1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 #include <sys/bitmap.h> 49 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_ftable.h> 81 #include <inet/ip_rts.h> 82 #include <inet/ip_ndp.h> 83 #include <inet/ip_if.h> 84 #include <inet/ip_impl.h> 85 #include <inet/tun.h> 86 #include <inet/sctp_ip.h> 87 #include <inet/ip_netinfo.h> 88 #include <inet/mib2.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 typedef struct ip_sock_ar_s { 122 union { 123 area_t ip_sock_area; 124 ared_t ip_sock_ared; 125 areq_t ip_sock_areq; 126 } ip_sock_ar_u; 127 queue_t *ip_sock_ar_q; 128 } ip_sock_ar_t; 129 130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 132 char *value, caddr_t cp, cred_t *ioc_cr); 133 134 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 135 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 136 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 137 mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 141 queue_t *q, mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 143 mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 145 mblk_t *mp); 146 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 147 queue_t *q, mblk_t *mp, boolean_t need_up); 148 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 149 int ioccmd, struct linkblk *li, boolean_t doconsist); 150 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 151 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 152 static void ipsq_flush(ill_t *ill); 153 154 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 155 queue_t *q, mblk_t *mp, boolean_t need_up); 156 static void ipsq_delete(ipsq_t *); 157 158 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 159 boolean_t initialize); 160 static void ipif_check_bcast_ires(ipif_t *test_ipif); 161 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 162 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 163 boolean_t isv6); 164 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 165 static void ipif_delete_cache_ire(ire_t *, char *); 166 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 167 static void ipif_free(ipif_t *ipif); 168 static void ipif_free_tail(ipif_t *ipif); 169 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 170 static void ipif_multicast_down(ipif_t *ipif); 171 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 172 static void ipif_set_default(ipif_t *ipif); 173 static int ipif_set_values(queue_t *q, mblk_t *mp, 174 char *interf_name, uint_t *ppa); 175 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 176 queue_t *q); 177 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 178 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 179 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 180 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 181 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 182 183 static int ill_alloc_ppa(ill_if_t *, ill_t *); 184 static int ill_arp_off(ill_t *ill); 185 static int ill_arp_on(ill_t *ill); 186 static void ill_delete_interface_type(ill_if_t *); 187 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 188 static void ill_dl_down(ill_t *ill); 189 static void ill_down(ill_t *ill); 190 static void ill_downi(ire_t *ire, char *ill_arg); 191 static void ill_free_mib(ill_t *ill); 192 static void ill_glist_delete(ill_t *); 193 static boolean_t ill_has_usable_ipif(ill_t *); 194 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 195 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 196 static void ill_phyint_free(ill_t *ill); 197 static void ill_phyint_reinit(ill_t *ill); 198 static void ill_set_nce_router_flags(ill_t *, boolean_t); 199 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 200 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 201 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 202 static void ill_stq_cache_delete(ire_t *, char *); 203 204 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 207 in6_addr_t *); 208 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 ipaddr_t *); 210 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 211 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 212 in6_addr_t *); 213 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 214 ipaddr_t *); 215 216 static void ipif_save_ire(ipif_t *, ire_t *); 217 static void ipif_remove_ire(ipif_t *, ire_t *); 218 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 219 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 220 221 /* 222 * Per-ill IPsec capabilities management. 223 */ 224 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 225 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 226 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 227 static void ill_ipsec_capab_delete(ill_t *, uint_t); 228 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 229 static void ill_capability_proto(ill_t *, int, mblk_t *); 230 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 231 boolean_t); 232 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 235 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 236 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 237 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 239 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 240 dl_capability_sub_t *); 241 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 242 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 243 static void ill_capability_lso_reset(ill_t *, mblk_t **); 244 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 245 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 246 static void ill_capability_dls_reset(ill_t *, mblk_t **); 247 static void ill_capability_dls_disable(ill_t *); 248 249 static void illgrp_cache_delete(ire_t *, char *); 250 static void illgrp_delete(ill_t *ill); 251 static void illgrp_reset_schednext(ill_t *ill); 252 253 static ill_t *ill_prev_usesrc(ill_t *); 254 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 255 static void ill_disband_usesrc_group(ill_t *); 256 257 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 258 259 #ifdef DEBUG 260 static void ill_trace_cleanup(const ill_t *); 261 static void ipif_trace_cleanup(const ipif_t *); 262 #endif 263 264 /* 265 * if we go over the memory footprint limit more than once in this msec 266 * interval, we'll start pruning aggressively. 267 */ 268 int ip_min_frag_prune_time = 0; 269 270 /* 271 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 272 * and the IPsec DOI 273 */ 274 #define MAX_IPSEC_ALGS 256 275 276 #define BITSPERBYTE 8 277 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 278 279 #define IPSEC_ALG_ENABLE(algs, algid) \ 280 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 281 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 282 283 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 284 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 285 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 286 287 typedef uint8_t ipsec_capab_elem_t; 288 289 /* 290 * Per-algorithm parameters. Note that at present, only encryption 291 * algorithms have variable keysize (IKE does not provide a way to negotiate 292 * auth algorithm keysize). 293 * 294 * All sizes here are in bits. 295 */ 296 typedef struct 297 { 298 uint16_t minkeylen; 299 uint16_t maxkeylen; 300 } ipsec_capab_algparm_t; 301 302 /* 303 * Per-ill capabilities. 304 */ 305 struct ill_ipsec_capab_s { 306 ipsec_capab_elem_t *encr_hw_algs; 307 ipsec_capab_elem_t *auth_hw_algs; 308 uint32_t algs_size; /* size of _hw_algs in bytes */ 309 /* algorithm key lengths */ 310 ipsec_capab_algparm_t *encr_algparm; 311 uint32_t encr_algparm_size; 312 uint32_t encr_algparm_end; 313 }; 314 315 /* 316 * The field values are larger than strictly necessary for simple 317 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 318 */ 319 static area_t ip_area_template = { 320 AR_ENTRY_ADD, /* area_cmd */ 321 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 322 /* area_name_offset */ 323 /* area_name_length temporarily holds this structure length */ 324 sizeof (area_t), /* area_name_length */ 325 IP_ARP_PROTO_TYPE, /* area_proto */ 326 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 327 IP_ADDR_LEN, /* area_proto_addr_length */ 328 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 329 /* area_proto_mask_offset */ 330 0, /* area_flags */ 331 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 332 /* area_hw_addr_offset */ 333 /* Zero length hw_addr_length means 'use your idea of the address' */ 334 0 /* area_hw_addr_length */ 335 }; 336 337 /* 338 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 339 * support 340 */ 341 static area_t ip6_area_template = { 342 AR_ENTRY_ADD, /* area_cmd */ 343 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 344 /* area_name_offset */ 345 /* area_name_length temporarily holds this structure length */ 346 sizeof (area_t), /* area_name_length */ 347 IP_ARP_PROTO_TYPE, /* area_proto */ 348 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 349 IPV6_ADDR_LEN, /* area_proto_addr_length */ 350 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 351 /* area_proto_mask_offset */ 352 0, /* area_flags */ 353 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 354 /* area_hw_addr_offset */ 355 /* Zero length hw_addr_length means 'use your idea of the address' */ 356 0 /* area_hw_addr_length */ 357 }; 358 359 static ared_t ip_ared_template = { 360 AR_ENTRY_DELETE, 361 sizeof (ared_t) + IP_ADDR_LEN, 362 sizeof (ared_t), 363 IP_ARP_PROTO_TYPE, 364 sizeof (ared_t), 365 IP_ADDR_LEN 366 }; 367 368 static ared_t ip6_ared_template = { 369 AR_ENTRY_DELETE, 370 sizeof (ared_t) + IPV6_ADDR_LEN, 371 sizeof (ared_t), 372 IP_ARP_PROTO_TYPE, 373 sizeof (ared_t), 374 IPV6_ADDR_LEN 375 }; 376 377 /* 378 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 379 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 380 * areq is used). 381 */ 382 static areq_t ip_areq_template = { 383 AR_ENTRY_QUERY, /* cmd */ 384 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 385 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 386 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 387 sizeof (areq_t), /* target addr offset */ 388 IP_ADDR_LEN, /* target addr_length */ 389 0, /* flags */ 390 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 391 IP_ADDR_LEN, /* sender addr length */ 392 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 393 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 394 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 395 /* anything else filled in by the code */ 396 }; 397 398 static arc_t ip_aru_template = { 399 AR_INTERFACE_UP, 400 sizeof (arc_t), /* Name offset */ 401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 402 }; 403 404 static arc_t ip_ard_template = { 405 AR_INTERFACE_DOWN, 406 sizeof (arc_t), /* Name offset */ 407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 408 }; 409 410 static arc_t ip_aron_template = { 411 AR_INTERFACE_ON, 412 sizeof (arc_t), /* Name offset */ 413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 414 }; 415 416 static arc_t ip_aroff_template = { 417 AR_INTERFACE_OFF, 418 sizeof (arc_t), /* Name offset */ 419 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 420 }; 421 422 423 static arma_t ip_arma_multi_template = { 424 AR_MAPPING_ADD, 425 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 426 /* Name offset */ 427 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 428 IP_ARP_PROTO_TYPE, 429 sizeof (arma_t), /* proto_addr_offset */ 430 IP_ADDR_LEN, /* proto_addr_length */ 431 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 432 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 433 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 434 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 435 IP_MAX_HW_LEN, /* hw_addr_length */ 436 0, /* hw_mapping_start */ 437 }; 438 439 static ipft_t ip_ioctl_ftbl[] = { 440 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 441 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 444 IPFT_F_NO_REPLY }, 445 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 446 { 0 } 447 }; 448 449 /* Simple ICMP IP Header Template */ 450 static ipha_t icmp_ipha = { 451 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 452 }; 453 454 /* Flag descriptors for ip_ipif_report */ 455 static nv_t ipif_nv_tbl[] = { 456 { IPIF_UP, "UP" }, 457 { IPIF_BROADCAST, "BROADCAST" }, 458 { ILLF_DEBUG, "DEBUG" }, 459 { PHYI_LOOPBACK, "LOOPBACK" }, 460 { IPIF_POINTOPOINT, "POINTOPOINT" }, 461 { ILLF_NOTRAILERS, "NOTRAILERS" }, 462 { PHYI_RUNNING, "RUNNING" }, 463 { ILLF_NOARP, "NOARP" }, 464 { PHYI_PROMISC, "PROMISC" }, 465 { PHYI_ALLMULTI, "ALLMULTI" }, 466 { PHYI_INTELLIGENT, "INTELLIGENT" }, 467 { ILLF_MULTICAST, "MULTICAST" }, 468 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 469 { IPIF_UNNUMBERED, "UNNUMBERED" }, 470 { IPIF_DHCPRUNNING, "DHCP" }, 471 { IPIF_PRIVATE, "PRIVATE" }, 472 { IPIF_NOXMIT, "NOXMIT" }, 473 { IPIF_NOLOCAL, "NOLOCAL" }, 474 { IPIF_DEPRECATED, "DEPRECATED" }, 475 { IPIF_PREFERRED, "PREFERRED" }, 476 { IPIF_TEMPORARY, "TEMPORARY" }, 477 { IPIF_ADDRCONF, "ADDRCONF" }, 478 { PHYI_VIRTUAL, "VIRTUAL" }, 479 { ILLF_ROUTER, "ROUTER" }, 480 { ILLF_NONUD, "NONUD" }, 481 { IPIF_ANYCAST, "ANYCAST" }, 482 { ILLF_NORTEXCH, "NORTEXCH" }, 483 { ILLF_IPV4, "IPV4" }, 484 { ILLF_IPV6, "IPV6" }, 485 { IPIF_NOFAILOVER, "NOFAILOVER" }, 486 { PHYI_FAILED, "FAILED" }, 487 { PHYI_STANDBY, "STANDBY" }, 488 { PHYI_INACTIVE, "INACTIVE" }, 489 { PHYI_OFFLINE, "OFFLINE" }, 490 }; 491 492 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 493 494 static ip_m_t ip_m_tbl[] = { 495 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_ether_v6intfid }, 497 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_nodef_v6intfid }, 499 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_ether_v6intfid }, 505 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 506 ip_ib_v6intfid }, 507 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 508 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 509 ip_nodef_v6intfid } 510 }; 511 512 static ill_t ill_null; /* Empty ILL for init. */ 513 char ipif_loopback_name[] = "lo0"; 514 static char *ipv4_forward_suffix = ":ip_forwarding"; 515 static char *ipv6_forward_suffix = ":ip6_forwarding"; 516 static sin6_t sin6_null; /* Zero address for quick clears */ 517 static sin_t sin_null; /* Zero address for quick clears */ 518 519 /* When set search for unused ipif_seqid */ 520 static ipif_t ipif_zero; 521 522 /* 523 * ppa arena is created after these many 524 * interfaces have been plumbed. 525 */ 526 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 527 528 /* 529 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 530 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 531 * set through platform specific code (Niagara/Ontario). 532 */ 533 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 534 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 535 536 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 537 538 static uint_t 539 ipif_rand(ip_stack_t *ipst) 540 { 541 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 542 12345; 543 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 544 } 545 546 /* 547 * Allocate per-interface mibs. 548 * Returns true if ok. False otherwise. 549 * ipsq may not yet be allocated (loopback case ). 550 */ 551 static boolean_t 552 ill_allocate_mibs(ill_t *ill) 553 { 554 /* Already allocated? */ 555 if (ill->ill_ip_mib != NULL) { 556 if (ill->ill_isv6) 557 ASSERT(ill->ill_icmp6_mib != NULL); 558 return (B_TRUE); 559 } 560 561 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 562 KM_NOSLEEP); 563 if (ill->ill_ip_mib == NULL) { 564 return (B_FALSE); 565 } 566 567 /* Setup static information */ 568 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 569 sizeof (mib2_ipIfStatsEntry_t)); 570 if (ill->ill_isv6) { 571 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 572 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 573 sizeof (mib2_ipv6AddrEntry_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 575 sizeof (mib2_ipv6RouteEntry_t)); 576 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 577 sizeof (mib2_ipv6NetToMediaEntry_t)); 578 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 579 sizeof (ipv6_member_t)); 580 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 581 sizeof (ipv6_grpsrc_t)); 582 } else { 583 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 584 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 585 sizeof (mib2_ipAddrEntry_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 587 sizeof (mib2_ipRouteEntry_t)); 588 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 589 sizeof (mib2_ipNetToMediaEntry_t)); 590 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 591 sizeof (ip_member_t)); 592 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 593 sizeof (ip_grpsrc_t)); 594 595 /* 596 * For a v4 ill, we are done at this point, because per ill 597 * icmp mibs are only used for v6. 598 */ 599 return (B_TRUE); 600 } 601 602 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 603 KM_NOSLEEP); 604 if (ill->ill_icmp6_mib == NULL) { 605 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 606 ill->ill_ip_mib = NULL; 607 return (B_FALSE); 608 } 609 /* static icmp info */ 610 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 611 sizeof (mib2_ipv6IfIcmpEntry_t); 612 /* 613 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 614 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 615 * -> ill_phyint_reinit 616 */ 617 return (B_TRUE); 618 } 619 620 /* 621 * Common code for preparation of ARP commands. Two points to remember: 622 * 1) The ill_name is tacked on at the end of the allocated space so 623 * the templates name_offset field must contain the total space 624 * to allocate less the name length. 625 * 626 * 2) The templates name_length field should contain the *template* 627 * length. We use it as a parameter to bcopy() and then write 628 * the real ill_name_length into the name_length field of the copy. 629 * (Always called as writer.) 630 */ 631 mblk_t * 632 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 633 { 634 arc_t *arc = (arc_t *)template; 635 char *cp; 636 int len; 637 mblk_t *mp; 638 uint_t name_length = ill->ill_name_length; 639 uint_t template_len = arc->arc_name_length; 640 641 len = arc->arc_name_offset + name_length; 642 mp = allocb(len, BPRI_HI); 643 if (mp == NULL) 644 return (NULL); 645 cp = (char *)mp->b_rptr; 646 mp->b_wptr = (uchar_t *)&cp[len]; 647 if (template_len) 648 bcopy(template, cp, template_len); 649 if (len > template_len) 650 bzero(&cp[template_len], len - template_len); 651 mp->b_datap->db_type = M_PROTO; 652 653 arc = (arc_t *)cp; 654 arc->arc_name_length = name_length; 655 cp = (char *)arc + arc->arc_name_offset; 656 bcopy(ill->ill_name, cp, name_length); 657 658 if (addr) { 659 area_t *area = (area_t *)mp->b_rptr; 660 661 cp = (char *)area + area->area_proto_addr_offset; 662 bcopy(addr, cp, area->area_proto_addr_length); 663 if (area->area_cmd == AR_ENTRY_ADD) { 664 cp = (char *)area; 665 len = area->area_proto_addr_length; 666 if (area->area_proto_mask_offset) 667 cp += area->area_proto_mask_offset; 668 else 669 cp += area->area_proto_addr_offset + len; 670 while (len-- > 0) 671 *cp++ = (char)~0; 672 } 673 } 674 return (mp); 675 } 676 677 mblk_t * 678 ipif_area_alloc(ipif_t *ipif) 679 { 680 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 681 (char *)&ipif->ipif_lcl_addr)); 682 } 683 684 mblk_t * 685 ipif_ared_alloc(ipif_t *ipif) 686 { 687 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 688 (char *)&ipif->ipif_lcl_addr)); 689 } 690 691 mblk_t * 692 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 693 { 694 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 695 (char *)&addr)); 696 } 697 698 /* 699 * Completely vaporize a lower level tap and all associated interfaces. 700 * ill_delete is called only out of ip_close when the device control 701 * stream is being closed. 702 */ 703 void 704 ill_delete(ill_t *ill) 705 { 706 ipif_t *ipif; 707 ill_t *prev_ill; 708 ip_stack_t *ipst = ill->ill_ipst; 709 710 /* 711 * ill_delete may be forcibly entering the ipsq. The previous 712 * ioctl may not have completed and may need to be aborted. 713 * ipsq_flush takes care of it. If we don't need to enter the 714 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 715 * ill_delete_tail is sufficient. 716 */ 717 ipsq_flush(ill); 718 719 /* 720 * Nuke all interfaces. ipif_free will take down the interface, 721 * remove it from the list, and free the data structure. 722 * Walk down the ipif list and remove the logical interfaces 723 * first before removing the main ipif. We can't unplumb 724 * zeroth interface first in the case of IPv6 as reset_conn_ill 725 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 726 * POINTOPOINT. 727 * 728 * If ill_ipif was not properly initialized (i.e low on memory), 729 * then no interfaces to clean up. In this case just clean up the 730 * ill. 731 */ 732 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 733 ipif_free(ipif); 734 735 /* 736 * Used only by ill_arp_on and ill_arp_off, which are writers. 737 * So nobody can be using this mp now. Free the mp allocated for 738 * honoring ILLF_NOARP 739 */ 740 freemsg(ill->ill_arp_on_mp); 741 ill->ill_arp_on_mp = NULL; 742 743 /* Clean up msgs on pending upcalls for mrouted */ 744 reset_mrt_ill(ill); 745 746 /* 747 * ipif_free -> reset_conn_ipif will remove all multicast 748 * references for IPv4. For IPv6, we need to do it here as 749 * it points only at ills. 750 */ 751 reset_conn_ill(ill); 752 753 /* 754 * ill_down will arrange to blow off any IRE's dependent on this 755 * ILL, and shut down fragmentation reassembly. 756 */ 757 ill_down(ill); 758 759 /* Let SCTP know, so that it can remove this from its list. */ 760 sctp_update_ill(ill, SCTP_ILL_REMOVE); 761 762 /* 763 * If an address on this ILL is being used as a source address then 764 * clear out the pointers in other ILLs that point to this ILL. 765 */ 766 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 767 if (ill->ill_usesrc_grp_next != NULL) { 768 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 769 ill_disband_usesrc_group(ill); 770 } else { /* consumer of the usesrc ILL */ 771 prev_ill = ill_prev_usesrc(ill); 772 prev_ill->ill_usesrc_grp_next = 773 ill->ill_usesrc_grp_next; 774 } 775 } 776 rw_exit(&ipst->ips_ill_g_usesrc_lock); 777 } 778 779 static void 780 ipif_non_duplicate(ipif_t *ipif) 781 { 782 ill_t *ill = ipif->ipif_ill; 783 mutex_enter(&ill->ill_lock); 784 if (ipif->ipif_flags & IPIF_DUPLICATE) { 785 ipif->ipif_flags &= ~IPIF_DUPLICATE; 786 ASSERT(ill->ill_ipif_dup_count > 0); 787 ill->ill_ipif_dup_count--; 788 } 789 mutex_exit(&ill->ill_lock); 790 } 791 792 /* 793 * ill_delete_tail is called from ip_modclose after all references 794 * to the closing ill are gone. The wait is done in ip_modclose 795 */ 796 void 797 ill_delete_tail(ill_t *ill) 798 { 799 mblk_t **mpp; 800 ipif_t *ipif; 801 ip_stack_t *ipst = ill->ill_ipst; 802 803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 804 ipif_non_duplicate(ipif); 805 ipif_down_tail(ipif); 806 } 807 808 ASSERT(ill->ill_ipif_dup_count == 0 && 809 ill->ill_arp_down_mp == NULL && 810 ill->ill_arp_del_mapping_mp == NULL); 811 812 /* 813 * If polling capability is enabled (which signifies direct 814 * upcall into IP and driver has ill saved as a handle), 815 * we need to make sure that unbind has completed before we 816 * let the ill disappear and driver no longer has any reference 817 * to this ill. 818 */ 819 mutex_enter(&ill->ill_lock); 820 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 821 cv_wait(&ill->ill_cv, &ill->ill_lock); 822 mutex_exit(&ill->ill_lock); 823 824 /* 825 * Clean up polling and soft ring capabilities 826 */ 827 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 828 ill_capability_dls_disable(ill); 829 830 if (ill->ill_net_type != IRE_LOOPBACK) 831 qprocsoff(ill->ill_rq); 832 833 /* 834 * We do an ipsq_flush once again now. New messages could have 835 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 836 * could also have landed up if an ioctl thread had looked up 837 * the ill before we set the ILL_CONDEMNED flag, but not yet 838 * enqueued the ioctl when we did the ipsq_flush last time. 839 */ 840 ipsq_flush(ill); 841 842 /* 843 * Free capabilities. 844 */ 845 if (ill->ill_ipsec_capab_ah != NULL) { 846 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 847 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 848 ill->ill_ipsec_capab_ah = NULL; 849 } 850 851 if (ill->ill_ipsec_capab_esp != NULL) { 852 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 853 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 854 ill->ill_ipsec_capab_esp = NULL; 855 } 856 857 if (ill->ill_mdt_capab != NULL) { 858 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 859 ill->ill_mdt_capab = NULL; 860 } 861 862 if (ill->ill_hcksum_capab != NULL) { 863 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 864 ill->ill_hcksum_capab = NULL; 865 } 866 867 if (ill->ill_zerocopy_capab != NULL) { 868 kmem_free(ill->ill_zerocopy_capab, 869 sizeof (ill_zerocopy_capab_t)); 870 ill->ill_zerocopy_capab = NULL; 871 } 872 873 if (ill->ill_lso_capab != NULL) { 874 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 875 ill->ill_lso_capab = NULL; 876 } 877 878 if (ill->ill_dls_capab != NULL) { 879 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 880 ill->ill_dls_capab->ill_unbind_conn = NULL; 881 kmem_free(ill->ill_dls_capab, 882 sizeof (ill_dls_capab_t) + 883 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 884 ill->ill_dls_capab = NULL; 885 } 886 887 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 888 889 while (ill->ill_ipif != NULL) 890 ipif_free_tail(ill->ill_ipif); 891 892 /* 893 * We have removed all references to ilm from conn and the ones joined 894 * within the kernel. 895 * 896 * We don't walk conns, mrts and ires because 897 * 898 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 899 * 2) ill_down ->ill_downi walks all the ires and cleans up 900 * ill references. 901 */ 902 ASSERT(ilm_walk_ill(ill) == 0); 903 /* 904 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 905 * could free the phyint. No more reference to the phyint after this 906 * point. 907 */ 908 (void) ill_glist_delete(ill); 909 910 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 911 if (ill->ill_ndd_name != NULL) 912 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 913 rw_exit(&ipst->ips_ip_g_nd_lock); 914 915 916 if (ill->ill_frag_ptr != NULL) { 917 uint_t count; 918 919 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 920 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 921 } 922 mi_free(ill->ill_frag_ptr); 923 ill->ill_frag_ptr = NULL; 924 ill->ill_frag_hash_tbl = NULL; 925 } 926 927 freemsg(ill->ill_nd_lla_mp); 928 /* Free all retained control messages. */ 929 mpp = &ill->ill_first_mp_to_free; 930 do { 931 while (mpp[0]) { 932 mblk_t *mp; 933 mblk_t *mp1; 934 935 mp = mpp[0]; 936 mpp[0] = mp->b_next; 937 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 938 mp1->b_next = NULL; 939 mp1->b_prev = NULL; 940 } 941 freemsg(mp); 942 } 943 } while (mpp++ != &ill->ill_last_mp_to_free); 944 945 ill_free_mib(ill); 946 947 #ifdef DEBUG 948 ill_trace_cleanup(ill); 949 #endif 950 951 /* Drop refcnt here */ 952 netstack_rele(ill->ill_ipst->ips_netstack); 953 ill->ill_ipst = NULL; 954 } 955 956 static void 957 ill_free_mib(ill_t *ill) 958 { 959 ip_stack_t *ipst = ill->ill_ipst; 960 961 /* 962 * MIB statistics must not be lost, so when an interface 963 * goes away the counter values will be added to the global 964 * MIBs. 965 */ 966 if (ill->ill_ip_mib != NULL) { 967 if (ill->ill_isv6) { 968 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 969 ill->ill_ip_mib); 970 } else { 971 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 972 ill->ill_ip_mib); 973 } 974 975 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 976 ill->ill_ip_mib = NULL; 977 } 978 if (ill->ill_icmp6_mib != NULL) { 979 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 980 ill->ill_icmp6_mib); 981 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 982 ill->ill_icmp6_mib = NULL; 983 } 984 } 985 986 /* 987 * Concatenate together a physical address and a sap. 988 * 989 * Sap_lengths are interpreted as follows: 990 * sap_length == 0 ==> no sap 991 * sap_length > 0 ==> sap is at the head of the dlpi address 992 * sap_length < 0 ==> sap is at the tail of the dlpi address 993 */ 994 static void 995 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 996 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 997 { 998 uint16_t sap_addr = (uint16_t)sap_src; 999 1000 if (sap_length == 0) { 1001 if (phys_src == NULL) 1002 bzero(dst, phys_length); 1003 else 1004 bcopy(phys_src, dst, phys_length); 1005 } else if (sap_length < 0) { 1006 if (phys_src == NULL) 1007 bzero(dst, phys_length); 1008 else 1009 bcopy(phys_src, dst, phys_length); 1010 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1011 } else { 1012 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1013 if (phys_src == NULL) 1014 bzero((char *)dst + sap_length, phys_length); 1015 else 1016 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1017 } 1018 } 1019 1020 /* 1021 * Generate a dl_unitdata_req mblk for the device and address given. 1022 * addr_length is the length of the physical portion of the address. 1023 * If addr is NULL include an all zero address of the specified length. 1024 * TRUE? In any case, addr_length is taken to be the entire length of the 1025 * dlpi address, including the absolute value of sap_length. 1026 */ 1027 mblk_t * 1028 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1029 t_scalar_t sap_length) 1030 { 1031 dl_unitdata_req_t *dlur; 1032 mblk_t *mp; 1033 t_scalar_t abs_sap_length; /* absolute value */ 1034 1035 abs_sap_length = ABS(sap_length); 1036 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1037 DL_UNITDATA_REQ); 1038 if (mp == NULL) 1039 return (NULL); 1040 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1041 /* HACK: accomodate incompatible DLPI drivers */ 1042 if (addr_length == 8) 1043 addr_length = 6; 1044 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1045 dlur->dl_dest_addr_offset = sizeof (*dlur); 1046 dlur->dl_priority.dl_min = 0; 1047 dlur->dl_priority.dl_max = 0; 1048 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1049 (uchar_t *)&dlur[1]); 1050 return (mp); 1051 } 1052 1053 /* 1054 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1055 * Return an error if we already have 1 or more ioctls in progress. 1056 * This is used only for non-exclusive ioctls. Currently this is used 1057 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1058 * and thus need to use ipsq_pending_mp_add. 1059 */ 1060 boolean_t 1061 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1062 { 1063 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1064 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1065 /* 1066 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1067 */ 1068 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1069 (add_mp->b_datap->db_type == M_IOCTL)); 1070 1071 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1072 /* 1073 * Return error if the conn has started closing. The conn 1074 * could have finished cleaning up the pending mp list, 1075 * If so we should not add another mp to the list negating 1076 * the cleanup. 1077 */ 1078 if (connp->conn_state_flags & CONN_CLOSING) 1079 return (B_FALSE); 1080 /* 1081 * Add the pending mp to the head of the list, chained by b_next. 1082 * Note down the conn on which the ioctl request came, in b_prev. 1083 * This will be used to later get the conn, when we get a response 1084 * on the ill queue, from some other module (typically arp) 1085 */ 1086 add_mp->b_next = (void *)ill->ill_pending_mp; 1087 add_mp->b_queue = CONNP_TO_WQ(connp); 1088 ill->ill_pending_mp = add_mp; 1089 if (connp != NULL) 1090 connp->conn_oper_pending_ill = ill; 1091 return (B_TRUE); 1092 } 1093 1094 /* 1095 * Retrieve the ill_pending_mp and return it. We have to walk the list 1096 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1097 */ 1098 mblk_t * 1099 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1100 { 1101 mblk_t *prev = NULL; 1102 mblk_t *curr = NULL; 1103 uint_t id; 1104 conn_t *connp; 1105 1106 /* 1107 * When the conn closes, conn_ioctl_cleanup needs to clean 1108 * up the pending mp, but it does not know the ioc_id and 1109 * passes in a zero for it. 1110 */ 1111 mutex_enter(&ill->ill_lock); 1112 if (ioc_id != 0) 1113 *connpp = NULL; 1114 1115 /* Search the list for the appropriate ioctl based on ioc_id */ 1116 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1117 prev = curr, curr = curr->b_next) { 1118 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1119 connp = Q_TO_CONN(curr->b_queue); 1120 /* Match based on the ioc_id or based on the conn */ 1121 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1122 break; 1123 } 1124 1125 if (curr != NULL) { 1126 /* Unlink the mblk from the pending mp list */ 1127 if (prev != NULL) { 1128 prev->b_next = curr->b_next; 1129 } else { 1130 ASSERT(ill->ill_pending_mp == curr); 1131 ill->ill_pending_mp = curr->b_next; 1132 } 1133 1134 /* 1135 * conn refcnt must have been bumped up at the start of 1136 * the ioctl. So we can safely access the conn. 1137 */ 1138 ASSERT(CONN_Q(curr->b_queue)); 1139 *connpp = Q_TO_CONN(curr->b_queue); 1140 curr->b_next = NULL; 1141 curr->b_queue = NULL; 1142 } 1143 1144 mutex_exit(&ill->ill_lock); 1145 1146 return (curr); 1147 } 1148 1149 /* 1150 * Add the pending mp to the list. There can be only 1 pending mp 1151 * in the list. Any exclusive ioctl that needs to wait for a response 1152 * from another module or driver needs to use this function to set 1153 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1154 * the other module/driver. This is also used while waiting for the 1155 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1156 */ 1157 boolean_t 1158 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1159 int waitfor) 1160 { 1161 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1162 1163 ASSERT(IAM_WRITER_IPIF(ipif)); 1164 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1165 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1166 ASSERT(ipsq->ipsq_pending_mp == NULL); 1167 /* 1168 * The caller may be using a different ipif than the one passed into 1169 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1170 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1171 * that `ipsq_current_ipif == ipif'. 1172 */ 1173 ASSERT(ipsq->ipsq_current_ipif != NULL); 1174 1175 /* 1176 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1177 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1178 */ 1179 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1180 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1181 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1182 1183 if (connp != NULL) { 1184 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1185 /* 1186 * Return error if the conn has started closing. The conn 1187 * could have finished cleaning up the pending mp list, 1188 * If so we should not add another mp to the list negating 1189 * the cleanup. 1190 */ 1191 if (connp->conn_state_flags & CONN_CLOSING) 1192 return (B_FALSE); 1193 } 1194 mutex_enter(&ipsq->ipsq_lock); 1195 ipsq->ipsq_pending_ipif = ipif; 1196 /* 1197 * Note down the queue in b_queue. This will be returned by 1198 * ipsq_pending_mp_get. Caller will then use these values to restart 1199 * the processing 1200 */ 1201 add_mp->b_next = NULL; 1202 add_mp->b_queue = q; 1203 ipsq->ipsq_pending_mp = add_mp; 1204 ipsq->ipsq_waitfor = waitfor; 1205 1206 if (connp != NULL) 1207 connp->conn_oper_pending_ill = ipif->ipif_ill; 1208 mutex_exit(&ipsq->ipsq_lock); 1209 return (B_TRUE); 1210 } 1211 1212 /* 1213 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1214 * queued in the list. 1215 */ 1216 mblk_t * 1217 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1218 { 1219 mblk_t *curr = NULL; 1220 1221 mutex_enter(&ipsq->ipsq_lock); 1222 *connpp = NULL; 1223 if (ipsq->ipsq_pending_mp == NULL) { 1224 mutex_exit(&ipsq->ipsq_lock); 1225 return (NULL); 1226 } 1227 1228 /* There can be only 1 such excl message */ 1229 curr = ipsq->ipsq_pending_mp; 1230 ASSERT(curr != NULL && curr->b_next == NULL); 1231 ipsq->ipsq_pending_ipif = NULL; 1232 ipsq->ipsq_pending_mp = NULL; 1233 ipsq->ipsq_waitfor = 0; 1234 mutex_exit(&ipsq->ipsq_lock); 1235 1236 if (CONN_Q(curr->b_queue)) { 1237 /* 1238 * This mp did a refhold on the conn, at the start of the ioctl. 1239 * So we can safely return a pointer to the conn to the caller. 1240 */ 1241 *connpp = Q_TO_CONN(curr->b_queue); 1242 } else { 1243 *connpp = NULL; 1244 } 1245 curr->b_next = NULL; 1246 curr->b_prev = NULL; 1247 return (curr); 1248 } 1249 1250 /* 1251 * Cleanup the ioctl mp queued in ipsq_pending_mp 1252 * - Called in the ill_delete path 1253 * - Called in the M_ERROR or M_HANGUP path on the ill. 1254 * - Called in the conn close path. 1255 */ 1256 boolean_t 1257 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1258 { 1259 mblk_t *mp; 1260 ipsq_t *ipsq; 1261 queue_t *q; 1262 ipif_t *ipif; 1263 1264 ASSERT(IAM_WRITER_ILL(ill)); 1265 ipsq = ill->ill_phyint->phyint_ipsq; 1266 mutex_enter(&ipsq->ipsq_lock); 1267 /* 1268 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1269 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1270 * even if it is meant for another ill, since we have to enqueue 1271 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1272 * If connp is non-null we are called from the conn close path. 1273 */ 1274 mp = ipsq->ipsq_pending_mp; 1275 if (mp == NULL || (connp != NULL && 1276 mp->b_queue != CONNP_TO_WQ(connp))) { 1277 mutex_exit(&ipsq->ipsq_lock); 1278 return (B_FALSE); 1279 } 1280 /* Now remove from the ipsq_pending_mp */ 1281 ipsq->ipsq_pending_mp = NULL; 1282 q = mp->b_queue; 1283 mp->b_next = NULL; 1284 mp->b_prev = NULL; 1285 mp->b_queue = NULL; 1286 1287 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1288 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1289 if (ill->ill_move_in_progress) { 1290 ILL_CLEAR_MOVE(ill); 1291 } else if (ill->ill_up_ipifs) { 1292 ill_group_cleanup(ill); 1293 } 1294 1295 ipif = ipsq->ipsq_pending_ipif; 1296 ipsq->ipsq_pending_ipif = NULL; 1297 ipsq->ipsq_waitfor = 0; 1298 ipsq->ipsq_current_ipif = NULL; 1299 ipsq->ipsq_current_ioctl = 0; 1300 mutex_exit(&ipsq->ipsq_lock); 1301 1302 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1303 if (connp == NULL) { 1304 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1305 } else { 1306 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1307 mutex_enter(&ipif->ipif_ill->ill_lock); 1308 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1309 mutex_exit(&ipif->ipif_ill->ill_lock); 1310 } 1311 } else { 1312 /* 1313 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1314 * be just inet_freemsg. we have to restart it 1315 * otherwise the thread will be stuck. 1316 */ 1317 inet_freemsg(mp); 1318 } 1319 return (B_TRUE); 1320 } 1321 1322 /* 1323 * The ill is closing. Cleanup all the pending mps. Called exclusively 1324 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1325 * knows this ill, and hence nobody can add an mp to this list 1326 */ 1327 static void 1328 ill_pending_mp_cleanup(ill_t *ill) 1329 { 1330 mblk_t *mp; 1331 queue_t *q; 1332 1333 ASSERT(IAM_WRITER_ILL(ill)); 1334 1335 mutex_enter(&ill->ill_lock); 1336 /* 1337 * Every mp on the pending mp list originating from an ioctl 1338 * added 1 to the conn refcnt, at the start of the ioctl. 1339 * So bump it down now. See comments in ip_wput_nondata() 1340 */ 1341 while (ill->ill_pending_mp != NULL) { 1342 mp = ill->ill_pending_mp; 1343 ill->ill_pending_mp = mp->b_next; 1344 mutex_exit(&ill->ill_lock); 1345 1346 q = mp->b_queue; 1347 ASSERT(CONN_Q(q)); 1348 mp->b_next = NULL; 1349 mp->b_prev = NULL; 1350 mp->b_queue = NULL; 1351 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1352 mutex_enter(&ill->ill_lock); 1353 } 1354 ill->ill_pending_ipif = NULL; 1355 1356 mutex_exit(&ill->ill_lock); 1357 } 1358 1359 /* 1360 * Called in the conn close path and ill delete path 1361 */ 1362 static void 1363 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1364 { 1365 ipsq_t *ipsq; 1366 mblk_t *prev; 1367 mblk_t *curr; 1368 mblk_t *next; 1369 queue_t *q; 1370 mblk_t *tmp_list = NULL; 1371 1372 ASSERT(IAM_WRITER_ILL(ill)); 1373 if (connp != NULL) 1374 q = CONNP_TO_WQ(connp); 1375 else 1376 q = ill->ill_wq; 1377 1378 ipsq = ill->ill_phyint->phyint_ipsq; 1379 /* 1380 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1381 * In the case of ioctl from a conn, there can be only 1 mp 1382 * queued on the ipsq. If an ill is being unplumbed, only messages 1383 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1384 * ioctls meant for this ill form conn's are not flushed. They will 1385 * be processed during ipsq_exit and will not find the ill and will 1386 * return error. 1387 */ 1388 mutex_enter(&ipsq->ipsq_lock); 1389 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1390 curr = next) { 1391 next = curr->b_next; 1392 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1393 /* Unlink the mblk from the pending mp list */ 1394 if (prev != NULL) { 1395 prev->b_next = curr->b_next; 1396 } else { 1397 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1398 ipsq->ipsq_xopq_mphead = curr->b_next; 1399 } 1400 if (ipsq->ipsq_xopq_mptail == curr) 1401 ipsq->ipsq_xopq_mptail = prev; 1402 /* 1403 * Create a temporary list and release the ipsq lock 1404 * New elements are added to the head of the tmp_list 1405 */ 1406 curr->b_next = tmp_list; 1407 tmp_list = curr; 1408 } else { 1409 prev = curr; 1410 } 1411 } 1412 mutex_exit(&ipsq->ipsq_lock); 1413 1414 while (tmp_list != NULL) { 1415 curr = tmp_list; 1416 tmp_list = curr->b_next; 1417 curr->b_next = NULL; 1418 curr->b_prev = NULL; 1419 curr->b_queue = NULL; 1420 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1421 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1422 CONN_CLOSE : NO_COPYOUT, NULL); 1423 } else { 1424 /* 1425 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1426 * this can't be just inet_freemsg. we have to 1427 * restart it otherwise the thread will be stuck. 1428 */ 1429 inet_freemsg(curr); 1430 } 1431 } 1432 } 1433 1434 /* 1435 * This conn has started closing. Cleanup any pending ioctl from this conn. 1436 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1437 */ 1438 void 1439 conn_ioctl_cleanup(conn_t *connp) 1440 { 1441 mblk_t *curr; 1442 ipsq_t *ipsq; 1443 ill_t *ill; 1444 boolean_t refheld; 1445 1446 /* 1447 * Is any exclusive ioctl pending ? If so clean it up. If the 1448 * ioctl has not yet started, the mp is pending in the list headed by 1449 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1450 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1451 * is currently executing now the mp is not queued anywhere but 1452 * conn_oper_pending_ill is null. The conn close will wait 1453 * till the conn_ref drops to zero. 1454 */ 1455 mutex_enter(&connp->conn_lock); 1456 ill = connp->conn_oper_pending_ill; 1457 if (ill == NULL) { 1458 mutex_exit(&connp->conn_lock); 1459 return; 1460 } 1461 1462 curr = ill_pending_mp_get(ill, &connp, 0); 1463 if (curr != NULL) { 1464 mutex_exit(&connp->conn_lock); 1465 CONN_DEC_REF(connp); 1466 inet_freemsg(curr); 1467 return; 1468 } 1469 /* 1470 * We may not be able to refhold the ill if the ill/ipif 1471 * is changing. But we need to make sure that the ill will 1472 * not vanish. So we just bump up the ill_waiter count. 1473 */ 1474 refheld = ill_waiter_inc(ill); 1475 mutex_exit(&connp->conn_lock); 1476 if (refheld) { 1477 if (ipsq_enter(ill, B_TRUE)) { 1478 ill_waiter_dcr(ill); 1479 /* 1480 * Check whether this ioctl has started and is 1481 * pending now in ipsq_pending_mp. If it is not 1482 * found there then check whether this ioctl has 1483 * not even started and is in the ipsq_xopq list. 1484 */ 1485 if (!ipsq_pending_mp_cleanup(ill, connp)) 1486 ipsq_xopq_mp_cleanup(ill, connp); 1487 ipsq = ill->ill_phyint->phyint_ipsq; 1488 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1489 return; 1490 } 1491 } 1492 1493 /* 1494 * The ill is also closing and we could not bump up the 1495 * ill_waiter_count or we could not enter the ipsq. Leave 1496 * the cleanup to ill_delete 1497 */ 1498 mutex_enter(&connp->conn_lock); 1499 while (connp->conn_oper_pending_ill != NULL) 1500 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1501 mutex_exit(&connp->conn_lock); 1502 if (refheld) 1503 ill_waiter_dcr(ill); 1504 } 1505 1506 /* 1507 * ipcl_walk function for cleaning up conn_*_ill fields. 1508 */ 1509 static void 1510 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1511 { 1512 ill_t *ill = (ill_t *)arg; 1513 ire_t *ire; 1514 1515 mutex_enter(&connp->conn_lock); 1516 if (connp->conn_multicast_ill == ill) { 1517 /* Revert to late binding */ 1518 connp->conn_multicast_ill = NULL; 1519 connp->conn_orig_multicast_ifindex = 0; 1520 } 1521 if (connp->conn_incoming_ill == ill) 1522 connp->conn_incoming_ill = NULL; 1523 if (connp->conn_outgoing_ill == ill) 1524 connp->conn_outgoing_ill = NULL; 1525 if (connp->conn_outgoing_pill == ill) 1526 connp->conn_outgoing_pill = NULL; 1527 if (connp->conn_nofailover_ill == ill) 1528 connp->conn_nofailover_ill = NULL; 1529 if (connp->conn_xmit_if_ill == ill) 1530 connp->conn_xmit_if_ill = NULL; 1531 if (connp->conn_ire_cache != NULL) { 1532 ire = connp->conn_ire_cache; 1533 /* 1534 * ip_newroute creates IRE_CACHE with ire_stq coming from 1535 * interface X and ipif coming from interface Y, if interface 1536 * X and Y are part of the same IPMPgroup. Thus whenever 1537 * interface X goes down, remove all references to it by 1538 * checking both on ire_ipif and ire_stq. 1539 */ 1540 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1541 (ire->ire_type == IRE_CACHE && 1542 ire->ire_stq == ill->ill_wq)) { 1543 connp->conn_ire_cache = NULL; 1544 mutex_exit(&connp->conn_lock); 1545 ire_refrele_notr(ire); 1546 return; 1547 } 1548 } 1549 mutex_exit(&connp->conn_lock); 1550 1551 } 1552 1553 /* ARGSUSED */ 1554 void 1555 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1556 { 1557 ill_t *ill = q->q_ptr; 1558 ipif_t *ipif; 1559 1560 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1561 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1562 ipif_non_duplicate(ipif); 1563 ipif_down_tail(ipif); 1564 } 1565 freemsg(mp); 1566 ipsq_current_finish(ipsq); 1567 } 1568 1569 /* 1570 * ill_down_start is called when we want to down this ill and bring it up again 1571 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1572 * all interfaces, but don't tear down any plumbing. 1573 */ 1574 boolean_t 1575 ill_down_start(queue_t *q, mblk_t *mp) 1576 { 1577 ill_t *ill = q->q_ptr; 1578 ipif_t *ipif; 1579 1580 ASSERT(IAM_WRITER_ILL(ill)); 1581 1582 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1583 (void) ipif_down(ipif, NULL, NULL); 1584 1585 ill_down(ill); 1586 1587 (void) ipsq_pending_mp_cleanup(ill, NULL); 1588 1589 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1590 1591 /* 1592 * Atomically test and add the pending mp if references are active. 1593 */ 1594 mutex_enter(&ill->ill_lock); 1595 if (!ill_is_quiescent(ill)) { 1596 /* call cannot fail since `conn_t *' argument is NULL */ 1597 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1598 mp, ILL_DOWN); 1599 mutex_exit(&ill->ill_lock); 1600 return (B_FALSE); 1601 } 1602 mutex_exit(&ill->ill_lock); 1603 return (B_TRUE); 1604 } 1605 1606 static void 1607 ill_down(ill_t *ill) 1608 { 1609 ip_stack_t *ipst = ill->ill_ipst; 1610 1611 /* Blow off any IREs dependent on this ILL. */ 1612 ire_walk(ill_downi, (char *)ill, ipst); 1613 1614 /* Remove any conn_*_ill depending on this ill */ 1615 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1616 1617 if (ill->ill_group != NULL) { 1618 illgrp_delete(ill); 1619 } 1620 } 1621 1622 /* 1623 * ire_walk routine used to delete every IRE that depends on queues 1624 * associated with 'ill'. (Always called as writer.) 1625 */ 1626 static void 1627 ill_downi(ire_t *ire, char *ill_arg) 1628 { 1629 ill_t *ill = (ill_t *)ill_arg; 1630 1631 /* 1632 * ip_newroute creates IRE_CACHE with ire_stq coming from 1633 * interface X and ipif coming from interface Y, if interface 1634 * X and Y are part of the same IPMP group. Thus whenever interface 1635 * X goes down, remove all references to it by checking both 1636 * on ire_ipif and ire_stq. 1637 */ 1638 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1639 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1640 ire_delete(ire); 1641 } 1642 } 1643 1644 /* 1645 * Remove ire/nce from the fastpath list. 1646 */ 1647 void 1648 ill_fastpath_nack(ill_t *ill) 1649 { 1650 nce_fastpath_list_dispatch(ill, NULL, NULL); 1651 } 1652 1653 /* Consume an M_IOCACK of the fastpath probe. */ 1654 void 1655 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1656 { 1657 mblk_t *mp1 = mp; 1658 1659 /* 1660 * If this was the first attempt turn on the fastpath probing. 1661 */ 1662 mutex_enter(&ill->ill_lock); 1663 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1664 ill->ill_dlpi_fastpath_state = IDS_OK; 1665 mutex_exit(&ill->ill_lock); 1666 1667 /* Free the M_IOCACK mblk, hold on to the data */ 1668 mp = mp->b_cont; 1669 freeb(mp1); 1670 if (mp == NULL) 1671 return; 1672 if (mp->b_cont != NULL) { 1673 /* 1674 * Update all IRE's or NCE's that are waiting for 1675 * fastpath update. 1676 */ 1677 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1678 mp1 = mp->b_cont; 1679 freeb(mp); 1680 mp = mp1; 1681 } else { 1682 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1683 } 1684 1685 freeb(mp); 1686 } 1687 1688 /* 1689 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1690 * The data portion of the request is a dl_unitdata_req_t template for 1691 * what we would send downstream in the absence of a fastpath confirmation. 1692 */ 1693 int 1694 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1695 { 1696 struct iocblk *ioc; 1697 mblk_t *mp; 1698 1699 if (dlur_mp == NULL) 1700 return (EINVAL); 1701 1702 mutex_enter(&ill->ill_lock); 1703 switch (ill->ill_dlpi_fastpath_state) { 1704 case IDS_FAILED: 1705 /* 1706 * Driver NAKed the first fastpath ioctl - assume it doesn't 1707 * support it. 1708 */ 1709 mutex_exit(&ill->ill_lock); 1710 return (ENOTSUP); 1711 case IDS_UNKNOWN: 1712 /* This is the first probe */ 1713 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1714 break; 1715 default: 1716 break; 1717 } 1718 mutex_exit(&ill->ill_lock); 1719 1720 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1721 return (EAGAIN); 1722 1723 mp->b_cont = copyb(dlur_mp); 1724 if (mp->b_cont == NULL) { 1725 freeb(mp); 1726 return (EAGAIN); 1727 } 1728 1729 ioc = (struct iocblk *)mp->b_rptr; 1730 ioc->ioc_count = msgdsize(mp->b_cont); 1731 1732 putnext(ill->ill_wq, mp); 1733 return (0); 1734 } 1735 1736 void 1737 ill_capability_probe(ill_t *ill) 1738 { 1739 /* 1740 * Do so only if negotiation is enabled, capabilities are unknown, 1741 * and a capability negotiation is not already in progress. 1742 */ 1743 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1744 ill->ill_dlpi_capab_state != IDS_RENEG) 1745 return; 1746 1747 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1748 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1749 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1750 } 1751 1752 void 1753 ill_capability_reset(ill_t *ill) 1754 { 1755 mblk_t *sc_mp = NULL; 1756 mblk_t *tmp; 1757 1758 /* 1759 * Note here that we reset the state to UNKNOWN, and later send 1760 * down the DL_CAPABILITY_REQ without first setting the state to 1761 * INPROGRESS. We do this in order to distinguish the 1762 * DL_CAPABILITY_ACK response which may come back in response to 1763 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1764 * also handle the case where the driver doesn't send us back 1765 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1766 * requires the state to be in UNKNOWN anyway. In any case, all 1767 * features are turned off until the state reaches IDS_OK. 1768 */ 1769 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1770 1771 /* 1772 * Disable sub-capabilities and request a list of sub-capability 1773 * messages which will be sent down to the driver. Each handler 1774 * allocates the corresponding dl_capability_sub_t inside an 1775 * mblk, and links it to the existing sc_mp mblk, or return it 1776 * as sc_mp if it's the first sub-capability (the passed in 1777 * sc_mp is NULL). Upon returning from all capability handlers, 1778 * sc_mp will be pulled-up, before passing it downstream. 1779 */ 1780 ill_capability_mdt_reset(ill, &sc_mp); 1781 ill_capability_hcksum_reset(ill, &sc_mp); 1782 ill_capability_zerocopy_reset(ill, &sc_mp); 1783 ill_capability_ipsec_reset(ill, &sc_mp); 1784 ill_capability_dls_reset(ill, &sc_mp); 1785 ill_capability_lso_reset(ill, &sc_mp); 1786 1787 /* Nothing to send down in order to disable the capabilities? */ 1788 if (sc_mp == NULL) 1789 return; 1790 1791 tmp = msgpullup(sc_mp, -1); 1792 freemsg(sc_mp); 1793 if ((sc_mp = tmp) == NULL) { 1794 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1795 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1796 return; 1797 } 1798 1799 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1800 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1801 } 1802 1803 /* 1804 * Request or set new-style hardware capabilities supported by DLS provider. 1805 */ 1806 static void 1807 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1808 { 1809 mblk_t *mp; 1810 dl_capability_req_t *capb; 1811 size_t size = 0; 1812 uint8_t *ptr; 1813 1814 if (reqp != NULL) 1815 size = MBLKL(reqp); 1816 1817 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1818 if (mp == NULL) { 1819 freemsg(reqp); 1820 return; 1821 } 1822 ptr = mp->b_rptr; 1823 1824 capb = (dl_capability_req_t *)ptr; 1825 ptr += sizeof (dl_capability_req_t); 1826 1827 if (reqp != NULL) { 1828 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1829 capb->dl_sub_length = size; 1830 bcopy(reqp->b_rptr, ptr, size); 1831 ptr += size; 1832 mp->b_cont = reqp->b_cont; 1833 freeb(reqp); 1834 } 1835 ASSERT(ptr == mp->b_wptr); 1836 1837 ill_dlpi_send(ill, mp); 1838 } 1839 1840 static void 1841 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1842 { 1843 dl_capab_id_t *id_ic; 1844 uint_t sub_dl_cap = outers->dl_cap; 1845 dl_capability_sub_t *inners; 1846 uint8_t *capend; 1847 1848 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1849 1850 /* 1851 * Note: range checks here are not absolutely sufficient to 1852 * make us robust against malformed messages sent by drivers; 1853 * this is in keeping with the rest of IP's dlpi handling. 1854 * (Remember, it's coming from something else in the kernel 1855 * address space) 1856 */ 1857 1858 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1859 if (capend > mp->b_wptr) { 1860 cmn_err(CE_WARN, "ill_capability_id_ack: " 1861 "malformed sub-capability too long for mblk"); 1862 return; 1863 } 1864 1865 id_ic = (dl_capab_id_t *)(outers + 1); 1866 1867 if (outers->dl_length < sizeof (*id_ic) || 1868 (inners = &id_ic->id_subcap, 1869 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1870 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1871 "encapsulated capab type %d too long for mblk", 1872 inners->dl_cap); 1873 return; 1874 } 1875 1876 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1877 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1878 "isn't as expected; pass-thru module(s) detected, " 1879 "discarding capability\n", inners->dl_cap)); 1880 return; 1881 } 1882 1883 /* Process the encapsulated sub-capability */ 1884 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1885 } 1886 1887 /* 1888 * Process Multidata Transmit capability negotiation ack received from a 1889 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1890 * DL_CAPABILITY_ACK message. 1891 */ 1892 static void 1893 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1894 { 1895 mblk_t *nmp = NULL; 1896 dl_capability_req_t *oc; 1897 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1898 ill_mdt_capab_t **ill_mdt_capab; 1899 uint_t sub_dl_cap = isub->dl_cap; 1900 uint8_t *capend; 1901 1902 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1903 1904 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1905 1906 /* 1907 * Note: range checks here are not absolutely sufficient to 1908 * make us robust against malformed messages sent by drivers; 1909 * this is in keeping with the rest of IP's dlpi handling. 1910 * (Remember, it's coming from something else in the kernel 1911 * address space) 1912 */ 1913 1914 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1915 if (capend > mp->b_wptr) { 1916 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1917 "malformed sub-capability too long for mblk"); 1918 return; 1919 } 1920 1921 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1922 1923 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1924 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1925 "unsupported MDT sub-capability (version %d, expected %d)", 1926 mdt_ic->mdt_version, MDT_VERSION_2); 1927 return; 1928 } 1929 1930 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1931 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1932 "capability isn't as expected; pass-thru module(s) " 1933 "detected, discarding capability\n")); 1934 return; 1935 } 1936 1937 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1938 1939 if (*ill_mdt_capab == NULL) { 1940 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1941 KM_NOSLEEP); 1942 1943 if (*ill_mdt_capab == NULL) { 1944 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1945 "could not enable MDT version %d " 1946 "for %s (ENOMEM)\n", MDT_VERSION_2, 1947 ill->ill_name); 1948 return; 1949 } 1950 } 1951 1952 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1953 "MDT version %d (%d bytes leading, %d bytes trailing " 1954 "header spaces, %d max pld bufs, %d span limit)\n", 1955 ill->ill_name, MDT_VERSION_2, 1956 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1957 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1958 1959 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1960 (*ill_mdt_capab)->ill_mdt_on = 1; 1961 /* 1962 * Round the following values to the nearest 32-bit; ULP 1963 * may further adjust them to accomodate for additional 1964 * protocol headers. We pass these values to ULP during 1965 * bind time. 1966 */ 1967 (*ill_mdt_capab)->ill_mdt_hdr_head = 1968 roundup(mdt_ic->mdt_hdr_head, 4); 1969 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1970 roundup(mdt_ic->mdt_hdr_tail, 4); 1971 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1972 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1973 1974 ill->ill_capabilities |= ILL_CAPAB_MDT; 1975 } else { 1976 uint_t size; 1977 uchar_t *rptr; 1978 1979 size = sizeof (dl_capability_req_t) + 1980 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1981 1982 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1983 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1984 "could not enable MDT for %s (ENOMEM)\n", 1985 ill->ill_name); 1986 return; 1987 } 1988 1989 rptr = nmp->b_rptr; 1990 /* initialize dl_capability_req_t */ 1991 oc = (dl_capability_req_t *)nmp->b_rptr; 1992 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1993 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1994 sizeof (dl_capab_mdt_t); 1995 nmp->b_rptr += sizeof (dl_capability_req_t); 1996 1997 /* initialize dl_capability_sub_t */ 1998 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1999 nmp->b_rptr += sizeof (*isub); 2000 2001 /* initialize dl_capab_mdt_t */ 2002 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2003 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2004 2005 nmp->b_rptr = rptr; 2006 2007 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2008 "to enable MDT version %d\n", ill->ill_name, 2009 MDT_VERSION_2)); 2010 2011 /* set ENABLE flag */ 2012 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2013 2014 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2015 ill_dlpi_send(ill, nmp); 2016 } 2017 } 2018 2019 static void 2020 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2021 { 2022 mblk_t *mp; 2023 dl_capab_mdt_t *mdt_subcap; 2024 dl_capability_sub_t *dl_subcap; 2025 int size; 2026 2027 if (!ILL_MDT_CAPABLE(ill)) 2028 return; 2029 2030 ASSERT(ill->ill_mdt_capab != NULL); 2031 /* 2032 * Clear the capability flag for MDT but retain the ill_mdt_capab 2033 * structure since it's possible that another thread is still 2034 * referring to it. The structure only gets deallocated when 2035 * we destroy the ill. 2036 */ 2037 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2038 2039 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2040 2041 mp = allocb(size, BPRI_HI); 2042 if (mp == NULL) { 2043 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2044 "request to disable MDT\n")); 2045 return; 2046 } 2047 2048 mp->b_wptr = mp->b_rptr + size; 2049 2050 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2051 dl_subcap->dl_cap = DL_CAPAB_MDT; 2052 dl_subcap->dl_length = sizeof (*mdt_subcap); 2053 2054 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2055 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2056 mdt_subcap->mdt_flags = 0; 2057 mdt_subcap->mdt_hdr_head = 0; 2058 mdt_subcap->mdt_hdr_tail = 0; 2059 2060 if (*sc_mp != NULL) 2061 linkb(*sc_mp, mp); 2062 else 2063 *sc_mp = mp; 2064 } 2065 2066 /* 2067 * Send a DL_NOTIFY_REQ to the specified ill to enable 2068 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2069 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2070 * acceleration. 2071 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2072 */ 2073 static boolean_t 2074 ill_enable_promisc_notify(ill_t *ill) 2075 { 2076 mblk_t *mp; 2077 dl_notify_req_t *req; 2078 2079 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2080 2081 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2082 if (mp == NULL) 2083 return (B_FALSE); 2084 2085 req = (dl_notify_req_t *)mp->b_rptr; 2086 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2087 DL_NOTE_PROMISC_OFF_PHYS; 2088 2089 ill_dlpi_send(ill, mp); 2090 2091 return (B_TRUE); 2092 } 2093 2094 2095 /* 2096 * Allocate an IPsec capability request which will be filled by our 2097 * caller to turn on support for one or more algorithms. 2098 */ 2099 static mblk_t * 2100 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2101 { 2102 mblk_t *nmp; 2103 dl_capability_req_t *ocap; 2104 dl_capab_ipsec_t *ocip; 2105 dl_capab_ipsec_t *icip; 2106 uint8_t *ptr; 2107 icip = (dl_capab_ipsec_t *)(isub + 1); 2108 2109 /* 2110 * The first time around, we send a DL_NOTIFY_REQ to enable 2111 * PROMISC_ON/OFF notification from the provider. We need to 2112 * do this before enabling the algorithms to avoid leakage of 2113 * cleartext packets. 2114 */ 2115 2116 if (!ill_enable_promisc_notify(ill)) 2117 return (NULL); 2118 2119 /* 2120 * Allocate new mblk which will contain a new capability 2121 * request to enable the capabilities. 2122 */ 2123 2124 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2125 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2126 if (nmp == NULL) 2127 return (NULL); 2128 2129 ptr = nmp->b_rptr; 2130 2131 /* initialize dl_capability_req_t */ 2132 ocap = (dl_capability_req_t *)ptr; 2133 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2134 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2135 ptr += sizeof (dl_capability_req_t); 2136 2137 /* initialize dl_capability_sub_t */ 2138 bcopy(isub, ptr, sizeof (*isub)); 2139 ptr += sizeof (*isub); 2140 2141 /* initialize dl_capab_ipsec_t */ 2142 ocip = (dl_capab_ipsec_t *)ptr; 2143 bcopy(icip, ocip, sizeof (*icip)); 2144 2145 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2146 return (nmp); 2147 } 2148 2149 /* 2150 * Process an IPsec capability negotiation ack received from a DLS Provider. 2151 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2152 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2153 */ 2154 static void 2155 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2156 { 2157 dl_capab_ipsec_t *icip; 2158 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2159 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2160 uint_t cipher, nciphers; 2161 mblk_t *nmp; 2162 uint_t alg_len; 2163 boolean_t need_sadb_dump; 2164 uint_t sub_dl_cap = isub->dl_cap; 2165 ill_ipsec_capab_t **ill_capab; 2166 uint64_t ill_capab_flag; 2167 uint8_t *capend, *ciphend; 2168 boolean_t sadb_resync; 2169 2170 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2171 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2172 2173 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2174 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2175 ill_capab_flag = ILL_CAPAB_AH; 2176 } else { 2177 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2178 ill_capab_flag = ILL_CAPAB_ESP; 2179 } 2180 2181 /* 2182 * If the ill capability structure exists, then this incoming 2183 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2184 * If this is so, then we'd need to resynchronize the SADB 2185 * after re-enabling the offloaded ciphers. 2186 */ 2187 sadb_resync = (*ill_capab != NULL); 2188 2189 /* 2190 * Note: range checks here are not absolutely sufficient to 2191 * make us robust against malformed messages sent by drivers; 2192 * this is in keeping with the rest of IP's dlpi handling. 2193 * (Remember, it's coming from something else in the kernel 2194 * address space) 2195 */ 2196 2197 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2198 if (capend > mp->b_wptr) { 2199 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2200 "malformed sub-capability too long for mblk"); 2201 return; 2202 } 2203 2204 /* 2205 * There are two types of acks we process here: 2206 * 1. acks in reply to a (first form) generic capability req 2207 * (no ENABLE flag set) 2208 * 2. acks in reply to a ENABLE capability req. 2209 * (ENABLE flag set) 2210 * 2211 * We process the subcapability passed as argument as follows: 2212 * 1 do initializations 2213 * 1.1 initialize nmp = NULL 2214 * 1.2 set need_sadb_dump to B_FALSE 2215 * 2 for each cipher in subcapability: 2216 * 2.1 if ENABLE flag is set: 2217 * 2.1.1 update per-ill ipsec capabilities info 2218 * 2.1.2 set need_sadb_dump to B_TRUE 2219 * 2.2 if ENABLE flag is not set: 2220 * 2.2.1 if nmp is NULL: 2221 * 2.2.1.1 allocate and initialize nmp 2222 * 2.2.1.2 init current pos in nmp 2223 * 2.2.2 copy current cipher to current pos in nmp 2224 * 2.2.3 set ENABLE flag in nmp 2225 * 2.2.4 update current pos 2226 * 3 if nmp is not equal to NULL, send enable request 2227 * 3.1 send capability request 2228 * 4 if need_sadb_dump is B_TRUE 2229 * 4.1 enable promiscuous on/off notifications 2230 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2231 * AH or ESP SA's to interface. 2232 */ 2233 2234 nmp = NULL; 2235 oalg = NULL; 2236 need_sadb_dump = B_FALSE; 2237 icip = (dl_capab_ipsec_t *)(isub + 1); 2238 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2239 2240 nciphers = icip->cip_nciphers; 2241 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2242 2243 if (ciphend > capend) { 2244 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2245 "too many ciphers for sub-capability len"); 2246 return; 2247 } 2248 2249 for (cipher = 0; cipher < nciphers; cipher++) { 2250 alg_len = sizeof (dl_capab_ipsec_alg_t); 2251 2252 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2253 /* 2254 * TBD: when we provide a way to disable capabilities 2255 * from above, need to manage the request-pending state 2256 * and fail if we were not expecting this ACK. 2257 */ 2258 IPSECHW_DEBUG(IPSECHW_CAPAB, 2259 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2260 2261 /* 2262 * Update IPsec capabilities for this ill 2263 */ 2264 2265 if (*ill_capab == NULL) { 2266 IPSECHW_DEBUG(IPSECHW_CAPAB, 2267 ("ill_capability_ipsec_ack: " 2268 "allocating ipsec_capab for ill\n")); 2269 *ill_capab = ill_ipsec_capab_alloc(); 2270 2271 if (*ill_capab == NULL) { 2272 cmn_err(CE_WARN, 2273 "ill_capability_ipsec_ack: " 2274 "could not enable IPsec Hardware " 2275 "acceleration for %s (ENOMEM)\n", 2276 ill->ill_name); 2277 return; 2278 } 2279 } 2280 2281 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2282 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2283 2284 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2285 cmn_err(CE_WARN, 2286 "ill_capability_ipsec_ack: " 2287 "malformed IPsec algorithm id %d", 2288 ialg->alg_prim); 2289 continue; 2290 } 2291 2292 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2293 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2294 ialg->alg_prim); 2295 } else { 2296 ipsec_capab_algparm_t *alp; 2297 2298 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2299 ialg->alg_prim); 2300 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2301 ialg->alg_prim)) { 2302 cmn_err(CE_WARN, 2303 "ill_capability_ipsec_ack: " 2304 "no space for IPsec alg id %d", 2305 ialg->alg_prim); 2306 continue; 2307 } 2308 alp = &((*ill_capab)->encr_algparm[ 2309 ialg->alg_prim]); 2310 alp->minkeylen = ialg->alg_minbits; 2311 alp->maxkeylen = ialg->alg_maxbits; 2312 } 2313 ill->ill_capabilities |= ill_capab_flag; 2314 /* 2315 * indicate that a capability was enabled, which 2316 * will be used below to kick off a SADB dump 2317 * to the ill. 2318 */ 2319 need_sadb_dump = B_TRUE; 2320 } else { 2321 IPSECHW_DEBUG(IPSECHW_CAPAB, 2322 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2323 ialg->alg_prim)); 2324 2325 if (nmp == NULL) { 2326 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2327 if (nmp == NULL) { 2328 /* 2329 * Sending the PROMISC_ON/OFF 2330 * notification request failed. 2331 * We cannot enable the algorithms 2332 * since the Provider will not 2333 * notify IP of promiscous mode 2334 * changes, which could lead 2335 * to leakage of packets. 2336 */ 2337 cmn_err(CE_WARN, 2338 "ill_capability_ipsec_ack: " 2339 "could not enable IPsec Hardware " 2340 "acceleration for %s (ENOMEM)\n", 2341 ill->ill_name); 2342 return; 2343 } 2344 /* ptr to current output alg specifier */ 2345 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2346 } 2347 2348 /* 2349 * Copy current alg specifier, set ENABLE 2350 * flag, and advance to next output alg. 2351 * For now we enable all IPsec capabilities. 2352 */ 2353 ASSERT(oalg != NULL); 2354 bcopy(ialg, oalg, alg_len); 2355 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2356 nmp->b_wptr += alg_len; 2357 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2358 } 2359 2360 /* move to next input algorithm specifier */ 2361 ialg = (dl_capab_ipsec_alg_t *) 2362 ((char *)ialg + alg_len); 2363 } 2364 2365 if (nmp != NULL) 2366 /* 2367 * nmp points to a DL_CAPABILITY_REQ message to enable 2368 * IPsec hardware acceleration. 2369 */ 2370 ill_dlpi_send(ill, nmp); 2371 2372 if (need_sadb_dump) 2373 /* 2374 * An acknowledgement corresponding to a request to 2375 * enable acceleration was received, notify SADB. 2376 */ 2377 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2378 } 2379 2380 /* 2381 * Given an mblk with enough space in it, create sub-capability entries for 2382 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2383 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2384 * in preparation for the reset the DL_CAPABILITY_REQ message. 2385 */ 2386 static void 2387 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2388 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2389 { 2390 dl_capab_ipsec_t *oipsec; 2391 dl_capab_ipsec_alg_t *oalg; 2392 dl_capability_sub_t *dl_subcap; 2393 int i, k; 2394 2395 ASSERT(nciphers > 0); 2396 ASSERT(ill_cap != NULL); 2397 ASSERT(mp != NULL); 2398 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2399 2400 /* dl_capability_sub_t for "stype" */ 2401 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2402 dl_subcap->dl_cap = stype; 2403 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2404 mp->b_wptr += sizeof (dl_capability_sub_t); 2405 2406 /* dl_capab_ipsec_t for "stype" */ 2407 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2408 oipsec->cip_version = 1; 2409 oipsec->cip_nciphers = nciphers; 2410 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2411 2412 /* create entries for "stype" AUTH ciphers */ 2413 for (i = 0; i < ill_cap->algs_size; i++) { 2414 for (k = 0; k < BITSPERBYTE; k++) { 2415 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2416 continue; 2417 2418 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2419 bzero((void *)oalg, sizeof (*oalg)); 2420 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2421 oalg->alg_prim = k + (BITSPERBYTE * i); 2422 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2423 } 2424 } 2425 /* create entries for "stype" ENCR ciphers */ 2426 for (i = 0; i < ill_cap->algs_size; i++) { 2427 for (k = 0; k < BITSPERBYTE; k++) { 2428 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2429 continue; 2430 2431 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2432 bzero((void *)oalg, sizeof (*oalg)); 2433 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2434 oalg->alg_prim = k + (BITSPERBYTE * i); 2435 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2436 } 2437 } 2438 } 2439 2440 /* 2441 * Macro to count number of 1s in a byte (8-bit word). The total count is 2442 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2443 * POPC instruction, but our macro is more flexible for an arbitrary length 2444 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2445 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2446 * stays that way, we can reduce the number of iterations required. 2447 */ 2448 #define COUNT_1S(val, sum) { \ 2449 uint8_t x = val & 0xff; \ 2450 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2451 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2452 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2453 } 2454 2455 /* ARGSUSED */ 2456 static void 2457 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2458 { 2459 mblk_t *mp; 2460 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2461 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2462 uint64_t ill_capabilities = ill->ill_capabilities; 2463 int ah_cnt = 0, esp_cnt = 0; 2464 int ah_len = 0, esp_len = 0; 2465 int i, size = 0; 2466 2467 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2468 return; 2469 2470 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2471 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2472 2473 /* Find out the number of ciphers for AH */ 2474 if (cap_ah != NULL) { 2475 for (i = 0; i < cap_ah->algs_size; i++) { 2476 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2477 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2478 } 2479 if (ah_cnt > 0) { 2480 size += sizeof (dl_capability_sub_t) + 2481 sizeof (dl_capab_ipsec_t); 2482 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2483 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2484 size += ah_len; 2485 } 2486 } 2487 2488 /* Find out the number of ciphers for ESP */ 2489 if (cap_esp != NULL) { 2490 for (i = 0; i < cap_esp->algs_size; i++) { 2491 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2492 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2493 } 2494 if (esp_cnt > 0) { 2495 size += sizeof (dl_capability_sub_t) + 2496 sizeof (dl_capab_ipsec_t); 2497 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2498 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2499 size += esp_len; 2500 } 2501 } 2502 2503 if (size == 0) { 2504 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2505 "there's nothing to reset\n")); 2506 return; 2507 } 2508 2509 mp = allocb(size, BPRI_HI); 2510 if (mp == NULL) { 2511 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2512 "request to disable IPSEC Hardware Acceleration\n")); 2513 return; 2514 } 2515 2516 /* 2517 * Clear the capability flags for IPsec HA but retain the ill 2518 * capability structures since it's possible that another thread 2519 * is still referring to them. The structures only get deallocated 2520 * when we destroy the ill. 2521 * 2522 * Various places check the flags to see if the ill is capable of 2523 * hardware acceleration, and by clearing them we ensure that new 2524 * outbound IPsec packets are sent down encrypted. 2525 */ 2526 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2527 2528 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2529 if (ah_cnt > 0) { 2530 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2531 cap_ah, mp); 2532 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2533 } 2534 2535 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2536 if (esp_cnt > 0) { 2537 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2538 cap_esp, mp); 2539 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2540 } 2541 2542 /* 2543 * At this point we've composed a bunch of sub-capabilities to be 2544 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2545 * by the caller. Upon receiving this reset message, the driver 2546 * must stop inbound decryption (by destroying all inbound SAs) 2547 * and let the corresponding packets come in encrypted. 2548 */ 2549 2550 if (*sc_mp != NULL) 2551 linkb(*sc_mp, mp); 2552 else 2553 *sc_mp = mp; 2554 } 2555 2556 static void 2557 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2558 boolean_t encapsulated) 2559 { 2560 boolean_t legacy = B_FALSE; 2561 2562 /* 2563 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2564 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2565 * instructed the driver to disable its advertised capabilities, 2566 * so there's no point in accepting any response at this moment. 2567 */ 2568 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2569 return; 2570 2571 /* 2572 * Note that only the following two sub-capabilities may be 2573 * considered as "legacy", since their original definitions 2574 * do not incorporate the dl_mid_t module ID token, and hence 2575 * may require the use of the wrapper sub-capability. 2576 */ 2577 switch (subp->dl_cap) { 2578 case DL_CAPAB_IPSEC_AH: 2579 case DL_CAPAB_IPSEC_ESP: 2580 legacy = B_TRUE; 2581 break; 2582 } 2583 2584 /* 2585 * For legacy sub-capabilities which don't incorporate a queue_t 2586 * pointer in their structures, discard them if we detect that 2587 * there are intermediate modules in between IP and the driver. 2588 */ 2589 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2590 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2591 "%d discarded; %d module(s) present below IP\n", 2592 subp->dl_cap, ill->ill_lmod_cnt)); 2593 return; 2594 } 2595 2596 switch (subp->dl_cap) { 2597 case DL_CAPAB_IPSEC_AH: 2598 case DL_CAPAB_IPSEC_ESP: 2599 ill_capability_ipsec_ack(ill, mp, subp); 2600 break; 2601 case DL_CAPAB_MDT: 2602 ill_capability_mdt_ack(ill, mp, subp); 2603 break; 2604 case DL_CAPAB_HCKSUM: 2605 ill_capability_hcksum_ack(ill, mp, subp); 2606 break; 2607 case DL_CAPAB_ZEROCOPY: 2608 ill_capability_zerocopy_ack(ill, mp, subp); 2609 break; 2610 case DL_CAPAB_POLL: 2611 if (!SOFT_RINGS_ENABLED()) 2612 ill_capability_dls_ack(ill, mp, subp); 2613 break; 2614 case DL_CAPAB_SOFT_RING: 2615 if (SOFT_RINGS_ENABLED()) 2616 ill_capability_dls_ack(ill, mp, subp); 2617 break; 2618 case DL_CAPAB_LSO: 2619 ill_capability_lso_ack(ill, mp, subp); 2620 break; 2621 default: 2622 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2623 subp->dl_cap)); 2624 } 2625 } 2626 2627 /* 2628 * As part of negotiating polling capability, the driver tells us 2629 * the default (or normal) blanking interval and packet threshold 2630 * (the receive timer fires if blanking interval is reached or 2631 * the packet threshold is reached). 2632 * 2633 * As part of manipulating the polling interval, we always use our 2634 * estimated interval (avg service time * number of packets queued 2635 * on the squeue) but we try to blank for a minimum of 2636 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2637 * packet threshold during this time. When we are not in polling mode 2638 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2639 * rr_min_blank_ratio but up the packet cnt by a ratio of 2640 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2641 * possible although for a shorter interval. 2642 */ 2643 #define RR_MAX_BLANK_RATIO 20 2644 #define RR_MIN_BLANK_RATIO 10 2645 #define RR_MAX_PKT_CNT_RATIO 3 2646 #define RR_MIN_PKT_CNT_RATIO 3 2647 2648 /* 2649 * These can be tuned via /etc/system. 2650 */ 2651 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2652 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2653 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2654 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2655 2656 static mac_resource_handle_t 2657 ill_ring_add(void *arg, mac_resource_t *mrp) 2658 { 2659 ill_t *ill = (ill_t *)arg; 2660 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2661 ill_rx_ring_t *rx_ring; 2662 int ip_rx_index; 2663 2664 ASSERT(mrp != NULL); 2665 if (mrp->mr_type != MAC_RX_FIFO) { 2666 return (NULL); 2667 } 2668 ASSERT(ill != NULL); 2669 ASSERT(ill->ill_dls_capab != NULL); 2670 2671 mutex_enter(&ill->ill_lock); 2672 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2673 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2674 ASSERT(rx_ring != NULL); 2675 2676 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2677 time_t normal_blank_time = 2678 mrfp->mrf_normal_blank_time; 2679 uint_t normal_pkt_cnt = 2680 mrfp->mrf_normal_pkt_count; 2681 2682 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2683 2684 rx_ring->rr_blank = mrfp->mrf_blank; 2685 rx_ring->rr_handle = mrfp->mrf_arg; 2686 rx_ring->rr_ill = ill; 2687 rx_ring->rr_normal_blank_time = normal_blank_time; 2688 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2689 2690 rx_ring->rr_max_blank_time = 2691 normal_blank_time * rr_max_blank_ratio; 2692 rx_ring->rr_min_blank_time = 2693 normal_blank_time * rr_min_blank_ratio; 2694 rx_ring->rr_max_pkt_cnt = 2695 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2696 rx_ring->rr_min_pkt_cnt = 2697 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2698 2699 rx_ring->rr_ring_state = ILL_RING_INUSE; 2700 mutex_exit(&ill->ill_lock); 2701 2702 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2703 (int), ip_rx_index); 2704 return ((mac_resource_handle_t)rx_ring); 2705 } 2706 } 2707 2708 /* 2709 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2710 * we have devices which can overwhelm this limit, ILL_MAX_RING 2711 * should be made configurable. Meanwhile it cause no panic because 2712 * driver will pass ip_input a NULL handle which will make 2713 * IP allocate the default squeue and Polling mode will not 2714 * be used for this ring. 2715 */ 2716 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2717 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2718 2719 mutex_exit(&ill->ill_lock); 2720 return (NULL); 2721 } 2722 2723 static boolean_t 2724 ill_capability_dls_init(ill_t *ill) 2725 { 2726 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2727 conn_t *connp; 2728 size_t sz; 2729 ip_stack_t *ipst = ill->ill_ipst; 2730 2731 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2732 if (ill_dls == NULL) { 2733 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2734 "soft_ring enabled for ill=%s (%p) but data " 2735 "structs uninitialized\n", ill->ill_name, 2736 (void *)ill); 2737 } 2738 return (B_TRUE); 2739 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2740 if (ill_dls == NULL) { 2741 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2742 "polling enabled for ill=%s (%p) but data " 2743 "structs uninitialized\n", ill->ill_name, 2744 (void *)ill); 2745 } 2746 return (B_TRUE); 2747 } 2748 2749 if (ill_dls != NULL) { 2750 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2751 /* Soft_Ring or polling is being re-enabled */ 2752 2753 connp = ill_dls->ill_unbind_conn; 2754 ASSERT(rx_ring != NULL); 2755 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2756 bzero((void *)rx_ring, 2757 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2758 ill_dls->ill_ring_tbl = rx_ring; 2759 ill_dls->ill_unbind_conn = connp; 2760 return (B_TRUE); 2761 } 2762 2763 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2764 ipst->ips_netstack)) == NULL) 2765 return (B_FALSE); 2766 2767 sz = sizeof (ill_dls_capab_t); 2768 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2769 2770 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2771 if (ill_dls == NULL) { 2772 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2773 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2774 (void *)ill); 2775 CONN_DEC_REF(connp); 2776 return (B_FALSE); 2777 } 2778 2779 /* Allocate space to hold ring table */ 2780 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2781 ill->ill_dls_capab = ill_dls; 2782 ill_dls->ill_unbind_conn = connp; 2783 return (B_TRUE); 2784 } 2785 2786 /* 2787 * ill_capability_dls_disable: disable soft_ring and/or polling 2788 * capability. Since any of the rings might already be in use, need 2789 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2790 * direct calls if necessary. 2791 */ 2792 static void 2793 ill_capability_dls_disable(ill_t *ill) 2794 { 2795 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2796 2797 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2798 ip_squeue_clean_all(ill); 2799 ill_dls->ill_tx = NULL; 2800 ill_dls->ill_tx_handle = NULL; 2801 ill_dls->ill_dls_change_status = NULL; 2802 ill_dls->ill_dls_bind = NULL; 2803 ill_dls->ill_dls_unbind = NULL; 2804 } 2805 2806 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2807 } 2808 2809 static void 2810 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2811 dl_capability_sub_t *isub) 2812 { 2813 uint_t size; 2814 uchar_t *rptr; 2815 dl_capab_dls_t dls, *odls; 2816 ill_dls_capab_t *ill_dls; 2817 mblk_t *nmp = NULL; 2818 dl_capability_req_t *ocap; 2819 uint_t sub_dl_cap = isub->dl_cap; 2820 2821 if (!ill_capability_dls_init(ill)) 2822 return; 2823 ill_dls = ill->ill_dls_capab; 2824 2825 /* Copy locally to get the members aligned */ 2826 bcopy((void *)idls, (void *)&dls, 2827 sizeof (dl_capab_dls_t)); 2828 2829 /* Get the tx function and handle from dld */ 2830 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2831 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2832 2833 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2834 ill_dls->ill_dls_change_status = 2835 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2836 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2837 ill_dls->ill_dls_unbind = 2838 (ip_dls_unbind_t)dls.dls_ring_unbind; 2839 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2840 } 2841 2842 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2843 isub->dl_length; 2844 2845 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2846 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2847 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2848 ill->ill_name, (void *)ill); 2849 return; 2850 } 2851 2852 /* initialize dl_capability_req_t */ 2853 rptr = nmp->b_rptr; 2854 ocap = (dl_capability_req_t *)rptr; 2855 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2856 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2857 rptr += sizeof (dl_capability_req_t); 2858 2859 /* initialize dl_capability_sub_t */ 2860 bcopy(isub, rptr, sizeof (*isub)); 2861 rptr += sizeof (*isub); 2862 2863 odls = (dl_capab_dls_t *)rptr; 2864 rptr += sizeof (dl_capab_dls_t); 2865 2866 /* initialize dl_capab_dls_t to be sent down */ 2867 dls.dls_rx_handle = (uintptr_t)ill; 2868 dls.dls_rx = (uintptr_t)ip_input; 2869 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2870 2871 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2872 dls.dls_ring_cnt = ip_soft_rings_cnt; 2873 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2874 dls.dls_flags = SOFT_RING_ENABLE; 2875 } else { 2876 dls.dls_flags = POLL_ENABLE; 2877 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2878 "to enable polling\n", ill->ill_name)); 2879 } 2880 bcopy((void *)&dls, (void *)odls, 2881 sizeof (dl_capab_dls_t)); 2882 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2883 /* 2884 * nmp points to a DL_CAPABILITY_REQ message to 2885 * enable either soft_ring or polling 2886 */ 2887 ill_dlpi_send(ill, nmp); 2888 } 2889 2890 static void 2891 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2892 { 2893 mblk_t *mp; 2894 dl_capab_dls_t *idls; 2895 dl_capability_sub_t *dl_subcap; 2896 int size; 2897 2898 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2899 return; 2900 2901 ASSERT(ill->ill_dls_capab != NULL); 2902 2903 size = sizeof (*dl_subcap) + sizeof (*idls); 2904 2905 mp = allocb(size, BPRI_HI); 2906 if (mp == NULL) { 2907 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2908 "request to disable soft_ring\n")); 2909 return; 2910 } 2911 2912 mp->b_wptr = mp->b_rptr + size; 2913 2914 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2915 dl_subcap->dl_length = sizeof (*idls); 2916 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2917 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2918 else 2919 dl_subcap->dl_cap = DL_CAPAB_POLL; 2920 2921 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2922 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2923 idls->dls_flags = SOFT_RING_DISABLE; 2924 else 2925 idls->dls_flags = POLL_DISABLE; 2926 2927 if (*sc_mp != NULL) 2928 linkb(*sc_mp, mp); 2929 else 2930 *sc_mp = mp; 2931 } 2932 2933 /* 2934 * Process a soft_ring/poll capability negotiation ack received 2935 * from a DLS Provider.isub must point to the sub-capability 2936 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2937 */ 2938 static void 2939 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2940 { 2941 dl_capab_dls_t *idls; 2942 uint_t sub_dl_cap = isub->dl_cap; 2943 uint8_t *capend; 2944 2945 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2946 sub_dl_cap == DL_CAPAB_POLL); 2947 2948 if (ill->ill_isv6) 2949 return; 2950 2951 /* 2952 * Note: range checks here are not absolutely sufficient to 2953 * make us robust against malformed messages sent by drivers; 2954 * this is in keeping with the rest of IP's dlpi handling. 2955 * (Remember, it's coming from something else in the kernel 2956 * address space) 2957 */ 2958 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2959 if (capend > mp->b_wptr) { 2960 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2961 "malformed sub-capability too long for mblk"); 2962 return; 2963 } 2964 2965 /* 2966 * There are two types of acks we process here: 2967 * 1. acks in reply to a (first form) generic capability req 2968 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2969 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2970 * capability req. 2971 */ 2972 idls = (dl_capab_dls_t *)(isub + 1); 2973 2974 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2975 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2976 "capability isn't as expected; pass-thru " 2977 "module(s) detected, discarding capability\n")); 2978 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2979 /* 2980 * This is a capability renegotitation case. 2981 * The interface better be unusable at this 2982 * point other wise bad things will happen 2983 * if we disable direct calls on a running 2984 * and up interface. 2985 */ 2986 ill_capability_dls_disable(ill); 2987 } 2988 return; 2989 } 2990 2991 switch (idls->dls_flags) { 2992 default: 2993 /* Disable if unknown flag */ 2994 case SOFT_RING_DISABLE: 2995 case POLL_DISABLE: 2996 ill_capability_dls_disable(ill); 2997 break; 2998 case SOFT_RING_CAPABLE: 2999 case POLL_CAPABLE: 3000 /* 3001 * If the capability was already enabled, its safe 3002 * to disable it first to get rid of stale information 3003 * and then start enabling it again. 3004 */ 3005 ill_capability_dls_disable(ill); 3006 ill_capability_dls_capable(ill, idls, isub); 3007 break; 3008 case SOFT_RING_ENABLE: 3009 case POLL_ENABLE: 3010 mutex_enter(&ill->ill_lock); 3011 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3012 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3013 ASSERT(ill->ill_dls_capab != NULL); 3014 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3015 } 3016 if (sub_dl_cap == DL_CAPAB_POLL && 3017 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3018 ASSERT(ill->ill_dls_capab != NULL); 3019 ill->ill_capabilities |= ILL_CAPAB_POLL; 3020 ip1dbg(("ill_capability_dls_ack: interface %s " 3021 "has enabled polling\n", ill->ill_name)); 3022 } 3023 mutex_exit(&ill->ill_lock); 3024 break; 3025 } 3026 } 3027 3028 /* 3029 * Process a hardware checksum offload capability negotiation ack received 3030 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3031 * of a DL_CAPABILITY_ACK message. 3032 */ 3033 static void 3034 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3035 { 3036 dl_capability_req_t *ocap; 3037 dl_capab_hcksum_t *ihck, *ohck; 3038 ill_hcksum_capab_t **ill_hcksum; 3039 mblk_t *nmp = NULL; 3040 uint_t sub_dl_cap = isub->dl_cap; 3041 uint8_t *capend; 3042 3043 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3044 3045 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3046 3047 /* 3048 * Note: range checks here are not absolutely sufficient to 3049 * make us robust against malformed messages sent by drivers; 3050 * this is in keeping with the rest of IP's dlpi handling. 3051 * (Remember, it's coming from something else in the kernel 3052 * address space) 3053 */ 3054 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3055 if (capend > mp->b_wptr) { 3056 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3057 "malformed sub-capability too long for mblk"); 3058 return; 3059 } 3060 3061 /* 3062 * There are two types of acks we process here: 3063 * 1. acks in reply to a (first form) generic capability req 3064 * (no ENABLE flag set) 3065 * 2. acks in reply to a ENABLE capability req. 3066 * (ENABLE flag set) 3067 */ 3068 ihck = (dl_capab_hcksum_t *)(isub + 1); 3069 3070 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3071 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3072 "unsupported hardware checksum " 3073 "sub-capability (version %d, expected %d)", 3074 ihck->hcksum_version, HCKSUM_VERSION_1); 3075 return; 3076 } 3077 3078 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3079 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3080 "checksum capability isn't as expected; pass-thru " 3081 "module(s) detected, discarding capability\n")); 3082 return; 3083 } 3084 3085 #define CURR_HCKSUM_CAPAB \ 3086 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3087 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3088 3089 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3090 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3091 /* do ENABLE processing */ 3092 if (*ill_hcksum == NULL) { 3093 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3094 KM_NOSLEEP); 3095 3096 if (*ill_hcksum == NULL) { 3097 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3098 "could not enable hcksum version %d " 3099 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3100 ill->ill_name); 3101 return; 3102 } 3103 } 3104 3105 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3106 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3107 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3108 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3109 "has enabled hardware checksumming\n ", 3110 ill->ill_name)); 3111 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3112 /* 3113 * Enabling hardware checksum offload 3114 * Currently IP supports {TCP,UDP}/IPv4 3115 * partial and full cksum offload and 3116 * IPv4 header checksum offload. 