1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 */ 25 26 /* 27 * This file contains the interface control functions for IP. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/strsun.h> 35 #include <sys/sysmacros.h> 36 #include <sys/strsubr.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 #include <sys/cpuvar.h> 48 #include <sys/time.h> 49 #include <sys/ctype.h> 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 #include <sys/callb.h> 68 #include <sys/md5.h> 69 70 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 71 #include <inet/mi.h> 72 #include <inet/nd.h> 73 #include <inet/tunables.h> 74 #include <inet/arp.h> 75 #include <inet/ip_arp.h> 76 #include <inet/mib2.h> 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_ire.h> 83 #include <inet/ip_ftable.h> 84 #include <inet/ip_rts.h> 85 #include <inet/ip_ndp.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_impl.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 #include <inet/ilb_ip.h> 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac_client.h> 96 #include <sys/dld.h> 97 98 #include <sys/systeminfo.h> 99 #include <sys/bootconf.h> 100 101 #include <sys/tsol/tndb.h> 102 #include <sys/tsol/tnet.h> 103 104 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 105 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 106 107 /* The character which tells where the ill_name ends */ 108 #define IPIF_SEPARATOR_CHAR ':' 109 110 /* IP ioctl function table entry */ 111 typedef struct ipft_s { 112 int ipft_cmd; 113 pfi_t ipft_pfi; 114 int ipft_min_size; 115 int ipft_flags; 116 } ipft_t; 117 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 118 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 119 120 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 121 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 122 char *value, caddr_t cp, cred_t *ioc_cr); 123 124 static boolean_t ill_is_quiescent(ill_t *); 125 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 126 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 127 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 128 mblk_t *mp, boolean_t need_up); 129 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 130 mblk_t *mp, boolean_t need_up); 131 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 132 queue_t *q, mblk_t *mp, boolean_t need_up); 133 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 134 mblk_t *mp); 135 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp); 137 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 138 queue_t *q, mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 140 int ioccmd, struct linkblk *li); 141 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 142 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 143 static void ipsq_flush(ill_t *ill); 144 145 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static void ipsq_delete(ipsq_t *); 148 149 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 150 boolean_t initialize, boolean_t insert, int *errorp); 151 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 152 static void ipif_delete_bcast_ires(ipif_t *ipif); 153 static int ipif_add_ires_v4(ipif_t *, boolean_t); 154 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 155 boolean_t isv6); 156 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 157 static void ipif_free(ipif_t *ipif); 158 static void ipif_free_tail(ipif_t *ipif); 159 static void ipif_set_default(ipif_t *ipif); 160 static int ipif_set_values(queue_t *q, mblk_t *mp, 161 char *interf_name, uint_t *ppa); 162 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 163 queue_t *q); 164 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 165 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 166 ip_stack_t *); 167 168 static int ill_alloc_ppa(ill_if_t *, ill_t *); 169 static void ill_delete_interface_type(ill_if_t *); 170 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 171 static void ill_dl_down(ill_t *ill); 172 static void ill_down(ill_t *ill); 173 static void ill_down_ipifs(ill_t *, boolean_t); 174 static void ill_free_mib(ill_t *ill); 175 static void ill_glist_delete(ill_t *); 176 static void ill_phyint_reinit(ill_t *ill); 177 static void ill_set_nce_router_flags(ill_t *, boolean_t); 178 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 179 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 180 181 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 182 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 183 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 184 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 185 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 186 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 187 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 188 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 189 static ip_v4mapinfo_func_t ip_mbcast_mapping; 190 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 191 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 192 static void phyint_free(phyint_t *); 193 194 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 195 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 196 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 197 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 198 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 199 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 200 dl_capability_sub_t *); 201 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 202 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 203 static void ill_capability_dld_ack(ill_t *, mblk_t *, 204 dl_capability_sub_t *); 205 static void ill_capability_dld_enable(ill_t *); 206 static void ill_capability_ack_thr(void *); 207 static void ill_capability_lso_enable(ill_t *); 208 209 static ill_t *ill_prev_usesrc(ill_t *); 210 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 211 static void ill_disband_usesrc_group(ill_t *); 212 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 213 214 #ifdef DEBUG 215 static void ill_trace_cleanup(const ill_t *); 216 static void ipif_trace_cleanup(const ipif_t *); 217 #endif 218 219 static void ill_dlpi_clear_deferred(ill_t *ill); 220 221 /* 222 * if we go over the memory footprint limit more than once in this msec 223 * interval, we'll start pruning aggressively. 224 */ 225 int ip_min_frag_prune_time = 0; 226 227 static ipft_t ip_ioctl_ftbl[] = { 228 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 229 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 230 IPFT_F_NO_REPLY }, 231 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 232 { 0 } 233 }; 234 235 /* Simple ICMP IP Header Template */ 236 static ipha_t icmp_ipha = { 237 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 238 }; 239 240 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 241 242 static ip_m_t ip_m_tbl[] = { 243 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 244 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 245 ip_nodef_v6intfid }, 246 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 247 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 248 ip_nodef_v6intfid }, 249 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 250 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 251 ip_nodef_v6intfid }, 252 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 256 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 257 ip_nodef_v6intfid }, 258 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 259 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 260 ip_nodef_v6intfid }, 261 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 262 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 263 ip_ipv4_v6destintfid }, 264 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 265 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 266 ip_ipv6_v6destintfid }, 267 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 268 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 269 ip_nodef_v6intfid }, 270 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 271 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 272 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 273 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 274 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 275 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 276 ip_nodef_v6intfid } 277 }; 278 279 static ill_t ill_null; /* Empty ILL for init. */ 280 char ipif_loopback_name[] = "lo0"; 281 282 /* These are used by all IP network modules. */ 283 sin6_t sin6_null; /* Zero address for quick clears */ 284 sin_t sin_null; /* Zero address for quick clears */ 285 286 /* When set search for unused ipif_seqid */ 287 static ipif_t ipif_zero; 288 289 /* 290 * ppa arena is created after these many 291 * interfaces have been plumbed. 292 */ 293 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 294 295 /* 296 * Allocate per-interface mibs. 297 * Returns true if ok. False otherwise. 298 * ipsq may not yet be allocated (loopback case ). 299 */ 300 static boolean_t 301 ill_allocate_mibs(ill_t *ill) 302 { 303 /* Already allocated? */ 304 if (ill->ill_ip_mib != NULL) { 305 if (ill->ill_isv6) 306 ASSERT(ill->ill_icmp6_mib != NULL); 307 return (B_TRUE); 308 } 309 310 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 311 KM_NOSLEEP); 312 if (ill->ill_ip_mib == NULL) { 313 return (B_FALSE); 314 } 315 316 /* Setup static information */ 317 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 318 sizeof (mib2_ipIfStatsEntry_t)); 319 if (ill->ill_isv6) { 320 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 321 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 322 sizeof (mib2_ipv6AddrEntry_t)); 323 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 324 sizeof (mib2_ipv6RouteEntry_t)); 325 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 326 sizeof (mib2_ipv6NetToMediaEntry_t)); 327 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 328 sizeof (ipv6_member_t)); 329 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 330 sizeof (ipv6_grpsrc_t)); 331 } else { 332 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 333 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 334 sizeof (mib2_ipAddrEntry_t)); 335 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 336 sizeof (mib2_ipRouteEntry_t)); 337 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 338 sizeof (mib2_ipNetToMediaEntry_t)); 339 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 340 sizeof (ip_member_t)); 341 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 342 sizeof (ip_grpsrc_t)); 343 344 /* 345 * For a v4 ill, we are done at this point, because per ill 346 * icmp mibs are only used for v6. 347 */ 348 return (B_TRUE); 349 } 350 351 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 352 KM_NOSLEEP); 353 if (ill->ill_icmp6_mib == NULL) { 354 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 355 ill->ill_ip_mib = NULL; 356 return (B_FALSE); 357 } 358 /* static icmp info */ 359 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 360 sizeof (mib2_ipv6IfIcmpEntry_t); 361 /* 362 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 363 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 364 * -> ill_phyint_reinit 365 */ 366 return (B_TRUE); 367 } 368 369 /* 370 * Completely vaporize a lower level tap and all associated interfaces. 371 * ill_delete is called only out of ip_close when the device control 372 * stream is being closed. 373 */ 374 void 375 ill_delete(ill_t *ill) 376 { 377 ipif_t *ipif; 378 ill_t *prev_ill; 379 ip_stack_t *ipst = ill->ill_ipst; 380 381 /* 382 * ill_delete may be forcibly entering the ipsq. The previous 383 * ioctl may not have completed and may need to be aborted. 384 * ipsq_flush takes care of it. If we don't need to enter the 385 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 386 * ill_delete_tail is sufficient. 387 */ 388 ipsq_flush(ill); 389 390 /* 391 * Nuke all interfaces. ipif_free will take down the interface, 392 * remove it from the list, and free the data structure. 393 * Walk down the ipif list and remove the logical interfaces 394 * first before removing the main ipif. We can't unplumb 395 * zeroth interface first in the case of IPv6 as update_conn_ill 396 * -> ip_ll_multireq de-references ill_ipif for checking 397 * POINTOPOINT. 398 * 399 * If ill_ipif was not properly initialized (i.e low on memory), 400 * then no interfaces to clean up. In this case just clean up the 401 * ill. 402 */ 403 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 404 ipif_free(ipif); 405 406 /* 407 * clean out all the nce_t entries that depend on this 408 * ill for the ill_phys_addr. 409 */ 410 nce_flush(ill, B_TRUE); 411 412 /* Clean up msgs on pending upcalls for mrouted */ 413 reset_mrt_ill(ill); 414 415 update_conn_ill(ill, ipst); 416 417 /* 418 * Remove multicast references added as a result of calls to 419 * ip_join_allmulti(). 420 */ 421 ip_purge_allmulti(ill); 422 423 /* 424 * If the ill being deleted is under IPMP, boot it out of the illgrp. 425 */ 426 if (IS_UNDER_IPMP(ill)) 427 ipmp_ill_leave_illgrp(ill); 428 429 /* 430 * ill_down will arrange to blow off any IRE's dependent on this 431 * ILL, and shut down fragmentation reassembly. 432 */ 433 ill_down(ill); 434 435 /* Let SCTP know, so that it can remove this from its list. */ 436 sctp_update_ill(ill, SCTP_ILL_REMOVE); 437 438 /* 439 * Walk all CONNs that can have a reference on an ire or nce for this 440 * ill (we actually walk all that now have stale references). 441 */ 442 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 443 444 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 445 if (ill->ill_isv6) 446 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 447 448 /* 449 * If an address on this ILL is being used as a source address then 450 * clear out the pointers in other ILLs that point to this ILL. 451 */ 452 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 453 if (ill->ill_usesrc_grp_next != NULL) { 454 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 455 ill_disband_usesrc_group(ill); 456 } else { /* consumer of the usesrc ILL */ 457 prev_ill = ill_prev_usesrc(ill); 458 prev_ill->ill_usesrc_grp_next = 459 ill->ill_usesrc_grp_next; 460 } 461 } 462 rw_exit(&ipst->ips_ill_g_usesrc_lock); 463 } 464 465 static void 466 ipif_non_duplicate(ipif_t *ipif) 467 { 468 ill_t *ill = ipif->ipif_ill; 469 mutex_enter(&ill->ill_lock); 470 if (ipif->ipif_flags & IPIF_DUPLICATE) { 471 ipif->ipif_flags &= ~IPIF_DUPLICATE; 472 ASSERT(ill->ill_ipif_dup_count > 0); 473 ill->ill_ipif_dup_count--; 474 } 475 mutex_exit(&ill->ill_lock); 476 } 477 478 /* 479 * ill_delete_tail is called from ip_modclose after all references 480 * to the closing ill are gone. The wait is done in ip_modclose 481 */ 482 void 483 ill_delete_tail(ill_t *ill) 484 { 485 mblk_t **mpp; 486 ipif_t *ipif; 487 ip_stack_t *ipst = ill->ill_ipst; 488 489 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 490 ipif_non_duplicate(ipif); 491 (void) ipif_down_tail(ipif); 492 } 493 494 ASSERT(ill->ill_ipif_dup_count == 0); 495 496 /* 497 * If polling capability is enabled (which signifies direct 498 * upcall into IP and driver has ill saved as a handle), 499 * we need to make sure that unbind has completed before we 500 * let the ill disappear and driver no longer has any reference 501 * to this ill. 502 */ 503 mutex_enter(&ill->ill_lock); 504 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 505 cv_wait(&ill->ill_cv, &ill->ill_lock); 506 mutex_exit(&ill->ill_lock); 507 ASSERT(!(ill->ill_capabilities & 508 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 509 510 if (ill->ill_net_type != IRE_LOOPBACK) 511 qprocsoff(ill->ill_rq); 512 513 /* 514 * We do an ipsq_flush once again now. New messages could have 515 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 516 * could also have landed up if an ioctl thread had looked up 517 * the ill before we set the ILL_CONDEMNED flag, but not yet 518 * enqueued the ioctl when we did the ipsq_flush last time. 519 */ 520 ipsq_flush(ill); 521 522 /* 523 * Free capabilities. 524 */ 525 if (ill->ill_hcksum_capab != NULL) { 526 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 527 ill->ill_hcksum_capab = NULL; 528 } 529 530 if (ill->ill_zerocopy_capab != NULL) { 531 kmem_free(ill->ill_zerocopy_capab, 532 sizeof (ill_zerocopy_capab_t)); 533 ill->ill_zerocopy_capab = NULL; 534 } 535 536 if (ill->ill_lso_capab != NULL) { 537 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 538 ill->ill_lso_capab = NULL; 539 } 540 541 if (ill->ill_dld_capab != NULL) { 542 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 543 ill->ill_dld_capab = NULL; 544 } 545 546 while (ill->ill_ipif != NULL) 547 ipif_free_tail(ill->ill_ipif); 548 549 /* 550 * We have removed all references to ilm from conn and the ones joined 551 * within the kernel. 552 * 553 * We don't walk conns, mrts and ires because 554 * 555 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 556 * 2) ill_down ->ill_downi walks all the ires and cleans up 557 * ill references. 558 */ 559 560 /* 561 * If this ill is an IPMP meta-interface, blow away the illgrp. This 562 * is safe to do because the illgrp has already been unlinked from the 563 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 564 */ 565 if (IS_IPMP(ill)) { 566 ipmp_illgrp_destroy(ill->ill_grp); 567 ill->ill_grp = NULL; 568 } 569 570 /* 571 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 572 * could free the phyint. No more reference to the phyint after this 573 * point. 574 */ 575 (void) ill_glist_delete(ill); 576 577 if (ill->ill_frag_ptr != NULL) { 578 uint_t count; 579 580 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 581 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 582 } 583 mi_free(ill->ill_frag_ptr); 584 ill->ill_frag_ptr = NULL; 585 ill->ill_frag_hash_tbl = NULL; 586 } 587 588 freemsg(ill->ill_nd_lla_mp); 589 /* Free all retained control messages. */ 590 mpp = &ill->ill_first_mp_to_free; 591 do { 592 while (mpp[0]) { 593 mblk_t *mp; 594 mblk_t *mp1; 595 596 mp = mpp[0]; 597 mpp[0] = mp->b_next; 598 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 599 mp1->b_next = NULL; 600 mp1->b_prev = NULL; 601 } 602 freemsg(mp); 603 } 604 } while (mpp++ != &ill->ill_last_mp_to_free); 605 606 ill_free_mib(ill); 607 608 #ifdef DEBUG 609 ill_trace_cleanup(ill); 610 #endif 611 612 /* The default multicast interface might have changed */ 613 ire_increment_multicast_generation(ipst, ill->ill_isv6); 614 615 /* Drop refcnt here */ 616 netstack_rele(ill->ill_ipst->ips_netstack); 617 ill->ill_ipst = NULL; 618 } 619 620 static void 621 ill_free_mib(ill_t *ill) 622 { 623 ip_stack_t *ipst = ill->ill_ipst; 624 625 /* 626 * MIB statistics must not be lost, so when an interface 627 * goes away the counter values will be added to the global 628 * MIBs. 629 */ 630 if (ill->ill_ip_mib != NULL) { 631 if (ill->ill_isv6) { 632 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 633 ill->ill_ip_mib); 634 } else { 635 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 636 ill->ill_ip_mib); 637 } 638 639 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 640 ill->ill_ip_mib = NULL; 641 } 642 if (ill->ill_icmp6_mib != NULL) { 643 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 644 ill->ill_icmp6_mib); 645 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 646 ill->ill_icmp6_mib = NULL; 647 } 648 } 649 650 /* 651 * Concatenate together a physical address and a sap. 652 * 653 * Sap_lengths are interpreted as follows: 654 * sap_length == 0 ==> no sap 655 * sap_length > 0 ==> sap is at the head of the dlpi address 656 * sap_length < 0 ==> sap is at the tail of the dlpi address 657 */ 658 static void 659 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 660 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 661 { 662 uint16_t sap_addr = (uint16_t)sap_src; 663 664 if (sap_length == 0) { 665 if (phys_src == NULL) 666 bzero(dst, phys_length); 667 else 668 bcopy(phys_src, dst, phys_length); 669 } else if (sap_length < 0) { 670 if (phys_src == NULL) 671 bzero(dst, phys_length); 672 else 673 bcopy(phys_src, dst, phys_length); 674 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 675 } else { 676 bcopy(&sap_addr, dst, sizeof (sap_addr)); 677 if (phys_src == NULL) 678 bzero((char *)dst + sap_length, phys_length); 679 else 680 bcopy(phys_src, (char *)dst + sap_length, phys_length); 681 } 682 } 683 684 /* 685 * Generate a dl_unitdata_req mblk for the device and address given. 686 * addr_length is the length of the physical portion of the address. 687 * If addr is NULL include an all zero address of the specified length. 688 * TRUE? In any case, addr_length is taken to be the entire length of the 689 * dlpi address, including the absolute value of sap_length. 690 */ 691 mblk_t * 692 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 693 t_scalar_t sap_length) 694 { 695 dl_unitdata_req_t *dlur; 696 mblk_t *mp; 697 t_scalar_t abs_sap_length; /* absolute value */ 698 699 abs_sap_length = ABS(sap_length); 700 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 701 DL_UNITDATA_REQ); 702 if (mp == NULL) 703 return (NULL); 704 dlur = (dl_unitdata_req_t *)mp->b_rptr; 705 /* HACK: accomodate incompatible DLPI drivers */ 706 if (addr_length == 8) 707 addr_length = 6; 708 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 709 dlur->dl_dest_addr_offset = sizeof (*dlur); 710 dlur->dl_priority.dl_min = 0; 711 dlur->dl_priority.dl_max = 0; 712 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 713 (uchar_t *)&dlur[1]); 714 return (mp); 715 } 716 717 /* 718 * Add the pending mp to the list. There can be only 1 pending mp 719 * in the list. Any exclusive ioctl that needs to wait for a response 720 * from another module or driver needs to use this function to set 721 * the ipx_pending_mp to the ioctl mblk and wait for the response from 722 * the other module/driver. This is also used while waiting for the 723 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 724 */ 725 boolean_t 726 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 727 int waitfor) 728 { 729 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 730 731 ASSERT(IAM_WRITER_IPIF(ipif)); 732 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 733 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 734 ASSERT(ipx->ipx_pending_mp == NULL); 735 /* 736 * The caller may be using a different ipif than the one passed into 737 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 738 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 739 * that `ipx_current_ipif == ipif'. 740 */ 741 ASSERT(ipx->ipx_current_ipif != NULL); 742 743 /* 744 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 745 * driver. 746 */ 747 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 748 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 749 (DB_TYPE(add_mp) == M_PCPROTO)); 750 751 if (connp != NULL) { 752 ASSERT(MUTEX_HELD(&connp->conn_lock)); 753 /* 754 * Return error if the conn has started closing. The conn 755 * could have finished cleaning up the pending mp list, 756 * If so we should not add another mp to the list negating 757 * the cleanup. 758 */ 759 if (connp->conn_state_flags & CONN_CLOSING) 760 return (B_FALSE); 761 } 762 mutex_enter(&ipx->ipx_lock); 763 ipx->ipx_pending_ipif = ipif; 764 /* 765 * Note down the queue in b_queue. This will be returned by 766 * ipsq_pending_mp_get. Caller will then use these values to restart 767 * the processing 768 */ 769 add_mp->b_next = NULL; 770 add_mp->b_queue = q; 771 ipx->ipx_pending_mp = add_mp; 772 ipx->ipx_waitfor = waitfor; 773 mutex_exit(&ipx->ipx_lock); 774 775 if (connp != NULL) 776 connp->conn_oper_pending_ill = ipif->ipif_ill; 777 778 return (B_TRUE); 779 } 780 781 /* 782 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 783 * queued in the list. 784 */ 785 mblk_t * 786 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 787 { 788 mblk_t *curr = NULL; 789 ipxop_t *ipx = ipsq->ipsq_xop; 790 791 *connpp = NULL; 792 mutex_enter(&ipx->ipx_lock); 793 if (ipx->ipx_pending_mp == NULL) { 794 mutex_exit(&ipx->ipx_lock); 795 return (NULL); 796 } 797 798 /* There can be only 1 such excl message */ 799 curr = ipx->ipx_pending_mp; 800 ASSERT(curr->b_next == NULL); 801 ipx->ipx_pending_ipif = NULL; 802 ipx->ipx_pending_mp = NULL; 803 ipx->ipx_waitfor = 0; 804 mutex_exit(&ipx->ipx_lock); 805 806 if (CONN_Q(curr->b_queue)) { 807 /* 808 * This mp did a refhold on the conn, at the start of the ioctl. 809 * So we can safely return a pointer to the conn to the caller. 810 */ 811 *connpp = Q_TO_CONN(curr->b_queue); 812 } else { 813 *connpp = NULL; 814 } 815 curr->b_next = NULL; 816 curr->b_prev = NULL; 817 return (curr); 818 } 819 820 /* 821 * Cleanup the ioctl mp queued in ipx_pending_mp 822 * - Called in the ill_delete path 823 * - Called in the M_ERROR or M_HANGUP path on the ill. 824 * - Called in the conn close path. 825 * 826 * Returns success on finding the pending mblk associated with the ioctl or 827 * exclusive operation in progress, failure otherwise. 828 */ 829 boolean_t 830 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 831 { 832 mblk_t *mp; 833 ipxop_t *ipx; 834 queue_t *q; 835 ipif_t *ipif; 836 int cmd; 837 838 ASSERT(IAM_WRITER_ILL(ill)); 839 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 840 841 mutex_enter(&ipx->ipx_lock); 842 mp = ipx->ipx_pending_mp; 843 if (connp != NULL) { 844 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 845 /* 846 * Nothing to clean since the conn that is closing 847 * does not have a matching pending mblk in 848 * ipx_pending_mp. 849 */ 850 mutex_exit(&ipx->ipx_lock); 851 return (B_FALSE); 852 } 853 } else { 854 /* 855 * A non-zero ill_error signifies we are called in the 856 * M_ERROR or M_HANGUP path and we need to unconditionally 857 * abort any current ioctl and do the corresponding cleanup. 858 * A zero ill_error means we are in the ill_delete path and 859 * we do the cleanup only if there is a pending mp. 860 */ 861 if (mp == NULL && ill->ill_error == 0) { 862 mutex_exit(&ipx->ipx_lock); 863 return (B_FALSE); 864 } 865 } 866 867 /* Now remove from the ipx_pending_mp */ 868 ipx->ipx_pending_mp = NULL; 869 ipif = ipx->ipx_pending_ipif; 870 ipx->ipx_pending_ipif = NULL; 871 ipx->ipx_waitfor = 0; 872 ipx->ipx_current_ipif = NULL; 873 cmd = ipx->ipx_current_ioctl; 874 ipx->ipx_current_ioctl = 0; 875 ipx->ipx_current_done = B_TRUE; 876 mutex_exit(&ipx->ipx_lock); 877 878 if (mp == NULL) 879 return (B_FALSE); 880 881 q = mp->b_queue; 882 mp->b_next = NULL; 883 mp->b_prev = NULL; 884 mp->b_queue = NULL; 885 886 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 887 DTRACE_PROBE4(ipif__ioctl, 888 char *, "ipsq_pending_mp_cleanup", 889 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 890 ipif_t *, ipif); 891 if (connp == NULL) { 892 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 893 } else { 894 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 895 mutex_enter(&ipif->ipif_ill->ill_lock); 896 ipif->ipif_state_flags &= ~IPIF_CHANGING; 897 mutex_exit(&ipif->ipif_ill->ill_lock); 898 } 899 } else { 900 inet_freemsg(mp); 901 } 902 return (B_TRUE); 903 } 904 905 /* 906 * Called in the conn close path and ill delete path 907 */ 908 static void 909 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 910 { 911 ipsq_t *ipsq; 912 mblk_t *prev; 913 mblk_t *curr; 914 mblk_t *next; 915 queue_t *wq, *rq = NULL; 916 mblk_t *tmp_list = NULL; 917 918 ASSERT(IAM_WRITER_ILL(ill)); 919 if (connp != NULL) 920 wq = CONNP_TO_WQ(connp); 921 else 922 wq = ill->ill_wq; 923 924 /* 925 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 926 * against this here. 927 */ 928 if (wq != NULL) 929 rq = RD(wq); 930 931 ipsq = ill->ill_phyint->phyint_ipsq; 932 /* 933 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 934 * In the case of ioctl from a conn, there can be only 1 mp 935 * queued on the ipsq. If an ill is being unplumbed flush all 936 * the messages. 937 */ 938 mutex_enter(&ipsq->ipsq_lock); 939 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 940 curr = next) { 941 next = curr->b_next; 942 if (connp == NULL || 943 (curr->b_queue == wq || curr->b_queue == rq)) { 944 /* Unlink the mblk from the pending mp list */ 945 if (prev != NULL) { 946 prev->b_next = curr->b_next; 947 } else { 948 ASSERT(ipsq->ipsq_xopq_mphead == curr); 949 ipsq->ipsq_xopq_mphead = curr->b_next; 950 } 951 if (ipsq->ipsq_xopq_mptail == curr) 952 ipsq->ipsq_xopq_mptail = prev; 953 /* 954 * Create a temporary list and release the ipsq lock 955 * New elements are added to the head of the tmp_list 956 */ 957 curr->b_next = tmp_list; 958 tmp_list = curr; 959 } else { 960 prev = curr; 961 } 962 } 963 mutex_exit(&ipsq->ipsq_lock); 964 965 while (tmp_list != NULL) { 966 curr = tmp_list; 967 tmp_list = curr->b_next; 968 curr->b_next = NULL; 969 curr->b_prev = NULL; 970 wq = curr->b_queue; 971 curr->b_queue = NULL; 972 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 973 DTRACE_PROBE4(ipif__ioctl, 974 char *, "ipsq_xopq_mp_cleanup", 975 int, 0, ill_t *, NULL, ipif_t *, NULL); 976 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 977 CONN_CLOSE : NO_COPYOUT, NULL); 978 } else { 979 /* 980 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 981 * this can't be just inet_freemsg. we have to 982 * restart it otherwise the thread will be stuck. 983 */ 984 inet_freemsg(curr); 985 } 986 } 987 } 988 989 /* 990 * This conn has started closing. Cleanup any pending ioctl from this conn. 991 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 992 */ 993 void 994 conn_ioctl_cleanup(conn_t *connp) 995 { 996 ipsq_t *ipsq; 997 ill_t *ill; 998 boolean_t refheld; 999 1000 /* 1001 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1002 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1003 * started the mp could be present in ipx_pending_mp. Note that if 1004 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1005 * not yet queued anywhere. In this case, the conn close code will wait 1006 * until the conn_ref is dropped. If the stream was a tcp stream, then 1007 * tcp_close will wait first until all ioctls have completed for this 1008 * conn. 1009 */ 1010 mutex_enter(&connp->conn_lock); 1011 ill = connp->conn_oper_pending_ill; 1012 if (ill == NULL) { 1013 mutex_exit(&connp->conn_lock); 1014 return; 1015 } 1016 1017 /* 1018 * We may not be able to refhold the ill if the ill/ipif 1019 * is changing. But we need to make sure that the ill will 1020 * not vanish. So we just bump up the ill_waiter count. 1021 */ 1022 refheld = ill_waiter_inc(ill); 1023 mutex_exit(&connp->conn_lock); 1024 if (refheld) { 1025 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1026 ill_waiter_dcr(ill); 1027 /* 1028 * Check whether this ioctl has started and is 1029 * pending. If it is not found there then check 1030 * whether this ioctl has not even started and is in 1031 * the ipsq_xopq list. 1032 */ 1033 if (!ipsq_pending_mp_cleanup(ill, connp)) 1034 ipsq_xopq_mp_cleanup(ill, connp); 1035 ipsq = ill->ill_phyint->phyint_ipsq; 1036 ipsq_exit(ipsq); 1037 return; 1038 } 1039 } 1040 1041 /* 1042 * The ill is also closing and we could not bump up the 1043 * ill_waiter_count or we could not enter the ipsq. Leave 1044 * the cleanup to ill_delete 1045 */ 1046 mutex_enter(&connp->conn_lock); 1047 while (connp->conn_oper_pending_ill != NULL) 1048 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1049 mutex_exit(&connp->conn_lock); 1050 if (refheld) 1051 ill_waiter_dcr(ill); 1052 } 1053 1054 /* 1055 * ipcl_walk function for cleaning up conn_*_ill fields. 1056 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1057 * conn_bound_if in place. We prefer dropping 1058 * packets instead of sending them out the wrong interface, or accepting 1059 * packets from the wrong ifindex. 1060 */ 1061 static void 1062 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1063 { 1064 ill_t *ill = (ill_t *)arg; 1065 1066 mutex_enter(&connp->conn_lock); 1067 if (connp->conn_dhcpinit_ill == ill) { 1068 connp->conn_dhcpinit_ill = NULL; 1069 ASSERT(ill->ill_dhcpinit != 0); 1070 atomic_dec_32(&ill->ill_dhcpinit); 1071 ill_set_inputfn(ill); 1072 } 1073 mutex_exit(&connp->conn_lock); 1074 } 1075 1076 static int 1077 ill_down_ipifs_tail(ill_t *ill) 1078 { 1079 ipif_t *ipif; 1080 int err; 1081 1082 ASSERT(IAM_WRITER_ILL(ill)); 1083 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1084 ipif_non_duplicate(ipif); 1085 /* 1086 * ipif_down_tail will call arp_ll_down on the last ipif 1087 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1088 */ 1089 if ((err = ipif_down_tail(ipif)) != 0) 1090 return (err); 1091 } 1092 return (0); 1093 } 1094 1095 /* ARGSUSED */ 1096 void 1097 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1098 { 1099 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1100 (void) ill_down_ipifs_tail(q->q_ptr); 1101 freemsg(mp); 1102 ipsq_current_finish(ipsq); 1103 } 1104 1105 /* 1106 * ill_down_start is called when we want to down this ill and bring it up again 1107 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1108 * all interfaces, but don't tear down any plumbing. 1109 */ 1110 boolean_t 1111 ill_down_start(queue_t *q, mblk_t *mp) 1112 { 1113 ill_t *ill = q->q_ptr; 1114 ipif_t *ipif; 1115 1116 ASSERT(IAM_WRITER_ILL(ill)); 1117 mutex_enter(&ill->ill_lock); 1118 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 1119 /* no more nce addition allowed */ 1120 mutex_exit(&ill->ill_lock); 1121 1122 /* 1123 * It is possible that some ioctl is already in progress while we 1124 * received the M_ERROR / M_HANGUP in which case, we need to abort 1125 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1126 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1127 * the in progress ioctl from ever completing. 1128 * 1129 * The thread that started the ioctl (if any) must have returned, 1130 * since we are now executing as writer. After the 2 calls below, 1131 * the state of the ipsq and the ill would reflect no trace of any 1132 * pending operation. Subsequently if there is any response to the 1133 * original ioctl from the driver, it would be discarded as an 1134 * unsolicited message from the driver. 1135 */ 1136 (void) ipsq_pending_mp_cleanup(ill, NULL); 1137 ill_dlpi_clear_deferred(ill); 1138 1139 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1140 (void) ipif_down(ipif, NULL, NULL); 1141 1142 ill_down(ill); 1143 1144 /* 1145 * Walk all CONNs that can have a reference on an ire or nce for this 1146 * ill (we actually walk all that now have stale references). 1147 */ 1148 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1149 1150 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1151 if (ill->ill_isv6) 1152 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1153 1154 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1155 1156 /* 1157 * Atomically test and add the pending mp if references are active. 1158 */ 1159 mutex_enter(&ill->ill_lock); 1160 if (!ill_is_quiescent(ill)) { 1161 /* call cannot fail since `conn_t *' argument is NULL */ 1162 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1163 mp, ILL_DOWN); 1164 mutex_exit(&ill->ill_lock); 1165 return (B_FALSE); 1166 } 1167 mutex_exit(&ill->ill_lock); 1168 return (B_TRUE); 1169 } 1170 1171 static void 1172 ill_down(ill_t *ill) 1173 { 1174 mblk_t *mp; 1175 ip_stack_t *ipst = ill->ill_ipst; 1176 1177 /* 1178 * Blow off any IREs dependent on this ILL. 1179 * The caller needs to handle conn_ixa_cleanup 1180 */ 1181 ill_delete_ires(ill); 1182 1183 ire_walk_ill(0, 0, ill_downi, ill, ill); 1184 1185 /* Remove any conn_*_ill depending on this ill */ 1186 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1187 1188 /* 1189 * Free state for additional IREs. 1190 */ 1191 mutex_enter(&ill->ill_saved_ire_lock); 1192 mp = ill->ill_saved_ire_mp; 1193 ill->ill_saved_ire_mp = NULL; 1194 ill->ill_saved_ire_cnt = 0; 1195 mutex_exit(&ill->ill_saved_ire_lock); 1196 freemsg(mp); 1197 } 1198 1199 /* 1200 * ire_walk routine used to delete every IRE that depends on 1201 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1202 * 1203 * Note: since the routes added by the kernel are deleted separately, 1204 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1205 * 1206 * We also remove references on ire_nce_cache entries that refer to the ill. 1207 */ 1208 void 1209 ill_downi(ire_t *ire, char *ill_arg) 1210 { 1211 ill_t *ill = (ill_t *)ill_arg; 1212 nce_t *nce; 1213 1214 mutex_enter(&ire->ire_lock); 1215 nce = ire->ire_nce_cache; 1216 if (nce != NULL && nce->nce_ill == ill) 1217 ire->ire_nce_cache = NULL; 1218 else 1219 nce = NULL; 1220 mutex_exit(&ire->ire_lock); 1221 if (nce != NULL) 1222 nce_refrele(nce); 1223 if (ire->ire_ill == ill) { 1224 /* 1225 * The existing interface binding for ire must be 1226 * deleted before trying to bind the route to another 1227 * interface. However, since we are using the contents of the 1228 * ire after ire_delete, the caller has to ensure that 1229 * CONDEMNED (deleted) ire's are not removed from the list 1230 * when ire_delete() returns. Currently ill_downi() is 1231 * only called as part of ire_walk*() routines, so that 1232 * the irb_refhold() done by ire_walk*() will ensure that 1233 * ire_delete() does not lead to ire_inactive(). 1234 */ 1235 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1236 ire_delete(ire); 1237 if (ire->ire_unbound) 1238 ire_rebind(ire); 1239 } 1240 } 1241 1242 /* Remove IRE_IF_CLONE on this ill */ 1243 void 1244 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1245 { 1246 ill_t *ill = (ill_t *)ill_arg; 1247 1248 ASSERT(ire->ire_type & IRE_IF_CLONE); 1249 if (ire->ire_ill == ill) 1250 ire_delete(ire); 1251 } 1252 1253 /* Consume an M_IOCACK of the fastpath probe. */ 1254 void 1255 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1256 { 1257 mblk_t *mp1 = mp; 1258 1259 /* 1260 * If this was the first attempt turn on the fastpath probing. 1261 */ 1262 mutex_enter(&ill->ill_lock); 1263 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1264 ill->ill_dlpi_fastpath_state = IDS_OK; 1265 mutex_exit(&ill->ill_lock); 1266 1267 /* Free the M_IOCACK mblk, hold on to the data */ 1268 mp = mp->b_cont; 1269 freeb(mp1); 1270 if (mp == NULL) 1271 return; 1272 if (mp->b_cont != NULL) 1273 nce_fastpath_update(ill, mp); 1274 else 1275 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1276 freemsg(mp); 1277 } 1278 1279 /* 1280 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1281 * The data portion of the request is a dl_unitdata_req_t template for 1282 * what we would send downstream in the absence of a fastpath confirmation. 1283 */ 1284 int 1285 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1286 { 1287 struct iocblk *ioc; 1288 mblk_t *mp; 1289 1290 if (dlur_mp == NULL) 1291 return (EINVAL); 1292 1293 mutex_enter(&ill->ill_lock); 1294 switch (ill->ill_dlpi_fastpath_state) { 1295 case IDS_FAILED: 1296 /* 1297 * Driver NAKed the first fastpath ioctl - assume it doesn't 1298 * support it. 1299 */ 1300 mutex_exit(&ill->ill_lock); 1301 return (ENOTSUP); 1302 case IDS_UNKNOWN: 1303 /* This is the first probe */ 1304 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1305 break; 1306 default: 1307 break; 1308 } 1309 mutex_exit(&ill->ill_lock); 1310 1311 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1312 return (EAGAIN); 1313 1314 mp->b_cont = copyb(dlur_mp); 1315 if (mp->b_cont == NULL) { 1316 freeb(mp); 1317 return (EAGAIN); 1318 } 1319 1320 ioc = (struct iocblk *)mp->b_rptr; 1321 ioc->ioc_count = msgdsize(mp->b_cont); 1322 1323 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1324 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1325 putnext(ill->ill_wq, mp); 1326 return (0); 1327 } 1328 1329 void 1330 ill_capability_probe(ill_t *ill) 1331 { 1332 mblk_t *mp; 1333 1334 ASSERT(IAM_WRITER_ILL(ill)); 1335 1336 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1337 ill->ill_dlpi_capab_state != IDCS_FAILED) 1338 return; 1339 1340 /* 1341 * We are starting a new cycle of capability negotiation. 1342 * Free up the capab reset messages of any previous incarnation. 1343 * We will do a fresh allocation when we get the response to our probe 1344 */ 1345 if (ill->ill_capab_reset_mp != NULL) { 1346 freemsg(ill->ill_capab_reset_mp); 1347 ill->ill_capab_reset_mp = NULL; 1348 } 1349 1350 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1351 1352 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1353 if (mp == NULL) 1354 return; 1355 1356 ill_capability_send(ill, mp); 1357 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1358 } 1359 1360 void 1361 ill_capability_reset(ill_t *ill, boolean_t reneg) 1362 { 1363 ASSERT(IAM_WRITER_ILL(ill)); 1364 1365 if (ill->ill_dlpi_capab_state != IDCS_OK) 1366 return; 1367 1368 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1369 1370 ill_capability_send(ill, ill->ill_capab_reset_mp); 1371 ill->ill_capab_reset_mp = NULL; 1372 /* 1373 * We turn off all capabilities except those pertaining to 1374 * direct function call capabilities viz. ILL_CAPAB_DLD* 1375 * which will be turned off by the corresponding reset functions. 1376 */ 1377 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1378 } 1379 1380 static void 1381 ill_capability_reset_alloc(ill_t *ill) 1382 { 1383 mblk_t *mp; 1384 size_t size = 0; 1385 int err; 1386 dl_capability_req_t *capb; 1387 1388 ASSERT(IAM_WRITER_ILL(ill)); 1389 ASSERT(ill->ill_capab_reset_mp == NULL); 1390 1391 if (ILL_HCKSUM_CAPABLE(ill)) { 1392 size += sizeof (dl_capability_sub_t) + 1393 sizeof (dl_capab_hcksum_t); 1394 } 1395 1396 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1397 size += sizeof (dl_capability_sub_t) + 1398 sizeof (dl_capab_zerocopy_t); 1399 } 1400 1401 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1402 size += sizeof (dl_capability_sub_t) + 1403 sizeof (dl_capab_dld_t); 1404 } 1405 1406 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1407 STR_NOSIG, &err); 1408 1409 mp->b_datap->db_type = M_PROTO; 1410 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1411 1412 capb = (dl_capability_req_t *)mp->b_rptr; 1413 capb->dl_primitive = DL_CAPABILITY_REQ; 1414 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1415 capb->dl_sub_length = size; 1416 1417 mp->b_wptr += sizeof (dl_capability_req_t); 1418 1419 /* 1420 * Each handler fills in the corresponding dl_capability_sub_t 1421 * inside the mblk, 1422 */ 1423 ill_capability_hcksum_reset_fill(ill, mp); 1424 ill_capability_zerocopy_reset_fill(ill, mp); 1425 ill_capability_dld_reset_fill(ill, mp); 1426 1427 ill->ill_capab_reset_mp = mp; 1428 } 1429 1430 static void 1431 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1432 { 1433 dl_capab_id_t *id_ic; 1434 uint_t sub_dl_cap = outers->dl_cap; 1435 dl_capability_sub_t *inners; 1436 uint8_t *capend; 1437 1438 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1439 1440 /* 1441 * Note: range checks here are not absolutely sufficient to 1442 * make us robust against malformed messages sent by drivers; 1443 * this is in keeping with the rest of IP's dlpi handling. 1444 * (Remember, it's coming from something else in the kernel 1445 * address space) 1446 */ 1447 1448 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1449 if (capend > mp->b_wptr) { 1450 cmn_err(CE_WARN, "ill_capability_id_ack: " 1451 "malformed sub-capability too long for mblk"); 1452 return; 1453 } 1454 1455 id_ic = (dl_capab_id_t *)(outers + 1); 1456 1457 if (outers->dl_length < sizeof (*id_ic) || 1458 (inners = &id_ic->id_subcap, 1459 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1460 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1461 "encapsulated capab type %d too long for mblk", 1462 inners->dl_cap); 1463 return; 1464 } 1465 1466 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1467 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1468 "isn't as expected; pass-thru module(s) detected, " 1469 "discarding capability\n", inners->dl_cap)); 1470 return; 1471 } 1472 1473 /* Process the encapsulated sub-capability */ 1474 ill_capability_dispatch(ill, mp, inners); 1475 } 1476 1477 static void 1478 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1479 { 1480 dl_capability_sub_t *dl_subcap; 1481 1482 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1483 return; 1484 1485 /* 1486 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1487 * initialized below since it is not used by DLD. 1488 */ 1489 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1490 dl_subcap->dl_cap = DL_CAPAB_DLD; 1491 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1492 1493 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1494 } 1495 1496 static void 1497 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1498 { 1499 /* 1500 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1501 * is only to get the VRRP capability. 1502 * 1503 * Note that we cannot check ill_ipif_up_count here since 1504 * ill_ipif_up_count is only incremented when the resolver is setup. 1505 * That is done asynchronously, and can race with this function. 1506 */ 1507 if (!ill->ill_dl_up) { 1508 if (subp->dl_cap == DL_CAPAB_VRRP) 1509 ill_capability_vrrp_ack(ill, mp, subp); 1510 return; 1511 } 1512 1513 switch (subp->dl_cap) { 1514 case DL_CAPAB_HCKSUM: 1515 ill_capability_hcksum_ack(ill, mp, subp); 1516 break; 1517 case DL_CAPAB_ZEROCOPY: 1518 ill_capability_zerocopy_ack(ill, mp, subp); 1519 break; 1520 case DL_CAPAB_DLD: 1521 ill_capability_dld_ack(ill, mp, subp); 1522 break; 1523 case DL_CAPAB_VRRP: 1524 break; 1525 default: 1526 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1527 subp->dl_cap)); 1528 } 1529 } 1530 1531 /* 1532 * Process the vrrp capability received from a DLS Provider. isub must point 1533 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1534 */ 1535 static void 1536 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1537 { 1538 dl_capab_vrrp_t *vrrp; 1539 uint_t sub_dl_cap = isub->dl_cap; 1540 uint8_t *capend; 1541 1542 ASSERT(IAM_WRITER_ILL(ill)); 1543 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1544 1545 /* 1546 * Note: range checks here are not absolutely sufficient to 1547 * make us robust against malformed messages sent by drivers; 1548 * this is in keeping with the rest of IP's dlpi handling. 1549 * (Remember, it's coming from something else in the kernel 1550 * address space) 1551 */ 1552 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1553 if (capend > mp->b_wptr) { 1554 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1555 "malformed sub-capability too long for mblk"); 1556 return; 1557 } 1558 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1559 1560 /* 1561 * Compare the IP address family and set ILLF_VRRP for the right ill. 1562 */ 1563 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1564 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1565 ill->ill_flags |= ILLF_VRRP; 1566 } 1567 } 1568 1569 /* 1570 * Process a hardware checksum offload capability negotiation ack received 1571 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1572 * of a DL_CAPABILITY_ACK message. 1573 */ 1574 static void 1575 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1576 { 1577 dl_capability_req_t *ocap; 1578 dl_capab_hcksum_t *ihck, *ohck; 1579 ill_hcksum_capab_t **ill_hcksum; 1580 mblk_t *nmp = NULL; 1581 uint_t sub_dl_cap = isub->dl_cap; 1582 uint8_t *capend; 1583 1584 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1585 1586 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1587 1588 /* 1589 * Note: range checks here are not absolutely sufficient to 1590 * make us robust against malformed messages sent by drivers; 1591 * this is in keeping with the rest of IP's dlpi handling. 1592 * (Remember, it's coming from something else in the kernel 1593 * address space) 1594 */ 1595 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1596 if (capend > mp->b_wptr) { 1597 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1598 "malformed sub-capability too long for mblk"); 1599 return; 1600 } 1601 1602 /* 1603 * There are two types of acks we process here: 1604 * 1. acks in reply to a (first form) generic capability req 1605 * (no ENABLE flag set) 1606 * 2. acks in reply to a ENABLE capability req. 1607 * (ENABLE flag set) 1608 */ 1609 ihck = (dl_capab_hcksum_t *)(isub + 1); 1610 1611 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1612 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1613 "unsupported hardware checksum " 1614 "sub-capability (version %d, expected %d)", 1615 ihck->hcksum_version, HCKSUM_VERSION_1); 1616 return; 1617 } 1618 1619 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1620 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1621 "checksum capability isn't as expected; pass-thru " 1622 "module(s) detected, discarding capability\n")); 1623 return; 1624 } 1625 1626 #define CURR_HCKSUM_CAPAB \ 1627 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1628 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1629 1630 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1631 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1632 /* do ENABLE processing */ 1633 if (*ill_hcksum == NULL) { 1634 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1635 KM_NOSLEEP); 1636 1637 if (*ill_hcksum == NULL) { 1638 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1639 "could not enable hcksum version %d " 1640 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1641 ill->ill_name); 1642 return; 1643 } 1644 } 1645 1646 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1647 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1648 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1649 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1650 "has enabled hardware checksumming\n ", 1651 ill->ill_name)); 1652 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1653 /* 1654 * Enabling hardware checksum offload 1655 * Currently IP supports {TCP,UDP}/IPv4 1656 * partial and full cksum offload and 1657 * IPv4 header checksum offload. 1658 * Allocate new mblk which will 1659 * contain a new capability request 1660 * to enable hardware checksum offload. 1661 */ 1662 uint_t size; 1663 uchar_t *rptr; 1664 1665 size = sizeof (dl_capability_req_t) + 1666 sizeof (dl_capability_sub_t) + isub->dl_length; 1667 1668 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1669 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1670 "could not enable hardware cksum for %s (ENOMEM)\n", 1671 ill->ill_name); 1672 return; 1673 } 1674 1675 rptr = nmp->b_rptr; 1676 /* initialize dl_capability_req_t */ 1677 ocap = (dl_capability_req_t *)nmp->b_rptr; 1678 ocap->dl_sub_offset = 1679 sizeof (dl_capability_req_t); 1680 ocap->dl_sub_length = 1681 sizeof (dl_capability_sub_t) + 1682 isub->dl_length; 1683 nmp->b_rptr += sizeof (dl_capability_req_t); 1684 1685 /* initialize dl_capability_sub_t */ 1686 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1687 nmp->b_rptr += sizeof (*isub); 1688 1689 /* initialize dl_capab_hcksum_t */ 1690 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1691 bcopy(ihck, ohck, sizeof (*ihck)); 1692 1693 nmp->b_rptr = rptr; 1694 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1695 1696 /* Set ENABLE flag */ 1697 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1698 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1699 1700 /* 1701 * nmp points to a DL_CAPABILITY_REQ message to enable 1702 * hardware checksum acceleration. 1703 */ 1704 ill_capability_send(ill, nmp); 1705 } else { 1706 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1707 "advertised %x hardware checksum capability flags\n", 1708 ill->ill_name, ihck->hcksum_txflags)); 1709 } 1710 } 1711 1712 static void 1713 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1714 { 1715 dl_capab_hcksum_t *hck_subcap; 1716 dl_capability_sub_t *dl_subcap; 1717 1718 if (!ILL_HCKSUM_CAPABLE(ill)) 1719 return; 1720 1721 ASSERT(ill->ill_hcksum_capab != NULL); 1722 1723 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1724 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1725 dl_subcap->dl_length = sizeof (*hck_subcap); 1726 1727 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1728 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1729 hck_subcap->hcksum_txflags = 0; 1730 1731 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1732 } 1733 1734 static void 1735 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1736 { 1737 mblk_t *nmp = NULL; 1738 dl_capability_req_t *oc; 1739 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1740 ill_zerocopy_capab_t **ill_zerocopy_capab; 1741 uint_t sub_dl_cap = isub->dl_cap; 1742 uint8_t *capend; 1743 1744 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1745 1746 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1747 1748 /* 1749 * Note: range checks here are not absolutely sufficient to 1750 * make us robust against malformed messages sent by drivers; 1751 * this is in keeping with the rest of IP's dlpi handling. 1752 * (Remember, it's coming from something else in the kernel 1753 * address space) 1754 */ 1755 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1756 if (capend > mp->b_wptr) { 1757 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1758 "malformed sub-capability too long for mblk"); 1759 return; 1760 } 1761 1762 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1763 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1764 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1765 "unsupported ZEROCOPY sub-capability (version %d, " 1766 "expected %d)", zc_ic->zerocopy_version, 1767 ZEROCOPY_VERSION_1); 1768 return; 1769 } 1770 1771 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1772 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1773 "capability isn't as expected; pass-thru module(s) " 1774 "detected, discarding capability\n")); 1775 return; 1776 } 1777 1778 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1779 if (*ill_zerocopy_capab == NULL) { 1780 *ill_zerocopy_capab = 1781 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1782 KM_NOSLEEP); 1783 1784 if (*ill_zerocopy_capab == NULL) { 1785 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1786 "could not enable Zero-copy version %d " 1787 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1788 ill->ill_name); 1789 return; 1790 } 1791 } 1792 1793 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1794 "supports Zero-copy version %d\n", ill->ill_name, 1795 ZEROCOPY_VERSION_1)); 1796 1797 (*ill_zerocopy_capab)->ill_zerocopy_version = 1798 zc_ic->zerocopy_version; 1799 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1800 zc_ic->zerocopy_flags; 1801 1802 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1803 } else { 1804 uint_t size; 1805 uchar_t *rptr; 1806 1807 size = sizeof (dl_capability_req_t) + 1808 sizeof (dl_capability_sub_t) + 1809 sizeof (dl_capab_zerocopy_t); 1810 1811 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1812 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1813 "could not enable zerocopy for %s (ENOMEM)\n", 1814 ill->ill_name); 1815 return; 1816 } 1817 1818 rptr = nmp->b_rptr; 1819 /* initialize dl_capability_req_t */ 1820 oc = (dl_capability_req_t *)rptr; 1821 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1822 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1823 sizeof (dl_capab_zerocopy_t); 1824 rptr += sizeof (dl_capability_req_t); 1825 1826 /* initialize dl_capability_sub_t */ 1827 bcopy(isub, rptr, sizeof (*isub)); 1828 rptr += sizeof (*isub); 1829 1830 /* initialize dl_capab_zerocopy_t */ 1831 zc_oc = (dl_capab_zerocopy_t *)rptr; 1832 *zc_oc = *zc_ic; 1833 1834 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1835 "to enable zero-copy version %d\n", ill->ill_name, 1836 ZEROCOPY_VERSION_1)); 1837 1838 /* set VMSAFE_MEM flag */ 1839 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1840 1841 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1842 ill_capability_send(ill, nmp); 1843 } 1844 } 1845 1846 static void 1847 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1848 { 1849 dl_capab_zerocopy_t *zerocopy_subcap; 1850 dl_capability_sub_t *dl_subcap; 1851 1852 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1853 return; 1854 1855 ASSERT(ill->ill_zerocopy_capab != NULL); 1856 1857 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1858 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1859 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1860 1861 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1862 zerocopy_subcap->zerocopy_version = 1863 ill->ill_zerocopy_capab->ill_zerocopy_version; 1864 zerocopy_subcap->zerocopy_flags = 0; 1865 1866 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1867 } 1868 1869 /* 1870 * DLD capability 1871 * Refer to dld.h for more information regarding the purpose and usage 1872 * of this capability. 1873 */ 1874 static void 1875 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1876 { 1877 dl_capab_dld_t *dld_ic, dld; 1878 uint_t sub_dl_cap = isub->dl_cap; 1879 uint8_t *capend; 1880 ill_dld_capab_t *idc; 1881 1882 ASSERT(IAM_WRITER_ILL(ill)); 1883 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1884 1885 /* 1886 * Note: range checks here are not absolutely sufficient to 1887 * make us robust against malformed messages sent by drivers; 1888 * this is in keeping with the rest of IP's dlpi handling. 1889 * (Remember, it's coming from something else in the kernel 1890 * address space) 1891 */ 1892 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1893 if (capend > mp->b_wptr) { 1894 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1895 "malformed sub-capability too long for mblk"); 1896 return; 1897 } 1898 dld_ic = (dl_capab_dld_t *)(isub + 1); 1899 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1900 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1901 "unsupported DLD sub-capability (version %d, " 1902 "expected %d)", dld_ic->dld_version, 1903 DLD_CURRENT_VERSION); 1904 return; 1905 } 1906 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1907 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1908 "capability isn't as expected; pass-thru module(s) " 1909 "detected, discarding capability\n")); 1910 return; 1911 } 1912 1913 /* 1914 * Copy locally to ensure alignment. 1915 */ 1916 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1917 1918 if ((idc = ill->ill_dld_capab) == NULL) { 1919 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1920 if (idc == NULL) { 1921 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1922 "could not enable DLD version %d " 1923 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1924 ill->ill_name); 1925 return; 1926 } 1927 ill->ill_dld_capab = idc; 1928 } 1929 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1930 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1931 ip1dbg(("ill_capability_dld_ack: interface %s " 1932 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1933 1934 ill_capability_dld_enable(ill); 1935 } 1936 1937 /* 1938 * Typically capability negotiation between IP and the driver happens via 1939 * DLPI message exchange. However GLD also offers a direct function call 1940 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1941 * But arbitrary function calls into IP or GLD are not permitted, since both 1942 * of them are protected by their own perimeter mechanism. The perimeter can 1943 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1944 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1945 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1946 * to enter the mac perimeter and then do the direct function calls into 1947 * GLD to enable squeue polling. The ring related callbacks from the mac into 1948 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1949 * protected by the mac perimeter. 1950 */ 1951 static void 1952 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1953 { 1954 ill_dld_capab_t *idc = ill->ill_dld_capab; 1955 int err; 1956 1957 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1958 DLD_ENABLE); 1959 ASSERT(err == 0); 1960 } 1961 1962 static void 1963 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1964 { 1965 ill_dld_capab_t *idc = ill->ill_dld_capab; 1966 int err; 1967 1968 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1969 DLD_DISABLE); 1970 ASSERT(err == 0); 1971 } 1972 1973 boolean_t 1974 ill_mac_perim_held(ill_t *ill) 1975 { 1976 ill_dld_capab_t *idc = ill->ill_dld_capab; 1977 1978 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1979 DLD_QUERY)); 1980 } 1981 1982 static void 1983 ill_capability_direct_enable(ill_t *ill) 1984 { 1985 ill_dld_capab_t *idc = ill->ill_dld_capab; 1986 ill_dld_direct_t *idd = &idc->idc_direct; 1987 dld_capab_direct_t direct; 1988 int rc; 1989 1990 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1991 1992 bzero(&direct, sizeof (direct)); 1993 direct.di_rx_cf = (uintptr_t)ip_input; 1994 direct.di_rx_ch = ill; 1995 1996 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 1997 DLD_ENABLE); 1998 if (rc == 0) { 1999 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2000 idd->idd_tx_dh = direct.di_tx_dh; 2001 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2002 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2003 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2004 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2005 ASSERT(idd->idd_tx_cb_df != NULL); 2006 ASSERT(idd->idd_tx_fctl_df != NULL); 2007 ASSERT(idd->idd_tx_df != NULL); 2008 /* 2009 * One time registration of flow enable callback function 2010 */ 2011 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2012 ill_flow_enable, ill); 2013 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2014 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2015 } else { 2016 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2017 "capability, rc = %d\n", rc); 2018 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2019 } 2020 } 2021 2022 static void 2023 ill_capability_poll_enable(ill_t *ill) 2024 { 2025 ill_dld_capab_t *idc = ill->ill_dld_capab; 2026 dld_capab_poll_t poll; 2027 int rc; 2028 2029 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2030 2031 bzero(&poll, sizeof (poll)); 2032 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2033 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2034 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2035 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2036 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2037 poll.poll_ring_ch = ill; 2038 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2039 DLD_ENABLE); 2040 if (rc == 0) { 2041 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2042 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2043 } else { 2044 ip1dbg(("warning: could not enable POLL " 2045 "capability, rc = %d\n", rc)); 2046 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2047 } 2048 } 2049 2050 /* 2051 * Enable the LSO capability. 2052 */ 2053 static void 2054 ill_capability_lso_enable(ill_t *ill) 2055 { 2056 ill_dld_capab_t *idc = ill->ill_dld_capab; 2057 dld_capab_lso_t lso; 2058 int rc; 2059 2060 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2061 2062 if (ill->ill_lso_capab == NULL) { 2063 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2064 KM_NOSLEEP); 2065 if (ill->ill_lso_capab == NULL) { 2066 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2067 "could not enable LSO for %s (ENOMEM)\n", 2068 ill->ill_name); 2069 return; 2070 } 2071 } 2072 2073 bzero(&lso, sizeof (lso)); 2074 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2075 DLD_ENABLE)) == 0) { 2076 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2077 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2078 ill->ill_capabilities |= ILL_CAPAB_LSO; 2079 ip1dbg(("ill_capability_lso_enable: interface %s " 2080 "has enabled LSO\n ", ill->ill_name)); 2081 } else { 2082 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2083 ill->ill_lso_capab = NULL; 2084 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2085 } 2086 } 2087 2088 static void 2089 ill_capability_dld_enable(ill_t *ill) 2090 { 2091 mac_perim_handle_t mph; 2092 2093 ASSERT(IAM_WRITER_ILL(ill)); 2094 2095 if (ill->ill_isv6) 2096 return; 2097 2098 ill_mac_perim_enter(ill, &mph); 2099 if (!ill->ill_isv6) { 2100 ill_capability_direct_enable(ill); 2101 ill_capability_poll_enable(ill); 2102 ill_capability_lso_enable(ill); 2103 } 2104 ill->ill_capabilities |= ILL_CAPAB_DLD; 2105 ill_mac_perim_exit(ill, mph); 2106 } 2107 2108 static void 2109 ill_capability_dld_disable(ill_t *ill) 2110 { 2111 ill_dld_capab_t *idc; 2112 ill_dld_direct_t *idd; 2113 mac_perim_handle_t mph; 2114 2115 ASSERT(IAM_WRITER_ILL(ill)); 2116 2117 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2118 return; 2119 2120 ill_mac_perim_enter(ill, &mph); 2121 2122 idc = ill->ill_dld_capab; 2123 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2124 /* 2125 * For performance we avoid locks in the transmit data path 2126 * and don't maintain a count of the number of threads using 2127 * direct calls. Thus some threads could be using direct 2128 * transmit calls to GLD, even after the capability mechanism 2129 * turns it off. This is still safe since the handles used in 2130 * the direct calls continue to be valid until the unplumb is 2131 * completed. Remove the callback that was added (1-time) at 2132 * capab enable time. 2133 */ 2134 mutex_enter(&ill->ill_lock); 2135 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2136 mutex_exit(&ill->ill_lock); 2137 if (ill->ill_flownotify_mh != NULL) { 2138 idd = &idc->idc_direct; 2139 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2140 ill->ill_flownotify_mh); 2141 ill->ill_flownotify_mh = NULL; 2142 } 2143 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2144 NULL, DLD_DISABLE); 2145 } 2146 2147 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2148 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2149 ip_squeue_clean_all(ill); 2150 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2151 NULL, DLD_DISABLE); 2152 } 2153 2154 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2155 ASSERT(ill->ill_lso_capab != NULL); 2156 /* 2157 * Clear the capability flag for LSO but retain the 2158 * ill_lso_capab structure since it's possible that another 2159 * thread is still referring to it. The structure only gets 2160 * deallocated when we destroy the ill. 2161 */ 2162 2163 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2164 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2165 NULL, DLD_DISABLE); 2166 } 2167 2168 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2169 ill_mac_perim_exit(ill, mph); 2170 } 2171 2172 /* 2173 * Capability Negotiation protocol 2174 * 2175 * We don't wait for DLPI capability operations to finish during interface 2176 * bringup or teardown. Doing so would introduce more asynchrony and the 2177 * interface up/down operations will need multiple return and restarts. 2178 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2179 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2180 * exclusive operation won't start until the DLPI operations of the previous 2181 * exclusive operation complete. 2182 * 2183 * The capability state machine is shown below. 2184 * 2185 * state next state event, action 2186 * 2187 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2188 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2189 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2190 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2191 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2192 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2193 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2194 * ill_capability_probe. 2195 */ 2196 2197 /* 2198 * Dedicated thread started from ip_stack_init that handles capability 2199 * disable. This thread ensures the taskq dispatch does not fail by waiting 2200 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2201 * that direct calls to DLD are done in a cv_waitable context. 2202 */ 2203 void 2204 ill_taskq_dispatch(ip_stack_t *ipst) 2205 { 2206 callb_cpr_t cprinfo; 2207 char name[64]; 2208 mblk_t *mp; 2209 2210 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2211 ipst->ips_netstack->netstack_stackid); 2212 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2213 name); 2214 mutex_enter(&ipst->ips_capab_taskq_lock); 2215 2216 for (;;) { 2217 mp = ipst->ips_capab_taskq_head; 2218 while (mp != NULL) { 2219 ipst->ips_capab_taskq_head = mp->b_next; 2220 if (ipst->ips_capab_taskq_head == NULL) 2221 ipst->ips_capab_taskq_tail = NULL; 2222 mutex_exit(&ipst->ips_capab_taskq_lock); 2223 mp->b_next = NULL; 2224 2225 VERIFY(taskq_dispatch(system_taskq, 2226 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2227 mutex_enter(&ipst->ips_capab_taskq_lock); 2228 mp = ipst->ips_capab_taskq_head; 2229 } 2230 2231 if (ipst->ips_capab_taskq_quit) 2232 break; 2233 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2234 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2235 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2236 } 2237 VERIFY(ipst->ips_capab_taskq_head == NULL); 2238 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2239 CALLB_CPR_EXIT(&cprinfo); 2240 thread_exit(); 2241 } 2242 2243 /* 2244 * Consume a new-style hardware capabilities negotiation ack. 2245 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2246 */ 2247 static void 2248 ill_capability_ack_thr(void *arg) 2249 { 2250 mblk_t *mp = arg; 2251 dl_capability_ack_t *capp; 2252 dl_capability_sub_t *subp, *endp; 2253 ill_t *ill; 2254 boolean_t reneg; 2255 2256 ill = (ill_t *)mp->b_prev; 2257 mp->b_prev = NULL; 2258 2259 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2260 2261 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2262 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2263 /* 2264 * We have received the ack for our DL_CAPAB reset request. 2265 * There isnt' anything in the message that needs processing. 2266 * All message based capabilities have been disabled, now 2267 * do the function call based capability disable. 2268 */ 2269 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2270 ill_capability_dld_disable(ill); 2271 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2272 if (reneg) 2273 ill_capability_probe(ill); 2274 goto done; 2275 } 2276 2277 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2278 ill->ill_dlpi_capab_state = IDCS_OK; 2279 2280 capp = (dl_capability_ack_t *)mp->b_rptr; 2281 2282 if (capp->dl_sub_length == 0) { 2283 /* no new-style capabilities */ 2284 goto done; 2285 } 2286 2287 /* make sure the driver supplied correct dl_sub_length */ 2288 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2289 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2290 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2291 goto done; 2292 } 2293 2294 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2295 /* 2296 * There are sub-capabilities. Process the ones we know about. 2297 * Loop until we don't have room for another sub-cap header.. 2298 */ 2299 for (subp = SC(capp, capp->dl_sub_offset), 2300 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2301 subp <= endp; 2302 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2303 2304 switch (subp->dl_cap) { 2305 case DL_CAPAB_ID_WRAPPER: 2306 ill_capability_id_ack(ill, mp, subp); 2307 break; 2308 default: 2309 ill_capability_dispatch(ill, mp, subp); 2310 break; 2311 } 2312 } 2313 #undef SC 2314 done: 2315 inet_freemsg(mp); 2316 ill_capability_done(ill); 2317 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2318 } 2319 2320 /* 2321 * This needs to be started in a taskq thread to provide a cv_waitable 2322 * context. 2323 */ 2324 void 2325 ill_capability_ack(ill_t *ill, mblk_t *mp) 2326 { 2327 ip_stack_t *ipst = ill->ill_ipst; 2328 2329 mp->b_prev = (mblk_t *)ill; 2330 ASSERT(mp->b_next == NULL); 2331 2332 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2333 TQ_NOSLEEP) != 0) 2334 return; 2335 2336 /* 2337 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2338 * which will do the dispatch using TQ_SLEEP to guarantee success. 2339 */ 2340 mutex_enter(&ipst->ips_capab_taskq_lock); 2341 if (ipst->ips_capab_taskq_head == NULL) { 2342 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2343 ipst->ips_capab_taskq_head = mp; 2344 } else { 2345 ipst->ips_capab_taskq_tail->b_next = mp; 2346 } 2347 ipst->ips_capab_taskq_tail = mp; 2348 2349 cv_signal(&ipst->ips_capab_taskq_cv); 2350 mutex_exit(&ipst->ips_capab_taskq_lock); 2351 } 2352 2353 /* 2354 * This routine is called to scan the fragmentation reassembly table for 2355 * the specified ILL for any packets that are starting to smell. 