply(q, mp); 9035 } 9036 return; 9037 9038 case IP_IOCTL: 9039 ip_wput_ioctl(q, mp); 9040 return; 9041 9042 case SIOCILB: 9043 /* The ioctl length varies depending on the ILB command. */ 9044 copyin_size = iocp->ioc_count; 9045 if (copyin_size < sizeof (ilb_cmd_t)) 9046 goto nak; 9047 mi_copyin(q, mp, NULL, copyin_size); 9048 return; 9049 9050 default: 9051 cmn_err(CE_PANIC, "should not happen "); 9052 } 9053 nak: 9054 if (mp->b_cont != NULL) { 9055 freemsg(mp->b_cont); 9056 mp->b_cont = NULL; 9057 } 9058 iocp->ioc_error = EINVAL; 9059 mp->b_datap->db_type = M_IOCNAK; 9060 iocp->ioc_count = 0; 9061 qreply(q, mp); 9062 } 9063 9064 static void 9065 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9066 { 9067 struct arpreq *ar; 9068 struct xarpreq *xar; 9069 mblk_t *tmp; 9070 struct iocblk *iocp; 9071 int x_arp_ioctl = B_FALSE; 9072 int *flagsp; 9073 char *storage = NULL; 9074 9075 ASSERT(ill != NULL); 9076 9077 iocp = (struct iocblk *)mp->b_rptr; 9078 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9079 9080 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9081 if ((iocp->ioc_cmd == SIOCGXARP) || 9082 (iocp->ioc_cmd == SIOCSXARP)) { 9083 x_arp_ioctl = B_TRUE; 9084 xar = (struct xarpreq *)tmp->b_rptr; 9085 flagsp = &xar->xarp_flags; 9086 storage = xar->xarp_ha.sdl_data; 9087 } else { 9088 ar = (struct arpreq *)tmp->b_rptr; 9089 flagsp = &ar->arp_flags; 9090 storage = ar->arp_ha.sa_data; 9091 } 9092 9093 /* 9094 * We're done if this is not an SIOCG{X}ARP 9095 */ 9096 if (x_arp_ioctl) { 9097 storage += ill_xarp_info(&xar->xarp_ha, ill); 9098 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9099 sizeof (xar->xarp_ha.sdl_data)) { 9100 iocp->ioc_error = EINVAL; 9101 return; 9102 } 9103 } 9104 *flagsp = ATF_INUSE; 9105 /* 9106 * If /sbin/arp told us we are the authority using the "permanent" 9107 * flag, or if this is one of my addresses print "permanent" 9108 * in the /sbin/arp output. 9109 */ 9110 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9111 *flagsp |= ATF_AUTHORITY; 9112 if (flags & NCE_F_NONUD) 9113 *flagsp |= ATF_PERM; /* not subject to aging */ 9114 if (flags & NCE_F_PUBLISH) 9115 *flagsp |= ATF_PUBL; 9116 if (hwaddr != NULL) { 9117 *flagsp |= ATF_COM; 9118 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9119 } 9120 } 9121 9122 /* 9123 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9124 * interface) create the next available logical interface for this 9125 * physical interface. 9126 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9127 * ipif with the specified name. 9128 * 9129 * If the address family is not AF_UNSPEC then set the address as well. 9130 * 9131 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9132 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9133 * 9134 * Executed as a writer on the ill. 9135 * So no lock is needed to traverse the ipif chain, or examine the 9136 * phyint flags. 9137 */ 9138 /* ARGSUSED */ 9139 int 9140 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9141 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9142 { 9143 mblk_t *mp1; 9144 struct lifreq *lifr; 9145 boolean_t isv6; 9146 boolean_t exists; 9147 char *name; 9148 char *endp; 9149 char *cp; 9150 int namelen; 9151 ipif_t *ipif; 9152 long id; 9153 ipsq_t *ipsq; 9154 ill_t *ill; 9155 sin_t *sin; 9156 int err = 0; 9157 boolean_t found_sep = B_FALSE; 9158 conn_t *connp; 9159 zoneid_t zoneid; 9160 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9161 9162 ASSERT(q->q_next == NULL); 9163 ip1dbg(("ip_sioctl_addif\n")); 9164 /* Existence of mp1 has been checked in ip_wput_nondata */ 9165 mp1 = mp->b_cont->b_cont; 9166 /* 9167 * Null terminate the string to protect against buffer 9168 * overrun. String was generated by user code and may not 9169 * be trusted. 9170 */ 9171 lifr = (struct lifreq *)mp1->b_rptr; 9172 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9173 name = lifr->lifr_name; 9174 ASSERT(CONN_Q(q)); 9175 connp = Q_TO_CONN(q); 9176 isv6 = (connp->conn_family == AF_INET6); 9177 zoneid = connp->conn_zoneid; 9178 namelen = mi_strlen(name); 9179 if (namelen == 0) 9180 return (EINVAL); 9181 9182 exists = B_FALSE; 9183 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9184 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9185 /* 9186 * Allow creating lo0 using SIOCLIFADDIF. 9187 * can't be any other writer thread. So can pass null below 9188 * for the last 4 args to ipif_lookup_name. 9189 */ 9190 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9191 &exists, isv6, zoneid, ipst); 9192 /* Prevent any further action */ 9193 if (ipif == NULL) { 9194 return (ENOBUFS); 9195 } else if (!exists) { 9196 /* We created the ipif now and as writer */ 9197 ipif_refrele(ipif); 9198 return (0); 9199 } else { 9200 ill = ipif->ipif_ill; 9201 ill_refhold(ill); 9202 ipif_refrele(ipif); 9203 } 9204 } else { 9205 /* Look for a colon in the name. */ 9206 endp = &name[namelen]; 9207 for (cp = endp; --cp > name; ) { 9208 if (*cp == IPIF_SEPARATOR_CHAR) { 9209 found_sep = B_TRUE; 9210 /* 9211 * Reject any non-decimal aliases for plumbing 9212 * of logical interfaces. Aliases with leading 9213 * zeroes are also rejected as they introduce 9214 * ambiguity in the naming of the interfaces. 9215 * Comparing with "0" takes care of all such 9216 * cases. 9217 */ 9218 if ((strncmp("0", cp+1, 1)) == 0) 9219 return (EINVAL); 9220 9221 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9222 id <= 0 || *endp != '\0') { 9223 return (EINVAL); 9224 } 9225 *cp = '\0'; 9226 break; 9227 } 9228 } 9229 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9230 if (found_sep) 9231 *cp = IPIF_SEPARATOR_CHAR; 9232 if (ill == NULL) 9233 return (ENXIO); 9234 } 9235 9236 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9237 B_TRUE); 9238 9239 /* 9240 * Release the refhold due to the lookup, now that we are excl 9241 * or we are just returning 9242 */ 9243 ill_refrele(ill); 9244 9245 if (ipsq == NULL) 9246 return (EINPROGRESS); 9247 9248 /* We are now exclusive on the IPSQ */ 9249 ASSERT(IAM_WRITER_ILL(ill)); 9250 9251 if (found_sep) { 9252 /* Now see if there is an IPIF with this unit number. */ 9253 for (ipif = ill->ill_ipif; ipif != NULL; 9254 ipif = ipif->ipif_next) { 9255 if (ipif->ipif_id == id) { 9256 err = EEXIST; 9257 goto done; 9258 } 9259 } 9260 } 9261 9262 /* 9263 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9264 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9265 * instead. 9266 */ 9267 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9268 B_TRUE, B_TRUE, &err)) == NULL) { 9269 goto done; 9270 } 9271 9272 /* Return created name with ioctl */ 9273 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9274 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9275 ip1dbg(("created %s\n", lifr->lifr_name)); 9276 9277 /* Set address */ 9278 sin = (sin_t *)&lifr->lifr_addr; 9279 if (sin->sin_family != AF_UNSPEC) { 9280 err = ip_sioctl_addr(ipif, sin, q, mp, 9281 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9282 } 9283 9284 done: 9285 ipsq_exit(ipsq); 9286 return (err); 9287 } 9288 9289 /* 9290 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9291 * interface) delete it based on the IP address (on this physical interface). 9292 * Otherwise delete it based on the ipif_id. 9293 * Also, special handling to allow a removeif of lo0. 9294 */ 9295 /* ARGSUSED */ 9296 int 9297 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9298 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9299 { 9300 conn_t *connp; 9301 ill_t *ill = ipif->ipif_ill; 9302 boolean_t success; 9303 ip_stack_t *ipst; 9304 9305 ipst = CONNQ_TO_IPST(q); 9306 9307 ASSERT(q->q_next == NULL); 9308 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9309 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9310 ASSERT(IAM_WRITER_IPIF(ipif)); 9311 9312 connp = Q_TO_CONN(q); 9313 /* 9314 * Special case for unplumbing lo0 (the loopback physical interface). 9315 * If unplumbing lo0, the incoming address structure has been 9316 * initialized to all zeros. When unplumbing lo0, all its logical 9317 * interfaces must be removed too. 9318 * 9319 * Note that this interface may be called to remove a specific 9320 * loopback logical interface (eg, lo0:1). But in that case 9321 * ipif->ipif_id != 0 so that the code path for that case is the 9322 * same as any other interface (meaning it skips the code directly 9323 * below). 9324 */ 9325 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9326 if (sin->sin_family == AF_UNSPEC && 9327 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9328 /* 9329 * Mark it condemned. No new ref. will be made to ill. 9330 */ 9331 mutex_enter(&ill->ill_lock); 9332 ill->ill_state_flags |= ILL_CONDEMNED; 9333 for (ipif = ill->ill_ipif; ipif != NULL; 9334 ipif = ipif->ipif_next) { 9335 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9336 } 9337 mutex_exit(&ill->ill_lock); 9338 9339 ipif = ill->ill_ipif; 9340 /* unplumb the loopback interface */ 9341 ill_delete(ill); 9342 mutex_enter(&connp->conn_lock); 9343 mutex_enter(&ill->ill_lock); 9344 9345 /* Are any references to this ill active */ 9346 if (ill_is_freeable(ill)) { 9347 mutex_exit(&ill->ill_lock); 9348 mutex_exit(&connp->conn_lock); 9349 ill_delete_tail(ill); 9350 mi_free(ill); 9351 return (0); 9352 } 9353 success = ipsq_pending_mp_add(connp, ipif, 9354 CONNP_TO_WQ(connp), mp, ILL_FREE); 9355 mutex_exit(&connp->conn_lock); 9356 mutex_exit(&ill->ill_lock); 9357 if (success) 9358 return (EINPROGRESS); 9359 else 9360 return (EINTR); 9361 } 9362 } 9363 9364 if (ipif->ipif_id == 0) { 9365 ipsq_t *ipsq; 9366 9367 /* Find based on address */ 9368 if (ipif->ipif_isv6) { 9369 sin6_t *sin6; 9370 9371 if (sin->sin_family != AF_INET6) 9372 return (EAFNOSUPPORT); 9373 9374 sin6 = (sin6_t *)sin; 9375 /* We are a writer, so we should be able to lookup */ 9376 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9377 ipst); 9378 } else { 9379 if (sin->sin_family != AF_INET) 9380 return (EAFNOSUPPORT); 9381 9382 /* We are a writer, so we should be able to lookup */ 9383 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9384 ipst); 9385 } 9386 if (ipif == NULL) { 9387 return (EADDRNOTAVAIL); 9388 } 9389 9390 /* 9391 * It is possible for a user to send an SIOCLIFREMOVEIF with 9392 * lifr_name of the physical interface but with an ip address 9393 * lifr_addr of a logical interface plumbed over it. 9394 * So update ipx_current_ipif now that ipif points to the 9395 * correct one. 9396 */ 9397 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9398 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9399 9400 /* This is a writer */ 9401 ipif_refrele(ipif); 9402 } 9403 9404 /* 9405 * Can not delete instance zero since it is tied to the ill. 9406 */ 9407 if (ipif->ipif_id == 0) 9408 return (EBUSY); 9409 9410 mutex_enter(&ill->ill_lock); 9411 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9412 mutex_exit(&ill->ill_lock); 9413 9414 ipif_free(ipif); 9415 9416 mutex_enter(&connp->conn_lock); 9417 mutex_enter(&ill->ill_lock); 9418 9419 /* Are any references to this ipif active */ 9420 if (ipif_is_freeable(ipif)) { 9421 mutex_exit(&ill->ill_lock); 9422 mutex_exit(&connp->conn_lock); 9423 ipif_non_duplicate(ipif); 9424 (void) ipif_down_tail(ipif); 9425 ipif_free_tail(ipif); /* frees ipif */ 9426 return (0); 9427 } 9428 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9429 IPIF_FREE); 9430 mutex_exit(&ill->ill_lock); 9431 mutex_exit(&connp->conn_lock); 9432 if (success) 9433 return (EINPROGRESS); 9434 else 9435 return (EINTR); 9436 } 9437 9438 /* 9439 * Restart the removeif ioctl. The refcnt has gone down to 0. 9440 * The ipif is already condemned. So can't find it thru lookups. 9441 */ 9442 /* ARGSUSED */ 9443 int 9444 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9445 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9446 { 9447 ill_t *ill = ipif->ipif_ill; 9448 9449 ASSERT(IAM_WRITER_IPIF(ipif)); 9450 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9451 9452 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9453 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9454 9455 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9456 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9457 ill_delete_tail(ill); 9458 mi_free(ill); 9459 return (0); 9460 } 9461 9462 ipif_non_duplicate(ipif); 9463 (void) ipif_down_tail(ipif); 9464 ipif_free_tail(ipif); 9465 9466 return (0); 9467 } 9468 9469 /* 9470 * Set the local interface address. 9471 * Allow an address of all zero when the interface is down. 9472 */ 9473 /* ARGSUSED */ 9474 int 9475 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9476 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9477 { 9478 int err = 0; 9479 in6_addr_t v6addr; 9480 boolean_t need_up = B_FALSE; 9481 9482 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9483 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9484 9485 ASSERT(IAM_WRITER_IPIF(ipif)); 9486 9487 if (ipif->ipif_isv6) { 9488 sin6_t *sin6; 9489 ill_t *ill; 9490 phyint_t *phyi; 9491 9492 if (sin->sin_family != AF_INET6) 9493 return (EAFNOSUPPORT); 9494 9495 sin6 = (sin6_t *)sin; 9496 v6addr = sin6->sin6_addr; 9497 ill = ipif->ipif_ill; 9498 phyi = ill->ill_phyint; 9499 9500 /* 9501 * Enforce that true multicast interfaces have a link-local 9502 * address for logical unit 0. 9503 */ 9504 if (ipif->ipif_id == 0 && 9505 (ill->ill_flags & ILLF_MULTICAST) && 9506 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9507 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9508 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9509 return (EADDRNOTAVAIL); 9510 } 9511 9512 /* 9513 * up interfaces shouldn't have the unspecified address 9514 * unless they also have the IPIF_NOLOCAL flags set and 9515 * have a subnet assigned. 9516 */ 9517 if ((ipif->ipif_flags & IPIF_UP) && 9518 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9519 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9520 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9521 return (EADDRNOTAVAIL); 9522 } 9523 9524 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9525 return (EADDRNOTAVAIL); 9526 } else { 9527 ipaddr_t addr; 9528 9529 if (sin->sin_family != AF_INET) 9530 return (EAFNOSUPPORT); 9531 9532 addr = sin->sin_addr.s_addr; 9533 9534 /* Allow 0 as the local address. */ 9535 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9536 return (EADDRNOTAVAIL); 9537 9538 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9539 } 9540 9541 /* 9542 * Even if there is no change we redo things just to rerun 9543 * ipif_set_default. 9544 */ 9545 if (ipif->ipif_flags & IPIF_UP) { 9546 /* 9547 * Setting a new local address, make sure 9548 * we have net and subnet bcast ire's for 9549 * the old address if we need them. 9550 */ 9551 /* 9552 * If the interface is already marked up, 9553 * we call ipif_down which will take care 9554 * of ditching any IREs that have been set 9555 * up based on the old interface address. 9556 */ 9557 err = ipif_logical_down(ipif, q, mp); 9558 if (err == EINPROGRESS) 9559 return (err); 9560 (void) ipif_down_tail(ipif); 9561 need_up = 1; 9562 } 9563 9564 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9565 return (err); 9566 } 9567 9568 int 9569 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9570 boolean_t need_up) 9571 { 9572 in6_addr_t v6addr; 9573 in6_addr_t ov6addr; 9574 ipaddr_t addr; 9575 sin6_t *sin6; 9576 int sinlen; 9577 int err = 0; 9578 ill_t *ill = ipif->ipif_ill; 9579 boolean_t need_dl_down; 9580 boolean_t need_arp_down; 9581 struct iocblk *iocp; 9582 9583 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9584 9585 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9586 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9587 ASSERT(IAM_WRITER_IPIF(ipif)); 9588 9589 /* Must cancel any pending timer before taking the ill_lock */ 9590 if (ipif->ipif_recovery_id != 0) 9591 (void) untimeout(ipif->ipif_recovery_id); 9592 ipif->ipif_recovery_id = 0; 9593 9594 if (ipif->ipif_isv6) { 9595 sin6 = (sin6_t *)sin; 9596 v6addr = sin6->sin6_addr; 9597 sinlen = sizeof (struct sockaddr_in6); 9598 } else { 9599 addr = sin->sin_addr.s_addr; 9600 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9601 sinlen = sizeof (struct sockaddr_in); 9602 } 9603 mutex_enter(&ill->ill_lock); 9604 ov6addr = ipif->ipif_v6lcl_addr; 9605 ipif->ipif_v6lcl_addr = v6addr; 9606 sctp_update_ipif_addr(ipif, ov6addr); 9607 ipif->ipif_addr_ready = 0; 9608 9609 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9610 9611 /* 9612 * If the interface was previously marked as a duplicate, then since 9613 * we've now got a "new" address, it should no longer be considered a 9614 * duplicate -- even if the "new" address is the same as the old one. 9615 * Note that if all ipifs are down, we may have a pending ARP down 9616 * event to handle. This is because we want to recover from duplicates 9617 * and thus delay tearing down ARP until the duplicates have been 9618 * removed or disabled. 9619 */ 9620 need_dl_down = need_arp_down = B_FALSE; 9621 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9622 need_arp_down = !need_up; 9623 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9624 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9625 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9626 need_dl_down = B_TRUE; 9627 } 9628 } 9629 9630 ipif_set_default(ipif); 9631 9632 /* 9633 * If we've just manually set the IPv6 link-local address (0th ipif), 9634 * tag the ill so that future updates to the interface ID don't result 9635 * in this address getting automatically reconfigured from under the 9636 * administrator. 9637 */ 9638 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 9639 ill->ill_manual_linklocal = 1; 9640 9641 /* 9642 * When publishing an interface address change event, we only notify 9643 * the event listeners of the new address. It is assumed that if they 9644 * actively care about the addresses assigned that they will have 9645 * already discovered the previous address assigned (if there was one.) 9646 * 9647 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9648 */ 9649 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9650 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9651 NE_ADDRESS_CHANGE, sin, sinlen); 9652 } 9653 9654 mutex_exit(&ill->ill_lock); 9655 9656 if (need_up) { 9657 /* 9658 * Now bring the interface back up. If this 9659 * is the only IPIF for the ILL, ipif_up 9660 * will have to re-bind to the device, so 9661 * we may get back EINPROGRESS, in which 9662 * case, this IOCTL will get completed in 9663 * ip_rput_dlpi when we see the DL_BIND_ACK. 9664 */ 9665 err = ipif_up(ipif, q, mp); 9666 } else { 9667 /* Perhaps ilgs should use this ill */ 9668 update_conn_ill(NULL, ill->ill_ipst); 9669 } 9670 9671 if (need_dl_down) 9672 ill_dl_down(ill); 9673 9674 if (need_arp_down && !ill->ill_isv6) 9675 (void) ipif_arp_down(ipif); 9676 9677 /* 9678 * The default multicast interface might have changed (for 9679 * instance if the IPv6 scope of the address changed) 9680 */ 9681 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9682 9683 return (err); 9684 } 9685 9686 /* 9687 * Restart entry point to restart the address set operation after the 9688 * refcounts have dropped to zero. 9689 */ 9690 /* ARGSUSED */ 9691 int 9692 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9693 ip_ioctl_cmd_t *ipip, void *ifreq) 9694 { 9695 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9696 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9697 ASSERT(IAM_WRITER_IPIF(ipif)); 9698 (void) ipif_down_tail(ipif); 9699 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9700 } 9701 9702 /* ARGSUSED */ 9703 int 9704 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9705 ip_ioctl_cmd_t *ipip, void *if_req) 9706 { 9707 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9708 struct lifreq *lifr = (struct lifreq *)if_req; 9709 9710 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9711 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9712 /* 9713 * The net mask and address can't change since we have a 9714 * reference to the ipif. So no lock is necessary. 9715 */ 9716 if (ipif->ipif_isv6) { 9717 *sin6 = sin6_null; 9718 sin6->sin6_family = AF_INET6; 9719 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9720 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9721 lifr->lifr_addrlen = 9722 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9723 } else { 9724 *sin = sin_null; 9725 sin->sin_family = AF_INET; 9726 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9727 if (ipip->ipi_cmd_type == LIF_CMD) { 9728 lifr->lifr_addrlen = 9729 ip_mask_to_plen(ipif->ipif_net_mask); 9730 } 9731 } 9732 return (0); 9733 } 9734 9735 /* 9736 * Set the destination address for a pt-pt interface. 9737 */ 9738 /* ARGSUSED */ 9739 int 9740 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9741 ip_ioctl_cmd_t *ipip, void *if_req) 9742 { 9743 int err = 0; 9744 in6_addr_t v6addr; 9745 boolean_t need_up = B_FALSE; 9746 9747 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9748 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9749 ASSERT(IAM_WRITER_IPIF(ipif)); 9750 9751 if (ipif->ipif_isv6) { 9752 sin6_t *sin6; 9753 9754 if (sin->sin_family != AF_INET6) 9755 return (EAFNOSUPPORT); 9756 9757 sin6 = (sin6_t *)sin; 9758 v6addr = sin6->sin6_addr; 9759 9760 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9761 return (EADDRNOTAVAIL); 9762 } else { 9763 ipaddr_t addr; 9764 9765 if (sin->sin_family != AF_INET) 9766 return (EAFNOSUPPORT); 9767 9768 addr = sin->sin_addr.s_addr; 9769 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9770 return (EADDRNOTAVAIL); 9771 9772 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9773 } 9774 9775 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 9776 return (0); /* No change */ 9777 9778 if (ipif->ipif_flags & IPIF_UP) { 9779 /* 9780 * If the interface is already marked up, 9781 * we call ipif_down which will take care 9782 * of ditching any IREs that have been set 9783 * up based on the old pp dst address. 9784 */ 9785 err = ipif_logical_down(ipif, q, mp); 9786 if (err == EINPROGRESS) 9787 return (err); 9788 (void) ipif_down_tail(ipif); 9789 need_up = B_TRUE; 9790 } 9791 /* 9792 * could return EINPROGRESS. If so ioctl will complete in 9793 * ip_rput_dlpi_writer 9794 */ 9795 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 9796 return (err); 9797 } 9798 9799 static int 9800 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9801 boolean_t need_up) 9802 { 9803 in6_addr_t v6addr; 9804 ill_t *ill = ipif->ipif_ill; 9805 int err = 0; 9806 boolean_t need_dl_down; 9807 boolean_t need_arp_down; 9808 9809 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 9810 ipif->ipif_id, (void *)ipif)); 9811 9812 /* Must cancel any pending timer before taking the ill_lock */ 9813 if (ipif->ipif_recovery_id != 0) 9814 (void) untimeout(ipif->ipif_recovery_id); 9815 ipif->ipif_recovery_id = 0; 9816 9817 if (ipif->ipif_isv6) { 9818 sin6_t *sin6; 9819 9820 sin6 = (sin6_t *)sin; 9821 v6addr = sin6->sin6_addr; 9822 } else { 9823 ipaddr_t addr; 9824 9825 addr = sin->sin_addr.s_addr; 9826 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9827 } 9828 mutex_enter(&ill->ill_lock); 9829 /* Set point to point destination address. */ 9830 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 9831 /* 9832 * Allow this as a means of creating logical 9833 * pt-pt interfaces on top of e.g. an Ethernet. 9834 * XXX Undocumented HACK for testing. 9835 * pt-pt interfaces are created with NUD disabled. 9836 */ 9837 ipif->ipif_flags |= IPIF_POINTOPOINT; 9838 ipif->ipif_flags &= ~IPIF_BROADCAST; 9839 if (ipif->ipif_isv6) 9840 ill->ill_flags |= ILLF_NONUD; 9841 } 9842 9843 /* 9844 * If the interface was previously marked as a duplicate, then since 9845 * we've now got a "new" address, it should no longer be considered a 9846 * duplicate -- even if the "new" address is the same as the old one. 9847 * Note that if all ipifs are down, we may have a pending ARP down 9848 * event to handle. 9849 */ 9850 need_dl_down = need_arp_down = B_FALSE; 9851 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9852 need_arp_down = !need_up; 9853 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9854 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9855 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9856 need_dl_down = B_TRUE; 9857 } 9858 } 9859 9860 /* 9861 * If we've just manually set the IPv6 destination link-local address 9862 * (0th ipif), tag the ill so that future updates to the destination 9863 * interface ID (as can happen with interfaces over IP tunnels) don't 9864 * result in this address getting automatically reconfigured from 9865 * under the administrator. 9866 */ 9867 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 9868 ill->ill_manual_dst_linklocal = 1; 9869 9870 /* Set the new address. */ 9871 ipif->ipif_v6pp_dst_addr = v6addr; 9872 /* Make sure subnet tracks pp_dst */ 9873 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 9874 mutex_exit(&ill->ill_lock); 9875 9876 if (need_up) { 9877 /* 9878 * Now bring the interface back up. If this 9879 * is the only IPIF for the ILL, ipif_up 9880 * will have to re-bind to the device, so 9881 * we may get back EINPROGRESS, in which 9882 * case, this IOCTL will get completed in 9883 * ip_rput_dlpi when we see the DL_BIND_ACK. 9884 */ 9885 err = ipif_up(ipif, q, mp); 9886 } 9887 9888 if (need_dl_down) 9889 ill_dl_down(ill); 9890 if (need_arp_down && !ipif->ipif_isv6) 9891 (void) ipif_arp_down(ipif); 9892 9893 return (err); 9894 } 9895 9896 /* 9897 * Restart entry point to restart the dstaddress set operation after the 9898 * refcounts have dropped to zero. 9899 */ 9900 /* ARGSUSED */ 9901 int 9902 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9903 ip_ioctl_cmd_t *ipip, void *ifreq) 9904 { 9905 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 9906 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9907 (void) ipif_down_tail(ipif); 9908 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 9909 } 9910 9911 /* ARGSUSED */ 9912 int 9913 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9914 ip_ioctl_cmd_t *ipip, void *if_req) 9915 { 9916 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9917 9918 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 9919 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9920 /* 9921 * Get point to point destination address. The addresses can't 9922 * change since we hold a reference to the ipif. 9923 */ 9924 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 9925 return (EADDRNOTAVAIL); 9926 9927 if (ipif->ipif_isv6) { 9928 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9929 *sin6 = sin6_null; 9930 sin6->sin6_family = AF_INET6; 9931 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 9932 } else { 9933 *sin = sin_null; 9934 sin->sin_family = AF_INET; 9935 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 9936 } 9937 return (0); 9938 } 9939 9940 /* 9941 * Check which flags will change by the given flags being set 9942 * silently ignore flags which userland is not allowed to control. 9943 * (Because these flags may change between SIOCGLIFFLAGS and 9944 * SIOCSLIFFLAGS, and that's outside of userland's control, 9945 * we need to silently ignore them rather than fail.) 9946 */ 9947 static void 9948 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 9949 uint64_t *offp) 9950 { 9951 ill_t *ill = ipif->ipif_ill; 9952 phyint_t *phyi = ill->ill_phyint; 9953 uint64_t cantchange_flags, intf_flags; 9954 uint64_t turn_on, turn_off; 9955 9956 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 9957 cantchange_flags = IFF_CANTCHANGE; 9958 if (IS_IPMP(ill)) 9959 cantchange_flags |= IFF_IPMP_CANTCHANGE; 9960 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 9961 turn_off = intf_flags & turn_on; 9962 turn_on ^= turn_off; 9963 *onp = turn_on; 9964 *offp = turn_off; 9965 } 9966 9967 /* 9968 * Set interface flags. Many flags require special handling (e.g., 9969 * bringing the interface down); see below for details. 9970 * 9971 * NOTE : We really don't enforce that ipif_id zero should be used 9972 * for setting any flags other than IFF_LOGINT_FLAGS. This 9973 * is because applications generally does SICGLIFFLAGS and 9974 * ORs in the new flags (that affects the logical) and does a 9975 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 9976 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 9977 * flags that will be turned on is correct with respect to 9978 * ipif_id 0. For backward compatibility reasons, it is not done. 9979 */ 9980 /* ARGSUSED */ 9981 int 9982 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9983 ip_ioctl_cmd_t *ipip, void *if_req) 9984 { 9985 uint64_t turn_on; 9986 uint64_t turn_off; 9987 int err = 0; 9988 phyint_t *phyi; 9989 ill_t *ill; 9990 conn_t *connp; 9991 uint64_t intf_flags; 9992 boolean_t phyint_flags_modified = B_FALSE; 9993 uint64_t flags; 9994 struct ifreq *ifr; 9995 struct lifreq *lifr; 9996 boolean_t set_linklocal = B_FALSE; 9997 9998 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 9999 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10000 10001 ASSERT(IAM_WRITER_IPIF(ipif)); 10002 10003 ill = ipif->ipif_ill; 10004 phyi = ill->ill_phyint; 10005 10006 if (ipip->ipi_cmd_type == IF_CMD) { 10007 ifr = (struct ifreq *)if_req; 10008 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10009 } else { 10010 lifr = (struct lifreq *)if_req; 10011 flags = lifr->lifr_flags; 10012 } 10013 10014 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10015 10016 /* 10017 * Have the flags been set correctly until now? 10018 */ 10019 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10020 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10021 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10022 /* 10023 * Compare the new flags to the old, and partition 10024 * into those coming on and those going off. 10025 * For the 16 bit command keep the bits above bit 16 unchanged. 10026 */ 10027 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10028 flags |= intf_flags & ~0xFFFF; 10029 10030 /* 10031 * Explicitly fail attempts to change flags that are always invalid on 10032 * an IPMP meta-interface. 10033 */ 10034 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10035 return (EINVAL); 10036 10037 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10038 if ((turn_on|turn_off) == 0) 10039 return (0); /* No change */ 10040 10041 /* 10042 * All test addresses must be IFF_DEPRECATED (to ensure source address 10043 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10044 * allow it to be turned off. 10045 */ 10046 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10047 (turn_on|intf_flags) & IFF_NOFAILOVER) 10048 return (EINVAL); 10049 10050 if ((connp = Q_TO_CONN(q)) == NULL) 10051 return (EINVAL); 10052 10053 /* 10054 * Only vrrp control socket is allowed to change IFF_UP and 10055 * IFF_NOACCEPT flags when IFF_VRRP is set. 10056 */ 10057 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10058 if (!connp->conn_isvrrp) 10059 return (EINVAL); 10060 } 10061 10062 /* 10063 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10064 * VRRP control socket. 10065 */ 10066 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10067 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10068 return (EINVAL); 10069 } 10070 10071 if (turn_on & IFF_NOFAILOVER) { 10072 turn_on |= IFF_DEPRECATED; 10073 flags |= IFF_DEPRECATED; 10074 } 10075 10076 /* 10077 * On underlying interfaces, only allow applications to manage test 10078 * addresses -- otherwise, they may get confused when the address 10079 * moves as part of being brought up. Likewise, prevent an 10080 * application-managed test address from being converted to a data 10081 * address. To prevent migration of administratively up addresses in 10082 * the kernel, we don't allow them to be converted either. 10083 */ 10084 if (IS_UNDER_IPMP(ill)) { 10085 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10086 10087 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10088 return (EINVAL); 10089 10090 if ((turn_off & IFF_NOFAILOVER) && 10091 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10092 return (EINVAL); 10093 } 10094 10095 /* 10096 * Only allow IFF_TEMPORARY flag to be set on 10097 * IPv6 interfaces. 10098 */ 10099 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10100 return (EINVAL); 10101 10102 /* 10103 * cannot turn off IFF_NOXMIT on VNI interfaces. 10104 */ 10105 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10106 return (EINVAL); 10107 10108 /* 10109 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10110 * interfaces. It makes no sense in that context. 10111 */ 10112 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10113 return (EINVAL); 10114 10115 /* 10116 * For IPv6 ipif_id 0, don't allow the interface to be up without 10117 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10118 * If the link local address isn't set, and can be set, it will get 10119 * set later on in this function. 10120 */ 10121 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10122 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10123 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10124 if (ipif_cant_setlinklocal(ipif)) 10125 return (EINVAL); 10126 set_linklocal = B_TRUE; 10127 } 10128 10129 /* 10130 * If we modify physical interface flags, we'll potentially need to 10131 * send up two routing socket messages for the changes (one for the 10132 * IPv4 ill, and another for the IPv6 ill). Note that here. 10133 */ 10134 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10135 phyint_flags_modified = B_TRUE; 10136 10137 /* 10138 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10139 * (otherwise, we'd immediately use them, defeating standby). Also, 10140 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10141 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10142 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10143 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10144 * will not be honored. 10145 */ 10146 if (turn_on & PHYI_STANDBY) { 10147 /* 10148 * No need to grab ill_g_usesrc_lock here; see the 10149 * synchronization notes in ip.c. 10150 */ 10151 if (ill->ill_usesrc_grp_next != NULL || 10152 intf_flags & PHYI_INACTIVE) 10153 return (EINVAL); 10154 if (!(flags & PHYI_FAILED)) { 10155 flags |= PHYI_INACTIVE; 10156 turn_on |= PHYI_INACTIVE; 10157 } 10158 } 10159 10160 if (turn_off & PHYI_STANDBY) { 10161 flags &= ~PHYI_INACTIVE; 10162 turn_off |= PHYI_INACTIVE; 10163 } 10164 10165 /* 10166 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10167 * would end up on. 10168 */ 10169 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10170 (PHYI_FAILED | PHYI_INACTIVE)) 10171 return (EINVAL); 10172 10173 /* 10174 * If ILLF_ROUTER changes, we need to change the ip forwarding 10175 * status of the interface. 10176 */ 10177 if ((turn_on | turn_off) & ILLF_ROUTER) 10178 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10179 10180 /* 10181 * If the interface is not UP and we are not going to 10182 * bring it UP, record the flags and return. When the 10183 * interface comes UP later, the right actions will be 10184 * taken. 10185 */ 10186 if (!(ipif->ipif_flags & IPIF_UP) && 10187 !(turn_on & IPIF_UP)) { 10188 /* Record new flags in their respective places. */ 10189 mutex_enter(&ill->ill_lock); 10190 mutex_enter(&ill->ill_phyint->phyint_lock); 10191 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10192 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10193 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10194 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10195 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10196 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10197 mutex_exit(&ill->ill_lock); 10198 mutex_exit(&ill->ill_phyint->phyint_lock); 10199 10200 /* 10201 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10202 * same to the kernel: if any of them has been set by 10203 * userland, the interface cannot be used for data traffic. 10204 */ 10205 if ((turn_on|turn_off) & 10206 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10207 ASSERT(!IS_IPMP(ill)); 10208 /* 10209 * It's possible the ill is part of an "anonymous" 10210 * IPMP group rather than a real group. In that case, 10211 * there are no other interfaces in the group and thus 10212 * no need to call ipmp_phyint_refresh_active(). 10213 */ 10214 if (IS_UNDER_IPMP(ill)) 10215 ipmp_phyint_refresh_active(phyi); 10216 } 10217 10218 if (phyint_flags_modified) { 10219 if (phyi->phyint_illv4 != NULL) { 10220 ip_rts_ifmsg(phyi->phyint_illv4-> 10221 ill_ipif, RTSQ_DEFAULT); 10222 } 10223 if (phyi->phyint_illv6 != NULL) { 10224 ip_rts_ifmsg(phyi->phyint_illv6-> 10225 ill_ipif, RTSQ_DEFAULT); 10226 } 10227 } 10228 /* The default multicast interface might have changed */ 10229 ire_increment_multicast_generation(ill->ill_ipst, 10230 ill->ill_isv6); 10231 10232 return (0); 10233 } else if (set_linklocal) { 10234 mutex_enter(&ill->ill_lock); 10235 if (set_linklocal) 10236 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10237 mutex_exit(&ill->ill_lock); 10238 } 10239 10240 /* 10241 * Disallow IPv6 interfaces coming up that have the unspecified address, 10242 * or point-to-point interfaces with an unspecified destination. We do 10243 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10244 * have a subnet assigned, which is how in.ndpd currently manages its 10245 * onlink prefix list when no addresses are configured with those 10246 * prefixes. 