3117 * Allocate new mblk which will 3118 * contain a new capability request 3119 * to enable hardware checksum offload. 3120 */ 3121 uint_t size; 3122 uchar_t *rptr; 3123 3124 size = sizeof (dl_capability_req_t) + 3125 sizeof (dl_capability_sub_t) + isub->dl_length; 3126 3127 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3128 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3129 "could not enable hardware cksum for %s (ENOMEM)\n", 3130 ill->ill_name); 3131 return; 3132 } 3133 3134 rptr = nmp->b_rptr; 3135 /* initialize dl_capability_req_t */ 3136 ocap = (dl_capability_req_t *)nmp->b_rptr; 3137 ocap->dl_sub_offset = 3138 sizeof (dl_capability_req_t); 3139 ocap->dl_sub_length = 3140 sizeof (dl_capability_sub_t) + 3141 isub->dl_length; 3142 nmp->b_rptr += sizeof (dl_capability_req_t); 3143 3144 /* initialize dl_capability_sub_t */ 3145 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3146 nmp->b_rptr += sizeof (*isub); 3147 3148 /* initialize dl_capab_hcksum_t */ 3149 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3150 bcopy(ihck, ohck, sizeof (*ihck)); 3151 3152 nmp->b_rptr = rptr; 3153 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3154 3155 /* Set ENABLE flag */ 3156 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3157 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3158 3159 /* 3160 * nmp points to a DL_CAPABILITY_REQ message to enable 3161 * hardware checksum acceleration. 3162 */ 3163 ill_dlpi_send(ill, nmp); 3164 } else { 3165 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3166 "advertised %x hardware checksum capability flags\n", 3167 ill->ill_name, ihck->hcksum_txflags)); 3168 } 3169 } 3170 3171 static void 3172 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3173 { 3174 mblk_t *mp; 3175 dl_capab_hcksum_t *hck_subcap; 3176 dl_capability_sub_t *dl_subcap; 3177 int size; 3178 3179 if (!ILL_HCKSUM_CAPABLE(ill)) 3180 return; 3181 3182 ASSERT(ill->ill_hcksum_capab != NULL); 3183 /* 3184 * Clear the capability flag for hardware checksum offload but 3185 * retain the ill_hcksum_capab structure since it's possible that 3186 * another thread is still referring to it. The structure only 3187 * gets deallocated when we destroy the ill. 3188 */ 3189 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3190 3191 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3192 3193 mp = allocb(size, BPRI_HI); 3194 if (mp == NULL) { 3195 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3196 "request to disable hardware checksum offload\n")); 3197 return; 3198 } 3199 3200 mp->b_wptr = mp->b_rptr + size; 3201 3202 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3203 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3204 dl_subcap->dl_length = sizeof (*hck_subcap); 3205 3206 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3207 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3208 hck_subcap->hcksum_txflags = 0; 3209 3210 if (*sc_mp != NULL) 3211 linkb(*sc_mp, mp); 3212 else 3213 *sc_mp = mp; 3214 } 3215 3216 static void 3217 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3218 { 3219 mblk_t *nmp = NULL; 3220 dl_capability_req_t *oc; 3221 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3222 ill_zerocopy_capab_t **ill_zerocopy_capab; 3223 uint_t sub_dl_cap = isub->dl_cap; 3224 uint8_t *capend; 3225 3226 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3227 3228 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3229 3230 /* 3231 * Note: range checks here are not absolutely sufficient to 3232 * make us robust against malformed messages sent by drivers; 3233 * this is in keeping with the rest of IP's dlpi handling. 3234 * (Remember, it's coming from something else in the kernel 3235 * address space) 3236 */ 3237 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3238 if (capend > mp->b_wptr) { 3239 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3240 "malformed sub-capability too long for mblk"); 3241 return; 3242 } 3243 3244 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3245 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3246 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3247 "unsupported ZEROCOPY sub-capability (version %d, " 3248 "expected %d)", zc_ic->zerocopy_version, 3249 ZEROCOPY_VERSION_1); 3250 return; 3251 } 3252 3253 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3254 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3255 "capability isn't as expected; pass-thru module(s) " 3256 "detected, discarding capability\n")); 3257 return; 3258 } 3259 3260 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3261 if (*ill_zerocopy_capab == NULL) { 3262 *ill_zerocopy_capab = 3263 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3264 KM_NOSLEEP); 3265 3266 if (*ill_zerocopy_capab == NULL) { 3267 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3268 "could not enable Zero-copy version %d " 3269 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3270 ill->ill_name); 3271 return; 3272 } 3273 } 3274 3275 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3276 "supports Zero-copy version %d\n", ill->ill_name, 3277 ZEROCOPY_VERSION_1)); 3278 3279 (*ill_zerocopy_capab)->ill_zerocopy_version = 3280 zc_ic->zerocopy_version; 3281 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3282 zc_ic->zerocopy_flags; 3283 3284 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3285 } else { 3286 uint_t size; 3287 uchar_t *rptr; 3288 3289 size = sizeof (dl_capability_req_t) + 3290 sizeof (dl_capability_sub_t) + 3291 sizeof (dl_capab_zerocopy_t); 3292 3293 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3294 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3295 "could not enable zerocopy for %s (ENOMEM)\n", 3296 ill->ill_name); 3297 return; 3298 } 3299 3300 rptr = nmp->b_rptr; 3301 /* initialize dl_capability_req_t */ 3302 oc = (dl_capability_req_t *)rptr; 3303 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3304 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3305 sizeof (dl_capab_zerocopy_t); 3306 rptr += sizeof (dl_capability_req_t); 3307 3308 /* initialize dl_capability_sub_t */ 3309 bcopy(isub, rptr, sizeof (*isub)); 3310 rptr += sizeof (*isub); 3311 3312 /* initialize dl_capab_zerocopy_t */ 3313 zc_oc = (dl_capab_zerocopy_t *)rptr; 3314 *zc_oc = *zc_ic; 3315 3316 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3317 "to enable zero-copy version %d\n", ill->ill_name, 3318 ZEROCOPY_VERSION_1)); 3319 3320 /* set VMSAFE_MEM flag */ 3321 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3322 3323 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3324 ill_dlpi_send(ill, nmp); 3325 } 3326 } 3327 3328 static void 3329 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3330 { 3331 mblk_t *mp; 3332 dl_capab_zerocopy_t *zerocopy_subcap; 3333 dl_capability_sub_t *dl_subcap; 3334 int size; 3335 3336 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3337 return; 3338 3339 ASSERT(ill->ill_zerocopy_capab != NULL); 3340 /* 3341 * Clear the capability flag for Zero-copy but retain the 3342 * ill_zerocopy_capab structure since it's possible that another 3343 * thread is still referring to it. The structure only gets 3344 * deallocated when we destroy the ill. 3345 */ 3346 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3347 3348 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3349 3350 mp = allocb(size, BPRI_HI); 3351 if (mp == NULL) { 3352 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3353 "request to disable Zero-copy\n")); 3354 return; 3355 } 3356 3357 mp->b_wptr = mp->b_rptr + size; 3358 3359 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3360 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3361 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3362 3363 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3364 zerocopy_subcap->zerocopy_version = 3365 ill->ill_zerocopy_capab->ill_zerocopy_version; 3366 zerocopy_subcap->zerocopy_flags = 0; 3367 3368 if (*sc_mp != NULL) 3369 linkb(*sc_mp, mp); 3370 else 3371 *sc_mp = mp; 3372 } 3373 3374 /* 3375 * Process Large Segment Offload capability negotiation ack received from a 3376 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3377 * DL_CAPABILITY_ACK message. 3378 */ 3379 static void 3380 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3381 { 3382 mblk_t *nmp = NULL; 3383 dl_capability_req_t *oc; 3384 dl_capab_lso_t *lso_ic, *lso_oc; 3385 ill_lso_capab_t **ill_lso_capab; 3386 uint_t sub_dl_cap = isub->dl_cap; 3387 uint8_t *capend; 3388 3389 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3390 3391 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3392 3393 /* 3394 * Note: range checks here are not absolutely sufficient to 3395 * make us robust against malformed messages sent by drivers; 3396 * this is in keeping with the rest of IP's dlpi handling. 3397 * (Remember, it's coming from something else in the kernel 3398 * address space) 3399 */ 3400 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3401 if (capend > mp->b_wptr) { 3402 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3403 "malformed sub-capability too long for mblk"); 3404 return; 3405 } 3406 3407 lso_ic = (dl_capab_lso_t *)(isub + 1); 3408 3409 if (lso_ic->lso_version != LSO_VERSION_1) { 3410 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3411 "unsupported LSO sub-capability (version %d, expected %d)", 3412 lso_ic->lso_version, LSO_VERSION_1); 3413 return; 3414 } 3415 3416 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3417 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3418 "capability isn't as expected; pass-thru module(s) " 3419 "detected, discarding capability\n")); 3420 return; 3421 } 3422 3423 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3424 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3425 if (*ill_lso_capab == NULL) { 3426 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3427 KM_NOSLEEP); 3428 3429 if (*ill_lso_capab == NULL) { 3430 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3431 "could not enable LSO version %d " 3432 "for %s (ENOMEM)\n", LSO_VERSION_1, 3433 ill->ill_name); 3434 return; 3435 } 3436 } 3437 3438 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3439 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3440 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3441 ill->ill_capabilities |= ILL_CAPAB_LSO; 3442 3443 ip1dbg(("ill_capability_lso_ack: interface %s " 3444 "has enabled LSO\n ", ill->ill_name)); 3445 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3446 uint_t size; 3447 uchar_t *rptr; 3448 3449 size = sizeof (dl_capability_req_t) + 3450 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3451 3452 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3453 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3454 "could not enable LSO for %s (ENOMEM)\n", 3455 ill->ill_name); 3456 return; 3457 } 3458 3459 rptr = nmp->b_rptr; 3460 /* initialize dl_capability_req_t */ 3461 oc = (dl_capability_req_t *)nmp->b_rptr; 3462 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3463 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3464 sizeof (dl_capab_lso_t); 3465 nmp->b_rptr += sizeof (dl_capability_req_t); 3466 3467 /* initialize dl_capability_sub_t */ 3468 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3469 nmp->b_rptr += sizeof (*isub); 3470 3471 /* initialize dl_capab_lso_t */ 3472 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3473 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3474 3475 nmp->b_rptr = rptr; 3476 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3477 3478 /* set ENABLE flag */ 3479 lso_oc->lso_flags |= LSO_TX_ENABLE; 3480 3481 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3482 ill_dlpi_send(ill, nmp); 3483 } else { 3484 ip1dbg(("ill_capability_lso_ack: interface %s has " 3485 "advertised %x LSO capability flags\n", 3486 ill->ill_name, lso_ic->lso_flags)); 3487 } 3488 } 3489 3490 3491 static void 3492 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3493 { 3494 mblk_t *mp; 3495 dl_capab_lso_t *lso_subcap; 3496 dl_capability_sub_t *dl_subcap; 3497 int size; 3498 3499 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3500 return; 3501 3502 ASSERT(ill->ill_lso_capab != NULL); 3503 /* 3504 * Clear the capability flag for LSO but retain the 3505 * ill_lso_capab structure since it's possible that another 3506 * thread is still referring to it. The structure only gets 3507 * deallocated when we destroy the ill. 3508 */ 3509 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3510 3511 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3512 3513 mp = allocb(size, BPRI_HI); 3514 if (mp == NULL) { 3515 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3516 "request to disable LSO\n")); 3517 return; 3518 } 3519 3520 mp->b_wptr = mp->b_rptr + size; 3521 3522 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3523 dl_subcap->dl_cap = DL_CAPAB_LSO; 3524 dl_subcap->dl_length = sizeof (*lso_subcap); 3525 3526 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3527 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3528 lso_subcap->lso_flags = 0; 3529 3530 if (*sc_mp != NULL) 3531 linkb(*sc_mp, mp); 3532 else 3533 *sc_mp = mp; 3534 } 3535 3536 /* 3537 * Consume a new-style hardware capabilities negotiation ack. 3538 * Called from ip_rput_dlpi_writer(). 3539 */ 3540 void 3541 ill_capability_ack(ill_t *ill, mblk_t *mp) 3542 { 3543 dl_capability_ack_t *capp; 3544 dl_capability_sub_t *subp, *endp; 3545 3546 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3547 ill->ill_dlpi_capab_state = IDS_OK; 3548 3549 capp = (dl_capability_ack_t *)mp->b_rptr; 3550 3551 if (capp->dl_sub_length == 0) 3552 /* no new-style capabilities */ 3553 return; 3554 3555 /* make sure the driver supplied correct dl_sub_length */ 3556 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3557 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3558 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3559 return; 3560 } 3561 3562 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3563 /* 3564 * There are sub-capabilities. Process the ones we know about. 3565 * Loop until we don't have room for another sub-cap header.. 3566 */ 3567 for (subp = SC(capp, capp->dl_sub_offset), 3568 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3569 subp <= endp; 3570 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3571 3572 switch (subp->dl_cap) { 3573 case DL_CAPAB_ID_WRAPPER: 3574 ill_capability_id_ack(ill, mp, subp); 3575 break; 3576 default: 3577 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3578 break; 3579 } 3580 } 3581 #undef SC 3582 } 3583 3584 /* 3585 * This routine is called to scan the fragmentation reassembly table for 3586 * the specified ILL for any packets that are starting to smell. 3587 * dead_interval is the maximum time in seconds that will be tolerated. It 3588 * will either be the value specified in ip_g_frag_timeout, or zero if the 3589 * ILL is shutting down and it is time to blow everything off. 3590 * 3591 * It returns the number of seconds (as a time_t) that the next frag timer 3592 * should be scheduled for, 0 meaning that the timer doesn't need to be 3593 * re-started. Note that the method of calculating next_timeout isn't 3594 * entirely accurate since time will flow between the time we grab 3595 * current_time and the time we schedule the next timeout. This isn't a 3596 * big problem since this is the timer for sending an ICMP reassembly time 3597 * exceeded messages, and it doesn't have to be exactly accurate. 3598 * 3599 * This function is 3600 * sometimes called as writer, although this is not required. 3601 */ 3602 time_t 3603 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3604 { 3605 ipfb_t *ipfb; 3606 ipfb_t *endp; 3607 ipf_t *ipf; 3608 ipf_t *ipfnext; 3609 mblk_t *mp; 3610 time_t current_time = gethrestime_sec(); 3611 time_t next_timeout = 0; 3612 uint32_t hdr_length; 3613 mblk_t *send_icmp_head; 3614 mblk_t *send_icmp_head_v6; 3615 zoneid_t zoneid; 3616 ip_stack_t *ipst = ill->ill_ipst; 3617 3618 ipfb = ill->ill_frag_hash_tbl; 3619 if (ipfb == NULL) 3620 return (B_FALSE); 3621 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3622 /* Walk the frag hash table. */ 3623 for (; ipfb < endp; ipfb++) { 3624 send_icmp_head = NULL; 3625 send_icmp_head_v6 = NULL; 3626 mutex_enter(&ipfb->ipfb_lock); 3627 while ((ipf = ipfb->ipfb_ipf) != 0) { 3628 time_t frag_time = current_time - ipf->ipf_timestamp; 3629 time_t frag_timeout; 3630 3631 if (frag_time < dead_interval) { 3632 /* 3633 * There are some outstanding fragments 3634 * that will timeout later. Make note of 3635 * the time so that we can reschedule the 3636 * next timeout appropriately. 3637 */ 3638 frag_timeout = dead_interval - frag_time; 3639 if (next_timeout == 0 || 3640 frag_timeout < next_timeout) { 3641 next_timeout = frag_timeout; 3642 } 3643 break; 3644 } 3645 /* Time's up. Get it out of here. */ 3646 hdr_length = ipf->ipf_nf_hdr_len; 3647 ipfnext = ipf->ipf_hash_next; 3648 if (ipfnext) 3649 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3650 *ipf->ipf_ptphn = ipfnext; 3651 mp = ipf->ipf_mp->b_cont; 3652 for (; mp; mp = mp->b_cont) { 3653 /* Extra points for neatness. */ 3654 IP_REASS_SET_START(mp, 0); 3655 IP_REASS_SET_END(mp, 0); 3656 } 3657 mp = ipf->ipf_mp->b_cont; 3658 ill->ill_frag_count -= ipf->ipf_count; 3659 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3660 ipfb->ipfb_count -= ipf->ipf_count; 3661 ASSERT(ipfb->ipfb_frag_pkts > 0); 3662 ipfb->ipfb_frag_pkts--; 3663 /* 3664 * We do not send any icmp message from here because 3665 * we currently are holding the ipfb_lock for this 3666 * hash chain. If we try and send any icmp messages 3667 * from here we may end up via a put back into ip 3668 * trying to get the same lock, causing a recursive 3669 * mutex panic. Instead we build a list and send all 3670 * the icmp messages after we have dropped the lock. 3671 */ 3672 if (ill->ill_isv6) { 3673 if (hdr_length != 0) { 3674 mp->b_next = send_icmp_head_v6; 3675 send_icmp_head_v6 = mp; 3676 } else { 3677 freemsg(mp); 3678 } 3679 } else { 3680 if (hdr_length != 0) { 3681 mp->b_next = send_icmp_head; 3682 send_icmp_head = mp; 3683 } else { 3684 freemsg(mp); 3685 } 3686 } 3687 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3688 freeb(ipf->ipf_mp); 3689 } 3690 mutex_exit(&ipfb->ipfb_lock); 3691 /* 3692 * Now need to send any icmp messages that we delayed from 3693 * above. 3694 */ 3695 while (send_icmp_head_v6 != NULL) { 3696 ip6_t *ip6h; 3697 3698 mp = send_icmp_head_v6; 3699 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3700 mp->b_next = NULL; 3701 if (mp->b_datap->db_type == M_CTL) 3702 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3703 else 3704 ip6h = (ip6_t *)mp->b_rptr; 3705 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3706 ill, ipst); 3707 if (zoneid == ALL_ZONES) { 3708 freemsg(mp); 3709 } else { 3710 icmp_time_exceeded_v6(ill->ill_wq, mp, 3711 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3712 B_FALSE, zoneid, ipst); 3713 } 3714 } 3715 while (send_icmp_head != NULL) { 3716 ipaddr_t dst; 3717 3718 mp = send_icmp_head; 3719 send_icmp_head = send_icmp_head->b_next; 3720 mp->b_next = NULL; 3721 3722 if (mp->b_datap->db_type == M_CTL) 3723 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3724 else 3725 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3726 3727 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3728 if (zoneid == ALL_ZONES) { 3729 freemsg(mp); 3730 } else { 3731 icmp_time_exceeded(ill->ill_wq, mp, 3732 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3733 ipst); 3734 } 3735 } 3736 } 3737 /* 3738 * A non-dying ILL will use the return value to decide whether to 3739 * restart the frag timer, and for how long. 3740 */ 3741 return (next_timeout); 3742 } 3743 3744 /* 3745 * This routine is called when the approximate count of mblk memory used 3746 * for the specified ILL has exceeded max_count. 3747 */ 3748 void 3749 ill_frag_prune(ill_t *ill, uint_t max_count) 3750 { 3751 ipfb_t *ipfb; 3752 ipf_t *ipf; 3753 size_t count; 3754 3755 /* 3756 * If we are here within ip_min_frag_prune_time msecs remove 3757 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3758 * ill_frag_free_num_pkts. 3759 */ 3760 mutex_enter(&ill->ill_lock); 3761 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3762 (ip_min_frag_prune_time != 0 ? 3763 ip_min_frag_prune_time : msec_per_tick)) { 3764 3765 ill->ill_frag_free_num_pkts++; 3766 3767 } else { 3768 ill->ill_frag_free_num_pkts = 0; 3769 } 3770 ill->ill_last_frag_clean_time = lbolt; 3771 mutex_exit(&ill->ill_lock); 3772 3773 /* 3774 * free ill_frag_free_num_pkts oldest packets from each bucket. 3775 */ 3776 if (ill->ill_frag_free_num_pkts != 0) { 3777 int ix; 3778 3779 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3780 ipfb = &ill->ill_frag_hash_tbl[ix]; 3781 mutex_enter(&ipfb->ipfb_lock); 3782 if (ipfb->ipfb_ipf != NULL) { 3783 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3784 ill->ill_frag_free_num_pkts); 3785 } 3786 mutex_exit(&ipfb->ipfb_lock); 3787 } 3788 } 3789 /* 3790 * While the reassembly list for this ILL is too big, prune a fragment 3791 * queue by age, oldest first. Note that the per ILL count is 3792 * approximate, while the per frag hash bucket counts are accurate. 3793 */ 3794 while (ill->ill_frag_count > max_count) { 3795 int ix; 3796 ipfb_t *oipfb = NULL; 3797 uint_t oldest = UINT_MAX; 3798 3799 count = 0; 3800 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3801 ipfb = &ill->ill_frag_hash_tbl[ix]; 3802 mutex_enter(&ipfb->ipfb_lock); 3803 ipf = ipfb->ipfb_ipf; 3804 if (ipf != NULL && ipf->ipf_gen < oldest) { 3805 oldest = ipf->ipf_gen; 3806 oipfb = ipfb; 3807 } 3808 count += ipfb->ipfb_count; 3809 mutex_exit(&ipfb->ipfb_lock); 3810 } 3811 /* Refresh the per ILL count */ 3812 ill->ill_frag_count = count; 3813 if (oipfb == NULL) { 3814 ill->ill_frag_count = 0; 3815 break; 3816 } 3817 if (count <= max_count) 3818 return; /* Somebody beat us to it, nothing to do */ 3819 mutex_enter(&oipfb->ipfb_lock); 3820 ipf = oipfb->ipfb_ipf; 3821 if (ipf != NULL) { 3822 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3823 } 3824 mutex_exit(&oipfb->ipfb_lock); 3825 } 3826 } 3827 3828 /* 3829 * free 'free_cnt' fragmented packets starting at ipf. 3830 */ 3831 void 3832 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3833 { 3834 size_t count; 3835 mblk_t *mp; 3836 mblk_t *tmp; 3837 ipf_t **ipfp = ipf->ipf_ptphn; 3838 3839 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3840 ASSERT(ipfp != NULL); 3841 ASSERT(ipf != NULL); 3842 3843 while (ipf != NULL && free_cnt-- > 0) { 3844 count = ipf->ipf_count; 3845 mp = ipf->ipf_mp; 3846 ipf = ipf->ipf_hash_next; 3847 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3848 IP_REASS_SET_START(tmp, 0); 3849 IP_REASS_SET_END(tmp, 0); 3850 } 3851 ill->ill_frag_count -= count; 3852 ASSERT(ipfb->ipfb_count >= count); 3853 ipfb->ipfb_count -= count; 3854 ASSERT(ipfb->ipfb_frag_pkts > 0); 3855 ipfb->ipfb_frag_pkts--; 3856 freemsg(mp); 3857 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3858 } 3859 3860 if (ipf) 3861 ipf->ipf_ptphn = ipfp; 3862 ipfp[0] = ipf; 3863 } 3864 3865 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3866 "obsolete and may be removed in a future release of Solaris. Use " \ 3867 "ifconfig(1M) to manipulate the forwarding status of an interface." 3868 3869 /* 3870 * For obsolete per-interface forwarding configuration; 3871 * called in response to ND_GET. 3872 */ 3873 /* ARGSUSED */ 3874 static int 3875 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3876 { 3877 ill_t *ill = (ill_t *)cp; 3878 3879 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3880 3881 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3882 return (0); 3883 } 3884 3885 /* 3886 * For obsolete per-interface forwarding configuration; 3887 * called in response to ND_SET. 3888 */ 3889 /* ARGSUSED */ 3890 static int 3891 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3892 cred_t *ioc_cr) 3893 { 3894 long value; 3895 int retval; 3896 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3897 3898 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3899 3900 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3901 value < 0 || value > 1) { 3902 return (EINVAL); 3903 } 3904 3905 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3906 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3907 rw_exit(&ipst->ips_ill_g_lock); 3908 return (retval); 3909 } 3910 3911 /* 3912 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3913 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3914 * up RTS_IFINFO routing socket messages for each interface whose flags we 3915 * change. 3916 */ 3917 int 3918 ill_forward_set(ill_t *ill, boolean_t enable) 3919 { 3920 ill_group_t *illgrp; 3921 ip_stack_t *ipst = ill->ill_ipst; 3922 3923 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3924 3925 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3926 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3927 return (0); 3928 3929 if (IS_LOOPBACK(ill)) 3930 return (EINVAL); 3931 3932 /* 3933 * If the ill is in an IPMP group, set the forwarding policy on all 3934 * members of the group to the same value. 3935 */ 3936 illgrp = ill->ill_group; 3937 if (illgrp != NULL) { 3938 ill_t *tmp_ill; 3939 3940 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3941 tmp_ill = tmp_ill->ill_group_next) { 3942 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3943 (enable ? "Enabling" : "Disabling"), 3944 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3945 tmp_ill->ill_name)); 3946 mutex_enter(&tmp_ill->ill_lock); 3947 if (enable) 3948 tmp_ill->ill_flags |= ILLF_ROUTER; 3949 else 3950 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3951 mutex_exit(&tmp_ill->ill_lock); 3952 if (tmp_ill->ill_isv6) 3953 ill_set_nce_router_flags(tmp_ill, enable); 3954 /* Notify routing socket listeners of this change. */ 3955 ip_rts_ifmsg(tmp_ill->ill_ipif); 3956 } 3957 } else { 3958 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3959 (enable ? "Enabling" : "Disabling"), 3960 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3961 mutex_enter(&ill->ill_lock); 3962 if (enable) 3963 ill->ill_flags |= ILLF_ROUTER; 3964 else 3965 ill->ill_flags &= ~ILLF_ROUTER; 3966 mutex_exit(&ill->ill_lock); 3967 if (ill->ill_isv6) 3968 ill_set_nce_router_flags(ill, enable); 3969 /* Notify routing socket listeners of this change. */ 3970 ip_rts_ifmsg(ill->ill_ipif); 3971 } 3972 3973 return (0); 3974 } 3975 3976 /* 3977 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3978 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3979 * set or clear. 3980 */ 3981 static void 3982 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3983 { 3984 ipif_t *ipif; 3985 nce_t *nce; 3986 3987 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3988 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3989 if (nce != NULL) { 3990 mutex_enter(&nce->nce_lock); 3991 if (enable) 3992 nce->nce_flags |= NCE_F_ISROUTER; 3993 else 3994 nce->nce_flags &= ~NCE_F_ISROUTER; 3995 mutex_exit(&nce->nce_lock); 3996 NCE_REFRELE(nce); 3997 } 3998 } 3999 } 4000 4001 /* 4002 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4003 * for this ill. Make sure the v6/v4 question has been answered about this 4004 * ill. The creation of this ndd variable is only for backwards compatibility. 4005 * The preferred way to control per-interface IP forwarding is through the 4006 * ILLF_ROUTER interface flag. 4007 */ 4008 static int 4009 ill_set_ndd_name(ill_t *ill) 4010 { 4011 char *suffix; 4012 ip_stack_t *ipst = ill->ill_ipst; 4013 4014 ASSERT(IAM_WRITER_ILL(ill)); 4015 4016 if (ill->ill_isv6) 4017 suffix = ipv6_forward_suffix; 4018 else 4019 suffix = ipv4_forward_suffix; 4020 4021 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4022 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4023 /* 4024 * Copies over the '\0'. 4025 * Note that strlen(suffix) is always bounded. 4026 */ 4027 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4028 strlen(suffix) + 1); 4029 4030 /* 4031 * Use of the nd table requires holding the reader lock. 4032 * Modifying the nd table thru nd_load/nd_unload requires 4033 * the writer lock. 4034 */ 4035 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4036 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4037 nd_ill_forward_set, (caddr_t)ill)) { 4038 /* 4039 * If the nd_load failed, it only meant that it could not 4040 * allocate a new bunch of room for further NDD expansion. 4041 * Because of that, the ill_ndd_name will be set to 0, and 4042 * this interface is at the mercy of the global ip_forwarding 4043 * variable. 4044 */ 4045 rw_exit(&ipst->ips_ip_g_nd_lock); 4046 ill->ill_ndd_name = NULL; 4047 return (ENOMEM); 4048 } 4049 rw_exit(&ipst->ips_ip_g_nd_lock); 4050 return (0); 4051 } 4052 4053 /* 4054 * Intializes the context structure and returns the first ill in the list 4055 * cuurently start_list and end_list can have values: 4056 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4057 * IP_V4_G_HEAD Traverse IPV4 list only. 4058 * IP_V6_G_HEAD Traverse IPV6 list only. 4059 */ 4060 4061 /* 4062 * We don't check for CONDEMNED ills here. Caller must do that if 4063 * necessary under the ill lock. 4064 */ 4065 ill_t * 4066 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4067 ip_stack_t *ipst) 4068 { 4069 ill_if_t *ifp; 4070 ill_t *ill; 4071 avl_tree_t *avl_tree; 4072 4073 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4074 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4075 4076 /* 4077 * setup the lists to search 4078 */ 4079 if (end_list != MAX_G_HEADS) { 4080 ctx->ctx_current_list = start_list; 4081 ctx->ctx_last_list = end_list; 4082 } else { 4083 ctx->ctx_last_list = MAX_G_HEADS - 1; 4084 ctx->ctx_current_list = 0; 4085 } 4086 4087 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4088 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4089 if (ifp != (ill_if_t *) 4090 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4091 avl_tree = &ifp->illif_avl_by_ppa; 4092 ill = avl_first(avl_tree); 4093 /* 4094 * ill is guaranteed to be non NULL or ifp should have 4095 * not existed. 4096 */ 4097 ASSERT(ill != NULL); 4098 return (ill); 4099 } 4100 ctx->ctx_current_list++; 4101 } 4102 4103 return (NULL); 4104 } 4105 4106 /* 4107 * returns the next ill in the list. ill_first() must have been called 4108 * before calling ill_next() or bad things will happen. 4109 */ 4110 4111 /* 4112 * We don't check for CONDEMNED ills here. Caller must do that if 4113 * necessary under the ill lock. 4114 */ 4115 ill_t * 4116 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4117 { 4118 ill_if_t *ifp; 4119 ill_t *ill; 4120 ip_stack_t *ipst = lastill->ill_ipst; 4121 4122 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4123 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4124 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4125 AVL_AFTER)) != NULL) { 4126 return (ill); 4127 } 4128 4129 /* goto next ill_ifp in the list. */ 4130 ifp = lastill->ill_ifptr->illif_next; 4131 4132 /* make sure not at end of circular list */ 4133 while (ifp == 4134 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4135 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4136 return (NULL); 4137 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4138 } 4139 4140 return (avl_first(&ifp->illif_avl_by_ppa)); 4141 } 4142 4143 /* 4144 * Check interface name for correct format which is name+ppa. 4145 * name can contain characters and digits, the right most digits 4146 * make up the ppa number. use of octal is not allowed, name must contain 4147 * a ppa, return pointer to the start of ppa. 4148 * In case of error return NULL. 4149 */ 4150 static char * 4151 ill_get_ppa_ptr(char *name) 4152 { 4153 int namelen = mi_strlen(name); 4154 4155 int len = namelen; 4156 4157 name += len; 4158 while (len > 0) { 4159 name--; 4160 if (*name < '0' || *name > '9') 4161 break; 4162 len--; 4163 } 4164 4165 /* empty string, all digits, or no trailing digits */ 4166 if (len == 0 || len == (int)namelen) 4167 return (NULL); 4168 4169 name++; 4170 /* check for attempted use of octal */ 4171 if (*name == '0' && len != (int)namelen - 1) 4172 return (NULL); 4173 return (name); 4174 } 4175 4176 /* 4177 * use avl tree to locate the ill. 4178 */ 4179 static ill_t * 4180 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4181 ipsq_func_t func, int *error, ip_stack_t *ipst) 4182 { 4183 char *ppa_ptr = NULL; 4184 int len; 4185 uint_t ppa; 4186 ill_t *ill = NULL; 4187 ill_if_t *ifp; 4188 int list; 4189 ipsq_t *ipsq; 4190 4191 if (error != NULL) 4192 *error = 0; 4193 4194 /* 4195 * get ppa ptr 4196 */ 4197 if (isv6) 4198 list = IP_V6_G_HEAD; 4199 else 4200 list = IP_V4_G_HEAD; 4201 4202 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4203 if (error != NULL) 4204 *error = ENXIO; 4205 return (NULL); 4206 } 4207 4208 len = ppa_ptr - name + 1; 4209 4210 ppa = stoi(&ppa_ptr); 4211 4212 ifp = IP_VX_ILL_G_LIST(list, ipst); 4213 4214 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4215 /* 4216 * match is done on len - 1 as the name is not null 4217 * terminated it contains ppa in addition to the interface 4218 * name. 4219 */ 4220 if ((ifp->illif_name_len == len) && 4221 bcmp(ifp->illif_name, name, len - 1) == 0) { 4222 break; 4223 } else { 4224 ifp = ifp->illif_next; 4225 } 4226 } 4227 4228 4229 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4230 /* 4231 * Even the interface type does not exist. 4232 */ 4233 if (error != NULL) 4234 *error = ENXIO; 4235 return (NULL); 4236 } 4237 4238 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4239 if (ill != NULL) { 4240 /* 4241 * The block comment at the start of ipif_down 4242 * explains the use of the macros used below 4243 */ 4244 GRAB_CONN_LOCK(q); 4245 mutex_enter(&ill->ill_lock); 4246 if (ILL_CAN_LOOKUP(ill)) { 4247 ill_refhold_locked(ill); 4248 mutex_exit(&ill->ill_lock); 4249 RELEASE_CONN_LOCK(q); 4250 return (ill); 4251 } else if (ILL_CAN_WAIT(ill, q)) { 4252 ipsq = ill->ill_phyint->phyint_ipsq; 4253 mutex_enter(&ipsq->ipsq_lock); 4254 mutex_exit(&ill->ill_lock); 4255 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4256 mutex_exit(&ipsq->ipsq_lock); 4257 RELEASE_CONN_LOCK(q); 4258 *error = EINPROGRESS; 4259 return (NULL); 4260 } 4261 mutex_exit(&ill->ill_lock); 4262 RELEASE_CONN_LOCK(q); 4263 } 4264 if (error != NULL) 4265 *error = ENXIO; 4266 return (NULL); 4267 } 4268 4269 /* 4270 * comparison function for use with avl. 4271 */ 4272 static int 4273 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4274 { 4275 uint_t ppa; 4276 uint_t ill_ppa; 4277 4278 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4279 4280 ppa = *((uint_t *)ppa_ptr); 4281 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4282 /* 4283 * We want the ill with the lowest ppa to be on the 4284 * top. 4285 */ 4286 if (ill_ppa < ppa) 4287 return (1); 4288 if (ill_ppa > ppa) 4289 return (-1); 4290 return (0); 4291 } 4292 4293 /* 4294 * remove an interface type from the global list. 4295 */ 4296 static void 4297 ill_delete_interface_type(ill_if_t *interface) 4298 { 4299 ASSERT(interface != NULL); 4300 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4301 4302 avl_destroy(&interface->illif_avl_by_ppa); 4303 if (interface->illif_ppa_arena != NULL) 4304 vmem_destroy(interface->illif_ppa_arena); 4305 4306 remque(interface); 4307 4308 mi_free(interface); 4309 } 4310 4311 /* Defined in ip_netinfo.c */ 4312 extern ddi_taskq_t *eventq_queue_nic; 4313 4314 /* 4315 * remove ill from the global list. 4316 */ 4317 static void 4318 ill_glist_delete(ill_t *ill) 4319 { 4320 char *nicname; 4321 size_t nicnamelen; 4322 hook_nic_event_t *info; 4323 ip_stack_t *ipst; 4324 4325 if (ill == NULL) 4326 return; 4327 ipst = ill->ill_ipst; 4328 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4329 4330 if (ill->ill_name != NULL) { 4331 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4332 if (nicname != NULL) { 4333 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4334 nicnamelen = ill->ill_name_length; 4335 } 4336 } else { 4337 nicname = NULL; 4338 nicnamelen = 0; 4339 } 4340 4341 /* 4342 * If the ill was never inserted into the AVL tree 4343 * we skip the if branch. 4344 */ 4345 if (ill->ill_ifptr != NULL) { 4346 /* 4347 * remove from AVL tree and free ppa number 4348 */ 4349 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4350 4351 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4352 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4353 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4354 } 4355 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4356 ill_delete_interface_type(ill->ill_ifptr); 4357 } 4358 4359 /* 4360 * Indicate ill is no longer in the list. 4361 */ 4362 ill->ill_ifptr = NULL; 4363 ill->ill_name_length = 0; 4364 ill->ill_name[0] = '\0'; 4365 ill->ill_ppa = UINT_MAX; 4366 } 4367 4368 /* 4369 * Run the unplumb hook after the NIC has disappeared from being 4370 * visible so that attempts to revalidate its existance will fail. 4371 * 4372 * This needs to be run inside the ill_g_lock perimeter to ensure 4373 * that the ordering of delivered events to listeners matches the 4374 * order of them in the kernel. 4375 */ 4376 if ((info = ill->ill_nic_event_info) != NULL) { 4377 if (info->hne_event != NE_DOWN) { 4378 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4379 "attached for %s\n", info->hne_event, 4380 ill->ill_name)); 4381 if (info->hne_data != NULL) 4382 kmem_free(info->hne_data, info->hne_datalen); 4383 kmem_free(info, sizeof (hook_nic_event_t)); 4384 } else { 4385 if (ddi_taskq_dispatch(eventq_queue_nic, 4386 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4387 == DDI_FAILURE) { 4388 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4389 "failed\n")); 4390 if (info->hne_data != NULL) 4391 kmem_free(info->hne_data, 4392 info->hne_datalen); 4393 kmem_free(info, sizeof (hook_nic_event_t)); 4394 } 4395 } 4396 } 4397 4398 /* Generate NE_UNPLUMB event for ill_name. */ 4399 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4400 if (info != NULL) { 4401 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4402 info->hne_lif = 0; 4403 info->hne_event = NE_UNPLUMB; 4404 info->hne_data = nicname; 4405 info->hne_datalen = nicnamelen; 4406 info->hne_family = ill->ill_isv6 ? 4407 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4408 } else { 4409 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4410 "information for %s (ENOMEM)\n", ill->ill_name)); 4411 if (nicname != NULL) 4412 kmem_free(nicname, nicnamelen); 4413 } 4414 4415 ill->ill_nic_event_info = info; 4416 4417 ill_phyint_free(ill); 4418 rw_exit(&ipst->ips_ill_g_lock); 4419 } 4420 4421 /* 4422 * allocate a ppa, if the number of plumbed interfaces of this type are 4423 * less than ill_no_arena do a linear search to find a unused ppa. 4424 * When the number goes beyond ill_no_arena switch to using an arena. 4425 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4426 * is the return value for an error condition, so allocation starts at one 4427 * and is decremented by one. 4428 */ 4429 static int 4430 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4431 { 4432 ill_t *tmp_ill; 4433 uint_t start, end; 4434 int ppa; 4435 4436 if (ifp->illif_ppa_arena == NULL && 4437 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4438 /* 4439 * Create an arena. 4440 */ 4441 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4442 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4443 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4444 /* allocate what has already been assigned */ 4445 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4446 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4447 tmp_ill, AVL_AFTER)) { 4448 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4449 1, /* size */ 4450 1, /* align/quantum */ 4451 0, /* phase */ 4452 0, /* nocross */ 4453 /* minaddr */ 4454 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4455 /* maxaddr */ 4456 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4457 VM_NOSLEEP|VM_FIRSTFIT); 4458 if (ppa == 0) { 4459 ip1dbg(("ill_alloc_ppa: ppa allocation" 4460 " failed while switching")); 4461 vmem_destroy(ifp->illif_ppa_arena); 4462 ifp->illif_ppa_arena = NULL; 4463 break; 4464 } 4465 } 4466 } 4467 4468 if (ifp->illif_ppa_arena != NULL) { 4469 if (ill->ill_ppa == UINT_MAX) { 4470 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4471 1, VM_NOSLEEP|VM_FIRSTFIT); 4472 if (ppa == 0) 4473 return (EAGAIN); 4474 ill->ill_ppa = --ppa; 4475 } else { 4476 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4477 1, /* size */ 4478 1, /* align/quantum */ 4479 0, /* phase */ 4480 0, /* nocross */ 4481 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4482 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4483 VM_NOSLEEP|VM_FIRSTFIT); 4484 /* 4485 * Most likely the allocation failed because 4486 * the requested ppa was in use. 4487 */ 4488 if (ppa == 0) 4489 return (EEXIST); 4490 } 4491 return (0); 4492 } 4493 4494 /* 4495 * No arena is in use and not enough (>ill_no_arena) interfaces have 4496 * been plumbed to create one. Do a linear search to get a unused ppa. 4497 */ 4498 if (ill->ill_ppa == UINT_MAX) { 4499 end = UINT_MAX - 1; 4500 start = 0; 4501 } else { 4502 end = start = ill->ill_ppa; 4503 } 4504 4505 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4506 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4507 if (start++ >= end) { 4508 if (ill->ill_ppa == UINT_MAX) 4509 return (EAGAIN); 4510 else 4511 return (EEXIST); 4512 } 4513 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4514 } 4515 ill->ill_ppa = start; 4516 return (0); 4517 } 4518 4519 /* 4520 * Insert ill into the list of configured ill's. Once this function completes, 4521 * the ill is globally visible and is available through lookups. More precisely 4522 * this happens after the caller drops the ill_g_lock. 4523 */ 4524 static int 4525 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4526 { 4527 ill_if_t *ill_interface; 4528 avl_index_t where = 0; 4529 int error; 4530 int name_length; 4531 int index; 4532 boolean_t check_length = B_FALSE; 4533 ip_stack_t *ipst = ill->ill_ipst; 4534 4535 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4536 4537 name_length = mi_strlen(name) + 1; 4538 4539 if (isv6) 4540 index = IP_V6_G_HEAD; 4541 else 4542 index = IP_V4_G_HEAD; 4543 4544 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4545 /* 4546 * Search for interface type based on name 4547 */ 4548 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4549 if ((ill_interface->illif_name_len == name_length) && 4550 (strcmp(ill_interface->illif_name, name) == 0)) { 4551 break; 4552 } 4553 ill_interface = ill_interface->illif_next; 4554 } 4555 4556 /* 4557 * Interface type not found, create one. 4558 */ 4559 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4560 4561 ill_g_head_t ghead; 4562 4563 /* 4564 * allocate ill_if_t structure 4565 */ 4566 4567 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4568 if (ill_interface == NULL) { 4569 return (ENOMEM); 4570 } 4571 4572 4573 4574 (void) strcpy(ill_interface->illif_name, name); 4575 ill_interface->illif_name_len = name_length; 4576 4577 avl_create(&ill_interface->illif_avl_by_ppa, 4578 ill_compare_ppa, sizeof (ill_t), 4579 offsetof(struct ill_s, ill_avl_byppa)); 4580 4581 /* 4582 * link the structure in the back to maintain order 4583 * of configuration for ifconfig output. 4584 */ 4585 ghead = ipst->ips_ill_g_heads[index]; 4586 insque(ill_interface, ghead.ill_g_list_tail); 4587 4588 } 4589 4590 if (ill->ill_ppa == UINT_MAX) 4591 check_length = B_TRUE; 4592 4593 error = ill_alloc_ppa(ill_interface, ill); 4594 if (error != 0) { 4595 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4596 ill_delete_interface_type(ill->ill_ifptr); 4597 return (error); 4598 } 4599 4600 /* 4601 * When the ppa is choosen by the system, check that there is 4602 * enough space to insert ppa. if a specific ppa was passed in this 4603 * check is not required as the interface name passed in will have 4604 * the right ppa in it. 4605 */ 4606 if (check_length) { 4607 /* 4608 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4609 */ 4610 char buf[sizeof (uint_t) * 3]; 4611 4612 /* 4613 * convert ppa to string to calculate the amount of space 4614 * required for it in the name. 4615 */ 4616 numtos(ill->ill_ppa, buf); 4617 4618 /* Do we have enough space to insert ppa ? */ 4619 4620 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4621 /* Free ppa and interface type struct */ 4622 if (ill_interface->illif_ppa_arena != NULL) { 4623 vmem_free(ill_interface->illif_ppa_arena, 4624 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4625 } 4626 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4627 0) { 4628 ill_delete_interface_type(ill->ill_ifptr); 4629 } 4630 4631 return (EINVAL); 4632 } 4633 } 4634 4635 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4636 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4637 4638 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4639 &where); 4640 ill->ill_ifptr = ill_interface; 4641 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4642 4643 ill_phyint_reinit(ill); 4644 return (0); 4645 } 4646 4647 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4648 static boolean_t 4649 ipsq_init(ill_t *ill) 4650 { 4651 ipsq_t *ipsq; 4652 4653 /* Init the ipsq and impicitly enter as writer */ 4654 ill->ill_phyint->phyint_ipsq = 4655 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4656 if (ill->ill_phyint->phyint_ipsq == NULL) 4657 return (B_FALSE); 4658 ipsq = ill->ill_phyint->phyint_ipsq; 4659 ipsq->ipsq_phyint_list = ill->ill_phyint; 4660 ill->ill_phyint->phyint_ipsq_next = NULL; 4661 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4662 ipsq->ipsq_refs = 1; 4663 ipsq->ipsq_writer = curthread; 4664 ipsq->ipsq_reentry_cnt = 1; 4665 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4666 #ifdef DEBUG 4667 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4668 IPSQ_STACK_DEPTH); 4669 #endif 4670 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4671 return (B_TRUE); 4672 } 4673 4674 /* 4675 * ill_init is called by ip_open when a device control stream is opened. 4676 * It does a few initializations, and shoots a DL_INFO_REQ message down 4677 * to the driver. The response is later picked up in ip_rput_dlpi and 4678 * used to set up default mechanisms for talking to the driver. (Always 4679 * called as writer.) 4680 * 4681 * If this function returns error, ip_open will call ip_close which in 4682 * turn will call ill_delete to clean up any memory allocated here that 4683 * is not yet freed. 4684 */ 4685 int 4686 ill_init(queue_t *q, ill_t *ill) 4687 { 4688 int count; 4689 dl_info_req_t *dlir; 4690 mblk_t *info_mp; 4691 uchar_t *frag_ptr; 4692 4693 /* 4694 * The ill is initialized to zero by mi_alloc*(). In addition 4695 * some fields already contain valid values, initialized in 4696 * ip_open(), before we reach here. 4697 */ 4698 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4699 4700 ill->ill_rq = q; 4701 ill->ill_wq = WR(q); 4702 4703 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4704 BPRI_HI); 4705 if (info_mp == NULL) 4706 return (ENOMEM); 4707 4708 /* 4709 * Allocate sufficient space to contain our fragment hash table and 4710 * the device name. 4711 */ 4712 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4713 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4714 if (frag_ptr == NULL) { 4715 freemsg(info_mp); 4716 return (ENOMEM); 4717 } 4718 ill->ill_frag_ptr = frag_ptr; 4719 ill->ill_frag_free_num_pkts = 0; 4720 ill->ill_last_frag_clean_time = 0; 4721 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4722 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4723 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4724 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4725 NULL, MUTEX_DEFAULT, NULL); 4726 } 4727 4728 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4729 if (ill->ill_phyint == NULL) { 4730 freemsg(info_mp); 4731 mi_free(frag_ptr); 4732 return (ENOMEM); 4733 } 4734 4735 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4736 /* 4737 * For now pretend this is a v4 ill. We need to set phyint_ill* 4738 * at this point because of the following reason. If we can't 4739 * enter the ipsq at some point and cv_wait, the writer that 4740 * wakes us up tries to locate us using the list of all phyints 4741 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4742 * If we don't set it now, we risk a missed wakeup. 4743 */ 4744 ill->ill_phyint->phyint_illv4 = ill; 4745 ill->ill_ppa = UINT_MAX; 4746 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4747 4748 if (!ipsq_init(ill)) { 4749 freemsg(info_mp); 4750 mi_free(frag_ptr); 4751 mi_free(ill->ill_phyint); 4752 return (ENOMEM); 4753 } 4754 4755 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4756 4757 4758 /* Frag queue limit stuff */ 4759 ill->ill_frag_count = 0; 4760 ill->ill_ipf_gen = 0; 4761 4762 ill->ill_global_timer = INFINITY; 4763 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4764 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4765 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4766 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4767 4768 /* 4769 * Initialize IPv6 configuration variables. The IP module is always 4770 * opened as an IPv4 module. Instead tracking down the cases where 4771 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4772 * here for convenience, this has no effect until the ill is set to do 4773 * IPv6. 4774 */ 4775 ill->ill_reachable_time = ND_REACHABLE_TIME; 4776 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4777 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4778 ill->ill_max_buf = ND_MAX_Q; 4779 ill->ill_refcnt = 0; 4780 4781 /* Send down the Info Request to the driver. */ 4782 info_mp->b_datap->db_type = M_PCPROTO; 4783 dlir = (dl_info_req_t *)info_mp->b_rptr; 4784 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4785 dlir->dl_primitive = DL_INFO_REQ; 4786 4787 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4788 4789 qprocson(q); 4790 ill_dlpi_send(ill, info_mp); 4791 4792 return (0); 4793 } 4794 4795 /* 4796 * ill_dls_info 4797 * creates datalink socket info from the device. 4798 */ 4799 int 4800 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4801 { 4802 size_t len; 4803 ill_t *ill = ipif->ipif_ill; 4804 4805 sdl->sdl_family = AF_LINK; 4806 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4807 sdl->sdl_type = ill->ill_type; 4808 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4809 len = strlen(sdl->sdl_data); 4810 ASSERT(len < 256); 4811 sdl->sdl_nlen = (uchar_t)len; 4812 sdl->sdl_alen = ill->ill_phys_addr_length; 4813 sdl->sdl_slen = 0; 4814 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4815 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4816 4817 return (sizeof (struct sockaddr_dl)); 4818 } 4819 4820 /* 4821 * ill_xarp_info 4822 * creates xarp info from the device. 4823 */ 4824 static int 4825 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4826 { 4827 sdl->sdl_family = AF_LINK; 4828 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4829 sdl->sdl_type = ill->ill_type; 4830 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4831 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4832 sdl->sdl_alen = ill->ill_phys_addr_length; 4833 sdl->sdl_slen = 0; 4834 return (sdl->sdl_nlen); 4835 } 4836 4837 static int 4838 loopback_kstat_update(kstat_t *ksp, int rw) 4839 { 4840 kstat_named_t *kn; 4841 netstackid_t stackid; 4842 netstack_t *ns; 4843 ip_stack_t *ipst; 4844 4845 if (ksp == NULL || ksp->ks_data == NULL) 4846 return (EIO); 4847 4848 if (rw == KSTAT_WRITE) 4849 return (EACCES); 4850 4851 kn = KSTAT_NAMED_PTR(ksp); 4852 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4853 4854 ns = netstack_find_by_stackid(stackid); 4855 if (ns == NULL) 4856 return (-1); 4857 4858 ipst = ns->netstack_ip; 4859 if (ipst == NULL) { 4860 netstack_rele(ns); 4861 return (-1); 4862 } 4863 kn[0].value.ui32 = ipst->ips_loopback_packets; 4864 kn[1].value.ui32 = ipst->ips_loopback_packets; 4865 netstack_rele(ns); 4866 return (0); 4867 } 4868 4869 4870 /* 4871 * Has ifindex been plumbed already. 4872 * Compares both phyint_ifindex and phyint_group_ifindex. 4873 */ 4874 static boolean_t 4875 phyint_exists(uint_t index, ip_stack_t *ipst) 4876 { 4877 phyint_t *phyi; 4878 4879 ASSERT(index != 0); 4880 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4881 /* 4882 * Indexes are stored in the phyint - a common structure 4883 * to both IPv4 and IPv6. 4884 */ 4885 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4886 for (; phyi != NULL; 4887 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4888 phyi, AVL_AFTER)) { 4889 if (phyi->phyint_ifindex == index || 4890 phyi->phyint_group_ifindex == index) 4891 return (B_TRUE); 4892 } 4893 return (B_FALSE); 4894 } 4895 4896 /* Pick a unique ifindex */ 4897 boolean_t 4898 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4899 { 4900 uint_t starting_index; 4901 4902 if (!ipst->ips_ill_index_wrap) { 4903 *indexp = ipst->ips_ill_index++; 4904 if (ipst->ips_ill_index == 0) { 4905 /* Reached the uint_t limit Next time wrap */ 4906 ipst->ips_ill_index_wrap = B_TRUE; 4907 } 4908 return (B_TRUE); 4909 } 4910 4911 /* 4912 * Start reusing unused indexes. Note that we hold the ill_g_lock 4913 * at this point and don't want to call any function that attempts 4914 * to get the lock again. 4915 */ 4916 starting_index = ipst->ips_ill_index++; 4917 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4918 if (ipst->ips_ill_index != 0 && 4919 !phyint_exists(ipst->ips_ill_index, ipst)) { 4920 /* found unused index - use it */ 4921 *indexp = ipst->ips_ill_index; 4922 return (B_TRUE); 4923 } 4924 } 4925 4926 /* 4927 * all interface indicies are inuse. 4928 */ 4929 return (B_FALSE); 4930 } 4931 4932 /* 4933 * Assign a unique interface index for the phyint. 4934 */ 4935 static boolean_t 4936 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4937 { 4938 ASSERT(phyi->phyint_ifindex == 0); 4939 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4940 } 4941 4942 /* 4943 * Return a pointer to the ill which matches the supplied name. Note that 4944 * the ill name length includes the null termination character. (May be 4945 * called as writer.) 4946 * If do_alloc and the interface is "lo0" it will be automatically created. 4947 * Cannot bump up reference on condemned ills. So dup detect can't be done 4948 * using this func. 4949 */ 4950 ill_t * 4951 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4952 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4953 ip_stack_t *ipst) 4954 { 4955 ill_t *ill; 4956 ipif_t *ipif; 4957 kstat_named_t *kn; 4958 boolean_t isloopback; 4959 ipsq_t *old_ipsq; 4960 in6_addr_t ov6addr; 4961 4962 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4963 4964 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4965 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4966 rw_exit(&ipst->ips_ill_g_lock); 4967 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4968 return (ill); 4969 4970 /* 4971 * Couldn't find it. Does this happen to be a lookup for the 4972 * loopback device and are we allowed to allocate it? 4973 */ 4974 if (!isloopback || !do_alloc) 4975 return (NULL); 4976 4977 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4978 4979 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4980 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4981 rw_exit(&ipst->ips_ill_g_lock); 4982 return (ill); 4983 } 4984 4985 /* Create the loopback device on demand */ 4986 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4987 sizeof (ipif_loopback_name), BPRI_MED)); 4988 if (ill == NULL) 4989 goto done; 4990 4991 *ill = ill_null; 4992 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4993 ill->ill_ipst = ipst; 4994 netstack_hold(ipst->ips_netstack); 4995 /* 4996 * For exclusive stacks we set the zoneid to zero 4997 * to make IP operate as if in the global zone. 4998 */ 4999 ill->ill_zoneid = GLOBAL_ZONEID; 5000 5001 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5002 if (ill->ill_phyint == NULL) 5003 goto done; 5004 5005 if (isv6) 5006 ill->ill_phyint->phyint_illv6 = ill; 5007 else 5008 ill->ill_phyint->phyint_illv4 = ill; 5009 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5010 ill->ill_max_frag = IP_LOOPBACK_MTU; 5011 /* Add room for tcp+ip headers */ 5012 if (isv6) { 5013 ill->ill_isv6 = B_TRUE; 5014 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5015 } else { 5016 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5017 } 5018 if (!ill_allocate_mibs(ill)) 5019 goto done; 5020 ill->ill_max_mtu = ill->ill_max_frag; 5021 /* 5022 * ipif_loopback_name can't be pointed at directly because its used 5023 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5024 * from the glist, ill_glist_delete() sets the first character of 5025 * ill_name to '\0'. 5026 */ 5027 ill->ill_name = (char *)ill + sizeof (*ill); 5028 (void) strcpy(ill->ill_name, ipif_loopback_name); 5029 ill->ill_name_length = sizeof (ipif_loopback_name); 5030 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5031 5032 ill->ill_global_timer = INFINITY; 5033 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5034 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5035 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5036 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5037 5038 /* No resolver here. */ 5039 ill->ill_net_type = IRE_LOOPBACK; 5040 5041 /* Initialize the ipsq */ 5042 if (!ipsq_init(ill)) 5043 goto done; 5044 5045 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5046 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5047 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5048 #ifdef DEBUG 5049 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5050 #endif 5051 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5052 if (ipif == NULL) 5053 goto done; 5054 5055 ill->ill_flags = ILLF_MULTICAST; 5056 5057 ov6addr = ipif->ipif_v6lcl_addr; 5058 /* Set up default loopback address and mask. */ 5059 if (!isv6) { 5060 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5061 5062 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5063 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5064 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5065 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5066 ipif->ipif_v6subnet); 5067 ill->ill_flags |= ILLF_IPV4; 5068 } else { 5069 ipif->ipif_v6lcl_addr = ipv6_loopback; 5070 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5071 ipif->ipif_v6net_mask = ipv6_all_ones; 5072 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5073 ipif->ipif_v6subnet); 5074 ill->ill_flags |= ILLF_IPV6; 5075 } 5076 5077 /* 5078 * Chain us in at the end of the ill list. hold the ill 5079 * before we make it globally visible. 1 for the lookup. 5080 */ 5081 ill->ill_refcnt = 0; 5082 ill_refhold(ill); 5083 5084 ill->ill_frag_count = 0; 5085 ill->ill_frag_free_num_pkts = 0; 5086 ill->ill_last_frag_clean_time = 0; 5087 5088 old_ipsq = ill->ill_phyint->phyint_ipsq; 5089 5090 if (ill_glist_insert(ill, "lo", isv6) != 0) 5091 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5092 5093 /* Let SCTP know so that it can add this to its list */ 5094 sctp_update_ill(ill, SCTP_ILL_INSERT); 5095 5096 /* 5097 * We have already assigned ipif_v6lcl_addr above, but we need to 5098 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5099 * requires to be after ill_glist_insert() since we need the 5100 * ill_index set. Pass on ipv6_loopback as the old address. 5101 */ 5102 sctp_update_ipif_addr(ipif, ov6addr); 5103 5104 /* 5105 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5106 */ 5107 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5108 /* Loopback ills aren't in any IPMP group */ 5109 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5110 ipsq_delete(old_ipsq); 5111 } 5112 5113 /* 5114 * Delay this till the ipif is allocated as ipif_allocate 5115 * de-references ill_phyint for getting the ifindex. We 5116 * can't do this before ipif_allocate because ill_phyint_reinit 5117 * -> phyint_assign_ifindex expects ipif to be present. 5118 */ 5119 mutex_enter(&ill->ill_phyint->phyint_lock); 5120 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5121 mutex_exit(&ill->ill_phyint->phyint_lock); 5122 5123 if (ipst->ips_loopback_ksp == NULL) { 5124 /* Export loopback interface statistics */ 5125 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5126 ipif_loopback_name, "net", 5127 KSTAT_TYPE_NAMED, 2, 0, 5128 ipst->ips_netstack->netstack_stackid); 5129 if (ipst->ips_loopback_ksp != NULL) { 5130 ipst->ips_loopback_ksp->ks_update = 5131 loopback_kstat_update; 5132 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5133 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5134 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5135 ipst->ips_loopback_ksp->ks_private = 5136 (void *)(uintptr_t)ipst->ips_netstack-> 5137 netstack_stackid; 5138 kstat_install(ipst->ips_loopback_ksp); 5139 } 5140 } 5141 5142 if (error != NULL) 5143 *error = 0; 5144 *did_alloc = B_TRUE; 5145 rw_exit(&ipst->ips_ill_g_lock); 5146 return (ill); 5147 done: 5148 if (ill != NULL) { 5149 if (ill->ill_phyint != NULL) { 5150 ipsq_t *ipsq; 5151 5152 ipsq = ill->ill_phyint->phyint_ipsq; 5153 if (ipsq != NULL) { 5154 ipsq->ipsq_ipst = NULL; 5155 kmem_free(ipsq, sizeof (ipsq_t)); 5156 } 5157 mi_free(ill->ill_phyint); 5158 } 5159 ill_free_mib(ill); 5160 if (ill->ill_ipst != NULL) 5161 netstack_rele(ill->ill_ipst->ips_netstack); 5162 mi_free(ill); 5163 } 5164 rw_exit(&ipst->ips_ill_g_lock); 5165 if (error != NULL) 5166 *error = ENOMEM; 5167 return (NULL); 5168 } 5169 5170 /* 5171 * For IPP calls - use the ip_stack_t for global stack. 5172 */ 5173 ill_t * 5174 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5175 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5176 { 5177 ip_stack_t *ipst; 5178 ill_t *ill; 5179 5180 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5181 if (ipst == NULL) { 5182 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5183 return (NULL); 5184 } 5185 5186 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5187 netstack_rele(ipst->ips_netstack); 5188 return (ill); 5189 } 5190 5191 /* 5192 * Return a pointer to the ill which matches the index and IP version type. 5193 */ 5194 ill_t * 5195 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5196 ipsq_func_t func, int *err, ip_stack_t *ipst) 5197 { 5198 ill_t *ill; 5199 ipsq_t *ipsq; 5200 phyint_t *phyi; 5201 5202 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5203 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5204 5205 if (err != NULL) 5206 *err = 0; 5207 5208 /* 5209 * Indexes are stored in the phyint - a common structure 5210 * to both IPv4 and IPv6. 5211 */ 5212 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5213 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5214 (void *) &index, NULL); 5215 if (phyi != NULL) { 5216 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5217 if (ill != NULL) { 5218 /* 5219 * The block comment at the start of ipif_down 5220 * explains the use of the macros used below 5221 */ 5222 GRAB_CONN_LOCK(q); 5223 mutex_enter(&ill->ill_lock); 5224 if (ILL_CAN_LOOKUP(ill)) { 5225 ill_refhold_locked(ill); 5226 mutex_exit(&ill->ill_lock); 5227 RELEASE_CONN_LOCK(q); 5228 rw_exit(&ipst->ips_ill_g_lock); 5229 return (ill); 5230 } else if (ILL_CAN_WAIT(ill, q)) { 5231 ipsq = ill->ill_phyint->phyint_ipsq; 5232 mutex_enter(&ipsq->ipsq_lock); 5233 rw_exit(&ipst->ips_ill_g_lock); 5234 mutex_exit(&ill->ill_lock); 5235 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5236 mutex_exit(&ipsq->ipsq_lock); 5237 RELEASE_CONN_LOCK(q); 5238 *err = EINPROGRESS; 5239 return (NULL); 5240 } 5241 RELEASE_CONN_LOCK(q); 5242 mutex_exit(&ill->ill_lock); 5243 } 5244 } 5245 rw_exit(&ipst->ips_ill_g_lock); 5246 if (err != NULL) 5247 *err = ENXIO; 5248 return (NULL); 5249 } 5250 5251 /* 5252 * Return the ifindex next in sequence after the passed in ifindex. 5253 * If there is no next ifindex for the given protocol, return 0. 5254 */ 5255 uint_t 5256 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5257 { 5258 phyint_t *phyi; 5259 phyint_t *phyi_initial; 5260 uint_t ifindex; 5261 5262 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5263 5264 if (index == 0) { 5265 phyi = avl_first( 5266 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5267 } else { 5268 phyi = phyi_initial = avl_find( 5269 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5270 (void *) &index, NULL); 5271 } 5272 5273 for (; phyi != NULL; 5274 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5275 phyi, AVL_AFTER)) { 5276 /* 5277 * If we're not returning the first interface in the tree 5278 * and we still haven't moved past the phyint_t that 5279 * corresponds to index, avl_walk needs to be called again 5280 */ 5281 if (!((index != 0) && (phyi == phyi_initial))) { 5282 if (isv6) { 5283 if ((phyi->phyint_illv6) && 5284 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5285 (phyi->phyint_illv6->ill_isv6 == 1)) 5286 break; 5287 } else { 5288 if ((phyi->phyint_illv4) && 5289 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5290 (phyi->phyint_illv4->ill_isv6 == 0)) 5291 break; 5292 } 5293 } 5294 } 5295 5296 rw_exit(&ipst->ips_ill_g_lock); 5297 5298 if (phyi != NULL) 5299 ifindex = phyi->phyint_ifindex; 5300 else 5301 ifindex = 0; 5302 5303 return (ifindex); 5304 } 5305 5306 5307 /* 5308 * Return the ifindex for the named interface. 5309 * If there is no next ifindex for the interface, return 0. 5310 */ 5311 uint_t 5312 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5313 { 5314 phyint_t *phyi; 5315 avl_index_t where = 0; 5316 uint_t ifindex; 5317 5318 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5319 5320 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5321 name, &where)) == NULL) { 5322 rw_exit(&ipst->ips_ill_g_lock); 5323 return (0); 5324 } 5325 5326 ifindex = phyi->phyint_ifindex; 5327 5328 rw_exit(&ipst->ips_ill_g_lock); 5329 5330 return (ifindex); 5331 } 5332 5333 5334 /* 5335 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5336 * that gives a running thread a reference to the ill. This reference must be 5337 * released by the thread when it is done accessing the ill and related 5338 * objects. ill_refcnt can not be used to account for static references 5339 * such as other structures pointing to an ill. Callers must generally 5340 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5341 * or be sure that the ill is not being deleted or changing state before 5342 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5343 * ill won't change any of its critical state such as address, netmask etc. 5344 */ 5345 void 5346 ill_refhold(ill_t *ill) 5347 { 5348 mutex_enter(&ill->ill_lock); 5349 ill->ill_refcnt++; 5350 ILL_TRACE_REF(ill); 5351 mutex_exit(&ill->ill_lock); 5352 } 5353 5354 void 5355 ill_refhold_locked(ill_t *ill) 5356 { 5357 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5358 ill->ill_refcnt++; 5359 ILL_TRACE_REF(ill); 5360 } 5361 5362 int 5363 ill_check_and_refhold(ill_t *ill) 5364 { 5365 mutex_enter(&ill->ill_lock); 5366 if (ILL_CAN_LOOKUP(ill)) { 5367 ill_refhold_locked(ill); 5368 mutex_exit(&ill->ill_lock); 5369 return (0); 5370 } 5371 mutex_exit(&ill->ill_lock); 5372 return (ILL_LOOKUP_FAILED); 5373 } 5374 5375 /* 5376 * Must not be called while holding any locks. Otherwise if this is 5377 * the last reference to be released, there is a chance of recursive mutex 5378 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5379 * to restart an ioctl. 5380 */ 5381 void 5382 ill_refrele(ill_t *ill) 5383 { 5384 mutex_enter(&ill->ill_lock); 5385 ASSERT(ill->ill_refcnt != 0); 5386 ill->ill_refcnt--; 5387 ILL_UNTRACE_REF(ill); 5388 if (ill->ill_refcnt != 0) { 5389 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5390 mutex_exit(&ill->ill_lock); 5391 return; 5392 } 5393 5394 /* Drops the ill_lock */ 5395 ipif_ill_refrele_tail(ill); 5396 } 5397 5398 /* 5399 * Obtain a weak reference count on the ill. This reference ensures the 5400 * ill won't be freed, but the ill may change any of its critical state 5401 * such as netmask, address etc. Returns an error if the ill has started 5402 * closing. 5403 */ 5404 boolean_t 5405 ill_waiter_inc(ill_t *ill) 5406 { 5407 mutex_enter(&ill->ill_lock); 5408 if (ill->ill_state_flags & ILL_CONDEMNED) { 5409 mutex_exit(&ill->ill_lock); 5410 return (B_FALSE); 5411 } 5412 ill->ill_waiters++; 5413 mutex_exit(&ill->ill_lock); 5414 return (B_TRUE); 5415 } 5416 5417 void 5418 ill_waiter_dcr(ill_t *ill) 5419 { 5420 mutex_enter(&ill->ill_lock); 5421 ill->ill_waiters--; 5422 if (ill->ill_waiters == 0) 5423 cv_broadcast(&ill->ill_cv); 5424 mutex_exit(&ill->ill_lock); 5425 } 5426 5427 /* 5428 * Named Dispatch routine to produce a formatted report on all ILLs. 5429 * This report is accessed by using the ndd utility to "get" ND variable 5430 * "ip_ill_status". 5431 */ 5432 /* ARGSUSED */ 5433 int 5434 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5435 { 5436 ill_t *ill; 5437 ill_walk_context_t ctx; 5438 ip_stack_t *ipst; 5439 5440 ipst = CONNQ_TO_IPST(q); 5441 5442 (void) mi_mpprintf(mp, 5443 "ILL " MI_COL_HDRPAD_STR 5444 /* 01234567[89ABCDEF] */ 5445 "rq " MI_COL_HDRPAD_STR 5446 /* 01234567[89ABCDEF] */ 5447 "wq " MI_COL_HDRPAD_STR 5448 /* 01234567[89ABCDEF] */ 5449 "upcnt mxfrg err name"); 5450 /* 12345 12345 123 xxxxxxxx */ 5451 5452 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5453 ill = ILL_START_WALK_ALL(&ctx, ipst); 5454 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5455 (void) mi_mpprintf(mp, 5456 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5457 "%05u %05u %03d %s", 5458 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5459 ill->ill_ipif_up_count, 5460 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5461 } 5462 rw_exit(&ipst->ips_ill_g_lock); 5463 5464 return (0); 5465 } 5466 5467 /* 5468 * Named Dispatch routine to produce a formatted report on all IPIFs. 5469 * This report is accessed by using the ndd utility to "get" ND variable 5470 * "ip_ipif_status". 5471 */ 5472 /* ARGSUSED */ 5473 int 5474 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5475 { 5476 char buf1[INET6_ADDRSTRLEN]; 5477 char buf2[INET6_ADDRSTRLEN]; 5478 char buf3[INET6_ADDRSTRLEN]; 5479 char buf4[INET6_ADDRSTRLEN]; 5480 char buf5[INET6_ADDRSTRLEN]; 5481 char buf6[INET6_ADDRSTRLEN]; 5482 char buf[LIFNAMSIZ]; 5483 ill_t *ill; 5484 ipif_t *ipif; 5485 nv_t *nvp; 5486 uint64_t flags; 5487 zoneid_t zoneid; 5488 ill_walk_context_t ctx; 5489 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5490 5491 (void) mi_mpprintf(mp, 5492 "IPIF metric mtu in/out/forward name zone flags...\n" 5493 "\tlocal address\n" 5494 "\tsrc address\n" 5495 "\tsubnet\n" 5496 "\tmask\n" 5497 "\tbroadcast\n" 5498 "\tp-p-dst"); 5499 5500 ASSERT(q->q_next == NULL); 5501 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5502 5503 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5504 ill = ILL_START_WALK_ALL(&ctx, ipst); 5505 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5506 for (ipif = ill->ill_ipif; ipif != NULL; 5507 ipif = ipif->ipif_next) { 5508 if (zoneid != GLOBAL_ZONEID && 5509 zoneid != ipif->ipif_zoneid && 5510 ipif->ipif_zoneid != ALL_ZONES) 5511 continue; 5512 5513 ipif_get_name(ipif, buf, sizeof (buf)); 5514 (void) mi_mpprintf(mp, 5515 MI_COL_PTRFMT_STR 5516 "%04u %05u %u/%u/%u %s %d", 5517 (void *)ipif, 5518 ipif->ipif_metric, ipif->ipif_mtu, 5519 ipif->ipif_ib_pkt_count, 5520 ipif->ipif_ob_pkt_count, 5521 ipif->ipif_fo_pkt_count, 5522 buf, 5523 ipif->ipif_zoneid); 5524 5525 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5526 ipif->ipif_ill->ill_phyint->phyint_flags; 5527 5528 /* Tack on text strings for any flags. */ 5529 nvp = ipif_nv_tbl; 5530 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5531 if (nvp->nv_value & flags) 5532 (void) mi_mpprintf_nr(mp, " %s", 5533 nvp->nv_name); 5534 } 5535 (void) mi_mpprintf(mp, 5536 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5537 inet_ntop(AF_INET6, 5538 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5539 inet_ntop(AF_INET6, 5540 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5541 inet_ntop(AF_INET6, 5542 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5543 inet_ntop(AF_INET6, 5544 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5545 inet_ntop(AF_INET6, 5546 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5547 inet_ntop(AF_INET6, 5548 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5549 } 5550 } 5551 rw_exit(&ipst->ips_ill_g_lock); 5552 return (0); 5553 } 5554 5555 /* 5556 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5557 * driver. We construct best guess defaults for lower level information that 5558 * we need. If an interface is brought up without injection of any overriding 5559 * information from outside, we have to be ready to go with these defaults. 5560 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5561 * we primarely want the dl_provider_style. 5562 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5563 * at which point we assume the other part of the information is valid. 5564 */ 5565 void 5566 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5567 { 5568 uchar_t *brdcst_addr; 5569 uint_t brdcst_addr_length, phys_addr_length; 5570 t_scalar_t sap_length; 5571 dl_info_ack_t *dlia; 5572 ip_m_t *ipm; 5573 dl_qos_cl_sel1_t *sel1; 5574 5575 ASSERT(IAM_WRITER_ILL(ill)); 5576 5577 /* 5578 * Till the ill is fully up ILL_CHANGING will be set and 5579 * the ill is not globally visible. So no need for a lock. 5580 */ 5581 dlia = (dl_info_ack_t *)mp->b_rptr; 5582 ill->ill_mactype = dlia->dl_mac_type; 5583 5584 ipm = ip_m_lookup(dlia->dl_mac_type); 5585 if (ipm == NULL) { 5586 ipm = ip_m_lookup(DL_OTHER); 5587 ASSERT(ipm != NULL); 5588 } 5589 ill->ill_media = ipm; 5590 5591 /* 5592 * When the new DLPI stuff is ready we'll pull lengths 5593 * from dlia. 5594 */ 5595 if (dlia->dl_version == DL_VERSION_2) { 5596 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5597 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5598 brdcst_addr_length); 5599 if (brdcst_addr == NULL) { 5600 brdcst_addr_length = 0; 5601 } 5602 sap_length = dlia->dl_sap_length; 5603 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5604 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5605 brdcst_addr_length, sap_length, phys_addr_length)); 5606 } else { 5607 brdcst_addr_length = 6; 5608 brdcst_addr = ip_six_byte_all_ones; 5609 sap_length = -2; 5610 phys_addr_length = brdcst_addr_length; 5611 } 5612 5613 ill->ill_bcast_addr_length = brdcst_addr_length; 5614 ill->ill_phys_addr_length = phys_addr_length; 5615 ill->ill_sap_length = sap_length; 5616 ill->ill_max_frag = dlia->dl_max_sdu; 5617 ill->ill_max_mtu = ill->ill_max_frag; 5618 5619 ill->ill_type = ipm->ip_m_type; 5620 5621 if (!ill->ill_dlpi_style_set) { 5622 if (dlia->dl_provider_style == DL_STYLE2) 5623 ill->ill_needs_attach = 1; 5624 5625 /* 5626 * Allocate the first ipif on this ill. We don't delay it 5627 * further as ioctl handling assumes atleast one ipif to 5628 * be present. 5629 * 5630 * At this point we don't know whether the ill is v4 or v6. 5631 * We will know this whan the SIOCSLIFNAME happens and 5632 * the correct value for ill_isv6 will be assigned in 5633 * ipif_set_values(). We need to hold the ill lock and 5634 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5635 * the wakeup. 5636 */ 5637 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5638 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5639 mutex_enter(&ill->ill_lock); 5640 ASSERT(ill->ill_dlpi_style_set == 0); 5641 ill->ill_dlpi_style_set = 1; 5642 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5643 cv_broadcast(&ill->ill_cv); 5644 mutex_exit(&ill->ill_lock); 5645 freemsg(mp); 5646 return; 5647 } 5648 ASSERT(ill->ill_ipif != NULL); 5649 /* 5650 * We know whether it is IPv4 or IPv6 now, as this is the 5651 * second DL_INFO_ACK we are recieving in response to the 5652 * DL_INFO_REQ sent in ipif_set_values. 5653 */ 5654 if (ill->ill_isv6) 5655 ill->ill_sap = IP6_DL_SAP; 5656 else 5657 ill->ill_sap = IP_DL_SAP; 5658 /* 5659 * Set ipif_mtu which is used to set the IRE's 5660 * ire_max_frag value. The driver could have sent 5661 * a different mtu from what it sent last time. No 5662 * need to call ipif_mtu_change because IREs have 5663 * not yet been created. 5664 */ 5665 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5666 /* 5667 * Clear all the flags that were set based on ill_bcast_addr_length 5668 * and ill_phys_addr_length (in ipif_set_values) as these could have 5669 * changed now and we need to re-evaluate. 5670 */ 5671 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5672 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5673 5674 /* 5675 * Free ill_resolver_mp and ill_bcast_mp as things could have 5676 * changed now. 5677 */ 5678 if (ill->ill_bcast_addr_length == 0) { 5679 if (ill->ill_resolver_mp != NULL) 5680 freemsg(ill->ill_resolver_mp); 5681 if (ill->ill_bcast_mp != NULL) 5682 freemsg(ill->ill_bcast_mp); 5683 if (ill->ill_flags & ILLF_XRESOLV) 5684 ill->ill_net_type = IRE_IF_RESOLVER; 5685 else 5686 ill->ill_net_type = IRE_IF_NORESOLVER; 5687 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5688 ill->ill_phys_addr_length, 5689 ill->ill_sap, 5690 ill->ill_sap_length); 5691 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5692 5693 if (ill->ill_isv6) 5694 /* 5695 * Note: xresolv interfaces will eventually need NOARP 5696 * set here as well, but that will require those 5697 * external resolvers to have some knowledge of 5698 * that flag and act appropriately. Not to be changed 5699 * at present. 5700 */ 5701 ill->ill_flags |= ILLF_NONUD; 5702 else 5703 ill->ill_flags |= ILLF_NOARP; 5704 5705 if (ill->ill_phys_addr_length == 0) { 5706 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5707 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5708 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5709 } else { 5710 /* pt-pt supports multicast. */ 5711 ill->ill_flags |= ILLF_MULTICAST; 5712 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5713 } 5714 } 5715 } else { 5716 ill->ill_net_type = IRE_IF_RESOLVER; 5717 if (ill->ill_bcast_mp != NULL) 5718 freemsg(ill->ill_bcast_mp); 5719 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5720 ill->ill_bcast_addr_length, ill->ill_sap, 5721 ill->ill_sap_length); 5722 /* 5723 * Later detect lack of DLPI driver multicast 5724 * capability by catching DL_ENABMULTI errors in 5725 * ip_rput_dlpi. 5726 */ 5727 ill->ill_flags |= ILLF_MULTICAST; 5728 if (!ill->ill_isv6) 5729 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5730 } 5731 /* By default an interface does not support any CoS marking */ 5732 ill->ill_flags &= ~ILLF_COS_ENABLED; 5733 5734 /* 5735 * If we get QoS information in DL_INFO_ACK, the device supports 5736 * some form of CoS marking, set ILLF_COS_ENABLED. 5737 */ 5738 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5739 dlia->dl_qos_length); 5740 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5741 ill->ill_flags |= ILLF_COS_ENABLED; 5742 } 5743 5744 /* Clear any previous error indication. */ 5745 ill->ill_error = 0; 5746 freemsg(mp); 5747 } 5748 5749 /* 5750 * Perform various checks to verify that an address would make sense as a 5751 * local, remote, or subnet interface address. 5752 */ 5753 static boolean_t 5754 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5755 { 5756 ipaddr_t net_mask; 5757 5758 /* 5759 * Don't allow all zeroes, all ones or experimental address, but allow 5760 * all ones netmask. 5761 */ 5762 if ((net_mask = ip_net_mask(addr)) == 0) 5763 return (B_FALSE); 5764 /* A given netmask overrides the "guess" netmask */ 5765 if (subnet_mask != 0) 5766 net_mask = subnet_mask; 5767 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5768 (addr == (addr | ~net_mask)))) { 5769 return (B_FALSE); 5770 } 5771 if (CLASSD(addr)) 5772 return (B_FALSE); 5773 5774 return (B_TRUE); 5775 } 5776 5777 #define V6_IPIF_LINKLOCAL(p) \ 5778 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5779 5780 /* 5781 * Compare two given ipifs and check if the second one is better than 5782 * the first one using the order of preference (not taking deprecated 5783 * into acount) specified in ipif_lookup_multicast(). 5784 */ 5785 static boolean_t 5786 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5787 { 5788 /* Check the least preferred first. */ 5789 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5790 /* If both ipifs are the same, use the first one. */ 5791 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5792 return (B_FALSE); 5793 else 5794 return (B_TRUE); 5795 } 5796 5797 /* For IPv6, check for link local address. */ 5798 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5799 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5800 V6_IPIF_LINKLOCAL(new_ipif)) { 5801 /* The second one is equal or less preferred. */ 5802 return (B_FALSE); 5803 } else { 5804 return (B_TRUE); 5805 } 5806 } 5807 5808 /* Then check for point to point interface. */ 5809 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5810 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5811 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5812 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5813 return (B_FALSE); 5814 } else { 5815 return (B_TRUE); 5816 } 5817 } 5818 5819 /* old_ipif is a normal interface, so no need to use the new one. */ 5820 return (B_FALSE); 5821 } 5822 5823 /* 5824 * Find any non-virtual, not condemned, and up multicast capable interface 5825 * given an IP instance and zoneid. Order of preference is: 5826 * 5827 * 1. normal 5828 * 1.1 normal, but deprecated 5829 * 2. point to point 5830 * 2.1 point to point, but deprecated 5831 * 3. link local 5832 * 3.1 link local, but deprecated 5833 * 4. loopback. 5834 */ 5835 ipif_t * 5836 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5837 { 5838 ill_t *ill; 5839 ill_walk_context_t ctx; 5840 ipif_t *ipif; 5841 ipif_t *saved_ipif = NULL; 5842 ipif_t *dep_ipif = NULL; 5843 5844 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5845 if (isv6) 5846 ill = ILL_START_WALK_V6(&ctx, ipst); 5847 else 5848 ill = ILL_START_WALK_V4(&ctx, ipst); 5849 5850 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5851 mutex_enter(&ill->ill_lock); 5852 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5853 !(ill->ill_flags & ILLF_MULTICAST)) { 5854 mutex_exit(&ill->ill_lock); 5855 continue; 5856 } 5857 for (ipif = ill->ill_ipif; ipif != NULL; 5858 ipif = ipif->ipif_next) { 5859 if (zoneid != ipif->ipif_zoneid && 5860 zoneid != ALL_ZONES && 5861 ipif->ipif_zoneid != ALL_ZONES) { 5862 continue; 5863 } 5864 if (!(ipif->ipif_flags & IPIF_UP) || 5865 !IPIF_CAN_LOOKUP(ipif)) { 5866 continue; 5867 } 5868 5869 /* 5870 * Found one candidate. If it is deprecated, 5871 * remember it in dep_ipif. If it is not deprecated, 5872 * remember it in saved_ipif. 5873 */ 5874 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5875 if (dep_ipif == NULL) { 5876 dep_ipif = ipif; 5877 } else if (ipif_comp_multi(dep_ipif, ipif, 5878 isv6)) { 5879 /* 5880 * If the previous dep_ipif does not 5881 * belong to the same ill, we've done 5882 * a ipif_refhold() on it. So we need 5883 * to release it. 5884 */ 5885 if (dep_ipif->ipif_ill != ill) 5886 ipif_refrele(dep_ipif); 5887 dep_ipif = ipif; 5888 } 5889 continue; 5890 } 5891 if (saved_ipif == NULL) { 5892 saved_ipif = ipif; 5893 } else { 5894 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5895 if (saved_ipif->ipif_ill != ill) 5896 ipif_refrele(saved_ipif); 5897 saved_ipif = ipif; 5898 } 5899 } 5900 } 5901 /* 5902 * Before going to the next ill, do a ipif_refhold() on the 5903 * saved ones. 5904 */ 5905 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5906 ipif_refhold_locked(saved_ipif); 5907 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5908 ipif_refhold_locked(dep_ipif); 5909 mutex_exit(&ill->ill_lock); 5910 } 5911 rw_exit(&ipst->ips_ill_g_lock); 5912 5913 /* 5914 * If we have only the saved_ipif, return it. But if we have both 5915 * saved_ipif and dep_ipif, check to see which one is better. 5916 */ 5917 if (saved_ipif != NULL) { 5918 if (dep_ipif != NULL) { 5919 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5920 ipif_refrele(saved_ipif); 5921 return (dep_ipif); 5922 } else { 5923 ipif_refrele(dep_ipif); 5924 return (saved_ipif); 5925 } 5926 } 5927 return (saved_ipif); 5928 } else { 5929 return (dep_ipif); 5930 } 5931 } 5932 5933 /* 5934 * This function is called when an application does not specify an interface 5935 * to be used for multicast traffic (joining a group/sending data). It 5936 * calls ire_lookup_multi() to look for an interface route for the 5937 * specified multicast group. Doing this allows the administrator to add 5938 * prefix routes for multicast to indicate which interface to be used for 5939 * multicast traffic in the above scenario. The route could be for all 5940 * multicast (224.0/4), for a single multicast group (a /32 route) or 5941 * anything in between. If there is no such multicast route, we just find 5942 * any multicast capable interface and return it. The returned ipif 5943 * is refhold'ed. 5944 */ 5945 ipif_t * 5946 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5947 { 5948 ire_t *ire; 5949 ipif_t *ipif; 5950 5951 ire = ire_lookup_multi(group, zoneid, ipst); 5952 if (ire != NULL) { 5953 ipif = ire->ire_ipif; 5954 ipif_refhold(ipif); 5955 ire_refrele(ire); 5956 return (ipif); 5957 } 5958 5959 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5960 } 5961 5962 /* 5963 * Look for an ipif with the specified interface address and destination. 5964 * The destination address is used only for matching point-to-point interfaces. 5965 */ 5966 ipif_t * 5967 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5968 ipsq_func_t func, int *error, ip_stack_t *ipst) 5969 { 5970 ipif_t *ipif; 5971 ill_t *ill; 5972 ill_walk_context_t ctx; 5973 ipsq_t *ipsq; 5974 5975 if (error != NULL) 5976 *error = 0; 5977 5978 /* 5979 * First match all the point-to-point interfaces 5980 * before looking at non-point-to-point interfaces. 5981 * This is done to avoid returning non-point-to-point 5982 * ipif instead of unnumbered point-to-point ipif. 5983 */ 5984 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5985 ill = ILL_START_WALK_V4(&ctx, ipst); 5986 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5987 GRAB_CONN_LOCK(q); 5988 mutex_enter(&ill->ill_lock); 5989 for (ipif = ill->ill_ipif; ipif != NULL; 5990 ipif = ipif->ipif_next) { 5991 /* Allow the ipif to be down */ 5992 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5993 (ipif->ipif_lcl_addr == if_addr) && 5994 (ipif->ipif_pp_dst_addr == dst)) { 5995 /* 5996 * The block comment at the start of ipif_down 5997 * explains the use of the macros used below 5998 */ 5999 if (IPIF_CAN_LOOKUP(ipif)) { 6000 ipif_refhold_locked(ipif); 6001 mutex_exit(&ill->ill_lock); 6002 RELEASE_CONN_LOCK(q); 6003 rw_exit(&ipst->ips_ill_g_lock); 6004 return (ipif); 6005 } else if (IPIF_CAN_WAIT(ipif, q)) { 6006 ipsq = ill->ill_phyint->phyint_ipsq; 6007 mutex_enter(&ipsq->ipsq_lock); 6008 mutex_exit(&ill->ill_lock); 6009 rw_exit(&ipst->ips_ill_g_lock); 6010 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6011 ill); 6012 mutex_exit(&ipsq->ipsq_lock); 6013 RELEASE_CONN_LOCK(q); 6014 *error = EINPROGRESS; 6015 return (NULL); 6016 } 6017 } 6018 } 6019 mutex_exit(&ill->ill_lock); 6020 RELEASE_CONN_LOCK(q); 6021 } 6022 rw_exit(&ipst->ips_ill_g_lock); 6023 6024 /* lookup the ipif based on interface address */ 6025 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 6026 ipst); 6027 ASSERT(ipif == NULL || !ipif->ipif_isv6); 6028 return (ipif); 6029 } 6030 6031 /* 6032 * Look for an ipif with the specified address. For point-point links 6033 * we look for matches on either the destination address and the local 6034 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6035 * is set. 6036 * Matches on a specific ill if match_ill is set. 6037 */ 6038 ipif_t * 6039 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6040 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6041 { 6042 ipif_t *ipif; 6043 ill_t *ill; 6044 boolean_t ptp = B_FALSE; 6045 ipsq_t *ipsq; 6046 ill_walk_context_t ctx; 6047 6048 if (error != NULL) 6049 *error = 0; 6050 6051 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6052 /* 6053 * Repeat twice, first based on local addresses and 6054 * next time for pointopoint. 6055 */ 6056 repeat: 6057 ill = ILL_START_WALK_V4(&ctx, ipst); 6058 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6059 if (match_ill != NULL && ill != match_ill) { 6060 continue; 6061 } 6062 GRAB_CONN_LOCK(q); 6063 mutex_enter(&ill->ill_lock); 6064 for (ipif = ill->ill_ipif; ipif != NULL; 6065 ipif = ipif->ipif_next) { 6066 if (zoneid != ALL_ZONES && 6067 zoneid != ipif->ipif_zoneid && 6068 ipif->ipif_zoneid != ALL_ZONES) 6069 continue; 6070 /* Allow the ipif to be down */ 6071 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6072 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6073 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6074 (ipif->ipif_pp_dst_addr == addr))) { 6075 /* 6076 * The block comment at the start of ipif_down 6077 * explains the use of the macros used below 6078 */ 6079 if (IPIF_CAN_LOOKUP(ipif)) { 6080 ipif_refhold_locked(ipif); 6081 mutex_exit(&ill->ill_lock); 6082 RELEASE_CONN_LOCK(q); 6083 rw_exit(&ipst->ips_ill_g_lock); 6084 return (ipif); 6085 } else if (IPIF_CAN_WAIT(ipif, q)) { 6086 ipsq = ill->ill_phyint->phyint_ipsq; 6087 mutex_enter(&ipsq->ipsq_lock); 6088 mutex_exit(&ill->ill_lock); 6089 rw_exit(&ipst->ips_ill_g_lock); 6090 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6091 ill); 6092 mutex_exit(&ipsq->ipsq_lock); 6093 RELEASE_CONN_LOCK(q); 6094 *error = EINPROGRESS; 6095 return (NULL); 6096 } 6097 } 6098 } 6099 mutex_exit(&ill->ill_lock); 6100 RELEASE_CONN_LOCK(q); 6101 } 6102 6103 /* If we already did the ptp case, then we are done */ 6104 if (ptp) { 6105 rw_exit(&ipst->ips_ill_g_lock); 6106 if (error != NULL) 6107 *error = ENXIO; 6108 return (NULL); 6109 } 6110 ptp = B_TRUE; 6111 goto repeat; 6112 } 6113 6114 /* 6115 * Look for an ipif with the specified address. For point-point links 6116 * we look for matches on either the destination address and the local 6117 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6118 * is set. 6119 * Matches on a specific ill if match_ill is set. 6120 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6121 */ 6122 zoneid_t 6123 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6124 { 6125 zoneid_t zoneid; 6126 ipif_t *ipif; 6127 ill_t *ill; 6128 boolean_t ptp = B_FALSE; 6129 ill_walk_context_t ctx; 6130 6131 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6132 /* 6133 * Repeat twice, first based on local addresses and 6134 * next time for pointopoint. 6135 */ 6136 repeat: 6137 ill = ILL_START_WALK_V4(&ctx, ipst); 6138 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6139 if (match_ill != NULL && ill != match_ill) { 6140 continue; 6141 } 6142 mutex_enter(&ill->ill_lock); 6143 for (ipif = ill->ill_ipif; ipif != NULL; 6144 ipif = ipif->ipif_next) { 6145 /* Allow the ipif to be down */ 6146 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6147 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6148 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6149 (ipif->ipif_pp_dst_addr == addr)) && 6150 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6151 zoneid = ipif->ipif_zoneid; 6152 mutex_exit(&ill->ill_lock); 6153 rw_exit(&ipst->ips_ill_g_lock); 6154 /* 6155 * If ipif_zoneid was ALL_ZONES then we have 6156 * a trusted extensions shared IP address. 6157 * In that case GLOBAL_ZONEID works to send. 6158 */ 6159 if (zoneid == ALL_ZONES) 6160 zoneid = GLOBAL_ZONEID; 6161 return (zoneid); 6162 } 6163 } 6164 mutex_exit(&ill->ill_lock); 6165 } 6166 6167 /* If we already did the ptp case, then we are done */ 6168 if (ptp) { 6169 rw_exit(&ipst->ips_ill_g_lock); 6170 return (ALL_ZONES); 6171 } 6172 ptp = B_TRUE; 6173 goto repeat; 6174 } 6175 6176 /* 6177 * Look for an ipif that matches the specified remote address i.e. the 6178 * ipif that would receive the specified packet. 6179 * First look for directly connected interfaces and then do a recursive 6180 * IRE lookup and pick the first ipif corresponding to the source address in the 6181 * ire. 6182 * Returns: held ipif 6183 */ 6184 ipif_t * 6185 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6186 { 6187 ipif_t *ipif; 6188 ire_t *ire; 6189 ip_stack_t *ipst = ill->ill_ipst; 6190 6191 ASSERT(!ill->ill_isv6); 6192 6193 /* 6194 * Someone could be changing this ipif currently or change it 6195 * after we return this. Thus a few packets could use the old 6196 * old values. However structure updates/creates (ire, ilg, ilm etc) 6197 * will atomically be updated or cleaned up with the new value 6198 * Thus we don't need a lock to check the flags or other attrs below. 6199 */ 6200 mutex_enter(&ill->ill_lock); 6201 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6202 if (!IPIF_CAN_LOOKUP(ipif)) 6203 continue; 6204 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6205 ipif->ipif_zoneid != ALL_ZONES) 6206 continue; 6207 /* Allow the ipif to be down */ 6208 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6209 if ((ipif->ipif_pp_dst_addr == addr) || 6210 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6211 ipif->ipif_lcl_addr == addr)) { 6212 ipif_refhold_locked(ipif); 6213 mutex_exit(&ill->ill_lock); 6214 return (ipif); 6215 } 6216 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6217 ipif_refhold_locked(ipif); 6218 mutex_exit(&ill->ill_lock); 6219 return (ipif); 6220 } 6221 } 6222 mutex_exit(&ill->ill_lock); 6223 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6224 NULL, MATCH_IRE_RECURSIVE, ipst); 6225 if (ire != NULL) { 6226 /* 6227 * The callers of this function wants to know the 6228 * interface on which they have to send the replies 6229 * back. For IRE_CACHES that have ire_stq and ire_ipif 6230 * derived from different ills, we really don't care 6231 * what we return here. 6232 */ 6233 ipif = ire->ire_ipif; 6234 if (ipif != NULL) { 6235 ipif_refhold(ipif); 6236 ire_refrele(ire); 6237 return (ipif); 6238 } 6239 ire_refrele(ire); 6240 } 6241 /* Pick the first interface */ 6242 ipif = ipif_get_next_ipif(NULL, ill); 6243 return (ipif); 6244 } 6245 6246 /* 6247 * This func does not prevent refcnt from increasing. But if 6248 * the caller has taken steps to that effect, then this func 6249 * can be used to determine whether the ill has become quiescent 6250 */ 6251 boolean_t 6252 ill_is_quiescent(ill_t *ill) 6253 { 6254 ipif_t *ipif; 6255 6256 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6257 6258 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6259 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6260 return (B_FALSE); 6261 } 6262 } 6263 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6264 ill->ill_nce_cnt != 0) { 6265 return (B_FALSE); 6266 } 6267 return (B_TRUE); 6268 } 6269 6270 /* 6271 * This func does not prevent refcnt from increasing. But if 6272 * the caller has taken steps to that effect, then this func 6273 * can be used to determine whether the ipif has become quiescent 6274 */ 6275 static boolean_t 6276 ipif_is_quiescent(ipif_t *ipif) 6277 { 6278 ill_t *ill; 6279 6280 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6281 6282 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6283 return (B_FALSE); 6284 } 6285 6286 ill = ipif->ipif_ill; 6287 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6288 ill->ill_logical_down) { 6289 return (B_TRUE); 6290 } 6291 6292 /* This is the last ipif going down or being deleted on this ill */ 6293 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6294 return (B_FALSE); 6295 } 6296 6297 return (B_TRUE); 6298 } 6299 6300 /* 6301 * This func does not prevent refcnt from increasing. But if 6302 * the caller has taken steps to that effect, then this func 6303 * can be used to determine whether the ipifs marked with IPIF_MOVING 6304 * have become quiescent and can be moved in a failover/failback. 