1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 #include <sys/bitmap.h> 49 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_ftable.h> 81 #include <inet/ip_rts.h> 82 #include <inet/ip_ndp.h> 83 #include <inet/ip_if.h> 84 #include <inet/ip_impl.h> 85 #include <inet/tun.h> 86 #include <inet/sctp_ip.h> 87 #include <inet/ip_netinfo.h> 88 #include <inet/mib2.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 typedef struct ip_sock_ar_s { 122 union { 123 area_t ip_sock_area; 124 ared_t ip_sock_ared; 125 areq_t ip_sock_areq; 126 } ip_sock_ar_u; 127 queue_t *ip_sock_ar_q; 128 } ip_sock_ar_t; 129 130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 132 char *value, caddr_t cp, cred_t *ioc_cr); 133 134 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 135 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 136 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 137 mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 141 queue_t *q, mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 143 mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 145 mblk_t *mp); 146 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 147 queue_t *q, mblk_t *mp, boolean_t need_up); 148 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 149 int ioccmd, struct linkblk *li, boolean_t doconsist); 150 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 151 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 152 static void ipsq_flush(ill_t *ill); 153 154 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 155 queue_t *q, mblk_t *mp, boolean_t need_up); 156 static void ipsq_delete(ipsq_t *); 157 158 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 159 boolean_t initialize); 160 static void ipif_check_bcast_ires(ipif_t *test_ipif); 161 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 162 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 163 boolean_t isv6); 164 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 165 static void ipif_delete_cache_ire(ire_t *, char *); 166 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 167 static void ipif_free(ipif_t *ipif); 168 static void ipif_free_tail(ipif_t *ipif); 169 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 170 static void ipif_multicast_down(ipif_t *ipif); 171 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 172 static void ipif_set_default(ipif_t *ipif); 173 static int ipif_set_values(queue_t *q, mblk_t *mp, 174 char *interf_name, uint_t *ppa); 175 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 176 queue_t *q); 177 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 178 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 179 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 180 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 181 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 182 183 static int ill_alloc_ppa(ill_if_t *, ill_t *); 184 static int ill_arp_off(ill_t *ill); 185 static int ill_arp_on(ill_t *ill); 186 static void ill_delete_interface_type(ill_if_t *); 187 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 188 static void ill_dl_down(ill_t *ill); 189 static void ill_down(ill_t *ill); 190 static void ill_downi(ire_t *ire, char *ill_arg); 191 static void ill_free_mib(ill_t *ill); 192 static void ill_glist_delete(ill_t *); 193 static boolean_t ill_has_usable_ipif(ill_t *); 194 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 195 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 196 static void ill_phyint_free(ill_t *ill); 197 static void ill_phyint_reinit(ill_t *ill); 198 static void ill_set_nce_router_flags(ill_t *, boolean_t); 199 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 200 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 201 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 202 static void ill_stq_cache_delete(ire_t *, char *); 203 204 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 207 in6_addr_t *); 208 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 ipaddr_t *); 210 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 211 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 212 in6_addr_t *); 213 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 214 ipaddr_t *); 215 216 static void ipif_save_ire(ipif_t *, ire_t *); 217 static void ipif_remove_ire(ipif_t *, ire_t *); 218 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 219 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 220 221 /* 222 * Per-ill IPsec capabilities management. 223 */ 224 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 225 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 226 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 227 static void ill_ipsec_capab_delete(ill_t *, uint_t); 228 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 229 static void ill_capability_proto(ill_t *, int, mblk_t *); 230 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 231 boolean_t); 232 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 235 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 236 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 237 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 239 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 240 dl_capability_sub_t *); 241 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 242 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 243 static void ill_capability_lso_reset(ill_t *, mblk_t **); 244 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 245 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 246 static void ill_capability_dls_reset(ill_t *, mblk_t **); 247 static void ill_capability_dls_disable(ill_t *); 248 249 static void illgrp_cache_delete(ire_t *, char *); 250 static void illgrp_delete(ill_t *ill); 251 static void illgrp_reset_schednext(ill_t *ill); 252 253 static ill_t *ill_prev_usesrc(ill_t *); 254 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 255 static void ill_disband_usesrc_group(ill_t *); 256 257 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 258 259 #ifdef DEBUG 260 static void ill_trace_cleanup(const ill_t *); 261 static void ipif_trace_cleanup(const ipif_t *); 262 #endif 263 264 /* 265 * if we go over the memory footprint limit more than once in this msec 266 * interval, we'll start pruning aggressively. 267 */ 268 int ip_min_frag_prune_time = 0; 269 270 /* 271 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 272 * and the IPsec DOI 273 */ 274 #define MAX_IPSEC_ALGS 256 275 276 #define BITSPERBYTE 8 277 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 278 279 #define IPSEC_ALG_ENABLE(algs, algid) \ 280 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 281 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 282 283 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 284 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 285 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 286 287 typedef uint8_t ipsec_capab_elem_t; 288 289 /* 290 * Per-algorithm parameters. Note that at present, only encryption 291 * algorithms have variable keysize (IKE does not provide a way to negotiate 292 * auth algorithm keysize). 293 * 294 * All sizes here are in bits. 295 */ 296 typedef struct 297 { 298 uint16_t minkeylen; 299 uint16_t maxkeylen; 300 } ipsec_capab_algparm_t; 301 302 /* 303 * Per-ill capabilities. 304 */ 305 struct ill_ipsec_capab_s { 306 ipsec_capab_elem_t *encr_hw_algs; 307 ipsec_capab_elem_t *auth_hw_algs; 308 uint32_t algs_size; /* size of _hw_algs in bytes */ 309 /* algorithm key lengths */ 310 ipsec_capab_algparm_t *encr_algparm; 311 uint32_t encr_algparm_size; 312 uint32_t encr_algparm_end; 313 }; 314 315 /* 316 * The field values are larger than strictly necessary for simple 317 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 318 */ 319 static area_t ip_area_template = { 320 AR_ENTRY_ADD, /* area_cmd */ 321 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 322 /* area_name_offset */ 323 /* area_name_length temporarily holds this structure length */ 324 sizeof (area_t), /* area_name_length */ 325 IP_ARP_PROTO_TYPE, /* area_proto */ 326 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 327 IP_ADDR_LEN, /* area_proto_addr_length */ 328 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 329 /* area_proto_mask_offset */ 330 0, /* area_flags */ 331 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 332 /* area_hw_addr_offset */ 333 /* Zero length hw_addr_length means 'use your idea of the address' */ 334 0 /* area_hw_addr_length */ 335 }; 336 337 /* 338 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 339 * support 340 */ 341 static area_t ip6_area_template = { 342 AR_ENTRY_ADD, /* area_cmd */ 343 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 344 /* area_name_offset */ 345 /* area_name_length temporarily holds this structure length */ 346 sizeof (area_t), /* area_name_length */ 347 IP_ARP_PROTO_TYPE, /* area_proto */ 348 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 349 IPV6_ADDR_LEN, /* area_proto_addr_length */ 350 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 351 /* area_proto_mask_offset */ 352 0, /* area_flags */ 353 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 354 /* area_hw_addr_offset */ 355 /* Zero length hw_addr_length means 'use your idea of the address' */ 356 0 /* area_hw_addr_length */ 357 }; 358 359 static ared_t ip_ared_template = { 360 AR_ENTRY_DELETE, 361 sizeof (ared_t) + IP_ADDR_LEN, 362 sizeof (ared_t), 363 IP_ARP_PROTO_TYPE, 364 sizeof (ared_t), 365 IP_ADDR_LEN 366 }; 367 368 static ared_t ip6_ared_template = { 369 AR_ENTRY_DELETE, 370 sizeof (ared_t) + IPV6_ADDR_LEN, 371 sizeof (ared_t), 372 IP_ARP_PROTO_TYPE, 373 sizeof (ared_t), 374 IPV6_ADDR_LEN 375 }; 376 377 /* 378 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 379 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 380 * areq is used). 381 */ 382 static areq_t ip_areq_template = { 383 AR_ENTRY_QUERY, /* cmd */ 384 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 385 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 386 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 387 sizeof (areq_t), /* target addr offset */ 388 IP_ADDR_LEN, /* target addr_length */ 389 0, /* flags */ 390 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 391 IP_ADDR_LEN, /* sender addr length */ 392 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 393 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 394 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 395 /* anything else filled in by the code */ 396 }; 397 398 static arc_t ip_aru_template = { 399 AR_INTERFACE_UP, 400 sizeof (arc_t), /* Name offset */ 401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 402 }; 403 404 static arc_t ip_ard_template = { 405 AR_INTERFACE_DOWN, 406 sizeof (arc_t), /* Name offset */ 407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 408 }; 409 410 static arc_t ip_aron_template = { 411 AR_INTERFACE_ON, 412 sizeof (arc_t), /* Name offset */ 413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 414 }; 415 416 static arc_t ip_aroff_template = { 417 AR_INTERFACE_OFF, 418 sizeof (arc_t), /* Name offset */ 419 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 420 }; 421 422 423 static arma_t ip_arma_multi_template = { 424 AR_MAPPING_ADD, 425 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 426 /* Name offset */ 427 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 428 IP_ARP_PROTO_TYPE, 429 sizeof (arma_t), /* proto_addr_offset */ 430 IP_ADDR_LEN, /* proto_addr_length */ 431 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 432 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 433 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 434 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 435 IP_MAX_HW_LEN, /* hw_addr_length */ 436 0, /* hw_mapping_start */ 437 }; 438 439 static ipft_t ip_ioctl_ftbl[] = { 440 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 441 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 444 IPFT_F_NO_REPLY }, 445 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 446 { 0 } 447 }; 448 449 /* Simple ICMP IP Header Template */ 450 static ipha_t icmp_ipha = { 451 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 452 }; 453 454 /* Flag descriptors for ip_ipif_report */ 455 static nv_t ipif_nv_tbl[] = { 456 { IPIF_UP, "UP" }, 457 { IPIF_BROADCAST, "BROADCAST" }, 458 { ILLF_DEBUG, "DEBUG" }, 459 { PHYI_LOOPBACK, "LOOPBACK" }, 460 { IPIF_POINTOPOINT, "POINTOPOINT" }, 461 { ILLF_NOTRAILERS, "NOTRAILERS" }, 462 { PHYI_RUNNING, "RUNNING" }, 463 { ILLF_NOARP, "NOARP" }, 464 { PHYI_PROMISC, "PROMISC" }, 465 { PHYI_ALLMULTI, "ALLMULTI" }, 466 { PHYI_INTELLIGENT, "INTELLIGENT" }, 467 { ILLF_MULTICAST, "MULTICAST" }, 468 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 469 { IPIF_UNNUMBERED, "UNNUMBERED" }, 470 { IPIF_DHCPRUNNING, "DHCP" }, 471 { IPIF_PRIVATE, "PRIVATE" }, 472 { IPIF_NOXMIT, "NOXMIT" }, 473 { IPIF_NOLOCAL, "NOLOCAL" }, 474 { IPIF_DEPRECATED, "DEPRECATED" }, 475 { IPIF_PREFERRED, "PREFERRED" }, 476 { IPIF_TEMPORARY, "TEMPORARY" }, 477 { IPIF_ADDRCONF, "ADDRCONF" }, 478 { PHYI_VIRTUAL, "VIRTUAL" }, 479 { ILLF_ROUTER, "ROUTER" }, 480 { ILLF_NONUD, "NONUD" }, 481 { IPIF_ANYCAST, "ANYCAST" }, 482 { ILLF_NORTEXCH, "NORTEXCH" }, 483 { ILLF_IPV4, "IPV4" }, 484 { ILLF_IPV6, "IPV6" }, 485 { IPIF_NOFAILOVER, "NOFAILOVER" }, 486 { PHYI_FAILED, "FAILED" }, 487 { PHYI_STANDBY, "STANDBY" }, 488 { PHYI_INACTIVE, "INACTIVE" }, 489 { PHYI_OFFLINE, "OFFLINE" }, 490 }; 491 492 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 493 494 static ip_m_t ip_m_tbl[] = { 495 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_ether_v6intfid }, 497 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_nodef_v6intfid }, 499 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_ether_v6intfid }, 505 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 506 ip_ib_v6intfid }, 507 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 508 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 509 ip_nodef_v6intfid } 510 }; 511 512 static ill_t ill_null; /* Empty ILL for init. */ 513 char ipif_loopback_name[] = "lo0"; 514 static char *ipv4_forward_suffix = ":ip_forwarding"; 515 static char *ipv6_forward_suffix = ":ip6_forwarding"; 516 static sin6_t sin6_null; /* Zero address for quick clears */ 517 static sin_t sin_null; /* Zero address for quick clears */ 518 519 /* When set search for unused ipif_seqid */ 520 static ipif_t ipif_zero; 521 522 /* 523 * ppa arena is created after these many 524 * interfaces have been plumbed. 525 */ 526 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 527 528 /* 529 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 530 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 531 * set through platform specific code (Niagara/Ontario). 532 */ 533 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 534 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 535 536 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 537 538 static uint_t 539 ipif_rand(ip_stack_t *ipst) 540 { 541 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 542 12345; 543 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 544 } 545 546 /* 547 * Allocate per-interface mibs. 548 * Returns true if ok. False otherwise. 549 * ipsq may not yet be allocated (loopback case ). 550 */ 551 static boolean_t 552 ill_allocate_mibs(ill_t *ill) 553 { 554 /* Already allocated? */ 555 if (ill->ill_ip_mib != NULL) { 556 if (ill->ill_isv6) 557 ASSERT(ill->ill_icmp6_mib != NULL); 558 return (B_TRUE); 559 } 560 561 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 562 KM_NOSLEEP); 563 if (ill->ill_ip_mib == NULL) { 564 return (B_FALSE); 565 } 566 567 /* Setup static information */ 568 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 569 sizeof (mib2_ipIfStatsEntry_t)); 570 if (ill->ill_isv6) { 571 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 572 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 573 sizeof (mib2_ipv6AddrEntry_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 575 sizeof (mib2_ipv6RouteEntry_t)); 576 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 577 sizeof (mib2_ipv6NetToMediaEntry_t)); 578 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 579 sizeof (ipv6_member_t)); 580 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 581 sizeof (ipv6_grpsrc_t)); 582 } else { 583 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 584 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 585 sizeof (mib2_ipAddrEntry_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 587 sizeof (mib2_ipRouteEntry_t)); 588 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 589 sizeof (mib2_ipNetToMediaEntry_t)); 590 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 591 sizeof (ip_member_t)); 592 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 593 sizeof (ip_grpsrc_t)); 594 595 /* 596 * For a v4 ill, we are done at this point, because per ill 597 * icmp mibs are only used for v6. 598 */ 599 return (B_TRUE); 600 } 601 602 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 603 KM_NOSLEEP); 604 if (ill->ill_icmp6_mib == NULL) { 605 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 606 ill->ill_ip_mib = NULL; 607 return (B_FALSE); 608 } 609 /* static icmp info */ 610 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 611 sizeof (mib2_ipv6IfIcmpEntry_t); 612 /* 613 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 614 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 615 * -> ill_phyint_reinit 616 */ 617 return (B_TRUE); 618 } 619 620 /* 621 * Common code for preparation of ARP commands. Two points to remember: 622 * 1) The ill_name is tacked on at the end of the allocated space so 623 * the templates name_offset field must contain the total space 624 * to allocate less the name length. 625 * 626 * 2) The templates name_length field should contain the *template* 627 * length. We use it as a parameter to bcopy() and then write 628 * the real ill_name_length into the name_length field of the copy. 629 * (Always called as writer.) 630 */ 631 mblk_t * 632 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 633 { 634 arc_t *arc = (arc_t *)template; 635 char *cp; 636 int len; 637 mblk_t *mp; 638 uint_t name_length = ill->ill_name_length; 639 uint_t template_len = arc->arc_name_length; 640 641 len = arc->arc_name_offset + name_length; 642 mp = allocb(len, BPRI_HI); 643 if (mp == NULL) 644 return (NULL); 645 cp = (char *)mp->b_rptr; 646 mp->b_wptr = (uchar_t *)&cp[len]; 647 if (template_len) 648 bcopy(template, cp, template_len); 649 if (len > template_len) 650 bzero(&cp[template_len], len - template_len); 651 mp->b_datap->db_type = M_PROTO; 652 653 arc = (arc_t *)cp; 654 arc->arc_name_length = name_length; 655 cp = (char *)arc + arc->arc_name_offset; 656 bcopy(ill->ill_name, cp, name_length); 657 658 if (addr) { 659 area_t *area = (area_t *)mp->b_rptr; 660 661 cp = (char *)area + area->area_proto_addr_offset; 662 bcopy(addr, cp, area->area_proto_addr_length); 663 if (area->area_cmd == AR_ENTRY_ADD) { 664 cp = (char *)area; 665 len = area->area_proto_addr_length; 666 if (area->area_proto_mask_offset) 667 cp += area->area_proto_mask_offset; 668 else 669 cp += area->area_proto_addr_offset + len; 670 while (len-- > 0) 671 *cp++ = (char)~0; 672 } 673 } 674 return (mp); 675 } 676 677 mblk_t * 678 ipif_area_alloc(ipif_t *ipif) 679 { 680 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 681 (char *)&ipif->ipif_lcl_addr)); 682 } 683 684 mblk_t * 685 ipif_ared_alloc(ipif_t *ipif) 686 { 687 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 688 (char *)&ipif->ipif_lcl_addr)); 689 } 690 691 mblk_t * 692 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 693 { 694 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 695 (char *)&addr)); 696 } 697 698 /* 699 * Completely vaporize a lower level tap and all associated interfaces. 700 * ill_delete is called only out of ip_close when the device control 701 * stream is being closed. 702 */ 703 void 704 ill_delete(ill_t *ill) 705 { 706 ipif_t *ipif; 707 ill_t *prev_ill; 708 ip_stack_t *ipst = ill->ill_ipst; 709 710 /* 711 * ill_delete may be forcibly entering the ipsq. The previous 712 * ioctl may not have completed and may need to be aborted. 713 * ipsq_flush takes care of it. If we don't need to enter the 714 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 715 * ill_delete_tail is sufficient. 716 */ 717 ipsq_flush(ill); 718 719 /* 720 * Nuke all interfaces. ipif_free will take down the interface, 721 * remove it from the list, and free the data structure. 722 * Walk down the ipif list and remove the logical interfaces 723 * first before removing the main ipif. We can't unplumb 724 * zeroth interface first in the case of IPv6 as reset_conn_ill 725 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 726 * POINTOPOINT. 727 * 728 * If ill_ipif was not properly initialized (i.e low on memory), 729 * then no interfaces to clean up. In this case just clean up the 730 * ill. 731 */ 732 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 733 ipif_free(ipif); 734 735 /* 736 * Used only by ill_arp_on and ill_arp_off, which are writers. 737 * So nobody can be using this mp now. Free the mp allocated for 738 * honoring ILLF_NOARP 739 */ 740 freemsg(ill->ill_arp_on_mp); 741 ill->ill_arp_on_mp = NULL; 742 743 /* Clean up msgs on pending upcalls for mrouted */ 744 reset_mrt_ill(ill); 745 746 /* 747 * ipif_free -> reset_conn_ipif will remove all multicast 748 * references for IPv4. For IPv6, we need to do it here as 749 * it points only at ills. 750 */ 751 reset_conn_ill(ill); 752 753 /* 754 * ill_down will arrange to blow off any IRE's dependent on this 755 * ILL, and shut down fragmentation reassembly. 756 */ 757 ill_down(ill); 758 759 /* Let SCTP know, so that it can remove this from its list. */ 760 sctp_update_ill(ill, SCTP_ILL_REMOVE); 761 762 /* 763 * If an address on this ILL is being used as a source address then 764 * clear out the pointers in other ILLs that point to this ILL. 765 */ 766 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 767 if (ill->ill_usesrc_grp_next != NULL) { 768 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 769 ill_disband_usesrc_group(ill); 770 } else { /* consumer of the usesrc ILL */ 771 prev_ill = ill_prev_usesrc(ill); 772 prev_ill->ill_usesrc_grp_next = 773 ill->ill_usesrc_grp_next; 774 } 775 } 776 rw_exit(&ipst->ips_ill_g_usesrc_lock); 777 } 778 779 static void 780 ipif_non_duplicate(ipif_t *ipif) 781 { 782 ill_t *ill = ipif->ipif_ill; 783 mutex_enter(&ill->ill_lock); 784 if (ipif->ipif_flags & IPIF_DUPLICATE) { 785 ipif->ipif_flags &= ~IPIF_DUPLICATE; 786 ASSERT(ill->ill_ipif_dup_count > 0); 787 ill->ill_ipif_dup_count--; 788 } 789 mutex_exit(&ill->ill_lock); 790 } 791 792 /* 793 * ill_delete_tail is called from ip_modclose after all references 794 * to the closing ill are gone. The wait is done in ip_modclose 795 */ 796 void 797 ill_delete_tail(ill_t *ill) 798 { 799 mblk_t **mpp; 800 ipif_t *ipif; 801 ip_stack_t *ipst = ill->ill_ipst; 802 803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 804 ipif_non_duplicate(ipif); 805 ipif_down_tail(ipif); 806 } 807 808 ASSERT(ill->ill_ipif_dup_count == 0 && 809 ill->ill_arp_down_mp == NULL && 810 ill->ill_arp_del_mapping_mp == NULL); 811 812 /* 813 * If polling capability is enabled (which signifies direct 814 * upcall into IP and driver has ill saved as a handle), 815 * we need to make sure that unbind has completed before we 816 * let the ill disappear and driver no longer has any reference 817 * to this ill. 818 */ 819 mutex_enter(&ill->ill_lock); 820 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 821 cv_wait(&ill->ill_cv, &ill->ill_lock); 822 mutex_exit(&ill->ill_lock); 823 824 /* 825 * Clean up polling and soft ring capabilities 826 */ 827 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 828 ill_capability_dls_disable(ill); 829 830 if (ill->ill_net_type != IRE_LOOPBACK) 831 qprocsoff(ill->ill_rq); 832 833 /* 834 * We do an ipsq_flush once again now. New messages could have 835 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 836 * could also have landed up if an ioctl thread had looked up 837 * the ill before we set the ILL_CONDEMNED flag, but not yet 838 * enqueued the ioctl when we did the ipsq_flush last time. 839 */ 840 ipsq_flush(ill); 841 842 /* 843 * Free capabilities. 844 */ 845 if (ill->ill_ipsec_capab_ah != NULL) { 846 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 847 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 848 ill->ill_ipsec_capab_ah = NULL; 849 } 850 851 if (ill->ill_ipsec_capab_esp != NULL) { 852 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 853 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 854 ill->ill_ipsec_capab_esp = NULL; 855 } 856 857 if (ill->ill_mdt_capab != NULL) { 858 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 859 ill->ill_mdt_capab = NULL; 860 } 861 862 if (ill->ill_hcksum_capab != NULL) { 863 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 864 ill->ill_hcksum_capab = NULL; 865 } 866 867 if (ill->ill_zerocopy_capab != NULL) { 868 kmem_free(ill->ill_zerocopy_capab, 869 sizeof (ill_zerocopy_capab_t)); 870 ill->ill_zerocopy_capab = NULL; 871 } 872 873 if (ill->ill_lso_capab != NULL) { 874 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 875 ill->ill_lso_capab = NULL; 876 } 877 878 if (ill->ill_dls_capab != NULL) { 879 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 880 ill->ill_dls_capab->ill_unbind_conn = NULL; 881 kmem_free(ill->ill_dls_capab, 882 sizeof (ill_dls_capab_t) + 883 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 884 ill->ill_dls_capab = NULL; 885 } 886 887 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 888 889 while (ill->ill_ipif != NULL) 890 ipif_free_tail(ill->ill_ipif); 891 892 /* 893 * We have removed all references to ilm from conn and the ones joined 894 * within the kernel. 895 * 896 * We don't walk conns, mrts and ires because 897 * 898 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 899 * 2) ill_down ->ill_downi walks all the ires and cleans up 900 * ill references. 901 */ 902 ASSERT(ilm_walk_ill(ill) == 0); 903 /* 904 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 905 * could free the phyint. No more reference to the phyint after this 906 * point. 907 */ 908 (void) ill_glist_delete(ill); 909 910 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 911 if (ill->ill_ndd_name != NULL) 912 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 913 rw_exit(&ipst->ips_ip_g_nd_lock); 914 915 916 if (ill->ill_frag_ptr != NULL) { 917 uint_t count; 918 919 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 920 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 921 } 922 mi_free(ill->ill_frag_ptr); 923 ill->ill_frag_ptr = NULL; 924 ill->ill_frag_hash_tbl = NULL; 925 } 926 927 freemsg(ill->ill_nd_lla_mp); 928 /* Free all retained control messages. */ 929 mpp = &ill->ill_first_mp_to_free; 930 do { 931 while (mpp[0]) { 932 mblk_t *mp; 933 mblk_t *mp1; 934 935 mp = mpp[0]; 936 mpp[0] = mp->b_next; 937 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 938 mp1->b_next = NULL; 939 mp1->b_prev = NULL; 940 } 941 freemsg(mp); 942 } 943 } while (mpp++ != &ill->ill_last_mp_to_free); 944 945 ill_free_mib(ill); 946 947 #ifdef DEBUG 948 ill_trace_cleanup(ill); 949 #endif 950 951 /* Drop refcnt here */ 952 netstack_rele(ill->ill_ipst->ips_netstack); 953 ill->ill_ipst = NULL; 954 } 955 956 static void 957 ill_free_mib(ill_t *ill) 958 { 959 ip_stack_t *ipst = ill->ill_ipst; 960 961 /* 962 * MIB statistics must not be lost, so when an interface 963 * goes away the counter values will be added to the global 964 * MIBs. 965 */ 966 if (ill->ill_ip_mib != NULL) { 967 if (ill->ill_isv6) { 968 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 969 ill->ill_ip_mib); 970 } else { 971 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 972 ill->ill_ip_mib); 973 } 974 975 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 976 ill->ill_ip_mib = NULL; 977 } 978 if (ill->ill_icmp6_mib != NULL) { 979 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 980 ill->ill_icmp6_mib); 981 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 982 ill->ill_icmp6_mib = NULL; 983 } 984 } 985 986 /* 987 * Concatenate together a physical address and a sap. 988 * 989 * Sap_lengths are interpreted as follows: 990 * sap_length == 0 ==> no sap 991 * sap_length > 0 ==> sap is at the head of the dlpi address 992 * sap_length < 0 ==> sap is at the tail of the dlpi address 993 */ 994 static void 995 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 996 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 997 { 998 uint16_t sap_addr = (uint16_t)sap_src; 999 1000 if (sap_length == 0) { 1001 if (phys_src == NULL) 1002 bzero(dst, phys_length); 1003 else 1004 bcopy(phys_src, dst, phys_length); 1005 } else if (sap_length < 0) { 1006 if (phys_src == NULL) 1007 bzero(dst, phys_length); 1008 else 1009 bcopy(phys_src, dst, phys_length); 1010 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1011 } else { 1012 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1013 if (phys_src == NULL) 1014 bzero((char *)dst + sap_length, phys_length); 1015 else 1016 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1017 } 1018 } 1019 1020 /* 1021 * Generate a dl_unitdata_req mblk for the device and address given. 1022 * addr_length is the length of the physical portion of the address. 1023 * If addr is NULL include an all zero address of the specified length. 1024 * TRUE? In any case, addr_length is taken to be the entire length of the 1025 * dlpi address, including the absolute value of sap_length. 1026 */ 1027 mblk_t * 1028 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1029 t_scalar_t sap_length) 1030 { 1031 dl_unitdata_req_t *dlur; 1032 mblk_t *mp; 1033 t_scalar_t abs_sap_length; /* absolute value */ 1034 1035 abs_sap_length = ABS(sap_length); 1036 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1037 DL_UNITDATA_REQ); 1038 if (mp == NULL) 1039 return (NULL); 1040 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1041 /* HACK: accomodate incompatible DLPI drivers */ 1042 if (addr_length == 8) 1043 addr_length = 6; 1044 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1045 dlur->dl_dest_addr_offset = sizeof (*dlur); 1046 dlur->dl_priority.dl_min = 0; 1047 dlur->dl_priority.dl_max = 0; 1048 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1049 (uchar_t *)&dlur[1]); 1050 return (mp); 1051 } 1052 1053 /* 1054 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1055 * Return an error if we already have 1 or more ioctls in progress. 1056 * This is used only for non-exclusive ioctls. Currently this is used 1057 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1058 * and thus need to use ipsq_pending_mp_add. 1059 */ 1060 boolean_t 1061 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1062 { 1063 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1064 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1065 /* 1066 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1067 */ 1068 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1069 (add_mp->b_datap->db_type == M_IOCTL)); 1070 1071 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1072 /* 1073 * Return error if the conn has started closing. The conn 1074 * could have finished cleaning up the pending mp list, 1075 * If so we should not add another mp to the list negating 1076 * the cleanup. 1077 */ 1078 if (connp->conn_state_flags & CONN_CLOSING) 1079 return (B_FALSE); 1080 /* 1081 * Add the pending mp to the head of the list, chained by b_next. 1082 * Note down the conn on which the ioctl request came, in b_prev. 1083 * This will be used to later get the conn, when we get a response 1084 * on the ill queue, from some other module (typically arp) 1085 */ 1086 add_mp->b_next = (void *)ill->ill_pending_mp; 1087 add_mp->b_queue = CONNP_TO_WQ(connp); 1088 ill->ill_pending_mp = add_mp; 1089 if (connp != NULL) 1090 connp->conn_oper_pending_ill = ill; 1091 return (B_TRUE); 1092 } 1093 1094 /* 1095 * Retrieve the ill_pending_mp and return it. We have to walk the list 1096 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1097 */ 1098 mblk_t * 1099 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1100 { 1101 mblk_t *prev = NULL; 1102 mblk_t *curr = NULL; 1103 uint_t id; 1104 conn_t *connp; 1105 1106 /* 1107 * When the conn closes, conn_ioctl_cleanup needs to clean 1108 * up the pending mp, but it does not know the ioc_id and 1109 * passes in a zero for it. 1110 */ 1111 mutex_enter(&ill->ill_lock); 1112 if (ioc_id != 0) 1113 *connpp = NULL; 1114 1115 /* Search the list for the appropriate ioctl based on ioc_id */ 1116 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1117 prev = curr, curr = curr->b_next) { 1118 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1119 connp = Q_TO_CONN(curr->b_queue); 1120 /* Match based on the ioc_id or based on the conn */ 1121 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1122 break; 1123 } 1124 1125 if (curr != NULL) { 1126 /* Unlink the mblk from the pending mp list */ 1127 if (prev != NULL) { 1128 prev->b_next = curr->b_next; 1129 } else { 1130 ASSERT(ill->ill_pending_mp == curr); 1131 ill->ill_pending_mp = curr->b_next; 1132 } 1133 1134 /* 1135 * conn refcnt must have been bumped up at the start of 1136 * the ioctl. So we can safely access the conn. 1137 */ 1138 ASSERT(CONN_Q(curr->b_queue)); 1139 *connpp = Q_TO_CONN(curr->b_queue); 1140 curr->b_next = NULL; 1141 curr->b_queue = NULL; 1142 } 1143 1144 mutex_exit(&ill->ill_lock); 1145 1146 return (curr); 1147 } 1148 1149 /* 1150 * Add the pending mp to the list. There can be only 1 pending mp 1151 * in the list. Any exclusive ioctl that needs to wait for a response 1152 * from another module or driver needs to use this function to set 1153 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1154 * the other module/driver. This is also used while waiting for the 1155 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1156 */ 1157 boolean_t 1158 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1159 int waitfor) 1160 { 1161 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1162 1163 ASSERT(IAM_WRITER_IPIF(ipif)); 1164 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1165 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1166 ASSERT(ipsq->ipsq_pending_mp == NULL); 1167 /* 1168 * The caller may be using a different ipif than the one passed into 1169 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1170 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1171 * that `ipsq_current_ipif == ipif'. 1172 */ 1173 ASSERT(ipsq->ipsq_current_ipif != NULL); 1174 1175 /* 1176 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1177 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1178 */ 1179 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1180 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1181 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1182 1183 if (connp != NULL) { 1184 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1185 /* 1186 * Return error if the conn has started closing. The conn 1187 * could have finished cleaning up the pending mp list, 1188 * If so we should not add another mp to the list negating 1189 * the cleanup. 1190 */ 1191 if (connp->conn_state_flags & CONN_CLOSING) 1192 return (B_FALSE); 1193 } 1194 mutex_enter(&ipsq->ipsq_lock); 1195 ipsq->ipsq_pending_ipif = ipif; 1196 /* 1197 * Note down the queue in b_queue. This will be returned by 1198 * ipsq_pending_mp_get. Caller will then use these values to restart 1199 * the processing 1200 */ 1201 add_mp->b_next = NULL; 1202 add_mp->b_queue = q; 1203 ipsq->ipsq_pending_mp = add_mp; 1204 ipsq->ipsq_waitfor = waitfor; 1205 1206 if (connp != NULL) 1207 connp->conn_oper_pending_ill = ipif->ipif_ill; 1208 mutex_exit(&ipsq->ipsq_lock); 1209 return (B_TRUE); 1210 } 1211 1212 /* 1213 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1214 * queued in the list. 1215 */ 1216 mblk_t * 1217 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1218 { 1219 mblk_t *curr = NULL; 1220 1221 mutex_enter(&ipsq->ipsq_lock); 1222 *connpp = NULL; 1223 if (ipsq->ipsq_pending_mp == NULL) { 1224 mutex_exit(&ipsq->ipsq_lock); 1225 return (NULL); 1226 } 1227 1228 /* There can be only 1 such excl message */ 1229 curr = ipsq->ipsq_pending_mp; 1230 ASSERT(curr != NULL && curr->b_next == NULL); 1231 ipsq->ipsq_pending_ipif = NULL; 1232 ipsq->ipsq_pending_mp = NULL; 1233 ipsq->ipsq_waitfor = 0; 1234 mutex_exit(&ipsq->ipsq_lock); 1235 1236 if (CONN_Q(curr->b_queue)) { 1237 /* 1238 * This mp did a refhold on the conn, at the start of the ioctl. 1239 * So we can safely return a pointer to the conn to the caller. 1240 */ 1241 *connpp = Q_TO_CONN(curr->b_queue); 1242 } else { 1243 *connpp = NULL; 1244 } 1245 curr->b_next = NULL; 1246 curr->b_prev = NULL; 1247 return (curr); 1248 } 1249 1250 /* 1251 * Cleanup the ioctl mp queued in ipsq_pending_mp 1252 * - Called in the ill_delete path 1253 * - Called in the M_ERROR or M_HANGUP path on the ill. 1254 * - Called in the conn close path. 1255 */ 1256 boolean_t 1257 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1258 { 1259 mblk_t *mp; 1260 ipsq_t *ipsq; 1261 queue_t *q; 1262 ipif_t *ipif; 1263 1264 ASSERT(IAM_WRITER_ILL(ill)); 1265 ipsq = ill->ill_phyint->phyint_ipsq; 1266 mutex_enter(&ipsq->ipsq_lock); 1267 /* 1268 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1269 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1270 * even if it is meant for another ill, since we have to enqueue 1271 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1272 * If connp is non-null we are called from the conn close path. 1273 */ 1274 mp = ipsq->ipsq_pending_mp; 1275 if (mp == NULL || (connp != NULL && 1276 mp->b_queue != CONNP_TO_WQ(connp))) { 1277 mutex_exit(&ipsq->ipsq_lock); 1278 return (B_FALSE); 1279 } 1280 /* Now remove from the ipsq_pending_mp */ 1281 ipsq->ipsq_pending_mp = NULL; 1282 q = mp->b_queue; 1283 mp->b_next = NULL; 1284 mp->b_prev = NULL; 1285 mp->b_queue = NULL; 1286 1287 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1288 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1289 if (ill->ill_move_in_progress) { 1290 ILL_CLEAR_MOVE(ill); 1291 } else if (ill->ill_up_ipifs) { 1292 ill_group_cleanup(ill); 1293 } 1294 1295 ipif = ipsq->ipsq_pending_ipif; 1296 ipsq->ipsq_pending_ipif = NULL; 1297 ipsq->ipsq_waitfor = 0; 1298 ipsq->ipsq_current_ipif = NULL; 1299 ipsq->ipsq_current_ioctl = 0; 1300 mutex_exit(&ipsq->ipsq_lock); 1301 1302 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1303 if (connp == NULL) { 1304 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1305 } else { 1306 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1307 mutex_enter(&ipif->ipif_ill->ill_lock); 1308 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1309 mutex_exit(&ipif->ipif_ill->ill_lock); 1310 } 1311 } else { 1312 /* 1313 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1314 * be just inet_freemsg. we have to restart it 1315 * otherwise the thread will be stuck. 1316 */ 1317 inet_freemsg(mp); 1318 } 1319 return (B_TRUE); 1320 } 1321 1322 /* 1323 * The ill is closing. Cleanup all the pending mps. Called exclusively 1324 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1325 * knows this ill, and hence nobody can add an mp to this list 1326 */ 1327 static void 1328 ill_pending_mp_cleanup(ill_t *ill) 1329 { 1330 mblk_t *mp; 1331 queue_t *q; 1332 1333 ASSERT(IAM_WRITER_ILL(ill)); 1334 1335 mutex_enter(&ill->ill_lock); 1336 /* 1337 * Every mp on the pending mp list originating from an ioctl 1338 * added 1 to the conn refcnt, at the start of the ioctl. 1339 * So bump it down now. See comments in ip_wput_nondata() 1340 */ 1341 while (ill->ill_pending_mp != NULL) { 1342 mp = ill->ill_pending_mp; 1343 ill->ill_pending_mp = mp->b_next; 1344 mutex_exit(&ill->ill_lock); 1345 1346 q = mp->b_queue; 1347 ASSERT(CONN_Q(q)); 1348 mp->b_next = NULL; 1349 mp->b_prev = NULL; 1350 mp->b_queue = NULL; 1351 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1352 mutex_enter(&ill->ill_lock); 1353 } 1354 ill->ill_pending_ipif = NULL; 1355 1356 mutex_exit(&ill->ill_lock); 1357 } 1358 1359 /* 1360 * Called in the conn close path and ill delete path 1361 */ 1362 static void 1363 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1364 { 1365 ipsq_t *ipsq; 1366 mblk_t *prev; 1367 mblk_t *curr; 1368 mblk_t *next; 1369 queue_t *q; 1370 mblk_t *tmp_list = NULL; 1371 1372 ASSERT(IAM_WRITER_ILL(ill)); 1373 if (connp != NULL) 1374 q = CONNP_TO_WQ(connp); 1375 else 1376 q = ill->ill_wq; 1377 1378 ipsq = ill->ill_phyint->phyint_ipsq; 1379 /* 1380 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1381 * In the case of ioctl from a conn, there can be only 1 mp 1382 * queued on the ipsq. If an ill is being unplumbed, only messages 1383 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1384 * ioctls meant for this ill form conn's are not flushed. They will 1385 * be processed during ipsq_exit and will not find the ill and will 1386 * return error. 1387 */ 1388 mutex_enter(&ipsq->ipsq_lock); 1389 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1390 curr = next) { 1391 next = curr->b_next; 1392 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1393 /* Unlink the mblk from the pending mp list */ 1394 if (prev != NULL) { 1395 prev->b_next = curr->b_next; 1396 } else { 1397 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1398 ipsq->ipsq_xopq_mphead = curr->b_next; 1399 } 1400 if (ipsq->ipsq_xopq_mptail == curr) 1401 ipsq->ipsq_xopq_mptail = prev; 1402 /* 1403 * Create a temporary list and release the ipsq lock 1404 * New elements are added to the head of the tmp_list 1405 */ 1406 curr->b_next = tmp_list; 1407 tmp_list = curr; 1408 } else { 1409 prev = curr; 1410 } 1411 } 1412 mutex_exit(&ipsq->ipsq_lock); 1413 1414 while (tmp_list != NULL) { 1415 curr = tmp_list; 1416 tmp_list = curr->b_next; 1417 curr->b_next = NULL; 1418 curr->b_prev = NULL; 1419 curr->b_queue = NULL; 1420 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1421 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1422 CONN_CLOSE : NO_COPYOUT, NULL); 1423 } else { 1424 /* 1425 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1426 * this can't be just inet_freemsg. we have to 1427 * restart it otherwise the thread will be stuck. 1428 */ 1429 inet_freemsg(curr); 1430 } 1431 } 1432 } 1433 1434 /* 1435 * This conn has started closing. Cleanup any pending ioctl from this conn. 1436 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1437 */ 1438 void 1439 conn_ioctl_cleanup(conn_t *connp) 1440 { 1441 mblk_t *curr; 1442 ipsq_t *ipsq; 1443 ill_t *ill; 1444 boolean_t refheld; 1445 1446 /* 1447 * Is any exclusive ioctl pending ? If so clean it up. If the 1448 * ioctl has not yet started, the mp is pending in the list headed by 1449 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1450 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1451 * is currently executing now the mp is not queued anywhere but 1452 * conn_oper_pending_ill is null. The conn close will wait 1453 * till the conn_ref drops to zero. 1454 */ 1455 mutex_enter(&connp->conn_lock); 1456 ill = connp->conn_oper_pending_ill; 1457 if (ill == NULL) { 1458 mutex_exit(&connp->conn_lock); 1459 return; 1460 } 1461 1462 curr = ill_pending_mp_get(ill, &connp, 0); 1463 if (curr != NULL) { 1464 mutex_exit(&connp->conn_lock); 1465 CONN_DEC_REF(connp); 1466 inet_freemsg(curr); 1467 return; 1468 } 1469 /* 1470 * We may not be able to refhold the ill if the ill/ipif 1471 * is changing. But we need to make sure that the ill will 1472 * not vanish. So we just bump up the ill_waiter count. 1473 */ 1474 refheld = ill_waiter_inc(ill); 1475 mutex_exit(&connp->conn_lock); 1476 if (refheld) { 1477 if (ipsq_enter(ill, B_TRUE)) { 1478 ill_waiter_dcr(ill); 1479 /* 1480 * Check whether this ioctl has started and is 1481 * pending now in ipsq_pending_mp. If it is not 1482 * found there then check whether this ioctl has 1483 * not even started and is in the ipsq_xopq list. 1484 */ 1485 if (!ipsq_pending_mp_cleanup(ill, connp)) 1486 ipsq_xopq_mp_cleanup(ill, connp); 1487 ipsq = ill->ill_phyint->phyint_ipsq; 1488 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1489 return; 1490 } 1491 } 1492 1493 /* 1494 * The ill is also closing and we could not bump up the 1495 * ill_waiter_count or we could not enter the ipsq. Leave 1496 * the cleanup to ill_delete 1497 */ 1498 mutex_enter(&connp->conn_lock); 1499 while (connp->conn_oper_pending_ill != NULL) 1500 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1501 mutex_exit(&connp->conn_lock); 1502 if (refheld) 1503 ill_waiter_dcr(ill); 1504 } 1505 1506 /* 1507 * ipcl_walk function for cleaning up conn_*_ill fields. 1508 */ 1509 static void 1510 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1511 { 1512 ill_t *ill = (ill_t *)arg; 1513 ire_t *ire; 1514 1515 mutex_enter(&connp->conn_lock); 1516 if (connp->conn_multicast_ill == ill) { 1517 /* Revert to late binding */ 1518 connp->conn_multicast_ill = NULL; 1519 connp->conn_orig_multicast_ifindex = 0; 1520 } 1521 if (connp->conn_incoming_ill == ill) 1522 connp->conn_incoming_ill = NULL; 1523 if (connp->conn_outgoing_ill == ill) 1524 connp->conn_outgoing_ill = NULL; 1525 if (connp->conn_outgoing_pill == ill) 1526 connp->conn_outgoing_pill = NULL; 1527 if (connp->conn_nofailover_ill == ill) 1528 connp->conn_nofailover_ill = NULL; 1529 if (connp->conn_dhcpinit_ill == ill) { 1530 connp->conn_dhcpinit_ill = NULL; 1531 ASSERT(ill->ill_dhcpinit != 0); 1532 atomic_dec_32(&ill->ill_dhcpinit); 1533 } 1534 if (connp->conn_ire_cache != NULL) { 1535 ire = connp->conn_ire_cache; 1536 /* 1537 * ip_newroute creates IRE_CACHE with ire_stq coming from 1538 * interface X and ipif coming from interface Y, if interface 1539 * X and Y are part of the same IPMPgroup. Thus whenever 1540 * interface X goes down, remove all references to it by 1541 * checking both on ire_ipif and ire_stq. 1542 */ 1543 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1544 (ire->ire_type == IRE_CACHE && 1545 ire->ire_stq == ill->ill_wq)) { 1546 connp->conn_ire_cache = NULL; 1547 mutex_exit(&connp->conn_lock); 1548 ire_refrele_notr(ire); 1549 return; 1550 } 1551 } 1552 mutex_exit(&connp->conn_lock); 1553 1554 } 1555 1556 /* ARGSUSED */ 1557 void 1558 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1559 { 1560 ill_t *ill = q->q_ptr; 1561 ipif_t *ipif; 1562 1563 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1564 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1565 ipif_non_duplicate(ipif); 1566 ipif_down_tail(ipif); 1567 } 1568 freemsg(mp); 1569 ipsq_current_finish(ipsq); 1570 } 1571 1572 /* 1573 * ill_down_start is called when we want to down this ill and bring it up again 1574 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1575 * all interfaces, but don't tear down any plumbing. 1576 */ 1577 boolean_t 1578 ill_down_start(queue_t *q, mblk_t *mp) 1579 { 1580 ill_t *ill = q->q_ptr; 1581 ipif_t *ipif; 1582 1583 ASSERT(IAM_WRITER_ILL(ill)); 1584 1585 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1586 (void) ipif_down(ipif, NULL, NULL); 1587 1588 ill_down(ill); 1589 1590 (void) ipsq_pending_mp_cleanup(ill, NULL); 1591 1592 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1593 1594 /* 1595 * Atomically test and add the pending mp if references are active. 1596 */ 1597 mutex_enter(&ill->ill_lock); 1598 if (!ill_is_quiescent(ill)) { 1599 /* call cannot fail since `conn_t *' argument is NULL */ 1600 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1601 mp, ILL_DOWN); 1602 mutex_exit(&ill->ill_lock); 1603 return (B_FALSE); 1604 } 1605 mutex_exit(&ill->ill_lock); 1606 return (B_TRUE); 1607 } 1608 1609 static void 1610 ill_down(ill_t *ill) 1611 { 1612 ip_stack_t *ipst = ill->ill_ipst; 1613 1614 /* Blow off any IREs dependent on this ILL. */ 1615 ire_walk(ill_downi, (char *)ill, ipst); 1616 1617 /* Remove any conn_*_ill depending on this ill */ 1618 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1619 1620 if (ill->ill_group != NULL) { 1621 illgrp_delete(ill); 1622 } 1623 } 1624 1625 /* 1626 * ire_walk routine used to delete every IRE that depends on queues 1627 * associated with 'ill'. (Always called as writer.) 1628 */ 1629 static void 1630 ill_downi(ire_t *ire, char *ill_arg) 1631 { 1632 ill_t *ill = (ill_t *)ill_arg; 1633 1634 /* 1635 * ip_newroute creates IRE_CACHE with ire_stq coming from 1636 * interface X and ipif coming from interface Y, if interface 1637 * X and Y are part of the same IPMP group. Thus whenever interface 1638 * X goes down, remove all references to it by checking both 1639 * on ire_ipif and ire_stq. 1640 */ 1641 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1642 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1643 ire_delete(ire); 1644 } 1645 } 1646 1647 /* 1648 * Remove ire/nce from the fastpath list. 1649 */ 1650 void 1651 ill_fastpath_nack(ill_t *ill) 1652 { 1653 nce_fastpath_list_dispatch(ill, NULL, NULL); 1654 } 1655 1656 /* Consume an M_IOCACK of the fastpath probe. */ 1657 void 1658 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1659 { 1660 mblk_t *mp1 = mp; 1661 1662 /* 1663 * If this was the first attempt turn on the fastpath probing. 1664 */ 1665 mutex_enter(&ill->ill_lock); 1666 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1667 ill->ill_dlpi_fastpath_state = IDS_OK; 1668 mutex_exit(&ill->ill_lock); 1669 1670 /* Free the M_IOCACK mblk, hold on to the data */ 1671 mp = mp->b_cont; 1672 freeb(mp1); 1673 if (mp == NULL) 1674 return; 1675 if (mp->b_cont != NULL) { 1676 /* 1677 * Update all IRE's or NCE's that are waiting for 1678 * fastpath update. 1679 */ 1680 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1681 mp1 = mp->b_cont; 1682 freeb(mp); 1683 mp = mp1; 1684 } else { 1685 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1686 } 1687 1688 freeb(mp); 1689 } 1690 1691 /* 1692 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1693 * The data portion of the request is a dl_unitdata_req_t template for 1694 * what we would send downstream in the absence of a fastpath confirmation. 1695 */ 1696 int 1697 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1698 { 1699 struct iocblk *ioc; 1700 mblk_t *mp; 1701 1702 if (dlur_mp == NULL) 1703 return (EINVAL); 1704 1705 mutex_enter(&ill->ill_lock); 1706 switch (ill->ill_dlpi_fastpath_state) { 1707 case IDS_FAILED: 1708 /* 1709 * Driver NAKed the first fastpath ioctl - assume it doesn't 1710 * support it. 1711 */ 1712 mutex_exit(&ill->ill_lock); 1713 return (ENOTSUP); 1714 case IDS_UNKNOWN: 1715 /* This is the first probe */ 1716 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1717 break; 1718 default: 1719 break; 1720 } 1721 mutex_exit(&ill->ill_lock); 1722 1723 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1724 return (EAGAIN); 1725 1726 mp->b_cont = copyb(dlur_mp); 1727 if (mp->b_cont == NULL) { 1728 freeb(mp); 1729 return (EAGAIN); 1730 } 1731 1732 ioc = (struct iocblk *)mp->b_rptr; 1733 ioc->ioc_count = msgdsize(mp->b_cont); 1734 1735 putnext(ill->ill_wq, mp); 1736 return (0); 1737 } 1738 1739 void 1740 ill_capability_probe(ill_t *ill) 1741 { 1742 /* 1743 * Do so only if capabilities are still unknown. 1744 */ 1745 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 1746 return; 1747 1748 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1749 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1750 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1751 } 1752 1753 void 1754 ill_capability_reset(ill_t *ill) 1755 { 1756 mblk_t *sc_mp = NULL; 1757 mblk_t *tmp; 1758 1759 /* 1760 * Note here that we reset the state to UNKNOWN, and later send 1761 * down the DL_CAPABILITY_REQ without first setting the state to 1762 * INPROGRESS. We do this in order to distinguish the 1763 * DL_CAPABILITY_ACK response which may come back in response to 1764 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1765 * also handle the case where the driver doesn't send us back 1766 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1767 * requires the state to be in UNKNOWN anyway. In any case, all 1768 * features are turned off until the state reaches IDS_OK. 1769 */ 1770 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1771 ill->ill_capab_reneg = B_FALSE; 1772 1773 /* 1774 * Disable sub-capabilities and request a list of sub-capability 1775 * messages which will be sent down to the driver. Each handler 1776 * allocates the corresponding dl_capability_sub_t inside an 1777 * mblk, and links it to the existing sc_mp mblk, or return it 1778 * as sc_mp if it's the first sub-capability (the passed in 1779 * sc_mp is NULL). Upon returning from all capability handlers, 1780 * sc_mp will be pulled-up, before passing it downstream. 1781 */ 1782 ill_capability_mdt_reset(ill, &sc_mp); 1783 ill_capability_hcksum_reset(ill, &sc_mp); 1784 ill_capability_zerocopy_reset(ill, &sc_mp); 1785 ill_capability_ipsec_reset(ill, &sc_mp); 1786 ill_capability_dls_reset(ill, &sc_mp); 1787 ill_capability_lso_reset(ill, &sc_mp); 1788 1789 /* Nothing to send down in order to disable the capabilities? */ 1790 if (sc_mp == NULL) 1791 return; 1792 1793 tmp = msgpullup(sc_mp, -1); 1794 freemsg(sc_mp); 1795 if ((sc_mp = tmp) == NULL) { 1796 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1797 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1798 return; 1799 } 1800 1801 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1802 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1803 } 1804 1805 /* 1806 * Request or set new-style hardware capabilities supported by DLS provider. 1807 */ 1808 static void 1809 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1810 { 1811 mblk_t *mp; 1812 dl_capability_req_t *capb; 1813 size_t size = 0; 1814 uint8_t *ptr; 1815 1816 if (reqp != NULL) 1817 size = MBLKL(reqp); 1818 1819 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1820 if (mp == NULL) { 1821 freemsg(reqp); 1822 return; 1823 } 1824 ptr = mp->b_rptr; 1825 1826 capb = (dl_capability_req_t *)ptr; 1827 ptr += sizeof (dl_capability_req_t); 1828 1829 if (reqp != NULL) { 1830 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1831 capb->dl_sub_length = size; 1832 bcopy(reqp->b_rptr, ptr, size); 1833 ptr += size; 1834 mp->b_cont = reqp->b_cont; 1835 freeb(reqp); 1836 } 1837 ASSERT(ptr == mp->b_wptr); 1838 1839 ill_dlpi_send(ill, mp); 1840 } 1841 1842 static void 1843 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1844 { 1845 dl_capab_id_t *id_ic; 1846 uint_t sub_dl_cap = outers->dl_cap; 1847 dl_capability_sub_t *inners; 1848 uint8_t *capend; 1849 1850 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1851 1852 /* 1853 * Note: range checks here are not absolutely sufficient to 1854 * make us robust against malformed messages sent by drivers; 1855 * this is in keeping with the rest of IP's dlpi handling. 1856 * (Remember, it's coming from something else in the kernel 1857 * address space) 1858 */ 1859 1860 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1861 if (capend > mp->b_wptr) { 1862 cmn_err(CE_WARN, "ill_capability_id_ack: " 1863 "malformed sub-capability too long for mblk"); 1864 return; 1865 } 1866 1867 id_ic = (dl_capab_id_t *)(outers + 1); 1868 1869 if (outers->dl_length < sizeof (*id_ic) || 1870 (inners = &id_ic->id_subcap, 1871 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1872 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1873 "encapsulated capab type %d too long for mblk", 1874 inners->dl_cap); 1875 return; 1876 } 1877 1878 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1879 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1880 "isn't as expected; pass-thru module(s) detected, " 1881 "discarding capability\n", inners->dl_cap)); 1882 return; 1883 } 1884 1885 /* Process the encapsulated sub-capability */ 1886 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1887 } 1888 1889 /* 1890 * Process Multidata Transmit capability negotiation ack received from a 1891 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1892 * DL_CAPABILITY_ACK message. 1893 */ 1894 static void 1895 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1896 { 1897 mblk_t *nmp = NULL; 1898 dl_capability_req_t *oc; 1899 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1900 ill_mdt_capab_t **ill_mdt_capab; 1901 uint_t sub_dl_cap = isub->dl_cap; 1902 uint8_t *capend; 1903 1904 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1905 1906 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1907 1908 /* 1909 * Note: range checks here are not absolutely sufficient to 1910 * make us robust against malformed messages sent by drivers; 1911 * this is in keeping with the rest of IP's dlpi handling. 1912 * (Remember, it's coming from something else in the kernel 1913 * address space) 1914 */ 1915 1916 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1917 if (capend > mp->b_wptr) { 1918 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1919 "malformed sub-capability too long for mblk"); 1920 return; 1921 } 1922 1923 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1924 1925 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1926 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1927 "unsupported MDT sub-capability (version %d, expected %d)", 1928 mdt_ic->mdt_version, MDT_VERSION_2); 1929 return; 1930 } 1931 1932 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1933 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1934 "capability isn't as expected; pass-thru module(s) " 1935 "detected, discarding capability\n")); 1936 return; 1937 } 1938 1939 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1940 1941 if (*ill_mdt_capab == NULL) { 1942 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1943 KM_NOSLEEP); 1944 1945 if (*ill_mdt_capab == NULL) { 1946 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1947 "could not enable MDT version %d " 1948 "for %s (ENOMEM)\n", MDT_VERSION_2, 1949 ill->ill_name); 1950 return; 1951 } 1952 } 1953 1954 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1955 "MDT version %d (%d bytes leading, %d bytes trailing " 1956 "header spaces, %d max pld bufs, %d span limit)\n", 1957 ill->ill_name, MDT_VERSION_2, 1958 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1959 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1960 1961 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1962 (*ill_mdt_capab)->ill_mdt_on = 1; 1963 /* 1964 * Round the following values to the nearest 32-bit; ULP 1965 * may further adjust them to accomodate for additional 1966 * protocol headers. We pass these values to ULP during 1967 * bind time. 1968 */ 1969 (*ill_mdt_capab)->ill_mdt_hdr_head = 1970 roundup(mdt_ic->mdt_hdr_head, 4); 1971 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1972 roundup(mdt_ic->mdt_hdr_tail, 4); 1973 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1974 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1975 1976 ill->ill_capabilities |= ILL_CAPAB_MDT; 1977 } else { 1978 uint_t size; 1979 uchar_t *rptr; 1980 1981 size = sizeof (dl_capability_req_t) + 1982 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1983 1984 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1985 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1986 "could not enable MDT for %s (ENOMEM)\n", 1987 ill->ill_name); 1988 return; 1989 } 1990 1991 rptr = nmp->b_rptr; 1992 /* initialize dl_capability_req_t */ 1993 oc = (dl_capability_req_t *)nmp->b_rptr; 1994 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1995 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1996 sizeof (dl_capab_mdt_t); 1997 nmp->b_rptr += sizeof (dl_capability_req_t); 1998 1999 /* initialize dl_capability_sub_t */ 2000 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2001 nmp->b_rptr += sizeof (*isub); 2002 2003 /* initialize dl_capab_mdt_t */ 2004 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2005 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2006 2007 nmp->b_rptr = rptr; 2008 2009 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2010 "to enable MDT version %d\n", ill->ill_name, 2011 MDT_VERSION_2)); 2012 2013 /* set ENABLE flag */ 2014 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2015 2016 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2017 ill_dlpi_send(ill, nmp); 2018 } 2019 } 2020 2021 static void 2022 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2023 { 2024 mblk_t *mp; 2025 dl_capab_mdt_t *mdt_subcap; 2026 dl_capability_sub_t *dl_subcap; 2027 int size; 2028 2029 if (!ILL_MDT_CAPABLE(ill)) 2030 return; 2031 2032 ASSERT(ill->ill_mdt_capab != NULL); 2033 /* 2034 * Clear the capability flag for MDT but retain the ill_mdt_capab 2035 * structure since it's possible that another thread is still 2036 * referring to it. The structure only gets deallocated when 2037 * we destroy the ill. 2038 */ 2039 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2040 2041 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2042 2043 mp = allocb(size, BPRI_HI); 2044 if (mp == NULL) { 2045 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2046 "request to disable MDT\n")); 2047 return; 2048 } 2049 2050 mp->b_wptr = mp->b_rptr + size; 2051 2052 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2053 dl_subcap->dl_cap = DL_CAPAB_MDT; 2054 dl_subcap->dl_length = sizeof (*mdt_subcap); 2055 2056 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2057 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2058 mdt_subcap->mdt_flags = 0; 2059 mdt_subcap->mdt_hdr_head = 0; 2060 mdt_subcap->mdt_hdr_tail = 0; 2061 2062 if (*sc_mp != NULL) 2063 linkb(*sc_mp, mp); 2064 else 2065 *sc_mp = mp; 2066 } 2067 2068 /* 2069 * Send a DL_NOTIFY_REQ to the specified ill to enable 2070 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2071 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2072 * acceleration. 2073 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2074 */ 2075 static boolean_t 2076 ill_enable_promisc_notify(ill_t *ill) 2077 { 2078 mblk_t *mp; 2079 dl_notify_req_t *req; 2080 2081 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2082 2083 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2084 if (mp == NULL) 2085 return (B_FALSE); 2086 2087 req = (dl_notify_req_t *)mp->b_rptr; 2088 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2089 DL_NOTE_PROMISC_OFF_PHYS; 2090 2091 ill_dlpi_send(ill, mp); 2092 2093 return (B_TRUE); 2094 } 2095 2096 2097 /* 2098 * Allocate an IPsec capability request which will be filled by our 2099 * caller to turn on support for one or more algorithms. 2100 */ 2101 static mblk_t * 2102 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2103 { 2104 mblk_t *nmp; 2105 dl_capability_req_t *ocap; 2106 dl_capab_ipsec_t *ocip; 2107 dl_capab_ipsec_t *icip; 2108 uint8_t *ptr; 2109 icip = (dl_capab_ipsec_t *)(isub + 1); 2110 2111 /* 2112 * The first time around, we send a DL_NOTIFY_REQ to enable 2113 * PROMISC_ON/OFF notification from the provider. We need to 2114 * do this before enabling the algorithms to avoid leakage of 2115 * cleartext packets. 2116 */ 2117 2118 if (!ill_enable_promisc_notify(ill)) 2119 return (NULL); 2120 2121 /* 2122 * Allocate new mblk which will contain a new capability 2123 * request to enable the capabilities. 2124 */ 2125 2126 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2127 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2128 if (nmp == NULL) 2129 return (NULL); 2130 2131 ptr = nmp->b_rptr; 2132 2133 /* initialize dl_capability_req_t */ 2134 ocap = (dl_capability_req_t *)ptr; 2135 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2136 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2137 ptr += sizeof (dl_capability_req_t); 2138 2139 /* initialize dl_capability_sub_t */ 2140 bcopy(isub, ptr, sizeof (*isub)); 2141 ptr += sizeof (*isub); 2142 2143 /* initialize dl_capab_ipsec_t */ 2144 ocip = (dl_capab_ipsec_t *)ptr; 2145 bcopy(icip, ocip, sizeof (*icip)); 2146 2147 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2148 return (nmp); 2149 } 2150 2151 /* 2152 * Process an IPsec capability negotiation ack received from a DLS Provider. 2153 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2154 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2155 */ 2156 static void 2157 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2158 { 2159 dl_capab_ipsec_t *icip; 2160 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2161 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2162 uint_t cipher, nciphers; 2163 mblk_t *nmp; 2164 uint_t alg_len; 2165 boolean_t need_sadb_dump; 2166 uint_t sub_dl_cap = isub->dl_cap; 2167 ill_ipsec_capab_t **ill_capab; 2168 uint64_t ill_capab_flag; 2169 uint8_t *capend, *ciphend; 2170 boolean_t sadb_resync; 2171 2172 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2173 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2174 2175 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2176 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2177 ill_capab_flag = ILL_CAPAB_AH; 2178 } else { 2179 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2180 ill_capab_flag = ILL_CAPAB_ESP; 2181 } 2182 2183 /* 2184 * If the ill capability structure exists, then this incoming 2185 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2186 * If this is so, then we'd need to resynchronize the SADB 2187 * after re-enabling the offloaded ciphers. 2188 */ 2189 sadb_resync = (*ill_capab != NULL); 2190 2191 /* 2192 * Note: range checks here are not absolutely sufficient to 2193 * make us robust against malformed messages sent by drivers; 2194 * this is in keeping with the rest of IP's dlpi handling. 2195 * (Remember, it's coming from something else in the kernel 2196 * address space) 2197 */ 2198 2199 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2200 if (capend > mp->b_wptr) { 2201 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2202 "malformed sub-capability too long for mblk"); 2203 return; 2204 } 2205 2206 /* 2207 * There are two types of acks we process here: 2208 * 1. acks in reply to a (first form) generic capability req 2209 * (no ENABLE flag set) 2210 * 2. acks in reply to a ENABLE capability req. 2211 * (ENABLE flag set) 2212 * 2213 * We process the subcapability passed as argument as follows: 2214 * 1 do initializations 2215 * 1.1 initialize nmp = NULL 2216 * 1.2 set need_sadb_dump to B_FALSE 2217 * 2 for each cipher in subcapability: 2218 * 2.1 if ENABLE flag is set: 2219 * 2.1.1 update per-ill ipsec capabilities info 2220 * 2.1.2 set need_sadb_dump to B_TRUE 2221 * 2.2 if ENABLE flag is not set: 2222 * 2.2.1 if nmp is NULL: 2223 * 2.2.1.1 allocate and initialize nmp 2224 * 2.2.1.2 init current pos in nmp 2225 * 2.2.2 copy current cipher to current pos in nmp 2226 * 2.2.3 set ENABLE flag in nmp 2227 * 2.2.4 update current pos 2228 * 3 if nmp is not equal to NULL, send enable request 2229 * 3.1 send capability request 2230 * 4 if need_sadb_dump is B_TRUE 2231 * 4.1 enable promiscuous on/off notifications 2232 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2233 * AH or ESP SA's to interface. 2234 */ 2235 2236 nmp = NULL; 2237 oalg = NULL; 2238 need_sadb_dump = B_FALSE; 2239 icip = (dl_capab_ipsec_t *)(isub + 1); 2240 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2241 2242 nciphers = icip->cip_nciphers; 2243 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2244 2245 if (ciphend > capend) { 2246 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2247 "too many ciphers for sub-capability len"); 2248 return; 2249 } 2250 2251 for (cipher = 0; cipher < nciphers; cipher++) { 2252 alg_len = sizeof (dl_capab_ipsec_alg_t); 2253 2254 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2255 /* 2256 * TBD: when we provide a way to disable capabilities 2257 * from above, need to manage the request-pending state 2258 * and fail if we were not expecting this ACK. 2259 */ 2260 IPSECHW_DEBUG(IPSECHW_CAPAB, 2261 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2262 2263 /* 2264 * Update IPsec capabilities for this ill 2265 */ 2266 2267 if (*ill_capab == NULL) { 2268 IPSECHW_DEBUG(IPSECHW_CAPAB, 2269 ("ill_capability_ipsec_ack: " 2270 "allocating ipsec_capab for ill\n")); 2271 *ill_capab = ill_ipsec_capab_alloc(); 2272 2273 if (*ill_capab == NULL) { 2274 cmn_err(CE_WARN, 2275 "ill_capability_ipsec_ack: " 2276 "could not enable IPsec Hardware " 2277 "acceleration for %s (ENOMEM)\n", 2278 ill->ill_name); 2279 return; 2280 } 2281 } 2282 2283 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2284 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2285 2286 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2287 cmn_err(CE_WARN, 2288 "ill_capability_ipsec_ack: " 2289 "malformed IPsec algorithm id %d", 2290 ialg->alg_prim); 2291 continue; 2292 } 2293 2294 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2295 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2296 ialg->alg_prim); 2297 } else { 2298 ipsec_capab_algparm_t *alp; 2299 2300 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2301 ialg->alg_prim); 2302 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2303 ialg->alg_prim)) { 2304 cmn_err(CE_WARN, 2305 "ill_capability_ipsec_ack: " 2306 "no space for IPsec alg id %d", 2307 ialg->alg_prim); 2308 continue; 2309 } 2310 alp = &((*ill_capab)->encr_algparm[ 2311 ialg->alg_prim]); 2312 alp->minkeylen = ialg->alg_minbits; 2313 alp->maxkeylen = ialg->alg_maxbits; 2314 } 2315 ill->ill_capabilities |= ill_capab_flag; 2316 /* 2317 * indicate that a capability was enabled, which 2318 * will be used below to kick off a SADB dump 2319 * to the ill. 2320 */ 2321 need_sadb_dump = B_TRUE; 2322 } else { 2323 IPSECHW_DEBUG(IPSECHW_CAPAB, 2324 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2325 ialg->alg_prim)); 2326 2327 if (nmp == NULL) { 2328 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2329 if (nmp == NULL) { 2330 /* 2331 * Sending the PROMISC_ON/OFF 2332 * notification request failed. 2333 * We cannot enable the algorithms 2334 * since the Provider will not 2335 * notify IP of promiscous mode 2336 * changes, which could lead 2337 * to leakage of packets. 2338 */ 2339 cmn_err(CE_WARN, 2340 "ill_capability_ipsec_ack: " 2341 "could not enable IPsec Hardware " 2342 "acceleration for %s (ENOMEM)\n", 2343 ill->ill_name); 2344 return; 2345 } 2346 /* ptr to current output alg specifier */ 2347 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2348 } 2349 2350 /* 2351 * Copy current alg specifier, set ENABLE 2352 * flag, and advance to next output alg. 2353 * For now we enable all IPsec capabilities. 2354 */ 2355 ASSERT(oalg != NULL); 2356 bcopy(ialg, oalg, alg_len); 2357 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2358 nmp->b_wptr += alg_len; 2359 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2360 } 2361 2362 /* move to next input algorithm specifier */ 2363 ialg = (dl_capab_ipsec_alg_t *) 2364 ((char *)ialg + alg_len); 2365 } 2366 2367 if (nmp != NULL) 2368 /* 2369 * nmp points to a DL_CAPABILITY_REQ message to enable 2370 * IPsec hardware acceleration. 2371 */ 2372 ill_dlpi_send(ill, nmp); 2373 2374 if (need_sadb_dump) 2375 /* 2376 * An acknowledgement corresponding to a request to 2377 * enable acceleration was received, notify SADB. 2378 */ 2379 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2380 } 2381 2382 /* 2383 * Given an mblk with enough space in it, create sub-capability entries for 2384 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2385 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2386 * in preparation for the reset the DL_CAPABILITY_REQ message. 2387 */ 2388 static void 2389 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2390 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2391 { 2392 dl_capab_ipsec_t *oipsec; 2393 dl_capab_ipsec_alg_t *oalg; 2394 dl_capability_sub_t *dl_subcap; 2395 int i, k; 2396 2397 ASSERT(nciphers > 0); 2398 ASSERT(ill_cap != NULL); 2399 ASSERT(mp != NULL); 2400 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2401 2402 /* dl_capability_sub_t for "stype" */ 2403 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2404 dl_subcap->dl_cap = stype; 2405 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2406 mp->b_wptr += sizeof (dl_capability_sub_t); 2407 2408 /* dl_capab_ipsec_t for "stype" */ 2409 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2410 oipsec->cip_version = 1; 2411 oipsec->cip_nciphers = nciphers; 2412 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2413 2414 /* create entries for "stype" AUTH ciphers */ 2415 for (i = 0; i < ill_cap->algs_size; i++) { 2416 for (k = 0; k < BITSPERBYTE; k++) { 2417 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2418 continue; 2419 2420 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2421 bzero((void *)oalg, sizeof (*oalg)); 2422 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2423 oalg->alg_prim = k + (BITSPERBYTE * i); 2424 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2425 } 2426 } 2427 /* create entries for "stype" ENCR ciphers */ 2428 for (i = 0; i < ill_cap->algs_size; i++) { 2429 for (k = 0; k < BITSPERBYTE; k++) { 2430 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2431 continue; 2432 2433 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2434 bzero((void *)oalg, sizeof (*oalg)); 2435 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2436 oalg->alg_prim = k + (BITSPERBYTE * i); 2437 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2438 } 2439 } 2440 } 2441 2442 /* 2443 * Macro to count number of 1s in a byte (8-bit word). The total count is 2444 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2445 * POPC instruction, but our macro is more flexible for an arbitrary length 2446 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2447 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2448 * stays that way, we can reduce the number of iterations required. 2449 */ 2450 #define COUNT_1S(val, sum) { \ 2451 uint8_t x = val & 0xff; \ 2452 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2453 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2454 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2455 } 2456 2457 /* ARGSUSED */ 2458 static void 2459 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2460 { 2461 mblk_t *mp; 2462 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2463 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2464 uint64_t ill_capabilities = ill->ill_capabilities; 2465 int ah_cnt = 0, esp_cnt = 0; 2466 int ah_len = 0, esp_len = 0; 2467 int i, size = 0; 2468 2469 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2470 return; 2471 2472 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2473 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2474 2475 /* Find out the number of ciphers for AH */ 2476 if (cap_ah != NULL) { 2477 for (i = 0; i < cap_ah->algs_size; i++) { 2478 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2479 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2480 } 2481 if (ah_cnt > 0) { 2482 size += sizeof (dl_capability_sub_t) + 2483 sizeof (dl_capab_ipsec_t); 2484 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2485 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2486 size += ah_len; 2487 } 2488 } 2489 2490 /* Find out the number of ciphers for ESP */ 2491 if (cap_esp != NULL) { 2492 for (i = 0; i < cap_esp->algs_size; i++) { 2493 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2494 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2495 } 2496 if (esp_cnt > 0) { 2497 size += sizeof (dl_capability_sub_t) + 2498 sizeof (dl_capab_ipsec_t); 2499 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2500 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2501 size += esp_len; 2502 } 2503 } 2504 2505 if (size == 0) { 2506 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2507 "there's nothing to reset\n")); 2508 return; 2509 } 2510 2511 mp = allocb(size, BPRI_HI); 2512 if (mp == NULL) { 2513 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2514 "request to disable IPSEC Hardware Acceleration\n")); 2515 return; 2516 } 2517 2518 /* 2519 * Clear the capability flags for IPsec HA but retain the ill 2520 * capability structures since it's possible that another thread 2521 * is still referring to them. The structures only get deallocated 2522 * when we destroy the ill. 2523 * 2524 * Various places check the flags to see if the ill is capable of 2525 * hardware acceleration, and by clearing them we ensure that new 2526 * outbound IPsec packets are sent down encrypted. 2527 */ 2528 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2529 2530 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2531 if (ah_cnt > 0) { 2532 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2533 cap_ah, mp); 2534 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2535 } 2536 2537 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2538 if (esp_cnt > 0) { 2539 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2540 cap_esp, mp); 2541 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2542 } 2543 2544 /* 2545 * At this point we've composed a bunch of sub-capabilities to be 2546 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2547 * by the caller. Upon receiving this reset message, the driver 2548 * must stop inbound decryption (by destroying all inbound SAs) 2549 * and let the corresponding packets come in encrypted. 2550 */ 2551 2552 if (*sc_mp != NULL) 2553 linkb(*sc_mp, mp); 2554 else 2555 *sc_mp = mp; 2556 } 2557 2558 static void 2559 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2560 boolean_t encapsulated) 2561 { 2562 boolean_t legacy = B_FALSE; 2563 2564 /* 2565 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2566 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2567 * instructed the driver to disable its advertised capabilities, 2568 * so there's no point in accepting any response at this moment. 2569 */ 2570 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2571 return; 2572 2573 /* 2574 * Note that only the following two sub-capabilities may be 2575 * considered as "legacy", since their original definitions 2576 * do not incorporate the dl_mid_t module ID token, and hence 2577 * may require the use of the wrapper sub-capability. 2578 */ 2579 switch (subp->dl_cap) { 2580 case DL_CAPAB_IPSEC_AH: 2581 case DL_CAPAB_IPSEC_ESP: 2582 legacy = B_TRUE; 2583 break; 2584 } 2585 2586 /* 2587 * For legacy sub-capabilities which don't incorporate a queue_t 2588 * pointer in their structures, discard them if we detect that 2589 * there are intermediate modules in between IP and the driver. 2590 */ 2591 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2592 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2593 "%d discarded; %d module(s) present below IP\n", 2594 subp->dl_cap, ill->ill_lmod_cnt)); 2595 return; 2596 } 2597 2598 switch (subp->dl_cap) { 2599 case DL_CAPAB_IPSEC_AH: 2600 case DL_CAPAB_IPSEC_ESP: 2601 ill_capability_ipsec_ack(ill, mp, subp); 2602 break; 2603 case DL_CAPAB_MDT: 2604 ill_capability_mdt_ack(ill, mp, subp); 2605 break; 2606 case DL_CAPAB_HCKSUM: 2607 ill_capability_hcksum_ack(ill, mp, subp); 2608 break; 2609 case DL_CAPAB_ZEROCOPY: 2610 ill_capability_zerocopy_ack(ill, mp, subp); 2611 break; 2612 case DL_CAPAB_POLL: 2613 if (!SOFT_RINGS_ENABLED()) 2614 ill_capability_dls_ack(ill, mp, subp); 2615 break; 2616 case DL_CAPAB_SOFT_RING: 2617 if (SOFT_RINGS_ENABLED()) 2618 ill_capability_dls_ack(ill, mp, subp); 2619 break; 2620 case DL_CAPAB_LSO: 2621 ill_capability_lso_ack(ill, mp, subp); 2622 break; 2623 default: 2624 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2625 subp->dl_cap)); 2626 } 2627 } 2628 2629 /* 2630 * As part of negotiating polling capability, the driver tells us 2631 * the default (or normal) blanking interval and packet threshold 2632 * (the receive timer fires if blanking interval is reached or 2633 * the packet threshold is reached). 2634 * 2635 * As part of manipulating the polling interval, we always use our 2636 * estimated interval (avg service time * number of packets queued 2637 * on the squeue) but we try to blank for a minimum of 2638 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2639 * packet threshold during this time. When we are not in polling mode 2640 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2641 * rr_min_blank_ratio but up the packet cnt by a ratio of 2642 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2643 * possible although for a shorter interval. 2644 */ 2645 #define RR_MAX_BLANK_RATIO 20 2646 #define RR_MIN_BLANK_RATIO 10 2647 #define RR_MAX_PKT_CNT_RATIO 3 2648 #define RR_MIN_PKT_CNT_RATIO 3 2649 2650 /* 2651 * These can be tuned via /etc/system. 2652 */ 2653 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2654 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2655 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2656 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2657 2658 static mac_resource_handle_t 2659 ill_ring_add(void *arg, mac_resource_t *mrp) 2660 { 2661 ill_t *ill = (ill_t *)arg; 2662 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2663 ill_rx_ring_t *rx_ring; 2664 int ip_rx_index; 2665 2666 ASSERT(mrp != NULL); 2667 if (mrp->mr_type != MAC_RX_FIFO) { 2668 return (NULL); 2669 } 2670 ASSERT(ill != NULL); 2671 ASSERT(ill->ill_dls_capab != NULL); 2672 2673 mutex_enter(&ill->ill_lock); 2674 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2675 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2676 ASSERT(rx_ring != NULL); 2677 2678 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2679 time_t normal_blank_time = 2680 mrfp->mrf_normal_blank_time; 2681 uint_t normal_pkt_cnt = 2682 mrfp->mrf_normal_pkt_count; 2683 2684 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2685 2686 rx_ring->rr_blank = mrfp->mrf_blank; 2687 rx_ring->rr_handle = mrfp->mrf_arg; 2688 rx_ring->rr_ill = ill; 2689 rx_ring->rr_normal_blank_time = normal_blank_time; 2690 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2691 2692 rx_ring->rr_max_blank_time = 2693 normal_blank_time * rr_max_blank_ratio; 2694 rx_ring->rr_min_blank_time = 2695 normal_blank_time * rr_min_blank_ratio; 2696 rx_ring->rr_max_pkt_cnt = 2697 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2698 rx_ring->rr_min_pkt_cnt = 2699 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2700 2701 rx_ring->rr_ring_state = ILL_RING_INUSE; 2702 mutex_exit(&ill->ill_lock); 2703 2704 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2705 (int), ip_rx_index); 2706 return ((mac_resource_handle_t)rx_ring); 2707 } 2708 } 2709 2710 /* 2711 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2712 * we have devices which can overwhelm this limit, ILL_MAX_RING 2713 * should be made configurable. Meanwhile it cause no panic because 2714 * driver will pass ip_input a NULL handle which will make 2715 * IP allocate the default squeue and Polling mode will not 2716 * be used for this ring. 2717 */ 2718 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2719 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2720 2721 mutex_exit(&ill->ill_lock); 2722 return (NULL); 2723 } 2724 2725 static boolean_t 2726 ill_capability_dls_init(ill_t *ill) 2727 { 2728 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2729 conn_t *connp; 2730 size_t sz; 2731 ip_stack_t *ipst = ill->ill_ipst; 2732 2733 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2734 if (ill_dls == NULL) { 2735 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2736 "soft_ring enabled for ill=%s (%p) but data " 2737 "structs uninitialized\n", ill->ill_name, 2738 (void *)ill); 2739 } 2740 return (B_TRUE); 2741 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2742 if (ill_dls == NULL) { 2743 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2744 "polling enabled for ill=%s (%p) but data " 2745 "structs uninitialized\n", ill->ill_name, 2746 (void *)ill); 2747 } 2748 return (B_TRUE); 2749 } 2750 2751 if (ill_dls != NULL) { 2752 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2753 /* Soft_Ring or polling is being re-enabled */ 2754 2755 connp = ill_dls->ill_unbind_conn; 2756 ASSERT(rx_ring != NULL); 2757 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2758 bzero((void *)rx_ring, 2759 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2760 ill_dls->ill_ring_tbl = rx_ring; 2761 ill_dls->ill_unbind_conn = connp; 2762 return (B_TRUE); 2763 } 2764 2765 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2766 ipst->ips_netstack)) == NULL) 2767 return (B_FALSE); 2768 2769 sz = sizeof (ill_dls_capab_t); 2770 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2771 2772 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2773 if (ill_dls == NULL) { 2774 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2775 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2776 (void *)ill); 2777 CONN_DEC_REF(connp); 2778 return (B_FALSE); 2779 } 2780 2781 /* Allocate space to hold ring table */ 2782 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2783 ill->ill_dls_capab = ill_dls; 2784 ill_dls->ill_unbind_conn = connp; 2785 return (B_TRUE); 2786 } 2787 2788 /* 2789 * ill_capability_dls_disable: disable soft_ring and/or polling 2790 * capability. Since any of the rings might already be in use, need 2791 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2792 * direct calls if necessary. 2793 */ 2794 static void 2795 ill_capability_dls_disable(ill_t *ill) 2796 { 2797 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2798 2799 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2800 ip_squeue_clean_all(ill); 2801 ill_dls->ill_tx = NULL; 2802 ill_dls->ill_tx_handle = NULL; 2803 ill_dls->ill_dls_change_status = NULL; 2804 ill_dls->ill_dls_bind = NULL; 2805 ill_dls->ill_dls_unbind = NULL; 2806 } 2807 2808 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2809 } 2810 2811 static void 2812 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2813 dl_capability_sub_t *isub) 2814 { 2815 uint_t size; 2816 uchar_t *rptr; 2817 dl_capab_dls_t dls, *odls; 2818 ill_dls_capab_t *ill_dls; 2819 mblk_t *nmp = NULL; 2820 dl_capability_req_t *ocap; 2821 uint_t sub_dl_cap = isub->dl_cap; 2822 2823 if (!ill_capability_dls_init(ill)) 2824 return; 2825 ill_dls = ill->ill_dls_capab; 2826 2827 /* Copy locally to get the members aligned */ 2828 bcopy((void *)idls, (void *)&dls, 2829 sizeof (dl_capab_dls_t)); 2830 2831 /* Get the tx function and handle from dld */ 2832 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2833 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2834 2835 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2836 ill_dls->ill_dls_change_status = 2837 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2838 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2839 ill_dls->ill_dls_unbind = 2840 (ip_dls_unbind_t)dls.dls_ring_unbind; 2841 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2842 } 2843 2844 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2845 isub->dl_length; 2846 2847 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2848 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2849 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2850 ill->ill_name, (void *)ill); 2851 return; 2852 } 2853 2854 /* initialize dl_capability_req_t */ 2855 rptr = nmp->b_rptr; 2856 ocap = (dl_capability_req_t *)rptr; 2857 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2858 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2859 rptr += sizeof (dl_capability_req_t); 2860 2861 /* initialize dl_capability_sub_t */ 2862 bcopy(isub, rptr, sizeof (*isub)); 2863 rptr += sizeof (*isub); 2864 2865 odls = (dl_capab_dls_t *)rptr; 2866 rptr += sizeof (dl_capab_dls_t); 2867 2868 /* initialize dl_capab_dls_t to be sent down */ 2869 dls.dls_rx_handle = (uintptr_t)ill; 2870 dls.dls_rx = (uintptr_t)ip_input; 2871 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2872 2873 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2874 dls.dls_ring_cnt = ip_soft_rings_cnt; 2875 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2876 dls.dls_flags = SOFT_RING_ENABLE; 2877 } else { 2878 dls.dls_flags = POLL_ENABLE; 2879 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2880 "to enable polling\n", ill->ill_name)); 2881 } 2882 bcopy((void *)&dls, (void *)odls, 2883 sizeof (dl_capab_dls_t)); 2884 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2885 /* 2886 * nmp points to a DL_CAPABILITY_REQ message to 2887 * enable either soft_ring or polling 2888 */ 2889 ill_dlpi_send(ill, nmp); 2890 } 2891 2892 static void 2893 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2894 { 2895 mblk_t *mp; 2896 dl_capab_dls_t *idls; 2897 dl_capability_sub_t *dl_subcap; 2898 int size; 2899 2900 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2901 return; 2902 2903 ASSERT(ill->ill_dls_capab != NULL); 2904 2905 size = sizeof (*dl_subcap) + sizeof (*idls); 2906 2907 mp = allocb(size, BPRI_HI); 2908 if (mp == NULL) { 2909 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2910 "request to disable soft_ring\n")); 2911 return; 2912 } 2913 2914 mp->b_wptr = mp->b_rptr + size; 2915 2916 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2917 dl_subcap->dl_length = sizeof (*idls); 2918 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2919 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2920 else 2921 dl_subcap->dl_cap = DL_CAPAB_POLL; 2922 2923 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2924 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2925 idls->dls_flags = SOFT_RING_DISABLE; 2926 else 2927 idls->dls_flags = POLL_DISABLE; 2928 2929 if (*sc_mp != NULL) 2930 linkb(*sc_mp, mp); 2931 else 2932 *sc_mp = mp; 2933 } 2934 2935 /* 2936 * Process a soft_ring/poll capability negotiation ack received 2937 * from a DLS Provider.isub must point to the sub-capability 2938 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2939 */ 2940 static void 2941 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2942 { 2943 dl_capab_dls_t *idls; 2944 uint_t sub_dl_cap = isub->dl_cap; 2945 uint8_t *capend; 2946 2947 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2948 sub_dl_cap == DL_CAPAB_POLL); 2949 2950 if (ill->ill_isv6) 2951 return; 2952 2953 /* 2954 * Note: range checks here are not absolutely sufficient to 2955 * make us robust against malformed messages sent by drivers; 2956 * this is in keeping with the rest of IP's dlpi handling. 2957 * (Remember, it's coming from something else in the kernel 2958 * address space) 2959 */ 2960 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2961 if (capend > mp->b_wptr) { 2962 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2963 "malformed sub-capability too long for mblk"); 2964 return; 2965 } 2966 2967 /* 2968 * There are two types of acks we process here: 2969 * 1. acks in reply to a (first form) generic capability req 2970 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2971 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2972 * capability req. 2973 */ 2974 idls = (dl_capab_dls_t *)(isub + 1); 2975 2976 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2977 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2978 "capability isn't as expected; pass-thru " 2979 "module(s) detected, discarding capability\n")); 2980 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2981 /* 2982 * This is a capability renegotitation case. 2983 * The interface better be unusable at this 2984 * point other wise bad things will happen 2985 * if we disable direct calls on a running 2986 * and up interface. 2987 */ 2988 ill_capability_dls_disable(ill); 2989 } 2990 return; 2991 } 2992 2993 switch (idls->dls_flags) { 2994 default: 2995 /* Disable if unknown flag */ 2996 case SOFT_RING_DISABLE: 2997 case POLL_DISABLE: 2998 ill_capability_dls_disable(ill); 2999 break; 3000 case SOFT_RING_CAPABLE: 3001 case POLL_CAPABLE: 3002 /* 3003 * If the capability was already enabled, its safe 3004 * to disable it first to get rid of stale information 3005 * and then start enabling it again. 3006 */ 3007 ill_capability_dls_disable(ill); 3008 ill_capability_dls_capable(ill, idls, isub); 3009 break; 3010 case SOFT_RING_ENABLE: 3011 case POLL_ENABLE: 3012 mutex_enter(&ill->ill_lock); 3013 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3014 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3015 ASSERT(ill->ill_dls_capab != NULL); 3016 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3017 } 3018 if (sub_dl_cap == DL_CAPAB_POLL && 3019 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3020 ASSERT(ill->ill_dls_capab != NULL); 3021 ill->ill_capabilities |= ILL_CAPAB_POLL; 3022 ip1dbg(("ill_capability_dls_ack: interface %s " 3023 "has enabled polling\n", ill->ill_name)); 3024 } 3025 mutex_exit(&ill->ill_lock); 3026 break; 3027 } 3028 } 3029 3030 /* 3031 * Process a hardware checksum offload capability negotiation ack received 3032 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3033 * of a DL_CAPABILITY_ACK message. 3034 */ 3035 static void 3036 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3037 { 3038 dl_capability_req_t *ocap; 3039 dl_capab_hcksum_t *ihck, *ohck; 3040 ill_hcksum_capab_t **ill_hcksum; 3041 mblk_t *nmp = NULL; 3042 uint_t sub_dl_cap = isub->dl_cap; 3043 uint8_t *capend; 3044 3045 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3046 3047 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3048 3049 /* 3050 * Note: range checks here are not absolutely sufficient to 3051 * make us robust against malformed messages sent by drivers; 3052 * this is in keeping with the rest of IP's dlpi handling. 3053 * (Remember, it's coming from something else in the kernel 3054 * address space) 3055 */ 3056 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3057 if (capend > mp->b_wptr) { 3058 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3059 "malformed sub-capability too long for mblk"); 3060 return; 3061 } 3062 3063 /* 3064 * There are two types of acks we process here: 3065 * 1. acks in reply to a (first form) generic capability req 3066 * (no ENABLE flag set) 3067 * 2. acks in reply to a ENABLE capability req. 3068 * (ENABLE flag set) 3069 */ 3070 ihck = (dl_capab_hcksum_t *)(isub + 1); 3071 3072 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3073 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3074 "unsupported hardware checksum " 3075 "sub-capability (version %d, expected %d)", 3076 ihck->hcksum_version, HCKSUM_VERSION_1); 3077 return; 3078 } 3079 3080 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3081 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3082 "checksum capability isn't as expected; pass-thru " 3083 "module(s) detected, discarding capability\n")); 3084 return; 3085 } 3086 3087 #define CURR_HCKSUM_CAPAB \ 3088 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3089 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3090 3091 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3092 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3093 /* do ENABLE processing */ 3094 if (*ill_hcksum == NULL) { 3095 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3096 KM_NOSLEEP); 3097 3098 if (*ill_hcksum == NULL) { 3099 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3100 "could not enable hcksum version %d " 3101 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3102 ill->ill_name); 3103 return; 3104 } 3105 } 3106 3107 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3108 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3109 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3110 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3111 "has enabled hardware checksumming\n ", 3112 ill->ill_name)); 3113 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3114 /* 3115 * Enabling hardware checksum offload 3116 * Currently IP supports {TCP,UDP}/IPv4 3117 * partial and full cksum offload and 3118 * IPv4 header checksum offload. 