1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 #include <sys/bitmap.h> 49 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_ftable.h> 81 #include <inet/ip_rts.h> 82 #include <inet/ip_ndp.h> 83 #include <inet/ip_if.h> 84 #include <inet/ip_impl.h> 85 #include <inet/tun.h> 86 #include <inet/sctp_ip.h> 87 #include <inet/ip_netinfo.h> 88 #include <inet/mib2.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 typedef struct ip_sock_ar_s { 122 union { 123 area_t ip_sock_area; 124 ared_t ip_sock_ared; 125 areq_t ip_sock_areq; 126 } ip_sock_ar_u; 127 queue_t *ip_sock_ar_q; 128 } ip_sock_ar_t; 129 130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 132 char *value, caddr_t cp, cred_t *ioc_cr); 133 134 static boolean_t ill_is_quiescent(ill_t *); 135 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 136 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 137 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 144 mblk_t *mp, boolean_t need_up); 145 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 146 mblk_t *mp); 147 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 148 queue_t *q, mblk_t *mp, boolean_t need_up); 149 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 150 int ioccmd, struct linkblk *li, boolean_t doconsist); 151 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 152 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 153 static void ipsq_flush(ill_t *ill); 154 155 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 156 queue_t *q, mblk_t *mp, boolean_t need_up); 157 static void ipsq_delete(ipsq_t *); 158 159 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 160 boolean_t initialize); 161 static void ipif_check_bcast_ires(ipif_t *test_ipif); 162 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 163 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 164 boolean_t isv6); 165 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 166 static void ipif_delete_cache_ire(ire_t *, char *); 167 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 168 static void ipif_free(ipif_t *ipif); 169 static void ipif_free_tail(ipif_t *ipif); 170 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 171 static void ipif_multicast_down(ipif_t *ipif); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 182 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 183 184 static int ill_alloc_ppa(ill_if_t *, ill_t *); 185 static int ill_arp_off(ill_t *ill); 186 static int ill_arp_on(ill_t *ill); 187 static void ill_delete_interface_type(ill_if_t *); 188 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 189 static void ill_dl_down(ill_t *ill); 190 static void ill_down(ill_t *ill); 191 static void ill_downi(ire_t *ire, char *ill_arg); 192 static void ill_free_mib(ill_t *ill); 193 static void ill_glist_delete(ill_t *); 194 static boolean_t ill_has_usable_ipif(ill_t *); 195 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 196 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 197 static void ill_phyint_free(ill_t *ill); 198 static void ill_phyint_reinit(ill_t *ill); 199 static void ill_set_nce_router_flags(ill_t *, boolean_t); 200 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 201 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 202 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 203 static void ill_stq_cache_delete(ire_t *, char *); 204 205 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 207 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 in6_addr_t *); 209 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 210 ipaddr_t *); 211 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 212 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 in6_addr_t *); 214 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 215 ipaddr_t *); 216 217 static void ipif_save_ire(ipif_t *, ire_t *); 218 static void ipif_remove_ire(ipif_t *, ire_t *); 219 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 220 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 221 222 /* 223 * Per-ill IPsec capabilities management. 224 */ 225 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 226 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 227 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 228 static void ill_ipsec_capab_delete(ill_t *, uint_t); 229 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 230 static void ill_capability_proto(ill_t *, int, mblk_t *); 231 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 232 boolean_t); 233 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 236 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 238 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 240 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 241 dl_capability_sub_t *); 242 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 243 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static void ill_capability_lso_reset(ill_t *, mblk_t **); 245 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 246 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 247 static void ill_capability_dls_reset(ill_t *, mblk_t **); 248 static void ill_capability_dls_disable(ill_t *); 249 250 static void illgrp_cache_delete(ire_t *, char *); 251 static void illgrp_delete(ill_t *ill); 252 static void illgrp_reset_schednext(ill_t *ill); 253 254 static ill_t *ill_prev_usesrc(ill_t *); 255 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 256 static void ill_disband_usesrc_group(ill_t *); 257 258 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 259 260 #ifdef DEBUG 261 static void ill_trace_cleanup(const ill_t *); 262 static void ipif_trace_cleanup(const ipif_t *); 263 #endif 264 265 /* 266 * if we go over the memory footprint limit more than once in this msec 267 * interval, we'll start pruning aggressively. 268 */ 269 int ip_min_frag_prune_time = 0; 270 271 /* 272 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 273 * and the IPsec DOI 274 */ 275 #define MAX_IPSEC_ALGS 256 276 277 #define BITSPERBYTE 8 278 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 279 280 #define IPSEC_ALG_ENABLE(algs, algid) \ 281 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 282 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 283 284 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 285 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 286 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 287 288 typedef uint8_t ipsec_capab_elem_t; 289 290 /* 291 * Per-algorithm parameters. Note that at present, only encryption 292 * algorithms have variable keysize (IKE does not provide a way to negotiate 293 * auth algorithm keysize). 294 * 295 * All sizes here are in bits. 296 */ 297 typedef struct 298 { 299 uint16_t minkeylen; 300 uint16_t maxkeylen; 301 } ipsec_capab_algparm_t; 302 303 /* 304 * Per-ill capabilities. 305 */ 306 struct ill_ipsec_capab_s { 307 ipsec_capab_elem_t *encr_hw_algs; 308 ipsec_capab_elem_t *auth_hw_algs; 309 uint32_t algs_size; /* size of _hw_algs in bytes */ 310 /* algorithm key lengths */ 311 ipsec_capab_algparm_t *encr_algparm; 312 uint32_t encr_algparm_size; 313 uint32_t encr_algparm_end; 314 }; 315 316 /* 317 * The field values are larger than strictly necessary for simple 318 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 319 */ 320 static area_t ip_area_template = { 321 AR_ENTRY_ADD, /* area_cmd */ 322 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 323 /* area_name_offset */ 324 /* area_name_length temporarily holds this structure length */ 325 sizeof (area_t), /* area_name_length */ 326 IP_ARP_PROTO_TYPE, /* area_proto */ 327 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 328 IP_ADDR_LEN, /* area_proto_addr_length */ 329 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 330 /* area_proto_mask_offset */ 331 0, /* area_flags */ 332 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 333 /* area_hw_addr_offset */ 334 /* Zero length hw_addr_length means 'use your idea of the address' */ 335 0 /* area_hw_addr_length */ 336 }; 337 338 /* 339 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 340 * support 341 */ 342 static area_t ip6_area_template = { 343 AR_ENTRY_ADD, /* area_cmd */ 344 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 345 /* area_name_offset */ 346 /* area_name_length temporarily holds this structure length */ 347 sizeof (area_t), /* area_name_length */ 348 IP_ARP_PROTO_TYPE, /* area_proto */ 349 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 350 IPV6_ADDR_LEN, /* area_proto_addr_length */ 351 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 352 /* area_proto_mask_offset */ 353 0, /* area_flags */ 354 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 355 /* area_hw_addr_offset */ 356 /* Zero length hw_addr_length means 'use your idea of the address' */ 357 0 /* area_hw_addr_length */ 358 }; 359 360 static ared_t ip_ared_template = { 361 AR_ENTRY_DELETE, 362 sizeof (ared_t) + IP_ADDR_LEN, 363 sizeof (ared_t), 364 IP_ARP_PROTO_TYPE, 365 sizeof (ared_t), 366 IP_ADDR_LEN 367 }; 368 369 static ared_t ip6_ared_template = { 370 AR_ENTRY_DELETE, 371 sizeof (ared_t) + IPV6_ADDR_LEN, 372 sizeof (ared_t), 373 IP_ARP_PROTO_TYPE, 374 sizeof (ared_t), 375 IPV6_ADDR_LEN 376 }; 377 378 /* 379 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 380 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 381 * areq is used). 382 */ 383 static areq_t ip_areq_template = { 384 AR_ENTRY_QUERY, /* cmd */ 385 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 386 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 387 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 388 sizeof (areq_t), /* target addr offset */ 389 IP_ADDR_LEN, /* target addr_length */ 390 0, /* flags */ 391 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 392 IP_ADDR_LEN, /* sender addr length */ 393 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 394 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 395 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 396 /* anything else filled in by the code */ 397 }; 398 399 static arc_t ip_aru_template = { 400 AR_INTERFACE_UP, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_ard_template = { 406 AR_INTERFACE_DOWN, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aron_template = { 412 AR_INTERFACE_ON, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 static arc_t ip_aroff_template = { 418 AR_INTERFACE_OFF, 419 sizeof (arc_t), /* Name offset */ 420 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 421 }; 422 423 424 static arma_t ip_arma_multi_template = { 425 AR_MAPPING_ADD, 426 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 427 /* Name offset */ 428 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 429 IP_ARP_PROTO_TYPE, 430 sizeof (arma_t), /* proto_addr_offset */ 431 IP_ADDR_LEN, /* proto_addr_length */ 432 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 433 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 434 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 435 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 436 IP_MAX_HW_LEN, /* hw_addr_length */ 437 0, /* hw_mapping_start */ 438 }; 439 440 static ipft_t ip_ioctl_ftbl[] = { 441 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 442 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 443 IPFT_F_NO_REPLY }, 444 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 445 IPFT_F_NO_REPLY }, 446 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 447 { 0 } 448 }; 449 450 /* Simple ICMP IP Header Template */ 451 static ipha_t icmp_ipha = { 452 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 453 }; 454 455 /* Flag descriptors for ip_ipif_report */ 456 static nv_t ipif_nv_tbl[] = { 457 { IPIF_UP, "UP" }, 458 { IPIF_BROADCAST, "BROADCAST" }, 459 { ILLF_DEBUG, "DEBUG" }, 460 { PHYI_LOOPBACK, "LOOPBACK" }, 461 { IPIF_POINTOPOINT, "POINTOPOINT" }, 462 { ILLF_NOTRAILERS, "NOTRAILERS" }, 463 { PHYI_RUNNING, "RUNNING" }, 464 { ILLF_NOARP, "NOARP" }, 465 { PHYI_PROMISC, "PROMISC" }, 466 { PHYI_ALLMULTI, "ALLMULTI" }, 467 { PHYI_INTELLIGENT, "INTELLIGENT" }, 468 { ILLF_MULTICAST, "MULTICAST" }, 469 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 470 { IPIF_UNNUMBERED, "UNNUMBERED" }, 471 { IPIF_DHCPRUNNING, "DHCP" }, 472 { IPIF_PRIVATE, "PRIVATE" }, 473 { IPIF_NOXMIT, "NOXMIT" }, 474 { IPIF_NOLOCAL, "NOLOCAL" }, 475 { IPIF_DEPRECATED, "DEPRECATED" }, 476 { IPIF_PREFERRED, "PREFERRED" }, 477 { IPIF_TEMPORARY, "TEMPORARY" }, 478 { IPIF_ADDRCONF, "ADDRCONF" }, 479 { PHYI_VIRTUAL, "VIRTUAL" }, 480 { ILLF_ROUTER, "ROUTER" }, 481 { ILLF_NONUD, "NONUD" }, 482 { IPIF_ANYCAST, "ANYCAST" }, 483 { ILLF_NORTEXCH, "NORTEXCH" }, 484 { ILLF_IPV4, "IPV4" }, 485 { ILLF_IPV6, "IPV6" }, 486 { IPIF_NOFAILOVER, "NOFAILOVER" }, 487 { PHYI_FAILED, "FAILED" }, 488 { PHYI_STANDBY, "STANDBY" }, 489 { PHYI_INACTIVE, "INACTIVE" }, 490 { PHYI_OFFLINE, "OFFLINE" }, 491 }; 492 493 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 494 495 static ip_m_t ip_m_tbl[] = { 496 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 497 ip_ether_v6intfid }, 498 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_nodef_v6intfid }, 500 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 501 ip_nodef_v6intfid }, 502 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 503 ip_nodef_v6intfid }, 504 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 505 ip_ether_v6intfid }, 506 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 507 ip_ib_v6intfid }, 508 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 509 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 510 ip_nodef_v6intfid } 511 }; 512 513 static ill_t ill_null; /* Empty ILL for init. */ 514 char ipif_loopback_name[] = "lo0"; 515 static char *ipv4_forward_suffix = ":ip_forwarding"; 516 static char *ipv6_forward_suffix = ":ip6_forwarding"; 517 static sin6_t sin6_null; /* Zero address for quick clears */ 518 static sin_t sin_null; /* Zero address for quick clears */ 519 520 /* When set search for unused ipif_seqid */ 521 static ipif_t ipif_zero; 522 523 /* 524 * ppa arena is created after these many 525 * interfaces have been plumbed. 526 */ 527 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 528 529 /* 530 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 531 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 532 * set through platform specific code (Niagara/Ontario). 533 */ 534 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 535 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 536 537 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 538 539 static uint_t 540 ipif_rand(ip_stack_t *ipst) 541 { 542 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 543 12345; 544 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 545 } 546 547 /* 548 * Allocate per-interface mibs. 549 * Returns true if ok. False otherwise. 550 * ipsq may not yet be allocated (loopback case ). 551 */ 552 static boolean_t 553 ill_allocate_mibs(ill_t *ill) 554 { 555 /* Already allocated? */ 556 if (ill->ill_ip_mib != NULL) { 557 if (ill->ill_isv6) 558 ASSERT(ill->ill_icmp6_mib != NULL); 559 return (B_TRUE); 560 } 561 562 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 563 KM_NOSLEEP); 564 if (ill->ill_ip_mib == NULL) { 565 return (B_FALSE); 566 } 567 568 /* Setup static information */ 569 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 570 sizeof (mib2_ipIfStatsEntry_t)); 571 if (ill->ill_isv6) { 572 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 573 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 574 sizeof (mib2_ipv6AddrEntry_t)); 575 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 576 sizeof (mib2_ipv6RouteEntry_t)); 577 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 578 sizeof (mib2_ipv6NetToMediaEntry_t)); 579 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 580 sizeof (ipv6_member_t)); 581 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 582 sizeof (ipv6_grpsrc_t)); 583 } else { 584 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 585 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 586 sizeof (mib2_ipAddrEntry_t)); 587 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 588 sizeof (mib2_ipRouteEntry_t)); 589 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 590 sizeof (mib2_ipNetToMediaEntry_t)); 591 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 592 sizeof (ip_member_t)); 593 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 594 sizeof (ip_grpsrc_t)); 595 596 /* 597 * For a v4 ill, we are done at this point, because per ill 598 * icmp mibs are only used for v6. 599 */ 600 return (B_TRUE); 601 } 602 603 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 604 KM_NOSLEEP); 605 if (ill->ill_icmp6_mib == NULL) { 606 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 607 ill->ill_ip_mib = NULL; 608 return (B_FALSE); 609 } 610 /* static icmp info */ 611 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 612 sizeof (mib2_ipv6IfIcmpEntry_t); 613 /* 614 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 615 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 616 * -> ill_phyint_reinit 617 */ 618 return (B_TRUE); 619 } 620 621 /* 622 * Common code for preparation of ARP commands. Two points to remember: 623 * 1) The ill_name is tacked on at the end of the allocated space so 624 * the templates name_offset field must contain the total space 625 * to allocate less the name length. 626 * 627 * 2) The templates name_length field should contain the *template* 628 * length. We use it as a parameter to bcopy() and then write 629 * the real ill_name_length into the name_length field of the copy. 630 * (Always called as writer.) 631 */ 632 mblk_t * 633 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 634 { 635 arc_t *arc = (arc_t *)template; 636 char *cp; 637 int len; 638 mblk_t *mp; 639 uint_t name_length = ill->ill_name_length; 640 uint_t template_len = arc->arc_name_length; 641 642 len = arc->arc_name_offset + name_length; 643 mp = allocb(len, BPRI_HI); 644 if (mp == NULL) 645 return (NULL); 646 cp = (char *)mp->b_rptr; 647 mp->b_wptr = (uchar_t *)&cp[len]; 648 if (template_len) 649 bcopy(template, cp, template_len); 650 if (len > template_len) 651 bzero(&cp[template_len], len - template_len); 652 mp->b_datap->db_type = M_PROTO; 653 654 arc = (arc_t *)cp; 655 arc->arc_name_length = name_length; 656 cp = (char *)arc + arc->arc_name_offset; 657 bcopy(ill->ill_name, cp, name_length); 658 659 if (addr) { 660 area_t *area = (area_t *)mp->b_rptr; 661 662 cp = (char *)area + area->area_proto_addr_offset; 663 bcopy(addr, cp, area->area_proto_addr_length); 664 if (area->area_cmd == AR_ENTRY_ADD) { 665 cp = (char *)area; 666 len = area->area_proto_addr_length; 667 if (area->area_proto_mask_offset) 668 cp += area->area_proto_mask_offset; 669 else 670 cp += area->area_proto_addr_offset + len; 671 while (len-- > 0) 672 *cp++ = (char)~0; 673 } 674 } 675 return (mp); 676 } 677 678 mblk_t * 679 ipif_area_alloc(ipif_t *ipif) 680 { 681 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 682 (char *)&ipif->ipif_lcl_addr)); 683 } 684 685 mblk_t * 686 ipif_ared_alloc(ipif_t *ipif) 687 { 688 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 689 (char *)&ipif->ipif_lcl_addr)); 690 } 691 692 mblk_t * 693 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 694 { 695 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 696 (char *)&addr)); 697 } 698 699 /* 700 * Completely vaporize a lower level tap and all associated interfaces. 701 * ill_delete is called only out of ip_close when the device control 702 * stream is being closed. 703 */ 704 void 705 ill_delete(ill_t *ill) 706 { 707 ipif_t *ipif; 708 ill_t *prev_ill; 709 ip_stack_t *ipst = ill->ill_ipst; 710 711 /* 712 * ill_delete may be forcibly entering the ipsq. The previous 713 * ioctl may not have completed and may need to be aborted. 714 * ipsq_flush takes care of it. If we don't need to enter the 715 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 716 * ill_delete_tail is sufficient. 717 */ 718 ipsq_flush(ill); 719 720 /* 721 * Nuke all interfaces. ipif_free will take down the interface, 722 * remove it from the list, and free the data structure. 723 * Walk down the ipif list and remove the logical interfaces 724 * first before removing the main ipif. We can't unplumb 725 * zeroth interface first in the case of IPv6 as reset_conn_ill 726 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 727 * POINTOPOINT. 728 * 729 * If ill_ipif was not properly initialized (i.e low on memory), 730 * then no interfaces to clean up. In this case just clean up the 731 * ill. 732 */ 733 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 734 ipif_free(ipif); 735 736 /* 737 * Used only by ill_arp_on and ill_arp_off, which are writers. 738 * So nobody can be using this mp now. Free the mp allocated for 739 * honoring ILLF_NOARP 740 */ 741 freemsg(ill->ill_arp_on_mp); 742 ill->ill_arp_on_mp = NULL; 743 744 /* Clean up msgs on pending upcalls for mrouted */ 745 reset_mrt_ill(ill); 746 747 /* 748 * ipif_free -> reset_conn_ipif will remove all multicast 749 * references for IPv4. For IPv6, we need to do it here as 750 * it points only at ills. 751 */ 752 reset_conn_ill(ill); 753 754 /* 755 * ill_down will arrange to blow off any IRE's dependent on this 756 * ILL, and shut down fragmentation reassembly. 757 */ 758 ill_down(ill); 759 760 /* Let SCTP know, so that it can remove this from its list. */ 761 sctp_update_ill(ill, SCTP_ILL_REMOVE); 762 763 /* 764 * If an address on this ILL is being used as a source address then 765 * clear out the pointers in other ILLs that point to this ILL. 766 */ 767 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 768 if (ill->ill_usesrc_grp_next != NULL) { 769 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 770 ill_disband_usesrc_group(ill); 771 } else { /* consumer of the usesrc ILL */ 772 prev_ill = ill_prev_usesrc(ill); 773 prev_ill->ill_usesrc_grp_next = 774 ill->ill_usesrc_grp_next; 775 } 776 } 777 rw_exit(&ipst->ips_ill_g_usesrc_lock); 778 } 779 780 static void 781 ipif_non_duplicate(ipif_t *ipif) 782 { 783 ill_t *ill = ipif->ipif_ill; 784 mutex_enter(&ill->ill_lock); 785 if (ipif->ipif_flags & IPIF_DUPLICATE) { 786 ipif->ipif_flags &= ~IPIF_DUPLICATE; 787 ASSERT(ill->ill_ipif_dup_count > 0); 788 ill->ill_ipif_dup_count--; 789 } 790 mutex_exit(&ill->ill_lock); 791 } 792 793 /* 794 * ill_delete_tail is called from ip_modclose after all references 795 * to the closing ill are gone. The wait is done in ip_modclose 796 */ 797 void 798 ill_delete_tail(ill_t *ill) 799 { 800 mblk_t **mpp; 801 ipif_t *ipif; 802 ip_stack_t *ipst = ill->ill_ipst; 803 804 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 805 ipif_non_duplicate(ipif); 806 ipif_down_tail(ipif); 807 } 808 809 ASSERT(ill->ill_ipif_dup_count == 0 && 810 ill->ill_arp_down_mp == NULL && 811 ill->ill_arp_del_mapping_mp == NULL); 812 813 /* 814 * If polling capability is enabled (which signifies direct 815 * upcall into IP and driver has ill saved as a handle), 816 * we need to make sure that unbind has completed before we 817 * let the ill disappear and driver no longer has any reference 818 * to this ill. 819 */ 820 mutex_enter(&ill->ill_lock); 821 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 822 cv_wait(&ill->ill_cv, &ill->ill_lock); 823 mutex_exit(&ill->ill_lock); 824 825 /* 826 * Clean up polling and soft ring capabilities 827 */ 828 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 829 ill_capability_dls_disable(ill); 830 831 if (ill->ill_net_type != IRE_LOOPBACK) 832 qprocsoff(ill->ill_rq); 833 834 /* 835 * We do an ipsq_flush once again now. New messages could have 836 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 837 * could also have landed up if an ioctl thread had looked up 838 * the ill before we set the ILL_CONDEMNED flag, but not yet 839 * enqueued the ioctl when we did the ipsq_flush last time. 840 */ 841 ipsq_flush(ill); 842 843 /* 844 * Free capabilities. 845 */ 846 if (ill->ill_ipsec_capab_ah != NULL) { 847 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 848 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 849 ill->ill_ipsec_capab_ah = NULL; 850 } 851 852 if (ill->ill_ipsec_capab_esp != NULL) { 853 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 854 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 855 ill->ill_ipsec_capab_esp = NULL; 856 } 857 858 if (ill->ill_mdt_capab != NULL) { 859 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 860 ill->ill_mdt_capab = NULL; 861 } 862 863 if (ill->ill_hcksum_capab != NULL) { 864 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 865 ill->ill_hcksum_capab = NULL; 866 } 867 868 if (ill->ill_zerocopy_capab != NULL) { 869 kmem_free(ill->ill_zerocopy_capab, 870 sizeof (ill_zerocopy_capab_t)); 871 ill->ill_zerocopy_capab = NULL; 872 } 873 874 if (ill->ill_lso_capab != NULL) { 875 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 876 ill->ill_lso_capab = NULL; 877 } 878 879 if (ill->ill_dls_capab != NULL) { 880 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 881 ill->ill_dls_capab->ill_unbind_conn = NULL; 882 kmem_free(ill->ill_dls_capab, 883 sizeof (ill_dls_capab_t) + 884 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 885 ill->ill_dls_capab = NULL; 886 } 887 888 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 889 890 while (ill->ill_ipif != NULL) 891 ipif_free_tail(ill->ill_ipif); 892 893 /* 894 * We have removed all references to ilm from conn and the ones joined 895 * within the kernel. 896 * 897 * We don't walk conns, mrts and ires because 898 * 899 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 900 * 2) ill_down ->ill_downi walks all the ires and cleans up 901 * ill references. 902 */ 903 ASSERT(ilm_walk_ill(ill) == 0); 904 /* 905 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 906 * could free the phyint. No more reference to the phyint after this 907 * point. 908 */ 909 (void) ill_glist_delete(ill); 910 911 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 912 if (ill->ill_ndd_name != NULL) 913 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 914 rw_exit(&ipst->ips_ip_g_nd_lock); 915 916 917 if (ill->ill_frag_ptr != NULL) { 918 uint_t count; 919 920 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 921 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 922 } 923 mi_free(ill->ill_frag_ptr); 924 ill->ill_frag_ptr = NULL; 925 ill->ill_frag_hash_tbl = NULL; 926 } 927 928 freemsg(ill->ill_nd_lla_mp); 929 /* Free all retained control messages. */ 930 mpp = &ill->ill_first_mp_to_free; 931 do { 932 while (mpp[0]) { 933 mblk_t *mp; 934 mblk_t *mp1; 935 936 mp = mpp[0]; 937 mpp[0] = mp->b_next; 938 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 939 mp1->b_next = NULL; 940 mp1->b_prev = NULL; 941 } 942 freemsg(mp); 943 } 944 } while (mpp++ != &ill->ill_last_mp_to_free); 945 946 ill_free_mib(ill); 947 948 #ifdef DEBUG 949 ill_trace_cleanup(ill); 950 #endif 951 952 /* Drop refcnt here */ 953 netstack_rele(ill->ill_ipst->ips_netstack); 954 ill->ill_ipst = NULL; 955 } 956 957 static void 958 ill_free_mib(ill_t *ill) 959 { 960 ip_stack_t *ipst = ill->ill_ipst; 961 962 /* 963 * MIB statistics must not be lost, so when an interface 964 * goes away the counter values will be added to the global 965 * MIBs. 966 */ 967 if (ill->ill_ip_mib != NULL) { 968 if (ill->ill_isv6) { 969 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 970 ill->ill_ip_mib); 971 } else { 972 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 973 ill->ill_ip_mib); 974 } 975 976 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 977 ill->ill_ip_mib = NULL; 978 } 979 if (ill->ill_icmp6_mib != NULL) { 980 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 981 ill->ill_icmp6_mib); 982 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 983 ill->ill_icmp6_mib = NULL; 984 } 985 } 986 987 /* 988 * Concatenate together a physical address and a sap. 989 * 990 * Sap_lengths are interpreted as follows: 991 * sap_length == 0 ==> no sap 992 * sap_length > 0 ==> sap is at the head of the dlpi address 993 * sap_length < 0 ==> sap is at the tail of the dlpi address 994 */ 995 static void 996 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 997 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 998 { 999 uint16_t sap_addr = (uint16_t)sap_src; 1000 1001 if (sap_length == 0) { 1002 if (phys_src == NULL) 1003 bzero(dst, phys_length); 1004 else 1005 bcopy(phys_src, dst, phys_length); 1006 } else if (sap_length < 0) { 1007 if (phys_src == NULL) 1008 bzero(dst, phys_length); 1009 else 1010 bcopy(phys_src, dst, phys_length); 1011 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1012 } else { 1013 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1014 if (phys_src == NULL) 1015 bzero((char *)dst + sap_length, phys_length); 1016 else 1017 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1018 } 1019 } 1020 1021 /* 1022 * Generate a dl_unitdata_req mblk for the device and address given. 1023 * addr_length is the length of the physical portion of the address. 1024 * If addr is NULL include an all zero address of the specified length. 1025 * TRUE? In any case, addr_length is taken to be the entire length of the 1026 * dlpi address, including the absolute value of sap_length. 1027 */ 1028 mblk_t * 1029 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1030 t_scalar_t sap_length) 1031 { 1032 dl_unitdata_req_t *dlur; 1033 mblk_t *mp; 1034 t_scalar_t abs_sap_length; /* absolute value */ 1035 1036 abs_sap_length = ABS(sap_length); 1037 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1038 DL_UNITDATA_REQ); 1039 if (mp == NULL) 1040 return (NULL); 1041 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1042 /* HACK: accomodate incompatible DLPI drivers */ 1043 if (addr_length == 8) 1044 addr_length = 6; 1045 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1046 dlur->dl_dest_addr_offset = sizeof (*dlur); 1047 dlur->dl_priority.dl_min = 0; 1048 dlur->dl_priority.dl_max = 0; 1049 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1050 (uchar_t *)&dlur[1]); 1051 return (mp); 1052 } 1053 1054 /* 1055 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1056 * Return an error if we already have 1 or more ioctls in progress. 1057 * This is used only for non-exclusive ioctls. Currently this is used 1058 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1059 * and thus need to use ipsq_pending_mp_add. 1060 */ 1061 boolean_t 1062 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1063 { 1064 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1065 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1066 /* 1067 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1068 */ 1069 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1070 (add_mp->b_datap->db_type == M_IOCTL)); 1071 1072 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1073 /* 1074 * Return error if the conn has started closing. The conn 1075 * could have finished cleaning up the pending mp list, 1076 * If so we should not add another mp to the list negating 1077 * the cleanup. 1078 */ 1079 if (connp->conn_state_flags & CONN_CLOSING) 1080 return (B_FALSE); 1081 /* 1082 * Add the pending mp to the head of the list, chained by b_next. 1083 * Note down the conn on which the ioctl request came, in b_prev. 1084 * This will be used to later get the conn, when we get a response 1085 * on the ill queue, from some other module (typically arp) 1086 */ 1087 add_mp->b_next = (void *)ill->ill_pending_mp; 1088 add_mp->b_queue = CONNP_TO_WQ(connp); 1089 ill->ill_pending_mp = add_mp; 1090 if (connp != NULL) 1091 connp->conn_oper_pending_ill = ill; 1092 return (B_TRUE); 1093 } 1094 1095 /* 1096 * Retrieve the ill_pending_mp and return it. We have to walk the list 1097 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1098 */ 1099 mblk_t * 1100 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1101 { 1102 mblk_t *prev = NULL; 1103 mblk_t *curr = NULL; 1104 uint_t id; 1105 conn_t *connp; 1106 1107 /* 1108 * When the conn closes, conn_ioctl_cleanup needs to clean 1109 * up the pending mp, but it does not know the ioc_id and 1110 * passes in a zero for it. 1111 */ 1112 mutex_enter(&ill->ill_lock); 1113 if (ioc_id != 0) 1114 *connpp = NULL; 1115 1116 /* Search the list for the appropriate ioctl based on ioc_id */ 1117 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1118 prev = curr, curr = curr->b_next) { 1119 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1120 connp = Q_TO_CONN(curr->b_queue); 1121 /* Match based on the ioc_id or based on the conn */ 1122 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1123 break; 1124 } 1125 1126 if (curr != NULL) { 1127 /* Unlink the mblk from the pending mp list */ 1128 if (prev != NULL) { 1129 prev->b_next = curr->b_next; 1130 } else { 1131 ASSERT(ill->ill_pending_mp == curr); 1132 ill->ill_pending_mp = curr->b_next; 1133 } 1134 1135 /* 1136 * conn refcnt must have been bumped up at the start of 1137 * the ioctl. So we can safely access the conn. 1138 */ 1139 ASSERT(CONN_Q(curr->b_queue)); 1140 *connpp = Q_TO_CONN(curr->b_queue); 1141 curr->b_next = NULL; 1142 curr->b_queue = NULL; 1143 } 1144 1145 mutex_exit(&ill->ill_lock); 1146 1147 return (curr); 1148 } 1149 1150 /* 1151 * Add the pending mp to the list. There can be only 1 pending mp 1152 * in the list. Any exclusive ioctl that needs to wait for a response 1153 * from another module or driver needs to use this function to set 1154 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1155 * the other module/driver. This is also used while waiting for the 1156 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1157 */ 1158 boolean_t 1159 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1160 int waitfor) 1161 { 1162 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1163 1164 ASSERT(IAM_WRITER_IPIF(ipif)); 1165 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1166 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1167 ASSERT(ipsq->ipsq_pending_mp == NULL); 1168 /* 1169 * The caller may be using a different ipif than the one passed into 1170 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1171 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1172 * that `ipsq_current_ipif == ipif'. 1173 */ 1174 ASSERT(ipsq->ipsq_current_ipif != NULL); 1175 1176 /* 1177 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1178 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1179 */ 1180 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1181 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1182 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1183 1184 if (connp != NULL) { 1185 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1186 /* 1187 * Return error if the conn has started closing. The conn 1188 * could have finished cleaning up the pending mp list, 1189 * If so we should not add another mp to the list negating 1190 * the cleanup. 1191 */ 1192 if (connp->conn_state_flags & CONN_CLOSING) 1193 return (B_FALSE); 1194 } 1195 mutex_enter(&ipsq->ipsq_lock); 1196 ipsq->ipsq_pending_ipif = ipif; 1197 /* 1198 * Note down the queue in b_queue. This will be returned by 1199 * ipsq_pending_mp_get. Caller will then use these values to restart 1200 * the processing 1201 */ 1202 add_mp->b_next = NULL; 1203 add_mp->b_queue = q; 1204 ipsq->ipsq_pending_mp = add_mp; 1205 ipsq->ipsq_waitfor = waitfor; 1206 1207 if (connp != NULL) 1208 connp->conn_oper_pending_ill = ipif->ipif_ill; 1209 mutex_exit(&ipsq->ipsq_lock); 1210 return (B_TRUE); 1211 } 1212 1213 /* 1214 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1215 * queued in the list. 1216 */ 1217 mblk_t * 1218 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1219 { 1220 mblk_t *curr = NULL; 1221 1222 mutex_enter(&ipsq->ipsq_lock); 1223 *connpp = NULL; 1224 if (ipsq->ipsq_pending_mp == NULL) { 1225 mutex_exit(&ipsq->ipsq_lock); 1226 return (NULL); 1227 } 1228 1229 /* There can be only 1 such excl message */ 1230 curr = ipsq->ipsq_pending_mp; 1231 ASSERT(curr != NULL && curr->b_next == NULL); 1232 ipsq->ipsq_pending_ipif = NULL; 1233 ipsq->ipsq_pending_mp = NULL; 1234 ipsq->ipsq_waitfor = 0; 1235 mutex_exit(&ipsq->ipsq_lock); 1236 1237 if (CONN_Q(curr->b_queue)) { 1238 /* 1239 * This mp did a refhold on the conn, at the start of the ioctl. 1240 * So we can safely return a pointer to the conn to the caller. 1241 */ 1242 *connpp = Q_TO_CONN(curr->b_queue); 1243 } else { 1244 *connpp = NULL; 1245 } 1246 curr->b_next = NULL; 1247 curr->b_prev = NULL; 1248 return (curr); 1249 } 1250 1251 /* 1252 * Cleanup the ioctl mp queued in ipsq_pending_mp 1253 * - Called in the ill_delete path 1254 * - Called in the M_ERROR or M_HANGUP path on the ill. 1255 * - Called in the conn close path. 1256 */ 1257 boolean_t 1258 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1259 { 1260 mblk_t *mp; 1261 ipsq_t *ipsq; 1262 queue_t *q; 1263 ipif_t *ipif; 1264 1265 ASSERT(IAM_WRITER_ILL(ill)); 1266 ipsq = ill->ill_phyint->phyint_ipsq; 1267 mutex_enter(&ipsq->ipsq_lock); 1268 /* 1269 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1270 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1271 * even if it is meant for another ill, since we have to enqueue 1272 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1273 * If connp is non-null we are called from the conn close path. 1274 */ 1275 mp = ipsq->ipsq_pending_mp; 1276 if (mp == NULL || (connp != NULL && 1277 mp->b_queue != CONNP_TO_WQ(connp))) { 1278 mutex_exit(&ipsq->ipsq_lock); 1279 return (B_FALSE); 1280 } 1281 /* Now remove from the ipsq_pending_mp */ 1282 ipsq->ipsq_pending_mp = NULL; 1283 q = mp->b_queue; 1284 mp->b_next = NULL; 1285 mp->b_prev = NULL; 1286 mp->b_queue = NULL; 1287 1288 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1289 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1290 if (ill->ill_move_in_progress) { 1291 ILL_CLEAR_MOVE(ill); 1292 } else if (ill->ill_up_ipifs) { 1293 ill_group_cleanup(ill); 1294 } 1295 1296 ipif = ipsq->ipsq_pending_ipif; 1297 ipsq->ipsq_pending_ipif = NULL; 1298 ipsq->ipsq_waitfor = 0; 1299 ipsq->ipsq_current_ipif = NULL; 1300 ipsq->ipsq_current_ioctl = 0; 1301 ipsq->ipsq_current_done = B_TRUE; 1302 mutex_exit(&ipsq->ipsq_lock); 1303 1304 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1305 if (connp == NULL) { 1306 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1307 } else { 1308 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1309 mutex_enter(&ipif->ipif_ill->ill_lock); 1310 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1311 mutex_exit(&ipif->ipif_ill->ill_lock); 1312 } 1313 } else { 1314 /* 1315 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1316 * be just inet_freemsg. we have to restart it 1317 * otherwise the thread will be stuck. 1318 */ 1319 inet_freemsg(mp); 1320 } 1321 return (B_TRUE); 1322 } 1323 1324 /* 1325 * The ill is closing. Cleanup all the pending mps. Called exclusively 1326 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1327 * knows this ill, and hence nobody can add an mp to this list 1328 */ 1329 static void 1330 ill_pending_mp_cleanup(ill_t *ill) 1331 { 1332 mblk_t *mp; 1333 queue_t *q; 1334 1335 ASSERT(IAM_WRITER_ILL(ill)); 1336 1337 mutex_enter(&ill->ill_lock); 1338 /* 1339 * Every mp on the pending mp list originating from an ioctl 1340 * added 1 to the conn refcnt, at the start of the ioctl. 1341 * So bump it down now. See comments in ip_wput_nondata() 1342 */ 1343 while (ill->ill_pending_mp != NULL) { 1344 mp = ill->ill_pending_mp; 1345 ill->ill_pending_mp = mp->b_next; 1346 mutex_exit(&ill->ill_lock); 1347 1348 q = mp->b_queue; 1349 ASSERT(CONN_Q(q)); 1350 mp->b_next = NULL; 1351 mp->b_prev = NULL; 1352 mp->b_queue = NULL; 1353 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1354 mutex_enter(&ill->ill_lock); 1355 } 1356 ill->ill_pending_ipif = NULL; 1357 1358 mutex_exit(&ill->ill_lock); 1359 } 1360 1361 /* 1362 * Called in the conn close path and ill delete path 1363 */ 1364 static void 1365 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1366 { 1367 ipsq_t *ipsq; 1368 mblk_t *prev; 1369 mblk_t *curr; 1370 mblk_t *next; 1371 queue_t *q; 1372 mblk_t *tmp_list = NULL; 1373 1374 ASSERT(IAM_WRITER_ILL(ill)); 1375 if (connp != NULL) 1376 q = CONNP_TO_WQ(connp); 1377 else 1378 q = ill->ill_wq; 1379 1380 ipsq = ill->ill_phyint->phyint_ipsq; 1381 /* 1382 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1383 * In the case of ioctl from a conn, there can be only 1 mp 1384 * queued on the ipsq. If an ill is being unplumbed, only messages 1385 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1386 * ioctls meant for this ill form conn's are not flushed. They will 1387 * be processed during ipsq_exit and will not find the ill and will 1388 * return error. 1389 */ 1390 mutex_enter(&ipsq->ipsq_lock); 1391 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1392 curr = next) { 1393 next = curr->b_next; 1394 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1395 /* Unlink the mblk from the pending mp list */ 1396 if (prev != NULL) { 1397 prev->b_next = curr->b_next; 1398 } else { 1399 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1400 ipsq->ipsq_xopq_mphead = curr->b_next; 1401 } 1402 if (ipsq->ipsq_xopq_mptail == curr) 1403 ipsq->ipsq_xopq_mptail = prev; 1404 /* 1405 * Create a temporary list and release the ipsq lock 1406 * New elements are added to the head of the tmp_list 1407 */ 1408 curr->b_next = tmp_list; 1409 tmp_list = curr; 1410 } else { 1411 prev = curr; 1412 } 1413 } 1414 mutex_exit(&ipsq->ipsq_lock); 1415 1416 while (tmp_list != NULL) { 1417 curr = tmp_list; 1418 tmp_list = curr->b_next; 1419 curr->b_next = NULL; 1420 curr->b_prev = NULL; 1421 curr->b_queue = NULL; 1422 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1423 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1424 CONN_CLOSE : NO_COPYOUT, NULL); 1425 } else { 1426 /* 1427 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1428 * this can't be just inet_freemsg. we have to 1429 * restart it otherwise the thread will be stuck. 1430 */ 1431 inet_freemsg(curr); 1432 } 1433 } 1434 } 1435 1436 /* 1437 * This conn has started closing. Cleanup any pending ioctl from this conn. 1438 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1439 */ 1440 void 1441 conn_ioctl_cleanup(conn_t *connp) 1442 { 1443 mblk_t *curr; 1444 ipsq_t *ipsq; 1445 ill_t *ill; 1446 boolean_t refheld; 1447 1448 /* 1449 * Is any exclusive ioctl pending ? If so clean it up. If the 1450 * ioctl has not yet started, the mp is pending in the list headed by 1451 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1452 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1453 * is currently executing now the mp is not queued anywhere but 1454 * conn_oper_pending_ill is null. The conn close will wait 1455 * till the conn_ref drops to zero. 1456 */ 1457 mutex_enter(&connp->conn_lock); 1458 ill = connp->conn_oper_pending_ill; 1459 if (ill == NULL) { 1460 mutex_exit(&connp->conn_lock); 1461 return; 1462 } 1463 1464 curr = ill_pending_mp_get(ill, &connp, 0); 1465 if (curr != NULL) { 1466 mutex_exit(&connp->conn_lock); 1467 CONN_DEC_REF(connp); 1468 inet_freemsg(curr); 1469 return; 1470 } 1471 /* 1472 * We may not be able to refhold the ill if the ill/ipif 1473 * is changing. But we need to make sure that the ill will 1474 * not vanish. So we just bump up the ill_waiter count. 1475 */ 1476 refheld = ill_waiter_inc(ill); 1477 mutex_exit(&connp->conn_lock); 1478 if (refheld) { 1479 if (ipsq_enter(ill, B_TRUE)) { 1480 ill_waiter_dcr(ill); 1481 /* 1482 * Check whether this ioctl has started and is 1483 * pending now in ipsq_pending_mp. If it is not 1484 * found there then check whether this ioctl has 1485 * not even started and is in the ipsq_xopq list. 1486 */ 1487 if (!ipsq_pending_mp_cleanup(ill, connp)) 1488 ipsq_xopq_mp_cleanup(ill, connp); 1489 ipsq = ill->ill_phyint->phyint_ipsq; 1490 ipsq_exit(ipsq); 1491 return; 1492 } 1493 } 1494 1495 /* 1496 * The ill is also closing and we could not bump up the 1497 * ill_waiter_count or we could not enter the ipsq. Leave 1498 * the cleanup to ill_delete 1499 */ 1500 mutex_enter(&connp->conn_lock); 1501 while (connp->conn_oper_pending_ill != NULL) 1502 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1503 mutex_exit(&connp->conn_lock); 1504 if (refheld) 1505 ill_waiter_dcr(ill); 1506 } 1507 1508 /* 1509 * ipcl_walk function for cleaning up conn_*_ill fields. 1510 */ 1511 static void 1512 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1513 { 1514 ill_t *ill = (ill_t *)arg; 1515 ire_t *ire; 1516 1517 mutex_enter(&connp->conn_lock); 1518 if (connp->conn_multicast_ill == ill) { 1519 /* Revert to late binding */ 1520 connp->conn_multicast_ill = NULL; 1521 connp->conn_orig_multicast_ifindex = 0; 1522 } 1523 if (connp->conn_incoming_ill == ill) 1524 connp->conn_incoming_ill = NULL; 1525 if (connp->conn_outgoing_ill == ill) 1526 connp->conn_outgoing_ill = NULL; 1527 if (connp->conn_outgoing_pill == ill) 1528 connp->conn_outgoing_pill = NULL; 1529 if (connp->conn_nofailover_ill == ill) 1530 connp->conn_nofailover_ill = NULL; 1531 if (connp->conn_dhcpinit_ill == ill) { 1532 connp->conn_dhcpinit_ill = NULL; 1533 ASSERT(ill->ill_dhcpinit != 0); 1534 atomic_dec_32(&ill->ill_dhcpinit); 1535 } 1536 if (connp->conn_ire_cache != NULL) { 1537 ire = connp->conn_ire_cache; 1538 /* 1539 * ip_newroute creates IRE_CACHE with ire_stq coming from 1540 * interface X and ipif coming from interface Y, if interface 1541 * X and Y are part of the same IPMPgroup. Thus whenever 1542 * interface X goes down, remove all references to it by 1543 * checking both on ire_ipif and ire_stq. 1544 */ 1545 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1546 (ire->ire_type == IRE_CACHE && 1547 ire->ire_stq == ill->ill_wq)) { 1548 connp->conn_ire_cache = NULL; 1549 mutex_exit(&connp->conn_lock); 1550 ire_refrele_notr(ire); 1551 return; 1552 } 1553 } 1554 mutex_exit(&connp->conn_lock); 1555 1556 } 1557 1558 /* ARGSUSED */ 1559 void 1560 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1561 { 1562 ill_t *ill = q->q_ptr; 1563 ipif_t *ipif; 1564 1565 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1566 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1567 ipif_non_duplicate(ipif); 1568 ipif_down_tail(ipif); 1569 } 1570 freemsg(mp); 1571 ipsq_current_finish(ipsq); 1572 } 1573 1574 /* 1575 * ill_down_start is called when we want to down this ill and bring it up again 1576 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1577 * all interfaces, but don't tear down any plumbing. 1578 */ 1579 boolean_t 1580 ill_down_start(queue_t *q, mblk_t *mp) 1581 { 1582 ill_t *ill = q->q_ptr; 1583 ipif_t *ipif; 1584 1585 ASSERT(IAM_WRITER_ILL(ill)); 1586 1587 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1588 (void) ipif_down(ipif, NULL, NULL); 1589 1590 ill_down(ill); 1591 1592 (void) ipsq_pending_mp_cleanup(ill, NULL); 1593 1594 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1595 1596 /* 1597 * Atomically test and add the pending mp if references are active. 1598 */ 1599 mutex_enter(&ill->ill_lock); 1600 if (!ill_is_quiescent(ill)) { 1601 /* call cannot fail since `conn_t *' argument is NULL */ 1602 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1603 mp, ILL_DOWN); 1604 mutex_exit(&ill->ill_lock); 1605 return (B_FALSE); 1606 } 1607 mutex_exit(&ill->ill_lock); 1608 return (B_TRUE); 1609 } 1610 1611 static void 1612 ill_down(ill_t *ill) 1613 { 1614 ip_stack_t *ipst = ill->ill_ipst; 1615 1616 /* Blow off any IREs dependent on this ILL. */ 1617 ire_walk(ill_downi, (char *)ill, ipst); 1618 1619 /* Remove any conn_*_ill depending on this ill */ 1620 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1621 1622 if (ill->ill_group != NULL) { 1623 illgrp_delete(ill); 1624 } 1625 } 1626 1627 /* 1628 * ire_walk routine used to delete every IRE that depends on queues 1629 * associated with 'ill'. (Always called as writer.) 1630 */ 1631 static void 1632 ill_downi(ire_t *ire, char *ill_arg) 1633 { 1634 ill_t *ill = (ill_t *)ill_arg; 1635 1636 /* 1637 * ip_newroute creates IRE_CACHE with ire_stq coming from 1638 * interface X and ipif coming from interface Y, if interface 1639 * X and Y are part of the same IPMP group. Thus whenever interface 1640 * X goes down, remove all references to it by checking both 1641 * on ire_ipif and ire_stq. 1642 */ 1643 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1644 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1645 ire_delete(ire); 1646 } 1647 } 1648 1649 /* 1650 * Remove ire/nce from the fastpath list. 1651 */ 1652 void 1653 ill_fastpath_nack(ill_t *ill) 1654 { 1655 nce_fastpath_list_dispatch(ill, NULL, NULL); 1656 } 1657 1658 /* Consume an M_IOCACK of the fastpath probe. */ 1659 void 1660 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1661 { 1662 mblk_t *mp1 = mp; 1663 1664 /* 1665 * If this was the first attempt turn on the fastpath probing. 1666 */ 1667 mutex_enter(&ill->ill_lock); 1668 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1669 ill->ill_dlpi_fastpath_state = IDS_OK; 1670 mutex_exit(&ill->ill_lock); 1671 1672 /* Free the M_IOCACK mblk, hold on to the data */ 1673 mp = mp->b_cont; 1674 freeb(mp1); 1675 if (mp == NULL) 1676 return; 1677 if (mp->b_cont != NULL) { 1678 /* 1679 * Update all IRE's or NCE's that are waiting for 1680 * fastpath update. 1681 */ 1682 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1683 mp1 = mp->b_cont; 1684 freeb(mp); 1685 mp = mp1; 1686 } else { 1687 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1688 } 1689 1690 freeb(mp); 1691 } 1692 1693 /* 1694 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1695 * The data portion of the request is a dl_unitdata_req_t template for 1696 * what we would send downstream in the absence of a fastpath confirmation. 1697 */ 1698 int 1699 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1700 { 1701 struct iocblk *ioc; 1702 mblk_t *mp; 1703 1704 if (dlur_mp == NULL) 1705 return (EINVAL); 1706 1707 mutex_enter(&ill->ill_lock); 1708 switch (ill->ill_dlpi_fastpath_state) { 1709 case IDS_FAILED: 1710 /* 1711 * Driver NAKed the first fastpath ioctl - assume it doesn't 1712 * support it. 1713 */ 1714 mutex_exit(&ill->ill_lock); 1715 return (ENOTSUP); 1716 case IDS_UNKNOWN: 1717 /* This is the first probe */ 1718 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1719 break; 1720 default: 1721 break; 1722 } 1723 mutex_exit(&ill->ill_lock); 1724 1725 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1726 return (EAGAIN); 1727 1728 mp->b_cont = copyb(dlur_mp); 1729 if (mp->b_cont == NULL) { 1730 freeb(mp); 1731 return (EAGAIN); 1732 } 1733 1734 ioc = (struct iocblk *)mp->b_rptr; 1735 ioc->ioc_count = msgdsize(mp->b_cont); 1736 1737 putnext(ill->ill_wq, mp); 1738 return (0); 1739 } 1740 1741 void 1742 ill_capability_probe(ill_t *ill) 1743 { 1744 /* 1745 * Do so only if capabilities are still unknown. 1746 */ 1747 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 1748 return; 1749 1750 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1751 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1752 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1753 } 1754 1755 void 1756 ill_capability_reset(ill_t *ill) 1757 { 1758 mblk_t *sc_mp = NULL; 1759 mblk_t *tmp; 1760 1761 /* 1762 * Note here that we reset the state to UNKNOWN, and later send 1763 * down the DL_CAPABILITY_REQ without first setting the state to 1764 * INPROGRESS. We do this in order to distinguish the 1765 * DL_CAPABILITY_ACK response which may come back in response to 1766 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1767 * also handle the case where the driver doesn't send us back 1768 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1769 * requires the state to be in UNKNOWN anyway. In any case, all 1770 * features are turned off until the state reaches IDS_OK. 1771 */ 1772 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1773 ill->ill_capab_reneg = B_FALSE; 1774 1775 /* 1776 * Disable sub-capabilities and request a list of sub-capability 1777 * messages which will be sent down to the driver. Each handler 1778 * allocates the corresponding dl_capability_sub_t inside an 1779 * mblk, and links it to the existing sc_mp mblk, or return it 1780 * as sc_mp if it's the first sub-capability (the passed in 1781 * sc_mp is NULL). Upon returning from all capability handlers, 1782 * sc_mp will be pulled-up, before passing it downstream. 1783 */ 1784 ill_capability_mdt_reset(ill, &sc_mp); 1785 ill_capability_hcksum_reset(ill, &sc_mp); 1786 ill_capability_zerocopy_reset(ill, &sc_mp); 1787 ill_capability_ipsec_reset(ill, &sc_mp); 1788 ill_capability_dls_reset(ill, &sc_mp); 1789 ill_capability_lso_reset(ill, &sc_mp); 1790 1791 /* Nothing to send down in order to disable the capabilities? */ 1792 if (sc_mp == NULL) 1793 return; 1794 1795 tmp = msgpullup(sc_mp, -1); 1796 freemsg(sc_mp); 1797 if ((sc_mp = tmp) == NULL) { 1798 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1799 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1800 return; 1801 } 1802 1803 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1804 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1805 } 1806 1807 /* 1808 * Request or set new-style hardware capabilities supported by DLS provider. 1809 */ 1810 static void 1811 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1812 { 1813 mblk_t *mp; 1814 dl_capability_req_t *capb; 1815 size_t size = 0; 1816 uint8_t *ptr; 1817 1818 if (reqp != NULL) 1819 size = MBLKL(reqp); 1820 1821 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1822 if (mp == NULL) { 1823 freemsg(reqp); 1824 return; 1825 } 1826 ptr = mp->b_rptr; 1827 1828 capb = (dl_capability_req_t *)ptr; 1829 ptr += sizeof (dl_capability_req_t); 1830 1831 if (reqp != NULL) { 1832 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1833 capb->dl_sub_length = size; 1834 bcopy(reqp->b_rptr, ptr, size); 1835 ptr += size; 1836 mp->b_cont = reqp->b_cont; 1837 freeb(reqp); 1838 } 1839 ASSERT(ptr == mp->b_wptr); 1840 1841 ill_dlpi_send(ill, mp); 1842 } 1843 1844 static void 1845 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1846 { 1847 dl_capab_id_t *id_ic; 1848 uint_t sub_dl_cap = outers->dl_cap; 1849 dl_capability_sub_t *inners; 1850 uint8_t *capend; 1851 1852 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1853 1854 /* 1855 * Note: range checks here are not absolutely sufficient to 1856 * make us robust against malformed messages sent by drivers; 1857 * this is in keeping with the rest of IP's dlpi handling. 1858 * (Remember, it's coming from something else in the kernel 1859 * address space) 1860 */ 1861 1862 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1863 if (capend > mp->b_wptr) { 1864 cmn_err(CE_WARN, "ill_capability_id_ack: " 1865 "malformed sub-capability too long for mblk"); 1866 return; 1867 } 1868 1869 id_ic = (dl_capab_id_t *)(outers + 1); 1870 1871 if (outers->dl_length < sizeof (*id_ic) || 1872 (inners = &id_ic->id_subcap, 1873 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1874 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1875 "encapsulated capab type %d too long for mblk", 1876 inners->dl_cap); 1877 return; 1878 } 1879 1880 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1881 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1882 "isn't as expected; pass-thru module(s) detected, " 1883 "discarding capability\n", inners->dl_cap)); 1884 return; 1885 } 1886 1887 /* Process the encapsulated sub-capability */ 1888 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1889 } 1890 1891 /* 1892 * Process Multidata Transmit capability negotiation ack received from a 1893 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1894 * DL_CAPABILITY_ACK message. 1895 */ 1896 static void 1897 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1898 { 1899 mblk_t *nmp = NULL; 1900 dl_capability_req_t *oc; 1901 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1902 ill_mdt_capab_t **ill_mdt_capab; 1903 uint_t sub_dl_cap = isub->dl_cap; 1904 uint8_t *capend; 1905 1906 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1907 1908 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1909 1910 /* 1911 * Note: range checks here are not absolutely sufficient to 1912 * make us robust against malformed messages sent by drivers; 1913 * this is in keeping with the rest of IP's dlpi handling. 1914 * (Remember, it's coming from something else in the kernel 1915 * address space) 1916 */ 1917 1918 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1919 if (capend > mp->b_wptr) { 1920 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1921 "malformed sub-capability too long for mblk"); 1922 return; 1923 } 1924 1925 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1926 1927 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1928 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1929 "unsupported MDT sub-capability (version %d, expected %d)", 1930 mdt_ic->mdt_version, MDT_VERSION_2); 1931 return; 1932 } 1933 1934 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1935 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1936 "capability isn't as expected; pass-thru module(s) " 1937 "detected, discarding capability\n")); 1938 return; 1939 } 1940 1941 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1942 1943 if (*ill_mdt_capab == NULL) { 1944 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1945 KM_NOSLEEP); 1946 1947 if (*ill_mdt_capab == NULL) { 1948 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1949 "could not enable MDT version %d " 1950 "for %s (ENOMEM)\n", MDT_VERSION_2, 1951 ill->ill_name); 1952 return; 1953 } 1954 } 1955 1956 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1957 "MDT version %d (%d bytes leading, %d bytes trailing " 1958 "header spaces, %d max pld bufs, %d span limit)\n", 1959 ill->ill_name, MDT_VERSION_2, 1960 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1961 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1962 1963 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1964 (*ill_mdt_capab)->ill_mdt_on = 1; 1965 /* 1966 * Round the following values to the nearest 32-bit; ULP 1967 * may further adjust them to accomodate for additional 1968 * protocol headers. We pass these values to ULP during 1969 * bind time. 1970 */ 1971 (*ill_mdt_capab)->ill_mdt_hdr_head = 1972 roundup(mdt_ic->mdt_hdr_head, 4); 1973 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1974 roundup(mdt_ic->mdt_hdr_tail, 4); 1975 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1976 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1977 1978 ill->ill_capabilities |= ILL_CAPAB_MDT; 1979 } else { 1980 uint_t size; 1981 uchar_t *rptr; 1982 1983 size = sizeof (dl_capability_req_t) + 1984 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1985 1986 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1987 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1988 "could not enable MDT for %s (ENOMEM)\n", 1989 ill->ill_name); 1990 return; 1991 } 1992 1993 rptr = nmp->b_rptr; 1994 /* initialize dl_capability_req_t */ 1995 oc = (dl_capability_req_t *)nmp->b_rptr; 1996 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1997 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1998 sizeof (dl_capab_mdt_t); 1999 nmp->b_rptr += sizeof (dl_capability_req_t); 2000 2001 /* initialize dl_capability_sub_t */ 2002 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2003 nmp->b_rptr += sizeof (*isub); 2004 2005 /* initialize dl_capab_mdt_t */ 2006 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2007 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2008 2009 nmp->b_rptr = rptr; 2010 2011 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2012 "to enable MDT version %d\n", ill->ill_name, 2013 MDT_VERSION_2)); 2014 2015 /* set ENABLE flag */ 2016 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2017 2018 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2019 ill_dlpi_send(ill, nmp); 2020 } 2021 } 2022 2023 static void 2024 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2025 { 2026 mblk_t *mp; 2027 dl_capab_mdt_t *mdt_subcap; 2028 dl_capability_sub_t *dl_subcap; 2029 int size; 2030 2031 if (!ILL_MDT_CAPABLE(ill)) 2032 return; 2033 2034 ASSERT(ill->ill_mdt_capab != NULL); 2035 /* 2036 * Clear the capability flag for MDT but retain the ill_mdt_capab 2037 * structure since it's possible that another thread is still 2038 * referring to it. The structure only gets deallocated when 2039 * we destroy the ill. 2040 */ 2041 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2042 2043 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2044 2045 mp = allocb(size, BPRI_HI); 2046 if (mp == NULL) { 2047 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2048 "request to disable MDT\n")); 2049 return; 2050 } 2051 2052 mp->b_wptr = mp->b_rptr + size; 2053 2054 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2055 dl_subcap->dl_cap = DL_CAPAB_MDT; 2056 dl_subcap->dl_length = sizeof (*mdt_subcap); 2057 2058 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2059 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2060 mdt_subcap->mdt_flags = 0; 2061 mdt_subcap->mdt_hdr_head = 0; 2062 mdt_subcap->mdt_hdr_tail = 0; 2063 2064 if (*sc_mp != NULL) 2065 linkb(*sc_mp, mp); 2066 else 2067 *sc_mp = mp; 2068 } 2069 2070 /* 2071 * Send a DL_NOTIFY_REQ to the specified ill to enable 2072 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2073 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2074 * acceleration. 2075 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2076 */ 2077 static boolean_t 2078 ill_enable_promisc_notify(ill_t *ill) 2079 { 2080 mblk_t *mp; 2081 dl_notify_req_t *req; 2082 2083 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2084 2085 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2086 if (mp == NULL) 2087 return (B_FALSE); 2088 2089 req = (dl_notify_req_t *)mp->b_rptr; 2090 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2091 DL_NOTE_PROMISC_OFF_PHYS; 2092 2093 ill_dlpi_send(ill, mp); 2094 2095 return (B_TRUE); 2096 } 2097 2098 2099 /* 2100 * Allocate an IPsec capability request which will be filled by our 2101 * caller to turn on support for one or more algorithms. 2102 */ 2103 static mblk_t * 2104 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2105 { 2106 mblk_t *nmp; 2107 dl_capability_req_t *ocap; 2108 dl_capab_ipsec_t *ocip; 2109 dl_capab_ipsec_t *icip; 2110 uint8_t *ptr; 2111 icip = (dl_capab_ipsec_t *)(isub + 1); 2112 2113 /* 2114 * The first time around, we send a DL_NOTIFY_REQ to enable 2115 * PROMISC_ON/OFF notification from the provider. We need to 2116 * do this before enabling the algorithms to avoid leakage of 2117 * cleartext packets. 2118 */ 2119 2120 if (!ill_enable_promisc_notify(ill)) 2121 return (NULL); 2122 2123 /* 2124 * Allocate new mblk which will contain a new capability 2125 * request to enable the capabilities. 2126 */ 2127 2128 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2129 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2130 if (nmp == NULL) 2131 return (NULL); 2132 2133 ptr = nmp->b_rptr; 2134 2135 /* initialize dl_capability_req_t */ 2136 ocap = (dl_capability_req_t *)ptr; 2137 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2138 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2139 ptr += sizeof (dl_capability_req_t); 2140 2141 /* initialize dl_capability_sub_t */ 2142 bcopy(isub, ptr, sizeof (*isub)); 2143 ptr += sizeof (*isub); 2144 2145 /* initialize dl_capab_ipsec_t */ 2146 ocip = (dl_capab_ipsec_t *)ptr; 2147 bcopy(icip, ocip, sizeof (*icip)); 2148 2149 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2150 return (nmp); 2151 } 2152 2153 /* 2154 * Process an IPsec capability negotiation ack received from a DLS Provider. 2155 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2156 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2157 */ 2158 static void 2159 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2160 { 2161 dl_capab_ipsec_t *icip; 2162 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2163 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2164 uint_t cipher, nciphers; 2165 mblk_t *nmp; 2166 uint_t alg_len; 2167 boolean_t need_sadb_dump; 2168 uint_t sub_dl_cap = isub->dl_cap; 2169 ill_ipsec_capab_t **ill_capab; 2170 uint64_t ill_capab_flag; 2171 uint8_t *capend, *ciphend; 2172 boolean_t sadb_resync; 2173 2174 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2175 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2176 2177 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2178 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2179 ill_capab_flag = ILL_CAPAB_AH; 2180 } else { 2181 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2182 ill_capab_flag = ILL_CAPAB_ESP; 2183 } 2184 2185 /* 2186 * If the ill capability structure exists, then this incoming 2187 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2188 * If this is so, then we'd need to resynchronize the SADB 2189 * after re-enabling the offloaded ciphers. 2190 */ 2191 sadb_resync = (*ill_capab != NULL); 2192 2193 /* 2194 * Note: range checks here are not absolutely sufficient to 2195 * make us robust against malformed messages sent by drivers; 2196 * this is in keeping with the rest of IP's dlpi handling. 2197 * (Remember, it's coming from something else in the kernel 2198 * address space) 2199 */ 2200 2201 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2202 if (capend > mp->b_wptr) { 2203 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2204 "malformed sub-capability too long for mblk"); 2205 return; 2206 } 2207 2208 /* 2209 * There are two types of acks we process here: 2210 * 1. acks in reply to a (first form) generic capability req 2211 * (no ENABLE flag set) 2212 * 2. acks in reply to a ENABLE capability req. 2213 * (ENABLE flag set) 2214 * 2215 * We process the subcapability passed as argument as follows: 2216 * 1 do initializations 2217 * 1.1 initialize nmp = NULL 2218 * 1.2 set need_sadb_dump to B_FALSE 2219 * 2 for each cipher in subcapability: 2220 * 2.1 if ENABLE flag is set: 2221 * 2.1.1 update per-ill ipsec capabilities info 2222 * 2.1.2 set need_sadb_dump to B_TRUE 2223 * 2.2 if ENABLE flag is not set: 2224 * 2.2.1 if nmp is NULL: 2225 * 2.2.1.1 allocate and initialize nmp 2226 * 2.2.1.2 init current pos in nmp 2227 * 2.2.2 copy current cipher to current pos in nmp 2228 * 2.2.3 set ENABLE flag in nmp 2229 * 2.2.4 update current pos 2230 * 3 if nmp is not equal to NULL, send enable request 2231 * 3.1 send capability request 2232 * 4 if need_sadb_dump is B_TRUE 2233 * 4.1 enable promiscuous on/off notifications 2234 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2235 * AH or ESP SA's to interface. 2236 */ 2237 2238 nmp = NULL; 2239 oalg = NULL; 2240 need_sadb_dump = B_FALSE; 2241 icip = (dl_capab_ipsec_t *)(isub + 1); 2242 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2243 2244 nciphers = icip->cip_nciphers; 2245 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2246 2247 if (ciphend > capend) { 2248 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2249 "too many ciphers for sub-capability len"); 2250 return; 2251 } 2252 2253 for (cipher = 0; cipher < nciphers; cipher++) { 2254 alg_len = sizeof (dl_capab_ipsec_alg_t); 2255 2256 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2257 /* 2258 * TBD: when we provide a way to disable capabilities 2259 * from above, need to manage the request-pending state 2260 * and fail if we were not expecting this ACK. 2261 */ 2262 IPSECHW_DEBUG(IPSECHW_CAPAB, 2263 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2264 2265 /* 2266 * Update IPsec capabilities for this ill 2267 */ 2268 2269 if (*ill_capab == NULL) { 2270 IPSECHW_DEBUG(IPSECHW_CAPAB, 2271 ("ill_capability_ipsec_ack: " 2272 "allocating ipsec_capab for ill\n")); 2273 *ill_capab = ill_ipsec_capab_alloc(); 2274 2275 if (*ill_capab == NULL) { 2276 cmn_err(CE_WARN, 2277 "ill_capability_ipsec_ack: " 2278 "could not enable IPsec Hardware " 2279 "acceleration for %s (ENOMEM)\n", 2280 ill->ill_name); 2281 return; 2282 } 2283 } 2284 2285 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2286 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2287 2288 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2289 cmn_err(CE_WARN, 2290 "ill_capability_ipsec_ack: " 2291 "malformed IPsec algorithm id %d", 2292 ialg->alg_prim); 2293 continue; 2294 } 2295 2296 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2297 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2298 ialg->alg_prim); 2299 } else { 2300 ipsec_capab_algparm_t *alp; 2301 2302 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2303 ialg->alg_prim); 2304 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2305 ialg->alg_prim)) { 2306 cmn_err(CE_WARN, 2307 "ill_capability_ipsec_ack: " 2308 "no space for IPsec alg id %d", 2309 ialg->alg_prim); 2310 continue; 2311 } 2312 alp = &((*ill_capab)->encr_algparm[ 2313 ialg->alg_prim]); 2314 alp->minkeylen = ialg->alg_minbits; 2315 alp->maxkeylen = ialg->alg_maxbits; 2316 } 2317 ill->ill_capabilities |= ill_capab_flag; 2318 /* 2319 * indicate that a capability was enabled, which 2320 * will be used below to kick off a SADB dump 2321 * to the ill. 2322 */ 2323 need_sadb_dump = B_TRUE; 2324 } else { 2325 IPSECHW_DEBUG(IPSECHW_CAPAB, 2326 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2327 ialg->alg_prim)); 2328 2329 if (nmp == NULL) { 2330 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2331 if (nmp == NULL) { 2332 /* 2333 * Sending the PROMISC_ON/OFF 2334 * notification request failed. 2335 * We cannot enable the algorithms 2336 * since the Provider will not 2337 * notify IP of promiscous mode 2338 * changes, which could lead 2339 * to leakage of packets. 2340 */ 2341 cmn_err(CE_WARN, 2342 "ill_capability_ipsec_ack: " 2343 "could not enable IPsec Hardware " 2344 "acceleration for %s (ENOMEM)\n", 2345 ill->ill_name); 2346 return; 2347 } 2348 /* ptr to current output alg specifier */ 2349 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2350 } 2351 2352 /* 2353 * Copy current alg specifier, set ENABLE 2354 * flag, and advance to next output alg. 2355 * For now we enable all IPsec capabilities. 2356 */ 2357 ASSERT(oalg != NULL); 2358 bcopy(ialg, oalg, alg_len); 2359 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2360 nmp->b_wptr += alg_len; 2361 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2362 } 2363 2364 /* move to next input algorithm specifier */ 2365 ialg = (dl_capab_ipsec_alg_t *) 2366 ((char *)ialg + alg_len); 2367 } 2368 2369 if (nmp != NULL) 2370 /* 2371 * nmp points to a DL_CAPABILITY_REQ message to enable 2372 * IPsec hardware acceleration. 2373 */ 2374 ill_dlpi_send(ill, nmp); 2375 2376 if (need_sadb_dump) 2377 /* 2378 * An acknowledgement corresponding to a request to 2379 * enable acceleration was received, notify SADB. 2380 */ 2381 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2382 } 2383 2384 /* 2385 * Given an mblk with enough space in it, create sub-capability entries for 2386 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2387 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2388 * in preparation for the reset the DL_CAPABILITY_REQ message. 2389 */ 2390 static void 2391 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2392 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2393 { 2394 dl_capab_ipsec_t *oipsec; 2395 dl_capab_ipsec_alg_t *oalg; 2396 dl_capability_sub_t *dl_subcap; 2397 int i, k; 2398 2399 ASSERT(nciphers > 0); 2400 ASSERT(ill_cap != NULL); 2401 ASSERT(mp != NULL); 2402 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2403 2404 /* dl_capability_sub_t for "stype" */ 2405 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2406 dl_subcap->dl_cap = stype; 2407 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2408 mp->b_wptr += sizeof (dl_capability_sub_t); 2409 2410 /* dl_capab_ipsec_t for "stype" */ 2411 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2412 oipsec->cip_version = 1; 2413 oipsec->cip_nciphers = nciphers; 2414 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2415 2416 /* create entries for "stype" AUTH ciphers */ 2417 for (i = 0; i < ill_cap->algs_size; i++) { 2418 for (k = 0; k < BITSPERBYTE; k++) { 2419 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2420 continue; 2421 2422 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2423 bzero((void *)oalg, sizeof (*oalg)); 2424 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2425 oalg->alg_prim = k + (BITSPERBYTE * i); 2426 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2427 } 2428 } 2429 /* create entries for "stype" ENCR ciphers */ 2430 for (i = 0; i < ill_cap->algs_size; i++) { 2431 for (k = 0; k < BITSPERBYTE; k++) { 2432 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2433 continue; 2434 2435 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2436 bzero((void *)oalg, sizeof (*oalg)); 2437 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2438 oalg->alg_prim = k + (BITSPERBYTE * i); 2439 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2440 } 2441 } 2442 } 2443 2444 /* 2445 * Macro to count number of 1s in a byte (8-bit word). The total count is 2446 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2447 * POPC instruction, but our macro is more flexible for an arbitrary length 2448 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2449 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2450 * stays that way, we can reduce the number of iterations required. 2451 */ 2452 #define COUNT_1S(val, sum) { \ 2453 uint8_t x = val & 0xff; \ 2454 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2455 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2456 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2457 } 2458 2459 /* ARGSUSED */ 2460 static void 2461 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2462 { 2463 mblk_t *mp; 2464 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2465 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2466 uint64_t ill_capabilities = ill->ill_capabilities; 2467 int ah_cnt = 0, esp_cnt = 0; 2468 int ah_len = 0, esp_len = 0; 2469 int i, size = 0; 2470 2471 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2472 return; 2473 2474 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2475 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2476 2477 /* Find out the number of ciphers for AH */ 2478 if (cap_ah != NULL) { 2479 for (i = 0; i < cap_ah->algs_size; i++) { 2480 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2481 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2482 } 2483 if (ah_cnt > 0) { 2484 size += sizeof (dl_capability_sub_t) + 2485 sizeof (dl_capab_ipsec_t); 2486 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2487 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2488 size += ah_len; 2489 } 2490 } 2491 2492 /* Find out the number of ciphers for ESP */ 2493 if (cap_esp != NULL) { 2494 for (i = 0; i < cap_esp->algs_size; i++) { 2495 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2496 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2497 } 2498 if (esp_cnt > 0) { 2499 size += sizeof (dl_capability_sub_t) + 2500 sizeof (dl_capab_ipsec_t); 2501 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2502 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2503 size += esp_len; 2504 } 2505 } 2506 2507 if (size == 0) { 2508 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2509 "there's nothing to reset\n")); 2510 return; 2511 } 2512 2513 mp = allocb(size, BPRI_HI); 2514 if (mp == NULL) { 2515 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2516 "request to disable IPSEC Hardware Acceleration\n")); 2517 return; 2518 } 2519 2520 /* 2521 * Clear the capability flags for IPsec HA but retain the ill 2522 * capability structures since it's possible that another thread 2523 * is still referring to them. The structures only get deallocated 2524 * when we destroy the ill. 2525 * 2526 * Various places check the flags to see if the ill is capable of 2527 * hardware acceleration, and by clearing them we ensure that new 2528 * outbound IPsec packets are sent down encrypted. 2529 */ 2530 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2531 2532 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2533 if (ah_cnt > 0) { 2534 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2535 cap_ah, mp); 2536 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2537 } 2538 2539 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2540 if (esp_cnt > 0) { 2541 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2542 cap_esp, mp); 2543 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2544 } 2545 2546 /* 2547 * At this point we've composed a bunch of sub-capabilities to be 2548 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2549 * by the caller. Upon receiving this reset message, the driver 2550 * must stop inbound decryption (by destroying all inbound SAs) 2551 * and let the corresponding packets come in encrypted. 2552 */ 2553 2554 if (*sc_mp != NULL) 2555 linkb(*sc_mp, mp); 2556 else 2557 *sc_mp = mp; 2558 } 2559 2560 static void 2561 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2562 boolean_t encapsulated) 2563 { 2564 boolean_t legacy = B_FALSE; 2565 2566 /* 2567 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2568 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2569 * instructed the driver to disable its advertised capabilities, 2570 * so there's no point in accepting any response at this moment. 2571 */ 2572 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2573 return; 2574 2575 /* 2576 * Note that only the following two sub-capabilities may be 2577 * considered as "legacy", since their original definitions 2578 * do not incorporate the dl_mid_t module ID token, and hence 2579 * may require the use of the wrapper sub-capability. 2580 */ 2581 switch (subp->dl_cap) { 2582 case DL_CAPAB_IPSEC_AH: 2583 case DL_CAPAB_IPSEC_ESP: 2584 legacy = B_TRUE; 2585 break; 2586 } 2587 2588 /* 2589 * For legacy sub-capabilities which don't incorporate a queue_t 2590 * pointer in their structures, discard them if we detect that 2591 * there are intermediate modules in between IP and the driver. 2592 */ 2593 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2594 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2595 "%d discarded; %d module(s) present below IP\n", 2596 subp->dl_cap, ill->ill_lmod_cnt)); 2597 return; 2598 } 2599 2600 switch (subp->dl_cap) { 2601 case DL_CAPAB_IPSEC_AH: 2602 case DL_CAPAB_IPSEC_ESP: 2603 ill_capability_ipsec_ack(ill, mp, subp); 2604 break; 2605 case DL_CAPAB_MDT: 2606 ill_capability_mdt_ack(ill, mp, subp); 2607 break; 2608 case DL_CAPAB_HCKSUM: 2609 ill_capability_hcksum_ack(ill, mp, subp); 2610 break; 2611 case DL_CAPAB_ZEROCOPY: 2612 ill_capability_zerocopy_ack(ill, mp, subp); 2613 break; 2614 case DL_CAPAB_POLL: 2615 if (!SOFT_RINGS_ENABLED()) 2616 ill_capability_dls_ack(ill, mp, subp); 2617 break; 2618 case DL_CAPAB_SOFT_RING: 2619 if (SOFT_RINGS_ENABLED()) 2620 ill_capability_dls_ack(ill, mp, subp); 2621 break; 2622 case DL_CAPAB_LSO: 2623 ill_capability_lso_ack(ill, mp, subp); 2624 break; 2625 default: 2626 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2627 subp->dl_cap)); 2628 } 2629 } 2630 2631 /* 2632 * As part of negotiating polling capability, the driver tells us 2633 * the default (or normal) blanking interval and packet threshold 2634 * (the receive timer fires if blanking interval is reached or 2635 * the packet threshold is reached). 2636 * 2637 * As part of manipulating the polling interval, we always use our 2638 * estimated interval (avg service time * number of packets queued 2639 * on the squeue) but we try to blank for a minimum of 2640 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2641 * packet threshold during this time. When we are not in polling mode 2642 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2643 * rr_min_blank_ratio but up the packet cnt by a ratio of 2644 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2645 * possible although for a shorter interval. 2646 */ 2647 #define RR_MAX_BLANK_RATIO 20 2648 #define RR_MIN_BLANK_RATIO 10 2649 #define RR_MAX_PKT_CNT_RATIO 3 2650 #define RR_MIN_PKT_CNT_RATIO 3 2651 2652 /* 2653 * These can be tuned via /etc/system. 2654 */ 2655 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2656 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2657 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2658 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2659 2660 static mac_resource_handle_t 2661 ill_ring_add(void *arg, mac_resource_t *mrp) 2662 { 2663 ill_t *ill = (ill_t *)arg; 2664 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2665 ill_rx_ring_t *rx_ring; 2666 int ip_rx_index; 2667 2668 ASSERT(mrp != NULL); 2669 if (mrp->mr_type != MAC_RX_FIFO) { 2670 return (NULL); 2671 } 2672 ASSERT(ill != NULL); 2673 ASSERT(ill->ill_dls_capab != NULL); 2674 2675 mutex_enter(&ill->ill_lock); 2676 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2677 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2678 ASSERT(rx_ring != NULL); 2679 2680 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2681 time_t normal_blank_time = 2682 mrfp->mrf_normal_blank_time; 2683 uint_t normal_pkt_cnt = 2684 mrfp->mrf_normal_pkt_count; 2685 2686 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2687 2688 rx_ring->rr_blank = mrfp->mrf_blank; 2689 rx_ring->rr_handle = mrfp->mrf_arg; 2690 rx_ring->rr_ill = ill; 2691 rx_ring->rr_normal_blank_time = normal_blank_time; 2692 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2693 2694 rx_ring->rr_max_blank_time = 2695 normal_blank_time * rr_max_blank_ratio; 2696 rx_ring->rr_min_blank_time = 2697 normal_blank_time * rr_min_blank_ratio; 2698 rx_ring->rr_max_pkt_cnt = 2699 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2700 rx_ring->rr_min_pkt_cnt = 2701 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2702 2703 rx_ring->rr_ring_state = ILL_RING_INUSE; 2704 mutex_exit(&ill->ill_lock); 2705 2706 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2707 (int), ip_rx_index); 2708 return ((mac_resource_handle_t)rx_ring); 2709 } 2710 } 2711 2712 /* 2713 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2714 * we have devices which can overwhelm this limit, ILL_MAX_RING 2715 * should be made configurable. Meanwhile it cause no panic because 2716 * driver will pass ip_input a NULL handle which will make 2717 * IP allocate the default squeue and Polling mode will not 2718 * be used for this ring. 2719 */ 2720 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2721 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2722 2723 mutex_exit(&ill->ill_lock); 2724 return (NULL); 2725 } 2726 2727 static boolean_t 2728 ill_capability_dls_init(ill_t *ill) 2729 { 2730 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2731 conn_t *connp; 2732 size_t sz; 2733 ip_stack_t *ipst = ill->ill_ipst; 2734 2735 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2736 if (ill_dls == NULL) { 2737 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2738 "soft_ring enabled for ill=%s (%p) but data " 2739 "structs uninitialized\n", ill->ill_name, 2740 (void *)ill); 2741 } 2742 return (B_TRUE); 2743 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2744 if (ill_dls == NULL) { 2745 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2746 "polling enabled for ill=%s (%p) but data " 2747 "structs uninitialized\n", ill->ill_name, 2748 (void *)ill); 2749 } 2750 return (B_TRUE); 2751 } 2752 2753 if (ill_dls != NULL) { 2754 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2755 /* Soft_Ring or polling is being re-enabled */ 2756 2757 connp = ill_dls->ill_unbind_conn; 2758 ASSERT(rx_ring != NULL); 2759 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2760 bzero((void *)rx_ring, 2761 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2762 ill_dls->ill_ring_tbl = rx_ring; 2763 ill_dls->ill_unbind_conn = connp; 2764 return (B_TRUE); 2765 } 2766 2767 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2768 ipst->ips_netstack)) == NULL) 2769 return (B_FALSE); 2770 2771 sz = sizeof (ill_dls_capab_t); 2772 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2773 2774 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2775 if (ill_dls == NULL) { 2776 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2777 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2778 (void *)ill); 2779 CONN_DEC_REF(connp); 2780 return (B_FALSE); 2781 } 2782 2783 /* Allocate space to hold ring table */ 2784 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2785 ill->ill_dls_capab = ill_dls; 2786 ill_dls->ill_unbind_conn = connp; 2787 return (B_TRUE); 2788 } 2789 2790 /* 2791 * ill_capability_dls_disable: disable soft_ring and/or polling 2792 * capability. Since any of the rings might already be in use, need 2793 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2794 * direct calls if necessary. 2795 */ 2796 static void 2797 ill_capability_dls_disable(ill_t *ill) 2798 { 2799 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2800 2801 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2802 ip_squeue_clean_all(ill); 2803 ill_dls->ill_tx = NULL; 2804 ill_dls->ill_tx_handle = NULL; 2805 ill_dls->ill_dls_change_status = NULL; 2806 ill_dls->ill_dls_bind = NULL; 2807 ill_dls->ill_dls_unbind = NULL; 2808 } 2809 2810 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2811 } 2812 2813 static void 2814 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2815 dl_capability_sub_t *isub) 2816 { 2817 uint_t size; 2818 uchar_t *rptr; 2819 dl_capab_dls_t dls, *odls; 2820 ill_dls_capab_t *ill_dls; 2821 mblk_t *nmp = NULL; 2822 dl_capability_req_t *ocap; 2823 uint_t sub_dl_cap = isub->dl_cap; 2824 2825 if (!ill_capability_dls_init(ill)) 2826 return; 2827 ill_dls = ill->ill_dls_capab; 2828 2829 /* Copy locally to get the members aligned */ 2830 bcopy((void *)idls, (void *)&dls, 2831 sizeof (dl_capab_dls_t)); 2832 2833 /* Get the tx function and handle from dld */ 2834 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2835 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2836 2837 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2838 ill_dls->ill_dls_change_status = 2839 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2840 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2841 ill_dls->ill_dls_unbind = 2842 (ip_dls_unbind_t)dls.dls_ring_unbind; 2843 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2844 } 2845 2846 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2847 isub->dl_length; 2848 2849 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2850 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2851 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2852 ill->ill_name, (void *)ill); 2853 return; 2854 } 2855 2856 /* initialize dl_capability_req_t */ 2857 rptr = nmp->b_rptr; 2858 ocap = (dl_capability_req_t *)rptr; 2859 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2860 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2861 rptr += sizeof (dl_capability_req_t); 2862 2863 /* initialize dl_capability_sub_t */ 2864 bcopy(isub, rptr, sizeof (*isub)); 2865 rptr += sizeof (*isub); 2866 2867 odls = (dl_capab_dls_t *)rptr; 2868 rptr += sizeof (dl_capab_dls_t); 2869 2870 /* initialize dl_capab_dls_t to be sent down */ 2871 dls.dls_rx_handle = (uintptr_t)ill; 2872 dls.dls_rx = (uintptr_t)ip_input; 2873 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2874 2875 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2876 dls.dls_ring_cnt = ip_soft_rings_cnt; 2877 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2878 dls.dls_flags = SOFT_RING_ENABLE; 2879 } else { 2880 dls.dls_flags = POLL_ENABLE; 2881 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2882 "to enable polling\n", ill->ill_name)); 2883 } 2884 bcopy((void *)&dls, (void *)odls, 2885 sizeof (dl_capab_dls_t)); 2886 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2887 /* 2888 * nmp points to a DL_CAPABILITY_REQ message to 2889 * enable either soft_ring or polling 2890 */ 2891 ill_dlpi_send(ill, nmp); 2892 } 2893 2894 static void 2895 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2896 { 2897 mblk_t *mp; 2898 dl_capab_dls_t *idls; 2899 dl_capability_sub_t *dl_subcap; 2900 int size; 2901 2902 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2903 return; 2904 2905 ASSERT(ill->ill_dls_capab != NULL); 2906 2907 size = sizeof (*dl_subcap) + sizeof (*idls); 2908 2909 mp = allocb(size, BPRI_HI); 2910 if (mp == NULL) { 2911 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2912 "request to disable soft_ring\n")); 2913 return; 2914 } 2915 2916 mp->b_wptr = mp->b_rptr + size; 2917 2918 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2919 dl_subcap->dl_length = sizeof (*idls); 2920 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2921 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2922 else 2923 dl_subcap->dl_cap = DL_CAPAB_POLL; 2924 2925 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2926 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2927 idls->dls_flags = SOFT_RING_DISABLE; 2928 else 2929 idls->dls_flags = POLL_DISABLE; 2930 2931 if (*sc_mp != NULL) 2932 linkb(*sc_mp, mp); 2933 else 2934 *sc_mp = mp; 2935 } 2936 2937 /* 2938 * Process a soft_ring/poll capability negotiation ack received 2939 * from a DLS Provider.isub must point to the sub-capability 2940 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2941 */ 2942 static void 2943 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2944 { 2945 dl_capab_dls_t *idls; 2946 uint_t sub_dl_cap = isub->dl_cap; 2947 uint8_t *capend; 2948 2949 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2950 sub_dl_cap == DL_CAPAB_POLL); 2951 2952 if (ill->ill_isv6) 2953 return; 2954 2955 /* 2956 * Note: range checks here are not absolutely sufficient to 2957 * make us robust against malformed messages sent by drivers; 2958 * this is in keeping with the rest of IP's dlpi handling. 2959 * (Remember, it's coming from something else in the kernel 2960 * address space) 2961 */ 2962 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2963 if (capend > mp->b_wptr) { 2964 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2965 "malformed sub-capability too long for mblk"); 2966 return; 2967 } 2968 2969 /* 2970 * There are two types of acks we process here: 2971 * 1. acks in reply to a (first form) generic capability req 2972 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2973 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2974 * capability req. 2975 */ 2976 idls = (dl_capab_dls_t *)(isub + 1); 2977 2978 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2979 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2980 "capability isn't as expected; pass-thru " 2981 "module(s) detected, discarding capability\n")); 2982 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2983 /* 2984 * This is a capability renegotitation case. 2985 * The interface better be unusable at this 2986 * point other wise bad things will happen 2987 * if we disable direct calls on a running 2988 * and up interface. 2989 */ 2990 ill_capability_dls_disable(ill); 2991 } 2992 return; 2993 } 2994 2995 switch (idls->dls_flags) { 2996 default: 2997 /* Disable if unknown flag */ 2998 case SOFT_RING_DISABLE: 2999 case POLL_DISABLE: 3000 ill_capability_dls_disable(ill); 3001 break; 3002 case SOFT_RING_CAPABLE: 3003 case POLL_CAPABLE: 3004 /* 3005 * If the capability was already enabled, its safe 3006 * to disable it first to get rid of stale information 3007 * and then start enabling it again. 3008 */ 3009 ill_capability_dls_disable(ill); 3010 ill_capability_dls_capable(ill, idls, isub); 3011 break; 3012 case SOFT_RING_ENABLE: 3013 case POLL_ENABLE: 3014 mutex_enter(&ill->ill_lock); 3015 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3016 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3017 ASSERT(ill->ill_dls_capab != NULL); 3018 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3019 } 3020 if (sub_dl_cap == DL_CAPAB_POLL && 3021 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3022 ASSERT(ill->ill_dls_capab != NULL); 3023 ill->ill_capabilities |= ILL_CAPAB_POLL; 3024 ip1dbg(("ill_capability_dls_ack: interface %s " 3025 "has enabled polling\n", ill->ill_name)); 3026 } 3027 mutex_exit(&ill->ill_lock); 3028 break; 3029 } 3030 } 3031 3032 /* 3033 * Process a hardware checksum offload capability negotiation ack received 3034 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3035 * of a DL_CAPABILITY_ACK message. 3036 */ 3037 static void 3038 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3039 { 3040 dl_capability_req_t *ocap; 3041 dl_capab_hcksum_t *ihck, *ohck; 3042 ill_hcksum_capab_t **ill_hcksum; 3043 mblk_t *nmp = NULL; 3044 uint_t sub_dl_cap = isub->dl_cap; 3045 uint8_t *capend; 3046 3047 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3048 3049 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3050 3051 /* 3052 * Note: range checks here are not absolutely sufficient to 3053 * make us robust against malformed messages sent by drivers; 3054 * this is in keeping with the rest of IP's dlpi handling. 3055 * (Remember, it's coming from something else in the kernel 3056 * address space) 3057 */ 3058 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3059 if (capend > mp->b_wptr) { 3060 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3061 "malformed sub-capability too long for mblk"); 3062 return; 3063 } 3064 3065 /* 3066 * There are two types of acks we process here: 3067 * 1. acks in reply to a (first form) generic capability req 3068 * (no ENABLE flag set) 3069 * 2. acks in reply to a ENABLE capability req. 3070 * (ENABLE flag set) 3071 */ 3072 ihck = (dl_capab_hcksum_t *)(isub + 1); 3073 3074 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3075 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3076 "unsupported hardware checksum " 3077 "sub-capability (version %d, expected %d)", 3078 ihck->hcksum_version, HCKSUM_VERSION_1); 3079 return; 3080 } 3081 3082 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3083 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3084 "checksum capability isn't as expected; pass-thru " 3085 "module(s) detected, discarding capability\n")); 3086 return; 3087 } 3088 3089 #define CURR_HCKSUM_CAPAB \ 3090 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3091 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3092 3093 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3094 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3095 /* do ENABLE processing */ 3096 if (*ill_hcksum == NULL) { 3097 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3098 KM_NOSLEEP); 3099 3100 if (*ill_hcksum == NULL) { 3101 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3102 "could not enable hcksum version %d " 3103 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3104 ill->ill_name); 3105 return; 3106 } 3107 } 3108 3109 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3110 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3111 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3112 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3113 "has enabled hardware checksumming\n ", 3114 ill->ill_name)); 3115 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3116 /* 3117 * Enabling hardware checksum offload 3118 * Currently IP supports {TCP,UDP}/IPv4 3119 * partial and full cksum offload and 3120 * IPv4 header checksum offload. 3121 * Allocate new mblk which will 3122 * contain a new capability request 3123 * to enable hardware checksum offload. 