6305 */ 6306 static ipif_t * 6307 ill_quiescent_to_move(ill_t *ill) 6308 { 6309 ipif_t *ipif; 6310 6311 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6312 6313 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6314 if (ipif->ipif_state_flags & IPIF_MOVING) { 6315 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6316 return (ipif); 6317 } 6318 } 6319 } 6320 return (NULL); 6321 } 6322 6323 /* 6324 * The ipif/ill/ire has been refreled. Do the tail processing. 6325 * Determine if the ipif or ill in question has become quiescent and if so 6326 * wakeup close and/or restart any queued pending ioctl that is waiting 6327 * for the ipif_down (or ill_down) 6328 */ 6329 void 6330 ipif_ill_refrele_tail(ill_t *ill) 6331 { 6332 mblk_t *mp; 6333 conn_t *connp; 6334 ipsq_t *ipsq; 6335 ipif_t *ipif; 6336 dl_notify_ind_t *dlindp; 6337 6338 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6339 6340 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6341 ill_is_quiescent(ill)) { 6342 /* ill_close may be waiting */ 6343 cv_broadcast(&ill->ill_cv); 6344 } 6345 6346 /* ipsq can't change because ill_lock is held */ 6347 ipsq = ill->ill_phyint->phyint_ipsq; 6348 if (ipsq->ipsq_waitfor == 0) { 6349 /* Not waiting for anything, just return. */ 6350 mutex_exit(&ill->ill_lock); 6351 return; 6352 } 6353 ASSERT(ipsq->ipsq_pending_mp != NULL && 6354 ipsq->ipsq_pending_ipif != NULL); 6355 /* 6356 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6357 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6358 * be zero for restarting an ioctl that ends up downing the ill. 6359 */ 6360 ipif = ipsq->ipsq_pending_ipif; 6361 if (ipif->ipif_ill != ill) { 6362 /* The ioctl is pending on some other ill. */ 6363 mutex_exit(&ill->ill_lock); 6364 return; 6365 } 6366 6367 switch (ipsq->ipsq_waitfor) { 6368 case IPIF_DOWN: 6369 case IPIF_FREE: 6370 if (!ipif_is_quiescent(ipif)) { 6371 mutex_exit(&ill->ill_lock); 6372 return; 6373 } 6374 break; 6375 6376 case ILL_DOWN: 6377 case ILL_FREE: 6378 /* 6379 * case ILL_FREE arises only for loopback. otherwise ill_delete 6380 * waits synchronously in ip_close, and no message is queued in 6381 * ipsq_pending_mp at all in this case 6382 */ 6383 if (!ill_is_quiescent(ill)) { 6384 mutex_exit(&ill->ill_lock); 6385 return; 6386 } 6387 6388 break; 6389 6390 case ILL_MOVE_OK: 6391 if (ill_quiescent_to_move(ill) != NULL) { 6392 mutex_exit(&ill->ill_lock); 6393 return; 6394 } 6395 6396 break; 6397 default: 6398 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6399 (void *)ipsq, ipsq->ipsq_waitfor); 6400 } 6401 6402 /* 6403 * Incr refcnt for the qwriter_ip call below which 6404 * does a refrele 6405 */ 6406 ill_refhold_locked(ill); 6407 mutex_exit(&ill->ill_lock); 6408 6409 mp = ipsq_pending_mp_get(ipsq, &connp); 6410 ASSERT(mp != NULL); 6411 6412 /* 6413 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6414 * we can only get here when the current operation decides it 6415 * it needs to quiesce via ipsq_pending_mp_add(). 6416 */ 6417 switch (mp->b_datap->db_type) { 6418 case M_PCPROTO: 6419 case M_PROTO: 6420 /* 6421 * For now, only DL_NOTIFY_IND messages can use this facility. 6422 */ 6423 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6424 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6425 6426 switch (dlindp->dl_notification) { 6427 case DL_NOTE_PHYS_ADDR: 6428 qwriter_ip(ill, ill->ill_rq, mp, 6429 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6430 return; 6431 default: 6432 ASSERT(0); 6433 } 6434 break; 6435 6436 case M_ERROR: 6437 case M_HANGUP: 6438 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6439 B_TRUE); 6440 return; 6441 6442 case M_IOCTL: 6443 case M_IOCDATA: 6444 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6445 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6446 return; 6447 6448 default: 6449 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6450 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6451 } 6452 } 6453 6454 #ifdef DEBUG 6455 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6456 static void 6457 th_trace_rrecord(th_trace_t *th_trace) 6458 { 6459 tr_buf_t *tr_buf; 6460 uint_t lastref; 6461 6462 lastref = th_trace->th_trace_lastref; 6463 lastref++; 6464 if (lastref == TR_BUF_MAX) 6465 lastref = 0; 6466 th_trace->th_trace_lastref = lastref; 6467 tr_buf = &th_trace->th_trbuf[lastref]; 6468 tr_buf->tr_time = lbolt; 6469 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6470 } 6471 6472 static void 6473 th_trace_free(void *value) 6474 { 6475 th_trace_t *th_trace = value; 6476 6477 ASSERT(th_trace->th_refcnt == 0); 6478 kmem_free(th_trace, sizeof (*th_trace)); 6479 } 6480 6481 /* 6482 * Find or create the per-thread hash table used to track object references. 6483 * The ipst argument is NULL if we shouldn't allocate. 6484 * 6485 * Accesses per-thread data, so there's no need to lock here. 6486 */ 6487 static mod_hash_t * 6488 th_trace_gethash(ip_stack_t *ipst) 6489 { 6490 th_hash_t *thh; 6491 6492 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6493 mod_hash_t *mh; 6494 char name[256]; 6495 size_t objsize, rshift; 6496 int retv; 6497 6498 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6499 return (NULL); 6500 (void) snprintf(name, sizeof (name), "th_trace_%p", curthread); 6501 6502 /* 6503 * We use mod_hash_create_extended here rather than the more 6504 * obvious mod_hash_create_ptrhash because the latter has a 6505 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6506 * block. 6507 */ 6508 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6509 MAX(sizeof (ire_t), sizeof (nce_t))); 6510 rshift = highbit(objsize); 6511 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6512 th_trace_free, mod_hash_byptr, (void *)rshift, 6513 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6514 if (mh == NULL) { 6515 kmem_free(thh, sizeof (*thh)); 6516 return (NULL); 6517 } 6518 thh->thh_hash = mh; 6519 thh->thh_ipst = ipst; 6520 /* 6521 * We trace ills, ipifs, ires, and nces. All of these are 6522 * per-IP-stack, so the lock on the thread list is as well. 6523 */ 6524 rw_enter(&ip_thread_rwlock, RW_WRITER); 6525 list_insert_tail(&ip_thread_list, thh); 6526 rw_exit(&ip_thread_rwlock); 6527 retv = tsd_set(ip_thread_data, thh); 6528 ASSERT(retv == 0); 6529 } 6530 return (thh != NULL ? thh->thh_hash : NULL); 6531 } 6532 6533 boolean_t 6534 th_trace_ref(const void *obj, ip_stack_t *ipst) 6535 { 6536 th_trace_t *th_trace; 6537 mod_hash_t *mh; 6538 mod_hash_val_t val; 6539 6540 if ((mh = th_trace_gethash(ipst)) == NULL) 6541 return (B_FALSE); 6542 6543 /* 6544 * Attempt to locate the trace buffer for this obj and thread. 6545 * If it does not exist, then allocate a new trace buffer and 6546 * insert into the hash. 6547 */ 6548 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6549 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6550 if (th_trace == NULL) 6551 return (B_FALSE); 6552 6553 th_trace->th_id = curthread; 6554 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6555 (mod_hash_val_t)th_trace) != 0) { 6556 kmem_free(th_trace, sizeof (th_trace_t)); 6557 return (B_FALSE); 6558 } 6559 } else { 6560 th_trace = (th_trace_t *)val; 6561 } 6562 6563 ASSERT(th_trace->th_refcnt >= 0 && 6564 th_trace->th_refcnt < TR_BUF_MAX - 1); 6565 6566 th_trace->th_refcnt++; 6567 th_trace_rrecord(th_trace); 6568 return (B_TRUE); 6569 } 6570 6571 /* 6572 * For the purpose of tracing a reference release, we assume that global 6573 * tracing is always on and that the same thread initiated the reference hold 6574 * is releasing. 6575 */ 6576 void 6577 th_trace_unref(const void *obj) 6578 { 6579 int retv; 6580 mod_hash_t *mh; 6581 th_trace_t *th_trace; 6582 mod_hash_val_t val; 6583 6584 mh = th_trace_gethash(NULL); 6585 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6586 ASSERT(retv == 0); 6587 th_trace = (th_trace_t *)val; 6588 6589 ASSERT(th_trace->th_refcnt > 0); 6590 th_trace->th_refcnt--; 6591 th_trace_rrecord(th_trace); 6592 } 6593 6594 /* 6595 * If tracing has been disabled, then we assume that the reference counts are 6596 * now useless, and we clear them out before destroying the entries. 6597 */ 6598 void 6599 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6600 { 6601 th_hash_t *thh; 6602 mod_hash_t *mh; 6603 mod_hash_val_t val; 6604 th_trace_t *th_trace; 6605 int retv; 6606 6607 rw_enter(&ip_thread_rwlock, RW_READER); 6608 for (thh = list_head(&ip_thread_list); thh != NULL; 6609 thh = list_next(&ip_thread_list, thh)) { 6610 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6611 &val) == 0) { 6612 th_trace = (th_trace_t *)val; 6613 if (trace_disable) 6614 th_trace->th_refcnt = 0; 6615 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6616 ASSERT(retv == 0); 6617 } 6618 } 6619 rw_exit(&ip_thread_rwlock); 6620 } 6621 6622 void 6623 ipif_trace_ref(ipif_t *ipif) 6624 { 6625 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6626 6627 if (ipif->ipif_trace_disable) 6628 return; 6629 6630 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6631 ipif->ipif_trace_disable = B_TRUE; 6632 ipif_trace_cleanup(ipif); 6633 } 6634 } 6635 6636 void 6637 ipif_untrace_ref(ipif_t *ipif) 6638 { 6639 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6640 6641 if (!ipif->ipif_trace_disable) 6642 th_trace_unref(ipif); 6643 } 6644 6645 void 6646 ill_trace_ref(ill_t *ill) 6647 { 6648 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6649 6650 if (ill->ill_trace_disable) 6651 return; 6652 6653 if (!th_trace_ref(ill, ill->ill_ipst)) { 6654 ill->ill_trace_disable = B_TRUE; 6655 ill_trace_cleanup(ill); 6656 } 6657 } 6658 6659 void 6660 ill_untrace_ref(ill_t *ill) 6661 { 6662 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6663 6664 if (!ill->ill_trace_disable) 6665 th_trace_unref(ill); 6666 } 6667 6668 /* 6669 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6670 * failure, ipif_trace_disable is set. 6671 */ 6672 static void 6673 ipif_trace_cleanup(const ipif_t *ipif) 6674 { 6675 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6676 } 6677 6678 /* 6679 * Called when ill is unplumbed or when memory alloc fails. Note that on 6680 * failure, ill_trace_disable is set. 6681 */ 6682 static void 6683 ill_trace_cleanup(const ill_t *ill) 6684 { 6685 th_trace_cleanup(ill, ill->ill_trace_disable); 6686 } 6687 #endif /* DEBUG */ 6688 6689 void 6690 ipif_refhold_locked(ipif_t *ipif) 6691 { 6692 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6693 ipif->ipif_refcnt++; 6694 IPIF_TRACE_REF(ipif); 6695 } 6696 6697 void 6698 ipif_refhold(ipif_t *ipif) 6699 { 6700 ill_t *ill; 6701 6702 ill = ipif->ipif_ill; 6703 mutex_enter(&ill->ill_lock); 6704 ipif->ipif_refcnt++; 6705 IPIF_TRACE_REF(ipif); 6706 mutex_exit(&ill->ill_lock); 6707 } 6708 6709 /* 6710 * Must not be called while holding any locks. Otherwise if this is 6711 * the last reference to be released there is a chance of recursive mutex 6712 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6713 * to restart an ioctl. 6714 */ 6715 void 6716 ipif_refrele(ipif_t *ipif) 6717 { 6718 ill_t *ill; 6719 6720 ill = ipif->ipif_ill; 6721 6722 mutex_enter(&ill->ill_lock); 6723 ASSERT(ipif->ipif_refcnt != 0); 6724 ipif->ipif_refcnt--; 6725 IPIF_UNTRACE_REF(ipif); 6726 if (ipif->ipif_refcnt != 0) { 6727 mutex_exit(&ill->ill_lock); 6728 return; 6729 } 6730 6731 /* Drops the ill_lock */ 6732 ipif_ill_refrele_tail(ill); 6733 } 6734 6735 ipif_t * 6736 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6737 { 6738 ipif_t *ipif; 6739 6740 mutex_enter(&ill->ill_lock); 6741 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6742 ipif != NULL; ipif = ipif->ipif_next) { 6743 if (!IPIF_CAN_LOOKUP(ipif)) 6744 continue; 6745 ipif_refhold_locked(ipif); 6746 mutex_exit(&ill->ill_lock); 6747 return (ipif); 6748 } 6749 mutex_exit(&ill->ill_lock); 6750 return (NULL); 6751 } 6752 6753 /* 6754 * TODO: make this table extendible at run time 6755 * Return a pointer to the mac type info for 'mac_type' 6756 */ 6757 static ip_m_t * 6758 ip_m_lookup(t_uscalar_t mac_type) 6759 { 6760 ip_m_t *ipm; 6761 6762 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6763 if (ipm->ip_m_mac_type == mac_type) 6764 return (ipm); 6765 return (NULL); 6766 } 6767 6768 /* 6769 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6770 * ipif_arg is passed in to associate it with the correct interface. 6771 * We may need to restart this operation if the ipif cannot be looked up 6772 * due to an exclusive operation that is currently in progress. The restart 6773 * entry point is specified by 'func' 6774 */ 6775 int 6776 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6777 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6778 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6779 struct rtsa_s *sp, ip_stack_t *ipst) 6780 { 6781 ire_t *ire; 6782 ire_t *gw_ire = NULL; 6783 ipif_t *ipif = NULL; 6784 boolean_t ipif_refheld = B_FALSE; 6785 uint_t type; 6786 int match_flags = MATCH_IRE_TYPE; 6787 int error; 6788 tsol_gc_t *gc = NULL; 6789 tsol_gcgrp_t *gcgrp = NULL; 6790 boolean_t gcgrp_xtraref = B_FALSE; 6791 6792 ip1dbg(("ip_rt_add:")); 6793 6794 if (ire_arg != NULL) 6795 *ire_arg = NULL; 6796 6797 /* 6798 * If this is the case of RTF_HOST being set, then we set the netmask 6799 * to all ones (regardless if one was supplied). 6800 */ 6801 if (flags & RTF_HOST) 6802 mask = IP_HOST_MASK; 6803 6804 /* 6805 * Prevent routes with a zero gateway from being created (since 6806 * interfaces can currently be plumbed and brought up no assigned 6807 * address). 6808 */ 6809 if (gw_addr == 0) 6810 return (ENETUNREACH); 6811 /* 6812 * Get the ipif, if any, corresponding to the gw_addr 6813 */ 6814 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6815 ipst); 6816 if (ipif != NULL) { 6817 if (IS_VNI(ipif->ipif_ill)) { 6818 ipif_refrele(ipif); 6819 return (EINVAL); 6820 } 6821 ipif_refheld = B_TRUE; 6822 } else if (error == EINPROGRESS) { 6823 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6824 return (EINPROGRESS); 6825 } else { 6826 error = 0; 6827 } 6828 6829 if (ipif != NULL) { 6830 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6831 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6832 } else { 6833 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6834 } 6835 6836 /* 6837 * GateD will attempt to create routes with a loopback interface 6838 * address as the gateway and with RTF_GATEWAY set. We allow 6839 * these routes to be added, but create them as interface routes 6840 * since the gateway is an interface address. 6841 */ 6842 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6843 flags &= ~RTF_GATEWAY; 6844 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6845 mask == IP_HOST_MASK) { 6846 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6847 ALL_ZONES, NULL, match_flags, ipst); 6848 if (ire != NULL) { 6849 ire_refrele(ire); 6850 if (ipif_refheld) 6851 ipif_refrele(ipif); 6852 return (EEXIST); 6853 } 6854 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6855 "for 0x%x\n", (void *)ipif, 6856 ipif->ipif_ire_type, 6857 ntohl(ipif->ipif_lcl_addr))); 6858 ire = ire_create( 6859 (uchar_t *)&dst_addr, /* dest address */ 6860 (uchar_t *)&mask, /* mask */ 6861 (uchar_t *)&ipif->ipif_src_addr, 6862 NULL, /* no gateway */ 6863 &ipif->ipif_mtu, 6864 NULL, 6865 ipif->ipif_rq, /* recv-from queue */ 6866 NULL, /* no send-to queue */ 6867 ipif->ipif_ire_type, /* LOOPBACK */ 6868 ipif, 6869 0, 6870 0, 6871 0, 6872 (ipif->ipif_flags & IPIF_PRIVATE) ? 6873 RTF_PRIVATE : 0, 6874 &ire_uinfo_null, 6875 NULL, 6876 NULL, 6877 ipst); 6878 6879 if (ire == NULL) { 6880 if (ipif_refheld) 6881 ipif_refrele(ipif); 6882 return (ENOMEM); 6883 } 6884 error = ire_add(&ire, q, mp, func, B_FALSE); 6885 if (error == 0) 6886 goto save_ire; 6887 if (ipif_refheld) 6888 ipif_refrele(ipif); 6889 return (error); 6890 6891 } 6892 } 6893 6894 /* 6895 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6896 * and the gateway address provided is one of the system's interface 6897 * addresses. By using the routing socket interface and supplying an 6898 * RTA_IFP sockaddr with an interface index, an alternate method of 6899 * specifying an interface route to be created is available which uses 6900 * the interface index that specifies the outgoing interface rather than 6901 * the address of an outgoing interface (which may not be able to 6902 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6903 * flag, routes can be specified which not only specify the next-hop to 6904 * be used when routing to a certain prefix, but also which outgoing 6905 * interface should be used. 6906 * 6907 * Previously, interfaces would have unique addresses assigned to them 6908 * and so the address assigned to a particular interface could be used 6909 * to identify a particular interface. One exception to this was the 6910 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6911 * 6912 * With the advent of IPv6 and its link-local addresses, this 6913 * restriction was relaxed and interfaces could share addresses between 6914 * themselves. In fact, typically all of the link-local interfaces on 6915 * an IPv6 node or router will have the same link-local address. In 6916 * order to differentiate between these interfaces, the use of an 6917 * interface index is necessary and this index can be carried inside a 6918 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6919 * of using the interface index, however, is that all of the ipif's that 6920 * are part of an ill have the same index and so the RTA_IFP sockaddr 6921 * cannot be used to differentiate between ipif's (or logical 6922 * interfaces) that belong to the same ill (physical interface). 6923 * 6924 * For example, in the following case involving IPv4 interfaces and 6925 * logical interfaces 6926 * 6927 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6928 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6929 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6930 * 6931 * the ipif's corresponding to each of these interface routes can be 6932 * uniquely identified by the "gateway" (actually interface address). 6933 * 6934 * In this case involving multiple IPv6 default routes to a particular 6935 * link-local gateway, the use of RTA_IFP is necessary to specify which 6936 * default route is of interest: 6937 * 6938 * default fe80::123:4567:89ab:cdef U if0 6939 * default fe80::123:4567:89ab:cdef U if1 6940 */ 6941 6942 /* RTF_GATEWAY not set */ 6943 if (!(flags & RTF_GATEWAY)) { 6944 queue_t *stq; 6945 6946 if (sp != NULL) { 6947 ip2dbg(("ip_rt_add: gateway security attributes " 6948 "cannot be set with interface route\n")); 6949 if (ipif_refheld) 6950 ipif_refrele(ipif); 6951 return (EINVAL); 6952 } 6953 6954 /* 6955 * As the interface index specified with the RTA_IFP sockaddr is 6956 * the same for all ipif's off of an ill, the matching logic 6957 * below uses MATCH_IRE_ILL if such an index was specified. 6958 * This means that routes sharing the same prefix when added 6959 * using a RTA_IFP sockaddr must have distinct interface 6960 * indices (namely, they must be on distinct ill's). 6961 * 6962 * On the other hand, since the gateway address will usually be 6963 * different for each ipif on the system, the matching logic 6964 * uses MATCH_IRE_IPIF in the case of a traditional interface 6965 * route. This means that interface routes for the same prefix 6966 * can be created if they belong to distinct ipif's and if a 6967 * RTA_IFP sockaddr is not present. 6968 */ 6969 if (ipif_arg != NULL) { 6970 if (ipif_refheld) { 6971 ipif_refrele(ipif); 6972 ipif_refheld = B_FALSE; 6973 } 6974 ipif = ipif_arg; 6975 match_flags |= MATCH_IRE_ILL; 6976 } else { 6977 /* 6978 * Check the ipif corresponding to the gw_addr 6979 */ 6980 if (ipif == NULL) 6981 return (ENETUNREACH); 6982 match_flags |= MATCH_IRE_IPIF; 6983 } 6984 ASSERT(ipif != NULL); 6985 6986 /* 6987 * We check for an existing entry at this point. 6988 * 6989 * Since a netmask isn't passed in via the ioctl interface 6990 * (SIOCADDRT), we don't check for a matching netmask in that 6991 * case. 6992 */ 6993 if (!ioctl_msg) 6994 match_flags |= MATCH_IRE_MASK; 6995 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6996 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6997 if (ire != NULL) { 6998 ire_refrele(ire); 6999 if (ipif_refheld) 7000 ipif_refrele(ipif); 7001 return (EEXIST); 7002 } 7003 7004 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7005 ? ipif->ipif_rq : ipif->ipif_wq; 7006 7007 /* 7008 * Create a copy of the IRE_LOOPBACK, 7009 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7010 * the modified address and netmask. 7011 */ 7012 ire = ire_create( 7013 (uchar_t *)&dst_addr, 7014 (uint8_t *)&mask, 7015 (uint8_t *)&ipif->ipif_src_addr, 7016 NULL, 7017 &ipif->ipif_mtu, 7018 NULL, 7019 NULL, 7020 stq, 7021 ipif->ipif_net_type, 7022 ipif, 7023 0, 7024 0, 7025 0, 7026 flags, 7027 &ire_uinfo_null, 7028 NULL, 7029 NULL, 7030 ipst); 7031 if (ire == NULL) { 7032 if (ipif_refheld) 7033 ipif_refrele(ipif); 7034 return (ENOMEM); 7035 } 7036 7037 /* 7038 * Some software (for example, GateD and Sun Cluster) attempts 7039 * to create (what amount to) IRE_PREFIX routes with the 7040 * loopback address as the gateway. This is primarily done to 7041 * set up prefixes with the RTF_REJECT flag set (for example, 7042 * when generating aggregate routes.) 7043 * 7044 * If the IRE type (as defined by ipif->ipif_net_type) is 7045 * IRE_LOOPBACK, then we map the request into a 7046 * IRE_IF_NORESOLVER. 7047 * 7048 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7049 * routine, but rather using ire_create() directly. 7050 * 7051 */ 7052 if (ipif->ipif_net_type == IRE_LOOPBACK) 7053 ire->ire_type = IRE_IF_NORESOLVER; 7054 7055 error = ire_add(&ire, q, mp, func, B_FALSE); 7056 if (error == 0) 7057 goto save_ire; 7058 7059 /* 7060 * In the result of failure, ire_add() will have already 7061 * deleted the ire in question, so there is no need to 7062 * do that here. 7063 */ 7064 if (ipif_refheld) 7065 ipif_refrele(ipif); 7066 return (error); 7067 } 7068 if (ipif_refheld) { 7069 ipif_refrele(ipif); 7070 ipif_refheld = B_FALSE; 7071 } 7072 7073 /* 7074 * Get an interface IRE for the specified gateway. 7075 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7076 * gateway, it is currently unreachable and we fail the request 7077 * accordingly. 7078 */ 7079 ipif = ipif_arg; 7080 if (ipif_arg != NULL) 7081 match_flags |= MATCH_IRE_ILL; 7082 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7083 ALL_ZONES, 0, NULL, match_flags, ipst); 7084 if (gw_ire == NULL) 7085 return (ENETUNREACH); 7086 7087 /* 7088 * We create one of three types of IREs as a result of this request 7089 * based on the netmask. A netmask of all ones (which is automatically 7090 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7091 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7092 * created. Otherwise, an IRE_PREFIX route is created for the 7093 * destination prefix. 7094 */ 7095 if (mask == IP_HOST_MASK) 7096 type = IRE_HOST; 7097 else if (mask == 0) 7098 type = IRE_DEFAULT; 7099 else 7100 type = IRE_PREFIX; 7101 7102 /* check for a duplicate entry */ 7103 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7104 NULL, ALL_ZONES, 0, NULL, 7105 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7106 if (ire != NULL) { 7107 ire_refrele(gw_ire); 7108 ire_refrele(ire); 7109 return (EEXIST); 7110 } 7111 7112 /* Security attribute exists */ 7113 if (sp != NULL) { 7114 tsol_gcgrp_addr_t ga; 7115 7116 /* find or create the gateway credentials group */ 7117 ga.ga_af = AF_INET; 7118 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7119 7120 /* we hold reference to it upon success */ 7121 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7122 if (gcgrp == NULL) { 7123 ire_refrele(gw_ire); 7124 return (ENOMEM); 7125 } 7126 7127 /* 7128 * Create and add the security attribute to the group; a 7129 * reference to the group is made upon allocating a new 7130 * entry successfully. If it finds an already-existing 7131 * entry for the security attribute in the group, it simply 7132 * returns it and no new reference is made to the group. 7133 */ 7134 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7135 if (gc == NULL) { 7136 /* release reference held by gcgrp_lookup */ 7137 GCGRP_REFRELE(gcgrp); 7138 ire_refrele(gw_ire); 7139 return (ENOMEM); 7140 } 7141 } 7142 7143 /* Create the IRE. */ 7144 ire = ire_create( 7145 (uchar_t *)&dst_addr, /* dest address */ 7146 (uchar_t *)&mask, /* mask */ 7147 /* src address assigned by the caller? */ 7148 (uchar_t *)(((src_addr != INADDR_ANY) && 7149 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7150 (uchar_t *)&gw_addr, /* gateway address */ 7151 &gw_ire->ire_max_frag, 7152 NULL, /* no src nce */ 7153 NULL, /* no recv-from queue */ 7154 NULL, /* no send-to queue */ 7155 (ushort_t)type, /* IRE type */ 7156 ipif_arg, 7157 0, 7158 0, 7159 0, 7160 flags, 7161 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7162 gc, /* security attribute */ 7163 NULL, 7164 ipst); 7165 7166 /* 7167 * The ire holds a reference to the 'gc' and the 'gc' holds a 7168 * reference to the 'gcgrp'. We can now release the extra reference 7169 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7170 */ 7171 if (gcgrp_xtraref) 7172 GCGRP_REFRELE(gcgrp); 7173 if (ire == NULL) { 7174 if (gc != NULL) 7175 GC_REFRELE(gc); 7176 ire_refrele(gw_ire); 7177 return (ENOMEM); 7178 } 7179 7180 /* 7181 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7182 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7183 */ 7184 7185 /* Add the new IRE. */ 7186 error = ire_add(&ire, q, mp, func, B_FALSE); 7187 if (error != 0) { 7188 /* 7189 * In the result of failure, ire_add() will have already 7190 * deleted the ire in question, so there is no need to 7191 * do that here. 7192 */ 7193 ire_refrele(gw_ire); 7194 return (error); 7195 } 7196 7197 if (flags & RTF_MULTIRT) { 7198 /* 7199 * Invoke the CGTP (multirouting) filtering module 7200 * to add the dst address in the filtering database. 7201 * Replicated inbound packets coming from that address 7202 * will be filtered to discard the duplicates. 7203 * It is not necessary to call the CGTP filter hook 7204 * when the dst address is a broadcast or multicast, 7205 * because an IP source address cannot be a broadcast 7206 * or a multicast. 7207 */ 7208 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7209 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7210 if (ire_dst != NULL) { 7211 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7212 ire_refrele(ire_dst); 7213 goto save_ire; 7214 } 7215 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7216 !CLASSD(ire->ire_addr)) { 7217 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7218 ipst->ips_netstack->netstack_stackid, 7219 ire->ire_addr, 7220 ire->ire_gateway_addr, 7221 ire->ire_src_addr, 7222 gw_ire->ire_src_addr); 7223 if (res != 0) { 7224 ire_refrele(gw_ire); 7225 ire_delete(ire); 7226 return (res); 7227 } 7228 } 7229 } 7230 7231 /* 7232 * Now that the prefix IRE entry has been created, delete any 7233 * existing gateway IRE cache entries as well as any IRE caches 7234 * using the gateway, and force them to be created through 7235 * ip_newroute. 7236 */ 7237 if (gc != NULL) { 7238 ASSERT(gcgrp != NULL); 7239 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7240 } 7241 7242 save_ire: 7243 if (gw_ire != NULL) { 7244 ire_refrele(gw_ire); 7245 } 7246 if (ipif != NULL) { 7247 /* 7248 * Save enough information so that we can recreate the IRE if 7249 * the interface goes down and then up. The metrics associated 7250 * with the route will be saved as well when rts_setmetrics() is 7251 * called after the IRE has been created. In the case where 7252 * memory cannot be allocated, none of this information will be 7253 * saved. 7254 */ 7255 ipif_save_ire(ipif, ire); 7256 } 7257 if (ioctl_msg) 7258 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7259 if (ire_arg != NULL) { 7260 /* 7261 * Store the ire that was successfully added into where ire_arg 7262 * points to so that callers don't have to look it up 7263 * themselves (but they are responsible for ire_refrele()ing 7264 * the ire when they are finished with it). 7265 */ 7266 *ire_arg = ire; 7267 } else { 7268 ire_refrele(ire); /* Held in ire_add */ 7269 } 7270 if (ipif_refheld) 7271 ipif_refrele(ipif); 7272 return (0); 7273 } 7274 7275 /* 7276 * ip_rt_delete is called to delete an IPv4 route. 7277 * ipif_arg is passed in to associate it with the correct interface. 7278 * We may need to restart this operation if the ipif cannot be looked up 7279 * due to an exclusive operation that is currently in progress. The restart 7280 * entry point is specified by 'func' 7281 */ 7282 /* ARGSUSED4 */ 7283 int 7284 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7285 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7286 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7287 { 7288 ire_t *ire = NULL; 7289 ipif_t *ipif; 7290 boolean_t ipif_refheld = B_FALSE; 7291 uint_t type; 7292 uint_t match_flags = MATCH_IRE_TYPE; 7293 int err = 0; 7294 7295 ip1dbg(("ip_rt_delete:")); 7296 /* 7297 * If this is the case of RTF_HOST being set, then we set the netmask 7298 * to all ones. Otherwise, we use the netmask if one was supplied. 7299 */ 7300 if (flags & RTF_HOST) { 7301 mask = IP_HOST_MASK; 7302 match_flags |= MATCH_IRE_MASK; 7303 } else if (rtm_addrs & RTA_NETMASK) { 7304 match_flags |= MATCH_IRE_MASK; 7305 } 7306 7307 /* 7308 * Note that RTF_GATEWAY is never set on a delete, therefore 7309 * we check if the gateway address is one of our interfaces first, 7310 * and fall back on RTF_GATEWAY routes. 7311 * 7312 * This makes it possible to delete an original 7313 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7314 * 7315 * As the interface index specified with the RTA_IFP sockaddr is the 7316 * same for all ipif's off of an ill, the matching logic below uses 7317 * MATCH_IRE_ILL if such an index was specified. This means a route 7318 * sharing the same prefix and interface index as the the route 7319 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7320 * is specified in the request. 7321 * 7322 * On the other hand, since the gateway address will usually be 7323 * different for each ipif on the system, the matching logic 7324 * uses MATCH_IRE_IPIF in the case of a traditional interface 7325 * route. This means that interface routes for the same prefix can be 7326 * uniquely identified if they belong to distinct ipif's and if a 7327 * RTA_IFP sockaddr is not present. 7328 * 7329 * For more detail on specifying routes by gateway address and by 7330 * interface index, see the comments in ip_rt_add(). 7331 */ 7332 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7333 ipst); 7334 if (ipif != NULL) 7335 ipif_refheld = B_TRUE; 7336 else if (err == EINPROGRESS) 7337 return (err); 7338 else 7339 err = 0; 7340 if (ipif != NULL) { 7341 if (ipif_arg != NULL) { 7342 if (ipif_refheld) { 7343 ipif_refrele(ipif); 7344 ipif_refheld = B_FALSE; 7345 } 7346 ipif = ipif_arg; 7347 match_flags |= MATCH_IRE_ILL; 7348 } else { 7349 match_flags |= MATCH_IRE_IPIF; 7350 } 7351 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7352 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7353 ALL_ZONES, NULL, match_flags, ipst); 7354 } 7355 if (ire == NULL) { 7356 ire = ire_ftable_lookup(dst_addr, mask, 0, 7357 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7358 match_flags, ipst); 7359 } 7360 } 7361 7362 if (ire == NULL) { 7363 /* 7364 * At this point, the gateway address is not one of our own 7365 * addresses or a matching interface route was not found. We 7366 * set the IRE type to lookup based on whether 7367 * this is a host route, a default route or just a prefix. 7368 * 7369 * If an ipif_arg was passed in, then the lookup is based on an 7370 * interface index so MATCH_IRE_ILL is added to match_flags. 7371 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7372 * set as the route being looked up is not a traditional 7373 * interface route. 7374 */ 7375 match_flags &= ~MATCH_IRE_IPIF; 7376 match_flags |= MATCH_IRE_GW; 7377 if (ipif_arg != NULL) 7378 match_flags |= MATCH_IRE_ILL; 7379 if (mask == IP_HOST_MASK) 7380 type = IRE_HOST; 7381 else if (mask == 0) 7382 type = IRE_DEFAULT; 7383 else 7384 type = IRE_PREFIX; 7385 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7386 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7387 } 7388 7389 if (ipif_refheld) 7390 ipif_refrele(ipif); 7391 7392 /* ipif is not refheld anymore */ 7393 if (ire == NULL) 7394 return (ESRCH); 7395 7396 if (ire->ire_flags & RTF_MULTIRT) { 7397 /* 7398 * Invoke the CGTP (multirouting) filtering module 7399 * to remove the dst address from the filtering database. 7400 * Packets coming from that address will no longer be 7401 * filtered to remove duplicates. 7402 */ 7403 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7404 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7405 ipst->ips_netstack->netstack_stackid, 7406 ire->ire_addr, ire->ire_gateway_addr); 7407 } 7408 ip_cgtp_bcast_delete(ire, ipst); 7409 } 7410 7411 ipif = ire->ire_ipif; 7412 if (ipif != NULL) 7413 ipif_remove_ire(ipif, ire); 7414 if (ioctl_msg) 7415 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7416 ire_delete(ire); 7417 ire_refrele(ire); 7418 return (err); 7419 } 7420 7421 /* 7422 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7423 */ 7424 /* ARGSUSED */ 7425 int 7426 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7427 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7428 { 7429 ipaddr_t dst_addr; 7430 ipaddr_t gw_addr; 7431 ipaddr_t mask; 7432 int error = 0; 7433 mblk_t *mp1; 7434 struct rtentry *rt; 7435 ipif_t *ipif = NULL; 7436 ip_stack_t *ipst; 7437 7438 ASSERT(q->q_next == NULL); 7439 ipst = CONNQ_TO_IPST(q); 7440 7441 ip1dbg(("ip_siocaddrt:")); 7442 /* Existence of mp1 verified in ip_wput_nondata */ 7443 mp1 = mp->b_cont->b_cont; 7444 rt = (struct rtentry *)mp1->b_rptr; 7445 7446 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7447 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7448 7449 /* 7450 * If the RTF_HOST flag is on, this is a request to assign a gateway 7451 * to a particular host address. In this case, we set the netmask to 7452 * all ones for the particular destination address. Otherwise, 7453 * determine the netmask to be used based on dst_addr and the interfaces 7454 * in use. 7455 */ 7456 if (rt->rt_flags & RTF_HOST) { 7457 mask = IP_HOST_MASK; 7458 } else { 7459 /* 7460 * Note that ip_subnet_mask returns a zero mask in the case of 7461 * default (an all-zeroes address). 7462 */ 7463 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7464 } 7465 7466 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7467 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7468 if (ipif != NULL) 7469 ipif_refrele(ipif); 7470 return (error); 7471 } 7472 7473 /* 7474 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7475 */ 7476 /* ARGSUSED */ 7477 int 7478 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7479 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7480 { 7481 ipaddr_t dst_addr; 7482 ipaddr_t gw_addr; 7483 ipaddr_t mask; 7484 int error; 7485 mblk_t *mp1; 7486 struct rtentry *rt; 7487 ipif_t *ipif = NULL; 7488 ip_stack_t *ipst; 7489 7490 ASSERT(q->q_next == NULL); 7491 ipst = CONNQ_TO_IPST(q); 7492 7493 ip1dbg(("ip_siocdelrt:")); 7494 /* Existence of mp1 verified in ip_wput_nondata */ 7495 mp1 = mp->b_cont->b_cont; 7496 rt = (struct rtentry *)mp1->b_rptr; 7497 7498 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7499 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7500 7501 /* 7502 * If the RTF_HOST flag is on, this is a request to delete a gateway 7503 * to a particular host address. In this case, we set the netmask to 7504 * all ones for the particular destination address. Otherwise, 7505 * determine the netmask to be used based on dst_addr and the interfaces 7506 * in use. 7507 */ 7508 if (rt->rt_flags & RTF_HOST) { 7509 mask = IP_HOST_MASK; 7510 } else { 7511 /* 7512 * Note that ip_subnet_mask returns a zero mask in the case of 7513 * default (an all-zeroes address). 7514 */ 7515 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7516 } 7517 7518 error = ip_rt_delete(dst_addr, mask, gw_addr, 7519 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7520 mp, ip_process_ioctl, ipst); 7521 if (ipif != NULL) 7522 ipif_refrele(ipif); 7523 return (error); 7524 } 7525 7526 /* 7527 * Enqueue the mp onto the ipsq, chained by b_next. 7528 * b_prev stores the function to be executed later, and b_queue the queue 7529 * where this mp originated. 7530 */ 7531 void 7532 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7533 ill_t *pending_ill) 7534 { 7535 conn_t *connp = NULL; 7536 7537 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7538 ASSERT(func != NULL); 7539 7540 mp->b_queue = q; 7541 mp->b_prev = (void *)func; 7542 mp->b_next = NULL; 7543 7544 switch (type) { 7545 case CUR_OP: 7546 if (ipsq->ipsq_mptail != NULL) { 7547 ASSERT(ipsq->ipsq_mphead != NULL); 7548 ipsq->ipsq_mptail->b_next = mp; 7549 } else { 7550 ASSERT(ipsq->ipsq_mphead == NULL); 7551 ipsq->ipsq_mphead = mp; 7552 } 7553 ipsq->ipsq_mptail = mp; 7554 break; 7555 7556 case NEW_OP: 7557 if (ipsq->ipsq_xopq_mptail != NULL) { 7558 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7559 ipsq->ipsq_xopq_mptail->b_next = mp; 7560 } else { 7561 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7562 ipsq->ipsq_xopq_mphead = mp; 7563 } 7564 ipsq->ipsq_xopq_mptail = mp; 7565 break; 7566 default: 7567 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7568 } 7569 7570 if (CONN_Q(q) && pending_ill != NULL) { 7571 connp = Q_TO_CONN(q); 7572 7573 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7574 connp->conn_oper_pending_ill = pending_ill; 7575 } 7576 } 7577 7578 /* 7579 * Return the mp at the head of the ipsq. After emptying the ipsq 7580 * look at the next ioctl, if this ioctl is complete. Otherwise 7581 * return, we will resume when we complete the current ioctl. 7582 * The current ioctl will wait till it gets a response from the 7583 * driver below. 7584 */ 7585 static mblk_t * 7586 ipsq_dq(ipsq_t *ipsq) 7587 { 7588 mblk_t *mp; 7589 7590 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7591 7592 mp = ipsq->ipsq_mphead; 7593 if (mp != NULL) { 7594 ipsq->ipsq_mphead = mp->b_next; 7595 if (ipsq->ipsq_mphead == NULL) 7596 ipsq->ipsq_mptail = NULL; 7597 mp->b_next = NULL; 7598 return (mp); 7599 } 7600 if (ipsq->ipsq_current_ipif != NULL) 7601 return (NULL); 7602 mp = ipsq->ipsq_xopq_mphead; 7603 if (mp != NULL) { 7604 ipsq->ipsq_xopq_mphead = mp->b_next; 7605 if (ipsq->ipsq_xopq_mphead == NULL) 7606 ipsq->ipsq_xopq_mptail = NULL; 7607 mp->b_next = NULL; 7608 return (mp); 7609 } 7610 return (NULL); 7611 } 7612 7613 /* 7614 * Enter the ipsq corresponding to ill, by waiting synchronously till 7615 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7616 * will have to drain completely before ipsq_enter returns success. 7617 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7618 * and the ipsq_exit logic will start the next enqueued ioctl after 7619 * completion of the current ioctl. If 'force' is used, we don't wait 7620 * for the enqueued ioctls. This is needed when a conn_close wants to 7621 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7622 * of an ill can also use this option. But we dont' use it currently. 7623 */ 7624 #define ENTER_SQ_WAIT_TICKS 100 7625 boolean_t 7626 ipsq_enter(ill_t *ill, boolean_t force) 7627 { 7628 ipsq_t *ipsq; 7629 boolean_t waited_enough = B_FALSE; 7630 7631 /* 7632 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7633 * Since the <ill-ipsq> assocs could change while we wait for the 7634 * writer, it is easier to wait on a fixed global rather than try to 7635 * cv_wait on a changing ipsq. 7636 */ 7637 mutex_enter(&ill->ill_lock); 7638 for (;;) { 7639 if (ill->ill_state_flags & ILL_CONDEMNED) { 7640 mutex_exit(&ill->ill_lock); 7641 return (B_FALSE); 7642 } 7643 7644 ipsq = ill->ill_phyint->phyint_ipsq; 7645 mutex_enter(&ipsq->ipsq_lock); 7646 if (ipsq->ipsq_writer == NULL && 7647 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7648 break; 7649 } else if (ipsq->ipsq_writer != NULL) { 7650 mutex_exit(&ipsq->ipsq_lock); 7651 cv_wait(&ill->ill_cv, &ill->ill_lock); 7652 } else { 7653 mutex_exit(&ipsq->ipsq_lock); 7654 if (force) { 7655 (void) cv_timedwait(&ill->ill_cv, 7656 &ill->ill_lock, 7657 lbolt + ENTER_SQ_WAIT_TICKS); 7658 waited_enough = B_TRUE; 7659 continue; 7660 } else { 7661 cv_wait(&ill->ill_cv, &ill->ill_lock); 7662 } 7663 } 7664 } 7665 7666 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7667 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7668 ipsq->ipsq_writer = curthread; 7669 ipsq->ipsq_reentry_cnt++; 7670 #ifdef DEBUG 7671 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7672 #endif 7673 mutex_exit(&ipsq->ipsq_lock); 7674 mutex_exit(&ill->ill_lock); 7675 return (B_TRUE); 7676 } 7677 7678 /* 7679 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7680 * certain critical operations like plumbing (i.e. most set ioctls), 7681 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7682 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7683 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7684 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7685 * threads executing in the ipsq. Responses from the driver pertain to the 7686 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7687 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7688 * 7689 * If a thread does not want to reenter the ipsq when it is already writer, 7690 * it must make sure that the specified reentry point to be called later 7691 * when the ipsq is empty, nor any code path starting from the specified reentry 7692 * point must never ever try to enter the ipsq again. Otherwise it can lead 7693 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7694 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7695 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7696 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7697 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7698 * ioctl if the current ioctl has completed. If the current ioctl is still 7699 * in progress it simply returns. The current ioctl could be waiting for 7700 * a response from another module (arp_ or the driver or could be waiting for 7701 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7702 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7703 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7704 * ipsq_current_ipif is clear which happens only on ioctl completion. 7705 */ 7706 7707 /* 7708 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7709 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7710 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7711 * completion. 7712 */ 7713 ipsq_t * 7714 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7715 ipsq_func_t func, int type, boolean_t reentry_ok) 7716 { 7717 ipsq_t *ipsq; 7718 7719 /* Only 1 of ipif or ill can be specified */ 7720 ASSERT((ipif != NULL) ^ (ill != NULL)); 7721 if (ipif != NULL) 7722 ill = ipif->ipif_ill; 7723 7724 /* 7725 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7726 * ipsq of an ill can't change when ill_lock is held. 7727 */ 7728 GRAB_CONN_LOCK(q); 7729 mutex_enter(&ill->ill_lock); 7730 ipsq = ill->ill_phyint->phyint_ipsq; 7731 mutex_enter(&ipsq->ipsq_lock); 7732 7733 /* 7734 * 1. Enter the ipsq if we are already writer and reentry is ok. 7735 * (Note: If the caller does not specify reentry_ok then neither 7736 * 'func' nor any of its callees must ever attempt to enter the ipsq 7737 * again. Otherwise it can lead to an infinite loop 7738 * 2. Enter the ipsq if there is no current writer and this attempted 7739 * entry is part of the current ioctl or operation 7740 * 3. Enter the ipsq if there is no current writer and this is a new 7741 * ioctl (or operation) and the ioctl (or operation) queue is 7742 * empty and there is no ioctl (or operation) currently in progress 7743 */ 7744 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7745 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7746 ipsq->ipsq_current_ipif == NULL))) || 7747 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7748 /* Success. */ 7749 ipsq->ipsq_reentry_cnt++; 7750 ipsq->ipsq_writer = curthread; 7751 mutex_exit(&ipsq->ipsq_lock); 7752 mutex_exit(&ill->ill_lock); 7753 RELEASE_CONN_LOCK(q); 7754 #ifdef DEBUG 7755 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7756 IPSQ_STACK_DEPTH); 7757 #endif 7758 return (ipsq); 7759 } 7760 7761 ipsq_enq(ipsq, q, mp, func, type, ill); 7762 7763 mutex_exit(&ipsq->ipsq_lock); 7764 mutex_exit(&ill->ill_lock); 7765 RELEASE_CONN_LOCK(q); 7766 return (NULL); 7767 } 7768 7769 /* 7770 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7771 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7772 * cannot be entered, the mp is queued for completion. 7773 */ 7774 void 7775 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7776 boolean_t reentry_ok) 7777 { 7778 ipsq_t *ipsq; 7779 7780 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7781 7782 /* 7783 * Drop the caller's refhold on the ill. This is safe since we either 7784 * entered the IPSQ (and thus are exclusive), or failed to enter the 7785 * IPSQ, in which case we return without accessing ill anymore. This 7786 * is needed because func needs to see the correct refcount. 7787 * e.g. removeif can work only then. 7788 */ 7789 ill_refrele(ill); 7790 if (ipsq != NULL) { 7791 (*func)(ipsq, q, mp, NULL); 7792 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7793 } 7794 } 7795 7796 /* 7797 * If there are more than ILL_GRP_CNT ills in a group, 7798 * we use kmem alloc'd buffers, else use the stack 7799 */ 7800 #define ILL_GRP_CNT 14 7801 /* 7802 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7803 * Called by a thread that is currently exclusive on this ipsq. 7804 */ 7805 void 7806 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7807 { 7808 queue_t *q; 7809 mblk_t *mp; 7810 ipsq_func_t func; 7811 int next; 7812 ill_t **ill_list = NULL; 7813 size_t ill_list_size = 0; 7814 int cnt = 0; 7815 boolean_t need_ipsq_free = B_FALSE; 7816 ip_stack_t *ipst = ipsq->ipsq_ipst; 7817 7818 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7819 mutex_enter(&ipsq->ipsq_lock); 7820 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7821 if (ipsq->ipsq_reentry_cnt != 1) { 7822 ipsq->ipsq_reentry_cnt--; 7823 mutex_exit(&ipsq->ipsq_lock); 7824 return; 7825 } 7826 7827 mp = ipsq_dq(ipsq); 7828 while (mp != NULL) { 7829 again: 7830 mutex_exit(&ipsq->ipsq_lock); 7831 func = (ipsq_func_t)mp->b_prev; 7832 q = (queue_t *)mp->b_queue; 7833 mp->b_prev = NULL; 7834 mp->b_queue = NULL; 7835 7836 /* 7837 * If 'q' is an conn queue, it is valid, since we did a 7838 * a refhold on the connp, at the start of the ioctl. 7839 * If 'q' is an ill queue, it is valid, since close of an 7840 * ill will clean up the 'ipsq'. 7841 */ 7842 (*func)(ipsq, q, mp, NULL); 7843 7844 mutex_enter(&ipsq->ipsq_lock); 7845 mp = ipsq_dq(ipsq); 7846 } 7847 7848 mutex_exit(&ipsq->ipsq_lock); 7849 7850 /* 7851 * Need to grab the locks in the right order. Need to 7852 * atomically check (under ipsq_lock) that there are no 7853 * messages before relinquishing the ipsq. Also need to 7854 * atomically wakeup waiters on ill_cv while holding ill_lock. 7855 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7856 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7857 * to grab ill_g_lock as writer. 7858 */ 7859 rw_enter(&ipst->ips_ill_g_lock, 7860 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7861 7862 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7863 if (ipsq->ipsq_refs != 0) { 7864 /* At most 2 ills v4/v6 per phyint */ 7865 cnt = ipsq->ipsq_refs << 1; 7866 ill_list_size = cnt * sizeof (ill_t *); 7867 /* 7868 * If memory allocation fails, we will do the split 7869 * the next time ipsq_exit is called for whatever reason. 7870 * As long as the ipsq_split flag is set the need to 7871 * split is remembered. 7872 */ 7873 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7874 if (ill_list != NULL) 7875 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7876 } 7877 mutex_enter(&ipsq->ipsq_lock); 7878 mp = ipsq_dq(ipsq); 7879 if (mp != NULL) { 7880 /* oops, some message has landed up, we can't get out */ 7881 if (ill_list != NULL) 7882 ill_unlock_ills(ill_list, cnt); 7883 rw_exit(&ipst->ips_ill_g_lock); 7884 if (ill_list != NULL) 7885 kmem_free(ill_list, ill_list_size); 7886 ill_list = NULL; 7887 ill_list_size = 0; 7888 cnt = 0; 7889 goto again; 7890 } 7891 7892 /* 7893 * Split only if no ioctl is pending and if memory alloc succeeded 7894 * above. 7895 */ 7896 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7897 ill_list != NULL) { 7898 /* 7899 * No new ill can join this ipsq since we are holding the 7900 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7901 * ipsq. ill_split_ipsq may fail due to memory shortage. 7902 * If so we will retry on the next ipsq_exit. 7903 */ 7904 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7905 } 7906 7907 /* 7908 * We are holding the ipsq lock, hence no new messages can 7909 * land up on the ipsq, and there are no messages currently. 7910 * Now safe to get out. Wake up waiters and relinquish ipsq 7911 * atomically while holding ill locks. 7912 */ 7913 ipsq->ipsq_writer = NULL; 7914 ipsq->ipsq_reentry_cnt--; 7915 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7916 #ifdef DEBUG 7917 ipsq->ipsq_depth = 0; 7918 #endif 7919 mutex_exit(&ipsq->ipsq_lock); 7920 /* 7921 * For IPMP this should wake up all ills in this ipsq. 7922 * We need to hold the ill_lock while waking up waiters to 7923 * avoid missed wakeups. But there is no need to acquire all 7924 * the ill locks and then wakeup. If we have not acquired all 7925 * the locks (due to memory failure above) ill_signal_ipsq_ills 7926 * wakes up ills one at a time after getting the right ill_lock 7927 */ 7928 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7929 if (ill_list != NULL) 7930 ill_unlock_ills(ill_list, cnt); 7931 if (ipsq->ipsq_refs == 0) 7932 need_ipsq_free = B_TRUE; 7933 rw_exit(&ipst->ips_ill_g_lock); 7934 if (ill_list != 0) 7935 kmem_free(ill_list, ill_list_size); 7936 7937 if (need_ipsq_free) { 7938 /* 7939 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7940 * looked up. ipsq can be looked up only thru ill or phyint 7941 * and there are no ills/phyint on this ipsq. 7942 */ 7943 ipsq_delete(ipsq); 7944 } 7945 /* 7946 * Now start any igmp or mld timers that could not be started 7947 * while inside the ipsq. The timers can't be started while inside 7948 * the ipsq, since igmp_start_timers may need to call untimeout() 7949 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7950 * there could be a deadlock since the timeout handlers 7951 * mld_timeout_handler / igmp_timeout_handler also synchronously 7952 * wait in ipsq_enter() trying to get the ipsq. 7953 * 7954 * However there is one exception to the above. If this thread is 7955 * itself the igmp/mld timeout handler thread, then we don't want 7956 * to start any new timer until the current handler is done. The 7957 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7958 * all others pass B_TRUE. 7959 */ 7960 if (start_igmp_timer) { 7961 mutex_enter(&ipst->ips_igmp_timer_lock); 7962 next = ipst->ips_igmp_deferred_next; 7963 ipst->ips_igmp_deferred_next = INFINITY; 7964 mutex_exit(&ipst->ips_igmp_timer_lock); 7965 7966 if (next != INFINITY) 7967 igmp_start_timers(next, ipst); 7968 } 7969 7970 if (start_mld_timer) { 7971 mutex_enter(&ipst->ips_mld_timer_lock); 7972 next = ipst->ips_mld_deferred_next; 7973 ipst->ips_mld_deferred_next = INFINITY; 7974 mutex_exit(&ipst->ips_mld_timer_lock); 7975 7976 if (next != INFINITY) 7977 mld_start_timers(next, ipst); 7978 } 7979 } 7980 7981 /* 7982 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7983 * and `ioccmd'. 7984 */ 7985 void 7986 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 7987 { 7988 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7989 7990 mutex_enter(&ipsq->ipsq_lock); 7991 ASSERT(ipsq->ipsq_current_ipif == NULL); 7992 ASSERT(ipsq->ipsq_current_ioctl == 0); 7993 ipsq->ipsq_current_ipif = ipif; 7994 ipsq->ipsq_current_ioctl = ioccmd; 7995 mutex_exit(&ipsq->ipsq_lock); 7996 } 7997 7998 /* 7999 * Finish the current exclusive operation on `ipsq'. Note that other 8000 * operations will not be able to proceed until an ipsq_exit() is done. 8001 */ 8002 void 8003 ipsq_current_finish(ipsq_t *ipsq) 8004 { 8005 ipif_t *ipif = ipsq->ipsq_current_ipif; 8006 8007 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8008 8009 /* 8010 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8011 * (but we're careful to never set IPIF_CHANGING in that case). 8012 */ 8013 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8014 mutex_enter(&ipif->ipif_ill->ill_lock); 8015 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8016 8017 /* Send any queued event */ 8018 ill_nic_info_dispatch(ipif->ipif_ill); 8019 mutex_exit(&ipif->ipif_ill->ill_lock); 8020 } 8021 8022 mutex_enter(&ipsq->ipsq_lock); 8023 ASSERT(ipsq->ipsq_current_ipif != NULL); 8024 ipsq->ipsq_current_ipif = NULL; 8025 ipsq->ipsq_current_ioctl = 0; 8026 mutex_exit(&ipsq->ipsq_lock); 8027 } 8028 8029 /* 8030 * The ill is closing. Flush all messages on the ipsq that originated 8031 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8032 * for this ill since ipsq_enter could not have entered until then. 8033 * New messages can't be queued since the CONDEMNED flag is set. 8034 */ 8035 static void 8036 ipsq_flush(ill_t *ill) 8037 { 8038 queue_t *q; 8039 mblk_t *prev; 8040 mblk_t *mp; 8041 mblk_t *mp_next; 8042 ipsq_t *ipsq; 8043 8044 ASSERT(IAM_WRITER_ILL(ill)); 8045 ipsq = ill->ill_phyint->phyint_ipsq; 8046 /* 8047 * Flush any messages sent up by the driver. 8048 */ 8049 mutex_enter(&ipsq->ipsq_lock); 8050 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8051 mp_next = mp->b_next; 8052 q = mp->b_queue; 8053 if (q == ill->ill_rq || q == ill->ill_wq) { 8054 /* Remove the mp from the ipsq */ 8055 if (prev == NULL) 8056 ipsq->ipsq_mphead = mp->b_next; 8057 else 8058 prev->b_next = mp->b_next; 8059 if (ipsq->ipsq_mptail == mp) { 8060 ASSERT(mp_next == NULL); 8061 ipsq->ipsq_mptail = prev; 8062 } 8063 inet_freemsg(mp); 8064 } else { 8065 prev = mp; 8066 } 8067 } 8068 mutex_exit(&ipsq->ipsq_lock); 8069 (void) ipsq_pending_mp_cleanup(ill, NULL); 8070 ipsq_xopq_mp_cleanup(ill, NULL); 8071 ill_pending_mp_cleanup(ill); 8072 } 8073 8074 /* ARGSUSED */ 8075 int 8076 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8077 ip_ioctl_cmd_t *ipip, void *ifreq) 8078 { 8079 ill_t *ill; 8080 struct lifreq *lifr = (struct lifreq *)ifreq; 8081 boolean_t isv6; 8082 conn_t *connp; 8083 ip_stack_t *ipst; 8084 8085 connp = Q_TO_CONN(q); 8086 ipst = connp->conn_netstack->netstack_ip; 8087 isv6 = connp->conn_af_isv6; 8088 /* 8089 * Set original index. 8090 * Failover and failback move logical interfaces 8091 * from one physical interface to another. The 8092 * original index indicates the parent of a logical 8093 * interface, in other words, the physical interface 8094 * the logical interface will be moved back to on 8095 * failback. 8096 */ 8097 8098 /* 8099 * Don't allow the original index to be changed 8100 * for non-failover addresses, autoconfigured 8101 * addresses, or IPv6 link local addresses. 8102 */ 8103 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8104 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8105 return (EINVAL); 8106 } 8107 /* 8108 * The new original index must be in use by some 8109 * physical interface. 8110 */ 8111 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8112 NULL, NULL, ipst); 8113 if (ill == NULL) 8114 return (ENXIO); 8115 ill_refrele(ill); 8116 8117 ipif->ipif_orig_ifindex = lifr->lifr_index; 8118 /* 8119 * When this ipif gets failed back, don't 8120 * preserve the original id, as it is no 8121 * longer applicable. 8122 */ 8123 ipif->ipif_orig_ipifid = 0; 8124 /* 8125 * For IPv4, change the original index of any 8126 * multicast addresses associated with the 8127 * ipif to the new value. 8128 */ 8129 if (!isv6) { 8130 ilm_t *ilm; 8131 8132 mutex_enter(&ipif->ipif_ill->ill_lock); 8133 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8134 ilm = ilm->ilm_next) { 8135 if (ilm->ilm_ipif == ipif) { 8136 ilm->ilm_orig_ifindex = lifr->lifr_index; 8137 } 8138 } 8139 mutex_exit(&ipif->ipif_ill->ill_lock); 8140 } 8141 return (0); 8142 } 8143 8144 /* ARGSUSED */ 8145 int 8146 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8147 ip_ioctl_cmd_t *ipip, void *ifreq) 8148 { 8149 struct lifreq *lifr = (struct lifreq *)ifreq; 8150 8151 /* 8152 * Get the original interface index i.e the one 8153 * before FAILOVER if it ever happened. 8154 */ 8155 lifr->lifr_index = ipif->ipif_orig_ifindex; 8156 return (0); 8157 } 8158 8159 /* 8160 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8161 * refhold and return the associated ipif 8162 */ 8163 /* ARGSUSED */ 8164 int 8165 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8166 cmd_info_t *ci, ipsq_func_t func) 8167 { 8168 boolean_t exists; 8169 struct iftun_req *ta; 8170 ipif_t *ipif; 8171 ill_t *ill; 8172 boolean_t isv6; 8173 mblk_t *mp1; 8174 int error; 8175 conn_t *connp; 8176 ip_stack_t *ipst; 8177 8178 /* Existence verified in ip_wput_nondata */ 8179 mp1 = mp->b_cont->b_cont; 8180 ta = (struct iftun_req *)mp1->b_rptr; 8181 /* 8182 * Null terminate the string to protect against buffer 8183 * overrun. String was generated by user code and may not 8184 * be trusted. 8185 */ 8186 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8187 8188 connp = Q_TO_CONN(q); 8189 isv6 = connp->conn_af_isv6; 8190 ipst = connp->conn_netstack->netstack_ip; 8191 8192 /* Disallows implicit create */ 8193 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8194 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8195 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8196 if (ipif == NULL) 8197 return (error); 8198 8199 if (ipif->ipif_id != 0) { 8200 /* 8201 * We really don't want to set/get tunnel parameters 8202 * on virtual tunnel interfaces. Only allow the 8203 * base tunnel to do these. 8204 */ 8205 ipif_refrele(ipif); 8206 return (EINVAL); 8207 } 8208 8209 /* 8210 * Send down to tunnel mod for ioctl processing. 8211 * Will finish ioctl in ip_rput_other(). 8212 */ 8213 ill = ipif->ipif_ill; 8214 if (ill->ill_net_type == IRE_LOOPBACK) { 8215 ipif_refrele(ipif); 8216 return (EOPNOTSUPP); 8217 } 8218 8219 if (ill->ill_wq == NULL) { 8220 ipif_refrele(ipif); 8221 return (ENXIO); 8222 } 8223 /* 8224 * Mark the ioctl as coming from an IPv6 interface for 8225 * tun's convenience. 8226 */ 8227 if (ill->ill_isv6) 8228 ta->ifta_flags |= 0x80000000; 8229 ci->ci_ipif = ipif; 8230 return (0); 8231 } 8232 8233 /* 8234 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8235 * and return the associated ipif. 8236 * Return value: 8237 * Non zero: An error has occurred. ci may not be filled out. 8238 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8239 * a held ipif in ci.ci_ipif. 8240 */ 8241 int 8242 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8243 cmd_info_t *ci, ipsq_func_t func) 8244 { 8245 sin_t *sin; 8246 sin6_t *sin6; 8247 char *name; 8248 struct ifreq *ifr; 8249 struct lifreq *lifr; 8250 ipif_t *ipif = NULL; 8251 ill_t *ill; 8252 conn_t *connp; 8253 boolean_t isv6; 8254 boolean_t exists; 8255 int err; 8256 mblk_t *mp1; 8257 zoneid_t zoneid; 8258 ip_stack_t *ipst; 8259 8260 if (q->q_next != NULL) { 8261 ill = (ill_t *)q->q_ptr; 8262 isv6 = ill->ill_isv6; 8263 connp = NULL; 8264 zoneid = ALL_ZONES; 8265 ipst = ill->ill_ipst; 8266 } else { 8267 ill = NULL; 8268 connp = Q_TO_CONN(q); 8269 isv6 = connp->conn_af_isv6; 8270 zoneid = connp->conn_zoneid; 8271 if (zoneid == GLOBAL_ZONEID) { 8272 /* global zone can access ipifs in all zones */ 8273 zoneid = ALL_ZONES; 8274 } 8275 ipst = connp->conn_netstack->netstack_ip; 8276 } 8277 8278 /* Has been checked in ip_wput_nondata */ 8279 mp1 = mp->b_cont->b_cont; 8280 8281 if (ipip->ipi_cmd_type == IF_CMD) { 8282 /* This a old style SIOC[GS]IF* command */ 8283 ifr = (struct ifreq *)mp1->b_rptr; 8284 /* 8285 * Null terminate the string to protect against buffer 8286 * overrun. String was generated by user code and may not 8287 * be trusted. 8288 */ 8289 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8290 sin = (sin_t *)&ifr->ifr_addr; 8291 name = ifr->ifr_name; 8292 ci->ci_sin = sin; 8293 ci->ci_sin6 = NULL; 8294 ci->ci_lifr = (struct lifreq *)ifr; 8295 } else { 8296 /* This a new style SIOC[GS]LIF* command */ 8297 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8298 lifr = (struct lifreq *)mp1->b_rptr; 8299 /* 8300 * Null terminate the string to protect against buffer 8301 * overrun. String was generated by user code and may not 8302 * be trusted. 8303 */ 8304 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8305 name = lifr->lifr_name; 8306 sin = (sin_t *)&lifr->lifr_addr; 8307 sin6 = (sin6_t *)&lifr->lifr_addr; 8308 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8309 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8310 LIFNAMSIZ); 8311 } 8312 ci->ci_sin = sin; 8313 ci->ci_sin6 = sin6; 8314 ci->ci_lifr = lifr; 8315 } 8316 8317 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8318 /* 8319 * The ioctl will be failed if the ioctl comes down 8320 * an conn stream 8321 */ 8322 if (ill == NULL) { 8323 /* 8324 * Not an ill queue, return EINVAL same as the 8325 * old error code. 8326 */ 8327 return (ENXIO); 8328 } 8329 ipif = ill->ill_ipif; 8330 ipif_refhold(ipif); 8331 } else { 8332 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8333 &exists, isv6, zoneid, 8334 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8335 ipst); 8336 if (ipif == NULL) { 8337 if (err == EINPROGRESS) 8338 return (err); 8339 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8340 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8341 /* 8342 * Need to try both v4 and v6 since this 8343 * ioctl can come down either v4 or v6 8344 * socket. The lifreq.lifr_family passed 8345 * down by this ioctl is AF_UNSPEC. 8346 */ 8347 ipif = ipif_lookup_on_name(name, 8348 mi_strlen(name), B_FALSE, &exists, !isv6, 8349 zoneid, (connp == NULL) ? q : 8350 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8351 if (err == EINPROGRESS) 8352 return (err); 8353 } 8354 err = 0; /* Ensure we don't use it below */ 8355 } 8356 } 8357 8358 /* 8359 * Old style [GS]IFCMD does not admit IPv6 ipif 8360 */ 8361 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8362 ipif_refrele(ipif); 8363 return (ENXIO); 8364 } 8365 8366 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8367 name[0] == '\0') { 8368 /* 8369 * Handle a or a SIOC?IF* with a null name 8370 * during plumb (on the ill queue before the I_PLINK). 8371 */ 8372 ipif = ill->ill_ipif; 8373 ipif_refhold(ipif); 8374 } 8375 8376 if (ipif == NULL) 8377 return (ENXIO); 8378 8379 /* 8380 * Allow only GET operations if this ipif has been created 8381 * temporarily due to a MOVE operation. 8382 */ 8383 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8384 ipif_refrele(ipif); 8385 return (EINVAL); 8386 } 8387 8388 ci->ci_ipif = ipif; 8389 return (0); 8390 } 8391 8392 /* 8393 * Return the total number of ipifs. 8394 */ 8395 static uint_t 8396 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8397 { 8398 uint_t numifs = 0; 8399 ill_t *ill; 8400 ill_walk_context_t ctx; 8401 ipif_t *ipif; 8402 8403 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8404 ill = ILL_START_WALK_V4(&ctx, ipst); 8405 8406 while (ill != NULL) { 8407 for (ipif = ill->ill_ipif; ipif != NULL; 8408 ipif = ipif->ipif_next) { 8409 if (ipif->ipif_zoneid == zoneid || 8410 ipif->ipif_zoneid == ALL_ZONES) 8411 numifs++; 8412 } 8413 ill = ill_next(&ctx, ill); 8414 } 8415 rw_exit(&ipst->ips_ill_g_lock); 8416 return (numifs); 8417 } 8418 8419 /* 8420 * Return the total number of ipifs. 8421 */ 8422 static uint_t 8423 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8424 { 8425 uint_t numifs = 0; 8426 ill_t *ill; 8427 ipif_t *ipif; 8428 ill_walk_context_t ctx; 8429 8430 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8431 8432 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8433 if (family == AF_INET) 8434 ill = ILL_START_WALK_V4(&ctx, ipst); 8435 else if (family == AF_INET6) 8436 ill = ILL_START_WALK_V6(&ctx, ipst); 8437 else 8438 ill = ILL_START_WALK_ALL(&ctx, ipst); 8439 8440 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8441 for (ipif = ill->ill_ipif; ipif != NULL; 8442 ipif = ipif->ipif_next) { 8443 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8444 !(lifn_flags & LIFC_NOXMIT)) 8445 continue; 8446 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8447 !(lifn_flags & LIFC_TEMPORARY)) 8448 continue; 8449 if (((ipif->ipif_flags & 8450 (IPIF_NOXMIT|IPIF_NOLOCAL| 8451 IPIF_DEPRECATED)) || 8452 IS_LOOPBACK(ill) || 8453 !(ipif->ipif_flags & IPIF_UP)) && 8454 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8455 continue; 8456 8457 if (zoneid != ipif->ipif_zoneid && 8458 ipif->ipif_zoneid != ALL_ZONES && 8459 (zoneid != GLOBAL_ZONEID || 8460 !(lifn_flags & LIFC_ALLZONES))) 8461 continue; 8462 8463 numifs++; 8464 } 8465 } 8466 rw_exit(&ipst->ips_ill_g_lock); 8467 return (numifs); 8468 } 8469 8470 uint_t 8471 ip_get_lifsrcofnum(ill_t *ill) 8472 { 8473 uint_t numifs = 0; 8474 ill_t *ill_head = ill; 8475 ip_stack_t *ipst = ill->ill_ipst; 8476 8477 /* 8478 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8479 * other thread may be trying to relink the ILLs in this usesrc group 8480 * and adjusting the ill_usesrc_grp_next pointers 8481 */ 8482 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8483 if ((ill->ill_usesrc_ifindex == 0) && 8484 (ill->ill_usesrc_grp_next != NULL)) { 8485 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8486 ill = ill->ill_usesrc_grp_next) 8487 numifs++; 8488 } 8489 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8490 8491 return (numifs); 8492 } 8493 8494 /* Null values are passed in for ipif, sin, and ifreq */ 8495 /* ARGSUSED */ 8496 int 8497 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8498 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8499 { 8500 int *nump; 8501 conn_t *connp = Q_TO_CONN(q); 8502 8503 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8504 8505 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8506 nump = (int *)mp->b_cont->b_cont->b_rptr; 8507 8508 *nump = ip_get_numifs(connp->conn_zoneid, 8509 connp->conn_netstack->netstack_ip); 8510 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8511 return (0); 8512 } 8513 8514 /* Null values are passed in for ipif, sin, and ifreq */ 8515 /* ARGSUSED */ 8516 int 8517 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8518 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8519 { 8520 struct lifnum *lifn; 8521 mblk_t *mp1; 8522 conn_t *connp = Q_TO_CONN(q); 8523 8524 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8525 8526 /* Existence checked in ip_wput_nondata */ 8527 mp1 = mp->b_cont->b_cont; 8528 8529 lifn = (struct lifnum *)mp1->b_rptr; 8530 switch (lifn->lifn_family) { 8531 case AF_UNSPEC: 8532 case AF_INET: 8533 case AF_INET6: 8534 break; 8535 default: 8536 return (EAFNOSUPPORT); 8537 } 8538 8539 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8540 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8541 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8542 return (0); 8543 } 8544 8545 /* ARGSUSED */ 8546 int 8547 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8548 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8549 { 8550 STRUCT_HANDLE(ifconf, ifc); 8551 mblk_t *mp1; 8552 struct iocblk *iocp; 8553 struct ifreq *ifr; 8554 ill_walk_context_t ctx; 8555 ill_t *ill; 8556 ipif_t *ipif; 8557 struct sockaddr_in *sin; 8558 int32_t ifclen; 8559 zoneid_t zoneid; 8560 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8561 8562 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8563 8564 ip1dbg(("ip_sioctl_get_ifconf")); 8565 /* Existence verified in ip_wput_nondata */ 8566 mp1 = mp->b_cont->b_cont; 8567 iocp = (struct iocblk *)mp->b_rptr; 8568 zoneid = Q_TO_CONN(q)->conn_zoneid; 8569 8570 /* 8571 * The original SIOCGIFCONF passed in a struct ifconf which specified 8572 * the user buffer address and length into which the list of struct 8573 * ifreqs was to be copied. Since AT&T Streams does not seem to 8574 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8575 * the SIOCGIFCONF operation was redefined to simply provide 8576 * a large output buffer into which we are supposed to jam the ifreq 8577 * array. The same ioctl command code was used, despite the fact that 8578 * both the applications and the kernel code had to change, thus making 8579 * it impossible to support both interfaces. 8580 * 8581 * For reasons not good enough to try to explain, the following 8582 * algorithm is used for deciding what to do with one of these: 8583 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8584 * form with the output buffer coming down as the continuation message. 8585 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8586 * and we have to copy in the ifconf structure to find out how big the 8587 * output buffer is and where to copy out to. Sure no problem... 8588 * 8589 */ 8590 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8591 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8592 int numifs = 0; 8593 size_t ifc_bufsize; 8594 8595 /* 8596 * Must be (better be!) continuation of a TRANSPARENT 8597 * IOCTL. We just copied in the ifconf structure. 8598 */ 8599 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8600 (struct ifconf *)mp1->b_rptr); 8601 8602 /* 8603 * Allocate a buffer to hold requested information. 8604 * 8605 * If ifc_len is larger than what is needed, we only 8606 * allocate what we will use. 8607 * 8608 * If ifc_len is smaller than what is needed, return 8609 * EINVAL. 8610 * 8611 * XXX: the ill_t structure can hava 2 counters, for 8612 * v4 and v6 (not just ill_ipif_up_count) to store the 8613 * number of interfaces for a device, so we don't need 8614 * to count them here... 8615 */ 8616 numifs = ip_get_numifs(zoneid, ipst); 8617 8618 ifclen = STRUCT_FGET(ifc, ifc_len); 8619 ifc_bufsize = numifs * sizeof (struct ifreq); 8620 if (ifc_bufsize > ifclen) { 8621 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8622 /* old behaviour */ 8623 return (EINVAL); 8624 } else { 8625 ifc_bufsize = ifclen; 8626 } 8627 } 8628 8629 mp1 = mi_copyout_alloc(q, mp, 8630 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8631 if (mp1 == NULL) 8632 return (ENOMEM); 8633 8634 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8635 } 8636 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8637 /* 8638 * the SIOCGIFCONF ioctl only knows about 8639 * IPv4 addresses, so don't try to tell 8640 * it about interfaces with IPv6-only 8641 * addresses. (Last parm 'isv6' is B_FALSE) 8642 */ 8643 8644 ifr = (struct ifreq *)mp1->b_rptr; 8645 8646 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8647 ill = ILL_START_WALK_V4(&ctx, ipst); 8648 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8649 for (ipif = ill->ill_ipif; ipif != NULL; 8650 ipif = ipif->ipif_next) { 8651 if (zoneid != ipif->ipif_zoneid && 8652 ipif->ipif_zoneid != ALL_ZONES) 8653 continue; 8654 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8655 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8656 /* old behaviour */ 8657 rw_exit(&ipst->ips_ill_g_lock); 8658 return (EINVAL); 8659 } else { 8660 goto if_copydone; 8661 } 8662 } 8663 ipif_get_name(ipif, ifr->ifr_name, 8664 sizeof (ifr->ifr_name)); 8665 sin = (sin_t *)&ifr->ifr_addr; 8666 *sin = sin_null; 8667 sin->sin_family = AF_INET; 8668 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8669 ifr++; 8670 } 8671 } 8672 if_copydone: 8673 rw_exit(&ipst->ips_ill_g_lock); 8674 mp1->b_wptr = (uchar_t *)ifr; 8675 8676 if (STRUCT_BUF(ifc) != NULL) { 8677 STRUCT_FSET(ifc, ifc_len, 8678 (int)((uchar_t *)ifr - mp1->b_rptr)); 8679 } 8680 return (0); 8681 } 8682 8683 /* 8684 * Get the interfaces using the address hosted on the interface passed in, 8685 * as a source adddress 8686 */ 8687 /* ARGSUSED */ 8688 int 8689 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8690 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8691 { 8692 mblk_t *mp1; 8693 ill_t *ill, *ill_head; 8694 ipif_t *ipif, *orig_ipif; 8695 int numlifs = 0; 8696 size_t lifs_bufsize, lifsmaxlen; 8697 struct lifreq *lifr; 8698 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8699 uint_t ifindex; 8700 zoneid_t zoneid; 8701 int err = 0; 8702 boolean_t isv6 = B_FALSE; 8703 struct sockaddr_in *sin; 8704 struct sockaddr_in6 *sin6; 8705 STRUCT_HANDLE(lifsrcof, lifs); 8706 ip_stack_t *ipst; 8707 8708 ipst = CONNQ_TO_IPST(q); 8709 8710 ASSERT(q->q_next == NULL); 8711 8712 zoneid = Q_TO_CONN(q)->conn_zoneid; 8713 8714 /* Existence verified in ip_wput_nondata */ 8715 mp1 = mp->b_cont->b_cont; 8716 8717 /* 8718 * Must be (better be!) continuation of a TRANSPARENT 8719 * IOCTL. We just copied in the lifsrcof structure. 8720 */ 8721 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8722 (struct lifsrcof *)mp1->b_rptr); 8723 8724 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8725 return (EINVAL); 8726 8727 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8728 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8729 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8730 ip_process_ioctl, &err, ipst); 8731 if (ipif == NULL) { 8732 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8733 ifindex)); 8734 return (err); 8735 } 8736 8737 8738 /* Allocate a buffer to hold requested information */ 8739 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8740 lifs_bufsize = numlifs * sizeof (struct lifreq); 8741 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8742 /* The actual size needed is always returned in lifs_len */ 8743 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8744 8745 /* If the amount we need is more than what is passed in, abort */ 8746 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8747 ipif_refrele(ipif); 8748 return (0); 8749 } 8750 8751 mp1 = mi_copyout_alloc(q, mp, 8752 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8753 if (mp1 == NULL) { 8754 ipif_refrele(ipif); 8755 return (ENOMEM); 8756 } 8757 8758 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8759 bzero(mp1->b_rptr, lifs_bufsize); 8760 8761 lifr = (struct lifreq *)mp1->b_rptr; 8762 8763 ill = ill_head = ipif->ipif_ill; 8764 orig_ipif = ipif; 8765 8766 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8767 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8768 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8769 8770 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8771 for (; (ill != NULL) && (ill != ill_head); 8772 ill = ill->ill_usesrc_grp_next) { 8773 8774 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8775 break; 8776 8777 ipif = ill->ill_ipif; 8778 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8779 if (ipif->ipif_isv6) { 8780 sin6 = (sin6_t *)&lifr->lifr_addr; 8781 *sin6 = sin6_null; 8782 sin6->sin6_family = AF_INET6; 8783 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8784 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8785 &ipif->ipif_v6net_mask); 8786 } else { 8787 sin = (sin_t *)&lifr->lifr_addr; 8788 *sin = sin_null; 8789 sin->sin_family = AF_INET; 8790 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8791 lifr->lifr_addrlen = ip_mask_to_plen( 8792 ipif->ipif_net_mask); 8793 } 8794 lifr++; 8795 } 8796 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8797 rw_exit(&ipst->ips_ill_g_lock); 8798 ipif_refrele(orig_ipif); 8799 mp1->b_wptr = (uchar_t *)lifr; 8800 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8801 8802 return (0); 8803 } 8804 8805 /* ARGSUSED */ 8806 int 8807 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8808 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8809 { 8810 mblk_t *mp1; 8811 int list; 8812 ill_t *ill; 8813 ipif_t *ipif; 8814 int flags; 8815 int numlifs = 0; 8816 size_t lifc_bufsize; 8817 struct lifreq *lifr; 8818 sa_family_t family; 8819 struct sockaddr_in *sin; 8820 struct sockaddr_in6 *sin6; 8821 ill_walk_context_t ctx; 8822 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8823 int32_t lifclen; 8824 zoneid_t zoneid; 8825 STRUCT_HANDLE(lifconf, lifc); 8826 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8827 8828 ip1dbg(("ip_sioctl_get_lifconf")); 8829 8830 ASSERT(q->q_next == NULL); 8831 8832 zoneid = Q_TO_CONN(q)->conn_zoneid; 8833 8834 /* Existence verified in ip_wput_nondata */ 8835 mp1 = mp->b_cont->b_cont; 8836 8837 /* 8838 * An extended version of SIOCGIFCONF that takes an 8839 * additional address family and flags field. 8840 * AF_UNSPEC retrieve both IPv4 and IPv6. 8841 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8842 * interfaces are omitted. 8843 * Similarly, IPIF_TEMPORARY interfaces are omitted 8844 * unless LIFC_TEMPORARY is specified. 8845 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8846 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8847 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8848 * has priority over LIFC_NOXMIT. 8849 */ 8850 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8851 8852 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8853 return (EINVAL); 8854 8855 /* 8856 * Must be (better be!) continuation of a TRANSPARENT 8857 * IOCTL. We just copied in the lifconf structure. 8858 */ 8859 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8860 8861 family = STRUCT_FGET(lifc, lifc_family); 8862 flags = STRUCT_FGET(lifc, lifc_flags); 8863 8864 switch (family) { 8865 case AF_UNSPEC: 8866 /* 8867 * walk all ILL's. 8868 */ 8869 list = MAX_G_HEADS; 8870 break; 8871 case AF_INET: 8872 /* 8873 * walk only IPV4 ILL's. 8874 */ 8875 list = IP_V4_G_HEAD; 8876 break; 8877 case AF_INET6: 8878 /* 8879 * walk only IPV6 ILL's. 8880 */ 8881 list = IP_V6_G_HEAD; 8882 break; 8883 default: 8884 return (EAFNOSUPPORT); 8885 } 8886 8887 /* 8888 * Allocate a buffer to hold requested information. 8889 * 8890 * If lifc_len is larger than what is needed, we only 8891 * allocate what we will use. 8892 * 8893 * If lifc_len is smaller than what is needed, return 8894 * EINVAL. 8895 */ 8896 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8897 lifc_bufsize = numlifs * sizeof (struct lifreq); 8898 lifclen = STRUCT_FGET(lifc, lifc_len); 8899 if (lifc_bufsize > lifclen) { 8900 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8901 return (EINVAL); 8902 else 8903 lifc_bufsize = lifclen; 8904 } 8905 8906 mp1 = mi_copyout_alloc(q, mp, 8907 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8908 if (mp1 == NULL) 8909 return (ENOMEM); 8910 8911 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8912 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8913 8914 lifr = (struct lifreq *)mp1->b_rptr; 8915 8916 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8917 ill = ill_first(list, list, &ctx, ipst); 8918 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8919 for (ipif = ill->ill_ipif; ipif != NULL; 8920 ipif = ipif->ipif_next) { 8921 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8922 !(flags & LIFC_NOXMIT)) 8923 continue; 8924 8925 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8926 !(flags & LIFC_TEMPORARY)) 8927 continue; 8928 8929 if (((ipif->ipif_flags & 8930 (IPIF_NOXMIT|IPIF_NOLOCAL| 8931 IPIF_DEPRECATED)) || 8932 IS_LOOPBACK(ill) || 8933 !(ipif->ipif_flags & IPIF_UP)) && 8934 (flags & LIFC_EXTERNAL_SOURCE)) 8935 continue; 8936 8937 if (zoneid != ipif->ipif_zoneid && 8938 ipif->ipif_zoneid != ALL_ZONES && 8939 (zoneid != GLOBAL_ZONEID || 8940 !(flags & LIFC_ALLZONES))) 8941 continue; 8942 8943 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8944 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8945 rw_exit(&ipst->ips_ill_g_lock); 8946 return (EINVAL); 8947 } else { 8948 goto lif_copydone; 8949 } 8950 } 8951 8952 ipif_get_name(ipif, lifr->lifr_name, 8953 sizeof (lifr->lifr_name)); 8954 if (ipif->ipif_isv6) { 8955 sin6 = (sin6_t *)&lifr->lifr_addr; 8956 *sin6 = sin6_null; 8957 sin6->sin6_family = AF_INET6; 8958 sin6->sin6_addr = 8959 ipif->ipif_v6lcl_addr; 8960 lifr->lifr_addrlen = 8961 ip_mask_to_plen_v6( 8962 &ipif->ipif_v6net_mask); 8963 } else { 8964 sin = (sin_t *)&lifr->lifr_addr; 8965 *sin = sin_null; 8966 sin->sin_family = AF_INET; 8967 sin->sin_addr.s_addr = 8968 ipif->ipif_lcl_addr; 8969 lifr->lifr_addrlen = 8970 ip_mask_to_plen( 8971 ipif->ipif_net_mask); 8972 } 8973 lifr++; 8974 } 8975 } 8976 lif_copydone: 8977 rw_exit(&ipst->ips_ill_g_lock); 8978 8979 mp1->b_wptr = (uchar_t *)lifr; 8980 if (STRUCT_BUF(lifc) != NULL) { 8981 STRUCT_FSET(lifc, lifc_len, 8982 (int)((uchar_t *)lifr - mp1->b_rptr)); 8983 } 8984 return (0); 8985 } 8986 8987 /* ARGSUSED */ 8988 int 8989 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8990 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8991 { 8992 ip_stack_t *ipst; 8993 8994 if (q->q_next == NULL) 8995 ipst = CONNQ_TO_IPST(q); 8996 else 8997 ipst = ILLQ_TO_IPST(q); 8998 8999 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9000 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9001 return (0); 9002 } 9003 9004 static void 9005 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9006 { 9007 ip6_asp_t *table; 9008 size_t table_size; 9009 mblk_t *data_mp; 9010 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9011 ip_stack_t *ipst; 9012 9013 if (q->q_next == NULL) 9014 ipst = CONNQ_TO_IPST(q); 9015 else 9016 ipst = ILLQ_TO_IPST(q); 9017 9018 /* These two ioctls are I_STR only */ 9019 if (iocp->ioc_count == TRANSPARENT) { 9020 miocnak(q, mp, 0, EINVAL); 9021 return; 9022 } 9023 9024 data_mp = mp->b_cont; 9025 if (data_mp == NULL) { 9026 /* The user passed us a NULL argument */ 9027 table = NULL; 9028 table_size = iocp->ioc_count; 9029 } else { 9030 /* 9031 * The user provided a table. The stream head 9032 * may have copied in the user data in chunks, 9033 * so make sure everything is pulled up 9034 * properly. 9035 */ 9036 if (MBLKL(data_mp) < iocp->ioc_count) { 9037 mblk_t *new_data_mp; 9038 if ((new_data_mp = msgpullup(data_mp, -1)) == 9039 NULL) { 9040 miocnak(q, mp, 0, ENOMEM); 9041 return; 9042 } 9043 freemsg(data_mp); 9044 data_mp = new_data_mp; 9045 mp->b_cont = data_mp; 9046 } 9047 table = (ip6_asp_t *)data_mp->b_rptr; 9048 table_size = iocp->ioc_count; 9049 } 9050 9051 switch (iocp->ioc_cmd) { 9052 case SIOCGIP6ADDRPOLICY: 9053 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9054 if (iocp->ioc_rval == -1) 9055 iocp->ioc_error = EINVAL; 9056 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9057 else if (table != NULL && 9058 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9059 ip6_asp_t *src = table; 9060 ip6_asp32_t *dst = (void *)table; 9061 int count = table_size / sizeof (ip6_asp_t); 9062 int i; 9063 9064 /* 9065 * We need to do an in-place shrink of the array 9066 * to match the alignment attributes of the 9067 * 32-bit ABI looking at it. 9068 */ 9069 /* LINTED: logical expression always true: op "||" */ 9070 ASSERT(sizeof (*src) > sizeof (*dst)); 9071 for (i = 1; i < count; i++) 9072 bcopy(src + i, dst + i, sizeof (*dst)); 9073 } 9074 #endif 9075 break; 9076 9077 case SIOCSIP6ADDRPOLICY: 9078 ASSERT(mp->b_prev == NULL); 9079 mp->b_prev = (void *)q; 9080 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9081 /* 9082 * We pass in the datamodel here so that the ip6_asp_replace() 9083 * routine can handle converting from 32-bit to native formats 9084 * where necessary. 9085 * 9086 * A better way to handle this might be to convert the inbound 9087 * data structure here, and hang it off a new 'mp'; thus the 9088 * ip6_asp_replace() logic would always be dealing with native 9089 * format data structures.. 9090 * 9091 * (An even simpler way to handle these ioctls is to just 9092 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9093 * and just recompile everything that depends on it.) 9094 */ 9095 #endif 9096 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9097 iocp->ioc_flag & IOC_MODELS); 9098 return; 9099 } 9100 9101 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9102 qreply(q, mp); 9103 } 9104 9105 static void 9106 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9107 { 9108 mblk_t *data_mp; 9109 struct dstinforeq *dir; 9110 uint8_t *end, *cur; 9111 in6_addr_t *daddr, *saddr; 9112 ipaddr_t v4daddr; 9113 ire_t *ire; 9114 char *slabel, *dlabel; 9115 boolean_t isipv4; 9116 int match_ire; 9117 ill_t *dst_ill; 9118 ipif_t *src_ipif, *ire_ipif; 9119 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9120 zoneid_t zoneid; 9121 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9122 9123 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9124 zoneid = Q_TO_CONN(q)->conn_zoneid; 9125 9126 /* 9127 * This ioctl is I_STR only, and must have a 9128 * data mblk following the M_IOCTL mblk. 9129 */ 9130 data_mp = mp->b_cont; 9131 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9132 miocnak(q, mp, 0, EINVAL); 9133 return; 9134 } 9135 9136 if (MBLKL(data_mp) < iocp->ioc_count) { 9137 mblk_t *new_data_mp; 9138 9139 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9140 miocnak(q, mp, 0, ENOMEM); 9141 return; 9142 } 9143 freemsg(data_mp); 9144 data_mp = new_data_mp; 9145 mp->b_cont = data_mp; 9146 } 9147 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9148 9149 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9150 end - cur >= sizeof (struct dstinforeq); 9151 cur += sizeof (struct dstinforeq)) { 9152 dir = (struct dstinforeq *)cur; 9153 daddr = &dir->dir_daddr; 9154 saddr = &dir->dir_saddr; 9155 9156 /* 9157 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9158 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9159 * and ipif_select_source[_v6]() do not. 9160 */ 9161 dir->dir_dscope = ip_addr_scope_v6(daddr); 9162 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9163 9164 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9165 if (isipv4) { 9166 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9167 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9168 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9169 } else { 9170 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9171 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9172 } 9173 if (ire == NULL) { 9174 dir->dir_dreachable = 0; 9175 9176 /* move on to next dst addr */ 9177 continue; 9178 } 9179 dir->dir_dreachable = 1; 9180 9181 ire_ipif = ire->ire_ipif; 9182 if (ire_ipif == NULL) 9183 goto next_dst; 9184 9185 /* 9186 * We expect to get back an interface ire or a 9187 * gateway ire cache entry. For both types, the 9188 * output interface is ire_ipif->ipif_ill. 9189 */ 9190 dst_ill = ire_ipif->ipif_ill; 9191 dir->dir_dmactype = dst_ill->ill_mactype; 9192 9193 if (isipv4) { 9194 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9195 } else { 9196 src_ipif = ipif_select_source_v6(dst_ill, 9197 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9198 zoneid); 9199 } 9200 if (src_ipif == NULL) 9201 goto next_dst; 9202 9203 *saddr = src_ipif->ipif_v6lcl_addr; 9204 dir->dir_sscope = ip_addr_scope_v6(saddr); 9205 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9206 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9207 dir->dir_sdeprecated = 9208 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9209 ipif_refrele(src_ipif); 9210 next_dst: 9211 ire_refrele(ire); 9212 } 9213 miocack(q, mp, iocp->ioc_count, 0); 9214 } 9215 9216 9217 /* 9218 * Check if this is an address assigned to this machine. 9219 * Skips interfaces that are down by using ire checks. 9220 * Translates mapped addresses to v4 addresses and then 9221 * treats them as such, returning true if the v4 address 9222 * associated with this mapped address is configured. 9223 * Note: Applications will have to be careful what they do 9224 * with the response; use of mapped addresses limits 9225 * what can be done with the socket, especially with 9226 * respect to socket options and ioctls - neither IPv4 9227 * options nor IPv6 sticky options/ancillary data options 9228 * may be used. 9229 */ 9230 /* ARGSUSED */ 9231 int 9232 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9233 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9234 { 9235 struct sioc_addrreq *sia; 9236 sin_t *sin; 9237 ire_t *ire; 9238 mblk_t *mp1; 9239 zoneid_t zoneid; 9240 ip_stack_t *ipst; 9241 9242 ip1dbg(("ip_sioctl_tmyaddr")); 9243 9244 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9245 zoneid = Q_TO_CONN(q)->conn_zoneid; 9246 ipst = CONNQ_TO_IPST(q); 9247 9248 /* Existence verified in ip_wput_nondata */ 9249 mp1 = mp->b_cont->b_cont; 9250 sia = (struct sioc_addrreq *)mp1->b_rptr; 9251 sin = (sin_t *)&sia->sa_addr; 9252 switch (sin->sin_family) { 9253 case AF_INET6: { 9254 sin6_t *sin6 = (sin6_t *)sin; 9255 9256 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9257 ipaddr_t v4_addr; 9258 9259 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9260 v4_addr); 9261 ire = ire_ctable_lookup(v4_addr, 0, 9262 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9263 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9264 } else { 9265 in6_addr_t v6addr; 9266 9267 v6addr = sin6->sin6_addr; 9268 ire = ire_ctable_lookup_v6(&v6addr, 0, 9269 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9270 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9271 } 9272 break; 9273 } 9274 case AF_INET: { 9275 ipaddr_t v4addr; 9276 9277 v4addr = sin->sin_addr.s_addr; 9278 ire = ire_ctable_lookup(v4addr, 0, 9279 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9280 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9281 break; 9282 } 9283 default: 9284 return (EAFNOSUPPORT); 9285 } 9286 if (ire != NULL) { 9287 sia->sa_res = 1; 9288 ire_refrele(ire); 9289 } else { 9290 sia->sa_res = 0; 9291 } 9292 return (0); 9293 } 9294 9295 /* 9296 * Check if this is an address assigned on-link i.e. neighbor, 9297 * and makes sure it's reachable from the current zone. 9298 * Returns true for my addresses as well. 9299 * Translates mapped addresses to v4 addresses and then 9300 * treats them as such, returning true if the v4 address 9301 * associated with this mapped address is configured. 9302 * Note: Applications will have to be careful what they do 9303 * with the response; use of mapped addresses limits 9304 * what can be done with the socket, especially with 9305 * respect to socket options and ioctls - neither IPv4 9306 * options nor IPv6 sticky options/ancillary data options 9307 * may be used. 9308 */ 9309 /* ARGSUSED */ 9310 int 9311 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9312 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9313 { 9314 struct sioc_addrreq *sia; 9315 sin_t *sin; 9316 mblk_t *mp1; 9317 ire_t *ire = NULL; 9318 zoneid_t zoneid; 9319 ip_stack_t *ipst; 9320 9321 ip1dbg(("ip_sioctl_tonlink")); 9322 9323 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9324 zoneid = Q_TO_CONN(q)->conn_zoneid; 9325 ipst = CONNQ_TO_IPST(q); 9326 9327 /* Existence verified in ip_wput_nondata */ 9328 mp1 = mp->b_cont->b_cont; 9329 sia = (struct sioc_addrreq *)mp1->b_rptr; 9330 sin = (sin_t *)&sia->sa_addr; 9331 9332 /* 9333 * Match addresses with a zero gateway field to avoid 9334 * routes going through a router. 9335 * Exclude broadcast and multicast addresses. 9336 */ 9337 switch (sin->sin_family) { 9338 case AF_INET6: { 9339 sin6_t *sin6 = (sin6_t *)sin; 9340 9341 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9342 ipaddr_t v4_addr; 9343 9344 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9345 v4_addr); 9346 if (!CLASSD(v4_addr)) { 9347 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9348 NULL, NULL, zoneid, NULL, 9349 MATCH_IRE_GW, ipst); 9350 } 9351 } else { 9352 in6_addr_t v6addr; 9353 in6_addr_t v6gw; 9354 9355 v6addr = sin6->sin6_addr; 9356 v6gw = ipv6_all_zeros; 9357 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9358 ire = ire_route_lookup_v6(&v6addr, 0, 9359 &v6gw, 0, NULL, NULL, zoneid, 9360 NULL, MATCH_IRE_GW, ipst); 9361 } 9362 } 9363 break; 9364 } 9365 case AF_INET: { 9366 ipaddr_t v4addr; 9367 9368 v4addr = sin->sin_addr.s_addr; 9369 if (!CLASSD(v4addr)) { 9370 ire = ire_route_lookup(v4addr, 0, 0, 0, 9371 NULL, NULL, zoneid, NULL, 9372 MATCH_IRE_GW, ipst); 9373 } 9374 break; 9375 } 9376 default: 9377 return (EAFNOSUPPORT); 9378 } 9379 sia->sa_res = 0; 9380 if (ire != NULL) { 9381 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9382 IRE_LOCAL|IRE_LOOPBACK)) { 9383 sia->sa_res = 1; 9384 } 9385 ire_refrele(ire); 9386 } 9387 return (0); 9388 } 9389 9390 /* 9391 * TBD: implement when kernel maintaines a list of site prefixes. 9392 */ 9393 /* ARGSUSED */ 9394 int 9395 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9396 ip_ioctl_cmd_t *ipip, void *ifreq) 9397 { 9398 return (ENXIO); 9399 } 9400 9401 /* ARGSUSED */ 9402 int 9403 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9404 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9405 { 9406 ill_t *ill; 9407 mblk_t *mp1; 9408 conn_t *connp; 9409 boolean_t success; 9410 9411 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9412 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9413 /* ioctl comes down on an conn */ 9414 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9415 connp = Q_TO_CONN(q); 9416 9417 mp->b_datap->db_type = M_IOCTL; 9418 9419 /* 9420 * Send down a copy. (copymsg does not copy b_next/b_prev). 9421 * The original mp contains contaminated b_next values due to 'mi', 9422 * which is needed to do the mi_copy_done. Unfortunately if we 9423 * send down the original mblk itself and if we are popped due to an 9424 * an unplumb before the response comes back from tunnel, 9425 * the streamhead (which does a freemsg) will see this contaminated 9426 * message and the assertion in freemsg about non-null b_next/b_prev 9427 * will panic a DEBUG kernel. 9428 */ 9429 mp1 = copymsg(mp); 9430 if (mp1 == NULL) 9431 return (ENOMEM); 9432 9433 ill = ipif->ipif_ill; 9434 mutex_enter(&connp->conn_lock); 9435 mutex_enter(&ill->ill_lock); 9436 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9437 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9438 mp, 0); 9439 } else { 9440 success = ill_pending_mp_add(ill, connp, mp); 9441 } 9442 mutex_exit(&ill->ill_lock); 9443 mutex_exit(&connp->conn_lock); 9444 9445 if (success) { 9446 ip1dbg(("sending down tunparam request ")); 9447 putnext(ill->ill_wq, mp1); 9448 return (EINPROGRESS); 9449 } else { 9450 /* The conn has started closing */ 9451 freemsg(mp1); 9452 return (EINTR); 9453 } 9454 } 9455 9456 /* 9457 * ARP IOCTLs. 9458 * How does IP get in the business of fronting ARP configuration/queries? 9459 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9460 * are by tradition passed in through a datagram socket. That lands in IP. 9461 * As it happens, this is just as well since the interface is quite crude in 9462 * that it passes in no information about protocol or hardware types, or 9463 * interface association. After making the protocol assumption, IP is in 9464 * the position to look up the name of the ILL, which ARP will need, and 9465 * format a request that can be handled by ARP. The request is passed up 9466 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9467 * back a response. ARP supports its own set of more general IOCTLs, in 9468 * case anyone is interested. 