2356 * dead_interval is the maximum time in seconds that will be tolerated. It 2357 * will either be the value specified in ip_g_frag_timeout, or zero if the 2358 * ILL is shutting down and it is time to blow everything off. 2359 * 2360 * It returns the number of seconds (as a time_t) that the next frag timer 2361 * should be scheduled for, 0 meaning that the timer doesn't need to be 2362 * re-started. Note that the method of calculating next_timeout isn't 2363 * entirely accurate since time will flow between the time we grab 2364 * current_time and the time we schedule the next timeout. This isn't a 2365 * big problem since this is the timer for sending an ICMP reassembly time 2366 * exceeded messages, and it doesn't have to be exactly accurate. 2367 * 2368 * This function is 2369 * sometimes called as writer, although this is not required. 2370 */ 2371 time_t 2372 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2373 { 2374 ipfb_t *ipfb; 2375 ipfb_t *endp; 2376 ipf_t *ipf; 2377 ipf_t *ipfnext; 2378 mblk_t *mp; 2379 time_t current_time = gethrestime_sec(); 2380 time_t next_timeout = 0; 2381 uint32_t hdr_length; 2382 mblk_t *send_icmp_head; 2383 mblk_t *send_icmp_head_v6; 2384 ip_stack_t *ipst = ill->ill_ipst; 2385 ip_recv_attr_t iras; 2386 2387 bzero(&iras, sizeof (iras)); 2388 iras.ira_flags = 0; 2389 iras.ira_ill = iras.ira_rill = ill; 2390 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2391 iras.ira_rifindex = iras.ira_ruifindex; 2392 2393 ipfb = ill->ill_frag_hash_tbl; 2394 if (ipfb == NULL) 2395 return (B_FALSE); 2396 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2397 /* Walk the frag hash table. */ 2398 for (; ipfb < endp; ipfb++) { 2399 send_icmp_head = NULL; 2400 send_icmp_head_v6 = NULL; 2401 mutex_enter(&ipfb->ipfb_lock); 2402 while ((ipf = ipfb->ipfb_ipf) != 0) { 2403 time_t frag_time = current_time - ipf->ipf_timestamp; 2404 time_t frag_timeout; 2405 2406 if (frag_time < dead_interval) { 2407 /* 2408 * There are some outstanding fragments 2409 * that will timeout later. Make note of 2410 * the time so that we can reschedule the 2411 * next timeout appropriately. 2412 */ 2413 frag_timeout = dead_interval - frag_time; 2414 if (next_timeout == 0 || 2415 frag_timeout < next_timeout) { 2416 next_timeout = frag_timeout; 2417 } 2418 break; 2419 } 2420 /* Time's up. Get it out of here. */ 2421 hdr_length = ipf->ipf_nf_hdr_len; 2422 ipfnext = ipf->ipf_hash_next; 2423 if (ipfnext) 2424 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2425 *ipf->ipf_ptphn = ipfnext; 2426 mp = ipf->ipf_mp->b_cont; 2427 for (; mp; mp = mp->b_cont) { 2428 /* Extra points for neatness. */ 2429 IP_REASS_SET_START(mp, 0); 2430 IP_REASS_SET_END(mp, 0); 2431 } 2432 mp = ipf->ipf_mp->b_cont; 2433 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2434 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2435 ipfb->ipfb_count -= ipf->ipf_count; 2436 ASSERT(ipfb->ipfb_frag_pkts > 0); 2437 ipfb->ipfb_frag_pkts--; 2438 /* 2439 * We do not send any icmp message from here because 2440 * we currently are holding the ipfb_lock for this 2441 * hash chain. If we try and send any icmp messages 2442 * from here we may end up via a put back into ip 2443 * trying to get the same lock, causing a recursive 2444 * mutex panic. Instead we build a list and send all 2445 * the icmp messages after we have dropped the lock. 2446 */ 2447 if (ill->ill_isv6) { 2448 if (hdr_length != 0) { 2449 mp->b_next = send_icmp_head_v6; 2450 send_icmp_head_v6 = mp; 2451 } else { 2452 freemsg(mp); 2453 } 2454 } else { 2455 if (hdr_length != 0) { 2456 mp->b_next = send_icmp_head; 2457 send_icmp_head = mp; 2458 } else { 2459 freemsg(mp); 2460 } 2461 } 2462 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2463 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2464 freeb(ipf->ipf_mp); 2465 } 2466 mutex_exit(&ipfb->ipfb_lock); 2467 /* 2468 * Now need to send any icmp messages that we delayed from 2469 * above. 2470 */ 2471 while (send_icmp_head_v6 != NULL) { 2472 ip6_t *ip6h; 2473 2474 mp = send_icmp_head_v6; 2475 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2476 mp->b_next = NULL; 2477 ip6h = (ip6_t *)mp->b_rptr; 2478 iras.ira_flags = 0; 2479 /* 2480 * This will result in an incorrect ALL_ZONES zoneid 2481 * for multicast packets, but we 2482 * don't send ICMP errors for those in any case. 2483 */ 2484 iras.ira_zoneid = 2485 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2486 ill, ipst); 2487 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2488 icmp_time_exceeded_v6(mp, 2489 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2490 &iras); 2491 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2492 } 2493 while (send_icmp_head != NULL) { 2494 ipaddr_t dst; 2495 2496 mp = send_icmp_head; 2497 send_icmp_head = send_icmp_head->b_next; 2498 mp->b_next = NULL; 2499 2500 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2501 2502 iras.ira_flags = IRAF_IS_IPV4; 2503 /* 2504 * This will result in an incorrect ALL_ZONES zoneid 2505 * for broadcast and multicast packets, but we 2506 * don't send ICMP errors for those in any case. 2507 */ 2508 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2509 ill, ipst); 2510 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2511 icmp_time_exceeded(mp, 2512 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2513 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2514 } 2515 } 2516 /* 2517 * A non-dying ILL will use the return value to decide whether to 2518 * restart the frag timer, and for how long. 2519 */ 2520 return (next_timeout); 2521 } 2522 2523 /* 2524 * This routine is called when the approximate count of mblk memory used 2525 * for the specified ILL has exceeded max_count. 2526 */ 2527 void 2528 ill_frag_prune(ill_t *ill, uint_t max_count) 2529 { 2530 ipfb_t *ipfb; 2531 ipf_t *ipf; 2532 size_t count; 2533 clock_t now; 2534 2535 /* 2536 * If we are here within ip_min_frag_prune_time msecs remove 2537 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2538 * ill_frag_free_num_pkts. 2539 */ 2540 mutex_enter(&ill->ill_lock); 2541 now = ddi_get_lbolt(); 2542 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2543 (ip_min_frag_prune_time != 0 ? 2544 ip_min_frag_prune_time : msec_per_tick)) { 2545 2546 ill->ill_frag_free_num_pkts++; 2547 2548 } else { 2549 ill->ill_frag_free_num_pkts = 0; 2550 } 2551 ill->ill_last_frag_clean_time = now; 2552 mutex_exit(&ill->ill_lock); 2553 2554 /* 2555 * free ill_frag_free_num_pkts oldest packets from each bucket. 2556 */ 2557 if (ill->ill_frag_free_num_pkts != 0) { 2558 int ix; 2559 2560 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2561 ipfb = &ill->ill_frag_hash_tbl[ix]; 2562 mutex_enter(&ipfb->ipfb_lock); 2563 if (ipfb->ipfb_ipf != NULL) { 2564 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2565 ill->ill_frag_free_num_pkts); 2566 } 2567 mutex_exit(&ipfb->ipfb_lock); 2568 } 2569 } 2570 /* 2571 * While the reassembly list for this ILL is too big, prune a fragment 2572 * queue by age, oldest first. 2573 */ 2574 while (ill->ill_frag_count > max_count) { 2575 int ix; 2576 ipfb_t *oipfb = NULL; 2577 uint_t oldest = UINT_MAX; 2578 2579 count = 0; 2580 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2581 ipfb = &ill->ill_frag_hash_tbl[ix]; 2582 mutex_enter(&ipfb->ipfb_lock); 2583 ipf = ipfb->ipfb_ipf; 2584 if (ipf != NULL && ipf->ipf_gen < oldest) { 2585 oldest = ipf->ipf_gen; 2586 oipfb = ipfb; 2587 } 2588 count += ipfb->ipfb_count; 2589 mutex_exit(&ipfb->ipfb_lock); 2590 } 2591 if (oipfb == NULL) 2592 break; 2593 2594 if (count <= max_count) 2595 return; /* Somebody beat us to it, nothing to do */ 2596 mutex_enter(&oipfb->ipfb_lock); 2597 ipf = oipfb->ipfb_ipf; 2598 if (ipf != NULL) { 2599 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2600 } 2601 mutex_exit(&oipfb->ipfb_lock); 2602 } 2603 } 2604 2605 /* 2606 * free 'free_cnt' fragmented packets starting at ipf. 2607 */ 2608 void 2609 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2610 { 2611 size_t count; 2612 mblk_t *mp; 2613 mblk_t *tmp; 2614 ipf_t **ipfp = ipf->ipf_ptphn; 2615 2616 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2617 ASSERT(ipfp != NULL); 2618 ASSERT(ipf != NULL); 2619 2620 while (ipf != NULL && free_cnt-- > 0) { 2621 count = ipf->ipf_count; 2622 mp = ipf->ipf_mp; 2623 ipf = ipf->ipf_hash_next; 2624 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2625 IP_REASS_SET_START(tmp, 0); 2626 IP_REASS_SET_END(tmp, 0); 2627 } 2628 atomic_add_32(&ill->ill_frag_count, -count); 2629 ASSERT(ipfb->ipfb_count >= count); 2630 ipfb->ipfb_count -= count; 2631 ASSERT(ipfb->ipfb_frag_pkts > 0); 2632 ipfb->ipfb_frag_pkts--; 2633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2634 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2635 freemsg(mp); 2636 } 2637 2638 if (ipf) 2639 ipf->ipf_ptphn = ipfp; 2640 ipfp[0] = ipf; 2641 } 2642 2643 /* 2644 * Helper function for ill_forward_set(). 2645 */ 2646 static void 2647 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2648 { 2649 ip_stack_t *ipst = ill->ill_ipst; 2650 2651 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2652 2653 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2654 (enable ? "Enabling" : "Disabling"), 2655 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2656 mutex_enter(&ill->ill_lock); 2657 if (enable) 2658 ill->ill_flags |= ILLF_ROUTER; 2659 else 2660 ill->ill_flags &= ~ILLF_ROUTER; 2661 mutex_exit(&ill->ill_lock); 2662 if (ill->ill_isv6) 2663 ill_set_nce_router_flags(ill, enable); 2664 /* Notify routing socket listeners of this change. */ 2665 if (ill->ill_ipif != NULL) 2666 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2667 } 2668 2669 /* 2670 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2671 * socket messages for each interface whose flags we change. 2672 */ 2673 int 2674 ill_forward_set(ill_t *ill, boolean_t enable) 2675 { 2676 ipmp_illgrp_t *illg; 2677 ip_stack_t *ipst = ill->ill_ipst; 2678 2679 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2680 2681 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2682 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2683 return (0); 2684 2685 if (IS_LOOPBACK(ill)) 2686 return (EINVAL); 2687 2688 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2689 /* 2690 * Update all of the interfaces in the group. 2691 */ 2692 illg = ill->ill_grp; 2693 ill = list_head(&illg->ig_if); 2694 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2695 ill_forward_set_on_ill(ill, enable); 2696 2697 /* 2698 * Update the IPMP meta-interface. 2699 */ 2700 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2701 return (0); 2702 } 2703 2704 ill_forward_set_on_ill(ill, enable); 2705 return (0); 2706 } 2707 2708 /* 2709 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2710 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2711 * set or clear. 2712 */ 2713 static void 2714 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2715 { 2716 ipif_t *ipif; 2717 ncec_t *ncec; 2718 nce_t *nce; 2719 2720 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2721 /* 2722 * NOTE: we match across the illgrp because nce's for 2723 * addresses on IPMP interfaces have an nce_ill that points to 2724 * the bound underlying ill. 2725 */ 2726 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2727 if (nce != NULL) { 2728 ncec = nce->nce_common; 2729 mutex_enter(&ncec->ncec_lock); 2730 if (enable) 2731 ncec->ncec_flags |= NCE_F_ISROUTER; 2732 else 2733 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2734 mutex_exit(&ncec->ncec_lock); 2735 nce_refrele(nce); 2736 } 2737 } 2738 } 2739 2740 /* 2741 * Intializes the context structure and returns the first ill in the list 2742 * cuurently start_list and end_list can have values: 2743 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2744 * IP_V4_G_HEAD Traverse IPV4 list only. 2745 * IP_V6_G_HEAD Traverse IPV6 list only. 2746 */ 2747 2748 /* 2749 * We don't check for CONDEMNED ills here. Caller must do that if 2750 * necessary under the ill lock. 2751 */ 2752 ill_t * 2753 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2754 ip_stack_t *ipst) 2755 { 2756 ill_if_t *ifp; 2757 ill_t *ill; 2758 avl_tree_t *avl_tree; 2759 2760 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2761 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2762 2763 /* 2764 * setup the lists to search 2765 */ 2766 if (end_list != MAX_G_HEADS) { 2767 ctx->ctx_current_list = start_list; 2768 ctx->ctx_last_list = end_list; 2769 } else { 2770 ctx->ctx_last_list = MAX_G_HEADS - 1; 2771 ctx->ctx_current_list = 0; 2772 } 2773 2774 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2775 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2776 if (ifp != (ill_if_t *) 2777 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2778 avl_tree = &ifp->illif_avl_by_ppa; 2779 ill = avl_first(avl_tree); 2780 /* 2781 * ill is guaranteed to be non NULL or ifp should have 2782 * not existed. 2783 */ 2784 ASSERT(ill != NULL); 2785 return (ill); 2786 } 2787 ctx->ctx_current_list++; 2788 } 2789 2790 return (NULL); 2791 } 2792 2793 /* 2794 * returns the next ill in the list. ill_first() must have been called 2795 * before calling ill_next() or bad things will happen. 2796 */ 2797 2798 /* 2799 * We don't check for CONDEMNED ills here. Caller must do that if 2800 * necessary under the ill lock. 2801 */ 2802 ill_t * 2803 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2804 { 2805 ill_if_t *ifp; 2806 ill_t *ill; 2807 ip_stack_t *ipst = lastill->ill_ipst; 2808 2809 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2810 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2811 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2812 AVL_AFTER)) != NULL) { 2813 return (ill); 2814 } 2815 2816 /* goto next ill_ifp in the list. */ 2817 ifp = lastill->ill_ifptr->illif_next; 2818 2819 /* make sure not at end of circular list */ 2820 while (ifp == 2821 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2822 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2823 return (NULL); 2824 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2825 } 2826 2827 return (avl_first(&ifp->illif_avl_by_ppa)); 2828 } 2829 2830 /* 2831 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2832 * The final number (PPA) must not have any leading zeros. Upon success, a 2833 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2834 */ 2835 static char * 2836 ill_get_ppa_ptr(char *name) 2837 { 2838 int namelen = strlen(name); 2839 int end_ndx = namelen - 1; 2840 int ppa_ndx, i; 2841 2842 /* 2843 * Check that the first character is [a-zA-Z], and that the last 2844 * character is [0-9]. 2845 */ 2846 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2847 return (NULL); 2848 2849 /* 2850 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2851 */ 2852 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2853 if (!isdigit(name[ppa_ndx - 1])) 2854 break; 2855 2856 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2857 return (NULL); 2858 2859 /* 2860 * Check that the intermediate characters are [a-z0-9.] 2861 */ 2862 for (i = 1; i < ppa_ndx; i++) { 2863 if (!isalpha(name[i]) && !isdigit(name[i]) && 2864 name[i] != '.' && name[i] != '_') { 2865 return (NULL); 2866 } 2867 } 2868 2869 return (name + ppa_ndx); 2870 } 2871 2872 /* 2873 * use avl tree to locate the ill. 2874 */ 2875 static ill_t * 2876 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2877 { 2878 char *ppa_ptr = NULL; 2879 int len; 2880 uint_t ppa; 2881 ill_t *ill = NULL; 2882 ill_if_t *ifp; 2883 int list; 2884 2885 /* 2886 * get ppa ptr 2887 */ 2888 if (isv6) 2889 list = IP_V6_G_HEAD; 2890 else 2891 list = IP_V4_G_HEAD; 2892 2893 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2894 return (NULL); 2895 } 2896 2897 len = ppa_ptr - name + 1; 2898 2899 ppa = stoi(&ppa_ptr); 2900 2901 ifp = IP_VX_ILL_G_LIST(list, ipst); 2902 2903 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2904 /* 2905 * match is done on len - 1 as the name is not null 2906 * terminated it contains ppa in addition to the interface 2907 * name. 2908 */ 2909 if ((ifp->illif_name_len == len) && 2910 bcmp(ifp->illif_name, name, len - 1) == 0) { 2911 break; 2912 } else { 2913 ifp = ifp->illif_next; 2914 } 2915 } 2916 2917 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2918 /* 2919 * Even the interface type does not exist. 2920 */ 2921 return (NULL); 2922 } 2923 2924 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2925 if (ill != NULL) { 2926 mutex_enter(&ill->ill_lock); 2927 if (ILL_CAN_LOOKUP(ill)) { 2928 ill_refhold_locked(ill); 2929 mutex_exit(&ill->ill_lock); 2930 return (ill); 2931 } 2932 mutex_exit(&ill->ill_lock); 2933 } 2934 return (NULL); 2935 } 2936 2937 /* 2938 * comparison function for use with avl. 2939 */ 2940 static int 2941 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2942 { 2943 uint_t ppa; 2944 uint_t ill_ppa; 2945 2946 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2947 2948 ppa = *((uint_t *)ppa_ptr); 2949 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2950 /* 2951 * We want the ill with the lowest ppa to be on the 2952 * top. 2953 */ 2954 if (ill_ppa < ppa) 2955 return (1); 2956 if (ill_ppa > ppa) 2957 return (-1); 2958 return (0); 2959 } 2960 2961 /* 2962 * remove an interface type from the global list. 2963 */ 2964 static void 2965 ill_delete_interface_type(ill_if_t *interface) 2966 { 2967 ASSERT(interface != NULL); 2968 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2969 2970 avl_destroy(&interface->illif_avl_by_ppa); 2971 if (interface->illif_ppa_arena != NULL) 2972 vmem_destroy(interface->illif_ppa_arena); 2973 2974 remque(interface); 2975 2976 mi_free(interface); 2977 } 2978 2979 /* 2980 * remove ill from the global list. 2981 */ 2982 static void 2983 ill_glist_delete(ill_t *ill) 2984 { 2985 ip_stack_t *ipst; 2986 phyint_t *phyi; 2987 2988 if (ill == NULL) 2989 return; 2990 ipst = ill->ill_ipst; 2991 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 2992 2993 /* 2994 * If the ill was never inserted into the AVL tree 2995 * we skip the if branch. 2996 */ 2997 if (ill->ill_ifptr != NULL) { 2998 /* 2999 * remove from AVL tree and free ppa number 3000 */ 3001 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3002 3003 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3004 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3005 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3006 } 3007 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3008 ill_delete_interface_type(ill->ill_ifptr); 3009 } 3010 3011 /* 3012 * Indicate ill is no longer in the list. 3013 */ 3014 ill->ill_ifptr = NULL; 3015 ill->ill_name_length = 0; 3016 ill->ill_name[0] = '\0'; 3017 ill->ill_ppa = UINT_MAX; 3018 } 3019 3020 /* Generate one last event for this ill. */ 3021 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3022 ill->ill_name_length); 3023 3024 ASSERT(ill->ill_phyint != NULL); 3025 phyi = ill->ill_phyint; 3026 ill->ill_phyint = NULL; 3027 3028 /* 3029 * ill_init allocates a phyint always to store the copy 3030 * of flags relevant to phyint. At that point in time, we could 3031 * not assign the name and hence phyint_illv4/v6 could not be 3032 * initialized. Later in ipif_set_values, we assign the name to 3033 * the ill, at which point in time we assign phyint_illv4/v6. 3034 * Thus we don't rely on phyint_illv6 to be initialized always. 3035 */ 3036 if (ill->ill_flags & ILLF_IPV6) 3037 phyi->phyint_illv6 = NULL; 3038 else 3039 phyi->phyint_illv4 = NULL; 3040 3041 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3042 rw_exit(&ipst->ips_ill_g_lock); 3043 return; 3044 } 3045 3046 /* 3047 * There are no ills left on this phyint; pull it out of the phyint 3048 * avl trees, and free it. 3049 */ 3050 if (phyi->phyint_ifindex > 0) { 3051 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3052 phyi); 3053 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3054 phyi); 3055 } 3056 rw_exit(&ipst->ips_ill_g_lock); 3057 3058 phyint_free(phyi); 3059 } 3060 3061 /* 3062 * allocate a ppa, if the number of plumbed interfaces of this type are 3063 * less than ill_no_arena do a linear search to find a unused ppa. 3064 * When the number goes beyond ill_no_arena switch to using an arena. 3065 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3066 * is the return value for an error condition, so allocation starts at one 3067 * and is decremented by one. 3068 */ 3069 static int 3070 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3071 { 3072 ill_t *tmp_ill; 3073 uint_t start, end; 3074 int ppa; 3075 3076 if (ifp->illif_ppa_arena == NULL && 3077 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3078 /* 3079 * Create an arena. 3080 */ 3081 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3082 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3083 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3084 /* allocate what has already been assigned */ 3085 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3086 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3087 tmp_ill, AVL_AFTER)) { 3088 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3089 1, /* size */ 3090 1, /* align/quantum */ 3091 0, /* phase */ 3092 0, /* nocross */ 3093 /* minaddr */ 3094 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3095 /* maxaddr */ 3096 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3097 VM_NOSLEEP|VM_FIRSTFIT); 3098 if (ppa == 0) { 3099 ip1dbg(("ill_alloc_ppa: ppa allocation" 3100 " failed while switching")); 3101 vmem_destroy(ifp->illif_ppa_arena); 3102 ifp->illif_ppa_arena = NULL; 3103 break; 3104 } 3105 } 3106 } 3107 3108 if (ifp->illif_ppa_arena != NULL) { 3109 if (ill->ill_ppa == UINT_MAX) { 3110 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3111 1, VM_NOSLEEP|VM_FIRSTFIT); 3112 if (ppa == 0) 3113 return (EAGAIN); 3114 ill->ill_ppa = --ppa; 3115 } else { 3116 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3117 1, /* size */ 3118 1, /* align/quantum */ 3119 0, /* phase */ 3120 0, /* nocross */ 3121 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3122 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3123 VM_NOSLEEP|VM_FIRSTFIT); 3124 /* 3125 * Most likely the allocation failed because 3126 * the requested ppa was in use. 3127 */ 3128 if (ppa == 0) 3129 return (EEXIST); 3130 } 3131 return (0); 3132 } 3133 3134 /* 3135 * No arena is in use and not enough (>ill_no_arena) interfaces have 3136 * been plumbed to create one. Do a linear search to get a unused ppa. 3137 */ 3138 if (ill->ill_ppa == UINT_MAX) { 3139 end = UINT_MAX - 1; 3140 start = 0; 3141 } else { 3142 end = start = ill->ill_ppa; 3143 } 3144 3145 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3146 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3147 if (start++ >= end) { 3148 if (ill->ill_ppa == UINT_MAX) 3149 return (EAGAIN); 3150 else 3151 return (EEXIST); 3152 } 3153 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3154 } 3155 ill->ill_ppa = start; 3156 return (0); 3157 } 3158 3159 /* 3160 * Insert ill into the list of configured ill's. Once this function completes, 3161 * the ill is globally visible and is available through lookups. More precisely 3162 * this happens after the caller drops the ill_g_lock. 3163 */ 3164 static int 3165 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3166 { 3167 ill_if_t *ill_interface; 3168 avl_index_t where = 0; 3169 int error; 3170 int name_length; 3171 int index; 3172 boolean_t check_length = B_FALSE; 3173 ip_stack_t *ipst = ill->ill_ipst; 3174 3175 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3176 3177 name_length = mi_strlen(name) + 1; 3178 3179 if (isv6) 3180 index = IP_V6_G_HEAD; 3181 else 3182 index = IP_V4_G_HEAD; 3183 3184 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3185 /* 3186 * Search for interface type based on name 3187 */ 3188 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3189 if ((ill_interface->illif_name_len == name_length) && 3190 (strcmp(ill_interface->illif_name, name) == 0)) { 3191 break; 3192 } 3193 ill_interface = ill_interface->illif_next; 3194 } 3195 3196 /* 3197 * Interface type not found, create one. 3198 */ 3199 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3200 ill_g_head_t ghead; 3201 3202 /* 3203 * allocate ill_if_t structure 3204 */ 3205 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3206 if (ill_interface == NULL) { 3207 return (ENOMEM); 3208 } 3209 3210 (void) strcpy(ill_interface->illif_name, name); 3211 ill_interface->illif_name_len = name_length; 3212 3213 avl_create(&ill_interface->illif_avl_by_ppa, 3214 ill_compare_ppa, sizeof (ill_t), 3215 offsetof(struct ill_s, ill_avl_byppa)); 3216 3217 /* 3218 * link the structure in the back to maintain order 3219 * of configuration for ifconfig output. 3220 */ 3221 ghead = ipst->ips_ill_g_heads[index]; 3222 insque(ill_interface, ghead.ill_g_list_tail); 3223 } 3224 3225 if (ill->ill_ppa == UINT_MAX) 3226 check_length = B_TRUE; 3227 3228 error = ill_alloc_ppa(ill_interface, ill); 3229 if (error != 0) { 3230 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3231 ill_delete_interface_type(ill->ill_ifptr); 3232 return (error); 3233 } 3234 3235 /* 3236 * When the ppa is choosen by the system, check that there is 3237 * enough space to insert ppa. if a specific ppa was passed in this 3238 * check is not required as the interface name passed in will have 3239 * the right ppa in it. 3240 */ 3241 if (check_length) { 3242 /* 3243 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3244 */ 3245 char buf[sizeof (uint_t) * 3]; 3246 3247 /* 3248 * convert ppa to string to calculate the amount of space 3249 * required for it in the name. 3250 */ 3251 numtos(ill->ill_ppa, buf); 3252 3253 /* Do we have enough space to insert ppa ? */ 3254 3255 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3256 /* Free ppa and interface type struct */ 3257 if (ill_interface->illif_ppa_arena != NULL) { 3258 vmem_free(ill_interface->illif_ppa_arena, 3259 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3260 } 3261 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3262 ill_delete_interface_type(ill->ill_ifptr); 3263 3264 return (EINVAL); 3265 } 3266 } 3267 3268 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3269 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3270 3271 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3272 &where); 3273 ill->ill_ifptr = ill_interface; 3274 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3275 3276 ill_phyint_reinit(ill); 3277 return (0); 3278 } 3279 3280 /* Initialize the per phyint ipsq used for serialization */ 3281 static boolean_t 3282 ipsq_init(ill_t *ill, boolean_t enter) 3283 { 3284 ipsq_t *ipsq; 3285 ipxop_t *ipx; 3286 3287 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3288 return (B_FALSE); 3289 3290 ill->ill_phyint->phyint_ipsq = ipsq; 3291 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3292 ipx->ipx_ipsq = ipsq; 3293 ipsq->ipsq_next = ipsq; 3294 ipsq->ipsq_phyint = ill->ill_phyint; 3295 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3296 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3297 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3298 if (enter) { 3299 ipx->ipx_writer = curthread; 3300 ipx->ipx_forced = B_FALSE; 3301 ipx->ipx_reentry_cnt = 1; 3302 #ifdef DEBUG 3303 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3304 #endif 3305 } 3306 return (B_TRUE); 3307 } 3308 3309 /* 3310 * ill_init is called by ip_open when a device control stream is opened. 3311 * It does a few initializations, and shoots a DL_INFO_REQ message down 3312 * to the driver. The response is later picked up in ip_rput_dlpi and 3313 * used to set up default mechanisms for talking to the driver. (Always 3314 * called as writer.) 3315 * 3316 * If this function returns error, ip_open will call ip_close which in 3317 * turn will call ill_delete to clean up any memory allocated here that 3318 * is not yet freed. 3319 */ 3320 int 3321 ill_init(queue_t *q, ill_t *ill) 3322 { 3323 int count; 3324 dl_info_req_t *dlir; 3325 mblk_t *info_mp; 3326 uchar_t *frag_ptr; 3327 3328 /* 3329 * The ill is initialized to zero by mi_alloc*(). In addition 3330 * some fields already contain valid values, initialized in 3331 * ip_open(), before we reach here. 3332 */ 3333 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3334 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3335 ill->ill_saved_ire_cnt = 0; 3336 3337 ill->ill_rq = q; 3338 ill->ill_wq = WR(q); 3339 3340 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3341 BPRI_HI); 3342 if (info_mp == NULL) 3343 return (ENOMEM); 3344 3345 /* 3346 * Allocate sufficient space to contain our fragment hash table and 3347 * the device name. 3348 */ 3349 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3350 if (frag_ptr == NULL) { 3351 freemsg(info_mp); 3352 return (ENOMEM); 3353 } 3354 ill->ill_frag_ptr = frag_ptr; 3355 ill->ill_frag_free_num_pkts = 0; 3356 ill->ill_last_frag_clean_time = 0; 3357 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3358 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3359 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3360 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3361 NULL, MUTEX_DEFAULT, NULL); 3362 } 3363 3364 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3365 if (ill->ill_phyint == NULL) { 3366 freemsg(info_mp); 3367 mi_free(frag_ptr); 3368 return (ENOMEM); 3369 } 3370 3371 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3372 /* 3373 * For now pretend this is a v4 ill. We need to set phyint_ill* 3374 * at this point because of the following reason. If we can't 3375 * enter the ipsq at some point and cv_wait, the writer that 3376 * wakes us up tries to locate us using the list of all phyints 3377 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3378 * If we don't set it now, we risk a missed wakeup. 3379 */ 3380 ill->ill_phyint->phyint_illv4 = ill; 3381 ill->ill_ppa = UINT_MAX; 3382 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3383 3384 ill_set_inputfn(ill); 3385 3386 if (!ipsq_init(ill, B_TRUE)) { 3387 freemsg(info_mp); 3388 mi_free(frag_ptr); 3389 mi_free(ill->ill_phyint); 3390 return (ENOMEM); 3391 } 3392 3393 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3394 3395 /* Frag queue limit stuff */ 3396 ill->ill_frag_count = 0; 3397 ill->ill_ipf_gen = 0; 3398 3399 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3400 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3401 ill->ill_global_timer = INFINITY; 3402 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3403 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3404 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3405 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3406 3407 /* 3408 * Initialize IPv6 configuration variables. The IP module is always 3409 * opened as an IPv4 module. Instead tracking down the cases where 3410 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3411 * here for convenience, this has no effect until the ill is set to do 3412 * IPv6. 3413 */ 3414 ill->ill_reachable_time = ND_REACHABLE_TIME; 3415 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3416 ill->ill_max_buf = ND_MAX_Q; 3417 ill->ill_refcnt = 0; 3418 3419 /* Send down the Info Request to the driver. */ 3420 info_mp->b_datap->db_type = M_PCPROTO; 3421 dlir = (dl_info_req_t *)info_mp->b_rptr; 3422 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3423 dlir->dl_primitive = DL_INFO_REQ; 3424 3425 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3426 3427 qprocson(q); 3428 ill_dlpi_send(ill, info_mp); 3429 3430 return (0); 3431 } 3432 3433 /* 3434 * ill_dls_info 3435 * creates datalink socket info from the device. 3436 */ 3437 int 3438 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3439 { 3440 size_t len; 3441 3442 sdl->sdl_family = AF_LINK; 3443 sdl->sdl_index = ill_get_upper_ifindex(ill); 3444 sdl->sdl_type = ill->ill_type; 3445 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3446 len = strlen(sdl->sdl_data); 3447 ASSERT(len < 256); 3448 sdl->sdl_nlen = (uchar_t)len; 3449 sdl->sdl_alen = ill->ill_phys_addr_length; 3450 sdl->sdl_slen = 0; 3451 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3452 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3453 3454 return (sizeof (struct sockaddr_dl)); 3455 } 3456 3457 /* 3458 * ill_xarp_info 3459 * creates xarp info from the device. 3460 */ 3461 static int 3462 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3463 { 3464 sdl->sdl_family = AF_LINK; 3465 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3466 sdl->sdl_type = ill->ill_type; 3467 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3468 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3469 sdl->sdl_alen = ill->ill_phys_addr_length; 3470 sdl->sdl_slen = 0; 3471 return (sdl->sdl_nlen); 3472 } 3473 3474 static int 3475 loopback_kstat_update(kstat_t *ksp, int rw) 3476 { 3477 kstat_named_t *kn; 3478 netstackid_t stackid; 3479 netstack_t *ns; 3480 ip_stack_t *ipst; 3481 3482 if (ksp == NULL || ksp->ks_data == NULL) 3483 return (EIO); 3484 3485 if (rw == KSTAT_WRITE) 3486 return (EACCES); 3487 3488 kn = KSTAT_NAMED_PTR(ksp); 3489 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3490 3491 ns = netstack_find_by_stackid(stackid); 3492 if (ns == NULL) 3493 return (-1); 3494 3495 ipst = ns->netstack_ip; 3496 if (ipst == NULL) { 3497 netstack_rele(ns); 3498 return (-1); 3499 } 3500 kn[0].value.ui32 = ipst->ips_loopback_packets; 3501 kn[1].value.ui32 = ipst->ips_loopback_packets; 3502 netstack_rele(ns); 3503 return (0); 3504 } 3505 3506 /* 3507 * Has ifindex been plumbed already? 3508 */ 3509 static boolean_t 3510 phyint_exists(uint_t index, ip_stack_t *ipst) 3511 { 3512 ASSERT(index != 0); 3513 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3514 3515 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3516 &index, NULL) != NULL); 3517 } 3518 3519 /* Pick a unique ifindex */ 3520 boolean_t 3521 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3522 { 3523 uint_t starting_index; 3524 3525 if (!ipst->ips_ill_index_wrap) { 3526 *indexp = ipst->ips_ill_index++; 3527 if (ipst->ips_ill_index == 0) { 3528 /* Reached the uint_t limit Next time wrap */ 3529 ipst->ips_ill_index_wrap = B_TRUE; 3530 } 3531 return (B_TRUE); 3532 } 3533 3534 /* 3535 * Start reusing unused indexes. Note that we hold the ill_g_lock 3536 * at this point and don't want to call any function that attempts 3537 * to get the lock again. 3538 */ 3539 starting_index = ipst->ips_ill_index++; 3540 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 3541 if (ipst->ips_ill_index != 0 && 3542 !phyint_exists(ipst->ips_ill_index, ipst)) { 3543 /* found unused index - use it */ 3544 *indexp = ipst->ips_ill_index; 3545 return (B_TRUE); 3546 } 3547 } 3548 3549 /* 3550 * all interface indicies are inuse. 3551 */ 3552 return (B_FALSE); 3553 } 3554 3555 /* 3556 * Assign a unique interface index for the phyint. 3557 */ 3558 static boolean_t 3559 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3560 { 3561 ASSERT(phyi->phyint_ifindex == 0); 3562 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3563 } 3564 3565 /* 3566 * Initialize the flags on `phyi' as per the provided mactype. 3567 */ 3568 static void 3569 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3570 { 3571 uint64_t flags = 0; 3572 3573 /* 3574 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3575 * we always presume the underlying hardware is working and set 3576 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3577 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3578 * there are no active interfaces in the group so we set PHYI_FAILED. 3579 */ 3580 if (mactype == SUNW_DL_IPMP) 3581 flags |= PHYI_FAILED; 3582 else 3583 flags |= PHYI_RUNNING; 3584 3585 switch (mactype) { 3586 case SUNW_DL_VNI: 3587 flags |= PHYI_VIRTUAL; 3588 break; 3589 case SUNW_DL_IPMP: 3590 flags |= PHYI_IPMP; 3591 break; 3592 case DL_LOOP: 3593 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3594 break; 3595 } 3596 3597 mutex_enter(&phyi->phyint_lock); 3598 phyi->phyint_flags |= flags; 3599 mutex_exit(&phyi->phyint_lock); 3600 } 3601 3602 /* 3603 * Return a pointer to the ill which matches the supplied name. Note that 3604 * the ill name length includes the null termination character. (May be 3605 * called as writer.) 3606 * If do_alloc and the interface is "lo0" it will be automatically created. 3607 * Cannot bump up reference on condemned ills. So dup detect can't be done 3608 * using this func. 3609 */ 3610 ill_t * 3611 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3612 boolean_t *did_alloc, ip_stack_t *ipst) 3613 { 3614 ill_t *ill; 3615 ipif_t *ipif; 3616 ipsq_t *ipsq; 3617 kstat_named_t *kn; 3618 boolean_t isloopback; 3619 in6_addr_t ov6addr; 3620 3621 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3622 3623 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3624 ill = ill_find_by_name(name, isv6, ipst); 3625 rw_exit(&ipst->ips_ill_g_lock); 3626 if (ill != NULL) 3627 return (ill); 3628 3629 /* 3630 * Couldn't find it. Does this happen to be a lookup for the 3631 * loopback device and are we allowed to allocate it? 3632 */ 3633 if (!isloopback || !do_alloc) 3634 return (NULL); 3635 3636 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3637 ill = ill_find_by_name(name, isv6, ipst); 3638 if (ill != NULL) { 3639 rw_exit(&ipst->ips_ill_g_lock); 3640 return (ill); 3641 } 3642 3643 /* Create the loopback device on demand */ 3644 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3645 sizeof (ipif_loopback_name), BPRI_MED)); 3646 if (ill == NULL) 3647 goto done; 3648 3649 *ill = ill_null; 3650 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3651 ill->ill_ipst = ipst; 3652 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3653 netstack_hold(ipst->ips_netstack); 3654 /* 3655 * For exclusive stacks we set the zoneid to zero 3656 * to make IP operate as if in the global zone. 3657 */ 3658 ill->ill_zoneid = GLOBAL_ZONEID; 3659 3660 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3661 if (ill->ill_phyint == NULL) 3662 goto done; 3663 3664 if (isv6) 3665 ill->ill_phyint->phyint_illv6 = ill; 3666 else 3667 ill->ill_phyint->phyint_illv4 = ill; 3668 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3669 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3670 3671 if (isv6) { 3672 ill->ill_isv6 = B_TRUE; 3673 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3674 } else { 3675 ill->ill_max_frag = ip_loopback_mtuplus; 3676 } 3677 if (!ill_allocate_mibs(ill)) 3678 goto done; 3679 ill->ill_current_frag = ill->ill_max_frag; 3680 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3681 /* 3682 * ipif_loopback_name can't be pointed at directly because its used 3683 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3684 * from the glist, ill_glist_delete() sets the first character of 3685 * ill_name to '\0'. 3686 */ 3687 ill->ill_name = (char *)ill + sizeof (*ill); 3688 (void) strcpy(ill->ill_name, ipif_loopback_name); 3689 ill->ill_name_length = sizeof (ipif_loopback_name); 3690 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3691 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3692 3693 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3694 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3695 ill->ill_global_timer = INFINITY; 3696 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3697 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3698 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3699 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3700 3701 /* No resolver here. */ 3702 ill->ill_net_type = IRE_LOOPBACK; 3703 3704 /* Initialize the ipsq */ 3705 if (!ipsq_init(ill, B_FALSE)) 3706 goto done; 3707 3708 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3709 if (ipif == NULL) 3710 goto done; 3711 3712 ill->ill_flags = ILLF_MULTICAST; 3713 3714 ov6addr = ipif->ipif_v6lcl_addr; 3715 /* Set up default loopback address and mask. */ 3716 if (!isv6) { 3717 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3718 3719 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3720 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3721 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3722 ipif->ipif_v6subnet); 3723 ill->ill_flags |= ILLF_IPV4; 3724 } else { 3725 ipif->ipif_v6lcl_addr = ipv6_loopback; 3726 ipif->ipif_v6net_mask = ipv6_all_ones; 3727 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3728 ipif->ipif_v6subnet); 3729 ill->ill_flags |= ILLF_IPV6; 3730 } 3731 3732 /* 3733 * Chain us in at the end of the ill list. hold the ill 3734 * before we make it globally visible. 1 for the lookup. 3735 */ 3736 ill->ill_refcnt = 0; 3737 ill_refhold(ill); 3738 3739 ill->ill_frag_count = 0; 3740 ill->ill_frag_free_num_pkts = 0; 3741 ill->ill_last_frag_clean_time = 0; 3742 3743 ipsq = ill->ill_phyint->phyint_ipsq; 3744 3745 ill_set_inputfn(ill); 3746 3747 if (ill_glist_insert(ill, "lo", isv6) != 0) 3748 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3749 3750 /* Let SCTP know so that it can add this to its list */ 3751 sctp_update_ill(ill, SCTP_ILL_INSERT); 3752 3753 /* 3754 * We have already assigned ipif_v6lcl_addr above, but we need to 3755 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3756 * requires to be after ill_glist_insert() since we need the 3757 * ill_index set. Pass on ipv6_loopback as the old address. 3758 */ 3759 sctp_update_ipif_addr(ipif, ov6addr); 3760 3761 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3762 3763 /* 3764 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3765 * If so, free our original one. 3766 */ 3767 if (ipsq != ill->ill_phyint->phyint_ipsq) 3768 ipsq_delete(ipsq); 3769 3770 if (ipst->ips_loopback_ksp == NULL) { 3771 /* Export loopback interface statistics */ 3772 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3773 ipif_loopback_name, "net", 3774 KSTAT_TYPE_NAMED, 2, 0, 3775 ipst->ips_netstack->netstack_stackid); 3776 if (ipst->ips_loopback_ksp != NULL) { 3777 ipst->ips_loopback_ksp->ks_update = 3778 loopback_kstat_update; 3779 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3780 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3781 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3782 ipst->ips_loopback_ksp->ks_private = 3783 (void *)(uintptr_t)ipst->ips_netstack-> 3784 netstack_stackid; 3785 kstat_install(ipst->ips_loopback_ksp); 3786 } 3787 } 3788 3789 *did_alloc = B_TRUE; 3790 rw_exit(&ipst->ips_ill_g_lock); 3791 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3792 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3793 return (ill); 3794 done: 3795 if (ill != NULL) { 3796 if (ill->ill_phyint != NULL) { 3797 ipsq = ill->ill_phyint->phyint_ipsq; 3798 if (ipsq != NULL) { 3799 ipsq->ipsq_phyint = NULL; 3800 ipsq_delete(ipsq); 3801 } 3802 mi_free(ill->ill_phyint); 3803 } 3804 ill_free_mib(ill); 3805 if (ill->ill_ipst != NULL) 3806 netstack_rele(ill->ill_ipst->ips_netstack); 3807 mi_free(ill); 3808 } 3809 rw_exit(&ipst->ips_ill_g_lock); 3810 return (NULL); 3811 } 3812 3813 /* 3814 * For IPP calls - use the ip_stack_t for global stack. 3815 */ 3816 ill_t * 3817 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3818 { 3819 ip_stack_t *ipst; 3820 ill_t *ill; 3821 3822 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3823 if (ipst == NULL) { 3824 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3825 return (NULL); 3826 } 3827 3828 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3829 netstack_rele(ipst->ips_netstack); 3830 return (ill); 3831 } 3832 3833 /* 3834 * Return a pointer to the ill which matches the index and IP version type. 3835 */ 3836 ill_t * 3837 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3838 { 3839 ill_t *ill; 3840 phyint_t *phyi; 3841 3842 /* 3843 * Indexes are stored in the phyint - a common structure 3844 * to both IPv4 and IPv6. 3845 */ 3846 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3847 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3848 (void *) &index, NULL); 3849 if (phyi != NULL) { 3850 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3851 if (ill != NULL) { 3852 mutex_enter(&ill->ill_lock); 3853 if (!ILL_IS_CONDEMNED(ill)) { 3854 ill_refhold_locked(ill); 3855 mutex_exit(&ill->ill_lock); 3856 rw_exit(&ipst->ips_ill_g_lock); 3857 return (ill); 3858 } 3859 mutex_exit(&ill->ill_lock); 3860 } 3861 } 3862 rw_exit(&ipst->ips_ill_g_lock); 3863 return (NULL); 3864 } 3865 3866 /* 3867 * Verify whether or not an interface index is valid for the specified zoneid 3868 * to transmit packets. 3869 * It can be zero (meaning "reset") or an interface index assigned 3870 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3871 */ 3872 boolean_t 3873 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3874 ip_stack_t *ipst) 3875 { 3876 ill_t *ill; 3877 3878 if (ifindex == 0) 3879 return (B_TRUE); 3880 3881 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3882 if (ill == NULL) 3883 return (B_FALSE); 3884 if (IS_VNI(ill)) { 3885 ill_refrele(ill); 3886 return (B_FALSE); 3887 } 3888 ill_refrele(ill); 3889 return (B_TRUE); 3890 } 3891 3892 /* 3893 * Return the ifindex next in sequence after the passed in ifindex. 3894 * If there is no next ifindex for the given protocol, return 0. 3895 */ 3896 uint_t 3897 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3898 { 3899 phyint_t *phyi; 3900 phyint_t *phyi_initial; 3901 uint_t ifindex; 3902 3903 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3904 3905 if (index == 0) { 3906 phyi = avl_first( 3907 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3908 } else { 3909 phyi = phyi_initial = avl_find( 3910 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3911 (void *) &index, NULL); 3912 } 3913 3914 for (; phyi != NULL; 3915 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3916 phyi, AVL_AFTER)) { 3917 /* 3918 * If we're not returning the first interface in the tree 3919 * and we still haven't moved past the phyint_t that 3920 * corresponds to index, avl_walk needs to be called again 3921 */ 3922 if (!((index != 0) && (phyi == phyi_initial))) { 3923 if (isv6) { 3924 if ((phyi->phyint_illv6) && 3925 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3926 (phyi->phyint_illv6->ill_isv6 == 1)) 3927 break; 3928 } else { 3929 if ((phyi->phyint_illv4) && 3930 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3931 (phyi->phyint_illv4->ill_isv6 == 0)) 3932 break; 3933 } 3934 } 3935 } 3936 3937 rw_exit(&ipst->ips_ill_g_lock); 3938 3939 if (phyi != NULL) 3940 ifindex = phyi->phyint_ifindex; 3941 else 3942 ifindex = 0; 3943 3944 return (ifindex); 3945 } 3946 3947 /* 3948 * Return the ifindex for the named interface. 3949 * If there is no next ifindex for the interface, return 0. 3950 */ 3951 uint_t 3952 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3953 { 3954 phyint_t *phyi; 3955 avl_index_t where = 0; 3956 uint_t ifindex; 3957 3958 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3959 3960 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3961 name, &where)) == NULL) { 3962 rw_exit(&ipst->ips_ill_g_lock); 3963 return (0); 3964 } 3965 3966 ifindex = phyi->phyint_ifindex; 3967 3968 rw_exit(&ipst->ips_ill_g_lock); 3969 3970 return (ifindex); 3971 } 3972 3973 /* 3974 * Return the ifindex to be used by upper layer protocols for instance 3975 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 3976 */ 3977 uint_t 3978 ill_get_upper_ifindex(const ill_t *ill) 3979 { 3980 if (IS_UNDER_IPMP(ill)) 3981 return (ipmp_ill_get_ipmp_ifindex(ill)); 3982 else 3983 return (ill->ill_phyint->phyint_ifindex); 3984 } 3985 3986 3987 /* 3988 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 3989 * that gives a running thread a reference to the ill. This reference must be 3990 * released by the thread when it is done accessing the ill and related 3991 * objects. ill_refcnt can not be used to account for static references 3992 * such as other structures pointing to an ill. Callers must generally 3993 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 3994 * or be sure that the ill is not being deleted or changing state before 3995 * calling the refhold functions. A non-zero ill_refcnt ensures that the 3996 * ill won't change any of its critical state such as address, netmask etc. 3997 */ 3998 void 3999 ill_refhold(ill_t *ill) 4000 { 4001 mutex_enter(&ill->ill_lock); 4002 ill->ill_refcnt++; 4003 ILL_TRACE_REF(ill); 4004 mutex_exit(&ill->ill_lock); 4005 } 4006 4007 void 4008 ill_refhold_locked(ill_t *ill) 4009 { 4010 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4011 ill->ill_refcnt++; 4012 ILL_TRACE_REF(ill); 4013 } 4014 4015 /* Returns true if we managed to get a refhold */ 4016 boolean_t 4017 ill_check_and_refhold(ill_t *ill) 4018 { 4019 mutex_enter(&ill->ill_lock); 4020 if (!ILL_IS_CONDEMNED(ill)) { 4021 ill_refhold_locked(ill); 4022 mutex_exit(&ill->ill_lock); 4023 return (B_TRUE); 4024 } 4025 mutex_exit(&ill->ill_lock); 4026 return (B_FALSE); 4027 } 4028 4029 /* 4030 * Must not be called while holding any locks. Otherwise if this is 4031 * the last reference to be released, there is a chance of recursive mutex 4032 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4033 * to restart an ioctl. 4034 */ 4035 void 4036 ill_refrele(ill_t *ill) 4037 { 4038 mutex_enter(&ill->ill_lock); 4039 ASSERT(ill->ill_refcnt != 0); 4040 ill->ill_refcnt--; 4041 ILL_UNTRACE_REF(ill); 4042 if (ill->ill_refcnt != 0) { 4043 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4044 mutex_exit(&ill->ill_lock); 4045 return; 4046 } 4047 4048 /* Drops the ill_lock */ 4049 ipif_ill_refrele_tail(ill); 4050 } 4051 4052 /* 4053 * Obtain a weak reference count on the ill. This reference ensures the 4054 * ill won't be freed, but the ill may change any of its critical state 4055 * such as netmask, address etc. Returns an error if the ill has started 4056 * closing. 4057 */ 4058 boolean_t 4059 ill_waiter_inc(ill_t *ill) 4060 { 4061 mutex_enter(&ill->ill_lock); 4062 if (ill->ill_state_flags & ILL_CONDEMNED) { 4063 mutex_exit(&ill->ill_lock); 4064 return (B_FALSE); 4065 } 4066 ill->ill_waiters++; 4067 mutex_exit(&ill->ill_lock); 4068 return (B_TRUE); 4069 } 4070 4071 void 4072 ill_waiter_dcr(ill_t *ill) 4073 { 4074 mutex_enter(&ill->ill_lock); 4075 ill->ill_waiters--; 4076 if (ill->ill_waiters == 0) 4077 cv_broadcast(&ill->ill_cv); 4078 mutex_exit(&ill->ill_lock); 4079 } 4080 4081 /* 4082 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4083 * driver. We construct best guess defaults for lower level information that 4084 * we need. If an interface is brought up without injection of any overriding 4085 * information from outside, we have to be ready to go with these defaults. 4086 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4087 * we primarely want the dl_provider_style. 4088 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4089 * at which point we assume the other part of the information is valid. 4090 */ 4091 void 4092 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4093 { 4094 uchar_t *brdcst_addr; 4095 uint_t brdcst_addr_length, phys_addr_length; 4096 t_scalar_t sap_length; 4097 dl_info_ack_t *dlia; 4098 ip_m_t *ipm; 4099 dl_qos_cl_sel1_t *sel1; 4100 int min_mtu; 4101 4102 ASSERT(IAM_WRITER_ILL(ill)); 4103 4104 /* 4105 * Till the ill is fully up the ill is not globally visible. 4106 * So no need for a lock. 4107 */ 4108 dlia = (dl_info_ack_t *)mp->b_rptr; 4109 ill->ill_mactype = dlia->dl_mac_type; 4110 4111 ipm = ip_m_lookup(dlia->dl_mac_type); 4112 if (ipm == NULL) { 4113 ipm = ip_m_lookup(DL_OTHER); 4114 ASSERT(ipm != NULL); 4115 } 4116 ill->ill_media = ipm; 4117 4118 /* 4119 * When the new DLPI stuff is ready we'll pull lengths 4120 * from dlia. 4121 */ 4122 if (dlia->dl_version == DL_VERSION_2) { 4123 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4124 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4125 brdcst_addr_length); 4126 if (brdcst_addr == NULL) { 4127 brdcst_addr_length = 0; 4128 } 4129 sap_length = dlia->dl_sap_length; 4130 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4131 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4132 brdcst_addr_length, sap_length, phys_addr_length)); 4133 } else { 4134 brdcst_addr_length = 6; 4135 brdcst_addr = ip_six_byte_all_ones; 4136 sap_length = -2; 4137 phys_addr_length = brdcst_addr_length; 4138 } 4139 4140 ill->ill_bcast_addr_length = brdcst_addr_length; 4141 ill->ill_phys_addr_length = phys_addr_length; 4142 ill->ill_sap_length = sap_length; 4143 4144 /* 4145 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4146 * but we must ensure a minimum IP MTU is used since other bits of 4147 * IP will fly apart otherwise. 4148 */ 4149 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4150 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4151 ill->ill_current_frag = ill->ill_max_frag; 4152 ill->ill_mtu = ill->ill_max_frag; 4153 4154 ill->ill_type = ipm->ip_m_type; 4155 4156 if (!ill->ill_dlpi_style_set) { 4157 if (dlia->dl_provider_style == DL_STYLE2) 4158 ill->ill_needs_attach = 1; 4159 4160 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4161 4162 /* 4163 * Allocate the first ipif on this ill. We don't delay it 4164 * further as ioctl handling assumes at least one ipif exists. 4165 * 4166 * At this point we don't know whether the ill is v4 or v6. 4167 * We will know this whan the SIOCSLIFNAME happens and 4168 * the correct value for ill_isv6 will be assigned in 4169 * ipif_set_values(). We need to hold the ill lock and 4170 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4171 * the wakeup. 4172 */ 4173 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4174 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4175 mutex_enter(&ill->ill_lock); 4176 ASSERT(ill->ill_dlpi_style_set == 0); 4177 ill->ill_dlpi_style_set = 1; 4178 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4179 cv_broadcast(&ill->ill_cv); 4180 mutex_exit(&ill->ill_lock); 4181 freemsg(mp); 4182 return; 4183 } 4184 ASSERT(ill->ill_ipif != NULL); 4185 /* 4186 * We know whether it is IPv4 or IPv6 now, as this is the 4187 * second DL_INFO_ACK we are recieving in response to the 4188 * DL_INFO_REQ sent in ipif_set_values. 4189 */ 4190 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4191 /* 4192 * Clear all the flags that were set based on ill_bcast_addr_length 4193 * and ill_phys_addr_length (in ipif_set_values) as these could have 4194 * changed now and we need to re-evaluate. 4195 */ 4196 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4197 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4198 4199 /* 4200 * Free ill_bcast_mp as things could have changed now. 4201 * 4202 * NOTE: The IPMP meta-interface is special-cased because it starts 4203 * with no underlying interfaces (and thus an unknown broadcast 4204 * address length), but we enforce that an interface is broadcast- 4205 * capable as part of allowing it to join a group. 4206 */ 4207 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4208 if (ill->ill_bcast_mp != NULL) 4209 freemsg(ill->ill_bcast_mp); 4210 ill->ill_net_type = IRE_IF_NORESOLVER; 4211 4212 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4213 ill->ill_phys_addr_length, 4214 ill->ill_sap, 4215 ill->ill_sap_length); 4216 4217 if (ill->ill_isv6) 4218 /* 4219 * Note: xresolv interfaces will eventually need NOARP 4220 * set here as well, but that will require those 4221 * external resolvers to have some knowledge of 4222 * that flag and act appropriately. Not to be changed 4223 * at present. 4224 */ 4225 ill->ill_flags |= ILLF_NONUD; 4226 else 4227 ill->ill_flags |= ILLF_NOARP; 4228 4229 if (ill->ill_mactype == SUNW_DL_VNI) { 4230 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4231 } else if (ill->ill_phys_addr_length == 0 || 4232 ill->ill_mactype == DL_IPV4 || 4233 ill->ill_mactype == DL_IPV6) { 4234 /* 4235 * The underying link is point-to-point, so mark the 4236 * interface as such. We can do IP multicast over 4237 * such a link since it transmits all network-layer 4238 * packets to the remote side the same way. 4239 */ 4240 ill->ill_flags |= ILLF_MULTICAST; 4241 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4242 } 4243 } else { 4244 ill->ill_net_type = IRE_IF_RESOLVER; 4245 if (ill->ill_bcast_mp != NULL) 4246 freemsg(ill->ill_bcast_mp); 4247 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4248 ill->ill_bcast_addr_length, ill->ill_sap, 4249 ill->ill_sap_length); 4250 /* 4251 * Later detect lack of DLPI driver multicast 4252 * capability by catching DL_ENABMULTI errors in 4253 * ip_rput_dlpi. 4254 */ 4255 ill->ill_flags |= ILLF_MULTICAST; 4256 if (!ill->ill_isv6) 4257 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4258 } 4259 4260 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4261 if (ill->ill_mactype == SUNW_DL_IPMP) 4262 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4263 4264 /* By default an interface does not support any CoS marking */ 4265 ill->ill_flags &= ~ILLF_COS_ENABLED; 4266 4267 /* 4268 * If we get QoS information in DL_INFO_ACK, the device supports 4269 * some form of CoS marking, set ILLF_COS_ENABLED. 4270 */ 4271 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4272 dlia->dl_qos_length); 4273 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4274 ill->ill_flags |= ILLF_COS_ENABLED; 4275 } 4276 4277 /* Clear any previous error indication. */ 4278 ill->ill_error = 0; 4279 freemsg(mp); 4280 } 4281 4282 /* 4283 * Perform various checks to verify that an address would make sense as a 4284 * local, remote, or subnet interface address. 4285 */ 4286 static boolean_t 4287 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4288 { 4289 ipaddr_t net_mask; 4290 4291 /* 4292 * Don't allow all zeroes, or all ones, but allow 4293 * all ones netmask. 4294 */ 4295 if ((net_mask = ip_net_mask(addr)) == 0) 4296 return (B_FALSE); 4297 /* A given netmask overrides the "guess" netmask */ 4298 if (subnet_mask != 0) 4299 net_mask = subnet_mask; 4300 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4301 (addr == (addr | ~net_mask)))) { 4302 return (B_FALSE); 4303 } 4304 4305 /* 4306 * Even if the netmask is all ones, we do not allow address to be 4307 * 255.255.255.255 4308 */ 4309 if (addr == INADDR_BROADCAST) 4310 return (B_FALSE); 4311 4312 if (CLASSD(addr)) 4313 return (B_FALSE); 4314 4315 return (B_TRUE); 4316 } 4317 4318 #define V6_IPIF_LINKLOCAL(p) \ 4319 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4320 4321 /* 4322 * Compare two given ipifs and check if the second one is better than 4323 * the first one using the order of preference (not taking deprecated 4324 * into acount) specified in ipif_lookup_multicast(). 4325 */ 4326 static boolean_t 4327 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4328 { 4329 /* Check the least preferred first. */ 4330 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4331 /* If both ipifs are the same, use the first one. */ 4332 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4333 return (B_FALSE); 4334 else 4335 return (B_TRUE); 4336 } 4337 4338 /* For IPv6, check for link local address. */ 4339 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4340 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4341 V6_IPIF_LINKLOCAL(new_ipif)) { 4342 /* The second one is equal or less preferred. */ 4343 return (B_FALSE); 4344 } else { 4345 return (B_TRUE); 4346 } 4347 } 4348 4349 /* Then check for point to point interface. */ 4350 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4351 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4352 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4353 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4354 return (B_FALSE); 4355 } else { 4356 return (B_TRUE); 4357 } 4358 } 4359 4360 /* old_ipif is a normal interface, so no need to use the new one. */ 4361 return (B_FALSE); 4362 } 4363 4364 /* 4365 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4366 * The ipif must be up, and its ill must multicast-capable, not 4367 * condemned, not an underlying interface in an IPMP group, and 4368 * not a VNI interface. Order of preference: 4369 * 4370 * 1a. normal 4371 * 1b. normal, but deprecated 4372 * 2a. point to point 4373 * 2b. point to point, but deprecated 4374 * 3a. link local 4375 * 3b. link local, but deprecated 4376 * 4. loopback. 4377 */ 4378 static ipif_t * 4379 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4380 { 4381 ill_t *ill; 4382 ill_walk_context_t ctx; 4383 ipif_t *ipif; 4384 ipif_t *saved_ipif = NULL; 4385 ipif_t *dep_ipif = NULL; 4386 4387 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4388 if (isv6) 4389 ill = ILL_START_WALK_V6(&ctx, ipst); 4390 else 4391 ill = ILL_START_WALK_V4(&ctx, ipst); 4392 4393 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4394 mutex_enter(&ill->ill_lock); 4395 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4396 ILL_IS_CONDEMNED(ill) || 4397 !(ill->ill_flags & ILLF_MULTICAST)) { 4398 mutex_exit(&ill->ill_lock); 4399 continue; 4400 } 4401 for (ipif = ill->ill_ipif; ipif != NULL; 4402 ipif = ipif->ipif_next) { 4403 if (zoneid != ipif->ipif_zoneid && 4404 zoneid != ALL_ZONES && 4405 ipif->ipif_zoneid != ALL_ZONES) { 4406 continue; 4407 } 4408 if (!(ipif->ipif_flags & IPIF_UP) || 4409 IPIF_IS_CONDEMNED(ipif)) { 4410 continue; 4411 } 4412 4413 /* 4414 * Found one candidate. If it is deprecated, 4415 * remember it in dep_ipif. If it is not deprecated, 4416 * remember it in saved_ipif. 4417 */ 4418 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4419 if (dep_ipif == NULL) { 4420 dep_ipif = ipif; 4421 } else if (ipif_comp_multi(dep_ipif, ipif, 4422 isv6)) { 4423 /* 4424 * If the previous dep_ipif does not 4425 * belong to the same ill, we've done 4426 * a ipif_refhold() on it. So we need 4427 * to release it. 4428 */ 4429 if (dep_ipif->ipif_ill != ill) 4430 ipif_refrele(dep_ipif); 4431 dep_ipif = ipif; 4432 } 4433 continue; 4434 } 4435 if (saved_ipif == NULL) { 4436 saved_ipif = ipif; 4437 } else { 4438 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4439 if (saved_ipif->ipif_ill != ill) 4440 ipif_refrele(saved_ipif); 4441 saved_ipif = ipif; 4442 } 4443 } 4444 } 4445 /* 4446 * Before going to the next ill, do a ipif_refhold() on the 4447 * saved ones. 4448 */ 4449 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4450 ipif_refhold_locked(saved_ipif); 4451 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4452 ipif_refhold_locked(dep_ipif); 4453 mutex_exit(&ill->ill_lock); 4454 } 4455 rw_exit(&ipst->ips_ill_g_lock); 4456 4457 /* 4458 * If we have only the saved_ipif, return it. But if we have both 4459 * saved_ipif and dep_ipif, check to see which one is better. 4460 */ 4461 if (saved_ipif != NULL) { 4462 if (dep_ipif != NULL) { 4463 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4464 ipif_refrele(saved_ipif); 4465 return (dep_ipif); 4466 } else { 4467 ipif_refrele(dep_ipif); 4468 return (saved_ipif); 4469 } 4470 } 4471 return (saved_ipif); 4472 } else { 4473 return (dep_ipif); 4474 } 4475 } 4476 4477 ill_t * 4478 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4479 { 4480 ipif_t *ipif; 4481 ill_t *ill; 4482 4483 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4484 if (ipif == NULL) 4485 return (NULL); 4486 4487 ill = ipif->ipif_ill; 4488 ill_refhold(ill); 4489 ipif_refrele(ipif); 4490 return (ill); 4491 } 4492 4493 /* 4494 * This function is called when an application does not specify an interface 4495 * to be used for multicast traffic (joining a group/sending data). It 4496 * calls ire_lookup_multi() to look for an interface route for the 4497 * specified multicast group. Doing this allows the administrator to add 4498 * prefix routes for multicast to indicate which interface to be used for 4499 * multicast traffic in the above scenario. The route could be for all 4500 * multicast (224.0/4), for a single multicast group (a /32 route) or 4501 * anything in between. If there is no such multicast route, we just find 4502 * any multicast capable interface and return it. The returned ipif 4503 * is refhold'ed. 4504 * 4505 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4506 * unicast table. This is used by CGTP. 4507 */ 4508 ill_t * 4509 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4510 boolean_t *multirtp, ipaddr_t *setsrcp) 4511 { 4512 ill_t *ill; 4513 4514 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4515 if (ill != NULL) 4516 return (ill); 4517 4518 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4519 } 4520 4521 /* 4522 * Look for an ipif with the specified interface address and destination. 4523 * The destination address is used only for matching point-to-point interfaces. 4524 */ 4525 ipif_t * 4526 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4527 { 4528 ipif_t *ipif; 4529 ill_t *ill; 4530 ill_walk_context_t ctx; 4531 4532 /* 4533 * First match all the point-to-point interfaces 4534 * before looking at non-point-to-point interfaces. 4535 * This is done to avoid returning non-point-to-point 4536 * ipif instead of unnumbered point-to-point ipif. 4537 */ 4538 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4539 ill = ILL_START_WALK_V4(&ctx, ipst); 4540 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4541 mutex_enter(&ill->ill_lock); 4542 for (ipif = ill->ill_ipif; ipif != NULL; 4543 ipif = ipif->ipif_next) { 4544 /* Allow the ipif to be down */ 4545 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4546 (ipif->ipif_lcl_addr == if_addr) && 4547 (ipif->ipif_pp_dst_addr == dst)) { 4548 if (!IPIF_IS_CONDEMNED(ipif)) { 4549 ipif_refhold_locked(ipif); 4550 mutex_exit(&ill->ill_lock); 4551 rw_exit(&ipst->ips_ill_g_lock); 4552 return (ipif); 4553 } 4554 } 4555 } 4556 mutex_exit(&ill->ill_lock); 4557 } 4558 rw_exit(&ipst->ips_ill_g_lock); 4559 4560 /* lookup the ipif based on interface address */ 4561 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4562 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4563 return (ipif); 4564 } 4565 4566 /* 4567 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4568 */ 4569 static ipif_t * 4570 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4571 zoneid_t zoneid, ip_stack_t *ipst) 4572 { 4573 ipif_t *ipif; 4574 ill_t *ill; 4575 boolean_t ptp = B_FALSE; 4576 ill_walk_context_t ctx; 4577 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4578 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4579 4580 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4581 /* 4582 * Repeat twice, first based on local addresses and 4583 * next time for pointopoint. 4584 */ 4585 repeat: 4586 ill = ILL_START_WALK_V4(&ctx, ipst); 4587 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4588 if (match_ill != NULL && ill != match_ill && 4589 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4590 continue; 4591 } 4592 mutex_enter(&ill->ill_lock); 4593 for (ipif = ill->ill_ipif; ipif != NULL; 4594 ipif = ipif->ipif_next) { 4595 if (zoneid != ALL_ZONES && 4596 zoneid != ipif->ipif_zoneid && 4597 ipif->ipif_zoneid != ALL_ZONES) 4598 continue; 4599 4600 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4601 continue; 4602 4603 /* Allow the ipif to be down */ 4604 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4605 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4606 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4607 (ipif->ipif_pp_dst_addr == addr))) { 4608 if (!IPIF_IS_CONDEMNED(ipif)) { 4609 ipif_refhold_locked(ipif); 4610 mutex_exit(&ill->ill_lock); 4611 rw_exit(&ipst->ips_ill_g_lock); 4612 return (ipif); 4613 } 4614 } 4615 } 4616 mutex_exit(&ill->ill_lock); 4617 } 4618 4619 /* If we already did the ptp case, then we are done */ 4620 if (ptp) { 4621 rw_exit(&ipst->ips_ill_g_lock); 4622 return (NULL); 4623 } 4624 ptp = B_TRUE; 4625 goto repeat; 4626 } 4627 4628 /* 4629 * Lookup an ipif with the specified address. For point-to-point links we 4630 * look for matches on either the destination address or the local address, 4631 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4632 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4633 * (or illgrp if `match_ill' is in an IPMP group). 4634 */ 4635 ipif_t * 4636 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4637 ip_stack_t *ipst) 4638 { 4639 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4640 zoneid, ipst)); 4641 } 4642 4643 /* 4644 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4645 * except that we will only return an address if it is not marked as 4646 * IPIF_DUPLICATE 4647 */ 4648 ipif_t * 4649 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4650 ip_stack_t *ipst) 4651 { 4652 return (ipif_lookup_addr_common(addr, match_ill, 4653 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4654 zoneid, ipst)); 4655 } 4656 4657 /* 4658 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4659 * `match_ill' across the IPMP group. This function is only needed in some 4660 * corner-cases; almost everything should use ipif_lookup_addr(). 4661 */ 4662 ipif_t * 4663 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4664 { 4665 ASSERT(match_ill != NULL); 4666 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4667 ipst)); 4668 } 4669 4670 /* 4671 * Look for an ipif with the specified address. For point-point links 4672 * we look for matches on either the destination address and the local 4673 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4674 * is set. 4675 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4676 * ill (or illgrp if `match_ill' is in an IPMP group). 4677 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4678 */ 4679 zoneid_t 4680 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4681 { 4682 zoneid_t zoneid; 4683 ipif_t *ipif; 4684 ill_t *ill; 4685 boolean_t ptp = B_FALSE; 4686 ill_walk_context_t ctx; 4687 4688 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4689 /* 4690 * Repeat twice, first based on local addresses and 4691 * next time for pointopoint. 4692 */ 4693 repeat: 4694 ill = ILL_START_WALK_V4(&ctx, ipst); 4695 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4696 if (match_ill != NULL && ill != match_ill && 4697 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4698 continue; 4699 } 4700 mutex_enter(&ill->ill_lock); 4701 for (ipif = ill->ill_ipif; ipif != NULL; 4702 ipif = ipif->ipif_next) { 4703 /* Allow the ipif to be down */ 4704 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4705 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4706 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4707 (ipif->ipif_pp_dst_addr == addr)) && 4708 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4709 zoneid = ipif->ipif_zoneid; 4710 mutex_exit(&ill->ill_lock); 4711 rw_exit(&ipst->ips_ill_g_lock); 4712 /* 4713 * If ipif_zoneid was ALL_ZONES then we have 4714 * a trusted extensions shared IP address. 4715 * In that case GLOBAL_ZONEID works to send. 4716 */ 4717 if (zoneid == ALL_ZONES) 4718 zoneid = GLOBAL_ZONEID; 4719 return (zoneid); 4720 } 4721 } 4722 mutex_exit(&ill->ill_lock); 4723 } 4724 4725 /* If we already did the ptp case, then we are done */ 4726 if (ptp) { 4727 rw_exit(&ipst->ips_ill_g_lock); 4728 return (ALL_ZONES); 4729 } 4730 ptp = B_TRUE; 4731 goto repeat; 4732 } 4733 4734 /* 4735 * Look for an ipif that matches the specified remote address i.e. the 4736 * ipif that would receive the specified packet. 4737 * First look for directly connected interfaces and then do a recursive 4738 * IRE lookup and pick the first ipif corresponding to the source address in the 4739 * ire. 4740 * Returns: held ipif 4741 * 4742 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4743 */ 4744 ipif_t * 4745 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4746 { 4747 ipif_t *ipif; 4748 4749 ASSERT(!ill->ill_isv6); 4750 4751 /* 4752 * Someone could be changing this ipif currently or change it 4753 * after we return this. Thus a few packets could use the old 4754 * old values. However structure updates/creates (ire, ilg, ilm etc) 4755 * will atomically be updated or cleaned up with the new value 4756 * Thus we don't need a lock to check the flags or other attrs below. 