3119 * Allocate new mblk which will 3120 * contain a new capability request 3121 * to enable hardware checksum offload. 3122 */ 3123 uint_t size; 3124 uchar_t *rptr; 3125 3126 size = sizeof (dl_capability_req_t) + 3127 sizeof (dl_capability_sub_t) + isub->dl_length; 3128 3129 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3130 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3131 "could not enable hardware cksum for %s (ENOMEM)\n", 3132 ill->ill_name); 3133 return; 3134 } 3135 3136 rptr = nmp->b_rptr; 3137 /* initialize dl_capability_req_t */ 3138 ocap = (dl_capability_req_t *)nmp->b_rptr; 3139 ocap->dl_sub_offset = 3140 sizeof (dl_capability_req_t); 3141 ocap->dl_sub_length = 3142 sizeof (dl_capability_sub_t) + 3143 isub->dl_length; 3144 nmp->b_rptr += sizeof (dl_capability_req_t); 3145 3146 /* initialize dl_capability_sub_t */ 3147 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3148 nmp->b_rptr += sizeof (*isub); 3149 3150 /* initialize dl_capab_hcksum_t */ 3151 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3152 bcopy(ihck, ohck, sizeof (*ihck)); 3153 3154 nmp->b_rptr = rptr; 3155 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3156 3157 /* Set ENABLE flag */ 3158 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3159 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3160 3161 /* 3162 * nmp points to a DL_CAPABILITY_REQ message to enable 3163 * hardware checksum acceleration. 3164 */ 3165 ill_dlpi_send(ill, nmp); 3166 } else { 3167 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3168 "advertised %x hardware checksum capability flags\n", 3169 ill->ill_name, ihck->hcksum_txflags)); 3170 } 3171 } 3172 3173 static void 3174 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3175 { 3176 mblk_t *mp; 3177 dl_capab_hcksum_t *hck_subcap; 3178 dl_capability_sub_t *dl_subcap; 3179 int size; 3180 3181 if (!ILL_HCKSUM_CAPABLE(ill)) 3182 return; 3183 3184 ASSERT(ill->ill_hcksum_capab != NULL); 3185 /* 3186 * Clear the capability flag for hardware checksum offload but 3187 * retain the ill_hcksum_capab structure since it's possible that 3188 * another thread is still referring to it. The structure only 3189 * gets deallocated when we destroy the ill. 3190 */ 3191 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3192 3193 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3194 3195 mp = allocb(size, BPRI_HI); 3196 if (mp == NULL) { 3197 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3198 "request to disable hardware checksum offload\n")); 3199 return; 3200 } 3201 3202 mp->b_wptr = mp->b_rptr + size; 3203 3204 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3205 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3206 dl_subcap->dl_length = sizeof (*hck_subcap); 3207 3208 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3209 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3210 hck_subcap->hcksum_txflags = 0; 3211 3212 if (*sc_mp != NULL) 3213 linkb(*sc_mp, mp); 3214 else 3215 *sc_mp = mp; 3216 } 3217 3218 static void 3219 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3220 { 3221 mblk_t *nmp = NULL; 3222 dl_capability_req_t *oc; 3223 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3224 ill_zerocopy_capab_t **ill_zerocopy_capab; 3225 uint_t sub_dl_cap = isub->dl_cap; 3226 uint8_t *capend; 3227 3228 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3229 3230 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3231 3232 /* 3233 * Note: range checks here are not absolutely sufficient to 3234 * make us robust against malformed messages sent by drivers; 3235 * this is in keeping with the rest of IP's dlpi handling. 3236 * (Remember, it's coming from something else in the kernel 3237 * address space) 3238 */ 3239 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3240 if (capend > mp->b_wptr) { 3241 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3242 "malformed sub-capability too long for mblk"); 3243 return; 3244 } 3245 3246 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3247 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3248 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3249 "unsupported ZEROCOPY sub-capability (version %d, " 3250 "expected %d)", zc_ic->zerocopy_version, 3251 ZEROCOPY_VERSION_1); 3252 return; 3253 } 3254 3255 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3256 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3257 "capability isn't as expected; pass-thru module(s) " 3258 "detected, discarding capability\n")); 3259 return; 3260 } 3261 3262 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3263 if (*ill_zerocopy_capab == NULL) { 3264 *ill_zerocopy_capab = 3265 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3266 KM_NOSLEEP); 3267 3268 if (*ill_zerocopy_capab == NULL) { 3269 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3270 "could not enable Zero-copy version %d " 3271 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3272 ill->ill_name); 3273 return; 3274 } 3275 } 3276 3277 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3278 "supports Zero-copy version %d\n", ill->ill_name, 3279 ZEROCOPY_VERSION_1)); 3280 3281 (*ill_zerocopy_capab)->ill_zerocopy_version = 3282 zc_ic->zerocopy_version; 3283 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3284 zc_ic->zerocopy_flags; 3285 3286 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3287 } else { 3288 uint_t size; 3289 uchar_t *rptr; 3290 3291 size = sizeof (dl_capability_req_t) + 3292 sizeof (dl_capability_sub_t) + 3293 sizeof (dl_capab_zerocopy_t); 3294 3295 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3296 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3297 "could not enable zerocopy for %s (ENOMEM)\n", 3298 ill->ill_name); 3299 return; 3300 } 3301 3302 rptr = nmp->b_rptr; 3303 /* initialize dl_capability_req_t */ 3304 oc = (dl_capability_req_t *)rptr; 3305 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3306 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3307 sizeof (dl_capab_zerocopy_t); 3308 rptr += sizeof (dl_capability_req_t); 3309 3310 /* initialize dl_capability_sub_t */ 3311 bcopy(isub, rptr, sizeof (*isub)); 3312 rptr += sizeof (*isub); 3313 3314 /* initialize dl_capab_zerocopy_t */ 3315 zc_oc = (dl_capab_zerocopy_t *)rptr; 3316 *zc_oc = *zc_ic; 3317 3318 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3319 "to enable zero-copy version %d\n", ill->ill_name, 3320 ZEROCOPY_VERSION_1)); 3321 3322 /* set VMSAFE_MEM flag */ 3323 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3324 3325 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3326 ill_dlpi_send(ill, nmp); 3327 } 3328 } 3329 3330 static void 3331 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3332 { 3333 mblk_t *mp; 3334 dl_capab_zerocopy_t *zerocopy_subcap; 3335 dl_capability_sub_t *dl_subcap; 3336 int size; 3337 3338 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3339 return; 3340 3341 ASSERT(ill->ill_zerocopy_capab != NULL); 3342 /* 3343 * Clear the capability flag for Zero-copy but retain the 3344 * ill_zerocopy_capab structure since it's possible that another 3345 * thread is still referring to it. The structure only gets 3346 * deallocated when we destroy the ill. 3347 */ 3348 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3349 3350 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3351 3352 mp = allocb(size, BPRI_HI); 3353 if (mp == NULL) { 3354 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3355 "request to disable Zero-copy\n")); 3356 return; 3357 } 3358 3359 mp->b_wptr = mp->b_rptr + size; 3360 3361 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3362 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3363 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3364 3365 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3366 zerocopy_subcap->zerocopy_version = 3367 ill->ill_zerocopy_capab->ill_zerocopy_version; 3368 zerocopy_subcap->zerocopy_flags = 0; 3369 3370 if (*sc_mp != NULL) 3371 linkb(*sc_mp, mp); 3372 else 3373 *sc_mp = mp; 3374 } 3375 3376 /* 3377 * Process Large Segment Offload capability negotiation ack received from a 3378 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3379 * DL_CAPABILITY_ACK message. 3380 */ 3381 static void 3382 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3383 { 3384 mblk_t *nmp = NULL; 3385 dl_capability_req_t *oc; 3386 dl_capab_lso_t *lso_ic, *lso_oc; 3387 ill_lso_capab_t **ill_lso_capab; 3388 uint_t sub_dl_cap = isub->dl_cap; 3389 uint8_t *capend; 3390 3391 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3392 3393 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3394 3395 /* 3396 * Note: range checks here are not absolutely sufficient to 3397 * make us robust against malformed messages sent by drivers; 3398 * this is in keeping with the rest of IP's dlpi handling. 3399 * (Remember, it's coming from something else in the kernel 3400 * address space) 3401 */ 3402 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3403 if (capend > mp->b_wptr) { 3404 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3405 "malformed sub-capability too long for mblk"); 3406 return; 3407 } 3408 3409 lso_ic = (dl_capab_lso_t *)(isub + 1); 3410 3411 if (lso_ic->lso_version != LSO_VERSION_1) { 3412 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3413 "unsupported LSO sub-capability (version %d, expected %d)", 3414 lso_ic->lso_version, LSO_VERSION_1); 3415 return; 3416 } 3417 3418 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3419 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3420 "capability isn't as expected; pass-thru module(s) " 3421 "detected, discarding capability\n")); 3422 return; 3423 } 3424 3425 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3426 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3427 if (*ill_lso_capab == NULL) { 3428 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3429 KM_NOSLEEP); 3430 3431 if (*ill_lso_capab == NULL) { 3432 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3433 "could not enable LSO version %d " 3434 "for %s (ENOMEM)\n", LSO_VERSION_1, 3435 ill->ill_name); 3436 return; 3437 } 3438 } 3439 3440 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3441 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3442 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3443 ill->ill_capabilities |= ILL_CAPAB_LSO; 3444 3445 ip1dbg(("ill_capability_lso_ack: interface %s " 3446 "has enabled LSO\n ", ill->ill_name)); 3447 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3448 uint_t size; 3449 uchar_t *rptr; 3450 3451 size = sizeof (dl_capability_req_t) + 3452 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3453 3454 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3455 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3456 "could not enable LSO for %s (ENOMEM)\n", 3457 ill->ill_name); 3458 return; 3459 } 3460 3461 rptr = nmp->b_rptr; 3462 /* initialize dl_capability_req_t */ 3463 oc = (dl_capability_req_t *)nmp->b_rptr; 3464 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3465 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3466 sizeof (dl_capab_lso_t); 3467 nmp->b_rptr += sizeof (dl_capability_req_t); 3468 3469 /* initialize dl_capability_sub_t */ 3470 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3471 nmp->b_rptr += sizeof (*isub); 3472 3473 /* initialize dl_capab_lso_t */ 3474 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3475 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3476 3477 nmp->b_rptr = rptr; 3478 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3479 3480 /* set ENABLE flag */ 3481 lso_oc->lso_flags |= LSO_TX_ENABLE; 3482 3483 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3484 ill_dlpi_send(ill, nmp); 3485 } else { 3486 ip1dbg(("ill_capability_lso_ack: interface %s has " 3487 "advertised %x LSO capability flags\n", 3488 ill->ill_name, lso_ic->lso_flags)); 3489 } 3490 } 3491 3492 3493 static void 3494 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3495 { 3496 mblk_t *mp; 3497 dl_capab_lso_t *lso_subcap; 3498 dl_capability_sub_t *dl_subcap; 3499 int size; 3500 3501 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3502 return; 3503 3504 ASSERT(ill->ill_lso_capab != NULL); 3505 /* 3506 * Clear the capability flag for LSO but retain the 3507 * ill_lso_capab structure since it's possible that another 3508 * thread is still referring to it. The structure only gets 3509 * deallocated when we destroy the ill. 3510 */ 3511 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3512 3513 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3514 3515 mp = allocb(size, BPRI_HI); 3516 if (mp == NULL) { 3517 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3518 "request to disable LSO\n")); 3519 return; 3520 } 3521 3522 mp->b_wptr = mp->b_rptr + size; 3523 3524 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3525 dl_subcap->dl_cap = DL_CAPAB_LSO; 3526 dl_subcap->dl_length = sizeof (*lso_subcap); 3527 3528 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3529 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3530 lso_subcap->lso_flags = 0; 3531 3532 if (*sc_mp != NULL) 3533 linkb(*sc_mp, mp); 3534 else 3535 *sc_mp = mp; 3536 } 3537 3538 /* 3539 * Consume a new-style hardware capabilities negotiation ack. 3540 * Called from ip_rput_dlpi_writer(). 3541 */ 3542 void 3543 ill_capability_ack(ill_t *ill, mblk_t *mp) 3544 { 3545 dl_capability_ack_t *capp; 3546 dl_capability_sub_t *subp, *endp; 3547 3548 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3549 ill->ill_dlpi_capab_state = IDS_OK; 3550 3551 capp = (dl_capability_ack_t *)mp->b_rptr; 3552 3553 if (capp->dl_sub_length == 0) 3554 /* no new-style capabilities */ 3555 return; 3556 3557 /* make sure the driver supplied correct dl_sub_length */ 3558 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3559 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3560 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3561 return; 3562 } 3563 3564 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3565 /* 3566 * There are sub-capabilities. Process the ones we know about. 3567 * Loop until we don't have room for another sub-cap header.. 3568 */ 3569 for (subp = SC(capp, capp->dl_sub_offset), 3570 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3571 subp <= endp; 3572 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3573 3574 switch (subp->dl_cap) { 3575 case DL_CAPAB_ID_WRAPPER: 3576 ill_capability_id_ack(ill, mp, subp); 3577 break; 3578 default: 3579 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3580 break; 3581 } 3582 } 3583 #undef SC 3584 } 3585 3586 /* 3587 * This routine is called to scan the fragmentation reassembly table for 3588 * the specified ILL for any packets that are starting to smell. 3589 * dead_interval is the maximum time in seconds that will be tolerated. It 3590 * will either be the value specified in ip_g_frag_timeout, or zero if the 3591 * ILL is shutting down and it is time to blow everything off. 3592 * 3593 * It returns the number of seconds (as a time_t) that the next frag timer 3594 * should be scheduled for, 0 meaning that the timer doesn't need to be 3595 * re-started. Note that the method of calculating next_timeout isn't 3596 * entirely accurate since time will flow between the time we grab 3597 * current_time and the time we schedule the next timeout. This isn't a 3598 * big problem since this is the timer for sending an ICMP reassembly time 3599 * exceeded messages, and it doesn't have to be exactly accurate. 3600 * 3601 * This function is 3602 * sometimes called as writer, although this is not required. 3603 */ 3604 time_t 3605 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3606 { 3607 ipfb_t *ipfb; 3608 ipfb_t *endp; 3609 ipf_t *ipf; 3610 ipf_t *ipfnext; 3611 mblk_t *mp; 3612 time_t current_time = gethrestime_sec(); 3613 time_t next_timeout = 0; 3614 uint32_t hdr_length; 3615 mblk_t *send_icmp_head; 3616 mblk_t *send_icmp_head_v6; 3617 zoneid_t zoneid; 3618 ip_stack_t *ipst = ill->ill_ipst; 3619 3620 ipfb = ill->ill_frag_hash_tbl; 3621 if (ipfb == NULL) 3622 return (B_FALSE); 3623 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3624 /* Walk the frag hash table. */ 3625 for (; ipfb < endp; ipfb++) { 3626 send_icmp_head = NULL; 3627 send_icmp_head_v6 = NULL; 3628 mutex_enter(&ipfb->ipfb_lock); 3629 while ((ipf = ipfb->ipfb_ipf) != 0) { 3630 time_t frag_time = current_time - ipf->ipf_timestamp; 3631 time_t frag_timeout; 3632 3633 if (frag_time < dead_interval) { 3634 /* 3635 * There are some outstanding fragments 3636 * that will timeout later. Make note of 3637 * the time so that we can reschedule the 3638 * next timeout appropriately. 3639 */ 3640 frag_timeout = dead_interval - frag_time; 3641 if (next_timeout == 0 || 3642 frag_timeout < next_timeout) { 3643 next_timeout = frag_timeout; 3644 } 3645 break; 3646 } 3647 /* Time's up. Get it out of here. */ 3648 hdr_length = ipf->ipf_nf_hdr_len; 3649 ipfnext = ipf->ipf_hash_next; 3650 if (ipfnext) 3651 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3652 *ipf->ipf_ptphn = ipfnext; 3653 mp = ipf->ipf_mp->b_cont; 3654 for (; mp; mp = mp->b_cont) { 3655 /* Extra points for neatness. */ 3656 IP_REASS_SET_START(mp, 0); 3657 IP_REASS_SET_END(mp, 0); 3658 } 3659 mp = ipf->ipf_mp->b_cont; 3660 ill->ill_frag_count -= ipf->ipf_count; 3661 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3662 ipfb->ipfb_count -= ipf->ipf_count; 3663 ASSERT(ipfb->ipfb_frag_pkts > 0); 3664 ipfb->ipfb_frag_pkts--; 3665 /* 3666 * We do not send any icmp message from here because 3667 * we currently are holding the ipfb_lock for this 3668 * hash chain. If we try and send any icmp messages 3669 * from here we may end up via a put back into ip 3670 * trying to get the same lock, causing a recursive 3671 * mutex panic. Instead we build a list and send all 3672 * the icmp messages after we have dropped the lock. 3673 */ 3674 if (ill->ill_isv6) { 3675 if (hdr_length != 0) { 3676 mp->b_next = send_icmp_head_v6; 3677 send_icmp_head_v6 = mp; 3678 } else { 3679 freemsg(mp); 3680 } 3681 } else { 3682 if (hdr_length != 0) { 3683 mp->b_next = send_icmp_head; 3684 send_icmp_head = mp; 3685 } else { 3686 freemsg(mp); 3687 } 3688 } 3689 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3690 freeb(ipf->ipf_mp); 3691 } 3692 mutex_exit(&ipfb->ipfb_lock); 3693 /* 3694 * Now need to send any icmp messages that we delayed from 3695 * above. 3696 */ 3697 while (send_icmp_head_v6 != NULL) { 3698 ip6_t *ip6h; 3699 3700 mp = send_icmp_head_v6; 3701 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3702 mp->b_next = NULL; 3703 if (mp->b_datap->db_type == M_CTL) 3704 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3705 else 3706 ip6h = (ip6_t *)mp->b_rptr; 3707 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3708 ill, ipst); 3709 if (zoneid == ALL_ZONES) { 3710 freemsg(mp); 3711 } else { 3712 icmp_time_exceeded_v6(ill->ill_wq, mp, 3713 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3714 B_FALSE, zoneid, ipst); 3715 } 3716 } 3717 while (send_icmp_head != NULL) { 3718 ipaddr_t dst; 3719 3720 mp = send_icmp_head; 3721 send_icmp_head = send_icmp_head->b_next; 3722 mp->b_next = NULL; 3723 3724 if (mp->b_datap->db_type == M_CTL) 3725 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3726 else 3727 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3728 3729 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3730 if (zoneid == ALL_ZONES) { 3731 freemsg(mp); 3732 } else { 3733 icmp_time_exceeded(ill->ill_wq, mp, 3734 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3735 ipst); 3736 } 3737 } 3738 } 3739 /* 3740 * A non-dying ILL will use the return value to decide whether to 3741 * restart the frag timer, and for how long. 3742 */ 3743 return (next_timeout); 3744 } 3745 3746 /* 3747 * This routine is called when the approximate count of mblk memory used 3748 * for the specified ILL has exceeded max_count. 3749 */ 3750 void 3751 ill_frag_prune(ill_t *ill, uint_t max_count) 3752 { 3753 ipfb_t *ipfb; 3754 ipf_t *ipf; 3755 size_t count; 3756 3757 /* 3758 * If we are here within ip_min_frag_prune_time msecs remove 3759 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3760 * ill_frag_free_num_pkts. 3761 */ 3762 mutex_enter(&ill->ill_lock); 3763 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3764 (ip_min_frag_prune_time != 0 ? 3765 ip_min_frag_prune_time : msec_per_tick)) { 3766 3767 ill->ill_frag_free_num_pkts++; 3768 3769 } else { 3770 ill->ill_frag_free_num_pkts = 0; 3771 } 3772 ill->ill_last_frag_clean_time = lbolt; 3773 mutex_exit(&ill->ill_lock); 3774 3775 /* 3776 * free ill_frag_free_num_pkts oldest packets from each bucket. 3777 */ 3778 if (ill->ill_frag_free_num_pkts != 0) { 3779 int ix; 3780 3781 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3782 ipfb = &ill->ill_frag_hash_tbl[ix]; 3783 mutex_enter(&ipfb->ipfb_lock); 3784 if (ipfb->ipfb_ipf != NULL) { 3785 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3786 ill->ill_frag_free_num_pkts); 3787 } 3788 mutex_exit(&ipfb->ipfb_lock); 3789 } 3790 } 3791 /* 3792 * While the reassembly list for this ILL is too big, prune a fragment 3793 * queue by age, oldest first. Note that the per ILL count is 3794 * approximate, while the per frag hash bucket counts are accurate. 3795 */ 3796 while (ill->ill_frag_count > max_count) { 3797 int ix; 3798 ipfb_t *oipfb = NULL; 3799 uint_t oldest = UINT_MAX; 3800 3801 count = 0; 3802 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3803 ipfb = &ill->ill_frag_hash_tbl[ix]; 3804 mutex_enter(&ipfb->ipfb_lock); 3805 ipf = ipfb->ipfb_ipf; 3806 if (ipf != NULL && ipf->ipf_gen < oldest) { 3807 oldest = ipf->ipf_gen; 3808 oipfb = ipfb; 3809 } 3810 count += ipfb->ipfb_count; 3811 mutex_exit(&ipfb->ipfb_lock); 3812 } 3813 /* Refresh the per ILL count */ 3814 ill->ill_frag_count = count; 3815 if (oipfb == NULL) { 3816 ill->ill_frag_count = 0; 3817 break; 3818 } 3819 if (count <= max_count) 3820 return; /* Somebody beat us to it, nothing to do */ 3821 mutex_enter(&oipfb->ipfb_lock); 3822 ipf = oipfb->ipfb_ipf; 3823 if (ipf != NULL) { 3824 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3825 } 3826 mutex_exit(&oipfb->ipfb_lock); 3827 } 3828 } 3829 3830 /* 3831 * free 'free_cnt' fragmented packets starting at ipf. 3832 */ 3833 void 3834 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3835 { 3836 size_t count; 3837 mblk_t *mp; 3838 mblk_t *tmp; 3839 ipf_t **ipfp = ipf->ipf_ptphn; 3840 3841 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3842 ASSERT(ipfp != NULL); 3843 ASSERT(ipf != NULL); 3844 3845 while (ipf != NULL && free_cnt-- > 0) { 3846 count = ipf->ipf_count; 3847 mp = ipf->ipf_mp; 3848 ipf = ipf->ipf_hash_next; 3849 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3850 IP_REASS_SET_START(tmp, 0); 3851 IP_REASS_SET_END(tmp, 0); 3852 } 3853 ill->ill_frag_count -= count; 3854 ASSERT(ipfb->ipfb_count >= count); 3855 ipfb->ipfb_count -= count; 3856 ASSERT(ipfb->ipfb_frag_pkts > 0); 3857 ipfb->ipfb_frag_pkts--; 3858 freemsg(mp); 3859 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3860 } 3861 3862 if (ipf) 3863 ipf->ipf_ptphn = ipfp; 3864 ipfp[0] = ipf; 3865 } 3866 3867 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3868 "obsolete and may be removed in a future release of Solaris. Use " \ 3869 "ifconfig(1M) to manipulate the forwarding status of an interface." 3870 3871 /* 3872 * For obsolete per-interface forwarding configuration; 3873 * called in response to ND_GET. 3874 */ 3875 /* ARGSUSED */ 3876 static int 3877 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3878 { 3879 ill_t *ill = (ill_t *)cp; 3880 3881 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3882 3883 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3884 return (0); 3885 } 3886 3887 /* 3888 * For obsolete per-interface forwarding configuration; 3889 * called in response to ND_SET. 3890 */ 3891 /* ARGSUSED */ 3892 static int 3893 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3894 cred_t *ioc_cr) 3895 { 3896 long value; 3897 int retval; 3898 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3899 3900 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3901 3902 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3903 value < 0 || value > 1) { 3904 return (EINVAL); 3905 } 3906 3907 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3908 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3909 rw_exit(&ipst->ips_ill_g_lock); 3910 return (retval); 3911 } 3912 3913 /* 3914 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3915 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3916 * up RTS_IFINFO routing socket messages for each interface whose flags we 3917 * change. 3918 */ 3919 int 3920 ill_forward_set(ill_t *ill, boolean_t enable) 3921 { 3922 ill_group_t *illgrp; 3923 ip_stack_t *ipst = ill->ill_ipst; 3924 3925 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3926 3927 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3928 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3929 return (0); 3930 3931 if (IS_LOOPBACK(ill)) 3932 return (EINVAL); 3933 3934 /* 3935 * If the ill is in an IPMP group, set the forwarding policy on all 3936 * members of the group to the same value. 3937 */ 3938 illgrp = ill->ill_group; 3939 if (illgrp != NULL) { 3940 ill_t *tmp_ill; 3941 3942 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3943 tmp_ill = tmp_ill->ill_group_next) { 3944 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3945 (enable ? "Enabling" : "Disabling"), 3946 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3947 tmp_ill->ill_name)); 3948 mutex_enter(&tmp_ill->ill_lock); 3949 if (enable) 3950 tmp_ill->ill_flags |= ILLF_ROUTER; 3951 else 3952 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3953 mutex_exit(&tmp_ill->ill_lock); 3954 if (tmp_ill->ill_isv6) 3955 ill_set_nce_router_flags(tmp_ill, enable); 3956 /* Notify routing socket listeners of this change. */ 3957 ip_rts_ifmsg(tmp_ill->ill_ipif); 3958 } 3959 } else { 3960 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3961 (enable ? "Enabling" : "Disabling"), 3962 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3963 mutex_enter(&ill->ill_lock); 3964 if (enable) 3965 ill->ill_flags |= ILLF_ROUTER; 3966 else 3967 ill->ill_flags &= ~ILLF_ROUTER; 3968 mutex_exit(&ill->ill_lock); 3969 if (ill->ill_isv6) 3970 ill_set_nce_router_flags(ill, enable); 3971 /* Notify routing socket listeners of this change. */ 3972 ip_rts_ifmsg(ill->ill_ipif); 3973 } 3974 3975 return (0); 3976 } 3977 3978 /* 3979 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3980 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3981 * set or clear. 3982 */ 3983 static void 3984 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3985 { 3986 ipif_t *ipif; 3987 nce_t *nce; 3988 3989 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3990 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3991 if (nce != NULL) { 3992 mutex_enter(&nce->nce_lock); 3993 if (enable) 3994 nce->nce_flags |= NCE_F_ISROUTER; 3995 else 3996 nce->nce_flags &= ~NCE_F_ISROUTER; 3997 mutex_exit(&nce->nce_lock); 3998 NCE_REFRELE(nce); 3999 } 4000 } 4001 } 4002 4003 /* 4004 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4005 * for this ill. Make sure the v6/v4 question has been answered about this 4006 * ill. The creation of this ndd variable is only for backwards compatibility. 4007 * The preferred way to control per-interface IP forwarding is through the 4008 * ILLF_ROUTER interface flag. 4009 */ 4010 static int 4011 ill_set_ndd_name(ill_t *ill) 4012 { 4013 char *suffix; 4014 ip_stack_t *ipst = ill->ill_ipst; 4015 4016 ASSERT(IAM_WRITER_ILL(ill)); 4017 4018 if (ill->ill_isv6) 4019 suffix = ipv6_forward_suffix; 4020 else 4021 suffix = ipv4_forward_suffix; 4022 4023 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4024 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4025 /* 4026 * Copies over the '\0'. 4027 * Note that strlen(suffix) is always bounded. 4028 */ 4029 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4030 strlen(suffix) + 1); 4031 4032 /* 4033 * Use of the nd table requires holding the reader lock. 4034 * Modifying the nd table thru nd_load/nd_unload requires 4035 * the writer lock. 4036 */ 4037 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4038 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4039 nd_ill_forward_set, (caddr_t)ill)) { 4040 /* 4041 * If the nd_load failed, it only meant that it could not 4042 * allocate a new bunch of room for further NDD expansion. 4043 * Because of that, the ill_ndd_name will be set to 0, and 4044 * this interface is at the mercy of the global ip_forwarding 4045 * variable. 4046 */ 4047 rw_exit(&ipst->ips_ip_g_nd_lock); 4048 ill->ill_ndd_name = NULL; 4049 return (ENOMEM); 4050 } 4051 rw_exit(&ipst->ips_ip_g_nd_lock); 4052 return (0); 4053 } 4054 4055 /* 4056 * Intializes the context structure and returns the first ill in the list 4057 * cuurently start_list and end_list can have values: 4058 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4059 * IP_V4_G_HEAD Traverse IPV4 list only. 4060 * IP_V6_G_HEAD Traverse IPV6 list only. 4061 */ 4062 4063 /* 4064 * We don't check for CONDEMNED ills here. Caller must do that if 4065 * necessary under the ill lock. 4066 */ 4067 ill_t * 4068 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4069 ip_stack_t *ipst) 4070 { 4071 ill_if_t *ifp; 4072 ill_t *ill; 4073 avl_tree_t *avl_tree; 4074 4075 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4076 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4077 4078 /* 4079 * setup the lists to search 4080 */ 4081 if (end_list != MAX_G_HEADS) { 4082 ctx->ctx_current_list = start_list; 4083 ctx->ctx_last_list = end_list; 4084 } else { 4085 ctx->ctx_last_list = MAX_G_HEADS - 1; 4086 ctx->ctx_current_list = 0; 4087 } 4088 4089 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4090 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4091 if (ifp != (ill_if_t *) 4092 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4093 avl_tree = &ifp->illif_avl_by_ppa; 4094 ill = avl_first(avl_tree); 4095 /* 4096 * ill is guaranteed to be non NULL or ifp should have 4097 * not existed. 4098 */ 4099 ASSERT(ill != NULL); 4100 return (ill); 4101 } 4102 ctx->ctx_current_list++; 4103 } 4104 4105 return (NULL); 4106 } 4107 4108 /* 4109 * returns the next ill in the list. ill_first() must have been called 4110 * before calling ill_next() or bad things will happen. 4111 */ 4112 4113 /* 4114 * We don't check for CONDEMNED ills here. Caller must do that if 4115 * necessary under the ill lock. 4116 */ 4117 ill_t * 4118 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4119 { 4120 ill_if_t *ifp; 4121 ill_t *ill; 4122 ip_stack_t *ipst = lastill->ill_ipst; 4123 4124 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4125 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4126 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4127 AVL_AFTER)) != NULL) { 4128 return (ill); 4129 } 4130 4131 /* goto next ill_ifp in the list. */ 4132 ifp = lastill->ill_ifptr->illif_next; 4133 4134 /* make sure not at end of circular list */ 4135 while (ifp == 4136 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4137 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4138 return (NULL); 4139 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4140 } 4141 4142 return (avl_first(&ifp->illif_avl_by_ppa)); 4143 } 4144 4145 /* 4146 * Check interface name for correct format which is name+ppa. 4147 * name can contain characters and digits, the right most digits 4148 * make up the ppa number. use of octal is not allowed, name must contain 4149 * a ppa, return pointer to the start of ppa. 4150 * In case of error return NULL. 4151 */ 4152 static char * 4153 ill_get_ppa_ptr(char *name) 4154 { 4155 int namelen = mi_strlen(name); 4156 4157 int len = namelen; 4158 4159 name += len; 4160 while (len > 0) { 4161 name--; 4162 if (*name < '0' || *name > '9') 4163 break; 4164 len--; 4165 } 4166 4167 /* empty string, all digits, or no trailing digits */ 4168 if (len == 0 || len == (int)namelen) 4169 return (NULL); 4170 4171 name++; 4172 /* check for attempted use of octal */ 4173 if (*name == '0' && len != (int)namelen - 1) 4174 return (NULL); 4175 return (name); 4176 } 4177 4178 /* 4179 * use avl tree to locate the ill. 4180 */ 4181 static ill_t * 4182 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4183 ipsq_func_t func, int *error, ip_stack_t *ipst) 4184 { 4185 char *ppa_ptr = NULL; 4186 int len; 4187 uint_t ppa; 4188 ill_t *ill = NULL; 4189 ill_if_t *ifp; 4190 int list; 4191 ipsq_t *ipsq; 4192 4193 if (error != NULL) 4194 *error = 0; 4195 4196 /* 4197 * get ppa ptr 4198 */ 4199 if (isv6) 4200 list = IP_V6_G_HEAD; 4201 else 4202 list = IP_V4_G_HEAD; 4203 4204 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4205 if (error != NULL) 4206 *error = ENXIO; 4207 return (NULL); 4208 } 4209 4210 len = ppa_ptr - name + 1; 4211 4212 ppa = stoi(&ppa_ptr); 4213 4214 ifp = IP_VX_ILL_G_LIST(list, ipst); 4215 4216 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4217 /* 4218 * match is done on len - 1 as the name is not null 4219 * terminated it contains ppa in addition to the interface 4220 * name. 4221 */ 4222 if ((ifp->illif_name_len == len) && 4223 bcmp(ifp->illif_name, name, len - 1) == 0) { 4224 break; 4225 } else { 4226 ifp = ifp->illif_next; 4227 } 4228 } 4229 4230 4231 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4232 /* 4233 * Even the interface type does not exist. 4234 */ 4235 if (error != NULL) 4236 *error = ENXIO; 4237 return (NULL); 4238 } 4239 4240 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4241 if (ill != NULL) { 4242 /* 4243 * The block comment at the start of ipif_down 4244 * explains the use of the macros used below 4245 */ 4246 GRAB_CONN_LOCK(q); 4247 mutex_enter(&ill->ill_lock); 4248 if (ILL_CAN_LOOKUP(ill)) { 4249 ill_refhold_locked(ill); 4250 mutex_exit(&ill->ill_lock); 4251 RELEASE_CONN_LOCK(q); 4252 return (ill); 4253 } else if (ILL_CAN_WAIT(ill, q)) { 4254 ipsq = ill->ill_phyint->phyint_ipsq; 4255 mutex_enter(&ipsq->ipsq_lock); 4256 mutex_exit(&ill->ill_lock); 4257 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4258 mutex_exit(&ipsq->ipsq_lock); 4259 RELEASE_CONN_LOCK(q); 4260 if (error != NULL) 4261 *error = EINPROGRESS; 4262 return (NULL); 4263 } 4264 mutex_exit(&ill->ill_lock); 4265 RELEASE_CONN_LOCK(q); 4266 } 4267 if (error != NULL) 4268 *error = ENXIO; 4269 return (NULL); 4270 } 4271 4272 /* 4273 * comparison function for use with avl. 4274 */ 4275 static int 4276 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4277 { 4278 uint_t ppa; 4279 uint_t ill_ppa; 4280 4281 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4282 4283 ppa = *((uint_t *)ppa_ptr); 4284 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4285 /* 4286 * We want the ill with the lowest ppa to be on the 4287 * top. 4288 */ 4289 if (ill_ppa < ppa) 4290 return (1); 4291 if (ill_ppa > ppa) 4292 return (-1); 4293 return (0); 4294 } 4295 4296 /* 4297 * remove an interface type from the global list. 4298 */ 4299 static void 4300 ill_delete_interface_type(ill_if_t *interface) 4301 { 4302 ASSERT(interface != NULL); 4303 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4304 4305 avl_destroy(&interface->illif_avl_by_ppa); 4306 if (interface->illif_ppa_arena != NULL) 4307 vmem_destroy(interface->illif_ppa_arena); 4308 4309 remque(interface); 4310 4311 mi_free(interface); 4312 } 4313 4314 /* Defined in ip_netinfo.c */ 4315 extern ddi_taskq_t *eventq_queue_nic; 4316 4317 /* 4318 * remove ill from the global list. 4319 */ 4320 static void 4321 ill_glist_delete(ill_t *ill) 4322 { 4323 char *nicname; 4324 size_t nicnamelen; 4325 hook_nic_event_t *info; 4326 ip_stack_t *ipst; 4327 4328 if (ill == NULL) 4329 return; 4330 ipst = ill->ill_ipst; 4331 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4332 4333 if (ill->ill_name != NULL) { 4334 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4335 if (nicname != NULL) { 4336 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4337 nicnamelen = ill->ill_name_length; 4338 } 4339 } else { 4340 nicname = NULL; 4341 nicnamelen = 0; 4342 } 4343 4344 /* 4345 * If the ill was never inserted into the AVL tree 4346 * we skip the if branch. 4347 */ 4348 if (ill->ill_ifptr != NULL) { 4349 /* 4350 * remove from AVL tree and free ppa number 4351 */ 4352 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4353 4354 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4355 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4356 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4357 } 4358 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4359 ill_delete_interface_type(ill->ill_ifptr); 4360 } 4361 4362 /* 4363 * Indicate ill is no longer in the list. 4364 */ 4365 ill->ill_ifptr = NULL; 4366 ill->ill_name_length = 0; 4367 ill->ill_name[0] = '\0'; 4368 ill->ill_ppa = UINT_MAX; 4369 } 4370 4371 /* 4372 * Run the unplumb hook after the NIC has disappeared from being 4373 * visible so that attempts to revalidate its existance will fail. 4374 * 4375 * This needs to be run inside the ill_g_lock perimeter to ensure 4376 * that the ordering of delivered events to listeners matches the 4377 * order of them in the kernel. 4378 */ 4379 if ((info = ill->ill_nic_event_info) != NULL) { 4380 if (info->hne_event != NE_DOWN) { 4381 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4382 "attached for %s\n", info->hne_event, 4383 ill->ill_name)); 4384 if (info->hne_data != NULL) 4385 kmem_free(info->hne_data, info->hne_datalen); 4386 kmem_free(info, sizeof (hook_nic_event_t)); 4387 } else { 4388 if (ddi_taskq_dispatch(eventq_queue_nic, 4389 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4390 == DDI_FAILURE) { 4391 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4392 "failed\n")); 4393 if (info->hne_data != NULL) 4394 kmem_free(info->hne_data, 4395 info->hne_datalen); 4396 kmem_free(info, sizeof (hook_nic_event_t)); 4397 } 4398 } 4399 } 4400 4401 /* Generate NE_UNPLUMB event for ill_name. */ 4402 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4403 if (info != NULL) { 4404 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4405 info->hne_lif = 0; 4406 info->hne_event = NE_UNPLUMB; 4407 info->hne_data = nicname; 4408 info->hne_datalen = nicnamelen; 4409 info->hne_family = ill->ill_isv6 ? 4410 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4411 } else { 4412 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4413 "information for %s (ENOMEM)\n", ill->ill_name)); 4414 if (nicname != NULL) 4415 kmem_free(nicname, nicnamelen); 4416 } 4417 4418 ill->ill_nic_event_info = info; 4419 4420 ill_phyint_free(ill); 4421 rw_exit(&ipst->ips_ill_g_lock); 4422 } 4423 4424 /* 4425 * allocate a ppa, if the number of plumbed interfaces of this type are 4426 * less than ill_no_arena do a linear search to find a unused ppa. 4427 * When the number goes beyond ill_no_arena switch to using an arena. 4428 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4429 * is the return value for an error condition, so allocation starts at one 4430 * and is decremented by one. 4431 */ 4432 static int 4433 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4434 { 4435 ill_t *tmp_ill; 4436 uint_t start, end; 4437 int ppa; 4438 4439 if (ifp->illif_ppa_arena == NULL && 4440 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4441 /* 4442 * Create an arena. 4443 */ 4444 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4445 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4446 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4447 /* allocate what has already been assigned */ 4448 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4449 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4450 tmp_ill, AVL_AFTER)) { 4451 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4452 1, /* size */ 4453 1, /* align/quantum */ 4454 0, /* phase */ 4455 0, /* nocross */ 4456 /* minaddr */ 4457 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4458 /* maxaddr */ 4459 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4460 VM_NOSLEEP|VM_FIRSTFIT); 4461 if (ppa == 0) { 4462 ip1dbg(("ill_alloc_ppa: ppa allocation" 4463 " failed while switching")); 4464 vmem_destroy(ifp->illif_ppa_arena); 4465 ifp->illif_ppa_arena = NULL; 4466 break; 4467 } 4468 } 4469 } 4470 4471 if (ifp->illif_ppa_arena != NULL) { 4472 if (ill->ill_ppa == UINT_MAX) { 4473 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4474 1, VM_NOSLEEP|VM_FIRSTFIT); 4475 if (ppa == 0) 4476 return (EAGAIN); 4477 ill->ill_ppa = --ppa; 4478 } else { 4479 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4480 1, /* size */ 4481 1, /* align/quantum */ 4482 0, /* phase */ 4483 0, /* nocross */ 4484 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4485 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4486 VM_NOSLEEP|VM_FIRSTFIT); 4487 /* 4488 * Most likely the allocation failed because 4489 * the requested ppa was in use. 4490 */ 4491 if (ppa == 0) 4492 return (EEXIST); 4493 } 4494 return (0); 4495 } 4496 4497 /* 4498 * No arena is in use and not enough (>ill_no_arena) interfaces have 4499 * been plumbed to create one. Do a linear search to get a unused ppa. 4500 */ 4501 if (ill->ill_ppa == UINT_MAX) { 4502 end = UINT_MAX - 1; 4503 start = 0; 4504 } else { 4505 end = start = ill->ill_ppa; 4506 } 4507 4508 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4509 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4510 if (start++ >= end) { 4511 if (ill->ill_ppa == UINT_MAX) 4512 return (EAGAIN); 4513 else 4514 return (EEXIST); 4515 } 4516 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4517 } 4518 ill->ill_ppa = start; 4519 return (0); 4520 } 4521 4522 /* 4523 * Insert ill into the list of configured ill's. Once this function completes, 4524 * the ill is globally visible and is available through lookups. More precisely 4525 * this happens after the caller drops the ill_g_lock. 4526 */ 4527 static int 4528 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4529 { 4530 ill_if_t *ill_interface; 4531 avl_index_t where = 0; 4532 int error; 4533 int name_length; 4534 int index; 4535 boolean_t check_length = B_FALSE; 4536 ip_stack_t *ipst = ill->ill_ipst; 4537 4538 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4539 4540 name_length = mi_strlen(name) + 1; 4541 4542 if (isv6) 4543 index = IP_V6_G_HEAD; 4544 else 4545 index = IP_V4_G_HEAD; 4546 4547 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4548 /* 4549 * Search for interface type based on name 4550 */ 4551 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4552 if ((ill_interface->illif_name_len == name_length) && 4553 (strcmp(ill_interface->illif_name, name) == 0)) { 4554 break; 4555 } 4556 ill_interface = ill_interface->illif_next; 4557 } 4558 4559 /* 4560 * Interface type not found, create one. 4561 */ 4562 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4563 4564 ill_g_head_t ghead; 4565 4566 /* 4567 * allocate ill_if_t structure 4568 */ 4569 4570 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4571 if (ill_interface == NULL) { 4572 return (ENOMEM); 4573 } 4574 4575 4576 4577 (void) strcpy(ill_interface->illif_name, name); 4578 ill_interface->illif_name_len = name_length; 4579 4580 avl_create(&ill_interface->illif_avl_by_ppa, 4581 ill_compare_ppa, sizeof (ill_t), 4582 offsetof(struct ill_s, ill_avl_byppa)); 4583 4584 /* 4585 * link the structure in the back to maintain order 4586 * of configuration for ifconfig output. 4587 */ 4588 ghead = ipst->ips_ill_g_heads[index]; 4589 insque(ill_interface, ghead.ill_g_list_tail); 4590 4591 } 4592 4593 if (ill->ill_ppa == UINT_MAX) 4594 check_length = B_TRUE; 4595 4596 error = ill_alloc_ppa(ill_interface, ill); 4597 if (error != 0) { 4598 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4599 ill_delete_interface_type(ill->ill_ifptr); 4600 return (error); 4601 } 4602 4603 /* 4604 * When the ppa is choosen by the system, check that there is 4605 * enough space to insert ppa. if a specific ppa was passed in this 4606 * check is not required as the interface name passed in will have 4607 * the right ppa in it. 4608 */ 4609 if (check_length) { 4610 /* 4611 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4612 */ 4613 char buf[sizeof (uint_t) * 3]; 4614 4615 /* 4616 * convert ppa to string to calculate the amount of space 4617 * required for it in the name. 4618 */ 4619 numtos(ill->ill_ppa, buf); 4620 4621 /* Do we have enough space to insert ppa ? */ 4622 4623 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4624 /* Free ppa and interface type struct */ 4625 if (ill_interface->illif_ppa_arena != NULL) { 4626 vmem_free(ill_interface->illif_ppa_arena, 4627 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4628 } 4629 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4630 0) { 4631 ill_delete_interface_type(ill->ill_ifptr); 4632 } 4633 4634 return (EINVAL); 4635 } 4636 } 4637 4638 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4639 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4640 4641 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4642 &where); 4643 ill->ill_ifptr = ill_interface; 4644 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4645 4646 ill_phyint_reinit(ill); 4647 return (0); 4648 } 4649 4650 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4651 static boolean_t 4652 ipsq_init(ill_t *ill) 4653 { 4654 ipsq_t *ipsq; 4655 4656 /* Init the ipsq and impicitly enter as writer */ 4657 ill->ill_phyint->phyint_ipsq = 4658 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4659 if (ill->ill_phyint->phyint_ipsq == NULL) 4660 return (B_FALSE); 4661 ipsq = ill->ill_phyint->phyint_ipsq; 4662 ipsq->ipsq_phyint_list = ill->ill_phyint; 4663 ill->ill_phyint->phyint_ipsq_next = NULL; 4664 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4665 ipsq->ipsq_refs = 1; 4666 ipsq->ipsq_writer = curthread; 4667 ipsq->ipsq_reentry_cnt = 1; 4668 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4669 #ifdef DEBUG 4670 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4671 IPSQ_STACK_DEPTH); 4672 #endif 4673 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4674 return (B_TRUE); 4675 } 4676 4677 /* 4678 * ill_init is called by ip_open when a device control stream is opened. 4679 * It does a few initializations, and shoots a DL_INFO_REQ message down 4680 * to the driver. The response is later picked up in ip_rput_dlpi and 4681 * used to set up default mechanisms for talking to the driver. (Always 4682 * called as writer.) 4683 * 4684 * If this function returns error, ip_open will call ip_close which in 4685 * turn will call ill_delete to clean up any memory allocated here that 4686 * is not yet freed. 4687 */ 4688 int 4689 ill_init(queue_t *q, ill_t *ill) 4690 { 4691 int count; 4692 dl_info_req_t *dlir; 4693 mblk_t *info_mp; 4694 uchar_t *frag_ptr; 4695 4696 /* 4697 * The ill is initialized to zero by mi_alloc*(). In addition 4698 * some fields already contain valid values, initialized in 4699 * ip_open(), before we reach here. 4700 */ 4701 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4702 4703 ill->ill_rq = q; 4704 ill->ill_wq = WR(q); 4705 4706 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4707 BPRI_HI); 4708 if (info_mp == NULL) 4709 return (ENOMEM); 4710 4711 /* 4712 * Allocate sufficient space to contain our fragment hash table and 4713 * the device name. 4714 */ 4715 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4716 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4717 if (frag_ptr == NULL) { 4718 freemsg(info_mp); 4719 return (ENOMEM); 4720 } 4721 ill->ill_frag_ptr = frag_ptr; 4722 ill->ill_frag_free_num_pkts = 0; 4723 ill->ill_last_frag_clean_time = 0; 4724 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4725 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4726 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4727 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4728 NULL, MUTEX_DEFAULT, NULL); 4729 } 4730 4731 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4732 if (ill->ill_phyint == NULL) { 4733 freemsg(info_mp); 4734 mi_free(frag_ptr); 4735 return (ENOMEM); 4736 } 4737 4738 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4739 /* 4740 * For now pretend this is a v4 ill. We need to set phyint_ill* 4741 * at this point because of the following reason. If we can't 4742 * enter the ipsq at some point and cv_wait, the writer that 4743 * wakes us up tries to locate us using the list of all phyints 4744 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4745 * If we don't set it now, we risk a missed wakeup. 4746 */ 4747 ill->ill_phyint->phyint_illv4 = ill; 4748 ill->ill_ppa = UINT_MAX; 4749 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4750 4751 if (!ipsq_init(ill)) { 4752 freemsg(info_mp); 4753 mi_free(frag_ptr); 4754 mi_free(ill->ill_phyint); 4755 return (ENOMEM); 4756 } 4757 4758 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4759 4760 4761 /* Frag queue limit stuff */ 4762 ill->ill_frag_count = 0; 4763 ill->ill_ipf_gen = 0; 4764 4765 ill->ill_global_timer = INFINITY; 4766 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4767 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4768 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4769 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4770 4771 /* 4772 * Initialize IPv6 configuration variables. The IP module is always 4773 * opened as an IPv4 module. Instead tracking down the cases where 4774 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4775 * here for convenience, this has no effect until the ill is set to do 4776 * IPv6. 4777 */ 4778 ill->ill_reachable_time = ND_REACHABLE_TIME; 4779 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4780 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4781 ill->ill_max_buf = ND_MAX_Q; 4782 ill->ill_refcnt = 0; 4783 4784 /* Send down the Info Request to the driver. */ 4785 info_mp->b_datap->db_type = M_PCPROTO; 4786 dlir = (dl_info_req_t *)info_mp->b_rptr; 4787 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4788 dlir->dl_primitive = DL_INFO_REQ; 4789 4790 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4791 4792 qprocson(q); 4793 ill_dlpi_send(ill, info_mp); 4794 4795 return (0); 4796 } 4797 4798 /* 4799 * ill_dls_info 4800 * creates datalink socket info from the device. 4801 */ 4802 int 4803 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4804 { 4805 size_t len; 4806 ill_t *ill = ipif->ipif_ill; 4807 4808 sdl->sdl_family = AF_LINK; 4809 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4810 sdl->sdl_type = ill->ill_type; 4811 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4812 len = strlen(sdl->sdl_data); 4813 ASSERT(len < 256); 4814 sdl->sdl_nlen = (uchar_t)len; 4815 sdl->sdl_alen = ill->ill_phys_addr_length; 4816 sdl->sdl_slen = 0; 4817 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4818 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4819 4820 return (sizeof (struct sockaddr_dl)); 4821 } 4822 4823 /* 4824 * ill_xarp_info 4825 * creates xarp info from the device. 4826 */ 4827 static int 4828 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4829 { 4830 sdl->sdl_family = AF_LINK; 4831 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4832 sdl->sdl_type = ill->ill_type; 4833 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4834 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4835 sdl->sdl_alen = ill->ill_phys_addr_length; 4836 sdl->sdl_slen = 0; 4837 return (sdl->sdl_nlen); 4838 } 4839 4840 static int 4841 loopback_kstat_update(kstat_t *ksp, int rw) 4842 { 4843 kstat_named_t *kn; 4844 netstackid_t stackid; 4845 netstack_t *ns; 4846 ip_stack_t *ipst; 4847 4848 if (ksp == NULL || ksp->ks_data == NULL) 4849 return (EIO); 4850 4851 if (rw == KSTAT_WRITE) 4852 return (EACCES); 4853 4854 kn = KSTAT_NAMED_PTR(ksp); 4855 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4856 4857 ns = netstack_find_by_stackid(stackid); 4858 if (ns == NULL) 4859 return (-1); 4860 4861 ipst = ns->netstack_ip; 4862 if (ipst == NULL) { 4863 netstack_rele(ns); 4864 return (-1); 4865 } 4866 kn[0].value.ui32 = ipst->ips_loopback_packets; 4867 kn[1].value.ui32 = ipst->ips_loopback_packets; 4868 netstack_rele(ns); 4869 return (0); 4870 } 4871 4872 4873 /* 4874 * Has ifindex been plumbed already. 4875 * Compares both phyint_ifindex and phyint_group_ifindex. 4876 */ 4877 static boolean_t 4878 phyint_exists(uint_t index, ip_stack_t *ipst) 4879 { 4880 phyint_t *phyi; 4881 4882 ASSERT(index != 0); 4883 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4884 /* 4885 * Indexes are stored in the phyint - a common structure 4886 * to both IPv4 and IPv6. 4887 */ 4888 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4889 for (; phyi != NULL; 4890 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4891 phyi, AVL_AFTER)) { 4892 if (phyi->phyint_ifindex == index || 4893 phyi->phyint_group_ifindex == index) 4894 return (B_TRUE); 4895 } 4896 return (B_FALSE); 4897 } 4898 4899 /* Pick a unique ifindex */ 4900 boolean_t 4901 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4902 { 4903 uint_t starting_index; 4904 4905 if (!ipst->ips_ill_index_wrap) { 4906 *indexp = ipst->ips_ill_index++; 4907 if (ipst->ips_ill_index == 0) { 4908 /* Reached the uint_t limit Next time wrap */ 4909 ipst->ips_ill_index_wrap = B_TRUE; 4910 } 4911 return (B_TRUE); 4912 } 4913 4914 /* 4915 * Start reusing unused indexes. Note that we hold the ill_g_lock 4916 * at this point and don't want to call any function that attempts 4917 * to get the lock again. 4918 */ 4919 starting_index = ipst->ips_ill_index++; 4920 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4921 if (ipst->ips_ill_index != 0 && 4922 !phyint_exists(ipst->ips_ill_index, ipst)) { 4923 /* found unused index - use it */ 4924 *indexp = ipst->ips_ill_index; 4925 return (B_TRUE); 4926 } 4927 } 4928 4929 /* 4930 * all interface indicies are inuse. 4931 */ 4932 return (B_FALSE); 4933 } 4934 4935 /* 4936 * Assign a unique interface index for the phyint. 4937 */ 4938 static boolean_t 4939 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4940 { 4941 ASSERT(phyi->phyint_ifindex == 0); 4942 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4943 } 4944 4945 /* 4946 * Return a pointer to the ill which matches the supplied name. Note that 4947 * the ill name length includes the null termination character. (May be 4948 * called as writer.) 4949 * If do_alloc and the interface is "lo0" it will be automatically created. 4950 * Cannot bump up reference on condemned ills. So dup detect can't be done 4951 * using this func. 4952 */ 4953 ill_t * 4954 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4955 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4956 ip_stack_t *ipst) 4957 { 4958 ill_t *ill; 4959 ipif_t *ipif; 4960 kstat_named_t *kn; 4961 boolean_t isloopback; 4962 ipsq_t *old_ipsq; 4963 in6_addr_t ov6addr; 4964 4965 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4966 4967 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4968 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4969 rw_exit(&ipst->ips_ill_g_lock); 4970 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4971 return (ill); 4972 4973 /* 4974 * Couldn't find it. Does this happen to be a lookup for the 4975 * loopback device and are we allowed to allocate it? 4976 */ 4977 if (!isloopback || !do_alloc) 4978 return (NULL); 4979 4980 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4981 4982 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4983 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4984 rw_exit(&ipst->ips_ill_g_lock); 4985 return (ill); 4986 } 4987 4988 /* Create the loopback device on demand */ 4989 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4990 sizeof (ipif_loopback_name), BPRI_MED)); 4991 if (ill == NULL) 4992 goto done; 4993 4994 *ill = ill_null; 4995 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4996 ill->ill_ipst = ipst; 4997 netstack_hold(ipst->ips_netstack); 4998 /* 4999 * For exclusive stacks we set the zoneid to zero 5000 * to make IP operate as if in the global zone. 5001 */ 5002 ill->ill_zoneid = GLOBAL_ZONEID; 5003 5004 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5005 if (ill->ill_phyint == NULL) 5006 goto done; 5007 5008 if (isv6) 5009 ill->ill_phyint->phyint_illv6 = ill; 5010 else 5011 ill->ill_phyint->phyint_illv4 = ill; 5012 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5013 ill->ill_max_frag = IP_LOOPBACK_MTU; 5014 /* Add room for tcp+ip headers */ 5015 if (isv6) { 5016 ill->ill_isv6 = B_TRUE; 5017 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5018 } else { 5019 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5020 } 5021 if (!ill_allocate_mibs(ill)) 5022 goto done; 5023 ill->ill_max_mtu = ill->ill_max_frag; 5024 /* 5025 * ipif_loopback_name can't be pointed at directly because its used 5026 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5027 * from the glist, ill_glist_delete() sets the first character of 5028 * ill_name to '\0'. 5029 */ 5030 ill->ill_name = (char *)ill + sizeof (*ill); 5031 (void) strcpy(ill->ill_name, ipif_loopback_name); 5032 ill->ill_name_length = sizeof (ipif_loopback_name); 5033 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5034 5035 ill->ill_global_timer = INFINITY; 5036 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5037 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5038 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5039 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5040 5041 /* No resolver here. */ 5042 ill->ill_net_type = IRE_LOOPBACK; 5043 5044 /* Initialize the ipsq */ 5045 if (!ipsq_init(ill)) 5046 goto done; 5047 5048 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5049 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5050 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5051 #ifdef DEBUG 5052 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5053 #endif 5054 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5055 if (ipif == NULL) 5056 goto done; 5057 5058 ill->ill_flags = ILLF_MULTICAST; 5059 5060 ov6addr = ipif->ipif_v6lcl_addr; 5061 /* Set up default loopback address and mask. */ 5062 if (!isv6) { 5063 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5064 5065 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5066 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5067 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5068 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5069 ipif->ipif_v6subnet); 5070 ill->ill_flags |= ILLF_IPV4; 5071 } else { 5072 ipif->ipif_v6lcl_addr = ipv6_loopback; 5073 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5074 ipif->ipif_v6net_mask = ipv6_all_ones; 5075 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5076 ipif->ipif_v6subnet); 5077 ill->ill_flags |= ILLF_IPV6; 5078 } 5079 5080 /* 5081 * Chain us in at the end of the ill list. hold the ill 5082 * before we make it globally visible. 1 for the lookup. 5083 */ 5084 ill->ill_refcnt = 0; 5085 ill_refhold(ill); 5086 5087 ill->ill_frag_count = 0; 5088 ill->ill_frag_free_num_pkts = 0; 5089 ill->ill_last_frag_clean_time = 0; 5090 5091 old_ipsq = ill->ill_phyint->phyint_ipsq; 5092 5093 if (ill_glist_insert(ill, "lo", isv6) != 0) 5094 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5095 5096 /* Let SCTP know so that it can add this to its list */ 5097 sctp_update_ill(ill, SCTP_ILL_INSERT); 5098 5099 /* 5100 * We have already assigned ipif_v6lcl_addr above, but we need to 5101 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5102 * requires to be after ill_glist_insert() since we need the 5103 * ill_index set. Pass on ipv6_loopback as the old address. 5104 */ 5105 sctp_update_ipif_addr(ipif, ov6addr); 5106 5107 /* 5108 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5109 */ 5110 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5111 /* Loopback ills aren't in any IPMP group */ 5112 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5113 ipsq_delete(old_ipsq); 5114 } 5115 5116 /* 5117 * Delay this till the ipif is allocated as ipif_allocate 5118 * de-references ill_phyint for getting the ifindex. We 5119 * can't do this before ipif_allocate because ill_phyint_reinit 5120 * -> phyint_assign_ifindex expects ipif to be present. 5121 */ 5122 mutex_enter(&ill->ill_phyint->phyint_lock); 5123 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5124 mutex_exit(&ill->ill_phyint->phyint_lock); 5125 5126 if (ipst->ips_loopback_ksp == NULL) { 5127 /* Export loopback interface statistics */ 5128 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5129 ipif_loopback_name, "net", 5130 KSTAT_TYPE_NAMED, 2, 0, 5131 ipst->ips_netstack->netstack_stackid); 5132 if (ipst->ips_loopback_ksp != NULL) { 5133 ipst->ips_loopback_ksp->ks_update = 5134 loopback_kstat_update; 5135 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5136 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5137 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5138 ipst->ips_loopback_ksp->ks_private = 5139 (void *)(uintptr_t)ipst->ips_netstack-> 5140 netstack_stackid; 5141 kstat_install(ipst->ips_loopback_ksp); 5142 } 5143 } 5144 5145 if (error != NULL) 5146 *error = 0; 5147 *did_alloc = B_TRUE; 5148 rw_exit(&ipst->ips_ill_g_lock); 5149 return (ill); 5150 done: 5151 if (ill != NULL) { 5152 if (ill->ill_phyint != NULL) { 5153 ipsq_t *ipsq; 5154 5155 ipsq = ill->ill_phyint->phyint_ipsq; 5156 if (ipsq != NULL) { 5157 ipsq->ipsq_ipst = NULL; 5158 kmem_free(ipsq, sizeof (ipsq_t)); 5159 } 5160 mi_free(ill->ill_phyint); 5161 } 5162 ill_free_mib(ill); 5163 if (ill->ill_ipst != NULL) 5164 netstack_rele(ill->ill_ipst->ips_netstack); 5165 mi_free(ill); 5166 } 5167 rw_exit(&ipst->ips_ill_g_lock); 5168 if (error != NULL) 5169 *error = ENOMEM; 5170 return (NULL); 5171 } 5172 5173 /* 5174 * For IPP calls - use the ip_stack_t for global stack. 5175 */ 5176 ill_t * 5177 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5178 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5179 { 5180 ip_stack_t *ipst; 5181 ill_t *ill; 5182 5183 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5184 if (ipst == NULL) { 5185 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5186 return (NULL); 5187 } 5188 5189 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5190 netstack_rele(ipst->ips_netstack); 5191 return (ill); 5192 } 5193 5194 /* 5195 * Return a pointer to the ill which matches the index and IP version type. 5196 */ 5197 ill_t * 5198 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5199 ipsq_func_t func, int *err, ip_stack_t *ipst) 5200 { 5201 ill_t *ill; 5202 ipsq_t *ipsq; 5203 phyint_t *phyi; 5204 5205 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5206 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5207 5208 if (err != NULL) 5209 *err = 0; 5210 5211 /* 5212 * Indexes are stored in the phyint - a common structure 5213 * to both IPv4 and IPv6. 5214 */ 5215 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5216 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5217 (void *) &index, NULL); 5218 if (phyi != NULL) { 5219 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5220 if (ill != NULL) { 5221 /* 5222 * The block comment at the start of ipif_down 5223 * explains the use of the macros used below 5224 */ 5225 GRAB_CONN_LOCK(q); 5226 mutex_enter(&ill->ill_lock); 5227 if (ILL_CAN_LOOKUP(ill)) { 5228 ill_refhold_locked(ill); 5229 mutex_exit(&ill->ill_lock); 5230 RELEASE_CONN_LOCK(q); 5231 rw_exit(&ipst->ips_ill_g_lock); 5232 return (ill); 5233 } else if (ILL_CAN_WAIT(ill, q)) { 5234 ipsq = ill->ill_phyint->phyint_ipsq; 5235 mutex_enter(&ipsq->ipsq_lock); 5236 rw_exit(&ipst->ips_ill_g_lock); 5237 mutex_exit(&ill->ill_lock); 5238 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5239 mutex_exit(&ipsq->ipsq_lock); 5240 RELEASE_CONN_LOCK(q); 5241 if (err != NULL) 5242 *err = EINPROGRESS; 5243 return (NULL); 5244 } 5245 RELEASE_CONN_LOCK(q); 5246 mutex_exit(&ill->ill_lock); 5247 } 5248 } 5249 rw_exit(&ipst->ips_ill_g_lock); 5250 if (err != NULL) 5251 *err = ENXIO; 5252 return (NULL); 5253 } 5254 5255 /* 5256 * Return the ifindex next in sequence after the passed in ifindex. 5257 * If there is no next ifindex for the given protocol, return 0. 5258 */ 5259 uint_t 5260 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5261 { 5262 phyint_t *phyi; 5263 phyint_t *phyi_initial; 5264 uint_t ifindex; 5265 5266 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5267 5268 if (index == 0) { 5269 phyi = avl_first( 5270 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5271 } else { 5272 phyi = phyi_initial = avl_find( 5273 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5274 (void *) &index, NULL); 5275 } 5276 5277 for (; phyi != NULL; 5278 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5279 phyi, AVL_AFTER)) { 5280 /* 5281 * If we're not returning the first interface in the tree 5282 * and we still haven't moved past the phyint_t that 5283 * corresponds to index, avl_walk needs to be called again 5284 */ 5285 if (!((index != 0) && (phyi == phyi_initial))) { 5286 if (isv6) { 5287 if ((phyi->phyint_illv6) && 5288 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5289 (phyi->phyint_illv6->ill_isv6 == 1)) 5290 break; 5291 } else { 5292 if ((phyi->phyint_illv4) && 5293 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5294 (phyi->phyint_illv4->ill_isv6 == 0)) 5295 break; 5296 } 5297 } 5298 } 5299 5300 rw_exit(&ipst->ips_ill_g_lock); 5301 5302 if (phyi != NULL) 5303 ifindex = phyi->phyint_ifindex; 5304 else 5305 ifindex = 0; 5306 5307 return (ifindex); 5308 } 5309 5310 5311 /* 5312 * Return the ifindex for the named interface. 5313 * If there is no next ifindex for the interface, return 0. 5314 */ 5315 uint_t 5316 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5317 { 5318 phyint_t *phyi; 5319 avl_index_t where = 0; 5320 uint_t ifindex; 5321 5322 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5323 5324 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5325 name, &where)) == NULL) { 5326 rw_exit(&ipst->ips_ill_g_lock); 5327 return (0); 5328 } 5329 5330 ifindex = phyi->phyint_ifindex; 5331 5332 rw_exit(&ipst->ips_ill_g_lock); 5333 5334 return (ifindex); 5335 } 5336 5337 5338 /* 5339 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5340 * that gives a running thread a reference to the ill. This reference must be 5341 * released by the thread when it is done accessing the ill and related 5342 * objects. ill_refcnt can not be used to account for static references 5343 * such as other structures pointing to an ill. Callers must generally 5344 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5345 * or be sure that the ill is not being deleted or changing state before 5346 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5347 * ill won't change any of its critical state such as address, netmask etc. 5348 */ 5349 void 5350 ill_refhold(ill_t *ill) 5351 { 5352 mutex_enter(&ill->ill_lock); 5353 ill->ill_refcnt++; 5354 ILL_TRACE_REF(ill); 5355 mutex_exit(&ill->ill_lock); 5356 } 5357 5358 void 5359 ill_refhold_locked(ill_t *ill) 5360 { 5361 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5362 ill->ill_refcnt++; 5363 ILL_TRACE_REF(ill); 5364 } 5365 5366 int 5367 ill_check_and_refhold(ill_t *ill) 5368 { 5369 mutex_enter(&ill->ill_lock); 5370 if (ILL_CAN_LOOKUP(ill)) { 5371 ill_refhold_locked(ill); 5372 mutex_exit(&ill->ill_lock); 5373 return (0); 5374 } 5375 mutex_exit(&ill->ill_lock); 5376 return (ILL_LOOKUP_FAILED); 5377 } 5378 5379 /* 5380 * Must not be called while holding any locks. Otherwise if this is 5381 * the last reference to be released, there is a chance of recursive mutex 5382 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5383 * to restart an ioctl. 5384 */ 5385 void 5386 ill_refrele(ill_t *ill) 5387 { 5388 mutex_enter(&ill->ill_lock); 5389 ASSERT(ill->ill_refcnt != 0); 5390 ill->ill_refcnt--; 5391 ILL_UNTRACE_REF(ill); 5392 if (ill->ill_refcnt != 0) { 5393 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5394 mutex_exit(&ill->ill_lock); 5395 return; 5396 } 5397 5398 /* Drops the ill_lock */ 5399 ipif_ill_refrele_tail(ill); 5400 } 5401 5402 /* 5403 * Obtain a weak reference count on the ill. This reference ensures the 5404 * ill won't be freed, but the ill may change any of its critical state 5405 * such as netmask, address etc. Returns an error if the ill has started 5406 * closing. 5407 */ 5408 boolean_t 5409 ill_waiter_inc(ill_t *ill) 5410 { 5411 mutex_enter(&ill->ill_lock); 5412 if (ill->ill_state_flags & ILL_CONDEMNED) { 5413 mutex_exit(&ill->ill_lock); 5414 return (B_FALSE); 5415 } 5416 ill->ill_waiters++; 5417 mutex_exit(&ill->ill_lock); 5418 return (B_TRUE); 5419 } 5420 5421 void 5422 ill_waiter_dcr(ill_t *ill) 5423 { 5424 mutex_enter(&ill->ill_lock); 5425 ill->ill_waiters--; 5426 if (ill->ill_waiters == 0) 5427 cv_broadcast(&ill->ill_cv); 5428 mutex_exit(&ill->ill_lock); 5429 } 5430 5431 /* 5432 * Named Dispatch routine to produce a formatted report on all ILLs. 5433 * This report is accessed by using the ndd utility to "get" ND variable 5434 * "ip_ill_status". 5435 */ 5436 /* ARGSUSED */ 5437 int 5438 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5439 { 5440 ill_t *ill; 5441 ill_walk_context_t ctx; 5442 ip_stack_t *ipst; 5443 5444 ipst = CONNQ_TO_IPST(q); 5445 5446 (void) mi_mpprintf(mp, 5447 "ILL " MI_COL_HDRPAD_STR 5448 /* 01234567[89ABCDEF] */ 5449 "rq " MI_COL_HDRPAD_STR 5450 /* 01234567[89ABCDEF] */ 5451 "wq " MI_COL_HDRPAD_STR 5452 /* 01234567[89ABCDEF] */ 5453 "upcnt mxfrg err name"); 5454 /* 12345 12345 123 xxxxxxxx */ 5455 5456 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5457 ill = ILL_START_WALK_ALL(&ctx, ipst); 5458 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5459 (void) mi_mpprintf(mp, 5460 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5461 "%05u %05u %03d %s", 5462 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5463 ill->ill_ipif_up_count, 5464 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5465 } 5466 rw_exit(&ipst->ips_ill_g_lock); 5467 5468 return (0); 5469 } 5470 5471 /* 5472 * Named Dispatch routine to produce a formatted report on all IPIFs. 5473 * This report is accessed by using the ndd utility to "get" ND variable 5474 * "ip_ipif_status". 5475 */ 5476 /* ARGSUSED */ 5477 int 5478 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5479 { 5480 char buf1[INET6_ADDRSTRLEN]; 5481 char buf2[INET6_ADDRSTRLEN]; 5482 char buf3[INET6_ADDRSTRLEN]; 5483 char buf4[INET6_ADDRSTRLEN]; 5484 char buf5[INET6_ADDRSTRLEN]; 5485 char buf6[INET6_ADDRSTRLEN]; 5486 char buf[LIFNAMSIZ]; 5487 ill_t *ill; 5488 ipif_t *ipif; 5489 nv_t *nvp; 5490 uint64_t flags; 5491 zoneid_t zoneid; 5492 ill_walk_context_t ctx; 5493 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5494 5495 (void) mi_mpprintf(mp, 5496 "IPIF metric mtu in/out/forward name zone flags...\n" 5497 "\tlocal address\n" 5498 "\tsrc address\n" 5499 "\tsubnet\n" 5500 "\tmask\n" 5501 "\tbroadcast\n" 5502 "\tp-p-dst"); 5503 5504 ASSERT(q->q_next == NULL); 5505 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5506 5507 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5508 ill = ILL_START_WALK_ALL(&ctx, ipst); 5509 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5510 for (ipif = ill->ill_ipif; ipif != NULL; 5511 ipif = ipif->ipif_next) { 5512 if (zoneid != GLOBAL_ZONEID && 5513 zoneid != ipif->ipif_zoneid && 5514 ipif->ipif_zoneid != ALL_ZONES) 5515 continue; 5516 5517 ipif_get_name(ipif, buf, sizeof (buf)); 5518 (void) mi_mpprintf(mp, 5519 MI_COL_PTRFMT_STR 5520 "%04u %05u %u/%u/%u %s %d", 5521 (void *)ipif, 5522 ipif->ipif_metric, ipif->ipif_mtu, 5523 ipif->ipif_ib_pkt_count, 5524 ipif->ipif_ob_pkt_count, 5525 ipif->ipif_fo_pkt_count, 5526 buf, 5527 ipif->ipif_zoneid); 5528 5529 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5530 ipif->ipif_ill->ill_phyint->phyint_flags; 5531 5532 /* Tack on text strings for any flags. */ 5533 nvp = ipif_nv_tbl; 5534 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5535 if (nvp->nv_value & flags) 5536 (void) mi_mpprintf_nr(mp, " %s", 5537 nvp->nv_name); 5538 } 5539 (void) mi_mpprintf(mp, 5540 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5541 inet_ntop(AF_INET6, 5542 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5543 inet_ntop(AF_INET6, 5544 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5545 inet_ntop(AF_INET6, 5546 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5547 inet_ntop(AF_INET6, 5548 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5549 inet_ntop(AF_INET6, 5550 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5551 inet_ntop(AF_INET6, 5552 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5553 } 5554 } 5555 rw_exit(&ipst->ips_ill_g_lock); 5556 return (0); 5557 } 5558 5559 /* 5560 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5561 * driver. We construct best guess defaults for lower level information that 5562 * we need. If an interface is brought up without injection of any overriding 5563 * information from outside, we have to be ready to go with these defaults. 5564 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5565 * we primarely want the dl_provider_style. 5566 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5567 * at which point we assume the other part of the information is valid. 5568 */ 5569 void 5570 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5571 { 5572 uchar_t *brdcst_addr; 5573 uint_t brdcst_addr_length, phys_addr_length; 5574 t_scalar_t sap_length; 5575 dl_info_ack_t *dlia; 5576 ip_m_t *ipm; 5577 dl_qos_cl_sel1_t *sel1; 5578 5579 ASSERT(IAM_WRITER_ILL(ill)); 5580 5581 /* 5582 * Till the ill is fully up ILL_CHANGING will be set and 5583 * the ill is not globally visible. So no need for a lock. 5584 */ 5585 dlia = (dl_info_ack_t *)mp->b_rptr; 5586 ill->ill_mactype = dlia->dl_mac_type; 5587 5588 ipm = ip_m_lookup(dlia->dl_mac_type); 5589 if (ipm == NULL) { 5590 ipm = ip_m_lookup(DL_OTHER); 5591 ASSERT(ipm != NULL); 5592 } 5593 ill->ill_media = ipm; 5594 5595 /* 5596 * When the new DLPI stuff is ready we'll pull lengths 5597 * from dlia. 5598 */ 5599 if (dlia->dl_version == DL_VERSION_2) { 5600 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5601 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5602 brdcst_addr_length); 5603 if (brdcst_addr == NULL) { 5604 brdcst_addr_length = 0; 5605 } 5606 sap_length = dlia->dl_sap_length; 5607 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5608 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5609 brdcst_addr_length, sap_length, phys_addr_length)); 5610 } else { 5611 brdcst_addr_length = 6; 5612 brdcst_addr = ip_six_byte_all_ones; 5613 sap_length = -2; 5614 phys_addr_length = brdcst_addr_length; 5615 } 5616 5617 ill->ill_bcast_addr_length = brdcst_addr_length; 5618 ill->ill_phys_addr_length = phys_addr_length; 5619 ill->ill_sap_length = sap_length; 5620 ill->ill_max_frag = dlia->dl_max_sdu; 5621 ill->ill_max_mtu = ill->ill_max_frag; 5622 5623 ill->ill_type = ipm->ip_m_type; 5624 5625 if (!ill->ill_dlpi_style_set) { 5626 if (dlia->dl_provider_style == DL_STYLE2) 5627 ill->ill_needs_attach = 1; 5628 5629 /* 5630 * Allocate the first ipif on this ill. We don't delay it 5631 * further as ioctl handling assumes atleast one ipif to 5632 * be present. 5633 * 5634 * At this point we don't know whether the ill is v4 or v6. 5635 * We will know this whan the SIOCSLIFNAME happens and 5636 * the correct value for ill_isv6 will be assigned in 5637 * ipif_set_values(). We need to hold the ill lock and 5638 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5639 * the wakeup. 5640 */ 5641 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5642 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5643 mutex_enter(&ill->ill_lock); 5644 ASSERT(ill->ill_dlpi_style_set == 0); 5645 ill->ill_dlpi_style_set = 1; 5646 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5647 cv_broadcast(&ill->ill_cv); 5648 mutex_exit(&ill->ill_lock); 5649 freemsg(mp); 5650 return; 5651 } 5652 ASSERT(ill->ill_ipif != NULL); 5653 /* 5654 * We know whether it is IPv4 or IPv6 now, as this is the 5655 * second DL_INFO_ACK we are recieving in response to the 5656 * DL_INFO_REQ sent in ipif_set_values. 5657 */ 5658 if (ill->ill_isv6) 5659 ill->ill_sap = IP6_DL_SAP; 5660 else 5661 ill->ill_sap = IP_DL_SAP; 5662 /* 5663 * Set ipif_mtu which is used to set the IRE's 5664 * ire_max_frag value. The driver could have sent 5665 * a different mtu from what it sent last time. No 5666 * need to call ipif_mtu_change because IREs have 5667 * not yet been created. 5668 */ 5669 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5670 /* 5671 * Clear all the flags that were set based on ill_bcast_addr_length 5672 * and ill_phys_addr_length (in ipif_set_values) as these could have 5673 * changed now and we need to re-evaluate. 5674 */ 5675 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5676 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5677 5678 /* 5679 * Free ill_resolver_mp and ill_bcast_mp as things could have 5680 * changed now. 5681 */ 5682 if (ill->ill_bcast_addr_length == 0) { 5683 if (ill->ill_resolver_mp != NULL) 5684 freemsg(ill->ill_resolver_mp); 5685 if (ill->ill_bcast_mp != NULL) 5686 freemsg(ill->ill_bcast_mp); 5687 if (ill->ill_flags & ILLF_XRESOLV) 5688 ill->ill_net_type = IRE_IF_RESOLVER; 5689 else 5690 ill->ill_net_type = IRE_IF_NORESOLVER; 5691 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5692 ill->ill_phys_addr_length, 5693 ill->ill_sap, 5694 ill->ill_sap_length); 5695 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5696 5697 if (ill->ill_isv6) 5698 /* 5699 * Note: xresolv interfaces will eventually need NOARP 5700 * set here as well, but that will require those 5701 * external resolvers to have some knowledge of 5702 * that flag and act appropriately. Not to be changed 5703 * at present. 5704 */ 5705 ill->ill_flags |= ILLF_NONUD; 5706 else 5707 ill->ill_flags |= ILLF_NOARP; 5708 5709 if (ill->ill_phys_addr_length == 0) { 5710 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5711 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5712 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5713 } else { 5714 /* pt-pt supports multicast. */ 5715 ill->ill_flags |= ILLF_MULTICAST; 5716 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5717 } 5718 } 5719 } else { 5720 ill->ill_net_type = IRE_IF_RESOLVER; 5721 if (ill->ill_bcast_mp != NULL) 5722 freemsg(ill->ill_bcast_mp); 5723 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5724 ill->ill_bcast_addr_length, ill->ill_sap, 5725 ill->ill_sap_length); 5726 /* 5727 * Later detect lack of DLPI driver multicast 5728 * capability by catching DL_ENABMULTI errors in 5729 * ip_rput_dlpi. 5730 */ 5731 ill->ill_flags |= ILLF_MULTICAST; 5732 if (!ill->ill_isv6) 5733 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5734 } 5735 /* By default an interface does not support any CoS marking */ 5736 ill->ill_flags &= ~ILLF_COS_ENABLED; 5737 5738 /* 5739 * If we get QoS information in DL_INFO_ACK, the device supports 5740 * some form of CoS marking, set ILLF_COS_ENABLED. 5741 */ 5742 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5743 dlia->dl_qos_length); 5744 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5745 ill->ill_flags |= ILLF_COS_ENABLED; 5746 } 5747 5748 /* Clear any previous error indication. */ 5749 ill->ill_error = 0; 5750 freemsg(mp); 5751 } 5752 5753 /* 5754 * Perform various checks to verify that an address would make sense as a 5755 * local, remote, or subnet interface address. 5756 */ 5757 static boolean_t 5758 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5759 { 5760 ipaddr_t net_mask; 5761 5762 /* 5763 * Don't allow all zeroes, all ones or experimental address, but allow 5764 * all ones netmask. 5765 */ 5766 if ((net_mask = ip_net_mask(addr)) == 0) 5767 return (B_FALSE); 5768 /* A given netmask overrides the "guess" netmask */ 5769 if (subnet_mask != 0) 5770 net_mask = subnet_mask; 5771 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5772 (addr == (addr | ~net_mask)))) { 5773 return (B_FALSE); 5774 } 5775 if (CLASSD(addr)) 5776 return (B_FALSE); 5777 5778 return (B_TRUE); 5779 } 5780 5781 #define V6_IPIF_LINKLOCAL(p) \ 5782 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5783 5784 /* 5785 * Compare two given ipifs and check if the second one is better than 5786 * the first one using the order of preference (not taking deprecated 5787 * into acount) specified in ipif_lookup_multicast(). 5788 */ 5789 static boolean_t 5790 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5791 { 5792 /* Check the least preferred first. */ 5793 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5794 /* If both ipifs are the same, use the first one. */ 5795 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5796 return (B_FALSE); 5797 else 5798 return (B_TRUE); 5799 } 5800 5801 /* For IPv6, check for link local address. */ 5802 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5803 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5804 V6_IPIF_LINKLOCAL(new_ipif)) { 5805 /* The second one is equal or less preferred. */ 5806 return (B_FALSE); 5807 } else { 5808 return (B_TRUE); 5809 } 5810 } 5811 5812 /* Then check for point to point interface. */ 5813 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5814 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5815 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5816 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5817 return (B_FALSE); 5818 } else { 5819 return (B_TRUE); 5820 } 5821 } 5822 5823 /* old_ipif is a normal interface, so no need to use the new one. */ 5824 return (B_FALSE); 5825 } 5826 5827 /* 5828 * Find any non-virtual, not condemned, and up multicast capable interface 5829 * given an IP instance and zoneid. Order of preference is: 5830 * 5831 * 1. normal 5832 * 1.1 normal, but deprecated 5833 * 2. point to point 5834 * 2.1 point to point, but deprecated 5835 * 3. link local 5836 * 3.1 link local, but deprecated 5837 * 4. loopback. 5838 */ 5839 ipif_t * 5840 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5841 { 5842 ill_t *ill; 5843 ill_walk_context_t ctx; 5844 ipif_t *ipif; 5845 ipif_t *saved_ipif = NULL; 5846 ipif_t *dep_ipif = NULL; 5847 5848 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5849 if (isv6) 5850 ill = ILL_START_WALK_V6(&ctx, ipst); 5851 else 5852 ill = ILL_START_WALK_V4(&ctx, ipst); 5853 5854 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5855 mutex_enter(&ill->ill_lock); 5856 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5857 !(ill->ill_flags & ILLF_MULTICAST)) { 5858 mutex_exit(&ill->ill_lock); 5859 continue; 5860 } 5861 for (ipif = ill->ill_ipif; ipif != NULL; 5862 ipif = ipif->ipif_next) { 5863 if (zoneid != ipif->ipif_zoneid && 5864 zoneid != ALL_ZONES && 5865 ipif->ipif_zoneid != ALL_ZONES) { 5866 continue; 5867 } 5868 if (!(ipif->ipif_flags & IPIF_UP) || 5869 !IPIF_CAN_LOOKUP(ipif)) { 5870 continue; 5871 } 5872 5873 /* 5874 * Found one candidate. If it is deprecated, 5875 * remember it in dep_ipif. If it is not deprecated, 5876 * remember it in saved_ipif. 5877 */ 5878 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5879 if (dep_ipif == NULL) { 5880 dep_ipif = ipif; 5881 } else if (ipif_comp_multi(dep_ipif, ipif, 5882 isv6)) { 5883 /* 5884 * If the previous dep_ipif does not 5885 * belong to the same ill, we've done 5886 * a ipif_refhold() on it. So we need 5887 * to release it. 5888 */ 5889 if (dep_ipif->ipif_ill != ill) 5890 ipif_refrele(dep_ipif); 5891 dep_ipif = ipif; 5892 } 5893 continue; 5894 } 5895 if (saved_ipif == NULL) { 5896 saved_ipif = ipif; 5897 } else { 5898 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5899 if (saved_ipif->ipif_ill != ill) 5900 ipif_refrele(saved_ipif); 5901 saved_ipif = ipif; 5902 } 5903 } 5904 } 5905 /* 5906 * Before going to the next ill, do a ipif_refhold() on the 5907 * saved ones. 5908 */ 5909 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5910 ipif_refhold_locked(saved_ipif); 5911 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5912 ipif_refhold_locked(dep_ipif); 5913 mutex_exit(&ill->ill_lock); 5914 } 5915 rw_exit(&ipst->ips_ill_g_lock); 5916 5917 /* 5918 * If we have only the saved_ipif, return it. But if we have both 5919 * saved_ipif and dep_ipif, check to see which one is better. 5920 */ 5921 if (saved_ipif != NULL) { 5922 if (dep_ipif != NULL) { 5923 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5924 ipif_refrele(saved_ipif); 5925 return (dep_ipif); 5926 } else { 5927 ipif_refrele(dep_ipif); 5928 return (saved_ipif); 5929 } 5930 } 5931 return (saved_ipif); 5932 } else { 5933 return (dep_ipif); 5934 } 5935 } 5936 5937 /* 5938 * This function is called when an application does not specify an interface 5939 * to be used for multicast traffic (joining a group/sending data). It 5940 * calls ire_lookup_multi() to look for an interface route for the 5941 * specified multicast group. Doing this allows the administrator to add 5942 * prefix routes for multicast to indicate which interface to be used for 5943 * multicast traffic in the above scenario. The route could be for all 5944 * multicast (224.0/4), for a single multicast group (a /32 route) or 5945 * anything in between. If there is no such multicast route, we just find 5946 * any multicast capable interface and return it. The returned ipif 5947 * is refhold'ed. 5948 */ 5949 ipif_t * 5950 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5951 { 5952 ire_t *ire; 5953 ipif_t *ipif; 5954 5955 ire = ire_lookup_multi(group, zoneid, ipst); 5956 if (ire != NULL) { 5957 ipif = ire->ire_ipif; 5958 ipif_refhold(ipif); 5959 ire_refrele(ire); 5960 return (ipif); 5961 } 5962 5963 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5964 } 5965 5966 /* 5967 * Look for an ipif with the specified interface address and destination. 5968 * The destination address is used only for matching point-to-point interfaces. 5969 */ 5970 ipif_t * 5971 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5972 ipsq_func_t func, int *error, ip_stack_t *ipst) 5973 { 5974 ipif_t *ipif; 5975 ill_t *ill; 5976 ill_walk_context_t ctx; 5977 ipsq_t *ipsq; 5978 5979 if (error != NULL) 5980 *error = 0; 5981 5982 /* 5983 * First match all the point-to-point interfaces 5984 * before looking at non-point-to-point interfaces. 5985 * This is done to avoid returning non-point-to-point 5986 * ipif instead of unnumbered point-to-point ipif. 5987 */ 5988 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5989 ill = ILL_START_WALK_V4(&ctx, ipst); 5990 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5991 GRAB_CONN_LOCK(q); 5992 mutex_enter(&ill->ill_lock); 5993 for (ipif = ill->ill_ipif; ipif != NULL; 5994 ipif = ipif->ipif_next) { 5995 /* Allow the ipif to be down */ 5996 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5997 (ipif->ipif_lcl_addr == if_addr) && 5998 (ipif->ipif_pp_dst_addr == dst)) { 5999 /* 6000 * The block comment at the start of ipif_down 6001 * explains the use of the macros used below 6002 */ 6003 if (IPIF_CAN_LOOKUP(ipif)) { 6004 ipif_refhold_locked(ipif); 6005 mutex_exit(&ill->ill_lock); 6006 RELEASE_CONN_LOCK(q); 6007 rw_exit(&ipst->ips_ill_g_lock); 6008 return (ipif); 6009 } else if (IPIF_CAN_WAIT(ipif, q)) { 6010 ipsq = ill->ill_phyint->phyint_ipsq; 6011 mutex_enter(&ipsq->ipsq_lock); 6012 mutex_exit(&ill->ill_lock); 6013 rw_exit(&ipst->ips_ill_g_lock); 6014 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6015 ill); 6016 mutex_exit(&ipsq->ipsq_lock); 6017 RELEASE_CONN_LOCK(q); 6018 if (error != NULL) 6019 *error = EINPROGRESS; 6020 return (NULL); 6021 } 6022 } 6023 } 6024 mutex_exit(&ill->ill_lock); 6025 RELEASE_CONN_LOCK(q); 6026 } 6027 rw_exit(&ipst->ips_ill_g_lock); 6028 6029 /* lookup the ipif based on interface address */ 6030 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 6031 ipst); 6032 ASSERT(ipif == NULL || !ipif->ipif_isv6); 6033 return (ipif); 6034 } 6035 6036 /* 6037 * Look for an ipif with the specified address. For point-point links 6038 * we look for matches on either the destination address and the local 6039 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6040 * is set. 6041 * Matches on a specific ill if match_ill is set. 6042 */ 6043 ipif_t * 6044 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6045 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6046 { 6047 ipif_t *ipif; 6048 ill_t *ill; 6049 boolean_t ptp = B_FALSE; 6050 ipsq_t *ipsq; 6051 ill_walk_context_t ctx; 6052 6053 if (error != NULL) 6054 *error = 0; 6055 6056 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6057 /* 6058 * Repeat twice, first based on local addresses and 6059 * next time for pointopoint. 6060 */ 6061 repeat: 6062 ill = ILL_START_WALK_V4(&ctx, ipst); 6063 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6064 if (match_ill != NULL && ill != match_ill) { 6065 continue; 6066 } 6067 GRAB_CONN_LOCK(q); 6068 mutex_enter(&ill->ill_lock); 6069 for (ipif = ill->ill_ipif; ipif != NULL; 6070 ipif = ipif->ipif_next) { 6071 if (zoneid != ALL_ZONES && 6072 zoneid != ipif->ipif_zoneid && 6073 ipif->ipif_zoneid != ALL_ZONES) 6074 continue; 6075 /* Allow the ipif to be down */ 6076 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6077 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6078 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6079 (ipif->ipif_pp_dst_addr == addr))) { 6080 /* 6081 * The block comment at the start of ipif_down 6082 * explains the use of the macros used below 6083 */ 6084 if (IPIF_CAN_LOOKUP(ipif)) { 6085 ipif_refhold_locked(ipif); 6086 mutex_exit(&ill->ill_lock); 6087 RELEASE_CONN_LOCK(q); 6088 rw_exit(&ipst->ips_ill_g_lock); 6089 return (ipif); 6090 } else if (IPIF_CAN_WAIT(ipif, q)) { 6091 ipsq = ill->ill_phyint->phyint_ipsq; 6092 mutex_enter(&ipsq->ipsq_lock); 6093 mutex_exit(&ill->ill_lock); 6094 rw_exit(&ipst->ips_ill_g_lock); 6095 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6096 ill); 6097 mutex_exit(&ipsq->ipsq_lock); 6098 RELEASE_CONN_LOCK(q); 6099 if (error != NULL) 6100 *error = EINPROGRESS; 6101 return (NULL); 6102 } 6103 } 6104 } 6105 mutex_exit(&ill->ill_lock); 6106 RELEASE_CONN_LOCK(q); 6107 } 6108 6109 /* If we already did the ptp case, then we are done */ 6110 if (ptp) { 6111 rw_exit(&ipst->ips_ill_g_lock); 6112 if (error != NULL) 6113 *error = ENXIO; 6114 return (NULL); 6115 } 6116 ptp = B_TRUE; 6117 goto repeat; 6118 } 6119 6120 /* 6121 * Look for an ipif with the specified address. For point-point links 6122 * we look for matches on either the destination address and the local 6123 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6124 * is set. 6125 * Matches on a specific ill if match_ill is set. 6126 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6127 */ 6128 zoneid_t 6129 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6130 { 6131 zoneid_t zoneid; 6132 ipif_t *ipif; 6133 ill_t *ill; 6134 boolean_t ptp = B_FALSE; 6135 ill_walk_context_t ctx; 6136 6137 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6138 /* 6139 * Repeat twice, first based on local addresses and 6140 * next time for pointopoint. 6141 */ 6142 repeat: 6143 ill = ILL_START_WALK_V4(&ctx, ipst); 6144 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6145 if (match_ill != NULL && ill != match_ill) { 6146 continue; 6147 } 6148 mutex_enter(&ill->ill_lock); 6149 for (ipif = ill->ill_ipif; ipif != NULL; 6150 ipif = ipif->ipif_next) { 6151 /* Allow the ipif to be down */ 6152 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6153 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6154 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6155 (ipif->ipif_pp_dst_addr == addr)) && 6156 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6157 zoneid = ipif->ipif_zoneid; 6158 mutex_exit(&ill->ill_lock); 6159 rw_exit(&ipst->ips_ill_g_lock); 6160 /* 6161 * If ipif_zoneid was ALL_ZONES then we have 6162 * a trusted extensions shared IP address. 6163 * In that case GLOBAL_ZONEID works to send. 6164 */ 6165 if (zoneid == ALL_ZONES) 6166 zoneid = GLOBAL_ZONEID; 6167 return (zoneid); 6168 } 6169 } 6170 mutex_exit(&ill->ill_lock); 6171 } 6172 6173 /* If we already did the ptp case, then we are done */ 6174 if (ptp) { 6175 rw_exit(&ipst->ips_ill_g_lock); 6176 return (ALL_ZONES); 6177 } 6178 ptp = B_TRUE; 6179 goto repeat; 6180 } 6181 6182 /* 6183 * Look for an ipif that matches the specified remote address i.e. the 6184 * ipif that would receive the specified packet. 6185 * First look for directly connected interfaces and then do a recursive 6186 * IRE lookup and pick the first ipif corresponding to the source address in the 6187 * ire. 6188 * Returns: held ipif 6189 */ 6190 ipif_t * 6191 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6192 { 6193 ipif_t *ipif; 6194 ire_t *ire; 6195 ip_stack_t *ipst = ill->ill_ipst; 6196 6197 ASSERT(!ill->ill_isv6); 6198 6199 /* 6200 * Someone could be changing this ipif currently or change it 6201 * after we return this. Thus a few packets could use the old 6202 * old values. However structure updates/creates (ire, ilg, ilm etc) 6203 * will atomically be updated or cleaned up with the new value 6204 * Thus we don't need a lock to check the flags or other attrs below. 6205 */ 6206 mutex_enter(&ill->ill_lock); 6207 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6208 if (!IPIF_CAN_LOOKUP(ipif)) 6209 continue; 6210 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6211 ipif->ipif_zoneid != ALL_ZONES) 6212 continue; 6213 /* Allow the ipif to be down */ 6214 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6215 if ((ipif->ipif_pp_dst_addr == addr) || 6216 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6217 ipif->ipif_lcl_addr == addr)) { 6218 ipif_refhold_locked(ipif); 6219 mutex_exit(&ill->ill_lock); 6220 return (ipif); 6221 } 6222 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6223 ipif_refhold_locked(ipif); 6224 mutex_exit(&ill->ill_lock); 6225 return (ipif); 6226 } 6227 } 6228 mutex_exit(&ill->ill_lock); 6229 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6230 NULL, MATCH_IRE_RECURSIVE, ipst); 6231 if (ire != NULL) { 6232 /* 6233 * The callers of this function wants to know the 6234 * interface on which they have to send the replies 6235 * back. For IRE_CACHES that have ire_stq and ire_ipif 6236 * derived from different ills, we really don't care 6237 * what we return here. 6238 */ 6239 ipif = ire->ire_ipif; 6240 if (ipif != NULL) { 6241 ipif_refhold(ipif); 6242 ire_refrele(ire); 6243 return (ipif); 6244 } 6245 ire_refrele(ire); 6246 } 6247 /* Pick the first interface */ 6248 ipif = ipif_get_next_ipif(NULL, ill); 6249 return (ipif); 6250 } 6251 6252 /* 6253 * This func does not prevent refcnt from increasing. But if 6254 * the caller has taken steps to that effect, then this func 6255 * can be used to determine whether the ill has become quiescent 6256 */ 6257 boolean_t 6258 ill_is_quiescent(ill_t *ill) 6259 { 6260 ipif_t *ipif; 6261 6262 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6263 6264 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6265 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6266 return (B_FALSE); 6267 } 6268 } 6269 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6270 ill->ill_nce_cnt != 0) { 6271 return (B_FALSE); 6272 } 6273 return (B_TRUE); 6274 } 6275 6276 /* 6277 * This func does not prevent refcnt from increasing. But if 6278 * the caller has taken steps to that effect, then this func 6279 * can be used to determine whether the ipif has become quiescent 6280 */ 6281 static boolean_t 6282 ipif_is_quiescent(ipif_t *ipif) 6283 { 6284 ill_t *ill; 6285 6286 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6287 6288 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6289 return (B_FALSE); 6290 } 6291 6292 ill = ipif->ipif_ill; 6293 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6294 ill->ill_logical_down) { 6295 return (B_TRUE); 6296 } 6297 6298 /* This is the last ipif going down or being deleted on this ill */ 6299 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6300 return (B_FALSE); 6301 } 6302 6303 return (B_TRUE); 6304 } 6305 6306 /* 6307 * This func does not prevent refcnt from increasing. But if 6308 * the caller has taken steps to that effect, then this func 6309 * can be used to determine whether the ipifs marked with IPIF_MOVING 6310 * have become quiescent and can be moved in a failover/failback. 