3124 */ 3125 uint_t size; 3126 uchar_t *rptr; 3127 3128 size = sizeof (dl_capability_req_t) + 3129 sizeof (dl_capability_sub_t) + isub->dl_length; 3130 3131 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3132 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3133 "could not enable hardware cksum for %s (ENOMEM)\n", 3134 ill->ill_name); 3135 return; 3136 } 3137 3138 rptr = nmp->b_rptr; 3139 /* initialize dl_capability_req_t */ 3140 ocap = (dl_capability_req_t *)nmp->b_rptr; 3141 ocap->dl_sub_offset = 3142 sizeof (dl_capability_req_t); 3143 ocap->dl_sub_length = 3144 sizeof (dl_capability_sub_t) + 3145 isub->dl_length; 3146 nmp->b_rptr += sizeof (dl_capability_req_t); 3147 3148 /* initialize dl_capability_sub_t */ 3149 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3150 nmp->b_rptr += sizeof (*isub); 3151 3152 /* initialize dl_capab_hcksum_t */ 3153 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3154 bcopy(ihck, ohck, sizeof (*ihck)); 3155 3156 nmp->b_rptr = rptr; 3157 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3158 3159 /* Set ENABLE flag */ 3160 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3161 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3162 3163 /* 3164 * nmp points to a DL_CAPABILITY_REQ message to enable 3165 * hardware checksum acceleration. 3166 */ 3167 ill_dlpi_send(ill, nmp); 3168 } else { 3169 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3170 "advertised %x hardware checksum capability flags\n", 3171 ill->ill_name, ihck->hcksum_txflags)); 3172 } 3173 } 3174 3175 static void 3176 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3177 { 3178 mblk_t *mp; 3179 dl_capab_hcksum_t *hck_subcap; 3180 dl_capability_sub_t *dl_subcap; 3181 int size; 3182 3183 if (!ILL_HCKSUM_CAPABLE(ill)) 3184 return; 3185 3186 ASSERT(ill->ill_hcksum_capab != NULL); 3187 /* 3188 * Clear the capability flag for hardware checksum offload but 3189 * retain the ill_hcksum_capab structure since it's possible that 3190 * another thread is still referring to it. The structure only 3191 * gets deallocated when we destroy the ill. 3192 */ 3193 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3194 3195 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3196 3197 mp = allocb(size, BPRI_HI); 3198 if (mp == NULL) { 3199 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3200 "request to disable hardware checksum offload\n")); 3201 return; 3202 } 3203 3204 mp->b_wptr = mp->b_rptr + size; 3205 3206 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3207 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3208 dl_subcap->dl_length = sizeof (*hck_subcap); 3209 3210 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3211 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3212 hck_subcap->hcksum_txflags = 0; 3213 3214 if (*sc_mp != NULL) 3215 linkb(*sc_mp, mp); 3216 else 3217 *sc_mp = mp; 3218 } 3219 3220 static void 3221 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3222 { 3223 mblk_t *nmp = NULL; 3224 dl_capability_req_t *oc; 3225 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3226 ill_zerocopy_capab_t **ill_zerocopy_capab; 3227 uint_t sub_dl_cap = isub->dl_cap; 3228 uint8_t *capend; 3229 3230 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3231 3232 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3233 3234 /* 3235 * Note: range checks here are not absolutely sufficient to 3236 * make us robust against malformed messages sent by drivers; 3237 * this is in keeping with the rest of IP's dlpi handling. 3238 * (Remember, it's coming from something else in the kernel 3239 * address space) 3240 */ 3241 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3242 if (capend > mp->b_wptr) { 3243 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3244 "malformed sub-capability too long for mblk"); 3245 return; 3246 } 3247 3248 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3249 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3250 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3251 "unsupported ZEROCOPY sub-capability (version %d, " 3252 "expected %d)", zc_ic->zerocopy_version, 3253 ZEROCOPY_VERSION_1); 3254 return; 3255 } 3256 3257 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3258 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3259 "capability isn't as expected; pass-thru module(s) " 3260 "detected, discarding capability\n")); 3261 return; 3262 } 3263 3264 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3265 if (*ill_zerocopy_capab == NULL) { 3266 *ill_zerocopy_capab = 3267 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3268 KM_NOSLEEP); 3269 3270 if (*ill_zerocopy_capab == NULL) { 3271 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3272 "could not enable Zero-copy version %d " 3273 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3274 ill->ill_name); 3275 return; 3276 } 3277 } 3278 3279 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3280 "supports Zero-copy version %d\n", ill->ill_name, 3281 ZEROCOPY_VERSION_1)); 3282 3283 (*ill_zerocopy_capab)->ill_zerocopy_version = 3284 zc_ic->zerocopy_version; 3285 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3286 zc_ic->zerocopy_flags; 3287 3288 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3289 } else { 3290 uint_t size; 3291 uchar_t *rptr; 3292 3293 size = sizeof (dl_capability_req_t) + 3294 sizeof (dl_capability_sub_t) + 3295 sizeof (dl_capab_zerocopy_t); 3296 3297 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3298 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3299 "could not enable zerocopy for %s (ENOMEM)\n", 3300 ill->ill_name); 3301 return; 3302 } 3303 3304 rptr = nmp->b_rptr; 3305 /* initialize dl_capability_req_t */ 3306 oc = (dl_capability_req_t *)rptr; 3307 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3308 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3309 sizeof (dl_capab_zerocopy_t); 3310 rptr += sizeof (dl_capability_req_t); 3311 3312 /* initialize dl_capability_sub_t */ 3313 bcopy(isub, rptr, sizeof (*isub)); 3314 rptr += sizeof (*isub); 3315 3316 /* initialize dl_capab_zerocopy_t */ 3317 zc_oc = (dl_capab_zerocopy_t *)rptr; 3318 *zc_oc = *zc_ic; 3319 3320 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3321 "to enable zero-copy version %d\n", ill->ill_name, 3322 ZEROCOPY_VERSION_1)); 3323 3324 /* set VMSAFE_MEM flag */ 3325 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3326 3327 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3328 ill_dlpi_send(ill, nmp); 3329 } 3330 } 3331 3332 static void 3333 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3334 { 3335 mblk_t *mp; 3336 dl_capab_zerocopy_t *zerocopy_subcap; 3337 dl_capability_sub_t *dl_subcap; 3338 int size; 3339 3340 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3341 return; 3342 3343 ASSERT(ill->ill_zerocopy_capab != NULL); 3344 /* 3345 * Clear the capability flag for Zero-copy but retain the 3346 * ill_zerocopy_capab structure since it's possible that another 3347 * thread is still referring to it. The structure only gets 3348 * deallocated when we destroy the ill. 3349 */ 3350 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3351 3352 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3353 3354 mp = allocb(size, BPRI_HI); 3355 if (mp == NULL) { 3356 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3357 "request to disable Zero-copy\n")); 3358 return; 3359 } 3360 3361 mp->b_wptr = mp->b_rptr + size; 3362 3363 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3364 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3365 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3366 3367 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3368 zerocopy_subcap->zerocopy_version = 3369 ill->ill_zerocopy_capab->ill_zerocopy_version; 3370 zerocopy_subcap->zerocopy_flags = 0; 3371 3372 if (*sc_mp != NULL) 3373 linkb(*sc_mp, mp); 3374 else 3375 *sc_mp = mp; 3376 } 3377 3378 /* 3379 * Process Large Segment Offload capability negotiation ack received from a 3380 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3381 * DL_CAPABILITY_ACK message. 3382 */ 3383 static void 3384 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3385 { 3386 mblk_t *nmp = NULL; 3387 dl_capability_req_t *oc; 3388 dl_capab_lso_t *lso_ic, *lso_oc; 3389 ill_lso_capab_t **ill_lso_capab; 3390 uint_t sub_dl_cap = isub->dl_cap; 3391 uint8_t *capend; 3392 3393 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3394 3395 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3396 3397 /* 3398 * Note: range checks here are not absolutely sufficient to 3399 * make us robust against malformed messages sent by drivers; 3400 * this is in keeping with the rest of IP's dlpi handling. 3401 * (Remember, it's coming from something else in the kernel 3402 * address space) 3403 */ 3404 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3405 if (capend > mp->b_wptr) { 3406 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3407 "malformed sub-capability too long for mblk"); 3408 return; 3409 } 3410 3411 lso_ic = (dl_capab_lso_t *)(isub + 1); 3412 3413 if (lso_ic->lso_version != LSO_VERSION_1) { 3414 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3415 "unsupported LSO sub-capability (version %d, expected %d)", 3416 lso_ic->lso_version, LSO_VERSION_1); 3417 return; 3418 } 3419 3420 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3421 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3422 "capability isn't as expected; pass-thru module(s) " 3423 "detected, discarding capability\n")); 3424 return; 3425 } 3426 3427 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3428 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3429 if (*ill_lso_capab == NULL) { 3430 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3431 KM_NOSLEEP); 3432 3433 if (*ill_lso_capab == NULL) { 3434 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3435 "could not enable LSO version %d " 3436 "for %s (ENOMEM)\n", LSO_VERSION_1, 3437 ill->ill_name); 3438 return; 3439 } 3440 } 3441 3442 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3443 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3444 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3445 ill->ill_capabilities |= ILL_CAPAB_LSO; 3446 3447 ip1dbg(("ill_capability_lso_ack: interface %s " 3448 "has enabled LSO\n ", ill->ill_name)); 3449 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3450 uint_t size; 3451 uchar_t *rptr; 3452 3453 size = sizeof (dl_capability_req_t) + 3454 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3455 3456 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3457 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3458 "could not enable LSO for %s (ENOMEM)\n", 3459 ill->ill_name); 3460 return; 3461 } 3462 3463 rptr = nmp->b_rptr; 3464 /* initialize dl_capability_req_t */ 3465 oc = (dl_capability_req_t *)nmp->b_rptr; 3466 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3467 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3468 sizeof (dl_capab_lso_t); 3469 nmp->b_rptr += sizeof (dl_capability_req_t); 3470 3471 /* initialize dl_capability_sub_t */ 3472 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3473 nmp->b_rptr += sizeof (*isub); 3474 3475 /* initialize dl_capab_lso_t */ 3476 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3477 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3478 3479 nmp->b_rptr = rptr; 3480 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3481 3482 /* set ENABLE flag */ 3483 lso_oc->lso_flags |= LSO_TX_ENABLE; 3484 3485 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3486 ill_dlpi_send(ill, nmp); 3487 } else { 3488 ip1dbg(("ill_capability_lso_ack: interface %s has " 3489 "advertised %x LSO capability flags\n", 3490 ill->ill_name, lso_ic->lso_flags)); 3491 } 3492 } 3493 3494 3495 static void 3496 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3497 { 3498 mblk_t *mp; 3499 dl_capab_lso_t *lso_subcap; 3500 dl_capability_sub_t *dl_subcap; 3501 int size; 3502 3503 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3504 return; 3505 3506 ASSERT(ill->ill_lso_capab != NULL); 3507 /* 3508 * Clear the capability flag for LSO but retain the 3509 * ill_lso_capab structure since it's possible that another 3510 * thread is still referring to it. The structure only gets 3511 * deallocated when we destroy the ill. 3512 */ 3513 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3514 3515 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3516 3517 mp = allocb(size, BPRI_HI); 3518 if (mp == NULL) { 3519 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3520 "request to disable LSO\n")); 3521 return; 3522 } 3523 3524 mp->b_wptr = mp->b_rptr + size; 3525 3526 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3527 dl_subcap->dl_cap = DL_CAPAB_LSO; 3528 dl_subcap->dl_length = sizeof (*lso_subcap); 3529 3530 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3531 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3532 lso_subcap->lso_flags = 0; 3533 3534 if (*sc_mp != NULL) 3535 linkb(*sc_mp, mp); 3536 else 3537 *sc_mp = mp; 3538 } 3539 3540 /* 3541 * Consume a new-style hardware capabilities negotiation ack. 3542 * Called from ip_rput_dlpi_writer(). 3543 */ 3544 void 3545 ill_capability_ack(ill_t *ill, mblk_t *mp) 3546 { 3547 dl_capability_ack_t *capp; 3548 dl_capability_sub_t *subp, *endp; 3549 3550 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3551 ill->ill_dlpi_capab_state = IDS_OK; 3552 3553 capp = (dl_capability_ack_t *)mp->b_rptr; 3554 3555 if (capp->dl_sub_length == 0) 3556 /* no new-style capabilities */ 3557 return; 3558 3559 /* make sure the driver supplied correct dl_sub_length */ 3560 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3561 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3562 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3563 return; 3564 } 3565 3566 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3567 /* 3568 * There are sub-capabilities. Process the ones we know about. 3569 * Loop until we don't have room for another sub-cap header.. 3570 */ 3571 for (subp = SC(capp, capp->dl_sub_offset), 3572 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3573 subp <= endp; 3574 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3575 3576 switch (subp->dl_cap) { 3577 case DL_CAPAB_ID_WRAPPER: 3578 ill_capability_id_ack(ill, mp, subp); 3579 break; 3580 default: 3581 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3582 break; 3583 } 3584 } 3585 #undef SC 3586 } 3587 3588 /* 3589 * This routine is called to scan the fragmentation reassembly table for 3590 * the specified ILL for any packets that are starting to smell. 3591 * dead_interval is the maximum time in seconds that will be tolerated. It 3592 * will either be the value specified in ip_g_frag_timeout, or zero if the 3593 * ILL is shutting down and it is time to blow everything off. 3594 * 3595 * It returns the number of seconds (as a time_t) that the next frag timer 3596 * should be scheduled for, 0 meaning that the timer doesn't need to be 3597 * re-started. Note that the method of calculating next_timeout isn't 3598 * entirely accurate since time will flow between the time we grab 3599 * current_time and the time we schedule the next timeout. This isn't a 3600 * big problem since this is the timer for sending an ICMP reassembly time 3601 * exceeded messages, and it doesn't have to be exactly accurate. 3602 * 3603 * This function is 3604 * sometimes called as writer, although this is not required. 3605 */ 3606 time_t 3607 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3608 { 3609 ipfb_t *ipfb; 3610 ipfb_t *endp; 3611 ipf_t *ipf; 3612 ipf_t *ipfnext; 3613 mblk_t *mp; 3614 time_t current_time = gethrestime_sec(); 3615 time_t next_timeout = 0; 3616 uint32_t hdr_length; 3617 mblk_t *send_icmp_head; 3618 mblk_t *send_icmp_head_v6; 3619 zoneid_t zoneid; 3620 ip_stack_t *ipst = ill->ill_ipst; 3621 3622 ipfb = ill->ill_frag_hash_tbl; 3623 if (ipfb == NULL) 3624 return (B_FALSE); 3625 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3626 /* Walk the frag hash table. */ 3627 for (; ipfb < endp; ipfb++) { 3628 send_icmp_head = NULL; 3629 send_icmp_head_v6 = NULL; 3630 mutex_enter(&ipfb->ipfb_lock); 3631 while ((ipf = ipfb->ipfb_ipf) != 0) { 3632 time_t frag_time = current_time - ipf->ipf_timestamp; 3633 time_t frag_timeout; 3634 3635 if (frag_time < dead_interval) { 3636 /* 3637 * There are some outstanding fragments 3638 * that will timeout later. Make note of 3639 * the time so that we can reschedule the 3640 * next timeout appropriately. 3641 */ 3642 frag_timeout = dead_interval - frag_time; 3643 if (next_timeout == 0 || 3644 frag_timeout < next_timeout) { 3645 next_timeout = frag_timeout; 3646 } 3647 break; 3648 } 3649 /* Time's up. Get it out of here. */ 3650 hdr_length = ipf->ipf_nf_hdr_len; 3651 ipfnext = ipf->ipf_hash_next; 3652 if (ipfnext) 3653 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3654 *ipf->ipf_ptphn = ipfnext; 3655 mp = ipf->ipf_mp->b_cont; 3656 for (; mp; mp = mp->b_cont) { 3657 /* Extra points for neatness. */ 3658 IP_REASS_SET_START(mp, 0); 3659 IP_REASS_SET_END(mp, 0); 3660 } 3661 mp = ipf->ipf_mp->b_cont; 3662 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3663 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3664 ipfb->ipfb_count -= ipf->ipf_count; 3665 ASSERT(ipfb->ipfb_frag_pkts > 0); 3666 ipfb->ipfb_frag_pkts--; 3667 /* 3668 * We do not send any icmp message from here because 3669 * we currently are holding the ipfb_lock for this 3670 * hash chain. If we try and send any icmp messages 3671 * from here we may end up via a put back into ip 3672 * trying to get the same lock, causing a recursive 3673 * mutex panic. Instead we build a list and send all 3674 * the icmp messages after we have dropped the lock. 3675 */ 3676 if (ill->ill_isv6) { 3677 if (hdr_length != 0) { 3678 mp->b_next = send_icmp_head_v6; 3679 send_icmp_head_v6 = mp; 3680 } else { 3681 freemsg(mp); 3682 } 3683 } else { 3684 if (hdr_length != 0) { 3685 mp->b_next = send_icmp_head; 3686 send_icmp_head = mp; 3687 } else { 3688 freemsg(mp); 3689 } 3690 } 3691 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3692 freeb(ipf->ipf_mp); 3693 } 3694 mutex_exit(&ipfb->ipfb_lock); 3695 /* 3696 * Now need to send any icmp messages that we delayed from 3697 * above. 3698 */ 3699 while (send_icmp_head_v6 != NULL) { 3700 ip6_t *ip6h; 3701 3702 mp = send_icmp_head_v6; 3703 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3704 mp->b_next = NULL; 3705 if (mp->b_datap->db_type == M_CTL) 3706 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3707 else 3708 ip6h = (ip6_t *)mp->b_rptr; 3709 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3710 ill, ipst); 3711 if (zoneid == ALL_ZONES) { 3712 freemsg(mp); 3713 } else { 3714 icmp_time_exceeded_v6(ill->ill_wq, mp, 3715 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3716 B_FALSE, zoneid, ipst); 3717 } 3718 } 3719 while (send_icmp_head != NULL) { 3720 ipaddr_t dst; 3721 3722 mp = send_icmp_head; 3723 send_icmp_head = send_icmp_head->b_next; 3724 mp->b_next = NULL; 3725 3726 if (mp->b_datap->db_type == M_CTL) 3727 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3728 else 3729 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3730 3731 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3732 if (zoneid == ALL_ZONES) { 3733 freemsg(mp); 3734 } else { 3735 icmp_time_exceeded(ill->ill_wq, mp, 3736 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3737 ipst); 3738 } 3739 } 3740 } 3741 /* 3742 * A non-dying ILL will use the return value to decide whether to 3743 * restart the frag timer, and for how long. 3744 */ 3745 return (next_timeout); 3746 } 3747 3748 /* 3749 * This routine is called when the approximate count of mblk memory used 3750 * for the specified ILL has exceeded max_count. 3751 */ 3752 void 3753 ill_frag_prune(ill_t *ill, uint_t max_count) 3754 { 3755 ipfb_t *ipfb; 3756 ipf_t *ipf; 3757 size_t count; 3758 3759 /* 3760 * If we are here within ip_min_frag_prune_time msecs remove 3761 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3762 * ill_frag_free_num_pkts. 3763 */ 3764 mutex_enter(&ill->ill_lock); 3765 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3766 (ip_min_frag_prune_time != 0 ? 3767 ip_min_frag_prune_time : msec_per_tick)) { 3768 3769 ill->ill_frag_free_num_pkts++; 3770 3771 } else { 3772 ill->ill_frag_free_num_pkts = 0; 3773 } 3774 ill->ill_last_frag_clean_time = lbolt; 3775 mutex_exit(&ill->ill_lock); 3776 3777 /* 3778 * free ill_frag_free_num_pkts oldest packets from each bucket. 3779 */ 3780 if (ill->ill_frag_free_num_pkts != 0) { 3781 int ix; 3782 3783 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3784 ipfb = &ill->ill_frag_hash_tbl[ix]; 3785 mutex_enter(&ipfb->ipfb_lock); 3786 if (ipfb->ipfb_ipf != NULL) { 3787 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3788 ill->ill_frag_free_num_pkts); 3789 } 3790 mutex_exit(&ipfb->ipfb_lock); 3791 } 3792 } 3793 /* 3794 * While the reassembly list for this ILL is too big, prune a fragment 3795 * queue by age, oldest first. 3796 */ 3797 while (ill->ill_frag_count > max_count) { 3798 int ix; 3799 ipfb_t *oipfb = NULL; 3800 uint_t oldest = UINT_MAX; 3801 3802 count = 0; 3803 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3804 ipfb = &ill->ill_frag_hash_tbl[ix]; 3805 mutex_enter(&ipfb->ipfb_lock); 3806 ipf = ipfb->ipfb_ipf; 3807 if (ipf != NULL && ipf->ipf_gen < oldest) { 3808 oldest = ipf->ipf_gen; 3809 oipfb = ipfb; 3810 } 3811 count += ipfb->ipfb_count; 3812 mutex_exit(&ipfb->ipfb_lock); 3813 } 3814 if (oipfb == NULL) 3815 break; 3816 3817 if (count <= max_count) 3818 return; /* Somebody beat us to it, nothing to do */ 3819 mutex_enter(&oipfb->ipfb_lock); 3820 ipf = oipfb->ipfb_ipf; 3821 if (ipf != NULL) { 3822 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3823 } 3824 mutex_exit(&oipfb->ipfb_lock); 3825 } 3826 } 3827 3828 /* 3829 * free 'free_cnt' fragmented packets starting at ipf. 3830 */ 3831 void 3832 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3833 { 3834 size_t count; 3835 mblk_t *mp; 3836 mblk_t *tmp; 3837 ipf_t **ipfp = ipf->ipf_ptphn; 3838 3839 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3840 ASSERT(ipfp != NULL); 3841 ASSERT(ipf != NULL); 3842 3843 while (ipf != NULL && free_cnt-- > 0) { 3844 count = ipf->ipf_count; 3845 mp = ipf->ipf_mp; 3846 ipf = ipf->ipf_hash_next; 3847 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3848 IP_REASS_SET_START(tmp, 0); 3849 IP_REASS_SET_END(tmp, 0); 3850 } 3851 atomic_add_32(&ill->ill_frag_count, -count); 3852 ASSERT(ipfb->ipfb_count >= count); 3853 ipfb->ipfb_count -= count; 3854 ASSERT(ipfb->ipfb_frag_pkts > 0); 3855 ipfb->ipfb_frag_pkts--; 3856 freemsg(mp); 3857 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3858 } 3859 3860 if (ipf) 3861 ipf->ipf_ptphn = ipfp; 3862 ipfp[0] = ipf; 3863 } 3864 3865 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3866 "obsolete and may be removed in a future release of Solaris. Use " \ 3867 "ifconfig(1M) to manipulate the forwarding status of an interface." 3868 3869 /* 3870 * For obsolete per-interface forwarding configuration; 3871 * called in response to ND_GET. 3872 */ 3873 /* ARGSUSED */ 3874 static int 3875 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3876 { 3877 ill_t *ill = (ill_t *)cp; 3878 3879 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3880 3881 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3882 return (0); 3883 } 3884 3885 /* 3886 * For obsolete per-interface forwarding configuration; 3887 * called in response to ND_SET. 3888 */ 3889 /* ARGSUSED */ 3890 static int 3891 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3892 cred_t *ioc_cr) 3893 { 3894 long value; 3895 int retval; 3896 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3897 3898 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3899 3900 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3901 value < 0 || value > 1) { 3902 return (EINVAL); 3903 } 3904 3905 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3906 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3907 rw_exit(&ipst->ips_ill_g_lock); 3908 return (retval); 3909 } 3910 3911 /* 3912 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3913 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3914 * up RTS_IFINFO routing socket messages for each interface whose flags we 3915 * change. 3916 */ 3917 int 3918 ill_forward_set(ill_t *ill, boolean_t enable) 3919 { 3920 ill_group_t *illgrp; 3921 ip_stack_t *ipst = ill->ill_ipst; 3922 3923 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3924 3925 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3926 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3927 return (0); 3928 3929 if (IS_LOOPBACK(ill)) 3930 return (EINVAL); 3931 3932 /* 3933 * If the ill is in an IPMP group, set the forwarding policy on all 3934 * members of the group to the same value. 3935 */ 3936 illgrp = ill->ill_group; 3937 if (illgrp != NULL) { 3938 ill_t *tmp_ill; 3939 3940 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3941 tmp_ill = tmp_ill->ill_group_next) { 3942 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3943 (enable ? "Enabling" : "Disabling"), 3944 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3945 tmp_ill->ill_name)); 3946 mutex_enter(&tmp_ill->ill_lock); 3947 if (enable) 3948 tmp_ill->ill_flags |= ILLF_ROUTER; 3949 else 3950 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3951 mutex_exit(&tmp_ill->ill_lock); 3952 if (tmp_ill->ill_isv6) 3953 ill_set_nce_router_flags(tmp_ill, enable); 3954 /* Notify routing socket listeners of this change. */ 3955 ip_rts_ifmsg(tmp_ill->ill_ipif); 3956 } 3957 } else { 3958 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3959 (enable ? "Enabling" : "Disabling"), 3960 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3961 mutex_enter(&ill->ill_lock); 3962 if (enable) 3963 ill->ill_flags |= ILLF_ROUTER; 3964 else 3965 ill->ill_flags &= ~ILLF_ROUTER; 3966 mutex_exit(&ill->ill_lock); 3967 if (ill->ill_isv6) 3968 ill_set_nce_router_flags(ill, enable); 3969 /* Notify routing socket listeners of this change. */ 3970 ip_rts_ifmsg(ill->ill_ipif); 3971 } 3972 3973 return (0); 3974 } 3975 3976 /* 3977 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3978 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3979 * set or clear. 3980 */ 3981 static void 3982 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3983 { 3984 ipif_t *ipif; 3985 nce_t *nce; 3986 3987 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3988 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3989 if (nce != NULL) { 3990 mutex_enter(&nce->nce_lock); 3991 if (enable) 3992 nce->nce_flags |= NCE_F_ISROUTER; 3993 else 3994 nce->nce_flags &= ~NCE_F_ISROUTER; 3995 mutex_exit(&nce->nce_lock); 3996 NCE_REFRELE(nce); 3997 } 3998 } 3999 } 4000 4001 /* 4002 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4003 * for this ill. Make sure the v6/v4 question has been answered about this 4004 * ill. The creation of this ndd variable is only for backwards compatibility. 4005 * The preferred way to control per-interface IP forwarding is through the 4006 * ILLF_ROUTER interface flag. 4007 */ 4008 static int 4009 ill_set_ndd_name(ill_t *ill) 4010 { 4011 char *suffix; 4012 ip_stack_t *ipst = ill->ill_ipst; 4013 4014 ASSERT(IAM_WRITER_ILL(ill)); 4015 4016 if (ill->ill_isv6) 4017 suffix = ipv6_forward_suffix; 4018 else 4019 suffix = ipv4_forward_suffix; 4020 4021 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4022 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4023 /* 4024 * Copies over the '\0'. 4025 * Note that strlen(suffix) is always bounded. 4026 */ 4027 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4028 strlen(suffix) + 1); 4029 4030 /* 4031 * Use of the nd table requires holding the reader lock. 4032 * Modifying the nd table thru nd_load/nd_unload requires 4033 * the writer lock. 4034 */ 4035 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4036 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4037 nd_ill_forward_set, (caddr_t)ill)) { 4038 /* 4039 * If the nd_load failed, it only meant that it could not 4040 * allocate a new bunch of room for further NDD expansion. 4041 * Because of that, the ill_ndd_name will be set to 0, and 4042 * this interface is at the mercy of the global ip_forwarding 4043 * variable. 4044 */ 4045 rw_exit(&ipst->ips_ip_g_nd_lock); 4046 ill->ill_ndd_name = NULL; 4047 return (ENOMEM); 4048 } 4049 rw_exit(&ipst->ips_ip_g_nd_lock); 4050 return (0); 4051 } 4052 4053 /* 4054 * Intializes the context structure and returns the first ill in the list 4055 * cuurently start_list and end_list can have values: 4056 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4057 * IP_V4_G_HEAD Traverse IPV4 list only. 4058 * IP_V6_G_HEAD Traverse IPV6 list only. 4059 */ 4060 4061 /* 4062 * We don't check for CONDEMNED ills here. Caller must do that if 4063 * necessary under the ill lock. 4064 */ 4065 ill_t * 4066 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4067 ip_stack_t *ipst) 4068 { 4069 ill_if_t *ifp; 4070 ill_t *ill; 4071 avl_tree_t *avl_tree; 4072 4073 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4074 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4075 4076 /* 4077 * setup the lists to search 4078 */ 4079 if (end_list != MAX_G_HEADS) { 4080 ctx->ctx_current_list = start_list; 4081 ctx->ctx_last_list = end_list; 4082 } else { 4083 ctx->ctx_last_list = MAX_G_HEADS - 1; 4084 ctx->ctx_current_list = 0; 4085 } 4086 4087 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4088 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4089 if (ifp != (ill_if_t *) 4090 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4091 avl_tree = &ifp->illif_avl_by_ppa; 4092 ill = avl_first(avl_tree); 4093 /* 4094 * ill is guaranteed to be non NULL or ifp should have 4095 * not existed. 4096 */ 4097 ASSERT(ill != NULL); 4098 return (ill); 4099 } 4100 ctx->ctx_current_list++; 4101 } 4102 4103 return (NULL); 4104 } 4105 4106 /* 4107 * returns the next ill in the list. ill_first() must have been called 4108 * before calling ill_next() or bad things will happen. 4109 */ 4110 4111 /* 4112 * We don't check for CONDEMNED ills here. Caller must do that if 4113 * necessary under the ill lock. 4114 */ 4115 ill_t * 4116 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4117 { 4118 ill_if_t *ifp; 4119 ill_t *ill; 4120 ip_stack_t *ipst = lastill->ill_ipst; 4121 4122 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4123 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4124 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4125 AVL_AFTER)) != NULL) { 4126 return (ill); 4127 } 4128 4129 /* goto next ill_ifp in the list. */ 4130 ifp = lastill->ill_ifptr->illif_next; 4131 4132 /* make sure not at end of circular list */ 4133 while (ifp == 4134 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4135 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4136 return (NULL); 4137 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4138 } 4139 4140 return (avl_first(&ifp->illif_avl_by_ppa)); 4141 } 4142 4143 /* 4144 * Check interface name for correct format which is name+ppa. 4145 * name can contain characters and digits, the right most digits 4146 * make up the ppa number. use of octal is not allowed, name must contain 4147 * a ppa, return pointer to the start of ppa. 4148 * In case of error return NULL. 4149 */ 4150 static char * 4151 ill_get_ppa_ptr(char *name) 4152 { 4153 int namelen = mi_strlen(name); 4154 4155 int len = namelen; 4156 4157 name += len; 4158 while (len > 0) { 4159 name--; 4160 if (*name < '0' || *name > '9') 4161 break; 4162 len--; 4163 } 4164 4165 /* empty string, all digits, or no trailing digits */ 4166 if (len == 0 || len == (int)namelen) 4167 return (NULL); 4168 4169 name++; 4170 /* check for attempted use of octal */ 4171 if (*name == '0' && len != (int)namelen - 1) 4172 return (NULL); 4173 return (name); 4174 } 4175 4176 /* 4177 * use avl tree to locate the ill. 4178 */ 4179 static ill_t * 4180 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4181 ipsq_func_t func, int *error, ip_stack_t *ipst) 4182 { 4183 char *ppa_ptr = NULL; 4184 int len; 4185 uint_t ppa; 4186 ill_t *ill = NULL; 4187 ill_if_t *ifp; 4188 int list; 4189 ipsq_t *ipsq; 4190 4191 if (error != NULL) 4192 *error = 0; 4193 4194 /* 4195 * get ppa ptr 4196 */ 4197 if (isv6) 4198 list = IP_V6_G_HEAD; 4199 else 4200 list = IP_V4_G_HEAD; 4201 4202 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4203 if (error != NULL) 4204 *error = ENXIO; 4205 return (NULL); 4206 } 4207 4208 len = ppa_ptr - name + 1; 4209 4210 ppa = stoi(&ppa_ptr); 4211 4212 ifp = IP_VX_ILL_G_LIST(list, ipst); 4213 4214 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4215 /* 4216 * match is done on len - 1 as the name is not null 4217 * terminated it contains ppa in addition to the interface 4218 * name. 4219 */ 4220 if ((ifp->illif_name_len == len) && 4221 bcmp(ifp->illif_name, name, len - 1) == 0) { 4222 break; 4223 } else { 4224 ifp = ifp->illif_next; 4225 } 4226 } 4227 4228 4229 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4230 /* 4231 * Even the interface type does not exist. 4232 */ 4233 if (error != NULL) 4234 *error = ENXIO; 4235 return (NULL); 4236 } 4237 4238 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4239 if (ill != NULL) { 4240 /* 4241 * The block comment at the start of ipif_down 4242 * explains the use of the macros used below 4243 */ 4244 GRAB_CONN_LOCK(q); 4245 mutex_enter(&ill->ill_lock); 4246 if (ILL_CAN_LOOKUP(ill)) { 4247 ill_refhold_locked(ill); 4248 mutex_exit(&ill->ill_lock); 4249 RELEASE_CONN_LOCK(q); 4250 return (ill); 4251 } else if (ILL_CAN_WAIT(ill, q)) { 4252 ipsq = ill->ill_phyint->phyint_ipsq; 4253 mutex_enter(&ipsq->ipsq_lock); 4254 mutex_exit(&ill->ill_lock); 4255 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4256 mutex_exit(&ipsq->ipsq_lock); 4257 RELEASE_CONN_LOCK(q); 4258 if (error != NULL) 4259 *error = EINPROGRESS; 4260 return (NULL); 4261 } 4262 mutex_exit(&ill->ill_lock); 4263 RELEASE_CONN_LOCK(q); 4264 } 4265 if (error != NULL) 4266 *error = ENXIO; 4267 return (NULL); 4268 } 4269 4270 /* 4271 * comparison function for use with avl. 4272 */ 4273 static int 4274 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4275 { 4276 uint_t ppa; 4277 uint_t ill_ppa; 4278 4279 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4280 4281 ppa = *((uint_t *)ppa_ptr); 4282 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4283 /* 4284 * We want the ill with the lowest ppa to be on the 4285 * top. 4286 */ 4287 if (ill_ppa < ppa) 4288 return (1); 4289 if (ill_ppa > ppa) 4290 return (-1); 4291 return (0); 4292 } 4293 4294 /* 4295 * remove an interface type from the global list. 4296 */ 4297 static void 4298 ill_delete_interface_type(ill_if_t *interface) 4299 { 4300 ASSERT(interface != NULL); 4301 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4302 4303 avl_destroy(&interface->illif_avl_by_ppa); 4304 if (interface->illif_ppa_arena != NULL) 4305 vmem_destroy(interface->illif_ppa_arena); 4306 4307 remque(interface); 4308 4309 mi_free(interface); 4310 } 4311 4312 /* 4313 * remove ill from the global list. 4314 */ 4315 static void 4316 ill_glist_delete(ill_t *ill) 4317 { 4318 hook_nic_event_t *info; 4319 ip_stack_t *ipst; 4320 4321 if (ill == NULL) 4322 return; 4323 ipst = ill->ill_ipst; 4324 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4325 4326 /* 4327 * If the ill was never inserted into the AVL tree 4328 * we skip the if branch. 4329 */ 4330 if (ill->ill_ifptr != NULL) { 4331 /* 4332 * remove from AVL tree and free ppa number 4333 */ 4334 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4335 4336 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4337 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4338 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4339 } 4340 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4341 ill_delete_interface_type(ill->ill_ifptr); 4342 } 4343 4344 /* 4345 * Indicate ill is no longer in the list. 4346 */ 4347 ill->ill_ifptr = NULL; 4348 ill->ill_name_length = 0; 4349 ill->ill_name[0] = '\0'; 4350 ill->ill_ppa = UINT_MAX; 4351 } 4352 4353 /* 4354 * Run the unplumb hook after the NIC has disappeared from being 4355 * visible so that attempts to revalidate its existance will fail. 4356 * 4357 * This needs to be run inside the ill_g_lock perimeter to ensure 4358 * that the ordering of delivered events to listeners matches the 4359 * order of them in the kernel. 4360 */ 4361 info = ill->ill_nic_event_info; 4362 if (info != NULL && info->hne_event == NE_DOWN) { 4363 mutex_enter(&ill->ill_lock); 4364 ill_nic_info_dispatch(ill); 4365 mutex_exit(&ill->ill_lock); 4366 } 4367 4368 /* Generate NE_UNPLUMB event for ill_name. */ 4369 (void) ill_hook_event_create(ill, 0, NE_UNPLUMB, ill->ill_name, 4370 ill->ill_name_length); 4371 4372 ill_phyint_free(ill); 4373 rw_exit(&ipst->ips_ill_g_lock); 4374 } 4375 4376 /* 4377 * allocate a ppa, if the number of plumbed interfaces of this type are 4378 * less than ill_no_arena do a linear search to find a unused ppa. 4379 * When the number goes beyond ill_no_arena switch to using an arena. 4380 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4381 * is the return value for an error condition, so allocation starts at one 4382 * and is decremented by one. 4383 */ 4384 static int 4385 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4386 { 4387 ill_t *tmp_ill; 4388 uint_t start, end; 4389 int ppa; 4390 4391 if (ifp->illif_ppa_arena == NULL && 4392 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4393 /* 4394 * Create an arena. 4395 */ 4396 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4397 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4398 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4399 /* allocate what has already been assigned */ 4400 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4401 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4402 tmp_ill, AVL_AFTER)) { 4403 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4404 1, /* size */ 4405 1, /* align/quantum */ 4406 0, /* phase */ 4407 0, /* nocross */ 4408 /* minaddr */ 4409 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4410 /* maxaddr */ 4411 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4412 VM_NOSLEEP|VM_FIRSTFIT); 4413 if (ppa == 0) { 4414 ip1dbg(("ill_alloc_ppa: ppa allocation" 4415 " failed while switching")); 4416 vmem_destroy(ifp->illif_ppa_arena); 4417 ifp->illif_ppa_arena = NULL; 4418 break; 4419 } 4420 } 4421 } 4422 4423 if (ifp->illif_ppa_arena != NULL) { 4424 if (ill->ill_ppa == UINT_MAX) { 4425 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4426 1, VM_NOSLEEP|VM_FIRSTFIT); 4427 if (ppa == 0) 4428 return (EAGAIN); 4429 ill->ill_ppa = --ppa; 4430 } else { 4431 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4432 1, /* size */ 4433 1, /* align/quantum */ 4434 0, /* phase */ 4435 0, /* nocross */ 4436 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4437 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4438 VM_NOSLEEP|VM_FIRSTFIT); 4439 /* 4440 * Most likely the allocation failed because 4441 * the requested ppa was in use. 4442 */ 4443 if (ppa == 0) 4444 return (EEXIST); 4445 } 4446 return (0); 4447 } 4448 4449 /* 4450 * No arena is in use and not enough (>ill_no_arena) interfaces have 4451 * been plumbed to create one. Do a linear search to get a unused ppa. 4452 */ 4453 if (ill->ill_ppa == UINT_MAX) { 4454 end = UINT_MAX - 1; 4455 start = 0; 4456 } else { 4457 end = start = ill->ill_ppa; 4458 } 4459 4460 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4461 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4462 if (start++ >= end) { 4463 if (ill->ill_ppa == UINT_MAX) 4464 return (EAGAIN); 4465 else 4466 return (EEXIST); 4467 } 4468 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4469 } 4470 ill->ill_ppa = start; 4471 return (0); 4472 } 4473 4474 /* 4475 * Insert ill into the list of configured ill's. Once this function completes, 4476 * the ill is globally visible and is available through lookups. More precisely 4477 * this happens after the caller drops the ill_g_lock. 4478 */ 4479 static int 4480 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4481 { 4482 ill_if_t *ill_interface; 4483 avl_index_t where = 0; 4484 int error; 4485 int name_length; 4486 int index; 4487 boolean_t check_length = B_FALSE; 4488 ip_stack_t *ipst = ill->ill_ipst; 4489 4490 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4491 4492 name_length = mi_strlen(name) + 1; 4493 4494 if (isv6) 4495 index = IP_V6_G_HEAD; 4496 else 4497 index = IP_V4_G_HEAD; 4498 4499 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4500 /* 4501 * Search for interface type based on name 4502 */ 4503 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4504 if ((ill_interface->illif_name_len == name_length) && 4505 (strcmp(ill_interface->illif_name, name) == 0)) { 4506 break; 4507 } 4508 ill_interface = ill_interface->illif_next; 4509 } 4510 4511 /* 4512 * Interface type not found, create one. 4513 */ 4514 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4515 4516 ill_g_head_t ghead; 4517 4518 /* 4519 * allocate ill_if_t structure 4520 */ 4521 4522 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4523 if (ill_interface == NULL) { 4524 return (ENOMEM); 4525 } 4526 4527 4528 4529 (void) strcpy(ill_interface->illif_name, name); 4530 ill_interface->illif_name_len = name_length; 4531 4532 avl_create(&ill_interface->illif_avl_by_ppa, 4533 ill_compare_ppa, sizeof (ill_t), 4534 offsetof(struct ill_s, ill_avl_byppa)); 4535 4536 /* 4537 * link the structure in the back to maintain order 4538 * of configuration for ifconfig output. 4539 */ 4540 ghead = ipst->ips_ill_g_heads[index]; 4541 insque(ill_interface, ghead.ill_g_list_tail); 4542 4543 } 4544 4545 if (ill->ill_ppa == UINT_MAX) 4546 check_length = B_TRUE; 4547 4548 error = ill_alloc_ppa(ill_interface, ill); 4549 if (error != 0) { 4550 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4551 ill_delete_interface_type(ill->ill_ifptr); 4552 return (error); 4553 } 4554 4555 /* 4556 * When the ppa is choosen by the system, check that there is 4557 * enough space to insert ppa. if a specific ppa was passed in this 4558 * check is not required as the interface name passed in will have 4559 * the right ppa in it. 4560 */ 4561 if (check_length) { 4562 /* 4563 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4564 */ 4565 char buf[sizeof (uint_t) * 3]; 4566 4567 /* 4568 * convert ppa to string to calculate the amount of space 4569 * required for it in the name. 4570 */ 4571 numtos(ill->ill_ppa, buf); 4572 4573 /* Do we have enough space to insert ppa ? */ 4574 4575 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4576 /* Free ppa and interface type struct */ 4577 if (ill_interface->illif_ppa_arena != NULL) { 4578 vmem_free(ill_interface->illif_ppa_arena, 4579 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4580 } 4581 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4582 0) { 4583 ill_delete_interface_type(ill->ill_ifptr); 4584 } 4585 4586 return (EINVAL); 4587 } 4588 } 4589 4590 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4591 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4592 4593 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4594 &where); 4595 ill->ill_ifptr = ill_interface; 4596 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4597 4598 ill_phyint_reinit(ill); 4599 return (0); 4600 } 4601 4602 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4603 static boolean_t 4604 ipsq_init(ill_t *ill) 4605 { 4606 ipsq_t *ipsq; 4607 4608 /* Init the ipsq and impicitly enter as writer */ 4609 ill->ill_phyint->phyint_ipsq = 4610 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4611 if (ill->ill_phyint->phyint_ipsq == NULL) 4612 return (B_FALSE); 4613 ipsq = ill->ill_phyint->phyint_ipsq; 4614 ipsq->ipsq_phyint_list = ill->ill_phyint; 4615 ill->ill_phyint->phyint_ipsq_next = NULL; 4616 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4617 ipsq->ipsq_refs = 1; 4618 ipsq->ipsq_writer = curthread; 4619 ipsq->ipsq_reentry_cnt = 1; 4620 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4621 #ifdef DEBUG 4622 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4623 IPSQ_STACK_DEPTH); 4624 #endif 4625 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4626 return (B_TRUE); 4627 } 4628 4629 /* 4630 * ill_init is called by ip_open when a device control stream is opened. 4631 * It does a few initializations, and shoots a DL_INFO_REQ message down 4632 * to the driver. The response is later picked up in ip_rput_dlpi and 4633 * used to set up default mechanisms for talking to the driver. (Always 4634 * called as writer.) 4635 * 4636 * If this function returns error, ip_open will call ip_close which in 4637 * turn will call ill_delete to clean up any memory allocated here that 4638 * is not yet freed. 4639 */ 4640 int 4641 ill_init(queue_t *q, ill_t *ill) 4642 { 4643 int count; 4644 dl_info_req_t *dlir; 4645 mblk_t *info_mp; 4646 uchar_t *frag_ptr; 4647 4648 /* 4649 * The ill is initialized to zero by mi_alloc*(). In addition 4650 * some fields already contain valid values, initialized in 4651 * ip_open(), before we reach here. 4652 */ 4653 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4654 4655 ill->ill_rq = q; 4656 ill->ill_wq = WR(q); 4657 4658 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4659 BPRI_HI); 4660 if (info_mp == NULL) 4661 return (ENOMEM); 4662 4663 /* 4664 * Allocate sufficient space to contain our fragment hash table and 4665 * the device name. 4666 */ 4667 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4668 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4669 if (frag_ptr == NULL) { 4670 freemsg(info_mp); 4671 return (ENOMEM); 4672 } 4673 ill->ill_frag_ptr = frag_ptr; 4674 ill->ill_frag_free_num_pkts = 0; 4675 ill->ill_last_frag_clean_time = 0; 4676 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4677 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4678 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4679 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4680 NULL, MUTEX_DEFAULT, NULL); 4681 } 4682 4683 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4684 if (ill->ill_phyint == NULL) { 4685 freemsg(info_mp); 4686 mi_free(frag_ptr); 4687 return (ENOMEM); 4688 } 4689 4690 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4691 /* 4692 * For now pretend this is a v4 ill. We need to set phyint_ill* 4693 * at this point because of the following reason. If we can't 4694 * enter the ipsq at some point and cv_wait, the writer that 4695 * wakes us up tries to locate us using the list of all phyints 4696 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4697 * If we don't set it now, we risk a missed wakeup. 4698 */ 4699 ill->ill_phyint->phyint_illv4 = ill; 4700 ill->ill_ppa = UINT_MAX; 4701 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4702 4703 if (!ipsq_init(ill)) { 4704 freemsg(info_mp); 4705 mi_free(frag_ptr); 4706 mi_free(ill->ill_phyint); 4707 return (ENOMEM); 4708 } 4709 4710 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4711 4712 4713 /* Frag queue limit stuff */ 4714 ill->ill_frag_count = 0; 4715 ill->ill_ipf_gen = 0; 4716 4717 ill->ill_global_timer = INFINITY; 4718 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4719 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4720 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4721 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4722 4723 /* 4724 * Initialize IPv6 configuration variables. The IP module is always 4725 * opened as an IPv4 module. Instead tracking down the cases where 4726 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4727 * here for convenience, this has no effect until the ill is set to do 4728 * IPv6. 4729 */ 4730 ill->ill_reachable_time = ND_REACHABLE_TIME; 4731 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4732 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4733 ill->ill_max_buf = ND_MAX_Q; 4734 ill->ill_refcnt = 0; 4735 4736 /* Send down the Info Request to the driver. */ 4737 info_mp->b_datap->db_type = M_PCPROTO; 4738 dlir = (dl_info_req_t *)info_mp->b_rptr; 4739 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4740 dlir->dl_primitive = DL_INFO_REQ; 4741 4742 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4743 4744 qprocson(q); 4745 ill_dlpi_send(ill, info_mp); 4746 4747 return (0); 4748 } 4749 4750 /* 4751 * ill_dls_info 4752 * creates datalink socket info from the device. 4753 */ 4754 int 4755 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4756 { 4757 size_t len; 4758 ill_t *ill = ipif->ipif_ill; 4759 4760 sdl->sdl_family = AF_LINK; 4761 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4762 sdl->sdl_type = ill->ill_type; 4763 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4764 len = strlen(sdl->sdl_data); 4765 ASSERT(len < 256); 4766 sdl->sdl_nlen = (uchar_t)len; 4767 sdl->sdl_alen = ill->ill_phys_addr_length; 4768 sdl->sdl_slen = 0; 4769 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4770 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4771 4772 return (sizeof (struct sockaddr_dl)); 4773 } 4774 4775 /* 4776 * ill_xarp_info 4777 * creates xarp info from the device. 4778 */ 4779 static int 4780 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4781 { 4782 sdl->sdl_family = AF_LINK; 4783 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4784 sdl->sdl_type = ill->ill_type; 4785 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4786 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4787 sdl->sdl_alen = ill->ill_phys_addr_length; 4788 sdl->sdl_slen = 0; 4789 return (sdl->sdl_nlen); 4790 } 4791 4792 static int 4793 loopback_kstat_update(kstat_t *ksp, int rw) 4794 { 4795 kstat_named_t *kn; 4796 netstackid_t stackid; 4797 netstack_t *ns; 4798 ip_stack_t *ipst; 4799 4800 if (ksp == NULL || ksp->ks_data == NULL) 4801 return (EIO); 4802 4803 if (rw == KSTAT_WRITE) 4804 return (EACCES); 4805 4806 kn = KSTAT_NAMED_PTR(ksp); 4807 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4808 4809 ns = netstack_find_by_stackid(stackid); 4810 if (ns == NULL) 4811 return (-1); 4812 4813 ipst = ns->netstack_ip; 4814 if (ipst == NULL) { 4815 netstack_rele(ns); 4816 return (-1); 4817 } 4818 kn[0].value.ui32 = ipst->ips_loopback_packets; 4819 kn[1].value.ui32 = ipst->ips_loopback_packets; 4820 netstack_rele(ns); 4821 return (0); 4822 } 4823 4824 4825 /* 4826 * Has ifindex been plumbed already. 4827 * Compares both phyint_ifindex and phyint_group_ifindex. 4828 */ 4829 static boolean_t 4830 phyint_exists(uint_t index, ip_stack_t *ipst) 4831 { 4832 phyint_t *phyi; 4833 4834 ASSERT(index != 0); 4835 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4836 /* 4837 * Indexes are stored in the phyint - a common structure 4838 * to both IPv4 and IPv6. 4839 */ 4840 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4841 for (; phyi != NULL; 4842 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4843 phyi, AVL_AFTER)) { 4844 if (phyi->phyint_ifindex == index || 4845 phyi->phyint_group_ifindex == index) 4846 return (B_TRUE); 4847 } 4848 return (B_FALSE); 4849 } 4850 4851 /* Pick a unique ifindex */ 4852 boolean_t 4853 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4854 { 4855 uint_t starting_index; 4856 4857 if (!ipst->ips_ill_index_wrap) { 4858 *indexp = ipst->ips_ill_index++; 4859 if (ipst->ips_ill_index == 0) { 4860 /* Reached the uint_t limit Next time wrap */ 4861 ipst->ips_ill_index_wrap = B_TRUE; 4862 } 4863 return (B_TRUE); 4864 } 4865 4866 /* 4867 * Start reusing unused indexes. Note that we hold the ill_g_lock 4868 * at this point and don't want to call any function that attempts 4869 * to get the lock again. 4870 */ 4871 starting_index = ipst->ips_ill_index++; 4872 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4873 if (ipst->ips_ill_index != 0 && 4874 !phyint_exists(ipst->ips_ill_index, ipst)) { 4875 /* found unused index - use it */ 4876 *indexp = ipst->ips_ill_index; 4877 return (B_TRUE); 4878 } 4879 } 4880 4881 /* 4882 * all interface indicies are inuse. 4883 */ 4884 return (B_FALSE); 4885 } 4886 4887 /* 4888 * Assign a unique interface index for the phyint. 4889 */ 4890 static boolean_t 4891 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4892 { 4893 ASSERT(phyi->phyint_ifindex == 0); 4894 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4895 } 4896 4897 /* 4898 * Return a pointer to the ill which matches the supplied name. Note that 4899 * the ill name length includes the null termination character. (May be 4900 * called as writer.) 4901 * If do_alloc and the interface is "lo0" it will be automatically created. 4902 * Cannot bump up reference on condemned ills. So dup detect can't be done 4903 * using this func. 4904 */ 4905 ill_t * 4906 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4907 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4908 ip_stack_t *ipst) 4909 { 4910 ill_t *ill; 4911 ipif_t *ipif; 4912 kstat_named_t *kn; 4913 boolean_t isloopback; 4914 ipsq_t *old_ipsq; 4915 in6_addr_t ov6addr; 4916 4917 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4918 4919 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4920 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4921 rw_exit(&ipst->ips_ill_g_lock); 4922 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4923 return (ill); 4924 4925 /* 4926 * Couldn't find it. Does this happen to be a lookup for the 4927 * loopback device and are we allowed to allocate it? 4928 */ 4929 if (!isloopback || !do_alloc) 4930 return (NULL); 4931 4932 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4933 4934 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4935 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4936 rw_exit(&ipst->ips_ill_g_lock); 4937 return (ill); 4938 } 4939 4940 /* Create the loopback device on demand */ 4941 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4942 sizeof (ipif_loopback_name), BPRI_MED)); 4943 if (ill == NULL) 4944 goto done; 4945 4946 *ill = ill_null; 4947 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4948 ill->ill_ipst = ipst; 4949 netstack_hold(ipst->ips_netstack); 4950 /* 4951 * For exclusive stacks we set the zoneid to zero 4952 * to make IP operate as if in the global zone. 4953 */ 4954 ill->ill_zoneid = GLOBAL_ZONEID; 4955 4956 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4957 if (ill->ill_phyint == NULL) 4958 goto done; 4959 4960 if (isv6) 4961 ill->ill_phyint->phyint_illv6 = ill; 4962 else 4963 ill->ill_phyint->phyint_illv4 = ill; 4964 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4965 ill->ill_max_frag = IP_LOOPBACK_MTU; 4966 /* Add room for tcp+ip headers */ 4967 if (isv6) { 4968 ill->ill_isv6 = B_TRUE; 4969 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4970 } else { 4971 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4972 } 4973 if (!ill_allocate_mibs(ill)) 4974 goto done; 4975 ill->ill_max_mtu = ill->ill_max_frag; 4976 /* 4977 * ipif_loopback_name can't be pointed at directly because its used 4978 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4979 * from the glist, ill_glist_delete() sets the first character of 4980 * ill_name to '\0'. 4981 */ 4982 ill->ill_name = (char *)ill + sizeof (*ill); 4983 (void) strcpy(ill->ill_name, ipif_loopback_name); 4984 ill->ill_name_length = sizeof (ipif_loopback_name); 4985 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4986 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4987 4988 ill->ill_global_timer = INFINITY; 4989 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4990 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4991 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4992 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4993 4994 /* No resolver here. */ 4995 ill->ill_net_type = IRE_LOOPBACK; 4996 4997 /* Initialize the ipsq */ 4998 if (!ipsq_init(ill)) 4999 goto done; 5000 5001 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5002 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5003 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5004 #ifdef DEBUG 5005 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5006 #endif 5007 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5008 if (ipif == NULL) 5009 goto done; 5010 5011 ill->ill_flags = ILLF_MULTICAST; 5012 5013 ov6addr = ipif->ipif_v6lcl_addr; 5014 /* Set up default loopback address and mask. */ 5015 if (!isv6) { 5016 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5017 5018 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5019 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5020 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5021 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5022 ipif->ipif_v6subnet); 5023 ill->ill_flags |= ILLF_IPV4; 5024 } else { 5025 ipif->ipif_v6lcl_addr = ipv6_loopback; 5026 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5027 ipif->ipif_v6net_mask = ipv6_all_ones; 5028 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5029 ipif->ipif_v6subnet); 5030 ill->ill_flags |= ILLF_IPV6; 5031 } 5032 5033 /* 5034 * Chain us in at the end of the ill list. hold the ill 5035 * before we make it globally visible. 1 for the lookup. 5036 */ 5037 ill->ill_refcnt = 0; 5038 ill_refhold(ill); 5039 5040 ill->ill_frag_count = 0; 5041 ill->ill_frag_free_num_pkts = 0; 5042 ill->ill_last_frag_clean_time = 0; 5043 5044 old_ipsq = ill->ill_phyint->phyint_ipsq; 5045 5046 if (ill_glist_insert(ill, "lo", isv6) != 0) 5047 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5048 5049 /* Let SCTP know so that it can add this to its list */ 5050 sctp_update_ill(ill, SCTP_ILL_INSERT); 5051 5052 /* 5053 * We have already assigned ipif_v6lcl_addr above, but we need to 5054 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5055 * requires to be after ill_glist_insert() since we need the 5056 * ill_index set. Pass on ipv6_loopback as the old address. 5057 */ 5058 sctp_update_ipif_addr(ipif, ov6addr); 5059 5060 /* 5061 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5062 */ 5063 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5064 /* Loopback ills aren't in any IPMP group */ 5065 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5066 ipsq_delete(old_ipsq); 5067 } 5068 5069 /* 5070 * Delay this till the ipif is allocated as ipif_allocate 5071 * de-references ill_phyint for getting the ifindex. We 5072 * can't do this before ipif_allocate because ill_phyint_reinit 5073 * -> phyint_assign_ifindex expects ipif to be present. 5074 */ 5075 mutex_enter(&ill->ill_phyint->phyint_lock); 5076 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5077 mutex_exit(&ill->ill_phyint->phyint_lock); 5078 5079 if (ipst->ips_loopback_ksp == NULL) { 5080 /* Export loopback interface statistics */ 5081 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5082 ipif_loopback_name, "net", 5083 KSTAT_TYPE_NAMED, 2, 0, 5084 ipst->ips_netstack->netstack_stackid); 5085 if (ipst->ips_loopback_ksp != NULL) { 5086 ipst->ips_loopback_ksp->ks_update = 5087 loopback_kstat_update; 5088 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5089 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5090 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5091 ipst->ips_loopback_ksp->ks_private = 5092 (void *)(uintptr_t)ipst->ips_netstack-> 5093 netstack_stackid; 5094 kstat_install(ipst->ips_loopback_ksp); 5095 } 5096 } 5097 5098 if (error != NULL) 5099 *error = 0; 5100 *did_alloc = B_TRUE; 5101 rw_exit(&ipst->ips_ill_g_lock); 5102 return (ill); 5103 done: 5104 if (ill != NULL) { 5105 if (ill->ill_phyint != NULL) { 5106 ipsq_t *ipsq; 5107 5108 ipsq = ill->ill_phyint->phyint_ipsq; 5109 if (ipsq != NULL) { 5110 ipsq->ipsq_ipst = NULL; 5111 kmem_free(ipsq, sizeof (ipsq_t)); 5112 } 5113 mi_free(ill->ill_phyint); 5114 } 5115 ill_free_mib(ill); 5116 if (ill->ill_ipst != NULL) 5117 netstack_rele(ill->ill_ipst->ips_netstack); 5118 mi_free(ill); 5119 } 5120 rw_exit(&ipst->ips_ill_g_lock); 5121 if (error != NULL) 5122 *error = ENOMEM; 5123 return (NULL); 5124 } 5125 5126 /* 5127 * For IPP calls - use the ip_stack_t for global stack. 5128 */ 5129 ill_t * 5130 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5131 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5132 { 5133 ip_stack_t *ipst; 5134 ill_t *ill; 5135 5136 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5137 if (ipst == NULL) { 5138 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5139 return (NULL); 5140 } 5141 5142 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5143 netstack_rele(ipst->ips_netstack); 5144 return (ill); 5145 } 5146 5147 /* 5148 * Return a pointer to the ill which matches the index and IP version type. 5149 */ 5150 ill_t * 5151 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5152 ipsq_func_t func, int *err, ip_stack_t *ipst) 5153 { 5154 ill_t *ill; 5155 ipsq_t *ipsq; 5156 phyint_t *phyi; 5157 5158 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5159 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5160 5161 if (err != NULL) 5162 *err = 0; 5163 5164 /* 5165 * Indexes are stored in the phyint - a common structure 5166 * to both IPv4 and IPv6. 5167 */ 5168 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5169 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5170 (void *) &index, NULL); 5171 if (phyi != NULL) { 5172 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5173 if (ill != NULL) { 5174 /* 5175 * The block comment at the start of ipif_down 5176 * explains the use of the macros used below 5177 */ 5178 GRAB_CONN_LOCK(q); 5179 mutex_enter(&ill->ill_lock); 5180 if (ILL_CAN_LOOKUP(ill)) { 5181 ill_refhold_locked(ill); 5182 mutex_exit(&ill->ill_lock); 5183 RELEASE_CONN_LOCK(q); 5184 rw_exit(&ipst->ips_ill_g_lock); 5185 return (ill); 5186 } else if (ILL_CAN_WAIT(ill, q)) { 5187 ipsq = ill->ill_phyint->phyint_ipsq; 5188 mutex_enter(&ipsq->ipsq_lock); 5189 rw_exit(&ipst->ips_ill_g_lock); 5190 mutex_exit(&ill->ill_lock); 5191 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5192 mutex_exit(&ipsq->ipsq_lock); 5193 RELEASE_CONN_LOCK(q); 5194 if (err != NULL) 5195 *err = EINPROGRESS; 5196 return (NULL); 5197 } 5198 RELEASE_CONN_LOCK(q); 5199 mutex_exit(&ill->ill_lock); 5200 } 5201 } 5202 rw_exit(&ipst->ips_ill_g_lock); 5203 if (err != NULL) 5204 *err = ENXIO; 5205 return (NULL); 5206 } 5207 5208 /* 5209 * Return the ifindex next in sequence after the passed in ifindex. 5210 * If there is no next ifindex for the given protocol, return 0. 5211 */ 5212 uint_t 5213 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5214 { 5215 phyint_t *phyi; 5216 phyint_t *phyi_initial; 5217 uint_t ifindex; 5218 5219 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5220 5221 if (index == 0) { 5222 phyi = avl_first( 5223 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5224 } else { 5225 phyi = phyi_initial = avl_find( 5226 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5227 (void *) &index, NULL); 5228 } 5229 5230 for (; phyi != NULL; 5231 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5232 phyi, AVL_AFTER)) { 5233 /* 5234 * If we're not returning the first interface in the tree 5235 * and we still haven't moved past the phyint_t that 5236 * corresponds to index, avl_walk needs to be called again 5237 */ 5238 if (!((index != 0) && (phyi == phyi_initial))) { 5239 if (isv6) { 5240 if ((phyi->phyint_illv6) && 5241 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5242 (phyi->phyint_illv6->ill_isv6 == 1)) 5243 break; 5244 } else { 5245 if ((phyi->phyint_illv4) && 5246 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5247 (phyi->phyint_illv4->ill_isv6 == 0)) 5248 break; 5249 } 5250 } 5251 } 5252 5253 rw_exit(&ipst->ips_ill_g_lock); 5254 5255 if (phyi != NULL) 5256 ifindex = phyi->phyint_ifindex; 5257 else 5258 ifindex = 0; 5259 5260 return (ifindex); 5261 } 5262 5263 5264 /* 5265 * Return the ifindex for the named interface. 5266 * If there is no next ifindex for the interface, return 0. 5267 */ 5268 uint_t 5269 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5270 { 5271 phyint_t *phyi; 5272 avl_index_t where = 0; 5273 uint_t ifindex; 5274 5275 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5276 5277 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5278 name, &where)) == NULL) { 5279 rw_exit(&ipst->ips_ill_g_lock); 5280 return (0); 5281 } 5282 5283 ifindex = phyi->phyint_ifindex; 5284 5285 rw_exit(&ipst->ips_ill_g_lock); 5286 5287 return (ifindex); 5288 } 5289 5290 5291 /* 5292 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5293 * that gives a running thread a reference to the ill. This reference must be 5294 * released by the thread when it is done accessing the ill and related 5295 * objects. ill_refcnt can not be used to account for static references 5296 * such as other structures pointing to an ill. Callers must generally 5297 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5298 * or be sure that the ill is not being deleted or changing state before 5299 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5300 * ill won't change any of its critical state such as address, netmask etc. 5301 */ 5302 void 5303 ill_refhold(ill_t *ill) 5304 { 5305 mutex_enter(&ill->ill_lock); 5306 ill->ill_refcnt++; 5307 ILL_TRACE_REF(ill); 5308 mutex_exit(&ill->ill_lock); 5309 } 5310 5311 void 5312 ill_refhold_locked(ill_t *ill) 5313 { 5314 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5315 ill->ill_refcnt++; 5316 ILL_TRACE_REF(ill); 5317 } 5318 5319 int 5320 ill_check_and_refhold(ill_t *ill) 5321 { 5322 mutex_enter(&ill->ill_lock); 5323 if (ILL_CAN_LOOKUP(ill)) { 5324 ill_refhold_locked(ill); 5325 mutex_exit(&ill->ill_lock); 5326 return (0); 5327 } 5328 mutex_exit(&ill->ill_lock); 5329 return (ILL_LOOKUP_FAILED); 5330 } 5331 5332 /* 5333 * Must not be called while holding any locks. Otherwise if this is 5334 * the last reference to be released, there is a chance of recursive mutex 5335 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5336 * to restart an ioctl. 5337 */ 5338 void 5339 ill_refrele(ill_t *ill) 5340 { 5341 mutex_enter(&ill->ill_lock); 5342 ASSERT(ill->ill_refcnt != 0); 5343 ill->ill_refcnt--; 5344 ILL_UNTRACE_REF(ill); 5345 if (ill->ill_refcnt != 0) { 5346 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5347 mutex_exit(&ill->ill_lock); 5348 return; 5349 } 5350 5351 /* Drops the ill_lock */ 5352 ipif_ill_refrele_tail(ill); 5353 } 5354 5355 /* 5356 * Obtain a weak reference count on the ill. This reference ensures the 5357 * ill won't be freed, but the ill may change any of its critical state 5358 * such as netmask, address etc. Returns an error if the ill has started 5359 * closing. 5360 */ 5361 boolean_t 5362 ill_waiter_inc(ill_t *ill) 5363 { 5364 mutex_enter(&ill->ill_lock); 5365 if (ill->ill_state_flags & ILL_CONDEMNED) { 5366 mutex_exit(&ill->ill_lock); 5367 return (B_FALSE); 5368 } 5369 ill->ill_waiters++; 5370 mutex_exit(&ill->ill_lock); 5371 return (B_TRUE); 5372 } 5373 5374 void 5375 ill_waiter_dcr(ill_t *ill) 5376 { 5377 mutex_enter(&ill->ill_lock); 5378 ill->ill_waiters--; 5379 if (ill->ill_waiters == 0) 5380 cv_broadcast(&ill->ill_cv); 5381 mutex_exit(&ill->ill_lock); 5382 } 5383 5384 /* 5385 * Named Dispatch routine to produce a formatted report on all ILLs. 5386 * This report is accessed by using the ndd utility to "get" ND variable 5387 * "ip_ill_status". 5388 */ 5389 /* ARGSUSED */ 5390 int 5391 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5392 { 5393 ill_t *ill; 5394 ill_walk_context_t ctx; 5395 ip_stack_t *ipst; 5396 5397 ipst = CONNQ_TO_IPST(q); 5398 5399 (void) mi_mpprintf(mp, 5400 "ILL " MI_COL_HDRPAD_STR 5401 /* 01234567[89ABCDEF] */ 5402 "rq " MI_COL_HDRPAD_STR 5403 /* 01234567[89ABCDEF] */ 5404 "wq " MI_COL_HDRPAD_STR 5405 /* 01234567[89ABCDEF] */ 5406 "upcnt mxfrg err name"); 5407 /* 12345 12345 123 xxxxxxxx */ 5408 5409 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5410 ill = ILL_START_WALK_ALL(&ctx, ipst); 5411 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5412 (void) mi_mpprintf(mp, 5413 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5414 "%05u %05u %03d %s", 5415 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5416 ill->ill_ipif_up_count, 5417 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5418 } 5419 rw_exit(&ipst->ips_ill_g_lock); 5420 5421 return (0); 5422 } 5423 5424 /* 5425 * Named Dispatch routine to produce a formatted report on all IPIFs. 5426 * This report is accessed by using the ndd utility to "get" ND variable 5427 * "ip_ipif_status". 5428 */ 5429 /* ARGSUSED */ 5430 int 5431 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5432 { 5433 char buf1[INET6_ADDRSTRLEN]; 5434 char buf2[INET6_ADDRSTRLEN]; 5435 char buf3[INET6_ADDRSTRLEN]; 5436 char buf4[INET6_ADDRSTRLEN]; 5437 char buf5[INET6_ADDRSTRLEN]; 5438 char buf6[INET6_ADDRSTRLEN]; 5439 char buf[LIFNAMSIZ]; 5440 ill_t *ill; 5441 ipif_t *ipif; 5442 nv_t *nvp; 5443 uint64_t flags; 5444 zoneid_t zoneid; 5445 ill_walk_context_t ctx; 5446 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5447 5448 (void) mi_mpprintf(mp, 5449 "IPIF metric mtu in/out/forward name zone flags...\n" 5450 "\tlocal address\n" 5451 "\tsrc address\n" 5452 "\tsubnet\n" 5453 "\tmask\n" 5454 "\tbroadcast\n" 5455 "\tp-p-dst"); 5456 5457 ASSERT(q->q_next == NULL); 5458 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5459 5460 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5461 ill = ILL_START_WALK_ALL(&ctx, ipst); 5462 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5463 for (ipif = ill->ill_ipif; ipif != NULL; 5464 ipif = ipif->ipif_next) { 5465 if (zoneid != GLOBAL_ZONEID && 5466 zoneid != ipif->ipif_zoneid && 5467 ipif->ipif_zoneid != ALL_ZONES) 5468 continue; 5469 5470 ipif_get_name(ipif, buf, sizeof (buf)); 5471 (void) mi_mpprintf(mp, 5472 MI_COL_PTRFMT_STR 5473 "%04u %05u %u/%u/%u %s %d", 5474 (void *)ipif, 5475 ipif->ipif_metric, ipif->ipif_mtu, 5476 ipif->ipif_ib_pkt_count, 5477 ipif->ipif_ob_pkt_count, 5478 ipif->ipif_fo_pkt_count, 5479 buf, 5480 ipif->ipif_zoneid); 5481 5482 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5483 ipif->ipif_ill->ill_phyint->phyint_flags; 5484 5485 /* Tack on text strings for any flags. */ 5486 nvp = ipif_nv_tbl; 5487 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5488 if (nvp->nv_value & flags) 5489 (void) mi_mpprintf_nr(mp, " %s", 5490 nvp->nv_name); 5491 } 5492 (void) mi_mpprintf(mp, 5493 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5494 inet_ntop(AF_INET6, 5495 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5496 inet_ntop(AF_INET6, 5497 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5498 inet_ntop(AF_INET6, 5499 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5500 inet_ntop(AF_INET6, 5501 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5502 inet_ntop(AF_INET6, 5503 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5504 inet_ntop(AF_INET6, 5505 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5506 } 5507 } 5508 rw_exit(&ipst->ips_ill_g_lock); 5509 return (0); 5510 } 5511 5512 /* 5513 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5514 * driver. We construct best guess defaults for lower level information that 5515 * we need. If an interface is brought up without injection of any overriding 5516 * information from outside, we have to be ready to go with these defaults. 5517 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5518 * we primarely want the dl_provider_style. 5519 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5520 * at which point we assume the other part of the information is valid. 5521 */ 5522 void 5523 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5524 { 5525 uchar_t *brdcst_addr; 5526 uint_t brdcst_addr_length, phys_addr_length; 5527 t_scalar_t sap_length; 5528 dl_info_ack_t *dlia; 5529 ip_m_t *ipm; 5530 dl_qos_cl_sel1_t *sel1; 5531 5532 ASSERT(IAM_WRITER_ILL(ill)); 5533 5534 /* 5535 * Till the ill is fully up ILL_CHANGING will be set and 5536 * the ill is not globally visible. So no need for a lock. 5537 */ 5538 dlia = (dl_info_ack_t *)mp->b_rptr; 5539 ill->ill_mactype = dlia->dl_mac_type; 5540 5541 ipm = ip_m_lookup(dlia->dl_mac_type); 5542 if (ipm == NULL) { 5543 ipm = ip_m_lookup(DL_OTHER); 5544 ASSERT(ipm != NULL); 5545 } 5546 ill->ill_media = ipm; 5547 5548 /* 5549 * When the new DLPI stuff is ready we'll pull lengths 5550 * from dlia. 5551 */ 5552 if (dlia->dl_version == DL_VERSION_2) { 5553 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5554 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5555 brdcst_addr_length); 5556 if (brdcst_addr == NULL) { 5557 brdcst_addr_length = 0; 5558 } 5559 sap_length = dlia->dl_sap_length; 5560 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5561 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5562 brdcst_addr_length, sap_length, phys_addr_length)); 5563 } else { 5564 brdcst_addr_length = 6; 5565 brdcst_addr = ip_six_byte_all_ones; 5566 sap_length = -2; 5567 phys_addr_length = brdcst_addr_length; 5568 } 5569 5570 ill->ill_bcast_addr_length = brdcst_addr_length; 5571 ill->ill_phys_addr_length = phys_addr_length; 5572 ill->ill_sap_length = sap_length; 5573 ill->ill_max_frag = dlia->dl_max_sdu; 5574 ill->ill_max_mtu = ill->ill_max_frag; 5575 5576 ill->ill_type = ipm->ip_m_type; 5577 5578 if (!ill->ill_dlpi_style_set) { 5579 if (dlia->dl_provider_style == DL_STYLE2) 5580 ill->ill_needs_attach = 1; 5581 5582 /* 5583 * Allocate the first ipif on this ill. We don't delay it 5584 * further as ioctl handling assumes atleast one ipif to 5585 * be present. 5586 * 5587 * At this point we don't know whether the ill is v4 or v6. 5588 * We will know this whan the SIOCSLIFNAME happens and 5589 * the correct value for ill_isv6 will be assigned in 5590 * ipif_set_values(). We need to hold the ill lock and 5591 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5592 * the wakeup. 5593 */ 5594 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5595 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5596 mutex_enter(&ill->ill_lock); 5597 ASSERT(ill->ill_dlpi_style_set == 0); 5598 ill->ill_dlpi_style_set = 1; 5599 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5600 cv_broadcast(&ill->ill_cv); 5601 mutex_exit(&ill->ill_lock); 5602 freemsg(mp); 5603 return; 5604 } 5605 ASSERT(ill->ill_ipif != NULL); 5606 /* 5607 * We know whether it is IPv4 or IPv6 now, as this is the 5608 * second DL_INFO_ACK we are recieving in response to the 5609 * DL_INFO_REQ sent in ipif_set_values. 5610 */ 5611 if (ill->ill_isv6) 5612 ill->ill_sap = IP6_DL_SAP; 5613 else 5614 ill->ill_sap = IP_DL_SAP; 5615 /* 5616 * Set ipif_mtu which is used to set the IRE's 5617 * ire_max_frag value. The driver could have sent 5618 * a different mtu from what it sent last time. No 5619 * need to call ipif_mtu_change because IREs have 5620 * not yet been created. 5621 */ 5622 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5623 /* 5624 * Clear all the flags that were set based on ill_bcast_addr_length 5625 * and ill_phys_addr_length (in ipif_set_values) as these could have 5626 * changed now and we need to re-evaluate. 5627 */ 5628 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5629 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5630 5631 /* 5632 * Free ill_resolver_mp and ill_bcast_mp as things could have 5633 * changed now. 5634 */ 5635 if (ill->ill_bcast_addr_length == 0) { 5636 if (ill->ill_resolver_mp != NULL) 5637 freemsg(ill->ill_resolver_mp); 5638 if (ill->ill_bcast_mp != NULL) 5639 freemsg(ill->ill_bcast_mp); 5640 if (ill->ill_flags & ILLF_XRESOLV) 5641 ill->ill_net_type = IRE_IF_RESOLVER; 5642 else 5643 ill->ill_net_type = IRE_IF_NORESOLVER; 5644 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5645 ill->ill_phys_addr_length, 5646 ill->ill_sap, 5647 ill->ill_sap_length); 5648 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5649 5650 if (ill->ill_isv6) 5651 /* 5652 * Note: xresolv interfaces will eventually need NOARP 5653 * set here as well, but that will require those 5654 * external resolvers to have some knowledge of 5655 * that flag and act appropriately. Not to be changed 5656 * at present. 5657 */ 5658 ill->ill_flags |= ILLF_NONUD; 5659 else 5660 ill->ill_flags |= ILLF_NOARP; 5661 5662 if (ill->ill_phys_addr_length == 0) { 5663 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5664 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5665 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5666 } else { 5667 /* pt-pt supports multicast. */ 5668 ill->ill_flags |= ILLF_MULTICAST; 5669 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5670 } 5671 } 5672 } else { 5673 ill->ill_net_type = IRE_IF_RESOLVER; 5674 if (ill->ill_bcast_mp != NULL) 5675 freemsg(ill->ill_bcast_mp); 5676 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5677 ill->ill_bcast_addr_length, ill->ill_sap, 5678 ill->ill_sap_length); 5679 /* 5680 * Later detect lack of DLPI driver multicast 5681 * capability by catching DL_ENABMULTI errors in 5682 * ip_rput_dlpi. 5683 */ 5684 ill->ill_flags |= ILLF_MULTICAST; 5685 if (!ill->ill_isv6) 5686 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5687 } 5688 /* By default an interface does not support any CoS marking */ 5689 ill->ill_flags &= ~ILLF_COS_ENABLED; 5690 5691 /* 5692 * If we get QoS information in DL_INFO_ACK, the device supports 5693 * some form of CoS marking, set ILLF_COS_ENABLED. 5694 */ 5695 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5696 dlia->dl_qos_length); 5697 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5698 ill->ill_flags |= ILLF_COS_ENABLED; 5699 } 5700 5701 /* Clear any previous error indication. */ 5702 ill->ill_error = 0; 5703 freemsg(mp); 5704 } 5705 5706 /* 5707 * Perform various checks to verify that an address would make sense as a 5708 * local, remote, or subnet interface address. 5709 */ 5710 static boolean_t 5711 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5712 { 5713 ipaddr_t net_mask; 5714 5715 /* 5716 * Don't allow all zeroes, or all ones, but allow 5717 * all ones netmask. 5718 */ 5719 if ((net_mask = ip_net_mask(addr)) == 0) 5720 return (B_FALSE); 5721 /* A given netmask overrides the "guess" netmask */ 5722 if (subnet_mask != 0) 5723 net_mask = subnet_mask; 5724 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5725 (addr == (addr | ~net_mask)))) { 5726 return (B_FALSE); 5727 } 5728 5729 /* 5730 * Even if the netmask is all ones, we do not allow address to be 5731 * 255.255.255.255 5732 */ 5733 if (addr == INADDR_BROADCAST) 5734 return (B_FALSE); 5735 5736 if (CLASSD(addr)) 5737 return (B_FALSE); 5738 5739 return (B_TRUE); 5740 } 5741 5742 #define V6_IPIF_LINKLOCAL(p) \ 5743 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5744 5745 /* 5746 * Compare two given ipifs and check if the second one is better than 5747 * the first one using the order of preference (not taking deprecated 5748 * into acount) specified in ipif_lookup_multicast(). 5749 */ 5750 static boolean_t 5751 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5752 { 5753 /* Check the least preferred first. */ 5754 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5755 /* If both ipifs are the same, use the first one. */ 5756 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5757 return (B_FALSE); 5758 else 5759 return (B_TRUE); 5760 } 5761 5762 /* For IPv6, check for link local address. */ 5763 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5764 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5765 V6_IPIF_LINKLOCAL(new_ipif)) { 5766 /* The second one is equal or less preferred. */ 5767 return (B_FALSE); 5768 } else { 5769 return (B_TRUE); 5770 } 5771 } 5772 5773 /* Then check for point to point interface. */ 5774 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5775 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5776 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5777 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5778 return (B_FALSE); 5779 } else { 5780 return (B_TRUE); 5781 } 5782 } 5783 5784 /* old_ipif is a normal interface, so no need to use the new one. */ 5785 return (B_FALSE); 5786 } 5787 5788 /* 5789 * Find any non-virtual, not condemned, and up multicast capable interface 5790 * given an IP instance and zoneid. Order of preference is: 5791 * 5792 * 1. normal 5793 * 1.1 normal, but deprecated 5794 * 2. point to point 5795 * 2.1 point to point, but deprecated 5796 * 3. link local 5797 * 3.1 link local, but deprecated 5798 * 4. loopback. 5799 */ 5800 ipif_t * 5801 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5802 { 5803 ill_t *ill; 5804 ill_walk_context_t ctx; 5805 ipif_t *ipif; 5806 ipif_t *saved_ipif = NULL; 5807 ipif_t *dep_ipif = NULL; 5808 5809 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5810 if (isv6) 5811 ill = ILL_START_WALK_V6(&ctx, ipst); 5812 else 5813 ill = ILL_START_WALK_V4(&ctx, ipst); 5814 5815 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5816 mutex_enter(&ill->ill_lock); 5817 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5818 !(ill->ill_flags & ILLF_MULTICAST)) { 5819 mutex_exit(&ill->ill_lock); 5820 continue; 5821 } 5822 for (ipif = ill->ill_ipif; ipif != NULL; 5823 ipif = ipif->ipif_next) { 5824 if (zoneid != ipif->ipif_zoneid && 5825 zoneid != ALL_ZONES && 5826 ipif->ipif_zoneid != ALL_ZONES) { 5827 continue; 5828 } 5829 if (!(ipif->ipif_flags & IPIF_UP) || 5830 !IPIF_CAN_LOOKUP(ipif)) { 5831 continue; 5832 } 5833 5834 /* 5835 * Found one candidate. If it is deprecated, 5836 * remember it in dep_ipif. If it is not deprecated, 5837 * remember it in saved_ipif. 5838 */ 5839 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5840 if (dep_ipif == NULL) { 5841 dep_ipif = ipif; 5842 } else if (ipif_comp_multi(dep_ipif, ipif, 5843 isv6)) { 5844 /* 5845 * If the previous dep_ipif does not 5846 * belong to the same ill, we've done 5847 * a ipif_refhold() on it. So we need 5848 * to release it. 5849 */ 5850 if (dep_ipif->ipif_ill != ill) 5851 ipif_refrele(dep_ipif); 5852 dep_ipif = ipif; 5853 } 5854 continue; 5855 } 5856 if (saved_ipif == NULL) { 5857 saved_ipif = ipif; 5858 } else { 5859 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5860 if (saved_ipif->ipif_ill != ill) 5861 ipif_refrele(saved_ipif); 5862 saved_ipif = ipif; 5863 } 5864 } 5865 } 5866 /* 5867 * Before going to the next ill, do a ipif_refhold() on the 5868 * saved ones. 5869 */ 5870 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5871 ipif_refhold_locked(saved_ipif); 5872 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5873 ipif_refhold_locked(dep_ipif); 5874 mutex_exit(&ill->ill_lock); 5875 } 5876 rw_exit(&ipst->ips_ill_g_lock); 5877 5878 /* 5879 * If we have only the saved_ipif, return it. But if we have both 5880 * saved_ipif and dep_ipif, check to see which one is better. 5881 */ 5882 if (saved_ipif != NULL) { 5883 if (dep_ipif != NULL) { 5884 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5885 ipif_refrele(saved_ipif); 5886 return (dep_ipif); 5887 } else { 5888 ipif_refrele(dep_ipif); 5889 return (saved_ipif); 5890 } 5891 } 5892 return (saved_ipif); 5893 } else { 5894 return (dep_ipif); 5895 } 5896 } 5897 5898 /* 5899 * This function is called when an application does not specify an interface 5900 * to be used for multicast traffic (joining a group/sending data). It 5901 * calls ire_lookup_multi() to look for an interface route for the 5902 * specified multicast group. Doing this allows the administrator to add 5903 * prefix routes for multicast to indicate which interface to be used for 5904 * multicast traffic in the above scenario. The route could be for all 5905 * multicast (224.0/4), for a single multicast group (a /32 route) or 5906 * anything in between. If there is no such multicast route, we just find 5907 * any multicast capable interface and return it. The returned ipif 5908 * is refhold'ed. 5909 */ 5910 ipif_t * 5911 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5912 { 5913 ire_t *ire; 5914 ipif_t *ipif; 5915 5916 ire = ire_lookup_multi(group, zoneid, ipst); 5917 if (ire != NULL) { 5918 ipif = ire->ire_ipif; 5919 ipif_refhold(ipif); 5920 ire_refrele(ire); 5921 return (ipif); 5922 } 5923 5924 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5925 } 5926 5927 /* 5928 * Look for an ipif with the specified interface address and destination. 5929 * The destination address is used only for matching point-to-point interfaces. 5930 */ 5931 ipif_t * 5932 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5933 ipsq_func_t func, int *error, ip_stack_t *ipst) 5934 { 5935 ipif_t *ipif; 5936 ill_t *ill; 5937 ill_walk_context_t ctx; 5938 ipsq_t *ipsq; 5939 5940 if (error != NULL) 5941 *error = 0; 5942 5943 /* 5944 * First match all the point-to-point interfaces 5945 * before looking at non-point-to-point interfaces. 5946 * This is done to avoid returning non-point-to-point 5947 * ipif instead of unnumbered point-to-point ipif. 5948 */ 5949 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5950 ill = ILL_START_WALK_V4(&ctx, ipst); 5951 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5952 GRAB_CONN_LOCK(q); 5953 mutex_enter(&ill->ill_lock); 5954 for (ipif = ill->ill_ipif; ipif != NULL; 5955 ipif = ipif->ipif_next) { 5956 /* Allow the ipif to be down */ 5957 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5958 (ipif->ipif_lcl_addr == if_addr) && 5959 (ipif->ipif_pp_dst_addr == dst)) { 5960 /* 5961 * The block comment at the start of ipif_down 5962 * explains the use of the macros used below 5963 */ 5964 if (IPIF_CAN_LOOKUP(ipif)) { 5965 ipif_refhold_locked(ipif); 5966 mutex_exit(&ill->ill_lock); 5967 RELEASE_CONN_LOCK(q); 5968 rw_exit(&ipst->ips_ill_g_lock); 5969 return (ipif); 5970 } else if (IPIF_CAN_WAIT(ipif, q)) { 5971 ipsq = ill->ill_phyint->phyint_ipsq; 5972 mutex_enter(&ipsq->ipsq_lock); 5973 mutex_exit(&ill->ill_lock); 5974 rw_exit(&ipst->ips_ill_g_lock); 5975 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5976 ill); 5977 mutex_exit(&ipsq->ipsq_lock); 5978 RELEASE_CONN_LOCK(q); 5979 if (error != NULL) 5980 *error = EINPROGRESS; 5981 return (NULL); 5982 } 5983 } 5984 } 5985 mutex_exit(&ill->ill_lock); 5986 RELEASE_CONN_LOCK(q); 5987 } 5988 rw_exit(&ipst->ips_ill_g_lock); 5989 5990 /* lookup the ipif based on interface address */ 5991 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5992 ipst); 5993 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5994 return (ipif); 5995 } 5996 5997 /* 5998 * Look for an ipif with the specified address. For point-point links 5999 * we look for matches on either the destination address and the local 6000 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6001 * is set. 6002 * Matches on a specific ill if match_ill is set. 6003 */ 6004 ipif_t * 6005 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6006 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6007 { 6008 ipif_t *ipif; 6009 ill_t *ill; 6010 boolean_t ptp = B_FALSE; 6011 ipsq_t *ipsq; 6012 ill_walk_context_t ctx; 6013 6014 if (error != NULL) 6015 *error = 0; 6016 6017 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6018 /* 6019 * Repeat twice, first based on local addresses and 6020 * next time for pointopoint. 6021 */ 6022 repeat: 6023 ill = ILL_START_WALK_V4(&ctx, ipst); 6024 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6025 if (match_ill != NULL && ill != match_ill) { 6026 continue; 6027 } 6028 GRAB_CONN_LOCK(q); 6029 mutex_enter(&ill->ill_lock); 6030 for (ipif = ill->ill_ipif; ipif != NULL; 6031 ipif = ipif->ipif_next) { 6032 if (zoneid != ALL_ZONES && 6033 zoneid != ipif->ipif_zoneid && 6034 ipif->ipif_zoneid != ALL_ZONES) 6035 continue; 6036 /* Allow the ipif to be down */ 6037 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6038 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6039 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6040 (ipif->ipif_pp_dst_addr == addr))) { 6041 /* 6042 * The block comment at the start of ipif_down 6043 * explains the use of the macros used below 6044 */ 6045 if (IPIF_CAN_LOOKUP(ipif)) { 6046 ipif_refhold_locked(ipif); 6047 mutex_exit(&ill->ill_lock); 6048 RELEASE_CONN_LOCK(q); 6049 rw_exit(&ipst->ips_ill_g_lock); 6050 return (ipif); 6051 } else if (IPIF_CAN_WAIT(ipif, q)) { 6052 ipsq = ill->ill_phyint->phyint_ipsq; 6053 mutex_enter(&ipsq->ipsq_lock); 6054 mutex_exit(&ill->ill_lock); 6055 rw_exit(&ipst->ips_ill_g_lock); 6056 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6057 ill); 6058 mutex_exit(&ipsq->ipsq_lock); 6059 RELEASE_CONN_LOCK(q); 6060 if (error != NULL) 6061 *error = EINPROGRESS; 6062 return (NULL); 6063 } 6064 } 6065 } 6066 mutex_exit(&ill->ill_lock); 6067 RELEASE_CONN_LOCK(q); 6068 } 6069 6070 /* If we already did the ptp case, then we are done */ 6071 if (ptp) { 6072 rw_exit(&ipst->ips_ill_g_lock); 6073 if (error != NULL) 6074 *error = ENXIO; 6075 return (NULL); 6076 } 6077 ptp = B_TRUE; 6078 goto repeat; 6079 } 6080 6081 /* 6082 * Look for an ipif with the specified address. For point-point links 6083 * we look for matches on either the destination address and the local 6084 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6085 * is set. 6086 * Matches on a specific ill if match_ill is set. 6087 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6088 */ 6089 zoneid_t 6090 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6091 { 6092 zoneid_t zoneid; 6093 ipif_t *ipif; 6094 ill_t *ill; 6095 boolean_t ptp = B_FALSE; 6096 ill_walk_context_t ctx; 6097 6098 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6099 /* 6100 * Repeat twice, first based on local addresses and 6101 * next time for pointopoint. 6102 */ 6103 repeat: 6104 ill = ILL_START_WALK_V4(&ctx, ipst); 6105 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6106 if (match_ill != NULL && ill != match_ill) { 6107 continue; 6108 } 6109 mutex_enter(&ill->ill_lock); 6110 for (ipif = ill->ill_ipif; ipif != NULL; 6111 ipif = ipif->ipif_next) { 6112 /* Allow the ipif to be down */ 6113 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6114 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6115 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6116 (ipif->ipif_pp_dst_addr == addr)) && 6117 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6118 zoneid = ipif->ipif_zoneid; 6119 mutex_exit(&ill->ill_lock); 6120 rw_exit(&ipst->ips_ill_g_lock); 6121 /* 6122 * If ipif_zoneid was ALL_ZONES then we have 6123 * a trusted extensions shared IP address. 6124 * In that case GLOBAL_ZONEID works to send. 6125 */ 6126 if (zoneid == ALL_ZONES) 6127 zoneid = GLOBAL_ZONEID; 6128 return (zoneid); 6129 } 6130 } 6131 mutex_exit(&ill->ill_lock); 6132 } 6133 6134 /* If we already did the ptp case, then we are done */ 6135 if (ptp) { 6136 rw_exit(&ipst->ips_ill_g_lock); 6137 return (ALL_ZONES); 6138 } 6139 ptp = B_TRUE; 6140 goto repeat; 6141 } 6142 6143 /* 6144 * Look for an ipif that matches the specified remote address i.e. the 6145 * ipif that would receive the specified packet. 6146 * First look for directly connected interfaces and then do a recursive 6147 * IRE lookup and pick the first ipif corresponding to the source address in the 6148 * ire. 6149 * Returns: held ipif 6150 */ 6151 ipif_t * 6152 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6153 { 6154 ipif_t *ipif; 6155 ire_t *ire; 6156 ip_stack_t *ipst = ill->ill_ipst; 6157 6158 ASSERT(!ill->ill_isv6); 6159 6160 /* 6161 * Someone could be changing this ipif currently or change it 6162 * after we return this. Thus a few packets could use the old 6163 * old values. However structure updates/creates (ire, ilg, ilm etc) 6164 * will atomically be updated or cleaned up with the new value 6165 * Thus we don't need a lock to check the flags or other attrs below. 6166 */ 6167 mutex_enter(&ill->ill_lock); 6168 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6169 if (!IPIF_CAN_LOOKUP(ipif)) 6170 continue; 6171 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6172 ipif->ipif_zoneid != ALL_ZONES) 6173 continue; 6174 /* Allow the ipif to be down */ 6175 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6176 if ((ipif->ipif_pp_dst_addr == addr) || 6177 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6178 ipif->ipif_lcl_addr == addr)) { 6179 ipif_refhold_locked(ipif); 6180 mutex_exit(&ill->ill_lock); 6181 return (ipif); 6182 } 6183 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6184 ipif_refhold_locked(ipif); 6185 mutex_exit(&ill->ill_lock); 6186 return (ipif); 6187 } 6188 } 6189 mutex_exit(&ill->ill_lock); 6190 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6191 NULL, MATCH_IRE_RECURSIVE, ipst); 6192 if (ire != NULL) { 6193 /* 6194 * The callers of this function wants to know the 6195 * interface on which they have to send the replies 6196 * back. For IRE_CACHES that have ire_stq and ire_ipif 6197 * derived from different ills, we really don't care 6198 * what we return here. 6199 */ 6200 ipif = ire->ire_ipif; 6201 if (ipif != NULL) { 6202 ipif_refhold(ipif); 6203 ire_refrele(ire); 6204 return (ipif); 6205 } 6206 ire_refrele(ire); 6207 } 6208 /* Pick the first interface */ 6209 ipif = ipif_get_next_ipif(NULL, ill); 6210 return (ipif); 6211 } 6212 6213 /* 6214 * This func does not prevent refcnt from increasing. But if 6215 * the caller has taken steps to that effect, then this func 6216 * can be used to determine whether the ill has become quiescent 6217 */ 6218 static boolean_t 6219 ill_is_quiescent(ill_t *ill) 6220 { 6221 ipif_t *ipif; 6222 6223 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6224 6225 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6226 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6227 return (B_FALSE); 6228 } 6229 } 6230 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6231 return (B_FALSE); 6232 } 6233 return (B_TRUE); 6234 } 6235 6236 boolean_t 6237 ill_is_freeable(ill_t *ill) 6238 { 6239 ipif_t *ipif; 6240 6241 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6242 6243 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6244 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6245 return (B_FALSE); 6246 } 6247 } 6248 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6249 return (B_FALSE); 6250 } 6251 return (B_TRUE); 6252 } 6253 6254 /* 6255 * This func does not prevent refcnt from increasing. But if 6256 * the caller has taken steps to that effect, then this func 6257 * can be used to determine whether the ipif has become quiescent 6258 */ 6259 static boolean_t 6260 ipif_is_quiescent(ipif_t *ipif) 6261 { 6262 ill_t *ill; 6263 6264 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6265 6266 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6267 return (B_FALSE); 6268 } 6269 6270 ill = ipif->ipif_ill; 6271 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6272 ill->ill_logical_down) { 6273 return (B_TRUE); 6274 } 6275 6276 /* This is the last ipif going down or being deleted on this ill */ 6277 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6278 return (B_FALSE); 6279 } 6280 6281 return (B_TRUE); 6282 } 6283 6284 /* 6285 * return true if the ipif can be destroyed: the ipif has to be quiescent 6286 * with zero references from ire/nce/ilm to it. 6287 */ 6288 static boolean_t 6289 ipif_is_freeable(ipif_t *ipif) 6290 { 6291 6292 ill_t *ill; 6293 6294 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6295 6296 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6297 return (B_FALSE); 6298 } 6299 6300 ill = ipif->ipif_ill; 6301 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6302 ill->ill_logical_down) { 6303 return (B_TRUE); 6304 } 6305 6306 /* This is the last ipif going down or being deleted on this ill */ 6307 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6308 return (B_FALSE); 6309 } 6310 6311 return (B_TRUE); 6312 } 6313 6314 /* 6315 * This func does not prevent refcnt from increasing. But if 6316 * the caller has taken steps to that effect, then this func 6317 * can be used to determine whether the ipifs marked with IPIF_MOVING 6318 * have become quiescent and can be moved in a failover/failback. 6319 */ 6320 static ipif_t * 6321 ill_quiescent_to_move(ill_t *ill) 6322 { 6323 ipif_t *ipif; 6324 6325 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6326 6327 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6328 if (ipif->ipif_state_flags & IPIF_MOVING) { 6329 if (ipif->ipif_refcnt != 0 || 6330 !IPIF_DOWN_OK(ipif)) { 6331 return (ipif); 6332 } 6333 } 6334 } 6335 return (NULL); 6336 } 6337 6338 /* 6339 * The ipif/ill/ire has been refreled. Do the tail processing. 