4757 */ 4758 mutex_enter(&ill->ill_lock); 4759 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4760 if (IPIF_IS_CONDEMNED(ipif)) 4761 continue; 4762 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4763 ipif->ipif_zoneid != ALL_ZONES) 4764 continue; 4765 /* Allow the ipif to be down */ 4766 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4767 if ((ipif->ipif_pp_dst_addr == addr) || 4768 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4769 ipif->ipif_lcl_addr == addr)) { 4770 ipif_refhold_locked(ipif); 4771 mutex_exit(&ill->ill_lock); 4772 return (ipif); 4773 } 4774 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4775 ipif_refhold_locked(ipif); 4776 mutex_exit(&ill->ill_lock); 4777 return (ipif); 4778 } 4779 } 4780 mutex_exit(&ill->ill_lock); 4781 /* 4782 * For a remote destination it isn't possible to nail down a particular 4783 * ipif. 4784 */ 4785 4786 /* Pick the first interface */ 4787 ipif = ipif_get_next_ipif(NULL, ill); 4788 return (ipif); 4789 } 4790 4791 /* 4792 * This func does not prevent refcnt from increasing. But if 4793 * the caller has taken steps to that effect, then this func 4794 * can be used to determine whether the ill has become quiescent 4795 */ 4796 static boolean_t 4797 ill_is_quiescent(ill_t *ill) 4798 { 4799 ipif_t *ipif; 4800 4801 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4802 4803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4804 if (ipif->ipif_refcnt != 0) 4805 return (B_FALSE); 4806 } 4807 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4808 return (B_FALSE); 4809 } 4810 return (B_TRUE); 4811 } 4812 4813 boolean_t 4814 ill_is_freeable(ill_t *ill) 4815 { 4816 ipif_t *ipif; 4817 4818 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4819 4820 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4821 if (ipif->ipif_refcnt != 0) { 4822 return (B_FALSE); 4823 } 4824 } 4825 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4826 return (B_FALSE); 4827 } 4828 return (B_TRUE); 4829 } 4830 4831 /* 4832 * This func does not prevent refcnt from increasing. But if 4833 * the caller has taken steps to that effect, then this func 4834 * can be used to determine whether the ipif has become quiescent 4835 */ 4836 static boolean_t 4837 ipif_is_quiescent(ipif_t *ipif) 4838 { 4839 ill_t *ill; 4840 4841 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4842 4843 if (ipif->ipif_refcnt != 0) 4844 return (B_FALSE); 4845 4846 ill = ipif->ipif_ill; 4847 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4848 ill->ill_logical_down) { 4849 return (B_TRUE); 4850 } 4851 4852 /* This is the last ipif going down or being deleted on this ill */ 4853 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4854 return (B_FALSE); 4855 } 4856 4857 return (B_TRUE); 4858 } 4859 4860 /* 4861 * return true if the ipif can be destroyed: the ipif has to be quiescent 4862 * with zero references from ire/ilm to it. 4863 */ 4864 static boolean_t 4865 ipif_is_freeable(ipif_t *ipif) 4866 { 4867 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4868 ASSERT(ipif->ipif_id != 0); 4869 return (ipif->ipif_refcnt == 0); 4870 } 4871 4872 /* 4873 * The ipif/ill/ire has been refreled. Do the tail processing. 4874 * Determine if the ipif or ill in question has become quiescent and if so 4875 * wakeup close and/or restart any queued pending ioctl that is waiting 4876 * for the ipif_down (or ill_down) 4877 */ 4878 void 4879 ipif_ill_refrele_tail(ill_t *ill) 4880 { 4881 mblk_t *mp; 4882 conn_t *connp; 4883 ipsq_t *ipsq; 4884 ipxop_t *ipx; 4885 ipif_t *ipif; 4886 dl_notify_ind_t *dlindp; 4887 4888 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4889 4890 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4891 /* ip_modclose() may be waiting */ 4892 cv_broadcast(&ill->ill_cv); 4893 } 4894 4895 ipsq = ill->ill_phyint->phyint_ipsq; 4896 mutex_enter(&ipsq->ipsq_lock); 4897 ipx = ipsq->ipsq_xop; 4898 mutex_enter(&ipx->ipx_lock); 4899 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4900 goto unlock; 4901 4902 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4903 4904 ipif = ipx->ipx_pending_ipif; 4905 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4906 goto unlock; 4907 4908 switch (ipx->ipx_waitfor) { 4909 case IPIF_DOWN: 4910 if (!ipif_is_quiescent(ipif)) 4911 goto unlock; 4912 break; 4913 case IPIF_FREE: 4914 if (!ipif_is_freeable(ipif)) 4915 goto unlock; 4916 break; 4917 case ILL_DOWN: 4918 if (!ill_is_quiescent(ill)) 4919 goto unlock; 4920 break; 4921 case ILL_FREE: 4922 /* 4923 * ILL_FREE is only for loopback; normal ill teardown waits 4924 * synchronously in ip_modclose() without using ipx_waitfor, 4925 * handled by the cv_broadcast() at the top of this function. 4926 */ 4927 if (!ill_is_freeable(ill)) 4928 goto unlock; 4929 break; 4930 default: 4931 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4932 (void *)ipsq, ipx->ipx_waitfor); 4933 } 4934 4935 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4936 mutex_exit(&ipx->ipx_lock); 4937 mp = ipsq_pending_mp_get(ipsq, &connp); 4938 mutex_exit(&ipsq->ipsq_lock); 4939 mutex_exit(&ill->ill_lock); 4940 4941 ASSERT(mp != NULL); 4942 /* 4943 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4944 * we can only get here when the current operation decides it 4945 * it needs to quiesce via ipsq_pending_mp_add(). 4946 */ 4947 switch (mp->b_datap->db_type) { 4948 case M_PCPROTO: 4949 case M_PROTO: 4950 /* 4951 * For now, only DL_NOTIFY_IND messages can use this facility. 4952 */ 4953 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4954 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4955 4956 switch (dlindp->dl_notification) { 4957 case DL_NOTE_PHYS_ADDR: 4958 qwriter_ip(ill, ill->ill_rq, mp, 4959 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 4960 return; 4961 case DL_NOTE_REPLUMB: 4962 qwriter_ip(ill, ill->ill_rq, mp, 4963 ill_replumb_tail, CUR_OP, B_TRUE); 4964 return; 4965 default: 4966 ASSERT(0); 4967 ill_refrele(ill); 4968 } 4969 break; 4970 4971 case M_ERROR: 4972 case M_HANGUP: 4973 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 4974 B_TRUE); 4975 return; 4976 4977 case M_IOCTL: 4978 case M_IOCDATA: 4979 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 4980 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 4981 return; 4982 4983 default: 4984 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 4985 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 4986 } 4987 return; 4988 unlock: 4989 mutex_exit(&ipsq->ipsq_lock); 4990 mutex_exit(&ipx->ipx_lock); 4991 mutex_exit(&ill->ill_lock); 4992 } 4993 4994 #ifdef DEBUG 4995 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 4996 static void 4997 th_trace_rrecord(th_trace_t *th_trace) 4998 { 4999 tr_buf_t *tr_buf; 5000 uint_t lastref; 5001 5002 lastref = th_trace->th_trace_lastref; 5003 lastref++; 5004 if (lastref == TR_BUF_MAX) 5005 lastref = 0; 5006 th_trace->th_trace_lastref = lastref; 5007 tr_buf = &th_trace->th_trbuf[lastref]; 5008 tr_buf->tr_time = ddi_get_lbolt(); 5009 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5010 } 5011 5012 static void 5013 th_trace_free(void *value) 5014 { 5015 th_trace_t *th_trace = value; 5016 5017 ASSERT(th_trace->th_refcnt == 0); 5018 kmem_free(th_trace, sizeof (*th_trace)); 5019 } 5020 5021 /* 5022 * Find or create the per-thread hash table used to track object references. 5023 * The ipst argument is NULL if we shouldn't allocate. 5024 * 5025 * Accesses per-thread data, so there's no need to lock here. 5026 */ 5027 static mod_hash_t * 5028 th_trace_gethash(ip_stack_t *ipst) 5029 { 5030 th_hash_t *thh; 5031 5032 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5033 mod_hash_t *mh; 5034 char name[256]; 5035 size_t objsize, rshift; 5036 int retv; 5037 5038 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5039 return (NULL); 5040 (void) snprintf(name, sizeof (name), "th_trace_%p", 5041 (void *)curthread); 5042 5043 /* 5044 * We use mod_hash_create_extended here rather than the more 5045 * obvious mod_hash_create_ptrhash because the latter has a 5046 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5047 * block. 5048 */ 5049 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5050 MAX(sizeof (ire_t), sizeof (ncec_t))); 5051 rshift = highbit(objsize); 5052 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5053 th_trace_free, mod_hash_byptr, (void *)rshift, 5054 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5055 if (mh == NULL) { 5056 kmem_free(thh, sizeof (*thh)); 5057 return (NULL); 5058 } 5059 thh->thh_hash = mh; 5060 thh->thh_ipst = ipst; 5061 /* 5062 * We trace ills, ipifs, ires, and nces. All of these are 5063 * per-IP-stack, so the lock on the thread list is as well. 5064 */ 5065 rw_enter(&ip_thread_rwlock, RW_WRITER); 5066 list_insert_tail(&ip_thread_list, thh); 5067 rw_exit(&ip_thread_rwlock); 5068 retv = tsd_set(ip_thread_data, thh); 5069 ASSERT(retv == 0); 5070 } 5071 return (thh != NULL ? thh->thh_hash : NULL); 5072 } 5073 5074 boolean_t 5075 th_trace_ref(const void *obj, ip_stack_t *ipst) 5076 { 5077 th_trace_t *th_trace; 5078 mod_hash_t *mh; 5079 mod_hash_val_t val; 5080 5081 if ((mh = th_trace_gethash(ipst)) == NULL) 5082 return (B_FALSE); 5083 5084 /* 5085 * Attempt to locate the trace buffer for this obj and thread. 5086 * If it does not exist, then allocate a new trace buffer and 5087 * insert into the hash. 5088 */ 5089 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5090 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5091 if (th_trace == NULL) 5092 return (B_FALSE); 5093 5094 th_trace->th_id = curthread; 5095 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5096 (mod_hash_val_t)th_trace) != 0) { 5097 kmem_free(th_trace, sizeof (th_trace_t)); 5098 return (B_FALSE); 5099 } 5100 } else { 5101 th_trace = (th_trace_t *)val; 5102 } 5103 5104 ASSERT(th_trace->th_refcnt >= 0 && 5105 th_trace->th_refcnt < TR_BUF_MAX - 1); 5106 5107 th_trace->th_refcnt++; 5108 th_trace_rrecord(th_trace); 5109 return (B_TRUE); 5110 } 5111 5112 /* 5113 * For the purpose of tracing a reference release, we assume that global 5114 * tracing is always on and that the same thread initiated the reference hold 5115 * is releasing. 5116 */ 5117 void 5118 th_trace_unref(const void *obj) 5119 { 5120 int retv; 5121 mod_hash_t *mh; 5122 th_trace_t *th_trace; 5123 mod_hash_val_t val; 5124 5125 mh = th_trace_gethash(NULL); 5126 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5127 ASSERT(retv == 0); 5128 th_trace = (th_trace_t *)val; 5129 5130 ASSERT(th_trace->th_refcnt > 0); 5131 th_trace->th_refcnt--; 5132 th_trace_rrecord(th_trace); 5133 } 5134 5135 /* 5136 * If tracing has been disabled, then we assume that the reference counts are 5137 * now useless, and we clear them out before destroying the entries. 5138 */ 5139 void 5140 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5141 { 5142 th_hash_t *thh; 5143 mod_hash_t *mh; 5144 mod_hash_val_t val; 5145 th_trace_t *th_trace; 5146 int retv; 5147 5148 rw_enter(&ip_thread_rwlock, RW_READER); 5149 for (thh = list_head(&ip_thread_list); thh != NULL; 5150 thh = list_next(&ip_thread_list, thh)) { 5151 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5152 &val) == 0) { 5153 th_trace = (th_trace_t *)val; 5154 if (trace_disable) 5155 th_trace->th_refcnt = 0; 5156 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5157 ASSERT(retv == 0); 5158 } 5159 } 5160 rw_exit(&ip_thread_rwlock); 5161 } 5162 5163 void 5164 ipif_trace_ref(ipif_t *ipif) 5165 { 5166 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5167 5168 if (ipif->ipif_trace_disable) 5169 return; 5170 5171 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5172 ipif->ipif_trace_disable = B_TRUE; 5173 ipif_trace_cleanup(ipif); 5174 } 5175 } 5176 5177 void 5178 ipif_untrace_ref(ipif_t *ipif) 5179 { 5180 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5181 5182 if (!ipif->ipif_trace_disable) 5183 th_trace_unref(ipif); 5184 } 5185 5186 void 5187 ill_trace_ref(ill_t *ill) 5188 { 5189 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5190 5191 if (ill->ill_trace_disable) 5192 return; 5193 5194 if (!th_trace_ref(ill, ill->ill_ipst)) { 5195 ill->ill_trace_disable = B_TRUE; 5196 ill_trace_cleanup(ill); 5197 } 5198 } 5199 5200 void 5201 ill_untrace_ref(ill_t *ill) 5202 { 5203 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5204 5205 if (!ill->ill_trace_disable) 5206 th_trace_unref(ill); 5207 } 5208 5209 /* 5210 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5211 * failure, ipif_trace_disable is set. 5212 */ 5213 static void 5214 ipif_trace_cleanup(const ipif_t *ipif) 5215 { 5216 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5217 } 5218 5219 /* 5220 * Called when ill is unplumbed or when memory alloc fails. Note that on 5221 * failure, ill_trace_disable is set. 5222 */ 5223 static void 5224 ill_trace_cleanup(const ill_t *ill) 5225 { 5226 th_trace_cleanup(ill, ill->ill_trace_disable); 5227 } 5228 #endif /* DEBUG */ 5229 5230 void 5231 ipif_refhold_locked(ipif_t *ipif) 5232 { 5233 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5234 ipif->ipif_refcnt++; 5235 IPIF_TRACE_REF(ipif); 5236 } 5237 5238 void 5239 ipif_refhold(ipif_t *ipif) 5240 { 5241 ill_t *ill; 5242 5243 ill = ipif->ipif_ill; 5244 mutex_enter(&ill->ill_lock); 5245 ipif->ipif_refcnt++; 5246 IPIF_TRACE_REF(ipif); 5247 mutex_exit(&ill->ill_lock); 5248 } 5249 5250 /* 5251 * Must not be called while holding any locks. Otherwise if this is 5252 * the last reference to be released there is a chance of recursive mutex 5253 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5254 * to restart an ioctl. 5255 */ 5256 void 5257 ipif_refrele(ipif_t *ipif) 5258 { 5259 ill_t *ill; 5260 5261 ill = ipif->ipif_ill; 5262 5263 mutex_enter(&ill->ill_lock); 5264 ASSERT(ipif->ipif_refcnt != 0); 5265 ipif->ipif_refcnt--; 5266 IPIF_UNTRACE_REF(ipif); 5267 if (ipif->ipif_refcnt != 0) { 5268 mutex_exit(&ill->ill_lock); 5269 return; 5270 } 5271 5272 /* Drops the ill_lock */ 5273 ipif_ill_refrele_tail(ill); 5274 } 5275 5276 ipif_t * 5277 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5278 { 5279 ipif_t *ipif; 5280 5281 mutex_enter(&ill->ill_lock); 5282 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5283 ipif != NULL; ipif = ipif->ipif_next) { 5284 if (IPIF_IS_CONDEMNED(ipif)) 5285 continue; 5286 ipif_refhold_locked(ipif); 5287 mutex_exit(&ill->ill_lock); 5288 return (ipif); 5289 } 5290 mutex_exit(&ill->ill_lock); 5291 return (NULL); 5292 } 5293 5294 /* 5295 * TODO: make this table extendible at run time 5296 * Return a pointer to the mac type info for 'mac_type' 5297 */ 5298 static ip_m_t * 5299 ip_m_lookup(t_uscalar_t mac_type) 5300 { 5301 ip_m_t *ipm; 5302 5303 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5304 if (ipm->ip_m_mac_type == mac_type) 5305 return (ipm); 5306 return (NULL); 5307 } 5308 5309 /* 5310 * Make a link layer address from the multicast IP address *addr. 5311 * To form the link layer address, invoke the ip_m_v*mapping function 5312 * associated with the link-layer type. 5313 */ 5314 void 5315 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5316 { 5317 ip_m_t *ipm; 5318 5319 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5320 return; 5321 5322 ASSERT(addr != NULL); 5323 5324 ipm = ip_m_lookup(ill->ill_mactype); 5325 if (ipm == NULL || 5326 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5327 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5328 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5329 ill->ill_name, ill->ill_mactype)); 5330 return; 5331 } 5332 if (ill->ill_isv6) 5333 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5334 else 5335 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5336 } 5337 5338 /* 5339 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5340 * Otherwise returns B_TRUE. 5341 * 5342 * The netmask can be verified to be contiguous with 32 shifts and or 5343 * operations. Take the contiguous mask (in host byte order) and compute 5344 * mask | mask << 1 | mask << 2 | ... | mask << 31 5345 * the result will be the same as the 'mask' for contiguous mask. 5346 */ 5347 static boolean_t 5348 ip_contiguous_mask(uint32_t mask) 5349 { 5350 uint32_t m = mask; 5351 int i; 5352 5353 for (i = 1; i < 32; i++) 5354 m |= (mask << i); 5355 5356 return (m == mask); 5357 } 5358 5359 /* 5360 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5361 * ill is passed in to associate it with the correct interface. 5362 * If ire_arg is set, then we return the held IRE in that location. 5363 */ 5364 int 5365 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5366 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5367 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5368 { 5369 ire_t *ire, *nire; 5370 ire_t *gw_ire = NULL; 5371 ipif_t *ipif = NULL; 5372 uint_t type; 5373 int match_flags = MATCH_IRE_TYPE; 5374 tsol_gc_t *gc = NULL; 5375 tsol_gcgrp_t *gcgrp = NULL; 5376 boolean_t gcgrp_xtraref = B_FALSE; 5377 boolean_t cgtp_broadcast; 5378 boolean_t unbound = B_FALSE; 5379 5380 ip1dbg(("ip_rt_add:")); 5381 5382 if (ire_arg != NULL) 5383 *ire_arg = NULL; 5384 5385 /* disallow non-contiguous netmasks */ 5386 if (!ip_contiguous_mask(ntohl(mask))) 5387 return (ENOTSUP); 5388 5389 /* 5390 * If this is the case of RTF_HOST being set, then we set the netmask 5391 * to all ones (regardless if one was supplied). 5392 */ 5393 if (flags & RTF_HOST) 5394 mask = IP_HOST_MASK; 5395 5396 /* 5397 * Prevent routes with a zero gateway from being created (since 5398 * interfaces can currently be plumbed and brought up no assigned 5399 * address). 5400 */ 5401 if (gw_addr == 0) 5402 return (ENETUNREACH); 5403 /* 5404 * Get the ipif, if any, corresponding to the gw_addr 5405 * If -ifp was specified we restrict ourselves to the ill, otherwise 5406 * we match on the gatway and destination to handle unnumbered pt-pt 5407 * interfaces. 5408 */ 5409 if (ill != NULL) 5410 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5411 else 5412 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5413 if (ipif != NULL) { 5414 if (IS_VNI(ipif->ipif_ill)) { 5415 ipif_refrele(ipif); 5416 return (EINVAL); 5417 } 5418 } 5419 5420 /* 5421 * GateD will attempt to create routes with a loopback interface 5422 * address as the gateway and with RTF_GATEWAY set. We allow 5423 * these routes to be added, but create them as interface routes 5424 * since the gateway is an interface address. 5425 */ 5426 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5427 flags &= ~RTF_GATEWAY; 5428 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5429 mask == IP_HOST_MASK) { 5430 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5431 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5432 NULL); 5433 if (ire != NULL) { 5434 ire_refrele(ire); 5435 ipif_refrele(ipif); 5436 return (EEXIST); 5437 } 5438 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5439 "for 0x%x\n", (void *)ipif, 5440 ipif->ipif_ire_type, 5441 ntohl(ipif->ipif_lcl_addr))); 5442 ire = ire_create( 5443 (uchar_t *)&dst_addr, /* dest address */ 5444 (uchar_t *)&mask, /* mask */ 5445 NULL, /* no gateway */ 5446 ipif->ipif_ire_type, /* LOOPBACK */ 5447 ipif->ipif_ill, 5448 zoneid, 5449 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5450 NULL, 5451 ipst); 5452 5453 if (ire == NULL) { 5454 ipif_refrele(ipif); 5455 return (ENOMEM); 5456 } 5457 /* src address assigned by the caller? */ 5458 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5459 ire->ire_setsrc_addr = src_addr; 5460 5461 nire = ire_add(ire); 5462 if (nire == NULL) { 5463 /* 5464 * In the result of failure, ire_add() will have 5465 * already deleted the ire in question, so there 5466 * is no need to do that here. 5467 */ 5468 ipif_refrele(ipif); 5469 return (ENOMEM); 5470 } 5471 /* 5472 * Check if it was a duplicate entry. This handles 5473 * the case of two racing route adds for the same route 5474 */ 5475 if (nire != ire) { 5476 ASSERT(nire->ire_identical_ref > 1); 5477 ire_delete(nire); 5478 ire_refrele(nire); 5479 ipif_refrele(ipif); 5480 return (EEXIST); 5481 } 5482 ire = nire; 5483 goto save_ire; 5484 } 5485 } 5486 5487 /* 5488 * The routes for multicast with CGTP are quite special in that 5489 * the gateway is the local interface address, yet RTF_GATEWAY 5490 * is set. We turn off RTF_GATEWAY to provide compatibility with 5491 * this undocumented and unusual use of multicast routes. 5492 */ 5493 if ((flags & RTF_MULTIRT) && ipif != NULL) 5494 flags &= ~RTF_GATEWAY; 5495 5496 /* 5497 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5498 * and the gateway address provided is one of the system's interface 5499 * addresses. By using the routing socket interface and supplying an 5500 * RTA_IFP sockaddr with an interface index, an alternate method of 5501 * specifying an interface route to be created is available which uses 5502 * the interface index that specifies the outgoing interface rather than 5503 * the address of an outgoing interface (which may not be able to 5504 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5505 * flag, routes can be specified which not only specify the next-hop to 5506 * be used when routing to a certain prefix, but also which outgoing 5507 * interface should be used. 5508 * 5509 * Previously, interfaces would have unique addresses assigned to them 5510 * and so the address assigned to a particular interface could be used 5511 * to identify a particular interface. One exception to this was the 5512 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5513 * 5514 * With the advent of IPv6 and its link-local addresses, this 5515 * restriction was relaxed and interfaces could share addresses between 5516 * themselves. In fact, typically all of the link-local interfaces on 5517 * an IPv6 node or router will have the same link-local address. In 5518 * order to differentiate between these interfaces, the use of an 5519 * interface index is necessary and this index can be carried inside a 5520 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5521 * of using the interface index, however, is that all of the ipif's that 5522 * are part of an ill have the same index and so the RTA_IFP sockaddr 5523 * cannot be used to differentiate between ipif's (or logical 5524 * interfaces) that belong to the same ill (physical interface). 5525 * 5526 * For example, in the following case involving IPv4 interfaces and 5527 * logical interfaces 5528 * 5529 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5530 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5531 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5532 * 5533 * the ipif's corresponding to each of these interface routes can be 5534 * uniquely identified by the "gateway" (actually interface address). 5535 * 5536 * In this case involving multiple IPv6 default routes to a particular 5537 * link-local gateway, the use of RTA_IFP is necessary to specify which 5538 * default route is of interest: 5539 * 5540 * default fe80::123:4567:89ab:cdef U if0 5541 * default fe80::123:4567:89ab:cdef U if1 5542 */ 5543 5544 /* RTF_GATEWAY not set */ 5545 if (!(flags & RTF_GATEWAY)) { 5546 if (sp != NULL) { 5547 ip2dbg(("ip_rt_add: gateway security attributes " 5548 "cannot be set with interface route\n")); 5549 if (ipif != NULL) 5550 ipif_refrele(ipif); 5551 return (EINVAL); 5552 } 5553 5554 /* 5555 * Whether or not ill (RTA_IFP) is set, we require that 5556 * the gateway is one of our local addresses. 5557 */ 5558 if (ipif == NULL) 5559 return (ENETUNREACH); 5560 5561 /* 5562 * We use MATCH_IRE_ILL here. If the caller specified an 5563 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5564 * we use the ill derived from the gateway address. 5565 * We can always match the gateway address since we record it 5566 * in ire_gateway_addr. 5567 * We don't allow RTA_IFP to specify a different ill than the 5568 * one matching the ipif to make sure we can delete the route. 5569 */ 5570 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5571 if (ill == NULL) { 5572 ill = ipif->ipif_ill; 5573 } else if (ill != ipif->ipif_ill) { 5574 ipif_refrele(ipif); 5575 return (EINVAL); 5576 } 5577 5578 /* 5579 * We check for an existing entry at this point. 5580 * 5581 * Since a netmask isn't passed in via the ioctl interface 5582 * (SIOCADDRT), we don't check for a matching netmask in that 5583 * case. 5584 */ 5585 if (!ioctl_msg) 5586 match_flags |= MATCH_IRE_MASK; 5587 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5588 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5589 NULL); 5590 if (ire != NULL) { 5591 ire_refrele(ire); 5592 ipif_refrele(ipif); 5593 return (EEXIST); 5594 } 5595 5596 /* 5597 * Some software (for example, GateD and Sun Cluster) attempts 5598 * to create (what amount to) IRE_PREFIX routes with the 5599 * loopback address as the gateway. This is primarily done to 5600 * set up prefixes with the RTF_REJECT flag set (for example, 5601 * when generating aggregate routes.) 5602 * 5603 * If the IRE type (as defined by ill->ill_net_type) would be 5604 * IRE_LOOPBACK, then we map the request into a 5605 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5606 * these interface routes, by definition, can only be that. 5607 * 5608 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5609 * routine, but rather using ire_create() directly. 5610 * 5611 */ 5612 type = ill->ill_net_type; 5613 if (type == IRE_LOOPBACK) { 5614 type = IRE_IF_NORESOLVER; 5615 flags |= RTF_BLACKHOLE; 5616 } 5617 5618 /* 5619 * Create a copy of the IRE_IF_NORESOLVER or 5620 * IRE_IF_RESOLVER with the modified address, netmask, and 5621 * gateway. 5622 */ 5623 ire = ire_create( 5624 (uchar_t *)&dst_addr, 5625 (uint8_t *)&mask, 5626 (uint8_t *)&gw_addr, 5627 type, 5628 ill, 5629 zoneid, 5630 flags, 5631 NULL, 5632 ipst); 5633 if (ire == NULL) { 5634 ipif_refrele(ipif); 5635 return (ENOMEM); 5636 } 5637 5638 /* src address assigned by the caller? */ 5639 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5640 ire->ire_setsrc_addr = src_addr; 5641 5642 nire = ire_add(ire); 5643 if (nire == NULL) { 5644 /* 5645 * In the result of failure, ire_add() will have 5646 * already deleted the ire in question, so there 5647 * is no need to do that here. 5648 */ 5649 ipif_refrele(ipif); 5650 return (ENOMEM); 5651 } 5652 /* 5653 * Check if it was a duplicate entry. This handles 5654 * the case of two racing route adds for the same route 5655 */ 5656 if (nire != ire) { 5657 ire_delete(nire); 5658 ire_refrele(nire); 5659 ipif_refrele(ipif); 5660 return (EEXIST); 5661 } 5662 ire = nire; 5663 goto save_ire; 5664 } 5665 5666 /* 5667 * Get an interface IRE for the specified gateway. 5668 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5669 * gateway, it is currently unreachable and we fail the request 5670 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5671 * is an IRE_LOCAL or IRE_LOOPBACK. 5672 * If RTA_IFP was specified we look on that particular ill. 5673 */ 5674 if (ill != NULL) 5675 match_flags |= MATCH_IRE_ILL; 5676 5677 /* Check whether the gateway is reachable. */ 5678 again: 5679 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5680 if (flags & RTF_INDIRECT) 5681 type |= IRE_OFFLINK; 5682 5683 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5684 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5685 if (gw_ire == NULL) { 5686 /* 5687 * With IPMP, we allow host routes to influence in.mpathd's 5688 * target selection. However, if the test addresses are on 5689 * their own network, the above lookup will fail since the 5690 * underlying IRE_INTERFACEs are marked hidden. So allow 5691 * hidden test IREs to be found and try again. 5692 */ 5693 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5694 match_flags |= MATCH_IRE_TESTHIDDEN; 5695 goto again; 5696 } 5697 if (ipif != NULL) 5698 ipif_refrele(ipif); 5699 return (ENETUNREACH); 5700 } 5701 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5702 ire_refrele(gw_ire); 5703 if (ipif != NULL) 5704 ipif_refrele(ipif); 5705 return (ENETUNREACH); 5706 } 5707 5708 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5709 unbound = B_TRUE; 5710 if (ipst->ips_ip_strict_src_multihoming > 0) 5711 ill = gw_ire->ire_ill; 5712 } 5713 5714 /* 5715 * We create one of three types of IREs as a result of this request 5716 * based on the netmask. A netmask of all ones (which is automatically 5717 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5718 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5719 * created. Otherwise, an IRE_PREFIX route is created for the 5720 * destination prefix. 5721 */ 5722 if (mask == IP_HOST_MASK) 5723 type = IRE_HOST; 5724 else if (mask == 0) 5725 type = IRE_DEFAULT; 5726 else 5727 type = IRE_PREFIX; 5728 5729 /* check for a duplicate entry */ 5730 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5731 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5732 0, ipst, NULL); 5733 if (ire != NULL) { 5734 if (ipif != NULL) 5735 ipif_refrele(ipif); 5736 ire_refrele(gw_ire); 5737 ire_refrele(ire); 5738 return (EEXIST); 5739 } 5740 5741 /* Security attribute exists */ 5742 if (sp != NULL) { 5743 tsol_gcgrp_addr_t ga; 5744 5745 /* find or create the gateway credentials group */ 5746 ga.ga_af = AF_INET; 5747 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5748 5749 /* we hold reference to it upon success */ 5750 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5751 if (gcgrp == NULL) { 5752 if (ipif != NULL) 5753 ipif_refrele(ipif); 5754 ire_refrele(gw_ire); 5755 return (ENOMEM); 5756 } 5757 5758 /* 5759 * Create and add the security attribute to the group; a 5760 * reference to the group is made upon allocating a new 5761 * entry successfully. If it finds an already-existing 5762 * entry for the security attribute in the group, it simply 5763 * returns it and no new reference is made to the group. 5764 */ 5765 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5766 if (gc == NULL) { 5767 if (ipif != NULL) 5768 ipif_refrele(ipif); 5769 /* release reference held by gcgrp_lookup */ 5770 GCGRP_REFRELE(gcgrp); 5771 ire_refrele(gw_ire); 5772 return (ENOMEM); 5773 } 5774 } 5775 5776 /* Create the IRE. */ 5777 ire = ire_create( 5778 (uchar_t *)&dst_addr, /* dest address */ 5779 (uchar_t *)&mask, /* mask */ 5780 (uchar_t *)&gw_addr, /* gateway address */ 5781 (ushort_t)type, /* IRE type */ 5782 ill, 5783 zoneid, 5784 flags, 5785 gc, /* security attribute */ 5786 ipst); 5787 5788 /* 5789 * The ire holds a reference to the 'gc' and the 'gc' holds a 5790 * reference to the 'gcgrp'. We can now release the extra reference 5791 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5792 */ 5793 if (gcgrp_xtraref) 5794 GCGRP_REFRELE(gcgrp); 5795 if (ire == NULL) { 5796 if (gc != NULL) 5797 GC_REFRELE(gc); 5798 if (ipif != NULL) 5799 ipif_refrele(ipif); 5800 ire_refrele(gw_ire); 5801 return (ENOMEM); 5802 } 5803 5804 /* Before we add, check if an extra CGTP broadcast is needed */ 5805 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5806 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5807 5808 /* src address assigned by the caller? */ 5809 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5810 ire->ire_setsrc_addr = src_addr; 5811 5812 ire->ire_unbound = unbound; 5813 5814 /* 5815 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5816 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5817 */ 5818 5819 /* Add the new IRE. */ 5820 nire = ire_add(ire); 5821 if (nire == NULL) { 5822 /* 5823 * In the result of failure, ire_add() will have 5824 * already deleted the ire in question, so there 5825 * is no need to do that here. 5826 */ 5827 if (ipif != NULL) 5828 ipif_refrele(ipif); 5829 ire_refrele(gw_ire); 5830 return (ENOMEM); 5831 } 5832 /* 5833 * Check if it was a duplicate entry. This handles 5834 * the case of two racing route adds for the same route 5835 */ 5836 if (nire != ire) { 5837 ire_delete(nire); 5838 ire_refrele(nire); 5839 if (ipif != NULL) 5840 ipif_refrele(ipif); 5841 ire_refrele(gw_ire); 5842 return (EEXIST); 5843 } 5844 ire = nire; 5845 5846 if (flags & RTF_MULTIRT) { 5847 /* 5848 * Invoke the CGTP (multirouting) filtering module 5849 * to add the dst address in the filtering database. 5850 * Replicated inbound packets coming from that address 5851 * will be filtered to discard the duplicates. 5852 * It is not necessary to call the CGTP filter hook 5853 * when the dst address is a broadcast or multicast, 5854 * because an IP source address cannot be a broadcast 5855 * or a multicast. 5856 */ 5857 if (cgtp_broadcast) { 5858 ip_cgtp_bcast_add(ire, ipst); 5859 goto save_ire; 5860 } 5861 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5862 !CLASSD(ire->ire_addr)) { 5863 int res; 5864 ipif_t *src_ipif; 5865 5866 /* Find the source address corresponding to gw_ire */ 5867 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5868 NULL, zoneid, ipst); 5869 if (src_ipif != NULL) { 5870 res = ipst->ips_ip_cgtp_filter_ops-> 5871 cfo_add_dest_v4( 5872 ipst->ips_netstack->netstack_stackid, 5873 ire->ire_addr, 5874 ire->ire_gateway_addr, 5875 ire->ire_setsrc_addr, 5876 src_ipif->ipif_lcl_addr); 5877 ipif_refrele(src_ipif); 5878 } else { 5879 res = EADDRNOTAVAIL; 5880 } 5881 if (res != 0) { 5882 if (ipif != NULL) 5883 ipif_refrele(ipif); 5884 ire_refrele(gw_ire); 5885 ire_delete(ire); 5886 ire_refrele(ire); /* Held in ire_add */ 5887 return (res); 5888 } 5889 } 5890 } 5891 5892 save_ire: 5893 if (gw_ire != NULL) { 5894 ire_refrele(gw_ire); 5895 gw_ire = NULL; 5896 } 5897 if (ill != NULL) { 5898 /* 5899 * Save enough information so that we can recreate the IRE if 5900 * the interface goes down and then up. The metrics associated 5901 * with the route will be saved as well when rts_setmetrics() is 5902 * called after the IRE has been created. In the case where 5903 * memory cannot be allocated, none of this information will be 5904 * saved. 5905 */ 5906 ill_save_ire(ill, ire); 5907 } 5908 if (ioctl_msg) 5909 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5910 if (ire_arg != NULL) { 5911 /* 5912 * Store the ire that was successfully added into where ire_arg 5913 * points to so that callers don't have to look it up 5914 * themselves (but they are responsible for ire_refrele()ing 5915 * the ire when they are finished with it). 5916 */ 5917 *ire_arg = ire; 5918 } else { 5919 ire_refrele(ire); /* Held in ire_add */ 5920 } 5921 if (ipif != NULL) 5922 ipif_refrele(ipif); 5923 return (0); 5924 } 5925 5926 /* 5927 * ip_rt_delete is called to delete an IPv4 route. 5928 * ill is passed in to associate it with the correct interface. 5929 */ 5930 /* ARGSUSED4 */ 5931 int 5932 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5933 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5934 ip_stack_t *ipst, zoneid_t zoneid) 5935 { 5936 ire_t *ire = NULL; 5937 ipif_t *ipif; 5938 uint_t type; 5939 uint_t match_flags = MATCH_IRE_TYPE; 5940 int err = 0; 5941 5942 ip1dbg(("ip_rt_delete:")); 5943 /* 5944 * If this is the case of RTF_HOST being set, then we set the netmask 5945 * to all ones. Otherwise, we use the netmask if one was supplied. 5946 */ 5947 if (flags & RTF_HOST) { 5948 mask = IP_HOST_MASK; 5949 match_flags |= MATCH_IRE_MASK; 5950 } else if (rtm_addrs & RTA_NETMASK) { 5951 match_flags |= MATCH_IRE_MASK; 5952 } 5953 5954 /* 5955 * Note that RTF_GATEWAY is never set on a delete, therefore 5956 * we check if the gateway address is one of our interfaces first, 5957 * and fall back on RTF_GATEWAY routes. 5958 * 5959 * This makes it possible to delete an original 5960 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 5961 * However, we have RTF_KERNEL set on the ones created by ipif_up 5962 * and those can not be deleted here. 5963 * 5964 * We use MATCH_IRE_ILL if we know the interface. If the caller 5965 * specified an interface (from the RTA_IFP sockaddr) we use it, 5966 * otherwise we use the ill derived from the gateway address. 5967 * We can always match the gateway address since we record it 5968 * in ire_gateway_addr. 5969 * 5970 * For more detail on specifying routes by gateway address and by 5971 * interface index, see the comments in ip_rt_add(). 5972 */ 5973 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5974 if (ipif != NULL) { 5975 ill_t *ill_match; 5976 5977 if (ill != NULL) 5978 ill_match = ill; 5979 else 5980 ill_match = ipif->ipif_ill; 5981 5982 match_flags |= MATCH_IRE_ILL; 5983 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 5984 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 5985 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 5986 match_flags, 0, ipst, NULL); 5987 } 5988 if (ire == NULL) { 5989 match_flags |= MATCH_IRE_GW; 5990 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5991 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 5992 match_flags, 0, ipst, NULL); 5993 } 5994 /* Avoid deleting routes created by kernel from an ipif */ 5995 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 5996 ire_refrele(ire); 5997 ire = NULL; 5998 } 5999 6000 /* Restore in case we didn't find a match */ 6001 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6002 } 6003 6004 if (ire == NULL) { 6005 /* 6006 * At this point, the gateway address is not one of our own 6007 * addresses or a matching interface route was not found. We 6008 * set the IRE type to lookup based on whether 6009 * this is a host route, a default route or just a prefix. 6010 * 6011 * If an ill was passed in, then the lookup is based on an 6012 * interface index so MATCH_IRE_ILL is added to match_flags. 6013 */ 6014 match_flags |= MATCH_IRE_GW; 6015 if (ill != NULL) 6016 match_flags |= MATCH_IRE_ILL; 6017 if (mask == IP_HOST_MASK) 6018 type = IRE_HOST; 6019 else if (mask == 0) 6020 type = IRE_DEFAULT; 6021 else 6022 type = IRE_PREFIX; 6023 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6024 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6025 } 6026 6027 if (ipif != NULL) { 6028 ipif_refrele(ipif); 6029 ipif = NULL; 6030 } 6031 6032 if (ire == NULL) 6033 return (ESRCH); 6034 6035 if (ire->ire_flags & RTF_MULTIRT) { 6036 /* 6037 * Invoke the CGTP (multirouting) filtering module 6038 * to remove the dst address from the filtering database. 6039 * Packets coming from that address will no longer be 6040 * filtered to remove duplicates. 6041 */ 6042 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6043 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6044 ipst->ips_netstack->netstack_stackid, 6045 ire->ire_addr, ire->ire_gateway_addr); 6046 } 6047 ip_cgtp_bcast_delete(ire, ipst); 6048 } 6049 6050 ill = ire->ire_ill; 6051 if (ill != NULL) 6052 ill_remove_saved_ire(ill, ire); 6053 if (ioctl_msg) 6054 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6055 ire_delete(ire); 6056 ire_refrele(ire); 6057 return (err); 6058 } 6059 6060 /* 6061 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6062 */ 6063 /* ARGSUSED */ 6064 int 6065 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6066 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6067 { 6068 ipaddr_t dst_addr; 6069 ipaddr_t gw_addr; 6070 ipaddr_t mask; 6071 int error = 0; 6072 mblk_t *mp1; 6073 struct rtentry *rt; 6074 ipif_t *ipif = NULL; 6075 ip_stack_t *ipst; 6076 6077 ASSERT(q->q_next == NULL); 6078 ipst = CONNQ_TO_IPST(q); 6079 6080 ip1dbg(("ip_siocaddrt:")); 6081 /* Existence of mp1 verified in ip_wput_nondata */ 6082 mp1 = mp->b_cont->b_cont; 6083 rt = (struct rtentry *)mp1->b_rptr; 6084 6085 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6086 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6087 6088 /* 6089 * If the RTF_HOST flag is on, this is a request to assign a gateway 6090 * to a particular host address. In this case, we set the netmask to 6091 * all ones for the particular destination address. Otherwise, 6092 * determine the netmask to be used based on dst_addr and the interfaces 6093 * in use. 6094 */ 6095 if (rt->rt_flags & RTF_HOST) { 6096 mask = IP_HOST_MASK; 6097 } else { 6098 /* 6099 * Note that ip_subnet_mask returns a zero mask in the case of 6100 * default (an all-zeroes address). 6101 */ 6102 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6103 } 6104 6105 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6106 B_TRUE, NULL, ipst, ALL_ZONES); 6107 if (ipif != NULL) 6108 ipif_refrele(ipif); 6109 return (error); 6110 } 6111 6112 /* 6113 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6114 */ 6115 /* ARGSUSED */ 6116 int 6117 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6118 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6119 { 6120 ipaddr_t dst_addr; 6121 ipaddr_t gw_addr; 6122 ipaddr_t mask; 6123 int error; 6124 mblk_t *mp1; 6125 struct rtentry *rt; 6126 ipif_t *ipif = NULL; 6127 ip_stack_t *ipst; 6128 6129 ASSERT(q->q_next == NULL); 6130 ipst = CONNQ_TO_IPST(q); 6131 6132 ip1dbg(("ip_siocdelrt:")); 6133 /* Existence of mp1 verified in ip_wput_nondata */ 6134 mp1 = mp->b_cont->b_cont; 6135 rt = (struct rtentry *)mp1->b_rptr; 6136 6137 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6138 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6139 6140 /* 6141 * If the RTF_HOST flag is on, this is a request to delete a gateway 6142 * to a particular host address. In this case, we set the netmask to 6143 * all ones for the particular destination address. Otherwise, 6144 * determine the netmask to be used based on dst_addr and the interfaces 6145 * in use. 6146 */ 6147 if (rt->rt_flags & RTF_HOST) { 6148 mask = IP_HOST_MASK; 6149 } else { 6150 /* 6151 * Note that ip_subnet_mask returns a zero mask in the case of 6152 * default (an all-zeroes address). 6153 */ 6154 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6155 } 6156 6157 error = ip_rt_delete(dst_addr, mask, gw_addr, 6158 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6159 ipst, ALL_ZONES); 6160 if (ipif != NULL) 6161 ipif_refrele(ipif); 6162 return (error); 6163 } 6164 6165 /* 6166 * Enqueue the mp onto the ipsq, chained by b_next. 6167 * b_prev stores the function to be executed later, and b_queue the queue 6168 * where this mp originated. 6169 */ 6170 void 6171 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6172 ill_t *pending_ill) 6173 { 6174 conn_t *connp; 6175 ipxop_t *ipx = ipsq->ipsq_xop; 6176 6177 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6178 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6179 ASSERT(func != NULL); 6180 6181 mp->b_queue = q; 6182 mp->b_prev = (void *)func; 6183 mp->b_next = NULL; 6184 6185 switch (type) { 6186 case CUR_OP: 6187 if (ipx->ipx_mptail != NULL) { 6188 ASSERT(ipx->ipx_mphead != NULL); 6189 ipx->ipx_mptail->b_next = mp; 6190 } else { 6191 ASSERT(ipx->ipx_mphead == NULL); 6192 ipx->ipx_mphead = mp; 6193 } 6194 ipx->ipx_mptail = mp; 6195 break; 6196 6197 case NEW_OP: 6198 if (ipsq->ipsq_xopq_mptail != NULL) { 6199 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6200 ipsq->ipsq_xopq_mptail->b_next = mp; 6201 } else { 6202 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6203 ipsq->ipsq_xopq_mphead = mp; 6204 } 6205 ipsq->ipsq_xopq_mptail = mp; 6206 ipx->ipx_ipsq_queued = B_TRUE; 6207 break; 6208 6209 case SWITCH_OP: 6210 ASSERT(ipsq->ipsq_swxop != NULL); 6211 /* only one switch operation is currently allowed */ 6212 ASSERT(ipsq->ipsq_switch_mp == NULL); 6213 ipsq->ipsq_switch_mp = mp; 6214 ipx->ipx_ipsq_queued = B_TRUE; 6215 break; 6216 default: 6217 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6218 } 6219 6220 if (CONN_Q(q) && pending_ill != NULL) { 6221 connp = Q_TO_CONN(q); 6222 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6223 connp->conn_oper_pending_ill = pending_ill; 6224 } 6225 } 6226 6227 /* 6228 * Dequeue the next message that requested exclusive access to this IPSQ's 6229 * xop. Specifically: 6230 * 6231 * 1. If we're still processing the current operation on `ipsq', then 6232 * dequeue the next message for the operation (from ipx_mphead), or 6233 * return NULL if there are no queued messages for the operation. 6234 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6235 * 6236 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6237 * not set) see if the ipsq has requested an xop switch. If so, switch 6238 * `ipsq' to a different xop. Xop switches only happen when joining or 6239 * leaving IPMP groups and require a careful dance -- see the comments 6240 * in-line below for details. If we're leaving a group xop or if we're 6241 * joining a group xop and become writer on it, then we proceed to (3). 6242 * Otherwise, we return NULL and exit the xop. 6243 * 6244 * 3. For each IPSQ in the xop, return any switch operation stored on 6245 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6246 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6247 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6248 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6249 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6250 * each phyint in the group, including the IPMP meta-interface phyint. 6251 */ 6252 static mblk_t * 6253 ipsq_dq(ipsq_t *ipsq) 6254 { 6255 ill_t *illv4, *illv6; 6256 mblk_t *mp; 6257 ipsq_t *xopipsq; 6258 ipsq_t *leftipsq = NULL; 6259 ipxop_t *ipx; 6260 phyint_t *phyi = ipsq->ipsq_phyint; 6261 ip_stack_t *ipst = ipsq->ipsq_ipst; 6262 boolean_t emptied = B_FALSE; 6263 6264 /* 6265 * Grab all the locks we need in the defined order (ill_g_lock -> 6266 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6267 */ 6268 rw_enter(&ipst->ips_ill_g_lock, 6269 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6270 mutex_enter(&ipsq->ipsq_lock); 6271 ipx = ipsq->ipsq_xop; 6272 mutex_enter(&ipx->ipx_lock); 6273 6274 /* 6275 * Dequeue the next message associated with the current exclusive 6276 * operation, if any. 6277 */ 6278 if ((mp = ipx->ipx_mphead) != NULL) { 6279 ipx->ipx_mphead = mp->b_next; 6280 if (ipx->ipx_mphead == NULL) 6281 ipx->ipx_mptail = NULL; 6282 mp->b_next = (void *)ipsq; 6283 goto out; 6284 } 6285 6286 if (ipx->ipx_current_ipif != NULL) 6287 goto empty; 6288 6289 if (ipsq->ipsq_swxop != NULL) { 6290 /* 6291 * The exclusive operation that is now being completed has 6292 * requested a switch to a different xop. This happens 6293 * when an interface joins or leaves an IPMP group. Joins 6294 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6295 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6296 * (phyint_free()), or interface plumb for an ill type 6297 * not in the IPMP group (ip_rput_dlpi_writer()). 6298 * 6299 * Xop switches are not allowed on the IPMP meta-interface. 6300 */ 6301 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6302 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6303 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6304 6305 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6306 /* 6307 * We're switching back to our own xop, so we have two 6308 * xop's to drain/exit: our own, and the group xop 6309 * that we are leaving. 6310 * 6311 * First, pull ourselves out of the group ipsq list. 6312 * This is safe since we're writer on ill_g_lock. 6313 */ 6314 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6315 6316 xopipsq = ipx->ipx_ipsq; 6317 while (xopipsq->ipsq_next != ipsq) 6318 xopipsq = xopipsq->ipsq_next; 6319 6320 xopipsq->ipsq_next = ipsq->ipsq_next; 6321 ipsq->ipsq_next = ipsq; 6322 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6323 ipsq->ipsq_swxop = NULL; 6324 6325 /* 6326 * Second, prepare to exit the group xop. The actual 6327 * ipsq_exit() is done at the end of this function 6328 * since we cannot hold any locks across ipsq_exit(). 6329 * Note that although we drop the group's ipx_lock, no 6330 * threads can proceed since we're still ipx_writer. 6331 */ 6332 leftipsq = xopipsq; 6333 mutex_exit(&ipx->ipx_lock); 6334 6335 /* 6336 * Third, set ipx to point to our own xop (which was 6337 * inactive and therefore can be entered). 6338 */ 6339 ipx = ipsq->ipsq_xop; 6340 mutex_enter(&ipx->ipx_lock); 6341 ASSERT(ipx->ipx_writer == NULL); 6342 ASSERT(ipx->ipx_current_ipif == NULL); 6343 } else { 6344 /* 6345 * We're switching from our own xop to a group xop. 6346 * The requestor of the switch must ensure that the 6347 * group xop cannot go away (e.g. by ensuring the 6348 * phyint associated with the xop cannot go away). 6349 * 6350 * If we can become writer on our new xop, then we'll 6351 * do the drain. Otherwise, the current writer of our 6352 * new xop will do the drain when it exits. 6353 * 6354 * First, splice ourselves into the group IPSQ list. 6355 * This is safe since we're writer on ill_g_lock. 6356 */ 6357 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6358 6359 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6360 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6361 xopipsq = xopipsq->ipsq_next; 6362 6363 xopipsq->ipsq_next = ipsq; 6364 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6365 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6366 ipsq->ipsq_swxop = NULL; 6367 6368 /* 6369 * Second, exit our own xop, since it's now unused. 6370 * This is safe since we've got the only reference. 6371 */ 6372 ASSERT(ipx->ipx_writer == curthread); 6373 ipx->ipx_writer = NULL; 6374 VERIFY(--ipx->ipx_reentry_cnt == 0); 6375 ipx->ipx_ipsq_queued = B_FALSE; 6376 mutex_exit(&ipx->ipx_lock); 6377 6378 /* 6379 * Third, set ipx to point to our new xop, and check 6380 * if we can become writer on it. If we cannot, then 6381 * the current writer will drain the IPSQ group when 6382 * it exits. Our ipsq_xop is guaranteed to be stable 6383 * because we're still holding ipsq_lock. 6384 */ 6385 ipx = ipsq->ipsq_xop; 6386 mutex_enter(&ipx->ipx_lock); 6387 if (ipx->ipx_writer != NULL || 6388 ipx->ipx_current_ipif != NULL) { 6389 goto out; 6390 } 6391 } 6392 6393 /* 6394 * Fourth, become writer on our new ipx before we continue 6395 * with the drain. Note that we never dropped ipsq_lock 6396 * above, so no other thread could've raced with us to 6397 * become writer first. Also, we're holding ipx_lock, so 6398 * no other thread can examine the ipx right now. 6399 */ 6400 ASSERT(ipx->ipx_current_ipif == NULL); 6401 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6402 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6403 ipx->ipx_writer = curthread; 6404 ipx->ipx_forced = B_FALSE; 6405 #ifdef DEBUG 6406 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6407 #endif 6408 } 6409 6410 xopipsq = ipsq; 6411 do { 6412 /* 6413 * So that other operations operate on a consistent and 6414 * complete phyint, a switch message on an IPSQ must be 6415 * handled prior to any other operations on that IPSQ. 6416 */ 6417 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6418 xopipsq->ipsq_switch_mp = NULL; 6419 ASSERT(mp->b_next == NULL); 6420 mp->b_next = (void *)xopipsq; 6421 goto out; 6422 } 6423 6424 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6425 xopipsq->ipsq_xopq_mphead = mp->b_next; 6426 if (xopipsq->ipsq_xopq_mphead == NULL) 6427 xopipsq->ipsq_xopq_mptail = NULL; 6428 mp->b_next = (void *)xopipsq; 6429 goto out; 6430 } 6431 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6432 empty: 6433 /* 6434 * There are no messages. Further, we are holding ipx_lock, hence no 6435 * new messages can end up on any IPSQ in the xop. 6436 */ 6437 ipx->ipx_writer = NULL; 6438 ipx->ipx_forced = B_FALSE; 6439 VERIFY(--ipx->ipx_reentry_cnt == 0); 6440 ipx->ipx_ipsq_queued = B_FALSE; 6441 emptied = B_TRUE; 6442 #ifdef DEBUG 6443 ipx->ipx_depth = 0; 6444 #endif 6445 out: 6446 mutex_exit(&ipx->ipx_lock); 6447 mutex_exit(&ipsq->ipsq_lock); 6448 6449 /* 6450 * If we completely emptied the xop, then wake up any threads waiting 6451 * to enter any of the IPSQ's associated with it. 6452 */ 6453 if (emptied) { 6454 xopipsq = ipsq; 6455 do { 6456 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6457 continue; 6458 6459 illv4 = phyi->phyint_illv4; 6460 illv6 = phyi->phyint_illv6; 6461 6462 GRAB_ILL_LOCKS(illv4, illv6); 6463 if (illv4 != NULL) 6464 cv_broadcast(&illv4->ill_cv); 6465 if (illv6 != NULL) 6466 cv_broadcast(&illv6->ill_cv); 6467 RELEASE_ILL_LOCKS(illv4, illv6); 6468 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6469 } 6470 rw_exit(&ipst->ips_ill_g_lock); 6471 6472 /* 6473 * Now that all locks are dropped, exit the IPSQ we left. 6474 */ 6475 if (leftipsq != NULL) 6476 ipsq_exit(leftipsq); 6477 6478 return (mp); 6479 } 6480 6481 /* 6482 * Return completion status of previously initiated DLPI operations on 6483 * ills in the purview of an ipsq. 6484 */ 6485 static boolean_t 6486 ipsq_dlpi_done(ipsq_t *ipsq) 6487 { 6488 ipsq_t *ipsq_start; 6489 phyint_t *phyi; 6490 ill_t *ill; 6491 6492 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6493 ipsq_start = ipsq; 6494 6495 do { 6496 /* 6497 * The only current users of this function are ipsq_try_enter 6498 * and ipsq_enter which have made sure that ipsq_writer is 6499 * NULL before we reach here. ill_dlpi_pending is modified 6500 * only by an ipsq writer 6501 */ 6502 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6503 phyi = ipsq->ipsq_phyint; 6504 /* 6505 * phyi could be NULL if a phyint that is part of an 6506 * IPMP group is being unplumbed. A more detailed 6507 * comment is in ipmp_grp_update_kstats() 6508 */ 6509 if (phyi != NULL) { 6510 ill = phyi->phyint_illv4; 6511 if (ill != NULL && 6512 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6513 ill->ill_arl_dlpi_pending)) 6514 return (B_FALSE); 6515 6516 ill = phyi->phyint_illv6; 6517 if (ill != NULL && 6518 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6519 return (B_FALSE); 6520 } 6521 6522 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6523 6524 return (B_TRUE); 6525 } 6526 6527 /* 6528 * Enter the ipsq corresponding to ill, by waiting synchronously till 6529 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6530 * will have to drain completely before ipsq_enter returns success. 6531 * ipx_current_ipif will be set if some exclusive op is in progress, 6532 * and the ipsq_exit logic will start the next enqueued op after 6533 * completion of the current op. If 'force' is used, we don't wait 6534 * for the enqueued ops. This is needed when a conn_close wants to 6535 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6536 * of an ill can also use this option. But we dont' use it currently. 6537 */ 6538 #define ENTER_SQ_WAIT_TICKS 100 6539 boolean_t 6540 ipsq_enter(ill_t *ill, boolean_t force, int type) 6541 { 6542 ipsq_t *ipsq; 6543 ipxop_t *ipx; 6544 boolean_t waited_enough = B_FALSE; 6545 ip_stack_t *ipst = ill->ill_ipst; 6546 6547 /* 6548 * Note that the relationship between ill and ipsq is fixed as long as 6549 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6550 * relationship between the IPSQ and xop cannot change. However, 6551 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6552 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6553 * waking up all ills in the xop when it becomes available. 6554 */ 6555 for (;;) { 6556 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6557 mutex_enter(&ill->ill_lock); 6558 if (ill->ill_state_flags & ILL_CONDEMNED) { 6559 mutex_exit(&ill->ill_lock); 6560 rw_exit(&ipst->ips_ill_g_lock); 6561 return (B_FALSE); 6562 } 6563 6564 ipsq = ill->ill_phyint->phyint_ipsq; 6565 mutex_enter(&ipsq->ipsq_lock); 6566 ipx = ipsq->ipsq_xop; 6567 mutex_enter(&ipx->ipx_lock); 6568 6569 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6570 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6571 waited_enough)) 6572 break; 6573 6574 rw_exit(&ipst->ips_ill_g_lock); 6575 6576 if (!force || ipx->ipx_writer != NULL) { 6577 mutex_exit(&ipx->ipx_lock); 6578 mutex_exit(&ipsq->ipsq_lock); 6579 cv_wait(&ill->ill_cv, &ill->ill_lock); 6580 } else { 6581 mutex_exit(&ipx->ipx_lock); 6582 mutex_exit(&ipsq->ipsq_lock); 6583 (void) cv_reltimedwait(&ill->ill_cv, 6584 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6585 waited_enough = B_TRUE; 6586 } 6587 mutex_exit(&ill->ill_lock); 6588 } 6589 6590 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6591 ASSERT(ipx->ipx_reentry_cnt == 0); 6592 ipx->ipx_writer = curthread; 6593 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6594 ipx->ipx_reentry_cnt++; 6595 #ifdef DEBUG 6596 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6597 #endif 6598 mutex_exit(&ipx->ipx_lock); 6599 mutex_exit(&ipsq->ipsq_lock); 6600 mutex_exit(&ill->ill_lock); 6601 rw_exit(&ipst->ips_ill_g_lock); 6602 6603 return (B_TRUE); 6604 } 6605 6606 /* 6607 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6608 * across the call to the core interface ipsq_try_enter() and hence calls this 6609 * function directly. This is explained more fully in ipif_set_values(). 6610 * In order to support the above constraint, ipsq_try_enter is implemented as 6611 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6612 */ 6613 static ipsq_t * 6614 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6615 int type, boolean_t reentry_ok) 6616 { 6617 ipsq_t *ipsq; 6618 ipxop_t *ipx; 6619 ip_stack_t *ipst = ill->ill_ipst; 6620 6621 /* 6622 * lock ordering: 6623 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6624 * 6625 * ipx of an ipsq can't change when ipsq_lock is held. 6626 */ 6627 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6628 GRAB_CONN_LOCK(q); 6629 mutex_enter(&ill->ill_lock); 6630 ipsq = ill->ill_phyint->phyint_ipsq; 6631 mutex_enter(&ipsq->ipsq_lock); 6632 ipx = ipsq->ipsq_xop; 6633 mutex_enter(&ipx->ipx_lock); 6634 6635 /* 6636 * 1. Enter the ipsq if we are already writer and reentry is ok. 6637 * (Note: If the caller does not specify reentry_ok then neither 6638 * 'func' nor any of its callees must ever attempt to enter the ipsq 6639 * again. Otherwise it can lead to an infinite loop 6640 * 2. Enter the ipsq if there is no current writer and this attempted 6641 * entry is part of the current operation 6642 * 3. Enter the ipsq if there is no current writer and this is a new 6643 * operation and the operation queue is empty and there is no 6644 * operation currently in progress and if all previously initiated 6645 * DLPI operations have completed. 6646 */ 6647 if ((ipx->ipx_writer == curthread && reentry_ok) || 6648 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6649 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6650 ipsq_dlpi_done(ipsq))))) { 6651 /* Success. */ 6652 ipx->ipx_reentry_cnt++; 6653 ipx->ipx_writer = curthread; 6654 ipx->ipx_forced = B_FALSE; 6655 mutex_exit(&ipx->ipx_lock); 6656 mutex_exit(&ipsq->ipsq_lock); 6657 mutex_exit(&ill->ill_lock); 6658 RELEASE_CONN_LOCK(q); 6659 #ifdef DEBUG 6660 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6661 #endif 6662 return (ipsq); 6663 } 6664 6665 if (func != NULL) 6666 ipsq_enq(ipsq, q, mp, func, type, ill); 6667 6668 mutex_exit(&ipx->ipx_lock); 6669 mutex_exit(&ipsq->ipsq_lock); 6670 mutex_exit(&ill->ill_lock); 6671 RELEASE_CONN_LOCK(q); 6672 return (NULL); 6673 } 6674 6675 /* 6676 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6677 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6678 * There is one ipsq per phyint. The ipsq 6679 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6680 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6681 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6682 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6683 * up the interface) and are enqueued in ipx_mphead. 6684 * 6685 * If a thread does not want to reenter the ipsq when it is already writer, 6686 * it must make sure that the specified reentry point to be called later 6687 * when the ipsq is empty, nor any code path starting from the specified reentry 6688 * point must never ever try to enter the ipsq again. Otherwise it can lead 6689 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6690 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6691 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6692 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6693 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6694 * ioctl if the current ioctl has completed. If the current ioctl is still 6695 * in progress it simply returns. The current ioctl could be waiting for 6696 * a response from another module (the driver or could be waiting for 6697 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6698 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6699 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6700 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6701 * all associated DLPI operations have completed. 6702 */ 6703 6704 /* 6705 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6706 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6707 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6708 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6709 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6710 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6711 */ 6712 ipsq_t * 6713 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6714 ipsq_func_t func, int type, boolean_t reentry_ok) 6715 { 6716 ip_stack_t *ipst; 6717 ipsq_t *ipsq; 6718 6719 /* Only 1 of ipif or ill can be specified */ 6720 ASSERT((ipif != NULL) ^ (ill != NULL)); 6721 6722 if (ipif != NULL) 6723 ill = ipif->ipif_ill; 6724 ipst = ill->ill_ipst; 6725 6726 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6727 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6728 rw_exit(&ipst->ips_ill_g_lock); 6729 6730 return (ipsq); 6731 } 6732 6733 /* 6734 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6735 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6736 * cannot be entered, the mp is queued for completion. 6737 */ 6738 void 6739 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6740 boolean_t reentry_ok) 6741 { 6742 ipsq_t *ipsq; 6743 6744 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6745 6746 /* 6747 * Drop the caller's refhold on the ill. This is safe since we either 6748 * entered the IPSQ (and thus are exclusive), or failed to enter the 6749 * IPSQ, in which case we return without accessing ill anymore. This 6750 * is needed because func needs to see the correct refcount. 6751 * e.g. removeif can work only then. 6752 */ 6753 ill_refrele(ill); 6754 if (ipsq != NULL) { 6755 (*func)(ipsq, q, mp, NULL); 6756 ipsq_exit(ipsq); 6757 } 6758 } 6759 6760 /* 6761 * Exit the specified IPSQ. If this is the final exit on it then drain it 6762 * prior to exiting. Caller must be writer on the specified IPSQ. 6763 */ 6764 void 6765 ipsq_exit(ipsq_t *ipsq) 6766 { 6767 mblk_t *mp; 6768 ipsq_t *mp_ipsq; 6769 queue_t *q; 6770 phyint_t *phyi; 6771 ipsq_func_t func; 6772 6773 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6774 6775 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6776 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6777 ipsq->ipsq_xop->ipx_reentry_cnt--; 6778 return; 6779 } 6780 6781 for (;;) { 6782 phyi = ipsq->ipsq_phyint; 6783 mp = ipsq_dq(ipsq); 6784 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6785 6786 /* 6787 * If we've changed to a new IPSQ, and the phyint associated 6788 * with the old one has gone away, free the old IPSQ. Note 6789 * that this cannot happen while the IPSQ is in a group. 6790 */ 6791 if (mp_ipsq != ipsq && phyi == NULL) { 6792 ASSERT(ipsq->ipsq_next == ipsq); 6793 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6794 ipsq_delete(ipsq); 6795 } 6796 6797 if (mp == NULL) 6798 break; 6799 6800 q = mp->b_queue; 6801 func = (ipsq_func_t)mp->b_prev; 6802 ipsq = mp_ipsq; 6803 mp->b_next = mp->b_prev = NULL; 6804 mp->b_queue = NULL; 6805 6806 /* 6807 * If 'q' is an conn queue, it is valid, since we did a 6808 * a refhold on the conn at the start of the ioctl. 6809 * If 'q' is an ill queue, it is valid, since close of an 6810 * ill will clean up its IPSQ. 6811 */ 6812 (*func)(ipsq, q, mp, NULL); 6813 } 6814 } 6815 6816 /* 6817 * Used to start any igmp or mld timers that could not be started 6818 * while holding ill_mcast_lock. The timers can't be started while holding 6819 * the lock, since mld/igmp_start_timers may need to call untimeout() 6820 * which can't be done while holding the lock which the timeout handler 6821 * acquires. Otherwise 6822 * there could be a deadlock since the timeout handlers 6823 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6824 * ill_mcast_lock. 6825 */ 6826 void 6827 ill_mcast_timer_start(ip_stack_t *ipst) 6828 { 6829 int next; 6830 6831 mutex_enter(&ipst->ips_igmp_timer_lock); 6832 next = ipst->ips_igmp_deferred_next; 6833 ipst->ips_igmp_deferred_next = INFINITY; 6834 mutex_exit(&ipst->ips_igmp_timer_lock); 6835 6836 if (next != INFINITY) 6837 igmp_start_timers(next, ipst); 6838 6839 mutex_enter(&ipst->ips_mld_timer_lock); 6840 next = ipst->ips_mld_deferred_next; 6841 ipst->ips_mld_deferred_next = INFINITY; 6842 mutex_exit(&ipst->ips_mld_timer_lock); 6843 6844 if (next != INFINITY) 6845 mld_start_timers(next, ipst); 6846 } 6847 6848 /* 6849 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6850 * and `ioccmd'. 6851 */ 6852 void 6853 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6854 { 6855 ill_t *ill = ipif->ipif_ill; 6856 ipxop_t *ipx = ipsq->ipsq_xop; 6857 6858 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6859 ASSERT(ipx->ipx_current_ipif == NULL); 6860 ASSERT(ipx->ipx_current_ioctl == 0); 6861 6862 ipx->ipx_current_done = B_FALSE; 6863 ipx->ipx_current_ioctl = ioccmd; 6864 mutex_enter(&ipx->ipx_lock); 6865 ipx->ipx_current_ipif = ipif; 6866 mutex_exit(&ipx->ipx_lock); 6867 6868 /* 6869 * Set IPIF_CHANGING on one or more ipifs associated with the 6870 * current exclusive operation. IPIF_CHANGING prevents any new 6871 * references to the ipif (so that the references will eventually 6872 * drop to zero) and also prevents any "get" operations (e.g., 6873 * SIOCGLIFFLAGS) from being able to access the ipif until the 6874 * operation has completed and the ipif is again in a stable state. 6875 * 6876 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6877 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6878 * on the ill are marked with IPIF_CHANGING since it's unclear which 6879 * ipifs will be affected. 6880 * 6881 * Note that SIOCLIFREMOVEIF is a special case as it sets 6882 * IPIF_CONDEMNED internally after identifying the right ipif to 6883 * operate on. 6884 */ 6885 switch (ioccmd) { 6886 case SIOCLIFREMOVEIF: 6887 break; 6888 case 0: 6889 mutex_enter(&ill->ill_lock); 6890 ipif = ipif->ipif_ill->ill_ipif; 6891 for (; ipif != NULL; ipif = ipif->ipif_next) 6892 ipif->ipif_state_flags |= IPIF_CHANGING; 6893 mutex_exit(&ill->ill_lock); 6894 break; 6895 default: 6896 mutex_enter(&ill->ill_lock); 6897 ipif->ipif_state_flags |= IPIF_CHANGING; 6898 mutex_exit(&ill->ill_lock); 6899 } 6900 } 6901 6902 /* 6903 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6904 * the next exclusive operation to begin once we ipsq_exit(). However, if 6905 * pending DLPI operations remain, then we will wait for the queue to drain 6906 * before allowing the next exclusive operation to begin. This ensures that 6907 * DLPI operations from one exclusive operation are never improperly processed 6908 * as part of a subsequent exclusive operation. 6909 */ 6910 void 6911 ipsq_current_finish(ipsq_t *ipsq) 6912 { 6913 ipxop_t *ipx = ipsq->ipsq_xop; 6914 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6915 ipif_t *ipif = ipx->ipx_current_ipif; 6916 6917 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6918 6919 /* 6920 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6921 * (but in that case, IPIF_CHANGING will already be clear and no 6922 * pending DLPI messages can remain). 6923 */ 6924 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6925 ill_t *ill = ipif->ipif_ill; 6926 6927 mutex_enter(&ill->ill_lock); 6928 dlpi_pending = ill->ill_dlpi_pending; 6929 if (ipx->ipx_current_ioctl == 0) { 6930 ipif = ill->ill_ipif; 6931 for (; ipif != NULL; ipif = ipif->ipif_next) 6932 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6933 } else { 6934 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6935 } 6936 mutex_exit(&ill->ill_lock); 6937 } 6938 6939 ASSERT(!ipx->ipx_current_done); 6940 ipx->ipx_current_done = B_TRUE; 6941 ipx->ipx_current_ioctl = 0; 6942 if (dlpi_pending == DL_PRIM_INVAL) { 6943 mutex_enter(&ipx->ipx_lock); 6944 ipx->ipx_current_ipif = NULL; 6945 mutex_exit(&ipx->ipx_lock); 6946 } 6947 } 6948 6949 /* 6950 * The ill is closing. Flush all messages on the ipsq that originated 6951 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6952 * for this ill since ipsq_enter could not have entered until then. 6953 * New messages can't be queued since the CONDEMNED flag is set. 6954 */ 6955 static void 6956 ipsq_flush(ill_t *ill) 6957 { 6958 queue_t *q; 6959 mblk_t *prev; 6960 mblk_t *mp; 6961 mblk_t *mp_next; 6962 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 6963 6964 ASSERT(IAM_WRITER_ILL(ill)); 6965 6966 /* 6967 * Flush any messages sent up by the driver. 6968 */ 6969 mutex_enter(&ipx->ipx_lock); 6970 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 6971 mp_next = mp->b_next; 6972 q = mp->b_queue; 6973 if (q == ill->ill_rq || q == ill->ill_wq) { 6974 /* dequeue mp */ 6975 if (prev == NULL) 6976 ipx->ipx_mphead = mp->b_next; 6977 else 6978 prev->b_next = mp->b_next; 6979 if (ipx->ipx_mptail == mp) { 6980 ASSERT(mp_next == NULL); 6981 ipx->ipx_mptail = prev; 6982 } 6983 inet_freemsg(mp); 6984 } else { 6985 prev = mp; 6986 } 6987 } 6988 mutex_exit(&ipx->ipx_lock); 6989 (void) ipsq_pending_mp_cleanup(ill, NULL); 6990 ipsq_xopq_mp_cleanup(ill, NULL); 6991 } 6992 6993 /* 6994 * Parse an ifreq or lifreq struct coming down ioctls and refhold 6995 * and return the associated ipif. 6996 * Return value: 6997 * Non zero: An error has occurred. ci may not be filled out. 6998 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 6999 * a held ipif in ci.ci_ipif. 7000 */ 7001 int 7002 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7003 cmd_info_t *ci) 7004 { 7005 char *name; 7006 struct ifreq *ifr; 7007 struct lifreq *lifr; 7008 ipif_t *ipif = NULL; 7009 ill_t *ill; 7010 conn_t *connp; 7011 boolean_t isv6; 7012 boolean_t exists; 7013 mblk_t *mp1; 7014 zoneid_t zoneid; 7015 ip_stack_t *ipst; 7016 7017 if (q->q_next != NULL) { 7018 ill = (ill_t *)q->q_ptr; 7019 isv6 = ill->ill_isv6; 7020 connp = NULL; 7021 zoneid = ALL_ZONES; 7022 ipst = ill->ill_ipst; 7023 } else { 7024 ill = NULL; 7025 connp = Q_TO_CONN(q); 7026 isv6 = (connp->conn_family == AF_INET6); 7027 zoneid = connp->conn_zoneid; 7028 if (zoneid == GLOBAL_ZONEID) { 7029 /* global zone can access ipifs in all zones */ 7030 zoneid = ALL_ZONES; 7031 } 7032 ipst = connp->conn_netstack->netstack_ip; 7033 } 7034 7035 /* Has been checked in ip_wput_nondata */ 7036 mp1 = mp->b_cont->b_cont; 7037 7038 if (ipip->ipi_cmd_type == IF_CMD) { 7039 /* This a old style SIOC[GS]IF* command */ 7040 ifr = (struct ifreq *)mp1->b_rptr; 7041 /* 7042 * Null terminate the string to protect against buffer 7043 * overrun. String was generated by user code and may not 7044 * be trusted. 7045 */ 7046 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7047 name = ifr->ifr_name; 7048 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7049 ci->ci_sin6 = NULL; 7050 ci->ci_lifr = (struct lifreq *)ifr; 7051 } else { 7052 /* This a new style SIOC[GS]LIF* command */ 7053 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7054 lifr = (struct lifreq *)mp1->b_rptr; 7055 /* 7056 * Null terminate the string to protect against buffer 7057 * overrun. String was generated by user code and may not 7058 * be trusted. 7059 */ 7060 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7061 name = lifr->lifr_name; 7062 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7063 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7064 ci->ci_lifr = lifr; 7065 } 7066 7067 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7068 /* 7069 * The ioctl will be failed if the ioctl comes down 7070 * an conn stream 7071 */ 7072 if (ill == NULL) { 7073 /* 7074 * Not an ill queue, return EINVAL same as the 7075 * old error code. 7076 */ 7077 return (ENXIO); 7078 } 7079 ipif = ill->ill_ipif; 7080 ipif_refhold(ipif); 7081 } else { 7082 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7083 &exists, isv6, zoneid, ipst); 7084 7085 /* 7086 * Ensure that get ioctls don't see any internal state changes 7087 * caused by set ioctls by deferring them if IPIF_CHANGING is 7088 * set. 7089 */ 7090 if (ipif != NULL && !(ipip->ipi_flags & IPI_WR) && 7091 !IAM_WRITER_IPIF(ipif)) { 7092 ipsq_t *ipsq; 7093 7094 if (connp != NULL) 7095 mutex_enter(&connp->conn_lock); 7096 mutex_enter(&ipif->ipif_ill->ill_lock); 7097 if (IPIF_IS_CHANGING(ipif) && 7098 !IPIF_IS_CONDEMNED(ipif)) { 7099 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 7100 mutex_enter(&ipsq->ipsq_lock); 7101 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 7102 mutex_exit(&ipif->ipif_ill->ill_lock); 7103 ipsq_enq(ipsq, q, mp, ip_process_ioctl, 7104 NEW_OP, ipif->ipif_ill); 7105 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 7106 mutex_exit(&ipsq->ipsq_lock); 7107 if (connp != NULL) 7108 mutex_exit(&connp->conn_lock); 7109 ipif_refrele(ipif); 7110 return (EINPROGRESS); 7111 } 7112 mutex_exit(&ipif->ipif_ill->ill_lock); 7113 if (connp != NULL) 7114 mutex_exit(&connp->conn_lock); 7115 } 7116 } 7117 7118 /* 7119 * Old style [GS]IFCMD does not admit IPv6 ipif 7120 */ 7121 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7122 ipif_refrele(ipif); 7123 return (ENXIO); 7124 } 7125 7126 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7127 name[0] == '\0') { 7128 /* 7129 * Handle a or a SIOC?IF* with a null name 7130 * during plumb (on the ill queue before the I_PLINK). 