10247 */ 10248 if (ipif->ipif_isv6 && 10249 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10250 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10251 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10252 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10253 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10254 return (EINVAL); 10255 } 10256 10257 /* 10258 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10259 * from being brought up. 10260 */ 10261 if (!ipif->ipif_isv6 && 10262 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10263 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10264 return (EINVAL); 10265 } 10266 10267 /* 10268 * If we are going to change one or more of the flags that are 10269 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10270 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10271 * IPIF_NOFAILOVER, we will take special action. This is 10272 * done by bring the ipif down, changing the flags and bringing 10273 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10274 * back up will trigger the address to be moved. 10275 * 10276 * If we are going to change IFF_NOACCEPT, we need to bring 10277 * all the ipifs down then bring them up again. The act of 10278 * bringing all the ipifs back up will trigger the local 10279 * ires being recreated with "no_accept" set/cleared. 10280 * 10281 * Note that ILLF_NOACCEPT is always set separately from the 10282 * other flags. 10283 */ 10284 if ((turn_on|turn_off) & 10285 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10286 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10287 IPIF_NOFAILOVER)) { 10288 /* 10289 * ipif_down() will ire_delete bcast ire's for the subnet, 10290 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10291 * entries shared between multiple ipifs on the same subnet. 10292 */ 10293 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10294 !(turn_off & IPIF_UP)) { 10295 if (ipif->ipif_flags & IPIF_UP) 10296 ill->ill_logical_down = 1; 10297 turn_on &= ~IPIF_UP; 10298 } 10299 err = ipif_down(ipif, q, mp); 10300 ip1dbg(("ipif_down returns %d err ", err)); 10301 if (err == EINPROGRESS) 10302 return (err); 10303 (void) ipif_down_tail(ipif); 10304 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10305 /* 10306 * If we can quiesce the ill, then continue. If not, then 10307 * ip_sioctl_flags_tail() will be called from 10308 * ipif_ill_refrele_tail(). 10309 */ 10310 ill_down_ipifs(ill, B_TRUE); 10311 10312 mutex_enter(&connp->conn_lock); 10313 mutex_enter(&ill->ill_lock); 10314 if (!ill_is_quiescent(ill)) { 10315 boolean_t success; 10316 10317 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10318 q, mp, ILL_DOWN); 10319 mutex_exit(&ill->ill_lock); 10320 mutex_exit(&connp->conn_lock); 10321 return (success ? EINPROGRESS : EINTR); 10322 } 10323 mutex_exit(&ill->ill_lock); 10324 mutex_exit(&connp->conn_lock); 10325 } 10326 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10327 } 10328 10329 static int 10330 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10331 { 10332 ill_t *ill; 10333 phyint_t *phyi; 10334 uint64_t turn_on, turn_off; 10335 boolean_t phyint_flags_modified = B_FALSE; 10336 int err = 0; 10337 boolean_t set_linklocal = B_FALSE; 10338 10339 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10340 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10341 10342 ASSERT(IAM_WRITER_IPIF(ipif)); 10343 10344 ill = ipif->ipif_ill; 10345 phyi = ill->ill_phyint; 10346 10347 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10348 10349 /* 10350 * IFF_UP is handled separately. 10351 */ 10352 turn_on &= ~IFF_UP; 10353 turn_off &= ~IFF_UP; 10354 10355 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10356 phyint_flags_modified = B_TRUE; 10357 10358 /* 10359 * Now we change the flags. Track current value of 10360 * other flags in their respective places. 10361 */ 10362 mutex_enter(&ill->ill_lock); 10363 mutex_enter(&phyi->phyint_lock); 10364 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10365 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10366 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10367 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10368 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10369 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10370 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10371 set_linklocal = B_TRUE; 10372 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10373 } 10374 10375 mutex_exit(&ill->ill_lock); 10376 mutex_exit(&phyi->phyint_lock); 10377 10378 if (set_linklocal) 10379 (void) ipif_setlinklocal(ipif); 10380 10381 /* 10382 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10383 * the kernel: if any of them has been set by userland, the interface 10384 * cannot be used for data traffic. 10385 */ 10386 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10387 ASSERT(!IS_IPMP(ill)); 10388 /* 10389 * It's possible the ill is part of an "anonymous" IPMP group 10390 * rather than a real group. In that case, there are no other 10391 * interfaces in the group and thus no need for us to call 10392 * ipmp_phyint_refresh_active(). 10393 */ 10394 if (IS_UNDER_IPMP(ill)) 10395 ipmp_phyint_refresh_active(phyi); 10396 } 10397 10398 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10399 /* 10400 * If the ILLF_NOACCEPT flag is changed, bring up all the 10401 * ipifs that were brought down. 10402 * 10403 * The routing sockets messages are sent as the result 10404 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10405 * as well. 10406 */ 10407 err = ill_up_ipifs(ill, q, mp); 10408 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10409 /* 10410 * XXX ipif_up really does not know whether a phyint flags 10411 * was modified or not. So, it sends up information on 10412 * only one routing sockets message. As we don't bring up 10413 * the interface and also set PHYI_ flags simultaneously 10414 * it should be okay. 10415 */ 10416 err = ipif_up(ipif, q, mp); 10417 } else { 10418 /* 10419 * Make sure routing socket sees all changes to the flags. 10420 * ipif_up_done* handles this when we use ipif_up. 10421 */ 10422 if (phyint_flags_modified) { 10423 if (phyi->phyint_illv4 != NULL) { 10424 ip_rts_ifmsg(phyi->phyint_illv4-> 10425 ill_ipif, RTSQ_DEFAULT); 10426 } 10427 if (phyi->phyint_illv6 != NULL) { 10428 ip_rts_ifmsg(phyi->phyint_illv6-> 10429 ill_ipif, RTSQ_DEFAULT); 10430 } 10431 } else { 10432 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10433 } 10434 /* 10435 * Update the flags in SCTP's IPIF list, ipif_up() will do 10436 * this in need_up case. 10437 */ 10438 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10439 } 10440 10441 /* The default multicast interface might have changed */ 10442 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10443 return (err); 10444 } 10445 10446 /* 10447 * Restart the flags operation now that the refcounts have dropped to zero. 10448 */ 10449 /* ARGSUSED */ 10450 int 10451 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10452 ip_ioctl_cmd_t *ipip, void *if_req) 10453 { 10454 uint64_t flags; 10455 struct ifreq *ifr = if_req; 10456 struct lifreq *lifr = if_req; 10457 uint64_t turn_on, turn_off; 10458 10459 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10460 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10461 10462 if (ipip->ipi_cmd_type == IF_CMD) { 10463 /* cast to uint16_t prevents unwanted sign extension */ 10464 flags = (uint16_t)ifr->ifr_flags; 10465 } else { 10466 flags = lifr->lifr_flags; 10467 } 10468 10469 /* 10470 * If this function call is a result of the ILLF_NOACCEPT flag 10471 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10472 */ 10473 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10474 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10475 (void) ipif_down_tail(ipif); 10476 10477 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10478 } 10479 10480 /* 10481 * Can operate on either a module or a driver queue. 10482 */ 10483 /* ARGSUSED */ 10484 int 10485 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10486 ip_ioctl_cmd_t *ipip, void *if_req) 10487 { 10488 /* 10489 * Has the flags been set correctly till now ? 10490 */ 10491 ill_t *ill = ipif->ipif_ill; 10492 phyint_t *phyi = ill->ill_phyint; 10493 10494 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10495 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10496 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10497 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10498 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10499 10500 /* 10501 * Need a lock since some flags can be set even when there are 10502 * references to the ipif. 10503 */ 10504 mutex_enter(&ill->ill_lock); 10505 if (ipip->ipi_cmd_type == IF_CMD) { 10506 struct ifreq *ifr = (struct ifreq *)if_req; 10507 10508 /* Get interface flags (low 16 only). */ 10509 ifr->ifr_flags = ((ipif->ipif_flags | 10510 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10511 } else { 10512 struct lifreq *lifr = (struct lifreq *)if_req; 10513 10514 /* Get interface flags. */ 10515 lifr->lifr_flags = ipif->ipif_flags | 10516 ill->ill_flags | phyi->phyint_flags; 10517 } 10518 mutex_exit(&ill->ill_lock); 10519 return (0); 10520 } 10521 10522 /* 10523 * We allow the MTU to be set on an ILL, but not have it be different 10524 * for different IPIFs since we don't actually send packets on IPIFs. 10525 */ 10526 /* ARGSUSED */ 10527 int 10528 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10529 ip_ioctl_cmd_t *ipip, void *if_req) 10530 { 10531 int mtu; 10532 int ip_min_mtu; 10533 struct ifreq *ifr; 10534 struct lifreq *lifr; 10535 ill_t *ill; 10536 10537 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10538 ipif->ipif_id, (void *)ipif)); 10539 if (ipip->ipi_cmd_type == IF_CMD) { 10540 ifr = (struct ifreq *)if_req; 10541 mtu = ifr->ifr_metric; 10542 } else { 10543 lifr = (struct lifreq *)if_req; 10544 mtu = lifr->lifr_mtu; 10545 } 10546 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10547 if (ipif->ipif_id != 0) 10548 return (EINVAL); 10549 10550 ill = ipif->ipif_ill; 10551 if (ipif->ipif_isv6) 10552 ip_min_mtu = IPV6_MIN_MTU; 10553 else 10554 ip_min_mtu = IP_MIN_MTU; 10555 10556 mutex_enter(&ill->ill_lock); 10557 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10558 mutex_exit(&ill->ill_lock); 10559 return (EINVAL); 10560 } 10561 /* 10562 * The dce and fragmentation code can handle changes to ill_mtu 10563 * concurrent with sending/fragmenting packets. 10564 */ 10565 ill->ill_mtu = mtu; 10566 ill->ill_flags |= ILLF_FIXEDMTU; 10567 mutex_exit(&ill->ill_lock); 10568 10569 /* 10570 * Make sure all dce_generation checks find out 10571 * that ill_mtu has changed. 10572 */ 10573 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10574 10575 /* Update the MTU in SCTP's list */ 10576 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10577 return (0); 10578 } 10579 10580 /* Get interface MTU. */ 10581 /* ARGSUSED */ 10582 int 10583 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10584 ip_ioctl_cmd_t *ipip, void *if_req) 10585 { 10586 struct ifreq *ifr; 10587 struct lifreq *lifr; 10588 10589 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10590 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10591 10592 /* 10593 * We allow a get on any logical interface even though the set 10594 * can only be done on logical unit 0. 10595 */ 10596 if (ipip->ipi_cmd_type == IF_CMD) { 10597 ifr = (struct ifreq *)if_req; 10598 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10599 } else { 10600 lifr = (struct lifreq *)if_req; 10601 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10602 } 10603 return (0); 10604 } 10605 10606 /* Set interface broadcast address. */ 10607 /* ARGSUSED2 */ 10608 int 10609 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10610 ip_ioctl_cmd_t *ipip, void *if_req) 10611 { 10612 ipaddr_t addr; 10613 ire_t *ire; 10614 ill_t *ill = ipif->ipif_ill; 10615 ip_stack_t *ipst = ill->ill_ipst; 10616 10617 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10618 ipif->ipif_id)); 10619 10620 ASSERT(IAM_WRITER_IPIF(ipif)); 10621 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10622 return (EADDRNOTAVAIL); 10623 10624 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10625 10626 if (sin->sin_family != AF_INET) 10627 return (EAFNOSUPPORT); 10628 10629 addr = sin->sin_addr.s_addr; 10630 if (ipif->ipif_flags & IPIF_UP) { 10631 /* 10632 * If we are already up, make sure the new 10633 * broadcast address makes sense. If it does, 10634 * there should be an IRE for it already. 10635 */ 10636 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10637 ill, ipif->ipif_zoneid, NULL, 10638 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10639 if (ire == NULL) { 10640 return (EINVAL); 10641 } else { 10642 ire_refrele(ire); 10643 } 10644 } 10645 /* 10646 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10647 * needs to already exist we never need to change the set of 10648 * IRE_BROADCASTs when we are UP. 10649 */ 10650 if (addr != ipif->ipif_brd_addr) 10651 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10652 10653 return (0); 10654 } 10655 10656 /* Get interface broadcast address. */ 10657 /* ARGSUSED */ 10658 int 10659 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10660 ip_ioctl_cmd_t *ipip, void *if_req) 10661 { 10662 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10663 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10664 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10665 return (EADDRNOTAVAIL); 10666 10667 /* IPIF_BROADCAST not possible with IPv6 */ 10668 ASSERT(!ipif->ipif_isv6); 10669 *sin = sin_null; 10670 sin->sin_family = AF_INET; 10671 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10672 return (0); 10673 } 10674 10675 /* 10676 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10677 */ 10678 /* ARGSUSED */ 10679 int 10680 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10681 ip_ioctl_cmd_t *ipip, void *if_req) 10682 { 10683 int err = 0; 10684 in6_addr_t v6mask; 10685 10686 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10687 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10688 10689 ASSERT(IAM_WRITER_IPIF(ipif)); 10690 10691 if (ipif->ipif_isv6) { 10692 sin6_t *sin6; 10693 10694 if (sin->sin_family != AF_INET6) 10695 return (EAFNOSUPPORT); 10696 10697 sin6 = (sin6_t *)sin; 10698 v6mask = sin6->sin6_addr; 10699 } else { 10700 ipaddr_t mask; 10701 10702 if (sin->sin_family != AF_INET) 10703 return (EAFNOSUPPORT); 10704 10705 mask = sin->sin_addr.s_addr; 10706 V4MASK_TO_V6(mask, v6mask); 10707 } 10708 10709 /* 10710 * No big deal if the interface isn't already up, or the mask 10711 * isn't really changing, or this is pt-pt. 10712 */ 10713 if (!(ipif->ipif_flags & IPIF_UP) || 10714 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10715 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10716 ipif->ipif_v6net_mask = v6mask; 10717 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10718 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10719 ipif->ipif_v6net_mask, 10720 ipif->ipif_v6subnet); 10721 } 10722 return (0); 10723 } 10724 /* 10725 * Make sure we have valid net and subnet broadcast ire's 10726 * for the old netmask, if needed by other logical interfaces. 10727 */ 10728 err = ipif_logical_down(ipif, q, mp); 10729 if (err == EINPROGRESS) 10730 return (err); 10731 (void) ipif_down_tail(ipif); 10732 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10733 return (err); 10734 } 10735 10736 static int 10737 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10738 { 10739 in6_addr_t v6mask; 10740 int err = 0; 10741 10742 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10743 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10744 10745 if (ipif->ipif_isv6) { 10746 sin6_t *sin6; 10747 10748 sin6 = (sin6_t *)sin; 10749 v6mask = sin6->sin6_addr; 10750 } else { 10751 ipaddr_t mask; 10752 10753 mask = sin->sin_addr.s_addr; 10754 V4MASK_TO_V6(mask, v6mask); 10755 } 10756 10757 ipif->ipif_v6net_mask = v6mask; 10758 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10759 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 10760 ipif->ipif_v6subnet); 10761 } 10762 err = ipif_up(ipif, q, mp); 10763 10764 if (err == 0 || err == EINPROGRESS) { 10765 /* 10766 * The interface must be DL_BOUND if this packet has to 10767 * go out on the wire. Since we only go through a logical 10768 * down and are bound with the driver during an internal 10769 * down/up that is satisfied. 10770 */ 10771 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 10772 /* Potentially broadcast an address mask reply. */ 10773 ipif_mask_reply(ipif); 10774 } 10775 } 10776 return (err); 10777 } 10778 10779 /* ARGSUSED */ 10780 int 10781 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10782 ip_ioctl_cmd_t *ipip, void *if_req) 10783 { 10784 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 10785 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10786 (void) ipif_down_tail(ipif); 10787 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 10788 } 10789 10790 /* Get interface net mask. */ 10791 /* ARGSUSED */ 10792 int 10793 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10794 ip_ioctl_cmd_t *ipip, void *if_req) 10795 { 10796 struct lifreq *lifr = (struct lifreq *)if_req; 10797 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 10798 10799 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 10800 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10801 10802 /* 10803 * net mask can't change since we have a reference to the ipif. 10804 */ 10805 if (ipif->ipif_isv6) { 10806 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10807 *sin6 = sin6_null; 10808 sin6->sin6_family = AF_INET6; 10809 sin6->sin6_addr = ipif->ipif_v6net_mask; 10810 lifr->lifr_addrlen = 10811 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10812 } else { 10813 *sin = sin_null; 10814 sin->sin_family = AF_INET; 10815 sin->sin_addr.s_addr = ipif->ipif_net_mask; 10816 if (ipip->ipi_cmd_type == LIF_CMD) { 10817 lifr->lifr_addrlen = 10818 ip_mask_to_plen(ipif->ipif_net_mask); 10819 } 10820 } 10821 return (0); 10822 } 10823 10824 /* ARGSUSED */ 10825 int 10826 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10827 ip_ioctl_cmd_t *ipip, void *if_req) 10828 { 10829 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 10830 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10831 10832 /* 10833 * Since no applications should ever be setting metrics on underlying 10834 * interfaces, we explicitly fail to smoke 'em out. 10835 */ 10836 if (IS_UNDER_IPMP(ipif->ipif_ill)) 10837 return (EINVAL); 10838 10839 /* 10840 * Set interface metric. We don't use this for 10841 * anything but we keep track of it in case it is 10842 * important to routing applications or such. 10843 */ 10844 if (ipip->ipi_cmd_type == IF_CMD) { 10845 struct ifreq *ifr; 10846 10847 ifr = (struct ifreq *)if_req; 10848 ipif->ipif_metric = ifr->ifr_metric; 10849 } else { 10850 struct lifreq *lifr; 10851 10852 lifr = (struct lifreq *)if_req; 10853 ipif->ipif_metric = lifr->lifr_metric; 10854 } 10855 return (0); 10856 } 10857 10858 /* ARGSUSED */ 10859 int 10860 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10861 ip_ioctl_cmd_t *ipip, void *if_req) 10862 { 10863 /* Get interface metric. */ 10864 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 10865 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10866 10867 if (ipip->ipi_cmd_type == IF_CMD) { 10868 struct ifreq *ifr; 10869 10870 ifr = (struct ifreq *)if_req; 10871 ifr->ifr_metric = ipif->ipif_metric; 10872 } else { 10873 struct lifreq *lifr; 10874 10875 lifr = (struct lifreq *)if_req; 10876 lifr->lifr_metric = ipif->ipif_metric; 10877 } 10878 10879 return (0); 10880 } 10881 10882 /* ARGSUSED */ 10883 int 10884 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10885 ip_ioctl_cmd_t *ipip, void *if_req) 10886 { 10887 int arp_muxid; 10888 10889 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 10890 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10891 /* 10892 * Set the muxid returned from I_PLINK. 10893 */ 10894 if (ipip->ipi_cmd_type == IF_CMD) { 10895 struct ifreq *ifr = (struct ifreq *)if_req; 10896 10897 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 10898 arp_muxid = ifr->ifr_arp_muxid; 10899 } else { 10900 struct lifreq *lifr = (struct lifreq *)if_req; 10901 10902 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 10903 arp_muxid = lifr->lifr_arp_muxid; 10904 } 10905 arl_set_muxid(ipif->ipif_ill, arp_muxid); 10906 return (0); 10907 } 10908 10909 /* ARGSUSED */ 10910 int 10911 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10912 ip_ioctl_cmd_t *ipip, void *if_req) 10913 { 10914 int arp_muxid = 0; 10915 10916 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 10917 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10918 /* 10919 * Get the muxid saved in ill for I_PUNLINK. 10920 */ 10921 arp_muxid = arl_get_muxid(ipif->ipif_ill); 10922 if (ipip->ipi_cmd_type == IF_CMD) { 10923 struct ifreq *ifr = (struct ifreq *)if_req; 10924 10925 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10926 ifr->ifr_arp_muxid = arp_muxid; 10927 } else { 10928 struct lifreq *lifr = (struct lifreq *)if_req; 10929 10930 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10931 lifr->lifr_arp_muxid = arp_muxid; 10932 } 10933 return (0); 10934 } 10935 10936 /* 10937 * Set the subnet prefix. Does not modify the broadcast address. 10938 */ 10939 /* ARGSUSED */ 10940 int 10941 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10942 ip_ioctl_cmd_t *ipip, void *if_req) 10943 { 10944 int err = 0; 10945 in6_addr_t v6addr; 10946 in6_addr_t v6mask; 10947 boolean_t need_up = B_FALSE; 10948 int addrlen; 10949 10950 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 10951 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10952 10953 ASSERT(IAM_WRITER_IPIF(ipif)); 10954 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 10955 10956 if (ipif->ipif_isv6) { 10957 sin6_t *sin6; 10958 10959 if (sin->sin_family != AF_INET6) 10960 return (EAFNOSUPPORT); 10961 10962 sin6 = (sin6_t *)sin; 10963 v6addr = sin6->sin6_addr; 10964 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 10965 return (EADDRNOTAVAIL); 10966 } else { 10967 ipaddr_t addr; 10968 10969 if (sin->sin_family != AF_INET) 10970 return (EAFNOSUPPORT); 10971 10972 addr = sin->sin_addr.s_addr; 10973 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 10974 return (EADDRNOTAVAIL); 10975 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10976 /* Add 96 bits */ 10977 addrlen += IPV6_ABITS - IP_ABITS; 10978 } 10979 10980 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 10981 return (EINVAL); 10982 10983 /* Check if bits in the address is set past the mask */ 10984 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 10985 return (EINVAL); 10986 10987 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 10988 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 10989 return (0); /* No change */ 10990 10991 if (ipif->ipif_flags & IPIF_UP) { 10992 /* 10993 * If the interface is already marked up, 10994 * we call ipif_down which will take care 10995 * of ditching any IREs that have been set 10996 * up based on the old interface address. 10997 */ 10998 err = ipif_logical_down(ipif, q, mp); 10999 if (err == EINPROGRESS) 11000 return (err); 11001 (void) ipif_down_tail(ipif); 11002 need_up = B_TRUE; 11003 } 11004 11005 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11006 return (err); 11007 } 11008 11009 static int 11010 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11011 queue_t *q, mblk_t *mp, boolean_t need_up) 11012 { 11013 ill_t *ill = ipif->ipif_ill; 11014 int err = 0; 11015 11016 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11017 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11018 11019 /* Set the new address. */ 11020 mutex_enter(&ill->ill_lock); 11021 ipif->ipif_v6net_mask = v6mask; 11022 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11023 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11024 ipif->ipif_v6subnet); 11025 } 11026 mutex_exit(&ill->ill_lock); 11027 11028 if (need_up) { 11029 /* 11030 * Now bring the interface back up. If this 11031 * is the only IPIF for the ILL, ipif_up 11032 * will have to re-bind to the device, so 11033 * we may get back EINPROGRESS, in which 11034 * case, this IOCTL will get completed in 11035 * ip_rput_dlpi when we see the DL_BIND_ACK. 11036 */ 11037 err = ipif_up(ipif, q, mp); 11038 if (err == EINPROGRESS) 11039 return (err); 11040 } 11041 return (err); 11042 } 11043 11044 /* ARGSUSED */ 11045 int 11046 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11047 ip_ioctl_cmd_t *ipip, void *if_req) 11048 { 11049 int addrlen; 11050 in6_addr_t v6addr; 11051 in6_addr_t v6mask; 11052 struct lifreq *lifr = (struct lifreq *)if_req; 11053 11054 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11055 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11056 (void) ipif_down_tail(ipif); 11057 11058 addrlen = lifr->lifr_addrlen; 11059 if (ipif->ipif_isv6) { 11060 sin6_t *sin6; 11061 11062 sin6 = (sin6_t *)sin; 11063 v6addr = sin6->sin6_addr; 11064 } else { 11065 ipaddr_t addr; 11066 11067 addr = sin->sin_addr.s_addr; 11068 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11069 addrlen += IPV6_ABITS - IP_ABITS; 11070 } 11071 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11072 11073 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11074 } 11075 11076 /* ARGSUSED */ 11077 int 11078 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11079 ip_ioctl_cmd_t *ipip, void *if_req) 11080 { 11081 struct lifreq *lifr = (struct lifreq *)if_req; 11082 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11083 11084 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11085 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11086 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11087 11088 if (ipif->ipif_isv6) { 11089 *sin6 = sin6_null; 11090 sin6->sin6_family = AF_INET6; 11091 sin6->sin6_addr = ipif->ipif_v6subnet; 11092 lifr->lifr_addrlen = 11093 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11094 } else { 11095 *sin = sin_null; 11096 sin->sin_family = AF_INET; 11097 sin->sin_addr.s_addr = ipif->ipif_subnet; 11098 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11099 } 11100 return (0); 11101 } 11102 11103 /* 11104 * Set the IPv6 address token. 11105 */ 11106 /* ARGSUSED */ 11107 int 11108 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11109 ip_ioctl_cmd_t *ipi, void *if_req) 11110 { 11111 ill_t *ill = ipif->ipif_ill; 11112 int err; 11113 in6_addr_t v6addr; 11114 in6_addr_t v6mask; 11115 boolean_t need_up = B_FALSE; 11116 int i; 11117 sin6_t *sin6 = (sin6_t *)sin; 11118 struct lifreq *lifr = (struct lifreq *)if_req; 11119 int addrlen; 11120 11121 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11122 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11123 ASSERT(IAM_WRITER_IPIF(ipif)); 11124 11125 addrlen = lifr->lifr_addrlen; 11126 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11127 if (ipif->ipif_id != 0) 11128 return (EINVAL); 11129 11130 if (!ipif->ipif_isv6) 11131 return (EINVAL); 11132 11133 if (addrlen > IPV6_ABITS) 11134 return (EINVAL); 11135 11136 v6addr = sin6->sin6_addr; 11137 11138 /* 11139 * The length of the token is the length from the end. To get 11140 * the proper mask for this, compute the mask of the bits not 11141 * in the token; ie. the prefix, and then xor to get the mask. 11142 */ 11143 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11144 return (EINVAL); 11145 for (i = 0; i < 4; i++) { 11146 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11147 } 11148 11149 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11150 ill->ill_token_length == addrlen) 11151 return (0); /* No change */ 11152 11153 if (ipif->ipif_flags & IPIF_UP) { 11154 err = ipif_logical_down(ipif, q, mp); 11155 if (err == EINPROGRESS) 11156 return (err); 11157 (void) ipif_down_tail(ipif); 11158 need_up = B_TRUE; 11159 } 11160 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11161 return (err); 11162 } 11163 11164 static int 11165 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11166 mblk_t *mp, boolean_t need_up) 11167 { 11168 in6_addr_t v6addr; 11169 in6_addr_t v6mask; 11170 ill_t *ill = ipif->ipif_ill; 11171 int i; 11172 int err = 0; 11173 11174 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11175 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11176 v6addr = sin6->sin6_addr; 11177 /* 11178 * The length of the token is the length from the end. To get 11179 * the proper mask for this, compute the mask of the bits not 11180 * in the token; ie. the prefix, and then xor to get the mask. 11181 */ 11182 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11183 for (i = 0; i < 4; i++) 11184 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11185 11186 mutex_enter(&ill->ill_lock); 11187 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11188 ill->ill_token_length = addrlen; 11189 ill->ill_manual_token = 1; 11190 11191 /* Reconfigure the link-local address based on this new token */ 11192 ipif_setlinklocal(ill->ill_ipif); 11193 11194 mutex_exit(&ill->ill_lock); 11195 11196 if (need_up) { 11197 /* 11198 * Now bring the interface back up. If this 11199 * is the only IPIF for the ILL, ipif_up 11200 * will have to re-bind to the device, so 11201 * we may get back EINPROGRESS, in which 11202 * case, this IOCTL will get completed in 11203 * ip_rput_dlpi when we see the DL_BIND_ACK. 11204 */ 11205 err = ipif_up(ipif, q, mp); 11206 if (err == EINPROGRESS) 11207 return (err); 11208 } 11209 return (err); 11210 } 11211 11212 /* ARGSUSED */ 11213 int 11214 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11215 ip_ioctl_cmd_t *ipi, void *if_req) 11216 { 11217 ill_t *ill; 11218 sin6_t *sin6 = (sin6_t *)sin; 11219 struct lifreq *lifr = (struct lifreq *)if_req; 11220 11221 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11222 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11223 if (ipif->ipif_id != 0) 11224 return (EINVAL); 11225 11226 ill = ipif->ipif_ill; 11227 if (!ill->ill_isv6) 11228 return (ENXIO); 11229 11230 *sin6 = sin6_null; 11231 sin6->sin6_family = AF_INET6; 11232 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11233 sin6->sin6_addr = ill->ill_token; 11234 lifr->lifr_addrlen = ill->ill_token_length; 11235 return (0); 11236 } 11237 11238 /* 11239 * Set (hardware) link specific information that might override 11240 * what was acquired through the DL_INFO_ACK. 11241 */ 11242 /* ARGSUSED */ 11243 int 11244 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11245 ip_ioctl_cmd_t *ipi, void *if_req) 11246 { 11247 ill_t *ill = ipif->ipif_ill; 11248 int ip_min_mtu; 11249 struct lifreq *lifr = (struct lifreq *)if_req; 11250 lif_ifinfo_req_t *lir; 11251 11252 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11253 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11254 lir = &lifr->lifr_ifinfo; 11255 ASSERT(IAM_WRITER_IPIF(ipif)); 11256 11257 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11258 if (ipif->ipif_id != 0) 11259 return (EINVAL); 11260 11261 /* Set interface MTU. */ 11262 if (ipif->ipif_isv6) 11263 ip_min_mtu = IPV6_MIN_MTU; 11264 else 11265 ip_min_mtu = IP_MIN_MTU; 11266 11267 /* 11268 * Verify values before we set anything. Allow zero to 11269 * mean unspecified. 11270 * 11271 * XXX We should be able to set the user-defined lir_mtu to some value 11272 * that is greater than ill_current_frag but less than ill_max_frag- the 11273 * ill_max_frag value tells us the max MTU that can be handled by the 11274 * datalink, whereas the ill_current_frag is dynamically computed for 11275 * some link-types like tunnels, based on the tunnel PMTU. However, 11276 * since there is currently no way of distinguishing between 11277 * administratively fixed link mtu values (e.g., those set via 11278 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11279 * for tunnels) we conservatively choose the ill_current_frag as the 11280 * upper-bound. 11281 */ 11282 if (lir->lir_maxmtu != 0 && 11283 (lir->lir_maxmtu > ill->ill_current_frag || 11284 lir->lir_maxmtu < ip_min_mtu)) 11285 return (EINVAL); 11286 if (lir->lir_reachtime != 0 && 11287 lir->lir_reachtime > ND_MAX_REACHTIME) 11288 return (EINVAL); 11289 if (lir->lir_reachretrans != 0 && 11290 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11291 return (EINVAL); 11292 11293 mutex_enter(&ill->ill_lock); 11294 /* 11295 * The dce and fragmentation code can handle changes to ill_mtu 11296 * concurrent with sending/fragmenting packets. 11297 */ 11298 if (lir->lir_maxmtu != 0) 11299 ill->ill_user_mtu = lir->lir_maxmtu; 11300 11301 if (lir->lir_reachtime != 0) 11302 ill->ill_reachable_time = lir->lir_reachtime; 11303 11304 if (lir->lir_reachretrans != 0) 11305 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11306 11307 ill->ill_max_hops = lir->lir_maxhops; 11308 ill->ill_max_buf = ND_MAX_Q; 11309 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11310 /* 11311 * ill_mtu is the actual interface MTU, obtained as the min 11312 * of user-configured mtu and the value announced by the 11313 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11314 * we have already made the choice of requiring 11315 * ill_user_mtu < ill_current_frag by the time we get here, 11316 * the ill_mtu effectively gets assigned to the ill_user_mtu 11317 * here. 11318 */ 11319 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11320 } 11321 mutex_exit(&ill->ill_lock); 11322 11323 /* 11324 * Make sure all dce_generation checks find out 11325 * that ill_mtu has changed. 11326 */ 11327 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11328 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11329 11330 /* 11331 * Refresh IPMP meta-interface MTU if necessary. 11332 */ 11333 if (IS_UNDER_IPMP(ill)) 11334 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11335 11336 return (0); 11337 } 11338 11339 /* ARGSUSED */ 11340 int 11341 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11342 ip_ioctl_cmd_t *ipi, void *if_req) 11343 { 11344 struct lif_ifinfo_req *lir; 11345 ill_t *ill = ipif->ipif_ill; 11346 11347 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11348 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11349 if (ipif->ipif_id != 0) 11350 return (EINVAL); 11351 11352 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11353 lir->lir_maxhops = ill->ill_max_hops; 11354 lir->lir_reachtime = ill->ill_reachable_time; 11355 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11356 lir->lir_maxmtu = ill->ill_mtu; 11357 11358 return (0); 11359 } 11360 11361 /* 11362 * Return best guess as to the subnet mask for the specified address. 11363 * Based on the subnet masks for all the configured interfaces. 11364 * 11365 * We end up returning a zero mask in the case of default, multicast or 11366 * experimental. 11367 */ 11368 static ipaddr_t 11369 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11370 { 11371 ipaddr_t net_mask; 11372 ill_t *ill; 11373 ipif_t *ipif; 11374 ill_walk_context_t ctx; 11375 ipif_t *fallback_ipif = NULL; 11376 11377 net_mask = ip_net_mask(addr); 11378 if (net_mask == 0) { 11379 *ipifp = NULL; 11380 return (0); 11381 } 11382 11383 /* Let's check to see if this is maybe a local subnet route. */ 11384 /* this function only applies to IPv4 interfaces */ 11385 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11386 ill = ILL_START_WALK_V4(&ctx, ipst); 11387 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11388 mutex_enter(&ill->ill_lock); 11389 for (ipif = ill->ill_ipif; ipif != NULL; 11390 ipif = ipif->ipif_next) { 11391 if (IPIF_IS_CONDEMNED(ipif)) 11392 continue; 11393 if (!(ipif->ipif_flags & IPIF_UP)) 11394 continue; 11395 if ((ipif->ipif_subnet & net_mask) == 11396 (addr & net_mask)) { 11397 /* 11398 * Don't trust pt-pt interfaces if there are 11399 * other interfaces. 11400 */ 11401 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11402 if (fallback_ipif == NULL) { 11403 ipif_refhold_locked(ipif); 11404 fallback_ipif = ipif; 11405 } 11406 continue; 11407 } 11408 11409 /* 11410 * Fine. Just assume the same net mask as the 11411 * directly attached subnet interface is using. 11412 */ 11413 ipif_refhold_locked(ipif); 11414 mutex_exit(&ill->ill_lock); 11415 rw_exit(&ipst->ips_ill_g_lock); 11416 if (fallback_ipif != NULL) 11417 ipif_refrele(fallback_ipif); 11418 *ipifp = ipif; 11419 return (ipif->ipif_net_mask); 11420 } 11421 } 11422 mutex_exit(&ill->ill_lock); 11423 } 11424 rw_exit(&ipst->ips_ill_g_lock); 11425 11426 *ipifp = fallback_ipif; 11427 return ((fallback_ipif != NULL) ? 11428 fallback_ipif->ipif_net_mask : net_mask); 11429 } 11430 11431 /* 11432 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11433 */ 11434 static void 11435 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11436 { 11437 IOCP iocp; 11438 ipft_t *ipft; 11439 ipllc_t *ipllc; 11440 mblk_t *mp1; 11441 cred_t *cr; 11442 int error = 0; 11443 conn_t *connp; 11444 11445 ip1dbg(("ip_wput_ioctl")); 11446 iocp = (IOCP)mp->b_rptr; 11447 mp1 = mp->b_cont; 11448 if (mp1 == NULL) { 11449 iocp->ioc_error = EINVAL; 11450 mp->b_datap->db_type = M_IOCNAK; 11451 iocp->ioc_count = 0; 11452 qreply(q, mp); 11453 return; 11454 } 11455 11456 /* 11457 * These IOCTLs provide various control capabilities to 11458 * upstream agents such as ULPs and processes. There 11459 * are currently two such IOCTLs implemented. They 11460 * are used by TCP to provide update information for 11461 * existing IREs and to forcibly delete an IRE for a 11462 * host that is not responding, thereby forcing an 11463 * attempt at a new route. 