6340 * Determine if the ipif or ill in question has become quiescent and if so 6341 * wakeup close and/or restart any queued pending ioctl that is waiting 6342 * for the ipif_down (or ill_down) 6343 */ 6344 void 6345 ipif_ill_refrele_tail(ill_t *ill) 6346 { 6347 mblk_t *mp; 6348 conn_t *connp; 6349 ipsq_t *ipsq; 6350 ipif_t *ipif; 6351 dl_notify_ind_t *dlindp; 6352 6353 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6354 6355 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6356 ill_is_freeable(ill)) { 6357 /* ill_close may be waiting */ 6358 cv_broadcast(&ill->ill_cv); 6359 } 6360 6361 /* ipsq can't change because ill_lock is held */ 6362 ipsq = ill->ill_phyint->phyint_ipsq; 6363 if (ipsq->ipsq_waitfor == 0) { 6364 /* Not waiting for anything, just return. */ 6365 mutex_exit(&ill->ill_lock); 6366 return; 6367 } 6368 ASSERT(ipsq->ipsq_pending_mp != NULL && 6369 ipsq->ipsq_pending_ipif != NULL); 6370 /* 6371 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6372 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6373 * be zero for restarting an ioctl that ends up downing the ill. 6374 */ 6375 ipif = ipsq->ipsq_pending_ipif; 6376 if (ipif->ipif_ill != ill) { 6377 /* The ioctl is pending on some other ill. */ 6378 mutex_exit(&ill->ill_lock); 6379 return; 6380 } 6381 6382 switch (ipsq->ipsq_waitfor) { 6383 case IPIF_DOWN: 6384 if (!ipif_is_quiescent(ipif)) { 6385 mutex_exit(&ill->ill_lock); 6386 return; 6387 } 6388 break; 6389 case IPIF_FREE: 6390 if (!ipif_is_freeable(ipif)) { 6391 mutex_exit(&ill->ill_lock); 6392 return; 6393 } 6394 break; 6395 6396 case ILL_DOWN: 6397 if (!ill_is_quiescent(ill)) { 6398 mutex_exit(&ill->ill_lock); 6399 return; 6400 } 6401 break; 6402 case ILL_FREE: 6403 /* 6404 * case ILL_FREE arises only for loopback. otherwise ill_delete 6405 * waits synchronously in ip_close, and no message is queued in 6406 * ipsq_pending_mp at all in this case 6407 */ 6408 if (!ill_is_freeable(ill)) { 6409 mutex_exit(&ill->ill_lock); 6410 return; 6411 } 6412 break; 6413 6414 case ILL_MOVE_OK: 6415 if (ill_quiescent_to_move(ill) != NULL) { 6416 mutex_exit(&ill->ill_lock); 6417 return; 6418 } 6419 break; 6420 default: 6421 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6422 (void *)ipsq, ipsq->ipsq_waitfor); 6423 } 6424 6425 /* 6426 * Incr refcnt for the qwriter_ip call below which 6427 * does a refrele 6428 */ 6429 ill_refhold_locked(ill); 6430 mp = ipsq_pending_mp_get(ipsq, &connp); 6431 mutex_exit(&ill->ill_lock); 6432 6433 ASSERT(mp != NULL); 6434 /* 6435 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6436 * we can only get here when the current operation decides it 6437 * it needs to quiesce via ipsq_pending_mp_add(). 6438 */ 6439 switch (mp->b_datap->db_type) { 6440 case M_PCPROTO: 6441 case M_PROTO: 6442 /* 6443 * For now, only DL_NOTIFY_IND messages can use this facility. 6444 */ 6445 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6446 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6447 6448 switch (dlindp->dl_notification) { 6449 case DL_NOTE_PHYS_ADDR: 6450 qwriter_ip(ill, ill->ill_rq, mp, 6451 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6452 return; 6453 default: 6454 ASSERT(0); 6455 } 6456 break; 6457 6458 case M_ERROR: 6459 case M_HANGUP: 6460 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6461 B_TRUE); 6462 return; 6463 6464 case M_IOCTL: 6465 case M_IOCDATA: 6466 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6467 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6468 return; 6469 6470 default: 6471 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6472 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6473 } 6474 } 6475 6476 #ifdef DEBUG 6477 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6478 static void 6479 th_trace_rrecord(th_trace_t *th_trace) 6480 { 6481 tr_buf_t *tr_buf; 6482 uint_t lastref; 6483 6484 lastref = th_trace->th_trace_lastref; 6485 lastref++; 6486 if (lastref == TR_BUF_MAX) 6487 lastref = 0; 6488 th_trace->th_trace_lastref = lastref; 6489 tr_buf = &th_trace->th_trbuf[lastref]; 6490 tr_buf->tr_time = lbolt; 6491 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6492 } 6493 6494 static void 6495 th_trace_free(void *value) 6496 { 6497 th_trace_t *th_trace = value; 6498 6499 ASSERT(th_trace->th_refcnt == 0); 6500 kmem_free(th_trace, sizeof (*th_trace)); 6501 } 6502 6503 /* 6504 * Find or create the per-thread hash table used to track object references. 6505 * The ipst argument is NULL if we shouldn't allocate. 6506 * 6507 * Accesses per-thread data, so there's no need to lock here. 6508 */ 6509 static mod_hash_t * 6510 th_trace_gethash(ip_stack_t *ipst) 6511 { 6512 th_hash_t *thh; 6513 6514 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6515 mod_hash_t *mh; 6516 char name[256]; 6517 size_t objsize, rshift; 6518 int retv; 6519 6520 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6521 return (NULL); 6522 (void) snprintf(name, sizeof (name), "th_trace_%p", curthread); 6523 6524 /* 6525 * We use mod_hash_create_extended here rather than the more 6526 * obvious mod_hash_create_ptrhash because the latter has a 6527 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6528 * block. 6529 */ 6530 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6531 MAX(sizeof (ire_t), sizeof (nce_t))); 6532 rshift = highbit(objsize); 6533 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6534 th_trace_free, mod_hash_byptr, (void *)rshift, 6535 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6536 if (mh == NULL) { 6537 kmem_free(thh, sizeof (*thh)); 6538 return (NULL); 6539 } 6540 thh->thh_hash = mh; 6541 thh->thh_ipst = ipst; 6542 /* 6543 * We trace ills, ipifs, ires, and nces. All of these are 6544 * per-IP-stack, so the lock on the thread list is as well. 6545 */ 6546 rw_enter(&ip_thread_rwlock, RW_WRITER); 6547 list_insert_tail(&ip_thread_list, thh); 6548 rw_exit(&ip_thread_rwlock); 6549 retv = tsd_set(ip_thread_data, thh); 6550 ASSERT(retv == 0); 6551 } 6552 return (thh != NULL ? thh->thh_hash : NULL); 6553 } 6554 6555 boolean_t 6556 th_trace_ref(const void *obj, ip_stack_t *ipst) 6557 { 6558 th_trace_t *th_trace; 6559 mod_hash_t *mh; 6560 mod_hash_val_t val; 6561 6562 if ((mh = th_trace_gethash(ipst)) == NULL) 6563 return (B_FALSE); 6564 6565 /* 6566 * Attempt to locate the trace buffer for this obj and thread. 6567 * If it does not exist, then allocate a new trace buffer and 6568 * insert into the hash. 6569 */ 6570 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6571 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6572 if (th_trace == NULL) 6573 return (B_FALSE); 6574 6575 th_trace->th_id = curthread; 6576 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6577 (mod_hash_val_t)th_trace) != 0) { 6578 kmem_free(th_trace, sizeof (th_trace_t)); 6579 return (B_FALSE); 6580 } 6581 } else { 6582 th_trace = (th_trace_t *)val; 6583 } 6584 6585 ASSERT(th_trace->th_refcnt >= 0 && 6586 th_trace->th_refcnt < TR_BUF_MAX - 1); 6587 6588 th_trace->th_refcnt++; 6589 th_trace_rrecord(th_trace); 6590 return (B_TRUE); 6591 } 6592 6593 /* 6594 * For the purpose of tracing a reference release, we assume that global 6595 * tracing is always on and that the same thread initiated the reference hold 6596 * is releasing. 6597 */ 6598 void 6599 th_trace_unref(const void *obj) 6600 { 6601 int retv; 6602 mod_hash_t *mh; 6603 th_trace_t *th_trace; 6604 mod_hash_val_t val; 6605 6606 mh = th_trace_gethash(NULL); 6607 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6608 ASSERT(retv == 0); 6609 th_trace = (th_trace_t *)val; 6610 6611 ASSERT(th_trace->th_refcnt > 0); 6612 th_trace->th_refcnt--; 6613 th_trace_rrecord(th_trace); 6614 } 6615 6616 /* 6617 * If tracing has been disabled, then we assume that the reference counts are 6618 * now useless, and we clear them out before destroying the entries. 6619 */ 6620 void 6621 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6622 { 6623 th_hash_t *thh; 6624 mod_hash_t *mh; 6625 mod_hash_val_t val; 6626 th_trace_t *th_trace; 6627 int retv; 6628 6629 rw_enter(&ip_thread_rwlock, RW_READER); 6630 for (thh = list_head(&ip_thread_list); thh != NULL; 6631 thh = list_next(&ip_thread_list, thh)) { 6632 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6633 &val) == 0) { 6634 th_trace = (th_trace_t *)val; 6635 if (trace_disable) 6636 th_trace->th_refcnt = 0; 6637 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6638 ASSERT(retv == 0); 6639 } 6640 } 6641 rw_exit(&ip_thread_rwlock); 6642 } 6643 6644 void 6645 ipif_trace_ref(ipif_t *ipif) 6646 { 6647 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6648 6649 if (ipif->ipif_trace_disable) 6650 return; 6651 6652 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6653 ipif->ipif_trace_disable = B_TRUE; 6654 ipif_trace_cleanup(ipif); 6655 } 6656 } 6657 6658 void 6659 ipif_untrace_ref(ipif_t *ipif) 6660 { 6661 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6662 6663 if (!ipif->ipif_trace_disable) 6664 th_trace_unref(ipif); 6665 } 6666 6667 void 6668 ill_trace_ref(ill_t *ill) 6669 { 6670 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6671 6672 if (ill->ill_trace_disable) 6673 return; 6674 6675 if (!th_trace_ref(ill, ill->ill_ipst)) { 6676 ill->ill_trace_disable = B_TRUE; 6677 ill_trace_cleanup(ill); 6678 } 6679 } 6680 6681 void 6682 ill_untrace_ref(ill_t *ill) 6683 { 6684 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6685 6686 if (!ill->ill_trace_disable) 6687 th_trace_unref(ill); 6688 } 6689 6690 /* 6691 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6692 * failure, ipif_trace_disable is set. 6693 */ 6694 static void 6695 ipif_trace_cleanup(const ipif_t *ipif) 6696 { 6697 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6698 } 6699 6700 /* 6701 * Called when ill is unplumbed or when memory alloc fails. Note that on 6702 * failure, ill_trace_disable is set. 6703 */ 6704 static void 6705 ill_trace_cleanup(const ill_t *ill) 6706 { 6707 th_trace_cleanup(ill, ill->ill_trace_disable); 6708 } 6709 #endif /* DEBUG */ 6710 6711 void 6712 ipif_refhold_locked(ipif_t *ipif) 6713 { 6714 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6715 ipif->ipif_refcnt++; 6716 IPIF_TRACE_REF(ipif); 6717 } 6718 6719 void 6720 ipif_refhold(ipif_t *ipif) 6721 { 6722 ill_t *ill; 6723 6724 ill = ipif->ipif_ill; 6725 mutex_enter(&ill->ill_lock); 6726 ipif->ipif_refcnt++; 6727 IPIF_TRACE_REF(ipif); 6728 mutex_exit(&ill->ill_lock); 6729 } 6730 6731 /* 6732 * Must not be called while holding any locks. Otherwise if this is 6733 * the last reference to be released there is a chance of recursive mutex 6734 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6735 * to restart an ioctl. 6736 */ 6737 void 6738 ipif_refrele(ipif_t *ipif) 6739 { 6740 ill_t *ill; 6741 6742 ill = ipif->ipif_ill; 6743 6744 mutex_enter(&ill->ill_lock); 6745 ASSERT(ipif->ipif_refcnt != 0); 6746 ipif->ipif_refcnt--; 6747 IPIF_UNTRACE_REF(ipif); 6748 if (ipif->ipif_refcnt != 0) { 6749 mutex_exit(&ill->ill_lock); 6750 return; 6751 } 6752 6753 /* Drops the ill_lock */ 6754 ipif_ill_refrele_tail(ill); 6755 } 6756 6757 ipif_t * 6758 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6759 { 6760 ipif_t *ipif; 6761 6762 mutex_enter(&ill->ill_lock); 6763 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6764 ipif != NULL; ipif = ipif->ipif_next) { 6765 if (!IPIF_CAN_LOOKUP(ipif)) 6766 continue; 6767 ipif_refhold_locked(ipif); 6768 mutex_exit(&ill->ill_lock); 6769 return (ipif); 6770 } 6771 mutex_exit(&ill->ill_lock); 6772 return (NULL); 6773 } 6774 6775 /* 6776 * TODO: make this table extendible at run time 6777 * Return a pointer to the mac type info for 'mac_type' 6778 */ 6779 static ip_m_t * 6780 ip_m_lookup(t_uscalar_t mac_type) 6781 { 6782 ip_m_t *ipm; 6783 6784 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6785 if (ipm->ip_m_mac_type == mac_type) 6786 return (ipm); 6787 return (NULL); 6788 } 6789 6790 /* 6791 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6792 * ipif_arg is passed in to associate it with the correct interface. 6793 * We may need to restart this operation if the ipif cannot be looked up 6794 * due to an exclusive operation that is currently in progress. The restart 6795 * entry point is specified by 'func' 6796 */ 6797 int 6798 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6799 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6800 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6801 struct rtsa_s *sp, ip_stack_t *ipst) 6802 { 6803 ire_t *ire; 6804 ire_t *gw_ire = NULL; 6805 ipif_t *ipif = NULL; 6806 boolean_t ipif_refheld = B_FALSE; 6807 uint_t type; 6808 int match_flags = MATCH_IRE_TYPE; 6809 int error; 6810 tsol_gc_t *gc = NULL; 6811 tsol_gcgrp_t *gcgrp = NULL; 6812 boolean_t gcgrp_xtraref = B_FALSE; 6813 6814 ip1dbg(("ip_rt_add:")); 6815 6816 if (ire_arg != NULL) 6817 *ire_arg = NULL; 6818 6819 /* 6820 * If this is the case of RTF_HOST being set, then we set the netmask 6821 * to all ones (regardless if one was supplied). 6822 */ 6823 if (flags & RTF_HOST) 6824 mask = IP_HOST_MASK; 6825 6826 /* 6827 * Prevent routes with a zero gateway from being created (since 6828 * interfaces can currently be plumbed and brought up no assigned 6829 * address). 6830 */ 6831 if (gw_addr == 0) 6832 return (ENETUNREACH); 6833 /* 6834 * Get the ipif, if any, corresponding to the gw_addr 6835 */ 6836 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6837 ipst); 6838 if (ipif != NULL) { 6839 if (IS_VNI(ipif->ipif_ill)) { 6840 ipif_refrele(ipif); 6841 return (EINVAL); 6842 } 6843 ipif_refheld = B_TRUE; 6844 } else if (error == EINPROGRESS) { 6845 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6846 return (EINPROGRESS); 6847 } else { 6848 error = 0; 6849 } 6850 6851 if (ipif != NULL) { 6852 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6853 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6854 } else { 6855 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6856 } 6857 6858 /* 6859 * GateD will attempt to create routes with a loopback interface 6860 * address as the gateway and with RTF_GATEWAY set. We allow 6861 * these routes to be added, but create them as interface routes 6862 * since the gateway is an interface address. 6863 */ 6864 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6865 flags &= ~RTF_GATEWAY; 6866 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6867 mask == IP_HOST_MASK) { 6868 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6869 ALL_ZONES, NULL, match_flags, ipst); 6870 if (ire != NULL) { 6871 ire_refrele(ire); 6872 if (ipif_refheld) 6873 ipif_refrele(ipif); 6874 return (EEXIST); 6875 } 6876 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6877 "for 0x%x\n", (void *)ipif, 6878 ipif->ipif_ire_type, 6879 ntohl(ipif->ipif_lcl_addr))); 6880 ire = ire_create( 6881 (uchar_t *)&dst_addr, /* dest address */ 6882 (uchar_t *)&mask, /* mask */ 6883 (uchar_t *)&ipif->ipif_src_addr, 6884 NULL, /* no gateway */ 6885 &ipif->ipif_mtu, 6886 NULL, 6887 ipif->ipif_rq, /* recv-from queue */ 6888 NULL, /* no send-to queue */ 6889 ipif->ipif_ire_type, /* LOOPBACK */ 6890 ipif, 6891 0, 6892 0, 6893 0, 6894 (ipif->ipif_flags & IPIF_PRIVATE) ? 6895 RTF_PRIVATE : 0, 6896 &ire_uinfo_null, 6897 NULL, 6898 NULL, 6899 ipst); 6900 6901 if (ire == NULL) { 6902 if (ipif_refheld) 6903 ipif_refrele(ipif); 6904 return (ENOMEM); 6905 } 6906 error = ire_add(&ire, q, mp, func, B_FALSE); 6907 if (error == 0) 6908 goto save_ire; 6909 if (ipif_refheld) 6910 ipif_refrele(ipif); 6911 return (error); 6912 6913 } 6914 } 6915 6916 /* 6917 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6918 * and the gateway address provided is one of the system's interface 6919 * addresses. By using the routing socket interface and supplying an 6920 * RTA_IFP sockaddr with an interface index, an alternate method of 6921 * specifying an interface route to be created is available which uses 6922 * the interface index that specifies the outgoing interface rather than 6923 * the address of an outgoing interface (which may not be able to 6924 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6925 * flag, routes can be specified which not only specify the next-hop to 6926 * be used when routing to a certain prefix, but also which outgoing 6927 * interface should be used. 6928 * 6929 * Previously, interfaces would have unique addresses assigned to them 6930 * and so the address assigned to a particular interface could be used 6931 * to identify a particular interface. One exception to this was the 6932 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6933 * 6934 * With the advent of IPv6 and its link-local addresses, this 6935 * restriction was relaxed and interfaces could share addresses between 6936 * themselves. In fact, typically all of the link-local interfaces on 6937 * an IPv6 node or router will have the same link-local address. In 6938 * order to differentiate between these interfaces, the use of an 6939 * interface index is necessary and this index can be carried inside a 6940 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6941 * of using the interface index, however, is that all of the ipif's that 6942 * are part of an ill have the same index and so the RTA_IFP sockaddr 6943 * cannot be used to differentiate between ipif's (or logical 6944 * interfaces) that belong to the same ill (physical interface). 6945 * 6946 * For example, in the following case involving IPv4 interfaces and 6947 * logical interfaces 6948 * 6949 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6950 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6951 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6952 * 6953 * the ipif's corresponding to each of these interface routes can be 6954 * uniquely identified by the "gateway" (actually interface address). 6955 * 6956 * In this case involving multiple IPv6 default routes to a particular 6957 * link-local gateway, the use of RTA_IFP is necessary to specify which 6958 * default route is of interest: 6959 * 6960 * default fe80::123:4567:89ab:cdef U if0 6961 * default fe80::123:4567:89ab:cdef U if1 6962 */ 6963 6964 /* RTF_GATEWAY not set */ 6965 if (!(flags & RTF_GATEWAY)) { 6966 queue_t *stq; 6967 6968 if (sp != NULL) { 6969 ip2dbg(("ip_rt_add: gateway security attributes " 6970 "cannot be set with interface route\n")); 6971 if (ipif_refheld) 6972 ipif_refrele(ipif); 6973 return (EINVAL); 6974 } 6975 6976 /* 6977 * As the interface index specified with the RTA_IFP sockaddr is 6978 * the same for all ipif's off of an ill, the matching logic 6979 * below uses MATCH_IRE_ILL if such an index was specified. 6980 * This means that routes sharing the same prefix when added 6981 * using a RTA_IFP sockaddr must have distinct interface 6982 * indices (namely, they must be on distinct ill's). 6983 * 6984 * On the other hand, since the gateway address will usually be 6985 * different for each ipif on the system, the matching logic 6986 * uses MATCH_IRE_IPIF in the case of a traditional interface 6987 * route. This means that interface routes for the same prefix 6988 * can be created if they belong to distinct ipif's and if a 6989 * RTA_IFP sockaddr is not present. 6990 */ 6991 if (ipif_arg != NULL) { 6992 if (ipif_refheld) { 6993 ipif_refrele(ipif); 6994 ipif_refheld = B_FALSE; 6995 } 6996 ipif = ipif_arg; 6997 match_flags |= MATCH_IRE_ILL; 6998 } else { 6999 /* 7000 * Check the ipif corresponding to the gw_addr 7001 */ 7002 if (ipif == NULL) 7003 return (ENETUNREACH); 7004 match_flags |= MATCH_IRE_IPIF; 7005 } 7006 ASSERT(ipif != NULL); 7007 7008 /* 7009 * We check for an existing entry at this point. 7010 * 7011 * Since a netmask isn't passed in via the ioctl interface 7012 * (SIOCADDRT), we don't check for a matching netmask in that 7013 * case. 7014 */ 7015 if (!ioctl_msg) 7016 match_flags |= MATCH_IRE_MASK; 7017 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 7018 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7019 if (ire != NULL) { 7020 ire_refrele(ire); 7021 if (ipif_refheld) 7022 ipif_refrele(ipif); 7023 return (EEXIST); 7024 } 7025 7026 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7027 ? ipif->ipif_rq : ipif->ipif_wq; 7028 7029 /* 7030 * Create a copy of the IRE_LOOPBACK, 7031 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7032 * the modified address and netmask. 7033 */ 7034 ire = ire_create( 7035 (uchar_t *)&dst_addr, 7036 (uint8_t *)&mask, 7037 (uint8_t *)&ipif->ipif_src_addr, 7038 NULL, 7039 &ipif->ipif_mtu, 7040 NULL, 7041 NULL, 7042 stq, 7043 ipif->ipif_net_type, 7044 ipif, 7045 0, 7046 0, 7047 0, 7048 flags, 7049 &ire_uinfo_null, 7050 NULL, 7051 NULL, 7052 ipst); 7053 if (ire == NULL) { 7054 if (ipif_refheld) 7055 ipif_refrele(ipif); 7056 return (ENOMEM); 7057 } 7058 7059 /* 7060 * Some software (for example, GateD and Sun Cluster) attempts 7061 * to create (what amount to) IRE_PREFIX routes with the 7062 * loopback address as the gateway. This is primarily done to 7063 * set up prefixes with the RTF_REJECT flag set (for example, 7064 * when generating aggregate routes.) 7065 * 7066 * If the IRE type (as defined by ipif->ipif_net_type) is 7067 * IRE_LOOPBACK, then we map the request into a 7068 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 7069 * these interface routes, by definition, can only be that. 7070 * 7071 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7072 * routine, but rather using ire_create() directly. 7073 * 7074 */ 7075 if (ipif->ipif_net_type == IRE_LOOPBACK) { 7076 ire->ire_type = IRE_IF_NORESOLVER; 7077 ire->ire_flags |= RTF_BLACKHOLE; 7078 } 7079 7080 error = ire_add(&ire, q, mp, func, B_FALSE); 7081 if (error == 0) 7082 goto save_ire; 7083 7084 /* 7085 * In the result of failure, ire_add() will have already 7086 * deleted the ire in question, so there is no need to 7087 * do that here. 7088 */ 7089 if (ipif_refheld) 7090 ipif_refrele(ipif); 7091 return (error); 7092 } 7093 if (ipif_refheld) { 7094 ipif_refrele(ipif); 7095 ipif_refheld = B_FALSE; 7096 } 7097 7098 /* 7099 * Get an interface IRE for the specified gateway. 7100 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7101 * gateway, it is currently unreachable and we fail the request 7102 * accordingly. 7103 */ 7104 ipif = ipif_arg; 7105 if (ipif_arg != NULL) 7106 match_flags |= MATCH_IRE_ILL; 7107 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7108 ALL_ZONES, 0, NULL, match_flags, ipst); 7109 if (gw_ire == NULL) 7110 return (ENETUNREACH); 7111 7112 /* 7113 * We create one of three types of IREs as a result of this request 7114 * based on the netmask. A netmask of all ones (which is automatically 7115 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7116 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7117 * created. Otherwise, an IRE_PREFIX route is created for the 7118 * destination prefix. 7119 */ 7120 if (mask == IP_HOST_MASK) 7121 type = IRE_HOST; 7122 else if (mask == 0) 7123 type = IRE_DEFAULT; 7124 else 7125 type = IRE_PREFIX; 7126 7127 /* check for a duplicate entry */ 7128 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7129 NULL, ALL_ZONES, 0, NULL, 7130 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7131 if (ire != NULL) { 7132 ire_refrele(gw_ire); 7133 ire_refrele(ire); 7134 return (EEXIST); 7135 } 7136 7137 /* Security attribute exists */ 7138 if (sp != NULL) { 7139 tsol_gcgrp_addr_t ga; 7140 7141 /* find or create the gateway credentials group */ 7142 ga.ga_af = AF_INET; 7143 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7144 7145 /* we hold reference to it upon success */ 7146 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7147 if (gcgrp == NULL) { 7148 ire_refrele(gw_ire); 7149 return (ENOMEM); 7150 } 7151 7152 /* 7153 * Create and add the security attribute to the group; a 7154 * reference to the group is made upon allocating a new 7155 * entry successfully. If it finds an already-existing 7156 * entry for the security attribute in the group, it simply 7157 * returns it and no new reference is made to the group. 7158 */ 7159 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7160 if (gc == NULL) { 7161 /* release reference held by gcgrp_lookup */ 7162 GCGRP_REFRELE(gcgrp); 7163 ire_refrele(gw_ire); 7164 return (ENOMEM); 7165 } 7166 } 7167 7168 /* Create the IRE. */ 7169 ire = ire_create( 7170 (uchar_t *)&dst_addr, /* dest address */ 7171 (uchar_t *)&mask, /* mask */ 7172 /* src address assigned by the caller? */ 7173 (uchar_t *)(((src_addr != INADDR_ANY) && 7174 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7175 (uchar_t *)&gw_addr, /* gateway address */ 7176 &gw_ire->ire_max_frag, 7177 NULL, /* no src nce */ 7178 NULL, /* no recv-from queue */ 7179 NULL, /* no send-to queue */ 7180 (ushort_t)type, /* IRE type */ 7181 ipif_arg, 7182 0, 7183 0, 7184 0, 7185 flags, 7186 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7187 gc, /* security attribute */ 7188 NULL, 7189 ipst); 7190 7191 /* 7192 * The ire holds a reference to the 'gc' and the 'gc' holds a 7193 * reference to the 'gcgrp'. We can now release the extra reference 7194 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7195 */ 7196 if (gcgrp_xtraref) 7197 GCGRP_REFRELE(gcgrp); 7198 if (ire == NULL) { 7199 if (gc != NULL) 7200 GC_REFRELE(gc); 7201 ire_refrele(gw_ire); 7202 return (ENOMEM); 7203 } 7204 7205 /* 7206 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7207 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7208 */ 7209 7210 /* Add the new IRE. */ 7211 error = ire_add(&ire, q, mp, func, B_FALSE); 7212 if (error != 0) { 7213 /* 7214 * In the result of failure, ire_add() will have already 7215 * deleted the ire in question, so there is no need to 7216 * do that here. 7217 */ 7218 ire_refrele(gw_ire); 7219 return (error); 7220 } 7221 7222 if (flags & RTF_MULTIRT) { 7223 /* 7224 * Invoke the CGTP (multirouting) filtering module 7225 * to add the dst address in the filtering database. 7226 * Replicated inbound packets coming from that address 7227 * will be filtered to discard the duplicates. 7228 * It is not necessary to call the CGTP filter hook 7229 * when the dst address is a broadcast or multicast, 7230 * because an IP source address cannot be a broadcast 7231 * or a multicast. 7232 */ 7233 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7234 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7235 if (ire_dst != NULL) { 7236 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7237 ire_refrele(ire_dst); 7238 goto save_ire; 7239 } 7240 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7241 !CLASSD(ire->ire_addr)) { 7242 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7243 ipst->ips_netstack->netstack_stackid, 7244 ire->ire_addr, 7245 ire->ire_gateway_addr, 7246 ire->ire_src_addr, 7247 gw_ire->ire_src_addr); 7248 if (res != 0) { 7249 ire_refrele(gw_ire); 7250 ire_delete(ire); 7251 return (res); 7252 } 7253 } 7254 } 7255 7256 /* 7257 * Now that the prefix IRE entry has been created, delete any 7258 * existing gateway IRE cache entries as well as any IRE caches 7259 * using the gateway, and force them to be created through 7260 * ip_newroute. 7261 */ 7262 if (gc != NULL) { 7263 ASSERT(gcgrp != NULL); 7264 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7265 } 7266 7267 save_ire: 7268 if (gw_ire != NULL) { 7269 ire_refrele(gw_ire); 7270 } 7271 if (ipif != NULL) { 7272 /* 7273 * Save enough information so that we can recreate the IRE if 7274 * the interface goes down and then up. The metrics associated 7275 * with the route will be saved as well when rts_setmetrics() is 7276 * called after the IRE has been created. In the case where 7277 * memory cannot be allocated, none of this information will be 7278 * saved. 7279 */ 7280 ipif_save_ire(ipif, ire); 7281 } 7282 if (ioctl_msg) 7283 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7284 if (ire_arg != NULL) { 7285 /* 7286 * Store the ire that was successfully added into where ire_arg 7287 * points to so that callers don't have to look it up 7288 * themselves (but they are responsible for ire_refrele()ing 7289 * the ire when they are finished with it). 7290 */ 7291 *ire_arg = ire; 7292 } else { 7293 ire_refrele(ire); /* Held in ire_add */ 7294 } 7295 if (ipif_refheld) 7296 ipif_refrele(ipif); 7297 return (0); 7298 } 7299 7300 /* 7301 * ip_rt_delete is called to delete an IPv4 route. 7302 * ipif_arg is passed in to associate it with the correct interface. 7303 * We may need to restart this operation if the ipif cannot be looked up 7304 * due to an exclusive operation that is currently in progress. The restart 7305 * entry point is specified by 'func' 7306 */ 7307 /* ARGSUSED4 */ 7308 int 7309 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7310 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7311 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7312 { 7313 ire_t *ire = NULL; 7314 ipif_t *ipif; 7315 boolean_t ipif_refheld = B_FALSE; 7316 uint_t type; 7317 uint_t match_flags = MATCH_IRE_TYPE; 7318 int err = 0; 7319 7320 ip1dbg(("ip_rt_delete:")); 7321 /* 7322 * If this is the case of RTF_HOST being set, then we set the netmask 7323 * to all ones. Otherwise, we use the netmask if one was supplied. 7324 */ 7325 if (flags & RTF_HOST) { 7326 mask = IP_HOST_MASK; 7327 match_flags |= MATCH_IRE_MASK; 7328 } else if (rtm_addrs & RTA_NETMASK) { 7329 match_flags |= MATCH_IRE_MASK; 7330 } 7331 7332 /* 7333 * Note that RTF_GATEWAY is never set on a delete, therefore 7334 * we check if the gateway address is one of our interfaces first, 7335 * and fall back on RTF_GATEWAY routes. 7336 * 7337 * This makes it possible to delete an original 7338 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7339 * 7340 * As the interface index specified with the RTA_IFP sockaddr is the 7341 * same for all ipif's off of an ill, the matching logic below uses 7342 * MATCH_IRE_ILL if such an index was specified. This means a route 7343 * sharing the same prefix and interface index as the the route 7344 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7345 * is specified in the request. 7346 * 7347 * On the other hand, since the gateway address will usually be 7348 * different for each ipif on the system, the matching logic 7349 * uses MATCH_IRE_IPIF in the case of a traditional interface 7350 * route. This means that interface routes for the same prefix can be 7351 * uniquely identified if they belong to distinct ipif's and if a 7352 * RTA_IFP sockaddr is not present. 7353 * 7354 * For more detail on specifying routes by gateway address and by 7355 * interface index, see the comments in ip_rt_add(). 7356 */ 7357 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7358 ipst); 7359 if (ipif != NULL) 7360 ipif_refheld = B_TRUE; 7361 else if (err == EINPROGRESS) 7362 return (err); 7363 else 7364 err = 0; 7365 if (ipif != NULL) { 7366 if (ipif_arg != NULL) { 7367 if (ipif_refheld) { 7368 ipif_refrele(ipif); 7369 ipif_refheld = B_FALSE; 7370 } 7371 ipif = ipif_arg; 7372 match_flags |= MATCH_IRE_ILL; 7373 } else { 7374 match_flags |= MATCH_IRE_IPIF; 7375 } 7376 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7377 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7378 ALL_ZONES, NULL, match_flags, ipst); 7379 } 7380 if (ire == NULL) { 7381 ire = ire_ftable_lookup(dst_addr, mask, 0, 7382 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7383 match_flags, ipst); 7384 } 7385 } 7386 7387 if (ire == NULL) { 7388 /* 7389 * At this point, the gateway address is not one of our own 7390 * addresses or a matching interface route was not found. We 7391 * set the IRE type to lookup based on whether 7392 * this is a host route, a default route or just a prefix. 7393 * 7394 * If an ipif_arg was passed in, then the lookup is based on an 7395 * interface index so MATCH_IRE_ILL is added to match_flags. 7396 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7397 * set as the route being looked up is not a traditional 7398 * interface route. 7399 */ 7400 match_flags &= ~MATCH_IRE_IPIF; 7401 match_flags |= MATCH_IRE_GW; 7402 if (ipif_arg != NULL) 7403 match_flags |= MATCH_IRE_ILL; 7404 if (mask == IP_HOST_MASK) 7405 type = IRE_HOST; 7406 else if (mask == 0) 7407 type = IRE_DEFAULT; 7408 else 7409 type = IRE_PREFIX; 7410 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7411 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7412 } 7413 7414 if (ipif_refheld) 7415 ipif_refrele(ipif); 7416 7417 /* ipif is not refheld anymore */ 7418 if (ire == NULL) 7419 return (ESRCH); 7420 7421 if (ire->ire_flags & RTF_MULTIRT) { 7422 /* 7423 * Invoke the CGTP (multirouting) filtering module 7424 * to remove the dst address from the filtering database. 7425 * Packets coming from that address will no longer be 7426 * filtered to remove duplicates. 7427 */ 7428 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7429 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7430 ipst->ips_netstack->netstack_stackid, 7431 ire->ire_addr, ire->ire_gateway_addr); 7432 } 7433 ip_cgtp_bcast_delete(ire, ipst); 7434 } 7435 7436 ipif = ire->ire_ipif; 7437 if (ipif != NULL) 7438 ipif_remove_ire(ipif, ire); 7439 if (ioctl_msg) 7440 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7441 ire_delete(ire); 7442 ire_refrele(ire); 7443 return (err); 7444 } 7445 7446 /* 7447 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7448 */ 7449 /* ARGSUSED */ 7450 int 7451 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7452 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7453 { 7454 ipaddr_t dst_addr; 7455 ipaddr_t gw_addr; 7456 ipaddr_t mask; 7457 int error = 0; 7458 mblk_t *mp1; 7459 struct rtentry *rt; 7460 ipif_t *ipif = NULL; 7461 ip_stack_t *ipst; 7462 7463 ASSERT(q->q_next == NULL); 7464 ipst = CONNQ_TO_IPST(q); 7465 7466 ip1dbg(("ip_siocaddrt:")); 7467 /* Existence of mp1 verified in ip_wput_nondata */ 7468 mp1 = mp->b_cont->b_cont; 7469 rt = (struct rtentry *)mp1->b_rptr; 7470 7471 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7472 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7473 7474 /* 7475 * If the RTF_HOST flag is on, this is a request to assign a gateway 7476 * to a particular host address. In this case, we set the netmask to 7477 * all ones for the particular destination address. Otherwise, 7478 * determine the netmask to be used based on dst_addr and the interfaces 7479 * in use. 7480 */ 7481 if (rt->rt_flags & RTF_HOST) { 7482 mask = IP_HOST_MASK; 7483 } else { 7484 /* 7485 * Note that ip_subnet_mask returns a zero mask in the case of 7486 * default (an all-zeroes address). 7487 */ 7488 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7489 } 7490 7491 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7492 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7493 if (ipif != NULL) 7494 ipif_refrele(ipif); 7495 return (error); 7496 } 7497 7498 /* 7499 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7500 */ 7501 /* ARGSUSED */ 7502 int 7503 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7504 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7505 { 7506 ipaddr_t dst_addr; 7507 ipaddr_t gw_addr; 7508 ipaddr_t mask; 7509 int error; 7510 mblk_t *mp1; 7511 struct rtentry *rt; 7512 ipif_t *ipif = NULL; 7513 ip_stack_t *ipst; 7514 7515 ASSERT(q->q_next == NULL); 7516 ipst = CONNQ_TO_IPST(q); 7517 7518 ip1dbg(("ip_siocdelrt:")); 7519 /* Existence of mp1 verified in ip_wput_nondata */ 7520 mp1 = mp->b_cont->b_cont; 7521 rt = (struct rtentry *)mp1->b_rptr; 7522 7523 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7524 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7525 7526 /* 7527 * If the RTF_HOST flag is on, this is a request to delete a gateway 7528 * to a particular host address. In this case, we set the netmask to 7529 * all ones for the particular destination address. Otherwise, 7530 * determine the netmask to be used based on dst_addr and the interfaces 7531 * in use. 7532 */ 7533 if (rt->rt_flags & RTF_HOST) { 7534 mask = IP_HOST_MASK; 7535 } else { 7536 /* 7537 * Note that ip_subnet_mask returns a zero mask in the case of 7538 * default (an all-zeroes address). 7539 */ 7540 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7541 } 7542 7543 error = ip_rt_delete(dst_addr, mask, gw_addr, 7544 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7545 mp, ip_process_ioctl, ipst); 7546 if (ipif != NULL) 7547 ipif_refrele(ipif); 7548 return (error); 7549 } 7550 7551 /* 7552 * Enqueue the mp onto the ipsq, chained by b_next. 7553 * b_prev stores the function to be executed later, and b_queue the queue 7554 * where this mp originated. 7555 */ 7556 void 7557 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7558 ill_t *pending_ill) 7559 { 7560 conn_t *connp = NULL; 7561 7562 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7563 ASSERT(func != NULL); 7564 7565 mp->b_queue = q; 7566 mp->b_prev = (void *)func; 7567 mp->b_next = NULL; 7568 7569 switch (type) { 7570 case CUR_OP: 7571 if (ipsq->ipsq_mptail != NULL) { 7572 ASSERT(ipsq->ipsq_mphead != NULL); 7573 ipsq->ipsq_mptail->b_next = mp; 7574 } else { 7575 ASSERT(ipsq->ipsq_mphead == NULL); 7576 ipsq->ipsq_mphead = mp; 7577 } 7578 ipsq->ipsq_mptail = mp; 7579 break; 7580 7581 case NEW_OP: 7582 if (ipsq->ipsq_xopq_mptail != NULL) { 7583 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7584 ipsq->ipsq_xopq_mptail->b_next = mp; 7585 } else { 7586 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7587 ipsq->ipsq_xopq_mphead = mp; 7588 } 7589 ipsq->ipsq_xopq_mptail = mp; 7590 break; 7591 default: 7592 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7593 } 7594 7595 if (CONN_Q(q) && pending_ill != NULL) { 7596 connp = Q_TO_CONN(q); 7597 7598 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7599 connp->conn_oper_pending_ill = pending_ill; 7600 } 7601 } 7602 7603 /* 7604 * Return the mp at the head of the ipsq. After emptying the ipsq 7605 * look at the next ioctl, if this ioctl is complete. Otherwise 7606 * return, we will resume when we complete the current ioctl. 7607 * The current ioctl will wait till it gets a response from the 7608 * driver below. 7609 */ 7610 static mblk_t * 7611 ipsq_dq(ipsq_t *ipsq) 7612 { 7613 mblk_t *mp; 7614 7615 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7616 7617 mp = ipsq->ipsq_mphead; 7618 if (mp != NULL) { 7619 ipsq->ipsq_mphead = mp->b_next; 7620 if (ipsq->ipsq_mphead == NULL) 7621 ipsq->ipsq_mptail = NULL; 7622 mp->b_next = NULL; 7623 return (mp); 7624 } 7625 if (ipsq->ipsq_current_ipif != NULL) 7626 return (NULL); 7627 mp = ipsq->ipsq_xopq_mphead; 7628 if (mp != NULL) { 7629 ipsq->ipsq_xopq_mphead = mp->b_next; 7630 if (ipsq->ipsq_xopq_mphead == NULL) 7631 ipsq->ipsq_xopq_mptail = NULL; 7632 mp->b_next = NULL; 7633 return (mp); 7634 } 7635 return (NULL); 7636 } 7637 7638 /* 7639 * Enter the ipsq corresponding to ill, by waiting synchronously till 7640 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7641 * will have to drain completely before ipsq_enter returns success. 7642 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7643 * and the ipsq_exit logic will start the next enqueued ioctl after 7644 * completion of the current ioctl. If 'force' is used, we don't wait 7645 * for the enqueued ioctls. This is needed when a conn_close wants to 7646 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7647 * of an ill can also use this option. But we dont' use it currently. 7648 */ 7649 #define ENTER_SQ_WAIT_TICKS 100 7650 boolean_t 7651 ipsq_enter(ill_t *ill, boolean_t force) 7652 { 7653 ipsq_t *ipsq; 7654 boolean_t waited_enough = B_FALSE; 7655 7656 /* 7657 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7658 * Since the <ill-ipsq> assocs could change while we wait for the 7659 * writer, it is easier to wait on a fixed global rather than try to 7660 * cv_wait on a changing ipsq. 7661 */ 7662 mutex_enter(&ill->ill_lock); 7663 for (;;) { 7664 if (ill->ill_state_flags & ILL_CONDEMNED) { 7665 mutex_exit(&ill->ill_lock); 7666 return (B_FALSE); 7667 } 7668 7669 ipsq = ill->ill_phyint->phyint_ipsq; 7670 mutex_enter(&ipsq->ipsq_lock); 7671 if (ipsq->ipsq_writer == NULL && 7672 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7673 break; 7674 } else if (ipsq->ipsq_writer != NULL) { 7675 mutex_exit(&ipsq->ipsq_lock); 7676 cv_wait(&ill->ill_cv, &ill->ill_lock); 7677 } else { 7678 mutex_exit(&ipsq->ipsq_lock); 7679 if (force) { 7680 (void) cv_timedwait(&ill->ill_cv, 7681 &ill->ill_lock, 7682 lbolt + ENTER_SQ_WAIT_TICKS); 7683 waited_enough = B_TRUE; 7684 continue; 7685 } else { 7686 cv_wait(&ill->ill_cv, &ill->ill_lock); 7687 } 7688 } 7689 } 7690 7691 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7692 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7693 ipsq->ipsq_writer = curthread; 7694 ipsq->ipsq_reentry_cnt++; 7695 #ifdef DEBUG 7696 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7697 #endif 7698 mutex_exit(&ipsq->ipsq_lock); 7699 mutex_exit(&ill->ill_lock); 7700 return (B_TRUE); 7701 } 7702 7703 /* 7704 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7705 * certain critical operations like plumbing (i.e. most set ioctls), 7706 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7707 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7708 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7709 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7710 * threads executing in the ipsq. Responses from the driver pertain to the 7711 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7712 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7713 * 7714 * If a thread does not want to reenter the ipsq when it is already writer, 7715 * it must make sure that the specified reentry point to be called later 7716 * when the ipsq is empty, nor any code path starting from the specified reentry 7717 * point must never ever try to enter the ipsq again. Otherwise it can lead 7718 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7719 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7720 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7721 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7722 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7723 * ioctl if the current ioctl has completed. If the current ioctl is still 7724 * in progress it simply returns. The current ioctl could be waiting for 7725 * a response from another module (arp_ or the driver or could be waiting for 7726 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7727 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7728 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7729 * ipsq_current_ipif is clear which happens only on ioctl completion. 7730 */ 7731 7732 /* 7733 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7734 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7735 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7736 * completion. 7737 */ 7738 ipsq_t * 7739 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7740 ipsq_func_t func, int type, boolean_t reentry_ok) 7741 { 7742 ipsq_t *ipsq; 7743 7744 /* Only 1 of ipif or ill can be specified */ 7745 ASSERT((ipif != NULL) ^ (ill != NULL)); 7746 if (ipif != NULL) 7747 ill = ipif->ipif_ill; 7748 7749 /* 7750 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7751 * ipsq of an ill can't change when ill_lock is held. 7752 */ 7753 GRAB_CONN_LOCK(q); 7754 mutex_enter(&ill->ill_lock); 7755 ipsq = ill->ill_phyint->phyint_ipsq; 7756 mutex_enter(&ipsq->ipsq_lock); 7757 7758 /* 7759 * 1. Enter the ipsq if we are already writer and reentry is ok. 7760 * (Note: If the caller does not specify reentry_ok then neither 7761 * 'func' nor any of its callees must ever attempt to enter the ipsq 7762 * again. Otherwise it can lead to an infinite loop 7763 * 2. Enter the ipsq if there is no current writer and this attempted 7764 * entry is part of the current ioctl or operation 7765 * 3. Enter the ipsq if there is no current writer and this is a new 7766 * ioctl (or operation) and the ioctl (or operation) queue is 7767 * empty and there is no ioctl (or operation) currently in progress 7768 */ 7769 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7770 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7771 ipsq->ipsq_current_ipif == NULL))) || 7772 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7773 /* Success. */ 7774 ipsq->ipsq_reentry_cnt++; 7775 ipsq->ipsq_writer = curthread; 7776 mutex_exit(&ipsq->ipsq_lock); 7777 mutex_exit(&ill->ill_lock); 7778 RELEASE_CONN_LOCK(q); 7779 #ifdef DEBUG 7780 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7781 IPSQ_STACK_DEPTH); 7782 #endif 7783 return (ipsq); 7784 } 7785 7786 ipsq_enq(ipsq, q, mp, func, type, ill); 7787 7788 mutex_exit(&ipsq->ipsq_lock); 7789 mutex_exit(&ill->ill_lock); 7790 RELEASE_CONN_LOCK(q); 7791 return (NULL); 7792 } 7793 7794 /* 7795 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7796 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7797 * cannot be entered, the mp is queued for completion. 7798 */ 7799 void 7800 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7801 boolean_t reentry_ok) 7802 { 7803 ipsq_t *ipsq; 7804 7805 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7806 7807 /* 7808 * Drop the caller's refhold on the ill. This is safe since we either 7809 * entered the IPSQ (and thus are exclusive), or failed to enter the 7810 * IPSQ, in which case we return without accessing ill anymore. This 7811 * is needed because func needs to see the correct refcount. 7812 * e.g. removeif can work only then. 7813 */ 7814 ill_refrele(ill); 7815 if (ipsq != NULL) { 7816 (*func)(ipsq, q, mp, NULL); 7817 ipsq_exit(ipsq); 7818 } 7819 } 7820 7821 /* 7822 * If there are more than ILL_GRP_CNT ills in a group, 7823 * we use kmem alloc'd buffers, else use the stack 7824 */ 7825 #define ILL_GRP_CNT 14 7826 /* 7827 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7828 * Called by a thread that is currently exclusive on this ipsq. 7829 */ 7830 void 7831 ipsq_exit(ipsq_t *ipsq) 7832 { 7833 queue_t *q; 7834 mblk_t *mp; 7835 ipsq_func_t func; 7836 int next; 7837 ill_t **ill_list = NULL; 7838 size_t ill_list_size = 0; 7839 int cnt = 0; 7840 boolean_t need_ipsq_free = B_FALSE; 7841 ip_stack_t *ipst = ipsq->ipsq_ipst; 7842 7843 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7844 mutex_enter(&ipsq->ipsq_lock); 7845 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7846 if (ipsq->ipsq_reentry_cnt != 1) { 7847 ipsq->ipsq_reentry_cnt--; 7848 mutex_exit(&ipsq->ipsq_lock); 7849 return; 7850 } 7851 7852 mp = ipsq_dq(ipsq); 7853 while (mp != NULL) { 7854 again: 7855 mutex_exit(&ipsq->ipsq_lock); 7856 func = (ipsq_func_t)mp->b_prev; 7857 q = (queue_t *)mp->b_queue; 7858 mp->b_prev = NULL; 7859 mp->b_queue = NULL; 7860 7861 /* 7862 * If 'q' is an conn queue, it is valid, since we did a 7863 * a refhold on the connp, at the start of the ioctl. 7864 * If 'q' is an ill queue, it is valid, since close of an 7865 * ill will clean up the 'ipsq'. 7866 */ 7867 (*func)(ipsq, q, mp, NULL); 7868 7869 mutex_enter(&ipsq->ipsq_lock); 7870 mp = ipsq_dq(ipsq); 7871 } 7872 7873 mutex_exit(&ipsq->ipsq_lock); 7874 7875 /* 7876 * Need to grab the locks in the right order. Need to 7877 * atomically check (under ipsq_lock) that there are no 7878 * messages before relinquishing the ipsq. Also need to 7879 * atomically wakeup waiters on ill_cv while holding ill_lock. 7880 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7881 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7882 * to grab ill_g_lock as writer. 7883 */ 7884 rw_enter(&ipst->ips_ill_g_lock, 7885 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7886 7887 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7888 if (ipsq->ipsq_refs != 0) { 7889 /* At most 2 ills v4/v6 per phyint */ 7890 cnt = ipsq->ipsq_refs << 1; 7891 ill_list_size = cnt * sizeof (ill_t *); 7892 /* 7893 * If memory allocation fails, we will do the split 7894 * the next time ipsq_exit is called for whatever reason. 7895 * As long as the ipsq_split flag is set the need to 7896 * split is remembered. 7897 */ 7898 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7899 if (ill_list != NULL) 7900 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7901 } 7902 mutex_enter(&ipsq->ipsq_lock); 7903 mp = ipsq_dq(ipsq); 7904 if (mp != NULL) { 7905 /* oops, some message has landed up, we can't get out */ 7906 if (ill_list != NULL) 7907 ill_unlock_ills(ill_list, cnt); 7908 rw_exit(&ipst->ips_ill_g_lock); 7909 if (ill_list != NULL) 7910 kmem_free(ill_list, ill_list_size); 7911 ill_list = NULL; 7912 ill_list_size = 0; 7913 cnt = 0; 7914 goto again; 7915 } 7916 7917 /* 7918 * Split only if no ioctl is pending and if memory alloc succeeded 7919 * above. 7920 */ 7921 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7922 ill_list != NULL) { 7923 /* 7924 * No new ill can join this ipsq since we are holding the 7925 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7926 * ipsq. ill_split_ipsq may fail due to memory shortage. 7927 * If so we will retry on the next ipsq_exit. 7928 */ 7929 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7930 } 7931 7932 /* 7933 * We are holding the ipsq lock, hence no new messages can 7934 * land up on the ipsq, and there are no messages currently. 7935 * Now safe to get out. Wake up waiters and relinquish ipsq 7936 * atomically while holding ill locks. 7937 */ 7938 ipsq->ipsq_writer = NULL; 7939 ipsq->ipsq_reentry_cnt--; 7940 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7941 #ifdef DEBUG 7942 ipsq->ipsq_depth = 0; 7943 #endif 7944 mutex_exit(&ipsq->ipsq_lock); 7945 /* 7946 * For IPMP this should wake up all ills in this ipsq. 7947 * We need to hold the ill_lock while waking up waiters to 7948 * avoid missed wakeups. But there is no need to acquire all 7949 * the ill locks and then wakeup. If we have not acquired all 7950 * the locks (due to memory failure above) ill_signal_ipsq_ills 7951 * wakes up ills one at a time after getting the right ill_lock 7952 */ 7953 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7954 if (ill_list != NULL) 7955 ill_unlock_ills(ill_list, cnt); 7956 if (ipsq->ipsq_refs == 0) 7957 need_ipsq_free = B_TRUE; 7958 rw_exit(&ipst->ips_ill_g_lock); 7959 if (ill_list != 0) 7960 kmem_free(ill_list, ill_list_size); 7961 7962 if (need_ipsq_free) { 7963 /* 7964 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7965 * looked up. ipsq can be looked up only thru ill or phyint 7966 * and there are no ills/phyint on this ipsq. 7967 */ 7968 ipsq_delete(ipsq); 7969 } 7970 7971 /* 7972 * Now that we're outside the IPSQ, start any IGMP/MLD timers. We 7973 * can't start these inside the IPSQ since e.g. igmp_start_timers() -> 7974 * untimeout() (inside the IPSQ, waiting for an executing timeout to 7975 * finish) could deadlock with igmp_timeout_handler() -> ipsq_enter() 7976 * (executing the timeout, waiting to get inside the IPSQ). 7977 * 7978 * However, there is one exception to the above: if this thread *is* 7979 * the IGMP/MLD timeout handler thread, then we must not start its 7980 * timer until the current handler is done. 7981 */ 7982 mutex_enter(&ipst->ips_igmp_timer_lock); 7983 if (curthread != ipst->ips_igmp_timer_thread) { 7984 next = ipst->ips_igmp_deferred_next; 7985 ipst->ips_igmp_deferred_next = INFINITY; 7986 mutex_exit(&ipst->ips_igmp_timer_lock); 7987 7988 if (next != INFINITY) 7989 igmp_start_timers(next, ipst); 7990 } else { 7991 mutex_exit(&ipst->ips_igmp_timer_lock); 7992 } 7993 7994 mutex_enter(&ipst->ips_mld_timer_lock); 7995 if (curthread != ipst->ips_mld_timer_thread) { 7996 next = ipst->ips_mld_deferred_next; 7997 ipst->ips_mld_deferred_next = INFINITY; 7998 mutex_exit(&ipst->ips_mld_timer_lock); 7999 8000 if (next != INFINITY) 8001 mld_start_timers(next, ipst); 8002 } else { 8003 mutex_exit(&ipst->ips_mld_timer_lock); 8004 } 8005 } 8006 8007 /* 8008 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8009 * and `ioccmd'. 8010 */ 8011 void 8012 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8013 { 8014 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8015 8016 mutex_enter(&ipsq->ipsq_lock); 8017 ASSERT(ipsq->ipsq_current_ipif == NULL); 8018 ASSERT(ipsq->ipsq_current_ioctl == 0); 8019 ipsq->ipsq_current_done = B_FALSE; 8020 ipsq->ipsq_current_ipif = ipif; 8021 ipsq->ipsq_current_ioctl = ioccmd; 8022 mutex_exit(&ipsq->ipsq_lock); 8023 } 8024 8025 /* 8026 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 8027 * the next exclusive operation to begin once we ipsq_exit(). However, if 8028 * pending DLPI operations remain, then we will wait for the queue to drain 8029 * before allowing the next exclusive operation to begin. This ensures that 8030 * DLPI operations from one exclusive operation are never improperly processed 8031 * as part of a subsequent exclusive operation. 8032 */ 8033 void 8034 ipsq_current_finish(ipsq_t *ipsq) 8035 { 8036 ipif_t *ipif = ipsq->ipsq_current_ipif; 8037 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 8038 8039 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8040 8041 /* 8042 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8043 * (but in that case, IPIF_CHANGING will already be clear and no 8044 * pending DLPI messages can remain). 8045 */ 8046 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8047 ill_t *ill = ipif->ipif_ill; 8048 8049 mutex_enter(&ill->ill_lock); 8050 dlpi_pending = ill->ill_dlpi_pending; 8051 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8052 /* Send any queued event */ 8053 ill_nic_info_dispatch(ill); 8054 mutex_exit(&ill->ill_lock); 8055 } 8056 8057 mutex_enter(&ipsq->ipsq_lock); 8058 ipsq->ipsq_current_ioctl = 0; 8059 ipsq->ipsq_current_done = B_TRUE; 8060 if (dlpi_pending == DL_PRIM_INVAL) 8061 ipsq->ipsq_current_ipif = NULL; 8062 mutex_exit(&ipsq->ipsq_lock); 8063 } 8064 8065 /* 8066 * The ill is closing. Flush all messages on the ipsq that originated 8067 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8068 * for this ill since ipsq_enter could not have entered until then. 8069 * New messages can't be queued since the CONDEMNED flag is set. 8070 */ 8071 static void 8072 ipsq_flush(ill_t *ill) 8073 { 8074 queue_t *q; 8075 mblk_t *prev; 8076 mblk_t *mp; 8077 mblk_t *mp_next; 8078 ipsq_t *ipsq; 8079 8080 ASSERT(IAM_WRITER_ILL(ill)); 8081 ipsq = ill->ill_phyint->phyint_ipsq; 8082 /* 8083 * Flush any messages sent up by the driver. 8084 */ 8085 mutex_enter(&ipsq->ipsq_lock); 8086 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8087 mp_next = mp->b_next; 8088 q = mp->b_queue; 8089 if (q == ill->ill_rq || q == ill->ill_wq) { 8090 /* Remove the mp from the ipsq */ 8091 if (prev == NULL) 8092 ipsq->ipsq_mphead = mp->b_next; 8093 else 8094 prev->b_next = mp->b_next; 8095 if (ipsq->ipsq_mptail == mp) { 8096 ASSERT(mp_next == NULL); 8097 ipsq->ipsq_mptail = prev; 8098 } 8099 inet_freemsg(mp); 8100 } else { 8101 prev = mp; 8102 } 8103 } 8104 mutex_exit(&ipsq->ipsq_lock); 8105 (void) ipsq_pending_mp_cleanup(ill, NULL); 8106 ipsq_xopq_mp_cleanup(ill, NULL); 8107 ill_pending_mp_cleanup(ill); 8108 } 8109 8110 /* ARGSUSED */ 8111 int 8112 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8113 ip_ioctl_cmd_t *ipip, void *ifreq) 8114 { 8115 ill_t *ill; 8116 struct lifreq *lifr = (struct lifreq *)ifreq; 8117 boolean_t isv6; 8118 conn_t *connp; 8119 ip_stack_t *ipst; 8120 8121 connp = Q_TO_CONN(q); 8122 ipst = connp->conn_netstack->netstack_ip; 8123 isv6 = connp->conn_af_isv6; 8124 /* 8125 * Set original index. 8126 * Failover and failback move logical interfaces 8127 * from one physical interface to another. The 8128 * original index indicates the parent of a logical 8129 * interface, in other words, the physical interface 8130 * the logical interface will be moved back to on 8131 * failback. 8132 */ 8133 8134 /* 8135 * Don't allow the original index to be changed 8136 * for non-failover addresses, autoconfigured 8137 * addresses, or IPv6 link local addresses. 8138 */ 8139 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8140 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8141 return (EINVAL); 8142 } 8143 /* 8144 * The new original index must be in use by some 8145 * physical interface. 8146 */ 8147 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8148 NULL, NULL, ipst); 8149 if (ill == NULL) 8150 return (ENXIO); 8151 ill_refrele(ill); 8152 8153 ipif->ipif_orig_ifindex = lifr->lifr_index; 8154 /* 8155 * When this ipif gets failed back, don't 8156 * preserve the original id, as it is no 8157 * longer applicable. 8158 */ 8159 ipif->ipif_orig_ipifid = 0; 8160 /* 8161 * For IPv4, change the original index of any 8162 * multicast addresses associated with the 8163 * ipif to the new value. 8164 */ 8165 if (!isv6) { 8166 ilm_t *ilm; 8167 8168 mutex_enter(&ipif->ipif_ill->ill_lock); 8169 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8170 ilm = ilm->ilm_next) { 8171 if (ilm->ilm_ipif == ipif) { 8172 ilm->ilm_orig_ifindex = lifr->lifr_index; 8173 } 8174 } 8175 mutex_exit(&ipif->ipif_ill->ill_lock); 8176 } 8177 return (0); 8178 } 8179 8180 /* ARGSUSED */ 8181 int 8182 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8183 ip_ioctl_cmd_t *ipip, void *ifreq) 8184 { 8185 struct lifreq *lifr = (struct lifreq *)ifreq; 8186 8187 /* 8188 * Get the original interface index i.e the one 8189 * before FAILOVER if it ever happened. 8190 */ 8191 lifr->lifr_index = ipif->ipif_orig_ifindex; 8192 return (0); 8193 } 8194 8195 /* 8196 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8197 * refhold and return the associated ipif 8198 */ 8199 /* ARGSUSED */ 8200 int 8201 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8202 cmd_info_t *ci, ipsq_func_t func) 8203 { 8204 boolean_t exists; 8205 struct iftun_req *ta; 8206 ipif_t *ipif; 8207 ill_t *ill; 8208 boolean_t isv6; 8209 mblk_t *mp1; 8210 int error; 8211 conn_t *connp; 8212 ip_stack_t *ipst; 8213 8214 /* Existence verified in ip_wput_nondata */ 8215 mp1 = mp->b_cont->b_cont; 8216 ta = (struct iftun_req *)mp1->b_rptr; 8217 /* 8218 * Null terminate the string to protect against buffer 8219 * overrun. String was generated by user code and may not 8220 * be trusted. 8221 */ 8222 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8223 8224 connp = Q_TO_CONN(q); 8225 isv6 = connp->conn_af_isv6; 8226 ipst = connp->conn_netstack->netstack_ip; 8227 8228 /* Disallows implicit create */ 8229 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8230 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8231 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8232 if (ipif == NULL) 8233 return (error); 8234 8235 if (ipif->ipif_id != 0) { 8236 /* 8237 * We really don't want to set/get tunnel parameters 8238 * on virtual tunnel interfaces. Only allow the 8239 * base tunnel to do these. 8240 */ 8241 ipif_refrele(ipif); 8242 return (EINVAL); 8243 } 8244 8245 /* 8246 * Send down to tunnel mod for ioctl processing. 8247 * Will finish ioctl in ip_rput_other(). 8248 */ 8249 ill = ipif->ipif_ill; 8250 if (ill->ill_net_type == IRE_LOOPBACK) { 8251 ipif_refrele(ipif); 8252 return (EOPNOTSUPP); 8253 } 8254 8255 if (ill->ill_wq == NULL) { 8256 ipif_refrele(ipif); 8257 return (ENXIO); 8258 } 8259 /* 8260 * Mark the ioctl as coming from an IPv6 interface for 8261 * tun's convenience. 8262 */ 8263 if (ill->ill_isv6) 8264 ta->ifta_flags |= 0x80000000; 8265 ci->ci_ipif = ipif; 8266 return (0); 8267 } 8268 8269 /* 8270 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8271 * and return the associated ipif. 8272 * Return value: 8273 * Non zero: An error has occurred. ci may not be filled out. 8274 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8275 * a held ipif in ci.ci_ipif. 8276 */ 8277 int 8278 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8279 cmd_info_t *ci, ipsq_func_t func) 8280 { 8281 sin_t *sin; 8282 sin6_t *sin6; 8283 char *name; 8284 struct ifreq *ifr; 8285 struct lifreq *lifr; 8286 ipif_t *ipif = NULL; 8287 ill_t *ill; 8288 conn_t *connp; 8289 boolean_t isv6; 8290 boolean_t exists; 8291 int err; 8292 mblk_t *mp1; 8293 zoneid_t zoneid; 8294 ip_stack_t *ipst; 8295 8296 if (q->q_next != NULL) { 8297 ill = (ill_t *)q->q_ptr; 8298 isv6 = ill->ill_isv6; 8299 connp = NULL; 8300 zoneid = ALL_ZONES; 8301 ipst = ill->ill_ipst; 8302 } else { 8303 ill = NULL; 8304 connp = Q_TO_CONN(q); 8305 isv6 = connp->conn_af_isv6; 8306 zoneid = connp->conn_zoneid; 8307 if (zoneid == GLOBAL_ZONEID) { 8308 /* global zone can access ipifs in all zones */ 8309 zoneid = ALL_ZONES; 8310 } 8311 ipst = connp->conn_netstack->netstack_ip; 8312 } 8313 8314 /* Has been checked in ip_wput_nondata */ 8315 mp1 = mp->b_cont->b_cont; 8316 8317 if (ipip->ipi_cmd_type == IF_CMD) { 8318 /* This a old style SIOC[GS]IF* command */ 8319 ifr = (struct ifreq *)mp1->b_rptr; 8320 /* 8321 * Null terminate the string to protect against buffer 8322 * overrun. String was generated by user code and may not 8323 * be trusted. 8324 */ 8325 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8326 sin = (sin_t *)&ifr->ifr_addr; 8327 name = ifr->ifr_name; 8328 ci->ci_sin = sin; 8329 ci->ci_sin6 = NULL; 8330 ci->ci_lifr = (struct lifreq *)ifr; 8331 } else { 8332 /* This a new style SIOC[GS]LIF* command */ 8333 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8334 lifr = (struct lifreq *)mp1->b_rptr; 8335 /* 8336 * Null terminate the string to protect against buffer 8337 * overrun. String was generated by user code and may not 8338 * be trusted. 8339 */ 8340 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8341 name = lifr->lifr_name; 8342 sin = (sin_t *)&lifr->lifr_addr; 8343 sin6 = (sin6_t *)&lifr->lifr_addr; 8344 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8345 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8346 LIFNAMSIZ); 8347 } 8348 ci->ci_sin = sin; 8349 ci->ci_sin6 = sin6; 8350 ci->ci_lifr = lifr; 8351 } 8352 8353 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8354 /* 8355 * The ioctl will be failed if the ioctl comes down 8356 * an conn stream 8357 */ 8358 if (ill == NULL) { 8359 /* 8360 * Not an ill queue, return EINVAL same as the 8361 * old error code. 8362 */ 8363 return (ENXIO); 8364 } 8365 ipif = ill->ill_ipif; 8366 ipif_refhold(ipif); 8367 } else { 8368 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8369 &exists, isv6, zoneid, 8370 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8371 ipst); 8372 if (ipif == NULL) { 8373 if (err == EINPROGRESS) 8374 return (err); 8375 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8376 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8377 /* 8378 * Need to try both v4 and v6 since this 8379 * ioctl can come down either v4 or v6 8380 * socket. The lifreq.lifr_family passed 8381 * down by this ioctl is AF_UNSPEC. 8382 */ 8383 ipif = ipif_lookup_on_name(name, 8384 mi_strlen(name), B_FALSE, &exists, !isv6, 8385 zoneid, (connp == NULL) ? q : 8386 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8387 if (err == EINPROGRESS) 8388 return (err); 8389 } 8390 err = 0; /* Ensure we don't use it below */ 8391 } 8392 } 8393 8394 /* 8395 * Old style [GS]IFCMD does not admit IPv6 ipif 8396 */ 8397 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8398 ipif_refrele(ipif); 8399 return (ENXIO); 8400 } 8401 8402 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8403 name[0] == '\0') { 8404 /* 8405 * Handle a or a SIOC?IF* with a null name 8406 * during plumb (on the ill queue before the I_PLINK). 8407 */ 8408 ipif = ill->ill_ipif; 8409 ipif_refhold(ipif); 8410 } 8411 8412 if (ipif == NULL) 8413 return (ENXIO); 8414 8415 /* 8416 * Allow only GET operations if this ipif has been created 8417 * temporarily due to a MOVE operation. 8418 */ 8419 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8420 ipif_refrele(ipif); 8421 return (EINVAL); 8422 } 8423 8424 ci->ci_ipif = ipif; 8425 return (0); 8426 } 8427 8428 /* 8429 * Return the total number of ipifs. 8430 */ 8431 static uint_t 8432 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8433 { 8434 uint_t numifs = 0; 8435 ill_t *ill; 8436 ill_walk_context_t ctx; 8437 ipif_t *ipif; 8438 8439 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8440 ill = ILL_START_WALK_V4(&ctx, ipst); 8441 8442 while (ill != NULL) { 8443 for (ipif = ill->ill_ipif; ipif != NULL; 8444 ipif = ipif->ipif_next) { 8445 if (ipif->ipif_zoneid == zoneid || 8446 ipif->ipif_zoneid == ALL_ZONES) 8447 numifs++; 8448 } 8449 ill = ill_next(&ctx, ill); 8450 } 8451 rw_exit(&ipst->ips_ill_g_lock); 8452 return (numifs); 8453 } 8454 8455 /* 8456 * Return the total number of ipifs. 8457 */ 8458 static uint_t 8459 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8460 { 8461 uint_t numifs = 0; 8462 ill_t *ill; 8463 ipif_t *ipif; 8464 ill_walk_context_t ctx; 8465 8466 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8467 8468 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8469 if (family == AF_INET) 8470 ill = ILL_START_WALK_V4(&ctx, ipst); 8471 else if (family == AF_INET6) 8472 ill = ILL_START_WALK_V6(&ctx, ipst); 8473 else 8474 ill = ILL_START_WALK_ALL(&ctx, ipst); 8475 8476 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8477 for (ipif = ill->ill_ipif; ipif != NULL; 8478 ipif = ipif->ipif_next) { 8479 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8480 !(lifn_flags & LIFC_NOXMIT)) 8481 continue; 8482 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8483 !(lifn_flags & LIFC_TEMPORARY)) 8484 continue; 8485 if (((ipif->ipif_flags & 8486 (IPIF_NOXMIT|IPIF_NOLOCAL| 8487 IPIF_DEPRECATED)) || 8488 IS_LOOPBACK(ill) || 8489 !(ipif->ipif_flags & IPIF_UP)) && 8490 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8491 continue; 8492 8493 if (zoneid != ipif->ipif_zoneid && 8494 ipif->ipif_zoneid != ALL_ZONES && 8495 (zoneid != GLOBAL_ZONEID || 8496 !(lifn_flags & LIFC_ALLZONES))) 8497 continue; 8498 8499 numifs++; 8500 } 8501 } 8502 rw_exit(&ipst->ips_ill_g_lock); 8503 return (numifs); 8504 } 8505 8506 uint_t 8507 ip_get_lifsrcofnum(ill_t *ill) 8508 { 8509 uint_t numifs = 0; 8510 ill_t *ill_head = ill; 8511 ip_stack_t *ipst = ill->ill_ipst; 8512 8513 /* 8514 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8515 * other thread may be trying to relink the ILLs in this usesrc group 8516 * and adjusting the ill_usesrc_grp_next pointers 8517 */ 8518 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8519 if ((ill->ill_usesrc_ifindex == 0) && 8520 (ill->ill_usesrc_grp_next != NULL)) { 8521 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8522 ill = ill->ill_usesrc_grp_next) 8523 numifs++; 8524 } 8525 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8526 8527 return (numifs); 8528 } 8529 8530 /* Null values are passed in for ipif, sin, and ifreq */ 8531 /* ARGSUSED */ 8532 int 8533 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8534 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8535 { 8536 int *nump; 8537 conn_t *connp = Q_TO_CONN(q); 8538 8539 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8540 8541 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8542 nump = (int *)mp->b_cont->b_cont->b_rptr; 8543 8544 *nump = ip_get_numifs(connp->conn_zoneid, 8545 connp->conn_netstack->netstack_ip); 8546 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8547 return (0); 8548 } 8549 8550 /* Null values are passed in for ipif, sin, and ifreq */ 8551 /* ARGSUSED */ 8552 int 8553 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8554 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8555 { 8556 struct lifnum *lifn; 8557 mblk_t *mp1; 8558 conn_t *connp = Q_TO_CONN(q); 8559 8560 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8561 8562 /* Existence checked in ip_wput_nondata */ 8563 mp1 = mp->b_cont->b_cont; 8564 8565 lifn = (struct lifnum *)mp1->b_rptr; 8566 switch (lifn->lifn_family) { 8567 case AF_UNSPEC: 8568 case AF_INET: 8569 case AF_INET6: 8570 break; 8571 default: 8572 return (EAFNOSUPPORT); 8573 } 8574 8575 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8576 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8577 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8578 return (0); 8579 } 8580 8581 /* ARGSUSED */ 8582 int 8583 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8584 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8585 { 8586 STRUCT_HANDLE(ifconf, ifc); 8587 mblk_t *mp1; 8588 struct iocblk *iocp; 8589 struct ifreq *ifr; 8590 ill_walk_context_t ctx; 8591 ill_t *ill; 8592 ipif_t *ipif; 8593 struct sockaddr_in *sin; 8594 int32_t ifclen; 8595 zoneid_t zoneid; 8596 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8597 8598 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8599 8600 ip1dbg(("ip_sioctl_get_ifconf")); 8601 /* Existence verified in ip_wput_nondata */ 8602 mp1 = mp->b_cont->b_cont; 8603 iocp = (struct iocblk *)mp->b_rptr; 8604 zoneid = Q_TO_CONN(q)->conn_zoneid; 8605 8606 /* 8607 * The original SIOCGIFCONF passed in a struct ifconf which specified 8608 * the user buffer address and length into which the list of struct 8609 * ifreqs was to be copied. Since AT&T Streams does not seem to 8610 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8611 * the SIOCGIFCONF operation was redefined to simply provide 8612 * a large output buffer into which we are supposed to jam the ifreq 8613 * array. The same ioctl command code was used, despite the fact that 8614 * both the applications and the kernel code had to change, thus making 8615 * it impossible to support both interfaces. 8616 * 8617 * For reasons not good enough to try to explain, the following 8618 * algorithm is used for deciding what to do with one of these: 8619 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8620 * form with the output buffer coming down as the continuation message. 8621 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8622 * and we have to copy in the ifconf structure to find out how big the 8623 * output buffer is and where to copy out to. Sure no problem... 8624 * 8625 */ 8626 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8627 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8628 int numifs = 0; 8629 size_t ifc_bufsize; 8630 8631 /* 8632 * Must be (better be!) continuation of a TRANSPARENT 8633 * IOCTL. We just copied in the ifconf structure. 8634 */ 8635 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8636 (struct ifconf *)mp1->b_rptr); 8637 8638 /* 8639 * Allocate a buffer to hold requested information. 8640 * 8641 * If ifc_len is larger than what is needed, we only 8642 * allocate what we will use. 8643 * 8644 * If ifc_len is smaller than what is needed, return 8645 * EINVAL. 8646 * 8647 * XXX: the ill_t structure can hava 2 counters, for 8648 * v4 and v6 (not just ill_ipif_up_count) to store the 8649 * number of interfaces for a device, so we don't need 8650 * to count them here... 8651 */ 8652 numifs = ip_get_numifs(zoneid, ipst); 8653 8654 ifclen = STRUCT_FGET(ifc, ifc_len); 8655 ifc_bufsize = numifs * sizeof (struct ifreq); 8656 if (ifc_bufsize > ifclen) { 8657 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8658 /* old behaviour */ 8659 return (EINVAL); 8660 } else { 8661 ifc_bufsize = ifclen; 8662 } 8663 } 8664 8665 mp1 = mi_copyout_alloc(q, mp, 8666 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8667 if (mp1 == NULL) 8668 return (ENOMEM); 8669 8670 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8671 } 8672 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8673 /* 8674 * the SIOCGIFCONF ioctl only knows about 8675 * IPv4 addresses, so don't try to tell 8676 * it about interfaces with IPv6-only 8677 * addresses. (Last parm 'isv6' is B_FALSE) 8678 */ 8679 8680 ifr = (struct ifreq *)mp1->b_rptr; 8681 8682 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8683 ill = ILL_START_WALK_V4(&ctx, ipst); 8684 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8685 for (ipif = ill->ill_ipif; ipif != NULL; 8686 ipif = ipif->ipif_next) { 8687 if (zoneid != ipif->ipif_zoneid && 8688 ipif->ipif_zoneid != ALL_ZONES) 8689 continue; 8690 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8691 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8692 /* old behaviour */ 8693 rw_exit(&ipst->ips_ill_g_lock); 8694 return (EINVAL); 8695 } else { 8696 goto if_copydone; 8697 } 8698 } 8699 ipif_get_name(ipif, ifr->ifr_name, 8700 sizeof (ifr->ifr_name)); 8701 sin = (sin_t *)&ifr->ifr_addr; 8702 *sin = sin_null; 8703 sin->sin_family = AF_INET; 8704 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8705 ifr++; 8706 } 8707 } 8708 if_copydone: 8709 rw_exit(&ipst->ips_ill_g_lock); 8710 mp1->b_wptr = (uchar_t *)ifr; 8711 8712 if (STRUCT_BUF(ifc) != NULL) { 8713 STRUCT_FSET(ifc, ifc_len, 8714 (int)((uchar_t *)ifr - mp1->b_rptr)); 8715 } 8716 return (0); 8717 } 8718 8719 /* 8720 * Get the interfaces using the address hosted on the interface passed in, 8721 * as a source adddress 8722 */ 8723 /* ARGSUSED */ 8724 int 8725 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8726 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8727 { 8728 mblk_t *mp1; 8729 ill_t *ill, *ill_head; 8730 ipif_t *ipif, *orig_ipif; 8731 int numlifs = 0; 8732 size_t lifs_bufsize, lifsmaxlen; 8733 struct lifreq *lifr; 8734 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8735 uint_t ifindex; 8736 zoneid_t zoneid; 8737 int err = 0; 8738 boolean_t isv6 = B_FALSE; 8739 struct sockaddr_in *sin; 8740 struct sockaddr_in6 *sin6; 8741 STRUCT_HANDLE(lifsrcof, lifs); 8742 ip_stack_t *ipst; 8743 8744 ipst = CONNQ_TO_IPST(q); 8745 8746 ASSERT(q->q_next == NULL); 8747 8748 zoneid = Q_TO_CONN(q)->conn_zoneid; 8749 8750 /* Existence verified in ip_wput_nondata */ 8751 mp1 = mp->b_cont->b_cont; 8752 8753 /* 8754 * Must be (better be!) continuation of a TRANSPARENT 8755 * IOCTL. We just copied in the lifsrcof structure. 8756 */ 8757 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8758 (struct lifsrcof *)mp1->b_rptr); 8759 8760 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8761 return (EINVAL); 8762 8763 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8764 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8765 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8766 ip_process_ioctl, &err, ipst); 8767 if (ipif == NULL) { 8768 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8769 ifindex)); 8770 return (err); 8771 } 8772 8773 8774 /* Allocate a buffer to hold requested information */ 8775 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8776 lifs_bufsize = numlifs * sizeof (struct lifreq); 8777 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8778 /* The actual size needed is always returned in lifs_len */ 8779 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8780 8781 /* If the amount we need is more than what is passed in, abort */ 8782 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8783 ipif_refrele(ipif); 8784 return (0); 8785 } 8786 8787 mp1 = mi_copyout_alloc(q, mp, 8788 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8789 if (mp1 == NULL) { 8790 ipif_refrele(ipif); 8791 return (ENOMEM); 8792 } 8793 8794 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8795 bzero(mp1->b_rptr, lifs_bufsize); 8796 8797 lifr = (struct lifreq *)mp1->b_rptr; 8798 8799 ill = ill_head = ipif->ipif_ill; 8800 orig_ipif = ipif; 8801 8802 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8803 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8804 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8805 8806 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8807 for (; (ill != NULL) && (ill != ill_head); 8808 ill = ill->ill_usesrc_grp_next) { 8809 8810 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8811 break; 8812 8813 ipif = ill->ill_ipif; 8814 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8815 if (ipif->ipif_isv6) { 8816 sin6 = (sin6_t *)&lifr->lifr_addr; 8817 *sin6 = sin6_null; 8818 sin6->sin6_family = AF_INET6; 8819 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8820 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8821 &ipif->ipif_v6net_mask); 8822 } else { 8823 sin = (sin_t *)&lifr->lifr_addr; 8824 *sin = sin_null; 8825 sin->sin_family = AF_INET; 8826 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8827 lifr->lifr_addrlen = ip_mask_to_plen( 8828 ipif->ipif_net_mask); 8829 } 8830 lifr++; 8831 } 8832 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8833 rw_exit(&ipst->ips_ill_g_lock); 8834 ipif_refrele(orig_ipif); 8835 mp1->b_wptr = (uchar_t *)lifr; 8836 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8837 8838 return (0); 8839 } 8840 8841 /* ARGSUSED */ 8842 int 8843 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8844 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8845 { 8846 mblk_t *mp1; 8847 int list; 8848 ill_t *ill; 8849 ipif_t *ipif; 8850 int flags; 8851 int numlifs = 0; 8852 size_t lifc_bufsize; 8853 struct lifreq *lifr; 8854 sa_family_t family; 8855 struct sockaddr_in *sin; 8856 struct sockaddr_in6 *sin6; 8857 ill_walk_context_t ctx; 8858 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8859 int32_t lifclen; 8860 zoneid_t zoneid; 8861 STRUCT_HANDLE(lifconf, lifc); 8862 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8863 8864 ip1dbg(("ip_sioctl_get_lifconf")); 8865 8866 ASSERT(q->q_next == NULL); 8867 8868 zoneid = Q_TO_CONN(q)->conn_zoneid; 8869 8870 /* Existence verified in ip_wput_nondata */ 8871 mp1 = mp->b_cont->b_cont; 8872 8873 /* 8874 * An extended version of SIOCGIFCONF that takes an 8875 * additional address family and flags field. 8876 * AF_UNSPEC retrieve both IPv4 and IPv6. 8877 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8878 * interfaces are omitted. 8879 * Similarly, IPIF_TEMPORARY interfaces are omitted 8880 * unless LIFC_TEMPORARY is specified. 8881 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8882 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8883 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8884 * has priority over LIFC_NOXMIT. 8885 */ 8886 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8887 8888 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8889 return (EINVAL); 8890 8891 /* 8892 * Must be (better be!) continuation of a TRANSPARENT 8893 * IOCTL. We just copied in the lifconf structure. 8894 */ 8895 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8896 8897 family = STRUCT_FGET(lifc, lifc_family); 8898 flags = STRUCT_FGET(lifc, lifc_flags); 8899 8900 switch (family) { 8901 case AF_UNSPEC: 8902 /* 8903 * walk all ILL's. 8904 */ 8905 list = MAX_G_HEADS; 8906 break; 8907 case AF_INET: 8908 /* 8909 * walk only IPV4 ILL's. 8910 */ 8911 list = IP_V4_G_HEAD; 8912 break; 8913 case AF_INET6: 8914 /* 8915 * walk only IPV6 ILL's. 8916 */ 8917 list = IP_V6_G_HEAD; 8918 break; 8919 default: 8920 return (EAFNOSUPPORT); 8921 } 8922 8923 /* 8924 * Allocate a buffer to hold requested information. 8925 * 8926 * If lifc_len is larger than what is needed, we only 8927 * allocate what we will use. 8928 * 8929 * If lifc_len is smaller than what is needed, return 8930 * EINVAL. 8931 */ 8932 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8933 lifc_bufsize = numlifs * sizeof (struct lifreq); 8934 lifclen = STRUCT_FGET(lifc, lifc_len); 8935 if (lifc_bufsize > lifclen) { 8936 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8937 return (EINVAL); 8938 else 8939 lifc_bufsize = lifclen; 8940 } 8941 8942 mp1 = mi_copyout_alloc(q, mp, 8943 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8944 if (mp1 == NULL) 8945 return (ENOMEM); 8946 8947 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8948 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8949 8950 lifr = (struct lifreq *)mp1->b_rptr; 8951 8952 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8953 ill = ill_first(list, list, &ctx, ipst); 8954 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8955 for (ipif = ill->ill_ipif; ipif != NULL; 8956 ipif = ipif->ipif_next) { 8957 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8958 !(flags & LIFC_NOXMIT)) 8959 continue; 8960 8961 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8962 !(flags & LIFC_TEMPORARY)) 8963 continue; 8964 8965 if (((ipif->ipif_flags & 8966 (IPIF_NOXMIT|IPIF_NOLOCAL| 8967 IPIF_DEPRECATED)) || 8968 IS_LOOPBACK(ill) || 8969 !(ipif->ipif_flags & IPIF_UP)) && 8970 (flags & LIFC_EXTERNAL_SOURCE)) 8971 continue; 8972 8973 if (zoneid != ipif->ipif_zoneid && 8974 ipif->ipif_zoneid != ALL_ZONES && 8975 (zoneid != GLOBAL_ZONEID || 8976 !(flags & LIFC_ALLZONES))) 8977 continue; 8978 8979 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8980 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8981 rw_exit(&ipst->ips_ill_g_lock); 8982 return (EINVAL); 8983 } else { 8984 goto lif_copydone; 8985 } 8986 } 8987 8988 ipif_get_name(ipif, lifr->lifr_name, 8989 sizeof (lifr->lifr_name)); 8990 if (ipif->ipif_isv6) { 8991 sin6 = (sin6_t *)&lifr->lifr_addr; 8992 *sin6 = sin6_null; 8993 sin6->sin6_family = AF_INET6; 8994 sin6->sin6_addr = 8995 ipif->ipif_v6lcl_addr; 8996 lifr->lifr_addrlen = 8997 ip_mask_to_plen_v6( 8998 &ipif->ipif_v6net_mask); 8999 } else { 9000 sin = (sin_t *)&lifr->lifr_addr; 9001 *sin = sin_null; 9002 sin->sin_family = AF_INET; 9003 sin->sin_addr.s_addr = 9004 ipif->ipif_lcl_addr; 9005 lifr->lifr_addrlen = 9006 ip_mask_to_plen( 9007 ipif->ipif_net_mask); 9008 } 9009 lifr++; 9010 } 9011 } 9012 lif_copydone: 9013 rw_exit(&ipst->ips_ill_g_lock); 9014 9015 mp1->b_wptr = (uchar_t *)lifr; 9016 if (STRUCT_BUF(lifc) != NULL) { 9017 STRUCT_FSET(lifc, lifc_len, 9018 (int)((uchar_t *)lifr - mp1->b_rptr)); 9019 } 9020 return (0); 9021 } 9022 9023 /* ARGSUSED */ 9024 int 9025 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9026 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9027 { 9028 ip_stack_t *ipst; 9029 9030 if (q->q_next == NULL) 9031 ipst = CONNQ_TO_IPST(q); 9032 else 9033 ipst = ILLQ_TO_IPST(q); 9034 9035 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9036 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9037 return (0); 9038 } 9039 9040 static void 9041 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9042 { 9043 ip6_asp_t *table; 9044 size_t table_size; 9045 mblk_t *data_mp; 9046 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9047 ip_stack_t *ipst; 9048 9049 if (q->q_next == NULL) 9050 ipst = CONNQ_TO_IPST(q); 9051 else 9052 ipst = ILLQ_TO_IPST(q); 9053 9054 /* These two ioctls are I_STR only */ 9055 if (iocp->ioc_count == TRANSPARENT) { 9056 miocnak(q, mp, 0, EINVAL); 9057 return; 9058 } 9059 9060 data_mp = mp->b_cont; 9061 if (data_mp == NULL) { 9062 /* The user passed us a NULL argument */ 9063 table = NULL; 9064 table_size = iocp->ioc_count; 9065 } else { 9066 /* 9067 * The user provided a table. The stream head 9068 * may have copied in the user data in chunks, 9069 * so make sure everything is pulled up 9070 * properly. 9071 */ 9072 if (MBLKL(data_mp) < iocp->ioc_count) { 9073 mblk_t *new_data_mp; 9074 if ((new_data_mp = msgpullup(data_mp, -1)) == 9075 NULL) { 9076 miocnak(q, mp, 0, ENOMEM); 9077 return; 9078 } 9079 freemsg(data_mp); 9080 data_mp = new_data_mp; 9081 mp->b_cont = data_mp; 9082 } 9083 table = (ip6_asp_t *)data_mp->b_rptr; 9084 table_size = iocp->ioc_count; 9085 } 9086 9087 switch (iocp->ioc_cmd) { 9088 case SIOCGIP6ADDRPOLICY: 9089 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9090 if (iocp->ioc_rval == -1) 9091 iocp->ioc_error = EINVAL; 9092 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9093 else if (table != NULL && 9094 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9095 ip6_asp_t *src = table; 9096 ip6_asp32_t *dst = (void *)table; 9097 int count = table_size / sizeof (ip6_asp_t); 9098 int i; 9099 9100 /* 9101 * We need to do an in-place shrink of the array 9102 * to match the alignment attributes of the 9103 * 32-bit ABI looking at it. 9104 */ 9105 /* LINTED: logical expression always true: op "||" */ 9106 ASSERT(sizeof (*src) > sizeof (*dst)); 9107 for (i = 1; i < count; i++) 9108 bcopy(src + i, dst + i, sizeof (*dst)); 9109 } 9110 #endif 9111 break; 9112 9113 case SIOCSIP6ADDRPOLICY: 9114 ASSERT(mp->b_prev == NULL); 9115 mp->b_prev = (void *)q; 9116 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9117 /* 9118 * We pass in the datamodel here so that the ip6_asp_replace() 9119 * routine can handle converting from 32-bit to native formats 9120 * where necessary. 9121 * 9122 * A better way to handle this might be to convert the inbound 9123 * data structure here, and hang it off a new 'mp'; thus the 9124 * ip6_asp_replace() logic would always be dealing with native 9125 * format data structures.. 9126 * 9127 * (An even simpler way to handle these ioctls is to just 9128 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9129 * and just recompile everything that depends on it.) 9130 */ 9131 #endif 9132 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9133 iocp->ioc_flag & IOC_MODELS); 9134 return; 9135 } 9136 9137 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9138 qreply(q, mp); 9139 } 9140 9141 static void 9142 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9143 { 9144 mblk_t *data_mp; 9145 struct dstinforeq *dir; 9146 uint8_t *end, *cur; 9147 in6_addr_t *daddr, *saddr; 9148 ipaddr_t v4daddr; 9149 ire_t *ire; 9150 char *slabel, *dlabel; 9151 boolean_t isipv4; 9152 int match_ire; 9153 ill_t *dst_ill; 9154 ipif_t *src_ipif, *ire_ipif; 9155 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9156 zoneid_t zoneid; 9157 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9158 9159 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9160 zoneid = Q_TO_CONN(q)->conn_zoneid; 9161 9162 /* 9163 * This ioctl is I_STR only, and must have a 9164 * data mblk following the M_IOCTL mblk. 9165 */ 9166 data_mp = mp->b_cont; 9167 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9168 miocnak(q, mp, 0, EINVAL); 9169 return; 9170 } 9171 9172 if (MBLKL(data_mp) < iocp->ioc_count) { 9173 mblk_t *new_data_mp; 9174 9175 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9176 miocnak(q, mp, 0, ENOMEM); 9177 return; 9178 } 9179 freemsg(data_mp); 9180 data_mp = new_data_mp; 9181 mp->b_cont = data_mp; 9182 } 9183 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9184 9185 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9186 end - cur >= sizeof (struct dstinforeq); 9187 cur += sizeof (struct dstinforeq)) { 9188 dir = (struct dstinforeq *)cur; 9189 daddr = &dir->dir_daddr; 9190 saddr = &dir->dir_saddr; 9191 9192 /* 9193 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9194 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9195 * and ipif_select_source[_v6]() do not. 9196 */ 9197 dir->dir_dscope = ip_addr_scope_v6(daddr); 9198 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9199 9200 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9201 if (isipv4) { 9202 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9203 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9204 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9205 } else { 9206 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9207 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9208 } 9209 if (ire == NULL) { 9210 dir->dir_dreachable = 0; 9211 9212 /* move on to next dst addr */ 9213 continue; 9214 } 9215 dir->dir_dreachable = 1; 9216 9217 ire_ipif = ire->ire_ipif; 9218 if (ire_ipif == NULL) 9219 goto next_dst; 9220 9221 /* 9222 * We expect to get back an interface ire or a 9223 * gateway ire cache entry. For both types, the 9224 * output interface is ire_ipif->ipif_ill. 9225 */ 9226 dst_ill = ire_ipif->ipif_ill; 9227 dir->dir_dmactype = dst_ill->ill_mactype; 9228 9229 if (isipv4) { 9230 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9231 } else { 9232 src_ipif = ipif_select_source_v6(dst_ill, 9233 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9234 zoneid); 9235 } 9236 if (src_ipif == NULL) 9237 goto next_dst; 9238 9239 *saddr = src_ipif->ipif_v6lcl_addr; 9240 dir->dir_sscope = ip_addr_scope_v6(saddr); 9241 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9242 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9243 dir->dir_sdeprecated = 9244 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9245 ipif_refrele(src_ipif); 9246 next_dst: 9247 ire_refrele(ire); 9248 } 9249 miocack(q, mp, iocp->ioc_count, 0); 9250 } 9251 9252 9253 /* 9254 * Check if this is an address assigned to this machine. 9255 * Skips interfaces that are down by using ire checks. 9256 * Translates mapped addresses to v4 addresses and then 9257 * treats them as such, returning true if the v4 address 9258 * associated with this mapped address is configured. 9259 * Note: Applications will have to be careful what they do 9260 * with the response; use of mapped addresses limits 9261 * what can be done with the socket, especially with 9262 * respect to socket options and ioctls - neither IPv4 9263 * options nor IPv6 sticky options/ancillary data options 9264 * may be used. 9265 */ 9266 /* ARGSUSED */ 9267 int 9268 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9269 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9270 { 9271 struct sioc_addrreq *sia; 9272 sin_t *sin; 9273 ire_t *ire; 9274 mblk_t *mp1; 9275 zoneid_t zoneid; 9276 ip_stack_t *ipst; 9277 9278 ip1dbg(("ip_sioctl_tmyaddr")); 9279 9280 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9281 zoneid = Q_TO_CONN(q)->conn_zoneid; 9282 ipst = CONNQ_TO_IPST(q); 9283 9284 /* Existence verified in ip_wput_nondata */ 9285 mp1 = mp->b_cont->b_cont; 9286 sia = (struct sioc_addrreq *)mp1->b_rptr; 9287 sin = (sin_t *)&sia->sa_addr; 9288 switch (sin->sin_family) { 9289 case AF_INET6: { 9290 sin6_t *sin6 = (sin6_t *)sin; 9291 9292 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9293 ipaddr_t v4_addr; 9294 9295 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9296 v4_addr); 9297 ire = ire_ctable_lookup(v4_addr, 0, 9298 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9299 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9300 } else { 9301 in6_addr_t v6addr; 9302 9303 v6addr = sin6->sin6_addr; 9304 ire = ire_ctable_lookup_v6(&v6addr, 0, 9305 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9306 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9307 } 9308 break; 9309 } 9310 case AF_INET: { 9311 ipaddr_t v4addr; 9312 9313 v4addr = sin->sin_addr.s_addr; 9314 ire = ire_ctable_lookup(v4addr, 0, 9315 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9316 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9317 break; 9318 } 9319 default: 9320 return (EAFNOSUPPORT); 9321 } 9322 if (ire != NULL) { 9323 sia->sa_res = 1; 9324 ire_refrele(ire); 9325 } else { 9326 sia->sa_res = 0; 9327 } 9328 return (0); 9329 } 9330 9331 /* 9332 * Check if this is an address assigned on-link i.e. neighbor, 9333 * and makes sure it's reachable from the current zone. 9334 * Returns true for my addresses as well. 9335 * Translates mapped addresses to v4 addresses and then 9336 * treats them as such, returning true if the v4 address 9337 * associated with this mapped address is configured. 9338 * Note: Applications will have to be careful what they do 9339 * with the response; use of mapped addresses limits 9340 * what can be done with the socket, especially with 9341 * respect to socket options and ioctls - neither IPv4 9342 * options nor IPv6 sticky options/ancillary data options 9343 * may be used. 9344 */ 9345 /* ARGSUSED */ 9346 int 9347 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9348 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9349 { 9350 struct sioc_addrreq *sia; 9351 sin_t *sin; 9352 mblk_t *mp1; 9353 ire_t *ire = NULL; 9354 zoneid_t zoneid; 9355 ip_stack_t *ipst; 9356 9357 ip1dbg(("ip_sioctl_tonlink")); 9358 9359 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9360 zoneid = Q_TO_CONN(q)->conn_zoneid; 9361 ipst = CONNQ_TO_IPST(q); 9362 9363 /* Existence verified in ip_wput_nondata */ 9364 mp1 = mp->b_cont->b_cont; 9365 sia = (struct sioc_addrreq *)mp1->b_rptr; 9366 sin = (sin_t *)&sia->sa_addr; 9367 9368 /* 9369 * Match addresses with a zero gateway field to avoid 9370 * routes going through a router. 9371 * Exclude broadcast and multicast addresses. 9372 */ 9373 switch (sin->sin_family) { 9374 case AF_INET6: { 9375 sin6_t *sin6 = (sin6_t *)sin; 9376 9377 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9378 ipaddr_t v4_addr; 9379 9380 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9381 v4_addr); 9382 if (!CLASSD(v4_addr)) { 9383 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9384 NULL, NULL, zoneid, NULL, 9385 MATCH_IRE_GW, ipst); 9386 } 9387 } else { 9388 in6_addr_t v6addr; 9389 in6_addr_t v6gw; 9390 9391 v6addr = sin6->sin6_addr; 9392 v6gw = ipv6_all_zeros; 9393 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9394 ire = ire_route_lookup_v6(&v6addr, 0, 9395 &v6gw, 0, NULL, NULL, zoneid, 9396 NULL, MATCH_IRE_GW, ipst); 9397 } 9398 } 9399 break; 9400 } 9401 case AF_INET: { 9402 ipaddr_t v4addr; 9403 9404 v4addr = sin->sin_addr.s_addr; 9405 if (!CLASSD(v4addr)) { 9406 ire = ire_route_lookup(v4addr, 0, 0, 0, 9407 NULL, NULL, zoneid, NULL, 9408 MATCH_IRE_GW, ipst); 9409 } 9410 break; 9411 } 9412 default: 9413 return (EAFNOSUPPORT); 9414 } 9415 sia->sa_res = 0; 9416 if (ire != NULL) { 9417 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9418 IRE_LOCAL|IRE_LOOPBACK)) { 9419 sia->sa_res = 1; 9420 } 9421 ire_refrele(ire); 9422 } 9423 return (0); 9424 } 9425 9426 /* 9427 * TBD: implement when kernel maintaines a list of site prefixes. 9428 */ 9429 /* ARGSUSED */ 9430 int 9431 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9432 ip_ioctl_cmd_t *ipip, void *ifreq) 9433 { 9434 return (ENXIO); 9435 } 9436 9437 /* ARGSUSED */ 9438 int 9439 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9440 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9441 { 9442 ill_t *ill; 9443 mblk_t *mp1; 9444 conn_t *connp; 9445 boolean_t success; 9446 9447 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9448 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9449 /* ioctl comes down on an conn */ 9450 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9451 connp = Q_TO_CONN(q); 9452 9453 mp->b_datap->db_type = M_IOCTL; 9454 9455 /* 9456 * Send down a copy. (copymsg does not copy b_next/b_prev). 9457 * The original mp contains contaminated b_next values due to 'mi', 9458 * which is needed to do the mi_copy_done. Unfortunately if we 9459 * send down the original mblk itself and if we are popped due to an 9460 * an unplumb before the response comes back from tunnel, 9461 * the streamhead (which does a freemsg) will see this contaminated 9462 * message and the assertion in freemsg about non-null b_next/b_prev 9463 * will panic a DEBUG kernel. 9464 */ 9465 mp1 = copymsg(mp); 9466 if (mp1 == NULL) 9467 return (ENOMEM); 9468 9469 ill = ipif->ipif_ill; 9470 mutex_enter(&connp->conn_lock); 9471 mutex_enter(&ill->ill_lock); 9472 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9473 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9474 mp, 0); 9475 } else { 9476 success = ill_pending_mp_add(ill, connp, mp); 9477 } 9478 mutex_exit(&ill->ill_lock); 9479 mutex_exit(&connp->conn_lock); 9480 9481 if (success) { 9482 ip1dbg(("sending down tunparam request ")); 9483 putnext(ill->ill_wq, mp1); 9484 return (EINPROGRESS); 9485 } else { 9486 /* The conn has started closing */ 9487 freemsg(mp1); 9488 return (EINTR); 9489 } 9490 } 9491 9492 /* 9493 * ARP IOCTLs. 9494 * How does IP get in the business of fronting ARP configuration/queries? 9495 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9496 * are by tradition passed in through a datagram socket. That lands in IP. 9497 * As it happens, this is just as well since the interface is quite crude in 9498 * that it passes in no information about protocol or hardware types, or 9499 * interface association. After making the protocol assumption, IP is in 9500 * the position to look up the name of the ILL, which ARP will need, and 9501 * format a request that can be handled by ARP. The request is passed up 9502 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9503 * back a response. ARP supports its own set of more general IOCTLs, in 9504 * case anyone is interested. 