7131 */ 7132 ipif = ill->ill_ipif; 7133 ipif_refhold(ipif); 7134 } 7135 7136 if (ipif == NULL) 7137 return (ENXIO); 7138 7139 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7140 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7141 7142 ci->ci_ipif = ipif; 7143 return (0); 7144 } 7145 7146 /* 7147 * Return the total number of ipifs. 7148 */ 7149 static uint_t 7150 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7151 { 7152 uint_t numifs = 0; 7153 ill_t *ill; 7154 ill_walk_context_t ctx; 7155 ipif_t *ipif; 7156 7157 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7158 ill = ILL_START_WALK_V4(&ctx, ipst); 7159 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7160 if (IS_UNDER_IPMP(ill)) 7161 continue; 7162 for (ipif = ill->ill_ipif; ipif != NULL; 7163 ipif = ipif->ipif_next) { 7164 if (ipif->ipif_zoneid == zoneid || 7165 ipif->ipif_zoneid == ALL_ZONES) 7166 numifs++; 7167 } 7168 } 7169 rw_exit(&ipst->ips_ill_g_lock); 7170 return (numifs); 7171 } 7172 7173 /* 7174 * Return the total number of ipifs. 7175 */ 7176 static uint_t 7177 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7178 { 7179 uint_t numifs = 0; 7180 ill_t *ill; 7181 ipif_t *ipif; 7182 ill_walk_context_t ctx; 7183 7184 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7185 7186 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7187 if (family == AF_INET) 7188 ill = ILL_START_WALK_V4(&ctx, ipst); 7189 else if (family == AF_INET6) 7190 ill = ILL_START_WALK_V6(&ctx, ipst); 7191 else 7192 ill = ILL_START_WALK_ALL(&ctx, ipst); 7193 7194 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7195 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7196 continue; 7197 7198 for (ipif = ill->ill_ipif; ipif != NULL; 7199 ipif = ipif->ipif_next) { 7200 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7201 !(lifn_flags & LIFC_NOXMIT)) 7202 continue; 7203 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7204 !(lifn_flags & LIFC_TEMPORARY)) 7205 continue; 7206 if (((ipif->ipif_flags & 7207 (IPIF_NOXMIT|IPIF_NOLOCAL| 7208 IPIF_DEPRECATED)) || 7209 IS_LOOPBACK(ill) || 7210 !(ipif->ipif_flags & IPIF_UP)) && 7211 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7212 continue; 7213 7214 if (zoneid != ipif->ipif_zoneid && 7215 ipif->ipif_zoneid != ALL_ZONES && 7216 (zoneid != GLOBAL_ZONEID || 7217 !(lifn_flags & LIFC_ALLZONES))) 7218 continue; 7219 7220 numifs++; 7221 } 7222 } 7223 rw_exit(&ipst->ips_ill_g_lock); 7224 return (numifs); 7225 } 7226 7227 uint_t 7228 ip_get_lifsrcofnum(ill_t *ill) 7229 { 7230 uint_t numifs = 0; 7231 ill_t *ill_head = ill; 7232 ip_stack_t *ipst = ill->ill_ipst; 7233 7234 /* 7235 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7236 * other thread may be trying to relink the ILLs in this usesrc group 7237 * and adjusting the ill_usesrc_grp_next pointers 7238 */ 7239 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7240 if ((ill->ill_usesrc_ifindex == 0) && 7241 (ill->ill_usesrc_grp_next != NULL)) { 7242 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7243 ill = ill->ill_usesrc_grp_next) 7244 numifs++; 7245 } 7246 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7247 7248 return (numifs); 7249 } 7250 7251 /* Null values are passed in for ipif, sin, and ifreq */ 7252 /* ARGSUSED */ 7253 int 7254 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7255 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7256 { 7257 int *nump; 7258 conn_t *connp = Q_TO_CONN(q); 7259 7260 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7261 7262 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7263 nump = (int *)mp->b_cont->b_cont->b_rptr; 7264 7265 *nump = ip_get_numifs(connp->conn_zoneid, 7266 connp->conn_netstack->netstack_ip); 7267 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7268 return (0); 7269 } 7270 7271 /* Null values are passed in for ipif, sin, and ifreq */ 7272 /* ARGSUSED */ 7273 int 7274 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7275 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7276 { 7277 struct lifnum *lifn; 7278 mblk_t *mp1; 7279 conn_t *connp = Q_TO_CONN(q); 7280 7281 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7282 7283 /* Existence checked in ip_wput_nondata */ 7284 mp1 = mp->b_cont->b_cont; 7285 7286 lifn = (struct lifnum *)mp1->b_rptr; 7287 switch (lifn->lifn_family) { 7288 case AF_UNSPEC: 7289 case AF_INET: 7290 case AF_INET6: 7291 break; 7292 default: 7293 return (EAFNOSUPPORT); 7294 } 7295 7296 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7297 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7298 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7299 return (0); 7300 } 7301 7302 /* ARGSUSED */ 7303 int 7304 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7305 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7306 { 7307 STRUCT_HANDLE(ifconf, ifc); 7308 mblk_t *mp1; 7309 struct iocblk *iocp; 7310 struct ifreq *ifr; 7311 ill_walk_context_t ctx; 7312 ill_t *ill; 7313 ipif_t *ipif; 7314 struct sockaddr_in *sin; 7315 int32_t ifclen; 7316 zoneid_t zoneid; 7317 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7318 7319 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7320 7321 ip1dbg(("ip_sioctl_get_ifconf")); 7322 /* Existence verified in ip_wput_nondata */ 7323 mp1 = mp->b_cont->b_cont; 7324 iocp = (struct iocblk *)mp->b_rptr; 7325 zoneid = Q_TO_CONN(q)->conn_zoneid; 7326 7327 /* 7328 * The original SIOCGIFCONF passed in a struct ifconf which specified 7329 * the user buffer address and length into which the list of struct 7330 * ifreqs was to be copied. Since AT&T Streams does not seem to 7331 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7332 * the SIOCGIFCONF operation was redefined to simply provide 7333 * a large output buffer into which we are supposed to jam the ifreq 7334 * array. The same ioctl command code was used, despite the fact that 7335 * both the applications and the kernel code had to change, thus making 7336 * it impossible to support both interfaces. 7337 * 7338 * For reasons not good enough to try to explain, the following 7339 * algorithm is used for deciding what to do with one of these: 7340 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7341 * form with the output buffer coming down as the continuation message. 7342 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7343 * and we have to copy in the ifconf structure to find out how big the 7344 * output buffer is and where to copy out to. Sure no problem... 7345 * 7346 */ 7347 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7348 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7349 int numifs = 0; 7350 size_t ifc_bufsize; 7351 7352 /* 7353 * Must be (better be!) continuation of a TRANSPARENT 7354 * IOCTL. We just copied in the ifconf structure. 7355 */ 7356 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7357 (struct ifconf *)mp1->b_rptr); 7358 7359 /* 7360 * Allocate a buffer to hold requested information. 7361 * 7362 * If ifc_len is larger than what is needed, we only 7363 * allocate what we will use. 7364 * 7365 * If ifc_len is smaller than what is needed, return 7366 * EINVAL. 7367 * 7368 * XXX: the ill_t structure can hava 2 counters, for 7369 * v4 and v6 (not just ill_ipif_up_count) to store the 7370 * number of interfaces for a device, so we don't need 7371 * to count them here... 7372 */ 7373 numifs = ip_get_numifs(zoneid, ipst); 7374 7375 ifclen = STRUCT_FGET(ifc, ifc_len); 7376 ifc_bufsize = numifs * sizeof (struct ifreq); 7377 if (ifc_bufsize > ifclen) { 7378 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7379 /* old behaviour */ 7380 return (EINVAL); 7381 } else { 7382 ifc_bufsize = ifclen; 7383 } 7384 } 7385 7386 mp1 = mi_copyout_alloc(q, mp, 7387 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7388 if (mp1 == NULL) 7389 return (ENOMEM); 7390 7391 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7392 } 7393 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7394 /* 7395 * the SIOCGIFCONF ioctl only knows about 7396 * IPv4 addresses, so don't try to tell 7397 * it about interfaces with IPv6-only 7398 * addresses. (Last parm 'isv6' is B_FALSE) 7399 */ 7400 7401 ifr = (struct ifreq *)mp1->b_rptr; 7402 7403 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7404 ill = ILL_START_WALK_V4(&ctx, ipst); 7405 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7406 if (IS_UNDER_IPMP(ill)) 7407 continue; 7408 for (ipif = ill->ill_ipif; ipif != NULL; 7409 ipif = ipif->ipif_next) { 7410 if (zoneid != ipif->ipif_zoneid && 7411 ipif->ipif_zoneid != ALL_ZONES) 7412 continue; 7413 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7414 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7415 /* old behaviour */ 7416 rw_exit(&ipst->ips_ill_g_lock); 7417 return (EINVAL); 7418 } else { 7419 goto if_copydone; 7420 } 7421 } 7422 ipif_get_name(ipif, ifr->ifr_name, 7423 sizeof (ifr->ifr_name)); 7424 sin = (sin_t *)&ifr->ifr_addr; 7425 *sin = sin_null; 7426 sin->sin_family = AF_INET; 7427 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7428 ifr++; 7429 } 7430 } 7431 if_copydone: 7432 rw_exit(&ipst->ips_ill_g_lock); 7433 mp1->b_wptr = (uchar_t *)ifr; 7434 7435 if (STRUCT_BUF(ifc) != NULL) { 7436 STRUCT_FSET(ifc, ifc_len, 7437 (int)((uchar_t *)ifr - mp1->b_rptr)); 7438 } 7439 return (0); 7440 } 7441 7442 /* 7443 * Get the interfaces using the address hosted on the interface passed in, 7444 * as a source adddress 7445 */ 7446 /* ARGSUSED */ 7447 int 7448 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7449 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7450 { 7451 mblk_t *mp1; 7452 ill_t *ill, *ill_head; 7453 ipif_t *ipif, *orig_ipif; 7454 int numlifs = 0; 7455 size_t lifs_bufsize, lifsmaxlen; 7456 struct lifreq *lifr; 7457 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7458 uint_t ifindex; 7459 zoneid_t zoneid; 7460 boolean_t isv6 = B_FALSE; 7461 struct sockaddr_in *sin; 7462 struct sockaddr_in6 *sin6; 7463 STRUCT_HANDLE(lifsrcof, lifs); 7464 ip_stack_t *ipst; 7465 7466 ipst = CONNQ_TO_IPST(q); 7467 7468 ASSERT(q->q_next == NULL); 7469 7470 zoneid = Q_TO_CONN(q)->conn_zoneid; 7471 7472 /* Existence verified in ip_wput_nondata */ 7473 mp1 = mp->b_cont->b_cont; 7474 7475 /* 7476 * Must be (better be!) continuation of a TRANSPARENT 7477 * IOCTL. We just copied in the lifsrcof structure. 7478 */ 7479 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7480 (struct lifsrcof *)mp1->b_rptr); 7481 7482 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7483 return (EINVAL); 7484 7485 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7486 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7487 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7488 if (ipif == NULL) { 7489 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7490 ifindex)); 7491 return (ENXIO); 7492 } 7493 7494 /* Allocate a buffer to hold requested information */ 7495 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7496 lifs_bufsize = numlifs * sizeof (struct lifreq); 7497 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7498 /* The actual size needed is always returned in lifs_len */ 7499 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7500 7501 /* If the amount we need is more than what is passed in, abort */ 7502 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7503 ipif_refrele(ipif); 7504 return (0); 7505 } 7506 7507 mp1 = mi_copyout_alloc(q, mp, 7508 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7509 if (mp1 == NULL) { 7510 ipif_refrele(ipif); 7511 return (ENOMEM); 7512 } 7513 7514 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7515 bzero(mp1->b_rptr, lifs_bufsize); 7516 7517 lifr = (struct lifreq *)mp1->b_rptr; 7518 7519 ill = ill_head = ipif->ipif_ill; 7520 orig_ipif = ipif; 7521 7522 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7523 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7524 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7525 7526 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7527 for (; (ill != NULL) && (ill != ill_head); 7528 ill = ill->ill_usesrc_grp_next) { 7529 7530 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7531 break; 7532 7533 ipif = ill->ill_ipif; 7534 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7535 if (ipif->ipif_isv6) { 7536 sin6 = (sin6_t *)&lifr->lifr_addr; 7537 *sin6 = sin6_null; 7538 sin6->sin6_family = AF_INET6; 7539 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7540 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7541 &ipif->ipif_v6net_mask); 7542 } else { 7543 sin = (sin_t *)&lifr->lifr_addr; 7544 *sin = sin_null; 7545 sin->sin_family = AF_INET; 7546 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7547 lifr->lifr_addrlen = ip_mask_to_plen( 7548 ipif->ipif_net_mask); 7549 } 7550 lifr++; 7551 } 7552 rw_exit(&ipst->ips_ill_g_lock); 7553 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7554 ipif_refrele(orig_ipif); 7555 mp1->b_wptr = (uchar_t *)lifr; 7556 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7557 7558 return (0); 7559 } 7560 7561 /* ARGSUSED */ 7562 int 7563 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7564 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7565 { 7566 mblk_t *mp1; 7567 int list; 7568 ill_t *ill; 7569 ipif_t *ipif; 7570 int flags; 7571 int numlifs = 0; 7572 size_t lifc_bufsize; 7573 struct lifreq *lifr; 7574 sa_family_t family; 7575 struct sockaddr_in *sin; 7576 struct sockaddr_in6 *sin6; 7577 ill_walk_context_t ctx; 7578 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7579 int32_t lifclen; 7580 zoneid_t zoneid; 7581 STRUCT_HANDLE(lifconf, lifc); 7582 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7583 7584 ip1dbg(("ip_sioctl_get_lifconf")); 7585 7586 ASSERT(q->q_next == NULL); 7587 7588 zoneid = Q_TO_CONN(q)->conn_zoneid; 7589 7590 /* Existence verified in ip_wput_nondata */ 7591 mp1 = mp->b_cont->b_cont; 7592 7593 /* 7594 * An extended version of SIOCGIFCONF that takes an 7595 * additional address family and flags field. 7596 * AF_UNSPEC retrieve both IPv4 and IPv6. 7597 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7598 * interfaces are omitted. 7599 * Similarly, IPIF_TEMPORARY interfaces are omitted 7600 * unless LIFC_TEMPORARY is specified. 7601 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7602 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7603 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7604 * has priority over LIFC_NOXMIT. 7605 */ 7606 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7607 7608 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7609 return (EINVAL); 7610 7611 /* 7612 * Must be (better be!) continuation of a TRANSPARENT 7613 * IOCTL. We just copied in the lifconf structure. 7614 */ 7615 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7616 7617 family = STRUCT_FGET(lifc, lifc_family); 7618 flags = STRUCT_FGET(lifc, lifc_flags); 7619 7620 switch (family) { 7621 case AF_UNSPEC: 7622 /* 7623 * walk all ILL's. 7624 */ 7625 list = MAX_G_HEADS; 7626 break; 7627 case AF_INET: 7628 /* 7629 * walk only IPV4 ILL's. 7630 */ 7631 list = IP_V4_G_HEAD; 7632 break; 7633 case AF_INET6: 7634 /* 7635 * walk only IPV6 ILL's. 7636 */ 7637 list = IP_V6_G_HEAD; 7638 break; 7639 default: 7640 return (EAFNOSUPPORT); 7641 } 7642 7643 /* 7644 * Allocate a buffer to hold requested information. 7645 * 7646 * If lifc_len is larger than what is needed, we only 7647 * allocate what we will use. 7648 * 7649 * If lifc_len is smaller than what is needed, return 7650 * EINVAL. 7651 */ 7652 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7653 lifc_bufsize = numlifs * sizeof (struct lifreq); 7654 lifclen = STRUCT_FGET(lifc, lifc_len); 7655 if (lifc_bufsize > lifclen) { 7656 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7657 return (EINVAL); 7658 else 7659 lifc_bufsize = lifclen; 7660 } 7661 7662 mp1 = mi_copyout_alloc(q, mp, 7663 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7664 if (mp1 == NULL) 7665 return (ENOMEM); 7666 7667 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7668 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7669 7670 lifr = (struct lifreq *)mp1->b_rptr; 7671 7672 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7673 ill = ill_first(list, list, &ctx, ipst); 7674 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7675 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7676 continue; 7677 7678 for (ipif = ill->ill_ipif; ipif != NULL; 7679 ipif = ipif->ipif_next) { 7680 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7681 !(flags & LIFC_NOXMIT)) 7682 continue; 7683 7684 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7685 !(flags & LIFC_TEMPORARY)) 7686 continue; 7687 7688 if (((ipif->ipif_flags & 7689 (IPIF_NOXMIT|IPIF_NOLOCAL| 7690 IPIF_DEPRECATED)) || 7691 IS_LOOPBACK(ill) || 7692 !(ipif->ipif_flags & IPIF_UP)) && 7693 (flags & LIFC_EXTERNAL_SOURCE)) 7694 continue; 7695 7696 if (zoneid != ipif->ipif_zoneid && 7697 ipif->ipif_zoneid != ALL_ZONES && 7698 (zoneid != GLOBAL_ZONEID || 7699 !(flags & LIFC_ALLZONES))) 7700 continue; 7701 7702 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7703 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7704 rw_exit(&ipst->ips_ill_g_lock); 7705 return (EINVAL); 7706 } else { 7707 goto lif_copydone; 7708 } 7709 } 7710 7711 ipif_get_name(ipif, lifr->lifr_name, 7712 sizeof (lifr->lifr_name)); 7713 lifr->lifr_type = ill->ill_type; 7714 if (ipif->ipif_isv6) { 7715 sin6 = (sin6_t *)&lifr->lifr_addr; 7716 *sin6 = sin6_null; 7717 sin6->sin6_family = AF_INET6; 7718 sin6->sin6_addr = 7719 ipif->ipif_v6lcl_addr; 7720 lifr->lifr_addrlen = 7721 ip_mask_to_plen_v6( 7722 &ipif->ipif_v6net_mask); 7723 } else { 7724 sin = (sin_t *)&lifr->lifr_addr; 7725 *sin = sin_null; 7726 sin->sin_family = AF_INET; 7727 sin->sin_addr.s_addr = 7728 ipif->ipif_lcl_addr; 7729 lifr->lifr_addrlen = 7730 ip_mask_to_plen( 7731 ipif->ipif_net_mask); 7732 } 7733 lifr++; 7734 } 7735 } 7736 lif_copydone: 7737 rw_exit(&ipst->ips_ill_g_lock); 7738 7739 mp1->b_wptr = (uchar_t *)lifr; 7740 if (STRUCT_BUF(lifc) != NULL) { 7741 STRUCT_FSET(lifc, lifc_len, 7742 (int)((uchar_t *)lifr - mp1->b_rptr)); 7743 } 7744 return (0); 7745 } 7746 7747 static void 7748 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7749 { 7750 ip6_asp_t *table; 7751 size_t table_size; 7752 mblk_t *data_mp; 7753 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7754 ip_stack_t *ipst; 7755 7756 if (q->q_next == NULL) 7757 ipst = CONNQ_TO_IPST(q); 7758 else 7759 ipst = ILLQ_TO_IPST(q); 7760 7761 /* These two ioctls are I_STR only */ 7762 if (iocp->ioc_count == TRANSPARENT) { 7763 miocnak(q, mp, 0, EINVAL); 7764 return; 7765 } 7766 7767 data_mp = mp->b_cont; 7768 if (data_mp == NULL) { 7769 /* The user passed us a NULL argument */ 7770 table = NULL; 7771 table_size = iocp->ioc_count; 7772 } else { 7773 /* 7774 * The user provided a table. The stream head 7775 * may have copied in the user data in chunks, 7776 * so make sure everything is pulled up 7777 * properly. 7778 */ 7779 if (MBLKL(data_mp) < iocp->ioc_count) { 7780 mblk_t *new_data_mp; 7781 if ((new_data_mp = msgpullup(data_mp, -1)) == 7782 NULL) { 7783 miocnak(q, mp, 0, ENOMEM); 7784 return; 7785 } 7786 freemsg(data_mp); 7787 data_mp = new_data_mp; 7788 mp->b_cont = data_mp; 7789 } 7790 table = (ip6_asp_t *)data_mp->b_rptr; 7791 table_size = iocp->ioc_count; 7792 } 7793 7794 switch (iocp->ioc_cmd) { 7795 case SIOCGIP6ADDRPOLICY: 7796 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7797 if (iocp->ioc_rval == -1) 7798 iocp->ioc_error = EINVAL; 7799 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7800 else if (table != NULL && 7801 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7802 ip6_asp_t *src = table; 7803 ip6_asp32_t *dst = (void *)table; 7804 int count = table_size / sizeof (ip6_asp_t); 7805 int i; 7806 7807 /* 7808 * We need to do an in-place shrink of the array 7809 * to match the alignment attributes of the 7810 * 32-bit ABI looking at it. 7811 */ 7812 /* LINTED: logical expression always true: op "||" */ 7813 ASSERT(sizeof (*src) > sizeof (*dst)); 7814 for (i = 1; i < count; i++) 7815 bcopy(src + i, dst + i, sizeof (*dst)); 7816 } 7817 #endif 7818 break; 7819 7820 case SIOCSIP6ADDRPOLICY: 7821 ASSERT(mp->b_prev == NULL); 7822 mp->b_prev = (void *)q; 7823 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7824 /* 7825 * We pass in the datamodel here so that the ip6_asp_replace() 7826 * routine can handle converting from 32-bit to native formats 7827 * where necessary. 7828 * 7829 * A better way to handle this might be to convert the inbound 7830 * data structure here, and hang it off a new 'mp'; thus the 7831 * ip6_asp_replace() logic would always be dealing with native 7832 * format data structures.. 7833 * 7834 * (An even simpler way to handle these ioctls is to just 7835 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7836 * and just recompile everything that depends on it.) 7837 */ 7838 #endif 7839 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7840 iocp->ioc_flag & IOC_MODELS); 7841 return; 7842 } 7843 7844 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7845 qreply(q, mp); 7846 } 7847 7848 static void 7849 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7850 { 7851 mblk_t *data_mp; 7852 struct dstinforeq *dir; 7853 uint8_t *end, *cur; 7854 in6_addr_t *daddr, *saddr; 7855 ipaddr_t v4daddr; 7856 ire_t *ire; 7857 ipaddr_t v4setsrc; 7858 in6_addr_t v6setsrc; 7859 char *slabel, *dlabel; 7860 boolean_t isipv4; 7861 int match_ire; 7862 ill_t *dst_ill; 7863 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7864 conn_t *connp = Q_TO_CONN(q); 7865 zoneid_t zoneid = IPCL_ZONEID(connp); 7866 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7867 uint64_t ipif_flags; 7868 7869 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7870 7871 /* 7872 * This ioctl is I_STR only, and must have a 7873 * data mblk following the M_IOCTL mblk. 7874 */ 7875 data_mp = mp->b_cont; 7876 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7877 miocnak(q, mp, 0, EINVAL); 7878 return; 7879 } 7880 7881 if (MBLKL(data_mp) < iocp->ioc_count) { 7882 mblk_t *new_data_mp; 7883 7884 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7885 miocnak(q, mp, 0, ENOMEM); 7886 return; 7887 } 7888 freemsg(data_mp); 7889 data_mp = new_data_mp; 7890 mp->b_cont = data_mp; 7891 } 7892 match_ire = MATCH_IRE_DSTONLY; 7893 7894 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7895 end - cur >= sizeof (struct dstinforeq); 7896 cur += sizeof (struct dstinforeq)) { 7897 dir = (struct dstinforeq *)cur; 7898 daddr = &dir->dir_daddr; 7899 saddr = &dir->dir_saddr; 7900 7901 /* 7902 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7903 * v4 mapped addresses; ire_ftable_lookup_v6() 7904 * and ip_select_source_v6() do not. 7905 */ 7906 dir->dir_dscope = ip_addr_scope_v6(daddr); 7907 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7908 7909 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7910 if (isipv4) { 7911 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7912 v4setsrc = INADDR_ANY; 7913 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7914 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7915 NULL, NULL); 7916 } else { 7917 v6setsrc = ipv6_all_zeros; 7918 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7919 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7920 NULL, NULL); 7921 } 7922 ASSERT(ire != NULL); 7923 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7924 ire_refrele(ire); 7925 dir->dir_dreachable = 0; 7926 7927 /* move on to next dst addr */ 7928 continue; 7929 } 7930 dir->dir_dreachable = 1; 7931 7932 dst_ill = ire_nexthop_ill(ire); 7933 if (dst_ill == NULL) { 7934 ire_refrele(ire); 7935 continue; 7936 } 7937 7938 /* With ipmp we most likely look at the ipmp ill here */ 7939 dir->dir_dmactype = dst_ill->ill_mactype; 7940 7941 if (isipv4) { 7942 ipaddr_t v4saddr; 7943 7944 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7945 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7946 &v4saddr, NULL, &ipif_flags) != 0) { 7947 v4saddr = INADDR_ANY; 7948 ipif_flags = 0; 7949 } 7950 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7951 } else { 7952 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7953 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7954 saddr, NULL, &ipif_flags) != 0) { 7955 *saddr = ipv6_all_zeros; 7956 ipif_flags = 0; 7957 } 7958 } 7959 7960 dir->dir_sscope = ip_addr_scope_v6(saddr); 7961 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7962 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7963 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7964 ire_refrele(ire); 7965 ill_refrele(dst_ill); 7966 } 7967 miocack(q, mp, iocp->ioc_count, 0); 7968 } 7969 7970 /* 7971 * Check if this is an address assigned to this machine. 7972 * Skips interfaces that are down by using ire checks. 7973 * Translates mapped addresses to v4 addresses and then 7974 * treats them as such, returning true if the v4 address 7975 * associated with this mapped address is configured. 7976 * Note: Applications will have to be careful what they do 7977 * with the response; use of mapped addresses limits 7978 * what can be done with the socket, especially with 7979 * respect to socket options and ioctls - neither IPv4 7980 * options nor IPv6 sticky options/ancillary data options 7981 * may be used. 7982 */ 7983 /* ARGSUSED */ 7984 int 7985 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7986 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 7987 { 7988 struct sioc_addrreq *sia; 7989 sin_t *sin; 7990 ire_t *ire; 7991 mblk_t *mp1; 7992 zoneid_t zoneid; 7993 ip_stack_t *ipst; 7994 7995 ip1dbg(("ip_sioctl_tmyaddr")); 7996 7997 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7998 zoneid = Q_TO_CONN(q)->conn_zoneid; 7999 ipst = CONNQ_TO_IPST(q); 8000 8001 /* Existence verified in ip_wput_nondata */ 8002 mp1 = mp->b_cont->b_cont; 8003 sia = (struct sioc_addrreq *)mp1->b_rptr; 8004 sin = (sin_t *)&sia->sa_addr; 8005 switch (sin->sin_family) { 8006 case AF_INET6: { 8007 sin6_t *sin6 = (sin6_t *)sin; 8008 8009 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8010 ipaddr_t v4_addr; 8011 8012 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8013 v4_addr); 8014 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8015 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8016 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8017 } else { 8018 in6_addr_t v6addr; 8019 8020 v6addr = sin6->sin6_addr; 8021 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8022 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8023 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8024 } 8025 break; 8026 } 8027 case AF_INET: { 8028 ipaddr_t v4addr; 8029 8030 v4addr = sin->sin_addr.s_addr; 8031 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8032 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8033 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8034 break; 8035 } 8036 default: 8037 return (EAFNOSUPPORT); 8038 } 8039 if (ire != NULL) { 8040 sia->sa_res = 1; 8041 ire_refrele(ire); 8042 } else { 8043 sia->sa_res = 0; 8044 } 8045 return (0); 8046 } 8047 8048 /* 8049 * Check if this is an address assigned on-link i.e. neighbor, 8050 * and makes sure it's reachable from the current zone. 8051 * Returns true for my addresses as well. 8052 * Translates mapped addresses to v4 addresses and then 8053 * treats them as such, returning true if the v4 address 8054 * associated with this mapped address is configured. 8055 * Note: Applications will have to be careful what they do 8056 * with the response; use of mapped addresses limits 8057 * what can be done with the socket, especially with 8058 * respect to socket options and ioctls - neither IPv4 8059 * options nor IPv6 sticky options/ancillary data options 8060 * may be used. 8061 */ 8062 /* ARGSUSED */ 8063 int 8064 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8065 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8066 { 8067 struct sioc_addrreq *sia; 8068 sin_t *sin; 8069 mblk_t *mp1; 8070 ire_t *ire = NULL; 8071 zoneid_t zoneid; 8072 ip_stack_t *ipst; 8073 8074 ip1dbg(("ip_sioctl_tonlink")); 8075 8076 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8077 zoneid = Q_TO_CONN(q)->conn_zoneid; 8078 ipst = CONNQ_TO_IPST(q); 8079 8080 /* Existence verified in ip_wput_nondata */ 8081 mp1 = mp->b_cont->b_cont; 8082 sia = (struct sioc_addrreq *)mp1->b_rptr; 8083 sin = (sin_t *)&sia->sa_addr; 8084 8085 /* 8086 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8087 * to make sure we only look at on-link unicast address. 8088 */ 8089 switch (sin->sin_family) { 8090 case AF_INET6: { 8091 sin6_t *sin6 = (sin6_t *)sin; 8092 8093 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8094 ipaddr_t v4_addr; 8095 8096 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8097 v4_addr); 8098 if (!CLASSD(v4_addr)) { 8099 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8100 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8101 0, ipst, NULL); 8102 } 8103 } else { 8104 in6_addr_t v6addr; 8105 8106 v6addr = sin6->sin6_addr; 8107 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8108 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8109 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8110 ipst, NULL); 8111 } 8112 } 8113 break; 8114 } 8115 case AF_INET: { 8116 ipaddr_t v4addr; 8117 8118 v4addr = sin->sin_addr.s_addr; 8119 if (!CLASSD(v4addr)) { 8120 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8121 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8122 } 8123 break; 8124 } 8125 default: 8126 return (EAFNOSUPPORT); 8127 } 8128 sia->sa_res = 0; 8129 if (ire != NULL) { 8130 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8131 8132 if ((ire->ire_type & IRE_ONLINK) && 8133 !(ire->ire_type & IRE_BROADCAST)) 8134 sia->sa_res = 1; 8135 ire_refrele(ire); 8136 } 8137 return (0); 8138 } 8139 8140 /* 8141 * TBD: implement when kernel maintaines a list of site prefixes. 8142 */ 8143 /* ARGSUSED */ 8144 int 8145 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8146 ip_ioctl_cmd_t *ipip, void *ifreq) 8147 { 8148 return (ENXIO); 8149 } 8150 8151 /* ARP IOCTLs. */ 8152 /* ARGSUSED */ 8153 int 8154 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8155 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8156 { 8157 int err; 8158 ipaddr_t ipaddr; 8159 struct iocblk *iocp; 8160 conn_t *connp; 8161 struct arpreq *ar; 8162 struct xarpreq *xar; 8163 int arp_flags, flags, alength; 8164 uchar_t *lladdr; 8165 ip_stack_t *ipst; 8166 ill_t *ill = ipif->ipif_ill; 8167 ill_t *proxy_ill = NULL; 8168 ipmp_arpent_t *entp = NULL; 8169 boolean_t proxyarp = B_FALSE; 8170 boolean_t if_arp_ioctl = B_FALSE; 8171 ncec_t *ncec = NULL; 8172 nce_t *nce; 8173 8174 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8175 connp = Q_TO_CONN(q); 8176 ipst = connp->conn_netstack->netstack_ip; 8177 iocp = (struct iocblk *)mp->b_rptr; 8178 8179 if (ipip->ipi_cmd_type == XARP_CMD) { 8180 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8181 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8182 ar = NULL; 8183 8184 arp_flags = xar->xarp_flags; 8185 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8186 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8187 /* 8188 * Validate against user's link layer address length 8189 * input and name and addr length limits. 8190 */ 8191 alength = ill->ill_phys_addr_length; 8192 if (ipip->ipi_cmd == SIOCSXARP) { 8193 if (alength != xar->xarp_ha.sdl_alen || 8194 (alength + xar->xarp_ha.sdl_nlen > 8195 sizeof (xar->xarp_ha.sdl_data))) 8196 return (EINVAL); 8197 } 8198 } else { 8199 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8200 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8201 xar = NULL; 8202 8203 arp_flags = ar->arp_flags; 8204 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8205 /* 8206 * Theoretically, the sa_family could tell us what link 8207 * layer type this operation is trying to deal with. By 8208 * common usage AF_UNSPEC means ethernet. We'll assume 8209 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8210 * for now. Our new SIOC*XARP ioctls can be used more 8211 * generally. 8212 * 8213 * If the underlying media happens to have a non 6 byte 8214 * address, arp module will fail set/get, but the del 8215 * operation will succeed. 8216 */ 8217 alength = 6; 8218 if ((ipip->ipi_cmd != SIOCDARP) && 8219 (alength != ill->ill_phys_addr_length)) { 8220 return (EINVAL); 8221 } 8222 } 8223 8224 /* Translate ATF* flags to NCE* flags */ 8225 flags = 0; 8226 if (arp_flags & ATF_AUTHORITY) 8227 flags |= NCE_F_AUTHORITY; 8228 if (arp_flags & ATF_PERM) 8229 flags |= NCE_F_NONUD; /* not subject to aging */ 8230 if (arp_flags & ATF_PUBL) 8231 flags |= NCE_F_PUBLISH; 8232 8233 /* 8234 * IPMP ARP special handling: 8235 * 8236 * 1. Since ARP mappings must appear consistent across the group, 8237 * prohibit changing ARP mappings on the underlying interfaces. 8238 * 8239 * 2. Since ARP mappings for IPMP data addresses are maintained by 8240 * IP itself, prohibit changing them. 8241 * 8242 * 3. For proxy ARP, use a functioning hardware address in the group, 8243 * provided one exists. If one doesn't, just add the entry as-is; 8244 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8245 */ 8246 if (IS_UNDER_IPMP(ill)) { 8247 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8248 return (EPERM); 8249 } 8250 if (IS_IPMP(ill)) { 8251 ipmp_illgrp_t *illg = ill->ill_grp; 8252 8253 switch (ipip->ipi_cmd) { 8254 case SIOCSARP: 8255 case SIOCSXARP: 8256 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8257 if (proxy_ill != NULL) { 8258 proxyarp = B_TRUE; 8259 if (!ipmp_ill_is_active(proxy_ill)) 8260 proxy_ill = ipmp_illgrp_next_ill(illg); 8261 if (proxy_ill != NULL) 8262 lladdr = proxy_ill->ill_phys_addr; 8263 } 8264 /* FALLTHRU */ 8265 } 8266 } 8267 8268 ipaddr = sin->sin_addr.s_addr; 8269 /* 8270 * don't match across illgrp per case (1) and (2). 8271 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8272 */ 8273 nce = nce_lookup_v4(ill, &ipaddr); 8274 if (nce != NULL) 8275 ncec = nce->nce_common; 8276 8277 switch (iocp->ioc_cmd) { 8278 case SIOCDARP: 8279 case SIOCDXARP: { 8280 /* 8281 * Delete the NCE if any. 8282 */ 8283 if (ncec == NULL) { 8284 iocp->ioc_error = ENXIO; 8285 break; 8286 } 8287 /* Don't allow changes to arp mappings of local addresses. */ 8288 if (NCE_MYADDR(ncec)) { 8289 nce_refrele(nce); 8290 return (ENOTSUP); 8291 } 8292 iocp->ioc_error = 0; 8293 8294 /* 8295 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8296 * This will delete all the nce entries on the under_ills. 8297 */ 8298 ncec_delete(ncec); 8299 /* 8300 * Once the NCE has been deleted, then the ire_dep* consistency 8301 * mechanism will find any IRE which depended on the now 8302 * condemned NCE (as part of sending packets). 8303 * That mechanism handles redirects by deleting redirects 8304 * that refer to UNREACHABLE nces. 8305 */ 8306 break; 8307 } 8308 case SIOCGARP: 8309 case SIOCGXARP: 8310 if (ncec != NULL) { 8311 lladdr = ncec->ncec_lladdr; 8312 flags = ncec->ncec_flags; 8313 iocp->ioc_error = 0; 8314 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8315 } else { 8316 iocp->ioc_error = ENXIO; 8317 } 8318 break; 8319 case SIOCSARP: 8320 case SIOCSXARP: 8321 /* Don't allow changes to arp mappings of local addresses. */ 8322 if (ncec != NULL && NCE_MYADDR(ncec)) { 8323 nce_refrele(nce); 8324 return (ENOTSUP); 8325 } 8326 8327 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8328 flags |= NCE_F_STATIC; 8329 if (!if_arp_ioctl) { 8330 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8331 lladdr, alength, flags); 8332 } else { 8333 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8334 if (ipif != NULL) { 8335 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8336 lladdr, alength, flags); 8337 ipif_refrele(ipif); 8338 } 8339 } 8340 if (nce != NULL) { 8341 nce_refrele(nce); 8342 nce = NULL; 8343 } 8344 /* 8345 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8346 * by nce_add_common() 8347 */ 8348 err = nce_lookup_then_add_v4(ill, lladdr, 8349 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8350 &nce); 8351 if (err == EEXIST) { 8352 ncec = nce->nce_common; 8353 mutex_enter(&ncec->ncec_lock); 8354 ncec->ncec_state = ND_REACHABLE; 8355 ncec->ncec_flags = flags; 8356 nce_update(ncec, ND_UNCHANGED, lladdr); 8357 mutex_exit(&ncec->ncec_lock); 8358 err = 0; 8359 } 8360 if (nce != NULL) { 8361 nce_refrele(nce); 8362 nce = NULL; 8363 } 8364 if (IS_IPMP(ill) && err == 0) { 8365 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8366 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8367 flags); 8368 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8369 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8370 break; 8371 } 8372 } 8373 iocp->ioc_error = err; 8374 } 8375 8376 if (nce != NULL) { 8377 nce_refrele(nce); 8378 } 8379 8380 /* 8381 * If we created an IPMP ARP entry, mark that we've notified ARP. 8382 */ 8383 if (entp != NULL) 8384 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8385 8386 return (iocp->ioc_error); 8387 } 8388 8389 /* 8390 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8391 * the associated sin and refhold and return the associated ipif via `ci'. 8392 */ 8393 int 8394 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8395 cmd_info_t *ci) 8396 { 8397 mblk_t *mp1; 8398 sin_t *sin; 8399 conn_t *connp; 8400 ipif_t *ipif; 8401 ire_t *ire = NULL; 8402 ill_t *ill = NULL; 8403 boolean_t exists; 8404 ip_stack_t *ipst; 8405 struct arpreq *ar; 8406 struct xarpreq *xar; 8407 struct sockaddr_dl *sdl; 8408 8409 /* ioctl comes down on a conn */ 8410 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8411 connp = Q_TO_CONN(q); 8412 if (connp->conn_family == AF_INET6) 8413 return (ENXIO); 8414 8415 ipst = connp->conn_netstack->netstack_ip; 8416 8417 /* Verified in ip_wput_nondata */ 8418 mp1 = mp->b_cont->b_cont; 8419 8420 if (ipip->ipi_cmd_type == XARP_CMD) { 8421 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8422 xar = (struct xarpreq *)mp1->b_rptr; 8423 sin = (sin_t *)&xar->xarp_pa; 8424 sdl = &xar->xarp_ha; 8425 8426 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8427 return (ENXIO); 8428 if (sdl->sdl_nlen >= LIFNAMSIZ) 8429 return (EINVAL); 8430 } else { 8431 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8432 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8433 ar = (struct arpreq *)mp1->b_rptr; 8434 sin = (sin_t *)&ar->arp_pa; 8435 } 8436 8437 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8438 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8439 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8440 if (ipif == NULL) 8441 return (ENXIO); 8442 if (ipif->ipif_id != 0) { 8443 ipif_refrele(ipif); 8444 return (ENXIO); 8445 } 8446 } else { 8447 /* 8448 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8449 * of 0: use the IP address to find the ipif. If the IP 8450 * address is an IPMP test address, ire_ftable_lookup() will 8451 * find the wrong ill, so we first do an ipif_lookup_addr(). 8452 */ 8453 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8454 ipst); 8455 if (ipif == NULL) { 8456 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8457 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8458 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8459 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8460 if (ire != NULL) 8461 ire_refrele(ire); 8462 return (ENXIO); 8463 } 8464 ASSERT(ire != NULL && ill != NULL); 8465 ipif = ill->ill_ipif; 8466 ipif_refhold(ipif); 8467 ire_refrele(ire); 8468 } 8469 } 8470 8471 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8472 ipif_refrele(ipif); 8473 return (ENXIO); 8474 } 8475 8476 ci->ci_sin = sin; 8477 ci->ci_ipif = ipif; 8478 return (0); 8479 } 8480 8481 /* 8482 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8483 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8484 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8485 * up and thus an ill can join that illgrp. 8486 * 8487 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8488 * open()/close() primarily because close() is not allowed to fail or block 8489 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8490 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8491 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8492 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8493 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8494 * state if I_UNLINK didn't occur. 8495 * 8496 * Note that for each plumb/unplumb operation, we may end up here more than 8497 * once because of the way ifconfig works. However, it's OK to link the same 8498 * illgrp more than once, or unlink an illgrp that's already unlinked. 8499 */ 8500 static int 8501 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8502 { 8503 int err; 8504 ip_stack_t *ipst = ill->ill_ipst; 8505 8506 ASSERT(IS_IPMP(ill)); 8507 ASSERT(IAM_WRITER_ILL(ill)); 8508 8509 switch (ioccmd) { 8510 case I_LINK: 8511 return (ENOTSUP); 8512 8513 case I_PLINK: 8514 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8515 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8516 rw_exit(&ipst->ips_ipmp_lock); 8517 break; 8518 8519 case I_PUNLINK: 8520 /* 8521 * Require all UP ipifs be brought down prior to unlinking the 8522 * illgrp so any associated IREs (and other state) is torched. 8523 */ 8524 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8525 return (EBUSY); 8526 8527 /* 8528 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8529 * with an SIOCSLIFGROUPNAME request from an ill trying to 8530 * join this group. Specifically: ills trying to join grab 8531 * ipmp_lock and bump a "pending join" counter checked by 8532 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8533 * joins can occur (since we have ipmp_lock). Once we drop 8534 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8535 * find the illgrp (since we unlinked it) and will return 8536 * EAFNOSUPPORT. This will then take them back through the 8537 * IPMP meta-interface plumbing logic in ifconfig, and thus 8538 * back through I_PLINK above. 8539 */ 8540 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8541 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8542 rw_exit(&ipst->ips_ipmp_lock); 8543 return (err); 8544 default: 8545 break; 8546 } 8547 return (0); 8548 } 8549 8550 /* 8551 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8552 * atomically set/clear the muxids. Also complete the ioctl by acking or 8553 * naking it. Note that the code is structured such that the link type, 8554 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8555 * its clones use the persistent link, while pppd(1M) and perhaps many 8556 * other daemons may use non-persistent link. When combined with some 8557 * ill_t states, linking and unlinking lower streams may be used as 8558 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8559 */ 8560 /* ARGSUSED */ 8561 void 8562 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8563 { 8564 mblk_t *mp1; 8565 struct linkblk *li; 8566 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8567 int err = 0; 8568 8569 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8570 ioccmd == I_LINK || ioccmd == I_UNLINK); 8571 8572 mp1 = mp->b_cont; /* This is the linkblk info */ 8573 li = (struct linkblk *)mp1->b_rptr; 8574 8575 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8576 if (err == EINPROGRESS) 8577 return; 8578 done: 8579 if (err == 0) 8580 miocack(q, mp, 0, 0); 8581 else 8582 miocnak(q, mp, 0, err); 8583 8584 /* Conn was refheld in ip_sioctl_copyin_setup */ 8585 if (CONN_Q(q)) 8586 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8587 } 8588 8589 /* 8590 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8591 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8592 * module stream). If `doconsist' is set, then do the extended consistency 8593 * checks requested by ifconfig(1M) and (atomically) set ill_muxid here. 8594 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8595 * an error code on failure. 8596 */ 8597 static int 8598 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8599 struct linkblk *li) 8600 { 8601 int err = 0; 8602 ill_t *ill; 8603 queue_t *ipwq, *dwq; 8604 const char *name; 8605 struct qinit *qinfo; 8606 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8607 boolean_t entered_ipsq = B_FALSE; 8608 boolean_t is_ip = B_FALSE; 8609 arl_t *arl; 8610 8611 /* 8612 * Walk the lower stream to verify it's the IP module stream. 8613 * The IP module is identified by its name, wput function, 8614 * and non-NULL q_next. STREAMS ensures that the lower stream 8615 * (li->l_qbot) will not vanish until this ioctl completes. 8616 */ 8617 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8618 qinfo = ipwq->q_qinfo; 8619 name = qinfo->qi_minfo->mi_idname; 8620 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8621 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8622 is_ip = B_TRUE; 8623 break; 8624 } 8625 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8626 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8627 break; 8628 } 8629 } 8630 8631 /* 8632 * If this isn't an IP module stream, bail. 8633 */ 8634 if (ipwq == NULL) 8635 return (0); 8636 8637 if (!is_ip) { 8638 arl = (arl_t *)ipwq->q_ptr; 8639 ill = arl_to_ill(arl); 8640 if (ill == NULL) 8641 return (0); 8642 } else { 8643 ill = ipwq->q_ptr; 8644 } 8645 ASSERT(ill != NULL); 8646 8647 if (ipsq == NULL) { 8648 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8649 NEW_OP, B_FALSE); 8650 if (ipsq == NULL) { 8651 if (!is_ip) 8652 ill_refrele(ill); 8653 return (EINPROGRESS); 8654 } 8655 entered_ipsq = B_TRUE; 8656 } 8657 ASSERT(IAM_WRITER_ILL(ill)); 8658 mutex_enter(&ill->ill_lock); 8659 if (!is_ip) { 8660 if (islink && ill->ill_muxid == 0) { 8661 /* 8662 * Plumbing has to be done with IP plumbed first, arp 8663 * second, but here we have arp being plumbed first. 8664 */ 8665 mutex_exit(&ill->ill_lock); 8666 ipsq_exit(ipsq); 8667 ill_refrele(ill); 8668 return (EINVAL); 8669 } 8670 } 8671 mutex_exit(&ill->ill_lock); 8672 if (!is_ip) { 8673 arl->arl_muxid = islink ? li->l_index : 0; 8674 ill_refrele(ill); 8675 goto done; 8676 } 8677 8678 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8679 goto done; 8680 8681 /* 8682 * As part of I_{P}LINKing, stash the number of downstream modules and 8683 * the read queue of the module immediately below IP in the ill. 8684 * These are used during the capability negotiation below. 8685 */ 8686 ill->ill_lmod_rq = NULL; 8687 ill->ill_lmod_cnt = 0; 8688 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8689 ill->ill_lmod_rq = RD(dwq); 8690 for (; dwq != NULL; dwq = dwq->q_next) 8691 ill->ill_lmod_cnt++; 8692 } 8693 8694 ill->ill_muxid = islink ? li->l_index : 0; 8695 8696 /* 8697 * Mark the ipsq busy until the capability operations initiated below 8698 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8699 * returns, but the capability operation may complete asynchronously 8700 * much later. 8701 */ 8702 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8703 /* 8704 * If there's at least one up ipif on this ill, then we're bound to 8705 * the underlying driver via DLPI. In that case, renegotiate 8706 * capabilities to account for any possible change in modules 8707 * interposed between IP and the driver. 8708 */ 8709 if (ill->ill_ipif_up_count > 0) { 8710 if (islink) 8711 ill_capability_probe(ill); 8712 else 8713 ill_capability_reset(ill, B_FALSE); 8714 } 8715 ipsq_current_finish(ipsq); 8716 done: 8717 if (entered_ipsq) 8718 ipsq_exit(ipsq); 8719 8720 return (err); 8721 } 8722 8723 /* 8724 * Search the ioctl command in the ioctl tables and return a pointer 8725 * to the ioctl command information. The ioctl command tables are 8726 * static and fully populated at compile time. 8727 */ 8728 ip_ioctl_cmd_t * 8729 ip_sioctl_lookup(int ioc_cmd) 8730 { 8731 int index; 8732 ip_ioctl_cmd_t *ipip; 8733 ip_ioctl_cmd_t *ipip_end; 8734 8735 if (ioc_cmd == IPI_DONTCARE) 8736 return (NULL); 8737 8738 /* 8739 * Do a 2 step search. First search the indexed table 8740 * based on the least significant byte of the ioctl cmd. 8741 * If we don't find a match, then search the misc table 8742 * serially. 8743 */ 8744 index = ioc_cmd & 0xFF; 8745 if (index < ip_ndx_ioctl_count) { 8746 ipip = &ip_ndx_ioctl_table[index]; 8747 if (ipip->ipi_cmd == ioc_cmd) { 8748 /* Found a match in the ndx table */ 8749 return (ipip); 8750 } 8751 } 8752 8753 /* Search the misc table */ 8754 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8755 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8756 if (ipip->ipi_cmd == ioc_cmd) 8757 /* Found a match in the misc table */ 8758 return (ipip); 8759 } 8760 8761 return (NULL); 8762 } 8763 8764 /* 8765 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8766 */ 8767 static boolean_t 8768 getset_ioctl_checks(mblk_t *mp) 8769 { 8770 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8771 mblk_t *mp1 = mp->b_cont; 8772 mod_ioc_prop_t *pioc; 8773 uint_t flags; 8774 uint_t pioc_size; 8775 8776 /* do sanity checks on various arguments */ 8777 if (mp1 == NULL || iocp->ioc_count == 0 || 8778 iocp->ioc_count == TRANSPARENT) { 8779 return (B_FALSE); 8780 } 8781 if (msgdsize(mp1) < iocp->ioc_count) { 8782 if (!pullupmsg(mp1, iocp->ioc_count)) 8783 return (B_FALSE); 8784 } 8785 8786 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8787 8788 /* sanity checks on mpr_valsize */ 8789 pioc_size = sizeof (mod_ioc_prop_t); 8790 if (pioc->mpr_valsize != 0) 8791 pioc_size += pioc->mpr_valsize - 1; 8792 8793 if (iocp->ioc_count != pioc_size) 8794 return (B_FALSE); 8795 8796 flags = pioc->mpr_flags; 8797 if (iocp->ioc_cmd == SIOCSETPROP) { 8798 /* 8799 * One can either reset the value to it's default value or 8800 * change the current value or append/remove the value from 8801 * a multi-valued properties. 8802 */ 8803 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8804 flags != MOD_PROP_ACTIVE && 8805 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8806 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8807 return (B_FALSE); 8808 } else { 8809 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8810 8811 /* 8812 * One can retrieve only one kind of property information 8813 * at a time. 8814 */ 8815 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8816 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8817 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8818 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8819 return (B_FALSE); 8820 } 8821 8822 return (B_TRUE); 8823 } 8824 8825 /* 8826 * process the SIOC{SET|GET}PROP ioctl's 8827 */ 8828 /* ARGSUSED */ 8829 static void 8830 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8831 { 8832 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8833 mblk_t *mp1 = mp->b_cont; 8834 mod_ioc_prop_t *pioc; 8835 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8836 ip_stack_t *ipst; 8837 icmp_stack_t *is; 8838 tcp_stack_t *tcps; 8839 sctp_stack_t *sctps; 8840 udp_stack_t *us; 8841 netstack_t *stack; 8842 void *cbarg; 8843 cred_t *cr; 8844 boolean_t set; 8845 int err; 8846 8847 ASSERT(q->q_next == NULL); 8848 ASSERT(CONN_Q(q)); 8849 8850 if (!getset_ioctl_checks(mp)) { 8851 miocnak(q, mp, 0, EINVAL); 8852 return; 8853 } 8854 ipst = CONNQ_TO_IPST(q); 8855 stack = ipst->ips_netstack; 8856 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8857 8858 switch (pioc->mpr_proto) { 8859 case MOD_PROTO_IP: 8860 case MOD_PROTO_IPV4: 8861 case MOD_PROTO_IPV6: 8862 ptbl = ipst->ips_propinfo_tbl; 8863 cbarg = ipst; 8864 break; 8865 case MOD_PROTO_RAWIP: 8866 is = stack->netstack_icmp; 8867 ptbl = is->is_propinfo_tbl; 8868 cbarg = is; 8869 break; 8870 case MOD_PROTO_TCP: 8871 tcps = stack->netstack_tcp; 8872 ptbl = tcps->tcps_propinfo_tbl; 8873 cbarg = tcps; 8874 break; 8875 case MOD_PROTO_UDP: 8876 us = stack->netstack_udp; 8877 ptbl = us->us_propinfo_tbl; 8878 cbarg = us; 8879 break; 8880 case MOD_PROTO_SCTP: 8881 sctps = stack->netstack_sctp; 8882 ptbl = sctps->sctps_propinfo_tbl; 8883 cbarg = sctps; 8884 break; 8885 default: 8886 miocnak(q, mp, 0, EINVAL); 8887 return; 8888 } 8889 8890 /* search for given property in respective protocol propinfo table */ 8891 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { 8892 if (strcmp(pinfo->mpi_name, pioc->mpr_name) == 0 && 8893 pinfo->mpi_proto == pioc->mpr_proto) 8894 break; 8895 } 8896 if (pinfo->mpi_name == NULL) { 8897 miocnak(q, mp, 0, ENOENT); 8898 return; 8899 } 8900 8901 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8902 if (set && pinfo->mpi_setf != NULL) { 8903 cr = msg_getcred(mp, NULL); 8904 if (cr == NULL) 8905 cr = iocp->ioc_cr; 8906 err = pinfo->mpi_setf(cbarg, cr, pinfo, pioc->mpr_ifname, 8907 pioc->mpr_val, pioc->mpr_flags); 8908 } else if (!set && pinfo->mpi_getf != NULL) { 8909 err = pinfo->mpi_getf(cbarg, pinfo, pioc->mpr_ifname, 8910 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8911 } else { 8912 err = EPERM; 8913 } 8914 8915 if (err != 0) { 8916 miocnak(q, mp, 0, err); 8917 } else { 8918 if (set) 8919 miocack(q, mp, 0, 0); 8920 else /* For get, we need to return back the data */ 8921 miocack(q, mp, iocp->ioc_count, 0); 8922 } 8923 } 8924 8925 /* 8926 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8927 * as several routing daemons have unfortunately used this 'unpublished' 8928 * but well-known ioctls. 8929 */ 8930 /* ARGSUSED */ 8931 static void 8932 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8933 { 8934 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8935 mblk_t *mp1 = mp->b_cont; 8936 char *pname, *pval, *buf; 8937 uint_t bufsize, proto; 8938 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8939 ip_stack_t *ipst; 8940 int err = 0; 8941 8942 ASSERT(CONN_Q(q)); 8943 ipst = CONNQ_TO_IPST(q); 8944 8945 if (iocp->ioc_count == 0 || mp1 == NULL) { 8946 miocnak(q, mp, 0, EINVAL); 8947 return; 8948 } 8949 8950 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8951 pval = buf = pname = (char *)mp1->b_rptr; 8952 bufsize = MBLKL(mp1); 8953 8954 if (strcmp(pname, "ip_forwarding") == 0) { 8955 pname = "forwarding"; 8956 proto = MOD_PROTO_IPV4; 8957 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8958 pname = "forwarding"; 8959 proto = MOD_PROTO_IPV6; 8960 } else { 8961 miocnak(q, mp, 0, EINVAL); 8962 return; 8963 } 8964 8965 ptbl = ipst->ips_propinfo_tbl; 8966 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { 8967 if (strcmp(pinfo->mpi_name, pname) == 0 && 8968 pinfo->mpi_proto == proto) 8969 break; 8970 } 8971 8972 ASSERT(pinfo->mpi_name != NULL); 8973 8974 switch (iocp->ioc_cmd) { 8975 case ND_GET: 8976 if ((err = pinfo->mpi_getf(ipst, pinfo, NULL, buf, bufsize, 8977 0)) == 0) { 8978 miocack(q, mp, iocp->ioc_count, 0); 8979 return; 8980 } 8981 break; 8982 case ND_SET: 8983 /* 8984 * buffer will have property name and value in the following 8985 * format, 8986 * <property name>'\0'<property value>'\0', extract them; 8987 */ 8988 while (*pval++) 8989 noop; 8990 8991 if (!*pval || pval >= (char *)mp1->b_wptr) { 8992 err = EINVAL; 8993 } else if ((err = pinfo->mpi_setf(ipst, NULL, pinfo, NULL, 8994 pval, 0)) == 0) { 8995 miocack(q, mp, 0, 0); 8996 return; 8997 } 8998 break; 8999 default: 9000 err = EINVAL; 9001 break; 9002 } 9003 miocnak(q, mp, 0, err); 9004 } 9005 9006 /* 9007 * Wrapper function for resuming deferred ioctl processing 9008 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9009 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9010 */ 9011 /* ARGSUSED */ 9012 void 9013 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9014 void *dummy_arg) 9015 { 9016 ip_sioctl_copyin_setup(q, mp); 9017 } 9018 9019 /* 9020 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 9021 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9022 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9023 * We establish here the size of the block to be copied in. mi_copyin 9024 * arranges for this to happen, an processing continues in ip_wput_nondata with 9025 * an M_IOCDATA message. 9026 */ 9027 void 9028 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9029 { 9030 int copyin_size; 9031 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9032 ip_ioctl_cmd_t *ipip; 9033 cred_t *cr; 9034 ip_stack_t *ipst; 9035 9036 if (CONN_Q(q)) 9037 ipst = CONNQ_TO_IPST(q); 9038 else 9039 ipst = ILLQ_TO_IPST(q); 9040 9041 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9042 if (ipip == NULL) { 9043 /* 9044 * The ioctl is not one we understand or own. 9045 * Pass it along to be processed down stream, 9046 * if this is a module instance of IP, else nak 9047 * the ioctl. 9048 */ 9049 if (q->q_next == NULL) { 9050 goto nak; 9051 } else { 9052 putnext(q, mp); 9053 return; 9054 } 9055 } 9056 9057 /* 9058 * If this is deferred, then we will do all the checks when we 9059 * come back. 9060 */ 9061 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9062 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9063 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9064 return; 9065 } 9066 9067 /* 9068 * Only allow a very small subset of IP ioctls on this stream if 9069 * IP is a module and not a driver. Allowing ioctls to be processed 9070 * in this case may cause assert failures or data corruption. 9071 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9072 * ioctls allowed on an IP module stream, after which this stream 9073 * normally becomes a multiplexor (at which time the stream head 9074 * will fail all ioctls). 9075 */ 9076 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9077 goto nak; 9078 } 9079 9080 /* Make sure we have ioctl data to process. */ 9081 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9082 goto nak; 9083 9084 /* 9085 * Prefer dblk credential over ioctl credential; some synthesized 9086 * ioctls have kcred set because there's no way to crhold() 9087 * a credential in some contexts. (ioc_cr is not crfree() by 9088 * the framework; the caller of ioctl needs to hold the reference 9089 * for the duration of the call). 9090 */ 9091 cr = msg_getcred(mp, NULL); 9092 if (cr == NULL) 9093 cr = iocp->ioc_cr; 9094 9095 /* Make sure normal users don't send down privileged ioctls */ 9096 if ((ipip->ipi_flags & IPI_PRIV) && 9097 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9098 /* We checked the privilege earlier but log it here */ 9099 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9100 return; 9101 } 9102 9103 /* 9104 * The ioctl command tables can only encode fixed length 9105 * ioctl data. If the length is variable, the table will 9106 * encode the length as zero. Such special cases are handled 9107 * below in the switch. 9108 */ 9109 if (ipip->ipi_copyin_size != 0) { 9110 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9111 return; 9112 } 9113 9114 switch (iocp->ioc_cmd) { 9115 case O_SIOCGIFCONF: 9116 case SIOCGIFCONF: 9117 /* 9118 * This IOCTL is hilarious. See comments in 9119 * ip_sioctl_get_ifconf for the story. 9120 */ 9121 if (iocp->ioc_count == TRANSPARENT) 9122 copyin_size = SIZEOF_STRUCT(ifconf, 9123 iocp->ioc_flag); 9124 else 9125 copyin_size = iocp->ioc_count; 9126 mi_copyin(q, mp, NULL, copyin_size); 9127 return; 9128 9129 case O_SIOCGLIFCONF: 9130 case SIOCGLIFCONF: 9131 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9132 mi_copyin(q, mp, NULL, copyin_size); 9133 return; 9134 9135 case SIOCGLIFSRCOF: 9136 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9137 mi_copyin(q, mp, NULL, copyin_size); 9138 return; 9139 9140 case SIOCGIP6ADDRPOLICY: 9141 ip_sioctl_ip6addrpolicy(q, mp); 9142 ip6_asp_table_refrele(ipst); 9143 return; 9144 9145 case SIOCSIP6ADDRPOLICY: 9146 ip_sioctl_ip6addrpolicy(q, mp); 9147 return; 9148 9149 case SIOCGDSTINFO: 9150 ip_sioctl_dstinfo(q, mp); 9151 ip6_asp_table_refrele(ipst); 9152 return; 9153 9154 case ND_SET: 9155 case ND_GET: 9156 ip_process_legacy_nddprop(q, mp); 9157 return; 9158 9159 case SIOCSETPROP: 9160 case SIOCGETPROP: 9161 ip_sioctl_getsetprop(q, mp); 9162 return; 9163 9164 case I_PLINK: 9165 case I_PUNLINK: 9166 case I_LINK: 9167 case I_UNLINK: 9168 /* 9169 * We treat non-persistent link similarly as the persistent 9170 * link case, in terms of plumbing/unplumbing, as well as 9171 * dynamic re-plumbing events indicator. See comments 9172 * in ip_sioctl_plink() for more. 9173 * 9174 * Request can be enqueued in the 'ipsq' while waiting 9175 * to become exclusive. So bump up the conn ref. 9176 */ 9177 if (CONN_Q(q)) 9178 CONN_INC_REF(Q_TO_CONN(q)); 9179 ip_sioctl_plink(NULL, q, mp, NULL); 9180 return; 9181 9182 case IP_IOCTL: 9183 ip_wput_ioctl(q, mp); 9184 return; 9185 9186 case SIOCILB: 9187 /* The ioctl length varies depending on the ILB command. */ 9188 copyin_size = iocp->ioc_count; 9189 if (copyin_size < sizeof (ilb_cmd_t)) 9190 goto nak; 9191 mi_copyin(q, mp, NULL, copyin_size); 9192 return; 9193 9194 default: 9195 cmn_err(CE_PANIC, "should not happen "); 9196 } 9197 nak: 9198 if (mp->b_cont != NULL) { 9199 freemsg(mp->b_cont); 9200 mp->b_cont = NULL; 9201 } 9202 iocp->ioc_error = EINVAL; 9203 mp->b_datap->db_type = M_IOCNAK; 9204 iocp->ioc_count = 0; 9205 qreply(q, mp); 9206 } 9207 9208 static void 9209 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9210 { 9211 struct arpreq *ar; 9212 struct xarpreq *xar; 9213 mblk_t *tmp; 9214 struct iocblk *iocp; 9215 int x_arp_ioctl = B_FALSE; 9216 int *flagsp; 9217 char *storage = NULL; 9218 9219 ASSERT(ill != NULL); 9220 9221 iocp = (struct iocblk *)mp->b_rptr; 9222 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9223 9224 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9225 if ((iocp->ioc_cmd == SIOCGXARP) || 9226 (iocp->ioc_cmd == SIOCSXARP)) { 9227 x_arp_ioctl = B_TRUE; 9228 xar = (struct xarpreq *)tmp->b_rptr; 9229 flagsp = &xar->xarp_flags; 9230 storage = xar->xarp_ha.sdl_data; 9231 } else { 9232 ar = (struct arpreq *)tmp->b_rptr; 9233 flagsp = &ar->arp_flags; 9234 storage = ar->arp_ha.sa_data; 9235 } 9236 9237 /* 9238 * We're done if this is not an SIOCG{X}ARP 9239 */ 9240 if (x_arp_ioctl) { 9241 storage += ill_xarp_info(&xar->xarp_ha, ill); 9242 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9243 sizeof (xar->xarp_ha.sdl_data)) { 9244 iocp->ioc_error = EINVAL; 9245 return; 9246 } 9247 } 9248 *flagsp = ATF_INUSE; 9249 /* 9250 * If /sbin/arp told us we are the authority using the "permanent" 9251 * flag, or if this is one of my addresses print "permanent" 9252 * in the /sbin/arp output. 9253 */ 9254 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9255 *flagsp |= ATF_AUTHORITY; 9256 if (flags & NCE_F_NONUD) 9257 *flagsp |= ATF_PERM; /* not subject to aging */ 9258 if (flags & NCE_F_PUBLISH) 9259 *flagsp |= ATF_PUBL; 9260 if (hwaddr != NULL) { 9261 *flagsp |= ATF_COM; 9262 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9263 } 9264 } 9265 9266 /* 9267 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9268 * interface) create the next available logical interface for this 9269 * physical interface. 9270 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9271 * ipif with the specified name. 9272 * 9273 * If the address family is not AF_UNSPEC then set the address as well. 9274 * 9275 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9276 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9277 * 9278 * Executed as a writer on the ill. 9279 * So no lock is needed to traverse the ipif chain, or examine the 9280 * phyint flags. 9281 */ 9282 /* ARGSUSED */ 9283 int 9284 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9285 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9286 { 9287 mblk_t *mp1; 9288 struct lifreq *lifr; 9289 boolean_t isv6; 9290 boolean_t exists; 9291 char *name; 9292 char *endp; 9293 char *cp; 9294 int namelen; 9295 ipif_t *ipif; 9296 long id; 9297 ipsq_t *ipsq; 9298 ill_t *ill; 9299 sin_t *sin; 9300 int err = 0; 9301 boolean_t found_sep = B_FALSE; 9302 conn_t *connp; 9303 zoneid_t zoneid; 9304 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9305 9306 ASSERT(q->q_next == NULL); 9307 ip1dbg(("ip_sioctl_addif\n")); 9308 /* Existence of mp1 has been checked in ip_wput_nondata */ 9309 mp1 = mp->b_cont->b_cont; 9310 /* 9311 * Null terminate the string to protect against buffer 9312 * overrun. String was generated by user code and may not 9313 * be trusted. 9314 */ 9315 lifr = (struct lifreq *)mp1->b_rptr; 9316 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9317 name = lifr->lifr_name; 9318 ASSERT(CONN_Q(q)); 9319 connp = Q_TO_CONN(q); 9320 isv6 = (connp->conn_family == AF_INET6); 9321 zoneid = connp->conn_zoneid; 9322 namelen = mi_strlen(name); 9323 if (namelen == 0) 9324 return (EINVAL); 9325 9326 exists = B_FALSE; 9327 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9328 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9329 /* 9330 * Allow creating lo0 using SIOCLIFADDIF. 9331 * can't be any other writer thread. So can pass null below 9332 * for the last 4 args to ipif_lookup_name. 9333 */ 9334 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9335 &exists, isv6, zoneid, ipst); 9336 /* Prevent any further action */ 9337 if (ipif == NULL) { 9338 return (ENOBUFS); 9339 } else if (!exists) { 9340 /* We created the ipif now and as writer */ 9341 ipif_refrele(ipif); 9342 return (0); 9343 } else { 9344 ill = ipif->ipif_ill; 9345 ill_refhold(ill); 9346 ipif_refrele(ipif); 9347 } 9348 } else { 9349 /* Look for a colon in the name. */ 9350 endp = &name[namelen]; 9351 for (cp = endp; --cp > name; ) { 9352 if (*cp == IPIF_SEPARATOR_CHAR) { 9353 found_sep = B_TRUE; 9354 /* 9355 * Reject any non-decimal aliases for plumbing 9356 * of logical interfaces. Aliases with leading 9357 * zeroes are also rejected as they introduce 9358 * ambiguity in the naming of the interfaces. 9359 * Comparing with "0" takes care of all such 9360 * cases. 9361 */ 9362 if ((strncmp("0", cp+1, 1)) == 0) 9363 return (EINVAL); 9364 9365 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9366 id <= 0 || *endp != '\0') { 9367 return (EINVAL); 9368 } 9369 *cp = '\0'; 9370 break; 9371 } 9372 } 9373 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9374 if (found_sep) 9375 *cp = IPIF_SEPARATOR_CHAR; 9376 if (ill == NULL) 9377 return (ENXIO); 9378 } 9379 9380 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9381 B_TRUE); 9382 9383 /* 9384 * Release the refhold due to the lookup, now that we are excl 9385 * or we are just returning 9386 */ 9387 ill_refrele(ill); 9388 9389 if (ipsq == NULL) 9390 return (EINPROGRESS); 9391 9392 /* We are now exclusive on the IPSQ */ 9393 ASSERT(IAM_WRITER_ILL(ill)); 9394 9395 if (found_sep) { 9396 /* Now see if there is an IPIF with this unit number. */ 9397 for (ipif = ill->ill_ipif; ipif != NULL; 9398 ipif = ipif->ipif_next) { 9399 if (ipif->ipif_id == id) { 9400 err = EEXIST; 9401 goto done; 9402 } 9403 } 9404 } 9405 9406 /* 9407 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9408 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9409 * instead. 9410 */ 9411 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9412 B_TRUE, B_TRUE, &err)) == NULL) { 9413 goto done; 9414 } 9415 9416 /* Return created name with ioctl */ 9417 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9418 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9419 ip1dbg(("created %s\n", lifr->lifr_name)); 9420 9421 /* Set address */ 9422 sin = (sin_t *)&lifr->lifr_addr; 9423 if (sin->sin_family != AF_UNSPEC) { 9424 err = ip_sioctl_addr(ipif, sin, q, mp, 9425 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9426 } 9427 9428 done: 9429 ipsq_exit(ipsq); 9430 return (err); 9431 } 9432 9433 /* 9434 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9435 * interface) delete it based on the IP address (on this physical interface). 9436 * Otherwise delete it based on the ipif_id. 9437 * Also, special handling to allow a removeif of lo0. 9438 */ 9439 /* ARGSUSED */ 9440 int 9441 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9442 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9443 { 9444 conn_t *connp; 9445 ill_t *ill = ipif->ipif_ill; 9446 boolean_t success; 9447 ip_stack_t *ipst; 9448 9449 ipst = CONNQ_TO_IPST(q); 9450 9451 ASSERT(q->q_next == NULL); 9452 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9453 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9454 ASSERT(IAM_WRITER_IPIF(ipif)); 9455 9456 connp = Q_TO_CONN(q); 9457 /* 9458 * Special case for unplumbing lo0 (the loopback physical interface). 9459 * If unplumbing lo0, the incoming address structure has been 9460 * initialized to all zeros. When unplumbing lo0, all its logical 9461 * interfaces must be removed too. 9462 * 9463 * Note that this interface may be called to remove a specific 9464 * loopback logical interface (eg, lo0:1). But in that case 9465 * ipif->ipif_id != 0 so that the code path for that case is the 9466 * same as any other interface (meaning it skips the code directly 9467 * below). 9468 */ 9469 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9470 if (sin->sin_family == AF_UNSPEC && 9471 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9472 /* 9473 * Mark it condemned. No new ref. will be made to ill. 9474 */ 9475 mutex_enter(&ill->ill_lock); 9476 ill->ill_state_flags |= ILL_CONDEMNED; 9477 for (ipif = ill->ill_ipif; ipif != NULL; 9478 ipif = ipif->ipif_next) { 9479 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9480 } 9481 mutex_exit(&ill->ill_lock); 9482 9483 ipif = ill->ill_ipif; 9484 /* unplumb the loopback interface */ 9485 ill_delete(ill); 9486 mutex_enter(&connp->conn_lock); 9487 mutex_enter(&ill->ill_lock); 9488 9489 /* Are any references to this ill active */ 9490 if (ill_is_freeable(ill)) { 9491 mutex_exit(&ill->ill_lock); 9492 mutex_exit(&connp->conn_lock); 9493 ill_delete_tail(ill); 9494 mi_free(ill); 9495 return (0); 9496 } 9497 success = ipsq_pending_mp_add(connp, ipif, 9498 CONNP_TO_WQ(connp), mp, ILL_FREE); 9499 mutex_exit(&connp->conn_lock); 9500 mutex_exit(&ill->ill_lock); 9501 if (success) 9502 return (EINPROGRESS); 9503 else 9504 return (EINTR); 9505 } 9506 } 9507 9508 if (ipif->ipif_id == 0) { 9509 ipsq_t *ipsq; 9510 9511 /* Find based on address */ 9512 if (ipif->ipif_isv6) { 9513 sin6_t *sin6; 9514 9515 if (sin->sin_family != AF_INET6) 9516 return (EAFNOSUPPORT); 9517 9518 sin6 = (sin6_t *)sin; 9519 /* We are a writer, so we should be able to lookup */ 9520 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9521 ipst); 9522 } else { 9523 if (sin->sin_family != AF_INET) 9524 return (EAFNOSUPPORT); 9525 9526 /* We are a writer, so we should be able to lookup */ 9527 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9528 ipst); 9529 } 9530 if (ipif == NULL) { 9531 return (EADDRNOTAVAIL); 9532 } 9533 9534 /* 9535 * It is possible for a user to send an SIOCLIFREMOVEIF with 9536 * lifr_name of the physical interface but with an ip address 9537 * lifr_addr of a logical interface plumbed over it. 9538 * So update ipx_current_ipif now that ipif points to the 9539 * correct one. 9540 */ 9541 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9542 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9543 9544 /* This is a writer */ 9545 ipif_refrele(ipif); 9546 } 9547 9548 /* 9549 * Can not delete instance zero since it is tied to the ill. 9550 */ 9551 if (ipif->ipif_id == 0) 9552 return (EBUSY); 9553 9554 mutex_enter(&ill->ill_lock); 9555 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9556 mutex_exit(&ill->ill_lock); 9557 9558 ipif_free(ipif); 9559 9560 mutex_enter(&connp->conn_lock); 9561 mutex_enter(&ill->ill_lock); 9562 9563 /* Are any references to this ipif active */ 9564 if (ipif_is_freeable(ipif)) { 9565 mutex_exit(&ill->ill_lock); 9566 mutex_exit(&connp->conn_lock); 9567 ipif_non_duplicate(ipif); 9568 (void) ipif_down_tail(ipif); 9569 ipif_free_tail(ipif); /* frees ipif */ 9570 return (0); 9571 } 9572 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9573 IPIF_FREE); 9574 mutex_exit(&ill->ill_lock); 9575 mutex_exit(&connp->conn_lock); 9576 if (success) 9577 return (EINPROGRESS); 9578 else 9579 return (EINTR); 9580 } 9581 9582 /* 9583 * Restart the removeif ioctl. The refcnt has gone down to 0. 9584 * The ipif is already condemned. So can't find it thru lookups. 