9469 */ 9470 /* ARGSUSED */ 9471 int 9472 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9473 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9474 { 9475 mblk_t *mp1; 9476 mblk_t *mp2; 9477 mblk_t *pending_mp; 9478 ipaddr_t ipaddr; 9479 area_t *area; 9480 struct iocblk *iocp; 9481 conn_t *connp; 9482 struct arpreq *ar; 9483 struct xarpreq *xar; 9484 int flags, alength; 9485 char *lladdr; 9486 ip_stack_t *ipst; 9487 ill_t *ill = ipif->ipif_ill; 9488 boolean_t if_arp_ioctl = B_FALSE; 9489 9490 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9491 connp = Q_TO_CONN(q); 9492 ipst = connp->conn_netstack->netstack_ip; 9493 9494 if (ipip->ipi_cmd_type == XARP_CMD) { 9495 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9496 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9497 ar = NULL; 9498 9499 flags = xar->xarp_flags; 9500 lladdr = LLADDR(&xar->xarp_ha); 9501 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9502 /* 9503 * Validate against user's link layer address length 9504 * input and name and addr length limits. 9505 */ 9506 alength = ill->ill_phys_addr_length; 9507 if (ipip->ipi_cmd == SIOCSXARP) { 9508 if (alength != xar->xarp_ha.sdl_alen || 9509 (alength + xar->xarp_ha.sdl_nlen > 9510 sizeof (xar->xarp_ha.sdl_data))) 9511 return (EINVAL); 9512 } 9513 } else { 9514 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9515 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9516 xar = NULL; 9517 9518 flags = ar->arp_flags; 9519 lladdr = ar->arp_ha.sa_data; 9520 /* 9521 * Theoretically, the sa_family could tell us what link 9522 * layer type this operation is trying to deal with. By 9523 * common usage AF_UNSPEC means ethernet. We'll assume 9524 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9525 * for now. Our new SIOC*XARP ioctls can be used more 9526 * generally. 9527 * 9528 * If the underlying media happens to have a non 6 byte 9529 * address, arp module will fail set/get, but the del 9530 * operation will succeed. 9531 */ 9532 alength = 6; 9533 if ((ipip->ipi_cmd != SIOCDARP) && 9534 (alength != ill->ill_phys_addr_length)) { 9535 return (EINVAL); 9536 } 9537 } 9538 9539 /* 9540 * We are going to pass up to ARP a packet chain that looks 9541 * like: 9542 * 9543 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9544 * 9545 * Get a copy of the original IOCTL mblk to head the chain, 9546 * to be sent up (in mp1). Also get another copy to store 9547 * in the ill_pending_mp list, for matching the response 9548 * when it comes back from ARP. 9549 */ 9550 mp1 = copyb(mp); 9551 pending_mp = copymsg(mp); 9552 if (mp1 == NULL || pending_mp == NULL) { 9553 if (mp1 != NULL) 9554 freeb(mp1); 9555 if (pending_mp != NULL) 9556 inet_freemsg(pending_mp); 9557 return (ENOMEM); 9558 } 9559 9560 ipaddr = sin->sin_addr.s_addr; 9561 9562 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9563 (caddr_t)&ipaddr); 9564 if (mp2 == NULL) { 9565 freeb(mp1); 9566 inet_freemsg(pending_mp); 9567 return (ENOMEM); 9568 } 9569 /* Put together the chain. */ 9570 mp1->b_cont = mp2; 9571 mp1->b_datap->db_type = M_IOCTL; 9572 mp2->b_cont = mp; 9573 mp2->b_datap->db_type = M_DATA; 9574 9575 iocp = (struct iocblk *)mp1->b_rptr; 9576 9577 /* 9578 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9579 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9580 * cp_private field (or cp_rval on 32-bit systems) in place of the 9581 * ioc_count field; set ioc_count to be correct. 9582 */ 9583 iocp->ioc_count = MBLKL(mp1->b_cont); 9584 9585 /* 9586 * Set the proper command in the ARP message. 9587 * Convert the SIOC{G|S|D}ARP calls into our 9588 * AR_ENTRY_xxx calls. 9589 */ 9590 area = (area_t *)mp2->b_rptr; 9591 switch (iocp->ioc_cmd) { 9592 case SIOCDARP: 9593 case SIOCDXARP: 9594 /* 9595 * We defer deleting the corresponding IRE until 9596 * we return from arp. 9597 */ 9598 area->area_cmd = AR_ENTRY_DELETE; 9599 area->area_proto_mask_offset = 0; 9600 break; 9601 case SIOCGARP: 9602 case SIOCGXARP: 9603 area->area_cmd = AR_ENTRY_SQUERY; 9604 area->area_proto_mask_offset = 0; 9605 break; 9606 case SIOCSARP: 9607 case SIOCSXARP: 9608 /* 9609 * Delete the corresponding ire to make sure IP will 9610 * pick up any change from arp. 9611 */ 9612 if (!if_arp_ioctl) { 9613 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9614 } else { 9615 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9616 if (ipif != NULL) { 9617 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9618 ipst); 9619 ipif_refrele(ipif); 9620 } 9621 } 9622 break; 9623 } 9624 iocp->ioc_cmd = area->area_cmd; 9625 9626 /* 9627 * Fill in the rest of the ARP operation fields. 9628 */ 9629 area->area_hw_addr_length = alength; 9630 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9631 9632 /* Translate the flags. */ 9633 if (flags & ATF_PERM) 9634 area->area_flags |= ACE_F_PERMANENT; 9635 if (flags & ATF_PUBL) 9636 area->area_flags |= ACE_F_PUBLISH; 9637 if (flags & ATF_AUTHORITY) 9638 area->area_flags |= ACE_F_AUTHORITY; 9639 9640 /* 9641 * Before sending 'mp' to ARP, we have to clear the b_next 9642 * and b_prev. Otherwise if STREAMS encounters such a message 9643 * in freemsg(), (because ARP can close any time) it can cause 9644 * a panic. But mi code needs the b_next and b_prev values of 9645 * mp->b_cont, to complete the ioctl. So we store it here 9646 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9647 * when the response comes down from ARP. 9648 */ 9649 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9650 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9651 mp->b_cont->b_next = NULL; 9652 mp->b_cont->b_prev = NULL; 9653 9654 mutex_enter(&connp->conn_lock); 9655 mutex_enter(&ill->ill_lock); 9656 /* conn has not yet started closing, hence this can't fail */ 9657 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9658 mutex_exit(&ill->ill_lock); 9659 mutex_exit(&connp->conn_lock); 9660 9661 /* 9662 * Up to ARP it goes. The response will come back in ip_wput() as an 9663 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9664 */ 9665 putnext(ill->ill_rq, mp1); 9666 return (EINPROGRESS); 9667 } 9668 9669 /* 9670 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9671 * the associated sin and refhold and return the associated ipif via `ci'. 9672 */ 9673 int 9674 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9675 cmd_info_t *ci, ipsq_func_t func) 9676 { 9677 mblk_t *mp1; 9678 int err; 9679 sin_t *sin; 9680 conn_t *connp; 9681 ipif_t *ipif; 9682 ire_t *ire = NULL; 9683 ill_t *ill = NULL; 9684 boolean_t exists; 9685 ip_stack_t *ipst; 9686 struct arpreq *ar; 9687 struct xarpreq *xar; 9688 struct sockaddr_dl *sdl; 9689 9690 /* ioctl comes down on a conn */ 9691 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9692 connp = Q_TO_CONN(q); 9693 if (connp->conn_af_isv6) 9694 return (ENXIO); 9695 9696 ipst = connp->conn_netstack->netstack_ip; 9697 9698 /* Verified in ip_wput_nondata */ 9699 mp1 = mp->b_cont->b_cont; 9700 9701 if (ipip->ipi_cmd_type == XARP_CMD) { 9702 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9703 xar = (struct xarpreq *)mp1->b_rptr; 9704 sin = (sin_t *)&xar->xarp_pa; 9705 sdl = &xar->xarp_ha; 9706 9707 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9708 return (ENXIO); 9709 if (sdl->sdl_nlen >= LIFNAMSIZ) 9710 return (EINVAL); 9711 } else { 9712 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9713 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9714 ar = (struct arpreq *)mp1->b_rptr; 9715 sin = (sin_t *)&ar->arp_pa; 9716 } 9717 9718 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9719 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9720 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9721 mp, func, &err, ipst); 9722 if (ipif == NULL) 9723 return (err); 9724 if (ipif->ipif_id != 0 || 9725 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9726 ipif_refrele(ipif); 9727 return (ENXIO); 9728 } 9729 } else { 9730 /* 9731 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9732 * 0: use the IP address to figure out the ill. In the IPMP 9733 * case, a simple forwarding table lookup will return the 9734 * IRE_IF_RESOLVER for the first interface in the group, which 9735 * might not be the interface on which the requested IP 9736 * address was resolved due to the ill selection algorithm 9737 * (see ip_newroute_get_dst_ill()). So we do a cache table 9738 * lookup first: if the IRE cache entry for the IP address is 9739 * still there, it will contain the ill pointer for the right 9740 * interface, so we use that. If the cache entry has been 9741 * flushed, we fall back to the forwarding table lookup. This 9742 * should be rare enough since IRE cache entries have a longer 9743 * life expectancy than ARP cache entries. 9744 */ 9745 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9746 ipst); 9747 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9748 ((ill = ire_to_ill(ire)) == NULL) || 9749 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9750 if (ire != NULL) 9751 ire_refrele(ire); 9752 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9753 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9754 NULL, MATCH_IRE_TYPE, ipst); 9755 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9756 9757 if (ire != NULL) 9758 ire_refrele(ire); 9759 return (ENXIO); 9760 } 9761 } 9762 ASSERT(ire != NULL && ill != NULL); 9763 ipif = ill->ill_ipif; 9764 ipif_refhold(ipif); 9765 ire_refrele(ire); 9766 } 9767 ci->ci_sin = sin; 9768 ci->ci_ipif = ipif; 9769 return (0); 9770 } 9771 9772 /* 9773 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9774 * atomically set/clear the muxids. Also complete the ioctl by acking or 9775 * naking it. Note that the code is structured such that the link type, 9776 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9777 * its clones use the persistent link, while pppd(1M) and perhaps many 9778 * other daemons may use non-persistent link. When combined with some 9779 * ill_t states, linking and unlinking lower streams may be used as 9780 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9781 */ 9782 /* ARGSUSED */ 9783 void 9784 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9785 { 9786 mblk_t *mp1, *mp2; 9787 struct linkblk *li; 9788 struct ipmx_s *ipmxp; 9789 ill_t *ill; 9790 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9791 int err = 0; 9792 boolean_t entered_ipsq = B_FALSE; 9793 boolean_t islink; 9794 ip_stack_t *ipst; 9795 9796 if (CONN_Q(q)) 9797 ipst = CONNQ_TO_IPST(q); 9798 else 9799 ipst = ILLQ_TO_IPST(q); 9800 9801 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9802 ioccmd == I_LINK || ioccmd == I_UNLINK); 9803 9804 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9805 9806 mp1 = mp->b_cont; /* This is the linkblk info */ 9807 li = (struct linkblk *)mp1->b_rptr; 9808 9809 /* 9810 * ARP has added this special mblk, and the utility is asking us 9811 * to perform consistency checks, and also atomically set the 9812 * muxid. Ifconfig is an example. It achieves this by using 9813 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9814 * to /dev/udp[6] stream for use as the mux when plinking the IP 9815 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9816 * and other comments in this routine for more details. 9817 */ 9818 mp2 = mp1->b_cont; /* This is added by ARP */ 9819 9820 /* 9821 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9822 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9823 * get the special mblk above. For backward compatibility, we 9824 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9825 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9826 * not atomic, and can leave the streams unplumbable if the utility 9827 * is interrupted before it does the SIOCSLIFMUXID. 9828 */ 9829 if (mp2 == NULL) { 9830 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9831 if (err == EINPROGRESS) 9832 return; 9833 goto done; 9834 } 9835 9836 /* 9837 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9838 * ARP has appended this last mblk to tell us whether the lower stream 9839 * is an arp-dev stream or an IP module stream. 9840 */ 9841 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9842 if (ipmxp->ipmx_arpdev_stream) { 9843 /* 9844 * The lower stream is the arp-dev stream. 9845 */ 9846 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9847 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9848 if (ill == NULL) { 9849 if (err == EINPROGRESS) 9850 return; 9851 err = EINVAL; 9852 goto done; 9853 } 9854 9855 if (ipsq == NULL) { 9856 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9857 NEW_OP, B_TRUE); 9858 if (ipsq == NULL) { 9859 ill_refrele(ill); 9860 return; 9861 } 9862 entered_ipsq = B_TRUE; 9863 } 9864 ASSERT(IAM_WRITER_ILL(ill)); 9865 ill_refrele(ill); 9866 9867 /* 9868 * To ensure consistency between IP and ARP, the following 9869 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9870 * This is because the muxid's are stored in the IP stream on 9871 * the ill. 9872 * 9873 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9874 * the ARP stream. On an arp-dev stream, IP checks that it is 9875 * not yet plinked, and it also checks that the corresponding 9876 * IP stream is already plinked. 9877 * 9878 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9879 * punlinking the IP stream. IP does not allow punlink of the 9880 * IP stream unless the arp stream has been punlinked. 9881 */ 9882 if ((islink && 9883 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9884 (!islink && ill->ill_arp_muxid != li->l_index)) { 9885 err = EINVAL; 9886 goto done; 9887 } 9888 ill->ill_arp_muxid = islink ? li->l_index : 0; 9889 } else { 9890 /* 9891 * The lower stream is probably an IP module stream. Do 9892 * consistency checking. 9893 */ 9894 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9895 if (err == EINPROGRESS) 9896 return; 9897 } 9898 done: 9899 if (err == 0) 9900 miocack(q, mp, 0, 0); 9901 else 9902 miocnak(q, mp, 0, err); 9903 9904 /* Conn was refheld in ip_sioctl_copyin_setup */ 9905 if (CONN_Q(q)) 9906 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9907 if (entered_ipsq) 9908 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9909 } 9910 9911 /* 9912 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9913 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9914 * module stream). If `doconsist' is set, then do the extended consistency 9915 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9916 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9917 * an error code on failure. 9918 */ 9919 static int 9920 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9921 struct linkblk *li, boolean_t doconsist) 9922 { 9923 ill_t *ill; 9924 queue_t *ipwq, *dwq; 9925 const char *name; 9926 struct qinit *qinfo; 9927 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9928 boolean_t entered_ipsq = B_FALSE; 9929 9930 /* 9931 * Walk the lower stream to verify it's the IP module stream. 9932 * The IP module is identified by its name, wput function, 9933 * and non-NULL q_next. STREAMS ensures that the lower stream 9934 * (li->l_qbot) will not vanish until this ioctl completes. 9935 */ 9936 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9937 qinfo = ipwq->q_qinfo; 9938 name = qinfo->qi_minfo->mi_idname; 9939 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9940 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9941 break; 9942 } 9943 } 9944 9945 /* 9946 * If this isn't an IP module stream, bail. 9947 */ 9948 if (ipwq == NULL) 9949 return (0); 9950 9951 ill = ipwq->q_ptr; 9952 ASSERT(ill != NULL); 9953 9954 if (ipsq == NULL) { 9955 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9956 NEW_OP, B_TRUE); 9957 if (ipsq == NULL) 9958 return (EINPROGRESS); 9959 entered_ipsq = B_TRUE; 9960 } 9961 ASSERT(IAM_WRITER_ILL(ill)); 9962 9963 if (doconsist) { 9964 /* 9965 * Consistency checking requires that I_{P}LINK occurs 9966 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9967 * occurs prior to clearing ill_arp_muxid. 9968 */ 9969 if ((islink && ill->ill_ip_muxid != 0) || 9970 (!islink && ill->ill_arp_muxid != 0)) { 9971 if (entered_ipsq) 9972 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9973 return (EINVAL); 9974 } 9975 } 9976 9977 /* 9978 * As part of I_{P}LINKing, stash the number of downstream modules and 9979 * the read queue of the module immediately below IP in the ill. 9980 * These are used during the capability negotiation below. 9981 */ 9982 ill->ill_lmod_rq = NULL; 9983 ill->ill_lmod_cnt = 0; 9984 if (islink && ((dwq = ipwq->q_next) != NULL)) { 9985 ill->ill_lmod_rq = RD(dwq); 9986 for (; dwq != NULL; dwq = dwq->q_next) 9987 ill->ill_lmod_cnt++; 9988 } 9989 9990 if (doconsist) 9991 ill->ill_ip_muxid = islink ? li->l_index : 0; 9992 9993 /* 9994 * If there's at least one up ipif on this ill, then we're bound to 9995 * the underlying driver via DLPI. In that case, renegotiate 9996 * capabilities to account for any possible change in modules 9997 * interposed between IP and the driver. 9998 */ 9999 if (ill->ill_ipif_up_count > 0) { 10000 if (islink) 10001 ill_capability_probe(ill); 10002 else 10003 ill_capability_reset(ill); 10004 } 10005 10006 if (entered_ipsq) 10007 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10008 10009 return (0); 10010 } 10011 10012 /* 10013 * Search the ioctl command in the ioctl tables and return a pointer 10014 * to the ioctl command information. The ioctl command tables are 10015 * static and fully populated at compile time. 10016 */ 10017 ip_ioctl_cmd_t * 10018 ip_sioctl_lookup(int ioc_cmd) 10019 { 10020 int index; 10021 ip_ioctl_cmd_t *ipip; 10022 ip_ioctl_cmd_t *ipip_end; 10023 10024 if (ioc_cmd == IPI_DONTCARE) 10025 return (NULL); 10026 10027 /* 10028 * Do a 2 step search. First search the indexed table 10029 * based on the least significant byte of the ioctl cmd. 10030 * If we don't find a match, then search the misc table 10031 * serially. 10032 */ 10033 index = ioc_cmd & 0xFF; 10034 if (index < ip_ndx_ioctl_count) { 10035 ipip = &ip_ndx_ioctl_table[index]; 10036 if (ipip->ipi_cmd == ioc_cmd) { 10037 /* Found a match in the ndx table */ 10038 return (ipip); 10039 } 10040 } 10041 10042 /* Search the misc table */ 10043 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10044 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10045 if (ipip->ipi_cmd == ioc_cmd) 10046 /* Found a match in the misc table */ 10047 return (ipip); 10048 } 10049 10050 return (NULL); 10051 } 10052 10053 /* 10054 * Wrapper function for resuming deferred ioctl processing 10055 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10056 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10057 */ 10058 /* ARGSUSED */ 10059 void 10060 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10061 void *dummy_arg) 10062 { 10063 ip_sioctl_copyin_setup(q, mp); 10064 } 10065 10066 /* 10067 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10068 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10069 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10070 * We establish here the size of the block to be copied in. mi_copyin 10071 * arranges for this to happen, an processing continues in ip_wput with 10072 * an M_IOCDATA message. 10073 */ 10074 void 10075 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10076 { 10077 int copyin_size; 10078 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10079 ip_ioctl_cmd_t *ipip; 10080 cred_t *cr; 10081 ip_stack_t *ipst; 10082 10083 if (CONN_Q(q)) 10084 ipst = CONNQ_TO_IPST(q); 10085 else 10086 ipst = ILLQ_TO_IPST(q); 10087 10088 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10089 if (ipip == NULL) { 10090 /* 10091 * The ioctl is not one we understand or own. 10092 * Pass it along to be processed down stream, 10093 * if this is a module instance of IP, else nak 10094 * the ioctl. 10095 */ 10096 if (q->q_next == NULL) { 10097 goto nak; 10098 } else { 10099 putnext(q, mp); 10100 return; 10101 } 10102 } 10103 10104 /* 10105 * If this is deferred, then we will do all the checks when we 10106 * come back. 10107 */ 10108 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10109 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10110 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10111 return; 10112 } 10113 10114 /* 10115 * Only allow a very small subset of IP ioctls on this stream if 10116 * IP is a module and not a driver. Allowing ioctls to be processed 10117 * in this case may cause assert failures or data corruption. 10118 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10119 * ioctls allowed on an IP module stream, after which this stream 10120 * normally becomes a multiplexor (at which time the stream head 10121 * will fail all ioctls). 10122 */ 10123 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10124 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10125 /* 10126 * Pass common Streams ioctls which the IP 10127 * module does not own or consume along to 10128 * be processed down stream. 10129 */ 10130 putnext(q, mp); 10131 return; 10132 } else { 10133 goto nak; 10134 } 10135 } 10136 10137 /* Make sure we have ioctl data to process. */ 10138 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10139 goto nak; 10140 10141 /* 10142 * Prefer dblk credential over ioctl credential; some synthesized 10143 * ioctls have kcred set because there's no way to crhold() 10144 * a credential in some contexts. (ioc_cr is not crfree() by 10145 * the framework; the caller of ioctl needs to hold the reference 10146 * for the duration of the call). 10147 */ 10148 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10149 10150 /* Make sure normal users don't send down privileged ioctls */ 10151 if ((ipip->ipi_flags & IPI_PRIV) && 10152 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10153 /* We checked the privilege earlier but log it here */ 10154 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10155 return; 10156 } 10157 10158 /* 10159 * The ioctl command tables can only encode fixed length 10160 * ioctl data. If the length is variable, the table will 10161 * encode the length as zero. Such special cases are handled 10162 * below in the switch. 10163 */ 10164 if (ipip->ipi_copyin_size != 0) { 10165 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10166 return; 10167 } 10168 10169 switch (iocp->ioc_cmd) { 10170 case O_SIOCGIFCONF: 10171 case SIOCGIFCONF: 10172 /* 10173 * This IOCTL is hilarious. See comments in 10174 * ip_sioctl_get_ifconf for the story. 10175 */ 10176 if (iocp->ioc_count == TRANSPARENT) 10177 copyin_size = SIZEOF_STRUCT(ifconf, 10178 iocp->ioc_flag); 10179 else 10180 copyin_size = iocp->ioc_count; 10181 mi_copyin(q, mp, NULL, copyin_size); 10182 return; 10183 10184 case O_SIOCGLIFCONF: 10185 case SIOCGLIFCONF: 10186 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10187 mi_copyin(q, mp, NULL, copyin_size); 10188 return; 10189 10190 case SIOCGLIFSRCOF: 10191 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10192 mi_copyin(q, mp, NULL, copyin_size); 10193 return; 10194 case SIOCGIP6ADDRPOLICY: 10195 ip_sioctl_ip6addrpolicy(q, mp); 10196 ip6_asp_table_refrele(ipst); 10197 return; 10198 10199 case SIOCSIP6ADDRPOLICY: 10200 ip_sioctl_ip6addrpolicy(q, mp); 10201 return; 10202 10203 case SIOCGDSTINFO: 10204 ip_sioctl_dstinfo(q, mp); 10205 ip6_asp_table_refrele(ipst); 10206 return; 10207 10208 case I_PLINK: 10209 case I_PUNLINK: 10210 case I_LINK: 10211 case I_UNLINK: 10212 /* 10213 * We treat non-persistent link similarly as the persistent 10214 * link case, in terms of plumbing/unplumbing, as well as 10215 * dynamic re-plumbing events indicator. See comments 10216 * in ip_sioctl_plink() for more. 10217 * 10218 * Request can be enqueued in the 'ipsq' while waiting 10219 * to become exclusive. So bump up the conn ref. 10220 */ 10221 if (CONN_Q(q)) 10222 CONN_INC_REF(Q_TO_CONN(q)); 10223 ip_sioctl_plink(NULL, q, mp, NULL); 10224 return; 10225 10226 case ND_GET: 10227 case ND_SET: 10228 /* 10229 * Use of the nd table requires holding the reader lock. 10230 * Modifying the nd table thru nd_load/nd_unload requires 10231 * the writer lock. 10232 */ 10233 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10234 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10235 rw_exit(&ipst->ips_ip_g_nd_lock); 10236 10237 if (iocp->ioc_error) 10238 iocp->ioc_count = 0; 10239 mp->b_datap->db_type = M_IOCACK; 10240 qreply(q, mp); 10241 return; 10242 } 10243 rw_exit(&ipst->ips_ip_g_nd_lock); 10244 /* 10245 * We don't understand this subioctl of ND_GET / ND_SET. 10246 * Maybe intended for some driver / module below us 10247 */ 10248 if (q->q_next) { 10249 putnext(q, mp); 10250 } else { 10251 iocp->ioc_error = ENOENT; 10252 mp->b_datap->db_type = M_IOCNAK; 10253 iocp->ioc_count = 0; 10254 qreply(q, mp); 10255 } 10256 return; 10257 10258 case IP_IOCTL: 10259 ip_wput_ioctl(q, mp); 10260 return; 10261 default: 10262 cmn_err(CE_PANIC, "should not happen "); 10263 } 10264 nak: 10265 if (mp->b_cont != NULL) { 10266 freemsg(mp->b_cont); 10267 mp->b_cont = NULL; 10268 } 10269 iocp->ioc_error = EINVAL; 10270 mp->b_datap->db_type = M_IOCNAK; 10271 iocp->ioc_count = 0; 10272 qreply(q, mp); 10273 } 10274 10275 /* ip_wput hands off ARP IOCTL responses to us */ 10276 void 10277 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10278 { 10279 struct arpreq *ar; 10280 struct xarpreq *xar; 10281 area_t *area; 10282 mblk_t *area_mp; 10283 struct iocblk *iocp; 10284 mblk_t *orig_ioc_mp, *tmp; 10285 struct iocblk *orig_iocp; 10286 ill_t *ill; 10287 conn_t *connp = NULL; 10288 uint_t ioc_id; 10289 mblk_t *pending_mp; 10290 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10291 int *flagsp; 10292 char *storage = NULL; 10293 sin_t *sin; 10294 ipaddr_t addr; 10295 int err; 10296 ip_stack_t *ipst; 10297 10298 ill = q->q_ptr; 10299 ASSERT(ill != NULL); 10300 ipst = ill->ill_ipst; 10301 10302 /* 10303 * We should get back from ARP a packet chain that looks like: 10304 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10305 */ 10306 if (!(area_mp = mp->b_cont) || 10307 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10308 !(orig_ioc_mp = area_mp->b_cont) || 10309 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10310 freemsg(mp); 10311 return; 10312 } 10313 10314 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10315 10316 tmp = (orig_ioc_mp->b_cont)->b_cont; 10317 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10318 (orig_iocp->ioc_cmd == SIOCSXARP) || 10319 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10320 x_arp_ioctl = B_TRUE; 10321 xar = (struct xarpreq *)tmp->b_rptr; 10322 sin = (sin_t *)&xar->xarp_pa; 10323 flagsp = &xar->xarp_flags; 10324 storage = xar->xarp_ha.sdl_data; 10325 if (xar->xarp_ha.sdl_nlen != 0) 10326 ifx_arp_ioctl = B_TRUE; 10327 } else { 10328 ar = (struct arpreq *)tmp->b_rptr; 10329 sin = (sin_t *)&ar->arp_pa; 10330 flagsp = &ar->arp_flags; 10331 storage = ar->arp_ha.sa_data; 10332 } 10333 10334 iocp = (struct iocblk *)mp->b_rptr; 10335 10336 /* 10337 * Pick out the originating queue based on the ioc_id. 10338 */ 10339 ioc_id = iocp->ioc_id; 10340 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10341 if (pending_mp == NULL) { 10342 ASSERT(connp == NULL); 10343 inet_freemsg(mp); 10344 return; 10345 } 10346 ASSERT(connp != NULL); 10347 q = CONNP_TO_WQ(connp); 10348 10349 /* Uncouple the internally generated IOCTL from the original one */ 10350 area = (area_t *)area_mp->b_rptr; 10351 area_mp->b_cont = NULL; 10352 10353 /* 10354 * Restore the b_next and b_prev used by mi code. This is needed 10355 * to complete the ioctl using mi* functions. We stored them in 10356 * the pending mp prior to sending the request to ARP. 10357 */ 10358 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10359 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10360 inet_freemsg(pending_mp); 10361 10362 /* 10363 * We're done if there was an error or if this is not an SIOCG{X}ARP 10364 * Catch the case where there is an IRE_CACHE by no entry in the 10365 * arp table. 10366 */ 10367 addr = sin->sin_addr.s_addr; 10368 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10369 ire_t *ire; 10370 dl_unitdata_req_t *dlup; 10371 mblk_t *llmp; 10372 int addr_len; 10373 ill_t *ipsqill = NULL; 10374 10375 if (ifx_arp_ioctl) { 10376 /* 10377 * There's no need to lookup the ill, since 10378 * we've already done that when we started 10379 * processing the ioctl and sent the message 10380 * to ARP on that ill. So use the ill that 10381 * is stored in q->q_ptr. 10382 */ 10383 ipsqill = ill; 10384 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10385 ipsqill->ill_ipif, ALL_ZONES, 10386 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10387 } else { 10388 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10389 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10390 if (ire != NULL) 10391 ipsqill = ire_to_ill(ire); 10392 } 10393 10394 if ((x_arp_ioctl) && (ipsqill != NULL)) 10395 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10396 10397 if (ire != NULL) { 10398 /* 10399 * Since the ire obtained from cachetable is used for 10400 * mac addr copying below, treat an incomplete ire as if 10401 * as if we never found it. 10402 */ 10403 if (ire->ire_nce != NULL && 10404 ire->ire_nce->nce_state != ND_REACHABLE) { 10405 ire_refrele(ire); 10406 ire = NULL; 10407 ipsqill = NULL; 10408 goto errack; 10409 } 10410 *flagsp = ATF_INUSE; 10411 llmp = (ire->ire_nce != NULL ? 10412 ire->ire_nce->nce_res_mp : NULL); 10413 if (llmp != NULL && ipsqill != NULL) { 10414 uchar_t *macaddr; 10415 10416 addr_len = ipsqill->ill_phys_addr_length; 10417 if (x_arp_ioctl && ((addr_len + 10418 ipsqill->ill_name_length) > 10419 sizeof (xar->xarp_ha.sdl_data))) { 10420 ire_refrele(ire); 10421 freemsg(mp); 10422 ip_ioctl_finish(q, orig_ioc_mp, 10423 EINVAL, NO_COPYOUT, NULL); 10424 return; 10425 } 10426 *flagsp |= ATF_COM; 10427 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10428 if (ipsqill->ill_sap_length < 0) 10429 macaddr = llmp->b_rptr + 10430 dlup->dl_dest_addr_offset; 10431 else 10432 macaddr = llmp->b_rptr + 10433 dlup->dl_dest_addr_offset + 10434 ipsqill->ill_sap_length; 10435 /* 10436 * For SIOCGARP, MAC address length 10437 * validation has already been done 10438 * before the ioctl was issued to ARP to 10439 * allow it to progress only on 6 byte 10440 * addressable (ethernet like) media. Thus 10441 * the mac address copying can not overwrite 10442 * the sa_data area below. 10443 */ 10444 bcopy(macaddr, storage, addr_len); 10445 } 10446 /* Ditch the internal IOCTL. */ 10447 freemsg(mp); 10448 ire_refrele(ire); 10449 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10450 return; 10451 } 10452 } 10453 10454 /* 10455 * Delete the coresponding IRE_CACHE if any. 10456 * Reset the error if there was one (in case there was no entry 10457 * in arp.) 10458 */ 10459 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10460 ipif_t *ipintf = NULL; 10461 10462 if (ifx_arp_ioctl) { 10463 /* 10464 * There's no need to lookup the ill, since 10465 * we've already done that when we started 10466 * processing the ioctl and sent the message 10467 * to ARP on that ill. So use the ill that 10468 * is stored in q->q_ptr. 10469 */ 10470 ipintf = ill->ill_ipif; 10471 } 10472 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10473 /* 10474 * The address in "addr" may be an entry for a 10475 * router. If that's true, then any off-net 10476 * IRE_CACHE entries that go through the router 10477 * with address "addr" must be clobbered. Use 10478 * ire_walk to achieve this goal. 10479 */ 10480 if (ifx_arp_ioctl) 10481 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10482 ire_delete_cache_gw, (char *)&addr, ill); 10483 else 10484 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10485 ALL_ZONES, ipst); 10486 iocp->ioc_error = 0; 10487 } 10488 } 10489 errack: 10490 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10491 err = iocp->ioc_error; 10492 freemsg(mp); 10493 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10494 return; 10495 } 10496 10497 /* 10498 * Completion of an SIOCG{X}ARP. Translate the information from 10499 * the area_t into the struct {x}arpreq. 10500 */ 10501 if (x_arp_ioctl) { 10502 storage += ill_xarp_info(&xar->xarp_ha, ill); 10503 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10504 sizeof (xar->xarp_ha.sdl_data)) { 10505 freemsg(mp); 10506 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10507 NULL); 10508 return; 10509 } 10510 } 10511 *flagsp = ATF_INUSE; 10512 if (area->area_flags & ACE_F_PERMANENT) 10513 *flagsp |= ATF_PERM; 10514 if (area->area_flags & ACE_F_PUBLISH) 10515 *flagsp |= ATF_PUBL; 10516 if (area->area_flags & ACE_F_AUTHORITY) 10517 *flagsp |= ATF_AUTHORITY; 10518 if (area->area_hw_addr_length != 0) { 10519 *flagsp |= ATF_COM; 10520 /* 10521 * For SIOCGARP, MAC address length validation has 10522 * already been done before the ioctl was issued to ARP 10523 * to allow it to progress only on 6 byte addressable 10524 * (ethernet like) media. Thus the mac address copying 10525 * can not overwrite the sa_data area below. 10526 */ 10527 bcopy((char *)area + area->area_hw_addr_offset, 10528 storage, area->area_hw_addr_length); 10529 } 10530 10531 /* Ditch the internal IOCTL. */ 10532 freemsg(mp); 10533 /* Complete the original. */ 10534 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10535 } 10536 10537 /* 10538 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10539 * interface) create the next available logical interface for this 10540 * physical interface. 10541 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10542 * ipif with the specified name. 10543 * 10544 * If the address family is not AF_UNSPEC then set the address as well. 10545 * 10546 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10547 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10548 * 10549 * Executed as a writer on the ill or ill group. 10550 * So no lock is needed to traverse the ipif chain, or examine the 10551 * phyint flags. 10552 */ 10553 /* ARGSUSED */ 10554 int 10555 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10556 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10557 { 10558 mblk_t *mp1; 10559 struct lifreq *lifr; 10560 boolean_t isv6; 10561 boolean_t exists; 10562 char *name; 10563 char *endp; 10564 char *cp; 10565 int namelen; 10566 ipif_t *ipif; 10567 long id; 10568 ipsq_t *ipsq; 10569 ill_t *ill; 10570 sin_t *sin; 10571 int err = 0; 10572 boolean_t found_sep = B_FALSE; 10573 conn_t *connp; 10574 zoneid_t zoneid; 10575 int orig_ifindex = 0; 10576 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10577 10578 ASSERT(q->q_next == NULL); 10579 ip1dbg(("ip_sioctl_addif\n")); 10580 /* Existence of mp1 has been checked in ip_wput_nondata */ 10581 mp1 = mp->b_cont->b_cont; 10582 /* 10583 * Null terminate the string to protect against buffer 10584 * overrun. String was generated by user code and may not 10585 * be trusted. 10586 */ 10587 lifr = (struct lifreq *)mp1->b_rptr; 10588 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10589 name = lifr->lifr_name; 10590 ASSERT(CONN_Q(q)); 10591 connp = Q_TO_CONN(q); 10592 isv6 = connp->conn_af_isv6; 10593 zoneid = connp->conn_zoneid; 10594 namelen = mi_strlen(name); 10595 if (namelen == 0) 10596 return (EINVAL); 10597 10598 exists = B_FALSE; 10599 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10600 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10601 /* 10602 * Allow creating lo0 using SIOCLIFADDIF. 10603 * can't be any other writer thread. So can pass null below 10604 * for the last 4 args to ipif_lookup_name. 10605 */ 10606 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10607 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10608 /* Prevent any further action */ 10609 if (ipif == NULL) { 10610 return (ENOBUFS); 10611 } else if (!exists) { 10612 /* We created the ipif now and as writer */ 10613 ipif_refrele(ipif); 10614 return (0); 10615 } else { 10616 ill = ipif->ipif_ill; 10617 ill_refhold(ill); 10618 ipif_refrele(ipif); 10619 } 10620 } else { 10621 /* Look for a colon in the name. */ 10622 endp = &name[namelen]; 10623 for (cp = endp; --cp > name; ) { 10624 if (*cp == IPIF_SEPARATOR_CHAR) { 10625 found_sep = B_TRUE; 10626 /* 10627 * Reject any non-decimal aliases for plumbing 10628 * of logical interfaces. Aliases with leading 10629 * zeroes are also rejected as they introduce 10630 * ambiguity in the naming of the interfaces. 10631 * Comparing with "0" takes care of all such 10632 * cases. 10633 */ 10634 if ((strncmp("0", cp+1, 1)) == 0) 10635 return (EINVAL); 10636 10637 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10638 id <= 0 || *endp != '\0') { 10639 return (EINVAL); 10640 } 10641 *cp = '\0'; 10642 break; 10643 } 10644 } 10645 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10646 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10647 if (found_sep) 10648 *cp = IPIF_SEPARATOR_CHAR; 10649 if (ill == NULL) 10650 return (err); 10651 } 10652 10653 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10654 B_TRUE); 10655 10656 /* 10657 * Release the refhold due to the lookup, now that we are excl 10658 * or we are just returning 10659 */ 10660 ill_refrele(ill); 10661 10662 if (ipsq == NULL) 10663 return (EINPROGRESS); 10664 10665 /* 10666 * If the interface is failed, inactive or offlined, look for a working 10667 * interface in the ill group and create the ipif there. If we can't 10668 * find a good interface, create the ipif anyway so that in.mpathd can 10669 * move it to the first repaired interface. 10670 */ 10671 if ((ill->ill_phyint->phyint_flags & 10672 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10673 ill->ill_phyint->phyint_groupname_len != 0) { 10674 phyint_t *phyi; 10675 char *groupname = ill->ill_phyint->phyint_groupname; 10676 10677 /* 10678 * We're looking for a working interface, but it doesn't matter 10679 * if it's up or down; so instead of following the group lists, 10680 * we look at each physical interface and compare the groupname. 10681 * We're only interested in interfaces with IPv4 (resp. IPv6) 10682 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10683 * Otherwise we create the ipif on the failed interface. 10684 */ 10685 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10686 phyi = avl_first(&ipst->ips_phyint_g_list-> 10687 phyint_list_avl_by_index); 10688 for (; phyi != NULL; 10689 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10690 phyint_list_avl_by_index, 10691 phyi, AVL_AFTER)) { 10692 if (phyi->phyint_groupname_len == 0) 10693 continue; 10694 ASSERT(phyi->phyint_groupname != NULL); 10695 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10696 !(phyi->phyint_flags & 10697 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10698 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10699 (phyi->phyint_illv4 != NULL))) { 10700 break; 10701 } 10702 } 10703 rw_exit(&ipst->ips_ill_g_lock); 10704 10705 if (phyi != NULL) { 10706 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10707 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10708 phyi->phyint_illv4); 10709 } 10710 } 10711 10712 /* 10713 * We are now exclusive on the ipsq, so an ill move will be serialized 10714 * before or after us. 10715 */ 10716 ASSERT(IAM_WRITER_ILL(ill)); 10717 ASSERT(ill->ill_move_in_progress == B_FALSE); 10718 10719 if (found_sep && orig_ifindex == 0) { 10720 /* Now see if there is an IPIF with this unit number. */ 10721 for (ipif = ill->ill_ipif; ipif != NULL; 10722 ipif = ipif->ipif_next) { 10723 if (ipif->ipif_id == id) { 10724 err = EEXIST; 10725 goto done; 10726 } 10727 } 10728 } 10729 10730 /* 10731 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10732 * of lo0. We never come here when we plumb lo0:0. It 10733 * happens in ipif_lookup_on_name. 10734 * The specified unit number is ignored when we create the ipif on a 10735 * different interface. However, we save it in ipif_orig_ipifid below so 10736 * that the ipif fails back to the right position. 10737 */ 10738 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10739 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10740 err = ENOBUFS; 10741 goto done; 10742 } 10743 10744 /* Return created name with ioctl */ 10745 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10746 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10747 ip1dbg(("created %s\n", lifr->lifr_name)); 10748 10749 /* Set address */ 10750 sin = (sin_t *)&lifr->lifr_addr; 10751 if (sin->sin_family != AF_UNSPEC) { 10752 err = ip_sioctl_addr(ipif, sin, q, mp, 10753 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10754 } 10755 10756 /* Set ifindex and unit number for failback */ 10757 if (err == 0 && orig_ifindex != 0) { 10758 ipif->ipif_orig_ifindex = orig_ifindex; 10759 if (found_sep) { 10760 ipif->ipif_orig_ipifid = id; 10761 } 10762 } 10763 10764 done: 10765 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10766 return (err); 10767 } 10768 10769 /* 10770 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10771 * interface) delete it based on the IP address (on this physical interface). 10772 * Otherwise delete it based on the ipif_id. 10773 * Also, special handling to allow a removeif of lo0. 10774 */ 10775 /* ARGSUSED */ 10776 int 10777 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10778 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10779 { 10780 conn_t *connp; 10781 ill_t *ill = ipif->ipif_ill; 10782 boolean_t success; 10783 ip_stack_t *ipst; 10784 10785 ipst = CONNQ_TO_IPST(q); 10786 10787 ASSERT(q->q_next == NULL); 10788 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10789 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10790 ASSERT(IAM_WRITER_IPIF(ipif)); 10791 10792 connp = Q_TO_CONN(q); 10793 /* 10794 * Special case for unplumbing lo0 (the loopback physical interface). 10795 * If unplumbing lo0, the incoming address structure has been 10796 * initialized to all zeros. When unplumbing lo0, all its logical 10797 * interfaces must be removed too. 10798 * 10799 * Note that this interface may be called to remove a specific 10800 * loopback logical interface (eg, lo0:1). But in that case 10801 * ipif->ipif_id != 0 so that the code path for that case is the 10802 * same as any other interface (meaning it skips the code directly 10803 * below). 10804 */ 10805 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10806 if (sin->sin_family == AF_UNSPEC && 10807 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10808 /* 10809 * Mark it condemned. No new ref. will be made to ill. 10810 */ 10811 mutex_enter(&ill->ill_lock); 10812 ill->ill_state_flags |= ILL_CONDEMNED; 10813 for (ipif = ill->ill_ipif; ipif != NULL; 10814 ipif = ipif->ipif_next) { 10815 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10816 } 10817 mutex_exit(&ill->ill_lock); 10818 10819 ipif = ill->ill_ipif; 10820 /* unplumb the loopback interface */ 10821 ill_delete(ill); 10822 mutex_enter(&connp->conn_lock); 10823 mutex_enter(&ill->ill_lock); 10824 ASSERT(ill->ill_group == NULL); 10825 10826 /* Are any references to this ill active */ 10827 if (ill_is_quiescent(ill)) { 10828 mutex_exit(&ill->ill_lock); 10829 mutex_exit(&connp->conn_lock); 10830 ill_delete_tail(ill); 10831 mi_free(ill); 10832 return (0); 10833 } 10834 success = ipsq_pending_mp_add(connp, ipif, 10835 CONNP_TO_WQ(connp), mp, ILL_FREE); 10836 mutex_exit(&connp->conn_lock); 10837 mutex_exit(&ill->ill_lock); 10838 if (success) 10839 return (EINPROGRESS); 10840 else 10841 return (EINTR); 10842 } 10843 } 10844 10845 /* 10846 * We are exclusive on the ipsq, so an ill move will be serialized 10847 * before or after us. 10848 */ 10849 ASSERT(ill->ill_move_in_progress == B_FALSE); 10850 10851 if (ipif->ipif_id == 0) { 10852 /* Find based on address */ 10853 if (ipif->ipif_isv6) { 10854 sin6_t *sin6; 10855 10856 if (sin->sin_family != AF_INET6) 10857 return (EAFNOSUPPORT); 10858 10859 sin6 = (sin6_t *)sin; 10860 /* We are a writer, so we should be able to lookup */ 10861 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10862 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10863 if (ipif == NULL) { 10864 /* 10865 * Maybe the address in on another interface in 10866 * the same IPMP group? We check this below. 10867 */ 10868 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10869 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10870 ipst); 10871 } 10872 } else { 10873 ipaddr_t addr; 10874 10875 if (sin->sin_family != AF_INET) 10876 return (EAFNOSUPPORT); 10877 10878 addr = sin->sin_addr.s_addr; 10879 /* We are a writer, so we should be able to lookup */ 10880 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10881 NULL, NULL, NULL, ipst); 10882 if (ipif == NULL) { 10883 /* 10884 * Maybe the address in on another interface in 10885 * the same IPMP group? We check this below. 10886 */ 10887 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10888 NULL, NULL, NULL, NULL, ipst); 10889 } 10890 } 10891 if (ipif == NULL) { 10892 return (EADDRNOTAVAIL); 10893 } 10894 /* 10895 * When the address to be removed is hosted on a different 10896 * interface, we check if the interface is in the same IPMP 10897 * group as the specified one; if so we proceed with the 10898 * removal. 10899 * ill->ill_group is NULL when the ill is down, so we have to 10900 * compare the group names instead. 10901 */ 10902 if (ipif->ipif_ill != ill && 10903 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10904 ill->ill_phyint->phyint_groupname_len == 0 || 10905 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10906 ill->ill_phyint->phyint_groupname) != 0)) { 10907 ipif_refrele(ipif); 10908 return (EADDRNOTAVAIL); 10909 } 10910 10911 /* This is a writer */ 10912 ipif_refrele(ipif); 10913 } 10914 10915 /* 10916 * Can not delete instance zero since it is tied to the ill. 10917 */ 10918 if (ipif->ipif_id == 0) 10919 return (EBUSY); 10920 10921 mutex_enter(&ill->ill_lock); 10922 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10923 mutex_exit(&ill->ill_lock); 10924 10925 ipif_free(ipif); 10926 10927 mutex_enter(&connp->conn_lock); 10928 mutex_enter(&ill->ill_lock); 10929 10930 /* Are any references to this ipif active */ 10931 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10932 mutex_exit(&ill->ill_lock); 10933 mutex_exit(&connp->conn_lock); 10934 ipif_non_duplicate(ipif); 10935 ipif_down_tail(ipif); 10936 ipif_free_tail(ipif); 10937 return (0); 10938 } 10939 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10940 IPIF_FREE); 10941 mutex_exit(&ill->ill_lock); 10942 mutex_exit(&connp->conn_lock); 10943 if (success) 10944 return (EINPROGRESS); 10945 else 10946 return (EINTR); 10947 } 10948 10949 /* 10950 * Restart the removeif ioctl. The refcnt has gone down to 0. 10951 * The ipif is already condemned. So can't find it thru lookups. 10952 */ 10953 /* ARGSUSED */ 10954 int 10955 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10956 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10957 { 10958 ill_t *ill = ipif->ipif_ill; 10959 10960 ASSERT(IAM_WRITER_IPIF(ipif)); 10961 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10962 10963 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10964 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10965 10966 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10967 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10968 ill_delete_tail(ill); 10969 mi_free(ill); 10970 return (0); 10971 } 10972 10973 ipif_non_duplicate(ipif); 10974 ipif_down_tail(ipif); 10975 ipif_free_tail(ipif); 10976 10977 ILL_UNMARK_CHANGING(ill); 10978 return (0); 10979 } 10980 10981 /* 10982 * Set the local interface address. 10983 * Allow an address of all zero when the interface is down. 10984 */ 10985 /* ARGSUSED */ 10986 int 10987 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10988 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10989 { 10990 int err = 0; 10991 in6_addr_t v6addr; 10992 boolean_t need_up = B_FALSE; 10993 10994 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10995 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10996 10997 ASSERT(IAM_WRITER_IPIF(ipif)); 10998 10999 if (ipif->ipif_isv6) { 11000 sin6_t *sin6; 11001 ill_t *ill; 11002 phyint_t *phyi; 11003 11004 if (sin->sin_family != AF_INET6) 11005 return (EAFNOSUPPORT); 11006 11007 sin6 = (sin6_t *)sin; 11008 v6addr = sin6->sin6_addr; 11009 ill = ipif->ipif_ill; 11010 phyi = ill->ill_phyint; 11011 11012 /* 11013 * Enforce that true multicast interfaces have a link-local 11014 * address for logical unit 0. 11015 */ 11016 if (ipif->ipif_id == 0 && 11017 (ill->ill_flags & ILLF_MULTICAST) && 11018 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11019 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11020 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11021 return (EADDRNOTAVAIL); 11022 } 11023 11024 /* 11025 * up interfaces shouldn't have the unspecified address 11026 * unless they also have the IPIF_NOLOCAL flags set and 11027 * have a subnet assigned. 11028 */ 11029 if ((ipif->ipif_flags & IPIF_UP) && 11030 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11031 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11032 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11033 return (EADDRNOTAVAIL); 11034 } 11035 11036 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11037 return (EADDRNOTAVAIL); 11038 } else { 11039 ipaddr_t addr; 11040 11041 if (sin->sin_family != AF_INET) 11042 return (EAFNOSUPPORT); 11043 11044 addr = sin->sin_addr.s_addr; 11045 11046 /* Allow 0 as the local address. */ 11047 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11048 return (EADDRNOTAVAIL); 11049 11050 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11051 } 11052 11053 11054 /* 11055 * Even if there is no change we redo things just to rerun 11056 * ipif_set_default. 11057 */ 11058 if (ipif->ipif_flags & IPIF_UP) { 11059 /* 11060 * Setting a new local address, make sure 11061 * we have net and subnet bcast ire's for 11062 * the old address if we need them. 11063 */ 11064 if (!ipif->ipif_isv6) 11065 ipif_check_bcast_ires(ipif); 11066 /* 11067 * If the interface is already marked up, 11068 * we call ipif_down which will take care 11069 * of ditching any IREs that have been set 11070 * up based on the old interface address. 11071 */ 11072 err = ipif_logical_down(ipif, q, mp); 11073 if (err == EINPROGRESS) 11074 return (err); 11075 ipif_down_tail(ipif); 11076 need_up = 1; 11077 } 11078 11079 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11080 return (err); 11081 } 11082 11083 int 11084 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11085 boolean_t need_up) 11086 { 11087 in6_addr_t v6addr; 11088 in6_addr_t ov6addr; 11089 ipaddr_t addr; 11090 sin6_t *sin6; 11091 int sinlen; 11092 int err = 0; 11093 ill_t *ill = ipif->ipif_ill; 11094 boolean_t need_dl_down; 11095 boolean_t need_arp_down; 11096 struct iocblk *iocp; 11097 11098 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11099 11100 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11101 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11102 ASSERT(IAM_WRITER_IPIF(ipif)); 11103 11104 /* Must cancel any pending timer before taking the ill_lock */ 11105 if (ipif->ipif_recovery_id != 0) 11106 (void) untimeout(ipif->ipif_recovery_id); 11107 ipif->ipif_recovery_id = 0; 11108 11109 if (ipif->ipif_isv6) { 11110 sin6 = (sin6_t *)sin; 11111 v6addr = sin6->sin6_addr; 11112 sinlen = sizeof (struct sockaddr_in6); 11113 } else { 11114 addr = sin->sin_addr.s_addr; 11115 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11116 sinlen = sizeof (struct sockaddr_in); 11117 } 11118 mutex_enter(&ill->ill_lock); 11119 ov6addr = ipif->ipif_v6lcl_addr; 11120 ipif->ipif_v6lcl_addr = v6addr; 11121 sctp_update_ipif_addr(ipif, ov6addr); 11122 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11123 ipif->ipif_v6src_addr = ipv6_all_zeros; 11124 } else { 11125 ipif->ipif_v6src_addr = v6addr; 11126 } 11127 ipif->ipif_addr_ready = 0; 11128 11129 /* 11130 * If the interface was previously marked as a duplicate, then since 11131 * we've now got a "new" address, it should no longer be considered a 11132 * duplicate -- even if the "new" address is the same as the old one. 11133 * Note that if all ipifs are down, we may have a pending ARP down 11134 * event to handle. This is because we want to recover from duplicates 11135 * and thus delay tearing down ARP until the duplicates have been 11136 * removed or disabled. 11137 */ 11138 need_dl_down = need_arp_down = B_FALSE; 11139 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11140 need_arp_down = !need_up; 11141 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11142 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11143 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11144 need_dl_down = B_TRUE; 11145 } 11146 } 11147 11148 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11149 !ill->ill_is_6to4tun) { 11150 queue_t *wqp = ill->ill_wq; 11151 11152 /* 11153 * The local address of this interface is a 6to4 address, 11154 * check if this interface is in fact a 6to4 tunnel or just 11155 * an interface configured with a 6to4 address. We are only 11156 * interested in the former. 11157 */ 11158 if (wqp != NULL) { 11159 while ((wqp->q_next != NULL) && 11160 (wqp->q_next->q_qinfo != NULL) && 11161 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11162 11163 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11164 == TUN6TO4_MODID) { 11165 /* set for use in IP */ 11166 ill->ill_is_6to4tun = 1; 11167 break; 11168 } 11169 wqp = wqp->q_next; 11170 } 11171 } 11172 } 11173 11174 ipif_set_default(ipif); 11175 11176 /* 11177 * When publishing an interface address change event, we only notify 11178 * the event listeners of the new address. It is assumed that if they 11179 * actively care about the addresses assigned that they will have 11180 * already discovered the previous address assigned (if there was one.) 11181 * 11182 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11183 */ 11184 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11185 hook_nic_event_t *info; 11186 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11187 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11188 "attached for %s\n", info->hne_event, 11189 ill->ill_name)); 11190 if (info->hne_data != NULL) 11191 kmem_free(info->hne_data, info->hne_datalen); 11192 kmem_free(info, sizeof (hook_nic_event_t)); 11193 } 11194 11195 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11196 if (info != NULL) { 11197 ip_stack_t *ipst = ill->ill_ipst; 11198 11199 info->hne_nic = 11200 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex; 11201 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11202 info->hne_event = NE_ADDRESS_CHANGE; 11203 info->hne_family = ipif->ipif_isv6 ? 11204 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11205 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11206 if (info->hne_data != NULL) { 11207 info->hne_datalen = sinlen; 11208 bcopy(sin, info->hne_data, sinlen); 11209 } else { 11210 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11211 "address information for ADDRESS_CHANGE nic" 11212 " event of %s (ENOMEM)\n", 11213 ipif->ipif_ill->ill_name)); 11214 kmem_free(info, sizeof (hook_nic_event_t)); 11215 } 11216 } else 11217 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11218 "ADDRESS_CHANGE nic event information for %s " 11219 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11220 11221 ipif->ipif_ill->ill_nic_event_info = info; 11222 } 11223 11224 mutex_exit(&ill->ill_lock); 11225 11226 if (need_up) { 11227 /* 11228 * Now bring the interface back up. If this 11229 * is the only IPIF for the ILL, ipif_up 11230 * will have to re-bind to the device, so 11231 * we may get back EINPROGRESS, in which 11232 * case, this IOCTL will get completed in 11233 * ip_rput_dlpi when we see the DL_BIND_ACK. 11234 */ 11235 err = ipif_up(ipif, q, mp); 11236 } 11237 11238 if (need_dl_down) 11239 ill_dl_down(ill); 11240 if (need_arp_down) 11241 ipif_arp_down(ipif); 11242 11243 return (err); 11244 } 11245 11246 11247 /* 11248 * Restart entry point to restart the address set operation after the 11249 * refcounts have dropped to zero. 11250 */ 11251 /* ARGSUSED */ 11252 int 11253 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11254 ip_ioctl_cmd_t *ipip, void *ifreq) 11255 { 11256 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11257 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11258 ASSERT(IAM_WRITER_IPIF(ipif)); 11259 ipif_down_tail(ipif); 11260 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11261 } 11262 11263 /* ARGSUSED */ 11264 int 11265 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11266 ip_ioctl_cmd_t *ipip, void *if_req) 11267 { 11268 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11269 struct lifreq *lifr = (struct lifreq *)if_req; 11270 11271 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11272 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11273 /* 11274 * The net mask and address can't change since we have a 11275 * reference to the ipif. So no lock is necessary. 11276 */ 11277 if (ipif->ipif_isv6) { 11278 *sin6 = sin6_null; 11279 sin6->sin6_family = AF_INET6; 11280 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11281 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11282 lifr->lifr_addrlen = 11283 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11284 } else { 11285 *sin = sin_null; 11286 sin->sin_family = AF_INET; 11287 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11288 if (ipip->ipi_cmd_type == LIF_CMD) { 11289 lifr->lifr_addrlen = 11290 ip_mask_to_plen(ipif->ipif_net_mask); 11291 } 11292 } 11293 return (0); 11294 } 11295 11296 /* 11297 * Set the destination address for a pt-pt interface. 11298 */ 11299 /* ARGSUSED */ 11300 int 11301 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11302 ip_ioctl_cmd_t *ipip, void *if_req) 11303 { 11304 int err = 0; 11305 in6_addr_t v6addr; 11306 boolean_t need_up = B_FALSE; 11307 11308 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11309 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11310 ASSERT(IAM_WRITER_IPIF(ipif)); 11311 11312 if (ipif->ipif_isv6) { 11313 sin6_t *sin6; 11314 11315 if (sin->sin_family != AF_INET6) 11316 return (EAFNOSUPPORT); 11317 11318 sin6 = (sin6_t *)sin; 11319 v6addr = sin6->sin6_addr; 11320 11321 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11322 return (EADDRNOTAVAIL); 11323 } else { 11324 ipaddr_t addr; 11325 11326 if (sin->sin_family != AF_INET) 11327 return (EAFNOSUPPORT); 11328 11329 addr = sin->sin_addr.s_addr; 11330 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11331 return (EADDRNOTAVAIL); 11332 11333 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11334 } 11335 11336 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11337 return (0); /* No change */ 11338 11339 if (ipif->ipif_flags & IPIF_UP) { 11340 /* 11341 * If the interface is already marked up, 11342 * we call ipif_down which will take care 11343 * of ditching any IREs that have been set 11344 * up based on the old pp dst address. 11345 */ 11346 err = ipif_logical_down(ipif, q, mp); 11347 if (err == EINPROGRESS) 11348 return (err); 11349 ipif_down_tail(ipif); 11350 need_up = B_TRUE; 11351 } 11352 /* 11353 * could return EINPROGRESS. If so ioctl will complete in 11354 * ip_rput_dlpi_writer 11355 */ 11356 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11357 return (err); 11358 } 11359 11360 static int 11361 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11362 boolean_t need_up) 11363 { 11364 in6_addr_t v6addr; 11365 ill_t *ill = ipif->ipif_ill; 11366 int err = 0; 11367 boolean_t need_dl_down; 11368 boolean_t need_arp_down; 11369 11370 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11371 ipif->ipif_id, (void *)ipif)); 11372 11373 /* Must cancel any pending timer before taking the ill_lock */ 11374 if (ipif->ipif_recovery_id != 0) 11375 (void) untimeout(ipif->ipif_recovery_id); 11376 ipif->ipif_recovery_id = 0; 11377 11378 if (ipif->ipif_isv6) { 11379 sin6_t *sin6; 11380 11381 sin6 = (sin6_t *)sin; 11382 v6addr = sin6->sin6_addr; 11383 } else { 11384 ipaddr_t addr; 11385 11386 addr = sin->sin_addr.s_addr; 11387 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11388 } 11389 mutex_enter(&ill->ill_lock); 11390 /* Set point to point destination address. */ 11391 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11392 /* 11393 * Allow this as a means of creating logical 11394 * pt-pt interfaces on top of e.g. an Ethernet. 11395 * XXX Undocumented HACK for testing. 11396 * pt-pt interfaces are created with NUD disabled. 11397 */ 11398 ipif->ipif_flags |= IPIF_POINTOPOINT; 11399 ipif->ipif_flags &= ~IPIF_BROADCAST; 11400 if (ipif->ipif_isv6) 11401 ill->ill_flags |= ILLF_NONUD; 11402 } 11403 11404 /* 11405 * If the interface was previously marked as a duplicate, then since 11406 * we've now got a "new" address, it should no longer be considered a 11407 * duplicate -- even if the "new" address is the same as the old one. 11408 * Note that if all ipifs are down, we may have a pending ARP down 11409 * event to handle. 11410 */ 11411 need_dl_down = need_arp_down = B_FALSE; 11412 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11413 need_arp_down = !need_up; 11414 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11415 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11416 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11417 need_dl_down = B_TRUE; 11418 } 11419 } 11420 11421 /* Set the new address. */ 11422 ipif->ipif_v6pp_dst_addr = v6addr; 11423 /* Make sure subnet tracks pp_dst */ 11424 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11425 mutex_exit(&ill->ill_lock); 11426 11427 if (need_up) { 11428 /* 11429 * Now bring the interface back up. If this 11430 * is the only IPIF for the ILL, ipif_up 11431 * will have to re-bind to the device, so 11432 * we may get back EINPROGRESS, in which 11433 * case, this IOCTL will get completed in 11434 * ip_rput_dlpi when we see the DL_BIND_ACK. 11435 */ 11436 err = ipif_up(ipif, q, mp); 11437 } 11438 11439 if (need_dl_down) 11440 ill_dl_down(ill); 11441 11442 if (need_arp_down) 11443 ipif_arp_down(ipif); 11444 return (err); 11445 } 11446 11447 /* 11448 * Restart entry point to restart the dstaddress set operation after the 11449 * refcounts have dropped to zero. 11450 */ 11451 /* ARGSUSED */ 11452 int 11453 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11454 ip_ioctl_cmd_t *ipip, void *ifreq) 11455 { 11456 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11457 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11458 ipif_down_tail(ipif); 11459 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11460 } 11461 11462 /* ARGSUSED */ 11463 int 11464 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11465 ip_ioctl_cmd_t *ipip, void *if_req) 11466 { 11467 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11468 11469 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11470 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11471 /* 11472 * Get point to point destination address. The addresses can't 11473 * change since we hold a reference to the ipif. 11474 */ 11475 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11476 return (EADDRNOTAVAIL); 11477 11478 if (ipif->ipif_isv6) { 11479 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11480 *sin6 = sin6_null; 11481 sin6->sin6_family = AF_INET6; 11482 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11483 } else { 11484 *sin = sin_null; 11485 sin->sin_family = AF_INET; 11486 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11487 } 11488 return (0); 11489 } 11490 11491 /* 11492 * part of ipmp, make this func return the active/inactive state and 11493 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11494 */ 11495 /* 11496 * This function either sets or clears the IFF_INACTIVE flag. 11497 * 11498 * As long as there are some addresses or multicast memberships on the 11499 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11500 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11501 * will be used for outbound packets. 11502 * 11503 * Caller needs to verify the validity of setting IFF_INACTIVE. 11504 */ 11505 static void 11506 phyint_inactive(phyint_t *phyi) 11507 { 11508 ill_t *ill_v4; 11509 ill_t *ill_v6; 11510 ipif_t *ipif; 11511 ilm_t *ilm; 11512 11513 ill_v4 = phyi->phyint_illv4; 11514 ill_v6 = phyi->phyint_illv6; 11515 11516 /* 11517 * No need for a lock while traversing the list since iam 11518 * a writer 11519 */ 11520 if (ill_v4 != NULL) { 11521 ASSERT(IAM_WRITER_ILL(ill_v4)); 11522 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11523 ipif = ipif->ipif_next) { 11524 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11525 mutex_enter(&phyi->phyint_lock); 11526 phyi->phyint_flags &= ~PHYI_INACTIVE; 11527 mutex_exit(&phyi->phyint_lock); 11528 return; 11529 } 11530 } 11531 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11532 ilm = ilm->ilm_next) { 11533 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11534 mutex_enter(&phyi->phyint_lock); 11535 phyi->phyint_flags &= ~PHYI_INACTIVE; 11536 mutex_exit(&phyi->phyint_lock); 11537 return; 11538 } 11539 } 11540 } 11541 if (ill_v6 != NULL) { 11542 ill_v6 = phyi->phyint_illv6; 11543 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11544 ipif = ipif->ipif_next) { 11545 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11546 mutex_enter(&phyi->phyint_lock); 11547 phyi->phyint_flags &= ~PHYI_INACTIVE; 11548 mutex_exit(&phyi->phyint_lock); 11549 return; 11550 } 11551 } 11552 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11553 ilm = ilm->ilm_next) { 11554 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11555 mutex_enter(&phyi->phyint_lock); 11556 phyi->phyint_flags &= ~PHYI_INACTIVE; 11557 mutex_exit(&phyi->phyint_lock); 11558 return; 11559 } 11560 } 11561 } 11562 mutex_enter(&phyi->phyint_lock); 11563 phyi->phyint_flags |= PHYI_INACTIVE; 11564 mutex_exit(&phyi->phyint_lock); 11565 } 11566 11567 /* 11568 * This function is called only when the phyint flags change. Currently 11569 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11570 * that we can select a good ill. 11571 */ 11572 static void 11573 ip_redo_nomination(phyint_t *phyi) 11574 { 11575 ill_t *ill_v4; 11576 11577 ill_v4 = phyi->phyint_illv4; 11578 11579 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11580 ASSERT(IAM_WRITER_ILL(ill_v4)); 11581 if (ill_v4->ill_group->illgrp_ill_count > 1) 11582 ill_nominate_bcast_rcv(ill_v4->ill_group); 11583 } 11584 } 11585 11586 /* 11587 * Heuristic to check if ill is INACTIVE. 11588 * Checks if ill has an ipif with an usable ip address. 11589 * 11590 * Return values: 11591 * B_TRUE - ill is INACTIVE; has no usable ipif 11592 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11593 */ 11594 static boolean_t 11595 ill_is_inactive(ill_t *ill) 11596 { 11597 ipif_t *ipif; 11598 11599 /* Check whether it is in an IPMP group */ 11600 if (ill->ill_phyint->phyint_groupname == NULL) 11601 return (B_FALSE); 11602 11603 if (ill->ill_ipif_up_count == 0) 11604 return (B_TRUE); 11605 11606 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11607 uint64_t flags = ipif->ipif_flags; 11608 11609 /* 11610 * This ipif is usable if it is IPIF_UP and not a 11611 * dedicated test address. A dedicated test address 11612 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11613 * (note in particular that V6 test addresses are 11614 * link-local data addresses and thus are marked 11615 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11616 */ 11617 if ((flags & IPIF_UP) && 11618 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11619 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11620 return (B_FALSE); 11621 } 11622 return (B_TRUE); 11623 } 11624 11625 /* 11626 * Set interface flags. 11627 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11628 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11629 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11630 * 11631 * NOTE : We really don't enforce that ipif_id zero should be used 11632 * for setting any flags other than IFF_LOGINT_FLAGS. This 11633 * is because applications generally does SICGLIFFLAGS and 11634 * ORs in the new flags (that affects the logical) and does a 11635 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11636 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11637 * flags that will be turned on is correct with respect to 11638 * ipif_id 0. For backward compatibility reasons, it is not done. 11639 */ 11640 /* ARGSUSED */ 11641 int 11642 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11643 ip_ioctl_cmd_t *ipip, void *if_req) 11644 { 11645 uint64_t turn_on; 11646 uint64_t turn_off; 11647 int err; 11648 boolean_t need_up = B_FALSE; 11649 phyint_t *phyi; 11650 ill_t *ill; 11651 uint64_t intf_flags; 11652 boolean_t phyint_flags_modified = B_FALSE; 11653 uint64_t flags; 11654 struct ifreq *ifr; 11655 struct lifreq *lifr; 11656 boolean_t set_linklocal = B_FALSE; 11657 boolean_t zero_source = B_FALSE; 11658 ip_stack_t *ipst; 11659 11660 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11661 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11662 11663 ASSERT(IAM_WRITER_IPIF(ipif)); 11664 11665 ill = ipif->ipif_ill; 11666 phyi = ill->ill_phyint; 11667 ipst = ill->ill_ipst; 11668 11669 if (ipip->ipi_cmd_type == IF_CMD) { 11670 ifr = (struct ifreq *)if_req; 11671 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11672 } else { 11673 lifr = (struct lifreq *)if_req; 11674 flags = lifr->lifr_flags; 11675 } 11676 11677 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11678 11679 /* 11680 * Has the flags been set correctly till now ? 11681 */ 11682 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11683 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11684 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11685 /* 11686 * Compare the new flags to the old, and partition 11687 * into those coming on and those going off. 11688 * For the 16 bit command keep the bits above bit 16 unchanged. 11689 */ 11690 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11691 flags |= intf_flags & ~0xFFFF; 11692 11693 /* 11694 * First check which bits will change and then which will 11695 * go on and off 11696 */ 11697 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11698 if (!turn_on) 11699 return (0); /* No change */ 11700 11701 turn_off = intf_flags & turn_on; 11702 turn_on ^= turn_off; 11703 err = 0; 11704 11705 /* 11706 * Don't allow any bits belonging to the logical interface 11707 * to be set or cleared on the replacement ipif that was 11708 * created temporarily during a MOVE. 11709 */ 11710 if (ipif->ipif_replace_zero && 11711 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11712 return (EINVAL); 11713 } 11714 11715 /* 11716 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11717 * IPv6 interfaces. 11718 */ 11719 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11720 return (EINVAL); 11721 11722 /* 11723 * cannot turn off IFF_NOXMIT on VNI interfaces. 11724 */ 11725 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11726 return (EINVAL); 11727 11728 /* 11729 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11730 * interfaces. It makes no sense in that context. 11731 */ 11732 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11733 return (EINVAL); 11734 11735 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11736 zero_source = B_TRUE; 11737 11738 /* 11739 * For IPv6 ipif_id 0, don't allow the interface to be up without 11740 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11741 * If the link local address isn't set, and can be set, it will get 11742 * set later on in this function. 11743 */ 11744 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11745 (flags & IFF_UP) && !zero_source && 11746 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11747 if (ipif_cant_setlinklocal(ipif)) 11748 return (EINVAL); 11749 set_linklocal = B_TRUE; 11750 } 11751 11752 /* 11753 * ILL cannot be part of a usesrc group and and IPMP group at the 11754 * same time. No need to grab ill_g_usesrc_lock here, see 11755 * synchronization notes in ip.c 11756 */ 11757 if (turn_on & PHYI_STANDBY && 11758 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11759 return (EINVAL); 11760 } 11761 11762 /* 11763 * If we modify physical interface flags, we'll potentially need to 11764 * send up two routing socket messages for the changes (one for the 11765 * IPv4 ill, and another for the IPv6 ill). Note that here. 11766 */ 11767 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11768 phyint_flags_modified = B_TRUE; 11769 11770 /* 11771 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11772 * we need to flush the IRE_CACHES belonging to this ill. 11773 * We handle this case here without doing the DOWN/UP dance 11774 * like it is done for other flags. If some other flags are 11775 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11776 * below will handle it by bringing it down and then 11777 * bringing it UP. 11778 */ 11779 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11780 ill_t *ill_v4, *ill_v6; 11781 11782 ill_v4 = phyi->phyint_illv4; 11783 ill_v6 = phyi->phyint_illv6; 11784 11785 /* 11786 * First set the INACTIVE flag if needed. Then delete the ires. 11787 * ire_add will atomically prevent creating new IRE_CACHEs 11788 * unless hidden flag is set. 11789 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11790 */ 11791 if ((turn_on & PHYI_FAILED) && 11792 ((intf_flags & PHYI_STANDBY) || 11793 !ipst->ips_ipmp_enable_failback)) { 11794 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11795 phyi->phyint_flags &= ~PHYI_INACTIVE; 11796 } 11797 if ((turn_off & PHYI_FAILED) && 11798 ((intf_flags & PHYI_STANDBY) || 11799 (!ipst->ips_ipmp_enable_failback && 11800 ill_is_inactive(ill)))) { 11801 phyint_inactive(phyi); 11802 } 11803 11804 if (turn_on & PHYI_STANDBY) { 11805 /* 11806 * We implicitly set INACTIVE only when STANDBY is set. 11807 * INACTIVE is also set on non-STANDBY phyint when user 11808 * disables FAILBACK using configuration file. 11809 * Do not allow STANDBY to be set on such INACTIVE 11810 * phyint 11811 */ 11812 if (phyi->phyint_flags & PHYI_INACTIVE) 11813 return (EINVAL); 11814 if (!(phyi->phyint_flags & PHYI_FAILED)) 11815 phyint_inactive(phyi); 11816 } 11817 if (turn_off & PHYI_STANDBY) { 11818 if (ipst->ips_ipmp_enable_failback) { 11819 /* 11820 * Reset PHYI_INACTIVE. 11821 */ 11822 phyi->phyint_flags &= ~PHYI_INACTIVE; 11823 } else if (ill_is_inactive(ill) && 11824 !(phyi->phyint_flags & PHYI_FAILED)) { 11825 /* 11826 * Need to set INACTIVE, when user sets 11827 * STANDBY on a non-STANDBY phyint and 11828 * later resets STANDBY 11829 */ 11830 phyint_inactive(phyi); 11831 } 11832 } 11833 /* 11834 * We should always send up a message so that the 11835 * daemons come to know of it. Note that the zeroth 11836 * interface can be down and the check below for IPIF_UP 11837 * will not make sense as we are actually setting 11838 * a phyint flag here. We assume that the ipif used 11839 * is always the zeroth ipif. (ip_rts_ifmsg does not 11840 * send up any message for non-zero ipifs). 11841 */ 11842 phyint_flags_modified = B_TRUE; 11843 11844 if (ill_v4 != NULL) { 11845 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11846 IRE_CACHE, ill_stq_cache_delete, 11847 (char *)ill_v4, ill_v4); 11848 illgrp_reset_schednext(ill_v4); 11849 } 11850 if (ill_v6 != NULL) { 11851 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11852 IRE_CACHE, ill_stq_cache_delete, 11853 (char *)ill_v6, ill_v6); 11854 illgrp_reset_schednext(ill_v6); 11855 } 11856 } 11857 11858 /* 11859 * If ILLF_ROUTER changes, we need to change the ip forwarding 11860 * status of the interface and, if the interface is part of an IPMP 11861 * group, all other interfaces that are part of the same IPMP 11862 * group. 11863 */ 11864 if ((turn_on | turn_off) & ILLF_ROUTER) 11865 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11866 11867 /* 11868 * If the interface is not UP and we are not going to 11869 * bring it UP, record the flags and return. When the 11870 * interface comes UP later, the right actions will be 11871 * taken. 11872 */ 11873 if (!(ipif->ipif_flags & IPIF_UP) && 11874 !(turn_on & IPIF_UP)) { 11875 /* Record new flags in their respective places. */ 11876 mutex_enter(&ill->ill_lock); 11877 mutex_enter(&ill->ill_phyint->phyint_lock); 11878 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11879 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11880 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11881 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11882 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11883 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11884 mutex_exit(&ill->ill_lock); 11885 mutex_exit(&ill->ill_phyint->phyint_lock); 11886 11887 /* 11888 * We do the broadcast and nomination here rather 11889 * than waiting for a FAILOVER/FAILBACK to happen. In 11890 * the case of FAILBACK from INACTIVE standby to the 11891 * interface that has been repaired, PHYI_FAILED has not 11892 * been cleared yet. If there are only two interfaces in 11893 * that group, all we have is a FAILED and INACTIVE 11894 * interface. If we do the nomination soon after a failback, 11895 * the broadcast nomination code would select the 11896 * INACTIVE interface for receiving broadcasts as FAILED is 11897 * not yet cleared. As we don't want STANDBY/INACTIVE to 11898 * receive broadcast packets, we need to redo nomination 11899 * when the FAILED is cleared here. Thus, in general we 11900 * always do the nomination here for FAILED, STANDBY 11901 * and OFFLINE. 11902 */ 11903 if (((turn_on | turn_off) & 11904 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11905 ip_redo_nomination(phyi); 11906 } 11907 if (phyint_flags_modified) { 11908 if (phyi->phyint_illv4 != NULL) { 11909 ip_rts_ifmsg(phyi->phyint_illv4-> 11910 ill_ipif); 11911 } 11912 if (phyi->phyint_illv6 != NULL) { 11913 ip_rts_ifmsg(phyi->phyint_illv6-> 11914 ill_ipif); 11915 } 11916 } 11917 return (0); 11918 } else if (set_linklocal || zero_source) { 11919 mutex_enter(&ill->ill_lock); 11920 if (set_linklocal) 11921 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11922 if (zero_source) 11923 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11924 mutex_exit(&ill->ill_lock); 11925 } 11926 11927 /* 11928 * Disallow IPv6 interfaces coming up that have the unspecified address, 11929 * or point-to-point interfaces with an unspecified destination. We do 11930 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11931 * have a subnet assigned, which is how in.ndpd currently manages its 11932 * onlink prefix list when no addresses are configured with those 11933 * prefixes. 11934 */ 11935 if (ipif->ipif_isv6 && 11936 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11937 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11938 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11939 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11940 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11941 return (EINVAL); 11942 } 11943 11944 /* 11945 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11946 * from being brought up. 11947 */ 11948 if (!ipif->ipif_isv6 && 11949 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11950 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11951 return (EINVAL); 11952 } 11953 11954 /* 11955 * The only flag changes that we currently take specific action on 11956 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11957 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11958 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11959 * the flags and bringing it back up again. 11960 */ 11961 if ((turn_on|turn_off) & 11962 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11963 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11964 /* 11965 * Taking this ipif down, make sure we have 11966 * valid net and subnet bcast ire's for other 11967 * logical interfaces, if we need them. 11968 */ 11969 if (!ipif->ipif_isv6) 11970 ipif_check_bcast_ires(ipif); 11971 11972 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11973 !(turn_off & IPIF_UP)) { 11974 need_up = B_TRUE; 11975 if (ipif->ipif_flags & IPIF_UP) 11976 ill->ill_logical_down = 1; 11977 turn_on &= ~IPIF_UP; 11978 } 11979 err = ipif_down(ipif, q, mp); 11980 ip1dbg(("ipif_down returns %d err ", err)); 11981 if (err == EINPROGRESS) 11982 return (err); 11983 ipif_down_tail(ipif); 11984 } 11985 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11986 } 11987 11988 static int 11989 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11990 boolean_t need_up) 11991 { 11992 ill_t *ill; 11993 phyint_t *phyi; 11994 uint64_t turn_on; 11995 uint64_t turn_off; 11996 uint64_t intf_flags; 11997 boolean_t phyint_flags_modified = B_FALSE; 11998 int err = 0; 11999 boolean_t set_linklocal = B_FALSE; 12000 boolean_t zero_source = B_FALSE; 12001 12002 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12003 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12004 12005 ASSERT(IAM_WRITER_IPIF(ipif)); 12006 12007 ill = ipif->ipif_ill; 12008 phyi = ill->ill_phyint; 12009 12010 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12011 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12012 12013 turn_off = intf_flags & turn_on; 12014 turn_on ^= turn_off; 12015 12016 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12017 phyint_flags_modified = B_TRUE; 12018 12019 /* 12020 * Now we change the flags. Track current value of 12021 * other flags in their respective places. 12022 */ 12023 mutex_enter(&ill->ill_lock); 12024 mutex_enter(&phyi->phyint_lock); 12025 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12026 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12027 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12028 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12029 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12030 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12031 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12032 set_linklocal = B_TRUE; 12033 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12034 } 12035 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12036 zero_source = B_TRUE; 12037 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12038 } 12039 mutex_exit(&ill->ill_lock); 12040 mutex_exit(&phyi->phyint_lock); 12041 12042 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12043 ip_redo_nomination(phyi); 12044 12045 if (set_linklocal) 12046 (void) ipif_setlinklocal(ipif); 12047 12048 if (zero_source) 12049 ipif->ipif_v6src_addr = ipv6_all_zeros; 12050 else 12051 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12052 12053 if (need_up) { 12054 /* 12055 * XXX ipif_up really does not know whether a phyint flags 12056 * was modified or not. So, it sends up information on 12057 * only one routing sockets message. As we don't bring up 12058 * the interface and also set STANDBY/FAILED simultaneously 12059 * it should be okay. 12060 */ 12061 err = ipif_up(ipif, q, mp); 12062 } else { 12063 /* 12064 * Make sure routing socket sees all changes to the flags. 12065 * ipif_up_done* handles this when we use ipif_up. 12066 */ 12067 if (phyint_flags_modified) { 12068 if (phyi->phyint_illv4 != NULL) { 12069 ip_rts_ifmsg(phyi->phyint_illv4-> 12070 ill_ipif); 12071 } 12072 if (phyi->phyint_illv6 != NULL) { 12073 ip_rts_ifmsg(phyi->phyint_illv6-> 12074 ill_ipif); 12075 } 12076 } else { 12077 ip_rts_ifmsg(ipif); 12078 } 12079 /* 12080 * Update the flags in SCTP's IPIF list, ipif_up() will do 12081 * this in need_up case. 12082 */ 12083 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12084 } 12085 return (err); 12086 } 12087 12088 /* 12089 * Restart entry point to restart the flags restart operation after the 12090 * refcounts have dropped to zero. 12091 */ 12092 /* ARGSUSED */ 12093 int 12094 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12095 ip_ioctl_cmd_t *ipip, void *if_req) 12096 { 12097 int err; 12098 struct ifreq *ifr = (struct ifreq *)if_req; 12099 struct lifreq *lifr = (struct lifreq *)if_req; 12100 12101 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12102 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12103 12104 ipif_down_tail(ipif); 12105 if (ipip->ipi_cmd_type == IF_CMD) { 12106 /* 12107 * Since ip_sioctl_flags expects an int and ifr_flags 12108 * is a short we need to cast ifr_flags into an int 12109 * to avoid having sign extension cause bits to get 12110 * set that should not be. 12111 */ 12112 err = ip_sioctl_flags_tail(ipif, 12113 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12114 q, mp, B_TRUE); 12115 } else { 12116 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12117 q, mp, B_TRUE); 12118 } 12119 return (err); 12120 } 12121 12122 /* 12123 * Can operate on either a module or a driver queue. 12124 */ 12125 /* ARGSUSED */ 12126 int 12127 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12128 ip_ioctl_cmd_t *ipip, void *if_req) 12129 { 12130 /* 12131 * Has the flags been set correctly till now ? 12132 */ 12133 ill_t *ill = ipif->ipif_ill; 12134 phyint_t *phyi = ill->ill_phyint; 12135 12136 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12137 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12138 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12139 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12140 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12141 12142 /* 12143 * Need a lock since some flags can be set even when there are 12144 * references to the ipif. 12145 */ 12146 mutex_enter(&ill->ill_lock); 12147 if (ipip->ipi_cmd_type == IF_CMD) { 12148 struct ifreq *ifr = (struct ifreq *)if_req; 12149 12150 /* Get interface flags (low 16 only). */ 12151 ifr->ifr_flags = ((ipif->ipif_flags | 12152 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12153 } else { 12154 struct lifreq *lifr = (struct lifreq *)if_req; 12155 12156 /* Get interface flags. */ 12157 lifr->lifr_flags = ipif->ipif_flags | 12158 ill->ill_flags | phyi->phyint_flags; 12159 } 12160 mutex_exit(&ill->ill_lock); 12161 return (0); 12162 } 12163 12164 /* ARGSUSED */ 12165 int 12166 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12167 ip_ioctl_cmd_t *ipip, void *if_req) 12168 { 12169 int mtu; 12170 int ip_min_mtu; 12171 struct ifreq *ifr; 12172 struct lifreq *lifr; 12173 ire_t *ire; 12174 ip_stack_t *ipst; 12175 12176 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12177 ipif->ipif_id, (void *)ipif)); 12178 if (ipip->ipi_cmd_type == IF_CMD) { 12179 ifr = (struct ifreq *)if_req; 12180 mtu = ifr->ifr_metric; 12181 } else { 12182 lifr = (struct lifreq *)if_req; 12183 mtu = lifr->lifr_mtu; 12184 } 12185 12186 if (ipif->ipif_isv6) 12187 ip_min_mtu = IPV6_MIN_MTU; 12188 else 12189 ip_min_mtu = IP_MIN_MTU; 12190 12191 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12192 return (EINVAL); 12193 12194 /* 12195 * Change the MTU size in all relevant ire's. 12196 * Mtu change Vs. new ire creation - protocol below. 12197 * First change ipif_mtu and the ire_max_frag of the 12198 * interface ire. Then do an ire walk and change the 12199 * ire_max_frag of all affected ires. During ire_add 12200 * under the bucket lock, set the ire_max_frag of the 12201 * new ire being created from the ipif/ire from which 12202 * it is being derived. If an mtu change happens after 12203 * the ire is added, the new ire will be cleaned up. 12204 * Conversely if the mtu change happens before the ire 12205 * is added, ire_add will see the new value of the mtu. 12206 */ 12207 ipif->ipif_mtu = mtu; 12208 ipif->ipif_flags |= IPIF_FIXEDMTU; 12209 12210 if (ipif->ipif_isv6) 12211 ire = ipif_to_ire_v6(ipif); 12212 else 12213 ire = ipif_to_ire(ipif); 12214 if (ire != NULL) { 12215 ire->ire_max_frag = ipif->ipif_mtu; 12216 ire_refrele(ire); 12217 } 12218 ipst = ipif->ipif_ill->ill_ipst; 12219 if (ipif->ipif_flags & IPIF_UP) { 12220 if (ipif->ipif_isv6) 12221 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12222 ipst); 12223 else 12224 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12225 ipst); 12226 } 12227 /* Update the MTU in SCTP's list */ 12228 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12229 return (0); 12230 } 12231 12232 /* Get interface MTU. */ 12233 /* ARGSUSED */ 12234 int 12235 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12236 ip_ioctl_cmd_t *ipip, void *if_req) 12237 { 12238 struct ifreq *ifr; 12239 struct lifreq *lifr; 12240 12241 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12242 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12243 if (ipip->ipi_cmd_type == IF_CMD) { 12244 ifr = (struct ifreq *)if_req; 12245 ifr->ifr_metric = ipif->ipif_mtu; 12246 } else { 12247 lifr = (struct lifreq *)if_req; 12248 lifr->lifr_mtu = ipif->ipif_mtu; 12249 } 12250 return (0); 12251 } 12252 12253 /* Set interface broadcast address. */ 12254 /* ARGSUSED2 */ 12255 int 12256 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12257 ip_ioctl_cmd_t *ipip, void *if_req) 12258 { 12259 ipaddr_t addr; 12260 ire_t *ire; 12261 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12262 12263 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12264 ipif->ipif_id)); 12265 12266 ASSERT(IAM_WRITER_IPIF(ipif)); 12267 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12268 return (EADDRNOTAVAIL); 12269 12270 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12271 12272 if (sin->sin_family != AF_INET) 12273 return (EAFNOSUPPORT); 12274 12275 addr = sin->sin_addr.s_addr; 12276 if (ipif->ipif_flags & IPIF_UP) { 12277 /* 12278 * If we are already up, make sure the new 12279 * broadcast address makes sense. If it does, 12280 * there should be an IRE for it already. 12281 * Don't match on ipif, only on the ill 12282 * since we are sharing these now. Don't use 12283 * MATCH_IRE_ILL_GROUP as we are looking for 12284 * the broadcast ire on this ill and each ill 12285 * in the group has its own broadcast ire. 12286 */ 12287 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12288 ipif, ALL_ZONES, NULL, 12289 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12290 if (ire == NULL) { 12291 return (EINVAL); 12292 } else { 12293 ire_refrele(ire); 12294 } 12295 } 12296 /* 12297 * Changing the broadcast addr for this ipif. 12298 * Make sure we have valid net and subnet bcast 12299 * ire's for other logical interfaces, if needed. 12300 */ 12301 if (addr != ipif->ipif_brd_addr) 12302 ipif_check_bcast_ires(ipif); 12303 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12304 return (0); 12305 } 12306 12307 /* Get interface broadcast address. */ 12308 /* ARGSUSED */ 12309 int 12310 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12311 ip_ioctl_cmd_t *ipip, void *if_req) 12312 { 12313 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12314 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12315 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12316 return (EADDRNOTAVAIL); 12317 12318 /* IPIF_BROADCAST not possible with IPv6 */ 12319 ASSERT(!ipif->ipif_isv6); 12320 *sin = sin_null; 12321 sin->sin_family = AF_INET; 12322 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12323 return (0); 12324 } 12325 12326 /* 12327 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12328 */ 12329 /* ARGSUSED */ 12330 int 12331 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12332 ip_ioctl_cmd_t *ipip, void *if_req) 12333 { 12334 int err = 0; 12335 in6_addr_t v6mask; 12336 12337 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12338 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12339 12340 ASSERT(IAM_WRITER_IPIF(ipif)); 12341 12342 if (ipif->ipif_isv6) { 12343 sin6_t *sin6; 12344 12345 if (sin->sin_family != AF_INET6) 12346 return (EAFNOSUPPORT); 12347 12348 sin6 = (sin6_t *)sin; 12349 v6mask = sin6->sin6_addr; 12350 } else { 12351 ipaddr_t mask; 12352 12353 if (sin->sin_family != AF_INET) 12354 return (EAFNOSUPPORT); 12355 12356 mask = sin->sin_addr.s_addr; 12357 V4MASK_TO_V6(mask, v6mask); 12358 } 12359 12360 /* 12361 * No big deal if the interface isn't already up, or the mask 12362 * isn't really changing, or this is pt-pt. 12363 */ 12364 if (!(ipif->ipif_flags & IPIF_UP) || 12365 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12366 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12367 ipif->ipif_v6net_mask = v6mask; 12368 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12369 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12370 ipif->ipif_v6net_mask, 12371 ipif->ipif_v6subnet); 12372 } 12373 return (0); 12374 } 12375 /* 12376 * Make sure we have valid net and subnet broadcast ire's 12377 * for the old netmask, if needed by other logical interfaces. 12378 */ 12379 if (!ipif->ipif_isv6) 12380 ipif_check_bcast_ires(ipif); 12381 12382 err = ipif_logical_down(ipif, q, mp); 12383 if (err == EINPROGRESS) 12384 return (err); 12385 ipif_down_tail(ipif); 12386 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12387 return (err); 12388 } 12389 12390 static int 12391 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12392 { 12393 in6_addr_t v6mask; 12394 int err = 0; 12395 12396 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12397 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12398 12399 if (ipif->ipif_isv6) { 12400 sin6_t *sin6; 12401 12402 sin6 = (sin6_t *)sin; 12403 v6mask = sin6->sin6_addr; 12404 } else { 12405 ipaddr_t mask; 12406 12407 mask = sin->sin_addr.s_addr; 12408 V4MASK_TO_V6(mask, v6mask); 12409 } 12410 12411 ipif->ipif_v6net_mask = v6mask; 12412 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12413 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12414 ipif->ipif_v6subnet); 12415 } 12416 err = ipif_up(ipif, q, mp); 12417 12418 if (err == 0 || err == EINPROGRESS) { 12419 /* 12420 * The interface must be DL_BOUND if this packet has to 12421 * go out on the wire. Since we only go through a logical 12422 * down and are bound with the driver during an internal 12423 * down/up that is satisfied. 