9505 */ 9506 /* ARGSUSED */ 9507 int 9508 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9509 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9510 { 9511 mblk_t *mp1; 9512 mblk_t *mp2; 9513 mblk_t *pending_mp; 9514 ipaddr_t ipaddr; 9515 area_t *area; 9516 struct iocblk *iocp; 9517 conn_t *connp; 9518 struct arpreq *ar; 9519 struct xarpreq *xar; 9520 int flags, alength; 9521 char *lladdr; 9522 ip_stack_t *ipst; 9523 ill_t *ill = ipif->ipif_ill; 9524 boolean_t if_arp_ioctl = B_FALSE; 9525 9526 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9527 connp = Q_TO_CONN(q); 9528 ipst = connp->conn_netstack->netstack_ip; 9529 9530 if (ipip->ipi_cmd_type == XARP_CMD) { 9531 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9532 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9533 ar = NULL; 9534 9535 flags = xar->xarp_flags; 9536 lladdr = LLADDR(&xar->xarp_ha); 9537 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9538 /* 9539 * Validate against user's link layer address length 9540 * input and name and addr length limits. 9541 */ 9542 alength = ill->ill_phys_addr_length; 9543 if (ipip->ipi_cmd == SIOCSXARP) { 9544 if (alength != xar->xarp_ha.sdl_alen || 9545 (alength + xar->xarp_ha.sdl_nlen > 9546 sizeof (xar->xarp_ha.sdl_data))) 9547 return (EINVAL); 9548 } 9549 } else { 9550 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9551 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9552 xar = NULL; 9553 9554 flags = ar->arp_flags; 9555 lladdr = ar->arp_ha.sa_data; 9556 /* 9557 * Theoretically, the sa_family could tell us what link 9558 * layer type this operation is trying to deal with. By 9559 * common usage AF_UNSPEC means ethernet. We'll assume 9560 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9561 * for now. Our new SIOC*XARP ioctls can be used more 9562 * generally. 9563 * 9564 * If the underlying media happens to have a non 6 byte 9565 * address, arp module will fail set/get, but the del 9566 * operation will succeed. 9567 */ 9568 alength = 6; 9569 if ((ipip->ipi_cmd != SIOCDARP) && 9570 (alength != ill->ill_phys_addr_length)) { 9571 return (EINVAL); 9572 } 9573 } 9574 9575 /* 9576 * We are going to pass up to ARP a packet chain that looks 9577 * like: 9578 * 9579 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9580 * 9581 * Get a copy of the original IOCTL mblk to head the chain, 9582 * to be sent up (in mp1). Also get another copy to store 9583 * in the ill_pending_mp list, for matching the response 9584 * when it comes back from ARP. 9585 */ 9586 mp1 = copyb(mp); 9587 pending_mp = copymsg(mp); 9588 if (mp1 == NULL || pending_mp == NULL) { 9589 if (mp1 != NULL) 9590 freeb(mp1); 9591 if (pending_mp != NULL) 9592 inet_freemsg(pending_mp); 9593 return (ENOMEM); 9594 } 9595 9596 ipaddr = sin->sin_addr.s_addr; 9597 9598 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9599 (caddr_t)&ipaddr); 9600 if (mp2 == NULL) { 9601 freeb(mp1); 9602 inet_freemsg(pending_mp); 9603 return (ENOMEM); 9604 } 9605 /* Put together the chain. */ 9606 mp1->b_cont = mp2; 9607 mp1->b_datap->db_type = M_IOCTL; 9608 mp2->b_cont = mp; 9609 mp2->b_datap->db_type = M_DATA; 9610 9611 iocp = (struct iocblk *)mp1->b_rptr; 9612 9613 /* 9614 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9615 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9616 * cp_private field (or cp_rval on 32-bit systems) in place of the 9617 * ioc_count field; set ioc_count to be correct. 9618 */ 9619 iocp->ioc_count = MBLKL(mp1->b_cont); 9620 9621 /* 9622 * Set the proper command in the ARP message. 9623 * Convert the SIOC{G|S|D}ARP calls into our 9624 * AR_ENTRY_xxx calls. 9625 */ 9626 area = (area_t *)mp2->b_rptr; 9627 switch (iocp->ioc_cmd) { 9628 case SIOCDARP: 9629 case SIOCDXARP: 9630 /* 9631 * We defer deleting the corresponding IRE until 9632 * we return from arp. 9633 */ 9634 area->area_cmd = AR_ENTRY_DELETE; 9635 area->area_proto_mask_offset = 0; 9636 break; 9637 case SIOCGARP: 9638 case SIOCGXARP: 9639 area->area_cmd = AR_ENTRY_SQUERY; 9640 area->area_proto_mask_offset = 0; 9641 break; 9642 case SIOCSARP: 9643 case SIOCSXARP: 9644 /* 9645 * Delete the corresponding ire to make sure IP will 9646 * pick up any change from arp. 9647 */ 9648 if (!if_arp_ioctl) { 9649 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9650 } else { 9651 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9652 if (ipif != NULL) { 9653 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9654 ipst); 9655 ipif_refrele(ipif); 9656 } 9657 } 9658 break; 9659 } 9660 iocp->ioc_cmd = area->area_cmd; 9661 9662 /* 9663 * Fill in the rest of the ARP operation fields. 9664 */ 9665 area->area_hw_addr_length = alength; 9666 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9667 9668 /* Translate the flags. */ 9669 if (flags & ATF_PERM) 9670 area->area_flags |= ACE_F_PERMANENT; 9671 if (flags & ATF_PUBL) 9672 area->area_flags |= ACE_F_PUBLISH; 9673 if (flags & ATF_AUTHORITY) 9674 area->area_flags |= ACE_F_AUTHORITY; 9675 9676 /* 9677 * Before sending 'mp' to ARP, we have to clear the b_next 9678 * and b_prev. Otherwise if STREAMS encounters such a message 9679 * in freemsg(), (because ARP can close any time) it can cause 9680 * a panic. But mi code needs the b_next and b_prev values of 9681 * mp->b_cont, to complete the ioctl. So we store it here 9682 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9683 * when the response comes down from ARP. 9684 */ 9685 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9686 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9687 mp->b_cont->b_next = NULL; 9688 mp->b_cont->b_prev = NULL; 9689 9690 mutex_enter(&connp->conn_lock); 9691 mutex_enter(&ill->ill_lock); 9692 /* conn has not yet started closing, hence this can't fail */ 9693 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9694 mutex_exit(&ill->ill_lock); 9695 mutex_exit(&connp->conn_lock); 9696 9697 /* 9698 * Up to ARP it goes. The response will come back in ip_wput() as an 9699 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9700 */ 9701 putnext(ill->ill_rq, mp1); 9702 return (EINPROGRESS); 9703 } 9704 9705 /* 9706 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9707 * the associated sin and refhold and return the associated ipif via `ci'. 9708 */ 9709 int 9710 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9711 cmd_info_t *ci, ipsq_func_t func) 9712 { 9713 mblk_t *mp1; 9714 int err; 9715 sin_t *sin; 9716 conn_t *connp; 9717 ipif_t *ipif; 9718 ire_t *ire = NULL; 9719 ill_t *ill = NULL; 9720 boolean_t exists; 9721 ip_stack_t *ipst; 9722 struct arpreq *ar; 9723 struct xarpreq *xar; 9724 struct sockaddr_dl *sdl; 9725 9726 /* ioctl comes down on a conn */ 9727 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9728 connp = Q_TO_CONN(q); 9729 if (connp->conn_af_isv6) 9730 return (ENXIO); 9731 9732 ipst = connp->conn_netstack->netstack_ip; 9733 9734 /* Verified in ip_wput_nondata */ 9735 mp1 = mp->b_cont->b_cont; 9736 9737 if (ipip->ipi_cmd_type == XARP_CMD) { 9738 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9739 xar = (struct xarpreq *)mp1->b_rptr; 9740 sin = (sin_t *)&xar->xarp_pa; 9741 sdl = &xar->xarp_ha; 9742 9743 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9744 return (ENXIO); 9745 if (sdl->sdl_nlen >= LIFNAMSIZ) 9746 return (EINVAL); 9747 } else { 9748 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9749 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9750 ar = (struct arpreq *)mp1->b_rptr; 9751 sin = (sin_t *)&ar->arp_pa; 9752 } 9753 9754 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9755 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9756 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9757 mp, func, &err, ipst); 9758 if (ipif == NULL) 9759 return (err); 9760 if (ipif->ipif_id != 0 || 9761 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9762 ipif_refrele(ipif); 9763 return (ENXIO); 9764 } 9765 } else { 9766 /* 9767 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9768 * 0: use the IP address to figure out the ill. In the IPMP 9769 * case, a simple forwarding table lookup will return the 9770 * IRE_IF_RESOLVER for the first interface in the group, which 9771 * might not be the interface on which the requested IP 9772 * address was resolved due to the ill selection algorithm 9773 * (see ip_newroute_get_dst_ill()). So we do a cache table 9774 * lookup first: if the IRE cache entry for the IP address is 9775 * still there, it will contain the ill pointer for the right 9776 * interface, so we use that. If the cache entry has been 9777 * flushed, we fall back to the forwarding table lookup. This 9778 * should be rare enough since IRE cache entries have a longer 9779 * life expectancy than ARP cache entries. 9780 */ 9781 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9782 ipst); 9783 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9784 ((ill = ire_to_ill(ire)) == NULL) || 9785 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9786 if (ire != NULL) 9787 ire_refrele(ire); 9788 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9789 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9790 NULL, MATCH_IRE_TYPE, ipst); 9791 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9792 9793 if (ire != NULL) 9794 ire_refrele(ire); 9795 return (ENXIO); 9796 } 9797 } 9798 ASSERT(ire != NULL && ill != NULL); 9799 ipif = ill->ill_ipif; 9800 ipif_refhold(ipif); 9801 ire_refrele(ire); 9802 } 9803 ci->ci_sin = sin; 9804 ci->ci_ipif = ipif; 9805 return (0); 9806 } 9807 9808 /* 9809 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9810 * atomically set/clear the muxids. Also complete the ioctl by acking or 9811 * naking it. Note that the code is structured such that the link type, 9812 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9813 * its clones use the persistent link, while pppd(1M) and perhaps many 9814 * other daemons may use non-persistent link. When combined with some 9815 * ill_t states, linking and unlinking lower streams may be used as 9816 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9817 */ 9818 /* ARGSUSED */ 9819 void 9820 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9821 { 9822 mblk_t *mp1, *mp2; 9823 struct linkblk *li; 9824 struct ipmx_s *ipmxp; 9825 ill_t *ill; 9826 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9827 int err = 0; 9828 boolean_t entered_ipsq = B_FALSE; 9829 boolean_t islink; 9830 ip_stack_t *ipst; 9831 9832 if (CONN_Q(q)) 9833 ipst = CONNQ_TO_IPST(q); 9834 else 9835 ipst = ILLQ_TO_IPST(q); 9836 9837 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9838 ioccmd == I_LINK || ioccmd == I_UNLINK); 9839 9840 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9841 9842 mp1 = mp->b_cont; /* This is the linkblk info */ 9843 li = (struct linkblk *)mp1->b_rptr; 9844 9845 /* 9846 * ARP has added this special mblk, and the utility is asking us 9847 * to perform consistency checks, and also atomically set the 9848 * muxid. Ifconfig is an example. It achieves this by using 9849 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9850 * to /dev/udp[6] stream for use as the mux when plinking the IP 9851 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9852 * and other comments in this routine for more details. 9853 */ 9854 mp2 = mp1->b_cont; /* This is added by ARP */ 9855 9856 /* 9857 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9858 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9859 * get the special mblk above. For backward compatibility, we 9860 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9861 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9862 * not atomic, and can leave the streams unplumbable if the utility 9863 * is interrupted before it does the SIOCSLIFMUXID. 9864 */ 9865 if (mp2 == NULL) { 9866 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9867 if (err == EINPROGRESS) 9868 return; 9869 goto done; 9870 } 9871 9872 /* 9873 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9874 * ARP has appended this last mblk to tell us whether the lower stream 9875 * is an arp-dev stream or an IP module stream. 9876 */ 9877 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9878 if (ipmxp->ipmx_arpdev_stream) { 9879 /* 9880 * The lower stream is the arp-dev stream. 9881 */ 9882 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9883 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9884 if (ill == NULL) { 9885 if (err == EINPROGRESS) 9886 return; 9887 err = EINVAL; 9888 goto done; 9889 } 9890 9891 if (ipsq == NULL) { 9892 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9893 NEW_OP, B_TRUE); 9894 if (ipsq == NULL) { 9895 ill_refrele(ill); 9896 return; 9897 } 9898 entered_ipsq = B_TRUE; 9899 } 9900 ASSERT(IAM_WRITER_ILL(ill)); 9901 ill_refrele(ill); 9902 9903 /* 9904 * To ensure consistency between IP and ARP, the following 9905 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9906 * This is because the muxid's are stored in the IP stream on 9907 * the ill. 9908 * 9909 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9910 * the ARP stream. On an arp-dev stream, IP checks that it is 9911 * not yet plinked, and it also checks that the corresponding 9912 * IP stream is already plinked. 9913 * 9914 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9915 * punlinking the IP stream. IP does not allow punlink of the 9916 * IP stream unless the arp stream has been punlinked. 9917 */ 9918 if ((islink && 9919 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9920 (!islink && ill->ill_arp_muxid != li->l_index)) { 9921 err = EINVAL; 9922 goto done; 9923 } 9924 ill->ill_arp_muxid = islink ? li->l_index : 0; 9925 } else { 9926 /* 9927 * The lower stream is probably an IP module stream. Do 9928 * consistency checking. 9929 */ 9930 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9931 if (err == EINPROGRESS) 9932 return; 9933 } 9934 done: 9935 if (err == 0) 9936 miocack(q, mp, 0, 0); 9937 else 9938 miocnak(q, mp, 0, err); 9939 9940 /* Conn was refheld in ip_sioctl_copyin_setup */ 9941 if (CONN_Q(q)) 9942 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9943 if (entered_ipsq) 9944 ipsq_exit(ipsq); 9945 } 9946 9947 /* 9948 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9949 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9950 * module stream). If `doconsist' is set, then do the extended consistency 9951 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9952 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9953 * an error code on failure. 9954 */ 9955 static int 9956 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9957 struct linkblk *li, boolean_t doconsist) 9958 { 9959 ill_t *ill; 9960 queue_t *ipwq, *dwq; 9961 const char *name; 9962 struct qinit *qinfo; 9963 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9964 boolean_t entered_ipsq = B_FALSE; 9965 9966 /* 9967 * Walk the lower stream to verify it's the IP module stream. 9968 * The IP module is identified by its name, wput function, 9969 * and non-NULL q_next. STREAMS ensures that the lower stream 9970 * (li->l_qbot) will not vanish until this ioctl completes. 9971 */ 9972 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9973 qinfo = ipwq->q_qinfo; 9974 name = qinfo->qi_minfo->mi_idname; 9975 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9976 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9977 break; 9978 } 9979 } 9980 9981 /* 9982 * If this isn't an IP module stream, bail. 9983 */ 9984 if (ipwq == NULL) 9985 return (0); 9986 9987 ill = ipwq->q_ptr; 9988 ASSERT(ill != NULL); 9989 9990 if (ipsq == NULL) { 9991 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9992 NEW_OP, B_TRUE); 9993 if (ipsq == NULL) 9994 return (EINPROGRESS); 9995 entered_ipsq = B_TRUE; 9996 } 9997 ASSERT(IAM_WRITER_ILL(ill)); 9998 9999 if (doconsist) { 10000 /* 10001 * Consistency checking requires that I_{P}LINK occurs 10002 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 10003 * occurs prior to clearing ill_arp_muxid. 10004 */ 10005 if ((islink && ill->ill_ip_muxid != 0) || 10006 (!islink && ill->ill_arp_muxid != 0)) { 10007 if (entered_ipsq) 10008 ipsq_exit(ipsq); 10009 return (EINVAL); 10010 } 10011 } 10012 10013 /* 10014 * As part of I_{P}LINKing, stash the number of downstream modules and 10015 * the read queue of the module immediately below IP in the ill. 10016 * These are used during the capability negotiation below. 10017 */ 10018 ill->ill_lmod_rq = NULL; 10019 ill->ill_lmod_cnt = 0; 10020 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10021 ill->ill_lmod_rq = RD(dwq); 10022 for (; dwq != NULL; dwq = dwq->q_next) 10023 ill->ill_lmod_cnt++; 10024 } 10025 10026 if (doconsist) 10027 ill->ill_ip_muxid = islink ? li->l_index : 0; 10028 10029 /* 10030 * If there's at least one up ipif on this ill, then we're bound to 10031 * the underlying driver via DLPI. In that case, renegotiate 10032 * capabilities to account for any possible change in modules 10033 * interposed between IP and the driver. 10034 */ 10035 if (ill->ill_ipif_up_count > 0) { 10036 if (islink) 10037 ill_capability_probe(ill); 10038 else 10039 ill_capability_reset(ill); 10040 } 10041 10042 if (entered_ipsq) 10043 ipsq_exit(ipsq); 10044 10045 return (0); 10046 } 10047 10048 /* 10049 * Search the ioctl command in the ioctl tables and return a pointer 10050 * to the ioctl command information. The ioctl command tables are 10051 * static and fully populated at compile time. 10052 */ 10053 ip_ioctl_cmd_t * 10054 ip_sioctl_lookup(int ioc_cmd) 10055 { 10056 int index; 10057 ip_ioctl_cmd_t *ipip; 10058 ip_ioctl_cmd_t *ipip_end; 10059 10060 if (ioc_cmd == IPI_DONTCARE) 10061 return (NULL); 10062 10063 /* 10064 * Do a 2 step search. First search the indexed table 10065 * based on the least significant byte of the ioctl cmd. 10066 * If we don't find a match, then search the misc table 10067 * serially. 10068 */ 10069 index = ioc_cmd & 0xFF; 10070 if (index < ip_ndx_ioctl_count) { 10071 ipip = &ip_ndx_ioctl_table[index]; 10072 if (ipip->ipi_cmd == ioc_cmd) { 10073 /* Found a match in the ndx table */ 10074 return (ipip); 10075 } 10076 } 10077 10078 /* Search the misc table */ 10079 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10080 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10081 if (ipip->ipi_cmd == ioc_cmd) 10082 /* Found a match in the misc table */ 10083 return (ipip); 10084 } 10085 10086 return (NULL); 10087 } 10088 10089 /* 10090 * Wrapper function for resuming deferred ioctl processing 10091 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10092 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10093 */ 10094 /* ARGSUSED */ 10095 void 10096 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10097 void *dummy_arg) 10098 { 10099 ip_sioctl_copyin_setup(q, mp); 10100 } 10101 10102 /* 10103 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10104 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10105 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10106 * We establish here the size of the block to be copied in. mi_copyin 10107 * arranges for this to happen, an processing continues in ip_wput with 10108 * an M_IOCDATA message. 10109 */ 10110 void 10111 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10112 { 10113 int copyin_size; 10114 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10115 ip_ioctl_cmd_t *ipip; 10116 cred_t *cr; 10117 ip_stack_t *ipst; 10118 10119 if (CONN_Q(q)) 10120 ipst = CONNQ_TO_IPST(q); 10121 else 10122 ipst = ILLQ_TO_IPST(q); 10123 10124 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10125 if (ipip == NULL) { 10126 /* 10127 * The ioctl is not one we understand or own. 10128 * Pass it along to be processed down stream, 10129 * if this is a module instance of IP, else nak 10130 * the ioctl. 10131 */ 10132 if (q->q_next == NULL) { 10133 goto nak; 10134 } else { 10135 putnext(q, mp); 10136 return; 10137 } 10138 } 10139 10140 /* 10141 * If this is deferred, then we will do all the checks when we 10142 * come back. 10143 */ 10144 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10145 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10146 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10147 return; 10148 } 10149 10150 /* 10151 * Only allow a very small subset of IP ioctls on this stream if 10152 * IP is a module and not a driver. Allowing ioctls to be processed 10153 * in this case may cause assert failures or data corruption. 10154 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10155 * ioctls allowed on an IP module stream, after which this stream 10156 * normally becomes a multiplexor (at which time the stream head 10157 * will fail all ioctls). 10158 */ 10159 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10160 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10161 /* 10162 * Pass common Streams ioctls which the IP 10163 * module does not own or consume along to 10164 * be processed down stream. 10165 */ 10166 putnext(q, mp); 10167 return; 10168 } else { 10169 goto nak; 10170 } 10171 } 10172 10173 /* Make sure we have ioctl data to process. */ 10174 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10175 goto nak; 10176 10177 /* 10178 * Prefer dblk credential over ioctl credential; some synthesized 10179 * ioctls have kcred set because there's no way to crhold() 10180 * a credential in some contexts. (ioc_cr is not crfree() by 10181 * the framework; the caller of ioctl needs to hold the reference 10182 * for the duration of the call). 10183 */ 10184 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10185 10186 /* Make sure normal users don't send down privileged ioctls */ 10187 if ((ipip->ipi_flags & IPI_PRIV) && 10188 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10189 /* We checked the privilege earlier but log it here */ 10190 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10191 return; 10192 } 10193 10194 /* 10195 * The ioctl command tables can only encode fixed length 10196 * ioctl data. If the length is variable, the table will 10197 * encode the length as zero. Such special cases are handled 10198 * below in the switch. 10199 */ 10200 if (ipip->ipi_copyin_size != 0) { 10201 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10202 return; 10203 } 10204 10205 switch (iocp->ioc_cmd) { 10206 case O_SIOCGIFCONF: 10207 case SIOCGIFCONF: 10208 /* 10209 * This IOCTL is hilarious. See comments in 10210 * ip_sioctl_get_ifconf for the story. 10211 */ 10212 if (iocp->ioc_count == TRANSPARENT) 10213 copyin_size = SIZEOF_STRUCT(ifconf, 10214 iocp->ioc_flag); 10215 else 10216 copyin_size = iocp->ioc_count; 10217 mi_copyin(q, mp, NULL, copyin_size); 10218 return; 10219 10220 case O_SIOCGLIFCONF: 10221 case SIOCGLIFCONF: 10222 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10223 mi_copyin(q, mp, NULL, copyin_size); 10224 return; 10225 10226 case SIOCGLIFSRCOF: 10227 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10228 mi_copyin(q, mp, NULL, copyin_size); 10229 return; 10230 case SIOCGIP6ADDRPOLICY: 10231 ip_sioctl_ip6addrpolicy(q, mp); 10232 ip6_asp_table_refrele(ipst); 10233 return; 10234 10235 case SIOCSIP6ADDRPOLICY: 10236 ip_sioctl_ip6addrpolicy(q, mp); 10237 return; 10238 10239 case SIOCGDSTINFO: 10240 ip_sioctl_dstinfo(q, mp); 10241 ip6_asp_table_refrele(ipst); 10242 return; 10243 10244 case I_PLINK: 10245 case I_PUNLINK: 10246 case I_LINK: 10247 case I_UNLINK: 10248 /* 10249 * We treat non-persistent link similarly as the persistent 10250 * link case, in terms of plumbing/unplumbing, as well as 10251 * dynamic re-plumbing events indicator. See comments 10252 * in ip_sioctl_plink() for more. 10253 * 10254 * Request can be enqueued in the 'ipsq' while waiting 10255 * to become exclusive. So bump up the conn ref. 10256 */ 10257 if (CONN_Q(q)) 10258 CONN_INC_REF(Q_TO_CONN(q)); 10259 ip_sioctl_plink(NULL, q, mp, NULL); 10260 return; 10261 10262 case ND_GET: 10263 case ND_SET: 10264 /* 10265 * Use of the nd table requires holding the reader lock. 10266 * Modifying the nd table thru nd_load/nd_unload requires 10267 * the writer lock. 10268 */ 10269 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10270 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10271 rw_exit(&ipst->ips_ip_g_nd_lock); 10272 10273 if (iocp->ioc_error) 10274 iocp->ioc_count = 0; 10275 mp->b_datap->db_type = M_IOCACK; 10276 qreply(q, mp); 10277 return; 10278 } 10279 rw_exit(&ipst->ips_ip_g_nd_lock); 10280 /* 10281 * We don't understand this subioctl of ND_GET / ND_SET. 10282 * Maybe intended for some driver / module below us 10283 */ 10284 if (q->q_next) { 10285 putnext(q, mp); 10286 } else { 10287 iocp->ioc_error = ENOENT; 10288 mp->b_datap->db_type = M_IOCNAK; 10289 iocp->ioc_count = 0; 10290 qreply(q, mp); 10291 } 10292 return; 10293 10294 case IP_IOCTL: 10295 ip_wput_ioctl(q, mp); 10296 return; 10297 default: 10298 cmn_err(CE_PANIC, "should not happen "); 10299 } 10300 nak: 10301 if (mp->b_cont != NULL) { 10302 freemsg(mp->b_cont); 10303 mp->b_cont = NULL; 10304 } 10305 iocp->ioc_error = EINVAL; 10306 mp->b_datap->db_type = M_IOCNAK; 10307 iocp->ioc_count = 0; 10308 qreply(q, mp); 10309 } 10310 10311 /* ip_wput hands off ARP IOCTL responses to us */ 10312 void 10313 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10314 { 10315 struct arpreq *ar; 10316 struct xarpreq *xar; 10317 area_t *area; 10318 mblk_t *area_mp; 10319 struct iocblk *iocp; 10320 mblk_t *orig_ioc_mp, *tmp; 10321 struct iocblk *orig_iocp; 10322 ill_t *ill; 10323 conn_t *connp = NULL; 10324 uint_t ioc_id; 10325 mblk_t *pending_mp; 10326 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10327 int *flagsp; 10328 char *storage = NULL; 10329 sin_t *sin; 10330 ipaddr_t addr; 10331 int err; 10332 ip_stack_t *ipst; 10333 10334 ill = q->q_ptr; 10335 ASSERT(ill != NULL); 10336 ipst = ill->ill_ipst; 10337 10338 /* 10339 * We should get back from ARP a packet chain that looks like: 10340 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10341 */ 10342 if (!(area_mp = mp->b_cont) || 10343 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10344 !(orig_ioc_mp = area_mp->b_cont) || 10345 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10346 freemsg(mp); 10347 return; 10348 } 10349 10350 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10351 10352 tmp = (orig_ioc_mp->b_cont)->b_cont; 10353 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10354 (orig_iocp->ioc_cmd == SIOCSXARP) || 10355 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10356 x_arp_ioctl = B_TRUE; 10357 xar = (struct xarpreq *)tmp->b_rptr; 10358 sin = (sin_t *)&xar->xarp_pa; 10359 flagsp = &xar->xarp_flags; 10360 storage = xar->xarp_ha.sdl_data; 10361 if (xar->xarp_ha.sdl_nlen != 0) 10362 ifx_arp_ioctl = B_TRUE; 10363 } else { 10364 ar = (struct arpreq *)tmp->b_rptr; 10365 sin = (sin_t *)&ar->arp_pa; 10366 flagsp = &ar->arp_flags; 10367 storage = ar->arp_ha.sa_data; 10368 } 10369 10370 iocp = (struct iocblk *)mp->b_rptr; 10371 10372 /* 10373 * Pick out the originating queue based on the ioc_id. 10374 */ 10375 ioc_id = iocp->ioc_id; 10376 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10377 if (pending_mp == NULL) { 10378 ASSERT(connp == NULL); 10379 inet_freemsg(mp); 10380 return; 10381 } 10382 ASSERT(connp != NULL); 10383 q = CONNP_TO_WQ(connp); 10384 10385 /* Uncouple the internally generated IOCTL from the original one */ 10386 area = (area_t *)area_mp->b_rptr; 10387 area_mp->b_cont = NULL; 10388 10389 /* 10390 * Restore the b_next and b_prev used by mi code. This is needed 10391 * to complete the ioctl using mi* functions. We stored them in 10392 * the pending mp prior to sending the request to ARP. 10393 */ 10394 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10395 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10396 inet_freemsg(pending_mp); 10397 10398 /* 10399 * We're done if there was an error or if this is not an SIOCG{X}ARP 10400 * Catch the case where there is an IRE_CACHE by no entry in the 10401 * arp table. 10402 */ 10403 addr = sin->sin_addr.s_addr; 10404 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10405 ire_t *ire; 10406 dl_unitdata_req_t *dlup; 10407 mblk_t *llmp; 10408 int addr_len; 10409 ill_t *ipsqill = NULL; 10410 10411 if (ifx_arp_ioctl) { 10412 /* 10413 * There's no need to lookup the ill, since 10414 * we've already done that when we started 10415 * processing the ioctl and sent the message 10416 * to ARP on that ill. So use the ill that 10417 * is stored in q->q_ptr. 10418 */ 10419 ipsqill = ill; 10420 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10421 ipsqill->ill_ipif, ALL_ZONES, 10422 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10423 } else { 10424 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10425 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10426 if (ire != NULL) 10427 ipsqill = ire_to_ill(ire); 10428 } 10429 10430 if ((x_arp_ioctl) && (ipsqill != NULL)) 10431 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10432 10433 if (ire != NULL) { 10434 /* 10435 * Since the ire obtained from cachetable is used for 10436 * mac addr copying below, treat an incomplete ire as if 10437 * as if we never found it. 10438 */ 10439 if (ire->ire_nce != NULL && 10440 ire->ire_nce->nce_state != ND_REACHABLE) { 10441 ire_refrele(ire); 10442 ire = NULL; 10443 ipsqill = NULL; 10444 goto errack; 10445 } 10446 *flagsp = ATF_INUSE; 10447 llmp = (ire->ire_nce != NULL ? 10448 ire->ire_nce->nce_res_mp : NULL); 10449 if (llmp != NULL && ipsqill != NULL) { 10450 uchar_t *macaddr; 10451 10452 addr_len = ipsqill->ill_phys_addr_length; 10453 if (x_arp_ioctl && ((addr_len + 10454 ipsqill->ill_name_length) > 10455 sizeof (xar->xarp_ha.sdl_data))) { 10456 ire_refrele(ire); 10457 freemsg(mp); 10458 ip_ioctl_finish(q, orig_ioc_mp, 10459 EINVAL, NO_COPYOUT, NULL); 10460 return; 10461 } 10462 *flagsp |= ATF_COM; 10463 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10464 if (ipsqill->ill_sap_length < 0) 10465 macaddr = llmp->b_rptr + 10466 dlup->dl_dest_addr_offset; 10467 else 10468 macaddr = llmp->b_rptr + 10469 dlup->dl_dest_addr_offset + 10470 ipsqill->ill_sap_length; 10471 /* 10472 * For SIOCGARP, MAC address length 10473 * validation has already been done 10474 * before the ioctl was issued to ARP to 10475 * allow it to progress only on 6 byte 10476 * addressable (ethernet like) media. Thus 10477 * the mac address copying can not overwrite 10478 * the sa_data area below. 10479 */ 10480 bcopy(macaddr, storage, addr_len); 10481 } 10482 /* Ditch the internal IOCTL. */ 10483 freemsg(mp); 10484 ire_refrele(ire); 10485 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10486 return; 10487 } 10488 } 10489 10490 /* 10491 * Delete the coresponding IRE_CACHE if any. 10492 * Reset the error if there was one (in case there was no entry 10493 * in arp.) 10494 */ 10495 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10496 ipif_t *ipintf = NULL; 10497 10498 if (ifx_arp_ioctl) { 10499 /* 10500 * There's no need to lookup the ill, since 10501 * we've already done that when we started 10502 * processing the ioctl and sent the message 10503 * to ARP on that ill. So use the ill that 10504 * is stored in q->q_ptr. 10505 */ 10506 ipintf = ill->ill_ipif; 10507 } 10508 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10509 /* 10510 * The address in "addr" may be an entry for a 10511 * router. If that's true, then any off-net 10512 * IRE_CACHE entries that go through the router 10513 * with address "addr" must be clobbered. Use 10514 * ire_walk to achieve this goal. 10515 */ 10516 if (ifx_arp_ioctl) 10517 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10518 ire_delete_cache_gw, (char *)&addr, ill); 10519 else 10520 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10521 ALL_ZONES, ipst); 10522 iocp->ioc_error = 0; 10523 } 10524 } 10525 errack: 10526 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10527 err = iocp->ioc_error; 10528 freemsg(mp); 10529 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10530 return; 10531 } 10532 10533 /* 10534 * Completion of an SIOCG{X}ARP. Translate the information from 10535 * the area_t into the struct {x}arpreq. 10536 */ 10537 if (x_arp_ioctl) { 10538 storage += ill_xarp_info(&xar->xarp_ha, ill); 10539 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10540 sizeof (xar->xarp_ha.sdl_data)) { 10541 freemsg(mp); 10542 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10543 NULL); 10544 return; 10545 } 10546 } 10547 *flagsp = ATF_INUSE; 10548 if (area->area_flags & ACE_F_PERMANENT) 10549 *flagsp |= ATF_PERM; 10550 if (area->area_flags & ACE_F_PUBLISH) 10551 *flagsp |= ATF_PUBL; 10552 if (area->area_flags & ACE_F_AUTHORITY) 10553 *flagsp |= ATF_AUTHORITY; 10554 if (area->area_hw_addr_length != 0) { 10555 *flagsp |= ATF_COM; 10556 /* 10557 * For SIOCGARP, MAC address length validation has 10558 * already been done before the ioctl was issued to ARP 10559 * to allow it to progress only on 6 byte addressable 10560 * (ethernet like) media. Thus the mac address copying 10561 * can not overwrite the sa_data area below. 10562 */ 10563 bcopy((char *)area + area->area_hw_addr_offset, 10564 storage, area->area_hw_addr_length); 10565 } 10566 10567 /* Ditch the internal IOCTL. */ 10568 freemsg(mp); 10569 /* Complete the original. */ 10570 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10571 } 10572 10573 /* 10574 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10575 * interface) create the next available logical interface for this 10576 * physical interface. 10577 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10578 * ipif with the specified name. 10579 * 10580 * If the address family is not AF_UNSPEC then set the address as well. 10581 * 10582 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10583 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10584 * 10585 * Executed as a writer on the ill or ill group. 10586 * So no lock is needed to traverse the ipif chain, or examine the 10587 * phyint flags. 10588 */ 10589 /* ARGSUSED */ 10590 int 10591 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10592 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10593 { 10594 mblk_t *mp1; 10595 struct lifreq *lifr; 10596 boolean_t isv6; 10597 boolean_t exists; 10598 char *name; 10599 char *endp; 10600 char *cp; 10601 int namelen; 10602 ipif_t *ipif; 10603 long id; 10604 ipsq_t *ipsq; 10605 ill_t *ill; 10606 sin_t *sin; 10607 int err = 0; 10608 boolean_t found_sep = B_FALSE; 10609 conn_t *connp; 10610 zoneid_t zoneid; 10611 int orig_ifindex = 0; 10612 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10613 10614 ASSERT(q->q_next == NULL); 10615 ip1dbg(("ip_sioctl_addif\n")); 10616 /* Existence of mp1 has been checked in ip_wput_nondata */ 10617 mp1 = mp->b_cont->b_cont; 10618 /* 10619 * Null terminate the string to protect against buffer 10620 * overrun. String was generated by user code and may not 10621 * be trusted. 10622 */ 10623 lifr = (struct lifreq *)mp1->b_rptr; 10624 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10625 name = lifr->lifr_name; 10626 ASSERT(CONN_Q(q)); 10627 connp = Q_TO_CONN(q); 10628 isv6 = connp->conn_af_isv6; 10629 zoneid = connp->conn_zoneid; 10630 namelen = mi_strlen(name); 10631 if (namelen == 0) 10632 return (EINVAL); 10633 10634 exists = B_FALSE; 10635 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10636 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10637 /* 10638 * Allow creating lo0 using SIOCLIFADDIF. 10639 * can't be any other writer thread. So can pass null below 10640 * for the last 4 args to ipif_lookup_name. 10641 */ 10642 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10643 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10644 /* Prevent any further action */ 10645 if (ipif == NULL) { 10646 return (ENOBUFS); 10647 } else if (!exists) { 10648 /* We created the ipif now and as writer */ 10649 ipif_refrele(ipif); 10650 return (0); 10651 } else { 10652 ill = ipif->ipif_ill; 10653 ill_refhold(ill); 10654 ipif_refrele(ipif); 10655 } 10656 } else { 10657 /* Look for a colon in the name. */ 10658 endp = &name[namelen]; 10659 for (cp = endp; --cp > name; ) { 10660 if (*cp == IPIF_SEPARATOR_CHAR) { 10661 found_sep = B_TRUE; 10662 /* 10663 * Reject any non-decimal aliases for plumbing 10664 * of logical interfaces. Aliases with leading 10665 * zeroes are also rejected as they introduce 10666 * ambiguity in the naming of the interfaces. 10667 * Comparing with "0" takes care of all such 10668 * cases. 10669 */ 10670 if ((strncmp("0", cp+1, 1)) == 0) 10671 return (EINVAL); 10672 10673 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10674 id <= 0 || *endp != '\0') { 10675 return (EINVAL); 10676 } 10677 *cp = '\0'; 10678 break; 10679 } 10680 } 10681 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10682 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10683 if (found_sep) 10684 *cp = IPIF_SEPARATOR_CHAR; 10685 if (ill == NULL) 10686 return (err); 10687 } 10688 10689 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10690 B_TRUE); 10691 10692 /* 10693 * Release the refhold due to the lookup, now that we are excl 10694 * or we are just returning 10695 */ 10696 ill_refrele(ill); 10697 10698 if (ipsq == NULL) 10699 return (EINPROGRESS); 10700 10701 /* 10702 * If the interface is failed, inactive or offlined, look for a working 10703 * interface in the ill group and create the ipif there. If we can't 10704 * find a good interface, create the ipif anyway so that in.mpathd can 10705 * move it to the first repaired interface. 10706 */ 10707 if ((ill->ill_phyint->phyint_flags & 10708 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10709 ill->ill_phyint->phyint_groupname_len != 0) { 10710 phyint_t *phyi; 10711 char *groupname = ill->ill_phyint->phyint_groupname; 10712 10713 /* 10714 * We're looking for a working interface, but it doesn't matter 10715 * if it's up or down; so instead of following the group lists, 10716 * we look at each physical interface and compare the groupname. 10717 * We're only interested in interfaces with IPv4 (resp. IPv6) 10718 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10719 * Otherwise we create the ipif on the failed interface. 10720 */ 10721 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10722 phyi = avl_first(&ipst->ips_phyint_g_list-> 10723 phyint_list_avl_by_index); 10724 for (; phyi != NULL; 10725 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10726 phyint_list_avl_by_index, 10727 phyi, AVL_AFTER)) { 10728 if (phyi->phyint_groupname_len == 0) 10729 continue; 10730 ASSERT(phyi->phyint_groupname != NULL); 10731 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10732 !(phyi->phyint_flags & 10733 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10734 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10735 (phyi->phyint_illv4 != NULL))) { 10736 break; 10737 } 10738 } 10739 rw_exit(&ipst->ips_ill_g_lock); 10740 10741 if (phyi != NULL) { 10742 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10743 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10744 phyi->phyint_illv4); 10745 } 10746 } 10747 10748 /* 10749 * We are now exclusive on the ipsq, so an ill move will be serialized 10750 * before or after us. 10751 */ 10752 ASSERT(IAM_WRITER_ILL(ill)); 10753 ASSERT(ill->ill_move_in_progress == B_FALSE); 10754 10755 if (found_sep && orig_ifindex == 0) { 10756 /* Now see if there is an IPIF with this unit number. */ 10757 for (ipif = ill->ill_ipif; ipif != NULL; 10758 ipif = ipif->ipif_next) { 10759 if (ipif->ipif_id == id) { 10760 err = EEXIST; 10761 goto done; 10762 } 10763 } 10764 } 10765 10766 /* 10767 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10768 * of lo0. We never come here when we plumb lo0:0. It 10769 * happens in ipif_lookup_on_name. 10770 * The specified unit number is ignored when we create the ipif on a 10771 * different interface. However, we save it in ipif_orig_ipifid below so 10772 * that the ipif fails back to the right position. 10773 */ 10774 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10775 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10776 err = ENOBUFS; 10777 goto done; 10778 } 10779 10780 /* Return created name with ioctl */ 10781 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10782 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10783 ip1dbg(("created %s\n", lifr->lifr_name)); 10784 10785 /* Set address */ 10786 sin = (sin_t *)&lifr->lifr_addr; 10787 if (sin->sin_family != AF_UNSPEC) { 10788 err = ip_sioctl_addr(ipif, sin, q, mp, 10789 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10790 } 10791 10792 /* Set ifindex and unit number for failback */ 10793 if (err == 0 && orig_ifindex != 0) { 10794 ipif->ipif_orig_ifindex = orig_ifindex; 10795 if (found_sep) { 10796 ipif->ipif_orig_ipifid = id; 10797 } 10798 } 10799 10800 done: 10801 ipsq_exit(ipsq); 10802 return (err); 10803 } 10804 10805 /* 10806 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10807 * interface) delete it based on the IP address (on this physical interface). 10808 * Otherwise delete it based on the ipif_id. 10809 * Also, special handling to allow a removeif of lo0. 10810 */ 10811 /* ARGSUSED */ 10812 int 10813 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10814 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10815 { 10816 conn_t *connp; 10817 ill_t *ill = ipif->ipif_ill; 10818 boolean_t success; 10819 ip_stack_t *ipst; 10820 10821 ipst = CONNQ_TO_IPST(q); 10822 10823 ASSERT(q->q_next == NULL); 10824 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10825 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10826 ASSERT(IAM_WRITER_IPIF(ipif)); 10827 10828 connp = Q_TO_CONN(q); 10829 /* 10830 * Special case for unplumbing lo0 (the loopback physical interface). 10831 * If unplumbing lo0, the incoming address structure has been 10832 * initialized to all zeros. When unplumbing lo0, all its logical 10833 * interfaces must be removed too. 10834 * 10835 * Note that this interface may be called to remove a specific 10836 * loopback logical interface (eg, lo0:1). But in that case 10837 * ipif->ipif_id != 0 so that the code path for that case is the 10838 * same as any other interface (meaning it skips the code directly 10839 * below). 10840 */ 10841 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10842 if (sin->sin_family == AF_UNSPEC && 10843 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10844 /* 10845 * Mark it condemned. No new ref. will be made to ill. 10846 */ 10847 mutex_enter(&ill->ill_lock); 10848 ill->ill_state_flags |= ILL_CONDEMNED; 10849 for (ipif = ill->ill_ipif; ipif != NULL; 10850 ipif = ipif->ipif_next) { 10851 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10852 } 10853 mutex_exit(&ill->ill_lock); 10854 10855 ipif = ill->ill_ipif; 10856 /* unplumb the loopback interface */ 10857 ill_delete(ill); 10858 mutex_enter(&connp->conn_lock); 10859 mutex_enter(&ill->ill_lock); 10860 ASSERT(ill->ill_group == NULL); 10861 10862 /* Are any references to this ill active */ 10863 if (ill_is_freeable(ill)) { 10864 mutex_exit(&ill->ill_lock); 10865 mutex_exit(&connp->conn_lock); 10866 ill_delete_tail(ill); 10867 mutex_enter(&ill->ill_lock); 10868 ill_nic_info_dispatch(ill); 10869 mutex_exit(&ill->ill_lock); 10870 mi_free(ill); 10871 return (0); 10872 } 10873 success = ipsq_pending_mp_add(connp, ipif, 10874 CONNP_TO_WQ(connp), mp, ILL_FREE); 10875 mutex_exit(&connp->conn_lock); 10876 mutex_exit(&ill->ill_lock); 10877 if (success) 10878 return (EINPROGRESS); 10879 else 10880 return (EINTR); 10881 } 10882 } 10883 10884 /* 10885 * We are exclusive on the ipsq, so an ill move will be serialized 10886 * before or after us. 10887 */ 10888 ASSERT(ill->ill_move_in_progress == B_FALSE); 10889 10890 if (ipif->ipif_id == 0) { 10891 10892 ipsq_t *ipsq; 10893 10894 /* Find based on address */ 10895 if (ipif->ipif_isv6) { 10896 sin6_t *sin6; 10897 10898 if (sin->sin_family != AF_INET6) 10899 return (EAFNOSUPPORT); 10900 10901 sin6 = (sin6_t *)sin; 10902 /* We are a writer, so we should be able to lookup */ 10903 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10904 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10905 if (ipif == NULL) { 10906 /* 10907 * Maybe the address in on another interface in 10908 * the same IPMP group? We check this below. 10909 */ 10910 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10911 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10912 ipst); 10913 } 10914 } else { 10915 ipaddr_t addr; 10916 10917 if (sin->sin_family != AF_INET) 10918 return (EAFNOSUPPORT); 10919 10920 addr = sin->sin_addr.s_addr; 10921 /* We are a writer, so we should be able to lookup */ 10922 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10923 NULL, NULL, NULL, ipst); 10924 if (ipif == NULL) { 10925 /* 10926 * Maybe the address in on another interface in 10927 * the same IPMP group? We check this below. 10928 */ 10929 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10930 NULL, NULL, NULL, NULL, ipst); 10931 } 10932 } 10933 if (ipif == NULL) { 10934 return (EADDRNOTAVAIL); 10935 } 10936 10937 /* 10938 * It is possible for a user to send an SIOCLIFREMOVEIF with 10939 * lifr_name of the physical interface but with an ip address 10940 * lifr_addr of a logical interface plumbed over it. 10941 * So update ipsq_current_ipif once ipif points to the 10942 * correct interface after doing ipif_lookup_addr(). 10943 */ 10944 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10945 ASSERT(ipsq != NULL); 10946 10947 mutex_enter(&ipsq->ipsq_lock); 10948 ipsq->ipsq_current_ipif = ipif; 10949 mutex_exit(&ipsq->ipsq_lock); 10950 10951 /* 10952 * When the address to be removed is hosted on a different 10953 * interface, we check if the interface is in the same IPMP 10954 * group as the specified one; if so we proceed with the 10955 * removal. 10956 * ill->ill_group is NULL when the ill is down, so we have to 10957 * compare the group names instead. 10958 */ 10959 if (ipif->ipif_ill != ill && 10960 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10961 ill->ill_phyint->phyint_groupname_len == 0 || 10962 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10963 ill->ill_phyint->phyint_groupname) != 0)) { 10964 ipif_refrele(ipif); 10965 return (EADDRNOTAVAIL); 10966 } 10967 10968 /* This is a writer */ 10969 ipif_refrele(ipif); 10970 } 10971 10972 /* 10973 * Can not delete instance zero since it is tied to the ill. 10974 */ 10975 if (ipif->ipif_id == 0) 10976 return (EBUSY); 10977 10978 mutex_enter(&ill->ill_lock); 10979 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10980 mutex_exit(&ill->ill_lock); 10981 10982 ipif_free(ipif); 10983 10984 mutex_enter(&connp->conn_lock); 10985 mutex_enter(&ill->ill_lock); 10986 10987 10988 /* Are any references to this ipif active */ 10989 if (ipif_is_freeable(ipif)) { 10990 mutex_exit(&ill->ill_lock); 10991 mutex_exit(&connp->conn_lock); 10992 ipif_non_duplicate(ipif); 10993 ipif_down_tail(ipif); 10994 ipif_free_tail(ipif); /* frees ipif */ 10995 return (0); 10996 } 10997 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10998 IPIF_FREE); 10999 mutex_exit(&ill->ill_lock); 11000 mutex_exit(&connp->conn_lock); 11001 if (success) 11002 return (EINPROGRESS); 11003 else 11004 return (EINTR); 11005 } 11006 11007 /* 11008 * Restart the removeif ioctl. The refcnt has gone down to 0. 11009 * The ipif is already condemned. So can't find it thru lookups. 11010 */ 11011 /* ARGSUSED */ 11012 int 11013 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11014 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11015 { 11016 ill_t *ill = ipif->ipif_ill; 11017 11018 ASSERT(IAM_WRITER_IPIF(ipif)); 11019 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11020 11021 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11022 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11023 11024 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11025 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 11026 ill_delete_tail(ill); 11027 mutex_enter(&ill->ill_lock); 11028 ill_nic_info_dispatch(ill); 11029 mutex_exit(&ill->ill_lock); 11030 mi_free(ill); 11031 return (0); 11032 } 11033 11034 ipif_non_duplicate(ipif); 11035 ipif_down_tail(ipif); 11036 ipif_free_tail(ipif); 11037 11038 ILL_UNMARK_CHANGING(ill); 11039 return (0); 11040 } 11041 11042 /* 11043 * Set the local interface address. 11044 * Allow an address of all zero when the interface is down. 11045 */ 11046 /* ARGSUSED */ 11047 int 11048 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11049 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11050 { 11051 int err = 0; 11052 in6_addr_t v6addr; 11053 boolean_t need_up = B_FALSE; 11054 11055 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11056 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11057 11058 ASSERT(IAM_WRITER_IPIF(ipif)); 11059 11060 if (ipif->ipif_isv6) { 11061 sin6_t *sin6; 11062 ill_t *ill; 11063 phyint_t *phyi; 11064 11065 if (sin->sin_family != AF_INET6) 11066 return (EAFNOSUPPORT); 11067 11068 sin6 = (sin6_t *)sin; 11069 v6addr = sin6->sin6_addr; 11070 ill = ipif->ipif_ill; 11071 phyi = ill->ill_phyint; 11072 11073 /* 11074 * Enforce that true multicast interfaces have a link-local 11075 * address for logical unit 0. 11076 */ 11077 if (ipif->ipif_id == 0 && 11078 (ill->ill_flags & ILLF_MULTICAST) && 11079 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11080 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11081 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11082 return (EADDRNOTAVAIL); 11083 } 11084 11085 /* 11086 * up interfaces shouldn't have the unspecified address 11087 * unless they also have the IPIF_NOLOCAL flags set and 11088 * have a subnet assigned. 11089 */ 11090 if ((ipif->ipif_flags & IPIF_UP) && 11091 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11092 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11093 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11094 return (EADDRNOTAVAIL); 11095 } 11096 11097 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11098 return (EADDRNOTAVAIL); 11099 } else { 11100 ipaddr_t addr; 11101 11102 if (sin->sin_family != AF_INET) 11103 return (EAFNOSUPPORT); 11104 11105 addr = sin->sin_addr.s_addr; 11106 11107 /* Allow 0 as the local address. */ 11108 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11109 return (EADDRNOTAVAIL); 11110 11111 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11112 } 11113 11114 11115 /* 11116 * Even if there is no change we redo things just to rerun 11117 * ipif_set_default. 11118 */ 11119 if (ipif->ipif_flags & IPIF_UP) { 11120 /* 11121 * Setting a new local address, make sure 11122 * we have net and subnet bcast ire's for 11123 * the old address if we need them. 11124 */ 11125 if (!ipif->ipif_isv6) 11126 ipif_check_bcast_ires(ipif); 11127 /* 11128 * If the interface is already marked up, 11129 * we call ipif_down which will take care 11130 * of ditching any IREs that have been set 11131 * up based on the old interface address. 11132 */ 11133 err = ipif_logical_down(ipif, q, mp); 11134 if (err == EINPROGRESS) 11135 return (err); 11136 ipif_down_tail(ipif); 11137 need_up = 1; 11138 } 11139 11140 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11141 return (err); 11142 } 11143 11144 int 11145 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11146 boolean_t need_up) 11147 { 11148 in6_addr_t v6addr; 11149 in6_addr_t ov6addr; 11150 ipaddr_t addr; 11151 sin6_t *sin6; 11152 int sinlen; 11153 int err = 0; 11154 ill_t *ill = ipif->ipif_ill; 11155 boolean_t need_dl_down; 11156 boolean_t need_arp_down; 11157 struct iocblk *iocp; 11158 11159 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11160 11161 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11162 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11163 ASSERT(IAM_WRITER_IPIF(ipif)); 11164 11165 /* Must cancel any pending timer before taking the ill_lock */ 11166 if (ipif->ipif_recovery_id != 0) 11167 (void) untimeout(ipif->ipif_recovery_id); 11168 ipif->ipif_recovery_id = 0; 11169 11170 if (ipif->ipif_isv6) { 11171 sin6 = (sin6_t *)sin; 11172 v6addr = sin6->sin6_addr; 11173 sinlen = sizeof (struct sockaddr_in6); 11174 } else { 11175 addr = sin->sin_addr.s_addr; 11176 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11177 sinlen = sizeof (struct sockaddr_in); 11178 } 11179 mutex_enter(&ill->ill_lock); 11180 ov6addr = ipif->ipif_v6lcl_addr; 11181 ipif->ipif_v6lcl_addr = v6addr; 11182 sctp_update_ipif_addr(ipif, ov6addr); 11183 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11184 ipif->ipif_v6src_addr = ipv6_all_zeros; 11185 } else { 11186 ipif->ipif_v6src_addr = v6addr; 11187 } 11188 ipif->ipif_addr_ready = 0; 11189 11190 /* 11191 * If the interface was previously marked as a duplicate, then since 11192 * we've now got a "new" address, it should no longer be considered a 11193 * duplicate -- even if the "new" address is the same as the old one. 11194 * Note that if all ipifs are down, we may have a pending ARP down 11195 * event to handle. This is because we want to recover from duplicates 11196 * and thus delay tearing down ARP until the duplicates have been 11197 * removed or disabled. 11198 */ 11199 need_dl_down = need_arp_down = B_FALSE; 11200 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11201 need_arp_down = !need_up; 11202 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11203 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11204 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11205 need_dl_down = B_TRUE; 11206 } 11207 } 11208 11209 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11210 !ill->ill_is_6to4tun) { 11211 queue_t *wqp = ill->ill_wq; 11212 11213 /* 11214 * The local address of this interface is a 6to4 address, 11215 * check if this interface is in fact a 6to4 tunnel or just 11216 * an interface configured with a 6to4 address. We are only 11217 * interested in the former. 11218 */ 11219 if (wqp != NULL) { 11220 while ((wqp->q_next != NULL) && 11221 (wqp->q_next->q_qinfo != NULL) && 11222 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11223 11224 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11225 == TUN6TO4_MODID) { 11226 /* set for use in IP */ 11227 ill->ill_is_6to4tun = 1; 11228 break; 11229 } 11230 wqp = wqp->q_next; 11231 } 11232 } 11233 } 11234 11235 ipif_set_default(ipif); 11236 11237 /* 11238 * When publishing an interface address change event, we only notify 11239 * the event listeners of the new address. It is assumed that if they 11240 * actively care about the addresses assigned that they will have 11241 * already discovered the previous address assigned (if there was one.) 11242 * 11243 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11244 */ 11245 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11246 (void) ill_hook_event_create(ill, MAP_IPIF_ID(ipif->ipif_id), 11247 NE_ADDRESS_CHANGE, sin, sinlen); 11248 } 11249 11250 mutex_exit(&ill->ill_lock); 11251 11252 if (need_up) { 11253 /* 11254 * Now bring the interface back up. If this 11255 * is the only IPIF for the ILL, ipif_up 11256 * will have to re-bind to the device, so 11257 * we may get back EINPROGRESS, in which 11258 * case, this IOCTL will get completed in 11259 * ip_rput_dlpi when we see the DL_BIND_ACK. 11260 */ 11261 err = ipif_up(ipif, q, mp); 11262 } 11263 11264 if (need_dl_down) 11265 ill_dl_down(ill); 11266 if (need_arp_down) 11267 ipif_arp_down(ipif); 11268 11269 return (err); 11270 } 11271 11272 11273 /* 11274 * Restart entry point to restart the address set operation after the 11275 * refcounts have dropped to zero. 11276 */ 11277 /* ARGSUSED */ 11278 int 11279 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11280 ip_ioctl_cmd_t *ipip, void *ifreq) 11281 { 11282 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11283 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11284 ASSERT(IAM_WRITER_IPIF(ipif)); 11285 ipif_down_tail(ipif); 11286 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11287 } 11288 11289 /* ARGSUSED */ 11290 int 11291 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11292 ip_ioctl_cmd_t *ipip, void *if_req) 11293 { 11294 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11295 struct lifreq *lifr = (struct lifreq *)if_req; 11296 11297 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11298 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11299 /* 11300 * The net mask and address can't change since we have a 11301 * reference to the ipif. So no lock is necessary. 11302 */ 11303 if (ipif->ipif_isv6) { 11304 *sin6 = sin6_null; 11305 sin6->sin6_family = AF_INET6; 11306 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11307 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11308 lifr->lifr_addrlen = 11309 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11310 } else { 11311 *sin = sin_null; 11312 sin->sin_family = AF_INET; 11313 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11314 if (ipip->ipi_cmd_type == LIF_CMD) { 11315 lifr->lifr_addrlen = 11316 ip_mask_to_plen(ipif->ipif_net_mask); 11317 } 11318 } 11319 return (0); 11320 } 11321 11322 /* 11323 * Set the destination address for a pt-pt interface. 11324 */ 11325 /* ARGSUSED */ 11326 int 11327 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11328 ip_ioctl_cmd_t *ipip, void *if_req) 11329 { 11330 int err = 0; 11331 in6_addr_t v6addr; 11332 boolean_t need_up = B_FALSE; 11333 11334 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11335 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11336 ASSERT(IAM_WRITER_IPIF(ipif)); 11337 11338 if (ipif->ipif_isv6) { 11339 sin6_t *sin6; 11340 11341 if (sin->sin_family != AF_INET6) 11342 return (EAFNOSUPPORT); 11343 11344 sin6 = (sin6_t *)sin; 11345 v6addr = sin6->sin6_addr; 11346 11347 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11348 return (EADDRNOTAVAIL); 11349 } else { 11350 ipaddr_t addr; 11351 11352 if (sin->sin_family != AF_INET) 11353 return (EAFNOSUPPORT); 11354 11355 addr = sin->sin_addr.s_addr; 11356 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11357 return (EADDRNOTAVAIL); 11358 11359 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11360 } 11361 11362 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11363 return (0); /* No change */ 11364 11365 if (ipif->ipif_flags & IPIF_UP) { 11366 /* 11367 * If the interface is already marked up, 11368 * we call ipif_down which will take care 11369 * of ditching any IREs that have been set 11370 * up based on the old pp dst address. 11371 */ 11372 err = ipif_logical_down(ipif, q, mp); 11373 if (err == EINPROGRESS) 11374 return (err); 11375 ipif_down_tail(ipif); 11376 need_up = B_TRUE; 11377 } 11378 /* 11379 * could return EINPROGRESS. If so ioctl will complete in 11380 * ip_rput_dlpi_writer 11381 */ 11382 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11383 return (err); 11384 } 11385 11386 static int 11387 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11388 boolean_t need_up) 11389 { 11390 in6_addr_t v6addr; 11391 ill_t *ill = ipif->ipif_ill; 11392 int err = 0; 11393 boolean_t need_dl_down; 11394 boolean_t need_arp_down; 11395 11396 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11397 ipif->ipif_id, (void *)ipif)); 11398 11399 /* Must cancel any pending timer before taking the ill_lock */ 11400 if (ipif->ipif_recovery_id != 0) 11401 (void) untimeout(ipif->ipif_recovery_id); 11402 ipif->ipif_recovery_id = 0; 11403 11404 if (ipif->ipif_isv6) { 11405 sin6_t *sin6; 11406 11407 sin6 = (sin6_t *)sin; 11408 v6addr = sin6->sin6_addr; 11409 } else { 11410 ipaddr_t addr; 11411 11412 addr = sin->sin_addr.s_addr; 11413 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11414 } 11415 mutex_enter(&ill->ill_lock); 11416 /* Set point to point destination address. */ 11417 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11418 /* 11419 * Allow this as a means of creating logical 11420 * pt-pt interfaces on top of e.g. an Ethernet. 11421 * XXX Undocumented HACK for testing. 11422 * pt-pt interfaces are created with NUD disabled. 11423 */ 11424 ipif->ipif_flags |= IPIF_POINTOPOINT; 11425 ipif->ipif_flags &= ~IPIF_BROADCAST; 11426 if (ipif->ipif_isv6) 11427 ill->ill_flags |= ILLF_NONUD; 11428 } 11429 11430 /* 11431 * If the interface was previously marked as a duplicate, then since 11432 * we've now got a "new" address, it should no longer be considered a 11433 * duplicate -- even if the "new" address is the same as the old one. 11434 * Note that if all ipifs are down, we may have a pending ARP down 11435 * event to handle. 11436 */ 11437 need_dl_down = need_arp_down = B_FALSE; 11438 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11439 need_arp_down = !need_up; 11440 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11441 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11442 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11443 need_dl_down = B_TRUE; 11444 } 11445 } 11446 11447 /* Set the new address. */ 11448 ipif->ipif_v6pp_dst_addr = v6addr; 11449 /* Make sure subnet tracks pp_dst */ 11450 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11451 mutex_exit(&ill->ill_lock); 11452 11453 if (need_up) { 11454 /* 11455 * Now bring the interface back up. If this 11456 * is the only IPIF for the ILL, ipif_up 11457 * will have to re-bind to the device, so 11458 * we may get back EINPROGRESS, in which 11459 * case, this IOCTL will get completed in 11460 * ip_rput_dlpi when we see the DL_BIND_ACK. 11461 */ 11462 err = ipif_up(ipif, q, mp); 11463 } 11464 11465 if (need_dl_down) 11466 ill_dl_down(ill); 11467 11468 if (need_arp_down) 11469 ipif_arp_down(ipif); 11470 return (err); 11471 } 11472 11473 /* 11474 * Restart entry point to restart the dstaddress set operation after the 11475 * refcounts have dropped to zero. 11476 */ 11477 /* ARGSUSED */ 11478 int 11479 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11480 ip_ioctl_cmd_t *ipip, void *ifreq) 11481 { 11482 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11483 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11484 ipif_down_tail(ipif); 11485 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11486 } 11487 11488 /* ARGSUSED */ 11489 int 11490 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11491 ip_ioctl_cmd_t *ipip, void *if_req) 11492 { 11493 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11494 11495 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11496 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11497 /* 11498 * Get point to point destination address. The addresses can't 11499 * change since we hold a reference to the ipif. 11500 */ 11501 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11502 return (EADDRNOTAVAIL); 11503 11504 if (ipif->ipif_isv6) { 11505 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11506 *sin6 = sin6_null; 11507 sin6->sin6_family = AF_INET6; 11508 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11509 } else { 11510 *sin = sin_null; 11511 sin->sin_family = AF_INET; 11512 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11513 } 11514 return (0); 11515 } 11516 11517 /* 11518 * part of ipmp, make this func return the active/inactive state and 11519 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11520 */ 11521 /* 11522 * This function either sets or clears the IFF_INACTIVE flag. 11523 * 11524 * As long as there are some addresses or multicast memberships on the 11525 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11526 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11527 * will be used for outbound packets. 11528 * 11529 * Caller needs to verify the validity of setting IFF_INACTIVE. 11530 */ 11531 static void 11532 phyint_inactive(phyint_t *phyi) 11533 { 11534 ill_t *ill_v4; 11535 ill_t *ill_v6; 11536 ipif_t *ipif; 11537 ilm_t *ilm; 11538 11539 ill_v4 = phyi->phyint_illv4; 11540 ill_v6 = phyi->phyint_illv6; 11541 11542 /* 11543 * No need for a lock while traversing the list since iam 11544 * a writer 11545 */ 11546 if (ill_v4 != NULL) { 11547 ASSERT(IAM_WRITER_ILL(ill_v4)); 11548 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11549 ipif = ipif->ipif_next) { 11550 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11551 mutex_enter(&phyi->phyint_lock); 11552 phyi->phyint_flags &= ~PHYI_INACTIVE; 11553 mutex_exit(&phyi->phyint_lock); 11554 return; 11555 } 11556 } 11557 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11558 ilm = ilm->ilm_next) { 11559 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11560 mutex_enter(&phyi->phyint_lock); 11561 phyi->phyint_flags &= ~PHYI_INACTIVE; 11562 mutex_exit(&phyi->phyint_lock); 11563 return; 11564 } 11565 } 11566 } 11567 if (ill_v6 != NULL) { 11568 ill_v6 = phyi->phyint_illv6; 11569 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11570 ipif = ipif->ipif_next) { 11571 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11572 mutex_enter(&phyi->phyint_lock); 11573 phyi->phyint_flags &= ~PHYI_INACTIVE; 11574 mutex_exit(&phyi->phyint_lock); 11575 return; 11576 } 11577 } 11578 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11579 ilm = ilm->ilm_next) { 11580 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11581 mutex_enter(&phyi->phyint_lock); 11582 phyi->phyint_flags &= ~PHYI_INACTIVE; 11583 mutex_exit(&phyi->phyint_lock); 11584 return; 11585 } 11586 } 11587 } 11588 mutex_enter(&phyi->phyint_lock); 11589 phyi->phyint_flags |= PHYI_INACTIVE; 11590 mutex_exit(&phyi->phyint_lock); 11591 } 11592 11593 /* 11594 * This function is called only when the phyint flags change. Currently 11595 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11596 * that we can select a good ill. 11597 */ 11598 static void 11599 ip_redo_nomination(phyint_t *phyi) 11600 { 11601 ill_t *ill_v4; 11602 11603 ill_v4 = phyi->phyint_illv4; 11604 11605 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11606 ASSERT(IAM_WRITER_ILL(ill_v4)); 11607 if (ill_v4->ill_group->illgrp_ill_count > 1) 11608 ill_nominate_bcast_rcv(ill_v4->ill_group); 11609 } 11610 } 11611 11612 /* 11613 * Heuristic to check if ill is INACTIVE. 11614 * Checks if ill has an ipif with an usable ip address. 11615 * 11616 * Return values: 11617 * B_TRUE - ill is INACTIVE; has no usable ipif 11618 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11619 */ 11620 static boolean_t 11621 ill_is_inactive(ill_t *ill) 11622 { 11623 ipif_t *ipif; 11624 11625 /* Check whether it is in an IPMP group */ 11626 if (ill->ill_phyint->phyint_groupname == NULL) 11627 return (B_FALSE); 11628 11629 if (ill->ill_ipif_up_count == 0) 11630 return (B_TRUE); 11631 11632 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11633 uint64_t flags = ipif->ipif_flags; 11634 11635 /* 11636 * This ipif is usable if it is IPIF_UP and not a 11637 * dedicated test address. A dedicated test address 11638 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11639 * (note in particular that V6 test addresses are 11640 * link-local data addresses and thus are marked 11641 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11642 */ 11643 if ((flags & IPIF_UP) && 11644 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11645 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11646 return (B_FALSE); 11647 } 11648 return (B_TRUE); 11649 } 11650 11651 /* 11652 * Set interface flags. 11653 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11654 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11655 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11656 * 11657 * NOTE : We really don't enforce that ipif_id zero should be used 11658 * for setting any flags other than IFF_LOGINT_FLAGS. This 11659 * is because applications generally does SICGLIFFLAGS and 11660 * ORs in the new flags (that affects the logical) and does a 11661 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11662 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11663 * flags that will be turned on is correct with respect to 11664 * ipif_id 0. For backward compatibility reasons, it is not done. 11665 */ 11666 /* ARGSUSED */ 11667 int 11668 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11669 ip_ioctl_cmd_t *ipip, void *if_req) 11670 { 11671 uint64_t turn_on; 11672 uint64_t turn_off; 11673 int err; 11674 boolean_t need_up = B_FALSE; 11675 phyint_t *phyi; 11676 ill_t *ill; 11677 uint64_t intf_flags; 11678 boolean_t phyint_flags_modified = B_FALSE; 11679 uint64_t flags; 11680 struct ifreq *ifr; 11681 struct lifreq *lifr; 11682 boolean_t set_linklocal = B_FALSE; 11683 boolean_t zero_source = B_FALSE; 11684 ip_stack_t *ipst; 11685 11686 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11687 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11688 11689 ASSERT(IAM_WRITER_IPIF(ipif)); 11690 11691 ill = ipif->ipif_ill; 11692 phyi = ill->ill_phyint; 11693 ipst = ill->ill_ipst; 11694 11695 if (ipip->ipi_cmd_type == IF_CMD) { 11696 ifr = (struct ifreq *)if_req; 11697 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11698 } else { 11699 lifr = (struct lifreq *)if_req; 11700 flags = lifr->lifr_flags; 11701 } 11702 11703 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11704 11705 /* 11706 * Has the flags been set correctly till now ? 11707 */ 11708 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11709 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11710 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11711 /* 11712 * Compare the new flags to the old, and partition 11713 * into those coming on and those going off. 11714 * For the 16 bit command keep the bits above bit 16 unchanged. 11715 */ 11716 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11717 flags |= intf_flags & ~0xFFFF; 11718 11719 /* 11720 * First check which bits will change and then which will 11721 * go on and off 11722 */ 11723 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11724 if (!turn_on) 11725 return (0); /* No change */ 11726 11727 turn_off = intf_flags & turn_on; 11728 turn_on ^= turn_off; 11729 err = 0; 11730 11731 /* 11732 * Don't allow any bits belonging to the logical interface 11733 * to be set or cleared on the replacement ipif that was 11734 * created temporarily during a MOVE. 11735 */ 11736 if (ipif->ipif_replace_zero && 11737 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11738 return (EINVAL); 11739 } 11740 11741 /* 11742 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11743 * IPv6 interfaces. 11744 */ 11745 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11746 return (EINVAL); 11747 11748 /* 11749 * cannot turn off IFF_NOXMIT on VNI interfaces. 11750 */ 11751 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11752 return (EINVAL); 11753 11754 /* 11755 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11756 * interfaces. It makes no sense in that context. 11757 */ 11758 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11759 return (EINVAL); 11760 11761 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11762 zero_source = B_TRUE; 11763 11764 /* 11765 * For IPv6 ipif_id 0, don't allow the interface to be up without 11766 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11767 * If the link local address isn't set, and can be set, it will get 11768 * set later on in this function. 11769 */ 11770 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11771 (flags & IFF_UP) && !zero_source && 11772 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11773 if (ipif_cant_setlinklocal(ipif)) 11774 return (EINVAL); 11775 set_linklocal = B_TRUE; 11776 } 11777 11778 /* 11779 * ILL cannot be part of a usesrc group and and IPMP group at the 11780 * same time. No need to grab ill_g_usesrc_lock here, see 11781 * synchronization notes in ip.c 11782 */ 11783 if (turn_on & PHYI_STANDBY && 11784 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11785 return (EINVAL); 11786 } 11787 11788 /* 11789 * If we modify physical interface flags, we'll potentially need to 11790 * send up two routing socket messages for the changes (one for the 11791 * IPv4 ill, and another for the IPv6 ill). Note that here. 11792 */ 11793 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11794 phyint_flags_modified = B_TRUE; 11795 11796 /* 11797 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11798 * we need to flush the IRE_CACHES belonging to this ill. 11799 * We handle this case here without doing the DOWN/UP dance 11800 * like it is done for other flags. If some other flags are 11801 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11802 * below will handle it by bringing it down and then 11803 * bringing it UP. 11804 */ 11805 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11806 ill_t *ill_v4, *ill_v6; 11807 11808 ill_v4 = phyi->phyint_illv4; 11809 ill_v6 = phyi->phyint_illv6; 11810 11811 /* 11812 * First set the INACTIVE flag if needed. Then delete the ires. 11813 * ire_add will atomically prevent creating new IRE_CACHEs 11814 * unless hidden flag is set. 11815 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11816 */ 11817 if ((turn_on & PHYI_FAILED) && 11818 ((intf_flags & PHYI_STANDBY) || 11819 !ipst->ips_ipmp_enable_failback)) { 11820 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11821 phyi->phyint_flags &= ~PHYI_INACTIVE; 11822 } 11823 if ((turn_off & PHYI_FAILED) && 11824 ((intf_flags & PHYI_STANDBY) || 11825 (!ipst->ips_ipmp_enable_failback && 11826 ill_is_inactive(ill)))) { 11827 phyint_inactive(phyi); 11828 } 11829 11830 if (turn_on & PHYI_STANDBY) { 11831 /* 11832 * We implicitly set INACTIVE only when STANDBY is set. 11833 * INACTIVE is also set on non-STANDBY phyint when user 11834 * disables FAILBACK using configuration file. 11835 * Do not allow STANDBY to be set on such INACTIVE 11836 * phyint 11837 */ 11838 if (phyi->phyint_flags & PHYI_INACTIVE) 11839 return (EINVAL); 11840 if (!(phyi->phyint_flags & PHYI_FAILED)) 11841 phyint_inactive(phyi); 11842 } 11843 if (turn_off & PHYI_STANDBY) { 11844 if (ipst->ips_ipmp_enable_failback) { 11845 /* 11846 * Reset PHYI_INACTIVE. 11847 */ 11848 phyi->phyint_flags &= ~PHYI_INACTIVE; 11849 } else if (ill_is_inactive(ill) && 11850 !(phyi->phyint_flags & PHYI_FAILED)) { 11851 /* 11852 * Need to set INACTIVE, when user sets 11853 * STANDBY on a non-STANDBY phyint and 11854 * later resets STANDBY 11855 */ 11856 phyint_inactive(phyi); 11857 } 11858 } 11859 /* 11860 * We should always send up a message so that the 11861 * daemons come to know of it. Note that the zeroth 11862 * interface can be down and the check below for IPIF_UP 11863 * will not make sense as we are actually setting 11864 * a phyint flag here. We assume that the ipif used 11865 * is always the zeroth ipif. (ip_rts_ifmsg does not 11866 * send up any message for non-zero ipifs). 11867 */ 11868 phyint_flags_modified = B_TRUE; 11869 11870 if (ill_v4 != NULL) { 11871 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11872 IRE_CACHE, ill_stq_cache_delete, 11873 (char *)ill_v4, ill_v4); 11874 illgrp_reset_schednext(ill_v4); 11875 } 11876 if (ill_v6 != NULL) { 11877 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11878 IRE_CACHE, ill_stq_cache_delete, 11879 (char *)ill_v6, ill_v6); 11880 illgrp_reset_schednext(ill_v6); 11881 } 11882 } 11883 11884 /* 11885 * If ILLF_ROUTER changes, we need to change the ip forwarding 11886 * status of the interface and, if the interface is part of an IPMP 11887 * group, all other interfaces that are part of the same IPMP 11888 * group. 11889 */ 11890 if ((turn_on | turn_off) & ILLF_ROUTER) 11891 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11892 11893 /* 11894 * If the interface is not UP and we are not going to 11895 * bring it UP, record the flags and return. When the 11896 * interface comes UP later, the right actions will be 11897 * taken. 11898 */ 11899 if (!(ipif->ipif_flags & IPIF_UP) && 11900 !(turn_on & IPIF_UP)) { 11901 /* Record new flags in their respective places. */ 11902 mutex_enter(&ill->ill_lock); 11903 mutex_enter(&ill->ill_phyint->phyint_lock); 11904 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11905 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11906 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11907 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11908 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11909 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11910 mutex_exit(&ill->ill_lock); 11911 mutex_exit(&ill->ill_phyint->phyint_lock); 11912 11913 /* 11914 * We do the broadcast and nomination here rather 11915 * than waiting for a FAILOVER/FAILBACK to happen. In 11916 * the case of FAILBACK from INACTIVE standby to the 11917 * interface that has been repaired, PHYI_FAILED has not 11918 * been cleared yet. If there are only two interfaces in 11919 * that group, all we have is a FAILED and INACTIVE 11920 * interface. If we do the nomination soon after a failback, 11921 * the broadcast nomination code would select the 11922 * INACTIVE interface for receiving broadcasts as FAILED is 11923 * not yet cleared. As we don't want STANDBY/INACTIVE to 11924 * receive broadcast packets, we need to redo nomination 11925 * when the FAILED is cleared here. Thus, in general we 11926 * always do the nomination here for FAILED, STANDBY 11927 * and OFFLINE. 11928 */ 11929 if (((turn_on | turn_off) & 11930 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11931 ip_redo_nomination(phyi); 11932 } 11933 if (phyint_flags_modified) { 11934 if (phyi->phyint_illv4 != NULL) { 11935 ip_rts_ifmsg(phyi->phyint_illv4-> 11936 ill_ipif); 11937 } 11938 if (phyi->phyint_illv6 != NULL) { 11939 ip_rts_ifmsg(phyi->phyint_illv6-> 11940 ill_ipif); 11941 } 11942 } 11943 return (0); 11944 } else if (set_linklocal || zero_source) { 11945 mutex_enter(&ill->ill_lock); 11946 if (set_linklocal) 11947 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11948 if (zero_source) 11949 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11950 mutex_exit(&ill->ill_lock); 11951 } 11952 11953 /* 11954 * Disallow IPv6 interfaces coming up that have the unspecified address, 11955 * or point-to-point interfaces with an unspecified destination. We do 11956 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11957 * have a subnet assigned, which is how in.ndpd currently manages its 11958 * onlink prefix list when no addresses are configured with those 11959 * prefixes. 11960 */ 11961 if (ipif->ipif_isv6 && 11962 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11963 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11964 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11965 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11966 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11967 return (EINVAL); 11968 } 11969 11970 /* 11971 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11972 * from being brought up. 11973 */ 11974 if (!ipif->ipif_isv6 && 11975 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11976 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11977 return (EINVAL); 11978 } 11979 11980 /* 11981 * The only flag changes that we currently take specific action on 11982 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11983 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11984 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11985 * the flags and bringing it back up again. 11986 */ 11987 if ((turn_on|turn_off) & 11988 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11989 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11990 /* 11991 * Taking this ipif down, make sure we have 11992 * valid net and subnet bcast ire's for other 11993 * logical interfaces, if we need them. 11994 */ 11995 if (!ipif->ipif_isv6) 11996 ipif_check_bcast_ires(ipif); 11997 11998 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11999 !(turn_off & IPIF_UP)) { 12000 need_up = B_TRUE; 12001 if (ipif->ipif_flags & IPIF_UP) 12002 ill->ill_logical_down = 1; 12003 turn_on &= ~IPIF_UP; 12004 } 12005 err = ipif_down(ipif, q, mp); 12006 ip1dbg(("ipif_down returns %d err ", err)); 12007 if (err == EINPROGRESS) 12008 return (err); 12009 ipif_down_tail(ipif); 12010 } 12011 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12012 } 12013 12014 static int 12015 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12016 boolean_t need_up) 12017 { 12018 ill_t *ill; 12019 phyint_t *phyi; 12020 uint64_t turn_on; 12021 uint64_t turn_off; 12022 uint64_t intf_flags; 12023 boolean_t phyint_flags_modified = B_FALSE; 12024 int err = 0; 12025 boolean_t set_linklocal = B_FALSE; 12026 boolean_t zero_source = B_FALSE; 12027 12028 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12029 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12030 12031 ASSERT(IAM_WRITER_IPIF(ipif)); 12032 12033 ill = ipif->ipif_ill; 12034 phyi = ill->ill_phyint; 12035 12036 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12037 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12038 12039 turn_off = intf_flags & turn_on; 12040 turn_on ^= turn_off; 12041 12042 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12043 phyint_flags_modified = B_TRUE; 12044 12045 /* 12046 * Now we change the flags. Track current value of 12047 * other flags in their respective places. 12048 */ 12049 mutex_enter(&ill->ill_lock); 12050 mutex_enter(&phyi->phyint_lock); 12051 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12052 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12053 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12054 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12055 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12056 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12057 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12058 set_linklocal = B_TRUE; 12059 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12060 } 12061 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12062 zero_source = B_TRUE; 12063 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12064 } 12065 mutex_exit(&ill->ill_lock); 12066 mutex_exit(&phyi->phyint_lock); 12067 12068 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12069 ip_redo_nomination(phyi); 12070 12071 if (set_linklocal) 12072 (void) ipif_setlinklocal(ipif); 12073 12074 if (zero_source) 12075 ipif->ipif_v6src_addr = ipv6_all_zeros; 12076 else 12077 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12078 12079 if (need_up) { 12080 /* 12081 * XXX ipif_up really does not know whether a phyint flags 12082 * was modified or not. So, it sends up information on 12083 * only one routing sockets message. As we don't bring up 12084 * the interface and also set STANDBY/FAILED simultaneously 12085 * it should be okay. 12086 */ 12087 err = ipif_up(ipif, q, mp); 12088 } else { 12089 /* 12090 * Make sure routing socket sees all changes to the flags. 12091 * ipif_up_done* handles this when we use ipif_up. 12092 */ 12093 if (phyint_flags_modified) { 12094 if (phyi->phyint_illv4 != NULL) { 12095 ip_rts_ifmsg(phyi->phyint_illv4-> 12096 ill_ipif); 12097 } 12098 if (phyi->phyint_illv6 != NULL) { 12099 ip_rts_ifmsg(phyi->phyint_illv6-> 12100 ill_ipif); 12101 } 12102 } else { 12103 ip_rts_ifmsg(ipif); 12104 } 12105 /* 12106 * Update the flags in SCTP's IPIF list, ipif_up() will do 12107 * this in need_up case. 12108 */ 12109 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12110 } 12111 return (err); 12112 } 12113 12114 /* 12115 * Restart entry point to restart the flags restart operation after the 12116 * refcounts have dropped to zero. 12117 */ 12118 /* ARGSUSED */ 12119 int 12120 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12121 ip_ioctl_cmd_t *ipip, void *if_req) 12122 { 12123 int err; 12124 struct ifreq *ifr = (struct ifreq *)if_req; 12125 struct lifreq *lifr = (struct lifreq *)if_req; 12126 12127 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12128 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12129 12130 ipif_down_tail(ipif); 12131 if (ipip->ipi_cmd_type == IF_CMD) { 12132 /* 12133 * Since ip_sioctl_flags expects an int and ifr_flags 12134 * is a short we need to cast ifr_flags into an int 12135 * to avoid having sign extension cause bits to get 12136 * set that should not be. 12137 */ 12138 err = ip_sioctl_flags_tail(ipif, 12139 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12140 q, mp, B_TRUE); 12141 } else { 12142 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12143 q, mp, B_TRUE); 12144 } 12145 return (err); 12146 } 12147 12148 /* 12149 * Can operate on either a module or a driver queue. 12150 */ 12151 /* ARGSUSED */ 12152 int 12153 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12154 ip_ioctl_cmd_t *ipip, void *if_req) 12155 { 12156 /* 12157 * Has the flags been set correctly till now ? 12158 */ 12159 ill_t *ill = ipif->ipif_ill; 12160 phyint_t *phyi = ill->ill_phyint; 12161 12162 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12163 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12164 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12165 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12166 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12167 12168 /* 12169 * Need a lock since some flags can be set even when there are 12170 * references to the ipif. 12171 */ 12172 mutex_enter(&ill->ill_lock); 12173 if (ipip->ipi_cmd_type == IF_CMD) { 12174 struct ifreq *ifr = (struct ifreq *)if_req; 12175 12176 /* Get interface flags (low 16 only). */ 12177 ifr->ifr_flags = ((ipif->ipif_flags | 12178 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12179 } else { 12180 struct lifreq *lifr = (struct lifreq *)if_req; 12181 12182 /* Get interface flags. */ 12183 lifr->lifr_flags = ipif->ipif_flags | 12184 ill->ill_flags | phyi->phyint_flags; 12185 } 12186 mutex_exit(&ill->ill_lock); 12187 return (0); 12188 } 12189 12190 /* ARGSUSED */ 12191 int 12192 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12193 ip_ioctl_cmd_t *ipip, void *if_req) 12194 { 12195 int mtu; 12196 int ip_min_mtu; 12197 struct ifreq *ifr; 12198 struct lifreq *lifr; 12199 ire_t *ire; 12200 ip_stack_t *ipst; 12201 12202 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12203 ipif->ipif_id, (void *)ipif)); 12204 if (ipip->ipi_cmd_type == IF_CMD) { 12205 ifr = (struct ifreq *)if_req; 12206 mtu = ifr->ifr_metric; 12207 } else { 12208 lifr = (struct lifreq *)if_req; 12209 mtu = lifr->lifr_mtu; 12210 } 12211 12212 if (ipif->ipif_isv6) 12213 ip_min_mtu = IPV6_MIN_MTU; 12214 else 12215 ip_min_mtu = IP_MIN_MTU; 12216 12217 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12218 return (EINVAL); 12219 12220 /* 12221 * Change the MTU size in all relevant ire's. 12222 * Mtu change Vs. new ire creation - protocol below. 12223 * First change ipif_mtu and the ire_max_frag of the 12224 * interface ire. Then do an ire walk and change the 12225 * ire_max_frag of all affected ires. During ire_add 12226 * under the bucket lock, set the ire_max_frag of the 12227 * new ire being created from the ipif/ire from which 12228 * it is being derived. If an mtu change happens after 12229 * the ire is added, the new ire will be cleaned up. 12230 * Conversely if the mtu change happens before the ire 12231 * is added, ire_add will see the new value of the mtu. 12232 */ 12233 ipif->ipif_mtu = mtu; 12234 ipif->ipif_flags |= IPIF_FIXEDMTU; 12235 12236 if (ipif->ipif_isv6) 12237 ire = ipif_to_ire_v6(ipif); 12238 else 12239 ire = ipif_to_ire(ipif); 12240 if (ire != NULL) { 12241 ire->ire_max_frag = ipif->ipif_mtu; 12242 ire_refrele(ire); 12243 } 12244 ipst = ipif->ipif_ill->ill_ipst; 12245 if (ipif->ipif_flags & IPIF_UP) { 12246 if (ipif->ipif_isv6) 12247 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12248 ipst); 12249 else 12250 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12251 ipst); 12252 } 12253 /* Update the MTU in SCTP's list */ 12254 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12255 return (0); 12256 } 12257 12258 /* Get interface MTU. */ 12259 /* ARGSUSED */ 12260 int 12261 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12262 ip_ioctl_cmd_t *ipip, void *if_req) 12263 { 12264 struct ifreq *ifr; 12265 struct lifreq *lifr; 12266 12267 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12268 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12269 if (ipip->ipi_cmd_type == IF_CMD) { 12270 ifr = (struct ifreq *)if_req; 12271 ifr->ifr_metric = ipif->ipif_mtu; 12272 } else { 12273 lifr = (struct lifreq *)if_req; 12274 lifr->lifr_mtu = ipif->ipif_mtu; 12275 } 12276 return (0); 12277 } 12278 12279 /* Set interface broadcast address. */ 12280 /* ARGSUSED2 */ 12281 int 12282 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12283 ip_ioctl_cmd_t *ipip, void *if_req) 12284 { 12285 ipaddr_t addr; 12286 ire_t *ire; 12287 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12288 12289 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12290 ipif->ipif_id)); 12291 12292 ASSERT(IAM_WRITER_IPIF(ipif)); 12293 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12294 return (EADDRNOTAVAIL); 12295 12296 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12297 12298 if (sin->sin_family != AF_INET) 12299 return (EAFNOSUPPORT); 12300 12301 addr = sin->sin_addr.s_addr; 12302 if (ipif->ipif_flags & IPIF_UP) { 12303 /* 12304 * If we are already up, make sure the new 12305 * broadcast address makes sense. If it does, 12306 * there should be an IRE for it already. 12307 * Don't match on ipif, only on the ill 12308 * since we are sharing these now. Don't use 12309 * MATCH_IRE_ILL_GROUP as we are looking for 12310 * the broadcast ire on this ill and each ill 12311 * in the group has its own broadcast ire. 12312 */ 12313 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12314 ipif, ALL_ZONES, NULL, 12315 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12316 if (ire == NULL) { 12317 return (EINVAL); 12318 } else { 12319 ire_refrele(ire); 12320 } 12321 } 12322 /* 12323 * Changing the broadcast addr for this ipif. 12324 * Make sure we have valid net and subnet bcast 12325 * ire's for other logical interfaces, if needed. 12326 */ 12327 if (addr != ipif->ipif_brd_addr) 12328 ipif_check_bcast_ires(ipif); 12329 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12330 return (0); 12331 } 12332 12333 /* Get interface broadcast address. */ 12334 /* ARGSUSED */ 12335 int 12336 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12337 ip_ioctl_cmd_t *ipip, void *if_req) 12338 { 12339 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12340 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12341 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12342 return (EADDRNOTAVAIL); 12343 12344 /* IPIF_BROADCAST not possible with IPv6 */ 12345 ASSERT(!ipif->ipif_isv6); 12346 *sin = sin_null; 12347 sin->sin_family = AF_INET; 12348 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12349 return (0); 12350 } 12351 12352 /* 12353 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12354 */ 12355 /* ARGSUSED */ 12356 int 12357 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12358 ip_ioctl_cmd_t *ipip, void *if_req) 12359 { 12360 int err = 0; 12361 in6_addr_t v6mask; 12362 12363 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12364 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12365 12366 ASSERT(IAM_WRITER_IPIF(ipif)); 12367 12368 if (ipif->ipif_isv6) { 12369 sin6_t *sin6; 12370 12371 if (sin->sin_family != AF_INET6) 12372 return (EAFNOSUPPORT); 12373 12374 sin6 = (sin6_t *)sin; 12375 v6mask = sin6->sin6_addr; 12376 } else { 12377 ipaddr_t mask; 12378 12379 if (sin->sin_family != AF_INET) 12380 return (EAFNOSUPPORT); 12381 12382 mask = sin->sin_addr.s_addr; 12383 V4MASK_TO_V6(mask, v6mask); 12384 } 12385 12386 /* 12387 * No big deal if the interface isn't already up, or the mask 12388 * isn't really changing, or this is pt-pt. 12389 */ 12390 if (!(ipif->ipif_flags & IPIF_UP) || 12391 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12392 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12393 ipif->ipif_v6net_mask = v6mask; 12394 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12395 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12396 ipif->ipif_v6net_mask, 12397 ipif->ipif_v6subnet); 12398 } 12399 return (0); 12400 } 12401 /* 12402 * Make sure we have valid net and subnet broadcast ire's 12403 * for the old netmask, if needed by other logical interfaces. 12404 */ 12405 if (!ipif->ipif_isv6) 12406 ipif_check_bcast_ires(ipif); 12407 12408 err = ipif_logical_down(ipif, q, mp); 12409 if (err == EINPROGRESS) 12410 return (err); 12411 ipif_down_tail(ipif); 12412 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12413 return (err); 12414 } 12415 12416 static int 12417 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12418 { 12419 in6_addr_t v6mask; 12420 int err = 0; 12421 12422 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12423 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12424 12425 if (ipif->ipif_isv6) { 12426 sin6_t *sin6; 12427 12428 sin6 = (sin6_t *)sin; 12429 v6mask = sin6->sin6_addr; 12430 } else { 12431 ipaddr_t mask; 12432 12433 mask = sin->sin_addr.s_addr; 12434 V4MASK_TO_V6(mask, v6mask); 12435 } 12436 12437 ipif->ipif_v6net_mask = v6mask; 12438 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12439 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12440 ipif->ipif_v6subnet); 12441 } 12442 err = ipif_up(ipif, q, mp); 12443 12444 if (err == 0 || err == EINPROGRESS) { 12445 /* 12446 * The interface must be DL_BOUND if this packet has to 12447 * go out on the wire. Since we only go through a logical 12448 * down and are bound with the driver during an internal 12449 * down/up that is satisfied. 12450 */ 12451 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12452 /* Potentially broadcast an address mask reply. */ 12453 ipif_mask_reply(ipif); 12454 } 12455 } 12456 return (err); 12457 } 12458 12459 /* ARGSUSED */ 12460 int 12461 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12462 ip_ioctl_cmd_t *ipip, void *if_req) 12463 { 12464 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12465 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12466 ipif_down_tail(ipif); 12467 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12468 } 12469 12470 /* Get interface net mask. */ 12471 /* ARGSUSED */ 12472 int 12473 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12474 ip_ioctl_cmd_t *ipip, void *if_req) 12475 { 12476 struct lifreq *lifr = (struct lifreq *)if_req; 12477 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12478 12479 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12480 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12481 12482 /* 12483 * net mask can't change since we have a reference to the ipif. 12484 */ 12485 if (ipif->ipif_isv6) { 12486 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12487 *sin6 = sin6_null; 12488 sin6->sin6_family = AF_INET6; 12489 sin6->sin6_addr = ipif->ipif_v6net_mask; 12490 lifr->lifr_addrlen = 12491 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12492 } else { 12493 *sin = sin_null; 12494 sin->sin_family = AF_INET; 12495 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12496 if (ipip->ipi_cmd_type == LIF_CMD) { 12497 lifr->lifr_addrlen = 12498 ip_mask_to_plen(ipif->ipif_net_mask); 12499 } 12500 } 12501 return (0); 12502 } 12503 12504 /* ARGSUSED */ 12505 int 12506 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12507 ip_ioctl_cmd_t *ipip, void *if_req) 12508 { 12509 12510 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12511 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12512 /* 12513 * Set interface metric. We don't use this for 12514 * anything but we keep track of it in case it is 12515 * important to routing applications or such. 12516 */ 12517 if (ipip->ipi_cmd_type == IF_CMD) { 12518 struct ifreq *ifr; 12519 12520 ifr = (struct ifreq *)if_req; 12521 ipif->ipif_metric = ifr->ifr_metric; 12522 } else { 12523 struct lifreq *lifr; 12524 12525 lifr = (struct lifreq *)if_req; 12526 ipif->ipif_metric = lifr->lifr_metric; 12527 } 12528 return (0); 12529 } 12530 12531 12532 /* ARGSUSED */ 12533 int 12534 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12535 ip_ioctl_cmd_t *ipip, void *if_req) 12536 { 12537 12538 /* Get interface metric. */ 12539 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12540 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12541 if (ipip->ipi_cmd_type == IF_CMD) { 12542 struct ifreq *ifr; 12543 12544 ifr = (struct ifreq *)if_req; 12545 ifr->ifr_metric = ipif->ipif_metric; 12546 } else { 12547 struct lifreq *lifr; 12548 12549 lifr = (struct lifreq *)if_req; 12550 lifr->lifr_metric = ipif->ipif_metric; 12551 } 12552 12553 return (0); 12554 } 12555 12556 /* ARGSUSED */ 12557 int 12558 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12559 ip_ioctl_cmd_t *ipip, void *if_req) 12560 { 12561 12562 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12563 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12564 /* 12565 * Set the muxid returned from I_PLINK. 