9585 */ 9586 /* ARGSUSED */ 9587 int 9588 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9589 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9590 { 9591 ill_t *ill = ipif->ipif_ill; 9592 9593 ASSERT(IAM_WRITER_IPIF(ipif)); 9594 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9595 9596 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9597 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9598 9599 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9600 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9601 ill_delete_tail(ill); 9602 mi_free(ill); 9603 return (0); 9604 } 9605 9606 ipif_non_duplicate(ipif); 9607 (void) ipif_down_tail(ipif); 9608 ipif_free_tail(ipif); 9609 9610 return (0); 9611 } 9612 9613 /* 9614 * Set the local interface address using the given prefix and ill_token. 9615 */ 9616 /* ARGSUSED */ 9617 int 9618 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9619 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9620 { 9621 int err; 9622 in6_addr_t v6addr; 9623 sin6_t *sin6; 9624 ill_t *ill; 9625 int i; 9626 9627 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9628 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9629 9630 ASSERT(IAM_WRITER_IPIF(ipif)); 9631 9632 if (!ipif->ipif_isv6) 9633 return (EINVAL); 9634 9635 if (sin->sin_family != AF_INET6) 9636 return (EAFNOSUPPORT); 9637 9638 sin6 = (sin6_t *)sin; 9639 v6addr = sin6->sin6_addr; 9640 ill = ipif->ipif_ill; 9641 9642 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9643 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9644 return (EADDRNOTAVAIL); 9645 9646 for (i = 0; i < 4; i++) 9647 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9648 9649 err = ip_sioctl_addr(ipif, sin, q, mp, 9650 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9651 return (err); 9652 } 9653 9654 /* 9655 * Restart entry point to restart the address set operation after the 9656 * refcounts have dropped to zero. 9657 */ 9658 /* ARGSUSED */ 9659 int 9660 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9661 ip_ioctl_cmd_t *ipip, void *ifreq) 9662 { 9663 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9664 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9665 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9666 } 9667 9668 /* 9669 * Set the local interface address. 9670 * Allow an address of all zero when the interface is down. 9671 */ 9672 /* ARGSUSED */ 9673 int 9674 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9675 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9676 { 9677 int err = 0; 9678 in6_addr_t v6addr; 9679 boolean_t need_up = B_FALSE; 9680 9681 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9682 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9683 9684 ASSERT(IAM_WRITER_IPIF(ipif)); 9685 9686 if (ipif->ipif_isv6) { 9687 sin6_t *sin6; 9688 ill_t *ill; 9689 phyint_t *phyi; 9690 9691 if (sin->sin_family != AF_INET6) 9692 return (EAFNOSUPPORT); 9693 9694 sin6 = (sin6_t *)sin; 9695 v6addr = sin6->sin6_addr; 9696 ill = ipif->ipif_ill; 9697 phyi = ill->ill_phyint; 9698 9699 /* 9700 * Enforce that true multicast interfaces have a link-local 9701 * address for logical unit 0. 9702 * 9703 * However for those ipif's for which link-local address was 9704 * not created by default, also allow setting :: as the address. 9705 * This scenario would arise, when we delete an address on ipif 9706 * with logical unit 0, we would want to set :: as the address. 9707 */ 9708 if (ipif->ipif_id == 0 && 9709 (ill->ill_flags & ILLF_MULTICAST) && 9710 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9711 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9712 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9713 9714 /* 9715 * if default link-local was not created by kernel for 9716 * this ill, allow setting :: as the address on ipif:0. 9717 */ 9718 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9719 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9720 return (EADDRNOTAVAIL); 9721 } else { 9722 return (EADDRNOTAVAIL); 9723 } 9724 } 9725 9726 /* 9727 * up interfaces shouldn't have the unspecified address 9728 * unless they also have the IPIF_NOLOCAL flags set and 9729 * have a subnet assigned. 9730 */ 9731 if ((ipif->ipif_flags & IPIF_UP) && 9732 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9733 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9734 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9735 return (EADDRNOTAVAIL); 9736 } 9737 9738 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9739 return (EADDRNOTAVAIL); 9740 } else { 9741 ipaddr_t addr; 9742 9743 if (sin->sin_family != AF_INET) 9744 return (EAFNOSUPPORT); 9745 9746 addr = sin->sin_addr.s_addr; 9747 9748 /* Allow INADDR_ANY as the local address. */ 9749 if (addr != INADDR_ANY && 9750 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9751 return (EADDRNOTAVAIL); 9752 9753 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9754 } 9755 9756 /* 9757 * Even if there is no change we redo things just to rerun 9758 * ipif_set_default. 9759 */ 9760 if (ipif->ipif_flags & IPIF_UP) { 9761 /* 9762 * Setting a new local address, make sure 9763 * we have net and subnet bcast ire's for 9764 * the old address if we need them. 9765 */ 9766 /* 9767 * If the interface is already marked up, 9768 * we call ipif_down which will take care 9769 * of ditching any IREs that have been set 9770 * up based on the old interface address. 9771 */ 9772 err = ipif_logical_down(ipif, q, mp); 9773 if (err == EINPROGRESS) 9774 return (err); 9775 (void) ipif_down_tail(ipif); 9776 need_up = 1; 9777 } 9778 9779 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9780 return (err); 9781 } 9782 9783 int 9784 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9785 boolean_t need_up) 9786 { 9787 in6_addr_t v6addr; 9788 in6_addr_t ov6addr; 9789 ipaddr_t addr; 9790 sin6_t *sin6; 9791 int sinlen; 9792 int err = 0; 9793 ill_t *ill = ipif->ipif_ill; 9794 boolean_t need_dl_down; 9795 boolean_t need_arp_down; 9796 struct iocblk *iocp; 9797 9798 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9799 9800 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9801 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9802 ASSERT(IAM_WRITER_IPIF(ipif)); 9803 9804 /* Must cancel any pending timer before taking the ill_lock */ 9805 if (ipif->ipif_recovery_id != 0) 9806 (void) untimeout(ipif->ipif_recovery_id); 9807 ipif->ipif_recovery_id = 0; 9808 9809 if (ipif->ipif_isv6) { 9810 sin6 = (sin6_t *)sin; 9811 v6addr = sin6->sin6_addr; 9812 sinlen = sizeof (struct sockaddr_in6); 9813 } else { 9814 addr = sin->sin_addr.s_addr; 9815 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9816 sinlen = sizeof (struct sockaddr_in); 9817 } 9818 mutex_enter(&ill->ill_lock); 9819 ov6addr = ipif->ipif_v6lcl_addr; 9820 ipif->ipif_v6lcl_addr = v6addr; 9821 sctp_update_ipif_addr(ipif, ov6addr); 9822 ipif->ipif_addr_ready = 0; 9823 9824 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9825 9826 /* 9827 * If the interface was previously marked as a duplicate, then since 9828 * we've now got a "new" address, it should no longer be considered a 9829 * duplicate -- even if the "new" address is the same as the old one. 9830 * Note that if all ipifs are down, we may have a pending ARP down 9831 * event to handle. This is because we want to recover from duplicates 9832 * and thus delay tearing down ARP until the duplicates have been 9833 * removed or disabled. 9834 */ 9835 need_dl_down = need_arp_down = B_FALSE; 9836 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9837 need_arp_down = !need_up; 9838 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9839 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9840 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9841 need_dl_down = B_TRUE; 9842 } 9843 } 9844 9845 ipif_set_default(ipif); 9846 9847 /* 9848 * If we've just manually set the IPv6 link-local address (0th ipif), 9849 * tag the ill so that future updates to the interface ID don't result 9850 * in this address getting automatically reconfigured from under the 9851 * administrator. 9852 */ 9853 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9854 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9855 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9856 ill->ill_manual_linklocal = 1; 9857 } 9858 9859 /* 9860 * When publishing an interface address change event, we only notify 9861 * the event listeners of the new address. It is assumed that if they 9862 * actively care about the addresses assigned that they will have 9863 * already discovered the previous address assigned (if there was one.) 9864 * 9865 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9866 */ 9867 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9868 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9869 NE_ADDRESS_CHANGE, sin, sinlen); 9870 } 9871 9872 mutex_exit(&ill->ill_lock); 9873 9874 if (need_up) { 9875 /* 9876 * Now bring the interface back up. If this 9877 * is the only IPIF for the ILL, ipif_up 9878 * will have to re-bind to the device, so 9879 * we may get back EINPROGRESS, in which 9880 * case, this IOCTL will get completed in 9881 * ip_rput_dlpi when we see the DL_BIND_ACK. 9882 */ 9883 err = ipif_up(ipif, q, mp); 9884 } else { 9885 /* Perhaps ilgs should use this ill */ 9886 update_conn_ill(NULL, ill->ill_ipst); 9887 } 9888 9889 if (need_dl_down) 9890 ill_dl_down(ill); 9891 9892 if (need_arp_down && !ill->ill_isv6) 9893 (void) ipif_arp_down(ipif); 9894 9895 /* 9896 * The default multicast interface might have changed (for 9897 * instance if the IPv6 scope of the address changed) 9898 */ 9899 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9900 9901 return (err); 9902 } 9903 9904 /* 9905 * Restart entry point to restart the address set operation after the 9906 * refcounts have dropped to zero. 9907 */ 9908 /* ARGSUSED */ 9909 int 9910 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9911 ip_ioctl_cmd_t *ipip, void *ifreq) 9912 { 9913 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9914 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9915 ASSERT(IAM_WRITER_IPIF(ipif)); 9916 (void) ipif_down_tail(ipif); 9917 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9918 } 9919 9920 /* ARGSUSED */ 9921 int 9922 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9923 ip_ioctl_cmd_t *ipip, void *if_req) 9924 { 9925 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9926 struct lifreq *lifr = (struct lifreq *)if_req; 9927 9928 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9929 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9930 /* 9931 * The net mask and address can't change since we have a 9932 * reference to the ipif. So no lock is necessary. 9933 */ 9934 if (ipif->ipif_isv6) { 9935 *sin6 = sin6_null; 9936 sin6->sin6_family = AF_INET6; 9937 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9938 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9939 lifr->lifr_addrlen = 9940 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9941 } else { 9942 *sin = sin_null; 9943 sin->sin_family = AF_INET; 9944 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9945 if (ipip->ipi_cmd_type == LIF_CMD) { 9946 lifr->lifr_addrlen = 9947 ip_mask_to_plen(ipif->ipif_net_mask); 9948 } 9949 } 9950 return (0); 9951 } 9952 9953 /* 9954 * Set the destination address for a pt-pt interface. 9955 */ 9956 /* ARGSUSED */ 9957 int 9958 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9959 ip_ioctl_cmd_t *ipip, void *if_req) 9960 { 9961 int err = 0; 9962 in6_addr_t v6addr; 9963 boolean_t need_up = B_FALSE; 9964 9965 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9966 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9967 ASSERT(IAM_WRITER_IPIF(ipif)); 9968 9969 if (ipif->ipif_isv6) { 9970 sin6_t *sin6; 9971 9972 if (sin->sin_family != AF_INET6) 9973 return (EAFNOSUPPORT); 9974 9975 sin6 = (sin6_t *)sin; 9976 v6addr = sin6->sin6_addr; 9977 9978 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9979 return (EADDRNOTAVAIL); 9980 } else { 9981 ipaddr_t addr; 9982 9983 if (sin->sin_family != AF_INET) 9984 return (EAFNOSUPPORT); 9985 9986 addr = sin->sin_addr.s_addr; 9987 if (addr != INADDR_ANY && 9988 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 9989 return (EADDRNOTAVAIL); 9990 } 9991 9992 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9993 } 9994 9995 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 9996 return (0); /* No change */ 9997 9998 if (ipif->ipif_flags & IPIF_UP) { 9999 /* 10000 * If the interface is already marked up, 10001 * we call ipif_down which will take care 10002 * of ditching any IREs that have been set 10003 * up based on the old pp dst address. 10004 */ 10005 err = ipif_logical_down(ipif, q, mp); 10006 if (err == EINPROGRESS) 10007 return (err); 10008 (void) ipif_down_tail(ipif); 10009 need_up = B_TRUE; 10010 } 10011 /* 10012 * could return EINPROGRESS. If so ioctl will complete in 10013 * ip_rput_dlpi_writer 10014 */ 10015 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10016 return (err); 10017 } 10018 10019 static int 10020 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10021 boolean_t need_up) 10022 { 10023 in6_addr_t v6addr; 10024 ill_t *ill = ipif->ipif_ill; 10025 int err = 0; 10026 boolean_t need_dl_down; 10027 boolean_t need_arp_down; 10028 10029 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10030 ipif->ipif_id, (void *)ipif)); 10031 10032 /* Must cancel any pending timer before taking the ill_lock */ 10033 if (ipif->ipif_recovery_id != 0) 10034 (void) untimeout(ipif->ipif_recovery_id); 10035 ipif->ipif_recovery_id = 0; 10036 10037 if (ipif->ipif_isv6) { 10038 sin6_t *sin6; 10039 10040 sin6 = (sin6_t *)sin; 10041 v6addr = sin6->sin6_addr; 10042 } else { 10043 ipaddr_t addr; 10044 10045 addr = sin->sin_addr.s_addr; 10046 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10047 } 10048 mutex_enter(&ill->ill_lock); 10049 /* Set point to point destination address. */ 10050 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10051 /* 10052 * Allow this as a means of creating logical 10053 * pt-pt interfaces on top of e.g. an Ethernet. 10054 * XXX Undocumented HACK for testing. 10055 * pt-pt interfaces are created with NUD disabled. 10056 */ 10057 ipif->ipif_flags |= IPIF_POINTOPOINT; 10058 ipif->ipif_flags &= ~IPIF_BROADCAST; 10059 if (ipif->ipif_isv6) 10060 ill->ill_flags |= ILLF_NONUD; 10061 } 10062 10063 /* 10064 * If the interface was previously marked as a duplicate, then since 10065 * we've now got a "new" address, it should no longer be considered a 10066 * duplicate -- even if the "new" address is the same as the old one. 10067 * Note that if all ipifs are down, we may have a pending ARP down 10068 * event to handle. 10069 */ 10070 need_dl_down = need_arp_down = B_FALSE; 10071 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10072 need_arp_down = !need_up; 10073 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10074 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10075 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10076 need_dl_down = B_TRUE; 10077 } 10078 } 10079 10080 /* 10081 * If we've just manually set the IPv6 destination link-local address 10082 * (0th ipif), tag the ill so that future updates to the destination 10083 * interface ID (as can happen with interfaces over IP tunnels) don't 10084 * result in this address getting automatically reconfigured from 10085 * under the administrator. 10086 */ 10087 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10088 ill->ill_manual_dst_linklocal = 1; 10089 10090 /* Set the new address. */ 10091 ipif->ipif_v6pp_dst_addr = v6addr; 10092 /* Make sure subnet tracks pp_dst */ 10093 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10094 mutex_exit(&ill->ill_lock); 10095 10096 if (need_up) { 10097 /* 10098 * Now bring the interface back up. If this 10099 * is the only IPIF for the ILL, ipif_up 10100 * will have to re-bind to the device, so 10101 * we may get back EINPROGRESS, in which 10102 * case, this IOCTL will get completed in 10103 * ip_rput_dlpi when we see the DL_BIND_ACK. 10104 */ 10105 err = ipif_up(ipif, q, mp); 10106 } 10107 10108 if (need_dl_down) 10109 ill_dl_down(ill); 10110 if (need_arp_down && !ipif->ipif_isv6) 10111 (void) ipif_arp_down(ipif); 10112 10113 return (err); 10114 } 10115 10116 /* 10117 * Restart entry point to restart the dstaddress set operation after the 10118 * refcounts have dropped to zero. 10119 */ 10120 /* ARGSUSED */ 10121 int 10122 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10123 ip_ioctl_cmd_t *ipip, void *ifreq) 10124 { 10125 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10126 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10127 (void) ipif_down_tail(ipif); 10128 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10129 } 10130 10131 /* ARGSUSED */ 10132 int 10133 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10134 ip_ioctl_cmd_t *ipip, void *if_req) 10135 { 10136 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10137 10138 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10139 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10140 /* 10141 * Get point to point destination address. The addresses can't 10142 * change since we hold a reference to the ipif. 10143 */ 10144 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10145 return (EADDRNOTAVAIL); 10146 10147 if (ipif->ipif_isv6) { 10148 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10149 *sin6 = sin6_null; 10150 sin6->sin6_family = AF_INET6; 10151 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10152 } else { 10153 *sin = sin_null; 10154 sin->sin_family = AF_INET; 10155 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10156 } 10157 return (0); 10158 } 10159 10160 /* 10161 * Check which flags will change by the given flags being set 10162 * silently ignore flags which userland is not allowed to control. 10163 * (Because these flags may change between SIOCGLIFFLAGS and 10164 * SIOCSLIFFLAGS, and that's outside of userland's control, 10165 * we need to silently ignore them rather than fail.) 10166 */ 10167 static void 10168 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10169 uint64_t *offp) 10170 { 10171 ill_t *ill = ipif->ipif_ill; 10172 phyint_t *phyi = ill->ill_phyint; 10173 uint64_t cantchange_flags, intf_flags; 10174 uint64_t turn_on, turn_off; 10175 10176 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10177 cantchange_flags = IFF_CANTCHANGE; 10178 if (IS_IPMP(ill)) 10179 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10180 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10181 turn_off = intf_flags & turn_on; 10182 turn_on ^= turn_off; 10183 *onp = turn_on; 10184 *offp = turn_off; 10185 } 10186 10187 /* 10188 * Set interface flags. Many flags require special handling (e.g., 10189 * bringing the interface down); see below for details. 10190 * 10191 * NOTE : We really don't enforce that ipif_id zero should be used 10192 * for setting any flags other than IFF_LOGINT_FLAGS. This 10193 * is because applications generally does SICGLIFFLAGS and 10194 * ORs in the new flags (that affects the logical) and does a 10195 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10196 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10197 * flags that will be turned on is correct with respect to 10198 * ipif_id 0. For backward compatibility reasons, it is not done. 10199 */ 10200 /* ARGSUSED */ 10201 int 10202 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10203 ip_ioctl_cmd_t *ipip, void *if_req) 10204 { 10205 uint64_t turn_on; 10206 uint64_t turn_off; 10207 int err = 0; 10208 phyint_t *phyi; 10209 ill_t *ill; 10210 conn_t *connp; 10211 uint64_t intf_flags; 10212 boolean_t phyint_flags_modified = B_FALSE; 10213 uint64_t flags; 10214 struct ifreq *ifr; 10215 struct lifreq *lifr; 10216 boolean_t set_linklocal = B_FALSE; 10217 10218 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10219 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10220 10221 ASSERT(IAM_WRITER_IPIF(ipif)); 10222 10223 ill = ipif->ipif_ill; 10224 phyi = ill->ill_phyint; 10225 10226 if (ipip->ipi_cmd_type == IF_CMD) { 10227 ifr = (struct ifreq *)if_req; 10228 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10229 } else { 10230 lifr = (struct lifreq *)if_req; 10231 flags = lifr->lifr_flags; 10232 } 10233 10234 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10235 10236 /* 10237 * Have the flags been set correctly until now? 10238 */ 10239 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10240 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10241 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10242 /* 10243 * Compare the new flags to the old, and partition 10244 * into those coming on and those going off. 10245 * For the 16 bit command keep the bits above bit 16 unchanged. 10246 */ 10247 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10248 flags |= intf_flags & ~0xFFFF; 10249 10250 /* 10251 * Explicitly fail attempts to change flags that are always invalid on 10252 * an IPMP meta-interface. 10253 */ 10254 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10255 return (EINVAL); 10256 10257 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10258 if ((turn_on|turn_off) == 0) 10259 return (0); /* No change */ 10260 10261 /* 10262 * All test addresses must be IFF_DEPRECATED (to ensure source address 10263 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10264 * allow it to be turned off. 10265 */ 10266 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10267 (turn_on|intf_flags) & IFF_NOFAILOVER) 10268 return (EINVAL); 10269 10270 if ((connp = Q_TO_CONN(q)) == NULL) 10271 return (EINVAL); 10272 10273 /* 10274 * Only vrrp control socket is allowed to change IFF_UP and 10275 * IFF_NOACCEPT flags when IFF_VRRP is set. 10276 */ 10277 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10278 if (!connp->conn_isvrrp) 10279 return (EINVAL); 10280 } 10281 10282 /* 10283 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10284 * VRRP control socket. 10285 */ 10286 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10287 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10288 return (EINVAL); 10289 } 10290 10291 if (turn_on & IFF_NOFAILOVER) { 10292 turn_on |= IFF_DEPRECATED; 10293 flags |= IFF_DEPRECATED; 10294 } 10295 10296 /* 10297 * On underlying interfaces, only allow applications to manage test 10298 * addresses -- otherwise, they may get confused when the address 10299 * moves as part of being brought up. Likewise, prevent an 10300 * application-managed test address from being converted to a data 10301 * address. To prevent migration of administratively up addresses in 10302 * the kernel, we don't allow them to be converted either. 10303 */ 10304 if (IS_UNDER_IPMP(ill)) { 10305 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10306 10307 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10308 return (EINVAL); 10309 10310 if ((turn_off & IFF_NOFAILOVER) && 10311 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10312 return (EINVAL); 10313 } 10314 10315 /* 10316 * Only allow IFF_TEMPORARY flag to be set on 10317 * IPv6 interfaces. 10318 */ 10319 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10320 return (EINVAL); 10321 10322 /* 10323 * cannot turn off IFF_NOXMIT on VNI interfaces. 10324 */ 10325 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10326 return (EINVAL); 10327 10328 /* 10329 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10330 * interfaces. It makes no sense in that context. 10331 */ 10332 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10333 return (EINVAL); 10334 10335 /* 10336 * For IPv6 ipif_id 0, don't allow the interface to be up without 10337 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10338 * If the link local address isn't set, and can be set, it will get 10339 * set later on in this function. 10340 */ 10341 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10342 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10343 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10344 if (ipif_cant_setlinklocal(ipif)) 10345 return (EINVAL); 10346 set_linklocal = B_TRUE; 10347 } 10348 10349 /* 10350 * If we modify physical interface flags, we'll potentially need to 10351 * send up two routing socket messages for the changes (one for the 10352 * IPv4 ill, and another for the IPv6 ill). Note that here. 10353 */ 10354 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10355 phyint_flags_modified = B_TRUE; 10356 10357 /* 10358 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10359 * (otherwise, we'd immediately use them, defeating standby). Also, 10360 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10361 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10362 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10363 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10364 * will not be honored. 10365 */ 10366 if (turn_on & PHYI_STANDBY) { 10367 /* 10368 * No need to grab ill_g_usesrc_lock here; see the 10369 * synchronization notes in ip.c. 10370 */ 10371 if (ill->ill_usesrc_grp_next != NULL || 10372 intf_flags & PHYI_INACTIVE) 10373 return (EINVAL); 10374 if (!(flags & PHYI_FAILED)) { 10375 flags |= PHYI_INACTIVE; 10376 turn_on |= PHYI_INACTIVE; 10377 } 10378 } 10379 10380 if (turn_off & PHYI_STANDBY) { 10381 flags &= ~PHYI_INACTIVE; 10382 turn_off |= PHYI_INACTIVE; 10383 } 10384 10385 /* 10386 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10387 * would end up on. 10388 */ 10389 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10390 (PHYI_FAILED | PHYI_INACTIVE)) 10391 return (EINVAL); 10392 10393 /* 10394 * If ILLF_ROUTER changes, we need to change the ip forwarding 10395 * status of the interface. 10396 */ 10397 if ((turn_on | turn_off) & ILLF_ROUTER) 10398 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10399 10400 /* 10401 * If the interface is not UP and we are not going to 10402 * bring it UP, record the flags and return. When the 10403 * interface comes UP later, the right actions will be 10404 * taken. 10405 */ 10406 if (!(ipif->ipif_flags & IPIF_UP) && 10407 !(turn_on & IPIF_UP)) { 10408 /* Record new flags in their respective places. */ 10409 mutex_enter(&ill->ill_lock); 10410 mutex_enter(&ill->ill_phyint->phyint_lock); 10411 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10412 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10413 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10414 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10415 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10416 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10417 mutex_exit(&ill->ill_lock); 10418 mutex_exit(&ill->ill_phyint->phyint_lock); 10419 10420 /* 10421 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10422 * same to the kernel: if any of them has been set by 10423 * userland, the interface cannot be used for data traffic. 10424 */ 10425 if ((turn_on|turn_off) & 10426 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10427 ASSERT(!IS_IPMP(ill)); 10428 /* 10429 * It's possible the ill is part of an "anonymous" 10430 * IPMP group rather than a real group. In that case, 10431 * there are no other interfaces in the group and thus 10432 * no need to call ipmp_phyint_refresh_active(). 10433 */ 10434 if (IS_UNDER_IPMP(ill)) 10435 ipmp_phyint_refresh_active(phyi); 10436 } 10437 10438 if (phyint_flags_modified) { 10439 if (phyi->phyint_illv4 != NULL) { 10440 ip_rts_ifmsg(phyi->phyint_illv4-> 10441 ill_ipif, RTSQ_DEFAULT); 10442 } 10443 if (phyi->phyint_illv6 != NULL) { 10444 ip_rts_ifmsg(phyi->phyint_illv6-> 10445 ill_ipif, RTSQ_DEFAULT); 10446 } 10447 } 10448 /* The default multicast interface might have changed */ 10449 ire_increment_multicast_generation(ill->ill_ipst, 10450 ill->ill_isv6); 10451 10452 return (0); 10453 } else if (set_linklocal) { 10454 mutex_enter(&ill->ill_lock); 10455 if (set_linklocal) 10456 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10457 mutex_exit(&ill->ill_lock); 10458 } 10459 10460 /* 10461 * Disallow IPv6 interfaces coming up that have the unspecified address, 10462 * or point-to-point interfaces with an unspecified destination. We do 10463 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10464 * have a subnet assigned, which is how in.ndpd currently manages its 10465 * onlink prefix list when no addresses are configured with those 10466 * prefixes. 10467 */ 10468 if (ipif->ipif_isv6 && 10469 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10470 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10471 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10472 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10473 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10474 return (EINVAL); 10475 } 10476 10477 /* 10478 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10479 * from being brought up. 10480 */ 10481 if (!ipif->ipif_isv6 && 10482 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10483 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10484 return (EINVAL); 10485 } 10486 10487 /* 10488 * If we are going to change one or more of the flags that are 10489 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10490 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10491 * IPIF_NOFAILOVER, we will take special action. This is 10492 * done by bring the ipif down, changing the flags and bringing 10493 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10494 * back up will trigger the address to be moved. 10495 * 10496 * If we are going to change IFF_NOACCEPT, we need to bring 10497 * all the ipifs down then bring them up again. The act of 10498 * bringing all the ipifs back up will trigger the local 10499 * ires being recreated with "no_accept" set/cleared. 10500 * 10501 * Note that ILLF_NOACCEPT is always set separately from the 10502 * other flags. 10503 */ 10504 if ((turn_on|turn_off) & 10505 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10506 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10507 IPIF_NOFAILOVER)) { 10508 /* 10509 * ipif_down() will ire_delete bcast ire's for the subnet, 10510 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10511 * entries shared between multiple ipifs on the same subnet. 10512 */ 10513 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10514 !(turn_off & IPIF_UP)) { 10515 if (ipif->ipif_flags & IPIF_UP) 10516 ill->ill_logical_down = 1; 10517 turn_on &= ~IPIF_UP; 10518 } 10519 err = ipif_down(ipif, q, mp); 10520 ip1dbg(("ipif_down returns %d err ", err)); 10521 if (err == EINPROGRESS) 10522 return (err); 10523 (void) ipif_down_tail(ipif); 10524 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10525 /* 10526 * If we can quiesce the ill, then continue. If not, then 10527 * ip_sioctl_flags_tail() will be called from 10528 * ipif_ill_refrele_tail(). 10529 */ 10530 ill_down_ipifs(ill, B_TRUE); 10531 10532 mutex_enter(&connp->conn_lock); 10533 mutex_enter(&ill->ill_lock); 10534 if (!ill_is_quiescent(ill)) { 10535 boolean_t success; 10536 10537 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10538 q, mp, ILL_DOWN); 10539 mutex_exit(&ill->ill_lock); 10540 mutex_exit(&connp->conn_lock); 10541 return (success ? EINPROGRESS : EINTR); 10542 } 10543 mutex_exit(&ill->ill_lock); 10544 mutex_exit(&connp->conn_lock); 10545 } 10546 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10547 } 10548 10549 static int 10550 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10551 { 10552 ill_t *ill; 10553 phyint_t *phyi; 10554 uint64_t turn_on, turn_off; 10555 boolean_t phyint_flags_modified = B_FALSE; 10556 int err = 0; 10557 boolean_t set_linklocal = B_FALSE; 10558 10559 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10560 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10561 10562 ASSERT(IAM_WRITER_IPIF(ipif)); 10563 10564 ill = ipif->ipif_ill; 10565 phyi = ill->ill_phyint; 10566 10567 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10568 10569 /* 10570 * IFF_UP is handled separately. 10571 */ 10572 turn_on &= ~IFF_UP; 10573 turn_off &= ~IFF_UP; 10574 10575 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10576 phyint_flags_modified = B_TRUE; 10577 10578 /* 10579 * Now we change the flags. Track current value of 10580 * other flags in their respective places. 10581 */ 10582 mutex_enter(&ill->ill_lock); 10583 mutex_enter(&phyi->phyint_lock); 10584 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10585 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10586 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10587 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10588 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10589 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10590 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10591 set_linklocal = B_TRUE; 10592 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10593 } 10594 10595 mutex_exit(&ill->ill_lock); 10596 mutex_exit(&phyi->phyint_lock); 10597 10598 if (set_linklocal) 10599 (void) ipif_setlinklocal(ipif); 10600 10601 /* 10602 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10603 * the kernel: if any of them has been set by userland, the interface 10604 * cannot be used for data traffic. 10605 */ 10606 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10607 ASSERT(!IS_IPMP(ill)); 10608 /* 10609 * It's possible the ill is part of an "anonymous" IPMP group 10610 * rather than a real group. In that case, there are no other 10611 * interfaces in the group and thus no need for us to call 10612 * ipmp_phyint_refresh_active(). 10613 */ 10614 if (IS_UNDER_IPMP(ill)) 10615 ipmp_phyint_refresh_active(phyi); 10616 } 10617 10618 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10619 /* 10620 * If the ILLF_NOACCEPT flag is changed, bring up all the 10621 * ipifs that were brought down. 10622 * 10623 * The routing sockets messages are sent as the result 10624 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10625 * as well. 10626 */ 10627 err = ill_up_ipifs(ill, q, mp); 10628 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10629 /* 10630 * XXX ipif_up really does not know whether a phyint flags 10631 * was modified or not. So, it sends up information on 10632 * only one routing sockets message. As we don't bring up 10633 * the interface and also set PHYI_ flags simultaneously 10634 * it should be okay. 10635 */ 10636 err = ipif_up(ipif, q, mp); 10637 } else { 10638 /* 10639 * Make sure routing socket sees all changes to the flags. 10640 * ipif_up_done* handles this when we use ipif_up. 10641 */ 10642 if (phyint_flags_modified) { 10643 if (phyi->phyint_illv4 != NULL) { 10644 ip_rts_ifmsg(phyi->phyint_illv4-> 10645 ill_ipif, RTSQ_DEFAULT); 10646 } 10647 if (phyi->phyint_illv6 != NULL) { 10648 ip_rts_ifmsg(phyi->phyint_illv6-> 10649 ill_ipif, RTSQ_DEFAULT); 10650 } 10651 } else { 10652 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10653 } 10654 /* 10655 * Update the flags in SCTP's IPIF list, ipif_up() will do 10656 * this in need_up case. 10657 */ 10658 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10659 } 10660 10661 /* The default multicast interface might have changed */ 10662 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10663 return (err); 10664 } 10665 10666 /* 10667 * Restart the flags operation now that the refcounts have dropped to zero. 10668 */ 10669 /* ARGSUSED */ 10670 int 10671 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10672 ip_ioctl_cmd_t *ipip, void *if_req) 10673 { 10674 uint64_t flags; 10675 struct ifreq *ifr = if_req; 10676 struct lifreq *lifr = if_req; 10677 uint64_t turn_on, turn_off; 10678 10679 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10680 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10681 10682 if (ipip->ipi_cmd_type == IF_CMD) { 10683 /* cast to uint16_t prevents unwanted sign extension */ 10684 flags = (uint16_t)ifr->ifr_flags; 10685 } else { 10686 flags = lifr->lifr_flags; 10687 } 10688 10689 /* 10690 * If this function call is a result of the ILLF_NOACCEPT flag 10691 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10692 */ 10693 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10694 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10695 (void) ipif_down_tail(ipif); 10696 10697 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10698 } 10699 10700 /* 10701 * Can operate on either a module or a driver queue. 10702 */ 10703 /* ARGSUSED */ 10704 int 10705 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10706 ip_ioctl_cmd_t *ipip, void *if_req) 10707 { 10708 /* 10709 * Has the flags been set correctly till now ? 10710 */ 10711 ill_t *ill = ipif->ipif_ill; 10712 phyint_t *phyi = ill->ill_phyint; 10713 10714 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10715 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10716 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10717 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10718 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10719 10720 /* 10721 * Need a lock since some flags can be set even when there are 10722 * references to the ipif. 10723 */ 10724 mutex_enter(&ill->ill_lock); 10725 if (ipip->ipi_cmd_type == IF_CMD) { 10726 struct ifreq *ifr = (struct ifreq *)if_req; 10727 10728 /* Get interface flags (low 16 only). */ 10729 ifr->ifr_flags = ((ipif->ipif_flags | 10730 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10731 } else { 10732 struct lifreq *lifr = (struct lifreq *)if_req; 10733 10734 /* Get interface flags. */ 10735 lifr->lifr_flags = ipif->ipif_flags | 10736 ill->ill_flags | phyi->phyint_flags; 10737 } 10738 mutex_exit(&ill->ill_lock); 10739 return (0); 10740 } 10741 10742 /* 10743 * We allow the MTU to be set on an ILL, but not have it be different 10744 * for different IPIFs since we don't actually send packets on IPIFs. 10745 */ 10746 /* ARGSUSED */ 10747 int 10748 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10749 ip_ioctl_cmd_t *ipip, void *if_req) 10750 { 10751 int mtu; 10752 int ip_min_mtu; 10753 struct ifreq *ifr; 10754 struct lifreq *lifr; 10755 ill_t *ill; 10756 10757 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10758 ipif->ipif_id, (void *)ipif)); 10759 if (ipip->ipi_cmd_type == IF_CMD) { 10760 ifr = (struct ifreq *)if_req; 10761 mtu = ifr->ifr_metric; 10762 } else { 10763 lifr = (struct lifreq *)if_req; 10764 mtu = lifr->lifr_mtu; 10765 } 10766 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10767 if (ipif->ipif_id != 0) 10768 return (EINVAL); 10769 10770 ill = ipif->ipif_ill; 10771 if (ipif->ipif_isv6) 10772 ip_min_mtu = IPV6_MIN_MTU; 10773 else 10774 ip_min_mtu = IP_MIN_MTU; 10775 10776 mutex_enter(&ill->ill_lock); 10777 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10778 mutex_exit(&ill->ill_lock); 10779 return (EINVAL); 10780 } 10781 /* 10782 * The dce and fragmentation code can handle changes to ill_mtu 10783 * concurrent with sending/fragmenting packets. 10784 */ 10785 ill->ill_mtu = mtu; 10786 ill->ill_flags |= ILLF_FIXEDMTU; 10787 mutex_exit(&ill->ill_lock); 10788 10789 /* 10790 * Make sure all dce_generation checks find out 10791 * that ill_mtu has changed. 10792 */ 10793 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10794 10795 /* 10796 * Refresh IPMP meta-interface MTU if necessary. 10797 */ 10798 if (IS_UNDER_IPMP(ill)) 10799 ipmp_illgrp_refresh_mtu(ill->ill_grp); 10800 10801 /* Update the MTU in SCTP's list */ 10802 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10803 return (0); 10804 } 10805 10806 /* Get interface MTU. */ 10807 /* ARGSUSED */ 10808 int 10809 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10810 ip_ioctl_cmd_t *ipip, void *if_req) 10811 { 10812 struct ifreq *ifr; 10813 struct lifreq *lifr; 10814 10815 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10816 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10817 10818 /* 10819 * We allow a get on any logical interface even though the set 10820 * can only be done on logical unit 0. 10821 */ 10822 if (ipip->ipi_cmd_type == IF_CMD) { 10823 ifr = (struct ifreq *)if_req; 10824 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10825 } else { 10826 lifr = (struct lifreq *)if_req; 10827 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10828 } 10829 return (0); 10830 } 10831 10832 /* Set interface broadcast address. */ 10833 /* ARGSUSED2 */ 10834 int 10835 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10836 ip_ioctl_cmd_t *ipip, void *if_req) 10837 { 10838 ipaddr_t addr; 10839 ire_t *ire; 10840 ill_t *ill = ipif->ipif_ill; 10841 ip_stack_t *ipst = ill->ill_ipst; 10842 10843 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10844 ipif->ipif_id)); 10845 10846 ASSERT(IAM_WRITER_IPIF(ipif)); 10847 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10848 return (EADDRNOTAVAIL); 10849 10850 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10851 10852 if (sin->sin_family != AF_INET) 10853 return (EAFNOSUPPORT); 10854 10855 addr = sin->sin_addr.s_addr; 10856 10857 if (ipif->ipif_flags & IPIF_UP) { 10858 /* 10859 * If we are already up, make sure the new 10860 * broadcast address makes sense. If it does, 10861 * there should be an IRE for it already. 10862 */ 10863 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10864 ill, ipif->ipif_zoneid, NULL, 10865 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10866 if (ire == NULL) { 10867 return (EINVAL); 10868 } else { 10869 ire_refrele(ire); 10870 } 10871 } 10872 /* 10873 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10874 * needs to already exist we never need to change the set of 10875 * IRE_BROADCASTs when we are UP. 10876 */ 10877 if (addr != ipif->ipif_brd_addr) 10878 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10879 10880 return (0); 10881 } 10882 10883 /* Get interface broadcast address. */ 10884 /* ARGSUSED */ 10885 int 10886 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10887 ip_ioctl_cmd_t *ipip, void *if_req) 10888 { 10889 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10890 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10891 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10892 return (EADDRNOTAVAIL); 10893 10894 /* IPIF_BROADCAST not possible with IPv6 */ 10895 ASSERT(!ipif->ipif_isv6); 10896 *sin = sin_null; 10897 sin->sin_family = AF_INET; 10898 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10899 return (0); 10900 } 10901 10902 /* 10903 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10904 */ 10905 /* ARGSUSED */ 10906 int 10907 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10908 ip_ioctl_cmd_t *ipip, void *if_req) 10909 { 10910 int err = 0; 10911 in6_addr_t v6mask; 10912 10913 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10914 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10915 10916 ASSERT(IAM_WRITER_IPIF(ipif)); 10917 10918 if (ipif->ipif_isv6) { 10919 sin6_t *sin6; 10920 10921 if (sin->sin_family != AF_INET6) 10922 return (EAFNOSUPPORT); 10923 10924 sin6 = (sin6_t *)sin; 10925 v6mask = sin6->sin6_addr; 10926 } else { 10927 ipaddr_t mask; 10928 10929 if (sin->sin_family != AF_INET) 10930 return (EAFNOSUPPORT); 10931 10932 mask = sin->sin_addr.s_addr; 10933 if (!ip_contiguous_mask(ntohl(mask))) 10934 return (ENOTSUP); 10935 V4MASK_TO_V6(mask, v6mask); 10936 } 10937 10938 /* 10939 * No big deal if the interface isn't already up, or the mask 10940 * isn't really changing, or this is pt-pt. 10941 */ 10942 if (!(ipif->ipif_flags & IPIF_UP) || 10943 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10944 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10945 ipif->ipif_v6net_mask = v6mask; 10946 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10947 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10948 ipif->ipif_v6net_mask, 10949 ipif->ipif_v6subnet); 10950 } 10951 return (0); 10952 } 10953 /* 10954 * Make sure we have valid net and subnet broadcast ire's 10955 * for the old netmask, if needed by other logical interfaces. 10956 */ 10957 err = ipif_logical_down(ipif, q, mp); 10958 if (err == EINPROGRESS) 10959 return (err); 10960 (void) ipif_down_tail(ipif); 10961 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10962 return (err); 10963 } 10964 10965 static int 10966 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10967 { 10968 in6_addr_t v6mask; 10969 int err = 0; 10970 10971 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10972 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10973 10974 if (ipif->ipif_isv6) { 10975 sin6_t *sin6; 10976 10977 sin6 = (sin6_t *)sin; 10978 v6mask = sin6->sin6_addr; 10979 } else { 10980 ipaddr_t mask; 10981 10982 mask = sin->sin_addr.s_addr; 10983 V4MASK_TO_V6(mask, v6mask); 10984 } 10985 10986 ipif->ipif_v6net_mask = v6mask; 10987 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10988 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 10989 ipif->ipif_v6subnet); 10990 } 10991 err = ipif_up(ipif, q, mp); 10992 10993 if (err == 0 || err == EINPROGRESS) { 10994 /* 10995 * The interface must be DL_BOUND if this packet has to 10996 * go out on the wire. Since we only go through a logical 10997 * down and are bound with the driver during an internal 10998 * down/up that is satisfied. 10999 */ 11000 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11001 /* Potentially broadcast an address mask reply. */ 11002 ipif_mask_reply(ipif); 11003 } 11004 } 11005 return (err); 11006 } 11007 11008 /* ARGSUSED */ 11009 int 11010 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11011 ip_ioctl_cmd_t *ipip, void *if_req) 11012 { 11013 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11014 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11015 (void) ipif_down_tail(ipif); 11016 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11017 } 11018 11019 /* Get interface net mask. */ 11020 /* ARGSUSED */ 11021 int 11022 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11023 ip_ioctl_cmd_t *ipip, void *if_req) 11024 { 11025 struct lifreq *lifr = (struct lifreq *)if_req; 11026 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11027 11028 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11029 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11030 11031 /* 11032 * net mask can't change since we have a reference to the ipif. 11033 */ 11034 if (ipif->ipif_isv6) { 11035 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11036 *sin6 = sin6_null; 11037 sin6->sin6_family = AF_INET6; 11038 sin6->sin6_addr = ipif->ipif_v6net_mask; 11039 lifr->lifr_addrlen = 11040 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11041 } else { 11042 *sin = sin_null; 11043 sin->sin_family = AF_INET; 11044 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11045 if (ipip->ipi_cmd_type == LIF_CMD) { 11046 lifr->lifr_addrlen = 11047 ip_mask_to_plen(ipif->ipif_net_mask); 11048 } 11049 } 11050 return (0); 11051 } 11052 11053 /* ARGSUSED */ 11054 int 11055 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11056 ip_ioctl_cmd_t *ipip, void *if_req) 11057 { 11058 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11059 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11060 11061 /* 11062 * Since no applications should ever be setting metrics on underlying 11063 * interfaces, we explicitly fail to smoke 'em out. 11064 */ 11065 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11066 return (EINVAL); 11067 11068 /* 11069 * Set interface metric. We don't use this for 11070 * anything but we keep track of it in case it is 11071 * important to routing applications or such. 11072 */ 11073 if (ipip->ipi_cmd_type == IF_CMD) { 11074 struct ifreq *ifr; 11075 11076 ifr = (struct ifreq *)if_req; 11077 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11078 } else { 11079 struct lifreq *lifr; 11080 11081 lifr = (struct lifreq *)if_req; 11082 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11083 } 11084 return (0); 11085 } 11086 11087 /* ARGSUSED */ 11088 int 11089 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11090 ip_ioctl_cmd_t *ipip, void *if_req) 11091 { 11092 /* Get interface metric. */ 11093 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11094 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11095 11096 if (ipip->ipi_cmd_type == IF_CMD) { 11097 struct ifreq *ifr; 11098 11099 ifr = (struct ifreq *)if_req; 11100 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11101 } else { 11102 struct lifreq *lifr; 11103 11104 lifr = (struct lifreq *)if_req; 11105 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11106 } 11107 11108 return (0); 11109 } 11110 11111 /* ARGSUSED */ 11112 int 11113 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11114 ip_ioctl_cmd_t *ipip, void *if_req) 11115 { 11116 int arp_muxid; 11117 11118 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11119 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11120 /* 11121 * Set the muxid returned from I_PLINK. 11122 */ 11123 if (ipip->ipi_cmd_type == IF_CMD) { 11124 struct ifreq *ifr = (struct ifreq *)if_req; 11125 11126 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11127 arp_muxid = ifr->ifr_arp_muxid; 11128 } else { 11129 struct lifreq *lifr = (struct lifreq *)if_req; 11130 11131 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11132 arp_muxid = lifr->lifr_arp_muxid; 11133 } 11134 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11135 return (0); 11136 } 11137 11138 /* ARGSUSED */ 11139 int 11140 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11141 ip_ioctl_cmd_t *ipip, void *if_req) 11142 { 11143 int arp_muxid = 0; 11144 11145 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11146 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11147 /* 11148 * Get the muxid saved in ill for I_PUNLINK. 11149 */ 11150 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11151 if (ipip->ipi_cmd_type == IF_CMD) { 11152 struct ifreq *ifr = (struct ifreq *)if_req; 11153 11154 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11155 ifr->ifr_arp_muxid = arp_muxid; 11156 } else { 11157 struct lifreq *lifr = (struct lifreq *)if_req; 11158 11159 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11160 lifr->lifr_arp_muxid = arp_muxid; 11161 } 11162 return (0); 11163 } 11164 11165 /* 11166 * Set the subnet prefix. Does not modify the broadcast address. 11167 */ 11168 /* ARGSUSED */ 11169 int 11170 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11171 ip_ioctl_cmd_t *ipip, void *if_req) 11172 { 11173 int err = 0; 11174 in6_addr_t v6addr; 11175 in6_addr_t v6mask; 11176 boolean_t need_up = B_FALSE; 11177 int addrlen; 11178 11179 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11180 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11181 11182 ASSERT(IAM_WRITER_IPIF(ipif)); 11183 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11184 11185 if (ipif->ipif_isv6) { 11186 sin6_t *sin6; 11187 11188 if (sin->sin_family != AF_INET6) 11189 return (EAFNOSUPPORT); 11190 11191 sin6 = (sin6_t *)sin; 11192 v6addr = sin6->sin6_addr; 11193 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11194 return (EADDRNOTAVAIL); 11195 } else { 11196 ipaddr_t addr; 11197 11198 if (sin->sin_family != AF_INET) 11199 return (EAFNOSUPPORT); 11200 11201 addr = sin->sin_addr.s_addr; 11202 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11203 return (EADDRNOTAVAIL); 11204 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11205 /* Add 96 bits */ 11206 addrlen += IPV6_ABITS - IP_ABITS; 11207 } 11208 11209 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11210 return (EINVAL); 11211 11212 /* Check if bits in the address is set past the mask */ 11213 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11214 return (EINVAL); 11215 11216 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11217 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11218 return (0); /* No change */ 11219 11220 if (ipif->ipif_flags & IPIF_UP) { 11221 /* 11222 * If the interface is already marked up, 11223 * we call ipif_down which will take care 11224 * of ditching any IREs that have been set 11225 * up based on the old interface address. 11226 */ 11227 err = ipif_logical_down(ipif, q, mp); 11228 if (err == EINPROGRESS) 11229 return (err); 11230 (void) ipif_down_tail(ipif); 11231 need_up = B_TRUE; 11232 } 11233 11234 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11235 return (err); 11236 } 11237 11238 static int 11239 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11240 queue_t *q, mblk_t *mp, boolean_t need_up) 11241 { 11242 ill_t *ill = ipif->ipif_ill; 11243 int err = 0; 11244 11245 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11246 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11247 11248 /* Set the new address. */ 11249 mutex_enter(&ill->ill_lock); 11250 ipif->ipif_v6net_mask = v6mask; 11251 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11252 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11253 ipif->ipif_v6subnet); 11254 } 11255 mutex_exit(&ill->ill_lock); 11256 11257 if (need_up) { 11258 /* 11259 * Now bring the interface back up. If this 11260 * is the only IPIF for the ILL, ipif_up 11261 * will have to re-bind to the device, so 11262 * we may get back EINPROGRESS, in which 11263 * case, this IOCTL will get completed in 11264 * ip_rput_dlpi when we see the DL_BIND_ACK. 11265 */ 11266 err = ipif_up(ipif, q, mp); 11267 if (err == EINPROGRESS) 11268 return (err); 11269 } 11270 return (err); 11271 } 11272 11273 /* ARGSUSED */ 11274 int 11275 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11276 ip_ioctl_cmd_t *ipip, void *if_req) 11277 { 11278 int addrlen; 11279 in6_addr_t v6addr; 11280 in6_addr_t v6mask; 11281 struct lifreq *lifr = (struct lifreq *)if_req; 11282 11283 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11284 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11285 (void) ipif_down_tail(ipif); 11286 11287 addrlen = lifr->lifr_addrlen; 11288 if (ipif->ipif_isv6) { 11289 sin6_t *sin6; 11290 11291 sin6 = (sin6_t *)sin; 11292 v6addr = sin6->sin6_addr; 11293 } else { 11294 ipaddr_t addr; 11295 11296 addr = sin->sin_addr.s_addr; 11297 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11298 addrlen += IPV6_ABITS - IP_ABITS; 11299 } 11300 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11301 11302 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11303 } 11304 11305 /* ARGSUSED */ 11306 int 11307 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11308 ip_ioctl_cmd_t *ipip, void *if_req) 11309 { 11310 struct lifreq *lifr = (struct lifreq *)if_req; 11311 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11312 11313 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11314 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11315 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11316 11317 if (ipif->ipif_isv6) { 11318 *sin6 = sin6_null; 11319 sin6->sin6_family = AF_INET6; 11320 sin6->sin6_addr = ipif->ipif_v6subnet; 11321 lifr->lifr_addrlen = 11322 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11323 } else { 11324 *sin = sin_null; 11325 sin->sin_family = AF_INET; 11326 sin->sin_addr.s_addr = ipif->ipif_subnet; 11327 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11328 } 11329 return (0); 11330 } 11331 11332 /* 11333 * Set the IPv6 address token. 11334 */ 11335 /* ARGSUSED */ 11336 int 11337 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11338 ip_ioctl_cmd_t *ipi, void *if_req) 11339 { 11340 ill_t *ill = ipif->ipif_ill; 11341 int err; 11342 in6_addr_t v6addr; 11343 in6_addr_t v6mask; 11344 boolean_t need_up = B_FALSE; 11345 int i; 11346 sin6_t *sin6 = (sin6_t *)sin; 11347 struct lifreq *lifr = (struct lifreq *)if_req; 11348 int addrlen; 11349 11350 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11351 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11352 ASSERT(IAM_WRITER_IPIF(ipif)); 11353 11354 addrlen = lifr->lifr_addrlen; 11355 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11356 if (ipif->ipif_id != 0) 11357 return (EINVAL); 11358 11359 if (!ipif->ipif_isv6) 11360 return (EINVAL); 11361 11362 if (addrlen > IPV6_ABITS) 11363 return (EINVAL); 11364 11365 v6addr = sin6->sin6_addr; 11366 11367 /* 11368 * The length of the token is the length from the end. To get 11369 * the proper mask for this, compute the mask of the bits not 11370 * in the token; ie. the prefix, and then xor to get the mask. 11371 */ 11372 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11373 return (EINVAL); 11374 for (i = 0; i < 4; i++) { 11375 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11376 } 11377 11378 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11379 ill->ill_token_length == addrlen) 11380 return (0); /* No change */ 11381 11382 if (ipif->ipif_flags & IPIF_UP) { 11383 err = ipif_logical_down(ipif, q, mp); 11384 if (err == EINPROGRESS) 11385 return (err); 11386 (void) ipif_down_tail(ipif); 11387 need_up = B_TRUE; 11388 } 11389 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11390 return (err); 11391 } 11392 11393 static int 11394 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11395 mblk_t *mp, boolean_t need_up) 11396 { 11397 in6_addr_t v6addr; 11398 in6_addr_t v6mask; 11399 ill_t *ill = ipif->ipif_ill; 11400 int i; 11401 int err = 0; 11402 11403 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11404 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11405 v6addr = sin6->sin6_addr; 11406 /* 11407 * The length of the token is the length from the end. To get 11408 * the proper mask for this, compute the mask of the bits not 11409 * in the token; ie. the prefix, and then xor to get the mask. 11410 */ 11411 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11412 for (i = 0; i < 4; i++) 11413 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11414 11415 mutex_enter(&ill->ill_lock); 11416 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11417 ill->ill_token_length = addrlen; 11418 ill->ill_manual_token = 1; 11419 11420 /* Reconfigure the link-local address based on this new token */ 11421 ipif_setlinklocal(ill->ill_ipif); 11422 11423 mutex_exit(&ill->ill_lock); 11424 11425 if (need_up) { 11426 /* 11427 * Now bring the interface back up. If this 11428 * is the only IPIF for the ILL, ipif_up 11429 * will have to re-bind to the device, so 11430 * we may get back EINPROGRESS, in which 11431 * case, this IOCTL will get completed in 11432 * ip_rput_dlpi when we see the DL_BIND_ACK. 11433 */ 11434 err = ipif_up(ipif, q, mp); 11435 if (err == EINPROGRESS) 11436 return (err); 11437 } 11438 return (err); 11439 } 11440 11441 /* ARGSUSED */ 11442 int 11443 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11444 ip_ioctl_cmd_t *ipi, void *if_req) 11445 { 11446 ill_t *ill; 11447 sin6_t *sin6 = (sin6_t *)sin; 11448 struct lifreq *lifr = (struct lifreq *)if_req; 11449 11450 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11451 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11452 if (ipif->ipif_id != 0) 11453 return (EINVAL); 11454 11455 ill = ipif->ipif_ill; 11456 if (!ill->ill_isv6) 11457 return (ENXIO); 11458 11459 *sin6 = sin6_null; 11460 sin6->sin6_family = AF_INET6; 11461 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11462 sin6->sin6_addr = ill->ill_token; 11463 lifr->lifr_addrlen = ill->ill_token_length; 11464 return (0); 11465 } 11466 11467 /* 11468 * Set (hardware) link specific information that might override 11469 * what was acquired through the DL_INFO_ACK. 11470 */ 11471 /* ARGSUSED */ 11472 int 11473 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11474 ip_ioctl_cmd_t *ipi, void *if_req) 11475 { 11476 ill_t *ill = ipif->ipif_ill; 11477 int ip_min_mtu; 11478 struct lifreq *lifr = (struct lifreq *)if_req; 11479 lif_ifinfo_req_t *lir; 11480 11481 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11482 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11483 lir = &lifr->lifr_ifinfo; 11484 ASSERT(IAM_WRITER_IPIF(ipif)); 11485 11486 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11487 if (ipif->ipif_id != 0) 11488 return (EINVAL); 11489 11490 /* Set interface MTU. */ 11491 if (ipif->ipif_isv6) 11492 ip_min_mtu = IPV6_MIN_MTU; 11493 else 11494 ip_min_mtu = IP_MIN_MTU; 11495 11496 /* 11497 * Verify values before we set anything. Allow zero to 11498 * mean unspecified. 11499 * 11500 * XXX We should be able to set the user-defined lir_mtu to some value 11501 * that is greater than ill_current_frag but less than ill_max_frag- the 11502 * ill_max_frag value tells us the max MTU that can be handled by the 11503 * datalink, whereas the ill_current_frag is dynamically computed for 11504 * some link-types like tunnels, based on the tunnel PMTU. However, 11505 * since there is currently no way of distinguishing between 11506 * administratively fixed link mtu values (e.g., those set via 11507 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11508 * for tunnels) we conservatively choose the ill_current_frag as the 11509 * upper-bound. 11510 */ 11511 if (lir->lir_maxmtu != 0 && 11512 (lir->lir_maxmtu > ill->ill_current_frag || 11513 lir->lir_maxmtu < ip_min_mtu)) 11514 return (EINVAL); 11515 if (lir->lir_reachtime != 0 && 11516 lir->lir_reachtime > ND_MAX_REACHTIME) 11517 return (EINVAL); 11518 if (lir->lir_reachretrans != 0 && 11519 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11520 return (EINVAL); 11521 11522 mutex_enter(&ill->ill_lock); 11523 /* 11524 * The dce and fragmentation code can handle changes to ill_mtu 11525 * concurrent with sending/fragmenting packets. 11526 */ 11527 if (lir->lir_maxmtu != 0) 11528 ill->ill_user_mtu = lir->lir_maxmtu; 11529 11530 if (lir->lir_reachtime != 0) 11531 ill->ill_reachable_time = lir->lir_reachtime; 11532 11533 if (lir->lir_reachretrans != 0) 11534 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11535 11536 ill->ill_max_hops = lir->lir_maxhops; 11537 ill->ill_max_buf = ND_MAX_Q; 11538 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11539 /* 11540 * ill_mtu is the actual interface MTU, obtained as the min 11541 * of user-configured mtu and the value announced by the 11542 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11543 * we have already made the choice of requiring 11544 * ill_user_mtu < ill_current_frag by the time we get here, 11545 * the ill_mtu effectively gets assigned to the ill_user_mtu 11546 * here. 11547 */ 11548 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11549 } 11550 mutex_exit(&ill->ill_lock); 11551 11552 /* 11553 * Make sure all dce_generation checks find out 11554 * that ill_mtu has changed. 11555 */ 11556 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11557 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11558 11559 /* 11560 * Refresh IPMP meta-interface MTU if necessary. 11561 */ 11562 if (IS_UNDER_IPMP(ill)) 11563 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11564 11565 return (0); 11566 } 11567 11568 /* ARGSUSED */ 11569 int 11570 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11571 ip_ioctl_cmd_t *ipi, void *if_req) 11572 { 11573 struct lif_ifinfo_req *lir; 11574 ill_t *ill = ipif->ipif_ill; 11575 11576 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11577 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11578 if (ipif->ipif_id != 0) 11579 return (EINVAL); 11580 11581 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11582 lir->lir_maxhops = ill->ill_max_hops; 11583 lir->lir_reachtime = ill->ill_reachable_time; 11584 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11585 lir->lir_maxmtu = ill->ill_mtu; 11586 11587 return (0); 11588 } 11589 11590 /* 11591 * Return best guess as to the subnet mask for the specified address. 11592 * Based on the subnet masks for all the configured interfaces. 11593 * 11594 * We end up returning a zero mask in the case of default, multicast or 11595 * experimental. 11596 */ 11597 static ipaddr_t 11598 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11599 { 11600 ipaddr_t net_mask; 11601 ill_t *ill; 11602 ipif_t *ipif; 11603 ill_walk_context_t ctx; 11604 ipif_t *fallback_ipif = NULL; 11605 11606 net_mask = ip_net_mask(addr); 11607 if (net_mask == 0) { 11608 *ipifp = NULL; 11609 return (0); 11610 } 11611 11612 /* Let's check to see if this is maybe a local subnet route. */ 11613 /* this function only applies to IPv4 interfaces */ 11614 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11615 ill = ILL_START_WALK_V4(&ctx, ipst); 11616 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11617 mutex_enter(&ill->ill_lock); 11618 for (ipif = ill->ill_ipif; ipif != NULL; 11619 ipif = ipif->ipif_next) { 11620 if (IPIF_IS_CONDEMNED(ipif)) 11621 continue; 11622 if (!(ipif->ipif_flags & IPIF_UP)) 11623 continue; 11624 if ((ipif->ipif_subnet & net_mask) == 11625 (addr & net_mask)) { 11626 /* 11627 * Don't trust pt-pt interfaces if there are 11628 * other interfaces. 11629 */ 11630 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11631 if (fallback_ipif == NULL) { 11632 ipif_refhold_locked(ipif); 11633 fallback_ipif = ipif; 11634 } 11635 continue; 11636 } 11637 11638 /* 11639 * Fine. Just assume the same net mask as the 11640 * directly attached subnet interface is using. 11641 */ 11642 ipif_refhold_locked(ipif); 11643 mutex_exit(&ill->ill_lock); 11644 rw_exit(&ipst->ips_ill_g_lock); 11645 if (fallback_ipif != NULL) 11646 ipif_refrele(fallback_ipif); 11647 *ipifp = ipif; 11648 return (ipif->ipif_net_mask); 11649 } 11650 } 11651 mutex_exit(&ill->ill_lock); 11652 } 11653 rw_exit(&ipst->ips_ill_g_lock); 11654 11655 *ipifp = fallback_ipif; 11656 return ((fallback_ipif != NULL) ? 11657 fallback_ipif->ipif_net_mask : net_mask); 11658 } 11659 11660 /* 11661 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11662 */ 11663 static void 11664 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11665 { 11666 IOCP iocp; 11667 ipft_t *ipft; 11668 ipllc_t *ipllc; 11669 mblk_t *mp1; 11670 cred_t *cr; 11671 int error = 0; 11672 conn_t *connp; 11673 11674 ip1dbg(("ip_wput_ioctl")); 11675 iocp = (IOCP)mp->b_rptr; 11676 mp1 = mp->b_cont; 11677 if (mp1 == NULL) { 11678 iocp->ioc_error = EINVAL; 11679 mp->b_datap->db_type = M_IOCNAK; 11680 iocp->ioc_count = 0; 11681 qreply(q, mp); 11682 return; 11683 } 11684 11685 /* 11686 * These IOCTLs provide various control capabilities to 11687 * upstream agents such as ULPs and processes. There 11688 * are currently two such IOCTLs implemented. They 11689 * are used by TCP to provide update information for 11690 * existing IREs and to forcibly delete an IRE for a 11691 * host that is not responding, thereby forcing an 11692 * attempt at a new route. 11693 */ 11694 iocp->ioc_error = EINVAL; 11695 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11696 goto done; 11697 11698 ipllc = (ipllc_t *)mp1->b_rptr; 11699 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11700 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11701 break; 11702 } 11703 /* 11704 * prefer credential from mblk over ioctl; 11705 * see ip_sioctl_copyin_setup 11706 */ 11707 cr = msg_getcred(mp, NULL); 11708 if (cr == NULL) 11709 cr = iocp->ioc_cr; 11710 11711 /* 11712 * Refhold the conn in case the request gets queued up in some lookup 11713 */ 11714 ASSERT(CONN_Q(q)); 11715 connp = Q_TO_CONN(q); 11716 CONN_INC_REF(connp); 11717 if (ipft->ipft_pfi && 11718 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11719 pullupmsg(mp1, ipft->ipft_min_size))) { 11720 error = (*ipft->ipft_pfi)(q, 11721 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11722 } 11723 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11724 /* 11725 * CONN_OPER_PENDING_DONE happens in the function called 11726 * through ipft_pfi above. 11727 */ 11728 return; 11729 } 11730 11731 CONN_OPER_PENDING_DONE(connp); 11732 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11733 freemsg(mp); 11734 return; 11735 } 11736 iocp->ioc_error = error; 11737 11738 done: 11739 mp->b_datap->db_type = M_IOCACK; 11740 if (iocp->ioc_error) 11741 iocp->ioc_count = 0; 11742 qreply(q, mp); 11743 } 11744 11745 /* 11746 * Assign a unique id for the ipif. This is used by sctp_addr.c 11747 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11748 */ 11749 static void 11750 ipif_assign_seqid(ipif_t *ipif) 11751 { 11752 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11753 11754 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11755 } 11756 11757 /* 11758 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11759 * administratively down (i.e., no DAD), of the same type, and locked. Note 11760 * that the clone is complete -- including the seqid -- and the expectation is 11761 * that the caller will either free or overwrite `sipif' before it's unlocked. 11762 */ 11763 static void 11764 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11765 { 11766 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11767 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11768 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11769 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11770 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11771 11772 dipif->ipif_flags = sipif->ipif_flags; 11773 dipif->ipif_zoneid = sipif->ipif_zoneid; 11774 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11775 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11776 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11777 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11778 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11779 11780 /* 11781 * As per the comment atop the function, we assume that these sipif 11782 * fields will be changed before sipif is unlocked. 11783 */ 11784 dipif->ipif_seqid = sipif->ipif_seqid; 11785 dipif->ipif_state_flags = sipif->ipif_state_flags; 11786 } 11787 11788 /* 11789 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11790 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11791 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11792 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11793 * down (i.e., no DAD), of the same type, and unlocked. 11794 */ 11795 static void 11796 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11797 { 11798 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11799 ipxop_t *ipx = ipsq->ipsq_xop; 11800 11801 ASSERT(sipif != dipif); 11802 ASSERT(sipif != virgipif); 11803 11804 /* 11805 * Grab all of the locks that protect the ipif in a defined order. 11806 */ 11807 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11808 11809 ipif_clone(sipif, dipif); 11810 if (virgipif != NULL) { 11811 ipif_clone(virgipif, sipif); 11812 mi_free(virgipif); 11813 } 11814 11815 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11816 11817 /* 11818 * Transfer ownership of the current xop, if necessary. 11819 */ 11820 if (ipx->ipx_current_ipif == sipif) { 11821 ASSERT(ipx->ipx_pending_ipif == NULL); 11822 mutex_enter(&ipx->ipx_lock); 11823 ipx->ipx_current_ipif = dipif; 11824 mutex_exit(&ipx->ipx_lock); 11825 } 11826 11827 if (virgipif == NULL) 11828 mi_free(sipif); 11829 } 11830 11831 /* 11832 * checks if: 11833 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11834 * - logical interface is within the allowed range 11835 */ 11836 static int 11837 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11838 { 11839 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11840 return (ENAMETOOLONG); 11841 11842 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11843 return (ERANGE); 11844 return (0); 11845 } 11846 11847 /* 11848 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11849 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11850 * be inserted into the first space available in the list. The value of 11851 * ipif_id will then be set to the appropriate value for its position. 11852 */ 11853 static int 11854 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11855 { 11856 ill_t *ill; 11857 ipif_t *tipif; 11858 ipif_t **tipifp; 11859 int id, err; 11860 ip_stack_t *ipst; 11861 11862 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11863 IAM_WRITER_IPIF(ipif)); 11864 11865 ill = ipif->ipif_ill; 11866 ASSERT(ill != NULL); 11867 ipst = ill->ill_ipst; 11868 11869 /* 11870 * In the case of lo0:0 we already hold the ill_g_lock. 11871 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11872 * ipif_insert. 