12424 */ 12425 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12426 /* Potentially broadcast an address mask reply. */ 12427 ipif_mask_reply(ipif); 12428 } 12429 } 12430 return (err); 12431 } 12432 12433 /* ARGSUSED */ 12434 int 12435 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12436 ip_ioctl_cmd_t *ipip, void *if_req) 12437 { 12438 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12439 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12440 ipif_down_tail(ipif); 12441 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12442 } 12443 12444 /* Get interface net mask. */ 12445 /* ARGSUSED */ 12446 int 12447 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12448 ip_ioctl_cmd_t *ipip, void *if_req) 12449 { 12450 struct lifreq *lifr = (struct lifreq *)if_req; 12451 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12452 12453 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12454 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12455 12456 /* 12457 * net mask can't change since we have a reference to the ipif. 12458 */ 12459 if (ipif->ipif_isv6) { 12460 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12461 *sin6 = sin6_null; 12462 sin6->sin6_family = AF_INET6; 12463 sin6->sin6_addr = ipif->ipif_v6net_mask; 12464 lifr->lifr_addrlen = 12465 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12466 } else { 12467 *sin = sin_null; 12468 sin->sin_family = AF_INET; 12469 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12470 if (ipip->ipi_cmd_type == LIF_CMD) { 12471 lifr->lifr_addrlen = 12472 ip_mask_to_plen(ipif->ipif_net_mask); 12473 } 12474 } 12475 return (0); 12476 } 12477 12478 /* ARGSUSED */ 12479 int 12480 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12481 ip_ioctl_cmd_t *ipip, void *if_req) 12482 { 12483 12484 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12485 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12486 /* 12487 * Set interface metric. We don't use this for 12488 * anything but we keep track of it in case it is 12489 * important to routing applications or such. 12490 */ 12491 if (ipip->ipi_cmd_type == IF_CMD) { 12492 struct ifreq *ifr; 12493 12494 ifr = (struct ifreq *)if_req; 12495 ipif->ipif_metric = ifr->ifr_metric; 12496 } else { 12497 struct lifreq *lifr; 12498 12499 lifr = (struct lifreq *)if_req; 12500 ipif->ipif_metric = lifr->lifr_metric; 12501 } 12502 return (0); 12503 } 12504 12505 12506 /* ARGSUSED */ 12507 int 12508 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12509 ip_ioctl_cmd_t *ipip, void *if_req) 12510 { 12511 12512 /* Get interface metric. */ 12513 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12514 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12515 if (ipip->ipi_cmd_type == IF_CMD) { 12516 struct ifreq *ifr; 12517 12518 ifr = (struct ifreq *)if_req; 12519 ifr->ifr_metric = ipif->ipif_metric; 12520 } else { 12521 struct lifreq *lifr; 12522 12523 lifr = (struct lifreq *)if_req; 12524 lifr->lifr_metric = ipif->ipif_metric; 12525 } 12526 12527 return (0); 12528 } 12529 12530 /* ARGSUSED */ 12531 int 12532 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12533 ip_ioctl_cmd_t *ipip, void *if_req) 12534 { 12535 12536 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12537 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12538 /* 12539 * Set the muxid returned from I_PLINK. 12540 */ 12541 if (ipip->ipi_cmd_type == IF_CMD) { 12542 struct ifreq *ifr = (struct ifreq *)if_req; 12543 12544 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12545 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12546 } else { 12547 struct lifreq *lifr = (struct lifreq *)if_req; 12548 12549 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12550 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12551 } 12552 return (0); 12553 } 12554 12555 /* ARGSUSED */ 12556 int 12557 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12558 ip_ioctl_cmd_t *ipip, void *if_req) 12559 { 12560 12561 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12562 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12563 /* 12564 * Get the muxid saved in ill for I_PUNLINK. 12565 */ 12566 if (ipip->ipi_cmd_type == IF_CMD) { 12567 struct ifreq *ifr = (struct ifreq *)if_req; 12568 12569 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12570 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12571 } else { 12572 struct lifreq *lifr = (struct lifreq *)if_req; 12573 12574 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12575 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12576 } 12577 return (0); 12578 } 12579 12580 /* 12581 * Set the subnet prefix. Does not modify the broadcast address. 12582 */ 12583 /* ARGSUSED */ 12584 int 12585 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12586 ip_ioctl_cmd_t *ipip, void *if_req) 12587 { 12588 int err = 0; 12589 in6_addr_t v6addr; 12590 in6_addr_t v6mask; 12591 boolean_t need_up = B_FALSE; 12592 int addrlen; 12593 12594 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12595 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12596 12597 ASSERT(IAM_WRITER_IPIF(ipif)); 12598 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12599 12600 if (ipif->ipif_isv6) { 12601 sin6_t *sin6; 12602 12603 if (sin->sin_family != AF_INET6) 12604 return (EAFNOSUPPORT); 12605 12606 sin6 = (sin6_t *)sin; 12607 v6addr = sin6->sin6_addr; 12608 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12609 return (EADDRNOTAVAIL); 12610 } else { 12611 ipaddr_t addr; 12612 12613 if (sin->sin_family != AF_INET) 12614 return (EAFNOSUPPORT); 12615 12616 addr = sin->sin_addr.s_addr; 12617 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12618 return (EADDRNOTAVAIL); 12619 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12620 /* Add 96 bits */ 12621 addrlen += IPV6_ABITS - IP_ABITS; 12622 } 12623 12624 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12625 return (EINVAL); 12626 12627 /* Check if bits in the address is set past the mask */ 12628 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12629 return (EINVAL); 12630 12631 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12632 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12633 return (0); /* No change */ 12634 12635 if (ipif->ipif_flags & IPIF_UP) { 12636 /* 12637 * If the interface is already marked up, 12638 * we call ipif_down which will take care 12639 * of ditching any IREs that have been set 12640 * up based on the old interface address. 12641 */ 12642 err = ipif_logical_down(ipif, q, mp); 12643 if (err == EINPROGRESS) 12644 return (err); 12645 ipif_down_tail(ipif); 12646 need_up = B_TRUE; 12647 } 12648 12649 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12650 return (err); 12651 } 12652 12653 static int 12654 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12655 queue_t *q, mblk_t *mp, boolean_t need_up) 12656 { 12657 ill_t *ill = ipif->ipif_ill; 12658 int err = 0; 12659 12660 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12661 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12662 12663 /* Set the new address. */ 12664 mutex_enter(&ill->ill_lock); 12665 ipif->ipif_v6net_mask = v6mask; 12666 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12667 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12668 ipif->ipif_v6subnet); 12669 } 12670 mutex_exit(&ill->ill_lock); 12671 12672 if (need_up) { 12673 /* 12674 * Now bring the interface back up. If this 12675 * is the only IPIF for the ILL, ipif_up 12676 * will have to re-bind to the device, so 12677 * we may get back EINPROGRESS, in which 12678 * case, this IOCTL will get completed in 12679 * ip_rput_dlpi when we see the DL_BIND_ACK. 12680 */ 12681 err = ipif_up(ipif, q, mp); 12682 if (err == EINPROGRESS) 12683 return (err); 12684 } 12685 return (err); 12686 } 12687 12688 /* ARGSUSED */ 12689 int 12690 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12691 ip_ioctl_cmd_t *ipip, void *if_req) 12692 { 12693 int addrlen; 12694 in6_addr_t v6addr; 12695 in6_addr_t v6mask; 12696 struct lifreq *lifr = (struct lifreq *)if_req; 12697 12698 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12699 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12700 ipif_down_tail(ipif); 12701 12702 addrlen = lifr->lifr_addrlen; 12703 if (ipif->ipif_isv6) { 12704 sin6_t *sin6; 12705 12706 sin6 = (sin6_t *)sin; 12707 v6addr = sin6->sin6_addr; 12708 } else { 12709 ipaddr_t addr; 12710 12711 addr = sin->sin_addr.s_addr; 12712 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12713 addrlen += IPV6_ABITS - IP_ABITS; 12714 } 12715 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12716 12717 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12718 } 12719 12720 /* ARGSUSED */ 12721 int 12722 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12723 ip_ioctl_cmd_t *ipip, void *if_req) 12724 { 12725 struct lifreq *lifr = (struct lifreq *)if_req; 12726 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12727 12728 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12729 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12730 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12731 12732 if (ipif->ipif_isv6) { 12733 *sin6 = sin6_null; 12734 sin6->sin6_family = AF_INET6; 12735 sin6->sin6_addr = ipif->ipif_v6subnet; 12736 lifr->lifr_addrlen = 12737 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12738 } else { 12739 *sin = sin_null; 12740 sin->sin_family = AF_INET; 12741 sin->sin_addr.s_addr = ipif->ipif_subnet; 12742 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12743 } 12744 return (0); 12745 } 12746 12747 /* 12748 * Set the IPv6 address token. 12749 */ 12750 /* ARGSUSED */ 12751 int 12752 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12753 ip_ioctl_cmd_t *ipi, void *if_req) 12754 { 12755 ill_t *ill = ipif->ipif_ill; 12756 int err; 12757 in6_addr_t v6addr; 12758 in6_addr_t v6mask; 12759 boolean_t need_up = B_FALSE; 12760 int i; 12761 sin6_t *sin6 = (sin6_t *)sin; 12762 struct lifreq *lifr = (struct lifreq *)if_req; 12763 int addrlen; 12764 12765 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12766 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12767 ASSERT(IAM_WRITER_IPIF(ipif)); 12768 12769 addrlen = lifr->lifr_addrlen; 12770 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12771 if (ipif->ipif_id != 0) 12772 return (EINVAL); 12773 12774 if (!ipif->ipif_isv6) 12775 return (EINVAL); 12776 12777 if (addrlen > IPV6_ABITS) 12778 return (EINVAL); 12779 12780 v6addr = sin6->sin6_addr; 12781 12782 /* 12783 * The length of the token is the length from the end. To get 12784 * the proper mask for this, compute the mask of the bits not 12785 * in the token; ie. the prefix, and then xor to get the mask. 12786 */ 12787 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12788 return (EINVAL); 12789 for (i = 0; i < 4; i++) { 12790 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12791 } 12792 12793 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12794 ill->ill_token_length == addrlen) 12795 return (0); /* No change */ 12796 12797 if (ipif->ipif_flags & IPIF_UP) { 12798 err = ipif_logical_down(ipif, q, mp); 12799 if (err == EINPROGRESS) 12800 return (err); 12801 ipif_down_tail(ipif); 12802 need_up = B_TRUE; 12803 } 12804 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12805 return (err); 12806 } 12807 12808 static int 12809 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12810 mblk_t *mp, boolean_t need_up) 12811 { 12812 in6_addr_t v6addr; 12813 in6_addr_t v6mask; 12814 ill_t *ill = ipif->ipif_ill; 12815 int i; 12816 int err = 0; 12817 12818 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12819 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12820 v6addr = sin6->sin6_addr; 12821 /* 12822 * The length of the token is the length from the end. To get 12823 * the proper mask for this, compute the mask of the bits not 12824 * in the token; ie. the prefix, and then xor to get the mask. 12825 */ 12826 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12827 for (i = 0; i < 4; i++) 12828 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12829 12830 mutex_enter(&ill->ill_lock); 12831 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12832 ill->ill_token_length = addrlen; 12833 mutex_exit(&ill->ill_lock); 12834 12835 if (need_up) { 12836 /* 12837 * Now bring the interface back up. If this 12838 * is the only IPIF for the ILL, ipif_up 12839 * will have to re-bind to the device, so 12840 * we may get back EINPROGRESS, in which 12841 * case, this IOCTL will get completed in 12842 * ip_rput_dlpi when we see the DL_BIND_ACK. 12843 */ 12844 err = ipif_up(ipif, q, mp); 12845 if (err == EINPROGRESS) 12846 return (err); 12847 } 12848 return (err); 12849 } 12850 12851 /* ARGSUSED */ 12852 int 12853 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12854 ip_ioctl_cmd_t *ipi, void *if_req) 12855 { 12856 ill_t *ill; 12857 sin6_t *sin6 = (sin6_t *)sin; 12858 struct lifreq *lifr = (struct lifreq *)if_req; 12859 12860 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12861 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12862 if (ipif->ipif_id != 0) 12863 return (EINVAL); 12864 12865 ill = ipif->ipif_ill; 12866 if (!ill->ill_isv6) 12867 return (ENXIO); 12868 12869 *sin6 = sin6_null; 12870 sin6->sin6_family = AF_INET6; 12871 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12872 sin6->sin6_addr = ill->ill_token; 12873 lifr->lifr_addrlen = ill->ill_token_length; 12874 return (0); 12875 } 12876 12877 /* 12878 * Set (hardware) link specific information that might override 12879 * what was acquired through the DL_INFO_ACK. 12880 * The logic is as follows. 12881 * 12882 * become exclusive 12883 * set CHANGING flag 12884 * change mtu on affected IREs 12885 * clear CHANGING flag 12886 * 12887 * An ire add that occurs before the CHANGING flag is set will have its mtu 12888 * changed by the ip_sioctl_lnkinfo. 12889 * 12890 * During the time the CHANGING flag is set, no new ires will be added to the 12891 * bucket, and ire add will fail (due the CHANGING flag). 12892 * 12893 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12894 * before it is added to the bucket. 12895 * 12896 * Obviously only 1 thread can set the CHANGING flag and we need to become 12897 * exclusive to set the flag. 12898 */ 12899 /* ARGSUSED */ 12900 int 12901 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12902 ip_ioctl_cmd_t *ipi, void *if_req) 12903 { 12904 ill_t *ill = ipif->ipif_ill; 12905 ipif_t *nipif; 12906 int ip_min_mtu; 12907 boolean_t mtu_walk = B_FALSE; 12908 struct lifreq *lifr = (struct lifreq *)if_req; 12909 lif_ifinfo_req_t *lir; 12910 ire_t *ire; 12911 12912 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12913 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12914 lir = &lifr->lifr_ifinfo; 12915 ASSERT(IAM_WRITER_IPIF(ipif)); 12916 12917 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12918 if (ipif->ipif_id != 0) 12919 return (EINVAL); 12920 12921 /* Set interface MTU. */ 12922 if (ipif->ipif_isv6) 12923 ip_min_mtu = IPV6_MIN_MTU; 12924 else 12925 ip_min_mtu = IP_MIN_MTU; 12926 12927 /* 12928 * Verify values before we set anything. Allow zero to 12929 * mean unspecified. 12930 */ 12931 if (lir->lir_maxmtu != 0 && 12932 (lir->lir_maxmtu > ill->ill_max_frag || 12933 lir->lir_maxmtu < ip_min_mtu)) 12934 return (EINVAL); 12935 if (lir->lir_reachtime != 0 && 12936 lir->lir_reachtime > ND_MAX_REACHTIME) 12937 return (EINVAL); 12938 if (lir->lir_reachretrans != 0 && 12939 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12940 return (EINVAL); 12941 12942 mutex_enter(&ill->ill_lock); 12943 ill->ill_state_flags |= ILL_CHANGING; 12944 for (nipif = ill->ill_ipif; nipif != NULL; 12945 nipif = nipif->ipif_next) { 12946 nipif->ipif_state_flags |= IPIF_CHANGING; 12947 } 12948 12949 mutex_exit(&ill->ill_lock); 12950 12951 if (lir->lir_maxmtu != 0) { 12952 ill->ill_max_mtu = lir->lir_maxmtu; 12953 ill->ill_mtu_userspecified = 1; 12954 mtu_walk = B_TRUE; 12955 } 12956 12957 if (lir->lir_reachtime != 0) 12958 ill->ill_reachable_time = lir->lir_reachtime; 12959 12960 if (lir->lir_reachretrans != 0) 12961 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12962 12963 ill->ill_max_hops = lir->lir_maxhops; 12964 12965 ill->ill_max_buf = ND_MAX_Q; 12966 12967 if (mtu_walk) { 12968 /* 12969 * Set the MTU on all ipifs associated with this ill except 12970 * for those whose MTU was fixed via SIOCSLIFMTU. 12971 */ 12972 for (nipif = ill->ill_ipif; nipif != NULL; 12973 nipif = nipif->ipif_next) { 12974 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12975 continue; 12976 12977 nipif->ipif_mtu = ill->ill_max_mtu; 12978 12979 if (!(nipif->ipif_flags & IPIF_UP)) 12980 continue; 12981 12982 if (nipif->ipif_isv6) 12983 ire = ipif_to_ire_v6(nipif); 12984 else 12985 ire = ipif_to_ire(nipif); 12986 if (ire != NULL) { 12987 ire->ire_max_frag = ipif->ipif_mtu; 12988 ire_refrele(ire); 12989 } 12990 if (ill->ill_isv6) { 12991 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12992 ipif_mtu_change, (char *)nipif, 12993 ill); 12994 } else { 12995 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12996 ipif_mtu_change, (char *)nipif, 12997 ill); 12998 } 12999 } 13000 } 13001 13002 mutex_enter(&ill->ill_lock); 13003 for (nipif = ill->ill_ipif; nipif != NULL; 13004 nipif = nipif->ipif_next) { 13005 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13006 } 13007 ILL_UNMARK_CHANGING(ill); 13008 mutex_exit(&ill->ill_lock); 13009 13010 return (0); 13011 } 13012 13013 /* ARGSUSED */ 13014 int 13015 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13016 ip_ioctl_cmd_t *ipi, void *if_req) 13017 { 13018 struct lif_ifinfo_req *lir; 13019 ill_t *ill = ipif->ipif_ill; 13020 13021 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13022 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13023 if (ipif->ipif_id != 0) 13024 return (EINVAL); 13025 13026 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13027 lir->lir_maxhops = ill->ill_max_hops; 13028 lir->lir_reachtime = ill->ill_reachable_time; 13029 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13030 lir->lir_maxmtu = ill->ill_max_mtu; 13031 13032 return (0); 13033 } 13034 13035 /* 13036 * Return best guess as to the subnet mask for the specified address. 13037 * Based on the subnet masks for all the configured interfaces. 13038 * 13039 * We end up returning a zero mask in the case of default, multicast or 13040 * experimental. 13041 */ 13042 static ipaddr_t 13043 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13044 { 13045 ipaddr_t net_mask; 13046 ill_t *ill; 13047 ipif_t *ipif; 13048 ill_walk_context_t ctx; 13049 ipif_t *fallback_ipif = NULL; 13050 13051 net_mask = ip_net_mask(addr); 13052 if (net_mask == 0) { 13053 *ipifp = NULL; 13054 return (0); 13055 } 13056 13057 /* Let's check to see if this is maybe a local subnet route. */ 13058 /* this function only applies to IPv4 interfaces */ 13059 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13060 ill = ILL_START_WALK_V4(&ctx, ipst); 13061 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13062 mutex_enter(&ill->ill_lock); 13063 for (ipif = ill->ill_ipif; ipif != NULL; 13064 ipif = ipif->ipif_next) { 13065 if (!IPIF_CAN_LOOKUP(ipif)) 13066 continue; 13067 if (!(ipif->ipif_flags & IPIF_UP)) 13068 continue; 13069 if ((ipif->ipif_subnet & net_mask) == 13070 (addr & net_mask)) { 13071 /* 13072 * Don't trust pt-pt interfaces if there are 13073 * other interfaces. 13074 */ 13075 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13076 if (fallback_ipif == NULL) { 13077 ipif_refhold_locked(ipif); 13078 fallback_ipif = ipif; 13079 } 13080 continue; 13081 } 13082 13083 /* 13084 * Fine. Just assume the same net mask as the 13085 * directly attached subnet interface is using. 13086 */ 13087 ipif_refhold_locked(ipif); 13088 mutex_exit(&ill->ill_lock); 13089 rw_exit(&ipst->ips_ill_g_lock); 13090 if (fallback_ipif != NULL) 13091 ipif_refrele(fallback_ipif); 13092 *ipifp = ipif; 13093 return (ipif->ipif_net_mask); 13094 } 13095 } 13096 mutex_exit(&ill->ill_lock); 13097 } 13098 rw_exit(&ipst->ips_ill_g_lock); 13099 13100 *ipifp = fallback_ipif; 13101 return ((fallback_ipif != NULL) ? 13102 fallback_ipif->ipif_net_mask : net_mask); 13103 } 13104 13105 /* 13106 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13107 */ 13108 static void 13109 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13110 { 13111 IOCP iocp; 13112 ipft_t *ipft; 13113 ipllc_t *ipllc; 13114 mblk_t *mp1; 13115 cred_t *cr; 13116 int error = 0; 13117 conn_t *connp; 13118 13119 ip1dbg(("ip_wput_ioctl")); 13120 iocp = (IOCP)mp->b_rptr; 13121 mp1 = mp->b_cont; 13122 if (mp1 == NULL) { 13123 iocp->ioc_error = EINVAL; 13124 mp->b_datap->db_type = M_IOCNAK; 13125 iocp->ioc_count = 0; 13126 qreply(q, mp); 13127 return; 13128 } 13129 13130 /* 13131 * These IOCTLs provide various control capabilities to 13132 * upstream agents such as ULPs and processes. There 13133 * are currently two such IOCTLs implemented. They 13134 * are used by TCP to provide update information for 13135 * existing IREs and to forcibly delete an IRE for a 13136 * host that is not responding, thereby forcing an 13137 * attempt at a new route. 13138 */ 13139 iocp->ioc_error = EINVAL; 13140 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13141 goto done; 13142 13143 ipllc = (ipllc_t *)mp1->b_rptr; 13144 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13145 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13146 break; 13147 } 13148 /* 13149 * prefer credential from mblk over ioctl; 13150 * see ip_sioctl_copyin_setup 13151 */ 13152 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13153 13154 /* 13155 * Refhold the conn in case the request gets queued up in some lookup 13156 */ 13157 ASSERT(CONN_Q(q)); 13158 connp = Q_TO_CONN(q); 13159 CONN_INC_REF(connp); 13160 if (ipft->ipft_pfi && 13161 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13162 pullupmsg(mp1, ipft->ipft_min_size))) { 13163 error = (*ipft->ipft_pfi)(q, 13164 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13165 } 13166 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13167 /* 13168 * CONN_OPER_PENDING_DONE happens in the function called 13169 * through ipft_pfi above. 13170 */ 13171 return; 13172 } 13173 13174 CONN_OPER_PENDING_DONE(connp); 13175 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13176 freemsg(mp); 13177 return; 13178 } 13179 iocp->ioc_error = error; 13180 13181 done: 13182 mp->b_datap->db_type = M_IOCACK; 13183 if (iocp->ioc_error) 13184 iocp->ioc_count = 0; 13185 qreply(q, mp); 13186 } 13187 13188 /* 13189 * Lookup an ipif using the sequence id (ipif_seqid) 13190 */ 13191 ipif_t * 13192 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13193 { 13194 ipif_t *ipif; 13195 13196 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13197 13198 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13199 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13200 return (ipif); 13201 } 13202 return (NULL); 13203 } 13204 13205 /* 13206 * Assign a unique id for the ipif. This is used later when we send 13207 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13208 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13209 * IRE is added, we verify that ipif has not disappeared. 13210 */ 13211 13212 static void 13213 ipif_assign_seqid(ipif_t *ipif) 13214 { 13215 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13216 13217 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13218 } 13219 13220 /* 13221 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13222 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13223 * be inserted into the first space available in the list. The value of 13224 * ipif_id will then be set to the appropriate value for its position. 13225 */ 13226 static int 13227 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13228 { 13229 ill_t *ill; 13230 ipif_t *tipif; 13231 ipif_t **tipifp; 13232 int id; 13233 ip_stack_t *ipst; 13234 13235 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13236 IAM_WRITER_IPIF(ipif)); 13237 13238 ill = ipif->ipif_ill; 13239 ASSERT(ill != NULL); 13240 ipst = ill->ill_ipst; 13241 13242 /* 13243 * In the case of lo0:0 we already hold the ill_g_lock. 13244 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13245 * ipif_insert. Another such caller is ipif_move. 13246 */ 13247 if (acquire_g_lock) 13248 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13249 if (acquire_ill_lock) 13250 mutex_enter(&ill->ill_lock); 13251 id = ipif->ipif_id; 13252 tipifp = &(ill->ill_ipif); 13253 if (id == -1) { /* need to find a real id */ 13254 id = 0; 13255 while ((tipif = *tipifp) != NULL) { 13256 ASSERT(tipif->ipif_id >= id); 13257 if (tipif->ipif_id != id) 13258 break; /* non-consecutive id */ 13259 id++; 13260 tipifp = &(tipif->ipif_next); 13261 } 13262 /* limit number of logical interfaces */ 13263 if (id >= ipst->ips_ip_addrs_per_if) { 13264 if (acquire_ill_lock) 13265 mutex_exit(&ill->ill_lock); 13266 if (acquire_g_lock) 13267 rw_exit(&ipst->ips_ill_g_lock); 13268 return (-1); 13269 } 13270 ipif->ipif_id = id; /* assign new id */ 13271 } else if (id < ipst->ips_ip_addrs_per_if) { 13272 /* we have a real id; insert ipif in the right place */ 13273 while ((tipif = *tipifp) != NULL) { 13274 ASSERT(tipif->ipif_id != id); 13275 if (tipif->ipif_id > id) 13276 break; /* found correct location */ 13277 tipifp = &(tipif->ipif_next); 13278 } 13279 } else { 13280 if (acquire_ill_lock) 13281 mutex_exit(&ill->ill_lock); 13282 if (acquire_g_lock) 13283 rw_exit(&ipst->ips_ill_g_lock); 13284 return (-1); 13285 } 13286 13287 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13288 13289 ipif->ipif_next = tipif; 13290 *tipifp = ipif; 13291 if (acquire_ill_lock) 13292 mutex_exit(&ill->ill_lock); 13293 if (acquire_g_lock) 13294 rw_exit(&ipst->ips_ill_g_lock); 13295 return (0); 13296 } 13297 13298 static void 13299 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13300 { 13301 ipif_t **ipifp; 13302 ill_t *ill = ipif->ipif_ill; 13303 13304 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13305 if (acquire_ill_lock) 13306 mutex_enter(&ill->ill_lock); 13307 else 13308 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13309 13310 ipifp = &ill->ill_ipif; 13311 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13312 if (*ipifp == ipif) { 13313 *ipifp = ipif->ipif_next; 13314 break; 13315 } 13316 } 13317 13318 if (acquire_ill_lock) 13319 mutex_exit(&ill->ill_lock); 13320 } 13321 13322 /* 13323 * Allocate and initialize a new interface control structure. (Always 13324 * called as writer.) 13325 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13326 * is not part of the global linked list of ills. ipif_seqid is unique 13327 * in the system and to preserve the uniqueness, it is assigned only 13328 * when ill becomes part of the global list. At that point ill will 13329 * have a name. If it doesn't get assigned here, it will get assigned 13330 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13331 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13332 * the interface flags or any other information from the DL_INFO_ACK for 13333 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13334 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13335 * second DL_INFO_ACK comes in from the driver. 13336 */ 13337 static ipif_t * 13338 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13339 { 13340 ipif_t *ipif; 13341 phyint_t *phyi; 13342 13343 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13344 ill->ill_name, id, (void *)ill)); 13345 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13346 13347 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13348 return (NULL); 13349 *ipif = ipif_zero; /* start clean */ 13350 13351 ipif->ipif_ill = ill; 13352 ipif->ipif_id = id; /* could be -1 */ 13353 /* 13354 * Inherit the zoneid from the ill; for the shared stack instance 13355 * this is always the global zone 13356 */ 13357 ipif->ipif_zoneid = ill->ill_zoneid; 13358 13359 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13360 13361 ipif->ipif_refcnt = 0; 13362 ipif->ipif_saved_ire_cnt = 0; 13363 13364 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13365 mi_free(ipif); 13366 return (NULL); 13367 } 13368 /* -1 id should have been replaced by real id */ 13369 id = ipif->ipif_id; 13370 ASSERT(id >= 0); 13371 13372 if (ill->ill_name[0] != '\0') 13373 ipif_assign_seqid(ipif); 13374 13375 /* 13376 * Keep a copy of original id in ipif_orig_ipifid. Failback 13377 * will attempt to restore the original id. The SIOCSLIFOINDEX 13378 * ioctl sets ipif_orig_ipifid to zero. 13379 */ 13380 ipif->ipif_orig_ipifid = id; 13381 13382 /* 13383 * We grab the ill_lock and phyint_lock to protect the flag changes. 13384 * The ipif is still not up and can't be looked up until the 13385 * ioctl completes and the IPIF_CHANGING flag is cleared. 13386 */ 13387 mutex_enter(&ill->ill_lock); 13388 mutex_enter(&ill->ill_phyint->phyint_lock); 13389 /* 13390 * Set the running flag when logical interface zero is created. 13391 * For subsequent logical interfaces, a DLPI link down 13392 * notification message may have cleared the running flag to 13393 * indicate the link is down, so we shouldn't just blindly set it. 13394 */ 13395 if (id == 0) 13396 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13397 ipif->ipif_ire_type = ire_type; 13398 phyi = ill->ill_phyint; 13399 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13400 13401 if (ipif->ipif_isv6) { 13402 ill->ill_flags |= ILLF_IPV6; 13403 } else { 13404 ipaddr_t inaddr_any = INADDR_ANY; 13405 13406 ill->ill_flags |= ILLF_IPV4; 13407 13408 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13409 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13410 &ipif->ipif_v6lcl_addr); 13411 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13412 &ipif->ipif_v6src_addr); 13413 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13414 &ipif->ipif_v6subnet); 13415 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13416 &ipif->ipif_v6net_mask); 13417 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13418 &ipif->ipif_v6brd_addr); 13419 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13420 &ipif->ipif_v6pp_dst_addr); 13421 } 13422 13423 /* 13424 * Don't set the interface flags etc. now, will do it in 13425 * ip_ll_subnet_defaults. 13426 */ 13427 if (!initialize) { 13428 mutex_exit(&ill->ill_lock); 13429 mutex_exit(&ill->ill_phyint->phyint_lock); 13430 return (ipif); 13431 } 13432 ipif->ipif_mtu = ill->ill_max_mtu; 13433 13434 if (ill->ill_bcast_addr_length != 0) { 13435 /* 13436 * Later detect lack of DLPI driver multicast 13437 * capability by catching DL_ENABMULTI errors in 13438 * ip_rput_dlpi. 13439 */ 13440 ill->ill_flags |= ILLF_MULTICAST; 13441 if (!ipif->ipif_isv6) 13442 ipif->ipif_flags |= IPIF_BROADCAST; 13443 } else { 13444 if (ill->ill_net_type != IRE_LOOPBACK) { 13445 if (ipif->ipif_isv6) 13446 /* 13447 * Note: xresolv interfaces will eventually need 13448 * NOARP set here as well, but that will require 13449 * those external resolvers to have some 13450 * knowledge of that flag and act appropriately. 13451 * Not to be changed at present. 13452 */ 13453 ill->ill_flags |= ILLF_NONUD; 13454 else 13455 ill->ill_flags |= ILLF_NOARP; 13456 } 13457 if (ill->ill_phys_addr_length == 0) { 13458 if (ill->ill_media && 13459 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13460 ipif->ipif_flags |= IPIF_NOXMIT; 13461 phyi->phyint_flags |= PHYI_VIRTUAL; 13462 } else { 13463 /* pt-pt supports multicast. */ 13464 ill->ill_flags |= ILLF_MULTICAST; 13465 if (ill->ill_net_type == IRE_LOOPBACK) { 13466 phyi->phyint_flags |= 13467 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13468 } else { 13469 ipif->ipif_flags |= IPIF_POINTOPOINT; 13470 } 13471 } 13472 } 13473 } 13474 mutex_exit(&ill->ill_lock); 13475 mutex_exit(&ill->ill_phyint->phyint_lock); 13476 return (ipif); 13477 } 13478 13479 /* 13480 * If appropriate, send a message up to the resolver delete the entry 13481 * for the address of this interface which is going out of business. 13482 * (Always called as writer). 13483 * 13484 * NOTE : We need to check for NULL mps as some of the fields are 13485 * initialized only for some interface types. See ipif_resolver_up() 13486 * for details. 13487 */ 13488 void 13489 ipif_arp_down(ipif_t *ipif) 13490 { 13491 mblk_t *mp; 13492 ill_t *ill = ipif->ipif_ill; 13493 13494 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13495 ASSERT(IAM_WRITER_IPIF(ipif)); 13496 13497 /* Delete the mapping for the local address */ 13498 mp = ipif->ipif_arp_del_mp; 13499 if (mp != NULL) { 13500 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13501 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13502 putnext(ill->ill_rq, mp); 13503 ipif->ipif_arp_del_mp = NULL; 13504 } 13505 13506 /* 13507 * If this is the last ipif that is going down and there are no 13508 * duplicate addresses we may yet attempt to re-probe, then we need to 13509 * clean up ARP completely. 13510 */ 13511 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13512 13513 /* Send up AR_INTERFACE_DOWN message */ 13514 mp = ill->ill_arp_down_mp; 13515 if (mp != NULL) { 13516 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13517 *(unsigned *)mp->b_rptr, ill->ill_name, 13518 ipif->ipif_id)); 13519 putnext(ill->ill_rq, mp); 13520 ill->ill_arp_down_mp = NULL; 13521 } 13522 13523 /* Tell ARP to delete the multicast mappings */ 13524 mp = ill->ill_arp_del_mapping_mp; 13525 if (mp != NULL) { 13526 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13527 *(unsigned *)mp->b_rptr, ill->ill_name, 13528 ipif->ipif_id)); 13529 putnext(ill->ill_rq, mp); 13530 ill->ill_arp_del_mapping_mp = NULL; 13531 } 13532 } 13533 } 13534 13535 /* 13536 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13537 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13538 * that it wants the add_mp allocated in this function to be returned 13539 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13540 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13541 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13542 * as it does a ipif_arp_down after calling this function - which will 13543 * remove what we add here. 13544 * 13545 * Returns -1 on failures and 0 on success. 13546 */ 13547 int 13548 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13549 { 13550 mblk_t *del_mp = NULL; 13551 mblk_t *add_mp = NULL; 13552 mblk_t *mp; 13553 ill_t *ill = ipif->ipif_ill; 13554 phyint_t *phyi = ill->ill_phyint; 13555 ipaddr_t addr, mask, extract_mask = 0; 13556 arma_t *arma; 13557 uint8_t *maddr, *bphys_addr; 13558 uint32_t hw_start; 13559 dl_unitdata_req_t *dlur; 13560 13561 ASSERT(IAM_WRITER_IPIF(ipif)); 13562 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13563 return (0); 13564 13565 /* 13566 * Delete the existing mapping from ARP. Normally ipif_down 13567 * -> ipif_arp_down should send this up to ARP. The only 13568 * reason we would find this when we are switching from 13569 * Multicast to Broadcast where we did not do a down. 13570 */ 13571 mp = ill->ill_arp_del_mapping_mp; 13572 if (mp != NULL) { 13573 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13574 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13575 putnext(ill->ill_rq, mp); 13576 ill->ill_arp_del_mapping_mp = NULL; 13577 } 13578 13579 if (arp_add_mapping_mp != NULL) 13580 *arp_add_mapping_mp = NULL; 13581 13582 /* 13583 * Check that the address is not to long for the constant 13584 * length reserved in the template arma_t. 13585 */ 13586 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13587 return (-1); 13588 13589 /* Add mapping mblk */ 13590 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13591 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13592 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13593 (caddr_t)&addr); 13594 if (add_mp == NULL) 13595 return (-1); 13596 arma = (arma_t *)add_mp->b_rptr; 13597 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13598 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13599 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13600 13601 /* 13602 * Determine the broadcast address. 13603 */ 13604 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13605 if (ill->ill_sap_length < 0) 13606 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13607 else 13608 bphys_addr = (uchar_t *)dlur + 13609 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13610 /* 13611 * Check PHYI_MULTI_BCAST and length of physical 13612 * address to determine if we use the mapping or the 13613 * broadcast address. 13614 */ 13615 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13616 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13617 bphys_addr, maddr, &hw_start, &extract_mask)) 13618 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13619 13620 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13621 (ill->ill_flags & ILLF_MULTICAST)) { 13622 /* Make sure this will not match the "exact" entry. */ 13623 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13624 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13625 (caddr_t)&addr); 13626 if (del_mp == NULL) { 13627 freemsg(add_mp); 13628 return (-1); 13629 } 13630 bcopy(&extract_mask, (char *)arma + 13631 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13632 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13633 /* Use link-layer broadcast address for MULTI_BCAST */ 13634 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13635 ip2dbg(("ipif_arp_setup_multicast: adding" 13636 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13637 } else { 13638 arma->arma_hw_mapping_start = hw_start; 13639 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13640 " ARP setup for %s\n", ill->ill_name)); 13641 } 13642 } else { 13643 freemsg(add_mp); 13644 ASSERT(del_mp == NULL); 13645 /* It is neither MULTICAST nor MULTI_BCAST */ 13646 return (0); 13647 } 13648 ASSERT(add_mp != NULL && del_mp != NULL); 13649 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13650 ill->ill_arp_del_mapping_mp = del_mp; 13651 if (arp_add_mapping_mp != NULL) { 13652 /* The caller just wants the mblks allocated */ 13653 *arp_add_mapping_mp = add_mp; 13654 } else { 13655 /* The caller wants us to send it to arp */ 13656 putnext(ill->ill_rq, add_mp); 13657 } 13658 return (0); 13659 } 13660 13661 /* 13662 * Get the resolver set up for a new interface address. 13663 * (Always called as writer.) 13664 * Called both for IPv4 and IPv6 interfaces, 13665 * though it only sets up the resolver for v6 13666 * if it's an xresolv interface (one using an external resolver). 13667 * Honors ILLF_NOARP. 13668 * The enumerated value res_act is used to tune the behavior. 13669 * If set to Res_act_initial, then we set up all the resolver 13670 * structures for a new interface. If set to Res_act_move, then 13671 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13672 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13673 * asynchronous hardware address change notification. If set to 13674 * Res_act_defend, then we tell ARP that it needs to send a single 13675 * gratuitous message in defense of the address. 13676 * Returns error on failure. 13677 */ 13678 int 13679 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13680 { 13681 caddr_t addr; 13682 mblk_t *arp_up_mp = NULL; 13683 mblk_t *arp_down_mp = NULL; 13684 mblk_t *arp_add_mp = NULL; 13685 mblk_t *arp_del_mp = NULL; 13686 mblk_t *arp_add_mapping_mp = NULL; 13687 mblk_t *arp_del_mapping_mp = NULL; 13688 ill_t *ill = ipif->ipif_ill; 13689 uchar_t *area_p = NULL; 13690 uchar_t *ared_p = NULL; 13691 int err = ENOMEM; 13692 boolean_t was_dup; 13693 13694 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13695 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13696 ASSERT(IAM_WRITER_IPIF(ipif)); 13697 13698 was_dup = B_FALSE; 13699 if (res_act == Res_act_initial) { 13700 ipif->ipif_addr_ready = 0; 13701 /* 13702 * We're bringing an interface up here. There's no way that we 13703 * should need to shut down ARP now. 13704 */ 13705 mutex_enter(&ill->ill_lock); 13706 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13707 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13708 ill->ill_ipif_dup_count--; 13709 was_dup = B_TRUE; 13710 } 13711 mutex_exit(&ill->ill_lock); 13712 } 13713 if (ipif->ipif_recovery_id != 0) 13714 (void) untimeout(ipif->ipif_recovery_id); 13715 ipif->ipif_recovery_id = 0; 13716 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13717 ipif->ipif_addr_ready = 1; 13718 return (0); 13719 } 13720 /* NDP will set the ipif_addr_ready flag when it's ready */ 13721 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13722 return (0); 13723 13724 if (ill->ill_isv6) { 13725 /* 13726 * External resolver for IPv6 13727 */ 13728 ASSERT(res_act == Res_act_initial); 13729 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13730 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13731 area_p = (uchar_t *)&ip6_area_template; 13732 ared_p = (uchar_t *)&ip6_ared_template; 13733 } 13734 } else { 13735 /* 13736 * IPv4 arp case. If the ARP stream has already started 13737 * closing, fail this request for ARP bringup. Else 13738 * record the fact that an ARP bringup is pending. 13739 */ 13740 mutex_enter(&ill->ill_lock); 13741 if (ill->ill_arp_closing) { 13742 mutex_exit(&ill->ill_lock); 13743 err = EINVAL; 13744 goto failed; 13745 } else { 13746 if (ill->ill_ipif_up_count == 0 && 13747 ill->ill_ipif_dup_count == 0 && !was_dup) 13748 ill->ill_arp_bringup_pending = 1; 13749 mutex_exit(&ill->ill_lock); 13750 } 13751 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13752 addr = (caddr_t)&ipif->ipif_lcl_addr; 13753 area_p = (uchar_t *)&ip_area_template; 13754 ared_p = (uchar_t *)&ip_ared_template; 13755 } 13756 } 13757 13758 /* 13759 * Add an entry for the local address in ARP only if it 13760 * is not UNNUMBERED and the address is not INADDR_ANY. 13761 */ 13762 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13763 area_t *area; 13764 13765 /* Now ask ARP to publish our address. */ 13766 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13767 if (arp_add_mp == NULL) 13768 goto failed; 13769 area = (area_t *)arp_add_mp->b_rptr; 13770 if (res_act != Res_act_initial) { 13771 /* 13772 * Copy the new hardware address and length into 13773 * arp_add_mp to be sent to ARP. 13774 */ 13775 area->area_hw_addr_length = ill->ill_phys_addr_length; 13776 bcopy(ill->ill_phys_addr, 13777 ((char *)area + area->area_hw_addr_offset), 13778 area->area_hw_addr_length); 13779 } 13780 13781 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13782 ACE_F_MYADDR; 13783 13784 if (res_act == Res_act_defend) { 13785 area->area_flags |= ACE_F_DEFEND; 13786 /* 13787 * If we're just defending our address now, then 13788 * there's no need to set up ARP multicast mappings. 13789 * The publish command is enough. 13790 */ 13791 goto done; 13792 } 13793 13794 if (res_act != Res_act_initial) 13795 goto arp_setup_multicast; 13796 13797 /* 13798 * Allocate an ARP deletion message so we know we can tell ARP 13799 * when the interface goes down. 13800 */ 13801 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13802 if (arp_del_mp == NULL) 13803 goto failed; 13804 13805 } else { 13806 if (res_act != Res_act_initial) 13807 goto done; 13808 } 13809 /* 13810 * Need to bring up ARP or setup multicast mapping only 13811 * when the first interface is coming UP. 13812 */ 13813 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13814 was_dup) { 13815 goto done; 13816 } 13817 13818 /* 13819 * Allocate an ARP down message (to be saved) and an ARP up 13820 * message. 13821 */ 13822 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13823 if (arp_down_mp == NULL) 13824 goto failed; 13825 13826 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13827 if (arp_up_mp == NULL) 13828 goto failed; 13829 13830 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13831 goto done; 13832 13833 arp_setup_multicast: 13834 /* 13835 * Setup the multicast mappings. This function initializes 13836 * ill_arp_del_mapping_mp also. This does not need to be done for 13837 * IPv6. 13838 */ 13839 if (!ill->ill_isv6) { 13840 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13841 if (err != 0) 13842 goto failed; 13843 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13844 ASSERT(arp_add_mapping_mp != NULL); 13845 } 13846 13847 done: 13848 if (arp_del_mp != NULL) { 13849 ASSERT(ipif->ipif_arp_del_mp == NULL); 13850 ipif->ipif_arp_del_mp = arp_del_mp; 13851 } 13852 if (arp_down_mp != NULL) { 13853 ASSERT(ill->ill_arp_down_mp == NULL); 13854 ill->ill_arp_down_mp = arp_down_mp; 13855 } 13856 if (arp_del_mapping_mp != NULL) { 13857 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13858 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13859 } 13860 if (arp_up_mp != NULL) { 13861 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13862 ill->ill_name, ipif->ipif_id)); 13863 putnext(ill->ill_rq, arp_up_mp); 13864 } 13865 if (arp_add_mp != NULL) { 13866 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13867 ill->ill_name, ipif->ipif_id)); 13868 /* 13869 * If it's an extended ARP implementation, then we'll wait to 13870 * hear that DAD has finished before using the interface. 13871 */ 13872 if (!ill->ill_arp_extend) 13873 ipif->ipif_addr_ready = 1; 13874 putnext(ill->ill_rq, arp_add_mp); 13875 } else { 13876 ipif->ipif_addr_ready = 1; 13877 } 13878 if (arp_add_mapping_mp != NULL) { 13879 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13880 ill->ill_name, ipif->ipif_id)); 13881 putnext(ill->ill_rq, arp_add_mapping_mp); 13882 } 13883 if (res_act != Res_act_initial) 13884 return (0); 13885 13886 if (ill->ill_flags & ILLF_NOARP) 13887 err = ill_arp_off(ill); 13888 else 13889 err = ill_arp_on(ill); 13890 if (err != 0) { 13891 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13892 freemsg(ipif->ipif_arp_del_mp); 13893 freemsg(ill->ill_arp_down_mp); 13894 freemsg(ill->ill_arp_del_mapping_mp); 13895 ipif->ipif_arp_del_mp = NULL; 13896 ill->ill_arp_down_mp = NULL; 13897 ill->ill_arp_del_mapping_mp = NULL; 13898 return (err); 13899 } 13900 return ((ill->ill_ipif_up_count != 0 || was_dup || 13901 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13902 13903 failed: 13904 ip1dbg(("ipif_resolver_up: FAILED\n")); 13905 freemsg(arp_add_mp); 13906 freemsg(arp_del_mp); 13907 freemsg(arp_add_mapping_mp); 13908 freemsg(arp_up_mp); 13909 freemsg(arp_down_mp); 13910 ill->ill_arp_bringup_pending = 0; 13911 return (err); 13912 } 13913 13914 /* 13915 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13916 * just gone back up. 13917 */ 13918 static void 13919 ipif_arp_start_dad(ipif_t *ipif) 13920 { 13921 ill_t *ill = ipif->ipif_ill; 13922 mblk_t *arp_add_mp; 13923 area_t *area; 13924 13925 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13926 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13927 ipif->ipif_lcl_addr == INADDR_ANY || 13928 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13929 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13930 /* 13931 * If we can't contact ARP for some reason, that's not really a 13932 * problem. Just send out the routing socket notification that 13933 * DAD completion would have done, and continue. 13934 */ 13935 ipif_mask_reply(ipif); 13936 ip_rts_ifmsg(ipif); 13937 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13938 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13939 ipif->ipif_addr_ready = 1; 13940 return; 13941 } 13942 13943 /* Setting the 'unverified' flag restarts DAD */ 13944 area = (area_t *)arp_add_mp->b_rptr; 13945 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13946 ACE_F_UNVERIFIED; 13947 putnext(ill->ill_rq, arp_add_mp); 13948 } 13949 13950 static void 13951 ipif_ndp_start_dad(ipif_t *ipif) 13952 { 13953 nce_t *nce; 13954 13955 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13956 if (nce == NULL) 13957 return; 13958 13959 if (!ndp_restart_dad(nce)) { 13960 /* 13961 * If we can't restart DAD for some reason, that's not really a 13962 * problem. Just send out the routing socket notification that 13963 * DAD completion would have done, and continue. 13964 */ 13965 ip_rts_ifmsg(ipif); 13966 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13967 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13968 ipif->ipif_addr_ready = 1; 13969 } 13970 NCE_REFRELE(nce); 13971 } 13972 13973 /* 13974 * Restart duplicate address detection on all interfaces on the given ill. 13975 * 13976 * This is called when an interface transitions from down to up 13977 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13978 * 13979 * Note that since the underlying physical link has transitioned, we must cause 13980 * at least one routing socket message to be sent here, either via DAD 13981 * completion or just by default on the first ipif. (If we don't do this, then 13982 * in.mpathd will see long delays when doing link-based failure recovery.) 13983 */ 13984 void 13985 ill_restart_dad(ill_t *ill, boolean_t went_up) 13986 { 13987 ipif_t *ipif; 13988 13989 if (ill == NULL) 13990 return; 13991 13992 /* 13993 * If layer two doesn't support duplicate address detection, then just 13994 * send the routing socket message now and be done with it. 13995 */ 13996 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13997 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13998 ip_rts_ifmsg(ill->ill_ipif); 13999 return; 14000 } 14001 14002 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14003 if (went_up) { 14004 if (ipif->ipif_flags & IPIF_UP) { 14005 if (ill->ill_isv6) 14006 ipif_ndp_start_dad(ipif); 14007 else 14008 ipif_arp_start_dad(ipif); 14009 } else if (ill->ill_isv6 && 14010 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14011 /* 14012 * For IPv4, the ARP module itself will 14013 * automatically start the DAD process when it 14014 * sees DL_NOTE_LINK_UP. We respond to the 14015 * AR_CN_READY at the completion of that task. 14016 * For IPv6, we must kick off the bring-up 14017 * process now. 14018 */ 14019 ndp_do_recovery(ipif); 14020 } else { 14021 /* 14022 * Unfortunately, the first ipif is "special" 14023 * and represents the underlying ill in the 14024 * routing socket messages. Thus, when this 14025 * one ipif is down, we must still notify so 14026 * that the user knows the IFF_RUNNING status 14027 * change. (If the first ipif is up, then 14028 * we'll handle eventual routing socket 14029 * notification via DAD completion.) 14030 */ 14031 if (ipif == ill->ill_ipif) 14032 ip_rts_ifmsg(ill->ill_ipif); 14033 } 14034 } else { 14035 /* 14036 * After link down, we'll need to send a new routing 14037 * message when the link comes back, so clear 14038 * ipif_addr_ready. 14039 */ 14040 ipif->ipif_addr_ready = 0; 14041 } 14042 } 14043 14044 /* 14045 * If we've torn down links, then notify the user right away. 14046 */ 14047 if (!went_up) 14048 ip_rts_ifmsg(ill->ill_ipif); 14049 } 14050 14051 /* 14052 * Wakeup all threads waiting to enter the ipsq, and sleeping 14053 * on any of the ills in this ipsq. The ill_lock of the ill 14054 * must be held so that waiters don't miss wakeups 14055 */ 14056 static void 14057 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14058 { 14059 phyint_t *phyint; 14060 14061 phyint = ipsq->ipsq_phyint_list; 14062 while (phyint != NULL) { 14063 if (phyint->phyint_illv4) { 14064 if (!caller_holds_lock) 14065 mutex_enter(&phyint->phyint_illv4->ill_lock); 14066 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14067 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14068 if (!caller_holds_lock) 14069 mutex_exit(&phyint->phyint_illv4->ill_lock); 14070 } 14071 if (phyint->phyint_illv6) { 14072 if (!caller_holds_lock) 14073 mutex_enter(&phyint->phyint_illv6->ill_lock); 14074 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14075 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14076 if (!caller_holds_lock) 14077 mutex_exit(&phyint->phyint_illv6->ill_lock); 14078 } 14079 phyint = phyint->phyint_ipsq_next; 14080 } 14081 } 14082 14083 static ipsq_t * 14084 ipsq_create(char *groupname, ip_stack_t *ipst) 14085 { 14086 ipsq_t *ipsq; 14087 14088 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14089 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14090 if (ipsq == NULL) { 14091 return (NULL); 14092 } 14093 14094 if (groupname != NULL) 14095 (void) strcpy(ipsq->ipsq_name, groupname); 14096 else 14097 ipsq->ipsq_name[0] = '\0'; 14098 14099 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14100 ipsq->ipsq_flags |= IPSQ_GROUP; 14101 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14102 ipst->ips_ipsq_g_head = ipsq; 14103 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14104 return (ipsq); 14105 } 14106 14107 /* 14108 * Return an ipsq correspoding to the groupname. If 'create' is true 14109 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14110 * uniquely with an IPMP group. However during IPMP groupname operations, 14111 * multiple IPMP groups may be associated with a single ipsq. But no 14112 * IPMP group can be associated with more than 1 ipsq at any time. 14113 * For example 14114 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14115 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14116 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14117 * 14118 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14119 * status shown below during the execution of the above command. 14120 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14121 * 14122 * After the completion of the above groupname command we return to the stable 14123 * state shown below. 14124 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14125 * hme4 mpk17-85 ipsq2 mpk17-85 1 14126 * 14127 * Because of the above, we don't search based on the ipsq_name since that 14128 * would miss the correct ipsq during certain windows as shown above. 14129 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14130 * natural state. 14131 */ 14132 static ipsq_t * 14133 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14134 ip_stack_t *ipst) 14135 { 14136 ipsq_t *ipsq; 14137 int group_len; 14138 phyint_t *phyint; 14139 14140 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14141 14142 group_len = strlen(groupname); 14143 ASSERT(group_len != 0); 14144 group_len++; 14145 14146 for (ipsq = ipst->ips_ipsq_g_head; 14147 ipsq != NULL; 14148 ipsq = ipsq->ipsq_next) { 14149 /* 14150 * When an ipsq is being split, and ill_split_ipsq 14151 * calls this function, we exclude it from being considered. 14152 */ 14153 if (ipsq == exclude_ipsq) 14154 continue; 14155 14156 /* 14157 * Compare against the ipsq_name. The groupname change happens 14158 * in 2 phases. The 1st phase merges the from group into 14159 * the to group's ipsq, by calling ill_merge_groups and restarts 14160 * the ioctl. The 2nd phase then locates the ipsq again thru 14161 * ipsq_name. At this point the phyint_groupname has not been 14162 * updated. 14163 */ 14164 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14165 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14166 /* 14167 * Verify that an ipmp groupname is exactly 14168 * part of 1 ipsq and is not found in any other 14169 * ipsq. 14170 */ 14171 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14172 NULL); 14173 return (ipsq); 14174 } 14175 14176 /* 14177 * Comparison against ipsq_name alone is not sufficient. 14178 * In the case when groups are currently being 14179 * merged, the ipsq could hold other IPMP groups temporarily. 14180 * so we walk the phyint list and compare against the 14181 * phyint_groupname as well. 14182 */ 14183 phyint = ipsq->ipsq_phyint_list; 14184 while (phyint != NULL) { 14185 if ((group_len == phyint->phyint_groupname_len) && 14186 (bcmp(phyint->phyint_groupname, groupname, 14187 group_len) == 0)) { 14188 /* 14189 * Verify that an ipmp groupname is exactly 14190 * part of 1 ipsq and is not found in any other 14191 * ipsq. 14192 */ 14193 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14194 ipst) == NULL); 14195 return (ipsq); 14196 } 14197 phyint = phyint->phyint_ipsq_next; 14198 } 14199 } 14200 if (create) 14201 ipsq = ipsq_create(groupname, ipst); 14202 return (ipsq); 14203 } 14204 14205 static void 14206 ipsq_delete(ipsq_t *ipsq) 14207 { 14208 ipsq_t *nipsq; 14209 ipsq_t *pipsq = NULL; 14210 ip_stack_t *ipst = ipsq->ipsq_ipst; 14211 14212 /* 14213 * We don't hold the ipsq lock, but we are sure no new 14214 * messages can land up, since the ipsq_refs is zero. 14215 * i.e. this ipsq is unnamed and no phyint or phyint group 14216 * is associated with this ipsq. (Lookups are based on ill_name 14217 * or phyint_groupname) 14218 */ 14219 ASSERT(ipsq->ipsq_refs == 0); 14220 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14221 ASSERT(ipsq->ipsq_pending_mp == NULL); 14222 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14223 /* 14224 * This is not the ipsq of an IPMP group. 14225 */ 14226 ipsq->ipsq_ipst = NULL; 14227 kmem_free(ipsq, sizeof (ipsq_t)); 14228 return; 14229 } 14230 14231 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14232 14233 /* 14234 * Locate the ipsq before we can remove it from 14235 * the singly linked list of ipsq's. 14236 */ 14237 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14238 nipsq = nipsq->ipsq_next) { 14239 if (nipsq == ipsq) { 14240 break; 14241 } 14242 pipsq = nipsq; 14243 } 14244 14245 ASSERT(nipsq == ipsq); 14246 14247 /* unlink ipsq from the list */ 14248 if (pipsq != NULL) 14249 pipsq->ipsq_next = ipsq->ipsq_next; 14250 else 14251 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14252 ipsq->ipsq_ipst = NULL; 14253 kmem_free(ipsq, sizeof (ipsq_t)); 14254 rw_exit(&ipst->ips_ill_g_lock); 14255 } 14256 14257 static void 14258 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14259 queue_t *q) 14260 { 14261 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14262 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14263 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14264 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14265 ASSERT(current_mp != NULL); 14266 14267 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14268 NEW_OP, NULL); 14269 14270 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14271 new_ipsq->ipsq_xopq_mphead != NULL); 14272 14273 /* 14274 * move from old ipsq to the new ipsq. 14275 */ 14276 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14277 if (old_ipsq->ipsq_xopq_mphead != NULL) 14278 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14279 14280 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14281 } 14282 14283 void 14284 ill_group_cleanup(ill_t *ill) 14285 { 14286 ill_t *ill_v4; 14287 ill_t *ill_v6; 14288 ipif_t *ipif; 14289 14290 ill_v4 = ill->ill_phyint->phyint_illv4; 14291 ill_v6 = ill->ill_phyint->phyint_illv6; 14292 14293 if (ill_v4 != NULL) { 14294 mutex_enter(&ill_v4->ill_lock); 14295 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14296 ipif = ipif->ipif_next) { 14297 IPIF_UNMARK_MOVING(ipif); 14298 } 14299 ill_v4->ill_up_ipifs = B_FALSE; 14300 mutex_exit(&ill_v4->ill_lock); 14301 } 14302 14303 if (ill_v6 != NULL) { 14304 mutex_enter(&ill_v6->ill_lock); 14305 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14306 ipif = ipif->ipif_next) { 14307 IPIF_UNMARK_MOVING(ipif); 14308 } 14309 ill_v6->ill_up_ipifs = B_FALSE; 14310 mutex_exit(&ill_v6->ill_lock); 14311 } 14312 } 14313 /* 14314 * This function is called when an ill has had a change in its group status 14315 * to bring up all the ipifs that were up before the change. 14316 */ 14317 int 14318 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14319 { 14320 ipif_t *ipif; 14321 ill_t *ill_v4; 14322 ill_t *ill_v6; 14323 ill_t *from_ill; 14324 int err = 0; 14325 14326 14327 ASSERT(IAM_WRITER_ILL(ill)); 14328 14329 /* 14330 * Except for ipif_state_flags and ill_state_flags the other 14331 * fields of the ipif/ill that are modified below are protected 14332 * implicitly since we are a writer. We would have tried to down 14333 * even an ipif that was already down, in ill_down_ipifs. So we 14334 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14335 */ 14336 ill_v4 = ill->ill_phyint->phyint_illv4; 14337 ill_v6 = ill->ill_phyint->phyint_illv6; 14338 if (ill_v4 != NULL) { 14339 ill_v4->ill_up_ipifs = B_TRUE; 14340 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14341 ipif = ipif->ipif_next) { 14342 mutex_enter(&ill_v4->ill_lock); 14343 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14344 IPIF_UNMARK_MOVING(ipif); 14345 mutex_exit(&ill_v4->ill_lock); 14346 if (ipif->ipif_was_up) { 14347 if (!(ipif->ipif_flags & IPIF_UP)) 14348 err = ipif_up(ipif, q, mp); 14349 ipif->ipif_was_up = B_FALSE; 14350 if (err != 0) { 14351 /* 14352 * Can there be any other error ? 14353 */ 14354 ASSERT(err == EINPROGRESS); 14355 return (err); 14356 } 14357 } 14358 } 14359 mutex_enter(&ill_v4->ill_lock); 14360 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14361 mutex_exit(&ill_v4->ill_lock); 14362 ill_v4->ill_up_ipifs = B_FALSE; 14363 if (ill_v4->ill_move_in_progress) { 14364 ASSERT(ill_v4->ill_move_peer != NULL); 14365 ill_v4->ill_move_in_progress = B_FALSE; 14366 from_ill = ill_v4->ill_move_peer; 14367 from_ill->ill_move_in_progress = B_FALSE; 14368 from_ill->ill_move_peer = NULL; 14369 mutex_enter(&from_ill->ill_lock); 14370 from_ill->ill_state_flags &= ~ILL_CHANGING; 14371 mutex_exit(&from_ill->ill_lock); 14372 if (ill_v6 == NULL) { 14373 if (from_ill->ill_phyint->phyint_flags & 14374 PHYI_STANDBY) { 14375 phyint_inactive(from_ill->ill_phyint); 14376 } 14377 if (ill_v4->ill_phyint->phyint_flags & 14378 PHYI_STANDBY) { 14379 phyint_inactive(ill_v4->ill_phyint); 14380 } 14381 } 14382 ill_v4->ill_move_peer = NULL; 14383 } 14384 } 14385 14386 if (ill_v6 != NULL) { 14387 ill_v6->ill_up_ipifs = B_TRUE; 14388 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14389 ipif = ipif->ipif_next) { 14390 mutex_enter(&ill_v6->ill_lock); 14391 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14392 IPIF_UNMARK_MOVING(ipif); 14393 mutex_exit(&ill_v6->ill_lock); 14394 if (ipif->ipif_was_up) { 14395 if (!(ipif->ipif_flags & IPIF_UP)) 14396 err = ipif_up(ipif, q, mp); 14397 ipif->ipif_was_up = B_FALSE; 14398 if (err != 0) { 14399 /* 14400 * Can there be any other error ? 14401 */ 14402 ASSERT(err == EINPROGRESS); 14403 return (err); 14404 } 14405 } 14406 } 14407 mutex_enter(&ill_v6->ill_lock); 14408 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14409 mutex_exit(&ill_v6->ill_lock); 14410 ill_v6->ill_up_ipifs = B_FALSE; 14411 if (ill_v6->ill_move_in_progress) { 14412 ASSERT(ill_v6->ill_move_peer != NULL); 14413 ill_v6->ill_move_in_progress = B_FALSE; 14414 from_ill = ill_v6->ill_move_peer; 14415 from_ill->ill_move_in_progress = B_FALSE; 14416 from_ill->ill_move_peer = NULL; 14417 mutex_enter(&from_ill->ill_lock); 14418 from_ill->ill_state_flags &= ~ILL_CHANGING; 14419 mutex_exit(&from_ill->ill_lock); 14420 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14421 phyint_inactive(from_ill->ill_phyint); 14422 } 14423 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14424 phyint_inactive(ill_v6->ill_phyint); 14425 } 14426 ill_v6->ill_move_peer = NULL; 14427 } 14428 } 14429 return (0); 14430 } 14431 14432 /* 14433 * bring down all the approriate ipifs. 14434 */ 14435 /* ARGSUSED */ 14436 static void 14437 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14438 { 14439 ipif_t *ipif; 14440 14441 ASSERT(IAM_WRITER_ILL(ill)); 14442 14443 /* 14444 * Except for ipif_state_flags the other fields of the ipif/ill that 14445 * are modified below are protected implicitly since we are a writer 14446 */ 14447 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14448 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14449 continue; 14450 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14451 /* 14452 * We go through the ipif_down logic even if the ipif 14453 * is already down, since routes can be added based 14454 * on down ipifs. Going through ipif_down once again 14455 * will delete any IREs created based on these routes. 14456 */ 14457 if (ipif->ipif_flags & IPIF_UP) 14458 ipif->ipif_was_up = B_TRUE; 14459 /* 14460 * If called with chk_nofailover true ipif is moving. 14461 */ 14462 mutex_enter(&ill->ill_lock); 14463 if (chk_nofailover) { 14464 ipif->ipif_state_flags |= 14465 IPIF_MOVING | IPIF_CHANGING; 14466 } else { 14467 ipif->ipif_state_flags |= IPIF_CHANGING; 14468 } 14469 mutex_exit(&ill->ill_lock); 14470 /* 14471 * Need to re-create net/subnet bcast ires if 14472 * they are dependent on ipif. 14473 */ 14474 if (!ipif->ipif_isv6) 14475 ipif_check_bcast_ires(ipif); 14476 (void) ipif_logical_down(ipif, NULL, NULL); 14477 ipif_non_duplicate(ipif); 14478 ipif_down_tail(ipif); 14479 } 14480 } 14481 } 14482 14483 #define IPSQ_INC_REF(ipsq, ipst) { \ 14484 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14485 (ipsq)->ipsq_refs++; \ 14486 } 14487 14488 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14489 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14490 (ipsq)->ipsq_refs--; \ 14491 if ((ipsq)->ipsq_refs == 0) \ 14492 (ipsq)->ipsq_name[0] = '\0'; \ 14493 } 14494 14495 /* 14496 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14497 * new_ipsq. 14498 */ 14499 static void 14500 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14501 { 14502 phyint_t *phyint; 14503 phyint_t *next_phyint; 14504 14505 /* 14506 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14507 * writer and the ill_lock of the ill in question. Also the dest 14508 * ipsq can't vanish while we hold the ill_g_lock as writer. 14509 */ 14510 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14511 14512 phyint = cur_ipsq->ipsq_phyint_list; 14513 cur_ipsq->ipsq_phyint_list = NULL; 14514 while (phyint != NULL) { 14515 next_phyint = phyint->phyint_ipsq_next; 14516 IPSQ_DEC_REF(cur_ipsq, ipst); 14517 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14518 new_ipsq->ipsq_phyint_list = phyint; 14519 IPSQ_INC_REF(new_ipsq, ipst); 14520 phyint->phyint_ipsq = new_ipsq; 14521 phyint = next_phyint; 14522 } 14523 } 14524 14525 #define SPLIT_SUCCESS 0 14526 #define SPLIT_NOT_NEEDED 1 14527 #define SPLIT_FAILED 2 14528 14529 int 14530 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14531 ip_stack_t *ipst) 14532 { 14533 ipsq_t *newipsq = NULL; 14534 14535 /* 14536 * Assertions denote pre-requisites for changing the ipsq of 14537 * a phyint 14538 */ 14539 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14540 /* 14541 * <ill-phyint> assocs can't change while ill_g_lock 14542 * is held as writer. See ill_phyint_reinit() 14543 */ 14544 ASSERT(phyint->phyint_illv4 == NULL || 14545 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14546 ASSERT(phyint->phyint_illv6 == NULL || 14547 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14548 14549 if ((phyint->phyint_groupname_len != 14550 (strlen(cur_ipsq->ipsq_name) + 1) || 14551 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14552 phyint->phyint_groupname_len) != 0)) { 14553 /* 14554 * Once we fail in creating a new ipsq due to memory shortage, 14555 * don't attempt to create new ipsq again, based on another 14556 * phyint, since we want all phyints belonging to an IPMP group 14557 * to be in the same ipsq even in the event of mem alloc fails. 14558 */ 14559 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14560 cur_ipsq, ipst); 14561 if (newipsq == NULL) { 14562 /* Memory allocation failure */ 14563 return (SPLIT_FAILED); 14564 } else { 14565 /* ipsq_refs protected by ill_g_lock (writer) */ 14566 IPSQ_DEC_REF(cur_ipsq, ipst); 14567 phyint->phyint_ipsq = newipsq; 14568 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14569 newipsq->ipsq_phyint_list = phyint; 14570 IPSQ_INC_REF(newipsq, ipst); 14571 return (SPLIT_SUCCESS); 14572 } 14573 } 14574 return (SPLIT_NOT_NEEDED); 14575 } 14576 14577 /* 14578 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14579 * to do this split 14580 */ 14581 static int 14582 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14583 { 14584 ipsq_t *newipsq; 14585 14586 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14587 /* 14588 * <ill-phyint> assocs can't change while ill_g_lock 14589 * is held as writer. See ill_phyint_reinit() 14590 */ 14591 14592 ASSERT(phyint->phyint_illv4 == NULL || 14593 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14594 ASSERT(phyint->phyint_illv6 == NULL || 14595 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14596 14597 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14598 phyint->phyint_illv4: phyint->phyint_illv6)) { 14599 /* 14600 * ipsq_init failed due to no memory 14601 * caller will use the same ipsq 14602 */ 14603 return (SPLIT_FAILED); 14604 } 14605 14606 /* ipsq_ref is protected by ill_g_lock (writer) */ 14607 IPSQ_DEC_REF(cur_ipsq, ipst); 14608 14609 /* 14610 * This is a new ipsq that is unknown to the world. 14611 * So we don't need to hold ipsq_lock, 14612 */ 14613 newipsq = phyint->phyint_ipsq; 14614 newipsq->ipsq_writer = NULL; 14615 newipsq->ipsq_reentry_cnt--; 14616 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14617 #ifdef DEBUG 14618 newipsq->ipsq_depth = 0; 14619 #endif 14620 14621 return (SPLIT_SUCCESS); 14622 } 14623 14624 /* 14625 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14626 * ipsq's representing their individual groups or themselves. Return 14627 * whether split needs to be retried again later. 14628 */ 14629 static boolean_t 14630 ill_split_ipsq(ipsq_t *cur_ipsq) 14631 { 14632 phyint_t *phyint; 14633 phyint_t *next_phyint; 14634 int error; 14635 boolean_t need_retry = B_FALSE; 14636 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14637 14638 phyint = cur_ipsq->ipsq_phyint_list; 14639 cur_ipsq->ipsq_phyint_list = NULL; 14640 while (phyint != NULL) { 14641 next_phyint = phyint->phyint_ipsq_next; 14642 /* 14643 * 'created' will tell us whether the callee actually 14644 * created an ipsq. Lack of memory may force the callee 14645 * to return without creating an ipsq. 14646 */ 14647 if (phyint->phyint_groupname == NULL) { 14648 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14649 } else { 14650 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14651 need_retry, ipst); 14652 } 14653 14654 switch (error) { 14655 case SPLIT_FAILED: 14656 need_retry = B_TRUE; 14657 /* FALLTHRU */ 14658 case SPLIT_NOT_NEEDED: 14659 /* 14660 * Keep it on the list. 14661 */ 14662 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14663 cur_ipsq->ipsq_phyint_list = phyint; 14664 break; 14665 case SPLIT_SUCCESS: 14666 break; 14667 default: 14668 ASSERT(0); 14669 } 14670 14671 phyint = next_phyint; 14672 } 14673 return (need_retry); 14674 } 14675 14676 /* 14677 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14678 * and return the ills in the list. This list will be 14679 * needed to unlock all the ills later on by the caller. 14680 * The <ill-ipsq> associations could change between the 14681 * lock and unlock. Hence the unlock can't traverse the 14682 * ipsq to get the list of ills. 14683 */ 14684 static int 14685 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14686 { 14687 int cnt = 0; 14688 phyint_t *phyint; 14689 ip_stack_t *ipst = ipsq->ipsq_ipst; 14690 14691 /* 14692 * The caller holds ill_g_lock to ensure that the ill memberships 14693 * of the ipsq don't change 14694 */ 14695 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14696 14697 phyint = ipsq->ipsq_phyint_list; 14698 while (phyint != NULL) { 14699 if (phyint->phyint_illv4 != NULL) { 14700 ASSERT(cnt < list_max); 14701 list[cnt++] = phyint->phyint_illv4; 14702 } 14703 if (phyint->phyint_illv6 != NULL) { 14704 ASSERT(cnt < list_max); 14705 list[cnt++] = phyint->phyint_illv6; 14706 } 14707 phyint = phyint->phyint_ipsq_next; 14708 } 14709 ill_lock_ills(list, cnt); 14710 return (cnt); 14711 } 14712 14713 void 14714 ill_lock_ills(ill_t **list, int cnt) 14715 { 14716 int i; 14717 14718 if (cnt > 1) { 14719 boolean_t try_again; 14720 do { 14721 try_again = B_FALSE; 14722 for (i = 0; i < cnt - 1; i++) { 14723 if (list[i] < list[i + 1]) { 14724 ill_t *tmp; 14725 14726 /* swap the elements */ 14727 tmp = list[i]; 14728 list[i] = list[i + 1]; 14729 list[i + 1] = tmp; 14730 try_again = B_TRUE; 14731 } 14732 } 14733 } while (try_again); 14734 } 14735 14736 for (i = 0; i < cnt; i++) { 14737 if (i == 0) { 14738 if (list[i] != NULL) 14739 mutex_enter(&list[i]->ill_lock); 14740 else 14741 return; 14742 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14743 mutex_enter(&list[i]->ill_lock); 14744 } 14745 } 14746 } 14747 14748 void 14749 ill_unlock_ills(ill_t **list, int cnt) 14750 { 14751 int i; 14752 14753 for (i = 0; i < cnt; i++) { 14754 if ((i == 0) && (list[i] != NULL)) { 14755 mutex_exit(&list[i]->ill_lock); 14756 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14757 mutex_exit(&list[i]->ill_lock); 14758 } 14759 } 14760 } 14761 14762 /* 14763 * Merge all the ills from 1 ipsq group into another ipsq group. 14764 * The source ipsq group is specified by the ipsq associated with 14765 * 'from_ill'. The destination ipsq group is specified by the ipsq 14766 * associated with 'to_ill' or 'groupname' respectively. 14767 * Note that ipsq itself does not have a reference count mechanism 14768 * and functions don't look up an ipsq and pass it around. Instead 14769 * functions pass around an ill or groupname, and the ipsq is looked 14770 * up from the ill or groupname and the required operation performed 14771 * atomically with the lookup on the ipsq. 14772 */ 14773 static int 14774 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14775 queue_t *q) 14776 { 14777 ipsq_t *old_ipsq; 14778 ipsq_t *new_ipsq; 14779 ill_t **ill_list; 14780 int cnt; 14781 size_t ill_list_size; 14782 boolean_t became_writer_on_new_sq = B_FALSE; 14783 ip_stack_t *ipst = from_ill->ill_ipst; 14784 14785 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14786 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14787 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14788 14789 /* 14790 * Need to hold ill_g_lock as writer and also the ill_lock to 14791 * change the <ill-ipsq> assoc of an ill. Need to hold the 14792 * ipsq_lock to prevent new messages from landing on an ipsq. 14793 */ 14794 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14795 14796 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14797 if (groupname != NULL) 14798 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14799 else { 14800 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14801 } 14802 14803 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14804 14805 /* 14806 * both groups are on the same ipsq. 14807 */ 14808 if (old_ipsq == new_ipsq) { 14809 rw_exit(&ipst->ips_ill_g_lock); 14810 return (0); 14811 } 14812 14813 cnt = old_ipsq->ipsq_refs << 1; 14814 ill_list_size = cnt * sizeof (ill_t *); 14815 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14816 if (ill_list == NULL) { 14817 rw_exit(&ipst->ips_ill_g_lock); 14818 return (ENOMEM); 14819 } 14820 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14821 14822 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14823 mutex_enter(&new_ipsq->ipsq_lock); 14824 if ((new_ipsq->ipsq_writer == NULL && 14825 new_ipsq->ipsq_current_ipif == NULL) || 14826 (new_ipsq->ipsq_writer == curthread)) { 14827 new_ipsq->ipsq_writer = curthread; 14828 new_ipsq->ipsq_reentry_cnt++; 14829 became_writer_on_new_sq = B_TRUE; 14830 } 14831 14832 /* 14833 * We are holding ill_g_lock as writer and all the ill locks of 14834 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14835 * message can land up on the old ipsq even though we don't hold the 14836 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14837 */ 14838 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14839 14840 /* 14841 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14842 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14843 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14844 */ 14845 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14846 14847 /* 14848 * Mark the new ipsq as needing a split since it is currently 14849 * being shared by more than 1 IPMP group. The split will 14850 * occur at the end of ipsq_exit 14851 */ 14852 new_ipsq->ipsq_split = B_TRUE; 14853 14854 /* Now release all the locks */ 14855 mutex_exit(&new_ipsq->ipsq_lock); 14856 ill_unlock_ills(ill_list, cnt); 14857 rw_exit(&ipst->ips_ill_g_lock); 14858 14859 kmem_free(ill_list, ill_list_size); 14860 14861 /* 14862 * If we succeeded in becoming writer on the new ipsq, then 14863 * drain the new ipsq and start processing all enqueued messages 14864 * including the current ioctl we are processing which is either 14865 * a set groupname or failover/failback. 14866 */ 14867 if (became_writer_on_new_sq) 14868 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14869 14870 /* 14871 * syncq has been changed and all the messages have been moved. 14872 */ 14873 mutex_enter(&old_ipsq->ipsq_lock); 14874 old_ipsq->ipsq_current_ipif = NULL; 14875 old_ipsq->ipsq_current_ioctl = 0; 14876 mutex_exit(&old_ipsq->ipsq_lock); 14877 return (EINPROGRESS); 14878 } 14879 14880 /* 14881 * Delete and add the loopback copy and non-loopback copy of 14882 * the BROADCAST ire corresponding to ill and addr. Used to 14883 * group broadcast ires together when ill becomes part of 14884 * a group. 14885 * 14886 * This function is also called when ill is leaving the group 14887 * so that the ires belonging to the group gets re-grouped. 14888 */ 14889 static void 14890 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14891 { 14892 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14893 ire_t **ire_ptpn = &ire_head; 14894 ip_stack_t *ipst = ill->ill_ipst; 14895 14896 /* 14897 * The loopback and non-loopback IREs are inserted in the order in which 14898 * they're found, on the basis that they are correctly ordered (loopback 14899 * first). 14900 */ 14901 for (;;) { 14902 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14903 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14904 if (ire == NULL) 14905 break; 14906 14907 /* 14908 * we are passing in KM_SLEEP because it is not easy to 14909 * go back to a sane state in case of memory failure. 14910 */ 14911 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14912 ASSERT(nire != NULL); 14913 bzero(nire, sizeof (ire_t)); 14914 /* 14915 * Don't use ire_max_frag directly since we don't 14916 * hold on to 'ire' until we add the new ire 'nire' and 14917 * we don't want the new ire to have a dangling reference 14918 * to 'ire'. The ire_max_frag of a broadcast ire must 14919 * be in sync with the ipif_mtu of the associate ipif. 14920 * For eg. this happens as a result of SIOCSLIFNAME, 14921 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14922 * the driver. A change in ire_max_frag triggered as 14923 * as a result of path mtu discovery, or due to an 14924 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14925 * route change -mtu command does not apply to broadcast ires. 14926 * 14927 * XXX We need a recovery strategy here if ire_init fails 14928 */ 14929 if (ire_init(nire, 14930 (uchar_t *)&ire->ire_addr, 14931 (uchar_t *)&ire->ire_mask, 14932 (uchar_t *)&ire->ire_src_addr, 14933 (uchar_t *)&ire->ire_gateway_addr, 14934 ire->ire_stq == NULL ? &ip_loopback_mtu : 14935 &ire->ire_ipif->ipif_mtu, 14936 ire->ire_nce, 14937 ire->ire_rfq, 14938 ire->ire_stq, 14939 ire->ire_type, 14940 ire->ire_ipif, 14941 ire->ire_cmask, 14942 ire->ire_phandle, 14943 ire->ire_ihandle, 14944 ire->ire_flags, 14945 &ire->ire_uinfo, 14946 NULL, 14947 NULL, 14948 ipst) == NULL) { 14949 cmn_err(CE_PANIC, "ire_init() failed"); 14950 } 14951 ire_delete(ire); 14952 ire_refrele(ire); 14953 14954 /* 14955 * The newly created IREs are inserted at the tail of the list 14956 * starting with ire_head. As we've just allocated them no one 14957 * knows about them so it's safe. 14958 */ 14959 *ire_ptpn = nire; 14960 ire_ptpn = &nire->ire_next; 14961 } 14962 14963 for (nire = ire_head; nire != NULL; nire = nire_next) { 14964 int error; 14965 ire_t *oire; 14966 /* unlink the IRE from our list before calling ire_add() */ 14967 nire_next = nire->ire_next; 14968 nire->ire_next = NULL; 14969 14970 /* ire_add adds the ire at the right place in the list */ 14971 oire = nire; 14972 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14973 ASSERT(error == 0); 14974 ASSERT(oire == nire); 14975 ire_refrele(nire); /* Held in ire_add */ 14976 } 14977 } 14978 14979 /* 14980 * This function is usually called when an ill is inserted in 14981 * a group and all the ipifs are already UP. As all the ipifs 14982 * are already UP, the broadcast ires have already been created 14983 * and been inserted. But, ire_add_v4 would not have grouped properly. 14984 * We need to re-group for the benefit of ip_wput_ire which 14985 * expects BROADCAST ires to be grouped properly to avoid sending 14986 * more than one copy of the broadcast packet per group. 14987 * 14988 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14989 * because when ipif_up_done ends up calling this, ires have 14990 * already been added before illgrp_insert i.e before ill_group 14991 * has been initialized. 14992 */ 14993 static void 14994 ill_group_bcast_for_xmit(ill_t *ill) 14995 { 14996 ill_group_t *illgrp; 14997 ipif_t *ipif; 14998 ipaddr_t addr; 14999 ipaddr_t net_mask; 15000 ipaddr_t subnet_netmask; 15001 15002 illgrp = ill->ill_group; 15003 15004 /* 15005 * This function is called even when an ill is deleted from 15006 * the group. Hence, illgrp could be null. 15007 */ 15008 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15009 return; 15010 15011 /* 15012 * Delete all the BROADCAST ires matching this ill and add 15013 * them back. This time, ire_add_v4 should take care of 15014 * grouping them with others because ill is part of the 15015 * group. 15016 */ 15017 ill_bcast_delete_and_add(ill, 0); 15018 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15019 15020 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15021 15022 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15023 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15024 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15025 } else { 15026 net_mask = htonl(IN_CLASSA_NET); 15027 } 15028 addr = net_mask & ipif->ipif_subnet; 15029 ill_bcast_delete_and_add(ill, addr); 15030 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15031 15032 subnet_netmask = ipif->ipif_net_mask; 15033 addr = ipif->ipif_subnet; 15034 ill_bcast_delete_and_add(ill, addr); 15035 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15036 } 15037 } 15038 15039 /* 15040 * This function is called from illgrp_delete when ill is being deleted 15041 * from the group. 15042 * 15043 * As ill is not there in the group anymore, any address belonging 15044 * to this ill should be cleared of IRE_MARK_NORECV. 15045 */ 15046 static void 15047 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15048 { 15049 ire_t *ire; 15050 irb_t *irb; 15051 ip_stack_t *ipst = ill->ill_ipst; 15052 15053 ASSERT(ill->ill_group == NULL); 15054 15055 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15056 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15057 15058 if (ire != NULL) { 15059 /* 15060 * IPMP and plumbing operations are serialized on the ipsq, so 15061 * no one will insert or delete a broadcast ire under our feet. 15062 */ 15063 irb = ire->ire_bucket; 15064 rw_enter(&irb->irb_lock, RW_READER); 15065 ire_refrele(ire); 15066 15067 for (; ire != NULL; ire = ire->ire_next) { 15068 if (ire->ire_addr != addr) 15069 break; 15070 if (ire_to_ill(ire) != ill) 15071 continue; 15072 15073 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15074 ire->ire_marks &= ~IRE_MARK_NORECV; 15075 } 15076 rw_exit(&irb->irb_lock); 15077 } 15078 } 15079 15080 /* 15081 * This function must be called only after the broadcast ires 15082 * have been grouped together. For a given address addr, nominate 15083 * only one of the ires whose interface is not FAILED or OFFLINE. 15084 * 15085 * This is also called when an ipif goes down, so that we can nominate 15086 * a different ire with the same address for receiving. 15087 */ 15088 static void 15089 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15090 { 15091 irb_t *irb; 15092 ire_t *ire; 15093 ire_t *ire1; 15094 ire_t *save_ire; 15095 ire_t **irep = NULL; 15096 boolean_t first = B_TRUE; 15097 ire_t *clear_ire = NULL; 15098 ire_t *start_ire = NULL; 15099 ire_t *new_lb_ire; 15100 ire_t *new_nlb_ire; 15101 boolean_t new_lb_ire_used = B_FALSE; 15102 boolean_t new_nlb_ire_used = B_FALSE; 15103 uint64_t match_flags; 15104 uint64_t phyi_flags; 15105 boolean_t fallback = B_FALSE; 15106 uint_t max_frag; 15107 15108 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15109 NULL, MATCH_IRE_TYPE, ipst); 15110 /* 15111 * We may not be able to find some ires if a previous 15112 * ire_create failed. This happens when an ipif goes 15113 * down and we are unable to create BROADCAST ires due 15114 * to memory failure. Thus, we have to check for NULL 15115 * below. This should handle the case for LOOPBACK, 15116 * POINTOPOINT and interfaces with some POINTOPOINT 15117 * logicals for which there are no BROADCAST ires. 15118 */ 15119 if (ire == NULL) 15120 return; 15121 /* 15122 * Currently IRE_BROADCASTS are deleted when an ipif 15123 * goes down which runs exclusively. Thus, setting 15124 * IRE_MARK_RCVD should not race with ire_delete marking 15125 * IRE_MARK_CONDEMNED. We grab the lock below just to 15126 * be consistent with other parts of the code that walks 15127 * a given bucket. 15128 */ 15129 save_ire = ire; 15130 irb = ire->ire_bucket; 15131 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15132 if (new_lb_ire == NULL) { 15133 ire_refrele(ire); 15134 return; 15135 } 15136 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15137 if (new_nlb_ire == NULL) { 15138 ire_refrele(ire); 15139 kmem_cache_free(ire_cache, new_lb_ire); 15140 return; 15141 } 15142 IRB_REFHOLD(irb); 15143 rw_enter(&irb->irb_lock, RW_WRITER); 15144 /* 15145 * Get to the first ire matching the address and the 15146 * group. If the address does not match we are done 15147 * as we could not find the IRE. If the address matches 15148 * we should get to the first one matching the group. 15149 */ 15150 while (ire != NULL) { 15151 if (ire->ire_addr != addr || 15152 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15153 break; 15154 } 15155 ire = ire->ire_next; 15156 } 15157 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15158 start_ire = ire; 15159 redo: 15160 while (ire != NULL && ire->ire_addr == addr && 15161 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15162 /* 15163 * The first ire for any address within a group 15164 * should always be the one with IRE_MARK_NORECV cleared 15165 * so that ip_wput_ire can avoid searching for one. 15166 * Note down the insertion point which will be used 15167 * later. 15168 */ 15169 if (first && (irep == NULL)) 15170 irep = ire->ire_ptpn; 15171 /* 15172 * PHYI_FAILED is set when the interface fails. 15173 * This interface might have become good, but the 15174 * daemon has not yet detected. We should still 15175 * not receive on this. PHYI_OFFLINE should never 15176 * be picked as this has been offlined and soon 15177 * be removed. 15178 */ 15179 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15180 if (phyi_flags & PHYI_OFFLINE) { 15181 ire->ire_marks |= IRE_MARK_NORECV; 15182 ire = ire->ire_next; 15183 continue; 15184 } 15185 if (phyi_flags & match_flags) { 15186 ire->ire_marks |= IRE_MARK_NORECV; 15187 ire = ire->ire_next; 15188 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15189 PHYI_INACTIVE) { 15190 fallback = B_TRUE; 15191 } 15192 continue; 15193 } 15194 if (first) { 15195 /* 15196 * We will move this to the front of the list later 15197 * on. 15198 */ 15199 clear_ire = ire; 15200 ire->ire_marks &= ~IRE_MARK_NORECV; 15201 } else { 15202 ire->ire_marks |= IRE_MARK_NORECV; 15203 } 15204 first = B_FALSE; 15205 ire = ire->ire_next; 15206 } 15207 /* 15208 * If we never nominated anybody, try nominating at least 15209 * an INACTIVE, if we found one. Do it only once though. 15210 */ 15211 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15212 fallback) { 15213 match_flags = PHYI_FAILED; 15214 ire = start_ire; 15215 irep = NULL; 15216 goto redo; 15217 } 15218 ire_refrele(save_ire); 15219 15220 /* 15221 * irep non-NULL indicates that we entered the while loop 15222 * above. If clear_ire is at the insertion point, we don't 15223 * have to do anything. clear_ire will be NULL if all the 15224 * interfaces are failed. 15225 * 15226 * We cannot unlink and reinsert the ire at the right place 15227 * in the list since there can be other walkers of this bucket. 15228 * Instead we delete and recreate the ire 15229 */ 15230 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15231 ire_t *clear_ire_stq = NULL; 15232 15233 bzero(new_lb_ire, sizeof (ire_t)); 15234 /* XXX We need a recovery strategy here. */ 15235 if (ire_init(new_lb_ire, 15236 (uchar_t *)&clear_ire->ire_addr, 15237 (uchar_t *)&clear_ire->ire_mask, 15238 (uchar_t *)&clear_ire->ire_src_addr, 15239 (uchar_t *)&clear_ire->ire_gateway_addr, 15240 &clear_ire->ire_max_frag, 15241 NULL, /* let ire_nce_init derive the resolver info */ 15242 clear_ire->ire_rfq, 15243 clear_ire->ire_stq, 15244 clear_ire->ire_type, 15245 clear_ire->ire_ipif, 15246 clear_ire->ire_cmask, 15247 clear_ire->ire_phandle, 15248 clear_ire->ire_ihandle, 15249 clear_ire->ire_flags, 15250 &clear_ire->ire_uinfo, 15251 NULL, 15252 NULL, 15253 ipst) == NULL) 15254 cmn_err(CE_PANIC, "ire_init() failed"); 15255 if (clear_ire->ire_stq == NULL) { 15256 ire_t *ire_next = clear_ire->ire_next; 15257 if (ire_next != NULL && 15258 ire_next->ire_stq != NULL && 15259 ire_next->ire_addr == clear_ire->ire_addr && 15260 ire_next->ire_ipif->ipif_ill == 15261 clear_ire->ire_ipif->ipif_ill) { 15262 clear_ire_stq = ire_next; 15263 15264 bzero(new_nlb_ire, sizeof (ire_t)); 15265 /* XXX We need a recovery strategy here. */ 15266 if (ire_init(new_nlb_ire, 15267 (uchar_t *)&clear_ire_stq->ire_addr, 15268 (uchar_t *)&clear_ire_stq->ire_mask, 15269 (uchar_t *)&clear_ire_stq->ire_src_addr, 15270 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15271 &clear_ire_stq->ire_max_frag, 15272 NULL, 15273 clear_ire_stq->ire_rfq, 15274 clear_ire_stq->ire_stq, 15275 clear_ire_stq->ire_type, 15276 clear_ire_stq->ire_ipif, 15277 clear_ire_stq->ire_cmask, 15278 clear_ire_stq->ire_phandle, 15279 clear_ire_stq->ire_ihandle, 15280 clear_ire_stq->ire_flags, 15281 &clear_ire_stq->ire_uinfo, 15282 NULL, 15283 NULL, 15284 ipst) == NULL) 15285 cmn_err(CE_PANIC, "ire_init() failed"); 15286 } 15287 } 15288 15289 /* 15290 * Delete the ire. We can't call ire_delete() since 15291 * we are holding the bucket lock. We can't release the 15292 * bucket lock since we can't allow irep to change. So just 15293 * mark it CONDEMNED. The IRB_REFRELE will delete the 15294 * ire from the list and do the refrele. 15295 */ 15296 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15297 irb->irb_marks |= IRB_MARK_CONDEMNED; 15298 15299 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15300 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15301 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15302 } 15303 15304 /* 15305 * Also take care of otherfields like ib/ob pkt count 15306 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15307 */ 15308 15309 /* Set the max_frag before adding the ire */ 15310 max_frag = *new_lb_ire->ire_max_fragp; 15311 new_lb_ire->ire_max_fragp = NULL; 15312 new_lb_ire->ire_max_frag = max_frag; 15313 15314 /* Add the new ire's. Insert at *irep */ 15315 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15316 ire1 = *irep; 15317 if (ire1 != NULL) 15318 ire1->ire_ptpn = &new_lb_ire->ire_next; 15319 new_lb_ire->ire_next = ire1; 15320 /* Link the new one in. */ 15321 new_lb_ire->ire_ptpn = irep; 15322 membar_producer(); 15323 *irep = new_lb_ire; 15324 new_lb_ire_used = B_TRUE; 15325 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15326 new_lb_ire->ire_bucket->irb_ire_cnt++; 15327 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15328 15329 if (clear_ire_stq != NULL) { 15330 /* Set the max_frag before adding the ire */ 15331 max_frag = *new_nlb_ire->ire_max_fragp; 15332 new_nlb_ire->ire_max_fragp = NULL; 15333 new_nlb_ire->ire_max_frag = max_frag; 15334 15335 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15336 irep = &new_lb_ire->ire_next; 15337 /* Add the new ire. Insert at *irep */ 15338 ire1 = *irep; 15339 if (ire1 != NULL) 15340 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15341 new_nlb_ire->ire_next = ire1; 15342 /* Link the new one in. */ 15343 new_nlb_ire->ire_ptpn = irep; 15344 membar_producer(); 15345 *irep = new_nlb_ire; 15346 new_nlb_ire_used = B_TRUE; 15347 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15348 ire_stats_inserted); 15349 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15350 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15351 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15352 } 15353 } 15354 rw_exit(&irb->irb_lock); 15355 if (!new_lb_ire_used) 15356 kmem_cache_free(ire_cache, new_lb_ire); 15357 if (!new_nlb_ire_used) 15358 kmem_cache_free(ire_cache, new_nlb_ire); 15359 IRB_REFRELE(irb); 15360 } 15361 15362 /* 15363 * Whenever an ipif goes down we have to renominate a different 15364 * broadcast ire to receive. Whenever an ipif comes up, we need 15365 * to make sure that we have only one nominated to receive. 15366 */ 15367 static void 15368 ipif_renominate_bcast(ipif_t *ipif) 15369 { 15370 ill_t *ill = ipif->ipif_ill; 15371 ipaddr_t subnet_addr; 15372 ipaddr_t net_addr; 15373 ipaddr_t net_mask = 0; 15374 ipaddr_t subnet_netmask; 15375 ipaddr_t addr; 15376 ill_group_t *illgrp; 15377 ip_stack_t *ipst = ill->ill_ipst; 15378 15379 illgrp = ill->ill_group; 15380 /* 15381 * If this is the last ipif going down, it might take 15382 * the ill out of the group. In that case ipif_down -> 15383 * illgrp_delete takes care of doing the nomination. 15384 * ipif_down does not call for this case. 15385 */ 15386 ASSERT(illgrp != NULL); 15387 15388 /* There could not have been any ires associated with this */ 15389 if (ipif->ipif_subnet == 0) 15390 return; 15391 15392 ill_mark_bcast(illgrp, 0, ipst); 15393 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15394 15395 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15396 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15397 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15398 } else { 15399 net_mask = htonl(IN_CLASSA_NET); 15400 } 15401 addr = net_mask & ipif->ipif_subnet; 15402 ill_mark_bcast(illgrp, addr, ipst); 15403 15404 net_addr = ~net_mask | addr; 15405 ill_mark_bcast(illgrp, net_addr, ipst); 15406 15407 subnet_netmask = ipif->ipif_net_mask; 15408 addr = ipif->ipif_subnet; 15409 ill_mark_bcast(illgrp, addr, ipst); 15410 15411 subnet_addr = ~subnet_netmask | addr; 15412 ill_mark_bcast(illgrp, subnet_addr, ipst); 15413 } 15414 15415 /* 15416 * Whenever we form or delete ill groups, we need to nominate one set of 15417 * BROADCAST ires for receiving in the group. 15418 * 15419 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15420 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15421 * for ill_ipif_up_count to be non-zero. This is the only case where 15422 * ill_ipif_up_count is zero and we would still find the ires. 15423 * 15424 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15425 * ipif is UP and we just have to do the nomination. 15426 * 15427 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15428 * from the group. So, we have to do the nomination. 15429 * 15430 * Because of (3), there could be just one ill in the group. But we have 15431 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15432 * Thus, this function does not optimize when there is only one ill as 15433 * it is not correct for (3). 15434 */ 15435 static void 15436 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15437 { 15438 ill_t *ill; 15439 ipif_t *ipif; 15440 ipaddr_t subnet_addr; 15441 ipaddr_t prev_subnet_addr = 0; 15442 ipaddr_t net_addr; 15443 ipaddr_t prev_net_addr = 0; 15444 ipaddr_t net_mask = 0; 15445 ipaddr_t subnet_netmask; 15446 ipaddr_t addr; 15447 ip_stack_t *ipst; 15448 15449 /* 15450 * When the last memeber is leaving, there is nothing to 15451 * nominate. 15452 */ 15453 if (illgrp->illgrp_ill_count == 0) { 15454 ASSERT(illgrp->illgrp_ill == NULL); 15455 return; 15456 } 15457 15458 ill = illgrp->illgrp_ill; 15459 ASSERT(!ill->ill_isv6); 15460 ipst = ill->ill_ipst; 15461 /* 15462 * We assume that ires with same address and belonging to the 15463 * same group, has been grouped together. Nominating a *single* 15464 * ill in the group for sending and receiving broadcast is done 15465 * by making sure that the first BROADCAST ire (which will be 15466 * the one returned by ire_ctable_lookup for ip_rput and the 15467 * one that will be used in ip_wput_ire) will be the one that 15468 * will not have IRE_MARK_NORECV set. 15469 * 15470 * 1) ip_rput checks and discards packets received on ires marked 15471 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15472 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15473 * first ire in the group for every broadcast address in the group. 