12566 */ 12567 if (ipip->ipi_cmd_type == IF_CMD) { 12568 struct ifreq *ifr = (struct ifreq *)if_req; 12569 12570 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12571 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12572 } else { 12573 struct lifreq *lifr = (struct lifreq *)if_req; 12574 12575 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12576 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12577 } 12578 return (0); 12579 } 12580 12581 /* ARGSUSED */ 12582 int 12583 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12584 ip_ioctl_cmd_t *ipip, void *if_req) 12585 { 12586 12587 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12588 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12589 /* 12590 * Get the muxid saved in ill for I_PUNLINK. 12591 */ 12592 if (ipip->ipi_cmd_type == IF_CMD) { 12593 struct ifreq *ifr = (struct ifreq *)if_req; 12594 12595 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12596 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12597 } else { 12598 struct lifreq *lifr = (struct lifreq *)if_req; 12599 12600 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12601 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12602 } 12603 return (0); 12604 } 12605 12606 /* 12607 * Set the subnet prefix. Does not modify the broadcast address. 12608 */ 12609 /* ARGSUSED */ 12610 int 12611 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12612 ip_ioctl_cmd_t *ipip, void *if_req) 12613 { 12614 int err = 0; 12615 in6_addr_t v6addr; 12616 in6_addr_t v6mask; 12617 boolean_t need_up = B_FALSE; 12618 int addrlen; 12619 12620 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12621 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12622 12623 ASSERT(IAM_WRITER_IPIF(ipif)); 12624 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12625 12626 if (ipif->ipif_isv6) { 12627 sin6_t *sin6; 12628 12629 if (sin->sin_family != AF_INET6) 12630 return (EAFNOSUPPORT); 12631 12632 sin6 = (sin6_t *)sin; 12633 v6addr = sin6->sin6_addr; 12634 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12635 return (EADDRNOTAVAIL); 12636 } else { 12637 ipaddr_t addr; 12638 12639 if (sin->sin_family != AF_INET) 12640 return (EAFNOSUPPORT); 12641 12642 addr = sin->sin_addr.s_addr; 12643 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12644 return (EADDRNOTAVAIL); 12645 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12646 /* Add 96 bits */ 12647 addrlen += IPV6_ABITS - IP_ABITS; 12648 } 12649 12650 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12651 return (EINVAL); 12652 12653 /* Check if bits in the address is set past the mask */ 12654 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12655 return (EINVAL); 12656 12657 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12658 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12659 return (0); /* No change */ 12660 12661 if (ipif->ipif_flags & IPIF_UP) { 12662 /* 12663 * If the interface is already marked up, 12664 * we call ipif_down which will take care 12665 * of ditching any IREs that have been set 12666 * up based on the old interface address. 12667 */ 12668 err = ipif_logical_down(ipif, q, mp); 12669 if (err == EINPROGRESS) 12670 return (err); 12671 ipif_down_tail(ipif); 12672 need_up = B_TRUE; 12673 } 12674 12675 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12676 return (err); 12677 } 12678 12679 static int 12680 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12681 queue_t *q, mblk_t *mp, boolean_t need_up) 12682 { 12683 ill_t *ill = ipif->ipif_ill; 12684 int err = 0; 12685 12686 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12687 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12688 12689 /* Set the new address. */ 12690 mutex_enter(&ill->ill_lock); 12691 ipif->ipif_v6net_mask = v6mask; 12692 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12693 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12694 ipif->ipif_v6subnet); 12695 } 12696 mutex_exit(&ill->ill_lock); 12697 12698 if (need_up) { 12699 /* 12700 * Now bring the interface back up. If this 12701 * is the only IPIF for the ILL, ipif_up 12702 * will have to re-bind to the device, so 12703 * we may get back EINPROGRESS, in which 12704 * case, this IOCTL will get completed in 12705 * ip_rput_dlpi when we see the DL_BIND_ACK. 12706 */ 12707 err = ipif_up(ipif, q, mp); 12708 if (err == EINPROGRESS) 12709 return (err); 12710 } 12711 return (err); 12712 } 12713 12714 /* ARGSUSED */ 12715 int 12716 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12717 ip_ioctl_cmd_t *ipip, void *if_req) 12718 { 12719 int addrlen; 12720 in6_addr_t v6addr; 12721 in6_addr_t v6mask; 12722 struct lifreq *lifr = (struct lifreq *)if_req; 12723 12724 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12725 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12726 ipif_down_tail(ipif); 12727 12728 addrlen = lifr->lifr_addrlen; 12729 if (ipif->ipif_isv6) { 12730 sin6_t *sin6; 12731 12732 sin6 = (sin6_t *)sin; 12733 v6addr = sin6->sin6_addr; 12734 } else { 12735 ipaddr_t addr; 12736 12737 addr = sin->sin_addr.s_addr; 12738 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12739 addrlen += IPV6_ABITS - IP_ABITS; 12740 } 12741 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12742 12743 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12744 } 12745 12746 /* ARGSUSED */ 12747 int 12748 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12749 ip_ioctl_cmd_t *ipip, void *if_req) 12750 { 12751 struct lifreq *lifr = (struct lifreq *)if_req; 12752 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12753 12754 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12755 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12756 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12757 12758 if (ipif->ipif_isv6) { 12759 *sin6 = sin6_null; 12760 sin6->sin6_family = AF_INET6; 12761 sin6->sin6_addr = ipif->ipif_v6subnet; 12762 lifr->lifr_addrlen = 12763 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12764 } else { 12765 *sin = sin_null; 12766 sin->sin_family = AF_INET; 12767 sin->sin_addr.s_addr = ipif->ipif_subnet; 12768 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12769 } 12770 return (0); 12771 } 12772 12773 /* 12774 * Set the IPv6 address token. 12775 */ 12776 /* ARGSUSED */ 12777 int 12778 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12779 ip_ioctl_cmd_t *ipi, void *if_req) 12780 { 12781 ill_t *ill = ipif->ipif_ill; 12782 int err; 12783 in6_addr_t v6addr; 12784 in6_addr_t v6mask; 12785 boolean_t need_up = B_FALSE; 12786 int i; 12787 sin6_t *sin6 = (sin6_t *)sin; 12788 struct lifreq *lifr = (struct lifreq *)if_req; 12789 int addrlen; 12790 12791 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12792 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12793 ASSERT(IAM_WRITER_IPIF(ipif)); 12794 12795 addrlen = lifr->lifr_addrlen; 12796 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12797 if (ipif->ipif_id != 0) 12798 return (EINVAL); 12799 12800 if (!ipif->ipif_isv6) 12801 return (EINVAL); 12802 12803 if (addrlen > IPV6_ABITS) 12804 return (EINVAL); 12805 12806 v6addr = sin6->sin6_addr; 12807 12808 /* 12809 * The length of the token is the length from the end. To get 12810 * the proper mask for this, compute the mask of the bits not 12811 * in the token; ie. the prefix, and then xor to get the mask. 12812 */ 12813 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12814 return (EINVAL); 12815 for (i = 0; i < 4; i++) { 12816 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12817 } 12818 12819 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12820 ill->ill_token_length == addrlen) 12821 return (0); /* No change */ 12822 12823 if (ipif->ipif_flags & IPIF_UP) { 12824 err = ipif_logical_down(ipif, q, mp); 12825 if (err == EINPROGRESS) 12826 return (err); 12827 ipif_down_tail(ipif); 12828 need_up = B_TRUE; 12829 } 12830 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12831 return (err); 12832 } 12833 12834 static int 12835 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12836 mblk_t *mp, boolean_t need_up) 12837 { 12838 in6_addr_t v6addr; 12839 in6_addr_t v6mask; 12840 ill_t *ill = ipif->ipif_ill; 12841 int i; 12842 int err = 0; 12843 12844 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12845 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12846 v6addr = sin6->sin6_addr; 12847 /* 12848 * The length of the token is the length from the end. To get 12849 * the proper mask for this, compute the mask of the bits not 12850 * in the token; ie. the prefix, and then xor to get the mask. 12851 */ 12852 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12853 for (i = 0; i < 4; i++) 12854 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12855 12856 mutex_enter(&ill->ill_lock); 12857 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12858 ill->ill_token_length = addrlen; 12859 mutex_exit(&ill->ill_lock); 12860 12861 if (need_up) { 12862 /* 12863 * Now bring the interface back up. If this 12864 * is the only IPIF for the ILL, ipif_up 12865 * will have to re-bind to the device, so 12866 * we may get back EINPROGRESS, in which 12867 * case, this IOCTL will get completed in 12868 * ip_rput_dlpi when we see the DL_BIND_ACK. 12869 */ 12870 err = ipif_up(ipif, q, mp); 12871 if (err == EINPROGRESS) 12872 return (err); 12873 } 12874 return (err); 12875 } 12876 12877 /* ARGSUSED */ 12878 int 12879 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12880 ip_ioctl_cmd_t *ipi, void *if_req) 12881 { 12882 ill_t *ill; 12883 sin6_t *sin6 = (sin6_t *)sin; 12884 struct lifreq *lifr = (struct lifreq *)if_req; 12885 12886 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12887 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12888 if (ipif->ipif_id != 0) 12889 return (EINVAL); 12890 12891 ill = ipif->ipif_ill; 12892 if (!ill->ill_isv6) 12893 return (ENXIO); 12894 12895 *sin6 = sin6_null; 12896 sin6->sin6_family = AF_INET6; 12897 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12898 sin6->sin6_addr = ill->ill_token; 12899 lifr->lifr_addrlen = ill->ill_token_length; 12900 return (0); 12901 } 12902 12903 /* 12904 * Set (hardware) link specific information that might override 12905 * what was acquired through the DL_INFO_ACK. 12906 * The logic is as follows. 12907 * 12908 * become exclusive 12909 * set CHANGING flag 12910 * change mtu on affected IREs 12911 * clear CHANGING flag 12912 * 12913 * An ire add that occurs before the CHANGING flag is set will have its mtu 12914 * changed by the ip_sioctl_lnkinfo. 12915 * 12916 * During the time the CHANGING flag is set, no new ires will be added to the 12917 * bucket, and ire add will fail (due the CHANGING flag). 12918 * 12919 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12920 * before it is added to the bucket. 12921 * 12922 * Obviously only 1 thread can set the CHANGING flag and we need to become 12923 * exclusive to set the flag. 12924 */ 12925 /* ARGSUSED */ 12926 int 12927 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12928 ip_ioctl_cmd_t *ipi, void *if_req) 12929 { 12930 ill_t *ill = ipif->ipif_ill; 12931 ipif_t *nipif; 12932 int ip_min_mtu; 12933 boolean_t mtu_walk = B_FALSE; 12934 struct lifreq *lifr = (struct lifreq *)if_req; 12935 lif_ifinfo_req_t *lir; 12936 ire_t *ire; 12937 12938 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12939 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12940 lir = &lifr->lifr_ifinfo; 12941 ASSERT(IAM_WRITER_IPIF(ipif)); 12942 12943 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12944 if (ipif->ipif_id != 0) 12945 return (EINVAL); 12946 12947 /* Set interface MTU. */ 12948 if (ipif->ipif_isv6) 12949 ip_min_mtu = IPV6_MIN_MTU; 12950 else 12951 ip_min_mtu = IP_MIN_MTU; 12952 12953 /* 12954 * Verify values before we set anything. Allow zero to 12955 * mean unspecified. 12956 */ 12957 if (lir->lir_maxmtu != 0 && 12958 (lir->lir_maxmtu > ill->ill_max_frag || 12959 lir->lir_maxmtu < ip_min_mtu)) 12960 return (EINVAL); 12961 if (lir->lir_reachtime != 0 && 12962 lir->lir_reachtime > ND_MAX_REACHTIME) 12963 return (EINVAL); 12964 if (lir->lir_reachretrans != 0 && 12965 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12966 return (EINVAL); 12967 12968 mutex_enter(&ill->ill_lock); 12969 ill->ill_state_flags |= ILL_CHANGING; 12970 for (nipif = ill->ill_ipif; nipif != NULL; 12971 nipif = nipif->ipif_next) { 12972 nipif->ipif_state_flags |= IPIF_CHANGING; 12973 } 12974 12975 mutex_exit(&ill->ill_lock); 12976 12977 if (lir->lir_maxmtu != 0) { 12978 ill->ill_max_mtu = lir->lir_maxmtu; 12979 ill->ill_mtu_userspecified = 1; 12980 mtu_walk = B_TRUE; 12981 } 12982 12983 if (lir->lir_reachtime != 0) 12984 ill->ill_reachable_time = lir->lir_reachtime; 12985 12986 if (lir->lir_reachretrans != 0) 12987 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12988 12989 ill->ill_max_hops = lir->lir_maxhops; 12990 12991 ill->ill_max_buf = ND_MAX_Q; 12992 12993 if (mtu_walk) { 12994 /* 12995 * Set the MTU on all ipifs associated with this ill except 12996 * for those whose MTU was fixed via SIOCSLIFMTU. 12997 */ 12998 for (nipif = ill->ill_ipif; nipif != NULL; 12999 nipif = nipif->ipif_next) { 13000 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13001 continue; 13002 13003 nipif->ipif_mtu = ill->ill_max_mtu; 13004 13005 if (!(nipif->ipif_flags & IPIF_UP)) 13006 continue; 13007 13008 if (nipif->ipif_isv6) 13009 ire = ipif_to_ire_v6(nipif); 13010 else 13011 ire = ipif_to_ire(nipif); 13012 if (ire != NULL) { 13013 ire->ire_max_frag = ipif->ipif_mtu; 13014 ire_refrele(ire); 13015 } 13016 if (ill->ill_isv6) { 13017 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13018 ipif_mtu_change, (char *)nipif, 13019 ill); 13020 } else { 13021 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13022 ipif_mtu_change, (char *)nipif, 13023 ill); 13024 } 13025 } 13026 } 13027 13028 mutex_enter(&ill->ill_lock); 13029 for (nipif = ill->ill_ipif; nipif != NULL; 13030 nipif = nipif->ipif_next) { 13031 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13032 } 13033 ILL_UNMARK_CHANGING(ill); 13034 mutex_exit(&ill->ill_lock); 13035 13036 return (0); 13037 } 13038 13039 /* ARGSUSED */ 13040 int 13041 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13042 ip_ioctl_cmd_t *ipi, void *if_req) 13043 { 13044 struct lif_ifinfo_req *lir; 13045 ill_t *ill = ipif->ipif_ill; 13046 13047 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13048 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13049 if (ipif->ipif_id != 0) 13050 return (EINVAL); 13051 13052 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13053 lir->lir_maxhops = ill->ill_max_hops; 13054 lir->lir_reachtime = ill->ill_reachable_time; 13055 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13056 lir->lir_maxmtu = ill->ill_max_mtu; 13057 13058 return (0); 13059 } 13060 13061 /* 13062 * Return best guess as to the subnet mask for the specified address. 13063 * Based on the subnet masks for all the configured interfaces. 13064 * 13065 * We end up returning a zero mask in the case of default, multicast or 13066 * experimental. 13067 */ 13068 static ipaddr_t 13069 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13070 { 13071 ipaddr_t net_mask; 13072 ill_t *ill; 13073 ipif_t *ipif; 13074 ill_walk_context_t ctx; 13075 ipif_t *fallback_ipif = NULL; 13076 13077 net_mask = ip_net_mask(addr); 13078 if (net_mask == 0) { 13079 *ipifp = NULL; 13080 return (0); 13081 } 13082 13083 /* Let's check to see if this is maybe a local subnet route. */ 13084 /* this function only applies to IPv4 interfaces */ 13085 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13086 ill = ILL_START_WALK_V4(&ctx, ipst); 13087 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13088 mutex_enter(&ill->ill_lock); 13089 for (ipif = ill->ill_ipif; ipif != NULL; 13090 ipif = ipif->ipif_next) { 13091 if (!IPIF_CAN_LOOKUP(ipif)) 13092 continue; 13093 if (!(ipif->ipif_flags & IPIF_UP)) 13094 continue; 13095 if ((ipif->ipif_subnet & net_mask) == 13096 (addr & net_mask)) { 13097 /* 13098 * Don't trust pt-pt interfaces if there are 13099 * other interfaces. 13100 */ 13101 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13102 if (fallback_ipif == NULL) { 13103 ipif_refhold_locked(ipif); 13104 fallback_ipif = ipif; 13105 } 13106 continue; 13107 } 13108 13109 /* 13110 * Fine. Just assume the same net mask as the 13111 * directly attached subnet interface is using. 13112 */ 13113 ipif_refhold_locked(ipif); 13114 mutex_exit(&ill->ill_lock); 13115 rw_exit(&ipst->ips_ill_g_lock); 13116 if (fallback_ipif != NULL) 13117 ipif_refrele(fallback_ipif); 13118 *ipifp = ipif; 13119 return (ipif->ipif_net_mask); 13120 } 13121 } 13122 mutex_exit(&ill->ill_lock); 13123 } 13124 rw_exit(&ipst->ips_ill_g_lock); 13125 13126 *ipifp = fallback_ipif; 13127 return ((fallback_ipif != NULL) ? 13128 fallback_ipif->ipif_net_mask : net_mask); 13129 } 13130 13131 /* 13132 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13133 */ 13134 static void 13135 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13136 { 13137 IOCP iocp; 13138 ipft_t *ipft; 13139 ipllc_t *ipllc; 13140 mblk_t *mp1; 13141 cred_t *cr; 13142 int error = 0; 13143 conn_t *connp; 13144 13145 ip1dbg(("ip_wput_ioctl")); 13146 iocp = (IOCP)mp->b_rptr; 13147 mp1 = mp->b_cont; 13148 if (mp1 == NULL) { 13149 iocp->ioc_error = EINVAL; 13150 mp->b_datap->db_type = M_IOCNAK; 13151 iocp->ioc_count = 0; 13152 qreply(q, mp); 13153 return; 13154 } 13155 13156 /* 13157 * These IOCTLs provide various control capabilities to 13158 * upstream agents such as ULPs and processes. There 13159 * are currently two such IOCTLs implemented. They 13160 * are used by TCP to provide update information for 13161 * existing IREs and to forcibly delete an IRE for a 13162 * host that is not responding, thereby forcing an 13163 * attempt at a new route. 13164 */ 13165 iocp->ioc_error = EINVAL; 13166 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13167 goto done; 13168 13169 ipllc = (ipllc_t *)mp1->b_rptr; 13170 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13171 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13172 break; 13173 } 13174 /* 13175 * prefer credential from mblk over ioctl; 13176 * see ip_sioctl_copyin_setup 13177 */ 13178 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13179 13180 /* 13181 * Refhold the conn in case the request gets queued up in some lookup 13182 */ 13183 ASSERT(CONN_Q(q)); 13184 connp = Q_TO_CONN(q); 13185 CONN_INC_REF(connp); 13186 if (ipft->ipft_pfi && 13187 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13188 pullupmsg(mp1, ipft->ipft_min_size))) { 13189 error = (*ipft->ipft_pfi)(q, 13190 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13191 } 13192 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13193 /* 13194 * CONN_OPER_PENDING_DONE happens in the function called 13195 * through ipft_pfi above. 13196 */ 13197 return; 13198 } 13199 13200 CONN_OPER_PENDING_DONE(connp); 13201 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13202 freemsg(mp); 13203 return; 13204 } 13205 iocp->ioc_error = error; 13206 13207 done: 13208 mp->b_datap->db_type = M_IOCACK; 13209 if (iocp->ioc_error) 13210 iocp->ioc_count = 0; 13211 qreply(q, mp); 13212 } 13213 13214 /* 13215 * Lookup an ipif using the sequence id (ipif_seqid) 13216 */ 13217 ipif_t * 13218 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13219 { 13220 ipif_t *ipif; 13221 13222 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13223 13224 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13225 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13226 return (ipif); 13227 } 13228 return (NULL); 13229 } 13230 13231 /* 13232 * Assign a unique id for the ipif. This is used later when we send 13233 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13234 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13235 * IRE is added, we verify that ipif has not disappeared. 13236 */ 13237 13238 static void 13239 ipif_assign_seqid(ipif_t *ipif) 13240 { 13241 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13242 13243 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13244 } 13245 13246 /* 13247 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13248 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13249 * be inserted into the first space available in the list. The value of 13250 * ipif_id will then be set to the appropriate value for its position. 13251 */ 13252 static int 13253 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13254 { 13255 ill_t *ill; 13256 ipif_t *tipif; 13257 ipif_t **tipifp; 13258 int id; 13259 ip_stack_t *ipst; 13260 13261 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13262 IAM_WRITER_IPIF(ipif)); 13263 13264 ill = ipif->ipif_ill; 13265 ASSERT(ill != NULL); 13266 ipst = ill->ill_ipst; 13267 13268 /* 13269 * In the case of lo0:0 we already hold the ill_g_lock. 13270 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13271 * ipif_insert. Another such caller is ipif_move. 13272 */ 13273 if (acquire_g_lock) 13274 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13275 if (acquire_ill_lock) 13276 mutex_enter(&ill->ill_lock); 13277 id = ipif->ipif_id; 13278 tipifp = &(ill->ill_ipif); 13279 if (id == -1) { /* need to find a real id */ 13280 id = 0; 13281 while ((tipif = *tipifp) != NULL) { 13282 ASSERT(tipif->ipif_id >= id); 13283 if (tipif->ipif_id != id) 13284 break; /* non-consecutive id */ 13285 id++; 13286 tipifp = &(tipif->ipif_next); 13287 } 13288 /* limit number of logical interfaces */ 13289 if (id >= ipst->ips_ip_addrs_per_if) { 13290 if (acquire_ill_lock) 13291 mutex_exit(&ill->ill_lock); 13292 if (acquire_g_lock) 13293 rw_exit(&ipst->ips_ill_g_lock); 13294 return (-1); 13295 } 13296 ipif->ipif_id = id; /* assign new id */ 13297 } else if (id < ipst->ips_ip_addrs_per_if) { 13298 /* we have a real id; insert ipif in the right place */ 13299 while ((tipif = *tipifp) != NULL) { 13300 ASSERT(tipif->ipif_id != id); 13301 if (tipif->ipif_id > id) 13302 break; /* found correct location */ 13303 tipifp = &(tipif->ipif_next); 13304 } 13305 } else { 13306 if (acquire_ill_lock) 13307 mutex_exit(&ill->ill_lock); 13308 if (acquire_g_lock) 13309 rw_exit(&ipst->ips_ill_g_lock); 13310 return (-1); 13311 } 13312 13313 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13314 13315 ipif->ipif_next = tipif; 13316 *tipifp = ipif; 13317 if (acquire_ill_lock) 13318 mutex_exit(&ill->ill_lock); 13319 if (acquire_g_lock) 13320 rw_exit(&ipst->ips_ill_g_lock); 13321 return (0); 13322 } 13323 13324 static void 13325 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13326 { 13327 ipif_t **ipifp; 13328 ill_t *ill = ipif->ipif_ill; 13329 13330 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13331 if (acquire_ill_lock) 13332 mutex_enter(&ill->ill_lock); 13333 else 13334 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13335 13336 ipifp = &ill->ill_ipif; 13337 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13338 if (*ipifp == ipif) { 13339 *ipifp = ipif->ipif_next; 13340 break; 13341 } 13342 } 13343 13344 if (acquire_ill_lock) 13345 mutex_exit(&ill->ill_lock); 13346 } 13347 13348 /* 13349 * Allocate and initialize a new interface control structure. (Always 13350 * called as writer.) 13351 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13352 * is not part of the global linked list of ills. ipif_seqid is unique 13353 * in the system and to preserve the uniqueness, it is assigned only 13354 * when ill becomes part of the global list. At that point ill will 13355 * have a name. If it doesn't get assigned here, it will get assigned 13356 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13357 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13358 * the interface flags or any other information from the DL_INFO_ACK for 13359 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13360 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13361 * second DL_INFO_ACK comes in from the driver. 13362 */ 13363 static ipif_t * 13364 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13365 { 13366 ipif_t *ipif; 13367 phyint_t *phyi; 13368 13369 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13370 ill->ill_name, id, (void *)ill)); 13371 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13372 13373 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13374 return (NULL); 13375 *ipif = ipif_zero; /* start clean */ 13376 13377 ipif->ipif_ill = ill; 13378 ipif->ipif_id = id; /* could be -1 */ 13379 /* 13380 * Inherit the zoneid from the ill; for the shared stack instance 13381 * this is always the global zone 13382 */ 13383 ipif->ipif_zoneid = ill->ill_zoneid; 13384 13385 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13386 13387 ipif->ipif_refcnt = 0; 13388 ipif->ipif_saved_ire_cnt = 0; 13389 13390 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13391 mi_free(ipif); 13392 return (NULL); 13393 } 13394 /* -1 id should have been replaced by real id */ 13395 id = ipif->ipif_id; 13396 ASSERT(id >= 0); 13397 13398 if (ill->ill_name[0] != '\0') 13399 ipif_assign_seqid(ipif); 13400 13401 /* 13402 * Keep a copy of original id in ipif_orig_ipifid. Failback 13403 * will attempt to restore the original id. The SIOCSLIFOINDEX 13404 * ioctl sets ipif_orig_ipifid to zero. 13405 */ 13406 ipif->ipif_orig_ipifid = id; 13407 13408 /* 13409 * We grab the ill_lock and phyint_lock to protect the flag changes. 13410 * The ipif is still not up and can't be looked up until the 13411 * ioctl completes and the IPIF_CHANGING flag is cleared. 13412 */ 13413 mutex_enter(&ill->ill_lock); 13414 mutex_enter(&ill->ill_phyint->phyint_lock); 13415 /* 13416 * Set the running flag when logical interface zero is created. 13417 * For subsequent logical interfaces, a DLPI link down 13418 * notification message may have cleared the running flag to 13419 * indicate the link is down, so we shouldn't just blindly set it. 13420 */ 13421 if (id == 0) 13422 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13423 ipif->ipif_ire_type = ire_type; 13424 phyi = ill->ill_phyint; 13425 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13426 13427 if (ipif->ipif_isv6) { 13428 ill->ill_flags |= ILLF_IPV6; 13429 } else { 13430 ipaddr_t inaddr_any = INADDR_ANY; 13431 13432 ill->ill_flags |= ILLF_IPV4; 13433 13434 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13435 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13436 &ipif->ipif_v6lcl_addr); 13437 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13438 &ipif->ipif_v6src_addr); 13439 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13440 &ipif->ipif_v6subnet); 13441 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13442 &ipif->ipif_v6net_mask); 13443 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13444 &ipif->ipif_v6brd_addr); 13445 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13446 &ipif->ipif_v6pp_dst_addr); 13447 } 13448 13449 /* 13450 * Don't set the interface flags etc. now, will do it in 13451 * ip_ll_subnet_defaults. 13452 */ 13453 if (!initialize) { 13454 mutex_exit(&ill->ill_lock); 13455 mutex_exit(&ill->ill_phyint->phyint_lock); 13456 return (ipif); 13457 } 13458 ipif->ipif_mtu = ill->ill_max_mtu; 13459 13460 if (ill->ill_bcast_addr_length != 0) { 13461 /* 13462 * Later detect lack of DLPI driver multicast 13463 * capability by catching DL_ENABMULTI errors in 13464 * ip_rput_dlpi. 13465 */ 13466 ill->ill_flags |= ILLF_MULTICAST; 13467 if (!ipif->ipif_isv6) 13468 ipif->ipif_flags |= IPIF_BROADCAST; 13469 } else { 13470 if (ill->ill_net_type != IRE_LOOPBACK) { 13471 if (ipif->ipif_isv6) 13472 /* 13473 * Note: xresolv interfaces will eventually need 13474 * NOARP set here as well, but that will require 13475 * those external resolvers to have some 13476 * knowledge of that flag and act appropriately. 13477 * Not to be changed at present. 13478 */ 13479 ill->ill_flags |= ILLF_NONUD; 13480 else 13481 ill->ill_flags |= ILLF_NOARP; 13482 } 13483 if (ill->ill_phys_addr_length == 0) { 13484 if (ill->ill_media && 13485 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13486 ipif->ipif_flags |= IPIF_NOXMIT; 13487 phyi->phyint_flags |= PHYI_VIRTUAL; 13488 } else { 13489 /* pt-pt supports multicast. */ 13490 ill->ill_flags |= ILLF_MULTICAST; 13491 if (ill->ill_net_type == IRE_LOOPBACK) { 13492 phyi->phyint_flags |= 13493 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13494 } else { 13495 ipif->ipif_flags |= IPIF_POINTOPOINT; 13496 } 13497 } 13498 } 13499 } 13500 mutex_exit(&ill->ill_lock); 13501 mutex_exit(&ill->ill_phyint->phyint_lock); 13502 return (ipif); 13503 } 13504 13505 /* 13506 * If appropriate, send a message up to the resolver delete the entry 13507 * for the address of this interface which is going out of business. 13508 * (Always called as writer). 13509 * 13510 * NOTE : We need to check for NULL mps as some of the fields are 13511 * initialized only for some interface types. See ipif_resolver_up() 13512 * for details. 13513 */ 13514 void 13515 ipif_arp_down(ipif_t *ipif) 13516 { 13517 mblk_t *mp; 13518 ill_t *ill = ipif->ipif_ill; 13519 13520 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13521 ASSERT(IAM_WRITER_IPIF(ipif)); 13522 13523 /* Delete the mapping for the local address */ 13524 mp = ipif->ipif_arp_del_mp; 13525 if (mp != NULL) { 13526 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13527 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13528 putnext(ill->ill_rq, mp); 13529 ipif->ipif_arp_del_mp = NULL; 13530 } 13531 13532 /* 13533 * If this is the last ipif that is going down and there are no 13534 * duplicate addresses we may yet attempt to re-probe, then we need to 13535 * clean up ARP completely. 13536 */ 13537 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13538 13539 /* Send up AR_INTERFACE_DOWN message */ 13540 mp = ill->ill_arp_down_mp; 13541 if (mp != NULL) { 13542 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13543 *(unsigned *)mp->b_rptr, ill->ill_name, 13544 ipif->ipif_id)); 13545 putnext(ill->ill_rq, mp); 13546 ill->ill_arp_down_mp = NULL; 13547 } 13548 13549 /* Tell ARP to delete the multicast mappings */ 13550 mp = ill->ill_arp_del_mapping_mp; 13551 if (mp != NULL) { 13552 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13553 *(unsigned *)mp->b_rptr, ill->ill_name, 13554 ipif->ipif_id)); 13555 putnext(ill->ill_rq, mp); 13556 ill->ill_arp_del_mapping_mp = NULL; 13557 } 13558 } 13559 } 13560 13561 /* 13562 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13563 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13564 * that it wants the add_mp allocated in this function to be returned 13565 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13566 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13567 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13568 * as it does a ipif_arp_down after calling this function - which will 13569 * remove what we add here. 13570 * 13571 * Returns -1 on failures and 0 on success. 13572 */ 13573 int 13574 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13575 { 13576 mblk_t *del_mp = NULL; 13577 mblk_t *add_mp = NULL; 13578 mblk_t *mp; 13579 ill_t *ill = ipif->ipif_ill; 13580 phyint_t *phyi = ill->ill_phyint; 13581 ipaddr_t addr, mask, extract_mask = 0; 13582 arma_t *arma; 13583 uint8_t *maddr, *bphys_addr; 13584 uint32_t hw_start; 13585 dl_unitdata_req_t *dlur; 13586 13587 ASSERT(IAM_WRITER_IPIF(ipif)); 13588 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13589 return (0); 13590 13591 /* 13592 * Delete the existing mapping from ARP. Normally ipif_down 13593 * -> ipif_arp_down should send this up to ARP. The only 13594 * reason we would find this when we are switching from 13595 * Multicast to Broadcast where we did not do a down. 13596 */ 13597 mp = ill->ill_arp_del_mapping_mp; 13598 if (mp != NULL) { 13599 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13600 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13601 putnext(ill->ill_rq, mp); 13602 ill->ill_arp_del_mapping_mp = NULL; 13603 } 13604 13605 if (arp_add_mapping_mp != NULL) 13606 *arp_add_mapping_mp = NULL; 13607 13608 /* 13609 * Check that the address is not to long for the constant 13610 * length reserved in the template arma_t. 13611 */ 13612 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13613 return (-1); 13614 13615 /* Add mapping mblk */ 13616 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13617 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13618 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13619 (caddr_t)&addr); 13620 if (add_mp == NULL) 13621 return (-1); 13622 arma = (arma_t *)add_mp->b_rptr; 13623 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13624 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13625 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13626 13627 /* 13628 * Determine the broadcast address. 13629 */ 13630 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13631 if (ill->ill_sap_length < 0) 13632 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13633 else 13634 bphys_addr = (uchar_t *)dlur + 13635 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13636 /* 13637 * Check PHYI_MULTI_BCAST and length of physical 13638 * address to determine if we use the mapping or the 13639 * broadcast address. 13640 */ 13641 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13642 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13643 bphys_addr, maddr, &hw_start, &extract_mask)) 13644 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13645 13646 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13647 (ill->ill_flags & ILLF_MULTICAST)) { 13648 /* Make sure this will not match the "exact" entry. */ 13649 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13650 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13651 (caddr_t)&addr); 13652 if (del_mp == NULL) { 13653 freemsg(add_mp); 13654 return (-1); 13655 } 13656 bcopy(&extract_mask, (char *)arma + 13657 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13658 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13659 /* Use link-layer broadcast address for MULTI_BCAST */ 13660 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13661 ip2dbg(("ipif_arp_setup_multicast: adding" 13662 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13663 } else { 13664 arma->arma_hw_mapping_start = hw_start; 13665 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13666 " ARP setup for %s\n", ill->ill_name)); 13667 } 13668 } else { 13669 freemsg(add_mp); 13670 ASSERT(del_mp == NULL); 13671 /* It is neither MULTICAST nor MULTI_BCAST */ 13672 return (0); 13673 } 13674 ASSERT(add_mp != NULL && del_mp != NULL); 13675 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13676 ill->ill_arp_del_mapping_mp = del_mp; 13677 if (arp_add_mapping_mp != NULL) { 13678 /* The caller just wants the mblks allocated */ 13679 *arp_add_mapping_mp = add_mp; 13680 } else { 13681 /* The caller wants us to send it to arp */ 13682 putnext(ill->ill_rq, add_mp); 13683 } 13684 return (0); 13685 } 13686 13687 /* 13688 * Get the resolver set up for a new interface address. 13689 * (Always called as writer.) 13690 * Called both for IPv4 and IPv6 interfaces, 13691 * though it only sets up the resolver for v6 13692 * if it's an xresolv interface (one using an external resolver). 13693 * Honors ILLF_NOARP. 13694 * The enumerated value res_act is used to tune the behavior. 13695 * If set to Res_act_initial, then we set up all the resolver 13696 * structures for a new interface. If set to Res_act_move, then 13697 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13698 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13699 * asynchronous hardware address change notification. If set to 13700 * Res_act_defend, then we tell ARP that it needs to send a single 13701 * gratuitous message in defense of the address. 13702 * Returns error on failure. 13703 */ 13704 int 13705 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13706 { 13707 caddr_t addr; 13708 mblk_t *arp_up_mp = NULL; 13709 mblk_t *arp_down_mp = NULL; 13710 mblk_t *arp_add_mp = NULL; 13711 mblk_t *arp_del_mp = NULL; 13712 mblk_t *arp_add_mapping_mp = NULL; 13713 mblk_t *arp_del_mapping_mp = NULL; 13714 ill_t *ill = ipif->ipif_ill; 13715 uchar_t *area_p = NULL; 13716 uchar_t *ared_p = NULL; 13717 int err = ENOMEM; 13718 boolean_t was_dup; 13719 13720 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13721 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13722 ASSERT(IAM_WRITER_IPIF(ipif)); 13723 13724 was_dup = B_FALSE; 13725 if (res_act == Res_act_initial) { 13726 ipif->ipif_addr_ready = 0; 13727 /* 13728 * We're bringing an interface up here. There's no way that we 13729 * should need to shut down ARP now. 13730 */ 13731 mutex_enter(&ill->ill_lock); 13732 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13733 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13734 ill->ill_ipif_dup_count--; 13735 was_dup = B_TRUE; 13736 } 13737 mutex_exit(&ill->ill_lock); 13738 } 13739 if (ipif->ipif_recovery_id != 0) 13740 (void) untimeout(ipif->ipif_recovery_id); 13741 ipif->ipif_recovery_id = 0; 13742 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13743 ipif->ipif_addr_ready = 1; 13744 return (0); 13745 } 13746 /* NDP will set the ipif_addr_ready flag when it's ready */ 13747 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13748 return (0); 13749 13750 if (ill->ill_isv6) { 13751 /* 13752 * External resolver for IPv6 13753 */ 13754 ASSERT(res_act == Res_act_initial); 13755 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13756 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13757 area_p = (uchar_t *)&ip6_area_template; 13758 ared_p = (uchar_t *)&ip6_ared_template; 13759 } 13760 } else { 13761 /* 13762 * IPv4 arp case. If the ARP stream has already started 13763 * closing, fail this request for ARP bringup. Else 13764 * record the fact that an ARP bringup is pending. 13765 */ 13766 mutex_enter(&ill->ill_lock); 13767 if (ill->ill_arp_closing) { 13768 mutex_exit(&ill->ill_lock); 13769 err = EINVAL; 13770 goto failed; 13771 } else { 13772 if (ill->ill_ipif_up_count == 0 && 13773 ill->ill_ipif_dup_count == 0 && !was_dup) 13774 ill->ill_arp_bringup_pending = 1; 13775 mutex_exit(&ill->ill_lock); 13776 } 13777 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13778 addr = (caddr_t)&ipif->ipif_lcl_addr; 13779 area_p = (uchar_t *)&ip_area_template; 13780 ared_p = (uchar_t *)&ip_ared_template; 13781 } 13782 } 13783 13784 /* 13785 * Add an entry for the local address in ARP only if it 13786 * is not UNNUMBERED and the address is not INADDR_ANY. 13787 */ 13788 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13789 area_t *area; 13790 13791 /* Now ask ARP to publish our address. */ 13792 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13793 if (arp_add_mp == NULL) 13794 goto failed; 13795 area = (area_t *)arp_add_mp->b_rptr; 13796 if (res_act != Res_act_initial) { 13797 /* 13798 * Copy the new hardware address and length into 13799 * arp_add_mp to be sent to ARP. 13800 */ 13801 area->area_hw_addr_length = ill->ill_phys_addr_length; 13802 bcopy(ill->ill_phys_addr, 13803 ((char *)area + area->area_hw_addr_offset), 13804 area->area_hw_addr_length); 13805 } 13806 13807 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13808 ACE_F_MYADDR; 13809 13810 if (res_act == Res_act_defend) { 13811 area->area_flags |= ACE_F_DEFEND; 13812 /* 13813 * If we're just defending our address now, then 13814 * there's no need to set up ARP multicast mappings. 13815 * The publish command is enough. 13816 */ 13817 goto done; 13818 } 13819 13820 if (res_act != Res_act_initial) 13821 goto arp_setup_multicast; 13822 13823 /* 13824 * Allocate an ARP deletion message so we know we can tell ARP 13825 * when the interface goes down. 13826 */ 13827 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13828 if (arp_del_mp == NULL) 13829 goto failed; 13830 13831 } else { 13832 if (res_act != Res_act_initial) 13833 goto done; 13834 } 13835 /* 13836 * Need to bring up ARP or setup multicast mapping only 13837 * when the first interface is coming UP. 13838 */ 13839 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13840 was_dup) { 13841 goto done; 13842 } 13843 13844 /* 13845 * Allocate an ARP down message (to be saved) and an ARP up 13846 * message. 13847 */ 13848 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13849 if (arp_down_mp == NULL) 13850 goto failed; 13851 13852 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13853 if (arp_up_mp == NULL) 13854 goto failed; 13855 13856 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13857 goto done; 13858 13859 arp_setup_multicast: 13860 /* 13861 * Setup the multicast mappings. This function initializes 13862 * ill_arp_del_mapping_mp also. This does not need to be done for 13863 * IPv6. 13864 */ 13865 if (!ill->ill_isv6) { 13866 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13867 if (err != 0) 13868 goto failed; 13869 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13870 ASSERT(arp_add_mapping_mp != NULL); 13871 } 13872 13873 done: 13874 if (arp_del_mp != NULL) { 13875 ASSERT(ipif->ipif_arp_del_mp == NULL); 13876 ipif->ipif_arp_del_mp = arp_del_mp; 13877 } 13878 if (arp_down_mp != NULL) { 13879 ASSERT(ill->ill_arp_down_mp == NULL); 13880 ill->ill_arp_down_mp = arp_down_mp; 13881 } 13882 if (arp_del_mapping_mp != NULL) { 13883 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13884 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13885 } 13886 if (arp_up_mp != NULL) { 13887 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13888 ill->ill_name, ipif->ipif_id)); 13889 putnext(ill->ill_rq, arp_up_mp); 13890 } 13891 if (arp_add_mp != NULL) { 13892 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13893 ill->ill_name, ipif->ipif_id)); 13894 /* 13895 * If it's an extended ARP implementation, then we'll wait to 13896 * hear that DAD has finished before using the interface. 13897 */ 13898 if (!ill->ill_arp_extend) 13899 ipif->ipif_addr_ready = 1; 13900 putnext(ill->ill_rq, arp_add_mp); 13901 } else { 13902 ipif->ipif_addr_ready = 1; 13903 } 13904 if (arp_add_mapping_mp != NULL) { 13905 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13906 ill->ill_name, ipif->ipif_id)); 13907 putnext(ill->ill_rq, arp_add_mapping_mp); 13908 } 13909 if (res_act != Res_act_initial) 13910 return (0); 13911 13912 if (ill->ill_flags & ILLF_NOARP) 13913 err = ill_arp_off(ill); 13914 else 13915 err = ill_arp_on(ill); 13916 if (err != 0) { 13917 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13918 freemsg(ipif->ipif_arp_del_mp); 13919 freemsg(ill->ill_arp_down_mp); 13920 freemsg(ill->ill_arp_del_mapping_mp); 13921 ipif->ipif_arp_del_mp = NULL; 13922 ill->ill_arp_down_mp = NULL; 13923 ill->ill_arp_del_mapping_mp = NULL; 13924 return (err); 13925 } 13926 return ((ill->ill_ipif_up_count != 0 || was_dup || 13927 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13928 13929 failed: 13930 ip1dbg(("ipif_resolver_up: FAILED\n")); 13931 freemsg(arp_add_mp); 13932 freemsg(arp_del_mp); 13933 freemsg(arp_add_mapping_mp); 13934 freemsg(arp_up_mp); 13935 freemsg(arp_down_mp); 13936 ill->ill_arp_bringup_pending = 0; 13937 return (err); 13938 } 13939 13940 /* 13941 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13942 * just gone back up. 13943 */ 13944 static void 13945 ipif_arp_start_dad(ipif_t *ipif) 13946 { 13947 ill_t *ill = ipif->ipif_ill; 13948 mblk_t *arp_add_mp; 13949 area_t *area; 13950 13951 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13952 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13953 ipif->ipif_lcl_addr == INADDR_ANY || 13954 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13955 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13956 /* 13957 * If we can't contact ARP for some reason, that's not really a 13958 * problem. Just send out the routing socket notification that 13959 * DAD completion would have done, and continue. 13960 */ 13961 ipif_mask_reply(ipif); 13962 ip_rts_ifmsg(ipif); 13963 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13964 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13965 ipif->ipif_addr_ready = 1; 13966 return; 13967 } 13968 13969 /* Setting the 'unverified' flag restarts DAD */ 13970 area = (area_t *)arp_add_mp->b_rptr; 13971 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13972 ACE_F_UNVERIFIED; 13973 putnext(ill->ill_rq, arp_add_mp); 13974 } 13975 13976 static void 13977 ipif_ndp_start_dad(ipif_t *ipif) 13978 { 13979 nce_t *nce; 13980 13981 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13982 if (nce == NULL) 13983 return; 13984 13985 if (!ndp_restart_dad(nce)) { 13986 /* 13987 * If we can't restart DAD for some reason, that's not really a 13988 * problem. Just send out the routing socket notification that 13989 * DAD completion would have done, and continue. 13990 */ 13991 ip_rts_ifmsg(ipif); 13992 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13993 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13994 ipif->ipif_addr_ready = 1; 13995 } 13996 NCE_REFRELE(nce); 13997 } 13998 13999 /* 14000 * Restart duplicate address detection on all interfaces on the given ill. 14001 * 14002 * This is called when an interface transitions from down to up 14003 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14004 * 14005 * Note that since the underlying physical link has transitioned, we must cause 14006 * at least one routing socket message to be sent here, either via DAD 14007 * completion or just by default on the first ipif. (If we don't do this, then 14008 * in.mpathd will see long delays when doing link-based failure recovery.) 14009 */ 14010 void 14011 ill_restart_dad(ill_t *ill, boolean_t went_up) 14012 { 14013 ipif_t *ipif; 14014 14015 if (ill == NULL) 14016 return; 14017 14018 /* 14019 * If layer two doesn't support duplicate address detection, then just 14020 * send the routing socket message now and be done with it. 14021 */ 14022 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14023 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14024 ip_rts_ifmsg(ill->ill_ipif); 14025 return; 14026 } 14027 14028 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14029 if (went_up) { 14030 if (ipif->ipif_flags & IPIF_UP) { 14031 if (ill->ill_isv6) 14032 ipif_ndp_start_dad(ipif); 14033 else 14034 ipif_arp_start_dad(ipif); 14035 } else if (ill->ill_isv6 && 14036 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14037 /* 14038 * For IPv4, the ARP module itself will 14039 * automatically start the DAD process when it 14040 * sees DL_NOTE_LINK_UP. We respond to the 14041 * AR_CN_READY at the completion of that task. 14042 * For IPv6, we must kick off the bring-up 14043 * process now. 14044 */ 14045 ndp_do_recovery(ipif); 14046 } else { 14047 /* 14048 * Unfortunately, the first ipif is "special" 14049 * and represents the underlying ill in the 14050 * routing socket messages. Thus, when this 14051 * one ipif is down, we must still notify so 14052 * that the user knows the IFF_RUNNING status 14053 * change. (If the first ipif is up, then 14054 * we'll handle eventual routing socket 14055 * notification via DAD completion.) 14056 */ 14057 if (ipif == ill->ill_ipif) 14058 ip_rts_ifmsg(ill->ill_ipif); 14059 } 14060 } else { 14061 /* 14062 * After link down, we'll need to send a new routing 14063 * message when the link comes back, so clear 14064 * ipif_addr_ready. 14065 */ 14066 ipif->ipif_addr_ready = 0; 14067 } 14068 } 14069 14070 /* 14071 * If we've torn down links, then notify the user right away. 14072 */ 14073 if (!went_up) 14074 ip_rts_ifmsg(ill->ill_ipif); 14075 } 14076 14077 /* 14078 * Wakeup all threads waiting to enter the ipsq, and sleeping 14079 * on any of the ills in this ipsq. The ill_lock of the ill 14080 * must be held so that waiters don't miss wakeups 14081 */ 14082 static void 14083 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14084 { 14085 phyint_t *phyint; 14086 14087 phyint = ipsq->ipsq_phyint_list; 14088 while (phyint != NULL) { 14089 if (phyint->phyint_illv4) { 14090 if (!caller_holds_lock) 14091 mutex_enter(&phyint->phyint_illv4->ill_lock); 14092 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14093 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14094 if (!caller_holds_lock) 14095 mutex_exit(&phyint->phyint_illv4->ill_lock); 14096 } 14097 if (phyint->phyint_illv6) { 14098 if (!caller_holds_lock) 14099 mutex_enter(&phyint->phyint_illv6->ill_lock); 14100 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14101 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14102 if (!caller_holds_lock) 14103 mutex_exit(&phyint->phyint_illv6->ill_lock); 14104 } 14105 phyint = phyint->phyint_ipsq_next; 14106 } 14107 } 14108 14109 static ipsq_t * 14110 ipsq_create(char *groupname, ip_stack_t *ipst) 14111 { 14112 ipsq_t *ipsq; 14113 14114 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14115 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14116 if (ipsq == NULL) { 14117 return (NULL); 14118 } 14119 14120 if (groupname != NULL) 14121 (void) strcpy(ipsq->ipsq_name, groupname); 14122 else 14123 ipsq->ipsq_name[0] = '\0'; 14124 14125 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14126 ipsq->ipsq_flags |= IPSQ_GROUP; 14127 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14128 ipst->ips_ipsq_g_head = ipsq; 14129 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14130 return (ipsq); 14131 } 14132 14133 /* 14134 * Return an ipsq correspoding to the groupname. If 'create' is true 14135 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14136 * uniquely with an IPMP group. However during IPMP groupname operations, 14137 * multiple IPMP groups may be associated with a single ipsq. But no 14138 * IPMP group can be associated with more than 1 ipsq at any time. 14139 * For example 14140 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14141 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14142 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14143 * 14144 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14145 * status shown below during the execution of the above command. 14146 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14147 * 14148 * After the completion of the above groupname command we return to the stable 14149 * state shown below. 14150 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14151 * hme4 mpk17-85 ipsq2 mpk17-85 1 14152 * 14153 * Because of the above, we don't search based on the ipsq_name since that 14154 * would miss the correct ipsq during certain windows as shown above. 14155 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14156 * natural state. 14157 */ 14158 static ipsq_t * 14159 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14160 ip_stack_t *ipst) 14161 { 14162 ipsq_t *ipsq; 14163 int group_len; 14164 phyint_t *phyint; 14165 14166 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14167 14168 group_len = strlen(groupname); 14169 ASSERT(group_len != 0); 14170 group_len++; 14171 14172 for (ipsq = ipst->ips_ipsq_g_head; 14173 ipsq != NULL; 14174 ipsq = ipsq->ipsq_next) { 14175 /* 14176 * When an ipsq is being split, and ill_split_ipsq 14177 * calls this function, we exclude it from being considered. 14178 */ 14179 if (ipsq == exclude_ipsq) 14180 continue; 14181 14182 /* 14183 * Compare against the ipsq_name. The groupname change happens 14184 * in 2 phases. The 1st phase merges the from group into 14185 * the to group's ipsq, by calling ill_merge_groups and restarts 14186 * the ioctl. The 2nd phase then locates the ipsq again thru 14187 * ipsq_name. At this point the phyint_groupname has not been 14188 * updated. 14189 */ 14190 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14191 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14192 /* 14193 * Verify that an ipmp groupname is exactly 14194 * part of 1 ipsq and is not found in any other 14195 * ipsq. 14196 */ 14197 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14198 NULL); 14199 return (ipsq); 14200 } 14201 14202 /* 14203 * Comparison against ipsq_name alone is not sufficient. 14204 * In the case when groups are currently being 14205 * merged, the ipsq could hold other IPMP groups temporarily. 14206 * so we walk the phyint list and compare against the 14207 * phyint_groupname as well. 14208 */ 14209 phyint = ipsq->ipsq_phyint_list; 14210 while (phyint != NULL) { 14211 if ((group_len == phyint->phyint_groupname_len) && 14212 (bcmp(phyint->phyint_groupname, groupname, 14213 group_len) == 0)) { 14214 /* 14215 * Verify that an ipmp groupname is exactly 14216 * part of 1 ipsq and is not found in any other 14217 * ipsq. 14218 */ 14219 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14220 ipst) == NULL); 14221 return (ipsq); 14222 } 14223 phyint = phyint->phyint_ipsq_next; 14224 } 14225 } 14226 if (create) 14227 ipsq = ipsq_create(groupname, ipst); 14228 return (ipsq); 14229 } 14230 14231 static void 14232 ipsq_delete(ipsq_t *ipsq) 14233 { 14234 ipsq_t *nipsq; 14235 ipsq_t *pipsq = NULL; 14236 ip_stack_t *ipst = ipsq->ipsq_ipst; 14237 14238 /* 14239 * We don't hold the ipsq lock, but we are sure no new 14240 * messages can land up, since the ipsq_refs is zero. 14241 * i.e. this ipsq is unnamed and no phyint or phyint group 14242 * is associated with this ipsq. (Lookups are based on ill_name 14243 * or phyint_groupname) 14244 */ 14245 ASSERT(ipsq->ipsq_refs == 0); 14246 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14247 ASSERT(ipsq->ipsq_pending_mp == NULL); 14248 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14249 /* 14250 * This is not the ipsq of an IPMP group. 14251 */ 14252 ipsq->ipsq_ipst = NULL; 14253 kmem_free(ipsq, sizeof (ipsq_t)); 14254 return; 14255 } 14256 14257 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14258 14259 /* 14260 * Locate the ipsq before we can remove it from 14261 * the singly linked list of ipsq's. 14262 */ 14263 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14264 nipsq = nipsq->ipsq_next) { 14265 if (nipsq == ipsq) { 14266 break; 14267 } 14268 pipsq = nipsq; 14269 } 14270 14271 ASSERT(nipsq == ipsq); 14272 14273 /* unlink ipsq from the list */ 14274 if (pipsq != NULL) 14275 pipsq->ipsq_next = ipsq->ipsq_next; 14276 else 14277 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14278 ipsq->ipsq_ipst = NULL; 14279 kmem_free(ipsq, sizeof (ipsq_t)); 14280 rw_exit(&ipst->ips_ill_g_lock); 14281 } 14282 14283 static void 14284 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14285 queue_t *q) 14286 { 14287 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14288 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14289 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14290 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14291 ASSERT(current_mp != NULL); 14292 14293 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14294 NEW_OP, NULL); 14295 14296 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14297 new_ipsq->ipsq_xopq_mphead != NULL); 14298 14299 /* 14300 * move from old ipsq to the new ipsq. 14301 */ 14302 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14303 if (old_ipsq->ipsq_xopq_mphead != NULL) 14304 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14305 14306 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14307 } 14308 14309 void 14310 ill_group_cleanup(ill_t *ill) 14311 { 14312 ill_t *ill_v4; 14313 ill_t *ill_v6; 14314 ipif_t *ipif; 14315 14316 ill_v4 = ill->ill_phyint->phyint_illv4; 14317 ill_v6 = ill->ill_phyint->phyint_illv6; 14318 14319 if (ill_v4 != NULL) { 14320 mutex_enter(&ill_v4->ill_lock); 14321 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14322 ipif = ipif->ipif_next) { 14323 IPIF_UNMARK_MOVING(ipif); 14324 } 14325 ill_v4->ill_up_ipifs = B_FALSE; 14326 mutex_exit(&ill_v4->ill_lock); 14327 } 14328 14329 if (ill_v6 != NULL) { 14330 mutex_enter(&ill_v6->ill_lock); 14331 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14332 ipif = ipif->ipif_next) { 14333 IPIF_UNMARK_MOVING(ipif); 14334 } 14335 ill_v6->ill_up_ipifs = B_FALSE; 14336 mutex_exit(&ill_v6->ill_lock); 14337 } 14338 } 14339 /* 14340 * This function is called when an ill has had a change in its group status 14341 * to bring up all the ipifs that were up before the change. 14342 */ 14343 int 14344 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14345 { 14346 ipif_t *ipif; 14347 ill_t *ill_v4; 14348 ill_t *ill_v6; 14349 ill_t *from_ill; 14350 int err = 0; 14351 14352 14353 ASSERT(IAM_WRITER_ILL(ill)); 14354 14355 /* 14356 * Except for ipif_state_flags and ill_state_flags the other 14357 * fields of the ipif/ill that are modified below are protected 14358 * implicitly since we are a writer. We would have tried to down 14359 * even an ipif that was already down, in ill_down_ipifs. So we 14360 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14361 */ 14362 ill_v4 = ill->ill_phyint->phyint_illv4; 14363 ill_v6 = ill->ill_phyint->phyint_illv6; 14364 if (ill_v4 != NULL) { 14365 ill_v4->ill_up_ipifs = B_TRUE; 14366 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14367 ipif = ipif->ipif_next) { 14368 mutex_enter(&ill_v4->ill_lock); 14369 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14370 IPIF_UNMARK_MOVING(ipif); 14371 mutex_exit(&ill_v4->ill_lock); 14372 if (ipif->ipif_was_up) { 14373 if (!(ipif->ipif_flags & IPIF_UP)) 14374 err = ipif_up(ipif, q, mp); 14375 ipif->ipif_was_up = B_FALSE; 14376 if (err != 0) { 14377 /* 14378 * Can there be any other error ? 14379 */ 14380 ASSERT(err == EINPROGRESS); 14381 return (err); 14382 } 14383 } 14384 } 14385 mutex_enter(&ill_v4->ill_lock); 14386 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14387 mutex_exit(&ill_v4->ill_lock); 14388 ill_v4->ill_up_ipifs = B_FALSE; 14389 if (ill_v4->ill_move_in_progress) { 14390 ASSERT(ill_v4->ill_move_peer != NULL); 14391 ill_v4->ill_move_in_progress = B_FALSE; 14392 from_ill = ill_v4->ill_move_peer; 14393 from_ill->ill_move_in_progress = B_FALSE; 14394 from_ill->ill_move_peer = NULL; 14395 mutex_enter(&from_ill->ill_lock); 14396 from_ill->ill_state_flags &= ~ILL_CHANGING; 14397 mutex_exit(&from_ill->ill_lock); 14398 if (ill_v6 == NULL) { 14399 if (from_ill->ill_phyint->phyint_flags & 14400 PHYI_STANDBY) { 14401 phyint_inactive(from_ill->ill_phyint); 14402 } 14403 if (ill_v4->ill_phyint->phyint_flags & 14404 PHYI_STANDBY) { 14405 phyint_inactive(ill_v4->ill_phyint); 14406 } 14407 } 14408 ill_v4->ill_move_peer = NULL; 14409 } 14410 } 14411 14412 if (ill_v6 != NULL) { 14413 ill_v6->ill_up_ipifs = B_TRUE; 14414 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14415 ipif = ipif->ipif_next) { 14416 mutex_enter(&ill_v6->ill_lock); 14417 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14418 IPIF_UNMARK_MOVING(ipif); 14419 mutex_exit(&ill_v6->ill_lock); 14420 if (ipif->ipif_was_up) { 14421 if (!(ipif->ipif_flags & IPIF_UP)) 14422 err = ipif_up(ipif, q, mp); 14423 ipif->ipif_was_up = B_FALSE; 14424 if (err != 0) { 14425 /* 14426 * Can there be any other error ? 14427 */ 14428 ASSERT(err == EINPROGRESS); 14429 return (err); 14430 } 14431 } 14432 } 14433 mutex_enter(&ill_v6->ill_lock); 14434 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14435 mutex_exit(&ill_v6->ill_lock); 14436 ill_v6->ill_up_ipifs = B_FALSE; 14437 if (ill_v6->ill_move_in_progress) { 14438 ASSERT(ill_v6->ill_move_peer != NULL); 14439 ill_v6->ill_move_in_progress = B_FALSE; 14440 from_ill = ill_v6->ill_move_peer; 14441 from_ill->ill_move_in_progress = B_FALSE; 14442 from_ill->ill_move_peer = NULL; 14443 mutex_enter(&from_ill->ill_lock); 14444 from_ill->ill_state_flags &= ~ILL_CHANGING; 14445 mutex_exit(&from_ill->ill_lock); 14446 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14447 phyint_inactive(from_ill->ill_phyint); 14448 } 14449 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14450 phyint_inactive(ill_v6->ill_phyint); 14451 } 14452 ill_v6->ill_move_peer = NULL; 14453 } 14454 } 14455 return (0); 14456 } 14457 14458 /* 14459 * bring down all the approriate ipifs. 14460 */ 14461 /* ARGSUSED */ 14462 static void 14463 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14464 { 14465 ipif_t *ipif; 14466 14467 ASSERT(IAM_WRITER_ILL(ill)); 14468 14469 /* 14470 * Except for ipif_state_flags the other fields of the ipif/ill that 14471 * are modified below are protected implicitly since we are a writer 14472 */ 14473 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14474 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14475 continue; 14476 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14477 /* 14478 * We go through the ipif_down logic even if the ipif 14479 * is already down, since routes can be added based 14480 * on down ipifs. Going through ipif_down once again 14481 * will delete any IREs created based on these routes. 14482 */ 14483 if (ipif->ipif_flags & IPIF_UP) 14484 ipif->ipif_was_up = B_TRUE; 14485 /* 14486 * If called with chk_nofailover true ipif is moving. 14487 */ 14488 mutex_enter(&ill->ill_lock); 14489 if (chk_nofailover) { 14490 ipif->ipif_state_flags |= 14491 IPIF_MOVING | IPIF_CHANGING; 14492 } else { 14493 ipif->ipif_state_flags |= IPIF_CHANGING; 14494 } 14495 mutex_exit(&ill->ill_lock); 14496 /* 14497 * Need to re-create net/subnet bcast ires if 14498 * they are dependent on ipif. 14499 */ 14500 if (!ipif->ipif_isv6) 14501 ipif_check_bcast_ires(ipif); 14502 (void) ipif_logical_down(ipif, NULL, NULL); 14503 ipif_non_duplicate(ipif); 14504 ipif_down_tail(ipif); 14505 } 14506 } 14507 } 14508 14509 #define IPSQ_INC_REF(ipsq, ipst) { \ 14510 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14511 (ipsq)->ipsq_refs++; \ 14512 } 14513 14514 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14515 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14516 (ipsq)->ipsq_refs--; \ 14517 if ((ipsq)->ipsq_refs == 0) \ 14518 (ipsq)->ipsq_name[0] = '\0'; \ 14519 } 14520 14521 /* 14522 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14523 * new_ipsq. 14524 */ 14525 static void 14526 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14527 { 14528 phyint_t *phyint; 14529 phyint_t *next_phyint; 14530 14531 /* 14532 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14533 * writer and the ill_lock of the ill in question. Also the dest 14534 * ipsq can't vanish while we hold the ill_g_lock as writer. 14535 */ 14536 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14537 14538 phyint = cur_ipsq->ipsq_phyint_list; 14539 cur_ipsq->ipsq_phyint_list = NULL; 14540 while (phyint != NULL) { 14541 next_phyint = phyint->phyint_ipsq_next; 14542 IPSQ_DEC_REF(cur_ipsq, ipst); 14543 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14544 new_ipsq->ipsq_phyint_list = phyint; 14545 IPSQ_INC_REF(new_ipsq, ipst); 14546 phyint->phyint_ipsq = new_ipsq; 14547 phyint = next_phyint; 14548 } 14549 } 14550 14551 #define SPLIT_SUCCESS 0 14552 #define SPLIT_NOT_NEEDED 1 14553 #define SPLIT_FAILED 2 14554 14555 int 14556 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14557 ip_stack_t *ipst) 14558 { 14559 ipsq_t *newipsq = NULL; 14560 14561 /* 14562 * Assertions denote pre-requisites for changing the ipsq of 14563 * a phyint 14564 */ 14565 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14566 /* 14567 * <ill-phyint> assocs can't change while ill_g_lock 14568 * is held as writer. See ill_phyint_reinit() 14569 */ 14570 ASSERT(phyint->phyint_illv4 == NULL || 14571 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14572 ASSERT(phyint->phyint_illv6 == NULL || 14573 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14574 14575 if ((phyint->phyint_groupname_len != 14576 (strlen(cur_ipsq->ipsq_name) + 1) || 14577 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14578 phyint->phyint_groupname_len) != 0)) { 14579 /* 14580 * Once we fail in creating a new ipsq due to memory shortage, 14581 * don't attempt to create new ipsq again, based on another 14582 * phyint, since we want all phyints belonging to an IPMP group 14583 * to be in the same ipsq even in the event of mem alloc fails. 14584 */ 14585 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14586 cur_ipsq, ipst); 14587 if (newipsq == NULL) { 14588 /* Memory allocation failure */ 14589 return (SPLIT_FAILED); 14590 } else { 14591 /* ipsq_refs protected by ill_g_lock (writer) */ 14592 IPSQ_DEC_REF(cur_ipsq, ipst); 14593 phyint->phyint_ipsq = newipsq; 14594 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14595 newipsq->ipsq_phyint_list = phyint; 14596 IPSQ_INC_REF(newipsq, ipst); 14597 return (SPLIT_SUCCESS); 14598 } 14599 } 14600 return (SPLIT_NOT_NEEDED); 14601 } 14602 14603 /* 14604 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14605 * to do this split 14606 */ 14607 static int 14608 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14609 { 14610 ipsq_t *newipsq; 14611 14612 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14613 /* 14614 * <ill-phyint> assocs can't change while ill_g_lock 14615 * is held as writer. See ill_phyint_reinit() 14616 */ 14617 14618 ASSERT(phyint->phyint_illv4 == NULL || 14619 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14620 ASSERT(phyint->phyint_illv6 == NULL || 14621 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14622 14623 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14624 phyint->phyint_illv4: phyint->phyint_illv6)) { 14625 /* 14626 * ipsq_init failed due to no memory 14627 * caller will use the same ipsq 14628 */ 14629 return (SPLIT_FAILED); 14630 } 14631 14632 /* ipsq_ref is protected by ill_g_lock (writer) */ 14633 IPSQ_DEC_REF(cur_ipsq, ipst); 14634 14635 /* 14636 * This is a new ipsq that is unknown to the world. 14637 * So we don't need to hold ipsq_lock, 14638 */ 14639 newipsq = phyint->phyint_ipsq; 14640 newipsq->ipsq_writer = NULL; 14641 newipsq->ipsq_reentry_cnt--; 14642 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14643 #ifdef DEBUG 14644 newipsq->ipsq_depth = 0; 14645 #endif 14646 14647 return (SPLIT_SUCCESS); 14648 } 14649 14650 /* 14651 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14652 * ipsq's representing their individual groups or themselves. Return 14653 * whether split needs to be retried again later. 14654 */ 14655 static boolean_t 14656 ill_split_ipsq(ipsq_t *cur_ipsq) 14657 { 14658 phyint_t *phyint; 14659 phyint_t *next_phyint; 14660 int error; 14661 boolean_t need_retry = B_FALSE; 14662 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14663 14664 phyint = cur_ipsq->ipsq_phyint_list; 14665 cur_ipsq->ipsq_phyint_list = NULL; 14666 while (phyint != NULL) { 14667 next_phyint = phyint->phyint_ipsq_next; 14668 /* 14669 * 'created' will tell us whether the callee actually 14670 * created an ipsq. Lack of memory may force the callee 14671 * to return without creating an ipsq. 14672 */ 14673 if (phyint->phyint_groupname == NULL) { 14674 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14675 } else { 14676 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14677 need_retry, ipst); 14678 } 14679 14680 switch (error) { 14681 case SPLIT_FAILED: 14682 need_retry = B_TRUE; 14683 /* FALLTHRU */ 14684 case SPLIT_NOT_NEEDED: 14685 /* 14686 * Keep it on the list. 14687 */ 14688 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14689 cur_ipsq->ipsq_phyint_list = phyint; 14690 break; 14691 case SPLIT_SUCCESS: 14692 break; 14693 default: 14694 ASSERT(0); 14695 } 14696 14697 phyint = next_phyint; 14698 } 14699 return (need_retry); 14700 } 14701 14702 /* 14703 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14704 * and return the ills in the list. This list will be 14705 * needed to unlock all the ills later on by the caller. 14706 * The <ill-ipsq> associations could change between the 14707 * lock and unlock. Hence the unlock can't traverse the 14708 * ipsq to get the list of ills. 14709 */ 14710 static int 14711 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14712 { 14713 int cnt = 0; 14714 phyint_t *phyint; 14715 ip_stack_t *ipst = ipsq->ipsq_ipst; 14716 14717 /* 14718 * The caller holds ill_g_lock to ensure that the ill memberships 14719 * of the ipsq don't change 14720 */ 14721 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14722 14723 phyint = ipsq->ipsq_phyint_list; 14724 while (phyint != NULL) { 14725 if (phyint->phyint_illv4 != NULL) { 14726 ASSERT(cnt < list_max); 14727 list[cnt++] = phyint->phyint_illv4; 14728 } 14729 if (phyint->phyint_illv6 != NULL) { 14730 ASSERT(cnt < list_max); 14731 list[cnt++] = phyint->phyint_illv6; 14732 } 14733 phyint = phyint->phyint_ipsq_next; 14734 } 14735 ill_lock_ills(list, cnt); 14736 return (cnt); 14737 } 14738 14739 void 14740 ill_lock_ills(ill_t **list, int cnt) 14741 { 14742 int i; 14743 14744 if (cnt > 1) { 14745 boolean_t try_again; 14746 do { 14747 try_again = B_FALSE; 14748 for (i = 0; i < cnt - 1; i++) { 14749 if (list[i] < list[i + 1]) { 14750 ill_t *tmp; 14751 14752 /* swap the elements */ 14753 tmp = list[i]; 14754 list[i] = list[i + 1]; 14755 list[i + 1] = tmp; 14756 try_again = B_TRUE; 14757 } 14758 } 14759 } while (try_again); 14760 } 14761 14762 for (i = 0; i < cnt; i++) { 14763 if (i == 0) { 14764 if (list[i] != NULL) 14765 mutex_enter(&list[i]->ill_lock); 14766 else 14767 return; 14768 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14769 mutex_enter(&list[i]->ill_lock); 14770 } 14771 } 14772 } 14773 14774 void 14775 ill_unlock_ills(ill_t **list, int cnt) 14776 { 14777 int i; 14778 14779 for (i = 0; i < cnt; i++) { 14780 if ((i == 0) && (list[i] != NULL)) { 14781 mutex_exit(&list[i]->ill_lock); 14782 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14783 mutex_exit(&list[i]->ill_lock); 14784 } 14785 } 14786 } 14787 14788 /* 14789 * Merge all the ills from 1 ipsq group into another ipsq group. 14790 * The source ipsq group is specified by the ipsq associated with 14791 * 'from_ill'. The destination ipsq group is specified by the ipsq 14792 * associated with 'to_ill' or 'groupname' respectively. 14793 * Note that ipsq itself does not have a reference count mechanism 14794 * and functions don't look up an ipsq and pass it around. Instead 14795 * functions pass around an ill or groupname, and the ipsq is looked 14796 * up from the ill or groupname and the required operation performed 14797 * atomically with the lookup on the ipsq. 14798 */ 14799 static int 14800 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14801 queue_t *q) 14802 { 14803 ipsq_t *old_ipsq; 14804 ipsq_t *new_ipsq; 14805 ill_t **ill_list; 14806 int cnt; 14807 size_t ill_list_size; 14808 boolean_t became_writer_on_new_sq = B_FALSE; 14809 ip_stack_t *ipst = from_ill->ill_ipst; 14810 14811 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14812 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14813 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14814 14815 /* 14816 * Need to hold ill_g_lock as writer and also the ill_lock to 14817 * change the <ill-ipsq> assoc of an ill. Need to hold the 14818 * ipsq_lock to prevent new messages from landing on an ipsq. 14819 */ 14820 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14821 14822 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14823 if (groupname != NULL) 14824 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14825 else { 14826 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14827 } 14828 14829 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14830 14831 /* 14832 * both groups are on the same ipsq. 14833 */ 14834 if (old_ipsq == new_ipsq) { 14835 rw_exit(&ipst->ips_ill_g_lock); 14836 return (0); 14837 } 14838 14839 cnt = old_ipsq->ipsq_refs << 1; 14840 ill_list_size = cnt * sizeof (ill_t *); 14841 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14842 if (ill_list == NULL) { 14843 rw_exit(&ipst->ips_ill_g_lock); 14844 return (ENOMEM); 14845 } 14846 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14847 14848 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14849 mutex_enter(&new_ipsq->ipsq_lock); 14850 if ((new_ipsq->ipsq_writer == NULL && 14851 new_ipsq->ipsq_current_ipif == NULL) || 14852 (new_ipsq->ipsq_writer == curthread)) { 14853 new_ipsq->ipsq_writer = curthread; 14854 new_ipsq->ipsq_reentry_cnt++; 14855 became_writer_on_new_sq = B_TRUE; 14856 } 14857 14858 /* 14859 * We are holding ill_g_lock as writer and all the ill locks of 14860 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14861 * message can land up on the old ipsq even though we don't hold the 14862 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14863 */ 14864 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14865 14866 /* 14867 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14868 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14869 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14870 */ 14871 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14872 14873 /* 14874 * Mark the new ipsq as needing a split since it is currently 14875 * being shared by more than 1 IPMP group. The split will 14876 * occur at the end of ipsq_exit 14877 */ 14878 new_ipsq->ipsq_split = B_TRUE; 14879 14880 /* Now release all the locks */ 14881 mutex_exit(&new_ipsq->ipsq_lock); 14882 ill_unlock_ills(ill_list, cnt); 14883 rw_exit(&ipst->ips_ill_g_lock); 14884 14885 kmem_free(ill_list, ill_list_size); 14886 14887 /* 14888 * If we succeeded in becoming writer on the new ipsq, then 14889 * drain the new ipsq and start processing all enqueued messages 14890 * including the current ioctl we are processing which is either 14891 * a set groupname or failover/failback. 14892 */ 14893 if (became_writer_on_new_sq) 14894 ipsq_exit(new_ipsq); 14895 14896 /* 14897 * syncq has been changed and all the messages have been moved. 14898 */ 14899 mutex_enter(&old_ipsq->ipsq_lock); 14900 old_ipsq->ipsq_current_ipif = NULL; 14901 old_ipsq->ipsq_current_ioctl = 0; 14902 old_ipsq->ipsq_current_done = B_TRUE; 14903 mutex_exit(&old_ipsq->ipsq_lock); 14904 return (EINPROGRESS); 14905 } 14906 14907 /* 14908 * Delete and add the loopback copy and non-loopback copy of 14909 * the BROADCAST ire corresponding to ill and addr. Used to 14910 * group broadcast ires together when ill becomes part of 14911 * a group. 14912 * 14913 * This function is also called when ill is leaving the group 14914 * so that the ires belonging to the group gets re-grouped. 14915 */ 14916 static void 14917 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14918 { 14919 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14920 ire_t **ire_ptpn = &ire_head; 14921 ip_stack_t *ipst = ill->ill_ipst; 14922 14923 /* 14924 * The loopback and non-loopback IREs are inserted in the order in which 14925 * they're found, on the basis that they are correctly ordered (loopback 14926 * first). 14927 */ 14928 for (;;) { 14929 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14930 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14931 if (ire == NULL) 14932 break; 14933 14934 /* 14935 * we are passing in KM_SLEEP because it is not easy to 14936 * go back to a sane state in case of memory failure. 14937 */ 14938 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14939 ASSERT(nire != NULL); 14940 bzero(nire, sizeof (ire_t)); 14941 /* 14942 * Don't use ire_max_frag directly since we don't 14943 * hold on to 'ire' until we add the new ire 'nire' and 14944 * we don't want the new ire to have a dangling reference 14945 * to 'ire'. The ire_max_frag of a broadcast ire must 14946 * be in sync with the ipif_mtu of the associate ipif. 14947 * For eg. this happens as a result of SIOCSLIFNAME, 14948 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14949 * the driver. A change in ire_max_frag triggered as 14950 * as a result of path mtu discovery, or due to an 14951 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14952 * route change -mtu command does not apply to broadcast ires. 14953 * 14954 * XXX We need a recovery strategy here if ire_init fails 14955 */ 14956 if (ire_init(nire, 14957 (uchar_t *)&ire->ire_addr, 14958 (uchar_t *)&ire->ire_mask, 14959 (uchar_t *)&ire->ire_src_addr, 14960 (uchar_t *)&ire->ire_gateway_addr, 14961 ire->ire_stq == NULL ? &ip_loopback_mtu : 14962 &ire->ire_ipif->ipif_mtu, 14963 ire->ire_nce, 14964 ire->ire_rfq, 14965 ire->ire_stq, 14966 ire->ire_type, 14967 ire->ire_ipif, 14968 ire->ire_cmask, 14969 ire->ire_phandle, 14970 ire->ire_ihandle, 14971 ire->ire_flags, 14972 &ire->ire_uinfo, 14973 NULL, 14974 NULL, 14975 ipst) == NULL) { 14976 cmn_err(CE_PANIC, "ire_init() failed"); 14977 } 14978 ire_delete(ire); 14979 ire_refrele(ire); 14980 14981 /* 14982 * The newly created IREs are inserted at the tail of the list 14983 * starting with ire_head. As we've just allocated them no one 14984 * knows about them so it's safe. 14985 */ 14986 *ire_ptpn = nire; 14987 ire_ptpn = &nire->ire_next; 14988 } 14989 14990 for (nire = ire_head; nire != NULL; nire = nire_next) { 14991 int error; 14992 ire_t *oire; 14993 /* unlink the IRE from our list before calling ire_add() */ 14994 nire_next = nire->ire_next; 14995 nire->ire_next = NULL; 14996 14997 /* ire_add adds the ire at the right place in the list */ 14998 oire = nire; 14999 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15000 ASSERT(error == 0); 15001 ASSERT(oire == nire); 15002 ire_refrele(nire); /* Held in ire_add */ 15003 } 15004 } 15005 15006 /* 15007 * This function is usually called when an ill is inserted in 15008 * a group and all the ipifs are already UP. As all the ipifs 15009 * are already UP, the broadcast ires have already been created 15010 * and been inserted. But, ire_add_v4 would not have grouped properly. 15011 * We need to re-group for the benefit of ip_wput_ire which 15012 * expects BROADCAST ires to be grouped properly to avoid sending 15013 * more than one copy of the broadcast packet per group. 15014 * 15015 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15016 * because when ipif_up_done ends up calling this, ires have 15017 * already been added before illgrp_insert i.e before ill_group 15018 * has been initialized. 15019 */ 15020 static void 15021 ill_group_bcast_for_xmit(ill_t *ill) 15022 { 15023 ill_group_t *illgrp; 15024 ipif_t *ipif; 15025 ipaddr_t addr; 15026 ipaddr_t net_mask; 15027 ipaddr_t subnet_netmask; 15028 15029 illgrp = ill->ill_group; 15030 15031 /* 15032 * This function is called even when an ill is deleted from 15033 * the group. Hence, illgrp could be null. 15034 */ 15035 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15036 return; 15037 15038 /* 15039 * Delete all the BROADCAST ires matching this ill and add 15040 * them back. This time, ire_add_v4 should take care of 15041 * grouping them with others because ill is part of the 15042 * group. 15043 */ 15044 ill_bcast_delete_and_add(ill, 0); 15045 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15046 15047 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15048 15049 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15050 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15051 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15052 } else { 15053 net_mask = htonl(IN_CLASSA_NET); 15054 } 15055 addr = net_mask & ipif->ipif_subnet; 15056 ill_bcast_delete_and_add(ill, addr); 15057 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15058 15059 subnet_netmask = ipif->ipif_net_mask; 15060 addr = ipif->ipif_subnet; 15061 ill_bcast_delete_and_add(ill, addr); 15062 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15063 } 15064 } 15065 15066 /* 15067 * This function is called from illgrp_delete when ill is being deleted 15068 * from the group. 15069 * 15070 * As ill is not there in the group anymore, any address belonging 15071 * to this ill should be cleared of IRE_MARK_NORECV. 15072 */ 15073 static void 15074 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15075 { 15076 ire_t *ire; 15077 irb_t *irb; 15078 ip_stack_t *ipst = ill->ill_ipst; 15079 15080 ASSERT(ill->ill_group == NULL); 15081 15082 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15083 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15084 15085 if (ire != NULL) { 15086 /* 15087 * IPMP and plumbing operations are serialized on the ipsq, so 15088 * no one will insert or delete a broadcast ire under our feet. 15089 */ 15090 irb = ire->ire_bucket; 15091 rw_enter(&irb->irb_lock, RW_READER); 15092 ire_refrele(ire); 15093 15094 for (; ire != NULL; ire = ire->ire_next) { 15095 if (ire->ire_addr != addr) 15096 break; 15097 if (ire_to_ill(ire) != ill) 15098 continue; 15099 15100 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15101 ire->ire_marks &= ~IRE_MARK_NORECV; 15102 } 15103 rw_exit(&irb->irb_lock); 15104 } 15105 } 15106 15107 /* 15108 * This function must be called only after the broadcast ires 15109 * have been grouped together. For a given address addr, nominate 15110 * only one of the ires whose interface is not FAILED or OFFLINE. 15111 * 15112 * This is also called when an ipif goes down, so that we can nominate 15113 * a different ire with the same address for receiving. 15114 */ 15115 static void 15116 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15117 { 15118 irb_t *irb; 15119 ire_t *ire; 15120 ire_t *ire1; 15121 ire_t *save_ire; 15122 ire_t **irep = NULL; 15123 boolean_t first = B_TRUE; 15124 ire_t *clear_ire = NULL; 15125 ire_t *start_ire = NULL; 15126 ire_t *new_lb_ire; 15127 ire_t *new_nlb_ire; 15128 boolean_t new_lb_ire_used = B_FALSE; 15129 boolean_t new_nlb_ire_used = B_FALSE; 15130 uint64_t match_flags; 15131 uint64_t phyi_flags; 15132 boolean_t fallback = B_FALSE; 15133 uint_t max_frag; 15134 15135 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15136 NULL, MATCH_IRE_TYPE, ipst); 15137 /* 15138 * We may not be able to find some ires if a previous 15139 * ire_create failed. This happens when an ipif goes 15140 * down and we are unable to create BROADCAST ires due 15141 * to memory failure. Thus, we have to check for NULL 15142 * below. This should handle the case for LOOPBACK, 15143 * POINTOPOINT and interfaces with some POINTOPOINT 15144 * logicals for which there are no BROADCAST ires. 15145 */ 15146 if (ire == NULL) 15147 return; 15148 /* 15149 * Currently IRE_BROADCASTS are deleted when an ipif 15150 * goes down which runs exclusively. Thus, setting 15151 * IRE_MARK_RCVD should not race with ire_delete marking 15152 * IRE_MARK_CONDEMNED. We grab the lock below just to 15153 * be consistent with other parts of the code that walks 15154 * a given bucket. 15155 */ 15156 save_ire = ire; 15157 irb = ire->ire_bucket; 15158 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15159 if (new_lb_ire == NULL) { 15160 ire_refrele(ire); 15161 return; 15162 } 15163 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15164 if (new_nlb_ire == NULL) { 15165 ire_refrele(ire); 15166 kmem_cache_free(ire_cache, new_lb_ire); 15167 return; 15168 } 15169 IRB_REFHOLD(irb); 15170 rw_enter(&irb->irb_lock, RW_WRITER); 15171 /* 15172 * Get to the first ire matching the address and the 15173 * group. If the address does not match we are done 15174 * as we could not find the IRE. If the address matches 15175 * we should get to the first one matching the group. 15176 */ 15177 while (ire != NULL) { 15178 if (ire->ire_addr != addr || 15179 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15180 break; 15181 } 15182 ire = ire->ire_next; 15183 } 15184 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15185 start_ire = ire; 15186 redo: 15187 while (ire != NULL && ire->ire_addr == addr && 15188 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15189 /* 15190 * The first ire for any address within a group 15191 * should always be the one with IRE_MARK_NORECV cleared 15192 * so that ip_wput_ire can avoid searching for one. 15193 * Note down the insertion point which will be used 15194 * later. 15195 */ 15196 if (first && (irep == NULL)) 15197 irep = ire->ire_ptpn; 15198 /* 15199 * PHYI_FAILED is set when the interface fails. 15200 * This interface might have become good, but the 15201 * daemon has not yet detected. We should still 15202 * not receive on this. PHYI_OFFLINE should never 15203 * be picked as this has been offlined and soon 15204 * be removed. 15205 */ 15206 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15207 if (phyi_flags & PHYI_OFFLINE) { 15208 ire->ire_marks |= IRE_MARK_NORECV; 15209 ire = ire->ire_next; 15210 continue; 15211 } 15212 if (phyi_flags & match_flags) { 15213 ire->ire_marks |= IRE_MARK_NORECV; 15214 ire = ire->ire_next; 15215 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15216 PHYI_INACTIVE) { 15217 fallback = B_TRUE; 15218 } 15219 continue; 15220 } 15221 if (first) { 15222 /* 15223 * We will move this to the front of the list later 15224 * on. 15225 */ 15226 clear_ire = ire; 15227 ire->ire_marks &= ~IRE_MARK_NORECV; 15228 } else { 15229 ire->ire_marks |= IRE_MARK_NORECV; 15230 } 15231 first = B_FALSE; 15232 ire = ire->ire_next; 15233 } 15234 /* 15235 * If we never nominated anybody, try nominating at least 15236 * an INACTIVE, if we found one. Do it only once though. 15237 */ 15238 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15239 fallback) { 15240 match_flags = PHYI_FAILED; 15241 ire = start_ire; 15242 irep = NULL; 15243 goto redo; 15244 } 15245 ire_refrele(save_ire); 15246 15247 /* 15248 * irep non-NULL indicates that we entered the while loop 15249 * above. If clear_ire is at the insertion point, we don't 15250 * have to do anything. clear_ire will be NULL if all the 15251 * interfaces are failed. 15252 * 15253 * We cannot unlink and reinsert the ire at the right place 15254 * in the list since there can be other walkers of this bucket. 15255 * Instead we delete and recreate the ire 15256 */ 15257 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15258 ire_t *clear_ire_stq = NULL; 15259 15260 bzero(new_lb_ire, sizeof (ire_t)); 15261 /* XXX We need a recovery strategy here. */ 15262 if (ire_init(new_lb_ire, 15263 (uchar_t *)&clear_ire->ire_addr, 15264 (uchar_t *)&clear_ire->ire_mask, 15265 (uchar_t *)&clear_ire->ire_src_addr, 15266 (uchar_t *)&clear_ire->ire_gateway_addr, 15267 &clear_ire->ire_max_frag, 15268 NULL, /* let ire_nce_init derive the resolver info */ 15269 clear_ire->ire_rfq, 15270 clear_ire->ire_stq, 15271 clear_ire->ire_type, 15272 clear_ire->ire_ipif, 15273 clear_ire->ire_cmask, 15274 clear_ire->ire_phandle, 15275 clear_ire->ire_ihandle, 15276 clear_ire->ire_flags, 15277 &clear_ire->ire_uinfo, 15278 NULL, 15279 NULL, 15280 ipst) == NULL) 15281 cmn_err(CE_PANIC, "ire_init() failed"); 15282 if (clear_ire->ire_stq == NULL) { 15283 ire_t *ire_next = clear_ire->ire_next; 15284 if (ire_next != NULL && 15285 ire_next->ire_stq != NULL && 15286 ire_next->ire_addr == clear_ire->ire_addr && 15287 ire_next->ire_ipif->ipif_ill == 15288 clear_ire->ire_ipif->ipif_ill) { 15289 clear_ire_stq = ire_next; 15290 15291 bzero(new_nlb_ire, sizeof (ire_t)); 15292 /* XXX We need a recovery strategy here. */ 15293 if (ire_init(new_nlb_ire, 15294 (uchar_t *)&clear_ire_stq->ire_addr, 15295 (uchar_t *)&clear_ire_stq->ire_mask, 15296 (uchar_t *)&clear_ire_stq->ire_src_addr, 15297 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15298 &clear_ire_stq->ire_max_frag, 15299 NULL, 15300 clear_ire_stq->ire_rfq, 15301 clear_ire_stq->ire_stq, 15302 clear_ire_stq->ire_type, 15303 clear_ire_stq->ire_ipif, 15304 clear_ire_stq->ire_cmask, 15305 clear_ire_stq->ire_phandle, 15306 clear_ire_stq->ire_ihandle, 15307 clear_ire_stq->ire_flags, 15308 &clear_ire_stq->ire_uinfo, 15309 NULL, 15310 NULL, 15311 ipst) == NULL) 15312 cmn_err(CE_PANIC, "ire_init() failed"); 15313 } 15314 } 15315 15316 /* 15317 * Delete the ire. We can't call ire_delete() since 15318 * we are holding the bucket lock. We can't release the 15319 * bucket lock since we can't allow irep to change. So just 15320 * mark it CONDEMNED. The IRB_REFRELE will delete the 15321 * ire from the list and do the refrele. 15322 */ 15323 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15324 irb->irb_marks |= IRB_MARK_CONDEMNED; 15325 15326 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15327 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15328 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15329 } 15330 15331 /* 15332 * Also take care of otherfields like ib/ob pkt count 15333 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15334 */ 15335 15336 /* Set the max_frag before adding the ire */ 15337 max_frag = *new_lb_ire->ire_max_fragp; 15338 new_lb_ire->ire_max_fragp = NULL; 15339 new_lb_ire->ire_max_frag = max_frag; 15340 15341 /* Add the new ire's. Insert at *irep */ 15342 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15343 ire1 = *irep; 15344 if (ire1 != NULL) 15345 ire1->ire_ptpn = &new_lb_ire->ire_next; 15346 new_lb_ire->ire_next = ire1; 15347 /* Link the new one in. */ 15348 new_lb_ire->ire_ptpn = irep; 15349 membar_producer(); 15350 *irep = new_lb_ire; 15351 new_lb_ire_used = B_TRUE; 15352 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15353 new_lb_ire->ire_bucket->irb_ire_cnt++; 15354 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), new_lb_ire->ire_ipif, 15355 (char *), "ire", (void *), new_lb_ire); 15356 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15357 15358 if (clear_ire_stq != NULL) { 15359 /* Set the max_frag before adding the ire */ 15360 max_frag = *new_nlb_ire->ire_max_fragp; 15361 new_nlb_ire->ire_max_fragp = NULL; 15362 new_nlb_ire->ire_max_frag = max_frag; 15363 15364 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15365 irep = &new_lb_ire->ire_next; 15366 /* Add the new ire. Insert at *irep */ 15367 ire1 = *irep; 15368 if (ire1 != NULL) 15369 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15370 new_nlb_ire->ire_next = ire1; 15371 /* Link the new one in. */ 15372 new_nlb_ire->ire_ptpn = irep; 15373 membar_producer(); 15374 *irep = new_nlb_ire; 15375 new_nlb_ire_used = B_TRUE; 15376 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15377 ire_stats_inserted); 15378 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15379 DTRACE_PROBE3(ipif__incr__cnt, 15380 (ipif_t *), new_nlb_ire->ire_ipif, 15381 (char *), "ire", (void *), new_nlb_ire); 15382 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15383 DTRACE_PROBE3(ill__incr__cnt, 15384 (ill_t *), new_nlb_ire->ire_stq->q_ptr, 15385 (char *), "ire", (void *), new_nlb_ire); 15386 ((ill_t *)(new_nlb_ire->ire_stq->q_ptr))->ill_ire_cnt++; 15387 } 15388 } 15389 rw_exit(&irb->irb_lock); 15390 if (!new_lb_ire_used) 15391 kmem_cache_free(ire_cache, new_lb_ire); 15392 if (!new_nlb_ire_used) 15393 kmem_cache_free(ire_cache, new_nlb_ire); 15394 IRB_REFRELE(irb); 15395 } 15396 15397 /* 15398 * Whenever an ipif goes down we have to renominate a different 15399 * broadcast ire to receive. Whenever an ipif comes up, we need 15400 * to make sure that we have only one nominated to receive. 15401 */ 15402 static void 15403 ipif_renominate_bcast(ipif_t *ipif) 15404 { 15405 ill_t *ill = ipif->ipif_ill; 15406 ipaddr_t subnet_addr; 15407 ipaddr_t net_addr; 15408 ipaddr_t net_mask = 0; 15409 ipaddr_t subnet_netmask; 15410 ipaddr_t addr; 15411 ill_group_t *illgrp; 15412 ip_stack_t *ipst = ill->ill_ipst; 15413 15414 illgrp = ill->ill_group; 15415 /* 15416 * If this is the last ipif going down, it might take 15417 * the ill out of the group. In that case ipif_down -> 15418 * illgrp_delete takes care of doing the nomination. 15419 * ipif_down does not call for this case. 15420 */ 15421 ASSERT(illgrp != NULL); 15422 15423 /* There could not have been any ires associated with this */ 15424 if (ipif->ipif_subnet == 0) 15425 return; 15426 15427 ill_mark_bcast(illgrp, 0, ipst); 15428 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15429 15430 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15431 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15432 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15433 } else { 15434 net_mask = htonl(IN_CLASSA_NET); 15435 } 15436 addr = net_mask & ipif->ipif_subnet; 15437 ill_mark_bcast(illgrp, addr, ipst); 15438 15439 net_addr = ~net_mask | addr; 15440 ill_mark_bcast(illgrp, net_addr, ipst); 15441 15442 subnet_netmask = ipif->ipif_net_mask; 15443 addr = ipif->ipif_subnet; 15444 ill_mark_bcast(illgrp, addr, ipst); 15445 15446 subnet_addr = ~subnet_netmask | addr; 15447 ill_mark_bcast(illgrp, subnet_addr, ipst); 15448 } 15449 15450 /* 15451 * Whenever we form or delete ill groups, we need to nominate one set of 15452 * BROADCAST ires for receiving in the group. 15453 * 15454 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15455 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15456 * for ill_ipif_up_count to be non-zero. This is the only case where 15457 * ill_ipif_up_count is zero and we would still find the ires. 15458 * 15459 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15460 * ipif is UP and we just have to do the nomination. 15461 * 15462 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15463 * from the group. So, we have to do the nomination. 15464 * 15465 * Because of (3), there could be just one ill in the group. But we have 15466 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15467 * Thus, this function does not optimize when there is only one ill as 15468 * it is not correct for (3). 15469 */ 15470 static void 15471 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15472 { 15473 ill_t *ill; 15474 ipif_t *ipif; 15475 ipaddr_t subnet_addr; 15476 ipaddr_t prev_subnet_addr = 0; 15477 ipaddr_t net_addr; 15478 ipaddr_t prev_net_addr = 0; 15479 ipaddr_t net_mask = 0; 15480 ipaddr_t subnet_netmask; 15481 ipaddr_t addr; 15482 ip_stack_t *ipst; 15483 15484 /* 15485 * When the last memeber is leaving, there is nothing to 15486 * nominate. 15487 */ 15488 if (illgrp->illgrp_ill_count == 0) { 15489 ASSERT(illgrp->illgrp_ill == NULL); 15490 return; 15491 } 15492 15493 ill = illgrp->illgrp_ill; 15494 ASSERT(!ill->ill_isv6); 15495 ipst = ill->ill_ipst; 15496 /* 15497 * We assume that ires with same address and belonging to the 15498 * same group, has been grouped together. Nominating a *single* 15499 * ill in the group for sending and receiving broadcast is done 15500 * by making sure that the first BROADCAST ire (which will be 15501 * the one returned by ire_ctable_lookup for ip_rput and the 15502 * one that will be used in ip_wput_ire) will be the one that 15503 * will not have IRE_MARK_NORECV set. 15504 * 15505 * 1) ip_rput checks and discards packets received on ires marked 15506 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15507 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15508 * first ire in the group for every broadcast address in the group. 15509 * ip_rput will accept packets only on the first ire i.e only 15510 * one copy of the ill. 15511 * 15512 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15513 * packet for the whole group. It needs to send out on the ill 15514 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15515 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15516 * the copy echoed back on other port where the ire is not marked 15517 * with IRE_MARK_NORECV. 15518 * 15519 * Note that we just need to have the first IRE either loopback or 15520 * non-loopback (either of them may not exist if ire_create failed 15521 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15522 * always hit the first one and hence will always accept one copy. 15523 * 15524 * We have a broadcast ire per ill for all the unique prefixes 15525 * hosted on that ill. As we don't have a way of knowing the 15526 * unique prefixes on a given ill and hence in the whole group, 15527 * we just call ill_mark_bcast on all the prefixes that exist 15528 * in the group. For the common case of one prefix, the code 15529 * below optimizes by remebering the last address used for 15530 * markng. In the case of multiple prefixes, this will still 15531 * optimize depending the order of prefixes. 15532 * 15533 * The only unique address across the whole group is 0.0.0.0 and 15534 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15535 * the first ire in the bucket for receiving and disables the 15536 * others. 