11873 */ 11874 if (acquire_g_lock) 11875 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11876 mutex_enter(&ill->ill_lock); 11877 id = ipif->ipif_id; 11878 tipifp = &(ill->ill_ipif); 11879 if (id == -1) { /* need to find a real id */ 11880 id = 0; 11881 while ((tipif = *tipifp) != NULL) { 11882 ASSERT(tipif->ipif_id >= id); 11883 if (tipif->ipif_id != id) 11884 break; /* non-consecutive id */ 11885 id++; 11886 tipifp = &(tipif->ipif_next); 11887 } 11888 if ((err = is_lifname_valid(ill, id)) != 0) { 11889 mutex_exit(&ill->ill_lock); 11890 if (acquire_g_lock) 11891 rw_exit(&ipst->ips_ill_g_lock); 11892 return (err); 11893 } 11894 ipif->ipif_id = id; /* assign new id */ 11895 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11896 /* we have a real id; insert ipif in the right place */ 11897 while ((tipif = *tipifp) != NULL) { 11898 ASSERT(tipif->ipif_id != id); 11899 if (tipif->ipif_id > id) 11900 break; /* found correct location */ 11901 tipifp = &(tipif->ipif_next); 11902 } 11903 } else { 11904 mutex_exit(&ill->ill_lock); 11905 if (acquire_g_lock) 11906 rw_exit(&ipst->ips_ill_g_lock); 11907 return (err); 11908 } 11909 11910 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11911 11912 ipif->ipif_next = tipif; 11913 *tipifp = ipif; 11914 mutex_exit(&ill->ill_lock); 11915 if (acquire_g_lock) 11916 rw_exit(&ipst->ips_ill_g_lock); 11917 11918 return (0); 11919 } 11920 11921 static void 11922 ipif_remove(ipif_t *ipif) 11923 { 11924 ipif_t **ipifp; 11925 ill_t *ill = ipif->ipif_ill; 11926 11927 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11928 11929 mutex_enter(&ill->ill_lock); 11930 ipifp = &ill->ill_ipif; 11931 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11932 if (*ipifp == ipif) { 11933 *ipifp = ipif->ipif_next; 11934 break; 11935 } 11936 } 11937 mutex_exit(&ill->ill_lock); 11938 } 11939 11940 /* 11941 * Allocate and initialize a new interface control structure. (Always 11942 * called as writer.) 11943 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11944 * is not part of the global linked list of ills. ipif_seqid is unique 11945 * in the system and to preserve the uniqueness, it is assigned only 11946 * when ill becomes part of the global list. At that point ill will 11947 * have a name. If it doesn't get assigned here, it will get assigned 11948 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11949 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11950 * the interface flags or any other information from the DL_INFO_ACK for 11951 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11952 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11953 * second DL_INFO_ACK comes in from the driver. 11954 */ 11955 static ipif_t * 11956 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11957 boolean_t insert, int *errorp) 11958 { 11959 int err; 11960 ipif_t *ipif; 11961 ip_stack_t *ipst = ill->ill_ipst; 11962 11963 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11964 ill->ill_name, id, (void *)ill)); 11965 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11966 11967 if (errorp != NULL) 11968 *errorp = 0; 11969 11970 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 11971 if (errorp != NULL) 11972 *errorp = ENOMEM; 11973 return (NULL); 11974 } 11975 *ipif = ipif_zero; /* start clean */ 11976 11977 ipif->ipif_ill = ill; 11978 ipif->ipif_id = id; /* could be -1 */ 11979 /* 11980 * Inherit the zoneid from the ill; for the shared stack instance 11981 * this is always the global zone 11982 */ 11983 ipif->ipif_zoneid = ill->ill_zoneid; 11984 11985 ipif->ipif_refcnt = 0; 11986 11987 if (insert) { 11988 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 11989 mi_free(ipif); 11990 if (errorp != NULL) 11991 *errorp = err; 11992 return (NULL); 11993 } 11994 /* -1 id should have been replaced by real id */ 11995 id = ipif->ipif_id; 11996 ASSERT(id >= 0); 11997 } 11998 11999 if (ill->ill_name[0] != '\0') 12000 ipif_assign_seqid(ipif); 12001 12002 /* 12003 * If this is the zeroth ipif on the IPMP ill, create the illgrp 12004 * (which must not exist yet because the zeroth ipif is created once 12005 * per ill). However, do not not link it to the ipmp_grp_t until 12006 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 12007 */ 12008 if (id == 0 && IS_IPMP(ill)) { 12009 if (ipmp_illgrp_create(ill) == NULL) { 12010 if (insert) { 12011 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 12012 ipif_remove(ipif); 12013 rw_exit(&ipst->ips_ill_g_lock); 12014 } 12015 mi_free(ipif); 12016 if (errorp != NULL) 12017 *errorp = ENOMEM; 12018 return (NULL); 12019 } 12020 } 12021 12022 /* 12023 * We grab ill_lock to protect the flag changes. The ipif is still 12024 * not up and can't be looked up until the ioctl completes and the 12025 * IPIF_CHANGING flag is cleared. 12026 */ 12027 mutex_enter(&ill->ill_lock); 12028 12029 ipif->ipif_ire_type = ire_type; 12030 12031 if (ipif->ipif_isv6) { 12032 ill->ill_flags |= ILLF_IPV6; 12033 } else { 12034 ipaddr_t inaddr_any = INADDR_ANY; 12035 12036 ill->ill_flags |= ILLF_IPV4; 12037 12038 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12039 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12040 &ipif->ipif_v6lcl_addr); 12041 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12042 &ipif->ipif_v6subnet); 12043 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12044 &ipif->ipif_v6net_mask); 12045 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12046 &ipif->ipif_v6brd_addr); 12047 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12048 &ipif->ipif_v6pp_dst_addr); 12049 } 12050 12051 /* 12052 * Don't set the interface flags etc. now, will do it in 12053 * ip_ll_subnet_defaults. 12054 */ 12055 if (!initialize) 12056 goto out; 12057 12058 /* 12059 * NOTE: The IPMP meta-interface is special-cased because it starts 12060 * with no underlying interfaces (and thus an unknown broadcast 12061 * address length), but all interfaces that can be placed into an IPMP 12062 * group are required to be broadcast-capable. 12063 */ 12064 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12065 /* 12066 * Later detect lack of DLPI driver multicast capability by 12067 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12068 */ 12069 ill->ill_flags |= ILLF_MULTICAST; 12070 if (!ipif->ipif_isv6) 12071 ipif->ipif_flags |= IPIF_BROADCAST; 12072 } else { 12073 if (ill->ill_net_type != IRE_LOOPBACK) { 12074 if (ipif->ipif_isv6) 12075 /* 12076 * Note: xresolv interfaces will eventually need 12077 * NOARP set here as well, but that will require 12078 * those external resolvers to have some 12079 * knowledge of that flag and act appropriately. 12080 * Not to be changed at present. 12081 */ 12082 ill->ill_flags |= ILLF_NONUD; 12083 else 12084 ill->ill_flags |= ILLF_NOARP; 12085 } 12086 if (ill->ill_phys_addr_length == 0) { 12087 if (IS_VNI(ill)) { 12088 ipif->ipif_flags |= IPIF_NOXMIT; 12089 } else { 12090 /* pt-pt supports multicast. */ 12091 ill->ill_flags |= ILLF_MULTICAST; 12092 if (ill->ill_net_type != IRE_LOOPBACK) 12093 ipif->ipif_flags |= IPIF_POINTOPOINT; 12094 } 12095 } 12096 } 12097 out: 12098 mutex_exit(&ill->ill_lock); 12099 return (ipif); 12100 } 12101 12102 /* 12103 * Remove the neighbor cache entries associated with this logical 12104 * interface. 12105 */ 12106 int 12107 ipif_arp_down(ipif_t *ipif) 12108 { 12109 ill_t *ill = ipif->ipif_ill; 12110 int err = 0; 12111 12112 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12113 ASSERT(IAM_WRITER_IPIF(ipif)); 12114 12115 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12116 ill_t *, ill, ipif_t *, ipif); 12117 ipif_nce_down(ipif); 12118 12119 /* 12120 * If this is the last ipif that is going down and there are no 12121 * duplicate addresses we may yet attempt to re-probe, then we need to 12122 * clean up ARP completely. 12123 */ 12124 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12125 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12126 /* 12127 * If this was the last ipif on an IPMP interface, purge any 12128 * static ARP entries associated with it. 12129 */ 12130 if (IS_IPMP(ill)) 12131 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12132 12133 /* UNBIND, DETACH */ 12134 err = arp_ll_down(ill); 12135 } 12136 12137 return (err); 12138 } 12139 12140 /* 12141 * Get the resolver set up for a new IP address. (Always called as writer.) 12142 * Called both for IPv4 and IPv6 interfaces, though it only does some 12143 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12144 * 12145 * The enumerated value res_act tunes the behavior: 12146 * * Res_act_initial: set up all the resolver structures for a new 12147 * IP address. 12148 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12149 * ARP message in defense of the address. 12150 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12151 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12152 * 12153 * Returns zero on success, or an errno upon failure. 12154 */ 12155 int 12156 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12157 { 12158 ill_t *ill = ipif->ipif_ill; 12159 int err; 12160 boolean_t was_dup; 12161 12162 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12163 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12164 ASSERT(IAM_WRITER_IPIF(ipif)); 12165 12166 was_dup = B_FALSE; 12167 if (res_act == Res_act_initial) { 12168 ipif->ipif_addr_ready = 0; 12169 /* 12170 * We're bringing an interface up here. There's no way that we 12171 * should need to shut down ARP now. 12172 */ 12173 mutex_enter(&ill->ill_lock); 12174 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12175 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12176 ill->ill_ipif_dup_count--; 12177 was_dup = B_TRUE; 12178 } 12179 mutex_exit(&ill->ill_lock); 12180 } 12181 if (ipif->ipif_recovery_id != 0) 12182 (void) untimeout(ipif->ipif_recovery_id); 12183 ipif->ipif_recovery_id = 0; 12184 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12185 ipif->ipif_addr_ready = 1; 12186 return (0); 12187 } 12188 /* NDP will set the ipif_addr_ready flag when it's ready */ 12189 if (ill->ill_isv6) 12190 return (0); 12191 12192 err = ipif_arp_up(ipif, res_act, was_dup); 12193 return (err); 12194 } 12195 12196 /* 12197 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12198 * when a link has just gone back up. 12199 */ 12200 static void 12201 ipif_nce_start_dad(ipif_t *ipif) 12202 { 12203 ncec_t *ncec; 12204 ill_t *ill = ipif->ipif_ill; 12205 boolean_t isv6 = ill->ill_isv6; 12206 12207 if (isv6) { 12208 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12209 &ipif->ipif_v6lcl_addr); 12210 } else { 12211 ipaddr_t v4addr; 12212 12213 if (ill->ill_net_type != IRE_IF_RESOLVER || 12214 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12215 ipif->ipif_lcl_addr == INADDR_ANY) { 12216 /* 12217 * If we can't contact ARP for some reason, 12218 * that's not really a problem. Just send 12219 * out the routing socket notification that 12220 * DAD completion would have done, and continue. 12221 */ 12222 ipif_mask_reply(ipif); 12223 ipif_up_notify(ipif); 12224 ipif->ipif_addr_ready = 1; 12225 return; 12226 } 12227 12228 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12229 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12230 } 12231 12232 if (ncec == NULL) { 12233 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12234 (void *)ipif)); 12235 return; 12236 } 12237 if (!nce_restart_dad(ncec)) { 12238 /* 12239 * If we can't restart DAD for some reason, that's not really a 12240 * problem. Just send out the routing socket notification that 12241 * DAD completion would have done, and continue. 12242 */ 12243 ipif_up_notify(ipif); 12244 ipif->ipif_addr_ready = 1; 12245 } 12246 ncec_refrele(ncec); 12247 } 12248 12249 /* 12250 * Restart duplicate address detection on all interfaces on the given ill. 12251 * 12252 * This is called when an interface transitions from down to up 12253 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12254 * 12255 * Note that since the underlying physical link has transitioned, we must cause 12256 * at least one routing socket message to be sent here, either via DAD 12257 * completion or just by default on the first ipif. (If we don't do this, then 12258 * in.mpathd will see long delays when doing link-based failure recovery.) 12259 */ 12260 void 12261 ill_restart_dad(ill_t *ill, boolean_t went_up) 12262 { 12263 ipif_t *ipif; 12264 12265 if (ill == NULL) 12266 return; 12267 12268 /* 12269 * If layer two doesn't support duplicate address detection, then just 12270 * send the routing socket message now and be done with it. 12271 */ 12272 if (!ill->ill_isv6 && arp_no_defense) { 12273 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12274 return; 12275 } 12276 12277 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12278 if (went_up) { 12279 12280 if (ipif->ipif_flags & IPIF_UP) { 12281 ipif_nce_start_dad(ipif); 12282 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12283 /* 12284 * kick off the bring-up process now. 12285 */ 12286 ipif_do_recovery(ipif); 12287 } else { 12288 /* 12289 * Unfortunately, the first ipif is "special" 12290 * and represents the underlying ill in the 12291 * routing socket messages. Thus, when this 12292 * one ipif is down, we must still notify so 12293 * that the user knows the IFF_RUNNING status 12294 * change. (If the first ipif is up, then 12295 * we'll handle eventual routing socket 12296 * notification via DAD completion.) 12297 */ 12298 if (ipif == ill->ill_ipif) { 12299 ip_rts_ifmsg(ill->ill_ipif, 12300 RTSQ_DEFAULT); 12301 } 12302 } 12303 } else { 12304 /* 12305 * After link down, we'll need to send a new routing 12306 * message when the link comes back, so clear 12307 * ipif_addr_ready. 12308 */ 12309 ipif->ipif_addr_ready = 0; 12310 } 12311 } 12312 12313 /* 12314 * If we've torn down links, then notify the user right away. 12315 */ 12316 if (!went_up) 12317 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12318 } 12319 12320 static void 12321 ipsq_delete(ipsq_t *ipsq) 12322 { 12323 ipxop_t *ipx = ipsq->ipsq_xop; 12324 12325 ipsq->ipsq_ipst = NULL; 12326 ASSERT(ipsq->ipsq_phyint == NULL); 12327 ASSERT(ipsq->ipsq_xop != NULL); 12328 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12329 ASSERT(ipx->ipx_pending_mp == NULL); 12330 kmem_free(ipsq, sizeof (ipsq_t)); 12331 } 12332 12333 static int 12334 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12335 { 12336 int err = 0; 12337 ipif_t *ipif; 12338 12339 if (ill == NULL) 12340 return (0); 12341 12342 ASSERT(IAM_WRITER_ILL(ill)); 12343 ill->ill_up_ipifs = B_TRUE; 12344 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12345 if (ipif->ipif_was_up) { 12346 if (!(ipif->ipif_flags & IPIF_UP)) 12347 err = ipif_up(ipif, q, mp); 12348 ipif->ipif_was_up = B_FALSE; 12349 if (err != 0) { 12350 ASSERT(err == EINPROGRESS); 12351 return (err); 12352 } 12353 } 12354 } 12355 ill->ill_up_ipifs = B_FALSE; 12356 return (0); 12357 } 12358 12359 /* 12360 * This function is called to bring up all the ipifs that were up before 12361 * bringing the ill down via ill_down_ipifs(). 12362 */ 12363 int 12364 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12365 { 12366 int err; 12367 12368 ASSERT(IAM_WRITER_ILL(ill)); 12369 12370 if (ill->ill_replumbing) { 12371 ill->ill_replumbing = 0; 12372 /* 12373 * Send down REPLUMB_DONE notification followed by the 12374 * BIND_REQ on the arp stream. 12375 */ 12376 if (!ill->ill_isv6) 12377 arp_send_replumb_conf(ill); 12378 } 12379 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12380 if (err != 0) 12381 return (err); 12382 12383 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12384 } 12385 12386 /* 12387 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12388 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12389 */ 12390 static void 12391 ill_down_ipifs(ill_t *ill, boolean_t logical) 12392 { 12393 ipif_t *ipif; 12394 12395 ASSERT(IAM_WRITER_ILL(ill)); 12396 12397 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12398 /* 12399 * We go through the ipif_down logic even if the ipif 12400 * is already down, since routes can be added based 12401 * on down ipifs. Going through ipif_down once again 12402 * will delete any IREs created based on these routes. 12403 */ 12404 if (ipif->ipif_flags & IPIF_UP) 12405 ipif->ipif_was_up = B_TRUE; 12406 12407 if (logical) { 12408 (void) ipif_logical_down(ipif, NULL, NULL); 12409 ipif_non_duplicate(ipif); 12410 (void) ipif_down_tail(ipif); 12411 } else { 12412 (void) ipif_down(ipif, NULL, NULL); 12413 } 12414 } 12415 } 12416 12417 /* 12418 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12419 * a look again at valid source addresses. 12420 * This should be called each time after the set of source addresses has been 12421 * changed. 12422 */ 12423 void 12424 ip_update_source_selection(ip_stack_t *ipst) 12425 { 12426 /* We skip past SRC_GENERATION_VERIFY */ 12427 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12428 SRC_GENERATION_VERIFY) 12429 atomic_add_32(&ipst->ips_src_generation, 1); 12430 } 12431 12432 /* 12433 * Finish the group join started in ip_sioctl_groupname(). 12434 */ 12435 /* ARGSUSED */ 12436 static void 12437 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12438 { 12439 ill_t *ill = q->q_ptr; 12440 phyint_t *phyi = ill->ill_phyint; 12441 ipmp_grp_t *grp = phyi->phyint_grp; 12442 ip_stack_t *ipst = ill->ill_ipst; 12443 12444 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12445 ASSERT(!IS_IPMP(ill) && grp != NULL); 12446 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12447 12448 if (phyi->phyint_illv4 != NULL) { 12449 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12450 VERIFY(grp->gr_pendv4-- > 0); 12451 rw_exit(&ipst->ips_ipmp_lock); 12452 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12453 } 12454 if (phyi->phyint_illv6 != NULL) { 12455 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12456 VERIFY(grp->gr_pendv6-- > 0); 12457 rw_exit(&ipst->ips_ipmp_lock); 12458 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12459 } 12460 freemsg(mp); 12461 } 12462 12463 /* 12464 * Process an SIOCSLIFGROUPNAME request. 12465 */ 12466 /* ARGSUSED */ 12467 int 12468 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12469 ip_ioctl_cmd_t *ipip, void *ifreq) 12470 { 12471 struct lifreq *lifr = ifreq; 12472 ill_t *ill = ipif->ipif_ill; 12473 ip_stack_t *ipst = ill->ill_ipst; 12474 phyint_t *phyi = ill->ill_phyint; 12475 ipmp_grp_t *grp = phyi->phyint_grp; 12476 mblk_t *ipsq_mp; 12477 int err = 0; 12478 12479 /* 12480 * Note that phyint_grp can only change here, where we're exclusive. 12481 */ 12482 ASSERT(IAM_WRITER_ILL(ill)); 12483 12484 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12485 (phyi->phyint_flags & PHYI_VIRTUAL)) 12486 return (EINVAL); 12487 12488 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12489 12490 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12491 12492 /* 12493 * If the name hasn't changed, there's nothing to do. 12494 */ 12495 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12496 goto unlock; 12497 12498 /* 12499 * Handle requests to rename an IPMP meta-interface. 12500 * 12501 * Note that creation of the IPMP meta-interface is handled in 12502 * userland through the standard plumbing sequence. As part of the 12503 * plumbing the IPMP meta-interface, its initial groupname is set to 12504 * the name of the interface (see ipif_set_values_tail()). 12505 */ 12506 if (IS_IPMP(ill)) { 12507 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12508 goto unlock; 12509 } 12510 12511 /* 12512 * Handle requests to add or remove an IP interface from a group. 12513 */ 12514 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12515 /* 12516 * Moves are handled by first removing the interface from 12517 * its existing group, and then adding it to another group. 12518 * So, fail if it's already in a group. 12519 */ 12520 if (IS_UNDER_IPMP(ill)) { 12521 err = EALREADY; 12522 goto unlock; 12523 } 12524 12525 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12526 if (grp == NULL) { 12527 err = ENOENT; 12528 goto unlock; 12529 } 12530 12531 /* 12532 * Check if the phyint and its ills are suitable for 12533 * inclusion into the group. 12534 */ 12535 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12536 goto unlock; 12537 12538 /* 12539 * Checks pass; join the group, and enqueue the remaining 12540 * illgrp joins for when we've become part of the group xop 12541 * and are exclusive across its IPSQs. Since qwriter_ip() 12542 * requires an mblk_t to scribble on, and since `mp' will be 12543 * freed as part of completing the ioctl, allocate another. 12544 */ 12545 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12546 err = ENOMEM; 12547 goto unlock; 12548 } 12549 12550 /* 12551 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12552 * IPMP meta-interface ills needed by `phyi' cannot go away 12553 * before ip_join_illgrps() is called back. See the comments 12554 * in ip_sioctl_plink_ipmp() for more. 12555 */ 12556 if (phyi->phyint_illv4 != NULL) 12557 grp->gr_pendv4++; 12558 if (phyi->phyint_illv6 != NULL) 12559 grp->gr_pendv6++; 12560 12561 rw_exit(&ipst->ips_ipmp_lock); 12562 12563 ipmp_phyint_join_grp(phyi, grp); 12564 ill_refhold(ill); 12565 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12566 SWITCH_OP, B_FALSE); 12567 return (0); 12568 } else { 12569 /* 12570 * Request to remove the interface from a group. If the 12571 * interface is not in a group, this trivially succeeds. 12572 */ 12573 rw_exit(&ipst->ips_ipmp_lock); 12574 if (IS_UNDER_IPMP(ill)) 12575 ipmp_phyint_leave_grp(phyi); 12576 return (0); 12577 } 12578 unlock: 12579 rw_exit(&ipst->ips_ipmp_lock); 12580 return (err); 12581 } 12582 12583 /* 12584 * Process an SIOCGLIFBINDING request. 12585 */ 12586 /* ARGSUSED */ 12587 int 12588 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12589 ip_ioctl_cmd_t *ipip, void *ifreq) 12590 { 12591 ill_t *ill; 12592 struct lifreq *lifr = ifreq; 12593 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12594 12595 if (!IS_IPMP(ipif->ipif_ill)) 12596 return (EINVAL); 12597 12598 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12599 if ((ill = ipif->ipif_bound_ill) == NULL) 12600 lifr->lifr_binding[0] = '\0'; 12601 else 12602 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12603 rw_exit(&ipst->ips_ipmp_lock); 12604 return (0); 12605 } 12606 12607 /* 12608 * Process an SIOCGLIFGROUPNAME request. 12609 */ 12610 /* ARGSUSED */ 12611 int 12612 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12613 ip_ioctl_cmd_t *ipip, void *ifreq) 12614 { 12615 ipmp_grp_t *grp; 12616 struct lifreq *lifr = ifreq; 12617 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12618 12619 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12620 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12621 lifr->lifr_groupname[0] = '\0'; 12622 else 12623 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12624 rw_exit(&ipst->ips_ipmp_lock); 12625 return (0); 12626 } 12627 12628 /* 12629 * Process an SIOCGLIFGROUPINFO request. 12630 */ 12631 /* ARGSUSED */ 12632 int 12633 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12634 ip_ioctl_cmd_t *ipip, void *dummy) 12635 { 12636 ipmp_grp_t *grp; 12637 lifgroupinfo_t *lifgr; 12638 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12639 12640 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12641 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12642 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12643 12644 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12645 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12646 rw_exit(&ipst->ips_ipmp_lock); 12647 return (ENOENT); 12648 } 12649 ipmp_grp_info(grp, lifgr); 12650 rw_exit(&ipst->ips_ipmp_lock); 12651 return (0); 12652 } 12653 12654 static void 12655 ill_dl_down(ill_t *ill) 12656 { 12657 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12658 12659 /* 12660 * The ill is down; unbind but stay attached since we're still 12661 * associated with a PPA. If we have negotiated DLPI capabilites 12662 * with the data link service provider (IDS_OK) then reset them. 12663 * The interval between unbinding and rebinding is potentially 12664 * unbounded hence we cannot assume things will be the same. 12665 * The DLPI capabilities will be probed again when the data link 12666 * is brought up. 12667 */ 12668 mblk_t *mp = ill->ill_unbind_mp; 12669 12670 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12671 12672 if (!ill->ill_replumbing) { 12673 /* Free all ilms for this ill */ 12674 update_conn_ill(ill, ill->ill_ipst); 12675 } else { 12676 ill_leave_multicast(ill); 12677 } 12678 12679 ill->ill_unbind_mp = NULL; 12680 if (mp != NULL) { 12681 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12682 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12683 ill->ill_name)); 12684 mutex_enter(&ill->ill_lock); 12685 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12686 mutex_exit(&ill->ill_lock); 12687 /* 12688 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12689 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12690 * ill_capability_dld_disable disable rightaway. If this is not 12691 * an unplumb operation then the disable happens on receipt of 12692 * the capab ack via ip_rput_dlpi_writer -> 12693 * ill_capability_ack_thr. In both cases the order of 12694 * the operations seen by DLD is capability disable followed 12695 * by DL_UNBIND. Also the DLD capability disable needs a 12696 * cv_wait'able context. 12697 */ 12698 if (ill->ill_state_flags & ILL_CONDEMNED) 12699 ill_capability_dld_disable(ill); 12700 ill_capability_reset(ill, B_FALSE); 12701 ill_dlpi_send(ill, mp); 12702 } 12703 mutex_enter(&ill->ill_lock); 12704 ill->ill_dl_up = 0; 12705 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12706 mutex_exit(&ill->ill_lock); 12707 } 12708 12709 void 12710 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12711 { 12712 union DL_primitives *dlp; 12713 t_uscalar_t prim; 12714 boolean_t waitack = B_FALSE; 12715 12716 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12717 12718 dlp = (union DL_primitives *)mp->b_rptr; 12719 prim = dlp->dl_primitive; 12720 12721 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12722 dl_primstr(prim), prim, ill->ill_name)); 12723 12724 switch (prim) { 12725 case DL_PHYS_ADDR_REQ: 12726 { 12727 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12728 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12729 break; 12730 } 12731 case DL_BIND_REQ: 12732 mutex_enter(&ill->ill_lock); 12733 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12734 mutex_exit(&ill->ill_lock); 12735 break; 12736 } 12737 12738 /* 12739 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12740 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12741 * we only wait for the ACK of the DL_UNBIND_REQ. 12742 */ 12743 mutex_enter(&ill->ill_lock); 12744 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12745 (prim == DL_UNBIND_REQ)) { 12746 ill->ill_dlpi_pending = prim; 12747 waitack = B_TRUE; 12748 } 12749 12750 mutex_exit(&ill->ill_lock); 12751 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12752 char *, dl_primstr(prim), ill_t *, ill); 12753 putnext(ill->ill_wq, mp); 12754 12755 /* 12756 * There is no ack for DL_NOTIFY_CONF messages 12757 */ 12758 if (waitack && prim == DL_NOTIFY_CONF) 12759 ill_dlpi_done(ill, prim); 12760 } 12761 12762 /* 12763 * Helper function for ill_dlpi_send(). 12764 */ 12765 /* ARGSUSED */ 12766 static void 12767 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12768 { 12769 ill_dlpi_send(q->q_ptr, mp); 12770 } 12771 12772 /* 12773 * Send a DLPI control message to the driver but make sure there 12774 * is only one outstanding message. Uses ill_dlpi_pending to tell 12775 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12776 * when an ACK or a NAK is received to process the next queued message. 12777 */ 12778 void 12779 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12780 { 12781 mblk_t **mpp; 12782 12783 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12784 12785 /* 12786 * To ensure that any DLPI requests for current exclusive operation 12787 * are always completely sent before any DLPI messages for other 12788 * operations, require writer access before enqueuing. 12789 */ 12790 if (!IAM_WRITER_ILL(ill)) { 12791 ill_refhold(ill); 12792 /* qwriter_ip() does the ill_refrele() */ 12793 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12794 NEW_OP, B_TRUE); 12795 return; 12796 } 12797 12798 mutex_enter(&ill->ill_lock); 12799 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12800 /* Must queue message. Tail insertion */ 12801 mpp = &ill->ill_dlpi_deferred; 12802 while (*mpp != NULL) 12803 mpp = &((*mpp)->b_next); 12804 12805 ip1dbg(("ill_dlpi_send: deferring request for %s " 12806 "while %s pending\n", ill->ill_name, 12807 dl_primstr(ill->ill_dlpi_pending))); 12808 12809 *mpp = mp; 12810 mutex_exit(&ill->ill_lock); 12811 return; 12812 } 12813 mutex_exit(&ill->ill_lock); 12814 ill_dlpi_dispatch(ill, mp); 12815 } 12816 12817 void 12818 ill_capability_send(ill_t *ill, mblk_t *mp) 12819 { 12820 ill->ill_capab_pending_cnt++; 12821 ill_dlpi_send(ill, mp); 12822 } 12823 12824 void 12825 ill_capability_done(ill_t *ill) 12826 { 12827 ASSERT(ill->ill_capab_pending_cnt != 0); 12828 12829 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12830 12831 ill->ill_capab_pending_cnt--; 12832 if (ill->ill_capab_pending_cnt == 0 && 12833 ill->ill_dlpi_capab_state == IDCS_OK) 12834 ill_capability_reset_alloc(ill); 12835 } 12836 12837 /* 12838 * Send all deferred DLPI messages without waiting for their ACKs. 12839 */ 12840 void 12841 ill_dlpi_send_deferred(ill_t *ill) 12842 { 12843 mblk_t *mp, *nextmp; 12844 12845 /* 12846 * Clear ill_dlpi_pending so that the message is not queued in 12847 * ill_dlpi_send(). 12848 */ 12849 mutex_enter(&ill->ill_lock); 12850 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12851 mp = ill->ill_dlpi_deferred; 12852 ill->ill_dlpi_deferred = NULL; 12853 mutex_exit(&ill->ill_lock); 12854 12855 for (; mp != NULL; mp = nextmp) { 12856 nextmp = mp->b_next; 12857 mp->b_next = NULL; 12858 ill_dlpi_send(ill, mp); 12859 } 12860 } 12861 12862 /* 12863 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12864 * or M_HANGUP 12865 */ 12866 static void 12867 ill_dlpi_clear_deferred(ill_t *ill) 12868 { 12869 mblk_t *mp, *nextmp; 12870 12871 mutex_enter(&ill->ill_lock); 12872 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12873 mp = ill->ill_dlpi_deferred; 12874 ill->ill_dlpi_deferred = NULL; 12875 mutex_exit(&ill->ill_lock); 12876 12877 for (; mp != NULL; mp = nextmp) { 12878 nextmp = mp->b_next; 12879 inet_freemsg(mp); 12880 } 12881 } 12882 12883 /* 12884 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12885 */ 12886 boolean_t 12887 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12888 { 12889 t_uscalar_t pending; 12890 12891 mutex_enter(&ill->ill_lock); 12892 if (ill->ill_dlpi_pending == prim) { 12893 mutex_exit(&ill->ill_lock); 12894 return (B_TRUE); 12895 } 12896 12897 /* 12898 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12899 * without waiting, so don't print any warnings in that case. 12900 */ 12901 if (ill->ill_state_flags & ILL_CONDEMNED) { 12902 mutex_exit(&ill->ill_lock); 12903 return (B_FALSE); 12904 } 12905 pending = ill->ill_dlpi_pending; 12906 mutex_exit(&ill->ill_lock); 12907 12908 if (pending == DL_PRIM_INVAL) { 12909 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12910 "received unsolicited ack for %s on %s\n", 12911 dl_primstr(prim), ill->ill_name); 12912 } else { 12913 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12914 "received unexpected ack for %s on %s (expecting %s)\n", 12915 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12916 } 12917 return (B_FALSE); 12918 } 12919 12920 /* 12921 * Complete the current DLPI operation associated with `prim' on `ill' and 12922 * start the next queued DLPI operation (if any). If there are no queued DLPI 12923 * operations and the ill's current exclusive IPSQ operation has finished 12924 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12925 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12926 * the comments above ipsq_current_finish() for details. 12927 */ 12928 void 12929 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12930 { 12931 mblk_t *mp; 12932 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12933 ipxop_t *ipx = ipsq->ipsq_xop; 12934 12935 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12936 mutex_enter(&ill->ill_lock); 12937 12938 ASSERT(prim != DL_PRIM_INVAL); 12939 ASSERT(ill->ill_dlpi_pending == prim); 12940 12941 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12942 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12943 12944 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12945 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12946 if (ipx->ipx_current_done) { 12947 mutex_enter(&ipx->ipx_lock); 12948 ipx->ipx_current_ipif = NULL; 12949 mutex_exit(&ipx->ipx_lock); 12950 } 12951 cv_signal(&ill->ill_cv); 12952 mutex_exit(&ill->ill_lock); 12953 return; 12954 } 12955 12956 ill->ill_dlpi_deferred = mp->b_next; 12957 mp->b_next = NULL; 12958 mutex_exit(&ill->ill_lock); 12959 12960 ill_dlpi_dispatch(ill, mp); 12961 } 12962 12963 /* 12964 * Queue a (multicast) DLPI control message to be sent to the driver by 12965 * later calling ill_dlpi_send_queued. 12966 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12967 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12968 * for the same group to race. 12969 * We send DLPI control messages in order using ill_lock. 12970 * For IPMP we should be called on the cast_ill. 12971 */ 12972 void 12973 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12974 { 12975 mblk_t **mpp; 12976 12977 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12978 12979 mutex_enter(&ill->ill_lock); 12980 /* Must queue message. Tail insertion */ 12981 mpp = &ill->ill_dlpi_deferred; 12982 while (*mpp != NULL) 12983 mpp = &((*mpp)->b_next); 12984 12985 *mpp = mp; 12986 mutex_exit(&ill->ill_lock); 12987 } 12988 12989 /* 12990 * Send the messages that were queued. Make sure there is only 12991 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 12992 * when an ACK or a NAK is received to process the next queued message. 12993 * For IPMP we are called on the upper ill, but when send what is queued 12994 * on the cast_ill. 12995 */ 12996 void 12997 ill_dlpi_send_queued(ill_t *ill) 12998 { 12999 mblk_t *mp; 13000 union DL_primitives *dlp; 13001 t_uscalar_t prim; 13002 ill_t *release_ill = NULL; 13003 13004 if (IS_IPMP(ill)) { 13005 /* On the upper IPMP ill. */ 13006 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13007 if (release_ill == NULL) { 13008 /* Avoid ever sending anything down to the ipmpstub */ 13009 return; 13010 } 13011 ill = release_ill; 13012 } 13013 mutex_enter(&ill->ill_lock); 13014 while ((mp = ill->ill_dlpi_deferred) != NULL) { 13015 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 13016 /* Can't send. Somebody else will send it */ 13017 mutex_exit(&ill->ill_lock); 13018 goto done; 13019 } 13020 ill->ill_dlpi_deferred = mp->b_next; 13021 mp->b_next = NULL; 13022 if (!ill->ill_dl_up) { 13023 /* 13024 * Nobody there. All multicast addresses will be 13025 * re-joined when we get the DL_BIND_ACK bringing the 13026 * interface up. 13027 */ 13028 freemsg(mp); 13029 continue; 13030 } 13031 dlp = (union DL_primitives *)mp->b_rptr; 13032 prim = dlp->dl_primitive; 13033 13034 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13035 (prim == DL_UNBIND_REQ)) { 13036 ill->ill_dlpi_pending = prim; 13037 } 13038 mutex_exit(&ill->ill_lock); 13039 13040 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13041 char *, dl_primstr(prim), ill_t *, ill); 13042 putnext(ill->ill_wq, mp); 13043 mutex_enter(&ill->ill_lock); 13044 } 13045 mutex_exit(&ill->ill_lock); 13046 done: 13047 if (release_ill != NULL) 13048 ill_refrele(release_ill); 13049 } 13050 13051 /* 13052 * Queue an IP (IGMP/MLD) message to be sent by IP from 13053 * ill_mcast_send_queued 13054 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13055 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13056 * group to race. 13057 * We send them in order using ill_lock. 13058 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13059 */ 13060 void 13061 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13062 { 13063 mblk_t **mpp; 13064 ill_t *release_ill = NULL; 13065 13066 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13067 13068 if (IS_IPMP(ill)) { 13069 /* On the upper IPMP ill. */ 13070 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13071 if (release_ill == NULL) { 13072 /* Discard instead of queuing for the ipmp interface */ 13073 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13074 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13075 mp, ill); 13076 freemsg(mp); 13077 return; 13078 } 13079 ill = release_ill; 13080 } 13081 13082 mutex_enter(&ill->ill_lock); 13083 /* Must queue message. Tail insertion */ 13084 mpp = &ill->ill_mcast_deferred; 13085 while (*mpp != NULL) 13086 mpp = &((*mpp)->b_next); 13087 13088 *mpp = mp; 13089 mutex_exit(&ill->ill_lock); 13090 if (release_ill != NULL) 13091 ill_refrele(release_ill); 13092 } 13093 13094 /* 13095 * Send the IP packets that were queued by ill_mcast_queue. 13096 * These are IGMP/MLD packets. 13097 * 13098 * For IPMP we are called on the upper ill, but when send what is queued 13099 * on the cast_ill. 13100 * 13101 * Request loopback of the report if we are acting as a multicast 13102 * router, so that the process-level routing demon can hear it. 13103 * This will run multiple times for the same group if there are members 13104 * on the same group for multiple ipif's on the same ill. The 13105 * igmp_input/mld_input code will suppress this due to the loopback thus we 13106 * always loopback membership report. 13107 * 13108 * We also need to make sure that this does not get load balanced 13109 * by IPMP. We do this by passing an ill to ip_output_simple. 13110 */ 13111 void 13112 ill_mcast_send_queued(ill_t *ill) 13113 { 13114 mblk_t *mp; 13115 ip_xmit_attr_t ixas; 13116 ill_t *release_ill = NULL; 13117 13118 if (IS_IPMP(ill)) { 13119 /* On the upper IPMP ill. */ 13120 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13121 if (release_ill == NULL) { 13122 /* 13123 * We should have no messages on the ipmp interface 13124 * but no point in trying to send them. 13125 */ 13126 return; 13127 } 13128 ill = release_ill; 13129 } 13130 bzero(&ixas, sizeof (ixas)); 13131 ixas.ixa_zoneid = ALL_ZONES; 13132 ixas.ixa_cred = kcred; 13133 ixas.ixa_cpid = NOPID; 13134 ixas.ixa_tsl = NULL; 13135 /* 13136 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13137 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13138 * That is necessary to handle IGMP/MLD snooping switches. 13139 */ 13140 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13141 ixas.ixa_ipst = ill->ill_ipst; 13142 13143 mutex_enter(&ill->ill_lock); 13144 while ((mp = ill->ill_mcast_deferred) != NULL) { 13145 ill->ill_mcast_deferred = mp->b_next; 13146 mp->b_next = NULL; 13147 if (!ill->ill_dl_up) { 13148 /* 13149 * Nobody there. Just drop the ip packets. 13150 * IGMP/MLD will resend later, if this is a replumb. 13151 */ 13152 freemsg(mp); 13153 continue; 13154 } 13155 mutex_enter(&ill->ill_phyint->phyint_lock); 13156 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13157 /* 13158 * When the ill is getting deactivated, we only want to 13159 * send the DLPI messages, so drop IGMP/MLD packets. 13160 * DLPI messages are handled by ill_dlpi_send_queued() 13161 */ 13162 mutex_exit(&ill->ill_phyint->phyint_lock); 13163 freemsg(mp); 13164 continue; 13165 } 13166 mutex_exit(&ill->ill_phyint->phyint_lock); 13167 mutex_exit(&ill->ill_lock); 13168 13169 /* Check whether we are sending IPv4 or IPv6. */ 13170 if (ill->ill_isv6) { 13171 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13172 13173 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13174 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13175 } else { 13176 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13177 13178 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13179 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13180 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13181 } 13182 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13183 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13184 (void) ip_output_simple(mp, &ixas); 13185 ixa_cleanup(&ixas); 13186 13187 mutex_enter(&ill->ill_lock); 13188 } 13189 mutex_exit(&ill->ill_lock); 13190 13191 done: 13192 if (release_ill != NULL) 13193 ill_refrele(release_ill); 13194 } 13195 13196 /* 13197 * Take down a specific interface, but don't lose any information about it. 13198 * (Always called as writer.) 13199 * This function goes through the down sequence even if the interface is 13200 * already down. There are 2 reasons. 13201 * a. Currently we permit interface routes that depend on down interfaces 13202 * to be added. This behaviour itself is questionable. However it appears 13203 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13204 * time. We go thru the cleanup in order to remove these routes. 13205 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13206 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13207 * down, but we need to cleanup i.e. do ill_dl_down and 13208 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13209 * 13210 * IP-MT notes: 13211 * 13212 * Model of reference to interfaces. 13213 * 13214 * The following members in ipif_t track references to the ipif. 13215 * int ipif_refcnt; Active reference count 13216 * 13217 * The following members in ill_t track references to the ill. 13218 * int ill_refcnt; active refcnt 13219 * uint_t ill_ire_cnt; Number of ires referencing ill 13220 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13221 * uint_t ill_nce_cnt; Number of nces referencing ill 13222 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13223 * 13224 * Reference to an ipif or ill can be obtained in any of the following ways. 13225 * 13226 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13227 * Pointers to ipif / ill from other data structures viz ire and conn. 13228 * Implicit reference to the ipif / ill by holding a reference to the ire. 13229 * 13230 * The ipif/ill lookup functions return a reference held ipif / ill. 13231 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13232 * This is a purely dynamic reference count associated with threads holding 13233 * references to the ipif / ill. Pointers from other structures do not 13234 * count towards this reference count. 13235 * 13236 * ill_ire_cnt is the number of ire's associated with the 13237 * ill. This is incremented whenever a new ire is created referencing the 13238 * ill. This is done atomically inside ire_add_v[46] where the ire is 13239 * actually added to the ire hash table. The count is decremented in 13240 * ire_inactive where the ire is destroyed. 13241 * 13242 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13243 * This is incremented atomically in 13244 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13245 * table. Similarly it is decremented in ncec_inactive() where the ncec 13246 * is destroyed. 13247 * 13248 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13249 * incremented atomically in nce_add() where the nce is actually added to the 13250 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13251 * is destroyed. 13252 * 13253 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13254 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13255 * 13256 * Flow of ioctls involving interface down/up 13257 * 13258 * The following is the sequence of an attempt to set some critical flags on an 13259 * up interface. 13260 * ip_sioctl_flags 13261 * ipif_down 13262 * wait for ipif to be quiescent 13263 * ipif_down_tail 13264 * ip_sioctl_flags_tail 13265 * 13266 * All set ioctls that involve down/up sequence would have a skeleton similar 13267 * to the above. All the *tail functions are called after the refcounts have 13268 * dropped to the appropriate values. 13269 * 13270 * SIOC ioctls during the IPIF_CHANGING interval. 13271 * 13272 * Threads handling SIOC set ioctls serialize on the squeue, but this 13273 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13274 * steps of internal changes to the state, some of which are visible in 13275 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13276 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13277 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13278 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13279 * the current exclusive operation completes. The IPIF_CHANGING check 13280 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13281 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13282 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13283 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13284 * until we release the ipsq_lock, even though the ill/ipif state flags 13285 * can change after we drop the ill_lock. 13286 */ 13287 int 13288 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13289 { 13290 ill_t *ill = ipif->ipif_ill; 13291 conn_t *connp; 13292 boolean_t success; 13293 boolean_t ipif_was_up = B_FALSE; 13294 ip_stack_t *ipst = ill->ill_ipst; 13295 13296 ASSERT(IAM_WRITER_IPIF(ipif)); 13297 13298 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13299 13300 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13301 ill_t *, ill, ipif_t *, ipif); 13302 13303 if (ipif->ipif_flags & IPIF_UP) { 13304 mutex_enter(&ill->ill_lock); 13305 ipif->ipif_flags &= ~IPIF_UP; 13306 ASSERT(ill->ill_ipif_up_count > 0); 13307 --ill->ill_ipif_up_count; 13308 mutex_exit(&ill->ill_lock); 13309 ipif_was_up = B_TRUE; 13310 /* Update status in SCTP's list */ 13311 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13312 ill_nic_event_dispatch(ipif->ipif_ill, 13313 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13314 } 13315 13316 /* 13317 * Blow away memberships we established in ipif_multicast_up(). 13318 */ 13319 ipif_multicast_down(ipif); 13320 13321 /* 13322 * Remove from the mapping for __sin6_src_id. We insert only 13323 * when the address is not INADDR_ANY. As IPv4 addresses are 13324 * stored as mapped addresses, we need to check for mapped 13325 * INADDR_ANY also. 13326 */ 13327 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13328 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13329 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13330 int err; 13331 13332 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13333 ipif->ipif_zoneid, ipst); 13334 if (err != 0) { 13335 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13336 } 13337 } 13338 13339 if (ipif_was_up) { 13340 /* only delete if we'd added ire's before */ 13341 if (ipif->ipif_isv6) 13342 ipif_delete_ires_v6(ipif); 13343 else 13344 ipif_delete_ires_v4(ipif); 13345 } 13346 13347 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13348 /* 13349 * Since the interface is now down, it may have just become 13350 * inactive. Note that this needs to be done even for a 13351 * lll_logical_down(), or ARP entries will not get correctly 13352 * restored when the interface comes back up. 13353 */ 13354 if (IS_UNDER_IPMP(ill)) 13355 ipmp_ill_refresh_active(ill); 13356 } 13357 13358 /* 13359 * neighbor-discovery or arp entries for this interface. The ipif 13360 * has to be quiesced, so we walk all the nce's and delete those 13361 * that point at the ipif->ipif_ill. At the same time, we also 13362 * update IPMP so that ipifs for data addresses are unbound. We dont 13363 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13364 * that for ipif_down_tail() 13365 */ 13366 ipif_nce_down(ipif); 13367 13368 /* 13369 * If this is the last ipif on the ill, we also need to remove 13370 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13371 * never succeed. 13372 */ 13373 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13374 ire_walk_ill(0, 0, ill_downi, ill, ill); 13375 13376 /* 13377 * Walk all CONNs that can have a reference on an ire for this 13378 * ipif (we actually walk all that now have stale references). 13379 */ 13380 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13381 13382 /* 13383 * If mp is NULL the caller will wait for the appropriate refcnt. 13384 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13385 * and ill_delete -> ipif_free -> ipif_down 13386 */ 13387 if (mp == NULL) { 13388 ASSERT(q == NULL); 13389 return (0); 13390 } 13391 13392 if (CONN_Q(q)) { 13393 connp = Q_TO_CONN(q); 13394 mutex_enter(&connp->conn_lock); 13395 } else { 13396 connp = NULL; 13397 } 13398 mutex_enter(&ill->ill_lock); 13399 /* 13400 * Are there any ire's pointing to this ipif that are still active ? 13401 * If this is the last ipif going down, are there any ire's pointing 13402 * to this ill that are still active ? 13403 */ 13404 if (ipif_is_quiescent(ipif)) { 13405 mutex_exit(&ill->ill_lock); 13406 if (connp != NULL) 13407 mutex_exit(&connp->conn_lock); 13408 return (0); 13409 } 13410 13411 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13412 ill->ill_name, (void *)ill)); 13413 /* 13414 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13415 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13416 * which in turn is called by the last refrele on the ipif/ill/ire. 13417 */ 13418 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13419 if (!success) { 13420 /* The conn is closing. So just return */ 13421 ASSERT(connp != NULL); 13422 mutex_exit(&ill->ill_lock); 13423 mutex_exit(&connp->conn_lock); 13424 return (EINTR); 13425 } 13426 13427 mutex_exit(&ill->ill_lock); 13428 if (connp != NULL) 13429 mutex_exit(&connp->conn_lock); 13430 return (EINPROGRESS); 13431 } 13432 13433 int 13434 ipif_down_tail(ipif_t *ipif) 13435 { 13436 ill_t *ill = ipif->ipif_ill; 13437 int err = 0; 13438 13439 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13440 ill_t *, ill, ipif_t *, ipif); 13441 13442 /* 13443 * Skip any loopback interface (null wq). 13444 * If this is the last logical interface on the ill 13445 * have ill_dl_down tell the driver we are gone (unbind) 13446 * Note that lun 0 can ipif_down even though 13447 * there are other logical units that are up. 13448 * This occurs e.g. when we change a "significant" IFF_ flag. 13449 */ 13450 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13451 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13452 ill->ill_dl_up) { 13453 ill_dl_down(ill); 13454 } 13455 if (!ipif->ipif_isv6) 13456 err = ipif_arp_down(ipif); 13457 13458 ill->ill_logical_down = 0; 13459 13460 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13461 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13462 return (err); 13463 } 13464 13465 /* 13466 * Bring interface logically down without bringing the physical interface 13467 * down e.g. when the netmask is changed. This avoids long lasting link 13468 * negotiations between an ethernet interface and a certain switches. 13469 */ 13470 static int 13471 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13472 { 13473 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13474 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13475 13476 /* 13477 * The ill_logical_down flag is a transient flag. It is set here 13478 * and is cleared once the down has completed in ipif_down_tail. 13479 * This flag does not indicate whether the ill stream is in the 13480 * DL_BOUND state with the driver. Instead this flag is used by 13481 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13482 * the driver. The state of the ill stream i.e. whether it is 13483 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13484 */ 13485 ipif->ipif_ill->ill_logical_down = 1; 13486 return (ipif_down(ipif, q, mp)); 13487 } 13488 13489 /* 13490 * Initiate deallocate of an IPIF. Always called as writer. Called by 13491 * ill_delete or ip_sioctl_removeif. 13492 */ 13493 static void 13494 ipif_free(ipif_t *ipif) 13495 { 13496 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13497 13498 ASSERT(IAM_WRITER_IPIF(ipif)); 13499 13500 if (ipif->ipif_recovery_id != 0) 13501 (void) untimeout(ipif->ipif_recovery_id); 13502 ipif->ipif_recovery_id = 0; 13503 13504 /* 13505 * Take down the interface. We can be called either from ill_delete 13506 * or from ip_sioctl_removeif. 13507 */ 13508 (void) ipif_down(ipif, NULL, NULL); 13509 13510 /* 13511 * Now that the interface is down, there's no chance it can still 13512 * become a duplicate. Cancel any timer that may have been set while 13513 * tearing down. 13514 */ 13515 if (ipif->ipif_recovery_id != 0) 13516 (void) untimeout(ipif->ipif_recovery_id); 13517 ipif->ipif_recovery_id = 0; 13518 13519 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13520 /* Remove pointers to this ill in the multicast routing tables */ 13521 reset_mrt_vif_ipif(ipif); 13522 /* If necessary, clear the cached source ipif rotor. */ 13523 if (ipif->ipif_ill->ill_src_ipif == ipif) 13524 ipif->ipif_ill->ill_src_ipif = NULL; 13525 rw_exit(&ipst->ips_ill_g_lock); 13526 } 13527 13528 static void 13529 ipif_free_tail(ipif_t *ipif) 13530 { 13531 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13532 13533 /* 13534 * Need to hold both ill_g_lock and ill_lock while 13535 * inserting or removing an ipif from the linked list 13536 * of ipifs hanging off the ill. 13537 */ 13538 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13539 13540 #ifdef DEBUG 13541 ipif_trace_cleanup(ipif); 13542 #endif 13543 13544 /* Ask SCTP to take it out of it list */ 13545 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13546 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13547 13548 /* Get it out of the ILL interface list. */ 13549 ipif_remove(ipif); 13550 rw_exit(&ipst->ips_ill_g_lock); 13551 13552 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13553 ASSERT(ipif->ipif_recovery_id == 0); 13554 ASSERT(ipif->ipif_ire_local == NULL); 13555 ASSERT(ipif->ipif_ire_if == NULL); 13556 13557 /* Free the memory. */ 13558 mi_free(ipif); 13559 } 13560 13561 /* 13562 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13563 * is zero. 13564 */ 13565 void 13566 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13567 { 13568 char lbuf[LIFNAMSIZ]; 13569 char *name; 13570 size_t name_len; 13571 13572 buf[0] = '\0'; 13573 name = ipif->ipif_ill->ill_name; 13574 name_len = ipif->ipif_ill->ill_name_length; 13575 if (ipif->ipif_id != 0) { 13576 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13577 ipif->ipif_id); 13578 name = lbuf; 13579 name_len = mi_strlen(name) + 1; 13580 } 13581 len -= 1; 13582 buf[len] = '\0'; 13583 len = MIN(len, name_len); 13584 bcopy(name, buf, len); 13585 } 13586 13587 /* 13588 * Sets `buf' to an ill name. 13589 */ 13590 void 13591 ill_get_name(const ill_t *ill, char *buf, int len) 13592 { 13593 char *name; 13594 size_t name_len; 13595 13596 name = ill->ill_name; 13597 name_len = ill->ill_name_length; 13598 len -= 1; 13599 buf[len] = '\0'; 13600 len = MIN(len, name_len); 13601 bcopy(name, buf, len); 13602 } 13603 13604 /* 13605 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13606 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13607 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13608 * (May be called as writer.) 13609 */ 13610 static ipif_t * 13611 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13612 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13613 { 13614 char *cp; 13615 char *endp; 13616 long id; 13617 ill_t *ill; 13618 ipif_t *ipif; 13619 uint_t ire_type; 13620 boolean_t did_alloc = B_FALSE; 13621 13622 /* 13623 * If the caller wants to us to create the ipif, make sure we have a 13624 * valid zoneid 13625 */ 13626 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13627 13628 if (namelen == 0) { 13629 return (NULL); 13630 } 13631 13632 *exists = B_FALSE; 13633 /* Look for a colon in the name. */ 13634 endp = &name[namelen]; 13635 for (cp = endp; --cp > name; ) { 13636 if (*cp == IPIF_SEPARATOR_CHAR) 13637 break; 13638 } 13639 13640 if (*cp == IPIF_SEPARATOR_CHAR) { 13641 /* 13642 * Reject any non-decimal aliases for logical 13643 * interfaces. Aliases with leading zeroes 13644 * are also rejected as they introduce ambiguity 13645 * in the naming of the interfaces. 13646 * In order to confirm with existing semantics, 13647 * and to not break any programs/script relying 13648 * on that behaviour, if<0>:0 is considered to be 13649 * a valid interface. 13650 * 13651 * If alias has two or more digits and the first 13652 * is zero, fail. 13653 */ 13654 if (&cp[2] < endp && cp[1] == '0') { 13655 return (NULL); 13656 } 13657 } 13658 13659 if (cp <= name) { 13660 cp = endp; 13661 } else { 13662 *cp = '\0'; 13663 } 13664 13665 /* 13666 * Look up the ILL, based on the portion of the name 13667 * before the slash. ill_lookup_on_name returns a held ill. 13668 * Temporary to check whether ill exists already. If so 13669 * ill_lookup_on_name will clear it. 13670 */ 13671 ill = ill_lookup_on_name(name, do_alloc, isv6, 13672 &did_alloc, ipst); 13673 if (cp != endp) 13674 *cp = IPIF_SEPARATOR_CHAR; 13675 if (ill == NULL) 13676 return (NULL); 13677 13678 /* Establish the unit number in the name. */ 13679 id = 0; 13680 if (cp < endp && *endp == '\0') { 13681 /* If there was a colon, the unit number follows. */ 13682 cp++; 13683 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13684 ill_refrele(ill); 13685 return (NULL); 13686 } 13687 } 13688 13689 mutex_enter(&ill->ill_lock); 13690 /* Now see if there is an IPIF with this unit number. */ 13691 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13692 if (ipif->ipif_id == id) { 13693 if (zoneid != ALL_ZONES && 13694 zoneid != ipif->ipif_zoneid && 13695 ipif->ipif_zoneid != ALL_ZONES) { 13696 mutex_exit(&ill->ill_lock); 13697 ill_refrele(ill); 13698 return (NULL); 13699 } 13700 if (IPIF_CAN_LOOKUP(ipif)) { 13701 ipif_refhold_locked(ipif); 13702 mutex_exit(&ill->ill_lock); 13703 if (!did_alloc) 13704 *exists = B_TRUE; 13705 /* 13706 * Drop locks before calling ill_refrele 13707 * since it can potentially call into 13708 * ipif_ill_refrele_tail which can end up 13709 * in trying to acquire any lock. 13710 */ 13711 ill_refrele(ill); 13712 return (ipif); 13713 } 13714 } 13715 } 13716 13717 if (!do_alloc) { 13718 mutex_exit(&ill->ill_lock); 13719 ill_refrele(ill); 13720 return (NULL); 13721 } 13722 13723 /* 13724 * If none found, atomically allocate and return a new one. 13725 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13726 * to support "receive only" use of lo0:1 etc. as is still done 13727 * below as an initial guess. 13728 * However, this is now likely to be overriden later in ipif_up_done() 13729 * when we know for sure what address has been configured on the 13730 * interface, since we might have more than one loopback interface 13731 * with a loopback address, e.g. in the case of zones, and all the 13732 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13733 */ 13734 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13735 ire_type = IRE_LOOPBACK; 13736 else 13737 ire_type = IRE_LOCAL; 13738 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13739 if (ipif != NULL) 13740 ipif_refhold_locked(ipif); 13741 mutex_exit(&ill->ill_lock); 13742 ill_refrele(ill); 13743 return (ipif); 13744 } 13745 13746 /* 13747 * This routine is called whenever a new address comes up on an ipif. If 13748 * we are configured to respond to address mask requests, then we are supposed 13749 * to broadcast an address mask reply at this time. This routine is also 13750 * called if we are already up, but a netmask change is made. This is legal 13751 * but might not make the system manager very popular. (May be called 13752 * as writer.) 13753 */ 13754 void 13755 ipif_mask_reply(ipif_t *ipif) 13756 { 13757 icmph_t *icmph; 13758 ipha_t *ipha; 13759 mblk_t *mp; 13760 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13761 ip_xmit_attr_t ixas; 13762 13763 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13764 13765 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13766 return; 13767 13768 /* ICMP mask reply is IPv4 only */ 13769 ASSERT(!ipif->ipif_isv6); 13770 /* ICMP mask reply is not for a loopback interface */ 13771 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13772 13773 if (ipif->ipif_lcl_addr == INADDR_ANY) 13774 return; 13775 13776 mp = allocb(REPLY_LEN, BPRI_HI); 13777 if (mp == NULL) 13778 return; 13779 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13780 13781 ipha = (ipha_t *)mp->b_rptr; 13782 bzero(ipha, REPLY_LEN); 13783 *ipha = icmp_ipha; 13784 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13785 ipha->ipha_src = ipif->ipif_lcl_addr; 13786 ipha->ipha_dst = ipif->ipif_brd_addr; 13787 ipha->ipha_length = htons(REPLY_LEN); 13788 ipha->ipha_ident = 0; 13789 13790 icmph = (icmph_t *)&ipha[1]; 13791 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13792 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13793 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13794 13795 bzero(&ixas, sizeof (ixas)); 13796 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13797 ixas.ixa_zoneid = ALL_ZONES; 13798 ixas.ixa_ifindex = 0; 13799 ixas.ixa_ipst = ipst; 13800 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13801 (void) ip_output_simple(mp, &ixas); 13802 ixa_cleanup(&ixas); 13803 #undef REPLY_LEN 13804 } 13805 13806 /* 13807 * Join the ipif specific multicast groups. 13808 * Must be called after a mapping has been set up in the resolver. (Always 13809 * called as writer.) 13810 */ 13811 void 13812 ipif_multicast_up(ipif_t *ipif) 13813 { 13814 int err; 13815 ill_t *ill; 13816 ilm_t *ilm; 13817 13818 ASSERT(IAM_WRITER_IPIF(ipif)); 13819 13820 ill = ipif->ipif_ill; 13821 13822 ip1dbg(("ipif_multicast_up\n")); 13823 if (!(ill->ill_flags & ILLF_MULTICAST) || 13824 ipif->ipif_allhosts_ilm != NULL) 13825 return; 13826 13827 if (ipif->ipif_isv6) { 13828 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 13829 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 13830 13831 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 13832 13833 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 13834 return; 13835 13836 ip1dbg(("ipif_multicast_up - addmulti\n")); 13837 13838 /* 13839 * Join the all hosts multicast address. We skip this for 13840 * underlying IPMP interfaces since they should be invisible. 13841 */ 13842 if (!IS_UNDER_IPMP(ill)) { 13843 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 13844 &err); 13845 if (ilm == NULL) { 13846 ASSERT(err != 0); 13847 ip0dbg(("ipif_multicast_up: " 13848 "all_hosts_mcast failed %d\n", err)); 13849 return; 13850 } 13851 ipif->ipif_allhosts_ilm = ilm; 13852 } 13853 13854 /* 13855 * Enable multicast for the solicited node multicast address. 13856 * If IPMP we need to put the membership on the upper ill. 13857 */ 13858 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 13859 ill_t *mcast_ill = NULL; 13860 boolean_t need_refrele; 13861 13862 if (IS_UNDER_IPMP(ill) && 13863 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 13864 need_refrele = B_TRUE; 13865 } else { 13866 mcast_ill = ill; 13867 need_refrele = B_FALSE; 13868 } 13869 13870 ilm = ip_addmulti(&v6solmc, mcast_ill, 13871 ipif->ipif_zoneid, &err); 13872 if (need_refrele) 13873 ill_refrele(mcast_ill); 13874 13875 if (ilm == NULL) { 13876 ASSERT(err != 0); 13877 ip0dbg(("ipif_multicast_up: solicited MC" 13878 " failed %d\n", err)); 13879 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 13880 ipif->ipif_allhosts_ilm = NULL; 13881 (void) ip_delmulti(ilm); 13882 } 13883 return; 13884 } 13885 ipif->ipif_solmulti_ilm = ilm; 13886 } 13887 } else { 13888 in6_addr_t v6group; 13889 13890 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 13891 return; 13892 13893 /* Join the all hosts multicast address */ 13894 ip1dbg(("ipif_multicast_up - addmulti\n")); 13895 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 13896 13897 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 13898 if (ilm == NULL) { 13899 ASSERT(err != 0); 13900 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 13901 return; 13902 } 13903 ipif->ipif_allhosts_ilm = ilm; 13904 } 13905 } 13906 13907 /* 13908 * Blow away any multicast groups that we joined in ipif_multicast_up(). 13909 * (ilms from explicit memberships are handled in conn_update_ill.) 13910 */ 13911 void 13912 ipif_multicast_down(ipif_t *ipif) 13913 { 13914 ASSERT(IAM_WRITER_IPIF(ipif)); 13915 13916 ip1dbg(("ipif_multicast_down\n")); 13917 13918 if (ipif->ipif_allhosts_ilm != NULL) { 13919 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 13920 ipif->ipif_allhosts_ilm = NULL; 13921 } 13922 if (ipif->ipif_solmulti_ilm != NULL) { 13923 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 13924 ipif->ipif_solmulti_ilm = NULL; 13925 } 13926 } 13927 13928 /* 13929 * Used when an interface comes up to recreate any extra routes on this 13930 * interface. 13931 */ 13932 int 13933 ill_recover_saved_ire(ill_t *ill) 13934 { 13935 mblk_t *mp; 13936 ip_stack_t *ipst = ill->ill_ipst; 13937 13938 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 13939 13940 mutex_enter(&ill->ill_saved_ire_lock); 13941 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 13942 ire_t *ire, *nire; 13943 ifrt_t *ifrt; 13944 13945 ifrt = (ifrt_t *)mp->b_rptr; 13946 /* 13947 * Create a copy of the IRE with the saved address and netmask. 13948 */ 13949 if (ill->ill_isv6) { 13950 ire = ire_create_v6( 13951 &ifrt->ifrt_v6addr, 13952 &ifrt->ifrt_v6mask, 13953 &ifrt->ifrt_v6gateway_addr, 13954 ifrt->ifrt_type, 13955 ill, 13956 ifrt->ifrt_zoneid, 13957 ifrt->ifrt_flags, 13958 NULL, 13959 ipst); 13960 } else { 13961 ire = ire_create( 13962 (uint8_t *)&ifrt->ifrt_addr, 13963 (uint8_t *)&ifrt->ifrt_mask, 13964 (uint8_t *)&ifrt->ifrt_gateway_addr, 13965 ifrt->ifrt_type, 13966 ill, 13967 ifrt->ifrt_zoneid, 13968 ifrt->ifrt_flags, 13969 NULL, 13970 ipst); 13971 } 13972 if (ire == NULL) { 13973 mutex_exit(&ill->ill_saved_ire_lock); 13974 return (ENOMEM); 13975 } 13976 13977 if (ifrt->ifrt_flags & RTF_SETSRC) { 13978 if (ill->ill_isv6) { 13979 ire->ire_setsrc_addr_v6 = 13980 ifrt->ifrt_v6setsrc_addr; 13981 } else { 13982 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 13983 } 13984 } 13985 13986 /* 13987 * Some software (for example, GateD and Sun Cluster) attempts 13988 * to create (what amount to) IRE_PREFIX routes with the 13989 * loopback address as the gateway. This is primarily done to 13990 * set up prefixes with the RTF_REJECT flag set (for example, 13991 * when generating aggregate routes.) 13992 * 13993 * If the IRE type (as defined by ill->ill_net_type) is 13994 * IRE_LOOPBACK, then we map the request into a 13995 * IRE_IF_NORESOLVER. 13996 */ 13997 if (ill->ill_net_type == IRE_LOOPBACK) 13998 ire->ire_type = IRE_IF_NORESOLVER; 13999 14000 /* 14001 * ire held by ire_add, will be refreled' towards the 14002 * the end of ipif_up_done 14003 */ 14004 nire = ire_add(ire); 14005 /* 14006 * Check if it was a duplicate entry. This handles 14007 * the case of two racing route adds for the same route 14008 */ 14009 if (nire == NULL) { 14010 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14011 } else if (nire != ire) { 14012 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14013 (void *)nire)); 14014 ire_delete(nire); 14015 } else { 14016 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14017 (void *)nire)); 14018 } 14019 if (nire != NULL) 14020 ire_refrele(nire); 14021 } 14022 mutex_exit(&ill->ill_saved_ire_lock); 14023 return (0); 14024 } 14025 14026 /* 14027 * Used to set the netmask and broadcast address to default values when the 14028 * interface is brought up. (Always called as writer.) 14029 */ 14030 static void 14031 ipif_set_default(ipif_t *ipif) 14032 { 14033 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14034 14035 if (!ipif->ipif_isv6) { 14036 /* 14037 * Interface holds an IPv4 address. Default 14038 * mask is the natural netmask. 14039 */ 14040 if (!ipif->ipif_net_mask) { 14041 ipaddr_t v4mask; 14042 14043 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14044 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14045 } 14046 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14047 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14048 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14049 } else { 14050 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14051 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14052 } 14053 /* 14054 * NOTE: SunOS 4.X does this even if the broadcast address 14055 * has been already set thus we do the same here. 14056 */ 14057 if (ipif->ipif_flags & IPIF_BROADCAST) { 14058 ipaddr_t v4addr; 14059 14060 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14061 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14062 } 14063 } else { 14064 /* 14065 * Interface holds an IPv6-only address. Default 14066 * mask is all-ones. 14067 */ 14068 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14069 ipif->ipif_v6net_mask = ipv6_all_ones; 14070 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14071 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14072 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14073 } else { 14074 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14075 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14076 } 14077 } 14078 } 14079 14080 /* 14081 * Return 0 if this address can be used as local address without causing 14082 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14083 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14084 * Note that the same IPv6 link-local address is allowed as long as the ills 14085 * are not on the same link. 14086 */ 14087 int 14088 ip_addr_availability_check(ipif_t *new_ipif) 14089 { 14090 in6_addr_t our_v6addr; 14091 ill_t *ill; 14092 ipif_t *ipif; 14093 ill_walk_context_t ctx; 14094 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14095 14096 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14097 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14098 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14099 14100 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14101 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14102 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14103 return (0); 14104 14105 our_v6addr = new_ipif->ipif_v6lcl_addr; 14106 14107 if (new_ipif->ipif_isv6) 14108 ill = ILL_START_WALK_V6(&ctx, ipst); 14109 else 14110 ill = ILL_START_WALK_V4(&ctx, ipst); 14111 14112 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14113 for (ipif = ill->ill_ipif; ipif != NULL; 14114 ipif = ipif->ipif_next) { 14115 if ((ipif == new_ipif) || 14116 !(ipif->ipif_flags & IPIF_UP) || 14117 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14118 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14119 &our_v6addr)) 14120 continue; 14121 14122 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14123 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14124 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14125 ipif->ipif_flags |= IPIF_UNNUMBERED; 14126 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14127 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14128 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14129 continue; 14130 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14131 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14132 continue; 14133 else if (new_ipif->ipif_ill == ill) 14134 return (EADDRINUSE); 14135 else 14136 return (EADDRNOTAVAIL); 14137 } 14138 } 14139 14140 return (0); 14141 } 14142 14143 /* 14144 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14145 * IREs for the ipif. 14146 * When the routine returns EINPROGRESS then mp has been consumed and 14147 * the ioctl will be acked from ip_rput_dlpi. 14148 */ 14149 int 14150 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14151 { 14152 ill_t *ill = ipif->ipif_ill; 14153 boolean_t isv6 = ipif->ipif_isv6; 14154 int err = 0; 14155 boolean_t success; 14156 uint_t ipif_orig_id; 14157 ip_stack_t *ipst = ill->ill_ipst; 14158 14159 ASSERT(IAM_WRITER_IPIF(ipif)); 14160 14161 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14162 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14163 ill_t *, ill, ipif_t *, ipif); 14164 14165 /* Shouldn't get here if it is already up. */ 14166 if (ipif->ipif_flags & IPIF_UP) 14167 return (EALREADY); 14168 14169 /* 14170 * If this is a request to bring up a data address on an interface 14171 * under IPMP, then move the address to its IPMP meta-interface and 14172 * try to bring it up. One complication is that the zeroth ipif for 14173 * an ill is special, in that every ill always has one, and that code 14174 * throughout IP deferences ill->ill_ipif without holding any locks. 14175 */ 14176 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14177 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14178 ipif_t *stubipif = NULL, *moveipif = NULL; 14179 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14180 14181 /* 14182 * The ipif being brought up should be quiesced. If it's not, 14183 * something has gone amiss and we need to bail out. (If it's 14184 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14185 */ 14186 mutex_enter(&ill->ill_lock); 14187 if (!ipif_is_quiescent(ipif)) { 14188 mutex_exit(&ill->ill_lock); 14189 return (EINVAL); 14190 } 14191 mutex_exit(&ill->ill_lock); 14192 14193 /* 14194 * If we're going to need to allocate ipifs, do it prior 14195 * to starting the move (and grabbing locks). 