15474 * ip_rput will accept packets only on the first ire i.e only 15475 * one copy of the ill. 15476 * 15477 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15478 * packet for the whole group. It needs to send out on the ill 15479 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15480 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15481 * the copy echoed back on other port where the ire is not marked 15482 * with IRE_MARK_NORECV. 15483 * 15484 * Note that we just need to have the first IRE either loopback or 15485 * non-loopback (either of them may not exist if ire_create failed 15486 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15487 * always hit the first one and hence will always accept one copy. 15488 * 15489 * We have a broadcast ire per ill for all the unique prefixes 15490 * hosted on that ill. As we don't have a way of knowing the 15491 * unique prefixes on a given ill and hence in the whole group, 15492 * we just call ill_mark_bcast on all the prefixes that exist 15493 * in the group. For the common case of one prefix, the code 15494 * below optimizes by remebering the last address used for 15495 * markng. In the case of multiple prefixes, this will still 15496 * optimize depending the order of prefixes. 15497 * 15498 * The only unique address across the whole group is 0.0.0.0 and 15499 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15500 * the first ire in the bucket for receiving and disables the 15501 * others. 15502 */ 15503 ill_mark_bcast(illgrp, 0, ipst); 15504 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15505 for (; ill != NULL; ill = ill->ill_group_next) { 15506 15507 for (ipif = ill->ill_ipif; ipif != NULL; 15508 ipif = ipif->ipif_next) { 15509 15510 if (!(ipif->ipif_flags & IPIF_UP) || 15511 ipif->ipif_subnet == 0) { 15512 continue; 15513 } 15514 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15515 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15516 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15517 } else { 15518 net_mask = htonl(IN_CLASSA_NET); 15519 } 15520 addr = net_mask & ipif->ipif_subnet; 15521 if (prev_net_addr == 0 || prev_net_addr != addr) { 15522 ill_mark_bcast(illgrp, addr, ipst); 15523 net_addr = ~net_mask | addr; 15524 ill_mark_bcast(illgrp, net_addr, ipst); 15525 } 15526 prev_net_addr = addr; 15527 15528 subnet_netmask = ipif->ipif_net_mask; 15529 addr = ipif->ipif_subnet; 15530 if (prev_subnet_addr == 0 || 15531 prev_subnet_addr != addr) { 15532 ill_mark_bcast(illgrp, addr, ipst); 15533 subnet_addr = ~subnet_netmask | addr; 15534 ill_mark_bcast(illgrp, subnet_addr, ipst); 15535 } 15536 prev_subnet_addr = addr; 15537 } 15538 } 15539 } 15540 15541 /* 15542 * This function is called while forming ill groups. 15543 * 15544 * Currently, we handle only allmulti groups. We want to join 15545 * allmulti on only one of the ills in the groups. In future, 15546 * when we have link aggregation, we may have to join normal 15547 * multicast groups on multiple ills as switch does inbound load 15548 * balancing. Following are the functions that calls this 15549 * function : 15550 * 15551 * 1) ill_recover_multicast : Interface is coming back UP. 15552 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15553 * will call ill_recover_multicast to recover all the multicast 15554 * groups. We need to make sure that only one member is joined 15555 * in the ill group. 15556 * 15557 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15558 * Somebody is joining allmulti. We need to make sure that only one 15559 * member is joined in the group. 15560 * 15561 * 3) illgrp_insert : If allmulti has already joined, we need to make 15562 * sure that only one member is joined in the group. 15563 * 15564 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15565 * allmulti who we have nominated. We need to pick someother ill. 15566 * 15567 * 5) illgrp_delete : The ill we nominated is leaving the group, 15568 * we need to pick a new ill to join the group. 15569 * 15570 * For (1), (2), (5) - we just have to check whether there is 15571 * a good ill joined in the group. If we could not find any ills 15572 * joined the group, we should join. 15573 * 15574 * For (4), the one that was nominated to receive, left the group. 15575 * There could be nobody joined in the group when this function is 15576 * called. 15577 * 15578 * For (3) - we need to explicitly check whether there are multiple 15579 * ills joined in the group. 15580 * 15581 * For simplicity, we don't differentiate any of the above cases. We 15582 * just leave the group if it is joined on any of them and join on 15583 * the first good ill. 15584 */ 15585 int 15586 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15587 { 15588 ilm_t *ilm; 15589 ill_t *ill; 15590 ill_t *fallback_inactive_ill = NULL; 15591 ill_t *fallback_failed_ill = NULL; 15592 int ret = 0; 15593 15594 /* 15595 * Leave the allmulti on all the ills and start fresh. 15596 */ 15597 for (ill = illgrp->illgrp_ill; ill != NULL; 15598 ill = ill->ill_group_next) { 15599 if (ill->ill_join_allmulti) 15600 (void) ip_leave_allmulti(ill->ill_ipif); 15601 } 15602 15603 /* 15604 * Choose a good ill. Fallback to inactive or failed if 15605 * none available. We need to fallback to FAILED in the 15606 * case where we have 2 interfaces in a group - where 15607 * one of them is failed and another is a good one and 15608 * the good one (not marked inactive) is leaving the group. 15609 */ 15610 ret = 0; 15611 for (ill = illgrp->illgrp_ill; ill != NULL; 15612 ill = ill->ill_group_next) { 15613 /* Never pick an offline interface */ 15614 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15615 continue; 15616 15617 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15618 fallback_failed_ill = ill; 15619 continue; 15620 } 15621 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15622 fallback_inactive_ill = ill; 15623 continue; 15624 } 15625 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15626 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15627 ret = ip_join_allmulti(ill->ill_ipif); 15628 /* 15629 * ip_join_allmulti can fail because of memory 15630 * failures. So, make sure we join at least 15631 * on one ill. 15632 */ 15633 if (ill->ill_join_allmulti) 15634 return (0); 15635 } 15636 } 15637 } 15638 if (ret != 0) { 15639 /* 15640 * If we tried nominating above and failed to do so, 15641 * return error. We might have tried multiple times. 15642 * But, return the latest error. 15643 */ 15644 return (ret); 15645 } 15646 if ((ill = fallback_inactive_ill) != NULL) { 15647 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15648 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15649 ret = ip_join_allmulti(ill->ill_ipif); 15650 return (ret); 15651 } 15652 } 15653 } else if ((ill = fallback_failed_ill) != NULL) { 15654 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15655 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15656 ret = ip_join_allmulti(ill->ill_ipif); 15657 return (ret); 15658 } 15659 } 15660 } 15661 return (0); 15662 } 15663 15664 /* 15665 * This function is called from illgrp_delete after it is 15666 * deleted from the group to reschedule responsibilities 15667 * to a different ill. 15668 */ 15669 static void 15670 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15671 { 15672 ilm_t *ilm; 15673 ipif_t *ipif; 15674 ipaddr_t subnet_addr; 15675 ipaddr_t net_addr; 15676 ipaddr_t net_mask = 0; 15677 ipaddr_t subnet_netmask; 15678 ipaddr_t addr; 15679 ip_stack_t *ipst = ill->ill_ipst; 15680 15681 ASSERT(ill->ill_group == NULL); 15682 /* 15683 * Broadcast Responsibility: 15684 * 15685 * 1. If this ill has been nominated for receiving broadcast 15686 * packets, we need to find a new one. Before we find a new 15687 * one, we need to re-group the ires that are part of this new 15688 * group (assumed by ill_nominate_bcast_rcv). We do this by 15689 * calling ill_group_bcast_for_xmit(ill) which will do the right 15690 * thing for us. 15691 * 15692 * 2. If this ill was not nominated for receiving broadcast 15693 * packets, we need to clear the IRE_MARK_NORECV flag 15694 * so that we continue to send up broadcast packets. 15695 */ 15696 if (!ill->ill_isv6) { 15697 /* 15698 * Case 1 above : No optimization here. Just redo the 15699 * nomination. 15700 */ 15701 ill_group_bcast_for_xmit(ill); 15702 ill_nominate_bcast_rcv(illgrp); 15703 15704 /* 15705 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15706 */ 15707 ill_clear_bcast_mark(ill, 0); 15708 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15709 15710 for (ipif = ill->ill_ipif; ipif != NULL; 15711 ipif = ipif->ipif_next) { 15712 15713 if (!(ipif->ipif_flags & IPIF_UP) || 15714 ipif->ipif_subnet == 0) { 15715 continue; 15716 } 15717 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15718 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15719 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15720 } else { 15721 net_mask = htonl(IN_CLASSA_NET); 15722 } 15723 addr = net_mask & ipif->ipif_subnet; 15724 ill_clear_bcast_mark(ill, addr); 15725 15726 net_addr = ~net_mask | addr; 15727 ill_clear_bcast_mark(ill, net_addr); 15728 15729 subnet_netmask = ipif->ipif_net_mask; 15730 addr = ipif->ipif_subnet; 15731 ill_clear_bcast_mark(ill, addr); 15732 15733 subnet_addr = ~subnet_netmask | addr; 15734 ill_clear_bcast_mark(ill, subnet_addr); 15735 } 15736 } 15737 15738 /* 15739 * Multicast Responsibility. 15740 * 15741 * If we have joined allmulti on this one, find a new member 15742 * in the group to join allmulti. As this ill is already part 15743 * of allmulti, we don't have to join on this one. 15744 * 15745 * If we have not joined allmulti on this one, there is no 15746 * responsibility to handoff. But we need to take new 15747 * responsibility i.e, join allmulti on this one if we need 15748 * to. 15749 */ 15750 if (ill->ill_join_allmulti) { 15751 (void) ill_nominate_mcast_rcv(illgrp); 15752 } else { 15753 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15754 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15755 (void) ip_join_allmulti(ill->ill_ipif); 15756 break; 15757 } 15758 } 15759 } 15760 15761 /* 15762 * We intentionally do the flushing of IRE_CACHES only matching 15763 * on the ill and not on groups. Note that we are already deleted 15764 * from the group. 15765 * 15766 * This will make sure that all IRE_CACHES whose stq is pointing 15767 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15768 * deleted and IRE_CACHES that are not pointing at this ill will 15769 * be left alone. 15770 */ 15771 if (ill->ill_isv6) { 15772 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15773 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15774 } else { 15775 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15776 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15777 } 15778 15779 /* 15780 * Some conn may have cached one of the IREs deleted above. By removing 15781 * the ire reference, we clean up the extra reference to the ill held in 15782 * ire->ire_stq. 15783 */ 15784 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15785 15786 /* 15787 * Re-do source address selection for all the members in the 15788 * group, if they borrowed source address from one of the ipifs 15789 * in this ill. 15790 */ 15791 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15792 if (ill->ill_isv6) { 15793 ipif_update_other_ipifs_v6(ipif, illgrp); 15794 } else { 15795 ipif_update_other_ipifs(ipif, illgrp); 15796 } 15797 } 15798 } 15799 15800 /* 15801 * Delete the ill from the group. The caller makes sure that it is 15802 * in a group and it okay to delete from the group. So, we always 15803 * delete here. 15804 */ 15805 static void 15806 illgrp_delete(ill_t *ill) 15807 { 15808 ill_group_t *illgrp; 15809 ill_group_t *tmpg; 15810 ill_t *tmp_ill; 15811 ip_stack_t *ipst = ill->ill_ipst; 15812 15813 /* 15814 * Reset illgrp_ill_schednext if it was pointing at us. 15815 * We need to do this before we set ill_group to NULL. 15816 */ 15817 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15818 mutex_enter(&ill->ill_lock); 15819 15820 illgrp_reset_schednext(ill); 15821 15822 illgrp = ill->ill_group; 15823 15824 /* Delete the ill from illgrp. */ 15825 if (illgrp->illgrp_ill == ill) { 15826 illgrp->illgrp_ill = ill->ill_group_next; 15827 } else { 15828 tmp_ill = illgrp->illgrp_ill; 15829 while (tmp_ill->ill_group_next != ill) { 15830 tmp_ill = tmp_ill->ill_group_next; 15831 ASSERT(tmp_ill != NULL); 15832 } 15833 tmp_ill->ill_group_next = ill->ill_group_next; 15834 } 15835 ill->ill_group = NULL; 15836 ill->ill_group_next = NULL; 15837 15838 illgrp->illgrp_ill_count--; 15839 mutex_exit(&ill->ill_lock); 15840 rw_exit(&ipst->ips_ill_g_lock); 15841 15842 /* 15843 * As this ill is leaving the group, we need to hand off 15844 * the responsibilities to the other ills in the group, if 15845 * this ill had some responsibilities. 15846 */ 15847 15848 ill_handoff_responsibility(ill, illgrp); 15849 15850 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15851 15852 if (illgrp->illgrp_ill_count == 0) { 15853 15854 ASSERT(illgrp->illgrp_ill == NULL); 15855 if (ill->ill_isv6) { 15856 if (illgrp == ipst->ips_illgrp_head_v6) { 15857 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15858 } else { 15859 tmpg = ipst->ips_illgrp_head_v6; 15860 while (tmpg->illgrp_next != illgrp) { 15861 tmpg = tmpg->illgrp_next; 15862 ASSERT(tmpg != NULL); 15863 } 15864 tmpg->illgrp_next = illgrp->illgrp_next; 15865 } 15866 } else { 15867 if (illgrp == ipst->ips_illgrp_head_v4) { 15868 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15869 } else { 15870 tmpg = ipst->ips_illgrp_head_v4; 15871 while (tmpg->illgrp_next != illgrp) { 15872 tmpg = tmpg->illgrp_next; 15873 ASSERT(tmpg != NULL); 15874 } 15875 tmpg->illgrp_next = illgrp->illgrp_next; 15876 } 15877 } 15878 mutex_destroy(&illgrp->illgrp_lock); 15879 mi_free(illgrp); 15880 } 15881 rw_exit(&ipst->ips_ill_g_lock); 15882 15883 /* 15884 * Even though the ill is out of the group its not necessary 15885 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15886 * We will split the ipsq when phyint_groupname is set to NULL. 15887 */ 15888 15889 /* 15890 * Send a routing sockets message if we are deleting from 15891 * groups with names. 15892 */ 15893 if (ill->ill_phyint->phyint_groupname_len != 0) 15894 ip_rts_ifmsg(ill->ill_ipif); 15895 } 15896 15897 /* 15898 * Re-do source address selection. This is normally called when 15899 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15900 * ipif comes up. 15901 */ 15902 void 15903 ill_update_source_selection(ill_t *ill) 15904 { 15905 ipif_t *ipif; 15906 15907 ASSERT(IAM_WRITER_ILL(ill)); 15908 15909 if (ill->ill_group != NULL) 15910 ill = ill->ill_group->illgrp_ill; 15911 15912 for (; ill != NULL; ill = ill->ill_group_next) { 15913 for (ipif = ill->ill_ipif; ipif != NULL; 15914 ipif = ipif->ipif_next) { 15915 if (ill->ill_isv6) 15916 ipif_recreate_interface_routes_v6(NULL, ipif); 15917 else 15918 ipif_recreate_interface_routes(NULL, ipif); 15919 } 15920 } 15921 } 15922 15923 /* 15924 * Insert ill in a group headed by illgrp_head. The caller can either 15925 * pass a groupname in which case we search for a group with the 15926 * same name to insert in or pass a group to insert in. This function 15927 * would only search groups with names. 15928 * 15929 * NOTE : The caller should make sure that there is at least one ipif 15930 * UP on this ill so that illgrp_scheduler can pick this ill 15931 * for outbound packets. If ill_ipif_up_count is zero, we have 15932 * already sent a DL_UNBIND to the driver and we don't want to 15933 * send anymore packets. We don't assert for ipif_up_count 15934 * to be greater than zero, because ipif_up_done wants to call 15935 * this function before bumping up the ipif_up_count. See 15936 * ipif_up_done() for details. 15937 */ 15938 int 15939 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15940 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15941 { 15942 ill_group_t *illgrp; 15943 ill_t *prev_ill; 15944 phyint_t *phyi; 15945 ip_stack_t *ipst = ill->ill_ipst; 15946 15947 ASSERT(ill->ill_group == NULL); 15948 15949 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15950 mutex_enter(&ill->ill_lock); 15951 15952 if (groupname != NULL) { 15953 /* 15954 * Look for a group with a matching groupname to insert. 15955 */ 15956 for (illgrp = *illgrp_head; illgrp != NULL; 15957 illgrp = illgrp->illgrp_next) { 15958 15959 ill_t *tmp_ill; 15960 15961 /* 15962 * If we have an ill_group_t in the list which has 15963 * no ill_t assigned then we must be in the process of 15964 * removing this group. We skip this as illgrp_delete() 15965 * will remove it from the list. 15966 */ 15967 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15968 ASSERT(illgrp->illgrp_ill_count == 0); 15969 continue; 15970 } 15971 15972 ASSERT(tmp_ill->ill_phyint != NULL); 15973 phyi = tmp_ill->ill_phyint; 15974 /* 15975 * Look at groups which has names only. 15976 */ 15977 if (phyi->phyint_groupname_len == 0) 15978 continue; 15979 /* 15980 * Names are stored in the phyint common to both 15981 * IPv4 and IPv6. 15982 */ 15983 if (mi_strcmp(phyi->phyint_groupname, 15984 groupname) == 0) { 15985 break; 15986 } 15987 } 15988 } else { 15989 /* 15990 * If the caller passes in a NULL "grp_to_insert", we 15991 * allocate one below and insert this singleton. 15992 */ 15993 illgrp = grp_to_insert; 15994 } 15995 15996 ill->ill_group_next = NULL; 15997 15998 if (illgrp == NULL) { 15999 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16000 if (illgrp == NULL) { 16001 return (ENOMEM); 16002 } 16003 illgrp->illgrp_next = *illgrp_head; 16004 *illgrp_head = illgrp; 16005 illgrp->illgrp_ill = ill; 16006 illgrp->illgrp_ill_count = 1; 16007 ill->ill_group = illgrp; 16008 /* 16009 * Used in illgrp_scheduler to protect multiple threads 16010 * from traversing the list. 16011 */ 16012 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16013 } else { 16014 ASSERT(ill->ill_net_type == 16015 illgrp->illgrp_ill->ill_net_type); 16016 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16017 16018 /* Insert ill at tail of this group */ 16019 prev_ill = illgrp->illgrp_ill; 16020 while (prev_ill->ill_group_next != NULL) 16021 prev_ill = prev_ill->ill_group_next; 16022 prev_ill->ill_group_next = ill; 16023 ill->ill_group = illgrp; 16024 illgrp->illgrp_ill_count++; 16025 /* 16026 * Inherit group properties. Currently only forwarding 16027 * is the property we try to keep the same with all the 16028 * ills. When there are more, we will abstract this into 16029 * a function. 16030 */ 16031 ill->ill_flags &= ~ILLF_ROUTER; 16032 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16033 } 16034 mutex_exit(&ill->ill_lock); 16035 rw_exit(&ipst->ips_ill_g_lock); 16036 16037 /* 16038 * 1) When ipif_up_done() calls this function, ipif_up_count 16039 * may be zero as it has not yet been bumped. But the ires 16040 * have already been added. So, we do the nomination here 16041 * itself. But, when ip_sioctl_groupname calls this, it checks 16042 * for ill_ipif_up_count != 0. Thus we don't check for 16043 * ill_ipif_up_count here while nominating broadcast ires for 16044 * receive. 16045 * 16046 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16047 * to group them properly as ire_add() has already happened 16048 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16049 * case, we need to do it here anyway. 16050 */ 16051 if (!ill->ill_isv6) { 16052 ill_group_bcast_for_xmit(ill); 16053 ill_nominate_bcast_rcv(illgrp); 16054 } 16055 16056 if (!ipif_is_coming_up) { 16057 /* 16058 * When ipif_up_done() calls this function, the multicast 16059 * groups have not been joined yet. So, there is no point in 16060 * nomination. ip_join_allmulti will handle groups when 16061 * ill_recover_multicast is called from ipif_up_done() later. 16062 */ 16063 (void) ill_nominate_mcast_rcv(illgrp); 16064 /* 16065 * ipif_up_done calls ill_update_source_selection 16066 * anyway. Moreover, we don't want to re-create 16067 * interface routes while ipif_up_done() still has reference 16068 * to them. Refer to ipif_up_done() for more details. 16069 */ 16070 ill_update_source_selection(ill); 16071 } 16072 16073 /* 16074 * Send a routing sockets message if we are inserting into 16075 * groups with names. 16076 */ 16077 if (groupname != NULL) 16078 ip_rts_ifmsg(ill->ill_ipif); 16079 return (0); 16080 } 16081 16082 /* 16083 * Return the first phyint matching the groupname. There could 16084 * be more than one when there are ill groups. 16085 * 16086 * If 'usable' is set, then we exclude ones that are marked with any of 16087 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16088 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16089 * emulation of ipmp. 16090 */ 16091 phyint_t * 16092 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16093 { 16094 phyint_t *phyi; 16095 16096 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16097 /* 16098 * Group names are stored in the phyint - a common structure 16099 * to both IPv4 and IPv6. 16100 */ 16101 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16102 for (; phyi != NULL; 16103 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16104 phyi, AVL_AFTER)) { 16105 if (phyi->phyint_groupname_len == 0) 16106 continue; 16107 /* 16108 * Skip the ones that should not be used since the callers 16109 * sometime use this for sending packets. 16110 */ 16111 if (usable && (phyi->phyint_flags & 16112 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16113 continue; 16114 16115 ASSERT(phyi->phyint_groupname != NULL); 16116 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16117 return (phyi); 16118 } 16119 return (NULL); 16120 } 16121 16122 16123 /* 16124 * Return the first usable phyint matching the group index. By 'usable' 16125 * we exclude ones that are marked ununsable with any of 16126 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16127 * 16128 * Used only for the ipmp/netinfo emulation of ipmp. 16129 */ 16130 phyint_t * 16131 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16132 { 16133 phyint_t *phyi; 16134 16135 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16136 16137 if (!ipst->ips_ipmp_hook_emulation) 16138 return (NULL); 16139 16140 /* 16141 * Group indicies are stored in the phyint - a common structure 16142 * to both IPv4 and IPv6. 16143 */ 16144 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16145 for (; phyi != NULL; 16146 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16147 phyi, AVL_AFTER)) { 16148 /* Ignore the ones that do not have a group */ 16149 if (phyi->phyint_groupname_len == 0) 16150 continue; 16151 16152 ASSERT(phyi->phyint_group_ifindex != 0); 16153 /* 16154 * Skip the ones that should not be used since the callers 16155 * sometime use this for sending packets. 16156 */ 16157 if (phyi->phyint_flags & 16158 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16159 continue; 16160 if (phyi->phyint_group_ifindex == group_ifindex) 16161 return (phyi); 16162 } 16163 return (NULL); 16164 } 16165 16166 16167 /* 16168 * MT notes on creation and deletion of IPMP groups 16169 * 16170 * Creation and deletion of IPMP groups introduce the need to merge or 16171 * split the associated serialization objects i.e the ipsq's. Normally all 16172 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16173 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16174 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16175 * is a need to change the <ill-ipsq> association and we have to operate on both 16176 * the source and destination IPMP groups. For eg. attempting to set the 16177 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16178 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16179 * source or destination IPMP group are mapped to a single ipsq for executing 16180 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16181 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16182 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16183 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16184 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16185 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16186 * 16187 * In the above example the ioctl handling code locates the current ipsq of hme0 16188 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16189 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16190 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16191 * the destination ipsq. If the destination ipsq is not busy, it also enters 16192 * the destination ipsq exclusively. Now the actual groupname setting operation 16193 * can proceed. If the destination ipsq is busy, the operation is enqueued 16194 * on the destination (merged) ipsq and will be handled in the unwind from 16195 * ipsq_exit. 16196 * 16197 * To prevent other threads accessing the ill while the group name change is 16198 * in progres, we bring down the ipifs which also removes the ill from the 16199 * group. The group is changed in phyint and when the first ipif on the ill 16200 * is brought up, the ill is inserted into the right IPMP group by 16201 * illgrp_insert. 16202 */ 16203 /* ARGSUSED */ 16204 int 16205 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16206 ip_ioctl_cmd_t *ipip, void *ifreq) 16207 { 16208 int i; 16209 char *tmp; 16210 int namelen; 16211 ill_t *ill = ipif->ipif_ill; 16212 ill_t *ill_v4, *ill_v6; 16213 int err = 0; 16214 phyint_t *phyi; 16215 phyint_t *phyi_tmp; 16216 struct lifreq *lifr; 16217 mblk_t *mp1; 16218 char *groupname; 16219 ipsq_t *ipsq; 16220 ip_stack_t *ipst = ill->ill_ipst; 16221 16222 ASSERT(IAM_WRITER_IPIF(ipif)); 16223 16224 /* Existance verified in ip_wput_nondata */ 16225 mp1 = mp->b_cont->b_cont; 16226 lifr = (struct lifreq *)mp1->b_rptr; 16227 groupname = lifr->lifr_groupname; 16228 16229 if (ipif->ipif_id != 0) 16230 return (EINVAL); 16231 16232 phyi = ill->ill_phyint; 16233 ASSERT(phyi != NULL); 16234 16235 if (phyi->phyint_flags & PHYI_VIRTUAL) 16236 return (EINVAL); 16237 16238 tmp = groupname; 16239 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16240 ; 16241 16242 if (i == LIFNAMSIZ) { 16243 /* no null termination */ 16244 return (EINVAL); 16245 } 16246 16247 /* 16248 * Calculate the namelen exclusive of the null 16249 * termination character. 16250 */ 16251 namelen = tmp - groupname; 16252 16253 ill_v4 = phyi->phyint_illv4; 16254 ill_v6 = phyi->phyint_illv6; 16255 16256 /* 16257 * ILL cannot be part of a usesrc group and and IPMP group at the 16258 * same time. No need to grab the ill_g_usesrc_lock here, see 16259 * synchronization notes in ip.c 16260 */ 16261 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16262 return (EINVAL); 16263 } 16264 16265 /* 16266 * mark the ill as changing. 16267 * this should queue all new requests on the syncq. 16268 */ 16269 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16270 16271 if (ill_v4 != NULL) 16272 ill_v4->ill_state_flags |= ILL_CHANGING; 16273 if (ill_v6 != NULL) 16274 ill_v6->ill_state_flags |= ILL_CHANGING; 16275 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16276 16277 if (namelen == 0) { 16278 /* 16279 * Null string means remove this interface from the 16280 * existing group. 16281 */ 16282 if (phyi->phyint_groupname_len == 0) { 16283 /* 16284 * Never was in a group. 16285 */ 16286 err = 0; 16287 goto done; 16288 } 16289 16290 /* 16291 * IPv4 or IPv6 may be temporarily out of the group when all 16292 * the ipifs are down. Thus, we need to check for ill_group to 16293 * be non-NULL. 16294 */ 16295 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16296 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16297 mutex_enter(&ill_v4->ill_lock); 16298 if (!ill_is_quiescent(ill_v4)) { 16299 /* 16300 * ipsq_pending_mp_add will not fail since 16301 * connp is NULL 16302 */ 16303 (void) ipsq_pending_mp_add(NULL, 16304 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16305 mutex_exit(&ill_v4->ill_lock); 16306 err = EINPROGRESS; 16307 goto done; 16308 } 16309 mutex_exit(&ill_v4->ill_lock); 16310 } 16311 16312 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16313 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16314 mutex_enter(&ill_v6->ill_lock); 16315 if (!ill_is_quiescent(ill_v6)) { 16316 (void) ipsq_pending_mp_add(NULL, 16317 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16318 mutex_exit(&ill_v6->ill_lock); 16319 err = EINPROGRESS; 16320 goto done; 16321 } 16322 mutex_exit(&ill_v6->ill_lock); 16323 } 16324 16325 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16326 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16327 mutex_enter(&phyi->phyint_lock); 16328 ASSERT(phyi->phyint_groupname != NULL); 16329 mi_free(phyi->phyint_groupname); 16330 phyi->phyint_groupname = NULL; 16331 phyi->phyint_groupname_len = 0; 16332 16333 /* Restore the ifindex used to be the per interface one */ 16334 phyi->phyint_group_ifindex = 0; 16335 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16336 mutex_exit(&phyi->phyint_lock); 16337 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16338 rw_exit(&ipst->ips_ill_g_lock); 16339 err = ill_up_ipifs(ill, q, mp); 16340 16341 /* 16342 * set the split flag so that the ipsq can be split 16343 */ 16344 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16345 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16346 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16347 16348 } else { 16349 if (phyi->phyint_groupname_len != 0) { 16350 ASSERT(phyi->phyint_groupname != NULL); 16351 /* Are we inserting in the same group ? */ 16352 if (mi_strcmp(groupname, 16353 phyi->phyint_groupname) == 0) { 16354 err = 0; 16355 goto done; 16356 } 16357 } 16358 16359 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16360 /* 16361 * Merge ipsq for the group's. 16362 * This check is here as multiple groups/ills might be 16363 * sharing the same ipsq. 16364 * If we have to merege than the operation is restarted 16365 * on the new ipsq. 16366 */ 16367 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16368 if (phyi->phyint_ipsq != ipsq) { 16369 rw_exit(&ipst->ips_ill_g_lock); 16370 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16371 goto done; 16372 } 16373 /* 16374 * Running exclusive on new ipsq. 16375 */ 16376 16377 ASSERT(ipsq != NULL); 16378 ASSERT(ipsq->ipsq_writer == curthread); 16379 16380 /* 16381 * Check whether the ill_type and ill_net_type matches before 16382 * we allocate any memory so that the cleanup is easier. 16383 * 16384 * We can't group dissimilar ones as we can't load spread 16385 * packets across the group because of potential link-level 16386 * header differences. 16387 */ 16388 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16389 if (phyi_tmp != NULL) { 16390 if ((ill_v4 != NULL && 16391 phyi_tmp->phyint_illv4 != NULL) && 16392 ((ill_v4->ill_net_type != 16393 phyi_tmp->phyint_illv4->ill_net_type) || 16394 (ill_v4->ill_type != 16395 phyi_tmp->phyint_illv4->ill_type))) { 16396 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16397 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16398 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16399 rw_exit(&ipst->ips_ill_g_lock); 16400 return (EINVAL); 16401 } 16402 if ((ill_v6 != NULL && 16403 phyi_tmp->phyint_illv6 != NULL) && 16404 ((ill_v6->ill_net_type != 16405 phyi_tmp->phyint_illv6->ill_net_type) || 16406 (ill_v6->ill_type != 16407 phyi_tmp->phyint_illv6->ill_type))) { 16408 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16409 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16410 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16411 rw_exit(&ipst->ips_ill_g_lock); 16412 return (EINVAL); 16413 } 16414 } 16415 16416 rw_exit(&ipst->ips_ill_g_lock); 16417 16418 /* 16419 * bring down all v4 ipifs. 16420 */ 16421 if (ill_v4 != NULL) { 16422 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16423 } 16424 16425 /* 16426 * bring down all v6 ipifs. 16427 */ 16428 if (ill_v6 != NULL) { 16429 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16430 } 16431 16432 /* 16433 * make sure all ipifs are down and there are no active 16434 * references. Call to ipsq_pending_mp_add will not fail 16435 * since connp is NULL. 16436 */ 16437 if (ill_v4 != NULL) { 16438 mutex_enter(&ill_v4->ill_lock); 16439 if (!ill_is_quiescent(ill_v4)) { 16440 (void) ipsq_pending_mp_add(NULL, 16441 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16442 mutex_exit(&ill_v4->ill_lock); 16443 err = EINPROGRESS; 16444 goto done; 16445 } 16446 mutex_exit(&ill_v4->ill_lock); 16447 } 16448 16449 if (ill_v6 != NULL) { 16450 mutex_enter(&ill_v6->ill_lock); 16451 if (!ill_is_quiescent(ill_v6)) { 16452 (void) ipsq_pending_mp_add(NULL, 16453 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16454 mutex_exit(&ill_v6->ill_lock); 16455 err = EINPROGRESS; 16456 goto done; 16457 } 16458 mutex_exit(&ill_v6->ill_lock); 16459 } 16460 16461 /* 16462 * allocate including space for null terminator 16463 * before we insert. 16464 */ 16465 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16466 if (tmp == NULL) 16467 return (ENOMEM); 16468 16469 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16470 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16471 mutex_enter(&phyi->phyint_lock); 16472 if (phyi->phyint_groupname_len != 0) { 16473 ASSERT(phyi->phyint_groupname != NULL); 16474 mi_free(phyi->phyint_groupname); 16475 } 16476 16477 /* 16478 * setup the new group name. 16479 */ 16480 phyi->phyint_groupname = tmp; 16481 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16482 phyi->phyint_groupname_len = namelen + 1; 16483 16484 if (ipst->ips_ipmp_hook_emulation) { 16485 /* 16486 * If the group already exists we use the existing 16487 * group_ifindex, otherwise we pick a new index here. 16488 */ 16489 if (phyi_tmp != NULL) { 16490 phyi->phyint_group_ifindex = 16491 phyi_tmp->phyint_group_ifindex; 16492 } else { 16493 /* XXX We need a recovery strategy here. */ 16494 if (!ip_assign_ifindex( 16495 &phyi->phyint_group_ifindex, ipst)) 16496 cmn_err(CE_PANIC, 16497 "ip_assign_ifindex() failed"); 16498 } 16499 } 16500 /* 16501 * Select whether the netinfo and hook use the per-interface 16502 * or per-group ifindex. 16503 */ 16504 if (ipst->ips_ipmp_hook_emulation) 16505 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16506 else 16507 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16508 16509 if (ipst->ips_ipmp_hook_emulation && 16510 phyi_tmp != NULL) { 16511 /* First phyint in group - group PLUMB event */ 16512 ill_nic_info_plumb(ill, B_TRUE); 16513 } 16514 mutex_exit(&phyi->phyint_lock); 16515 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16516 rw_exit(&ipst->ips_ill_g_lock); 16517 16518 err = ill_up_ipifs(ill, q, mp); 16519 } 16520 16521 done: 16522 /* 16523 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16524 */ 16525 if (err != EINPROGRESS) { 16526 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16527 if (ill_v4 != NULL) 16528 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16529 if (ill_v6 != NULL) 16530 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16531 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16532 } 16533 return (err); 16534 } 16535 16536 /* ARGSUSED */ 16537 int 16538 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16539 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16540 { 16541 ill_t *ill; 16542 phyint_t *phyi; 16543 struct lifreq *lifr; 16544 mblk_t *mp1; 16545 16546 /* Existence verified in ip_wput_nondata */ 16547 mp1 = mp->b_cont->b_cont; 16548 lifr = (struct lifreq *)mp1->b_rptr; 16549 ill = ipif->ipif_ill; 16550 phyi = ill->ill_phyint; 16551 16552 lifr->lifr_groupname[0] = '\0'; 16553 /* 16554 * ill_group may be null if all the interfaces 16555 * are down. But still, the phyint should always 16556 * hold the name. 16557 */ 16558 if (phyi->phyint_groupname_len != 0) { 16559 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16560 phyi->phyint_groupname_len); 16561 } 16562 16563 return (0); 16564 } 16565 16566 16567 typedef struct conn_move_s { 16568 ill_t *cm_from_ill; 16569 ill_t *cm_to_ill; 16570 int cm_ifindex; 16571 } conn_move_t; 16572 16573 /* 16574 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16575 */ 16576 static void 16577 conn_move(conn_t *connp, caddr_t arg) 16578 { 16579 conn_move_t *connm; 16580 int ifindex; 16581 int i; 16582 ill_t *from_ill; 16583 ill_t *to_ill; 16584 ilg_t *ilg; 16585 ilm_t *ret_ilm; 16586 16587 connm = (conn_move_t *)arg; 16588 ifindex = connm->cm_ifindex; 16589 from_ill = connm->cm_from_ill; 16590 to_ill = connm->cm_to_ill; 16591 16592 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16593 16594 /* All multicast fields protected by conn_lock */ 16595 mutex_enter(&connp->conn_lock); 16596 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16597 if ((connp->conn_outgoing_ill == from_ill) && 16598 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16599 connp->conn_outgoing_ill = to_ill; 16600 connp->conn_incoming_ill = to_ill; 16601 } 16602 16603 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16604 16605 if ((connp->conn_multicast_ill == from_ill) && 16606 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16607 connp->conn_multicast_ill = connm->cm_to_ill; 16608 } 16609 16610 /* Change IP_XMIT_IF associations */ 16611 if ((connp->conn_xmit_if_ill == from_ill) && 16612 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16613 connp->conn_xmit_if_ill = to_ill; 16614 } 16615 /* 16616 * Change the ilg_ill to point to the new one. This assumes 16617 * ilm_move_v6 has moved the ilms to new_ill and the driver 16618 * has been told to receive packets on this interface. 16619 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16620 * But when doing a FAILOVER, it might fail with ENOMEM and so 16621 * some ilms may not have moved. We check to see whether 16622 * the ilms have moved to to_ill. We can't check on from_ill 16623 * as in the process of moving, we could have split an ilm 16624 * in to two - which has the same orig_ifindex and v6group. 16625 * 16626 * For IPv4, ilg_ipif moves implicitly. The code below really 16627 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16628 */ 16629 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16630 ilg = &connp->conn_ilg[i]; 16631 if ((ilg->ilg_ill == from_ill) && 16632 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16633 /* ifindex != 0 indicates failback */ 16634 if (ifindex != 0) { 16635 connp->conn_ilg[i].ilg_ill = to_ill; 16636 continue; 16637 } 16638 16639 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16640 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16641 connp->conn_zoneid); 16642 16643 if (ret_ilm != NULL) 16644 connp->conn_ilg[i].ilg_ill = to_ill; 16645 } 16646 } 16647 mutex_exit(&connp->conn_lock); 16648 } 16649 16650 static void 16651 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16652 { 16653 conn_move_t connm; 16654 ip_stack_t *ipst = from_ill->ill_ipst; 16655 16656 connm.cm_from_ill = from_ill; 16657 connm.cm_to_ill = to_ill; 16658 connm.cm_ifindex = ifindex; 16659 16660 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16661 } 16662 16663 /* 16664 * ilm has been moved from from_ill to to_ill. 16665 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16666 * appropriately. 16667 * 16668 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16669 * the code there de-references ipif_ill to get the ill to 16670 * send multicast requests. It does not work as ipif is on its 16671 * move and already moved when this function is called. 16672 * Thus, we need to use from_ill and to_ill send down multicast 16673 * requests. 16674 */ 16675 static void 16676 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16677 { 16678 ipif_t *ipif; 16679 ilm_t *ilm; 16680 16681 /* 16682 * See whether we need to send down DL_ENABMULTI_REQ on 16683 * to_ill as ilm has just been added. 16684 */ 16685 ASSERT(IAM_WRITER_ILL(to_ill)); 16686 ASSERT(IAM_WRITER_ILL(from_ill)); 16687 16688 ILM_WALKER_HOLD(to_ill); 16689 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16690 16691 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16692 continue; 16693 /* 16694 * no locks held, ill/ipif cannot dissappear as long 16695 * as we are writer. 16696 */ 16697 ipif = to_ill->ill_ipif; 16698 /* 16699 * No need to hold any lock as we are the writer and this 16700 * can only be changed by a writer. 16701 */ 16702 ilm->ilm_is_new = B_FALSE; 16703 16704 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16705 ipif->ipif_flags & IPIF_POINTOPOINT) { 16706 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16707 "resolver\n")); 16708 continue; /* Must be IRE_IF_NORESOLVER */ 16709 } 16710 16711 16712 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16713 ip1dbg(("ilm_send_multicast_reqs: " 16714 "to_ill MULTI_BCAST\n")); 16715 goto from; 16716 } 16717 16718 if (to_ill->ill_isv6) 16719 mld_joingroup(ilm); 16720 else 16721 igmp_joingroup(ilm); 16722 16723 if (to_ill->ill_ipif_up_count == 0) { 16724 /* 16725 * Nobody there. All multicast addresses will be 16726 * re-joined when we get the DL_BIND_ACK bringing the 16727 * interface up. 16728 */ 16729 ilm->ilm_notify_driver = B_FALSE; 16730 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16731 goto from; 16732 } 16733 16734 /* 16735 * For allmulti address, we want to join on only one interface. 16736 * Checking for ilm_numentries_v6 is not correct as you may 16737 * find an ilm with zero address on to_ill, but we may not 16738 * have nominated to_ill for receiving. Thus, if we have 16739 * nominated from_ill (ill_join_allmulti is set), nominate 16740 * only if to_ill is not already nominated (to_ill normally 16741 * should not have been nominated if "from_ill" has already 16742 * been nominated. As we don't prevent failovers from happening 16743 * across groups, we don't assert). 16744 */ 16745 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16746 /* 16747 * There is no need to hold ill locks as we are 16748 * writer on both ills and when ill_join_allmulti 16749 * is changed the thread is always a writer. 16750 */ 16751 if (from_ill->ill_join_allmulti && 16752 !to_ill->ill_join_allmulti) { 16753 (void) ip_join_allmulti(to_ill->ill_ipif); 16754 } 16755 } else if (ilm->ilm_notify_driver) { 16756 16757 /* 16758 * This is a newly moved ilm so we need to tell the 16759 * driver about the new group. There can be more than 16760 * one ilm's for the same group in the list each with a 16761 * different orig_ifindex. We have to inform the driver 16762 * once. In ilm_move_v[4,6] we only set the flag 16763 * ilm_notify_driver for the first ilm. 16764 */ 16765 16766 (void) ip_ll_send_enabmulti_req(to_ill, 16767 &ilm->ilm_v6addr); 16768 } 16769 16770 ilm->ilm_notify_driver = B_FALSE; 16771 16772 /* 16773 * See whether we need to send down DL_DISABMULTI_REQ on 16774 * from_ill as ilm has just been removed. 16775 */ 16776 from: 16777 ipif = from_ill->ill_ipif; 16778 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16779 ipif->ipif_flags & IPIF_POINTOPOINT) { 16780 ip1dbg(("ilm_send_multicast_reqs: " 16781 "from_ill not resolver\n")); 16782 continue; /* Must be IRE_IF_NORESOLVER */ 16783 } 16784 16785 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16786 ip1dbg(("ilm_send_multicast_reqs: " 16787 "from_ill MULTI_BCAST\n")); 16788 continue; 16789 } 16790 16791 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16792 if (from_ill->ill_join_allmulti) 16793 (void) ip_leave_allmulti(from_ill->ill_ipif); 16794 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16795 (void) ip_ll_send_disabmulti_req(from_ill, 16796 &ilm->ilm_v6addr); 16797 } 16798 } 16799 ILM_WALKER_RELE(to_ill); 16800 } 16801 16802 /* 16803 * This function is called when all multicast memberships needs 16804 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16805 * called only once unlike the IPv4 counterpart where it is called after 16806 * every logical interface is moved. The reason is due to multicast 16807 * memberships are joined using an interface address in IPv4 while in 16808 * IPv6, interface index is used. 16809 */ 16810 static void 16811 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16812 { 16813 ilm_t *ilm; 16814 ilm_t *ilm_next; 16815 ilm_t *new_ilm; 16816 ilm_t **ilmp; 16817 int count; 16818 char buf[INET6_ADDRSTRLEN]; 16819 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16820 ip_stack_t *ipst = from_ill->ill_ipst; 16821 16822 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16823 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16824 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16825 16826 if (ifindex == 0) { 16827 /* 16828 * Form the solicited node mcast address which is used later. 16829 */ 16830 ipif_t *ipif; 16831 16832 ipif = from_ill->ill_ipif; 16833 ASSERT(ipif->ipif_id == 0); 16834 16835 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16836 } 16837 16838 ilmp = &from_ill->ill_ilm; 16839 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16840 ilm_next = ilm->ilm_next; 16841 16842 if (ilm->ilm_flags & ILM_DELETED) { 16843 ilmp = &ilm->ilm_next; 16844 continue; 16845 } 16846 16847 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16848 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16849 ASSERT(ilm->ilm_orig_ifindex != 0); 16850 if (ilm->ilm_orig_ifindex == ifindex) { 16851 /* 16852 * We are failing back multicast memberships. 16853 * If the same ilm exists in to_ill, it means somebody 16854 * has joined the same group there e.g. ff02::1 16855 * is joined within the kernel when the interfaces 16856 * came UP. 16857 */ 16858 ASSERT(ilm->ilm_ipif == NULL); 16859 if (new_ilm != NULL) { 16860 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16861 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16862 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16863 new_ilm->ilm_is_new = B_TRUE; 16864 } 16865 } else { 16866 /* 16867 * check if we can just move the ilm 16868 */ 16869 if (from_ill->ill_ilm_walker_cnt != 0) { 16870 /* 16871 * We have walkers we cannot move 16872 * the ilm, so allocate a new ilm, 16873 * this (old) ilm will be marked 16874 * ILM_DELETED at the end of the loop 16875 * and will be freed when the 16876 * last walker exits. 16877 */ 16878 new_ilm = (ilm_t *)mi_zalloc 16879 (sizeof (ilm_t)); 16880 if (new_ilm == NULL) { 16881 ip0dbg(("ilm_move_v6: " 16882 "FAILBACK of IPv6" 16883 " multicast address %s : " 16884 "from %s to" 16885 " %s failed : ENOMEM \n", 16886 inet_ntop(AF_INET6, 16887 &ilm->ilm_v6addr, buf, 16888 sizeof (buf)), 16889 from_ill->ill_name, 16890 to_ill->ill_name)); 16891 16892 ilmp = &ilm->ilm_next; 16893 continue; 16894 } 16895 *new_ilm = *ilm; 16896 /* 16897 * we don't want new_ilm linked to 16898 * ilm's filter list. 16899 */ 16900 new_ilm->ilm_filter = NULL; 16901 } else { 16902 /* 16903 * No walkers we can move the ilm. 16904 * lets take it out of the list. 16905 */ 16906 *ilmp = ilm->ilm_next; 16907 ilm->ilm_next = NULL; 16908 new_ilm = ilm; 16909 } 16910 16911 /* 16912 * if this is the first ilm for the group 16913 * set ilm_notify_driver so that we notify the 16914 * driver in ilm_send_multicast_reqs. 16915 */ 16916 if (ilm_lookup_ill_v6(to_ill, 16917 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16918 new_ilm->ilm_notify_driver = B_TRUE; 16919 16920 new_ilm->ilm_ill = to_ill; 16921 /* Add to the to_ill's list */ 16922 new_ilm->ilm_next = to_ill->ill_ilm; 16923 to_ill->ill_ilm = new_ilm; 16924 /* 16925 * set the flag so that mld_joingroup is 16926 * called in ilm_send_multicast_reqs(). 16927 */ 16928 new_ilm->ilm_is_new = B_TRUE; 16929 } 16930 goto bottom; 16931 } else if (ifindex != 0) { 16932 /* 16933 * If this is FAILBACK (ifindex != 0) and the ifindex 16934 * has not matched above, look at the next ilm. 16935 */ 16936 ilmp = &ilm->ilm_next; 16937 continue; 16938 } 16939 /* 16940 * If we are here, it means ifindex is 0. Failover 16941 * everything. 16942 * 16943 * We need to handle solicited node mcast address 16944 * and all_nodes mcast address differently as they 16945 * are joined witin the kenrel (ipif_multicast_up) 16946 * and potentially from the userland. We are called 16947 * after the ipifs of from_ill has been moved. 16948 * If we still find ilms on ill with solicited node 16949 * mcast address or all_nodes mcast address, it must 16950 * belong to the UP interface that has not moved e.g. 16951 * ipif_id 0 with the link local prefix does not move. 16952 * We join this on the new ill accounting for all the 16953 * userland memberships so that applications don't 16954 * see any failure. 16955 * 16956 * We need to make sure that we account only for the 16957 * solicited node and all node multicast addresses 16958 * that was brought UP on these. In the case of 16959 * a failover from A to B, we might have ilms belonging 16960 * to A (ilm_orig_ifindex pointing at A) on B accounting 16961 * for the membership from the userland. If we are failing 16962 * over from B to C now, we will find the ones belonging 16963 * to A on B. These don't account for the ill_ipif_up_count. 16964 * They just move from B to C. The check below on 16965 * ilm_orig_ifindex ensures that. 16966 */ 16967 if ((ilm->ilm_orig_ifindex == 16968 from_ill->ill_phyint->phyint_ifindex) && 16969 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16970 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16971 &ilm->ilm_v6addr))) { 16972 ASSERT(ilm->ilm_refcnt > 0); 16973 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16974 /* 16975 * For indentation reasons, we are not using a 16976 * "else" here. 16977 */ 16978 if (count == 0) { 16979 ilmp = &ilm->ilm_next; 16980 continue; 16981 } 16982 ilm->ilm_refcnt -= count; 16983 if (new_ilm != NULL) { 16984 /* 16985 * Can find one with the same 16986 * ilm_orig_ifindex, if we are failing 16987 * over to a STANDBY. This happens 16988 * when somebody wants to join a group 16989 * on a STANDBY interface and we 16990 * internally join on a different one. 16991 * If we had joined on from_ill then, a 16992 * failover now will find a new ilm 16993 * with this index. 16994 */ 16995 ip1dbg(("ilm_move_v6: FAILOVER, found" 16996 " new ilm on %s, group address %s\n", 16997 to_ill->ill_name, 16998 inet_ntop(AF_INET6, 16999 &ilm->ilm_v6addr, buf, 17000 sizeof (buf)))); 17001 new_ilm->ilm_refcnt += count; 17002 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17003 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17004 new_ilm->ilm_is_new = B_TRUE; 17005 } 17006 } else { 17007 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17008 if (new_ilm == NULL) { 17009 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17010 " multicast address %s : from %s to" 17011 " %s failed : ENOMEM \n", 17012 inet_ntop(AF_INET6, 17013 &ilm->ilm_v6addr, buf, 17014 sizeof (buf)), from_ill->ill_name, 17015 to_ill->ill_name)); 17016 ilmp = &ilm->ilm_next; 17017 continue; 17018 } 17019 *new_ilm = *ilm; 17020 new_ilm->ilm_filter = NULL; 17021 new_ilm->ilm_refcnt = count; 17022 new_ilm->ilm_timer = INFINITY; 17023 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17024 new_ilm->ilm_is_new = B_TRUE; 17025 /* 17026 * If the to_ill has not joined this 17027 * group we need to tell the driver in 17028 * ill_send_multicast_reqs. 17029 */ 17030 if (ilm_lookup_ill_v6(to_ill, 17031 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17032 new_ilm->ilm_notify_driver = B_TRUE; 17033 17034 new_ilm->ilm_ill = to_ill; 17035 /* Add to the to_ill's list */ 17036 new_ilm->ilm_next = to_ill->ill_ilm; 17037 to_ill->ill_ilm = new_ilm; 17038 ASSERT(new_ilm->ilm_ipif == NULL); 17039 } 17040 if (ilm->ilm_refcnt == 0) { 17041 goto bottom; 17042 } else { 17043 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17044 CLEAR_SLIST(new_ilm->ilm_filter); 17045 ilmp = &ilm->ilm_next; 17046 } 17047 continue; 17048 } else { 17049 /* 17050 * ifindex = 0 means, move everything pointing at 17051 * from_ill. We are doing this becuase ill has 17052 * either FAILED or became INACTIVE. 17053 * 17054 * As we would like to move things later back to 17055 * from_ill, we want to retain the identity of this 17056 * ilm. Thus, we don't blindly increment the reference 17057 * count on the ilms matching the address alone. We 17058 * need to match on the ilm_orig_index also. new_ilm 17059 * was obtained by matching ilm_orig_index also. 17060 */ 17061 if (new_ilm != NULL) { 17062 /* 17063 * This is possible only if a previous restore 17064 * was incomplete i.e restore to 17065 * ilm_orig_ifindex left some ilms because 17066 * of some failures. Thus when we are failing 17067 * again, we might find our old friends there. 17068 */ 17069 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17070 " on %s, group address %s\n", 17071 to_ill->ill_name, 17072 inet_ntop(AF_INET6, 17073 &ilm->ilm_v6addr, buf, 17074 sizeof (buf)))); 17075 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17076 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17077 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17078 new_ilm->ilm_is_new = B_TRUE; 17079 } 17080 } else { 17081 if (from_ill->ill_ilm_walker_cnt != 0) { 17082 new_ilm = (ilm_t *) 17083 mi_zalloc(sizeof (ilm_t)); 17084 if (new_ilm == NULL) { 17085 ip0dbg(("ilm_move_v6: " 17086 "FAILOVER of IPv6" 17087 " multicast address %s : " 17088 "from %s to" 17089 " %s failed : ENOMEM \n", 17090 inet_ntop(AF_INET6, 17091 &ilm->ilm_v6addr, buf, 17092 sizeof (buf)), 17093 from_ill->ill_name, 17094 to_ill->ill_name)); 17095 17096 ilmp = &ilm->ilm_next; 17097 continue; 17098 } 17099 *new_ilm = *ilm; 17100 new_ilm->ilm_filter = NULL; 17101 } else { 17102 *ilmp = ilm->ilm_next; 17103 new_ilm = ilm; 17104 } 17105 /* 17106 * If the to_ill has not joined this 17107 * group we need to tell the driver in 17108 * ill_send_multicast_reqs. 17109 */ 17110 if (ilm_lookup_ill_v6(to_ill, 17111 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17112 new_ilm->ilm_notify_driver = B_TRUE; 17113 17114 /* Add to the to_ill's list */ 17115 new_ilm->ilm_next = to_ill->ill_ilm; 17116 to_ill->ill_ilm = new_ilm; 17117 ASSERT(ilm->ilm_ipif == NULL); 17118 new_ilm->ilm_ill = to_ill; 17119 new_ilm->ilm_is_new = B_TRUE; 17120 } 17121 17122 } 17123 17124 bottom: 17125 /* 17126 * Revert multicast filter state to (EXCLUDE, NULL). 17127 * new_ilm->ilm_is_new should already be set if needed. 17128 */ 17129 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17130 CLEAR_SLIST(new_ilm->ilm_filter); 17131 /* 17132 * We allocated/got a new ilm, free the old one. 17133 */ 17134 if (new_ilm != ilm) { 17135 if (from_ill->ill_ilm_walker_cnt == 0) { 17136 *ilmp = ilm->ilm_next; 17137 ilm->ilm_next = NULL; 17138 FREE_SLIST(ilm->ilm_filter); 17139 FREE_SLIST(ilm->ilm_pendsrcs); 17140 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17141 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17142 mi_free((char *)ilm); 17143 } else { 17144 ilm->ilm_flags |= ILM_DELETED; 17145 from_ill->ill_ilm_cleanup_reqd = 1; 17146 ilmp = &ilm->ilm_next; 17147 } 17148 } 17149 } 17150 } 17151 17152 /* 17153 * Move all the multicast memberships to to_ill. Called when 17154 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17155 * different from IPv6 counterpart as multicast memberships are associated 17156 * with ills in IPv6. This function is called after every ipif is moved 17157 * unlike IPv6, where it is moved only once. 17158 */ 17159 static void 17160 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17161 { 17162 ilm_t *ilm; 17163 ilm_t *ilm_next; 17164 ilm_t *new_ilm; 17165 ilm_t **ilmp; 17166 ip_stack_t *ipst = from_ill->ill_ipst; 17167 17168 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17169 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17170 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17171 17172 ilmp = &from_ill->ill_ilm; 17173 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17174 ilm_next = ilm->ilm_next; 17175 17176 if (ilm->ilm_flags & ILM_DELETED) { 17177 ilmp = &ilm->ilm_next; 17178 continue; 17179 } 17180 17181 ASSERT(ilm->ilm_ipif != NULL); 17182 17183 if (ilm->ilm_ipif != ipif) { 17184 ilmp = &ilm->ilm_next; 17185 continue; 17186 } 17187 17188 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17189 htonl(INADDR_ALLHOSTS_GROUP)) { 17190 new_ilm = ilm_lookup_ipif(ipif, 17191 V4_PART_OF_V6(ilm->ilm_v6addr)); 17192 if (new_ilm != NULL) { 17193 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17194 /* 17195 * We still need to deal with the from_ill. 17196 */ 17197 new_ilm->ilm_is_new = B_TRUE; 17198 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17199 CLEAR_SLIST(new_ilm->ilm_filter); 17200 goto delete_ilm; 17201 } 17202 /* 17203 * If we could not find one e.g. ipif is 17204 * still down on to_ill, we add this ilm 17205 * on ill_new to preserve the reference 17206 * count. 17207 */ 17208 } 17209 /* 17210 * When ipifs move, ilms always move with it 17211 * to the NEW ill. Thus we should never be 17212 * able to find ilm till we really move it here. 17213 */ 17214 ASSERT(ilm_lookup_ipif(ipif, 17215 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17216 17217 if (from_ill->ill_ilm_walker_cnt != 0) { 17218 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17219 if (new_ilm == NULL) { 17220 char buf[INET6_ADDRSTRLEN]; 17221 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17222 " multicast address %s : " 17223 "from %s to" 17224 " %s failed : ENOMEM \n", 17225 inet_ntop(AF_INET, 17226 &ilm->ilm_v6addr, buf, 17227 sizeof (buf)), 17228 from_ill->ill_name, 17229 to_ill->ill_name)); 17230 17231 ilmp = &ilm->ilm_next; 17232 continue; 17233 } 17234 *new_ilm = *ilm; 17235 /* We don't want new_ilm linked to ilm's filter list */ 17236 new_ilm->ilm_filter = NULL; 17237 } else { 17238 /* Remove from the list */ 17239 *ilmp = ilm->ilm_next; 17240 new_ilm = ilm; 17241 } 17242 17243 /* 17244 * If we have never joined this group on the to_ill 17245 * make sure we tell the driver. 17246 */ 17247 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17248 ALL_ZONES) == NULL) 17249 new_ilm->ilm_notify_driver = B_TRUE; 17250 17251 /* Add to the to_ill's list */ 17252 new_ilm->ilm_next = to_ill->ill_ilm; 17253 to_ill->ill_ilm = new_ilm; 17254 new_ilm->ilm_is_new = B_TRUE; 17255 17256 /* 17257 * Revert multicast filter state to (EXCLUDE, NULL) 17258 */ 17259 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17260 CLEAR_SLIST(new_ilm->ilm_filter); 17261 17262 /* 17263 * Delete only if we have allocated a new ilm. 17264 */ 17265 if (new_ilm != ilm) { 17266 delete_ilm: 17267 if (from_ill->ill_ilm_walker_cnt == 0) { 17268 /* Remove from the list */ 17269 *ilmp = ilm->ilm_next; 17270 ilm->ilm_next = NULL; 17271 FREE_SLIST(ilm->ilm_filter); 17272 FREE_SLIST(ilm->ilm_pendsrcs); 17273 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17274 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17275 mi_free((char *)ilm); 17276 } else { 17277 ilm->ilm_flags |= ILM_DELETED; 17278 from_ill->ill_ilm_cleanup_reqd = 1; 17279 ilmp = &ilm->ilm_next; 17280 } 17281 } 17282 } 17283 } 17284 17285 static uint_t 17286 ipif_get_id(ill_t *ill, uint_t id) 17287 { 17288 uint_t unit; 17289 ipif_t *tipif; 17290 boolean_t found = B_FALSE; 17291 ip_stack_t *ipst = ill->ill_ipst; 17292 17293 /* 17294 * During failback, we want to go back to the same id 17295 * instead of the smallest id so that the original 17296 * configuration is maintained. id is non-zero in that 17297 * case. 17298 */ 17299 if (id != 0) { 17300 /* 17301 * While failing back, if we still have an ipif with 17302 * MAX_ADDRS_PER_IF, it means this will be replaced 17303 * as soon as we return from this function. It was 17304 * to set to MAX_ADDRS_PER_IF by the caller so that 17305 * we can choose the smallest id. Thus we return zero 17306 * in that case ignoring the hint. 17307 */ 17308 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17309 return (0); 17310 for (tipif = ill->ill_ipif; tipif != NULL; 17311 tipif = tipif->ipif_next) { 17312 if (tipif->ipif_id == id) { 17313 found = B_TRUE; 17314 break; 17315 } 17316 } 17317 /* 17318 * If somebody already plumbed another logical 17319 * with the same id, we won't be able to find it. 17320 */ 17321 if (!found) 17322 return (id); 17323 } 17324 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17325 found = B_FALSE; 17326 for (tipif = ill->ill_ipif; tipif != NULL; 17327 tipif = tipif->ipif_next) { 17328 if (tipif->ipif_id == unit) { 17329 found = B_TRUE; 17330 break; 17331 } 17332 } 17333 if (!found) 17334 break; 17335 } 17336 return (unit); 17337 } 17338 17339 /* ARGSUSED */ 17340 static int 17341 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17342 ipif_t **rep_ipif_ptr) 17343 { 17344 ill_t *from_ill; 17345 ipif_t *rep_ipif; 17346 uint_t unit; 17347 int err = 0; 17348 ipif_t *to_ipif; 17349 struct iocblk *iocp; 17350 boolean_t failback_cmd; 17351 boolean_t remove_ipif; 17352 int rc; 17353 ip_stack_t *ipst; 17354 17355 ASSERT(IAM_WRITER_ILL(to_ill)); 17356 ASSERT(IAM_WRITER_IPIF(ipif)); 17357 17358 iocp = (struct iocblk *)mp->b_rptr; 17359 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17360 remove_ipif = B_FALSE; 17361 17362 from_ill = ipif->ipif_ill; 17363 ipst = from_ill->ill_ipst; 17364 17365 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17366 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17367 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17368 17369 /* 17370 * Don't move LINK LOCAL addresses as they are tied to 17371 * physical interface. 17372 */ 17373 if (from_ill->ill_isv6 && 17374 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17375 ipif->ipif_was_up = B_FALSE; 17376 IPIF_UNMARK_MOVING(ipif); 17377 return (0); 17378 } 17379 17380 /* 17381 * We set the ipif_id to maximum so that the search for 17382 * ipif_id will pick the lowest number i.e 0 in the 17383 * following 2 cases : 17384 * 17385 * 1) We have a replacement ipif at the head of to_ill. 17386 * We can't remove it yet as we can exceed ip_addrs_per_if 17387 * on to_ill and hence the MOVE might fail. We want to 17388 * remove it only if we could move the ipif. Thus, by 17389 * setting it to the MAX value, we make the search in 17390 * ipif_get_id return the zeroth id. 17391 * 17392 * 2) When DR pulls out the NIC and re-plumbs the interface, 17393 * we might just have a zero address plumbed on the ipif 17394 * with zero id in the case of IPv4. We remove that while 17395 * doing the failback. We want to remove it only if we 17396 * could move the ipif. Thus, by setting it to the MAX 17397 * value, we make the search in ipif_get_id return the 17398 * zeroth id. 17399 * 17400 * Both (1) and (2) are done only when when we are moving 17401 * an ipif (either due to failover/failback) which originally 17402 * belonged to this interface i.e the ipif_orig_ifindex is 17403 * the same as to_ill's ifindex. This is needed so that 17404 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17405 * from B -> A (B is being removed from the group) and 17406 * FAILBACK from A -> B restores the original configuration. 17407 * Without the check for orig_ifindex, the second FAILOVER 17408 * could make the ipif belonging to B replace the A's zeroth 17409 * ipif and the subsequent failback re-creating the replacement 17410 * ipif again. 17411 * 17412 * NOTE : We created the replacement ipif when we did a 17413 * FAILOVER (See below). We could check for FAILBACK and 17414 * then look for replacement ipif to be removed. But we don't 17415 * want to do that because we wan't to allow the possibility 17416 * of a FAILOVER from A -> B (which creates the replacement ipif), 17417 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17418 * from B -> A. 17419 */ 17420 to_ipif = to_ill->ill_ipif; 17421 if ((to_ill->ill_phyint->phyint_ifindex == 17422 ipif->ipif_orig_ifindex) && 17423 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17424 ASSERT(to_ipif->ipif_id == 0); 17425 remove_ipif = B_TRUE; 17426 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17427 } 17428 /* 17429 * Find the lowest logical unit number on the to_ill. 17430 * If we are failing back, try to get the original id 17431 * rather than the lowest one so that the original 17432 * configuration is maintained. 17433 * 17434 * XXX need a better scheme for this. 17435 */ 17436 if (failback_cmd) { 17437 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17438 } else { 17439 unit = ipif_get_id(to_ill, 0); 17440 } 17441 17442 /* Reset back to zero in case we fail below */ 17443 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17444 to_ipif->ipif_id = 0; 17445 17446 if (unit == ipst->ips_ip_addrs_per_if) { 17447 ipif->ipif_was_up = B_FALSE; 17448 IPIF_UNMARK_MOVING(ipif); 17449 return (EINVAL); 17450 } 17451 17452 /* 17453 * ipif is ready to move from "from_ill" to "to_ill". 17454 * 17455 * 1) If we are moving ipif with id zero, create a 17456 * replacement ipif for this ipif on from_ill. If this fails 17457 * fail the MOVE operation. 17458 * 17459 * 2) Remove the replacement ipif on to_ill if any. 17460 * We could remove the replacement ipif when we are moving 17461 * the ipif with id zero. But what if somebody already 17462 * unplumbed it ? Thus we always remove it if it is present. 17463 * We want to do it only if we are sure we are going to 17464 * move the ipif to to_ill which is why there are no 17465 * returns due to error till ipif is linked to to_ill. 17466 * Note that the first ipif that we failback will always 17467 * be zero if it is present. 17468 */ 17469 if (ipif->ipif_id == 0) { 17470 ipaddr_t inaddr_any = INADDR_ANY; 17471 17472 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17473 if (rep_ipif == NULL) { 17474 ipif->ipif_was_up = B_FALSE; 17475 IPIF_UNMARK_MOVING(ipif); 17476 return (ENOMEM); 17477 } 17478 *rep_ipif = ipif_zero; 17479 /* 17480 * Before we put the ipif on the list, store the addresses 17481 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17482 * assumes so. This logic is not any different from what 17483 * ipif_allocate does. 17484 */ 17485 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17486 &rep_ipif->ipif_v6lcl_addr); 17487 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17488 &rep_ipif->ipif_v6src_addr); 17489 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17490 &rep_ipif->ipif_v6subnet); 17491 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17492 &rep_ipif->ipif_v6net_mask); 17493 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17494 &rep_ipif->ipif_v6brd_addr); 17495 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17496 &rep_ipif->ipif_v6pp_dst_addr); 17497 /* 17498 * We mark IPIF_NOFAILOVER so that this can never 17499 * move. 17500 */ 17501 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17502 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17503 rep_ipif->ipif_replace_zero = B_TRUE; 17504 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17505 MUTEX_DEFAULT, NULL); 17506 rep_ipif->ipif_id = 0; 17507 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17508 rep_ipif->ipif_ill = from_ill; 17509 rep_ipif->ipif_orig_ifindex = 17510 from_ill->ill_phyint->phyint_ifindex; 17511 /* Insert at head */ 17512 rep_ipif->ipif_next = from_ill->ill_ipif; 17513 from_ill->ill_ipif = rep_ipif; 17514 /* 17515 * We don't really care to let apps know about 17516 * this interface. 17517 */ 17518 } 17519 17520 if (remove_ipif) { 17521 /* 17522 * We set to a max value above for this case to get 17523 * id zero. ASSERT that we did get one. 17524 */ 17525 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17526 rep_ipif = to_ipif; 17527 to_ill->ill_ipif = rep_ipif->ipif_next; 17528 rep_ipif->ipif_next = NULL; 17529 /* 17530 * If some apps scanned and find this interface, 17531 * it is time to let them know, so that they can 17532 * delete it. 17533 */ 17534 17535 *rep_ipif_ptr = rep_ipif; 17536 } 17537 17538 /* Get it out of the ILL interface list. */ 17539 ipif_remove(ipif, B_FALSE); 17540 17541 /* Assign the new ill */ 17542 ipif->ipif_ill = to_ill; 17543 ipif->ipif_id = unit; 17544 /* id has already been checked */ 17545 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17546 ASSERT(rc == 0); 17547 /* Let SCTP update its list */ 17548 sctp_move_ipif(ipif, from_ill, to_ill); 17549 /* 17550 * Handle the failover and failback of ipif_t between 17551 * ill_t that have differing maximum mtu values. 17552 */ 17553 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17554 if (ipif->ipif_saved_mtu == 0) { 17555 /* 17556 * As this ipif_t is moving to an ill_t 17557 * that has a lower ill_max_mtu, its 17558 * ipif_mtu needs to be saved so it can 17559 * be restored during failback or during 17560 * failover to an ill_t which has a 17561 * higher ill_max_mtu. 17562 */ 17563 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17564 ipif->ipif_mtu = to_ill->ill_max_mtu; 17565 } else { 17566 /* 17567 * The ipif_t is, once again, moving to 17568 * an ill_t that has a lower maximum mtu 17569 * value. 17570 */ 17571 ipif->ipif_mtu = to_ill->ill_max_mtu; 17572 } 17573 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17574 ipif->ipif_saved_mtu != 0) { 17575 /* 17576 * The mtu of this ipif_t had to be reduced 17577 * during an earlier failover; this is an 17578 * opportunity for it to be increased (either as 17579 * part of another failover or a failback). 17580 */ 17581 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17582 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17583 ipif->ipif_saved_mtu = 0; 17584 } else { 17585 ipif->ipif_mtu = to_ill->ill_max_mtu; 17586 } 17587 } 17588 17589 /* 17590 * We preserve all the other fields of the ipif including 17591 * ipif_saved_ire_mp. The routes that are saved here will 17592 * be recreated on the new interface and back on the old 17593 * interface when we move back. 17594 */ 17595 ASSERT(ipif->ipif_arp_del_mp == NULL); 17596 17597 return (err); 17598 } 17599 17600 static int 17601 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17602 int ifindex, ipif_t **rep_ipif_ptr) 17603 { 17604 ipif_t *mipif; 17605 ipif_t *ipif_next; 17606 int err; 17607 17608 /* 17609 * We don't really try to MOVE back things if some of the 17610 * operations fail. The daemon will take care of moving again 17611 * later on. 17612 */ 17613 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17614 ipif_next = mipif->ipif_next; 17615 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17616 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17617 17618 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17619 17620 /* 17621 * When the MOVE fails, it is the job of the 17622 * application to take care of this properly 17623 * i.e try again if it is ENOMEM. 17624 */ 17625 if (mipif->ipif_ill != from_ill) { 17626 /* 17627 * ipif has moved. 17628 * 17629 * Move the multicast memberships associated 17630 * with this ipif to the new ill. For IPv6, we 17631 * do it once after all the ipifs are moved 17632 * (in ill_move) as they are not associated 17633 * with ipifs. 17634 * 17635 * We need to move the ilms as the ipif has 17636 * already been moved to a new ill even 17637 * in the case of errors. Neither 17638 * ilm_free(ipif) will find the ilm 17639 * when somebody unplumbs this ipif nor 17640 * ilm_delete(ilm) will be able to find the 17641 * ilm, if we don't move now. 17642 */ 17643 if (!from_ill->ill_isv6) 17644 ilm_move_v4(from_ill, to_ill, mipif); 17645 } 17646 17647 if (err != 0) 17648 return (err); 17649 } 17650 } 17651 return (0); 17652 } 17653 17654 static int 17655 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17656 { 17657 int ifindex; 17658 int err; 17659 struct iocblk *iocp; 17660 ipif_t *ipif; 17661 ipif_t *rep_ipif_ptr = NULL; 17662 ipif_t *from_ipif = NULL; 17663 boolean_t check_rep_if = B_FALSE; 17664 ip_stack_t *ipst = from_ill->ill_ipst; 17665 17666 iocp = (struct iocblk *)mp->b_rptr; 17667 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17668 /* 17669 * Move everything pointing at from_ill to to_ill. 17670 * We acheive this by passing in 0 as ifindex. 17671 */ 17672 ifindex = 0; 17673 } else { 17674 /* 17675 * Move everything pointing at from_ill whose original 17676 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17677 * We acheive this by passing in ifindex rather than 0. 17678 * Multicast vifs, ilgs move implicitly because ipifs move. 17679 */ 17680 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17681 ifindex = to_ill->ill_phyint->phyint_ifindex; 17682 } 17683 17684 /* 17685 * Determine if there is at least one ipif that would move from 17686 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17687 * ipif (if it exists) on the to_ill would be consumed as a result of 17688 * the move, in which case we need to quiesce the replacement ipif also. 17689 */ 17690 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17691 from_ipif = from_ipif->ipif_next) { 17692 if (((ifindex == 0) || 17693 (ifindex == from_ipif->ipif_orig_ifindex)) && 17694 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17695 check_rep_if = B_TRUE; 17696 break; 17697 } 17698 } 17699 17700 17701 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17702 17703 GRAB_ILL_LOCKS(from_ill, to_ill); 17704 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17705 (void) ipsq_pending_mp_add(NULL, ipif, q, 17706 mp, ILL_MOVE_OK); 17707 RELEASE_ILL_LOCKS(from_ill, to_ill); 17708 return (EINPROGRESS); 17709 } 17710 17711 /* Check if the replacement ipif is quiescent to delete */ 17712 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17713 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17714 to_ill->ill_ipif->ipif_state_flags |= 17715 IPIF_MOVING | IPIF_CHANGING; 17716 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17717 (void) ipsq_pending_mp_add(NULL, ipif, q, 17718 mp, ILL_MOVE_OK); 17719 RELEASE_ILL_LOCKS(from_ill, to_ill); 17720 return (EINPROGRESS); 17721 } 17722 } 17723 RELEASE_ILL_LOCKS(from_ill, to_ill); 17724 17725 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17726 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17727 GRAB_ILL_LOCKS(from_ill, to_ill); 17728 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17729 17730 /* ilm_move is done inside ipif_move for IPv4 */ 17731 if (err == 0 && from_ill->ill_isv6) 17732 ilm_move_v6(from_ill, to_ill, ifindex); 17733 17734 RELEASE_ILL_LOCKS(from_ill, to_ill); 17735 rw_exit(&ipst->ips_ill_g_lock); 17736 17737 /* 17738 * send rts messages and multicast messages. 17739 */ 17740 if (rep_ipif_ptr != NULL) { 17741 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17742 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17743 rep_ipif_ptr->ipif_recovery_id = 0; 17744 } 17745 ip_rts_ifmsg(rep_ipif_ptr); 17746 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17747 #ifdef DEBUG 17748 ipif_trace_cleanup(rep_ipif_ptr); 17749 #endif 17750 mi_free(rep_ipif_ptr); 17751 } 17752 17753 conn_move_ill(from_ill, to_ill, ifindex); 17754 17755 return (err); 17756 } 17757 17758 /* 17759 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17760 * Also checks for the validity of the arguments. 17761 * Note: We are already exclusive inside the from group. 17762 * It is upto the caller to release refcnt on the to_ill's. 17763 */ 17764 static int 17765 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17766 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17767 { 17768 int dst_index; 17769 ipif_t *ipif_v4, *ipif_v6; 17770 struct lifreq *lifr; 17771 mblk_t *mp1; 17772 boolean_t exists; 17773 sin_t *sin; 17774 int err = 0; 17775 ip_stack_t *ipst; 17776 17777 if (CONN_Q(q)) 17778 ipst = CONNQ_TO_IPST(q); 17779 else 17780 ipst = ILLQ_TO_IPST(q); 17781 17782 17783 if ((mp1 = mp->b_cont) == NULL) 17784 return (EPROTO); 17785 17786 if ((mp1 = mp1->b_cont) == NULL) 17787 return (EPROTO); 17788 17789 lifr = (struct lifreq *)mp1->b_rptr; 17790 sin = (sin_t *)&lifr->lifr_addr; 17791 17792 /* 17793 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17794 * specific operations. 17795 */ 17796 if (sin->sin_family != AF_UNSPEC) 17797 return (EINVAL); 17798 17799 /* 17800 * Get ipif with id 0. We are writer on the from ill. So we can pass 17801 * NULLs for the last 4 args and we know the lookup won't fail 17802 * with EINPROGRESS. 17803 */ 17804 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17805 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17806 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17807 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17808 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17809 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17810 17811 if (ipif_v4 == NULL && ipif_v6 == NULL) 17812 return (ENXIO); 17813 17814 if (ipif_v4 != NULL) { 17815 ASSERT(ipif_v4->ipif_refcnt != 0); 17816 if (ipif_v4->ipif_id != 0) { 17817 err = EINVAL; 17818 goto done; 17819 } 17820 17821 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17822 *ill_from_v4 = ipif_v4->ipif_ill; 17823 } 17824 17825 if (ipif_v6 != NULL) { 17826 ASSERT(ipif_v6->ipif_refcnt != 0); 17827 if (ipif_v6->ipif_id != 0) { 17828 err = EINVAL; 17829 goto done; 17830 } 17831 17832 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17833 *ill_from_v6 = ipif_v6->ipif_ill; 17834 } 17835 17836 err = 0; 17837 dst_index = lifr->lifr_movetoindex; 17838 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17839 q, mp, ip_process_ioctl, &err, ipst); 17840 if (err != 0) { 17841 /* 17842 * There could be only v6. 17843 */ 17844 if (err != ENXIO) 17845 goto done; 17846 err = 0; 17847 } 17848 17849 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17850 q, mp, ip_process_ioctl, &err, ipst); 17851 if (err != 0) { 17852 if (err != ENXIO) 17853 goto done; 17854 if (*ill_to_v4 == NULL) { 17855 err = ENXIO; 17856 goto done; 17857 } 17858 err = 0; 17859 } 17860 17861 /* 17862 * If we have something to MOVE i.e "from" not NULL, 17863 * "to" should be non-NULL. 17864 */ 17865 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17866 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17867 err = EINVAL; 17868 } 17869 17870 done: 17871 if (ipif_v4 != NULL) 17872 ipif_refrele(ipif_v4); 17873 if (ipif_v6 != NULL) 17874 ipif_refrele(ipif_v6); 17875 return (err); 17876 } 17877 17878 /* 17879 * FAILOVER and FAILBACK are modelled as MOVE operations. 17880 * 17881 * We don't check whether the MOVE is within the same group or 17882 * not, because this ioctl can be used as a generic mechanism 17883 * to failover from interface A to B, though things will function 17884 * only if they are really part of the same group. Moreover, 17885 * all ipifs may be down and hence temporarily out of the group. 17886 * 17887 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17888 * down first and then V6. For each we wait for the ipif's to become quiescent. 17889 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17890 * have been deleted and there are no active references. Once quiescent the 17891 * ipif's are moved and brought up on the new ill. 17892 * 17893 * Normally the source ill and destination ill belong to the same IPMP group 17894 * and hence the same ipsq_t. In the event they don't belong to the same 17895 * same group the two ipsq's are first merged into one ipsq - that of the 17896 * to_ill. The multicast memberships on the source and destination ill cannot 17897 * change during the move operation since multicast joins/leaves also have to 17898 * execute on the same ipsq and are hence serialized. 17899 */ 17900 /* ARGSUSED */ 17901 int 17902 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17903 ip_ioctl_cmd_t *ipip, void *ifreq) 17904 { 17905 ill_t *ill_to_v4 = NULL; 17906 ill_t *ill_to_v6 = NULL; 17907 ill_t *ill_from_v4 = NULL; 17908 ill_t *ill_from_v6 = NULL; 17909 int err = 0; 17910 17911 /* 17912 * setup from and to ill's, we can get EINPROGRESS only for 17913 * to_ill's. 17914 */ 17915 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17916 &ill_to_v4, &ill_to_v6); 17917 17918 if (err != 0) { 17919 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17920 goto done; 17921 } 17922 17923 /* 17924 * nothing to do. 17925 */ 17926 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17927 goto done; 17928 } 17929 17930 /* 17931 * nothing to do. 17932 */ 17933 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17934 goto done; 17935 } 17936 17937 /* 17938 * Mark the ill as changing. 17939 * ILL_CHANGING flag is cleared when the ipif's are brought up 17940 * in ill_up_ipifs in case of error they are cleared below. 17941 */ 17942 17943 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17944 if (ill_from_v4 != NULL) 17945 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17946 if (ill_from_v6 != NULL) 17947 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17948 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17949 17950 /* 17951 * Make sure that both src and dst are 17952 * in the same syncq group. If not make it happen. 17953 * We are not holding any locks because we are the writer 17954 * on the from_ipsq and we will hold locks in ill_merge_groups 17955 * to protect to_ipsq against changing. 17956 */ 17957 if (ill_from_v4 != NULL) { 17958 if (ill_from_v4->ill_phyint->phyint_ipsq != 17959 ill_to_v4->ill_phyint->phyint_ipsq) { 17960 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17961 NULL, mp, q); 17962 goto err_ret; 17963 17964 } 17965 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17966 } else { 17967 17968 if (ill_from_v6->ill_phyint->phyint_ipsq != 17969 ill_to_v6->ill_phyint->phyint_ipsq) { 17970 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17971 NULL, mp, q); 17972 goto err_ret; 17973 17974 } 17975 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17976 } 17977 17978 /* 17979 * Now that the ipsq's have been merged and we are the writer 17980 * lets mark to_ill as changing as well. 17981 */ 17982 17983 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17984 if (ill_to_v4 != NULL) 17985 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17986 if (ill_to_v6 != NULL) 17987 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17988 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17989 17990 /* 17991 * Its ok for us to proceed with the move even if 17992 * ill_pending_mp is non null on one of the from ill's as the reply 17993 * should not be looking at the ipif, it should only care about the 17994 * ill itself. 17995 */ 17996 17997 /* 17998 * lets move ipv4 first. 17999 */ 18000 if (ill_from_v4 != NULL) { 18001 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18002 ill_from_v4->ill_move_in_progress = B_TRUE; 18003 ill_to_v4->ill_move_in_progress = B_TRUE; 18004 ill_to_v4->ill_move_peer = ill_from_v4; 18005 ill_from_v4->ill_move_peer = ill_to_v4; 18006 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18007 } 18008 18009 /* 18010 * Now lets move ipv6. 18011 */ 18012 if (err == 0 && ill_from_v6 != NULL) { 18013 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18014 ill_from_v6->ill_move_in_progress = B_TRUE; 18015 ill_to_v6->ill_move_in_progress = B_TRUE; 18016 ill_to_v6->ill_move_peer = ill_from_v6; 18017 ill_from_v6->ill_move_peer = ill_to_v6; 18018 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18019 } 18020 18021 err_ret: 18022 /* 18023 * EINPROGRESS means we are waiting for the ipif's that need to be 18024 * moved to become quiescent. 18025 */ 18026 if (err == EINPROGRESS) { 18027 goto done; 18028 } 18029 18030 /* 18031 * if err is set ill_up_ipifs will not be called 18032 * lets clear the flags. 18033 */ 18034 18035 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18036 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18037 /* 18038 * Some of the clearing may be redundant. But it is simple 18039 * not making any extra checks. 18040 */ 18041 if (ill_from_v6 != NULL) { 18042 ill_from_v6->ill_move_in_progress = B_FALSE; 18043 ill_from_v6->ill_move_peer = NULL; 18044 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18045 } 18046 if (ill_from_v4 != NULL) { 18047 ill_from_v4->ill_move_in_progress = B_FALSE; 18048 ill_from_v4->ill_move_peer = NULL; 18049 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18050 } 18051 if (ill_to_v6 != NULL) { 18052 ill_to_v6->ill_move_in_progress = B_FALSE; 18053 ill_to_v6->ill_move_peer = NULL; 18054 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18055 } 18056 if (ill_to_v4 != NULL) { 18057 ill_to_v4->ill_move_in_progress = B_FALSE; 18058 ill_to_v4->ill_move_peer = NULL; 18059 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18060 } 18061 18062 /* 18063 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18064 * Do this always to maintain proper state i.e even in case of errors. 18065 * As phyint_inactive looks at both v4 and v6 interfaces, 18066 * we need not call on both v4 and v6 interfaces. 18067 */ 18068 if (ill_from_v4 != NULL) { 18069 if ((ill_from_v4->ill_phyint->phyint_flags & 18070 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18071 phyint_inactive(ill_from_v4->ill_phyint); 18072 } 18073 } else if (ill_from_v6 != NULL) { 18074 if ((ill_from_v6->ill_phyint->phyint_flags & 18075 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18076 phyint_inactive(ill_from_v6->ill_phyint); 18077 } 18078 } 18079 18080 if (ill_to_v4 != NULL) { 18081 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18082 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18083 } 18084 } else if (ill_to_v6 != NULL) { 18085 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18086 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18087 } 18088 } 18089 18090 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18091 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18092 18093 no_err: 18094 /* 18095 * lets bring the interfaces up on the to_ill. 18096 */ 18097 if (err == 0) { 18098 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18099 q, mp); 18100 } 18101 18102 if (err == 0) { 18103 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18104 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18105 18106 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18107 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18108 } 18109 done: 18110 18111 if (ill_to_v4 != NULL) { 18112 ill_refrele(ill_to_v4); 18113 } 18114 if (ill_to_v6 != NULL) { 18115 ill_refrele(ill_to_v6); 18116 } 18117 18118 return (err); 18119 } 18120 18121 static void 18122 ill_dl_down(ill_t *ill) 18123 { 18124 /* 18125 * The ill is down; unbind but stay attached since we're still 18126 * associated with a PPA. If we have negotiated DLPI capabilites 18127 * with the data link service provider (IDS_OK) then reset them. 18128 * The interval between unbinding and rebinding is potentially 18129 * unbounded hence we cannot assume things will be the same. 18130 * The DLPI capabilities will be probed again when the data link 18131 * is brought up. 18132 */ 18133 mblk_t *mp = ill->ill_unbind_mp; 18134 hook_nic_event_t *info; 18135 18136 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18137 18138 ill->ill_unbind_mp = NULL; 18139 if (mp != NULL) { 18140 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18141 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18142 ill->ill_name)); 18143 mutex_enter(&ill->ill_lock); 18144 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18145 mutex_exit(&ill->ill_lock); 18146 if (ill->ill_dlpi_capab_state == IDS_OK) 18147 ill_capability_reset(ill); 18148 ill_dlpi_send(ill, mp); 18149 } 18150 18151 /* 18152 * Toss all of our multicast memberships. We could keep them, but 18153 * then we'd have to do bookkeeping of any joins and leaves performed 18154 * by the application while the the interface is down (we can't just 18155 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18156 * on a downed interface). 18157 */ 18158 ill_leave_multicast(ill); 18159 18160 mutex_enter(&ill->ill_lock); 18161 18162 ill->ill_dl_up = 0; 18163 18164 if ((info = ill->ill_nic_event_info) != NULL) { 18165 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18166 info->hne_event, ill->ill_name)); 18167 if (info->hne_data != NULL) 18168 kmem_free(info->hne_data, info->hne_datalen); 18169 kmem_free(info, sizeof (hook_nic_event_t)); 18170 } 18171 18172 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18173 if (info != NULL) { 18174 ip_stack_t *ipst = ill->ill_ipst; 18175 18176 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 18177 info->hne_lif = 0; 18178 info->hne_event = NE_DOWN; 18179 info->hne_data = NULL; 18180 info->hne_datalen = 0; 18181 info->hne_family = ill->ill_isv6 ? 18182 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18183 } else 18184 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18185 "information for %s (ENOMEM)\n", ill->ill_name)); 18186 18187 ill->ill_nic_event_info = info; 18188 18189 mutex_exit(&ill->ill_lock); 18190 } 18191 18192 static void 18193 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18194 { 18195 union DL_primitives *dlp; 18196 t_uscalar_t prim; 18197 18198 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18199 18200 dlp = (union DL_primitives *)mp->b_rptr; 18201 prim = dlp->dl_primitive; 18202 18203 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18204 dlpi_prim_str(prim), prim, ill->ill_name)); 18205 18206 switch (prim) { 18207 case DL_PHYS_ADDR_REQ: 18208 { 18209 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18210 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18211 break; 18212 } 18213 case DL_BIND_REQ: 18214 mutex_enter(&ill->ill_lock); 18215 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18216 mutex_exit(&ill->ill_lock); 18217 break; 18218 } 18219 18220 /* 18221 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18222 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18223 * we only wait for the ACK of the DL_UNBIND_REQ. 18224 */ 18225 mutex_enter(&ill->ill_lock); 18226 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18227 (prim == DL_UNBIND_REQ)) { 18228 ill->ill_dlpi_pending = prim; 18229 } 18230 mutex_exit(&ill->ill_lock); 18231 18232 putnext(ill->ill_wq, mp); 18233 } 18234 18235 /* 18236 * Helper function for ill_dlpi_send(). 18237 */ 18238 /* ARGSUSED */ 18239 static void 18240 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18241 { 18242 ill_dlpi_send((ill_t *)q->q_ptr, mp); 18243 } 18244 18245 /* 18246 * Send a DLPI control message to the driver but make sure there 18247 * is only one outstanding message. Uses ill_dlpi_pending to tell 18248 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18249 * when an ACK or a NAK is received to process the next queued message. 18250 */ 18251 void 18252 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18253 { 18254 mblk_t **mpp; 18255 18256 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18257 18258 /* 18259 * To ensure that any DLPI requests for current exclusive operation 18260 * are always completely sent before any DLPI messages for other 18261 * operations, require writer access before enqueuing. 18262 */ 18263 if (!IAM_WRITER_ILL(ill)) { 18264 ill_refhold(ill); 18265 /* qwriter_ip() does the ill_refrele() */ 18266 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18267 NEW_OP, B_TRUE); 18268 return; 18269 } 18270 18271 mutex_enter(&ill->ill_lock); 18272 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18273 /* Must queue message. Tail insertion */ 18274 mpp = &ill->ill_dlpi_deferred; 18275 while (*mpp != NULL) 18276 mpp = &((*mpp)->b_next); 18277 18278 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18279 ill->ill_name)); 18280 18281 *mpp = mp; 18282 mutex_exit(&ill->ill_lock); 18283 return; 18284 } 18285 mutex_exit(&ill->ill_lock); 18286 ill_dlpi_dispatch(ill, mp); 18287 } 18288 18289 /* 18290 * Send all deferred DLPI messages without waiting for their ACKs. 18291 */ 18292 void 18293 ill_dlpi_send_deferred(ill_t *ill) 18294 { 18295 mblk_t *mp, *nextmp; 18296 18297 /* 18298 * Clear ill_dlpi_pending so that the message is not queued in 18299 * ill_dlpi_send(). 18300 */ 18301 mutex_enter(&ill->ill_lock); 18302 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18303 mp = ill->ill_dlpi_deferred; 18304 ill->ill_dlpi_deferred = NULL; 18305 mutex_exit(&ill->ill_lock); 18306 18307 for (; mp != NULL; mp = nextmp) { 18308 nextmp = mp->b_next; 18309 mp->b_next = NULL; 18310 ill_dlpi_send(ill, mp); 18311 } 18312 } 18313 18314 /* 18315 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18316 */ 18317 boolean_t 18318 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18319 { 18320 t_uscalar_t pending; 18321 18322 mutex_enter(&ill->ill_lock); 18323 if (ill->ill_dlpi_pending == prim) { 18324 mutex_exit(&ill->ill_lock); 18325 return (B_TRUE); 18326 } 18327 18328 /* 18329 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18330 * without waiting, so don't print any warnings in that case. 18331 */ 18332 if (ill->ill_state_flags & ILL_CONDEMNED) { 18333 mutex_exit(&ill->ill_lock); 18334 return (B_FALSE); 18335 } 18336 pending = ill->ill_dlpi_pending; 18337 mutex_exit(&ill->ill_lock); 18338 18339 if (pending == DL_PRIM_INVAL) { 18340 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18341 "received unsolicited ack for %s on %s\n", 18342 dlpi_prim_str(prim), ill->ill_name); 18343 } else { 18344 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18345 "received unexpected ack for %s on %s (expecting %s)\n", 18346 dlpi_prim_str(prim), ill->ill_name, dlpi_prim_str(pending)); 18347 } 18348 return (B_FALSE); 18349 } 18350 18351 /* 18352 * Called when an DLPI control message has been acked or nacked to 18353 * send down the next queued message (if any). 18354 */ 18355 void 18356 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18357 { 18358 mblk_t *mp; 18359 18360 ASSERT(IAM_WRITER_ILL(ill)); 18361 mutex_enter(&ill->ill_lock); 18362 18363 ASSERT(prim != DL_PRIM_INVAL); 18364 ASSERT(ill->ill_dlpi_pending == prim); 18365 18366 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18367 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18368 18369 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18370 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18371 cv_signal(&ill->ill_cv); 18372 mutex_exit(&ill->ill_lock); 18373 return; 18374 } 18375 18376 ill->ill_dlpi_deferred = mp->b_next; 18377 mp->b_next = NULL; 18378 mutex_exit(&ill->ill_lock); 18379 18380 ill_dlpi_dispatch(ill, mp); 18381 } 18382 18383 void 18384 conn_delete_ire(conn_t *connp, caddr_t arg) 18385 { 18386 ipif_t *ipif = (ipif_t *)arg; 18387 ire_t *ire; 18388 18389 /* 18390 * Look at the cached ires on conns which has pointers to ipifs. 18391 * We just call ire_refrele which clears up the reference 18392 * to ire. Called when a conn closes. Also called from ipif_free 18393 * to cleanup indirect references to the stale ipif via the cached ire. 18394 */ 18395 mutex_enter(&connp->conn_lock); 18396 ire = connp->conn_ire_cache; 18397 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18398 connp->conn_ire_cache = NULL; 18399 mutex_exit(&connp->conn_lock); 18400 IRE_REFRELE_NOTR(ire); 18401 return; 18402 } 18403 mutex_exit(&connp->conn_lock); 18404 18405 } 18406 18407 /* 18408 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18409 * of IREs. Those IREs may have been previously cached in the conn structure. 18410 * This ipcl_walk() walker function releases all references to such IREs based 18411 * on the condemned flag. 18412 */ 18413 /* ARGSUSED */ 18414 void 18415 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18416 { 18417 ire_t *ire; 18418 18419 mutex_enter(&connp->conn_lock); 18420 ire = connp->conn_ire_cache; 18421 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18422 connp->conn_ire_cache = NULL; 18423 mutex_exit(&connp->conn_lock); 18424 IRE_REFRELE_NOTR(ire); 18425 return; 18426 } 18427 mutex_exit(&connp->conn_lock); 18428 } 18429 18430 /* 18431 * Take down a specific interface, but don't lose any information about it. 18432 * Also delete interface from its interface group (ifgrp). 18433 * (Always called as writer.) 18434 * This function goes through the down sequence even if the interface is 18435 * already down. There are 2 reasons. 