15537 */ 15538 ill_mark_bcast(illgrp, 0, ipst); 15539 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15540 for (; ill != NULL; ill = ill->ill_group_next) { 15541 15542 for (ipif = ill->ill_ipif; ipif != NULL; 15543 ipif = ipif->ipif_next) { 15544 15545 if (!(ipif->ipif_flags & IPIF_UP) || 15546 ipif->ipif_subnet == 0) { 15547 continue; 15548 } 15549 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15550 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15551 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15552 } else { 15553 net_mask = htonl(IN_CLASSA_NET); 15554 } 15555 addr = net_mask & ipif->ipif_subnet; 15556 if (prev_net_addr == 0 || prev_net_addr != addr) { 15557 ill_mark_bcast(illgrp, addr, ipst); 15558 net_addr = ~net_mask | addr; 15559 ill_mark_bcast(illgrp, net_addr, ipst); 15560 } 15561 prev_net_addr = addr; 15562 15563 subnet_netmask = ipif->ipif_net_mask; 15564 addr = ipif->ipif_subnet; 15565 if (prev_subnet_addr == 0 || 15566 prev_subnet_addr != addr) { 15567 ill_mark_bcast(illgrp, addr, ipst); 15568 subnet_addr = ~subnet_netmask | addr; 15569 ill_mark_bcast(illgrp, subnet_addr, ipst); 15570 } 15571 prev_subnet_addr = addr; 15572 } 15573 } 15574 } 15575 15576 /* 15577 * This function is called while forming ill groups. 15578 * 15579 * Currently, we handle only allmulti groups. We want to join 15580 * allmulti on only one of the ills in the groups. In future, 15581 * when we have link aggregation, we may have to join normal 15582 * multicast groups on multiple ills as switch does inbound load 15583 * balancing. Following are the functions that calls this 15584 * function : 15585 * 15586 * 1) ill_recover_multicast : Interface is coming back UP. 15587 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15588 * will call ill_recover_multicast to recover all the multicast 15589 * groups. We need to make sure that only one member is joined 15590 * in the ill group. 15591 * 15592 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15593 * Somebody is joining allmulti. We need to make sure that only one 15594 * member is joined in the group. 15595 * 15596 * 3) illgrp_insert : If allmulti has already joined, we need to make 15597 * sure that only one member is joined in the group. 15598 * 15599 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15600 * allmulti who we have nominated. We need to pick someother ill. 15601 * 15602 * 5) illgrp_delete : The ill we nominated is leaving the group, 15603 * we need to pick a new ill to join the group. 15604 * 15605 * For (1), (2), (5) - we just have to check whether there is 15606 * a good ill joined in the group. If we could not find any ills 15607 * joined the group, we should join. 15608 * 15609 * For (4), the one that was nominated to receive, left the group. 15610 * There could be nobody joined in the group when this function is 15611 * called. 15612 * 15613 * For (3) - we need to explicitly check whether there are multiple 15614 * ills joined in the group. 15615 * 15616 * For simplicity, we don't differentiate any of the above cases. We 15617 * just leave the group if it is joined on any of them and join on 15618 * the first good ill. 15619 */ 15620 int 15621 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15622 { 15623 ilm_t *ilm; 15624 ill_t *ill; 15625 ill_t *fallback_inactive_ill = NULL; 15626 ill_t *fallback_failed_ill = NULL; 15627 int ret = 0; 15628 15629 /* 15630 * Leave the allmulti on all the ills and start fresh. 15631 */ 15632 for (ill = illgrp->illgrp_ill; ill != NULL; 15633 ill = ill->ill_group_next) { 15634 if (ill->ill_join_allmulti) 15635 (void) ip_leave_allmulti(ill->ill_ipif); 15636 } 15637 15638 /* 15639 * Choose a good ill. Fallback to inactive or failed if 15640 * none available. We need to fallback to FAILED in the 15641 * case where we have 2 interfaces in a group - where 15642 * one of them is failed and another is a good one and 15643 * the good one (not marked inactive) is leaving the group. 15644 */ 15645 ret = 0; 15646 for (ill = illgrp->illgrp_ill; ill != NULL; 15647 ill = ill->ill_group_next) { 15648 /* Never pick an offline interface */ 15649 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15650 continue; 15651 15652 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15653 fallback_failed_ill = ill; 15654 continue; 15655 } 15656 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15657 fallback_inactive_ill = ill; 15658 continue; 15659 } 15660 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15661 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15662 ret = ip_join_allmulti(ill->ill_ipif); 15663 /* 15664 * ip_join_allmulti can fail because of memory 15665 * failures. So, make sure we join at least 15666 * on one ill. 15667 */ 15668 if (ill->ill_join_allmulti) 15669 return (0); 15670 } 15671 } 15672 } 15673 if (ret != 0) { 15674 /* 15675 * If we tried nominating above and failed to do so, 15676 * return error. We might have tried multiple times. 15677 * But, return the latest error. 15678 */ 15679 return (ret); 15680 } 15681 if ((ill = fallback_inactive_ill) != NULL) { 15682 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15683 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15684 ret = ip_join_allmulti(ill->ill_ipif); 15685 return (ret); 15686 } 15687 } 15688 } else if ((ill = fallback_failed_ill) != NULL) { 15689 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15690 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15691 ret = ip_join_allmulti(ill->ill_ipif); 15692 return (ret); 15693 } 15694 } 15695 } 15696 return (0); 15697 } 15698 15699 /* 15700 * This function is called from illgrp_delete after it is 15701 * deleted from the group to reschedule responsibilities 15702 * to a different ill. 15703 */ 15704 static void 15705 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15706 { 15707 ilm_t *ilm; 15708 ipif_t *ipif; 15709 ipaddr_t subnet_addr; 15710 ipaddr_t net_addr; 15711 ipaddr_t net_mask = 0; 15712 ipaddr_t subnet_netmask; 15713 ipaddr_t addr; 15714 ip_stack_t *ipst = ill->ill_ipst; 15715 15716 ASSERT(ill->ill_group == NULL); 15717 /* 15718 * Broadcast Responsibility: 15719 * 15720 * 1. If this ill has been nominated for receiving broadcast 15721 * packets, we need to find a new one. Before we find a new 15722 * one, we need to re-group the ires that are part of this new 15723 * group (assumed by ill_nominate_bcast_rcv). We do this by 15724 * calling ill_group_bcast_for_xmit(ill) which will do the right 15725 * thing for us. 15726 * 15727 * 2. If this ill was not nominated for receiving broadcast 15728 * packets, we need to clear the IRE_MARK_NORECV flag 15729 * so that we continue to send up broadcast packets. 15730 */ 15731 if (!ill->ill_isv6) { 15732 /* 15733 * Case 1 above : No optimization here. Just redo the 15734 * nomination. 15735 */ 15736 ill_group_bcast_for_xmit(ill); 15737 ill_nominate_bcast_rcv(illgrp); 15738 15739 /* 15740 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15741 */ 15742 ill_clear_bcast_mark(ill, 0); 15743 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15744 15745 for (ipif = ill->ill_ipif; ipif != NULL; 15746 ipif = ipif->ipif_next) { 15747 15748 if (!(ipif->ipif_flags & IPIF_UP) || 15749 ipif->ipif_subnet == 0) { 15750 continue; 15751 } 15752 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15753 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15754 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15755 } else { 15756 net_mask = htonl(IN_CLASSA_NET); 15757 } 15758 addr = net_mask & ipif->ipif_subnet; 15759 ill_clear_bcast_mark(ill, addr); 15760 15761 net_addr = ~net_mask | addr; 15762 ill_clear_bcast_mark(ill, net_addr); 15763 15764 subnet_netmask = ipif->ipif_net_mask; 15765 addr = ipif->ipif_subnet; 15766 ill_clear_bcast_mark(ill, addr); 15767 15768 subnet_addr = ~subnet_netmask | addr; 15769 ill_clear_bcast_mark(ill, subnet_addr); 15770 } 15771 } 15772 15773 /* 15774 * Multicast Responsibility. 15775 * 15776 * If we have joined allmulti on this one, find a new member 15777 * in the group to join allmulti. As this ill is already part 15778 * of allmulti, we don't have to join on this one. 15779 * 15780 * If we have not joined allmulti on this one, there is no 15781 * responsibility to handoff. But we need to take new 15782 * responsibility i.e, join allmulti on this one if we need 15783 * to. 15784 */ 15785 if (ill->ill_join_allmulti) { 15786 (void) ill_nominate_mcast_rcv(illgrp); 15787 } else { 15788 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15789 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15790 (void) ip_join_allmulti(ill->ill_ipif); 15791 break; 15792 } 15793 } 15794 } 15795 15796 /* 15797 * We intentionally do the flushing of IRE_CACHES only matching 15798 * on the ill and not on groups. Note that we are already deleted 15799 * from the group. 15800 * 15801 * This will make sure that all IRE_CACHES whose stq is pointing 15802 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15803 * deleted and IRE_CACHES that are not pointing at this ill will 15804 * be left alone. 15805 */ 15806 if (ill->ill_isv6) { 15807 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15808 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15809 } else { 15810 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15811 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15812 } 15813 15814 /* 15815 * Some conn may have cached one of the IREs deleted above. By removing 15816 * the ire reference, we clean up the extra reference to the ill held in 15817 * ire->ire_stq. 15818 */ 15819 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15820 15821 /* 15822 * Re-do source address selection for all the members in the 15823 * group, if they borrowed source address from one of the ipifs 15824 * in this ill. 15825 */ 15826 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15827 if (ill->ill_isv6) { 15828 ipif_update_other_ipifs_v6(ipif, illgrp); 15829 } else { 15830 ipif_update_other_ipifs(ipif, illgrp); 15831 } 15832 } 15833 } 15834 15835 /* 15836 * Delete the ill from the group. The caller makes sure that it is 15837 * in a group and it okay to delete from the group. So, we always 15838 * delete here. 15839 */ 15840 static void 15841 illgrp_delete(ill_t *ill) 15842 { 15843 ill_group_t *illgrp; 15844 ill_group_t *tmpg; 15845 ill_t *tmp_ill; 15846 ip_stack_t *ipst = ill->ill_ipst; 15847 15848 /* 15849 * Reset illgrp_ill_schednext if it was pointing at us. 15850 * We need to do this before we set ill_group to NULL. 15851 */ 15852 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15853 mutex_enter(&ill->ill_lock); 15854 15855 illgrp_reset_schednext(ill); 15856 15857 illgrp = ill->ill_group; 15858 15859 /* Delete the ill from illgrp. */ 15860 if (illgrp->illgrp_ill == ill) { 15861 illgrp->illgrp_ill = ill->ill_group_next; 15862 } else { 15863 tmp_ill = illgrp->illgrp_ill; 15864 while (tmp_ill->ill_group_next != ill) { 15865 tmp_ill = tmp_ill->ill_group_next; 15866 ASSERT(tmp_ill != NULL); 15867 } 15868 tmp_ill->ill_group_next = ill->ill_group_next; 15869 } 15870 ill->ill_group = NULL; 15871 ill->ill_group_next = NULL; 15872 15873 illgrp->illgrp_ill_count--; 15874 mutex_exit(&ill->ill_lock); 15875 rw_exit(&ipst->ips_ill_g_lock); 15876 15877 /* 15878 * As this ill is leaving the group, we need to hand off 15879 * the responsibilities to the other ills in the group, if 15880 * this ill had some responsibilities. 15881 */ 15882 15883 ill_handoff_responsibility(ill, illgrp); 15884 15885 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15886 15887 if (illgrp->illgrp_ill_count == 0) { 15888 15889 ASSERT(illgrp->illgrp_ill == NULL); 15890 if (ill->ill_isv6) { 15891 if (illgrp == ipst->ips_illgrp_head_v6) { 15892 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15893 } else { 15894 tmpg = ipst->ips_illgrp_head_v6; 15895 while (tmpg->illgrp_next != illgrp) { 15896 tmpg = tmpg->illgrp_next; 15897 ASSERT(tmpg != NULL); 15898 } 15899 tmpg->illgrp_next = illgrp->illgrp_next; 15900 } 15901 } else { 15902 if (illgrp == ipst->ips_illgrp_head_v4) { 15903 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15904 } else { 15905 tmpg = ipst->ips_illgrp_head_v4; 15906 while (tmpg->illgrp_next != illgrp) { 15907 tmpg = tmpg->illgrp_next; 15908 ASSERT(tmpg != NULL); 15909 } 15910 tmpg->illgrp_next = illgrp->illgrp_next; 15911 } 15912 } 15913 mutex_destroy(&illgrp->illgrp_lock); 15914 mi_free(illgrp); 15915 } 15916 rw_exit(&ipst->ips_ill_g_lock); 15917 15918 /* 15919 * Even though the ill is out of the group its not necessary 15920 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15921 * We will split the ipsq when phyint_groupname is set to NULL. 15922 */ 15923 15924 /* 15925 * Send a routing sockets message if we are deleting from 15926 * groups with names. 15927 */ 15928 if (ill->ill_phyint->phyint_groupname_len != 0) 15929 ip_rts_ifmsg(ill->ill_ipif); 15930 } 15931 15932 /* 15933 * Re-do source address selection. This is normally called when 15934 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15935 * ipif comes up. 15936 */ 15937 void 15938 ill_update_source_selection(ill_t *ill) 15939 { 15940 ipif_t *ipif; 15941 15942 ASSERT(IAM_WRITER_ILL(ill)); 15943 15944 if (ill->ill_group != NULL) 15945 ill = ill->ill_group->illgrp_ill; 15946 15947 for (; ill != NULL; ill = ill->ill_group_next) { 15948 for (ipif = ill->ill_ipif; ipif != NULL; 15949 ipif = ipif->ipif_next) { 15950 if (ill->ill_isv6) 15951 ipif_recreate_interface_routes_v6(NULL, ipif); 15952 else 15953 ipif_recreate_interface_routes(NULL, ipif); 15954 } 15955 } 15956 } 15957 15958 /* 15959 * Insert ill in a group headed by illgrp_head. The caller can either 15960 * pass a groupname in which case we search for a group with the 15961 * same name to insert in or pass a group to insert in. This function 15962 * would only search groups with names. 15963 * 15964 * NOTE : The caller should make sure that there is at least one ipif 15965 * UP on this ill so that illgrp_scheduler can pick this ill 15966 * for outbound packets. If ill_ipif_up_count is zero, we have 15967 * already sent a DL_UNBIND to the driver and we don't want to 15968 * send anymore packets. We don't assert for ipif_up_count 15969 * to be greater than zero, because ipif_up_done wants to call 15970 * this function before bumping up the ipif_up_count. See 15971 * ipif_up_done() for details. 15972 */ 15973 int 15974 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15975 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15976 { 15977 ill_group_t *illgrp; 15978 ill_t *prev_ill; 15979 phyint_t *phyi; 15980 ip_stack_t *ipst = ill->ill_ipst; 15981 15982 ASSERT(ill->ill_group == NULL); 15983 15984 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15985 mutex_enter(&ill->ill_lock); 15986 15987 if (groupname != NULL) { 15988 /* 15989 * Look for a group with a matching groupname to insert. 15990 */ 15991 for (illgrp = *illgrp_head; illgrp != NULL; 15992 illgrp = illgrp->illgrp_next) { 15993 15994 ill_t *tmp_ill; 15995 15996 /* 15997 * If we have an ill_group_t in the list which has 15998 * no ill_t assigned then we must be in the process of 15999 * removing this group. We skip this as illgrp_delete() 16000 * will remove it from the list. 16001 */ 16002 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16003 ASSERT(illgrp->illgrp_ill_count == 0); 16004 continue; 16005 } 16006 16007 ASSERT(tmp_ill->ill_phyint != NULL); 16008 phyi = tmp_ill->ill_phyint; 16009 /* 16010 * Look at groups which has names only. 16011 */ 16012 if (phyi->phyint_groupname_len == 0) 16013 continue; 16014 /* 16015 * Names are stored in the phyint common to both 16016 * IPv4 and IPv6. 16017 */ 16018 if (mi_strcmp(phyi->phyint_groupname, 16019 groupname) == 0) { 16020 break; 16021 } 16022 } 16023 } else { 16024 /* 16025 * If the caller passes in a NULL "grp_to_insert", we 16026 * allocate one below and insert this singleton. 16027 */ 16028 illgrp = grp_to_insert; 16029 } 16030 16031 ill->ill_group_next = NULL; 16032 16033 if (illgrp == NULL) { 16034 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16035 if (illgrp == NULL) { 16036 return (ENOMEM); 16037 } 16038 illgrp->illgrp_next = *illgrp_head; 16039 *illgrp_head = illgrp; 16040 illgrp->illgrp_ill = ill; 16041 illgrp->illgrp_ill_count = 1; 16042 ill->ill_group = illgrp; 16043 /* 16044 * Used in illgrp_scheduler to protect multiple threads 16045 * from traversing the list. 16046 */ 16047 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16048 } else { 16049 ASSERT(ill->ill_net_type == 16050 illgrp->illgrp_ill->ill_net_type); 16051 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16052 16053 /* Insert ill at tail of this group */ 16054 prev_ill = illgrp->illgrp_ill; 16055 while (prev_ill->ill_group_next != NULL) 16056 prev_ill = prev_ill->ill_group_next; 16057 prev_ill->ill_group_next = ill; 16058 ill->ill_group = illgrp; 16059 illgrp->illgrp_ill_count++; 16060 /* 16061 * Inherit group properties. Currently only forwarding 16062 * is the property we try to keep the same with all the 16063 * ills. When there are more, we will abstract this into 16064 * a function. 16065 */ 16066 ill->ill_flags &= ~ILLF_ROUTER; 16067 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16068 } 16069 mutex_exit(&ill->ill_lock); 16070 rw_exit(&ipst->ips_ill_g_lock); 16071 16072 /* 16073 * 1) When ipif_up_done() calls this function, ipif_up_count 16074 * may be zero as it has not yet been bumped. But the ires 16075 * have already been added. So, we do the nomination here 16076 * itself. But, when ip_sioctl_groupname calls this, it checks 16077 * for ill_ipif_up_count != 0. Thus we don't check for 16078 * ill_ipif_up_count here while nominating broadcast ires for 16079 * receive. 16080 * 16081 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16082 * to group them properly as ire_add() has already happened 16083 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16084 * case, we need to do it here anyway. 16085 */ 16086 if (!ill->ill_isv6) { 16087 ill_group_bcast_for_xmit(ill); 16088 ill_nominate_bcast_rcv(illgrp); 16089 } 16090 16091 if (!ipif_is_coming_up) { 16092 /* 16093 * When ipif_up_done() calls this function, the multicast 16094 * groups have not been joined yet. So, there is no point in 16095 * nomination. ip_join_allmulti will handle groups when 16096 * ill_recover_multicast is called from ipif_up_done() later. 16097 */ 16098 (void) ill_nominate_mcast_rcv(illgrp); 16099 /* 16100 * ipif_up_done calls ill_update_source_selection 16101 * anyway. Moreover, we don't want to re-create 16102 * interface routes while ipif_up_done() still has reference 16103 * to them. Refer to ipif_up_done() for more details. 16104 */ 16105 ill_update_source_selection(ill); 16106 } 16107 16108 /* 16109 * Send a routing sockets message if we are inserting into 16110 * groups with names. 16111 */ 16112 if (groupname != NULL) 16113 ip_rts_ifmsg(ill->ill_ipif); 16114 return (0); 16115 } 16116 16117 /* 16118 * Return the first phyint matching the groupname. There could 16119 * be more than one when there are ill groups. 16120 * 16121 * If 'usable' is set, then we exclude ones that are marked with any of 16122 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16123 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16124 * emulation of ipmp. 16125 */ 16126 phyint_t * 16127 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16128 { 16129 phyint_t *phyi; 16130 16131 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16132 /* 16133 * Group names are stored in the phyint - a common structure 16134 * to both IPv4 and IPv6. 16135 */ 16136 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16137 for (; phyi != NULL; 16138 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16139 phyi, AVL_AFTER)) { 16140 if (phyi->phyint_groupname_len == 0) 16141 continue; 16142 /* 16143 * Skip the ones that should not be used since the callers 16144 * sometime use this for sending packets. 16145 */ 16146 if (usable && (phyi->phyint_flags & 16147 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16148 continue; 16149 16150 ASSERT(phyi->phyint_groupname != NULL); 16151 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16152 return (phyi); 16153 } 16154 return (NULL); 16155 } 16156 16157 16158 /* 16159 * Return the first usable phyint matching the group index. By 'usable' 16160 * we exclude ones that are marked ununsable with any of 16161 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16162 * 16163 * Used only for the ipmp/netinfo emulation of ipmp. 16164 */ 16165 phyint_t * 16166 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16167 { 16168 phyint_t *phyi; 16169 16170 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16171 16172 if (!ipst->ips_ipmp_hook_emulation) 16173 return (NULL); 16174 16175 /* 16176 * Group indicies are stored in the phyint - a common structure 16177 * to both IPv4 and IPv6. 16178 */ 16179 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16180 for (; phyi != NULL; 16181 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16182 phyi, AVL_AFTER)) { 16183 /* Ignore the ones that do not have a group */ 16184 if (phyi->phyint_groupname_len == 0) 16185 continue; 16186 16187 ASSERT(phyi->phyint_group_ifindex != 0); 16188 /* 16189 * Skip the ones that should not be used since the callers 16190 * sometime use this for sending packets. 16191 */ 16192 if (phyi->phyint_flags & 16193 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16194 continue; 16195 if (phyi->phyint_group_ifindex == group_ifindex) 16196 return (phyi); 16197 } 16198 return (NULL); 16199 } 16200 16201 16202 /* 16203 * MT notes on creation and deletion of IPMP groups 16204 * 16205 * Creation and deletion of IPMP groups introduce the need to merge or 16206 * split the associated serialization objects i.e the ipsq's. Normally all 16207 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16208 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16209 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16210 * is a need to change the <ill-ipsq> association and we have to operate on both 16211 * the source and destination IPMP groups. For eg. attempting to set the 16212 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16213 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16214 * source or destination IPMP group are mapped to a single ipsq for executing 16215 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16216 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16217 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16218 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16219 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16220 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16221 * 16222 * In the above example the ioctl handling code locates the current ipsq of hme0 16223 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16224 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16225 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16226 * the destination ipsq. If the destination ipsq is not busy, it also enters 16227 * the destination ipsq exclusively. Now the actual groupname setting operation 16228 * can proceed. If the destination ipsq is busy, the operation is enqueued 16229 * on the destination (merged) ipsq and will be handled in the unwind from 16230 * ipsq_exit. 16231 * 16232 * To prevent other threads accessing the ill while the group name change is 16233 * in progres, we bring down the ipifs which also removes the ill from the 16234 * group. The group is changed in phyint and when the first ipif on the ill 16235 * is brought up, the ill is inserted into the right IPMP group by 16236 * illgrp_insert. 16237 */ 16238 /* ARGSUSED */ 16239 int 16240 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16241 ip_ioctl_cmd_t *ipip, void *ifreq) 16242 { 16243 int i; 16244 char *tmp; 16245 int namelen; 16246 ill_t *ill = ipif->ipif_ill; 16247 ill_t *ill_v4, *ill_v6; 16248 int err = 0; 16249 phyint_t *phyi; 16250 phyint_t *phyi_tmp; 16251 struct lifreq *lifr; 16252 mblk_t *mp1; 16253 char *groupname; 16254 ipsq_t *ipsq; 16255 ip_stack_t *ipst = ill->ill_ipst; 16256 16257 ASSERT(IAM_WRITER_IPIF(ipif)); 16258 16259 /* Existance verified in ip_wput_nondata */ 16260 mp1 = mp->b_cont->b_cont; 16261 lifr = (struct lifreq *)mp1->b_rptr; 16262 groupname = lifr->lifr_groupname; 16263 16264 if (ipif->ipif_id != 0) 16265 return (EINVAL); 16266 16267 phyi = ill->ill_phyint; 16268 ASSERT(phyi != NULL); 16269 16270 if (phyi->phyint_flags & PHYI_VIRTUAL) 16271 return (EINVAL); 16272 16273 tmp = groupname; 16274 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16275 ; 16276 16277 if (i == LIFNAMSIZ) { 16278 /* no null termination */ 16279 return (EINVAL); 16280 } 16281 16282 /* 16283 * Calculate the namelen exclusive of the null 16284 * termination character. 16285 */ 16286 namelen = tmp - groupname; 16287 16288 ill_v4 = phyi->phyint_illv4; 16289 ill_v6 = phyi->phyint_illv6; 16290 16291 /* 16292 * ILL cannot be part of a usesrc group and and IPMP group at the 16293 * same time. No need to grab the ill_g_usesrc_lock here, see 16294 * synchronization notes in ip.c 16295 */ 16296 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16297 return (EINVAL); 16298 } 16299 16300 /* 16301 * mark the ill as changing. 16302 * this should queue all new requests on the syncq. 16303 */ 16304 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16305 16306 if (ill_v4 != NULL) 16307 ill_v4->ill_state_flags |= ILL_CHANGING; 16308 if (ill_v6 != NULL) 16309 ill_v6->ill_state_flags |= ILL_CHANGING; 16310 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16311 16312 if (namelen == 0) { 16313 /* 16314 * Null string means remove this interface from the 16315 * existing group. 16316 */ 16317 if (phyi->phyint_groupname_len == 0) { 16318 /* 16319 * Never was in a group. 16320 */ 16321 err = 0; 16322 goto done; 16323 } 16324 16325 /* 16326 * IPv4 or IPv6 may be temporarily out of the group when all 16327 * the ipifs are down. Thus, we need to check for ill_group to 16328 * be non-NULL. 16329 */ 16330 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16331 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16332 mutex_enter(&ill_v4->ill_lock); 16333 if (!ill_is_quiescent(ill_v4)) { 16334 /* 16335 * ipsq_pending_mp_add will not fail since 16336 * connp is NULL 16337 */ 16338 (void) ipsq_pending_mp_add(NULL, 16339 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16340 mutex_exit(&ill_v4->ill_lock); 16341 err = EINPROGRESS; 16342 goto done; 16343 } 16344 mutex_exit(&ill_v4->ill_lock); 16345 } 16346 16347 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16348 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16349 mutex_enter(&ill_v6->ill_lock); 16350 if (!ill_is_quiescent(ill_v6)) { 16351 (void) ipsq_pending_mp_add(NULL, 16352 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16353 mutex_exit(&ill_v6->ill_lock); 16354 err = EINPROGRESS; 16355 goto done; 16356 } 16357 mutex_exit(&ill_v6->ill_lock); 16358 } 16359 16360 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16361 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16362 mutex_enter(&phyi->phyint_lock); 16363 ASSERT(phyi->phyint_groupname != NULL); 16364 mi_free(phyi->phyint_groupname); 16365 phyi->phyint_groupname = NULL; 16366 phyi->phyint_groupname_len = 0; 16367 16368 /* Restore the ifindex used to be the per interface one */ 16369 phyi->phyint_group_ifindex = 0; 16370 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16371 mutex_exit(&phyi->phyint_lock); 16372 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16373 rw_exit(&ipst->ips_ill_g_lock); 16374 err = ill_up_ipifs(ill, q, mp); 16375 16376 /* 16377 * set the split flag so that the ipsq can be split 16378 */ 16379 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16380 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16381 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16382 16383 } else { 16384 if (phyi->phyint_groupname_len != 0) { 16385 ASSERT(phyi->phyint_groupname != NULL); 16386 /* Are we inserting in the same group ? */ 16387 if (mi_strcmp(groupname, 16388 phyi->phyint_groupname) == 0) { 16389 err = 0; 16390 goto done; 16391 } 16392 } 16393 16394 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16395 /* 16396 * Merge ipsq for the group's. 16397 * This check is here as multiple groups/ills might be 16398 * sharing the same ipsq. 16399 * If we have to merege than the operation is restarted 16400 * on the new ipsq. 16401 */ 16402 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16403 if (phyi->phyint_ipsq != ipsq) { 16404 rw_exit(&ipst->ips_ill_g_lock); 16405 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16406 goto done; 16407 } 16408 /* 16409 * Running exclusive on new ipsq. 16410 */ 16411 16412 ASSERT(ipsq != NULL); 16413 ASSERT(ipsq->ipsq_writer == curthread); 16414 16415 /* 16416 * Check whether the ill_type and ill_net_type matches before 16417 * we allocate any memory so that the cleanup is easier. 16418 * 16419 * We can't group dissimilar ones as we can't load spread 16420 * packets across the group because of potential link-level 16421 * header differences. 16422 */ 16423 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16424 if (phyi_tmp != NULL) { 16425 if ((ill_v4 != NULL && 16426 phyi_tmp->phyint_illv4 != NULL) && 16427 ((ill_v4->ill_net_type != 16428 phyi_tmp->phyint_illv4->ill_net_type) || 16429 (ill_v4->ill_type != 16430 phyi_tmp->phyint_illv4->ill_type))) { 16431 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16432 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16433 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16434 rw_exit(&ipst->ips_ill_g_lock); 16435 return (EINVAL); 16436 } 16437 if ((ill_v6 != NULL && 16438 phyi_tmp->phyint_illv6 != NULL) && 16439 ((ill_v6->ill_net_type != 16440 phyi_tmp->phyint_illv6->ill_net_type) || 16441 (ill_v6->ill_type != 16442 phyi_tmp->phyint_illv6->ill_type))) { 16443 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16444 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16445 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16446 rw_exit(&ipst->ips_ill_g_lock); 16447 return (EINVAL); 16448 } 16449 } 16450 16451 rw_exit(&ipst->ips_ill_g_lock); 16452 16453 /* 16454 * bring down all v4 ipifs. 16455 */ 16456 if (ill_v4 != NULL) { 16457 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16458 } 16459 16460 /* 16461 * bring down all v6 ipifs. 16462 */ 16463 if (ill_v6 != NULL) { 16464 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16465 } 16466 16467 /* 16468 * make sure all ipifs are down and there are no active 16469 * references. Call to ipsq_pending_mp_add will not fail 16470 * since connp is NULL. 16471 */ 16472 if (ill_v4 != NULL) { 16473 mutex_enter(&ill_v4->ill_lock); 16474 if (!ill_is_quiescent(ill_v4)) { 16475 (void) ipsq_pending_mp_add(NULL, 16476 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16477 mutex_exit(&ill_v4->ill_lock); 16478 err = EINPROGRESS; 16479 goto done; 16480 } 16481 mutex_exit(&ill_v4->ill_lock); 16482 } 16483 16484 if (ill_v6 != NULL) { 16485 mutex_enter(&ill_v6->ill_lock); 16486 if (!ill_is_quiescent(ill_v6)) { 16487 (void) ipsq_pending_mp_add(NULL, 16488 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16489 mutex_exit(&ill_v6->ill_lock); 16490 err = EINPROGRESS; 16491 goto done; 16492 } 16493 mutex_exit(&ill_v6->ill_lock); 16494 } 16495 16496 /* 16497 * allocate including space for null terminator 16498 * before we insert. 16499 */ 16500 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16501 if (tmp == NULL) 16502 return (ENOMEM); 16503 16504 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16505 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16506 mutex_enter(&phyi->phyint_lock); 16507 if (phyi->phyint_groupname_len != 0) { 16508 ASSERT(phyi->phyint_groupname != NULL); 16509 mi_free(phyi->phyint_groupname); 16510 } 16511 16512 /* 16513 * setup the new group name. 16514 */ 16515 phyi->phyint_groupname = tmp; 16516 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16517 phyi->phyint_groupname_len = namelen + 1; 16518 16519 if (ipst->ips_ipmp_hook_emulation) { 16520 /* 16521 * If the group already exists we use the existing 16522 * group_ifindex, otherwise we pick a new index here. 16523 */ 16524 if (phyi_tmp != NULL) { 16525 phyi->phyint_group_ifindex = 16526 phyi_tmp->phyint_group_ifindex; 16527 } else { 16528 /* XXX We need a recovery strategy here. */ 16529 if (!ip_assign_ifindex( 16530 &phyi->phyint_group_ifindex, ipst)) 16531 cmn_err(CE_PANIC, 16532 "ip_assign_ifindex() failed"); 16533 } 16534 } 16535 /* 16536 * Select whether the netinfo and hook use the per-interface 16537 * or per-group ifindex. 16538 */ 16539 if (ipst->ips_ipmp_hook_emulation) 16540 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16541 else 16542 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16543 16544 if (ipst->ips_ipmp_hook_emulation && 16545 phyi_tmp != NULL) { 16546 /* First phyint in group - group PLUMB event */ 16547 ill_nic_info_plumb(ill, B_TRUE); 16548 } 16549 mutex_exit(&phyi->phyint_lock); 16550 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16551 rw_exit(&ipst->ips_ill_g_lock); 16552 16553 err = ill_up_ipifs(ill, q, mp); 16554 } 16555 16556 done: 16557 /* 16558 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16559 */ 16560 if (err != EINPROGRESS) { 16561 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16562 if (ill_v4 != NULL) 16563 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16564 if (ill_v6 != NULL) 16565 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16566 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16567 } 16568 return (err); 16569 } 16570 16571 /* ARGSUSED */ 16572 int 16573 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16574 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16575 { 16576 ill_t *ill; 16577 phyint_t *phyi; 16578 struct lifreq *lifr; 16579 mblk_t *mp1; 16580 16581 /* Existence verified in ip_wput_nondata */ 16582 mp1 = mp->b_cont->b_cont; 16583 lifr = (struct lifreq *)mp1->b_rptr; 16584 ill = ipif->ipif_ill; 16585 phyi = ill->ill_phyint; 16586 16587 lifr->lifr_groupname[0] = '\0'; 16588 /* 16589 * ill_group may be null if all the interfaces 16590 * are down. But still, the phyint should always 16591 * hold the name. 16592 */ 16593 if (phyi->phyint_groupname_len != 0) { 16594 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16595 phyi->phyint_groupname_len); 16596 } 16597 16598 return (0); 16599 } 16600 16601 16602 typedef struct conn_move_s { 16603 ill_t *cm_from_ill; 16604 ill_t *cm_to_ill; 16605 int cm_ifindex; 16606 } conn_move_t; 16607 16608 /* 16609 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16610 */ 16611 static void 16612 conn_move(conn_t *connp, caddr_t arg) 16613 { 16614 conn_move_t *connm; 16615 int ifindex; 16616 int i; 16617 ill_t *from_ill; 16618 ill_t *to_ill; 16619 ilg_t *ilg; 16620 ilm_t *ret_ilm; 16621 16622 connm = (conn_move_t *)arg; 16623 ifindex = connm->cm_ifindex; 16624 from_ill = connm->cm_from_ill; 16625 to_ill = connm->cm_to_ill; 16626 16627 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16628 16629 /* All multicast fields protected by conn_lock */ 16630 mutex_enter(&connp->conn_lock); 16631 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16632 if ((connp->conn_outgoing_ill == from_ill) && 16633 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16634 connp->conn_outgoing_ill = to_ill; 16635 connp->conn_incoming_ill = to_ill; 16636 } 16637 16638 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16639 16640 if ((connp->conn_multicast_ill == from_ill) && 16641 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16642 connp->conn_multicast_ill = connm->cm_to_ill; 16643 } 16644 16645 /* 16646 * Change the ilg_ill to point to the new one. This assumes 16647 * ilm_move_v6 has moved the ilms to new_ill and the driver 16648 * has been told to receive packets on this interface. 16649 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16650 * But when doing a FAILOVER, it might fail with ENOMEM and so 16651 * some ilms may not have moved. We check to see whether 16652 * the ilms have moved to to_ill. We can't check on from_ill 16653 * as in the process of moving, we could have split an ilm 16654 * in to two - which has the same orig_ifindex and v6group. 16655 * 16656 * For IPv4, ilg_ipif moves implicitly. The code below really 16657 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16658 */ 16659 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16660 ilg = &connp->conn_ilg[i]; 16661 if ((ilg->ilg_ill == from_ill) && 16662 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16663 /* ifindex != 0 indicates failback */ 16664 if (ifindex != 0) { 16665 connp->conn_ilg[i].ilg_ill = to_ill; 16666 continue; 16667 } 16668 16669 mutex_enter(&to_ill->ill_lock); 16670 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16671 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16672 connp->conn_zoneid); 16673 mutex_exit(&to_ill->ill_lock); 16674 16675 if (ret_ilm != NULL) 16676 connp->conn_ilg[i].ilg_ill = to_ill; 16677 } 16678 } 16679 mutex_exit(&connp->conn_lock); 16680 } 16681 16682 static void 16683 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16684 { 16685 conn_move_t connm; 16686 ip_stack_t *ipst = from_ill->ill_ipst; 16687 16688 connm.cm_from_ill = from_ill; 16689 connm.cm_to_ill = to_ill; 16690 connm.cm_ifindex = ifindex; 16691 16692 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16693 } 16694 16695 /* 16696 * ilm has been moved from from_ill to to_ill. 16697 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16698 * appropriately. 16699 * 16700 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16701 * the code there de-references ipif_ill to get the ill to 16702 * send multicast requests. It does not work as ipif is on its 16703 * move and already moved when this function is called. 16704 * Thus, we need to use from_ill and to_ill send down multicast 16705 * requests. 16706 */ 16707 static void 16708 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16709 { 16710 ipif_t *ipif; 16711 ilm_t *ilm; 16712 16713 /* 16714 * See whether we need to send down DL_ENABMULTI_REQ on 16715 * to_ill as ilm has just been added. 16716 */ 16717 ASSERT(IAM_WRITER_ILL(to_ill)); 16718 ASSERT(IAM_WRITER_ILL(from_ill)); 16719 16720 ILM_WALKER_HOLD(to_ill); 16721 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16722 16723 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16724 continue; 16725 /* 16726 * no locks held, ill/ipif cannot dissappear as long 16727 * as we are writer. 16728 */ 16729 ipif = to_ill->ill_ipif; 16730 /* 16731 * No need to hold any lock as we are the writer and this 16732 * can only be changed by a writer. 16733 */ 16734 ilm->ilm_is_new = B_FALSE; 16735 16736 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16737 ipif->ipif_flags & IPIF_POINTOPOINT) { 16738 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16739 "resolver\n")); 16740 continue; /* Must be IRE_IF_NORESOLVER */ 16741 } 16742 16743 16744 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16745 ip1dbg(("ilm_send_multicast_reqs: " 16746 "to_ill MULTI_BCAST\n")); 16747 goto from; 16748 } 16749 16750 if (to_ill->ill_isv6) 16751 mld_joingroup(ilm); 16752 else 16753 igmp_joingroup(ilm); 16754 16755 if (to_ill->ill_ipif_up_count == 0) { 16756 /* 16757 * Nobody there. All multicast addresses will be 16758 * re-joined when we get the DL_BIND_ACK bringing the 16759 * interface up. 16760 */ 16761 ilm->ilm_notify_driver = B_FALSE; 16762 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16763 goto from; 16764 } 16765 16766 /* 16767 * For allmulti address, we want to join on only one interface. 16768 * Checking for ilm_numentries_v6 is not correct as you may 16769 * find an ilm with zero address on to_ill, but we may not 16770 * have nominated to_ill for receiving. Thus, if we have 16771 * nominated from_ill (ill_join_allmulti is set), nominate 16772 * only if to_ill is not already nominated (to_ill normally 16773 * should not have been nominated if "from_ill" has already 16774 * been nominated. As we don't prevent failovers from happening 16775 * across groups, we don't assert). 16776 */ 16777 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16778 /* 16779 * There is no need to hold ill locks as we are 16780 * writer on both ills and when ill_join_allmulti 16781 * is changed the thread is always a writer. 16782 */ 16783 if (from_ill->ill_join_allmulti && 16784 !to_ill->ill_join_allmulti) { 16785 (void) ip_join_allmulti(to_ill->ill_ipif); 16786 } 16787 } else if (ilm->ilm_notify_driver) { 16788 16789 /* 16790 * This is a newly moved ilm so we need to tell the 16791 * driver about the new group. There can be more than 16792 * one ilm's for the same group in the list each with a 16793 * different orig_ifindex. We have to inform the driver 16794 * once. In ilm_move_v[4,6] we only set the flag 16795 * ilm_notify_driver for the first ilm. 16796 */ 16797 16798 (void) ip_ll_send_enabmulti_req(to_ill, 16799 &ilm->ilm_v6addr); 16800 } 16801 16802 ilm->ilm_notify_driver = B_FALSE; 16803 16804 /* 16805 * See whether we need to send down DL_DISABMULTI_REQ on 16806 * from_ill as ilm has just been removed. 16807 */ 16808 from: 16809 ipif = from_ill->ill_ipif; 16810 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16811 ipif->ipif_flags & IPIF_POINTOPOINT) { 16812 ip1dbg(("ilm_send_multicast_reqs: " 16813 "from_ill not resolver\n")); 16814 continue; /* Must be IRE_IF_NORESOLVER */ 16815 } 16816 16817 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16818 ip1dbg(("ilm_send_multicast_reqs: " 16819 "from_ill MULTI_BCAST\n")); 16820 continue; 16821 } 16822 16823 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16824 if (from_ill->ill_join_allmulti) 16825 (void) ip_leave_allmulti(from_ill->ill_ipif); 16826 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16827 (void) ip_ll_send_disabmulti_req(from_ill, 16828 &ilm->ilm_v6addr); 16829 } 16830 } 16831 ILM_WALKER_RELE(to_ill); 16832 } 16833 16834 /* 16835 * This function is called when all multicast memberships needs 16836 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16837 * called only once unlike the IPv4 counterpart where it is called after 16838 * every logical interface is moved. The reason is due to multicast 16839 * memberships are joined using an interface address in IPv4 while in 16840 * IPv6, interface index is used. 16841 */ 16842 static void 16843 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16844 { 16845 ilm_t *ilm; 16846 ilm_t *ilm_next; 16847 ilm_t *new_ilm; 16848 ilm_t **ilmp; 16849 int count; 16850 char buf[INET6_ADDRSTRLEN]; 16851 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16852 ip_stack_t *ipst = from_ill->ill_ipst; 16853 16854 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16855 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16856 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16857 16858 if (ifindex == 0) { 16859 /* 16860 * Form the solicited node mcast address which is used later. 16861 */ 16862 ipif_t *ipif; 16863 16864 ipif = from_ill->ill_ipif; 16865 ASSERT(ipif->ipif_id == 0); 16866 16867 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16868 } 16869 16870 ilmp = &from_ill->ill_ilm; 16871 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16872 ilm_next = ilm->ilm_next; 16873 16874 if (ilm->ilm_flags & ILM_DELETED) { 16875 ilmp = &ilm->ilm_next; 16876 continue; 16877 } 16878 16879 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16880 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16881 ASSERT(ilm->ilm_orig_ifindex != 0); 16882 if (ilm->ilm_orig_ifindex == ifindex) { 16883 /* 16884 * We are failing back multicast memberships. 16885 * If the same ilm exists in to_ill, it means somebody 16886 * has joined the same group there e.g. ff02::1 16887 * is joined within the kernel when the interfaces 16888 * came UP. 16889 */ 16890 ASSERT(ilm->ilm_ipif == NULL); 16891 if (new_ilm != NULL) { 16892 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16893 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16894 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16895 new_ilm->ilm_is_new = B_TRUE; 16896 } 16897 } else { 16898 /* 16899 * check if we can just move the ilm 16900 */ 16901 if (from_ill->ill_ilm_walker_cnt != 0) { 16902 /* 16903 * We have walkers we cannot move 16904 * the ilm, so allocate a new ilm, 16905 * this (old) ilm will be marked 16906 * ILM_DELETED at the end of the loop 16907 * and will be freed when the 16908 * last walker exits. 16909 */ 16910 new_ilm = (ilm_t *)mi_zalloc 16911 (sizeof (ilm_t)); 16912 if (new_ilm == NULL) { 16913 ip0dbg(("ilm_move_v6: " 16914 "FAILBACK of IPv6" 16915 " multicast address %s : " 16916 "from %s to" 16917 " %s failed : ENOMEM \n", 16918 inet_ntop(AF_INET6, 16919 &ilm->ilm_v6addr, buf, 16920 sizeof (buf)), 16921 from_ill->ill_name, 16922 to_ill->ill_name)); 16923 16924 ilmp = &ilm->ilm_next; 16925 continue; 16926 } 16927 *new_ilm = *ilm; 16928 /* 16929 * we don't want new_ilm linked to 16930 * ilm's filter list. 16931 */ 16932 new_ilm->ilm_filter = NULL; 16933 } else { 16934 /* 16935 * No walkers we can move the ilm. 16936 * lets take it out of the list. 16937 */ 16938 *ilmp = ilm->ilm_next; 16939 ilm->ilm_next = NULL; 16940 DTRACE_PROBE3(ill__decr__cnt, 16941 (ill_t *), from_ill, 16942 (char *), "ilm", (void *), ilm); 16943 ASSERT(from_ill->ill_ilm_cnt > 0); 16944 from_ill->ill_ilm_cnt--; 16945 16946 new_ilm = ilm; 16947 } 16948 16949 /* 16950 * if this is the first ilm for the group 16951 * set ilm_notify_driver so that we notify the 16952 * driver in ilm_send_multicast_reqs. 16953 */ 16954 if (ilm_lookup_ill_v6(to_ill, 16955 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16956 new_ilm->ilm_notify_driver = B_TRUE; 16957 16958 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 16959 (char *), "ilm", (void *), new_ilm); 16960 new_ilm->ilm_ill = to_ill; 16961 to_ill->ill_ilm_cnt++; 16962 16963 /* Add to the to_ill's list */ 16964 new_ilm->ilm_next = to_ill->ill_ilm; 16965 to_ill->ill_ilm = new_ilm; 16966 /* 16967 * set the flag so that mld_joingroup is 16968 * called in ilm_send_multicast_reqs(). 16969 */ 16970 new_ilm->ilm_is_new = B_TRUE; 16971 } 16972 goto bottom; 16973 } else if (ifindex != 0) { 16974 /* 16975 * If this is FAILBACK (ifindex != 0) and the ifindex 16976 * has not matched above, look at the next ilm. 16977 */ 16978 ilmp = &ilm->ilm_next; 16979 continue; 16980 } 16981 /* 16982 * If we are here, it means ifindex is 0. Failover 16983 * everything. 16984 * 16985 * We need to handle solicited node mcast address 16986 * and all_nodes mcast address differently as they 16987 * are joined witin the kenrel (ipif_multicast_up) 16988 * and potentially from the userland. We are called 16989 * after the ipifs of from_ill has been moved. 16990 * If we still find ilms on ill with solicited node 16991 * mcast address or all_nodes mcast address, it must 16992 * belong to the UP interface that has not moved e.g. 16993 * ipif_id 0 with the link local prefix does not move. 16994 * We join this on the new ill accounting for all the 16995 * userland memberships so that applications don't 16996 * see any failure. 16997 * 16998 * We need to make sure that we account only for the 16999 * solicited node and all node multicast addresses 17000 * that was brought UP on these. In the case of 17001 * a failover from A to B, we might have ilms belonging 17002 * to A (ilm_orig_ifindex pointing at A) on B accounting 17003 * for the membership from the userland. If we are failing 17004 * over from B to C now, we will find the ones belonging 17005 * to A on B. These don't account for the ill_ipif_up_count. 17006 * They just move from B to C. The check below on 17007 * ilm_orig_ifindex ensures that. 17008 */ 17009 if ((ilm->ilm_orig_ifindex == 17010 from_ill->ill_phyint->phyint_ifindex) && 17011 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17012 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17013 &ilm->ilm_v6addr))) { 17014 ASSERT(ilm->ilm_refcnt > 0); 17015 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17016 /* 17017 * For indentation reasons, we are not using a 17018 * "else" here. 17019 */ 17020 if (count == 0) { 17021 ilmp = &ilm->ilm_next; 17022 continue; 17023 } 17024 ilm->ilm_refcnt -= count; 17025 if (new_ilm != NULL) { 17026 /* 17027 * Can find one with the same 17028 * ilm_orig_ifindex, if we are failing 17029 * over to a STANDBY. This happens 17030 * when somebody wants to join a group 17031 * on a STANDBY interface and we 17032 * internally join on a different one. 17033 * If we had joined on from_ill then, a 17034 * failover now will find a new ilm 17035 * with this index. 17036 */ 17037 ip1dbg(("ilm_move_v6: FAILOVER, found" 17038 " new ilm on %s, group address %s\n", 17039 to_ill->ill_name, 17040 inet_ntop(AF_INET6, 17041 &ilm->ilm_v6addr, buf, 17042 sizeof (buf)))); 17043 new_ilm->ilm_refcnt += count; 17044 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17045 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17046 new_ilm->ilm_is_new = B_TRUE; 17047 } 17048 } else { 17049 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17050 if (new_ilm == NULL) { 17051 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17052 " multicast address %s : from %s to" 17053 " %s failed : ENOMEM \n", 17054 inet_ntop(AF_INET6, 17055 &ilm->ilm_v6addr, buf, 17056 sizeof (buf)), from_ill->ill_name, 17057 to_ill->ill_name)); 17058 ilmp = &ilm->ilm_next; 17059 continue; 17060 } 17061 *new_ilm = *ilm; 17062 new_ilm->ilm_filter = NULL; 17063 new_ilm->ilm_refcnt = count; 17064 new_ilm->ilm_timer = INFINITY; 17065 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17066 new_ilm->ilm_is_new = B_TRUE; 17067 /* 17068 * If the to_ill has not joined this 17069 * group we need to tell the driver in 17070 * ill_send_multicast_reqs. 17071 */ 17072 if (ilm_lookup_ill_v6(to_ill, 17073 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17074 new_ilm->ilm_notify_driver = B_TRUE; 17075 17076 new_ilm->ilm_ill = to_ill; 17077 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17078 (char *), "ilm", (void *), new_ilm); 17079 to_ill->ill_ilm_cnt++; 17080 17081 /* Add to the to_ill's list */ 17082 new_ilm->ilm_next = to_ill->ill_ilm; 17083 to_ill->ill_ilm = new_ilm; 17084 ASSERT(new_ilm->ilm_ipif == NULL); 17085 } 17086 if (ilm->ilm_refcnt == 0) { 17087 goto bottom; 17088 } else { 17089 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17090 CLEAR_SLIST(new_ilm->ilm_filter); 17091 ilmp = &ilm->ilm_next; 17092 } 17093 continue; 17094 } else { 17095 /* 17096 * ifindex = 0 means, move everything pointing at 17097 * from_ill. We are doing this becuase ill has 17098 * either FAILED or became INACTIVE. 17099 * 17100 * As we would like to move things later back to 17101 * from_ill, we want to retain the identity of this 17102 * ilm. Thus, we don't blindly increment the reference 17103 * count on the ilms matching the address alone. We 17104 * need to match on the ilm_orig_index also. new_ilm 17105 * was obtained by matching ilm_orig_index also. 17106 */ 17107 if (new_ilm != NULL) { 17108 /* 17109 * This is possible only if a previous restore 17110 * was incomplete i.e restore to 17111 * ilm_orig_ifindex left some ilms because 17112 * of some failures. Thus when we are failing 17113 * again, we might find our old friends there. 17114 */ 17115 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17116 " on %s, group address %s\n", 17117 to_ill->ill_name, 17118 inet_ntop(AF_INET6, 17119 &ilm->ilm_v6addr, buf, 17120 sizeof (buf)))); 17121 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17122 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17123 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17124 new_ilm->ilm_is_new = B_TRUE; 17125 } 17126 } else { 17127 if (from_ill->ill_ilm_walker_cnt != 0) { 17128 new_ilm = (ilm_t *) 17129 mi_zalloc(sizeof (ilm_t)); 17130 if (new_ilm == NULL) { 17131 ip0dbg(("ilm_move_v6: " 17132 "FAILOVER of IPv6" 17133 " multicast address %s : " 17134 "from %s to" 17135 " %s failed : ENOMEM \n", 17136 inet_ntop(AF_INET6, 17137 &ilm->ilm_v6addr, buf, 17138 sizeof (buf)), 17139 from_ill->ill_name, 17140 to_ill->ill_name)); 17141 17142 ilmp = &ilm->ilm_next; 17143 continue; 17144 } 17145 *new_ilm = *ilm; 17146 new_ilm->ilm_filter = NULL; 17147 } else { 17148 *ilmp = ilm->ilm_next; 17149 DTRACE_PROBE3(ill__decr__cnt, 17150 (ill_t *), from_ill, 17151 (char *), "ilm", (void *), ilm); 17152 ASSERT(from_ill->ill_ilm_cnt > 0); 17153 from_ill->ill_ilm_cnt--; 17154 17155 new_ilm = ilm; 17156 } 17157 /* 17158 * If the to_ill has not joined this 17159 * group we need to tell the driver in 17160 * ill_send_multicast_reqs. 17161 */ 17162 if (ilm_lookup_ill_v6(to_ill, 17163 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17164 new_ilm->ilm_notify_driver = B_TRUE; 17165 17166 /* Add to the to_ill's list */ 17167 new_ilm->ilm_next = to_ill->ill_ilm; 17168 to_ill->ill_ilm = new_ilm; 17169 ASSERT(ilm->ilm_ipif == NULL); 17170 new_ilm->ilm_ill = to_ill; 17171 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17172 (char *), "ilm", (void *), new_ilm); 17173 to_ill->ill_ilm_cnt++; 17174 new_ilm->ilm_is_new = B_TRUE; 17175 } 17176 17177 } 17178 17179 bottom: 17180 /* 17181 * Revert multicast filter state to (EXCLUDE, NULL). 17182 * new_ilm->ilm_is_new should already be set if needed. 17183 */ 17184 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17185 CLEAR_SLIST(new_ilm->ilm_filter); 17186 /* 17187 * We allocated/got a new ilm, free the old one. 17188 */ 17189 if (new_ilm != ilm) { 17190 if (from_ill->ill_ilm_walker_cnt == 0) { 17191 *ilmp = ilm->ilm_next; 17192 17193 ASSERT(ilm->ilm_ipif == NULL); /* ipv6 */ 17194 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), 17195 from_ill, (char *), "ilm", (void *), ilm); 17196 ASSERT(from_ill->ill_ilm_cnt > 0); 17197 from_ill->ill_ilm_cnt--; 17198 17199 ilm_inactive(ilm); /* frees this ilm */ 17200 17201 } else { 17202 ilm->ilm_flags |= ILM_DELETED; 17203 from_ill->ill_ilm_cleanup_reqd = 1; 17204 ilmp = &ilm->ilm_next; 17205 } 17206 } 17207 } 17208 } 17209 17210 /* 17211 * Move all the multicast memberships to to_ill. Called when 17212 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17213 * different from IPv6 counterpart as multicast memberships are associated 17214 * with ills in IPv6. This function is called after every ipif is moved 17215 * unlike IPv6, where it is moved only once. 17216 */ 17217 static void 17218 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17219 { 17220 ilm_t *ilm; 17221 ilm_t *ilm_next; 17222 ilm_t *new_ilm; 17223 ilm_t **ilmp; 17224 ip_stack_t *ipst = from_ill->ill_ipst; 17225 17226 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17227 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17228 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17229 17230 ilmp = &from_ill->ill_ilm; 17231 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17232 ilm_next = ilm->ilm_next; 17233 17234 if (ilm->ilm_flags & ILM_DELETED) { 17235 ilmp = &ilm->ilm_next; 17236 continue; 17237 } 17238 17239 ASSERT(ilm->ilm_ipif != NULL); 17240 17241 if (ilm->ilm_ipif != ipif) { 17242 ilmp = &ilm->ilm_next; 17243 continue; 17244 } 17245 17246 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17247 htonl(INADDR_ALLHOSTS_GROUP)) { 17248 new_ilm = ilm_lookup_ipif(ipif, 17249 V4_PART_OF_V6(ilm->ilm_v6addr)); 17250 if (new_ilm != NULL) { 17251 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17252 /* 17253 * We still need to deal with the from_ill. 17254 */ 17255 new_ilm->ilm_is_new = B_TRUE; 17256 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17257 CLEAR_SLIST(new_ilm->ilm_filter); 17258 ASSERT(ilm->ilm_ipif == ipif); 17259 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17260 if (from_ill->ill_ilm_walker_cnt == 0) { 17261 DTRACE_PROBE3(ill__decr__cnt, 17262 (ill_t *), from_ill, 17263 (char *), "ilm", (void *), ilm); 17264 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17265 } 17266 goto delete_ilm; 17267 } 17268 /* 17269 * If we could not find one e.g. ipif is 17270 * still down on to_ill, we add this ilm 17271 * on ill_new to preserve the reference 17272 * count. 17273 */ 17274 } 17275 /* 17276 * When ipifs move, ilms always move with it 17277 * to the NEW ill. Thus we should never be 17278 * able to find ilm till we really move it here. 17279 */ 17280 ASSERT(ilm_lookup_ipif(ipif, 17281 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17282 17283 if (from_ill->ill_ilm_walker_cnt != 0) { 17284 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17285 if (new_ilm == NULL) { 17286 char buf[INET6_ADDRSTRLEN]; 17287 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17288 " multicast address %s : " 17289 "from %s to" 17290 " %s failed : ENOMEM \n", 17291 inet_ntop(AF_INET, 17292 &ilm->ilm_v6addr, buf, 17293 sizeof (buf)), 17294 from_ill->ill_name, 17295 to_ill->ill_name)); 17296 17297 ilmp = &ilm->ilm_next; 17298 continue; 17299 } 17300 *new_ilm = *ilm; 17301 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ipif, 17302 (char *), "ilm", (void *), ilm); 17303 new_ilm->ilm_ipif->ipif_ilm_cnt++; 17304 /* We don't want new_ilm linked to ilm's filter list */ 17305 new_ilm->ilm_filter = NULL; 17306 } else { 17307 /* Remove from the list */ 17308 *ilmp = ilm->ilm_next; 17309 new_ilm = ilm; 17310 } 17311 17312 /* 17313 * If we have never joined this group on the to_ill 17314 * make sure we tell the driver. 17315 */ 17316 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17317 ALL_ZONES) == NULL) 17318 new_ilm->ilm_notify_driver = B_TRUE; 17319 17320 /* Add to the to_ill's list */ 17321 new_ilm->ilm_next = to_ill->ill_ilm; 17322 to_ill->ill_ilm = new_ilm; 17323 new_ilm->ilm_is_new = B_TRUE; 17324 17325 /* 17326 * Revert multicast filter state to (EXCLUDE, NULL) 17327 */ 17328 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17329 CLEAR_SLIST(new_ilm->ilm_filter); 17330 17331 /* 17332 * Delete only if we have allocated a new ilm. 17333 */ 17334 if (new_ilm != ilm) { 17335 delete_ilm: 17336 if (from_ill->ill_ilm_walker_cnt == 0) { 17337 /* Remove from the list */ 17338 *ilmp = ilm->ilm_next; 17339 ilm->ilm_next = NULL; 17340 DTRACE_PROBE3(ipif__decr__cnt, 17341 (ipif_t *), ilm->ilm_ipif, 17342 (char *), "ilm", (void *), ilm); 17343 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17344 ilm->ilm_ipif->ipif_ilm_cnt--; 17345 ilm_inactive(ilm); 17346 } else { 17347 ilm->ilm_flags |= ILM_DELETED; 17348 from_ill->ill_ilm_cleanup_reqd = 1; 17349 ilmp = &ilm->ilm_next; 17350 } 17351 } 17352 } 17353 } 17354 17355 static uint_t 17356 ipif_get_id(ill_t *ill, uint_t id) 17357 { 17358 uint_t unit; 17359 ipif_t *tipif; 17360 boolean_t found = B_FALSE; 17361 ip_stack_t *ipst = ill->ill_ipst; 17362 17363 /* 17364 * During failback, we want to go back to the same id 17365 * instead of the smallest id so that the original 17366 * configuration is maintained. id is non-zero in that 17367 * case. 17368 */ 17369 if (id != 0) { 17370 /* 17371 * While failing back, if we still have an ipif with 17372 * MAX_ADDRS_PER_IF, it means this will be replaced 17373 * as soon as we return from this function. It was 17374 * to set to MAX_ADDRS_PER_IF by the caller so that 17375 * we can choose the smallest id. Thus we return zero 17376 * in that case ignoring the hint. 17377 */ 17378 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17379 return (0); 17380 for (tipif = ill->ill_ipif; tipif != NULL; 17381 tipif = tipif->ipif_next) { 17382 if (tipif->ipif_id == id) { 17383 found = B_TRUE; 17384 break; 17385 } 17386 } 17387 /* 17388 * If somebody already plumbed another logical 17389 * with the same id, we won't be able to find it. 17390 */ 17391 if (!found) 17392 return (id); 17393 } 17394 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17395 found = B_FALSE; 17396 for (tipif = ill->ill_ipif; tipif != NULL; 17397 tipif = tipif->ipif_next) { 17398 if (tipif->ipif_id == unit) { 17399 found = B_TRUE; 17400 break; 17401 } 17402 } 17403 if (!found) 17404 break; 17405 } 17406 return (unit); 17407 } 17408 17409 /* ARGSUSED */ 17410 static int 17411 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17412 ipif_t **rep_ipif_ptr) 17413 { 17414 ill_t *from_ill; 17415 ipif_t *rep_ipif; 17416 uint_t unit; 17417 int err = 0; 17418 ipif_t *to_ipif; 17419 struct iocblk *iocp; 17420 boolean_t failback_cmd; 17421 boolean_t remove_ipif; 17422 int rc; 17423 ip_stack_t *ipst; 17424 17425 ASSERT(IAM_WRITER_ILL(to_ill)); 17426 ASSERT(IAM_WRITER_IPIF(ipif)); 17427 17428 iocp = (struct iocblk *)mp->b_rptr; 17429 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17430 remove_ipif = B_FALSE; 17431 17432 from_ill = ipif->ipif_ill; 17433 ipst = from_ill->ill_ipst; 17434 17435 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17436 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17437 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17438 17439 /* 17440 * Don't move LINK LOCAL addresses as they are tied to 17441 * physical interface. 17442 */ 17443 if (from_ill->ill_isv6 && 17444 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17445 ipif->ipif_was_up = B_FALSE; 17446 IPIF_UNMARK_MOVING(ipif); 17447 return (0); 17448 } 17449 17450 /* 17451 * We set the ipif_id to maximum so that the search for 17452 * ipif_id will pick the lowest number i.e 0 in the 17453 * following 2 cases : 17454 * 17455 * 1) We have a replacement ipif at the head of to_ill. 17456 * We can't remove it yet as we can exceed ip_addrs_per_if 17457 * on to_ill and hence the MOVE might fail. We want to 17458 * remove it only if we could move the ipif. Thus, by 17459 * setting it to the MAX value, we make the search in 17460 * ipif_get_id return the zeroth id. 17461 * 17462 * 2) When DR pulls out the NIC and re-plumbs the interface, 17463 * we might just have a zero address plumbed on the ipif 17464 * with zero id in the case of IPv4. We remove that while 17465 * doing the failback. We want to remove it only if we 17466 * could move the ipif. Thus, by setting it to the MAX 17467 * value, we make the search in ipif_get_id return the 17468 * zeroth id. 17469 * 17470 * Both (1) and (2) are done only when when we are moving 17471 * an ipif (either due to failover/failback) which originally 17472 * belonged to this interface i.e the ipif_orig_ifindex is 17473 * the same as to_ill's ifindex. This is needed so that 17474 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17475 * from B -> A (B is being removed from the group) and 17476 * FAILBACK from A -> B restores the original configuration. 17477 * Without the check for orig_ifindex, the second FAILOVER 17478 * could make the ipif belonging to B replace the A's zeroth 17479 * ipif and the subsequent failback re-creating the replacement 17480 * ipif again. 17481 * 17482 * NOTE : We created the replacement ipif when we did a 17483 * FAILOVER (See below). We could check for FAILBACK and 17484 * then look for replacement ipif to be removed. But we don't 17485 * want to do that because we wan't to allow the possibility 17486 * of a FAILOVER from A -> B (which creates the replacement ipif), 17487 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17488 * from B -> A. 17489 */ 17490 to_ipif = to_ill->ill_ipif; 17491 if ((to_ill->ill_phyint->phyint_ifindex == 17492 ipif->ipif_orig_ifindex) && 17493 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17494 ASSERT(to_ipif->ipif_id == 0); 17495 remove_ipif = B_TRUE; 17496 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17497 } 17498 /* 17499 * Find the lowest logical unit number on the to_ill. 17500 * If we are failing back, try to get the original id 17501 * rather than the lowest one so that the original 17502 * configuration is maintained. 17503 * 17504 * XXX need a better scheme for this. 17505 */ 17506 if (failback_cmd) { 17507 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17508 } else { 17509 unit = ipif_get_id(to_ill, 0); 17510 } 17511 17512 /* Reset back to zero in case we fail below */ 17513 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17514 to_ipif->ipif_id = 0; 17515 17516 if (unit == ipst->ips_ip_addrs_per_if) { 17517 ipif->ipif_was_up = B_FALSE; 17518 IPIF_UNMARK_MOVING(ipif); 17519 return (EINVAL); 17520 } 17521 17522 /* 17523 * ipif is ready to move from "from_ill" to "to_ill". 17524 * 17525 * 1) If we are moving ipif with id zero, create a 17526 * replacement ipif for this ipif on from_ill. If this fails 17527 * fail the MOVE operation. 17528 * 17529 * 2) Remove the replacement ipif on to_ill if any. 17530 * We could remove the replacement ipif when we are moving 17531 * the ipif with id zero. But what if somebody already 17532 * unplumbed it ? Thus we always remove it if it is present. 17533 * We want to do it only if we are sure we are going to 17534 * move the ipif to to_ill which is why there are no 17535 * returns due to error till ipif is linked to to_ill. 17536 * Note that the first ipif that we failback will always 17537 * be zero if it is present. 17538 */ 17539 if (ipif->ipif_id == 0) { 17540 ipaddr_t inaddr_any = INADDR_ANY; 17541 17542 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17543 if (rep_ipif == NULL) { 17544 ipif->ipif_was_up = B_FALSE; 17545 IPIF_UNMARK_MOVING(ipif); 17546 return (ENOMEM); 17547 } 17548 *rep_ipif = ipif_zero; 17549 /* 17550 * Before we put the ipif on the list, store the addresses 17551 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17552 * assumes so. This logic is not any different from what 17553 * ipif_allocate does. 17554 */ 17555 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17556 &rep_ipif->ipif_v6lcl_addr); 17557 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17558 &rep_ipif->ipif_v6src_addr); 17559 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17560 &rep_ipif->ipif_v6subnet); 17561 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17562 &rep_ipif->ipif_v6net_mask); 17563 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17564 &rep_ipif->ipif_v6brd_addr); 17565 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17566 &rep_ipif->ipif_v6pp_dst_addr); 17567 /* 17568 * We mark IPIF_NOFAILOVER so that this can never 17569 * move. 17570 */ 17571 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17572 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17573 rep_ipif->ipif_replace_zero = B_TRUE; 17574 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17575 MUTEX_DEFAULT, NULL); 17576 rep_ipif->ipif_id = 0; 17577 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17578 rep_ipif->ipif_ill = from_ill; 17579 rep_ipif->ipif_orig_ifindex = 17580 from_ill->ill_phyint->phyint_ifindex; 17581 /* Insert at head */ 17582 rep_ipif->ipif_next = from_ill->ill_ipif; 17583 from_ill->ill_ipif = rep_ipif; 17584 /* 17585 * We don't really care to let apps know about 17586 * this interface. 17587 */ 17588 } 17589 17590 if (remove_ipif) { 17591 /* 17592 * We set to a max value above for this case to get 17593 * id zero. ASSERT that we did get one. 17594 */ 17595 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17596 rep_ipif = to_ipif; 17597 to_ill->ill_ipif = rep_ipif->ipif_next; 17598 rep_ipif->ipif_next = NULL; 17599 /* 17600 * If some apps scanned and find this interface, 17601 * it is time to let them know, so that they can 17602 * delete it. 17603 */ 17604 17605 *rep_ipif_ptr = rep_ipif; 17606 } 17607 17608 /* Get it out of the ILL interface list. */ 17609 ipif_remove(ipif, B_FALSE); 17610 17611 /* Assign the new ill */ 17612 ipif->ipif_ill = to_ill; 17613 ipif->ipif_id = unit; 17614 /* id has already been checked */ 17615 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17616 ASSERT(rc == 0); 17617 /* Let SCTP update its list */ 17618 sctp_move_ipif(ipif, from_ill, to_ill); 17619 /* 17620 * Handle the failover and failback of ipif_t between 17621 * ill_t that have differing maximum mtu values. 17622 */ 17623 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17624 if (ipif->ipif_saved_mtu == 0) { 17625 /* 17626 * As this ipif_t is moving to an ill_t 17627 * that has a lower ill_max_mtu, its 17628 * ipif_mtu needs to be saved so it can 17629 * be restored during failback or during 17630 * failover to an ill_t which has a 17631 * higher ill_max_mtu. 17632 */ 17633 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17634 ipif->ipif_mtu = to_ill->ill_max_mtu; 17635 } else { 17636 /* 17637 * The ipif_t is, once again, moving to 17638 * an ill_t that has a lower maximum mtu 17639 * value. 17640 */ 17641 ipif->ipif_mtu = to_ill->ill_max_mtu; 17642 } 17643 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17644 ipif->ipif_saved_mtu != 0) { 17645 /* 17646 * The mtu of this ipif_t had to be reduced 17647 * during an earlier failover; this is an 17648 * opportunity for it to be increased (either as 17649 * part of another failover or a failback). 17650 */ 17651 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17652 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17653 ipif->ipif_saved_mtu = 0; 17654 } else { 17655 ipif->ipif_mtu = to_ill->ill_max_mtu; 17656 } 17657 } 17658 17659 /* 17660 * We preserve all the other fields of the ipif including 17661 * ipif_saved_ire_mp. The routes that are saved here will 17662 * be recreated on the new interface and back on the old 17663 * interface when we move back. 17664 */ 17665 ASSERT(ipif->ipif_arp_del_mp == NULL); 17666 17667 return (err); 17668 } 17669 17670 static int 17671 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17672 int ifindex, ipif_t **rep_ipif_ptr) 17673 { 17674 ipif_t *mipif; 17675 ipif_t *ipif_next; 17676 int err; 17677 17678 /* 17679 * We don't really try to MOVE back things if some of the 17680 * operations fail. The daemon will take care of moving again 17681 * later on. 17682 */ 17683 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17684 ipif_next = mipif->ipif_next; 17685 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17686 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17687 17688 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17689 17690 /* 17691 * When the MOVE fails, it is the job of the 17692 * application to take care of this properly 17693 * i.e try again if it is ENOMEM. 17694 */ 17695 if (mipif->ipif_ill != from_ill) { 17696 /* 17697 * ipif has moved. 17698 * 17699 * Move the multicast memberships associated 17700 * with this ipif to the new ill. For IPv6, we 17701 * do it once after all the ipifs are moved 17702 * (in ill_move) as they are not associated 17703 * with ipifs. 17704 * 17705 * We need to move the ilms as the ipif has 17706 * already been moved to a new ill even 17707 * in the case of errors. Neither 17708 * ilm_free(ipif) will find the ilm 17709 * when somebody unplumbs this ipif nor 17710 * ilm_delete(ilm) will be able to find the 17711 * ilm, if we don't move now. 17712 */ 17713 if (!from_ill->ill_isv6) 17714 ilm_move_v4(from_ill, to_ill, mipif); 17715 } 17716 17717 if (err != 0) 17718 return (err); 17719 } 17720 } 17721 return (0); 17722 } 17723 17724 static int 17725 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17726 { 17727 int ifindex; 17728 int err; 17729 struct iocblk *iocp; 17730 ipif_t *ipif; 17731 ipif_t *rep_ipif_ptr = NULL; 17732 ipif_t *from_ipif = NULL; 17733 boolean_t check_rep_if = B_FALSE; 17734 ip_stack_t *ipst = from_ill->ill_ipst; 17735 17736 iocp = (struct iocblk *)mp->b_rptr; 17737 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17738 /* 17739 * Move everything pointing at from_ill to to_ill. 17740 * We acheive this by passing in 0 as ifindex. 17741 */ 17742 ifindex = 0; 17743 } else { 17744 /* 17745 * Move everything pointing at from_ill whose original 17746 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17747 * We acheive this by passing in ifindex rather than 0. 17748 * Multicast vifs, ilgs move implicitly because ipifs move. 17749 */ 17750 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17751 ifindex = to_ill->ill_phyint->phyint_ifindex; 17752 } 17753 17754 /* 17755 * Determine if there is at least one ipif that would move from 17756 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17757 * ipif (if it exists) on the to_ill would be consumed as a result of 17758 * the move, in which case we need to quiesce the replacement ipif also. 17759 */ 17760 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17761 from_ipif = from_ipif->ipif_next) { 17762 if (((ifindex == 0) || 17763 (ifindex == from_ipif->ipif_orig_ifindex)) && 17764 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17765 check_rep_if = B_TRUE; 17766 break; 17767 } 17768 } 17769 17770 17771 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17772 17773 GRAB_ILL_LOCKS(from_ill, to_ill); 17774 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17775 (void) ipsq_pending_mp_add(NULL, ipif, q, 17776 mp, ILL_MOVE_OK); 17777 RELEASE_ILL_LOCKS(from_ill, to_ill); 17778 return (EINPROGRESS); 17779 } 17780 17781 /* Check if the replacement ipif is quiescent to delete */ 17782 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17783 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17784 to_ill->ill_ipif->ipif_state_flags |= 17785 IPIF_MOVING | IPIF_CHANGING; 17786 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17787 (void) ipsq_pending_mp_add(NULL, ipif, q, 17788 mp, ILL_MOVE_OK); 17789 RELEASE_ILL_LOCKS(from_ill, to_ill); 17790 return (EINPROGRESS); 17791 } 17792 } 17793 RELEASE_ILL_LOCKS(from_ill, to_ill); 17794 17795 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17796 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17797 GRAB_ILL_LOCKS(from_ill, to_ill); 17798 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17799 17800 /* ilm_move is done inside ipif_move for IPv4 */ 17801 if (err == 0 && from_ill->ill_isv6) 17802 ilm_move_v6(from_ill, to_ill, ifindex); 17803 17804 RELEASE_ILL_LOCKS(from_ill, to_ill); 17805 rw_exit(&ipst->ips_ill_g_lock); 17806 17807 /* 17808 * send rts messages and multicast messages. 17809 */ 17810 if (rep_ipif_ptr != NULL) { 17811 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17812 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17813 rep_ipif_ptr->ipif_recovery_id = 0; 17814 } 17815 ip_rts_ifmsg(rep_ipif_ptr); 17816 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17817 #ifdef DEBUG 17818 ipif_trace_cleanup(rep_ipif_ptr); 17819 #endif 17820 mi_free(rep_ipif_ptr); 17821 } 17822 17823 conn_move_ill(from_ill, to_ill, ifindex); 17824 17825 return (err); 17826 } 17827 17828 /* 17829 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17830 * Also checks for the validity of the arguments. 17831 * Note: We are already exclusive inside the from group. 17832 * It is upto the caller to release refcnt on the to_ill's. 17833 */ 17834 static int 17835 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17836 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17837 { 17838 int dst_index; 17839 ipif_t *ipif_v4, *ipif_v6; 17840 struct lifreq *lifr; 17841 mblk_t *mp1; 17842 boolean_t exists; 17843 sin_t *sin; 17844 int err = 0; 17845 ip_stack_t *ipst; 17846 17847 if (CONN_Q(q)) 17848 ipst = CONNQ_TO_IPST(q); 17849 else 17850 ipst = ILLQ_TO_IPST(q); 17851 17852 17853 if ((mp1 = mp->b_cont) == NULL) 17854 return (EPROTO); 17855 17856 if ((mp1 = mp1->b_cont) == NULL) 17857 return (EPROTO); 17858 17859 lifr = (struct lifreq *)mp1->b_rptr; 17860 sin = (sin_t *)&lifr->lifr_addr; 17861 17862 /* 17863 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17864 * specific operations. 17865 */ 17866 if (sin->sin_family != AF_UNSPEC) 17867 return (EINVAL); 17868 17869 /* 17870 * Get ipif with id 0. We are writer on the from ill. So we can pass 17871 * NULLs for the last 4 args and we know the lookup won't fail 17872 * with EINPROGRESS. 17873 */ 17874 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17875 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17876 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17877 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17878 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17879 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17880 17881 if (ipif_v4 == NULL && ipif_v6 == NULL) 17882 return (ENXIO); 17883 17884 if (ipif_v4 != NULL) { 17885 ASSERT(ipif_v4->ipif_refcnt != 0); 17886 if (ipif_v4->ipif_id != 0) { 17887 err = EINVAL; 17888 goto done; 17889 } 17890 17891 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17892 *ill_from_v4 = ipif_v4->ipif_ill; 17893 } 17894 17895 if (ipif_v6 != NULL) { 17896 ASSERT(ipif_v6->ipif_refcnt != 0); 17897 if (ipif_v6->ipif_id != 0) { 17898 err = EINVAL; 17899 goto done; 17900 } 17901 17902 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17903 *ill_from_v6 = ipif_v6->ipif_ill; 17904 } 17905 17906 err = 0; 17907 dst_index = lifr->lifr_movetoindex; 17908 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17909 q, mp, ip_process_ioctl, &err, ipst); 17910 if (err != 0) { 17911 /* 17912 * There could be only v6. 17913 */ 17914 if (err != ENXIO) 17915 goto done; 17916 err = 0; 17917 } 17918 17919 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17920 q, mp, ip_process_ioctl, &err, ipst); 17921 if (err != 0) { 17922 if (err != ENXIO) 17923 goto done; 17924 if (*ill_to_v4 == NULL) { 17925 err = ENXIO; 17926 goto done; 17927 } 17928 err = 0; 17929 } 17930 17931 /* 17932 * If we have something to MOVE i.e "from" not NULL, 17933 * "to" should be non-NULL. 17934 */ 17935 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17936 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17937 err = EINVAL; 17938 } 17939 17940 done: 17941 if (ipif_v4 != NULL) 17942 ipif_refrele(ipif_v4); 17943 if (ipif_v6 != NULL) 17944 ipif_refrele(ipif_v6); 17945 return (err); 17946 } 17947 17948 /* 17949 * FAILOVER and FAILBACK are modelled as MOVE operations. 17950 * 17951 * We don't check whether the MOVE is within the same group or 17952 * not, because this ioctl can be used as a generic mechanism 17953 * to failover from interface A to B, though things will function 17954 * only if they are really part of the same group. Moreover, 17955 * all ipifs may be down and hence temporarily out of the group. 17956 * 17957 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17958 * down first and then V6. For each we wait for the ipif's to become quiescent. 17959 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17960 * have been deleted and there are no active references. Once quiescent the 17961 * ipif's are moved and brought up on the new ill. 17962 * 17963 * Normally the source ill and destination ill belong to the same IPMP group 17964 * and hence the same ipsq_t. In the event they don't belong to the same 17965 * same group the two ipsq's are first merged into one ipsq - that of the 17966 * to_ill. The multicast memberships on the source and destination ill cannot 17967 * change during the move operation since multicast joins/leaves also have to 17968 * execute on the same ipsq and are hence serialized. 17969 */ 17970 /* ARGSUSED */ 17971 int 17972 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17973 ip_ioctl_cmd_t *ipip, void *ifreq) 17974 { 17975 ill_t *ill_to_v4 = NULL; 17976 ill_t *ill_to_v6 = NULL; 17977 ill_t *ill_from_v4 = NULL; 17978 ill_t *ill_from_v6 = NULL; 17979 int err = 0; 17980 17981 /* 17982 * setup from and to ill's, we can get EINPROGRESS only for 17983 * to_ill's. 17984 */ 17985 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17986 &ill_to_v4, &ill_to_v6); 17987 17988 if (err != 0) { 17989 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17990 goto done; 17991 } 17992 17993 /* 17994 * nothing to do. 17995 */ 17996 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17997 goto done; 17998 } 17999 18000 /* 18001 * nothing to do. 18002 */ 18003 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18004 goto done; 18005 } 18006 18007 /* 18008 * Mark the ill as changing. 18009 * ILL_CHANGING flag is cleared when the ipif's are brought up 18010 * in ill_up_ipifs in case of error they are cleared below. 18011 */ 18012 18013 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18014 if (ill_from_v4 != NULL) 18015 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18016 if (ill_from_v6 != NULL) 18017 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18018 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18019 18020 /* 18021 * Make sure that both src and dst are 18022 * in the same syncq group. If not make it happen. 18023 * We are not holding any locks because we are the writer 18024 * on the from_ipsq and we will hold locks in ill_merge_groups 18025 * to protect to_ipsq against changing. 18026 */ 18027 if (ill_from_v4 != NULL) { 18028 if (ill_from_v4->ill_phyint->phyint_ipsq != 18029 ill_to_v4->ill_phyint->phyint_ipsq) { 18030 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18031 NULL, mp, q); 18032 goto err_ret; 18033 18034 } 18035 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18036 } else { 18037 18038 if (ill_from_v6->ill_phyint->phyint_ipsq != 18039 ill_to_v6->ill_phyint->phyint_ipsq) { 18040 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18041 NULL, mp, q); 18042 goto err_ret; 18043 18044 } 18045 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18046 } 18047 18048 /* 18049 * Now that the ipsq's have been merged and we are the writer 18050 * lets mark to_ill as changing as well. 18051 */ 18052 18053 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18054 if (ill_to_v4 != NULL) 18055 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18056 if (ill_to_v6 != NULL) 18057 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18058 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18059 18060 /* 18061 * Its ok for us to proceed with the move even if 18062 * ill_pending_mp is non null on one of the from ill's as the reply 18063 * should not be looking at the ipif, it should only care about the 18064 * ill itself. 18065 */ 18066 18067 /* 18068 * lets move ipv4 first. 18069 */ 18070 if (ill_from_v4 != NULL) { 18071 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18072 ill_from_v4->ill_move_in_progress = B_TRUE; 18073 ill_to_v4->ill_move_in_progress = B_TRUE; 18074 ill_to_v4->ill_move_peer = ill_from_v4; 18075 ill_from_v4->ill_move_peer = ill_to_v4; 18076 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18077 } 18078 18079 /* 18080 * Now lets move ipv6. 18081 */ 18082 if (err == 0 && ill_from_v6 != NULL) { 18083 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18084 ill_from_v6->ill_move_in_progress = B_TRUE; 18085 ill_to_v6->ill_move_in_progress = B_TRUE; 18086 ill_to_v6->ill_move_peer = ill_from_v6; 18087 ill_from_v6->ill_move_peer = ill_to_v6; 18088 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18089 } 18090 18091 err_ret: 18092 /* 18093 * EINPROGRESS means we are waiting for the ipif's that need to be 18094 * moved to become quiescent. 18095 */ 18096 if (err == EINPROGRESS) { 18097 goto done; 18098 } 18099 18100 /* 18101 * if err is set ill_up_ipifs will not be called 18102 * lets clear the flags. 18103 */ 18104 18105 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18106 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18107 /* 18108 * Some of the clearing may be redundant. But it is simple 18109 * not making any extra checks. 18110 */ 18111 if (ill_from_v6 != NULL) { 18112 ill_from_v6->ill_move_in_progress = B_FALSE; 18113 ill_from_v6->ill_move_peer = NULL; 18114 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18115 } 18116 if (ill_from_v4 != NULL) { 18117 ill_from_v4->ill_move_in_progress = B_FALSE; 18118 ill_from_v4->ill_move_peer = NULL; 18119 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18120 } 18121 if (ill_to_v6 != NULL) { 18122 ill_to_v6->ill_move_in_progress = B_FALSE; 18123 ill_to_v6->ill_move_peer = NULL; 18124 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18125 } 18126 if (ill_to_v4 != NULL) { 18127 ill_to_v4->ill_move_in_progress = B_FALSE; 18128 ill_to_v4->ill_move_peer = NULL; 18129 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18130 } 18131 18132 /* 18133 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18134 * Do this always to maintain proper state i.e even in case of errors. 18135 * As phyint_inactive looks at both v4 and v6 interfaces, 18136 * we need not call on both v4 and v6 interfaces. 18137 */ 18138 if (ill_from_v4 != NULL) { 18139 if ((ill_from_v4->ill_phyint->phyint_flags & 18140 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18141 phyint_inactive(ill_from_v4->ill_phyint); 18142 } 18143 } else if (ill_from_v6 != NULL) { 18144 if ((ill_from_v6->ill_phyint->phyint_flags & 18145 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18146 phyint_inactive(ill_from_v6->ill_phyint); 18147 } 18148 } 18149 18150 if (ill_to_v4 != NULL) { 18151 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18152 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18153 } 18154 } else if (ill_to_v6 != NULL) { 18155 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18156 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18157 } 18158 } 18159 18160 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18161 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18162 18163 no_err: 18164 /* 18165 * lets bring the interfaces up on the to_ill. 18166 */ 18167 if (err == 0) { 18168 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18169 q, mp); 18170 } 18171 18172 if (err == 0) { 18173 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18174 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18175 18176 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18177 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18178 } 18179 done: 18180 18181 if (ill_to_v4 != NULL) { 18182 ill_refrele(ill_to_v4); 18183 } 18184 if (ill_to_v6 != NULL) { 18185 ill_refrele(ill_to_v6); 18186 } 18187 18188 return (err); 18189 } 18190 18191 static void 18192 ill_dl_down(ill_t *ill) 18193 { 18194 /* 18195 * The ill is down; unbind but stay attached since we're still 18196 * associated with a PPA. If we have negotiated DLPI capabilites 18197 * with the data link service provider (IDS_OK) then reset them. 18198 * The interval between unbinding and rebinding is potentially 18199 * unbounded hence we cannot assume things will be the same. 18200 * The DLPI capabilities will be probed again when the data link 18201 * is brought up. 18202 */ 18203 mblk_t *mp = ill->ill_unbind_mp; 18204 18205 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18206 18207 ill->ill_unbind_mp = NULL; 18208 if (mp != NULL) { 18209 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18210 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18211 ill->ill_name)); 18212 mutex_enter(&ill->ill_lock); 18213 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18214 mutex_exit(&ill->ill_lock); 18215 /* 18216 * Reset the capabilities if the negotiation is done or is 18217 * still in progress. Note that ill_capability_reset() will 18218 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent 18219 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored. 18220 * 18221 * Further, reset ill_capab_reneg to be B_FALSE so that the 18222 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent 18223 * the capabilities renegotiation from happening. 18224 */ 18225 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 18226 ill_capability_reset(ill); 18227 ill->ill_capab_reneg = B_FALSE; 18228 18229 ill_dlpi_send(ill, mp); 18230 } 18231 18232 /* 18233 * Toss all of our multicast memberships. We could keep them, but 18234 * then we'd have to do bookkeeping of any joins and leaves performed 18235 * by the application while the the interface is down (we can't just 18236 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18237 * on a downed interface). 18238 */ 18239 ill_leave_multicast(ill); 18240 18241 mutex_enter(&ill->ill_lock); 18242 ill->ill_dl_up = 0; 18243 (void) ill_hook_event_create(ill, 0, NE_DOWN, NULL, 0); 18244 mutex_exit(&ill->ill_lock); 18245 } 18246 18247 static void 18248 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18249 { 18250 union DL_primitives *dlp; 18251 t_uscalar_t prim; 18252 18253 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18254 18255 dlp = (union DL_primitives *)mp->b_rptr; 18256 prim = dlp->dl_primitive; 18257 18258 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18259 dl_primstr(prim), prim, ill->ill_name)); 18260 18261 switch (prim) { 18262 case DL_PHYS_ADDR_REQ: 18263 { 18264 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18265 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18266 break; 18267 } 18268 case DL_BIND_REQ: 18269 mutex_enter(&ill->ill_lock); 18270 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18271 mutex_exit(&ill->ill_lock); 18272 break; 18273 } 18274 18275 /* 18276 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18277 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18278 * we only wait for the ACK of the DL_UNBIND_REQ. 18279 */ 18280 mutex_enter(&ill->ill_lock); 18281 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18282 (prim == DL_UNBIND_REQ)) { 18283 ill->ill_dlpi_pending = prim; 18284 } 18285 mutex_exit(&ill->ill_lock); 18286 18287 putnext(ill->ill_wq, mp); 18288 } 18289 18290 /* 18291 * Helper function for ill_dlpi_send(). 18292 */ 18293 /* ARGSUSED */ 18294 static void 18295 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18296 { 18297 ill_dlpi_send(q->q_ptr, mp); 18298 } 18299 18300 /* 18301 * Send a DLPI control message to the driver but make sure there 18302 * is only one outstanding message. Uses ill_dlpi_pending to tell 18303 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18304 * when an ACK or a NAK is received to process the next queued message. 18305 */ 18306 void 18307 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18308 { 18309 mblk_t **mpp; 18310 18311 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18312 18313 /* 18314 * To ensure that any DLPI requests for current exclusive operation 18315 * are always completely sent before any DLPI messages for other 18316 * operations, require writer access before enqueuing. 18317 */ 18318 if (!IAM_WRITER_ILL(ill)) { 18319 ill_refhold(ill); 18320 /* qwriter_ip() does the ill_refrele() */ 18321 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18322 NEW_OP, B_TRUE); 18323 return; 18324 } 18325 18326 mutex_enter(&ill->ill_lock); 18327 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18328 /* Must queue message. Tail insertion */ 18329 mpp = &ill->ill_dlpi_deferred; 18330 while (*mpp != NULL) 18331 mpp = &((*mpp)->b_next); 18332 18333 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18334 ill->ill_name)); 18335 18336 *mpp = mp; 18337 mutex_exit(&ill->ill_lock); 18338 return; 18339 } 18340 mutex_exit(&ill->ill_lock); 18341 ill_dlpi_dispatch(ill, mp); 18342 } 18343 18344 /* 18345 * Send all deferred DLPI messages without waiting for their ACKs. 18346 */ 18347 void 18348 ill_dlpi_send_deferred(ill_t *ill) 18349 { 18350 mblk_t *mp, *nextmp; 18351 18352 /* 18353 * Clear ill_dlpi_pending so that the message is not queued in 18354 * ill_dlpi_send(). 18355 */ 18356 mutex_enter(&ill->ill_lock); 18357 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18358 mp = ill->ill_dlpi_deferred; 18359 ill->ill_dlpi_deferred = NULL; 18360 mutex_exit(&ill->ill_lock); 18361 18362 for (; mp != NULL; mp = nextmp) { 18363 nextmp = mp->b_next; 18364 mp->b_next = NULL; 18365 ill_dlpi_send(ill, mp); 18366 } 18367 } 18368 18369 /* 18370 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18371 */ 18372 boolean_t 18373 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18374 { 18375 t_uscalar_t pending; 18376 18377 mutex_enter(&ill->ill_lock); 18378 if (ill->ill_dlpi_pending == prim) { 18379 mutex_exit(&ill->ill_lock); 18380 return (B_TRUE); 18381 } 18382 18383 /* 18384 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18385 * without waiting, so don't print any warnings in that case. 18386 */ 18387 if (ill->ill_state_flags & ILL_CONDEMNED) { 18388 mutex_exit(&ill->ill_lock); 18389 return (B_FALSE); 18390 } 18391 pending = ill->ill_dlpi_pending; 18392 mutex_exit(&ill->ill_lock); 18393 18394 if (pending == DL_PRIM_INVAL) { 18395 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18396 "received unsolicited ack for %s on %s\n", 18397 dl_primstr(prim), ill->ill_name); 18398 } else { 18399 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18400 "received unexpected ack for %s on %s (expecting %s)\n", 18401 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 18402 } 18403 return (B_FALSE); 18404 } 18405 18406 /* 18407 * Complete the current DLPI operation associated with `prim' on `ill' and 18408 * start the next queued DLPI operation (if any). If there are no queued DLPI 18409 * operations and the ill's current exclusive IPSQ operation has finished 18410 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 18411 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 18412 * the comments above ipsq_current_finish() for details. 18413 */ 18414 void 18415 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18416 { 18417 mblk_t *mp; 18418 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18419 18420 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18421 mutex_enter(&ill->ill_lock); 18422 18423 ASSERT(prim != DL_PRIM_INVAL); 18424 ASSERT(ill->ill_dlpi_pending == prim); 18425 18426 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18427 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18428 18429 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18430 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18431 18432 mutex_enter(&ipsq->ipsq_lock); 18433 if (ipsq->ipsq_current_done) 18434 ipsq->ipsq_current_ipif = NULL; 18435 mutex_exit(&ipsq->ipsq_lock); 18436 18437 cv_signal(&ill->ill_cv); 18438 mutex_exit(&ill->ill_lock); 18439 return; 18440 } 18441 18442 ill->ill_dlpi_deferred = mp->b_next; 18443 mp->b_next = NULL; 18444 mutex_exit(&ill->ill_lock); 18445 18446 ill_dlpi_dispatch(ill, mp); 18447 } 18448 18449 void 18450 conn_delete_ire(conn_t *connp, caddr_t arg) 18451 { 18452 ipif_t *ipif = (ipif_t *)arg; 18453 ire_t *ire; 18454 18455 /* 18456 * Look at the cached ires on conns which has pointers to ipifs. 18457 * We just call ire_refrele which clears up the reference 18458 * to ire. Called when a conn closes. Also called from ipif_free 18459 * to cleanup indirect references to the stale ipif via the cached ire. 18460 */ 18461 mutex_enter(&connp->conn_lock); 18462 ire = connp->conn_ire_cache; 18463 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18464 connp->conn_ire_cache = NULL; 18465 mutex_exit(&connp->conn_lock); 18466 IRE_REFRELE_NOTR(ire); 18467 return; 18468 } 18469 mutex_exit(&connp->conn_lock); 18470 18471 } 18472 18473 /* 18474 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18475 * of IREs. Those IREs may have been previously cached in the conn structure. 18476 * This ipcl_walk() walker function releases all references to such IREs based 18477 * on the condemned flag. 18478 */ 18479 /* ARGSUSED */ 18480 void 18481 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18482 { 18483 ire_t *ire; 18484 18485 mutex_enter(&connp->conn_lock); 18486 ire = connp->conn_ire_cache; 18487 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18488 connp->conn_ire_cache = NULL; 18489 mutex_exit(&connp->conn_lock); 18490 IRE_REFRELE_NOTR(ire); 18491 return; 18492 } 18493 mutex_exit(&connp->conn_lock); 18494 } 18495 18496 /* 18497 * Take down a specific interface, but don't lose any information about it. 18498 * Also delete interface from its interface group (ifgrp). 18499 * (Always called as writer.) 18500 * This function goes through the down sequence even if the interface is 18501 * already down. There are 2 reasons. 18502 * a. Currently we permit interface routes that depend on down interfaces 18503 * to be added. This behaviour itself is questionable. However it appears 18504 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18505 * time. We go thru the cleanup in order to remove these routes. 