11464 */ 11465 iocp->ioc_error = EINVAL; 11466 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11467 goto done; 11468 11469 ipllc = (ipllc_t *)mp1->b_rptr; 11470 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11471 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11472 break; 11473 } 11474 /* 11475 * prefer credential from mblk over ioctl; 11476 * see ip_sioctl_copyin_setup 11477 */ 11478 cr = msg_getcred(mp, NULL); 11479 if (cr == NULL) 11480 cr = iocp->ioc_cr; 11481 11482 /* 11483 * Refhold the conn in case the request gets queued up in some lookup 11484 */ 11485 ASSERT(CONN_Q(q)); 11486 connp = Q_TO_CONN(q); 11487 CONN_INC_REF(connp); 11488 if (ipft->ipft_pfi && 11489 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11490 pullupmsg(mp1, ipft->ipft_min_size))) { 11491 error = (*ipft->ipft_pfi)(q, 11492 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11493 } 11494 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11495 /* 11496 * CONN_OPER_PENDING_DONE happens in the function called 11497 * through ipft_pfi above. 11498 */ 11499 return; 11500 } 11501 11502 CONN_OPER_PENDING_DONE(connp); 11503 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11504 freemsg(mp); 11505 return; 11506 } 11507 iocp->ioc_error = error; 11508 11509 done: 11510 mp->b_datap->db_type = M_IOCACK; 11511 if (iocp->ioc_error) 11512 iocp->ioc_count = 0; 11513 qreply(q, mp); 11514 } 11515 11516 /* 11517 * Assign a unique id for the ipif. This is used by sctp_addr.c 11518 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11519 */ 11520 static void 11521 ipif_assign_seqid(ipif_t *ipif) 11522 { 11523 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11524 11525 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11526 } 11527 11528 /* 11529 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11530 * administratively down (i.e., no DAD), of the same type, and locked. Note 11531 * that the clone is complete -- including the seqid -- and the expectation is 11532 * that the caller will either free or overwrite `sipif' before it's unlocked. 11533 */ 11534 static void 11535 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11536 { 11537 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11538 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11539 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11540 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11541 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11542 11543 dipif->ipif_flags = sipif->ipif_flags; 11544 dipif->ipif_metric = sipif->ipif_metric; 11545 dipif->ipif_zoneid = sipif->ipif_zoneid; 11546 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11547 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11548 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11549 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11550 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11551 11552 /* 11553 * As per the comment atop the function, we assume that these sipif 11554 * fields will be changed before sipif is unlocked. 11555 */ 11556 dipif->ipif_seqid = sipif->ipif_seqid; 11557 dipif->ipif_state_flags = sipif->ipif_state_flags; 11558 } 11559 11560 /* 11561 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11562 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11563 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11564 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11565 * down (i.e., no DAD), of the same type, and unlocked. 11566 */ 11567 static void 11568 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11569 { 11570 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11571 ipxop_t *ipx = ipsq->ipsq_xop; 11572 11573 ASSERT(sipif != dipif); 11574 ASSERT(sipif != virgipif); 11575 11576 /* 11577 * Grab all of the locks that protect the ipif in a defined order. 11578 */ 11579 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11580 11581 ipif_clone(sipif, dipif); 11582 if (virgipif != NULL) { 11583 ipif_clone(virgipif, sipif); 11584 mi_free(virgipif); 11585 } 11586 11587 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11588 11589 /* 11590 * Transfer ownership of the current xop, if necessary. 11591 */ 11592 if (ipx->ipx_current_ipif == sipif) { 11593 ASSERT(ipx->ipx_pending_ipif == NULL); 11594 mutex_enter(&ipx->ipx_lock); 11595 ipx->ipx_current_ipif = dipif; 11596 mutex_exit(&ipx->ipx_lock); 11597 } 11598 11599 if (virgipif == NULL) 11600 mi_free(sipif); 11601 } 11602 11603 /* 11604 * checks if: 11605 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11606 * - logical interface is within the allowed range 11607 */ 11608 static int 11609 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11610 { 11611 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11612 return (ENAMETOOLONG); 11613 11614 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11615 return (ERANGE); 11616 return (0); 11617 } 11618 11619 /* 11620 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11621 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11622 * be inserted into the first space available in the list. The value of 11623 * ipif_id will then be set to the appropriate value for its position. 11624 */ 11625 static int 11626 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11627 { 11628 ill_t *ill; 11629 ipif_t *tipif; 11630 ipif_t **tipifp; 11631 int id, err; 11632 ip_stack_t *ipst; 11633 11634 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11635 IAM_WRITER_IPIF(ipif)); 11636 11637 ill = ipif->ipif_ill; 11638 ASSERT(ill != NULL); 11639 ipst = ill->ill_ipst; 11640 11641 /* 11642 * In the case of lo0:0 we already hold the ill_g_lock. 11643 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11644 * ipif_insert. 11645 */ 11646 if (acquire_g_lock) 11647 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11648 mutex_enter(&ill->ill_lock); 11649 id = ipif->ipif_id; 11650 tipifp = &(ill->ill_ipif); 11651 if (id == -1) { /* need to find a real id */ 11652 id = 0; 11653 while ((tipif = *tipifp) != NULL) { 11654 ASSERT(tipif->ipif_id >= id); 11655 if (tipif->ipif_id != id) 11656 break; /* non-consecutive id */ 11657 id++; 11658 tipifp = &(tipif->ipif_next); 11659 } 11660 if ((err = is_lifname_valid(ill, id)) != 0) { 11661 mutex_exit(&ill->ill_lock); 11662 if (acquire_g_lock) 11663 rw_exit(&ipst->ips_ill_g_lock); 11664 return (err); 11665 } 11666 ipif->ipif_id = id; /* assign new id */ 11667 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11668 /* we have a real id; insert ipif in the right place */ 11669 while ((tipif = *tipifp) != NULL) { 11670 ASSERT(tipif->ipif_id != id); 11671 if (tipif->ipif_id > id) 11672 break; /* found correct location */ 11673 tipifp = &(tipif->ipif_next); 11674 } 11675 } else { 11676 mutex_exit(&ill->ill_lock); 11677 if (acquire_g_lock) 11678 rw_exit(&ipst->ips_ill_g_lock); 11679 return (err); 11680 } 11681 11682 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11683 11684 ipif->ipif_next = tipif; 11685 *tipifp = ipif; 11686 mutex_exit(&ill->ill_lock); 11687 if (acquire_g_lock) 11688 rw_exit(&ipst->ips_ill_g_lock); 11689 11690 return (0); 11691 } 11692 11693 static void 11694 ipif_remove(ipif_t *ipif) 11695 { 11696 ipif_t **ipifp; 11697 ill_t *ill = ipif->ipif_ill; 11698 11699 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11700 11701 mutex_enter(&ill->ill_lock); 11702 ipifp = &ill->ill_ipif; 11703 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11704 if (*ipifp == ipif) { 11705 *ipifp = ipif->ipif_next; 11706 break; 11707 } 11708 } 11709 mutex_exit(&ill->ill_lock); 11710 } 11711 11712 /* 11713 * Allocate and initialize a new interface control structure. (Always 11714 * called as writer.) 11715 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11716 * is not part of the global linked list of ills. ipif_seqid is unique 11717 * in the system and to preserve the uniqueness, it is assigned only 11718 * when ill becomes part of the global list. At that point ill will 11719 * have a name. If it doesn't get assigned here, it will get assigned 11720 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11721 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11722 * the interface flags or any other information from the DL_INFO_ACK for 11723 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11724 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11725 * second DL_INFO_ACK comes in from the driver. 11726 */ 11727 static ipif_t * 11728 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11729 boolean_t insert, int *errorp) 11730 { 11731 int err; 11732 ipif_t *ipif; 11733 ip_stack_t *ipst = ill->ill_ipst; 11734 11735 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11736 ill->ill_name, id, (void *)ill)); 11737 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11738 11739 if (errorp != NULL) 11740 *errorp = 0; 11741 11742 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 11743 if (errorp != NULL) 11744 *errorp = ENOMEM; 11745 return (NULL); 11746 } 11747 *ipif = ipif_zero; /* start clean */ 11748 11749 ipif->ipif_ill = ill; 11750 ipif->ipif_id = id; /* could be -1 */ 11751 /* 11752 * Inherit the zoneid from the ill; for the shared stack instance 11753 * this is always the global zone 11754 */ 11755 ipif->ipif_zoneid = ill->ill_zoneid; 11756 11757 ipif->ipif_refcnt = 0; 11758 11759 if (insert) { 11760 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 11761 mi_free(ipif); 11762 if (errorp != NULL) 11763 *errorp = err; 11764 return (NULL); 11765 } 11766 /* -1 id should have been replaced by real id */ 11767 id = ipif->ipif_id; 11768 ASSERT(id >= 0); 11769 } 11770 11771 if (ill->ill_name[0] != '\0') 11772 ipif_assign_seqid(ipif); 11773 11774 /* 11775 * If this is the zeroth ipif on the IPMP ill, create the illgrp 11776 * (which must not exist yet because the zeroth ipif is created once 11777 * per ill). However, do not not link it to the ipmp_grp_t until 11778 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 11779 */ 11780 if (id == 0 && IS_IPMP(ill)) { 11781 if (ipmp_illgrp_create(ill) == NULL) { 11782 if (insert) { 11783 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11784 ipif_remove(ipif); 11785 rw_exit(&ipst->ips_ill_g_lock); 11786 } 11787 mi_free(ipif); 11788 if (errorp != NULL) 11789 *errorp = ENOMEM; 11790 return (NULL); 11791 } 11792 } 11793 11794 /* 11795 * We grab ill_lock to protect the flag changes. The ipif is still 11796 * not up and can't be looked up until the ioctl completes and the 11797 * IPIF_CHANGING flag is cleared. 11798 */ 11799 mutex_enter(&ill->ill_lock); 11800 11801 ipif->ipif_ire_type = ire_type; 11802 11803 if (ipif->ipif_isv6) { 11804 ill->ill_flags |= ILLF_IPV6; 11805 } else { 11806 ipaddr_t inaddr_any = INADDR_ANY; 11807 11808 ill->ill_flags |= ILLF_IPV4; 11809 11810 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 11811 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11812 &ipif->ipif_v6lcl_addr); 11813 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11814 &ipif->ipif_v6subnet); 11815 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11816 &ipif->ipif_v6net_mask); 11817 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11818 &ipif->ipif_v6brd_addr); 11819 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11820 &ipif->ipif_v6pp_dst_addr); 11821 } 11822 11823 /* 11824 * Don't set the interface flags etc. now, will do it in 11825 * ip_ll_subnet_defaults. 11826 */ 11827 if (!initialize) 11828 goto out; 11829 11830 /* 11831 * NOTE: The IPMP meta-interface is special-cased because it starts 11832 * with no underlying interfaces (and thus an unknown broadcast 11833 * address length), but all interfaces that can be placed into an IPMP 11834 * group are required to be broadcast-capable. 11835 */ 11836 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 11837 /* 11838 * Later detect lack of DLPI driver multicast capability by 11839 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 11840 */ 11841 ill->ill_flags |= ILLF_MULTICAST; 11842 if (!ipif->ipif_isv6) 11843 ipif->ipif_flags |= IPIF_BROADCAST; 11844 } else { 11845 if (ill->ill_net_type != IRE_LOOPBACK) { 11846 if (ipif->ipif_isv6) 11847 /* 11848 * Note: xresolv interfaces will eventually need 11849 * NOARP set here as well, but that will require 11850 * those external resolvers to have some 11851 * knowledge of that flag and act appropriately. 11852 * Not to be changed at present. 11853 */ 11854 ill->ill_flags |= ILLF_NONUD; 11855 else 11856 ill->ill_flags |= ILLF_NOARP; 11857 } 11858 if (ill->ill_phys_addr_length == 0) { 11859 if (IS_VNI(ill)) { 11860 ipif->ipif_flags |= IPIF_NOXMIT; 11861 } else { 11862 /* pt-pt supports multicast. */ 11863 ill->ill_flags |= ILLF_MULTICAST; 11864 if (ill->ill_net_type != IRE_LOOPBACK) 11865 ipif->ipif_flags |= IPIF_POINTOPOINT; 11866 } 11867 } 11868 } 11869 out: 11870 mutex_exit(&ill->ill_lock); 11871 return (ipif); 11872 } 11873 11874 /* 11875 * Remove the neighbor cache entries associated with this logical 11876 * interface. 11877 */ 11878 int 11879 ipif_arp_down(ipif_t *ipif) 11880 { 11881 ill_t *ill = ipif->ipif_ill; 11882 int err = 0; 11883 11884 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 11885 ASSERT(IAM_WRITER_IPIF(ipif)); 11886 11887 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 11888 ill_t *, ill, ipif_t *, ipif); 11889 ipif_nce_down(ipif); 11890 11891 /* 11892 * If this is the last ipif that is going down and there are no 11893 * duplicate addresses we may yet attempt to re-probe, then we need to 11894 * clean up ARP completely. 11895 */ 11896 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 11897 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 11898 /* 11899 * If this was the last ipif on an IPMP interface, purge any 11900 * static ARP entries associated with it. 11901 */ 11902 if (IS_IPMP(ill)) 11903 ipmp_illgrp_refresh_arpent(ill->ill_grp); 11904 11905 /* UNBIND, DETACH */ 11906 err = arp_ll_down(ill); 11907 } 11908 11909 return (err); 11910 } 11911 11912 /* 11913 * Get the resolver set up for a new IP address. (Always called as writer.) 11914 * Called both for IPv4 and IPv6 interfaces, though it only does some 11915 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 11916 * 11917 * The enumerated value res_act tunes the behavior: 11918 * * Res_act_initial: set up all the resolver structures for a new 11919 * IP address. 11920 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 11921 * ARP message in defense of the address. 11922 * * Res_act_rebind: tell ARP to change the hardware address for an IP 11923 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 11924 * 11925 * Returns zero on success, or an errno upon failure. 11926 */ 11927 int 11928 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 11929 { 11930 ill_t *ill = ipif->ipif_ill; 11931 int err; 11932 boolean_t was_dup; 11933 11934 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 11935 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 11936 ASSERT(IAM_WRITER_IPIF(ipif)); 11937 11938 was_dup = B_FALSE; 11939 if (res_act == Res_act_initial) { 11940 ipif->ipif_addr_ready = 0; 11941 /* 11942 * We're bringing an interface up here. There's no way that we 11943 * should need to shut down ARP now. 11944 */ 11945 mutex_enter(&ill->ill_lock); 11946 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11947 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11948 ill->ill_ipif_dup_count--; 11949 was_dup = B_TRUE; 11950 } 11951 mutex_exit(&ill->ill_lock); 11952 } 11953 if (ipif->ipif_recovery_id != 0) 11954 (void) untimeout(ipif->ipif_recovery_id); 11955 ipif->ipif_recovery_id = 0; 11956 if (ill->ill_net_type != IRE_IF_RESOLVER) { 11957 ipif->ipif_addr_ready = 1; 11958 return (0); 11959 } 11960 /* NDP will set the ipif_addr_ready flag when it's ready */ 11961 if (ill->ill_isv6) 11962 return (0); 11963 11964 err = ipif_arp_up(ipif, res_act, was_dup); 11965 return (err); 11966 } 11967 11968 /* 11969 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 11970 * when a link has just gone back up. 11971 */ 11972 static void 11973 ipif_nce_start_dad(ipif_t *ipif) 11974 { 11975 ncec_t *ncec; 11976 ill_t *ill = ipif->ipif_ill; 11977 boolean_t isv6 = ill->ill_isv6; 11978 11979 if (isv6) { 11980 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 11981 &ipif->ipif_v6lcl_addr); 11982 } else { 11983 ipaddr_t v4addr; 11984 11985 if (ill->ill_net_type != IRE_IF_RESOLVER || 11986 (ipif->ipif_flags & IPIF_UNNUMBERED) || 11987 ipif->ipif_lcl_addr == INADDR_ANY) { 11988 /* 11989 * If we can't contact ARP for some reason, 11990 * that's not really a problem. Just send 11991 * out the routing socket notification that 11992 * DAD completion would have done, and continue. 11993 */ 11994 ipif_mask_reply(ipif); 11995 ipif_up_notify(ipif); 11996 ipif->ipif_addr_ready = 1; 11997 return; 11998 } 11999 12000 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12001 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12002 } 12003 12004 if (ncec == NULL) { 12005 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12006 (void *)ipif)); 12007 return; 12008 } 12009 if (!nce_restart_dad(ncec)) { 12010 /* 12011 * If we can't restart DAD for some reason, that's not really a 12012 * problem. Just send out the routing socket notification that 12013 * DAD completion would have done, and continue. 12014 */ 12015 ipif_up_notify(ipif); 12016 ipif->ipif_addr_ready = 1; 12017 } 12018 ncec_refrele(ncec); 12019 } 12020 12021 /* 12022 * Restart duplicate address detection on all interfaces on the given ill. 12023 * 12024 * This is called when an interface transitions from down to up 12025 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12026 * 12027 * Note that since the underlying physical link has transitioned, we must cause 12028 * at least one routing socket message to be sent here, either via DAD 12029 * completion or just by default on the first ipif. (If we don't do this, then 12030 * in.mpathd will see long delays when doing link-based failure recovery.) 12031 */ 12032 void 12033 ill_restart_dad(ill_t *ill, boolean_t went_up) 12034 { 12035 ipif_t *ipif; 12036 12037 if (ill == NULL) 12038 return; 12039 12040 /* 12041 * If layer two doesn't support duplicate address detection, then just 12042 * send the routing socket message now and be done with it. 12043 */ 12044 if (!ill->ill_isv6 && arp_no_defense) { 12045 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12046 return; 12047 } 12048 12049 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12050 if (went_up) { 12051 12052 if (ipif->ipif_flags & IPIF_UP) { 12053 ipif_nce_start_dad(ipif); 12054 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12055 /* 12056 * kick off the bring-up process now. 12057 */ 12058 ipif_do_recovery(ipif); 12059 } else { 12060 /* 12061 * Unfortunately, the first ipif is "special" 12062 * and represents the underlying ill in the 12063 * routing socket messages. Thus, when this 12064 * one ipif is down, we must still notify so 12065 * that the user knows the IFF_RUNNING status 12066 * change. (If the first ipif is up, then 12067 * we'll handle eventual routing socket 12068 * notification via DAD completion.) 12069 */ 12070 if (ipif == ill->ill_ipif) { 12071 ip_rts_ifmsg(ill->ill_ipif, 12072 RTSQ_DEFAULT); 12073 } 12074 } 12075 } else { 12076 /* 12077 * After link down, we'll need to send a new routing 12078 * message when the link comes back, so clear 12079 * ipif_addr_ready. 12080 */ 12081 ipif->ipif_addr_ready = 0; 12082 } 12083 } 12084 12085 /* 12086 * If we've torn down links, then notify the user right away. 12087 */ 12088 if (!went_up) 12089 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12090 } 12091 12092 static void 12093 ipsq_delete(ipsq_t *ipsq) 12094 { 12095 ipxop_t *ipx = ipsq->ipsq_xop; 12096 12097 ipsq->ipsq_ipst = NULL; 12098 ASSERT(ipsq->ipsq_phyint == NULL); 12099 ASSERT(ipsq->ipsq_xop != NULL); 12100 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12101 ASSERT(ipx->ipx_pending_mp == NULL); 12102 kmem_free(ipsq, sizeof (ipsq_t)); 12103 } 12104 12105 static int 12106 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12107 { 12108 int err = 0; 12109 ipif_t *ipif; 12110 12111 if (ill == NULL) 12112 return (0); 12113 12114 ASSERT(IAM_WRITER_ILL(ill)); 12115 ill->ill_up_ipifs = B_TRUE; 12116 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12117 if (ipif->ipif_was_up) { 12118 if (!(ipif->ipif_flags & IPIF_UP)) 12119 err = ipif_up(ipif, q, mp); 12120 ipif->ipif_was_up = B_FALSE; 12121 if (err != 0) { 12122 ASSERT(err == EINPROGRESS); 12123 return (err); 12124 } 12125 } 12126 } 12127 ill->ill_up_ipifs = B_FALSE; 12128 return (0); 12129 } 12130 12131 /* 12132 * This function is called to bring up all the ipifs that were up before 12133 * bringing the ill down via ill_down_ipifs(). 12134 */ 12135 int 12136 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12137 { 12138 int err; 12139 12140 ASSERT(IAM_WRITER_ILL(ill)); 12141 12142 if (ill->ill_replumbing) { 12143 ill->ill_replumbing = 0; 12144 /* 12145 * Send down REPLUMB_DONE notification followed by the 12146 * BIND_REQ on the arp stream. 12147 */ 12148 if (!ill->ill_isv6) 12149 arp_send_replumb_conf(ill); 12150 } 12151 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12152 if (err != 0) 12153 return (err); 12154 12155 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12156 } 12157 12158 /* 12159 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12160 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12161 */ 12162 static void 12163 ill_down_ipifs(ill_t *ill, boolean_t logical) 12164 { 12165 ipif_t *ipif; 12166 12167 ASSERT(IAM_WRITER_ILL(ill)); 12168 12169 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12170 /* 12171 * We go through the ipif_down logic even if the ipif 12172 * is already down, since routes can be added based 12173 * on down ipifs. Going through ipif_down once again 12174 * will delete any IREs created based on these routes. 12175 */ 12176 if (ipif->ipif_flags & IPIF_UP) 12177 ipif->ipif_was_up = B_TRUE; 12178 12179 if (logical) { 12180 (void) ipif_logical_down(ipif, NULL, NULL); 12181 ipif_non_duplicate(ipif); 12182 (void) ipif_down_tail(ipif); 12183 } else { 12184 (void) ipif_down(ipif, NULL, NULL); 12185 } 12186 } 12187 } 12188 12189 /* 12190 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12191 * a look again at valid source addresses. 12192 * This should be called each time after the set of source addresses has been 12193 * changed. 12194 */ 12195 void 12196 ip_update_source_selection(ip_stack_t *ipst) 12197 { 12198 /* We skip past SRC_GENERATION_VERIFY */ 12199 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12200 SRC_GENERATION_VERIFY) 12201 atomic_add_32(&ipst->ips_src_generation, 1); 12202 } 12203 12204 /* 12205 * Finish the group join started in ip_sioctl_groupname(). 12206 */ 12207 /* ARGSUSED */ 12208 static void 12209 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12210 { 12211 ill_t *ill = q->q_ptr; 12212 phyint_t *phyi = ill->ill_phyint; 12213 ipmp_grp_t *grp = phyi->phyint_grp; 12214 ip_stack_t *ipst = ill->ill_ipst; 12215 12216 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12217 ASSERT(!IS_IPMP(ill) && grp != NULL); 12218 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12219 12220 if (phyi->phyint_illv4 != NULL) { 12221 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12222 VERIFY(grp->gr_pendv4-- > 0); 12223 rw_exit(&ipst->ips_ipmp_lock); 12224 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12225 } 12226 if (phyi->phyint_illv6 != NULL) { 12227 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12228 VERIFY(grp->gr_pendv6-- > 0); 12229 rw_exit(&ipst->ips_ipmp_lock); 12230 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12231 } 12232 freemsg(mp); 12233 } 12234 12235 /* 12236 * Process an SIOCSLIFGROUPNAME request. 12237 */ 12238 /* ARGSUSED */ 12239 int 12240 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12241 ip_ioctl_cmd_t *ipip, void *ifreq) 12242 { 12243 struct lifreq *lifr = ifreq; 12244 ill_t *ill = ipif->ipif_ill; 12245 ip_stack_t *ipst = ill->ill_ipst; 12246 phyint_t *phyi = ill->ill_phyint; 12247 ipmp_grp_t *grp = phyi->phyint_grp; 12248 mblk_t *ipsq_mp; 12249 int err = 0; 12250 12251 /* 12252 * Note that phyint_grp can only change here, where we're exclusive. 12253 */ 12254 ASSERT(IAM_WRITER_ILL(ill)); 12255 12256 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12257 (phyi->phyint_flags & PHYI_VIRTUAL)) 12258 return (EINVAL); 12259 12260 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12261 12262 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12263 12264 /* 12265 * If the name hasn't changed, there's nothing to do. 12266 */ 12267 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12268 goto unlock; 12269 12270 /* 12271 * Handle requests to rename an IPMP meta-interface. 12272 * 12273 * Note that creation of the IPMP meta-interface is handled in 12274 * userland through the standard plumbing sequence. As part of the 12275 * plumbing the IPMP meta-interface, its initial groupname is set to 12276 * the name of the interface (see ipif_set_values_tail()). 12277 */ 12278 if (IS_IPMP(ill)) { 12279 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12280 goto unlock; 12281 } 12282 12283 /* 12284 * Handle requests to add or remove an IP interface from a group. 12285 */ 12286 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12287 /* 12288 * Moves are handled by first removing the interface from 12289 * its existing group, and then adding it to another group. 12290 * So, fail if it's already in a group. 12291 */ 12292 if (IS_UNDER_IPMP(ill)) { 12293 err = EALREADY; 12294 goto unlock; 12295 } 12296 12297 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12298 if (grp == NULL) { 12299 err = ENOENT; 12300 goto unlock; 12301 } 12302 12303 /* 12304 * Check if the phyint and its ills are suitable for 12305 * inclusion into the group. 12306 */ 12307 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12308 goto unlock; 12309 12310 /* 12311 * Checks pass; join the group, and enqueue the remaining 12312 * illgrp joins for when we've become part of the group xop 12313 * and are exclusive across its IPSQs. Since qwriter_ip() 12314 * requires an mblk_t to scribble on, and since `mp' will be 12315 * freed as part of completing the ioctl, allocate another. 12316 */ 12317 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12318 err = ENOMEM; 12319 goto unlock; 12320 } 12321 12322 /* 12323 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12324 * IPMP meta-interface ills needed by `phyi' cannot go away 12325 * before ip_join_illgrps() is called back. See the comments 12326 * in ip_sioctl_plink_ipmp() for more. 12327 */ 12328 if (phyi->phyint_illv4 != NULL) 12329 grp->gr_pendv4++; 12330 if (phyi->phyint_illv6 != NULL) 12331 grp->gr_pendv6++; 12332 12333 rw_exit(&ipst->ips_ipmp_lock); 12334 12335 ipmp_phyint_join_grp(phyi, grp); 12336 ill_refhold(ill); 12337 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12338 SWITCH_OP, B_FALSE); 12339 return (0); 12340 } else { 12341 /* 12342 * Request to remove the interface from a group. If the 12343 * interface is not in a group, this trivially succeeds. 12344 */ 12345 rw_exit(&ipst->ips_ipmp_lock); 12346 if (IS_UNDER_IPMP(ill)) 12347 ipmp_phyint_leave_grp(phyi); 12348 return (0); 12349 } 12350 unlock: 12351 rw_exit(&ipst->ips_ipmp_lock); 12352 return (err); 12353 } 12354 12355 /* 12356 * Process an SIOCGLIFBINDING request. 12357 */ 12358 /* ARGSUSED */ 12359 int 12360 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12361 ip_ioctl_cmd_t *ipip, void *ifreq) 12362 { 12363 ill_t *ill; 12364 struct lifreq *lifr = ifreq; 12365 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12366 12367 if (!IS_IPMP(ipif->ipif_ill)) 12368 return (EINVAL); 12369 12370 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12371 if ((ill = ipif->ipif_bound_ill) == NULL) 12372 lifr->lifr_binding[0] = '\0'; 12373 else 12374 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12375 rw_exit(&ipst->ips_ipmp_lock); 12376 return (0); 12377 } 12378 12379 /* 12380 * Process an SIOCGLIFGROUPNAME request. 12381 */ 12382 /* ARGSUSED */ 12383 int 12384 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12385 ip_ioctl_cmd_t *ipip, void *ifreq) 12386 { 12387 ipmp_grp_t *grp; 12388 struct lifreq *lifr = ifreq; 12389 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12390 12391 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12392 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12393 lifr->lifr_groupname[0] = '\0'; 12394 else 12395 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12396 rw_exit(&ipst->ips_ipmp_lock); 12397 return (0); 12398 } 12399 12400 /* 12401 * Process an SIOCGLIFGROUPINFO request. 12402 */ 12403 /* ARGSUSED */ 12404 int 12405 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12406 ip_ioctl_cmd_t *ipip, void *dummy) 12407 { 12408 ipmp_grp_t *grp; 12409 lifgroupinfo_t *lifgr; 12410 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12411 12412 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12413 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12414 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12415 12416 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12417 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12418 rw_exit(&ipst->ips_ipmp_lock); 12419 return (ENOENT); 12420 } 12421 ipmp_grp_info(grp, lifgr); 12422 rw_exit(&ipst->ips_ipmp_lock); 12423 return (0); 12424 } 12425 12426 static void 12427 ill_dl_down(ill_t *ill) 12428 { 12429 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12430 12431 /* 12432 * The ill is down; unbind but stay attached since we're still 12433 * associated with a PPA. If we have negotiated DLPI capabilites 12434 * with the data link service provider (IDS_OK) then reset them. 12435 * The interval between unbinding and rebinding is potentially 12436 * unbounded hence we cannot assume things will be the same. 12437 * The DLPI capabilities will be probed again when the data link 12438 * is brought up. 12439 */ 12440 mblk_t *mp = ill->ill_unbind_mp; 12441 12442 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12443 12444 if (!ill->ill_replumbing) { 12445 /* Free all ilms for this ill */ 12446 update_conn_ill(ill, ill->ill_ipst); 12447 } else { 12448 ill_leave_multicast(ill); 12449 } 12450 12451 ill->ill_unbind_mp = NULL; 12452 if (mp != NULL) { 12453 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12454 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12455 ill->ill_name)); 12456 mutex_enter(&ill->ill_lock); 12457 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12458 mutex_exit(&ill->ill_lock); 12459 /* 12460 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12461 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12462 * ill_capability_dld_disable disable rightaway. If this is not 12463 * an unplumb operation then the disable happens on receipt of 12464 * the capab ack via ip_rput_dlpi_writer -> 12465 * ill_capability_ack_thr. In both cases the order of 12466 * the operations seen by DLD is capability disable followed 12467 * by DL_UNBIND. Also the DLD capability disable needs a 12468 * cv_wait'able context. 12469 */ 12470 if (ill->ill_state_flags & ILL_CONDEMNED) 12471 ill_capability_dld_disable(ill); 12472 ill_capability_reset(ill, B_FALSE); 12473 ill_dlpi_send(ill, mp); 12474 } 12475 mutex_enter(&ill->ill_lock); 12476 ill->ill_dl_up = 0; 12477 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12478 mutex_exit(&ill->ill_lock); 12479 } 12480 12481 void 12482 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12483 { 12484 union DL_primitives *dlp; 12485 t_uscalar_t prim; 12486 boolean_t waitack = B_FALSE; 12487 12488 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12489 12490 dlp = (union DL_primitives *)mp->b_rptr; 12491 prim = dlp->dl_primitive; 12492 12493 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12494 dl_primstr(prim), prim, ill->ill_name)); 12495 12496 switch (prim) { 12497 case DL_PHYS_ADDR_REQ: 12498 { 12499 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12500 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12501 break; 12502 } 12503 case DL_BIND_REQ: 12504 mutex_enter(&ill->ill_lock); 12505 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12506 mutex_exit(&ill->ill_lock); 12507 break; 12508 } 12509 12510 /* 12511 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12512 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12513 * we only wait for the ACK of the DL_UNBIND_REQ. 12514 */ 12515 mutex_enter(&ill->ill_lock); 12516 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12517 (prim == DL_UNBIND_REQ)) { 12518 ill->ill_dlpi_pending = prim; 12519 waitack = B_TRUE; 12520 } 12521 12522 mutex_exit(&ill->ill_lock); 12523 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12524 char *, dl_primstr(prim), ill_t *, ill); 12525 putnext(ill->ill_wq, mp); 12526 12527 /* 12528 * There is no ack for DL_NOTIFY_CONF messages 12529 */ 12530 if (waitack && prim == DL_NOTIFY_CONF) 12531 ill_dlpi_done(ill, prim); 12532 } 12533 12534 /* 12535 * Helper function for ill_dlpi_send(). 12536 */ 12537 /* ARGSUSED */ 12538 static void 12539 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12540 { 12541 ill_dlpi_send(q->q_ptr, mp); 12542 } 12543 12544 /* 12545 * Send a DLPI control message to the driver but make sure there 12546 * is only one outstanding message. Uses ill_dlpi_pending to tell 12547 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12548 * when an ACK or a NAK is received to process the next queued message. 12549 */ 12550 void 12551 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12552 { 12553 mblk_t **mpp; 12554 12555 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12556 12557 /* 12558 * To ensure that any DLPI requests for current exclusive operation 12559 * are always completely sent before any DLPI messages for other 12560 * operations, require writer access before enqueuing. 12561 */ 12562 if (!IAM_WRITER_ILL(ill)) { 12563 ill_refhold(ill); 12564 /* qwriter_ip() does the ill_refrele() */ 12565 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12566 NEW_OP, B_TRUE); 12567 return; 12568 } 12569 12570 mutex_enter(&ill->ill_lock); 12571 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12572 /* Must queue message. Tail insertion */ 12573 mpp = &ill->ill_dlpi_deferred; 12574 while (*mpp != NULL) 12575 mpp = &((*mpp)->b_next); 12576 12577 ip1dbg(("ill_dlpi_send: deferring request for %s " 12578 "while %s pending\n", ill->ill_name, 12579 dl_primstr(ill->ill_dlpi_pending))); 12580 12581 *mpp = mp; 12582 mutex_exit(&ill->ill_lock); 12583 return; 12584 } 12585 mutex_exit(&ill->ill_lock); 12586 ill_dlpi_dispatch(ill, mp); 12587 } 12588 12589 void 12590 ill_capability_send(ill_t *ill, mblk_t *mp) 12591 { 12592 ill->ill_capab_pending_cnt++; 12593 ill_dlpi_send(ill, mp); 12594 } 12595 12596 void 12597 ill_capability_done(ill_t *ill) 12598 { 12599 ASSERT(ill->ill_capab_pending_cnt != 0); 12600 12601 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12602 12603 ill->ill_capab_pending_cnt--; 12604 if (ill->ill_capab_pending_cnt == 0 && 12605 ill->ill_dlpi_capab_state == IDCS_OK) 12606 ill_capability_reset_alloc(ill); 12607 } 12608 12609 /* 12610 * Send all deferred DLPI messages without waiting for their ACKs. 12611 */ 12612 void 12613 ill_dlpi_send_deferred(ill_t *ill) 12614 { 12615 mblk_t *mp, *nextmp; 12616 12617 /* 12618 * Clear ill_dlpi_pending so that the message is not queued in 12619 * ill_dlpi_send(). 12620 */ 12621 mutex_enter(&ill->ill_lock); 12622 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12623 mp = ill->ill_dlpi_deferred; 12624 ill->ill_dlpi_deferred = NULL; 12625 mutex_exit(&ill->ill_lock); 12626 12627 for (; mp != NULL; mp = nextmp) { 12628 nextmp = mp->b_next; 12629 mp->b_next = NULL; 12630 ill_dlpi_send(ill, mp); 12631 } 12632 } 12633 12634 /* 12635 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12636 * or M_HANGUP 12637 */ 12638 static void 12639 ill_dlpi_clear_deferred(ill_t *ill) 12640 { 12641 mblk_t *mp, *nextmp; 12642 12643 mutex_enter(&ill->ill_lock); 12644 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12645 mp = ill->ill_dlpi_deferred; 12646 ill->ill_dlpi_deferred = NULL; 12647 mutex_exit(&ill->ill_lock); 12648 12649 for (; mp != NULL; mp = nextmp) { 12650 nextmp = mp->b_next; 12651 inet_freemsg(mp); 12652 } 12653 } 12654 12655 /* 12656 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12657 */ 12658 boolean_t 12659 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12660 { 12661 t_uscalar_t pending; 12662 12663 mutex_enter(&ill->ill_lock); 12664 if (ill->ill_dlpi_pending == prim) { 12665 mutex_exit(&ill->ill_lock); 12666 return (B_TRUE); 12667 } 12668 12669 /* 12670 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12671 * without waiting, so don't print any warnings in that case. 12672 */ 12673 if (ill->ill_state_flags & ILL_CONDEMNED) { 12674 mutex_exit(&ill->ill_lock); 12675 return (B_FALSE); 12676 } 12677 pending = ill->ill_dlpi_pending; 12678 mutex_exit(&ill->ill_lock); 12679 12680 if (pending == DL_PRIM_INVAL) { 12681 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12682 "received unsolicited ack for %s on %s\n", 12683 dl_primstr(prim), ill->ill_name); 12684 } else { 12685 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12686 "received unexpected ack for %s on %s (expecting %s)\n", 12687 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12688 } 12689 return (B_FALSE); 12690 } 12691 12692 /* 12693 * Complete the current DLPI operation associated with `prim' on `ill' and 12694 * start the next queued DLPI operation (if any). If there are no queued DLPI 12695 * operations and the ill's current exclusive IPSQ operation has finished 12696 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12697 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12698 * the comments above ipsq_current_finish() for details. 