6311 */ 6312 static ipif_t * 6313 ill_quiescent_to_move(ill_t *ill) 6314 { 6315 ipif_t *ipif; 6316 6317 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6318 6319 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6320 if (ipif->ipif_state_flags & IPIF_MOVING) { 6321 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6322 return (ipif); 6323 } 6324 } 6325 } 6326 return (NULL); 6327 } 6328 6329 /* 6330 * The ipif/ill/ire has been refreled. Do the tail processing. 6331 * Determine if the ipif or ill in question has become quiescent and if so 6332 * wakeup close and/or restart any queued pending ioctl that is waiting 6333 * for the ipif_down (or ill_down) 6334 */ 6335 void 6336 ipif_ill_refrele_tail(ill_t *ill) 6337 { 6338 mblk_t *mp; 6339 conn_t *connp; 6340 ipsq_t *ipsq; 6341 ipif_t *ipif; 6342 dl_notify_ind_t *dlindp; 6343 6344 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6345 6346 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6347 ill_is_quiescent(ill)) { 6348 /* ill_close may be waiting */ 6349 cv_broadcast(&ill->ill_cv); 6350 } 6351 6352 /* ipsq can't change because ill_lock is held */ 6353 ipsq = ill->ill_phyint->phyint_ipsq; 6354 if (ipsq->ipsq_waitfor == 0) { 6355 /* Not waiting for anything, just return. */ 6356 mutex_exit(&ill->ill_lock); 6357 return; 6358 } 6359 ASSERT(ipsq->ipsq_pending_mp != NULL && 6360 ipsq->ipsq_pending_ipif != NULL); 6361 /* 6362 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6363 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6364 * be zero for restarting an ioctl that ends up downing the ill. 6365 */ 6366 ipif = ipsq->ipsq_pending_ipif; 6367 if (ipif->ipif_ill != ill) { 6368 /* The ioctl is pending on some other ill. */ 6369 mutex_exit(&ill->ill_lock); 6370 return; 6371 } 6372 6373 switch (ipsq->ipsq_waitfor) { 6374 case IPIF_DOWN: 6375 case IPIF_FREE: 6376 if (!ipif_is_quiescent(ipif)) { 6377 mutex_exit(&ill->ill_lock); 6378 return; 6379 } 6380 break; 6381 6382 case ILL_DOWN: 6383 case ILL_FREE: 6384 /* 6385 * case ILL_FREE arises only for loopback. otherwise ill_delete 6386 * waits synchronously in ip_close, and no message is queued in 6387 * ipsq_pending_mp at all in this case 6388 */ 6389 if (!ill_is_quiescent(ill)) { 6390 mutex_exit(&ill->ill_lock); 6391 return; 6392 } 6393 6394 break; 6395 6396 case ILL_MOVE_OK: 6397 if (ill_quiescent_to_move(ill) != NULL) { 6398 mutex_exit(&ill->ill_lock); 6399 return; 6400 } 6401 6402 break; 6403 default: 6404 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6405 (void *)ipsq, ipsq->ipsq_waitfor); 6406 } 6407 6408 /* 6409 * Incr refcnt for the qwriter_ip call below which 6410 * does a refrele 6411 */ 6412 ill_refhold_locked(ill); 6413 mutex_exit(&ill->ill_lock); 6414 6415 mp = ipsq_pending_mp_get(ipsq, &connp); 6416 ASSERT(mp != NULL); 6417 6418 /* 6419 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6420 * we can only get here when the current operation decides it 6421 * it needs to quiesce via ipsq_pending_mp_add(). 6422 */ 6423 switch (mp->b_datap->db_type) { 6424 case M_PCPROTO: 6425 case M_PROTO: 6426 /* 6427 * For now, only DL_NOTIFY_IND messages can use this facility. 6428 */ 6429 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6430 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6431 6432 switch (dlindp->dl_notification) { 6433 case DL_NOTE_PHYS_ADDR: 6434 qwriter_ip(ill, ill->ill_rq, mp, 6435 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6436 return; 6437 default: 6438 ASSERT(0); 6439 } 6440 break; 6441 6442 case M_ERROR: 6443 case M_HANGUP: 6444 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6445 B_TRUE); 6446 return; 6447 6448 case M_IOCTL: 6449 case M_IOCDATA: 6450 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6451 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6452 return; 6453 6454 default: 6455 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6456 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6457 } 6458 } 6459 6460 #ifdef DEBUG 6461 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6462 static void 6463 th_trace_rrecord(th_trace_t *th_trace) 6464 { 6465 tr_buf_t *tr_buf; 6466 uint_t lastref; 6467 6468 lastref = th_trace->th_trace_lastref; 6469 lastref++; 6470 if (lastref == TR_BUF_MAX) 6471 lastref = 0; 6472 th_trace->th_trace_lastref = lastref; 6473 tr_buf = &th_trace->th_trbuf[lastref]; 6474 tr_buf->tr_time = lbolt; 6475 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6476 } 6477 6478 static void 6479 th_trace_free(void *value) 6480 { 6481 th_trace_t *th_trace = value; 6482 6483 ASSERT(th_trace->th_refcnt == 0); 6484 kmem_free(th_trace, sizeof (*th_trace)); 6485 } 6486 6487 /* 6488 * Find or create the per-thread hash table used to track object references. 6489 * The ipst argument is NULL if we shouldn't allocate. 6490 * 6491 * Accesses per-thread data, so there's no need to lock here. 6492 */ 6493 static mod_hash_t * 6494 th_trace_gethash(ip_stack_t *ipst) 6495 { 6496 th_hash_t *thh; 6497 6498 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6499 mod_hash_t *mh; 6500 char name[256]; 6501 size_t objsize, rshift; 6502 int retv; 6503 6504 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6505 return (NULL); 6506 (void) snprintf(name, sizeof (name), "th_trace_%p", curthread); 6507 6508 /* 6509 * We use mod_hash_create_extended here rather than the more 6510 * obvious mod_hash_create_ptrhash because the latter has a 6511 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6512 * block. 6513 */ 6514 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6515 MAX(sizeof (ire_t), sizeof (nce_t))); 6516 rshift = highbit(objsize); 6517 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6518 th_trace_free, mod_hash_byptr, (void *)rshift, 6519 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6520 if (mh == NULL) { 6521 kmem_free(thh, sizeof (*thh)); 6522 return (NULL); 6523 } 6524 thh->thh_hash = mh; 6525 thh->thh_ipst = ipst; 6526 /* 6527 * We trace ills, ipifs, ires, and nces. All of these are 6528 * per-IP-stack, so the lock on the thread list is as well. 6529 */ 6530 rw_enter(&ip_thread_rwlock, RW_WRITER); 6531 list_insert_tail(&ip_thread_list, thh); 6532 rw_exit(&ip_thread_rwlock); 6533 retv = tsd_set(ip_thread_data, thh); 6534 ASSERT(retv == 0); 6535 } 6536 return (thh != NULL ? thh->thh_hash : NULL); 6537 } 6538 6539 boolean_t 6540 th_trace_ref(const void *obj, ip_stack_t *ipst) 6541 { 6542 th_trace_t *th_trace; 6543 mod_hash_t *mh; 6544 mod_hash_val_t val; 6545 6546 if ((mh = th_trace_gethash(ipst)) == NULL) 6547 return (B_FALSE); 6548 6549 /* 6550 * Attempt to locate the trace buffer for this obj and thread. 6551 * If it does not exist, then allocate a new trace buffer and 6552 * insert into the hash. 6553 */ 6554 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6555 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6556 if (th_trace == NULL) 6557 return (B_FALSE); 6558 6559 th_trace->th_id = curthread; 6560 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6561 (mod_hash_val_t)th_trace) != 0) { 6562 kmem_free(th_trace, sizeof (th_trace_t)); 6563 return (B_FALSE); 6564 } 6565 } else { 6566 th_trace = (th_trace_t *)val; 6567 } 6568 6569 ASSERT(th_trace->th_refcnt >= 0 && 6570 th_trace->th_refcnt < TR_BUF_MAX - 1); 6571 6572 th_trace->th_refcnt++; 6573 th_trace_rrecord(th_trace); 6574 return (B_TRUE); 6575 } 6576 6577 /* 6578 * For the purpose of tracing a reference release, we assume that global 6579 * tracing is always on and that the same thread initiated the reference hold 6580 * is releasing. 6581 */ 6582 void 6583 th_trace_unref(const void *obj) 6584 { 6585 int retv; 6586 mod_hash_t *mh; 6587 th_trace_t *th_trace; 6588 mod_hash_val_t val; 6589 6590 mh = th_trace_gethash(NULL); 6591 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6592 ASSERT(retv == 0); 6593 th_trace = (th_trace_t *)val; 6594 6595 ASSERT(th_trace->th_refcnt > 0); 6596 th_trace->th_refcnt--; 6597 th_trace_rrecord(th_trace); 6598 } 6599 6600 /* 6601 * If tracing has been disabled, then we assume that the reference counts are 6602 * now useless, and we clear them out before destroying the entries. 6603 */ 6604 void 6605 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6606 { 6607 th_hash_t *thh; 6608 mod_hash_t *mh; 6609 mod_hash_val_t val; 6610 th_trace_t *th_trace; 6611 int retv; 6612 6613 rw_enter(&ip_thread_rwlock, RW_READER); 6614 for (thh = list_head(&ip_thread_list); thh != NULL; 6615 thh = list_next(&ip_thread_list, thh)) { 6616 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6617 &val) == 0) { 6618 th_trace = (th_trace_t *)val; 6619 if (trace_disable) 6620 th_trace->th_refcnt = 0; 6621 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6622 ASSERT(retv == 0); 6623 } 6624 } 6625 rw_exit(&ip_thread_rwlock); 6626 } 6627 6628 void 6629 ipif_trace_ref(ipif_t *ipif) 6630 { 6631 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6632 6633 if (ipif->ipif_trace_disable) 6634 return; 6635 6636 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6637 ipif->ipif_trace_disable = B_TRUE; 6638 ipif_trace_cleanup(ipif); 6639 } 6640 } 6641 6642 void 6643 ipif_untrace_ref(ipif_t *ipif) 6644 { 6645 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6646 6647 if (!ipif->ipif_trace_disable) 6648 th_trace_unref(ipif); 6649 } 6650 6651 void 6652 ill_trace_ref(ill_t *ill) 6653 { 6654 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6655 6656 if (ill->ill_trace_disable) 6657 return; 6658 6659 if (!th_trace_ref(ill, ill->ill_ipst)) { 6660 ill->ill_trace_disable = B_TRUE; 6661 ill_trace_cleanup(ill); 6662 } 6663 } 6664 6665 void 6666 ill_untrace_ref(ill_t *ill) 6667 { 6668 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6669 6670 if (!ill->ill_trace_disable) 6671 th_trace_unref(ill); 6672 } 6673 6674 /* 6675 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6676 * failure, ipif_trace_disable is set. 6677 */ 6678 static void 6679 ipif_trace_cleanup(const ipif_t *ipif) 6680 { 6681 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6682 } 6683 6684 /* 6685 * Called when ill is unplumbed or when memory alloc fails. Note that on 6686 * failure, ill_trace_disable is set. 6687 */ 6688 static void 6689 ill_trace_cleanup(const ill_t *ill) 6690 { 6691 th_trace_cleanup(ill, ill->ill_trace_disable); 6692 } 6693 #endif /* DEBUG */ 6694 6695 void 6696 ipif_refhold_locked(ipif_t *ipif) 6697 { 6698 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6699 ipif->ipif_refcnt++; 6700 IPIF_TRACE_REF(ipif); 6701 } 6702 6703 void 6704 ipif_refhold(ipif_t *ipif) 6705 { 6706 ill_t *ill; 6707 6708 ill = ipif->ipif_ill; 6709 mutex_enter(&ill->ill_lock); 6710 ipif->ipif_refcnt++; 6711 IPIF_TRACE_REF(ipif); 6712 mutex_exit(&ill->ill_lock); 6713 } 6714 6715 /* 6716 * Must not be called while holding any locks. Otherwise if this is 6717 * the last reference to be released there is a chance of recursive mutex 6718 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6719 * to restart an ioctl. 6720 */ 6721 void 6722 ipif_refrele(ipif_t *ipif) 6723 { 6724 ill_t *ill; 6725 6726 ill = ipif->ipif_ill; 6727 6728 mutex_enter(&ill->ill_lock); 6729 ASSERT(ipif->ipif_refcnt != 0); 6730 ipif->ipif_refcnt--; 6731 IPIF_UNTRACE_REF(ipif); 6732 if (ipif->ipif_refcnt != 0) { 6733 mutex_exit(&ill->ill_lock); 6734 return; 6735 } 6736 6737 /* Drops the ill_lock */ 6738 ipif_ill_refrele_tail(ill); 6739 } 6740 6741 ipif_t * 6742 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6743 { 6744 ipif_t *ipif; 6745 6746 mutex_enter(&ill->ill_lock); 6747 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6748 ipif != NULL; ipif = ipif->ipif_next) { 6749 if (!IPIF_CAN_LOOKUP(ipif)) 6750 continue; 6751 ipif_refhold_locked(ipif); 6752 mutex_exit(&ill->ill_lock); 6753 return (ipif); 6754 } 6755 mutex_exit(&ill->ill_lock); 6756 return (NULL); 6757 } 6758 6759 /* 6760 * TODO: make this table extendible at run time 6761 * Return a pointer to the mac type info for 'mac_type' 6762 */ 6763 static ip_m_t * 6764 ip_m_lookup(t_uscalar_t mac_type) 6765 { 6766 ip_m_t *ipm; 6767 6768 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6769 if (ipm->ip_m_mac_type == mac_type) 6770 return (ipm); 6771 return (NULL); 6772 } 6773 6774 /* 6775 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6776 * ipif_arg is passed in to associate it with the correct interface. 6777 * We may need to restart this operation if the ipif cannot be looked up 6778 * due to an exclusive operation that is currently in progress. The restart 6779 * entry point is specified by 'func' 6780 */ 6781 int 6782 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6783 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6784 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6785 struct rtsa_s *sp, ip_stack_t *ipst) 6786 { 6787 ire_t *ire; 6788 ire_t *gw_ire = NULL; 6789 ipif_t *ipif = NULL; 6790 boolean_t ipif_refheld = B_FALSE; 6791 uint_t type; 6792 int match_flags = MATCH_IRE_TYPE; 6793 int error; 6794 tsol_gc_t *gc = NULL; 6795 tsol_gcgrp_t *gcgrp = NULL; 6796 boolean_t gcgrp_xtraref = B_FALSE; 6797 6798 ip1dbg(("ip_rt_add:")); 6799 6800 if (ire_arg != NULL) 6801 *ire_arg = NULL; 6802 6803 /* 6804 * If this is the case of RTF_HOST being set, then we set the netmask 6805 * to all ones (regardless if one was supplied). 6806 */ 6807 if (flags & RTF_HOST) 6808 mask = IP_HOST_MASK; 6809 6810 /* 6811 * Prevent routes with a zero gateway from being created (since 6812 * interfaces can currently be plumbed and brought up no assigned 6813 * address). 6814 */ 6815 if (gw_addr == 0) 6816 return (ENETUNREACH); 6817 /* 6818 * Get the ipif, if any, corresponding to the gw_addr 6819 */ 6820 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6821 ipst); 6822 if (ipif != NULL) { 6823 if (IS_VNI(ipif->ipif_ill)) { 6824 ipif_refrele(ipif); 6825 return (EINVAL); 6826 } 6827 ipif_refheld = B_TRUE; 6828 } else if (error == EINPROGRESS) { 6829 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6830 return (EINPROGRESS); 6831 } else { 6832 error = 0; 6833 } 6834 6835 if (ipif != NULL) { 6836 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6837 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6838 } else { 6839 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6840 } 6841 6842 /* 6843 * GateD will attempt to create routes with a loopback interface 6844 * address as the gateway and with RTF_GATEWAY set. We allow 6845 * these routes to be added, but create them as interface routes 6846 * since the gateway is an interface address. 6847 */ 6848 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6849 flags &= ~RTF_GATEWAY; 6850 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6851 mask == IP_HOST_MASK) { 6852 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6853 ALL_ZONES, NULL, match_flags, ipst); 6854 if (ire != NULL) { 6855 ire_refrele(ire); 6856 if (ipif_refheld) 6857 ipif_refrele(ipif); 6858 return (EEXIST); 6859 } 6860 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6861 "for 0x%x\n", (void *)ipif, 6862 ipif->ipif_ire_type, 6863 ntohl(ipif->ipif_lcl_addr))); 6864 ire = ire_create( 6865 (uchar_t *)&dst_addr, /* dest address */ 6866 (uchar_t *)&mask, /* mask */ 6867 (uchar_t *)&ipif->ipif_src_addr, 6868 NULL, /* no gateway */ 6869 &ipif->ipif_mtu, 6870 NULL, 6871 ipif->ipif_rq, /* recv-from queue */ 6872 NULL, /* no send-to queue */ 6873 ipif->ipif_ire_type, /* LOOPBACK */ 6874 ipif, 6875 0, 6876 0, 6877 0, 6878 (ipif->ipif_flags & IPIF_PRIVATE) ? 6879 RTF_PRIVATE : 0, 6880 &ire_uinfo_null, 6881 NULL, 6882 NULL, 6883 ipst); 6884 6885 if (ire == NULL) { 6886 if (ipif_refheld) 6887 ipif_refrele(ipif); 6888 return (ENOMEM); 6889 } 6890 error = ire_add(&ire, q, mp, func, B_FALSE); 6891 if (error == 0) 6892 goto save_ire; 6893 if (ipif_refheld) 6894 ipif_refrele(ipif); 6895 return (error); 6896 6897 } 6898 } 6899 6900 /* 6901 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6902 * and the gateway address provided is one of the system's interface 6903 * addresses. By using the routing socket interface and supplying an 6904 * RTA_IFP sockaddr with an interface index, an alternate method of 6905 * specifying an interface route to be created is available which uses 6906 * the interface index that specifies the outgoing interface rather than 6907 * the address of an outgoing interface (which may not be able to 6908 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6909 * flag, routes can be specified which not only specify the next-hop to 6910 * be used when routing to a certain prefix, but also which outgoing 6911 * interface should be used. 6912 * 6913 * Previously, interfaces would have unique addresses assigned to them 6914 * and so the address assigned to a particular interface could be used 6915 * to identify a particular interface. One exception to this was the 6916 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6917 * 6918 * With the advent of IPv6 and its link-local addresses, this 6919 * restriction was relaxed and interfaces could share addresses between 6920 * themselves. In fact, typically all of the link-local interfaces on 6921 * an IPv6 node or router will have the same link-local address. In 6922 * order to differentiate between these interfaces, the use of an 6923 * interface index is necessary and this index can be carried inside a 6924 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6925 * of using the interface index, however, is that all of the ipif's that 6926 * are part of an ill have the same index and so the RTA_IFP sockaddr 6927 * cannot be used to differentiate between ipif's (or logical 6928 * interfaces) that belong to the same ill (physical interface). 6929 * 6930 * For example, in the following case involving IPv4 interfaces and 6931 * logical interfaces 6932 * 6933 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6934 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6935 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6936 * 6937 * the ipif's corresponding to each of these interface routes can be 6938 * uniquely identified by the "gateway" (actually interface address). 6939 * 6940 * In this case involving multiple IPv6 default routes to a particular 6941 * link-local gateway, the use of RTA_IFP is necessary to specify which 6942 * default route is of interest: 6943 * 6944 * default fe80::123:4567:89ab:cdef U if0 6945 * default fe80::123:4567:89ab:cdef U if1 6946 */ 6947 6948 /* RTF_GATEWAY not set */ 6949 if (!(flags & RTF_GATEWAY)) { 6950 queue_t *stq; 6951 6952 if (sp != NULL) { 6953 ip2dbg(("ip_rt_add: gateway security attributes " 6954 "cannot be set with interface route\n")); 6955 if (ipif_refheld) 6956 ipif_refrele(ipif); 6957 return (EINVAL); 6958 } 6959 6960 /* 6961 * As the interface index specified with the RTA_IFP sockaddr is 6962 * the same for all ipif's off of an ill, the matching logic 6963 * below uses MATCH_IRE_ILL if such an index was specified. 6964 * This means that routes sharing the same prefix when added 6965 * using a RTA_IFP sockaddr must have distinct interface 6966 * indices (namely, they must be on distinct ill's). 6967 * 6968 * On the other hand, since the gateway address will usually be 6969 * different for each ipif on the system, the matching logic 6970 * uses MATCH_IRE_IPIF in the case of a traditional interface 6971 * route. This means that interface routes for the same prefix 6972 * can be created if they belong to distinct ipif's and if a 6973 * RTA_IFP sockaddr is not present. 6974 */ 6975 if (ipif_arg != NULL) { 6976 if (ipif_refheld) { 6977 ipif_refrele(ipif); 6978 ipif_refheld = B_FALSE; 6979 } 6980 ipif = ipif_arg; 6981 match_flags |= MATCH_IRE_ILL; 6982 } else { 6983 /* 6984 * Check the ipif corresponding to the gw_addr 6985 */ 6986 if (ipif == NULL) 6987 return (ENETUNREACH); 6988 match_flags |= MATCH_IRE_IPIF; 6989 } 6990 ASSERT(ipif != NULL); 6991 6992 /* 6993 * We check for an existing entry at this point. 6994 * 6995 * Since a netmask isn't passed in via the ioctl interface 6996 * (SIOCADDRT), we don't check for a matching netmask in that 6997 * case. 6998 */ 6999 if (!ioctl_msg) 7000 match_flags |= MATCH_IRE_MASK; 7001 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 7002 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7003 if (ire != NULL) { 7004 ire_refrele(ire); 7005 if (ipif_refheld) 7006 ipif_refrele(ipif); 7007 return (EEXIST); 7008 } 7009 7010 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7011 ? ipif->ipif_rq : ipif->ipif_wq; 7012 7013 /* 7014 * Create a copy of the IRE_LOOPBACK, 7015 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7016 * the modified address and netmask. 7017 */ 7018 ire = ire_create( 7019 (uchar_t *)&dst_addr, 7020 (uint8_t *)&mask, 7021 (uint8_t *)&ipif->ipif_src_addr, 7022 NULL, 7023 &ipif->ipif_mtu, 7024 NULL, 7025 NULL, 7026 stq, 7027 ipif->ipif_net_type, 7028 ipif, 7029 0, 7030 0, 7031 0, 7032 flags, 7033 &ire_uinfo_null, 7034 NULL, 7035 NULL, 7036 ipst); 7037 if (ire == NULL) { 7038 if (ipif_refheld) 7039 ipif_refrele(ipif); 7040 return (ENOMEM); 7041 } 7042 7043 /* 7044 * Some software (for example, GateD and Sun Cluster) attempts 7045 * to create (what amount to) IRE_PREFIX routes with the 7046 * loopback address as the gateway. This is primarily done to 7047 * set up prefixes with the RTF_REJECT flag set (for example, 7048 * when generating aggregate routes.) 7049 * 7050 * If the IRE type (as defined by ipif->ipif_net_type) is 7051 * IRE_LOOPBACK, then we map the request into a 7052 * IRE_IF_NORESOLVER. 7053 * 7054 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7055 * routine, but rather using ire_create() directly. 7056 * 7057 */ 7058 if (ipif->ipif_net_type == IRE_LOOPBACK) 7059 ire->ire_type = IRE_IF_NORESOLVER; 7060 7061 error = ire_add(&ire, q, mp, func, B_FALSE); 7062 if (error == 0) 7063 goto save_ire; 7064 7065 /* 7066 * In the result of failure, ire_add() will have already 7067 * deleted the ire in question, so there is no need to 7068 * do that here. 7069 */ 7070 if (ipif_refheld) 7071 ipif_refrele(ipif); 7072 return (error); 7073 } 7074 if (ipif_refheld) { 7075 ipif_refrele(ipif); 7076 ipif_refheld = B_FALSE; 7077 } 7078 7079 /* 7080 * Get an interface IRE for the specified gateway. 7081 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7082 * gateway, it is currently unreachable and we fail the request 7083 * accordingly. 7084 */ 7085 ipif = ipif_arg; 7086 if (ipif_arg != NULL) 7087 match_flags |= MATCH_IRE_ILL; 7088 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7089 ALL_ZONES, 0, NULL, match_flags, ipst); 7090 if (gw_ire == NULL) 7091 return (ENETUNREACH); 7092 7093 /* 7094 * We create one of three types of IREs as a result of this request 7095 * based on the netmask. A netmask of all ones (which is automatically 7096 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7097 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7098 * created. Otherwise, an IRE_PREFIX route is created for the 7099 * destination prefix. 7100 */ 7101 if (mask == IP_HOST_MASK) 7102 type = IRE_HOST; 7103 else if (mask == 0) 7104 type = IRE_DEFAULT; 7105 else 7106 type = IRE_PREFIX; 7107 7108 /* check for a duplicate entry */ 7109 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7110 NULL, ALL_ZONES, 0, NULL, 7111 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7112 if (ire != NULL) { 7113 ire_refrele(gw_ire); 7114 ire_refrele(ire); 7115 return (EEXIST); 7116 } 7117 7118 /* Security attribute exists */ 7119 if (sp != NULL) { 7120 tsol_gcgrp_addr_t ga; 7121 7122 /* find or create the gateway credentials group */ 7123 ga.ga_af = AF_INET; 7124 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7125 7126 /* we hold reference to it upon success */ 7127 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7128 if (gcgrp == NULL) { 7129 ire_refrele(gw_ire); 7130 return (ENOMEM); 7131 } 7132 7133 /* 7134 * Create and add the security attribute to the group; a 7135 * reference to the group is made upon allocating a new 7136 * entry successfully. If it finds an already-existing 7137 * entry for the security attribute in the group, it simply 7138 * returns it and no new reference is made to the group. 7139 */ 7140 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7141 if (gc == NULL) { 7142 /* release reference held by gcgrp_lookup */ 7143 GCGRP_REFRELE(gcgrp); 7144 ire_refrele(gw_ire); 7145 return (ENOMEM); 7146 } 7147 } 7148 7149 /* Create the IRE. */ 7150 ire = ire_create( 7151 (uchar_t *)&dst_addr, /* dest address */ 7152 (uchar_t *)&mask, /* mask */ 7153 /* src address assigned by the caller? */ 7154 (uchar_t *)(((src_addr != INADDR_ANY) && 7155 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7156 (uchar_t *)&gw_addr, /* gateway address */ 7157 &gw_ire->ire_max_frag, 7158 NULL, /* no src nce */ 7159 NULL, /* no recv-from queue */ 7160 NULL, /* no send-to queue */ 7161 (ushort_t)type, /* IRE type */ 7162 ipif_arg, 7163 0, 7164 0, 7165 0, 7166 flags, 7167 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7168 gc, /* security attribute */ 7169 NULL, 7170 ipst); 7171 7172 /* 7173 * The ire holds a reference to the 'gc' and the 'gc' holds a 7174 * reference to the 'gcgrp'. We can now release the extra reference 7175 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7176 */ 7177 if (gcgrp_xtraref) 7178 GCGRP_REFRELE(gcgrp); 7179 if (ire == NULL) { 7180 if (gc != NULL) 7181 GC_REFRELE(gc); 7182 ire_refrele(gw_ire); 7183 return (ENOMEM); 7184 } 7185 7186 /* 7187 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7188 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7189 */ 7190 7191 /* Add the new IRE. */ 7192 error = ire_add(&ire, q, mp, func, B_FALSE); 7193 if (error != 0) { 7194 /* 7195 * In the result of failure, ire_add() will have already 7196 * deleted the ire in question, so there is no need to 7197 * do that here. 7198 */ 7199 ire_refrele(gw_ire); 7200 return (error); 7201 } 7202 7203 if (flags & RTF_MULTIRT) { 7204 /* 7205 * Invoke the CGTP (multirouting) filtering module 7206 * to add the dst address in the filtering database. 7207 * Replicated inbound packets coming from that address 7208 * will be filtered to discard the duplicates. 7209 * It is not necessary to call the CGTP filter hook 7210 * when the dst address is a broadcast or multicast, 7211 * because an IP source address cannot be a broadcast 7212 * or a multicast. 7213 */ 7214 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7215 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7216 if (ire_dst != NULL) { 7217 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7218 ire_refrele(ire_dst); 7219 goto save_ire; 7220 } 7221 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7222 !CLASSD(ire->ire_addr)) { 7223 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7224 ipst->ips_netstack->netstack_stackid, 7225 ire->ire_addr, 7226 ire->ire_gateway_addr, 7227 ire->ire_src_addr, 7228 gw_ire->ire_src_addr); 7229 if (res != 0) { 7230 ire_refrele(gw_ire); 7231 ire_delete(ire); 7232 return (res); 7233 } 7234 } 7235 } 7236 7237 /* 7238 * Now that the prefix IRE entry has been created, delete any 7239 * existing gateway IRE cache entries as well as any IRE caches 7240 * using the gateway, and force them to be created through 7241 * ip_newroute. 7242 */ 7243 if (gc != NULL) { 7244 ASSERT(gcgrp != NULL); 7245 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7246 } 7247 7248 save_ire: 7249 if (gw_ire != NULL) { 7250 ire_refrele(gw_ire); 7251 } 7252 if (ipif != NULL) { 7253 /* 7254 * Save enough information so that we can recreate the IRE if 7255 * the interface goes down and then up. The metrics associated 7256 * with the route will be saved as well when rts_setmetrics() is 7257 * called after the IRE has been created. In the case where 7258 * memory cannot be allocated, none of this information will be 7259 * saved. 7260 */ 7261 ipif_save_ire(ipif, ire); 7262 } 7263 if (ioctl_msg) 7264 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7265 if (ire_arg != NULL) { 7266 /* 7267 * Store the ire that was successfully added into where ire_arg 7268 * points to so that callers don't have to look it up 7269 * themselves (but they are responsible for ire_refrele()ing 7270 * the ire when they are finished with it). 7271 */ 7272 *ire_arg = ire; 7273 } else { 7274 ire_refrele(ire); /* Held in ire_add */ 7275 } 7276 if (ipif_refheld) 7277 ipif_refrele(ipif); 7278 return (0); 7279 } 7280 7281 /* 7282 * ip_rt_delete is called to delete an IPv4 route. 7283 * ipif_arg is passed in to associate it with the correct interface. 7284 * We may need to restart this operation if the ipif cannot be looked up 7285 * due to an exclusive operation that is currently in progress. The restart 7286 * entry point is specified by 'func' 7287 */ 7288 /* ARGSUSED4 */ 7289 int 7290 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7291 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7292 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7293 { 7294 ire_t *ire = NULL; 7295 ipif_t *ipif; 7296 boolean_t ipif_refheld = B_FALSE; 7297 uint_t type; 7298 uint_t match_flags = MATCH_IRE_TYPE; 7299 int err = 0; 7300 7301 ip1dbg(("ip_rt_delete:")); 7302 /* 7303 * If this is the case of RTF_HOST being set, then we set the netmask 7304 * to all ones. Otherwise, we use the netmask if one was supplied. 7305 */ 7306 if (flags & RTF_HOST) { 7307 mask = IP_HOST_MASK; 7308 match_flags |= MATCH_IRE_MASK; 7309 } else if (rtm_addrs & RTA_NETMASK) { 7310 match_flags |= MATCH_IRE_MASK; 7311 } 7312 7313 /* 7314 * Note that RTF_GATEWAY is never set on a delete, therefore 7315 * we check if the gateway address is one of our interfaces first, 7316 * and fall back on RTF_GATEWAY routes. 7317 * 7318 * This makes it possible to delete an original 7319 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7320 * 7321 * As the interface index specified with the RTA_IFP sockaddr is the 7322 * same for all ipif's off of an ill, the matching logic below uses 7323 * MATCH_IRE_ILL if such an index was specified. This means a route 7324 * sharing the same prefix and interface index as the the route 7325 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7326 * is specified in the request. 7327 * 7328 * On the other hand, since the gateway address will usually be 7329 * different for each ipif on the system, the matching logic 7330 * uses MATCH_IRE_IPIF in the case of a traditional interface 7331 * route. This means that interface routes for the same prefix can be 7332 * uniquely identified if they belong to distinct ipif's and if a 7333 * RTA_IFP sockaddr is not present. 7334 * 7335 * For more detail on specifying routes by gateway address and by 7336 * interface index, see the comments in ip_rt_add(). 7337 */ 7338 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7339 ipst); 7340 if (ipif != NULL) 7341 ipif_refheld = B_TRUE; 7342 else if (err == EINPROGRESS) 7343 return (err); 7344 else 7345 err = 0; 7346 if (ipif != NULL) { 7347 if (ipif_arg != NULL) { 7348 if (ipif_refheld) { 7349 ipif_refrele(ipif); 7350 ipif_refheld = B_FALSE; 7351 } 7352 ipif = ipif_arg; 7353 match_flags |= MATCH_IRE_ILL; 7354 } else { 7355 match_flags |= MATCH_IRE_IPIF; 7356 } 7357 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7358 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7359 ALL_ZONES, NULL, match_flags, ipst); 7360 } 7361 if (ire == NULL) { 7362 ire = ire_ftable_lookup(dst_addr, mask, 0, 7363 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7364 match_flags, ipst); 7365 } 7366 } 7367 7368 if (ire == NULL) { 7369 /* 7370 * At this point, the gateway address is not one of our own 7371 * addresses or a matching interface route was not found. We 7372 * set the IRE type to lookup based on whether 7373 * this is a host route, a default route or just a prefix. 7374 * 7375 * If an ipif_arg was passed in, then the lookup is based on an 7376 * interface index so MATCH_IRE_ILL is added to match_flags. 7377 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7378 * set as the route being looked up is not a traditional 7379 * interface route. 7380 */ 7381 match_flags &= ~MATCH_IRE_IPIF; 7382 match_flags |= MATCH_IRE_GW; 7383 if (ipif_arg != NULL) 7384 match_flags |= MATCH_IRE_ILL; 7385 if (mask == IP_HOST_MASK) 7386 type = IRE_HOST; 7387 else if (mask == 0) 7388 type = IRE_DEFAULT; 7389 else 7390 type = IRE_PREFIX; 7391 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7392 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7393 } 7394 7395 if (ipif_refheld) 7396 ipif_refrele(ipif); 7397 7398 /* ipif is not refheld anymore */ 7399 if (ire == NULL) 7400 return (ESRCH); 7401 7402 if (ire->ire_flags & RTF_MULTIRT) { 7403 /* 7404 * Invoke the CGTP (multirouting) filtering module 7405 * to remove the dst address from the filtering database. 7406 * Packets coming from that address will no longer be 7407 * filtered to remove duplicates. 7408 */ 7409 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7410 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7411 ipst->ips_netstack->netstack_stackid, 7412 ire->ire_addr, ire->ire_gateway_addr); 7413 } 7414 ip_cgtp_bcast_delete(ire, ipst); 7415 } 7416 7417 ipif = ire->ire_ipif; 7418 if (ipif != NULL) 7419 ipif_remove_ire(ipif, ire); 7420 if (ioctl_msg) 7421 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7422 ire_delete(ire); 7423 ire_refrele(ire); 7424 return (err); 7425 } 7426 7427 /* 7428 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7429 */ 7430 /* ARGSUSED */ 7431 int 7432 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7433 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7434 { 7435 ipaddr_t dst_addr; 7436 ipaddr_t gw_addr; 7437 ipaddr_t mask; 7438 int error = 0; 7439 mblk_t *mp1; 7440 struct rtentry *rt; 7441 ipif_t *ipif = NULL; 7442 ip_stack_t *ipst; 7443 7444 ASSERT(q->q_next == NULL); 7445 ipst = CONNQ_TO_IPST(q); 7446 7447 ip1dbg(("ip_siocaddrt:")); 7448 /* Existence of mp1 verified in ip_wput_nondata */ 7449 mp1 = mp->b_cont->b_cont; 7450 rt = (struct rtentry *)mp1->b_rptr; 7451 7452 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7453 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7454 7455 /* 7456 * If the RTF_HOST flag is on, this is a request to assign a gateway 7457 * to a particular host address. In this case, we set the netmask to 7458 * all ones for the particular destination address. Otherwise, 7459 * determine the netmask to be used based on dst_addr and the interfaces 7460 * in use. 7461 */ 7462 if (rt->rt_flags & RTF_HOST) { 7463 mask = IP_HOST_MASK; 7464 } else { 7465 /* 7466 * Note that ip_subnet_mask returns a zero mask in the case of 7467 * default (an all-zeroes address). 7468 */ 7469 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7470 } 7471 7472 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7473 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7474 if (ipif != NULL) 7475 ipif_refrele(ipif); 7476 return (error); 7477 } 7478 7479 /* 7480 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7481 */ 7482 /* ARGSUSED */ 7483 int 7484 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7485 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7486 { 7487 ipaddr_t dst_addr; 7488 ipaddr_t gw_addr; 7489 ipaddr_t mask; 7490 int error; 7491 mblk_t *mp1; 7492 struct rtentry *rt; 7493 ipif_t *ipif = NULL; 7494 ip_stack_t *ipst; 7495 7496 ASSERT(q->q_next == NULL); 7497 ipst = CONNQ_TO_IPST(q); 7498 7499 ip1dbg(("ip_siocdelrt:")); 7500 /* Existence of mp1 verified in ip_wput_nondata */ 7501 mp1 = mp->b_cont->b_cont; 7502 rt = (struct rtentry *)mp1->b_rptr; 7503 7504 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7505 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7506 7507 /* 7508 * If the RTF_HOST flag is on, this is a request to delete a gateway 7509 * to a particular host address. In this case, we set the netmask to 7510 * all ones for the particular destination address. Otherwise, 7511 * determine the netmask to be used based on dst_addr and the interfaces 7512 * in use. 7513 */ 7514 if (rt->rt_flags & RTF_HOST) { 7515 mask = IP_HOST_MASK; 7516 } else { 7517 /* 7518 * Note that ip_subnet_mask returns a zero mask in the case of 7519 * default (an all-zeroes address). 7520 */ 7521 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7522 } 7523 7524 error = ip_rt_delete(dst_addr, mask, gw_addr, 7525 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7526 mp, ip_process_ioctl, ipst); 7527 if (ipif != NULL) 7528 ipif_refrele(ipif); 7529 return (error); 7530 } 7531 7532 /* 7533 * Enqueue the mp onto the ipsq, chained by b_next. 7534 * b_prev stores the function to be executed later, and b_queue the queue 7535 * where this mp originated. 7536 */ 7537 void 7538 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7539 ill_t *pending_ill) 7540 { 7541 conn_t *connp = NULL; 7542 7543 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7544 ASSERT(func != NULL); 7545 7546 mp->b_queue = q; 7547 mp->b_prev = (void *)func; 7548 mp->b_next = NULL; 7549 7550 switch (type) { 7551 case CUR_OP: 7552 if (ipsq->ipsq_mptail != NULL) { 7553 ASSERT(ipsq->ipsq_mphead != NULL); 7554 ipsq->ipsq_mptail->b_next = mp; 7555 } else { 7556 ASSERT(ipsq->ipsq_mphead == NULL); 7557 ipsq->ipsq_mphead = mp; 7558 } 7559 ipsq->ipsq_mptail = mp; 7560 break; 7561 7562 case NEW_OP: 7563 if (ipsq->ipsq_xopq_mptail != NULL) { 7564 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7565 ipsq->ipsq_xopq_mptail->b_next = mp; 7566 } else { 7567 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7568 ipsq->ipsq_xopq_mphead = mp; 7569 } 7570 ipsq->ipsq_xopq_mptail = mp; 7571 break; 7572 default: 7573 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7574 } 7575 7576 if (CONN_Q(q) && pending_ill != NULL) { 7577 connp = Q_TO_CONN(q); 7578 7579 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7580 connp->conn_oper_pending_ill = pending_ill; 7581 } 7582 } 7583 7584 /* 7585 * Return the mp at the head of the ipsq. After emptying the ipsq 7586 * look at the next ioctl, if this ioctl is complete. Otherwise 7587 * return, we will resume when we complete the current ioctl. 7588 * The current ioctl will wait till it gets a response from the 7589 * driver below. 7590 */ 7591 static mblk_t * 7592 ipsq_dq(ipsq_t *ipsq) 7593 { 7594 mblk_t *mp; 7595 7596 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7597 7598 mp = ipsq->ipsq_mphead; 7599 if (mp != NULL) { 7600 ipsq->ipsq_mphead = mp->b_next; 7601 if (ipsq->ipsq_mphead == NULL) 7602 ipsq->ipsq_mptail = NULL; 7603 mp->b_next = NULL; 7604 return (mp); 7605 } 7606 if (ipsq->ipsq_current_ipif != NULL) 7607 return (NULL); 7608 mp = ipsq->ipsq_xopq_mphead; 7609 if (mp != NULL) { 7610 ipsq->ipsq_xopq_mphead = mp->b_next; 7611 if (ipsq->ipsq_xopq_mphead == NULL) 7612 ipsq->ipsq_xopq_mptail = NULL; 7613 mp->b_next = NULL; 7614 return (mp); 7615 } 7616 return (NULL); 7617 } 7618 7619 /* 7620 * Enter the ipsq corresponding to ill, by waiting synchronously till 7621 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7622 * will have to drain completely before ipsq_enter returns success. 7623 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7624 * and the ipsq_exit logic will start the next enqueued ioctl after 7625 * completion of the current ioctl. If 'force' is used, we don't wait 7626 * for the enqueued ioctls. This is needed when a conn_close wants to 7627 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7628 * of an ill can also use this option. But we dont' use it currently. 7629 */ 7630 #define ENTER_SQ_WAIT_TICKS 100 7631 boolean_t 7632 ipsq_enter(ill_t *ill, boolean_t force) 7633 { 7634 ipsq_t *ipsq; 7635 boolean_t waited_enough = B_FALSE; 7636 7637 /* 7638 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7639 * Since the <ill-ipsq> assocs could change while we wait for the 7640 * writer, it is easier to wait on a fixed global rather than try to 7641 * cv_wait on a changing ipsq. 7642 */ 7643 mutex_enter(&ill->ill_lock); 7644 for (;;) { 7645 if (ill->ill_state_flags & ILL_CONDEMNED) { 7646 mutex_exit(&ill->ill_lock); 7647 return (B_FALSE); 7648 } 7649 7650 ipsq = ill->ill_phyint->phyint_ipsq; 7651 mutex_enter(&ipsq->ipsq_lock); 7652 if (ipsq->ipsq_writer == NULL && 7653 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7654 break; 7655 } else if (ipsq->ipsq_writer != NULL) { 7656 mutex_exit(&ipsq->ipsq_lock); 7657 cv_wait(&ill->ill_cv, &ill->ill_lock); 7658 } else { 7659 mutex_exit(&ipsq->ipsq_lock); 7660 if (force) { 7661 (void) cv_timedwait(&ill->ill_cv, 7662 &ill->ill_lock, 7663 lbolt + ENTER_SQ_WAIT_TICKS); 7664 waited_enough = B_TRUE; 7665 continue; 7666 } else { 7667 cv_wait(&ill->ill_cv, &ill->ill_lock); 7668 } 7669 } 7670 } 7671 7672 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7673 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7674 ipsq->ipsq_writer = curthread; 7675 ipsq->ipsq_reentry_cnt++; 7676 #ifdef DEBUG 7677 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7678 #endif 7679 mutex_exit(&ipsq->ipsq_lock); 7680 mutex_exit(&ill->ill_lock); 7681 return (B_TRUE); 7682 } 7683 7684 /* 7685 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7686 * certain critical operations like plumbing (i.e. most set ioctls), 7687 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7688 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7689 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7690 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7691 * threads executing in the ipsq. Responses from the driver pertain to the 7692 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7693 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7694 * 7695 * If a thread does not want to reenter the ipsq when it is already writer, 7696 * it must make sure that the specified reentry point to be called later 7697 * when the ipsq is empty, nor any code path starting from the specified reentry 7698 * point must never ever try to enter the ipsq again. Otherwise it can lead 7699 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7700 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7701 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7702 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7703 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7704 * ioctl if the current ioctl has completed. If the current ioctl is still 7705 * in progress it simply returns. The current ioctl could be waiting for 7706 * a response from another module (arp_ or the driver or could be waiting for 7707 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7708 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7709 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7710 * ipsq_current_ipif is clear which happens only on ioctl completion. 7711 */ 7712 7713 /* 7714 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7715 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7716 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7717 * completion. 7718 */ 7719 ipsq_t * 7720 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7721 ipsq_func_t func, int type, boolean_t reentry_ok) 7722 { 7723 ipsq_t *ipsq; 7724 7725 /* Only 1 of ipif or ill can be specified */ 7726 ASSERT((ipif != NULL) ^ (ill != NULL)); 7727 if (ipif != NULL) 7728 ill = ipif->ipif_ill; 7729 7730 /* 7731 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7732 * ipsq of an ill can't change when ill_lock is held. 7733 */ 7734 GRAB_CONN_LOCK(q); 7735 mutex_enter(&ill->ill_lock); 7736 ipsq = ill->ill_phyint->phyint_ipsq; 7737 mutex_enter(&ipsq->ipsq_lock); 7738 7739 /* 7740 * 1. Enter the ipsq if we are already writer and reentry is ok. 7741 * (Note: If the caller does not specify reentry_ok then neither 7742 * 'func' nor any of its callees must ever attempt to enter the ipsq 7743 * again. Otherwise it can lead to an infinite loop 7744 * 2. Enter the ipsq if there is no current writer and this attempted 7745 * entry is part of the current ioctl or operation 7746 * 3. Enter the ipsq if there is no current writer and this is a new 7747 * ioctl (or operation) and the ioctl (or operation) queue is 7748 * empty and there is no ioctl (or operation) currently in progress 7749 */ 7750 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7751 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7752 ipsq->ipsq_current_ipif == NULL))) || 7753 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7754 /* Success. */ 7755 ipsq->ipsq_reentry_cnt++; 7756 ipsq->ipsq_writer = curthread; 7757 mutex_exit(&ipsq->ipsq_lock); 7758 mutex_exit(&ill->ill_lock); 7759 RELEASE_CONN_LOCK(q); 7760 #ifdef DEBUG 7761 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7762 IPSQ_STACK_DEPTH); 7763 #endif 7764 return (ipsq); 7765 } 7766 7767 ipsq_enq(ipsq, q, mp, func, type, ill); 7768 7769 mutex_exit(&ipsq->ipsq_lock); 7770 mutex_exit(&ill->ill_lock); 7771 RELEASE_CONN_LOCK(q); 7772 return (NULL); 7773 } 7774 7775 /* 7776 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7777 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7778 * cannot be entered, the mp is queued for completion. 7779 */ 7780 void 7781 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7782 boolean_t reentry_ok) 7783 { 7784 ipsq_t *ipsq; 7785 7786 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7787 7788 /* 7789 * Drop the caller's refhold on the ill. This is safe since we either 7790 * entered the IPSQ (and thus are exclusive), or failed to enter the 7791 * IPSQ, in which case we return without accessing ill anymore. This 7792 * is needed because func needs to see the correct refcount. 7793 * e.g. removeif can work only then. 7794 */ 7795 ill_refrele(ill); 7796 if (ipsq != NULL) { 7797 (*func)(ipsq, q, mp, NULL); 7798 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7799 } 7800 } 7801 7802 /* 7803 * If there are more than ILL_GRP_CNT ills in a group, 7804 * we use kmem alloc'd buffers, else use the stack 7805 */ 7806 #define ILL_GRP_CNT 14 7807 /* 7808 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7809 * Called by a thread that is currently exclusive on this ipsq. 7810 */ 7811 void 7812 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7813 { 7814 queue_t *q; 7815 mblk_t *mp; 7816 ipsq_func_t func; 7817 int next; 7818 ill_t **ill_list = NULL; 7819 size_t ill_list_size = 0; 7820 int cnt = 0; 7821 boolean_t need_ipsq_free = B_FALSE; 7822 ip_stack_t *ipst = ipsq->ipsq_ipst; 7823 7824 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7825 mutex_enter(&ipsq->ipsq_lock); 7826 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7827 if (ipsq->ipsq_reentry_cnt != 1) { 7828 ipsq->ipsq_reentry_cnt--; 7829 mutex_exit(&ipsq->ipsq_lock); 7830 return; 7831 } 7832 7833 mp = ipsq_dq(ipsq); 7834 while (mp != NULL) { 7835 again: 7836 mutex_exit(&ipsq->ipsq_lock); 7837 func = (ipsq_func_t)mp->b_prev; 7838 q = (queue_t *)mp->b_queue; 7839 mp->b_prev = NULL; 7840 mp->b_queue = NULL; 7841 7842 /* 7843 * If 'q' is an conn queue, it is valid, since we did a 7844 * a refhold on the connp, at the start of the ioctl. 7845 * If 'q' is an ill queue, it is valid, since close of an 7846 * ill will clean up the 'ipsq'. 7847 */ 7848 (*func)(ipsq, q, mp, NULL); 7849 7850 mutex_enter(&ipsq->ipsq_lock); 7851 mp = ipsq_dq(ipsq); 7852 } 7853 7854 mutex_exit(&ipsq->ipsq_lock); 7855 7856 /* 7857 * Need to grab the locks in the right order. Need to 7858 * atomically check (under ipsq_lock) that there are no 7859 * messages before relinquishing the ipsq. Also need to 7860 * atomically wakeup waiters on ill_cv while holding ill_lock. 7861 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7862 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7863 * to grab ill_g_lock as writer. 7864 */ 7865 rw_enter(&ipst->ips_ill_g_lock, 7866 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7867 7868 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7869 if (ipsq->ipsq_refs != 0) { 7870 /* At most 2 ills v4/v6 per phyint */ 7871 cnt = ipsq->ipsq_refs << 1; 7872 ill_list_size = cnt * sizeof (ill_t *); 7873 /* 7874 * If memory allocation fails, we will do the split 7875 * the next time ipsq_exit is called for whatever reason. 7876 * As long as the ipsq_split flag is set the need to 7877 * split is remembered. 7878 */ 7879 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7880 if (ill_list != NULL) 7881 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7882 } 7883 mutex_enter(&ipsq->ipsq_lock); 7884 mp = ipsq_dq(ipsq); 7885 if (mp != NULL) { 7886 /* oops, some message has landed up, we can't get out */ 7887 if (ill_list != NULL) 7888 ill_unlock_ills(ill_list, cnt); 7889 rw_exit(&ipst->ips_ill_g_lock); 7890 if (ill_list != NULL) 7891 kmem_free(ill_list, ill_list_size); 7892 ill_list = NULL; 7893 ill_list_size = 0; 7894 cnt = 0; 7895 goto again; 7896 } 7897 7898 /* 7899 * Split only if no ioctl is pending and if memory alloc succeeded 7900 * above. 7901 */ 7902 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7903 ill_list != NULL) { 7904 /* 7905 * No new ill can join this ipsq since we are holding the 7906 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7907 * ipsq. ill_split_ipsq may fail due to memory shortage. 7908 * If so we will retry on the next ipsq_exit. 7909 */ 7910 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7911 } 7912 7913 /* 7914 * We are holding the ipsq lock, hence no new messages can 7915 * land up on the ipsq, and there are no messages currently. 7916 * Now safe to get out. Wake up waiters and relinquish ipsq 7917 * atomically while holding ill locks. 7918 */ 7919 ipsq->ipsq_writer = NULL; 7920 ipsq->ipsq_reentry_cnt--; 7921 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7922 #ifdef DEBUG 7923 ipsq->ipsq_depth = 0; 7924 #endif 7925 mutex_exit(&ipsq->ipsq_lock); 7926 /* 7927 * For IPMP this should wake up all ills in this ipsq. 7928 * We need to hold the ill_lock while waking up waiters to 7929 * avoid missed wakeups. But there is no need to acquire all 7930 * the ill locks and then wakeup. If we have not acquired all 7931 * the locks (due to memory failure above) ill_signal_ipsq_ills 7932 * wakes up ills one at a time after getting the right ill_lock 7933 */ 7934 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7935 if (ill_list != NULL) 7936 ill_unlock_ills(ill_list, cnt); 7937 if (ipsq->ipsq_refs == 0) 7938 need_ipsq_free = B_TRUE; 7939 rw_exit(&ipst->ips_ill_g_lock); 7940 if (ill_list != 0) 7941 kmem_free(ill_list, ill_list_size); 7942 7943 if (need_ipsq_free) { 7944 /* 7945 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7946 * looked up. ipsq can be looked up only thru ill or phyint 7947 * and there are no ills/phyint on this ipsq. 7948 */ 7949 ipsq_delete(ipsq); 7950 } 7951 /* 7952 * Now start any igmp or mld timers that could not be started 7953 * while inside the ipsq. The timers can't be started while inside 7954 * the ipsq, since igmp_start_timers may need to call untimeout() 7955 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7956 * there could be a deadlock since the timeout handlers 7957 * mld_timeout_handler / igmp_timeout_handler also synchronously 7958 * wait in ipsq_enter() trying to get the ipsq. 7959 * 7960 * However there is one exception to the above. If this thread is 7961 * itself the igmp/mld timeout handler thread, then we don't want 7962 * to start any new timer until the current handler is done. The 7963 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7964 * all others pass B_TRUE. 7965 */ 7966 if (start_igmp_timer) { 7967 mutex_enter(&ipst->ips_igmp_timer_lock); 7968 next = ipst->ips_igmp_deferred_next; 7969 ipst->ips_igmp_deferred_next = INFINITY; 7970 mutex_exit(&ipst->ips_igmp_timer_lock); 7971 7972 if (next != INFINITY) 7973 igmp_start_timers(next, ipst); 7974 } 7975 7976 if (start_mld_timer) { 7977 mutex_enter(&ipst->ips_mld_timer_lock); 7978 next = ipst->ips_mld_deferred_next; 7979 ipst->ips_mld_deferred_next = INFINITY; 7980 mutex_exit(&ipst->ips_mld_timer_lock); 7981 7982 if (next != INFINITY) 7983 mld_start_timers(next, ipst); 7984 } 7985 } 7986 7987 /* 7988 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7989 * and `ioccmd'. 7990 */ 7991 void 7992 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 7993 { 7994 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7995 7996 mutex_enter(&ipsq->ipsq_lock); 7997 ASSERT(ipsq->ipsq_current_ipif == NULL); 7998 ASSERT(ipsq->ipsq_current_ioctl == 0); 7999 ipsq->ipsq_current_ipif = ipif; 8000 ipsq->ipsq_current_ioctl = ioccmd; 8001 mutex_exit(&ipsq->ipsq_lock); 8002 } 8003 8004 /* 8005 * Finish the current exclusive operation on `ipsq'. Note that other 8006 * operations will not be able to proceed until an ipsq_exit() is done. 8007 */ 8008 void 8009 ipsq_current_finish(ipsq_t *ipsq) 8010 { 8011 ipif_t *ipif = ipsq->ipsq_current_ipif; 8012 8013 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8014 8015 /* 8016 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8017 * (but we're careful to never set IPIF_CHANGING in that case). 8018 */ 8019 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8020 mutex_enter(&ipif->ipif_ill->ill_lock); 8021 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8022 8023 /* Send any queued event */ 8024 ill_nic_info_dispatch(ipif->ipif_ill); 8025 mutex_exit(&ipif->ipif_ill->ill_lock); 8026 } 8027 8028 mutex_enter(&ipsq->ipsq_lock); 8029 ASSERT(ipsq->ipsq_current_ipif != NULL); 8030 ipsq->ipsq_current_ipif = NULL; 8031 ipsq->ipsq_current_ioctl = 0; 8032 mutex_exit(&ipsq->ipsq_lock); 8033 } 8034 8035 /* 8036 * The ill is closing. Flush all messages on the ipsq that originated 8037 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8038 * for this ill since ipsq_enter could not have entered until then. 8039 * New messages can't be queued since the CONDEMNED flag is set. 8040 */ 8041 static void 8042 ipsq_flush(ill_t *ill) 8043 { 8044 queue_t *q; 8045 mblk_t *prev; 8046 mblk_t *mp; 8047 mblk_t *mp_next; 8048 ipsq_t *ipsq; 8049 8050 ASSERT(IAM_WRITER_ILL(ill)); 8051 ipsq = ill->ill_phyint->phyint_ipsq; 8052 /* 8053 * Flush any messages sent up by the driver. 8054 */ 8055 mutex_enter(&ipsq->ipsq_lock); 8056 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8057 mp_next = mp->b_next; 8058 q = mp->b_queue; 8059 if (q == ill->ill_rq || q == ill->ill_wq) { 8060 /* Remove the mp from the ipsq */ 8061 if (prev == NULL) 8062 ipsq->ipsq_mphead = mp->b_next; 8063 else 8064 prev->b_next = mp->b_next; 8065 if (ipsq->ipsq_mptail == mp) { 8066 ASSERT(mp_next == NULL); 8067 ipsq->ipsq_mptail = prev; 8068 } 8069 inet_freemsg(mp); 8070 } else { 8071 prev = mp; 8072 } 8073 } 8074 mutex_exit(&ipsq->ipsq_lock); 8075 (void) ipsq_pending_mp_cleanup(ill, NULL); 8076 ipsq_xopq_mp_cleanup(ill, NULL); 8077 ill_pending_mp_cleanup(ill); 8078 } 8079 8080 /* ARGSUSED */ 8081 int 8082 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8083 ip_ioctl_cmd_t *ipip, void *ifreq) 8084 { 8085 ill_t *ill; 8086 struct lifreq *lifr = (struct lifreq *)ifreq; 8087 boolean_t isv6; 8088 conn_t *connp; 8089 ip_stack_t *ipst; 8090 8091 connp = Q_TO_CONN(q); 8092 ipst = connp->conn_netstack->netstack_ip; 8093 isv6 = connp->conn_af_isv6; 8094 /* 8095 * Set original index. 8096 * Failover and failback move logical interfaces 8097 * from one physical interface to another. The 8098 * original index indicates the parent of a logical 8099 * interface, in other words, the physical interface 8100 * the logical interface will be moved back to on 8101 * failback. 8102 */ 8103 8104 /* 8105 * Don't allow the original index to be changed 8106 * for non-failover addresses, autoconfigured 8107 * addresses, or IPv6 link local addresses. 8108 */ 8109 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8110 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8111 return (EINVAL); 8112 } 8113 /* 8114 * The new original index must be in use by some 8115 * physical interface. 8116 */ 8117 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8118 NULL, NULL, ipst); 8119 if (ill == NULL) 8120 return (ENXIO); 8121 ill_refrele(ill); 8122 8123 ipif->ipif_orig_ifindex = lifr->lifr_index; 8124 /* 8125 * When this ipif gets failed back, don't 8126 * preserve the original id, as it is no 8127 * longer applicable. 8128 */ 8129 ipif->ipif_orig_ipifid = 0; 8130 /* 8131 * For IPv4, change the original index of any 8132 * multicast addresses associated with the 8133 * ipif to the new value. 8134 */ 8135 if (!isv6) { 8136 ilm_t *ilm; 8137 8138 mutex_enter(&ipif->ipif_ill->ill_lock); 8139 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8140 ilm = ilm->ilm_next) { 8141 if (ilm->ilm_ipif == ipif) { 8142 ilm->ilm_orig_ifindex = lifr->lifr_index; 8143 } 8144 } 8145 mutex_exit(&ipif->ipif_ill->ill_lock); 8146 } 8147 return (0); 8148 } 8149 8150 /* ARGSUSED */ 8151 int 8152 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8153 ip_ioctl_cmd_t *ipip, void *ifreq) 8154 { 8155 struct lifreq *lifr = (struct lifreq *)ifreq; 8156 8157 /* 8158 * Get the original interface index i.e the one 8159 * before FAILOVER if it ever happened. 8160 */ 8161 lifr->lifr_index = ipif->ipif_orig_ifindex; 8162 return (0); 8163 } 8164 8165 /* 8166 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8167 * refhold and return the associated ipif 8168 */ 8169 /* ARGSUSED */ 8170 int 8171 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8172 cmd_info_t *ci, ipsq_func_t func) 8173 { 8174 boolean_t exists; 8175 struct iftun_req *ta; 8176 ipif_t *ipif; 8177 ill_t *ill; 8178 boolean_t isv6; 8179 mblk_t *mp1; 8180 int error; 8181 conn_t *connp; 8182 ip_stack_t *ipst; 8183 8184 /* Existence verified in ip_wput_nondata */ 8185 mp1 = mp->b_cont->b_cont; 8186 ta = (struct iftun_req *)mp1->b_rptr; 8187 /* 8188 * Null terminate the string to protect against buffer 8189 * overrun. String was generated by user code and may not 8190 * be trusted. 8191 */ 8192 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8193 8194 connp = Q_TO_CONN(q); 8195 isv6 = connp->conn_af_isv6; 8196 ipst = connp->conn_netstack->netstack_ip; 8197 8198 /* Disallows implicit create */ 8199 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8200 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8201 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8202 if (ipif == NULL) 8203 return (error); 8204 8205 if (ipif->ipif_id != 0) { 8206 /* 8207 * We really don't want to set/get tunnel parameters 8208 * on virtual tunnel interfaces. Only allow the 8209 * base tunnel to do these. 8210 */ 8211 ipif_refrele(ipif); 8212 return (EINVAL); 8213 } 8214 8215 /* 8216 * Send down to tunnel mod for ioctl processing. 8217 * Will finish ioctl in ip_rput_other(). 8218 */ 8219 ill = ipif->ipif_ill; 8220 if (ill->ill_net_type == IRE_LOOPBACK) { 8221 ipif_refrele(ipif); 8222 return (EOPNOTSUPP); 8223 } 8224 8225 if (ill->ill_wq == NULL) { 8226 ipif_refrele(ipif); 8227 return (ENXIO); 8228 } 8229 /* 8230 * Mark the ioctl as coming from an IPv6 interface for 8231 * tun's convenience. 8232 */ 8233 if (ill->ill_isv6) 8234 ta->ifta_flags |= 0x80000000; 8235 ci->ci_ipif = ipif; 8236 return (0); 8237 } 8238 8239 /* 8240 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8241 * and return the associated ipif. 8242 * Return value: 8243 * Non zero: An error has occurred. ci may not be filled out. 8244 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8245 * a held ipif in ci.ci_ipif. 8246 */ 8247 int 8248 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8249 cmd_info_t *ci, ipsq_func_t func) 8250 { 8251 sin_t *sin; 8252 sin6_t *sin6; 8253 char *name; 8254 struct ifreq *ifr; 8255 struct lifreq *lifr; 8256 ipif_t *ipif = NULL; 8257 ill_t *ill; 8258 conn_t *connp; 8259 boolean_t isv6; 8260 boolean_t exists; 8261 int err; 8262 mblk_t *mp1; 8263 zoneid_t zoneid; 8264 ip_stack_t *ipst; 8265 8266 if (q->q_next != NULL) { 8267 ill = (ill_t *)q->q_ptr; 8268 isv6 = ill->ill_isv6; 8269 connp = NULL; 8270 zoneid = ALL_ZONES; 8271 ipst = ill->ill_ipst; 8272 } else { 8273 ill = NULL; 8274 connp = Q_TO_CONN(q); 8275 isv6 = connp->conn_af_isv6; 8276 zoneid = connp->conn_zoneid; 8277 if (zoneid == GLOBAL_ZONEID) { 8278 /* global zone can access ipifs in all zones */ 8279 zoneid = ALL_ZONES; 8280 } 8281 ipst = connp->conn_netstack->netstack_ip; 8282 } 8283 8284 /* Has been checked in ip_wput_nondata */ 8285 mp1 = mp->b_cont->b_cont; 8286 8287 if (ipip->ipi_cmd_type == IF_CMD) { 8288 /* This a old style SIOC[GS]IF* command */ 8289 ifr = (struct ifreq *)mp1->b_rptr; 8290 /* 8291 * Null terminate the string to protect against buffer 8292 * overrun. String was generated by user code and may not 8293 * be trusted. 8294 */ 8295 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8296 sin = (sin_t *)&ifr->ifr_addr; 8297 name = ifr->ifr_name; 8298 ci->ci_sin = sin; 8299 ci->ci_sin6 = NULL; 8300 ci->ci_lifr = (struct lifreq *)ifr; 8301 } else { 8302 /* This a new style SIOC[GS]LIF* command */ 8303 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8304 lifr = (struct lifreq *)mp1->b_rptr; 8305 /* 8306 * Null terminate the string to protect against buffer 8307 * overrun. String was generated by user code and may not 8308 * be trusted. 8309 */ 8310 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8311 name = lifr->lifr_name; 8312 sin = (sin_t *)&lifr->lifr_addr; 8313 sin6 = (sin6_t *)&lifr->lifr_addr; 8314 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8315 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8316 LIFNAMSIZ); 8317 } 8318 ci->ci_sin = sin; 8319 ci->ci_sin6 = sin6; 8320 ci->ci_lifr = lifr; 8321 } 8322 8323 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8324 /* 8325 * The ioctl will be failed if the ioctl comes down 8326 * an conn stream 8327 */ 8328 if (ill == NULL) { 8329 /* 8330 * Not an ill queue, return EINVAL same as the 8331 * old error code. 8332 */ 8333 return (ENXIO); 8334 } 8335 ipif = ill->ill_ipif; 8336 ipif_refhold(ipif); 8337 } else { 8338 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8339 &exists, isv6, zoneid, 8340 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8341 ipst); 8342 if (ipif == NULL) { 8343 if (err == EINPROGRESS) 8344 return (err); 8345 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8346 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8347 /* 8348 * Need to try both v4 and v6 since this 8349 * ioctl can come down either v4 or v6 8350 * socket. The lifreq.lifr_family passed 8351 * down by this ioctl is AF_UNSPEC. 8352 */ 8353 ipif = ipif_lookup_on_name(name, 8354 mi_strlen(name), B_FALSE, &exists, !isv6, 8355 zoneid, (connp == NULL) ? q : 8356 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8357 if (err == EINPROGRESS) 8358 return (err); 8359 } 8360 err = 0; /* Ensure we don't use it below */ 8361 } 8362 } 8363 8364 /* 8365 * Old style [GS]IFCMD does not admit IPv6 ipif 8366 */ 8367 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8368 ipif_refrele(ipif); 8369 return (ENXIO); 8370 } 8371 8372 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8373 name[0] == '\0') { 8374 /* 8375 * Handle a or a SIOC?IF* with a null name 8376 * during plumb (on the ill queue before the I_PLINK). 8377 */ 8378 ipif = ill->ill_ipif; 8379 ipif_refhold(ipif); 8380 } 8381 8382 if (ipif == NULL) 8383 return (ENXIO); 8384 8385 /* 8386 * Allow only GET operations if this ipif has been created 8387 * temporarily due to a MOVE operation. 8388 */ 8389 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8390 ipif_refrele(ipif); 8391 return (EINVAL); 8392 } 8393 8394 ci->ci_ipif = ipif; 8395 return (0); 8396 } 8397 8398 /* 8399 * Return the total number of ipifs. 8400 */ 8401 static uint_t 8402 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8403 { 8404 uint_t numifs = 0; 8405 ill_t *ill; 8406 ill_walk_context_t ctx; 8407 ipif_t *ipif; 8408 8409 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8410 ill = ILL_START_WALK_V4(&ctx, ipst); 8411 8412 while (ill != NULL) { 8413 for (ipif = ill->ill_ipif; ipif != NULL; 8414 ipif = ipif->ipif_next) { 8415 if (ipif->ipif_zoneid == zoneid || 8416 ipif->ipif_zoneid == ALL_ZONES) 8417 numifs++; 8418 } 8419 ill = ill_next(&ctx, ill); 8420 } 8421 rw_exit(&ipst->ips_ill_g_lock); 8422 return (numifs); 8423 } 8424 8425 /* 8426 * Return the total number of ipifs. 8427 */ 8428 static uint_t 8429 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8430 { 8431 uint_t numifs = 0; 8432 ill_t *ill; 8433 ipif_t *ipif; 8434 ill_walk_context_t ctx; 8435 8436 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8437 8438 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8439 if (family == AF_INET) 8440 ill = ILL_START_WALK_V4(&ctx, ipst); 8441 else if (family == AF_INET6) 8442 ill = ILL_START_WALK_V6(&ctx, ipst); 8443 else 8444 ill = ILL_START_WALK_ALL(&ctx, ipst); 8445 8446 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8447 for (ipif = ill->ill_ipif; ipif != NULL; 8448 ipif = ipif->ipif_next) { 8449 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8450 !(lifn_flags & LIFC_NOXMIT)) 8451 continue; 8452 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8453 !(lifn_flags & LIFC_TEMPORARY)) 8454 continue; 8455 if (((ipif->ipif_flags & 8456 (IPIF_NOXMIT|IPIF_NOLOCAL| 8457 IPIF_DEPRECATED)) || 8458 IS_LOOPBACK(ill) || 8459 !(ipif->ipif_flags & IPIF_UP)) && 8460 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8461 continue; 8462 8463 if (zoneid != ipif->ipif_zoneid && 8464 ipif->ipif_zoneid != ALL_ZONES && 8465 (zoneid != GLOBAL_ZONEID || 8466 !(lifn_flags & LIFC_ALLZONES))) 8467 continue; 8468 8469 numifs++; 8470 } 8471 } 8472 rw_exit(&ipst->ips_ill_g_lock); 8473 return (numifs); 8474 } 8475 8476 uint_t 8477 ip_get_lifsrcofnum(ill_t *ill) 8478 { 8479 uint_t numifs = 0; 8480 ill_t *ill_head = ill; 8481 ip_stack_t *ipst = ill->ill_ipst; 8482 8483 /* 8484 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8485 * other thread may be trying to relink the ILLs in this usesrc group 8486 * and adjusting the ill_usesrc_grp_next pointers 8487 */ 8488 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8489 if ((ill->ill_usesrc_ifindex == 0) && 8490 (ill->ill_usesrc_grp_next != NULL)) { 8491 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8492 ill = ill->ill_usesrc_grp_next) 8493 numifs++; 8494 } 8495 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8496 8497 return (numifs); 8498 } 8499 8500 /* Null values are passed in for ipif, sin, and ifreq */ 8501 /* ARGSUSED */ 8502 int 8503 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8504 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8505 { 8506 int *nump; 8507 conn_t *connp = Q_TO_CONN(q); 8508 8509 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8510 8511 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8512 nump = (int *)mp->b_cont->b_cont->b_rptr; 8513 8514 *nump = ip_get_numifs(connp->conn_zoneid, 8515 connp->conn_netstack->netstack_ip); 8516 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8517 return (0); 8518 } 8519 8520 /* Null values are passed in for ipif, sin, and ifreq */ 8521 /* ARGSUSED */ 8522 int 8523 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8524 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8525 { 8526 struct lifnum *lifn; 8527 mblk_t *mp1; 8528 conn_t *connp = Q_TO_CONN(q); 8529 8530 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8531 8532 /* Existence checked in ip_wput_nondata */ 8533 mp1 = mp->b_cont->b_cont; 8534 8535 lifn = (struct lifnum *)mp1->b_rptr; 8536 switch (lifn->lifn_family) { 8537 case AF_UNSPEC: 8538 case AF_INET: 8539 case AF_INET6: 8540 break; 8541 default: 8542 return (EAFNOSUPPORT); 8543 } 8544 8545 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8546 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8547 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8548 return (0); 8549 } 8550 8551 /* ARGSUSED */ 8552 int 8553 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8554 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8555 { 8556 STRUCT_HANDLE(ifconf, ifc); 8557 mblk_t *mp1; 8558 struct iocblk *iocp; 8559 struct ifreq *ifr; 8560 ill_walk_context_t ctx; 8561 ill_t *ill; 8562 ipif_t *ipif; 8563 struct sockaddr_in *sin; 8564 int32_t ifclen; 8565 zoneid_t zoneid; 8566 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8567 8568 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8569 8570 ip1dbg(("ip_sioctl_get_ifconf")); 8571 /* Existence verified in ip_wput_nondata */ 8572 mp1 = mp->b_cont->b_cont; 8573 iocp = (struct iocblk *)mp->b_rptr; 8574 zoneid = Q_TO_CONN(q)->conn_zoneid; 8575 8576 /* 8577 * The original SIOCGIFCONF passed in a struct ifconf which specified 8578 * the user buffer address and length into which the list of struct 8579 * ifreqs was to be copied. Since AT&T Streams does not seem to 8580 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8581 * the SIOCGIFCONF operation was redefined to simply provide 8582 * a large output buffer into which we are supposed to jam the ifreq 8583 * array. The same ioctl command code was used, despite the fact that 8584 * both the applications and the kernel code had to change, thus making 8585 * it impossible to support both interfaces. 8586 * 8587 * For reasons not good enough to try to explain, the following 8588 * algorithm is used for deciding what to do with one of these: 8589 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8590 * form with the output buffer coming down as the continuation message. 8591 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8592 * and we have to copy in the ifconf structure to find out how big the 8593 * output buffer is and where to copy out to. Sure no problem... 8594 * 8595 */ 8596 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8597 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8598 int numifs = 0; 8599 size_t ifc_bufsize; 8600 8601 /* 8602 * Must be (better be!) continuation of a TRANSPARENT 8603 * IOCTL. We just copied in the ifconf structure. 8604 */ 8605 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8606 (struct ifconf *)mp1->b_rptr); 8607 8608 /* 8609 * Allocate a buffer to hold requested information. 8610 * 8611 * If ifc_len is larger than what is needed, we only 8612 * allocate what we will use. 8613 * 8614 * If ifc_len is smaller than what is needed, return 8615 * EINVAL. 8616 * 8617 * XXX: the ill_t structure can hava 2 counters, for 8618 * v4 and v6 (not just ill_ipif_up_count) to store the 8619 * number of interfaces for a device, so we don't need 8620 * to count them here... 8621 */ 8622 numifs = ip_get_numifs(zoneid, ipst); 8623 8624 ifclen = STRUCT_FGET(ifc, ifc_len); 8625 ifc_bufsize = numifs * sizeof (struct ifreq); 8626 if (ifc_bufsize > ifclen) { 8627 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8628 /* old behaviour */ 8629 return (EINVAL); 8630 } else { 8631 ifc_bufsize = ifclen; 8632 } 8633 } 8634 8635 mp1 = mi_copyout_alloc(q, mp, 8636 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8637 if (mp1 == NULL) 8638 return (ENOMEM); 8639 8640 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8641 } 8642 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8643 /* 8644 * the SIOCGIFCONF ioctl only knows about 8645 * IPv4 addresses, so don't try to tell 8646 * it about interfaces with IPv6-only 8647 * addresses. (Last parm 'isv6' is B_FALSE) 8648 */ 8649 8650 ifr = (struct ifreq *)mp1->b_rptr; 8651 8652 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8653 ill = ILL_START_WALK_V4(&ctx, ipst); 8654 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8655 for (ipif = ill->ill_ipif; ipif != NULL; 8656 ipif = ipif->ipif_next) { 8657 if (zoneid != ipif->ipif_zoneid && 8658 ipif->ipif_zoneid != ALL_ZONES) 8659 continue; 8660 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8661 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8662 /* old behaviour */ 8663 rw_exit(&ipst->ips_ill_g_lock); 8664 return (EINVAL); 8665 } else { 8666 goto if_copydone; 8667 } 8668 } 8669 ipif_get_name(ipif, ifr->ifr_name, 8670 sizeof (ifr->ifr_name)); 8671 sin = (sin_t *)&ifr->ifr_addr; 8672 *sin = sin_null; 8673 sin->sin_family = AF_INET; 8674 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8675 ifr++; 8676 } 8677 } 8678 if_copydone: 8679 rw_exit(&ipst->ips_ill_g_lock); 8680 mp1->b_wptr = (uchar_t *)ifr; 8681 8682 if (STRUCT_BUF(ifc) != NULL) { 8683 STRUCT_FSET(ifc, ifc_len, 8684 (int)((uchar_t *)ifr - mp1->b_rptr)); 8685 } 8686 return (0); 8687 } 8688 8689 /* 8690 * Get the interfaces using the address hosted on the interface passed in, 8691 * as a source adddress 8692 */ 8693 /* ARGSUSED */ 8694 int 8695 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8696 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8697 { 8698 mblk_t *mp1; 8699 ill_t *ill, *ill_head; 8700 ipif_t *ipif, *orig_ipif; 8701 int numlifs = 0; 8702 size_t lifs_bufsize, lifsmaxlen; 8703 struct lifreq *lifr; 8704 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8705 uint_t ifindex; 8706 zoneid_t zoneid; 8707 int err = 0; 8708 boolean_t isv6 = B_FALSE; 8709 struct sockaddr_in *sin; 8710 struct sockaddr_in6 *sin6; 8711 STRUCT_HANDLE(lifsrcof, lifs); 8712 ip_stack_t *ipst; 8713 8714 ipst = CONNQ_TO_IPST(q); 8715 8716 ASSERT(q->q_next == NULL); 8717 8718 zoneid = Q_TO_CONN(q)->conn_zoneid; 8719 8720 /* Existence verified in ip_wput_nondata */ 8721 mp1 = mp->b_cont->b_cont; 8722 8723 /* 8724 * Must be (better be!) continuation of a TRANSPARENT 8725 * IOCTL. We just copied in the lifsrcof structure. 8726 */ 8727 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8728 (struct lifsrcof *)mp1->b_rptr); 8729 8730 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8731 return (EINVAL); 8732 8733 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8734 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8735 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8736 ip_process_ioctl, &err, ipst); 8737 if (ipif == NULL) { 8738 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8739 ifindex)); 8740 return (err); 8741 } 8742 8743 8744 /* Allocate a buffer to hold requested information */ 8745 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8746 lifs_bufsize = numlifs * sizeof (struct lifreq); 8747 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8748 /* The actual size needed is always returned in lifs_len */ 8749 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8750 8751 /* If the amount we need is more than what is passed in, abort */ 8752 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8753 ipif_refrele(ipif); 8754 return (0); 8755 } 8756 8757 mp1 = mi_copyout_alloc(q, mp, 8758 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8759 if (mp1 == NULL) { 8760 ipif_refrele(ipif); 8761 return (ENOMEM); 8762 } 8763 8764 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8765 bzero(mp1->b_rptr, lifs_bufsize); 8766 8767 lifr = (struct lifreq *)mp1->b_rptr; 8768 8769 ill = ill_head = ipif->ipif_ill; 8770 orig_ipif = ipif; 8771 8772 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8773 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8774 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8775 8776 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8777 for (; (ill != NULL) && (ill != ill_head); 8778 ill = ill->ill_usesrc_grp_next) { 8779 8780 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8781 break; 8782 8783 ipif = ill->ill_ipif; 8784 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8785 if (ipif->ipif_isv6) { 8786 sin6 = (sin6_t *)&lifr->lifr_addr; 8787 *sin6 = sin6_null; 8788 sin6->sin6_family = AF_INET6; 8789 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8790 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8791 &ipif->ipif_v6net_mask); 8792 } else { 8793 sin = (sin_t *)&lifr->lifr_addr; 8794 *sin = sin_null; 8795 sin->sin_family = AF_INET; 8796 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8797 lifr->lifr_addrlen = ip_mask_to_plen( 8798 ipif->ipif_net_mask); 8799 } 8800 lifr++; 8801 } 8802 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8803 rw_exit(&ipst->ips_ill_g_lock); 8804 ipif_refrele(orig_ipif); 8805 mp1->b_wptr = (uchar_t *)lifr; 8806 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8807 8808 return (0); 8809 } 8810 8811 /* ARGSUSED */ 8812 int 8813 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8814 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8815 { 8816 mblk_t *mp1; 8817 int list; 8818 ill_t *ill; 8819 ipif_t *ipif; 8820 int flags; 8821 int numlifs = 0; 8822 size_t lifc_bufsize; 8823 struct lifreq *lifr; 8824 sa_family_t family; 8825 struct sockaddr_in *sin; 8826 struct sockaddr_in6 *sin6; 8827 ill_walk_context_t ctx; 8828 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8829 int32_t lifclen; 8830 zoneid_t zoneid; 8831 STRUCT_HANDLE(lifconf, lifc); 8832 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8833 8834 ip1dbg(("ip_sioctl_get_lifconf")); 8835 8836 ASSERT(q->q_next == NULL); 8837 8838 zoneid = Q_TO_CONN(q)->conn_zoneid; 8839 8840 /* Existence verified in ip_wput_nondata */ 8841 mp1 = mp->b_cont->b_cont; 8842 8843 /* 8844 * An extended version of SIOCGIFCONF that takes an 8845 * additional address family and flags field. 8846 * AF_UNSPEC retrieve both IPv4 and IPv6. 8847 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8848 * interfaces are omitted. 8849 * Similarly, IPIF_TEMPORARY interfaces are omitted 8850 * unless LIFC_TEMPORARY is specified. 8851 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8852 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8853 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8854 * has priority over LIFC_NOXMIT. 8855 */ 8856 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8857 8858 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8859 return (EINVAL); 8860 8861 /* 8862 * Must be (better be!) continuation of a TRANSPARENT 8863 * IOCTL. We just copied in the lifconf structure. 8864 */ 8865 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8866 8867 family = STRUCT_FGET(lifc, lifc_family); 8868 flags = STRUCT_FGET(lifc, lifc_flags); 8869 8870 switch (family) { 8871 case AF_UNSPEC: 8872 /* 8873 * walk all ILL's. 8874 */ 8875 list = MAX_G_HEADS; 8876 break; 8877 case AF_INET: 8878 /* 8879 * walk only IPV4 ILL's. 8880 */ 8881 list = IP_V4_G_HEAD; 8882 break; 8883 case AF_INET6: 8884 /* 8885 * walk only IPV6 ILL's. 8886 */ 8887 list = IP_V6_G_HEAD; 8888 break; 8889 default: 8890 return (EAFNOSUPPORT); 8891 } 8892 8893 /* 8894 * Allocate a buffer to hold requested information. 8895 * 8896 * If lifc_len is larger than what is needed, we only 8897 * allocate what we will use. 8898 * 8899 * If lifc_len is smaller than what is needed, return 8900 * EINVAL. 8901 */ 8902 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8903 lifc_bufsize = numlifs * sizeof (struct lifreq); 8904 lifclen = STRUCT_FGET(lifc, lifc_len); 8905 if (lifc_bufsize > lifclen) { 8906 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8907 return (EINVAL); 8908 else 8909 lifc_bufsize = lifclen; 8910 } 8911 8912 mp1 = mi_copyout_alloc(q, mp, 8913 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8914 if (mp1 == NULL) 8915 return (ENOMEM); 8916 8917 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8918 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8919 8920 lifr = (struct lifreq *)mp1->b_rptr; 8921 8922 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8923 ill = ill_first(list, list, &ctx, ipst); 8924 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8925 for (ipif = ill->ill_ipif; ipif != NULL; 8926 ipif = ipif->ipif_next) { 8927 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8928 !(flags & LIFC_NOXMIT)) 8929 continue; 8930 8931 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8932 !(flags & LIFC_TEMPORARY)) 8933 continue; 8934 8935 if (((ipif->ipif_flags & 8936 (IPIF_NOXMIT|IPIF_NOLOCAL| 8937 IPIF_DEPRECATED)) || 8938 IS_LOOPBACK(ill) || 8939 !(ipif->ipif_flags & IPIF_UP)) && 8940 (flags & LIFC_EXTERNAL_SOURCE)) 8941 continue; 8942 8943 if (zoneid != ipif->ipif_zoneid && 8944 ipif->ipif_zoneid != ALL_ZONES && 8945 (zoneid != GLOBAL_ZONEID || 8946 !(flags & LIFC_ALLZONES))) 8947 continue; 8948 8949 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8950 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8951 rw_exit(&ipst->ips_ill_g_lock); 8952 return (EINVAL); 8953 } else { 8954 goto lif_copydone; 8955 } 8956 } 8957 8958 ipif_get_name(ipif, lifr->lifr_name, 8959 sizeof (lifr->lifr_name)); 8960 if (ipif->ipif_isv6) { 8961 sin6 = (sin6_t *)&lifr->lifr_addr; 8962 *sin6 = sin6_null; 8963 sin6->sin6_family = AF_INET6; 8964 sin6->sin6_addr = 8965 ipif->ipif_v6lcl_addr; 8966 lifr->lifr_addrlen = 8967 ip_mask_to_plen_v6( 8968 &ipif->ipif_v6net_mask); 8969 } else { 8970 sin = (sin_t *)&lifr->lifr_addr; 8971 *sin = sin_null; 8972 sin->sin_family = AF_INET; 8973 sin->sin_addr.s_addr = 8974 ipif->ipif_lcl_addr; 8975 lifr->lifr_addrlen = 8976 ip_mask_to_plen( 8977 ipif->ipif_net_mask); 8978 } 8979 lifr++; 8980 } 8981 } 8982 lif_copydone: 8983 rw_exit(&ipst->ips_ill_g_lock); 8984 8985 mp1->b_wptr = (uchar_t *)lifr; 8986 if (STRUCT_BUF(lifc) != NULL) { 8987 STRUCT_FSET(lifc, lifc_len, 8988 (int)((uchar_t *)lifr - mp1->b_rptr)); 8989 } 8990 return (0); 8991 } 8992 8993 /* ARGSUSED */ 8994 int 8995 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8996 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8997 { 8998 ip_stack_t *ipst; 8999 9000 if (q->q_next == NULL) 9001 ipst = CONNQ_TO_IPST(q); 9002 else 9003 ipst = ILLQ_TO_IPST(q); 9004 9005 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9006 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9007 return (0); 9008 } 9009 9010 static void 9011 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9012 { 9013 ip6_asp_t *table; 9014 size_t table_size; 9015 mblk_t *data_mp; 9016 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9017 ip_stack_t *ipst; 9018 9019 if (q->q_next == NULL) 9020 ipst = CONNQ_TO_IPST(q); 9021 else 9022 ipst = ILLQ_TO_IPST(q); 9023 9024 /* These two ioctls are I_STR only */ 9025 if (iocp->ioc_count == TRANSPARENT) { 9026 miocnak(q, mp, 0, EINVAL); 9027 return; 9028 } 9029 9030 data_mp = mp->b_cont; 9031 if (data_mp == NULL) { 9032 /* The user passed us a NULL argument */ 9033 table = NULL; 9034 table_size = iocp->ioc_count; 9035 } else { 9036 /* 9037 * The user provided a table. The stream head 9038 * may have copied in the user data in chunks, 9039 * so make sure everything is pulled up 9040 * properly. 9041 */ 9042 if (MBLKL(data_mp) < iocp->ioc_count) { 9043 mblk_t *new_data_mp; 9044 if ((new_data_mp = msgpullup(data_mp, -1)) == 9045 NULL) { 9046 miocnak(q, mp, 0, ENOMEM); 9047 return; 9048 } 9049 freemsg(data_mp); 9050 data_mp = new_data_mp; 9051 mp->b_cont = data_mp; 9052 } 9053 table = (ip6_asp_t *)data_mp->b_rptr; 9054 table_size = iocp->ioc_count; 9055 } 9056 9057 switch (iocp->ioc_cmd) { 9058 case SIOCGIP6ADDRPOLICY: 9059 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9060 if (iocp->ioc_rval == -1) 9061 iocp->ioc_error = EINVAL; 9062 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9063 else if (table != NULL && 9064 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9065 ip6_asp_t *src = table; 9066 ip6_asp32_t *dst = (void *)table; 9067 int count = table_size / sizeof (ip6_asp_t); 9068 int i; 9069 9070 /* 9071 * We need to do an in-place shrink of the array 9072 * to match the alignment attributes of the 9073 * 32-bit ABI looking at it. 9074 */ 9075 /* LINTED: logical expression always true: op "||" */ 9076 ASSERT(sizeof (*src) > sizeof (*dst)); 9077 for (i = 1; i < count; i++) 9078 bcopy(src + i, dst + i, sizeof (*dst)); 9079 } 9080 #endif 9081 break; 9082 9083 case SIOCSIP6ADDRPOLICY: 9084 ASSERT(mp->b_prev == NULL); 9085 mp->b_prev = (void *)q; 9086 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9087 /* 9088 * We pass in the datamodel here so that the ip6_asp_replace() 9089 * routine can handle converting from 32-bit to native formats 9090 * where necessary. 9091 * 9092 * A better way to handle this might be to convert the inbound 9093 * data structure here, and hang it off a new 'mp'; thus the 9094 * ip6_asp_replace() logic would always be dealing with native 9095 * format data structures.. 9096 * 9097 * (An even simpler way to handle these ioctls is to just 9098 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9099 * and just recompile everything that depends on it.) 9100 */ 9101 #endif 9102 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9103 iocp->ioc_flag & IOC_MODELS); 9104 return; 9105 } 9106 9107 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9108 qreply(q, mp); 9109 } 9110 9111 static void 9112 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9113 { 9114 mblk_t *data_mp; 9115 struct dstinforeq *dir; 9116 uint8_t *end, *cur; 9117 in6_addr_t *daddr, *saddr; 9118 ipaddr_t v4daddr; 9119 ire_t *ire; 9120 char *slabel, *dlabel; 9121 boolean_t isipv4; 9122 int match_ire; 9123 ill_t *dst_ill; 9124 ipif_t *src_ipif, *ire_ipif; 9125 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9126 zoneid_t zoneid; 9127 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9128 9129 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9130 zoneid = Q_TO_CONN(q)->conn_zoneid; 9131 9132 /* 9133 * This ioctl is I_STR only, and must have a 9134 * data mblk following the M_IOCTL mblk. 9135 */ 9136 data_mp = mp->b_cont; 9137 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9138 miocnak(q, mp, 0, EINVAL); 9139 return; 9140 } 9141 9142 if (MBLKL(data_mp) < iocp->ioc_count) { 9143 mblk_t *new_data_mp; 9144 9145 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9146 miocnak(q, mp, 0, ENOMEM); 9147 return; 9148 } 9149 freemsg(data_mp); 9150 data_mp = new_data_mp; 9151 mp->b_cont = data_mp; 9152 } 9153 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9154 9155 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9156 end - cur >= sizeof (struct dstinforeq); 9157 cur += sizeof (struct dstinforeq)) { 9158 dir = (struct dstinforeq *)cur; 9159 daddr = &dir->dir_daddr; 9160 saddr = &dir->dir_saddr; 9161 9162 /* 9163 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9164 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9165 * and ipif_select_source[_v6]() do not. 9166 */ 9167 dir->dir_dscope = ip_addr_scope_v6(daddr); 9168 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9169 9170 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9171 if (isipv4) { 9172 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9173 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9174 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9175 } else { 9176 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9177 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9178 } 9179 if (ire == NULL) { 9180 dir->dir_dreachable = 0; 9181 9182 /* move on to next dst addr */ 9183 continue; 9184 } 9185 dir->dir_dreachable = 1; 9186 9187 ire_ipif = ire->ire_ipif; 9188 if (ire_ipif == NULL) 9189 goto next_dst; 9190 9191 /* 9192 * We expect to get back an interface ire or a 9193 * gateway ire cache entry. For both types, the 9194 * output interface is ire_ipif->ipif_ill. 9195 */ 9196 dst_ill = ire_ipif->ipif_ill; 9197 dir->dir_dmactype = dst_ill->ill_mactype; 9198 9199 if (isipv4) { 9200 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9201 } else { 9202 src_ipif = ipif_select_source_v6(dst_ill, 9203 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9204 zoneid); 9205 } 9206 if (src_ipif == NULL) 9207 goto next_dst; 9208 9209 *saddr = src_ipif->ipif_v6lcl_addr; 9210 dir->dir_sscope = ip_addr_scope_v6(saddr); 9211 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9212 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9213 dir->dir_sdeprecated = 9214 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9215 ipif_refrele(src_ipif); 9216 next_dst: 9217 ire_refrele(ire); 9218 } 9219 miocack(q, mp, iocp->ioc_count, 0); 9220 } 9221 9222 9223 /* 9224 * Check if this is an address assigned to this machine. 9225 * Skips interfaces that are down by using ire checks. 9226 * Translates mapped addresses to v4 addresses and then 9227 * treats them as such, returning true if the v4 address 9228 * associated with this mapped address is configured. 9229 * Note: Applications will have to be careful what they do 9230 * with the response; use of mapped addresses limits 9231 * what can be done with the socket, especially with 9232 * respect to socket options and ioctls - neither IPv4 9233 * options nor IPv6 sticky options/ancillary data options 9234 * may be used. 9235 */ 9236 /* ARGSUSED */ 9237 int 9238 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9239 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9240 { 9241 struct sioc_addrreq *sia; 9242 sin_t *sin; 9243 ire_t *ire; 9244 mblk_t *mp1; 9245 zoneid_t zoneid; 9246 ip_stack_t *ipst; 9247 9248 ip1dbg(("ip_sioctl_tmyaddr")); 9249 9250 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9251 zoneid = Q_TO_CONN(q)->conn_zoneid; 9252 ipst = CONNQ_TO_IPST(q); 9253 9254 /* Existence verified in ip_wput_nondata */ 9255 mp1 = mp->b_cont->b_cont; 9256 sia = (struct sioc_addrreq *)mp1->b_rptr; 9257 sin = (sin_t *)&sia->sa_addr; 9258 switch (sin->sin_family) { 9259 case AF_INET6: { 9260 sin6_t *sin6 = (sin6_t *)sin; 9261 9262 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9263 ipaddr_t v4_addr; 9264 9265 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9266 v4_addr); 9267 ire = ire_ctable_lookup(v4_addr, 0, 9268 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9269 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9270 } else { 9271 in6_addr_t v6addr; 9272 9273 v6addr = sin6->sin6_addr; 9274 ire = ire_ctable_lookup_v6(&v6addr, 0, 9275 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9276 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9277 } 9278 break; 9279 } 9280 case AF_INET: { 9281 ipaddr_t v4addr; 9282 9283 v4addr = sin->sin_addr.s_addr; 9284 ire = ire_ctable_lookup(v4addr, 0, 9285 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9286 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9287 break; 9288 } 9289 default: 9290 return (EAFNOSUPPORT); 9291 } 9292 if (ire != NULL) { 9293 sia->sa_res = 1; 9294 ire_refrele(ire); 9295 } else { 9296 sia->sa_res = 0; 9297 } 9298 return (0); 9299 } 9300 9301 /* 9302 * Check if this is an address assigned on-link i.e. neighbor, 9303 * and makes sure it's reachable from the current zone. 9304 * Returns true for my addresses as well. 9305 * Translates mapped addresses to v4 addresses and then 9306 * treats them as such, returning true if the v4 address 9307 * associated with this mapped address is configured. 9308 * Note: Applications will have to be careful what they do 9309 * with the response; use of mapped addresses limits 9310 * what can be done with the socket, especially with 9311 * respect to socket options and ioctls - neither IPv4 9312 * options nor IPv6 sticky options/ancillary data options 9313 * may be used. 9314 */ 9315 /* ARGSUSED */ 9316 int 9317 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9318 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9319 { 9320 struct sioc_addrreq *sia; 9321 sin_t *sin; 9322 mblk_t *mp1; 9323 ire_t *ire = NULL; 9324 zoneid_t zoneid; 9325 ip_stack_t *ipst; 9326 9327 ip1dbg(("ip_sioctl_tonlink")); 9328 9329 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9330 zoneid = Q_TO_CONN(q)->conn_zoneid; 9331 ipst = CONNQ_TO_IPST(q); 9332 9333 /* Existence verified in ip_wput_nondata */ 9334 mp1 = mp->b_cont->b_cont; 9335 sia = (struct sioc_addrreq *)mp1->b_rptr; 9336 sin = (sin_t *)&sia->sa_addr; 9337 9338 /* 9339 * Match addresses with a zero gateway field to avoid 9340 * routes going through a router. 9341 * Exclude broadcast and multicast addresses. 9342 */ 9343 switch (sin->sin_family) { 9344 case AF_INET6: { 9345 sin6_t *sin6 = (sin6_t *)sin; 9346 9347 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9348 ipaddr_t v4_addr; 9349 9350 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9351 v4_addr); 9352 if (!CLASSD(v4_addr)) { 9353 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9354 NULL, NULL, zoneid, NULL, 9355 MATCH_IRE_GW, ipst); 9356 } 9357 } else { 9358 in6_addr_t v6addr; 9359 in6_addr_t v6gw; 9360 9361 v6addr = sin6->sin6_addr; 9362 v6gw = ipv6_all_zeros; 9363 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9364 ire = ire_route_lookup_v6(&v6addr, 0, 9365 &v6gw, 0, NULL, NULL, zoneid, 9366 NULL, MATCH_IRE_GW, ipst); 9367 } 9368 } 9369 break; 9370 } 9371 case AF_INET: { 9372 ipaddr_t v4addr; 9373 9374 v4addr = sin->sin_addr.s_addr; 9375 if (!CLASSD(v4addr)) { 9376 ire = ire_route_lookup(v4addr, 0, 0, 0, 9377 NULL, NULL, zoneid, NULL, 9378 MATCH_IRE_GW, ipst); 9379 } 9380 break; 9381 } 9382 default: 9383 return (EAFNOSUPPORT); 9384 } 9385 sia->sa_res = 0; 9386 if (ire != NULL) { 9387 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9388 IRE_LOCAL|IRE_LOOPBACK)) { 9389 sia->sa_res = 1; 9390 } 9391 ire_refrele(ire); 9392 } 9393 return (0); 9394 } 9395 9396 /* 9397 * TBD: implement when kernel maintaines a list of site prefixes. 9398 */ 9399 /* ARGSUSED */ 9400 int 9401 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9402 ip_ioctl_cmd_t *ipip, void *ifreq) 9403 { 9404 return (ENXIO); 9405 } 9406 9407 /* ARGSUSED */ 9408 int 9409 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9410 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9411 { 9412 ill_t *ill; 9413 mblk_t *mp1; 9414 conn_t *connp; 9415 boolean_t success; 9416 9417 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9418 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9419 /* ioctl comes down on an conn */ 9420 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9421 connp = Q_TO_CONN(q); 9422 9423 mp->b_datap->db_type = M_IOCTL; 9424 9425 /* 9426 * Send down a copy. (copymsg does not copy b_next/b_prev). 9427 * The original mp contains contaminated b_next values due to 'mi', 9428 * which is needed to do the mi_copy_done. Unfortunately if we 9429 * send down the original mblk itself and if we are popped due to an 9430 * an unplumb before the response comes back from tunnel, 9431 * the streamhead (which does a freemsg) will see this contaminated 9432 * message and the assertion in freemsg about non-null b_next/b_prev 9433 * will panic a DEBUG kernel. 9434 */ 9435 mp1 = copymsg(mp); 9436 if (mp1 == NULL) 9437 return (ENOMEM); 9438 9439 ill = ipif->ipif_ill; 9440 mutex_enter(&connp->conn_lock); 9441 mutex_enter(&ill->ill_lock); 9442 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9443 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9444 mp, 0); 9445 } else { 9446 success = ill_pending_mp_add(ill, connp, mp); 9447 } 9448 mutex_exit(&ill->ill_lock); 9449 mutex_exit(&connp->conn_lock); 9450 9451 if (success) { 9452 ip1dbg(("sending down tunparam request ")); 9453 putnext(ill->ill_wq, mp1); 9454 return (EINPROGRESS); 9455 } else { 9456 /* The conn has started closing */ 9457 freemsg(mp1); 9458 return (EINTR); 9459 } 9460 } 9461 9462 /* 9463 * ARP IOCTLs. 9464 * How does IP get in the business of fronting ARP configuration/queries? 