18506 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18507 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18508 * down, but we need to cleanup i.e. do ill_dl_down and 18509 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18510 * 18511 * IP-MT notes: 18512 * 18513 * Model of reference to interfaces. 18514 * 18515 * The following members in ipif_t track references to the ipif. 18516 * int ipif_refcnt; Active reference count 18517 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18518 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 18519 * 18520 * The following members in ill_t track references to the ill. 18521 * int ill_refcnt; active refcnt 18522 * uint_t ill_ire_cnt; Number of ires referencing ill 18523 * uint_t ill_nce_cnt; Number of nces referencing ill 18524 * uint_t ill_ilm_cnt; Number of ilms referencing ill 18525 * 18526 * Reference to an ipif or ill can be obtained in any of the following ways. 18527 * 18528 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18529 * Pointers to ipif / ill from other data structures viz ire and conn. 18530 * Implicit reference to the ipif / ill by holding a reference to the ire. 18531 * 18532 * The ipif/ill lookup functions return a reference held ipif / ill. 18533 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18534 * This is a purely dynamic reference count associated with threads holding 18535 * references to the ipif / ill. Pointers from other structures do not 18536 * count towards this reference count. 18537 * 18538 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 18539 * associated with the ipif/ill. This is incremented whenever a new 18540 * ire is created referencing the ipif/ill. This is done atomically inside 18541 * ire_add_v[46] where the ire is actually added to the ire hash table. 18542 * The count is decremented in ire_inactive where the ire is destroyed. 18543 * 18544 * nce's reference ill's thru nce_ill and the count of nce's associated with 18545 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18546 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18547 * table. Similarly it is decremented in ndp_inactive() where the nce 18548 * is destroyed. 18549 * 18550 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 18551 * is incremented in ilm_add_v6() and decremented before the ilm is freed 18552 * in ilm_walker_cleanup() or ilm_delete(). 18553 * 18554 * Flow of ioctls involving interface down/up 18555 * 18556 * The following is the sequence of an attempt to set some critical flags on an 18557 * up interface. 18558 * ip_sioctl_flags 18559 * ipif_down 18560 * wait for ipif to be quiescent 18561 * ipif_down_tail 18562 * ip_sioctl_flags_tail 18563 * 18564 * All set ioctls that involve down/up sequence would have a skeleton similar 18565 * to the above. All the *tail functions are called after the refcounts have 18566 * dropped to the appropriate values. 18567 * 18568 * The mechanism to quiesce an ipif is as follows. 18569 * 18570 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18571 * on the ipif. Callers either pass a flag requesting wait or the lookup 18572 * functions will return NULL. 18573 * 18574 * Delete all ires referencing this ipif 18575 * 18576 * Any thread attempting to do an ipif_refhold on an ipif that has been 18577 * obtained thru a cached pointer will first make sure that 18578 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18579 * increment the refcount. 18580 * 18581 * The above guarantees that the ipif refcount will eventually come down to 18582 * zero and the ipif will quiesce, once all threads that currently hold a 18583 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18584 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18585 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 18586 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 18587 * in ip.h 18588 * 18589 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18590 * 18591 * Threads trying to lookup an ipif or ill can pass a flag requesting 18592 * wait and restart if the ipif / ill cannot be looked up currently. 18593 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18594 * failure if the ipif is currently undergoing an exclusive operation, and 18595 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18596 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18597 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18598 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18599 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18600 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18601 * until we release the ipsq_lock, even though the the ill/ipif state flags 18602 * can change after we drop the ill_lock. 18603 * 18604 * An attempt to send out a packet using an ipif that is currently 18605 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18606 * operation and restart it later when the exclusive condition on the ipif ends. 18607 * This is an example of not passing the wait flag to the lookup functions. For 18608 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18609 * out a multicast packet on that ipif will fail while the ipif is 18610 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18611 * currently IPIF_CHANGING will also fail. 18612 */ 18613 int 18614 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18615 { 18616 ill_t *ill = ipif->ipif_ill; 18617 phyint_t *phyi; 18618 conn_t *connp; 18619 boolean_t success; 18620 boolean_t ipif_was_up = B_FALSE; 18621 ip_stack_t *ipst = ill->ill_ipst; 18622 18623 ASSERT(IAM_WRITER_IPIF(ipif)); 18624 18625 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18626 18627 if (ipif->ipif_flags & IPIF_UP) { 18628 mutex_enter(&ill->ill_lock); 18629 ipif->ipif_flags &= ~IPIF_UP; 18630 ASSERT(ill->ill_ipif_up_count > 0); 18631 --ill->ill_ipif_up_count; 18632 mutex_exit(&ill->ill_lock); 18633 ipif_was_up = B_TRUE; 18634 /* Update status in SCTP's list */ 18635 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18636 } 18637 18638 /* 18639 * Blow away memberships we established in ipif_multicast_up(). 18640 */ 18641 ipif_multicast_down(ipif); 18642 18643 /* 18644 * Remove from the mapping for __sin6_src_id. We insert only 18645 * when the address is not INADDR_ANY. As IPv4 addresses are 18646 * stored as mapped addresses, we need to check for mapped 18647 * INADDR_ANY also. 18648 */ 18649 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18650 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18651 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18652 int err; 18653 18654 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18655 ipif->ipif_zoneid, ipst); 18656 if (err != 0) { 18657 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18658 } 18659 } 18660 18661 /* 18662 * Before we delete the ill from the group (if any), we need 18663 * to make sure that we delete all the routes dependent on 18664 * this and also any ipifs dependent on this ipif for 18665 * source address. We need to do before we delete from 18666 * the group because 18667 * 18668 * 1) ipif_down_delete_ire de-references ill->ill_group. 18669 * 18670 * 2) ipif_update_other_ipifs needs to walk the whole group 18671 * for re-doing source address selection. Note that 18672 * ipif_select_source[_v6] called from 18673 * ipif_update_other_ipifs[_v6] will not pick this ipif 18674 * because we have already marked down here i.e cleared 18675 * IPIF_UP. 18676 */ 18677 if (ipif->ipif_isv6) { 18678 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18679 ipst); 18680 } else { 18681 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18682 ipst); 18683 } 18684 18685 /* 18686 * Cleaning up the conn_ire_cache or conns must be done only after the 18687 * ires have been deleted above. Otherwise a thread could end up 18688 * caching an ire in a conn after we have finished the cleanup of the 18689 * conn. The caching is done after making sure that the ire is not yet 18690 * condemned. Also documented in the block comment above ip_output 18691 */ 18692 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18693 /* Also, delete the ires cached in SCTP */ 18694 sctp_ire_cache_flush(ipif); 18695 18696 /* 18697 * Update any other ipifs which have used "our" local address as 18698 * a source address. This entails removing and recreating IRE_INTERFACE 18699 * entries for such ipifs. 18700 */ 18701 if (ipif->ipif_isv6) 18702 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18703 else 18704 ipif_update_other_ipifs(ipif, ill->ill_group); 18705 18706 if (ipif_was_up) { 18707 /* 18708 * Check whether it is last ipif to leave this group. 18709 * If this is the last ipif to leave, we should remove 18710 * this ill from the group as ipif_select_source will not 18711 * be able to find any useful ipifs if this ill is selected 18712 * for load balancing. 18713 * 18714 * For nameless groups, we should call ifgrp_delete if this 18715 * belongs to some group. As this ipif is going down, we may 18716 * need to reconstruct groups. 18717 */ 18718 phyi = ill->ill_phyint; 18719 /* 18720 * If the phyint_groupname_len is 0, it may or may not 18721 * be in the nameless group. If the phyint_groupname_len is 18722 * not 0, then this ill should be part of some group. 18723 * As we always insert this ill in the group if 18724 * phyint_groupname_len is not zero when the first ipif 18725 * comes up (in ipif_up_done), it should be in a group 18726 * when the namelen is not 0. 18727 * 18728 * NOTE : When we delete the ill from the group,it will 18729 * blow away all the IRE_CACHES pointing either at this ipif or 18730 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18731 * should be pointing at this ill. 18732 */ 18733 ASSERT(phyi->phyint_groupname_len == 0 || 18734 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18735 18736 if (phyi->phyint_groupname_len != 0) { 18737 if (ill->ill_ipif_up_count == 0) 18738 illgrp_delete(ill); 18739 } 18740 18741 /* 18742 * If we have deleted some of the broadcast ires associated 18743 * with this ipif, we need to re-nominate somebody else if 18744 * the ires that we deleted were the nominated ones. 18745 */ 18746 if (ill->ill_group != NULL && !ill->ill_isv6) 18747 ipif_renominate_bcast(ipif); 18748 } 18749 18750 /* 18751 * neighbor-discovery or arp entries for this interface. 18752 */ 18753 ipif_ndp_down(ipif); 18754 18755 /* 18756 * If mp is NULL the caller will wait for the appropriate refcnt. 18757 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18758 * and ill_delete -> ipif_free -> ipif_down 18759 */ 18760 if (mp == NULL) { 18761 ASSERT(q == NULL); 18762 return (0); 18763 } 18764 18765 if (CONN_Q(q)) { 18766 connp = Q_TO_CONN(q); 18767 mutex_enter(&connp->conn_lock); 18768 } else { 18769 connp = NULL; 18770 } 18771 mutex_enter(&ill->ill_lock); 18772 /* 18773 * Are there any ire's pointing to this ipif that are still active ? 18774 * If this is the last ipif going down, are there any ire's pointing 18775 * to this ill that are still active ? 18776 */ 18777 if (ipif_is_quiescent(ipif)) { 18778 mutex_exit(&ill->ill_lock); 18779 if (connp != NULL) 18780 mutex_exit(&connp->conn_lock); 18781 return (0); 18782 } 18783 18784 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18785 ill->ill_name, (void *)ill)); 18786 /* 18787 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18788 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18789 * which in turn is called by the last refrele on the ipif/ill/ire. 18790 */ 18791 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18792 if (!success) { 18793 /* The conn is closing. So just return */ 18794 ASSERT(connp != NULL); 18795 mutex_exit(&ill->ill_lock); 18796 mutex_exit(&connp->conn_lock); 18797 return (EINTR); 18798 } 18799 18800 mutex_exit(&ill->ill_lock); 18801 if (connp != NULL) 18802 mutex_exit(&connp->conn_lock); 18803 return (EINPROGRESS); 18804 } 18805 18806 void 18807 ipif_down_tail(ipif_t *ipif) 18808 { 18809 ill_t *ill = ipif->ipif_ill; 18810 18811 /* 18812 * Skip any loopback interface (null wq). 18813 * If this is the last logical interface on the ill 18814 * have ill_dl_down tell the driver we are gone (unbind) 18815 * Note that lun 0 can ipif_down even though 18816 * there are other logical units that are up. 18817 * This occurs e.g. when we change a "significant" IFF_ flag. 18818 */ 18819 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18820 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18821 ill->ill_dl_up) { 18822 ill_dl_down(ill); 18823 } 18824 ill->ill_logical_down = 0; 18825 18826 /* 18827 * Have to be after removing the routes in ipif_down_delete_ire. 18828 */ 18829 if (ipif->ipif_isv6) { 18830 if (ill->ill_flags & ILLF_XRESOLV) 18831 ipif_arp_down(ipif); 18832 } else { 18833 ipif_arp_down(ipif); 18834 } 18835 18836 ip_rts_ifmsg(ipif); 18837 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18838 } 18839 18840 /* 18841 * Bring interface logically down without bringing the physical interface 18842 * down e.g. when the netmask is changed. This avoids long lasting link 18843 * negotiations between an ethernet interface and a certain switches. 18844 */ 18845 static int 18846 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18847 { 18848 /* 18849 * The ill_logical_down flag is a transient flag. It is set here 18850 * and is cleared once the down has completed in ipif_down_tail. 18851 * This flag does not indicate whether the ill stream is in the 18852 * DL_BOUND state with the driver. Instead this flag is used by 18853 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18854 * the driver. The state of the ill stream i.e. whether it is 18855 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18856 */ 18857 ipif->ipif_ill->ill_logical_down = 1; 18858 return (ipif_down(ipif, q, mp)); 18859 } 18860 18861 /* 18862 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18863 * If the usesrc client ILL is already part of a usesrc group or not, 18864 * in either case a ire_stq with the matching usesrc client ILL will 18865 * locate the IRE's that need to be deleted. We want IREs to be created 18866 * with the new source address. 18867 */ 18868 static void 18869 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18870 { 18871 ill_t *ucill = (ill_t *)ill_arg; 18872 18873 ASSERT(IAM_WRITER_ILL(ucill)); 18874 18875 if (ire->ire_stq == NULL) 18876 return; 18877 18878 if ((ire->ire_type == IRE_CACHE) && 18879 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18880 ire_delete(ire); 18881 } 18882 18883 /* 18884 * ire_walk routine to delete every IRE dependent on the interface 18885 * address that is going down. (Always called as writer.) 18886 * Works for both v4 and v6. 18887 * In addition for checking for ire_ipif matches it also checks for 18888 * IRE_CACHE entries which have the same source address as the 18889 * disappearing ipif since ipif_select_source might have picked 18890 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18891 * care of any IRE_INTERFACE with the disappearing source address. 18892 */ 18893 static void 18894 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18895 { 18896 ipif_t *ipif = (ipif_t *)ipif_arg; 18897 ill_t *ire_ill; 18898 ill_t *ipif_ill; 18899 18900 ASSERT(IAM_WRITER_IPIF(ipif)); 18901 if (ire->ire_ipif == NULL) 18902 return; 18903 18904 /* 18905 * For IPv4, we derive source addresses for an IRE from ipif's 18906 * belonging to the same IPMP group as the IRE's outgoing 18907 * interface. If an IRE's outgoing interface isn't in the 18908 * same IPMP group as a particular ipif, then that ipif 18909 * couldn't have been used as a source address for this IRE. 18910 * 18911 * For IPv6, source addresses are only restricted to the IPMP group 18912 * if the IRE is for a link-local address or a multicast address. 18913 * Otherwise, source addresses for an IRE can be chosen from 18914 * interfaces other than the the outgoing interface for that IRE. 18915 * 18916 * For source address selection details, see ipif_select_source() 18917 * and ipif_select_source_v6(). 18918 */ 18919 if (ire->ire_ipversion == IPV4_VERSION || 18920 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18921 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18922 ire_ill = ire->ire_ipif->ipif_ill; 18923 ipif_ill = ipif->ipif_ill; 18924 18925 if (ire_ill->ill_group != ipif_ill->ill_group) { 18926 return; 18927 } 18928 } 18929 18930 18931 if (ire->ire_ipif != ipif) { 18932 /* 18933 * Look for a matching source address. 18934 */ 18935 if (ire->ire_type != IRE_CACHE) 18936 return; 18937 if (ipif->ipif_flags & IPIF_NOLOCAL) 18938 return; 18939 18940 if (ire->ire_ipversion == IPV4_VERSION) { 18941 if (ire->ire_src_addr != ipif->ipif_src_addr) 18942 return; 18943 } else { 18944 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18945 &ipif->ipif_v6lcl_addr)) 18946 return; 18947 } 18948 ire_delete(ire); 18949 return; 18950 } 18951 /* 18952 * ire_delete() will do an ire_flush_cache which will delete 18953 * all ire_ipif matches 18954 */ 18955 ire_delete(ire); 18956 } 18957 18958 /* 18959 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18960 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18961 * 2) when an interface is brought up or down (on that ill). 18962 * This ensures that the IRE_CACHE entries don't retain stale source 18963 * address selection results. 18964 */ 18965 void 18966 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18967 { 18968 ill_t *ill = (ill_t *)ill_arg; 18969 ill_t *ipif_ill; 18970 18971 ASSERT(IAM_WRITER_ILL(ill)); 18972 /* 18973 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18974 * Hence this should be IRE_CACHE. 18975 */ 18976 ASSERT(ire->ire_type == IRE_CACHE); 18977 18978 /* 18979 * We are called for IRE_CACHES whose ire_ipif matches ill. 18980 * We are only interested in IRE_CACHES that has borrowed 18981 * the source address from ill_arg e.g. ipif_up_done[_v6] 18982 * for which we need to look at ire_ipif->ipif_ill match 18983 * with ill. 18984 */ 18985 ASSERT(ire->ire_ipif != NULL); 18986 ipif_ill = ire->ire_ipif->ipif_ill; 18987 if (ipif_ill == ill || (ill->ill_group != NULL && 18988 ipif_ill->ill_group == ill->ill_group)) { 18989 ire_delete(ire); 18990 } 18991 } 18992 18993 /* 18994 * Delete all the ire whose stq references ill_arg. 18995 */ 18996 static void 18997 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18998 { 18999 ill_t *ill = (ill_t *)ill_arg; 19000 ill_t *ire_ill; 19001 19002 ASSERT(IAM_WRITER_ILL(ill)); 19003 /* 19004 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19005 * Hence this should be IRE_CACHE. 19006 */ 19007 ASSERT(ire->ire_type == IRE_CACHE); 19008 19009 /* 19010 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19011 * matches ill. We are only interested in IRE_CACHES that 19012 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19013 * filtering here. 19014 */ 19015 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19016 19017 if (ire_ill == ill) 19018 ire_delete(ire); 19019 } 19020 19021 /* 19022 * This is called when an ill leaves the group. We want to delete 19023 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19024 * pointing at ill. 19025 */ 19026 static void 19027 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19028 { 19029 ill_t *ill = (ill_t *)ill_arg; 19030 19031 ASSERT(IAM_WRITER_ILL(ill)); 19032 ASSERT(ill->ill_group == NULL); 19033 /* 19034 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19035 * Hence this should be IRE_CACHE. 19036 */ 19037 ASSERT(ire->ire_type == IRE_CACHE); 19038 /* 19039 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19040 * matches ill. We are interested in both. 19041 */ 19042 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19043 (ire->ire_ipif->ipif_ill == ill)); 19044 19045 ire_delete(ire); 19046 } 19047 19048 /* 19049 * Initiate deallocate of an IPIF. Always called as writer. Called by 19050 * ill_delete or ip_sioctl_removeif. 19051 */ 19052 static void 19053 ipif_free(ipif_t *ipif) 19054 { 19055 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19056 19057 ASSERT(IAM_WRITER_IPIF(ipif)); 19058 19059 if (ipif->ipif_recovery_id != 0) 19060 (void) untimeout(ipif->ipif_recovery_id); 19061 ipif->ipif_recovery_id = 0; 19062 19063 /* Remove conn references */ 19064 reset_conn_ipif(ipif); 19065 19066 /* 19067 * Make sure we have valid net and subnet broadcast ire's for the 19068 * other ipif's which share them with this ipif. 19069 */ 19070 if (!ipif->ipif_isv6) 19071 ipif_check_bcast_ires(ipif); 19072 19073 /* 19074 * Take down the interface. We can be called either from ill_delete 19075 * or from ip_sioctl_removeif. 19076 */ 19077 (void) ipif_down(ipif, NULL, NULL); 19078 19079 /* 19080 * Now that the interface is down, there's no chance it can still 19081 * become a duplicate. Cancel any timer that may have been set while 19082 * tearing down. 19083 */ 19084 if (ipif->ipif_recovery_id != 0) 19085 (void) untimeout(ipif->ipif_recovery_id); 19086 ipif->ipif_recovery_id = 0; 19087 19088 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19089 /* Remove pointers to this ill in the multicast routing tables */ 19090 reset_mrt_vif_ipif(ipif); 19091 rw_exit(&ipst->ips_ill_g_lock); 19092 } 19093 19094 /* 19095 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19096 * also ill_move(). 19097 */ 19098 static void 19099 ipif_free_tail(ipif_t *ipif) 19100 { 19101 mblk_t *mp; 19102 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19103 19104 /* 19105 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19106 */ 19107 mutex_enter(&ipif->ipif_saved_ire_lock); 19108 mp = ipif->ipif_saved_ire_mp; 19109 ipif->ipif_saved_ire_mp = NULL; 19110 mutex_exit(&ipif->ipif_saved_ire_lock); 19111 freemsg(mp); 19112 19113 /* 19114 * Need to hold both ill_g_lock and ill_lock while 19115 * inserting or removing an ipif from the linked list 19116 * of ipifs hanging off the ill. 19117 */ 19118 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19119 19120 ASSERT(ilm_walk_ipif(ipif) == 0); 19121 19122 #ifdef DEBUG 19123 ipif_trace_cleanup(ipif); 19124 #endif 19125 19126 /* Ask SCTP to take it out of it list */ 19127 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19128 19129 /* Get it out of the ILL interface list. */ 19130 ipif_remove(ipif, B_TRUE); 19131 rw_exit(&ipst->ips_ill_g_lock); 19132 19133 mutex_destroy(&ipif->ipif_saved_ire_lock); 19134 19135 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19136 ASSERT(ipif->ipif_recovery_id == 0); 19137 19138 /* Free the memory. */ 19139 mi_free(ipif); 19140 } 19141 19142 /* 19143 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19144 * is zero. 19145 */ 19146 void 19147 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19148 { 19149 char lbuf[LIFNAMSIZ]; 19150 char *name; 19151 size_t name_len; 19152 19153 buf[0] = '\0'; 19154 name = ipif->ipif_ill->ill_name; 19155 name_len = ipif->ipif_ill->ill_name_length; 19156 if (ipif->ipif_id != 0) { 19157 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19158 ipif->ipif_id); 19159 name = lbuf; 19160 name_len = mi_strlen(name) + 1; 19161 } 19162 len -= 1; 19163 buf[len] = '\0'; 19164 len = MIN(len, name_len); 19165 bcopy(name, buf, len); 19166 } 19167 19168 /* 19169 * Find an IPIF based on the name passed in. Names can be of the 19170 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19171 * The <phys> string can have forms like <dev><#> (e.g., le0), 19172 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19173 * When there is no colon, the implied unit id is zero. <phys> must 19174 * correspond to the name of an ILL. (May be called as writer.) 19175 */ 19176 static ipif_t * 19177 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19178 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19179 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19180 { 19181 char *cp; 19182 char *endp; 19183 long id; 19184 ill_t *ill; 19185 ipif_t *ipif; 19186 uint_t ire_type; 19187 boolean_t did_alloc = B_FALSE; 19188 ipsq_t *ipsq; 19189 19190 if (error != NULL) 19191 *error = 0; 19192 19193 /* 19194 * If the caller wants to us to create the ipif, make sure we have a 19195 * valid zoneid 19196 */ 19197 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19198 19199 if (namelen == 0) { 19200 if (error != NULL) 19201 *error = ENXIO; 19202 return (NULL); 19203 } 19204 19205 *exists = B_FALSE; 19206 /* Look for a colon in the name. */ 19207 endp = &name[namelen]; 19208 for (cp = endp; --cp > name; ) { 19209 if (*cp == IPIF_SEPARATOR_CHAR) 19210 break; 19211 } 19212 19213 if (*cp == IPIF_SEPARATOR_CHAR) { 19214 /* 19215 * Reject any non-decimal aliases for logical 19216 * interfaces. Aliases with leading zeroes 19217 * are also rejected as they introduce ambiguity 19218 * in the naming of the interfaces. 19219 * In order to confirm with existing semantics, 19220 * and to not break any programs/script relying 19221 * on that behaviour, if<0>:0 is considered to be 19222 * a valid interface. 19223 * 19224 * If alias has two or more digits and the first 19225 * is zero, fail. 19226 */ 19227 if (&cp[2] < endp && cp[1] == '0') { 19228 if (error != NULL) 19229 *error = EINVAL; 19230 return (NULL); 19231 } 19232 } 19233 19234 if (cp <= name) { 19235 cp = endp; 19236 } else { 19237 *cp = '\0'; 19238 } 19239 19240 /* 19241 * Look up the ILL, based on the portion of the name 19242 * before the slash. ill_lookup_on_name returns a held ill. 19243 * Temporary to check whether ill exists already. If so 19244 * ill_lookup_on_name will clear it. 19245 */ 19246 ill = ill_lookup_on_name(name, do_alloc, isv6, 19247 q, mp, func, error, &did_alloc, ipst); 19248 if (cp != endp) 19249 *cp = IPIF_SEPARATOR_CHAR; 19250 if (ill == NULL) 19251 return (NULL); 19252 19253 /* Establish the unit number in the name. */ 19254 id = 0; 19255 if (cp < endp && *endp == '\0') { 19256 /* If there was a colon, the unit number follows. */ 19257 cp++; 19258 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19259 ill_refrele(ill); 19260 if (error != NULL) 19261 *error = ENXIO; 19262 return (NULL); 19263 } 19264 } 19265 19266 GRAB_CONN_LOCK(q); 19267 mutex_enter(&ill->ill_lock); 19268 /* Now see if there is an IPIF with this unit number. */ 19269 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19270 if (ipif->ipif_id == id) { 19271 if (zoneid != ALL_ZONES && 19272 zoneid != ipif->ipif_zoneid && 19273 ipif->ipif_zoneid != ALL_ZONES) { 19274 mutex_exit(&ill->ill_lock); 19275 RELEASE_CONN_LOCK(q); 19276 ill_refrele(ill); 19277 if (error != NULL) 19278 *error = ENXIO; 19279 return (NULL); 19280 } 19281 /* 19282 * The block comment at the start of ipif_down 19283 * explains the use of the macros used below 19284 */ 19285 if (IPIF_CAN_LOOKUP(ipif)) { 19286 ipif_refhold_locked(ipif); 19287 mutex_exit(&ill->ill_lock); 19288 if (!did_alloc) 19289 *exists = B_TRUE; 19290 /* 19291 * Drop locks before calling ill_refrele 19292 * since it can potentially call into 19293 * ipif_ill_refrele_tail which can end up 19294 * in trying to acquire any lock. 19295 */ 19296 RELEASE_CONN_LOCK(q); 19297 ill_refrele(ill); 19298 return (ipif); 19299 } else if (IPIF_CAN_WAIT(ipif, q)) { 19300 ipsq = ill->ill_phyint->phyint_ipsq; 19301 mutex_enter(&ipsq->ipsq_lock); 19302 mutex_exit(&ill->ill_lock); 19303 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19304 mutex_exit(&ipsq->ipsq_lock); 19305 RELEASE_CONN_LOCK(q); 19306 ill_refrele(ill); 19307 if (error != NULL) 19308 *error = EINPROGRESS; 19309 return (NULL); 19310 } 19311 } 19312 } 19313 RELEASE_CONN_LOCK(q); 19314 19315 if (!do_alloc) { 19316 mutex_exit(&ill->ill_lock); 19317 ill_refrele(ill); 19318 if (error != NULL) 19319 *error = ENXIO; 19320 return (NULL); 19321 } 19322 19323 /* 19324 * If none found, atomically allocate and return a new one. 19325 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19326 * to support "receive only" use of lo0:1 etc. as is still done 19327 * below as an initial guess. 19328 * However, this is now likely to be overriden later in ipif_up_done() 19329 * when we know for sure what address has been configured on the 19330 * interface, since we might have more than one loopback interface 19331 * with a loopback address, e.g. in the case of zones, and all the 19332 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19333 */ 19334 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19335 ire_type = IRE_LOOPBACK; 19336 else 19337 ire_type = IRE_LOCAL; 19338 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19339 if (ipif != NULL) 19340 ipif_refhold_locked(ipif); 19341 else if (error != NULL) 19342 *error = ENOMEM; 19343 mutex_exit(&ill->ill_lock); 19344 ill_refrele(ill); 19345 return (ipif); 19346 } 19347 19348 /* 19349 * This routine is called whenever a new address comes up on an ipif. If 19350 * we are configured to respond to address mask requests, then we are supposed 19351 * to broadcast an address mask reply at this time. This routine is also 19352 * called if we are already up, but a netmask change is made. This is legal 19353 * but might not make the system manager very popular. (May be called 19354 * as writer.) 19355 */ 19356 void 19357 ipif_mask_reply(ipif_t *ipif) 19358 { 19359 icmph_t *icmph; 19360 ipha_t *ipha; 19361 mblk_t *mp; 19362 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19363 19364 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19365 19366 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19367 return; 19368 19369 /* ICMP mask reply is IPv4 only */ 19370 ASSERT(!ipif->ipif_isv6); 19371 /* ICMP mask reply is not for a loopback interface */ 19372 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19373 19374 mp = allocb(REPLY_LEN, BPRI_HI); 19375 if (mp == NULL) 19376 return; 19377 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19378 19379 ipha = (ipha_t *)mp->b_rptr; 19380 bzero(ipha, REPLY_LEN); 19381 *ipha = icmp_ipha; 19382 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19383 ipha->ipha_src = ipif->ipif_src_addr; 19384 ipha->ipha_dst = ipif->ipif_brd_addr; 19385 ipha->ipha_length = htons(REPLY_LEN); 19386 ipha->ipha_ident = 0; 19387 19388 icmph = (icmph_t *)&ipha[1]; 19389 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19390 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19391 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19392 19393 put(ipif->ipif_wq, mp); 19394 19395 #undef REPLY_LEN 19396 } 19397 19398 /* 19399 * When the mtu in the ipif changes, we call this routine through ire_walk 19400 * to update all the relevant IREs. 19401 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19402 */ 19403 static void 19404 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19405 { 19406 ipif_t *ipif = (ipif_t *)ipif_arg; 19407 19408 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19409 return; 19410 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19411 } 19412 19413 /* 19414 * When the mtu in the ill changes, we call this routine through ire_walk 19415 * to update all the relevant IREs. 19416 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19417 */ 19418 void 19419 ill_mtu_change(ire_t *ire, char *ill_arg) 19420 { 19421 ill_t *ill = (ill_t *)ill_arg; 19422 19423 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19424 return; 19425 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19426 } 19427 19428 /* 19429 * Join the ipif specific multicast groups. 19430 * Must be called after a mapping has been set up in the resolver. (Always 19431 * called as writer.) 19432 */ 19433 void 19434 ipif_multicast_up(ipif_t *ipif) 19435 { 19436 int err, index; 19437 ill_t *ill; 19438 19439 ASSERT(IAM_WRITER_IPIF(ipif)); 19440 19441 ill = ipif->ipif_ill; 19442 index = ill->ill_phyint->phyint_ifindex; 19443 19444 ip1dbg(("ipif_multicast_up\n")); 19445 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19446 return; 19447 19448 if (ipif->ipif_isv6) { 19449 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19450 return; 19451 19452 /* Join the all hosts multicast address */ 19453 ip1dbg(("ipif_multicast_up - addmulti\n")); 19454 /* 19455 * Passing B_TRUE means we have to join the multicast 19456 * membership on this interface even though this is 19457 * FAILED. If we join on a different one in the group, 19458 * we will not be able to delete the membership later 19459 * as we currently don't track where we join when we 19460 * join within the kernel unlike applications where 19461 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19462 * for more on this. 19463 */ 19464 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19465 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19466 if (err != 0) { 19467 ip0dbg(("ipif_multicast_up: " 19468 "all_hosts_mcast failed %d\n", 19469 err)); 19470 return; 19471 } 19472 /* 19473 * Enable multicast for the solicited node multicast address 19474 */ 19475 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19476 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19477 19478 ipv6_multi.s6_addr32[3] |= 19479 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19480 19481 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19482 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19483 NULL); 19484 if (err != 0) { 19485 ip0dbg(("ipif_multicast_up: solicited MC" 19486 " failed %d\n", err)); 19487 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19488 ill, ill->ill_phyint->phyint_ifindex, 19489 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19490 return; 19491 } 19492 } 19493 } else { 19494 if (ipif->ipif_lcl_addr == INADDR_ANY) 19495 return; 19496 19497 /* Join the all hosts multicast address */ 19498 ip1dbg(("ipif_multicast_up - addmulti\n")); 19499 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19500 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19501 if (err) { 19502 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19503 return; 19504 } 19505 } 19506 ipif->ipif_multicast_up = 1; 19507 } 19508 19509 /* 19510 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19511 * (Explicit memberships are blown away in ill_leave_multicast() when the 19512 * ill is brought down.) 19513 */ 19514 static void 19515 ipif_multicast_down(ipif_t *ipif) 19516 { 19517 int err; 19518 19519 ASSERT(IAM_WRITER_IPIF(ipif)); 19520 19521 ip1dbg(("ipif_multicast_down\n")); 19522 if (!ipif->ipif_multicast_up) 19523 return; 19524 19525 ip1dbg(("ipif_multicast_down - delmulti\n")); 19526 19527 if (!ipif->ipif_isv6) { 19528 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19529 B_TRUE); 19530 if (err != 0) 19531 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19532 19533 ipif->ipif_multicast_up = 0; 19534 return; 19535 } 19536 19537 /* 19538 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19539 * we should look for ilms on this ill rather than the ones that have 19540 * been failed over here. They are here temporarily. As 19541 * ipif_multicast_up has joined on this ill, we should delete only 19542 * from this ill. 19543 */ 19544 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19545 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19546 B_TRUE, B_TRUE); 19547 if (err != 0) { 19548 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19549 err)); 19550 } 19551 /* 19552 * Disable multicast for the solicited node multicast address 19553 */ 19554 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19555 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19556 19557 ipv6_multi.s6_addr32[3] |= 19558 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19559 19560 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19561 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19562 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19563 19564 if (err != 0) { 19565 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19566 err)); 19567 } 19568 } 19569 19570 ipif->ipif_multicast_up = 0; 19571 } 19572 19573 /* 19574 * Used when an interface comes up to recreate any extra routes on this 19575 * interface. 19576 */ 19577 static ire_t ** 19578 ipif_recover_ire(ipif_t *ipif) 19579 { 19580 mblk_t *mp; 19581 ire_t **ipif_saved_irep; 19582 ire_t **irep; 19583 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19584 19585 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19586 ipif->ipif_id)); 19587 19588 mutex_enter(&ipif->ipif_saved_ire_lock); 19589 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19590 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19591 if (ipif_saved_irep == NULL) { 19592 mutex_exit(&ipif->ipif_saved_ire_lock); 19593 return (NULL); 19594 } 19595 19596 irep = ipif_saved_irep; 19597 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19598 ire_t *ire; 19599 queue_t *rfq; 19600 queue_t *stq; 19601 ifrt_t *ifrt; 19602 uchar_t *src_addr; 19603 uchar_t *gateway_addr; 19604 ushort_t type; 19605 19606 /* 19607 * When the ire was initially created and then added in 19608 * ip_rt_add(), it was created either using ipif->ipif_net_type 19609 * in the case of a traditional interface route, or as one of 19610 * the IRE_OFFSUBNET types (with the exception of 19611 * IRE_HOST types ire which is created by icmp_redirect() and 19612 * which we don't need to save or recover). In the case where 19613 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19614 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19615 * to satisfy software like GateD and Sun Cluster which creates 19616 * routes using the the loopback interface's address as a 19617 * gateway. 19618 * 19619 * As ifrt->ifrt_type reflects the already updated ire_type, 19620 * ire_create() will be called in the same way here as 19621 * in ip_rt_add(), namely using ipif->ipif_net_type when 19622 * the route looks like a traditional interface route (where 19623 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19624 * the saved ifrt->ifrt_type. This means that in the case where 19625 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19626 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19627 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19628 */ 19629 ifrt = (ifrt_t *)mp->b_rptr; 19630 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19631 if (ifrt->ifrt_type & IRE_INTERFACE) { 19632 rfq = NULL; 19633 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19634 ? ipif->ipif_rq : ipif->ipif_wq; 19635 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19636 ? (uint8_t *)&ifrt->ifrt_src_addr 19637 : (uint8_t *)&ipif->ipif_src_addr; 19638 gateway_addr = NULL; 19639 type = ipif->ipif_net_type; 19640 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19641 /* Recover multiroute broadcast IRE. */ 19642 rfq = ipif->ipif_rq; 19643 stq = ipif->ipif_wq; 19644 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19645 ? (uint8_t *)&ifrt->ifrt_src_addr 19646 : (uint8_t *)&ipif->ipif_src_addr; 19647 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19648 type = ifrt->ifrt_type; 19649 } else { 19650 rfq = NULL; 19651 stq = NULL; 19652 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19653 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19654 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19655 type = ifrt->ifrt_type; 19656 } 19657 19658 /* 19659 * Create a copy of the IRE with the saved address and netmask. 19660 */ 19661 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19662 "0x%x/0x%x\n", 19663 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19664 ntohl(ifrt->ifrt_addr), 19665 ntohl(ifrt->ifrt_mask))); 19666 ire = ire_create( 19667 (uint8_t *)&ifrt->ifrt_addr, 19668 (uint8_t *)&ifrt->ifrt_mask, 19669 src_addr, 19670 gateway_addr, 19671 &ifrt->ifrt_max_frag, 19672 NULL, 19673 rfq, 19674 stq, 19675 type, 19676 ipif, 19677 0, 19678 0, 19679 0, 19680 ifrt->ifrt_flags, 19681 &ifrt->ifrt_iulp_info, 19682 NULL, 19683 NULL, 19684 ipst); 19685 19686 if (ire == NULL) { 19687 mutex_exit(&ipif->ipif_saved_ire_lock); 19688 kmem_free(ipif_saved_irep, 19689 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19690 return (NULL); 19691 } 19692 19693 /* 19694 * Some software (for example, GateD and Sun Cluster) attempts 19695 * to create (what amount to) IRE_PREFIX routes with the 19696 * loopback address as the gateway. This is primarily done to 19697 * set up prefixes with the RTF_REJECT flag set (for example, 19698 * when generating aggregate routes.) 19699 * 19700 * If the IRE type (as defined by ipif->ipif_net_type) is 19701 * IRE_LOOPBACK, then we map the request into a 19702 * IRE_IF_NORESOLVER. 19703 */ 19704 if (ipif->ipif_net_type == IRE_LOOPBACK) 19705 ire->ire_type = IRE_IF_NORESOLVER; 19706 /* 19707 * ire held by ire_add, will be refreled' towards the 19708 * the end of ipif_up_done 19709 */ 19710 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19711 *irep = ire; 19712 irep++; 19713 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19714 } 19715 mutex_exit(&ipif->ipif_saved_ire_lock); 19716 return (ipif_saved_irep); 19717 } 19718 19719 /* 19720 * Used to set the netmask and broadcast address to default values when the 19721 * interface is brought up. (Always called as writer.) 19722 */ 19723 static void 19724 ipif_set_default(ipif_t *ipif) 19725 { 19726 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19727 19728 if (!ipif->ipif_isv6) { 19729 /* 19730 * Interface holds an IPv4 address. Default 19731 * mask is the natural netmask. 19732 */ 19733 if (!ipif->ipif_net_mask) { 19734 ipaddr_t v4mask; 19735 19736 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19737 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19738 } 19739 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19740 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19741 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19742 } else { 19743 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19744 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19745 } 19746 /* 19747 * NOTE: SunOS 4.X does this even if the broadcast address 19748 * has been already set thus we do the same here. 19749 */ 19750 if (ipif->ipif_flags & IPIF_BROADCAST) { 19751 ipaddr_t v4addr; 19752 19753 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19754 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19755 } 19756 } else { 19757 /* 19758 * Interface holds an IPv6-only address. Default 19759 * mask is all-ones. 19760 */ 19761 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19762 ipif->ipif_v6net_mask = ipv6_all_ones; 19763 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19764 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19765 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19766 } else { 19767 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19768 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19769 } 19770 } 19771 } 19772 19773 /* 19774 * Return 0 if this address can be used as local address without causing 19775 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19776 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19777 * Special checks are needed to allow the same IPv6 link-local address 19778 * on different ills. 19779 * TODO: allowing the same site-local address on different ill's. 19780 */ 19781 int 19782 ip_addr_availability_check(ipif_t *new_ipif) 19783 { 19784 in6_addr_t our_v6addr; 19785 ill_t *ill; 19786 ipif_t *ipif; 19787 ill_walk_context_t ctx; 19788 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19789 19790 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19791 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19792 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19793 19794 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19795 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19796 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19797 return (0); 19798 19799 our_v6addr = new_ipif->ipif_v6lcl_addr; 19800 19801 if (new_ipif->ipif_isv6) 19802 ill = ILL_START_WALK_V6(&ctx, ipst); 19803 else 19804 ill = ILL_START_WALK_V4(&ctx, ipst); 19805 19806 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19807 for (ipif = ill->ill_ipif; ipif != NULL; 19808 ipif = ipif->ipif_next) { 19809 if ((ipif == new_ipif) || 19810 !(ipif->ipif_flags & IPIF_UP) || 19811 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19812 continue; 19813 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19814 &our_v6addr)) { 19815 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19816 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19817 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19818 ipif->ipif_flags |= IPIF_UNNUMBERED; 19819 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19820 new_ipif->ipif_ill != ill) 19821 continue; 19822 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19823 new_ipif->ipif_ill != ill) 19824 continue; 19825 else if (new_ipif->ipif_zoneid != 19826 ipif->ipif_zoneid && 19827 ipif->ipif_zoneid != ALL_ZONES && 19828 IS_LOOPBACK(ill)) 19829 continue; 19830 else if (new_ipif->ipif_ill == ill) 19831 return (EADDRINUSE); 19832 else 19833 return (EADDRNOTAVAIL); 19834 } 19835 } 19836 } 19837 19838 return (0); 19839 } 19840 19841 /* 19842 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19843 * IREs for the ipif. 19844 * When the routine returns EINPROGRESS then mp has been consumed and 19845 * the ioctl will be acked from ip_rput_dlpi. 19846 */ 19847 static int 19848 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19849 { 19850 ill_t *ill = ipif->ipif_ill; 19851 boolean_t isv6 = ipif->ipif_isv6; 19852 int err = 0; 19853 boolean_t success; 19854 19855 ASSERT(IAM_WRITER_IPIF(ipif)); 19856 19857 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19858 19859 /* Shouldn't get here if it is already up. */ 19860 if (ipif->ipif_flags & IPIF_UP) 19861 return (EALREADY); 19862 19863 /* Skip arp/ndp for any loopback interface. */ 19864 if (ill->ill_wq != NULL) { 19865 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19866 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19867 19868 if (!ill->ill_dl_up) { 19869 /* 19870 * ill_dl_up is not yet set. i.e. we are yet to 19871 * DL_BIND with the driver and this is the first 19872 * logical interface on the ill to become "up". 19873 * Tell the driver to get going (via DL_BIND_REQ). 19874 * Note that changing "significant" IFF_ flags 19875 * address/netmask etc cause a down/up dance, but 19876 * does not cause an unbind (DL_UNBIND) with the driver 19877 */ 19878 return (ill_dl_up(ill, ipif, mp, q)); 19879 } 19880 19881 /* 19882 * ipif_resolver_up may end up sending an 19883 * AR_INTERFACE_UP message to ARP, which would, in 19884 * turn send a DLPI message to the driver. ioctls are 19885 * serialized and so we cannot send more than one 19886 * interface up message at a time. If ipif_resolver_up 19887 * does send an interface up message to ARP, we get 19888 * EINPROGRESS and we will complete in ip_arp_done. 19889 */ 19890 19891 ASSERT(connp != NULL || !CONN_Q(q)); 19892 ASSERT(ipsq->ipsq_pending_mp == NULL); 19893 if (connp != NULL) 19894 mutex_enter(&connp->conn_lock); 19895 mutex_enter(&ill->ill_lock); 19896 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19897 mutex_exit(&ill->ill_lock); 19898 if (connp != NULL) 19899 mutex_exit(&connp->conn_lock); 19900 if (!success) 19901 return (EINTR); 19902 19903 /* 19904 * Crank up IPv6 neighbor discovery 19905 * Unlike ARP, this should complete when 19906 * ipif_ndp_up returns. However, for 19907 * ILLF_XRESOLV interfaces we also send a 19908 * AR_INTERFACE_UP to the external resolver. 19909 * That ioctl will complete in ip_rput. 19910 */ 19911 if (isv6) { 19912 err = ipif_ndp_up(ipif); 19913 if (err != 0) { 19914 if (err != EINPROGRESS) 19915 mp = ipsq_pending_mp_get(ipsq, &connp); 19916 return (err); 19917 } 19918 } 19919 /* Now, ARP */ 19920 err = ipif_resolver_up(ipif, Res_act_initial); 19921 if (err == EINPROGRESS) { 19922 /* We will complete it in ip_arp_done */ 19923 return (err); 19924 } 19925 mp = ipsq_pending_mp_get(ipsq, &connp); 19926 ASSERT(mp != NULL); 19927 if (err != 0) 19928 return (err); 19929 } else { 19930 /* 19931 * Interfaces without underlying hardware don't do duplicate 19932 * address detection. 19933 */ 19934 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19935 ipif->ipif_addr_ready = 1; 19936 } 19937 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19938 } 19939 19940 /* 19941 * Perform a bind for the physical device. 19942 * When the routine returns EINPROGRESS then mp has been consumed and 19943 * the ioctl will be acked from ip_rput_dlpi. 19944 * Allocate an unbind message and save it until ipif_down. 19945 */ 19946 static int 19947 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19948 { 19949 areq_t *areq; 19950 mblk_t *areq_mp = NULL; 19951 mblk_t *bind_mp = NULL; 19952 mblk_t *unbind_mp = NULL; 19953 conn_t *connp; 19954 boolean_t success; 19955 uint16_t sap_addr; 19956 19957 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19958 ASSERT(IAM_WRITER_ILL(ill)); 19959 ASSERT(mp != NULL); 19960 19961 /* Create a resolver cookie for ARP */ 19962 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19963 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19964 if (areq_mp == NULL) 19965 return (ENOMEM); 19966 19967 freemsg(ill->ill_resolver_mp); 19968 ill->ill_resolver_mp = areq_mp; 19969 areq = (areq_t *)areq_mp->b_rptr; 19970 sap_addr = ill->ill_sap; 19971 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19972 } 19973 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19974 DL_BIND_REQ); 19975 if (bind_mp == NULL) 19976 goto bad; 19977 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19978 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19979 19980 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19981 if (unbind_mp == NULL) 19982 goto bad; 19983 19984 /* 19985 * Record state needed to complete this operation when the 19986 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19987 */ 19988 ASSERT(WR(q)->q_next == NULL); 19989 connp = Q_TO_CONN(q); 19990 19991 mutex_enter(&connp->conn_lock); 19992 mutex_enter(&ipif->ipif_ill->ill_lock); 19993 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19994 mutex_exit(&ipif->ipif_ill->ill_lock); 19995 mutex_exit(&connp->conn_lock); 19996 if (!success) 19997 goto bad; 19998 19999 /* 20000 * Save the unbind message for ill_dl_down(); it will be consumed when 20001 * the interface goes down. 20002 */ 20003 ASSERT(ill->ill_unbind_mp == NULL); 20004 ill->ill_unbind_mp = unbind_mp; 20005 20006 ill_dlpi_send(ill, bind_mp); 20007 /* Send down link-layer capabilities probe if not already done. */ 20008 ill_capability_probe(ill); 20009 20010 /* 20011 * Sysid used to rely on the fact that netboots set domainname 20012 * and the like. Now that miniroot boots aren't strictly netboots 20013 * and miniroot network configuration is driven from userland 20014 * these things still need to be set. This situation can be detected 20015 * by comparing the interface being configured here to the one 20016 * dhcifname was set to reference by the boot loader. Once sysid is 20017 * converted to use dhcp_ipc_getinfo() this call can go away. 20018 */ 20019 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 20020 (strcmp(ill->ill_name, dhcifname) == 0) && 20021 (strlen(srpc_domain) == 0)) { 20022 if (dhcpinit() != 0) 20023 cmn_err(CE_WARN, "no cached dhcp response"); 20024 } 20025 20026 /* 20027 * This operation will complete in ip_rput_dlpi with either 20028 * a DL_BIND_ACK or DL_ERROR_ACK. 20029 */ 20030 return (EINPROGRESS); 20031 bad: 20032 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20033 /* 20034 * We don't have to check for possible removal from illgrp 20035 * as we have not yet inserted in illgrp. For groups 20036 * without names, this ipif is still not UP and hence 20037 * this could not have possibly had any influence in forming 20038 * groups. 20039 */ 20040 20041 freemsg(bind_mp); 20042 freemsg(unbind_mp); 20043 return (ENOMEM); 20044 } 20045 20046 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20047 20048 /* 20049 * DLPI and ARP is up. 20050 * Create all the IREs associated with an interface bring up multicast. 20051 * Set the interface flag and finish other initialization 20052 * that potentially had to be differed to after DL_BIND_ACK. 20053 */ 20054 int 20055 ipif_up_done(ipif_t *ipif) 20056 { 20057 ire_t *ire_array[20]; 20058 ire_t **irep = ire_array; 20059 ire_t **irep1; 20060 ipaddr_t net_mask = 0; 20061 ipaddr_t subnet_mask, route_mask; 20062 ill_t *ill = ipif->ipif_ill; 20063 queue_t *stq; 20064 ipif_t *src_ipif; 20065 ipif_t *tmp_ipif; 20066 boolean_t flush_ire_cache = B_TRUE; 20067 int err = 0; 20068 phyint_t *phyi; 20069 ire_t **ipif_saved_irep = NULL; 20070 int ipif_saved_ire_cnt; 20071 int cnt; 20072 boolean_t src_ipif_held = B_FALSE; 20073 boolean_t ire_added = B_FALSE; 20074 boolean_t loopback = B_FALSE; 20075 ip_stack_t *ipst = ill->ill_ipst; 20076 20077 ip1dbg(("ipif_up_done(%s:%u)\n", 20078 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20079 /* Check if this is a loopback interface */ 20080 if (ipif->ipif_ill->ill_wq == NULL) 20081 loopback = B_TRUE; 20082 20083 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20084 /* 20085 * If all other interfaces for this ill are down or DEPRECATED, 20086 * or otherwise unsuitable for source address selection, remove 20087 * any IRE_CACHE entries for this ill to make sure source 20088 * address selection gets to take this new ipif into account. 20089 * No need to hold ill_lock while traversing the ipif list since 20090 * we are writer 20091 */ 20092 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20093 tmp_ipif = tmp_ipif->ipif_next) { 20094 if (((tmp_ipif->ipif_flags & 20095 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20096 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20097 (tmp_ipif == ipif)) 20098 continue; 20099 /* first useable pre-existing interface */ 20100 flush_ire_cache = B_FALSE; 20101 break; 20102 } 20103 if (flush_ire_cache) 20104 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20105 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20106 20107 /* 20108 * Figure out which way the send-to queue should go. Only 20109 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20110 * should show up here. 20111 */ 20112 switch (ill->ill_net_type) { 20113 case IRE_IF_RESOLVER: 20114 stq = ill->ill_rq; 20115 break; 20116 case IRE_IF_NORESOLVER: 20117 case IRE_LOOPBACK: 20118 stq = ill->ill_wq; 20119 break; 20120 default: 20121 return (EINVAL); 20122 } 20123 20124 if (IS_LOOPBACK(ill)) { 20125 /* 20126 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20127 * ipif_lookup_on_name(), but in the case of zones we can have 20128 * several loopback addresses on lo0. So all the interfaces with 20129 * loopback addresses need to be marked IRE_LOOPBACK. 20130 */ 20131 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20132 htonl(INADDR_LOOPBACK)) 20133 ipif->ipif_ire_type = IRE_LOOPBACK; 20134 else 20135 ipif->ipif_ire_type = IRE_LOCAL; 20136 } 20137 20138 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20139 /* 20140 * Can't use our source address. Select a different 20141 * source address for the IRE_INTERFACE and IRE_LOCAL 20142 */ 20143 src_ipif = ipif_select_source(ipif->ipif_ill, 20144 ipif->ipif_subnet, ipif->ipif_zoneid); 20145 if (src_ipif == NULL) 20146 src_ipif = ipif; /* Last resort */ 20147 else 20148 src_ipif_held = B_TRUE; 20149 } else { 20150 src_ipif = ipif; 20151 } 20152 20153 /* Create all the IREs associated with this interface */ 20154 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20155 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20156 20157 /* 20158 * If we're on a labeled system then make sure that zone- 20159 * private addresses have proper remote host database entries. 20160 */ 20161 if (is_system_labeled() && 20162 ipif->ipif_ire_type != IRE_LOOPBACK && 20163 !tsol_check_interface_address(ipif)) 20164 return (EINVAL); 20165 20166 /* Register the source address for __sin6_src_id */ 20167 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20168 ipif->ipif_zoneid, ipst); 20169 if (err != 0) { 20170 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20171 return (err); 20172 } 20173 20174 /* If the interface address is set, create the local IRE. */ 20175 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20176 (void *)ipif, 20177 ipif->ipif_ire_type, 20178 ntohl(ipif->ipif_lcl_addr))); 20179 *irep++ = ire_create( 20180 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20181 (uchar_t *)&ip_g_all_ones, /* mask */ 20182 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20183 NULL, /* no gateway */ 20184 &ip_loopback_mtuplus, /* max frag size */ 20185 NULL, 20186 ipif->ipif_rq, /* recv-from queue */ 20187 NULL, /* no send-to queue */ 20188 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20189 ipif, 20190 0, 20191 0, 20192 0, 20193 (ipif->ipif_flags & IPIF_PRIVATE) ? 20194 RTF_PRIVATE : 0, 20195 &ire_uinfo_null, 20196 NULL, 20197 NULL, 20198 ipst); 20199 } else { 20200 ip1dbg(( 20201 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20202 ipif->ipif_ire_type, 20203 ntohl(ipif->ipif_lcl_addr), 20204 (uint_t)ipif->ipif_flags)); 20205 } 20206 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20207 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20208 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20209 } else { 20210 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20211 } 20212 20213 subnet_mask = ipif->ipif_net_mask; 20214 20215 /* 20216 * If mask was not specified, use natural netmask of 20217 * interface address. Also, store this mask back into the 20218 * ipif struct. 20219 */ 20220 if (subnet_mask == 0) { 20221 subnet_mask = net_mask; 20222 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20223 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20224 ipif->ipif_v6subnet); 20225 } 20226 20227 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20228 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20229 ipif->ipif_subnet != INADDR_ANY) { 20230 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20231 20232 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20233 route_mask = IP_HOST_MASK; 20234 } else { 20235 route_mask = subnet_mask; 20236 } 20237 20238 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20239 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20240 (void *)ipif, (void *)ill, 20241 ill->ill_net_type, 20242 ntohl(ipif->ipif_subnet))); 20243 *irep++ = ire_create( 20244 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20245 (uchar_t *)&route_mask, /* mask */ 20246 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20247 NULL, /* no gateway */ 20248 &ipif->ipif_mtu, /* max frag */ 20249 NULL, 20250 NULL, /* no recv queue */ 20251 stq, /* send-to queue */ 20252 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20253 ipif, 20254 0, 20255 0, 20256 0, 20257 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20258 &ire_uinfo_null, 20259 NULL, 20260 NULL, 20261 ipst); 20262 } 20263 20264 /* 20265 * Create any necessary broadcast IREs. 20266 */ 20267 if (ipif->ipif_flags & IPIF_BROADCAST) 20268 irep = ipif_create_bcast_ires(ipif, irep); 20269 20270 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20271 20272 /* If an earlier ire_create failed, get out now */ 20273 for (irep1 = irep; irep1 > ire_array; ) { 20274 irep1--; 20275 if (*irep1 == NULL) { 20276 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20277 err = ENOMEM; 20278 goto bad; 20279 } 20280 } 20281 20282 /* 20283 * Need to atomically check for ip_addr_availablity_check 20284 * under ip_addr_avail_lock, and if it fails got bad, and remove 20285 * from group also.The ill_g_lock is grabbed as reader 20286 * just to make sure no new ills or new ipifs are being added 20287 * to the system while we are checking the uniqueness of addresses. 20288 */ 20289 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20290 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20291 /* Mark it up, and increment counters. */ 20292 ipif->ipif_flags |= IPIF_UP; 20293 ill->ill_ipif_up_count++; 20294 err = ip_addr_availability_check(ipif); 20295 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20296 rw_exit(&ipst->ips_ill_g_lock); 20297 20298 if (err != 0) { 20299 /* 20300 * Our address may already be up on the same ill. In this case, 20301 * the ARP entry for our ipif replaced the one for the other 20302 * ipif. So we don't want to delete it (otherwise the other ipif 20303 * would be unable to send packets). 20304 * ip_addr_availability_check() identifies this case for us and 20305 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20306 * which is the expected error code. 20307 */ 20308 if (err == EADDRINUSE) { 20309 freemsg(ipif->ipif_arp_del_mp); 20310 ipif->ipif_arp_del_mp = NULL; 20311 err = EADDRNOTAVAIL; 20312 } 20313 ill->ill_ipif_up_count--; 20314 ipif->ipif_flags &= ~IPIF_UP; 20315 goto bad; 20316 } 20317 20318 /* 20319 * Add in all newly created IREs. ire_create_bcast() has 20320 * already checked for duplicates of the IRE_BROADCAST type. 20321 * We want to add before we call ifgrp_insert which wants 20322 * to know whether IRE_IF_RESOLVER exists or not. 20323 * 20324 * NOTE : We refrele the ire though we may branch to "bad" 20325 * later on where we do ire_delete. This is okay 20326 * because nobody can delete it as we are running 20327 * exclusively. 20328 */ 20329 for (irep1 = irep; irep1 > ire_array; ) { 20330 irep1--; 20331 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20332 /* 20333 * refheld by ire_add. refele towards the end of the func 20334 */ 20335 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20336 } 20337 ire_added = B_TRUE; 20338 /* 20339 * Form groups if possible. 20340 * 20341 * If we are supposed to be in a ill_group with a name, insert it 20342 * now as we know that at least one ipif is UP. Otherwise form 20343 * nameless groups. 20344 * 20345 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20346 * this ipif into the appropriate interface group, or create a 20347 * new one. If this is already in a nameless group, we try to form 20348 * a bigger group looking at other ills potentially sharing this 20349 * ipif's prefix. 20350 */ 20351 phyi = ill->ill_phyint; 20352 if (phyi->phyint_groupname_len != 0) { 20353 ASSERT(phyi->phyint_groupname != NULL); 20354 if (ill->ill_ipif_up_count == 1) { 20355 ASSERT(ill->ill_group == NULL); 20356 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20357 phyi->phyint_groupname, NULL, B_TRUE); 20358 if (err != 0) { 20359 ip1dbg(("ipif_up_done: illgrp allocation " 20360 "failed, error %d\n", err)); 20361 goto bad; 20362 } 20363 } 20364 ASSERT(ill->ill_group != NULL); 20365 } 20366 20367 /* 20368 * When this is part of group, we need to make sure that 20369 * any broadcast ires created because of this ipif coming 20370 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20371 * so that we don't receive duplicate broadcast packets. 20372 */ 20373 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20374 ipif_renominate_bcast(ipif); 20375 20376 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20377 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20378 ipif_saved_irep = ipif_recover_ire(ipif); 20379 20380 if (!loopback) { 20381 /* 20382 * If the broadcast address has been set, make sure it makes 20383 * sense based on the interface address. 20384 * Only match on ill since we are sharing broadcast addresses. 20385 */ 20386 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20387 (ipif->ipif_flags & IPIF_BROADCAST)) { 20388 ire_t *ire; 20389 20390 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20391 IRE_BROADCAST, ipif, ALL_ZONES, 20392 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20393 20394 if (ire == NULL) { 20395 /* 20396 * If there isn't a matching broadcast IRE, 20397 * revert to the default for this netmask. 20398 */ 20399 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20400 mutex_enter(&ipif->ipif_ill->ill_lock); 20401 ipif_set_default(ipif); 20402 mutex_exit(&ipif->ipif_ill->ill_lock); 20403 } else { 20404 ire_refrele(ire); 20405 } 20406 } 20407 20408 } 20409 20410 /* This is the first interface on this ill */ 20411 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20412 /* 20413 * Need to recover all multicast memberships in the driver. 20414 * This had to be deferred until we had attached. 20415 */ 20416 ill_recover_multicast(ill); 20417 } 20418 /* Join the allhosts multicast address */ 20419 ipif_multicast_up(ipif); 20420 20421 if (!loopback) { 20422 /* 20423 * See whether anybody else would benefit from the 20424 * new ipif that we added. We call this always rather 20425 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20426 * ipif is for the benefit of illgrp_insert (done above) 20427 * which does not do source address selection as it does 20428 * not want to re-create interface routes that we are 20429 * having reference to it here. 20430 */ 20431 ill_update_source_selection(ill); 20432 } 20433 20434 for (irep1 = irep; irep1 > ire_array; ) { 20435 irep1--; 20436 if (*irep1 != NULL) { 20437 /* was held in ire_add */ 20438 ire_refrele(*irep1); 20439 } 20440 } 20441 20442 cnt = ipif_saved_ire_cnt; 20443 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20444 if (*irep1 != NULL) { 20445 /* was held in ire_add */ 20446 ire_refrele(*irep1); 20447 } 20448 } 20449 20450 if (!loopback && ipif->ipif_addr_ready) { 20451 /* Broadcast an address mask reply. */ 20452 ipif_mask_reply(ipif); 20453 } 20454 if (ipif_saved_irep != NULL) { 20455 kmem_free(ipif_saved_irep, 20456 ipif_saved_ire_cnt * sizeof (ire_t *)); 20457 } 20458 if (src_ipif_held) 20459 ipif_refrele(src_ipif); 20460 20461 /* 20462 * This had to be deferred until we had bound. Tell routing sockets and 20463 * others that this interface is up if it looks like the address has 20464 * been validated. Otherwise, if it isn't ready yet, wait for 20465 * duplicate address detection to do its thing. 20466 */ 20467 if (ipif->ipif_addr_ready) { 20468 ip_rts_ifmsg(ipif); 20469 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20470 /* Let SCTP update the status for this ipif */ 20471 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20472 } 20473 return (0); 20474 20475 bad: 20476 ip1dbg(("ipif_up_done: FAILED \n")); 20477 /* 20478 * We don't have to bother removing from ill groups because 20479 * 20480 * 1) For groups with names, we insert only when the first ipif 20481 * comes up. In that case if it fails, it will not be in any 20482 * group. So, we need not try to remove for that case. 20483 * 20484 * 2) For groups without names, either we tried to insert ipif_ill 20485 * in a group as singleton or found some other group to become 20486 * a bigger group. For the former, if it fails we don't have 20487 * anything to do as ipif_ill is not in the group and for the 20488 * latter, there are no failures in illgrp_insert/illgrp_delete 20489 * (ENOMEM can't occur for this. Check ifgrp_insert). 20490 */ 20491 while (irep > ire_array) { 20492 irep--; 20493 if (*irep != NULL) { 20494 ire_delete(*irep); 20495 if (ire_added) 20496 ire_refrele(*irep); 20497 } 20498 } 20499 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20500 20501 if (ipif_saved_irep != NULL) { 20502 kmem_free(ipif_saved_irep, 20503 ipif_saved_ire_cnt * sizeof (ire_t *)); 20504 } 20505 if (src_ipif_held) 20506 ipif_refrele(src_ipif); 20507 20508 ipif_arp_down(ipif); 20509 return (err); 20510 } 20511 20512 /* 20513 * Turn off the ARP with the ILLF_NOARP flag. 20514 */ 20515 static int 20516 ill_arp_off(ill_t *ill) 20517 { 20518 mblk_t *arp_off_mp = NULL; 20519 mblk_t *arp_on_mp = NULL; 20520 20521 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20522 20523 ASSERT(IAM_WRITER_ILL(ill)); 20524 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20525 20526 /* 20527 * If the on message is still around we've already done 20528 * an arp_off without doing an arp_on thus there is no 20529 * work needed. 20530 */ 20531 if (ill->ill_arp_on_mp != NULL) 20532 return (0); 20533 20534 /* 20535 * Allocate an ARP on message (to be saved) and an ARP off message 20536 */ 20537 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20538 if (!arp_off_mp) 20539 return (ENOMEM); 20540 20541 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20542 if (!arp_on_mp) 20543 goto failed; 20544 20545 ASSERT(ill->ill_arp_on_mp == NULL); 20546 ill->ill_arp_on_mp = arp_on_mp; 20547 20548 /* Send an AR_INTERFACE_OFF request */ 20549 putnext(ill->ill_rq, arp_off_mp); 20550 return (0); 20551 failed: 20552 20553 if (arp_off_mp) 20554 freemsg(arp_off_mp); 20555 return (ENOMEM); 20556 } 20557 20558 /* 20559 * Turn on ARP by turning off the ILLF_NOARP flag. 20560 */ 20561 static int 20562 ill_arp_on(ill_t *ill) 20563 { 20564 mblk_t *mp; 20565 20566 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20567 20568 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20569 20570 ASSERT(IAM_WRITER_ILL(ill)); 20571 /* 20572 * Send an AR_INTERFACE_ON request if we have already done 20573 * an arp_off (which allocated the message). 20574 */ 20575 if (ill->ill_arp_on_mp != NULL) { 20576 mp = ill->ill_arp_on_mp; 20577 ill->ill_arp_on_mp = NULL; 20578 putnext(ill->ill_rq, mp); 20579 } 20580 return (0); 20581 } 20582 20583 /* 20584 * Called after either deleting ill from the group or when setting 20585 * FAILED or STANDBY on the interface. 20586 */ 20587 static void 20588 illgrp_reset_schednext(ill_t *ill) 20589 { 20590 ill_group_t *illgrp; 20591 ill_t *save_ill; 20592 20593 ASSERT(IAM_WRITER_ILL(ill)); 20594 /* 20595 * When called from illgrp_delete, ill_group will be non-NULL. 20596 * But when called from ip_sioctl_flags, it could be NULL if 20597 * somebody is setting FAILED/INACTIVE on some interface which 20598 * is not part of a group. 20599 */ 20600 illgrp = ill->ill_group; 20601 if (illgrp == NULL) 20602 return; 20603 if (illgrp->illgrp_ill_schednext != ill) 20604 return; 20605 20606 illgrp->illgrp_ill_schednext = NULL; 20607 save_ill = ill; 20608 /* 20609 * Choose a good ill to be the next one for 20610 * outbound traffic. As the flags FAILED/STANDBY is 20611 * not yet marked when called from ip_sioctl_flags, 20612 * we check for ill separately. 20613 */ 20614 for (ill = illgrp->illgrp_ill; ill != NULL; 20615 ill = ill->ill_group_next) { 20616 if ((ill != save_ill) && 20617 !(ill->ill_phyint->phyint_flags & 20618 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20619 illgrp->illgrp_ill_schednext = ill; 20620 return; 20621 } 20622 } 20623 } 20624 20625 /* 20626 * Given an ill, find the next ill in the group to be scheduled. 20627 * (This should be called by ip_newroute() before ire_create().) 20628 * The passed in ill may be pulled out of the group, after we have picked 20629 * up a different outgoing ill from the same group. However ire add will 20630 * atomically check this. 20631 */ 20632 ill_t * 20633 illgrp_scheduler(ill_t *ill) 20634 { 20635 ill_t *retill; 20636 ill_group_t *illgrp; 20637 int illcnt; 20638 int i; 20639 uint64_t flags; 20640 ip_stack_t *ipst = ill->ill_ipst; 20641 20642 /* 20643 * We don't use a lock to check for the ill_group. If this ill 20644 * is currently being inserted we may end up just returning this 20645 * ill itself. That is ok. 20646 */ 20647 if (ill->ill_group == NULL) { 20648 ill_refhold(ill); 20649 return (ill); 20650 } 20651 20652 /* 20653 * Grab the ill_g_lock as reader to make sure we are dealing with 20654 * a set of stable ills. No ill can be added or deleted or change 20655 * group while we hold the reader lock. 20656 */ 20657 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20658 if ((illgrp = ill->ill_group) == NULL) { 20659 rw_exit(&ipst->ips_ill_g_lock); 20660 ill_refhold(ill); 20661 return (ill); 20662 } 20663 20664 illcnt = illgrp->illgrp_ill_count; 20665 mutex_enter(&illgrp->illgrp_lock); 20666 retill = illgrp->illgrp_ill_schednext; 20667 20668 if (retill == NULL) 20669 retill = illgrp->illgrp_ill; 20670 20671 /* 20672 * We do a circular search beginning at illgrp_ill_schednext 20673 * or illgrp_ill. We don't check the flags against the ill lock 20674 * since it can change anytime. The ire creation will be atomic 20675 * and will fail if the ill is FAILED or OFFLINE. 20676 */ 20677 for (i = 0; i < illcnt; i++) { 20678 flags = retill->ill_phyint->phyint_flags; 20679 20680 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20681 ILL_CAN_LOOKUP(retill)) { 20682 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20683 ill_refhold(retill); 20684 break; 20685 } 20686 retill = retill->ill_group_next; 20687 if (retill == NULL) 20688 retill = illgrp->illgrp_ill; 20689 } 20690 mutex_exit(&illgrp->illgrp_lock); 20691 rw_exit(&ipst->ips_ill_g_lock); 20692 20693 return (i == illcnt ? NULL : retill); 20694 } 20695 20696 /* 20697 * Checks for availbility of a usable source address (if there is one) when the 20698 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20699 * this selection is done regardless of the destination. 20700 */ 20701 boolean_t 20702 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20703 { 20704 uint_t ifindex; 20705 ipif_t *ipif = NULL; 20706 ill_t *uill; 20707 boolean_t isv6; 20708 ip_stack_t *ipst = ill->ill_ipst; 20709 20710 ASSERT(ill != NULL); 20711 20712 isv6 = ill->ill_isv6; 20713 ifindex = ill->ill_usesrc_ifindex; 20714 if (ifindex != 0) { 20715 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20716 NULL, ipst); 20717 if (uill == NULL) 20718 return (NULL); 20719 mutex_enter(&uill->ill_lock); 20720 for (ipif = uill->ill_ipif; ipif != NULL; 20721 ipif = ipif->ipif_next) { 20722 if (!IPIF_CAN_LOOKUP(ipif)) 20723 continue; 20724 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20725 continue; 20726 if (!(ipif->ipif_flags & IPIF_UP)) 20727 continue; 20728 if (ipif->ipif_zoneid != zoneid) 20729 continue; 20730 if ((isv6 && 20731 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20732 (ipif->ipif_lcl_addr == INADDR_ANY)) 20733 continue; 20734 mutex_exit(&uill->ill_lock); 20735 ill_refrele(uill); 20736 return (B_TRUE); 20737 } 20738 mutex_exit(&uill->ill_lock); 20739 ill_refrele(uill); 20740 } 20741 return (B_FALSE); 20742 } 20743 20744 /* 20745 * Determine the best source address given a destination address and an ill. 20746 * Prefers non-deprecated over deprecated but will return a deprecated 20747 * address if there is no other choice. If there is a usable source address 20748 * on the interface pointed to by ill_usesrc_ifindex then that is given 20749 * first preference. 20750 * 20751 * Returns NULL if there is no suitable source address for the ill. 20752 * This only occurs when there is no valid source address for the ill. 20753 */ 20754 ipif_t * 20755 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20756 { 20757 ipif_t *ipif; 20758 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20759 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20760 int index = 0; 20761 boolean_t wrapped = B_FALSE; 20762 boolean_t same_subnet_only = B_FALSE; 20763 boolean_t ipif_same_found, ipif_other_found; 20764 boolean_t specific_found; 20765 ill_t *till, *usill = NULL; 20766 tsol_tpc_t *src_rhtp, *dst_rhtp; 20767 ip_stack_t *ipst = ill->ill_ipst; 20768 20769 if (ill->ill_usesrc_ifindex != 0) { 20770 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20771 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20772 if (usill != NULL) 20773 ill = usill; /* Select source from usesrc ILL */ 20774 else 20775 return (NULL); 20776 } 20777 20778 /* 20779 * If we're dealing with an unlabeled destination on a labeled system, 20780 * make sure that we ignore source addresses that are incompatible with 20781 * the destination's default label. That destination's default label 20782 * must dominate the minimum label on the source address. 20783 */ 20784 dst_rhtp = NULL; 20785 if (is_system_labeled()) { 20786 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20787 if (dst_rhtp == NULL) 20788 return (NULL); 20789 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20790 TPC_RELE(dst_rhtp); 20791 dst_rhtp = NULL; 20792 } 20793 } 20794 20795 /* 20796 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20797 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20798 * After selecting the right ipif, under ill_lock make sure ipif is 20799 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20800 * we retry. Inside the loop we still need to check for CONDEMNED, 20801 * but not under a lock. 20802 */ 20803 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20804 20805 retry: 20806 till = ill; 20807 ipif_arr[0] = NULL; 20808 20809 if (till->ill_group != NULL) 20810 till = till->ill_group->illgrp_ill; 20811 20812 /* 20813 * Choose one good source address from each ill across the group. 20814 * If possible choose a source address in the same subnet as 20815 * the destination address. 20816 * 20817 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20818 * This is okay because of the following. 20819 * 20820 * If PHYI_FAILED is set and we still have non-deprecated 20821 * addresses, it means the addresses have not yet been 20822 * failed over to a different interface. We potentially 20823 * select them to create IRE_CACHES, which will be later 20824 * flushed when the addresses move over. 20825 * 20826 * If PHYI_INACTIVE is set and we still have non-deprecated 20827 * addresses, it means either the user has configured them 20828 * or PHYI_INACTIVE has not been cleared after the addresses 20829 * been moved over. For the former, in.mpathd does a failover 20830 * when the interface becomes INACTIVE and hence we should 20831 * not find them. Once INACTIVE is set, we don't allow them 20832 * to create logical interfaces anymore. For the latter, a 20833 * flush will happen when INACTIVE is cleared which will 20834 * flush the IRE_CACHES. 20835 * 20836 * If PHYI_OFFLINE is set, all the addresses will be failed 20837 * over soon. We potentially select them to create IRE_CACHEs, 20838 * which will be later flushed when the addresses move over. 20839 * 20840 * NOTE : As ipif_select_source is called to borrow source address 20841 * for an ipif that is part of a group, source address selection 20842 * will be re-done whenever the group changes i.e either an 20843 * insertion/deletion in the group. 20844 * 20845 * Fill ipif_arr[] with source addresses, using these rules: 20846 * 20847 * 1. At most one source address from a given ill ends up 20848 * in ipif_arr[] -- that is, at most one of the ipif's 20849 * associated with a given ill ends up in ipif_arr[]. 20850 * 20851 * 2. If there is at least one non-deprecated ipif in the 20852 * IPMP group with a source address on the same subnet as 20853 * our destination, then fill ipif_arr[] only with 20854 * source addresses on the same subnet as our destination. 20855 * Note that because of (1), only the first 20856 * non-deprecated ipif found with a source address 20857 * matching the destination ends up in ipif_arr[]. 20858 * 20859 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20860 * addresses not in the same subnet as our destination. 20861 * Again, because of (1), only the first off-subnet source 20862 * address will be chosen. 20863 * 20864 * 4. If there are no non-deprecated ipifs, then just use 20865 * the source address associated with the last deprecated 20866 * one we find that happens to be on the same subnet, 20867 * otherwise the first one not in the same subnet. 20868 */ 20869 specific_found = B_FALSE; 20870 for (; till != NULL; till = till->ill_group_next) { 20871 ipif_same_found = B_FALSE; 20872 ipif_other_found = B_FALSE; 20873 for (ipif = till->ill_ipif; ipif != NULL; 20874 ipif = ipif->ipif_next) { 20875 if (!IPIF_CAN_LOOKUP(ipif)) 20876 continue; 20877 /* Always skip NOLOCAL and ANYCAST interfaces */ 20878 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20879 continue; 20880 if (!(ipif->ipif_flags & IPIF_UP) || 20881 !ipif->ipif_addr_ready) 20882 continue; 20883 if (ipif->ipif_zoneid != zoneid && 20884 ipif->ipif_zoneid != ALL_ZONES) 20885 continue; 20886 /* 20887 * Interfaces with 0.0.0.0 address are allowed to be UP, 20888 * but are not valid as source addresses. 20889 */ 20890 if (ipif->ipif_lcl_addr == INADDR_ANY) 20891 continue; 20892 20893 /* 20894 * Check compatibility of local address for 20895 * destination's default label if we're on a labeled 20896 * system. Incompatible addresses can't be used at 20897 * all. 20898 */ 20899 if (dst_rhtp != NULL) { 20900 boolean_t incompat; 20901 20902 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20903 IPV4_VERSION, B_FALSE); 20904 if (src_rhtp == NULL) 20905 continue; 20906 incompat = 20907 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20908 src_rhtp->tpc_tp.tp_doi != 20909 dst_rhtp->tpc_tp.tp_doi || 20910 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20911 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20912 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20913 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20914 TPC_RELE(src_rhtp); 20915 if (incompat) 20916 continue; 20917 } 20918 20919 /* 20920 * We prefer not to use all all-zones addresses, if we 20921 * can avoid it, as they pose problems with unlabeled 20922 * destinations. 20923 */ 20924 if (ipif->ipif_zoneid != ALL_ZONES) { 20925 if (!specific_found && 20926 (!same_subnet_only || 20927 (ipif->ipif_net_mask & dst) == 20928 ipif->ipif_subnet)) { 20929 index = 0; 20930 specific_found = B_TRUE; 20931 ipif_other_found = B_FALSE; 20932 } 20933 } else { 20934 if (specific_found) 20935 continue; 20936 } 20937 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20938 if (ipif_dep == NULL || 20939 (ipif->ipif_net_mask & dst) == 20940 ipif->ipif_subnet) 20941 ipif_dep = ipif; 20942 continue; 20943 } 20944 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20945 /* found a source address in the same subnet */ 20946 if (!same_subnet_only) { 20947 same_subnet_only = B_TRUE; 20948 index = 0; 20949 } 20950 ipif_same_found = B_TRUE; 20951 } else { 20952 if (same_subnet_only || ipif_other_found) 20953 continue; 20954 ipif_other_found = B_TRUE; 20955 } 20956 ipif_arr[index++] = ipif; 20957 if (index == MAX_IPIF_SELECT_SOURCE) { 20958 wrapped = B_TRUE; 20959 index = 0; 20960 } 20961 if (ipif_same_found) 20962 break; 20963 } 20964 } 20965 20966 if (ipif_arr[0] == NULL) { 20967 ipif = ipif_dep; 20968 } else { 20969 if (wrapped) 20970 index = MAX_IPIF_SELECT_SOURCE; 20971 ipif = ipif_arr[ipif_rand(ipst) % index]; 20972 ASSERT(ipif != NULL); 20973 } 20974 20975 if (ipif != NULL) { 20976 mutex_enter(&ipif->ipif_ill->ill_lock); 20977 if (!IPIF_CAN_LOOKUP(ipif)) { 20978 mutex_exit(&ipif->ipif_ill->ill_lock); 20979 goto retry; 20980 } 20981 ipif_refhold_locked(ipif); 20982 mutex_exit(&ipif->ipif_ill->ill_lock); 20983 } 20984 20985 rw_exit(&ipst->ips_ill_g_lock); 20986 if (usill != NULL) 20987 ill_refrele(usill); 20988 if (dst_rhtp != NULL) 20989 TPC_RELE(dst_rhtp); 20990 20991 #ifdef DEBUG 20992 if (ipif == NULL) { 20993 char buf1[INET6_ADDRSTRLEN]; 20994 20995 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20996 ill->ill_name, 20997 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20998 } else { 20999 char buf1[INET6_ADDRSTRLEN]; 21000 char buf2[INET6_ADDRSTRLEN]; 21001 21002 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21003 ipif->ipif_ill->ill_name, 21004 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21005 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21006 buf2, sizeof (buf2)))); 21007 } 21008 #endif /* DEBUG */ 21009 return (ipif); 21010 } 21011 21012 21013 /* 21014 * If old_ipif is not NULL, see if ipif was derived from old 21015 * ipif and if so, recreate the interface route by re-doing 21016 * source address selection. This happens when ipif_down -> 21017 * ipif_update_other_ipifs calls us. 21018 * 21019 * If old_ipif is NULL, just redo the source address selection 21020 * if needed. This happens when illgrp_insert or ipif_up_done 21021 * calls us. 21022 */ 21023 static void 21024 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21025 { 21026 ire_t *ire; 21027 ire_t *ipif_ire; 21028 queue_t *stq; 21029 ipif_t *nipif; 21030 ill_t *ill; 21031 boolean_t need_rele = B_FALSE; 21032 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21033 21034 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21035 ASSERT(IAM_WRITER_IPIF(ipif)); 21036 21037 ill = ipif->ipif_ill; 21038 if (!(ipif->ipif_flags & 21039 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21040 /* 21041 * Can't possibly have borrowed the source 21042 * from old_ipif. 21043 */ 21044 return; 21045 } 21046 21047 /* 21048 * Is there any work to be done? No work if the address 21049 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21050 * ipif_select_source() does not borrow addresses from 21051 * NOLOCAL and ANYCAST interfaces). 21052 */ 21053 if ((old_ipif != NULL) && 21054 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21055 (old_ipif->ipif_ill->ill_wq == NULL) || 21056 (old_ipif->ipif_flags & 21057 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21058 return; 21059 } 21060 21061 /* 21062 * Perform the same checks as when creating the 21063 * IRE_INTERFACE in ipif_up_done. 21064 */ 21065 if (!(ipif->ipif_flags & IPIF_UP)) 21066 return; 21067 21068 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21069 (ipif->ipif_subnet == INADDR_ANY)) 21070 return; 21071 21072 ipif_ire = ipif_to_ire(ipif); 21073 if (ipif_ire == NULL) 21074 return; 21075 21076 /* 21077 * We know that ipif uses some other source for its 21078 * IRE_INTERFACE. Is it using the source of this 21079 * old_ipif? 21080 */ 21081 if (old_ipif != NULL && 21082 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21083 ire_refrele(ipif_ire); 21084 return; 21085 } 21086 if (ip_debug > 2) { 21087 /* ip1dbg */ 21088 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21089 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21090 } 21091 21092 stq = ipif_ire->ire_stq; 21093 21094 /* 21095 * Can't use our source address. Select a different 21096 * source address for the IRE_INTERFACE. 21097 */ 21098 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21099 if (nipif == NULL) { 21100 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21101 nipif = ipif; 21102 } else { 21103 need_rele = B_TRUE; 21104 } 21105 21106 ire = ire_create( 21107 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21108 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21109 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21110 NULL, /* no gateway */ 21111 &ipif->ipif_mtu, /* max frag */ 21112 NULL, /* no src nce */ 21113 NULL, /* no recv from queue */ 21114 stq, /* send-to queue */ 21115 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21116 ipif, 21117 0, 21118 0, 21119 0, 21120 0, 21121 &ire_uinfo_null, 21122 NULL, 21123 NULL, 21124 ipst); 21125 21126 if (ire != NULL) { 21127 ire_t *ret_ire; 21128 int error; 21129 21130 /* 21131 * We don't need ipif_ire anymore. We need to delete 21132 * before we add so that ire_add does not detect 21133 * duplicates. 21134 */ 21135 ire_delete(ipif_ire); 21136 ret_ire = ire; 21137 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21138 ASSERT(error == 0); 21139 ASSERT(ire == ret_ire); 21140 /* Held in ire_add */ 21141 ire_refrele(ret_ire); 21142 } 21143 /* 21144 * Either we are falling through from above or could not 21145 * allocate a replacement. 21146 */ 21147 ire_refrele(ipif_ire); 21148 if (need_rele) 21149 ipif_refrele(nipif); 21150 } 21151 21152 /* 21153 * This old_ipif is going away. 21154 * 21155 * Determine if any other ipif's is using our address as 21156 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21157 * IPIF_DEPRECATED). 21158 * Find the IRE_INTERFACE for such ipifs and recreate them 21159 * to use an different source address following the rules in 21160 * ipif_up_done. 21161 * 21162 * This function takes an illgrp as an argument so that illgrp_delete 21163 * can call this to update source address even after deleting the 21164 * old_ipif->ipif_ill from the ill group. 21165 */ 21166 static void 21167 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21168 { 21169 ipif_t *ipif; 21170 ill_t *ill; 21171 char buf[INET6_ADDRSTRLEN]; 21172 21173 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21174 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21175 21176 ill = old_ipif->ipif_ill; 21177 21178 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21179 ill->ill_name, 21180 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21181 buf, sizeof (buf)))); 21182 /* 21183 * If this part of a group, look at all ills as ipif_select_source 21184 * borrows source address across all the ills in the group. 21185 */ 21186 if (illgrp != NULL) 21187 ill = illgrp->illgrp_ill; 21188 21189 for (; ill != NULL; ill = ill->ill_group_next) { 21190 for (ipif = ill->ill_ipif; ipif != NULL; 21191 ipif = ipif->ipif_next) { 21192 21193 if (ipif == old_ipif) 21194 continue; 21195 21196 ipif_recreate_interface_routes(old_ipif, ipif); 21197 } 21198 } 21199 } 21200 21201 /* ARGSUSED */ 21202 int 21203 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21204 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21205 { 21206 /* 21207 * ill_phyint_reinit merged the v4 and v6 into a single 21208 * ipsq. Could also have become part of a ipmp group in the 21209 * process, and we might not have been able to complete the 21210 * operation in ipif_set_values, if we could not become 21211 * exclusive. If so restart it here. 21212 */ 21213 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21214 } 21215 21216 21217 /* 21218 * Can operate on either a module or a driver queue. 21219 * Returns an error if not a module queue. 21220 */ 21221 /* ARGSUSED */ 21222 int 21223 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21224 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21225 { 21226 queue_t *q1 = q; 21227 char *cp; 21228 char interf_name[LIFNAMSIZ]; 21229 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21230 21231 if (q->q_next == NULL) { 21232 ip1dbg(( 21233 "if_unitsel: IF_UNITSEL: no q_next\n")); 21234 return (EINVAL); 21235 } 21236 21237 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21238 return (EALREADY); 21239 21240 do { 21241 q1 = q1->q_next; 21242 } while (q1->q_next); 21243 cp = q1->q_qinfo->qi_minfo->mi_idname; 21244 (void) sprintf(interf_name, "%s%d", cp, ppa); 21245 21246 /* 21247 * Here we are not going to delay the ioack until after 21248 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21249 * original ioctl message before sending the requests. 21250 */ 21251 return (ipif_set_values(q, mp, interf_name, &ppa)); 21252 } 21253 21254 /* ARGSUSED */ 21255 int 21256 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21257 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21258 { 21259 return (ENXIO); 21260 } 21261 21262 /* 21263 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21264 * `irep'. Returns a pointer to the next free `irep' entry (just like 21265 * ire_check_and_create_bcast()). 21266 */ 21267 static ire_t ** 21268 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21269 { 21270 ipaddr_t addr; 21271 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21272 ipaddr_t subnetmask = ipif->ipif_net_mask; 21273 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21274 21275 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21276 21277 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21278 21279 if (ipif->ipif_lcl_addr == INADDR_ANY || 21280 (ipif->ipif_flags & IPIF_NOLOCAL)) 21281 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21282 21283 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21284 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21285 21286 /* 21287 * For backward compatibility, we create net broadcast IREs based on 21288 * the old "IP address class system", since some old machines only 21289 * respond to these class derived net broadcast. However, we must not 21290 * create these net broadcast IREs if the subnetmask is shorter than 21291 * the IP address class based derived netmask. Otherwise, we may 21292 * create a net broadcast address which is the same as an IP address 21293 * on the subnet -- and then TCP will refuse to talk to that address. 21294 */ 21295 if (netmask < subnetmask) { 21296 addr = netmask & ipif->ipif_subnet; 21297 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21298 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21299 flags); 21300 } 21301 21302 /* 21303 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21304 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21305 * created. Creating these broadcast IREs will only create confusion 21306 * as `addr' will be the same as the IP address. 21307 */ 21308 if (subnetmask != 0xFFFFFFFF) { 21309 addr = ipif->ipif_subnet; 21310 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21311 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21312 irep, flags); 21313 } 21314 21315 return (irep); 21316 } 21317 21318 /* 21319 * Broadcast IRE info structure used in the functions below. Since we 21320 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21321 */ 21322 typedef struct bcast_ireinfo { 21323 uchar_t bi_type; /* BCAST_* value from below */ 21324 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21325 bi_needrep:1, /* do we need to replace it? */ 21326 bi_haverep:1, /* have we replaced it? */ 21327 bi_pad:5; 21328 ipaddr_t bi_addr; /* IRE address */ 21329 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21330 } bcast_ireinfo_t; 21331 21332 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21333 21334 /* 21335 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21336 * return B_TRUE if it should immediately be used to recreate the IRE. 21337 */ 21338 static boolean_t 21339 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21340 { 21341 ipaddr_t addr; 21342 21343 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21344 21345 switch (bireinfop->bi_type) { 21346 case BCAST_NET: 21347 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21348 if (addr != bireinfop->bi_addr) 21349 return (B_FALSE); 21350 break; 21351 case BCAST_SUBNET: 21352 if (ipif->ipif_subnet != bireinfop->bi_addr) 21353 return (B_FALSE); 21354 break; 21355 } 21356 21357 bireinfop->bi_needrep = 1; 21358 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21359 if (bireinfop->bi_backup == NULL) 21360 bireinfop->bi_backup = ipif; 21361 return (B_FALSE); 21362 } 21363 return (B_TRUE); 21364 } 21365 21366 /* 21367 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21368 * them ala ire_check_and_create_bcast(). 21369 */ 21370 static ire_t ** 21371 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21372 { 21373 ipaddr_t mask, addr; 21374 21375 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21376 21377 addr = bireinfop->bi_addr; 21378 irep = ire_create_bcast(ipif, addr, irep); 21379 21380 switch (bireinfop->bi_type) { 21381 case BCAST_NET: 21382 mask = ip_net_mask(ipif->ipif_subnet); 21383 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21384 break; 21385 case BCAST_SUBNET: 21386 mask = ipif->ipif_net_mask; 21387 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21388 break; 21389 } 21390 21391 bireinfop->bi_haverep = 1; 21392 return (irep); 21393 } 21394 21395 /* 21396 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21397 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21398 * that are going away are still needed. If so, have ipif_create_bcast() 21399 * recreate them (except for the deprecated case, as explained below). 21400 */ 21401 static ire_t ** 21402 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21403 ire_t **irep) 21404 { 21405 int i; 21406 ipif_t *ipif; 21407 21408 ASSERT(!ill->ill_isv6); 21409 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21410 /* 21411 * Skip this ipif if it's (a) the one being taken down, (b) 21412 * not in the same zone, or (c) has no valid local address. 