12699 */ 12700 void 12701 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12702 { 12703 mblk_t *mp; 12704 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12705 ipxop_t *ipx = ipsq->ipsq_xop; 12706 12707 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12708 mutex_enter(&ill->ill_lock); 12709 12710 ASSERT(prim != DL_PRIM_INVAL); 12711 ASSERT(ill->ill_dlpi_pending == prim); 12712 12713 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12714 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12715 12716 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12717 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12718 if (ipx->ipx_current_done) { 12719 mutex_enter(&ipx->ipx_lock); 12720 ipx->ipx_current_ipif = NULL; 12721 mutex_exit(&ipx->ipx_lock); 12722 } 12723 cv_signal(&ill->ill_cv); 12724 mutex_exit(&ill->ill_lock); 12725 return; 12726 } 12727 12728 ill->ill_dlpi_deferred = mp->b_next; 12729 mp->b_next = NULL; 12730 mutex_exit(&ill->ill_lock); 12731 12732 ill_dlpi_dispatch(ill, mp); 12733 } 12734 12735 /* 12736 * Queue a (multicast) DLPI control message to be sent to the driver by 12737 * later calling ill_dlpi_send_queued. 12738 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12739 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12740 * for the same group to race. 12741 * We send DLPI control messages in order using ill_lock. 12742 * For IPMP we should be called on the cast_ill. 12743 */ 12744 void 12745 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12746 { 12747 mblk_t **mpp; 12748 12749 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12750 12751 mutex_enter(&ill->ill_lock); 12752 /* Must queue message. Tail insertion */ 12753 mpp = &ill->ill_dlpi_deferred; 12754 while (*mpp != NULL) 12755 mpp = &((*mpp)->b_next); 12756 12757 *mpp = mp; 12758 mutex_exit(&ill->ill_lock); 12759 } 12760 12761 /* 12762 * Send the messages that were queued. Make sure there is only 12763 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 12764 * when an ACK or a NAK is received to process the next queued message. 12765 * For IPMP we are called on the upper ill, but when send what is queued 12766 * on the cast_ill. 12767 */ 12768 void 12769 ill_dlpi_send_queued(ill_t *ill) 12770 { 12771 mblk_t *mp; 12772 union DL_primitives *dlp; 12773 t_uscalar_t prim; 12774 ill_t *release_ill = NULL; 12775 12776 if (IS_IPMP(ill)) { 12777 /* On the upper IPMP ill. */ 12778 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12779 if (release_ill == NULL) { 12780 /* Avoid ever sending anything down to the ipmpstub */ 12781 return; 12782 } 12783 ill = release_ill; 12784 } 12785 mutex_enter(&ill->ill_lock); 12786 while ((mp = ill->ill_dlpi_deferred) != NULL) { 12787 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12788 /* Can't send. Somebody else will send it */ 12789 mutex_exit(&ill->ill_lock); 12790 goto done; 12791 } 12792 ill->ill_dlpi_deferred = mp->b_next; 12793 mp->b_next = NULL; 12794 if (!ill->ill_dl_up) { 12795 /* 12796 * Nobody there. All multicast addresses will be 12797 * re-joined when we get the DL_BIND_ACK bringing the 12798 * interface up. 12799 */ 12800 freemsg(mp); 12801 continue; 12802 } 12803 dlp = (union DL_primitives *)mp->b_rptr; 12804 prim = dlp->dl_primitive; 12805 12806 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12807 (prim == DL_UNBIND_REQ)) { 12808 ill->ill_dlpi_pending = prim; 12809 } 12810 mutex_exit(&ill->ill_lock); 12811 12812 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 12813 char *, dl_primstr(prim), ill_t *, ill); 12814 putnext(ill->ill_wq, mp); 12815 mutex_enter(&ill->ill_lock); 12816 } 12817 mutex_exit(&ill->ill_lock); 12818 done: 12819 if (release_ill != NULL) 12820 ill_refrele(release_ill); 12821 } 12822 12823 /* 12824 * Queue an IP (IGMP/MLD) message to be sent by IP from 12825 * ill_mcast_send_queued 12826 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12827 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 12828 * group to race. 12829 * We send them in order using ill_lock. 12830 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 12831 */ 12832 void 12833 ill_mcast_queue(ill_t *ill, mblk_t *mp) 12834 { 12835 mblk_t **mpp; 12836 ill_t *release_ill = NULL; 12837 12838 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 12839 12840 if (IS_IPMP(ill)) { 12841 /* On the upper IPMP ill. */ 12842 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12843 if (release_ill == NULL) { 12844 /* Discard instead of queuing for the ipmp interface */ 12845 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12846 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 12847 mp, ill); 12848 freemsg(mp); 12849 return; 12850 } 12851 ill = release_ill; 12852 } 12853 12854 mutex_enter(&ill->ill_lock); 12855 /* Must queue message. Tail insertion */ 12856 mpp = &ill->ill_mcast_deferred; 12857 while (*mpp != NULL) 12858 mpp = &((*mpp)->b_next); 12859 12860 *mpp = mp; 12861 mutex_exit(&ill->ill_lock); 12862 if (release_ill != NULL) 12863 ill_refrele(release_ill); 12864 } 12865 12866 /* 12867 * Send the IP packets that were queued by ill_mcast_queue. 12868 * These are IGMP/MLD packets. 12869 * 12870 * For IPMP we are called on the upper ill, but when send what is queued 12871 * on the cast_ill. 12872 * 12873 * Request loopback of the report if we are acting as a multicast 12874 * router, so that the process-level routing demon can hear it. 12875 * This will run multiple times for the same group if there are members 12876 * on the same group for multiple ipif's on the same ill. The 12877 * igmp_input/mld_input code will suppress this due to the loopback thus we 12878 * always loopback membership report. 12879 * 12880 * We also need to make sure that this does not get load balanced 12881 * by IPMP. We do this by passing an ill to ip_output_simple. 12882 */ 12883 void 12884 ill_mcast_send_queued(ill_t *ill) 12885 { 12886 mblk_t *mp; 12887 ip_xmit_attr_t ixas; 12888 ill_t *release_ill = NULL; 12889 12890 if (IS_IPMP(ill)) { 12891 /* On the upper IPMP ill. */ 12892 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12893 if (release_ill == NULL) { 12894 /* 12895 * We should have no messages on the ipmp interface 12896 * but no point in trying to send them. 12897 */ 12898 return; 12899 } 12900 ill = release_ill; 12901 } 12902 bzero(&ixas, sizeof (ixas)); 12903 ixas.ixa_zoneid = ALL_ZONES; 12904 ixas.ixa_cred = kcred; 12905 ixas.ixa_cpid = NOPID; 12906 ixas.ixa_tsl = NULL; 12907 /* 12908 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 12909 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 12910 * That is necessary to handle IGMP/MLD snooping switches. 12911 */ 12912 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 12913 ixas.ixa_ipst = ill->ill_ipst; 12914 12915 mutex_enter(&ill->ill_lock); 12916 while ((mp = ill->ill_mcast_deferred) != NULL) { 12917 ill->ill_mcast_deferred = mp->b_next; 12918 mp->b_next = NULL; 12919 if (!ill->ill_dl_up) { 12920 /* 12921 * Nobody there. Just drop the ip packets. 12922 * IGMP/MLD will resend later, if this is a replumb. 12923 */ 12924 freemsg(mp); 12925 continue; 12926 } 12927 mutex_enter(&ill->ill_phyint->phyint_lock); 12928 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 12929 /* 12930 * When the ill is getting deactivated, we only want to 12931 * send the DLPI messages, so drop IGMP/MLD packets. 12932 * DLPI messages are handled by ill_dlpi_send_queued() 12933 */ 12934 mutex_exit(&ill->ill_phyint->phyint_lock); 12935 freemsg(mp); 12936 continue; 12937 } 12938 mutex_exit(&ill->ill_phyint->phyint_lock); 12939 mutex_exit(&ill->ill_lock); 12940 12941 /* Check whether we are sending IPv4 or IPv6. */ 12942 if (ill->ill_isv6) { 12943 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12944 12945 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 12946 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 12947 } else { 12948 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12949 12950 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 12951 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 12952 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 12953 } 12954 12955 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 12956 (void) ip_output_simple(mp, &ixas); 12957 ixa_cleanup(&ixas); 12958 12959 mutex_enter(&ill->ill_lock); 12960 } 12961 mutex_exit(&ill->ill_lock); 12962 12963 done: 12964 if (release_ill != NULL) 12965 ill_refrele(release_ill); 12966 } 12967 12968 /* 12969 * Take down a specific interface, but don't lose any information about it. 12970 * (Always called as writer.) 12971 * This function goes through the down sequence even if the interface is 12972 * already down. There are 2 reasons. 12973 * a. Currently we permit interface routes that depend on down interfaces 12974 * to be added. This behaviour itself is questionable. However it appears 12975 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 12976 * time. We go thru the cleanup in order to remove these routes. 12977 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 12978 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 12979 * down, but we need to cleanup i.e. do ill_dl_down and 12980 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 12981 * 12982 * IP-MT notes: 12983 * 12984 * Model of reference to interfaces. 12985 * 12986 * The following members in ipif_t track references to the ipif. 12987 * int ipif_refcnt; Active reference count 12988 * 12989 * The following members in ill_t track references to the ill. 12990 * int ill_refcnt; active refcnt 12991 * uint_t ill_ire_cnt; Number of ires referencing ill 12992 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 12993 * uint_t ill_nce_cnt; Number of nces referencing ill 12994 * uint_t ill_ilm_cnt; Number of ilms referencing ill 12995 * 12996 * Reference to an ipif or ill can be obtained in any of the following ways. 12997 * 12998 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 12999 * Pointers to ipif / ill from other data structures viz ire and conn. 13000 * Implicit reference to the ipif / ill by holding a reference to the ire. 13001 * 13002 * The ipif/ill lookup functions return a reference held ipif / ill. 13003 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13004 * This is a purely dynamic reference count associated with threads holding 13005 * references to the ipif / ill. Pointers from other structures do not 13006 * count towards this reference count. 13007 * 13008 * ill_ire_cnt is the number of ire's associated with the 13009 * ill. This is incremented whenever a new ire is created referencing the 13010 * ill. This is done atomically inside ire_add_v[46] where the ire is 13011 * actually added to the ire hash table. The count is decremented in 13012 * ire_inactive where the ire is destroyed. 13013 * 13014 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13015 * This is incremented atomically in 13016 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13017 * table. Similarly it is decremented in ncec_inactive() where the ncec 13018 * is destroyed. 13019 * 13020 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13021 * incremented atomically in nce_add() where the nce is actually added to the 13022 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13023 * is destroyed. 13024 * 13025 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13026 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13027 * 13028 * Flow of ioctls involving interface down/up 13029 * 13030 * The following is the sequence of an attempt to set some critical flags on an 13031 * up interface. 13032 * ip_sioctl_flags 13033 * ipif_down 13034 * wait for ipif to be quiescent 13035 * ipif_down_tail 13036 * ip_sioctl_flags_tail 13037 * 13038 * All set ioctls that involve down/up sequence would have a skeleton similar 13039 * to the above. All the *tail functions are called after the refcounts have 13040 * dropped to the appropriate values. 13041 * 13042 * SIOC ioctls during the IPIF_CHANGING interval. 13043 * 13044 * Threads handling SIOC set ioctls serialize on the squeue, but this 13045 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13046 * steps of internal changes to the state, some of which are visible in 13047 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13048 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13049 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13050 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13051 * the current exclusive operation completes. The IPIF_CHANGING check 13052 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13053 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13054 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13055 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13056 * until we release the ipsq_lock, even though the ill/ipif state flags 13057 * can change after we drop the ill_lock. 13058 */ 13059 int 13060 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13061 { 13062 ill_t *ill = ipif->ipif_ill; 13063 conn_t *connp; 13064 boolean_t success; 13065 boolean_t ipif_was_up = B_FALSE; 13066 ip_stack_t *ipst = ill->ill_ipst; 13067 13068 ASSERT(IAM_WRITER_IPIF(ipif)); 13069 13070 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13071 13072 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13073 ill_t *, ill, ipif_t *, ipif); 13074 13075 if (ipif->ipif_flags & IPIF_UP) { 13076 mutex_enter(&ill->ill_lock); 13077 ipif->ipif_flags &= ~IPIF_UP; 13078 ASSERT(ill->ill_ipif_up_count > 0); 13079 --ill->ill_ipif_up_count; 13080 mutex_exit(&ill->ill_lock); 13081 ipif_was_up = B_TRUE; 13082 /* Update status in SCTP's list */ 13083 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13084 ill_nic_event_dispatch(ipif->ipif_ill, 13085 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13086 } 13087 13088 /* 13089 * Blow away memberships we established in ipif_multicast_up(). 13090 */ 13091 ipif_multicast_down(ipif); 13092 13093 /* 13094 * Remove from the mapping for __sin6_src_id. We insert only 13095 * when the address is not INADDR_ANY. As IPv4 addresses are 13096 * stored as mapped addresses, we need to check for mapped 13097 * INADDR_ANY also. 13098 */ 13099 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13100 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13101 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13102 int err; 13103 13104 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13105 ipif->ipif_zoneid, ipst); 13106 if (err != 0) { 13107 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13108 } 13109 } 13110 13111 if (ipif_was_up) { 13112 /* only delete if we'd added ire's before */ 13113 if (ipif->ipif_isv6) 13114 ipif_delete_ires_v6(ipif); 13115 else 13116 ipif_delete_ires_v4(ipif); 13117 } 13118 13119 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13120 /* 13121 * Since the interface is now down, it may have just become 13122 * inactive. Note that this needs to be done even for a 13123 * lll_logical_down(), or ARP entries will not get correctly 13124 * restored when the interface comes back up. 13125 */ 13126 if (IS_UNDER_IPMP(ill)) 13127 ipmp_ill_refresh_active(ill); 13128 } 13129 13130 /* 13131 * neighbor-discovery or arp entries for this interface. The ipif 13132 * has to be quiesced, so we walk all the nce's and delete those 13133 * that point at the ipif->ipif_ill. At the same time, we also 13134 * update IPMP so that ipifs for data addresses are unbound. We dont 13135 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13136 * that for ipif_down_tail() 13137 */ 13138 ipif_nce_down(ipif); 13139 13140 /* 13141 * If this is the last ipif on the ill, we also need to remove 13142 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13143 * never succeed. 13144 */ 13145 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13146 ire_walk_ill(0, 0, ill_downi, ill, ill); 13147 13148 /* 13149 * Walk all CONNs that can have a reference on an ire for this 13150 * ipif (we actually walk all that now have stale references). 13151 */ 13152 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13153 13154 /* 13155 * If mp is NULL the caller will wait for the appropriate refcnt. 13156 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13157 * and ill_delete -> ipif_free -> ipif_down 13158 */ 13159 if (mp == NULL) { 13160 ASSERT(q == NULL); 13161 return (0); 13162 } 13163 13164 if (CONN_Q(q)) { 13165 connp = Q_TO_CONN(q); 13166 mutex_enter(&connp->conn_lock); 13167 } else { 13168 connp = NULL; 13169 } 13170 mutex_enter(&ill->ill_lock); 13171 /* 13172 * Are there any ire's pointing to this ipif that are still active ? 13173 * If this is the last ipif going down, are there any ire's pointing 13174 * to this ill that are still active ? 13175 */ 13176 if (ipif_is_quiescent(ipif)) { 13177 mutex_exit(&ill->ill_lock); 13178 if (connp != NULL) 13179 mutex_exit(&connp->conn_lock); 13180 return (0); 13181 } 13182 13183 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13184 ill->ill_name, (void *)ill)); 13185 /* 13186 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13187 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13188 * which in turn is called by the last refrele on the ipif/ill/ire. 13189 */ 13190 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13191 if (!success) { 13192 /* The conn is closing. So just return */ 13193 ASSERT(connp != NULL); 13194 mutex_exit(&ill->ill_lock); 13195 mutex_exit(&connp->conn_lock); 13196 return (EINTR); 13197 } 13198 13199 mutex_exit(&ill->ill_lock); 13200 if (connp != NULL) 13201 mutex_exit(&connp->conn_lock); 13202 return (EINPROGRESS); 13203 } 13204 13205 int 13206 ipif_down_tail(ipif_t *ipif) 13207 { 13208 ill_t *ill = ipif->ipif_ill; 13209 int err = 0; 13210 13211 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13212 ill_t *, ill, ipif_t *, ipif); 13213 13214 /* 13215 * Skip any loopback interface (null wq). 13216 * If this is the last logical interface on the ill 13217 * have ill_dl_down tell the driver we are gone (unbind) 13218 * Note that lun 0 can ipif_down even though 13219 * there are other logical units that are up. 13220 * This occurs e.g. when we change a "significant" IFF_ flag. 13221 */ 13222 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13223 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13224 ill->ill_dl_up) { 13225 ill_dl_down(ill); 13226 } 13227 if (!ipif->ipif_isv6) 13228 err = ipif_arp_down(ipif); 13229 13230 ill->ill_logical_down = 0; 13231 13232 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13233 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13234 return (err); 13235 } 13236 13237 /* 13238 * Bring interface logically down without bringing the physical interface 13239 * down e.g. when the netmask is changed. This avoids long lasting link 13240 * negotiations between an ethernet interface and a certain switches. 13241 */ 13242 static int 13243 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13244 { 13245 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13246 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13247 13248 /* 13249 * The ill_logical_down flag is a transient flag. It is set here 13250 * and is cleared once the down has completed in ipif_down_tail. 13251 * This flag does not indicate whether the ill stream is in the 13252 * DL_BOUND state with the driver. Instead this flag is used by 13253 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13254 * the driver. The state of the ill stream i.e. whether it is 13255 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13256 */ 13257 ipif->ipif_ill->ill_logical_down = 1; 13258 return (ipif_down(ipif, q, mp)); 13259 } 13260 13261 /* 13262 * Initiate deallocate of an IPIF. Always called as writer. Called by 13263 * ill_delete or ip_sioctl_removeif. 13264 */ 13265 static void 13266 ipif_free(ipif_t *ipif) 13267 { 13268 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13269 13270 ASSERT(IAM_WRITER_IPIF(ipif)); 13271 13272 if (ipif->ipif_recovery_id != 0) 13273 (void) untimeout(ipif->ipif_recovery_id); 13274 ipif->ipif_recovery_id = 0; 13275 13276 /* 13277 * Take down the interface. We can be called either from ill_delete 13278 * or from ip_sioctl_removeif. 13279 */ 13280 (void) ipif_down(ipif, NULL, NULL); 13281 13282 /* 13283 * Now that the interface is down, there's no chance it can still 13284 * become a duplicate. Cancel any timer that may have been set while 13285 * tearing down. 13286 */ 13287 if (ipif->ipif_recovery_id != 0) 13288 (void) untimeout(ipif->ipif_recovery_id); 13289 ipif->ipif_recovery_id = 0; 13290 13291 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13292 /* Remove pointers to this ill in the multicast routing tables */ 13293 reset_mrt_vif_ipif(ipif); 13294 /* If necessary, clear the cached source ipif rotor. */ 13295 if (ipif->ipif_ill->ill_src_ipif == ipif) 13296 ipif->ipif_ill->ill_src_ipif = NULL; 13297 rw_exit(&ipst->ips_ill_g_lock); 13298 } 13299 13300 static void 13301 ipif_free_tail(ipif_t *ipif) 13302 { 13303 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13304 13305 /* 13306 * Need to hold both ill_g_lock and ill_lock while 13307 * inserting or removing an ipif from the linked list 13308 * of ipifs hanging off the ill. 13309 */ 13310 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13311 13312 #ifdef DEBUG 13313 ipif_trace_cleanup(ipif); 13314 #endif 13315 13316 /* Ask SCTP to take it out of it list */ 13317 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13318 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13319 13320 /* Get it out of the ILL interface list. */ 13321 ipif_remove(ipif); 13322 rw_exit(&ipst->ips_ill_g_lock); 13323 13324 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13325 ASSERT(ipif->ipif_recovery_id == 0); 13326 ASSERT(ipif->ipif_ire_local == NULL); 13327 ASSERT(ipif->ipif_ire_if == NULL); 13328 13329 /* Free the memory. */ 13330 mi_free(ipif); 13331 } 13332 13333 /* 13334 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13335 * is zero. 13336 */ 13337 void 13338 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13339 { 13340 char lbuf[LIFNAMSIZ]; 13341 char *name; 13342 size_t name_len; 13343 13344 buf[0] = '\0'; 13345 name = ipif->ipif_ill->ill_name; 13346 name_len = ipif->ipif_ill->ill_name_length; 13347 if (ipif->ipif_id != 0) { 13348 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13349 ipif->ipif_id); 13350 name = lbuf; 13351 name_len = mi_strlen(name) + 1; 13352 } 13353 len -= 1; 13354 buf[len] = '\0'; 13355 len = MIN(len, name_len); 13356 bcopy(name, buf, len); 13357 } 13358 13359 /* 13360 * Sets `buf' to an ill name. 13361 */ 13362 void 13363 ill_get_name(const ill_t *ill, char *buf, int len) 13364 { 13365 char *name; 13366 size_t name_len; 13367 13368 name = ill->ill_name; 13369 name_len = ill->ill_name_length; 13370 len -= 1; 13371 buf[len] = '\0'; 13372 len = MIN(len, name_len); 13373 bcopy(name, buf, len); 13374 } 13375 13376 /* 13377 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13378 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13379 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13380 * (May be called as writer.) 13381 */ 13382 static ipif_t * 13383 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13384 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13385 { 13386 char *cp; 13387 char *endp; 13388 long id; 13389 ill_t *ill; 13390 ipif_t *ipif; 13391 uint_t ire_type; 13392 boolean_t did_alloc = B_FALSE; 13393 13394 /* 13395 * If the caller wants to us to create the ipif, make sure we have a 13396 * valid zoneid 13397 */ 13398 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13399 13400 if (namelen == 0) { 13401 return (NULL); 13402 } 13403 13404 *exists = B_FALSE; 13405 /* Look for a colon in the name. */ 13406 endp = &name[namelen]; 13407 for (cp = endp; --cp > name; ) { 13408 if (*cp == IPIF_SEPARATOR_CHAR) 13409 break; 13410 } 13411 13412 if (*cp == IPIF_SEPARATOR_CHAR) { 13413 /* 13414 * Reject any non-decimal aliases for logical 13415 * interfaces. Aliases with leading zeroes 13416 * are also rejected as they introduce ambiguity 13417 * in the naming of the interfaces. 13418 * In order to confirm with existing semantics, 13419 * and to not break any programs/script relying 13420 * on that behaviour, if<0>:0 is considered to be 13421 * a valid interface. 13422 * 13423 * If alias has two or more digits and the first 13424 * is zero, fail. 13425 */ 13426 if (&cp[2] < endp && cp[1] == '0') { 13427 return (NULL); 13428 } 13429 } 13430 13431 if (cp <= name) { 13432 cp = endp; 13433 } else { 13434 *cp = '\0'; 13435 } 13436 13437 /* 13438 * Look up the ILL, based on the portion of the name 13439 * before the slash. ill_lookup_on_name returns a held ill. 13440 * Temporary to check whether ill exists already. If so 13441 * ill_lookup_on_name will clear it. 13442 */ 13443 ill = ill_lookup_on_name(name, do_alloc, isv6, 13444 &did_alloc, ipst); 13445 if (cp != endp) 13446 *cp = IPIF_SEPARATOR_CHAR; 13447 if (ill == NULL) 13448 return (NULL); 13449 13450 /* Establish the unit number in the name. */ 13451 id = 0; 13452 if (cp < endp && *endp == '\0') { 13453 /* If there was a colon, the unit number follows. */ 13454 cp++; 13455 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13456 ill_refrele(ill); 13457 return (NULL); 13458 } 13459 } 13460 13461 mutex_enter(&ill->ill_lock); 13462 /* Now see if there is an IPIF with this unit number. */ 13463 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13464 if (ipif->ipif_id == id) { 13465 if (zoneid != ALL_ZONES && 13466 zoneid != ipif->ipif_zoneid && 13467 ipif->ipif_zoneid != ALL_ZONES) { 13468 mutex_exit(&ill->ill_lock); 13469 ill_refrele(ill); 13470 return (NULL); 13471 } 13472 if (IPIF_CAN_LOOKUP(ipif)) { 13473 ipif_refhold_locked(ipif); 13474 mutex_exit(&ill->ill_lock); 13475 if (!did_alloc) 13476 *exists = B_TRUE; 13477 /* 13478 * Drop locks before calling ill_refrele 13479 * since it can potentially call into 13480 * ipif_ill_refrele_tail which can end up 13481 * in trying to acquire any lock. 13482 */ 13483 ill_refrele(ill); 13484 return (ipif); 13485 } 13486 } 13487 } 13488 13489 if (!do_alloc) { 13490 mutex_exit(&ill->ill_lock); 13491 ill_refrele(ill); 13492 return (NULL); 13493 } 13494 13495 /* 13496 * If none found, atomically allocate and return a new one. 13497 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13498 * to support "receive only" use of lo0:1 etc. as is still done 13499 * below as an initial guess. 13500 * However, this is now likely to be overriden later in ipif_up_done() 13501 * when we know for sure what address has been configured on the 13502 * interface, since we might have more than one loopback interface 13503 * with a loopback address, e.g. in the case of zones, and all the 13504 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13505 */ 13506 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13507 ire_type = IRE_LOOPBACK; 13508 else 13509 ire_type = IRE_LOCAL; 13510 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13511 if (ipif != NULL) 13512 ipif_refhold_locked(ipif); 13513 mutex_exit(&ill->ill_lock); 13514 ill_refrele(ill); 13515 return (ipif); 13516 } 13517 13518 /* 13519 * This routine is called whenever a new address comes up on an ipif. If 13520 * we are configured to respond to address mask requests, then we are supposed 13521 * to broadcast an address mask reply at this time. This routine is also 13522 * called if we are already up, but a netmask change is made. This is legal 13523 * but might not make the system manager very popular. (May be called 13524 * as writer.) 13525 */ 13526 void 13527 ipif_mask_reply(ipif_t *ipif) 13528 { 13529 icmph_t *icmph; 13530 ipha_t *ipha; 13531 mblk_t *mp; 13532 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13533 ip_xmit_attr_t ixas; 13534 13535 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13536 13537 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13538 return; 13539 13540 /* ICMP mask reply is IPv4 only */ 13541 ASSERT(!ipif->ipif_isv6); 13542 /* ICMP mask reply is not for a loopback interface */ 13543 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13544 13545 if (ipif->ipif_lcl_addr == INADDR_ANY) 13546 return; 13547 13548 mp = allocb(REPLY_LEN, BPRI_HI); 13549 if (mp == NULL) 13550 return; 13551 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13552 13553 ipha = (ipha_t *)mp->b_rptr; 13554 bzero(ipha, REPLY_LEN); 13555 *ipha = icmp_ipha; 13556 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13557 ipha->ipha_src = ipif->ipif_lcl_addr; 13558 ipha->ipha_dst = ipif->ipif_brd_addr; 13559 ipha->ipha_length = htons(REPLY_LEN); 13560 ipha->ipha_ident = 0; 13561 13562 icmph = (icmph_t *)&ipha[1]; 13563 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13564 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13565 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13566 13567 bzero(&ixas, sizeof (ixas)); 13568 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13569 ixas.ixa_flags |= IXAF_SET_SOURCE; 13570 ixas.ixa_zoneid = ALL_ZONES; 13571 ixas.ixa_ifindex = 0; 13572 ixas.ixa_ipst = ipst; 13573 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13574 (void) ip_output_simple(mp, &ixas); 13575 ixa_cleanup(&ixas); 13576 #undef REPLY_LEN 13577 } 13578 13579 /* 13580 * Join the ipif specific multicast groups. 13581 * Must be called after a mapping has been set up in the resolver. (Always 13582 * called as writer.) 13583 */ 13584 void 13585 ipif_multicast_up(ipif_t *ipif) 13586 { 13587 int err; 13588 ill_t *ill; 13589 ilm_t *ilm; 13590 13591 ASSERT(IAM_WRITER_IPIF(ipif)); 13592 13593 ill = ipif->ipif_ill; 13594 13595 ip1dbg(("ipif_multicast_up\n")); 13596 if (!(ill->ill_flags & ILLF_MULTICAST) || 13597 ipif->ipif_allhosts_ilm != NULL) 13598 return; 13599 13600 if (ipif->ipif_isv6) { 13601 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 13602 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 13603 13604 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 13605 13606 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 13607 return; 13608 13609 ip1dbg(("ipif_multicast_up - addmulti\n")); 13610 13611 /* 13612 * Join the all hosts multicast address. We skip this for 13613 * underlying IPMP interfaces since they should be invisible. 13614 */ 13615 if (!IS_UNDER_IPMP(ill)) { 13616 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 13617 &err); 13618 if (ilm == NULL) { 13619 ASSERT(err != 0); 13620 ip0dbg(("ipif_multicast_up: " 13621 "all_hosts_mcast failed %d\n", err)); 13622 return; 13623 } 13624 ipif->ipif_allhosts_ilm = ilm; 13625 } 13626 13627 /* 13628 * Enable multicast for the solicited node multicast address. 13629 * If IPMP we need to put the membership on the upper ill. 13630 */ 13631 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 13632 ill_t *mcast_ill = NULL; 13633 boolean_t need_refrele; 13634 13635 if (IS_UNDER_IPMP(ill) && 13636 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 13637 need_refrele = B_TRUE; 13638 } else { 13639 mcast_ill = ill; 13640 need_refrele = B_FALSE; 13641 } 13642 13643 ilm = ip_addmulti(&v6solmc, mcast_ill, 13644 ipif->ipif_zoneid, &err); 13645 if (need_refrele) 13646 ill_refrele(mcast_ill); 13647 13648 if (ilm == NULL) { 13649 ASSERT(err != 0); 13650 ip0dbg(("ipif_multicast_up: solicited MC" 13651 " failed %d\n", err)); 13652 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 13653 ipif->ipif_allhosts_ilm = NULL; 13654 (void) ip_delmulti(ilm); 13655 } 13656 return; 13657 } 13658 ipif->ipif_solmulti_ilm = ilm; 13659 } 13660 } else { 13661 in6_addr_t v6group; 13662 13663 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 13664 return; 13665 13666 /* Join the all hosts multicast address */ 13667 ip1dbg(("ipif_multicast_up - addmulti\n")); 13668 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 13669 13670 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 13671 if (ilm == NULL) { 13672 ASSERT(err != 0); 13673 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 13674 return; 13675 } 13676 ipif->ipif_allhosts_ilm = ilm; 13677 } 13678 } 13679 13680 /* 13681 * Blow away any multicast groups that we joined in ipif_multicast_up(). 13682 * (ilms from explicit memberships are handled in conn_update_ill.) 13683 */ 13684 void 13685 ipif_multicast_down(ipif_t *ipif) 13686 { 13687 ASSERT(IAM_WRITER_IPIF(ipif)); 13688 13689 ip1dbg(("ipif_multicast_down\n")); 13690 13691 if (ipif->ipif_allhosts_ilm != NULL) { 13692 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 13693 ipif->ipif_allhosts_ilm = NULL; 13694 } 13695 if (ipif->ipif_solmulti_ilm != NULL) { 13696 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 13697 ipif->ipif_solmulti_ilm = NULL; 13698 } 13699 } 13700 13701 /* 13702 * Used when an interface comes up to recreate any extra routes on this 13703 * interface. 13704 */ 13705 int 13706 ill_recover_saved_ire(ill_t *ill) 13707 { 13708 mblk_t *mp; 13709 ip_stack_t *ipst = ill->ill_ipst; 13710 13711 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 13712 13713 mutex_enter(&ill->ill_saved_ire_lock); 13714 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 13715 ire_t *ire, *nire; 13716 ifrt_t *ifrt; 13717 13718 ifrt = (ifrt_t *)mp->b_rptr; 13719 /* 13720 * Create a copy of the IRE with the saved address and netmask. 13721 */ 13722 if (ill->ill_isv6) { 13723 ire = ire_create_v6( 13724 &ifrt->ifrt_v6addr, 13725 &ifrt->ifrt_v6mask, 13726 &ifrt->ifrt_v6gateway_addr, 13727 ifrt->ifrt_type, 13728 ill, 13729 ifrt->ifrt_zoneid, 13730 ifrt->ifrt_flags, 13731 NULL, 13732 ipst); 13733 } else { 13734 ire = ire_create( 13735 (uint8_t *)&ifrt->ifrt_addr, 13736 (uint8_t *)&ifrt->ifrt_mask, 13737 (uint8_t *)&ifrt->ifrt_gateway_addr, 13738 ifrt->ifrt_type, 13739 ill, 13740 ifrt->ifrt_zoneid, 13741 ifrt->ifrt_flags, 13742 NULL, 13743 ipst); 13744 } 13745 if (ire == NULL) { 13746 mutex_exit(&ill->ill_saved_ire_lock); 13747 return (ENOMEM); 13748 } 13749 13750 if (ifrt->ifrt_flags & RTF_SETSRC) { 13751 if (ill->ill_isv6) { 13752 ire->ire_setsrc_addr_v6 = 13753 ifrt->ifrt_v6setsrc_addr; 13754 } else { 13755 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 13756 } 13757 } 13758 13759 /* 13760 * Some software (for example, GateD and Sun Cluster) attempts 13761 * to create (what amount to) IRE_PREFIX routes with the 13762 * loopback address as the gateway. This is primarily done to 13763 * set up prefixes with the RTF_REJECT flag set (for example, 13764 * when generating aggregate routes.) 13765 * 13766 * If the IRE type (as defined by ill->ill_net_type) is 13767 * IRE_LOOPBACK, then we map the request into a 13768 * IRE_IF_NORESOLVER. 13769 */ 13770 if (ill->ill_net_type == IRE_LOOPBACK) 13771 ire->ire_type = IRE_IF_NORESOLVER; 13772 13773 /* 13774 * ire held by ire_add, will be refreled' towards the 13775 * the end of ipif_up_done 13776 */ 13777 nire = ire_add(ire); 13778 /* 13779 * Check if it was a duplicate entry. This handles 13780 * the case of two racing route adds for the same route 13781 */ 13782 if (nire == NULL) { 13783 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 13784 } else if (nire != ire) { 13785 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 13786 (void *)nire)); 13787 ire_delete(nire); 13788 } else { 13789 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 13790 (void *)nire)); 13791 } 13792 if (nire != NULL) 13793 ire_refrele(nire); 13794 } 13795 mutex_exit(&ill->ill_saved_ire_lock); 13796 return (0); 13797 } 13798 13799 /* 13800 * Used to set the netmask and broadcast address to default values when the 13801 * interface is brought up. (Always called as writer.) 13802 */ 13803 static void 13804 ipif_set_default(ipif_t *ipif) 13805 { 13806 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 13807 13808 if (!ipif->ipif_isv6) { 13809 /* 13810 * Interface holds an IPv4 address. Default 13811 * mask is the natural netmask. 