9465 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9466 * are by tradition passed in through a datagram socket. That lands in IP. 9467 * As it happens, this is just as well since the interface is quite crude in 9468 * that it passes in no information about protocol or hardware types, or 9469 * interface association. After making the protocol assumption, IP is in 9470 * the position to look up the name of the ILL, which ARP will need, and 9471 * format a request that can be handled by ARP. The request is passed up 9472 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9473 * back a response. ARP supports its own set of more general IOCTLs, in 9474 * case anyone is interested. 9475 */ 9476 /* ARGSUSED */ 9477 int 9478 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9479 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9480 { 9481 mblk_t *mp1; 9482 mblk_t *mp2; 9483 mblk_t *pending_mp; 9484 ipaddr_t ipaddr; 9485 area_t *area; 9486 struct iocblk *iocp; 9487 conn_t *connp; 9488 struct arpreq *ar; 9489 struct xarpreq *xar; 9490 int flags, alength; 9491 char *lladdr; 9492 ip_stack_t *ipst; 9493 ill_t *ill = ipif->ipif_ill; 9494 boolean_t if_arp_ioctl = B_FALSE; 9495 9496 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9497 connp = Q_TO_CONN(q); 9498 ipst = connp->conn_netstack->netstack_ip; 9499 9500 if (ipip->ipi_cmd_type == XARP_CMD) { 9501 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9502 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9503 ar = NULL; 9504 9505 flags = xar->xarp_flags; 9506 lladdr = LLADDR(&xar->xarp_ha); 9507 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9508 /* 9509 * Validate against user's link layer address length 9510 * input and name and addr length limits. 9511 */ 9512 alength = ill->ill_phys_addr_length; 9513 if (ipip->ipi_cmd == SIOCSXARP) { 9514 if (alength != xar->xarp_ha.sdl_alen || 9515 (alength + xar->xarp_ha.sdl_nlen > 9516 sizeof (xar->xarp_ha.sdl_data))) 9517 return (EINVAL); 9518 } 9519 } else { 9520 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9521 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9522 xar = NULL; 9523 9524 flags = ar->arp_flags; 9525 lladdr = ar->arp_ha.sa_data; 9526 /* 9527 * Theoretically, the sa_family could tell us what link 9528 * layer type this operation is trying to deal with. By 9529 * common usage AF_UNSPEC means ethernet. We'll assume 9530 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9531 * for now. Our new SIOC*XARP ioctls can be used more 9532 * generally. 9533 * 9534 * If the underlying media happens to have a non 6 byte 9535 * address, arp module will fail set/get, but the del 9536 * operation will succeed. 9537 */ 9538 alength = 6; 9539 if ((ipip->ipi_cmd != SIOCDARP) && 9540 (alength != ill->ill_phys_addr_length)) { 9541 return (EINVAL); 9542 } 9543 } 9544 9545 /* 9546 * We are going to pass up to ARP a packet chain that looks 9547 * like: 9548 * 9549 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9550 * 9551 * Get a copy of the original IOCTL mblk to head the chain, 9552 * to be sent up (in mp1). Also get another copy to store 9553 * in the ill_pending_mp list, for matching the response 9554 * when it comes back from ARP. 9555 */ 9556 mp1 = copyb(mp); 9557 pending_mp = copymsg(mp); 9558 if (mp1 == NULL || pending_mp == NULL) { 9559 if (mp1 != NULL) 9560 freeb(mp1); 9561 if (pending_mp != NULL) 9562 inet_freemsg(pending_mp); 9563 return (ENOMEM); 9564 } 9565 9566 ipaddr = sin->sin_addr.s_addr; 9567 9568 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9569 (caddr_t)&ipaddr); 9570 if (mp2 == NULL) { 9571 freeb(mp1); 9572 inet_freemsg(pending_mp); 9573 return (ENOMEM); 9574 } 9575 /* Put together the chain. */ 9576 mp1->b_cont = mp2; 9577 mp1->b_datap->db_type = M_IOCTL; 9578 mp2->b_cont = mp; 9579 mp2->b_datap->db_type = M_DATA; 9580 9581 iocp = (struct iocblk *)mp1->b_rptr; 9582 9583 /* 9584 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9585 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9586 * cp_private field (or cp_rval on 32-bit systems) in place of the 9587 * ioc_count field; set ioc_count to be correct. 9588 */ 9589 iocp->ioc_count = MBLKL(mp1->b_cont); 9590 9591 /* 9592 * Set the proper command in the ARP message. 9593 * Convert the SIOC{G|S|D}ARP calls into our 9594 * AR_ENTRY_xxx calls. 9595 */ 9596 area = (area_t *)mp2->b_rptr; 9597 switch (iocp->ioc_cmd) { 9598 case SIOCDARP: 9599 case SIOCDXARP: 9600 /* 9601 * We defer deleting the corresponding IRE until 9602 * we return from arp. 9603 */ 9604 area->area_cmd = AR_ENTRY_DELETE; 9605 area->area_proto_mask_offset = 0; 9606 break; 9607 case SIOCGARP: 9608 case SIOCGXARP: 9609 area->area_cmd = AR_ENTRY_SQUERY; 9610 area->area_proto_mask_offset = 0; 9611 break; 9612 case SIOCSARP: 9613 case SIOCSXARP: 9614 /* 9615 * Delete the corresponding ire to make sure IP will 9616 * pick up any change from arp. 9617 */ 9618 if (!if_arp_ioctl) { 9619 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9620 } else { 9621 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9622 if (ipif != NULL) { 9623 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9624 ipst); 9625 ipif_refrele(ipif); 9626 } 9627 } 9628 break; 9629 } 9630 iocp->ioc_cmd = area->area_cmd; 9631 9632 /* 9633 * Fill in the rest of the ARP operation fields. 9634 */ 9635 area->area_hw_addr_length = alength; 9636 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9637 9638 /* Translate the flags. */ 9639 if (flags & ATF_PERM) 9640 area->area_flags |= ACE_F_PERMANENT; 9641 if (flags & ATF_PUBL) 9642 area->area_flags |= ACE_F_PUBLISH; 9643 if (flags & ATF_AUTHORITY) 9644 area->area_flags |= ACE_F_AUTHORITY; 9645 9646 /* 9647 * Before sending 'mp' to ARP, we have to clear the b_next 9648 * and b_prev. Otherwise if STREAMS encounters such a message 9649 * in freemsg(), (because ARP can close any time) it can cause 9650 * a panic. But mi code needs the b_next and b_prev values of 9651 * mp->b_cont, to complete the ioctl. So we store it here 9652 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9653 * when the response comes down from ARP. 9654 */ 9655 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9656 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9657 mp->b_cont->b_next = NULL; 9658 mp->b_cont->b_prev = NULL; 9659 9660 mutex_enter(&connp->conn_lock); 9661 mutex_enter(&ill->ill_lock); 9662 /* conn has not yet started closing, hence this can't fail */ 9663 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9664 mutex_exit(&ill->ill_lock); 9665 mutex_exit(&connp->conn_lock); 9666 9667 /* 9668 * Up to ARP it goes. The response will come back in ip_wput() as an 9669 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9670 */ 9671 putnext(ill->ill_rq, mp1); 9672 return (EINPROGRESS); 9673 } 9674 9675 /* 9676 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9677 * the associated sin and refhold and return the associated ipif via `ci'. 9678 */ 9679 int 9680 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9681 cmd_info_t *ci, ipsq_func_t func) 9682 { 9683 mblk_t *mp1; 9684 int err; 9685 sin_t *sin; 9686 conn_t *connp; 9687 ipif_t *ipif; 9688 ire_t *ire = NULL; 9689 ill_t *ill = NULL; 9690 boolean_t exists; 9691 ip_stack_t *ipst; 9692 struct arpreq *ar; 9693 struct xarpreq *xar; 9694 struct sockaddr_dl *sdl; 9695 9696 /* ioctl comes down on a conn */ 9697 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9698 connp = Q_TO_CONN(q); 9699 if (connp->conn_af_isv6) 9700 return (ENXIO); 9701 9702 ipst = connp->conn_netstack->netstack_ip; 9703 9704 /* Verified in ip_wput_nondata */ 9705 mp1 = mp->b_cont->b_cont; 9706 9707 if (ipip->ipi_cmd_type == XARP_CMD) { 9708 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9709 xar = (struct xarpreq *)mp1->b_rptr; 9710 sin = (sin_t *)&xar->xarp_pa; 9711 sdl = &xar->xarp_ha; 9712 9713 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9714 return (ENXIO); 9715 if (sdl->sdl_nlen >= LIFNAMSIZ) 9716 return (EINVAL); 9717 } else { 9718 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9719 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9720 ar = (struct arpreq *)mp1->b_rptr; 9721 sin = (sin_t *)&ar->arp_pa; 9722 } 9723 9724 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9725 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9726 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9727 mp, func, &err, ipst); 9728 if (ipif == NULL) 9729 return (err); 9730 if (ipif->ipif_id != 0 || 9731 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9732 ipif_refrele(ipif); 9733 return (ENXIO); 9734 } 9735 } else { 9736 /* 9737 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9738 * 0: use the IP address to figure out the ill. In the IPMP 9739 * case, a simple forwarding table lookup will return the 9740 * IRE_IF_RESOLVER for the first interface in the group, which 9741 * might not be the interface on which the requested IP 9742 * address was resolved due to the ill selection algorithm 9743 * (see ip_newroute_get_dst_ill()). So we do a cache table 9744 * lookup first: if the IRE cache entry for the IP address is 9745 * still there, it will contain the ill pointer for the right 9746 * interface, so we use that. If the cache entry has been 9747 * flushed, we fall back to the forwarding table lookup. This 9748 * should be rare enough since IRE cache entries have a longer 9749 * life expectancy than ARP cache entries. 9750 */ 9751 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9752 ipst); 9753 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9754 ((ill = ire_to_ill(ire)) == NULL) || 9755 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9756 if (ire != NULL) 9757 ire_refrele(ire); 9758 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9759 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9760 NULL, MATCH_IRE_TYPE, ipst); 9761 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9762 9763 if (ire != NULL) 9764 ire_refrele(ire); 9765 return (ENXIO); 9766 } 9767 } 9768 ASSERT(ire != NULL && ill != NULL); 9769 ipif = ill->ill_ipif; 9770 ipif_refhold(ipif); 9771 ire_refrele(ire); 9772 } 9773 ci->ci_sin = sin; 9774 ci->ci_ipif = ipif; 9775 return (0); 9776 } 9777 9778 /* 9779 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9780 * atomically set/clear the muxids. Also complete the ioctl by acking or 9781 * naking it. Note that the code is structured such that the link type, 9782 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9783 * its clones use the persistent link, while pppd(1M) and perhaps many 9784 * other daemons may use non-persistent link. When combined with some 9785 * ill_t states, linking and unlinking lower streams may be used as 9786 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9787 */ 9788 /* ARGSUSED */ 9789 void 9790 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9791 { 9792 mblk_t *mp1, *mp2; 9793 struct linkblk *li; 9794 struct ipmx_s *ipmxp; 9795 ill_t *ill; 9796 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9797 int err = 0; 9798 boolean_t entered_ipsq = B_FALSE; 9799 boolean_t islink; 9800 ip_stack_t *ipst; 9801 9802 if (CONN_Q(q)) 9803 ipst = CONNQ_TO_IPST(q); 9804 else 9805 ipst = ILLQ_TO_IPST(q); 9806 9807 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9808 ioccmd == I_LINK || ioccmd == I_UNLINK); 9809 9810 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9811 9812 mp1 = mp->b_cont; /* This is the linkblk info */ 9813 li = (struct linkblk *)mp1->b_rptr; 9814 9815 /* 9816 * ARP has added this special mblk, and the utility is asking us 9817 * to perform consistency checks, and also atomically set the 9818 * muxid. Ifconfig is an example. It achieves this by using 9819 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9820 * to /dev/udp[6] stream for use as the mux when plinking the IP 9821 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9822 * and other comments in this routine for more details. 9823 */ 9824 mp2 = mp1->b_cont; /* This is added by ARP */ 9825 9826 /* 9827 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9828 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9829 * get the special mblk above. For backward compatibility, we 9830 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9831 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9832 * not atomic, and can leave the streams unplumbable if the utility 9833 * is interrupted before it does the SIOCSLIFMUXID. 9834 */ 9835 if (mp2 == NULL) { 9836 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9837 if (err == EINPROGRESS) 9838 return; 9839 goto done; 9840 } 9841 9842 /* 9843 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9844 * ARP has appended this last mblk to tell us whether the lower stream 9845 * is an arp-dev stream or an IP module stream. 9846 */ 9847 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9848 if (ipmxp->ipmx_arpdev_stream) { 9849 /* 9850 * The lower stream is the arp-dev stream. 9851 */ 9852 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9853 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9854 if (ill == NULL) { 9855 if (err == EINPROGRESS) 9856 return; 9857 err = EINVAL; 9858 goto done; 9859 } 9860 9861 if (ipsq == NULL) { 9862 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9863 NEW_OP, B_TRUE); 9864 if (ipsq == NULL) { 9865 ill_refrele(ill); 9866 return; 9867 } 9868 entered_ipsq = B_TRUE; 9869 } 9870 ASSERT(IAM_WRITER_ILL(ill)); 9871 ill_refrele(ill); 9872 9873 /* 9874 * To ensure consistency between IP and ARP, the following 9875 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9876 * This is because the muxid's are stored in the IP stream on 9877 * the ill. 9878 * 9879 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9880 * the ARP stream. On an arp-dev stream, IP checks that it is 9881 * not yet plinked, and it also checks that the corresponding 9882 * IP stream is already plinked. 9883 * 9884 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9885 * punlinking the IP stream. IP does not allow punlink of the 9886 * IP stream unless the arp stream has been punlinked. 9887 */ 9888 if ((islink && 9889 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9890 (!islink && ill->ill_arp_muxid != li->l_index)) { 9891 err = EINVAL; 9892 goto done; 9893 } 9894 ill->ill_arp_muxid = islink ? li->l_index : 0; 9895 } else { 9896 /* 9897 * The lower stream is probably an IP module stream. Do 9898 * consistency checking. 9899 */ 9900 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9901 if (err == EINPROGRESS) 9902 return; 9903 } 9904 done: 9905 if (err == 0) 9906 miocack(q, mp, 0, 0); 9907 else 9908 miocnak(q, mp, 0, err); 9909 9910 /* Conn was refheld in ip_sioctl_copyin_setup */ 9911 if (CONN_Q(q)) 9912 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9913 if (entered_ipsq) 9914 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9915 } 9916 9917 /* 9918 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9919 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9920 * module stream). If `doconsist' is set, then do the extended consistency 9921 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9922 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9923 * an error code on failure. 9924 */ 9925 static int 9926 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9927 struct linkblk *li, boolean_t doconsist) 9928 { 9929 ill_t *ill; 9930 queue_t *ipwq, *dwq; 9931 const char *name; 9932 struct qinit *qinfo; 9933 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9934 boolean_t entered_ipsq = B_FALSE; 9935 9936 /* 9937 * Walk the lower stream to verify it's the IP module stream. 9938 * The IP module is identified by its name, wput function, 9939 * and non-NULL q_next. STREAMS ensures that the lower stream 9940 * (li->l_qbot) will not vanish until this ioctl completes. 9941 */ 9942 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9943 qinfo = ipwq->q_qinfo; 9944 name = qinfo->qi_minfo->mi_idname; 9945 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9946 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9947 break; 9948 } 9949 } 9950 9951 /* 9952 * If this isn't an IP module stream, bail. 9953 */ 9954 if (ipwq == NULL) 9955 return (0); 9956 9957 ill = ipwq->q_ptr; 9958 ASSERT(ill != NULL); 9959 9960 if (ipsq == NULL) { 9961 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9962 NEW_OP, B_TRUE); 9963 if (ipsq == NULL) 9964 return (EINPROGRESS); 9965 entered_ipsq = B_TRUE; 9966 } 9967 ASSERT(IAM_WRITER_ILL(ill)); 9968 9969 if (doconsist) { 9970 /* 9971 * Consistency checking requires that I_{P}LINK occurs 9972 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9973 * occurs prior to clearing ill_arp_muxid. 9974 */ 9975 if ((islink && ill->ill_ip_muxid != 0) || 9976 (!islink && ill->ill_arp_muxid != 0)) { 9977 if (entered_ipsq) 9978 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9979 return (EINVAL); 9980 } 9981 } 9982 9983 /* 9984 * As part of I_{P}LINKing, stash the number of downstream modules and 9985 * the read queue of the module immediately below IP in the ill. 9986 * These are used during the capability negotiation below. 9987 */ 9988 ill->ill_lmod_rq = NULL; 9989 ill->ill_lmod_cnt = 0; 9990 if (islink && ((dwq = ipwq->q_next) != NULL)) { 9991 ill->ill_lmod_rq = RD(dwq); 9992 for (; dwq != NULL; dwq = dwq->q_next) 9993 ill->ill_lmod_cnt++; 9994 } 9995 9996 if (doconsist) 9997 ill->ill_ip_muxid = islink ? li->l_index : 0; 9998 9999 /* 10000 * If there's at least one up ipif on this ill, then we're bound to 10001 * the underlying driver via DLPI. In that case, renegotiate 10002 * capabilities to account for any possible change in modules 10003 * interposed between IP and the driver. 10004 */ 10005 if (ill->ill_ipif_up_count > 0) { 10006 if (islink) 10007 ill_capability_probe(ill); 10008 else 10009 ill_capability_reset(ill); 10010 } 10011 10012 if (entered_ipsq) 10013 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10014 10015 return (0); 10016 } 10017 10018 /* 10019 * Search the ioctl command in the ioctl tables and return a pointer 10020 * to the ioctl command information. The ioctl command tables are 10021 * static and fully populated at compile time. 10022 */ 10023 ip_ioctl_cmd_t * 10024 ip_sioctl_lookup(int ioc_cmd) 10025 { 10026 int index; 10027 ip_ioctl_cmd_t *ipip; 10028 ip_ioctl_cmd_t *ipip_end; 10029 10030 if (ioc_cmd == IPI_DONTCARE) 10031 return (NULL); 10032 10033 /* 10034 * Do a 2 step search. First search the indexed table 10035 * based on the least significant byte of the ioctl cmd. 10036 * If we don't find a match, then search the misc table 10037 * serially. 10038 */ 10039 index = ioc_cmd & 0xFF; 10040 if (index < ip_ndx_ioctl_count) { 10041 ipip = &ip_ndx_ioctl_table[index]; 10042 if (ipip->ipi_cmd == ioc_cmd) { 10043 /* Found a match in the ndx table */ 10044 return (ipip); 10045 } 10046 } 10047 10048 /* Search the misc table */ 10049 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10050 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10051 if (ipip->ipi_cmd == ioc_cmd) 10052 /* Found a match in the misc table */ 10053 return (ipip); 10054 } 10055 10056 return (NULL); 10057 } 10058 10059 /* 10060 * Wrapper function for resuming deferred ioctl processing 10061 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10062 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10063 */ 10064 /* ARGSUSED */ 10065 void 10066 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10067 void *dummy_arg) 10068 { 10069 ip_sioctl_copyin_setup(q, mp); 10070 } 10071 10072 /* 10073 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10074 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10075 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10076 * We establish here the size of the block to be copied in. mi_copyin 10077 * arranges for this to happen, an processing continues in ip_wput with 10078 * an M_IOCDATA message. 10079 */ 10080 void 10081 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10082 { 10083 int copyin_size; 10084 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10085 ip_ioctl_cmd_t *ipip; 10086 cred_t *cr; 10087 ip_stack_t *ipst; 10088 10089 if (CONN_Q(q)) 10090 ipst = CONNQ_TO_IPST(q); 10091 else 10092 ipst = ILLQ_TO_IPST(q); 10093 10094 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10095 if (ipip == NULL) { 10096 /* 10097 * The ioctl is not one we understand or own. 10098 * Pass it along to be processed down stream, 10099 * if this is a module instance of IP, else nak 10100 * the ioctl. 10101 */ 10102 if (q->q_next == NULL) { 10103 goto nak; 10104 } else { 10105 putnext(q, mp); 10106 return; 10107 } 10108 } 10109 10110 /* 10111 * If this is deferred, then we will do all the checks when we 10112 * come back. 10113 */ 10114 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10115 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10116 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10117 return; 10118 } 10119 10120 /* 10121 * Only allow a very small subset of IP ioctls on this stream if 10122 * IP is a module and not a driver. Allowing ioctls to be processed 10123 * in this case may cause assert failures or data corruption. 10124 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10125 * ioctls allowed on an IP module stream, after which this stream 10126 * normally becomes a multiplexor (at which time the stream head 10127 * will fail all ioctls). 10128 */ 10129 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10130 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10131 /* 10132 * Pass common Streams ioctls which the IP 10133 * module does not own or consume along to 10134 * be processed down stream. 10135 */ 10136 putnext(q, mp); 10137 return; 10138 } else { 10139 goto nak; 10140 } 10141 } 10142 10143 /* Make sure we have ioctl data to process. */ 10144 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10145 goto nak; 10146 10147 /* 10148 * Prefer dblk credential over ioctl credential; some synthesized 10149 * ioctls have kcred set because there's no way to crhold() 10150 * a credential in some contexts. (ioc_cr is not crfree() by 10151 * the framework; the caller of ioctl needs to hold the reference 10152 * for the duration of the call). 10153 */ 10154 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10155 10156 /* Make sure normal users don't send down privileged ioctls */ 10157 if ((ipip->ipi_flags & IPI_PRIV) && 10158 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10159 /* We checked the privilege earlier but log it here */ 10160 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10161 return; 10162 } 10163 10164 /* 10165 * The ioctl command tables can only encode fixed length 10166 * ioctl data. If the length is variable, the table will 10167 * encode the length as zero. Such special cases are handled 10168 * below in the switch. 10169 */ 10170 if (ipip->ipi_copyin_size != 0) { 10171 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10172 return; 10173 } 10174 10175 switch (iocp->ioc_cmd) { 10176 case O_SIOCGIFCONF: 10177 case SIOCGIFCONF: 10178 /* 10179 * This IOCTL is hilarious. See comments in 10180 * ip_sioctl_get_ifconf for the story. 10181 */ 10182 if (iocp->ioc_count == TRANSPARENT) 10183 copyin_size = SIZEOF_STRUCT(ifconf, 10184 iocp->ioc_flag); 10185 else 10186 copyin_size = iocp->ioc_count; 10187 mi_copyin(q, mp, NULL, copyin_size); 10188 return; 10189 10190 case O_SIOCGLIFCONF: 10191 case SIOCGLIFCONF: 10192 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10193 mi_copyin(q, mp, NULL, copyin_size); 10194 return; 10195 10196 case SIOCGLIFSRCOF: 10197 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10198 mi_copyin(q, mp, NULL, copyin_size); 10199 return; 10200 case SIOCGIP6ADDRPOLICY: 10201 ip_sioctl_ip6addrpolicy(q, mp); 10202 ip6_asp_table_refrele(ipst); 10203 return; 10204 10205 case SIOCSIP6ADDRPOLICY: 10206 ip_sioctl_ip6addrpolicy(q, mp); 10207 return; 10208 10209 case SIOCGDSTINFO: 10210 ip_sioctl_dstinfo(q, mp); 10211 ip6_asp_table_refrele(ipst); 10212 return; 10213 10214 case I_PLINK: 10215 case I_PUNLINK: 10216 case I_LINK: 10217 case I_UNLINK: 10218 /* 10219 * We treat non-persistent link similarly as the persistent 10220 * link case, in terms of plumbing/unplumbing, as well as 10221 * dynamic re-plumbing events indicator. See comments 10222 * in ip_sioctl_plink() for more. 10223 * 10224 * Request can be enqueued in the 'ipsq' while waiting 10225 * to become exclusive. So bump up the conn ref. 10226 */ 10227 if (CONN_Q(q)) 10228 CONN_INC_REF(Q_TO_CONN(q)); 10229 ip_sioctl_plink(NULL, q, mp, NULL); 10230 return; 10231 10232 case ND_GET: 10233 case ND_SET: 10234 /* 10235 * Use of the nd table requires holding the reader lock. 10236 * Modifying the nd table thru nd_load/nd_unload requires 10237 * the writer lock. 10238 */ 10239 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10240 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10241 rw_exit(&ipst->ips_ip_g_nd_lock); 10242 10243 if (iocp->ioc_error) 10244 iocp->ioc_count = 0; 10245 mp->b_datap->db_type = M_IOCACK; 10246 qreply(q, mp); 10247 return; 10248 } 10249 rw_exit(&ipst->ips_ip_g_nd_lock); 10250 /* 10251 * We don't understand this subioctl of ND_GET / ND_SET. 10252 * Maybe intended for some driver / module below us 10253 */ 10254 if (q->q_next) { 10255 putnext(q, mp); 10256 } else { 10257 iocp->ioc_error = ENOENT; 10258 mp->b_datap->db_type = M_IOCNAK; 10259 iocp->ioc_count = 0; 10260 qreply(q, mp); 10261 } 10262 return; 10263 10264 case IP_IOCTL: 10265 ip_wput_ioctl(q, mp); 10266 return; 10267 default: 10268 cmn_err(CE_PANIC, "should not happen "); 10269 } 10270 nak: 10271 if (mp->b_cont != NULL) { 10272 freemsg(mp->b_cont); 10273 mp->b_cont = NULL; 10274 } 10275 iocp->ioc_error = EINVAL; 10276 mp->b_datap->db_type = M_IOCNAK; 10277 iocp->ioc_count = 0; 10278 qreply(q, mp); 10279 } 10280 10281 /* ip_wput hands off ARP IOCTL responses to us */ 10282 void 10283 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10284 { 10285 struct arpreq *ar; 10286 struct xarpreq *xar; 10287 area_t *area; 10288 mblk_t *area_mp; 10289 struct iocblk *iocp; 10290 mblk_t *orig_ioc_mp, *tmp; 10291 struct iocblk *orig_iocp; 10292 ill_t *ill; 10293 conn_t *connp = NULL; 10294 uint_t ioc_id; 10295 mblk_t *pending_mp; 10296 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10297 int *flagsp; 10298 char *storage = NULL; 10299 sin_t *sin; 10300 ipaddr_t addr; 10301 int err; 10302 ip_stack_t *ipst; 10303 10304 ill = q->q_ptr; 10305 ASSERT(ill != NULL); 10306 ipst = ill->ill_ipst; 10307 10308 /* 10309 * We should get back from ARP a packet chain that looks like: 10310 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10311 */ 10312 if (!(area_mp = mp->b_cont) || 10313 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10314 !(orig_ioc_mp = area_mp->b_cont) || 10315 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10316 freemsg(mp); 10317 return; 10318 } 10319 10320 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10321 10322 tmp = (orig_ioc_mp->b_cont)->b_cont; 10323 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10324 (orig_iocp->ioc_cmd == SIOCSXARP) || 10325 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10326 x_arp_ioctl = B_TRUE; 10327 xar = (struct xarpreq *)tmp->b_rptr; 10328 sin = (sin_t *)&xar->xarp_pa; 10329 flagsp = &xar->xarp_flags; 10330 storage = xar->xarp_ha.sdl_data; 10331 if (xar->xarp_ha.sdl_nlen != 0) 10332 ifx_arp_ioctl = B_TRUE; 10333 } else { 10334 ar = (struct arpreq *)tmp->b_rptr; 10335 sin = (sin_t *)&ar->arp_pa; 10336 flagsp = &ar->arp_flags; 10337 storage = ar->arp_ha.sa_data; 10338 } 10339 10340 iocp = (struct iocblk *)mp->b_rptr; 10341 10342 /* 10343 * Pick out the originating queue based on the ioc_id. 10344 */ 10345 ioc_id = iocp->ioc_id; 10346 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10347 if (pending_mp == NULL) { 10348 ASSERT(connp == NULL); 10349 inet_freemsg(mp); 10350 return; 10351 } 10352 ASSERT(connp != NULL); 10353 q = CONNP_TO_WQ(connp); 10354 10355 /* Uncouple the internally generated IOCTL from the original one */ 10356 area = (area_t *)area_mp->b_rptr; 10357 area_mp->b_cont = NULL; 10358 10359 /* 10360 * Restore the b_next and b_prev used by mi code. This is needed 10361 * to complete the ioctl using mi* functions. We stored them in 10362 * the pending mp prior to sending the request to ARP. 10363 */ 10364 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10365 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10366 inet_freemsg(pending_mp); 10367 10368 /* 10369 * We're done if there was an error or if this is not an SIOCG{X}ARP 10370 * Catch the case where there is an IRE_CACHE by no entry in the 10371 * arp table. 10372 */ 10373 addr = sin->sin_addr.s_addr; 10374 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10375 ire_t *ire; 10376 dl_unitdata_req_t *dlup; 10377 mblk_t *llmp; 10378 int addr_len; 10379 ill_t *ipsqill = NULL; 10380 10381 if (ifx_arp_ioctl) { 10382 /* 10383 * There's no need to lookup the ill, since 10384 * we've already done that when we started 10385 * processing the ioctl and sent the message 10386 * to ARP on that ill. So use the ill that 10387 * is stored in q->q_ptr. 10388 */ 10389 ipsqill = ill; 10390 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10391 ipsqill->ill_ipif, ALL_ZONES, 10392 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10393 } else { 10394 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10395 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10396 if (ire != NULL) 10397 ipsqill = ire_to_ill(ire); 10398 } 10399 10400 if ((x_arp_ioctl) && (ipsqill != NULL)) 10401 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10402 10403 if (ire != NULL) { 10404 /* 10405 * Since the ire obtained from cachetable is used for 10406 * mac addr copying below, treat an incomplete ire as if 10407 * as if we never found it. 10408 */ 10409 if (ire->ire_nce != NULL && 10410 ire->ire_nce->nce_state != ND_REACHABLE) { 10411 ire_refrele(ire); 10412 ire = NULL; 10413 ipsqill = NULL; 10414 goto errack; 10415 } 10416 *flagsp = ATF_INUSE; 10417 llmp = (ire->ire_nce != NULL ? 10418 ire->ire_nce->nce_res_mp : NULL); 10419 if (llmp != NULL && ipsqill != NULL) { 10420 uchar_t *macaddr; 10421 10422 addr_len = ipsqill->ill_phys_addr_length; 10423 if (x_arp_ioctl && ((addr_len + 10424 ipsqill->ill_name_length) > 10425 sizeof (xar->xarp_ha.sdl_data))) { 10426 ire_refrele(ire); 10427 freemsg(mp); 10428 ip_ioctl_finish(q, orig_ioc_mp, 10429 EINVAL, NO_COPYOUT, NULL); 10430 return; 10431 } 10432 *flagsp |= ATF_COM; 10433 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10434 if (ipsqill->ill_sap_length < 0) 10435 macaddr = llmp->b_rptr + 10436 dlup->dl_dest_addr_offset; 10437 else 10438 macaddr = llmp->b_rptr + 10439 dlup->dl_dest_addr_offset + 10440 ipsqill->ill_sap_length; 10441 /* 10442 * For SIOCGARP, MAC address length 10443 * validation has already been done 10444 * before the ioctl was issued to ARP to 10445 * allow it to progress only on 6 byte 10446 * addressable (ethernet like) media. Thus 10447 * the mac address copying can not overwrite 10448 * the sa_data area below. 10449 */ 10450 bcopy(macaddr, storage, addr_len); 10451 } 10452 /* Ditch the internal IOCTL. */ 10453 freemsg(mp); 10454 ire_refrele(ire); 10455 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10456 return; 10457 } 10458 } 10459 10460 /* 10461 * Delete the coresponding IRE_CACHE if any. 10462 * Reset the error if there was one (in case there was no entry 10463 * in arp.) 10464 */ 10465 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10466 ipif_t *ipintf = NULL; 10467 10468 if (ifx_arp_ioctl) { 10469 /* 10470 * There's no need to lookup the ill, since 10471 * we've already done that when we started 10472 * processing the ioctl and sent the message 10473 * to ARP on that ill. So use the ill that 10474 * is stored in q->q_ptr. 10475 */ 10476 ipintf = ill->ill_ipif; 10477 } 10478 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10479 /* 10480 * The address in "addr" may be an entry for a 10481 * router. If that's true, then any off-net 10482 * IRE_CACHE entries that go through the router 10483 * with address "addr" must be clobbered. Use 10484 * ire_walk to achieve this goal. 10485 */ 10486 if (ifx_arp_ioctl) 10487 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10488 ire_delete_cache_gw, (char *)&addr, ill); 10489 else 10490 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10491 ALL_ZONES, ipst); 10492 iocp->ioc_error = 0; 10493 } 10494 } 10495 errack: 10496 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10497 err = iocp->ioc_error; 10498 freemsg(mp); 10499 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10500 return; 10501 } 10502 10503 /* 10504 * Completion of an SIOCG{X}ARP. Translate the information from 10505 * the area_t into the struct {x}arpreq. 10506 */ 10507 if (x_arp_ioctl) { 10508 storage += ill_xarp_info(&xar->xarp_ha, ill); 10509 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10510 sizeof (xar->xarp_ha.sdl_data)) { 10511 freemsg(mp); 10512 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10513 NULL); 10514 return; 10515 } 10516 } 10517 *flagsp = ATF_INUSE; 10518 if (area->area_flags & ACE_F_PERMANENT) 10519 *flagsp |= ATF_PERM; 10520 if (area->area_flags & ACE_F_PUBLISH) 10521 *flagsp |= ATF_PUBL; 10522 if (area->area_flags & ACE_F_AUTHORITY) 10523 *flagsp |= ATF_AUTHORITY; 10524 if (area->area_hw_addr_length != 0) { 10525 *flagsp |= ATF_COM; 10526 /* 10527 * For SIOCGARP, MAC address length validation has 10528 * already been done before the ioctl was issued to ARP 10529 * to allow it to progress only on 6 byte addressable 10530 * (ethernet like) media. Thus the mac address copying 10531 * can not overwrite the sa_data area below. 10532 */ 10533 bcopy((char *)area + area->area_hw_addr_offset, 10534 storage, area->area_hw_addr_length); 10535 } 10536 10537 /* Ditch the internal IOCTL. */ 10538 freemsg(mp); 10539 /* Complete the original. */ 10540 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10541 } 10542 10543 /* 10544 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10545 * interface) create the next available logical interface for this 10546 * physical interface. 10547 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10548 * ipif with the specified name. 10549 * 10550 * If the address family is not AF_UNSPEC then set the address as well. 10551 * 10552 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10553 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10554 * 10555 * Executed as a writer on the ill or ill group. 10556 * So no lock is needed to traverse the ipif chain, or examine the 10557 * phyint flags. 10558 */ 10559 /* ARGSUSED */ 10560 int 10561 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10562 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10563 { 10564 mblk_t *mp1; 10565 struct lifreq *lifr; 10566 boolean_t isv6; 10567 boolean_t exists; 10568 char *name; 10569 char *endp; 10570 char *cp; 10571 int namelen; 10572 ipif_t *ipif; 10573 long id; 10574 ipsq_t *ipsq; 10575 ill_t *ill; 10576 sin_t *sin; 10577 int err = 0; 10578 boolean_t found_sep = B_FALSE; 10579 conn_t *connp; 10580 zoneid_t zoneid; 10581 int orig_ifindex = 0; 10582 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10583 10584 ASSERT(q->q_next == NULL); 10585 ip1dbg(("ip_sioctl_addif\n")); 10586 /* Existence of mp1 has been checked in ip_wput_nondata */ 10587 mp1 = mp->b_cont->b_cont; 10588 /* 10589 * Null terminate the string to protect against buffer 10590 * overrun. String was generated by user code and may not 10591 * be trusted. 10592 */ 10593 lifr = (struct lifreq *)mp1->b_rptr; 10594 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10595 name = lifr->lifr_name; 10596 ASSERT(CONN_Q(q)); 10597 connp = Q_TO_CONN(q); 10598 isv6 = connp->conn_af_isv6; 10599 zoneid = connp->conn_zoneid; 10600 namelen = mi_strlen(name); 10601 if (namelen == 0) 10602 return (EINVAL); 10603 10604 exists = B_FALSE; 10605 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10606 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10607 /* 10608 * Allow creating lo0 using SIOCLIFADDIF. 10609 * can't be any other writer thread. So can pass null below 10610 * for the last 4 args to ipif_lookup_name. 10611 */ 10612 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10613 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10614 /* Prevent any further action */ 10615 if (ipif == NULL) { 10616 return (ENOBUFS); 10617 } else if (!exists) { 10618 /* We created the ipif now and as writer */ 10619 ipif_refrele(ipif); 10620 return (0); 10621 } else { 10622 ill = ipif->ipif_ill; 10623 ill_refhold(ill); 10624 ipif_refrele(ipif); 10625 } 10626 } else { 10627 /* Look for a colon in the name. */ 10628 endp = &name[namelen]; 10629 for (cp = endp; --cp > name; ) { 10630 if (*cp == IPIF_SEPARATOR_CHAR) { 10631 found_sep = B_TRUE; 10632 /* 10633 * Reject any non-decimal aliases for plumbing 10634 * of logical interfaces. Aliases with leading 10635 * zeroes are also rejected as they introduce 10636 * ambiguity in the naming of the interfaces. 10637 * Comparing with "0" takes care of all such 10638 * cases. 10639 */ 10640 if ((strncmp("0", cp+1, 1)) == 0) 10641 return (EINVAL); 10642 10643 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10644 id <= 0 || *endp != '\0') { 10645 return (EINVAL); 10646 } 10647 *cp = '\0'; 10648 break; 10649 } 10650 } 10651 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10652 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10653 if (found_sep) 10654 *cp = IPIF_SEPARATOR_CHAR; 10655 if (ill == NULL) 10656 return (err); 10657 } 10658 10659 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10660 B_TRUE); 10661 10662 /* 10663 * Release the refhold due to the lookup, now that we are excl 10664 * or we are just returning 10665 */ 10666 ill_refrele(ill); 10667 10668 if (ipsq == NULL) 10669 return (EINPROGRESS); 10670 10671 /* 10672 * If the interface is failed, inactive or offlined, look for a working 10673 * interface in the ill group and create the ipif there. If we can't 10674 * find a good interface, create the ipif anyway so that in.mpathd can 10675 * move it to the first repaired interface. 10676 */ 10677 if ((ill->ill_phyint->phyint_flags & 10678 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10679 ill->ill_phyint->phyint_groupname_len != 0) { 10680 phyint_t *phyi; 10681 char *groupname = ill->ill_phyint->phyint_groupname; 10682 10683 /* 10684 * We're looking for a working interface, but it doesn't matter 10685 * if it's up or down; so instead of following the group lists, 10686 * we look at each physical interface and compare the groupname. 10687 * We're only interested in interfaces with IPv4 (resp. IPv6) 10688 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10689 * Otherwise we create the ipif on the failed interface. 10690 */ 10691 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10692 phyi = avl_first(&ipst->ips_phyint_g_list-> 10693 phyint_list_avl_by_index); 10694 for (; phyi != NULL; 10695 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10696 phyint_list_avl_by_index, 10697 phyi, AVL_AFTER)) { 10698 if (phyi->phyint_groupname_len == 0) 10699 continue; 10700 ASSERT(phyi->phyint_groupname != NULL); 10701 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10702 !(phyi->phyint_flags & 10703 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10704 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10705 (phyi->phyint_illv4 != NULL))) { 10706 break; 10707 } 10708 } 10709 rw_exit(&ipst->ips_ill_g_lock); 10710 10711 if (phyi != NULL) { 10712 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10713 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10714 phyi->phyint_illv4); 10715 } 10716 } 10717 10718 /* 10719 * We are now exclusive on the ipsq, so an ill move will be serialized 10720 * before or after us. 10721 */ 10722 ASSERT(IAM_WRITER_ILL(ill)); 10723 ASSERT(ill->ill_move_in_progress == B_FALSE); 10724 10725 if (found_sep && orig_ifindex == 0) { 10726 /* Now see if there is an IPIF with this unit number. */ 10727 for (ipif = ill->ill_ipif; ipif != NULL; 10728 ipif = ipif->ipif_next) { 10729 if (ipif->ipif_id == id) { 10730 err = EEXIST; 10731 goto done; 10732 } 10733 } 10734 } 10735 10736 /* 10737 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10738 * of lo0. We never come here when we plumb lo0:0. It 10739 * happens in ipif_lookup_on_name. 10740 * The specified unit number is ignored when we create the ipif on a 10741 * different interface. However, we save it in ipif_orig_ipifid below so 10742 * that the ipif fails back to the right position. 10743 */ 10744 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10745 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10746 err = ENOBUFS; 10747 goto done; 10748 } 10749 10750 /* Return created name with ioctl */ 10751 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10752 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10753 ip1dbg(("created %s\n", lifr->lifr_name)); 10754 10755 /* Set address */ 10756 sin = (sin_t *)&lifr->lifr_addr; 10757 if (sin->sin_family != AF_UNSPEC) { 10758 err = ip_sioctl_addr(ipif, sin, q, mp, 10759 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10760 } 10761 10762 /* Set ifindex and unit number for failback */ 10763 if (err == 0 && orig_ifindex != 0) { 10764 ipif->ipif_orig_ifindex = orig_ifindex; 10765 if (found_sep) { 10766 ipif->ipif_orig_ipifid = id; 10767 } 10768 } 10769 10770 done: 10771 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10772 return (err); 10773 } 10774 10775 /* 10776 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10777 * interface) delete it based on the IP address (on this physical interface). 10778 * Otherwise delete it based on the ipif_id. 10779 * Also, special handling to allow a removeif of lo0. 10780 */ 10781 /* ARGSUSED */ 10782 int 10783 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10784 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10785 { 10786 conn_t *connp; 10787 ill_t *ill = ipif->ipif_ill; 10788 boolean_t success; 10789 ip_stack_t *ipst; 10790 10791 ipst = CONNQ_TO_IPST(q); 10792 10793 ASSERT(q->q_next == NULL); 10794 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10795 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10796 ASSERT(IAM_WRITER_IPIF(ipif)); 10797 10798 connp = Q_TO_CONN(q); 10799 /* 10800 * Special case for unplumbing lo0 (the loopback physical interface). 10801 * If unplumbing lo0, the incoming address structure has been 10802 * initialized to all zeros. When unplumbing lo0, all its logical 10803 * interfaces must be removed too. 10804 * 10805 * Note that this interface may be called to remove a specific 10806 * loopback logical interface (eg, lo0:1). But in that case 10807 * ipif->ipif_id != 0 so that the code path for that case is the 10808 * same as any other interface (meaning it skips the code directly 10809 * below). 10810 */ 10811 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10812 if (sin->sin_family == AF_UNSPEC && 10813 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10814 /* 10815 * Mark it condemned. No new ref. will be made to ill. 10816 */ 10817 mutex_enter(&ill->ill_lock); 10818 ill->ill_state_flags |= ILL_CONDEMNED; 10819 for (ipif = ill->ill_ipif; ipif != NULL; 10820 ipif = ipif->ipif_next) { 10821 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10822 } 10823 mutex_exit(&ill->ill_lock); 10824 10825 ipif = ill->ill_ipif; 10826 /* unplumb the loopback interface */ 10827 ill_delete(ill); 10828 mutex_enter(&connp->conn_lock); 10829 mutex_enter(&ill->ill_lock); 10830 ASSERT(ill->ill_group == NULL); 10831 10832 /* Are any references to this ill active */ 10833 if (ill_is_quiescent(ill)) { 10834 mutex_exit(&ill->ill_lock); 10835 mutex_exit(&connp->conn_lock); 10836 ill_delete_tail(ill); 10837 mi_free(ill); 10838 return (0); 10839 } 10840 success = ipsq_pending_mp_add(connp, ipif, 10841 CONNP_TO_WQ(connp), mp, ILL_FREE); 10842 mutex_exit(&connp->conn_lock); 10843 mutex_exit(&ill->ill_lock); 10844 if (success) 10845 return (EINPROGRESS); 10846 else 10847 return (EINTR); 10848 } 10849 } 10850 10851 /* 10852 * We are exclusive on the ipsq, so an ill move will be serialized 10853 * before or after us. 10854 */ 10855 ASSERT(ill->ill_move_in_progress == B_FALSE); 10856 10857 if (ipif->ipif_id == 0) { 10858 /* Find based on address */ 10859 if (ipif->ipif_isv6) { 10860 sin6_t *sin6; 10861 10862 if (sin->sin_family != AF_INET6) 10863 return (EAFNOSUPPORT); 10864 10865 sin6 = (sin6_t *)sin; 10866 /* We are a writer, so we should be able to lookup */ 10867 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10868 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10869 if (ipif == NULL) { 10870 /* 10871 * Maybe the address in on another interface in 10872 * the same IPMP group? We check this below. 10873 */ 10874 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10875 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10876 ipst); 10877 } 10878 } else { 10879 ipaddr_t addr; 10880 10881 if (sin->sin_family != AF_INET) 10882 return (EAFNOSUPPORT); 10883 10884 addr = sin->sin_addr.s_addr; 10885 /* We are a writer, so we should be able to lookup */ 10886 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10887 NULL, NULL, NULL, ipst); 10888 if (ipif == NULL) { 10889 /* 10890 * Maybe the address in on another interface in 10891 * the same IPMP group? We check this below. 10892 */ 10893 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10894 NULL, NULL, NULL, NULL, ipst); 10895 } 10896 } 10897 if (ipif == NULL) { 10898 return (EADDRNOTAVAIL); 10899 } 10900 /* 10901 * When the address to be removed is hosted on a different 10902 * interface, we check if the interface is in the same IPMP 10903 * group as the specified one; if so we proceed with the 10904 * removal. 10905 * ill->ill_group is NULL when the ill is down, so we have to 10906 * compare the group names instead. 10907 */ 10908 if (ipif->ipif_ill != ill && 10909 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10910 ill->ill_phyint->phyint_groupname_len == 0 || 10911 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10912 ill->ill_phyint->phyint_groupname) != 0)) { 10913 ipif_refrele(ipif); 10914 return (EADDRNOTAVAIL); 10915 } 10916 10917 /* This is a writer */ 10918 ipif_refrele(ipif); 10919 } 10920 10921 /* 10922 * Can not delete instance zero since it is tied to the ill. 10923 */ 10924 if (ipif->ipif_id == 0) 10925 return (EBUSY); 10926 10927 mutex_enter(&ill->ill_lock); 10928 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10929 mutex_exit(&ill->ill_lock); 10930 10931 ipif_free(ipif); 10932 10933 mutex_enter(&connp->conn_lock); 10934 mutex_enter(&ill->ill_lock); 10935 10936 /* Are any references to this ipif active */ 10937 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10938 mutex_exit(&ill->ill_lock); 10939 mutex_exit(&connp->conn_lock); 10940 ipif_non_duplicate(ipif); 10941 ipif_down_tail(ipif); 10942 ipif_free_tail(ipif); 10943 return (0); 10944 } 10945 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10946 IPIF_FREE); 10947 mutex_exit(&ill->ill_lock); 10948 mutex_exit(&connp->conn_lock); 10949 if (success) 10950 return (EINPROGRESS); 10951 else 10952 return (EINTR); 10953 } 10954 10955 /* 10956 * Restart the removeif ioctl. The refcnt has gone down to 0. 10957 * The ipif is already condemned. So can't find it thru lookups. 10958 */ 10959 /* ARGSUSED */ 10960 int 10961 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10962 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10963 { 10964 ill_t *ill = ipif->ipif_ill; 10965 10966 ASSERT(IAM_WRITER_IPIF(ipif)); 10967 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10968 10969 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10970 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10971 10972 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10973 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10974 ill_delete_tail(ill); 10975 mi_free(ill); 10976 return (0); 10977 } 10978 10979 ipif_non_duplicate(ipif); 10980 ipif_down_tail(ipif); 10981 ipif_free_tail(ipif); 10982 10983 ILL_UNMARK_CHANGING(ill); 10984 return (0); 10985 } 10986 10987 /* 10988 * Set the local interface address. 10989 * Allow an address of all zero when the interface is down. 10990 */ 10991 /* ARGSUSED */ 10992 int 10993 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10994 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10995 { 10996 int err = 0; 10997 in6_addr_t v6addr; 10998 boolean_t need_up = B_FALSE; 10999 11000 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11001 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11002 11003 ASSERT(IAM_WRITER_IPIF(ipif)); 11004 11005 if (ipif->ipif_isv6) { 11006 sin6_t *sin6; 11007 ill_t *ill; 11008 phyint_t *phyi; 11009 11010 if (sin->sin_family != AF_INET6) 11011 return (EAFNOSUPPORT); 11012 11013 sin6 = (sin6_t *)sin; 11014 v6addr = sin6->sin6_addr; 11015 ill = ipif->ipif_ill; 11016 phyi = ill->ill_phyint; 11017 11018 /* 11019 * Enforce that true multicast interfaces have a link-local 11020 * address for logical unit 0. 11021 */ 11022 if (ipif->ipif_id == 0 && 11023 (ill->ill_flags & ILLF_MULTICAST) && 11024 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11025 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11026 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11027 return (EADDRNOTAVAIL); 11028 } 11029 11030 /* 11031 * up interfaces shouldn't have the unspecified address 11032 * unless they also have the IPIF_NOLOCAL flags set and 11033 * have a subnet assigned. 11034 */ 11035 if ((ipif->ipif_flags & IPIF_UP) && 11036 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11037 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11038 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11039 return (EADDRNOTAVAIL); 11040 } 11041 11042 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11043 return (EADDRNOTAVAIL); 11044 } else { 11045 ipaddr_t addr; 11046 11047 if (sin->sin_family != AF_INET) 11048 return (EAFNOSUPPORT); 11049 11050 addr = sin->sin_addr.s_addr; 11051 11052 /* Allow 0 as the local address. */ 11053 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11054 return (EADDRNOTAVAIL); 11055 11056 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11057 } 11058 11059 11060 /* 11061 * Even if there is no change we redo things just to rerun 11062 * ipif_set_default. 11063 */ 11064 if (ipif->ipif_flags & IPIF_UP) { 11065 /* 11066 * Setting a new local address, make sure 11067 * we have net and subnet bcast ire's for 11068 * the old address if we need them. 11069 */ 11070 if (!ipif->ipif_isv6) 11071 ipif_check_bcast_ires(ipif); 11072 /* 11073 * If the interface is already marked up, 11074 * we call ipif_down which will take care 11075 * of ditching any IREs that have been set 11076 * up based on the old interface address. 11077 */ 11078 err = ipif_logical_down(ipif, q, mp); 11079 if (err == EINPROGRESS) 11080 return (err); 11081 ipif_down_tail(ipif); 11082 need_up = 1; 11083 } 11084 11085 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11086 return (err); 11087 } 11088 11089 int 11090 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11091 boolean_t need_up) 11092 { 11093 in6_addr_t v6addr; 11094 in6_addr_t ov6addr; 11095 ipaddr_t addr; 11096 sin6_t *sin6; 11097 int sinlen; 11098 int err = 0; 11099 ill_t *ill = ipif->ipif_ill; 11100 boolean_t need_dl_down; 11101 boolean_t need_arp_down; 11102 struct iocblk *iocp; 11103 11104 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11105 11106 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11107 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11108 ASSERT(IAM_WRITER_IPIF(ipif)); 11109 11110 /* Must cancel any pending timer before taking the ill_lock */ 11111 if (ipif->ipif_recovery_id != 0) 11112 (void) untimeout(ipif->ipif_recovery_id); 11113 ipif->ipif_recovery_id = 0; 11114 11115 if (ipif->ipif_isv6) { 11116 sin6 = (sin6_t *)sin; 11117 v6addr = sin6->sin6_addr; 11118 sinlen = sizeof (struct sockaddr_in6); 11119 } else { 11120 addr = sin->sin_addr.s_addr; 11121 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11122 sinlen = sizeof (struct sockaddr_in); 11123 } 11124 mutex_enter(&ill->ill_lock); 11125 ov6addr = ipif->ipif_v6lcl_addr; 11126 ipif->ipif_v6lcl_addr = v6addr; 11127 sctp_update_ipif_addr(ipif, ov6addr); 11128 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11129 ipif->ipif_v6src_addr = ipv6_all_zeros; 11130 } else { 11131 ipif->ipif_v6src_addr = v6addr; 11132 } 11133 ipif->ipif_addr_ready = 0; 11134 11135 /* 11136 * If the interface was previously marked as a duplicate, then since 11137 * we've now got a "new" address, it should no longer be considered a 11138 * duplicate -- even if the "new" address is the same as the old one. 11139 * Note that if all ipifs are down, we may have a pending ARP down 11140 * event to handle. This is because we want to recover from duplicates 11141 * and thus delay tearing down ARP until the duplicates have been 11142 * removed or disabled. 11143 */ 11144 need_dl_down = need_arp_down = B_FALSE; 11145 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11146 need_arp_down = !need_up; 11147 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11148 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11149 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11150 need_dl_down = B_TRUE; 11151 } 11152 } 11153 11154 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11155 !ill->ill_is_6to4tun) { 11156 queue_t *wqp = ill->ill_wq; 11157 11158 /* 11159 * The local address of this interface is a 6to4 address, 11160 * check if this interface is in fact a 6to4 tunnel or just 11161 * an interface configured with a 6to4 address. We are only 11162 * interested in the former. 11163 */ 11164 if (wqp != NULL) { 11165 while ((wqp->q_next != NULL) && 11166 (wqp->q_next->q_qinfo != NULL) && 11167 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11168 11169 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11170 == TUN6TO4_MODID) { 11171 /* set for use in IP */ 11172 ill->ill_is_6to4tun = 1; 11173 break; 11174 } 11175 wqp = wqp->q_next; 11176 } 11177 } 11178 } 11179 11180 ipif_set_default(ipif); 11181 11182 /* 11183 * When publishing an interface address change event, we only notify 11184 * the event listeners of the new address. It is assumed that if they 11185 * actively care about the addresses assigned that they will have 11186 * already discovered the previous address assigned (if there was one.) 11187 * 11188 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11189 */ 11190 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11191 hook_nic_event_t *info; 11192 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11193 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11194 "attached for %s\n", info->hne_event, 11195 ill->ill_name)); 11196 if (info->hne_data != NULL) 11197 kmem_free(info->hne_data, info->hne_datalen); 11198 kmem_free(info, sizeof (hook_nic_event_t)); 11199 } 11200 11201 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11202 if (info != NULL) { 11203 ip_stack_t *ipst = ill->ill_ipst; 11204 11205 info->hne_nic = 11206 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex; 11207 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11208 info->hne_event = NE_ADDRESS_CHANGE; 11209 info->hne_family = ipif->ipif_isv6 ? 11210 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11211 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11212 if (info->hne_data != NULL) { 11213 info->hne_datalen = sinlen; 11214 bcopy(sin, info->hne_data, sinlen); 11215 } else { 11216 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11217 "address information for ADDRESS_CHANGE nic" 11218 " event of %s (ENOMEM)\n", 11219 ipif->ipif_ill->ill_name)); 11220 kmem_free(info, sizeof (hook_nic_event_t)); 11221 } 11222 } else 11223 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11224 "ADDRESS_CHANGE nic event information for %s " 11225 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11226 11227 ipif->ipif_ill->ill_nic_event_info = info; 11228 } 11229 11230 mutex_exit(&ill->ill_lock); 11231 11232 if (need_up) { 11233 /* 11234 * Now bring the interface back up. If this 11235 * is the only IPIF for the ILL, ipif_up 11236 * will have to re-bind to the device, so 11237 * we may get back EINPROGRESS, in which 11238 * case, this IOCTL will get completed in 11239 * ip_rput_dlpi when we see the DL_BIND_ACK. 11240 */ 11241 err = ipif_up(ipif, q, mp); 11242 } 11243 11244 if (need_dl_down) 11245 ill_dl_down(ill); 11246 if (need_arp_down) 11247 ipif_arp_down(ipif); 11248 11249 return (err); 11250 } 11251 11252 11253 /* 11254 * Restart entry point to restart the address set operation after the 11255 * refcounts have dropped to zero. 11256 */ 11257 /* ARGSUSED */ 11258 int 11259 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11260 ip_ioctl_cmd_t *ipip, void *ifreq) 11261 { 11262 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11263 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11264 ASSERT(IAM_WRITER_IPIF(ipif)); 11265 ipif_down_tail(ipif); 11266 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11267 } 11268 11269 /* ARGSUSED */ 11270 int 11271 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11272 ip_ioctl_cmd_t *ipip, void *if_req) 11273 { 11274 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11275 struct lifreq *lifr = (struct lifreq *)if_req; 11276 11277 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11278 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11279 /* 11280 * The net mask and address can't change since we have a 11281 * reference to the ipif. So no lock is necessary. 11282 */ 11283 if (ipif->ipif_isv6) { 11284 *sin6 = sin6_null; 11285 sin6->sin6_family = AF_INET6; 11286 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11287 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11288 lifr->lifr_addrlen = 11289 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11290 } else { 11291 *sin = sin_null; 11292 sin->sin_family = AF_INET; 11293 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11294 if (ipip->ipi_cmd_type == LIF_CMD) { 11295 lifr->lifr_addrlen = 11296 ip_mask_to_plen(ipif->ipif_net_mask); 11297 } 11298 } 11299 return (0); 11300 } 11301 11302 /* 11303 * Set the destination address for a pt-pt interface. 11304 */ 11305 /* ARGSUSED */ 11306 int 11307 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11308 ip_ioctl_cmd_t *ipip, void *if_req) 11309 { 11310 int err = 0; 11311 in6_addr_t v6addr; 11312 boolean_t need_up = B_FALSE; 11313 11314 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11315 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11316 ASSERT(IAM_WRITER_IPIF(ipif)); 11317 11318 if (ipif->ipif_isv6) { 11319 sin6_t *sin6; 11320 11321 if (sin->sin_family != AF_INET6) 11322 return (EAFNOSUPPORT); 11323 11324 sin6 = (sin6_t *)sin; 11325 v6addr = sin6->sin6_addr; 11326 11327 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11328 return (EADDRNOTAVAIL); 11329 } else { 11330 ipaddr_t addr; 11331 11332 if (sin->sin_family != AF_INET) 11333 return (EAFNOSUPPORT); 11334 11335 addr = sin->sin_addr.s_addr; 11336 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11337 return (EADDRNOTAVAIL); 11338 11339 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11340 } 11341 11342 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11343 return (0); /* No change */ 11344 11345 if (ipif->ipif_flags & IPIF_UP) { 11346 /* 11347 * If the interface is already marked up, 11348 * we call ipif_down which will take care 11349 * of ditching any IREs that have been set 11350 * up based on the old pp dst address. 11351 */ 11352 err = ipif_logical_down(ipif, q, mp); 11353 if (err == EINPROGRESS) 11354 return (err); 11355 ipif_down_tail(ipif); 11356 need_up = B_TRUE; 11357 } 11358 /* 11359 * could return EINPROGRESS. If so ioctl will complete in 11360 * ip_rput_dlpi_writer 11361 */ 11362 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11363 return (err); 11364 } 11365 11366 static int 11367 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11368 boolean_t need_up) 11369 { 11370 in6_addr_t v6addr; 11371 ill_t *ill = ipif->ipif_ill; 11372 int err = 0; 11373 boolean_t need_dl_down; 11374 boolean_t need_arp_down; 11375 11376 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11377 ipif->ipif_id, (void *)ipif)); 11378 11379 /* Must cancel any pending timer before taking the ill_lock */ 11380 if (ipif->ipif_recovery_id != 0) 11381 (void) untimeout(ipif->ipif_recovery_id); 11382 ipif->ipif_recovery_id = 0; 11383 11384 if (ipif->ipif_isv6) { 11385 sin6_t *sin6; 11386 11387 sin6 = (sin6_t *)sin; 11388 v6addr = sin6->sin6_addr; 11389 } else { 11390 ipaddr_t addr; 11391 11392 addr = sin->sin_addr.s_addr; 11393 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11394 } 11395 mutex_enter(&ill->ill_lock); 11396 /* Set point to point destination address. */ 11397 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11398 /* 11399 * Allow this as a means of creating logical 11400 * pt-pt interfaces on top of e.g. an Ethernet. 11401 * XXX Undocumented HACK for testing. 11402 * pt-pt interfaces are created with NUD disabled. 11403 */ 11404 ipif->ipif_flags |= IPIF_POINTOPOINT; 11405 ipif->ipif_flags &= ~IPIF_BROADCAST; 11406 if (ipif->ipif_isv6) 11407 ill->ill_flags |= ILLF_NONUD; 11408 } 11409 11410 /* 11411 * If the interface was previously marked as a duplicate, then since 11412 * we've now got a "new" address, it should no longer be considered a 11413 * duplicate -- even if the "new" address is the same as the old one. 11414 * Note that if all ipifs are down, we may have a pending ARP down 11415 * event to handle. 11416 */ 11417 need_dl_down = need_arp_down = B_FALSE; 11418 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11419 need_arp_down = !need_up; 11420 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11421 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11422 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11423 need_dl_down = B_TRUE; 11424 } 11425 } 11426 11427 /* Set the new address. */ 11428 ipif->ipif_v6pp_dst_addr = v6addr; 11429 /* Make sure subnet tracks pp_dst */ 11430 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11431 mutex_exit(&ill->ill_lock); 11432 11433 if (need_up) { 11434 /* 11435 * Now bring the interface back up. If this 11436 * is the only IPIF for the ILL, ipif_up 11437 * will have to re-bind to the device, so 11438 * we may get back EINPROGRESS, in which 11439 * case, this IOCTL will get completed in 11440 * ip_rput_dlpi when we see the DL_BIND_ACK. 11441 */ 11442 err = ipif_up(ipif, q, mp); 11443 } 11444 11445 if (need_dl_down) 11446 ill_dl_down(ill); 11447 11448 if (need_arp_down) 11449 ipif_arp_down(ipif); 11450 return (err); 11451 } 11452 11453 /* 11454 * Restart entry point to restart the dstaddress set operation after the 11455 * refcounts have dropped to zero. 11456 */ 11457 /* ARGSUSED */ 11458 int 11459 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11460 ip_ioctl_cmd_t *ipip, void *ifreq) 11461 { 11462 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11463 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11464 ipif_down_tail(ipif); 11465 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11466 } 11467 11468 /* ARGSUSED */ 11469 int 11470 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11471 ip_ioctl_cmd_t *ipip, void *if_req) 11472 { 11473 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11474 11475 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11476 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11477 /* 11478 * Get point to point destination address. The addresses can't 11479 * change since we hold a reference to the ipif. 11480 */ 11481 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11482 return (EADDRNOTAVAIL); 11483 11484 if (ipif->ipif_isv6) { 11485 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11486 *sin6 = sin6_null; 11487 sin6->sin6_family = AF_INET6; 11488 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11489 } else { 11490 *sin = sin_null; 11491 sin->sin_family = AF_INET; 11492 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11493 } 11494 return (0); 11495 } 11496 11497 /* 11498 * part of ipmp, make this func return the active/inactive state and 11499 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11500 */ 11501 /* 11502 * This function either sets or clears the IFF_INACTIVE flag. 11503 * 11504 * As long as there are some addresses or multicast memberships on the 11505 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11506 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11507 * will be used for outbound packets. 11508 * 11509 * Caller needs to verify the validity of setting IFF_INACTIVE. 11510 */ 11511 static void 11512 phyint_inactive(phyint_t *phyi) 11513 { 11514 ill_t *ill_v4; 11515 ill_t *ill_v6; 11516 ipif_t *ipif; 11517 ilm_t *ilm; 11518 11519 ill_v4 = phyi->phyint_illv4; 11520 ill_v6 = phyi->phyint_illv6; 11521 11522 /* 11523 * No need for a lock while traversing the list since iam 11524 * a writer 11525 */ 11526 if (ill_v4 != NULL) { 11527 ASSERT(IAM_WRITER_ILL(ill_v4)); 11528 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11529 ipif = ipif->ipif_next) { 11530 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11531 mutex_enter(&phyi->phyint_lock); 11532 phyi->phyint_flags &= ~PHYI_INACTIVE; 11533 mutex_exit(&phyi->phyint_lock); 11534 return; 11535 } 11536 } 11537 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11538 ilm = ilm->ilm_next) { 11539 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11540 mutex_enter(&phyi->phyint_lock); 11541 phyi->phyint_flags &= ~PHYI_INACTIVE; 11542 mutex_exit(&phyi->phyint_lock); 11543 return; 11544 } 11545 } 11546 } 11547 if (ill_v6 != NULL) { 11548 ill_v6 = phyi->phyint_illv6; 11549 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11550 ipif = ipif->ipif_next) { 11551 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11552 mutex_enter(&phyi->phyint_lock); 11553 phyi->phyint_flags &= ~PHYI_INACTIVE; 11554 mutex_exit(&phyi->phyint_lock); 11555 return; 11556 } 11557 } 11558 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11559 ilm = ilm->ilm_next) { 11560 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11561 mutex_enter(&phyi->phyint_lock); 11562 phyi->phyint_flags &= ~PHYI_INACTIVE; 11563 mutex_exit(&phyi->phyint_lock); 11564 return; 11565 } 11566 } 11567 } 11568 mutex_enter(&phyi->phyint_lock); 11569 phyi->phyint_flags |= PHYI_INACTIVE; 11570 mutex_exit(&phyi->phyint_lock); 11571 } 11572 11573 /* 11574 * This function is called only when the phyint flags change. Currently 11575 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11576 * that we can select a good ill. 11577 */ 11578 static void 11579 ip_redo_nomination(phyint_t *phyi) 11580 { 11581 ill_t *ill_v4; 11582 11583 ill_v4 = phyi->phyint_illv4; 11584 11585 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11586 ASSERT(IAM_WRITER_ILL(ill_v4)); 11587 if (ill_v4->ill_group->illgrp_ill_count > 1) 11588 ill_nominate_bcast_rcv(ill_v4->ill_group); 11589 } 11590 } 11591 11592 /* 11593 * Heuristic to check if ill is INACTIVE. 11594 * Checks if ill has an ipif with an usable ip address. 11595 * 11596 * Return values: 11597 * B_TRUE - ill is INACTIVE; has no usable ipif 11598 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11599 */ 11600 static boolean_t 11601 ill_is_inactive(ill_t *ill) 11602 { 11603 ipif_t *ipif; 11604 11605 /* Check whether it is in an IPMP group */ 11606 if (ill->ill_phyint->phyint_groupname == NULL) 11607 return (B_FALSE); 11608 11609 if (ill->ill_ipif_up_count == 0) 11610 return (B_TRUE); 11611 11612 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11613 uint64_t flags = ipif->ipif_flags; 11614 11615 /* 11616 * This ipif is usable if it is IPIF_UP and not a 11617 * dedicated test address. A dedicated test address 11618 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11619 * (note in particular that V6 test addresses are 11620 * link-local data addresses and thus are marked 11621 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11622 */ 11623 if ((flags & IPIF_UP) && 11624 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11625 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11626 return (B_FALSE); 11627 } 11628 return (B_TRUE); 11629 } 11630 11631 /* 11632 * Set interface flags. 11633 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11634 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11635 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11636 * 11637 * NOTE : We really don't enforce that ipif_id zero should be used 11638 * for setting any flags other than IFF_LOGINT_FLAGS. This 11639 * is because applications generally does SICGLIFFLAGS and 11640 * ORs in the new flags (that affects the logical) and does a 11641 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11642 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11643 * flags that will be turned on is correct with respect to 11644 * ipif_id 0. For backward compatibility reasons, it is not done. 11645 */ 11646 /* ARGSUSED */ 11647 int 11648 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11649 ip_ioctl_cmd_t *ipip, void *if_req) 11650 { 11651 uint64_t turn_on; 11652 uint64_t turn_off; 11653 int err; 11654 boolean_t need_up = B_FALSE; 11655 phyint_t *phyi; 11656 ill_t *ill; 11657 uint64_t intf_flags; 11658 boolean_t phyint_flags_modified = B_FALSE; 11659 uint64_t flags; 11660 struct ifreq *ifr; 11661 struct lifreq *lifr; 11662 boolean_t set_linklocal = B_FALSE; 11663 boolean_t zero_source = B_FALSE; 11664 ip_stack_t *ipst; 11665 11666 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11667 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11668 11669 ASSERT(IAM_WRITER_IPIF(ipif)); 11670 11671 ill = ipif->ipif_ill; 11672 phyi = ill->ill_phyint; 11673 ipst = ill->ill_ipst; 11674 11675 if (ipip->ipi_cmd_type == IF_CMD) { 11676 ifr = (struct ifreq *)if_req; 11677 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11678 } else { 11679 lifr = (struct lifreq *)if_req; 11680 flags = lifr->lifr_flags; 11681 } 11682 11683 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11684 11685 /* 11686 * Has the flags been set correctly till now ? 11687 */ 11688 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11689 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11690 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11691 /* 11692 * Compare the new flags to the old, and partition 11693 * into those coming on and those going off. 11694 * For the 16 bit command keep the bits above bit 16 unchanged. 11695 */ 11696 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11697 flags |= intf_flags & ~0xFFFF; 11698 11699 /* 11700 * First check which bits will change and then which will 11701 * go on and off 11702 */ 11703 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11704 if (!turn_on) 11705 return (0); /* No change */ 11706 11707 turn_off = intf_flags & turn_on; 11708 turn_on ^= turn_off; 11709 err = 0; 11710 11711 /* 11712 * Don't allow any bits belonging to the logical interface 11713 * to be set or cleared on the replacement ipif that was 11714 * created temporarily during a MOVE. 11715 */ 11716 if (ipif->ipif_replace_zero && 11717 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11718 return (EINVAL); 11719 } 11720 11721 /* 11722 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11723 * IPv6 interfaces. 11724 */ 11725 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11726 return (EINVAL); 11727 11728 /* 11729 * cannot turn off IFF_NOXMIT on VNI interfaces. 11730 */ 11731 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11732 return (EINVAL); 11733 11734 /* 11735 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11736 * interfaces. It makes no sense in that context. 11737 */ 11738 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11739 return (EINVAL); 11740 11741 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11742 zero_source = B_TRUE; 11743 11744 /* 11745 * For IPv6 ipif_id 0, don't allow the interface to be up without 11746 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11747 * If the link local address isn't set, and can be set, it will get 11748 * set later on in this function. 11749 */ 11750 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11751 (flags & IFF_UP) && !zero_source && 11752 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11753 if (ipif_cant_setlinklocal(ipif)) 11754 return (EINVAL); 11755 set_linklocal = B_TRUE; 11756 } 11757 11758 /* 11759 * ILL cannot be part of a usesrc group and and IPMP group at the 11760 * same time. No need to grab ill_g_usesrc_lock here, see 11761 * synchronization notes in ip.c 11762 */ 11763 if (turn_on & PHYI_STANDBY && 11764 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11765 return (EINVAL); 11766 } 11767 11768 /* 11769 * If we modify physical interface flags, we'll potentially need to 11770 * send up two routing socket messages for the changes (one for the 11771 * IPv4 ill, and another for the IPv6 ill). Note that here. 11772 */ 11773 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11774 phyint_flags_modified = B_TRUE; 11775 11776 /* 11777 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11778 * we need to flush the IRE_CACHES belonging to this ill. 11779 * We handle this case here without doing the DOWN/UP dance 11780 * like it is done for other flags. If some other flags are 11781 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11782 * below will handle it by bringing it down and then 11783 * bringing it UP. 11784 */ 11785 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11786 ill_t *ill_v4, *ill_v6; 11787 11788 ill_v4 = phyi->phyint_illv4; 11789 ill_v6 = phyi->phyint_illv6; 11790 11791 /* 11792 * First set the INACTIVE flag if needed. Then delete the ires. 11793 * ire_add will atomically prevent creating new IRE_CACHEs 11794 * unless hidden flag is set. 11795 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11796 */ 11797 if ((turn_on & PHYI_FAILED) && 11798 ((intf_flags & PHYI_STANDBY) || 11799 !ipst->ips_ipmp_enable_failback)) { 11800 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11801 phyi->phyint_flags &= ~PHYI_INACTIVE; 11802 } 11803 if ((turn_off & PHYI_FAILED) && 11804 ((intf_flags & PHYI_STANDBY) || 11805 (!ipst->ips_ipmp_enable_failback && 11806 ill_is_inactive(ill)))) { 11807 phyint_inactive(phyi); 11808 } 11809 11810 if (turn_on & PHYI_STANDBY) { 11811 /* 11812 * We implicitly set INACTIVE only when STANDBY is set. 11813 * INACTIVE is also set on non-STANDBY phyint when user 11814 * disables FAILBACK using configuration file. 11815 * Do not allow STANDBY to be set on such INACTIVE 11816 * phyint 11817 */ 11818 if (phyi->phyint_flags & PHYI_INACTIVE) 11819 return (EINVAL); 11820 if (!(phyi->phyint_flags & PHYI_FAILED)) 11821 phyint_inactive(phyi); 11822 } 11823 if (turn_off & PHYI_STANDBY) { 11824 if (ipst->ips_ipmp_enable_failback) { 11825 /* 11826 * Reset PHYI_INACTIVE. 11827 */ 11828 phyi->phyint_flags &= ~PHYI_INACTIVE; 11829 } else if (ill_is_inactive(ill) && 11830 !(phyi->phyint_flags & PHYI_FAILED)) { 11831 /* 11832 * Need to set INACTIVE, when user sets 11833 * STANDBY on a non-STANDBY phyint and 11834 * later resets STANDBY 11835 */ 11836 phyint_inactive(phyi); 11837 } 11838 } 11839 /* 11840 * We should always send up a message so that the 11841 * daemons come to know of it. Note that the zeroth 11842 * interface can be down and the check below for IPIF_UP 11843 * will not make sense as we are actually setting 11844 * a phyint flag here. We assume that the ipif used 11845 * is always the zeroth ipif. (ip_rts_ifmsg does not 11846 * send up any message for non-zero ipifs). 11847 */ 11848 phyint_flags_modified = B_TRUE; 11849 11850 if (ill_v4 != NULL) { 11851 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11852 IRE_CACHE, ill_stq_cache_delete, 11853 (char *)ill_v4, ill_v4); 11854 illgrp_reset_schednext(ill_v4); 11855 } 11856 if (ill_v6 != NULL) { 11857 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11858 IRE_CACHE, ill_stq_cache_delete, 11859 (char *)ill_v6, ill_v6); 11860 illgrp_reset_schednext(ill_v6); 11861 } 11862 } 11863 11864 /* 11865 * If ILLF_ROUTER changes, we need to change the ip forwarding 11866 * status of the interface and, if the interface is part of an IPMP 11867 * group, all other interfaces that are part of the same IPMP 11868 * group. 11869 */ 11870 if ((turn_on | turn_off) & ILLF_ROUTER) 11871 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11872 11873 /* 11874 * If the interface is not UP and we are not going to 11875 * bring it UP, record the flags and return. When the 11876 * interface comes UP later, the right actions will be 11877 * taken. 11878 */ 11879 if (!(ipif->ipif_flags & IPIF_UP) && 11880 !(turn_on & IPIF_UP)) { 11881 /* Record new flags in their respective places. */ 11882 mutex_enter(&ill->ill_lock); 11883 mutex_enter(&ill->ill_phyint->phyint_lock); 11884 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11885 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11886 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11887 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11888 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11889 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11890 mutex_exit(&ill->ill_lock); 11891 mutex_exit(&ill->ill_phyint->phyint_lock); 11892 11893 /* 11894 * We do the broadcast and nomination here rather 11895 * than waiting for a FAILOVER/FAILBACK to happen. In 11896 * the case of FAILBACK from INACTIVE standby to the 11897 * interface that has been repaired, PHYI_FAILED has not 11898 * been cleared yet. If there are only two interfaces in 11899 * that group, all we have is a FAILED and INACTIVE 11900 * interface. If we do the nomination soon after a failback, 11901 * the broadcast nomination code would select the 11902 * INACTIVE interface for receiving broadcasts as FAILED is 11903 * not yet cleared. As we don't want STANDBY/INACTIVE to 11904 * receive broadcast packets, we need to redo nomination 11905 * when the FAILED is cleared here. Thus, in general we 11906 * always do the nomination here for FAILED, STANDBY 11907 * and OFFLINE. 11908 */ 11909 if (((turn_on | turn_off) & 11910 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11911 ip_redo_nomination(phyi); 11912 } 11913 if (phyint_flags_modified) { 11914 if (phyi->phyint_illv4 != NULL) { 11915 ip_rts_ifmsg(phyi->phyint_illv4-> 11916 ill_ipif); 11917 } 11918 if (phyi->phyint_illv6 != NULL) { 11919 ip_rts_ifmsg(phyi->phyint_illv6-> 11920 ill_ipif); 11921 } 11922 } 11923 return (0); 11924 } else if (set_linklocal || zero_source) { 11925 mutex_enter(&ill->ill_lock); 11926 if (set_linklocal) 11927 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11928 if (zero_source) 11929 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11930 mutex_exit(&ill->ill_lock); 11931 } 11932 11933 /* 11934 * Disallow IPv6 interfaces coming up that have the unspecified address, 11935 * or point-to-point interfaces with an unspecified destination. We do 11936 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11937 * have a subnet assigned, which is how in.ndpd currently manages its 11938 * onlink prefix list when no addresses are configured with those 11939 * prefixes. 11940 */ 11941 if (ipif->ipif_isv6 && 11942 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11943 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11944 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11945 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11946 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11947 return (EINVAL); 11948 } 11949 11950 /* 11951 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11952 * from being brought up. 11953 */ 11954 if (!ipif->ipif_isv6 && 11955 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11956 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11957 return (EINVAL); 11958 } 11959 11960 /* 11961 * The only flag changes that we currently take specific action on 11962 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11963 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11964 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11965 * the flags and bringing it back up again. 11966 */ 11967 if ((turn_on|turn_off) & 11968 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11969 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11970 /* 11971 * Taking this ipif down, make sure we have 11972 * valid net and subnet bcast ire's for other 11973 * logical interfaces, if we need them. 11974 */ 11975 if (!ipif->ipif_isv6) 11976 ipif_check_bcast_ires(ipif); 11977 11978 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11979 !(turn_off & IPIF_UP)) { 11980 need_up = B_TRUE; 11981 if (ipif->ipif_flags & IPIF_UP) 11982 ill->ill_logical_down = 1; 11983 turn_on &= ~IPIF_UP; 11984 } 11985 err = ipif_down(ipif, q, mp); 11986 ip1dbg(("ipif_down returns %d err ", err)); 11987 if (err == EINPROGRESS) 11988 return (err); 11989 ipif_down_tail(ipif); 11990 } 11991 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11992 } 11993 11994 static int 11995 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11996 boolean_t need_up) 11997 { 11998 ill_t *ill; 11999 phyint_t *phyi; 12000 uint64_t turn_on; 12001 uint64_t turn_off; 12002 uint64_t intf_flags; 12003 boolean_t phyint_flags_modified = B_FALSE; 12004 int err = 0; 12005 boolean_t set_linklocal = B_FALSE; 12006 boolean_t zero_source = B_FALSE; 12007 12008 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12009 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12010 12011 ASSERT(IAM_WRITER_IPIF(ipif)); 12012 12013 ill = ipif->ipif_ill; 12014 phyi = ill->ill_phyint; 12015 12016 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12017 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12018 12019 turn_off = intf_flags & turn_on; 12020 turn_on ^= turn_off; 12021 12022 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12023 phyint_flags_modified = B_TRUE; 12024 12025 /* 12026 * Now we change the flags. Track current value of 12027 * other flags in their respective places. 12028 */ 12029 mutex_enter(&ill->ill_lock); 12030 mutex_enter(&phyi->phyint_lock); 12031 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12032 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12033 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12034 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12035 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12036 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12037 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12038 set_linklocal = B_TRUE; 12039 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12040 } 12041 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12042 zero_source = B_TRUE; 12043 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12044 } 12045 mutex_exit(&ill->ill_lock); 12046 mutex_exit(&phyi->phyint_lock); 12047 12048 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12049 ip_redo_nomination(phyi); 12050 12051 if (set_linklocal) 12052 (void) ipif_setlinklocal(ipif); 12053 12054 if (zero_source) 12055 ipif->ipif_v6src_addr = ipv6_all_zeros; 12056 else 12057 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12058 12059 if (need_up) { 12060 /* 12061 * XXX ipif_up really does not know whether a phyint flags 12062 * was modified or not. So, it sends up information on 12063 * only one routing sockets message. As we don't bring up 12064 * the interface and also set STANDBY/FAILED simultaneously 12065 * it should be okay. 12066 */ 12067 err = ipif_up(ipif, q, mp); 12068 } else { 12069 /* 12070 * Make sure routing socket sees all changes to the flags. 12071 * ipif_up_done* handles this when we use ipif_up. 12072 */ 12073 if (phyint_flags_modified) { 12074 if (phyi->phyint_illv4 != NULL) { 12075 ip_rts_ifmsg(phyi->phyint_illv4-> 12076 ill_ipif); 12077 } 12078 if (phyi->phyint_illv6 != NULL) { 12079 ip_rts_ifmsg(phyi->phyint_illv6-> 12080 ill_ipif); 12081 } 12082 } else { 12083 ip_rts_ifmsg(ipif); 12084 } 12085 /* 12086 * Update the flags in SCTP's IPIF list, ipif_up() will do 12087 * this in need_up case. 12088 */ 12089 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12090 } 12091 return (err); 12092 } 12093 12094 /* 12095 * Restart entry point to restart the flags restart operation after the 12096 * refcounts have dropped to zero. 12097 */ 12098 /* ARGSUSED */ 12099 int 12100 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12101 ip_ioctl_cmd_t *ipip, void *if_req) 12102 { 12103 int err; 12104 struct ifreq *ifr = (struct ifreq *)if_req; 12105 struct lifreq *lifr = (struct lifreq *)if_req; 12106 12107 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12108 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12109 12110 ipif_down_tail(ipif); 12111 if (ipip->ipi_cmd_type == IF_CMD) { 12112 /* 12113 * Since ip_sioctl_flags expects an int and ifr_flags 12114 * is a short we need to cast ifr_flags into an int 12115 * to avoid having sign extension cause bits to get 12116 * set that should not be. 12117 */ 12118 err = ip_sioctl_flags_tail(ipif, 12119 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12120 q, mp, B_TRUE); 12121 } else { 12122 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12123 q, mp, B_TRUE); 12124 } 12125 return (err); 12126 } 12127 12128 /* 12129 * Can operate on either a module or a driver queue. 12130 */ 12131 /* ARGSUSED */ 12132 int 12133 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12134 ip_ioctl_cmd_t *ipip, void *if_req) 12135 { 12136 /* 12137 * Has the flags been set correctly till now ? 12138 */ 12139 ill_t *ill = ipif->ipif_ill; 12140 phyint_t *phyi = ill->ill_phyint; 12141 12142 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12143 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12144 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12145 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12146 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12147 12148 /* 12149 * Need a lock since some flags can be set even when there are 12150 * references to the ipif. 12151 */ 12152 mutex_enter(&ill->ill_lock); 12153 if (ipip->ipi_cmd_type == IF_CMD) { 12154 struct ifreq *ifr = (struct ifreq *)if_req; 12155 12156 /* Get interface flags (low 16 only). */ 12157 ifr->ifr_flags = ((ipif->ipif_flags | 12158 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12159 } else { 12160 struct lifreq *lifr = (struct lifreq *)if_req; 12161 12162 /* Get interface flags. */ 12163 lifr->lifr_flags = ipif->ipif_flags | 12164 ill->ill_flags | phyi->phyint_flags; 12165 } 12166 mutex_exit(&ill->ill_lock); 12167 return (0); 12168 } 12169 12170 /* ARGSUSED */ 12171 int 12172 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12173 ip_ioctl_cmd_t *ipip, void *if_req) 12174 { 12175 int mtu; 12176 int ip_min_mtu; 12177 struct ifreq *ifr; 12178 struct lifreq *lifr; 12179 ire_t *ire; 12180 ip_stack_t *ipst; 12181 12182 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12183 ipif->ipif_id, (void *)ipif)); 12184 if (ipip->ipi_cmd_type == IF_CMD) { 12185 ifr = (struct ifreq *)if_req; 12186 mtu = ifr->ifr_metric; 12187 } else { 12188 lifr = (struct lifreq *)if_req; 12189 mtu = lifr->lifr_mtu; 12190 } 12191 12192 if (ipif->ipif_isv6) 12193 ip_min_mtu = IPV6_MIN_MTU; 12194 else 12195 ip_min_mtu = IP_MIN_MTU; 12196 12197 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12198 return (EINVAL); 12199 12200 /* 12201 * Change the MTU size in all relevant ire's. 12202 * Mtu change Vs. new ire creation - protocol below. 12203 * First change ipif_mtu and the ire_max_frag of the 12204 * interface ire. Then do an ire walk and change the 12205 * ire_max_frag of all affected ires. During ire_add 12206 * under the bucket lock, set the ire_max_frag of the 12207 * new ire being created from the ipif/ire from which 12208 * it is being derived. If an mtu change happens after 12209 * the ire is added, the new ire will be cleaned up. 12210 * Conversely if the mtu change happens before the ire 12211 * is added, ire_add will see the new value of the mtu. 12212 */ 12213 ipif->ipif_mtu = mtu; 12214 ipif->ipif_flags |= IPIF_FIXEDMTU; 12215 12216 if (ipif->ipif_isv6) 12217 ire = ipif_to_ire_v6(ipif); 12218 else 12219 ire = ipif_to_ire(ipif); 12220 if (ire != NULL) { 12221 ire->ire_max_frag = ipif->ipif_mtu; 12222 ire_refrele(ire); 12223 } 12224 ipst = ipif->ipif_ill->ill_ipst; 12225 if (ipif->ipif_flags & IPIF_UP) { 12226 if (ipif->ipif_isv6) 12227 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12228 ipst); 12229 else 12230 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12231 ipst); 12232 } 12233 /* Update the MTU in SCTP's list */ 12234 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12235 return (0); 12236 } 12237 12238 /* Get interface MTU. */ 12239 /* ARGSUSED */ 12240 int 12241 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12242 ip_ioctl_cmd_t *ipip, void *if_req) 12243 { 12244 struct ifreq *ifr; 12245 struct lifreq *lifr; 12246 12247 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12248 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12249 if (ipip->ipi_cmd_type == IF_CMD) { 12250 ifr = (struct ifreq *)if_req; 12251 ifr->ifr_metric = ipif->ipif_mtu; 12252 } else { 12253 lifr = (struct lifreq *)if_req; 12254 lifr->lifr_mtu = ipif->ipif_mtu; 12255 } 12256 return (0); 12257 } 12258 12259 /* Set interface broadcast address. */ 12260 /* ARGSUSED2 */ 12261 int 12262 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12263 ip_ioctl_cmd_t *ipip, void *if_req) 12264 { 12265 ipaddr_t addr; 12266 ire_t *ire; 12267 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12268 12269 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12270 ipif->ipif_id)); 12271 12272 ASSERT(IAM_WRITER_IPIF(ipif)); 12273 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12274 return (EADDRNOTAVAIL); 12275 12276 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12277 12278 if (sin->sin_family != AF_INET) 12279 return (EAFNOSUPPORT); 12280 12281 addr = sin->sin_addr.s_addr; 12282 if (ipif->ipif_flags & IPIF_UP) { 12283 /* 12284 * If we are already up, make sure the new 12285 * broadcast address makes sense. If it does, 12286 * there should be an IRE for it already. 12287 * Don't match on ipif, only on the ill 12288 * since we are sharing these now. Don't use 12289 * MATCH_IRE_ILL_GROUP as we are looking for 12290 * the broadcast ire on this ill and each ill 12291 * in the group has its own broadcast ire. 12292 */ 12293 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12294 ipif, ALL_ZONES, NULL, 12295 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12296 if (ire == NULL) { 12297 return (EINVAL); 12298 } else { 12299 ire_refrele(ire); 12300 } 12301 } 12302 /* 12303 * Changing the broadcast addr for this ipif. 12304 * Make sure we have valid net and subnet bcast 12305 * ire's for other logical interfaces, if needed. 12306 */ 12307 if (addr != ipif->ipif_brd_addr) 12308 ipif_check_bcast_ires(ipif); 12309 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12310 return (0); 12311 } 12312 12313 /* Get interface broadcast address. */ 12314 /* ARGSUSED */ 12315 int 12316 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12317 ip_ioctl_cmd_t *ipip, void *if_req) 12318 { 12319 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12320 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12321 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12322 return (EADDRNOTAVAIL); 12323 12324 /* IPIF_BROADCAST not possible with IPv6 */ 12325 ASSERT(!ipif->ipif_isv6); 12326 *sin = sin_null; 12327 sin->sin_family = AF_INET; 12328 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12329 return (0); 12330 } 12331 12332 /* 12333 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12334 */ 12335 /* ARGSUSED */ 12336 int 12337 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12338 ip_ioctl_cmd_t *ipip, void *if_req) 12339 { 12340 int err = 0; 12341 in6_addr_t v6mask; 12342 12343 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12344 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12345 12346 ASSERT(IAM_WRITER_IPIF(ipif)); 12347 12348 if (ipif->ipif_isv6) { 12349 sin6_t *sin6; 12350 12351 if (sin->sin_family != AF_INET6) 12352 return (EAFNOSUPPORT); 12353 12354 sin6 = (sin6_t *)sin; 12355 v6mask = sin6->sin6_addr; 12356 } else { 12357 ipaddr_t mask; 12358 12359 if (sin->sin_family != AF_INET) 12360 return (EAFNOSUPPORT); 12361 12362 mask = sin->sin_addr.s_addr; 12363 V4MASK_TO_V6(mask, v6mask); 12364 } 12365 12366 /* 12367 * No big deal if the interface isn't already up, or the mask 12368 * isn't really changing, or this is pt-pt. 12369 */ 12370 if (!(ipif->ipif_flags & IPIF_UP) || 12371 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12372 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12373 ipif->ipif_v6net_mask = v6mask; 12374 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12375 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12376 ipif->ipif_v6net_mask, 12377 ipif->ipif_v6subnet); 12378 } 12379 return (0); 12380 } 12381 /* 12382 * Make sure we have valid net and subnet broadcast ire's 12383 * for the old netmask, if needed by other logical interfaces. 12384 */ 12385 if (!ipif->ipif_isv6) 12386 ipif_check_bcast_ires(ipif); 12387 12388 err = ipif_logical_down(ipif, q, mp); 12389 if (err == EINPROGRESS) 12390 return (err); 12391 ipif_down_tail(ipif); 12392 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12393 return (err); 12394 } 12395 12396 static int 12397 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12398 { 12399 in6_addr_t v6mask; 12400 int err = 0; 12401 12402 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12403 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12404 12405 if (ipif->ipif_isv6) { 12406 sin6_t *sin6; 12407 12408 sin6 = (sin6_t *)sin; 12409 v6mask = sin6->sin6_addr; 12410 } else { 12411 ipaddr_t mask; 12412 12413 mask = sin->sin_addr.s_addr; 12414 V4MASK_TO_V6(mask, v6mask); 12415 } 12416 12417 ipif->ipif_v6net_mask = v6mask; 12418 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12419 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12420 ipif->ipif_v6subnet); 12421 } 12422 err = ipif_up(ipif, q, mp); 12423 12424 if (err == 0 || err == EINPROGRESS) { 12425 /* 12426 * The interface must be DL_BOUND if this packet has to 12427 * go out on the wire. Since we only go through a logical 12428 * down and are bound with the driver during an internal 12429 * down/up that is satisfied. 