21413 */ 21414 if (ipif == test_ipif || 21415 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21416 ipif->ipif_subnet == 0 || 21417 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21418 (IPIF_UP|IPIF_BROADCAST)) 21419 continue; 21420 21421 /* 21422 * For each dying IRE that hasn't yet been replaced, see if 21423 * `ipif' needs it and whether the IRE should be recreated on 21424 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21425 * will return B_FALSE even if `ipif' needs the IRE on the 21426 * hopes that we'll later find a needy non-deprecated ipif. 21427 * However, the ipif is recorded in bi_backup for possible 21428 * subsequent use by ipif_check_bcast_ires(). 21429 */ 21430 for (i = 0; i < BCAST_COUNT; i++) { 21431 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21432 continue; 21433 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21434 continue; 21435 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21436 } 21437 21438 /* 21439 * If we've replaced all of the broadcast IREs that are going 21440 * to be taken down, we know we're done. 21441 */ 21442 for (i = 0; i < BCAST_COUNT; i++) { 21443 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21444 break; 21445 } 21446 if (i == BCAST_COUNT) 21447 break; 21448 } 21449 return (irep); 21450 } 21451 21452 /* 21453 * Check if `test_ipif' (which is going away) is associated with any existing 21454 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21455 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21456 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21457 * 21458 * This is necessary because broadcast IREs are shared. In particular, a 21459 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21460 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21461 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21462 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21463 * same zone, they will share the same set of broadcast IREs. 21464 * 21465 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21466 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21467 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21468 */ 21469 static void 21470 ipif_check_bcast_ires(ipif_t *test_ipif) 21471 { 21472 ill_t *ill = test_ipif->ipif_ill; 21473 ire_t *ire, *ire_array[12]; /* see note above */ 21474 ire_t **irep1, **irep = &ire_array[0]; 21475 uint_t i, willdie; 21476 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21477 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21478 21479 ASSERT(!test_ipif->ipif_isv6); 21480 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21481 21482 /* 21483 * No broadcast IREs for the LOOPBACK interface 21484 * or others such as point to point and IPIF_NOXMIT. 21485 */ 21486 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21487 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21488 return; 21489 21490 bzero(bireinfo, sizeof (bireinfo)); 21491 bireinfo[0].bi_type = BCAST_ALLZEROES; 21492 bireinfo[0].bi_addr = 0; 21493 21494 bireinfo[1].bi_type = BCAST_ALLONES; 21495 bireinfo[1].bi_addr = INADDR_BROADCAST; 21496 21497 bireinfo[2].bi_type = BCAST_NET; 21498 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21499 21500 if (test_ipif->ipif_net_mask != 0) 21501 mask = test_ipif->ipif_net_mask; 21502 bireinfo[3].bi_type = BCAST_SUBNET; 21503 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21504 21505 /* 21506 * Figure out what (if any) broadcast IREs will die as a result of 21507 * `test_ipif' going away. If none will die, we're done. 21508 */ 21509 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21510 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21511 test_ipif, ALL_ZONES, NULL, 21512 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21513 if (ire != NULL) { 21514 willdie++; 21515 bireinfo[i].bi_willdie = 1; 21516 ire_refrele(ire); 21517 } 21518 } 21519 21520 if (willdie == 0) 21521 return; 21522 21523 /* 21524 * Walk through all the ipifs that will be affected by the dying IREs, 21525 * and recreate the IREs as necessary. 21526 */ 21527 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21528 21529 /* 21530 * Scan through the set of broadcast IREs and see if there are any 21531 * that we need to replace that have not yet been replaced. If so, 21532 * replace them using the appropriate backup ipif. 21533 */ 21534 for (i = 0; i < BCAST_COUNT; i++) { 21535 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21536 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21537 &bireinfo[i], irep); 21538 } 21539 21540 /* 21541 * If we can't create all of them, don't add any of them. (Code in 21542 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21543 * non-loopback copy and loopback copy for a given address.) 21544 */ 21545 for (irep1 = irep; irep1 > ire_array; ) { 21546 irep1--; 21547 if (*irep1 == NULL) { 21548 ip0dbg(("ipif_check_bcast_ires: can't create " 21549 "IRE_BROADCAST, memory allocation failure\n")); 21550 while (irep > ire_array) { 21551 irep--; 21552 if (*irep != NULL) 21553 ire_delete(*irep); 21554 } 21555 return; 21556 } 21557 } 21558 21559 for (irep1 = irep; irep1 > ire_array; ) { 21560 irep1--; 21561 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21562 ire_refrele(*irep1); /* Held in ire_add */ 21563 } 21564 } 21565 21566 /* 21567 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21568 * from lifr_flags and the name from lifr_name. 21569 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21570 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21571 * Returns EINPROGRESS when mp has been consumed by queueing it on 21572 * ill_pending_mp and the ioctl will complete in ip_rput. 21573 * 21574 * Can operate on either a module or a driver queue. 21575 * Returns an error if not a module queue. 21576 */ 21577 /* ARGSUSED */ 21578 int 21579 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21580 ip_ioctl_cmd_t *ipip, void *if_req) 21581 { 21582 ill_t *ill = q->q_ptr; 21583 phyint_t *phyi; 21584 ip_stack_t *ipst; 21585 struct lifreq *lifr = if_req; 21586 21587 ASSERT(ipif != NULL); 21588 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21589 21590 if (q->q_next == NULL) { 21591 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21592 return (EINVAL); 21593 } 21594 21595 /* 21596 * If we are not writer on 'q' then this interface exists already 21597 * and previous lookups (ip_extract_lifreq()) found this ipif -- 21598 * so return EALREADY. 21599 */ 21600 if (ill != ipif->ipif_ill) 21601 return (EALREADY); 21602 21603 if (ill->ill_name[0] != '\0') 21604 return (EALREADY); 21605 21606 /* 21607 * Set all the flags. Allows all kinds of override. Provide some 21608 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21609 * unless there is either multicast/broadcast support in the driver 21610 * or it is a pt-pt link. 21611 */ 21612 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21613 /* Meaningless to IP thus don't allow them to be set. */ 21614 ip1dbg(("ip_setname: EINVAL 1\n")); 21615 return (EINVAL); 21616 } 21617 21618 /* 21619 * If there's another ill already with the requested name, ensure 21620 * that it's of the same type. Otherwise, ill_phyint_reinit() will 21621 * fuse together two unrelated ills, which will cause chaos. 21622 */ 21623 ipst = ill->ill_ipst; 21624 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 21625 lifr->lifr_name, NULL); 21626 if (phyi != NULL) { 21627 ill_t *ill_mate = phyi->phyint_illv4; 21628 21629 if (ill_mate == NULL) 21630 ill_mate = phyi->phyint_illv6; 21631 ASSERT(ill_mate != NULL); 21632 21633 if (ill_mate->ill_media->ip_m_mac_type != 21634 ill->ill_media->ip_m_mac_type) { 21635 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 21636 "use the same ill name on differing media\n")); 21637 return (EINVAL); 21638 } 21639 } 21640 21641 /* 21642 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21643 * ill_bcast_addr_length info. 21644 */ 21645 if (!ill->ill_needs_attach && 21646 ((lifr->lifr_flags & IFF_MULTICAST) && 21647 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21648 ill->ill_bcast_addr_length == 0)) { 21649 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21650 ip1dbg(("ip_setname: EINVAL 2\n")); 21651 return (EINVAL); 21652 } 21653 if ((lifr->lifr_flags & IFF_BROADCAST) && 21654 ((lifr->lifr_flags & IFF_IPV6) || 21655 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21656 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21657 ip1dbg(("ip_setname: EINVAL 3\n")); 21658 return (EINVAL); 21659 } 21660 if (lifr->lifr_flags & IFF_UP) { 21661 /* Can only be set with SIOCSLIFFLAGS */ 21662 ip1dbg(("ip_setname: EINVAL 4\n")); 21663 return (EINVAL); 21664 } 21665 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21666 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21667 ip1dbg(("ip_setname: EINVAL 5\n")); 21668 return (EINVAL); 21669 } 21670 /* 21671 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21672 */ 21673 if ((lifr->lifr_flags & IFF_XRESOLV) && 21674 !(lifr->lifr_flags & IFF_IPV6) && 21675 !(ipif->ipif_isv6)) { 21676 ip1dbg(("ip_setname: EINVAL 6\n")); 21677 return (EINVAL); 21678 } 21679 21680 /* 21681 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21682 * we have all the flags here. So, we assign rather than we OR. 21683 * We can't OR the flags here because we don't want to set 21684 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21685 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21686 * on lifr_flags value here. 21687 */ 21688 /* 21689 * This ill has not been inserted into the global list. 21690 * So we are still single threaded and don't need any lock 21691 */ 21692 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 21693 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21694 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21695 21696 /* We started off as V4. */ 21697 if (ill->ill_flags & ILLF_IPV6) { 21698 ill->ill_phyint->phyint_illv6 = ill; 21699 ill->ill_phyint->phyint_illv4 = NULL; 21700 } 21701 21702 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 21703 } 21704 21705 /* ARGSUSED */ 21706 int 21707 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21708 ip_ioctl_cmd_t *ipip, void *if_req) 21709 { 21710 /* 21711 * ill_phyint_reinit merged the v4 and v6 into a single 21712 * ipsq. Could also have become part of a ipmp group in the 21713 * process, and we might not have been able to complete the 21714 * slifname in ipif_set_values, if we could not become 21715 * exclusive. If so restart it here 21716 */ 21717 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21718 } 21719 21720 /* 21721 * Return a pointer to the ipif which matches the index, IP version type and 21722 * zoneid. 21723 */ 21724 ipif_t * 21725 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21726 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21727 { 21728 ill_t *ill; 21729 ipif_t *ipif = NULL; 21730 21731 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21732 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21733 21734 if (err != NULL) 21735 *err = 0; 21736 21737 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21738 if (ill != NULL) { 21739 mutex_enter(&ill->ill_lock); 21740 for (ipif = ill->ill_ipif; ipif != NULL; 21741 ipif = ipif->ipif_next) { 21742 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21743 zoneid == ipif->ipif_zoneid || 21744 ipif->ipif_zoneid == ALL_ZONES)) { 21745 ipif_refhold_locked(ipif); 21746 break; 21747 } 21748 } 21749 mutex_exit(&ill->ill_lock); 21750 ill_refrele(ill); 21751 if (ipif == NULL && err != NULL) 21752 *err = ENXIO; 21753 } 21754 return (ipif); 21755 } 21756 21757 typedef struct conn_change_s { 21758 uint_t cc_old_ifindex; 21759 uint_t cc_new_ifindex; 21760 } conn_change_t; 21761 21762 /* 21763 * ipcl_walk function for changing interface index. 21764 */ 21765 static void 21766 conn_change_ifindex(conn_t *connp, caddr_t arg) 21767 { 21768 conn_change_t *connc; 21769 uint_t old_ifindex; 21770 uint_t new_ifindex; 21771 int i; 21772 ilg_t *ilg; 21773 21774 connc = (conn_change_t *)arg; 21775 old_ifindex = connc->cc_old_ifindex; 21776 new_ifindex = connc->cc_new_ifindex; 21777 21778 if (connp->conn_orig_bound_ifindex == old_ifindex) 21779 connp->conn_orig_bound_ifindex = new_ifindex; 21780 21781 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21782 connp->conn_orig_multicast_ifindex = new_ifindex; 21783 21784 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21785 ilg = &connp->conn_ilg[i]; 21786 if (ilg->ilg_orig_ifindex == old_ifindex) 21787 ilg->ilg_orig_ifindex = new_ifindex; 21788 } 21789 } 21790 21791 /* 21792 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21793 * to new_index if it matches the old_index. 21794 * 21795 * Failovers typically happen within a group of ills. But somebody 21796 * can remove an ill from the group after a failover happened. If 21797 * we are setting the ifindex after this, we potentially need to 21798 * look at all the ills rather than just the ones in the group. 21799 * We cut down the work by looking at matching ill_net_types 21800 * and ill_types as we could not possibly grouped them together. 21801 */ 21802 static void 21803 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21804 { 21805 ill_t *ill; 21806 ipif_t *ipif; 21807 uint_t old_ifindex; 21808 uint_t new_ifindex; 21809 ilm_t *ilm; 21810 ill_walk_context_t ctx; 21811 ip_stack_t *ipst = ill_orig->ill_ipst; 21812 21813 old_ifindex = connc->cc_old_ifindex; 21814 new_ifindex = connc->cc_new_ifindex; 21815 21816 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21817 ill = ILL_START_WALK_ALL(&ctx, ipst); 21818 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21819 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21820 (ill_orig->ill_type != ill->ill_type)) { 21821 continue; 21822 } 21823 for (ipif = ill->ill_ipif; ipif != NULL; 21824 ipif = ipif->ipif_next) { 21825 if (ipif->ipif_orig_ifindex == old_ifindex) 21826 ipif->ipif_orig_ifindex = new_ifindex; 21827 } 21828 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21829 if (ilm->ilm_orig_ifindex == old_ifindex) 21830 ilm->ilm_orig_ifindex = new_ifindex; 21831 } 21832 } 21833 rw_exit(&ipst->ips_ill_g_lock); 21834 } 21835 21836 /* 21837 * We first need to ensure that the new index is unique, and 21838 * then carry the change across both v4 and v6 ill representation 21839 * of the physical interface. 21840 */ 21841 /* ARGSUSED */ 21842 int 21843 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21844 ip_ioctl_cmd_t *ipip, void *ifreq) 21845 { 21846 ill_t *ill; 21847 ill_t *ill_other; 21848 phyint_t *phyi; 21849 int old_index; 21850 conn_change_t connc; 21851 struct ifreq *ifr = (struct ifreq *)ifreq; 21852 struct lifreq *lifr = (struct lifreq *)ifreq; 21853 uint_t index; 21854 ill_t *ill_v4; 21855 ill_t *ill_v6; 21856 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21857 21858 if (ipip->ipi_cmd_type == IF_CMD) 21859 index = ifr->ifr_index; 21860 else 21861 index = lifr->lifr_index; 21862 21863 /* 21864 * Only allow on physical interface. Also, index zero is illegal. 21865 * 21866 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21867 * 21868 * 1) If PHYI_FAILED is set, a failover could have happened which 21869 * implies a possible failback might have to happen. As failback 21870 * depends on the old index, we should fail setting the index. 21871 * 21872 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21873 * any addresses or multicast memberships are failed over to 21874 * a non-STANDBY interface. As failback depends on the old 21875 * index, we should fail setting the index for this case also. 21876 * 21877 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21878 * Be consistent with PHYI_FAILED and fail the ioctl. 21879 */ 21880 ill = ipif->ipif_ill; 21881 phyi = ill->ill_phyint; 21882 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21883 ipif->ipif_id != 0 || index == 0) { 21884 return (EINVAL); 21885 } 21886 old_index = phyi->phyint_ifindex; 21887 21888 /* If the index is not changing, no work to do */ 21889 if (old_index == index) 21890 return (0); 21891 21892 /* 21893 * Use ill_lookup_on_ifindex to determine if the 21894 * new index is unused and if so allow the change. 21895 */ 21896 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21897 ipst); 21898 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21899 ipst); 21900 if (ill_v6 != NULL || ill_v4 != NULL) { 21901 if (ill_v4 != NULL) 21902 ill_refrele(ill_v4); 21903 if (ill_v6 != NULL) 21904 ill_refrele(ill_v6); 21905 return (EBUSY); 21906 } 21907 21908 /* 21909 * The new index is unused. Set it in the phyint. 21910 * Locate the other ill so that we can send a routing 21911 * sockets message. 21912 */ 21913 if (ill->ill_isv6) { 21914 ill_other = phyi->phyint_illv4; 21915 } else { 21916 ill_other = phyi->phyint_illv6; 21917 } 21918 21919 phyi->phyint_ifindex = index; 21920 21921 /* Update SCTP's ILL list */ 21922 sctp_ill_reindex(ill, old_index); 21923 21924 connc.cc_old_ifindex = old_index; 21925 connc.cc_new_ifindex = index; 21926 ip_change_ifindex(ill, &connc); 21927 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21928 21929 /* Send the routing sockets message */ 21930 ip_rts_ifmsg(ipif); 21931 if (ill_other != NULL) 21932 ip_rts_ifmsg(ill_other->ill_ipif); 21933 21934 return (0); 21935 } 21936 21937 /* ARGSUSED */ 21938 int 21939 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21940 ip_ioctl_cmd_t *ipip, void *ifreq) 21941 { 21942 struct ifreq *ifr = (struct ifreq *)ifreq; 21943 struct lifreq *lifr = (struct lifreq *)ifreq; 21944 21945 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21946 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21947 /* Get the interface index */ 21948 if (ipip->ipi_cmd_type == IF_CMD) { 21949 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21950 } else { 21951 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21952 } 21953 return (0); 21954 } 21955 21956 /* ARGSUSED */ 21957 int 21958 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21959 ip_ioctl_cmd_t *ipip, void *ifreq) 21960 { 21961 struct lifreq *lifr = (struct lifreq *)ifreq; 21962 21963 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21964 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21965 /* Get the interface zone */ 21966 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21967 lifr->lifr_zoneid = ipif->ipif_zoneid; 21968 return (0); 21969 } 21970 21971 /* 21972 * Set the zoneid of an interface. 21973 */ 21974 /* ARGSUSED */ 21975 int 21976 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21977 ip_ioctl_cmd_t *ipip, void *ifreq) 21978 { 21979 struct lifreq *lifr = (struct lifreq *)ifreq; 21980 int err = 0; 21981 boolean_t need_up = B_FALSE; 21982 zone_t *zptr; 21983 zone_status_t status; 21984 zoneid_t zoneid; 21985 21986 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21987 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21988 if (!is_system_labeled()) 21989 return (ENOTSUP); 21990 zoneid = GLOBAL_ZONEID; 21991 } 21992 21993 /* cannot assign instance zero to a non-global zone */ 21994 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21995 return (ENOTSUP); 21996 21997 /* 21998 * Cannot assign to a zone that doesn't exist or is shutting down. In 21999 * the event of a race with the zone shutdown processing, since IP 22000 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22001 * interface will be cleaned up even if the zone is shut down 22002 * immediately after the status check. If the interface can't be brought 22003 * down right away, and the zone is shut down before the restart 22004 * function is called, we resolve the possible races by rechecking the 22005 * zone status in the restart function. 22006 */ 22007 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22008 return (EINVAL); 22009 status = zone_status_get(zptr); 22010 zone_rele(zptr); 22011 22012 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22013 return (EINVAL); 22014 22015 if (ipif->ipif_flags & IPIF_UP) { 22016 /* 22017 * If the interface is already marked up, 22018 * we call ipif_down which will take care 22019 * of ditching any IREs that have been set 22020 * up based on the old interface address. 22021 */ 22022 err = ipif_logical_down(ipif, q, mp); 22023 if (err == EINPROGRESS) 22024 return (err); 22025 ipif_down_tail(ipif); 22026 need_up = B_TRUE; 22027 } 22028 22029 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22030 return (err); 22031 } 22032 22033 static int 22034 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22035 queue_t *q, mblk_t *mp, boolean_t need_up) 22036 { 22037 int err = 0; 22038 ip_stack_t *ipst; 22039 22040 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22041 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22042 22043 if (CONN_Q(q)) 22044 ipst = CONNQ_TO_IPST(q); 22045 else 22046 ipst = ILLQ_TO_IPST(q); 22047 22048 /* 22049 * For exclusive stacks we don't allow a different zoneid than 22050 * global. 22051 */ 22052 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22053 zoneid != GLOBAL_ZONEID) 22054 return (EINVAL); 22055 22056 /* Set the new zone id. */ 22057 ipif->ipif_zoneid = zoneid; 22058 22059 /* Update sctp list */ 22060 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22061 22062 if (need_up) { 22063 /* 22064 * Now bring the interface back up. If this 22065 * is the only IPIF for the ILL, ipif_up 22066 * will have to re-bind to the device, so 22067 * we may get back EINPROGRESS, in which 22068 * case, this IOCTL will get completed in 22069 * ip_rput_dlpi when we see the DL_BIND_ACK. 22070 */ 22071 err = ipif_up(ipif, q, mp); 22072 } 22073 return (err); 22074 } 22075 22076 /* ARGSUSED */ 22077 int 22078 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22079 ip_ioctl_cmd_t *ipip, void *if_req) 22080 { 22081 struct lifreq *lifr = (struct lifreq *)if_req; 22082 zoneid_t zoneid; 22083 zone_t *zptr; 22084 zone_status_t status; 22085 22086 ASSERT(ipif->ipif_id != 0); 22087 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22088 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22089 zoneid = GLOBAL_ZONEID; 22090 22091 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22092 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22093 22094 /* 22095 * We recheck the zone status to resolve the following race condition: 22096 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22097 * 2) hme0:1 is up and can't be brought down right away; 22098 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22099 * 3) zone "myzone" is halted; the zone status switches to 22100 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22101 * the interfaces to remove - hme0:1 is not returned because it's not 22102 * yet in "myzone", so it won't be removed; 22103 * 4) the restart function for SIOCSLIFZONE is called; without the 22104 * status check here, we would have hme0:1 in "myzone" after it's been 22105 * destroyed. 22106 * Note that if the status check fails, we need to bring the interface 22107 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22108 * ipif_up_done[_v6](). 22109 */ 22110 status = ZONE_IS_UNINITIALIZED; 22111 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22112 status = zone_status_get(zptr); 22113 zone_rele(zptr); 22114 } 22115 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22116 if (ipif->ipif_isv6) { 22117 (void) ipif_up_done_v6(ipif); 22118 } else { 22119 (void) ipif_up_done(ipif); 22120 } 22121 return (EINVAL); 22122 } 22123 22124 ipif_down_tail(ipif); 22125 22126 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22127 B_TRUE)); 22128 } 22129 22130 /* ARGSUSED */ 22131 int 22132 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22133 ip_ioctl_cmd_t *ipip, void *ifreq) 22134 { 22135 struct lifreq *lifr = ifreq; 22136 22137 ASSERT(q->q_next == NULL); 22138 ASSERT(CONN_Q(q)); 22139 22140 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22141 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22142 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22143 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22144 22145 return (0); 22146 } 22147 22148 22149 /* Find the previous ILL in this usesrc group */ 22150 static ill_t * 22151 ill_prev_usesrc(ill_t *uill) 22152 { 22153 ill_t *ill; 22154 22155 for (ill = uill->ill_usesrc_grp_next; 22156 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22157 ill = ill->ill_usesrc_grp_next) 22158 /* do nothing */; 22159 return (ill); 22160 } 22161 22162 /* 22163 * Release all members of the usesrc group. This routine is called 22164 * from ill_delete when the interface being unplumbed is the 22165 * group head. 22166 */ 22167 static void 22168 ill_disband_usesrc_group(ill_t *uill) 22169 { 22170 ill_t *next_ill, *tmp_ill; 22171 ip_stack_t *ipst = uill->ill_ipst; 22172 22173 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22174 next_ill = uill->ill_usesrc_grp_next; 22175 22176 do { 22177 ASSERT(next_ill != NULL); 22178 tmp_ill = next_ill->ill_usesrc_grp_next; 22179 ASSERT(tmp_ill != NULL); 22180 next_ill->ill_usesrc_grp_next = NULL; 22181 next_ill->ill_usesrc_ifindex = 0; 22182 next_ill = tmp_ill; 22183 } while (next_ill->ill_usesrc_ifindex != 0); 22184 uill->ill_usesrc_grp_next = NULL; 22185 } 22186 22187 /* 22188 * Remove the client usesrc ILL from the list and relink to a new list 22189 */ 22190 int 22191 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22192 { 22193 ill_t *ill, *tmp_ill; 22194 ip_stack_t *ipst = ucill->ill_ipst; 22195 22196 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22197 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22198 22199 /* 22200 * Check if the usesrc client ILL passed in is not already 22201 * in use as a usesrc ILL i.e one whose source address is 22202 * in use OR a usesrc ILL is not already in use as a usesrc 22203 * client ILL 22204 */ 22205 if ((ucill->ill_usesrc_ifindex == 0) || 22206 (uill->ill_usesrc_ifindex != 0)) { 22207 return (-1); 22208 } 22209 22210 ill = ill_prev_usesrc(ucill); 22211 ASSERT(ill->ill_usesrc_grp_next != NULL); 22212 22213 /* Remove from the current list */ 22214 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22215 /* Only two elements in the list */ 22216 ASSERT(ill->ill_usesrc_ifindex == 0); 22217 ill->ill_usesrc_grp_next = NULL; 22218 } else { 22219 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22220 } 22221 22222 if (ifindex == 0) { 22223 ucill->ill_usesrc_ifindex = 0; 22224 ucill->ill_usesrc_grp_next = NULL; 22225 return (0); 22226 } 22227 22228 ucill->ill_usesrc_ifindex = ifindex; 22229 tmp_ill = uill->ill_usesrc_grp_next; 22230 uill->ill_usesrc_grp_next = ucill; 22231 ucill->ill_usesrc_grp_next = 22232 (tmp_ill != NULL) ? tmp_ill : uill; 22233 return (0); 22234 } 22235 22236 /* 22237 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22238 * ip.c for locking details. 22239 */ 22240 /* ARGSUSED */ 22241 int 22242 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22243 ip_ioctl_cmd_t *ipip, void *ifreq) 22244 { 22245 struct lifreq *lifr = (struct lifreq *)ifreq; 22246 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22247 ill_flag_changed = B_FALSE; 22248 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22249 int err = 0, ret; 22250 uint_t ifindex; 22251 phyint_t *us_phyint, *us_cli_phyint; 22252 ipsq_t *ipsq = NULL; 22253 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22254 22255 ASSERT(IAM_WRITER_IPIF(ipif)); 22256 ASSERT(q->q_next == NULL); 22257 ASSERT(CONN_Q(q)); 22258 22259 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22260 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22261 22262 ASSERT(us_cli_phyint != NULL); 22263 22264 /* 22265 * If the client ILL is being used for IPMP, abort. 22266 * Note, this can be done before ipsq_try_enter since we are already 22267 * exclusive on this ILL 22268 */ 22269 if ((us_cli_phyint->phyint_groupname != NULL) || 22270 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22271 return (EINVAL); 22272 } 22273 22274 ifindex = lifr->lifr_index; 22275 if (ifindex == 0) { 22276 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22277 /* non usesrc group interface, nothing to reset */ 22278 return (0); 22279 } 22280 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22281 /* valid reset request */ 22282 reset_flg = B_TRUE; 22283 } 22284 22285 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22286 ip_process_ioctl, &err, ipst); 22287 22288 if (usesrc_ill == NULL) { 22289 return (err); 22290 } 22291 22292 /* 22293 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22294 * group nor can either of the interfaces be used for standy. So 22295 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22296 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22297 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22298 * We are already exlusive on this ipsq i.e ipsq corresponding to 22299 * the usesrc_cli_ill 22300 */ 22301 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22302 NEW_OP, B_TRUE); 22303 if (ipsq == NULL) { 22304 err = EINPROGRESS; 22305 /* Operation enqueued on the ipsq of the usesrc ILL */ 22306 goto done; 22307 } 22308 22309 /* Check if the usesrc_ill is used for IPMP */ 22310 us_phyint = usesrc_ill->ill_phyint; 22311 if ((us_phyint->phyint_groupname != NULL) || 22312 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22313 err = EINVAL; 22314 goto done; 22315 } 22316 22317 /* 22318 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22319 * already a client then return EINVAL 22320 */ 22321 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22322 err = EINVAL; 22323 goto done; 22324 } 22325 22326 /* 22327 * If the ill_usesrc_ifindex field is already set to what it needs to 22328 * be then this is a duplicate operation. 22329 */ 22330 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22331 err = 0; 22332 goto done; 22333 } 22334 22335 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22336 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22337 usesrc_ill->ill_isv6)); 22338 22339 /* 22340 * The next step ensures that no new ires will be created referencing 22341 * the client ill, until the ILL_CHANGING flag is cleared. Then 22342 * we go through an ire walk deleting all ire caches that reference 22343 * the client ill. New ires referencing the client ill that are added 22344 * to the ire table before the ILL_CHANGING flag is set, will be 22345 * cleaned up by the ire walk below. Attempt to add new ires referencing 22346 * the client ill while the ILL_CHANGING flag is set will be failed 22347 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22348 * checks (under the ill_g_usesrc_lock) that the ire being added 22349 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22350 * belong to the same usesrc group. 22351 */ 22352 mutex_enter(&usesrc_cli_ill->ill_lock); 22353 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22354 mutex_exit(&usesrc_cli_ill->ill_lock); 22355 ill_flag_changed = B_TRUE; 22356 22357 if (ipif->ipif_isv6) 22358 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22359 ALL_ZONES, ipst); 22360 else 22361 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22362 ALL_ZONES, ipst); 22363 22364 /* 22365 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22366 * and the ill_usesrc_ifindex fields 22367 */ 22368 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22369 22370 if (reset_flg) { 22371 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22372 if (ret != 0) { 22373 err = EINVAL; 22374 } 22375 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22376 goto done; 22377 } 22378 22379 /* 22380 * Four possibilities to consider: 22381 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22382 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22383 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22384 * 4. Both are part of their respective usesrc groups 22385 */ 22386 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22387 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22388 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22389 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22390 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22391 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22392 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22393 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22394 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22395 /* Insert at head of list */ 22396 usesrc_cli_ill->ill_usesrc_grp_next = 22397 usesrc_ill->ill_usesrc_grp_next; 22398 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22399 } else { 22400 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22401 ifindex); 22402 if (ret != 0) 22403 err = EINVAL; 22404 } 22405 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22406 22407 done: 22408 if (ill_flag_changed) { 22409 mutex_enter(&usesrc_cli_ill->ill_lock); 22410 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22411 mutex_exit(&usesrc_cli_ill->ill_lock); 22412 } 22413 if (ipsq != NULL) 22414 ipsq_exit(ipsq); 22415 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22416 ill_refrele(usesrc_ill); 22417 return (err); 22418 } 22419 22420 /* 22421 * comparison function used by avl. 22422 */ 22423 static int 22424 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22425 { 22426 22427 uint_t index; 22428 22429 ASSERT(phyip != NULL && index_ptr != NULL); 22430 22431 index = *((uint_t *)index_ptr); 22432 /* 22433 * let the phyint with the lowest index be on top. 22434 */ 22435 if (((phyint_t *)phyip)->phyint_ifindex < index) 22436 return (1); 22437 if (((phyint_t *)phyip)->phyint_ifindex > index) 22438 return (-1); 22439 return (0); 22440 } 22441 22442 /* 22443 * comparison function used by avl. 22444 */ 22445 static int 22446 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22447 { 22448 ill_t *ill; 22449 int res = 0; 22450 22451 ASSERT(phyip != NULL && name_ptr != NULL); 22452 22453 if (((phyint_t *)phyip)->phyint_illv4) 22454 ill = ((phyint_t *)phyip)->phyint_illv4; 22455 else 22456 ill = ((phyint_t *)phyip)->phyint_illv6; 22457 ASSERT(ill != NULL); 22458 22459 res = strcmp(ill->ill_name, (char *)name_ptr); 22460 if (res > 0) 22461 return (1); 22462 else if (res < 0) 22463 return (-1); 22464 return (0); 22465 } 22466 /* 22467 * This function is called from ill_delete when the ill is being 22468 * unplumbed. We remove the reference from the phyint and we also 22469 * free the phyint when there are no more references to it. 22470 */ 22471 static void 22472 ill_phyint_free(ill_t *ill) 22473 { 22474 phyint_t *phyi; 22475 phyint_t *next_phyint; 22476 ipsq_t *cur_ipsq; 22477 ip_stack_t *ipst = ill->ill_ipst; 22478 22479 ASSERT(ill->ill_phyint != NULL); 22480 22481 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22482 phyi = ill->ill_phyint; 22483 ill->ill_phyint = NULL; 22484 /* 22485 * ill_init allocates a phyint always to store the copy 22486 * of flags relevant to phyint. At that point in time, we could 22487 * not assign the name and hence phyint_illv4/v6 could not be 22488 * initialized. Later in ipif_set_values, we assign the name to 22489 * the ill, at which point in time we assign phyint_illv4/v6. 22490 * Thus we don't rely on phyint_illv6 to be initialized always. 22491 */ 22492 if (ill->ill_flags & ILLF_IPV6) { 22493 phyi->phyint_illv6 = NULL; 22494 } else { 22495 phyi->phyint_illv4 = NULL; 22496 } 22497 /* 22498 * ipif_down removes it from the group when the last ipif goes 22499 * down. 22500 */ 22501 ASSERT(ill->ill_group == NULL); 22502 22503 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22504 return; 22505 22506 /* 22507 * Make sure this phyint was put in the list. 22508 */ 22509 if (phyi->phyint_ifindex > 0) { 22510 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22511 phyi); 22512 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22513 phyi); 22514 } 22515 /* 22516 * remove phyint from the ipsq list. 22517 */ 22518 cur_ipsq = phyi->phyint_ipsq; 22519 if (phyi == cur_ipsq->ipsq_phyint_list) { 22520 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22521 } else { 22522 next_phyint = cur_ipsq->ipsq_phyint_list; 22523 while (next_phyint != NULL) { 22524 if (next_phyint->phyint_ipsq_next == phyi) { 22525 next_phyint->phyint_ipsq_next = 22526 phyi->phyint_ipsq_next; 22527 break; 22528 } 22529 next_phyint = next_phyint->phyint_ipsq_next; 22530 } 22531 ASSERT(next_phyint != NULL); 22532 } 22533 IPSQ_DEC_REF(cur_ipsq, ipst); 22534 22535 if (phyi->phyint_groupname_len != 0) { 22536 ASSERT(phyi->phyint_groupname != NULL); 22537 mi_free(phyi->phyint_groupname); 22538 } 22539 mi_free(phyi); 22540 } 22541 22542 /* 22543 * Attach the ill to the phyint structure which can be shared by both 22544 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22545 * function is called from ipif_set_values and ill_lookup_on_name (for 22546 * loopback) where we know the name of the ill. We lookup the ill and if 22547 * there is one present already with the name use that phyint. Otherwise 22548 * reuse the one allocated by ill_init. 22549 */ 22550 static void 22551 ill_phyint_reinit(ill_t *ill) 22552 { 22553 boolean_t isv6 = ill->ill_isv6; 22554 phyint_t *phyi_old; 22555 phyint_t *phyi; 22556 avl_index_t where = 0; 22557 ill_t *ill_other = NULL; 22558 ipsq_t *ipsq; 22559 ip_stack_t *ipst = ill->ill_ipst; 22560 22561 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22562 22563 phyi_old = ill->ill_phyint; 22564 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22565 phyi_old->phyint_illv6 == NULL)); 22566 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22567 phyi_old->phyint_illv4 == NULL)); 22568 ASSERT(phyi_old->phyint_ifindex == 0); 22569 22570 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22571 ill->ill_name, &where); 22572 22573 /* 22574 * 1. We grabbed the ill_g_lock before inserting this ill into 22575 * the global list of ills. So no other thread could have located 22576 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22577 * 2. Now locate the other protocol instance of this ill. 22578 * 3. Now grab both ill locks in the right order, and the phyint lock of 22579 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22580 * of neither ill can change. 22581 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22582 * other ill. 22583 * 5. Release all locks. 22584 */ 22585 22586 /* 22587 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22588 * we are initializing IPv4. 22589 */ 22590 if (phyi != NULL) { 22591 ill_other = (isv6) ? phyi->phyint_illv4 : 22592 phyi->phyint_illv6; 22593 ASSERT(ill_other->ill_phyint != NULL); 22594 ASSERT((isv6 && !ill_other->ill_isv6) || 22595 (!isv6 && ill_other->ill_isv6)); 22596 GRAB_ILL_LOCKS(ill, ill_other); 22597 /* 22598 * We are potentially throwing away phyint_flags which 22599 * could be different from the one that we obtain from 22600 * ill_other->ill_phyint. But it is okay as we are assuming 22601 * that the state maintained within IP is correct. 22602 */ 22603 mutex_enter(&phyi->phyint_lock); 22604 if (isv6) { 22605 ASSERT(phyi->phyint_illv6 == NULL); 22606 phyi->phyint_illv6 = ill; 22607 } else { 22608 ASSERT(phyi->phyint_illv4 == NULL); 22609 phyi->phyint_illv4 = ill; 22610 } 22611 /* 22612 * This is a new ill, currently undergoing SLIFNAME 22613 * So we could not have joined an IPMP group until now. 22614 */ 22615 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22616 phyi_old->phyint_groupname == NULL); 22617 22618 /* 22619 * This phyi_old is going away. Decref ipsq_refs and 22620 * assert it is zero. The ipsq itself will be freed in 22621 * ipsq_exit 22622 */ 22623 ipsq = phyi_old->phyint_ipsq; 22624 IPSQ_DEC_REF(ipsq, ipst); 22625 ASSERT(ipsq->ipsq_refs == 0); 22626 /* Get the singleton phyint out of the ipsq list */ 22627 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22628 ipsq->ipsq_phyint_list = NULL; 22629 phyi_old->phyint_illv4 = NULL; 22630 phyi_old->phyint_illv6 = NULL; 22631 mi_free(phyi_old); 22632 } else { 22633 mutex_enter(&ill->ill_lock); 22634 /* 22635 * We don't need to acquire any lock, since 22636 * the ill is not yet visible globally and we 22637 * have not yet released the ill_g_lock. 22638 */ 22639 phyi = phyi_old; 22640 mutex_enter(&phyi->phyint_lock); 22641 /* XXX We need a recovery strategy here. */ 22642 if (!phyint_assign_ifindex(phyi, ipst)) 22643 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22644 22645 /* No IPMP group yet, thus the hook uses the ifindex */ 22646 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22647 22648 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22649 (void *)phyi, where); 22650 22651 (void) avl_find(&ipst->ips_phyint_g_list-> 22652 phyint_list_avl_by_index, 22653 &phyi->phyint_ifindex, &where); 22654 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22655 (void *)phyi, where); 22656 } 22657 22658 /* 22659 * Reassigning ill_phyint automatically reassigns the ipsq also. 22660 * pending mp is not affected because that is per ill basis. 22661 */ 22662 ill->ill_phyint = phyi; 22663 22664 /* 22665 * Keep the index on ipif_orig_index to be used by FAILOVER. 22666 * We do this here as when the first ipif was allocated, 22667 * ipif_allocate does not know the right interface index. 22668 */ 22669 22670 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22671 /* 22672 * Now that the phyint's ifindex has been assigned, complete the 22673 * remaining 22674 */ 22675 22676 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22677 if (ill->ill_isv6) { 22678 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22679 ill->ill_phyint->phyint_ifindex; 22680 ill->ill_mcast_type = ipst->ips_mld_max_version; 22681 } else { 22682 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22683 } 22684 22685 /* 22686 * Generate an event within the hooks framework to indicate that 22687 * a new interface has just been added to IP. For this event to 22688 * be generated, the network interface must, at least, have an 22689 * ifindex assigned to it. 22690 * 22691 * This needs to be run inside the ill_g_lock perimeter to ensure 22692 * that the ordering of delivered events to listeners matches the 22693 * order of them in the kernel. 22694 * 22695 * This function could be called from ill_lookup_on_name. In that case 22696 * the interface is loopback "lo", which will not generate a NIC event. 22697 */ 22698 if (ill->ill_name_length <= 2 || 22699 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22700 /* 22701 * Generate nic plumb event for ill_name even if 22702 * ipmp_hook_emulation is set. That avoids generating events 22703 * for the ill_names should ipmp_hook_emulation be turned on 22704 * later. 22705 */ 22706 ill_nic_info_plumb(ill, B_FALSE); 22707 } 22708 RELEASE_ILL_LOCKS(ill, ill_other); 22709 mutex_exit(&phyi->phyint_lock); 22710 } 22711 22712 /* 22713 * Allocate a NE_PLUMB nic info event and store in the ill. 22714 * If 'group' is set we do it for the group name, otherwise the ill name. 22715 * It will be sent when we leave the ipsq. 22716 */ 22717 void 22718 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22719 { 22720 phyint_t *phyi = ill->ill_phyint; 22721 char *name; 22722 int namelen; 22723 22724 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22725 22726 if (group) { 22727 ASSERT(phyi->phyint_groupname_len != 0); 22728 namelen = phyi->phyint_groupname_len; 22729 name = phyi->phyint_groupname; 22730 } else { 22731 namelen = ill->ill_name_length; 22732 name = ill->ill_name; 22733 } 22734 22735 (void) ill_hook_event_create(ill, 0, NE_PLUMB, name, namelen); 22736 } 22737 22738 /* 22739 * Unhook the nic event message from the ill and enqueue it 22740 * into the nic event taskq. 22741 */ 22742 void 22743 ill_nic_info_dispatch(ill_t *ill) 22744 { 22745 hook_nic_event_t *info; 22746 22747 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22748 22749 if ((info = ill->ill_nic_event_info) != NULL) { 22750 if (ddi_taskq_dispatch(eventq_queue_nic, 22751 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22752 ip2dbg(("ill_nic_info_dispatch: " 22753 "ddi_taskq_dispatch failed\n")); 22754 if (info->hne_data != NULL) 22755 kmem_free(info->hne_data, info->hne_datalen); 22756 kmem_free(info, sizeof (hook_nic_event_t)); 22757 } 22758 ill->ill_nic_event_info = NULL; 22759 } 22760 } 22761 22762 /* 22763 * Notify any downstream modules of the name of this interface. 22764 * An M_IOCTL is used even though we don't expect a successful reply. 22765 * Any reply message from the driver (presumably an M_IOCNAK) will 22766 * eventually get discarded somewhere upstream. The message format is 22767 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22768 * to IP. 22769 */ 22770 static void 22771 ip_ifname_notify(ill_t *ill, queue_t *q) 22772 { 22773 mblk_t *mp1, *mp2; 22774 struct iocblk *iocp; 22775 struct lifreq *lifr; 22776 22777 mp1 = mkiocb(SIOCSLIFNAME); 22778 if (mp1 == NULL) 22779 return; 22780 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22781 if (mp2 == NULL) { 22782 freeb(mp1); 22783 return; 22784 } 22785 22786 mp1->b_cont = mp2; 22787 iocp = (struct iocblk *)mp1->b_rptr; 22788 iocp->ioc_count = sizeof (struct lifreq); 22789 22790 lifr = (struct lifreq *)mp2->b_rptr; 22791 mp2->b_wptr += sizeof (struct lifreq); 22792 bzero(lifr, sizeof (struct lifreq)); 22793 22794 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22795 lifr->lifr_ppa = ill->ill_ppa; 22796 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22797 22798 putnext(q, mp1); 22799 } 22800 22801 static int 22802 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22803 { 22804 int err; 22805 ip_stack_t *ipst = ill->ill_ipst; 22806 22807 /* Set the obsolete NDD per-interface forwarding name. */ 22808 err = ill_set_ndd_name(ill); 22809 if (err != 0) { 22810 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22811 err); 22812 } 22813 22814 /* Tell downstream modules where they are. */ 22815 ip_ifname_notify(ill, q); 22816 22817 /* 22818 * ill_dl_phys returns EINPROGRESS in the usual case. 22819 * Error cases are ENOMEM ... 22820 */ 22821 err = ill_dl_phys(ill, ipif, mp, q); 22822 22823 /* 22824 * If there is no IRE expiration timer running, get one started. 22825 * igmp and mld timers will be triggered by the first multicast 22826 */ 22827 if (ipst->ips_ip_ire_expire_id == 0) { 22828 /* 22829 * acquire the lock and check again. 22830 */ 22831 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22832 if (ipst->ips_ip_ire_expire_id == 0) { 22833 ipst->ips_ip_ire_expire_id = timeout( 22834 ip_trash_timer_expire, ipst, 22835 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22836 } 22837 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22838 } 22839 22840 if (ill->ill_isv6) { 22841 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22842 if (ipst->ips_mld_slowtimeout_id == 0) { 22843 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22844 (void *)ipst, 22845 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22846 } 22847 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22848 } else { 22849 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22850 if (ipst->ips_igmp_slowtimeout_id == 0) { 22851 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22852 (void *)ipst, 22853 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22854 } 22855 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22856 } 22857 22858 return (err); 22859 } 22860 22861 /* 22862 * Common routine for ppa and ifname setting. Should be called exclusive. 22863 * 22864 * Returns EINPROGRESS when mp has been consumed by queueing it on 22865 * ill_pending_mp and the ioctl will complete in ip_rput. 22866 * 22867 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22868 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22869 * For SLIFNAME, we pass these values back to the userland. 22870 */ 22871 static int 22872 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22873 { 22874 ill_t *ill; 22875 ipif_t *ipif; 22876 ipsq_t *ipsq; 22877 char *ppa_ptr; 22878 char *old_ptr; 22879 char old_char; 22880 int error; 22881 ip_stack_t *ipst; 22882 22883 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22884 ASSERT(q->q_next != NULL); 22885 ASSERT(interf_name != NULL); 22886 22887 ill = (ill_t *)q->q_ptr; 22888 ipst = ill->ill_ipst; 22889 22890 ASSERT(ill->ill_ipst != NULL); 22891 ASSERT(ill->ill_name[0] == '\0'); 22892 ASSERT(IAM_WRITER_ILL(ill)); 22893 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22894 ASSERT(ill->ill_ppa == UINT_MAX); 22895 22896 /* The ppa is sent down by ifconfig or is chosen */ 22897 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22898 return (EINVAL); 22899 } 22900 22901 /* 22902 * make sure ppa passed in is same as ppa in the name. 22903 * This check is not made when ppa == UINT_MAX in that case ppa 22904 * in the name could be anything. System will choose a ppa and 22905 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22906 */ 22907 if (*new_ppa_ptr != UINT_MAX) { 22908 /* stoi changes the pointer */ 22909 old_ptr = ppa_ptr; 22910 /* 22911 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22912 * (they don't have an externally visible ppa). We assign one 22913 * here so that we can manage the interface. Note that in 22914 * the past this value was always 0 for DLPI 1 drivers. 22915 */ 22916 if (*new_ppa_ptr == 0) 22917 *new_ppa_ptr = stoi(&old_ptr); 22918 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22919 return (EINVAL); 22920 } 22921 /* 22922 * terminate string before ppa 22923 * save char at that location. 22924 */ 22925 old_char = ppa_ptr[0]; 22926 ppa_ptr[0] = '\0'; 22927 22928 ill->ill_ppa = *new_ppa_ptr; 22929 /* 22930 * Finish as much work now as possible before calling ill_glist_insert 22931 * which makes the ill globally visible and also merges it with the 22932 * other protocol instance of this phyint. The remaining work is 22933 * done after entering the ipsq which may happen sometime later. 22934 * ill_set_ndd_name occurs after the ill has been made globally visible. 22935 */ 22936 ipif = ill->ill_ipif; 22937 22938 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22939 ipif_assign_seqid(ipif); 22940 22941 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22942 ill->ill_flags |= ILLF_IPV4; 22943 22944 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22945 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22946 22947 if (ill->ill_flags & ILLF_IPV6) { 22948 22949 ill->ill_isv6 = B_TRUE; 22950 if (ill->ill_rq != NULL) { 22951 ill->ill_rq->q_qinfo = &iprinitv6; 22952 ill->ill_wq->q_qinfo = &ipwinitv6; 22953 } 22954 22955 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22956 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22957 ipif->ipif_v6src_addr = ipv6_all_zeros; 22958 ipif->ipif_v6subnet = ipv6_all_zeros; 22959 ipif->ipif_v6net_mask = ipv6_all_zeros; 22960 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22961 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22962 /* 22963 * point-to-point or Non-mulicast capable 22964 * interfaces won't do NUD unless explicitly 22965 * configured to do so. 22966 */ 22967 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22968 !(ill->ill_flags & ILLF_MULTICAST)) { 22969 ill->ill_flags |= ILLF_NONUD; 22970 } 22971 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22972 if (ill->ill_flags & ILLF_NOARP) { 22973 /* 22974 * Note: xresolv interfaces will eventually need 22975 * NOARP set here as well, but that will require 22976 * those external resolvers to have some 22977 * knowledge of that flag and act appropriately. 22978 * Not to be changed at present. 22979 */ 22980 ill->ill_flags &= ~ILLF_NOARP; 22981 } 22982 /* 22983 * Set the ILLF_ROUTER flag according to the global 22984 * IPv6 forwarding policy. 22985 */ 22986 if (ipst->ips_ipv6_forward != 0) 22987 ill->ill_flags |= ILLF_ROUTER; 22988 } else if (ill->ill_flags & ILLF_IPV4) { 22989 ill->ill_isv6 = B_FALSE; 22990 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22991 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22992 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22993 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22994 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22995 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22996 /* 22997 * Set the ILLF_ROUTER flag according to the global 22998 * IPv4 forwarding policy. 22999 */ 23000 if (ipst->ips_ip_g_forward != 0) 23001 ill->ill_flags |= ILLF_ROUTER; 23002 } 23003 23004 ASSERT(ill->ill_phyint != NULL); 23005 23006 /* 23007 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23008 * be completed in ill_glist_insert -> ill_phyint_reinit 23009 */ 23010 if (!ill_allocate_mibs(ill)) 23011 return (ENOMEM); 23012 23013 /* 23014 * Pick a default sap until we get the DL_INFO_ACK back from 23015 * the driver. 23016 */ 23017 if (ill->ill_sap == 0) { 23018 if (ill->ill_isv6) 23019 ill->ill_sap = IP6_DL_SAP; 23020 else 23021 ill->ill_sap = IP_DL_SAP; 23022 } 23023 23024 ill->ill_ifname_pending = 1; 23025 ill->ill_ifname_pending_err = 0; 23026 23027 ill_refhold(ill); 23028 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23029 if ((error = ill_glist_insert(ill, interf_name, 23030 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23031 ill->ill_ppa = UINT_MAX; 23032 ill->ill_name[0] = '\0'; 23033 /* 23034 * undo null termination done above. 23035 */ 23036 ppa_ptr[0] = old_char; 23037 rw_exit(&ipst->ips_ill_g_lock); 23038 ill_refrele(ill); 23039 return (error); 23040 } 23041 23042 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23043 23044 /* 23045 * When we return the buffer pointed to by interf_name should contain 23046 * the same name as in ill_name. 23047 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23048 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23049 * so copy full name and update the ppa ptr. 23050 * When ppa passed in != UINT_MAX all values are correct just undo 23051 * null termination, this saves a bcopy. 23052 */ 23053 if (*new_ppa_ptr == UINT_MAX) { 23054 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23055 *new_ppa_ptr = ill->ill_ppa; 23056 } else { 23057 /* 23058 * undo null termination done above. 23059 */ 23060 ppa_ptr[0] = old_char; 23061 } 23062 23063 /* Let SCTP know about this ILL */ 23064 sctp_update_ill(ill, SCTP_ILL_INSERT); 23065 23066 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23067 B_TRUE); 23068 23069 rw_exit(&ipst->ips_ill_g_lock); 23070 ill_refrele(ill); 23071 if (ipsq == NULL) 23072 return (EINPROGRESS); 23073 23074 /* 23075 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23076 */ 23077 if (ipsq->ipsq_current_ipif == NULL) 23078 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23079 else 23080 ASSERT(ipsq->ipsq_current_ipif == ipif); 23081 23082 error = ipif_set_values_tail(ill, ipif, mp, q); 23083 ipsq_exit(ipsq); 23084 if (error != 0 && error != EINPROGRESS) { 23085 /* 23086 * restore previous values 23087 */ 23088 ill->ill_isv6 = B_FALSE; 23089 } 23090 return (error); 23091 } 23092 23093 23094 void 23095 ipif_init(ip_stack_t *ipst) 23096 { 23097 hrtime_t hrt; 23098 int i; 23099 23100 /* 23101 * Can't call drv_getparm here as it is too early in the boot. 23102 * As we use ipif_src_random just for picking a different 23103 * source address everytime, this need not be really random. 23104 */ 23105 hrt = gethrtime(); 23106 ipst->ips_ipif_src_random = 23107 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23108 23109 for (i = 0; i < MAX_G_HEADS; i++) { 23110 ipst->ips_ill_g_heads[i].ill_g_list_head = 23111 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23112 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23113 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23114 } 23115 23116 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23117 ill_phyint_compare_index, 23118 sizeof (phyint_t), 23119 offsetof(struct phyint, phyint_avl_by_index)); 23120 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23121 ill_phyint_compare_name, 23122 sizeof (phyint_t), 23123 offsetof(struct phyint, phyint_avl_by_name)); 23124 } 23125 23126 /* 23127 * Lookup the ipif corresponding to the onlink destination address. For 23128 * point-to-point interfaces, it matches with remote endpoint destination 23129 * address. For point-to-multipoint interfaces it only tries to match the 23130 * destination with the interface's subnet address. The longest, most specific 23131 * match is found to take care of such rare network configurations like - 23132 * le0: 129.146.1.1/16 23133 * le1: 129.146.2.2/24 23134 * It is used only by SO_DONTROUTE at the moment. 23135 */ 23136 ipif_t * 23137 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23138 { 23139 ipif_t *ipif, *best_ipif; 23140 ill_t *ill; 23141 ill_walk_context_t ctx; 23142 23143 ASSERT(zoneid != ALL_ZONES); 23144 best_ipif = NULL; 23145 23146 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23147 ill = ILL_START_WALK_V4(&ctx, ipst); 23148 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23149 mutex_enter(&ill->ill_lock); 23150 for (ipif = ill->ill_ipif; ipif != NULL; 23151 ipif = ipif->ipif_next) { 23152 if (!IPIF_CAN_LOOKUP(ipif)) 23153 continue; 23154 if (ipif->ipif_zoneid != zoneid && 23155 ipif->ipif_zoneid != ALL_ZONES) 23156 continue; 23157 /* 23158 * Point-to-point case. Look for exact match with 23159 * destination address. 23160 */ 23161 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23162 if (ipif->ipif_pp_dst_addr == addr) { 23163 ipif_refhold_locked(ipif); 23164 mutex_exit(&ill->ill_lock); 23165 rw_exit(&ipst->ips_ill_g_lock); 23166 if (best_ipif != NULL) 23167 ipif_refrele(best_ipif); 23168 return (ipif); 23169 } 23170 } else if (ipif->ipif_subnet == (addr & 23171 ipif->ipif_net_mask)) { 23172 /* 23173 * Point-to-multipoint case. Looping through to 23174 * find the most specific match. If there are 23175 * multiple best match ipif's then prefer ipif's 23176 * that are UP. If there is only one best match 23177 * ipif and it is DOWN we must still return it. 23178 */ 23179 if ((best_ipif == NULL) || 23180 (ipif->ipif_net_mask > 23181 best_ipif->ipif_net_mask) || 23182 ((ipif->ipif_net_mask == 23183 best_ipif->ipif_net_mask) && 23184 ((ipif->ipif_flags & IPIF_UP) && 23185 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23186 ipif_refhold_locked(ipif); 23187 mutex_exit(&ill->ill_lock); 23188 rw_exit(&ipst->ips_ill_g_lock); 23189 if (best_ipif != NULL) 23190 ipif_refrele(best_ipif); 23191 best_ipif = ipif; 23192 rw_enter(&ipst->ips_ill_g_lock, 23193 RW_READER); 23194 mutex_enter(&ill->ill_lock); 23195 } 23196 } 23197 } 23198 mutex_exit(&ill->ill_lock); 23199 } 23200 rw_exit(&ipst->ips_ill_g_lock); 23201 return (best_ipif); 23202 } 23203 23204 23205 /* 23206 * Save enough information so that we can recreate the IRE if 23207 * the interface goes down and then up. 23208 */ 23209 static void 23210 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23211 { 23212 mblk_t *save_mp; 23213 23214 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23215 if (save_mp != NULL) { 23216 ifrt_t *ifrt; 23217 23218 save_mp->b_wptr += sizeof (ifrt_t); 23219 ifrt = (ifrt_t *)save_mp->b_rptr; 23220 bzero(ifrt, sizeof (ifrt_t)); 23221 ifrt->ifrt_type = ire->ire_type; 23222 ifrt->ifrt_addr = ire->ire_addr; 23223 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23224 ifrt->ifrt_src_addr = ire->ire_src_addr; 23225 ifrt->ifrt_mask = ire->ire_mask; 23226 ifrt->ifrt_flags = ire->ire_flags; 23227 ifrt->ifrt_max_frag = ire->ire_max_frag; 23228 mutex_enter(&ipif->ipif_saved_ire_lock); 23229 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23230 ipif->ipif_saved_ire_mp = save_mp; 23231 ipif->ipif_saved_ire_cnt++; 23232 mutex_exit(&ipif->ipif_saved_ire_lock); 23233 } 23234 } 23235 23236 23237 static void 23238 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23239 { 23240 mblk_t **mpp; 23241 mblk_t *mp; 23242 ifrt_t *ifrt; 23243 23244 /* Remove from ipif_saved_ire_mp list if it is there */ 23245 mutex_enter(&ipif->ipif_saved_ire_lock); 23246 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23247 mpp = &(*mpp)->b_cont) { 23248 /* 23249 * On a given ipif, the triple of address, gateway and 23250 * mask is unique for each saved IRE (in the case of 23251 * ordinary interface routes, the gateway address is 23252 * all-zeroes). 23253 */ 23254 mp = *mpp; 23255 ifrt = (ifrt_t *)mp->b_rptr; 23256 if (ifrt->ifrt_addr == ire->ire_addr && 23257 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23258 ifrt->ifrt_mask == ire->ire_mask) { 23259 *mpp = mp->b_cont; 23260 ipif->ipif_saved_ire_cnt--; 23261 freeb(mp); 23262 break; 23263 } 23264 } 23265 mutex_exit(&ipif->ipif_saved_ire_lock); 23266 } 23267 23268 23269 /* 23270 * IP multirouting broadcast routes handling 23271 * Append CGTP broadcast IREs to regular ones created 23272 * at ifconfig time. 23273 */ 23274 static void 23275 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23276 { 23277 ire_t *ire_prim; 23278 23279 ASSERT(ire != NULL); 23280 ASSERT(ire_dst != NULL); 23281 23282 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23283 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23284 if (ire_prim != NULL) { 23285 /* 23286 * We are in the special case of broadcasts for 23287 * CGTP. We add an IRE_BROADCAST that holds 23288 * the RTF_MULTIRT flag, the destination 23289 * address of ire_dst and the low level 23290 * info of ire_prim. In other words, CGTP 23291 * broadcast is added to the redundant ipif. 23292 */ 23293 ipif_t *ipif_prim; 23294 ire_t *bcast_ire; 23295 23296 ipif_prim = ire_prim->ire_ipif; 23297 23298 ip2dbg(("ip_cgtp_filter_bcast_add: " 23299 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23300 (void *)ire_dst, (void *)ire_prim, 23301 (void *)ipif_prim)); 23302 23303 bcast_ire = ire_create( 23304 (uchar_t *)&ire->ire_addr, 23305 (uchar_t *)&ip_g_all_ones, 23306 (uchar_t *)&ire_dst->ire_src_addr, 23307 (uchar_t *)&ire->ire_gateway_addr, 23308 &ipif_prim->ipif_mtu, 23309 NULL, 23310 ipif_prim->ipif_rq, 23311 ipif_prim->ipif_wq, 23312 IRE_BROADCAST, 23313 ipif_prim, 23314 0, 23315 0, 23316 0, 23317 ire->ire_flags, 23318 &ire_uinfo_null, 23319 NULL, 23320 NULL, 23321 ipst); 23322 23323 if (bcast_ire != NULL) { 23324 23325 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23326 B_FALSE) == 0) { 23327 ip2dbg(("ip_cgtp_filter_bcast_add: " 23328 "added bcast_ire %p\n", 23329 (void *)bcast_ire)); 23330 23331 ipif_save_ire(bcast_ire->ire_ipif, 23332 bcast_ire); 23333 ire_refrele(bcast_ire); 23334 } 23335 } 23336 ire_refrele(ire_prim); 23337 } 23338 } 23339 23340 23341 /* 23342 * IP multirouting broadcast routes handling 23343 * Remove the broadcast ire 23344 */ 23345 static void 23346 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23347 { 23348 ire_t *ire_dst; 23349 23350 ASSERT(ire != NULL); 23351 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23352 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23353 if (ire_dst != NULL) { 23354 ire_t *ire_prim; 23355 23356 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23357 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23358 if (ire_prim != NULL) { 23359 ipif_t *ipif_prim; 23360 ire_t *bcast_ire; 23361 23362 ipif_prim = ire_prim->ire_ipif; 23363 23364 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23365 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23366 (void *)ire_dst, (void *)ire_prim, 23367 (void *)ipif_prim)); 23368 23369 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23370 ire->ire_gateway_addr, 23371 IRE_BROADCAST, 23372 ipif_prim, ALL_ZONES, 23373 NULL, 23374 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23375 MATCH_IRE_MASK, ipst); 23376 23377 if (bcast_ire != NULL) { 23378 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23379 "looked up bcast_ire %p\n", 23380 (void *)bcast_ire)); 23381 ipif_remove_ire(bcast_ire->ire_ipif, 23382 bcast_ire); 23383 ire_delete(bcast_ire); 23384 ire_refrele(bcast_ire); 23385 } 23386 ire_refrele(ire_prim); 23387 } 23388 ire_refrele(ire_dst); 23389 } 23390 } 23391 23392 /* 23393 * IPsec hardware acceleration capabilities related functions. 23394 */ 23395 23396 /* 23397 * Free a per-ill IPsec capabilities structure. 23398 */ 23399 static void 23400 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23401 { 23402 if (capab->auth_hw_algs != NULL) 23403 kmem_free(capab->auth_hw_algs, capab->algs_size); 23404 if (capab->encr_hw_algs != NULL) 23405 kmem_free(capab->encr_hw_algs, capab->algs_size); 23406 if (capab->encr_algparm != NULL) 23407 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23408 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23409 } 23410 23411 /* 23412 * Allocate a new per-ill IPsec capabilities structure. This structure 23413 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23414 * an array which specifies, for each algorithm, whether this algorithm 23415 * is supported by the ill or not. 23416 */ 23417 static ill_ipsec_capab_t * 23418 ill_ipsec_capab_alloc(void) 23419 { 23420 ill_ipsec_capab_t *capab; 23421 uint_t nelems; 23422 23423 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23424 if (capab == NULL) 23425 return (NULL); 23426 23427 /* we need one bit per algorithm */ 23428 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23429 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23430 23431 /* allocate memory to store algorithm flags */ 23432 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23433 if (capab->encr_hw_algs == NULL) 23434 goto nomem; 23435 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23436 if (capab->auth_hw_algs == NULL) 23437 goto nomem; 23438 /* 23439 * Leave encr_algparm NULL for now since we won't need it half 23440 * the time 23441 */ 23442 return (capab); 23443 23444 nomem: 23445 ill_ipsec_capab_free(capab); 23446 return (NULL); 23447 } 23448 23449 /* 23450 * Resize capability array. Since we're exclusive, this is OK. 23451 */ 23452 static boolean_t 23453 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23454 { 23455 ipsec_capab_algparm_t *nalp, *oalp; 23456 uint32_t olen, nlen; 23457 23458 oalp = capab->encr_algparm; 23459 olen = capab->encr_algparm_size; 23460 23461 if (oalp != NULL) { 23462 if (algid < capab->encr_algparm_end) 23463 return (B_TRUE); 23464 } 23465 23466 nlen = (algid + 1) * sizeof (*nalp); 23467 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23468 if (nalp == NULL) 23469 return (B_FALSE); 23470 23471 if (oalp != NULL) { 23472 bcopy(oalp, nalp, olen); 23473 kmem_free(oalp, olen); 23474 } 23475 capab->encr_algparm = nalp; 23476 capab->encr_algparm_size = nlen; 23477 capab->encr_algparm_end = algid + 1; 23478 23479 return (B_TRUE); 23480 } 23481 23482 /* 23483 * Compare the capabilities of the specified ill with the protocol 23484 * and algorithms specified by the SA passed as argument. 23485 * If they match, returns B_TRUE, B_FALSE if they do not match. 23486 * 23487 * The ill can be passed as a pointer to it, or by specifying its index 23488 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23489 * 23490 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23491 * packet is eligible for hardware acceleration, and by 23492 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23493 * to a particular ill. 23494 */ 23495 boolean_t 23496 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23497 ipsa_t *sa, netstack_t *ns) 23498 { 23499 boolean_t sa_isv6; 23500 uint_t algid; 23501 struct ill_ipsec_capab_s *cpp; 23502 boolean_t need_refrele = B_FALSE; 23503 ip_stack_t *ipst = ns->netstack_ip; 23504 23505 if (ill == NULL) { 23506 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23507 NULL, NULL, NULL, ipst); 23508 if (ill == NULL) { 23509 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23510 return (B_FALSE); 23511 } 23512 need_refrele = B_TRUE; 23513 } 23514 23515 /* 23516 * Use the address length specified by the SA to determine 23517 * if it corresponds to a IPv6 address, and fail the matching 23518 * if the isv6 flag passed as argument does not match. 23519 * Note: this check is used for SADB capability checking before 23520 * sending SA information to an ill. 23521 */ 23522 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23523 if (sa_isv6 != ill_isv6) 23524 /* protocol mismatch */ 23525 goto done; 23526 23527 /* 23528 * Check if the ill supports the protocol, algorithm(s) and 23529 * key size(s) specified by the SA, and get the pointers to 23530 * the algorithms supported by the ill. 23531 */ 23532 switch (sa->ipsa_type) { 23533 23534 case SADB_SATYPE_ESP: 23535 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23536 /* ill does not support ESP acceleration */ 23537 goto done; 23538 cpp = ill->ill_ipsec_capab_esp; 23539 algid = sa->ipsa_auth_alg; 23540 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23541 goto done; 23542 algid = sa->ipsa_encr_alg; 23543 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23544 goto done; 23545 if (algid < cpp->encr_algparm_end) { 23546 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23547 if (sa->ipsa_encrkeybits < alp->minkeylen) 23548 goto done; 23549 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23550 goto done; 23551 } 23552 break; 23553 23554 case SADB_SATYPE_AH: 23555 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23556 /* ill does not support AH acceleration */ 23557 goto done; 23558 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23559 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23560 goto done; 23561 break; 23562 } 23563 23564 if (need_refrele) 23565 ill_refrele(ill); 23566 return (B_TRUE); 23567 done: 23568 if (need_refrele) 23569 ill_refrele(ill); 23570 return (B_FALSE); 23571 } 23572 23573 23574 /* 23575 * Add a new ill to the list of IPsec capable ills. 23576 * Called from ill_capability_ipsec_ack() when an ACK was received 23577 * indicating that IPsec hardware processing was enabled for an ill. 23578 * 23579 * ill must point to the ill for which acceleration was enabled. 23580 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23581 */ 23582 static void 23583 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23584 { 23585 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23586 uint_t sa_type; 23587 uint_t ipproto; 23588 ip_stack_t *ipst = ill->ill_ipst; 23589 23590 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23591 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23592 23593 switch (dl_cap) { 23594 case DL_CAPAB_IPSEC_AH: 23595 sa_type = SADB_SATYPE_AH; 23596 ills = &ipst->ips_ipsec_capab_ills_ah; 23597 ipproto = IPPROTO_AH; 23598 break; 23599 case DL_CAPAB_IPSEC_ESP: 23600 sa_type = SADB_SATYPE_ESP; 23601 ills = &ipst->ips_ipsec_capab_ills_esp; 23602 ipproto = IPPROTO_ESP; 23603 break; 23604 } 23605 23606 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23607 23608 /* 23609 * Add ill index to list of hardware accelerators. If 23610 * already in list, do nothing. 23611 */ 23612 for (cur_ill = *ills; cur_ill != NULL && 23613 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23614 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23615 ; 23616 23617 if (cur_ill == NULL) { 23618 /* if this is a new entry for this ill */ 23619 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23620 if (new_ill == NULL) { 23621 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23622 return; 23623 } 23624 23625 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23626 new_ill->ill_isv6 = ill->ill_isv6; 23627 new_ill->next = *ills; 23628 *ills = new_ill; 23629 } else if (!sadb_resync) { 23630 /* not resync'ing SADB and an entry exists for this ill */ 23631 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23632 return; 23633 } 23634 23635 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23636 23637 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23638 /* 23639 * IPsec module for protocol loaded, initiate dump 23640 * of the SADB to this ill. 23641 */ 23642 sadb_ill_download(ill, sa_type); 23643 } 23644 23645 /* 23646 * Remove an ill from the list of IPsec capable ills. 23647 */ 23648 static void 23649 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23650 { 23651 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23652 ip_stack_t *ipst = ill->ill_ipst; 23653 23654 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23655 dl_cap == DL_CAPAB_IPSEC_ESP); 23656 23657 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23658 &ipst->ips_ipsec_capab_ills_esp; 23659 23660 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23661 23662 prev_ill = NULL; 23663 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23664 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23665 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23666 ; 23667 if (cur_ill == NULL) { 23668 /* entry not found */ 23669 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23670 return; 23671 } 23672 if (prev_ill == NULL) { 23673 /* entry at front of list */ 23674 *ills = NULL; 23675 } else { 23676 prev_ill->next = cur_ill->next; 23677 } 23678 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23679 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23680 } 23681 23682 /* 23683 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23684 * supporting the specified IPsec protocol acceleration. 23685 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23686 * We free the mblk and, if sa is non-null, release the held referece. 23687 */ 23688 void 23689 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23690 netstack_t *ns) 23691 { 23692 ipsec_capab_ill_t *ici, *cur_ici; 23693 ill_t *ill; 23694 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23695 ip_stack_t *ipst = ns->netstack_ip; 23696 23697 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23698 ipst->ips_ipsec_capab_ills_esp; 23699 23700 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23701 23702 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23703 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23704 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23705 23706 /* 23707 * Handle the case where the ill goes away while the SADB is 23708 * attempting to send messages. If it's going away, it's 23709 * nuking its shadow SADB, so we don't care.. 23710 */ 23711 23712 if (ill == NULL) 23713 continue; 23714 23715 if (sa != NULL) { 23716 /* 23717 * Make sure capabilities match before 23718 * sending SA to ill. 23719 */ 23720 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23721 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23722 ill_refrele(ill); 23723 continue; 23724 } 23725 23726 mutex_enter(&sa->ipsa_lock); 23727 sa->ipsa_flags |= IPSA_F_HW; 23728 mutex_exit(&sa->ipsa_lock); 23729 } 23730 23731 /* 23732 * Copy template message, and add it to the front 23733 * of the mblk ship list. We want to avoid holding 23734 * the ipsec_capab_ills_lock while sending the 23735 * message to the ills. 23736 * 23737 * The b_next and b_prev are temporarily used 23738 * to build a list of mblks to be sent down, and to 23739 * save the ill to which they must be sent. 23740 */ 23741 nmp = copymsg(mp); 23742 if (nmp == NULL) { 23743 ill_refrele(ill); 23744 continue; 23745 } 23746 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23747 nmp->b_next = mp_ship_list; 23748 mp_ship_list = nmp; 23749 nmp->b_prev = (mblk_t *)ill; 23750 } 23751 23752 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23753 23754 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23755 /* restore the mblk to a sane state */ 23756 next_mp = nmp->b_next; 23757 nmp->b_next = NULL; 23758 ill = (ill_t *)nmp->b_prev; 23759 nmp->b_prev = NULL; 23760 23761 ill_dlpi_send(ill, nmp); 23762 ill_refrele(ill); 23763 } 23764 23765 if (sa != NULL) 23766 IPSA_REFRELE(sa); 23767 freemsg(mp); 23768 } 23769 23770 /* 23771 * Derive an interface id from the link layer address. 23772 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23773 */ 23774 static boolean_t 23775 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23776 { 23777 char *addr; 23778 23779 if (phys_length != ETHERADDRL) 23780 return (B_FALSE); 23781 23782 /* Form EUI-64 like address */ 23783 addr = (char *)&v6addr->s6_addr32[2]; 23784 bcopy((char *)phys_addr, addr, 3); 23785 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23786 addr[3] = (char)0xff; 23787 addr[4] = (char)0xfe; 23788 bcopy((char *)phys_addr + 3, addr + 5, 3); 23789 return (B_TRUE); 23790 } 23791 23792 /* ARGSUSED */ 23793 static boolean_t 23794 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23795 { 23796 return (B_FALSE); 23797 } 23798 23799 /* ARGSUSED */ 23800 static boolean_t 23801 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23802 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23803 { 23804 /* 23805 * Multicast address mappings used over Ethernet/802.X. 23806 * This address is used as a base for mappings. 23807 */ 23808 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23809 0x00, 0x00, 0x00}; 23810 23811 /* 23812 * Extract low order 32 bits from IPv6 multicast address. 23813 * Or that into the link layer address, starting from the 23814 * second byte. 23815 */ 23816 *hw_start = 2; 23817 v6_extract_mask->s6_addr32[0] = 0; 23818 v6_extract_mask->s6_addr32[1] = 0; 23819 v6_extract_mask->s6_addr32[2] = 0; 23820 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23821 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23822 return (B_TRUE); 23823 } 23824 23825 /* 23826 * Indicate by return value whether multicast is supported. If not, 23827 * this code should not touch/change any parameters. 23828 */ 23829 /* ARGSUSED */ 23830 static boolean_t 23831 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23832 uint32_t *hw_start, ipaddr_t *extract_mask) 23833 { 23834 /* 23835 * Multicast address mappings used over Ethernet/802.X. 23836 * This address is used as a base for mappings. 23837 */ 23838 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23839 0x00, 0x00, 0x00 }; 23840 23841 if (phys_length != ETHERADDRL) 23842 return (B_FALSE); 23843 23844 *extract_mask = htonl(0x007fffff); 23845 *hw_start = 2; 23846 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23847 return (B_TRUE); 23848 } 23849 23850 /* 23851 * Derive IPoIB interface id from the link layer address. 23852 */ 23853 static boolean_t 23854 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23855 { 23856 char *addr; 23857 23858 if (phys_length != 20) 23859 return (B_FALSE); 23860 addr = (char *)&v6addr->s6_addr32[2]; 23861 bcopy(phys_addr + 12, addr, 8); 23862 /* 23863 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23864 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23865 * rules. In these cases, the IBA considers these GUIDs to be in 23866 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23867 * required; vendors are required not to assign global EUI-64's 23868 * that differ only in u/l bit values, thus guaranteeing uniqueness 23869 * of the interface identifier. Whether the GUID is in modified 23870 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23871 * bit set to 1. 23872 */ 23873 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23874 return (B_TRUE); 23875 } 23876 23877 /* 23878 * Note on mapping from multicast IP addresses to IPoIB multicast link 23879 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23880 * The format of an IPoIB multicast address is: 23881 * 23882 * 4 byte QPN Scope Sign. Pkey 23883 * +--------------------------------------------+ 23884 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23885 * +--------------------------------------------+ 23886 * 23887 * The Scope and Pkey components are properties of the IBA port and 23888 * network interface. They can be ascertained from the broadcast address. 23889 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23890 */ 23891 23892 static boolean_t 23893 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23894 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23895 { 23896 /* 23897 * Base IPoIB IPv6 multicast address used for mappings. 23898 * Does not contain the IBA scope/Pkey values. 23899 */ 23900 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23901 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23902 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23903 23904 /* 23905 * Extract low order 80 bits from IPv6 multicast address. 23906 * Or that into the link layer address, starting from the 23907 * sixth byte. 23908 */ 23909 *hw_start = 6; 23910 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23911 23912 /* 23913 * Now fill in the IBA scope/Pkey values from the broadcast address. 23914 */ 23915 *(maddr + 5) = *(bphys_addr + 5); 23916 *(maddr + 8) = *(bphys_addr + 8); 23917 *(maddr + 9) = *(bphys_addr + 9); 23918 23919 v6_extract_mask->s6_addr32[0] = 0; 23920 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23921 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23922 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23923 return (B_TRUE); 23924 } 23925 23926 static boolean_t 23927 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23928 uint32_t *hw_start, ipaddr_t *extract_mask) 23929 { 23930 /* 23931 * Base IPoIB IPv4 multicast address used for mappings. 23932 * Does not contain the IBA scope/Pkey values. 23933 */ 23934 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23935 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23936 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23937 23938 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23939 return (B_FALSE); 23940 23941 /* 23942 * Extract low order 28 bits from IPv4 multicast address. 23943 * Or that into the link layer address, starting from the 23944 * sixteenth byte. 23945 */ 23946 *extract_mask = htonl(0x0fffffff); 23947 *hw_start = 16; 23948 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23949 23950 /* 23951 * Now fill in the IBA scope/Pkey values from the broadcast address. 23952 */ 23953 *(maddr + 5) = *(bphys_addr + 5); 23954 *(maddr + 8) = *(bphys_addr + 8); 23955 *(maddr + 9) = *(bphys_addr + 9); 23956 return (B_TRUE); 23957 } 23958 23959 /* 23960 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23961 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23962 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23963 * the link-local address is preferred. 23964 */ 23965 boolean_t 23966 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23967 { 23968 ipif_t *ipif; 23969 ipif_t *maybe_ipif = NULL; 23970 23971 mutex_enter(&ill->ill_lock); 23972 if (ill->ill_state_flags & ILL_CONDEMNED) { 23973 mutex_exit(&ill->ill_lock); 23974 if (ipifp != NULL) 23975 *ipifp = NULL; 23976 return (B_FALSE); 23977 } 23978 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23979 if (!IPIF_CAN_LOOKUP(ipif)) 23980 continue; 23981 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23982 ipif->ipif_zoneid != ALL_ZONES) 23983 continue; 23984 if ((ipif->ipif_flags & flags) != flags) 23985 continue; 23986 23987 if (ipifp == NULL) { 23988 mutex_exit(&ill->ill_lock); 23989 ASSERT(maybe_ipif == NULL); 23990 return (B_TRUE); 23991 } 23992 if (!ill->ill_isv6 || 23993 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23994 ipif_refhold_locked(ipif); 23995 mutex_exit(&ill->ill_lock); 23996 *ipifp = ipif; 23997 return (B_TRUE); 23998 } 23999 if (maybe_ipif == NULL) 24000 maybe_ipif = ipif; 24001 } 24002 if (ipifp != NULL) { 24003 if (maybe_ipif != NULL) 24004 ipif_refhold_locked(maybe_ipif); 24005 *ipifp = maybe_ipif; 24006 } 24007 mutex_exit(&ill->ill_lock); 24008 return (maybe_ipif != NULL); 24009 } 24010 24011 /* 24012 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24013 */ 24014 boolean_t 24015 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24016 { 24017 ill_t *illg; 24018 ip_stack_t *ipst = ill->ill_ipst; 24019 24020 /* 24021 * We look at the passed-in ill first without grabbing ill_g_lock. 24022 */ 24023 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24024 return (B_TRUE); 24025 } 24026 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24027 if (ill->ill_group == NULL) { 24028 /* ill not in a group */ 24029 rw_exit(&ipst->ips_ill_g_lock); 24030 return (B_FALSE); 24031 } 24032 24033 /* 24034 * There's no ipif in the zone on ill, however ill is part of an IPMP 24035 * group. We need to look for an ipif in the zone on all the ills in the 24036 * group. 24037 */ 24038 illg = ill->ill_group->illgrp_ill; 24039 do { 24040 /* 24041 * We don't call ipif_lookup_zoneid() on ill as we already know 24042 * that it's not there. 24043 */ 24044 if (illg != ill && 24045 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24046 break; 24047 } 24048 } while ((illg = illg->ill_group_next) != NULL); 24049 rw_exit(&ipst->ips_ill_g_lock); 24050 return (illg != NULL); 24051 } 24052 24053 /* 24054 * Check if this ill is only being used to send ICMP probes for IPMP 24055 */ 24056 boolean_t 24057 ill_is_probeonly(ill_t *ill) 24058 { 24059 /* 24060 * Check if the interface is FAILED, or INACTIVE 24061 */ 24062 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24063 return (B_TRUE); 24064 24065 return (B_FALSE); 24066 } 24067 24068 /* 24069 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24070 * If a pointer to an ipif_t is returned then the caller will need to do 24071 * an ill_refrele(). 24072 * 24073 * If there is no real interface which matches the ifindex, then it looks 24074 * for a group that has a matching index. In the case of a group match the 24075 * lifidx must be zero. We don't need emulate the logical interfaces 24076 * since IP Filter's use of netinfo doesn't use that. 24077 */ 24078 ipif_t * 24079 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24080 ip_stack_t *ipst) 24081 { 24082 ipif_t *ipif; 24083 ill_t *ill; 24084 24085 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24086 ipst); 24087 24088 if (ill == NULL) { 24089 /* Fallback to group names only if hook_emulation set */ 24090 if (!ipst->ips_ipmp_hook_emulation) 24091 return (NULL); 24092 24093 if (lifidx != 0) 24094 return (NULL); 24095 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24096 if (ill == NULL) 24097 return (NULL); 24098 } 24099 24100 mutex_enter(&ill->ill_lock); 24101 if (ill->ill_state_flags & ILL_CONDEMNED) { 24102 mutex_exit(&ill->ill_lock); 24103 ill_refrele(ill); 24104 return (NULL); 24105 } 24106 24107 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24108 if (!IPIF_CAN_LOOKUP(ipif)) 24109 continue; 24110 if (lifidx == ipif->ipif_id) { 24111 ipif_refhold_locked(ipif); 24112 break; 24113 } 24114 } 24115 24116 mutex_exit(&ill->ill_lock); 24117 ill_refrele(ill); 24118 return (ipif); 24119 } 24120 24121 /* 24122 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24123 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24124 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24125 * for details. 24126 */ 24127 void 24128 ill_fastpath_flush(ill_t *ill) 24129 { 24130 ip_stack_t *ipst = ill->ill_ipst; 24131 24132 nce_fastpath_list_dispatch(ill, NULL, NULL); 24133 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24134 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24135 } 24136 24137 /* 24138 * Set the physical address information for `ill' to the contents of the 24139 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24140 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24141 * EINPROGRESS will be returned. 24142 */ 24143 int 24144 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24145 { 24146 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24147 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24148 24149 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24150 24151 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24152 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24153 /* Changing DL_IPV6_TOKEN is not yet supported */ 24154 return (0); 24155 } 24156 24157 /* 24158 * We need to store up to two copies of `mp' in `ill'. Due to the 24159 * design of ipsq_pending_mp_add(), we can't pass them as separate 24160 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24161 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24162 */ 24163 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24164 freemsg(mp); 24165 return (ENOMEM); 24166 } 24167 24168 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24169 24170 /* 24171 * If we can quiesce the ill, then set the address. If not, then 24172 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24173 */ 24174 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24175 mutex_enter(&ill->ill_lock); 24176 if (!ill_is_quiescent(ill)) { 24177 /* call cannot fail since `conn_t *' argument is NULL */ 24178 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24179 mp, ILL_DOWN); 24180 mutex_exit(&ill->ill_lock); 24181 return (EINPROGRESS); 24182 } 24183 mutex_exit(&ill->ill_lock); 24184 24185 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24186 return (0); 24187 } 24188 24189 /* 24190 * Once the ill associated with `q' has quiesced, set its physical address 24191 * information to the values in `addrmp'. Note that two copies of `addrmp' 24192 * are passed (linked by b_cont), since we sometimes need to save two distinct 24193 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24194 * failure (we'll free the other copy if it's not needed). Since the ill_t 24195 * is quiesced, we know any stale IREs with the old address information have 24196 * already been removed, so we don't need to call ill_fastpath_flush(). 24197 */ 24198 /* ARGSUSED */ 24199 static void 24200 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24201 { 24202 ill_t *ill = q->q_ptr; 24203 mblk_t *addrmp2 = unlinkb(addrmp); 24204 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24205 uint_t addrlen, addroff; 24206 24207 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24208 24209 addroff = dlindp->dl_addr_offset; 24210 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24211 24212 switch (dlindp->dl_data) { 24213 case DL_IPV6_LINK_LAYER_ADDR: 24214 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24215 freemsg(addrmp2); 24216 break; 24217 24218 case DL_CURR_PHYS_ADDR: 24219 freemsg(ill->ill_phys_addr_mp); 24220 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24221 ill->ill_phys_addr_mp = addrmp; 24222 ill->ill_phys_addr_length = addrlen; 24223 24224 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24225 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24226 else 24227 freemsg(addrmp2); 24228 break; 24229 default: 24230 ASSERT(0); 24231 } 24232 24233 /* 24234 * If there are ipifs to bring up, ill_up_ipifs() will return 24235 * EINPROGRESS, and ipsq_current_finish() will be called by 24236 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24237 * brought up. 24238 */ 24239 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24240 ipsq_current_finish(ipsq); 24241 } 24242 24243 /* 24244 * Helper routine for setting the ill_nd_lla fields. 24245 */ 24246 void 24247 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24248 { 24249 freemsg(ill->ill_nd_lla_mp); 24250 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24251 ill->ill_nd_lla_mp = ndmp; 24252 ill->ill_nd_lla_len = addrlen; 24253 } 24254 24255 major_t IP_MAJ; 24256 #define IP "ip" 24257 24258 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24259 #define UDPDEV "/devices/pseudo/udp@0:udp" 24260 24261 /* 24262 * Issue REMOVEIF ioctls to have the loopback interfaces 24263 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24264 * the former going away when the user-level processes in the zone 24265 * are killed * and the latter are cleaned up by the stream head 24266 * str_stack_shutdown callback that undoes all I_PLINKs. 24267 */ 24268 void 24269 ip_loopback_cleanup(ip_stack_t *ipst) 24270 { 24271 int error; 24272 ldi_handle_t lh = NULL; 24273 ldi_ident_t li = NULL; 24274 int rval; 24275 cred_t *cr; 24276 struct strioctl iocb; 24277 struct lifreq lifreq; 24278 24279 IP_MAJ = ddi_name_to_major(IP); 24280 24281 #ifdef NS_DEBUG 24282 (void) printf("ip_loopback_cleanup() stackid %d\n", 24283 ipst->ips_netstack->netstack_stackid); 24284 #endif 24285 24286 bzero(&lifreq, sizeof (lifreq)); 24287 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24288 24289 error = ldi_ident_from_major(IP_MAJ, &li); 24290 if (error) { 24291 #ifdef DEBUG 24292 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24293 error); 24294 #endif 24295 return; 24296 } 24297 24298 cr = zone_get_kcred(netstackid_to_zoneid( 24299 ipst->ips_netstack->netstack_stackid)); 24300 ASSERT(cr != NULL); 24301 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24302 if (error) { 24303 #ifdef DEBUG 24304 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24305 error); 24306 #endif 24307 goto out; 24308 } 24309 iocb.ic_cmd = SIOCLIFREMOVEIF; 24310 iocb.ic_timout = 15; 24311 iocb.ic_len = sizeof (lifreq); 24312 iocb.ic_dp = (char *)&lifreq; 24313 24314 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24315 /* LINTED - statement has no consequent */ 24316 if (error) { 24317 #ifdef NS_DEBUG 24318 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24319 "UDP6 error %d\n", error); 24320 #endif 24321 } 24322 (void) ldi_close(lh, FREAD|FWRITE, cr); 24323 lh = NULL; 24324 24325 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24326 if (error) { 24327 #ifdef NS_DEBUG 24328 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24329 error); 24330 #endif 24331 goto out; 24332 } 24333 24334 iocb.ic_cmd = SIOCLIFREMOVEIF; 24335 iocb.ic_timout = 15; 24336 iocb.ic_len = sizeof (lifreq); 24337 iocb.ic_dp = (char *)&lifreq; 24338 24339 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24340 /* LINTED - statement has no consequent */ 24341 if (error) { 24342 #ifdef NS_DEBUG 24343 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24344 "UDP error %d\n", error); 24345 #endif 24346 } 24347 (void) ldi_close(lh, FREAD|FWRITE, cr); 24348 lh = NULL; 24349 24350 out: 24351 /* Close layered handles */ 24352 if (lh) 24353 (void) ldi_close(lh, FREAD|FWRITE, cr); 24354 if (li) 24355 ldi_ident_release(li); 24356 24357 crfree(cr); 24358 } 24359 24360 /* 24361 * This needs to be in-sync with nic_event_t definition 24362 */ 24363 static const char * 24364 ill_hook_event2str(nic_event_t event) 24365 { 24366 switch (event) { 24367 case NE_PLUMB: 24368 return ("PLUMB"); 24369 case NE_UNPLUMB: 24370 return ("UNPLUMB"); 24371 case NE_UP: 24372 return ("UP"); 24373 case NE_DOWN: 24374 return ("DOWN"); 24375 case NE_ADDRESS_CHANGE: 24376 return ("ADDRESS_CHANGE"); 24377 default: 24378 return ("UNKNOWN"); 24379 } 24380 } 24381 24382 static void 24383 ill_hook_event_destroy(ill_t *ill) 24384 { 24385 hook_nic_event_t *info; 24386 24387 if ((info = ill->ill_nic_event_info) != NULL) { 24388 if (info->hne_data != NULL) 24389 kmem_free(info->hne_data, info->hne_datalen); 24390 kmem_free(info, sizeof (hook_nic_event_t)); 24391 24392 ill->ill_nic_event_info = NULL; 24393 } 24394 24395 } 24396 24397 boolean_t 24398 ill_hook_event_create(ill_t *ill, lif_if_t lif, nic_event_t event, 24399 nic_event_data_t data, size_t datalen) 24400 { 24401 ip_stack_t *ipst = ill->ill_ipst; 24402 hook_nic_event_t *info; 24403 const char *str = NULL; 24404 24405 /* destroy nic event info if it exists */ 24406 if ((info = ill->ill_nic_event_info) != NULL) { 24407 str = ill_hook_event2str(info->hne_event); 24408 ip2dbg(("ill_hook_event_create: unexpected nic event %s " 24409 "attached for %s\n", str, ill->ill_name)); 24410 ill_hook_event_destroy(ill); 24411 } 24412 24413 /* create a new nic event info */ 24414 if ((info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP)) == NULL) 24415 goto fail; 24416 24417 ill->ill_nic_event_info = info; 24418 24419 if (event == NE_UNPLUMB) 24420 info->hne_nic = ill->ill_phyint->phyint_ifindex; 24421 else 24422 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 24423 info->hne_lif = lif; 24424 info->hne_event = event; 24425 info->hne_family = ill->ill_isv6 ? 24426 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 24427 info->hne_data = NULL; 24428 info->hne_datalen = 0; 24429 24430 if (data != NULL && datalen != 0) { 24431 info->hne_data = kmem_alloc(datalen, KM_NOSLEEP); 24432 if (info->hne_data != NULL) { 24433 bcopy(data, info->hne_data, datalen); 24434 info->hne_datalen = datalen; 24435 } else { 24436 ill_hook_event_destroy(ill); 24437 goto fail; 24438 } 24439 } 24440 24441 return (B_TRUE); 24442 fail: 24443 str = ill_hook_event2str(event); 24444 ip2dbg(("ill_hook_event_create: could not attach %s nic event " 24445 "information for %s (ENOMEM)\n", str, ill->ill_name)); 24446 return (B_FALSE); 24447 } 24448