13812 */ 13813 if (!ipif->ipif_net_mask) { 13814 ipaddr_t v4mask; 13815 13816 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 13817 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 13818 } 13819 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13820 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13821 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13822 } else { 13823 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13824 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13825 } 13826 /* 13827 * NOTE: SunOS 4.X does this even if the broadcast address 13828 * has been already set thus we do the same here. 13829 */ 13830 if (ipif->ipif_flags & IPIF_BROADCAST) { 13831 ipaddr_t v4addr; 13832 13833 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 13834 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 13835 } 13836 } else { 13837 /* 13838 * Interface holds an IPv6-only address. Default 13839 * mask is all-ones. 13840 */ 13841 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 13842 ipif->ipif_v6net_mask = ipv6_all_ones; 13843 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13844 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13845 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13846 } else { 13847 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13848 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13849 } 13850 } 13851 } 13852 13853 /* 13854 * Return 0 if this address can be used as local address without causing 13855 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 13856 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 13857 * Note that the same IPv6 link-local address is allowed as long as the ills 13858 * are not on the same link. 13859 */ 13860 int 13861 ip_addr_availability_check(ipif_t *new_ipif) 13862 { 13863 in6_addr_t our_v6addr; 13864 ill_t *ill; 13865 ipif_t *ipif; 13866 ill_walk_context_t ctx; 13867 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 13868 13869 ASSERT(IAM_WRITER_IPIF(new_ipif)); 13870 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 13871 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 13872 13873 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 13874 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 13875 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 13876 return (0); 13877 13878 our_v6addr = new_ipif->ipif_v6lcl_addr; 13879 13880 if (new_ipif->ipif_isv6) 13881 ill = ILL_START_WALK_V6(&ctx, ipst); 13882 else 13883 ill = ILL_START_WALK_V4(&ctx, ipst); 13884 13885 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13886 for (ipif = ill->ill_ipif; ipif != NULL; 13887 ipif = ipif->ipif_next) { 13888 if ((ipif == new_ipif) || 13889 !(ipif->ipif_flags & IPIF_UP) || 13890 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13891 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 13892 &our_v6addr)) 13893 continue; 13894 13895 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 13896 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 13897 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 13898 ipif->ipif_flags |= IPIF_UNNUMBERED; 13899 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 13900 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 13901 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 13902 continue; 13903 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 13904 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 13905 continue; 13906 else if (new_ipif->ipif_ill == ill) 13907 return (EADDRINUSE); 13908 else 13909 return (EADDRNOTAVAIL); 13910 } 13911 } 13912 13913 return (0); 13914 } 13915 13916 /* 13917 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 13918 * IREs for the ipif. 13919 * When the routine returns EINPROGRESS then mp has been consumed and 13920 * the ioctl will be acked from ip_rput_dlpi. 13921 */ 13922 int 13923 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 13924 { 13925 ill_t *ill = ipif->ipif_ill; 13926 boolean_t isv6 = ipif->ipif_isv6; 13927 int err = 0; 13928 boolean_t success; 13929 uint_t ipif_orig_id; 13930 ip_stack_t *ipst = ill->ill_ipst; 13931 13932 ASSERT(IAM_WRITER_IPIF(ipif)); 13933 13934 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13935 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 13936 ill_t *, ill, ipif_t *, ipif); 13937 13938 /* Shouldn't get here if it is already up. */ 13939 if (ipif->ipif_flags & IPIF_UP) 13940 return (EALREADY); 13941 13942 /* 13943 * If this is a request to bring up a data address on an interface 13944 * under IPMP, then move the address to its IPMP meta-interface and 13945 * try to bring it up. One complication is that the zeroth ipif for 13946 * an ill is special, in that every ill always has one, and that code 13947 * throughout IP deferences ill->ill_ipif without holding any locks. 13948 */ 13949 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 13950 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 13951 ipif_t *stubipif = NULL, *moveipif = NULL; 13952 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 13953 13954 /* 13955 * The ipif being brought up should be quiesced. If it's not, 13956 * something has gone amiss and we need to bail out. (If it's 13957 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 13958 */ 13959 mutex_enter(&ill->ill_lock); 13960 if (!ipif_is_quiescent(ipif)) { 13961 mutex_exit(&ill->ill_lock); 13962 return (EINVAL); 13963 } 13964 mutex_exit(&ill->ill_lock); 13965 13966 /* 13967 * If we're going to need to allocate ipifs, do it prior 13968 * to starting the move (and grabbing locks). 13969 */ 13970 if (ipif->ipif_id == 0) { 13971 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13972 B_FALSE, &err)) == NULL) { 13973 return (err); 13974 } 13975 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13976 B_FALSE, &err)) == NULL) { 13977 mi_free(moveipif); 13978 return (err); 13979 } 13980 } 13981 13982 /* 13983 * Grab or transfer the ipif to move. During the move, keep 13984 * ill_g_lock held to prevent any ill walker threads from 13985 * seeing things in an inconsistent state. 13986 */ 13987 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13988 if (ipif->ipif_id != 0) { 13989 ipif_remove(ipif); 13990 } else { 13991 ipif_transfer(ipif, moveipif, stubipif); 13992 ipif = moveipif; 13993 } 13994 13995 /* 13996 * Place the ipif on the IPMP ill. If the zeroth ipif on 13997 * the IPMP ill is a stub (0.0.0.0 down address) then we 13998 * replace that one. Otherwise, pick the next available slot. 13999 */ 14000 ipif->ipif_ill = ipmp_ill; 14001 ipif_orig_id = ipif->ipif_id; 14002 14003 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14004 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14005 ipif = ipmp_ill->ill_ipif; 14006 } else { 14007 ipif->ipif_id = -1; 14008 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14009 /* 14010 * No more available ipif_id's -- put it back 14011 * on the original ill and fail the operation. 14012 * Since we're writer on the ill, we can be 14013 * sure our old slot is still available. 14014 */ 14015 ipif->ipif_id = ipif_orig_id; 14016 ipif->ipif_ill = ill; 14017 if (ipif_orig_id == 0) { 14018 ipif_transfer(ipif, ill->ill_ipif, 14019 NULL); 14020 } else { 14021 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14022 } 14023 rw_exit(&ipst->ips_ill_g_lock); 14024 return (err); 14025 } 14026 } 14027 rw_exit(&ipst->ips_ill_g_lock); 14028 14029 /* 14030 * Tell SCTP that the ipif has moved. Note that even if we 14031 * had to allocate a new ipif, the original sequence id was 14032 * preserved and therefore SCTP won't know. 14033 */ 14034 sctp_move_ipif(ipif, ill, ipmp_ill); 14035 14036 /* 14037 * If the ipif being brought up was on slot zero, then we 14038 * first need to bring up the placeholder we stuck there. In 14039 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14040 * call to ipif_up() itself, if we successfully bring up the 14041 * placeholder, we'll check ill_move_ipif and bring it up too. 14042 */ 14043 if (ipif_orig_id == 0) { 14044 ASSERT(ill->ill_move_ipif == NULL); 14045 ill->ill_move_ipif = ipif; 14046 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14047 ASSERT(ill->ill_move_ipif == NULL); 14048 if (err != EINPROGRESS) 14049 ill->ill_move_ipif = NULL; 14050 return (err); 14051 } 14052 14053 /* 14054 * Bring it up on the IPMP ill. 14055 */ 14056 return (ipif_up(ipif, q, mp)); 14057 } 14058 14059 /* Skip arp/ndp for any loopback interface. */ 14060 if (ill->ill_wq != NULL) { 14061 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14062 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14063 14064 if (!ill->ill_dl_up) { 14065 /* 14066 * ill_dl_up is not yet set. i.e. we are yet to 14067 * DL_BIND with the driver and this is the first 14068 * logical interface on the ill to become "up". 14069 * Tell the driver to get going (via DL_BIND_REQ). 14070 * Note that changing "significant" IFF_ flags 14071 * address/netmask etc cause a down/up dance, but 14072 * does not cause an unbind (DL_UNBIND) with the driver 14073 */ 14074 return (ill_dl_up(ill, ipif, mp, q)); 14075 } 14076 14077 /* 14078 * ipif_resolver_up may end up needeing to bind/attach 14079 * the ARP stream, which in turn necessitates a 14080 * DLPI message exchange with the driver. ioctls are 14081 * serialized and so we cannot send more than one 14082 * interface up message at a time. If ipif_resolver_up 14083 * does need to wait for the DLPI handshake for the ARP stream, 14084 * we get EINPROGRESS and we will complete in arp_bringup_done. 14085 */ 14086 14087 ASSERT(connp != NULL || !CONN_Q(q)); 14088 if (connp != NULL) 14089 mutex_enter(&connp->conn_lock); 14090 mutex_enter(&ill->ill_lock); 14091 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14092 mutex_exit(&ill->ill_lock); 14093 if (connp != NULL) 14094 mutex_exit(&connp->conn_lock); 14095 if (!success) 14096 return (EINTR); 14097 14098 /* 14099 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14100 * complete when ipif_ndp_up returns. 14101 */ 14102 err = ipif_resolver_up(ipif, Res_act_initial); 14103 if (err == EINPROGRESS) { 14104 /* We will complete it in arp_bringup_done() */ 14105 return (err); 14106 } 14107 14108 if (isv6 && err == 0) 14109 err = ipif_ndp_up(ipif, B_TRUE); 14110 14111 ASSERT(err != EINPROGRESS); 14112 mp = ipsq_pending_mp_get(ipsq, &connp); 14113 ASSERT(mp != NULL); 14114 if (err != 0) 14115 return (err); 14116 } else { 14117 /* 14118 * Interfaces without underlying hardware don't do duplicate 14119 * address detection. 14120 */ 14121 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14122 ipif->ipif_addr_ready = 1; 14123 err = ill_add_ires(ill); 14124 /* allocation failure? */ 14125 if (err != 0) 14126 return (err); 14127 } 14128 14129 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14130 if (err == 0 && ill->ill_move_ipif != NULL) { 14131 ipif = ill->ill_move_ipif; 14132 ill->ill_move_ipif = NULL; 14133 return (ipif_up(ipif, q, mp)); 14134 } 14135 return (err); 14136 } 14137 14138 /* 14139 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14140 * The identical set of IREs need to be removed in ill_delete_ires(). 14141 */ 14142 int 14143 ill_add_ires(ill_t *ill) 14144 { 14145 ire_t *ire; 14146 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14147 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14148 14149 if (ill->ill_ire_multicast != NULL) 14150 return (0); 14151 14152 /* 14153 * provide some dummy ire_addr for creating the ire. 14154 */ 14155 if (ill->ill_isv6) { 14156 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14157 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14158 } else { 14159 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14160 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14161 } 14162 if (ire == NULL) 14163 return (ENOMEM); 14164 14165 ill->ill_ire_multicast = ire; 14166 return (0); 14167 } 14168 14169 void 14170 ill_delete_ires(ill_t *ill) 14171 { 14172 if (ill->ill_ire_multicast != NULL) { 14173 /* 14174 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14175 * which was taken without any th_tracing enabled. 14176 * We also mark it as condemned (note that it was never added) 14177 * so that caching conn's can move off of it. 14178 */ 14179 ire_make_condemned(ill->ill_ire_multicast); 14180 ire_refrele_notr(ill->ill_ire_multicast); 14181 ill->ill_ire_multicast = NULL; 14182 } 14183 } 14184 14185 /* 14186 * Perform a bind for the physical device. 14187 * When the routine returns EINPROGRESS then mp has been consumed and 14188 * the ioctl will be acked from ip_rput_dlpi. 14189 * Allocate an unbind message and save it until ipif_down. 14190 */ 14191 static int 14192 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14193 { 14194 mblk_t *bind_mp = NULL; 14195 mblk_t *unbind_mp = NULL; 14196 conn_t *connp; 14197 boolean_t success; 14198 int err; 14199 14200 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14201 14202 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14203 ASSERT(IAM_WRITER_ILL(ill)); 14204 ASSERT(mp != NULL); 14205 14206 /* 14207 * Make sure we have an IRE_MULTICAST in case we immediately 14208 * start receiving packets. 14209 */ 14210 err = ill_add_ires(ill); 14211 if (err != 0) 14212 goto bad; 14213 14214 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14215 DL_BIND_REQ); 14216 if (bind_mp == NULL) 14217 goto bad; 14218 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14219 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14220 14221 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 14222 if (unbind_mp == NULL) 14223 goto bad; 14224 14225 /* 14226 * Record state needed to complete this operation when the 14227 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14228 */ 14229 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14230 ASSERT(connp != NULL || !CONN_Q(q)); 14231 GRAB_CONN_LOCK(q); 14232 mutex_enter(&ipif->ipif_ill->ill_lock); 14233 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14234 mutex_exit(&ipif->ipif_ill->ill_lock); 14235 RELEASE_CONN_LOCK(q); 14236 if (!success) 14237 goto bad; 14238 14239 /* 14240 * Save the unbind message for ill_dl_down(); it will be consumed when 14241 * the interface goes down. 14242 */ 14243 ASSERT(ill->ill_unbind_mp == NULL); 14244 ill->ill_unbind_mp = unbind_mp; 14245 14246 ill_dlpi_send(ill, bind_mp); 14247 /* Send down link-layer capabilities probe if not already done. */ 14248 ill_capability_probe(ill); 14249 14250 /* 14251 * Sysid used to rely on the fact that netboots set domainname 14252 * and the like. Now that miniroot boots aren't strictly netboots 14253 * and miniroot network configuration is driven from userland 14254 * these things still need to be set. This situation can be detected 14255 * by comparing the interface being configured here to the one 14256 * dhcifname was set to reference by the boot loader. Once sysid is 14257 * converted to use dhcp_ipc_getinfo() this call can go away. 14258 */ 14259 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14260 (strcmp(ill->ill_name, dhcifname) == 0) && 14261 (strlen(srpc_domain) == 0)) { 14262 if (dhcpinit() != 0) 14263 cmn_err(CE_WARN, "no cached dhcp response"); 14264 } 14265 14266 /* 14267 * This operation will complete in ip_rput_dlpi with either 14268 * a DL_BIND_ACK or DL_ERROR_ACK. 14269 */ 14270 return (EINPROGRESS); 14271 bad: 14272 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14273 14274 freemsg(bind_mp); 14275 freemsg(unbind_mp); 14276 return (ENOMEM); 14277 } 14278 14279 /* Add room for tcp+ip headers */ 14280 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14281 14282 /* 14283 * DLPI and ARP is up. 14284 * Create all the IREs associated with an interface. Bring up multicast. 14285 * Set the interface flag and finish other initialization 14286 * that potentially had to be deferred to after DL_BIND_ACK. 14287 */ 14288 int 14289 ipif_up_done(ipif_t *ipif) 14290 { 14291 ill_t *ill = ipif->ipif_ill; 14292 int err = 0; 14293 boolean_t loopback = B_FALSE; 14294 boolean_t update_src_selection = B_TRUE; 14295 ipif_t *tmp_ipif; 14296 14297 ip1dbg(("ipif_up_done(%s:%u)\n", 14298 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14299 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14300 ill_t *, ill, ipif_t *, ipif); 14301 14302 /* Check if this is a loopback interface */ 14303 if (ipif->ipif_ill->ill_wq == NULL) 14304 loopback = B_TRUE; 14305 14306 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14307 14308 /* 14309 * If all other interfaces for this ill are down or DEPRECATED, 14310 * or otherwise unsuitable for source address selection, 14311 * reset the src generation numbers to make sure source 14312 * address selection gets to take this new ipif into account. 14313 * No need to hold ill_lock while traversing the ipif list since 14314 * we are writer 14315 */ 14316 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14317 tmp_ipif = tmp_ipif->ipif_next) { 14318 if (((tmp_ipif->ipif_flags & 14319 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14320 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14321 (tmp_ipif == ipif)) 14322 continue; 14323 /* first useable pre-existing interface */ 14324 update_src_selection = B_FALSE; 14325 break; 14326 } 14327 if (update_src_selection) 14328 ip_update_source_selection(ill->ill_ipst); 14329 14330 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14331 nce_t *loop_nce = NULL; 14332 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14333 14334 /* 14335 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14336 * ipif_lookup_on_name(), but in the case of zones we can have 14337 * several loopback addresses on lo0. So all the interfaces with 14338 * loopback addresses need to be marked IRE_LOOPBACK. 14339 */ 14340 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14341 htonl(INADDR_LOOPBACK)) 14342 ipif->ipif_ire_type = IRE_LOOPBACK; 14343 else 14344 ipif->ipif_ire_type = IRE_LOCAL; 14345 if (ill->ill_net_type != IRE_LOOPBACK) 14346 flags |= NCE_F_PUBLISH; 14347 14348 /* add unicast nce for the local addr */ 14349 err = nce_lookup_then_add_v4(ill, NULL, 14350 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14351 ND_REACHABLE, &loop_nce); 14352 /* A shared-IP zone sees EEXIST for lo0:N */ 14353 if (err == 0 || err == EEXIST) { 14354 ipif->ipif_added_nce = 1; 14355 loop_nce->nce_ipif_cnt++; 14356 nce_refrele(loop_nce); 14357 err = 0; 14358 } else { 14359 ASSERT(loop_nce == NULL); 14360 return (err); 14361 } 14362 } 14363 14364 /* Create all the IREs associated with this interface */ 14365 err = ipif_add_ires_v4(ipif, loopback); 14366 if (err != 0) { 14367 /* 14368 * see comments about return value from 14369 * ip_addr_availability_check() in ipif_add_ires_v4(). 14370 */ 14371 if (err != EADDRINUSE) { 14372 (void) ipif_arp_down(ipif); 14373 } else { 14374 /* 14375 * Make IPMP aware of the deleted ipif so that 14376 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14377 * can be completed. Note that we do not want to 14378 * destroy the nce that was created on the ipmp_ill 14379 * for the active copy of the duplicate address in 14380 * use. 14381 */ 14382 if (IS_IPMP(ill)) 14383 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14384 err = EADDRNOTAVAIL; 14385 } 14386 return (err); 14387 } 14388 14389 if (ill->ill_ipif_up_count == 1 && !loopback) { 14390 /* Recover any additional IREs entries for this ill */ 14391 (void) ill_recover_saved_ire(ill); 14392 } 14393 14394 if (ill->ill_need_recover_multicast) { 14395 /* 14396 * Need to recover all multicast memberships in the driver. 14397 * This had to be deferred until we had attached. The same 14398 * code exists in ipif_up_done_v6() to recover IPv6 14399 * memberships. 14400 * 14401 * Note that it would be preferable to unconditionally do the 14402 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14403 * that since ill_join_allmulti() depends on ill_dl_up being 14404 * set, and it is not set until we receive a DL_BIND_ACK after 14405 * having called ill_dl_up(). 14406 */ 14407 ill_recover_multicast(ill); 14408 } 14409 14410 if (ill->ill_ipif_up_count == 1) { 14411 /* 14412 * Since the interface is now up, it may now be active. 14413 */ 14414 if (IS_UNDER_IPMP(ill)) 14415 ipmp_ill_refresh_active(ill); 14416 14417 /* 14418 * If this is an IPMP interface, we may now be able to 14419 * establish ARP entries. 14420 */ 14421 if (IS_IPMP(ill)) 14422 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14423 } 14424 14425 /* Join the allhosts multicast address */ 14426 ipif_multicast_up(ipif); 14427 14428 if (!loopback && !update_src_selection && 14429 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14430 ip_update_source_selection(ill->ill_ipst); 14431 14432 if (!loopback && ipif->ipif_addr_ready) { 14433 /* Broadcast an address mask reply. */ 14434 ipif_mask_reply(ipif); 14435 } 14436 /* Perhaps ilgs should use this ill */ 14437 update_conn_ill(NULL, ill->ill_ipst); 14438 14439 /* 14440 * This had to be deferred until we had bound. Tell routing sockets and 14441 * others that this interface is up if it looks like the address has 14442 * been validated. Otherwise, if it isn't ready yet, wait for 14443 * duplicate address detection to do its thing. 14444 */ 14445 if (ipif->ipif_addr_ready) 14446 ipif_up_notify(ipif); 14447 return (0); 14448 } 14449 14450 /* 14451 * Add the IREs associated with the ipif. 14452 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14453 */ 14454 static int 14455 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14456 { 14457 ill_t *ill = ipif->ipif_ill; 14458 ip_stack_t *ipst = ill->ill_ipst; 14459 ire_t *ire_array[20]; 14460 ire_t **irep = ire_array; 14461 ire_t **irep1; 14462 ipaddr_t net_mask = 0; 14463 ipaddr_t subnet_mask, route_mask; 14464 int err; 14465 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14466 ire_t *ire_if = NULL; 14467 uchar_t *gw; 14468 14469 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14470 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14471 /* 14472 * If we're on a labeled system then make sure that zone- 14473 * private addresses have proper remote host database entries. 14474 */ 14475 if (is_system_labeled() && 14476 ipif->ipif_ire_type != IRE_LOOPBACK && 14477 !tsol_check_interface_address(ipif)) 14478 return (EINVAL); 14479 14480 /* Register the source address for __sin6_src_id */ 14481 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14482 ipif->ipif_zoneid, ipst); 14483 if (err != 0) { 14484 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14485 return (err); 14486 } 14487 14488 if (loopback) 14489 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14490 else 14491 gw = NULL; 14492 14493 /* If the interface address is set, create the local IRE. */ 14494 ire_local = ire_create( 14495 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14496 (uchar_t *)&ip_g_all_ones, /* mask */ 14497 gw, /* gateway */ 14498 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14499 ipif->ipif_ill, 14500 ipif->ipif_zoneid, 14501 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14502 RTF_PRIVATE : 0) | RTF_KERNEL, 14503 NULL, 14504 ipst); 14505 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14506 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14507 ipif->ipif_ire_type, 14508 ntohl(ipif->ipif_lcl_addr))); 14509 if (ire_local == NULL) { 14510 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14511 err = ENOMEM; 14512 goto bad; 14513 } 14514 } else { 14515 ip1dbg(( 14516 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14517 ipif->ipif_ire_type, 14518 ntohl(ipif->ipif_lcl_addr), 14519 (uint_t)ipif->ipif_flags)); 14520 } 14521 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14522 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14523 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14524 } else { 14525 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14526 } 14527 14528 subnet_mask = ipif->ipif_net_mask; 14529 14530 /* 14531 * If mask was not specified, use natural netmask of 14532 * interface address. Also, store this mask back into the 14533 * ipif struct. 14534 */ 14535 if (subnet_mask == 0) { 14536 subnet_mask = net_mask; 14537 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14538 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14539 ipif->ipif_v6subnet); 14540 } 14541 14542 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14543 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14544 ipif->ipif_subnet != INADDR_ANY) { 14545 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14546 14547 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14548 route_mask = IP_HOST_MASK; 14549 } else { 14550 route_mask = subnet_mask; 14551 } 14552 14553 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14554 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14555 (void *)ipif, (void *)ill, ill->ill_net_type, 14556 ntohl(ipif->ipif_subnet))); 14557 ire_if = ire_create( 14558 (uchar_t *)&ipif->ipif_subnet, 14559 (uchar_t *)&route_mask, 14560 (uchar_t *)&ipif->ipif_lcl_addr, 14561 ill->ill_net_type, 14562 ill, 14563 ipif->ipif_zoneid, 14564 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14565 RTF_PRIVATE: 0) | RTF_KERNEL, 14566 NULL, 14567 ipst); 14568 if (ire_if == NULL) { 14569 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14570 err = ENOMEM; 14571 goto bad; 14572 } 14573 } 14574 14575 /* 14576 * Create any necessary broadcast IREs. 14577 */ 14578 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14579 !(ipif->ipif_flags & IPIF_NOXMIT)) 14580 irep = ipif_create_bcast_ires(ipif, irep); 14581 14582 /* If an earlier ire_create failed, get out now */ 14583 for (irep1 = irep; irep1 > ire_array; ) { 14584 irep1--; 14585 if (*irep1 == NULL) { 14586 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 14587 err = ENOMEM; 14588 goto bad; 14589 } 14590 } 14591 14592 /* 14593 * Need to atomically check for IP address availability under 14594 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 14595 * ills or new ipifs can be added while we are checking availability. 14596 */ 14597 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14598 mutex_enter(&ipst->ips_ip_addr_avail_lock); 14599 /* Mark it up, and increment counters. */ 14600 ipif->ipif_flags |= IPIF_UP; 14601 ill->ill_ipif_up_count++; 14602 err = ip_addr_availability_check(ipif); 14603 mutex_exit(&ipst->ips_ip_addr_avail_lock); 14604 rw_exit(&ipst->ips_ill_g_lock); 14605 14606 if (err != 0) { 14607 /* 14608 * Our address may already be up on the same ill. In this case, 14609 * the ARP entry for our ipif replaced the one for the other 14610 * ipif. So we don't want to delete it (otherwise the other ipif 14611 * would be unable to send packets). 14612 * ip_addr_availability_check() identifies this case for us and 14613 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 14614 * which is the expected error code. 14615 */ 14616 ill->ill_ipif_up_count--; 14617 ipif->ipif_flags &= ~IPIF_UP; 14618 goto bad; 14619 } 14620 14621 /* 14622 * Add in all newly created IREs. ire_create_bcast() has 14623 * already checked for duplicates of the IRE_BROADCAST type. 14624 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 14625 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 14626 * a /32 route. 14627 */ 14628 if (ire_if != NULL) { 14629 ire_if = ire_add(ire_if); 14630 if (ire_if == NULL) { 14631 err = ENOMEM; 14632 goto bad2; 14633 } 14634 #ifdef DEBUG 14635 ire_refhold_notr(ire_if); 14636 ire_refrele(ire_if); 14637 #endif 14638 } 14639 if (ire_local != NULL) { 14640 ire_local = ire_add(ire_local); 14641 if (ire_local == NULL) { 14642 err = ENOMEM; 14643 goto bad2; 14644 } 14645 #ifdef DEBUG 14646 ire_refhold_notr(ire_local); 14647 ire_refrele(ire_local); 14648 #endif 14649 } 14650 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14651 if (ire_local != NULL) 14652 ipif->ipif_ire_local = ire_local; 14653 if (ire_if != NULL) 14654 ipif->ipif_ire_if = ire_if; 14655 rw_exit(&ipst->ips_ill_g_lock); 14656 ire_local = NULL; 14657 ire_if = NULL; 14658 14659 /* 14660 * We first add all of them, and if that succeeds we refrele the 14661 * bunch. That enables us to delete all of them should any of the 14662 * ire_adds fail. 14663 */ 14664 for (irep1 = irep; irep1 > ire_array; ) { 14665 irep1--; 14666 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 14667 *irep1 = ire_add(*irep1); 14668 if (*irep1 == NULL) { 14669 err = ENOMEM; 14670 goto bad2; 14671 } 14672 } 14673 14674 for (irep1 = irep; irep1 > ire_array; ) { 14675 irep1--; 14676 /* refheld by ire_add. */ 14677 if (*irep1 != NULL) { 14678 ire_refrele(*irep1); 14679 *irep1 = NULL; 14680 } 14681 } 14682 14683 if (!loopback) { 14684 /* 14685 * If the broadcast address has been set, make sure it makes 14686 * sense based on the interface address. 14687 * Only match on ill since we are sharing broadcast addresses. 14688 */ 14689 if ((ipif->ipif_brd_addr != INADDR_ANY) && 14690 (ipif->ipif_flags & IPIF_BROADCAST)) { 14691 ire_t *ire; 14692 14693 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 14694 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 14695 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 14696 14697 if (ire == NULL) { 14698 /* 14699 * If there isn't a matching broadcast IRE, 14700 * revert to the default for this netmask. 14701 */ 14702 ipif->ipif_v6brd_addr = ipv6_all_zeros; 14703 mutex_enter(&ipif->ipif_ill->ill_lock); 14704 ipif_set_default(ipif); 14705 mutex_exit(&ipif->ipif_ill->ill_lock); 14706 } else { 14707 ire_refrele(ire); 14708 } 14709 } 14710 14711 } 14712 return (0); 14713 14714 bad2: 14715 ill->ill_ipif_up_count--; 14716 ipif->ipif_flags &= ~IPIF_UP; 14717 14718 bad: 14719 ip1dbg(("ipif_add_ires: FAILED \n")); 14720 if (ire_local != NULL) 14721 ire_delete(ire_local); 14722 if (ire_if != NULL) 14723 ire_delete(ire_if); 14724 14725 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14726 ire_local = ipif->ipif_ire_local; 14727 ipif->ipif_ire_local = NULL; 14728 ire_if = ipif->ipif_ire_if; 14729 ipif->ipif_ire_if = NULL; 14730 rw_exit(&ipst->ips_ill_g_lock); 14731 if (ire_local != NULL) { 14732 ire_delete(ire_local); 14733 ire_refrele_notr(ire_local); 14734 } 14735 if (ire_if != NULL) { 14736 ire_delete(ire_if); 14737 ire_refrele_notr(ire_if); 14738 } 14739 14740 while (irep > ire_array) { 14741 irep--; 14742 if (*irep != NULL) { 14743 ire_delete(*irep); 14744 } 14745 } 14746 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 14747 14748 return (err); 14749 } 14750 14751 /* Remove all the IREs created by ipif_add_ires_v4 */ 14752 void 14753 ipif_delete_ires_v4(ipif_t *ipif) 14754 { 14755 ill_t *ill = ipif->ipif_ill; 14756 ip_stack_t *ipst = ill->ill_ipst; 14757 ire_t *ire; 14758 14759 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14760 ire = ipif->ipif_ire_local; 14761 ipif->ipif_ire_local = NULL; 14762 rw_exit(&ipst->ips_ill_g_lock); 14763 if (ire != NULL) { 14764 /* 14765 * Move count to ipif so we don't loose the count due to 14766 * a down/up dance. 14767 */ 14768 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 14769 14770 ire_delete(ire); 14771 ire_refrele_notr(ire); 14772 } 14773 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14774 ire = ipif->ipif_ire_if; 14775 ipif->ipif_ire_if = NULL; 14776 rw_exit(&ipst->ips_ill_g_lock); 14777 if (ire != NULL) { 14778 ire_delete(ire); 14779 ire_refrele_notr(ire); 14780 } 14781 14782 /* 14783 * Delete the broadcast IREs. 14784 */ 14785 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14786 !(ipif->ipif_flags & IPIF_NOXMIT)) 14787 ipif_delete_bcast_ires(ipif); 14788 } 14789 14790 /* 14791 * Checks for availbility of a usable source address (if there is one) when the 14792 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 14793 * this selection is done regardless of the destination. 14794 */ 14795 boolean_t 14796 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 14797 ip_stack_t *ipst) 14798 { 14799 ipif_t *ipif = NULL; 14800 ill_t *uill; 14801 14802 ASSERT(ifindex != 0); 14803 14804 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 14805 if (uill == NULL) 14806 return (B_FALSE); 14807 14808 mutex_enter(&uill->ill_lock); 14809 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14810 if (IPIF_IS_CONDEMNED(ipif)) 14811 continue; 14812 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14813 continue; 14814 if (!(ipif->ipif_flags & IPIF_UP)) 14815 continue; 14816 if (ipif->ipif_zoneid != zoneid) 14817 continue; 14818 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14819 ipif->ipif_lcl_addr == INADDR_ANY) 14820 continue; 14821 mutex_exit(&uill->ill_lock); 14822 ill_refrele(uill); 14823 return (B_TRUE); 14824 } 14825 mutex_exit(&uill->ill_lock); 14826 ill_refrele(uill); 14827 return (B_FALSE); 14828 } 14829 14830 /* 14831 * Find an ipif with a good local address on the ill+zoneid. 14832 */ 14833 ipif_t * 14834 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 14835 { 14836 ipif_t *ipif; 14837 14838 mutex_enter(&ill->ill_lock); 14839 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14840 if (IPIF_IS_CONDEMNED(ipif)) 14841 continue; 14842 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14843 continue; 14844 if (!(ipif->ipif_flags & IPIF_UP)) 14845 continue; 14846 if (ipif->ipif_zoneid != zoneid && 14847 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 14848 continue; 14849 if (ill->ill_isv6 ? 14850 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14851 ipif->ipif_lcl_addr == INADDR_ANY) 14852 continue; 14853 ipif_refhold_locked(ipif); 14854 mutex_exit(&ill->ill_lock); 14855 return (ipif); 14856 } 14857 mutex_exit(&ill->ill_lock); 14858 return (NULL); 14859 } 14860 14861 /* 14862 * IP source address type, sorted from worst to best. For a given type, 14863 * always prefer IP addresses on the same subnet. All-zones addresses are 14864 * suboptimal because they pose problems with unlabeled destinations. 14865 */ 14866 typedef enum { 14867 IPIF_NONE, 14868 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 14869 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 14870 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 14871 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 14872 IPIF_DIFFNET, /* normal and different subnet */ 14873 IPIF_SAMENET, /* normal and same subnet */ 14874 IPIF_LOCALADDR /* local loopback */ 14875 } ipif_type_t; 14876 14877 /* 14878 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 14879 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 14880 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 14881 * the first one, unless IPMP is used in which case we round-robin among them; 14882 * see below for more. 14883 * 14884 * Returns NULL if there is no suitable source address for the ill. 14885 * This only occurs when there is no valid source address for the ill. 14886 */ 14887 ipif_t * 14888 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 14889 boolean_t allow_usesrc, boolean_t *notreadyp) 14890 { 14891 ill_t *usill = NULL; 14892 ill_t *ipmp_ill = NULL; 14893 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 14894 ipif_type_t type, best_type; 14895 tsol_tpc_t *src_rhtp, *dst_rhtp; 14896 ip_stack_t *ipst = ill->ill_ipst; 14897 boolean_t samenet; 14898 14899 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 14900 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 14901 B_FALSE, ipst); 14902 if (usill != NULL) 14903 ill = usill; /* Select source from usesrc ILL */ 14904 else 14905 return (NULL); 14906 } 14907 14908 /* 14909 * Test addresses should never be used for source address selection, 14910 * so if we were passed one, switch to the IPMP meta-interface. 14911 */ 14912 if (IS_UNDER_IPMP(ill)) { 14913 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 14914 ill = ipmp_ill; /* Select source from IPMP ill */ 14915 else 14916 return (NULL); 14917 } 14918 14919 /* 14920 * If we're dealing with an unlabeled destination on a labeled system, 14921 * make sure that we ignore source addresses that are incompatible with 14922 * the destination's default label. That destination's default label 14923 * must dominate the minimum label on the source address. 14924 */ 14925 dst_rhtp = NULL; 14926 if (is_system_labeled()) { 14927 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 14928 if (dst_rhtp == NULL) 14929 return (NULL); 14930 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 14931 TPC_RELE(dst_rhtp); 14932 dst_rhtp = NULL; 14933 } 14934 } 14935 14936 /* 14937 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 14938 * can be deleted. But an ipif/ill can get CONDEMNED any time. 14939 * After selecting the right ipif, under ill_lock make sure ipif is 14940 * not condemned, and increment refcnt. If ipif is CONDEMNED, 14941 * we retry. Inside the loop we still need to check for CONDEMNED, 14942 * but not under a lock. 14943 */ 14944 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14945 retry: 14946 /* 14947 * For source address selection, we treat the ipif list as circular 14948 * and continue until we get back to where we started. This allows 14949 * IPMP to vary source address selection (which improves inbound load 14950 * spreading) by caching its last ending point and starting from 14951 * there. NOTE: we don't have to worry about ill_src_ipif changing 14952 * ills since that can't happen on the IPMP ill. 14953 */ 14954 start_ipif = ill->ill_ipif; 14955 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 14956 start_ipif = ill->ill_src_ipif; 14957 14958 ipif = start_ipif; 14959 best_ipif = NULL; 14960 best_type = IPIF_NONE; 14961 do { 14962 if ((next_ipif = ipif->ipif_next) == NULL) 14963 next_ipif = ill->ill_ipif; 14964 14965 if (IPIF_IS_CONDEMNED(ipif)) 14966 continue; 14967 /* Always skip NOLOCAL and ANYCAST interfaces */ 14968 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14969 continue; 14970 /* Always skip NOACCEPT interfaces */ 14971 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 14972 continue; 14973 if (!