12430 */ 12431 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12432 /* Potentially broadcast an address mask reply. */ 12433 ipif_mask_reply(ipif); 12434 } 12435 } 12436 return (err); 12437 } 12438 12439 /* ARGSUSED */ 12440 int 12441 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12442 ip_ioctl_cmd_t *ipip, void *if_req) 12443 { 12444 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12445 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12446 ipif_down_tail(ipif); 12447 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12448 } 12449 12450 /* Get interface net mask. */ 12451 /* ARGSUSED */ 12452 int 12453 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12454 ip_ioctl_cmd_t *ipip, void *if_req) 12455 { 12456 struct lifreq *lifr = (struct lifreq *)if_req; 12457 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12458 12459 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12460 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12461 12462 /* 12463 * net mask can't change since we have a reference to the ipif. 12464 */ 12465 if (ipif->ipif_isv6) { 12466 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12467 *sin6 = sin6_null; 12468 sin6->sin6_family = AF_INET6; 12469 sin6->sin6_addr = ipif->ipif_v6net_mask; 12470 lifr->lifr_addrlen = 12471 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12472 } else { 12473 *sin = sin_null; 12474 sin->sin_family = AF_INET; 12475 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12476 if (ipip->ipi_cmd_type == LIF_CMD) { 12477 lifr->lifr_addrlen = 12478 ip_mask_to_plen(ipif->ipif_net_mask); 12479 } 12480 } 12481 return (0); 12482 } 12483 12484 /* ARGSUSED */ 12485 int 12486 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12487 ip_ioctl_cmd_t *ipip, void *if_req) 12488 { 12489 12490 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12491 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12492 /* 12493 * Set interface metric. We don't use this for 12494 * anything but we keep track of it in case it is 12495 * important to routing applications or such. 12496 */ 12497 if (ipip->ipi_cmd_type == IF_CMD) { 12498 struct ifreq *ifr; 12499 12500 ifr = (struct ifreq *)if_req; 12501 ipif->ipif_metric = ifr->ifr_metric; 12502 } else { 12503 struct lifreq *lifr; 12504 12505 lifr = (struct lifreq *)if_req; 12506 ipif->ipif_metric = lifr->lifr_metric; 12507 } 12508 return (0); 12509 } 12510 12511 12512 /* ARGSUSED */ 12513 int 12514 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12515 ip_ioctl_cmd_t *ipip, void *if_req) 12516 { 12517 12518 /* Get interface metric. */ 12519 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12520 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12521 if (ipip->ipi_cmd_type == IF_CMD) { 12522 struct ifreq *ifr; 12523 12524 ifr = (struct ifreq *)if_req; 12525 ifr->ifr_metric = ipif->ipif_metric; 12526 } else { 12527 struct lifreq *lifr; 12528 12529 lifr = (struct lifreq *)if_req; 12530 lifr->lifr_metric = ipif->ipif_metric; 12531 } 12532 12533 return (0); 12534 } 12535 12536 /* ARGSUSED */ 12537 int 12538 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12539 ip_ioctl_cmd_t *ipip, void *if_req) 12540 { 12541 12542 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12543 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12544 /* 12545 * Set the muxid returned from I_PLINK. 12546 */ 12547 if (ipip->ipi_cmd_type == IF_CMD) { 12548 struct ifreq *ifr = (struct ifreq *)if_req; 12549 12550 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12551 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12552 } else { 12553 struct lifreq *lifr = (struct lifreq *)if_req; 12554 12555 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12556 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12557 } 12558 return (0); 12559 } 12560 12561 /* ARGSUSED */ 12562 int 12563 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12564 ip_ioctl_cmd_t *ipip, void *if_req) 12565 { 12566 12567 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12568 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12569 /* 12570 * Get the muxid saved in ill for I_PUNLINK. 12571 */ 12572 if (ipip->ipi_cmd_type == IF_CMD) { 12573 struct ifreq *ifr = (struct ifreq *)if_req; 12574 12575 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12576 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12577 } else { 12578 struct lifreq *lifr = (struct lifreq *)if_req; 12579 12580 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12581 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12582 } 12583 return (0); 12584 } 12585 12586 /* 12587 * Set the subnet prefix. Does not modify the broadcast address. 12588 */ 12589 /* ARGSUSED */ 12590 int 12591 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12592 ip_ioctl_cmd_t *ipip, void *if_req) 12593 { 12594 int err = 0; 12595 in6_addr_t v6addr; 12596 in6_addr_t v6mask; 12597 boolean_t need_up = B_FALSE; 12598 int addrlen; 12599 12600 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12601 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12602 12603 ASSERT(IAM_WRITER_IPIF(ipif)); 12604 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12605 12606 if (ipif->ipif_isv6) { 12607 sin6_t *sin6; 12608 12609 if (sin->sin_family != AF_INET6) 12610 return (EAFNOSUPPORT); 12611 12612 sin6 = (sin6_t *)sin; 12613 v6addr = sin6->sin6_addr; 12614 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12615 return (EADDRNOTAVAIL); 12616 } else { 12617 ipaddr_t addr; 12618 12619 if (sin->sin_family != AF_INET) 12620 return (EAFNOSUPPORT); 12621 12622 addr = sin->sin_addr.s_addr; 12623 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12624 return (EADDRNOTAVAIL); 12625 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12626 /* Add 96 bits */ 12627 addrlen += IPV6_ABITS - IP_ABITS; 12628 } 12629 12630 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12631 return (EINVAL); 12632 12633 /* Check if bits in the address is set past the mask */ 12634 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12635 return (EINVAL); 12636 12637 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12638 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12639 return (0); /* No change */ 12640 12641 if (ipif->ipif_flags & IPIF_UP) { 12642 /* 12643 * If the interface is already marked up, 12644 * we call ipif_down which will take care 12645 * of ditching any IREs that have been set 12646 * up based on the old interface address. 12647 */ 12648 err = ipif_logical_down(ipif, q, mp); 12649 if (err == EINPROGRESS) 12650 return (err); 12651 ipif_down_tail(ipif); 12652 need_up = B_TRUE; 12653 } 12654 12655 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12656 return (err); 12657 } 12658 12659 static int 12660 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12661 queue_t *q, mblk_t *mp, boolean_t need_up) 12662 { 12663 ill_t *ill = ipif->ipif_ill; 12664 int err = 0; 12665 12666 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12667 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12668 12669 /* Set the new address. */ 12670 mutex_enter(&ill->ill_lock); 12671 ipif->ipif_v6net_mask = v6mask; 12672 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12673 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12674 ipif->ipif_v6subnet); 12675 } 12676 mutex_exit(&ill->ill_lock); 12677 12678 if (need_up) { 12679 /* 12680 * Now bring the interface back up. If this 12681 * is the only IPIF for the ILL, ipif_up 12682 * will have to re-bind to the device, so 12683 * we may get back EINPROGRESS, in which 12684 * case, this IOCTL will get completed in 12685 * ip_rput_dlpi when we see the DL_BIND_ACK. 12686 */ 12687 err = ipif_up(ipif, q, mp); 12688 if (err == EINPROGRESS) 12689 return (err); 12690 } 12691 return (err); 12692 } 12693 12694 /* ARGSUSED */ 12695 int 12696 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12697 ip_ioctl_cmd_t *ipip, void *if_req) 12698 { 12699 int addrlen; 12700 in6_addr_t v6addr; 12701 in6_addr_t v6mask; 12702 struct lifreq *lifr = (struct lifreq *)if_req; 12703 12704 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12705 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12706 ipif_down_tail(ipif); 12707 12708 addrlen = lifr->lifr_addrlen; 12709 if (ipif->ipif_isv6) { 12710 sin6_t *sin6; 12711 12712 sin6 = (sin6_t *)sin; 12713 v6addr = sin6->sin6_addr; 12714 } else { 12715 ipaddr_t addr; 12716 12717 addr = sin->sin_addr.s_addr; 12718 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12719 addrlen += IPV6_ABITS - IP_ABITS; 12720 } 12721 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12722 12723 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12724 } 12725 12726 /* ARGSUSED */ 12727 int 12728 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12729 ip_ioctl_cmd_t *ipip, void *if_req) 12730 { 12731 struct lifreq *lifr = (struct lifreq *)if_req; 12732 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12733 12734 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12735 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12736 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12737 12738 if (ipif->ipif_isv6) { 12739 *sin6 = sin6_null; 12740 sin6->sin6_family = AF_INET6; 12741 sin6->sin6_addr = ipif->ipif_v6subnet; 12742 lifr->lifr_addrlen = 12743 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12744 } else { 12745 *sin = sin_null; 12746 sin->sin_family = AF_INET; 12747 sin->sin_addr.s_addr = ipif->ipif_subnet; 12748 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12749 } 12750 return (0); 12751 } 12752 12753 /* 12754 * Set the IPv6 address token. 12755 */ 12756 /* ARGSUSED */ 12757 int 12758 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12759 ip_ioctl_cmd_t *ipi, void *if_req) 12760 { 12761 ill_t *ill = ipif->ipif_ill; 12762 int err; 12763 in6_addr_t v6addr; 12764 in6_addr_t v6mask; 12765 boolean_t need_up = B_FALSE; 12766 int i; 12767 sin6_t *sin6 = (sin6_t *)sin; 12768 struct lifreq *lifr = (struct lifreq *)if_req; 12769 int addrlen; 12770 12771 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12772 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12773 ASSERT(IAM_WRITER_IPIF(ipif)); 12774 12775 addrlen = lifr->lifr_addrlen; 12776 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12777 if (ipif->ipif_id != 0) 12778 return (EINVAL); 12779 12780 if (!ipif->ipif_isv6) 12781 return (EINVAL); 12782 12783 if (addrlen > IPV6_ABITS) 12784 return (EINVAL); 12785 12786 v6addr = sin6->sin6_addr; 12787 12788 /* 12789 * The length of the token is the length from the end. To get 12790 * the proper mask for this, compute the mask of the bits not 12791 * in the token; ie. the prefix, and then xor to get the mask. 12792 */ 12793 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12794 return (EINVAL); 12795 for (i = 0; i < 4; i++) { 12796 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12797 } 12798 12799 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12800 ill->ill_token_length == addrlen) 12801 return (0); /* No change */ 12802 12803 if (ipif->ipif_flags & IPIF_UP) { 12804 err = ipif_logical_down(ipif, q, mp); 12805 if (err == EINPROGRESS) 12806 return (err); 12807 ipif_down_tail(ipif); 12808 need_up = B_TRUE; 12809 } 12810 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12811 return (err); 12812 } 12813 12814 static int 12815 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12816 mblk_t *mp, boolean_t need_up) 12817 { 12818 in6_addr_t v6addr; 12819 in6_addr_t v6mask; 12820 ill_t *ill = ipif->ipif_ill; 12821 int i; 12822 int err = 0; 12823 12824 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12825 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12826 v6addr = sin6->sin6_addr; 12827 /* 12828 * The length of the token is the length from the end. To get 12829 * the proper mask for this, compute the mask of the bits not 12830 * in the token; ie. the prefix, and then xor to get the mask. 12831 */ 12832 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12833 for (i = 0; i < 4; i++) 12834 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12835 12836 mutex_enter(&ill->ill_lock); 12837 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12838 ill->ill_token_length = addrlen; 12839 mutex_exit(&ill->ill_lock); 12840 12841 if (need_up) { 12842 /* 12843 * Now bring the interface back up. If this 12844 * is the only IPIF for the ILL, ipif_up 12845 * will have to re-bind to the device, so 12846 * we may get back EINPROGRESS, in which 12847 * case, this IOCTL will get completed in 12848 * ip_rput_dlpi when we see the DL_BIND_ACK. 12849 */ 12850 err = ipif_up(ipif, q, mp); 12851 if (err == EINPROGRESS) 12852 return (err); 12853 } 12854 return (err); 12855 } 12856 12857 /* ARGSUSED */ 12858 int 12859 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12860 ip_ioctl_cmd_t *ipi, void *if_req) 12861 { 12862 ill_t *ill; 12863 sin6_t *sin6 = (sin6_t *)sin; 12864 struct lifreq *lifr = (struct lifreq *)if_req; 12865 12866 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12867 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12868 if (ipif->ipif_id != 0) 12869 return (EINVAL); 12870 12871 ill = ipif->ipif_ill; 12872 if (!ill->ill_isv6) 12873 return (ENXIO); 12874 12875 *sin6 = sin6_null; 12876 sin6->sin6_family = AF_INET6; 12877 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12878 sin6->sin6_addr = ill->ill_token; 12879 lifr->lifr_addrlen = ill->ill_token_length; 12880 return (0); 12881 } 12882 12883 /* 12884 * Set (hardware) link specific information that might override 12885 * what was acquired through the DL_INFO_ACK. 12886 * The logic is as follows. 12887 * 12888 * become exclusive 12889 * set CHANGING flag 12890 * change mtu on affected IREs 12891 * clear CHANGING flag 12892 * 12893 * An ire add that occurs before the CHANGING flag is set will have its mtu 12894 * changed by the ip_sioctl_lnkinfo. 12895 * 12896 * During the time the CHANGING flag is set, no new ires will be added to the 12897 * bucket, and ire add will fail (due the CHANGING flag). 12898 * 12899 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12900 * before it is added to the bucket. 12901 * 12902 * Obviously only 1 thread can set the CHANGING flag and we need to become 12903 * exclusive to set the flag. 12904 */ 12905 /* ARGSUSED */ 12906 int 12907 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12908 ip_ioctl_cmd_t *ipi, void *if_req) 12909 { 12910 ill_t *ill = ipif->ipif_ill; 12911 ipif_t *nipif; 12912 int ip_min_mtu; 12913 boolean_t mtu_walk = B_FALSE; 12914 struct lifreq *lifr = (struct lifreq *)if_req; 12915 lif_ifinfo_req_t *lir; 12916 ire_t *ire; 12917 12918 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12919 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12920 lir = &lifr->lifr_ifinfo; 12921 ASSERT(IAM_WRITER_IPIF(ipif)); 12922 12923 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12924 if (ipif->ipif_id != 0) 12925 return (EINVAL); 12926 12927 /* Set interface MTU. */ 12928 if (ipif->ipif_isv6) 12929 ip_min_mtu = IPV6_MIN_MTU; 12930 else 12931 ip_min_mtu = IP_MIN_MTU; 12932 12933 /* 12934 * Verify values before we set anything. Allow zero to 12935 * mean unspecified. 12936 */ 12937 if (lir->lir_maxmtu != 0 && 12938 (lir->lir_maxmtu > ill->ill_max_frag || 12939 lir->lir_maxmtu < ip_min_mtu)) 12940 return (EINVAL); 12941 if (lir->lir_reachtime != 0 && 12942 lir->lir_reachtime > ND_MAX_REACHTIME) 12943 return (EINVAL); 12944 if (lir->lir_reachretrans != 0 && 12945 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12946 return (EINVAL); 12947 12948 mutex_enter(&ill->ill_lock); 12949 ill->ill_state_flags |= ILL_CHANGING; 12950 for (nipif = ill->ill_ipif; nipif != NULL; 12951 nipif = nipif->ipif_next) { 12952 nipif->ipif_state_flags |= IPIF_CHANGING; 12953 } 12954 12955 mutex_exit(&ill->ill_lock); 12956 12957 if (lir->lir_maxmtu != 0) { 12958 ill->ill_max_mtu = lir->lir_maxmtu; 12959 ill->ill_mtu_userspecified = 1; 12960 mtu_walk = B_TRUE; 12961 } 12962 12963 if (lir->lir_reachtime != 0) 12964 ill->ill_reachable_time = lir->lir_reachtime; 12965 12966 if (lir->lir_reachretrans != 0) 12967 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12968 12969 ill->ill_max_hops = lir->lir_maxhops; 12970 12971 ill->ill_max_buf = ND_MAX_Q; 12972 12973 if (mtu_walk) { 12974 /* 12975 * Set the MTU on all ipifs associated with this ill except 12976 * for those whose MTU was fixed via SIOCSLIFMTU. 12977 */ 12978 for (nipif = ill->ill_ipif; nipif != NULL; 12979 nipif = nipif->ipif_next) { 12980 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12981 continue; 12982 12983 nipif->ipif_mtu = ill->ill_max_mtu; 12984 12985 if (!(nipif->ipif_flags & IPIF_UP)) 12986 continue; 12987 12988 if (nipif->ipif_isv6) 12989 ire = ipif_to_ire_v6(nipif); 12990 else 12991 ire = ipif_to_ire(nipif); 12992 if (ire != NULL) { 12993 ire->ire_max_frag = ipif->ipif_mtu; 12994 ire_refrele(ire); 12995 } 12996 if (ill->ill_isv6) { 12997 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12998 ipif_mtu_change, (char *)nipif, 12999 ill); 13000 } else { 13001 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13002 ipif_mtu_change, (char *)nipif, 13003 ill); 13004 } 13005 } 13006 } 13007 13008 mutex_enter(&ill->ill_lock); 13009 for (nipif = ill->ill_ipif; nipif != NULL; 13010 nipif = nipif->ipif_next) { 13011 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13012 } 13013 ILL_UNMARK_CHANGING(ill); 13014 mutex_exit(&ill->ill_lock); 13015 13016 return (0); 13017 } 13018 13019 /* ARGSUSED */ 13020 int 13021 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13022 ip_ioctl_cmd_t *ipi, void *if_req) 13023 { 13024 struct lif_ifinfo_req *lir; 13025 ill_t *ill = ipif->ipif_ill; 13026 13027 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13028 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13029 if (ipif->ipif_id != 0) 13030 return (EINVAL); 13031 13032 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13033 lir->lir_maxhops = ill->ill_max_hops; 13034 lir->lir_reachtime = ill->ill_reachable_time; 13035 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13036 lir->lir_maxmtu = ill->ill_max_mtu; 13037 13038 return (0); 13039 } 13040 13041 /* 13042 * Return best guess as to the subnet mask for the specified address. 13043 * Based on the subnet masks for all the configured interfaces. 13044 * 13045 * We end up returning a zero mask in the case of default, multicast or 13046 * experimental. 13047 */ 13048 static ipaddr_t 13049 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13050 { 13051 ipaddr_t net_mask; 13052 ill_t *ill; 13053 ipif_t *ipif; 13054 ill_walk_context_t ctx; 13055 ipif_t *fallback_ipif = NULL; 13056 13057 net_mask = ip_net_mask(addr); 13058 if (net_mask == 0) { 13059 *ipifp = NULL; 13060 return (0); 13061 } 13062 13063 /* Let's check to see if this is maybe a local subnet route. */ 13064 /* this function only applies to IPv4 interfaces */ 13065 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13066 ill = ILL_START_WALK_V4(&ctx, ipst); 13067 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13068 mutex_enter(&ill->ill_lock); 13069 for (ipif = ill->ill_ipif; ipif != NULL; 13070 ipif = ipif->ipif_next) { 13071 if (!IPIF_CAN_LOOKUP(ipif)) 13072 continue; 13073 if (!(ipif->ipif_flags & IPIF_UP)) 13074 continue; 13075 if ((ipif->ipif_subnet & net_mask) == 13076 (addr & net_mask)) { 13077 /* 13078 * Don't trust pt-pt interfaces if there are 13079 * other interfaces. 13080 */ 13081 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13082 if (fallback_ipif == NULL) { 13083 ipif_refhold_locked(ipif); 13084 fallback_ipif = ipif; 13085 } 13086 continue; 13087 } 13088 13089 /* 13090 * Fine. Just assume the same net mask as the 13091 * directly attached subnet interface is using. 13092 */ 13093 ipif_refhold_locked(ipif); 13094 mutex_exit(&ill->ill_lock); 13095 rw_exit(&ipst->ips_ill_g_lock); 13096 if (fallback_ipif != NULL) 13097 ipif_refrele(fallback_ipif); 13098 *ipifp = ipif; 13099 return (ipif->ipif_net_mask); 13100 } 13101 } 13102 mutex_exit(&ill->ill_lock); 13103 } 13104 rw_exit(&ipst->ips_ill_g_lock); 13105 13106 *ipifp = fallback_ipif; 13107 return ((fallback_ipif != NULL) ? 13108 fallback_ipif->ipif_net_mask : net_mask); 13109 } 13110 13111 /* 13112 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13113 */ 13114 static void 13115 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13116 { 13117 IOCP iocp; 13118 ipft_t *ipft; 13119 ipllc_t *ipllc; 13120 mblk_t *mp1; 13121 cred_t *cr; 13122 int error = 0; 13123 conn_t *connp; 13124 13125 ip1dbg(("ip_wput_ioctl")); 13126 iocp = (IOCP)mp->b_rptr; 13127 mp1 = mp->b_cont; 13128 if (mp1 == NULL) { 13129 iocp->ioc_error = EINVAL; 13130 mp->b_datap->db_type = M_IOCNAK; 13131 iocp->ioc_count = 0; 13132 qreply(q, mp); 13133 return; 13134 } 13135 13136 /* 13137 * These IOCTLs provide various control capabilities to 13138 * upstream agents such as ULPs and processes. There 13139 * are currently two such IOCTLs implemented. They 13140 * are used by TCP to provide update information for 13141 * existing IREs and to forcibly delete an IRE for a 13142 * host that is not responding, thereby forcing an 13143 * attempt at a new route. 13144 */ 13145 iocp->ioc_error = EINVAL; 13146 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13147 goto done; 13148 13149 ipllc = (ipllc_t *)mp1->b_rptr; 13150 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13151 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13152 break; 13153 } 13154 /* 13155 * prefer credential from mblk over ioctl; 13156 * see ip_sioctl_copyin_setup 13157 */ 13158 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13159 13160 /* 13161 * Refhold the conn in case the request gets queued up in some lookup 13162 */ 13163 ASSERT(CONN_Q(q)); 13164 connp = Q_TO_CONN(q); 13165 CONN_INC_REF(connp); 13166 if (ipft->ipft_pfi && 13167 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13168 pullupmsg(mp1, ipft->ipft_min_size))) { 13169 error = (*ipft->ipft_pfi)(q, 13170 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13171 } 13172 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13173 /* 13174 * CONN_OPER_PENDING_DONE happens in the function called 13175 * through ipft_pfi above. 13176 */ 13177 return; 13178 } 13179 13180 CONN_OPER_PENDING_DONE(connp); 13181 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13182 freemsg(mp); 13183 return; 13184 } 13185 iocp->ioc_error = error; 13186 13187 done: 13188 mp->b_datap->db_type = M_IOCACK; 13189 if (iocp->ioc_error) 13190 iocp->ioc_count = 0; 13191 qreply(q, mp); 13192 } 13193 13194 /* 13195 * Lookup an ipif using the sequence id (ipif_seqid) 13196 */ 13197 ipif_t * 13198 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13199 { 13200 ipif_t *ipif; 13201 13202 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13203 13204 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13205 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13206 return (ipif); 13207 } 13208 return (NULL); 13209 } 13210 13211 /* 13212 * Assign a unique id for the ipif. This is used later when we send 13213 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13214 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13215 * IRE is added, we verify that ipif has not disappeared. 13216 */ 13217 13218 static void 13219 ipif_assign_seqid(ipif_t *ipif) 13220 { 13221 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13222 13223 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13224 } 13225 13226 /* 13227 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13228 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13229 * be inserted into the first space available in the list. The value of 13230 * ipif_id will then be set to the appropriate value for its position. 13231 */ 13232 static int 13233 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13234 { 13235 ill_t *ill; 13236 ipif_t *tipif; 13237 ipif_t **tipifp; 13238 int id; 13239 ip_stack_t *ipst; 13240 13241 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13242 IAM_WRITER_IPIF(ipif)); 13243 13244 ill = ipif->ipif_ill; 13245 ASSERT(ill != NULL); 13246 ipst = ill->ill_ipst; 13247 13248 /* 13249 * In the case of lo0:0 we already hold the ill_g_lock. 13250 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13251 * ipif_insert. Another such caller is ipif_move. 13252 */ 13253 if (acquire_g_lock) 13254 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13255 if (acquire_ill_lock) 13256 mutex_enter(&ill->ill_lock); 13257 id = ipif->ipif_id; 13258 tipifp = &(ill->ill_ipif); 13259 if (id == -1) { /* need to find a real id */ 13260 id = 0; 13261 while ((tipif = *tipifp) != NULL) { 13262 ASSERT(tipif->ipif_id >= id); 13263 if (tipif->ipif_id != id) 13264 break; /* non-consecutive id */ 13265 id++; 13266 tipifp = &(tipif->ipif_next); 13267 } 13268 /* limit number of logical interfaces */ 13269 if (id >= ipst->ips_ip_addrs_per_if) { 13270 if (acquire_ill_lock) 13271 mutex_exit(&ill->ill_lock); 13272 if (acquire_g_lock) 13273 rw_exit(&ipst->ips_ill_g_lock); 13274 return (-1); 13275 } 13276 ipif->ipif_id = id; /* assign new id */ 13277 } else if (id < ipst->ips_ip_addrs_per_if) { 13278 /* we have a real id; insert ipif in the right place */ 13279 while ((tipif = *tipifp) != NULL) { 13280 ASSERT(tipif->ipif_id != id); 13281 if (tipif->ipif_id > id) 13282 break; /* found correct location */ 13283 tipifp = &(tipif->ipif_next); 13284 } 13285 } else { 13286 if (acquire_ill_lock) 13287 mutex_exit(&ill->ill_lock); 13288 if (acquire_g_lock) 13289 rw_exit(&ipst->ips_ill_g_lock); 13290 return (-1); 13291 } 13292 13293 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13294 13295 ipif->ipif_next = tipif; 13296 *tipifp = ipif; 13297 if (acquire_ill_lock) 13298 mutex_exit(&ill->ill_lock); 13299 if (acquire_g_lock) 13300 rw_exit(&ipst->ips_ill_g_lock); 13301 return (0); 13302 } 13303 13304 static void 13305 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13306 { 13307 ipif_t **ipifp; 13308 ill_t *ill = ipif->ipif_ill; 13309 13310 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13311 if (acquire_ill_lock) 13312 mutex_enter(&ill->ill_lock); 13313 else 13314 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13315 13316 ipifp = &ill->ill_ipif; 13317 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13318 if (*ipifp == ipif) { 13319 *ipifp = ipif->ipif_next; 13320 break; 13321 } 13322 } 13323 13324 if (acquire_ill_lock) 13325 mutex_exit(&ill->ill_lock); 13326 } 13327 13328 /* 13329 * Allocate and initialize a new interface control structure. (Always 13330 * called as writer.) 13331 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13332 * is not part of the global linked list of ills. ipif_seqid is unique 13333 * in the system and to preserve the uniqueness, it is assigned only 13334 * when ill becomes part of the global list. At that point ill will 13335 * have a name. If it doesn't get assigned here, it will get assigned 13336 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13337 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13338 * the interface flags or any other information from the DL_INFO_ACK for 13339 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13340 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13341 * second DL_INFO_ACK comes in from the driver. 13342 */ 13343 static ipif_t * 13344 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13345 { 13346 ipif_t *ipif; 13347 phyint_t *phyi; 13348 13349 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13350 ill->ill_name, id, (void *)ill)); 13351 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13352 13353 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13354 return (NULL); 13355 *ipif = ipif_zero; /* start clean */ 13356 13357 ipif->ipif_ill = ill; 13358 ipif->ipif_id = id; /* could be -1 */ 13359 /* 13360 * Inherit the zoneid from the ill; for the shared stack instance 13361 * this is always the global zone 13362 */ 13363 ipif->ipif_zoneid = ill->ill_zoneid; 13364 13365 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13366 13367 ipif->ipif_refcnt = 0; 13368 ipif->ipif_saved_ire_cnt = 0; 13369 13370 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13371 mi_free(ipif); 13372 return (NULL); 13373 } 13374 /* -1 id should have been replaced by real id */ 13375 id = ipif->ipif_id; 13376 ASSERT(id >= 0); 13377 13378 if (ill->ill_name[0] != '\0') 13379 ipif_assign_seqid(ipif); 13380 13381 /* 13382 * Keep a copy of original id in ipif_orig_ipifid. Failback 13383 * will attempt to restore the original id. The SIOCSLIFOINDEX 13384 * ioctl sets ipif_orig_ipifid to zero. 13385 */ 13386 ipif->ipif_orig_ipifid = id; 13387 13388 /* 13389 * We grab the ill_lock and phyint_lock to protect the flag changes. 13390 * The ipif is still not up and can't be looked up until the 13391 * ioctl completes and the IPIF_CHANGING flag is cleared. 13392 */ 13393 mutex_enter(&ill->ill_lock); 13394 mutex_enter(&ill->ill_phyint->phyint_lock); 13395 /* 13396 * Set the running flag when logical interface zero is created. 13397 * For subsequent logical interfaces, a DLPI link down 13398 * notification message may have cleared the running flag to 13399 * indicate the link is down, so we shouldn't just blindly set it. 13400 */ 13401 if (id == 0) 13402 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13403 ipif->ipif_ire_type = ire_type; 13404 phyi = ill->ill_phyint; 13405 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13406 13407 if (ipif->ipif_isv6) { 13408 ill->ill_flags |= ILLF_IPV6; 13409 } else { 13410 ipaddr_t inaddr_any = INADDR_ANY; 13411 13412 ill->ill_flags |= ILLF_IPV4; 13413 13414 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13415 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13416 &ipif->ipif_v6lcl_addr); 13417 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13418 &ipif->ipif_v6src_addr); 13419 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13420 &ipif->ipif_v6subnet); 13421 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13422 &ipif->ipif_v6net_mask); 13423 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13424 &ipif->ipif_v6brd_addr); 13425 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13426 &ipif->ipif_v6pp_dst_addr); 13427 } 13428 13429 /* 13430 * Don't set the interface flags etc. now, will do it in 13431 * ip_ll_subnet_defaults. 13432 */ 13433 if (!initialize) { 13434 mutex_exit(&ill->ill_lock); 13435 mutex_exit(&ill->ill_phyint->phyint_lock); 13436 return (ipif); 13437 } 13438 ipif->ipif_mtu = ill->ill_max_mtu; 13439 13440 if (ill->ill_bcast_addr_length != 0) { 13441 /* 13442 * Later detect lack of DLPI driver multicast 13443 * capability by catching DL_ENABMULTI errors in 13444 * ip_rput_dlpi. 13445 */ 13446 ill->ill_flags |= ILLF_MULTICAST; 13447 if (!ipif->ipif_isv6) 13448 ipif->ipif_flags |= IPIF_BROADCAST; 13449 } else { 13450 if (ill->ill_net_type != IRE_LOOPBACK) { 13451 if (ipif->ipif_isv6) 13452 /* 13453 * Note: xresolv interfaces will eventually need 13454 * NOARP set here as well, but that will require 13455 * those external resolvers to have some 13456 * knowledge of that flag and act appropriately. 13457 * Not to be changed at present. 13458 */ 13459 ill->ill_flags |= ILLF_NONUD; 13460 else 13461 ill->ill_flags |= ILLF_NOARP; 13462 } 13463 if (ill->ill_phys_addr_length == 0) { 13464 if (ill->ill_media && 13465 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13466 ipif->ipif_flags |= IPIF_NOXMIT; 13467 phyi->phyint_flags |= PHYI_VIRTUAL; 13468 } else { 13469 /* pt-pt supports multicast. */ 13470 ill->ill_flags |= ILLF_MULTICAST; 13471 if (ill->ill_net_type == IRE_LOOPBACK) { 13472 phyi->phyint_flags |= 13473 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13474 } else { 13475 ipif->ipif_flags |= IPIF_POINTOPOINT; 13476 } 13477 } 13478 } 13479 } 13480 mutex_exit(&ill->ill_lock); 13481 mutex_exit(&ill->ill_phyint->phyint_lock); 13482 return (ipif); 13483 } 13484 13485 /* 13486 * If appropriate, send a message up to the resolver delete the entry 13487 * for the address of this interface which is going out of business. 13488 * (Always called as writer). 13489 * 13490 * NOTE : We need to check for NULL mps as some of the fields are 13491 * initialized only for some interface types. See ipif_resolver_up() 13492 * for details. 13493 */ 13494 void 13495 ipif_arp_down(ipif_t *ipif) 13496 { 13497 mblk_t *mp; 13498 ill_t *ill = ipif->ipif_ill; 13499 13500 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13501 ASSERT(IAM_WRITER_IPIF(ipif)); 13502 13503 /* Delete the mapping for the local address */ 13504 mp = ipif->ipif_arp_del_mp; 13505 if (mp != NULL) { 13506 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13507 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13508 putnext(ill->ill_rq, mp); 13509 ipif->ipif_arp_del_mp = NULL; 13510 } 13511 13512 /* 13513 * If this is the last ipif that is going down and there are no 13514 * duplicate addresses we may yet attempt to re-probe, then we need to 13515 * clean up ARP completely. 13516 */ 13517 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13518 13519 /* Send up AR_INTERFACE_DOWN message */ 13520 mp = ill->ill_arp_down_mp; 13521 if (mp != NULL) { 13522 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13523 *(unsigned *)mp->b_rptr, ill->ill_name, 13524 ipif->ipif_id)); 13525 putnext(ill->ill_rq, mp); 13526 ill->ill_arp_down_mp = NULL; 13527 } 13528 13529 /* Tell ARP to delete the multicast mappings */ 13530 mp = ill->ill_arp_del_mapping_mp; 13531 if (mp != NULL) { 13532 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13533 *(unsigned *)mp->b_rptr, ill->ill_name, 13534 ipif->ipif_id)); 13535 putnext(ill->ill_rq, mp); 13536 ill->ill_arp_del_mapping_mp = NULL; 13537 } 13538 } 13539 } 13540 13541 /* 13542 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13543 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13544 * that it wants the add_mp allocated in this function to be returned 13545 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13546 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13547 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13548 * as it does a ipif_arp_down after calling this function - which will 13549 * remove what we add here. 13550 * 13551 * Returns -1 on failures and 0 on success. 13552 */ 13553 int 13554 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13555 { 13556 mblk_t *del_mp = NULL; 13557 mblk_t *add_mp = NULL; 13558 mblk_t *mp; 13559 ill_t *ill = ipif->ipif_ill; 13560 phyint_t *phyi = ill->ill_phyint; 13561 ipaddr_t addr, mask, extract_mask = 0; 13562 arma_t *arma; 13563 uint8_t *maddr, *bphys_addr; 13564 uint32_t hw_start; 13565 dl_unitdata_req_t *dlur; 13566 13567 ASSERT(IAM_WRITER_IPIF(ipif)); 13568 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13569 return (0); 13570 13571 /* 13572 * Delete the existing mapping from ARP. Normally ipif_down 13573 * -> ipif_arp_down should send this up to ARP. The only 13574 * reason we would find this when we are switching from 13575 * Multicast to Broadcast where we did not do a down. 13576 */ 13577 mp = ill->ill_arp_del_mapping_mp; 13578 if (mp != NULL) { 13579 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13580 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13581 putnext(ill->ill_rq, mp); 13582 ill->ill_arp_del_mapping_mp = NULL; 13583 } 13584 13585 if (arp_add_mapping_mp != NULL) 13586 *arp_add_mapping_mp = NULL; 13587 13588 /* 13589 * Check that the address is not to long for the constant 13590 * length reserved in the template arma_t. 13591 */ 13592 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13593 return (-1); 13594 13595 /* Add mapping mblk */ 13596 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13597 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13598 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13599 (caddr_t)&addr); 13600 if (add_mp == NULL) 13601 return (-1); 13602 arma = (arma_t *)add_mp->b_rptr; 13603 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13604 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13605 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13606 13607 /* 13608 * Determine the broadcast address. 13609 */ 13610 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13611 if (ill->ill_sap_length < 0) 13612 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13613 else 13614 bphys_addr = (uchar_t *)dlur + 13615 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13616 /* 13617 * Check PHYI_MULTI_BCAST and length of physical 13618 * address to determine if we use the mapping or the 13619 * broadcast address. 13620 */ 13621 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13622 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13623 bphys_addr, maddr, &hw_start, &extract_mask)) 13624 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13625 13626 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13627 (ill->ill_flags & ILLF_MULTICAST)) { 13628 /* Make sure this will not match the "exact" entry. */ 13629 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13630 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13631 (caddr_t)&addr); 13632 if (del_mp == NULL) { 13633 freemsg(add_mp); 13634 return (-1); 13635 } 13636 bcopy(&extract_mask, (char *)arma + 13637 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13638 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13639 /* Use link-layer broadcast address for MULTI_BCAST */ 13640 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13641 ip2dbg(("ipif_arp_setup_multicast: adding" 13642 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13643 } else { 13644 arma->arma_hw_mapping_start = hw_start; 13645 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13646 " ARP setup for %s\n", ill->ill_name)); 13647 } 13648 } else { 13649 freemsg(add_mp); 13650 ASSERT(del_mp == NULL); 13651 /* It is neither MULTICAST nor MULTI_BCAST */ 13652 return (0); 13653 } 13654 ASSERT(add_mp != NULL && del_mp != NULL); 13655 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13656 ill->ill_arp_del_mapping_mp = del_mp; 13657 if (arp_add_mapping_mp != NULL) { 13658 /* The caller just wants the mblks allocated */ 13659 *arp_add_mapping_mp = add_mp; 13660 } else { 13661 /* The caller wants us to send it to arp */ 13662 putnext(ill->ill_rq, add_mp); 13663 } 13664 return (0); 13665 } 13666 13667 /* 13668 * Get the resolver set up for a new interface address. 13669 * (Always called as writer.) 13670 * Called both for IPv4 and IPv6 interfaces, 13671 * though it only sets up the resolver for v6 13672 * if it's an xresolv interface (one using an external resolver). 13673 * Honors ILLF_NOARP. 13674 * The enumerated value res_act is used to tune the behavior. 13675 * If set to Res_act_initial, then we set up all the resolver 13676 * structures for a new interface. If set to Res_act_move, then 13677 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13678 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13679 * asynchronous hardware address change notification. If set to 13680 * Res_act_defend, then we tell ARP that it needs to send a single 13681 * gratuitous message in defense of the address. 13682 * Returns error on failure. 13683 */ 13684 int 13685 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13686 { 13687 caddr_t addr; 13688 mblk_t *arp_up_mp = NULL; 13689 mblk_t *arp_down_mp = NULL; 13690 mblk_t *arp_add_mp = NULL; 13691 mblk_t *arp_del_mp = NULL; 13692 mblk_t *arp_add_mapping_mp = NULL; 13693 mblk_t *arp_del_mapping_mp = NULL; 13694 ill_t *ill = ipif->ipif_ill; 13695 uchar_t *area_p = NULL; 13696 uchar_t *ared_p = NULL; 13697 int err = ENOMEM; 13698 boolean_t was_dup; 13699 13700 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13701 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13702 ASSERT(IAM_WRITER_IPIF(ipif)); 13703 13704 was_dup = B_FALSE; 13705 if (res_act == Res_act_initial) { 13706 ipif->ipif_addr_ready = 0; 13707 /* 13708 * We're bringing an interface up here. There's no way that we 13709 * should need to shut down ARP now. 13710 */ 13711 mutex_enter(&ill->ill_lock); 13712 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13713 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13714 ill->ill_ipif_dup_count--; 13715 was_dup = B_TRUE; 13716 } 13717 mutex_exit(&ill->ill_lock); 13718 } 13719 if (ipif->ipif_recovery_id != 0) 13720 (void) untimeout(ipif->ipif_recovery_id); 13721 ipif->ipif_recovery_id = 0; 13722 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13723 ipif->ipif_addr_ready = 1; 13724 return (0); 13725 } 13726 /* NDP will set the ipif_addr_ready flag when it's ready */ 13727 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13728 return (0); 13729 13730 if (ill->ill_isv6) { 13731 /* 13732 * External resolver for IPv6 13733 */ 13734 ASSERT(res_act == Res_act_initial); 13735 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13736 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13737 area_p = (uchar_t *)&ip6_area_template; 13738 ared_p = (uchar_t *)&ip6_ared_template; 13739 } 13740 } else { 13741 /* 13742 * IPv4 arp case. If the ARP stream has already started 13743 * closing, fail this request for ARP bringup. Else 13744 * record the fact that an ARP bringup is pending. 13745 */ 13746 mutex_enter(&ill->ill_lock); 13747 if (ill->ill_arp_closing) { 13748 mutex_exit(&ill->ill_lock); 13749 err = EINVAL; 13750 goto failed; 13751 } else { 13752 if (ill->ill_ipif_up_count == 0 && 13753 ill->ill_ipif_dup_count == 0 && !was_dup) 13754 ill->ill_arp_bringup_pending = 1; 13755 mutex_exit(&ill->ill_lock); 13756 } 13757 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13758 addr = (caddr_t)&ipif->ipif_lcl_addr; 13759 area_p = (uchar_t *)&ip_area_template; 13760 ared_p = (uchar_t *)&ip_ared_template; 13761 } 13762 } 13763 13764 /* 13765 * Add an entry for the local address in ARP only if it 13766 * is not UNNUMBERED and the address is not INADDR_ANY. 13767 */ 13768 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13769 area_t *area; 13770 13771 /* Now ask ARP to publish our address. */ 13772 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13773 if (arp_add_mp == NULL) 13774 goto failed; 13775 area = (area_t *)arp_add_mp->b_rptr; 13776 if (res_act != Res_act_initial) { 13777 /* 13778 * Copy the new hardware address and length into 13779 * arp_add_mp to be sent to ARP. 13780 */ 13781 area->area_hw_addr_length = ill->ill_phys_addr_length; 13782 bcopy(ill->ill_phys_addr, 13783 ((char *)area + area->area_hw_addr_offset), 13784 area->area_hw_addr_length); 13785 } 13786 13787 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13788 ACE_F_MYADDR; 13789 13790 if (res_act == Res_act_defend) { 13791 area->area_flags |= ACE_F_DEFEND; 13792 /* 13793 * If we're just defending our address now, then 13794 * there's no need to set up ARP multicast mappings. 13795 * The publish command is enough. 13796 */ 13797 goto done; 13798 } 13799 13800 if (res_act != Res_act_initial) 13801 goto arp_setup_multicast; 13802 13803 /* 13804 * Allocate an ARP deletion message so we know we can tell ARP 13805 * when the interface goes down. 13806 */ 13807 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13808 if (arp_del_mp == NULL) 13809 goto failed; 13810 13811 } else { 13812 if (res_act != Res_act_initial) 13813 goto done; 13814 } 13815 /* 13816 * Need to bring up ARP or setup multicast mapping only 13817 * when the first interface is coming UP. 13818 */ 13819 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13820 was_dup) { 13821 goto done; 13822 } 13823 13824 /* 13825 * Allocate an ARP down message (to be saved) and an ARP up 13826 * message. 13827 */ 13828 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13829 if (arp_down_mp == NULL) 13830 goto failed; 13831 13832 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13833 if (arp_up_mp == NULL) 13834 goto failed; 13835 13836 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13837 goto done; 13838 13839 arp_setup_multicast: 13840 /* 13841 * Setup the multicast mappings. This function initializes 13842 * ill_arp_del_mapping_mp also. This does not need to be done for 13843 * IPv6. 13844 */ 13845 if (!ill->ill_isv6) { 13846 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13847 if (err != 0) 13848 goto failed; 13849 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13850 ASSERT(arp_add_mapping_mp != NULL); 13851 } 13852 13853 done: 13854 if (arp_del_mp != NULL) { 13855 ASSERT(ipif->ipif_arp_del_mp == NULL); 13856 ipif->ipif_arp_del_mp = arp_del_mp; 13857 } 13858 if (arp_down_mp != NULL) { 13859 ASSERT(ill->ill_arp_down_mp == NULL); 13860 ill->ill_arp_down_mp = arp_down_mp; 13861 } 13862 if (arp_del_mapping_mp != NULL) { 13863 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13864 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13865 } 13866 if (arp_up_mp != NULL) { 13867 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13868 ill->ill_name, ipif->ipif_id)); 13869 putnext(ill->ill_rq, arp_up_mp); 13870 } 13871 if (arp_add_mp != NULL) { 13872 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13873 ill->ill_name, ipif->ipif_id)); 13874 /* 13875 * If it's an extended ARP implementation, then we'll wait to 13876 * hear that DAD has finished before using the interface. 13877 */ 13878 if (!ill->ill_arp_extend) 13879 ipif->ipif_addr_ready = 1; 13880 putnext(ill->ill_rq, arp_add_mp); 13881 } else { 13882 ipif->ipif_addr_ready = 1; 13883 } 13884 if (arp_add_mapping_mp != NULL) { 13885 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13886 ill->ill_name, ipif->ipif_id)); 13887 putnext(ill->ill_rq, arp_add_mapping_mp); 13888 } 13889 if (res_act != Res_act_initial) 13890 return (0); 13891 13892 if (ill->ill_flags & ILLF_NOARP) 13893 err = ill_arp_off(ill); 13894 else 13895 err = ill_arp_on(ill); 13896 if (err != 0) { 13897 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13898 freemsg(ipif->ipif_arp_del_mp); 13899 freemsg(ill->ill_arp_down_mp); 13900 freemsg(ill->ill_arp_del_mapping_mp); 13901 ipif->ipif_arp_del_mp = NULL; 13902 ill->ill_arp_down_mp = NULL; 13903 ill->ill_arp_del_mapping_mp = NULL; 13904 return (err); 13905 } 13906 return ((ill->ill_ipif_up_count != 0 || was_dup || 13907 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13908 13909 failed: 13910 ip1dbg(("ipif_resolver_up: FAILED\n")); 13911 freemsg(arp_add_mp); 13912 freemsg(arp_del_mp); 13913 freemsg(arp_add_mapping_mp); 13914 freemsg(arp_up_mp); 13915 freemsg(arp_down_mp); 13916 ill->ill_arp_bringup_pending = 0; 13917 return (err); 13918 } 13919 13920 /* 13921 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13922 * just gone back up. 13923 */ 13924 static void 13925 ipif_arp_start_dad(ipif_t *ipif) 13926 { 13927 ill_t *ill = ipif->ipif_ill; 13928 mblk_t *arp_add_mp; 13929 area_t *area; 13930 13931 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13932 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13933 ipif->ipif_lcl_addr == INADDR_ANY || 13934 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13935 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13936 /* 13937 * If we can't contact ARP for some reason, that's not really a 13938 * problem. Just send out the routing socket notification that 13939 * DAD completion would have done, and continue. 13940 */ 13941 ipif_mask_reply(ipif); 13942 ip_rts_ifmsg(ipif); 13943 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13944 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13945 ipif->ipif_addr_ready = 1; 13946 return; 13947 } 13948 13949 /* Setting the 'unverified' flag restarts DAD */ 13950 area = (area_t *)arp_add_mp->b_rptr; 13951 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13952 ACE_F_UNVERIFIED; 13953 putnext(ill->ill_rq, arp_add_mp); 13954 } 13955 13956 static void 13957 ipif_ndp_start_dad(ipif_t *ipif) 13958 { 13959 nce_t *nce; 13960 13961 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13962 if (nce == NULL) 13963 return; 13964 13965 if (!ndp_restart_dad(nce)) { 13966 /* 13967 * If we can't restart DAD for some reason, that's not really a 13968 * problem. Just send out the routing socket notification that 13969 * DAD completion would have done, and continue. 13970 */ 13971 ip_rts_ifmsg(ipif); 13972 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13973 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13974 ipif->ipif_addr_ready = 1; 13975 } 13976 NCE_REFRELE(nce); 13977 } 13978 13979 /* 13980 * Restart duplicate address detection on all interfaces on the given ill. 13981 * 13982 * This is called when an interface transitions from down to up 13983 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13984 * 13985 * Note that since the underlying physical link has transitioned, we must cause 13986 * at least one routing socket message to be sent here, either via DAD 13987 * completion or just by default on the first ipif. (If we don't do this, then 13988 * in.mpathd will see long delays when doing link-based failure recovery.) 13989 */ 13990 void 13991 ill_restart_dad(ill_t *ill, boolean_t went_up) 13992 { 13993 ipif_t *ipif; 13994 13995 if (ill == NULL) 13996 return; 13997 13998 /* 13999 * If layer two doesn't support duplicate address detection, then just 14000 * send the routing socket message now and be done with it. 14001 */ 14002 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14003 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14004 ip_rts_ifmsg(ill->ill_ipif); 14005 return; 14006 } 14007 14008 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14009 if (went_up) { 14010 if (ipif->ipif_flags & IPIF_UP) { 14011 if (ill->ill_isv6) 14012 ipif_ndp_start_dad(ipif); 14013 else 14014 ipif_arp_start_dad(ipif); 14015 } else if (ill->ill_isv6 && 14016 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14017 /* 14018 * For IPv4, the ARP module itself will 14019 * automatically start the DAD process when it 14020 * sees DL_NOTE_LINK_UP. We respond to the 14021 * AR_CN_READY at the completion of that task. 14022 * For IPv6, we must kick off the bring-up 14023 * process now. 14024 */ 14025 ndp_do_recovery(ipif); 14026 } else { 14027 /* 14028 * Unfortunately, the first ipif is "special" 14029 * and represents the underlying ill in the 14030 * routing socket messages. Thus, when this 14031 * one ipif is down, we must still notify so 14032 * that the user knows the IFF_RUNNING status 14033 * change. (If the first ipif is up, then 14034 * we'll handle eventual routing socket 14035 * notification via DAD completion.) 14036 */ 14037 if (ipif == ill->ill_ipif) 14038 ip_rts_ifmsg(ill->ill_ipif); 14039 } 14040 } else { 14041 /* 14042 * After link down, we'll need to send a new routing 14043 * message when the link comes back, so clear 14044 * ipif_addr_ready. 14045 */ 14046 ipif->ipif_addr_ready = 0; 14047 } 14048 } 14049 14050 /* 14051 * If we've torn down links, then notify the user right away. 14052 */ 14053 if (!went_up) 14054 ip_rts_ifmsg(ill->ill_ipif); 14055 } 14056 14057 /* 14058 * Wakeup all threads waiting to enter the ipsq, and sleeping 14059 * on any of the ills in this ipsq. The ill_lock of the ill 14060 * must be held so that waiters don't miss wakeups 14061 */ 14062 static void 14063 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14064 { 14065 phyint_t *phyint; 14066 14067 phyint = ipsq->ipsq_phyint_list; 14068 while (phyint != NULL) { 14069 if (phyint->phyint_illv4) { 14070 if (!caller_holds_lock) 14071 mutex_enter(&phyint->phyint_illv4->ill_lock); 14072 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14073 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14074 if (!caller_holds_lock) 14075 mutex_exit(&phyint->phyint_illv4->ill_lock); 14076 } 14077 if (phyint->phyint_illv6) { 14078 if (!caller_holds_lock) 14079 mutex_enter(&phyint->phyint_illv6->ill_lock); 14080 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14081 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14082 if (!caller_holds_lock) 14083 mutex_exit(&phyint->phyint_illv6->ill_lock); 14084 } 14085 phyint = phyint->phyint_ipsq_next; 14086 } 14087 } 14088 14089 static ipsq_t * 14090 ipsq_create(char *groupname, ip_stack_t *ipst) 14091 { 14092 ipsq_t *ipsq; 14093 14094 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14095 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14096 if (ipsq == NULL) { 14097 return (NULL); 14098 } 14099 14100 if (groupname != NULL) 14101 (void) strcpy(ipsq->ipsq_name, groupname); 14102 else 14103 ipsq->ipsq_name[0] = '\0'; 14104 14105 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14106 ipsq->ipsq_flags |= IPSQ_GROUP; 14107 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14108 ipst->ips_ipsq_g_head = ipsq; 14109 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14110 return (ipsq); 14111 } 14112 14113 /* 14114 * Return an ipsq correspoding to the groupname. If 'create' is true 14115 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14116 * uniquely with an IPMP group. However during IPMP groupname operations, 14117 * multiple IPMP groups may be associated with a single ipsq. But no 14118 * IPMP group can be associated with more than 1 ipsq at any time. 14119 * For example 14120 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14121 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14122 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14123 * 14124 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14125 * status shown below during the execution of the above command. 14126 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14127 * 14128 * After the completion of the above groupname command we return to the stable 14129 * state shown below. 14130 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14131 * hme4 mpk17-85 ipsq2 mpk17-85 1 14132 * 14133 * Because of the above, we don't search based on the ipsq_name since that 14134 * would miss the correct ipsq during certain windows as shown above. 14135 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14136 * natural state. 14137 */ 14138 static ipsq_t * 14139 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14140 ip_stack_t *ipst) 14141 { 14142 ipsq_t *ipsq; 14143 int group_len; 14144 phyint_t *phyint; 14145 14146 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14147 14148 group_len = strlen(groupname); 14149 ASSERT(group_len != 0); 14150 group_len++; 14151 14152 for (ipsq = ipst->ips_ipsq_g_head; 14153 ipsq != NULL; 14154 ipsq = ipsq->ipsq_next) { 14155 /* 14156 * When an ipsq is being split, and ill_split_ipsq 14157 * calls this function, we exclude it from being considered. 14158 */ 14159 if (ipsq == exclude_ipsq) 14160 continue; 14161 14162 /* 14163 * Compare against the ipsq_name. The groupname change happens 14164 * in 2 phases. The 1st phase merges the from group into 14165 * the to group's ipsq, by calling ill_merge_groups and restarts 14166 * the ioctl. The 2nd phase then locates the ipsq again thru 14167 * ipsq_name. At this point the phyint_groupname has not been 14168 * updated. 14169 */ 14170 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14171 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14172 /* 14173 * Verify that an ipmp groupname is exactly 14174 * part of 1 ipsq and is not found in any other 14175 * ipsq. 14176 */ 14177 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14178 NULL); 14179 return (ipsq); 14180 } 14181 14182 /* 14183 * Comparison against ipsq_name alone is not sufficient. 14184 * In the case when groups are currently being 14185 * merged, the ipsq could hold other IPMP groups temporarily. 14186 * so we walk the phyint list and compare against the 14187 * phyint_groupname as well. 14188 */ 14189 phyint = ipsq->ipsq_phyint_list; 14190 while (phyint != NULL) { 14191 if ((group_len == phyint->phyint_groupname_len) && 14192 (bcmp(phyint->phyint_groupname, groupname, 14193 group_len) == 0)) { 14194 /* 14195 * Verify that an ipmp groupname is exactly 14196 * part of 1 ipsq and is not found in any other 14197 * ipsq. 14198 */ 14199 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14200 ipst) == NULL); 14201 return (ipsq); 14202 } 14203 phyint = phyint->phyint_ipsq_next; 14204 } 14205 } 14206 if (create) 14207 ipsq = ipsq_create(groupname, ipst); 14208 return (ipsq); 14209 } 14210 14211 static void 14212 ipsq_delete(ipsq_t *ipsq) 14213 { 14214 ipsq_t *nipsq; 14215 ipsq_t *pipsq = NULL; 14216 ip_stack_t *ipst = ipsq->ipsq_ipst; 14217 14218 /* 14219 * We don't hold the ipsq lock, but we are sure no new 14220 * messages can land up, since the ipsq_refs is zero. 14221 * i.e. this ipsq is unnamed and no phyint or phyint group 14222 * is associated with this ipsq. (Lookups are based on ill_name 14223 * or phyint_groupname) 14224 */ 14225 ASSERT(ipsq->ipsq_refs == 0); 14226 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14227 ASSERT(ipsq->ipsq_pending_mp == NULL); 14228 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14229 /* 14230 * This is not the ipsq of an IPMP group. 14231 */ 14232 ipsq->ipsq_ipst = NULL; 14233 kmem_free(ipsq, sizeof (ipsq_t)); 14234 return; 14235 } 14236 14237 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14238 14239 /* 14240 * Locate the ipsq before we can remove it from 14241 * the singly linked list of ipsq's. 14242 */ 14243 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14244 nipsq = nipsq->ipsq_next) { 14245 if (nipsq == ipsq) { 14246 break; 14247 } 14248 pipsq = nipsq; 14249 } 14250 14251 ASSERT(nipsq == ipsq); 14252 14253 /* unlink ipsq from the list */ 14254 if (pipsq != NULL) 14255 pipsq->ipsq_next = ipsq->ipsq_next; 14256 else 14257 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14258 ipsq->ipsq_ipst = NULL; 14259 kmem_free(ipsq, sizeof (ipsq_t)); 14260 rw_exit(&ipst->ips_ill_g_lock); 14261 } 14262 14263 static void 14264 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14265 queue_t *q) 14266 { 14267 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14268 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14269 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14270 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14271 ASSERT(current_mp != NULL); 14272 14273 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14274 NEW_OP, NULL); 14275 14276 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14277 new_ipsq->ipsq_xopq_mphead != NULL); 14278 14279 /* 14280 * move from old ipsq to the new ipsq. 14281 */ 14282 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14283 if (old_ipsq->ipsq_xopq_mphead != NULL) 14284 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14285 14286 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14287 } 14288 14289 void 14290 ill_group_cleanup(ill_t *ill) 14291 { 14292 ill_t *ill_v4; 14293 ill_t *ill_v6; 14294 ipif_t *ipif; 14295 14296 ill_v4 = ill->ill_phyint->phyint_illv4; 14297 ill_v6 = ill->ill_phyint->phyint_illv6; 14298 14299 if (ill_v4 != NULL) { 14300 mutex_enter(&ill_v4->ill_lock); 14301 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14302 ipif = ipif->ipif_next) { 14303 IPIF_UNMARK_MOVING(ipif); 14304 } 14305 ill_v4->ill_up_ipifs = B_FALSE; 14306 mutex_exit(&ill_v4->ill_lock); 14307 } 14308 14309 if (ill_v6 != NULL) { 14310 mutex_enter(&ill_v6->ill_lock); 14311 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14312 ipif = ipif->ipif_next) { 14313 IPIF_UNMARK_MOVING(ipif); 14314 } 14315 ill_v6->ill_up_ipifs = B_FALSE; 14316 mutex_exit(&ill_v6->ill_lock); 14317 } 14318 } 14319 /* 14320 * This function is called when an ill has had a change in its group status 14321 * to bring up all the ipifs that were up before the change. 14322 */ 14323 int 14324 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14325 { 14326 ipif_t *ipif; 14327 ill_t *ill_v4; 14328 ill_t *ill_v6; 14329 ill_t *from_ill; 14330 int err = 0; 14331 14332 14333 ASSERT(IAM_WRITER_ILL(ill)); 14334 14335 /* 14336 * Except for ipif_state_flags and ill_state_flags the other 14337 * fields of the ipif/ill that are modified below are protected 14338 * implicitly since we are a writer. We would have tried to down 14339 * even an ipif that was already down, in ill_down_ipifs. So we 14340 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14341 */ 14342 ill_v4 = ill->ill_phyint->phyint_illv4; 14343 ill_v6 = ill->ill_phyint->phyint_illv6; 14344 if (ill_v4 != NULL) { 14345 ill_v4->ill_up_ipifs = B_TRUE; 14346 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14347 ipif = ipif->ipif_next) { 14348 mutex_enter(&ill_v4->ill_lock); 14349 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14350 IPIF_UNMARK_MOVING(ipif); 14351 mutex_exit(&ill_v4->ill_lock); 14352 if (ipif->ipif_was_up) { 14353 if (!(ipif->ipif_flags & IPIF_UP)) 14354 err = ipif_up(ipif, q, mp); 14355 ipif->ipif_was_up = B_FALSE; 14356 if (err != 0) { 14357 /* 14358 * Can there be any other error ? 14359 */ 14360 ASSERT(err == EINPROGRESS); 14361 return (err); 14362 } 14363 } 14364 } 14365 mutex_enter(&ill_v4->ill_lock); 14366 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14367 mutex_exit(&ill_v4->ill_lock); 14368 ill_v4->ill_up_ipifs = B_FALSE; 14369 if (ill_v4->ill_move_in_progress) { 14370 ASSERT(ill_v4->ill_move_peer != NULL); 14371 ill_v4->ill_move_in_progress = B_FALSE; 14372 from_ill = ill_v4->ill_move_peer; 14373 from_ill->ill_move_in_progress = B_FALSE; 14374 from_ill->ill_move_peer = NULL; 14375 mutex_enter(&from_ill->ill_lock); 14376 from_ill->ill_state_flags &= ~ILL_CHANGING; 14377 mutex_exit(&from_ill->ill_lock); 14378 if (ill_v6 == NULL) { 14379 if (from_ill->ill_phyint->phyint_flags & 14380 PHYI_STANDBY) { 14381 phyint_inactive(from_ill->ill_phyint); 14382 } 14383 if (ill_v4->ill_phyint->phyint_flags & 14384 PHYI_STANDBY) { 14385 phyint_inactive(ill_v4->ill_phyint); 14386 } 14387 } 14388 ill_v4->ill_move_peer = NULL; 14389 } 14390 } 14391 14392 if (ill_v6 != NULL) { 14393 ill_v6->ill_up_ipifs = B_TRUE; 14394 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14395 ipif = ipif->ipif_next) { 14396 mutex_enter(&ill_v6->ill_lock); 14397 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14398 IPIF_UNMARK_MOVING(ipif); 14399 mutex_exit(&ill_v6->ill_lock); 14400 if (ipif->ipif_was_up) { 14401 if (!(ipif->ipif_flags & IPIF_UP)) 14402 err = ipif_up(ipif, q, mp); 14403 ipif->ipif_was_up = B_FALSE; 14404 if (err != 0) { 14405 /* 14406 * Can there be any other error ? 14407 */ 14408 ASSERT(err == EINPROGRESS); 14409 return (err); 14410 } 14411 } 14412 } 14413 mutex_enter(&ill_v6->ill_lock); 14414 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14415 mutex_exit(&ill_v6->ill_lock); 14416 ill_v6->ill_up_ipifs = B_FALSE; 14417 if (ill_v6->ill_move_in_progress) { 14418 ASSERT(ill_v6->ill_move_peer != NULL); 14419 ill_v6->ill_move_in_progress = B_FALSE; 14420 from_ill = ill_v6->ill_move_peer; 14421 from_ill->ill_move_in_progress = B_FALSE; 14422 from_ill->ill_move_peer = NULL; 14423 mutex_enter(&from_ill->ill_lock); 14424 from_ill->ill_state_flags &= ~ILL_CHANGING; 14425 mutex_exit(&from_ill->ill_lock); 14426 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14427 phyint_inactive(from_ill->ill_phyint); 14428 } 14429 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14430 phyint_inactive(ill_v6->ill_phyint); 14431 } 14432 ill_v6->ill_move_peer = NULL; 14433 } 14434 } 14435 return (0); 14436 } 14437 14438 /* 14439 * bring down all the approriate ipifs. 14440 */ 14441 /* ARGSUSED */ 14442 static void 14443 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14444 { 14445 ipif_t *ipif; 14446 14447 ASSERT(IAM_WRITER_ILL(ill)); 14448 14449 /* 14450 * Except for ipif_state_flags the other fields of the ipif/ill that 14451 * are modified below are protected implicitly since we are a writer 14452 */ 14453 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14454 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14455 continue; 14456 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14457 /* 14458 * We go through the ipif_down logic even if the ipif 14459 * is already down, since routes can be added based 14460 * on down ipifs. Going through ipif_down once again 14461 * will delete any IREs created based on these routes. 14462 */ 14463 if (ipif->ipif_flags & IPIF_UP) 14464 ipif->ipif_was_up = B_TRUE; 14465 /* 14466 * If called with chk_nofailover true ipif is moving. 14467 */ 14468 mutex_enter(&ill->ill_lock); 14469 if (chk_nofailover) { 14470 ipif->ipif_state_flags |= 14471 IPIF_MOVING | IPIF_CHANGING; 14472 } else { 14473 ipif->ipif_state_flags |= IPIF_CHANGING; 14474 } 14475 mutex_exit(&ill->ill_lock); 14476 /* 14477 * Need to re-create net/subnet bcast ires if 14478 * they are dependent on ipif. 14479 */ 14480 if (!ipif->ipif_isv6) 14481 ipif_check_bcast_ires(ipif); 14482 (void) ipif_logical_down(ipif, NULL, NULL); 14483 ipif_non_duplicate(ipif); 14484 ipif_down_tail(ipif); 14485 } 14486 } 14487 } 14488 14489 #define IPSQ_INC_REF(ipsq, ipst) { \ 14490 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14491 (ipsq)->ipsq_refs++; \ 14492 } 14493 14494 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14495 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14496 (ipsq)->ipsq_refs--; \ 14497 if ((ipsq)->ipsq_refs == 0) \ 14498 (ipsq)->ipsq_name[0] = '\0'; \ 14499 } 14500 14501 /* 14502 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14503 * new_ipsq. 14504 */ 14505 static void 14506 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14507 { 14508 phyint_t *phyint; 14509 phyint_t *next_phyint; 14510 14511 /* 14512 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14513 * writer and the ill_lock of the ill in question. Also the dest 14514 * ipsq can't vanish while we hold the ill_g_lock as writer. 14515 */ 14516 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14517 14518 phyint = cur_ipsq->ipsq_phyint_list; 14519 cur_ipsq->ipsq_phyint_list = NULL; 14520 while (phyint != NULL) { 14521 next_phyint = phyint->phyint_ipsq_next; 14522 IPSQ_DEC_REF(cur_ipsq, ipst); 14523 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14524 new_ipsq->ipsq_phyint_list = phyint; 14525 IPSQ_INC_REF(new_ipsq, ipst); 14526 phyint->phyint_ipsq = new_ipsq; 14527 phyint = next_phyint; 14528 } 14529 } 14530 14531 #define SPLIT_SUCCESS 0 14532 #define SPLIT_NOT_NEEDED 1 14533 #define SPLIT_FAILED 2 14534 14535 int 14536 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14537 ip_stack_t *ipst) 14538 { 14539 ipsq_t *newipsq = NULL; 14540 14541 /* 14542 * Assertions denote pre-requisites for changing the ipsq of 14543 * a phyint 14544 */ 14545 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14546 /* 14547 * <ill-phyint> assocs can't change while ill_g_lock 14548 * is held as writer. See ill_phyint_reinit() 14549 */ 14550 ASSERT(phyint->phyint_illv4 == NULL || 14551 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14552 ASSERT(phyint->phyint_illv6 == NULL || 14553 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14554 14555 if ((phyint->phyint_groupname_len != 14556 (strlen(cur_ipsq->ipsq_name) + 1) || 14557 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14558 phyint->phyint_groupname_len) != 0)) { 14559 /* 14560 * Once we fail in creating a new ipsq due to memory shortage, 14561 * don't attempt to create new ipsq again, based on another 14562 * phyint, since we want all phyints belonging to an IPMP group 14563 * to be in the same ipsq even in the event of mem alloc fails. 14564 */ 14565 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14566 cur_ipsq, ipst); 14567 if (newipsq == NULL) { 14568 /* Memory allocation failure */ 14569 return (SPLIT_FAILED); 14570 } else { 14571 /* ipsq_refs protected by ill_g_lock (writer) */ 14572 IPSQ_DEC_REF(cur_ipsq, ipst); 14573 phyint->phyint_ipsq = newipsq; 14574 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14575 newipsq->ipsq_phyint_list = phyint; 14576 IPSQ_INC_REF(newipsq, ipst); 14577 return (SPLIT_SUCCESS); 14578 } 14579 } 14580 return (SPLIT_NOT_NEEDED); 14581 } 14582 14583 /* 14584 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14585 * to do this split 14586 */ 14587 static int 14588 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14589 { 14590 ipsq_t *newipsq; 14591 14592 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14593 /* 14594 * <ill-phyint> assocs can't change while ill_g_lock 14595 * is held as writer. See ill_phyint_reinit() 14596 */ 14597 14598 ASSERT(phyint->phyint_illv4 == NULL || 14599 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14600 ASSERT(phyint->phyint_illv6 == NULL || 14601 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14602 14603 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14604 phyint->phyint_illv4: phyint->phyint_illv6)) { 14605 /* 14606 * ipsq_init failed due to no memory 14607 * caller will use the same ipsq 14608 */ 14609 return (SPLIT_FAILED); 14610 } 14611 14612 /* ipsq_ref is protected by ill_g_lock (writer) */ 14613 IPSQ_DEC_REF(cur_ipsq, ipst); 14614 14615 /* 14616 * This is a new ipsq that is unknown to the world. 14617 * So we don't need to hold ipsq_lock, 14618 */ 14619 newipsq = phyint->phyint_ipsq; 14620 newipsq->ipsq_writer = NULL; 14621 newipsq->ipsq_reentry_cnt--; 14622 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14623 #ifdef DEBUG 14624 newipsq->ipsq_depth = 0; 14625 #endif 14626 14627 return (SPLIT_SUCCESS); 14628 } 14629 14630 /* 14631 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14632 * ipsq's representing their individual groups or themselves. Return 14633 * whether split needs to be retried again later. 14634 */ 14635 static boolean_t 14636 ill_split_ipsq(ipsq_t *cur_ipsq) 14637 { 14638 phyint_t *phyint; 14639 phyint_t *next_phyint; 14640 int error; 14641 boolean_t need_retry = B_FALSE; 14642 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14643 14644 phyint = cur_ipsq->ipsq_phyint_list; 14645 cur_ipsq->ipsq_phyint_list = NULL; 14646 while (phyint != NULL) { 14647 next_phyint = phyint->phyint_ipsq_next; 14648 /* 14649 * 'created' will tell us whether the callee actually 14650 * created an ipsq. Lack of memory may force the callee 14651 * to return without creating an ipsq. 14652 */ 14653 if (phyint->phyint_groupname == NULL) { 14654 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14655 } else { 14656 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14657 need_retry, ipst); 14658 } 14659 14660 switch (error) { 14661 case SPLIT_FAILED: 14662 need_retry = B_TRUE; 14663 /* FALLTHRU */ 14664 case SPLIT_NOT_NEEDED: 14665 /* 14666 * Keep it on the list. 14667 */ 14668 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14669 cur_ipsq->ipsq_phyint_list = phyint; 14670 break; 14671 case SPLIT_SUCCESS: 14672 break; 14673 default: 14674 ASSERT(0); 14675 } 14676 14677 phyint = next_phyint; 14678 } 14679 return (need_retry); 14680 } 14681 14682 /* 14683 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14684 * and return the ills in the list. This list will be 14685 * needed to unlock all the ills later on by the caller. 14686 * The <ill-ipsq> associations could change between the 14687 * lock and unlock. Hence the unlock can't traverse the 14688 * ipsq to get the list of ills. 14689 */ 14690 static int 14691 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14692 { 14693 int cnt = 0; 14694 phyint_t *phyint; 14695 ip_stack_t *ipst = ipsq->ipsq_ipst; 14696 14697 /* 14698 * The caller holds ill_g_lock to ensure that the ill memberships 14699 * of the ipsq don't change 14700 */ 14701 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14702 14703 phyint = ipsq->ipsq_phyint_list; 14704 while (phyint != NULL) { 14705 if (phyint->phyint_illv4 != NULL) { 14706 ASSERT(cnt < list_max); 14707 list[cnt++] = phyint->phyint_illv4; 14708 } 14709 if (phyint->phyint_illv6 != NULL) { 14710 ASSERT(cnt < list_max); 14711 list[cnt++] = phyint->phyint_illv6; 14712 } 14713 phyint = phyint->phyint_ipsq_next; 14714 } 14715 ill_lock_ills(list, cnt); 14716 return (cnt); 14717 } 14718 14719 void 14720 ill_lock_ills(ill_t **list, int cnt) 14721 { 14722 int i; 14723 14724 if (cnt > 1) { 14725 boolean_t try_again; 14726 do { 14727 try_again = B_FALSE; 14728 for (i = 0; i < cnt - 1; i++) { 14729 if (list[i] < list[i + 1]) { 14730 ill_t *tmp; 14731 14732 /* swap the elements */ 14733 tmp = list[i]; 14734 list[i] = list[i + 1]; 14735 list[i + 1] = tmp; 14736 try_again = B_TRUE; 14737 } 14738 } 14739 } while (try_again); 14740 } 14741 14742 for (i = 0; i < cnt; i++) { 14743 if (i == 0) { 14744 if (list[i] != NULL) 14745 mutex_enter(&list[i]->ill_lock); 14746 else 14747 return; 14748 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14749 mutex_enter(&list[i]->ill_lock); 14750 } 14751 } 14752 } 14753 14754 void 14755 ill_unlock_ills(ill_t **list, int cnt) 14756 { 14757 int i; 14758 14759 for (i = 0; i < cnt; i++) { 14760 if ((i == 0) && (list[i] != NULL)) { 14761 mutex_exit(&list[i]->ill_lock); 14762 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14763 mutex_exit(&list[i]->ill_lock); 14764 } 14765 } 14766 } 14767 14768 /* 14769 * Merge all the ills from 1 ipsq group into another ipsq group. 14770 * The source ipsq group is specified by the ipsq associated with 14771 * 'from_ill'. The destination ipsq group is specified by the ipsq 14772 * associated with 'to_ill' or 'groupname' respectively. 14773 * Note that ipsq itself does not have a reference count mechanism 14774 * and functions don't look up an ipsq and pass it around. Instead 14775 * functions pass around an ill or groupname, and the ipsq is looked 14776 * up from the ill or groupname and the required operation performed 14777 * atomically with the lookup on the ipsq. 14778 */ 14779 static int 14780 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14781 queue_t *q) 14782 { 14783 ipsq_t *old_ipsq; 14784 ipsq_t *new_ipsq; 14785 ill_t **ill_list; 14786 int cnt; 14787 size_t ill_list_size; 14788 boolean_t became_writer_on_new_sq = B_FALSE; 14789 ip_stack_t *ipst = from_ill->ill_ipst; 14790 14791 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14792 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14793 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14794 14795 /* 14796 * Need to hold ill_g_lock as writer and also the ill_lock to 14797 * change the <ill-ipsq> assoc of an ill. Need to hold the 14798 * ipsq_lock to prevent new messages from landing on an ipsq. 14799 */ 14800 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14801 14802 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14803 if (groupname != NULL) 14804 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14805 else { 14806 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14807 } 14808 14809 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14810 14811 /* 14812 * both groups are on the same ipsq. 14813 */ 14814 if (old_ipsq == new_ipsq) { 14815 rw_exit(&ipst->ips_ill_g_lock); 14816 return (0); 14817 } 14818 14819 cnt = old_ipsq->ipsq_refs << 1; 14820 ill_list_size = cnt * sizeof (ill_t *); 14821 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14822 if (ill_list == NULL) { 14823 rw_exit(&ipst->ips_ill_g_lock); 14824 return (ENOMEM); 14825 } 14826 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14827 14828 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14829 mutex_enter(&new_ipsq->ipsq_lock); 14830 if ((new_ipsq->ipsq_writer == NULL && 14831 new_ipsq->ipsq_current_ipif == NULL) || 14832 (new_ipsq->ipsq_writer == curthread)) { 14833 new_ipsq->ipsq_writer = curthread; 14834 new_ipsq->ipsq_reentry_cnt++; 14835 became_writer_on_new_sq = B_TRUE; 14836 } 14837 14838 /* 14839 * We are holding ill_g_lock as writer and all the ill locks of 14840 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14841 * message can land up on the old ipsq even though we don't hold the 14842 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14843 */ 14844 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14845 14846 /* 14847 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14848 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14849 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14850 */ 14851 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14852 14853 /* 14854 * Mark the new ipsq as needing a split since it is currently 14855 * being shared by more than 1 IPMP group. The split will 14856 * occur at the end of ipsq_exit 14857 */ 14858 new_ipsq->ipsq_split = B_TRUE; 14859 14860 /* Now release all the locks */ 14861 mutex_exit(&new_ipsq->ipsq_lock); 14862 ill_unlock_ills(ill_list, cnt); 14863 rw_exit(&ipst->ips_ill_g_lock); 14864 14865 kmem_free(ill_list, ill_list_size); 14866 14867 /* 14868 * If we succeeded in becoming writer on the new ipsq, then 14869 * drain the new ipsq and start processing all enqueued messages 14870 * including the current ioctl we are processing which is either 14871 * a set groupname or failover/failback. 14872 */ 14873 if (became_writer_on_new_sq) 14874 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14875 14876 /* 14877 * syncq has been changed and all the messages have been moved. 14878 */ 14879 mutex_enter(&old_ipsq->ipsq_lock); 14880 old_ipsq->ipsq_current_ipif = NULL; 14881 old_ipsq->ipsq_current_ioctl = 0; 14882 mutex_exit(&old_ipsq->ipsq_lock); 14883 return (EINPROGRESS); 14884 } 14885 14886 /* 14887 * Delete and add the loopback copy and non-loopback copy of 14888 * the BROADCAST ire corresponding to ill and addr. Used to 14889 * group broadcast ires together when ill becomes part of 14890 * a group. 14891 * 14892 * This function is also called when ill is leaving the group 14893 * so that the ires belonging to the group gets re-grouped. 14894 */ 14895 static void 14896 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14897 { 14898 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14899 ire_t **ire_ptpn = &ire_head; 14900 ip_stack_t *ipst = ill->ill_ipst; 14901 14902 /* 14903 * The loopback and non-loopback IREs are inserted in the order in which 14904 * they're found, on the basis that they are correctly ordered (loopback 14905 * first). 14906 */ 14907 for (;;) { 14908 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14909 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14910 if (ire == NULL) 14911 break; 14912 14913 /* 14914 * we are passing in KM_SLEEP because it is not easy to 14915 * go back to a sane state in case of memory failure. 14916 */ 14917 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14918 ASSERT(nire != NULL); 14919 bzero(nire, sizeof (ire_t)); 14920 /* 14921 * Don't use ire_max_frag directly since we don't 14922 * hold on to 'ire' until we add the new ire 'nire' and 14923 * we don't want the new ire to have a dangling reference 14924 * to 'ire'. The ire_max_frag of a broadcast ire must 14925 * be in sync with the ipif_mtu of the associate ipif. 14926 * For eg. this happens as a result of SIOCSLIFNAME, 14927 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14928 * the driver. A change in ire_max_frag triggered as 14929 * as a result of path mtu discovery, or due to an 14930 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14931 * route change -mtu command does not apply to broadcast ires. 14932 * 14933 * XXX We need a recovery strategy here if ire_init fails 14934 */ 14935 if (ire_init(nire, 14936 (uchar_t *)&ire->ire_addr, 14937 (uchar_t *)&ire->ire_mask, 14938 (uchar_t *)&ire->ire_src_addr, 14939 (uchar_t *)&ire->ire_gateway_addr, 14940 ire->ire_stq == NULL ? &ip_loopback_mtu : 14941 &ire->ire_ipif->ipif_mtu, 14942 ire->ire_nce, 14943 ire->ire_rfq, 14944 ire->ire_stq, 14945 ire->ire_type, 14946 ire->ire_ipif, 14947 ire->ire_cmask, 14948 ire->ire_phandle, 14949 ire->ire_ihandle, 14950 ire->ire_flags, 14951 &ire->ire_uinfo, 14952 NULL, 14953 NULL, 14954 ipst) == NULL) { 14955 cmn_err(CE_PANIC, "ire_init() failed"); 14956 } 14957 ire_delete(ire); 14958 ire_refrele(ire); 14959 14960 /* 14961 * The newly created IREs are inserted at the tail of the list 14962 * starting with ire_head. As we've just allocated them no one 14963 * knows about them so it's safe. 14964 */ 14965 *ire_ptpn = nire; 14966 ire_ptpn = &nire->ire_next; 14967 } 14968 14969 for (nire = ire_head; nire != NULL; nire = nire_next) { 14970 int error; 14971 ire_t *oire; 14972 /* unlink the IRE from our list before calling ire_add() */ 14973 nire_next = nire->ire_next; 14974 nire->ire_next = NULL; 14975 14976 /* ire_add adds the ire at the right place in the list */ 14977 oire = nire; 14978 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14979 ASSERT(error == 0); 14980 ASSERT(oire == nire); 14981 ire_refrele(nire); /* Held in ire_add */ 14982 } 14983 } 14984 14985 /* 14986 * This function is usually called when an ill is inserted in 14987 * a group and all the ipifs are already UP. As all the ipifs 14988 * are already UP, the broadcast ires have already been created 14989 * and been inserted. But, ire_add_v4 would not have grouped properly. 14990 * We need to re-group for the benefit of ip_wput_ire which 14991 * expects BROADCAST ires to be grouped properly to avoid sending 14992 * more than one copy of the broadcast packet per group. 14993 * 14994 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14995 * because when ipif_up_done ends up calling this, ires have 14996 * already been added before illgrp_insert i.e before ill_group 14997 * has been initialized. 14998 */ 14999 static void 15000 ill_group_bcast_for_xmit(ill_t *ill) 15001 { 15002 ill_group_t *illgrp; 15003 ipif_t *ipif; 15004 ipaddr_t addr; 15005 ipaddr_t net_mask; 15006 ipaddr_t subnet_netmask; 15007 15008 illgrp = ill->ill_group; 15009 15010 /* 15011 * This function is called even when an ill is deleted from 15012 * the group. Hence, illgrp could be null. 15013 */ 15014 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15015 return; 15016 15017 /* 15018 * Delete all the BROADCAST ires matching this ill and add 15019 * them back. This time, ire_add_v4 should take care of 15020 * grouping them with others because ill is part of the 15021 * group. 15022 */ 15023 ill_bcast_delete_and_add(ill, 0); 15024 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15025 15026 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15027 15028 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15029 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15030 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15031 } else { 15032 net_mask = htonl(IN_CLASSA_NET); 15033 } 15034 addr = net_mask & ipif->ipif_subnet; 15035 ill_bcast_delete_and_add(ill, addr); 15036 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15037 15038 subnet_netmask = ipif->ipif_net_mask; 15039 addr = ipif->ipif_subnet; 15040 ill_bcast_delete_and_add(ill, addr); 15041 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15042 } 15043 } 15044 15045 /* 15046 * This function is called from illgrp_delete when ill is being deleted 15047 * from the group. 15048 * 15049 * As ill is not there in the group anymore, any address belonging 15050 * to this ill should be cleared of IRE_MARK_NORECV. 15051 */ 15052 static void 15053 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15054 { 15055 ire_t *ire; 15056 irb_t *irb; 15057 ip_stack_t *ipst = ill->ill_ipst; 15058 15059 ASSERT(ill->ill_group == NULL); 15060 15061 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15062 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15063 15064 if (ire != NULL) { 15065 /* 15066 * IPMP and plumbing operations are serialized on the ipsq, so 15067 * no one will insert or delete a broadcast ire under our feet. 15068 */ 15069 irb = ire->ire_bucket; 15070 rw_enter(&irb->irb_lock, RW_READER); 15071 ire_refrele(ire); 15072 15073 for (; ire != NULL; ire = ire->ire_next) { 15074 if (ire->ire_addr != addr) 15075 break; 15076 if (ire_to_ill(ire) != ill) 15077 continue; 15078 15079 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15080 ire->ire_marks &= ~IRE_MARK_NORECV; 15081 } 15082 rw_exit(&irb->irb_lock); 15083 } 15084 } 15085 15086 /* 15087 * This function must be called only after the broadcast ires 15088 * have been grouped together. For a given address addr, nominate 15089 * only one of the ires whose interface is not FAILED or OFFLINE. 15090 * 15091 * This is also called when an ipif goes down, so that we can nominate 15092 * a different ire with the same address for receiving. 15093 */ 15094 static void 15095 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15096 { 15097 irb_t *irb; 15098 ire_t *ire; 15099 ire_t *ire1; 15100 ire_t *save_ire; 15101 ire_t **irep = NULL; 15102 boolean_t first = B_TRUE; 15103 ire_t *clear_ire = NULL; 15104 ire_t *start_ire = NULL; 15105 ire_t *new_lb_ire; 15106 ire_t *new_nlb_ire; 15107 boolean_t new_lb_ire_used = B_FALSE; 15108 boolean_t new_nlb_ire_used = B_FALSE; 15109 uint64_t match_flags; 15110 uint64_t phyi_flags; 15111 boolean_t fallback = B_FALSE; 15112 uint_t max_frag; 15113 15114 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15115 NULL, MATCH_IRE_TYPE, ipst); 15116 /* 15117 * We may not be able to find some ires if a previous 15118 * ire_create failed. This happens when an ipif goes 15119 * down and we are unable to create BROADCAST ires due 15120 * to memory failure. Thus, we have to check for NULL 15121 * below. This should handle the case for LOOPBACK, 15122 * POINTOPOINT and interfaces with some POINTOPOINT 15123 * logicals for which there are no BROADCAST ires. 15124 */ 15125 if (ire == NULL) 15126 return; 15127 /* 15128 * Currently IRE_BROADCASTS are deleted when an ipif 15129 * goes down which runs exclusively. Thus, setting 15130 * IRE_MARK_RCVD should not race with ire_delete marking 15131 * IRE_MARK_CONDEMNED. We grab the lock below just to 15132 * be consistent with other parts of the code that walks 15133 * a given bucket. 15134 */ 15135 save_ire = ire; 15136 irb = ire->ire_bucket; 15137 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15138 if (new_lb_ire == NULL) { 15139 ire_refrele(ire); 15140 return; 15141 } 15142 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15143 if (new_nlb_ire == NULL) { 15144 ire_refrele(ire); 15145 kmem_cache_free(ire_cache, new_lb_ire); 15146 return; 15147 } 15148 IRB_REFHOLD(irb); 15149 rw_enter(&irb->irb_lock, RW_WRITER); 15150 /* 15151 * Get to the first ire matching the address and the 15152 * group. If the address does not match we are done 15153 * as we could not find the IRE. If the address matches 15154 * we should get to the first one matching the group. 15155 */ 15156 while (ire != NULL) { 15157 if (ire->ire_addr != addr || 15158 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15159 break; 15160 } 15161 ire = ire->ire_next; 15162 } 15163 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15164 start_ire = ire; 15165 redo: 15166 while (ire != NULL && ire->ire_addr == addr && 15167 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15168 /* 15169 * The first ire for any address within a group 15170 * should always be the one with IRE_MARK_NORECV cleared 15171 * so that ip_wput_ire can avoid searching for one. 15172 * Note down the insertion point which will be used 15173 * later. 15174 */ 15175 if (first && (irep == NULL)) 15176 irep = ire->ire_ptpn; 15177 /* 15178 * PHYI_FAILED is set when the interface fails. 15179 * This interface might have become good, but the 15180 * daemon has not yet detected. We should still 15181 * not receive on this. PHYI_OFFLINE should never 15182 * be picked as this has been offlined and soon 15183 * be removed. 15184 */ 15185 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15186 if (phyi_flags & PHYI_OFFLINE) { 15187 ire->ire_marks |= IRE_MARK_NORECV; 15188 ire = ire->ire_next; 15189 continue; 15190 } 15191 if (phyi_flags & match_flags) { 15192 ire->ire_marks |= IRE_MARK_NORECV; 15193 ire = ire->ire_next; 15194 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15195 PHYI_INACTIVE) { 15196 fallback = B_TRUE; 15197 } 15198 continue; 15199 } 15200 if (first) { 15201 /* 15202 * We will move this to the front of the list later 15203 * on. 15204 */ 15205 clear_ire = ire; 15206 ire->ire_marks &= ~IRE_MARK_NORECV; 15207 } else { 15208 ire->ire_marks |= IRE_MARK_NORECV; 15209 } 15210 first = B_FALSE; 15211 ire = ire->ire_next; 15212 } 15213 /* 15214 * If we never nominated anybody, try nominating at least 15215 * an INACTIVE, if we found one. Do it only once though. 15216 */ 15217 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15218 fallback) { 15219 match_flags = PHYI_FAILED; 15220 ire = start_ire; 15221 irep = NULL; 15222 goto redo; 15223 } 15224 ire_refrele(save_ire); 15225 15226 /* 15227 * irep non-NULL indicates that we entered the while loop 15228 * above. If clear_ire is at the insertion point, we don't 15229 * have to do anything. clear_ire will be NULL if all the 15230 * interfaces are failed. 15231 * 15232 * We cannot unlink and reinsert the ire at the right place 15233 * in the list since there can be other walkers of this bucket. 15234 * Instead we delete and recreate the ire 15235 */ 15236 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15237 ire_t *clear_ire_stq = NULL; 15238 15239 bzero(new_lb_ire, sizeof (ire_t)); 15240 /* XXX We need a recovery strategy here. */ 15241 if (ire_init(new_lb_ire, 15242 (uchar_t *)&clear_ire->ire_addr, 15243 (uchar_t *)&clear_ire->ire_mask, 15244 (uchar_t *)&clear_ire->ire_src_addr, 15245 (uchar_t *)&clear_ire->ire_gateway_addr, 15246 &clear_ire->ire_max_frag, 15247 NULL, /* let ire_nce_init derive the resolver info */ 15248 clear_ire->ire_rfq, 15249 clear_ire->ire_stq, 15250 clear_ire->ire_type, 15251 clear_ire->ire_ipif, 15252 clear_ire->ire_cmask, 15253 clear_ire->ire_phandle, 15254 clear_ire->ire_ihandle, 15255 clear_ire->ire_flags, 15256 &clear_ire->ire_uinfo, 15257 NULL, 15258 NULL, 15259 ipst) == NULL) 15260 cmn_err(CE_PANIC, "ire_init() failed"); 15261 if (clear_ire->ire_stq == NULL) { 15262 ire_t *ire_next = clear_ire->ire_next; 15263 if (ire_next != NULL && 15264 ire_next->ire_stq != NULL && 15265 ire_next->ire_addr == clear_ire->ire_addr && 15266 ire_next->ire_ipif->ipif_ill == 15267 clear_ire->ire_ipif->ipif_ill) { 15268 clear_ire_stq = ire_next; 15269 15270 bzero(new_nlb_ire, sizeof (ire_t)); 15271 /* XXX We need a recovery strategy here. */ 15272 if (ire_init(new_nlb_ire, 15273 (uchar_t *)&clear_ire_stq->ire_addr, 15274 (uchar_t *)&clear_ire_stq->ire_mask, 15275 (uchar_t *)&clear_ire_stq->ire_src_addr, 15276 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15277 &clear_ire_stq->ire_max_frag, 15278 NULL, 15279 clear_ire_stq->ire_rfq, 15280 clear_ire_stq->ire_stq, 15281 clear_ire_stq->ire_type, 15282 clear_ire_stq->ire_ipif, 15283 clear_ire_stq->ire_cmask, 15284 clear_ire_stq->ire_phandle, 15285 clear_ire_stq->ire_ihandle, 15286 clear_ire_stq->ire_flags, 15287 &clear_ire_stq->ire_uinfo, 15288 NULL, 15289 NULL, 15290 ipst) == NULL) 15291 cmn_err(CE_PANIC, "ire_init() failed"); 15292 } 15293 } 15294 15295 /* 15296 * Delete the ire. We can't call ire_delete() since 15297 * we are holding the bucket lock. We can't release the 15298 * bucket lock since we can't allow irep to change. So just 15299 * mark it CONDEMNED. The IRB_REFRELE will delete the 15300 * ire from the list and do the refrele. 15301 */ 15302 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15303 irb->irb_marks |= IRB_MARK_CONDEMNED; 15304 15305 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15306 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15307 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15308 } 15309 15310 /* 15311 * Also take care of otherfields like ib/ob pkt count 15312 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15313 */ 15314 15315 /* Set the max_frag before adding the ire */ 15316 max_frag = *new_lb_ire->ire_max_fragp; 15317 new_lb_ire->ire_max_fragp = NULL; 15318 new_lb_ire->ire_max_frag = max_frag; 15319 15320 /* Add the new ire's. Insert at *irep */ 15321 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15322 ire1 = *irep; 15323 if (ire1 != NULL) 15324 ire1->ire_ptpn = &new_lb_ire->ire_next; 15325 new_lb_ire->ire_next = ire1; 15326 /* Link the new one in. */ 15327 new_lb_ire->ire_ptpn = irep; 15328 membar_producer(); 15329 *irep = new_lb_ire; 15330 new_lb_ire_used = B_TRUE; 15331 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15332 new_lb_ire->ire_bucket->irb_ire_cnt++; 15333 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15334 15335 if (clear_ire_stq != NULL) { 15336 /* Set the max_frag before adding the ire */ 15337 max_frag = *new_nlb_ire->ire_max_fragp; 15338 new_nlb_ire->ire_max_fragp = NULL; 15339 new_nlb_ire->ire_max_frag = max_frag; 15340 15341 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15342 irep = &new_lb_ire->ire_next; 15343 /* Add the new ire. Insert at *irep */ 15344 ire1 = *irep; 15345 if (ire1 != NULL) 15346 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15347 new_nlb_ire->ire_next = ire1; 15348 /* Link the new one in. */ 15349 new_nlb_ire->ire_ptpn = irep; 15350 membar_producer(); 15351 *irep = new_nlb_ire; 15352 new_nlb_ire_used = B_TRUE; 15353 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15354 ire_stats_inserted); 15355 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15356 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15357 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15358 } 15359 } 15360 rw_exit(&irb->irb_lock); 15361 if (!new_lb_ire_used) 15362 kmem_cache_free(ire_cache, new_lb_ire); 15363 if (!new_nlb_ire_used) 15364 kmem_cache_free(ire_cache, new_nlb_ire); 15365 IRB_REFRELE(irb); 15366 } 15367 15368 /* 15369 * Whenever an ipif goes down we have to renominate a different 15370 * broadcast ire to receive. Whenever an ipif comes up, we need 15371 * to make sure that we have only one nominated to receive. 15372 */ 15373 static void 15374 ipif_renominate_bcast(ipif_t *ipif) 15375 { 15376 ill_t *ill = ipif->ipif_ill; 15377 ipaddr_t subnet_addr; 15378 ipaddr_t net_addr; 15379 ipaddr_t net_mask = 0; 15380 ipaddr_t subnet_netmask; 15381 ipaddr_t addr; 15382 ill_group_t *illgrp; 15383 ip_stack_t *ipst = ill->ill_ipst; 15384 15385 illgrp = ill->ill_group; 15386 /* 15387 * If this is the last ipif going down, it might take 15388 * the ill out of the group. In that case ipif_down -> 15389 * illgrp_delete takes care of doing the nomination. 15390 * ipif_down does not call for this case. 15391 */ 15392 ASSERT(illgrp != NULL); 15393 15394 /* There could not have been any ires associated with this */ 15395 if (ipif->ipif_subnet == 0) 15396 return; 15397 15398 ill_mark_bcast(illgrp, 0, ipst); 15399 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15400 15401 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15402 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15403 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15404 } else { 15405 net_mask = htonl(IN_CLASSA_NET); 15406 } 15407 addr = net_mask & ipif->ipif_subnet; 15408 ill_mark_bcast(illgrp, addr, ipst); 15409 15410 net_addr = ~net_mask | addr; 15411 ill_mark_bcast(illgrp, net_addr, ipst); 15412 15413 subnet_netmask = ipif->ipif_net_mask; 15414 addr = ipif->ipif_subnet; 15415 ill_mark_bcast(illgrp, addr, ipst); 15416 15417 subnet_addr = ~subnet_netmask | addr; 15418 ill_mark_bcast(illgrp, subnet_addr, ipst); 15419 } 15420 15421 /* 15422 * Whenever we form or delete ill groups, we need to nominate one set of 15423 * BROADCAST ires for receiving in the group. 15424 * 15425 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15426 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15427 * for ill_ipif_up_count to be non-zero. This is the only case where 15428 * ill_ipif_up_count is zero and we would still find the ires. 15429 * 15430 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15431 * ipif is UP and we just have to do the nomination. 15432 * 15433 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15434 * from the group. So, we have to do the nomination. 15435 * 15436 * Because of (3), there could be just one ill in the group. But we have 15437 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15438 * Thus, this function does not optimize when there is only one ill as 15439 * it is not correct for (3). 15440 */ 15441 static void 15442 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15443 { 15444 ill_t *ill; 15445 ipif_t *ipif; 15446 ipaddr_t subnet_addr; 15447 ipaddr_t prev_subnet_addr = 0; 15448 ipaddr_t net_addr; 15449 ipaddr_t prev_net_addr = 0; 15450 ipaddr_t net_mask = 0; 15451 ipaddr_t subnet_netmask; 15452 ipaddr_t addr; 15453 ip_stack_t *ipst; 15454 15455 /* 15456 * When the last memeber is leaving, there is nothing to 15457 * nominate. 15458 */ 15459 if (illgrp->illgrp_ill_count == 0) { 15460 ASSERT(illgrp->illgrp_ill == NULL); 15461 return; 15462 } 15463 15464 ill = illgrp->illgrp_ill; 15465 ASSERT(!ill->ill_isv6); 15466 ipst = ill->ill_ipst; 15467 /* 15468 * We assume that ires with same address and belonging to the 15469 * same group, has been grouped together. Nominating a *single* 15470 * ill in the group for sending and receiving broadcast is done 15471 * by making sure that the first BROADCAST ire (which will be 15472 * the one returned by ire_ctable_lookup for ip_rput and the 15473 * one that will be used in ip_wput_ire) will be the one that 15474 * will not have IRE_MARK_NORECV set. 15475 * 15476 * 1) ip_rput checks and discards packets received on ires marked 15477 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15478 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15479 * first ire in the group for every broadcast address in the group. 