18436 * a. Currently we permit interface routes that depend on down interfaces 18437 * to be added. This behaviour itself is questionable. However it appears 18438 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18439 * time. We go thru the cleanup in order to remove these routes. 18440 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18441 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18442 * down, but we need to cleanup i.e. do ill_dl_down and 18443 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18444 * 18445 * IP-MT notes: 18446 * 18447 * Model of reference to interfaces. 18448 * 18449 * The following members in ipif_t track references to the ipif. 18450 * int ipif_refcnt; Active reference count 18451 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18452 * The following members in ill_t track references to the ill. 18453 * int ill_refcnt; active refcnt 18454 * uint_t ill_ire_cnt; Number of ires referencing ill 18455 * uint_t ill_nce_cnt; Number of nces referencing ill 18456 * 18457 * Reference to an ipif or ill can be obtained in any of the following ways. 18458 * 18459 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18460 * Pointers to ipif / ill from other data structures viz ire and conn. 18461 * Implicit reference to the ipif / ill by holding a reference to the ire. 18462 * 18463 * The ipif/ill lookup functions return a reference held ipif / ill. 18464 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18465 * This is a purely dynamic reference count associated with threads holding 18466 * references to the ipif / ill. Pointers from other structures do not 18467 * count towards this reference count. 18468 * 18469 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18470 * ipif/ill. This is incremented whenever a new ire is created referencing the 18471 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18472 * actually added to the ire hash table. The count is decremented in 18473 * ire_inactive where the ire is destroyed. 18474 * 18475 * nce's reference ill's thru nce_ill and the count of nce's associated with 18476 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18477 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18478 * table. Similarly it is decremented in ndp_inactive() where the nce 18479 * is destroyed. 18480 * 18481 * Flow of ioctls involving interface down/up 18482 * 18483 * The following is the sequence of an attempt to set some critical flags on an 18484 * up interface. 18485 * ip_sioctl_flags 18486 * ipif_down 18487 * wait for ipif to be quiescent 18488 * ipif_down_tail 18489 * ip_sioctl_flags_tail 18490 * 18491 * All set ioctls that involve down/up sequence would have a skeleton similar 18492 * to the above. All the *tail functions are called after the refcounts have 18493 * dropped to the appropriate values. 18494 * 18495 * The mechanism to quiesce an ipif is as follows. 18496 * 18497 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18498 * on the ipif. Callers either pass a flag requesting wait or the lookup 18499 * functions will return NULL. 18500 * 18501 * Delete all ires referencing this ipif 18502 * 18503 * Any thread attempting to do an ipif_refhold on an ipif that has been 18504 * obtained thru a cached pointer will first make sure that 18505 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18506 * increment the refcount. 18507 * 18508 * The above guarantees that the ipif refcount will eventually come down to 18509 * zero and the ipif will quiesce, once all threads that currently hold a 18510 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18511 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18512 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18513 * drop to zero. 18514 * 18515 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18516 * 18517 * Threads trying to lookup an ipif or ill can pass a flag requesting 18518 * wait and restart if the ipif / ill cannot be looked up currently. 18519 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18520 * failure if the ipif is currently undergoing an exclusive operation, and 18521 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18522 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18523 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18524 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18525 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18526 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18527 * until we release the ipsq_lock, even though the the ill/ipif state flags 18528 * can change after we drop the ill_lock. 18529 * 18530 * An attempt to send out a packet using an ipif that is currently 18531 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18532 * operation and restart it later when the exclusive condition on the ipif ends. 18533 * This is an example of not passing the wait flag to the lookup functions. For 18534 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18535 * out a multicast packet on that ipif will fail while the ipif is 18536 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18537 * currently IPIF_CHANGING will also fail. 18538 */ 18539 int 18540 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18541 { 18542 ill_t *ill = ipif->ipif_ill; 18543 phyint_t *phyi; 18544 conn_t *connp; 18545 boolean_t success; 18546 boolean_t ipif_was_up = B_FALSE; 18547 ip_stack_t *ipst = ill->ill_ipst; 18548 18549 ASSERT(IAM_WRITER_IPIF(ipif)); 18550 18551 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18552 18553 if (ipif->ipif_flags & IPIF_UP) { 18554 mutex_enter(&ill->ill_lock); 18555 ipif->ipif_flags &= ~IPIF_UP; 18556 ASSERT(ill->ill_ipif_up_count > 0); 18557 --ill->ill_ipif_up_count; 18558 mutex_exit(&ill->ill_lock); 18559 ipif_was_up = B_TRUE; 18560 /* Update status in SCTP's list */ 18561 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18562 } 18563 18564 /* 18565 * Blow away memberships we established in ipif_multicast_up(). 18566 */ 18567 ipif_multicast_down(ipif); 18568 18569 /* 18570 * Remove from the mapping for __sin6_src_id. We insert only 18571 * when the address is not INADDR_ANY. As IPv4 addresses are 18572 * stored as mapped addresses, we need to check for mapped 18573 * INADDR_ANY also. 18574 */ 18575 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18576 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18577 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18578 int err; 18579 18580 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18581 ipif->ipif_zoneid, ipst); 18582 if (err != 0) { 18583 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18584 } 18585 } 18586 18587 /* 18588 * Before we delete the ill from the group (if any), we need 18589 * to make sure that we delete all the routes dependent on 18590 * this and also any ipifs dependent on this ipif for 18591 * source address. We need to do before we delete from 18592 * the group because 18593 * 18594 * 1) ipif_down_delete_ire de-references ill->ill_group. 18595 * 18596 * 2) ipif_update_other_ipifs needs to walk the whole group 18597 * for re-doing source address selection. Note that 18598 * ipif_select_source[_v6] called from 18599 * ipif_update_other_ipifs[_v6] will not pick this ipif 18600 * because we have already marked down here i.e cleared 18601 * IPIF_UP. 18602 */ 18603 if (ipif->ipif_isv6) { 18604 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18605 ipst); 18606 } else { 18607 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18608 ipst); 18609 } 18610 18611 /* 18612 * Cleaning up the conn_ire_cache or conns must be done only after the 18613 * ires have been deleted above. Otherwise a thread could end up 18614 * caching an ire in a conn after we have finished the cleanup of the 18615 * conn. The caching is done after making sure that the ire is not yet 18616 * condemned. Also documented in the block comment above ip_output 18617 */ 18618 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18619 /* Also, delete the ires cached in SCTP */ 18620 sctp_ire_cache_flush(ipif); 18621 18622 /* 18623 * Update any other ipifs which have used "our" local address as 18624 * a source address. This entails removing and recreating IRE_INTERFACE 18625 * entries for such ipifs. 18626 */ 18627 if (ipif->ipif_isv6) 18628 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18629 else 18630 ipif_update_other_ipifs(ipif, ill->ill_group); 18631 18632 if (ipif_was_up) { 18633 /* 18634 * Check whether it is last ipif to leave this group. 18635 * If this is the last ipif to leave, we should remove 18636 * this ill from the group as ipif_select_source will not 18637 * be able to find any useful ipifs if this ill is selected 18638 * for load balancing. 18639 * 18640 * For nameless groups, we should call ifgrp_delete if this 18641 * belongs to some group. As this ipif is going down, we may 18642 * need to reconstruct groups. 18643 */ 18644 phyi = ill->ill_phyint; 18645 /* 18646 * If the phyint_groupname_len is 0, it may or may not 18647 * be in the nameless group. If the phyint_groupname_len is 18648 * not 0, then this ill should be part of some group. 18649 * As we always insert this ill in the group if 18650 * phyint_groupname_len is not zero when the first ipif 18651 * comes up (in ipif_up_done), it should be in a group 18652 * when the namelen is not 0. 18653 * 18654 * NOTE : When we delete the ill from the group,it will 18655 * blow away all the IRE_CACHES pointing either at this ipif or 18656 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18657 * should be pointing at this ill. 18658 */ 18659 ASSERT(phyi->phyint_groupname_len == 0 || 18660 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18661 18662 if (phyi->phyint_groupname_len != 0) { 18663 if (ill->ill_ipif_up_count == 0) 18664 illgrp_delete(ill); 18665 } 18666 18667 /* 18668 * If we have deleted some of the broadcast ires associated 18669 * with this ipif, we need to re-nominate somebody else if 18670 * the ires that we deleted were the nominated ones. 18671 */ 18672 if (ill->ill_group != NULL && !ill->ill_isv6) 18673 ipif_renominate_bcast(ipif); 18674 } 18675 18676 /* 18677 * neighbor-discovery or arp entries for this interface. 18678 */ 18679 ipif_ndp_down(ipif); 18680 18681 /* 18682 * If mp is NULL the caller will wait for the appropriate refcnt. 18683 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18684 * and ill_delete -> ipif_free -> ipif_down 18685 */ 18686 if (mp == NULL) { 18687 ASSERT(q == NULL); 18688 return (0); 18689 } 18690 18691 if (CONN_Q(q)) { 18692 connp = Q_TO_CONN(q); 18693 mutex_enter(&connp->conn_lock); 18694 } else { 18695 connp = NULL; 18696 } 18697 mutex_enter(&ill->ill_lock); 18698 /* 18699 * Are there any ire's pointing to this ipif that are still active ? 18700 * If this is the last ipif going down, are there any ire's pointing 18701 * to this ill that are still active ? 18702 */ 18703 if (ipif_is_quiescent(ipif)) { 18704 mutex_exit(&ill->ill_lock); 18705 if (connp != NULL) 18706 mutex_exit(&connp->conn_lock); 18707 return (0); 18708 } 18709 18710 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18711 ill->ill_name, (void *)ill)); 18712 /* 18713 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18714 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18715 * which in turn is called by the last refrele on the ipif/ill/ire. 18716 */ 18717 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18718 if (!success) { 18719 /* The conn is closing. So just return */ 18720 ASSERT(connp != NULL); 18721 mutex_exit(&ill->ill_lock); 18722 mutex_exit(&connp->conn_lock); 18723 return (EINTR); 18724 } 18725 18726 mutex_exit(&ill->ill_lock); 18727 if (connp != NULL) 18728 mutex_exit(&connp->conn_lock); 18729 return (EINPROGRESS); 18730 } 18731 18732 void 18733 ipif_down_tail(ipif_t *ipif) 18734 { 18735 ill_t *ill = ipif->ipif_ill; 18736 18737 /* 18738 * Skip any loopback interface (null wq). 18739 * If this is the last logical interface on the ill 18740 * have ill_dl_down tell the driver we are gone (unbind) 18741 * Note that lun 0 can ipif_down even though 18742 * there are other logical units that are up. 18743 * This occurs e.g. when we change a "significant" IFF_ flag. 18744 */ 18745 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18746 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18747 ill->ill_dl_up) { 18748 ill_dl_down(ill); 18749 } 18750 ill->ill_logical_down = 0; 18751 18752 /* 18753 * Have to be after removing the routes in ipif_down_delete_ire. 18754 */ 18755 if (ipif->ipif_isv6) { 18756 if (ill->ill_flags & ILLF_XRESOLV) 18757 ipif_arp_down(ipif); 18758 } else { 18759 ipif_arp_down(ipif); 18760 } 18761 18762 ip_rts_ifmsg(ipif); 18763 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18764 } 18765 18766 /* 18767 * Bring interface logically down without bringing the physical interface 18768 * down e.g. when the netmask is changed. This avoids long lasting link 18769 * negotiations between an ethernet interface and a certain switches. 18770 */ 18771 static int 18772 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18773 { 18774 /* 18775 * The ill_logical_down flag is a transient flag. It is set here 18776 * and is cleared once the down has completed in ipif_down_tail. 18777 * This flag does not indicate whether the ill stream is in the 18778 * DL_BOUND state with the driver. Instead this flag is used by 18779 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18780 * the driver. The state of the ill stream i.e. whether it is 18781 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18782 */ 18783 ipif->ipif_ill->ill_logical_down = 1; 18784 return (ipif_down(ipif, q, mp)); 18785 } 18786 18787 /* 18788 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18789 * If the usesrc client ILL is already part of a usesrc group or not, 18790 * in either case a ire_stq with the matching usesrc client ILL will 18791 * locate the IRE's that need to be deleted. We want IREs to be created 18792 * with the new source address. 18793 */ 18794 static void 18795 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18796 { 18797 ill_t *ucill = (ill_t *)ill_arg; 18798 18799 ASSERT(IAM_WRITER_ILL(ucill)); 18800 18801 if (ire->ire_stq == NULL) 18802 return; 18803 18804 if ((ire->ire_type == IRE_CACHE) && 18805 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18806 ire_delete(ire); 18807 } 18808 18809 /* 18810 * ire_walk routine to delete every IRE dependent on the interface 18811 * address that is going down. (Always called as writer.) 18812 * Works for both v4 and v6. 18813 * In addition for checking for ire_ipif matches it also checks for 18814 * IRE_CACHE entries which have the same source address as the 18815 * disappearing ipif since ipif_select_source might have picked 18816 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18817 * care of any IRE_INTERFACE with the disappearing source address. 18818 */ 18819 static void 18820 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18821 { 18822 ipif_t *ipif = (ipif_t *)ipif_arg; 18823 ill_t *ire_ill; 18824 ill_t *ipif_ill; 18825 18826 ASSERT(IAM_WRITER_IPIF(ipif)); 18827 if (ire->ire_ipif == NULL) 18828 return; 18829 18830 /* 18831 * For IPv4, we derive source addresses for an IRE from ipif's 18832 * belonging to the same IPMP group as the IRE's outgoing 18833 * interface. If an IRE's outgoing interface isn't in the 18834 * same IPMP group as a particular ipif, then that ipif 18835 * couldn't have been used as a source address for this IRE. 18836 * 18837 * For IPv6, source addresses are only restricted to the IPMP group 18838 * if the IRE is for a link-local address or a multicast address. 18839 * Otherwise, source addresses for an IRE can be chosen from 18840 * interfaces other than the the outgoing interface for that IRE. 18841 * 18842 * For source address selection details, see ipif_select_source() 18843 * and ipif_select_source_v6(). 18844 */ 18845 if (ire->ire_ipversion == IPV4_VERSION || 18846 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18847 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18848 ire_ill = ire->ire_ipif->ipif_ill; 18849 ipif_ill = ipif->ipif_ill; 18850 18851 if (ire_ill->ill_group != ipif_ill->ill_group) { 18852 return; 18853 } 18854 } 18855 18856 18857 if (ire->ire_ipif != ipif) { 18858 /* 18859 * Look for a matching source address. 18860 */ 18861 if (ire->ire_type != IRE_CACHE) 18862 return; 18863 if (ipif->ipif_flags & IPIF_NOLOCAL) 18864 return; 18865 18866 if (ire->ire_ipversion == IPV4_VERSION) { 18867 if (ire->ire_src_addr != ipif->ipif_src_addr) 18868 return; 18869 } else { 18870 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18871 &ipif->ipif_v6lcl_addr)) 18872 return; 18873 } 18874 ire_delete(ire); 18875 return; 18876 } 18877 /* 18878 * ire_delete() will do an ire_flush_cache which will delete 18879 * all ire_ipif matches 18880 */ 18881 ire_delete(ire); 18882 } 18883 18884 /* 18885 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18886 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18887 * 2) when an interface is brought up or down (on that ill). 18888 * This ensures that the IRE_CACHE entries don't retain stale source 18889 * address selection results. 18890 */ 18891 void 18892 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18893 { 18894 ill_t *ill = (ill_t *)ill_arg; 18895 ill_t *ipif_ill; 18896 18897 ASSERT(IAM_WRITER_ILL(ill)); 18898 /* 18899 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18900 * Hence this should be IRE_CACHE. 18901 */ 18902 ASSERT(ire->ire_type == IRE_CACHE); 18903 18904 /* 18905 * We are called for IRE_CACHES whose ire_ipif matches ill. 18906 * We are only interested in IRE_CACHES that has borrowed 18907 * the source address from ill_arg e.g. ipif_up_done[_v6] 18908 * for which we need to look at ire_ipif->ipif_ill match 18909 * with ill. 18910 */ 18911 ASSERT(ire->ire_ipif != NULL); 18912 ipif_ill = ire->ire_ipif->ipif_ill; 18913 if (ipif_ill == ill || (ill->ill_group != NULL && 18914 ipif_ill->ill_group == ill->ill_group)) { 18915 ire_delete(ire); 18916 } 18917 } 18918 18919 /* 18920 * Delete all the ire whose stq references ill_arg. 18921 */ 18922 static void 18923 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18924 { 18925 ill_t *ill = (ill_t *)ill_arg; 18926 ill_t *ire_ill; 18927 18928 ASSERT(IAM_WRITER_ILL(ill)); 18929 /* 18930 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18931 * Hence this should be IRE_CACHE. 18932 */ 18933 ASSERT(ire->ire_type == IRE_CACHE); 18934 18935 /* 18936 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18937 * matches ill. We are only interested in IRE_CACHES that 18938 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18939 * filtering here. 18940 */ 18941 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18942 18943 if (ire_ill == ill) 18944 ire_delete(ire); 18945 } 18946 18947 /* 18948 * This is called when an ill leaves the group. We want to delete 18949 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18950 * pointing at ill. 18951 */ 18952 static void 18953 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18954 { 18955 ill_t *ill = (ill_t *)ill_arg; 18956 18957 ASSERT(IAM_WRITER_ILL(ill)); 18958 ASSERT(ill->ill_group == NULL); 18959 /* 18960 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18961 * Hence this should be IRE_CACHE. 18962 */ 18963 ASSERT(ire->ire_type == IRE_CACHE); 18964 /* 18965 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18966 * matches ill. We are interested in both. 18967 */ 18968 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18969 (ire->ire_ipif->ipif_ill == ill)); 18970 18971 ire_delete(ire); 18972 } 18973 18974 /* 18975 * Initiate deallocate of an IPIF. Always called as writer. Called by 18976 * ill_delete or ip_sioctl_removeif. 18977 */ 18978 static void 18979 ipif_free(ipif_t *ipif) 18980 { 18981 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18982 18983 ASSERT(IAM_WRITER_IPIF(ipif)); 18984 18985 if (ipif->ipif_recovery_id != 0) 18986 (void) untimeout(ipif->ipif_recovery_id); 18987 ipif->ipif_recovery_id = 0; 18988 18989 /* Remove conn references */ 18990 reset_conn_ipif(ipif); 18991 18992 /* 18993 * Make sure we have valid net and subnet broadcast ire's for the 18994 * other ipif's which share them with this ipif. 18995 */ 18996 if (!ipif->ipif_isv6) 18997 ipif_check_bcast_ires(ipif); 18998 18999 /* 19000 * Take down the interface. We can be called either from ill_delete 19001 * or from ip_sioctl_removeif. 19002 */ 19003 (void) ipif_down(ipif, NULL, NULL); 19004 19005 /* 19006 * Now that the interface is down, there's no chance it can still 19007 * become a duplicate. Cancel any timer that may have been set while 19008 * tearing down. 19009 */ 19010 if (ipif->ipif_recovery_id != 0) 19011 (void) untimeout(ipif->ipif_recovery_id); 19012 ipif->ipif_recovery_id = 0; 19013 19014 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19015 /* Remove pointers to this ill in the multicast routing tables */ 19016 reset_mrt_vif_ipif(ipif); 19017 rw_exit(&ipst->ips_ill_g_lock); 19018 } 19019 19020 /* 19021 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19022 * also ill_move(). 19023 */ 19024 static void 19025 ipif_free_tail(ipif_t *ipif) 19026 { 19027 mblk_t *mp; 19028 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19029 19030 /* 19031 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19032 */ 19033 mutex_enter(&ipif->ipif_saved_ire_lock); 19034 mp = ipif->ipif_saved_ire_mp; 19035 ipif->ipif_saved_ire_mp = NULL; 19036 mutex_exit(&ipif->ipif_saved_ire_lock); 19037 freemsg(mp); 19038 19039 /* 19040 * Need to hold both ill_g_lock and ill_lock while 19041 * inserting or removing an ipif from the linked list 19042 * of ipifs hanging off the ill. 19043 */ 19044 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19045 /* 19046 * Remove all IPv4 multicast memberships on the interface now. 19047 * IPv6 is not handled here as the multicast memberships are 19048 * tied to the ill rather than the ipif. 19049 */ 19050 ilm_free(ipif); 19051 19052 /* 19053 * Since we held the ill_g_lock while doing the ilm_free above, 19054 * we can assert the ilms were really deleted and not just marked 19055 * ILM_DELETED. 19056 */ 19057 ASSERT(ilm_walk_ipif(ipif) == 0); 19058 19059 #ifdef DEBUG 19060 ipif_trace_cleanup(ipif); 19061 #endif 19062 19063 /* Ask SCTP to take it out of it list */ 19064 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19065 19066 /* Get it out of the ILL interface list. */ 19067 ipif_remove(ipif, B_TRUE); 19068 rw_exit(&ipst->ips_ill_g_lock); 19069 19070 mutex_destroy(&ipif->ipif_saved_ire_lock); 19071 19072 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19073 ASSERT(ipif->ipif_recovery_id == 0); 19074 19075 /* Free the memory. */ 19076 mi_free(ipif); 19077 } 19078 19079 /* 19080 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19081 * is zero. 19082 */ 19083 void 19084 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19085 { 19086 char lbuf[LIFNAMSIZ]; 19087 char *name; 19088 size_t name_len; 19089 19090 buf[0] = '\0'; 19091 name = ipif->ipif_ill->ill_name; 19092 name_len = ipif->ipif_ill->ill_name_length; 19093 if (ipif->ipif_id != 0) { 19094 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19095 ipif->ipif_id); 19096 name = lbuf; 19097 name_len = mi_strlen(name) + 1; 19098 } 19099 len -= 1; 19100 buf[len] = '\0'; 19101 len = MIN(len, name_len); 19102 bcopy(name, buf, len); 19103 } 19104 19105 /* 19106 * Find an IPIF based on the name passed in. Names can be of the 19107 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19108 * The <phys> string can have forms like <dev><#> (e.g., le0), 19109 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19110 * When there is no colon, the implied unit id is zero. <phys> must 19111 * correspond to the name of an ILL. (May be called as writer.) 19112 */ 19113 static ipif_t * 19114 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19115 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19116 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19117 { 19118 char *cp; 19119 char *endp; 19120 long id; 19121 ill_t *ill; 19122 ipif_t *ipif; 19123 uint_t ire_type; 19124 boolean_t did_alloc = B_FALSE; 19125 ipsq_t *ipsq; 19126 19127 if (error != NULL) 19128 *error = 0; 19129 19130 /* 19131 * If the caller wants to us to create the ipif, make sure we have a 19132 * valid zoneid 19133 */ 19134 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19135 19136 if (namelen == 0) { 19137 if (error != NULL) 19138 *error = ENXIO; 19139 return (NULL); 19140 } 19141 19142 *exists = B_FALSE; 19143 /* Look for a colon in the name. */ 19144 endp = &name[namelen]; 19145 for (cp = endp; --cp > name; ) { 19146 if (*cp == IPIF_SEPARATOR_CHAR) 19147 break; 19148 } 19149 19150 if (*cp == IPIF_SEPARATOR_CHAR) { 19151 /* 19152 * Reject any non-decimal aliases for logical 19153 * interfaces. Aliases with leading zeroes 19154 * are also rejected as they introduce ambiguity 19155 * in the naming of the interfaces. 19156 * In order to confirm with existing semantics, 19157 * and to not break any programs/script relying 19158 * on that behaviour, if<0>:0 is considered to be 19159 * a valid interface. 19160 * 19161 * If alias has two or more digits and the first 19162 * is zero, fail. 19163 */ 19164 if (&cp[2] < endp && cp[1] == '0') 19165 return (NULL); 19166 } 19167 19168 if (cp <= name) { 19169 cp = endp; 19170 } else { 19171 *cp = '\0'; 19172 } 19173 19174 /* 19175 * Look up the ILL, based on the portion of the name 19176 * before the slash. ill_lookup_on_name returns a held ill. 19177 * Temporary to check whether ill exists already. If so 19178 * ill_lookup_on_name will clear it. 19179 */ 19180 ill = ill_lookup_on_name(name, do_alloc, isv6, 19181 q, mp, func, error, &did_alloc, ipst); 19182 if (cp != endp) 19183 *cp = IPIF_SEPARATOR_CHAR; 19184 if (ill == NULL) 19185 return (NULL); 19186 19187 /* Establish the unit number in the name. */ 19188 id = 0; 19189 if (cp < endp && *endp == '\0') { 19190 /* If there was a colon, the unit number follows. */ 19191 cp++; 19192 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19193 ill_refrele(ill); 19194 if (error != NULL) 19195 *error = ENXIO; 19196 return (NULL); 19197 } 19198 } 19199 19200 GRAB_CONN_LOCK(q); 19201 mutex_enter(&ill->ill_lock); 19202 /* Now see if there is an IPIF with this unit number. */ 19203 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19204 if (ipif->ipif_id == id) { 19205 if (zoneid != ALL_ZONES && 19206 zoneid != ipif->ipif_zoneid && 19207 ipif->ipif_zoneid != ALL_ZONES) { 19208 mutex_exit(&ill->ill_lock); 19209 RELEASE_CONN_LOCK(q); 19210 ill_refrele(ill); 19211 if (error != NULL) 19212 *error = ENXIO; 19213 return (NULL); 19214 } 19215 /* 19216 * The block comment at the start of ipif_down 19217 * explains the use of the macros used below 19218 */ 19219 if (IPIF_CAN_LOOKUP(ipif)) { 19220 ipif_refhold_locked(ipif); 19221 mutex_exit(&ill->ill_lock); 19222 if (!did_alloc) 19223 *exists = B_TRUE; 19224 /* 19225 * Drop locks before calling ill_refrele 19226 * since it can potentially call into 19227 * ipif_ill_refrele_tail which can end up 19228 * in trying to acquire any lock. 19229 */ 19230 RELEASE_CONN_LOCK(q); 19231 ill_refrele(ill); 19232 return (ipif); 19233 } else if (IPIF_CAN_WAIT(ipif, q)) { 19234 ipsq = ill->ill_phyint->phyint_ipsq; 19235 mutex_enter(&ipsq->ipsq_lock); 19236 mutex_exit(&ill->ill_lock); 19237 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19238 mutex_exit(&ipsq->ipsq_lock); 19239 RELEASE_CONN_LOCK(q); 19240 ill_refrele(ill); 19241 *error = EINPROGRESS; 19242 return (NULL); 19243 } 19244 } 19245 } 19246 RELEASE_CONN_LOCK(q); 19247 19248 if (!do_alloc) { 19249 mutex_exit(&ill->ill_lock); 19250 ill_refrele(ill); 19251 if (error != NULL) 19252 *error = ENXIO; 19253 return (NULL); 19254 } 19255 19256 /* 19257 * If none found, atomically allocate and return a new one. 19258 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19259 * to support "receive only" use of lo0:1 etc. as is still done 19260 * below as an initial guess. 19261 * However, this is now likely to be overriden later in ipif_up_done() 19262 * when we know for sure what address has been configured on the 19263 * interface, since we might have more than one loopback interface 19264 * with a loopback address, e.g. in the case of zones, and all the 19265 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19266 */ 19267 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19268 ire_type = IRE_LOOPBACK; 19269 else 19270 ire_type = IRE_LOCAL; 19271 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19272 if (ipif != NULL) 19273 ipif_refhold_locked(ipif); 19274 else if (error != NULL) 19275 *error = ENOMEM; 19276 mutex_exit(&ill->ill_lock); 19277 ill_refrele(ill); 19278 return (ipif); 19279 } 19280 19281 /* 19282 * This routine is called whenever a new address comes up on an ipif. If 19283 * we are configured to respond to address mask requests, then we are supposed 19284 * to broadcast an address mask reply at this time. This routine is also 19285 * called if we are already up, but a netmask change is made. This is legal 19286 * but might not make the system manager very popular. (May be called 19287 * as writer.) 19288 */ 19289 void 19290 ipif_mask_reply(ipif_t *ipif) 19291 { 19292 icmph_t *icmph; 19293 ipha_t *ipha; 19294 mblk_t *mp; 19295 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19296 19297 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19298 19299 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19300 return; 19301 19302 /* ICMP mask reply is IPv4 only */ 19303 ASSERT(!ipif->ipif_isv6); 19304 /* ICMP mask reply is not for a loopback interface */ 19305 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19306 19307 mp = allocb(REPLY_LEN, BPRI_HI); 19308 if (mp == NULL) 19309 return; 19310 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19311 19312 ipha = (ipha_t *)mp->b_rptr; 19313 bzero(ipha, REPLY_LEN); 19314 *ipha = icmp_ipha; 19315 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19316 ipha->ipha_src = ipif->ipif_src_addr; 19317 ipha->ipha_dst = ipif->ipif_brd_addr; 19318 ipha->ipha_length = htons(REPLY_LEN); 19319 ipha->ipha_ident = 0; 19320 19321 icmph = (icmph_t *)&ipha[1]; 19322 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19323 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19324 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19325 19326 put(ipif->ipif_wq, mp); 19327 19328 #undef REPLY_LEN 19329 } 19330 19331 /* 19332 * When the mtu in the ipif changes, we call this routine through ire_walk 19333 * to update all the relevant IREs. 19334 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19335 */ 19336 static void 19337 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19338 { 19339 ipif_t *ipif = (ipif_t *)ipif_arg; 19340 19341 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19342 return; 19343 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19344 } 19345 19346 /* 19347 * When the mtu in the ill changes, we call this routine through ire_walk 19348 * to update all the relevant IREs. 19349 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19350 */ 19351 void 19352 ill_mtu_change(ire_t *ire, char *ill_arg) 19353 { 19354 ill_t *ill = (ill_t *)ill_arg; 19355 19356 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19357 return; 19358 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19359 } 19360 19361 /* 19362 * Join the ipif specific multicast groups. 19363 * Must be called after a mapping has been set up in the resolver. (Always 19364 * called as writer.) 19365 */ 19366 void 19367 ipif_multicast_up(ipif_t *ipif) 19368 { 19369 int err, index; 19370 ill_t *ill; 19371 19372 ASSERT(IAM_WRITER_IPIF(ipif)); 19373 19374 ill = ipif->ipif_ill; 19375 index = ill->ill_phyint->phyint_ifindex; 19376 19377 ip1dbg(("ipif_multicast_up\n")); 19378 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19379 return; 19380 19381 if (ipif->ipif_isv6) { 19382 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19383 return; 19384 19385 /* Join the all hosts multicast address */ 19386 ip1dbg(("ipif_multicast_up - addmulti\n")); 19387 /* 19388 * Passing B_TRUE means we have to join the multicast 19389 * membership on this interface even though this is 19390 * FAILED. If we join on a different one in the group, 19391 * we will not be able to delete the membership later 19392 * as we currently don't track where we join when we 19393 * join within the kernel unlike applications where 19394 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19395 * for more on this. 19396 */ 19397 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19398 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19399 if (err != 0) { 19400 ip0dbg(("ipif_multicast_up: " 19401 "all_hosts_mcast failed %d\n", 19402 err)); 19403 return; 19404 } 19405 /* 19406 * Enable multicast for the solicited node multicast address 19407 */ 19408 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19409 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19410 19411 ipv6_multi.s6_addr32[3] |= 19412 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19413 19414 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19415 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19416 NULL); 19417 if (err != 0) { 19418 ip0dbg(("ipif_multicast_up: solicited MC" 19419 " failed %d\n", err)); 19420 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19421 ill, ill->ill_phyint->phyint_ifindex, 19422 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19423 return; 19424 } 19425 } 19426 } else { 19427 if (ipif->ipif_lcl_addr == INADDR_ANY) 19428 return; 19429 19430 /* Join the all hosts multicast address */ 19431 ip1dbg(("ipif_multicast_up - addmulti\n")); 19432 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19433 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19434 if (err) { 19435 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19436 return; 19437 } 19438 } 19439 ipif->ipif_multicast_up = 1; 19440 } 19441 19442 /* 19443 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19444 * (Explicit memberships are blown away in ill_leave_multicast() when the 19445 * ill is brought down.) 19446 */ 19447 static void 19448 ipif_multicast_down(ipif_t *ipif) 19449 { 19450 int err; 19451 19452 ASSERT(IAM_WRITER_IPIF(ipif)); 19453 19454 ip1dbg(("ipif_multicast_down\n")); 19455 if (!ipif->ipif_multicast_up) 19456 return; 19457 19458 ip1dbg(("ipif_multicast_down - delmulti\n")); 19459 19460 if (!ipif->ipif_isv6) { 19461 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19462 B_TRUE); 19463 if (err != 0) 19464 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19465 19466 ipif->ipif_multicast_up = 0; 19467 return; 19468 } 19469 19470 /* 19471 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19472 * we should look for ilms on this ill rather than the ones that have 19473 * been failed over here. They are here temporarily. As 19474 * ipif_multicast_up has joined on this ill, we should delete only 19475 * from this ill. 19476 */ 19477 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19478 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19479 B_TRUE, B_TRUE); 19480 if (err != 0) { 19481 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19482 err)); 19483 } 19484 /* 19485 * Disable multicast for the solicited node multicast address 19486 */ 19487 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19488 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19489 19490 ipv6_multi.s6_addr32[3] |= 19491 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19492 19493 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19494 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19495 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19496 19497 if (err != 0) { 19498 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19499 err)); 19500 } 19501 } 19502 19503 ipif->ipif_multicast_up = 0; 19504 } 19505 19506 /* 19507 * Used when an interface comes up to recreate any extra routes on this 19508 * interface. 19509 */ 19510 static ire_t ** 19511 ipif_recover_ire(ipif_t *ipif) 19512 { 19513 mblk_t *mp; 19514 ire_t **ipif_saved_irep; 19515 ire_t **irep; 19516 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19517 19518 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19519 ipif->ipif_id)); 19520 19521 mutex_enter(&ipif->ipif_saved_ire_lock); 19522 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19523 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19524 if (ipif_saved_irep == NULL) { 19525 mutex_exit(&ipif->ipif_saved_ire_lock); 19526 return (NULL); 19527 } 19528 19529 irep = ipif_saved_irep; 19530 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19531 ire_t *ire; 19532 queue_t *rfq; 19533 queue_t *stq; 19534 ifrt_t *ifrt; 19535 uchar_t *src_addr; 19536 uchar_t *gateway_addr; 19537 ushort_t type; 19538 19539 /* 19540 * When the ire was initially created and then added in 19541 * ip_rt_add(), it was created either using ipif->ipif_net_type 19542 * in the case of a traditional interface route, or as one of 19543 * the IRE_OFFSUBNET types (with the exception of 19544 * IRE_HOST types ire which is created by icmp_redirect() and 19545 * which we don't need to save or recover). In the case where 19546 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19547 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19548 * to satisfy software like GateD and Sun Cluster which creates 19549 * routes using the the loopback interface's address as a 19550 * gateway. 19551 * 19552 * As ifrt->ifrt_type reflects the already updated ire_type, 19553 * ire_create() will be called in the same way here as 19554 * in ip_rt_add(), namely using ipif->ipif_net_type when 19555 * the route looks like a traditional interface route (where 19556 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19557 * the saved ifrt->ifrt_type. This means that in the case where 19558 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19559 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19560 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19561 */ 19562 ifrt = (ifrt_t *)mp->b_rptr; 19563 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19564 if (ifrt->ifrt_type & IRE_INTERFACE) { 19565 rfq = NULL; 19566 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19567 ? ipif->ipif_rq : ipif->ipif_wq; 19568 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19569 ? (uint8_t *)&ifrt->ifrt_src_addr 19570 : (uint8_t *)&ipif->ipif_src_addr; 19571 gateway_addr = NULL; 19572 type = ipif->ipif_net_type; 19573 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19574 /* Recover multiroute broadcast IRE. */ 19575 rfq = ipif->ipif_rq; 19576 stq = ipif->ipif_wq; 19577 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19578 ? (uint8_t *)&ifrt->ifrt_src_addr 19579 : (uint8_t *)&ipif->ipif_src_addr; 19580 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19581 type = ifrt->ifrt_type; 19582 } else { 19583 rfq = NULL; 19584 stq = NULL; 19585 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19586 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19587 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19588 type = ifrt->ifrt_type; 19589 } 19590 19591 /* 19592 * Create a copy of the IRE with the saved address and netmask. 19593 */ 19594 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19595 "0x%x/0x%x\n", 19596 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19597 ntohl(ifrt->ifrt_addr), 19598 ntohl(ifrt->ifrt_mask))); 19599 ire = ire_create( 19600 (uint8_t *)&ifrt->ifrt_addr, 19601 (uint8_t *)&ifrt->ifrt_mask, 19602 src_addr, 19603 gateway_addr, 19604 &ifrt->ifrt_max_frag, 19605 NULL, 19606 rfq, 19607 stq, 19608 type, 19609 ipif, 19610 0, 19611 0, 19612 0, 19613 ifrt->ifrt_flags, 19614 &ifrt->ifrt_iulp_info, 19615 NULL, 19616 NULL, 19617 ipst); 19618 19619 if (ire == NULL) { 19620 mutex_exit(&ipif->ipif_saved_ire_lock); 19621 kmem_free(ipif_saved_irep, 19622 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19623 return (NULL); 19624 } 19625 19626 /* 19627 * Some software (for example, GateD and Sun Cluster) attempts 19628 * to create (what amount to) IRE_PREFIX routes with the 19629 * loopback address as the gateway. This is primarily done to 19630 * set up prefixes with the RTF_REJECT flag set (for example, 19631 * when generating aggregate routes.) 19632 * 19633 * If the IRE type (as defined by ipif->ipif_net_type) is 19634 * IRE_LOOPBACK, then we map the request into a 19635 * IRE_IF_NORESOLVER. 19636 */ 19637 if (ipif->ipif_net_type == IRE_LOOPBACK) 19638 ire->ire_type = IRE_IF_NORESOLVER; 19639 /* 19640 * ire held by ire_add, will be refreled' towards the 19641 * the end of ipif_up_done 19642 */ 19643 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19644 *irep = ire; 19645 irep++; 19646 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19647 } 19648 mutex_exit(&ipif->ipif_saved_ire_lock); 19649 return (ipif_saved_irep); 19650 } 19651 19652 /* 19653 * Used to set the netmask and broadcast address to default values when the 19654 * interface is brought up. (Always called as writer.) 19655 */ 19656 static void 19657 ipif_set_default(ipif_t *ipif) 19658 { 19659 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19660 19661 if (!ipif->ipif_isv6) { 19662 /* 19663 * Interface holds an IPv4 address. Default 19664 * mask is the natural netmask. 19665 */ 19666 if (!ipif->ipif_net_mask) { 19667 ipaddr_t v4mask; 19668 19669 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19670 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19671 } 19672 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19673 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19674 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19675 } else { 19676 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19677 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19678 } 19679 /* 19680 * NOTE: SunOS 4.X does this even if the broadcast address 19681 * has been already set thus we do the same here. 19682 */ 19683 if (ipif->ipif_flags & IPIF_BROADCAST) { 19684 ipaddr_t v4addr; 19685 19686 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19687 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19688 } 19689 } else { 19690 /* 19691 * Interface holds an IPv6-only address. Default 19692 * mask is all-ones. 19693 */ 19694 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19695 ipif->ipif_v6net_mask = ipv6_all_ones; 19696 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19697 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19698 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19699 } else { 19700 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19701 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19702 } 19703 } 19704 } 19705 19706 /* 19707 * Return 0 if this address can be used as local address without causing 19708 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19709 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19710 * Special checks are needed to allow the same IPv6 link-local address 19711 * on different ills. 19712 * TODO: allowing the same site-local address on different ill's. 19713 */ 19714 int 19715 ip_addr_availability_check(ipif_t *new_ipif) 19716 { 19717 in6_addr_t our_v6addr; 19718 ill_t *ill; 19719 ipif_t *ipif; 19720 ill_walk_context_t ctx; 19721 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19722 19723 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19724 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19725 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19726 19727 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19728 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19729 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19730 return (0); 19731 19732 our_v6addr = new_ipif->ipif_v6lcl_addr; 19733 19734 if (new_ipif->ipif_isv6) 19735 ill = ILL_START_WALK_V6(&ctx, ipst); 19736 else 19737 ill = ILL_START_WALK_V4(&ctx, ipst); 19738 19739 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19740 for (ipif = ill->ill_ipif; ipif != NULL; 19741 ipif = ipif->ipif_next) { 19742 if ((ipif == new_ipif) || 19743 !(ipif->ipif_flags & IPIF_UP) || 19744 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19745 continue; 19746 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19747 &our_v6addr)) { 19748 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19749 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19750 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19751 ipif->ipif_flags |= IPIF_UNNUMBERED; 19752 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19753 new_ipif->ipif_ill != ill) 19754 continue; 19755 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19756 new_ipif->ipif_ill != ill) 19757 continue; 19758 else if (new_ipif->ipif_zoneid != 19759 ipif->ipif_zoneid && 19760 ipif->ipif_zoneid != ALL_ZONES && 19761 IS_LOOPBACK(ill)) 19762 continue; 19763 else if (new_ipif->ipif_ill == ill) 19764 return (EADDRINUSE); 19765 else 19766 return (EADDRNOTAVAIL); 19767 } 19768 } 19769 } 19770 19771 return (0); 19772 } 19773 19774 /* 19775 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19776 * IREs for the ipif. 19777 * When the routine returns EINPROGRESS then mp has been consumed and 19778 * the ioctl will be acked from ip_rput_dlpi. 19779 */ 19780 static int 19781 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19782 { 19783 ill_t *ill = ipif->ipif_ill; 19784 boolean_t isv6 = ipif->ipif_isv6; 19785 int err = 0; 19786 boolean_t success; 19787 19788 ASSERT(IAM_WRITER_IPIF(ipif)); 19789 19790 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19791 19792 /* Shouldn't get here if it is already up. */ 19793 if (ipif->ipif_flags & IPIF_UP) 19794 return (EALREADY); 19795 19796 /* Skip arp/ndp for any loopback interface. */ 19797 if (ill->ill_wq != NULL) { 19798 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19799 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19800 19801 if (!ill->ill_dl_up) { 19802 /* 19803 * ill_dl_up is not yet set. i.e. we are yet to 19804 * DL_BIND with the driver and this is the first 19805 * logical interface on the ill to become "up". 19806 * Tell the driver to get going (via DL_BIND_REQ). 19807 * Note that changing "significant" IFF_ flags 19808 * address/netmask etc cause a down/up dance, but 19809 * does not cause an unbind (DL_UNBIND) with the driver 19810 */ 19811 return (ill_dl_up(ill, ipif, mp, q)); 19812 } 19813 19814 /* 19815 * ipif_resolver_up may end up sending an 19816 * AR_INTERFACE_UP message to ARP, which would, in 19817 * turn send a DLPI message to the driver. ioctls are 19818 * serialized and so we cannot send more than one 19819 * interface up message at a time. If ipif_resolver_up 19820 * does send an interface up message to ARP, we get 19821 * EINPROGRESS and we will complete in ip_arp_done. 19822 */ 19823 19824 ASSERT(connp != NULL || !CONN_Q(q)); 19825 ASSERT(ipsq->ipsq_pending_mp == NULL); 19826 if (connp != NULL) 19827 mutex_enter(&connp->conn_lock); 19828 mutex_enter(&ill->ill_lock); 19829 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19830 mutex_exit(&ill->ill_lock); 19831 if (connp != NULL) 19832 mutex_exit(&connp->conn_lock); 19833 if (!success) 19834 return (EINTR); 19835 19836 /* 19837 * Crank up IPv6 neighbor discovery 19838 * Unlike ARP, this should complete when 19839 * ipif_ndp_up returns. However, for 19840 * ILLF_XRESOLV interfaces we also send a 19841 * AR_INTERFACE_UP to the external resolver. 19842 * That ioctl will complete in ip_rput. 19843 */ 19844 if (isv6) { 19845 err = ipif_ndp_up(ipif); 19846 if (err != 0) { 19847 if (err != EINPROGRESS) 19848 mp = ipsq_pending_mp_get(ipsq, &connp); 19849 return (err); 19850 } 19851 } 19852 /* Now, ARP */ 19853 err = ipif_resolver_up(ipif, Res_act_initial); 19854 if (err == EINPROGRESS) { 19855 /* We will complete it in ip_arp_done */ 19856 return (err); 19857 } 19858 mp = ipsq_pending_mp_get(ipsq, &connp); 19859 ASSERT(mp != NULL); 19860 if (err != 0) 19861 return (err); 19862 } else { 19863 /* 19864 * Interfaces without underlying hardware don't do duplicate 19865 * address detection. 19866 */ 19867 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19868 ipif->ipif_addr_ready = 1; 19869 } 19870 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19871 } 19872 19873 /* 19874 * Perform a bind for the physical device. 19875 * When the routine returns EINPROGRESS then mp has been consumed and 19876 * the ioctl will be acked from ip_rput_dlpi. 19877 * Allocate an unbind message and save it until ipif_down. 19878 */ 19879 static int 19880 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19881 { 19882 areq_t *areq; 19883 mblk_t *areq_mp = NULL; 19884 mblk_t *bind_mp = NULL; 19885 mblk_t *unbind_mp = NULL; 19886 conn_t *connp; 19887 boolean_t success; 19888 uint16_t sap_addr; 19889 19890 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19891 ASSERT(IAM_WRITER_ILL(ill)); 19892 ASSERT(mp != NULL); 19893 19894 /* Create a resolver cookie for ARP */ 19895 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19896 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19897 if (areq_mp == NULL) 19898 return (ENOMEM); 19899 19900 freemsg(ill->ill_resolver_mp); 19901 ill->ill_resolver_mp = areq_mp; 19902 areq = (areq_t *)areq_mp->b_rptr; 19903 sap_addr = ill->ill_sap; 19904 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19905 } 19906 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19907 DL_BIND_REQ); 19908 if (bind_mp == NULL) 19909 goto bad; 19910 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19911 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19912 19913 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19914 if (unbind_mp == NULL) 19915 goto bad; 19916 19917 /* 19918 * Record state needed to complete this operation when the 19919 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19920 */ 19921 ASSERT(WR(q)->q_next == NULL); 19922 connp = Q_TO_CONN(q); 19923 19924 mutex_enter(&connp->conn_lock); 19925 mutex_enter(&ipif->ipif_ill->ill_lock); 19926 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19927 mutex_exit(&ipif->ipif_ill->ill_lock); 19928 mutex_exit(&connp->conn_lock); 19929 if (!success) 19930 goto bad; 19931 19932 /* 19933 * Save the unbind message for ill_dl_down(); it will be consumed when 19934 * the interface goes down. 19935 */ 19936 ASSERT(ill->ill_unbind_mp == NULL); 19937 ill->ill_unbind_mp = unbind_mp; 19938 19939 ill_dlpi_send(ill, bind_mp); 19940 /* Send down link-layer capabilities probe if not already done. */ 19941 ill_capability_probe(ill); 19942 19943 /* 19944 * Sysid used to rely on the fact that netboots set domainname 19945 * and the like. Now that miniroot boots aren't strictly netboots 19946 * and miniroot network configuration is driven from userland 19947 * these things still need to be set. This situation can be detected 19948 * by comparing the interface being configured here to the one 19949 * dhcack was set to reference by the boot loader. Once sysid is 19950 * converted to use dhcp_ipc_getinfo() this call can go away. 19951 */ 19952 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 19953 (strcmp(ill->ill_name, dhcack) == 0) && 19954 (strlen(srpc_domain) == 0)) { 19955 if (dhcpinit() != 0) 19956 cmn_err(CE_WARN, "no cached dhcp response"); 19957 } 19958 19959 /* 19960 * This operation will complete in ip_rput_dlpi with either 19961 * a DL_BIND_ACK or DL_ERROR_ACK. 19962 */ 19963 return (EINPROGRESS); 19964 bad: 19965 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19966 /* 19967 * We don't have to check for possible removal from illgrp 19968 * as we have not yet inserted in illgrp. For groups 19969 * without names, this ipif is still not UP and hence 19970 * this could not have possibly had any influence in forming 19971 * groups. 19972 */ 19973 19974 freemsg(bind_mp); 19975 freemsg(unbind_mp); 19976 return (ENOMEM); 19977 } 19978 19979 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19980 19981 /* 19982 * DLPI and ARP is up. 19983 * Create all the IREs associated with an interface bring up multicast. 19984 * Set the interface flag and finish other initialization 19985 * that potentially had to be differed to after DL_BIND_ACK. 19986 */ 19987 int 19988 ipif_up_done(ipif_t *ipif) 19989 { 19990 ire_t *ire_array[20]; 19991 ire_t **irep = ire_array; 19992 ire_t **irep1; 19993 ipaddr_t net_mask = 0; 19994 ipaddr_t subnet_mask, route_mask; 19995 ill_t *ill = ipif->ipif_ill; 19996 queue_t *stq; 19997 ipif_t *src_ipif; 19998 ipif_t *tmp_ipif; 19999 boolean_t flush_ire_cache = B_TRUE; 20000 int err = 0; 20001 phyint_t *phyi; 20002 ire_t **ipif_saved_irep = NULL; 20003 int ipif_saved_ire_cnt; 20004 int cnt; 20005 boolean_t src_ipif_held = B_FALSE; 20006 boolean_t ire_added = B_FALSE; 20007 boolean_t loopback = B_FALSE; 20008 ip_stack_t *ipst = ill->ill_ipst; 20009 20010 ip1dbg(("ipif_up_done(%s:%u)\n", 20011 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20012 /* Check if this is a loopback interface */ 20013 if (ipif->ipif_ill->ill_wq == NULL) 20014 loopback = B_TRUE; 20015 20016 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20017 /* 20018 * If all other interfaces for this ill are down or DEPRECATED, 20019 * or otherwise unsuitable for source address selection, remove 20020 * any IRE_CACHE entries for this ill to make sure source 20021 * address selection gets to take this new ipif into account. 20022 * No need to hold ill_lock while traversing the ipif list since 20023 * we are writer 20024 */ 20025 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20026 tmp_ipif = tmp_ipif->ipif_next) { 20027 if (((tmp_ipif->ipif_flags & 20028 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20029 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20030 (tmp_ipif == ipif)) 20031 continue; 20032 /* first useable pre-existing interface */ 20033 flush_ire_cache = B_FALSE; 20034 break; 20035 } 20036 if (flush_ire_cache) 20037 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20038 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20039 20040 /* 20041 * Figure out which way the send-to queue should go. Only 20042 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20043 * should show up here. 20044 */ 20045 switch (ill->ill_net_type) { 20046 case IRE_IF_RESOLVER: 20047 stq = ill->ill_rq; 20048 break; 20049 case IRE_IF_NORESOLVER: 20050 case IRE_LOOPBACK: 20051 stq = ill->ill_wq; 20052 break; 20053 default: 20054 return (EINVAL); 20055 } 20056 20057 if (IS_LOOPBACK(ill)) { 20058 /* 20059 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20060 * ipif_lookup_on_name(), but in the case of zones we can have 20061 * several loopback addresses on lo0. So all the interfaces with 20062 * loopback addresses need to be marked IRE_LOOPBACK. 20063 */ 20064 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20065 htonl(INADDR_LOOPBACK)) 20066 ipif->ipif_ire_type = IRE_LOOPBACK; 20067 else 20068 ipif->ipif_ire_type = IRE_LOCAL; 20069 } 20070 20071 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20072 /* 20073 * Can't use our source address. Select a different 20074 * source address for the IRE_INTERFACE and IRE_LOCAL 20075 */ 20076 src_ipif = ipif_select_source(ipif->ipif_ill, 20077 ipif->ipif_subnet, ipif->ipif_zoneid); 20078 if (src_ipif == NULL) 20079 src_ipif = ipif; /* Last resort */ 20080 else 20081 src_ipif_held = B_TRUE; 20082 } else { 20083 src_ipif = ipif; 20084 } 20085 20086 /* Create all the IREs associated with this interface */ 20087 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20088 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20089 20090 /* 20091 * If we're on a labeled system then make sure that zone- 20092 * private addresses have proper remote host database entries. 20093 */ 20094 if (is_system_labeled() && 20095 ipif->ipif_ire_type != IRE_LOOPBACK && 20096 !tsol_check_interface_address(ipif)) 20097 return (EINVAL); 20098 20099 /* Register the source address for __sin6_src_id */ 20100 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20101 ipif->ipif_zoneid, ipst); 20102 if (err != 0) { 20103 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20104 return (err); 20105 } 20106 20107 /* If the interface address is set, create the local IRE. */ 20108 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20109 (void *)ipif, 20110 ipif->ipif_ire_type, 20111 ntohl(ipif->ipif_lcl_addr))); 20112 *irep++ = ire_create( 20113 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20114 (uchar_t *)&ip_g_all_ones, /* mask */ 20115 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20116 NULL, /* no gateway */ 20117 &ip_loopback_mtuplus, /* max frag size */ 20118 NULL, 20119 ipif->ipif_rq, /* recv-from queue */ 20120 NULL, /* no send-to queue */ 20121 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20122 ipif, 20123 0, 20124 0, 20125 0, 20126 (ipif->ipif_flags & IPIF_PRIVATE) ? 20127 RTF_PRIVATE : 0, 20128 &ire_uinfo_null, 20129 NULL, 20130 NULL, 20131 ipst); 20132 } else { 20133 ip1dbg(( 20134 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20135 ipif->ipif_ire_type, 20136 ntohl(ipif->ipif_lcl_addr), 20137 (uint_t)ipif->ipif_flags)); 20138 } 20139 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20140 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20141 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20142 } else { 20143 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20144 } 20145 20146 subnet_mask = ipif->ipif_net_mask; 20147 20148 /* 20149 * If mask was not specified, use natural netmask of 20150 * interface address. Also, store this mask back into the 20151 * ipif struct. 20152 */ 20153 if (subnet_mask == 0) { 20154 subnet_mask = net_mask; 20155 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20156 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20157 ipif->ipif_v6subnet); 20158 } 20159 20160 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20161 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20162 ipif->ipif_subnet != INADDR_ANY) { 20163 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20164 20165 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20166 route_mask = IP_HOST_MASK; 20167 } else { 20168 route_mask = subnet_mask; 20169 } 20170 20171 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20172 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20173 (void *)ipif, (void *)ill, 20174 ill->ill_net_type, 20175 ntohl(ipif->ipif_subnet))); 20176 *irep++ = ire_create( 20177 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20178 (uchar_t *)&route_mask, /* mask */ 20179 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20180 NULL, /* no gateway */ 20181 &ipif->ipif_mtu, /* max frag */ 20182 NULL, 20183 NULL, /* no recv queue */ 20184 stq, /* send-to queue */ 20185 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20186 ipif, 20187 0, 20188 0, 20189 0, 20190 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20191 &ire_uinfo_null, 20192 NULL, 20193 NULL, 20194 ipst); 20195 } 20196 20197 /* 20198 * Create any necessary broadcast IREs. 20199 */ 20200 if ((ipif->ipif_subnet != INADDR_ANY) && 20201 (ipif->ipif_flags & IPIF_BROADCAST)) 20202 irep = ipif_create_bcast_ires(ipif, irep); 20203 20204 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20205 20206 /* If an earlier ire_create failed, get out now */ 20207 for (irep1 = irep; irep1 > ire_array; ) { 20208 irep1--; 20209 if (*irep1 == NULL) { 20210 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20211 err = ENOMEM; 20212 goto bad; 20213 } 20214 } 20215 20216 /* 20217 * Need to atomically check for ip_addr_availablity_check 20218 * under ip_addr_avail_lock, and if it fails got bad, and remove 20219 * from group also.The ill_g_lock is grabbed as reader 20220 * just to make sure no new ills or new ipifs are being added 20221 * to the system while we are checking the uniqueness of addresses. 20222 */ 20223 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20224 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20225 /* Mark it up, and increment counters. */ 20226 ipif->ipif_flags |= IPIF_UP; 20227 ill->ill_ipif_up_count++; 20228 err = ip_addr_availability_check(ipif); 20229 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20230 rw_exit(&ipst->ips_ill_g_lock); 20231 20232 if (err != 0) { 20233 /* 20234 * Our address may already be up on the same ill. In this case, 20235 * the ARP entry for our ipif replaced the one for the other 20236 * ipif. So we don't want to delete it (otherwise the other ipif 20237 * would be unable to send packets). 20238 * ip_addr_availability_check() identifies this case for us and 20239 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20240 * which is the expected error code. 20241 */ 20242 if (err == EADDRINUSE) { 20243 freemsg(ipif->ipif_arp_del_mp); 20244 ipif->ipif_arp_del_mp = NULL; 20245 err = EADDRNOTAVAIL; 20246 } 20247 ill->ill_ipif_up_count--; 20248 ipif->ipif_flags &= ~IPIF_UP; 20249 goto bad; 20250 } 20251 20252 /* 20253 * Add in all newly created IREs. ire_create_bcast() has 20254 * already checked for duplicates of the IRE_BROADCAST type. 20255 * We want to add before we call ifgrp_insert which wants 20256 * to know whether IRE_IF_RESOLVER exists or not. 20257 * 20258 * NOTE : We refrele the ire though we may branch to "bad" 20259 * later on where we do ire_delete. This is okay 20260 * because nobody can delete it as we are running 20261 * exclusively. 20262 */ 20263 for (irep1 = irep; irep1 > ire_array; ) { 20264 irep1--; 20265 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20266 /* 20267 * refheld by ire_add. refele towards the end of the func 20268 */ 20269 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20270 } 20271 ire_added = B_TRUE; 20272 /* 20273 * Form groups if possible. 20274 * 20275 * If we are supposed to be in a ill_group with a name, insert it 20276 * now as we know that at least one ipif is UP. Otherwise form 20277 * nameless groups. 20278 * 20279 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20280 * this ipif into the appropriate interface group, or create a 20281 * new one. If this is already in a nameless group, we try to form 20282 * a bigger group looking at other ills potentially sharing this 20283 * ipif's prefix. 20284 */ 20285 phyi = ill->ill_phyint; 20286 if (phyi->phyint_groupname_len != 0) { 20287 ASSERT(phyi->phyint_groupname != NULL); 20288 if (ill->ill_ipif_up_count == 1) { 20289 ASSERT(ill->ill_group == NULL); 20290 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20291 phyi->phyint_groupname, NULL, B_TRUE); 20292 if (err != 0) { 20293 ip1dbg(("ipif_up_done: illgrp allocation " 20294 "failed, error %d\n", err)); 20295 goto bad; 20296 } 20297 } 20298 ASSERT(ill->ill_group != NULL); 20299 } 20300 20301 /* 20302 * When this is part of group, we need to make sure that 20303 * any broadcast ires created because of this ipif coming 20304 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20305 * so that we don't receive duplicate broadcast packets. 20306 */ 20307 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20308 ipif_renominate_bcast(ipif); 20309 20310 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20311 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20312 ipif_saved_irep = ipif_recover_ire(ipif); 20313 20314 if (!loopback) { 20315 /* 20316 * If the broadcast address has been set, make sure it makes 20317 * sense based on the interface address. 20318 * Only match on ill since we are sharing broadcast addresses. 20319 */ 20320 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20321 (ipif->ipif_flags & IPIF_BROADCAST)) { 20322 ire_t *ire; 20323 20324 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20325 IRE_BROADCAST, ipif, ALL_ZONES, 20326 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20327 20328 if (ire == NULL) { 20329 /* 20330 * If there isn't a matching broadcast IRE, 20331 * revert to the default for this netmask. 20332 */ 20333 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20334 mutex_enter(&ipif->ipif_ill->ill_lock); 20335 ipif_set_default(ipif); 20336 mutex_exit(&ipif->ipif_ill->ill_lock); 20337 } else { 20338 ire_refrele(ire); 20339 } 20340 } 20341 20342 } 20343 20344 /* This is the first interface on this ill */ 20345 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20346 /* 20347 * Need to recover all multicast memberships in the driver. 20348 * This had to be deferred until we had attached. 20349 */ 20350 ill_recover_multicast(ill); 20351 } 20352 /* Join the allhosts multicast address */ 20353 ipif_multicast_up(ipif); 20354 20355 if (!loopback) { 20356 /* 20357 * See whether anybody else would benefit from the 20358 * new ipif that we added. We call this always rather 20359 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20360 * ipif is for the benefit of illgrp_insert (done above) 20361 * which does not do source address selection as it does 20362 * not want to re-create interface routes that we are 20363 * having reference to it here. 20364 */ 20365 ill_update_source_selection(ill); 20366 } 20367 20368 for (irep1 = irep; irep1 > ire_array; ) { 20369 irep1--; 20370 if (*irep1 != NULL) { 20371 /* was held in ire_add */ 20372 ire_refrele(*irep1); 20373 } 20374 } 20375 20376 cnt = ipif_saved_ire_cnt; 20377 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20378 if (*irep1 != NULL) { 20379 /* was held in ire_add */ 20380 ire_refrele(*irep1); 20381 } 20382 } 20383 20384 if (!loopback && ipif->ipif_addr_ready) { 20385 /* Broadcast an address mask reply. */ 20386 ipif_mask_reply(ipif); 20387 } 20388 if (ipif_saved_irep != NULL) { 20389 kmem_free(ipif_saved_irep, 20390 ipif_saved_ire_cnt * sizeof (ire_t *)); 20391 } 20392 if (src_ipif_held) 20393 ipif_refrele(src_ipif); 20394 20395 /* 20396 * This had to be deferred until we had bound. Tell routing sockets and 20397 * others that this interface is up if it looks like the address has 20398 * been validated. Otherwise, if it isn't ready yet, wait for 20399 * duplicate address detection to do its thing. 20400 */ 20401 if (ipif->ipif_addr_ready) { 20402 ip_rts_ifmsg(ipif); 20403 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20404 /* Let SCTP update the status for this ipif */ 20405 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20406 } 20407 return (0); 20408 20409 bad: 20410 ip1dbg(("ipif_up_done: FAILED \n")); 20411 /* 20412 * We don't have to bother removing from ill groups because 20413 * 20414 * 1) For groups with names, we insert only when the first ipif 20415 * comes up. In that case if it fails, it will not be in any 20416 * group. So, we need not try to remove for that case. 20417 * 20418 * 2) For groups without names, either we tried to insert ipif_ill 20419 * in a group as singleton or found some other group to become 20420 * a bigger group. For the former, if it fails we don't have 20421 * anything to do as ipif_ill is not in the group and for the 20422 * latter, there are no failures in illgrp_insert/illgrp_delete 20423 * (ENOMEM can't occur for this. Check ifgrp_insert). 20424 */ 20425 while (irep > ire_array) { 20426 irep--; 20427 if (*irep != NULL) { 20428 ire_delete(*irep); 20429 if (ire_added) 20430 ire_refrele(*irep); 20431 } 20432 } 20433 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20434 20435 if (ipif_saved_irep != NULL) { 20436 kmem_free(ipif_saved_irep, 20437 ipif_saved_ire_cnt * sizeof (ire_t *)); 20438 } 20439 if (src_ipif_held) 20440 ipif_refrele(src_ipif); 20441 20442 ipif_arp_down(ipif); 20443 return (err); 20444 } 20445 20446 /* 20447 * Turn off the ARP with the ILLF_NOARP flag. 20448 */ 20449 static int 20450 ill_arp_off(ill_t *ill) 20451 { 20452 mblk_t *arp_off_mp = NULL; 20453 mblk_t *arp_on_mp = NULL; 20454 20455 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20456 20457 ASSERT(IAM_WRITER_ILL(ill)); 20458 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20459 20460 /* 20461 * If the on message is still around we've already done 20462 * an arp_off without doing an arp_on thus there is no 20463 * work needed. 20464 */ 20465 if (ill->ill_arp_on_mp != NULL) 20466 return (0); 20467 20468 /* 20469 * Allocate an ARP on message (to be saved) and an ARP off message 20470 */ 20471 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20472 if (!arp_off_mp) 20473 return (ENOMEM); 20474 20475 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20476 if (!arp_on_mp) 20477 goto failed; 20478 20479 ASSERT(ill->ill_arp_on_mp == NULL); 20480 ill->ill_arp_on_mp = arp_on_mp; 20481 20482 /* Send an AR_INTERFACE_OFF request */ 20483 putnext(ill->ill_rq, arp_off_mp); 20484 return (0); 20485 failed: 20486 20487 if (arp_off_mp) 20488 freemsg(arp_off_mp); 20489 return (ENOMEM); 20490 } 20491 20492 /* 20493 * Turn on ARP by turning off the ILLF_NOARP flag. 20494 */ 20495 static int 20496 ill_arp_on(ill_t *ill) 20497 { 20498 mblk_t *mp; 20499 20500 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20501 20502 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20503 20504 ASSERT(IAM_WRITER_ILL(ill)); 20505 /* 20506 * Send an AR_INTERFACE_ON request if we have already done 20507 * an arp_off (which allocated the message). 20508 */ 20509 if (ill->ill_arp_on_mp != NULL) { 20510 mp = ill->ill_arp_on_mp; 20511 ill->ill_arp_on_mp = NULL; 20512 putnext(ill->ill_rq, mp); 20513 } 20514 return (0); 20515 } 20516 20517 /* 20518 * Called after either deleting ill from the group or when setting 20519 * FAILED or STANDBY on the interface. 20520 */ 20521 static void 20522 illgrp_reset_schednext(ill_t *ill) 20523 { 20524 ill_group_t *illgrp; 20525 ill_t *save_ill; 20526 20527 ASSERT(IAM_WRITER_ILL(ill)); 20528 /* 20529 * When called from illgrp_delete, ill_group will be non-NULL. 20530 * But when called from ip_sioctl_flags, it could be NULL if 20531 * somebody is setting FAILED/INACTIVE on some interface which 20532 * is not part of a group. 20533 */ 20534 illgrp = ill->ill_group; 20535 if (illgrp == NULL) 20536 return; 20537 if (illgrp->illgrp_ill_schednext != ill) 20538 return; 20539 20540 illgrp->illgrp_ill_schednext = NULL; 20541 save_ill = ill; 20542 /* 20543 * Choose a good ill to be the next one for 20544 * outbound traffic. As the flags FAILED/STANDBY is 20545 * not yet marked when called from ip_sioctl_flags, 20546 * we check for ill separately. 20547 */ 20548 for (ill = illgrp->illgrp_ill; ill != NULL; 20549 ill = ill->ill_group_next) { 20550 if ((ill != save_ill) && 20551 !(ill->ill_phyint->phyint_flags & 20552 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20553 illgrp->illgrp_ill_schednext = ill; 20554 return; 20555 } 20556 } 20557 } 20558 20559 /* 20560 * Given an ill, find the next ill in the group to be scheduled. 20561 * (This should be called by ip_newroute() before ire_create().) 20562 * The passed in ill may be pulled out of the group, after we have picked 20563 * up a different outgoing ill from the same group. However ire add will 20564 * atomically check this. 20565 */ 20566 ill_t * 20567 illgrp_scheduler(ill_t *ill) 20568 { 20569 ill_t *retill; 20570 ill_group_t *illgrp; 20571 int illcnt; 20572 int i; 20573 uint64_t flags; 20574 ip_stack_t *ipst = ill->ill_ipst; 20575 20576 /* 20577 * We don't use a lock to check for the ill_group. If this ill 20578 * is currently being inserted we may end up just returning this 20579 * ill itself. That is ok. 20580 */ 20581 if (ill->ill_group == NULL) { 20582 ill_refhold(ill); 20583 return (ill); 20584 } 20585 20586 /* 20587 * Grab the ill_g_lock as reader to make sure we are dealing with 20588 * a set of stable ills. No ill can be added or deleted or change 20589 * group while we hold the reader lock. 20590 */ 20591 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20592 if ((illgrp = ill->ill_group) == NULL) { 20593 rw_exit(&ipst->ips_ill_g_lock); 20594 ill_refhold(ill); 20595 return (ill); 20596 } 20597 20598 illcnt = illgrp->illgrp_ill_count; 20599 mutex_enter(&illgrp->illgrp_lock); 20600 retill = illgrp->illgrp_ill_schednext; 20601 20602 if (retill == NULL) 20603 retill = illgrp->illgrp_ill; 20604 20605 /* 20606 * We do a circular search beginning at illgrp_ill_schednext 20607 * or illgrp_ill. We don't check the flags against the ill lock 20608 * since it can change anytime. The ire creation will be atomic 20609 * and will fail if the ill is FAILED or OFFLINE. 20610 */ 20611 for (i = 0; i < illcnt; i++) { 20612 flags = retill->ill_phyint->phyint_flags; 20613 20614 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20615 ILL_CAN_LOOKUP(retill)) { 20616 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20617 ill_refhold(retill); 20618 break; 20619 } 20620 retill = retill->ill_group_next; 20621 if (retill == NULL) 20622 retill = illgrp->illgrp_ill; 20623 } 20624 mutex_exit(&illgrp->illgrp_lock); 20625 rw_exit(&ipst->ips_ill_g_lock); 20626 20627 return (i == illcnt ? NULL : retill); 20628 } 20629 20630 /* 20631 * Checks for availbility of a usable source address (if there is one) when the 20632 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20633 * this selection is done regardless of the destination. 20634 */ 20635 boolean_t 20636 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20637 { 20638 uint_t ifindex; 20639 ipif_t *ipif = NULL; 20640 ill_t *uill; 20641 boolean_t isv6; 20642 ip_stack_t *ipst = ill->ill_ipst; 20643 20644 ASSERT(ill != NULL); 20645 20646 isv6 = ill->ill_isv6; 20647 ifindex = ill->ill_usesrc_ifindex; 20648 if (ifindex != 0) { 20649 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20650 NULL, ipst); 20651 if (uill == NULL) 20652 return (NULL); 20653 mutex_enter(&uill->ill_lock); 20654 for (ipif = uill->ill_ipif; ipif != NULL; 20655 ipif = ipif->ipif_next) { 20656 if (!IPIF_CAN_LOOKUP(ipif)) 20657 continue; 20658 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20659 continue; 20660 if (!(ipif->ipif_flags & IPIF_UP)) 20661 continue; 20662 if (ipif->ipif_zoneid != zoneid) 20663 continue; 20664 if ((isv6 && 20665 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20666 (ipif->ipif_lcl_addr == INADDR_ANY)) 20667 continue; 20668 mutex_exit(&uill->ill_lock); 20669 ill_refrele(uill); 20670 return (B_TRUE); 20671 } 20672 mutex_exit(&uill->ill_lock); 20673 ill_refrele(uill); 20674 } 20675 return (B_FALSE); 20676 } 20677 20678 /* 20679 * Determine the best source address given a destination address and an ill. 20680 * Prefers non-deprecated over deprecated but will return a deprecated 20681 * address if there is no other choice. If there is a usable source address 20682 * on the interface pointed to by ill_usesrc_ifindex then that is given 20683 * first preference. 20684 * 20685 * Returns NULL if there is no suitable source address for the ill. 20686 * This only occurs when there is no valid source address for the ill. 20687 */ 20688 ipif_t * 20689 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20690 { 20691 ipif_t *ipif; 20692 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20693 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20694 int index = 0; 20695 boolean_t wrapped = B_FALSE; 20696 boolean_t same_subnet_only = B_FALSE; 20697 boolean_t ipif_same_found, ipif_other_found; 20698 boolean_t specific_found; 20699 ill_t *till, *usill = NULL; 20700 tsol_tpc_t *src_rhtp, *dst_rhtp; 20701 ip_stack_t *ipst = ill->ill_ipst; 20702 20703 if (ill->ill_usesrc_ifindex != 0) { 20704 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20705 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20706 if (usill != NULL) 20707 ill = usill; /* Select source from usesrc ILL */ 20708 else 20709 return (NULL); 20710 } 20711 20712 /* 20713 * If we're dealing with an unlabeled destination on a labeled system, 20714 * make sure that we ignore source addresses that are incompatible with 20715 * the destination's default label. That destination's default label 20716 * must dominate the minimum label on the source address. 20717 */ 20718 dst_rhtp = NULL; 20719 if (is_system_labeled()) { 20720 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20721 if (dst_rhtp == NULL) 20722 return (NULL); 20723 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20724 TPC_RELE(dst_rhtp); 20725 dst_rhtp = NULL; 20726 } 20727 } 20728 20729 /* 20730 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20731 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20732 * After selecting the right ipif, under ill_lock make sure ipif is 20733 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20734 * we retry. Inside the loop we still need to check for CONDEMNED, 20735 * but not under a lock. 20736 */ 20737 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20738 20739 retry: 20740 till = ill; 20741 ipif_arr[0] = NULL; 20742 20743 if (till->ill_group != NULL) 20744 till = till->ill_group->illgrp_ill; 20745 20746 /* 20747 * Choose one good source address from each ill across the group. 20748 * If possible choose a source address in the same subnet as 20749 * the destination address. 20750 * 20751 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20752 * This is okay because of the following. 20753 * 20754 * If PHYI_FAILED is set and we still have non-deprecated 20755 * addresses, it means the addresses have not yet been 20756 * failed over to a different interface. We potentially 20757 * select them to create IRE_CACHES, which will be later 20758 * flushed when the addresses move over. 20759 * 20760 * If PHYI_INACTIVE is set and we still have non-deprecated 20761 * addresses, it means either the user has configured them 20762 * or PHYI_INACTIVE has not been cleared after the addresses 20763 * been moved over. For the former, in.mpathd does a failover 20764 * when the interface becomes INACTIVE and hence we should 20765 * not find them. Once INACTIVE is set, we don't allow them 20766 * to create logical interfaces anymore. For the latter, a 20767 * flush will happen when INACTIVE is cleared which will 20768 * flush the IRE_CACHES. 20769 * 20770 * If PHYI_OFFLINE is set, all the addresses will be failed 20771 * over soon. We potentially select them to create IRE_CACHEs, 20772 * which will be later flushed when the addresses move over. 20773 * 20774 * NOTE : As ipif_select_source is called to borrow source address 20775 * for an ipif that is part of a group, source address selection 20776 * will be re-done whenever the group changes i.e either an 20777 * insertion/deletion in the group. 20778 * 20779 * Fill ipif_arr[] with source addresses, using these rules: 20780 * 20781 * 1. At most one source address from a given ill ends up 20782 * in ipif_arr[] -- that is, at most one of the ipif's 20783 * associated with a given ill ends up in ipif_arr[]. 20784 * 20785 * 2. If there is at least one non-deprecated ipif in the 20786 * IPMP group with a source address on the same subnet as 20787 * our destination, then fill ipif_arr[] only with 20788 * source addresses on the same subnet as our destination. 20789 * Note that because of (1), only the first 20790 * non-deprecated ipif found with a source address 20791 * matching the destination ends up in ipif_arr[]. 20792 * 20793 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20794 * addresses not in the same subnet as our destination. 20795 * Again, because of (1), only the first off-subnet source 20796 * address will be chosen. 20797 * 20798 * 4. If there are no non-deprecated ipifs, then just use 20799 * the source address associated with the last deprecated 20800 * one we find that happens to be on the same subnet, 20801 * otherwise the first one not in the same subnet. 20802 */ 20803 specific_found = B_FALSE; 20804 for (; till != NULL; till = till->ill_group_next) { 20805 ipif_same_found = B_FALSE; 20806 ipif_other_found = B_FALSE; 20807 for (ipif = till->ill_ipif; ipif != NULL; 20808 ipif = ipif->ipif_next) { 20809 if (!IPIF_CAN_LOOKUP(ipif)) 20810 continue; 20811 /* Always skip NOLOCAL and ANYCAST interfaces */ 20812 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20813 continue; 20814 if (!(ipif->ipif_flags & IPIF_UP) || 20815 !ipif->ipif_addr_ready) 20816 continue; 20817 if (ipif->ipif_zoneid != zoneid && 20818 ipif->ipif_zoneid != ALL_ZONES) 20819 continue; 20820 /* 20821 * Interfaces with 0.0.0.0 address are allowed to be UP, 20822 * but are not valid as source addresses. 20823 */ 20824 if (ipif->ipif_lcl_addr == INADDR_ANY) 20825 continue; 20826 20827 /* 20828 * Check compatibility of local address for 20829 * destination's default label if we're on a labeled 20830 * system. Incompatible addresses can't be used at 20831 * all. 20832 */ 20833 if (dst_rhtp != NULL) { 20834 boolean_t incompat; 20835 20836 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20837 IPV4_VERSION, B_FALSE); 20838 if (src_rhtp == NULL) 20839 continue; 20840 incompat = 20841 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20842 src_rhtp->tpc_tp.tp_doi != 20843 dst_rhtp->tpc_tp.tp_doi || 20844 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20845 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20846 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20847 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20848 TPC_RELE(src_rhtp); 20849 if (incompat) 20850 continue; 20851 } 20852 20853 /* 20854 * We prefer not to use all all-zones addresses, if we 20855 * can avoid it, as they pose problems with unlabeled 20856 * destinations. 20857 */ 20858 if (ipif->ipif_zoneid != ALL_ZONES) { 20859 if (!specific_found && 20860 (!same_subnet_only || 20861 (ipif->ipif_net_mask & dst) == 20862 ipif->ipif_subnet)) { 20863 index = 0; 20864 specific_found = B_TRUE; 20865 ipif_other_found = B_FALSE; 20866 } 20867 } else { 20868 if (specific_found) 20869 continue; 20870 } 20871 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20872 if (ipif_dep == NULL || 20873 (ipif->ipif_net_mask & dst) == 20874 ipif->ipif_subnet) 20875 ipif_dep = ipif; 20876 continue; 20877 } 20878 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20879 /* found a source address in the same subnet */ 20880 if (!same_subnet_only) { 20881 same_subnet_only = B_TRUE; 20882 index = 0; 20883 } 20884 ipif_same_found = B_TRUE; 20885 } else { 20886 if (same_subnet_only || ipif_other_found) 20887 continue; 20888 ipif_other_found = B_TRUE; 20889 } 20890 ipif_arr[index++] = ipif; 20891 if (index == MAX_IPIF_SELECT_SOURCE) { 20892 wrapped = B_TRUE; 20893 index = 0; 20894 } 20895 if (ipif_same_found) 20896 break; 20897 } 20898 } 20899 20900 if (ipif_arr[0] == NULL) { 20901 ipif = ipif_dep; 20902 } else { 20903 if (wrapped) 20904 index = MAX_IPIF_SELECT_SOURCE; 20905 ipif = ipif_arr[ipif_rand(ipst) % index]; 20906 ASSERT(ipif != NULL); 20907 } 20908 20909 if (ipif != NULL) { 20910 mutex_enter(&ipif->ipif_ill->ill_lock); 20911 if (!IPIF_CAN_LOOKUP(ipif)) { 20912 mutex_exit(&ipif->ipif_ill->ill_lock); 20913 goto retry; 20914 } 20915 ipif_refhold_locked(ipif); 20916 mutex_exit(&ipif->ipif_ill->ill_lock); 20917 } 20918 20919 rw_exit(&ipst->ips_ill_g_lock); 20920 if (usill != NULL) 20921 ill_refrele(usill); 20922 if (dst_rhtp != NULL) 20923 TPC_RELE(dst_rhtp); 20924 20925 #ifdef DEBUG 20926 if (ipif == NULL) { 20927 char buf1[INET6_ADDRSTRLEN]; 20928 20929 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20930 ill->ill_name, 20931 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20932 } else { 20933 char buf1[INET6_ADDRSTRLEN]; 20934 char buf2[INET6_ADDRSTRLEN]; 20935 20936 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20937 ipif->ipif_ill->ill_name, 20938 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20939 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20940 buf2, sizeof (buf2)))); 20941 } 20942 #endif /* DEBUG */ 20943 return (ipif); 20944 } 20945 20946 20947 /* 20948 * If old_ipif is not NULL, see if ipif was derived from old 20949 * ipif and if so, recreate the interface route by re-doing 20950 * source address selection. This happens when ipif_down -> 20951 * ipif_update_other_ipifs calls us. 20952 * 20953 * If old_ipif is NULL, just redo the source address selection 20954 * if needed. This happens when illgrp_insert or ipif_up_done 20955 * calls us. 20956 */ 20957 static void 20958 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20959 { 20960 ire_t *ire; 20961 ire_t *ipif_ire; 20962 queue_t *stq; 20963 ipif_t *nipif; 20964 ill_t *ill; 20965 boolean_t need_rele = B_FALSE; 20966 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 20967 20968 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20969 ASSERT(IAM_WRITER_IPIF(ipif)); 20970 20971 ill = ipif->ipif_ill; 20972 if (!(ipif->ipif_flags & 20973 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20974 /* 20975 * Can't possibly have borrowed the source 20976 * from old_ipif. 20977 */ 20978 return; 20979 } 20980 20981 /* 20982 * Is there any work to be done? No work if the address 20983 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 20984 * ipif_select_source() does not borrow addresses from 20985 * NOLOCAL and ANYCAST interfaces). 20986 */ 20987 if ((old_ipif != NULL) && 20988 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 20989 (old_ipif->ipif_ill->ill_wq == NULL) || 20990 (old_ipif->ipif_flags & 20991 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 20992 return; 20993 } 20994 20995 /* 20996 * Perform the same checks as when creating the 20997 * IRE_INTERFACE in ipif_up_done. 20998 */ 20999 if (!(ipif->ipif_flags & IPIF_UP)) 21000 return; 21001 21002 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21003 (ipif->ipif_subnet == INADDR_ANY)) 21004 return; 21005 21006 ipif_ire = ipif_to_ire(ipif); 21007 if (ipif_ire == NULL) 21008 return; 21009 21010 /* 21011 * We know that ipif uses some other source for its 21012 * IRE_INTERFACE. Is it using the source of this 21013 * old_ipif? 21014 */ 21015 if (old_ipif != NULL && 21016 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21017 ire_refrele(ipif_ire); 21018 return; 21019 } 21020 if (ip_debug > 2) { 21021 /* ip1dbg */ 21022 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21023 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21024 } 21025 21026 stq = ipif_ire->ire_stq; 21027 21028 /* 21029 * Can't use our source address. Select a different 21030 * source address for the IRE_INTERFACE. 21031 */ 21032 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21033 if (nipif == NULL) { 21034 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21035 nipif = ipif; 21036 } else { 21037 need_rele = B_TRUE; 21038 } 21039 21040 ire = ire_create( 21041 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21042 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21043 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21044 NULL, /* no gateway */ 21045 &ipif->ipif_mtu, /* max frag */ 21046 NULL, /* no src nce */ 21047 NULL, /* no recv from queue */ 21048 stq, /* send-to queue */ 21049 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21050 ipif, 21051 0, 21052 0, 21053 0, 21054 0, 21055 &ire_uinfo_null, 21056 NULL, 21057 NULL, 21058 ipst); 21059 21060 if (ire != NULL) { 21061 ire_t *ret_ire; 21062 int error; 21063 21064 /* 21065 * We don't need ipif_ire anymore. We need to delete 21066 * before we add so that ire_add does not detect 21067 * duplicates. 21068 */ 21069 ire_delete(ipif_ire); 21070 ret_ire = ire; 21071 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21072 ASSERT(error == 0); 21073 ASSERT(ire == ret_ire); 21074 /* Held in ire_add */ 21075 ire_refrele(ret_ire); 21076 } 21077 /* 21078 * Either we are falling through from above or could not 21079 * allocate a replacement. 21080 */ 21081 ire_refrele(ipif_ire); 21082 if (need_rele) 21083 ipif_refrele(nipif); 21084 } 21085 21086 /* 21087 * This old_ipif is going away. 21088 * 21089 * Determine if any other ipif's is using our address as 21090 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21091 * IPIF_DEPRECATED). 21092 * Find the IRE_INTERFACE for such ipifs and recreate them 21093 * to use an different source address following the rules in 21094 * ipif_up_done. 21095 * 21096 * This function takes an illgrp as an argument so that illgrp_delete 21097 * can call this to update source address even after deleting the 21098 * old_ipif->ipif_ill from the ill group. 21099 */ 21100 static void 21101 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21102 { 21103 ipif_t *ipif; 21104 ill_t *ill; 21105 char buf[INET6_ADDRSTRLEN]; 21106 21107 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21108 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21109 21110 ill = old_ipif->ipif_ill; 21111 21112 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21113 ill->ill_name, 21114 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21115 buf, sizeof (buf)))); 21116 /* 21117 * If this part of a group, look at all ills as ipif_select_source 21118 * borrows source address across all the ills in the group. 21119 */ 21120 if (illgrp != NULL) 21121 ill = illgrp->illgrp_ill; 21122 21123 for (; ill != NULL; ill = ill->ill_group_next) { 21124 for (ipif = ill->ill_ipif; ipif != NULL; 21125 ipif = ipif->ipif_next) { 21126 21127 if (ipif == old_ipif) 21128 continue; 21129 21130 ipif_recreate_interface_routes(old_ipif, ipif); 21131 } 21132 } 21133 } 21134 21135 /* ARGSUSED */ 21136 int 21137 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21138 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21139 { 21140 /* 21141 * ill_phyint_reinit merged the v4 and v6 into a single 21142 * ipsq. Could also have become part of a ipmp group in the 21143 * process, and we might not have been able to complete the 21144 * operation in ipif_set_values, if we could not become 21145 * exclusive. If so restart it here. 21146 */ 21147 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21148 } 21149 21150 21151 /* 21152 * Can operate on either a module or a driver queue. 21153 * Returns an error if not a module queue. 21154 */ 21155 /* ARGSUSED */ 21156 int 21157 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21158 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21159 { 21160 queue_t *q1 = q; 21161 char *cp; 21162 char interf_name[LIFNAMSIZ]; 21163 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21164 21165 if (q->q_next == NULL) { 21166 ip1dbg(( 21167 "if_unitsel: IF_UNITSEL: no q_next\n")); 21168 return (EINVAL); 21169 } 21170 21171 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21172 return (EALREADY); 21173 21174 do { 21175 q1 = q1->q_next; 21176 } while (q1->q_next); 21177 cp = q1->q_qinfo->qi_minfo->mi_idname; 21178 (void) sprintf(interf_name, "%s%d", cp, ppa); 21179 21180 /* 21181 * Here we are not going to delay the ioack until after 21182 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21183 * original ioctl message before sending the requests. 21184 */ 21185 return (ipif_set_values(q, mp, interf_name, &ppa)); 21186 } 21187 21188 /* ARGSUSED */ 21189 int 21190 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21191 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21192 { 21193 return (ENXIO); 21194 } 21195 21196 /* 21197 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21198 * `irep'. Returns a pointer to the next free `irep' entry (just like 21199 * ire_check_and_create_bcast()). 21200 */ 21201 static ire_t ** 21202 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21203 { 21204 ipaddr_t addr; 21205 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21206 ipaddr_t subnetmask = ipif->ipif_net_mask; 21207 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21208 21209 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21210 21211 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21212 21213 if (ipif->ipif_lcl_addr == INADDR_ANY || 21214 (ipif->ipif_flags & IPIF_NOLOCAL)) 21215 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21216 21217 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21218 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21219 21220 /* 21221 * For backward compatibility, we create net broadcast IREs based on 21222 * the old "IP address class system", since some old machines only 21223 * respond to these class derived net broadcast. However, we must not 21224 * create these net broadcast IREs if the subnetmask is shorter than 21225 * the IP address class based derived netmask. Otherwise, we may 21226 * create a net broadcast address which is the same as an IP address 21227 * on the subnet -- and then TCP will refuse to talk to that address. 21228 */ 21229 if (netmask < subnetmask) { 21230 addr = netmask & ipif->ipif_subnet; 21231 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21232 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21233 flags); 21234 } 21235 21236 /* 21237 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21238 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21239 * created. Creating these broadcast IREs will only create confusion 21240 * as `addr' will be the same as the IP address. 21241 */ 21242 if (subnetmask != 0xFFFFFFFF) { 21243 addr = ipif->ipif_subnet; 21244 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21245 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21246 irep, flags); 21247 } 21248 21249 return (irep); 21250 } 21251 21252 /* 21253 * Broadcast IRE info structure used in the functions below. Since we 21254 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21255 */ 21256 typedef struct bcast_ireinfo { 21257 uchar_t bi_type; /* BCAST_* value from below */ 21258 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21259 bi_needrep:1, /* do we need to replace it? */ 21260 bi_haverep:1, /* have we replaced it? */ 21261 bi_pad:5; 21262 ipaddr_t bi_addr; /* IRE address */ 21263 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21264 } bcast_ireinfo_t; 21265 21266 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21267 21268 /* 21269 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21270 * return B_TRUE if it should immediately be used to recreate the IRE. 21271 */ 21272 static boolean_t 21273 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21274 { 21275 ipaddr_t addr; 21276 21277 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21278 21279 switch (bireinfop->bi_type) { 21280 case BCAST_NET: 21281 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21282 if (addr != bireinfop->bi_addr) 21283 return (B_FALSE); 21284 break; 21285 case BCAST_SUBNET: 21286 if (ipif->ipif_subnet != bireinfop->bi_addr) 21287 return (B_FALSE); 21288 break; 21289 } 21290 21291 bireinfop->bi_needrep = 1; 21292 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21293 if (bireinfop->bi_backup == NULL) 21294 bireinfop->bi_backup = ipif; 21295 return (B_FALSE); 21296 } 21297 return (B_TRUE); 21298 } 21299 21300 /* 21301 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21302 * them ala ire_check_and_create_bcast(). 21303 */ 21304 static ire_t ** 21305 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21306 { 21307 ipaddr_t mask, addr; 21308 21309 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21310 21311 addr = bireinfop->bi_addr; 21312 irep = ire_create_bcast(ipif, addr, irep); 21313 21314 switch (bireinfop->bi_type) { 21315 case BCAST_NET: 21316 mask = ip_net_mask(ipif->ipif_subnet); 21317 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21318 break; 21319 case BCAST_SUBNET: 21320 mask = ipif->ipif_net_mask; 21321 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21322 break; 21323 } 21324 21325 bireinfop->bi_haverep = 1; 21326 return (irep); 21327 } 21328 21329 /* 21330 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21331 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21332 * that are going away are still needed. If so, have ipif_create_bcast() 21333 * recreate them (except for the deprecated case, as explained below). 