(ipif->ipif_flags & IPIF_UP)) 14974 continue; 14975 14976 if (!ipif->ipif_addr_ready) { 14977 if (notreadyp != NULL) 14978 *notreadyp = B_TRUE; 14979 continue; 14980 } 14981 14982 if (zoneid != ALL_ZONES && 14983 ipif->ipif_zoneid != zoneid && 14984 ipif->ipif_zoneid != ALL_ZONES) 14985 continue; 14986 14987 /* 14988 * Interfaces with 0.0.0.0 address are allowed to be UP, but 14989 * are not valid as source addresses. 14990 */ 14991 if (ipif->ipif_lcl_addr == INADDR_ANY) 14992 continue; 14993 14994 /* 14995 * Check compatibility of local address for destination's 14996 * default label if we're on a labeled system. Incompatible 14997 * addresses can't be used at all. 14998 */ 14999 if (dst_rhtp != NULL) { 15000 boolean_t incompat; 15001 15002 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15003 IPV4_VERSION, B_FALSE); 15004 if (src_rhtp == NULL) 15005 continue; 15006 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15007 src_rhtp->tpc_tp.tp_doi != 15008 dst_rhtp->tpc_tp.tp_doi || 15009 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15010 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15011 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15012 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15013 TPC_RELE(src_rhtp); 15014 if (incompat) 15015 continue; 15016 } 15017 15018 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15019 15020 if (ipif->ipif_lcl_addr == dst) { 15021 type = IPIF_LOCALADDR; 15022 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15023 type = samenet ? IPIF_SAMENET_DEPRECATED : 15024 IPIF_DIFFNET_DEPRECATED; 15025 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15026 type = samenet ? IPIF_SAMENET_ALLZONES : 15027 IPIF_DIFFNET_ALLZONES; 15028 } else { 15029 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15030 } 15031 15032 if (type > best_type) { 15033 best_type = type; 15034 best_ipif = ipif; 15035 if (best_type == IPIF_LOCALADDR) 15036 break; /* can't get better */ 15037 } 15038 } while ((ipif = next_ipif) != start_ipif); 15039 15040 if ((ipif = best_ipif) != NULL) { 15041 mutex_enter(&ipif->ipif_ill->ill_lock); 15042 if (IPIF_IS_CONDEMNED(ipif)) { 15043 mutex_exit(&ipif->ipif_ill->ill_lock); 15044 goto retry; 15045 } 15046 ipif_refhold_locked(ipif); 15047 15048 /* 15049 * For IPMP, update the source ipif rotor to the next ipif, 15050 * provided we can look it up. (We must not use it if it's 15051 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15052 * ipif_free() checked ill_src_ipif.) 15053 */ 15054 if (IS_IPMP(ill) && ipif != NULL) { 15055 next_ipif = ipif->ipif_next; 15056 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15057 ill->ill_src_ipif = next_ipif; 15058 else 15059 ill->ill_src_ipif = NULL; 15060 } 15061 mutex_exit(&ipif->ipif_ill->ill_lock); 15062 } 15063 15064 rw_exit(&ipst->ips_ill_g_lock); 15065 if (usill != NULL) 15066 ill_refrele(usill); 15067 if (ipmp_ill != NULL) 15068 ill_refrele(ipmp_ill); 15069 if (dst_rhtp != NULL) 15070 TPC_RELE(dst_rhtp); 15071 15072 #ifdef DEBUG 15073 if (ipif == NULL) { 15074 char buf1[INET6_ADDRSTRLEN]; 15075 15076 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15077 ill->ill_name, 15078 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15079 } else { 15080 char buf1[INET6_ADDRSTRLEN]; 15081 char buf2[INET6_ADDRSTRLEN]; 15082 15083 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15084 ipif->ipif_ill->ill_name, 15085 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15086 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15087 buf2, sizeof (buf2)))); 15088 } 15089 #endif /* DEBUG */ 15090 return (ipif); 15091 } 15092 15093 /* 15094 * Pick a source address based on the destination ill and an optional setsrc 15095 * address. 15096 * The result is stored in srcp. If generation is set, then put the source 15097 * generation number there before we look for the source address (to avoid 15098 * missing changes in the set of source addresses. 15099 * If flagsp is set, then us it to pass back ipif_flags. 15100 * 15101 * If the caller wants to cache the returned source address and detect when 15102 * that might be stale, the caller should pass in a generation argument, 15103 * which the caller can later compare against ips_src_generation 15104 * 15105 * The precedence order for selecting an IPv4 source address is: 15106 * - RTF_SETSRC on the offlink ire always wins. 15107 * - If usrsrc is set, swap the ill to be the usesrc one. 15108 * - If IPMP is used on the ill, select a random address from the most 15109 * preferred ones below: 15110 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15111 * 2. Not deprecated, not ALL_ZONES 15112 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15113 * 4. Not deprecated, ALL_ZONES 15114 * 5. If onlink destination, same subnet and deprecated 15115 * 6. Deprecated. 15116 * 15117 * We have lower preference for ALL_ZONES IP addresses, 15118 * as they pose problems with unlabeled destinations. 15119 * 15120 * Note that when multiple IP addresses match e.g., #1 we pick 15121 * the first one if IPMP is not in use. With IPMP we randomize. 15122 */ 15123 int 15124 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15125 ipaddr_t multicast_ifaddr, 15126 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15127 uint32_t *generation, uint64_t *flagsp) 15128 { 15129 ipif_t *ipif; 15130 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15131 15132 if (flagsp != NULL) 15133 *flagsp = 0; 15134 15135 /* 15136 * Need to grab the generation number before we check to 15137 * avoid a race with a change to the set of local addresses. 15138 * No lock needed since the thread which updates the set of local 15139 * addresses use ipif/ill locks and exit those (hence a store memory 15140 * barrier) before doing the atomic increase of ips_src_generation. 15141 */ 15142 if (generation != NULL) { 15143 *generation = ipst->ips_src_generation; 15144 } 15145 15146 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15147 *srcp = multicast_ifaddr; 15148 return (0); 15149 } 15150 15151 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15152 if (setsrc != INADDR_ANY) { 15153 *srcp = setsrc; 15154 return (0); 15155 } 15156 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15157 if (ipif == NULL) { 15158 if (notready) 15159 return (ENETDOWN); 15160 else 15161 return (EADDRNOTAVAIL); 15162 } 15163 *srcp = ipif->ipif_lcl_addr; 15164 if (flagsp != NULL) 15165 *flagsp = ipif->ipif_flags; 15166 ipif_refrele(ipif); 15167 return (0); 15168 } 15169 15170 /* ARGSUSED */ 15171 int 15172 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15173 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15174 { 15175 /* 15176 * ill_phyint_reinit merged the v4 and v6 into a single 15177 * ipsq. We might not have been able to complete the 15178 * operation in ipif_set_values, if we could not become 15179 * exclusive. If so restart it here. 15180 */ 15181 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15182 } 15183 15184 /* 15185 * Can operate on either a module or a driver queue. 15186 * Returns an error if not a module queue. 15187 */ 15188 /* ARGSUSED */ 15189 int 15190 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15191 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15192 { 15193 queue_t *q1 = q; 15194 char *cp; 15195 char interf_name[LIFNAMSIZ]; 15196 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15197 15198 if (q->q_next == NULL) { 15199 ip1dbg(( 15200 "if_unitsel: IF_UNITSEL: no q_next\n")); 15201 return (EINVAL); 15202 } 15203 15204 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15205 return (EALREADY); 15206 15207 do { 15208 q1 = q1->q_next; 15209 } while (q1->q_next); 15210 cp = q1->q_qinfo->qi_minfo->mi_idname; 15211 (void) sprintf(interf_name, "%s%d", cp, ppa); 15212 15213 /* 15214 * Here we are not going to delay the ioack until after 15215 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15216 * original ioctl message before sending the requests. 15217 */ 15218 return (ipif_set_values(q, mp, interf_name, &ppa)); 15219 } 15220 15221 /* ARGSUSED */ 15222 int 15223 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15224 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15225 { 15226 return (ENXIO); 15227 } 15228 15229 /* 15230 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15231 * `irep'. Returns a pointer to the next free `irep' entry 15232 * A mirror exists in ipif_delete_bcast_ires(). 15233 * 15234 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15235 * done in ire_add. 15236 */ 15237 static ire_t ** 15238 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15239 { 15240 ipaddr_t addr; 15241 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15242 ipaddr_t subnetmask = ipif->ipif_net_mask; 15243 ill_t *ill = ipif->ipif_ill; 15244 zoneid_t zoneid = ipif->ipif_zoneid; 15245 15246 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15247 15248 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15249 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15250 15251 if (ipif->ipif_lcl_addr == INADDR_ANY || 15252 (ipif->ipif_flags & IPIF_NOLOCAL)) 15253 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15254 15255 irep = ire_create_bcast(ill, 0, zoneid, irep); 15256 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15257 15258 /* 15259 * For backward compatibility, we create net broadcast IREs based on 15260 * the old "IP address class system", since some old machines only 15261 * respond to these class derived net broadcast. However, we must not 15262 * create these net broadcast IREs if the subnetmask is shorter than 15263 * the IP address class based derived netmask. Otherwise, we may 15264 * create a net broadcast address which is the same as an IP address 15265 * on the subnet -- and then TCP will refuse to talk to that address. 15266 */ 15267 if (netmask < subnetmask) { 15268 addr = netmask & ipif->ipif_subnet; 15269 irep = ire_create_bcast(ill, addr, zoneid, irep); 15270 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15271 } 15272 15273 /* 15274 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15275 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15276 * created. Creating these broadcast IREs will only create confusion 15277 * as `addr' will be the same as the IP address. 15278 */ 15279 if (subnetmask != 0xFFFFFFFF) { 15280 addr = ipif->ipif_subnet; 15281 irep = ire_create_bcast(ill, addr, zoneid, irep); 15282 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15283 } 15284 15285 return (irep); 15286 } 15287 15288 /* 15289 * Mirror of ipif_create_bcast_ires() 15290 */ 15291 static void 15292 ipif_delete_bcast_ires(ipif_t *ipif) 15293 { 15294 ipaddr_t addr; 15295 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15296 ipaddr_t subnetmask = ipif->ipif_net_mask; 15297 ill_t *ill = ipif->ipif_ill; 15298 zoneid_t zoneid = ipif->ipif_zoneid; 15299 ire_t *ire; 15300 15301 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15302 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15303 15304 if (ipif->ipif_lcl_addr == INADDR_ANY || 15305 (ipif->ipif_flags & IPIF_NOLOCAL)) 15306 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15307 15308 ire = ire_lookup_bcast(ill, 0, zoneid); 15309 ASSERT(ire != NULL); 15310 ire_delete(ire); ire_refrele(ire); 15311 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15312 ASSERT(ire != NULL); 15313 ire_delete(ire); ire_refrele(ire); 15314 15315 /* 15316 * For backward compatibility, we create net broadcast IREs based on 15317 * the old "IP address class system", since some old machines only 15318 * respond to these class derived net broadcast. However, we must not 15319 * create these net broadcast IREs if the subnetmask is shorter than 15320 * the IP address class based derived netmask. Otherwise, we may 15321 * create a net broadcast address which is the same as an IP address 15322 * on the subnet -- and then TCP will refuse to talk to that address. 15323 */ 15324 if (netmask < subnetmask) { 15325 addr = netmask & ipif->ipif_subnet; 15326 ire = ire_lookup_bcast(ill, addr, zoneid); 15327 ASSERT(ire != NULL); 15328 ire_delete(ire); ire_refrele(ire); 15329 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15330 ASSERT(ire != NULL); 15331 ire_delete(ire); ire_refrele(ire); 15332 } 15333 15334 /* 15335 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15336 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15337 * created. Creating these broadcast IREs will only create confusion 15338 * as `addr' will be the same as the IP address. 15339 */ 15340 if (subnetmask != 0xFFFFFFFF) { 15341 addr = ipif->ipif_subnet; 15342 ire = ire_lookup_bcast(ill, addr, zoneid); 15343 ASSERT(ire != NULL); 15344 ire_delete(ire); ire_refrele(ire); 15345 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15346 ASSERT(ire != NULL); 15347 ire_delete(ire); ire_refrele(ire); 15348 } 15349 } 15350 15351 /* 15352 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15353 * from lifr_flags and the name from lifr_name. 15354 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15355 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15356 * Returns EINPROGRESS when mp has been consumed by queueing it on 15357 * ipx_pending_mp and the ioctl will complete in ip_rput. 15358 * 15359 * Can operate on either a module or a driver queue. 15360 * Returns an error if not a module queue. 15361 */ 15362 /* ARGSUSED */ 15363 int 15364 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15365 ip_ioctl_cmd_t *ipip, void *if_req) 15366 { 15367 ill_t *ill = q->q_ptr; 15368 phyint_t *phyi; 15369 ip_stack_t *ipst; 15370 struct lifreq *lifr = if_req; 15371 uint64_t new_flags; 15372 15373 ASSERT(ipif != NULL); 15374 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15375 15376 if (q->q_next == NULL) { 15377 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15378 return (EINVAL); 15379 } 15380 15381 /* 15382 * If we are not writer on 'q' then this interface exists already 15383 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15384 * so return EALREADY. 15385 */ 15386 if (ill != ipif->ipif_ill) 15387 return (EALREADY); 15388 15389 if (ill->ill_name[0] != '\0') 15390 return (EALREADY); 15391 15392 /* 15393 * If there's another ill already with the requested name, ensure 15394 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15395 * fuse together two unrelated ills, which will cause chaos. 15396 */ 15397 ipst = ill->ill_ipst; 15398 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15399 lifr->lifr_name, NULL); 15400 if (phyi != NULL) { 15401 ill_t *ill_mate = phyi->phyint_illv4; 15402 15403 if (ill_mate == NULL) 15404 ill_mate = phyi->phyint_illv6; 15405 ASSERT(ill_mate != NULL); 15406 15407 if (ill_mate->ill_media->ip_m_mac_type != 15408 ill->ill_media->ip_m_mac_type) { 15409 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15410 "use the same ill name on differing media\n")); 15411 return (EINVAL); 15412 } 15413 } 15414 15415 /* 15416 * We start off as IFF_IPV4 in ipif_allocate and become 15417 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15418 * The only flags that we read from user space are IFF_IPV4, 15419 * IFF_IPV6, and IFF_BROADCAST. 15420 * 15421 * This ill has not been inserted into the global list. 15422 * So we are still single threaded and don't need any lock 15423 * 15424 * Saniy check the flags. 15425 */ 15426 15427 if ((lifr->lifr_flags & IFF_BROADCAST) && 15428 ((lifr->lifr_flags & IFF_IPV6) || 15429 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15430 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15431 "or IPv6 i.e., no broadcast \n")); 15432 return (EINVAL); 15433 } 15434 15435 new_flags = 15436 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15437 15438 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15439 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15440 "IFF_IPV4 or IFF_IPV6\n")); 15441 return (EINVAL); 15442 } 15443 15444 /* 15445 * We always start off as IPv4, so only need to check for IPv6. 15446 */ 15447 if ((new_flags & IFF_IPV6) != 0) { 15448 ill->ill_flags |= ILLF_IPV6; 15449 ill->ill_flags &= ~ILLF_IPV4; 15450 } 15451 15452 if ((new_flags & IFF_BROADCAST) != 0) 15453 ipif->ipif_flags |= IPIF_BROADCAST; 15454 else 15455 ipif->ipif_flags &= ~IPIF_BROADCAST; 15456 15457 /* We started off as V4. */ 15458 if (ill->ill_flags & ILLF_IPV6) { 15459 ill->ill_phyint->phyint_illv6 = ill; 15460 ill->ill_phyint->phyint_illv4 = NULL; 15461 } 15462 15463 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15464 } 15465 15466 /* ARGSUSED */ 15467 int 15468 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15469 ip_ioctl_cmd_t *ipip, void *if_req) 15470 { 15471 /* 15472 * ill_phyint_reinit merged the v4 and v6 into a single 15473 * ipsq. We might not have been able to complete the 15474 * slifname in ipif_set_values, if we could not become 15475 * exclusive. If so restart it here 15476 */ 15477 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15478 } 15479 15480 /* 15481 * Return a pointer to the ipif which matches the index, IP version type and 15482 * zoneid. 15483 */ 15484 ipif_t * 15485 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15486 ip_stack_t *ipst) 15487 { 15488 ill_t *ill; 15489 ipif_t *ipif = NULL; 15490 15491 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15492 if (ill != NULL) { 15493 mutex_enter(&ill->ill_lock); 15494 for (ipif = ill->ill_ipif; ipif != NULL; 15495 ipif = ipif->ipif_next) { 15496 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15497 zoneid == ipif->ipif_zoneid || 15498 ipif->ipif_zoneid == ALL_ZONES)) { 15499 ipif_refhold_locked(ipif); 15500 break; 15501 } 15502 } 15503 mutex_exit(&ill->ill_lock); 15504 ill_refrele(ill); 15505 } 15506 return (ipif); 15507 } 15508 15509 /* 15510 * Change an existing physical interface's index. If the new index 15511 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15512 * Finally, we update other systems which may have a dependence on the 15513 * index value. 15514 */ 15515 /* ARGSUSED */ 15516 int 15517 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15518 ip_ioctl_cmd_t *ipip, void *ifreq) 15519 { 15520 ill_t *ill; 15521 phyint_t *phyi; 15522 struct ifreq *ifr = (struct ifreq *)ifreq; 15523 struct lifreq *lifr = (struct lifreq *)ifreq; 15524 uint_t old_index, index; 15525 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15526 avl_index_t where; 15527 15528 if (ipip->ipi_cmd_type == IF_CMD) 15529 index = ifr->ifr_index; 15530 else 15531 index = lifr->lifr_index; 15532 15533 /* 15534 * Only allow on physical interface. Also, index zero is illegal. 15535 */ 15536 ill = ipif->ipif_ill; 15537 phyi = ill->ill_phyint; 15538 if (ipif->ipif_id != 0 || index == 0) { 15539 return (EINVAL); 15540 } 15541 15542 /* If the index is not changing, no work to do */ 15543 if (phyi->phyint_ifindex == index) 15544 return (0); 15545 15546 /* 15547 * Use phyint_exists() to determine if the new interface index 15548 * is already in use. If the index is unused then we need to 15549 * change the phyint's position in the phyint_list_avl_by_index 15550 * tree. If we do not do this, subsequent lookups (using the new 15551 * index value) will not find the phyint. 15552 */ 15553 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15554 if (phyint_exists(index, ipst)) { 15555 rw_exit(&ipst->ips_ill_g_lock); 15556 return (EEXIST); 15557 } 15558 15559 /* 15560 * The new index is unused. Set it in the phyint. However we must not 15561 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15562 * changes. The event must be bound to old ifindex value. 15563 */ 15564 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15565 &index, sizeof (index)); 15566 15567 old_index = phyi->phyint_ifindex; 15568 phyi->phyint_ifindex = index; 15569 15570 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15571 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15572 &index, &where); 15573 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15574 phyi, where); 15575 rw_exit(&ipst->ips_ill_g_lock); 15576 15577 /* Update SCTP's ILL list */ 15578 sctp_ill_reindex(ill, old_index); 15579 15580 /* Send the routing sockets message */ 15581 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 15582 if (ILL_OTHER(ill)) 15583 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 15584 15585 /* Perhaps ilgs should use this ill */ 15586 update_conn_ill(NULL, ill->ill_ipst); 15587 return (0); 15588 } 15589 15590 /* ARGSUSED */ 15591 int 15592 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15593 ip_ioctl_cmd_t *ipip, void *ifreq) 15594 { 15595 struct ifreq *ifr = (struct ifreq *)ifreq; 15596 struct lifreq *lifr = (struct lifreq *)ifreq; 15597 15598 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 15599 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15600 /* Get the interface index */ 15601 if (ipip->ipi_cmd_type == IF_CMD) { 15602 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15603 } else { 15604 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15605 } 15606 return (0); 15607 } 15608 15609 /* ARGSUSED */ 15610 int 15611 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15612 ip_ioctl_cmd_t *ipip, void *ifreq) 15613 { 15614 struct lifreq *lifr = (struct lifreq *)ifreq; 15615 15616 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 15617 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15618 /* Get the interface zone */ 15619 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15620 lifr->lifr_zoneid = ipif->ipif_zoneid; 15621 return (0); 15622 } 15623 15624 /* 15625 * Set the zoneid of an interface. 15626 */ 15627 /* ARGSUSED */ 15628 int 15629 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15630 ip_ioctl_cmd_t *ipip, void *ifreq) 15631 { 15632 struct lifreq *lifr = (struct lifreq *)ifreq; 15633 int err = 0; 15634 boolean_t need_up = B_FALSE; 15635 zone_t *zptr; 15636 zone_status_t status; 15637 zoneid_t zoneid; 15638 15639 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15640 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 15641 if (!is_system_labeled()) 15642 return (ENOTSUP); 15643 zoneid = GLOBAL_ZONEID; 15644 } 15645 15646 /* cannot assign instance zero to a non-global zone */ 15647 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 15648 return (ENOTSUP); 15649 15650 /* 15651 * Cannot assign to a zone that doesn't exist or is shutting down. In 15652 * the event of a race with the zone shutdown processing, since IP 15653 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 15654 * interface will be cleaned up even if the zone is shut down 15655 * immediately after the status check. If the interface can't be brought 15656 * down right away, and the zone is shut down before the restart 15657 * function is called, we resolve the possible races by rechecking the 15658 * zone status in the restart function. 15659 */ 15660 if ((zptr = zone_find_by_id(zoneid)) == NULL) 15661 return (EINVAL); 15662 status = zone_status_get(zptr); 15663 zone_rele(zptr); 15664 15665 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 15666 return (EINVAL); 15667 15668 if (ipif->ipif_flags & IPIF_UP) { 15669 /* 15670 * If the interface is already marked up, 15671 * we call ipif_down which will take care 15672 * of ditching any IREs that have been set 15673 * up based on the old interface address. 15674 */ 15675 err = ipif_logical_down(ipif, q, mp); 15676 if (err == EINPROGRESS) 15677 return (err); 15678 (void) ipif_down_tail(ipif); 15679 need_up = B_TRUE; 15680 } 15681 15682 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 15683 return (err); 15684 } 15685 15686 static int 15687 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 15688 queue_t *q, mblk_t *mp, boolean_t need_up) 15689 { 15690 int err = 0; 15691 ip_stack_t *ipst; 15692 15693 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 15694 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15695 15696 if (CONN_Q(q)) 15697 ipst = CONNQ_TO_IPST(q); 15698 else 15699 ipst = ILLQ_TO_IPST(q); 15700 15701 /* 15702 * For exclusive stacks we don't allow a different zoneid than 15703 * global. 15704 */ 15705 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 15706 zoneid != GLOBAL_ZONEID) 15707 return (EINVAL); 15708 15709 /* Set the new zone id. */ 15710 ipif->ipif_zoneid = zoneid; 15711 15712 /* Update sctp list */ 15713 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 15714 15715 /* The default multicast interface might have changed */ 15716 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 15717 15718 if (need_up) { 15719 /* 15720 * Now bring the interface back up. If this 15721 * is the only IPIF for the ILL, ipif_up 15722 * will have to re-bind to the device, so 15723 * we may get back EINPROGRESS, in which 15724 * case, this IOCTL will get completed in 15725 * ip_rput_dlpi when we see the DL_BIND_ACK. 15726 */ 15727 err = ipif_up(ipif, q, mp); 15728 } 15729 return (err); 15730 } 15731 15732 /* ARGSUSED */ 15733 int 15734 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15735 ip_ioctl_cmd_t *ipip, void *if_req) 15736 { 15737 struct lifreq *lifr = (struct lifreq *)if_req; 15738 zoneid_t zoneid; 15739 zone_t *zptr; 15740 zone_status_t status; 15741 15742 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15743 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 15744 zoneid = GLOBAL_ZONEID; 15745 15746 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 15747 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15748 15749 /* 15750 * We recheck the zone status to resolve the following race condition: 15751 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 15752 * 2) hme0:1 is up and can't be brought down right away; 15753 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 15754 * 3) zone "myzone" is halted; the zone status switches to 15755 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 15756 * the interfaces to remove - hme0:1 is not returned because it's not 15757 * yet in "myzone", so it won't be removed; 15758 * 4) the restart function for SIOCSLIFZONE is called; without the 15759 * status check here, we would have hme0:1 in "myzone" after it's been 15760 * destroyed. 15761 * Note that if the status check fails, we need to bring the interface 15762 * back to its state prior to ip_sioctl_slifzone(), hence the call to 15763 * ipif_up_done[_v6](). 15764 */ 15765 status = ZONE_IS_UNINITIALIZED; 15766 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 15767 status = zone_status_get(zptr); 15768 zone_rele(zptr); 15769 } 15770 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 15771 if (ipif->ipif_isv6) { 15772 (void) ipif_up_done_v6(ipif); 15773 } else { 15774 (void) ipif_up_done(ipif); 15775 } 15776 return (EINVAL); 15777 } 15778 15779 (void) ipif_down_tail(ipif); 15780 15781 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 15782 B_TRUE)); 15783 } 15784 15785 /* 15786 * Return the number of addresses on `ill' with one or more of the values 15787 * in `set' set and all of the values in `clear' clear. 15788 */ 15789 static uint_t 15790 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 15791 { 15792 ipif_t *ipif; 15793 uint_t cnt = 0; 15794 15795 ASSERT(IAM_WRITER_ILL(ill)); 15796 15797 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 15798 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 15799 cnt++; 15800 15801 return (cnt); 15802 } 15803 15804 /* 15805 * Return the number of migratable addresses on `ill' that are under 15806 * application control. 15807 */ 15808 uint_t 15809 ill_appaddr_cnt(const ill_t *ill) 15810 { 15811 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 15812 IPIF_NOFAILOVER)); 15813 } 15814 15815 /* 15816 * Return the number of point-to-point addresses on `ill'. 15817 */ 15818 uint_t 15819 ill_ptpaddr_cnt(const ill_t *ill) 15820 { 15821 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 15822 } 15823 15824 /* ARGSUSED */ 15825 int 15826 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15827 ip_ioctl_cmd_t *ipip, void *ifreq) 15828 { 15829 struct lifreq *lifr = ifreq; 15830 15831 ASSERT(q->q_next == NULL); 15832 ASSERT(CONN_Q(q)); 15833 15834 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 15835 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15836 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 15837 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 15838 15839 return (0); 15840 } 15841 15842 /* Find the previous ILL in this usesrc group */ 15843 static ill_t * 15844 ill_prev_usesrc(ill_t *uill) 15845 { 15846 ill_t *ill; 15847 15848 for (ill = uill->ill_usesrc_grp_next; 15849 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 15850 ill = ill->ill_usesrc_grp_next) 15851 /* do nothing */; 15852 return (ill); 15853 } 15854 15855 /* 15856 * Release all members of the usesrc group. This routine is called 15857 * from ill_delete when the interface being unplumbed is the 15858 * group head. 15859 * 15860 * This silently clears the usesrc that ifconfig setup. 15861 * An alternative would be to keep that ifindex, and drop packets on the floor 15862 * since no source address can be selected. 15863 * Even if we keep the current semantics, don't need a lock and a linked list. 15864 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 15865 * the one that is being removed. Issue is how we return the usesrc users 15866 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 15867 * ill_usesrc_ifindex matching a target ill. We could also do that with an 15868 * ill walk, but the walker would need to insert in the ioctl response. 15869 */ 15870 static void 15871 ill_disband_usesrc_group(ill_t *uill) 15872 { 15873 ill_t *next_ill, *tmp_ill; 15874 ip_stack_t *ipst = uill->ill_ipst; 15875 15876 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15877 next_ill = uill->ill_usesrc_grp_next; 15878 15879 do { 15880 ASSERT(next_ill != NULL); 15881 tmp_ill = next_ill->ill_usesrc_grp_next; 15882 ASSERT(tmp_ill != NULL); 15883 next_ill->ill_usesrc_grp_next = NULL; 15884 next_ill->ill_usesrc_ifindex = 0; 15885 next_ill = tmp_ill; 15886 } while (next_ill->ill_usesrc_ifindex != 0); 15887 uill->ill_usesrc_grp_next = NULL; 15888 } 15889 15890 /* 15891 * Remove the client usesrc ILL from the list and relink to a new list 15892 */ 15893 int 15894 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 15895 { 15896 ill_t *ill, *tmp_ill; 15897 ip_stack_t *ipst = ucill->ill_ipst; 15898 15899 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 15900 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15901 15902 /* 15903 * Check if the usesrc client ILL passed in is not already 15904 * in use as a usesrc ILL i.e one whose source address is 15905 * in use OR a usesrc ILL is not already in use as a usesrc 15906 * client ILL 15907 */ 15908 if ((ucill->ill_usesrc_ifindex == 0) || 15909 (uill->ill_usesrc_ifindex != 0)) { 15910 return (-1); 15911 } 15912 15913 ill = ill_prev_usesrc(ucill); 15914 ASSERT(ill->ill_usesrc_grp_next != NULL); 15915 15916 /* Remove from the current list */ 15917 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 15918 /* Only two elements in the list */ 15919 ASSERT(ill->ill_usesrc_ifindex == 0); 15920 ill->ill_usesrc_grp_next = NULL; 15921 } else { 15922 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 15923 } 15924 15925 if (ifindex == 0) { 15926 ucill->ill_usesrc_ifindex = 0; 15927 ucill->ill_usesrc_grp_next = NULL; 15928 return (0); 15929 } 15930 15931 ucill->ill_usesrc_ifindex = ifindex; 15932 tmp_ill = uill->ill_usesrc_grp_next; 15933 uill->ill_usesrc_grp_next = ucill; 15934 ucill->ill_usesrc_grp_next = 15935 (tmp_ill != NULL) ? tmp_ill : uill; 15936 return (0); 15937 } 15938 15939 /* 15940 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 15941 * ip.c for locking details. 15942 */ 15943 /* ARGSUSED */ 15944 int 15945 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15946 ip_ioctl_cmd_t *ipip, void *ifreq) 15947 { 15948 struct lifreq *lifr = (struct lifreq *)ifreq; 15949 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 15950 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 15951 int err = 0, ret; 15952 uint_t ifindex; 15953 ipsq_t *ipsq = NULL; 15954 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15955 15956 ASSERT(IAM_WRITER_IPIF(ipif)); 15957 ASSERT(q->q_next == NULL); 15958 ASSERT(CONN_Q(q)); 15959 15960 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 15961 15962 ifindex = lifr->lifr_index; 15963 if (ifindex == 0) { 15964 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 15965 /* non usesrc group interface, nothing to reset */ 15966 return (0); 15967 } 15968 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 15969 /* valid reset request */ 15970 reset_flg = B_TRUE; 15971 } 15972 15973 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15974 if (usesrc_ill == NULL) { 15975 return (ENXIO); 15976 } 15977 15978 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 15979 NEW_OP, B_TRUE); 15980 if (ipsq == NULL) { 15981 err = EINPROGRESS; 15982 /* Operation enqueued on the ipsq of the usesrc ILL */ 15983 goto done; 15984 } 15985 15986 /* USESRC isn't currently supported with IPMP */ 15987 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 15988 err = ENOTSUP; 15989 goto done; 15990 } 15991 15992 /* 15993 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 15994 * used by IPMP underlying interfaces, but someone might think it's 15995 * more general and try to use it independently with VNI.) 15996 */ 15997 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 15998 err = ENOTSUP; 15999 goto done; 16000 } 16001 16002 /* 16003 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16004 * already a client then return EINVAL 16005 */ 16006 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16007 err = EINVAL; 16008 goto done; 16009 } 16010 16011 /* 16012 * If the ill_usesrc_ifindex field is already set to what it needs to 16013 * be then this is a duplicate operation. 16014 */ 16015 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16016 err = 0; 16017 goto done; 16018 } 16019 16020 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16021 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16022 usesrc_ill->ill_isv6)); 16023 16024 /* 16025 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16026 * and the ill_usesrc_ifindex fields 16027 */ 16028 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16029 16030 if (reset_flg) { 16031 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16032 if (ret != 0) { 16033 err = EINVAL; 16034 } 16035 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16036 goto done; 16037 } 16038 16039 /* 16040 * Four possibilities to consider: 16041 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16042 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16043 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16044 * 4. Both are part of their respective usesrc groups 16045 */ 16046 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16047 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16048 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16049 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16050 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16051 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16052 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16053 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16054 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16055 /* Insert at head of list */ 16056 usesrc_cli_ill->ill_usesrc_grp_next = 16057 usesrc_ill->ill_usesrc_grp_next; 16058 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16059 } else { 16060 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16061 ifindex); 16062 if (ret != 0) 16063 err = EINVAL; 16064 } 16065 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16066 16067 done: 16068 if (ipsq != NULL) 16069 ipsq_exit(ipsq); 16070 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16071 ill_refrele(usesrc_ill); 16072 16073 /* Let conn_ixa caching know that source address selection changed */ 16074 ip_update_source_selection(ipst); 16075 16076 return (err); 16077 } 16078 16079 /* 16080 * comparison function used by avl. 16081 */ 16082 static int 16083 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16084 { 16085 16086 uint_t index; 16087 16088 ASSERT(phyip != NULL && index_ptr != NULL); 16089 16090 index = *((uint_t *)index_ptr); 16091 /* 16092 * let the phyint with the lowest index be on top. 16093 */ 16094 if (((phyint_t *)phyip)->phyint_ifindex < index) 16095 return (1); 16096 if (((phyint_t *)phyip)->phyint_ifindex > index) 16097 return (-1); 16098 return (0); 16099 } 16100 16101 /* 16102 * comparison function used by avl. 16103 */ 16104 static int 16105 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16106 { 16107 ill_t *ill; 16108 int res = 0; 16109 16110 ASSERT(phyip != NULL && name_ptr != NULL); 16111 16112 if (((phyint_t *)phyip)->phyint_illv4) 16113 ill = ((phyint_t *)phyip)->phyint_illv4; 16114 else 16115 ill = ((phyint_t *)phyip)->phyint_illv6; 16116 ASSERT(ill != NULL); 16117 16118 res = strcmp(ill->ill_name, (char *)name_ptr); 16119 if (res > 0) 16120 return (1); 16121 else if (res < 0) 16122 return (-1); 16123 return (0); 16124 } 16125 16126 /* 16127 * This function is called on the unplumb path via ill_glist_delete() when 16128 * there are no ills left on the phyint and thus the phyint can be freed. 16129 */ 16130 static void 16131 phyint_free(phyint_t *phyi) 16132 { 16133 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16134 16135 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16136 16137 /* 16138 * If this phyint was an IPMP meta-interface, blow away the group. 