15480 * ip_rput will accept packets only on the first ire i.e only 15481 * one copy of the ill. 15482 * 15483 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15484 * packet for the whole group. It needs to send out on the ill 15485 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15486 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15487 * the copy echoed back on other port where the ire is not marked 15488 * with IRE_MARK_NORECV. 15489 * 15490 * Note that we just need to have the first IRE either loopback or 15491 * non-loopback (either of them may not exist if ire_create failed 15492 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15493 * always hit the first one and hence will always accept one copy. 15494 * 15495 * We have a broadcast ire per ill for all the unique prefixes 15496 * hosted on that ill. As we don't have a way of knowing the 15497 * unique prefixes on a given ill and hence in the whole group, 15498 * we just call ill_mark_bcast on all the prefixes that exist 15499 * in the group. For the common case of one prefix, the code 15500 * below optimizes by remebering the last address used for 15501 * markng. In the case of multiple prefixes, this will still 15502 * optimize depending the order of prefixes. 15503 * 15504 * The only unique address across the whole group is 0.0.0.0 and 15505 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15506 * the first ire in the bucket for receiving and disables the 15507 * others. 15508 */ 15509 ill_mark_bcast(illgrp, 0, ipst); 15510 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15511 for (; ill != NULL; ill = ill->ill_group_next) { 15512 15513 for (ipif = ill->ill_ipif; ipif != NULL; 15514 ipif = ipif->ipif_next) { 15515 15516 if (!(ipif->ipif_flags & IPIF_UP) || 15517 ipif->ipif_subnet == 0) { 15518 continue; 15519 } 15520 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15521 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15522 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15523 } else { 15524 net_mask = htonl(IN_CLASSA_NET); 15525 } 15526 addr = net_mask & ipif->ipif_subnet; 15527 if (prev_net_addr == 0 || prev_net_addr != addr) { 15528 ill_mark_bcast(illgrp, addr, ipst); 15529 net_addr = ~net_mask | addr; 15530 ill_mark_bcast(illgrp, net_addr, ipst); 15531 } 15532 prev_net_addr = addr; 15533 15534 subnet_netmask = ipif->ipif_net_mask; 15535 addr = ipif->ipif_subnet; 15536 if (prev_subnet_addr == 0 || 15537 prev_subnet_addr != addr) { 15538 ill_mark_bcast(illgrp, addr, ipst); 15539 subnet_addr = ~subnet_netmask | addr; 15540 ill_mark_bcast(illgrp, subnet_addr, ipst); 15541 } 15542 prev_subnet_addr = addr; 15543 } 15544 } 15545 } 15546 15547 /* 15548 * This function is called while forming ill groups. 15549 * 15550 * Currently, we handle only allmulti groups. We want to join 15551 * allmulti on only one of the ills in the groups. In future, 15552 * when we have link aggregation, we may have to join normal 15553 * multicast groups on multiple ills as switch does inbound load 15554 * balancing. Following are the functions that calls this 15555 * function : 15556 * 15557 * 1) ill_recover_multicast : Interface is coming back UP. 15558 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15559 * will call ill_recover_multicast to recover all the multicast 15560 * groups. We need to make sure that only one member is joined 15561 * in the ill group. 15562 * 15563 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15564 * Somebody is joining allmulti. We need to make sure that only one 15565 * member is joined in the group. 15566 * 15567 * 3) illgrp_insert : If allmulti has already joined, we need to make 15568 * sure that only one member is joined in the group. 15569 * 15570 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15571 * allmulti who we have nominated. We need to pick someother ill. 15572 * 15573 * 5) illgrp_delete : The ill we nominated is leaving the group, 15574 * we need to pick a new ill to join the group. 15575 * 15576 * For (1), (2), (5) - we just have to check whether there is 15577 * a good ill joined in the group. If we could not find any ills 15578 * joined the group, we should join. 15579 * 15580 * For (4), the one that was nominated to receive, left the group. 15581 * There could be nobody joined in the group when this function is 15582 * called. 15583 * 15584 * For (3) - we need to explicitly check whether there are multiple 15585 * ills joined in the group. 15586 * 15587 * For simplicity, we don't differentiate any of the above cases. We 15588 * just leave the group if it is joined on any of them and join on 15589 * the first good ill. 15590 */ 15591 int 15592 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15593 { 15594 ilm_t *ilm; 15595 ill_t *ill; 15596 ill_t *fallback_inactive_ill = NULL; 15597 ill_t *fallback_failed_ill = NULL; 15598 int ret = 0; 15599 15600 /* 15601 * Leave the allmulti on all the ills and start fresh. 15602 */ 15603 for (ill = illgrp->illgrp_ill; ill != NULL; 15604 ill = ill->ill_group_next) { 15605 if (ill->ill_join_allmulti) 15606 (void) ip_leave_allmulti(ill->ill_ipif); 15607 } 15608 15609 /* 15610 * Choose a good ill. Fallback to inactive or failed if 15611 * none available. We need to fallback to FAILED in the 15612 * case where we have 2 interfaces in a group - where 15613 * one of them is failed and another is a good one and 15614 * the good one (not marked inactive) is leaving the group. 15615 */ 15616 ret = 0; 15617 for (ill = illgrp->illgrp_ill; ill != NULL; 15618 ill = ill->ill_group_next) { 15619 /* Never pick an offline interface */ 15620 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15621 continue; 15622 15623 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15624 fallback_failed_ill = ill; 15625 continue; 15626 } 15627 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15628 fallback_inactive_ill = ill; 15629 continue; 15630 } 15631 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15632 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15633 ret = ip_join_allmulti(ill->ill_ipif); 15634 /* 15635 * ip_join_allmulti can fail because of memory 15636 * failures. So, make sure we join at least 15637 * on one ill. 15638 */ 15639 if (ill->ill_join_allmulti) 15640 return (0); 15641 } 15642 } 15643 } 15644 if (ret != 0) { 15645 /* 15646 * If we tried nominating above and failed to do so, 15647 * return error. We might have tried multiple times. 15648 * But, return the latest error. 15649 */ 15650 return (ret); 15651 } 15652 if ((ill = fallback_inactive_ill) != NULL) { 15653 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15654 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15655 ret = ip_join_allmulti(ill->ill_ipif); 15656 return (ret); 15657 } 15658 } 15659 } else if ((ill = fallback_failed_ill) != NULL) { 15660 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15661 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15662 ret = ip_join_allmulti(ill->ill_ipif); 15663 return (ret); 15664 } 15665 } 15666 } 15667 return (0); 15668 } 15669 15670 /* 15671 * This function is called from illgrp_delete after it is 15672 * deleted from the group to reschedule responsibilities 15673 * to a different ill. 15674 */ 15675 static void 15676 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15677 { 15678 ilm_t *ilm; 15679 ipif_t *ipif; 15680 ipaddr_t subnet_addr; 15681 ipaddr_t net_addr; 15682 ipaddr_t net_mask = 0; 15683 ipaddr_t subnet_netmask; 15684 ipaddr_t addr; 15685 ip_stack_t *ipst = ill->ill_ipst; 15686 15687 ASSERT(ill->ill_group == NULL); 15688 /* 15689 * Broadcast Responsibility: 15690 * 15691 * 1. If this ill has been nominated for receiving broadcast 15692 * packets, we need to find a new one. Before we find a new 15693 * one, we need to re-group the ires that are part of this new 15694 * group (assumed by ill_nominate_bcast_rcv). We do this by 15695 * calling ill_group_bcast_for_xmit(ill) which will do the right 15696 * thing for us. 15697 * 15698 * 2. If this ill was not nominated for receiving broadcast 15699 * packets, we need to clear the IRE_MARK_NORECV flag 15700 * so that we continue to send up broadcast packets. 15701 */ 15702 if (!ill->ill_isv6) { 15703 /* 15704 * Case 1 above : No optimization here. Just redo the 15705 * nomination. 15706 */ 15707 ill_group_bcast_for_xmit(ill); 15708 ill_nominate_bcast_rcv(illgrp); 15709 15710 /* 15711 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15712 */ 15713 ill_clear_bcast_mark(ill, 0); 15714 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15715 15716 for (ipif = ill->ill_ipif; ipif != NULL; 15717 ipif = ipif->ipif_next) { 15718 15719 if (!(ipif->ipif_flags & IPIF_UP) || 15720 ipif->ipif_subnet == 0) { 15721 continue; 15722 } 15723 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15724 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15725 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15726 } else { 15727 net_mask = htonl(IN_CLASSA_NET); 15728 } 15729 addr = net_mask & ipif->ipif_subnet; 15730 ill_clear_bcast_mark(ill, addr); 15731 15732 net_addr = ~net_mask | addr; 15733 ill_clear_bcast_mark(ill, net_addr); 15734 15735 subnet_netmask = ipif->ipif_net_mask; 15736 addr = ipif->ipif_subnet; 15737 ill_clear_bcast_mark(ill, addr); 15738 15739 subnet_addr = ~subnet_netmask | addr; 15740 ill_clear_bcast_mark(ill, subnet_addr); 15741 } 15742 } 15743 15744 /* 15745 * Multicast Responsibility. 15746 * 15747 * If we have joined allmulti on this one, find a new member 15748 * in the group to join allmulti. As this ill is already part 15749 * of allmulti, we don't have to join on this one. 15750 * 15751 * If we have not joined allmulti on this one, there is no 15752 * responsibility to handoff. But we need to take new 15753 * responsibility i.e, join allmulti on this one if we need 15754 * to. 15755 */ 15756 if (ill->ill_join_allmulti) { 15757 (void) ill_nominate_mcast_rcv(illgrp); 15758 } else { 15759 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15760 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15761 (void) ip_join_allmulti(ill->ill_ipif); 15762 break; 15763 } 15764 } 15765 } 15766 15767 /* 15768 * We intentionally do the flushing of IRE_CACHES only matching 15769 * on the ill and not on groups. Note that we are already deleted 15770 * from the group. 15771 * 15772 * This will make sure that all IRE_CACHES whose stq is pointing 15773 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15774 * deleted and IRE_CACHES that are not pointing at this ill will 15775 * be left alone. 15776 */ 15777 if (ill->ill_isv6) { 15778 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15779 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15780 } else { 15781 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15782 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15783 } 15784 15785 /* 15786 * Some conn may have cached one of the IREs deleted above. By removing 15787 * the ire reference, we clean up the extra reference to the ill held in 15788 * ire->ire_stq. 15789 */ 15790 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15791 15792 /* 15793 * Re-do source address selection for all the members in the 15794 * group, if they borrowed source address from one of the ipifs 15795 * in this ill. 15796 */ 15797 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15798 if (ill->ill_isv6) { 15799 ipif_update_other_ipifs_v6(ipif, illgrp); 15800 } else { 15801 ipif_update_other_ipifs(ipif, illgrp); 15802 } 15803 } 15804 } 15805 15806 /* 15807 * Delete the ill from the group. The caller makes sure that it is 15808 * in a group and it okay to delete from the group. So, we always 15809 * delete here. 15810 */ 15811 static void 15812 illgrp_delete(ill_t *ill) 15813 { 15814 ill_group_t *illgrp; 15815 ill_group_t *tmpg; 15816 ill_t *tmp_ill; 15817 ip_stack_t *ipst = ill->ill_ipst; 15818 15819 /* 15820 * Reset illgrp_ill_schednext if it was pointing at us. 15821 * We need to do this before we set ill_group to NULL. 15822 */ 15823 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15824 mutex_enter(&ill->ill_lock); 15825 15826 illgrp_reset_schednext(ill); 15827 15828 illgrp = ill->ill_group; 15829 15830 /* Delete the ill from illgrp. */ 15831 if (illgrp->illgrp_ill == ill) { 15832 illgrp->illgrp_ill = ill->ill_group_next; 15833 } else { 15834 tmp_ill = illgrp->illgrp_ill; 15835 while (tmp_ill->ill_group_next != ill) { 15836 tmp_ill = tmp_ill->ill_group_next; 15837 ASSERT(tmp_ill != NULL); 15838 } 15839 tmp_ill->ill_group_next = ill->ill_group_next; 15840 } 15841 ill->ill_group = NULL; 15842 ill->ill_group_next = NULL; 15843 15844 illgrp->illgrp_ill_count--; 15845 mutex_exit(&ill->ill_lock); 15846 rw_exit(&ipst->ips_ill_g_lock); 15847 15848 /* 15849 * As this ill is leaving the group, we need to hand off 15850 * the responsibilities to the other ills in the group, if 15851 * this ill had some responsibilities. 15852 */ 15853 15854 ill_handoff_responsibility(ill, illgrp); 15855 15856 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15857 15858 if (illgrp->illgrp_ill_count == 0) { 15859 15860 ASSERT(illgrp->illgrp_ill == NULL); 15861 if (ill->ill_isv6) { 15862 if (illgrp == ipst->ips_illgrp_head_v6) { 15863 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15864 } else { 15865 tmpg = ipst->ips_illgrp_head_v6; 15866 while (tmpg->illgrp_next != illgrp) { 15867 tmpg = tmpg->illgrp_next; 15868 ASSERT(tmpg != NULL); 15869 } 15870 tmpg->illgrp_next = illgrp->illgrp_next; 15871 } 15872 } else { 15873 if (illgrp == ipst->ips_illgrp_head_v4) { 15874 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15875 } else { 15876 tmpg = ipst->ips_illgrp_head_v4; 15877 while (tmpg->illgrp_next != illgrp) { 15878 tmpg = tmpg->illgrp_next; 15879 ASSERT(tmpg != NULL); 15880 } 15881 tmpg->illgrp_next = illgrp->illgrp_next; 15882 } 15883 } 15884 mutex_destroy(&illgrp->illgrp_lock); 15885 mi_free(illgrp); 15886 } 15887 rw_exit(&ipst->ips_ill_g_lock); 15888 15889 /* 15890 * Even though the ill is out of the group its not necessary 15891 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15892 * We will split the ipsq when phyint_groupname is set to NULL. 15893 */ 15894 15895 /* 15896 * Send a routing sockets message if we are deleting from 15897 * groups with names. 15898 */ 15899 if (ill->ill_phyint->phyint_groupname_len != 0) 15900 ip_rts_ifmsg(ill->ill_ipif); 15901 } 15902 15903 /* 15904 * Re-do source address selection. This is normally called when 15905 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15906 * ipif comes up. 15907 */ 15908 void 15909 ill_update_source_selection(ill_t *ill) 15910 { 15911 ipif_t *ipif; 15912 15913 ASSERT(IAM_WRITER_ILL(ill)); 15914 15915 if (ill->ill_group != NULL) 15916 ill = ill->ill_group->illgrp_ill; 15917 15918 for (; ill != NULL; ill = ill->ill_group_next) { 15919 for (ipif = ill->ill_ipif; ipif != NULL; 15920 ipif = ipif->ipif_next) { 15921 if (ill->ill_isv6) 15922 ipif_recreate_interface_routes_v6(NULL, ipif); 15923 else 15924 ipif_recreate_interface_routes(NULL, ipif); 15925 } 15926 } 15927 } 15928 15929 /* 15930 * Insert ill in a group headed by illgrp_head. The caller can either 15931 * pass a groupname in which case we search for a group with the 15932 * same name to insert in or pass a group to insert in. This function 15933 * would only search groups with names. 15934 * 15935 * NOTE : The caller should make sure that there is at least one ipif 15936 * UP on this ill so that illgrp_scheduler can pick this ill 15937 * for outbound packets. If ill_ipif_up_count is zero, we have 15938 * already sent a DL_UNBIND to the driver and we don't want to 15939 * send anymore packets. We don't assert for ipif_up_count 15940 * to be greater than zero, because ipif_up_done wants to call 15941 * this function before bumping up the ipif_up_count. See 15942 * ipif_up_done() for details. 15943 */ 15944 int 15945 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15946 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15947 { 15948 ill_group_t *illgrp; 15949 ill_t *prev_ill; 15950 phyint_t *phyi; 15951 ip_stack_t *ipst = ill->ill_ipst; 15952 15953 ASSERT(ill->ill_group == NULL); 15954 15955 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15956 mutex_enter(&ill->ill_lock); 15957 15958 if (groupname != NULL) { 15959 /* 15960 * Look for a group with a matching groupname to insert. 15961 */ 15962 for (illgrp = *illgrp_head; illgrp != NULL; 15963 illgrp = illgrp->illgrp_next) { 15964 15965 ill_t *tmp_ill; 15966 15967 /* 15968 * If we have an ill_group_t in the list which has 15969 * no ill_t assigned then we must be in the process of 15970 * removing this group. We skip this as illgrp_delete() 15971 * will remove it from the list. 15972 */ 15973 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15974 ASSERT(illgrp->illgrp_ill_count == 0); 15975 continue; 15976 } 15977 15978 ASSERT(tmp_ill->ill_phyint != NULL); 15979 phyi = tmp_ill->ill_phyint; 15980 /* 15981 * Look at groups which has names only. 15982 */ 15983 if (phyi->phyint_groupname_len == 0) 15984 continue; 15985 /* 15986 * Names are stored in the phyint common to both 15987 * IPv4 and IPv6. 15988 */ 15989 if (mi_strcmp(phyi->phyint_groupname, 15990 groupname) == 0) { 15991 break; 15992 } 15993 } 15994 } else { 15995 /* 15996 * If the caller passes in a NULL "grp_to_insert", we 15997 * allocate one below and insert this singleton. 15998 */ 15999 illgrp = grp_to_insert; 16000 } 16001 16002 ill->ill_group_next = NULL; 16003 16004 if (illgrp == NULL) { 16005 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16006 if (illgrp == NULL) { 16007 return (ENOMEM); 16008 } 16009 illgrp->illgrp_next = *illgrp_head; 16010 *illgrp_head = illgrp; 16011 illgrp->illgrp_ill = ill; 16012 illgrp->illgrp_ill_count = 1; 16013 ill->ill_group = illgrp; 16014 /* 16015 * Used in illgrp_scheduler to protect multiple threads 16016 * from traversing the list. 16017 */ 16018 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16019 } else { 16020 ASSERT(ill->ill_net_type == 16021 illgrp->illgrp_ill->ill_net_type); 16022 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16023 16024 /* Insert ill at tail of this group */ 16025 prev_ill = illgrp->illgrp_ill; 16026 while (prev_ill->ill_group_next != NULL) 16027 prev_ill = prev_ill->ill_group_next; 16028 prev_ill->ill_group_next = ill; 16029 ill->ill_group = illgrp; 16030 illgrp->illgrp_ill_count++; 16031 /* 16032 * Inherit group properties. Currently only forwarding 16033 * is the property we try to keep the same with all the 16034 * ills. When there are more, we will abstract this into 16035 * a function. 16036 */ 16037 ill->ill_flags &= ~ILLF_ROUTER; 16038 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16039 } 16040 mutex_exit(&ill->ill_lock); 16041 rw_exit(&ipst->ips_ill_g_lock); 16042 16043 /* 16044 * 1) When ipif_up_done() calls this function, ipif_up_count 16045 * may be zero as it has not yet been bumped. But the ires 16046 * have already been added. So, we do the nomination here 16047 * itself. But, when ip_sioctl_groupname calls this, it checks 16048 * for ill_ipif_up_count != 0. Thus we don't check for 16049 * ill_ipif_up_count here while nominating broadcast ires for 16050 * receive. 16051 * 16052 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16053 * to group them properly as ire_add() has already happened 16054 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16055 * case, we need to do it here anyway. 16056 */ 16057 if (!ill->ill_isv6) { 16058 ill_group_bcast_for_xmit(ill); 16059 ill_nominate_bcast_rcv(illgrp); 16060 } 16061 16062 if (!ipif_is_coming_up) { 16063 /* 16064 * When ipif_up_done() calls this function, the multicast 16065 * groups have not been joined yet. So, there is no point in 16066 * nomination. ip_join_allmulti will handle groups when 16067 * ill_recover_multicast is called from ipif_up_done() later. 16068 */ 16069 (void) ill_nominate_mcast_rcv(illgrp); 16070 /* 16071 * ipif_up_done calls ill_update_source_selection 16072 * anyway. Moreover, we don't want to re-create 16073 * interface routes while ipif_up_done() still has reference 16074 * to them. Refer to ipif_up_done() for more details. 16075 */ 16076 ill_update_source_selection(ill); 16077 } 16078 16079 /* 16080 * Send a routing sockets message if we are inserting into 16081 * groups with names. 16082 */ 16083 if (groupname != NULL) 16084 ip_rts_ifmsg(ill->ill_ipif); 16085 return (0); 16086 } 16087 16088 /* 16089 * Return the first phyint matching the groupname. There could 16090 * be more than one when there are ill groups. 16091 * 16092 * If 'usable' is set, then we exclude ones that are marked with any of 16093 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16094 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16095 * emulation of ipmp. 16096 */ 16097 phyint_t * 16098 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16099 { 16100 phyint_t *phyi; 16101 16102 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16103 /* 16104 * Group names are stored in the phyint - a common structure 16105 * to both IPv4 and IPv6. 16106 */ 16107 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16108 for (; phyi != NULL; 16109 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16110 phyi, AVL_AFTER)) { 16111 if (phyi->phyint_groupname_len == 0) 16112 continue; 16113 /* 16114 * Skip the ones that should not be used since the callers 16115 * sometime use this for sending packets. 16116 */ 16117 if (usable && (phyi->phyint_flags & 16118 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16119 continue; 16120 16121 ASSERT(phyi->phyint_groupname != NULL); 16122 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16123 return (phyi); 16124 } 16125 return (NULL); 16126 } 16127 16128 16129 /* 16130 * Return the first usable phyint matching the group index. By 'usable' 16131 * we exclude ones that are marked ununsable with any of 16132 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16133 * 16134 * Used only for the ipmp/netinfo emulation of ipmp. 16135 */ 16136 phyint_t * 16137 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16138 { 16139 phyint_t *phyi; 16140 16141 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16142 16143 if (!ipst->ips_ipmp_hook_emulation) 16144 return (NULL); 16145 16146 /* 16147 * Group indicies are stored in the phyint - a common structure 16148 * to both IPv4 and IPv6. 16149 */ 16150 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16151 for (; phyi != NULL; 16152 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16153 phyi, AVL_AFTER)) { 16154 /* Ignore the ones that do not have a group */ 16155 if (phyi->phyint_groupname_len == 0) 16156 continue; 16157 16158 ASSERT(phyi->phyint_group_ifindex != 0); 16159 /* 16160 * Skip the ones that should not be used since the callers 16161 * sometime use this for sending packets. 16162 */ 16163 if (phyi->phyint_flags & 16164 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16165 continue; 16166 if (phyi->phyint_group_ifindex == group_ifindex) 16167 return (phyi); 16168 } 16169 return (NULL); 16170 } 16171 16172 16173 /* 16174 * MT notes on creation and deletion of IPMP groups 16175 * 16176 * Creation and deletion of IPMP groups introduce the need to merge or 16177 * split the associated serialization objects i.e the ipsq's. Normally all 16178 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16179 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16180 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16181 * is a need to change the <ill-ipsq> association and we have to operate on both 16182 * the source and destination IPMP groups. For eg. attempting to set the 16183 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16184 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16185 * source or destination IPMP group are mapped to a single ipsq for executing 16186 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16187 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16188 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16189 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16190 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16191 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16192 * 16193 * In the above example the ioctl handling code locates the current ipsq of hme0 16194 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16195 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16196 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16197 * the destination ipsq. If the destination ipsq is not busy, it also enters 16198 * the destination ipsq exclusively. Now the actual groupname setting operation 16199 * can proceed. If the destination ipsq is busy, the operation is enqueued 16200 * on the destination (merged) ipsq and will be handled in the unwind from 16201 * ipsq_exit. 16202 * 16203 * To prevent other threads accessing the ill while the group name change is 16204 * in progres, we bring down the ipifs which also removes the ill from the 16205 * group. The group is changed in phyint and when the first ipif on the ill 16206 * is brought up, the ill is inserted into the right IPMP group by 16207 * illgrp_insert. 16208 */ 16209 /* ARGSUSED */ 16210 int 16211 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16212 ip_ioctl_cmd_t *ipip, void *ifreq) 16213 { 16214 int i; 16215 char *tmp; 16216 int namelen; 16217 ill_t *ill = ipif->ipif_ill; 16218 ill_t *ill_v4, *ill_v6; 16219 int err = 0; 16220 phyint_t *phyi; 16221 phyint_t *phyi_tmp; 16222 struct lifreq *lifr; 16223 mblk_t *mp1; 16224 char *groupname; 16225 ipsq_t *ipsq; 16226 ip_stack_t *ipst = ill->ill_ipst; 16227 16228 ASSERT(IAM_WRITER_IPIF(ipif)); 16229 16230 /* Existance verified in ip_wput_nondata */ 16231 mp1 = mp->b_cont->b_cont; 16232 lifr = (struct lifreq *)mp1->b_rptr; 16233 groupname = lifr->lifr_groupname; 16234 16235 if (ipif->ipif_id != 0) 16236 return (EINVAL); 16237 16238 phyi = ill->ill_phyint; 16239 ASSERT(phyi != NULL); 16240 16241 if (phyi->phyint_flags & PHYI_VIRTUAL) 16242 return (EINVAL); 16243 16244 tmp = groupname; 16245 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16246 ; 16247 16248 if (i == LIFNAMSIZ) { 16249 /* no null termination */ 16250 return (EINVAL); 16251 } 16252 16253 /* 16254 * Calculate the namelen exclusive of the null 16255 * termination character. 16256 */ 16257 namelen = tmp - groupname; 16258 16259 ill_v4 = phyi->phyint_illv4; 16260 ill_v6 = phyi->phyint_illv6; 16261 16262 /* 16263 * ILL cannot be part of a usesrc group and and IPMP group at the 16264 * same time. No need to grab the ill_g_usesrc_lock here, see 16265 * synchronization notes in ip.c 16266 */ 16267 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16268 return (EINVAL); 16269 } 16270 16271 /* 16272 * mark the ill as changing. 16273 * this should queue all new requests on the syncq. 16274 */ 16275 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16276 16277 if (ill_v4 != NULL) 16278 ill_v4->ill_state_flags |= ILL_CHANGING; 16279 if (ill_v6 != NULL) 16280 ill_v6->ill_state_flags |= ILL_CHANGING; 16281 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16282 16283 if (namelen == 0) { 16284 /* 16285 * Null string means remove this interface from the 16286 * existing group. 16287 */ 16288 if (phyi->phyint_groupname_len == 0) { 16289 /* 16290 * Never was in a group. 16291 */ 16292 err = 0; 16293 goto done; 16294 } 16295 16296 /* 16297 * IPv4 or IPv6 may be temporarily out of the group when all 16298 * the ipifs are down. Thus, we need to check for ill_group to 16299 * be non-NULL. 16300 */ 16301 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16302 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16303 mutex_enter(&ill_v4->ill_lock); 16304 if (!ill_is_quiescent(ill_v4)) { 16305 /* 16306 * ipsq_pending_mp_add will not fail since 16307 * connp is NULL 16308 */ 16309 (void) ipsq_pending_mp_add(NULL, 16310 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16311 mutex_exit(&ill_v4->ill_lock); 16312 err = EINPROGRESS; 16313 goto done; 16314 } 16315 mutex_exit(&ill_v4->ill_lock); 16316 } 16317 16318 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16319 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16320 mutex_enter(&ill_v6->ill_lock); 16321 if (!ill_is_quiescent(ill_v6)) { 16322 (void) ipsq_pending_mp_add(NULL, 16323 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16324 mutex_exit(&ill_v6->ill_lock); 16325 err = EINPROGRESS; 16326 goto done; 16327 } 16328 mutex_exit(&ill_v6->ill_lock); 16329 } 16330 16331 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16332 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16333 mutex_enter(&phyi->phyint_lock); 16334 ASSERT(phyi->phyint_groupname != NULL); 16335 mi_free(phyi->phyint_groupname); 16336 phyi->phyint_groupname = NULL; 16337 phyi->phyint_groupname_len = 0; 16338 16339 /* Restore the ifindex used to be the per interface one */ 16340 phyi->phyint_group_ifindex = 0; 16341 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16342 mutex_exit(&phyi->phyint_lock); 16343 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16344 rw_exit(&ipst->ips_ill_g_lock); 16345 err = ill_up_ipifs(ill, q, mp); 16346 16347 /* 16348 * set the split flag so that the ipsq can be split 16349 */ 16350 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16351 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16352 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16353 16354 } else { 16355 if (phyi->phyint_groupname_len != 0) { 16356 ASSERT(phyi->phyint_groupname != NULL); 16357 /* Are we inserting in the same group ? */ 16358 if (mi_strcmp(groupname, 16359 phyi->phyint_groupname) == 0) { 16360 err = 0; 16361 goto done; 16362 } 16363 } 16364 16365 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16366 /* 16367 * Merge ipsq for the group's. 16368 * This check is here as multiple groups/ills might be 16369 * sharing the same ipsq. 16370 * If we have to merege than the operation is restarted 16371 * on the new ipsq. 16372 */ 16373 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16374 if (phyi->phyint_ipsq != ipsq) { 16375 rw_exit(&ipst->ips_ill_g_lock); 16376 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16377 goto done; 16378 } 16379 /* 16380 * Running exclusive on new ipsq. 16381 */ 16382 16383 ASSERT(ipsq != NULL); 16384 ASSERT(ipsq->ipsq_writer == curthread); 16385 16386 /* 16387 * Check whether the ill_type and ill_net_type matches before 16388 * we allocate any memory so that the cleanup is easier. 16389 * 16390 * We can't group dissimilar ones as we can't load spread 16391 * packets across the group because of potential link-level 16392 * header differences. 16393 */ 16394 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16395 if (phyi_tmp != NULL) { 16396 if ((ill_v4 != NULL && 16397 phyi_tmp->phyint_illv4 != NULL) && 16398 ((ill_v4->ill_net_type != 16399 phyi_tmp->phyint_illv4->ill_net_type) || 16400 (ill_v4->ill_type != 16401 phyi_tmp->phyint_illv4->ill_type))) { 16402 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16403 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16404 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16405 rw_exit(&ipst->ips_ill_g_lock); 16406 return (EINVAL); 16407 } 16408 if ((ill_v6 != NULL && 16409 phyi_tmp->phyint_illv6 != NULL) && 16410 ((ill_v6->ill_net_type != 16411 phyi_tmp->phyint_illv6->ill_net_type) || 16412 (ill_v6->ill_type != 16413 phyi_tmp->phyint_illv6->ill_type))) { 16414 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16415 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16416 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16417 rw_exit(&ipst->ips_ill_g_lock); 16418 return (EINVAL); 16419 } 16420 } 16421 16422 rw_exit(&ipst->ips_ill_g_lock); 16423 16424 /* 16425 * bring down all v4 ipifs. 16426 */ 16427 if (ill_v4 != NULL) { 16428 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16429 } 16430 16431 /* 16432 * bring down all v6 ipifs. 16433 */ 16434 if (ill_v6 != NULL) { 16435 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16436 } 16437 16438 /* 16439 * make sure all ipifs are down and there are no active 16440 * references. Call to ipsq_pending_mp_add will not fail 16441 * since connp is NULL. 16442 */ 16443 if (ill_v4 != NULL) { 16444 mutex_enter(&ill_v4->ill_lock); 16445 if (!ill_is_quiescent(ill_v4)) { 16446 (void) ipsq_pending_mp_add(NULL, 16447 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16448 mutex_exit(&ill_v4->ill_lock); 16449 err = EINPROGRESS; 16450 goto done; 16451 } 16452 mutex_exit(&ill_v4->ill_lock); 16453 } 16454 16455 if (ill_v6 != NULL) { 16456 mutex_enter(&ill_v6->ill_lock); 16457 if (!ill_is_quiescent(ill_v6)) { 16458 (void) ipsq_pending_mp_add(NULL, 16459 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16460 mutex_exit(&ill_v6->ill_lock); 16461 err = EINPROGRESS; 16462 goto done; 16463 } 16464 mutex_exit(&ill_v6->ill_lock); 16465 } 16466 16467 /* 16468 * allocate including space for null terminator 16469 * before we insert. 16470 */ 16471 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16472 if (tmp == NULL) 16473 return (ENOMEM); 16474 16475 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16476 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16477 mutex_enter(&phyi->phyint_lock); 16478 if (phyi->phyint_groupname_len != 0) { 16479 ASSERT(phyi->phyint_groupname != NULL); 16480 mi_free(phyi->phyint_groupname); 16481 } 16482 16483 /* 16484 * setup the new group name. 16485 */ 16486 phyi->phyint_groupname = tmp; 16487 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16488 phyi->phyint_groupname_len = namelen + 1; 16489 16490 if (ipst->ips_ipmp_hook_emulation) { 16491 /* 16492 * If the group already exists we use the existing 16493 * group_ifindex, otherwise we pick a new index here. 16494 */ 16495 if (phyi_tmp != NULL) { 16496 phyi->phyint_group_ifindex = 16497 phyi_tmp->phyint_group_ifindex; 16498 } else { 16499 /* XXX We need a recovery strategy here. */ 16500 if (!ip_assign_ifindex( 16501 &phyi->phyint_group_ifindex, ipst)) 16502 cmn_err(CE_PANIC, 16503 "ip_assign_ifindex() failed"); 16504 } 16505 } 16506 /* 16507 * Select whether the netinfo and hook use the per-interface 16508 * or per-group ifindex. 16509 */ 16510 if (ipst->ips_ipmp_hook_emulation) 16511 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16512 else 16513 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16514 16515 if (ipst->ips_ipmp_hook_emulation && 16516 phyi_tmp != NULL) { 16517 /* First phyint in group - group PLUMB event */ 16518 ill_nic_info_plumb(ill, B_TRUE); 16519 } 16520 mutex_exit(&phyi->phyint_lock); 16521 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16522 rw_exit(&ipst->ips_ill_g_lock); 16523 16524 err = ill_up_ipifs(ill, q, mp); 16525 } 16526 16527 done: 16528 /* 16529 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16530 */ 16531 if (err != EINPROGRESS) { 16532 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16533 if (ill_v4 != NULL) 16534 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16535 if (ill_v6 != NULL) 16536 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16537 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16538 } 16539 return (err); 16540 } 16541 16542 /* ARGSUSED */ 16543 int 16544 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16545 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16546 { 16547 ill_t *ill; 16548 phyint_t *phyi; 16549 struct lifreq *lifr; 16550 mblk_t *mp1; 16551 16552 /* Existence verified in ip_wput_nondata */ 16553 mp1 = mp->b_cont->b_cont; 16554 lifr = (struct lifreq *)mp1->b_rptr; 16555 ill = ipif->ipif_ill; 16556 phyi = ill->ill_phyint; 16557 16558 lifr->lifr_groupname[0] = '\0'; 16559 /* 16560 * ill_group may be null if all the interfaces 16561 * are down. But still, the phyint should always 16562 * hold the name. 16563 */ 16564 if (phyi->phyint_groupname_len != 0) { 16565 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16566 phyi->phyint_groupname_len); 16567 } 16568 16569 return (0); 16570 } 16571 16572 16573 typedef struct conn_move_s { 16574 ill_t *cm_from_ill; 16575 ill_t *cm_to_ill; 16576 int cm_ifindex; 16577 } conn_move_t; 16578 16579 /* 16580 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16581 */ 16582 static void 16583 conn_move(conn_t *connp, caddr_t arg) 16584 { 16585 conn_move_t *connm; 16586 int ifindex; 16587 int i; 16588 ill_t *from_ill; 16589 ill_t *to_ill; 16590 ilg_t *ilg; 16591 ilm_t *ret_ilm; 16592 16593 connm = (conn_move_t *)arg; 16594 ifindex = connm->cm_ifindex; 16595 from_ill = connm->cm_from_ill; 16596 to_ill = connm->cm_to_ill; 16597 16598 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16599 16600 /* All multicast fields protected by conn_lock */ 16601 mutex_enter(&connp->conn_lock); 16602 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16603 if ((connp->conn_outgoing_ill == from_ill) && 16604 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16605 connp->conn_outgoing_ill = to_ill; 16606 connp->conn_incoming_ill = to_ill; 16607 } 16608 16609 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16610 16611 if ((connp->conn_multicast_ill == from_ill) && 16612 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16613 connp->conn_multicast_ill = connm->cm_to_ill; 16614 } 16615 16616 /* 16617 * Change the ilg_ill to point to the new one. This assumes 16618 * ilm_move_v6 has moved the ilms to new_ill and the driver 16619 * has been told to receive packets on this interface. 16620 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16621 * But when doing a FAILOVER, it might fail with ENOMEM and so 16622 * some ilms may not have moved. We check to see whether 16623 * the ilms have moved to to_ill. We can't check on from_ill 16624 * as in the process of moving, we could have split an ilm 16625 * in to two - which has the same orig_ifindex and v6group. 16626 * 16627 * For IPv4, ilg_ipif moves implicitly. The code below really 16628 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16629 */ 16630 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16631 ilg = &connp->conn_ilg[i]; 16632 if ((ilg->ilg_ill == from_ill) && 16633 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16634 /* ifindex != 0 indicates failback */ 16635 if (ifindex != 0) { 16636 connp->conn_ilg[i].ilg_ill = to_ill; 16637 continue; 16638 } 16639 16640 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16641 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16642 connp->conn_zoneid); 16643 16644 if (ret_ilm != NULL) 16645 connp->conn_ilg[i].ilg_ill = to_ill; 16646 } 16647 } 16648 mutex_exit(&connp->conn_lock); 16649 } 16650 16651 static void 16652 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16653 { 16654 conn_move_t connm; 16655 ip_stack_t *ipst = from_ill->ill_ipst; 16656 16657 connm.cm_from_ill = from_ill; 16658 connm.cm_to_ill = to_ill; 16659 connm.cm_ifindex = ifindex; 16660 16661 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16662 } 16663 16664 /* 16665 * ilm has been moved from from_ill to to_ill. 16666 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16667 * appropriately. 16668 * 16669 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16670 * the code there de-references ipif_ill to get the ill to 16671 * send multicast requests. It does not work as ipif is on its 16672 * move and already moved when this function is called. 16673 * Thus, we need to use from_ill and to_ill send down multicast 16674 * requests. 16675 */ 16676 static void 16677 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16678 { 16679 ipif_t *ipif; 16680 ilm_t *ilm; 16681 16682 /* 16683 * See whether we need to send down DL_ENABMULTI_REQ on 16684 * to_ill as ilm has just been added. 16685 */ 16686 ASSERT(IAM_WRITER_ILL(to_ill)); 16687 ASSERT(IAM_WRITER_ILL(from_ill)); 16688 16689 ILM_WALKER_HOLD(to_ill); 16690 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16691 16692 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16693 continue; 16694 /* 16695 * no locks held, ill/ipif cannot dissappear as long 16696 * as we are writer. 16697 */ 16698 ipif = to_ill->ill_ipif; 16699 /* 16700 * No need to hold any lock as we are the writer and this 16701 * can only be changed by a writer. 16702 */ 16703 ilm->ilm_is_new = B_FALSE; 16704 16705 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16706 ipif->ipif_flags & IPIF_POINTOPOINT) { 16707 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16708 "resolver\n")); 16709 continue; /* Must be IRE_IF_NORESOLVER */ 16710 } 16711 16712 16713 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16714 ip1dbg(("ilm_send_multicast_reqs: " 16715 "to_ill MULTI_BCAST\n")); 16716 goto from; 16717 } 16718 16719 if (to_ill->ill_isv6) 16720 mld_joingroup(ilm); 16721 else 16722 igmp_joingroup(ilm); 16723 16724 if (to_ill->ill_ipif_up_count == 0) { 16725 /* 16726 * Nobody there. All multicast addresses will be 16727 * re-joined when we get the DL_BIND_ACK bringing the 16728 * interface up. 16729 */ 16730 ilm->ilm_notify_driver = B_FALSE; 16731 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16732 goto from; 16733 } 16734 16735 /* 16736 * For allmulti address, we want to join on only one interface. 16737 * Checking for ilm_numentries_v6 is not correct as you may 16738 * find an ilm with zero address on to_ill, but we may not 16739 * have nominated to_ill for receiving. Thus, if we have 16740 * nominated from_ill (ill_join_allmulti is set), nominate 16741 * only if to_ill is not already nominated (to_ill normally 16742 * should not have been nominated if "from_ill" has already 16743 * been nominated. As we don't prevent failovers from happening 16744 * across groups, we don't assert). 16745 */ 16746 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16747 /* 16748 * There is no need to hold ill locks as we are 16749 * writer on both ills and when ill_join_allmulti 16750 * is changed the thread is always a writer. 16751 */ 16752 if (from_ill->ill_join_allmulti && 16753 !to_ill->ill_join_allmulti) { 16754 (void) ip_join_allmulti(to_ill->ill_ipif); 16755 } 16756 } else if (ilm->ilm_notify_driver) { 16757 16758 /* 16759 * This is a newly moved ilm so we need to tell the 16760 * driver about the new group. There can be more than 16761 * one ilm's for the same group in the list each with a 16762 * different orig_ifindex. We have to inform the driver 16763 * once. In ilm_move_v[4,6] we only set the flag 16764 * ilm_notify_driver for the first ilm. 16765 */ 16766 16767 (void) ip_ll_send_enabmulti_req(to_ill, 16768 &ilm->ilm_v6addr); 16769 } 16770 16771 ilm->ilm_notify_driver = B_FALSE; 16772 16773 /* 16774 * See whether we need to send down DL_DISABMULTI_REQ on 16775 * from_ill as ilm has just been removed. 16776 */ 16777 from: 16778 ipif = from_ill->ill_ipif; 16779 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16780 ipif->ipif_flags & IPIF_POINTOPOINT) { 16781 ip1dbg(("ilm_send_multicast_reqs: " 16782 "from_ill not resolver\n")); 16783 continue; /* Must be IRE_IF_NORESOLVER */ 16784 } 16785 16786 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16787 ip1dbg(("ilm_send_multicast_reqs: " 16788 "from_ill MULTI_BCAST\n")); 16789 continue; 16790 } 16791 16792 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16793 if (from_ill->ill_join_allmulti) 16794 (void) ip_leave_allmulti(from_ill->ill_ipif); 16795 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16796 (void) ip_ll_send_disabmulti_req(from_ill, 16797 &ilm->ilm_v6addr); 16798 } 16799 } 16800 ILM_WALKER_RELE(to_ill); 16801 } 16802 16803 /* 16804 * This function is called when all multicast memberships needs 16805 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16806 * called only once unlike the IPv4 counterpart where it is called after 16807 * every logical interface is moved. The reason is due to multicast 16808 * memberships are joined using an interface address in IPv4 while in 16809 * IPv6, interface index is used. 16810 */ 16811 static void 16812 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16813 { 16814 ilm_t *ilm; 16815 ilm_t *ilm_next; 16816 ilm_t *new_ilm; 16817 ilm_t **ilmp; 16818 int count; 16819 char buf[INET6_ADDRSTRLEN]; 16820 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16821 ip_stack_t *ipst = from_ill->ill_ipst; 16822 16823 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16824 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16825 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16826 16827 if (ifindex == 0) { 16828 /* 16829 * Form the solicited node mcast address which is used later. 16830 */ 16831 ipif_t *ipif; 16832 16833 ipif = from_ill->ill_ipif; 16834 ASSERT(ipif->ipif_id == 0); 16835 16836 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16837 } 16838 16839 ilmp = &from_ill->ill_ilm; 16840 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16841 ilm_next = ilm->ilm_next; 16842 16843 if (ilm->ilm_flags & ILM_DELETED) { 16844 ilmp = &ilm->ilm_next; 16845 continue; 16846 } 16847 16848 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16849 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16850 ASSERT(ilm->ilm_orig_ifindex != 0); 16851 if (ilm->ilm_orig_ifindex == ifindex) { 16852 /* 16853 * We are failing back multicast memberships. 16854 * If the same ilm exists in to_ill, it means somebody 16855 * has joined the same group there e.g. ff02::1 16856 * is joined within the kernel when the interfaces 16857 * came UP. 16858 */ 16859 ASSERT(ilm->ilm_ipif == NULL); 16860 if (new_ilm != NULL) { 16861 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16862 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16863 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16864 new_ilm->ilm_is_new = B_TRUE; 16865 } 16866 } else { 16867 /* 16868 * check if we can just move the ilm 16869 */ 16870 if (from_ill->ill_ilm_walker_cnt != 0) { 16871 /* 16872 * We have walkers we cannot move 16873 * the ilm, so allocate a new ilm, 16874 * this (old) ilm will be marked 16875 * ILM_DELETED at the end of the loop 16876 * and will be freed when the 16877 * last walker exits. 16878 */ 16879 new_ilm = (ilm_t *)mi_zalloc 16880 (sizeof (ilm_t)); 16881 if (new_ilm == NULL) { 16882 ip0dbg(("ilm_move_v6: " 16883 "FAILBACK of IPv6" 16884 " multicast address %s : " 16885 "from %s to" 16886 " %s failed : ENOMEM \n", 16887 inet_ntop(AF_INET6, 16888 &ilm->ilm_v6addr, buf, 16889 sizeof (buf)), 16890 from_ill->ill_name, 16891 to_ill->ill_name)); 16892 16893 ilmp = &ilm->ilm_next; 16894 continue; 16895 } 16896 *new_ilm = *ilm; 16897 /* 16898 * we don't want new_ilm linked to 16899 * ilm's filter list. 16900 */ 16901 new_ilm->ilm_filter = NULL; 16902 } else { 16903 /* 16904 * No walkers we can move the ilm. 16905 * lets take it out of the list. 16906 */ 16907 *ilmp = ilm->ilm_next; 16908 ilm->ilm_next = NULL; 16909 new_ilm = ilm; 16910 } 16911 16912 /* 16913 * if this is the first ilm for the group 16914 * set ilm_notify_driver so that we notify the 16915 * driver in ilm_send_multicast_reqs. 16916 */ 16917 if (ilm_lookup_ill_v6(to_ill, 16918 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16919 new_ilm->ilm_notify_driver = B_TRUE; 16920 16921 new_ilm->ilm_ill = to_ill; 16922 /* Add to the to_ill's list */ 16923 new_ilm->ilm_next = to_ill->ill_ilm; 16924 to_ill->ill_ilm = new_ilm; 16925 /* 16926 * set the flag so that mld_joingroup is 16927 * called in ilm_send_multicast_reqs(). 16928 */ 16929 new_ilm->ilm_is_new = B_TRUE; 16930 } 16931 goto bottom; 16932 } else if (ifindex != 0) { 16933 /* 16934 * If this is FAILBACK (ifindex != 0) and the ifindex 16935 * has not matched above, look at the next ilm. 16936 */ 16937 ilmp = &ilm->ilm_next; 16938 continue; 16939 } 16940 /* 16941 * If we are here, it means ifindex is 0. Failover 16942 * everything. 16943 * 16944 * We need to handle solicited node mcast address 16945 * and all_nodes mcast address differently as they 16946 * are joined witin the kenrel (ipif_multicast_up) 16947 * and potentially from the userland. We are called 16948 * after the ipifs of from_ill has been moved. 16949 * If we still find ilms on ill with solicited node 16950 * mcast address or all_nodes mcast address, it must 16951 * belong to the UP interface that has not moved e.g. 16952 * ipif_id 0 with the link local prefix does not move. 16953 * We join this on the new ill accounting for all the 16954 * userland memberships so that applications don't 16955 * see any failure. 16956 * 16957 * We need to make sure that we account only for the 16958 * solicited node and all node multicast addresses 16959 * that was brought UP on these. In the case of 16960 * a failover from A to B, we might have ilms belonging 16961 * to A (ilm_orig_ifindex pointing at A) on B accounting 16962 * for the membership from the userland. If we are failing 16963 * over from B to C now, we will find the ones belonging 16964 * to A on B. These don't account for the ill_ipif_up_count. 16965 * They just move from B to C. The check below on 16966 * ilm_orig_ifindex ensures that. 16967 */ 16968 if ((ilm->ilm_orig_ifindex == 16969 from_ill->ill_phyint->phyint_ifindex) && 16970 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16971 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16972 &ilm->ilm_v6addr))) { 16973 ASSERT(ilm->ilm_refcnt > 0); 16974 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16975 /* 16976 * For indentation reasons, we are not using a 16977 * "else" here. 16978 */ 16979 if (count == 0) { 16980 ilmp = &ilm->ilm_next; 16981 continue; 16982 } 16983 ilm->ilm_refcnt -= count; 16984 if (new_ilm != NULL) { 16985 /* 16986 * Can find one with the same 16987 * ilm_orig_ifindex, if we are failing 16988 * over to a STANDBY. This happens 16989 * when somebody wants to join a group 16990 * on a STANDBY interface and we 16991 * internally join on a different one. 16992 * If we had joined on from_ill then, a 16993 * failover now will find a new ilm 16994 * with this index. 16995 */ 16996 ip1dbg(("ilm_move_v6: FAILOVER, found" 16997 " new ilm on %s, group address %s\n", 16998 to_ill->ill_name, 16999 inet_ntop(AF_INET6, 17000 &ilm->ilm_v6addr, buf, 17001 sizeof (buf)))); 17002 new_ilm->ilm_refcnt += count; 17003 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17004 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17005 new_ilm->ilm_is_new = B_TRUE; 17006 } 17007 } else { 17008 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17009 if (new_ilm == NULL) { 17010 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17011 " multicast address %s : from %s to" 17012 " %s failed : ENOMEM \n", 17013 inet_ntop(AF_INET6, 17014 &ilm->ilm_v6addr, buf, 17015 sizeof (buf)), from_ill->ill_name, 17016 to_ill->ill_name)); 17017 ilmp = &ilm->ilm_next; 17018 continue; 17019 } 17020 *new_ilm = *ilm; 17021 new_ilm->ilm_filter = NULL; 17022 new_ilm->ilm_refcnt = count; 17023 new_ilm->ilm_timer = INFINITY; 17024 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17025 new_ilm->ilm_is_new = B_TRUE; 17026 /* 17027 * If the to_ill has not joined this 17028 * group we need to tell the driver in 17029 * ill_send_multicast_reqs. 17030 */ 17031 if (ilm_lookup_ill_v6(to_ill, 17032 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17033 new_ilm->ilm_notify_driver = B_TRUE; 17034 17035 new_ilm->ilm_ill = to_ill; 17036 /* Add to the to_ill's list */ 17037 new_ilm->ilm_next = to_ill->ill_ilm; 17038 to_ill->ill_ilm = new_ilm; 17039 ASSERT(new_ilm->ilm_ipif == NULL); 17040 } 17041 if (ilm->ilm_refcnt == 0) { 17042 goto bottom; 17043 } else { 17044 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17045 CLEAR_SLIST(new_ilm->ilm_filter); 17046 ilmp = &ilm->ilm_next; 17047 } 17048 continue; 17049 } else { 17050 /* 17051 * ifindex = 0 means, move everything pointing at 17052 * from_ill. We are doing this becuase ill has 17053 * either FAILED or became INACTIVE. 17054 * 17055 * As we would like to move things later back to 17056 * from_ill, we want to retain the identity of this 17057 * ilm. Thus, we don't blindly increment the reference 17058 * count on the ilms matching the address alone. We 17059 * need to match on the ilm_orig_index also. new_ilm 17060 * was obtained by matching ilm_orig_index also. 17061 */ 17062 if (new_ilm != NULL) { 17063 /* 17064 * This is possible only if a previous restore 17065 * was incomplete i.e restore to 17066 * ilm_orig_ifindex left some ilms because 17067 * of some failures. Thus when we are failing 17068 * again, we might find our old friends there. 17069 */ 17070 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17071 " on %s, group address %s\n", 17072 to_ill->ill_name, 17073 inet_ntop(AF_INET6, 17074 &ilm->ilm_v6addr, buf, 17075 sizeof (buf)))); 17076 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17077 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17078 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17079 new_ilm->ilm_is_new = B_TRUE; 17080 } 17081 } else { 17082 if (from_ill->ill_ilm_walker_cnt != 0) { 17083 new_ilm = (ilm_t *) 17084 mi_zalloc(sizeof (ilm_t)); 17085 if (new_ilm == NULL) { 17086 ip0dbg(("ilm_move_v6: " 17087 "FAILOVER of IPv6" 17088 " multicast address %s : " 17089 "from %s to" 17090 " %s failed : ENOMEM \n", 17091 inet_ntop(AF_INET6, 17092 &ilm->ilm_v6addr, buf, 17093 sizeof (buf)), 17094 from_ill->ill_name, 17095 to_ill->ill_name)); 17096 17097 ilmp = &ilm->ilm_next; 17098 continue; 17099 } 17100 *new_ilm = *ilm; 17101 new_ilm->ilm_filter = NULL; 17102 } else { 17103 *ilmp = ilm->ilm_next; 17104 new_ilm = ilm; 17105 } 17106 /* 17107 * If the to_ill has not joined this 17108 * group we need to tell the driver in 17109 * ill_send_multicast_reqs. 17110 */ 17111 if (ilm_lookup_ill_v6(to_ill, 17112 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17113 new_ilm->ilm_notify_driver = B_TRUE; 17114 17115 /* Add to the to_ill's list */ 17116 new_ilm->ilm_next = to_ill->ill_ilm; 17117 to_ill->ill_ilm = new_ilm; 17118 ASSERT(ilm->ilm_ipif == NULL); 17119 new_ilm->ilm_ill = to_ill; 17120 new_ilm->ilm_is_new = B_TRUE; 17121 } 17122 17123 } 17124 17125 bottom: 17126 /* 17127 * Revert multicast filter state to (EXCLUDE, NULL). 17128 * new_ilm->ilm_is_new should already be set if needed. 17129 */ 17130 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17131 CLEAR_SLIST(new_ilm->ilm_filter); 17132 /* 17133 * We allocated/got a new ilm, free the old one. 17134 */ 17135 if (new_ilm != ilm) { 17136 if (from_ill->ill_ilm_walker_cnt == 0) { 17137 *ilmp = ilm->ilm_next; 17138 ilm->ilm_next = NULL; 17139 FREE_SLIST(ilm->ilm_filter); 17140 FREE_SLIST(ilm->ilm_pendsrcs); 17141 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17142 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17143 mi_free((char *)ilm); 17144 } else { 17145 ilm->ilm_flags |= ILM_DELETED; 17146 from_ill->ill_ilm_cleanup_reqd = 1; 17147 ilmp = &ilm->ilm_next; 17148 } 17149 } 17150 } 17151 } 17152 17153 /* 17154 * Move all the multicast memberships to to_ill. Called when 17155 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17156 * different from IPv6 counterpart as multicast memberships are associated 17157 * with ills in IPv6. This function is called after every ipif is moved 17158 * unlike IPv6, where it is moved only once. 17159 */ 17160 static void 17161 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17162 { 17163 ilm_t *ilm; 17164 ilm_t *ilm_next; 17165 ilm_t *new_ilm; 17166 ilm_t **ilmp; 17167 ip_stack_t *ipst = from_ill->ill_ipst; 17168 17169 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17170 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17171 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17172 17173 ilmp = &from_ill->ill_ilm; 17174 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17175 ilm_next = ilm->ilm_next; 17176 17177 if (ilm->ilm_flags & ILM_DELETED) { 17178 ilmp = &ilm->ilm_next; 17179 continue; 17180 } 17181 17182 ASSERT(ilm->ilm_ipif != NULL); 17183 17184 if (ilm->ilm_ipif != ipif) { 17185 ilmp = &ilm->ilm_next; 17186 continue; 17187 } 17188 17189 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17190 htonl(INADDR_ALLHOSTS_GROUP)) { 17191 new_ilm = ilm_lookup_ipif(ipif, 17192 V4_PART_OF_V6(ilm->ilm_v6addr)); 17193 if (new_ilm != NULL) { 17194 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17195 /* 17196 * We still need to deal with the from_ill. 17197 */ 17198 new_ilm->ilm_is_new = B_TRUE; 17199 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17200 CLEAR_SLIST(new_ilm->ilm_filter); 17201 goto delete_ilm; 17202 } 17203 /* 17204 * If we could not find one e.g. ipif is 17205 * still down on to_ill, we add this ilm 17206 * on ill_new to preserve the reference 17207 * count. 17208 */ 17209 } 17210 /* 17211 * When ipifs move, ilms always move with it 17212 * to the NEW ill. Thus we should never be 17213 * able to find ilm till we really move it here. 17214 */ 17215 ASSERT(ilm_lookup_ipif(ipif, 17216 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17217 17218 if (from_ill->ill_ilm_walker_cnt != 0) { 17219 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17220 if (new_ilm == NULL) { 17221 char buf[INET6_ADDRSTRLEN]; 17222 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17223 " multicast address %s : " 17224 "from %s to" 17225 " %s failed : ENOMEM \n", 17226 inet_ntop(AF_INET, 17227 &ilm->ilm_v6addr, buf, 17228 sizeof (buf)), 17229 from_ill->ill_name, 17230 to_ill->ill_name)); 17231 17232 ilmp = &ilm->ilm_next; 17233 continue; 17234 } 17235 *new_ilm = *ilm; 17236 /* We don't want new_ilm linked to ilm's filter list */ 17237 new_ilm->ilm_filter = NULL; 17238 } else { 17239 /* Remove from the list */ 17240 *ilmp = ilm->ilm_next; 17241 new_ilm = ilm; 17242 } 17243 17244 /* 17245 * If we have never joined this group on the to_ill 17246 * make sure we tell the driver. 17247 */ 17248 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17249 ALL_ZONES) == NULL) 17250 new_ilm->ilm_notify_driver = B_TRUE; 17251 17252 /* Add to the to_ill's list */ 17253 new_ilm->ilm_next = to_ill->ill_ilm; 17254 to_ill->ill_ilm = new_ilm; 17255 new_ilm->ilm_is_new = B_TRUE; 17256 17257 /* 17258 * Revert multicast filter state to (EXCLUDE, NULL) 17259 */ 17260 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17261 CLEAR_SLIST(new_ilm->ilm_filter); 17262 17263 /* 17264 * Delete only if we have allocated a new ilm. 17265 */ 17266 if (new_ilm != ilm) { 17267 delete_ilm: 17268 if (from_ill->ill_ilm_walker_cnt == 0) { 17269 /* Remove from the list */ 17270 *ilmp = ilm->ilm_next; 17271 ilm->ilm_next = NULL; 17272 FREE_SLIST(ilm->ilm_filter); 17273 FREE_SLIST(ilm->ilm_pendsrcs); 17274 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17275 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17276 mi_free((char *)ilm); 17277 } else { 17278 ilm->ilm_flags |= ILM_DELETED; 17279 from_ill->ill_ilm_cleanup_reqd = 1; 17280 ilmp = &ilm->ilm_next; 17281 } 17282 } 17283 } 17284 } 17285 17286 static uint_t 17287 ipif_get_id(ill_t *ill, uint_t id) 17288 { 17289 uint_t unit; 17290 ipif_t *tipif; 17291 boolean_t found = B_FALSE; 17292 ip_stack_t *ipst = ill->ill_ipst; 17293 17294 /* 17295 * During failback, we want to go back to the same id 17296 * instead of the smallest id so that the original 17297 * configuration is maintained. id is non-zero in that 17298 * case. 17299 */ 17300 if (id != 0) { 17301 /* 17302 * While failing back, if we still have an ipif with 17303 * MAX_ADDRS_PER_IF, it means this will be replaced 17304 * as soon as we return from this function. It was 17305 * to set to MAX_ADDRS_PER_IF by the caller so that 17306 * we can choose the smallest id. Thus we return zero 17307 * in that case ignoring the hint. 17308 */ 17309 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17310 return (0); 17311 for (tipif = ill->ill_ipif; tipif != NULL; 17312 tipif = tipif->ipif_next) { 17313 if (tipif->ipif_id == id) { 17314 found = B_TRUE; 17315 break; 17316 } 17317 } 17318 /* 17319 * If somebody already plumbed another logical 17320 * with the same id, we won't be able to find it. 17321 */ 17322 if (!found) 17323 return (id); 17324 } 17325 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17326 found = B_FALSE; 17327 for (tipif = ill->ill_ipif; tipif != NULL; 17328 tipif = tipif->ipif_next) { 17329 if (tipif->ipif_id == unit) { 17330 found = B_TRUE; 17331 break; 17332 } 17333 } 17334 if (!found) 17335 break; 17336 } 17337 return (unit); 17338 } 17339 17340 /* ARGSUSED */ 17341 static int 17342 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17343 ipif_t **rep_ipif_ptr) 17344 { 17345 ill_t *from_ill; 17346 ipif_t *rep_ipif; 17347 uint_t unit; 17348 int err = 0; 17349 ipif_t *to_ipif; 17350 struct iocblk *iocp; 17351 boolean_t failback_cmd; 17352 boolean_t remove_ipif; 17353 int rc; 17354 ip_stack_t *ipst; 17355 17356 ASSERT(IAM_WRITER_ILL(to_ill)); 17357 ASSERT(IAM_WRITER_IPIF(ipif)); 17358 17359 iocp = (struct iocblk *)mp->b_rptr; 17360 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17361 remove_ipif = B_FALSE; 17362 17363 from_ill = ipif->ipif_ill; 17364 ipst = from_ill->ill_ipst; 17365 17366 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17367 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17368 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17369 17370 /* 17371 * Don't move LINK LOCAL addresses as they are tied to 17372 * physical interface. 17373 */ 17374 if (from_ill->ill_isv6 && 17375 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17376 ipif->ipif_was_up = B_FALSE; 17377 IPIF_UNMARK_MOVING(ipif); 17378 return (0); 17379 } 17380 17381 /* 17382 * We set the ipif_id to maximum so that the search for 17383 * ipif_id will pick the lowest number i.e 0 in the 17384 * following 2 cases : 17385 * 17386 * 1) We have a replacement ipif at the head of to_ill. 17387 * We can't remove it yet as we can exceed ip_addrs_per_if 17388 * on to_ill and hence the MOVE might fail. We want to 17389 * remove it only if we could move the ipif. Thus, by 17390 * setting it to the MAX value, we make the search in 17391 * ipif_get_id return the zeroth id. 17392 * 17393 * 2) When DR pulls out the NIC and re-plumbs the interface, 17394 * we might just have a zero address plumbed on the ipif 17395 * with zero id in the case of IPv4. We remove that while 17396 * doing the failback. We want to remove it only if we 17397 * could move the ipif. Thus, by setting it to the MAX 17398 * value, we make the search in ipif_get_id return the 17399 * zeroth id. 17400 * 17401 * Both (1) and (2) are done only when when we are moving 17402 * an ipif (either due to failover/failback) which originally 17403 * belonged to this interface i.e the ipif_orig_ifindex is 17404 * the same as to_ill's ifindex. This is needed so that 17405 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17406 * from B -> A (B is being removed from the group) and 17407 * FAILBACK from A -> B restores the original configuration. 17408 * Without the check for orig_ifindex, the second FAILOVER 17409 * could make the ipif belonging to B replace the A's zeroth 17410 * ipif and the subsequent failback re-creating the replacement 17411 * ipif again. 17412 * 17413 * NOTE : We created the replacement ipif when we did a 17414 * FAILOVER (See below). We could check for FAILBACK and 17415 * then look for replacement ipif to be removed. But we don't 17416 * want to do that because we wan't to allow the possibility 17417 * of a FAILOVER from A -> B (which creates the replacement ipif), 17418 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17419 * from B -> A. 17420 */ 17421 to_ipif = to_ill->ill_ipif; 17422 if ((to_ill->ill_phyint->phyint_ifindex == 17423 ipif->ipif_orig_ifindex) && 17424 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17425 ASSERT(to_ipif->ipif_id == 0); 17426 remove_ipif = B_TRUE; 17427 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17428 } 17429 /* 17430 * Find the lowest logical unit number on the to_ill. 17431 * If we are failing back, try to get the original id 17432 * rather than the lowest one so that the original 17433 * configuration is maintained. 17434 * 17435 * XXX need a better scheme for this. 17436 */ 17437 if (failback_cmd) { 17438 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17439 } else { 17440 unit = ipif_get_id(to_ill, 0); 17441 } 17442 17443 /* Reset back to zero in case we fail below */ 17444 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17445 to_ipif->ipif_id = 0; 17446 17447 if (unit == ipst->ips_ip_addrs_per_if) { 17448 ipif->ipif_was_up = B_FALSE; 17449 IPIF_UNMARK_MOVING(ipif); 17450 return (EINVAL); 17451 } 17452 17453 /* 17454 * ipif is ready to move from "from_ill" to "to_ill". 17455 * 17456 * 1) If we are moving ipif with id zero, create a 17457 * replacement ipif for this ipif on from_ill. If this fails 17458 * fail the MOVE operation. 17459 * 17460 * 2) Remove the replacement ipif on to_ill if any. 17461 * We could remove the replacement ipif when we are moving 17462 * the ipif with id zero. But what if somebody already 17463 * unplumbed it ? Thus we always remove it if it is present. 17464 * We want to do it only if we are sure we are going to 17465 * move the ipif to to_ill which is why there are no 17466 * returns due to error till ipif is linked to to_ill. 17467 * Note that the first ipif that we failback will always 17468 * be zero if it is present. 17469 */ 17470 if (ipif->ipif_id == 0) { 17471 ipaddr_t inaddr_any = INADDR_ANY; 17472 17473 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17474 if (rep_ipif == NULL) { 17475 ipif->ipif_was_up = B_FALSE; 17476 IPIF_UNMARK_MOVING(ipif); 17477 return (ENOMEM); 17478 } 17479 *rep_ipif = ipif_zero; 17480 /* 17481 * Before we put the ipif on the list, store the addresses 17482 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17483 * assumes so. This logic is not any different from what 17484 * ipif_allocate does. 17485 */ 17486 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17487 &rep_ipif->ipif_v6lcl_addr); 17488 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17489 &rep_ipif->ipif_v6src_addr); 17490 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17491 &rep_ipif->ipif_v6subnet); 17492 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17493 &rep_ipif->ipif_v6net_mask); 17494 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17495 &rep_ipif->ipif_v6brd_addr); 17496 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17497 &rep_ipif->ipif_v6pp_dst_addr); 17498 /* 17499 * We mark IPIF_NOFAILOVER so that this can never 17500 * move. 17501 */ 17502 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17503 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17504 rep_ipif->ipif_replace_zero = B_TRUE; 17505 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17506 MUTEX_DEFAULT, NULL); 17507 rep_ipif->ipif_id = 0; 17508 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17509 rep_ipif->ipif_ill = from_ill; 17510 rep_ipif->ipif_orig_ifindex = 17511 from_ill->ill_phyint->phyint_ifindex; 17512 /* Insert at head */ 17513 rep_ipif->ipif_next = from_ill->ill_ipif; 17514 from_ill->ill_ipif = rep_ipif; 17515 /* 17516 * We don't really care to let apps know about 17517 * this interface. 17518 */ 17519 } 17520 17521 if (remove_ipif) { 17522 /* 17523 * We set to a max value above for this case to get 17524 * id zero. ASSERT that we did get one. 17525 */ 17526 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17527 rep_ipif = to_ipif; 17528 to_ill->ill_ipif = rep_ipif->ipif_next; 17529 rep_ipif->ipif_next = NULL; 17530 /* 17531 * If some apps scanned and find this interface, 17532 * it is time to let them know, so that they can 17533 * delete it. 17534 */ 17535 17536 *rep_ipif_ptr = rep_ipif; 17537 } 17538 17539 /* Get it out of the ILL interface list. */ 17540 ipif_remove(ipif, B_FALSE); 17541 17542 /* Assign the new ill */ 17543 ipif->ipif_ill = to_ill; 17544 ipif->ipif_id = unit; 17545 /* id has already been checked */ 17546 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17547 ASSERT(rc == 0); 17548 /* Let SCTP update its list */ 17549 sctp_move_ipif(ipif, from_ill, to_ill); 17550 /* 17551 * Handle the failover and failback of ipif_t between 17552 * ill_t that have differing maximum mtu values. 17553 */ 17554 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17555 if (ipif->ipif_saved_mtu == 0) { 17556 /* 17557 * As this ipif_t is moving to an ill_t 17558 * that has a lower ill_max_mtu, its 17559 * ipif_mtu needs to be saved so it can 17560 * be restored during failback or during 17561 * failover to an ill_t which has a 17562 * higher ill_max_mtu. 17563 */ 17564 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17565 ipif->ipif_mtu = to_ill->ill_max_mtu; 17566 } else { 17567 /* 17568 * The ipif_t is, once again, moving to 17569 * an ill_t that has a lower maximum mtu 17570 * value. 17571 */ 17572 ipif->ipif_mtu = to_ill->ill_max_mtu; 17573 } 17574 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17575 ipif->ipif_saved_mtu != 0) { 17576 /* 17577 * The mtu of this ipif_t had to be reduced 17578 * during an earlier failover; this is an 17579 * opportunity for it to be increased (either as 17580 * part of another failover or a failback). 17581 */ 17582 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17583 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17584 ipif->ipif_saved_mtu = 0; 17585 } else { 17586 ipif->ipif_mtu = to_ill->ill_max_mtu; 17587 } 17588 } 17589 17590 /* 17591 * We preserve all the other fields of the ipif including 17592 * ipif_saved_ire_mp. The routes that are saved here will 17593 * be recreated on the new interface and back on the old 17594 * interface when we move back. 17595 */ 17596 ASSERT(ipif->ipif_arp_del_mp == NULL); 17597 17598 return (err); 17599 } 17600 17601 static int 17602 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17603 int ifindex, ipif_t **rep_ipif_ptr) 17604 { 17605 ipif_t *mipif; 17606 ipif_t *ipif_next; 17607 int err; 17608 17609 /* 17610 * We don't really try to MOVE back things if some of the 17611 * operations fail. The daemon will take care of moving again 17612 * later on. 17613 */ 17614 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17615 ipif_next = mipif->ipif_next; 17616 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17617 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17618 17619 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17620 17621 /* 17622 * When the MOVE fails, it is the job of the 17623 * application to take care of this properly 17624 * i.e try again if it is ENOMEM. 17625 */ 17626 if (mipif->ipif_ill != from_ill) { 17627 /* 17628 * ipif has moved. 17629 * 17630 * Move the multicast memberships associated 17631 * with this ipif to the new ill. For IPv6, we 17632 * do it once after all the ipifs are moved 17633 * (in ill_move) as they are not associated 17634 * with ipifs. 17635 * 17636 * We need to move the ilms as the ipif has 17637 * already been moved to a new ill even 17638 * in the case of errors. Neither 17639 * ilm_free(ipif) will find the ilm 17640 * when somebody unplumbs this ipif nor 17641 * ilm_delete(ilm) will be able to find the 17642 * ilm, if we don't move now. 17643 */ 17644 if (!from_ill->ill_isv6) 17645 ilm_move_v4(from_ill, to_ill, mipif); 17646 } 17647 17648 if (err != 0) 17649 return (err); 17650 } 17651 } 17652 return (0); 17653 } 17654 17655 static int 17656 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17657 { 17658 int ifindex; 17659 int err; 17660 struct iocblk *iocp; 17661 ipif_t *ipif; 17662 ipif_t *rep_ipif_ptr = NULL; 17663 ipif_t *from_ipif = NULL; 17664 boolean_t check_rep_if = B_FALSE; 17665 ip_stack_t *ipst = from_ill->ill_ipst; 17666 17667 iocp = (struct iocblk *)mp->b_rptr; 17668 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17669 /* 17670 * Move everything pointing at from_ill to to_ill. 17671 * We acheive this by passing in 0 as ifindex. 17672 */ 17673 ifindex = 0; 17674 } else { 17675 /* 17676 * Move everything pointing at from_ill whose original 17677 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17678 * We acheive this by passing in ifindex rather than 0. 17679 * Multicast vifs, ilgs move implicitly because ipifs move. 17680 */ 17681 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17682 ifindex = to_ill->ill_phyint->phyint_ifindex; 17683 } 17684 17685 /* 17686 * Determine if there is at least one ipif that would move from 17687 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17688 * ipif (if it exists) on the to_ill would be consumed as a result of 17689 * the move, in which case we need to quiesce the replacement ipif also. 17690 */ 17691 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17692 from_ipif = from_ipif->ipif_next) { 17693 if (((ifindex == 0) || 17694 (ifindex == from_ipif->ipif_orig_ifindex)) && 17695 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17696 check_rep_if = B_TRUE; 17697 break; 17698 } 17699 } 17700 17701 17702 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17703 17704 GRAB_ILL_LOCKS(from_ill, to_ill); 17705 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17706 (void) ipsq_pending_mp_add(NULL, ipif, q, 17707 mp, ILL_MOVE_OK); 17708 RELEASE_ILL_LOCKS(from_ill, to_ill); 17709 return (EINPROGRESS); 17710 } 17711 17712 /* Check if the replacement ipif is quiescent to delete */ 17713 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17714 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17715 to_ill->ill_ipif->ipif_state_flags |= 17716 IPIF_MOVING | IPIF_CHANGING; 17717 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17718 (void) ipsq_pending_mp_add(NULL, ipif, q, 17719 mp, ILL_MOVE_OK); 17720 RELEASE_ILL_LOCKS(from_ill, to_ill); 17721 return (EINPROGRESS); 17722 } 17723 } 17724 RELEASE_ILL_LOCKS(from_ill, to_ill); 17725 17726 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17727 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17728 GRAB_ILL_LOCKS(from_ill, to_ill); 17729 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17730 17731 /* ilm_move is done inside ipif_move for IPv4 */ 17732 if (err == 0 && from_ill->ill_isv6) 17733 ilm_move_v6(from_ill, to_ill, ifindex); 17734 17735 RELEASE_ILL_LOCKS(from_ill, to_ill); 17736 rw_exit(&ipst->ips_ill_g_lock); 17737 17738 /* 17739 * send rts messages and multicast messages. 17740 */ 17741 if (rep_ipif_ptr != NULL) { 17742 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17743 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17744 rep_ipif_ptr->ipif_recovery_id = 0; 17745 } 17746 ip_rts_ifmsg(rep_ipif_ptr); 17747 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17748 #ifdef DEBUG 17749 ipif_trace_cleanup(rep_ipif_ptr); 17750 #endif 17751 mi_free(rep_ipif_ptr); 17752 } 17753 17754 conn_move_ill(from_ill, to_ill, ifindex); 17755 17756 return (err); 17757 } 17758 17759 /* 17760 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17761 * Also checks for the validity of the arguments. 17762 * Note: We are already exclusive inside the from group. 17763 * It is upto the caller to release refcnt on the to_ill's. 17764 */ 17765 static int 17766 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17767 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17768 { 17769 int dst_index; 17770 ipif_t *ipif_v4, *ipif_v6; 17771 struct lifreq *lifr; 17772 mblk_t *mp1; 17773 boolean_t exists; 17774 sin_t *sin; 17775 int err = 0; 17776 ip_stack_t *ipst; 17777 17778 if (CONN_Q(q)) 17779 ipst = CONNQ_TO_IPST(q); 17780 else 17781 ipst = ILLQ_TO_IPST(q); 17782 17783 17784 if ((mp1 = mp->b_cont) == NULL) 17785 return (EPROTO); 17786 17787 if ((mp1 = mp1->b_cont) == NULL) 17788 return (EPROTO); 17789 17790 lifr = (struct lifreq *)mp1->b_rptr; 17791 sin = (sin_t *)&lifr->lifr_addr; 17792 17793 /* 17794 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17795 * specific operations. 17796 */ 17797 if (sin->sin_family != AF_UNSPEC) 17798 return (EINVAL); 17799 17800 /* 17801 * Get ipif with id 0. We are writer on the from ill. So we can pass 17802 * NULLs for the last 4 args and we know the lookup won't fail 17803 * with EINPROGRESS. 17804 */ 17805 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17806 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17807 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17808 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17809 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17810 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17811 17812 if (ipif_v4 == NULL && ipif_v6 == NULL) 17813 return (ENXIO); 17814 17815 if (ipif_v4 != NULL) { 17816 ASSERT(ipif_v4->ipif_refcnt != 0); 17817 if (ipif_v4->ipif_id != 0) { 17818 err = EINVAL; 17819 goto done; 17820 } 17821 17822 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17823 *ill_from_v4 = ipif_v4->ipif_ill; 17824 } 17825 17826 if (ipif_v6 != NULL) { 17827 ASSERT(ipif_v6->ipif_refcnt != 0); 17828 if (ipif_v6->ipif_id != 0) { 17829 err = EINVAL; 17830 goto done; 17831 } 17832 17833 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17834 *ill_from_v6 = ipif_v6->ipif_ill; 17835 } 17836 17837 err = 0; 17838 dst_index = lifr->lifr_movetoindex; 17839 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17840 q, mp, ip_process_ioctl, &err, ipst); 17841 if (err != 0) { 17842 /* 17843 * There could be only v6. 17844 */ 17845 if (err != ENXIO) 17846 goto done; 17847 err = 0; 17848 } 17849 17850 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17851 q, mp, ip_process_ioctl, &err, ipst); 17852 if (err != 0) { 17853 if (err != ENXIO) 17854 goto done; 17855 if (*ill_to_v4 == NULL) { 17856 err = ENXIO; 17857 goto done; 17858 } 17859 err = 0; 17860 } 17861 17862 /* 17863 * If we have something to MOVE i.e "from" not NULL, 17864 * "to" should be non-NULL. 17865 */ 17866 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17867 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17868 err = EINVAL; 17869 } 17870 17871 done: 17872 if (ipif_v4 != NULL) 17873 ipif_refrele(ipif_v4); 17874 if (ipif_v6 != NULL) 17875 ipif_refrele(ipif_v6); 17876 return (err); 17877 } 17878 17879 /* 17880 * FAILOVER and FAILBACK are modelled as MOVE operations. 17881 * 17882 * We don't check whether the MOVE is within the same group or 17883 * not, because this ioctl can be used as a generic mechanism 17884 * to failover from interface A to B, though things will function 17885 * only if they are really part of the same group. Moreover, 17886 * all ipifs may be down and hence temporarily out of the group. 17887 * 17888 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17889 * down first and then V6. For each we wait for the ipif's to become quiescent. 17890 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17891 * have been deleted and there are no active references. Once quiescent the 17892 * ipif's are moved and brought up on the new ill. 17893 * 17894 * Normally the source ill and destination ill belong to the same IPMP group 17895 * and hence the same ipsq_t. In the event they don't belong to the same 17896 * same group the two ipsq's are first merged into one ipsq - that of the 17897 * to_ill. The multicast memberships on the source and destination ill cannot 17898 * change during the move operation since multicast joins/leaves also have to 17899 * execute on the same ipsq and are hence serialized. 17900 */ 17901 /* ARGSUSED */ 17902 int 17903 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17904 ip_ioctl_cmd_t *ipip, void *ifreq) 17905 { 17906 ill_t *ill_to_v4 = NULL; 17907 ill_t *ill_to_v6 = NULL; 17908 ill_t *ill_from_v4 = NULL; 17909 ill_t *ill_from_v6 = NULL; 17910 int err = 0; 17911 17912 /* 17913 * setup from and to ill's, we can get EINPROGRESS only for 17914 * to_ill's. 17915 */ 17916 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17917 &ill_to_v4, &ill_to_v6); 17918 17919 if (err != 0) { 17920 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17921 goto done; 17922 } 17923 17924 /* 17925 * nothing to do. 17926 */ 17927 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17928 goto done; 17929 } 17930 17931 /* 17932 * nothing to do. 17933 */ 17934 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17935 goto done; 17936 } 17937 17938 /* 17939 * Mark the ill as changing. 17940 * ILL_CHANGING flag is cleared when the ipif's are brought up 17941 * in ill_up_ipifs in case of error they are cleared below. 17942 */ 17943 17944 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17945 if (ill_from_v4 != NULL) 17946 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17947 if (ill_from_v6 != NULL) 17948 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17949 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17950 17951 /* 17952 * Make sure that both src and dst are 17953 * in the same syncq group. If not make it happen. 17954 * We are not holding any locks because we are the writer 17955 * on the from_ipsq and we will hold locks in ill_merge_groups 17956 * to protect to_ipsq against changing. 17957 */ 17958 if (ill_from_v4 != NULL) { 17959 if (ill_from_v4->ill_phyint->phyint_ipsq != 17960 ill_to_v4->ill_phyint->phyint_ipsq) { 17961 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17962 NULL, mp, q); 17963 goto err_ret; 17964 17965 } 17966 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17967 } else { 17968 17969 if (ill_from_v6->ill_phyint->phyint_ipsq != 17970 ill_to_v6->ill_phyint->phyint_ipsq) { 17971 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17972 NULL, mp, q); 17973 goto err_ret; 17974 17975 } 17976 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17977 } 17978 17979 /* 17980 * Now that the ipsq's have been merged and we are the writer 17981 * lets mark to_ill as changing as well. 17982 */ 17983 17984 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17985 if (ill_to_v4 != NULL) 17986 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17987 if (ill_to_v6 != NULL) 17988 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17989 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17990 17991 /* 17992 * Its ok for us to proceed with the move even if 17993 * ill_pending_mp is non null on one of the from ill's as the reply 17994 * should not be looking at the ipif, it should only care about the 17995 * ill itself. 17996 */ 17997 17998 /* 17999 * lets move ipv4 first. 18000 */ 18001 if (ill_from_v4 != NULL) { 18002 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18003 ill_from_v4->ill_move_in_progress = B_TRUE; 18004 ill_to_v4->ill_move_in_progress = B_TRUE; 18005 ill_to_v4->ill_move_peer = ill_from_v4; 18006 ill_from_v4->ill_move_peer = ill_to_v4; 18007 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18008 } 18009 18010 /* 18011 * Now lets move ipv6. 18012 */ 18013 if (err == 0 && ill_from_v6 != NULL) { 18014 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18015 ill_from_v6->ill_move_in_progress = B_TRUE; 18016 ill_to_v6->ill_move_in_progress = B_TRUE; 18017 ill_to_v6->ill_move_peer = ill_from_v6; 18018 ill_from_v6->ill_move_peer = ill_to_v6; 18019 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18020 } 18021 18022 err_ret: 18023 /* 18024 * EINPROGRESS means we are waiting for the ipif's that need to be 18025 * moved to become quiescent. 18026 */ 18027 if (err == EINPROGRESS) { 18028 goto done; 18029 } 18030 18031 /* 18032 * if err is set ill_up_ipifs will not be called 18033 * lets clear the flags. 18034 */ 18035 18036 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18037 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18038 /* 18039 * Some of the clearing may be redundant. But it is simple 18040 * not making any extra checks. 18041 */ 18042 if (ill_from_v6 != NULL) { 18043 ill_from_v6->ill_move_in_progress = B_FALSE; 18044 ill_from_v6->ill_move_peer = NULL; 18045 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18046 } 18047 if (ill_from_v4 != NULL) { 18048 ill_from_v4->ill_move_in_progress = B_FALSE; 18049 ill_from_v4->ill_move_peer = NULL; 18050 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18051 } 18052 if (ill_to_v6 != NULL) { 18053 ill_to_v6->ill_move_in_progress = B_FALSE; 18054 ill_to_v6->ill_move_peer = NULL; 18055 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18056 } 18057 if (ill_to_v4 != NULL) { 18058 ill_to_v4->ill_move_in_progress = B_FALSE; 18059 ill_to_v4->ill_move_peer = NULL; 18060 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18061 } 18062 18063 /* 18064 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18065 * Do this always to maintain proper state i.e even in case of errors. 18066 * As phyint_inactive looks at both v4 and v6 interfaces, 18067 * we need not call on both v4 and v6 interfaces. 18068 */ 18069 if (ill_from_v4 != NULL) { 18070 if ((ill_from_v4->ill_phyint->phyint_flags & 18071 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18072 phyint_inactive(ill_from_v4->ill_phyint); 18073 } 18074 } else if (ill_from_v6 != NULL) { 18075 if ((ill_from_v6->ill_phyint->phyint_flags & 18076 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18077 phyint_inactive(ill_from_v6->ill_phyint); 18078 } 18079 } 18080 18081 if (ill_to_v4 != NULL) { 18082 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18083 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18084 } 18085 } else if (ill_to_v6 != NULL) { 18086 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18087 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18088 } 18089 } 18090 18091 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18092 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18093 18094 no_err: 18095 /* 18096 * lets bring the interfaces up on the to_ill. 18097 */ 18098 if (err == 0) { 18099 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18100 q, mp); 18101 } 18102 18103 if (err == 0) { 18104 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18105 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18106 18107 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18108 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18109 } 18110 done: 18111 18112 if (ill_to_v4 != NULL) { 18113 ill_refrele(ill_to_v4); 18114 } 18115 if (ill_to_v6 != NULL) { 18116 ill_refrele(ill_to_v6); 18117 } 18118 18119 return (err); 18120 } 18121 18122 static void 18123 ill_dl_down(ill_t *ill) 18124 { 18125 /* 18126 * The ill is down; unbind but stay attached since we're still 18127 * associated with a PPA. If we have negotiated DLPI capabilites 18128 * with the data link service provider (IDS_OK) then reset them. 18129 * The interval between unbinding and rebinding is potentially 18130 * unbounded hence we cannot assume things will be the same. 18131 * The DLPI capabilities will be probed again when the data link 18132 * is brought up. 18133 */ 18134 mblk_t *mp = ill->ill_unbind_mp; 18135 hook_nic_event_t *info; 18136 18137 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18138 18139 ill->ill_unbind_mp = NULL; 18140 if (mp != NULL) { 18141 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18142 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18143 ill->ill_name)); 18144 mutex_enter(&ill->ill_lock); 18145 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18146 mutex_exit(&ill->ill_lock); 18147 /* 18148 * Reset the capabilities if the negotiation is done or is 18149 * still in progress. Note that ill_capability_reset() will 18150 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent 18151 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored. 18152 * 18153 * Further, reset ill_capab_reneg to be B_FALSE so that the 18154 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent 18155 * the capabilities renegotiation from happening. 18156 */ 18157 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 18158 ill_capability_reset(ill); 18159 ill->ill_capab_reneg = B_FALSE; 18160 18161 ill_dlpi_send(ill, mp); 18162 } 18163 18164 /* 18165 * Toss all of our multicast memberships. We could keep them, but 18166 * then we'd have to do bookkeeping of any joins and leaves performed 18167 * by the application while the the interface is down (we can't just 18168 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18169 * on a downed interface). 18170 */ 18171 ill_leave_multicast(ill); 18172 18173 mutex_enter(&ill->ill_lock); 18174 18175 ill->ill_dl_up = 0; 18176 18177 if ((info = ill->ill_nic_event_info) != NULL) { 18178 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18179 info->hne_event, ill->ill_name)); 18180 if (info->hne_data != NULL) 18181 kmem_free(info->hne_data, info->hne_datalen); 18182 kmem_free(info, sizeof (hook_nic_event_t)); 18183 } 18184 18185 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18186 if (info != NULL) { 18187 ip_stack_t *ipst = ill->ill_ipst; 18188 18189 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 18190 info->hne_lif = 0; 18191 info->hne_event = NE_DOWN; 18192 info->hne_data = NULL; 18193 info->hne_datalen = 0; 18194 info->hne_family = ill->ill_isv6 ? 18195 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18196 } else 18197 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18198 "information for %s (ENOMEM)\n", ill->ill_name)); 18199 18200 ill->ill_nic_event_info = info; 18201 18202 mutex_exit(&ill->ill_lock); 18203 } 18204 18205 static void 18206 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18207 { 18208 union DL_primitives *dlp; 18209 t_uscalar_t prim; 18210 18211 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18212 18213 dlp = (union DL_primitives *)mp->b_rptr; 18214 prim = dlp->dl_primitive; 18215 18216 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18217 dlpi_prim_str(prim), prim, ill->ill_name)); 18218 18219 switch (prim) { 18220 case DL_PHYS_ADDR_REQ: 18221 { 18222 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18223 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18224 break; 18225 } 18226 case DL_BIND_REQ: 18227 mutex_enter(&ill->ill_lock); 18228 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18229 mutex_exit(&ill->ill_lock); 18230 break; 18231 } 18232 18233 /* 18234 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18235 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18236 * we only wait for the ACK of the DL_UNBIND_REQ. 18237 */ 18238 mutex_enter(&ill->ill_lock); 18239 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18240 (prim == DL_UNBIND_REQ)) { 18241 ill->ill_dlpi_pending = prim; 18242 } 18243 mutex_exit(&ill->ill_lock); 18244 18245 putnext(ill->ill_wq, mp); 18246 } 18247 18248 /* 18249 * Helper function for ill_dlpi_send(). 18250 */ 18251 /* ARGSUSED */ 18252 static void 18253 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18254 { 18255 ill_dlpi_send((ill_t *)q->q_ptr, mp); 18256 } 18257 18258 /* 18259 * Send a DLPI control message to the driver but make sure there 18260 * is only one outstanding message. Uses ill_dlpi_pending to tell 18261 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18262 * when an ACK or a NAK is received to process the next queued message. 18263 */ 18264 void 18265 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18266 { 18267 mblk_t **mpp; 18268 18269 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18270 18271 /* 18272 * To ensure that any DLPI requests for current exclusive operation 18273 * are always completely sent before any DLPI messages for other 18274 * operations, require writer access before enqueuing. 18275 */ 18276 if (!IAM_WRITER_ILL(ill)) { 18277 ill_refhold(ill); 18278 /* qwriter_ip() does the ill_refrele() */ 18279 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18280 NEW_OP, B_TRUE); 18281 return; 18282 } 18283 18284 mutex_enter(&ill->ill_lock); 18285 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18286 /* Must queue message. Tail insertion */ 18287 mpp = &ill->ill_dlpi_deferred; 18288 while (*mpp != NULL) 18289 mpp = &((*mpp)->b_next); 18290 18291 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18292 ill->ill_name)); 18293 18294 *mpp = mp; 18295 mutex_exit(&ill->ill_lock); 18296 return; 18297 } 18298 mutex_exit(&ill->ill_lock); 18299 ill_dlpi_dispatch(ill, mp); 18300 } 18301 18302 /* 18303 * Send all deferred DLPI messages without waiting for their ACKs. 18304 */ 18305 void 18306 ill_dlpi_send_deferred(ill_t *ill) 18307 { 18308 mblk_t *mp, *nextmp; 18309 18310 /* 18311 * Clear ill_dlpi_pending so that the message is not queued in 18312 * ill_dlpi_send(). 18313 */ 18314 mutex_enter(&ill->ill_lock); 18315 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18316 mp = ill->ill_dlpi_deferred; 18317 ill->ill_dlpi_deferred = NULL; 18318 mutex_exit(&ill->ill_lock); 18319 18320 for (; mp != NULL; mp = nextmp) { 18321 nextmp = mp->b_next; 18322 mp->b_next = NULL; 18323 ill_dlpi_send(ill, mp); 18324 } 18325 } 18326 18327 /* 18328 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18329 */ 18330 boolean_t 18331 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18332 { 18333 t_uscalar_t pending; 18334 18335 mutex_enter(&ill->ill_lock); 18336 if (ill->ill_dlpi_pending == prim) { 18337 mutex_exit(&ill->ill_lock); 18338 return (B_TRUE); 18339 } 18340 18341 /* 18342 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18343 * without waiting, so don't print any warnings in that case. 18344 */ 18345 if (ill->ill_state_flags & ILL_CONDEMNED) { 18346 mutex_exit(&ill->ill_lock); 18347 return (B_FALSE); 18348 } 18349 pending = ill->ill_dlpi_pending; 18350 mutex_exit(&ill->ill_lock); 18351 18352 if (pending == DL_PRIM_INVAL) { 18353 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18354 "received unsolicited ack for %s on %s\n", 18355 dlpi_prim_str(prim), ill->ill_name); 18356 } else { 18357 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18358 "received unexpected ack for %s on %s (expecting %s)\n", 18359 dlpi_prim_str(prim), ill->ill_name, dlpi_prim_str(pending)); 18360 } 18361 return (B_FALSE); 18362 } 18363 18364 /* 18365 * Called when an DLPI control message has been acked or nacked to 18366 * send down the next queued message (if any). 18367 */ 18368 void 18369 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18370 { 18371 mblk_t *mp; 18372 18373 ASSERT(IAM_WRITER_ILL(ill)); 18374 mutex_enter(&ill->ill_lock); 18375 18376 ASSERT(prim != DL_PRIM_INVAL); 18377 ASSERT(ill->ill_dlpi_pending == prim); 18378 18379 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18380 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18381 18382 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18383 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18384 cv_signal(&ill->ill_cv); 18385 mutex_exit(&ill->ill_lock); 18386 return; 18387 } 18388 18389 ill->ill_dlpi_deferred = mp->b_next; 18390 mp->b_next = NULL; 18391 mutex_exit(&ill->ill_lock); 18392 18393 ill_dlpi_dispatch(ill, mp); 18394 } 18395 18396 void 18397 conn_delete_ire(conn_t *connp, caddr_t arg) 18398 { 18399 ipif_t *ipif = (ipif_t *)arg; 18400 ire_t *ire; 18401 18402 /* 18403 * Look at the cached ires on conns which has pointers to ipifs. 18404 * We just call ire_refrele which clears up the reference 18405 * to ire. Called when a conn closes. Also called from ipif_free 18406 * to cleanup indirect references to the stale ipif via the cached ire. 18407 */ 18408 mutex_enter(&connp->conn_lock); 18409 ire = connp->conn_ire_cache; 18410 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18411 connp->conn_ire_cache = NULL; 18412 mutex_exit(&connp->conn_lock); 18413 IRE_REFRELE_NOTR(ire); 18414 return; 18415 } 18416 mutex_exit(&connp->conn_lock); 18417 18418 } 18419 18420 /* 18421 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18422 * of IREs. Those IREs may have been previously cached in the conn structure. 