14196 */ 14197 if (ipif->ipif_id == 0) { 14198 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14199 B_FALSE, &err)) == NULL) { 14200 return (err); 14201 } 14202 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14203 B_FALSE, &err)) == NULL) { 14204 mi_free(moveipif); 14205 return (err); 14206 } 14207 } 14208 14209 /* 14210 * Grab or transfer the ipif to move. During the move, keep 14211 * ill_g_lock held to prevent any ill walker threads from 14212 * seeing things in an inconsistent state. 14213 */ 14214 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14215 if (ipif->ipif_id != 0) { 14216 ipif_remove(ipif); 14217 } else { 14218 ipif_transfer(ipif, moveipif, stubipif); 14219 ipif = moveipif; 14220 } 14221 14222 /* 14223 * Place the ipif on the IPMP ill. If the zeroth ipif on 14224 * the IPMP ill is a stub (0.0.0.0 down address) then we 14225 * replace that one. Otherwise, pick the next available slot. 14226 */ 14227 ipif->ipif_ill = ipmp_ill; 14228 ipif_orig_id = ipif->ipif_id; 14229 14230 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14231 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14232 ipif = ipmp_ill->ill_ipif; 14233 } else { 14234 ipif->ipif_id = -1; 14235 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14236 /* 14237 * No more available ipif_id's -- put it back 14238 * on the original ill and fail the operation. 14239 * Since we're writer on the ill, we can be 14240 * sure our old slot is still available. 14241 */ 14242 ipif->ipif_id = ipif_orig_id; 14243 ipif->ipif_ill = ill; 14244 if (ipif_orig_id == 0) { 14245 ipif_transfer(ipif, ill->ill_ipif, 14246 NULL); 14247 } else { 14248 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14249 } 14250 rw_exit(&ipst->ips_ill_g_lock); 14251 return (err); 14252 } 14253 } 14254 rw_exit(&ipst->ips_ill_g_lock); 14255 14256 /* 14257 * Tell SCTP that the ipif has moved. Note that even if we 14258 * had to allocate a new ipif, the original sequence id was 14259 * preserved and therefore SCTP won't know. 14260 */ 14261 sctp_move_ipif(ipif, ill, ipmp_ill); 14262 14263 /* 14264 * If the ipif being brought up was on slot zero, then we 14265 * first need to bring up the placeholder we stuck there. In 14266 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14267 * call to ipif_up() itself, if we successfully bring up the 14268 * placeholder, we'll check ill_move_ipif and bring it up too. 14269 */ 14270 if (ipif_orig_id == 0) { 14271 ASSERT(ill->ill_move_ipif == NULL); 14272 ill->ill_move_ipif = ipif; 14273 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14274 ASSERT(ill->ill_move_ipif == NULL); 14275 if (err != EINPROGRESS) 14276 ill->ill_move_ipif = NULL; 14277 return (err); 14278 } 14279 14280 /* 14281 * Bring it up on the IPMP ill. 14282 */ 14283 return (ipif_up(ipif, q, mp)); 14284 } 14285 14286 /* Skip arp/ndp for any loopback interface. */ 14287 if (ill->ill_wq != NULL) { 14288 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14289 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14290 14291 if (!ill->ill_dl_up) { 14292 /* 14293 * ill_dl_up is not yet set. i.e. we are yet to 14294 * DL_BIND with the driver and this is the first 14295 * logical interface on the ill to become "up". 14296 * Tell the driver to get going (via DL_BIND_REQ). 14297 * Note that changing "significant" IFF_ flags 14298 * address/netmask etc cause a down/up dance, but 14299 * does not cause an unbind (DL_UNBIND) with the driver 14300 */ 14301 return (ill_dl_up(ill, ipif, mp, q)); 14302 } 14303 14304 /* 14305 * ipif_resolver_up may end up needeing to bind/attach 14306 * the ARP stream, which in turn necessitates a 14307 * DLPI message exchange with the driver. ioctls are 14308 * serialized and so we cannot send more than one 14309 * interface up message at a time. If ipif_resolver_up 14310 * does need to wait for the DLPI handshake for the ARP stream, 14311 * we get EINPROGRESS and we will complete in arp_bringup_done. 14312 */ 14313 14314 ASSERT(connp != NULL || !CONN_Q(q)); 14315 if (connp != NULL) 14316 mutex_enter(&connp->conn_lock); 14317 mutex_enter(&ill->ill_lock); 14318 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14319 mutex_exit(&ill->ill_lock); 14320 if (connp != NULL) 14321 mutex_exit(&connp->conn_lock); 14322 if (!success) 14323 return (EINTR); 14324 14325 /* 14326 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14327 * complete when ipif_ndp_up returns. 14328 */ 14329 err = ipif_resolver_up(ipif, Res_act_initial); 14330 if (err == EINPROGRESS) { 14331 /* We will complete it in arp_bringup_done() */ 14332 return (err); 14333 } 14334 14335 if (isv6 && err == 0) 14336 err = ipif_ndp_up(ipif, B_TRUE); 14337 14338 ASSERT(err != EINPROGRESS); 14339 mp = ipsq_pending_mp_get(ipsq, &connp); 14340 ASSERT(mp != NULL); 14341 if (err != 0) 14342 return (err); 14343 } else { 14344 /* 14345 * Interfaces without underlying hardware don't do duplicate 14346 * address detection. 14347 */ 14348 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14349 ipif->ipif_addr_ready = 1; 14350 err = ill_add_ires(ill); 14351 /* allocation failure? */ 14352 if (err != 0) 14353 return (err); 14354 } 14355 14356 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14357 if (err == 0 && ill->ill_move_ipif != NULL) { 14358 ipif = ill->ill_move_ipif; 14359 ill->ill_move_ipif = NULL; 14360 return (ipif_up(ipif, q, mp)); 14361 } 14362 return (err); 14363 } 14364 14365 /* 14366 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14367 * The identical set of IREs need to be removed in ill_delete_ires(). 14368 */ 14369 int 14370 ill_add_ires(ill_t *ill) 14371 { 14372 ire_t *ire; 14373 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14374 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14375 14376 if (ill->ill_ire_multicast != NULL) 14377 return (0); 14378 14379 /* 14380 * provide some dummy ire_addr for creating the ire. 14381 */ 14382 if (ill->ill_isv6) { 14383 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14384 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14385 } else { 14386 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14387 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14388 } 14389 if (ire == NULL) 14390 return (ENOMEM); 14391 14392 ill->ill_ire_multicast = ire; 14393 return (0); 14394 } 14395 14396 void 14397 ill_delete_ires(ill_t *ill) 14398 { 14399 if (ill->ill_ire_multicast != NULL) { 14400 /* 14401 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14402 * which was taken without any th_tracing enabled. 14403 * We also mark it as condemned (note that it was never added) 14404 * so that caching conn's can move off of it. 14405 */ 14406 ire_make_condemned(ill->ill_ire_multicast); 14407 ire_refrele_notr(ill->ill_ire_multicast); 14408 ill->ill_ire_multicast = NULL; 14409 } 14410 } 14411 14412 /* 14413 * Perform a bind for the physical device. 14414 * When the routine returns EINPROGRESS then mp has been consumed and 14415 * the ioctl will be acked from ip_rput_dlpi. 14416 * Allocate an unbind message and save it until ipif_down. 14417 */ 14418 static int 14419 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14420 { 14421 mblk_t *bind_mp = NULL; 14422 mblk_t *unbind_mp = NULL; 14423 conn_t *connp; 14424 boolean_t success; 14425 int err; 14426 14427 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14428 14429 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14430 ASSERT(IAM_WRITER_ILL(ill)); 14431 ASSERT(mp != NULL); 14432 14433 /* 14434 * Make sure we have an IRE_MULTICAST in case we immediately 14435 * start receiving packets. 14436 */ 14437 err = ill_add_ires(ill); 14438 if (err != 0) 14439 goto bad; 14440 14441 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14442 DL_BIND_REQ); 14443 if (bind_mp == NULL) 14444 goto bad; 14445 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14446 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14447 14448 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 14449 if (unbind_mp == NULL) 14450 goto bad; 14451 14452 /* 14453 * Record state needed to complete this operation when the 14454 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14455 */ 14456 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14457 ASSERT(connp != NULL || !CONN_Q(q)); 14458 GRAB_CONN_LOCK(q); 14459 mutex_enter(&ipif->ipif_ill->ill_lock); 14460 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14461 mutex_exit(&ipif->ipif_ill->ill_lock); 14462 RELEASE_CONN_LOCK(q); 14463 if (!success) 14464 goto bad; 14465 14466 /* 14467 * Save the unbind message for ill_dl_down(); it will be consumed when 14468 * the interface goes down. 14469 */ 14470 ASSERT(ill->ill_unbind_mp == NULL); 14471 ill->ill_unbind_mp = unbind_mp; 14472 14473 ill_dlpi_send(ill, bind_mp); 14474 /* Send down link-layer capabilities probe if not already done. */ 14475 ill_capability_probe(ill); 14476 14477 /* 14478 * Sysid used to rely on the fact that netboots set domainname 14479 * and the like. Now that miniroot boots aren't strictly netboots 14480 * and miniroot network configuration is driven from userland 14481 * these things still need to be set. This situation can be detected 14482 * by comparing the interface being configured here to the one 14483 * dhcifname was set to reference by the boot loader. Once sysid is 14484 * converted to use dhcp_ipc_getinfo() this call can go away. 14485 */ 14486 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14487 (strcmp(ill->ill_name, dhcifname) == 0) && 14488 (strlen(srpc_domain) == 0)) { 14489 if (dhcpinit() != 0) 14490 cmn_err(CE_WARN, "no cached dhcp response"); 14491 } 14492 14493 /* 14494 * This operation will complete in ip_rput_dlpi with either 14495 * a DL_BIND_ACK or DL_ERROR_ACK. 14496 */ 14497 return (EINPROGRESS); 14498 bad: 14499 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14500 14501 freemsg(bind_mp); 14502 freemsg(unbind_mp); 14503 return (ENOMEM); 14504 } 14505 14506 /* Add room for tcp+ip headers */ 14507 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14508 14509 /* 14510 * DLPI and ARP is up. 14511 * Create all the IREs associated with an interface. Bring up multicast. 14512 * Set the interface flag and finish other initialization 14513 * that potentially had to be deferred to after DL_BIND_ACK. 14514 */ 14515 int 14516 ipif_up_done(ipif_t *ipif) 14517 { 14518 ill_t *ill = ipif->ipif_ill; 14519 int err = 0; 14520 boolean_t loopback = B_FALSE; 14521 boolean_t update_src_selection = B_TRUE; 14522 ipif_t *tmp_ipif; 14523 14524 ip1dbg(("ipif_up_done(%s:%u)\n", 14525 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14526 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14527 ill_t *, ill, ipif_t *, ipif); 14528 14529 /* Check if this is a loopback interface */ 14530 if (ipif->ipif_ill->ill_wq == NULL) 14531 loopback = B_TRUE; 14532 14533 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14534 14535 /* 14536 * If all other interfaces for this ill are down or DEPRECATED, 14537 * or otherwise unsuitable for source address selection, 14538 * reset the src generation numbers to make sure source 14539 * address selection gets to take this new ipif into account. 14540 * No need to hold ill_lock while traversing the ipif list since 14541 * we are writer 14542 */ 14543 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14544 tmp_ipif = tmp_ipif->ipif_next) { 14545 if (((tmp_ipif->ipif_flags & 14546 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14547 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14548 (tmp_ipif == ipif)) 14549 continue; 14550 /* first useable pre-existing interface */ 14551 update_src_selection = B_FALSE; 14552 break; 14553 } 14554 if (update_src_selection) 14555 ip_update_source_selection(ill->ill_ipst); 14556 14557 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14558 nce_t *loop_nce = NULL; 14559 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14560 14561 /* 14562 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14563 * ipif_lookup_on_name(), but in the case of zones we can have 14564 * several loopback addresses on lo0. So all the interfaces with 14565 * loopback addresses need to be marked IRE_LOOPBACK. 14566 */ 14567 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14568 htonl(INADDR_LOOPBACK)) 14569 ipif->ipif_ire_type = IRE_LOOPBACK; 14570 else 14571 ipif->ipif_ire_type = IRE_LOCAL; 14572 if (ill->ill_net_type != IRE_LOOPBACK) 14573 flags |= NCE_F_PUBLISH; 14574 14575 /* add unicast nce for the local addr */ 14576 err = nce_lookup_then_add_v4(ill, NULL, 14577 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14578 ND_REACHABLE, &loop_nce); 14579 /* A shared-IP zone sees EEXIST for lo0:N */ 14580 if (err == 0 || err == EEXIST) { 14581 ipif->ipif_added_nce = 1; 14582 loop_nce->nce_ipif_cnt++; 14583 nce_refrele(loop_nce); 14584 err = 0; 14585 } else { 14586 ASSERT(loop_nce == NULL); 14587 return (err); 14588 } 14589 } 14590 14591 /* Create all the IREs associated with this interface */ 14592 err = ipif_add_ires_v4(ipif, loopback); 14593 if (err != 0) { 14594 /* 14595 * see comments about return value from 14596 * ip_addr_availability_check() in ipif_add_ires_v4(). 14597 */ 14598 if (err != EADDRINUSE) { 14599 (void) ipif_arp_down(ipif); 14600 } else { 14601 /* 14602 * Make IPMP aware of the deleted ipif so that 14603 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14604 * can be completed. Note that we do not want to 14605 * destroy the nce that was created on the ipmp_ill 14606 * for the active copy of the duplicate address in 14607 * use. 14608 */ 14609 if (IS_IPMP(ill)) 14610 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14611 err = EADDRNOTAVAIL; 14612 } 14613 return (err); 14614 } 14615 14616 if (ill->ill_ipif_up_count == 1 && !loopback) { 14617 /* Recover any additional IREs entries for this ill */ 14618 (void) ill_recover_saved_ire(ill); 14619 } 14620 14621 if (ill->ill_need_recover_multicast) { 14622 /* 14623 * Need to recover all multicast memberships in the driver. 14624 * This had to be deferred until we had attached. The same 14625 * code exists in ipif_up_done_v6() to recover IPv6 14626 * memberships. 14627 * 14628 * Note that it would be preferable to unconditionally do the 14629 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14630 * that since ill_join_allmulti() depends on ill_dl_up being 14631 * set, and it is not set until we receive a DL_BIND_ACK after 14632 * having called ill_dl_up(). 14633 */ 14634 ill_recover_multicast(ill); 14635 } 14636 14637 if (ill->ill_ipif_up_count == 1) { 14638 /* 14639 * Since the interface is now up, it may now be active. 14640 */ 14641 if (IS_UNDER_IPMP(ill)) 14642 ipmp_ill_refresh_active(ill); 14643 14644 /* 14645 * If this is an IPMP interface, we may now be able to 14646 * establish ARP entries. 14647 */ 14648 if (IS_IPMP(ill)) 14649 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14650 } 14651 14652 /* Join the allhosts multicast address */ 14653 ipif_multicast_up(ipif); 14654 14655 if (!loopback && !update_src_selection && 14656 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14657 ip_update_source_selection(ill->ill_ipst); 14658 14659 if (!loopback && ipif->ipif_addr_ready) { 14660 /* Broadcast an address mask reply. */ 14661 ipif_mask_reply(ipif); 14662 } 14663 /* Perhaps ilgs should use this ill */ 14664 update_conn_ill(NULL, ill->ill_ipst); 14665 14666 /* 14667 * This had to be deferred until we had bound. Tell routing sockets and 14668 * others that this interface is up if it looks like the address has 14669 * been validated. Otherwise, if it isn't ready yet, wait for 14670 * duplicate address detection to do its thing. 14671 */ 14672 if (ipif->ipif_addr_ready) 14673 ipif_up_notify(ipif); 14674 return (0); 14675 } 14676 14677 /* 14678 * Add the IREs associated with the ipif. 14679 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14680 */ 14681 static int 14682 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14683 { 14684 ill_t *ill = ipif->ipif_ill; 14685 ip_stack_t *ipst = ill->ill_ipst; 14686 ire_t *ire_array[20]; 14687 ire_t **irep = ire_array; 14688 ire_t **irep1; 14689 ipaddr_t net_mask = 0; 14690 ipaddr_t subnet_mask, route_mask; 14691 int err; 14692 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14693 ire_t *ire_if = NULL; 14694 uchar_t *gw; 14695 14696 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14697 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14698 /* 14699 * If we're on a labeled system then make sure that zone- 14700 * private addresses have proper remote host database entries. 14701 */ 14702 if (is_system_labeled() && 14703 ipif->ipif_ire_type != IRE_LOOPBACK && 14704 !tsol_check_interface_address(ipif)) 14705 return (EINVAL); 14706 14707 /* Register the source address for __sin6_src_id */ 14708 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14709 ipif->ipif_zoneid, ipst); 14710 if (err != 0) { 14711 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14712 return (err); 14713 } 14714 14715 if (loopback) 14716 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14717 else 14718 gw = NULL; 14719 14720 /* If the interface address is set, create the local IRE. */ 14721 ire_local = ire_create( 14722 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14723 (uchar_t *)&ip_g_all_ones, /* mask */ 14724 gw, /* gateway */ 14725 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14726 ipif->ipif_ill, 14727 ipif->ipif_zoneid, 14728 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14729 RTF_PRIVATE : 0) | RTF_KERNEL, 14730 NULL, 14731 ipst); 14732 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14733 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14734 ipif->ipif_ire_type, 14735 ntohl(ipif->ipif_lcl_addr))); 14736 if (ire_local == NULL) { 14737 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14738 err = ENOMEM; 14739 goto bad; 14740 } 14741 } else { 14742 ip1dbg(( 14743 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14744 ipif->ipif_ire_type, 14745 ntohl(ipif->ipif_lcl_addr), 14746 (uint_t)ipif->ipif_flags)); 14747 } 14748 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14749 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14750 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14751 } else { 14752 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14753 } 14754 14755 subnet_mask = ipif->ipif_net_mask; 14756 14757 /* 14758 * If mask was not specified, use natural netmask of 14759 * interface address. Also, store this mask back into the 14760 * ipif struct. 14761 */ 14762 if (subnet_mask == 0) { 14763 subnet_mask = net_mask; 14764 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14765 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14766 ipif->ipif_v6subnet); 14767 } 14768 14769 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14770 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14771 ipif->ipif_subnet != INADDR_ANY) { 14772 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14773 14774 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14775 route_mask = IP_HOST_MASK; 14776 } else { 14777 route_mask = subnet_mask; 14778 } 14779 14780 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14781 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14782 (void *)ipif, (void *)ill, ill->ill_net_type, 14783 ntohl(ipif->ipif_subnet))); 14784 ire_if = ire_create( 14785 (uchar_t *)&ipif->ipif_subnet, 14786 (uchar_t *)&route_mask, 14787 (uchar_t *)&ipif->ipif_lcl_addr, 14788 ill->ill_net_type, 14789 ill, 14790 ipif->ipif_zoneid, 14791 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14792 RTF_PRIVATE: 0) | RTF_KERNEL, 14793 NULL, 14794 ipst); 14795 if (ire_if == NULL) { 14796 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14797 err = ENOMEM; 14798 goto bad; 14799 } 14800 } 14801 14802 /* 14803 * Create any necessary broadcast IREs. 14804 */ 14805 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14806 !(ipif->ipif_flags & IPIF_NOXMIT)) 14807 irep = ipif_create_bcast_ires(ipif, irep); 14808 14809 /* If an earlier ire_create failed, get out now */ 14810 for (irep1 = irep; irep1 > ire_array; ) { 14811 irep1--; 14812 if (*irep1 == NULL) { 14813 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 14814 err = ENOMEM; 14815 goto bad; 14816 } 14817 } 14818 14819 /* 14820 * Need to atomically check for IP address availability under 14821 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 14822 * ills or new ipifs can be added while we are checking availability. 14823 */ 14824 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14825 mutex_enter(&ipst->ips_ip_addr_avail_lock); 14826 /* Mark it up, and increment counters. */ 14827 ipif->ipif_flags |= IPIF_UP; 14828 ill->ill_ipif_up_count++; 14829 err = ip_addr_availability_check(ipif); 14830 mutex_exit(&ipst->ips_ip_addr_avail_lock); 14831 rw_exit(&ipst->ips_ill_g_lock); 14832 14833 if (err != 0) { 14834 /* 14835 * Our address may already be up on the same ill. In this case, 14836 * the ARP entry for our ipif replaced the one for the other 14837 * ipif. So we don't want to delete it (otherwise the other ipif 14838 * would be unable to send packets). 14839 * ip_addr_availability_check() identifies this case for us and 14840 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 14841 * which is the expected error code. 14842 */ 14843 ill->ill_ipif_up_count--; 14844 ipif->ipif_flags &= ~IPIF_UP; 14845 goto bad; 14846 } 14847 14848 /* 14849 * Add in all newly created IREs. ire_create_bcast() has 14850 * already checked for duplicates of the IRE_BROADCAST type. 14851 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 14852 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 14853 * a /32 route. 14854 */ 14855 if (ire_if != NULL) { 14856 ire_if = ire_add(ire_if); 14857 if (ire_if == NULL) { 14858 err = ENOMEM; 14859 goto bad2; 14860 } 14861 #ifdef DEBUG 14862 ire_refhold_notr(ire_if); 14863 ire_refrele(ire_if); 14864 #endif 14865 } 14866 if (ire_local != NULL) { 14867 ire_local = ire_add(ire_local); 14868 if (ire_local == NULL) { 14869 err = ENOMEM; 14870 goto bad2; 14871 } 14872 #ifdef DEBUG 14873 ire_refhold_notr(ire_local); 14874 ire_refrele(ire_local); 14875 #endif 14876 } 14877 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14878 if (ire_local != NULL) 14879 ipif->ipif_ire_local = ire_local; 14880 if (ire_if != NULL) 14881 ipif->ipif_ire_if = ire_if; 14882 rw_exit(&ipst->ips_ill_g_lock); 14883 ire_local = NULL; 14884 ire_if = NULL; 14885 14886 /* 14887 * We first add all of them, and if that succeeds we refrele the 14888 * bunch. That enables us to delete all of them should any of the 14889 * ire_adds fail. 14890 */ 14891 for (irep1 = irep; irep1 > ire_array; ) { 14892 irep1--; 14893 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 14894 *irep1 = ire_add(*irep1); 14895 if (*irep1 == NULL) { 14896 err = ENOMEM; 14897 goto bad2; 14898 } 14899 } 14900 14901 for (irep1 = irep; irep1 > ire_array; ) { 14902 irep1--; 14903 /* refheld by ire_add. */ 14904 if (*irep1 != NULL) { 14905 ire_refrele(*irep1); 14906 *irep1 = NULL; 14907 } 14908 } 14909 14910 if (!loopback) { 14911 /* 14912 * If the broadcast address has been set, make sure it makes 14913 * sense based on the interface address. 14914 * Only match on ill since we are sharing broadcast addresses. 14915 */ 14916 if ((ipif->ipif_brd_addr != INADDR_ANY) && 14917 (ipif->ipif_flags & IPIF_BROADCAST)) { 14918 ire_t *ire; 14919 14920 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 14921 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 14922 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 14923 14924 if (ire == NULL) { 14925 /* 14926 * If there isn't a matching broadcast IRE, 14927 * revert to the default for this netmask. 14928 */ 14929 ipif->ipif_v6brd_addr = ipv6_all_zeros; 14930 mutex_enter(&ipif->ipif_ill->ill_lock); 14931 ipif_set_default(ipif); 14932 mutex_exit(&ipif->ipif_ill->ill_lock); 14933 } else { 14934 ire_refrele(ire); 14935 } 14936 } 14937 14938 } 14939 return (0); 14940 14941 bad2: 14942 ill->ill_ipif_up_count--; 14943 ipif->ipif_flags &= ~IPIF_UP; 14944 14945 bad: 14946 ip1dbg(("ipif_add_ires: FAILED \n")); 14947 if (ire_local != NULL) 14948 ire_delete(ire_local); 14949 if (ire_if != NULL) 14950 ire_delete(ire_if); 14951 14952 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14953 ire_local = ipif->ipif_ire_local; 14954 ipif->ipif_ire_local = NULL; 14955 ire_if = ipif->ipif_ire_if; 14956 ipif->ipif_ire_if = NULL; 14957 rw_exit(&ipst->ips_ill_g_lock); 14958 if (ire_local != NULL) { 14959 ire_delete(ire_local); 14960 ire_refrele_notr(ire_local); 14961 } 14962 if (ire_if != NULL) { 14963 ire_delete(ire_if); 14964 ire_refrele_notr(ire_if); 14965 } 14966 14967 while (irep > ire_array) { 14968 irep--; 14969 if (*irep != NULL) { 14970 ire_delete(*irep); 14971 } 14972 } 14973 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 14974 14975 return (err); 14976 } 14977 14978 /* Remove all the IREs created by ipif_add_ires_v4 */ 14979 void 14980 ipif_delete_ires_v4(ipif_t *ipif) 14981 { 14982 ill_t *ill = ipif->ipif_ill; 14983 ip_stack_t *ipst = ill->ill_ipst; 14984 ire_t *ire; 14985 14986 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14987 ire = ipif->ipif_ire_local; 14988 ipif->ipif_ire_local = NULL; 14989 rw_exit(&ipst->ips_ill_g_lock); 14990 if (ire != NULL) { 14991 /* 14992 * Move count to ipif so we don't loose the count due to 14993 * a down/up dance. 14994 */ 14995 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 14996 14997 ire_delete(ire); 14998 ire_refrele_notr(ire); 14999 } 15000 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15001 ire = ipif->ipif_ire_if; 15002 ipif->ipif_ire_if = NULL; 15003 rw_exit(&ipst->ips_ill_g_lock); 15004 if (ire != NULL) { 15005 ire_delete(ire); 15006 ire_refrele_notr(ire); 15007 } 15008 15009 /* 15010 * Delete the broadcast IREs. 15011 */ 15012 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15013 !(ipif->ipif_flags & IPIF_NOXMIT)) 15014 ipif_delete_bcast_ires(ipif); 15015 } 15016 15017 /* 15018 * Checks for availbility of a usable source address (if there is one) when the 15019 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15020 * this selection is done regardless of the destination. 15021 */ 15022 boolean_t 15023 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15024 ip_stack_t *ipst) 15025 { 15026 ipif_t *ipif = NULL; 15027 ill_t *uill; 15028 15029 ASSERT(ifindex != 0); 15030 15031 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15032 if (uill == NULL) 15033 return (B_FALSE); 15034 15035 mutex_enter(&uill->ill_lock); 15036 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15037 if (IPIF_IS_CONDEMNED(ipif)) 15038 continue; 15039 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15040 continue; 15041 if (!(ipif->ipif_flags & IPIF_UP)) 15042 continue; 15043 if (ipif->ipif_zoneid != zoneid) 15044 continue; 15045 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15046 ipif->ipif_lcl_addr == INADDR_ANY) 15047 continue; 15048 mutex_exit(&uill->ill_lock); 15049 ill_refrele(uill); 15050 return (B_TRUE); 15051 } 15052 mutex_exit(&uill->ill_lock); 15053 ill_refrele(uill); 15054 return (B_FALSE); 15055 } 15056 15057 /* 15058 * Find an ipif with a good local address on the ill+zoneid. 15059 */ 15060 ipif_t * 15061 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15062 { 15063 ipif_t *ipif; 15064 15065 mutex_enter(&ill->ill_lock); 15066 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15067 if (IPIF_IS_CONDEMNED(ipif)) 15068 continue; 15069 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15070 continue; 15071 if (!(ipif->ipif_flags & IPIF_UP)) 15072 continue; 15073 if (ipif->ipif_zoneid != zoneid && 15074 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15075 continue; 15076 if (ill->ill_isv6 ? 15077 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15078 ipif->ipif_lcl_addr == INADDR_ANY) 15079 continue; 15080 ipif_refhold_locked(ipif); 15081 mutex_exit(&ill->ill_lock); 15082 return (ipif); 15083 } 15084 mutex_exit(&ill->ill_lock); 15085 return (NULL); 15086 } 15087 15088 /* 15089 * IP source address type, sorted from worst to best. For a given type, 15090 * always prefer IP addresses on the same subnet. All-zones addresses are 15091 * suboptimal because they pose problems with unlabeled destinations. 15092 */ 15093 typedef enum { 15094 IPIF_NONE, 15095 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15096 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15097 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15098 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15099 IPIF_DIFFNET, /* normal and different subnet */ 15100 IPIF_SAMENET, /* normal and same subnet */ 15101 IPIF_LOCALADDR /* local loopback */ 15102 } ipif_type_t; 15103 15104 /* 15105 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15106 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15107 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15108 * the first one, unless IPMP is used in which case we round-robin among them; 15109 * see below for more. 15110 * 15111 * Returns NULL if there is no suitable source address for the ill. 15112 * This only occurs when there is no valid source address for the ill. 15113 */ 15114 ipif_t * 15115 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15116 boolean_t allow_usesrc, boolean_t *notreadyp) 15117 { 15118 ill_t *usill = NULL; 15119 ill_t *ipmp_ill = NULL; 15120 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15121 ipif_type_t type, best_type; 15122 tsol_tpc_t *src_rhtp, *dst_rhtp; 15123 ip_stack_t *ipst = ill->ill_ipst; 15124 boolean_t samenet; 15125 15126 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15127 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15128 B_FALSE, ipst); 15129 if (usill != NULL) 15130 ill = usill; /* Select source from usesrc ILL */ 15131 else 15132 return (NULL); 15133 } 15134 15135 /* 15136 * Test addresses should never be used for source address selection, 15137 * so if we were passed one, switch to the IPMP meta-interface. 15138 */ 15139 if (IS_UNDER_IPMP(ill)) { 15140 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15141 ill = ipmp_ill; /* Select source from IPMP ill */ 15142 else 15143 return (NULL); 15144 } 15145 15146 /* 15147 * If we're dealing with an unlabeled destination on a labeled system, 15148 * make sure that we ignore source addresses that are incompatible with 15149 * the destination's default label. That destination's default label 15150 * must dominate the minimum label on the source address. 15151 */ 15152 dst_rhtp = NULL; 15153 if (is_system_labeled()) { 15154 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15155 if (dst_rhtp == NULL) 15156 return (NULL); 15157 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15158 TPC_RELE(dst_rhtp); 15159 dst_rhtp = NULL; 15160 } 15161 } 15162 15163 /* 15164 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15165 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15166 * After selecting the right ipif, under ill_lock make sure ipif is 15167 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15168 * we retry. Inside the loop we still need to check for CONDEMNED, 15169 * but not under a lock. 15170 */ 15171 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15172 retry: 15173 /* 15174 * For source address selection, we treat the ipif list as circular 15175 * and continue until we get back to where we started. This allows 15176 * IPMP to vary source address selection (which improves inbound load 15177 * spreading) by caching its last ending point and starting from 15178 * there. NOTE: we don't have to worry about ill_src_ipif changing 15179 * ills since that can't happen on the IPMP ill. 15180 */ 15181 start_ipif = ill->ill_ipif; 15182 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15183 start_ipif = ill->ill_src_ipif; 15184 15185 ipif = start_ipif; 15186 best_ipif = NULL; 15187 best_type = IPIF_NONE; 15188 do { 15189 if ((next_ipif = ipif->ipif_next) == NULL) 15190 next_ipif = ill->ill_ipif; 15191 15192 if (IPIF_IS_CONDEMNED(ipif)) 15193 continue; 15194 /* Always skip NOLOCAL and ANYCAST interfaces */ 15195 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15196 continue; 15197 /* Always skip NOACCEPT interfaces */ 15198 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15199 continue; 15200 if (!(ipif->ipif_flags & IPIF_UP)) 15201 continue; 15202 15203 if (!ipif->ipif_addr_ready) { 15204 if (notreadyp != NULL) 15205 *notreadyp = B_TRUE; 15206 continue; 15207 } 15208 15209 if (zoneid != ALL_ZONES && 15210 ipif->ipif_zoneid != zoneid && 15211 ipif->ipif_zoneid != ALL_ZONES) 15212 continue; 15213 15214 /* 15215 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15216 * are not valid as source addresses. 15217 */ 15218 if (ipif->ipif_lcl_addr == INADDR_ANY) 15219 continue; 15220 15221 /* 15222 * Check compatibility of local address for destination's 15223 * default label if we're on a labeled system. Incompatible 15224 * addresses can't be used at all. 15225 */ 15226 if (dst_rhtp != NULL) { 15227 boolean_t incompat; 15228 15229 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15230 IPV4_VERSION, B_FALSE); 15231 if (src_rhtp == NULL) 15232 continue; 15233 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15234 src_rhtp->tpc_tp.tp_doi != 15235 dst_rhtp->tpc_tp.tp_doi || 15236 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15237 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15238 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15239 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15240 TPC_RELE(src_rhtp); 15241 if (incompat) 15242 continue; 15243 } 15244 15245 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15246 15247 if (ipif->ipif_lcl_addr == dst) { 15248 type = IPIF_LOCALADDR; 15249 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15250 type = samenet ? IPIF_SAMENET_DEPRECATED : 15251 IPIF_DIFFNET_DEPRECATED; 15252 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15253 type = samenet ? IPIF_SAMENET_ALLZONES : 15254 IPIF_DIFFNET_ALLZONES; 15255 } else { 15256 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15257 } 15258 15259 if (type > best_type) { 15260 best_type = type; 15261 best_ipif = ipif; 15262 if (best_type == IPIF_LOCALADDR) 15263 break; /* can't get better */ 15264 } 15265 } while ((ipif = next_ipif) != start_ipif); 15266 15267 if ((ipif = best_ipif) != NULL) { 15268 mutex_enter(&ipif->ipif_ill->ill_lock); 15269 if (IPIF_IS_CONDEMNED(ipif)) { 15270 mutex_exit(&ipif->ipif_ill->ill_lock); 15271 goto retry; 15272 } 15273 ipif_refhold_locked(ipif); 15274 15275 /* 15276 * For IPMP, update the source ipif rotor to the next ipif, 15277 * provided we can look it up. (We must not use it if it's 15278 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15279 * ipif_free() checked ill_src_ipif.) 15280 */ 15281 if (IS_IPMP(ill) && ipif != NULL) { 15282 next_ipif = ipif->ipif_next; 15283 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15284 ill->ill_src_ipif = next_ipif; 15285 else 15286 ill->ill_src_ipif = NULL; 15287 } 15288 mutex_exit(&ipif->ipif_ill->ill_lock); 15289 } 15290 15291 rw_exit(&ipst->ips_ill_g_lock); 15292 if (usill != NULL) 15293 ill_refrele(usill); 15294 if (ipmp_ill != NULL) 15295 ill_refrele(ipmp_ill); 15296 if (dst_rhtp != NULL) 15297 TPC_RELE(dst_rhtp); 15298 15299 #ifdef DEBUG 15300 if (ipif == NULL) { 15301 char buf1[INET6_ADDRSTRLEN]; 15302 15303 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15304 ill->ill_name, 15305 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15306 } else { 15307 char buf1[INET6_ADDRSTRLEN]; 15308 char buf2[INET6_ADDRSTRLEN]; 15309 15310 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15311 ipif->ipif_ill->ill_name, 15312 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15313 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15314 buf2, sizeof (buf2)))); 15315 } 15316 #endif /* DEBUG */ 15317 return (ipif); 15318 } 15319 15320 /* 15321 * Pick a source address based on the destination ill and an optional setsrc 15322 * address. 15323 * The result is stored in srcp. If generation is set, then put the source 15324 * generation number there before we look for the source address (to avoid 15325 * missing changes in the set of source addresses. 15326 * If flagsp is set, then us it to pass back ipif_flags. 15327 * 15328 * If the caller wants to cache the returned source address and detect when 15329 * that might be stale, the caller should pass in a generation argument, 15330 * which the caller can later compare against ips_src_generation 15331 * 15332 * The precedence order for selecting an IPv4 source address is: 15333 * - RTF_SETSRC on the offlink ire always wins. 15334 * - If usrsrc is set, swap the ill to be the usesrc one. 15335 * - If IPMP is used on the ill, select a random address from the most 15336 * preferred ones below: 15337 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15338 * 2. Not deprecated, not ALL_ZONES 15339 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15340 * 4. Not deprecated, ALL_ZONES 15341 * 5. If onlink destination, same subnet and deprecated 15342 * 6. Deprecated. 15343 * 15344 * We have lower preference for ALL_ZONES IP addresses, 15345 * as they pose problems with unlabeled destinations. 15346 * 15347 * Note that when multiple IP addresses match e.g., #1 we pick 15348 * the first one if IPMP is not in use. With IPMP we randomize. 15349 */ 15350 int 15351 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15352 ipaddr_t multicast_ifaddr, 15353 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15354 uint32_t *generation, uint64_t *flagsp) 15355 { 15356 ipif_t *ipif; 15357 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15358 15359 if (flagsp != NULL) 15360 *flagsp = 0; 15361 15362 /* 15363 * Need to grab the generation number before we check to 15364 * avoid a race with a change to the set of local addresses. 15365 * No lock needed since the thread which updates the set of local 15366 * addresses use ipif/ill locks and exit those (hence a store memory 15367 * barrier) before doing the atomic increase of ips_src_generation. 15368 */ 15369 if (generation != NULL) { 15370 *generation = ipst->ips_src_generation; 15371 } 15372 15373 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15374 *srcp = multicast_ifaddr; 15375 return (0); 15376 } 15377 15378 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15379 if (setsrc != INADDR_ANY) { 15380 *srcp = setsrc; 15381 return (0); 15382 } 15383 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15384 if (ipif == NULL) { 15385 if (notready) 15386 return (ENETDOWN); 15387 else 15388 return (EADDRNOTAVAIL); 15389 } 15390 *srcp = ipif->ipif_lcl_addr; 15391 if (flagsp != NULL) 15392 *flagsp = ipif->ipif_flags; 15393 ipif_refrele(ipif); 15394 return (0); 15395 } 15396 15397 /* ARGSUSED */ 15398 int 15399 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15400 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15401 { 15402 /* 15403 * ill_phyint_reinit merged the v4 and v6 into a single 15404 * ipsq. We might not have been able to complete the 15405 * operation in ipif_set_values, if we could not become 15406 * exclusive. If so restart it here. 15407 */ 15408 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15409 } 15410 15411 /* 15412 * Can operate on either a module or a driver queue. 15413 * Returns an error if not a module queue. 15414 */ 15415 /* ARGSUSED */ 15416 int 15417 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15418 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15419 { 15420 queue_t *q1 = q; 15421 char *cp; 15422 char interf_name[LIFNAMSIZ]; 15423 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15424 15425 if (q->q_next == NULL) { 15426 ip1dbg(( 15427 "if_unitsel: IF_UNITSEL: no q_next\n")); 15428 return (EINVAL); 15429 } 15430 15431 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15432 return (EALREADY); 15433 15434 do { 15435 q1 = q1->q_next; 15436 } while (q1->q_next); 15437 cp = q1->q_qinfo->qi_minfo->mi_idname; 15438 (void) sprintf(interf_name, "%s%d", cp, ppa); 15439 15440 /* 15441 * Here we are not going to delay the ioack until after 15442 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15443 * original ioctl message before sending the requests. 15444 */ 15445 return (ipif_set_values(q, mp, interf_name, &ppa)); 15446 } 15447 15448 /* ARGSUSED */ 15449 int 15450 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15451 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15452 { 15453 return (ENXIO); 15454 } 15455 15456 /* 15457 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15458 * `irep'. Returns a pointer to the next free `irep' entry 15459 * A mirror exists in ipif_delete_bcast_ires(). 15460 * 15461 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15462 * done in ire_add. 15463 */ 15464 static ire_t ** 15465 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15466 { 15467 ipaddr_t addr; 15468 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15469 ipaddr_t subnetmask = ipif->ipif_net_mask; 15470 ill_t *ill = ipif->ipif_ill; 15471 zoneid_t zoneid = ipif->ipif_zoneid; 15472 15473 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15474 15475 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15476 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15477 15478 if (ipif->ipif_lcl_addr == INADDR_ANY || 15479 (ipif->ipif_flags & IPIF_NOLOCAL)) 15480 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15481 15482 irep = ire_create_bcast(ill, 0, zoneid, irep); 15483 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15484 15485 /* 15486 * For backward compatibility, we create net broadcast IREs based on 15487 * the old "IP address class system", since some old machines only 15488 * respond to these class derived net broadcast. However, we must not 15489 * create these net broadcast IREs if the subnetmask is shorter than 15490 * the IP address class based derived netmask. Otherwise, we may 15491 * create a net broadcast address which is the same as an IP address 15492 * on the subnet -- and then TCP will refuse to talk to that address. 15493 */ 15494 if (netmask < subnetmask) { 15495 addr = netmask & ipif->ipif_subnet; 15496 irep = ire_create_bcast(ill, addr, zoneid, irep); 15497 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15498 } 15499 15500 /* 15501 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15502 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15503 * created. Creating these broadcast IREs will only create confusion 15504 * as `addr' will be the same as the IP address. 15505 */ 15506 if (subnetmask != 0xFFFFFFFF) { 15507 addr = ipif->ipif_subnet; 15508 irep = ire_create_bcast(ill, addr, zoneid, irep); 15509 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15510 } 15511 15512 return (irep); 15513 } 15514 15515 /* 15516 * Mirror of ipif_create_bcast_ires() 15517 */ 15518 static void 15519 ipif_delete_bcast_ires(ipif_t *ipif) 15520 { 15521 ipaddr_t addr; 15522 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15523 ipaddr_t subnetmask = ipif->ipif_net_mask; 15524 ill_t *ill = ipif->ipif_ill; 15525 zoneid_t zoneid = ipif->ipif_zoneid; 15526 ire_t *ire; 15527 15528 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15529 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15530 15531 if (ipif->ipif_lcl_addr == INADDR_ANY || 15532 (ipif->ipif_flags & IPIF_NOLOCAL)) 15533 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15534 15535 ire = ire_lookup_bcast(ill, 0, zoneid); 15536 ASSERT(ire != NULL); 15537 ire_delete(ire); ire_refrele(ire); 15538 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15539 ASSERT(ire != NULL); 15540 ire_delete(ire); ire_refrele(ire); 15541 15542 /* 15543 * For backward compatibility, we create net broadcast IREs based on 15544 * the old "IP address class system", since some old machines only 15545 * respond to these class derived net broadcast. However, we must not 15546 * create these net broadcast IREs if the subnetmask is shorter than 15547 * the IP address class based derived netmask. Otherwise, we may 15548 * create a net broadcast address which is the same as an IP address 15549 * on the subnet -- and then TCP will refuse to talk to that address. 15550 */ 15551 if (netmask < subnetmask) { 15552 addr = netmask & ipif->ipif_subnet; 15553 ire = ire_lookup_bcast(ill, addr, zoneid); 15554 ASSERT(ire != NULL); 15555 ire_delete(ire); ire_refrele(ire); 15556 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15557 ASSERT(ire != NULL); 15558 ire_delete(ire); ire_refrele(ire); 15559 } 15560 15561 /* 15562 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15563 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15564 * created. Creating these broadcast IREs will only create confusion 15565 * as `addr' will be the same as the IP address. 15566 */ 15567 if (subnetmask != 0xFFFFFFFF) { 15568 addr = ipif->ipif_subnet; 15569 ire = ire_lookup_bcast(ill, addr, zoneid); 15570 ASSERT(ire != NULL); 15571 ire_delete(ire); ire_refrele(ire); 15572 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15573 ASSERT(ire != NULL); 15574 ire_delete(ire); ire_refrele(ire); 15575 } 15576 } 15577 15578 /* 15579 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15580 * from lifr_flags and the name from lifr_name. 15581 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15582 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15583 * Returns EINPROGRESS when mp has been consumed by queueing it on 15584 * ipx_pending_mp and the ioctl will complete in ip_rput. 15585 * 15586 * Can operate on either a module or a driver queue. 15587 * Returns an error if not a module queue. 15588 */ 15589 /* ARGSUSED */ 15590 int 15591 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15592 ip_ioctl_cmd_t *ipip, void *if_req) 15593 { 15594 ill_t *ill = q->q_ptr; 15595 phyint_t *phyi; 15596 ip_stack_t *ipst; 15597 struct lifreq *lifr = if_req; 15598 uint64_t new_flags; 15599 15600 ASSERT(ipif != NULL); 15601 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15602 15603 if (q->q_next == NULL) { 15604 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15605 return (EINVAL); 15606 } 15607 15608 /* 15609 * If we are not writer on 'q' then this interface exists already 15610 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15611 * so return EALREADY. 15612 */ 15613 if (ill != ipif->ipif_ill) 15614 return (EALREADY); 15615 15616 if (ill->ill_name[0] != '\0') 15617 return (EALREADY); 15618 15619 /* 15620 * If there's another ill already with the requested name, ensure 15621 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15622 * fuse together two unrelated ills, which will cause chaos. 15623 */ 15624 ipst = ill->ill_ipst; 15625 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15626 lifr->lifr_name, NULL); 15627 if (phyi != NULL) { 15628 ill_t *ill_mate = phyi->phyint_illv4; 15629 15630 if (ill_mate == NULL) 15631 ill_mate = phyi->phyint_illv6; 15632 ASSERT(ill_mate != NULL); 15633 15634 if (ill_mate->ill_media->ip_m_mac_type != 15635 ill->ill_media->ip_m_mac_type) { 15636 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15637 "use the same ill name on differing media\n")); 15638 return (EINVAL); 15639 } 15640 } 15641 15642 /* 15643 * We start off as IFF_IPV4 in ipif_allocate and become 15644 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15645 * The only flags that we read from user space are IFF_IPV4, 15646 * IFF_IPV6, and IFF_BROADCAST. 15647 * 15648 * This ill has not been inserted into the global list. 15649 * So we are still single threaded and don't need any lock 15650 * 15651 * Saniy check the flags. 15652 */ 15653 15654 if ((lifr->lifr_flags & IFF_BROADCAST) && 15655 ((lifr->lifr_flags & IFF_IPV6) || 15656 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15657 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15658 "or IPv6 i.e., no broadcast \n")); 15659 return (EINVAL); 15660 } 15661 15662 new_flags = 15663 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15664 15665 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15666 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15667 "IFF_IPV4 or IFF_IPV6\n")); 15668 return (EINVAL); 15669 } 15670 15671 /* 15672 * We always start off as IPv4, so only need to check for IPv6. 15673 */ 15674 if ((new_flags & IFF_IPV6) != 0) { 15675 ill->ill_flags |= ILLF_IPV6; 15676 ill->ill_flags &= ~ILLF_IPV4; 15677 15678 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15679 ill->ill_flags |= ILLF_NOLINKLOCAL; 15680 } 15681 15682 if ((new_flags & IFF_BROADCAST) != 0) 15683 ipif->ipif_flags |= IPIF_BROADCAST; 15684 else 15685 ipif->ipif_flags &= ~IPIF_BROADCAST; 15686 15687 /* We started off as V4. */ 15688 if (ill->ill_flags & ILLF_IPV6) { 15689 ill->ill_phyint->phyint_illv6 = ill; 15690 ill->ill_phyint->phyint_illv4 = NULL; 15691 } 15692 15693 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15694 } 15695 15696 /* ARGSUSED */ 15697 int 15698 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15699 ip_ioctl_cmd_t *ipip, void *if_req) 15700 { 15701 /* 15702 * ill_phyint_reinit merged the v4 and v6 into a single 15703 * ipsq. We might not have been able to complete the 15704 * slifname in ipif_set_values, if we could not become 15705 * exclusive. If so restart it here 15706 */ 15707 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15708 } 15709 15710 /* 15711 * Return a pointer to the ipif which matches the index, IP version type and 15712 * zoneid. 15713 */ 15714 ipif_t * 15715 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15716 ip_stack_t *ipst) 15717 { 15718 ill_t *ill; 15719 ipif_t *ipif = NULL; 15720 15721 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15722 if (ill != NULL) { 15723 mutex_enter(&ill->ill_lock); 15724 for (ipif = ill->ill_ipif; ipif != NULL; 15725 ipif = ipif->ipif_next) { 15726 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15727 zoneid == ipif->ipif_zoneid || 15728 ipif->ipif_zoneid == ALL_ZONES)) { 15729 ipif_refhold_locked(ipif); 15730 break; 15731 } 15732 } 15733 mutex_exit(&ill->ill_lock); 15734 ill_refrele(ill); 15735 } 15736 return (ipif); 15737 } 15738 15739 /* 15740 * Change an existing physical interface's index. If the new index 15741 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15742 * Finally, we update other systems which may have a dependence on the 15743 * index value. 15744 */ 15745 /* ARGSUSED */ 15746 int 15747 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15748 ip_ioctl_cmd_t *ipip, void *ifreq) 15749 { 15750 ill_t *ill; 15751 phyint_t *phyi; 15752 struct ifreq *ifr = (struct ifreq *)ifreq; 15753 struct lifreq *lifr = (struct lifreq *)ifreq; 15754 uint_t old_index, index; 15755 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15756 avl_index_t where; 15757 15758 if (ipip->ipi_cmd_type == IF_CMD) 15759 index = ifr->ifr_index; 15760 else 15761 index = lifr->lifr_index; 15762 15763 /* 15764 * Only allow on physical interface. Also, index zero is illegal. 15765 */ 15766 ill = ipif->ipif_ill; 15767 phyi = ill->ill_phyint; 15768 if (ipif->ipif_id != 0 || index == 0) { 15769 return (EINVAL); 15770 } 15771 15772 /* If the index is not changing, no work to do */ 15773 if (phyi->phyint_ifindex == index) 15774 return (0); 15775 15776 /* 15777 * Use phyint_exists() to determine if the new interface index 15778 * is already in use. If the index is unused then we need to 15779 * change the phyint's position in the phyint_list_avl_by_index 15780 * tree. If we do not do this, subsequent lookups (using the new 15781 * index value) will not find the phyint. 15782 */ 15783 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15784 if (phyint_exists(index, ipst)) { 15785 rw_exit(&ipst->ips_ill_g_lock); 15786 return (EEXIST); 15787 } 15788 15789 /* 15790 * The new index is unused. Set it in the phyint. However we must not 15791 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15792 * changes. The event must be bound to old ifindex value. 15793 */ 15794 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15795 &index, sizeof (index)); 15796 15797 old_index = phyi->phyint_ifindex; 15798 phyi->phyint_ifindex = index; 15799 15800 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15801 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15802 &index, &where); 15803 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15804 phyi, where); 15805 rw_exit(&ipst->ips_ill_g_lock); 15806 15807 /* Update SCTP's ILL list */ 15808 sctp_ill_reindex(ill, old_index); 15809 15810 /* Send the routing sockets message */ 15811 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 15812 if (ILL_OTHER(ill)) 15813 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 15814 15815 /* Perhaps ilgs should use this ill */ 15816 update_conn_ill(NULL, ill->ill_ipst); 15817 return (0); 15818 } 15819 15820 /* ARGSUSED */ 15821 int 15822 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15823 ip_ioctl_cmd_t *ipip, void *ifreq) 15824 { 15825 struct ifreq *ifr = (struct ifreq *)ifreq; 15826 struct lifreq *lifr = (struct lifreq *)ifreq; 15827 15828 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 15829 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15830 /* Get the interface index */ 15831 if (ipip->ipi_cmd_type == IF_CMD) { 15832 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15833 } else { 15834 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15835 } 15836 return (0); 15837 } 15838 15839 /* ARGSUSED */ 15840 int 15841 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15842 ip_ioctl_cmd_t *ipip, void *ifreq) 15843 { 15844 struct lifreq *lifr = (struct lifreq *)ifreq; 15845 15846 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 15847 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15848 /* Get the interface zone */ 15849 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15850 lifr->lifr_zoneid = ipif->ipif_zoneid; 15851 return (0); 15852 } 15853 15854 /* 15855 * Set the zoneid of an interface. 15856 */ 15857 /* ARGSUSED */ 15858 int 15859 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15860 ip_ioctl_cmd_t *ipip, void *ifreq) 15861 { 15862 struct lifreq *lifr = (struct lifreq *)ifreq; 15863 int err = 0; 15864 boolean_t need_up = B_FALSE; 15865 zone_t *zptr; 15866 zone_status_t status; 15867 zoneid_t zoneid; 15868 15869 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15870 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 15871 if (!is_system_labeled()) 15872 return (ENOTSUP); 15873 zoneid = GLOBAL_ZONEID; 15874 } 15875 15876 /* cannot assign instance zero to a non-global zone */ 15877 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 15878 return (ENOTSUP); 15879 15880 /* 15881 * Cannot assign to a zone that doesn't exist or is shutting down. In 15882 * the event of a race with the zone shutdown processing, since IP 15883 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 15884 * interface will be cleaned up even if the zone is shut down 15885 * immediately after the status check. If the interface can't be brought 15886 * down right away, and the zone is shut down before the restart 15887 * function is called, we resolve the possible races by rechecking the 15888 * zone status in the restart function. 15889 */ 15890 if ((zptr = zone_find_by_id(zoneid)) == NULL) 15891 return (EINVAL); 15892 status = zone_status_get(zptr); 15893 zone_rele(zptr); 15894 15895 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 15896 return (EINVAL); 15897 15898 if (ipif->ipif_flags & IPIF_UP) { 15899 /* 15900 * If the interface is already marked up, 15901 * we call ipif_down which will take care 15902 * of ditching any IREs that have been set 15903 * up based on the old interface address. 15904 */ 15905 err = ipif_logical_down(ipif, q, mp); 15906 if (err == EINPROGRESS) 15907 return (err); 15908 (void) ipif_down_tail(ipif); 15909 need_up = B_TRUE; 15910 } 15911 15912 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 15913 return (err); 15914 } 15915 15916 static int 15917 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 15918 queue_t *q, mblk_t *mp, boolean_t need_up) 15919 { 15920 int err = 0; 15921 ip_stack_t *ipst; 15922 15923 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 15924 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15925 15926 if (CONN_Q(q)) 15927 ipst = CONNQ_TO_IPST(q); 15928 else 15929 ipst = ILLQ_TO_IPST(q); 15930 15931 /* 15932 * For exclusive stacks we don't allow a different zoneid than 15933 * global. 15934 */ 15935 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 15936 zoneid != GLOBAL_ZONEID) 15937 return (EINVAL); 15938 15939 /* Set the new zone id. */ 15940 ipif->ipif_zoneid = zoneid; 15941 15942 /* Update sctp list */ 15943 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 15944 15945 /* The default multicast interface might have changed */ 15946 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 15947 15948 if (need_up) { 15949 /* 15950 * Now bring the interface back up. If this 15951 * is the only IPIF for the ILL, ipif_up 15952 * will have to re-bind to the device, so 15953 * we may get back EINPROGRESS, in which 15954 * case, this IOCTL will get completed in 15955 * ip_rput_dlpi when we see the DL_BIND_ACK. 15956 */ 15957 err = ipif_up(ipif, q, mp); 15958 } 15959 return (err); 15960 } 15961 15962 /* ARGSUSED */ 15963 int 15964 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15965 ip_ioctl_cmd_t *ipip, void *if_req) 15966 { 15967 struct lifreq *lifr = (struct lifreq *)if_req; 15968 zoneid_t zoneid; 15969 zone_t *zptr; 15970 zone_status_t status; 15971 15972 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15973 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 15974 zoneid = GLOBAL_ZONEID; 15975 15976 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 15977 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15978 15979 /* 15980 * We recheck the zone status to resolve the following race condition: 15981 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 15982 * 2) hme0:1 is up and can't be brought down right away; 15983 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 15984 * 3) zone "myzone" is halted; the zone status switches to 15985 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 15986 * the interfaces to remove - hme0:1 is not returned because it's not 15987 * yet in "myzone", so it won't be removed; 15988 * 4) the restart function for SIOCSLIFZONE is called; without the 15989 * status check here, we would have hme0:1 in "myzone" after it's been 15990 * destroyed. 15991 * Note that if the status check fails, we need to bring the interface 15992 * back to its state prior to ip_sioctl_slifzone(), hence the call to 15993 * ipif_up_done[_v6](). 15994 */ 15995 status = ZONE_IS_UNINITIALIZED; 15996 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 15997 status = zone_status_get(zptr); 15998 zone_rele(zptr); 15999 } 16000 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 16001 if (ipif->ipif_isv6) { 16002 (void) ipif_up_done_v6(ipif); 16003 } else { 16004 (void) ipif_up_done(ipif); 16005 } 16006 return (EINVAL); 16007 } 16008 16009 (void) ipif_down_tail(ipif); 16010 16011 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16012 B_TRUE)); 16013 } 16014 16015 /* 16016 * Return the number of addresses on `ill' with one or more of the values 16017 * in `set' set and all of the values in `clear' clear. 16018 */ 16019 static uint_t 16020 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16021 { 16022 ipif_t *ipif; 16023 uint_t cnt = 0; 16024 16025 ASSERT(IAM_WRITER_ILL(ill)); 16026 16027 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16028 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16029 cnt++; 16030 16031 return (cnt); 16032 } 16033 16034 /* 16035 * Return the number of migratable addresses on `ill' that are under 16036 * application control. 16037 */ 16038 uint_t 16039 ill_appaddr_cnt(const ill_t *ill) 16040 { 16041 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16042 IPIF_NOFAILOVER)); 16043 } 16044 16045 /* 16046 * Return the number of point-to-point addresses on `ill'. 16047 */ 16048 uint_t 16049 ill_ptpaddr_cnt(const ill_t *ill) 16050 { 16051 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16052 } 16053 16054 /* ARGSUSED */ 16055 int 16056 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16057 ip_ioctl_cmd_t *ipip, void *ifreq) 16058 { 16059 struct lifreq *lifr = ifreq; 16060 16061 ASSERT(q->q_next == NULL); 16062 ASSERT(CONN_Q(q)); 16063 16064 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16065 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16066 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16067 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16068 16069 return (0); 16070 } 16071 16072 /* Find the previous ILL in this usesrc group */ 16073 static ill_t * 16074 ill_prev_usesrc(ill_t *uill) 16075 { 16076 ill_t *ill; 16077 16078 for (ill = uill->ill_usesrc_grp_next; 16079 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16080 ill = ill->ill_usesrc_grp_next) 16081 /* do nothing */; 16082 return (ill); 16083 } 16084 16085 /* 16086 * Release all members of the usesrc group. This routine is called 16087 * from ill_delete when the interface being unplumbed is the 16088 * group head. 16089 * 16090 * This silently clears the usesrc that ifconfig setup. 16091 * An alternative would be to keep that ifindex, and drop packets on the floor 16092 * since no source address can be selected. 16093 * Even if we keep the current semantics, don't need a lock and a linked list. 16094 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16095 * the one that is being removed. Issue is how we return the usesrc users 16096 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16097 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16098 * ill walk, but the walker would need to insert in the ioctl response. 16099 */ 16100 static void 16101 ill_disband_usesrc_group(ill_t *uill) 16102 { 16103 ill_t *next_ill, *tmp_ill; 16104 ip_stack_t *ipst = uill->ill_ipst; 16105 16106 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16107 next_ill = uill->ill_usesrc_grp_next; 16108 16109 do { 16110 ASSERT(next_ill != NULL); 16111 tmp_ill = next_ill->ill_usesrc_grp_next; 16112 ASSERT(tmp_ill != NULL); 16113 next_ill->ill_usesrc_grp_next = NULL; 16114 next_ill->ill_usesrc_ifindex = 0; 16115 next_ill = tmp_ill; 16116 } while (next_ill->ill_usesrc_ifindex != 0); 16117 uill->ill_usesrc_grp_next = NULL; 16118 } 16119 16120 /* 16121 * Remove the client usesrc ILL from the list and relink to a new list 16122 */ 16123 int 16124 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16125 { 16126 ill_t *ill, *tmp_ill; 16127 ip_stack_t *ipst = ucill->ill_ipst; 16128 16129 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16130 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16131 16132 /* 16133 * Check if the usesrc client ILL passed in is not already 16134 * in use as a usesrc ILL i.e one whose source address is 16135 * in use OR a usesrc ILL is not already in use as a usesrc 16136 * client ILL 16137 */ 16138 if ((ucill->ill_usesrc_ifindex == 0) || 16139 (uill->ill_usesrc_ifindex != 0)) { 16140 return (-1); 16141 } 16142 16143 ill = ill_prev_usesrc(ucill); 16144 ASSERT(ill->ill_usesrc_grp_next != NULL); 16145 16146 /* Remove from the current list */ 16147 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16148 /* Only two elements in the list */ 16149 ASSERT(ill->ill_usesrc_ifindex == 0); 16150 ill->ill_usesrc_grp_next = NULL; 16151 } else { 16152 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16153 } 16154 16155 if (ifindex == 0) { 16156 ucill->ill_usesrc_ifindex = 0; 16157 ucill->ill_usesrc_grp_next = NULL; 16158 return (0); 16159 } 16160 16161 ucill->ill_usesrc_ifindex = ifindex; 16162 tmp_ill = uill->ill_usesrc_grp_next; 16163 uill->ill_usesrc_grp_next = ucill; 16164 ucill->ill_usesrc_grp_next = 16165 (tmp_ill != NULL) ? tmp_ill : uill; 16166 return (0); 16167 } 16168 16169 /* 16170 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16171 * ip.c for locking details. 16172 */ 16173 /* ARGSUSED */ 16174 int 16175 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16176 ip_ioctl_cmd_t *ipip, void *ifreq) 16177 { 16178 struct lifreq *lifr = (struct lifreq *)ifreq; 16179 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16180 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16181 int err = 0, ret; 16182 uint_t ifindex; 16183 ipsq_t *ipsq = NULL; 16184 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16185 16186 ASSERT(IAM_WRITER_IPIF(ipif)); 16187 ASSERT(q->q_next == NULL); 16188 ASSERT(CONN_Q(q)); 16189 16190 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16191 16192 ifindex = lifr->lifr_index; 16193 if (ifindex == 0) { 16194 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16195 /* non usesrc group interface, nothing to reset */ 16196 return (0); 16197 } 16198 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16199 /* valid reset request */ 16200 reset_flg = B_TRUE; 16201 } 16202 16203 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16204 if (usesrc_ill == NULL) 16205 return (ENXIO); 16206 if (usesrc_ill == ipif->ipif_ill) { 16207 ill_refrele(usesrc_ill); 16208 return (EINVAL); 16209 } 16210 16211 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16212 NEW_OP, B_TRUE); 16213 if (ipsq == NULL) { 16214 err = EINPROGRESS; 16215 /* Operation enqueued on the ipsq of the usesrc ILL */ 16216 goto done; 16217 } 16218 16219 /* USESRC isn't currently supported with IPMP */ 16220 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16221 err = ENOTSUP; 16222 goto done; 16223 } 16224 16225 /* 16226 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16227 * used by IPMP underlying interfaces, but someone might think it's 16228 * more general and try to use it independently with VNI.) 16229 */ 16230 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16231 err = ENOTSUP; 16232 goto done; 16233 } 16234 16235 /* 16236 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16237 * already a client then return EINVAL 16238 */ 16239 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16240 err = EINVAL; 16241 goto done; 16242 } 16243 16244 /* 16245 * If the ill_usesrc_ifindex field is already set to what it needs to 16246 * be then this is a duplicate operation. 16247 */ 16248 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16249 err = 0; 16250 goto done; 16251 } 16252 16253 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16254 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16255 usesrc_ill->ill_isv6)); 16256 16257 /* 16258 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16259 * and the ill_usesrc_ifindex fields 16260 */ 16261 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16262 16263 if (reset_flg) { 16264 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16265 if (ret != 0) { 16266 err = EINVAL; 16267 } 16268 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16269 goto done; 16270 } 16271 16272 /* 16273 * Four possibilities to consider: 16274 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16275 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16276 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16277 * 4. Both are part of their respective usesrc groups 16278 */ 16279 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16280 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16281 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16282 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16283 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16284 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16285 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16286 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16287 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16288 /* Insert at head of list */ 16289 usesrc_cli_ill->ill_usesrc_grp_next = 16290 usesrc_ill->ill_usesrc_grp_next; 16291 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16292 } else { 16293 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16294 ifindex); 16295 if (ret != 0) 16296 err = EINVAL; 16297 } 16298 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16299 16300 done: 16301 if (ipsq != NULL) 16302 ipsq_exit(ipsq); 16303 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16304 ill_refrele(usesrc_ill); 16305 16306 /* Let conn_ixa caching know that source address selection changed */ 16307 ip_update_source_selection(ipst); 16308 16309 return (err); 16310 } 16311 16312 /* ARGSUSED */ 16313 int 16314 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16315 ip_ioctl_cmd_t *ipip, void *if_req) 16316 { 16317 struct lifreq *lifr = (struct lifreq *)if_req; 16318 ill_t *ill = ipif->ipif_ill; 16319 16320 /* 16321 * Need a lock since IFF_UP can be set even when there are 16322 * references to the ipif. 16323 */ 16324 mutex_enter(&ill->ill_lock); 16325 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16326 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16327 else 16328 lifr->lifr_dadstate = DAD_DONE; 16329 mutex_exit(&ill->ill_lock); 16330 return (0); 16331 } 16332 16333 /* 16334 * comparison function used by avl. 16335 */ 16336 static int 16337 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16338 { 16339 16340 uint_t index; 16341 16342 ASSERT(phyip != NULL && index_ptr != NULL); 16343 16344 index = *((uint_t *)index_ptr); 16345 /* 16346 * let the phyint with the lowest index be on top. 16347 */ 16348 if (((phyint_t *)phyip)->phyint_ifindex < index) 16349 return (1); 16350 if (((phyint_t *)phyip)->phyint_ifindex > index) 16351 return (-1); 16352 return (0); 16353 } 16354 16355 /* 16356 * comparison function used by avl. 16357 */ 16358 static int 16359 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16360 { 16361 ill_t *ill; 16362 int res = 0; 16363 16364 ASSERT(phyip != NULL && name_ptr != NULL); 16365 16366 if (((phyint_t *)phyip)->phyint_illv4) 16367 ill = ((phyint_t *)phyip)->phyint_illv4; 16368 else 16369 ill = ((phyint_t *)phyip)->phyint_illv6; 16370 ASSERT(ill != NULL); 16371 16372 res = strcmp(ill->ill_name, (char *)name_ptr); 16373 if (res > 0) 16374 return (1); 16375 else if (res < 0) 16376 return (-1); 16377 return (0); 16378 } 16379 16380 /* 16381 * This function is called on the unplumb path via ill_glist_delete() when 16382 * there are no ills left on the phyint and thus the phyint can be freed. 16383 */ 16384 static void 16385 phyint_free(phyint_t *phyi) 16386 { 16387 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16388 16389 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16390 16391 /* 16392 * If this phyint was an IPMP meta-interface, blow away the group. 16393 * This is safe to do because all of the illgrps have already been 16394 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16395 * If we're cleaning up as a result of failed initialization, 16396 * phyint_grp may be NULL. 16397 */ 16398 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16399 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16400 ipmp_grp_destroy(phyi->phyint_grp); 16401 phyi->phyint_grp = NULL; 16402 rw_exit(&ipst->ips_ipmp_lock); 16403 } 16404 16405 /* 16406 * If this interface was under IPMP, take it out of the group. 16407 */ 16408 if (phyi->phyint_grp != NULL) 16409 ipmp_phyint_leave_grp(phyi); 16410 16411 /* 16412 * Delete the phyint and disassociate its ipsq. The ipsq itself 16413 * will be freed in ipsq_exit(). 16414 */ 16415 phyi->phyint_ipsq->ipsq_phyint = NULL; 16416 phyi->phyint_name[0] = '\0'; 16417 16418 mi_free(phyi); 16419 } 16420 16421 /* 16422 * Attach the ill to the phyint structure which can be shared by both 16423 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16424 * function is called from ipif_set_values and ill_lookup_on_name (for 16425 * loopback) where we know the name of the ill. We lookup the ill and if 16426 * there is one present already with the name use that phyint. Otherwise 16427 * reuse the one allocated by ill_init. 16428 */ 16429 static void 16430 ill_phyint_reinit(ill_t *ill) 16431 { 16432 boolean_t isv6 = ill->ill_isv6; 16433 phyint_t *phyi_old; 16434 phyint_t *phyi; 16435 avl_index_t where = 0; 16436 ill_t *ill_other = NULL; 16437 ip_stack_t *ipst = ill->ill_ipst; 16438 16439 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16440 16441 phyi_old = ill->ill_phyint; 16442 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16443 phyi_old->phyint_illv6 == NULL)); 16444 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16445 phyi_old->phyint_illv4 == NULL)); 16446 ASSERT(phyi_old->phyint_ifindex == 0); 16447 16448 /* 16449 * Now that our ill has a name, set it in the phyint. 