16139 * This is safe to do because all of the illgrps have already been 16140 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16141 * If we're cleaning up as a result of failed initialization, 16142 * phyint_grp may be NULL. 16143 */ 16144 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16145 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16146 ipmp_grp_destroy(phyi->phyint_grp); 16147 phyi->phyint_grp = NULL; 16148 rw_exit(&ipst->ips_ipmp_lock); 16149 } 16150 16151 /* 16152 * If this interface was under IPMP, take it out of the group. 16153 */ 16154 if (phyi->phyint_grp != NULL) 16155 ipmp_phyint_leave_grp(phyi); 16156 16157 /* 16158 * Delete the phyint and disassociate its ipsq. The ipsq itself 16159 * will be freed in ipsq_exit(). 16160 */ 16161 phyi->phyint_ipsq->ipsq_phyint = NULL; 16162 phyi->phyint_name[0] = '\0'; 16163 16164 mi_free(phyi); 16165 } 16166 16167 /* 16168 * Attach the ill to the phyint structure which can be shared by both 16169 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16170 * function is called from ipif_set_values and ill_lookup_on_name (for 16171 * loopback) where we know the name of the ill. We lookup the ill and if 16172 * there is one present already with the name use that phyint. Otherwise 16173 * reuse the one allocated by ill_init. 16174 */ 16175 static void 16176 ill_phyint_reinit(ill_t *ill) 16177 { 16178 boolean_t isv6 = ill->ill_isv6; 16179 phyint_t *phyi_old; 16180 phyint_t *phyi; 16181 avl_index_t where = 0; 16182 ill_t *ill_other = NULL; 16183 ip_stack_t *ipst = ill->ill_ipst; 16184 16185 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16186 16187 phyi_old = ill->ill_phyint; 16188 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16189 phyi_old->phyint_illv6 == NULL)); 16190 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16191 phyi_old->phyint_illv4 == NULL)); 16192 ASSERT(phyi_old->phyint_ifindex == 0); 16193 16194 /* 16195 * Now that our ill has a name, set it in the phyint. 16196 */ 16197 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16198 16199 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16200 ill->ill_name, &where); 16201 16202 /* 16203 * 1. We grabbed the ill_g_lock before inserting this ill into 16204 * the global list of ills. So no other thread could have located 16205 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16206 * 2. Now locate the other protocol instance of this ill. 16207 * 3. Now grab both ill locks in the right order, and the phyint lock of 16208 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16209 * of neither ill can change. 16210 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16211 * other ill. 16212 * 5. Release all locks. 16213 */ 16214 16215 /* 16216 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16217 * we are initializing IPv4. 16218 */ 16219 if (phyi != NULL) { 16220 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16221 ASSERT(ill_other->ill_phyint != NULL); 16222 ASSERT((isv6 && !ill_other->ill_isv6) || 16223 (!isv6 && ill_other->ill_isv6)); 16224 GRAB_ILL_LOCKS(ill, ill_other); 16225 /* 16226 * We are potentially throwing away phyint_flags which 16227 * could be different from the one that we obtain from 16228 * ill_other->ill_phyint. But it is okay as we are assuming 16229 * that the state maintained within IP is correct. 16230 */ 16231 mutex_enter(&phyi->phyint_lock); 16232 if (isv6) { 16233 ASSERT(phyi->phyint_illv6 == NULL); 16234 phyi->phyint_illv6 = ill; 16235 } else { 16236 ASSERT(phyi->phyint_illv4 == NULL); 16237 phyi->phyint_illv4 = ill; 16238 } 16239 16240 /* 16241 * Delete the old phyint and make its ipsq eligible 16242 * to be freed in ipsq_exit(). 16243 */ 16244 phyi_old->phyint_illv4 = NULL; 16245 phyi_old->phyint_illv6 = NULL; 16246 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16247 phyi_old->phyint_name[0] = '\0'; 16248 mi_free(phyi_old); 16249 } else { 16250 mutex_enter(&ill->ill_lock); 16251 /* 16252 * We don't need to acquire any lock, since 16253 * the ill is not yet visible globally and we 16254 * have not yet released the ill_g_lock. 16255 */ 16256 phyi = phyi_old; 16257 mutex_enter(&phyi->phyint_lock); 16258 /* XXX We need a recovery strategy here. */ 16259 if (!phyint_assign_ifindex(phyi, ipst)) 16260 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16261 16262 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16263 (void *)phyi, where); 16264 16265 (void) avl_find(&ipst->ips_phyint_g_list-> 16266 phyint_list_avl_by_index, 16267 &phyi->phyint_ifindex, &where); 16268 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16269 (void *)phyi, where); 16270 } 16271 16272 /* 16273 * Reassigning ill_phyint automatically reassigns the ipsq also. 16274 * pending mp is not affected because that is per ill basis. 16275 */ 16276 ill->ill_phyint = phyi; 16277 16278 /* 16279 * Now that the phyint's ifindex has been assigned, complete the 16280 * remaining 16281 */ 16282 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16283 if (ill->ill_isv6) { 16284 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16285 ill->ill_phyint->phyint_ifindex; 16286 ill->ill_mcast_type = ipst->ips_mld_max_version; 16287 } else { 16288 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16289 } 16290 16291 /* 16292 * Generate an event within the hooks framework to indicate that 16293 * a new interface has just been added to IP. For this event to 16294 * be generated, the network interface must, at least, have an 16295 * ifindex assigned to it. (We don't generate the event for 16296 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16297 * 16298 * This needs to be run inside the ill_g_lock perimeter to ensure 16299 * that the ordering of delivered events to listeners matches the 16300 * order of them in the kernel. 16301 */ 16302 if (!IS_LOOPBACK(ill)) { 16303 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16304 ill->ill_name_length); 16305 } 16306 RELEASE_ILL_LOCKS(ill, ill_other); 16307 mutex_exit(&phyi->phyint_lock); 16308 } 16309 16310 /* 16311 * Notify any downstream modules of the name of this interface. 16312 * An M_IOCTL is used even though we don't expect a successful reply. 16313 * Any reply message from the driver (presumably an M_IOCNAK) will 16314 * eventually get discarded somewhere upstream. The message format is 16315 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16316 * to IP. 16317 */ 16318 static void 16319 ip_ifname_notify(ill_t *ill, queue_t *q) 16320 { 16321 mblk_t *mp1, *mp2; 16322 struct iocblk *iocp; 16323 struct lifreq *lifr; 16324 16325 mp1 = mkiocb(SIOCSLIFNAME); 16326 if (mp1 == NULL) 16327 return; 16328 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16329 if (mp2 == NULL) { 16330 freeb(mp1); 16331 return; 16332 } 16333 16334 mp1->b_cont = mp2; 16335 iocp = (struct iocblk *)mp1->b_rptr; 16336 iocp->ioc_count = sizeof (struct lifreq); 16337 16338 lifr = (struct lifreq *)mp2->b_rptr; 16339 mp2->b_wptr += sizeof (struct lifreq); 16340 bzero(lifr, sizeof (struct lifreq)); 16341 16342 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16343 lifr->lifr_ppa = ill->ill_ppa; 16344 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16345 16346 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16347 char *, "SIOCSLIFNAME", ill_t *, ill); 16348 putnext(q, mp1); 16349 } 16350 16351 static int 16352 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16353 { 16354 int err; 16355 ip_stack_t *ipst = ill->ill_ipst; 16356 phyint_t *phyi = ill->ill_phyint; 16357 16358 /* Set the obsolete NDD per-interface forwarding name. */ 16359 err = ill_set_ndd_name(ill); 16360 if (err != 0) { 16361 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 16362 err); 16363 } 16364 16365 /* 16366 * Now that ill_name is set, the configuration for the IPMP 16367 * meta-interface can be performed. 16368 */ 16369 if (IS_IPMP(ill)) { 16370 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16371 /* 16372 * If phyi->phyint_grp is NULL, then this is the first IPMP 16373 * meta-interface and we need to create the IPMP group. 16374 */ 16375 if (phyi->phyint_grp == NULL) { 16376 /* 16377 * If someone has renamed another IPMP group to have 16378 * the same name as our interface, bail. 16379 */ 16380 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16381 rw_exit(&ipst->ips_ipmp_lock); 16382 return (EEXIST); 16383 } 16384 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16385 if (phyi->phyint_grp == NULL) { 16386 rw_exit(&ipst->ips_ipmp_lock); 16387 return (ENOMEM); 16388 } 16389 } 16390 rw_exit(&ipst->ips_ipmp_lock); 16391 } 16392 16393 /* Tell downstream modules where they are. */ 16394 ip_ifname_notify(ill, q); 16395 16396 /* 16397 * ill_dl_phys returns EINPROGRESS in the usual case. 16398 * Error cases are ENOMEM ... 16399 */ 16400 err = ill_dl_phys(ill, ipif, mp, q); 16401 16402 if (ill->ill_isv6) { 16403 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16404 if (ipst->ips_mld_slowtimeout_id == 0) { 16405 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16406 (void *)ipst, 16407 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16408 } 16409 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16410 } else { 16411 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16412 if (ipst->ips_igmp_slowtimeout_id == 0) { 16413 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16414 (void *)ipst, 16415 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16416 } 16417 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16418 } 16419 16420 return (err); 16421 } 16422 16423 /* 16424 * Common routine for ppa and ifname setting. Should be called exclusive. 16425 * 16426 * Returns EINPROGRESS when mp has been consumed by queueing it on 16427 * ipx_pending_mp and the ioctl will complete in ip_rput. 16428 * 16429 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16430 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16431 * For SLIFNAME, we pass these values back to the userland. 16432 */ 16433 static int 16434 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16435 { 16436 ill_t *ill; 16437 ipif_t *ipif; 16438 ipsq_t *ipsq; 16439 char *ppa_ptr; 16440 char *old_ptr; 16441 char old_char; 16442 int error; 16443 ip_stack_t *ipst; 16444 16445 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16446 ASSERT(q->q_next != NULL); 16447 ASSERT(interf_name != NULL); 16448 16449 ill = (ill_t *)q->q_ptr; 16450 ipst = ill->ill_ipst; 16451 16452 ASSERT(ill->ill_ipst != NULL); 16453 ASSERT(ill->ill_name[0] == '\0'); 16454 ASSERT(IAM_WRITER_ILL(ill)); 16455 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16456 ASSERT(ill->ill_ppa == UINT_MAX); 16457 16458 ill->ill_defend_start = ill->ill_defend_count = 0; 16459 /* The ppa is sent down by ifconfig or is chosen */ 16460 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16461 return (EINVAL); 16462 } 16463 16464 /* 16465 * make sure ppa passed in is same as ppa in the name. 16466 * This check is not made when ppa == UINT_MAX in that case ppa 16467 * in the name could be anything. System will choose a ppa and 16468 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16469 */ 16470 if (*new_ppa_ptr != UINT_MAX) { 16471 /* stoi changes the pointer */ 16472 old_ptr = ppa_ptr; 16473 /* 16474 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16475 * (they don't have an externally visible ppa). We assign one 16476 * here so that we can manage the interface. Note that in 16477 * the past this value was always 0 for DLPI 1 drivers. 16478 */ 16479 if (*new_ppa_ptr == 0) 16480 *new_ppa_ptr = stoi(&old_ptr); 16481 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16482 return (EINVAL); 16483 } 16484 /* 16485 * terminate string before ppa 16486 * save char at that location. 16487 */ 16488 old_char = ppa_ptr[0]; 16489 ppa_ptr[0] = '\0'; 16490 16491 ill->ill_ppa = *new_ppa_ptr; 16492 /* 16493 * Finish as much work now as possible before calling ill_glist_insert 16494 * which makes the ill globally visible and also merges it with the 16495 * other protocol instance of this phyint. The remaining work is 16496 * done after entering the ipsq which may happen sometime later. 16497 * ill_set_ndd_name occurs after the ill has been made globally visible. 16498 */ 16499 ipif = ill->ill_ipif; 16500 16501 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16502 ipif_assign_seqid(ipif); 16503 16504 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16505 ill->ill_flags |= ILLF_IPV4; 16506 16507 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16508 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16509 16510 if (ill->ill_flags & ILLF_IPV6) { 16511 16512 ill->ill_isv6 = B_TRUE; 16513 ill_set_inputfn(ill); 16514 if (ill->ill_rq != NULL) { 16515 ill->ill_rq->q_qinfo = &iprinitv6; 16516 } 16517 16518 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16519 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16520 ipif->ipif_v6subnet = ipv6_all_zeros; 16521 ipif->ipif_v6net_mask = ipv6_all_zeros; 16522 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16523 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16524 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16525 /* 16526 * point-to-point or Non-mulicast capable 16527 * interfaces won't do NUD unless explicitly 16528 * configured to do so. 16529 */ 16530 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16531 !(ill->ill_flags & ILLF_MULTICAST)) { 16532 ill->ill_flags |= ILLF_NONUD; 16533 } 16534 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16535 if (ill->ill_flags & ILLF_NOARP) { 16536 /* 16537 * Note: xresolv interfaces will eventually need 16538 * NOARP set here as well, but that will require 16539 * those external resolvers to have some 16540 * knowledge of that flag and act appropriately. 16541 * Not to be changed at present. 16542 */ 16543 ill->ill_flags &= ~ILLF_NOARP; 16544 } 16545 /* 16546 * Set the ILLF_ROUTER flag according to the global 16547 * IPv6 forwarding policy. 16548 */ 16549 if (ipst->ips_ipv6_forward != 0) 16550 ill->ill_flags |= ILLF_ROUTER; 16551 } else if (ill->ill_flags & ILLF_IPV4) { 16552 ill->ill_isv6 = B_FALSE; 16553 ill_set_inputfn(ill); 16554 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16555 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16556 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16557 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16558 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16559 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 16560 /* 16561 * Set the ILLF_ROUTER flag according to the global 16562 * IPv4 forwarding policy. 16563 */ 16564 if (ipst->ips_ip_g_forward != 0) 16565 ill->ill_flags |= ILLF_ROUTER; 16566 } 16567 16568 ASSERT(ill->ill_phyint != NULL); 16569 16570 /* 16571 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 16572 * be completed in ill_glist_insert -> ill_phyint_reinit 16573 */ 16574 if (!ill_allocate_mibs(ill)) 16575 return (ENOMEM); 16576 16577 /* 16578 * Pick a default sap until we get the DL_INFO_ACK back from 16579 * the driver. 16580 */ 16581 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 16582 ill->ill_media->ip_m_ipv4sap; 16583 16584 ill->ill_ifname_pending = 1; 16585 ill->ill_ifname_pending_err = 0; 16586 16587 /* 16588 * When the first ipif comes up in ipif_up_done(), multicast groups 16589 * that were joined while this ill was not bound to the DLPI link need 16590 * to be recovered by ill_recover_multicast(). 16591 */ 16592 ill->ill_need_recover_multicast = 1; 16593 16594 ill_refhold(ill); 16595 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16596 if ((error = ill_glist_insert(ill, interf_name, 16597 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 16598 ill->ill_ppa = UINT_MAX; 16599 ill->ill_name[0] = '\0'; 16600 /* 16601 * undo null termination done above. 16602 */ 16603 ppa_ptr[0] = old_char; 16604 rw_exit(&ipst->ips_ill_g_lock); 16605 ill_refrele(ill); 16606 return (error); 16607 } 16608 16609 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 16610 16611 /* 16612 * When we return the buffer pointed to by interf_name should contain 16613 * the same name as in ill_name. 16614 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 16615 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 16616 * so copy full name and update the ppa ptr. 16617 * When ppa passed in != UINT_MAX all values are correct just undo 16618 * null termination, this saves a bcopy. 16619 */ 16620 if (*new_ppa_ptr == UINT_MAX) { 16621 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 16622 *new_ppa_ptr = ill->ill_ppa; 16623 } else { 16624 /* 16625 * undo null termination done above. 16626 */ 16627 ppa_ptr[0] = old_char; 16628 } 16629 16630 /* Let SCTP know about this ILL */ 16631 sctp_update_ill(ill, SCTP_ILL_INSERT); 16632 16633 /* 16634 * ill_glist_insert has made the ill visible globally, and 16635 * ill_phyint_reinit could have changed the ipsq. At this point, 16636 * we need to hold the ips_ill_g_lock across the call to enter the 16637 * ipsq to enforce atomicity and prevent reordering. In the event 16638 * the ipsq has changed, and if the new ipsq is currently busy, 16639 * we need to make sure that this half-completed ioctl is ahead of 16640 * any subsequent ioctl. We achieve this by not dropping the 16641 * ips_ill_g_lock which prevents any ill lookup itself thereby 16642 * ensuring that new ioctls can't start. 16643 */ 16644 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 16645 B_TRUE); 16646 16647 rw_exit(&ipst->ips_ill_g_lock); 16648 ill_refrele(ill); 16649 if (ipsq == NULL) 16650 return (EINPROGRESS); 16651 16652 /* 16653 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 16654 */ 16655 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 16656 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 16657 else 16658 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 16659 16660 error = ipif_set_values_tail(ill, ipif, mp, q); 16661 ipsq_exit(ipsq); 16662 if (error != 0 && error != EINPROGRESS) { 16663 /* 16664 * restore previous values 16665 */ 16666 ill->ill_isv6 = B_FALSE; 16667 ill_set_inputfn(ill); 16668 } 16669 return (error); 16670 } 16671 16672 void 16673 ipif_init(ip_stack_t *ipst) 16674 { 16675 int i; 16676 16677 for (i = 0; i < MAX_G_HEADS; i++) { 16678 ipst->ips_ill_g_heads[i].ill_g_list_head = 16679 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16680 ipst->ips_ill_g_heads[i].ill_g_list_tail = 16681 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16682 } 16683 16684 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16685 ill_phyint_compare_index, 16686 sizeof (phyint_t), 16687 offsetof(struct phyint, phyint_avl_by_index)); 16688 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16689 ill_phyint_compare_name, 16690 sizeof (phyint_t), 16691 offsetof(struct phyint, phyint_avl_by_name)); 16692 } 16693 16694 /* 16695 * Save enough information so that we can recreate the IRE if 16696 * the interface goes down and then up. 16697 */ 16698 void 16699 ill_save_ire(ill_t *ill, ire_t *ire) 16700 { 16701 mblk_t *save_mp; 16702 16703 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 16704 if (save_mp != NULL) { 16705 ifrt_t *ifrt; 16706 16707 save_mp->b_wptr += sizeof (ifrt_t); 16708 ifrt = (ifrt_t *)save_mp->b_rptr; 16709 bzero(ifrt, sizeof (ifrt_t)); 16710 ifrt->ifrt_type = ire->ire_type; 16711 if (ire->ire_ipversion == IPV4_VERSION) { 16712 ASSERT(!ill->ill_isv6); 16713 ifrt->ifrt_addr = ire->ire_addr; 16714 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 16715 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 16716 ifrt->ifrt_mask = ire->ire_mask; 16717 } else { 16718 ASSERT(ill->ill_isv6); 16719 ifrt->ifrt_v6addr = ire->ire_addr_v6; 16720 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 16721 mutex_enter(&ire->ire_lock); 16722 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 16723 mutex_exit(&ire->ire_lock); 16724 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 16725 ifrt->ifrt_v6mask = ire->ire_mask_v6; 16726 } 16727 ifrt->ifrt_flags = ire->ire_flags; 16728 ifrt->ifrt_zoneid = ire->ire_zoneid; 16729 mutex_enter(&ill->ill_saved_ire_lock); 16730 save_mp->b_cont = ill->ill_saved_ire_mp; 16731 ill->ill_saved_ire_mp = save_mp; 16732 ill->ill_saved_ire_cnt++; 16733 mutex_exit(&ill->ill_saved_ire_lock); 16734 } 16735 } 16736 16737 /* 16738 * Remove one entry from ill_saved_ire_mp. 16739 */ 16740 void 16741 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 16742 { 16743 mblk_t **mpp; 16744 mblk_t *mp; 16745 ifrt_t *ifrt; 16746 16747 /* Remove from ill_saved_ire_mp list if it is there */ 16748 mutex_enter(&ill->ill_saved_ire_lock); 16749 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 16750 mpp = &(*mpp)->b_cont) { 16751 in6_addr_t gw_addr_v6; 16752 16753 /* 16754 * On a given ill, the tuple of address, gateway, mask, 16755 * ire_type, and zoneid is unique for each saved IRE. 16756 */ 16757 mp = *mpp; 16758 ifrt = (ifrt_t *)mp->b_rptr; 16759 /* ire_gateway_addr_v6 can change - need lock */ 16760 mutex_enter(&ire->ire_lock); 16761 gw_addr_v6 = ire->ire_gateway_addr_v6; 16762 mutex_exit(&ire->ire_lock); 16763 16764 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 16765 ifrt->ifrt_type != ire->ire_type) 16766 continue; 16767 16768 if (ill->ill_isv6 ? 16769 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 16770 &ire->ire_addr_v6) && 16771 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 16772 &gw_addr_v6) && 16773 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 16774 &ire->ire_mask_v6)) : 16775 (ifrt->ifrt_addr == ire->ire_addr && 16776 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 16777 ifrt->ifrt_mask == ire->ire_mask)) { 16778 *mpp = mp->b_cont; 16779 ill->ill_saved_ire_cnt--; 16780 freeb(mp); 16781 break; 16782 } 16783 } 16784 mutex_exit(&ill->ill_saved_ire_lock); 16785 } 16786 16787 /* 16788 * IP multirouting broadcast routes handling 16789 * Append CGTP broadcast IREs to regular ones created 16790 * at ifconfig time. 16791 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 16792 * the destination and the gateway are broadcast addresses. 16793 * The caller has verified that the destination is an IRE_BROADCAST and that 16794 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 16795 * we create a MULTIRT IRE_BROADCAST. 16796 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 16797 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 16798 */ 16799 static void 16800 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 16801 { 16802 ire_t *ire_prim; 16803 16804 ASSERT(ire != NULL); 16805 16806 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16807 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 16808 NULL); 16809 if (ire_prim != NULL) { 16810 /* 16811 * We are in the special case of broadcasts for 16812 * CGTP. We add an IRE_BROADCAST that holds 16813 * the RTF_MULTIRT flag, the destination 16814 * address and the low level 16815 * info of ire_prim. In other words, CGTP 16816 * broadcast is added to the redundant ipif. 16817 */ 16818 ill_t *ill_prim; 16819 ire_t *bcast_ire; 16820 16821 ill_prim = ire_prim->ire_ill; 16822 16823 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 16824 (void *)ire_prim, (void *)ill_prim)); 16825 16826 bcast_ire = ire_create( 16827 (uchar_t *)&ire->ire_addr, 16828 (uchar_t *)&ip_g_all_ones, 16829 (uchar_t *)&ire->ire_gateway_addr, 16830 IRE_BROADCAST, 16831 ill_prim, 16832 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 16833 ire->ire_flags | RTF_KERNEL, 16834 NULL, 16835 ipst); 16836 16837 /* 16838 * Here we assume that ire_add does head insertion so that 16839 * the added IRE_BROADCAST comes before the existing IRE_HOST. 16840 */ 16841 if (bcast_ire != NULL) { 16842 if (ire->ire_flags & RTF_SETSRC) { 16843 bcast_ire->ire_setsrc_addr = 16844 ire->ire_setsrc_addr; 16845 } 16846 bcast_ire = ire_add(bcast_ire); 16847 if (bcast_ire != NULL) { 16848 ip2dbg(("ip_cgtp_filter_bcast_add: " 16849 "added bcast_ire %p\n", 16850 (void *)bcast_ire)); 16851 16852 ill_save_ire(ill_prim, bcast_ire); 16853 ire_refrele(bcast_ire); 16854 } 16855 } 16856 ire_refrele(ire_prim); 16857 } 16858 } 16859 16860 /* 16861 * IP multirouting broadcast routes handling 16862 * Remove the broadcast ire. 16863 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 16864 * the destination and the gateway are broadcast addresses. 16865 * The caller has only verified that RTF_MULTIRT was set. We check 16866 * that the destination is broadcast and that the gateway is a broadcast 16867 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 16868 */ 16869 static void 16870 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 16871 { 16872 ASSERT(ire != NULL); 16873 16874 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 16875 ire_t *ire_prim; 16876 16877 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16878 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 16879 ipst, NULL); 16880 if (ire_prim != NULL) { 16881 ill_t *ill_prim; 16882 ire_t *bcast_ire; 16883 16884 ill_prim = ire_prim->ire_ill; 16885 16886 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16887 "ire_prim %p, ill_prim %p\n", 16888 (void *)ire_prim, (void *)ill_prim)); 16889 16890 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 16891 ire->ire_gateway_addr, IRE_BROADCAST, 16892 ill_prim, ALL_ZONES, NULL, 16893 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 16894 MATCH_IRE_MASK, 0, ipst, NULL); 16895 16896 if (bcast_ire != NULL) { 16897 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16898 "looked up bcast_ire %p\n", 16899 (void *)bcast_ire)); 16900 ill_remove_saved_ire(bcast_ire->ire_ill, 16901 bcast_ire); 16902 ire_delete(bcast_ire); 16903 ire_refrele(bcast_ire); 16904 } 16905 ire_refrele(ire_prim); 16906 } 16907 } 16908 } 16909 16910 /* 16911 * Derive an interface id from the link layer address. 16912 * Knows about IEEE 802 and IEEE EUI-64 mappings. 16913 */ 16914 static void 16915 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16916 { 16917 char *addr; 16918 16919 /* 16920 * Note that some IPv6 interfaces get plumbed over links that claim to 16921 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 16922 * PPP links). The ETHERADDRL check here ensures that we only set the 16923 * interface ID on IPv6 interfaces above links that actually have real 16924 * Ethernet addresses. 16925 */ 16926 if (ill->ill_phys_addr_length == ETHERADDRL) { 16927 /* Form EUI-64 like address */ 16928 addr = (char *)&v6addr->s6_addr32[2]; 16929 bcopy(ill->ill_phys_addr, addr, 3); 16930 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 16931 addr[3] = (char)0xff; 16932 addr[4] = (char)0xfe; 16933 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 16934 } 16935 } 16936 16937 /* ARGSUSED */ 16938 static void 16939 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16940 { 16941 } 16942 16943 typedef struct ipmp_ifcookie { 16944 uint32_t ic_hostid; 16945 char ic_ifname[LIFNAMSIZ]; 16946 char ic_zonename[ZONENAME_MAX]; 16947 } ipmp_ifcookie_t; 16948 16949 /* 16950 * Construct a pseudo-random interface ID for the IPMP interface that's both 16951 * predictable and (almost) guaranteed to be unique. 16952 */ 16953 static void 16954 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16955 { 16956 zone_t *zp; 16957 uint8_t *addr; 16958 uchar_t hash[16]; 16959 ulong_t hostid; 16960 MD5_CTX ctx; 16961 ipmp_ifcookie_t ic = { 0 }; 16962 16963 ASSERT(IS_IPMP(ill)); 16964 16965 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 16966 ic.ic_hostid = htonl((uint32_t)hostid); 16967 16968 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 16969 16970 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 16971 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 16972 zone_rele(zp); 16973 } 16974 16975 MD5Init(&ctx); 16976 MD5Update(&ctx, &ic, sizeof (ic)); 16977 MD5Final(hash, &ctx); 16978 16979 /* 16980 * Map the hash to an interface ID per the basic approach in RFC3041. 16981 */ 16982 addr = &v6addr->s6_addr8[8]; 16983 bcopy(hash + 8, addr, sizeof (uint64_t)); 16984 addr[0] &= ~0x2; /* set local bit */ 16985 } 16986 16987 /* 16988 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 16989 */ 16990 static void 16991 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 16992 { 16993 phyint_t *phyi = ill->ill_phyint; 16994 16995 /* 16996 * Check PHYI_MULTI_BCAST and length of physical 16997 * address to determine if we use the mapping or the 16998 * broadcast address. 16999 */ 17000 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17001 ill->ill_phys_addr_length != ETHERADDRL) { 17002 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17003 return; 17004 } 17005 m_physaddr[0] = 0x33; 17006 m_physaddr[1] = 0x33; 17007 m_physaddr[2] = m_ip6addr[12]; 17008 m_physaddr[3] = m_ip6addr[13]; 17009 m_physaddr[4] = m_ip6addr[14]; 17010 m_physaddr[5] = m_ip6addr[15]; 17011 } 17012 17013 /* 17014 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17015 */ 17016 static void 17017 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17018 { 17019 phyint_t *phyi = ill->ill_phyint; 17020 17021 /* 17022 * Check PHYI_MULTI_BCAST and length of physical 17023 * address to determine if we use the mapping or the 17024 * broadcast address. 17025 */ 17026 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17027 ill->ill_phys_addr_length != ETHERADDRL) { 17028 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17029 return; 17030 } 17031 m_physaddr[0] = 0x01; 17032 m_physaddr[1] = 0x00; 17033 m_physaddr[2] = 0x5e; 17034 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17035 m_physaddr[4] = m_ipaddr[2]; 17036 m_physaddr[5] = m_ipaddr[3]; 17037 } 17038 17039 /* ARGSUSED */ 17040 static void 17041 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17042 { 17043 /* 17044 * for the MULTI_BCAST case and other cases when we want to 17045 * use the link-layer broadcast address for multicast. 17046 */ 17047 uint8_t *bphys_addr; 17048 dl_unitdata_req_t *dlur; 17049 17050 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17051 if (ill->ill_sap_length < 0) { 17052 bphys_addr = (uchar_t *)dlur + 17053 dlur->dl_dest_addr_offset; 17054 } else { 17055 bphys_addr = (uchar_t *)dlur + 17056 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17057 } 17058 17059 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17060 } 17061 17062 /* 17063 * Derive IPoIB interface id from the link layer address. 17064 */ 17065 static void 17066 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17067 { 17068 char *addr; 17069 17070 ASSERT(ill->ill_phys_addr_length == 20); 17071 addr = (char *)&v6addr->s6_addr32[2]; 17072 bcopy(ill->ill_phys_addr + 12, addr, 8); 17073 /* 17074 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17075 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17076 * rules. In these cases, the IBA considers these GUIDs to be in 17077 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17078 * required; vendors are required not to assign global EUI-64's 17079 * that differ only in u/l bit values, thus guaranteeing uniqueness 17080 * of the interface identifier. Whether the GUID is in modified 17081 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17082 * bit set to 1. 17083 */ 17084 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17085 } 17086 17087 /* 17088 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17089 * Note on mapping from multicast IP addresses to IPoIB multicast link 17090 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17091 * The format of an IPoIB multicast address is: 17092 * 17093 * 4 byte QPN Scope Sign. Pkey 17094 * +--------------------------------------------+ 17095 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17096 * +--------------------------------------------+ 17097 * 17098 * The Scope and Pkey components are properties of the IBA port and 17099 * network interface. They can be ascertained from the broadcast address. 17100 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17101 */ 17102 static void 17103 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17104 { 17105 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17106 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17107 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17108 uint8_t *bphys_addr; 17109 dl_unitdata_req_t *dlur; 17110 17111 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17112 17113 /* 17114 * RFC 4391: IPv4 MGID is 28-bit long. 17115 */ 17116 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17117 m_physaddr[17] = m_ipaddr[1]; 17118 m_physaddr[18] = m_ipaddr[2]; 17119 m_physaddr[19] = m_ipaddr[3]; 17120 17121 17122 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17123 if (ill->ill_sap_length < 0) { 17124 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17125 } else { 17126 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17127 ill->ill_sap_length; 17128 } 17129 /* 17130 * Now fill in the IBA scope/Pkey values from the broadcast address. 17131 */ 17132 m_physaddr[5] = bphys_addr[5]; 17133 m_physaddr[8] = bphys_addr[8]; 17134 m_physaddr[9] = bphys_addr[9]; 17135 } 17136 17137 static void 17138 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17139 { 17140 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17141 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17142 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17143 uint8_t *bphys_addr; 17144 dl_unitdata_req_t *dlur; 17145 17146 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17147 17148 /* 17149 * RFC 4391: IPv4 MGID is 80-bit long. 17150 */ 17151 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17152 17153 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17154 if (ill->ill_sap_length < 0) { 17155 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17156 } else { 17157 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17158 ill->ill_sap_length; 17159 } 17160 /* 17161 * Now fill in the IBA scope/Pkey values from the broadcast address. 17162 */ 17163 m_physaddr[5] = bphys_addr[5]; 17164 m_physaddr[8] = bphys_addr[8]; 17165 m_physaddr[9] = bphys_addr[9]; 17166 } 17167 17168 /* 17169 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17170 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17171 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17172 * of RFC4213. 17173 */ 17174 static void 17175 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17176 { 17177 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17178 v6addr->s6_addr32[2] = 0; 17179 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17180 } 17181 17182 /* 17183 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17184 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17185 * id. 17186 */ 17187 static void 17188 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17189 { 17190 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17191 17192 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17193 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17194 } 17195 17196 static void 17197 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17198 { 17199 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17200 } 17201 17202 static void 17203 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17204 { 17205 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17206 } 17207 17208 static void 17209 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17210 { 17211 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17212 } 17213 17214 static void 17215 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17216 { 17217 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17218 } 17219 17220 /* 17221 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17222 * Returns an held ill, or NULL. 17223 */ 17224 ill_t * 17225 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17226 ip_stack_t *ipst) 17227 { 17228 ill_t *ill; 17229 ipif_t *ipif; 17230 17231 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17232 if (ill == NULL) 17233 return (NULL); 17234 17235 mutex_enter(&ill->ill_lock); 17236 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17237 if (IPIF_IS_CONDEMNED(ipif)) 17238 continue; 17239 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17240 ipif->ipif_zoneid != ALL_ZONES) 17241 continue; 17242 17243 mutex_exit(&ill->ill_lock); 17244 return (ill); 17245 } 17246 mutex_exit(&ill->ill_lock); 17247 ill_refrele(ill); 17248 return (NULL); 17249 } 17250 17251 /* 17252 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17253 * If a pointer to an ipif_t is returned then the caller will need to do 17254 * an ill_refrele(). 17255 */ 17256 ipif_t * 17257 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17258 ip_stack_t *ipst) 17259 { 17260 ipif_t *ipif; 17261 ill_t *ill; 17262 17263 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17264 if (ill == NULL) 17265 return (NULL); 17266 17267 mutex_enter(&ill->ill_lock); 17268 if (ill->ill_state_flags & ILL_CONDEMNED) { 17269 mutex_exit(&ill->ill_lock); 17270 ill_refrele(ill); 17271 return (NULL); 17272 } 17273 17274 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17275 if (!IPIF_CAN_LOOKUP(ipif)) 17276 continue; 17277 if (lifidx == ipif->ipif_id) { 17278 ipif_refhold_locked(ipif); 17279 break; 17280 } 17281 } 17282 17283 mutex_exit(&ill->ill_lock); 17284 ill_refrele(ill); 17285 return (ipif); 17286 } 17287 17288 /* 17289 * Set ill_inputfn based on the current know state. 