18423 * This ipcl_walk() walker function releases all references to such IREs based 18424 * on the condemned flag. 18425 */ 18426 /* ARGSUSED */ 18427 void 18428 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18429 { 18430 ire_t *ire; 18431 18432 mutex_enter(&connp->conn_lock); 18433 ire = connp->conn_ire_cache; 18434 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18435 connp->conn_ire_cache = NULL; 18436 mutex_exit(&connp->conn_lock); 18437 IRE_REFRELE_NOTR(ire); 18438 return; 18439 } 18440 mutex_exit(&connp->conn_lock); 18441 } 18442 18443 /* 18444 * Take down a specific interface, but don't lose any information about it. 18445 * Also delete interface from its interface group (ifgrp). 18446 * (Always called as writer.) 18447 * This function goes through the down sequence even if the interface is 18448 * already down. There are 2 reasons. 18449 * a. Currently we permit interface routes that depend on down interfaces 18450 * to be added. This behaviour itself is questionable. However it appears 18451 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18452 * time. We go thru the cleanup in order to remove these routes. 18453 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18454 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18455 * down, but we need to cleanup i.e. do ill_dl_down and 18456 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18457 * 18458 * IP-MT notes: 18459 * 18460 * Model of reference to interfaces. 18461 * 18462 * The following members in ipif_t track references to the ipif. 18463 * int ipif_refcnt; Active reference count 18464 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18465 * The following members in ill_t track references to the ill. 18466 * int ill_refcnt; active refcnt 18467 * uint_t ill_ire_cnt; Number of ires referencing ill 18468 * uint_t ill_nce_cnt; Number of nces referencing ill 18469 * 18470 * Reference to an ipif or ill can be obtained in any of the following ways. 18471 * 18472 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18473 * Pointers to ipif / ill from other data structures viz ire and conn. 18474 * Implicit reference to the ipif / ill by holding a reference to the ire. 18475 * 18476 * The ipif/ill lookup functions return a reference held ipif / ill. 18477 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18478 * This is a purely dynamic reference count associated with threads holding 18479 * references to the ipif / ill. Pointers from other structures do not 18480 * count towards this reference count. 18481 * 18482 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18483 * ipif/ill. This is incremented whenever a new ire is created referencing the 18484 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18485 * actually added to the ire hash table. The count is decremented in 18486 * ire_inactive where the ire is destroyed. 18487 * 18488 * nce's reference ill's thru nce_ill and the count of nce's associated with 18489 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18490 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18491 * table. Similarly it is decremented in ndp_inactive() where the nce 18492 * is destroyed. 18493 * 18494 * Flow of ioctls involving interface down/up 18495 * 18496 * The following is the sequence of an attempt to set some critical flags on an 18497 * up interface. 18498 * ip_sioctl_flags 18499 * ipif_down 18500 * wait for ipif to be quiescent 18501 * ipif_down_tail 18502 * ip_sioctl_flags_tail 18503 * 18504 * All set ioctls that involve down/up sequence would have a skeleton similar 18505 * to the above. All the *tail functions are called after the refcounts have 18506 * dropped to the appropriate values. 18507 * 18508 * The mechanism to quiesce an ipif is as follows. 18509 * 18510 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18511 * on the ipif. Callers either pass a flag requesting wait or the lookup 18512 * functions will return NULL. 18513 * 18514 * Delete all ires referencing this ipif 18515 * 18516 * Any thread attempting to do an ipif_refhold on an ipif that has been 18517 * obtained thru a cached pointer will first make sure that 18518 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18519 * increment the refcount. 18520 * 18521 * The above guarantees that the ipif refcount will eventually come down to 18522 * zero and the ipif will quiesce, once all threads that currently hold a 18523 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18524 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18525 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18526 * drop to zero. 18527 * 18528 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18529 * 18530 * Threads trying to lookup an ipif or ill can pass a flag requesting 18531 * wait and restart if the ipif / ill cannot be looked up currently. 18532 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18533 * failure if the ipif is currently undergoing an exclusive operation, and 18534 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18535 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18536 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18537 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18538 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18539 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18540 * until we release the ipsq_lock, even though the the ill/ipif state flags 18541 * can change after we drop the ill_lock. 18542 * 18543 * An attempt to send out a packet using an ipif that is currently 18544 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18545 * operation and restart it later when the exclusive condition on the ipif ends. 18546 * This is an example of not passing the wait flag to the lookup functions. For 18547 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18548 * out a multicast packet on that ipif will fail while the ipif is 18549 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18550 * currently IPIF_CHANGING will also fail. 18551 */ 18552 int 18553 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18554 { 18555 ill_t *ill = ipif->ipif_ill; 18556 phyint_t *phyi; 18557 conn_t *connp; 18558 boolean_t success; 18559 boolean_t ipif_was_up = B_FALSE; 18560 ip_stack_t *ipst = ill->ill_ipst; 18561 18562 ASSERT(IAM_WRITER_IPIF(ipif)); 18563 18564 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18565 18566 if (ipif->ipif_flags & IPIF_UP) { 18567 mutex_enter(&ill->ill_lock); 18568 ipif->ipif_flags &= ~IPIF_UP; 18569 ASSERT(ill->ill_ipif_up_count > 0); 18570 --ill->ill_ipif_up_count; 18571 mutex_exit(&ill->ill_lock); 18572 ipif_was_up = B_TRUE; 18573 /* Update status in SCTP's list */ 18574 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18575 } 18576 18577 /* 18578 * Blow away memberships we established in ipif_multicast_up(). 18579 */ 18580 ipif_multicast_down(ipif); 18581 18582 /* 18583 * Remove from the mapping for __sin6_src_id. We insert only 18584 * when the address is not INADDR_ANY. As IPv4 addresses are 18585 * stored as mapped addresses, we need to check for mapped 18586 * INADDR_ANY also. 18587 */ 18588 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18589 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18590 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18591 int err; 18592 18593 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18594 ipif->ipif_zoneid, ipst); 18595 if (err != 0) { 18596 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18597 } 18598 } 18599 18600 /* 18601 * Before we delete the ill from the group (if any), we need 18602 * to make sure that we delete all the routes dependent on 18603 * this and also any ipifs dependent on this ipif for 18604 * source address. We need to do before we delete from 18605 * the group because 18606 * 18607 * 1) ipif_down_delete_ire de-references ill->ill_group. 18608 * 18609 * 2) ipif_update_other_ipifs needs to walk the whole group 18610 * for re-doing source address selection. Note that 18611 * ipif_select_source[_v6] called from 18612 * ipif_update_other_ipifs[_v6] will not pick this ipif 18613 * because we have already marked down here i.e cleared 18614 * IPIF_UP. 18615 */ 18616 if (ipif->ipif_isv6) { 18617 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18618 ipst); 18619 } else { 18620 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18621 ipst); 18622 } 18623 18624 /* 18625 * Cleaning up the conn_ire_cache or conns must be done only after the 18626 * ires have been deleted above. Otherwise a thread could end up 18627 * caching an ire in a conn after we have finished the cleanup of the 18628 * conn. The caching is done after making sure that the ire is not yet 18629 * condemned. Also documented in the block comment above ip_output 18630 */ 18631 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18632 /* Also, delete the ires cached in SCTP */ 18633 sctp_ire_cache_flush(ipif); 18634 18635 /* 18636 * Update any other ipifs which have used "our" local address as 18637 * a source address. This entails removing and recreating IRE_INTERFACE 18638 * entries for such ipifs. 18639 */ 18640 if (ipif->ipif_isv6) 18641 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18642 else 18643 ipif_update_other_ipifs(ipif, ill->ill_group); 18644 18645 if (ipif_was_up) { 18646 /* 18647 * Check whether it is last ipif to leave this group. 18648 * If this is the last ipif to leave, we should remove 18649 * this ill from the group as ipif_select_source will not 18650 * be able to find any useful ipifs if this ill is selected 18651 * for load balancing. 18652 * 18653 * For nameless groups, we should call ifgrp_delete if this 18654 * belongs to some group. As this ipif is going down, we may 18655 * need to reconstruct groups. 18656 */ 18657 phyi = ill->ill_phyint; 18658 /* 18659 * If the phyint_groupname_len is 0, it may or may not 18660 * be in the nameless group. If the phyint_groupname_len is 18661 * not 0, then this ill should be part of some group. 18662 * As we always insert this ill in the group if 18663 * phyint_groupname_len is not zero when the first ipif 18664 * comes up (in ipif_up_done), it should be in a group 18665 * when the namelen is not 0. 18666 * 18667 * NOTE : When we delete the ill from the group,it will 18668 * blow away all the IRE_CACHES pointing either at this ipif or 18669 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18670 * should be pointing at this ill. 18671 */ 18672 ASSERT(phyi->phyint_groupname_len == 0 || 18673 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18674 18675 if (phyi->phyint_groupname_len != 0) { 18676 if (ill->ill_ipif_up_count == 0) 18677 illgrp_delete(ill); 18678 } 18679 18680 /* 18681 * If we have deleted some of the broadcast ires associated 18682 * with this ipif, we need to re-nominate somebody else if 18683 * the ires that we deleted were the nominated ones. 18684 */ 18685 if (ill->ill_group != NULL && !ill->ill_isv6) 18686 ipif_renominate_bcast(ipif); 18687 } 18688 18689 /* 18690 * neighbor-discovery or arp entries for this interface. 18691 */ 18692 ipif_ndp_down(ipif); 18693 18694 /* 18695 * If mp is NULL the caller will wait for the appropriate refcnt. 18696 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18697 * and ill_delete -> ipif_free -> ipif_down 18698 */ 18699 if (mp == NULL) { 18700 ASSERT(q == NULL); 18701 return (0); 18702 } 18703 18704 if (CONN_Q(q)) { 18705 connp = Q_TO_CONN(q); 18706 mutex_enter(&connp->conn_lock); 18707 } else { 18708 connp = NULL; 18709 } 18710 mutex_enter(&ill->ill_lock); 18711 /* 18712 * Are there any ire's pointing to this ipif that are still active ? 18713 * If this is the last ipif going down, are there any ire's pointing 18714 * to this ill that are still active ? 18715 */ 18716 if (ipif_is_quiescent(ipif)) { 18717 mutex_exit(&ill->ill_lock); 18718 if (connp != NULL) 18719 mutex_exit(&connp->conn_lock); 18720 return (0); 18721 } 18722 18723 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18724 ill->ill_name, (void *)ill)); 18725 /* 18726 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18727 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18728 * which in turn is called by the last refrele on the ipif/ill/ire. 18729 */ 18730 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18731 if (!success) { 18732 /* The conn is closing. So just return */ 18733 ASSERT(connp != NULL); 18734 mutex_exit(&ill->ill_lock); 18735 mutex_exit(&connp->conn_lock); 18736 return (EINTR); 18737 } 18738 18739 mutex_exit(&ill->ill_lock); 18740 if (connp != NULL) 18741 mutex_exit(&connp->conn_lock); 18742 return (EINPROGRESS); 18743 } 18744 18745 void 18746 ipif_down_tail(ipif_t *ipif) 18747 { 18748 ill_t *ill = ipif->ipif_ill; 18749 18750 /* 18751 * Skip any loopback interface (null wq). 18752 * If this is the last logical interface on the ill 18753 * have ill_dl_down tell the driver we are gone (unbind) 18754 * Note that lun 0 can ipif_down even though 18755 * there are other logical units that are up. 18756 * This occurs e.g. when we change a "significant" IFF_ flag. 18757 */ 18758 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18759 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18760 ill->ill_dl_up) { 18761 ill_dl_down(ill); 18762 } 18763 ill->ill_logical_down = 0; 18764 18765 /* 18766 * Have to be after removing the routes in ipif_down_delete_ire. 18767 */ 18768 if (ipif->ipif_isv6) { 18769 if (ill->ill_flags & ILLF_XRESOLV) 18770 ipif_arp_down(ipif); 18771 } else { 18772 ipif_arp_down(ipif); 18773 } 18774 18775 ip_rts_ifmsg(ipif); 18776 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18777 } 18778 18779 /* 18780 * Bring interface logically down without bringing the physical interface 18781 * down e.g. when the netmask is changed. This avoids long lasting link 18782 * negotiations between an ethernet interface and a certain switches. 18783 */ 18784 static int 18785 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18786 { 18787 /* 18788 * The ill_logical_down flag is a transient flag. It is set here 18789 * and is cleared once the down has completed in ipif_down_tail. 18790 * This flag does not indicate whether the ill stream is in the 18791 * DL_BOUND state with the driver. Instead this flag is used by 18792 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18793 * the driver. The state of the ill stream i.e. whether it is 18794 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18795 */ 18796 ipif->ipif_ill->ill_logical_down = 1; 18797 return (ipif_down(ipif, q, mp)); 18798 } 18799 18800 /* 18801 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18802 * If the usesrc client ILL is already part of a usesrc group or not, 18803 * in either case a ire_stq with the matching usesrc client ILL will 18804 * locate the IRE's that need to be deleted. We want IREs to be created 18805 * with the new source address. 18806 */ 18807 static void 18808 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18809 { 18810 ill_t *ucill = (ill_t *)ill_arg; 18811 18812 ASSERT(IAM_WRITER_ILL(ucill)); 18813 18814 if (ire->ire_stq == NULL) 18815 return; 18816 18817 if ((ire->ire_type == IRE_CACHE) && 18818 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18819 ire_delete(ire); 18820 } 18821 18822 /* 18823 * ire_walk routine to delete every IRE dependent on the interface 18824 * address that is going down. (Always called as writer.) 18825 * Works for both v4 and v6. 18826 * In addition for checking for ire_ipif matches it also checks for 18827 * IRE_CACHE entries which have the same source address as the 18828 * disappearing ipif since ipif_select_source might have picked 18829 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18830 * care of any IRE_INTERFACE with the disappearing source address. 18831 */ 18832 static void 18833 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18834 { 18835 ipif_t *ipif = (ipif_t *)ipif_arg; 18836 ill_t *ire_ill; 18837 ill_t *ipif_ill; 18838 18839 ASSERT(IAM_WRITER_IPIF(ipif)); 18840 if (ire->ire_ipif == NULL) 18841 return; 18842 18843 /* 18844 * For IPv4, we derive source addresses for an IRE from ipif's 18845 * belonging to the same IPMP group as the IRE's outgoing 18846 * interface. If an IRE's outgoing interface isn't in the 18847 * same IPMP group as a particular ipif, then that ipif 18848 * couldn't have been used as a source address for this IRE. 18849 * 18850 * For IPv6, source addresses are only restricted to the IPMP group 18851 * if the IRE is for a link-local address or a multicast address. 18852 * Otherwise, source addresses for an IRE can be chosen from 18853 * interfaces other than the the outgoing interface for that IRE. 18854 * 18855 * For source address selection details, see ipif_select_source() 18856 * and ipif_select_source_v6(). 18857 */ 18858 if (ire->ire_ipversion == IPV4_VERSION || 18859 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18860 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18861 ire_ill = ire->ire_ipif->ipif_ill; 18862 ipif_ill = ipif->ipif_ill; 18863 18864 if (ire_ill->ill_group != ipif_ill->ill_group) { 18865 return; 18866 } 18867 } 18868 18869 18870 if (ire->ire_ipif != ipif) { 18871 /* 18872 * Look for a matching source address. 18873 */ 18874 if (ire->ire_type != IRE_CACHE) 18875 return; 18876 if (ipif->ipif_flags & IPIF_NOLOCAL) 18877 return; 18878 18879 if (ire->ire_ipversion == IPV4_VERSION) { 18880 if (ire->ire_src_addr != ipif->ipif_src_addr) 18881 return; 18882 } else { 18883 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18884 &ipif->ipif_v6lcl_addr)) 18885 return; 18886 } 18887 ire_delete(ire); 18888 return; 18889 } 18890 /* 18891 * ire_delete() will do an ire_flush_cache which will delete 18892 * all ire_ipif matches 18893 */ 18894 ire_delete(ire); 18895 } 18896 18897 /* 18898 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18899 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18900 * 2) when an interface is brought up or down (on that ill). 18901 * This ensures that the IRE_CACHE entries don't retain stale source 18902 * address selection results. 18903 */ 18904 void 18905 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18906 { 18907 ill_t *ill = (ill_t *)ill_arg; 18908 ill_t *ipif_ill; 18909 18910 ASSERT(IAM_WRITER_ILL(ill)); 18911 /* 18912 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18913 * Hence this should be IRE_CACHE. 18914 */ 18915 ASSERT(ire->ire_type == IRE_CACHE); 18916 18917 /* 18918 * We are called for IRE_CACHES whose ire_ipif matches ill. 18919 * We are only interested in IRE_CACHES that has borrowed 18920 * the source address from ill_arg e.g. ipif_up_done[_v6] 18921 * for which we need to look at ire_ipif->ipif_ill match 18922 * with ill. 18923 */ 18924 ASSERT(ire->ire_ipif != NULL); 18925 ipif_ill = ire->ire_ipif->ipif_ill; 18926 if (ipif_ill == ill || (ill->ill_group != NULL && 18927 ipif_ill->ill_group == ill->ill_group)) { 18928 ire_delete(ire); 18929 } 18930 } 18931 18932 /* 18933 * Delete all the ire whose stq references ill_arg. 18934 */ 18935 static void 18936 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18937 { 18938 ill_t *ill = (ill_t *)ill_arg; 18939 ill_t *ire_ill; 18940 18941 ASSERT(IAM_WRITER_ILL(ill)); 18942 /* 18943 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18944 * Hence this should be IRE_CACHE. 18945 */ 18946 ASSERT(ire->ire_type == IRE_CACHE); 18947 18948 /* 18949 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18950 * matches ill. We are only interested in IRE_CACHES that 18951 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18952 * filtering here. 18953 */ 18954 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18955 18956 if (ire_ill == ill) 18957 ire_delete(ire); 18958 } 18959 18960 /* 18961 * This is called when an ill leaves the group. We want to delete 18962 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18963 * pointing at ill. 18964 */ 18965 static void 18966 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18967 { 18968 ill_t *ill = (ill_t *)ill_arg; 18969 18970 ASSERT(IAM_WRITER_ILL(ill)); 18971 ASSERT(ill->ill_group == NULL); 18972 /* 18973 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18974 * Hence this should be IRE_CACHE. 18975 */ 18976 ASSERT(ire->ire_type == IRE_CACHE); 18977 /* 18978 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18979 * matches ill. We are interested in both. 18980 */ 18981 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18982 (ire->ire_ipif->ipif_ill == ill)); 18983 18984 ire_delete(ire); 18985 } 18986 18987 /* 18988 * Initiate deallocate of an IPIF. Always called as writer. Called by 18989 * ill_delete or ip_sioctl_removeif. 18990 */ 18991 static void 18992 ipif_free(ipif_t *ipif) 18993 { 18994 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18995 18996 ASSERT(IAM_WRITER_IPIF(ipif)); 18997 18998 if (ipif->ipif_recovery_id != 0) 18999 (void) untimeout(ipif->ipif_recovery_id); 19000 ipif->ipif_recovery_id = 0; 19001 19002 /* Remove conn references */ 19003 reset_conn_ipif(ipif); 19004 19005 /* 19006 * Make sure we have valid net and subnet broadcast ire's for the 19007 * other ipif's which share them with this ipif. 19008 */ 19009 if (!ipif->ipif_isv6) 19010 ipif_check_bcast_ires(ipif); 19011 19012 /* 19013 * Take down the interface. We can be called either from ill_delete 19014 * or from ip_sioctl_removeif. 19015 */ 19016 (void) ipif_down(ipif, NULL, NULL); 19017 19018 /* 19019 * Now that the interface is down, there's no chance it can still 19020 * become a duplicate. Cancel any timer that may have been set while 19021 * tearing down. 19022 */ 19023 if (ipif->ipif_recovery_id != 0) 19024 (void) untimeout(ipif->ipif_recovery_id); 19025 ipif->ipif_recovery_id = 0; 19026 19027 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19028 /* Remove pointers to this ill in the multicast routing tables */ 19029 reset_mrt_vif_ipif(ipif); 19030 rw_exit(&ipst->ips_ill_g_lock); 19031 } 19032 19033 /* 19034 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19035 * also ill_move(). 19036 */ 19037 static void 19038 ipif_free_tail(ipif_t *ipif) 19039 { 19040 mblk_t *mp; 19041 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19042 19043 /* 19044 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19045 */ 19046 mutex_enter(&ipif->ipif_saved_ire_lock); 19047 mp = ipif->ipif_saved_ire_mp; 19048 ipif->ipif_saved_ire_mp = NULL; 19049 mutex_exit(&ipif->ipif_saved_ire_lock); 19050 freemsg(mp); 19051 19052 /* 19053 * Need to hold both ill_g_lock and ill_lock while 19054 * inserting or removing an ipif from the linked list 19055 * of ipifs hanging off the ill. 19056 */ 19057 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19058 /* 19059 * Remove all IPv4 multicast memberships on the interface now. 19060 * IPv6 is not handled here as the multicast memberships are 19061 * tied to the ill rather than the ipif. 19062 */ 19063 ilm_free(ipif); 19064 19065 /* 19066 * Since we held the ill_g_lock while doing the ilm_free above, 19067 * we can assert the ilms were really deleted and not just marked 19068 * ILM_DELETED. 19069 */ 19070 ASSERT(ilm_walk_ipif(ipif) == 0); 19071 19072 #ifdef DEBUG 19073 ipif_trace_cleanup(ipif); 19074 #endif 19075 19076 /* Ask SCTP to take it out of it list */ 19077 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19078 19079 /* Get it out of the ILL interface list. */ 19080 ipif_remove(ipif, B_TRUE); 19081 rw_exit(&ipst->ips_ill_g_lock); 19082 19083 mutex_destroy(&ipif->ipif_saved_ire_lock); 19084 19085 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19086 ASSERT(ipif->ipif_recovery_id == 0); 19087 19088 /* Free the memory. */ 19089 mi_free(ipif); 19090 } 19091 19092 /* 19093 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19094 * is zero. 19095 */ 19096 void 19097 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19098 { 19099 char lbuf[LIFNAMSIZ]; 19100 char *name; 19101 size_t name_len; 19102 19103 buf[0] = '\0'; 19104 name = ipif->ipif_ill->ill_name; 19105 name_len = ipif->ipif_ill->ill_name_length; 19106 if (ipif->ipif_id != 0) { 19107 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19108 ipif->ipif_id); 19109 name = lbuf; 19110 name_len = mi_strlen(name) + 1; 19111 } 19112 len -= 1; 19113 buf[len] = '\0'; 19114 len = MIN(len, name_len); 19115 bcopy(name, buf, len); 19116 } 19117 19118 /* 19119 * Find an IPIF based on the name passed in. Names can be of the 19120 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19121 * The <phys> string can have forms like <dev><#> (e.g., le0), 19122 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19123 * When there is no colon, the implied unit id is zero. <phys> must 19124 * correspond to the name of an ILL. (May be called as writer.) 19125 */ 19126 static ipif_t * 19127 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19128 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19129 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19130 { 19131 char *cp; 19132 char *endp; 19133 long id; 19134 ill_t *ill; 19135 ipif_t *ipif; 19136 uint_t ire_type; 19137 boolean_t did_alloc = B_FALSE; 19138 ipsq_t *ipsq; 19139 19140 if (error != NULL) 19141 *error = 0; 19142 19143 /* 19144 * If the caller wants to us to create the ipif, make sure we have a 19145 * valid zoneid 19146 */ 19147 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19148 19149 if (namelen == 0) { 19150 if (error != NULL) 19151 *error = ENXIO; 19152 return (NULL); 19153 } 19154 19155 *exists = B_FALSE; 19156 /* Look for a colon in the name. */ 19157 endp = &name[namelen]; 19158 for (cp = endp; --cp > name; ) { 19159 if (*cp == IPIF_SEPARATOR_CHAR) 19160 break; 19161 } 19162 19163 if (*cp == IPIF_SEPARATOR_CHAR) { 19164 /* 19165 * Reject any non-decimal aliases for logical 19166 * interfaces. Aliases with leading zeroes 19167 * are also rejected as they introduce ambiguity 19168 * in the naming of the interfaces. 19169 * In order to confirm with existing semantics, 19170 * and to not break any programs/script relying 19171 * on that behaviour, if<0>:0 is considered to be 19172 * a valid interface. 19173 * 19174 * If alias has two or more digits and the first 19175 * is zero, fail. 19176 */ 19177 if (&cp[2] < endp && cp[1] == '0') { 19178 if (error != NULL) 19179 *error = EINVAL; 19180 return (NULL); 19181 } 19182 } 19183 19184 if (cp <= name) { 19185 cp = endp; 19186 } else { 19187 *cp = '\0'; 19188 } 19189 19190 /* 19191 * Look up the ILL, based on the portion of the name 19192 * before the slash. ill_lookup_on_name returns a held ill. 19193 * Temporary to check whether ill exists already. If so 19194 * ill_lookup_on_name will clear it. 19195 */ 19196 ill = ill_lookup_on_name(name, do_alloc, isv6, 19197 q, mp, func, error, &did_alloc, ipst); 19198 if (cp != endp) 19199 *cp = IPIF_SEPARATOR_CHAR; 19200 if (ill == NULL) 19201 return (NULL); 19202 19203 /* Establish the unit number in the name. */ 19204 id = 0; 19205 if (cp < endp && *endp == '\0') { 19206 /* If there was a colon, the unit number follows. */ 19207 cp++; 19208 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19209 ill_refrele(ill); 19210 if (error != NULL) 19211 *error = ENXIO; 19212 return (NULL); 19213 } 19214 } 19215 19216 GRAB_CONN_LOCK(q); 19217 mutex_enter(&ill->ill_lock); 19218 /* Now see if there is an IPIF with this unit number. */ 19219 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19220 if (ipif->ipif_id == id) { 19221 if (zoneid != ALL_ZONES && 19222 zoneid != ipif->ipif_zoneid && 19223 ipif->ipif_zoneid != ALL_ZONES) { 19224 mutex_exit(&ill->ill_lock); 19225 RELEASE_CONN_LOCK(q); 19226 ill_refrele(ill); 19227 if (error != NULL) 19228 *error = ENXIO; 19229 return (NULL); 19230 } 19231 /* 19232 * The block comment at the start of ipif_down 19233 * explains the use of the macros used below 19234 */ 19235 if (IPIF_CAN_LOOKUP(ipif)) { 19236 ipif_refhold_locked(ipif); 19237 mutex_exit(&ill->ill_lock); 19238 if (!did_alloc) 19239 *exists = B_TRUE; 19240 /* 19241 * Drop locks before calling ill_refrele 19242 * since it can potentially call into 19243 * ipif_ill_refrele_tail which can end up 19244 * in trying to acquire any lock. 19245 */ 19246 RELEASE_CONN_LOCK(q); 19247 ill_refrele(ill); 19248 return (ipif); 19249 } else if (IPIF_CAN_WAIT(ipif, q)) { 19250 ipsq = ill->ill_phyint->phyint_ipsq; 19251 mutex_enter(&ipsq->ipsq_lock); 19252 mutex_exit(&ill->ill_lock); 19253 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19254 mutex_exit(&ipsq->ipsq_lock); 19255 RELEASE_CONN_LOCK(q); 19256 ill_refrele(ill); 19257 if (error != NULL) 19258 *error = EINPROGRESS; 19259 return (NULL); 19260 } 19261 } 19262 } 19263 RELEASE_CONN_LOCK(q); 19264 19265 if (!do_alloc) { 19266 mutex_exit(&ill->ill_lock); 19267 ill_refrele(ill); 19268 if (error != NULL) 19269 *error = ENXIO; 19270 return (NULL); 19271 } 19272 19273 /* 19274 * If none found, atomically allocate and return a new one. 19275 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19276 * to support "receive only" use of lo0:1 etc. as is still done 19277 * below as an initial guess. 19278 * However, this is now likely to be overriden later in ipif_up_done() 19279 * when we know for sure what address has been configured on the 19280 * interface, since we might have more than one loopback interface 19281 * with a loopback address, e.g. in the case of zones, and all the 19282 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19283 */ 19284 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19285 ire_type = IRE_LOOPBACK; 19286 else 19287 ire_type = IRE_LOCAL; 19288 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19289 if (ipif != NULL) 19290 ipif_refhold_locked(ipif); 19291 else if (error != NULL) 19292 *error = ENOMEM; 19293 mutex_exit(&ill->ill_lock); 19294 ill_refrele(ill); 19295 return (ipif); 19296 } 19297 19298 /* 19299 * This routine is called whenever a new address comes up on an ipif. If 19300 * we are configured to respond to address mask requests, then we are supposed 19301 * to broadcast an address mask reply at this time. This routine is also 19302 * called if we are already up, but a netmask change is made. This is legal 19303 * but might not make the system manager very popular. (May be called 19304 * as writer.) 19305 */ 19306 void 19307 ipif_mask_reply(ipif_t *ipif) 19308 { 19309 icmph_t *icmph; 19310 ipha_t *ipha; 19311 mblk_t *mp; 19312 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19313 19314 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19315 19316 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19317 return; 19318 19319 /* ICMP mask reply is IPv4 only */ 19320 ASSERT(!ipif->ipif_isv6); 19321 /* ICMP mask reply is not for a loopback interface */ 19322 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19323 19324 mp = allocb(REPLY_LEN, BPRI_HI); 19325 if (mp == NULL) 19326 return; 19327 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19328 19329 ipha = (ipha_t *)mp->b_rptr; 19330 bzero(ipha, REPLY_LEN); 19331 *ipha = icmp_ipha; 19332 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19333 ipha->ipha_src = ipif->ipif_src_addr; 19334 ipha->ipha_dst = ipif->ipif_brd_addr; 19335 ipha->ipha_length = htons(REPLY_LEN); 19336 ipha->ipha_ident = 0; 19337 19338 icmph = (icmph_t *)&ipha[1]; 19339 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19340 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19341 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19342 19343 put(ipif->ipif_wq, mp); 19344 19345 #undef REPLY_LEN 19346 } 19347 19348 /* 19349 * When the mtu in the ipif changes, we call this routine through ire_walk 19350 * to update all the relevant IREs. 19351 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19352 */ 19353 static void 19354 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19355 { 19356 ipif_t *ipif = (ipif_t *)ipif_arg; 19357 19358 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19359 return; 19360 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19361 } 19362 19363 /* 19364 * When the mtu in the ill changes, we call this routine through ire_walk 19365 * to update all the relevant IREs. 19366 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19367 */ 19368 void 19369 ill_mtu_change(ire_t *ire, char *ill_arg) 19370 { 19371 ill_t *ill = (ill_t *)ill_arg; 19372 19373 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19374 return; 19375 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19376 } 19377 19378 /* 19379 * Join the ipif specific multicast groups. 19380 * Must be called after a mapping has been set up in the resolver. (Always 19381 * called as writer.) 19382 */ 19383 void 19384 ipif_multicast_up(ipif_t *ipif) 19385 { 19386 int err, index; 19387 ill_t *ill; 19388 19389 ASSERT(IAM_WRITER_IPIF(ipif)); 19390 19391 ill = ipif->ipif_ill; 19392 index = ill->ill_phyint->phyint_ifindex; 19393 19394 ip1dbg(("ipif_multicast_up\n")); 19395 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19396 return; 19397 19398 if (ipif->ipif_isv6) { 19399 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19400 return; 19401 19402 /* Join the all hosts multicast address */ 19403 ip1dbg(("ipif_multicast_up - addmulti\n")); 19404 /* 19405 * Passing B_TRUE means we have to join the multicast 19406 * membership on this interface even though this is 19407 * FAILED. If we join on a different one in the group, 19408 * we will not be able to delete the membership later 19409 * as we currently don't track where we join when we 19410 * join within the kernel unlike applications where 19411 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19412 * for more on this. 19413 */ 19414 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19415 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19416 if (err != 0) { 19417 ip0dbg(("ipif_multicast_up: " 19418 "all_hosts_mcast failed %d\n", 19419 err)); 19420 return; 19421 } 19422 /* 19423 * Enable multicast for the solicited node multicast address 19424 */ 19425 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19426 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19427 19428 ipv6_multi.s6_addr32[3] |= 19429 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19430 19431 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19432 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19433 NULL); 19434 if (err != 0) { 19435 ip0dbg(("ipif_multicast_up: solicited MC" 19436 " failed %d\n", err)); 19437 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19438 ill, ill->ill_phyint->phyint_ifindex, 19439 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19440 return; 19441 } 19442 } 19443 } else { 19444 if (ipif->ipif_lcl_addr == INADDR_ANY) 19445 return; 19446 19447 /* Join the all hosts multicast address */ 19448 ip1dbg(("ipif_multicast_up - addmulti\n")); 19449 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19450 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19451 if (err) { 19452 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19453 return; 19454 } 19455 } 19456 ipif->ipif_multicast_up = 1; 19457 } 19458 19459 /* 19460 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19461 * (Explicit memberships are blown away in ill_leave_multicast() when the 19462 * ill is brought down.) 19463 */ 19464 static void 19465 ipif_multicast_down(ipif_t *ipif) 19466 { 19467 int err; 19468 19469 ASSERT(IAM_WRITER_IPIF(ipif)); 19470 19471 ip1dbg(("ipif_multicast_down\n")); 19472 if (!ipif->ipif_multicast_up) 19473 return; 19474 19475 ip1dbg(("ipif_multicast_down - delmulti\n")); 19476 19477 if (!ipif->ipif_isv6) { 19478 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19479 B_TRUE); 19480 if (err != 0) 19481 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19482 19483 ipif->ipif_multicast_up = 0; 19484 return; 19485 } 19486 19487 /* 19488 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19489 * we should look for ilms on this ill rather than the ones that have 19490 * been failed over here. They are here temporarily. As 19491 * ipif_multicast_up has joined on this ill, we should delete only 19492 * from this ill. 19493 */ 19494 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19495 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19496 B_TRUE, B_TRUE); 19497 if (err != 0) { 19498 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19499 err)); 19500 } 19501 /* 19502 * Disable multicast for the solicited node multicast address 19503 */ 19504 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19505 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19506 19507 ipv6_multi.s6_addr32[3] |= 19508 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19509 19510 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19511 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19512 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19513 19514 if (err != 0) { 19515 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19516 err)); 19517 } 19518 } 19519 19520 ipif->ipif_multicast_up = 0; 19521 } 19522 19523 /* 19524 * Used when an interface comes up to recreate any extra routes on this 19525 * interface. 19526 */ 19527 static ire_t ** 19528 ipif_recover_ire(ipif_t *ipif) 19529 { 19530 mblk_t *mp; 19531 ire_t **ipif_saved_irep; 19532 ire_t **irep; 19533 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19534 19535 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19536 ipif->ipif_id)); 19537 19538 mutex_enter(&ipif->ipif_saved_ire_lock); 19539 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19540 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19541 if (ipif_saved_irep == NULL) { 19542 mutex_exit(&ipif->ipif_saved_ire_lock); 19543 return (NULL); 19544 } 19545 19546 irep = ipif_saved_irep; 19547 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19548 ire_t *ire; 19549 queue_t *rfq; 19550 queue_t *stq; 19551 ifrt_t *ifrt; 19552 uchar_t *src_addr; 19553 uchar_t *gateway_addr; 19554 ushort_t type; 19555 19556 /* 19557 * When the ire was initially created and then added in 19558 * ip_rt_add(), it was created either using ipif->ipif_net_type 19559 * in the case of a traditional interface route, or as one of 19560 * the IRE_OFFSUBNET types (with the exception of 19561 * IRE_HOST types ire which is created by icmp_redirect() and 19562 * which we don't need to save or recover). In the case where 19563 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19564 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19565 * to satisfy software like GateD and Sun Cluster which creates 19566 * routes using the the loopback interface's address as a 19567 * gateway. 19568 * 19569 * As ifrt->ifrt_type reflects the already updated ire_type, 19570 * ire_create() will be called in the same way here as 19571 * in ip_rt_add(), namely using ipif->ipif_net_type when 19572 * the route looks like a traditional interface route (where 19573 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19574 * the saved ifrt->ifrt_type. This means that in the case where 19575 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19576 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19577 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19578 */ 19579 ifrt = (ifrt_t *)mp->b_rptr; 19580 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19581 if (ifrt->ifrt_type & IRE_INTERFACE) { 19582 rfq = NULL; 19583 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19584 ? ipif->ipif_rq : ipif->ipif_wq; 19585 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19586 ? (uint8_t *)&ifrt->ifrt_src_addr 19587 : (uint8_t *)&ipif->ipif_src_addr; 19588 gateway_addr = NULL; 19589 type = ipif->ipif_net_type; 19590 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19591 /* Recover multiroute broadcast IRE. */ 19592 rfq = ipif->ipif_rq; 19593 stq = ipif->ipif_wq; 19594 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19595 ? (uint8_t *)&ifrt->ifrt_src_addr 19596 : (uint8_t *)&ipif->ipif_src_addr; 19597 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19598 type = ifrt->ifrt_type; 19599 } else { 19600 rfq = NULL; 19601 stq = NULL; 19602 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19603 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19604 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19605 type = ifrt->ifrt_type; 19606 } 19607 19608 /* 19609 * Create a copy of the IRE with the saved address and netmask. 19610 */ 19611 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19612 "0x%x/0x%x\n", 19613 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19614 ntohl(ifrt->ifrt_addr), 19615 ntohl(ifrt->ifrt_mask))); 19616 ire = ire_create( 19617 (uint8_t *)&ifrt->ifrt_addr, 19618 (uint8_t *)&ifrt->ifrt_mask, 19619 src_addr, 19620 gateway_addr, 19621 &ifrt->ifrt_max_frag, 19622 NULL, 19623 rfq, 19624 stq, 19625 type, 19626 ipif, 19627 0, 19628 0, 19629 0, 19630 ifrt->ifrt_flags, 19631 &ifrt->ifrt_iulp_info, 19632 NULL, 19633 NULL, 19634 ipst); 19635 19636 if (ire == NULL) { 19637 mutex_exit(&ipif->ipif_saved_ire_lock); 19638 kmem_free(ipif_saved_irep, 19639 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19640 return (NULL); 19641 } 19642 19643 /* 19644 * Some software (for example, GateD and Sun Cluster) attempts 19645 * to create (what amount to) IRE_PREFIX routes with the 19646 * loopback address as the gateway. This is primarily done to 19647 * set up prefixes with the RTF_REJECT flag set (for example, 19648 * when generating aggregate routes.) 19649 * 19650 * If the IRE type (as defined by ipif->ipif_net_type) is 19651 * IRE_LOOPBACK, then we map the request into a 19652 * IRE_IF_NORESOLVER. 19653 */ 19654 if (ipif->ipif_net_type == IRE_LOOPBACK) 19655 ire->ire_type = IRE_IF_NORESOLVER; 19656 /* 19657 * ire held by ire_add, will be refreled' towards the 19658 * the end of ipif_up_done 19659 */ 19660 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19661 *irep = ire; 19662 irep++; 19663 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19664 } 19665 mutex_exit(&ipif->ipif_saved_ire_lock); 19666 return (ipif_saved_irep); 19667 } 19668 19669 /* 19670 * Used to set the netmask and broadcast address to default values when the 19671 * interface is brought up. (Always called as writer.) 19672 */ 19673 static void 19674 ipif_set_default(ipif_t *ipif) 19675 { 19676 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19677 19678 if (!ipif->ipif_isv6) { 19679 /* 19680 * Interface holds an IPv4 address. Default 19681 * mask is the natural netmask. 19682 */ 19683 if (!ipif->ipif_net_mask) { 19684 ipaddr_t v4mask; 19685 19686 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19687 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19688 } 19689 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19690 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19691 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19692 } else { 19693 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19694 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19695 } 19696 /* 19697 * NOTE: SunOS 4.X does this even if the broadcast address 19698 * has been already set thus we do the same here. 19699 */ 19700 if (ipif->ipif_flags & IPIF_BROADCAST) { 19701 ipaddr_t v4addr; 19702 19703 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19704 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19705 } 19706 } else { 19707 /* 19708 * Interface holds an IPv6-only address. Default 19709 * mask is all-ones. 19710 */ 19711 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19712 ipif->ipif_v6net_mask = ipv6_all_ones; 19713 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19714 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19715 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19716 } else { 19717 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19718 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19719 } 19720 } 19721 } 19722 19723 /* 19724 * Return 0 if this address can be used as local address without causing 19725 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19726 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19727 * Special checks are needed to allow the same IPv6 link-local address 19728 * on different ills. 19729 * TODO: allowing the same site-local address on different ill's. 19730 */ 19731 int 19732 ip_addr_availability_check(ipif_t *new_ipif) 19733 { 19734 in6_addr_t our_v6addr; 19735 ill_t *ill; 19736 ipif_t *ipif; 19737 ill_walk_context_t ctx; 19738 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19739 19740 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19741 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19742 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19743 19744 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19745 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19746 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19747 return (0); 19748 19749 our_v6addr = new_ipif->ipif_v6lcl_addr; 19750 19751 if (new_ipif->ipif_isv6) 19752 ill = ILL_START_WALK_V6(&ctx, ipst); 19753 else 19754 ill = ILL_START_WALK_V4(&ctx, ipst); 19755 19756 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19757 for (ipif = ill->ill_ipif; ipif != NULL; 19758 ipif = ipif->ipif_next) { 19759 if ((ipif == new_ipif) || 19760 !(ipif->ipif_flags & IPIF_UP) || 19761 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19762 continue; 19763 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19764 &our_v6addr)) { 19765 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19766 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19767 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19768 ipif->ipif_flags |= IPIF_UNNUMBERED; 19769 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19770 new_ipif->ipif_ill != ill) 19771 continue; 19772 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19773 new_ipif->ipif_ill != ill) 19774 continue; 19775 else if (new_ipif->ipif_zoneid != 19776 ipif->ipif_zoneid && 19777 ipif->ipif_zoneid != ALL_ZONES && 19778 IS_LOOPBACK(ill)) 19779 continue; 19780 else if (new_ipif->ipif_ill == ill) 19781 return (EADDRINUSE); 19782 else 19783 return (EADDRNOTAVAIL); 19784 } 19785 } 19786 } 19787 19788 return (0); 19789 } 19790 19791 /* 19792 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19793 * IREs for the ipif. 19794 * When the routine returns EINPROGRESS then mp has been consumed and 19795 * the ioctl will be acked from ip_rput_dlpi. 19796 */ 19797 static int 19798 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19799 { 19800 ill_t *ill = ipif->ipif_ill; 19801 boolean_t isv6 = ipif->ipif_isv6; 19802 int err = 0; 19803 boolean_t success; 19804 19805 ASSERT(IAM_WRITER_IPIF(ipif)); 19806 19807 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19808 19809 /* Shouldn't get here if it is already up. */ 19810 if (ipif->ipif_flags & IPIF_UP) 19811 return (EALREADY); 19812 19813 /* Skip arp/ndp for any loopback interface. */ 19814 if (ill->ill_wq != NULL) { 19815 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19816 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19817 19818 if (!ill->ill_dl_up) { 19819 /* 19820 * ill_dl_up is not yet set. i.e. we are yet to 19821 * DL_BIND with the driver and this is the first 19822 * logical interface on the ill to become "up". 19823 * Tell the driver to get going (via DL_BIND_REQ). 19824 * Note that changing "significant" IFF_ flags 19825 * address/netmask etc cause a down/up dance, but 19826 * does not cause an unbind (DL_UNBIND) with the driver 19827 */ 19828 return (ill_dl_up(ill, ipif, mp, q)); 19829 } 19830 19831 /* 19832 * ipif_resolver_up may end up sending an 19833 * AR_INTERFACE_UP message to ARP, which would, in 19834 * turn send a DLPI message to the driver. ioctls are 19835 * serialized and so we cannot send more than one 19836 * interface up message at a time. If ipif_resolver_up 19837 * does send an interface up message to ARP, we get 19838 * EINPROGRESS and we will complete in ip_arp_done. 19839 */ 19840 19841 ASSERT(connp != NULL || !CONN_Q(q)); 19842 ASSERT(ipsq->ipsq_pending_mp == NULL); 19843 if (connp != NULL) 19844 mutex_enter(&connp->conn_lock); 19845 mutex_enter(&ill->ill_lock); 19846 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19847 mutex_exit(&ill->ill_lock); 19848 if (connp != NULL) 19849 mutex_exit(&connp->conn_lock); 19850 if (!success) 19851 return (EINTR); 19852 19853 /* 19854 * Crank up IPv6 neighbor discovery 19855 * Unlike ARP, this should complete when 19856 * ipif_ndp_up returns. However, for 19857 * ILLF_XRESOLV interfaces we also send a 19858 * AR_INTERFACE_UP to the external resolver. 19859 * That ioctl will complete in ip_rput. 19860 */ 19861 if (isv6) { 19862 err = ipif_ndp_up(ipif); 19863 if (err != 0) { 19864 if (err != EINPROGRESS) 19865 mp = ipsq_pending_mp_get(ipsq, &connp); 19866 return (err); 19867 } 19868 } 19869 /* Now, ARP */ 19870 err = ipif_resolver_up(ipif, Res_act_initial); 19871 if (err == EINPROGRESS) { 19872 /* We will complete it in ip_arp_done */ 19873 return (err); 19874 } 19875 mp = ipsq_pending_mp_get(ipsq, &connp); 19876 ASSERT(mp != NULL); 19877 if (err != 0) 19878 return (err); 19879 } else { 19880 /* 19881 * Interfaces without underlying hardware don't do duplicate 19882 * address detection. 19883 */ 19884 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19885 ipif->ipif_addr_ready = 1; 19886 } 19887 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19888 } 19889 19890 /* 19891 * Perform a bind for the physical device. 19892 * When the routine returns EINPROGRESS then mp has been consumed and 19893 * the ioctl will be acked from ip_rput_dlpi. 19894 * Allocate an unbind message and save it until ipif_down. 19895 */ 19896 static int 19897 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19898 { 19899 areq_t *areq; 19900 mblk_t *areq_mp = NULL; 19901 mblk_t *bind_mp = NULL; 19902 mblk_t *unbind_mp = NULL; 19903 conn_t *connp; 19904 boolean_t success; 19905 uint16_t sap_addr; 19906 19907 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19908 ASSERT(IAM_WRITER_ILL(ill)); 19909 ASSERT(mp != NULL); 19910 19911 /* Create a resolver cookie for ARP */ 19912 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19913 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19914 if (areq_mp == NULL) 19915 return (ENOMEM); 19916 19917 freemsg(ill->ill_resolver_mp); 19918 ill->ill_resolver_mp = areq_mp; 19919 areq = (areq_t *)areq_mp->b_rptr; 19920 sap_addr = ill->ill_sap; 19921 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19922 } 19923 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19924 DL_BIND_REQ); 19925 if (bind_mp == NULL) 19926 goto bad; 19927 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19928 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19929 19930 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19931 if (unbind_mp == NULL) 19932 goto bad; 19933 19934 /* 19935 * Record state needed to complete this operation when the 19936 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19937 */ 19938 ASSERT(WR(q)->q_next == NULL); 19939 connp = Q_TO_CONN(q); 19940 19941 mutex_enter(&connp->conn_lock); 19942 mutex_enter(&ipif->ipif_ill->ill_lock); 19943 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19944 mutex_exit(&ipif->ipif_ill->ill_lock); 19945 mutex_exit(&connp->conn_lock); 19946 if (!success) 19947 goto bad; 19948 19949 /* 19950 * Save the unbind message for ill_dl_down(); it will be consumed when 19951 * the interface goes down. 19952 */ 19953 ASSERT(ill->ill_unbind_mp == NULL); 19954 ill->ill_unbind_mp = unbind_mp; 19955 19956 ill_dlpi_send(ill, bind_mp); 19957 /* Send down link-layer capabilities probe if not already done. */ 19958 ill_capability_probe(ill); 19959 19960 /* 19961 * Sysid used to rely on the fact that netboots set domainname 19962 * and the like. Now that miniroot boots aren't strictly netboots 19963 * and miniroot network configuration is driven from userland 19964 * these things still need to be set. This situation can be detected 19965 * by comparing the interface being configured here to the one 19966 * dhcack was set to reference by the boot loader. Once sysid is 19967 * converted to use dhcp_ipc_getinfo() this call can go away. 19968 */ 19969 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 19970 (strcmp(ill->ill_name, dhcack) == 0) && 19971 (strlen(srpc_domain) == 0)) { 19972 if (dhcpinit() != 0) 19973 cmn_err(CE_WARN, "no cached dhcp response"); 19974 } 19975 19976 /* 19977 * This operation will complete in ip_rput_dlpi with either 19978 * a DL_BIND_ACK or DL_ERROR_ACK. 19979 */ 19980 return (EINPROGRESS); 19981 bad: 19982 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19983 /* 19984 * We don't have to check for possible removal from illgrp 19985 * as we have not yet inserted in illgrp. For groups 19986 * without names, this ipif is still not UP and hence 19987 * this could not have possibly had any influence in forming 19988 * groups. 19989 */ 19990 19991 freemsg(bind_mp); 19992 freemsg(unbind_mp); 19993 return (ENOMEM); 19994 } 19995 19996 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19997 19998 /* 19999 * DLPI and ARP is up. 20000 * Create all the IREs associated with an interface bring up multicast. 20001 * Set the interface flag and finish other initialization 20002 * that potentially had to be differed to after DL_BIND_ACK. 20003 */ 20004 int 20005 ipif_up_done(ipif_t *ipif) 20006 { 20007 ire_t *ire_array[20]; 20008 ire_t **irep = ire_array; 20009 ire_t **irep1; 20010 ipaddr_t net_mask = 0; 20011 ipaddr_t subnet_mask, route_mask; 20012 ill_t *ill = ipif->ipif_ill; 20013 queue_t *stq; 20014 ipif_t *src_ipif; 20015 ipif_t *tmp_ipif; 20016 boolean_t flush_ire_cache = B_TRUE; 20017 int err = 0; 20018 phyint_t *phyi; 20019 ire_t **ipif_saved_irep = NULL; 20020 int ipif_saved_ire_cnt; 20021 int cnt; 20022 boolean_t src_ipif_held = B_FALSE; 20023 boolean_t ire_added = B_FALSE; 20024 boolean_t loopback = B_FALSE; 20025 ip_stack_t *ipst = ill->ill_ipst; 20026 20027 ip1dbg(("ipif_up_done(%s:%u)\n", 20028 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20029 /* Check if this is a loopback interface */ 20030 if (ipif->ipif_ill->ill_wq == NULL) 20031 loopback = B_TRUE; 20032 20033 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20034 /* 20035 * If all other interfaces for this ill are down or DEPRECATED, 20036 * or otherwise unsuitable for source address selection, remove 20037 * any IRE_CACHE entries for this ill to make sure source 20038 * address selection gets to take this new ipif into account. 20039 * No need to hold ill_lock while traversing the ipif list since 20040 * we are writer 20041 */ 20042 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20043 tmp_ipif = tmp_ipif->ipif_next) { 20044 if (((tmp_ipif->ipif_flags & 20045 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20046 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20047 (tmp_ipif == ipif)) 20048 continue; 20049 /* first useable pre-existing interface */ 20050 flush_ire_cache = B_FALSE; 20051 break; 20052 } 20053 if (flush_ire_cache) 20054 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20055 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20056 20057 /* 20058 * Figure out which way the send-to queue should go. Only 20059 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20060 * should show up here. 20061 */ 20062 switch (ill->ill_net_type) { 20063 case IRE_IF_RESOLVER: 20064 stq = ill->ill_rq; 20065 break; 20066 case IRE_IF_NORESOLVER: 20067 case IRE_LOOPBACK: 20068 stq = ill->ill_wq; 20069 break; 20070 default: 20071 return (EINVAL); 20072 } 20073 20074 if (IS_LOOPBACK(ill)) { 20075 /* 20076 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20077 * ipif_lookup_on_name(), but in the case of zones we can have 20078 * several loopback addresses on lo0. So all the interfaces with 20079 * loopback addresses need to be marked IRE_LOOPBACK. 20080 */ 20081 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20082 htonl(INADDR_LOOPBACK)) 20083 ipif->ipif_ire_type = IRE_LOOPBACK; 20084 else 20085 ipif->ipif_ire_type = IRE_LOCAL; 20086 } 20087 20088 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20089 /* 20090 * Can't use our source address. Select a different 20091 * source address for the IRE_INTERFACE and IRE_LOCAL 20092 */ 20093 src_ipif = ipif_select_source(ipif->ipif_ill, 20094 ipif->ipif_subnet, ipif->ipif_zoneid); 20095 if (src_ipif == NULL) 20096 src_ipif = ipif; /* Last resort */ 20097 else 20098 src_ipif_held = B_TRUE; 20099 } else { 20100 src_ipif = ipif; 20101 } 20102 20103 /* Create all the IREs associated with this interface */ 20104 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20105 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20106 20107 /* 20108 * If we're on a labeled system then make sure that zone- 20109 * private addresses have proper remote host database entries. 20110 */ 20111 if (is_system_labeled() && 20112 ipif->ipif_ire_type != IRE_LOOPBACK && 20113 !tsol_check_interface_address(ipif)) 20114 return (EINVAL); 20115 20116 /* Register the source address for __sin6_src_id */ 20117 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20118 ipif->ipif_zoneid, ipst); 20119 if (err != 0) { 20120 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20121 return (err); 20122 } 20123 20124 /* If the interface address is set, create the local IRE. */ 20125 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20126 (void *)ipif, 20127 ipif->ipif_ire_type, 20128 ntohl(ipif->ipif_lcl_addr))); 20129 *irep++ = ire_create( 20130 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20131 (uchar_t *)&ip_g_all_ones, /* mask */ 20132 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20133 NULL, /* no gateway */ 20134 &ip_loopback_mtuplus, /* max frag size */ 20135 NULL, 20136 ipif->ipif_rq, /* recv-from queue */ 20137 NULL, /* no send-to queue */ 20138 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20139 ipif, 20140 0, 20141 0, 20142 0, 20143 (ipif->ipif_flags & IPIF_PRIVATE) ? 20144 RTF_PRIVATE : 0, 20145 &ire_uinfo_null, 20146 NULL, 20147 NULL, 20148 ipst); 20149 } else { 20150 ip1dbg(( 20151 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20152 ipif->ipif_ire_type, 20153 ntohl(ipif->ipif_lcl_addr), 20154 (uint_t)ipif->ipif_flags)); 20155 } 20156 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20157 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20158 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20159 } else { 20160 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20161 } 20162 20163 subnet_mask = ipif->ipif_net_mask; 20164 20165 /* 20166 * If mask was not specified, use natural netmask of 20167 * interface address. Also, store this mask back into the 20168 * ipif struct. 20169 */ 20170 if (subnet_mask == 0) { 20171 subnet_mask = net_mask; 20172 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20173 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20174 ipif->ipif_v6subnet); 20175 } 20176 20177 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20178 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20179 ipif->ipif_subnet != INADDR_ANY) { 20180 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20181 20182 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20183 route_mask = IP_HOST_MASK; 20184 } else { 20185 route_mask = subnet_mask; 20186 } 20187 20188 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20189 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20190 (void *)ipif, (void *)ill, 20191 ill->ill_net_type, 20192 ntohl(ipif->ipif_subnet))); 20193 *irep++ = ire_create( 20194 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20195 (uchar_t *)&route_mask, /* mask */ 20196 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20197 NULL, /* no gateway */ 20198 &ipif->ipif_mtu, /* max frag */ 20199 NULL, 20200 NULL, /* no recv queue */ 20201 stq, /* send-to queue */ 20202 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20203 ipif, 20204 0, 20205 0, 20206 0, 20207 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20208 &ire_uinfo_null, 20209 NULL, 20210 NULL, 20211 ipst); 20212 } 20213 20214 /* 20215 * Create any necessary broadcast IREs. 20216 */ 20217 if (ipif->ipif_flags & IPIF_BROADCAST) 20218 irep = ipif_create_bcast_ires(ipif, irep); 20219 20220 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20221 20222 /* If an earlier ire_create failed, get out now */ 20223 for (irep1 = irep; irep1 > ire_array; ) { 20224 irep1--; 20225 if (*irep1 == NULL) { 20226 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20227 err = ENOMEM; 20228 goto bad; 20229 } 20230 } 20231 20232 /* 20233 * Need to atomically check for ip_addr_availablity_check 20234 * under ip_addr_avail_lock, and if it fails got bad, and remove 20235 * from group also.The ill_g_lock is grabbed as reader 20236 * just to make sure no new ills or new ipifs are being added 20237 * to the system while we are checking the uniqueness of addresses. 20238 */ 20239 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20240 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20241 /* Mark it up, and increment counters. */ 20242 ipif->ipif_flags |= IPIF_UP; 20243 ill->ill_ipif_up_count++; 20244 err = ip_addr_availability_check(ipif); 20245 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20246 rw_exit(&ipst->ips_ill_g_lock); 20247 20248 if (err != 0) { 20249 /* 20250 * Our address may already be up on the same ill. In this case, 20251 * the ARP entry for our ipif replaced the one for the other 20252 * ipif. So we don't want to delete it (otherwise the other ipif 20253 * would be unable to send packets). 20254 * ip_addr_availability_check() identifies this case for us and 20255 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20256 * which is the expected error code. 20257 */ 20258 if (err == EADDRINUSE) { 20259 freemsg(ipif->ipif_arp_del_mp); 20260 ipif->ipif_arp_del_mp = NULL; 20261 err = EADDRNOTAVAIL; 20262 } 20263 ill->ill_ipif_up_count--; 20264 ipif->ipif_flags &= ~IPIF_UP; 20265 goto bad; 20266 } 20267 20268 /* 20269 * Add in all newly created IREs. ire_create_bcast() has 20270 * already checked for duplicates of the IRE_BROADCAST type. 20271 * We want to add before we call ifgrp_insert which wants 20272 * to know whether IRE_IF_RESOLVER exists or not. 20273 * 20274 * NOTE : We refrele the ire though we may branch to "bad" 20275 * later on where we do ire_delete. This is okay 20276 * because nobody can delete it as we are running 20277 * exclusively. 20278 */ 20279 for (irep1 = irep; irep1 > ire_array; ) { 20280 irep1--; 20281 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20282 /* 20283 * refheld by ire_add. refele towards the end of the func 20284 */ 20285 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20286 } 20287 ire_added = B_TRUE; 20288 /* 20289 * Form groups if possible. 20290 * 20291 * If we are supposed to be in a ill_group with a name, insert it 20292 * now as we know that at least one ipif is UP. Otherwise form 20293 * nameless groups. 20294 * 20295 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20296 * this ipif into the appropriate interface group, or create a 20297 * new one. If this is already in a nameless group, we try to form 20298 * a bigger group looking at other ills potentially sharing this 20299 * ipif's prefix. 20300 */ 20301 phyi = ill->ill_phyint; 20302 if (phyi->phyint_groupname_len != 0) { 20303 ASSERT(phyi->phyint_groupname != NULL); 20304 if (ill->ill_ipif_up_count == 1) { 20305 ASSERT(ill->ill_group == NULL); 20306 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20307 phyi->phyint_groupname, NULL, B_TRUE); 20308 if (err != 0) { 20309 ip1dbg(("ipif_up_done: illgrp allocation " 20310 "failed, error %d\n", err)); 20311 goto bad; 20312 } 20313 } 20314 ASSERT(ill->ill_group != NULL); 20315 } 20316 20317 /* 20318 * When this is part of group, we need to make sure that 20319 * any broadcast ires created because of this ipif coming 20320 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20321 * so that we don't receive duplicate broadcast packets. 20322 */ 20323 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20324 ipif_renominate_bcast(ipif); 20325 20326 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20327 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20328 ipif_saved_irep = ipif_recover_ire(ipif); 20329 20330 if (!loopback) { 20331 /* 20332 * If the broadcast address has been set, make sure it makes 20333 * sense based on the interface address. 20334 * Only match on ill since we are sharing broadcast addresses. 20335 */ 20336 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20337 (ipif->ipif_flags & IPIF_BROADCAST)) { 20338 ire_t *ire; 20339 20340 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20341 IRE_BROADCAST, ipif, ALL_ZONES, 20342 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20343 20344 if (ire == NULL) { 20345 /* 20346 * If there isn't a matching broadcast IRE, 20347 * revert to the default for this netmask. 20348 */ 20349 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20350 mutex_enter(&ipif->ipif_ill->ill_lock); 20351 ipif_set_default(ipif); 20352 mutex_exit(&ipif->ipif_ill->ill_lock); 20353 } else { 20354 ire_refrele(ire); 20355 } 20356 } 20357 20358 } 20359 20360 /* This is the first interface on this ill */ 20361 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20362 /* 20363 * Need to recover all multicast memberships in the driver. 20364 * This had to be deferred until we had attached. 20365 */ 20366 ill_recover_multicast(ill); 20367 } 20368 /* Join the allhosts multicast address */ 20369 ipif_multicast_up(ipif); 20370 20371 if (!loopback) { 20372 /* 20373 * See whether anybody else would benefit from the 20374 * new ipif that we added. We call this always rather 20375 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20376 * ipif is for the benefit of illgrp_insert (done above) 20377 * which does not do source address selection as it does 20378 * not want to re-create interface routes that we are 20379 * having reference to it here. 20380 */ 20381 ill_update_source_selection(ill); 20382 } 20383 20384 for (irep1 = irep; irep1 > ire_array; ) { 20385 irep1--; 20386 if (*irep1 != NULL) { 20387 /* was held in ire_add */ 20388 ire_refrele(*irep1); 20389 } 20390 } 20391 20392 cnt = ipif_saved_ire_cnt; 20393 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20394 if (*irep1 != NULL) { 20395 /* was held in ire_add */ 20396 ire_refrele(*irep1); 20397 } 20398 } 20399 20400 if (!loopback && ipif->ipif_addr_ready) { 20401 /* Broadcast an address mask reply. */ 20402 ipif_mask_reply(ipif); 20403 } 20404 if (ipif_saved_irep != NULL) { 20405 kmem_free(ipif_saved_irep, 20406 ipif_saved_ire_cnt * sizeof (ire_t *)); 20407 } 20408 if (src_ipif_held) 20409 ipif_refrele(src_ipif); 20410 20411 /* 20412 * This had to be deferred until we had bound. Tell routing sockets and 20413 * others that this interface is up if it looks like the address has 20414 * been validated. Otherwise, if it isn't ready yet, wait for 20415 * duplicate address detection to do its thing. 20416 */ 20417 if (ipif->ipif_addr_ready) { 20418 ip_rts_ifmsg(ipif); 20419 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20420 /* Let SCTP update the status for this ipif */ 20421 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20422 } 20423 return (0); 20424 20425 bad: 20426 ip1dbg(("ipif_up_done: FAILED \n")); 20427 /* 20428 * We don't have to bother removing from ill groups because 20429 * 20430 * 1) For groups with names, we insert only when the first ipif 20431 * comes up. In that case if it fails, it will not be in any 20432 * group. So, we need not try to remove for that case. 20433 * 20434 * 2) For groups without names, either we tried to insert ipif_ill 20435 * in a group as singleton or found some other group to become 20436 * a bigger group. For the former, if it fails we don't have 20437 * anything to do as ipif_ill is not in the group and for the 20438 * latter, there are no failures in illgrp_insert/illgrp_delete 20439 * (ENOMEM can't occur for this. Check ifgrp_insert). 20440 */ 20441 while (irep > ire_array) { 20442 irep--; 20443 if (*irep != NULL) { 20444 ire_delete(*irep); 20445 if (ire_added) 20446 ire_refrele(*irep); 20447 } 20448 } 20449 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20450 20451 if (ipif_saved_irep != NULL) { 20452 kmem_free(ipif_saved_irep, 20453 ipif_saved_ire_cnt * sizeof (ire_t *)); 20454 } 20455 if (src_ipif_held) 20456 ipif_refrele(src_ipif); 20457 20458 ipif_arp_down(ipif); 20459 return (err); 20460 } 20461 20462 /* 20463 * Turn off the ARP with the ILLF_NOARP flag. 20464 */ 20465 static int 20466 ill_arp_off(ill_t *ill) 20467 { 20468 mblk_t *arp_off_mp = NULL; 20469 mblk_t *arp_on_mp = NULL; 20470 20471 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20472 20473 ASSERT(IAM_WRITER_ILL(ill)); 20474 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20475 20476 /* 20477 * If the on message is still around we've already done 20478 * an arp_off without doing an arp_on thus there is no 20479 * work needed. 20480 */ 20481 if (ill->ill_arp_on_mp != NULL) 20482 return (0); 20483 20484 /* 20485 * Allocate an ARP on message (to be saved) and an ARP off message 20486 */ 20487 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20488 if (!arp_off_mp) 20489 return (ENOMEM); 20490 20491 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20492 if (!arp_on_mp) 20493 goto failed; 20494 20495 ASSERT(ill->ill_arp_on_mp == NULL); 20496 ill->ill_arp_on_mp = arp_on_mp; 20497 20498 /* Send an AR_INTERFACE_OFF request */ 20499 putnext(ill->ill_rq, arp_off_mp); 20500 return (0); 20501 failed: 20502 20503 if (arp_off_mp) 20504 freemsg(arp_off_mp); 20505 return (ENOMEM); 20506 } 20507 20508 /* 20509 * Turn on ARP by turning off the ILLF_NOARP flag. 20510 */ 20511 static int 20512 ill_arp_on(ill_t *ill) 20513 { 20514 mblk_t *mp; 20515 20516 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20517 20518 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20519 20520 ASSERT(IAM_WRITER_ILL(ill)); 20521 /* 20522 * Send an AR_INTERFACE_ON request if we have already done 20523 * an arp_off (which allocated the message). 20524 */ 20525 if (ill->ill_arp_on_mp != NULL) { 20526 mp = ill->ill_arp_on_mp; 20527 ill->ill_arp_on_mp = NULL; 20528 putnext(ill->ill_rq, mp); 20529 } 20530 return (0); 20531 } 20532 20533 /* 20534 * Called after either deleting ill from the group or when setting 20535 * FAILED or STANDBY on the interface. 20536 */ 20537 static void 20538 illgrp_reset_schednext(ill_t *ill) 20539 { 20540 ill_group_t *illgrp; 20541 ill_t *save_ill; 20542 20543 ASSERT(IAM_WRITER_ILL(ill)); 20544 /* 20545 * When called from illgrp_delete, ill_group will be non-NULL. 20546 * But when called from ip_sioctl_flags, it could be NULL if 20547 * somebody is setting FAILED/INACTIVE on some interface which 20548 * is not part of a group. 20549 */ 20550 illgrp = ill->ill_group; 20551 if (illgrp == NULL) 20552 return; 20553 if (illgrp->illgrp_ill_schednext != ill) 20554 return; 20555 20556 illgrp->illgrp_ill_schednext = NULL; 20557 save_ill = ill; 20558 /* 20559 * Choose a good ill to be the next one for 20560 * outbound traffic. As the flags FAILED/STANDBY is 20561 * not yet marked when called from ip_sioctl_flags, 20562 * we check for ill separately. 20563 */ 20564 for (ill = illgrp->illgrp_ill; ill != NULL; 20565 ill = ill->ill_group_next) { 20566 if ((ill != save_ill) && 20567 !(ill->ill_phyint->phyint_flags & 20568 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20569 illgrp->illgrp_ill_schednext = ill; 20570 return; 20571 } 20572 } 20573 } 20574 20575 /* 20576 * Given an ill, find the next ill in the group to be scheduled. 20577 * (This should be called by ip_newroute() before ire_create().) 20578 * The passed in ill may be pulled out of the group, after we have picked 20579 * up a different outgoing ill from the same group. However ire add will 20580 * atomically check this. 20581 */ 20582 ill_t * 20583 illgrp_scheduler(ill_t *ill) 20584 { 20585 ill_t *retill; 20586 ill_group_t *illgrp; 20587 int illcnt; 20588 int i; 20589 uint64_t flags; 20590 ip_stack_t *ipst = ill->ill_ipst; 20591 20592 /* 20593 * We don't use a lock to check for the ill_group. If this ill 20594 * is currently being inserted we may end up just returning this 20595 * ill itself. That is ok. 20596 */ 20597 if (ill->ill_group == NULL) { 20598 ill_refhold(ill); 20599 return (ill); 20600 } 20601 20602 /* 20603 * Grab the ill_g_lock as reader to make sure we are dealing with 20604 * a set of stable ills. No ill can be added or deleted or change 20605 * group while we hold the reader lock. 20606 */ 20607 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20608 if ((illgrp = ill->ill_group) == NULL) { 20609 rw_exit(&ipst->ips_ill_g_lock); 20610 ill_refhold(ill); 20611 return (ill); 20612 } 20613 20614 illcnt = illgrp->illgrp_ill_count; 20615 mutex_enter(&illgrp->illgrp_lock); 20616 retill = illgrp->illgrp_ill_schednext; 20617 20618 if (retill == NULL) 20619 retill = illgrp->illgrp_ill; 20620 20621 /* 20622 * We do a circular search beginning at illgrp_ill_schednext 20623 * or illgrp_ill. We don't check the flags against the ill lock 20624 * since it can change anytime. The ire creation will be atomic 20625 * and will fail if the ill is FAILED or OFFLINE. 20626 */ 20627 for (i = 0; i < illcnt; i++) { 20628 flags = retill->ill_phyint->phyint_flags; 20629 20630 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20631 ILL_CAN_LOOKUP(retill)) { 20632 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20633 ill_refhold(retill); 20634 break; 20635 } 20636 retill = retill->ill_group_next; 20637 if (retill == NULL) 20638 retill = illgrp->illgrp_ill; 20639 } 20640 mutex_exit(&illgrp->illgrp_lock); 20641 rw_exit(&ipst->ips_ill_g_lock); 20642 20643 return (i == illcnt ? NULL : retill); 20644 } 20645 20646 /* 20647 * Checks for availbility of a usable source address (if there is one) when the 20648 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20649 * this selection is done regardless of the destination. 20650 */ 20651 boolean_t 20652 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20653 { 20654 uint_t ifindex; 20655 ipif_t *ipif = NULL; 20656 ill_t *uill; 20657 boolean_t isv6; 20658 ip_stack_t *ipst = ill->ill_ipst; 20659 20660 ASSERT(ill != NULL); 20661 20662 isv6 = ill->ill_isv6; 20663 ifindex = ill->ill_usesrc_ifindex; 20664 if (ifindex != 0) { 20665 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20666 NULL, ipst); 20667 if (uill == NULL) 20668 return (NULL); 20669 mutex_enter(&uill->ill_lock); 20670 for (ipif = uill->ill_ipif; ipif != NULL; 20671 ipif = ipif->ipif_next) { 20672 if (!IPIF_CAN_LOOKUP(ipif)) 20673 continue; 20674 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20675 continue; 20676 if (!(ipif->ipif_flags & IPIF_UP)) 20677 continue; 20678 if (ipif->ipif_zoneid != zoneid) 20679 continue; 20680 if ((isv6 && 20681 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20682 (ipif->ipif_lcl_addr == INADDR_ANY)) 20683 continue; 20684 mutex_exit(&uill->ill_lock); 20685 ill_refrele(uill); 20686 return (B_TRUE); 20687 } 20688 mutex_exit(&uill->ill_lock); 20689 ill_refrele(uill); 20690 } 20691 return (B_FALSE); 20692 } 20693 20694 /* 20695 * Determine the best source address given a destination address and an ill. 20696 * Prefers non-deprecated over deprecated but will return a deprecated 20697 * address if there is no other choice. If there is a usable source address 20698 * on the interface pointed to by ill_usesrc_ifindex then that is given 20699 * first preference. 20700 * 20701 * Returns NULL if there is no suitable source address for the ill. 20702 * This only occurs when there is no valid source address for the ill. 20703 */ 20704 ipif_t * 20705 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20706 { 20707 ipif_t *ipif; 20708 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20709 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20710 int index = 0; 20711 boolean_t wrapped = B_FALSE; 20712 boolean_t same_subnet_only = B_FALSE; 20713 boolean_t ipif_same_found, ipif_other_found; 20714 boolean_t specific_found; 20715 ill_t *till, *usill = NULL; 20716 tsol_tpc_t *src_rhtp, *dst_rhtp; 20717 ip_stack_t *ipst = ill->ill_ipst; 20718 20719 if (ill->ill_usesrc_ifindex != 0) { 20720 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20721 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20722 if (usill != NULL) 20723 ill = usill; /* Select source from usesrc ILL */ 20724 else 20725 return (NULL); 20726 } 20727 20728 /* 20729 * If we're dealing with an unlabeled destination on a labeled system, 20730 * make sure that we ignore source addresses that are incompatible with 20731 * the destination's default label. That destination's default label 20732 * must dominate the minimum label on the source address. 20733 */ 20734 dst_rhtp = NULL; 20735 if (is_system_labeled()) { 20736 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20737 if (dst_rhtp == NULL) 20738 return (NULL); 20739 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20740 TPC_RELE(dst_rhtp); 20741 dst_rhtp = NULL; 20742 } 20743 } 20744 20745 /* 20746 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20747 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20748 * After selecting the right ipif, under ill_lock make sure ipif is 20749 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20750 * we retry. Inside the loop we still need to check for CONDEMNED, 20751 * but not under a lock. 20752 */ 20753 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20754 20755 retry: 20756 till = ill; 20757 ipif_arr[0] = NULL; 20758 20759 if (till->ill_group != NULL) 20760 till = till->ill_group->illgrp_ill; 20761 20762 /* 20763 * Choose one good source address from each ill across the group. 20764 * If possible choose a source address in the same subnet as 20765 * the destination address. 20766 * 20767 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20768 * This is okay because of the following. 20769 * 20770 * If PHYI_FAILED is set and we still have non-deprecated 20771 * addresses, it means the addresses have not yet been 20772 * failed over to a different interface. We potentially 20773 * select them to create IRE_CACHES, which will be later 20774 * flushed when the addresses move over. 20775 * 20776 * If PHYI_INACTIVE is set and we still have non-deprecated 20777 * addresses, it means either the user has configured them 20778 * or PHYI_INACTIVE has not been cleared after the addresses 20779 * been moved over. For the former, in.mpathd does a failover 20780 * when the interface becomes INACTIVE and hence we should 20781 * not find them. Once INACTIVE is set, we don't allow them 20782 * to create logical interfaces anymore. For the latter, a 20783 * flush will happen when INACTIVE is cleared which will 20784 * flush the IRE_CACHES. 20785 * 20786 * If PHYI_OFFLINE is set, all the addresses will be failed 20787 * over soon. We potentially select them to create IRE_CACHEs, 20788 * which will be later flushed when the addresses move over. 20789 * 20790 * NOTE : As ipif_select_source is called to borrow source address 20791 * for an ipif that is part of a group, source address selection 20792 * will be re-done whenever the group changes i.e either an 20793 * insertion/deletion in the group. 20794 * 20795 * Fill ipif_arr[] with source addresses, using these rules: 20796 * 20797 * 1. At most one source address from a given ill ends up 20798 * in ipif_arr[] -- that is, at most one of the ipif's 20799 * associated with a given ill ends up in ipif_arr[]. 20800 * 20801 * 2. If there is at least one non-deprecated ipif in the 20802 * IPMP group with a source address on the same subnet as 20803 * our destination, then fill ipif_arr[] only with 20804 * source addresses on the same subnet as our destination. 20805 * Note that because of (1), only the first 20806 * non-deprecated ipif found with a source address 20807 * matching the destination ends up in ipif_arr[]. 20808 * 20809 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20810 * addresses not in the same subnet as our destination. 20811 * Again, because of (1), only the first off-subnet source 20812 * address will be chosen. 20813 * 20814 * 4. If there are no non-deprecated ipifs, then just use 20815 * the source address associated with the last deprecated 20816 * one we find that happens to be on the same subnet, 20817 * otherwise the first one not in the same subnet. 20818 */ 20819 specific_found = B_FALSE; 20820 for (; till != NULL; till = till->ill_group_next) { 20821 ipif_same_found = B_FALSE; 20822 ipif_other_found = B_FALSE; 20823 for (ipif = till->ill_ipif; ipif != NULL; 20824 ipif = ipif->ipif_next) { 20825 if (!IPIF_CAN_LOOKUP(ipif)) 20826 continue; 20827 /* Always skip NOLOCAL and ANYCAST interfaces */ 20828 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20829 continue; 20830 if (!(ipif->ipif_flags & IPIF_UP) || 20831 !ipif->ipif_addr_ready) 20832 continue; 20833 if (ipif->ipif_zoneid != zoneid && 20834 ipif->ipif_zoneid != ALL_ZONES) 20835 continue; 20836 /* 20837 * Interfaces with 0.0.0.0 address are allowed to be UP, 20838 * but are not valid as source addresses. 20839 */ 20840 if (ipif->ipif_lcl_addr == INADDR_ANY) 20841 continue; 20842 20843 /* 20844 * Check compatibility of local address for 20845 * destination's default label if we're on a labeled 20846 * system. Incompatible addresses can't be used at 20847 * all. 20848 */ 20849 if (dst_rhtp != NULL) { 20850 boolean_t incompat; 20851 20852 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20853 IPV4_VERSION, B_FALSE); 20854 if (src_rhtp == NULL) 20855 continue; 20856 incompat = 20857 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20858 src_rhtp->tpc_tp.tp_doi != 20859 dst_rhtp->tpc_tp.tp_doi || 20860 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20861 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20862 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20863 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20864 TPC_RELE(src_rhtp); 20865 if (incompat) 20866 continue; 20867 } 20868 20869 /* 20870 * We prefer not to use all all-zones addresses, if we 20871 * can avoid it, as they pose problems with unlabeled 20872 * destinations. 20873 */ 20874 if (ipif->ipif_zoneid != ALL_ZONES) { 20875 if (!specific_found && 20876 (!same_subnet_only || 20877 (ipif->ipif_net_mask & dst) == 20878 ipif->ipif_subnet)) { 20879 index = 0; 20880 specific_found = B_TRUE; 20881 ipif_other_found = B_FALSE; 20882 } 20883 } else { 20884 if (specific_found) 20885 continue; 20886 } 20887 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20888 if (ipif_dep == NULL || 20889 (ipif->ipif_net_mask & dst) == 20890 ipif->ipif_subnet) 20891 ipif_dep = ipif; 20892 continue; 20893 } 20894 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20895 /* found a source address in the same subnet */ 20896 if (!same_subnet_only) { 20897 same_subnet_only = B_TRUE; 20898 index = 0; 20899 } 20900 ipif_same_found = B_TRUE; 20901 } else { 20902 if (same_subnet_only || ipif_other_found) 20903 continue; 20904 ipif_other_found = B_TRUE; 20905 } 20906 ipif_arr[index++] = ipif; 20907 if (index == MAX_IPIF_SELECT_SOURCE) { 20908 wrapped = B_TRUE; 20909 index = 0; 20910 } 20911 if (ipif_same_found) 20912 break; 20913 } 20914 } 20915 20916 if (ipif_arr[0] == NULL) { 20917 ipif = ipif_dep; 20918 } else { 20919 if (wrapped) 20920 index = MAX_IPIF_SELECT_SOURCE; 20921 ipif = ipif_arr[ipif_rand(ipst) % index]; 20922 ASSERT(ipif != NULL); 20923 } 20924 20925 if (ipif != NULL) { 20926 mutex_enter(&ipif->ipif_ill->ill_lock); 20927 if (!IPIF_CAN_LOOKUP(ipif)) { 20928 mutex_exit(&ipif->ipif_ill->ill_lock); 20929 goto retry; 20930 } 20931 ipif_refhold_locked(ipif); 20932 mutex_exit(&ipif->ipif_ill->ill_lock); 20933 } 20934 20935 rw_exit(&ipst->ips_ill_g_lock); 20936 if (usill != NULL) 20937 ill_refrele(usill); 20938 if (dst_rhtp != NULL) 20939 TPC_RELE(dst_rhtp); 20940 20941 #ifdef DEBUG 20942 if (ipif == NULL) { 20943 char buf1[INET6_ADDRSTRLEN]; 20944 20945 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20946 ill->ill_name, 20947 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20948 } else { 20949 char buf1[INET6_ADDRSTRLEN]; 20950 char buf2[INET6_ADDRSTRLEN]; 20951 20952 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20953 ipif->ipif_ill->ill_name, 20954 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20955 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20956 buf2, sizeof (buf2)))); 20957 } 20958 #endif /* DEBUG */ 20959 return (ipif); 20960 } 20961 20962 20963 /* 20964 * If old_ipif is not NULL, see if ipif was derived from old 20965 * ipif and if so, recreate the interface route by re-doing 20966 * source address selection. This happens when ipif_down -> 20967 * ipif_update_other_ipifs calls us. 20968 * 20969 * If old_ipif is NULL, just redo the source address selection 20970 * if needed. This happens when illgrp_insert or ipif_up_done 20971 * calls us. 20972 */ 20973 static void 20974 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20975 { 20976 ire_t *ire; 20977 ire_t *ipif_ire; 20978 queue_t *stq; 20979 ipif_t *nipif; 20980 ill_t *ill; 20981 boolean_t need_rele = B_FALSE; 20982 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 20983 20984 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20985 ASSERT(IAM_WRITER_IPIF(ipif)); 20986 20987 ill = ipif->ipif_ill; 20988 if (!(ipif->ipif_flags & 20989 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20990 /* 20991 * Can't possibly have borrowed the source 20992 * from old_ipif. 20993 */ 20994 return; 20995 } 20996 20997 /* 20998 * Is there any work to be done? No work if the address 20999 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21000 * ipif_select_source() does not borrow addresses from 21001 * NOLOCAL and ANYCAST interfaces). 21002 */ 21003 if ((old_ipif != NULL) && 21004 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21005 (old_ipif->ipif_ill->ill_wq == NULL) || 21006 (old_ipif->ipif_flags & 21007 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21008 return; 21009 } 21010 21011 /* 21012 * Perform the same checks as when creating the 21013 * IRE_INTERFACE in ipif_up_done. 21014 */ 21015 if (!(ipif->ipif_flags & IPIF_UP)) 21016 return; 21017 21018 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21019 (ipif->ipif_subnet == INADDR_ANY)) 21020 return; 21021 21022 ipif_ire = ipif_to_ire(ipif); 21023 if (ipif_ire == NULL) 21024 return; 21025 21026 /* 21027 * We know that ipif uses some other source for its 21028 * IRE_INTERFACE. Is it using the source of this 21029 * old_ipif? 21030 */ 21031 if (old_ipif != NULL && 21032 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21033 ire_refrele(ipif_ire); 21034 return; 21035 } 21036 if (ip_debug > 2) { 21037 /* ip1dbg */ 21038 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21039 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21040 } 21041 21042 stq = ipif_ire->ire_stq; 21043 21044 /* 21045 * Can't use our source address. Select a different 21046 * source address for the IRE_INTERFACE. 21047 */ 21048 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21049 if (nipif == NULL) { 21050 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21051 nipif = ipif; 21052 } else { 21053 need_rele = B_TRUE; 21054 } 21055 21056 ire = ire_create( 21057 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21058 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21059 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21060 NULL, /* no gateway */ 21061 &ipif->ipif_mtu, /* max frag */ 21062 NULL, /* no src nce */ 21063 NULL, /* no recv from queue */ 21064 stq, /* send-to queue */ 21065 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21066 ipif, 21067 0, 21068 0, 21069 0, 21070 0, 21071 &ire_uinfo_null, 21072 NULL, 21073 NULL, 21074 ipst); 21075 21076 if (ire != NULL) { 21077 ire_t *ret_ire; 21078 int error; 21079 21080 /* 21081 * We don't need ipif_ire anymore. We need to delete 21082 * before we add so that ire_add does not detect 21083 * duplicates. 21084 */ 21085 ire_delete(ipif_ire); 21086 ret_ire = ire; 21087 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21088 ASSERT(error == 0); 21089 ASSERT(ire == ret_ire); 21090 /* Held in ire_add */ 21091 ire_refrele(ret_ire); 21092 } 21093 /* 21094 * Either we are falling through from above or could not 21095 * allocate a replacement. 21096 */ 21097 ire_refrele(ipif_ire); 21098 if (need_rele) 21099 ipif_refrele(nipif); 21100 } 21101 21102 /* 21103 * This old_ipif is going away. 21104 * 21105 * Determine if any other ipif's is using our address as 21106 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21107 * IPIF_DEPRECATED). 21108 * Find the IRE_INTERFACE for such ipifs and recreate them 21109 * to use an different source address following the rules in 21110 * ipif_up_done. 21111 * 21112 * This function takes an illgrp as an argument so that illgrp_delete 21113 * can call this to update source address even after deleting the 21114 * old_ipif->ipif_ill from the ill group. 21115 */ 21116 static void 21117 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21118 { 21119 ipif_t *ipif; 21120 ill_t *ill; 21121 char buf[INET6_ADDRSTRLEN]; 21122 21123 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21124 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21125 21126 ill = old_ipif->ipif_ill; 21127 21128 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21129 ill->ill_name, 21130 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21131 buf, sizeof (buf)))); 21132 /* 21133 * If this part of a group, look at all ills as ipif_select_source 21134 * borrows source address across all the ills in the group. 21135 */ 21136 if (illgrp != NULL) 21137 ill = illgrp->illgrp_ill; 21138 21139 for (; ill != NULL; ill = ill->ill_group_next) { 21140 for (ipif = ill->ill_ipif; ipif != NULL; 21141 ipif = ipif->ipif_next) { 21142 21143 if (ipif == old_ipif) 21144 continue; 21145 21146 ipif_recreate_interface_routes(old_ipif, ipif); 21147 } 21148 } 21149 } 21150 21151 /* ARGSUSED */ 21152 int 21153 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21154 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21155 { 21156 /* 21157 * ill_phyint_reinit merged the v4 and v6 into a single 21158 * ipsq. Could also have become part of a ipmp group in the 21159 * process, and we might not have been able to complete the 21160 * operation in ipif_set_values, if we could not become 21161 * exclusive. If so restart it here. 21162 */ 21163 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21164 } 21165 21166 21167 /* 21168 * Can operate on either a module or a driver queue. 21169 * Returns an error if not a module queue. 21170 */ 21171 /* ARGSUSED */ 21172 int 21173 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21174 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21175 { 21176 queue_t *q1 = q; 21177 char *cp; 21178 char interf_name[LIFNAMSIZ]; 21179 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21180 21181 if (q->q_next == NULL) { 21182 ip1dbg(( 21183 "if_unitsel: IF_UNITSEL: no q_next\n")); 21184 return (EINVAL); 21185 } 21186 21187 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21188 return (EALREADY); 21189 21190 do { 21191 q1 = q1->q_next; 21192 } while (q1->q_next); 21193 cp = q1->q_qinfo->qi_minfo->mi_idname; 21194 (void) sprintf(interf_name, "%s%d", cp, ppa); 21195 21196 /* 21197 * Here we are not going to delay the ioack until after 21198 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21199 * original ioctl message before sending the requests. 21200 */ 21201 return (ipif_set_values(q, mp, interf_name, &ppa)); 21202 } 21203 21204 /* ARGSUSED */ 21205 int 21206 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21207 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21208 { 21209 return (ENXIO); 21210 } 21211 21212 /* 21213 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21214 * `irep'. Returns a pointer to the next free `irep' entry (just like 21215 * ire_check_and_create_bcast()). 21216 */ 21217 static ire_t ** 21218 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21219 { 21220 ipaddr_t addr; 21221 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21222 ipaddr_t subnetmask = ipif->ipif_net_mask; 21223 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21224 21225 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21226 21227 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21228 21229 if (ipif->ipif_lcl_addr == INADDR_ANY || 21230 (ipif->ipif_flags & IPIF_NOLOCAL)) 21231 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21232 21233 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21234 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21235 21236 /* 21237 * For backward compatibility, we create net broadcast IREs based on 21238 * the old "IP address class system", since some old machines only 21239 * respond to these class derived net broadcast. However, we must not 21240 * create these net broadcast IREs if the subnetmask is shorter than 21241 * the IP address class based derived netmask. Otherwise, we may 21242 * create a net broadcast address which is the same as an IP address 21243 * on the subnet -- and then TCP will refuse to talk to that address. 21244 */ 21245 if (netmask < subnetmask) { 21246 addr = netmask & ipif->ipif_subnet; 21247 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21248 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21249 flags); 21250 } 21251 21252 /* 21253 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21254 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21255 * created. Creating these broadcast IREs will only create confusion 21256 * as `addr' will be the same as the IP address. 21257 */ 21258 if (subnetmask != 0xFFFFFFFF) { 21259 addr = ipif->ipif_subnet; 21260 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21261 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21262 irep, flags); 21263 } 21264 21265 return (irep); 21266 } 21267 21268 /* 21269 * Broadcast IRE info structure used in the functions below. Since we 21270 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21271 */ 21272 typedef struct bcast_ireinfo { 21273 uchar_t bi_type; /* BCAST_* value from below */ 21274 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21275 bi_needrep:1, /* do we need to replace it? */ 21276 bi_haverep:1, /* have we replaced it? */ 21277 bi_pad:5; 21278 ipaddr_t bi_addr; /* IRE address */ 21279 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21280 } bcast_ireinfo_t; 21281 21282 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21283 21284 /* 21285 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21286 * return B_TRUE if it should immediately be used to recreate the IRE. 21287 */ 21288 static boolean_t 21289 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21290 { 21291 ipaddr_t addr; 21292 21293 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21294 21295 switch (bireinfop->bi_type) { 21296 case BCAST_NET: 21297 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21298 if (addr != bireinfop->bi_addr) 21299 return (B_FALSE); 21300 break; 21301 case BCAST_SUBNET: 21302 if (ipif->ipif_subnet != bireinfop->bi_addr) 21303 return (B_FALSE); 21304 break; 21305 } 21306 21307 bireinfop->bi_needrep = 1; 21308 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21309 if (bireinfop->bi_backup == NULL) 21310 bireinfop->bi_backup = ipif; 21311 return (B_FALSE); 21312 } 21313 return (B_TRUE); 21314 } 21315 21316 /* 21317 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21318 * them ala ire_check_and_create_bcast(). 