21334 */ 21335 static ire_t ** 21336 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21337 ire_t **irep) 21338 { 21339 int i; 21340 ipif_t *ipif; 21341 21342 ASSERT(!ill->ill_isv6); 21343 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21344 /* 21345 * Skip this ipif if it's (a) the one being taken down, (b) 21346 * not in the same zone, or (c) has no valid local address. 21347 */ 21348 if (ipif == test_ipif || 21349 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21350 ipif->ipif_subnet == 0 || 21351 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21352 (IPIF_UP|IPIF_BROADCAST)) 21353 continue; 21354 21355 /* 21356 * For each dying IRE that hasn't yet been replaced, see if 21357 * `ipif' needs it and whether the IRE should be recreated on 21358 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21359 * will return B_FALSE even if `ipif' needs the IRE on the 21360 * hopes that we'll later find a needy non-deprecated ipif. 21361 * However, the ipif is recorded in bi_backup for possible 21362 * subsequent use by ipif_check_bcast_ires(). 21363 */ 21364 for (i = 0; i < BCAST_COUNT; i++) { 21365 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21366 continue; 21367 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21368 continue; 21369 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21370 } 21371 21372 /* 21373 * If we've replaced all of the broadcast IREs that are going 21374 * to be taken down, we know we're done. 21375 */ 21376 for (i = 0; i < BCAST_COUNT; i++) { 21377 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21378 break; 21379 } 21380 if (i == BCAST_COUNT) 21381 break; 21382 } 21383 return (irep); 21384 } 21385 21386 /* 21387 * Check if `test_ipif' (which is going away) is associated with any existing 21388 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21389 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21390 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21391 * 21392 * This is necessary because broadcast IREs are shared. In particular, a 21393 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21394 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21395 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21396 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21397 * same zone, they will share the same set of broadcast IREs. 21398 * 21399 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21400 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21401 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21402 */ 21403 static void 21404 ipif_check_bcast_ires(ipif_t *test_ipif) 21405 { 21406 ill_t *ill = test_ipif->ipif_ill; 21407 ire_t *ire, *ire_array[12]; /* see note above */ 21408 ire_t **irep1, **irep = &ire_array[0]; 21409 uint_t i, willdie; 21410 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21411 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21412 21413 ASSERT(!test_ipif->ipif_isv6); 21414 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21415 21416 /* 21417 * No broadcast IREs for the LOOPBACK interface 21418 * or others such as point to point and IPIF_NOXMIT. 21419 */ 21420 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21421 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21422 return; 21423 21424 bzero(bireinfo, sizeof (bireinfo)); 21425 bireinfo[0].bi_type = BCAST_ALLZEROES; 21426 bireinfo[0].bi_addr = 0; 21427 21428 bireinfo[1].bi_type = BCAST_ALLONES; 21429 bireinfo[1].bi_addr = INADDR_BROADCAST; 21430 21431 bireinfo[2].bi_type = BCAST_NET; 21432 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21433 21434 if (test_ipif->ipif_net_mask != 0) 21435 mask = test_ipif->ipif_net_mask; 21436 bireinfo[3].bi_type = BCAST_SUBNET; 21437 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21438 21439 /* 21440 * Figure out what (if any) broadcast IREs will die as a result of 21441 * `test_ipif' going away. If none will die, we're done. 21442 */ 21443 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21444 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21445 test_ipif, ALL_ZONES, NULL, 21446 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21447 if (ire != NULL) { 21448 willdie++; 21449 bireinfo[i].bi_willdie = 1; 21450 ire_refrele(ire); 21451 } 21452 } 21453 21454 if (willdie == 0) 21455 return; 21456 21457 /* 21458 * Walk through all the ipifs that will be affected by the dying IREs, 21459 * and recreate the IREs as necessary. 21460 */ 21461 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21462 21463 /* 21464 * Scan through the set of broadcast IREs and see if there are any 21465 * that we need to replace that have not yet been replaced. If so, 21466 * replace them using the appropriate backup ipif. 21467 */ 21468 for (i = 0; i < BCAST_COUNT; i++) { 21469 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21470 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21471 &bireinfo[i], irep); 21472 } 21473 21474 /* 21475 * If we can't create all of them, don't add any of them. (Code in 21476 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21477 * non-loopback copy and loopback copy for a given address.) 21478 */ 21479 for (irep1 = irep; irep1 > ire_array; ) { 21480 irep1--; 21481 if (*irep1 == NULL) { 21482 ip0dbg(("ipif_check_bcast_ires: can't create " 21483 "IRE_BROADCAST, memory allocation failure\n")); 21484 while (irep > ire_array) { 21485 irep--; 21486 if (*irep != NULL) 21487 ire_delete(*irep); 21488 } 21489 return; 21490 } 21491 } 21492 21493 for (irep1 = irep; irep1 > ire_array; ) { 21494 irep1--; 21495 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21496 ire_refrele(*irep1); /* Held in ire_add */ 21497 } 21498 } 21499 21500 /* 21501 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21502 * from lifr_flags and the name from lifr_name. 21503 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21504 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21505 * Returns EINPROGRESS when mp has been consumed by queueing it on 21506 * ill_pending_mp and the ioctl will complete in ip_rput. 21507 * 21508 * Can operate on either a module or a driver queue. 21509 * Returns an error if not a module queue. 21510 */ 21511 /* ARGSUSED */ 21512 int 21513 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21514 ip_ioctl_cmd_t *ipip, void *if_req) 21515 { 21516 int err; 21517 ill_t *ill; 21518 struct lifreq *lifr = (struct lifreq *)if_req; 21519 21520 ASSERT(ipif != NULL); 21521 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21522 21523 if (q->q_next == NULL) { 21524 ip1dbg(( 21525 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21526 return (EINVAL); 21527 } 21528 21529 ill = (ill_t *)q->q_ptr; 21530 /* 21531 * If we are not writer on 'q' then this interface exists already 21532 * and previous lookups (ipif_extract_lifreq()) found this ipif. 21533 * So return EALREADY 21534 */ 21535 if (ill != ipif->ipif_ill) 21536 return (EALREADY); 21537 21538 if (ill->ill_name[0] != '\0') 21539 return (EALREADY); 21540 21541 /* 21542 * Set all the flags. Allows all kinds of override. Provide some 21543 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21544 * unless there is either multicast/broadcast support in the driver 21545 * or it is a pt-pt link. 21546 */ 21547 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21548 /* Meaningless to IP thus don't allow them to be set. */ 21549 ip1dbg(("ip_setname: EINVAL 1\n")); 21550 return (EINVAL); 21551 } 21552 /* 21553 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21554 * ill_bcast_addr_length info. 21555 */ 21556 if (!ill->ill_needs_attach && 21557 ((lifr->lifr_flags & IFF_MULTICAST) && 21558 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21559 ill->ill_bcast_addr_length == 0)) { 21560 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21561 ip1dbg(("ip_setname: EINVAL 2\n")); 21562 return (EINVAL); 21563 } 21564 if ((lifr->lifr_flags & IFF_BROADCAST) && 21565 ((lifr->lifr_flags & IFF_IPV6) || 21566 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21567 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21568 ip1dbg(("ip_setname: EINVAL 3\n")); 21569 return (EINVAL); 21570 } 21571 if (lifr->lifr_flags & IFF_UP) { 21572 /* Can only be set with SIOCSLIFFLAGS */ 21573 ip1dbg(("ip_setname: EINVAL 4\n")); 21574 return (EINVAL); 21575 } 21576 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21577 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21578 ip1dbg(("ip_setname: EINVAL 5\n")); 21579 return (EINVAL); 21580 } 21581 /* 21582 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21583 */ 21584 if ((lifr->lifr_flags & IFF_XRESOLV) && 21585 !(lifr->lifr_flags & IFF_IPV6) && 21586 !(ipif->ipif_isv6)) { 21587 ip1dbg(("ip_setname: EINVAL 6\n")); 21588 return (EINVAL); 21589 } 21590 21591 /* 21592 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21593 * we have all the flags here. So, we assign rather than we OR. 21594 * We can't OR the flags here because we don't want to set 21595 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21596 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21597 * on lifr_flags value here. 21598 */ 21599 /* 21600 * This ill has not been inserted into the global list. 21601 * So we are still single threaded and don't need any lock 21602 */ 21603 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21604 ~IFF_DUPLICATE; 21605 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21606 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21607 21608 /* We started off as V4. */ 21609 if (ill->ill_flags & ILLF_IPV6) { 21610 ill->ill_phyint->phyint_illv6 = ill; 21611 ill->ill_phyint->phyint_illv4 = NULL; 21612 } 21613 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21614 return (err); 21615 } 21616 21617 /* ARGSUSED */ 21618 int 21619 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21620 ip_ioctl_cmd_t *ipip, void *if_req) 21621 { 21622 /* 21623 * ill_phyint_reinit merged the v4 and v6 into a single 21624 * ipsq. Could also have become part of a ipmp group in the 21625 * process, and we might not have been able to complete the 21626 * slifname in ipif_set_values, if we could not become 21627 * exclusive. If so restart it here 21628 */ 21629 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21630 } 21631 21632 /* 21633 * Return a pointer to the ipif which matches the index, IP version type and 21634 * zoneid. 21635 */ 21636 ipif_t * 21637 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21638 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21639 { 21640 ill_t *ill; 21641 ipsq_t *ipsq; 21642 phyint_t *phyi; 21643 ipif_t *ipif; 21644 21645 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21646 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21647 21648 if (err != NULL) 21649 *err = 0; 21650 21651 /* 21652 * Indexes are stored in the phyint - a common structure 21653 * to both IPv4 and IPv6. 21654 */ 21655 21656 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21657 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 21658 (void *) &index, NULL); 21659 if (phyi != NULL) { 21660 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21661 if (ill == NULL) { 21662 rw_exit(&ipst->ips_ill_g_lock); 21663 if (err != NULL) 21664 *err = ENXIO; 21665 return (NULL); 21666 } 21667 GRAB_CONN_LOCK(q); 21668 mutex_enter(&ill->ill_lock); 21669 if (ILL_CAN_LOOKUP(ill)) { 21670 for (ipif = ill->ill_ipif; ipif != NULL; 21671 ipif = ipif->ipif_next) { 21672 if (IPIF_CAN_LOOKUP(ipif) && 21673 (zoneid == ALL_ZONES || 21674 zoneid == ipif->ipif_zoneid || 21675 ipif->ipif_zoneid == ALL_ZONES)) { 21676 ipif_refhold_locked(ipif); 21677 mutex_exit(&ill->ill_lock); 21678 RELEASE_CONN_LOCK(q); 21679 rw_exit(&ipst->ips_ill_g_lock); 21680 return (ipif); 21681 } 21682 } 21683 } else if (ILL_CAN_WAIT(ill, q)) { 21684 ipsq = ill->ill_phyint->phyint_ipsq; 21685 mutex_enter(&ipsq->ipsq_lock); 21686 rw_exit(&ipst->ips_ill_g_lock); 21687 mutex_exit(&ill->ill_lock); 21688 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 21689 mutex_exit(&ipsq->ipsq_lock); 21690 RELEASE_CONN_LOCK(q); 21691 *err = EINPROGRESS; 21692 return (NULL); 21693 } 21694 mutex_exit(&ill->ill_lock); 21695 RELEASE_CONN_LOCK(q); 21696 } 21697 rw_exit(&ipst->ips_ill_g_lock); 21698 if (err != NULL) 21699 *err = ENXIO; 21700 return (NULL); 21701 } 21702 21703 typedef struct conn_change_s { 21704 uint_t cc_old_ifindex; 21705 uint_t cc_new_ifindex; 21706 } conn_change_t; 21707 21708 /* 21709 * ipcl_walk function for changing interface index. 21710 */ 21711 static void 21712 conn_change_ifindex(conn_t *connp, caddr_t arg) 21713 { 21714 conn_change_t *connc; 21715 uint_t old_ifindex; 21716 uint_t new_ifindex; 21717 int i; 21718 ilg_t *ilg; 21719 21720 connc = (conn_change_t *)arg; 21721 old_ifindex = connc->cc_old_ifindex; 21722 new_ifindex = connc->cc_new_ifindex; 21723 21724 if (connp->conn_orig_bound_ifindex == old_ifindex) 21725 connp->conn_orig_bound_ifindex = new_ifindex; 21726 21727 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21728 connp->conn_orig_multicast_ifindex = new_ifindex; 21729 21730 if (connp->conn_orig_xmit_ifindex == old_ifindex) 21731 connp->conn_orig_xmit_ifindex = new_ifindex; 21732 21733 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21734 ilg = &connp->conn_ilg[i]; 21735 if (ilg->ilg_orig_ifindex == old_ifindex) 21736 ilg->ilg_orig_ifindex = new_ifindex; 21737 } 21738 } 21739 21740 /* 21741 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21742 * to new_index if it matches the old_index. 21743 * 21744 * Failovers typically happen within a group of ills. But somebody 21745 * can remove an ill from the group after a failover happened. If 21746 * we are setting the ifindex after this, we potentially need to 21747 * look at all the ills rather than just the ones in the group. 21748 * We cut down the work by looking at matching ill_net_types 21749 * and ill_types as we could not possibly grouped them together. 21750 */ 21751 static void 21752 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21753 { 21754 ill_t *ill; 21755 ipif_t *ipif; 21756 uint_t old_ifindex; 21757 uint_t new_ifindex; 21758 ilm_t *ilm; 21759 ill_walk_context_t ctx; 21760 ip_stack_t *ipst = ill_orig->ill_ipst; 21761 21762 old_ifindex = connc->cc_old_ifindex; 21763 new_ifindex = connc->cc_new_ifindex; 21764 21765 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21766 ill = ILL_START_WALK_ALL(&ctx, ipst); 21767 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21768 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21769 (ill_orig->ill_type != ill->ill_type)) { 21770 continue; 21771 } 21772 for (ipif = ill->ill_ipif; ipif != NULL; 21773 ipif = ipif->ipif_next) { 21774 if (ipif->ipif_orig_ifindex == old_ifindex) 21775 ipif->ipif_orig_ifindex = new_ifindex; 21776 } 21777 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21778 if (ilm->ilm_orig_ifindex == old_ifindex) 21779 ilm->ilm_orig_ifindex = new_ifindex; 21780 } 21781 } 21782 rw_exit(&ipst->ips_ill_g_lock); 21783 } 21784 21785 /* 21786 * We first need to ensure that the new index is unique, and 21787 * then carry the change across both v4 and v6 ill representation 21788 * of the physical interface. 21789 */ 21790 /* ARGSUSED */ 21791 int 21792 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21793 ip_ioctl_cmd_t *ipip, void *ifreq) 21794 { 21795 ill_t *ill; 21796 ill_t *ill_other; 21797 phyint_t *phyi; 21798 int old_index; 21799 conn_change_t connc; 21800 struct ifreq *ifr = (struct ifreq *)ifreq; 21801 struct lifreq *lifr = (struct lifreq *)ifreq; 21802 uint_t index; 21803 ill_t *ill_v4; 21804 ill_t *ill_v6; 21805 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21806 21807 if (ipip->ipi_cmd_type == IF_CMD) 21808 index = ifr->ifr_index; 21809 else 21810 index = lifr->lifr_index; 21811 21812 /* 21813 * Only allow on physical interface. Also, index zero is illegal. 21814 * 21815 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21816 * 21817 * 1) If PHYI_FAILED is set, a failover could have happened which 21818 * implies a possible failback might have to happen. As failback 21819 * depends on the old index, we should fail setting the index. 21820 * 21821 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21822 * any addresses or multicast memberships are failed over to 21823 * a non-STANDBY interface. As failback depends on the old 21824 * index, we should fail setting the index for this case also. 21825 * 21826 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21827 * Be consistent with PHYI_FAILED and fail the ioctl. 21828 */ 21829 ill = ipif->ipif_ill; 21830 phyi = ill->ill_phyint; 21831 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21832 ipif->ipif_id != 0 || index == 0) { 21833 return (EINVAL); 21834 } 21835 old_index = phyi->phyint_ifindex; 21836 21837 /* If the index is not changing, no work to do */ 21838 if (old_index == index) 21839 return (0); 21840 21841 /* 21842 * Use ill_lookup_on_ifindex to determine if the 21843 * new index is unused and if so allow the change. 21844 */ 21845 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21846 ipst); 21847 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21848 ipst); 21849 if (ill_v6 != NULL || ill_v4 != NULL) { 21850 if (ill_v4 != NULL) 21851 ill_refrele(ill_v4); 21852 if (ill_v6 != NULL) 21853 ill_refrele(ill_v6); 21854 return (EBUSY); 21855 } 21856 21857 /* 21858 * The new index is unused. Set it in the phyint. 21859 * Locate the other ill so that we can send a routing 21860 * sockets message. 21861 */ 21862 if (ill->ill_isv6) { 21863 ill_other = phyi->phyint_illv4; 21864 } else { 21865 ill_other = phyi->phyint_illv6; 21866 } 21867 21868 phyi->phyint_ifindex = index; 21869 21870 /* Update SCTP's ILL list */ 21871 sctp_ill_reindex(ill, old_index); 21872 21873 connc.cc_old_ifindex = old_index; 21874 connc.cc_new_ifindex = index; 21875 ip_change_ifindex(ill, &connc); 21876 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21877 21878 /* Send the routing sockets message */ 21879 ip_rts_ifmsg(ipif); 21880 if (ill_other != NULL) 21881 ip_rts_ifmsg(ill_other->ill_ipif); 21882 21883 return (0); 21884 } 21885 21886 /* ARGSUSED */ 21887 int 21888 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21889 ip_ioctl_cmd_t *ipip, void *ifreq) 21890 { 21891 struct ifreq *ifr = (struct ifreq *)ifreq; 21892 struct lifreq *lifr = (struct lifreq *)ifreq; 21893 21894 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21895 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21896 /* Get the interface index */ 21897 if (ipip->ipi_cmd_type == IF_CMD) { 21898 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21899 } else { 21900 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21901 } 21902 return (0); 21903 } 21904 21905 /* ARGSUSED */ 21906 int 21907 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21908 ip_ioctl_cmd_t *ipip, void *ifreq) 21909 { 21910 struct lifreq *lifr = (struct lifreq *)ifreq; 21911 21912 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21913 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21914 /* Get the interface zone */ 21915 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21916 lifr->lifr_zoneid = ipif->ipif_zoneid; 21917 return (0); 21918 } 21919 21920 /* 21921 * Set the zoneid of an interface. 21922 */ 21923 /* ARGSUSED */ 21924 int 21925 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21926 ip_ioctl_cmd_t *ipip, void *ifreq) 21927 { 21928 struct lifreq *lifr = (struct lifreq *)ifreq; 21929 int err = 0; 21930 boolean_t need_up = B_FALSE; 21931 zone_t *zptr; 21932 zone_status_t status; 21933 zoneid_t zoneid; 21934 21935 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21936 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21937 if (!is_system_labeled()) 21938 return (ENOTSUP); 21939 zoneid = GLOBAL_ZONEID; 21940 } 21941 21942 /* cannot assign instance zero to a non-global zone */ 21943 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21944 return (ENOTSUP); 21945 21946 /* 21947 * Cannot assign to a zone that doesn't exist or is shutting down. In 21948 * the event of a race with the zone shutdown processing, since IP 21949 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21950 * interface will be cleaned up even if the zone is shut down 21951 * immediately after the status check. If the interface can't be brought 21952 * down right away, and the zone is shut down before the restart 21953 * function is called, we resolve the possible races by rechecking the 21954 * zone status in the restart function. 21955 */ 21956 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21957 return (EINVAL); 21958 status = zone_status_get(zptr); 21959 zone_rele(zptr); 21960 21961 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21962 return (EINVAL); 21963 21964 if (ipif->ipif_flags & IPIF_UP) { 21965 /* 21966 * If the interface is already marked up, 21967 * we call ipif_down which will take care 21968 * of ditching any IREs that have been set 21969 * up based on the old interface address. 21970 */ 21971 err = ipif_logical_down(ipif, q, mp); 21972 if (err == EINPROGRESS) 21973 return (err); 21974 ipif_down_tail(ipif); 21975 need_up = B_TRUE; 21976 } 21977 21978 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21979 return (err); 21980 } 21981 21982 static int 21983 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21984 queue_t *q, mblk_t *mp, boolean_t need_up) 21985 { 21986 int err = 0; 21987 ip_stack_t *ipst; 21988 21989 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21990 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21991 21992 if (CONN_Q(q)) 21993 ipst = CONNQ_TO_IPST(q); 21994 else 21995 ipst = ILLQ_TO_IPST(q); 21996 21997 /* 21998 * For exclusive stacks we don't allow a different zoneid than 21999 * global. 22000 */ 22001 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22002 zoneid != GLOBAL_ZONEID) 22003 return (EINVAL); 22004 22005 /* Set the new zone id. */ 22006 ipif->ipif_zoneid = zoneid; 22007 22008 /* Update sctp list */ 22009 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22010 22011 if (need_up) { 22012 /* 22013 * Now bring the interface back up. If this 22014 * is the only IPIF for the ILL, ipif_up 22015 * will have to re-bind to the device, so 22016 * we may get back EINPROGRESS, in which 22017 * case, this IOCTL will get completed in 22018 * ip_rput_dlpi when we see the DL_BIND_ACK. 22019 */ 22020 err = ipif_up(ipif, q, mp); 22021 } 22022 return (err); 22023 } 22024 22025 /* ARGSUSED */ 22026 int 22027 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22028 ip_ioctl_cmd_t *ipip, void *if_req) 22029 { 22030 struct lifreq *lifr = (struct lifreq *)if_req; 22031 zoneid_t zoneid; 22032 zone_t *zptr; 22033 zone_status_t status; 22034 22035 ASSERT(ipif->ipif_id != 0); 22036 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22037 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22038 zoneid = GLOBAL_ZONEID; 22039 22040 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22041 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22042 22043 /* 22044 * We recheck the zone status to resolve the following race condition: 22045 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22046 * 2) hme0:1 is up and can't be brought down right away; 22047 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22048 * 3) zone "myzone" is halted; the zone status switches to 22049 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22050 * the interfaces to remove - hme0:1 is not returned because it's not 22051 * yet in "myzone", so it won't be removed; 22052 * 4) the restart function for SIOCSLIFZONE is called; without the 22053 * status check here, we would have hme0:1 in "myzone" after it's been 22054 * destroyed. 22055 * Note that if the status check fails, we need to bring the interface 22056 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22057 * ipif_up_done[_v6](). 22058 */ 22059 status = ZONE_IS_UNINITIALIZED; 22060 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22061 status = zone_status_get(zptr); 22062 zone_rele(zptr); 22063 } 22064 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22065 if (ipif->ipif_isv6) { 22066 (void) ipif_up_done_v6(ipif); 22067 } else { 22068 (void) ipif_up_done(ipif); 22069 } 22070 return (EINVAL); 22071 } 22072 22073 ipif_down_tail(ipif); 22074 22075 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22076 B_TRUE)); 22077 } 22078 22079 /* ARGSUSED */ 22080 int 22081 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22082 ip_ioctl_cmd_t *ipip, void *ifreq) 22083 { 22084 struct lifreq *lifr = ifreq; 22085 22086 ASSERT(q->q_next == NULL); 22087 ASSERT(CONN_Q(q)); 22088 22089 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22090 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22091 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22092 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22093 22094 return (0); 22095 } 22096 22097 22098 /* Find the previous ILL in this usesrc group */ 22099 static ill_t * 22100 ill_prev_usesrc(ill_t *uill) 22101 { 22102 ill_t *ill; 22103 22104 for (ill = uill->ill_usesrc_grp_next; 22105 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22106 ill = ill->ill_usesrc_grp_next) 22107 /* do nothing */; 22108 return (ill); 22109 } 22110 22111 /* 22112 * Release all members of the usesrc group. This routine is called 22113 * from ill_delete when the interface being unplumbed is the 22114 * group head. 22115 */ 22116 static void 22117 ill_disband_usesrc_group(ill_t *uill) 22118 { 22119 ill_t *next_ill, *tmp_ill; 22120 ip_stack_t *ipst = uill->ill_ipst; 22121 22122 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22123 next_ill = uill->ill_usesrc_grp_next; 22124 22125 do { 22126 ASSERT(next_ill != NULL); 22127 tmp_ill = next_ill->ill_usesrc_grp_next; 22128 ASSERT(tmp_ill != NULL); 22129 next_ill->ill_usesrc_grp_next = NULL; 22130 next_ill->ill_usesrc_ifindex = 0; 22131 next_ill = tmp_ill; 22132 } while (next_ill->ill_usesrc_ifindex != 0); 22133 uill->ill_usesrc_grp_next = NULL; 22134 } 22135 22136 /* 22137 * Remove the client usesrc ILL from the list and relink to a new list 22138 */ 22139 int 22140 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22141 { 22142 ill_t *ill, *tmp_ill; 22143 ip_stack_t *ipst = ucill->ill_ipst; 22144 22145 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22146 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22147 22148 /* 22149 * Check if the usesrc client ILL passed in is not already 22150 * in use as a usesrc ILL i.e one whose source address is 22151 * in use OR a usesrc ILL is not already in use as a usesrc 22152 * client ILL 22153 */ 22154 if ((ucill->ill_usesrc_ifindex == 0) || 22155 (uill->ill_usesrc_ifindex != 0)) { 22156 return (-1); 22157 } 22158 22159 ill = ill_prev_usesrc(ucill); 22160 ASSERT(ill->ill_usesrc_grp_next != NULL); 22161 22162 /* Remove from the current list */ 22163 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22164 /* Only two elements in the list */ 22165 ASSERT(ill->ill_usesrc_ifindex == 0); 22166 ill->ill_usesrc_grp_next = NULL; 22167 } else { 22168 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22169 } 22170 22171 if (ifindex == 0) { 22172 ucill->ill_usesrc_ifindex = 0; 22173 ucill->ill_usesrc_grp_next = NULL; 22174 return (0); 22175 } 22176 22177 ucill->ill_usesrc_ifindex = ifindex; 22178 tmp_ill = uill->ill_usesrc_grp_next; 22179 uill->ill_usesrc_grp_next = ucill; 22180 ucill->ill_usesrc_grp_next = 22181 (tmp_ill != NULL) ? tmp_ill : uill; 22182 return (0); 22183 } 22184 22185 /* 22186 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22187 * ip.c for locking details. 22188 */ 22189 /* ARGSUSED */ 22190 int 22191 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22192 ip_ioctl_cmd_t *ipip, void *ifreq) 22193 { 22194 struct lifreq *lifr = (struct lifreq *)ifreq; 22195 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22196 ill_flag_changed = B_FALSE; 22197 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22198 int err = 0, ret; 22199 uint_t ifindex; 22200 phyint_t *us_phyint, *us_cli_phyint; 22201 ipsq_t *ipsq = NULL; 22202 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22203 22204 ASSERT(IAM_WRITER_IPIF(ipif)); 22205 ASSERT(q->q_next == NULL); 22206 ASSERT(CONN_Q(q)); 22207 22208 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22209 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22210 22211 ASSERT(us_cli_phyint != NULL); 22212 22213 /* 22214 * If the client ILL is being used for IPMP, abort. 22215 * Note, this can be done before ipsq_try_enter since we are already 22216 * exclusive on this ILL 22217 */ 22218 if ((us_cli_phyint->phyint_groupname != NULL) || 22219 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22220 return (EINVAL); 22221 } 22222 22223 ifindex = lifr->lifr_index; 22224 if (ifindex == 0) { 22225 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22226 /* non usesrc group interface, nothing to reset */ 22227 return (0); 22228 } 22229 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22230 /* valid reset request */ 22231 reset_flg = B_TRUE; 22232 } 22233 22234 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22235 ip_process_ioctl, &err, ipst); 22236 22237 if (usesrc_ill == NULL) { 22238 return (err); 22239 } 22240 22241 /* 22242 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22243 * group nor can either of the interfaces be used for standy. So 22244 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22245 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22246 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22247 * We are already exlusive on this ipsq i.e ipsq corresponding to 22248 * the usesrc_cli_ill 22249 */ 22250 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22251 NEW_OP, B_TRUE); 22252 if (ipsq == NULL) { 22253 err = EINPROGRESS; 22254 /* Operation enqueued on the ipsq of the usesrc ILL */ 22255 goto done; 22256 } 22257 22258 /* Check if the usesrc_ill is used for IPMP */ 22259 us_phyint = usesrc_ill->ill_phyint; 22260 if ((us_phyint->phyint_groupname != NULL) || 22261 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22262 err = EINVAL; 22263 goto done; 22264 } 22265 22266 /* 22267 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22268 * already a client then return EINVAL 22269 */ 22270 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22271 err = EINVAL; 22272 goto done; 22273 } 22274 22275 /* 22276 * If the ill_usesrc_ifindex field is already set to what it needs to 22277 * be then this is a duplicate operation. 22278 */ 22279 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22280 err = 0; 22281 goto done; 22282 } 22283 22284 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22285 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22286 usesrc_ill->ill_isv6)); 22287 22288 /* 22289 * The next step ensures that no new ires will be created referencing 22290 * the client ill, until the ILL_CHANGING flag is cleared. Then 22291 * we go through an ire walk deleting all ire caches that reference 22292 * the client ill. New ires referencing the client ill that are added 22293 * to the ire table before the ILL_CHANGING flag is set, will be 22294 * cleaned up by the ire walk below. Attempt to add new ires referencing 22295 * the client ill while the ILL_CHANGING flag is set will be failed 22296 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22297 * checks (under the ill_g_usesrc_lock) that the ire being added 22298 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22299 * belong to the same usesrc group. 22300 */ 22301 mutex_enter(&usesrc_cli_ill->ill_lock); 22302 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22303 mutex_exit(&usesrc_cli_ill->ill_lock); 22304 ill_flag_changed = B_TRUE; 22305 22306 if (ipif->ipif_isv6) 22307 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22308 ALL_ZONES, ipst); 22309 else 22310 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22311 ALL_ZONES, ipst); 22312 22313 /* 22314 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22315 * and the ill_usesrc_ifindex fields 22316 */ 22317 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22318 22319 if (reset_flg) { 22320 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22321 if (ret != 0) { 22322 err = EINVAL; 22323 } 22324 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22325 goto done; 22326 } 22327 22328 /* 22329 * Four possibilities to consider: 22330 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22331 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22332 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22333 * 4. Both are part of their respective usesrc groups 22334 */ 22335 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22336 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22337 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22338 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22339 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22340 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22341 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22342 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22343 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22344 /* Insert at head of list */ 22345 usesrc_cli_ill->ill_usesrc_grp_next = 22346 usesrc_ill->ill_usesrc_grp_next; 22347 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22348 } else { 22349 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22350 ifindex); 22351 if (ret != 0) 22352 err = EINVAL; 22353 } 22354 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22355 22356 done: 22357 if (ill_flag_changed) { 22358 mutex_enter(&usesrc_cli_ill->ill_lock); 22359 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22360 mutex_exit(&usesrc_cli_ill->ill_lock); 22361 } 22362 if (ipsq != NULL) 22363 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22364 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22365 ill_refrele(usesrc_ill); 22366 return (err); 22367 } 22368 22369 /* 22370 * comparison function used by avl. 22371 */ 22372 static int 22373 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22374 { 22375 22376 uint_t index; 22377 22378 ASSERT(phyip != NULL && index_ptr != NULL); 22379 22380 index = *((uint_t *)index_ptr); 22381 /* 22382 * let the phyint with the lowest index be on top. 22383 */ 22384 if (((phyint_t *)phyip)->phyint_ifindex < index) 22385 return (1); 22386 if (((phyint_t *)phyip)->phyint_ifindex > index) 22387 return (-1); 22388 return (0); 22389 } 22390 22391 /* 22392 * comparison function used by avl. 22393 */ 22394 static int 22395 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22396 { 22397 ill_t *ill; 22398 int res = 0; 22399 22400 ASSERT(phyip != NULL && name_ptr != NULL); 22401 22402 if (((phyint_t *)phyip)->phyint_illv4) 22403 ill = ((phyint_t *)phyip)->phyint_illv4; 22404 else 22405 ill = ((phyint_t *)phyip)->phyint_illv6; 22406 ASSERT(ill != NULL); 22407 22408 res = strcmp(ill->ill_name, (char *)name_ptr); 22409 if (res > 0) 22410 return (1); 22411 else if (res < 0) 22412 return (-1); 22413 return (0); 22414 } 22415 /* 22416 * This function is called from ill_delete when the ill is being 22417 * unplumbed. We remove the reference from the phyint and we also 22418 * free the phyint when there are no more references to it. 22419 */ 22420 static void 22421 ill_phyint_free(ill_t *ill) 22422 { 22423 phyint_t *phyi; 22424 phyint_t *next_phyint; 22425 ipsq_t *cur_ipsq; 22426 ip_stack_t *ipst = ill->ill_ipst; 22427 22428 ASSERT(ill->ill_phyint != NULL); 22429 22430 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22431 phyi = ill->ill_phyint; 22432 ill->ill_phyint = NULL; 22433 /* 22434 * ill_init allocates a phyint always to store the copy 22435 * of flags relevant to phyint. At that point in time, we could 22436 * not assign the name and hence phyint_illv4/v6 could not be 22437 * initialized. Later in ipif_set_values, we assign the name to 22438 * the ill, at which point in time we assign phyint_illv4/v6. 22439 * Thus we don't rely on phyint_illv6 to be initialized always. 22440 */ 22441 if (ill->ill_flags & ILLF_IPV6) { 22442 phyi->phyint_illv6 = NULL; 22443 } else { 22444 phyi->phyint_illv4 = NULL; 22445 } 22446 /* 22447 * ipif_down removes it from the group when the last ipif goes 22448 * down. 22449 */ 22450 ASSERT(ill->ill_group == NULL); 22451 22452 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22453 return; 22454 22455 /* 22456 * Make sure this phyint was put in the list. 22457 */ 22458 if (phyi->phyint_ifindex > 0) { 22459 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22460 phyi); 22461 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22462 phyi); 22463 } 22464 /* 22465 * remove phyint from the ipsq list. 22466 */ 22467 cur_ipsq = phyi->phyint_ipsq; 22468 if (phyi == cur_ipsq->ipsq_phyint_list) { 22469 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22470 } else { 22471 next_phyint = cur_ipsq->ipsq_phyint_list; 22472 while (next_phyint != NULL) { 22473 if (next_phyint->phyint_ipsq_next == phyi) { 22474 next_phyint->phyint_ipsq_next = 22475 phyi->phyint_ipsq_next; 22476 break; 22477 } 22478 next_phyint = next_phyint->phyint_ipsq_next; 22479 } 22480 ASSERT(next_phyint != NULL); 22481 } 22482 IPSQ_DEC_REF(cur_ipsq, ipst); 22483 22484 if (phyi->phyint_groupname_len != 0) { 22485 ASSERT(phyi->phyint_groupname != NULL); 22486 mi_free(phyi->phyint_groupname); 22487 } 22488 mi_free(phyi); 22489 } 22490 22491 /* 22492 * Attach the ill to the phyint structure which can be shared by both 22493 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22494 * function is called from ipif_set_values and ill_lookup_on_name (for 22495 * loopback) where we know the name of the ill. We lookup the ill and if 22496 * there is one present already with the name use that phyint. Otherwise 22497 * reuse the one allocated by ill_init. 22498 */ 22499 static void 22500 ill_phyint_reinit(ill_t *ill) 22501 { 22502 boolean_t isv6 = ill->ill_isv6; 22503 phyint_t *phyi_old; 22504 phyint_t *phyi; 22505 avl_index_t where = 0; 22506 ill_t *ill_other = NULL; 22507 ipsq_t *ipsq; 22508 ip_stack_t *ipst = ill->ill_ipst; 22509 22510 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22511 22512 phyi_old = ill->ill_phyint; 22513 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22514 phyi_old->phyint_illv6 == NULL)); 22515 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22516 phyi_old->phyint_illv4 == NULL)); 22517 ASSERT(phyi_old->phyint_ifindex == 0); 22518 22519 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22520 ill->ill_name, &where); 22521 22522 /* 22523 * 1. We grabbed the ill_g_lock before inserting this ill into 22524 * the global list of ills. So no other thread could have located 22525 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22526 * 2. Now locate the other protocol instance of this ill. 22527 * 3. Now grab both ill locks in the right order, and the phyint lock of 22528 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22529 * of neither ill can change. 22530 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22531 * other ill. 22532 * 5. Release all locks. 22533 */ 22534 22535 /* 22536 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22537 * we are initializing IPv4. 22538 */ 22539 if (phyi != NULL) { 22540 ill_other = (isv6) ? phyi->phyint_illv4 : 22541 phyi->phyint_illv6; 22542 ASSERT(ill_other->ill_phyint != NULL); 22543 ASSERT((isv6 && !ill_other->ill_isv6) || 22544 (!isv6 && ill_other->ill_isv6)); 22545 GRAB_ILL_LOCKS(ill, ill_other); 22546 /* 22547 * We are potentially throwing away phyint_flags which 22548 * could be different from the one that we obtain from 22549 * ill_other->ill_phyint. But it is okay as we are assuming 22550 * that the state maintained within IP is correct. 22551 */ 22552 mutex_enter(&phyi->phyint_lock); 22553 if (isv6) { 22554 ASSERT(phyi->phyint_illv6 == NULL); 22555 phyi->phyint_illv6 = ill; 22556 } else { 22557 ASSERT(phyi->phyint_illv4 == NULL); 22558 phyi->phyint_illv4 = ill; 22559 } 22560 /* 22561 * This is a new ill, currently undergoing SLIFNAME 22562 * So we could not have joined an IPMP group until now. 22563 */ 22564 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22565 phyi_old->phyint_groupname == NULL); 22566 22567 /* 22568 * This phyi_old is going away. Decref ipsq_refs and 22569 * assert it is zero. The ipsq itself will be freed in 22570 * ipsq_exit 22571 */ 22572 ipsq = phyi_old->phyint_ipsq; 22573 IPSQ_DEC_REF(ipsq, ipst); 22574 ASSERT(ipsq->ipsq_refs == 0); 22575 /* Get the singleton phyint out of the ipsq list */ 22576 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22577 ipsq->ipsq_phyint_list = NULL; 22578 phyi_old->phyint_illv4 = NULL; 22579 phyi_old->phyint_illv6 = NULL; 22580 mi_free(phyi_old); 22581 } else { 22582 mutex_enter(&ill->ill_lock); 22583 /* 22584 * We don't need to acquire any lock, since 22585 * the ill is not yet visible globally and we 22586 * have not yet released the ill_g_lock. 22587 */ 22588 phyi = phyi_old; 22589 mutex_enter(&phyi->phyint_lock); 22590 /* XXX We need a recovery strategy here. */ 22591 if (!phyint_assign_ifindex(phyi, ipst)) 22592 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22593 22594 /* No IPMP group yet, thus the hook uses the ifindex */ 22595 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22596 22597 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22598 (void *)phyi, where); 22599 22600 (void) avl_find(&ipst->ips_phyint_g_list-> 22601 phyint_list_avl_by_index, 22602 &phyi->phyint_ifindex, &where); 22603 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22604 (void *)phyi, where); 22605 } 22606 22607 /* 22608 * Reassigning ill_phyint automatically reassigns the ipsq also. 22609 * pending mp is not affected because that is per ill basis. 22610 */ 22611 ill->ill_phyint = phyi; 22612 22613 /* 22614 * Keep the index on ipif_orig_index to be used by FAILOVER. 22615 * We do this here as when the first ipif was allocated, 22616 * ipif_allocate does not know the right interface index. 22617 */ 22618 22619 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22620 /* 22621 * Now that the phyint's ifindex has been assigned, complete the 22622 * remaining 22623 */ 22624 22625 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22626 if (ill->ill_isv6) { 22627 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22628 ill->ill_phyint->phyint_ifindex; 22629 ill->ill_mcast_type = ipst->ips_mld_max_version; 22630 } else { 22631 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22632 } 22633 22634 /* 22635 * Generate an event within the hooks framework to indicate that 22636 * a new interface has just been added to IP. For this event to 22637 * be generated, the network interface must, at least, have an 22638 * ifindex assigned to it. 22639 * 22640 * This needs to be run inside the ill_g_lock perimeter to ensure 22641 * that the ordering of delivered events to listeners matches the 22642 * order of them in the kernel. 22643 * 22644 * This function could be called from ill_lookup_on_name. In that case 22645 * the interface is loopback "lo", which will not generate a NIC event. 22646 */ 22647 if (ill->ill_name_length <= 2 || 22648 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22649 /* 22650 * Generate nic plumb event for ill_name even if 22651 * ipmp_hook_emulation is set. That avoids generating events 22652 * for the ill_names should ipmp_hook_emulation be turned on 22653 * later. 22654 */ 22655 ill_nic_info_plumb(ill, B_FALSE); 22656 } 22657 RELEASE_ILL_LOCKS(ill, ill_other); 22658 mutex_exit(&phyi->phyint_lock); 22659 } 22660 22661 /* 22662 * Allocate a NE_PLUMB nic info event and store in the ill. 22663 * If 'group' is set we do it for the group name, otherwise the ill name. 22664 * It will be sent when we leave the ipsq. 22665 */ 22666 void 22667 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22668 { 22669 phyint_t *phyi = ill->ill_phyint; 22670 ip_stack_t *ipst = ill->ill_ipst; 22671 hook_nic_event_t *info; 22672 char *name; 22673 int namelen; 22674 22675 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22676 22677 if ((info = ill->ill_nic_event_info) != NULL) { 22678 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d " 22679 "attached for %s\n", info->hne_event, 22680 ill->ill_name)); 22681 if (info->hne_data != NULL) 22682 kmem_free(info->hne_data, info->hne_datalen); 22683 kmem_free(info, sizeof (hook_nic_event_t)); 22684 ill->ill_nic_event_info = NULL; 22685 } 22686 22687 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22688 if (info == NULL) { 22689 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic " 22690 "event information for %s (ENOMEM)\n", 22691 ill->ill_name)); 22692 return; 22693 } 22694 22695 if (group) { 22696 ASSERT(phyi->phyint_groupname_len != 0); 22697 namelen = phyi->phyint_groupname_len; 22698 name = phyi->phyint_groupname; 22699 } else { 22700 namelen = ill->ill_name_length; 22701 name = ill->ill_name; 22702 } 22703 22704 info->hne_nic = phyi->phyint_hook_ifindex; 22705 info->hne_lif = 0; 22706 info->hne_event = NE_PLUMB; 22707 info->hne_family = ill->ill_isv6 ? 22708 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 22709 22710 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP); 22711 if (info->hne_data != NULL) { 22712 info->hne_datalen = namelen; 22713 bcopy(name, info->hne_data, info->hne_datalen); 22714 } else { 22715 ip2dbg(("ill_nic_info_plumb: could not attach " 22716 "name information for PLUMB nic event " 22717 "of %s (ENOMEM)\n", name)); 22718 kmem_free(info, sizeof (hook_nic_event_t)); 22719 info = NULL; 22720 } 22721 ill->ill_nic_event_info = info; 22722 } 22723 22724 /* 22725 * Unhook the nic event message from the ill and enqueue it 22726 * into the nic event taskq. 22727 */ 22728 void 22729 ill_nic_info_dispatch(ill_t *ill) 22730 { 22731 hook_nic_event_t *info; 22732 22733 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22734 22735 if ((info = ill->ill_nic_event_info) != NULL) { 22736 if (ddi_taskq_dispatch(eventq_queue_nic, 22737 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22738 ip2dbg(("ill_nic_info_dispatch: " 22739 "ddi_taskq_dispatch failed\n")); 22740 if (info->hne_data != NULL) 22741 kmem_free(info->hne_data, info->hne_datalen); 22742 kmem_free(info, sizeof (hook_nic_event_t)); 22743 } 22744 ill->ill_nic_event_info = NULL; 22745 } 22746 } 22747 22748 /* 22749 * Notify any downstream modules of the name of this interface. 22750 * An M_IOCTL is used even though we don't expect a successful reply. 22751 * Any reply message from the driver (presumably an M_IOCNAK) will 22752 * eventually get discarded somewhere upstream. The message format is 22753 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22754 * to IP. 22755 */ 22756 static void 22757 ip_ifname_notify(ill_t *ill, queue_t *q) 22758 { 22759 mblk_t *mp1, *mp2; 22760 struct iocblk *iocp; 22761 struct lifreq *lifr; 22762 22763 mp1 = mkiocb(SIOCSLIFNAME); 22764 if (mp1 == NULL) 22765 return; 22766 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22767 if (mp2 == NULL) { 22768 freeb(mp1); 22769 return; 22770 } 22771 22772 mp1->b_cont = mp2; 22773 iocp = (struct iocblk *)mp1->b_rptr; 22774 iocp->ioc_count = sizeof (struct lifreq); 22775 22776 lifr = (struct lifreq *)mp2->b_rptr; 22777 mp2->b_wptr += sizeof (struct lifreq); 22778 bzero(lifr, sizeof (struct lifreq)); 22779 22780 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22781 lifr->lifr_ppa = ill->ill_ppa; 22782 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22783 22784 putnext(q, mp1); 22785 } 22786 22787 static int 22788 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22789 { 22790 int err; 22791 ip_stack_t *ipst = ill->ill_ipst; 22792 22793 /* Set the obsolete NDD per-interface forwarding name. */ 22794 err = ill_set_ndd_name(ill); 22795 if (err != 0) { 22796 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22797 err); 22798 } 22799 22800 /* Tell downstream modules where they are. */ 22801 ip_ifname_notify(ill, q); 22802 22803 /* 22804 * ill_dl_phys returns EINPROGRESS in the usual case. 22805 * Error cases are ENOMEM ... 22806 */ 22807 err = ill_dl_phys(ill, ipif, mp, q); 22808 22809 /* 22810 * If there is no IRE expiration timer running, get one started. 22811 * igmp and mld timers will be triggered by the first multicast 22812 */ 22813 if (ipst->ips_ip_ire_expire_id == 0) { 22814 /* 22815 * acquire the lock and check again. 22816 */ 22817 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22818 if (ipst->ips_ip_ire_expire_id == 0) { 22819 ipst->ips_ip_ire_expire_id = timeout( 22820 ip_trash_timer_expire, ipst, 22821 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22822 } 22823 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22824 } 22825 22826 if (ill->ill_isv6) { 22827 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22828 if (ipst->ips_mld_slowtimeout_id == 0) { 22829 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22830 (void *)ipst, 22831 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22832 } 22833 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22834 } else { 22835 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22836 if (ipst->ips_igmp_slowtimeout_id == 0) { 22837 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22838 (void *)ipst, 22839 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22840 } 22841 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22842 } 22843 22844 return (err); 22845 } 22846 22847 /* 22848 * Common routine for ppa and ifname setting. Should be called exclusive. 22849 * 22850 * Returns EINPROGRESS when mp has been consumed by queueing it on 22851 * ill_pending_mp and the ioctl will complete in ip_rput. 22852 * 22853 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22854 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22855 * For SLIFNAME, we pass these values back to the userland. 22856 */ 22857 static int 22858 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22859 { 22860 ill_t *ill; 22861 ipif_t *ipif; 22862 ipsq_t *ipsq; 22863 char *ppa_ptr; 22864 char *old_ptr; 22865 char old_char; 22866 int error; 22867 ip_stack_t *ipst; 22868 22869 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22870 ASSERT(q->q_next != NULL); 22871 ASSERT(interf_name != NULL); 22872 22873 ill = (ill_t *)q->q_ptr; 22874 ipst = ill->ill_ipst; 22875 22876 ASSERT(ill->ill_ipst != NULL); 22877 ASSERT(ill->ill_name[0] == '\0'); 22878 ASSERT(IAM_WRITER_ILL(ill)); 22879 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22880 ASSERT(ill->ill_ppa == UINT_MAX); 22881 22882 /* The ppa is sent down by ifconfig or is chosen */ 22883 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22884 return (EINVAL); 22885 } 22886 22887 /* 22888 * make sure ppa passed in is same as ppa in the name. 22889 * This check is not made when ppa == UINT_MAX in that case ppa 22890 * in the name could be anything. System will choose a ppa and 22891 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22892 */ 22893 if (*new_ppa_ptr != UINT_MAX) { 22894 /* stoi changes the pointer */ 22895 old_ptr = ppa_ptr; 22896 /* 22897 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22898 * (they don't have an externally visible ppa). We assign one 22899 * here so that we can manage the interface. Note that in 22900 * the past this value was always 0 for DLPI 1 drivers. 22901 */ 22902 if (*new_ppa_ptr == 0) 22903 *new_ppa_ptr = stoi(&old_ptr); 22904 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22905 return (EINVAL); 22906 } 22907 /* 22908 * terminate string before ppa 22909 * save char at that location. 22910 */ 22911 old_char = ppa_ptr[0]; 22912 ppa_ptr[0] = '\0'; 22913 22914 ill->ill_ppa = *new_ppa_ptr; 22915 /* 22916 * Finish as much work now as possible before calling ill_glist_insert 22917 * which makes the ill globally visible and also merges it with the 22918 * other protocol instance of this phyint. The remaining work is 22919 * done after entering the ipsq which may happen sometime later. 22920 * ill_set_ndd_name occurs after the ill has been made globally visible. 22921 */ 22922 ipif = ill->ill_ipif; 22923 22924 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22925 ipif_assign_seqid(ipif); 22926 22927 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22928 ill->ill_flags |= ILLF_IPV4; 22929 22930 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22931 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22932 22933 if (ill->ill_flags & ILLF_IPV6) { 22934 22935 ill->ill_isv6 = B_TRUE; 22936 if (ill->ill_rq != NULL) { 22937 ill->ill_rq->q_qinfo = &rinit_ipv6; 22938 ill->ill_wq->q_qinfo = &winit_ipv6; 22939 } 22940 22941 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22942 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22943 ipif->ipif_v6src_addr = ipv6_all_zeros; 22944 ipif->ipif_v6subnet = ipv6_all_zeros; 22945 ipif->ipif_v6net_mask = ipv6_all_zeros; 22946 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22947 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22948 /* 22949 * point-to-point or Non-mulicast capable 22950 * interfaces won't do NUD unless explicitly 22951 * configured to do so. 22952 */ 22953 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22954 !(ill->ill_flags & ILLF_MULTICAST)) { 22955 ill->ill_flags |= ILLF_NONUD; 22956 } 22957 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22958 if (ill->ill_flags & ILLF_NOARP) { 22959 /* 22960 * Note: xresolv interfaces will eventually need 22961 * NOARP set here as well, but that will require 22962 * those external resolvers to have some 22963 * knowledge of that flag and act appropriately. 22964 * Not to be changed at present. 22965 */ 22966 ill->ill_flags &= ~ILLF_NOARP; 22967 } 22968 /* 22969 * Set the ILLF_ROUTER flag according to the global 22970 * IPv6 forwarding policy. 22971 */ 22972 if (ipst->ips_ipv6_forward != 0) 22973 ill->ill_flags |= ILLF_ROUTER; 22974 } else if (ill->ill_flags & ILLF_IPV4) { 22975 ill->ill_isv6 = B_FALSE; 22976 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22977 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22978 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22979 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22980 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22981 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22982 /* 22983 * Set the ILLF_ROUTER flag according to the global 22984 * IPv4 forwarding policy. 22985 */ 22986 if (ipst->ips_ip_g_forward != 0) 22987 ill->ill_flags |= ILLF_ROUTER; 22988 } 22989 22990 ASSERT(ill->ill_phyint != NULL); 22991 22992 /* 22993 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 22994 * be completed in ill_glist_insert -> ill_phyint_reinit 22995 */ 22996 if (!ill_allocate_mibs(ill)) 22997 return (ENOMEM); 22998 22999 /* 23000 * Pick a default sap until we get the DL_INFO_ACK back from 23001 * the driver. 23002 */ 23003 if (ill->ill_sap == 0) { 23004 if (ill->ill_isv6) 23005 ill->ill_sap = IP6_DL_SAP; 23006 else 23007 ill->ill_sap = IP_DL_SAP; 23008 } 23009 23010 ill->ill_ifname_pending = 1; 23011 ill->ill_ifname_pending_err = 0; 23012 23013 ill_refhold(ill); 23014 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23015 if ((error = ill_glist_insert(ill, interf_name, 23016 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23017 ill->ill_ppa = UINT_MAX; 23018 ill->ill_name[0] = '\0'; 23019 /* 23020 * undo null termination done above. 23021 */ 23022 ppa_ptr[0] = old_char; 23023 rw_exit(&ipst->ips_ill_g_lock); 23024 ill_refrele(ill); 23025 return (error); 23026 } 23027 23028 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23029 23030 /* 23031 * When we return the buffer pointed to by interf_name should contain 23032 * the same name as in ill_name. 23033 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23034 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23035 * so copy full name and update the ppa ptr. 23036 * When ppa passed in != UINT_MAX all values are correct just undo 23037 * null termination, this saves a bcopy. 23038 */ 23039 if (*new_ppa_ptr == UINT_MAX) { 23040 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23041 *new_ppa_ptr = ill->ill_ppa; 23042 } else { 23043 /* 23044 * undo null termination done above. 23045 */ 23046 ppa_ptr[0] = old_char; 23047 } 23048 23049 /* Let SCTP know about this ILL */ 23050 sctp_update_ill(ill, SCTP_ILL_INSERT); 23051 23052 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23053 B_TRUE); 23054 23055 rw_exit(&ipst->ips_ill_g_lock); 23056 ill_refrele(ill); 23057 if (ipsq == NULL) 23058 return (EINPROGRESS); 23059 23060 /* 23061 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23062 */ 23063 if (ipsq->ipsq_current_ipif == NULL) 23064 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23065 else 23066 ASSERT(ipsq->ipsq_current_ipif == ipif); 23067 23068 error = ipif_set_values_tail(ill, ipif, mp, q); 23069 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23070 if (error != 0 && error != EINPROGRESS) { 23071 /* 23072 * restore previous values 23073 */ 23074 ill->ill_isv6 = B_FALSE; 23075 } 23076 return (error); 23077 } 23078 23079 23080 void 23081 ipif_init(ip_stack_t *ipst) 23082 { 23083 hrtime_t hrt; 23084 int i; 23085 23086 /* 23087 * Can't call drv_getparm here as it is too early in the boot. 23088 * As we use ipif_src_random just for picking a different 23089 * source address everytime, this need not be really random. 23090 */ 23091 hrt = gethrtime(); 23092 ipst->ips_ipif_src_random = 23093 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23094 23095 for (i = 0; i < MAX_G_HEADS; i++) { 23096 ipst->ips_ill_g_heads[i].ill_g_list_head = 23097 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23098 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23099 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23100 } 23101 23102 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23103 ill_phyint_compare_index, 23104 sizeof (phyint_t), 23105 offsetof(struct phyint, phyint_avl_by_index)); 23106 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23107 ill_phyint_compare_name, 23108 sizeof (phyint_t), 23109 offsetof(struct phyint, phyint_avl_by_name)); 23110 } 23111 23112 /* 23113 * Lookup the ipif corresponding to the onlink destination address. For 23114 * point-to-point interfaces, it matches with remote endpoint destination 23115 * address. For point-to-multipoint interfaces it only tries to match the 23116 * destination with the interface's subnet address. The longest, most specific 23117 * match is found to take care of such rare network configurations like - 23118 * le0: 129.146.1.1/16 23119 * le1: 129.146.2.2/24 23120 * It is used only by SO_DONTROUTE at the moment. 23121 */ 23122 ipif_t * 23123 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23124 { 23125 ipif_t *ipif, *best_ipif; 23126 ill_t *ill; 23127 ill_walk_context_t ctx; 23128 23129 ASSERT(zoneid != ALL_ZONES); 23130 best_ipif = NULL; 23131 23132 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23133 ill = ILL_START_WALK_V4(&ctx, ipst); 23134 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23135 mutex_enter(&ill->ill_lock); 23136 for (ipif = ill->ill_ipif; ipif != NULL; 23137 ipif = ipif->ipif_next) { 23138 if (!IPIF_CAN_LOOKUP(ipif)) 23139 continue; 23140 if (ipif->ipif_zoneid != zoneid && 23141 ipif->ipif_zoneid != ALL_ZONES) 23142 continue; 23143 /* 23144 * Point-to-point case. Look for exact match with 23145 * destination address. 23146 */ 23147 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23148 if (ipif->ipif_pp_dst_addr == addr) { 23149 ipif_refhold_locked(ipif); 23150 mutex_exit(&ill->ill_lock); 23151 rw_exit(&ipst->ips_ill_g_lock); 23152 if (best_ipif != NULL) 23153 ipif_refrele(best_ipif); 23154 return (ipif); 23155 } 23156 } else if (ipif->ipif_subnet == (addr & 23157 ipif->ipif_net_mask)) { 23158 /* 23159 * Point-to-multipoint case. Looping through to 23160 * find the most specific match. If there are 23161 * multiple best match ipif's then prefer ipif's 23162 * that are UP. If there is only one best match 23163 * ipif and it is DOWN we must still return it. 23164 */ 23165 if ((best_ipif == NULL) || 23166 (ipif->ipif_net_mask > 23167 best_ipif->ipif_net_mask) || 23168 ((ipif->ipif_net_mask == 23169 best_ipif->ipif_net_mask) && 23170 ((ipif->ipif_flags & IPIF_UP) && 23171 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23172 ipif_refhold_locked(ipif); 23173 mutex_exit(&ill->ill_lock); 23174 rw_exit(&ipst->ips_ill_g_lock); 23175 if (best_ipif != NULL) 23176 ipif_refrele(best_ipif); 23177 best_ipif = ipif; 23178 rw_enter(&ipst->ips_ill_g_lock, 23179 RW_READER); 23180 mutex_enter(&ill->ill_lock); 23181 } 23182 } 23183 } 23184 mutex_exit(&ill->ill_lock); 23185 } 23186 rw_exit(&ipst->ips_ill_g_lock); 23187 return (best_ipif); 23188 } 23189 23190 23191 /* 23192 * Save enough information so that we can recreate the IRE if 23193 * the interface goes down and then up. 23194 */ 23195 static void 23196 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23197 { 23198 mblk_t *save_mp; 23199 23200 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23201 if (save_mp != NULL) { 23202 ifrt_t *ifrt; 23203 23204 save_mp->b_wptr += sizeof (ifrt_t); 23205 ifrt = (ifrt_t *)save_mp->b_rptr; 23206 bzero(ifrt, sizeof (ifrt_t)); 23207 ifrt->ifrt_type = ire->ire_type; 23208 ifrt->ifrt_addr = ire->ire_addr; 23209 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23210 ifrt->ifrt_src_addr = ire->ire_src_addr; 23211 ifrt->ifrt_mask = ire->ire_mask; 23212 ifrt->ifrt_flags = ire->ire_flags; 23213 ifrt->ifrt_max_frag = ire->ire_max_frag; 23214 mutex_enter(&ipif->ipif_saved_ire_lock); 23215 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23216 ipif->ipif_saved_ire_mp = save_mp; 23217 ipif->ipif_saved_ire_cnt++; 23218 mutex_exit(&ipif->ipif_saved_ire_lock); 23219 } 23220 } 23221 23222 23223 static void 23224 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23225 { 23226 mblk_t **mpp; 23227 mblk_t *mp; 23228 ifrt_t *ifrt; 23229 23230 /* Remove from ipif_saved_ire_mp list if it is there */ 23231 mutex_enter(&ipif->ipif_saved_ire_lock); 23232 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23233 mpp = &(*mpp)->b_cont) { 23234 /* 23235 * On a given ipif, the triple of address, gateway and 23236 * mask is unique for each saved IRE (in the case of 23237 * ordinary interface routes, the gateway address is 23238 * all-zeroes). 23239 */ 23240 mp = *mpp; 23241 ifrt = (ifrt_t *)mp->b_rptr; 23242 if (ifrt->ifrt_addr == ire->ire_addr && 23243 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23244 ifrt->ifrt_mask == ire->ire_mask) { 23245 *mpp = mp->b_cont; 23246 ipif->ipif_saved_ire_cnt--; 23247 freeb(mp); 23248 break; 23249 } 23250 } 23251 mutex_exit(&ipif->ipif_saved_ire_lock); 23252 } 23253 23254 23255 /* 23256 * IP multirouting broadcast routes handling 23257 * Append CGTP broadcast IREs to regular ones created 23258 * at ifconfig time. 23259 */ 23260 static void 23261 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23262 { 23263 ire_t *ire_prim; 23264 23265 ASSERT(ire != NULL); 23266 ASSERT(ire_dst != NULL); 23267 23268 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23269 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23270 if (ire_prim != NULL) { 23271 /* 23272 * We are in the special case of broadcasts for 23273 * CGTP. We add an IRE_BROADCAST that holds 23274 * the RTF_MULTIRT flag, the destination 23275 * address of ire_dst and the low level 23276 * info of ire_prim. In other words, CGTP 23277 * broadcast is added to the redundant ipif. 23278 */ 23279 ipif_t *ipif_prim; 23280 ire_t *bcast_ire; 23281 23282 ipif_prim = ire_prim->ire_ipif; 23283 23284 ip2dbg(("ip_cgtp_filter_bcast_add: " 23285 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23286 (void *)ire_dst, (void *)ire_prim, 23287 (void *)ipif_prim)); 23288 23289 bcast_ire = ire_create( 23290 (uchar_t *)&ire->ire_addr, 23291 (uchar_t *)&ip_g_all_ones, 23292 (uchar_t *)&ire_dst->ire_src_addr, 23293 (uchar_t *)&ire->ire_gateway_addr, 23294 &ipif_prim->ipif_mtu, 23295 NULL, 23296 ipif_prim->ipif_rq, 23297 ipif_prim->ipif_wq, 23298 IRE_BROADCAST, 23299 ipif_prim, 23300 0, 23301 0, 23302 0, 23303 ire->ire_flags, 23304 &ire_uinfo_null, 23305 NULL, 23306 NULL, 23307 ipst); 23308 23309 if (bcast_ire != NULL) { 23310 23311 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23312 B_FALSE) == 0) { 23313 ip2dbg(("ip_cgtp_filter_bcast_add: " 23314 "added bcast_ire %p\n", 23315 (void *)bcast_ire)); 23316 23317 ipif_save_ire(bcast_ire->ire_ipif, 23318 bcast_ire); 23319 ire_refrele(bcast_ire); 23320 } 23321 } 23322 ire_refrele(ire_prim); 23323 } 23324 } 23325 23326 23327 /* 23328 * IP multirouting broadcast routes handling 23329 * Remove the broadcast ire 23330 */ 23331 static void 23332 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23333 { 23334 ire_t *ire_dst; 23335 23336 ASSERT(ire != NULL); 23337 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23338 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23339 if (ire_dst != NULL) { 23340 ire_t *ire_prim; 23341 23342 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23343 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23344 if (ire_prim != NULL) { 23345 ipif_t *ipif_prim; 23346 ire_t *bcast_ire; 23347 23348 ipif_prim = ire_prim->ire_ipif; 23349 23350 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23351 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23352 (void *)ire_dst, (void *)ire_prim, 23353 (void *)ipif_prim)); 23354 23355 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23356 ire->ire_gateway_addr, 23357 IRE_BROADCAST, 23358 ipif_prim, ALL_ZONES, 23359 NULL, 23360 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23361 MATCH_IRE_MASK, ipst); 23362 23363 if (bcast_ire != NULL) { 23364 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23365 "looked up bcast_ire %p\n", 23366 (void *)bcast_ire)); 23367 ipif_remove_ire(bcast_ire->ire_ipif, 23368 bcast_ire); 23369 ire_delete(bcast_ire); 23370 } 23371 ire_refrele(ire_prim); 23372 } 23373 ire_refrele(ire_dst); 23374 } 23375 } 23376 23377 /* 23378 * IPsec hardware acceleration capabilities related functions. 23379 */ 23380 23381 /* 23382 * Free a per-ill IPsec capabilities structure. 23383 */ 23384 static void 23385 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23386 { 23387 if (capab->auth_hw_algs != NULL) 23388 kmem_free(capab->auth_hw_algs, capab->algs_size); 23389 if (capab->encr_hw_algs != NULL) 23390 kmem_free(capab->encr_hw_algs, capab->algs_size); 23391 if (capab->encr_algparm != NULL) 23392 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23393 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23394 } 23395 23396 /* 23397 * Allocate a new per-ill IPsec capabilities structure. This structure 23398 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23399 * an array which specifies, for each algorithm, whether this algorithm 23400 * is supported by the ill or not. 23401 */ 23402 static ill_ipsec_capab_t * 23403 ill_ipsec_capab_alloc(void) 23404 { 23405 ill_ipsec_capab_t *capab; 23406 uint_t nelems; 23407 23408 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23409 if (capab == NULL) 23410 return (NULL); 23411 23412 /* we need one bit per algorithm */ 23413 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23414 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23415 23416 /* allocate memory to store algorithm flags */ 23417 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23418 if (capab->encr_hw_algs == NULL) 23419 goto nomem; 23420 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23421 if (capab->auth_hw_algs == NULL) 23422 goto nomem; 23423 /* 23424 * Leave encr_algparm NULL for now since we won't need it half 23425 * the time 23426 */ 23427 return (capab); 23428 23429 nomem: 23430 ill_ipsec_capab_free(capab); 23431 return (NULL); 23432 } 23433 23434 /* 23435 * Resize capability array. Since we're exclusive, this is OK. 23436 */ 23437 static boolean_t 23438 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23439 { 23440 ipsec_capab_algparm_t *nalp, *oalp; 23441 uint32_t olen, nlen; 23442 23443 oalp = capab->encr_algparm; 23444 olen = capab->encr_algparm_size; 23445 23446 if (oalp != NULL) { 23447 if (algid < capab->encr_algparm_end) 23448 return (B_TRUE); 23449 } 23450 23451 nlen = (algid + 1) * sizeof (*nalp); 23452 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23453 if (nalp == NULL) 23454 return (B_FALSE); 23455 23456 if (oalp != NULL) { 23457 bcopy(oalp, nalp, olen); 23458 kmem_free(oalp, olen); 23459 } 23460 capab->encr_algparm = nalp; 23461 capab->encr_algparm_size = nlen; 23462 capab->encr_algparm_end = algid + 1; 23463 23464 return (B_TRUE); 23465 } 23466 23467 /* 23468 * Compare the capabilities of the specified ill with the protocol 23469 * and algorithms specified by the SA passed as argument. 23470 * If they match, returns B_TRUE, B_FALSE if they do not match. 23471 * 23472 * The ill can be passed as a pointer to it, or by specifying its index 23473 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23474 * 23475 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23476 * packet is eligible for hardware acceleration, and by 23477 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23478 * to a particular ill. 23479 */ 23480 boolean_t 23481 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23482 ipsa_t *sa, netstack_t *ns) 23483 { 23484 boolean_t sa_isv6; 23485 uint_t algid; 23486 struct ill_ipsec_capab_s *cpp; 23487 boolean_t need_refrele = B_FALSE; 23488 ip_stack_t *ipst = ns->netstack_ip; 23489 23490 if (ill == NULL) { 23491 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23492 NULL, NULL, NULL, ipst); 23493 if (ill == NULL) { 23494 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23495 return (B_FALSE); 23496 } 23497 need_refrele = B_TRUE; 23498 } 23499 23500 /* 23501 * Use the address length specified by the SA to determine 23502 * if it corresponds to a IPv6 address, and fail the matching 23503 * if the isv6 flag passed as argument does not match. 23504 * Note: this check is used for SADB capability checking before 23505 * sending SA information to an ill. 23506 */ 23507 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23508 if (sa_isv6 != ill_isv6) 23509 /* protocol mismatch */ 23510 goto done; 23511 23512 /* 23513 * Check if the ill supports the protocol, algorithm(s) and 23514 * key size(s) specified by the SA, and get the pointers to 23515 * the algorithms supported by the ill. 23516 */ 23517 switch (sa->ipsa_type) { 23518 23519 case SADB_SATYPE_ESP: 23520 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23521 /* ill does not support ESP acceleration */ 23522 goto done; 23523 cpp = ill->ill_ipsec_capab_esp; 23524 algid = sa->ipsa_auth_alg; 23525 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23526 goto done; 23527 algid = sa->ipsa_encr_alg; 23528 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23529 goto done; 23530 if (algid < cpp->encr_algparm_end) { 23531 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23532 if (sa->ipsa_encrkeybits < alp->minkeylen) 23533 goto done; 23534 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23535 goto done; 23536 } 23537 break; 23538 23539 case SADB_SATYPE_AH: 23540 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23541 /* ill does not support AH acceleration */ 23542 goto done; 23543 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23544 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23545 goto done; 23546 break; 23547 } 23548 23549 if (need_refrele) 23550 ill_refrele(ill); 23551 return (B_TRUE); 23552 done: 23553 if (need_refrele) 23554 ill_refrele(ill); 23555 return (B_FALSE); 23556 } 23557 23558 23559 /* 23560 * Add a new ill to the list of IPsec capable ills. 23561 * Called from ill_capability_ipsec_ack() when an ACK was received 23562 * indicating that IPsec hardware processing was enabled for an ill. 23563 * 23564 * ill must point to the ill for which acceleration was enabled. 23565 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23566 */ 23567 static void 23568 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23569 { 23570 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23571 uint_t sa_type; 23572 uint_t ipproto; 23573 ip_stack_t *ipst = ill->ill_ipst; 23574 23575 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23576 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23577 23578 switch (dl_cap) { 23579 case DL_CAPAB_IPSEC_AH: 23580 sa_type = SADB_SATYPE_AH; 23581 ills = &ipst->ips_ipsec_capab_ills_ah; 23582 ipproto = IPPROTO_AH; 23583 break; 23584 case DL_CAPAB_IPSEC_ESP: 23585 sa_type = SADB_SATYPE_ESP; 23586 ills = &ipst->ips_ipsec_capab_ills_esp; 23587 ipproto = IPPROTO_ESP; 23588 break; 23589 } 23590 23591 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23592 23593 /* 23594 * Add ill index to list of hardware accelerators. If 23595 * already in list, do nothing. 23596 */ 23597 for (cur_ill = *ills; cur_ill != NULL && 23598 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23599 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23600 ; 23601 23602 if (cur_ill == NULL) { 23603 /* if this is a new entry for this ill */ 23604 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23605 if (new_ill == NULL) { 23606 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23607 return; 23608 } 23609 23610 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23611 new_ill->ill_isv6 = ill->ill_isv6; 23612 new_ill->next = *ills; 23613 *ills = new_ill; 23614 } else if (!sadb_resync) { 23615 /* not resync'ing SADB and an entry exists for this ill */ 23616 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23617 return; 23618 } 23619 23620 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23621 23622 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23623 /* 23624 * IPsec module for protocol loaded, initiate dump 23625 * of the SADB to this ill. 23626 */ 23627 sadb_ill_download(ill, sa_type); 23628 } 23629 23630 /* 23631 * Remove an ill from the list of IPsec capable ills. 23632 */ 23633 static void 23634 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23635 { 23636 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23637 ip_stack_t *ipst = ill->ill_ipst; 23638 23639 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23640 dl_cap == DL_CAPAB_IPSEC_ESP); 23641 23642 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23643 &ipst->ips_ipsec_capab_ills_esp; 23644 23645 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23646 23647 prev_ill = NULL; 23648 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23649 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23650 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23651 ; 23652 if (cur_ill == NULL) { 23653 /* entry not found */ 23654 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23655 return; 23656 } 23657 if (prev_ill == NULL) { 23658 /* entry at front of list */ 23659 *ills = NULL; 23660 } else { 23661 prev_ill->next = cur_ill->next; 23662 } 23663 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23664 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23665 } 23666 23667 /* 23668 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23669 * supporting the specified IPsec protocol acceleration. 23670 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23671 * We free the mblk and, if sa is non-null, release the held referece. 23672 */ 23673 void 23674 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23675 netstack_t *ns) 23676 { 23677 ipsec_capab_ill_t *ici, *cur_ici; 23678 ill_t *ill; 23679 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23680 ip_stack_t *ipst = ns->netstack_ip; 23681 23682 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23683 ipst->ips_ipsec_capab_ills_esp; 23684 23685 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23686 23687 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23688 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23689 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23690 23691 /* 23692 * Handle the case where the ill goes away while the SADB is 23693 * attempting to send messages. If it's going away, it's 23694 * nuking its shadow SADB, so we don't care.. 23695 */ 23696 23697 if (ill == NULL) 23698 continue; 23699 23700 if (sa != NULL) { 23701 /* 23702 * Make sure capabilities match before 23703 * sending SA to ill. 23704 */ 23705 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23706 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23707 ill_refrele(ill); 23708 continue; 23709 } 23710 23711 mutex_enter(&sa->ipsa_lock); 23712 sa->ipsa_flags |= IPSA_F_HW; 23713 mutex_exit(&sa->ipsa_lock); 23714 } 23715 23716 /* 23717 * Copy template message, and add it to the front 23718 * of the mblk ship list. We want to avoid holding 23719 * the ipsec_capab_ills_lock while sending the 23720 * message to the ills. 23721 * 23722 * The b_next and b_prev are temporarily used 23723 * to build a list of mblks to be sent down, and to 23724 * save the ill to which they must be sent. 23725 */ 23726 nmp = copymsg(mp); 23727 if (nmp == NULL) { 23728 ill_refrele(ill); 23729 continue; 23730 } 23731 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23732 nmp->b_next = mp_ship_list; 23733 mp_ship_list = nmp; 23734 nmp->b_prev = (mblk_t *)ill; 23735 } 23736 23737 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23738 23739 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23740 /* restore the mblk to a sane state */ 23741 next_mp = nmp->b_next; 23742 nmp->b_next = NULL; 23743 ill = (ill_t *)nmp->b_prev; 23744 nmp->b_prev = NULL; 23745 23746 ill_dlpi_send(ill, nmp); 23747 ill_refrele(ill); 23748 } 23749 23750 if (sa != NULL) 23751 IPSA_REFRELE(sa); 23752 freemsg(mp); 23753 } 23754 23755 /* 23756 * Derive an interface id from the link layer address. 23757 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23758 */ 23759 static boolean_t 23760 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23761 { 23762 char *addr; 23763 23764 if (phys_length != ETHERADDRL) 23765 return (B_FALSE); 23766 23767 /* Form EUI-64 like address */ 23768 addr = (char *)&v6addr->s6_addr32[2]; 23769 bcopy((char *)phys_addr, addr, 3); 23770 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23771 addr[3] = (char)0xff; 23772 addr[4] = (char)0xfe; 23773 bcopy((char *)phys_addr + 3, addr + 5, 3); 23774 return (B_TRUE); 23775 } 23776 23777 /* ARGSUSED */ 23778 static boolean_t 23779 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23780 { 23781 return (B_FALSE); 23782 } 23783 23784 /* ARGSUSED */ 23785 static boolean_t 23786 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23787 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23788 { 23789 /* 23790 * Multicast address mappings used over Ethernet/802.X. 23791 * This address is used as a base for mappings. 23792 */ 23793 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23794 0x00, 0x00, 0x00}; 23795 23796 /* 23797 * Extract low order 32 bits from IPv6 multicast address. 23798 * Or that into the link layer address, starting from the 23799 * second byte. 23800 */ 23801 *hw_start = 2; 23802 v6_extract_mask->s6_addr32[0] = 0; 23803 v6_extract_mask->s6_addr32[1] = 0; 23804 v6_extract_mask->s6_addr32[2] = 0; 23805 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23806 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23807 return (B_TRUE); 23808 } 23809 23810 /* 23811 * Indicate by return value whether multicast is supported. If not, 23812 * this code should not touch/change any parameters. 23813 */ 23814 /* ARGSUSED */ 23815 static boolean_t 23816 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23817 uint32_t *hw_start, ipaddr_t *extract_mask) 23818 { 23819 /* 23820 * Multicast address mappings used over Ethernet/802.X. 23821 * This address is used as a base for mappings. 23822 */ 23823 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23824 0x00, 0x00, 0x00 }; 23825 23826 if (phys_length != ETHERADDRL) 23827 return (B_FALSE); 23828 23829 *extract_mask = htonl(0x007fffff); 23830 *hw_start = 2; 23831 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23832 return (B_TRUE); 23833 } 23834 23835 /* 23836 * Derive IPoIB interface id from the link layer address. 23837 */ 23838 static boolean_t 23839 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23840 { 23841 char *addr; 23842 23843 if (phys_length != 20) 23844 return (B_FALSE); 23845 addr = (char *)&v6addr->s6_addr32[2]; 23846 bcopy(phys_addr + 12, addr, 8); 23847 /* 23848 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23849 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23850 * rules. In these cases, the IBA considers these GUIDs to be in 23851 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23852 * required; vendors are required not to assign global EUI-64's 23853 * that differ only in u/l bit values, thus guaranteeing uniqueness 23854 * of the interface identifier. Whether the GUID is in modified 23855 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23856 * bit set to 1. 23857 */ 23858 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23859 return (B_TRUE); 23860 } 23861 23862 /* 23863 * Note on mapping from multicast IP addresses to IPoIB multicast link 23864 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23865 * The format of an IPoIB multicast address is: 23866 * 23867 * 4 byte QPN Scope Sign. Pkey 23868 * +--------------------------------------------+ 23869 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23870 * +--------------------------------------------+ 23871 * 23872 * The Scope and Pkey components are properties of the IBA port and 23873 * network interface. They can be ascertained from the broadcast address. 23874 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23875 */ 23876 23877 static boolean_t 23878 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23879 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23880 { 23881 /* 23882 * Base IPoIB IPv6 multicast address used for mappings. 23883 * Does not contain the IBA scope/Pkey values. 23884 */ 23885 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23886 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23887 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23888 23889 /* 23890 * Extract low order 80 bits from IPv6 multicast address. 23891 * Or that into the link layer address, starting from the 23892 * sixth byte. 23893 */ 23894 *hw_start = 6; 23895 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23896 23897 /* 23898 * Now fill in the IBA scope/Pkey values from the broadcast address. 23899 */ 23900 *(maddr + 5) = *(bphys_addr + 5); 23901 *(maddr + 8) = *(bphys_addr + 8); 23902 *(maddr + 9) = *(bphys_addr + 9); 23903 23904 v6_extract_mask->s6_addr32[0] = 0; 23905 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23906 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23907 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23908 return (B_TRUE); 23909 } 23910 23911 static boolean_t 23912 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23913 uint32_t *hw_start, ipaddr_t *extract_mask) 23914 { 23915 /* 23916 * Base IPoIB IPv4 multicast address used for mappings. 23917 * Does not contain the IBA scope/Pkey values. 23918 */ 23919 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23920 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23921 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23922 23923 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23924 return (B_FALSE); 23925 23926 /* 23927 * Extract low order 28 bits from IPv4 multicast address. 23928 * Or that into the link layer address, starting from the 23929 * sixteenth byte. 23930 */ 23931 *extract_mask = htonl(0x0fffffff); 23932 *hw_start = 16; 23933 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23934 23935 /* 23936 * Now fill in the IBA scope/Pkey values from the broadcast address. 23937 */ 23938 *(maddr + 5) = *(bphys_addr + 5); 23939 *(maddr + 8) = *(bphys_addr + 8); 23940 *(maddr + 9) = *(bphys_addr + 9); 23941 return (B_TRUE); 23942 } 23943 23944 /* 23945 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23946 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23947 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23948 * the link-local address is preferred. 23949 */ 23950 boolean_t 23951 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23952 { 23953 ipif_t *ipif; 23954 ipif_t *maybe_ipif = NULL; 23955 23956 mutex_enter(&ill->ill_lock); 23957 if (ill->ill_state_flags & ILL_CONDEMNED) { 23958 mutex_exit(&ill->ill_lock); 23959 if (ipifp != NULL) 23960 *ipifp = NULL; 23961 return (B_FALSE); 23962 } 23963 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23964 if (!IPIF_CAN_LOOKUP(ipif)) 23965 continue; 23966 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23967 ipif->ipif_zoneid != ALL_ZONES) 23968 continue; 23969 if ((ipif->ipif_flags & flags) != flags) 23970 continue; 23971 23972 if (ipifp == NULL) { 23973 mutex_exit(&ill->ill_lock); 23974 ASSERT(maybe_ipif == NULL); 23975 return (B_TRUE); 23976 } 23977 if (!ill->ill_isv6 || 23978 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23979 ipif_refhold_locked(ipif); 23980 mutex_exit(&ill->ill_lock); 23981 *ipifp = ipif; 23982 return (B_TRUE); 23983 } 23984 if (maybe_ipif == NULL) 23985 maybe_ipif = ipif; 23986 } 23987 if (ipifp != NULL) { 23988 if (maybe_ipif != NULL) 23989 ipif_refhold_locked(maybe_ipif); 23990 *ipifp = maybe_ipif; 23991 } 23992 mutex_exit(&ill->ill_lock); 23993 return (maybe_ipif != NULL); 23994 } 23995 23996 /* 23997 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23998 */ 23999 boolean_t 24000 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24001 { 24002 ill_t *illg; 24003 ip_stack_t *ipst = ill->ill_ipst; 24004 24005 /* 24006 * We look at the passed-in ill first without grabbing ill_g_lock. 24007 */ 24008 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24009 return (B_TRUE); 24010 } 24011 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24012 if (ill->ill_group == NULL) { 24013 /* ill not in a group */ 24014 rw_exit(&ipst->ips_ill_g_lock); 24015 return (B_FALSE); 24016 } 24017 24018 /* 24019 * There's no ipif in the zone on ill, however ill is part of an IPMP 24020 * group. We need to look for an ipif in the zone on all the ills in the 24021 * group. 24022 */ 24023 illg = ill->ill_group->illgrp_ill; 24024 do { 24025 /* 24026 * We don't call ipif_lookup_zoneid() on ill as we already know 24027 * that it's not there. 24028 */ 24029 if (illg != ill && 24030 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24031 break; 24032 } 24033 } while ((illg = illg->ill_group_next) != NULL); 24034 rw_exit(&ipst->ips_ill_g_lock); 24035 return (illg != NULL); 24036 } 24037 24038 /* 24039 * Check if this ill is only being used to send ICMP probes for IPMP 24040 */ 24041 boolean_t 24042 ill_is_probeonly(ill_t *ill) 24043 { 24044 /* 24045 * Check if the interface is FAILED, or INACTIVE 24046 */ 24047 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24048 return (B_TRUE); 24049 24050 return (B_FALSE); 24051 } 24052 24053 /* 24054 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24055 * If a pointer to an ipif_t is returned then the caller will need to do 24056 * an ill_refrele(). 24057 * 24058 * If there is no real interface which matches the ifindex, then it looks 24059 * for a group that has a matching index. In the case of a group match the 24060 * lifidx must be zero. We don't need emulate the logical interfaces 24061 * since IP Filter's use of netinfo doesn't use that. 24062 */ 24063 ipif_t * 24064 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24065 ip_stack_t *ipst) 24066 { 24067 ipif_t *ipif; 24068 ill_t *ill; 24069 24070 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24071 ipst); 24072 24073 if (ill == NULL) { 24074 /* Fallback to group names only if hook_emulation set */ 24075 if (!ipst->ips_ipmp_hook_emulation) 24076 return (NULL); 24077 24078 if (lifidx != 0) 24079 return (NULL); 24080 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24081 if (ill == NULL) 24082 return (NULL); 24083 } 24084 24085 mutex_enter(&ill->ill_lock); 24086 if (ill->ill_state_flags & ILL_CONDEMNED) { 24087 mutex_exit(&ill->ill_lock); 24088 ill_refrele(ill); 24089 return (NULL); 24090 } 24091 24092 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24093 if (!IPIF_CAN_LOOKUP(ipif)) 24094 continue; 24095 if (lifidx == ipif->ipif_id) { 24096 ipif_refhold_locked(ipif); 24097 break; 24098 } 24099 } 24100 24101 mutex_exit(&ill->ill_lock); 24102 ill_refrele(ill); 24103 return (ipif); 24104 } 24105 24106 /* 24107 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24108 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24109 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24110 * for details. 24111 */ 24112 void 24113 ill_fastpath_flush(ill_t *ill) 24114 { 24115 ip_stack_t *ipst = ill->ill_ipst; 24116 24117 nce_fastpath_list_dispatch(ill, NULL, NULL); 24118 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24119 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24120 } 24121 24122 /* 24123 * Set the physical address information for `ill' to the contents of the 24124 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24125 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24126 * EINPROGRESS will be returned. 24127 */ 24128 int 24129 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24130 { 24131 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24132 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24133 24134 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24135 24136 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24137 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24138 /* Changing DL_IPV6_TOKEN is not yet supported */ 24139 return (0); 24140 } 24141 24142 /* 24143 * We need to store up to two copies of `mp' in `ill'. Due to the 24144 * design of ipsq_pending_mp_add(), we can't pass them as separate 24145 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24146 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24147 */ 24148 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24149 freemsg(mp); 24150 return (ENOMEM); 24151 } 24152 24153 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24154 24155 /* 24156 * If we can quiesce the ill, then set the address. If not, then 24157 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24158 */ 24159 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24160 mutex_enter(&ill->ill_lock); 24161 if (!ill_is_quiescent(ill)) { 24162 /* call cannot fail since `conn_t *' argument is NULL */ 24163 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24164 mp, ILL_DOWN); 24165 mutex_exit(&ill->ill_lock); 24166 return (EINPROGRESS); 24167 } 24168 mutex_exit(&ill->ill_lock); 24169 24170 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24171 return (0); 24172 } 24173 24174 /* 24175 * Once the ill associated with `q' has quiesced, set its physical address 24176 * information to the values in `addrmp'. Note that two copies of `addrmp' 24177 * are passed (linked by b_cont), since we sometimes need to save two distinct 24178 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24179 * failure (we'll free the other copy if it's not needed). Since the ill_t 24180 * is quiesced, we know any stale IREs with the old address information have 24181 * already been removed, so we don't need to call ill_fastpath_flush(). 24182 */ 24183 /* ARGSUSED */ 24184 static void 24185 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24186 { 24187 ill_t *ill = q->q_ptr; 24188 mblk_t *addrmp2 = unlinkb(addrmp); 24189 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24190 uint_t addrlen, addroff; 24191 24192 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24193 24194 addroff = dlindp->dl_addr_offset; 24195 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24196 24197 switch (dlindp->dl_data) { 24198 case DL_IPV6_LINK_LAYER_ADDR: 24199 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24200 freemsg(addrmp2); 24201 break; 24202 24203 case DL_CURR_PHYS_ADDR: 24204 freemsg(ill->ill_phys_addr_mp); 24205 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24206 ill->ill_phys_addr_mp = addrmp; 24207 ill->ill_phys_addr_length = addrlen; 24208 24209 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24210 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24211 else 24212 freemsg(addrmp2); 24213 break; 24214 default: 24215 ASSERT(0); 24216 } 24217 24218 /* 24219 * If there are ipifs to bring up, ill_up_ipifs() will return 24220 * EINPROGRESS, and ipsq_current_finish() will be called by 24221 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24222 * brought up. 24223 */ 24224 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24225 ipsq_current_finish(ipsq); 24226 } 24227 24228 /* 24229 * Helper routine for setting the ill_nd_lla fields. 24230 */ 24231 void 24232 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24233 { 24234 freemsg(ill->ill_nd_lla_mp); 24235 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24236 ill->ill_nd_lla_mp = ndmp; 24237 ill->ill_nd_lla_len = addrlen; 24238 } 24239 24240 major_t IP_MAJ; 24241 #define IP "ip" 24242 24243 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24244 #define UDPDEV "/devices/pseudo/udp@0:udp" 24245 24246 /* 24247 * Issue REMOVEIF ioctls to have the loopback interfaces 24248 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24249 * the former going away when the user-level processes in the zone 24250 * are killed * and the latter are cleaned up by the stream head 24251 * str_stack_shutdown callback that undoes all I_PLINKs. 24252 */ 24253 void 24254 ip_loopback_cleanup(ip_stack_t *ipst) 24255 { 24256 int error; 24257 ldi_handle_t lh = NULL; 24258 ldi_ident_t li = NULL; 24259 int rval; 24260 cred_t *cr; 24261 struct strioctl iocb; 24262 struct lifreq lifreq; 24263 24264 IP_MAJ = ddi_name_to_major(IP); 24265 24266 #ifdef NS_DEBUG 24267 (void) printf("ip_loopback_cleanup() stackid %d\n", 24268 ipst->ips_netstack->netstack_stackid); 24269 #endif 24270 24271 bzero(&lifreq, sizeof (lifreq)); 24272 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24273 24274 error = ldi_ident_from_major(IP_MAJ, &li); 24275 if (error) { 24276 #ifdef DEBUG 24277 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24278 error); 24279 #endif 24280 return; 24281 } 24282 24283 cr = zone_get_kcred(netstackid_to_zoneid( 24284 ipst->ips_netstack->netstack_stackid)); 24285 ASSERT(cr != NULL); 24286 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24287 if (error) { 24288 #ifdef DEBUG 24289 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24290 error); 24291 #endif 24292 goto out; 24293 } 24294 iocb.ic_cmd = SIOCLIFREMOVEIF; 24295 iocb.ic_timout = 15; 24296 iocb.ic_len = sizeof (lifreq); 24297 iocb.ic_dp = (char *)&lifreq; 24298 24299 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24300 /* LINTED - statement has no consequent */ 24301 if (error) { 24302 #ifdef NS_DEBUG 24303 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24304 "UDP6 error %d\n", error); 24305 #endif 24306 } 24307 (void) ldi_close(lh, FREAD|FWRITE, cr); 24308 lh = NULL; 24309 24310 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24311 if (error) { 24312 #ifdef NS_DEBUG 24313 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24314 error); 24315 #endif 24316 goto out; 24317 } 24318 24319 iocb.ic_cmd = SIOCLIFREMOVEIF; 24320 iocb.ic_timout = 15; 24321 iocb.ic_len = sizeof (lifreq); 24322 iocb.ic_dp = (char *)&lifreq; 24323 24324 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24325 /* LINTED - statement has no consequent */ 24326 if (error) { 24327 #ifdef NS_DEBUG 24328 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24329 "UDP error %d\n", error); 24330 #endif 24331 } 24332 (void) ldi_close(lh, FREAD|FWRITE, cr); 24333 lh = NULL; 24334 24335 out: 24336 /* Close layered handles */ 24337 if (lh) 24338 (void) ldi_close(lh, FREAD|FWRITE, cr); 24339 if (li) 24340 ldi_ident_release(li); 24341 24342 crfree(cr); 24343 } 24344