17290 * This needs to be called when any of the factors taken into 17291 * account changes. 17292 */ 17293 void 17294 ill_set_inputfn(ill_t *ill) 17295 { 17296 ip_stack_t *ipst = ill->ill_ipst; 17297 17298 if (ill->ill_isv6) { 17299 if (is_system_labeled()) 17300 ill->ill_inputfn = ill_input_full_v6; 17301 else 17302 ill->ill_inputfn = ill_input_short_v6; 17303 } else { 17304 if (is_system_labeled()) 17305 ill->ill_inputfn = ill_input_full_v4; 17306 else if (ill->ill_dhcpinit != 0) 17307 ill->ill_inputfn = ill_input_full_v4; 17308 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17309 != NULL) 17310 ill->ill_inputfn = ill_input_full_v4; 17311 else if (ipst->ips_ip_cgtp_filter && 17312 ipst->ips_ip_cgtp_filter_ops != NULL) 17313 ill->ill_inputfn = ill_input_full_v4; 17314 else 17315 ill->ill_inputfn = ill_input_short_v4; 17316 } 17317 } 17318 17319 /* 17320 * Re-evaluate ill_inputfn for all the IPv4 ills. 17321 * Used when RSVP and CGTP comes and goes. 17322 */ 17323 void 17324 ill_set_inputfn_all(ip_stack_t *ipst) 17325 { 17326 ill_walk_context_t ctx; 17327 ill_t *ill; 17328 17329 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17330 ill = ILL_START_WALK_V4(&ctx, ipst); 17331 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17332 ill_set_inputfn(ill); 17333 17334 rw_exit(&ipst->ips_ill_g_lock); 17335 } 17336 17337 /* 17338 * Set the physical address information for `ill' to the contents of the 17339 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17340 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17341 * EINPROGRESS will be returned. 17342 */ 17343 int 17344 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17345 { 17346 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17347 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17348 17349 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17350 17351 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17352 dlindp->dl_data != DL_CURR_DEST_ADDR && 17353 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17354 /* Changing DL_IPV6_TOKEN is not yet supported */ 17355 return (0); 17356 } 17357 17358 /* 17359 * We need to store up to two copies of `mp' in `ill'. Due to the 17360 * design of ipsq_pending_mp_add(), we can't pass them as separate 17361 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17362 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17363 */ 17364 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17365 freemsg(mp); 17366 return (ENOMEM); 17367 } 17368 17369 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17370 mutex_enter(&ill->ill_lock); 17371 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17372 /* no more nce addition allowed */ 17373 mutex_exit(&ill->ill_lock); 17374 17375 /* 17376 * If we can quiesce the ill, then set the address. If not, then 17377 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17378 */ 17379 ill_down_ipifs(ill, B_TRUE); 17380 mutex_enter(&ill->ill_lock); 17381 if (!ill_is_quiescent(ill)) { 17382 /* call cannot fail since `conn_t *' argument is NULL */ 17383 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17384 mp, ILL_DOWN); 17385 mutex_exit(&ill->ill_lock); 17386 return (EINPROGRESS); 17387 } 17388 mutex_exit(&ill->ill_lock); 17389 17390 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17391 return (0); 17392 } 17393 17394 /* 17395 * Once the ill associated with `q' has quiesced, set its physical address 17396 * information to the values in `addrmp'. Note that two copies of `addrmp' 17397 * are passed (linked by b_cont), since we sometimes need to save two distinct 17398 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17399 * failure (we'll free the other copy if it's not needed). Since the ill_t 17400 * is quiesced, we know any stale nce's with the old address information have 17401 * already been removed, so we don't need to call nce_flush(). 17402 */ 17403 /* ARGSUSED */ 17404 static void 17405 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17406 { 17407 ill_t *ill = q->q_ptr; 17408 mblk_t *addrmp2 = unlinkb(addrmp); 17409 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17410 uint_t addrlen, addroff; 17411 int status; 17412 17413 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17414 17415 addroff = dlindp->dl_addr_offset; 17416 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17417 17418 switch (dlindp->dl_data) { 17419 case DL_IPV6_LINK_LAYER_ADDR: 17420 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17421 freemsg(addrmp2); 17422 break; 17423 17424 case DL_CURR_DEST_ADDR: 17425 freemsg(ill->ill_dest_addr_mp); 17426 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17427 ill->ill_dest_addr_mp = addrmp; 17428 if (ill->ill_isv6) { 17429 ill_setdesttoken(ill); 17430 ipif_setdestlinklocal(ill->ill_ipif); 17431 } 17432 freemsg(addrmp2); 17433 break; 17434 17435 case DL_CURR_PHYS_ADDR: 17436 freemsg(ill->ill_phys_addr_mp); 17437 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17438 ill->ill_phys_addr_mp = addrmp; 17439 ill->ill_phys_addr_length = addrlen; 17440 if (ill->ill_isv6) 17441 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17442 else 17443 freemsg(addrmp2); 17444 if (ill->ill_isv6) { 17445 ill_setdefaulttoken(ill); 17446 ipif_setlinklocal(ill->ill_ipif); 17447 } 17448 break; 17449 default: 17450 ASSERT(0); 17451 } 17452 17453 /* 17454 * If there are ipifs to bring up, ill_up_ipifs() will return 17455 * EINPROGRESS, and ipsq_current_finish() will be called by 17456 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17457 * brought up. 17458 */ 17459 status = ill_up_ipifs(ill, q, addrmp); 17460 mutex_enter(&ill->ill_lock); 17461 if (ill->ill_dl_up) 17462 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17463 mutex_exit(&ill->ill_lock); 17464 if (status != EINPROGRESS) 17465 ipsq_current_finish(ipsq); 17466 } 17467 17468 /* 17469 * Helper routine for setting the ill_nd_lla fields. 17470 */ 17471 void 17472 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17473 { 17474 freemsg(ill->ill_nd_lla_mp); 17475 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17476 ill->ill_nd_lla_mp = ndmp; 17477 ill->ill_nd_lla_len = addrlen; 17478 } 17479 17480 /* 17481 * Replumb the ill. 17482 */ 17483 int 17484 ill_replumb(ill_t *ill, mblk_t *mp) 17485 { 17486 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17487 17488 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17489 17490 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17491 17492 mutex_enter(&ill->ill_lock); 17493 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17494 /* no more nce addition allowed */ 17495 mutex_exit(&ill->ill_lock); 17496 17497 /* 17498 * If we can quiesce the ill, then continue. If not, then 17499 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17500 */ 17501 ill_down_ipifs(ill, B_FALSE); 17502 17503 mutex_enter(&ill->ill_lock); 17504 if (!ill_is_quiescent(ill)) { 17505 /* call cannot fail since `conn_t *' argument is NULL */ 17506 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17507 mp, ILL_DOWN); 17508 mutex_exit(&ill->ill_lock); 17509 return (EINPROGRESS); 17510 } 17511 mutex_exit(&ill->ill_lock); 17512 17513 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 17514 return (0); 17515 } 17516 17517 /* ARGSUSED */ 17518 static void 17519 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 17520 { 17521 ill_t *ill = q->q_ptr; 17522 int err; 17523 conn_t *connp = NULL; 17524 17525 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17526 freemsg(ill->ill_replumb_mp); 17527 ill->ill_replumb_mp = copyb(mp); 17528 17529 if (ill->ill_replumb_mp == NULL) { 17530 /* out of memory */ 17531 ipsq_current_finish(ipsq); 17532 return; 17533 } 17534 17535 mutex_enter(&ill->ill_lock); 17536 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 17537 ill->ill_rq, ill->ill_replumb_mp, 0); 17538 mutex_exit(&ill->ill_lock); 17539 17540 if (!ill->ill_up_ipifs) { 17541 /* already closing */ 17542 ipsq_current_finish(ipsq); 17543 return; 17544 } 17545 ill->ill_replumbing = 1; 17546 err = ill_down_ipifs_tail(ill); 17547 17548 /* 17549 * Successfully quiesced and brought down the interface, now we send 17550 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 17551 * DL_NOTE_REPLUMB message. 17552 */ 17553 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 17554 DL_NOTIFY_CONF); 17555 ASSERT(mp != NULL); 17556 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 17557 DL_NOTE_REPLUMB_DONE; 17558 ill_dlpi_send(ill, mp); 17559 17560 /* 17561 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 17562 * streams have to be unbound. When all the DLPI exchanges are done, 17563 * ipsq_current_finish() will be called by arp_bringup_done(). The 17564 * remainder of ipif bringup via ill_up_ipifs() will also be done in 17565 * arp_bringup_done(). 17566 */ 17567 ASSERT(ill->ill_replumb_mp != NULL); 17568 if (err == EINPROGRESS) 17569 return; 17570 else 17571 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 17572 ASSERT(connp == NULL); 17573 if (err == 0 && ill->ill_replumb_mp != NULL && 17574 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 17575 return; 17576 } 17577 ipsq_current_finish(ipsq); 17578 } 17579 17580 /* 17581 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 17582 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 17583 * as per the ioctl. On failure, an errno is returned. 17584 */ 17585 static int 17586 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 17587 { 17588 int rval; 17589 struct strioctl iocb; 17590 17591 iocb.ic_cmd = cmd; 17592 iocb.ic_timout = 15; 17593 iocb.ic_len = bufsize; 17594 iocb.ic_dp = buf; 17595 17596 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 17597 } 17598 17599 /* 17600 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 17601 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 17602 */ 17603 static int 17604 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 17605 uint_t *bufsizep, cred_t *cr) 17606 { 17607 int err; 17608 struct lifnum lifn; 17609 17610 bzero(&lifn, sizeof (lifn)); 17611 lifn.lifn_family = af; 17612 lifn.lifn_flags = LIFC_UNDER_IPMP; 17613 17614 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 17615 return (err); 17616 17617 /* 17618 * Pad the interface count to account for additional interfaces that 17619 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 17620 */ 17621 lifn.lifn_count += 4; 17622 bzero(lifcp, sizeof (*lifcp)); 17623 lifcp->lifc_flags = LIFC_UNDER_IPMP; 17624 lifcp->lifc_family = af; 17625 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 17626 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 17627 17628 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 17629 if (err != 0) { 17630 kmem_free(lifcp->lifc_buf, *bufsizep); 17631 return (err); 17632 } 17633 17634 return (0); 17635 } 17636 17637 /* 17638 * Helper for ip_interface_cleanup() that removes the loopback interface. 17639 */ 17640 static void 17641 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17642 { 17643 int err; 17644 struct lifreq lifr; 17645 17646 bzero(&lifr, sizeof (lifr)); 17647 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 17648 17649 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 17650 if (err != 0) { 17651 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 17652 "error %d\n", isv6 ? "v6" : "v4", err)); 17653 } 17654 } 17655 17656 /* 17657 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 17658 * groups and that IPMP data addresses are down. These conditions must be met 17659 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 17660 */ 17661 static void 17662 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17663 { 17664 int af = isv6 ? AF_INET6 : AF_INET; 17665 int i, nifs; 17666 int err; 17667 uint_t bufsize; 17668 uint_t lifrsize = sizeof (struct lifreq); 17669 struct lifconf lifc; 17670 struct lifreq *lifrp; 17671 17672 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 17673 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 17674 "(error %d); any IPMP interfaces cannot be shutdown", err); 17675 return; 17676 } 17677 17678 nifs = lifc.lifc_len / lifrsize; 17679 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 17680 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17681 if (err != 0) { 17682 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 17683 "flags: error %d", lifrp->lifr_name, err); 17684 continue; 17685 } 17686 17687 if (lifrp->lifr_flags & IFF_IPMP) { 17688 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 17689 continue; 17690 17691 lifrp->lifr_flags &= ~IFF_UP; 17692 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 17693 if (err != 0) { 17694 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17695 "bring down (error %d); IPMP interface may " 17696 "not be shutdown", lifrp->lifr_name, err); 17697 } 17698 17699 /* 17700 * Check if IFF_DUPLICATE is still set -- and if so, 17701 * reset the address to clear it. 17702 */ 17703 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17704 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 17705 continue; 17706 17707 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 17708 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 17709 lifrp, lifrsize, cr)) != 0) { 17710 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17711 "reset DAD (error %d); IPMP interface may " 17712 "not be shutdown", lifrp->lifr_name, err); 17713 } 17714 continue; 17715 } 17716 17717 lifrp->lifr_groupname[0] = '\0'; 17718 err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr); 17719 if (err != 0) { 17720 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave " 17721 "IPMP group (error %d); associated IPMP interface " 17722 "may not be shutdown", lifrp->lifr_name, err); 17723 continue; 17724 } 17725 } 17726 17727 kmem_free(lifc.lifc_buf, bufsize); 17728 } 17729 17730 #define UDPDEV "/devices/pseudo/udp@0:udp" 17731 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 17732 17733 /* 17734 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 17735 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 17736 * when the user-level processes in the zone are killed and the latter are 17737 * cleaned up by str_stack_shutdown(). 17738 */ 17739 void 17740 ip_interface_cleanup(ip_stack_t *ipst) 17741 { 17742 ldi_handle_t lh; 17743 ldi_ident_t li; 17744 cred_t *cr; 17745 int err; 17746 int i; 17747 char *devs[] = { UDP6DEV, UDPDEV }; 17748 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 17749 17750 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 17751 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 17752 " error %d", err); 17753 return; 17754 } 17755 17756 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 17757 ASSERT(cr != NULL); 17758 17759 /* 17760 * NOTE: loop executes exactly twice and is hardcoded to know that the 17761 * first iteration is IPv6. (Unrolling yields repetitious code, hence 17762 * the loop.) 17763 */ 17764 for (i = 0; i < 2; i++) { 17765 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 17766 if (err != 0) { 17767 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 17768 " error %d", devs[i], err); 17769 continue; 17770 } 17771 17772 ip_loopback_removeif(lh, i == 0, cr); 17773 ip_ipmp_cleanup(lh, i == 0, cr); 17774 17775 (void) ldi_close(lh, FREAD|FWRITE, cr); 17776 } 17777 17778 ldi_ident_release(li); 17779 crfree(cr); 17780 } 17781 17782 /* 17783 * This needs to be in-sync with nic_event_t definition 17784 */ 17785 static const char * 17786 ill_hook_event2str(nic_event_t event) 17787 { 17788 switch (event) { 17789 case NE_PLUMB: 17790 return ("PLUMB"); 17791 case NE_UNPLUMB: 17792 return ("UNPLUMB"); 17793 case NE_UP: 17794 return ("UP"); 17795 case NE_DOWN: 17796 return ("DOWN"); 17797 case NE_ADDRESS_CHANGE: 17798 return ("ADDRESS_CHANGE"); 17799 case NE_LIF_UP: 17800 return ("LIF_UP"); 17801 case NE_LIF_DOWN: 17802 return ("LIF_DOWN"); 17803 case NE_IFINDEX_CHANGE: 17804 return ("IFINDEX_CHANGE"); 17805 default: 17806 return ("UNKNOWN"); 17807 } 17808 } 17809 17810 void 17811 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 17812 nic_event_data_t data, size_t datalen) 17813 { 17814 ip_stack_t *ipst = ill->ill_ipst; 17815 hook_nic_event_int_t *info; 17816 const char *str = NULL; 17817 17818 /* create a new nic event info */ 17819 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 17820 goto fail; 17821 17822 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 17823 info->hnei_event.hne_lif = lif; 17824 info->hnei_event.hne_event = event; 17825 info->hnei_event.hne_protocol = ill->ill_isv6 ? 17826 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 17827 info->hnei_event.hne_data = NULL; 17828 info->hnei_event.hne_datalen = 0; 17829 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 17830 17831 if (data != NULL && datalen != 0) { 17832 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 17833 if (info->hnei_event.hne_data == NULL) 17834 goto fail; 17835 bcopy(data, info->hnei_event.hne_data, datalen); 17836 info->hnei_event.hne_datalen = datalen; 17837 } 17838 17839 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 17840 DDI_NOSLEEP) == DDI_SUCCESS) 17841 return; 17842 17843 fail: 17844 if (info != NULL) { 17845 if (info->hnei_event.hne_data != NULL) { 17846 kmem_free(info->hnei_event.hne_data, 17847 info->hnei_event.hne_datalen); 17848 } 17849 kmem_free(info, sizeof (hook_nic_event_t)); 17850 } 17851 str = ill_hook_event2str(event); 17852 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 17853 "information for %s (ENOMEM)\n", str, ill->ill_name)); 17854 } 17855 17856 static int 17857 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 17858 { 17859 int err = 0; 17860 const in_addr_t *addr = NULL; 17861 nce_t *nce = NULL; 17862 ill_t *ill = ipif->ipif_ill; 17863 ill_t *bound_ill; 17864 boolean_t added_ipif = B_FALSE; 17865 uint16_t state; 17866 uint16_t flags; 17867 17868 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 17869 ill_t *, ill, ipif_t *, ipif); 17870 if (ipif->ipif_lcl_addr != INADDR_ANY) { 17871 addr = &ipif->ipif_lcl_addr; 17872 } 17873 17874 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 17875 if (res_act != Res_act_initial) 17876 return (EINVAL); 17877 } 17878 17879 if (addr != NULL) { 17880 ipmp_illgrp_t *illg = ill->ill_grp; 17881 17882 /* add unicast nce for the local addr */ 17883 17884 if (IS_IPMP(ill)) { 17885 /* 17886 * If we're here via ipif_up(), then the ipif 17887 * won't be bound yet -- add it to the group, 17888 * which will bind it if possible. (We would 17889 * add it in ipif_up(), but deleting on failure 17890 * there is gruesome.) If we're here via 17891 * ipmp_ill_bind_ipif(), then the ipif has 17892 * already been added to the group and we 17893 * just need to use the binding. 17894 */ 17895 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 17896 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 17897 if (bound_ill == NULL) { 17898 /* 17899 * We couldn't bind the ipif to an ill 17900 * yet, so we have nothing to publish. 17901 * Mark the address as ready and return. 17902 */ 17903 ipif->ipif_addr_ready = 1; 17904 return (0); 17905 } 17906 added_ipif = B_TRUE; 17907 } 17908 } else { 17909 bound_ill = ill; 17910 } 17911 17912 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 17913 NCE_F_NONUD); 17914 /* 17915 * If this is an initial bring-up (or the ipif was never 17916 * completely brought up), do DAD. Otherwise, we're here 17917 * because IPMP has rebound an address to this ill: send 17918 * unsolicited advertisements (ARP announcements) to 17919 * inform others. 17920 */ 17921 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 17922 state = ND_UNCHANGED; /* compute in nce_add_common() */ 17923 } else { 17924 state = ND_REACHABLE; 17925 flags |= NCE_F_UNSOL_ADV; 17926 } 17927 17928 retry: 17929 err = nce_lookup_then_add_v4(ill, 17930 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 17931 addr, flags, state, &nce); 17932 17933 /* 17934 * note that we may encounter EEXIST if we are moving 17935 * the nce as a result of a rebind operation. 17936 */ 17937 switch (err) { 17938 case 0: 17939 ipif->ipif_added_nce = 1; 17940 nce->nce_ipif_cnt++; 17941 break; 17942 case EEXIST: 17943 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 17944 ill->ill_name)); 17945 if (!NCE_MYADDR(nce->nce_common)) { 17946 /* 17947 * A leftover nce from before this address 17948 * existed 17949 */ 17950 ncec_delete(nce->nce_common); 17951 nce_refrele(nce); 17952 nce = NULL; 17953 goto retry; 17954 } 17955 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 17956 nce_refrele(nce); 17957 nce = NULL; 17958 ip1dbg(("ipif_arp_up: NCE already exists " 17959 "for %s:%u\n", ill->ill_name, 17960 ipif->ipif_id)); 17961 goto arp_up_done; 17962 } 17963 /* 17964 * Duplicate local addresses are permissible for 17965 * IPIF_POINTOPOINT interfaces which will get marked 17966 * IPIF_UNNUMBERED later in 17967 * ip_addr_availability_check(). 17968 * 17969 * The nce_ipif_cnt field tracks the number of 17970 * ipifs that have nce_addr as their local address. 17971 */ 17972 ipif->ipif_addr_ready = 1; 17973 ipif->ipif_added_nce = 1; 17974 nce->nce_ipif_cnt++; 17975 err = 0; 17976 break; 17977 default: 17978 ASSERT(nce == NULL); 17979 goto arp_up_done; 17980 } 17981 if (arp_no_defense) { 17982 if ((ipif->ipif_flags & IPIF_UP) && 17983 !ipif->ipif_addr_ready) 17984 ipif_up_notify(ipif); 17985 ipif->ipif_addr_ready = 1; 17986 } 17987 } else { 17988 /* zero address. nothing to publish */ 17989 ipif->ipif_addr_ready = 1; 17990 } 17991 if (nce != NULL) 17992 nce_refrele(nce); 17993 arp_up_done: 17994 if (added_ipif && err != 0) 17995 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 17996 return (err); 17997 } 17998 17999 int 18000 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18001 { 18002 int err = 0; 18003 ill_t *ill = ipif->ipif_ill; 18004 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18005 18006 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18007 ill_t *, ill, ipif_t *, ipif); 18008 18009 /* 18010 * need to bring up ARP or setup mcast mapping only 18011 * when the first interface is coming UP. 18012 */ 18013 first_interface = (ill->ill_ipif_up_count == 0 && 18014 ill->ill_ipif_dup_count == 0 && !was_dup); 18015 18016 if (res_act == Res_act_initial && first_interface) { 18017 /* 18018 * Send ATTACH + BIND 18019 */ 18020 err = arp_ll_up(ill); 18021 if (err != EINPROGRESS && err != 0) 18022 return (err); 18023 18024 /* 18025 * Add NCE for local address. Start DAD. 18026 * we'll wait to hear that DAD has finished 18027 * before using the interface. 18028 */ 18029 if (err == EINPROGRESS) 18030 wait_for_dlpi = B_TRUE; 18031 } 18032 18033 if (!wait_for_dlpi) 18034 (void) ipif_arp_up_done_tail(ipif, res_act); 18035 18036 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18037 } 18038 18039 /* 18040 * Finish processing of "arp_up" after all the DLPI message 18041 * exchanges have completed between arp and the driver. 18042 */ 18043 void 18044 arp_bringup_done(ill_t *ill, int err) 18045 { 18046 mblk_t *mp1; 18047 ipif_t *ipif; 18048 conn_t *connp = NULL; 18049 ipsq_t *ipsq; 18050 queue_t *q; 18051 18052 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18053 18054 ASSERT(IAM_WRITER_ILL(ill)); 18055 18056 ipsq = ill->ill_phyint->phyint_ipsq; 18057 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18058 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18059 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18060 if (mp1 == NULL) /* bringup was aborted by the user */ 18061 return; 18062 18063 /* 18064 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18065 * must have an associated conn_t. Otherwise, we're bringing this 18066 * interface back up as part of handling an asynchronous event (e.g., 18067 * physical address change). 18068 */ 18069 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18070 ASSERT(connp != NULL); 18071 q = CONNP_TO_WQ(connp); 18072 } else { 18073 ASSERT(connp == NULL); 18074 q = ill->ill_rq; 18075 } 18076 if (err == 0) { 18077 if (ipif->ipif_isv6) { 18078 if ((err = ipif_up_done_v6(ipif)) != 0) 18079 ip0dbg(("arp_bringup_done: init failed\n")); 18080 } else { 18081 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18082 if (err != 0 || 18083 (err = ipif_up_done(ipif)) != 0) { 18084 ip0dbg(("arp_bringup_done: " 18085 "init failed err %x\n", err)); 18086 (void) ipif_arp_down(ipif); 18087 } 18088 18089 } 18090 } else { 18091 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18092 } 18093 18094 if ((err == 0) && (ill->ill_up_ipifs)) { 18095 err = ill_up_ipifs(ill, q, mp1); 18096 if (err == EINPROGRESS) 18097 return; 18098 } 18099 18100 /* 18101 * If we have a moved ipif to bring up, and everything has succeeded 18102 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18103 * down -- the admin can try to bring it up by hand if need be. 18104 */ 18105 if (ill->ill_move_ipif != NULL) { 18106 ipif = ill->ill_move_ipif; 18107 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18108 ipif->ipif_ill->ill_name)); 18109 ill->ill_move_ipif = NULL; 18110 if (err == 0) { 18111 err = ipif_up(ipif, q, mp1); 18112 if (err == EINPROGRESS) 18113 return; 18114 } 18115 } 18116 18117 /* 18118 * The operation must complete without EINPROGRESS since 18119 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18120 * Otherwise, the operation will be stuck forever in the ipsq. 18121 */ 18122 ASSERT(err != EINPROGRESS); 18123 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18124 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18125 int, ipsq->ipsq_xop->ipx_current_ioctl, 18126 ill_t *, ill, ipif_t *, ipif); 18127 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18128 } else { 18129 ipsq_current_finish(ipsq); 18130 } 18131 } 18132 18133 /* 18134 * Finish processing of arp replumb after all the DLPI message 18135 * exchanges have completed between arp and the driver. 18136 */ 18137 void 18138 arp_replumb_done(ill_t *ill, int err) 18139 { 18140 mblk_t *mp1; 18141 ipif_t *ipif; 18142 conn_t *connp = NULL; 18143 ipsq_t *ipsq; 18144 queue_t *q; 18145 18146 ASSERT(IAM_WRITER_ILL(ill)); 18147 18148 ipsq = ill->ill_phyint->phyint_ipsq; 18149 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18150 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18151 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18152 if (mp1 == NULL) { 18153 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18154 ipsq->ipsq_xop->ipx_current_ioctl)); 18155 /* bringup was aborted by the user */ 18156 return; 18157 } 18158 /* 18159 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18160 * must have an associated conn_t. Otherwise, we're bringing this 18161 * interface back up as part of handling an asynchronous event (e.g., 18162 * physical address change). 18163 */ 18164 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18165 ASSERT(connp != NULL); 18166 q = CONNP_TO_WQ(connp); 18167 } else { 18168 ASSERT(connp == NULL); 18169 q = ill->ill_rq; 18170 } 18171 if ((err == 0) && (ill->ill_up_ipifs)) { 18172 err = ill_up_ipifs(ill, q, mp1); 18173 if (err == EINPROGRESS) 18174 return; 18175 } 18176 /* 18177 * The operation must complete without EINPROGRESS since 18178 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18179 * Otherwise, the operation will be stuck forever in the ipsq. 18180 */ 18181 ASSERT(err != EINPROGRESS); 18182 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18183 DTRACE_PROBE4(ipif__ioctl, char *, 18184 "arp_replumb_done finish", 18185 int, ipsq->ipsq_xop->ipx_current_ioctl, 18186 ill_t *, ill, ipif_t *, ipif); 18187 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18188 } else { 18189 ipsq_current_finish(ipsq); 18190 } 18191 } 18192 18193 void 18194 ipif_up_notify(ipif_t *ipif) 18195 { 18196 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18197 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18198 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18199 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18200 NE_LIF_UP, NULL, 0); 18201 } 18202 18203 /* 18204 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18205 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18206 * TPI end points with STREAMS modules pushed above. This is assured by not 18207 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18208 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18209 * while unwinding from the ispq and that could be a thread from the bottom. 18210 */ 18211 /* ARGSUSED */ 18212 int 18213 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18214 ip_ioctl_cmd_t *ipip, void *arg) 18215 { 18216 mblk_t *cmd_mp = mp->b_cont->b_cont; 18217 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18218 int ret = 0; 18219 int i; 18220 size_t size; 18221 ip_stack_t *ipst; 18222 zoneid_t zoneid; 18223 ilb_stack_t *ilbs; 18224 18225 ipst = CONNQ_TO_IPST(q); 18226 ilbs = ipst->ips_netstack->netstack_ilb; 18227 zoneid = Q_TO_CONN(q)->conn_zoneid; 18228 18229 switch (command) { 18230 case ILB_CREATE_RULE: { 18231 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18232 18233 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18234 ret = EINVAL; 18235 break; 18236 } 18237 18238 ret = ilb_rule_add(ilbs, zoneid, cmd); 18239 break; 18240 } 18241 case ILB_DESTROY_RULE: 18242 case ILB_ENABLE_RULE: 18243 case ILB_DISABLE_RULE: { 18244 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18245 18246 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18247 ret = EINVAL; 18248 break; 18249 } 18250 18251 if (cmd->flags & ILB_RULE_ALLRULES) { 18252 if (command == ILB_DESTROY_RULE) { 18253 ilb_rule_del_all(ilbs, zoneid); 18254 break; 18255 } else if (command == ILB_ENABLE_RULE) { 18256 ilb_rule_enable_all(ilbs, zoneid); 18257 break; 18258 } else if (command == ILB_DISABLE_RULE) { 18259 ilb_rule_disable_all(ilbs, zoneid); 18260 break; 18261 } 18262 } else { 18263 if (command == ILB_DESTROY_RULE) { 18264 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18265 } else if (command == ILB_ENABLE_RULE) { 18266 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18267 NULL); 18268 } else if (command == ILB_DISABLE_RULE) { 18269 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18270 NULL); 18271 } 18272 } 18273 break; 18274 } 18275 case ILB_NUM_RULES: { 18276 ilb_num_rules_cmd_t *cmd; 18277 18278 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18279 ret = EINVAL; 18280 break; 18281 } 18282 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18283 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18284 break; 18285 } 18286 case ILB_RULE_NAMES: { 18287 ilb_rule_names_cmd_t *cmd; 18288 18289 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18290 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18291 cmd->num_names == 0) { 18292 ret = EINVAL; 18293 break; 18294 } 18295 size = cmd->num_names * ILB_RULE_NAMESZ; 18296 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18297 size != cmd_mp->b_wptr) { 18298 ret = EINVAL; 18299 break; 18300 } 18301 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18302 break; 18303 } 18304 case ILB_NUM_SERVERS: { 18305 ilb_num_servers_cmd_t *cmd; 18306 18307 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18308 ret = EINVAL; 18309 break; 18310 } 18311 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18312 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18313 &(cmd->num)); 18314 break; 18315 } 18316 case ILB_LIST_RULE: { 18317 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18318 18319 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18320 ret = EINVAL; 18321 break; 18322 } 18323 ret = ilb_rule_list(ilbs, zoneid, cmd); 18324 break; 18325 } 18326 case ILB_LIST_SERVERS: { 18327 ilb_servers_info_cmd_t *cmd; 18328 18329 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18330 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18331 cmd->num_servers == 0) { 18332 ret = EINVAL; 18333 break; 18334 } 18335 size = cmd->num_servers * sizeof (ilb_server_info_t); 18336 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18337 size != cmd_mp->b_wptr) { 18338 ret = EINVAL; 18339 break; 18340 } 18341 18342 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18343 &cmd->num_servers); 18344 break; 18345 } 18346 case ILB_ADD_SERVERS: { 18347 ilb_servers_info_cmd_t *cmd; 18348 ilb_rule_t *rule; 18349 18350 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18351 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18352 ret = EINVAL; 18353 break; 18354 } 18355 size = cmd->num_servers * sizeof (ilb_server_info_t); 18356 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18357 size != cmd_mp->b_wptr) { 18358 ret = EINVAL; 18359 break; 18360 } 18361 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18362 if (rule == NULL) { 18363 ASSERT(ret != 0); 18364 break; 18365 } 18366 for (i = 0; i < cmd->num_servers; i++) { 18367 ilb_server_info_t *s; 18368 18369 s = &cmd->servers[i]; 18370 s->err = ilb_server_add(ilbs, rule, s); 18371 } 18372 ILB_RULE_REFRELE(rule); 18373 break; 18374 } 18375 case ILB_DEL_SERVERS: 18376 case ILB_ENABLE_SERVERS: 18377 case ILB_DISABLE_SERVERS: { 18378 ilb_servers_cmd_t *cmd; 18379 ilb_rule_t *rule; 18380 int (*f)(); 18381 18382 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18383 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18384 ret = EINVAL; 18385 break; 18386 } 18387 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18388 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18389 size != cmd_mp->b_wptr) { 18390 ret = EINVAL; 18391 break; 18392 } 18393 18394 if (command == ILB_DEL_SERVERS) 18395 f = ilb_server_del; 18396 else if (command == ILB_ENABLE_SERVERS) 18397 f = ilb_server_enable; 18398 else if (command == ILB_DISABLE_SERVERS) 18399 f = ilb_server_disable; 18400 18401 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18402 if (rule == NULL) { 18403 ASSERT(ret != 0); 18404 break; 18405 } 18406 18407 for (i = 0; i < cmd->num_servers; i++) { 18408 ilb_server_arg_t *s; 18409 18410 s = &cmd->servers[i]; 18411 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18412 } 18413 ILB_RULE_REFRELE(rule); 18414 break; 18415 } 18416 case ILB_LIST_NAT_TABLE: { 18417 ilb_list_nat_cmd_t *cmd; 18418 18419 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18420 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18421 ret = EINVAL; 18422 break; 18423 } 18424 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18425 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18426 size != cmd_mp->b_wptr) { 18427 ret = EINVAL; 18428 break; 18429 } 18430 18431 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18432 &cmd->flags); 18433 break; 18434 } 18435 case ILB_LIST_STICKY_TABLE: { 18436 ilb_list_sticky_cmd_t *cmd; 18437 18438 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18439 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18440 ret = EINVAL; 18441 break; 18442 } 18443 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18444 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18445 size != cmd_mp->b_wptr) { 18446 ret = EINVAL; 18447 break; 18448 } 18449 18450 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18451 &cmd->num_sticky, &cmd->flags); 18452 break; 18453 } 18454 default: 18455 ret = EINVAL; 18456 break; 18457 } 18458 done: 18459 return (ret); 18460 } 18461 18462 /* Remove all cache entries for this logical interface */ 18463 void 18464 ipif_nce_down(ipif_t *ipif) 18465 { 18466 ill_t *ill = ipif->ipif_ill; 18467 nce_t *nce; 18468 18469 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18470 ill_t *, ill, ipif_t *, ipif); 18471 if (ipif->ipif_added_nce) { 18472 if (ipif->ipif_isv6) 18473 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18474 else 18475 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18476 if (nce != NULL) { 18477 if (--nce->nce_ipif_cnt == 0) 18478 ncec_delete(nce->nce_common); 18479 ipif->ipif_added_nce = 0; 18480 nce_refrele(nce); 18481 } else { 18482 /* 18483 * nce may already be NULL because it was already 18484 * flushed, e.g., due to a call to nce_flush 18485 */ 18486 ipif->ipif_added_nce = 0; 18487 } 18488 } 18489 /* 18490 * Make IPMP aware of the deleted data address. 18491 */ 18492 if (IS_IPMP(ill)) 18493 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18494 18495 /* 18496 * Remove all other nces dependent on this ill when the last ipif 18497 * is going away. 18498 */ 18499 if (ill->ill_ipif_up_count == 0) { 18500 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18501 (uchar_t *)ill, ill->ill_ipst); 18502 if (IS_UNDER_IPMP(ill)) 18503 nce_flush(ill, B_TRUE); 18504 } 18505 } 18506 18507 /* 18508 * find the first interface that uses usill for its source address. 18509 */ 18510 ill_t * 18511 ill_lookup_usesrc(ill_t *usill) 18512 { 18513 ip_stack_t *ipst = usill->ill_ipst; 18514 ill_t *ill; 18515 18516 ASSERT(usill != NULL); 18517 18518 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 18519 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18520 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18521 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 18522 ill = ill->ill_usesrc_grp_next) { 18523 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 18524 !ILL_IS_CONDEMNED(ill)) { 18525 ill_refhold(ill); 18526 break; 18527 } 18528 } 18529 rw_exit(&ipst->ips_ill_g_lock); 18530 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18531 return (ill); 18532 } 18533