21319 */ 21320 static ire_t ** 21321 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21322 { 21323 ipaddr_t mask, addr; 21324 21325 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21326 21327 addr = bireinfop->bi_addr; 21328 irep = ire_create_bcast(ipif, addr, irep); 21329 21330 switch (bireinfop->bi_type) { 21331 case BCAST_NET: 21332 mask = ip_net_mask(ipif->ipif_subnet); 21333 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21334 break; 21335 case BCAST_SUBNET: 21336 mask = ipif->ipif_net_mask; 21337 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21338 break; 21339 } 21340 21341 bireinfop->bi_haverep = 1; 21342 return (irep); 21343 } 21344 21345 /* 21346 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21347 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21348 * that are going away are still needed. If so, have ipif_create_bcast() 21349 * recreate them (except for the deprecated case, as explained below). 21350 */ 21351 static ire_t ** 21352 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21353 ire_t **irep) 21354 { 21355 int i; 21356 ipif_t *ipif; 21357 21358 ASSERT(!ill->ill_isv6); 21359 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21360 /* 21361 * Skip this ipif if it's (a) the one being taken down, (b) 21362 * not in the same zone, or (c) has no valid local address. 21363 */ 21364 if (ipif == test_ipif || 21365 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21366 ipif->ipif_subnet == 0 || 21367 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21368 (IPIF_UP|IPIF_BROADCAST)) 21369 continue; 21370 21371 /* 21372 * For each dying IRE that hasn't yet been replaced, see if 21373 * `ipif' needs it and whether the IRE should be recreated on 21374 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21375 * will return B_FALSE even if `ipif' needs the IRE on the 21376 * hopes that we'll later find a needy non-deprecated ipif. 21377 * However, the ipif is recorded in bi_backup for possible 21378 * subsequent use by ipif_check_bcast_ires(). 21379 */ 21380 for (i = 0; i < BCAST_COUNT; i++) { 21381 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21382 continue; 21383 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21384 continue; 21385 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21386 } 21387 21388 /* 21389 * If we've replaced all of the broadcast IREs that are going 21390 * to be taken down, we know we're done. 21391 */ 21392 for (i = 0; i < BCAST_COUNT; i++) { 21393 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21394 break; 21395 } 21396 if (i == BCAST_COUNT) 21397 break; 21398 } 21399 return (irep); 21400 } 21401 21402 /* 21403 * Check if `test_ipif' (which is going away) is associated with any existing 21404 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21405 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21406 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21407 * 21408 * This is necessary because broadcast IREs are shared. In particular, a 21409 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21410 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21411 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21412 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21413 * same zone, they will share the same set of broadcast IREs. 21414 * 21415 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21416 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21417 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21418 */ 21419 static void 21420 ipif_check_bcast_ires(ipif_t *test_ipif) 21421 { 21422 ill_t *ill = test_ipif->ipif_ill; 21423 ire_t *ire, *ire_array[12]; /* see note above */ 21424 ire_t **irep1, **irep = &ire_array[0]; 21425 uint_t i, willdie; 21426 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21427 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21428 21429 ASSERT(!test_ipif->ipif_isv6); 21430 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21431 21432 /* 21433 * No broadcast IREs for the LOOPBACK interface 21434 * or others such as point to point and IPIF_NOXMIT. 21435 */ 21436 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21437 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21438 return; 21439 21440 bzero(bireinfo, sizeof (bireinfo)); 21441 bireinfo[0].bi_type = BCAST_ALLZEROES; 21442 bireinfo[0].bi_addr = 0; 21443 21444 bireinfo[1].bi_type = BCAST_ALLONES; 21445 bireinfo[1].bi_addr = INADDR_BROADCAST; 21446 21447 bireinfo[2].bi_type = BCAST_NET; 21448 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21449 21450 if (test_ipif->ipif_net_mask != 0) 21451 mask = test_ipif->ipif_net_mask; 21452 bireinfo[3].bi_type = BCAST_SUBNET; 21453 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21454 21455 /* 21456 * Figure out what (if any) broadcast IREs will die as a result of 21457 * `test_ipif' going away. If none will die, we're done. 21458 */ 21459 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21460 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21461 test_ipif, ALL_ZONES, NULL, 21462 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21463 if (ire != NULL) { 21464 willdie++; 21465 bireinfo[i].bi_willdie = 1; 21466 ire_refrele(ire); 21467 } 21468 } 21469 21470 if (willdie == 0) 21471 return; 21472 21473 /* 21474 * Walk through all the ipifs that will be affected by the dying IREs, 21475 * and recreate the IREs as necessary. 21476 */ 21477 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21478 21479 /* 21480 * Scan through the set of broadcast IREs and see if there are any 21481 * that we need to replace that have not yet been replaced. If so, 21482 * replace them using the appropriate backup ipif. 21483 */ 21484 for (i = 0; i < BCAST_COUNT; i++) { 21485 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21486 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21487 &bireinfo[i], irep); 21488 } 21489 21490 /* 21491 * If we can't create all of them, don't add any of them. (Code in 21492 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21493 * non-loopback copy and loopback copy for a given address.) 21494 */ 21495 for (irep1 = irep; irep1 > ire_array; ) { 21496 irep1--; 21497 if (*irep1 == NULL) { 21498 ip0dbg(("ipif_check_bcast_ires: can't create " 21499 "IRE_BROADCAST, memory allocation failure\n")); 21500 while (irep > ire_array) { 21501 irep--; 21502 if (*irep != NULL) 21503 ire_delete(*irep); 21504 } 21505 return; 21506 } 21507 } 21508 21509 for (irep1 = irep; irep1 > ire_array; ) { 21510 irep1--; 21511 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21512 ire_refrele(*irep1); /* Held in ire_add */ 21513 } 21514 } 21515 21516 /* 21517 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21518 * from lifr_flags and the name from lifr_name. 21519 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21520 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21521 * Returns EINPROGRESS when mp has been consumed by queueing it on 21522 * ill_pending_mp and the ioctl will complete in ip_rput. 21523 * 21524 * Can operate on either a module or a driver queue. 21525 * Returns an error if not a module queue. 21526 */ 21527 /* ARGSUSED */ 21528 int 21529 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21530 ip_ioctl_cmd_t *ipip, void *if_req) 21531 { 21532 int err; 21533 ill_t *ill; 21534 struct lifreq *lifr = (struct lifreq *)if_req; 21535 21536 ASSERT(ipif != NULL); 21537 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21538 21539 if (q->q_next == NULL) { 21540 ip1dbg(( 21541 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21542 return (EINVAL); 21543 } 21544 21545 ill = (ill_t *)q->q_ptr; 21546 /* 21547 * If we are not writer on 'q' then this interface exists already 21548 * and previous lookups (ipif_extract_lifreq()) found this ipif. 21549 * So return EALREADY 21550 */ 21551 if (ill != ipif->ipif_ill) 21552 return (EALREADY); 21553 21554 if (ill->ill_name[0] != '\0') 21555 return (EALREADY); 21556 21557 /* 21558 * Set all the flags. Allows all kinds of override. Provide some 21559 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21560 * unless there is either multicast/broadcast support in the driver 21561 * or it is a pt-pt link. 21562 */ 21563 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21564 /* Meaningless to IP thus don't allow them to be set. */ 21565 ip1dbg(("ip_setname: EINVAL 1\n")); 21566 return (EINVAL); 21567 } 21568 /* 21569 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21570 * ill_bcast_addr_length info. 21571 */ 21572 if (!ill->ill_needs_attach && 21573 ((lifr->lifr_flags & IFF_MULTICAST) && 21574 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21575 ill->ill_bcast_addr_length == 0)) { 21576 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21577 ip1dbg(("ip_setname: EINVAL 2\n")); 21578 return (EINVAL); 21579 } 21580 if ((lifr->lifr_flags & IFF_BROADCAST) && 21581 ((lifr->lifr_flags & IFF_IPV6) || 21582 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21583 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21584 ip1dbg(("ip_setname: EINVAL 3\n")); 21585 return (EINVAL); 21586 } 21587 if (lifr->lifr_flags & IFF_UP) { 21588 /* Can only be set with SIOCSLIFFLAGS */ 21589 ip1dbg(("ip_setname: EINVAL 4\n")); 21590 return (EINVAL); 21591 } 21592 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21593 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21594 ip1dbg(("ip_setname: EINVAL 5\n")); 21595 return (EINVAL); 21596 } 21597 /* 21598 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21599 */ 21600 if ((lifr->lifr_flags & IFF_XRESOLV) && 21601 !(lifr->lifr_flags & IFF_IPV6) && 21602 !(ipif->ipif_isv6)) { 21603 ip1dbg(("ip_setname: EINVAL 6\n")); 21604 return (EINVAL); 21605 } 21606 21607 /* 21608 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21609 * we have all the flags here. So, we assign rather than we OR. 21610 * We can't OR the flags here because we don't want to set 21611 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21612 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21613 * on lifr_flags value here. 21614 */ 21615 /* 21616 * This ill has not been inserted into the global list. 21617 * So we are still single threaded and don't need any lock 21618 */ 21619 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21620 ~IFF_DUPLICATE; 21621 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21622 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21623 21624 /* We started off as V4. */ 21625 if (ill->ill_flags & ILLF_IPV6) { 21626 ill->ill_phyint->phyint_illv6 = ill; 21627 ill->ill_phyint->phyint_illv4 = NULL; 21628 } 21629 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21630 return (err); 21631 } 21632 21633 /* ARGSUSED */ 21634 int 21635 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21636 ip_ioctl_cmd_t *ipip, void *if_req) 21637 { 21638 /* 21639 * ill_phyint_reinit merged the v4 and v6 into a single 21640 * ipsq. Could also have become part of a ipmp group in the 21641 * process, and we might not have been able to complete the 21642 * slifname in ipif_set_values, if we could not become 21643 * exclusive. If so restart it here 21644 */ 21645 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21646 } 21647 21648 /* 21649 * Return a pointer to the ipif which matches the index, IP version type and 21650 * zoneid. 21651 */ 21652 ipif_t * 21653 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21654 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21655 { 21656 ill_t *ill; 21657 ipif_t *ipif = NULL; 21658 21659 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21660 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21661 21662 if (err != NULL) 21663 *err = 0; 21664 21665 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21666 if (ill != NULL) { 21667 mutex_enter(&ill->ill_lock); 21668 for (ipif = ill->ill_ipif; ipif != NULL; 21669 ipif = ipif->ipif_next) { 21670 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21671 zoneid == ipif->ipif_zoneid || 21672 ipif->ipif_zoneid == ALL_ZONES)) { 21673 ipif_refhold_locked(ipif); 21674 break; 21675 } 21676 } 21677 mutex_exit(&ill->ill_lock); 21678 ill_refrele(ill); 21679 if (ipif == NULL && err != NULL) 21680 *err = ENXIO; 21681 } 21682 return (ipif); 21683 } 21684 21685 typedef struct conn_change_s { 21686 uint_t cc_old_ifindex; 21687 uint_t cc_new_ifindex; 21688 } conn_change_t; 21689 21690 /* 21691 * ipcl_walk function for changing interface index. 21692 */ 21693 static void 21694 conn_change_ifindex(conn_t *connp, caddr_t arg) 21695 { 21696 conn_change_t *connc; 21697 uint_t old_ifindex; 21698 uint_t new_ifindex; 21699 int i; 21700 ilg_t *ilg; 21701 21702 connc = (conn_change_t *)arg; 21703 old_ifindex = connc->cc_old_ifindex; 21704 new_ifindex = connc->cc_new_ifindex; 21705 21706 if (connp->conn_orig_bound_ifindex == old_ifindex) 21707 connp->conn_orig_bound_ifindex = new_ifindex; 21708 21709 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21710 connp->conn_orig_multicast_ifindex = new_ifindex; 21711 21712 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21713 ilg = &connp->conn_ilg[i]; 21714 if (ilg->ilg_orig_ifindex == old_ifindex) 21715 ilg->ilg_orig_ifindex = new_ifindex; 21716 } 21717 } 21718 21719 /* 21720 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21721 * to new_index if it matches the old_index. 21722 * 21723 * Failovers typically happen within a group of ills. But somebody 21724 * can remove an ill from the group after a failover happened. If 21725 * we are setting the ifindex after this, we potentially need to 21726 * look at all the ills rather than just the ones in the group. 21727 * We cut down the work by looking at matching ill_net_types 21728 * and ill_types as we could not possibly grouped them together. 21729 */ 21730 static void 21731 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21732 { 21733 ill_t *ill; 21734 ipif_t *ipif; 21735 uint_t old_ifindex; 21736 uint_t new_ifindex; 21737 ilm_t *ilm; 21738 ill_walk_context_t ctx; 21739 ip_stack_t *ipst = ill_orig->ill_ipst; 21740 21741 old_ifindex = connc->cc_old_ifindex; 21742 new_ifindex = connc->cc_new_ifindex; 21743 21744 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21745 ill = ILL_START_WALK_ALL(&ctx, ipst); 21746 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21747 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21748 (ill_orig->ill_type != ill->ill_type)) { 21749 continue; 21750 } 21751 for (ipif = ill->ill_ipif; ipif != NULL; 21752 ipif = ipif->ipif_next) { 21753 if (ipif->ipif_orig_ifindex == old_ifindex) 21754 ipif->ipif_orig_ifindex = new_ifindex; 21755 } 21756 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21757 if (ilm->ilm_orig_ifindex == old_ifindex) 21758 ilm->ilm_orig_ifindex = new_ifindex; 21759 } 21760 } 21761 rw_exit(&ipst->ips_ill_g_lock); 21762 } 21763 21764 /* 21765 * We first need to ensure that the new index is unique, and 21766 * then carry the change across both v4 and v6 ill representation 21767 * of the physical interface. 21768 */ 21769 /* ARGSUSED */ 21770 int 21771 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21772 ip_ioctl_cmd_t *ipip, void *ifreq) 21773 { 21774 ill_t *ill; 21775 ill_t *ill_other; 21776 phyint_t *phyi; 21777 int old_index; 21778 conn_change_t connc; 21779 struct ifreq *ifr = (struct ifreq *)ifreq; 21780 struct lifreq *lifr = (struct lifreq *)ifreq; 21781 uint_t index; 21782 ill_t *ill_v4; 21783 ill_t *ill_v6; 21784 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21785 21786 if (ipip->ipi_cmd_type == IF_CMD) 21787 index = ifr->ifr_index; 21788 else 21789 index = lifr->lifr_index; 21790 21791 /* 21792 * Only allow on physical interface. Also, index zero is illegal. 21793 * 21794 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21795 * 21796 * 1) If PHYI_FAILED is set, a failover could have happened which 21797 * implies a possible failback might have to happen. As failback 21798 * depends on the old index, we should fail setting the index. 21799 * 21800 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21801 * any addresses or multicast memberships are failed over to 21802 * a non-STANDBY interface. As failback depends on the old 21803 * index, we should fail setting the index for this case also. 21804 * 21805 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21806 * Be consistent with PHYI_FAILED and fail the ioctl. 21807 */ 21808 ill = ipif->ipif_ill; 21809 phyi = ill->ill_phyint; 21810 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21811 ipif->ipif_id != 0 || index == 0) { 21812 return (EINVAL); 21813 } 21814 old_index = phyi->phyint_ifindex; 21815 21816 /* If the index is not changing, no work to do */ 21817 if (old_index == index) 21818 return (0); 21819 21820 /* 21821 * Use ill_lookup_on_ifindex to determine if the 21822 * new index is unused and if so allow the change. 21823 */ 21824 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21825 ipst); 21826 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21827 ipst); 21828 if (ill_v6 != NULL || ill_v4 != NULL) { 21829 if (ill_v4 != NULL) 21830 ill_refrele(ill_v4); 21831 if (ill_v6 != NULL) 21832 ill_refrele(ill_v6); 21833 return (EBUSY); 21834 } 21835 21836 /* 21837 * The new index is unused. Set it in the phyint. 21838 * Locate the other ill so that we can send a routing 21839 * sockets message. 21840 */ 21841 if (ill->ill_isv6) { 21842 ill_other = phyi->phyint_illv4; 21843 } else { 21844 ill_other = phyi->phyint_illv6; 21845 } 21846 21847 phyi->phyint_ifindex = index; 21848 21849 /* Update SCTP's ILL list */ 21850 sctp_ill_reindex(ill, old_index); 21851 21852 connc.cc_old_ifindex = old_index; 21853 connc.cc_new_ifindex = index; 21854 ip_change_ifindex(ill, &connc); 21855 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21856 21857 /* Send the routing sockets message */ 21858 ip_rts_ifmsg(ipif); 21859 if (ill_other != NULL) 21860 ip_rts_ifmsg(ill_other->ill_ipif); 21861 21862 return (0); 21863 } 21864 21865 /* ARGSUSED */ 21866 int 21867 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21868 ip_ioctl_cmd_t *ipip, void *ifreq) 21869 { 21870 struct ifreq *ifr = (struct ifreq *)ifreq; 21871 struct lifreq *lifr = (struct lifreq *)ifreq; 21872 21873 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21874 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21875 /* Get the interface index */ 21876 if (ipip->ipi_cmd_type == IF_CMD) { 21877 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21878 } else { 21879 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21880 } 21881 return (0); 21882 } 21883 21884 /* ARGSUSED */ 21885 int 21886 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21887 ip_ioctl_cmd_t *ipip, void *ifreq) 21888 { 21889 struct lifreq *lifr = (struct lifreq *)ifreq; 21890 21891 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21892 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21893 /* Get the interface zone */ 21894 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21895 lifr->lifr_zoneid = ipif->ipif_zoneid; 21896 return (0); 21897 } 21898 21899 /* 21900 * Set the zoneid of an interface. 21901 */ 21902 /* ARGSUSED */ 21903 int 21904 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21905 ip_ioctl_cmd_t *ipip, void *ifreq) 21906 { 21907 struct lifreq *lifr = (struct lifreq *)ifreq; 21908 int err = 0; 21909 boolean_t need_up = B_FALSE; 21910 zone_t *zptr; 21911 zone_status_t status; 21912 zoneid_t zoneid; 21913 21914 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21915 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21916 if (!is_system_labeled()) 21917 return (ENOTSUP); 21918 zoneid = GLOBAL_ZONEID; 21919 } 21920 21921 /* cannot assign instance zero to a non-global zone */ 21922 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21923 return (ENOTSUP); 21924 21925 /* 21926 * Cannot assign to a zone that doesn't exist or is shutting down. In 21927 * the event of a race with the zone shutdown processing, since IP 21928 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21929 * interface will be cleaned up even if the zone is shut down 21930 * immediately after the status check. If the interface can't be brought 21931 * down right away, and the zone is shut down before the restart 21932 * function is called, we resolve the possible races by rechecking the 21933 * zone status in the restart function. 21934 */ 21935 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21936 return (EINVAL); 21937 status = zone_status_get(zptr); 21938 zone_rele(zptr); 21939 21940 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21941 return (EINVAL); 21942 21943 if (ipif->ipif_flags & IPIF_UP) { 21944 /* 21945 * If the interface is already marked up, 21946 * we call ipif_down which will take care 21947 * of ditching any IREs that have been set 21948 * up based on the old interface address. 21949 */ 21950 err = ipif_logical_down(ipif, q, mp); 21951 if (err == EINPROGRESS) 21952 return (err); 21953 ipif_down_tail(ipif); 21954 need_up = B_TRUE; 21955 } 21956 21957 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21958 return (err); 21959 } 21960 21961 static int 21962 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21963 queue_t *q, mblk_t *mp, boolean_t need_up) 21964 { 21965 int err = 0; 21966 ip_stack_t *ipst; 21967 21968 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21969 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21970 21971 if (CONN_Q(q)) 21972 ipst = CONNQ_TO_IPST(q); 21973 else 21974 ipst = ILLQ_TO_IPST(q); 21975 21976 /* 21977 * For exclusive stacks we don't allow a different zoneid than 21978 * global. 21979 */ 21980 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 21981 zoneid != GLOBAL_ZONEID) 21982 return (EINVAL); 21983 21984 /* Set the new zone id. */ 21985 ipif->ipif_zoneid = zoneid; 21986 21987 /* Update sctp list */ 21988 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 21989 21990 if (need_up) { 21991 /* 21992 * Now bring the interface back up. If this 21993 * is the only IPIF for the ILL, ipif_up 21994 * will have to re-bind to the device, so 21995 * we may get back EINPROGRESS, in which 21996 * case, this IOCTL will get completed in 21997 * ip_rput_dlpi when we see the DL_BIND_ACK. 21998 */ 21999 err = ipif_up(ipif, q, mp); 22000 } 22001 return (err); 22002 } 22003 22004 /* ARGSUSED */ 22005 int 22006 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22007 ip_ioctl_cmd_t *ipip, void *if_req) 22008 { 22009 struct lifreq *lifr = (struct lifreq *)if_req; 22010 zoneid_t zoneid; 22011 zone_t *zptr; 22012 zone_status_t status; 22013 22014 ASSERT(ipif->ipif_id != 0); 22015 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22016 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22017 zoneid = GLOBAL_ZONEID; 22018 22019 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22020 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22021 22022 /* 22023 * We recheck the zone status to resolve the following race condition: 22024 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22025 * 2) hme0:1 is up and can't be brought down right away; 22026 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22027 * 3) zone "myzone" is halted; the zone status switches to 22028 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22029 * the interfaces to remove - hme0:1 is not returned because it's not 22030 * yet in "myzone", so it won't be removed; 22031 * 4) the restart function for SIOCSLIFZONE is called; without the 22032 * status check here, we would have hme0:1 in "myzone" after it's been 22033 * destroyed. 22034 * Note that if the status check fails, we need to bring the interface 22035 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22036 * ipif_up_done[_v6](). 22037 */ 22038 status = ZONE_IS_UNINITIALIZED; 22039 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22040 status = zone_status_get(zptr); 22041 zone_rele(zptr); 22042 } 22043 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22044 if (ipif->ipif_isv6) { 22045 (void) ipif_up_done_v6(ipif); 22046 } else { 22047 (void) ipif_up_done(ipif); 22048 } 22049 return (EINVAL); 22050 } 22051 22052 ipif_down_tail(ipif); 22053 22054 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22055 B_TRUE)); 22056 } 22057 22058 /* ARGSUSED */ 22059 int 22060 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22061 ip_ioctl_cmd_t *ipip, void *ifreq) 22062 { 22063 struct lifreq *lifr = ifreq; 22064 22065 ASSERT(q->q_next == NULL); 22066 ASSERT(CONN_Q(q)); 22067 22068 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22069 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22070 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22071 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22072 22073 return (0); 22074 } 22075 22076 22077 /* Find the previous ILL in this usesrc group */ 22078 static ill_t * 22079 ill_prev_usesrc(ill_t *uill) 22080 { 22081 ill_t *ill; 22082 22083 for (ill = uill->ill_usesrc_grp_next; 22084 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22085 ill = ill->ill_usesrc_grp_next) 22086 /* do nothing */; 22087 return (ill); 22088 } 22089 22090 /* 22091 * Release all members of the usesrc group. This routine is called 22092 * from ill_delete when the interface being unplumbed is the 22093 * group head. 22094 */ 22095 static void 22096 ill_disband_usesrc_group(ill_t *uill) 22097 { 22098 ill_t *next_ill, *tmp_ill; 22099 ip_stack_t *ipst = uill->ill_ipst; 22100 22101 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22102 next_ill = uill->ill_usesrc_grp_next; 22103 22104 do { 22105 ASSERT(next_ill != NULL); 22106 tmp_ill = next_ill->ill_usesrc_grp_next; 22107 ASSERT(tmp_ill != NULL); 22108 next_ill->ill_usesrc_grp_next = NULL; 22109 next_ill->ill_usesrc_ifindex = 0; 22110 next_ill = tmp_ill; 22111 } while (next_ill->ill_usesrc_ifindex != 0); 22112 uill->ill_usesrc_grp_next = NULL; 22113 } 22114 22115 /* 22116 * Remove the client usesrc ILL from the list and relink to a new list 22117 */ 22118 int 22119 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22120 { 22121 ill_t *ill, *tmp_ill; 22122 ip_stack_t *ipst = ucill->ill_ipst; 22123 22124 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22125 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22126 22127 /* 22128 * Check if the usesrc client ILL passed in is not already 22129 * in use as a usesrc ILL i.e one whose source address is 22130 * in use OR a usesrc ILL is not already in use as a usesrc 22131 * client ILL 22132 */ 22133 if ((ucill->ill_usesrc_ifindex == 0) || 22134 (uill->ill_usesrc_ifindex != 0)) { 22135 return (-1); 22136 } 22137 22138 ill = ill_prev_usesrc(ucill); 22139 ASSERT(ill->ill_usesrc_grp_next != NULL); 22140 22141 /* Remove from the current list */ 22142 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22143 /* Only two elements in the list */ 22144 ASSERT(ill->ill_usesrc_ifindex == 0); 22145 ill->ill_usesrc_grp_next = NULL; 22146 } else { 22147 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22148 } 22149 22150 if (ifindex == 0) { 22151 ucill->ill_usesrc_ifindex = 0; 22152 ucill->ill_usesrc_grp_next = NULL; 22153 return (0); 22154 } 22155 22156 ucill->ill_usesrc_ifindex = ifindex; 22157 tmp_ill = uill->ill_usesrc_grp_next; 22158 uill->ill_usesrc_grp_next = ucill; 22159 ucill->ill_usesrc_grp_next = 22160 (tmp_ill != NULL) ? tmp_ill : uill; 22161 return (0); 22162 } 22163 22164 /* 22165 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22166 * ip.c for locking details. 22167 */ 22168 /* ARGSUSED */ 22169 int 22170 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22171 ip_ioctl_cmd_t *ipip, void *ifreq) 22172 { 22173 struct lifreq *lifr = (struct lifreq *)ifreq; 22174 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22175 ill_flag_changed = B_FALSE; 22176 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22177 int err = 0, ret; 22178 uint_t ifindex; 22179 phyint_t *us_phyint, *us_cli_phyint; 22180 ipsq_t *ipsq = NULL; 22181 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22182 22183 ASSERT(IAM_WRITER_IPIF(ipif)); 22184 ASSERT(q->q_next == NULL); 22185 ASSERT(CONN_Q(q)); 22186 22187 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22188 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22189 22190 ASSERT(us_cli_phyint != NULL); 22191 22192 /* 22193 * If the client ILL is being used for IPMP, abort. 22194 * Note, this can be done before ipsq_try_enter since we are already 22195 * exclusive on this ILL 22196 */ 22197 if ((us_cli_phyint->phyint_groupname != NULL) || 22198 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22199 return (EINVAL); 22200 } 22201 22202 ifindex = lifr->lifr_index; 22203 if (ifindex == 0) { 22204 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22205 /* non usesrc group interface, nothing to reset */ 22206 return (0); 22207 } 22208 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22209 /* valid reset request */ 22210 reset_flg = B_TRUE; 22211 } 22212 22213 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22214 ip_process_ioctl, &err, ipst); 22215 22216 if (usesrc_ill == NULL) { 22217 return (err); 22218 } 22219 22220 /* 22221 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22222 * group nor can either of the interfaces be used for standy. So 22223 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22224 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22225 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22226 * We are already exlusive on this ipsq i.e ipsq corresponding to 22227 * the usesrc_cli_ill 22228 */ 22229 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22230 NEW_OP, B_TRUE); 22231 if (ipsq == NULL) { 22232 err = EINPROGRESS; 22233 /* Operation enqueued on the ipsq of the usesrc ILL */ 22234 goto done; 22235 } 22236 22237 /* Check if the usesrc_ill is used for IPMP */ 22238 us_phyint = usesrc_ill->ill_phyint; 22239 if ((us_phyint->phyint_groupname != NULL) || 22240 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22241 err = EINVAL; 22242 goto done; 22243 } 22244 22245 /* 22246 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22247 * already a client then return EINVAL 22248 */ 22249 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22250 err = EINVAL; 22251 goto done; 22252 } 22253 22254 /* 22255 * If the ill_usesrc_ifindex field is already set to what it needs to 22256 * be then this is a duplicate operation. 22257 */ 22258 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22259 err = 0; 22260 goto done; 22261 } 22262 22263 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22264 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22265 usesrc_ill->ill_isv6)); 22266 22267 /* 22268 * The next step ensures that no new ires will be created referencing 22269 * the client ill, until the ILL_CHANGING flag is cleared. Then 22270 * we go through an ire walk deleting all ire caches that reference 22271 * the client ill. New ires referencing the client ill that are added 22272 * to the ire table before the ILL_CHANGING flag is set, will be 22273 * cleaned up by the ire walk below. Attempt to add new ires referencing 22274 * the client ill while the ILL_CHANGING flag is set will be failed 22275 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22276 * checks (under the ill_g_usesrc_lock) that the ire being added 22277 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22278 * belong to the same usesrc group. 22279 */ 22280 mutex_enter(&usesrc_cli_ill->ill_lock); 22281 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22282 mutex_exit(&usesrc_cli_ill->ill_lock); 22283 ill_flag_changed = B_TRUE; 22284 22285 if (ipif->ipif_isv6) 22286 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22287 ALL_ZONES, ipst); 22288 else 22289 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22290 ALL_ZONES, ipst); 22291 22292 /* 22293 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22294 * and the ill_usesrc_ifindex fields 22295 */ 22296 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22297 22298 if (reset_flg) { 22299 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22300 if (ret != 0) { 22301 err = EINVAL; 22302 } 22303 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22304 goto done; 22305 } 22306 22307 /* 22308 * Four possibilities to consider: 22309 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22310 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22311 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22312 * 4. Both are part of their respective usesrc groups 22313 */ 22314 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22315 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22316 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22317 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22318 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22319 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22320 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22321 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22322 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22323 /* Insert at head of list */ 22324 usesrc_cli_ill->ill_usesrc_grp_next = 22325 usesrc_ill->ill_usesrc_grp_next; 22326 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22327 } else { 22328 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22329 ifindex); 22330 if (ret != 0) 22331 err = EINVAL; 22332 } 22333 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22334 22335 done: 22336 if (ill_flag_changed) { 22337 mutex_enter(&usesrc_cli_ill->ill_lock); 22338 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22339 mutex_exit(&usesrc_cli_ill->ill_lock); 22340 } 22341 if (ipsq != NULL) 22342 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22343 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22344 ill_refrele(usesrc_ill); 22345 return (err); 22346 } 22347 22348 /* 22349 * comparison function used by avl. 22350 */ 22351 static int 22352 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22353 { 22354 22355 uint_t index; 22356 22357 ASSERT(phyip != NULL && index_ptr != NULL); 22358 22359 index = *((uint_t *)index_ptr); 22360 /* 22361 * let the phyint with the lowest index be on top. 22362 */ 22363 if (((phyint_t *)phyip)->phyint_ifindex < index) 22364 return (1); 22365 if (((phyint_t *)phyip)->phyint_ifindex > index) 22366 return (-1); 22367 return (0); 22368 } 22369 22370 /* 22371 * comparison function used by avl. 22372 */ 22373 static int 22374 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22375 { 22376 ill_t *ill; 22377 int res = 0; 22378 22379 ASSERT(phyip != NULL && name_ptr != NULL); 22380 22381 if (((phyint_t *)phyip)->phyint_illv4) 22382 ill = ((phyint_t *)phyip)->phyint_illv4; 22383 else 22384 ill = ((phyint_t *)phyip)->phyint_illv6; 22385 ASSERT(ill != NULL); 22386 22387 res = strcmp(ill->ill_name, (char *)name_ptr); 22388 if (res > 0) 22389 return (1); 22390 else if (res < 0) 22391 return (-1); 22392 return (0); 22393 } 22394 /* 22395 * This function is called from ill_delete when the ill is being 22396 * unplumbed. We remove the reference from the phyint and we also 22397 * free the phyint when there are no more references to it. 22398 */ 22399 static void 22400 ill_phyint_free(ill_t *ill) 22401 { 22402 phyint_t *phyi; 22403 phyint_t *next_phyint; 22404 ipsq_t *cur_ipsq; 22405 ip_stack_t *ipst = ill->ill_ipst; 22406 22407 ASSERT(ill->ill_phyint != NULL); 22408 22409 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22410 phyi = ill->ill_phyint; 22411 ill->ill_phyint = NULL; 22412 /* 22413 * ill_init allocates a phyint always to store the copy 22414 * of flags relevant to phyint. At that point in time, we could 22415 * not assign the name and hence phyint_illv4/v6 could not be 22416 * initialized. Later in ipif_set_values, we assign the name to 22417 * the ill, at which point in time we assign phyint_illv4/v6. 22418 * Thus we don't rely on phyint_illv6 to be initialized always. 22419 */ 22420 if (ill->ill_flags & ILLF_IPV6) { 22421 phyi->phyint_illv6 = NULL; 22422 } else { 22423 phyi->phyint_illv4 = NULL; 22424 } 22425 /* 22426 * ipif_down removes it from the group when the last ipif goes 22427 * down. 22428 */ 22429 ASSERT(ill->ill_group == NULL); 22430 22431 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22432 return; 22433 22434 /* 22435 * Make sure this phyint was put in the list. 22436 */ 22437 if (phyi->phyint_ifindex > 0) { 22438 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22439 phyi); 22440 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22441 phyi); 22442 } 22443 /* 22444 * remove phyint from the ipsq list. 22445 */ 22446 cur_ipsq = phyi->phyint_ipsq; 22447 if (phyi == cur_ipsq->ipsq_phyint_list) { 22448 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22449 } else { 22450 next_phyint = cur_ipsq->ipsq_phyint_list; 22451 while (next_phyint != NULL) { 22452 if (next_phyint->phyint_ipsq_next == phyi) { 22453 next_phyint->phyint_ipsq_next = 22454 phyi->phyint_ipsq_next; 22455 break; 22456 } 22457 next_phyint = next_phyint->phyint_ipsq_next; 22458 } 22459 ASSERT(next_phyint != NULL); 22460 } 22461 IPSQ_DEC_REF(cur_ipsq, ipst); 22462 22463 if (phyi->phyint_groupname_len != 0) { 22464 ASSERT(phyi->phyint_groupname != NULL); 22465 mi_free(phyi->phyint_groupname); 22466 } 22467 mi_free(phyi); 22468 } 22469 22470 /* 22471 * Attach the ill to the phyint structure which can be shared by both 22472 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22473 * function is called from ipif_set_values and ill_lookup_on_name (for 22474 * loopback) where we know the name of the ill. We lookup the ill and if 22475 * there is one present already with the name use that phyint. Otherwise 22476 * reuse the one allocated by ill_init. 22477 */ 22478 static void 22479 ill_phyint_reinit(ill_t *ill) 22480 { 22481 boolean_t isv6 = ill->ill_isv6; 22482 phyint_t *phyi_old; 22483 phyint_t *phyi; 22484 avl_index_t where = 0; 22485 ill_t *ill_other = NULL; 22486 ipsq_t *ipsq; 22487 ip_stack_t *ipst = ill->ill_ipst; 22488 22489 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22490 22491 phyi_old = ill->ill_phyint; 22492 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22493 phyi_old->phyint_illv6 == NULL)); 22494 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22495 phyi_old->phyint_illv4 == NULL)); 22496 ASSERT(phyi_old->phyint_ifindex == 0); 22497 22498 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22499 ill->ill_name, &where); 22500 22501 /* 22502 * 1. We grabbed the ill_g_lock before inserting this ill into 22503 * the global list of ills. So no other thread could have located 22504 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22505 * 2. Now locate the other protocol instance of this ill. 22506 * 3. Now grab both ill locks in the right order, and the phyint lock of 22507 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22508 * of neither ill can change. 22509 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22510 * other ill. 22511 * 5. Release all locks. 22512 */ 22513 22514 /* 22515 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22516 * we are initializing IPv4. 22517 */ 22518 if (phyi != NULL) { 22519 ill_other = (isv6) ? phyi->phyint_illv4 : 22520 phyi->phyint_illv6; 22521 ASSERT(ill_other->ill_phyint != NULL); 22522 ASSERT((isv6 && !ill_other->ill_isv6) || 22523 (!isv6 && ill_other->ill_isv6)); 22524 GRAB_ILL_LOCKS(ill, ill_other); 22525 /* 22526 * We are potentially throwing away phyint_flags which 22527 * could be different from the one that we obtain from 22528 * ill_other->ill_phyint. But it is okay as we are assuming 22529 * that the state maintained within IP is correct. 22530 */ 22531 mutex_enter(&phyi->phyint_lock); 22532 if (isv6) { 22533 ASSERT(phyi->phyint_illv6 == NULL); 22534 phyi->phyint_illv6 = ill; 22535 } else { 22536 ASSERT(phyi->phyint_illv4 == NULL); 22537 phyi->phyint_illv4 = ill; 22538 } 22539 /* 22540 * This is a new ill, currently undergoing SLIFNAME 22541 * So we could not have joined an IPMP group until now. 22542 */ 22543 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22544 phyi_old->phyint_groupname == NULL); 22545 22546 /* 22547 * This phyi_old is going away. Decref ipsq_refs and 22548 * assert it is zero. The ipsq itself will be freed in 22549 * ipsq_exit 22550 */ 22551 ipsq = phyi_old->phyint_ipsq; 22552 IPSQ_DEC_REF(ipsq, ipst); 22553 ASSERT(ipsq->ipsq_refs == 0); 22554 /* Get the singleton phyint out of the ipsq list */ 22555 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22556 ipsq->ipsq_phyint_list = NULL; 22557 phyi_old->phyint_illv4 = NULL; 22558 phyi_old->phyint_illv6 = NULL; 22559 mi_free(phyi_old); 22560 } else { 22561 mutex_enter(&ill->ill_lock); 22562 /* 22563 * We don't need to acquire any lock, since 22564 * the ill is not yet visible globally and we 22565 * have not yet released the ill_g_lock. 22566 */ 22567 phyi = phyi_old; 22568 mutex_enter(&phyi->phyint_lock); 22569 /* XXX We need a recovery strategy here. */ 22570 if (!phyint_assign_ifindex(phyi, ipst)) 22571 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22572 22573 /* No IPMP group yet, thus the hook uses the ifindex */ 22574 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22575 22576 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22577 (void *)phyi, where); 22578 22579 (void) avl_find(&ipst->ips_phyint_g_list-> 22580 phyint_list_avl_by_index, 22581 &phyi->phyint_ifindex, &where); 22582 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22583 (void *)phyi, where); 22584 } 22585 22586 /* 22587 * Reassigning ill_phyint automatically reassigns the ipsq also. 22588 * pending mp is not affected because that is per ill basis. 22589 */ 22590 ill->ill_phyint = phyi; 22591 22592 /* 22593 * Keep the index on ipif_orig_index to be used by FAILOVER. 22594 * We do this here as when the first ipif was allocated, 22595 * ipif_allocate does not know the right interface index. 22596 */ 22597 22598 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22599 /* 22600 * Now that the phyint's ifindex has been assigned, complete the 22601 * remaining 22602 */ 22603 22604 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22605 if (ill->ill_isv6) { 22606 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22607 ill->ill_phyint->phyint_ifindex; 22608 ill->ill_mcast_type = ipst->ips_mld_max_version; 22609 } else { 22610 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22611 } 22612 22613 /* 22614 * Generate an event within the hooks framework to indicate that 22615 * a new interface has just been added to IP. For this event to 22616 * be generated, the network interface must, at least, have an 22617 * ifindex assigned to it. 22618 * 22619 * This needs to be run inside the ill_g_lock perimeter to ensure 22620 * that the ordering of delivered events to listeners matches the 22621 * order of them in the kernel. 22622 * 22623 * This function could be called from ill_lookup_on_name. In that case 22624 * the interface is loopback "lo", which will not generate a NIC event. 22625 */ 22626 if (ill->ill_name_length <= 2 || 22627 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22628 /* 22629 * Generate nic plumb event for ill_name even if 22630 * ipmp_hook_emulation is set. That avoids generating events 22631 * for the ill_names should ipmp_hook_emulation be turned on 22632 * later. 22633 */ 22634 ill_nic_info_plumb(ill, B_FALSE); 22635 } 22636 RELEASE_ILL_LOCKS(ill, ill_other); 22637 mutex_exit(&phyi->phyint_lock); 22638 } 22639 22640 /* 22641 * Allocate a NE_PLUMB nic info event and store in the ill. 22642 * If 'group' is set we do it for the group name, otherwise the ill name. 22643 * It will be sent when we leave the ipsq. 22644 */ 22645 void 22646 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22647 { 22648 phyint_t *phyi = ill->ill_phyint; 22649 ip_stack_t *ipst = ill->ill_ipst; 22650 hook_nic_event_t *info; 22651 char *name; 22652 int namelen; 22653 22654 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22655 22656 if ((info = ill->ill_nic_event_info) != NULL) { 22657 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d " 22658 "attached for %s\n", info->hne_event, 22659 ill->ill_name)); 22660 if (info->hne_data != NULL) 22661 kmem_free(info->hne_data, info->hne_datalen); 22662 kmem_free(info, sizeof (hook_nic_event_t)); 22663 ill->ill_nic_event_info = NULL; 22664 } 22665 22666 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22667 if (info == NULL) { 22668 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic " 22669 "event information for %s (ENOMEM)\n", 22670 ill->ill_name)); 22671 return; 22672 } 22673 22674 if (group) { 22675 ASSERT(phyi->phyint_groupname_len != 0); 22676 namelen = phyi->phyint_groupname_len; 22677 name = phyi->phyint_groupname; 22678 } else { 22679 namelen = ill->ill_name_length; 22680 name = ill->ill_name; 22681 } 22682 22683 info->hne_nic = phyi->phyint_hook_ifindex; 22684 info->hne_lif = 0; 22685 info->hne_event = NE_PLUMB; 22686 info->hne_family = ill->ill_isv6 ? 22687 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 22688 22689 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP); 22690 if (info->hne_data != NULL) { 22691 info->hne_datalen = namelen; 22692 bcopy(name, info->hne_data, info->hne_datalen); 22693 } else { 22694 ip2dbg(("ill_nic_info_plumb: could not attach " 22695 "name information for PLUMB nic event " 22696 "of %s (ENOMEM)\n", name)); 22697 kmem_free(info, sizeof (hook_nic_event_t)); 22698 info = NULL; 22699 } 22700 ill->ill_nic_event_info = info; 22701 } 22702 22703 /* 22704 * Unhook the nic event message from the ill and enqueue it 22705 * into the nic event taskq. 22706 */ 22707 void 22708 ill_nic_info_dispatch(ill_t *ill) 22709 { 22710 hook_nic_event_t *info; 22711 22712 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22713 22714 if ((info = ill->ill_nic_event_info) != NULL) { 22715 if (ddi_taskq_dispatch(eventq_queue_nic, 22716 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22717 ip2dbg(("ill_nic_info_dispatch: " 22718 "ddi_taskq_dispatch failed\n")); 22719 if (info->hne_data != NULL) 22720 kmem_free(info->hne_data, info->hne_datalen); 22721 kmem_free(info, sizeof (hook_nic_event_t)); 22722 } 22723 ill->ill_nic_event_info = NULL; 22724 } 22725 } 22726 22727 /* 22728 * Notify any downstream modules of the name of this interface. 22729 * An M_IOCTL is used even though we don't expect a successful reply. 22730 * Any reply message from the driver (presumably an M_IOCNAK) will 22731 * eventually get discarded somewhere upstream. The message format is 22732 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22733 * to IP. 22734 */ 22735 static void 22736 ip_ifname_notify(ill_t *ill, queue_t *q) 22737 { 22738 mblk_t *mp1, *mp2; 22739 struct iocblk *iocp; 22740 struct lifreq *lifr; 22741 22742 mp1 = mkiocb(SIOCSLIFNAME); 22743 if (mp1 == NULL) 22744 return; 22745 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22746 if (mp2 == NULL) { 22747 freeb(mp1); 22748 return; 22749 } 22750 22751 mp1->b_cont = mp2; 22752 iocp = (struct iocblk *)mp1->b_rptr; 22753 iocp->ioc_count = sizeof (struct lifreq); 22754 22755 lifr = (struct lifreq *)mp2->b_rptr; 22756 mp2->b_wptr += sizeof (struct lifreq); 22757 bzero(lifr, sizeof (struct lifreq)); 22758 22759 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22760 lifr->lifr_ppa = ill->ill_ppa; 22761 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22762 22763 putnext(q, mp1); 22764 } 22765 22766 static int 22767 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22768 { 22769 int err; 22770 ip_stack_t *ipst = ill->ill_ipst; 22771 22772 /* Set the obsolete NDD per-interface forwarding name. */ 22773 err = ill_set_ndd_name(ill); 22774 if (err != 0) { 22775 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22776 err); 22777 } 22778 22779 /* Tell downstream modules where they are. */ 22780 ip_ifname_notify(ill, q); 22781 22782 /* 22783 * ill_dl_phys returns EINPROGRESS in the usual case. 22784 * Error cases are ENOMEM ... 22785 */ 22786 err = ill_dl_phys(ill, ipif, mp, q); 22787 22788 /* 22789 * If there is no IRE expiration timer running, get one started. 22790 * igmp and mld timers will be triggered by the first multicast 22791 */ 22792 if (ipst->ips_ip_ire_expire_id == 0) { 22793 /* 22794 * acquire the lock and check again. 22795 */ 22796 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22797 if (ipst->ips_ip_ire_expire_id == 0) { 22798 ipst->ips_ip_ire_expire_id = timeout( 22799 ip_trash_timer_expire, ipst, 22800 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22801 } 22802 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22803 } 22804 22805 if (ill->ill_isv6) { 22806 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22807 if (ipst->ips_mld_slowtimeout_id == 0) { 22808 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22809 (void *)ipst, 22810 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22811 } 22812 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22813 } else { 22814 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22815 if (ipst->ips_igmp_slowtimeout_id == 0) { 22816 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22817 (void *)ipst, 22818 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22819 } 22820 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22821 } 22822 22823 return (err); 22824 } 22825 22826 /* 22827 * Common routine for ppa and ifname setting. Should be called exclusive. 22828 * 22829 * Returns EINPROGRESS when mp has been consumed by queueing it on 22830 * ill_pending_mp and the ioctl will complete in ip_rput. 22831 * 22832 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22833 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22834 * For SLIFNAME, we pass these values back to the userland. 22835 */ 22836 static int 22837 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22838 { 22839 ill_t *ill; 22840 ipif_t *ipif; 22841 ipsq_t *ipsq; 22842 char *ppa_ptr; 22843 char *old_ptr; 22844 char old_char; 22845 int error; 22846 ip_stack_t *ipst; 22847 22848 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22849 ASSERT(q->q_next != NULL); 22850 ASSERT(interf_name != NULL); 22851 22852 ill = (ill_t *)q->q_ptr; 22853 ipst = ill->ill_ipst; 22854 22855 ASSERT(ill->ill_ipst != NULL); 22856 ASSERT(ill->ill_name[0] == '\0'); 22857 ASSERT(IAM_WRITER_ILL(ill)); 22858 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22859 ASSERT(ill->ill_ppa == UINT_MAX); 22860 22861 /* The ppa is sent down by ifconfig or is chosen */ 22862 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22863 return (EINVAL); 22864 } 22865 22866 /* 22867 * make sure ppa passed in is same as ppa in the name. 22868 * This check is not made when ppa == UINT_MAX in that case ppa 22869 * in the name could be anything. System will choose a ppa and 22870 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22871 */ 22872 if (*new_ppa_ptr != UINT_MAX) { 22873 /* stoi changes the pointer */ 22874 old_ptr = ppa_ptr; 22875 /* 22876 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22877 * (they don't have an externally visible ppa). We assign one 22878 * here so that we can manage the interface. Note that in 22879 * the past this value was always 0 for DLPI 1 drivers. 22880 */ 22881 if (*new_ppa_ptr == 0) 22882 *new_ppa_ptr = stoi(&old_ptr); 22883 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22884 return (EINVAL); 22885 } 22886 /* 22887 * terminate string before ppa 22888 * save char at that location. 22889 */ 22890 old_char = ppa_ptr[0]; 22891 ppa_ptr[0] = '\0'; 22892 22893 ill->ill_ppa = *new_ppa_ptr; 22894 /* 22895 * Finish as much work now as possible before calling ill_glist_insert 22896 * which makes the ill globally visible and also merges it with the 22897 * other protocol instance of this phyint. The remaining work is 22898 * done after entering the ipsq which may happen sometime later. 22899 * ill_set_ndd_name occurs after the ill has been made globally visible. 22900 */ 22901 ipif = ill->ill_ipif; 22902 22903 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22904 ipif_assign_seqid(ipif); 22905 22906 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22907 ill->ill_flags |= ILLF_IPV4; 22908 22909 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22910 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22911 22912 if (ill->ill_flags & ILLF_IPV6) { 22913 22914 ill->ill_isv6 = B_TRUE; 22915 if (ill->ill_rq != NULL) { 22916 ill->ill_rq->q_qinfo = &iprinitv6; 22917 ill->ill_wq->q_qinfo = &ipwinitv6; 22918 } 22919 22920 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22921 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22922 ipif->ipif_v6src_addr = ipv6_all_zeros; 22923 ipif->ipif_v6subnet = ipv6_all_zeros; 22924 ipif->ipif_v6net_mask = ipv6_all_zeros; 22925 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22926 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22927 /* 22928 * point-to-point or Non-mulicast capable 22929 * interfaces won't do NUD unless explicitly 22930 * configured to do so. 22931 */ 22932 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22933 !(ill->ill_flags & ILLF_MULTICAST)) { 22934 ill->ill_flags |= ILLF_NONUD; 22935 } 22936 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22937 if (ill->ill_flags & ILLF_NOARP) { 22938 /* 22939 * Note: xresolv interfaces will eventually need 22940 * NOARP set here as well, but that will require 22941 * those external resolvers to have some 22942 * knowledge of that flag and act appropriately. 22943 * Not to be changed at present. 22944 */ 22945 ill->ill_flags &= ~ILLF_NOARP; 22946 } 22947 /* 22948 * Set the ILLF_ROUTER flag according to the global 22949 * IPv6 forwarding policy. 22950 */ 22951 if (ipst->ips_ipv6_forward != 0) 22952 ill->ill_flags |= ILLF_ROUTER; 22953 } else if (ill->ill_flags & ILLF_IPV4) { 22954 ill->ill_isv6 = B_FALSE; 22955 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22956 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22957 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22958 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22959 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22960 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22961 /* 22962 * Set the ILLF_ROUTER flag according to the global 22963 * IPv4 forwarding policy. 22964 */ 22965 if (ipst->ips_ip_g_forward != 0) 22966 ill->ill_flags |= ILLF_ROUTER; 22967 } 22968 22969 ASSERT(ill->ill_phyint != NULL); 22970 22971 /* 22972 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 22973 * be completed in ill_glist_insert -> ill_phyint_reinit 22974 */ 22975 if (!ill_allocate_mibs(ill)) 22976 return (ENOMEM); 22977 22978 /* 22979 * Pick a default sap until we get the DL_INFO_ACK back from 22980 * the driver. 22981 */ 22982 if (ill->ill_sap == 0) { 22983 if (ill->ill_isv6) 22984 ill->ill_sap = IP6_DL_SAP; 22985 else 22986 ill->ill_sap = IP_DL_SAP; 22987 } 22988 22989 ill->ill_ifname_pending = 1; 22990 ill->ill_ifname_pending_err = 0; 22991 22992 ill_refhold(ill); 22993 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 22994 if ((error = ill_glist_insert(ill, interf_name, 22995 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22996 ill->ill_ppa = UINT_MAX; 22997 ill->ill_name[0] = '\0'; 22998 /* 22999 * undo null termination done above. 23000 */ 23001 ppa_ptr[0] = old_char; 23002 rw_exit(&ipst->ips_ill_g_lock); 23003 ill_refrele(ill); 23004 return (error); 23005 } 23006 23007 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23008 23009 /* 23010 * When we return the buffer pointed to by interf_name should contain 23011 * the same name as in ill_name. 23012 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23013 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23014 * so copy full name and update the ppa ptr. 23015 * When ppa passed in != UINT_MAX all values are correct just undo 23016 * null termination, this saves a bcopy. 23017 */ 23018 if (*new_ppa_ptr == UINT_MAX) { 23019 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23020 *new_ppa_ptr = ill->ill_ppa; 23021 } else { 23022 /* 23023 * undo null termination done above. 23024 */ 23025 ppa_ptr[0] = old_char; 23026 } 23027 23028 /* Let SCTP know about this ILL */ 23029 sctp_update_ill(ill, SCTP_ILL_INSERT); 23030 23031 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23032 B_TRUE); 23033 23034 rw_exit(&ipst->ips_ill_g_lock); 23035 ill_refrele(ill); 23036 if (ipsq == NULL) 23037 return (EINPROGRESS); 23038 23039 /* 23040 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23041 */ 23042 if (ipsq->ipsq_current_ipif == NULL) 23043 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23044 else 23045 ASSERT(ipsq->ipsq_current_ipif == ipif); 23046 23047 error = ipif_set_values_tail(ill, ipif, mp, q); 23048 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23049 if (error != 0 && error != EINPROGRESS) { 23050 /* 23051 * restore previous values 23052 */ 23053 ill->ill_isv6 = B_FALSE; 23054 } 23055 return (error); 23056 } 23057 23058 23059 void 23060 ipif_init(ip_stack_t *ipst) 23061 { 23062 hrtime_t hrt; 23063 int i; 23064 23065 /* 23066 * Can't call drv_getparm here as it is too early in the boot. 23067 * As we use ipif_src_random just for picking a different 23068 * source address everytime, this need not be really random. 23069 */ 23070 hrt = gethrtime(); 23071 ipst->ips_ipif_src_random = 23072 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23073 23074 for (i = 0; i < MAX_G_HEADS; i++) { 23075 ipst->ips_ill_g_heads[i].ill_g_list_head = 23076 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23077 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23078 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23079 } 23080 23081 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23082 ill_phyint_compare_index, 23083 sizeof (phyint_t), 23084 offsetof(struct phyint, phyint_avl_by_index)); 23085 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23086 ill_phyint_compare_name, 23087 sizeof (phyint_t), 23088 offsetof(struct phyint, phyint_avl_by_name)); 23089 } 23090 23091 /* 23092 * Lookup the ipif corresponding to the onlink destination address. For 23093 * point-to-point interfaces, it matches with remote endpoint destination 23094 * address. For point-to-multipoint interfaces it only tries to match the 23095 * destination with the interface's subnet address. The longest, most specific 23096 * match is found to take care of such rare network configurations like - 23097 * le0: 129.146.1.1/16 23098 * le1: 129.146.2.2/24 23099 * It is used only by SO_DONTROUTE at the moment. 23100 */ 23101 ipif_t * 23102 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23103 { 23104 ipif_t *ipif, *best_ipif; 23105 ill_t *ill; 23106 ill_walk_context_t ctx; 23107 23108 ASSERT(zoneid != ALL_ZONES); 23109 best_ipif = NULL; 23110 23111 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23112 ill = ILL_START_WALK_V4(&ctx, ipst); 23113 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23114 mutex_enter(&ill->ill_lock); 23115 for (ipif = ill->ill_ipif; ipif != NULL; 23116 ipif = ipif->ipif_next) { 23117 if (!IPIF_CAN_LOOKUP(ipif)) 23118 continue; 23119 if (ipif->ipif_zoneid != zoneid && 23120 ipif->ipif_zoneid != ALL_ZONES) 23121 continue; 23122 /* 23123 * Point-to-point case. Look for exact match with 23124 * destination address. 23125 */ 23126 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23127 if (ipif->ipif_pp_dst_addr == addr) { 23128 ipif_refhold_locked(ipif); 23129 mutex_exit(&ill->ill_lock); 23130 rw_exit(&ipst->ips_ill_g_lock); 23131 if (best_ipif != NULL) 23132 ipif_refrele(best_ipif); 23133 return (ipif); 23134 } 23135 } else if (ipif->ipif_subnet == (addr & 23136 ipif->ipif_net_mask)) { 23137 /* 23138 * Point-to-multipoint case. Looping through to 23139 * find the most specific match. If there are 23140 * multiple best match ipif's then prefer ipif's 23141 * that are UP. If there is only one best match 23142 * ipif and it is DOWN we must still return it. 23143 */ 23144 if ((best_ipif == NULL) || 23145 (ipif->ipif_net_mask > 23146 best_ipif->ipif_net_mask) || 23147 ((ipif->ipif_net_mask == 23148 best_ipif->ipif_net_mask) && 23149 ((ipif->ipif_flags & IPIF_UP) && 23150 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23151 ipif_refhold_locked(ipif); 23152 mutex_exit(&ill->ill_lock); 23153 rw_exit(&ipst->ips_ill_g_lock); 23154 if (best_ipif != NULL) 23155 ipif_refrele(best_ipif); 23156 best_ipif = ipif; 23157 rw_enter(&ipst->ips_ill_g_lock, 23158 RW_READER); 23159 mutex_enter(&ill->ill_lock); 23160 } 23161 } 23162 } 23163 mutex_exit(&ill->ill_lock); 23164 } 23165 rw_exit(&ipst->ips_ill_g_lock); 23166 return (best_ipif); 23167 } 23168 23169 23170 /* 23171 * Save enough information so that we can recreate the IRE if 23172 * the interface goes down and then up. 23173 */ 23174 static void 23175 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23176 { 23177 mblk_t *save_mp; 23178 23179 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23180 if (save_mp != NULL) { 23181 ifrt_t *ifrt; 23182 23183 save_mp->b_wptr += sizeof (ifrt_t); 23184 ifrt = (ifrt_t *)save_mp->b_rptr; 23185 bzero(ifrt, sizeof (ifrt_t)); 23186 ifrt->ifrt_type = ire->ire_type; 23187 ifrt->ifrt_addr = ire->ire_addr; 23188 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23189 ifrt->ifrt_src_addr = ire->ire_src_addr; 23190 ifrt->ifrt_mask = ire->ire_mask; 23191 ifrt->ifrt_flags = ire->ire_flags; 23192 ifrt->ifrt_max_frag = ire->ire_max_frag; 23193 mutex_enter(&ipif->ipif_saved_ire_lock); 23194 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23195 ipif->ipif_saved_ire_mp = save_mp; 23196 ipif->ipif_saved_ire_cnt++; 23197 mutex_exit(&ipif->ipif_saved_ire_lock); 23198 } 23199 } 23200 23201 23202 static void 23203 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23204 { 23205 mblk_t **mpp; 23206 mblk_t *mp; 23207 ifrt_t *ifrt; 23208 23209 /* Remove from ipif_saved_ire_mp list if it is there */ 23210 mutex_enter(&ipif->ipif_saved_ire_lock); 23211 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23212 mpp = &(*mpp)->b_cont) { 23213 /* 23214 * On a given ipif, the triple of address, gateway and 23215 * mask is unique for each saved IRE (in the case of 23216 * ordinary interface routes, the gateway address is 23217 * all-zeroes). 23218 */ 23219 mp = *mpp; 23220 ifrt = (ifrt_t *)mp->b_rptr; 23221 if (ifrt->ifrt_addr == ire->ire_addr && 23222 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23223 ifrt->ifrt_mask == ire->ire_mask) { 23224 *mpp = mp->b_cont; 23225 ipif->ipif_saved_ire_cnt--; 23226 freeb(mp); 23227 break; 23228 } 23229 } 23230 mutex_exit(&ipif->ipif_saved_ire_lock); 23231 } 23232 23233 23234 /* 23235 * IP multirouting broadcast routes handling 23236 * Append CGTP broadcast IREs to regular ones created 23237 * at ifconfig time. 23238 */ 23239 static void 23240 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23241 { 23242 ire_t *ire_prim; 23243 23244 ASSERT(ire != NULL); 23245 ASSERT(ire_dst != NULL); 23246 23247 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23248 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23249 if (ire_prim != NULL) { 23250 /* 23251 * We are in the special case of broadcasts for 23252 * CGTP. We add an IRE_BROADCAST that holds 23253 * the RTF_MULTIRT flag, the destination 23254 * address of ire_dst and the low level 23255 * info of ire_prim. In other words, CGTP 23256 * broadcast is added to the redundant ipif. 23257 */ 23258 ipif_t *ipif_prim; 23259 ire_t *bcast_ire; 23260 23261 ipif_prim = ire_prim->ire_ipif; 23262 23263 ip2dbg(("ip_cgtp_filter_bcast_add: " 23264 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23265 (void *)ire_dst, (void *)ire_prim, 23266 (void *)ipif_prim)); 23267 23268 bcast_ire = ire_create( 23269 (uchar_t *)&ire->ire_addr, 23270 (uchar_t *)&ip_g_all_ones, 23271 (uchar_t *)&ire_dst->ire_src_addr, 23272 (uchar_t *)&ire->ire_gateway_addr, 23273 &ipif_prim->ipif_mtu, 23274 NULL, 23275 ipif_prim->ipif_rq, 23276 ipif_prim->ipif_wq, 23277 IRE_BROADCAST, 23278 ipif_prim, 23279 0, 23280 0, 23281 0, 23282 ire->ire_flags, 23283 &ire_uinfo_null, 23284 NULL, 23285 NULL, 23286 ipst); 23287 23288 if (bcast_ire != NULL) { 23289 23290 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23291 B_FALSE) == 0) { 23292 ip2dbg(("ip_cgtp_filter_bcast_add: " 23293 "added bcast_ire %p\n", 23294 (void *)bcast_ire)); 23295 23296 ipif_save_ire(bcast_ire->ire_ipif, 23297 bcast_ire); 23298 ire_refrele(bcast_ire); 23299 } 23300 } 23301 ire_refrele(ire_prim); 23302 } 23303 } 23304 23305 23306 /* 23307 * IP multirouting broadcast routes handling 23308 * Remove the broadcast ire 23309 */ 23310 static void 23311 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23312 { 23313 ire_t *ire_dst; 23314 23315 ASSERT(ire != NULL); 23316 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23317 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23318 if (ire_dst != NULL) { 23319 ire_t *ire_prim; 23320 23321 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23322 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23323 if (ire_prim != NULL) { 23324 ipif_t *ipif_prim; 23325 ire_t *bcast_ire; 23326 23327 ipif_prim = ire_prim->ire_ipif; 23328 23329 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23330 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23331 (void *)ire_dst, (void *)ire_prim, 23332 (void *)ipif_prim)); 23333 23334 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23335 ire->ire_gateway_addr, 23336 IRE_BROADCAST, 23337 ipif_prim, ALL_ZONES, 23338 NULL, 23339 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23340 MATCH_IRE_MASK, ipst); 23341 23342 if (bcast_ire != NULL) { 23343 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23344 "looked up bcast_ire %p\n", 23345 (void *)bcast_ire)); 23346 ipif_remove_ire(bcast_ire->ire_ipif, 23347 bcast_ire); 23348 ire_delete(bcast_ire); 23349 ire_refrele(bcast_ire); 23350 } 23351 ire_refrele(ire_prim); 23352 } 23353 ire_refrele(ire_dst); 23354 } 23355 } 23356 23357 /* 23358 * IPsec hardware acceleration capabilities related functions. 23359 */ 23360 23361 /* 23362 * Free a per-ill IPsec capabilities structure. 23363 */ 23364 static void 23365 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23366 { 23367 if (capab->auth_hw_algs != NULL) 23368 kmem_free(capab->auth_hw_algs, capab->algs_size); 23369 if (capab->encr_hw_algs != NULL) 23370 kmem_free(capab->encr_hw_algs, capab->algs_size); 23371 if (capab->encr_algparm != NULL) 23372 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23373 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23374 } 23375 23376 /* 23377 * Allocate a new per-ill IPsec capabilities structure. This structure 23378 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23379 * an array which specifies, for each algorithm, whether this algorithm 23380 * is supported by the ill or not. 23381 */ 23382 static ill_ipsec_capab_t * 23383 ill_ipsec_capab_alloc(void) 23384 { 23385 ill_ipsec_capab_t *capab; 23386 uint_t nelems; 23387 23388 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23389 if (capab == NULL) 23390 return (NULL); 23391 23392 /* we need one bit per algorithm */ 23393 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23394 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23395 23396 /* allocate memory to store algorithm flags */ 23397 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23398 if (capab->encr_hw_algs == NULL) 23399 goto nomem; 23400 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23401 if (capab->auth_hw_algs == NULL) 23402 goto nomem; 23403 /* 23404 * Leave encr_algparm NULL for now since we won't need it half 23405 * the time 23406 */ 23407 return (capab); 23408 23409 nomem: 23410 ill_ipsec_capab_free(capab); 23411 return (NULL); 23412 } 23413 23414 /* 23415 * Resize capability array. Since we're exclusive, this is OK. 23416 */ 23417 static boolean_t 23418 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23419 { 23420 ipsec_capab_algparm_t *nalp, *oalp; 23421 uint32_t olen, nlen; 23422 23423 oalp = capab->encr_algparm; 23424 olen = capab->encr_algparm_size; 23425 23426 if (oalp != NULL) { 23427 if (algid < capab->encr_algparm_end) 23428 return (B_TRUE); 23429 } 23430 23431 nlen = (algid + 1) * sizeof (*nalp); 23432 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23433 if (nalp == NULL) 23434 return (B_FALSE); 23435 23436 if (oalp != NULL) { 23437 bcopy(oalp, nalp, olen); 23438 kmem_free(oalp, olen); 23439 } 23440 capab->encr_algparm = nalp; 23441 capab->encr_algparm_size = nlen; 23442 capab->encr_algparm_end = algid + 1; 23443 23444 return (B_TRUE); 23445 } 23446 23447 /* 23448 * Compare the capabilities of the specified ill with the protocol 23449 * and algorithms specified by the SA passed as argument. 23450 * If they match, returns B_TRUE, B_FALSE if they do not match. 23451 * 23452 * The ill can be passed as a pointer to it, or by specifying its index 23453 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23454 * 23455 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23456 * packet is eligible for hardware acceleration, and by 23457 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23458 * to a particular ill. 23459 */ 23460 boolean_t 23461 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23462 ipsa_t *sa, netstack_t *ns) 23463 { 23464 boolean_t sa_isv6; 23465 uint_t algid; 23466 struct ill_ipsec_capab_s *cpp; 23467 boolean_t need_refrele = B_FALSE; 23468 ip_stack_t *ipst = ns->netstack_ip; 23469 23470 if (ill == NULL) { 23471 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23472 NULL, NULL, NULL, ipst); 23473 if (ill == NULL) { 23474 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23475 return (B_FALSE); 23476 } 23477 need_refrele = B_TRUE; 23478 } 23479 23480 /* 23481 * Use the address length specified by the SA to determine 23482 * if it corresponds to a IPv6 address, and fail the matching 23483 * if the isv6 flag passed as argument does not match. 23484 * Note: this check is used for SADB capability checking before 23485 * sending SA information to an ill. 23486 */ 23487 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23488 if (sa_isv6 != ill_isv6) 23489 /* protocol mismatch */ 23490 goto done; 23491 23492 /* 23493 * Check if the ill supports the protocol, algorithm(s) and 23494 * key size(s) specified by the SA, and get the pointers to 23495 * the algorithms supported by the ill. 23496 */ 23497 switch (sa->ipsa_type) { 23498 23499 case SADB_SATYPE_ESP: 23500 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23501 /* ill does not support ESP acceleration */ 23502 goto done; 23503 cpp = ill->ill_ipsec_capab_esp; 23504 algid = sa->ipsa_auth_alg; 23505 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23506 goto done; 23507 algid = sa->ipsa_encr_alg; 23508 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23509 goto done; 23510 if (algid < cpp->encr_algparm_end) { 23511 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23512 if (sa->ipsa_encrkeybits < alp->minkeylen) 23513 goto done; 23514 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23515 goto done; 23516 } 23517 break; 23518 23519 case SADB_SATYPE_AH: 23520 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23521 /* ill does not support AH acceleration */ 23522 goto done; 23523 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23524 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23525 goto done; 23526 break; 23527 } 23528 23529 if (need_refrele) 23530 ill_refrele(ill); 23531 return (B_TRUE); 23532 done: 23533 if (need_refrele) 23534 ill_refrele(ill); 23535 return (B_FALSE); 23536 } 23537 23538 23539 /* 23540 * Add a new ill to the list of IPsec capable ills. 23541 * Called from ill_capability_ipsec_ack() when an ACK was received 23542 * indicating that IPsec hardware processing was enabled for an ill. 23543 * 23544 * ill must point to the ill for which acceleration was enabled. 23545 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23546 */ 23547 static void 23548 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23549 { 23550 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23551 uint_t sa_type; 23552 uint_t ipproto; 23553 ip_stack_t *ipst = ill->ill_ipst; 23554 23555 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23556 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23557 23558 switch (dl_cap) { 23559 case DL_CAPAB_IPSEC_AH: 23560 sa_type = SADB_SATYPE_AH; 23561 ills = &ipst->ips_ipsec_capab_ills_ah; 23562 ipproto = IPPROTO_AH; 23563 break; 23564 case DL_CAPAB_IPSEC_ESP: 23565 sa_type = SADB_SATYPE_ESP; 23566 ills = &ipst->ips_ipsec_capab_ills_esp; 23567 ipproto = IPPROTO_ESP; 23568 break; 23569 } 23570 23571 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23572 23573 /* 23574 * Add ill index to list of hardware accelerators. If 23575 * already in list, do nothing. 23576 */ 23577 for (cur_ill = *ills; cur_ill != NULL && 23578 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23579 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23580 ; 23581 23582 if (cur_ill == NULL) { 23583 /* if this is a new entry for this ill */ 23584 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23585 if (new_ill == NULL) { 23586 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23587 return; 23588 } 23589 23590 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23591 new_ill->ill_isv6 = ill->ill_isv6; 23592 new_ill->next = *ills; 23593 *ills = new_ill; 23594 } else if (!sadb_resync) { 23595 /* not resync'ing SADB and an entry exists for this ill */ 23596 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23597 return; 23598 } 23599 23600 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23601 23602 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23603 /* 23604 * IPsec module for protocol loaded, initiate dump 23605 * of the SADB to this ill. 23606 */ 23607 sadb_ill_download(ill, sa_type); 23608 } 23609 23610 /* 23611 * Remove an ill from the list of IPsec capable ills. 23612 */ 23613 static void 23614 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23615 { 23616 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23617 ip_stack_t *ipst = ill->ill_ipst; 23618 23619 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23620 dl_cap == DL_CAPAB_IPSEC_ESP); 23621 23622 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23623 &ipst->ips_ipsec_capab_ills_esp; 23624 23625 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23626 23627 prev_ill = NULL; 23628 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23629 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23630 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23631 ; 23632 if (cur_ill == NULL) { 23633 /* entry not found */ 23634 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23635 return; 23636 } 23637 if (prev_ill == NULL) { 23638 /* entry at front of list */ 23639 *ills = NULL; 23640 } else { 23641 prev_ill->next = cur_ill->next; 23642 } 23643 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23644 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23645 } 23646 23647 /* 23648 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23649 * supporting the specified IPsec protocol acceleration. 23650 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23651 * We free the mblk and, if sa is non-null, release the held referece. 23652 */ 23653 void 23654 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23655 netstack_t *ns) 23656 { 23657 ipsec_capab_ill_t *ici, *cur_ici; 23658 ill_t *ill; 23659 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23660 ip_stack_t *ipst = ns->netstack_ip; 23661 23662 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23663 ipst->ips_ipsec_capab_ills_esp; 23664 23665 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23666 23667 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23668 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23669 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23670 23671 /* 23672 * Handle the case where the ill goes away while the SADB is 23673 * attempting to send messages. If it's going away, it's 23674 * nuking its shadow SADB, so we don't care.. 23675 */ 23676 23677 if (ill == NULL) 23678 continue; 23679 23680 if (sa != NULL) { 23681 /* 23682 * Make sure capabilities match before 23683 * sending SA to ill. 23684 */ 23685 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23686 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23687 ill_refrele(ill); 23688 continue; 23689 } 23690 23691 mutex_enter(&sa->ipsa_lock); 23692 sa->ipsa_flags |= IPSA_F_HW; 23693 mutex_exit(&sa->ipsa_lock); 23694 } 23695 23696 /* 23697 * Copy template message, and add it to the front 23698 * of the mblk ship list. We want to avoid holding 23699 * the ipsec_capab_ills_lock while sending the 23700 * message to the ills. 23701 * 23702 * The b_next and b_prev are temporarily used 23703 * to build a list of mblks to be sent down, and to 23704 * save the ill to which they must be sent. 23705 */ 23706 nmp = copymsg(mp); 23707 if (nmp == NULL) { 23708 ill_refrele(ill); 23709 continue; 23710 } 23711 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23712 nmp->b_next = mp_ship_list; 23713 mp_ship_list = nmp; 23714 nmp->b_prev = (mblk_t *)ill; 23715 } 23716 23717 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23718 23719 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23720 /* restore the mblk to a sane state */ 23721 next_mp = nmp->b_next; 23722 nmp->b_next = NULL; 23723 ill = (ill_t *)nmp->b_prev; 23724 nmp->b_prev = NULL; 23725 23726 ill_dlpi_send(ill, nmp); 23727 ill_refrele(ill); 23728 } 23729 23730 if (sa != NULL) 23731 IPSA_REFRELE(sa); 23732 freemsg(mp); 23733 } 23734 23735 /* 23736 * Derive an interface id from the link layer address. 23737 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23738 */ 23739 static boolean_t 23740 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23741 { 23742 char *addr; 23743 23744 if (phys_length != ETHERADDRL) 23745 return (B_FALSE); 23746 23747 /* Form EUI-64 like address */ 23748 addr = (char *)&v6addr->s6_addr32[2]; 23749 bcopy((char *)phys_addr, addr, 3); 23750 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23751 addr[3] = (char)0xff; 23752 addr[4] = (char)0xfe; 23753 bcopy((char *)phys_addr + 3, addr + 5, 3); 23754 return (B_TRUE); 23755 } 23756 23757 /* ARGSUSED */ 23758 static boolean_t 23759 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23760 { 23761 return (B_FALSE); 23762 } 23763 23764 /* ARGSUSED */ 23765 static boolean_t 23766 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23767 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23768 { 23769 /* 23770 * Multicast address mappings used over Ethernet/802.X. 23771 * This address is used as a base for mappings. 23772 */ 23773 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23774 0x00, 0x00, 0x00}; 23775 23776 /* 23777 * Extract low order 32 bits from IPv6 multicast address. 23778 * Or that into the link layer address, starting from the 23779 * second byte. 23780 */ 23781 *hw_start = 2; 23782 v6_extract_mask->s6_addr32[0] = 0; 23783 v6_extract_mask->s6_addr32[1] = 0; 23784 v6_extract_mask->s6_addr32[2] = 0; 23785 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23786 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23787 return (B_TRUE); 23788 } 23789 23790 /* 23791 * Indicate by return value whether multicast is supported. If not, 23792 * this code should not touch/change any parameters. 23793 */ 23794 /* ARGSUSED */ 23795 static boolean_t 23796 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23797 uint32_t *hw_start, ipaddr_t *extract_mask) 23798 { 23799 /* 23800 * Multicast address mappings used over Ethernet/802.X. 23801 * This address is used as a base for mappings. 23802 */ 23803 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23804 0x00, 0x00, 0x00 }; 23805 23806 if (phys_length != ETHERADDRL) 23807 return (B_FALSE); 23808 23809 *extract_mask = htonl(0x007fffff); 23810 *hw_start = 2; 23811 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23812 return (B_TRUE); 23813 } 23814 23815 /* 23816 * Derive IPoIB interface id from the link layer address. 23817 */ 23818 static boolean_t 23819 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23820 { 23821 char *addr; 23822 23823 if (phys_length != 20) 23824 return (B_FALSE); 23825 addr = (char *)&v6addr->s6_addr32[2]; 23826 bcopy(phys_addr + 12, addr, 8); 23827 /* 23828 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23829 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23830 * rules. In these cases, the IBA considers these GUIDs to be in 23831 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23832 * required; vendors are required not to assign global EUI-64's 23833 * that differ only in u/l bit values, thus guaranteeing uniqueness 23834 * of the interface identifier. Whether the GUID is in modified 23835 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23836 * bit set to 1. 23837 */ 23838 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23839 return (B_TRUE); 23840 } 23841 23842 /* 23843 * Note on mapping from multicast IP addresses to IPoIB multicast link 23844 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23845 * The format of an IPoIB multicast address is: 23846 * 23847 * 4 byte QPN Scope Sign. Pkey 23848 * +--------------------------------------------+ 23849 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23850 * +--------------------------------------------+ 23851 * 23852 * The Scope and Pkey components are properties of the IBA port and 23853 * network interface. They can be ascertained from the broadcast address. 23854 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23855 */ 23856 23857 static boolean_t 23858 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23859 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23860 { 23861 /* 23862 * Base IPoIB IPv6 multicast address used for mappings. 23863 * Does not contain the IBA scope/Pkey values. 23864 */ 23865 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23866 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23867 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23868 23869 /* 23870 * Extract low order 80 bits from IPv6 multicast address. 23871 * Or that into the link layer address, starting from the 23872 * sixth byte. 23873 */ 23874 *hw_start = 6; 23875 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23876 23877 /* 23878 * Now fill in the IBA scope/Pkey values from the broadcast address. 23879 */ 23880 *(maddr + 5) = *(bphys_addr + 5); 23881 *(maddr + 8) = *(bphys_addr + 8); 23882 *(maddr + 9) = *(bphys_addr + 9); 23883 23884 v6_extract_mask->s6_addr32[0] = 0; 23885 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23886 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23887 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23888 return (B_TRUE); 23889 } 23890 23891 static boolean_t 23892 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23893 uint32_t *hw_start, ipaddr_t *extract_mask) 23894 { 23895 /* 23896 * Base IPoIB IPv4 multicast address used for mappings. 23897 * Does not contain the IBA scope/Pkey values. 23898 */ 23899 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23900 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23901 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23902 23903 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23904 return (B_FALSE); 23905 23906 /* 23907 * Extract low order 28 bits from IPv4 multicast address. 23908 * Or that into the link layer address, starting from the 23909 * sixteenth byte. 23910 */ 23911 *extract_mask = htonl(0x0fffffff); 23912 *hw_start = 16; 23913 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23914 23915 /* 23916 * Now fill in the IBA scope/Pkey values from the broadcast address. 23917 */ 23918 *(maddr + 5) = *(bphys_addr + 5); 23919 *(maddr + 8) = *(bphys_addr + 8); 23920 *(maddr + 9) = *(bphys_addr + 9); 23921 return (B_TRUE); 23922 } 23923 23924 /* 23925 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23926 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23927 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23928 * the link-local address is preferred. 23929 */ 23930 boolean_t 23931 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23932 { 23933 ipif_t *ipif; 23934 ipif_t *maybe_ipif = NULL; 23935 23936 mutex_enter(&ill->ill_lock); 23937 if (ill->ill_state_flags & ILL_CONDEMNED) { 23938 mutex_exit(&ill->ill_lock); 23939 if (ipifp != NULL) 23940 *ipifp = NULL; 23941 return (B_FALSE); 23942 } 23943 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23944 if (!IPIF_CAN_LOOKUP(ipif)) 23945 continue; 23946 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23947 ipif->ipif_zoneid != ALL_ZONES) 23948 continue; 23949 if ((ipif->ipif_flags & flags) != flags) 23950 continue; 23951 23952 if (ipifp == NULL) { 23953 mutex_exit(&ill->ill_lock); 23954 ASSERT(maybe_ipif == NULL); 23955 return (B_TRUE); 23956 } 23957 if (!ill->ill_isv6 || 23958 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23959 ipif_refhold_locked(ipif); 23960 mutex_exit(&ill->ill_lock); 23961 *ipifp = ipif; 23962 return (B_TRUE); 23963 } 23964 if (maybe_ipif == NULL) 23965 maybe_ipif = ipif; 23966 } 23967 if (ipifp != NULL) { 23968 if (maybe_ipif != NULL) 23969 ipif_refhold_locked(maybe_ipif); 23970 *ipifp = maybe_ipif; 23971 } 23972 mutex_exit(&ill->ill_lock); 23973 return (maybe_ipif != NULL); 23974 } 23975 23976 /* 23977 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23978 */ 23979 boolean_t 23980 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23981 { 23982 ill_t *illg; 23983 ip_stack_t *ipst = ill->ill_ipst; 23984 23985 /* 23986 * We look at the passed-in ill first without grabbing ill_g_lock. 23987 */ 23988 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23989 return (B_TRUE); 23990 } 23991 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23992 if (ill->ill_group == NULL) { 23993 /* ill not in a group */ 23994 rw_exit(&ipst->ips_ill_g_lock); 23995 return (B_FALSE); 23996 } 23997 23998 /* 23999 * There's no ipif in the zone on ill, however ill is part of an IPMP 24000 * group. We need to look for an ipif in the zone on all the ills in the 24001 * group. 24002 */ 24003 illg = ill->ill_group->illgrp_ill; 24004 do { 24005 /* 24006 * We don't call ipif_lookup_zoneid() on ill as we already know 24007 * that it's not there. 24008 */ 24009 if (illg != ill && 24010 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24011 break; 24012 } 24013 } while ((illg = illg->ill_group_next) != NULL); 24014 rw_exit(&ipst->ips_ill_g_lock); 24015 return (illg != NULL); 24016 } 24017 24018 /* 24019 * Check if this ill is only being used to send ICMP probes for IPMP 24020 */ 24021 boolean_t 24022 ill_is_probeonly(ill_t *ill) 24023 { 24024 /* 24025 * Check if the interface is FAILED, or INACTIVE 24026 */ 24027 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24028 return (B_TRUE); 24029 24030 return (B_FALSE); 24031 } 24032 24033 /* 24034 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24035 * If a pointer to an ipif_t is returned then the caller will need to do 24036 * an ill_refrele(). 24037 * 24038 * If there is no real interface which matches the ifindex, then it looks 24039 * for a group that has a matching index. In the case of a group match the 24040 * lifidx must be zero. We don't need emulate the logical interfaces 24041 * since IP Filter's use of netinfo doesn't use that. 24042 */ 24043 ipif_t * 24044 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24045 ip_stack_t *ipst) 24046 { 24047 ipif_t *ipif; 24048 ill_t *ill; 24049 24050 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24051 ipst); 24052 24053 if (ill == NULL) { 24054 /* Fallback to group names only if hook_emulation set */ 24055 if (!ipst->ips_ipmp_hook_emulation) 24056 return (NULL); 24057 24058 if (lifidx != 0) 24059 return (NULL); 24060 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24061 if (ill == NULL) 24062 return (NULL); 24063 } 24064 24065 mutex_enter(&ill->ill_lock); 24066 if (ill->ill_state_flags & ILL_CONDEMNED) { 24067 mutex_exit(&ill->ill_lock); 24068 ill_refrele(ill); 24069 return (NULL); 24070 } 24071 24072 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24073 if (!IPIF_CAN_LOOKUP(ipif)) 24074 continue; 24075 if (lifidx == ipif->ipif_id) { 24076 ipif_refhold_locked(ipif); 24077 break; 24078 } 24079 } 24080 24081 mutex_exit(&ill->ill_lock); 24082 ill_refrele(ill); 24083 return (ipif); 24084 } 24085 24086 /* 24087 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24088 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24089 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24090 * for details. 24091 */ 24092 void 24093 ill_fastpath_flush(ill_t *ill) 24094 { 24095 ip_stack_t *ipst = ill->ill_ipst; 24096 24097 nce_fastpath_list_dispatch(ill, NULL, NULL); 24098 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24099 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24100 } 24101 24102 /* 24103 * Set the physical address information for `ill' to the contents of the 24104 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24105 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24106 * EINPROGRESS will be returned. 24107 */ 24108 int 24109 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24110 { 24111 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24112 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24113 24114 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24115 24116 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24117 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24118 /* Changing DL_IPV6_TOKEN is not yet supported */ 24119 return (0); 24120 } 24121 24122 /* 24123 * We need to store up to two copies of `mp' in `ill'. Due to the 24124 * design of ipsq_pending_mp_add(), we can't pass them as separate 24125 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24126 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24127 */ 24128 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24129 freemsg(mp); 24130 return (ENOMEM); 24131 } 24132 24133 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24134 24135 /* 24136 * If we can quiesce the ill, then set the address. If not, then 24137 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24138 */ 24139 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24140 mutex_enter(&ill->ill_lock); 24141 if (!ill_is_quiescent(ill)) { 24142 /* call cannot fail since `conn_t *' argument is NULL */ 24143 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24144 mp, ILL_DOWN); 24145 mutex_exit(&ill->ill_lock); 24146 return (EINPROGRESS); 24147 } 24148 mutex_exit(&ill->ill_lock); 24149 24150 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24151 return (0); 24152 } 24153 24154 /* 24155 * Once the ill associated with `q' has quiesced, set its physical address 24156 * information to the values in `addrmp'. Note that two copies of `addrmp' 24157 * are passed (linked by b_cont), since we sometimes need to save two distinct 24158 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24159 * failure (we'll free the other copy if it's not needed). Since the ill_t 24160 * is quiesced, we know any stale IREs with the old address information have 24161 * already been removed, so we don't need to call ill_fastpath_flush(). 24162 */ 24163 /* ARGSUSED */ 24164 static void 24165 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24166 { 24167 ill_t *ill = q->q_ptr; 24168 mblk_t *addrmp2 = unlinkb(addrmp); 24169 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24170 uint_t addrlen, addroff; 24171 24172 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24173 24174 addroff = dlindp->dl_addr_offset; 24175 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24176 24177 switch (dlindp->dl_data) { 24178 case DL_IPV6_LINK_LAYER_ADDR: 24179 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24180 freemsg(addrmp2); 24181 break; 24182 24183 case DL_CURR_PHYS_ADDR: 24184 freemsg(ill->ill_phys_addr_mp); 24185 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24186 ill->ill_phys_addr_mp = addrmp; 24187 ill->ill_phys_addr_length = addrlen; 24188 24189 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24190 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24191 else 24192 freemsg(addrmp2); 24193 break; 24194 default: 24195 ASSERT(0); 24196 } 24197 24198 /* 24199 * If there are ipifs to bring up, ill_up_ipifs() will return 24200 * EINPROGRESS, and ipsq_current_finish() will be called by 24201 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24202 * brought up. 24203 */ 24204 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24205 ipsq_current_finish(ipsq); 24206 } 24207 24208 /* 24209 * Helper routine for setting the ill_nd_lla fields. 24210 */ 24211 void 24212 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24213 { 24214 freemsg(ill->ill_nd_lla_mp); 24215 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24216 ill->ill_nd_lla_mp = ndmp; 24217 ill->ill_nd_lla_len = addrlen; 24218 } 24219 24220 major_t IP_MAJ; 24221 #define IP "ip" 24222 24223 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24224 #define UDPDEV "/devices/pseudo/udp@0:udp" 24225 24226 /* 24227 * Issue REMOVEIF ioctls to have the loopback interfaces 24228 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24229 * the former going away when the user-level processes in the zone 24230 * are killed * and the latter are cleaned up by the stream head 24231 * str_stack_shutdown callback that undoes all I_PLINKs. 24232 */ 24233 void 24234 ip_loopback_cleanup(ip_stack_t *ipst) 24235 { 24236 int error; 24237 ldi_handle_t lh = NULL; 24238 ldi_ident_t li = NULL; 24239 int rval; 24240 cred_t *cr; 24241 struct strioctl iocb; 24242 struct lifreq lifreq; 24243 24244 IP_MAJ = ddi_name_to_major(IP); 24245 24246 #ifdef NS_DEBUG 24247 (void) printf("ip_loopback_cleanup() stackid %d\n", 24248 ipst->ips_netstack->netstack_stackid); 24249 #endif 24250 24251 bzero(&lifreq, sizeof (lifreq)); 24252 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24253 24254 error = ldi_ident_from_major(IP_MAJ, &li); 24255 if (error) { 24256 #ifdef DEBUG 24257 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24258 error); 24259 #endif 24260 return; 24261 } 24262 24263 cr = zone_get_kcred(netstackid_to_zoneid( 24264 ipst->ips_netstack->netstack_stackid)); 24265 ASSERT(cr != NULL); 24266 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24267 if (error) { 24268 #ifdef DEBUG 24269 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24270 error); 24271 #endif 24272 goto out; 24273 } 24274 iocb.ic_cmd = SIOCLIFREMOVEIF; 24275 iocb.ic_timout = 15; 24276 iocb.ic_len = sizeof (lifreq); 24277 iocb.ic_dp = (char *)&lifreq; 24278 24279 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24280 /* LINTED - statement has no consequent */ 24281 if (error) { 24282 #ifdef NS_DEBUG 24283 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24284 "UDP6 error %d\n", error); 24285 #endif 24286 } 24287 (void) ldi_close(lh, FREAD|FWRITE, cr); 24288 lh = NULL; 24289 24290 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24291 if (error) { 24292 #ifdef NS_DEBUG 24293 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24294 error); 24295 #endif 24296 goto out; 24297 } 24298 24299 iocb.ic_cmd = SIOCLIFREMOVEIF; 24300 iocb.ic_timout = 15; 24301 iocb.ic_len = sizeof (lifreq); 24302 iocb.ic_dp = (char *)&lifreq; 24303 24304 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24305 /* LINTED - statement has no consequent */ 24306 if (error) { 24307 #ifdef NS_DEBUG 24308 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24309 "UDP error %d\n", error); 24310 #endif 24311 } 24312 (void) ldi_close(lh, FREAD|FWRITE, cr); 24313 lh = NULL; 24314 24315 out: 24316 /* Close layered handles */ 24317 if (lh) 24318 (void) ldi_close(lh, FREAD|FWRITE, cr); 24319 if (li) 24320 ldi_ident_release(li); 24321 24322 crfree(cr); 24323 } 24324