16450 */ 16451 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16452 16453 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16454 ill->ill_name, &where); 16455 16456 /* 16457 * 1. We grabbed the ill_g_lock before inserting this ill into 16458 * the global list of ills. So no other thread could have located 16459 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16460 * 2. Now locate the other protocol instance of this ill. 16461 * 3. Now grab both ill locks in the right order, and the phyint lock of 16462 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16463 * of neither ill can change. 16464 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16465 * other ill. 16466 * 5. Release all locks. 16467 */ 16468 16469 /* 16470 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16471 * we are initializing IPv4. 16472 */ 16473 if (phyi != NULL) { 16474 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16475 ASSERT(ill_other->ill_phyint != NULL); 16476 ASSERT((isv6 && !ill_other->ill_isv6) || 16477 (!isv6 && ill_other->ill_isv6)); 16478 GRAB_ILL_LOCKS(ill, ill_other); 16479 /* 16480 * We are potentially throwing away phyint_flags which 16481 * could be different from the one that we obtain from 16482 * ill_other->ill_phyint. But it is okay as we are assuming 16483 * that the state maintained within IP is correct. 16484 */ 16485 mutex_enter(&phyi->phyint_lock); 16486 if (isv6) { 16487 ASSERT(phyi->phyint_illv6 == NULL); 16488 phyi->phyint_illv6 = ill; 16489 } else { 16490 ASSERT(phyi->phyint_illv4 == NULL); 16491 phyi->phyint_illv4 = ill; 16492 } 16493 16494 /* 16495 * Delete the old phyint and make its ipsq eligible 16496 * to be freed in ipsq_exit(). 16497 */ 16498 phyi_old->phyint_illv4 = NULL; 16499 phyi_old->phyint_illv6 = NULL; 16500 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16501 phyi_old->phyint_name[0] = '\0'; 16502 mi_free(phyi_old); 16503 } else { 16504 mutex_enter(&ill->ill_lock); 16505 /* 16506 * We don't need to acquire any lock, since 16507 * the ill is not yet visible globally and we 16508 * have not yet released the ill_g_lock. 16509 */ 16510 phyi = phyi_old; 16511 mutex_enter(&phyi->phyint_lock); 16512 /* XXX We need a recovery strategy here. */ 16513 if (!phyint_assign_ifindex(phyi, ipst)) 16514 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16515 16516 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16517 (void *)phyi, where); 16518 16519 (void) avl_find(&ipst->ips_phyint_g_list-> 16520 phyint_list_avl_by_index, 16521 &phyi->phyint_ifindex, &where); 16522 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16523 (void *)phyi, where); 16524 } 16525 16526 /* 16527 * Reassigning ill_phyint automatically reassigns the ipsq also. 16528 * pending mp is not affected because that is per ill basis. 16529 */ 16530 ill->ill_phyint = phyi; 16531 16532 /* 16533 * Now that the phyint's ifindex has been assigned, complete the 16534 * remaining 16535 */ 16536 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16537 if (ill->ill_isv6) { 16538 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16539 ill->ill_phyint->phyint_ifindex; 16540 ill->ill_mcast_type = ipst->ips_mld_max_version; 16541 } else { 16542 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16543 } 16544 16545 /* 16546 * Generate an event within the hooks framework to indicate that 16547 * a new interface has just been added to IP. For this event to 16548 * be generated, the network interface must, at least, have an 16549 * ifindex assigned to it. (We don't generate the event for 16550 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16551 * 16552 * This needs to be run inside the ill_g_lock perimeter to ensure 16553 * that the ordering of delivered events to listeners matches the 16554 * order of them in the kernel. 16555 */ 16556 if (!IS_LOOPBACK(ill)) { 16557 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16558 ill->ill_name_length); 16559 } 16560 RELEASE_ILL_LOCKS(ill, ill_other); 16561 mutex_exit(&phyi->phyint_lock); 16562 } 16563 16564 /* 16565 * Notify any downstream modules of the name of this interface. 16566 * An M_IOCTL is used even though we don't expect a successful reply. 16567 * Any reply message from the driver (presumably an M_IOCNAK) will 16568 * eventually get discarded somewhere upstream. The message format is 16569 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16570 * to IP. 16571 */ 16572 static void 16573 ip_ifname_notify(ill_t *ill, queue_t *q) 16574 { 16575 mblk_t *mp1, *mp2; 16576 struct iocblk *iocp; 16577 struct lifreq *lifr; 16578 16579 mp1 = mkiocb(SIOCSLIFNAME); 16580 if (mp1 == NULL) 16581 return; 16582 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16583 if (mp2 == NULL) { 16584 freeb(mp1); 16585 return; 16586 } 16587 16588 mp1->b_cont = mp2; 16589 iocp = (struct iocblk *)mp1->b_rptr; 16590 iocp->ioc_count = sizeof (struct lifreq); 16591 16592 lifr = (struct lifreq *)mp2->b_rptr; 16593 mp2->b_wptr += sizeof (struct lifreq); 16594 bzero(lifr, sizeof (struct lifreq)); 16595 16596 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16597 lifr->lifr_ppa = ill->ill_ppa; 16598 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16599 16600 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16601 char *, "SIOCSLIFNAME", ill_t *, ill); 16602 putnext(q, mp1); 16603 } 16604 16605 static int 16606 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16607 { 16608 int err; 16609 ip_stack_t *ipst = ill->ill_ipst; 16610 phyint_t *phyi = ill->ill_phyint; 16611 16612 /* 16613 * Now that ill_name is set, the configuration for the IPMP 16614 * meta-interface can be performed. 16615 */ 16616 if (IS_IPMP(ill)) { 16617 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16618 /* 16619 * If phyi->phyint_grp is NULL, then this is the first IPMP 16620 * meta-interface and we need to create the IPMP group. 16621 */ 16622 if (phyi->phyint_grp == NULL) { 16623 /* 16624 * If someone has renamed another IPMP group to have 16625 * the same name as our interface, bail. 16626 */ 16627 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16628 rw_exit(&ipst->ips_ipmp_lock); 16629 return (EEXIST); 16630 } 16631 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16632 if (phyi->phyint_grp == NULL) { 16633 rw_exit(&ipst->ips_ipmp_lock); 16634 return (ENOMEM); 16635 } 16636 } 16637 rw_exit(&ipst->ips_ipmp_lock); 16638 } 16639 16640 /* Tell downstream modules where they are. */ 16641 ip_ifname_notify(ill, q); 16642 16643 /* 16644 * ill_dl_phys returns EINPROGRESS in the usual case. 16645 * Error cases are ENOMEM ... 16646 */ 16647 err = ill_dl_phys(ill, ipif, mp, q); 16648 16649 if (ill->ill_isv6) { 16650 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16651 if (ipst->ips_mld_slowtimeout_id == 0) { 16652 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16653 (void *)ipst, 16654 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16655 } 16656 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16657 } else { 16658 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16659 if (ipst->ips_igmp_slowtimeout_id == 0) { 16660 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16661 (void *)ipst, 16662 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16663 } 16664 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16665 } 16666 16667 return (err); 16668 } 16669 16670 /* 16671 * Common routine for ppa and ifname setting. Should be called exclusive. 16672 * 16673 * Returns EINPROGRESS when mp has been consumed by queueing it on 16674 * ipx_pending_mp and the ioctl will complete in ip_rput. 16675 * 16676 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16677 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16678 * For SLIFNAME, we pass these values back to the userland. 16679 */ 16680 static int 16681 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16682 { 16683 ill_t *ill; 16684 ipif_t *ipif; 16685 ipsq_t *ipsq; 16686 char *ppa_ptr; 16687 char *old_ptr; 16688 char old_char; 16689 int error; 16690 ip_stack_t *ipst; 16691 16692 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16693 ASSERT(q->q_next != NULL); 16694 ASSERT(interf_name != NULL); 16695 16696 ill = (ill_t *)q->q_ptr; 16697 ipst = ill->ill_ipst; 16698 16699 ASSERT(ill->ill_ipst != NULL); 16700 ASSERT(ill->ill_name[0] == '\0'); 16701 ASSERT(IAM_WRITER_ILL(ill)); 16702 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16703 ASSERT(ill->ill_ppa == UINT_MAX); 16704 16705 ill->ill_defend_start = ill->ill_defend_count = 0; 16706 /* The ppa is sent down by ifconfig or is chosen */ 16707 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16708 return (EINVAL); 16709 } 16710 16711 /* 16712 * make sure ppa passed in is same as ppa in the name. 16713 * This check is not made when ppa == UINT_MAX in that case ppa 16714 * in the name could be anything. System will choose a ppa and 16715 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16716 */ 16717 if (*new_ppa_ptr != UINT_MAX) { 16718 /* stoi changes the pointer */ 16719 old_ptr = ppa_ptr; 16720 /* 16721 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16722 * (they don't have an externally visible ppa). We assign one 16723 * here so that we can manage the interface. Note that in 16724 * the past this value was always 0 for DLPI 1 drivers. 16725 */ 16726 if (*new_ppa_ptr == 0) 16727 *new_ppa_ptr = stoi(&old_ptr); 16728 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16729 return (EINVAL); 16730 } 16731 /* 16732 * terminate string before ppa 16733 * save char at that location. 16734 */ 16735 old_char = ppa_ptr[0]; 16736 ppa_ptr[0] = '\0'; 16737 16738 ill->ill_ppa = *new_ppa_ptr; 16739 /* 16740 * Finish as much work now as possible before calling ill_glist_insert 16741 * which makes the ill globally visible and also merges it with the 16742 * other protocol instance of this phyint. The remaining work is 16743 * done after entering the ipsq which may happen sometime later. 16744 */ 16745 ipif = ill->ill_ipif; 16746 16747 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16748 ipif_assign_seqid(ipif); 16749 16750 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16751 ill->ill_flags |= ILLF_IPV4; 16752 16753 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16754 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16755 16756 if (ill->ill_flags & ILLF_IPV6) { 16757 16758 ill->ill_isv6 = B_TRUE; 16759 ill_set_inputfn(ill); 16760 if (ill->ill_rq != NULL) { 16761 ill->ill_rq->q_qinfo = &iprinitv6; 16762 } 16763 16764 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16765 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16766 ipif->ipif_v6subnet = ipv6_all_zeros; 16767 ipif->ipif_v6net_mask = ipv6_all_zeros; 16768 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16769 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16770 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16771 /* 16772 * point-to-point or Non-mulicast capable 16773 * interfaces won't do NUD unless explicitly 16774 * configured to do so. 16775 */ 16776 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16777 !(ill->ill_flags & ILLF_MULTICAST)) { 16778 ill->ill_flags |= ILLF_NONUD; 16779 } 16780 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16781 if (ill->ill_flags & ILLF_NOARP) { 16782 /* 16783 * Note: xresolv interfaces will eventually need 16784 * NOARP set here as well, but that will require 16785 * those external resolvers to have some 16786 * knowledge of that flag and act appropriately. 16787 * Not to be changed at present. 16788 */ 16789 ill->ill_flags &= ~ILLF_NOARP; 16790 } 16791 /* 16792 * Set the ILLF_ROUTER flag according to the global 16793 * IPv6 forwarding policy. 16794 */ 16795 if (ipst->ips_ipv6_forwarding != 0) 16796 ill->ill_flags |= ILLF_ROUTER; 16797 } else if (ill->ill_flags & ILLF_IPV4) { 16798 ill->ill_isv6 = B_FALSE; 16799 ill_set_inputfn(ill); 16800 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16801 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16802 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16803 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16804 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16805 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 16806 /* 16807 * Set the ILLF_ROUTER flag according to the global 16808 * IPv4 forwarding policy. 16809 */ 16810 if (ipst->ips_ip_forwarding != 0) 16811 ill->ill_flags |= ILLF_ROUTER; 16812 } 16813 16814 ASSERT(ill->ill_phyint != NULL); 16815 16816 /* 16817 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 16818 * be completed in ill_glist_insert -> ill_phyint_reinit 16819 */ 16820 if (!ill_allocate_mibs(ill)) 16821 return (ENOMEM); 16822 16823 /* 16824 * Pick a default sap until we get the DL_INFO_ACK back from 16825 * the driver. 16826 */ 16827 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 16828 ill->ill_media->ip_m_ipv4sap; 16829 16830 ill->ill_ifname_pending = 1; 16831 ill->ill_ifname_pending_err = 0; 16832 16833 /* 16834 * When the first ipif comes up in ipif_up_done(), multicast groups 16835 * that were joined while this ill was not bound to the DLPI link need 16836 * to be recovered by ill_recover_multicast(). 16837 */ 16838 ill->ill_need_recover_multicast = 1; 16839 16840 ill_refhold(ill); 16841 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16842 if ((error = ill_glist_insert(ill, interf_name, 16843 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 16844 ill->ill_ppa = UINT_MAX; 16845 ill->ill_name[0] = '\0'; 16846 /* 16847 * undo null termination done above. 16848 */ 16849 ppa_ptr[0] = old_char; 16850 rw_exit(&ipst->ips_ill_g_lock); 16851 ill_refrele(ill); 16852 return (error); 16853 } 16854 16855 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 16856 16857 /* 16858 * When we return the buffer pointed to by interf_name should contain 16859 * the same name as in ill_name. 16860 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 16861 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 16862 * so copy full name and update the ppa ptr. 16863 * When ppa passed in != UINT_MAX all values are correct just undo 16864 * null termination, this saves a bcopy. 16865 */ 16866 if (*new_ppa_ptr == UINT_MAX) { 16867 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 16868 *new_ppa_ptr = ill->ill_ppa; 16869 } else { 16870 /* 16871 * undo null termination done above. 16872 */ 16873 ppa_ptr[0] = old_char; 16874 } 16875 16876 /* Let SCTP know about this ILL */ 16877 sctp_update_ill(ill, SCTP_ILL_INSERT); 16878 16879 /* 16880 * ill_glist_insert has made the ill visible globally, and 16881 * ill_phyint_reinit could have changed the ipsq. At this point, 16882 * we need to hold the ips_ill_g_lock across the call to enter the 16883 * ipsq to enforce atomicity and prevent reordering. In the event 16884 * the ipsq has changed, and if the new ipsq is currently busy, 16885 * we need to make sure that this half-completed ioctl is ahead of 16886 * any subsequent ioctl. We achieve this by not dropping the 16887 * ips_ill_g_lock which prevents any ill lookup itself thereby 16888 * ensuring that new ioctls can't start. 16889 */ 16890 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 16891 B_TRUE); 16892 16893 rw_exit(&ipst->ips_ill_g_lock); 16894 ill_refrele(ill); 16895 if (ipsq == NULL) 16896 return (EINPROGRESS); 16897 16898 /* 16899 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 16900 */ 16901 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 16902 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 16903 else 16904 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 16905 16906 error = ipif_set_values_tail(ill, ipif, mp, q); 16907 ipsq_exit(ipsq); 16908 if (error != 0 && error != EINPROGRESS) { 16909 /* 16910 * restore previous values 16911 */ 16912 ill->ill_isv6 = B_FALSE; 16913 ill_set_inputfn(ill); 16914 } 16915 return (error); 16916 } 16917 16918 void 16919 ipif_init(ip_stack_t *ipst) 16920 { 16921 int i; 16922 16923 for (i = 0; i < MAX_G_HEADS; i++) { 16924 ipst->ips_ill_g_heads[i].ill_g_list_head = 16925 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16926 ipst->ips_ill_g_heads[i].ill_g_list_tail = 16927 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16928 } 16929 16930 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16931 ill_phyint_compare_index, 16932 sizeof (phyint_t), 16933 offsetof(struct phyint, phyint_avl_by_index)); 16934 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16935 ill_phyint_compare_name, 16936 sizeof (phyint_t), 16937 offsetof(struct phyint, phyint_avl_by_name)); 16938 } 16939 16940 /* 16941 * Save enough information so that we can recreate the IRE if 16942 * the interface goes down and then up. 16943 */ 16944 void 16945 ill_save_ire(ill_t *ill, ire_t *ire) 16946 { 16947 mblk_t *save_mp; 16948 16949 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 16950 if (save_mp != NULL) { 16951 ifrt_t *ifrt; 16952 16953 save_mp->b_wptr += sizeof (ifrt_t); 16954 ifrt = (ifrt_t *)save_mp->b_rptr; 16955 bzero(ifrt, sizeof (ifrt_t)); 16956 ifrt->ifrt_type = ire->ire_type; 16957 if (ire->ire_ipversion == IPV4_VERSION) { 16958 ASSERT(!ill->ill_isv6); 16959 ifrt->ifrt_addr = ire->ire_addr; 16960 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 16961 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 16962 ifrt->ifrt_mask = ire->ire_mask; 16963 } else { 16964 ASSERT(ill->ill_isv6); 16965 ifrt->ifrt_v6addr = ire->ire_addr_v6; 16966 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 16967 mutex_enter(&ire->ire_lock); 16968 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 16969 mutex_exit(&ire->ire_lock); 16970 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 16971 ifrt->ifrt_v6mask = ire->ire_mask_v6; 16972 } 16973 ifrt->ifrt_flags = ire->ire_flags; 16974 ifrt->ifrt_zoneid = ire->ire_zoneid; 16975 mutex_enter(&ill->ill_saved_ire_lock); 16976 save_mp->b_cont = ill->ill_saved_ire_mp; 16977 ill->ill_saved_ire_mp = save_mp; 16978 ill->ill_saved_ire_cnt++; 16979 mutex_exit(&ill->ill_saved_ire_lock); 16980 } 16981 } 16982 16983 /* 16984 * Remove one entry from ill_saved_ire_mp. 16985 */ 16986 void 16987 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 16988 { 16989 mblk_t **mpp; 16990 mblk_t *mp; 16991 ifrt_t *ifrt; 16992 16993 /* Remove from ill_saved_ire_mp list if it is there */ 16994 mutex_enter(&ill->ill_saved_ire_lock); 16995 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 16996 mpp = &(*mpp)->b_cont) { 16997 in6_addr_t gw_addr_v6; 16998 16999 /* 17000 * On a given ill, the tuple of address, gateway, mask, 17001 * ire_type, and zoneid is unique for each saved IRE. 17002 */ 17003 mp = *mpp; 17004 ifrt = (ifrt_t *)mp->b_rptr; 17005 /* ire_gateway_addr_v6 can change - need lock */ 17006 mutex_enter(&ire->ire_lock); 17007 gw_addr_v6 = ire->ire_gateway_addr_v6; 17008 mutex_exit(&ire->ire_lock); 17009 17010 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17011 ifrt->ifrt_type != ire->ire_type) 17012 continue; 17013 17014 if (ill->ill_isv6 ? 17015 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17016 &ire->ire_addr_v6) && 17017 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17018 &gw_addr_v6) && 17019 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17020 &ire->ire_mask_v6)) : 17021 (ifrt->ifrt_addr == ire->ire_addr && 17022 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17023 ifrt->ifrt_mask == ire->ire_mask)) { 17024 *mpp = mp->b_cont; 17025 ill->ill_saved_ire_cnt--; 17026 freeb(mp); 17027 break; 17028 } 17029 } 17030 mutex_exit(&ill->ill_saved_ire_lock); 17031 } 17032 17033 /* 17034 * IP multirouting broadcast routes handling 17035 * Append CGTP broadcast IREs to regular ones created 17036 * at ifconfig time. 17037 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17038 * the destination and the gateway are broadcast addresses. 17039 * The caller has verified that the destination is an IRE_BROADCAST and that 17040 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17041 * we create a MULTIRT IRE_BROADCAST. 17042 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17043 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17044 */ 17045 static void 17046 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17047 { 17048 ire_t *ire_prim; 17049 17050 ASSERT(ire != NULL); 17051 17052 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17053 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17054 NULL); 17055 if (ire_prim != NULL) { 17056 /* 17057 * We are in the special case of broadcasts for 17058 * CGTP. We add an IRE_BROADCAST that holds 17059 * the RTF_MULTIRT flag, the destination 17060 * address and the low level 17061 * info of ire_prim. In other words, CGTP 17062 * broadcast is added to the redundant ipif. 17063 */ 17064 ill_t *ill_prim; 17065 ire_t *bcast_ire; 17066 17067 ill_prim = ire_prim->ire_ill; 17068 17069 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17070 (void *)ire_prim, (void *)ill_prim)); 17071 17072 bcast_ire = ire_create( 17073 (uchar_t *)&ire->ire_addr, 17074 (uchar_t *)&ip_g_all_ones, 17075 (uchar_t *)&ire->ire_gateway_addr, 17076 IRE_BROADCAST, 17077 ill_prim, 17078 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17079 ire->ire_flags | RTF_KERNEL, 17080 NULL, 17081 ipst); 17082 17083 /* 17084 * Here we assume that ire_add does head insertion so that 17085 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17086 */ 17087 if (bcast_ire != NULL) { 17088 if (ire->ire_flags & RTF_SETSRC) { 17089 bcast_ire->ire_setsrc_addr = 17090 ire->ire_setsrc_addr; 17091 } 17092 bcast_ire = ire_add(bcast_ire); 17093 if (bcast_ire != NULL) { 17094 ip2dbg(("ip_cgtp_filter_bcast_add: " 17095 "added bcast_ire %p\n", 17096 (void *)bcast_ire)); 17097 17098 ill_save_ire(ill_prim, bcast_ire); 17099 ire_refrele(bcast_ire); 17100 } 17101 } 17102 ire_refrele(ire_prim); 17103 } 17104 } 17105 17106 /* 17107 * IP multirouting broadcast routes handling 17108 * Remove the broadcast ire. 17109 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17110 * the destination and the gateway are broadcast addresses. 17111 * The caller has only verified that RTF_MULTIRT was set. We check 17112 * that the destination is broadcast and that the gateway is a broadcast 17113 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17114 */ 17115 static void 17116 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17117 { 17118 ASSERT(ire != NULL); 17119 17120 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17121 ire_t *ire_prim; 17122 17123 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17124 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17125 ipst, NULL); 17126 if (ire_prim != NULL) { 17127 ill_t *ill_prim; 17128 ire_t *bcast_ire; 17129 17130 ill_prim = ire_prim->ire_ill; 17131 17132 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17133 "ire_prim %p, ill_prim %p\n", 17134 (void *)ire_prim, (void *)ill_prim)); 17135 17136 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17137 ire->ire_gateway_addr, IRE_BROADCAST, 17138 ill_prim, ALL_ZONES, NULL, 17139 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17140 MATCH_IRE_MASK, 0, ipst, NULL); 17141 17142 if (bcast_ire != NULL) { 17143 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17144 "looked up bcast_ire %p\n", 17145 (void *)bcast_ire)); 17146 ill_remove_saved_ire(bcast_ire->ire_ill, 17147 bcast_ire); 17148 ire_delete(bcast_ire); 17149 ire_refrele(bcast_ire); 17150 } 17151 ire_refrele(ire_prim); 17152 } 17153 } 17154 } 17155 17156 /* 17157 * Derive an interface id from the link layer address. 17158 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17159 */ 17160 static void 17161 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17162 { 17163 char *addr; 17164 17165 /* 17166 * Note that some IPv6 interfaces get plumbed over links that claim to 17167 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17168 * PPP links). The ETHERADDRL check here ensures that we only set the 17169 * interface ID on IPv6 interfaces above links that actually have real 17170 * Ethernet addresses. 17171 */ 17172 if (ill->ill_phys_addr_length == ETHERADDRL) { 17173 /* Form EUI-64 like address */ 17174 addr = (char *)&v6addr->s6_addr32[2]; 17175 bcopy(ill->ill_phys_addr, addr, 3); 17176 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17177 addr[3] = (char)0xff; 17178 addr[4] = (char)0xfe; 17179 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17180 } 17181 } 17182 17183 /* ARGSUSED */ 17184 static void 17185 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17186 { 17187 } 17188 17189 typedef struct ipmp_ifcookie { 17190 uint32_t ic_hostid; 17191 char ic_ifname[LIFNAMSIZ]; 17192 char ic_zonename[ZONENAME_MAX]; 17193 } ipmp_ifcookie_t; 17194 17195 /* 17196 * Construct a pseudo-random interface ID for the IPMP interface that's both 17197 * predictable and (almost) guaranteed to be unique. 17198 */ 17199 static void 17200 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17201 { 17202 zone_t *zp; 17203 uint8_t *addr; 17204 uchar_t hash[16]; 17205 ulong_t hostid; 17206 MD5_CTX ctx; 17207 ipmp_ifcookie_t ic = { 0 }; 17208 17209 ASSERT(IS_IPMP(ill)); 17210 17211 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17212 ic.ic_hostid = htonl((uint32_t)hostid); 17213 17214 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17215 17216 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17217 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17218 zone_rele(zp); 17219 } 17220 17221 MD5Init(&ctx); 17222 MD5Update(&ctx, &ic, sizeof (ic)); 17223 MD5Final(hash, &ctx); 17224 17225 /* 17226 * Map the hash to an interface ID per the basic approach in RFC3041. 17227 */ 17228 addr = &v6addr->s6_addr8[8]; 17229 bcopy(hash + 8, addr, sizeof (uint64_t)); 17230 addr[0] &= ~0x2; /* set local bit */ 17231 } 17232 17233 /* 17234 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17235 */ 17236 static void 17237 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17238 { 17239 phyint_t *phyi = ill->ill_phyint; 17240 17241 /* 17242 * Check PHYI_MULTI_BCAST and length of physical 17243 * address to determine if we use the mapping or the 17244 * broadcast address. 17245 */ 17246 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17247 ill->ill_phys_addr_length != ETHERADDRL) { 17248 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17249 return; 17250 } 17251 m_physaddr[0] = 0x33; 17252 m_physaddr[1] = 0x33; 17253 m_physaddr[2] = m_ip6addr[12]; 17254 m_physaddr[3] = m_ip6addr[13]; 17255 m_physaddr[4] = m_ip6addr[14]; 17256 m_physaddr[5] = m_ip6addr[15]; 17257 } 17258 17259 /* 17260 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17261 */ 17262 static void 17263 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17264 { 17265 phyint_t *phyi = ill->ill_phyint; 17266 17267 /* 17268 * Check PHYI_MULTI_BCAST and length of physical 17269 * address to determine if we use the mapping or the 17270 * broadcast address. 17271 */ 17272 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17273 ill->ill_phys_addr_length != ETHERADDRL) { 17274 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17275 return; 17276 } 17277 m_physaddr[0] = 0x01; 17278 m_physaddr[1] = 0x00; 17279 m_physaddr[2] = 0x5e; 17280 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17281 m_physaddr[4] = m_ipaddr[2]; 17282 m_physaddr[5] = m_ipaddr[3]; 17283 } 17284 17285 /* ARGSUSED */ 17286 static void 17287 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17288 { 17289 /* 17290 * for the MULTI_BCAST case and other cases when we want to 17291 * use the link-layer broadcast address for multicast. 17292 */ 17293 uint8_t *bphys_addr; 17294 dl_unitdata_req_t *dlur; 17295 17296 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17297 if (ill->ill_sap_length < 0) { 17298 bphys_addr = (uchar_t *)dlur + 17299 dlur->dl_dest_addr_offset; 17300 } else { 17301 bphys_addr = (uchar_t *)dlur + 17302 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17303 } 17304 17305 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17306 } 17307 17308 /* 17309 * Derive IPoIB interface id from the link layer address. 17310 */ 17311 static void 17312 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17313 { 17314 char *addr; 17315 17316 ASSERT(ill->ill_phys_addr_length == 20); 17317 addr = (char *)&v6addr->s6_addr32[2]; 17318 bcopy(ill->ill_phys_addr + 12, addr, 8); 17319 /* 17320 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17321 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17322 * rules. In these cases, the IBA considers these GUIDs to be in 17323 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17324 * required; vendors are required not to assign global EUI-64's 17325 * that differ only in u/l bit values, thus guaranteeing uniqueness 17326 * of the interface identifier. Whether the GUID is in modified 17327 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17328 * bit set to 1. 17329 */ 17330 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17331 } 17332 17333 /* 17334 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17335 * Note on mapping from multicast IP addresses to IPoIB multicast link 17336 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17337 * The format of an IPoIB multicast address is: 17338 * 17339 * 4 byte QPN Scope Sign. Pkey 17340 * +--------------------------------------------+ 17341 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17342 * +--------------------------------------------+ 17343 * 17344 * The Scope and Pkey components are properties of the IBA port and 17345 * network interface. They can be ascertained from the broadcast address. 17346 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17347 */ 17348 static void 17349 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17350 { 17351 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17352 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17353 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17354 uint8_t *bphys_addr; 17355 dl_unitdata_req_t *dlur; 17356 17357 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17358 17359 /* 17360 * RFC 4391: IPv4 MGID is 28-bit long. 17361 */ 17362 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17363 m_physaddr[17] = m_ipaddr[1]; 17364 m_physaddr[18] = m_ipaddr[2]; 17365 m_physaddr[19] = m_ipaddr[3]; 17366 17367 17368 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17369 if (ill->ill_sap_length < 0) { 17370 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17371 } else { 17372 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17373 ill->ill_sap_length; 17374 } 17375 /* 17376 * Now fill in the IBA scope/Pkey values from the broadcast address. 17377 */ 17378 m_physaddr[5] = bphys_addr[5]; 17379 m_physaddr[8] = bphys_addr[8]; 17380 m_physaddr[9] = bphys_addr[9]; 17381 } 17382 17383 static void 17384 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17385 { 17386 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17387 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17388 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17389 uint8_t *bphys_addr; 17390 dl_unitdata_req_t *dlur; 17391 17392 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17393 17394 /* 17395 * RFC 4391: IPv4 MGID is 80-bit long. 17396 */ 17397 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17398 17399 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17400 if (ill->ill_sap_length < 0) { 17401 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17402 } else { 17403 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17404 ill->ill_sap_length; 17405 } 17406 /* 17407 * Now fill in the IBA scope/Pkey values from the broadcast address. 17408 */ 17409 m_physaddr[5] = bphys_addr[5]; 17410 m_physaddr[8] = bphys_addr[8]; 17411 m_physaddr[9] = bphys_addr[9]; 17412 } 17413 17414 /* 17415 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17416 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17417 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17418 * of RFC4213. 17419 */ 17420 static void 17421 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17422 { 17423 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17424 v6addr->s6_addr32[2] = 0; 17425 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17426 } 17427 17428 /* 17429 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17430 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17431 * id. 17432 */ 17433 static void 17434 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17435 { 17436 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17437 17438 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17439 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17440 } 17441 17442 static void 17443 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17444 { 17445 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17446 } 17447 17448 static void 17449 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17450 { 17451 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17452 } 17453 17454 static void 17455 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17456 { 17457 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17458 } 17459 17460 static void 17461 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17462 { 17463 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17464 } 17465 17466 /* 17467 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17468 * Returns an held ill, or NULL. 17469 */ 17470 ill_t * 17471 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17472 ip_stack_t *ipst) 17473 { 17474 ill_t *ill; 17475 ipif_t *ipif; 17476 17477 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17478 if (ill == NULL) 17479 return (NULL); 17480 17481 mutex_enter(&ill->ill_lock); 17482 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17483 if (IPIF_IS_CONDEMNED(ipif)) 17484 continue; 17485 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17486 ipif->ipif_zoneid != ALL_ZONES) 17487 continue; 17488 17489 mutex_exit(&ill->ill_lock); 17490 return (ill); 17491 } 17492 mutex_exit(&ill->ill_lock); 17493 ill_refrele(ill); 17494 return (NULL); 17495 } 17496 17497 /* 17498 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17499 * If a pointer to an ipif_t is returned then the caller will need to do 17500 * an ill_refrele(). 17501 */ 17502 ipif_t * 17503 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17504 ip_stack_t *ipst) 17505 { 17506 ipif_t *ipif; 17507 ill_t *ill; 17508 17509 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17510 if (ill == NULL) 17511 return (NULL); 17512 17513 mutex_enter(&ill->ill_lock); 17514 if (ill->ill_state_flags & ILL_CONDEMNED) { 17515 mutex_exit(&ill->ill_lock); 17516 ill_refrele(ill); 17517 return (NULL); 17518 } 17519 17520 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17521 if (!IPIF_CAN_LOOKUP(ipif)) 17522 continue; 17523 if (lifidx == ipif->ipif_id) { 17524 ipif_refhold_locked(ipif); 17525 break; 17526 } 17527 } 17528 17529 mutex_exit(&ill->ill_lock); 17530 ill_refrele(ill); 17531 return (ipif); 17532 } 17533 17534 /* 17535 * Set ill_inputfn based on the current know state. 17536 * This needs to be called when any of the factors taken into 17537 * account changes. 17538 */ 17539 void 17540 ill_set_inputfn(ill_t *ill) 17541 { 17542 ip_stack_t *ipst = ill->ill_ipst; 17543 17544 if (ill->ill_isv6) { 17545 if (is_system_labeled()) 17546 ill->ill_inputfn = ill_input_full_v6; 17547 else 17548 ill->ill_inputfn = ill_input_short_v6; 17549 } else { 17550 if (is_system_labeled()) 17551 ill->ill_inputfn = ill_input_full_v4; 17552 else if (ill->ill_dhcpinit != 0) 17553 ill->ill_inputfn = ill_input_full_v4; 17554 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17555 != NULL) 17556 ill->ill_inputfn = ill_input_full_v4; 17557 else if (ipst->ips_ip_cgtp_filter && 17558 ipst->ips_ip_cgtp_filter_ops != NULL) 17559 ill->ill_inputfn = ill_input_full_v4; 17560 else 17561 ill->ill_inputfn = ill_input_short_v4; 17562 } 17563 } 17564 17565 /* 17566 * Re-evaluate ill_inputfn for all the IPv4 ills. 17567 * Used when RSVP and CGTP comes and goes. 17568 */ 17569 void 17570 ill_set_inputfn_all(ip_stack_t *ipst) 17571 { 17572 ill_walk_context_t ctx; 17573 ill_t *ill; 17574 17575 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17576 ill = ILL_START_WALK_V4(&ctx, ipst); 17577 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17578 ill_set_inputfn(ill); 17579 17580 rw_exit(&ipst->ips_ill_g_lock); 17581 } 17582 17583 /* 17584 * Set the physical address information for `ill' to the contents of the 17585 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17586 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17587 * EINPROGRESS will be returned. 17588 */ 17589 int 17590 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17591 { 17592 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17593 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17594 17595 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17596 17597 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17598 dlindp->dl_data != DL_CURR_DEST_ADDR && 17599 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17600 /* Changing DL_IPV6_TOKEN is not yet supported */ 17601 return (0); 17602 } 17603 17604 /* 17605 * We need to store up to two copies of `mp' in `ill'. Due to the 17606 * design of ipsq_pending_mp_add(), we can't pass them as separate 17607 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17608 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17609 */ 17610 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17611 freemsg(mp); 17612 return (ENOMEM); 17613 } 17614 17615 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17616 mutex_enter(&ill->ill_lock); 17617 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17618 /* no more nce addition allowed */ 17619 mutex_exit(&ill->ill_lock); 17620 17621 /* 17622 * If we can quiesce the ill, then set the address. If not, then 17623 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17624 */ 17625 ill_down_ipifs(ill, B_TRUE); 17626 mutex_enter(&ill->ill_lock); 17627 if (!ill_is_quiescent(ill)) { 17628 /* call cannot fail since `conn_t *' argument is NULL */ 17629 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17630 mp, ILL_DOWN); 17631 mutex_exit(&ill->ill_lock); 17632 return (EINPROGRESS); 17633 } 17634 mutex_exit(&ill->ill_lock); 17635 17636 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17637 return (0); 17638 } 17639 17640 /* 17641 * Once the ill associated with `q' has quiesced, set its physical address 17642 * information to the values in `addrmp'. Note that two copies of `addrmp' 17643 * are passed (linked by b_cont), since we sometimes need to save two distinct 17644 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17645 * failure (we'll free the other copy if it's not needed). Since the ill_t 17646 * is quiesced, we know any stale nce's with the old address information have 17647 * already been removed, so we don't need to call nce_flush(). 17648 */ 17649 /* ARGSUSED */ 17650 static void 17651 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17652 { 17653 ill_t *ill = q->q_ptr; 17654 mblk_t *addrmp2 = unlinkb(addrmp); 17655 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17656 uint_t addrlen, addroff; 17657 int status; 17658 17659 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17660 17661 addroff = dlindp->dl_addr_offset; 17662 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17663 17664 switch (dlindp->dl_data) { 17665 case DL_IPV6_LINK_LAYER_ADDR: 17666 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17667 freemsg(addrmp2); 17668 break; 17669 17670 case DL_CURR_DEST_ADDR: 17671 freemsg(ill->ill_dest_addr_mp); 17672 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17673 ill->ill_dest_addr_mp = addrmp; 17674 if (ill->ill_isv6) { 17675 ill_setdesttoken(ill); 17676 ipif_setdestlinklocal(ill->ill_ipif); 17677 } 17678 freemsg(addrmp2); 17679 break; 17680 17681 case DL_CURR_PHYS_ADDR: 17682 freemsg(ill->ill_phys_addr_mp); 17683 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17684 ill->ill_phys_addr_mp = addrmp; 17685 ill->ill_phys_addr_length = addrlen; 17686 if (ill->ill_isv6) 17687 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17688 else 17689 freemsg(addrmp2); 17690 if (ill->ill_isv6) { 17691 ill_setdefaulttoken(ill); 17692 ipif_setlinklocal(ill->ill_ipif); 17693 } 17694 break; 17695 default: 17696 ASSERT(0); 17697 } 17698 17699 /* 17700 * If there are ipifs to bring up, ill_up_ipifs() will return 17701 * EINPROGRESS, and ipsq_current_finish() will be called by 17702 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17703 * brought up. 17704 */ 17705 status = ill_up_ipifs(ill, q, addrmp); 17706 mutex_enter(&ill->ill_lock); 17707 if (ill->ill_dl_up) 17708 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17709 mutex_exit(&ill->ill_lock); 17710 if (status != EINPROGRESS) 17711 ipsq_current_finish(ipsq); 17712 } 17713 17714 /* 17715 * Helper routine for setting the ill_nd_lla fields. 17716 */ 17717 void 17718 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17719 { 17720 freemsg(ill->ill_nd_lla_mp); 17721 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17722 ill->ill_nd_lla_mp = ndmp; 17723 ill->ill_nd_lla_len = addrlen; 17724 } 17725 17726 /* 17727 * Replumb the ill. 17728 */ 17729 int 17730 ill_replumb(ill_t *ill, mblk_t *mp) 17731 { 17732 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17733 17734 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17735 17736 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17737 17738 mutex_enter(&ill->ill_lock); 17739 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17740 /* no more nce addition allowed */ 17741 mutex_exit(&ill->ill_lock); 17742 17743 /* 17744 * If we can quiesce the ill, then continue. If not, then 17745 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17746 */ 17747 ill_down_ipifs(ill, B_FALSE); 17748 17749 mutex_enter(&ill->ill_lock); 17750 if (!ill_is_quiescent(ill)) { 17751 /* call cannot fail since `conn_t *' argument is NULL */ 17752 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17753 mp, ILL_DOWN); 17754 mutex_exit(&ill->ill_lock); 17755 return (EINPROGRESS); 17756 } 17757 mutex_exit(&ill->ill_lock); 17758 17759 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 17760 return (0); 17761 } 17762 17763 /* ARGSUSED */ 17764 static void 17765 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 17766 { 17767 ill_t *ill = q->q_ptr; 17768 int err; 17769 conn_t *connp = NULL; 17770 17771 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17772 freemsg(ill->ill_replumb_mp); 17773 ill->ill_replumb_mp = copyb(mp); 17774 17775 if (ill->ill_replumb_mp == NULL) { 17776 /* out of memory */ 17777 ipsq_current_finish(ipsq); 17778 return; 17779 } 17780 17781 mutex_enter(&ill->ill_lock); 17782 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 17783 ill->ill_rq, ill->ill_replumb_mp, 0); 17784 mutex_exit(&ill->ill_lock); 17785 17786 if (!ill->ill_up_ipifs) { 17787 /* already closing */ 17788 ipsq_current_finish(ipsq); 17789 return; 17790 } 17791 ill->ill_replumbing = 1; 17792 err = ill_down_ipifs_tail(ill); 17793 17794 /* 17795 * Successfully quiesced and brought down the interface, now we send 17796 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 17797 * DL_NOTE_REPLUMB message. 17798 */ 17799 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 17800 DL_NOTIFY_CONF); 17801 ASSERT(mp != NULL); 17802 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 17803 DL_NOTE_REPLUMB_DONE; 17804 ill_dlpi_send(ill, mp); 17805 17806 /* 17807 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 17808 * streams have to be unbound. When all the DLPI exchanges are done, 17809 * ipsq_current_finish() will be called by arp_bringup_done(). The 17810 * remainder of ipif bringup via ill_up_ipifs() will also be done in 17811 * arp_bringup_done(). 17812 */ 17813 ASSERT(ill->ill_replumb_mp != NULL); 17814 if (err == EINPROGRESS) 17815 return; 17816 else 17817 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 17818 ASSERT(connp == NULL); 17819 if (err == 0 && ill->ill_replumb_mp != NULL && 17820 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 17821 return; 17822 } 17823 ipsq_current_finish(ipsq); 17824 } 17825 17826 /* 17827 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 17828 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 17829 * as per the ioctl. On failure, an errno is returned. 17830 */ 17831 static int 17832 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 17833 { 17834 int rval; 17835 struct strioctl iocb; 17836 17837 iocb.ic_cmd = cmd; 17838 iocb.ic_timout = 15; 17839 iocb.ic_len = bufsize; 17840 iocb.ic_dp = buf; 17841 17842 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 17843 } 17844 17845 /* 17846 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 17847 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 17848 */ 17849 static int 17850 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 17851 uint_t *bufsizep, cred_t *cr) 17852 { 17853 int err; 17854 struct lifnum lifn; 17855 17856 bzero(&lifn, sizeof (lifn)); 17857 lifn.lifn_family = af; 17858 lifn.lifn_flags = LIFC_UNDER_IPMP; 17859 17860 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 17861 return (err); 17862 17863 /* 17864 * Pad the interface count to account for additional interfaces that 17865 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 17866 */ 17867 lifn.lifn_count += 4; 17868 bzero(lifcp, sizeof (*lifcp)); 17869 lifcp->lifc_flags = LIFC_UNDER_IPMP; 17870 lifcp->lifc_family = af; 17871 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 17872 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 17873 17874 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 17875 if (err != 0) { 17876 kmem_free(lifcp->lifc_buf, *bufsizep); 17877 return (err); 17878 } 17879 17880 return (0); 17881 } 17882 17883 /* 17884 * Helper for ip_interface_cleanup() that removes the loopback interface. 17885 */ 17886 static void 17887 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17888 { 17889 int err; 17890 struct lifreq lifr; 17891 17892 bzero(&lifr, sizeof (lifr)); 17893 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 17894 17895 /* 17896 * Attempt to remove the interface. It may legitimately not exist 17897 * (e.g. the zone administrator unplumbed it), so ignore ENXIO. 17898 */ 17899 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 17900 if (err != 0 && err != ENXIO) { 17901 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 17902 "error %d\n", isv6 ? "v6" : "v4", err)); 17903 } 17904 } 17905 17906 /* 17907 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 17908 * groups and that IPMP data addresses are down. These conditions must be met 17909 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 17910 */ 17911 static void 17912 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17913 { 17914 int af = isv6 ? AF_INET6 : AF_INET; 17915 int i, nifs; 17916 int err; 17917 uint_t bufsize; 17918 uint_t lifrsize = sizeof (struct lifreq); 17919 struct lifconf lifc; 17920 struct lifreq *lifrp; 17921 17922 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 17923 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 17924 "(error %d); any IPMP interfaces cannot be shutdown", err); 17925 return; 17926 } 17927 17928 nifs = lifc.lifc_len / lifrsize; 17929 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 17930 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17931 if (err != 0) { 17932 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 17933 "flags: error %d", lifrp->lifr_name, err); 17934 continue; 17935 } 17936 17937 if (lifrp->lifr_flags & IFF_IPMP) { 17938 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 17939 continue; 17940 17941 lifrp->lifr_flags &= ~IFF_UP; 17942 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 17943 if (err != 0) { 17944 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17945 "bring down (error %d); IPMP interface may " 17946 "not be shutdown", lifrp->lifr_name, err); 17947 } 17948 17949 /* 17950 * Check if IFF_DUPLICATE is still set -- and if so, 17951 * reset the address to clear it. 17952 */ 17953 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17954 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 17955 continue; 17956 17957 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 17958 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 17959 lifrp, lifrsize, cr)) != 0) { 17960 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17961 "reset DAD (error %d); IPMP interface may " 17962 "not be shutdown", lifrp->lifr_name, err); 17963 } 17964 continue; 17965 } 17966 17967 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { 17968 lifrp->lifr_groupname[0] = '\0'; 17969 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, 17970 lifrsize, cr)) != 0) { 17971 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17972 "leave IPMP group (error %d); associated " 17973 "IPMP interface may not be shutdown", 17974 lifrp->lifr_name, err); 17975 continue; 17976 } 17977 } 17978 } 17979 17980 kmem_free(lifc.lifc_buf, bufsize); 17981 } 17982 17983 #define UDPDEV "/devices/pseudo/udp@0:udp" 17984 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 17985 17986 /* 17987 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 17988 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 17989 * when the user-level processes in the zone are killed and the latter are 17990 * cleaned up by str_stack_shutdown(). 17991 */ 17992 void 17993 ip_interface_cleanup(ip_stack_t *ipst) 17994 { 17995 ldi_handle_t lh; 17996 ldi_ident_t li; 17997 cred_t *cr; 17998 int err; 17999 int i; 18000 char *devs[] = { UDP6DEV, UDPDEV }; 18001 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 18002 18003 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 18004 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 18005 " error %d", err); 18006 return; 18007 } 18008 18009 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 18010 ASSERT(cr != NULL); 18011 18012 /* 18013 * NOTE: loop executes exactly twice and is hardcoded to know that the 18014 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18015 * the loop.) 18016 */ 18017 for (i = 0; i < 2; i++) { 18018 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18019 if (err != 0) { 18020 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18021 " error %d", devs[i], err); 18022 continue; 18023 } 18024 18025 ip_loopback_removeif(lh, i == 0, cr); 18026 ip_ipmp_cleanup(lh, i == 0, cr); 18027 18028 (void) ldi_close(lh, FREAD|FWRITE, cr); 18029 } 18030 18031 ldi_ident_release(li); 18032 crfree(cr); 18033 } 18034 18035 /* 18036 * This needs to be in-sync with nic_event_t definition 18037 */ 18038 static const char * 18039 ill_hook_event2str(nic_event_t event) 18040 { 18041 switch (event) { 18042 case NE_PLUMB: 18043 return ("PLUMB"); 18044 case NE_UNPLUMB: 18045 return ("UNPLUMB"); 18046 case NE_UP: 18047 return ("UP"); 18048 case NE_DOWN: 18049 return ("DOWN"); 18050 case NE_ADDRESS_CHANGE: 18051 return ("ADDRESS_CHANGE"); 18052 case NE_LIF_UP: 18053 return ("LIF_UP"); 18054 case NE_LIF_DOWN: 18055 return ("LIF_DOWN"); 18056 case NE_IFINDEX_CHANGE: 18057 return ("IFINDEX_CHANGE"); 18058 default: 18059 return ("UNKNOWN"); 18060 } 18061 } 18062 18063 void 18064 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18065 nic_event_data_t data, size_t datalen) 18066 { 18067 ip_stack_t *ipst = ill->ill_ipst; 18068 hook_nic_event_int_t *info; 18069 const char *str = NULL; 18070 18071 /* create a new nic event info */ 18072 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18073 goto fail; 18074 18075 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18076 info->hnei_event.hne_lif = lif; 18077 info->hnei_event.hne_event = event; 18078 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18079 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18080 info->hnei_event.hne_data = NULL; 18081 info->hnei_event.hne_datalen = 0; 18082 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18083 18084 if (data != NULL && datalen != 0) { 18085 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18086 if (info->hnei_event.hne_data == NULL) 18087 goto fail; 18088 bcopy(data, info->hnei_event.hne_data, datalen); 18089 info->hnei_event.hne_datalen = datalen; 18090 } 18091 18092 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18093 DDI_NOSLEEP) == DDI_SUCCESS) 18094 return; 18095 18096 fail: 18097 if (info != NULL) { 18098 if (info->hnei_event.hne_data != NULL) { 18099 kmem_free(info->hnei_event.hne_data, 18100 info->hnei_event.hne_datalen); 18101 } 18102 kmem_free(info, sizeof (hook_nic_event_t)); 18103 } 18104 str = ill_hook_event2str(event); 18105 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18106 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18107 } 18108 18109 static int 18110 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18111 { 18112 int err = 0; 18113 const in_addr_t *addr = NULL; 18114 nce_t *nce = NULL; 18115 ill_t *ill = ipif->ipif_ill; 18116 ill_t *bound_ill; 18117 boolean_t added_ipif = B_FALSE; 18118 uint16_t state; 18119 uint16_t flags; 18120 18121 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18122 ill_t *, ill, ipif_t *, ipif); 18123 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18124 addr = &ipif->ipif_lcl_addr; 18125 } 18126 18127 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18128 if (res_act != Res_act_initial) 18129 return (EINVAL); 18130 } 18131 18132 if (addr != NULL) { 18133 ipmp_illgrp_t *illg = ill->ill_grp; 18134 18135 /* add unicast nce for the local addr */ 18136 18137 if (IS_IPMP(ill)) { 18138 /* 18139 * If we're here via ipif_up(), then the ipif 18140 * won't be bound yet -- add it to the group, 18141 * which will bind it if possible. (We would 18142 * add it in ipif_up(), but deleting on failure 18143 * there is gruesome.) If we're here via 18144 * ipmp_ill_bind_ipif(), then the ipif has 18145 * already been added to the group and we 18146 * just need to use the binding. 18147 */ 18148 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18149 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18150 if (bound_ill == NULL) { 18151 /* 18152 * We couldn't bind the ipif to an ill 18153 * yet, so we have nothing to publish. 18154 * Mark the address as ready and return. 18155 */ 18156 ipif->ipif_addr_ready = 1; 18157 return (0); 18158 } 18159 added_ipif = B_TRUE; 18160 } 18161 } else { 18162 bound_ill = ill; 18163 } 18164 18165 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18166 NCE_F_NONUD); 18167 /* 18168 * If this is an initial bring-up (or the ipif was never 18169 * completely brought up), do DAD. Otherwise, we're here 18170 * because IPMP has rebound an address to this ill: send 18171 * unsolicited advertisements (ARP announcements) to 18172 * inform others. 18173 */ 18174 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18175 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18176 } else { 18177 state = ND_REACHABLE; 18178 flags |= NCE_F_UNSOL_ADV; 18179 } 18180 18181 retry: 18182 err = nce_lookup_then_add_v4(ill, 18183 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18184 addr, flags, state, &nce); 18185 18186 /* 18187 * note that we may encounter EEXIST if we are moving 18188 * the nce as a result of a rebind operation. 18189 */ 18190 switch (err) { 18191 case 0: 18192 ipif->ipif_added_nce = 1; 18193 nce->nce_ipif_cnt++; 18194 break; 18195 case EEXIST: 18196 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18197 ill->ill_name)); 18198 if (!NCE_MYADDR(nce->nce_common)) { 18199 /* 18200 * A leftover nce from before this address 18201 * existed 18202 */ 18203 ncec_delete(nce->nce_common); 18204 nce_refrele(nce); 18205 nce = NULL; 18206 goto retry; 18207 } 18208 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18209 nce_refrele(nce); 18210 nce = NULL; 18211 ip1dbg(("ipif_arp_up: NCE already exists " 18212 "for %s:%u\n", ill->ill_name, 18213 ipif->ipif_id)); 18214 goto arp_up_done; 18215 } 18216 /* 18217 * Duplicate local addresses are permissible for 18218 * IPIF_POINTOPOINT interfaces which will get marked 18219 * IPIF_UNNUMBERED later in 18220 * ip_addr_availability_check(). 18221 * 18222 * The nce_ipif_cnt field tracks the number of 18223 * ipifs that have nce_addr as their local address. 18224 */ 18225 ipif->ipif_addr_ready = 1; 18226 ipif->ipif_added_nce = 1; 18227 nce->nce_ipif_cnt++; 18228 err = 0; 18229 break; 18230 default: 18231 ASSERT(nce == NULL); 18232 goto arp_up_done; 18233 } 18234 if (arp_no_defense) { 18235 if ((ipif->ipif_flags & IPIF_UP) && 18236 !ipif->ipif_addr_ready) 18237 ipif_up_notify(ipif); 18238 ipif->ipif_addr_ready = 1; 18239 } 18240 } else { 18241 /* zero address. nothing to publish */ 18242 ipif->ipif_addr_ready = 1; 18243 } 18244 if (nce != NULL) 18245 nce_refrele(nce); 18246 arp_up_done: 18247 if (added_ipif && err != 0) 18248 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18249 return (err); 18250 } 18251 18252 int 18253 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18254 { 18255 int err = 0; 18256 ill_t *ill = ipif->ipif_ill; 18257 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18258 18259 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18260 ill_t *, ill, ipif_t *, ipif); 18261 18262 /* 18263 * need to bring up ARP or setup mcast mapping only 18264 * when the first interface is coming UP. 18265 */ 18266 first_interface = (ill->ill_ipif_up_count == 0 && 18267 ill->ill_ipif_dup_count == 0 && !was_dup); 18268 18269 if (res_act == Res_act_initial && first_interface) { 18270 /* 18271 * Send ATTACH + BIND 18272 */ 18273 err = arp_ll_up(ill); 18274 if (err != EINPROGRESS && err != 0) 18275 return (err); 18276 18277 /* 18278 * Add NCE for local address. Start DAD. 18279 * we'll wait to hear that DAD has finished 18280 * before using the interface. 18281 */ 18282 if (err == EINPROGRESS) 18283 wait_for_dlpi = B_TRUE; 18284 } 18285 18286 if (!wait_for_dlpi) 18287 (void) ipif_arp_up_done_tail(ipif, res_act); 18288 18289 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18290 } 18291 18292 /* 18293 * Finish processing of "arp_up" after all the DLPI message 18294 * exchanges have completed between arp and the driver. 18295 */ 18296 void 18297 arp_bringup_done(ill_t *ill, int err) 18298 { 18299 mblk_t *mp1; 18300 ipif_t *ipif; 18301 conn_t *connp = NULL; 18302 ipsq_t *ipsq; 18303 queue_t *q; 18304 18305 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18306 18307 ASSERT(IAM_WRITER_ILL(ill)); 18308 18309 ipsq = ill->ill_phyint->phyint_ipsq; 18310 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18311 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18312 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18313 if (mp1 == NULL) /* bringup was aborted by the user */ 18314 return; 18315 18316 /* 18317 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18318 * must have an associated conn_t. Otherwise, we're bringing this 18319 * interface back up as part of handling an asynchronous event (e.g., 18320 * physical address change). 18321 */ 18322 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18323 ASSERT(connp != NULL); 18324 q = CONNP_TO_WQ(connp); 18325 } else { 18326 ASSERT(connp == NULL); 18327 q = ill->ill_rq; 18328 } 18329 if (err == 0) { 18330 if (ipif->ipif_isv6) { 18331 if ((err = ipif_up_done_v6(ipif)) != 0) 18332 ip0dbg(("arp_bringup_done: init failed\n")); 18333 } else { 18334 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18335 if (err != 0 || 18336 (err = ipif_up_done(ipif)) != 0) { 18337 ip0dbg(("arp_bringup_done: " 18338 "init failed err %x\n", err)); 18339 (void) ipif_arp_down(ipif); 18340 } 18341 18342 } 18343 } else { 18344 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18345 } 18346 18347 if ((err == 0) && (ill->ill_up_ipifs)) { 18348 err = ill_up_ipifs(ill, q, mp1); 18349 if (err == EINPROGRESS) 18350 return; 18351 } 18352 18353 /* 18354 * If we have a moved ipif to bring up, and everything has succeeded 18355 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18356 * down -- the admin can try to bring it up by hand if need be. 18357 */ 18358 if (ill->ill_move_ipif != NULL) { 18359 ipif = ill->ill_move_ipif; 18360 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18361 ipif->ipif_ill->ill_name)); 18362 ill->ill_move_ipif = NULL; 18363 if (err == 0) { 18364 err = ipif_up(ipif, q, mp1); 18365 if (err == EINPROGRESS) 18366 return; 18367 } 18368 } 18369 18370 /* 18371 * The operation must complete without EINPROGRESS since 18372 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18373 * Otherwise, the operation will be stuck forever in the ipsq. 18374 */ 18375 ASSERT(err != EINPROGRESS); 18376 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18377 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18378 int, ipsq->ipsq_xop->ipx_current_ioctl, 18379 ill_t *, ill, ipif_t *, ipif); 18380 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18381 } else { 18382 ipsq_current_finish(ipsq); 18383 } 18384 } 18385 18386 /* 18387 * Finish processing of arp replumb after all the DLPI message 18388 * exchanges have completed between arp and the driver. 18389 */ 18390 void 18391 arp_replumb_done(ill_t *ill, int err) 18392 { 18393 mblk_t *mp1; 18394 ipif_t *ipif; 18395 conn_t *connp = NULL; 18396 ipsq_t *ipsq; 18397 queue_t *q; 18398 18399 ASSERT(IAM_WRITER_ILL(ill)); 18400 18401 ipsq = ill->ill_phyint->phyint_ipsq; 18402 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18403 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18404 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18405 if (mp1 == NULL) { 18406 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18407 ipsq->ipsq_xop->ipx_current_ioctl)); 18408 /* bringup was aborted by the user */ 18409 return; 18410 } 18411 /* 18412 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18413 * must have an associated conn_t. Otherwise, we're bringing this 18414 * interface back up as part of handling an asynchronous event (e.g., 18415 * physical address change). 18416 */ 18417 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18418 ASSERT(connp != NULL); 18419 q = CONNP_TO_WQ(connp); 18420 } else { 18421 ASSERT(connp == NULL); 18422 q = ill->ill_rq; 18423 } 18424 if ((err == 0) && (ill->ill_up_ipifs)) { 18425 err = ill_up_ipifs(ill, q, mp1); 18426 if (err == EINPROGRESS) 18427 return; 18428 } 18429 /* 18430 * The operation must complete without EINPROGRESS since 18431 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18432 * Otherwise, the operation will be stuck forever in the ipsq. 18433 */ 18434 ASSERT(err != EINPROGRESS); 18435 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18436 DTRACE_PROBE4(ipif__ioctl, char *, 18437 "arp_replumb_done finish", 18438 int, ipsq->ipsq_xop->ipx_current_ioctl, 18439 ill_t *, ill, ipif_t *, ipif); 18440 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18441 } else { 18442 ipsq_current_finish(ipsq); 18443 } 18444 } 18445 18446 void 18447 ipif_up_notify(ipif_t *ipif) 18448 { 18449 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18450 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18451 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18452 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18453 NE_LIF_UP, NULL, 0); 18454 } 18455 18456 /* 18457 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18458 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18459 * TPI end points with STREAMS modules pushed above. This is assured by not 18460 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18461 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18462 * while unwinding from the ispq and that could be a thread from the bottom. 18463 */ 18464 /* ARGSUSED */ 18465 int 18466 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18467 ip_ioctl_cmd_t *ipip, void *arg) 18468 { 18469 mblk_t *cmd_mp = mp->b_cont->b_cont; 18470 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18471 int ret = 0; 18472 int i; 18473 size_t size; 18474 ip_stack_t *ipst; 18475 zoneid_t zoneid; 18476 ilb_stack_t *ilbs; 18477 18478 ipst = CONNQ_TO_IPST(q); 18479 ilbs = ipst->ips_netstack->netstack_ilb; 18480 zoneid = Q_TO_CONN(q)->conn_zoneid; 18481 18482 switch (command) { 18483 case ILB_CREATE_RULE: { 18484 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18485 18486 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18487 ret = EINVAL; 18488 break; 18489 } 18490 18491 ret = ilb_rule_add(ilbs, zoneid, cmd); 18492 break; 18493 } 18494 case ILB_DESTROY_RULE: 18495 case ILB_ENABLE_RULE: 18496 case ILB_DISABLE_RULE: { 18497 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18498 18499 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18500 ret = EINVAL; 18501 break; 18502 } 18503 18504 if (cmd->flags & ILB_RULE_ALLRULES) { 18505 if (command == ILB_DESTROY_RULE) { 18506 ilb_rule_del_all(ilbs, zoneid); 18507 break; 18508 } else if (command == ILB_ENABLE_RULE) { 18509 ilb_rule_enable_all(ilbs, zoneid); 18510 break; 18511 } else if (command == ILB_DISABLE_RULE) { 18512 ilb_rule_disable_all(ilbs, zoneid); 18513 break; 18514 } 18515 } else { 18516 if (command == ILB_DESTROY_RULE) { 18517 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18518 } else if (command == ILB_ENABLE_RULE) { 18519 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18520 NULL); 18521 } else if (command == ILB_DISABLE_RULE) { 18522 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18523 NULL); 18524 } 18525 } 18526 break; 18527 } 18528 case ILB_NUM_RULES: { 18529 ilb_num_rules_cmd_t *cmd; 18530 18531 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18532 ret = EINVAL; 18533 break; 18534 } 18535 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18536 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18537 break; 18538 } 18539 case ILB_RULE_NAMES: { 18540 ilb_rule_names_cmd_t *cmd; 18541 18542 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18543 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18544 cmd->num_names == 0) { 18545 ret = EINVAL; 18546 break; 18547 } 18548 size = cmd->num_names * ILB_RULE_NAMESZ; 18549 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18550 size != cmd_mp->b_wptr) { 18551 ret = EINVAL; 18552 break; 18553 } 18554 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18555 break; 18556 } 18557 case ILB_NUM_SERVERS: { 18558 ilb_num_servers_cmd_t *cmd; 18559 18560 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18561 ret = EINVAL; 18562 break; 18563 } 18564 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18565 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18566 &(cmd->num)); 18567 break; 18568 } 18569 case ILB_LIST_RULE: { 18570 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18571 18572 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18573 ret = EINVAL; 18574 break; 18575 } 18576 ret = ilb_rule_list(ilbs, zoneid, cmd); 18577 break; 18578 } 18579 case ILB_LIST_SERVERS: { 18580 ilb_servers_info_cmd_t *cmd; 18581 18582 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18583 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18584 cmd->num_servers == 0) { 18585 ret = EINVAL; 18586 break; 18587 } 18588 size = cmd->num_servers * sizeof (ilb_server_info_t); 18589 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18590 size != cmd_mp->b_wptr) { 18591 ret = EINVAL; 18592 break; 18593 } 18594 18595 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18596 &cmd->num_servers); 18597 break; 18598 } 18599 case ILB_ADD_SERVERS: { 18600 ilb_servers_info_cmd_t *cmd; 18601 ilb_rule_t *rule; 18602 18603 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18604 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18605 ret = EINVAL; 18606 break; 18607 } 18608 size = cmd->num_servers * sizeof (ilb_server_info_t); 18609 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18610 size != cmd_mp->b_wptr) { 18611 ret = EINVAL; 18612 break; 18613 } 18614 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18615 if (rule == NULL) { 18616 ASSERT(ret != 0); 18617 break; 18618 } 18619 for (i = 0; i < cmd->num_servers; i++) { 18620 ilb_server_info_t *s; 18621 18622 s = &cmd->servers[i]; 18623 s->err = ilb_server_add(ilbs, rule, s); 18624 } 18625 ILB_RULE_REFRELE(rule); 18626 break; 18627 } 18628 case ILB_DEL_SERVERS: 18629 case ILB_ENABLE_SERVERS: 18630 case ILB_DISABLE_SERVERS: { 18631 ilb_servers_cmd_t *cmd; 18632 ilb_rule_t *rule; 18633 int (*f)(); 18634 18635 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18636 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18637 ret = EINVAL; 18638 break; 18639 } 18640 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18641 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18642 size != cmd_mp->b_wptr) { 18643 ret = EINVAL; 18644 break; 18645 } 18646 18647 if (command == ILB_DEL_SERVERS) 18648 f = ilb_server_del; 18649 else if (command == ILB_ENABLE_SERVERS) 18650 f = ilb_server_enable; 18651 else if (command == ILB_DISABLE_SERVERS) 18652 f = ilb_server_disable; 18653 18654 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18655 if (rule == NULL) { 18656 ASSERT(ret != 0); 18657 break; 18658 } 18659 18660 for (i = 0; i < cmd->num_servers; i++) { 18661 ilb_server_arg_t *s; 18662 18663 s = &cmd->servers[i]; 18664 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18665 } 18666 ILB_RULE_REFRELE(rule); 18667 break; 18668 } 18669 case ILB_LIST_NAT_TABLE: { 18670 ilb_list_nat_cmd_t *cmd; 18671 18672 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18673 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18674 ret = EINVAL; 18675 break; 18676 } 18677 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18678 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18679 size != cmd_mp->b_wptr) { 18680 ret = EINVAL; 18681 break; 18682 } 18683 18684 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18685 &cmd->flags); 18686 break; 18687 } 18688 case ILB_LIST_STICKY_TABLE: { 18689 ilb_list_sticky_cmd_t *cmd; 18690 18691 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18692 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18693 ret = EINVAL; 18694 break; 18695 } 18696 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18697 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18698 size != cmd_mp->b_wptr) { 18699 ret = EINVAL; 18700 break; 18701 } 18702 18703 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18704 &cmd->num_sticky, &cmd->flags); 18705 break; 18706 } 18707 default: 18708 ret = EINVAL; 18709 break; 18710 } 18711 done: 18712 return (ret); 18713 } 18714 18715 /* Remove all cache entries for this logical interface */ 18716 void 18717 ipif_nce_down(ipif_t *ipif) 18718 { 18719 ill_t *ill = ipif->ipif_ill; 18720 nce_t *nce; 18721 18722 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18723 ill_t *, ill, ipif_t *, ipif); 18724 if (ipif->ipif_added_nce) { 18725 if (ipif->ipif_isv6) 18726 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18727 else 18728 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18729 if (nce != NULL) { 18730 if (--nce->nce_ipif_cnt == 0) 18731 ncec_delete(nce->nce_common); 18732 ipif->ipif_added_nce = 0; 18733 nce_refrele(nce); 18734 } else { 18735 /* 18736 * nce may already be NULL because it was already 18737 * flushed, e.g., due to a call to nce_flush 18738 */ 18739 ipif->ipif_added_nce = 0; 18740 } 18741 } 18742 /* 18743 * Make IPMP aware of the deleted data address. 18744 */ 18745 if (IS_IPMP(ill)) 18746 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18747 18748 /* 18749 * Remove all other nces dependent on this ill when the last ipif 18750 * is going away. 18751 */ 18752 if (ill->ill_ipif_up_count == 0) { 18753 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18754 (uchar_t *)ill, ill->ill_ipst); 18755 if (IS_UNDER_IPMP(ill)) 18756 nce_flush(ill, B_TRUE); 18757 } 18758 } 18759 18760 /* 18761 * find the first interface that uses usill for its source address. 18762 */ 18763 ill_t * 18764 ill_lookup_usesrc(ill_t *usill) 18765 { 18766 ip_stack_t *ipst = usill->ill_ipst; 18767 ill_t *ill; 18768 18769 ASSERT(usill != NULL); 18770 18771 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 18772 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18773 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18774 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 18775 ill = ill->ill_usesrc_grp_next) { 18776 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 18777 !ILL_IS_CONDEMNED(ill)) { 18778 ill_refhold(ill); 18779 break; 18780 } 18781 } 18782 rw_exit(&ipst->ips_ill_g_lock); 18783 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18784 return (ill); 18785 } 18786